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Abstract

We consider the functor from the stable module category to the homotopy category constructed
by Kato in [18]. This functor gives an equivalence between the stable module category and
a full subcategory L of the unbounded homotopy category of projective modules. Moreover,
the functor induces a correspondence between distinguished triangles in the homotopy category

and perfect exact sequences in the module category.

In general, the stable module category and the category L are not triangulated. We provide a
description of a triangulated hull of £ inside the homotopy category and discuss its Grothendieck
group. We also construct a larger subcategory which is shown to be characteristic inside the
homotopy category under suitable assumptions. Both subcategories coincide with £ if and
only if the algebra is self-injective. Furthermore, stable equivalence of Morita type are shown

to preserve both subcategories.

Another focus is put on the relationship between stable equivalences and perfect exact se-
quences. On the one hand, we give sufficient conditions for a stable equivalence to preserve
perfect exact sequences up to projective direct summands. A stable equivalence which preserves
perfect exact sequences in this way is shown to induce a triangulated equivalence between the
categories of stable Gorenstein-projective modules. On the other hand, given a stable equiva-
lence that is induced by an exact functor, we provide various sufficient conditions under which
the equivalence is a stable equivalence of Morita type. In particular, stable equivalences of
Morita type arise from equivalences that are given by tensoring with an arbitrary bimodule on

the level of the category L .

Finally, we give a description of all algebras that can be obtained by deleting or inserting nodes

via stable equivalences constructed by Koenig and Liu in [22].






Zusammenfassung

Wir betrachten den Funktor von der stabilen Modulkategorie in die Homotopiekategorie, der
in [18] von Kato konstruiert wurde. Hierdurch ergibt sich eine Aquivalenz zwischen der sta-
bilen Modulkategorie und einer vollen Teilkategorie £ der unbeschrankten Homotopiekategorie
von projektiven Moduln. Der Funktor induziert aulerdem eine Korrespondenz zwischen den
ausgezeichneten Dreiecken in der Homotopiekategorie und den perfekt exakten Sequenzen in

der Modulkategorie.

Die stabile Modulkategorie und die Kategorie £ sind im Allgemeinen nicht trianguliert. Wir
geben eine Beschreibung einer triangulierten Hiille von £ innerhalb der Homotopiekategorie an
und untersuchen ihre Grothendieck Gruppe. Weiterhin konstruieren wir eine groflere Teilkat-
egorie, die unter geeigneten Annahmen eine charakteristische Teilkategorie der Homotopiekat-
egorie ist. Beide Teilkategorien stimmen genau dann mit der Kategorie £ iiberein, wenn die
Algebra selbstinjektiv ist. Zusitzlich zeigen wir, dass stabile Aquivalenzen vom Morita Typ

beide Teilkategorien erhalten.

Ein weiterer Schwerpunkt wird auf den Zusammenhang zwischen stabilen Aquivalenzen und
perfekt exakten Sequenzen gelegt. Zum Einen werden hinreichende Bedingungen angegeben,
unter welchen eine stabile Aquivalenz perfekt exakte Sequenzen, bis auf projektive direkte
Summanden, erhilt. Es wird gezeigt, dass eine stabile Aquivalenz, die perfekt exakte Sequen-
zen in diesem Sinne erhilt, eine triangulierte Aquivalenz zwischen den Kategorien der stabilen
Gorenstein-projektiven Moduln induziert. Zum Anderen betrachten wir stabile Aquivalenzen,
die von einem exakten Funktor induziert werden. Wir geben verschiedene hinreichende Bedin-
gungen an, unter welchen solche Aquivalenzen eine stabile Aquivalenz vom Morita Typ sind.
Insbesondere fithren Aquivalenzen auf der Ebene der Kategorie £, welche durch ein Tensor-

produkt mit einem beliebigen Bimodul gegeben sind, zu stabilen Aquivalenzen vom Morita
Typ.
Schliefllich konstruieren wir alle Algebren, die durch das Streichen oder Einsetzen von Knoten

entstehen konnen. Dies benutzt die Beschreibung solcher stabiler Aquivalenzen von Koenig
und Liu in [22].






Introduction

To study the representation theory of finite dimensional algebras A and B, one often considers
equivalences between three associated categories. The strongest of these is given by Morita
equivalences between the categories of finitely generated modules mod A and mod B. A weaker
link is provided by equivalences between the derived categories D(mod A) and D(mod B). Fi-
nally, we have stable equivalences between the stable module categories mod A and mod B.
Thereby, the stable module category is defined by quotienting out morphisms factoring through
projective modules. While there is a theory for derived equivalences developed by Keller([20])
and Rickard([37]) generalizing the Morita theory for module categories, so far no such theory
is known for stable equivalences. Unlike the others, the stable module category in general is
neither abelian nor triangulated. In contrast, Morita equivalences preserve the abelian struc-

ture of the module category and derived equivalences preserve the triangulated structure of

D(mod A).

As such, a stable equivalence often preserves relatively few properties. In particular, a stable
equivalence does not need to be induced by a functor on the level of the module category. There-
fore, several smaller, more specific classes of stable equivalences have been studied. Motivated
by results for self-injective algebras and group algebras, Broué introduced the class of stable
equivalences of Morita type; cf. [7]. These are induced by exact functors between the module
categories which, under mild assumptions, form an adjoint pair. Stable equivalences of Morita

type have been shown to preserve many properties of the algebra; see for example [24,26,35,42].

If A is a self-injective algebra, the stable module category has a triangulated structure with
triangles induced by short exact sequences. Rickard ([38]) and Keller-Vossieck ([21]) have
shown independently that derived equivalent self-injective algebras are stably equivalent of
Morita type. In this way, stable equivalences arise naturally for self-injective algebras. Con-
versely, results by Asashiba in [2] and Dugas in [12] show that for self-injective algebras of finite
representation type, every stable equivalence induces a derived equivalence and thus a stable
equivalence of Morita type. Furthermore, a different result by Rickard in [39] states that for
self-injective algebras every stable equivalence that is induced by an exact functor between the

module categories is isomorphic to a stable equivalence of Morita type.

11



12 Introduction

For arbitrary finite dimensional algebras it remains an open problem whether stable equivalences
induced by exact functors are of Morita type. Progress has been made by Dugas and Martinez-
Villa in [13], who have shown that a stable equivalence induced by tensoring with a bimodule
4Mp which is projective on both sides is of Morita type if Hom4 (M, A) is projective over B.
In a different direction, Liu and Xi provide several methods to construct stable equivalences of
Morita type from given ones; cf. [28-30]. In practice, it remains difficult to determine whether

two algebras are stably equivalent of Morita type.

For general stable equivalences the obstruction to nice properties is often given by the existence
of a node. Nodes are non-projective, non-injective simple modules S where the middle term
of the almost split sequence starting in .S is projective. This has been studied by Auslander
and Reiten in [4] and later Martinez-Villa in [32,33]. By excluding algebras with nodes, stable
equivalences preserve most short exact sequences and almost split sequences up to projective
direct summands; cf. [4] and [33]. Furthermore, Martinez-Villa has shown in [33] that stable
equivalences in this setting preserve the global and dominant dimension of algebras as well as
the stable Grothendieck group. Note that stable equivalences which are induced by two exact

functors preserve nodes; cf. [27].

Finally, a complementary class of stable equivalences is given by deleting nodes from the algebra.
In [31], Martinez-Villa has shown that every algebra is stably equivalent to an algebra without
nodes in this way. He and Montano-Bermudez study and extend stable equivalences which are
induced by node deletion or node insertion in [34]. Using a different approach, Koenig and Liu
show in [22] that such stable equivalences can be described by bimodules which are projective

on one side.

In this thesis, we consider other concepts and categories associated to the stable module category
and examine when they are preserved by a stable equivalence. This is based on the following
work by Kiriko Kato who gives a description of the stable module category inside the homotopy

category.

As seen above, there seems to be a close connection between the stable module category and
the derived category in case that A is self-injective. A similar approach for rings which are
not necessarily self-injective has been to study the relationship of the stable module category
with the homotopy category of projective modules K(proj A). In the context of commutative
rings, Yoshino introduces in [43] an equivalence between the stable category of modules with
finite projective dimension and a full subcategory of the homotopy category. A similar tech-
nique was used by Amasaki in [1]. In [18], Kato extends this equivalence to a functor from
the stable module category to the unbounded homotopy category of projective modules. This
results in a full subcategory £, of the homotopy category which is equivalent to the stable
module category. Furthermore this equivalence mod A = L4 provides a correspondence be-

tween the distinguished triangles in IC(proj A) and so called perfect exact sequences in mod A.
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Here, a short exact sequence is called perfect exact if the induced sequence under the functor
Homy(—, A) is exact as well. Using these concepts, Kato constructs a weak kernel and a weak
cokernel for the stable module category and contrasts this with the abelian structure of mod A.
Later, in [19], the same methods are utilized by her to characterize morphisms which are stably

equivalent to a monomorphism.

Although these results where introduced for modules over commutative rings, the main tech-
niques still work for modules over general finite dimensional algebras. This provides the basis for
most of the results in this thesis, in particular we will make use of the equivalence mod A — L 4.
However, we focus more on stable equivalences, perfect exact sequences and the triangulated

structure of the homotopy category.

For the latter, we discuss the category £4 C K(proj A) in situations where the stable module
category is not triangulated. In this setting, L4 still contains or is contained in triangulated
subcategories of KC(proj A). An example of this is the homotopy category of totally acyclic
complexes Kiae(proj A). The corresponding objects in mod A are the Gorenstein-projective
modules. The framework of perfect exact sequences provides an intrinsic description of totally
acyclic complexes inside £ 4; cf. Lemma 4.38. Furthermore, the equivalence mod A — L4 by
Kato restricts to the known triangulated equivalence between the category Gproj A of stable
Gorenstein-projective modules and Ki,.(proj A); cf. Lemma 4.40. On the other hand, £, can
be enlarged to a triangulated category inside K(proj A). We define two triangulated subcate-
gories of K(proj A) as perpendicular categories such that they have £, as a subcategory; cf.
Definition 4.1. The category Hp(proj A) has objects which do not have non-zero morphisms
to bounded complexes of projective-injective modules. The category Hg,(proj A) has objects
which do not have non-zero morphisms to bounded complexes of strongly projective-injective
modules. In summary, we will obtain the following chain of subcategories. With the exception

of mod A ~ L4, all of these are triangulated categories.

Kiac(proj A) «—— L4 —— Hp(proj A) — Hap(proj A) — K(proj A)

] ]

Gproj A —— mod A

While Hgp(proj A) is a larger category than Hp(proj A), it is closed under a functor v which
is induced by the Nakayama functor vy; cf. Definition 4.22. If A has finite global dimension
vk is equivalent to the derived Nakayama functor between the bounded homotopy categories
Kb(proj A) — K(proj A). Our result is as follows.
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Theorem A (Theorem 4.11, Theorem 4.26). Let A be a finite dimensional k-algebra.

(1) The category Hp(proj A) is the smallest triangulated subcategory of K(proj A) that con-

tains L4 and is closed under isomorphisms.

(2) The category Hsp(proj A) is the smallest triangulated subcategory of K(proj A) that con-

tains L4 and is closed under v and under isomorphisms.

As an application of the first result, we discuss the Grothendieck group of the triangulated
category Hp(proj A). Via the equivalence mod A — L 4, we obtain an alternative Grothendieck
group GI'(A) of mod A; cf. Definition 4.15. In contrast to the known stable Grothendieck group,
GJ(A) is defined via perfect exact sequences instead of short exact sequences. As such, it can be
non-zero even for algebras of finite global dimension. Regarding the second result, a theorem
by Fang, Hu and Koenig ([14, Theorem 4.3]) implies that Hg,(proj A) is a characteristic
subcategory of K’(proj A) if A has finite global dimension and v-dominant dimension at least
1; cf. Corollary 4.32. We also provide an extension of this consequence for algebras of arbitrary

global dimension; cf. Theorem 4.35.

In case that A is a self-injective algebra, mod A is already a triangulated category. Therefore, £ 4
is a triangulated subcategory of KC(proj A) and all previously mentioned subcategories coincide.
In this sense, the above constructions are compatible with the existing structure of mod A and

K(proj A). We show, that this characterizes the property of A to be self-injective.

Theorem B (Theorem 4.45). The following are equivalent for a finite dimensional algebra A.
(1) A is self-injective.
(2) La is a triangulated subcategory of IC(proj A).
(3) La=Hp(projA).
(4) La is closed under taking shifts in IKC(proj A).
(5) L4 = Kiac(proj A).

If one of the above conditions holds, the functor mod A — L4 is an equivalence of triangulated

categories. Furthermore, we have Kiac(proj A) = L4 = Hp(proj A) = Hsp(proj A).

The remaining part of this work studies different classes of stable equivalences. Our main focus
is on stable equivalences that preserve the property of short exact sequences to be perfect exact.
Necessarily, such a stable equivalence cannot be induced by deleting or inserting a node. The
following result provides sufficient conditions in which this property is preserved. We say that
a morphism f : X — Y in mod A has finite depth, if f ¢ rad"(X,Y) for some n € Z-;. See

Definition 3.13 for more details.
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Theorem C (Theorem 3.19). Let a : mod A — mod B be a stable equivalence.

Suppose given a perfect exact sequence 0 — X Ly ® P % Z — 0 without split summands

where X has no node as a direct summand, P € proj A andY has no projective direct summand.

Suppose that f p and g have finite depth for every projection p onto an indecomposable direct
summand of Y and every projection m onto an indecomposable direct summand of Z. Then

there exists a perfect exact sequence
0= aX)LaMyaP L a(z)—=0

in mod B with P € proj B such that f ~a(f) and g ~ a(g).

In particular, this provides conditions on the algebras A and B under which every stable
equivalence preserves perfect exact sequences in this way. While the assumption on the depth
of f and ¢ is necessary for our proof, it seems unclear whether a similar result holds in a
more general setting. However, if a stable equivalence preserves perfect exact sequences it also
preserves the stable category of Gorenstein-projective modules and the Grothendieck group
GJ(A) introduced above.

Theorem D (Corollary 3.20, Theorem 4.42, Theorem 4.17). Let o : mod A — mod B be a

stable equivalence between finite dimensional algebras without nodes. Consider the following

conditions.

(1) Let 0 — X Ly &P L Z — 0 be a perfect exact sequence in mod A without split
summands where P € proj A and Y has no projective direct summand. Then there exists

a perfect exact sequence
0 — a(X) @a(Y)@pioz(Z) — 0

in mod B with P € proj B such that f ~a(f) and g ~ a(g).

(2) The equivalence o induces a triangulated equivalence Kiae(proj A) — Kiac(proj B). This
induces a triangulated equivalence Gproj A — Gproj B.

(3) The equivalence o induces an isomorphism G}(A) — GN(B).

If condition (1) holds for o and its quasi-inverse, conditions (2) and (3) hold. If A and B have

finite representation type, all three conditions hold.

For the stronger class of stable equivalences of Morita type the above results hold without any
assumptions on the finite dimensional algebras A and B. In particular, such stable equivalences
map perfect exact sequences to perfect exact sequences. We show the following further results

for the subcategories of K(proj A) introduced above.
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Theorem E (Theorem 5.8). Suppose aMp and gN4 are bimodules that induce a stable equiva-
lence of Morita type such that M and N do not have any non-zero projective bimodule as direct

summand.

(1) Applying — @4 M componentwise induces an equivalence of categories L — Lp.

If A and B are self-injective, this is an equivalence of triangulated categories.

(2) Applying — @4 M componentwise induces an equivalence of triangulated categories

Hp(proj A) — Hp(proj B).

(3) Applying — @4 M componentwise induces an equivalence of triangulated categories

Haip(proj A) — Heep(proj B).

Note that any stable equivalence induces an equivalence between L4 and Lg. Yet, in general,
there is no explicit description of this induced functor inside K(proj A). On the other hand, if
we know that a bimodule M induces an equivalence — ®4 M : L, — Lp, we can show that
M and Homp(M, B) induce a stable equivalence of Morita type; cf. Theorem 5.13. This builds
upon the result of Dugas and Martinez-Villa in [13] mentioned above. As an application, we
find new conditions under which a stable equivalence that is induced by an exact functor is of

Morita type. The last three conditions will be shown using perfect exact sequences.

Theorem F (Theorem 5.19). Let A and B be finite dimensional algebras whose semisimple
quotients are separable. Suppose given a bimodule M which is projective as left A- and as
right B-module such that — ® 4 M induces a stable equivalence mod A — mod B. If one of
the following conditions holds, M and Hompg(M, B) induce a stable equivalence of Morita type
between A and B.

(1) The functor — ®4 M induces an equivalence L4 — Lp.

(1) The homology Hy((F* ®4 M)*) vanishes for F* € L4 and k > 0.
(i4i) There exist natural isomorphisms vg(P ®4 M) ~ v4(P) @4 M for all P € proj A.
(iv) There ezists a natural isomorphism M @p DB ~ DA ®4 M of right B-modules.

(v) The algebras A and B have no nodes. At least one of A or B has dominant dimension
at least 1 and finite representation type. Moreover, for all simple A-modules S whose

injective hull is not projective, the image S ® 4 M is an indecomposable B-module.
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(vi) The algebras A and B have no nodes. At least one of A or B is a Nakayama algebra.
Moreover, for all simple A-modules S whose injective hull is not projective, the image

S ®a4 M is an indecomposable B-module.

(vit) The algebras A and B have dominant dimension at least 1. There is a bimodule pL 4
which is projective as left B- and right A-module and which induces the inverse stable
equivalence. Moreover, for all simple A-modules S whose injective hull is not projective,

the image S ® 4 M 1is an indecomposable B-module.

Finally, we consider stable equivalences that are induced by either deleting or inserting a node.
For all stable equivalences discussed so far, nodes were either excluded by assumption or pre-
served by the equivalence. Koenig and Liu provide an explicit description of stable equivalences
that are induced by gluing idempotents corresponding to a simple projective and a simple injec-
tive module; cf. [22]. We provide a construction that describes all algebras that can be obtained

from a given algebra in this way; cf. Theorem 6.11.

This thesis is structured as follows. The first chapter, Chapter 1, provides a summary of
definitions and results important for the later chapters. At the beginning, a list of often used
notations and conventions is included. Afterwards, we focus on the stable module category
and on the homotopy category of projective modules. The chapter concludes with a short
section about projective-injective modules. Note that a list of symbols with short explanations
is attached at the end of this thesis.

Chapter 2 focuses on the equivalence mod A — £ 4 and on perfect exact sequences. This collects
and adapts Kato’s results in [18] and [19]. We include modified versions of the proofs given by
Kato and often fill in several details. Moreover, we provide further technical properties of perfect
exact sequences. The next chapter, Chapter 3, is dedicated to show that certain perfect exact
sequences are preserved by stable equivalences as stated in Theorem C. The following Chapter 4
covers the triangulated categories KCiae(proj A), Hp(proj A) and Hgp(proj A). In particular,
Theorem A and Theorem B are proven. Furthermore, the result of the previous chapter is used
to verify parts (2) and (3) of Theorem D. Chapter 5 discusses stable equivalences of Morita type
in more detail. In the first section, we apply this to the categories of the previous chapter and
give the proof of Theorem E. The rest of the chapter provides conditions under which a stable
equivalence is of Morita type; cf. Theorem F. Finally, the case of stable equivalences induced
by gluing a simple injective and a simple projective vertex of a quiver algebra is treated in

Chapter 6. This part is mostly independent of the previous chapters.

The last chapter, Chapter 7, is dedicated to some extended examples. Each section of this
chapter focuses on one or two algebras in greater detail. At the beginning of every section,

several facts about the algebras are collected. Furthermore, examples during a section may
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reference results stated in earlier parts of the same section. However, every section of Chapter 7
can be read independently. Throughout this thesis, we often point to specific parts of this
chapter intended to be read as an example for the current topic. On the other hand, this

chapter can also be read as a self-contained part at the end of the thesis.



Chapter 1

Preliminaries

In this chapter, we introduce the main definitions and notations used throughout this thesis. We
focus on the stable module category (Section 1.2) and on the homotopy category (Section 1.3).
At the end of this chapter is a short section about projective-injective modules. We begin with

a list of general notations and conventions which are used later without further comment.

The general setup for every chapter is the following. Let k be a field. Let A and B be finite
dimensional k-algebras. We assume that A and B have no semisimple summands. For some

chapters, we impose additional assumptions.

1.1 Notation

We use the following notation and conventions.

e By an A-module we understand a right A-module, if not specified otherwise. We denote
the category of right A-modules by Mod A. The full subcategory of projective modules
is denoted by Proj A. The full subcategory of injective modules is denoted by Inj A.

o We denote the category of finitely generated right A-modules by mod A. Similarly for
proj A and inj A. The corresponding categories of finitely generated left A-modules are
denoted by A-mod, A-proj and A-inj respectively. If not specified otherwise, all modules

are assumed to be finitely generated.

e Let XY and Z be sets. We write morphisms on the right. That is, given morphisms
XLy % Zand x € X we denote the image of x under f by zf and the composite of
fand g by X 2% 7.

e Let C, D and & be categories. We write functors on the left. That is, given functors
F:C—Dand G:D — £ we denote the image of an object C' under F by F(C) and

the composite of F and G by C >l ¢

19



1 Preliminaries

o For an A-module X and n € Z-g, we write X®" for the direct sum of n copies of X.

o We often write morphisms between direct sums of modules as matrices. That is, given

morphisms f; ; : X; = Y; between A-modules X, X5, Y] and Y5, we write

fi= <j§;j ﬁ) Xi0 X > VoY,

for the morphism f with (x1,292)f = (x1fi1 + 2afo1,T1f12 + X2foo) for 1 € X and
T9 € Xo.

e Let u and v be two idempotent elements of A. We identify along

Hom 4 (uA,vA) = vAu
f=uf

(uy — vruy) <= vru

e For morphisms X Lo v and X' L5 ¥ we write f =~ f"if there exist isomorphisms «,

such that the following diagram commutes.

x 1.y

b

x Ly
e Let X be an A-module. We often write 1 = 1x for the identity map idx on X.
o We denote the composition length of an A-module X by [(X) .

o We say that a short exact sequence n : 0 — X Ly % 7 5 0has a split summand
if n # 0 and there exists a decomposition 1 ~ n; @ 1y into the direct sum of two short
exact sequences 7; : 0 — X; f—> Y, & Z, — 0 for i = 1,2 such that n; is a split exact
sequence. That is, if there exist isomorphisms (1, ps and 3 such that the following

diagram commutes with 7; a split exact sequence.

n 0 s 7 > 0
f1 lﬂo? g10 2\[903
m o ne: 0—>X1€9X2 Y169Y2 Z1® Zy — 0

e Let A be an additive category and S be a full subcategory of A. We write +S for the
full subcategory of A consisting of all objects X in A such that Hom4(X, Z) = 0 for all
Z € 8. Analogously, we define S*.



1.2 Stable module category 21

We recall the definition of several important functors and introduce relevant notation.

(1) The k-duality Homg(—, k) : mod A — A-mod will be denoted by D(—) := Homg(—, k).

Note that D(—) is exact and takes projective modules to injective modules and vice versa.

(2) The functor Homy(—, A) : mod A — A-mod will be denoted by (—)* := Homa(—, A)
Note that (—)* restricts to an equivalence (—)* : proj A — A-proj.

(3) We define the Nakayama functor v, : mod A — mod A as the composite v(—) := D((—)*).
We sometimes write v instead of v4 if there is no ambiguity. Note that v restricts to an

equivalence proj A — inj A. The quasi-inverse is given by v;' = (D(-))*.

For P € proj A and X € mod A, we have a natural isomorphism

Homy (X, vP) ~ DHomu(P, X).

(4) Let X € mod A with projective presentation P~ — P° — X. Then the syzygy
Q(X) = Ker(P® — X) defines a functor Q : mod A — mod A. The transpose of X
given by Tr(X) := Cok((P%)* — (P~1)*) defines a duality mod A — A-mod.

1.2 Stable module category

We recall the definition of the stable module category and collect some basic properties. Addi-

tionally, some elementary proofs are included.

Definition 1.1. The stable module category mod A is the category with the same objects as
mod A and with morphisms Hom 4, (X,Y") := Hom4(X,Y)/PHom4(X,Y) for X, Y € mod A. A
morphism f: X — Y is an element of PHom4(X,Y) if there exists a P € proj A such that f
factors through P.

Remark 1.2. Let X, Y € mod A and f,g € Homa(X,Y).

(1) We sometimes write f for the image of f in Hom,(X,Y’). However, we often denote

morphisms in mod A by f as well, if there is no ambiguity.

We sometimes write X ~ Y or f X gif X ~Y or f ~ g in mod A respectively.

(2) Let P € proj A. We have P ~ 0 in mod A via stable and mutually inverse isomorphisms
P —0and 0— P.
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(3) Note that f = 0 in mod A if and only if f factors through the projective cover p: P — Y
of Y.

In fact, if f factors through a projective module () via a: X — @ and 5 : () — Y, then
we obtain a morphism ' : P — @ with f = af = af'p.

Q@
ol
X

P,y

We have the following basic characterization of isomorphic modules and morphisms in the stable

module category. We follow the proof given in [19, Lemma 2.3 and 2.6] and fill in some details.
Lemma 1.3. Suppose given X,Y, X', Y € mod A and morphisms f : X — X" andg:Y — Y.

(1) We have X % if and only if there exist P,Q € proj A such that X ® Q ~Y & P.

(2) We have f X g if and only if there exist P,P',Q, Q" € proj A, morphisms f and g which
restrict to f and g respectively and isomorphisms o, " such that the following diagram

commutes. 7
XoQ — X' pQ

I e

YeP 25y qp

Proof. Ad (1). Suppose that o : X — Y is a stable isomorphism with inverse § in mod A.
Then a g —idx factors through the projective cover P of X and  «a — idy factors through the

projective cover () of Y. Hence there exist morphisms

sx: X —>P tx:P—>»X
sy:Y =Q ty:Q—>Y

such that o S+ sy tx = idx and f a+ sy ty = idy. Moreover, there exist morphisms a : P — @)

and b : (Q — P such that the following diagrams commute.

P Q
97 |txa b ltyﬂ
K/tY l</tx
Q —»Y P2y X

We show that (asx) XD —Y PP and (ﬁ 5_‘;) Y & P — X & (@ are mutually inverse

ty —b tx
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isomorophisms. We have the following.
o Sx b sy B aff + sxtxy asy — sxa B idy asy — sxa
ty —b tX —a B tyﬁ—btx ty8y+ba B 0 ty8y+ba
/6 Sy o Sy . BO& + Syty ﬁSX — Syb . ldy BSX — Syb
tX —a ty —-b thé—(lty thx—f—CLb 0 thx+(lb
Using that P and @) are the projective covers of X and Y respectively, the equations

(tySy + ba)ty = ty(idy — ﬁO&) + tyﬂO& = Ify
(tXSX + ab)tX = tx<idx — Oéﬁ) + txaﬁ = tX

imply that tysy +ba =idg and txsx + ab = idp. With this, we obtain

tx(asy —sxa) =atysy —txsxa=a—aba—a+aba=0

ty(,BSX —Syb) = thSX —tySyb:b—bab—b+bab:O

so that asy — sxa =0 and fsx — syb = 0 since tx and ty are surjective.
Ad (2). We only have to show that f X g implies the existence of the diagram above.

By assumption, we have stable isomorphisms « and o’ such that the following diagram com-
mutes in mod A.

x 1 x

Zla Zlo/

Yy 2y
Part (1) now provides isomorphisms ¢ : X @ Q — Y ® P and ¢’ : X' & Q' — Y' & P’ with
P, P'.Q,Q" € proj A. We use the notation of part (1). Since a«g = f ' in mod A, we also have
a morphism u : X — @' such that a« g — f o’ = uty,. Finally, using that @) is projective, we

obtain a morphism v : ) — @’ such that the following diagram commutes.

Q

s

v il
7 ltyg
e
g

Q/ - Y/
v/

Together, we can define a morphism (g:j) : X ®Q — X' ® Q' which restricts to f. Now,

~ ([ u) b sy f u o sy , ,
e (i L A L A T )



24 1 Preliminaries

restricts to the following morphism Y — Y.

Bfo 4+ Buty +syvty =B fd +p(ag—fd)+sytyg=Pag+(idy —Ba)g=g

This gives the claimed commutative diagram.

(&)
0v
XoQ —— X o
2\[&0 ¢
1<f“> , J/
» 0w ¥

YeP ——— Y o F 0

We also note the following characterization of a stable isomorphism.

Lemma 1.4. Suppose given a surjective morphism Y Iy 7 in mod A.

Then f is a stable isomorphism if and only if f is a split epimorphism with projective kernel.

Proof. Suppose that f is a stable isomorphism. By Lemma 1.3.(1), there exist projective
modules P and () such that Y & Q ~ Z @ P. Let K := Ker(f). We obtain the following

morphism of short exact sequences.

0 > P > Y ©Q > / > 0
| 1
Wl H

0 s K s Y ! s 7 > 0

Since Y & Q ~ Z ® P, the upper sequence splits and we obtain that the lower sequence is also
split. Furthermore, K @ Z ~ Y is a direct summand of Y & Q) ~ Z & P. Hence, K is a direct

summand of P and therefore projective.

On the other hand, suppose that f is a split epimorphism with projective kernel P. The split
exact sequence
0Po>YLhzoo

yields Y ~ Z @ P. By Lemma 1.3.(1), we obtain that f is a stable isomorphism. O

In specific circumstances we can use short exact sequences to induce stable isomorphisms.

Lemma 1.5. ([19, Lemma 2.14]) Suppose given a morphism between two short exact sequence

in mod A.

}/’1 g1
N
Y2 g2
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Assume that v is an isomorphism and that (5 is a stable isomorphism. Then « is a stable

isomorphism.

If additionally X1 and X5 have no projective direct summand, then o and [ are isomorphisms.

Proof. We follow the proof in [19, Lemma 2.14, part (1)].

Let p : P — X3 be the projective cover of X, and @@ = Ker(X; & P — X,). Consider the
following commutative diagram with exact rows and columns. Note that the exactness of the

middle column follows from the assumption that v is an isomorphism.

0 0 0
0 — @ Q > 0 > 0

=)
s
EB\
s
:<
@ 4
s
>

By Lemma 1.4, we have that (pi ) is a split epimorphism with @) projective, since 3 is a stable
2

isomorphism. Hence v is a split monomorphism which implies that u is a split monomorphism

as well. By Lemma 1.4, we obtain that « is a stable isomorphism.

If X; and X, have no projective direct summand, then « is an isomorphism in mod A. Using
that  is part of a morphism of short exact sequences, this implies that 5 is an isomorphism

as well. =

The following results can be found in [45, Propositions 5.1.8 and 5.1.10].

Proposition 1.6. We have the following for a self-injective algebra A.

(1) The syzygy functor Q : mod A — mod A is a self-equivalence of categories.

(2) The category mod A is triangulated with suspension functor Q' and distinguished trian-

gles isomorphic to those induced by short exact sequences.
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1.3 Homotopy category of complexes

We start with some notation and conventions for the category of complexes C(mod A). An
element F* = (F*).ez € C(mod A) will be written as a cochain complex with differential

(d*)rez = (d%)pez as follows.
N N S S AN Al BN RN
We denote the cohomology of F* in degree k € Z by H*(F*) := Kerd*/Imd*~*. We say that

F* is exact in degree k € Z, if H*(F*) = 0.
The shift [1] of a complex F* € C(mod A) is given as F*[1] := (F**1),c; with differentials given
by (—d%)rez. This yields an autoequivalence [n] : C(mod A) — C(mod A) for all n € Z.

For n € Z, truncation 7, F* of F* is defined as follows.

dn—2

N A R Ny - SN BN BN

We often abbreviate F'S" := 1<, F* and similarly for F*" := 1, F*. We also use the notation
F<" to indicate that F* = 0 for £ > n. An A-module X will be identified with the complex

X € C(mod A) consisting of X concentrated in degree zero.
By componentwise application, the equivalence (—)* = Homu(—, A) : proj A — A-proj can be
extended to the following equivalence.

(—=)" : C(proj A) — C(A-proj) : F* — F; = F*"

Here, we write (F})rez = (F¥*)rez = ((F¥)*),_, as the chain complex with differentials

di” = dy = (df)" for k € Z.

kEZ

« 4 « 40 *d*—l * d”y *
= S = F = — Y, — T, —

We denote the homology of F) in degree k € Z by Hi(F)) = Ker(d;_;)/Im(d}). In this sense,

we use both chain complexes and cochain complexes in our notation. However, we reserve the

notation of chain complexes for dualized cochain complexes.
Similarly to (—)*, the functors D and v also induce equivalences D : C(mod A) — C(A-mod)
and v : C(proj A) — C(inj A) respectively.

Now, we introduce notation for the homotopy category and the derived category of complexes.
We are mainly interested in the homotopy category of unbounded complexes of projective

modules KC(proj A). Let A be an additive subcategory of mod A.
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The homotopy category K(A) is the category with complexes in C(A) as objects and ho-
motopy equivalence classes of morphisms of complexes as morphisms. Recall that a mor-
phism f* : F* — G* in K(A) is said to be homotopic to zero, if there exist morphisms
h¥ . F* — GF=! for k € Z such that h*di ' 4 d¥ h*+1 = f5. The morphism h* = (h*)ez will
be called a homotopy with homotopy maps h*. Two morphisms f* and ¢g* in Homy(F*,G*)

are called homotopy equivalent if f* — ¢* is homotopic to zero.

If A is an abelian category, the derived category D(A) is the localization of the homotopy
category at the class of quasi-isomorphisms. Recall that a morphism of complexes f* : F* — G*
is called a quasi-isomorphism if the induced morphisms H¥(f*) : H¥(F*) — H*(G*) is an
isomorphism for all k € Z.

We write CT(A), KT(A) and Dt (A) for the subcategory consisting of left bounded complexes
in C(A), K(A) and D(A) respectively. Similarly, we write C~(A), K~ (A) and D~ (A) for
right bounded complexes. The subcategory of left and right bounded complexes is denoted by
Cb(A), KP(A) or D*(A). By CTP(A), KT*(A) and DT*(A) we denote the subcategory of left
bounded complexes that are bounded in cohomology. Finally, the subcategories C**(proj A),
K+t (proj A) and D**"(proj A) consist of the left bounded complexes F* with bounded homol-

ogy H.(F}). The analogue categories for right bounded complexes are defined similarly.

Definition 1.7. A complex F* € K(projA) is said to be totally acyclic, if H*(F*) = 0 and
Hy(F}) = 0 for all k£ € Z. The full subcategory of totally acyclic complexes in IC(proj A) is
denoted by K (proj A).

Definition 1.8. Let f* : F* — G* be a morphism in C(mod A). The mapping cone C(f)" of
f* is given by the complex (F*™! @ G*)iez with differential df, defined as follows for k € Z.

e _dl;ﬂ fht
0 d

Let f*: F* — G* in C(mod A) with mapping cone C(f)* € C(mod A). We have the following
short exact sequence in C(mod A).
-1
(0 1) 0

0—-G —>C(f) —=F°[1] =0
We will often need information about the vanishing of cohomology or homology of C(f)*.
Lemma 1.9. Suppose given f* : F} — F5 in K(proj A).

(1) Assume that there exist ly,ly € Z with HSU(F?) =0 for i = 1,2. Let [ ;== min(l; — 1,15).
We have HSH(C(f)*) = 0.
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(2) Assume that there exist r1,r9 € Z with Hs, ((F;)¥) =0 fori=1,2.
Let r := max(ry — 1,73). We have Hs,.(C(f)¥) = 0.

Proof. We have the following componentwise split exact sequence in C(proj A).
0—F; —C(f) — F'[1] =0
This induces a long exact sequence of cohomology.
o B = HAES) - HE(C(P)) = IR (F) = B () = -

Since the short exact sequence is componentwise split exact, we also obtain a long exact sequence

of homology.
- = Hin ((F2)0) = Hiea ((F1)0) = He(C(f))) = Hi((F2)0) = Hi((F2)0) = -

We have that H*1(F}) = 0 for k < I; — 1 and H*(F3) = 0 for k < lo. Hence, the first long
exact sequence implies that H*(C'(f)*) = 0 for k < min(l; — 1,15).

We have that Hg 1 ((F1)f) =0 for k > r; — 1 and Hg((F2)F) = 0 for k& > ro. Hence, the second

long exact sequence implies that H.(C'(f)¥) = 0 for & > max(r; — 1, 7r3). O

The following results can be found in [45, Proposition 3.5.25 and 3.5.40].

Proposition 1.10. Let A be an additive category. Let A" be an abelian category.

The homotopy category K(A) and the derived category D(A’) are triangulated categories with

suspension functor [1] and distinguished triangles isomorphic to triangles of the following form.
e oy -

Note that all subcategories of I(A) discussed above are triangulated subcategories. In partic-

ular, Kiae(proj A) is a triangulated category.

We recall the following equivalences of triangulated categories; cf. [45, Proposition 3.5.43].

Theorem 1.11. There exist triangulated equivalences between the following categories.
(1) D~ (mod A) ~ K~ (proj A) and D*(mod A) ~ K (inj A).
(2) D°(mod A) ~ K~*(proj A) and D’(mod A) ~ K+°(inj A).

(3) Db(mod A) =~ K’(proj A) and D°(mod A) ~ K’(inj A) if gldim A < oo.
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We will need in the future that the perpendicular category of a triangulated category is trian-

gulated.
Lemma 1.12. Suppose given a triangulated category T and a full triangulated subcategory S
of T. Then *8 is a triangulated subcategory of T .

Proof. Suppose given X € +S. For k € Z and S € S we have
Hom7(X[k], S) ~ Hom (X, S[—k]) =0

since S[—k] € +S. Thus, X[k] € LS.
Suppose given a distinguished triangle X Ly & 725 in T with X .Y € +S. We show that
Z €+8. Let v: Z — S be amorphism in 7 with S € S. This induces a morphism of triangles

via a morphism v : Y — S.

g

\
7

", X[1]

P

Since Y € 8, we obtain that gv = u = 0. This induces another morphism of triangles via a

>

< (en)
T

idg

7

\
7

morphism w : X[1] — S.

Xty 2,z X
BRI
v e ¥
S[—1] > 0 > S > S
Since X[1] € 1S, we obtain that v = hw = 0. This shows that Z € +S. O

Finally, we recall the definition of the Grothendieck group of a triangulated category.

Definition 1.13. Let 7 be a triangulated category.

Let L be the free abelian group generated by the isomorphism classes of objects of 7. Let R
be the subgroup of L generated by the classes

(X] = Y]+ 17]

where X — Y — Z — is a distinguished triangle.
The Grothendieck group Go(T) of T is defined as the quotient L/R.

Remark 1.14. Let X € (mod A). Note that [X] = —[X][1]] in Go(K(mod A)). In fact, we
have a distinguished triangle X — 0 — X[1] — so that [X] 4+ [X[1]] = 0.
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1.4 Projective-injective modules

In this section we discuss concepts related to A-modules which are both projective and injective.
The full subcategory of projective-injective A-modules will be denoted by P4. Furthermore, we

will need the following special class of projective-injective modules.

Definition 1.15. A module Z € mod A is called strongly projective-injective if v*Z is projective
for all & € Z~. The full subcategory of strongly projective-injective A-modules will be denoted
by stp A.

Note that strongly projective-injective modules are projective-injective. In fact, for an inde-
composable module P € proj A, the module v(P) is indecomposable injective. Thus, v*(P)
is projective-injective for k > 1 if P € stp A. Since A is finite dimensional, there are only
finitely many indecomposable projective modules. Thus, there exist m,n € Z-q with m < n
such that v™(P) ~ v"(P). Applying v~™, we obtain P ~ v""™(P) € Py. If P € stpA is
not indecomposable, we have seen that all indecomposable direct summands of P are strongly

projective-injective. Hence, P is strongly projective-injective as well.

We state the definitions of two homological dimensions. The first, dominant dimension, was

introduced by Nakayama. The latter has been introduced in [14] by Fang, Hu and Koenig.

Definition 1.16. Let 0 —+ A — I° — I' — I? — ... be a minimal injective resolution of A.

(1) The dominant dimension of A is defined as the largest d € Z-q such that I* is projective-
injective for all k < d. We set d = oo if I* is projective-injective for all k > 0. We denote

the dominant dimension of A by domdim A.

(2) The v-dominant dimension of A is defined as the largest d € Z( such that I* is strongly
projective-injective for all k& < d. We set d = oo if I* is strongly projective-injective for

all k > 0. We denote the v-dominant dimension of A by v-domdim A.

We will use these two dimensions mainly for the following properties.

Remark 1.17.

(1) Let domdim A > 1. In this case, every projective module can be embedded into a

projective-injective module. Thus, we have *(proj A) =1P,.

(2) Let v-domdim A > 1. In this case, every projective-injective module is strongly
projective-injective. In fact, consider the embedding I — Z for a projective-injective
module [ and Z € stp A. Since [ is injective, this morphisms splits and [ is strongly

projective-injective as a direct summand of Z.

As a direct consequence, we have domdim A = v-domdim A and *(proj A) = *(stp A).



Chapter 2

Stable module category and
homotopy category

Let k£ be a field. Let A be a finite dimensional k-algebra without semisimple summands.

In this chapter, we discuss some of the concepts which where introduced by Kiriko Kato in [1§]
and [19] in the context of commutative rings. However, many of her results still hold for

non-commutative finite dimensional k-algebras.

In the first section, we look at the construction of a functor from the stable module category
to the homotopy category. This functor will restrict to an equivalence F : mod A — £ with
some full subcategory L4 of K(projA). In [18], Kato uses this equivalence to define a weak

kernel and weak cokernel in the stable module category.

In the second section, we consider a special class of short exact sequences, called perfect exact
sequences. These are short exact sequences that remain exact under the functor Hom4(—, A).
Importantly, a perfect exact sequence corresponds to a distinguished triangle in IC(proj A) via
the equivalence F. In [19], Kato characterizes morphisms which are stably equivalent to a
monomorphism via the cohomology of the mapping cone in the image of F. Such a morphism

is always part of a unique perfect exact sequence.

Finally, the last section is dedicated to perfect exact sequences with projective middle term

and their connection to the shift in K(proj A).

2.1 A functor to the homotopy category

This section is dedicated to the construction of a functor F : mod A — K(proj A). This functor
restricts to an equivalence F : mod A — L4 with quasi-inverse H%(7<o (—)), where L4 is a

subcategory of KC(proj A) which we introduce below. Throughout this section, we follow [19].

31
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Definition 2.1 (Kato). Let £4 be the full subcategory of (proj A) defined as follows.
L4 ={F" € K(projA) | H°(F*) = 0, Hxo(F}) = 0}

We often write £ := L4.

Note that a complex F* in £4 can be truncated via 7o (—) to a projective resolution of some
A-module. Similarly, the truncation 7 _;(F)) is a projective resolution of some left A-module.
The latter will be used to verify that H(7< (—)) is an equivalence as is illustrated in the next

example.

Example 2.2. Let A be the quiver algebra over k given by

1 —=52 B>3 T 44

with relation oo v = 0. The algebra has the following indecomposable projective modules. We
also note their images under (—)*.

3 4
P:=2,  P=3, Py=3,  Pii=4, =1 B=1 F=2 PF=3

W
INYLI )

The following two complexes are an element of £4. We note the degree above the complexes.

3 —9 1 0 1 2
e 0 , p, 29 p, 25 p ' 0
G : 0 y Py ), Py SN P > 0

On the other hand, the minimal projective resolution 0 — Py — P, — 0 of HO(7¢q F*) = % is

not an element of £4. Consider the lift of the morphism % — % to a morphism between the

minimal projective resolutions of H(7<o F*) = % and H (1< G*) = %
0 , P 25 p, > 0
I N
0 > Py SN Py =) P, |

This morphism is non-zero in K(proj A). In contrast, there is no non-zero morphism between
F* and G* in K(proj A). This corresponds to the fact that the morphism % — % factors through

the projective module P;.
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The following is the key result needed for the main theorem of this section. We give an expanded

version of the proof found in [19, Lemma 2.8], filling in several details.

Lemma 2.3. ([18, Lemma 2.1])
Let f* be a morphism in K(proj A). Then H(7<o f*) = 0 in mod A if f* =0 in K(proj A).

Let f* be a morphism in L4. Then H°(7< f*) = 0 in mod A if and only if f* = 0 in K(proj A).

Proof. Suppose given f* : F* — G* in K(proj A) such that f* = 0 in K(proj A). We show that
HO(7<o f*) factors through the projective module F'.

By assumption, there exists a homotopy h* : F* — G*[—1] with f* = d% h*+!1 + bk di! for
k € Z. We define the following two morphisms in C(mod A).

—2 -1
dn d

T<o F* e —— 2 » P71 —— [0 > 0 :
n‘l l l df, l

F! > 0 s 0 y F1 s 0
g I
T<o G* e — v G2 e sy 1 d' s (0 s 0 N

We verify that 7o f* = n"¢" in K(proj A) via the homotopy 7<oh".

dz? dgt
7o F* o —— 2 Lyt s 0 > 0 ;
Bl hO
(<0 f*)—n" W'J l /l /l /J/
dg? dgt
T<0 G* e T2 S G S GO0 > 0 S

For k < —1 we have by definition of h* that
P — bk = fr = gk phtt 4 pk gt
For k = 0 we have by definition of * and ¢* that
FO— P = d% R+ RO dS — d% Rt = KO dz.

Therefore, we have
HO(Tgo fo) — HO(T].SO.)) — HO(T].) HO(SO‘)

so that H(7<q f*) factors through the projective module F.
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Conversely, suppose given f* : F* — G* in £ such that H(7<q f*) = 0. First, we construct
homotopy maps s+ : FF1 — GF for k < —1 and t**! : F*1 5 GF for k > 1. In a second
step, we will use these maps to show that f* = 0.

By assumption, H(7<o f*) factors through the projective cover p : P — H%(7<o G*). Suppose
given a morphism « : H(7<g F*) — P in mod A with a p = H%(7o f*). Write G® 2 HO (7, G*)

for the canonical surjection. Since P is projective, p factors through G°.

HO(7<o F*)
(07
P
B

GO Py W7o G°)

Write g := a8 : H(7<o F*) — G, so that H(7<o f*) = g p factors through G°. Note that
T<o F* and 7<o G* are projective resolutions of H(7<q F*) and H°(7<y G*) respectively. There-
fore, the morphism g and p lift to morphisms of complexes ¢g* and p* such that we have
H%(7<0 g") = g and H%(7<( p*) = p respectively.

—2
° -2 dF
T« F i F )

> 0

] | |
G° s 0 0 » G0 » 0
| |

> 0

2

2\

/

. /
al |/
A

Teo G* i — G

2\

By construction, we have 7o f* = ¢° p° in K(proj A). Hence, there exist homotopy maps
shtl . Fphtl 5 Gk for k < —1 such that

fE= =g pf = P dh s for k < —1.

Now we construct homotopy maps t**1 : Fk+1 — GF for k > 1. Note that H(7<o f*)* = 0.

Since H>o(F) = 0, we have natural isomorphisms
H(7<o F*)* ~ Ker(Fj — F*}) ~ Cok(Fy — F}) = Hy (75, F7)

so that H(7<o f*)* =~ Hi(7>1f7). As above, we obtain that Hy (7>, f7) factors through F} via
morphisms g : Hy(721GY) — Fy and p : F} — Hi(7=1F)). These maps lift to morphisms of
complexes g, and p, such that Hy(7>19.) = g and Hy(7>10.) = p respectively.
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Consider the following commutative diagram.

d2,* dl,*

G G
751G} > G > G > G

//
§.l i3,/ l§1
/

| sl
FY > 0 » 0 —— FY
'] Iy

~

/
/ ~
Sl
Vo 1,%
* N * F * F o *
1 F y F) y F} y F)

™

By construction, we have 751 ff = g.
trp1 2 G — Fy, for k > 1 such that

* * ~ o~ k—1,% ;% * kK x
Je =Tk — G pe =dg 7t b di

Applying (—)*, we obtain homotopy maps t**1 : F**1 — G* for k >
fF=thait + di it for k > 2

For the final step, let h* = s* for k < 0 and h* = t* for k >
fF=hFdit + db hF for k€ Z)\ {0,1}. The situation can be visualized as follows.

O4—— O <—— O

for k> 2

~

1 such that

. —2 dp” -1 di! o dr 1 F 2 F
F s —— F > F > I > I > F ,
h1 hO h? B3
f* = 1 f° ! f? 2
G e I e S R S L e K BN R BN

We define a morphism f* : F* — G* as follows.

fr=o0, for k < —
JEo _fO hod 1
fl _fl th2
fr=o0, for k > 2

We verify that f* is a morphism of complexes.

d}:l fO _ d;l f() . d};l hO d&l _ f_ld_ (f 1
dy [' = dp(f' = dip h?) = dp [' = [ dg; = (f°

dg’)dg' =0
—hodg )d = O d%

Flal = £y — dih?dly = di P — dy(f° — ) = 0

. in K(proj A). Hence, there exist homotopy maps

2. We already have that
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By construction, the morphisms f* and f* are equal in K(proj A).

dnt d9 dt
F* y P71 Ly 02, pl_E ., p2 )
1,7
I 0 Pl 0
7/
L{//
-1 0 1
G* e N ¢ e SN R N . )

We have fO*d,"* = dz"* f~1* = 0, so that fO* factors through Ker(dn"*) = Im(d%"). Using
that G** is projective, we obtain a morphism u'* : G%* — F* such that fo* = u"*d%".
Applying (—)*, we get that fO = d% u'.

We define a morphism f : F* — G* as follows.

fE =0, for k <0
Jil = fl _ul d%
=0, for k > 2

We verify that f’ is a morphism of complexes.

dy f' = dyp f' — djpu' d = fOdg; — £ dgy = 0
Tl = b -t dy ds = 0

By construction, the morphisms f * and f* are equal in K (proj A).

—1 0 1 2
F* s 1 i sy FO ia y F1 ia » 2 ia s F3 )
J/ 'UQ/// UB///
f:' 0 0 fl // 0 // 0
—1 0 L/‘/ 1 L/‘/ 2
G y Gl e, qo te o Yo e e s )

We have that fl’* Ayt = dy* fo,* = 0. As above, we obtain a morphism v** : G1* — F?*
such that fi* = o2+ d;;*. Applying (—)*, this results in f' = d% % Moreover, we have
that d" v?>*dp* = dg* f'* = 0. Again, we obtain a morphism v** : G>* — F3* such that

dg* v>* = v3* d3*. Applying (—)*, this results in v® dg, = d% v®.

Letting v* := 0 for k # 2,3, we constructed a homotopy v* : F* — G*[—1] such that the
following holds for all k € Z.

ko k gk—1 k  k+1
fr=v"ds " +dpv

In conclusion, f* = f* = f =0 in K(proj A). O
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The next lemma provides the construction of the functor F : mod A — K(proj A). We follow
the proof given in [19, Lemma 2.9] with some added details.

Lemma 2.4. ([18, Proposition 2.3 and 2.4])

Suppose given X,Y € mod A and a morphism f € Hom ,(X,Y).

(1) There exists a complex F € L4 such that
HO (oo F}) 2~ X.
Furthermore, F is uniquely determined in IC(proj A) by X € mod A up to isomorphism.
(2) There exists a morphism f* € Hom(proja)(F%, Fy-) such that
H(7<o f*) 2

Furthermore, f* is uniquely determined in K(proj A) by f up to isomorphism.

Proof. Ad (1). Let P* € K(proj A) be a projective resolution of X.

P s p2 i pr % po

Let Q° € K(A-proj) be a projective resolution of Tr(X) = Cok(d?]) such that we have the
following exact sequence.
Ly 4o 1 + do = 0
QT = Q" P—>Q ", — Tr(X) — 0
Applying (—)*, we obtain the following complex in K(proj A).
P - N
Qy — QL — QL — Qg — -

We define a complex F% € IC(proj A) via

Pk E<—1 d% k
Ft .= dy =
X F o
Q*_, k=0 Ay ., k

o dp’ 1 dp' 0 df 14 2
— Iy » Fy \ » Fy > 5 >
H =2 H d_l H dQ* dQ* ’
P72 P\Pfl 1 QQ )Q* — 5 ...
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By construction, we have 7<oFy = 7<oP* so that H(7<oF%) ~ X and H*(F%) = 0 for k < 0.
Moreover, we have 7> FyY" = 7¢oQ" so that Hy(Fy™) = H7%(Q*) = 0 for k > 0.

It remains to show that F% is uniquely determined in K(projA) by X up to isomorphism.

However, we first show the existence of f* in part (2).

Ad (2). Let f in mod A be a lift of f. Let F* := F% and G* := Fy be elements of L as

constructed above.

Since T<oF* and 7<oG* are projective resolutions, we can lift f to a morphism of complexes ¢*.

T<oF" e —— P2 > F1 > FO > 0
g I
T<oG" e — G2 y G71 > GO > 0

Similarly, we can lift Tr(f) : Tr(Y) — Tr(X) to a morphism of complexes 7>_1G’ 2R T>_1F}.
Applying (—)* yields a morphism of complexes p* : 7> 1 F* — 7~ _1G".

T>1G? > G > G > G4 > 0 >
lp* lpf lpé lp*l l
T F; > FY > I§ > B > 0 b

By construction of Tr(f), we may choose p~* = ¢~ and p° = ¢°. Combining both, we obtain
a morphism of cochain complexes f* : F* — G* via 7o f* = 7<o¢® and 751 f° := 751p°. We

have H(7<of*) = H(7<0¢") = f by construction.
We conclude the proof by showing that f* and F% are unique up to isomorphism in C(proj A).

Suppose given F* and G* in L4 with H(7<oF*) 2 X and HO(7<0G") X respectively. By
adding a trivial complex --- — 0 — P? & P! — 0 — --- as a direct summand in K(proj A) if

necessary, we may assume that HO(7<oF*) ~ H%(7<¢G") in mod A.

Let ¢ : H(7<oF*) — H%(7<oG") be an isomorphism with inverse p. Since projective resolutions
are unique up to isomorphism in KC(proj A), the construction of part (2) yields morphisms ¢*
and p* in K(proj A) such that HO(7<o(¢" p*)) = idx and H(7<(p" ¢*)) = idx. By Lemma 2.3,
we can conclude that ¢* p* = idp. and p* ¢* = idg- in K(proj A). Hence, F* ~ G* in K(proj A).

Now, suppose given fi and f5 in L4 with H(7< f;) ~ f and H(7o f5) ~ f in mod A
respectively. We have isomorphisms ¢ and ¢ in mod A such that H’ (7« f; )¢ = H (<o f3).

As above, ¢ and 9 lift to isomorphisms ¢* and ¥* in K(proj A). We obtain
H' (7o f3) = H(7<0 0" )H (10 f7 ) H (<0 ¥°) = H(7<0 (" f1¢°))

in mod A so that ¢° fi1* = f5 by Lemma 2.3. Thus, f; ~ f5 in K(proj A). O
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Remark 2.5. For X € mod A we fix Fy € L4 such that 7o F% is the minimal projective
resolution of X and 7-_;F%" is the minimal projective resolution of Tr(X). In this case,
751 F5" is the minimal projective resolution of X*. Note that the minimal projective resolution
of P € proj A is the complex with P concentrated in degree 0. Thus, F'x = 0 for k # 0,1 and
F;:(---—>O—>P—>P—>0—>---).

For X 2 Y in mod A we fix F5y — Fy as alift of f in K(proj A) with Fy and F} as above.
In particular,
HO(KOFX>
H0(7'<0F v)
H (<o f*) =

12

12

X
Y
f

even if X or Y have projective direct summands. Moreover, FY is the projective cover of X

and Fy* the projective cover of X*. If X is simple, v(F9) is the injective hull of X.

The results so far are summarized in the following theorem given in [18, Theorem 2.6]. In the
future, we will often use this equivalence without further comment.
Theorem 2.6 (Kato). The mapping X — Fy defines a functor F : mod A — K(proj A). The
functor F restricts to an equivalence

F:modA S Ly

with quasi-inverse H(1<q (—)) : £4 — mod A.

Proof. Note that F and H°(7<o (—)) are well-defined by Lemma 2.3. Let f and g in mod A.
We verify that F(f)F(g) = F(fg). We have

(7«0 F(fg)) = fg =

I~
5S)

= H7<0 F(f)) H(7<0 F(g)) = H7<0 (F(£)F(g))).

By Lemma 2.3, we obtain F(f)F(g) = F(fg). In conclusion, this shows that F defines a
functor F : mod A — K(proj A) via the construction of Lemma 2.4.

As chosen in Remark 2.5, we have a natural transformation H(7<o (—)) o F =~ idyeq4. On the
other hand, we also have a transformation 1 : F o H%(7<o (—)) ~ idz, by Lemma 2.4.(1). Tt
remains to show that 7 is natural. Let f* : F* — G* in L4.

F(H (7 7)) 25 F
f(HO(Tgof'))l lf'
F(H (79 G7)) 2 G-
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By Remark 2.5, F(H(7<o F*)) is a complex which is taken to H%(7<o F**) under the functor
H%(7<o (—)). Similarly for G*. Thus, applying H’(7< (—)) to the diagram yields
HY(
H(

o (e f*)) = H(r<onpe ) HO (1< f*) = H(7<0 f*)
o (F(H (<0 f*))nc+)) = H° (7<0 (F(H(1<0 f*))) H(7<0 e ) = HO(7<0 f*).

A

A

Now, we obtain ng. f* = F(H%(7<o f*))nc- by Lemma 2.4.(2). Note that the identity on a
module X is lifted to the identity on FY%. O

Example in Chapter 7. A calculation of the functor F and the category L can be found in
Example 7.1 for the algebra B of Section 7.1.

By Lemma 1.9 we have the following properties of C'(f)* for a morphism f* in L.

Remark 2.7. Suppose given F*, G* € L4.

(1) Let f*: F* — G* in L C K(proj A). Then H¥(C(f)*) =0 for k < —1 and H,(C(f)}) =0
for k > 0. In particular, C(f)* € £ if and only if H-'(C(f)") = 0.

(2) Let f*:G* — F*[1] in K(proj A). Then C(f)*[-1] € L.

The mapping cone C(f)* can be used to characterize properties of a morphism f in mod A.
In [19, Theorem 3.9], Kato shows that a morphism is stably equivalent to a monomorphism if
and only if H™}(C(f)*) = 0. In [18, Definition and Lemma 3.1], the mapping cone is used to

define a weak kernel and a weak cokernel in mod A.

Definition 2.8 (Kato). Suppose given a morphisms f € mod A.
We define the pseudo-kernel Ker(f) and the pseudo-cokernel Cok(f) of f as

Ker(f) := H" (<0 (C(f)"[-1]))
Cok(f) :=H"(r<0 C(f)")

respectively. Both are uniquely determined in mod A by f up to isomorphism.
For a morphism f in mod A, we have the following distinguished triangle in IC(proj A).
. u® . f. . V° .
C(f)-1 — Fx — Fy — C(f)

This induces morphisms u := H%(rcou*) : Ker(f) — X and v := H(7qv*) : Y — Cok(f).
The following lemma shows that Ker(f) and Cok(f) have the properties of a weak kernel and

weak cokernel respectively.
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Lemma 2.9. ([18, Lemma 3.3 and 3.5])

Let f : X =Y be a morphism in mod A.

(1) We have u f =0 and fv =0 in mod A.

(2) Suppose given t : T — X with tf = 0 in modA. There exists a morphism
h € Hom ,(T,Ker(f)) such that hu =t in mod A.

(8) Suppose given t : Y — T with ft = 0 in modA. There exists a morphism
h € Hom 4 (Cok(f),T) such that vh =t in mod A.

Proof. Ad (1). We have u* f* = 0 and f*v* = 0. By Lemma 2.3, we obtain that v f = 0 and
fv =0 1in mod A.

Ad (2). We have a morphism t* : F; — Fy% with ¢ f* = 0 by Theorem 2.6. This induces a

morphism of distinguished triangles.

C(f)[-1] = Fy y Fy ——
n - |
o
FE > Fp > 0 >

Let h:= H(7<o h*). By Lemma 2.3 we obtain hu =t in mod A. Part (3) is shown similarly. O

We will return to the pseudo-kernel and pseudo-cokernel at the end of the next section.

2.2 Perfect exact sequences

In this section, we introduce a special class of short exact sequences. We will see that a perfect
exact sequence corresponds to a distinguished triangle in KC(proj A) via the equivalence F. In

later chapters, we will use perfect exact sequences mainly in the context of stable equivalences.

Definition 2.10. A short exact sequence 0 - X — Y — Z — 0 in mod A is called perfect
ezxact if the induced sequence 0 — X* — Y* — Z* — 0 is exact in A-mod.

Example 2.11. (1) Let A be self-injective. Since Homa(—, A) is an exact functor, every

short exact sequence is perfect exact.

(2) A short exact sequence 0 - X — Y — Z — 0 is perfect exact if the induced morphism
Homa(Y, A) — Hom(X, A) is surjective. In particular, this holds if X* = 0.
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(3) Let A be hereditary. Then Homu (X, A) = 0 for all X € mod A not projective. Thus,

every short exact sequence starting in a non-projective module is perfect exact by (2).

(4) A short exact sequence 0 — X Ly % 7 5 0is perfect exact, if f # 0 and g is

irreducible.

In fact, using that ¢ is irreducible, a morphism p : X — A induces either a morphism
a: A—Y with pa = f or a morphism 5 :Y — A with f 3 = p. However, in the first

case we obtain i =0.

(5) An almost split sequence 0 — X 5By S 771(X) — 0 is perfect exact if and only if X

is not projective.

In fact, a morphism p : X — A induces a morphism § : Ex — A with f 3 = p if and only
if p is not split. However, this holds if and only if X is not projective, since the starting

term of an almost split sequence is indecomposable.

Recall that P4 denotes the category of projective-injective A-modules. In case that the dom-
inant dimension of A is at least 1, a module X € +P, satisfies X* = 0. In particular, short

exact sequences with middle term in P, are perfect exact.

Lemma 2.12. Suppose that domdim A > 1. Let Y € *Py. Let Y’ be a submodule of Y.

We have (Y')* = 0 and every short exact sequence 0 — X — Y’ — Z — 0 in mod A is a

perfect exact sequence.

Proof. Let Y’ be a submodule of Y. Since the embedding Y’ < Y is injective, the condition
Y €1Pimplies that Y’ is contained in *P as well. Using that domdim A > 1, we obtain that
Hom(Y’, A) = 0.

Suppose given a short exact sequence 0 - X — Y’ — Z — 0 in mod A. Since X is isomor-
phic to a submodule of Y, we have seen above that X* = 0. Thus, the result follows from
Example 2.11.(2). 0

The following lemma can be useful to check if a short exact sequence can be perfect exact. If the
starting morphism of a perfect exact sequence factors through an indecomposable projective

module P, then P must be a direct summand of the middle term.

Lemma 2.13. Suppose given a perfect exact sequence 0 — X Ly %750 LetPe proj A
be indecomposable. Suppose that v : X' — X is the embedding of a direct summand of X.

Iftf=uvwithu: X" — P andv: P —Y then v is a split monomorphism.
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Proof. Let w: X — X’ with (7w = idx.

Y 45 7

g

i
.|

P

Since Y* — X* is surjective, we obtain a morphism ¢ : ¥ — P with fo = mu. Thus, we
have u = tmu = ¢ f o = wvo. Inductively, we obtain u = u(vo)” for all n € Z-g. Since P is
indecomposable, v o is either an automorphism or nilpotent. However, if u = u(vo)™ = 0 for
some n, we obtain f = mruv = 0. A contradiction. Thus, v o is an automorphism and v is a

split monomorphism. 0

Example in Chapter 7. For the algebra A in Section 7.4 we discuss two short exact sequences
that are not perfect exact in Example 7.13. The first does not satisfy the condition of the
previous lemma. In the second perfect exact sequence, the starting morphism does not factor
through a projective module. In particular, we see that not every short exact sequence satisfying

the conditions of the previous lemma is perfect exact.

The situation is better for Nakayama algebras.

Lemma 2.14. Let A be a Nakayama algebra.  Suppose given a short exact sequence
n:0—X Ly % 7 5 0 without split summands.

The sequence n is perfect exact if the following holds for all embeddings + : X' — X of in-
decomposable direct summands of X and for all projections w :' Y — Y’ onto indecomposable
direct summands of Y. If v f w factors through an indecomposable projective A-module P via

i: P —Y' then i is a split monomorphism.

Proof. Suppose given a non-zero morphism u : X — P with P € proj A. Since A is a Nakayama

algebra, there exists a projective-injective module () with an embedding ¢ : P — Q.

0 sy X Ly 9,7 ' 0

/
1 //
/7

P
|
Q

Since @ is injective, we obtain a morphism v : Y — @) such that fv = we. It remains to show

that there exists a morphisms w : ¥ — P with wi = v. If 7 is a split monomorphism, P is
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injective and we are done. It suffices to consider indecomposable projective modules P and ()

with a non-split embedding i : P — Q).

Claim. Suppose P and @ are indecomposable projective modules with P = rad(Q). Then there

exists a morphism w : Y — P with wi = v.

0 — rad(Q) —— Q —2— Q/rad(Q) —— 0

Note that @/ rad(Q) is simple. If v is not surjective, v p must be zero. Hence, there exists a
w:Y — P as claimed. Suppose that v is surjective and thus () a direct summand of Y. Then
there exists an embedding ¢ : X’ — X of an indecomposable direct summand X’ of X such
that ¢ f v factors through rad(Q). Since rad(Q) is indecomposable projective, the assumption
implies that rad(@) is a direct summand of Y. A contradiction. Thus, v can not be surjective
and the claim holds.

Now, assume that P = rad"(Q) € proj A with @ indecomposable projective. We finish the
proof by induction on n. The case n = 1 holds by the claim above. Since A is a Nakayama
algebra, radk(Q) must be projective for all 1 < k < n. By induction hypothesis, v : ¥ — @
factors through rad” '(Q). Using the claim for rad” *(Q) instead of @, we obtain that this
morphism factors through rad(rad” '(Q)) = rad”(Q) = P and we are done. O

We note that the projective summand of the middle term in a perfect exact sequence is uniquely

determined by the induced sequence in mod A.

Lemma 2.15. Suppose given two perfect exact sequences 0 — X TN Vi & Z = 0 and

0= X2 v, 2 7 50 inmod A.

If there exists a stable isomorphism 3 : Yy — Yy such that B g, = g1 in mod A, then the two

sequences are isomorphic.

Proof. Using that both sequences are perfect exact, we may assume that X and Z have no
projective direct summand. Otherwise, both sequences have an isomorphic split sequence as a

direct summand.

Let Y; = M; & P; with P, € proj A and M; without projective direct summands for ¢ = 1, 2.
The stable isomorphism 3 induces an isomorphism 3’ : M; = M, such that 3’ g, is equal to
the restriction of g; to M. Since P is projective, there exists a morphism (a ) : P, = My® P,

such that the following diagram commutes with « induced by the universal property of the
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kernel.
0 s X L maep -2z > 0
I
l ab
0 s X L2 My P, -2 7 > 0
By Lemma 1.5 we obtain that these two sequences are isomorphic. O

g
fu <v>

Remark 2.16. Let 0 — X u) Y& P —— Z — 0 be a perfect exact sequence with

P € proj A and Y without projective direct summand. Then the previous lemma shows that

P is uniquely determined up to isomorphism by the sequence X Ly 4z

(s ) (2)

We also need the following observation in the future. Let 0 = X —— Y M —— 2 — 0
be a short exact sequence in mod A. If 0 — X Iy v % 7 5 0is another short exact sequence

in mod A, the two sequences are isomorphic since A is finite dimensional.

For our purposes, the next two results provide the key property of a perfect exact sequence.
Under the equivalence F : mod A — L4, perfect exact sequences in mod A correspond to

distinguished triangles in /C(proj A).

Lemma 2.17. The following are equivalent for a sequence of complexes P* EAR Q* S R in
K(proj A).

(1) There exists a short exact sequence 0 — P* LN Q3 5 R = 0 in C(projA) and an

isomorphism ¢* : Q5 — Q° in K(proj A) such that s* ¢* = f* and ¢* g* =t* in K(proj A).

(2) The sequence P* EAR Q" SR Sisa distinguished triangle in K(proj A).

Proof. Suppose that P* EAN Q" S p I ptliga distinguished triangle in IC(proj A).
Write C* := C(h*)[—1] € C(proj A). By assumption, we have the following exact sequence.
—1 °
0

D R = 0

0— P

By construction of C* as the shifted mapping cone of h*, there is an isomorphism C* Lalt Q°
such that s* ¢* = f* and ¢* ¢* =t* in K(proj A).

Conversely, suppose that there exists such an exact sequence 0 — P* Ei Q3 IS R > 0in
C(proj A). Since R* is projective for all k € Z the sequence splits in every degree via a morphism

of : RF — QF that is o® g% = idlf{. Furthermore, there exists a morphism y* : R¥ — P**1 such
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that the following diagram commutes.
Rk
Xk ld;}% okt+l_gk dlél
Pk+1 ka) Im(fk—H)
Note that Im(df, o**' — o*dpy ) € Im(f**!) since (df, o™ — o"d§) )g" ! = df, — 0" g* df, = 0
For k € Z we have
(Xk ds b, Xk+1) P2 R e dlé—il-l +dk (dlgrl oht+2 _ gkl dlg)-il-l)
= b gkl dl(3+11 _ ok dkl dlglrl — dk, ok d](fil —0

so that x*dp; = —x"dp[l] = dix*[1] since f* is injective. Thus, x* : B* — P*[1] is a

morphism of complexes.

The differential of C* := C(x*)[—1] = R* @ P* is then given by

d. _ °
do= % TN,
0 dy

We show that the following is an isomorphism of short exact sequences with o* = (0%)4cz.

oy )

S s C° >y R

RGN

L] L] g L]
> P > ()} > R >

2\

O4——— O

By construction of ¢°, this is a commutative diagram. It remains to show that (;) is a

morphism of complexes. We calculate as follows for k € Z.

() (m) = () = ()
0 dP f +1 dl}c3 fk+1 fk 1
In conclusion, R° X, pr [1] — C*[1] — R°[1] is a distinguished triangle which induces the

following distinguished triangle.
Pe Q= R X5 P[]

By assumption, this triangle is isomorphic to the sequence P* Ei Q° g X P*[1] in
K(proj A). O
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The following proposition is based on [19, Proposition 3.6]. We will give a modified and ex-

panded version of the proof found in [18, Lemma 2.7].

Proposition 2.18 (Kato). Suppose given a sequence X 1oy % Z inmod A such that Y has

no projective direct summand. The following are equivalent.

(1) There exists a projective module P and morphisms p and q such that

)

f
O%XﬂY@P——»Z%O

18 a perfect exact sequence in mod A.

(2) There exists a short eract sequence 0 — F% SN F5, — 0 in C(proj A) and an
isomorphism ¢* : G* — Fy in K(proj A) such that s* ¢* = f* and ¢* g* =t* in K(proj A).

(3) The sequence F'y EAN Fy EAN F3, — is a distinguished triangle in KC(proj A).

Remark 2.19. Suppose that 0 — X Ly % 7 50isa perfect exact sequence in mod A.
Let F% EAR Fy, EAN F;, — be the induced sequence in L4 obtained by applying the functor
F of Theorem 2.6. The proposition above now states that this is a distinguished triangle in
K(proj A).

On the other hand, suppose that X* Foye &5 7o M e [1] is a distinguished triangle in
K(proj A) such that X*, Y* and Z* are elements of £4. We have seen that this induces a
short exact sequence 0 — X* 2> C(h)*[—1] 2 Z* 5 0in C(proj A). During the proof of the
proposition we will show the following. Applying H°(7< (—)), the quasi-inverse of JF, induces
a perfect exact sequence 0 — H(7<o X*) — H%(7<o (C(h)*)) — H(7<0 Z*) — 0 in mod A.
Furthermore, we have H° (7o (C'(h)*[—1])) =~ H%(7<c Y") in mod A.

By Remark 2.5 and Remark 2.16, these constructions are mutually inverse up to isomorphism
in mod A and K(proj A) respectively. If the conditions in the proposition hold, the projec-
tive module P in (1) is uniquely determined up to isomorphism. Furthermore, we have that

HY(7<oG*) =Y @& P and G* = C(h)*[—1] where h* : F}; — F%[1].

Proof of Proposition 2.18. The equivalence of (2) and (3) is shown in Lemma 2.17.

Ad (1) = (2). We repeat the construction of Lemma 2.4 with a specific projective resolution
of Y/ :=Y @ P. Suppose given minimal projective resolutions P<Y of X and Q<° of Z.
d=2 q=1
P2 X pt Pl
—2 —1

Qg 0
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The horseshoe lemma gives us the following projective resolution of Y =Y & P.

0
0 ; Pt1 ¢ 0)> PflééQ*1 ﬁ Qtl — 0
dyt dy! 0 ;!
0 >1£;0 (10)>P0éQoﬁ>é°—>O
-l b
0 . X f Ly N > 0

d% 0
with d¥ = ( )Z dk) and a morphism o* : Q¥ — P**! for k < —1 such that d&*d% = 0.
g z

Similarly, we construct projective resolutions of X*, (Y’)* and Z* in A-mod

1
Loy Lol
0 s Q2 ( )>P2®Q2 s P2 > 0
dy, dy 1 di
oy ol
0 > Q! » PlaQ! » P! > 0
pz <a> pPx
~ b ~
0 y Z* AN (Y’)*f—>X*—>O
- dk GF -
with d¥ = ( (;( gk) and a morphism &% : P*1 — QF for k > 1 such that di'd¥ = 0.
zZ

Applying Hom4(—, A) to the second diagram and combining it with the first yields

P

-1

dyt , po d%
(10) (10)
a3t oo 9
— P'9Q" —— P
0 0
L\ 1
dg' d

F1,%

>

s pPlx _ X s P2 N

(10)

1,*@621,* J#*) PZ*@QZ* —_ s ...

1)

) le* —)dZ sz* % o .
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with d% := 7y p%, d% := 7, p} and

P aa*  ab* _ mx fa* mx fgpy _ d% 0
" \per s Ba* By o dy

where ¢° := fa*. Write d% = dy*, db = dy*, d% := dyy* and oF := 6%* for k > 1.

We obtain the complexes

Py k>0 PF*aQR*, k>0 QM k>0

with the differentials defined above. By construction, all three complexes are elements of L.

Additionally, we obtain two morphisms of complexes
s:=(0):Fy —G and " := ((1)) G — I
We have the following.

H (1o F%) ~ X HO (7<08°) ~ f
H (roG*)~Y @ P~ Y HO (root*) ~ g
H (1o Fy) ~ Z

Moreover, 0 — F§ LNy RN % — 0 is an exact sequence of complexes. The stable isomor-
phism Y @& P — Y lifts to an isomorphism ¢* : G* — F} in K(proj A) with H(7<op") ~ idy.
Lemma 2.3 now shows that s* ¢* = f* and ¢* ¢* =" in K(proj A).

Ad (2) = (1). The short exact sequence 0 — F'% S L F > — 0 induces the following short

exact sequence by applying 7<o (—).
. T<08 o T<ot .
0= 1<y — 7<0G" —— 7<0F, — 0
This yields a short exact sequence of cohomology. Note that H™! (1< F) = 0 since F, € L.
0 X5 H(7«0G") 5 Z =0

Since F} is projective for all k € Z, the sequence 0 — Fy LN AN F? — 0 splits in every
degree. Therefore, 0 — F* LN 1 ¥ — 0 is also exact. As above, the sequence

7_21t.,*
0 — T>1Fé’* —_—

T>18%"

T)lG.’* - T)lF)}’* —0
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induces a short exact sequence of homology using that Ho(Fy") = 0 since Fy € L.
0= 272" = Hi(121G"") = X* =0

Since G* € £, we have H,(15,G**) = Cok(dg") = Ker(dg"*) ~ Cok(dg')* = H(1<o G*)*.
Therefore,
0= X3 H(re0G") 5 Z =0

is a perfect exact sequence.

We know that H°(7<,G*) 2y, Furthermore, via this ismorphism we have s ~ f and t ~ g.

Using that Y has no projective direct summand, Lemma 2.15 shows that the above sequence

)

f
O—)XﬂY@P—>Z—>O

is isomorphic to

for a P € proj A unique up to isomorphism. In particular, we have H%(1<¢G*) ~Y & P. O

Example in Chapter 7. For the algebra B in Section 7.1 we discuss a perfect exact sequences

and its corresponding distinguished triangle in Example 7.2.

At the end of this section, we return to the pseudo-kernel and pseudo-cokernel of Definition 2.8
and discuss their relationship with perfect exact sequences. We start with two short exact
sequences containing the pseudo-kernel given in [18]. For the proof of part (2), we follow [18,
Lemma 3.6.(1)].

Lemma 2.20. Suppose given a morphism g : Y — Z in mod A. We have the following short

)

(1) 0 = Ker(g) =Y ® F3—Z — 0 with 7 : FY — Z the natural projection.

exact sequences.

(2) 0 — Ker(g) — Ker(g) — L — 0 with L = Ker(F% — Cok(g)) ~ Q(Cok(g)).

In particular, Ker(g) ~ Ker(g) ® FY if g is surjective and Ker(g) ~ Ker(Fy — Cok(g)) if g is

mjective.

Proof. The distinguished triangle F} S F j M, C(g)* — induces a short exact sequence of
complexes 0 — C(g)*[—1] = C(h)*[—1] — F5 — 0. Applying H%(7<o (—)) to this sequence, we
obtain a short exact sequence 0 — Ker(g) — H%(7< (C(h)*[—1])) — Z — 0 via the long exact
cohomology sequence. We show that H(7<o (C(h)*[—1])) = Y & F3.
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We have HO(7<o (C(h)*[-1))) = (Fy @ FY © F, ')/ Im(dé?h)) with

—d,' 0 1
dgfh) = 0 —dy' g7t
0 0 d,?

We have mutually inverse isomorphism ¢ : H(7< (C(h)'[-1])) — F2 @ F2/Im(dy') and
Y F9 @ FY/Im(dy') — HO(7<0 (C(h)*[—1])) in mod A defined as follows.

1

0 1 00

LAl BT

_1 —g° 1 0
d,” 0

Using that F{/Im(dy') ~ Y, part (1) follows.

We obtain the following commutative diagram with exact rows and columns. Let L be the

kernel of the morphism F9 — Cok(g).

0 0 0
0 —— Ke%(g) > Y > Irr;ig) — 0
O—>K_e1"L(g)—>Y6;F§ . 7 > 0
0 : }:,; ; Fg ; Coi;(g) — 0

|

0 0 0

We obtain a short exact sequence 0 — Ker(g) — Ker(g) — L — 0. Recall that F9 is the

projective cover of Z. If g is surjective, we have L ~ F} and the sequence splits. O

In general, the short exact sequence in (1) of Lemma 2.20 is not perfect exact. The situation is
different for the pseudo-cokernel. The following is a special case of [19, Theorem 3.9] restricted
to injective morphisms. We give a modified proof adapted to this situation.

Proposition 2.21 (Kato). Suppose given an injective morphism f: X — Y in mod A.

We have H™Y(C(f)*) = 0. Furthermore, there exists a perfect exvact sequence

d
O%XQY&BF}(%%U)—W.
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Proof. Let Z := Cok(f) and denote the induced short exact sequence as follows.
0XxLy%zoo

The morphisms f and g induce two distinguished triangles in K(proj A) and a morphism of

complexes ¢* : C(f)* — F3 making the following diagram commutative.

FI)} > Fy » C(f) —
po )
C(g)'[-1] » Fy, —2— Fy y

We obtain a morphism ¢* : Fy — C(g)*[—1] with H(t<q¢®*) : X — Ker(g). Since g is

surjective, H(7<o ¢*) is a stable isomorphism by Lemma 2.20. In particular, Fy =~ For(g) 1D

K(projA). Note that 7o Fi,,, and 7<o (C(g)*[—1]) are projective resolutions of isomorphic
modules and thus isomorphic themselves. As a result, we can assume that ¢* = id for & < 0

up to isomorphism in K(proj A). In particular, we have H*(C(¢)*) = 0 for k < 0.

Consider the following commutative diagram of distinguished triangles.

F% rr Fy (0 1)> c(f) —
[ |l
C(g)[—1] s Iy, —L— F}, :
| | l
C(p)* > 0 > C(Y) ——

We obtain C'()*[1] = C(¥)* so that H*(C(1))*) = 0 for k < 0. Now, the distinguished triangle
Fy = CW)y = ()] -

provides H™'(C'(f)*) = 0 by Lemma 1.9. This implies H"}(C(f)*) € La; cf. Remark 2.7. In

conclusion, we have a distinguished triangle
Fr 5 F oo IS Ry
in £4 which induces a perfect exact sequence
0— X — H(7< (C(h)*[-1])) — Cok(f) — 0

in mod A by Proposition 2.18. It remains to show that H(7<o (C(h)*[-1])) =Y & F&.
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We have H (<o (C(h)*[-1])) = (Fx & FY & FY)/ Im(dg/,,) with

(h)
& —f0 -1

dg}h) =10 —dyt 0
0 0 dy

We have mutually inverse isomorphism ¢ : H(7<o (C(h)*[-1])) — Fi @ FY/Im(dy') and
Y Fy @ FY/Im(dy') — HO(7< (C(R)*[~1])) in mod A defined as follows.

! 0 1 00
=10 1 , =
! 0 0 ' (0 1 O)
dx —f
Using that F{/Im(dy') ~ Y, the result follows. O

Let 0 > X 5V % Z — 0 be a short exact sequence in mod A. We have seen that every

monomorphism can be completed to a perfect exact sequence.

d
O%XMY@F}(%%U)—)O.

This induces a morphism ¢ : Cok(f) — Z such that the following diagram commutes.

(7 d)

0 y X > Y @ Fy —— Cok(f) —— 0
| |
o
0 y X > Y g > 7 > 0

The morphism ¢ can be used to characterize perfect exact sequences. The short exact sequence

in the following lemma and its proof can be found in [18, Lemma 3.6.(2)].

Lemma 2.22. Suppose given a short exact sequence 0 — X Ly % 7 50 inmodA.

There exists a short exact sequence of the form
0 — Fy — Cok(f) = Z — 0.

Moreover, 0 — X Ly %7 50isa perfect exact sequence if and only if Cok(f) and Cok(f)

are stably isomorphic in mod A.

Proof. Let L := Ker(c). The following commutative diagram with exact rows and columns
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shows that L ~ Fy € proj A.

0 0 0
0 > 0 > Fy > L > 0
| (01)
(fd) ~ . ~
0 > X >»Y & Fy —— Cok(f) —— 0
1
H <0> 1
0 > X LN Yo > Z > 0
0 0 0

Let ¢ : Cok(f) — Z be a stable isomorphism. Recall that Cok(f) = H%(7<cC(f)*). In the
distinguished triangle Fy, — Fy — C(f)* —, we have C(f)* € L4 by Proposition 2.21. Now,
¢ induces an isomorphism ¢* : C(f)* — Fy in L4 so that Fy, — Fy — F, — is also a

distinguished triangle via a morphism ¢* : Fy — FJ,.

Fx AN Fy > C(f) —
1 b
Fy s Fr —— Fp S

(f»)

By Proposition 2.18, we obtain a perfect exact sequence 0 - X —= Y &P — Z — 0 in
mod A. Using Remark 2.16 we see that this perfect exact sequence is isomorphic to the short

exact sequence 0 — X Ly 4% 7 0.

On the other hand, if 0 - X — Y — Z — 0 is perfect exact, then

[ S
is a distinguished triangle with F3 ~ C(f)* in L£4. Hence, Cok(f) = H%(7<c C(f)*) 2 7 via ¢
by Lemma 2.3. 0

Example in Chapter 7. For the algebra B in Section 7.1 we calculate the pseudo-cokernel of
a morphism and the corresponding short exact sequences in Example 7.3. Furthermore, we
illustrate that the perfect exact sequence in Proposition 2.21 can be quite different from the

original short exact sequence in case that Cok(f) and Cok(f) are not stably isomorphic.

For more details on the pseudo-kernel and pseudo-cokernel see [18] and [19, Section 2]. More-

over, both are used in [19, Section 4] to further characterize morphisms which are stably equiv-
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alent to a monomorphism. In the context of commutative Gorenstein rings, Kato shows that a
morphism is stably equivalent to a monomorphism if and only if its kernel is a submodule of a

free module. We will go in a different direction and focus on perfect exact sequences.

2.3 Perfect exact sequences with projective middle term

Perfect exact sequences with projective middle term are of special importance for us. The
corresponding distinguished triangle is induced by the shift in IC(proj A). The next lemma

focuses on the ending term of such a perfect exact sequence.

Lemma 2.23. The following are equivalent for Z € mod A.

(1) Exty(Z,A) =0
(2) There exists a perfect exact sequence 0 — X — P — Z — 0 with P € proj A.

(8) Every short exact sequence ending in Z is perfect exact.
(4) Fy[=1] € La

Proof. Suppose given a short exact sequences 0 - X — Y — Z — 0 in mod A. Applying

Hom4(—, A), we obtain the following exact sequence.
0 — Homy(Z, A) — Homu (Y, A) — Homyu (X, A) — Ext!y(Z, A) — Extly(Y, A)

Thus, the short exact sequence is perfect exact if Ext!y(Z, A) = 0. If in addition Y is projective,
then the converse holds as well. Note that there always is a short exact sequence of the form

0— X — P — Z — 0 with P the projective cover of Z.

We verify the equivalence of (2) and (4). Consider the following distinguished triangle in
K(proj A).
Fy[-1]—-0— F, —

By Proposition 2.18, F[—1] € L4 if and only if we have a perfect exact sequence
0=-X—>P—-272-0
in mod A with P € proj A and X := H(7< F5[—1]). In this case, Fy[—1] ~ Fy € La. O

Now, we consider the starting term of a perfect exact sequence with projective middle term.

We are mainly interested in the case of simple modules.
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Recall that FY is the projective cover of X € mod A. If F'y, = 0, the complex F'% is the minimal

projective resolution of X.

Lemma 2.24. The following are equivalent for X € mod A.
(1) Fx[1l] € La.
(2) H(F*) = 0.
(3) There exists an embedding X — A.

(4) There exists a perfect exact sequence 0 - X — P — Z — 0 in mod A with P € proj A.

Furthermore, (1), (2), (3) and (4) imply the following equivalent conditions.

(5) X* #0.
(6) v(X) #0.
(7) F} #0.
If X is simple, all seven conditions are equivalent.

Proof. If Fy[1] € L, we have H°(Fy) = 0. In this case, X = Cok(dy') ~ Im(d%) which
embeds into F € proj A.

Suppose that f: X < A is injective. By Proposition 2.21, we obtain a perfect exact sequence
of the following form.

0= X — A® Fy — Cok(f) =0
Since A @ Fy € proj A, part (4) follows.
By Proposition 2.18, a perfect exact sequence
0=-X—=P—=>2—0
induces the following distinguished triangle in £ 4.
Fy =-0—F, —

In this case, Fy[1] ~ F, € L. This shows the equivalence of (1), (2), (3) and (4).

There is nothing to show for the implication (3) = (5). Since v(X) = DHomu(X,A) = 0 if
and only if Homy (X, A) = 0, conditions (5) and (6) are equivalent. Using that 751 F%" is the

minimal projective resolution of X*, we obtain the equivalence of (5) and (7).

If X is simple, condition (5) implies condition (3). O
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If it exists, there is only one perfect exact sequence without split summands starting in a module
X which has projective middle term. A more general result for morphisms stably equivalent to

a monomorphism has been shown as part of [19, Theorem 3.9].

Lemma 2.25. Suppose given X € mod A such that there exists a perfect exact sequence starting

m X with projective middle term.

The short exact sequence 0 — X 4, Fy% — Cok(d) — 0 is perfect exact in mod A. Every perfect
exact sequence starting in X with projective middle term is isomorphic to a direct sum of this

sequence and a split exact sequence of projective modules.

Proof. By assumption, Lemma 2.24 shows that F%[1] € L4. As a consequence, we have that
X = Cok(dg") ~ Im(d%) is a submodule of FL. In particular, 0 — X % FL — Cok(d) — 0 is

. 1 . . .
a perfect exact sequence since d* : Fyy" — X* is surjective.

Suppose given a perfect exact sequence 0 — X Sy P % Z - 0inmodA with P € proj A.
Recall that d* : Fy* — X* is the projective cover of X*. We obtain a morphism s : Fy — P
with ds = f. We also have that f* : P* — X~ is surjective. Therefore, s* : P* — F)l(* is
a split epimorphism which implies that s : Fx — P is a split monomorphism. This induces
a morphism of short exact sequences and the following commutative diagram with exact rows

and columns.

0 sy X —4 5 FlL » Cok(d) —— 0
| | :
0 s x —L . p J s 0

7
I |
0 —— Cok(s) —— Cok(t) —— 0

We obtain an isomorphism Cok(s) ~ Cok(t). Note that Cok(s) is projective as a direct sum-

mand of P. Moreover, since s is a split monomorphism, so is ¢. 0

Finally, we note the following characterization of an algebra with positive dominant dimension.
Recall that v(FY) is the injective hull of S if S € mod A is simple.

Lemma 2.26. Let S # 0 be a simple A-module. Then v(F2) & Py if v(S) = 0. Moreover,
domdim A > 1 if and only if v(S) = 0 for all simple A-modules S # 0 with v(F2) & Pa.

Proof. Suppose v(FQ) € Pa. Then Homa (S, v(FQ)) # 0 with v(FQ) € proj A. By Lemma 2.24
we obtain that v(S) # 0.

Now, suppose that domdim A > 1 and let S be a simple A-module with v(S) # 0. Then there
exists a P € proj A with Homu(S, P) # 0 by Lemma 2.24. By assumption, P embeds into
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a projective-injective module Z. However, this means that the injective hull v(FQ) of S is a

direct summand of Z € Py,.

Conversely, suppose that v(S) = 0 for all simple A-modules S # 0 with v(Fg) & P4. Suppose
given () € proj A not injective with injective hull ¥P for some P € projA. For every S
in soc(Q) = soc(vP) we have that v(S) # 0 by Lemma 2.24 and therefore v(FJ) € P4 by
assumption. Hence, v(P) = Dgsoc(u(p)) v(FQ) € Pa which was the injective hull of Q. We
obtain domdim A > 1. O

Example in Chapter 7. We illustrate some of the previous results in Example 7.4 for the
algebra B of Section 7.1.



Chapter 3

Perfect exact sequences and
stable equivalences

Let k be a field. Let A and B be finite dimensional k-algebras without semisimple summands.
Throughout this chapter, we will denote the almost split sequence starting in an indecomposable

non-injective A-module X as follows.
0=X—=Ex—71(X)=0

This chapter is dedicated to examine what happens to perfect exact sequences under stable
equivalences mod A — mod B. Being perfect exact can be seen as a property of a given sequence
in mod A. For later use, we introduce the following shortened notion for stable equivalences

that preserve this property.

Definition 3.1. Let n : 0 = X Iy ® P % Z — 0 be a perfect exact sequence in mod A
without split summands such that P is projective and Y has no projective direct summand.

We say that a functor a : mod A — mod B preserves the perfect exact sequence n if there exists

a perfect exact sequence

0= aX)Lay)eP%a(Z)—0

in mod B with P € proj B such that f ~ a(f) and § ~ a(g) in mod B.

We will see later that stable equivalences of Morita type preserve perfect exact sequences; cf.
Lemma 5.5. For now, we can show that a stable equivalence preserves perfect exact sequences
with projective middle term if the stable equivalence and its quasi-inverse are induced by an
exact functor. Furthermore, an exact functor preserves arbitrary perfect exact sequences if and
only if it preserves the pseudo-cokernel discussed in the previous chapter; cf. Definition 2.8.
In this case, the exact functor maps perfect exact sequences to perfect exact sequences; cf.
Remark 2.16.

39
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Proposition 3.2. Let 4Mp be a bimodule which is projective as left A- and right B-module
such that — ®4 M : mod A — mod B is an exact functor which induces a stable equivalence
mod A — mod B.

(1) The following are equivalent.

(1) The functor — @4 M preserves perfect exact sequences with projective middle term.

(ii) For all Z € mod A we have Extyp(Z ®4 M, B) = 0 if Ext4(Z, A) = 0.

(2) If there is a bimodule gL which is projective as left B- and right A-module and which

induces the inverse stable equivalence, then the equivalent conditions of part (1) hold.

(3) The functor — ®4 M preserves a perfect exact sequence 0 — X Ly % 750 if and
only if there exists a stable isomorphism Cok(f ® M) ~ Cok(f) ®4 M in mod B.

Proof. Ad (1). Suppose given Z € mod A with Ext'(Z, A) = 0. We have seen in Lemma 2.23
that in this case there exists a perfect exact sequence ending in Z with projective middle term.
Thus, (i) implies that there also is a perfect exact sequence in mod B with ending term Z ® 4 M
and projective middle term. Using Lemma 2.23 again, we obtain Ext}s(Z ®4 M, B) = 0. This
shows the implication (i) = (ii).

On the other hand, suppose that 0 - X — P — Z — 0 is a perfect exact sequence in mod A
with P € proj A. Then Ext'(Z, A) = 0 so that (ii) implies Exty(Z ®4 M, B) = 0. Now, by
Lemma 2.23, every short exact sequence ending in Z ®4 M is perfect exact. In particular,
this holds for the induced short exact sequence 0 - X q M - P®a M — Z ®4 M — 0.

Therefore, the implication from (ii) to (i) holds as well.
Ad (2). We show condition (ii) of part (1). Suppose given Z € mod A with Ext'(Z, A) = 0.
We write Z/ := Z ®4 M € mod B. Let 0 - B — Y’ £ Z' — 0 be a short exact sequence in

Exty(Z ®4 M, B). Since — ®p L is exact, we obtain the following short exact sequence.
0 BasL—=Y @ L L% 70 L —0

Note that 7/ ®@p L = Z @4 M ®p L ~ Z in mod A and B ®p Ly ~ L, € proj A. Using that
Ext!(Z, A) = 0, this implies that ¢’ ®p L is a split epimorphism with projective kernel. By
Lemma 1.4, we obtain that ¢’ ® g L is a stable isomorphism. As a consequence, ¢ @g L ®4 M is
a stable isomorphism as well. Using that ¢ g L®4 M ~ ¢’ in mod B and that ¢’ is surjective,
we obtain that ¢ is a split epimorphism by Lemma 1.4. In conclusion, ExtL(Z @4 M, B) = 0.

Ad (3). Suppose thatn: 0 — X Ly %7 50isa perfect exact sequence. Using Lemma 2.22,
— ®4 M preserves the perfect exact sequence if and only if there is a stable isomorphism
Cok(f ® M) = Cok(f ® M). The same lemma provides a stable isomorphism ¢ : Cok(f) — Z
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in mod A since 7 is perfect exact. This induces a stable isomorphism Cok(f) ®4 M X Z@aM.
Using that — ® 4 M is right exact, we have the following.

Cok(f) ®a M~ Z @4 M ~ Cok(f) ®4 M ~ Cok(f ® M)

In conclusion, we have that Cok(f®M) ~ Cok(f®M) if and only if Cok(f®M) ~ Cok(f)®a M
in mod B O

For an arbitrary stable equivalence to preserve perfect exact sequences, we have to at least
exclude short exact sequences that start with a node; see also Example 7.15. We recall the

definition of a node. See [31] for more details.

Definition 3.3. A simple A-module S is called a node if it is neither projective nor injective

and the middle term Fg of the almost split sequence starting in S is projective.

We will use the following immediate characterization of a node; see also [4, Proposition 2.5].

Lemma 3.4. Suppose given an almost split sequence with X not injective.
0XLHEy S 250

(1) We have f =0 in mod A if and only if X or Ex is projective.

We have g = 0 in mod A if and only if Z or Ex is projective.

(2) Suppose that X is simple and not projective. Then X is a node if and only if f = 0.

Proof. Ad (1). Tt immediately follows that f = 0 if X or Ex is projective. Suppose that
S = 0. Then there exists a projective module P € proj A and morphisms u : X — P and
v: P — FEx such that f = uv. Since f is irreducible, either u is a split monomorphism or v a

split epimorphism. Thus, either X or Fx is projective.
Similarly we obtain that g = 0 if and only if Z or Ex is projective since g is irreducible as well.

Ad (2). Since X is neither projective nor injective, X is a node if and only if Ex is projective.

The result now follows from part (1). 0

We also use that a node cannot be a direct summand of the middle term in an almost split

sequence.

Lemma 3.5. Suppose given an almost split sequence 0 — X ER Ex % Z — 0 in mod A.

The middle term Ex does not have a node as a direct summand.
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Proof. Assume that  : N — FEx is is the embedding of a direct summand such that N is a

node. We have an almost split sequence
0N Ey 57 Y(N)=0

starting in N with Ey projective. The morphism ¢t g : N — Z factors through s via a morphism
u: Exy — Z, that is tg = su. Since tg and s are irreducible, we obtain that u is a split

monomorphism. Thus, Fy is a projective direct summand of Z. A contradiction. 0

In [4, Proposition 3.5], Auslander and Reiten provide the following result for the case of short
exact sequences using functor categories. This was later generalized to a larger class of short

exact sequences in [33, Theorem 1.7] by Martinez-Villa.

Theorem 3.6 (Auslander, Reiten). Let o : mod A — mod B be a stable equivalence.

Let0— X L v &P L Z 0 bea short exact sequence in mod A without split summands

such that X is indecomposable, P € proj A and Y has no projective direct summand.

If X is not a node and not projective, there exists a short exact sequence

0= aX)Lay)ePLa(Z)—0

in mod B with P € proj B such that alf) ~ f and a(g) ~ g in mod B.

We aim to prove a similar result for perfect exact sequences. However, our method follows
an algorithmic approach. A perfect exact sequence will be linked to an associated almost
split sequence by a series of intermediate perfect exact sequences. For this series to end,
we additionally have to assume a finiteness condition on the morphisms in the perfect exact

sequence.

3.1 Construction of perfect exact sequences

In this section, we give two methods to construct perfect exact sequences from existing ones.
We start with a construction via pushout and pullback which will be used to merge a perfect

exact sequence with an almost split sequence.

Lemma 3.7. Suppose given a short exact sequence 0 — X Ly % 7 50 inmod A.

(1) Let 0 = X = U =V — 0 be a short exact sequence in mod A such that f = ua via a

morphism « : U — Y. Then there exists a short exact sequence such that the following
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diagram commutes.

f

0 s X Y — 2 v 7 s 0
I ey |
a v B
0 >U( )>Y@V s 7 > 0

If0 - X 5 U 3V = 0 and the upper row of this diagram are perfect exact, then so is

the lower row.

(2) Let 0 — U 5V S Z — 0 be a short exact sequence in mod A such that g = av via a
morphism « 'Y — V. Then there exists a short exact sequence such that the following

diagram commutes.

If0 5> USV S Z -0 and the lower row of this diagram are perfect exact, then so is

the upper row.

Proof. Ad (1). For now, we only show the existence of the short exact sequence. We verify

that the following is a pushout-square.

%Y

X
u (10)
by |

—53 YoV

By assumption, this diagram commutes. Suppose given T" € mod A together with morphism
t1:Y — T and ty : U — T such that ft; = uty. We construct ¢ : Y &V — T such that the

following diagram commutes.
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We have u(ty — at;) = uty — ft; = 0. Hence, there exists a unique § : V' — T such that
’UB = tg — Oétl.

X L S U L SV

This yields a unique ¢ = (tg) such that the diagram above commutes. In conclusion, letting

T := Z, the pushout-square induces the following commutative diagram with exact rows.

f

0 s X Yy — 94 7 s 0
oy e |
a v B
0 >U< )>Y@V > 7 > 0

Ad (2). For now, we only show the existence of the short exact sequence. We verify that the

(2

UpY -2 v

16y, I

y — 4 7

following is a pullback-square.

By assumption, this diagram commutes. Suppose given 7" € mod A together with morphism
ty: T — V and ty : T'— Y such that t; v = t3 g. We construct ¢ : T' — U @ Y such that the

following diagram commutes.

T t
Ny
\>(
UpY —— V
() ],
1
y — 4 7

We have (t; — toa)v = tjv — tog = 0. Hence, there exists a unique § : T' — U such that
ﬂ u = tl — thé.

-
<
~
<
<
2\

Z

This yields a unique ¢ = (8 t2) such that the diagram above commutes. In conclusion, letting
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T := X, the pullback-square induces the following commutative diagram with exact rows.

B f

0 >X( ),U@Y s V > 0
0 v
1

0 s X Y — 2 v 7 s 0

Perfect exact sequences. Suppose that 0 — X Ly % 7 50isa perfect exact sequence. That
is,0 > 2Ly I X* 5 0is exact in A-mod. Tf additionally, 0 — V* CUr S Xt 0 s

exact, we can apply (2) for left A-modules to obtain the following exact sequence.

(+)

VoY — = U"—=0

B* *
0—>Z*—>( v)

(o v) (2)

Hence, 0 — U ASHLA Y@V — Z — 0is perfect exact. Similarly, if 0 = U 5V 5 Z — 0 s
perfect exact, applying part (1) for left A-modules yields the following perfect exact sequence.

(8 1) (a)

0=X——UpY —V =0
This concludes the proof. O

The next construction via the snake lemma will be used to reverse the process of the previous

lemma.

Lemma 3.8. The following holds.

(1) Suppose given two short exact sequences in mod A of the following form.

() (+)

O0—-X—>UpP——V —0

(v ) (2)

0->U—"7HYopV —7—-0

(1) ()

Then 0 — X ~—4 Y &P ———Z —0 is a short exact sequence. If the given two

sequences are perfect exact, then so is this sequence.
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(2) Suppose given two short exact sequences in mod A of the following form.

(- 0 (+)

0->U—"DHVepP—7—-0

(7 v) <w>

0—>X—v>Y@U—>V—>O

(s ) (%)

Then 0 > X —= Y &P —— Z — 0 is a short exact sequence. If the given two

sequences are perfect exact, then so is this sequence.

Proof. Ad (1). For now, we only show the existence of the short exact sequence. Note that

there is an isomorphism of sequences

(os1)

001
0 ———UppP ——YOVOP s 7

@, A

0 ———UppP ——YOVOP s 7

=}

=}

so that the lower sequence is exact as well. Consider the following commutative diagram.

0 > 0 > X

~ 2

0 > 0 » U@ P

L), S0

0—>YéP—>Y@{}@P " V > 0
g
(o UG
Y®P Y Z ()

The snake lemma yields a short exact sequence

(s0 1) (-2.)

00— X ——>YpP ——7—0.

Ad (2). For now, we only show the existence of the short exact sequence. Note that there is
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w0
s 0
01

an isomorphism of sequences

v 0
0 cx U) vever MY vep g
10 0 w
(f v va> 001 01
0 s X sYopUP —M— VPP —— 0

so that the lower sequence is exact as well. Consider the following commutative diagram.

( —v0)

0 » X s Y P
(f v —UL)
10
00
¥ (010) v 01
0 » U s YoUPP ——YPP ——0
w0
(SL) St
01
0O —— VP VoP > 0 > 0
(+)
A > 0 > 0

The snake lemma yields a short exact sequence

(s —00) ()

00— X —>YopP ——7—0.

Perfect exact sequences. Suppose that in part (1) the sequences

(*)

U P ——> X*—=0

(+)

YoV — = U"—=0

. (t* ﬂ'*)
0—-V"—=

0—>Z*—>(g w)

are exact. We can apply part (2) for left A-modules to obtain the short exact sequence

v*s*
L*

Y*o P ——— X* = 0.

O—>Z*—>(g )

Hence, the sequence 0 - X — Y @& P — Z — 0 of part (1) is perfect exact.
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Now, suppose that in part (2) the sequences

(v =) ()

02— V*eP —=U"—=0

(")
YV e U -y X* =50

(v )

0— V"

are exact. We can apply part (1) for left A-modules to obtain the short exact sequence

f*
—*v*

Yo P —— X" = 0.

t*w* w*
0— 2% —>( )

Hence, the sequence 0 - X — Y & P — Z — 0 of part (2) is perfect exact. O

3.2 Perfect exact sequences and almost split sequences

We aim to show that certain perfect exact sequences are preserved by stable equivalences

mod A — mod B. We proceed as follows.

First, we construct a chain of perfect exact sequences g — 71 — --- — n; in mod A such
that n; is a direct sum of almost split sequences. By remembering the steps taken during
this construction, we can reconstruct a perfect exact sequence in mod B corresponding to the
original perfect exact sequence 1y. This is done by using almost split sequences during each
step of the construction, which are preserved by a stable equivalence between algebras without

nodes. An example of the construction done in this section is given in Example 7.5.

In order for this chain to be finite, we need to assume some condition on the morphisms
in the perfect exact sequence. This condition is satisfied for all morphisms if A is of finite

representation type.

In case that the starting term of the perfect exact sequence is not indecomposable, we need the

following remark.

Remark 3.9. Suppose given X € mod A without injective direct summands. Let X = @, X;

be the decomposition of X into indecomposable direct summands.

We denote the direct sum of all almost split sequences starting in the X; as follows.
05 X3 Ex 5T(X)—=0

In particular, Ex = @, Ex, and T'(X) = &,

7

T H(X5).
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Recall that almost split sequences with X not projective are perfect exact; cf. Example 2.11.(5).

We use Lemma 3.7 to combine a perfect exact sequence with such almost split sequences.

Lemma 3.10. Suppose given a perfect exact sequence n : 0 — X Loy % 7 50 imnmodA
without split summands.
Recall from Remark 3.9 the sequence 0 — X = Ex % T(X) — 0. Then there exists a perfect

(v ) ()

N:0—>Ex —YaT(X) —Z -0

exact sequence

in mod A such that f = sv. We often denote this sequence by 1.

Proof. By assumption, X has neither injective nor projective direct summands, otherwise the
given exact sequence would have a split direct summand. Hence, there exists a perfect exact
sequence that is the direct sum of almost split sequences starting in direct summands of X; cf.
Remark 3.9.

0+ X3 Ex 5T(X)—=0

Moreover, f is not a split morphism. Therefore, f factors through s via a morphism Ey — Y,

that is f = swv.
vt w
By Lemma 3.7.(1), we obtain that 0 — Ex Q Y &T(X) ——= Z — 0is a perfect exact

sequence with some morphism w : T'(X) — Z. O

Construction 3.11. Suppose given a perfect exact sequence 7y : 0 — X Jo, Yo & Zy — 0in

mod A without split summands.

We construct perfect exact sequences 7, recursively. Let k& > 0 such that 7, has no split
summands. Recall the perfect exact sequence 7 from Lemma 3.10 and the morphism of short
exact sequences from Lemma 3.7. We define 7,41 to be the sequence obtained from 7 by
removing all split summands. Then 7, is a perfect exact sequence without split summands
and a direct summand of 7. In particular, we have the projection of the short exact sequence

onto its direct summand. In general, the middle morphism is not the natural projection.

Nk 0 > Xk i > Yk Ik > Zk > 0
l lsk l(l 0) <9k> H
v t w
i 0 s Ex, (o ’“QYk@T(Xk) 2 7, > 0
| } } g
Tr41 Jk+1
Mk+1 0 —— Xk—l—l e Yk+1 e Zk+1 — 0

Note that for all k, the module Z;,; is a direct summand of 7, and consequently also of Z.
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Furthermore, if 7, is an almost split sequence, 7, will be a split sequence and therefore 7 = 0.
In fact, in this case vy is an isomorphism.
In general, this construction will not terminate, as the following example shows.

Example 3.12. Let k be an algebraically closed field. We consider the Kronecker algebra A
given by the following quiver.

1 —=<2
Since A is hereditary, every short exact sequence starting in a non-projective module is perfect
exact; cf. Example 2.11. We denote the indecomposable A-modules by their dimension vector.
Let n € Z>y. The preprojective component of the Auslander-Reiten quiver of A consists of the

modules with dimension vector (n 2 1). The preinjective component consists of the modules
with dimension vector (n j; 1). Finally, a module with dimension vector (Z) is in the regular
component. In particular, the indecomposable projective modules are given by P, = (%) and

P = ((1)> Recall that the almost split sequence starting in a module in the preprojective

component is given by the following.
n s.(n+1 n+1\ ¢t (n+2
0— <n+1> = (n+2> b <n+2> - <n+3> —+0
We consider the following perfect exact sequence in mod A. Note that the starting and middle

term of this sequence are in different components of the Auslander-Reiten sequence.

e 0 (35 (3) 2 (5 o
We show by induction, that the perfect exact sequence 7, of Construction 3.11 is given as
n+ 2\ 3 n+3\%" 1

In fact, we have the following construction step from n to n + 1 with notation as in Construc-
tion 3.11.

follows.

_ n + 2\t f (3 n+3\%" Al
me 0= (315) (5)e (hid) (o) =0
lsn J:(IO)
o n+ 3\ %22 (vn ta) (/3 n+ 3\%" n + 4\t 1
e 0= (nin) T (G)e(ry) Je(is) (o) =0
‘ n 4+ 3\t frs1 3 n 4 4\ %t 1
s 0= (i) ——(3)o(his) ———— (o) ~0
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For all n > 0, we have that f,.; is not irreducible. Thus, the perfect exact sequence 7, cannot

be almost split for any n > 0.

Now, consider the following perfect exact sequence.

w0 (2) 2 (3) 2 () o

This time, fy is an irreducible morphism in the preprojective component. However, the ending
term is still in a different component of the Auslander-Reiten quiver. Similarly to the induction

above, we can show that 7, of Construction 3.11 is given as follows.

n+2 n+3 1
M 0—><n+3)—><n+4>—>(1)%0
Again, 7, is not an almost split sequence for any n > 0.

As seen above, we need a condition on both fy and gy for Construction 3.11 to terminate with

an almost split sequence. This condition will be given via the radical of mod A.

Definition 3.13. The radical rad(mod A) of mod A has the same objects as mod A with mor-
phisms f € rada(X,Y) if gfh is not an isomorphism for all ¢ € Homy(Z, X), h € Homu(Y, Z)
and Z € mod A indecomposable. Recursively, we can define rad’(X,Y) := Hom4(X,Y) and
rad’y (X,Y) == {fg: f €rada(X,Z) and g € rad’y '(Z,Y) for a Z € mod A} for n € Z,.

Let f : X — Y be a morphism in mod A. Following [9], we say that f has depth n > 0, if
f € radi(X,Y), but f € rad”™(X,Y). In case that f € rad’}(X,Y) for all n > 0, we set
depth f = .

For more details on the radical see [6, Section V.7]. We list some properties that are important

for our purposes.

Remark 3.14. Let X,Y € mod A.
(1) The n-th radical rad’; (X,Y) is a two-sided ideal for n € Z-o. Furthermore, we have

rad’y(X,Y) Crady '(X,Y) C--- Crad(X,Y) Crada(X,Y).

(2) Suppose that f: X — Y has depth zero. Then there exists a Z € mod A indecomposable
and morphisms g : Z — X, h : Y — Z such that gfh is an isomorphism. In particular, g

and h split so that Z is a common direct summand of X and Y.

(3) Let f: X — Y be a morphism with depth f = n. For all morphisms ¢ : X’ — X and
h:Y — Y’ in mod A we have depth(gfh) > n since the n-th radical is an ideal.
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(4) Suppose that X or Y is indecomposable. An irreducible morphism f : X — Y has
depth 1. If both X and Y are indecomposable, f : X — Y is irreducible if and only if
depth f = 1.

Furthermore, a direct sum of irreducible morphisms still has depth 1. In fact, every
non-zero restriction to an indecomposable direct summand is irreducible and thus in the

radical.

(5) If A is of finite representation type, every morphism in mod A has finite depth; cf. [6,
Theorem 7.7].

We will assume that fyp has finite depth for every projection p onto an indecomposable direct

summand. The next result shows that this property gets passed on to all fi for k > 0.
Lemma 3.15. Suppose given a perfect exact sequence ng : 0 — X Jo, Yo £ Zy — 0 in mod A
without split summands. We use the notation of Construction 3.11.

Suppose that fopo has finite depth for every projection py : Yo — Yy onto an indecomposable

direct summand Yy of Yp.

Then fi. px has finite depth for all k > 0 and every projection py : Y — Y, onto an indecom-

posable direct summand Y, of Yy.

Proof. We proceed by induction on k and show that depth(fyy1 pry1) is finite for £ > 0. We

use the following expanded notation from Construction 3.11.

b, o

vV tg
Ex, Y @ T(X)

Jo 1)

Xit1 SIS Yii1
Recall that 0 — X, & Ex, N T (X)) — 0 is a direct sum of almost split sequences for all
k > 0. Since (zk ) is split, Y, is either an indecomposable direct summand of Y or an
k
indecomposable direct summand of T'(Xy).

Suppose that Y}, is a direct summand of 7'(X}). In this case, we have py frt1 Pry1 = eVrPrs1-
Using that ¥pg.1 is a split epimorphism, tx1gpks1 is irreducible so that depth(¢xwgprs1) = 1.
This implies depth(fx11 prr1) < depth(pr frr1 per1) = depth(txrprsr) = 1.

Suppose that Y}, is a direct summand of Y}. In this case, we have sy pi, fr+1 Dk+1 = fr Pk Prt1-
Using that ¢gpri1 is a split epimorphism, we know that depth(fx ¢k pri1) < oo by induction
hypothesis. This implies depth(frr1 pr+1) < depth(sgpr fri1 Per1) = depth(fx @k pri1) < 00. O
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We aim to show that Construction 3.11 ends with an almost split sequence under the assumption
that fop and go 7 have finite depth for every projection p and 7 onto an indecomposable direct
summand. We use the assumption on f; to show that the middle morphism in the construction
will eventually be an element of the radical. Together with the assumption on gq this guarantees
that we arrive at a split sequence. Finally, we will use that 7, is an almost split sequence if and

only if 7; is a split sequence.

Lemma 3.16. Suppose given a perfect exact sequence ng : 0 — X Jo, Yo £ Zy — 0 inmod A
without split summands. Suppose that fop and gy ™ have finite depth for every projection p onto
an indecomposable direct summand of Yy and every projection w onto an indecomposable direct

summand of Zy.

Then there exists an | € Zxqy such that n; in Construction 3.11 is a direct sum of almost split

sequences.

Proof. We first prove that there exists an [ € Z-, such that 7, is a split sequence. Construc-
tion 3.11 yields the following sequence of morphisms of short exact sequences. We aim to show

that there is an [ > 0 such that gymy---m = 0.

o 0 » X, oy, LR/ > 0
“ (10) <g0> H

ﬁo 0 > EXO (o tO,) YO@}(XO) A Zy > 0
| | 2

m 0 > )21 n, Y1 " 7 y 0
“ o) <g> H

i 0 — Fe. Yy e Tx) A 20— 0
| | [

" 0 > )22 LI, Yg 2 7, > 0

For k > 0, let ¢ : Y — Yii1 be the morphism given by the sequence above. Assume that

JoTo Tk = Yo+ Yk grr1 7 0 for k > 0. In particular, ¢, is non-zero for all k& > 0.

Assume that for all N > 0 there exists a k > N such that ¢y ---¢r € rad(Yy, Yiy1). Thus,
for all n > 0 there exists a k > 0 such that gomo -« 7 = @0 Yrgrr1 € rad” (Yo, Zg11). On
the other hand, gomg - - - is non-zero for all k and Z, has only finitely many indecomposable
direct summands. Using that 7 is a split epimorphism, this implies that there must exist a

k" > 0 such that gomg - - - m = gomg - - - mp for all k > k’. Thus, we have a projection 7 onto an
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indecomposable direct summand Z’ of Z; such that go 7 € rad” (Y, Z’) for all n. However, go 7

has finite depth by assumption. A contradiction.

Therefore, there exists an N > 0 such that for all & > N we have py - pp & rad(Yy, Yii1)-
By Lemma 3.15, there exists an 1 < m < oo such that depth(fy p) < m for all projections p of

Yy onto an indecomposable direct summand.

We know that the composite ¢ ‘= pn@Ni1 - @Nim—1 1S neither zero, nor in the radical
rada(Yy, Ynim). Thus, there exists an indecomposable non-zero module M € mod A and

morphisms ¢ : M — Yy and p : Yy, — M such that the composite
MY5YyS Ym B M

is an isomorphism. In particular, ¢ p is split so that depth(fy ¢ p) < m. By commutativity of
the diagram, we have that fy ¢ p factors through s, for N < k < (IV 4+ m — 1). However, as a
direct sum of irreducible morphism, s; has depth 1 for & > 0. We obtain depth(fy ¢ p) = m,

a contradiction.

In conclusion, there exists a minimal [ > 0 such that ¢g---p; g101 = gomo - -~ 7 is zero. Since
7o is not split, the epimorphism g, is non-zero and we obtain m - - -7, = 0. However, this is a
surjection of Z onto its direct summand Z;,;. This implies Z;;; = 0 and thus 7,7, = 0 since
M1 has no split summands. By construction, this means that 7; is a split sequence. It remains

to show, that 7; is an almost split sequence. Suppose that 7; is split.

(o 1) («)

m:0—Ex, —=Y,eT (X)) — 2, —0

We obtain that Ey, & Z; ~ Y, & T'(X;). However, Z; is not a direct summand of ¥ since 7; is
not a split sequence by construction. Hence, Z; is a direct summand of T'(X;). Furthermore,
0 - X; = Ex, — T(X;) — 0 has no split direct summands as a direct sum of almost split

sequences. Hence, Ey, and T'(X;) have no common direct summand.

In conclusion, this results in Z; ~ T'(X;) and Y; ~ E, via some isomorphism ¢ : Ex, — Y]

with (v 0) >~ (v #). Since s;(w ) = (£ 0), we obtain an isomorphism of short exact sequences.

0 » X; — Ey, » T(X) —— 0
T
i 0 v X, Iy, " g > 0

Hence, n; is the direct sum of all almost split sequences starting in direct summands of X;. O

The following result is a reformulation of [4, Proposition 2.4] using Lemma 3.4.(2).
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Proposition 3.17 (Auslander-Reiten). Let mod A < mod B be a stable equivalence.

Let0— X Ly ®P %L Z =0 be an almost split sequence in mod A, where X is not a node

and not projective, P € proj A and Y does not have projective direct summands.

Then there exists an almost split sequence in mod B
0= aX)LaY)aP%a(Z) >0

where P is projective such that i ~ a(f) and § ~ a(g) in mod B.

Inductively, we aim to construct perfect exact sequences in mod B corresponding to 7 for

0 < k < I. The next lemma will be used as the induction step.

Lemma 3.18. Let mod A % mod B be a stable equivalence.

Suppose given a perfect exact sequence n: 0 — X Ly ®P L Z— 0 inmodA without split
summands, where P € proj A and Y has no projective summand. Suppose that X has no node

as a direct summand.

Assume furthermore, that there exists a Q € proj B such that

(o1 : (o)

0—=alEx) — (aY)e Q)@ a(T(X)) — a(Z) = 0

is a perfect exact sequence in mod B where ¥ ~ a(v) and g ~ a(g); cf. Lemma 3.10.

Then there exist P € proj B and a perfect exact sequence in mod B
0= aX)LaY)aP%a(Z)—0
with f ~ a(f) and g ~ a(g) in mod B.

Proof. Note that X has no projective direct summand, since the given perfect exact sequence
has no split direct summands. Recall that in this case, we have the perfect exact sequence
0= X3 Ex S T(X) — 0; cf. Remark 3.9. By Proposition 3.17, there exists an R € proj B

such that ~
0 — a(X) Q a(Ex)® R Q a(T(X)) =0

is a perfect exact sequence in mod B with § = «(s). By assumption, we have the following

perfect exact sequence in mod B with ¥ = a(v) and g = a(g).

(v 9 : (2)

0= a(Ex) —2 (a(Y) ® Q) ® a(T(X)) ~Ls a(Z) — 0
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Lemma 3.8.(1) now provides the following perfect exact sequence.

0—>a(X)(—>(a(Y)@Q)EBR%a(Z)—>O

We have §0 ~ a(s)a(v) = a(sv) = a(f) and § ~ a(g) in mod B; cf. Lemma 3.10. O

We are now ready to prove the main result of this chapter.

Theorem 3.19. Let o : mod A — mod B be a stable equivalence.

Suppose given a perfect exact sequence 0 — X Ly ® P L Z — 0 without split summands

where X has no node as a direct summand, P € proj A andY has no projective direct summand.

Suppose that fp and gm have finite depth for every projection p onto an indecomposable direct
summand of Y and every projection w onto an indecomposable direct summand of Z. Then

there exists a perfect exact sequence

aY)e P L a(Z) =0

L=

0 — a(X)
in mod B with P € proj B such that f ~a(f) and g ~ a(g) in mod B.

Proof. We denote the given perfect exact sequence by 7, and use the notation of Construc-
tion 3.11. By Lemma 3.16 there exists an [ € Z>( and perfect exact sequences 7, for 1 < k <[
such that 7; is a direct sum of almost split sequences. Furthermore, 1,1 is a direct summand
of the sequence 7.

Me:0—=Ex, 2 Y, eT(Xy) > Z—0

By assumption, Xy has no node as a direct summand. Let £ > 1 and assume that X; has a
node as a direct summand. Since X}, is a direct summand of Ex, ,, the node is also a direct
summand of Ex, ,. However, by Lemma 3.5 the middle term of an almost split sequence has
no nodes as direct summand. A contradiction. Thus X} has no node as a direct summand for
all 0 < k< .

We verify by induction on 0 < k£ < [ that the assertion holds for 7.

Let k = [. Then the given perfect exact sequence is a direct sum of almost split sequences and

the claim holds by Proposition 3.17.
Let 0 < k < [. Suppose that the assertion holds for n,.1. We know that 7 is the direct sum

of np11 and a split exact sequence. Therefore, o preserves the perfect exact sequence 7 as
well. As a consequence, we can apply Lemma 3.18 to obtain that « preserves the perfect exact

sequence 7 and its morphisms.

In conclusion, the assertion holds for all perfect exact sequences 1, with 0 < k£ < [. In particular,

it holds for 7. 0
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Example in Chapter 7. In Example 7.5 we give an explicit example for the construction used

in the proof of the theorem.

As seen in Example 3.12, the assumption on the depth of f and g is needed for our proof of
this theorem. However, it seems unclear whether this assumption is really necessary for the
result to hold.

With regard to Definition 3.1, we have the following corollary using Remark 3.14.

Corollary 3.20. Let A and B be finite dimensional algebras without nodes. Suppose that A

and B have finite representation type.

Then every stable equivalence o : mod A — mod B and its quasi-inverse preserve perfect exact

sequences.
The constructions of this chapter can also be used to characterize perfect exact sequences.

Remark 3.21. Suppose that A and B have finite representation type. We use the notation of
Construction 3.11 and Lemma 3.16. Let 79 be a short exact sequence in mod A without split
summands.

Mo - O-)XOE)YE)Q—%ZO—)O

The short exact sequence 1) is perfect exact if and only if X} has no projective direct summand
forall 0 < k <[,

In fact, we have seen that 7 is a perfect exact sequence without split summands if 7, is perfect
exact. Thus, X cannot have a projective direct summand. Conversely, suppose that Xj has no
projective direct summand for 0 < k < [. Then 7, is a perfect exact sequence; cf. Example 2.11.
Let 0 < k < [. Inductively, we may assume that 7. is a perfect exact sequence. Now, applying

Lemma 3.8.(1) to the following two perfect exact sequences shows that 7y is perfect exact.

0 > Xk i > EXk b > T(Xk) — 0

(o 1) ()

ﬁk : 0 > EXk s Yk @T(Xk) > Zk

o

Here we used that 7,1 is a direct sum of 7, and a split exact sequence.






Chapter 4

Triangulated subcategories inside the
homotopy category

Let k be a field. Let A and B be finite dimensional k-algebras without semisimple direct
summands. In general, the stable module category mod A is not triangulated. However, we
have seen that mod A is equivalent to the category L, which is a full subcategory of the
triangulated category KC(proj A); cf. Theorem 2.6. Note that for arbitrary algebras £, is not

even closed under taking shifts. This can be seen, for instance, in the setting of Example 2.2.

In this chapter, we discuss several triangulated categories that are related to £ 4. In the first two
sections, we characterize the smallest triangulated subcategory of IC(proj A) that contains £ 4
and is closed under isomorphisms. Moreover, we discuss its Grothendieck group. In Section 4.3,
we extend the category of Section 4.1, to a triangulated category closed under an equivalence
induced by the Nakayama functor. Afterwards, we consider the triangulated category of stable
Gorenstein-projective modules. This category is equivalent to the category of totally acyclic
modules Ky, (proj A), which is the largest subcategory of L4 that is triangulated. In a final
section, we specialize to self-injective algebras. In this case, mod A is already triangulated and
all these categories coincide. We will see that L4 is closed under taking shifts inside IC(proj A)
if and only if A is self-injective.

Two extended examples for the categories discussed in this chapter are given in Section 7.2 and

Section 7.3. Occasionally, we refer to specific parts of these examples.

Recall that P4 denotes the category of projective-injective A-modules. The subcategory of
strongly projective-injective A-modules is denoted by stp A. We begin by defining the following

subcategories with a left bound on cohomology and a right bound on homology.
Definition 4.1. We denote by H(proj A) the full subcategory of K(proj A) consisting of all
complexes F* € K(proj A) such that there exist [,7 € Z with H</(F*) = 0 and H,(F}) = 0.
We denote by Hp(proj A) the full subcategory of H(proj A) consisting of all complexes in
L (Pa) = {F* € K(proj A) : Homy(proj a)(F*, Z*) = 0 for all Z* € K*(Pa)}.
We denote by Hgp(proj A) the full subcategory of H(proj A) consisting of all complexes in
LKt (stp A) = {F* € K(proj A) : Homy(proj 4)(F*, Z*) = 0 for all Z* € Kb(stp A)}.
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Remark 4.2. (1) Note that H(proj A) is a triangulated subcategory of IC(proj A). By con-

struction, H(proj A) is closed under taking shifts. By Lemma 1.9, we see that for a
morphism f : F* — G* in H(proj A), the distinguished triangle F* — G* — C(f)* —
lies in ‘H(proj A).

By Lemma 1.12, we obtain that Hp(proj A) and Hg,(proj A) are triangulated subcate-
gories of H(proj A). Furthermore, Hp(proj A) and Hp,(proj A) are closed under isomor-
phisms in IC(proj A).

We have a chain of subcategories Hp(proj A) C Hep(proj A) € H(proj A) C K(proj A).
Furthermore, £4 C H(proj A) letting [ = 0 and r = 0 in the definition of H(proj A).
In this sense, the boundary conditions of H(proj A) can be seen as a weaker version of
those in £4. They will be used in Lemma 4.7. In particular, the smallest triangulated

subcategory of K(proj A) that contains £4 must be contained in #H(proj A).

In general, complexes in H(proj A) are neither left bounded nor right bounded. However,

we have H(proj A) ~ K®(proj A) if and only if gldim A < co.

In fact, every complex in H(proj A) can be truncated on the right to obtain a projective
resolution in mod A. Thus, the complex must split eventually, if it is unbounded on
the left and gldim A < oco. Similarly, every complex in H(proj A) can be truncated on
the left to obtain a projective resolution in A-mod after applying (—)*. Moreover, every

projective resolution of a left or right A-module occurs in this way.

Note that Hp(proj A) = Hep(proj A) = H(proj A) if A has no projective-injective mod-
ules. In particular, we have that Hp(proj A) = Hgp(proj A) ~ K?(proj A) is the bounded
derived category of A if additionally gldim A < co. The same holds for H,(proj A) and
H(proj A) if A has no strongly projective-injective modules.

The categories discussed in this chapter can be visualized as follows. Note that the inclusion

L4 — Hp(proj A) will be verified in Lemma 4.4. In general, this chain of subcategories has

a proper inclusion at every position; see also Example 7.9. However, we will show later in
Theorem 4.45 that Kiac(proj A) = L4 = Hp(proj A) = Hgp(proj A) if and only if A is self-

injective.

Kiac(proj A) < s L4 ¢ > Hp(proj A) — Hgtp(proj A) — H(proj A) — K(proj A)

] s

Gproj A —— mod A

In general, with the exception of L4, none of these categories are preserved by a stable equiv-

alence; cf. Example 7.15. We will see in Chapter 5 that the situation is different for stable
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equivalences of Morita type.

For now, we discuss Hp(proj A) in more detail in the first section of this chapter. Later, in

Section 4.3, we return to the category Hgp(proj A).

4.1 A triangulated hull in K(proj A)

The aim of this section is to show that Hp(proj A) is the smallest triangulated subcategory
of K(proj A) that contains £4 and is closed under isomorphisms. In order to prove this, we
have to verify that £, is contained in Hp(proj A) and that a complex F* € Hp(proj A) is an
element of any triangulated subcategory of IC(proj A) that contains £4 and is closed under
isomorphisms. The first assertion follows from the next two results. For the second assertion,

we then proceed as follows.

Initially, we observe that a complex is in YK?(P,) if and only if its cohomology is in +Py; cf.
Lemma 4.5. Next, we reduce the problem in Lemma 4.7 to projective resolutions of modules
in +P,. As a further reduction step, we see in Lemma 4.9 that it is enough to consider sim-
ple modules in +P4. Finally, we show in Lemma 4.10 that the assertion holds for projective

resolutions of simple modules in +P,.

We start with the following lemma. In an exact degree, a complex in K(mod A) has no non-zero
morphism to a projective module or from an injective module. The same holds for the dual

complex in K(A-proj).
Lemma 4.3. Let F* € K(mod A) and k € Z.
(1) If H*(F*) = 0 then Homy(mod a)(F*, Z[—k]) = 0 for Z € inj A.
(2) If H*(F*) = 0 then Homymod a)(Z[—k], F*) = 0 for Z € proj A.
Now, assume that F* € K(projA).
(1) If Hi(FY) = 0 then Homp(proj 4)(Z[—k], F*) = 0 for Z € proj A with Z* € A-inj.
(2°) If Hi(FY) = 0 then Homp(proj 4)(F*, Z[—k]) = 0 for Z € proj A.

Proof. Ad (1) and (2). Suppose given a morphism of complexes f* : F* — Z[—k]. In particular,
we have d*~1f*F = 0.

k—1 k
. pk-1 47 pk _d°  pktl .. e

lfk—l lfk lfk+1 lf.
> 0 > 4 o
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By assumption, we have that Kerd® = Imd*~! C Ker f*. Thus, there exists a morphism

g: F*/ Kerd* — Z such that the following diagram commutes.

|s

Since Z is injective, there exists a morphism h : F**! — Z with d*h = g. We obtain
dkh:ﬂ'(ikh:ﬂ'g:fk

so that f* = 0. This shows part (1). Part (2) follows dually.

Ad (1°) and (2°). Since Homy(proj a)(Z[—k], F*) =~ Homy(aproj) (F, Z*[—k]), part (1') follows
from part (1) applied to left A-modules.

Similarly, since Homyc(proj 4)(F*, Z[—k]) =~ Homyc(a-proj) (Z*[—FK], F'), part (2') follows from part
(2) applied to left A-modules. O

We extend the previous result to morphisms between complexes. In particular, this lemma

shows that £, is contained in Hp(proj A).

Lemma 4.4. Let F* € K(proj A).

(1) If H'(F*) = 0, then Homy(mod 4)(F*, Z*) = 0 for all Z* € K’(inj A).

(2) If H.(FF) = 0, then Homyc(proj a)(F*, Z°) = 0 for all Z* € K'(proj A).

(1°) IfH.(FF) = 0, then Homyc(proj a)(Z°, F*) = 0 for all Z* € K*(proj A) with Z} € K"(A-inj).
(2°) If H*(F*) = 0, then Homy (o5 4)(Z°, F*) = 0 for all Z* € K*(proj A).

(8) If F* € L4, then F* € Hp(proj A).

Proof. At first we show the following claim.
Claim. Let Z* € K*(mod A). We have Homy(moa 4)(F*, Z*) = 0 if Hom (mod ) (£, ZF) = 0 for
all k € Z.

Suppose that Z* is non-zero. Since Z* is bounded, there exists an [ € Z such that Z' # 0 and
Z% =0 for k < I. Moreover, there exists an r € Z such that Z” # 0 and Z* = 0 for k > r.
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We proceed by induction on the number of non-zero terms of Z°.
Suppose that [ = r. Then Z* = Z' and Homy(moa 4)(F*, Z') = 0 by assumption.

Suppose that | < r. By induction, we can assume that Homy(mod 4)(F", Z<m=1 = 0. Thus,
there exist homotopy maps h* : F¥ — Z*=1 for k < r such that

RF At - db hETY = R for k<,

Consider the following diagram.

—2 —1 T
r—2 d; r—1 d;‘: r dg r+1 .
- — F — F y F > I —_ F
A1 AT h?‘+/1//
fr72 frfl fr //// f
r—2 d§72 r—1 d571 T - 4 .
7 A y / > 0 > Z

Note that
d;il (fr —h dgfl) — fr—l dgfl - fr—l dgfl 4 hr—l dng dgfl =0

so that f" — A" dg_l induces a morphism of complexes F* — Z”. However, we have that

Homyc(mod 4)(F*, Z") = 0 by assumption. This yields a homotopy map h™+! : F™+! — Z" with
Aol = WAy e dR Ry = g
In conclusion, we obtain Homy(mea 4)(F*, Z*) = 0.

By Lemma 4.3.(1,2'), we have Homy(mod 4)(F*, Z*) = 0 for k € Z in the situation of part
(1) and (2) respectively. Hence, part (1) and (2) follow from the claim above. Note that for
Z* € K(projA), we have Homy(proj4)(Z°, F*) = 0 if and only if Homga-proj) (FJ, ZF) = 0.
Thus, (1') and (2') follow from the versions of (1) and (2) for left A-modules respectively.

Finally, let F* € L4 and Z* € K’(P4). By definition, we have H*(F*) = 0 for k£ < 0 and
Hi(F}) =0 for k > 0. In particular, F* € H(proj A). Furthermore, Lemma 4.3.(1) shows that
Homy (proj 4)(F*, Z%) = 0 for k < 0 and Lemma 4.3.(2') shows that Homroj 4) (£, Z¥) = 0 for
k > 0. Now, the claim above gives Homy (proj 4)(F*, Z°) = 0 so that F* € *K"(P4). Together,
we obtain F* € Hp(proj A) which shows part (3). O

The next several results aim to show that a complex F* € Hp(projA) is contained in any
triangulated subcategory of KC(proj A) that contains £ 4 and is closed under isomorphisms. We

start with the following important observation about complexes in Hp(proj A) and Hep(proj A).
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Lemma 4.5. Let F* € K(mod A).

(1) F* € LKY(Py) if and only if H*(F*) €L Py for all k € Z.
(2) F* € tK(stp A) if and only if H*(F*) € *(stp A) for all k € Z.
(1) F* € Kb(v='Pa)t if and only if H¥(F*) € (v='Pa)* for all k € Z.
(2°) F* € Kb(stp A)L if and only if H*(F*) € (stp A)* for all k € Z.
Proof. Let Z be a full subcategory of inj A. We show that we have F** € LK°(Z) if and only if

H*(F*) € *Z for all k € Z. Letting Z = P4 we obtain part (1) and letting Z = stp A we obtain
part (2).

Suppose that F* € L1K*(Z). We fix a k € Z with H*(F*) # 0. Let Z € Z and suppose given a
morphism f : H¥(F*) — Z.

Consider the following commutative diagram. The morphism « exists since Z is injective.

oy pRet T gk gk
Ker d* F*/ Tm d*1

7
p ///
7/
/7
7/
//
L] /
Fy

H(

Since d*~! o = 0, this yields a morphism of complexes 7« : F* — Z[—k]. By assumption,

there exists a homotopy map h : F¥*! — Z with d* h = m o. We have
O='d*h=1ma=pf
so that f = 0.

Conversely, let H*(F*) € 1T for all k € Z. Suppose given a morphism of complexes F* EiNy2
with Z* in K*(Z). Let r € Z be maximal such that Z" # 0. By applying a shift [—r] we may

assume that r = 0. We show that f* = 0 by induction on the number of non-zero terms of Z°*.

Suppose that Z*¥ = 0 for k # 0. We have d;' f° = f~'d,' = 0 so that there exists a morphism
a: F°/ Imdit — HO(F*) with f© = ma. This results in a morphism g = ia : H(F*) — Z°
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such that the following diagram commutes.

V
!
L
+
B!
o
+
gl
A
+

Ker d° £ F°/ Imd!
p ,
i 7
//
0 . ///
H (F ) e’
g
] 7/
1 7
NN
d;! d
> 0 A Z 50 NI

By assumption, ¢ = 0. Hence + f° = t:ma = pia = pg = 0. This yields a morphism of

complexes as follows.

-

0]
— 5 Kerd® 45 0 4y p1

Tk

79— 00— -

2\

2\
e}
~

Since ZY is injective, this morphism must be zero in K(mod A) by Lemma 4.3.(1) so that there
exists a morphism A : F* — Z° with d°h = f°. This implies that f* : F* — Z* is zero as well.

For the induction step, we consider the complex 7.0Z* = Z<". By induction hypothesis, we
may assume that Homyc(med 4)(F*, Z<°) = 0. Hence there exist homotopy maps h* : F¥ — Z+1
for k < 0 such that h*=1dh 2 + dithk = fh=1.

dz? dnt 4
y P2 ——— ! ———— [0 = P! ;
h— KO
2 F s lfl
d;? d;!
y 72 z 5 71 z_5 70 > 0 )

Note that
d;l (fO o hO dzl) — f—l dgl o f—l dzl + h—l dEQ d—l —

so that f° — h%d,' induces a morphism of complexes F* — Z°.

Now we are in the same situation as above and we can conclude that there exists a morphism
1
F1 % 70 such that d%nt = fO—h0d,'. However, this yields h°d,* +d%h' = f°. Thus f* = 0.

It remains to show part (1’) and part (2°). Let C be either =P, or stp A. In both cases,

7 :=DC is a full subcategory of A-inj. In particular, we can apply the arguments above for Z.



86 4 Triangulated subcategories inside the homotopy category

Suppose given Z* € K’(C). Note that D Z* € K*(Z) and
Hom,c(modA)(Z°, F.) ~ HOIII;C(A_mOd)<D Fe s D Z.)

Thus, the arguments above for left A-modules show that there exists a Z* € K°(C) with
Homyc(mod 4)(Z°, F*) # 0 if and only if there is a 4Z € Z with Homa(4H*(D F*), 4Z) # 0.

Since D(—) is exact, we have
Hom(4H¥(D F*), 4Z) ~ Homa(a(DH*(F*)), 4Z) =~ Hom4((D Z) 4, H*(F*) ).
Using that D Z € DZ ~ C, we are done. 0

For a given complex F* € H(proj A), we want to construct a complex in £ which is related to
F* via distinguished triangles; cf. Lemma 4.7. This is done by removing non-zero cohomology
of F* with projective resolutions. Using the boundary conditions in the definition of H(proj A),
there are only finitely many positions we have to consider until we arrive at a complex in L.
The distinguished triangles that arise during the proof also give a way to calculate the class of
F* in the Grothendieck group of Hp(proj A).

Because it will be needed later, we first state the induction step in a more general lemma.

Lemma 4.6. Suppose given F* € H(proj A). Let k € Z be minimal with H*(F*) # 0. Let H be
a submodule of H*(F*) with P* a projective resolution of H. Then there exists a distinguished
triangle P*[—k] — F* — C* — such that the following holds.

(1) We have H(C*) =0 for j < k and 15,C* = 1= F".

(2) There is a short exact sequence 0 — H — H¥(F*) — H*(C*) — 0. In particular, we have
H*(C*) =0 if H=H*(F").

(8) Suppose that F* € L4 with k = 0. Then we also have C* € L. In this setting, we have
a short ezact sequence 0 — H — H%(1<o F*) — H(7<c C*) — 0.

Proof. We have an injective morphism f : H — Cok dl}_l since H is a submodule of H*(F*)
which embedds into Cokdy'. Since k is minimal such that H*(F*) # 0, we know that
H/(F*) =0 for j < k. Hence, we can lift f to a morphism of complexes f* : PSY[—k] — F*. In
particular, we have f°d% = 0 since f factors through H¥(F*).

dpt

—— P72 > P ;

b I
k—2 dk—l

. Fk—2 F Fk—l F y

0 > 0 > 0 o PSY[—k]

P
SR ,
k+1

p dE
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We write C* := C'(f)* for the mapping cone. We denote the natural projections by 7p : P — H
and by 7 : F¥ — Cokdk'. Note that 75,C* = 75 F*. Moreover H/(C*) = 0 for j < k — 2 by
Lemma 1.9. For part (1), it remains to show that H/(C*) = 0 for j = k — 1.

k—1
dF

Let (7,y) € Kerdl;* € PO@ F*~'. Then (:E,y)( /° ) =0,ie zf°=—ydi . We have

0= ydl}_lﬂp =—2f'rp=—x7pf

which implies xmp = 0 since f is injective. Thus, there exists an element ¢ € P~! with
qd]_gl = x. Moreover,
(af " +y) dit =qdp' P rydit =af’ vydp = —ydi Hydp =0

so that we obtain p € F¥=2 with pd'}_2 =qf ' +y. We calculate
—dg' 7 ~1 k—2\ _ —1 —1 _
(=a.p) (g g ) = (@ —af T Hpdi”) = (v, —af T af T Hy) = (@)
The distinguished triangle P*[—k| — F* — C* — induces a long exact sequence of cohomology.

H"1(C*) = HF(P*[—k]) — H¥(F*) —» HF(C") = 0

We have seen above, that H*~1(C*) = 0. Using that H*(P*[—k]) = H’(P*) ~ H, we obtain a
short exact sequence 0 — H — H¥(F*) — H*(C*) — 0. This shows part (2).

For part (3), suppose that F* € L4 and k = 0. We have H(C*) = 0 for j < 0 by part (1).
Using Lemma 1.9.(2), we obtain that C* = C(f)" € L4. Since 750C* = 750 F", we have

N := Cok(H(F") < H"(7<0 F*)) ~ Im(d},) ~ Im(d,) ~ Cok(H%(C") — H"(7<0 C")).

Let H ~ Ker(H°(7<o F*) — H%(7<c C*)). Consider the following commutative diagram with

exact rows and columns.

— O
N
— O

|
|

o
CH— O mm+—Im+— o
=
Q
)

R
E
!

=
3
!

(@]

[ =
O =2
O =

o

We obtain H ~ H and the short exact sequence 0 — H — H(7<q F*) — H(7cC*) = 0. O
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Lemma 4.7. Let T be a triangulated subcategory of KC(mod A) that contains L and is closed
under isomorphisms. The following holds for a complex F* € H(proj A) with integers | < r
such that H<Y(F*) = 0 and Hs,(F}) = 0.

(1) If T contains the minimal projective resolution of H*(F*) for all k < r, then F* € T.

(2) We abbreviate G* := F(H" (1<, F*)) € La. Forl < k < let P} be the minimal projective
resolution of HF(F*). We have [F*] = 31— (—=1)¥[P;] 4+ (=1)"[G"] in Go(H (proj A)).

Proof. Suppose that F* # 0. By definition of H(proj A), there always exist [,r € Z with
H<!(F*) = 0 and H-,(F7) = 0. We can choose r € Z such that [ < r. We proceed by induction

on N :=r —[.

If N =0, that is [ = r, then H<"(F*) = 0 and H.,(F) = 0. Thus, F*[r] € £ and we have
F* € T. Furthermore, [F*] = (=1)"[F*[r]] = (—1)"[G"] since H" (<, F*) = H(7<o(F"[r])).

We consider the case N > 0, that is [ < r. By Lemma 4.6, we have a distinguished triangle

Pl - F - C" —

with P* the minimal projective resolution of H'(F*). Moreover, H/(C*) = 0 for j < [ and
751C* = 75 F*. In particular, this means H<*1(C*) = 0 and H,(C;) = 0. Hence, by induction,
we have C* € T and [C*] = 7,;;}“(—1)’“[1{’,;] +(—=1)"[G"] since H*(C*) ~ H¥(F*) for k > 1 +1.
Using that P*[—l] — F* — C* — is a distinguished triangle with P* € T, we conclude that

F* € 7T since T is closed under isomorphisms. Moreover, we have that

r—1

(] = (D'P+[C] = ) (D) ]+ (1G] 0

k=l

Recall that we aim to show that a complex F* € Hp(proj A) is contained in any triangulated
subcategory that contains £ and is closed under isomorphisms. The previous results state
that it is enough to consider projective resolutions of modules in *P. In a next step, we
further reduce this to composition factors of such modules. Again, we additionally obtain a
formula for the class in the Grothendieck group. Note that no further steps are necessary in
case that domdim A > 1. In this context, a module X € +P already satisfies X* = 0. By

Lemma 2.24.(5,7), we obtain that F§ € £ is the minimal projective resolution of X.

The next lemma will be used with Z = P, in this section, as well as with Z = stp A in
Section 4.3.

Lemma 4.8. Let T be a full subcategory of inj A. The following are equivalent for X € mod A.
(i) X € 1T.

(ii) S € *T for every composition factor S of X.



4.1 A triangulated hull in /C(proj A) 89

Proof. Ad (i) = (ii). Let S be a composition factor of X. Suppose given an injective module
I together with a morphism S ENyS

Since S is a composition factor of X, there exists a submodule M of X such that S — X/M.
Using that I is injective, we obtain a morphism X /M Zs I such that the following diagram

commutes.
S —— X/M

fl
// g
k

I

If f is non-zero then the composite map X — X/M 2y I is non-zero as well.

Ad (ii) = (i). Suppose given an A-module I together with a non-zero morphism f: X — I.
Let S be in the socle of Im f ~ X/Ker f. Then S is a composition factor of X and the
composite S < Im f < I is non-zero. 0
Lemma 4.9. Let T be a triangulated subcategory of KC(mod A) that is closed under isomor-
phisms.

Suppose X is an A-module with minimal projective resolution P<Y. The following holds.

(1) If T contains the minimal projective resolution of every composition factor S of X, then
we have P<0 € T.

(2) Letn :=1(X) and suppose Q5" are the minimal projective resolutions of the composition
factors of X. Then [P<°] = 31 [Q"] in Go(H(proj.A)).
Proof. We show the assertions by induction on the length of X. Let I(X) = 1. Then X is
simple and P<° € T by assumption.

Let I[(X) > 1. Then there exist A-modules S and Y with I(S) = 1 and I(Y') < [(X) such that
there is a short exact sequence
0—-95—=X—=>Y—=0.

By assumption and induction respectively, the minimal projective resolutions Q<° of S and R<"

of Y are contained in 7. Furthermore, assertion (2) holds for R<°.

Using the horseshoe lemma, the short exact sequence of modules induces a short exact sequence
of complexes with P<0 ~ P<0 in K(proj A).

0 Q<" = PV 5 RSO 50
By Lemma 2.17, we have a distinguished triangle

Q<0_>P<O_>R<0_>
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so that P<0 € T and [P<°] = [Q<°] + [R<"]. .

The following lemma is the last we need to prove the main theorem of this section. Note that
the short exact sequence starting in the simple module is not perfect exact in general; see also
Example 7.11.

Lemma 4.10. Suppose S is a simple A-module with minimal projective resolution P<°. Let I

be the injective hull of S together with a short exact sequence 0 — S — I — C'— 0 in mod A.

If S € +Py, then there exists a distinguished triangle P<° — F; — F¢, — in K(proj A).
In particular, P<° € T for any triangulated subcategory T of K(proj A) that contains L and is

closed under isomorphisms.

Proof. We extend P<Y to an element P* € £ such that P* ~ F.

In case P! = 0, we obtain P = P* € L C 7. In thiscase, S* =0and 0 - S -1 —-C — 0
is a perfect exact sequence. The result now follows from Proposition 2.18. Hence, suppose that
P! # 0 for the remainder of the proof.

Let I be the injective hull of S with embedding f : S < I. Consider F} € L. By assumption,
I is not projective so that F} is non-zero. Our aim is to construct a morphism of complexes
fr:Ps0 = F; with C(f) € L.

dz? dz! o

— P2 y Pt y PO > 0 > P<
J/f_Q l h J/fo J/ lf

o dpt o dp oo AR . .

—> FI 7 FI 7 FI 7 FI 7 FI

The morphism d% factors through I via a morphism ¢ : I — F}. Since S is simple, the composite
map S RNy SNy I is either injective or zero. If fi is injective, there exists a morphism p : F} — [
with f = (fi)p since [ is an injective module. As a consequence, we have f = f(ip) = f(ip)"
for all n > 0. Since S is simple, I is indecomposable and thus the composite 7 p is either an
automorphism or (ip)™ is zero for some n > 0. If ip is an automorphism, i is split so that
I is projective-injective as a direct summand of F}. However, I is not projective-injective by
assumption. If (p)” = 0, we also have f = f(ip)” = 0. A contradiction in both cases. Thus,

the composite fi cannot be injective and must be zero.

This yields S < Ker(i) ~ Ker(I — Imd}) ~ Ker(H%(r< F}) — F?/Ker(d%)) ~ HO(F}).
Since f is non-zero, S is isomorphic to a submodule of H’(F}). Using Lemma 4.6, we obtain a
distinguished triangle P<° EAR F; — C(f) — with C(f) ~ F¢. € La. O

We are now ready to show the main result of this section.
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Theorem 4.11. Let A be a finite dimensional k-algebra.

The category Hp(proj A) is the smallest triangulated subcategory of K(proj A) that contains the

category L4 and is closed under isomorphisms.

Proof. By Lemma 4.4.(3), we have that £ C Hp(proj A). By Remark 4.2.(1), Hp(proj A) is a
triangulated subcategory of IC(proj A) that is closed under isomorphisms. Together, we obtain

that Hp(proj A) is a triangulated category containing L.

Suppose that T is another triangulated subcategory of (mod A) that contains £ and is closed
under isomorphisms. We show that Hp(proj A) C T.

Recall that Hp(proj A) C K(P4). By Lemma 4.5 and Lemma 4.7 it suffices to show that
the minimal projective resolution of every A-module X € +P, is an element of 7. Moreover,
by Lemma 4.9 it suffices to show that the minimal projective resolution of every composition
factor of X is an element of 7. Let S be such a composition factor. Then S is an element of
1P, by Lemma 4.8. Using Lemma 4.10, we now obtain that the minimal projective resolution

of S is an element of 7. 0

Instead of defining Hp(proj A) as a subcategory of LK?(P,), we also can consider right per-

pendicular categories.

Remark 4.12. The following are equivalent for a complex F* € K(proj A).
(1) F* € J‘]Cb(PA).
(2) HY(F*) €t P, for all k € Z.
(3) H¥(F*) € (v'Py)* for all k € Z.
(4) F* € Kb(v=1Py)t.

In particular, we have F* € Hp(proj A) if and only if F* € K°(v~1P4)*t and F* € H(proj A).

In fact, the equivalence of (1) and (2), as well as the equivalence of (3) and (4) were shown in

Lemma 4.5. The equivalence of (2) and (3) follows from the natural isomorphism
Hom, (X, vP) ~ DHomu(P, X)
for all P € proj A and X € mod A.

Examples in Chapter 7. We visualize the categories Hp(proj A) and Hep(proj A) in Exam-
ple 7.10 of Section 7.3. Note that we will discuss Hgtp(proj A) in more detail later in Section 4.3.
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In Example 7.11, we explicitly follow the steps in the proof of Theorem 4.11 and illustrate the

constructions done in this section.

We close with a characterization of Hp(proj A) inside H(proj A) in case that A has dominant

dimension at least one.

Remark 4.13. Let domdim A > 1 and F* € H(proj A). Then F* € Hp(proj A) if and only if
v(H*(F*)) =0 for all k € Z.

In fact, we have F* € Hp(proj A) if and only if H*(F*) € 1P, for all k € Z by Lemma 4.5.(1).
However, under the assumption domdim A > 1, we have *P4 =~ proj A. Thus, H*(F*) € 1Py,
if and only if (H*(F*))* = 0.

4.2 Grothendieck group

We recall the definition of the stable Grothendieck group as stated in [33].

Definition 4.14. Let L be the free abelian group generated by the isomorphism classes of
objects in mod A without projective direct summands. Let R be the subgroup of L generated
by the classes

(X] -]+ 1[Z]

where 0 > X &P =Y ®Q — Z — 0 is a short exact sequence with P, () € proj A and where
X and Y may be zero.

The stable Grothendieck group G§'(A) of A is defined as the quotient L/R.

Martinez-Villa has shown in [33, Theorem 2.1] that stably equivalent algebras without nodes

and without semisimple summands have isomorphic stable Grothendieck groups.

We consider the Grothendieck group Go(Hp(proj A)) of the triangulated category Hp(proj A).
Using the equivalence F : mod A — L4, we obtain a Grothendieck group GJ(A) for the stable
module category which is defined via perfect exact sequences. We show that GJ(A) is invariant

under stable equivalences which preserve perfect exact sequences.

Definition 4.15. Let L be the free abelian group generated by the isomorphism classes of
objects in mod A without projective direct summands. Let R’ be the subgroup of L generated

by the classes
(X] -]+ 1[Z]

where 0 = X - Y @& P — Z — 0 is a perfect exact sequence with P € proj A.

The group G}(A) is defined as the quotient L/R'.
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The next theorem follows from the results provided in Section 4.1.

Theorem 4.16. The equivalence F : mod A — L4 induces an isomorphism
GG(A) ~ Go(Hp(proj A)).

Proof. By Proposition 2.18, every perfect exact sequence 0 - X - Y &P — Z — 0in mod A
with P projective induces a distinguished triangle Fy — Fy — F, — in L C Hp(proj A)
and vice versa. Hence, the natural map o : GJ(A) — Go(Hp(proj A)) given by [X] — [F] is

well-defined. Since split exact sequences are perfect exact, ¢ is a group homomorphism.

Suppose given X € mod A. Let Sy,...,S, be the composition factors of X. For 1 < k < n, let
S — I be the injective hull of S;, together with a short exact sequence 0 — Sy — I, — C, — 0
in mod A. Note that the modules I, and C}, are uniquely determined by X up to isomorphism.
Throughout the proof, we write Ix := @, _, Iy and Cx := @;_, C for a given A-module X.
If X is the zero module, we set Ix =0 and C'xy = 0.

Claim 1. Let X €+P4 with minimal projective resolution P*. We have ([Ix] — [Cx])o = [P*].

Proof of claim 1. Let @ be the minimal projective resolution of S for 1 < k < n. By
Lemma 4.9.(2), we have [P*] = >} ,[Qx]. For all 1 < k& < n we additionally have that
Q1] = [F7] — [F¢,] by Lemma 4.10. Together, we obtain

n n n

([Ix] = [CxN)o =D [Ilo = [Cilo = Y [F7] = [Fe,) = D (@] = [P7].

k=1 k=1 k=1
This proves the claim.

Suppose given a complex G* € Hp(proj A). Let | € Z such that H</(G*) = 0. Let r € Z; such
that H-,.(G¥) = 0. We aim to define a map

&' Hp(proj A) — GI(A) : G* — Z *(Tan(ey] = [Clarieny)) + (=17 [H" (7<,G*)].

Claim 2. Suppose given Fy € L4 for X € mod A with HY(F%) non-zero. Suppose given a
submodule H of H°(F%) together with a short exact sequence 0 — H — X — N — 0. We
have [X]| = [Ig] — [Cy] + [N] in GI(A).

If H=H(F%), then we have [X] = [H(7<o F%)] = [Ig] — [Cx] — [H (71 F%)] in GJ(A).
Proof of claim 2. We proceed by induction on the number of composition factors of H.

Suppose that S := H is simple. Let I € mod A be the injective hull of S. Since S is a

submodule of X, there exists an injective module J € mod A such that I & J is the injective
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hull of X. Let P* be the minimal projective resolution of S. By Lemma 4.6.(2,3), we have the
following distinguished triangle
P Fy — Fy —

and a short exact sequence 0 — S — HY(Fy%) — H°(Fy) — 0. Additionally, we have the
following distinguished triangle by Lemma 4.10 with w® : P* — F} induced by the embedding
S < I. Note that S € P4 since H(Fy) € -Pa.

(e 0) e e e
The embedding S — I & J factors through the embedding S — X via an injective morphism
X — I & J. This induces a morphism of complexes (v] v3) : Fy — F; @ Fj such that
u(vf v3) = (w* 0) in K(projA). Let K* := C((v1 v2))" be its mapping cone. Note that
K* € L, by Proposition 2.21. We have the following distinguished triangle.

F)'(M)F]’EBF}%K'—)

Now, the octahedral axiom gives another distinguished triangle.
Fy = Fo O F; — K —
By Proposition 2.18 the two triangles above induce perfect exact sequences such that
[X] = [N] = 1] + [J] = [H(7<0 K*)] = ([C] + [J] = [H%(7<0 K™)]) = [1] = [C].

This verifies the claim in the case that S = H is simple. Now, suppose that H has n > 1
many composition factors. Let 0 — U — H — T — 0 be a short exact sequence in mod A
with T a simple module. Let X := Cok(U — X). By induction, we may assume that we have
[X] = [Iy] — [Cu] + [X] in GR(A). Consider the following commutative diagram with exact

TOWS.
0 s U s H s T > 0
I
0 s U » X y X > 0
|
0 > 0 s N—N —— 0

Since 0 - H — X — N — 0 is a short exact sequence, we obtain another short exact
sequence 0 — T — X =5 N = 0. By Lemma 4.6.(2,3), we have a short exact sequence
0— U — H(Fx) — H°(F%) — 0. Thus, T is a submodule of H(F;). Using that T is simple,
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we can show as above that [X| = [I7]—[Cr]+[N]. Since [Ig] = [Iy]+[Ir] and [Cy] = [Cy]+[Cr],
combining all equations yields [X]| = [Ix] — [Cy] + [N] in GJ(A).

If H = H°(F%), we have that H*(Fy) = 0 and 750F% = 7>0Fx by Lemma 4.6.(1,2). Using
Lemma 2.24.(2,4), we obtain [N] = —[H (<1 F%)] = —[H'(7<1 F%)] in G§(A). In conclusion,
[X] = [Iy]) — [Cu] + [N] = [Iu] — [Cu] — [H (7<1 F%)]. This proves the claim.

Claim 3. Suppose given a complex G* € Hp(projA). Let | € Z such that H</(G*) = 0. Let
r1 € Zs; such that Hs,, (GF) = 0. We write X}, := H*(7<,G"*). Then the element

ri—1

3 (=1 (Tukam)) — [Charam)) + (— 1) [X,]

k=l

in GJ(A) is independent of the choice of | and r; provided H<(G*) = 0 and H,,(G}) = 0.

That is, for every ry > r1, we have

ro—1
(1) [X0] = > (=D (s e)] = [Crnen)) + (D72 [X,].
k=rq
Proof of claim 3. The independence of [ of the sum above follows from Igr.y = 0 and

Curgey = 0 for k <. We show that

ro—1

0= (=1 ()] = [Curen]) + (1) [Xps] = (1) [X,,].

k=r1

by induction on 79 € Z~,,. For ry = r; there is nothing to show. For the induction step, we

may assume that the equation holds for some 5 > ;. We obtain

T2

DD Unren)] = [Caren)) + (1) [Xopa] = (1) [X]

k=r1

= (=1)"(Unr2(6)] = [Crrae)]) + (1) X o] = (1) X, ).

Note that Hs,,(G?) = 0 and Hxp, ((F%, [=72])") = Hxo((F%,)") = 0. Furthermore, we have
H™ (7, (F%, [-72]) = HY (7« F%,,) = X, = H?(7<,G*). Since projective resolutions are
unique up to isomorphism in K(proj A), this implies that 7>,,G* ~ 75, (F%,_[—72]) in K(proj A).
In particular, we have H™(G*) ~ H™(F%, [-72]) = HO(F)'(TQ). Using claim 2, we obtain

[T (o)) = [Cura o)) = [H(1<0 Fi, )] + [H (<1 F, )]

= [HT? (T\T2G.)] + [HT2+1(T<7’2+1G.)]
= [sz] + [XT2+1]'
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Thus, we have

(=1 ([T (6+)] = [Crraqan)]) + (1) [Xipia] = (1) [ X
(D)™ ([Xr] + [Xipa]) + (1) X pa] = (1) X,

0.

This proves the claim.

Suppose given a complex G* € Hp(proj A). Let | € Z such that H</(G*) = 0. Let r € Z,; such
that H>,(G%) = 0. We define a map &’ as follows.

&' Hp(proj A) — GF(A) : G* — Z *(Lakam)) — [Crrany)) + (=1)"[H" (7,G")].-

By claim 3 this definition is independent of the choice of [ and 7.

Claim 4. Let G* — K* — L* — be a distinguished triangle in Hp(proj A). We have that
([G*] = [K*] + [L*])6" = 0 in G(A).

Proof of claim 4. Let | € Z such that H<{(G*) = 0, HSY(K*) = 0 and H<!(L*) = 0. Let r € Z,
such that H.,.(G}) =0, Hs,(K;) = 0 and H-, (L) = 0. By Lemma 2.17, we have a split short
exact sequence of complexes 0 — 7,G* — 7, K* — 7, L° — 0 with K* ~ K* in K(proj A).
Note that [H' (1<, K*)] = [H"(7<,K*)]. This results in the following long exact sequence of

cohomology.
0 H(G) - H(K") = - - H L) S H (7,G") = H' (7, K*) — H (1<, L") = 0

Recall that for X € mod A the modules I'x and C'x are uniquely determined up to isomorphism
by the composition factors of X. The long exact sequence of cohomology now implies that

r—1

> (DR (e oy ] =i ey 14 e (9] = [Crre (o) H [ Corn ey = [Crae (20)) (= 1) (T (s — [Crms)]) = 0
o=l

We write X = H'(7,G*) and X = H"(7,G*)/Im(6) ~ Ker(H (7, K*) — H'(7<,L")).
Note that Im(§) ~ Cok(H"'(K*) — H""*(L*)) — H"(G") ~ H(F%). Thus, Lemma 4.6.(1,3)
implies 750 Fy = 750F so that X* ~ X*. Moreover, [H' (7<,G*)] = [X] = [Tim(s)) — [Crn(s)] +[X]
by claim 2. Together with the above, we obtain

([G*] = [K*] + [L*])e’

= <_1)k([lHk(G')] — k] + [Tary] — [Curee)) + [Crrrey] — [Crrre))

+ (=D)"([H" (7 G*)] = 1 (7, K7)] + [H" (7 L7)])
(=D (@] = [Cm]) + (=1D)"(H (7<,G")] = [ (7, 7)] + [H (7 L)])

—_
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(—1)"([X] = [X] + [0 (r<,G")] = [H (7, K")] + [H' (7. L7))])
(=17 ([X] = ] (r< K*)] + [H' (7, L))

It remains to show that the short exact sequence 0 — X — H' (7, K*) — H" (7, L") — 0 is
perfect exact. The componentwise split sequence 0 — 75,1 L} — T>T+1K:k — T5r11GE — 0

induces the following short exact sequence.
0= Hop1 (Toria L) = Hopy (7or 1 K7) = Hop1 (72,01 GE) — 0
Recall that H, (L) = 0. Thus, we have
Ho1 (rors1 L) = Cok(Li,y — Liy) = Ker(Li — Li_,) = H (1o, L')".
Similarly for the other two terms. This results in the following short exact sequence.
0— H' (1<, L*)* = H (7, K*)* = X* = 0

Since X* ~ X* we obtain that 0 — X — H'(7,K*) — H"(7,L*) — 0 is a perfect exact

sequence. This proves the claim.

Using claim 4, the map &' induces a map

r—1

5 : Go(Hp(proj A)) = G(A) : [G*] = > (=1 ([Te(an] = [Cheien))) + (1) [H (7,G")).
o

We show that oo = idGOP( A) and 60 = idgy(#p(proj4))- Then o and ¢ are mutually inverse

isomorphisms.

For X € mod A, we have [X]o 5 = [Fy]o = [H(7<o F%)] = [X] since we can choose [ =7 =0
in the definition of . On the other hand, suppose given G* € Hp(projA). Let P; be the
minimal projective resolution of H*(G*) for | < k < r — 1 where [,r € Z with H</(G*) = 0 and
H>,(GY) = 0. Let X, := H"(7<,G*). Using claim 1, we have ([Iykg)] — [Cur(cy])o = [P;]. By

Lemma 4.7.(2), we have [G*] = >1_; (—1)*[P;] + (—1)"[F%,]. Together, we obtain
G150 = S () (s ery] — [Chariom ) + (—1)7 (X o
= SR (1) R = (6. 5

Recall that a stable equivalence mod A — mod B preserves perfect exact sequences if A and B

are of finite representation type and have no nodes; cf. Definition 3.1 and Corollary 3.20.
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Theorem 4.17. Let o : mod A — mod B be a stable equivalence such that o and its quasi-

inverse preserve perfect exact sequences. Then « induces an isomorphism GE(A) — GF(B).

Proof. By assumption, every perfect exact sequence 0 - X — Y ® P — Z — 0 in mod A with

P projective induces a perfect exact sequence
0= aX)—=aY)®dP —a(Z)—0

with P’ € proj B.

Hence, the natural map G(A) — GJ(B) given by [X] + [a(X)] is well-defined. Since « is an

equivalence, this map is an isomorphism. O

Note that G§f(A) = 0 if gldim A < co. In fact, we have [Q(X)] = —[X] by setting Y = 0 in the
definition of Gff(A) = 0. If Q™(X) is projective for some n > 1, we obtain [X] = 0.

In general, GJ(A) can be non-zero even in case of finite global dimension; cf. Example 7.14.
Moreover, G§¢(A) and G}(A) are not isomorphic, even for algebras of infinite global dimension.

See Example 7.7 for more details. However, the following holds.

Remark 4.18. We have a surjective group homomorphism
Gy(A) = Gy'(A) = [X] = [X]se

If A is self-injective, this is an isomorphism.

In fact, every perfect exact sequence in the definition of GI(A) is also a short exact sequence of
the form stated in the definition of G§f(A). If A is self-injective, every short exact sequence is
perfect exact. After potentially removing a split exact sequence starting in a projective module,

every short exact sequence is of the form as stated in Definition 4.15.

We close this section with a remark on generating systems of GJ(A).

Remark 4.19. By construction, GJ(A) is generated by the indecomposable modules in mod A.
Thus, Go(Hp(proj A)) is generated by [F*] for F* € L indecomposable by Theorem 4.16.

However, in general GJ(A) is not generated by the non-projective simple modules in mod A4;
cf. Example 7.14. In comparison, every simple minded system over A is a generating system of

G5'(A) as was shown in [23, Lemma 2.3]. In particular, this holds for the simple A-modules.
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4.3 Nakayama closure

In general, the triangulated category Hp(proj A) discussed in Section 4.1 is neither character-
istic in KC(proj A), nor in H(proj A). In particular, for algebras of finite global dimension, the
category is not closed under the derived Nakayama functor. However, the category Hp(proj A)
can be enlarged to the category Hsp(proj A) by replacing the projective-injective modules with

strongly projective-injective modules.

In this section, we consider an equivalence v : K (proj A) — K~*(proj A) induced by the
Nakayama functor v4 : proj A — inj A where v4(P) = D(P*) = DHoma(P, A). In case that
gldim A < oo, we retrieve the derived Nakayama functor K°(proj A) — K°(proj A). Our aim is
to show that Hg,(proj A) is the smallest triangulated subcategory of K(proj A) that contains
L4 and is closed under vx and under isomorphisms. Assuming that A can be embedded
into a strongly projective-injective module, we give conditions under which Hg,(proj A) is
characteristic in H(proj A).

For the main proof, we will be able to reuse most of the results of Section 4.1. The main
new technical result in Lemma 4.24 shows that a projective resolution of a simple module in
L(stp A) is contained in any triangulated subcategory that contains £ and is closed under vi

and under isomorphisms.

For now, we start with a lemma on the Nakayama functor, which will be needed later. Note

that in general the Nakayama functor on mod A is not fully faithful.

Lemma 4.20. Let X be an A-module and Z € Py. Then Homa(v~'X, Z) ~ Homa(X,vZ) as

k-vector spaces.

Proof. Let I* € K*(inj A) be an injective presentation of X.

dr

X « y [0 y I!

Applying v~ componentwise, we obtain a sequence Q* € KT (proj A).

viX o QO dQ>Q1

Note that we have X = Ker(d;) and v ' X = Ker(dg) since v~ is left exact.

Claim. We have Hom (X, Z) ~ Homyc(inj a)(I°, Z) and Homa (v ' X, Z) ~ Homy o 4)(Q", Z)
for Z € inj A.
Suppose given Y € mod A and a sequence 0 — Y — C° — C! in mod A with Ker(C° 4, ch).

This gives a complex C* € K(mod A) with C* = 0 for k & {0, 1}. We show that this implies
HOIDA(Y, Z) >~ HOHl;C(mOdA)(C', Z)
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Let f be a non-zero morphism in Homy(Y, Z). Since Z is injective, there exists a morphism

" : C° — Z such that the following diagram commutes.
Y ——
lf /900
Z

Set % =0 for all k # 0. We obtain ¢* € Homy(mod 4)(C*, Z).

co —4

=0
Let C° 25 Z be another morphism such that f = ¢@°. Then 1(¢° — @°) = 0 and we obtain the

following morphism of complexes.

By Lemma 4.3.(1) this yields ¢° — @° = 0 so that fi° = @°. Thus, f — fib := ¢* defines a
k-linear map

Hom (Y, Z) % Homy(moa 1) (C", Z).

It remains to show that ¢ is an isomorphism. Suppose that ¢* = fip = 0 in £(mod A). In this

case, there exists a morphism h : C' — Z such that d h = ©°. However, this implies
0=tdh=1¢"=f

so that ¢ is injective. Now, suppose given a morphism ¢ € Homy(moea4)(C*,Z). Setting
fi=1¢" € Homu(Y,Z), we obtain fi) = ¢ so that 1 is surjective. This concludes the proof

of the claim.

We obtain the following sequence of isomorphisms using that v : K(proj A) — K(inj A) is an

equivalence.

HOH’IA(VilX, Z) = HomIC(proj A) (Q.v Z)
~ Homy(inj ay(I*,vZ)
~ Homy (X, v2)

O

The next lemma provides one part of the functor v : KT (proj A) — K~°(proj A). Recall
that the equivalence v : proj A — inj A given by the Nakayama functor v(—) = D(—)* induces
an equivalence K(proj A) — K(inj A) via F* +— (VF*)pez.
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Lemma 4.21. The equivalence of triangulated categories
v: K(proj A) = K(inj A)
induced by the Nakayama functor restricts to an equivalence of triangulated categories
K (proj A) = K+°(inj A).
Proof. Recall that v(X) = D(X*) for an A-module X. Suppose given P* € K" (projA).

Thus, we have P* € K=°(A-proj) and we obtain D(P;) = vP* € K*°(inj A) since D is exact.
Recall that v=1(X) = (D(X))" for an A-module X. Suppose given I* € K**(inj A). Applying

D(—) to I* componentwise, we obtain a complex D I* € K~?(A-proj) since D is exact. In
particular D I* is bounded in cohomology so that (D [')* = v € KH¥(proj A).

In conclusion, v restricts to an equivalence K+ (proj A) = K**(inj A). m

Recall that the canonical functors £t (mod A) — D" (mod A) and KX~ (mod A) — D~ (mod A)

induce equivalences of triangulated categories.

K (inj A) = D(mod A) = K~*(proj A)
Composing these equivalences with the one from Lemma 4.21 yields an equivalence of triangu-
lated categories KT (proj A) — K*H*(inj A) — K—b(proj A).

Definition 4.22. We denote the above composite of equivalences by
v : KPP (proj A) = K" (proj A).

We say that a triangulated subcategory T of K(mod A) is closed under vk if the restriction of
v to the full subcategory with objects in 7 N KT (proj A) has an essential image in 7.

Remark 4.23. Recall that H(proj A) is the full subcategory of K(proj A) consisting of all
complexes F* € K(proj A) such that there exist I,7 € Z with H(F*) = 0 and H-,.(F¥) = 0.
In particular, K™ (proj A) and K~*(proj A) are subcategories of H(proj A).

(1) Let gldim A < co. Then Hy,(proj A) = +K(stp A) N KP(proj A) and vx is equivalent to
the derived Nakayama functor K°(proj A) = K®(proj A).

(2) If A is self-injective, we will see that Hy,(proj A) = Hp(proj A) = L4; cf. Theorem 4.45.
Furthermore, the restriction of v to Hgp(proj A)NK P (proj A) is zero, since all non-zero
complexes in Hg,(proj A) are unbounded. Thus, £4 is trivially closed under vx in this

case.
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We aim to show that Hg,(proj A) is the smallest triangulated subcategory of K(proj A) that
contains L4 and is closed under v and under isomorphisms. It remains to verify that a
projective resolution P<? of a simple module S € *(stp A) is an element of every triangulated
category that contains £ and is closed under vx and under isomorphisms. Note that no further
steps are necessary, if v-domdim A > 1. In this case a module X € 1 (stp A) satisfies X* = 0.
By Lemma 2.24.(5,7), we obtain that F5 € L£4. Our strategy for the general proof is as follows.

We consider a complex Q* € K(projA) such that vc(Q°) ~ P<? and Q<Y is a projective
resolution of »~1S. Furthermore, »~1S embeds into Q. If Q' is not injective, the result
follows from Lemma 4.10. Otherwise, we inductively construct new simple modules Sy which
embed into v¥(Q'). By assumption, v(Q') cannot be strongly projective-injective, so that

this procedure terminates with a v=%(Q") which is not injective.

Lemma 4.24. Let T be a triangulated subcategory of K(proj A) that contains L and is closed

under v and under isomorphisms.

Suppose S is a simple A-module with minimal projective resolution P<°. If S € +(stp A), then
Pl eT.

Proof. Suppose that S is injective. Then we have S* = 0, otherwise S is projective and thus
strongly projective-injective, a contradiction. Hence, F7§ is the minimal projective resolution of

S which is contained in L 4.

For the remainder of the proof we assume that S is not injective. Let S < vQ! — vQ? be the

minimal injective presentation of S with Q*, Q? € proj A.

Extend Q' — Q? to an element Q*[2] € L. Then the truncation Q<Y is the minimal projective
resolution of =15 = Ker (Q' — @Q?).

@ Q!
N
v~Ls

Note that Q% € K+ (proj A). Applying vk yields v (Q>°) ~ P< in K~*(proj A) since vQ>°

is an injective resolution of S. Hence, Q>° € T implies P<° € T since T is closed under v.

y Q2

._>Q*1 N

~

Moreover, we have the distinguished triangle
Q"= Q = Q% = Q1]

so that Q>0 € T if and only if Q<° € T since T is closed under isomorphisms. It remains to
show that Q<Y € T. If v=15 = 0, we have Q< = 0 and we are done at this point.
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Note that dimy Hom (S, vQ') = 1 and dimy Hom (S, I) = 0 for any injective module I % vQ!
since S is simple. Suppose that vQ' is projective-injective. Otherwise S € +P and thus

P<% ¢ T by Lemma 4.10. By assumption, vQ! is not strongly projective-injective.
Claim. Tt suffices to consider the case that Q! € proj A is not injective.

Assume that Q' € P4. For every Z € P4 with Z 2 Q', that is vZ % vQ!, we have

dimy Homu (v~1S, Q') = dim; Hom (S, vQ") = 1
dim;, Homy, (v 1S, Z) = dimy Hom4(S,vZ) = 0

by Lemma 4.20. Therefore, there exists a unique composition factor Sy of v~1S with an

embedding into Q!. Furthermore, every other composition factor S’ of v=19 lies in +Py.

By Lemma 4.10 this means that the minimal projective resolution of every composition factor
which is not isomorphic to Sy is an element of 7. Therefore, by Lemma 4.9, the minimal
projective resolution Q<° of ¥715 is an element of T if the minimal projective resolution of Sy
is an element of 7. Note that Sy € *stp A. If not, then Q' must be strongly projective-injective
and therefore vQ' as well so that S & *(stp A).

Now we can repeat the process described above for Sy instead of S and Q! instead of vQ!.
Inductively, for & > 0, this results in a simple module S, € *(stp A) which is a composition
factor of ¥=1(Sy_;). Furthermore, Sy embeds into v=%(Q!). Since A is finite dimensional and
Q" is not strongly projective-injective, there exists a k € Z such that v=%(Q!) is projective but
not injective. Thus, it suffices to show that the minimal projective resolution of Sy is in 7.

This concludes the proof of the claim.

As a result, we can assume that Q! is not injective. We show that v=1S € +P,. If not, there is
a Z € P4 such that dimy, Hom(r~1S, Z) # 0. However, using that vQ; is the injective hull of
S, we have

dim; Hom(v'S, Z) ~ dimj, Hom(S,vZ) = 0

since Z o Q' & Py, that is vZ 2 vQ'. This yields v=1S € +P,. Hence, the minimal projective

resolution Q< of =15 is an element of 7 by Lemma 4.10. O

We give an example of the procedure used in the proof of Lemma 4.24.

Example 4.25. Let A be the quiver algebra over k given by

«

B

—_

2
—— 3

W
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with relations vd = vda = daff = ae = 0. The algebra has the following indecomposable

projective modules. We also note their images under the functor (—)*.

)z .:% P :325 P .:i P :le P--=5
1- 27 2 1 ) 3 - 17 4 27 5 -
Pi=1 P=1, Pi=2, P Py =3

We have the orbit Py = v(P;) = v*(Py) = v3(P,) under the Nakayama functor with v(P3)
not projective. Therefore, P;, P; and P, are projective-injective but not strongly projective-
injective. Let 7 be a triangulated subcategory of K(proj A) that contains £ and is closed
under vk and under isomorphisms. We have v : Kb(proj A) — K®(proj A), since A has finite
global dimension. We aim to show that the minimal projective resolution of the simple module
S :=1=soc(Ps)isin T.

The minimal injective presentation of S is given by (P; — P;) = (v(P) — v(Py)). Thus, we
set Q' := P, and extend P, 4, P, to the following element in £4 denoted by @*[2] in the proof
above.

O—>P5—>P2—>P1—>P3%P1i>P4—>P2—>P4—>P3—>O
In particular, we have v~1S = Ker(d) = i It now suffices to show that the minimal projective
resolution of =15 is an element of T .

Since Q! = P, is injective, we inductively construct new simple modules S, which embed into
v=*(Q'). This terminates with v=2(Q') = P, which is not injective.

We set Sy := 4 as the unique composition factor of i that embeds into P, = 19(Q') € Pa.
Note that the other composition factor 3 is an element of ~P4. Thus, it suffices to show that

the minimal projective resolution of Sy is an element of 7T ; cf. Lemma 4.10.

We repeat the steps above for Sy. The minimal injective presentation v(P;) — v(Ps3) results in

the following complex in L 4.
0—>P5—>P2—>P1—>P3@P5—)P2—>P4d—O>P3—>O

We have v71(Sp) = Ker(dy) = 2 = soc(Py).
We set S; := 2, which embeds into Py = v~(Q') € P4. The minimal injective presentation

v(Py) — v(Py) results in the following complex in £ 4.
O—>P5_>P2£L>P1—>P3_>P2_>P4—>P3_)O

We have v1(S;) = Ker(d,) =5 = P5 in the socle of P;.
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We set Sy := P, which embeds into P, = v=2(Q') € P4. Thus, the minimal projective

resolution of S, is an element of 7 by Lemma 4.10.

We are now ready to prove the main result of this section.

Theorem 4.26. Let A be a finite dimensional k-algebra.

The category Hsp(proj A) is the smallest triangulated subcategory of K(proj A) that contains

L4 and is closed under v and under isomorphisms.

Proof. Note that Hp(proj A) C Hep(proj A) C H(proj A) and stp A C Py. By Lemma 4.4.(3),
we have that £ C Hp(projA) C Hep(projA). Furthermore, Hgp(proj A) is a triangulated
subcategory of KC(proj A) that is closed under isomorphisms by Remark 4.2.

We show that Hp,(proj A) is closed under vg. Let F* € Hyp(proj A) N KT (proj A). Since
v (KP(stp A)) =~ Kb(stp A), we have vcF* € *K°(stp A). Since K~(proj A) N +K’(stp A) is
contained in Hg,(proj A), we obtain v (F*) € Hqp(proj A). In conclusion, Hgp(proj A) is a

triangulated category that contains £ and is closed under v, and under isomorphisms.

Suppose that 7 is another triangulated subcategory of K(proj A) that contains £ and is closed
under v and under isomorphisms. We show that H,(proj A) C T.

By Lemma 4.5 and Lemma 4.7 it suffices to show that the minimal projective resolution of
every A-module X € 1(stp A) is an element of 7. Moreover, by Lemma 4.9 it suffices to show
that the minimal projective resolution of every composition factor of X is an element of 7.
Let S be such a composition factor. Then S is an element of *(stp A) by Lemma 4.8. Using

Lemma 4.24, we now obtain that the minimal projective resolution of S is an element of 7. O

Similarly as for Hp(proj A), we can characterize Hgp(proj A) using right perpendicular cate-

gories; cf. Remark 4.12.

Remark 4.27. The following are equivalent for a complex F* € K(proj A).
(1) F* € “K’(stp A).
(2) H*(F*) € ~(stp A) for all k € Z.
(3) H*(F*) € (stp A)* for all k € Z.
(4) F* € K(stp A)*.
In particular, we have F* € Hy,(proj A) if and only if F* € K(stp A)* and F* € H(proj A).

We also note the following for the Auslander-Reiten quiver of D(mod A).
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Remark 4.28. Suppose that A has finite global dimension. An Auslander-Reiten triangle in
H(proj A) ~ K’(proj A) is of the following form; cf. [15, Theorem 1.4].

v(F*)[-1] -G — F*' —
Thus, Hgp(proj A) is the union of some Auslander-Reiten components in K?(proj A).

Example in Chapter 7. We explicitly describe all indecomposable complexes of Hp(proj A)
and Hep(proj A) in Example 7.10 for the algebra A of Section 7.3. We also visualize both

categories together with their subcategory L 4.

We observe the following for the case of Hp(proj A) = Hap(proj A). The second part is a direct

consequence of Lemma 2.26.

Lemma 4.29. The following holds.

(1) Hp(proj A) = Hep(proj A) if and only if Py = stp A.

(2) v-domdim A > 1 if and only if Pa = stp A and v(S) = 0 for all simple A-modules S with
V(FQ) &€ Pa.

Proof. Ad (1). Suppose that Py = stp A. Then we have TK(P4) = tK'(stp A) so that
Hp(proj A) = Hgp(proj A).

On the other hand, suppose that Hp(projA) = Hgp(projA). In particular, this means
that *K°(Py) = +KP(stp A). Assume that Z € Py is indecomposable and not an element
of stp A. Then we have soc(Z) % soc(Z') for all Z' € stp A indecomposable. We obtain
Hom(soc(Z),Z") = 0 for all Z' € stp A indecomposable. Hence, soc(Z) € *(stp A). Using
Lemma 4.5, the assumption LK?(P4) = +Kb(stp A) implies that soc(Z) € +P4. However, we
have Hom 4 (soc(Z), Z) # 0, a contradiction.

Ad (2). Suppose that v-domdimA > 1. Then P4 = stpA and domdim A > 1 by Re-
mark 1.17.(2). Now, Lemma 2.26 implies that v(S) = 0 for all simple A-modules S with
v(FQ) & Pa.

Conversely, suppose that P4 = stp A. Then v-domdim A = domdim A. With Lemma 2.26 we
have domdim A > 1. O

Let e be a basic idempotent element in A such that add(eA) = stp A. The algebra eAe is
called an associated self-injective algebra; cf. [13, Section 4]. We give a characterization of

Hetp(proj A) inside H(proj A) using the algebra eAe.
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Lemma 4.30. Let e be a basic idempotent element in A such that add(eA) = stp A and let
F* € K(mod A). Then F* € +K(stp A) if and only if (Fe)* € K(mod eAe) is acyclic.
Suppose that F* € H(projA). Then F* € Hgy(proj A) if and only if (Fe)® € K(modeAe) is

acyclic.

Proof. We use that (Fe)* € K(mod eAe) is acyclic if and only if H*((Fe)*) = 0 for all k € Z.

Since Ae is a projective left A-module, the functor — ®4 Ae is exact. Thus, we have that
HF((Fe)*) ~ H*(F*)e. By assumption, v(eA) ~ eA so that

H*(F*)e ~ Homy (eA, H*(F*)) ~ D Homyu (H*(F*),v(eA)) ~ D Homyu (H*(F"), eA).

Note that Hom, (H*(F*), eA) = 0 if and only if H*(F*) € *(stp A) = +(add(eA)). Further-
more, we have H*(F*) € L(stp A) for all k € Z if and only if we have F* € LKb(stp A) by

Lemma 4.5. O

Example in Chapter 7. We illustrate the associated self-injective algebra and its connection

to the category Hgp(proj A) in Example 7.12 of Section 7.3.

In [14], Fang, Hu and Koenig show that derived equivalences between two algebras restrict
to derived equivalences between their associated self-injective subalgebras, provided the two
given algebras have v-dominant dimension at least one. Their result is based on the following

theorem.

Theorem 4.31. ([14, Theorem 4.3]) Let A and B be derived equivalent k-algebras, both of
v-dominant dimension at least 1. Then any derived equivalence D°(mod A) = Db(mod B)

restricts to an equivalence of triangulated subcategories K®(stp A) = Kb(stp B).

Recall that H(proj A) ~ K’(proj A) ~ D’(mod A), if gldim A < oco. We have the following

corollary for our situation.

Corollary 4.32. Let A and B be derived equivalent k-algebras, both of v-dominant dimension
at least 1. Assume that A and B have finite global dimension.

Then any derived equivalence K°(proj A) — K(proj B) restricts to an equivalence of triangu-

lated subcategories Hey(proj A) — Hsp(proj B).
In particular, Hgp(proj A) = Hp(proj A) is a characteristic subcategory of K°(proj A).
We aim to state a similar result for equivalences H(proj A) — H(proj B) without a restriction

on the global dimension of A. We follow the same strategy used in [14]. As the main tool for

proving the above theorem, they provide the following proposition.
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Proposition 4.33. ([14, Proposition 4.2])

Let Xy = {P* € K'(stp A)|P* ~ va(P*) in D’(mod A)}. Suppose that A has v-dominant

dimension at least 1.

Then Kb(stp A) is the smallest triangulated full subcategory of K®(proj A) that contains 24 and

15 closed under taking direct summands.

Furthermore, we need a way to restrict an equivalence H(proj A) — H(proj B) to bounded
complexes. For this, we adapt the characterization of K°(proj A) inside X ~*(proj A). A complex
X* € K~b(proj A) is an element of K’(proj A) if and only if for all Y* € K~*(proj A) there
exists an N € Z such that Homy(proj 4)(X*,Y*[—n]) =0if n < N.

Lemma 4.34. Let X* € H(proj A).

(1) We have X* € K™ (proj A) if for all Y* € H(proj A) there exists an N € Z such that
HomH(prOj A)(X.7 y* [_n]) =01n<N.

(2) We have X* € K~*(proj A) if for all Y* € H(proj A) there exists an N € Z such that
HomH(prOj A)(Y. [n],X.) =0 zfn < N.

(3) Suppose that X € Kb(stp A). Let Y* € H(proj A). Then there exists an N € Z such that
HomH(PTOJ A) (Y. [TL], X.) =0 and Hom'H(proj A) (X. ,Y* [—n]) =0 Zf n<N.

Proof. Ad (1). It suffices to show, that X* is bounded on the left.

We assume that X* is unbounded on the left. Since X* € H(proj A), there exists an Ny € Z
such that H*(X*) = 0 for n < Ny. Furthermore, there exists an N < Ny such that Ker(d%) is
not projective for n < N. Otherwise the complex X* would be isomorphic to a complex which

is left bounded by removing split direct summands.

Let {Si, ..., S} be a complete set of pairwise non-isomorphic simple A-modules. We write
S = @Iizl S;. Let Y* be the minimal projective resolution of S. Note that Y* is an element of
H(proj A). We show that Homy(proj 4)(X*,Y*[—n]) # 0 for n < N.

Let n < N. We write X := H"(7<,X*) = Ker(d%™) € mod A using that n +1 < N < Nj.
Suppose that f is the composite of the natural projection p : X — X/rad(X) and the natural
embedding X/rad(X) — S. Since H*(X*) = 0 and H*(Y*[-n]) = 0 for k < n, the morphism
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f lifts to a morphism f* of complexes.

X v ——y X1 y X7 y X
X
i = I 1y
/ )
Y*[—n] e —— V! > YO > 0 ;

Assume that f* = 0. By Lemma 2.3.(1), this implies that f factors through the projective
cover P of X/rad(X) = Im(f). Since p is surjective, we obtain a morphism g : P — X.

.
g - l
.
,
_

X P X/ rad(X)

Using that X/rad(X) ~ P/rad(P), we obtain that g is surjective so that X is a direct summand
of P. This is a contradiction to the choice of Ker(ds™') = X as non-projective. Therefore, the

morphism f*: X* — Y*[—n] is non-zero.
Ad (2). We have X* € K~(proj A) if and only if X7 € KT*"(A-proj).
We rename X} as U* via U* := X*, € KMY(A-proj) so that U*[1] shifts the complex to the
left. In contrast, X}[1] is a shift to the right.

U =X!: = U =X — U =X — Ul =X, — -

U[1] = X [-1] : = U =X —U=X - U =X —— -

Since part (1) also holds for left A-modules, it suffices to show that for all V* € H(A-proj)
there exists an N € Z such that we have Homy(aproj) (U*, V*[—n]) = 0 if n < N.
Let V* € H(A-proj) and write V¥ = Y*, € H(A-proj) for a complex Y* € H(projA). By
assumption, we have an N € Z such that the following holds for n < N.

0 = Homyy(a-proj) (Y [1], X*) =~ Homy(a-proj) (X, Y. [n]) = Homyaproj) (U*, V*[—n])
Ad (3). Suppose given X* € K’(stp A) and Y* € H(proj A). Without loss of generality we
may assume that X* =0 for k > 0. Let [ € Z( such that X* =0 for k < —1.

Let Ny € Z such that H*(Y*) = 0 for all n < N;. Using that X~° = 0, Lemma 4.4.(1) implies
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that Homyy(proj 4)(Y*[n], X*) = 0 if n < Ny.

Y*[n] R A S e e S 1 JL LI U (LN (L
X 0 — Xt — Xt 5ol 5 XL X0 0

Let Ny € Z such that H_,,(Y;*) = 0 for n < N,. Using that X* = 0 for k < —[, Lemma 4.4.(1")
implies that Homy(proja)(X*,Y*[-n +1]) = 0 if n < N,. Note that X; € K’(A-inj) since
X* € Kb(stp A).

X 0 — Xt 5 X 5.0 X! » X0 > 0
Y [-n+1l =Yl vy oyt s s yondiel gyl yeetiEL

Let N := min{N;, No—1}. Then Homy(proj.4)(Y*[n], X*) = 0 and Homy(proj 4)(X*,Y*[—n]) =0
ifn<N. O

In [38, Proposition 5.2] Rickard has shown that any standard derived equivalence commutes
with the Nakayama functor. It seems unclear whether the same holds true for an equivalence
between H(proj A) and H(proj B). Therefore, we add a further assumption in contrast to
Theorem 4.31. In case that gldim A < oo, we are in the situation of Theorem 4.31 where the

additional steps of the following theorem are not needed.

Theorem 4.35. Suppose given two finite dimensional k-algebras A and B both with v-dominant
dimension at least 1. Let o : H(proj A) — H(proj B) be a triangulated equivalence such that
there is a natural isomorphism vp(a(X*®)) ~ a(vaX*) for all X € K'(stp A).

Then « restricts to an equivalence K®(stp A) ~ Kb(stp B). Moreover, a restricts to an equiva-
lence between Hp(proj A) = Hgp(proj A) and Hp(proj B) = Hep(proj B).

Proof. Suppose given X* € Kb(stp A). By Lemma 4.34.(3), there is an N € Z such that
we have Homy(proj4)(Y*[n], X*) = 0 and Homyproj4)(X*,Y*[—n]) = 0 for all n < N and
Y* € H(proj A).

Let n < N and Z* € H(proj B). Since « is an equivalence, there exists a Y* € H(proj A) with
a(Y*) = Z*. We have the following.

HOIIlH(proj B)(Z. [’I’L], Oé(X.)) ~ HomH(proj A) (Y. [n], X.) =0
Homy(proj 5y (a(X*), Z°[—n]) ~ Homy(proj 4)(X*,Y*[—n]) = 0.

Hence, by Lemma 4.34.(1,2), we obtain a(X*) € K°(proj B).
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Now, suppose that X* € Z4; cf. Proposition 4.33. By assumption, we have a(X*) =~
a(va(X*)) ~ vp(a(X*)), which implies that a(X*) € Z5. In conclusion, we have shown,
that a(24) C 25. By Proposition 4.33, we therefore obtain a(K’(stp A)) C K’(stp B).

Let 8 be a quasi-inverse of a. Repeating the arguments from above, we similarly obtain
that B(K’(stp B)) C KP(stp A). Together, we can conclude that « induces an equivalence
K(stp A) ~ K’(stp B).

Recall that Hyp(proj A) is the full subcategory of H(proj A) with objects in “K’(stp A). Hence,
a also induces an equivalence Hgp(proj A) =~ Hep(proj B). Since v-domdim A > 1 and
v-domdim B > 1, we have Hg,(proj A) = Hp(projA) and Hep(proj B) = Hp(proj B); cf.
Lemma 4.29. O

4.4 Stable Gorenstein-projective modules

So far, we have discussed triangulated categories that contain £4. On the other hand, mod A
always contains the triangulated category of stable Gorenstein-projective modules. This cat-
egory has a close connection with the homotopy category of totally acylic complexes inside

K(proj A); cf. Definition 1.7. We begin with the definition of Gorenstein-projective modules.

Definition 4.36. An A-module X is said to be Gorenstein-projective if there exists a totally
acyclic complex F* € Kia(proj A) such that HO(7¢q F*) ~ X.

Let Gproj A be the full subcategory of mod A consisting of Gorenstein-projective modules.
Let Gproj A be the full subcategory of mod A consisting of Gorenstein-projective modules.

Note that a projective A-module P is Gorenstein-projective via the complex 0 — P — P — 0.

The following lemma collects some facts about the category of Gorenstein-projective modules
which can be found in [11, Section 2.1]. The first property implies that every short exact

sequence in Gproj A is perfect exact; cf. Lemma 2.23.

Lemma 4.37.
(1) Exty(X,A) =0 for X € Gproj A.
(2) The syzygy functor Q : Gproj A — Gproj A is a self-equivalence of categories.

(3) The category Gproj A is triangulated with suspension Q' and distinguished triangles

1somorphic to those induced by short exact sequences.

Note that Kiac(proj A) is contained in £4. Using this, a Gorenstein-projective module X can

be characterized via its image F in L£4.
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Lemma 4.38. The following are equivalent for X € mod A.

(1) X is Gorenstein-projective.
(2) Fy € Kiac(proj A).

(8) Fxlk] € La for all k € Z.

Proof. Suppose that X is Gorenstein-projective. Assume that X is not projective, otherwise
Fy ~0in L.

By definition, there exists a totally acyclic complex P* € Kyae(proj A) such that HY (7o P*) ~ X.
However, such a complex P* is an element of £. Therefore, we have that 5, ~ P* by Theo-
rem 2.6, since H(1<oP*) ~ X = H(7<oF'y). We obtain that F is totally acyclic.

Recall that HO(7<o Fy) = X. Hence, (2) implies (1). Furthermore, a totally acyclic complex
F* satisfies H*(F*) = 0 and Hy(F) = 0 for all k € Z. Thus, (2) also implies (3).

Now, suppose that F5[k] € L for all k£ € Z. We show that F% is a totally acyclic complex.
Using that £4 := {F* € K(proj A) | HY(F*) = 0, Hxo(FY) = 0}, we obtain the following for
all k € Z.

HY(Fy) = H7 (Fx [k + 1) =

0
Hi((Fx).) = Ho((Fx). [k]) = Ho ((FX[k])") = 0

In conclusion, Fy € Kiae(proj A). O

Example in Chapter 7. In Example 7.8 the totally acyclic complexes in K(proj A) for the

algebra A of Section 7.2 are calculated using the previous lemma.

Remark 4.39. The category K,.(proj A) is the largest subcategory of £4 that is triangulated
as a subcategory of K(proj A).

In fact, a triangulated category is closed under shifts. However, a complex F* in £, with
Fy[k] € L4 for all k € Z is totally acyclic by Lemma 4.38.

We recover that the category of stable Gorenstein-projective modules is equivalent to Kiac(proj A).

See [8, Theorem 4.4.1] or [25, Proposition 7.2] for different approaches.

Lemma 4.40. The equivalence F : mod A — L4 restricts to an equivalence of triangulated

categories
Gproj A = Kiac(proj A).
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Proof. Lemma 4.38 shows that F restricts to an equivalence Gproj A — Kpc(projA). It

remains to show that this is a triangulated functor.

Using Lemma 4.37.(1), we know that every short exact sequence in Gproj A is a perfect exact
sequence by Lemma 2.23. By Proposition 2.18, the functor F maps perfect exact sequences to
distinguished triangles in IC(proj A) and therefore preserves triangles. In particular, a perfect

exact sequence
0—-QX)>P—-X—0

with X € Gproj A and P € proj A corresponds to the following triangle.
F;)( x) > 0— Fy —
Thus, we have a natural isomorphism F§[—1] ~ F, y so that 7 commutes with the shift. O

We note that condition (3) in Lemma 4.38 can be expressed via the existence of perfect exact
sequences with projective middle term. Recall that a stable equivalence mod A — mod B
preserves perfect exact sequences if A and B are of finite representation type and have no
nodes; cf. Definition 3.1 and Corollary 3.20. Furthermore, every stable equivalence induced by
an exact functor preserves perfect exact sequences with projective middle term if the inverse

equivalence is also induced by an exact functor; cf. Proposition 3.2.

Lemma 4.41. Let o : mod A — mod B be a stable equivalence such that o and its quasi-inverse
preserve perfect exact sequences with projective middle term. Suppose given X € mod A and
kelZ.

We have F (k| € L4 if and only if F k] € Lp.

Proof. If Fy[1] € L4, there exists a Y € mod A such that Fy ~ F%[1] in K(proj A). We have a
distinguished triangle Fy, — 0 — Fy — in K(proj A). By Proposition 2.18, the triangle induces
a perfect exact sequence 0 - X — P — Y — 0 with some P € projA. By assumption, we
obtain a perfect exact sequence 0 — a(X) - @ — «a(Y) — 0 with some @ € proj B. By

Proposition 2.18 the sequence induces a distinguished triangle in Lg.
Fa(X) —0— Fa(y) —

We obtain that Fi(x)[1] >~ Fyyy € Lp. Swapping the roles of X and Y shows that F[—1] € L4
implies Fo(x)[—1] € L5 as well. Inductively, we have that F[k] € L4 implies F; v [k] € L5
for all k£ € Z.

Let 5 : mod B — mod A be the quasi-inverse of . The same argument as above yields
Fiaxylk] € Laif Foxlk] € Lp. Since S(a(X)) ~ X in mod A, Lemma 2.4.(1) shows that
FX[k] = F§xp k] € La for k € Z. O
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In the setting of the previous lemma, a stable equivalence restricts to an equivalence between
the stable categories of Gorenstein-projective modules. If o additionally preserves arbitrary

perfect exact sequences, this restriction is a triangulated equivalence.

Theorem 4.42. Let o : mod A — mod B be a stable equivalence such that o and its quasi-

inverse preserve perfect exact sequences. Then « restricts to a triangulated equivalence

Gproj A — Gproj B.

Proof. Let X € GprojA. By Lemma 4.38, we have that Fy[k] € £, for all k£ € Z. Using
Lemma 4.41 and Lemma 4.38 again, we obtain that a(X) € Gproj B. In conclusion, « restricts
to an equivalence

a : Gproj A — Gproj B .
It remains to show that this is a triangulated functor.

By Lemma 4.37.(1) all short exact sequences of Gorenstein-projective modules are perfect
exact, so that a preserves short exact sequences and thus distinguished triangles. We show
that a(Q(X)) ~ Q(a(X)) in Gproj B for all X € Gproj A.

Let 0 — Q(X) - P — X — 0 be a short exact sequence without split summands where P is
the projective cover of X. We know that this sequence lies in Gproj A and therefore must be

a perfect exact sequence. By assumption, we obtain a perfect exact sequence

0= a(X) =P —aX)—=0

in Gproj B with P € proj B. By Proposition 2.18, this induces the following distinguished
triangle.

(e}

F'(Q(X)) —0— F(;(X) —

Thus, we have a natural isomorphism F},qy)) = Fjy[—1]. On the other hand, consider
the short exact sequence 0 — Q(a(X)) - Q@ — a(X) — 0 with @ the projective cover of
a(X) in mod B. As above, this is a perfect exact sequence and therefore induces the following
distinguished triangle.

Foxy = 0= Fox) —

Thus, we also have a natural isomorphism Fc.y( X)[—l] o~ Fé(a( X)) Together, we obtain a natural
isomorphism F&(Q( X)) Fs.)(a( x)) 0 L 4. Finally, this induces the claimed natural isomorphism

a(Q(X)) ~ Q(a(X)) in Gproj B. 0

We have seen that a stable equivalence which preserves perfect exact sequences induces an

equivalence on the level of ICi,.(proj A). It seems unclear, whether such an equivalence induces
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an equivalence on the level of Hp(proj A) or Hep(proj A). However, we will see in Theorem 5.8
that this holds for stable equivalences of Morita type. We close this section with a short

comparison of some triangulated categories connected to mod A.

Remark 4.43. We have a chain of subcategories
K:tac(proj A) g EA g HP(proj A) g Hstp(proj A)

The categories Kiac(proj A), Hp(proj A) and He,(proj A) are triangulated for all finite dimen-
sional algebras. In particular, KCi,.(proj A) is a triangulated subcategory of Hp(proj A). In
contrast to Hp(proj A), we have that Ki,.(proj A) is zero if gldim A < oo.

By a theorem of Beligiannis, the category Kia.(Proj A) is compactly generated. In fact, let I°

be an injective resolution of A, then

Homy(pyo; A)(A[n], F*)

=0
Kiac(Proj A) ~ {F € K(Proj A) ) forn e Z
Homyc(proj 4y (v~ I*[n], F*) =0

where A and v~!'I* are compactly generated in K(ProjA). See [11, Appendix B] for more

details. As an analogue, we have the following isomorphism using Remark 4.12
Hp(proj A) = {F* € H(proj A)| Homyproj 4)(Z[n], F*) for n € Z}

with Z the direct sum of all indecomposable projective modules in v~ P4 C proj A. In partic-
ular, Z is a direct summand of A. Furthermore, Z is compactly generated in C(Proj A) since
Z* € K—b(A-proj); cf. [11, Lemma B.0.3] which uses [17, Theorem 2.4]. However, Hp(proj A)
is not closed under taking direct sums and thus cannot be compactly generated. The same
holds for both H(proj A) and H(Proj A).

Finally, we shortly mention the singularity category Dsy(A) ~ K~*(proj A)/K’(proj A). Recall
that D (A) is a triangulated category as well. If A is self-injective, there exist isomorphisms
Dyy(A) ~ mod A >~ Ly; cf. [36, Theorem 2.1]. Similarly as for ICiae(proj A), we have that Dgg(A)
is zero if gldim A < co. Moreover, if A is a Gorenstein algebra, we have Dyy(A) ~ Gproj 4;
cf. [8, Theorem 4.4.1].

4.5 Self-injective algebras

In this short section, we discuss the case of self-injective algebras. Recall that the category

mod A is triangulated, if A is self-injective.
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Lemma 4.44. Let A be self-injective.

Then L4 is a triangulated subcategory of K(proj A) and F : mod A — L4 is an equivalence of

triangulated categories.

Proof. If A is self-injective, Hom4(—, A) is exact so that we have

H<(F*) =0 < HO(F) =0
H>(FY) = 0 < H>°(F*) = 0.

Together, we obtain that £, = {F* € K(projA) | H¥(F*) = 0, k € Z}. Hence, L4 is closed
under shifts. As another consequence, a morphism f* : F* — G* in L4 is a quasi-isomorphism
and therefore C'(f)* € L4. In conclusion, £, is a triangulated subcategory of K(proj A). It

remains to show that F is triangulated.

Suppose given X € mod A with F;),l(x) € L. Then

= F ) Foti — Fooi — 0

is a projective resolution of 271(X). Therefore, we have that H™! (Tg_l F;Z,l(X)) 2 X so that
F% = Fooi(xy[—1] or equivalently FX[1] = F¢_, ). Hence, 7 commutes with the shift.

If A is self-injective, every short exact sequence is perfect exact. Moreover, every distinguished
triangle in mod A is induced by a short exact sequence. Therefore, Proposition 2.18 shows that

F maps distinguished triangles in mod A to distinguished triangles in L£4. O
We recall the objects of the following full subcategories of K(proj A).

H(proj A) = {F* € K(projA) | 31,7 € Z with H<(F*) = 0, H.,.(FF) = 0}
Hap(proj A) = H(proj A) N+K"(stp A)
Hp(proj 4) = H(proj 4) N K" (Py)
Lo = (F* € Klproj A) | HO(F) = 0, HoolEY) = 0}
Keelproj d) = {F* € K(proj 4) | H(F*) = 0, Hy(F) = 0 for k € Z)

The connection between these categories can be visualized as follows. By Lemma 4.40, the

diagram is commutative.

Kiac(proj A) < s L4 > Hp(proj A) — Hgp(proj A) — H(proj A) — K(proj A)

/] |7

GprojA —— mod A
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Note that Hp(proj A) and Ki..(proj A) are triangulated categories for all finite dimensional
algebras. In general, £4 is not a triangulated category and all inclusions are proper; cf. Exam-

ple 7.9. However, all these categories coincide if and only if A is self-injective.

Theorem 4.45. The following are equivalent for a finite dimensional algebra A.

(1) A is self-injective.
(2) La is a triangulated subcategory of KC(proj A).
(3) La = Hp(projA).
(4) L4 is closed under taking shifts in KC(proj A).

(5) L= Kiac(projA).

If one of the above conditions holds, F : mod A — L4 is an equivalence of triangulated cate-

gories. Furthermore, we have Kiae(proj A) = L4 = Hp(proj A) = Hep(proj A).

Proof. 1t was shown in Lemma 4.44 that condition (2) holds if A is self-injective. The impli-
cation (2) = (3) holds by Theorem 4.11. Since Hp(proj A) is a triangulated subcategory of
K(proj A), condition (3) implies condition (4). Furthermore, we have seen the equivalence of
conditions (4) and (5) in Lemma 4.38.(2,3).

We wverify the implication (5) = (1). An algebra A is self-injective if and only if every finitely
generated module is reflexive; cf. [6, IV. Proposition 3.4]. Let X € mod A. We show that X is
reflexive, that is (X*)* ~ X. We have

X* = (H(1<0F%))" = Ho(r<o F¥") = Hi (121 FY")
since (—)* = Homy(—, A) is left exact and Fy € L.
= S = P — = FY ) —

NS
X*

Using that H(Fy) = 0 since Fy € L4 = Kiac(proj A), we similarly obtain
(X)) = (Hy (71 FY7))" = H (71 Fy) ~ H(reo FY) = X.

In conclusion, all conditions are equivalent. It was shown in Lemma 4.44 that F : mod A — L4
is an equivalence of triangulated categories if A is self-injective. Furthermore, in this case we
have stp A = P4 = proj A so that Hgyp(proj A) = Hp(proj A). O
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Finally, we have the following consequence for the stable Grothendieck group.

Remark 4.46. If A is self-injective, we have the following sequence of isomorphisms.
G5 (A) ~ Go(mod A) =~ Go(L4) = Go(Hp(proj A)) ~ G(A)

The first isomorphism is shown in [40, Proposition 1.1]. The second is induced by the equiva-
lence F : mod A — L4, while the last isomorphism is shown in Theorem 4.16. We have already

seen in Remark 4.18 that G5'(A) and GJ(A) are isomorphic if A is self-injective.



Chapter 5

Stable equivalences of Morita type

Let k be a field. Let A and B be finite dimensional k-algebras without semisimple summands.

In general, stable equivalences fail to preserve many homological properties of finite dimensional
algebras. The situation is better for stable equivalences induced by exact functors between
mod A and mod B. That is, if the equivalence is given by — ® 4 M with an A-B-bimodule
which is projective as left A- and as right B-module. An important class of such equivalences

are stable equivalences of Morita type.

At the beginning of this chapter, we discuss stable equivalences of Morita type in more detail.
In particular, we will see that such equivalences preserve perfect exact sequences. As the main
result of the first section, we show that stable equivalences of Morita type induce equivalences on
the level of L4, Hp(proj A) and Hgp(proj A). These equivalences are given by componentwise

application of — ®4 M.

In the second section, we start with an equivalence £L4 — Lp given by —®4 M for an arbitrary
bimodule M. As we will see, this is enough to induce a stable equivalence of Morita type. This
provides a way to determine if a stable equivalence which is induced by an exact functor is of
Morita type. In the final section, we use this result to give conditions under which an exact
functor that induces an equivalence mod A — mod B is already a stable equivalence of Morita

type. This is done using results of previous chapters about perfect exact sequences.

We recall the definition and collect some properties of stable equivalences of Morita type.

Definition 5.1 (Broué). Let 4Mp and g N4 be bimodules such that 4M, Mg, gN and N, are
projective. We say that M and N induce a stable equivalence of Morita type if

AM®BNA2A@PaHdBN®AMBZA@Q

as bimodules such that 4 P4 and g@Q)p are projective bimodules.

We note two properties of stable equivalences of Morita type with regards to projective modules.

119
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Remark 5.2. (1) Suppose given an A-B-bimodule M such that Mp is a projective B-
module. Then P ®4 Mg is a projective B-module for all P € proj A. In fact, P is a
direct summand of A®" for some n € Z-,. Moreover, we have the following isomorphism
of right B-modules.

AP @4 M ~ M

Together, we obtain that P ®4 M is a direct summand of M®" which is projective as a

right B-module. In conclusion, P ® 4 M € proj B.

(2) Suppose given a projective bimodule 4P4. Then X ®4 P4 is a projective A-module for
all X € mod A. In fact, we have

X®A (AA®kAA) 2X®kA
for all X € mod A. Note that 4P, is a direct summand of (4 A®y A4)®" for some n € Z;.

Since X ®; A is projective in mod A, so is X ®4 P.

The functors given by a stable equivalence of Morita type form an adjoint pair. This result was

first shown in [13, Corollary 3.1] for algebras whose semisimple quotients are separable.

Lemma 5.3. (10, Lemma 4.1]) Suppose sMp and gNa are bimodules that induce a stable
equivalence of Morita type such that M and N do not have any non-zero projective bimodule

as direct summand.

The functor — ®4 M is left and right adjoint to — ®@p N. Furthermore, Hompg(M, B) ~ N as
B-A-bimodules and Hom (N, A) ~ M as A-B-bimodules.

Following [13], we state several consequences of this lemma. We also include the respective

proofs.

Lemma 5.4. Suppose sMp and gN4 are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.
The following holds for X € mod A.

(1) X ®4 M is injective as a B-module if X € inj A.

(2) X @4 M is projective-injective as a B-module if X € Pg.

(8) There exists a natural isomorphism of left B-modules.

(X ®aMp)" ~pN®@y X"
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(4) There exists a natural isomorphism of B-modules.
vp(X ®a Mp) ~va(X) ®a Mp

(5) X ®a M is strongly projective-injective as a B-module if X € stp A.

Proof. Ad (1) and (2). We use that — ®4 M is right adjoint to — ®p N; cf. Lemma 5.3.

If X € mod A is injective, Homp(—, X ®4 M) ~ Homu(— ®p N, X) is an exact functor since
— ®p N is exact. Thus, X ® 4 M € inj B.

If X € proj A, then X ®4 M is a projective B-module since Mg € proj B. Therefore, we have
X ®a M e Pgif X € Py.

Ad (3). Recall that Hompg(M, B) ~ N by Lemma 5.3. We have the following sequence of
natural isomorphisms. For the last isomorphism, we use that N4 is projective and X 4 finitely

generated.

(X ®4 Mp)* = Homp(X ®4 Mg, pBp)
~ Hom (X 4, Homg(aMp, sBp))
~ Hom (X4, pNa)
~ N @4 X"

Ad (4). Recall that Homa(N, A) ~ M by Lemma 5.3. Applying D(—) to part (3) yields the

following sequence of natural isomorphisms.

vp(X ®4 Mp) = Homg (X @4 Mp)*, k)

~ Homy(gN ®4 X", k)
BN, Homy (X*, k))
~ Homu(gNa,va(X))
~ v(X) ®4 Homa(pNa, aA4)
~ (X)) ®a Mp

~ Hom 4

(
(

Ad (5). Let X € stp A. Using part (4), we have that v5(X ®4 Mp) ~ v5(X) ®4 My € proj B
for k € Z. Thus, X ®4 Mp € stp B. O

We are now able to show that a stable equivalence of Morita type preserves perfect exact
sequences.

Lemma 5.5. Suppose sMp and gN 4 are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.
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Ifo—- X Ly %7 50isa perfect exact sequence in mod A, then

0 Xoa M2 yeo, MY 70, M =0

15 a perfect exact sequence in mod B. Similarly, the functor —gN maps perfect exact sequences

i mod B to perfect exact sequences in mod A.

Proof. Let n:0 — X Ly 4% 7 5 0bea perfect exact sequence in mod A. Since — ®4 M is

an exact functor, 0 = X ® 4 M M—) Y @4 M 9—8% Z ®4 M — 0 is a short exact sequence in

mod B. By Lemma 5.4.(3) there exist isomorphisms such that the following diagram commutes.

0 —— (Zoa M) Y (v g, M) VI (X @, M) —— 0

l l [
0 — s N 258 29 s Noa v 2y No, X —— 0

Since N ®4 — is an exact functor and n perfect exact, the lower sequence is exact. This implies

that the upper sequence is exact as well. Consequently,

0 X ML yo, M2 70, M =0

is a perfect exact sequence. O

5.1 Induced equivalences in (proj A)

In this section we aim to show that a stable equivalence of Morita type mod A — mod B induces
equivalences between L4 — L, Hp(proj A) — Hp(proj B) and Hgp(proj A) — Hep(proj B).
The next lemma collects some preliminary results in this direction. For parts (3) and (4), recall
that stp A C Py.

Lemma 5.6. Suppose sMp and gN4 are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

Write s\M ®p Ng ~ A® P as bimodules with 4P, projective. The following holds.
(1) X @4 M €+Pg if X €LPy.
(2) X @4 M € L(stp A) if X € L(stp A).
(8) X ®4 Pa €stpA for all X € mod A.

(4) X ®a M @p N~ X if X € ~(stp A).
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Proof. Ad (1) and (2). For Z € Pg or Z € stp B we have with Lemma 5.3 that
Homp(X ®4 M, Z) ~ Homy (X, Z ®p N) =0

since Z @ N € Py or Z ®@p N € stp A respectively by Lemma 5.4.(2,5).
Ad (3). We follow [16, Lemma 3.1]. With Lemma 5.4.(4), we have

12

v(A)@v(P)~v(A@ P)
v(A®s M ®p N)

(
(
V(A)®a M @ N
(
(

12

12

12

v

A)®s (A P)
v(A) @ v(A) @4 P

12

so that v(P) ~ v(A)®4P. Since v(A) is finitely generated, there exists an n > 0 and a surjection
A®" — py(A). This induces a surjection A®" @4 P — v(A) @4 P with A" @4 P ~ P®". By
Remark 5.2.(2), we have that v(A) ®4 P is projective. Hence, v(P) is a direct summand of
P%" and we obtain that P € stp A.

Let X € mod A. It remains to show that X ®4 P4 € stp A. As above, there exists an n and a
surjection A®" — X. By applying — ® 4 P, we obtain P¥" — X ®4 P4. Thus, X ®4 P, is a
direct summand of P¥" € stp A; cf. Remark 5.2.(2).

Ad (4). We have
XR@AaM@gN~X®4(AsD Ps) 2 X & (X R4 Pa).

By part (3) we know that X ®4 P € stp A. On the other hand, we have X ®4 M € *(stp B)
by part (2). Similarly, we also have that Y ®p N € L(stp A) for all Y € *(stp B). Together we
obtain X ®4 M @ N € +(stp A). Thus, X ®4 P4 must be zero and X @4 M @y N ~ X. O

The next lemma will be used to show that a stable equivalence of Morita type induces functors

L4 — Lp and H(proj A) — H(proj B).

Lemma 5.7. Suppose sMp and gN, are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

The following holds for a complex F* € K(proj A) and all k € Z.
(1) H¥(F* @4 M) =0 if H*(F*) = 0.

(2) Hy((F* @4 M)*) =0 if Hi(F7) = 0.
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Proof. Using that — ®4 M is an exact functor, we have H*(F* @4 M) ~ H*(F*) @4 M.
Using that N ®4 — is an exact functor, we have with Lemma 5.4.(3) that

Now, the result follows since — ®4 M and N ®p — are additive functors. O

We have already seen in Theorem 4.42 that every stable equivalence that preserves perfect
exact sequences induces an equivalence on the level of Ki.c(proj A). In particular, this holds
for stable equivalences of Morita type. Now, we can show that a stable equivalence of Morita

type induces equivalences on the level of some of the other categories discussed in Chapter 4.

Theorem 5.8. Suppose 4Mp and gN 4 are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

(1) Applying — @4 M componentwise induces an equivalence of categories L — Lp.

If A and B are self-injective, this is an equivalence of triangulated categories.

(2) Applying — @4 M componentwise induces an equivalence of triangulated categories
Hp(proj A) — Hp(proj B).
(8) Applying — @4 M componentwise induces an equivalence of triangulated categories

Hstp(proj A) — Hyp(proj B).

Proof. Ad (1). By Remark 5.2.(1), — ®4 M induces a functor K(proj A) — K(projB) by
componentwise application. Now, Lemma 5.7 shows that —® 4 M induces a well-defined functor

L4 — Lp. Consider the following diagram.

mod A LNAM> mod B

| |

—-®aM
EA ? EB

Recall that the quasi-inverse of F is given by H%(7<o(—)); cf. Theorem 2.6. Let F* € La.
Since — ®4 M is exact, we have H° (1<o (F* ®4 M))) 2 H? (1<oF*) ® 4 M so that the diagram
commutes. This shows that — ® 4 M induces an equivalence of categories L4 — Lp.

Furthermore, if A and B are self-injective, the equivalence F is triangulated by Lemma 4.44.
Thus, this diagram shows that the functor — ® 4 M induces an equivalence of triangulated

categories L4 — Lp.
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Ad (2) and (3). By Lemma 5.7, the functor —® 4 M induces a functor H(proj A) — H(proj B).

Since — ®4 M is applied componentwise, this is a triangulated functor.

Suppose given F* € Hp(proj A). We verify that F* ®4 M € *K°(Pg). By Lemma 4.5 it suffices
to show that H¥(F* ®4 M) ~ H*(F*) ®4 M is an element of 1Py for k € Z. However, this
holds by Lemma 5.6.(1) since H*(F*) € P4 by Lemma 4.5. In conclusion, — ®4 M induces a
functor Hp(proj A) — Hp(proj B).

Similarly, —®4 M induces a functor Hg,(proj A) — Hep(proj B). It remains to show that these

are equivalences of triangulated categories. Recall that Hp(proj A) is contained in Hgp, (proj A).

Let F* € Hgp(projA) with r € Z such that H.,.(F)) = 0. We verify by induction on
N :=|{j € Z.,.|H/(F"*) # 0}| that we have a natural isomorphism F* ®4 M ®p N ~ F*.
Since F* € H(proj A), we know that H*(F"*) is left bounded and therefore N < co. We write
G :=F @y M®gN.

Let N = 0. Then F*[r] € L4 and the assertion holds by part (1) since — ®4 M commutes with
the shift.

Let N > 0 and k € Z., minimal such that H*(F*) # 0. By Lemma 4.6, we have a distinguished
triangle
Pl—kl > F —C —

with P* a projective resolution of H*(F*). Moreover, H/(C*) = 0 for j < k and 75,C* = 7, F".

Applying — ®4 M ®p N to this triangle, we obtain a new distinguished triangle.
Pl-kl@aM®g N -G - C*" s M@ N —

By Lemma 5.6.(4), we have H*(F*) ®4 M ®g N ~ HF(F*) since H*(F*) € L(stpA) by
Lemma 4.5. Hence, we have a natural isomorphism P* ®4 M ®p N ~ P* in K(proj A) and

obtain the following distinguished triangle.
Pkl -G - C°" @4 MR N —

By induction, we can assume that there is a natural isomorphism C* ®4 M ®g N ~ C*. This

induces another distinguished triangle.

P*[—K] : CT* > C° :
L]
P*—k] > I > C° >

The induced morphism now yields a natural isomorphism G* = F* @4 M ®g N ~ F*. O
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Note that in general, a stable equivalence of Morita type does not induce an equivalence between
H(proj A) and H(proj B). Similarly, it does not induce an equivalence between IC(proj A) and
K(proj B). This is discussed at the end of Example 7.6.

5.2 Functors in K(proj A) inducing stable equivalences

In Theorem 5.8.(1) we have seen that a stable equivalence of Morita type induces an equivalence
on the level of £ given by tensoring with a bimodule M. We aim to show that any equivalence
—®aM : L4 — Lp with an arbitrary bimodule g M 4 induces a stable equivalence of Morita type
mod A — mod B. The proof is based on the following theorem by Dugas and Martinez-Villa.

Theorem 5.9. ([13, Theorem 2.9]) Let A and B be finite dimensional k-algebras whose
semisimple quotients are separable. Suppose that 4Mp is projective as left A- and as right

B-module such that — ® 4 M induces a stable equivalence mod A — mod B.

If N4 := Homu (M, A) is projective over B, then M and N induce a stable equivalence of
Morita type between A and B.

Remark 5.10. Suppose given a projective bimodule 4P4. Then X ®4 P4 is a projective
A-module for all X € mod A; cf. Remark 5.2.(2). The converse does not hold in general.

However, it does hold, if we assume that the semisimple quotients of A and B are separable;
cf. [5, Corollary 3.1] and also [13, Theorem 2.8|. This separability assumption is satisfied in the
following cases among others.

e k is a perfect field.

e A and B are given by quivers with relations.

We need a slightly different version of the above theorem, where g N4 = Homp (M, B) instead
OfBNA = HOIIIA<M, A)

Corollary 5.11. Let A and B be finite dimensional k-algebras whose semisimple quotients are
separable. Suppose that A Mpg is projective as left A- and as right B-module such that — ®4 M

induces a stable equivalence mod A — mod B.

If N4 := Homp(M, B) is projective over A, then M and N induce a stable equivalence of
Morita type between A and B.

Proof. Using that Mp is projective, we have the following sequence of natural isomorphisms

for all Y € mod B.

Homp(X ®4 M,Yg) ~ Homa(X 4, Homp(Mp,Yp)a) =~ Homa(X4,Y ®p Hompg(M, B) 4)
~ HOIIlA<XA,Y XB NA>
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Thus, —®4 M is left adjoint to —®p N. By a result of Auslander and Kleiner in [3, Proposition
1.1], we obtain that —®4 M is left adjoint to — ®p N in mod A since —®4 M and —®p N take

projective modules to projective modules. Hence, —® N : mod B — mod A is the quasi-inverse

of —®4 M : mod A — mod B. In particular, — ® 4 N induces a stable equivalence.

We set gMy := N4 and 4Ng := Hompg(N, B). Then ANp ~ +Mp as bimodules and M and
N are are projective on both sides. The result follows by applying Theorem 5.9 to M and N
while switching the role of A and B. 0

Note that gIN4 is projective over A if and only if gN ®4 — is an exact functor. We aim to
use that a complex F* € £, can be thought of as a projective resolution F'<° in mod A and
a projective resolution FZ_; in A-mod. Additionally, we need an analogue of Lemma 5.4.(3)

under slightly different assumptions.

Lemma 5.12. Suppose that M is an A-B-bimodule. Let pN4 := Hompg(4Mp, B).

For every P € proj A there exists a natural isomorphism of left B-modules
(P®a Mp)" ~pN @4 P".
Proof. We have the following natural isomorphism of left B-modules.

(P ®4 Mp)* =Homp(P ®4 Mg, 5Bp)
~ Homy (P, Homp(Mp, pBg))
= HOHIA(PA, BNA)

We show hat Hom (P4, gpNa) ~ gN ®4 P* using that P, is projective and that N4 is finitely
generated.

Since pB ®; A4 is projective as a right A-module and since P, is finitely generated, we have

the following natural isomorphism of left B-modules.
Homu (P4, B ®) Aa) ~ pB @i Aa @4 P*

Moreover, Homa(Pa, pB @ AY") ~ pB @ A®" @4 P* for all n € Z,.

Let Ngo = {(g1,...,9n) be a minimal generating system of N as a right A-module with n € Z;.

Consider the following surjective map.
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Note that ¢ is a morphism of B-A-bimodules, so that Ker(y) is also a B-A-bimodule. In
particular, Ker(y) is an A-submodule of B ®; A®™. Since A is finite dimensional, Ker(yp) is
finitely generated as a right A-module. Therefore, there exists an m € Z-; and a surjective

morphism B ®; A¥™ — Ker(p) as above.

We obtain a presentation B ®; A®™ — B ®; A" — gN4 — 0 of N via bimodules. Consider
the following commutative diagram with exact rows. For the upper row we have used that P4

is projective.

Homa (P, B ®y A®™) —— Homu (P, B ®) A®") —— Homu(P,N) —— 0

L L

B®, A" @4 P* ——— B A" @y P* —— N@u P* —— 0

By the above, the two morphisms on the left are isomorphisms. Therefore, we obtain a natural

isomorphism of left B-modules Hom4 (P4, pNa) >~ gN ®4 P*. O

We are now ready to state the main result of this section.

Theorem 5.13. Let A and B be finite dimensional k-algebras whose semisimple quotients are

separable.

Suppose given a bimodule AMp such that applying — @4 M componentwise induces an equiv-
alence L4 = Lg. Let gN4 = Hompg(M, B). Then M and N induce a stable equivalence of
Morita type between A and B.

Proof. We show that M is projective as left A- and as right B-module and we show that N
is projective as left B- and right A-module. Since — ®4 M maps projective A-modules to

projective B-modules, we have that M & proj B. Moreover, this means that N € B-proj.

Let X € mod A. Suppose given a projective resolution P* € KC(proj A) of X. Then 7 Fy ~ P*
in K(proj A). Using that — ®4 M is a right exact functor with image in Lp, we obtain that
FYy ®a M ~ Fgy - Hence, P* @4 M ~ 7<o (Fy ®a M) ~ 1< Fx g, is a projective resolution
of X ®4 M. Thus, we have Tor:(X, M) ~ H™*(P* @4 M) = 0 for all 4 > 1. This implies that

M is projective as a left A-module.

Let Y be a left A-module. Suppose given a projective resolution @* of Y in K(A-proj). There
exists an X € mod A such that Tr X =Y. Then 7= Fy" ~ @ in K(A-proj). By Lemma 5.12

we have that 75 (N ®4 FY") ~ 75_1(Fy ®4 M)* as complexes.

e S N@uFf — s N@uFf —— s N@ A F*, —— N, Tr(X) —— 0

L I L

S (Fl@a M) —— (FO®u M) —— (F @4 M)* —— Tr(X ®4 M) — 0

2
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Since Fy ®4 M € Lp, we have that 7-_1(F% ®4 M)* is a projective resolution of Tr(X ® M).
Hence

N ®A Q. ~ 7>,1<N ®A F;(’*> ~ 7'2,1(F).( ®A M)*
is a projective resolution of N ®4 Tr(X). Thus, we have Tor (N, Tr(X)) ~ H/ (N ®4 Q*) =
for ¢ > 0. This implies that N is projective as a right A-module.

Since the functor — ®4 M induces an equivalence £4 — Lp and is exact, this also induces

an equivalence mod A — mod B. Now, Corollary 5.11 shows that M and N induce a stable

equivalence of Morita type between A and B. 0

The above result can be useful to check if a stable equivalence induced by an exact func-
tor — ®4 M is a stable equivalence of Morita type. More precisely, one needs to check if
Hk((F‘ R4 M)*) =0 for F* € L, and k£ > 0. We also state the following consequence which
can be used in a similar way. Recall that if M and Hompg(M, B) do not have any non-zero
projective bimodule as direct summand and if they induce a stable equivalence of Morita type,
then vp(X ®4 M) ~ va(X) ®4 M for every X € mod A; cf. Lemma 5.4.(4).

Corollary 5.14. Let A and B be finite dimensional k-algebras whose semisimple quotients are
separable. Let AMp be a bimodule which is projective as left A- and as right B-module such
that — ® 4 M induces a stable equivalence mod A — mod B.

Then M and Homp(M, B) induce a stable equivalence of Morita type between A and B if one

of the following equivalent conditions holds.

(1) There exist natural isomorphisms vg(P ®4 M) =~ v4(P) @4 M of right B-modules for
every P € proj A.

(2) There exists a natural isomorphism M @ DB ~ DA ®4 M of right B-modules.

Proof. Suppose that condition (1) holds. Let F* € L£4. Note that — ®4 M is exact since 4 M

is projective. By assumption, we have the following for k& > 0.

Hy((F" @4 M)*) =0
& k(uB(F M)) =0
& k(VA(F') ) =0
s HF(vA(F) ® =0
& Hy(F))®a M =0

The last equation holds, since F* € L4. As a result, we have F* @4 M € L and — ®,4 M
induces an equivalence L4 — Lp. By Theorem 5.13, we obtain that M and Homg(M, B)

induce a stable equivalence of Morita type between the algebras A and B.
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It remains to show the equivalence of (1) and (2). We have the following natural isomorphisms

of right B-modules.

VA(A) Xa M ~ DHOHIA(A,A) ~ DA XA M
D(M ®p DB) = Homy (M ®p DB, k) ~ Homg(M, Homy (DB, k)) ~ Homg(M, B) = M},

Using the above, we see that condition (1) implies condition (2) by letting P = A.
DA Xa M ~ VA(A) ®AM >~ VB(A Xa M) >~ VB<M) ~ M®B DB.
Since every projective A-module is a direct summand of A®" for some n € Z, this also shows

that (2) implies (1). O

5.3 Stable equivalences induced by exact functors

Suppose that g M 4 is a bimodule which is projective as left A- and as right B-module such that

— ® M induces a stable equivalence mod A — mod B.

For self-injective algebras, Rickard has shown in [39, Theorem 3.2] that such a functor is iso-
morphic to a stable equivalence of Morita type. Dugas and Martinez-Villa provide the following
generalization for arbitrary algebras which satisfy the separability condition. A stable equiva-
lence that is induced by an exact functor — ®4 M is of Morita type if and only if Hom4 (M, A)
is projective on both sides. We have already made use of this result in the previous section; cf.
Theorem 5.9.

We aim to give other sufficient conditions for —® 4 M to be a stable equivalence of Morita type.
In order to use our previous results, we will need to assume that — ® 4 M preserves perfect
exact sequences with projective middle term. Furthermore, we will assume that A has positive
dominant dimension in order to ensure that the cohomology of a complex in £ vanishes under
the functor (—)*.

In order to use Theorem 5.13, we show that —® 4 M induces an equivalence on L. Since —® 4 M
is exact, it remains to check that Hg((F* ®4 M)*) = 0 vanishes for F* € £ in non-negative
degrees. The following theorem by Yoshino provides a way to relate Hy(F)) with (HF(F*))*
and Extz(Cok(d’}), A). We give a modified version of the proof adapted to our notation.

Theorem 5.15. ([44, Theorem 2.3]) Suppose given F* € K(proj A) and M € mod A.

For all k € Z there exists an exact sequence

0 — Extly ( Cok(d}), M) — H¥ Hom(F", M)) — Homu (H*(F*), M) — Ext% ( Cok(d}), M).
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Proof. Let k € Z. Note that H*(F*) = Kerd*/ Im d*~! and Cokd*~ ! = F*/Imd*~!. Applying

Homy(—, M) to the short exact sequence
0 — H¥F*) = Cokd* ' & Imd* — 0,

we obtain the following exact sequence.

0 — Hom(Im d*, M) ™, Hom 4(Cok d*~!, M) — Hom(H*(F*), M) — Ext!(Im d*, M)

Since F**1 is projective, the short exact sequence 0 — Imd* — F¥! — Cokd* — 0 yields
that Ext'(Imd*, M) ~ Ext?(Cok d*, M). Thus, we have an exact sequence

0 — Cok((p, M)) — Hom(H"(F*), M) — Ext*(Cok d", M).
It remains to show the existence of a short exact sequence
0 — Ext} (Cok d”, M) — H*(Hom(F*, M)) — Cok((p, M)) — 0.
Applying Hom(—, M) to the exact sequence F*~1 S Pk Cokdit — 0, we obtain the

following exact sequence.

k—1
0 — Hom(Cok d*~!, M) — Hom(F*, M) ‘L, Hom 4 (FF1, M)
Hence, we have an isomorphism \ : Ker(d*~!, M) = Hom 4 (Cok d*~*, M).

Furthermore, the short exact sequence 0 — Im d* 2y R Cokd® — 0 gives rise to the exact
sequence

Homa (F*1, M) UM Hom (Im d*, M) — Ext!(Cok d*, M) — 0,
using that F**1 is projective. Moreover, since d* factors through Im d* via i, we obtain that
(d*, M) factors through (i, M).

k1 (d*, M) k
Homu (F**', M) —— Homu(F"*, M)

Jian /

Hom 4 (Im d*, M)

Therefore, we have Im((i, M)) = Im((d*, M)) which yields the following short exact sequence,

induced from the sequence above.

0 — Im((d*, M)) — Hom(Imd*, M) — Ext'(Cokd", M) — 0
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In conclusion, we constructed the following commutative diagram with exact rows and columns.

0 > 0 > 0 » Ext!(Cokd*, M)

~ 2 H

0 ——— Im((d*, M)) ———— Hom (Imd¥, M) —— Ext'(Cokd*, M) — 0

(p,M) l
0 —— Ker((d*',M)) —2— Hom(Cokd*~', M) > 0 > 0
H¥ Homy (F*, M)) —— Cok((p, M)) > 0 > 0
The snake lemma now provides the desired short exact sequence.
0 — Ext} (Cok d”, M) — H*(Hom(F*, M)) — Cok((p, M)) — 0 O

Recall that (H*(F*))* = 0 for F* € L4 and k € Z if domdim A > 1, as we have seen in
Remark 4.13. By Lemma 2.24, the vanishing of S* for a simple module S is invariant under

stable equivalences that preserve perfect exact sequences with projective middle term.

Lemma 5.16. Let Y € mod A such that every short exact sequence 0 — X — Y’ — S — 0

with Y' a submodule of Y and S a simple A-module is a perfect exact sequence.

Then Y* = 0 if and only if S* = 0 for all composition factors S of Y.

Proof. We proceed by induction on the length of Y. There is nothing to show for I[(Y) =1 so

we assume [(Y) > 1. There exists a short exact sequence
0=-X—=Y =50

with S a simple A-module and [(X) < [(Y'). By assumption, this sequence is perfect exact.
This implies that
0=>5S" =Y " - X"—0

is a short exact sequence. Thus Y* = 0 if and only if X* = 0 and S* = 0. Since X is a

submodule of Y, we are done by induction. 0

Recall that a complex F* in L4 satisfies H¥*(F*) € 1P, for all k € Z. If domdim A > 1, the
assumptions of the lemma above hold for the cohomology of F* by Lemma 2.12. We also have
seen that an exact functor — ®4 M preserves perfect exact sequences with projective middle
term if and only if Ext'(Z, A) = 0 implies Exti(Z ®4 M, B) = 0 for all Z € mod 4; cf.

Proposition 3.2.(1). We are now ready to prove the main result of this section.
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Proposition 5.17. Let A and B be finite dimensional k-algebras whose semisimple quotients

are separable. Assume that A and B have dominant dimension at least 1.

Suppose given a bimodule 4 Mp which is projective as left A- and as right B-module such that

— ®a M induces a stable equivalence mod A — mod B. Assume furthermore that the following

conditions hold.

(1) The stable equivalence —® 4 M and its quasi-inverse preserve perfect exact sequences with

projective middle term.

(2) For all simple A-modules S whose injective hull is not projective, the image S @4 M is a

simple B-module.
Then M and Hompg(M, B) induce a stable equivalence of Morita type between A and B.

Proof. Suppose given F* € L,4. Using that — ® 4 M is an exact functor, it remains to show
that Hy((F* ®4 M)*) =0 for £ > 0. In this case, the assertion follows from Theorem 5.13. By
Theorem 5.15, the vanishing of Hy((F* ®4 M)*) is implied by Exty(Cok(d}g,,), B) = 0 and
HF(F* @4 M)*=0. We fixa k > 0.

We show that Exty(Cok(dg,,), B) = 0. Since F* € L4, we have Hy(F) = 0. The exact
sequence in Theorem 5.15 now implies that Ext!, (Cok(dk), A) = 0. By Proposition 3.2.(1) and
assumption (1), we obtain that Exty(Cok(d%) ® 4 M, B) = 0. Using that — ®4 M is exact, we
additionally have that

Cok(d}) ®4 M ~ Cok(dy @4 M) = Cok(dyg)-

This results in Exty(Cok(dfg,,), B) = 0.

We show that H*(F* ®4 M)* = 0. By Lemma 4.5, we have H*(F*) € 2P4. In particular, we
have H*(F*)* = 0 since domdim A > 1. It suffices to show the following claim.

Claim. Let X € mod A with X €+P4. Then (X ®4 M)* = 0.

We prove the claim by induction on the length [ := I(X) of X. Since — ®4 M is exact, we
have | = [(X) = (X ®4 M). Note that we have X* = 0 since domdim A > 1 by assumption.
Moreover, the assumptions of Lemma 5.16 are satisfied by Lemma 2.12. In particular, we have
S* = 0 for all composition factors S of X. Furthermore, S ®4 M is a simple B-module by
assumption (2) since v4(S) = 0 implies v4(FQ) € Pa; cf. Lemma 2.26.

Let [ = 1 so that X and X ®4 M are simple modules. Thus, (X ®4 M)* = 0 if and only if
X* =0 by Lemma 2.24.(4,5) since — ®4 M preserves perfect exact sequences with projective

middle term by assumption (1). We have seen above, that S* = 0 for all composition factors S
of X.
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Let [ > 1. Suppose given a composition factor S of X together with a short exact sequence
0=-U—=X—=>5—0.

By Lemma 2.12, we have U* = 0 and this is a perfect exact sequence. Using that [(U) < [, we

can assume that (U ®4 M)* = 0 by induction. Thus, the induced short exact sequence
0=2URM—>XRQuM—>SR4M—0

is perfect exact in mod B. In particular, applying (—)*, we obtain a short exact sequence in
B-mod with (U ®4 M)* = 0.

0—)(U®AM)*—>(X®AM)*—>(S®AM)*—>0

As in the case [ = 1, we also have (S ®4 M)* = 0. This shows that (X @4 M)* = 0. O

Let S be a simple module whose injective hull is not projective. For algebras without nodes, a
stable equivalence maps S up to projective direct summands to a simple module. This follows
from a result by Martinez-Villa in [33, Proposition 2.4]. We slightly adapt his proof to show

the following analogue for stable equivalences that are induced by an exact functor.

Lemma 5.18. Let s4Mpg be a bimodule that is projective as left A- and as right B-module such

that — ®4 M induces a stable equivalence mod A — mod B. Suppose that the inverse stable

equivalence is also induced by an exact functor.

Let S be a non-projective simple A-module with injective hull I such that I is not projective.
We have S @ 4 M ~ 58" & P such that S’ is a simple B-module and P € proj B.

Proof. The stable equivalence —® 4 M induces a one-to-one correspondence between the isomor-
phism classes of indecomposable non-projective modules in mod A and in mod B. We denote
this correspondence by «'. Let 7w : I — I/S be the natural projection, which is an irreducible
morphism. Since [ is not projective, we know that = # 0 in mod A. By [6, Lemma X.1.2], we
obtain that the morphism o/(7) : o/(I) — o/(I/S) which is induced by 7 ® M is irreducible.

Using that the stable equivalence and its quasi-inverse are induced by an exact functor, /(1)
is an indecomposable injective and non-projective B-module; cf. [27, Lemma 3.5]. Thus,
S’ :=soc(c/(I)) is a simple B-module. We have S" C Ker(a/(m)) since 7 ® M is not a stable

isomorphism. This induces a morphism

f:a(1))S" — ' (1/9S)
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such that 7’ f = o/(m) with 7’ the natural projection 7’ : o/(I) — «/(1)/S’. However, o/ ()
is irreducible and thus f must be a split epimorphism. Now, consider the natural projection

' a/(I) — o/(I)/S’. Let B’ be the inverse of the correspondence . As above, we obtain that
fro1)8 = B (1)/5")

is a split epimorphism. As a consequence, o’ (1/S) is a direct summand of «/(I)/S’. Together
with the split epimorphism f, this results in o/(1)/S" ~ o/(I/95).

Write I @4 M ~o/(I) @ P and (I/S) ®4 M ~o/(I/S) ® Q with P, Q € proj B. Consider the
following commutative diagram with C' the cokernel of the induced morphism S" — S ®4 M.

0 , S y o/ (1) —— o/(I/S) ——— 0

l | l

0 — SOUM — @M —— (I/S)@s M —— 0

| | |

0 y C > P > > 0

Since —®4 M is exact and o/ (I/5) ~ o/(1)/S’, all rows are short exact sequences. In particular,
the bottom row splits since () is projective. Thus, C' is projective as well and we obtain
S@uaM~5aC. O

We summarize the results of the last two sections and include situations in which the assump-

tions are satisfied.

Theorem 5.19. Let A and B be finite dimensional k-algebras whose semisimple quotients are
separable. Suppose given a bimodule 4Mp which is projective as left A- and as right B-module
such that — ® 4 M induces a stable equivalence mod A — mod B. If one of the following
conditions holds, M and Hompg(M, B) induce a stable equivalence of Morita type between A
and B.

(1) The functor — @4 M induces an equivalence L4 — Lp.

(73) The homology Hy((F* ®4 M)*) vanishes for F* € L4 and k > 0.
(1ii) There exist natural isomorphisms vg(P @4 M) ~ v4(P) ®4 M for all P € proj A.
(iv) There ezists a natural isomorphism M ®p DB ~ DA ®4 M of right B-modules.

(v) The algebras A and B have no nodes. At least one of A or B has dominant dimension
at least 1 and finite representation type. Moreover, for all simple A-modules S whose

injective hull is not projective, the image S ® 4 M is an indecomposable B-module.
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(vi) The algebras A and B have no nodes. At least one of A or B is a Nakayama algebra.
Moreover, for all simple A-modules S whose injective hull is not projective, the image

S ®a4 M is an indecomposable B-module.

(vii) The algebras A and B have dominant dimension at least 1. There is a bimodule gL
which is projective as left B- and right A-module and which induces the inverse stable
equivalence. Moreover, for all simple A-modules S whose injective hull is not projective,

the image S ® 4 M s an indecomposable B-module.

Proof. 1f condition (i) holds, we have seen in Theorem 5.13 that M and Hompg(M, B) induce a
stable equivalence of Morita type between A and B. Let F* € L4. Since — ®4 M is an exact
functor, we know that H*(F* ®4 M) = 0 for k < —1. Thus, condition (ii) implies condition (i).
By Corollary 5.14, condition (iii) and (iv) also imply condition (i). The last three conditions

(v), (vi) and (vii) are a consequence of Proposition 5.17 using the following additional results.

Since — ®4 M : mod A — mod B is a stable equivalence, A is of finite representation type
if and only if B is of finite representation type. Moreover, by [33, Theorem 2.3], a preserves
the dominant dimension if A and B have no nodes. Note that a Nakayama algebra is of finite
representation type and has dominant dimension at least 1. In (v) and (vi) we now use that a
stable equivalence between algebras without nodes and of finite representation type preserves
perfect exact sequences by Corollary 3.20. In the setting of part (vii), perfect exact sequences
with projective middle term are preserved by Proposition 3.2. Finally, for a simple A-module
S, we have that S ®4 M is isomorphic to a direct sum of a simple module and a projective
module by [33, Proposition 2.4] in the setting of part (v) and (vi) and by Lemma 5.18 in the
setting of part (vii). If S ®4 M is indecomposable, S ® 4 M must be isomorphic to a simple
B-module. Therefore, both assumptions of Proposition 5.17 are satisfied if condition (v), (vi)

or (vii) holds. O

Remark 5.20. Suppose that 4Mp is a bimodule such that — ® 4 M induces an equivalence
L4 — Lp as in part (i) of the previous theorem. Let S be a simple A-module with S* = 0.
If domdim A > 1, this holds for simple A-modules whose injective hull is not projective. Then
F$" = Fy € L4 is a projective resolution of S = H%(7¢o F§); cf. Lemma 2.24. Thus,
F;®a M € Lp is a projective resolution of S ®4 M. In particular, (S ®4 M)* = 0 by
Lemma 2.24 and we obtain that S ® M has no projective direct summand. Thus, S ®4 M is
indecomposable.

Suppose 4 Mp and gN,4 are bimodules that induce a stable equivalence of Morita type. If 4Mp

and gN,4 are indecomposable as bimodules, we even have that S ® M is indecomposable for all
simple A-modules S; cf. [23, Lemma 4.4].

It seems unclear whether the assumption in the previous theorem on the image S ®4 M of a

simple A-module can be dropped if we assume that 4Mp is an indecomposable bimodule.
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Example in Chapter 7. The algebras A and B in Section 7.1 are stably equivalent of Morita
type. In Example 7.6, we give a bimodule that induces a stable equivalence. Using the results

of this chapter, we verify that this is a stable equivalence of Morita type.






Chapter §)

Stable equivalences with nodes

Let k be a field. Let A =kQ/I and B = kQ / I be finite dimensional quiver algebras given by
quivers Q and @ and by admissible ideals I and I respectively. We assume that A and B have

no semisimple summands.

Starting with a finite dimensional algebra B with nodes, Martinez-Villa constructed an algebra
A without nodes so that A is stably equivalent to B; cf. [31, Theorem 2.10]. More generally,
he considered algebras which are stably equivalent and which can be obtained from each other

by either deleting or inserting a node. See also [34].

Inserting a node can be described with the following process. Let ey, ..., e,,u,v be a complete
set of primitive idempotents in A. We say that B is obtained from A by gluing the primitive
idempotents v and v if B is generated by eq,...,e,,u + v and all arrows in A. This induces
a radical embedding f : B — A, that is, an injective algebra monomorphism f : B < A with
rad(Bf) = rad(A). Now, the simple B-module corresponding to u + v is a node. Here, we use

the following characterization of a node.

Lemma 6.1. ([31, Lemma 1])

Let S be a simple A-module with projective cover P. The following are equivalent.

(1) S is either injective or a node.

(2) For all non-isomorphisms f : P, — P and g : P — P, with P, and P, indecomposable

projective A-modules, we have f g = 0.

(3) S is not a composition factor of rad(FPy)/soc(Py) for any indecomposable projective A-

module Fy.

Let B be an algebra that is obtained from A by a finite number of steps of gluing a simple
projective vertex and a simple injective vertex. In [22], Koenig and Liu used a different approach
than Martinez-Villa to construct bimodules that induce a stable equivalences between A and
B in this setting. We aim to give an explicit description of all algebras that can be obtained in

this way. The following is an excerpt of [22, Theorem 4.12].

139
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Theorem 6.2 (Koenig, Liu). Let A =kQ/I and B = k:@/f be two finite dimensional algebras
such that there is a radical embedding f : B — A. Consider the following conditions.

(1) A and B are stably equivalent.

(2) B is obtained from A by a finite number of steps of gluing a simple projective vertex and

a stmple injective vertex.

(3) There exists a pair of bimodules which induce inverse stable equivalences between mod A
and mod B.

Then (2) implies (3) and thus also implies (1). Under the assumption of the Auslander-Reiten
conjecture, all three conditions are equivalent. In particular, if A or B has finite representation

type, then all three conditions are equivalent.

Recall that the Auslander-Reiten conjecture states that two stably equivalent finite dimensional
algebras have the same number of non-isomorphic non-projective simple modules; cf. [6, Con-
jecture 5, page 409]. The Auslander-Reiten conjecture was proven for algebras of finite repre-

sentation type by Martinez-Villa in [32].

An extended example of the constructions in the next two sections can be found in Example 7.16.

Throughout this chapter, we use the following notation.

We denote the number of isomorphism classes of simple A modules by s and the number of
isomorphism classes of simple B modules by ¢t. Let {Py,... P} and {Q1,...Q;} be a complete
set of non-isomorphic indecomposable projective A-modules and B-modules respectively. For
i € [1, s], we denote the simple top of P; by S;. For i € [1,t], we denote the simple top of @Q; by
T;. Thus, {Si,...5} and {T1,...T;} are a complete set of non-isomorphic simple A-modules
and B-modules respectively.

We write [n,m] = {z € Z|n < z < m} for n, m € Z. Given n,m € Z, we write 6,,,, =1 € k
if m =n and d,,, =0 € kif m # n. For n € Z>; and i € [1,n| we denote by e; the n x n

matrices having entry 1 at position (7,7) and entry 0 elsewhere.

Recall that we write morphisms between direct sums of modules as matrices. We extend the
usual notation for matrix algebras as follows. In particular, we will allow multiplication of
morphisms that are not composable and thus we sometimes have to add a direct summand
isomorphic to k£ on the diagonal. Let n € Z>; and suppose given A-modules X; and Y; for

i € [1,n]. For 4,7 € [1,n] let V; ; be the k-vector space defined as follows.

Homa(X;,Y)) ifi#j
Vij =1 Homu(X;, X)) ifi=jand X; =Y; #0
k@ Homy(X;,Y;) ifi=j and either X; # Y, or X; =Y, =0
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We often abbreviate & @& Homu(X;,Y;) ~ k by kif X; =Y; = 0. Now, we have the following

multiplication of elements in (Vi,j)me[l,n] induced by multiplication of matrices.

n

(Vig)igenn - (Wig)igenn = (Z Vi - wu) for (vij)ijenn) (Wij)igenn € (Vijigeln
4,j€[1,n]

=1

It remains to define v;; - wy; for ¢,7,0 € [1,n]. The idea is to use composition of morphisms

while setting the composite of non-composable morphisms to zero. Let v € V;; and w € V; ;.

In case that i # j, we define v - w € V; ; = Homu(X;, Y;) as follows.

ZEY
0 if v=f¢cHoms(X;,Y)) and w =g € Homu(X;,Y;) with Y] # X;
fg if v=feHomy(X;Y) and w =g € Homu(X;,Y;) with ¥} = X;
vew =
xg if v=z+fek@Homy(X;,Y;)) and w=g¢€ Homy(X;,Y;)
fy if v=feHomy(X;,Y)) and w=y+g€k®dHomu(X;,Y))

In case that ¢ = j with X; =Y; # 0, we define v - w € V; ; = Homy (X;, X;) as follows.

0 if v=feHomy(X;,Y;) and w=g¢€ Homuy(X;,Y;) with Y} # X
fg if v=feHomy(X;,Y;) and w=g¢g¢€ Homu(X;,Y;) with ¥; =X

In case that ¢ = j and either X; # Y; or X; =Y; =0, we define v-w € V; ; = k & Homx(X;, Y;)
as follows.

0+0 if v=f € Homu(X;,Y)) and w =g € Homu(X;,Y;) with Y] # X
v-w:=19 0+ fg if v=f € Homu(X;,Y)) and w=g € Homu(X;,Y;) withY; =X,
zy+ (fy+axg) ifv=c+fek@Homa(X;,Y;) and w=y+g€kdHomas(X,Y;)

In this way, we obtain a matrix algebra (V; ;)i jenn. The identity of (V;;)ijenn is given by
the diagonal matrix (v;;);; with v;; = 0 for ¢ # j and v;; = idx, if X; = Y; # 0 and
v;i; =140 € k& Homyu(X;,Y;) otherwise.

We illustrate this with an example. Let X, Y and Z be non-zero A-modules which are pairwise

non-isomorphic. For the elements
r+a b +ad v k@ Homa(X,Y) Homa(X,Z2)
) S
c d d d Homu(Z,Y) Homu(Z, Z)
we have

x+a b +a b zx'+xad +ax’ +bd xzb +bd
c d c d cx' +dc dd
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6.1 Algebras obtained by gluing idempotents

Consider an algebra A with simple projective and simple injective modules. We construct a
new algebra F,(A) which is obtained by gluing pairs of simple projective vertices and simple

injective vertices. These pairs will be described by an injective map o.

Definition 6.3. Suppose given J C {j € [1,s]|S; € proj A} together with an injective map
o:J —={iell,s]|S; €injA}

so that P; = S; is a simple projective module and S}, is a simple injective module for j € J.

Let P := @ P, so that AA:@(le@]DjU)@P.
rell,s]\(JuJo) JET

We define the following matrix algebra corresponding to o.

) ((5@]- k® Homa (P, Po)), ., (Homa(P. P))M)
(Homa (P, ijf))jej End4(P)

Since A has no semisimple summand, we have that jo ¢ J for j € J, that is 7 N Jo = 0.

In particular, Pj, % P, for i,j € J. Thus, the first || columns of this matrix correspond to

indecomposable projective E,(A)°P-modules whose simple top is the node obtained by gluing

a simple projective and a simple injective vertex; cf. Lemma 6.1.(2). In total, the number of

non-isomorphic indecomposable projective E,(A)°P-modules is
[T+ [ s]\ (JU Jo)| = s = |T].

Remark 6.4. Let i,j € J. Note that P} is a simple left A-module since S; € inj A and thus
vP,, ~ Si,. Using that P; and P} are simple and that ioc # j, we have the following.

Homu(Piy, Pj) =0
Hom (P, P) ~ Homy(P*, P:) =0
Homy (P, P;) =0
Homy (P, Pj) ~ 0, ; k
Hom(Pis, Pjs) ~ Homa(Pj,, ) ~ 6;; k

This can be used to rewrite the endomorphism algebra of A.

(Homa(P; @ Pig, P; @ Pio)), e, (Homa(Pi @ Pig, P)),. j)

End4(A) ~
al4) ( (HomA(P,Pj@Pjg)) End4(P)

jeJ
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Homa(P;, P;)  Homu(F;, Pjs) Homy(P;, P)
~ HomA(Picra Pj) HomA(Picn chr) ijed HomA(Pin P) e

( Homy(P,P;)  Homa(P, Pjy) ) . End4(P)
j
( 5k Hom (P, Pjy) ) (HomA(Pi, P))
= 0 0ij K ijed 0 e
0 Homa (P, Py,) ) End (P
( oma(P.Py) ) A(P)
On the other hand, we have the following by rewriting ((52-,]- k@ Homy (P, Pjg))ijej as an upper
triangular matrix.
Siix; ai, b; z; €k for j e J
By (A) ~ 0 6 s 0 — a;; € Homu(P;, Pjy), b; € Homu(P;, P) fori,jeJ
’ ¢; € Homy (P, Pj,) forjeJ
(0 o)y o
J€Tk d € Endy (P)

Together, we obtain a radical embedding F,(A)° < End4(A)°P ~ A.

We aim to show that every algebra which is obtained from A by a finite number of steps of
gluing a simple projective vertex and a simple injective vertex is of the form E,(A)° for some
o as in Definition 6.3. As a first result, we show that E,(A)°? can be obtained in this way.
Lemma 6.5. Suppose given J and o as in Definition 6.35.

There ezists a radical embedding E,(A)°® — A such that E,(A)° is obtained from A by a finite

number of steps of gluing a simple projective vertex and a simple injective vertez.

In particular, E,(A)°° and A are stably equivalent.

Proof. By Remark 6.4 there exists a radical embedding E,(A)°® — A.
Let J ={j1,...,5i} for some 1 <1 <s. For 0 <r <1 we write J, := {j1,...,75-} € J and

P= P (B, oDy ®P

pElr+1,1]

Note that Jy = 0 and ]50 = A4 on the one hand and J; = J and ]51 = P on the other hand.
Consider the following algebra for r € [0, (] with pairwise identical diagonal entries in the first
2r columns.

5ijxj Qi,j b; ijk forjejr
A = 0 dijz; ) 0/ a;,; € Homa(P;, Pjo), b; € Homa(P;, ;) fori,j € 7,
i,jETr €Ty ¢ € HOIHA(meja) for j € J,
0 , ) d N
( G Jjeg. d € Endy(P,)
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We obtain the following chain of subalgebras.

EG(A)OP — A;’p - A?—pl Cc...C Acl)p C Agp — El’ldA(A)Op ~ A

Fix r € [0, — 1] and consider the inclusion A%, C A%. Notice that A}, is obtained from A2
by gluing the simple projective vertex correspondmg to column 2r + 1 and the simple injective

vertex corresponding to row 2r + 2.

0

azj
bijxj

%)
)

0 ajrs1 b;
0 0
i,jE€ETr €Ty €T

A5 r41 b’L
0
1,5€Tr €Ty i€Jr

z,y,x; €k for j € Jr

a;,; € Homa (P, Pjs) for i,j € Jr+1

Ap = Ar41,5 T Ar41,r+1 br+1 b; € HOInA(Pi, ﬁ7'+1) for i € Jr4+1
Jed. Yy 0 cj € HomA(Pr+17 jg) for j € Jr41
d d € Enda(Pry1)
( 0 )Mr 0 s )
dijxj Qi z; €k for j € Jri1

a;; € Homa(P;, Pjs) for i,j € Jr41

N TN N

Arg1 = Qri1,j Tpgl Q1,1 brt1 b; € Homu (P;, Pry1) for i € Jry1
jed. Tr41 0 cj € HOmA(ﬁT+1,Pjg) for j € Jr41
S VR RN SRR P

This shows that F,(A)°P is obtained from A by a finite number of steps of gluing a simple
projective vertex and a simple injective vertex. With Theorem 6.2 we obtain that E,(A)° and

A are stably equivalent. O

Lemma 6.6. Let A = kQ/I and B = kQ/I be two finite dimensional algebras such that there
s a radical embedding B — A. Suppose that B is obtained from A by a finite number of steps

of gluing a simple projective vertex and a simple injective vertex.

Then there exist J and o as in Definition 6.3 such that E,(A)°® ~ B.

Proof. By assumption, we have a finite sequence of subalgebras
B~ACA ,C---CACA=A

<l—-1.

, Up, Vr41, Wry1 be a complete set of primitive orthogonal idempotents of A, with some

where each A, is obtained from A, by gluing a sink v,,; and a source w, 1 for 0 < r
Let U,y - .-

p € N. Then A, is the subalgebra of A, generated by u,...,u,, v;41 + wy41 and rad(A4,).

The simple A,,;-module corresponding to the vertex v,y + w,,1 is a node. In particular,
Up41 + W,y 18 neither a sink nor a source in A, ;. Thus, a complete set of primitive orthogonal
idempotents of A is of the form w4, ... ug, v, w1, ..., v, w; for some ¢ € N. Moreover, a complete
set of primitive orthogonal idempotents of A; is of the form uq, ..

=Aforl <r<l

Ug, U1 + W1, ..., U +w; where

v, 18 a sink and w, is a source in A
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Note that A has s = ¢ + 2/ many non-isomorphic indecomposable projective modules. By
reordering, we can choose J := [1,{] C [1, s] such that P; = vjA for j € J. Let 0 : J < [1, 5]
such that Pj, = w;A for j € J. We write Py := (u1 + -+ 4+ u4) A4 so that

A=PFep)er
jeg

as in Definition 6.3. By Remark 6.4, we have that

§i,jk HOHlA(PZ',PjO-) HOHIA(PZ',P)
Enda(Ag) = Endy(A) ~ 0 G k e 0 ey
. End, (P
( 0  Homyu(P, PN)>jw nd4(P)

From this, we obtain A; by gluing the sink v, and the source w, for each 1 < r < [ which
correspond to the columns 2r — 1, 27 of the matrix algebra.

x; €k forjeJ
(51‘,47‘ Tj Qg ) (bz) ai,j € Homa (P, Pjs) fori,j € J
Enda, (4;) ~ 0 dijzi ). s \V) s b; € Homu (P, P) fori € J
< 0 ¢j ) d ¢; € Homy (P, Pj,) forjeJ
JE€ETk
d € End, (P)
By Remark 6.4, this is precisely E,(A). Hence, B >~ A; ~ End 4, (A4;)? ~ E,(A). O

6.2 Algebras obtained by deleting nodes

Consider an algebra B with nodes. We construct a new algebra Ex(B) such that B is obtained
from Ex(B) by gluing pairs of simple projective and simple injective vertices. This process can

be seen as deleting nodes from the algebra B; cf. [34].

Definition 6.7. Suppose given a subset N C [1,¢] such that T,, € mod B is a node for n € N.
Let QQ := EB Q..

re[L\N

We define the following matrix algebra corresponding to N.

5m,n k HOIIlB (Tma Qn) HOIHB (Tma Q)
EN(B) = 0 5m,n k m,neN 0 meN
(0 Homs@Qw ) . Ends(Q)
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Note that for 1 < n < |N| the simple Ey(B)°-module corresponding to the column 2n — 1
is projective and the simple Ex(B)°P-module corresponding to the column 2n is injective. In

total, the number of non-isomorphic indecomposable projective Ej (B)°P-modules is
2N+ |[LH\N] =t + [N].
Remark 6.8. Using that T}, is a node for m € A we have the following for all m,n € N.

Homp(Qm, Q) ~ Homp(T,,, Q)
rad (HOIHB(Qm, Qn)) x>~ HOIHB(Tm, Qn)

T a
Hompg(Qpm, Qn) =~ x €k, a € Homp(T,,, Q)
0 x

This can be used to rewrite the endomorphism algebra of B.

Endg(B) ~ (HomB(Qm, Qn))m,ne,/\/ (HomB(Qm7 Q))me/\/
(Homp(Q,Qn)), cp Endg(Q)
T, €k forn e N
((Sm,n Tn Om,n ) (bm) Am,n (S HomB(Tm, Qn) for m,n € N
~ 0  Smnn mnEN 0 meN bm € Homp (T, Q) formeN
( 0 ¢ ) d ¢ € Homp(Q, Qy) forne N
" neN
d € Endp(Q)

We obtain a radical embedding B ~ Endg(B)° — Ex(B)°P.

Now, consider both algebras A and B together. We aim to show that there exists a ¢ as in
Definition 6.3 such that E,(A)° ~ B if and only if there exists an N as in Definition 6.7 such
that Ey(B)°P ~ A.

Lemma 6.9. Let A = kQ/I be a finite dimensional algebra. Let J C [1,s] and suppose given
an injective map o = J < [1,s] such that S; € proj A and S;, € injA for j € J.
Let B := E,(A)® and N = [1,|TJ|]. Then Ex(B) is isomorphic to A as an algebra.

Proof. We abbreviate [ := |J| and E := E,(A). In particular, B = E°P. Note that the matrix
description of E in Definition 6.3 has [+ 1 columns. For 1 < 5 < [ we have the indecomposable
projective E°P-modules (); corresponding to the first [ columns of this matrix. Furthermore,

we have the projective E°P-module () corresponding to the column [ 4 1 of this matrix.

Recall that the simple B-module T with projective cover (); is a node for 1 < j < [. Thus,
Ep(B)°P is well-defined. We show that Ey(B) ~ Enda(A).
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Let J = {j1,...,j1} using the ordering of J. The choice N' = [1,|7|] = [1,]] induces a
bijection N' — J via n — j,. Now, the equivalence of right B-modules and left F-modules
induces the following isomorphisms for m,n € N = [1,1]. We also use that T,, is a node; cf.
Remark 6.8.

Homp(T,,, Q) =~ rad(HomB(Qm, Qn)) ~ rad(HomE(Eem, Een)) ~ e, rad(E)e,
~ Homy(P;,,, Pj,.o)

Homp(7},, Q) ~ Homp(Q),, Q) ~ Homp(Fe,,, Eejt1) ~ e, Eepq >~ Homy (P, , P)

Homp(Q, @) ~ Homp(Ee1, Ee,) ~ e Ee, ~ Homy (P, Pj,,)

Endp(Q) ~ Endg(Eej1) ~ €11 Eei 11 ~ Enda(P)

We obtain the following sequence of isomorphisms.

( 5m n k HOH]B (Tm7 Qn) ) (HOH]B (Tma Q))
EN(B) - 5m nk m,neN 0 meN

Homs(Q,Qu) ), End;(Q)

5% ke Homa(P;,., PM,)) (Hom(ij, P))
Jm Jn k mneN 0 meN

(o
< 0 Homu (P, P, ») > End4(P)
(

1

neN

0ijk Hom 4 ( PZ,PJU) Hom 4 (P;, P)
51] k .. 0 .
,j€T i€J

Hom 4 (P, Pj,) )jej Enda(P)

1

By Remark 6.4, we have

( (5i,jk HOHIA(PZ',P]'U) ) (HOHIA(Pi,P))
Enda(A) ~ 0 dij k iieg 0 e

(0 Homa(P.Py) )jej End 4 (P)

which is isomorphic to Ex(B) by the above. O

Lemma 6.10. Suppose given a subset N C [1,t] such that T,, € mod B is a node for n € N.
Let A:= En(B)® as well as J ={2n—1€ N |n e [1,|N]]} ={1,3,5,...,2|N| — 1} and

o: T = [2,2N]]:j—j+1.

Then E,(A)°P is isomorphic to B as an algebra.
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Proof. We abbreviate | := |N| and F := Ey(B). In particular, A = E°°. Note that the
matrix description of E in Definition 6.7 has 2/ + 1 columns. For 1 < r < 2] we have the
indecomposable projective E°P-modules P, corresponding to the first 2/ columns of this matrix.
Furthermore, we have the projective E°P-module P corresponding to the column 2/ + 1 of this

matrix.

Recall that the simple A-module Sy,._; with projective cover P,,._; is projective for 1 < r < [.
Moreover, the simple A-module S, with projective cover P, is injective for 1 < r < [. Thus,
E,(A)°? is well-defined. We show that E,(A) ~ Endg(B).

Let N = {ny,...,n;} using the ordering of A. The choice of J and o gives two bijections
J =N via j—=nu and Jo — N via jo =7+ 1 nju .
2 2

Lete,5 € J withm = nig1 € N and n := n;u € N. The equivalence between right A-modules
2

and left F-modules induces the following isomorphisms.

Homy(P;, Pj,) = Homa(P;, Pj11) ~ Hompg(Fe;, Eeji1) ~ e;Eej ~ Homp(T,,, Q)
HomA(B, P) ~ Homg(Fe;, Eeg 1) >~ e;Feg 1 ~ Homp(T),, Q)

(P, Pjg) = Homu(P, Pji1) ~ Hompg(Eex 1, Eejy1) ~ eny1Eejiq =~ Homp(Q, Q)
Ends(P) ~ Endg(Feg 1) =~ egr1Feq1 = Endp(Q)

Hom 4

We obtain the following sequence of isomorphisms.

By (A) = (6ij k@ HomA(PZ-,PjU))mEJ (Homu(P;, P)),.
(Hom (P, Pja))jej End4(P)

1

(5m,n k @ Homp (T, Q"))m,ne/\f (HOIIIB (Tom, Q))me./\/
(Homp(Q, @n), Bnd(Q)

12

(Homp(Qm, Qn))m,ne/\/ (Homp(Qm, Q))me/\f) (Remark 6.8)

(HomB(Q,Qn))nEN Endp(Q)

~ Endp(B) 0

We can now state the main result of this chapter.

Theorem 6.11. Let A = kQ/I and B = k@/i be two finite dimensional algebras. The

following are equivalent.

(1) There exists a radical embedding B — A such that B is obtained from A by a finite

number of steps of gluing a simple projective vertex and a simple injective vertex.

(2) There exists o as in Definition 6.3 such that E,(A)°® ~ B.
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(3) There exists N as in Definition 6.7 such that Ex(B)°P ~ A.
If one of the conditions holds, A and B are stably equivalent.

Proof. The implication (1) = (2) is shown in Lemma 6.6. The converse (2) = (1) is shown
in Lemma 6.5. The implication (2) = (3) is shown in Lemma 6.9. The converse (3) = (2)
is shown in Lemma 6.10. Finally, Theorem 6.2 shows that A and B are stably equivalent if
condition (1) holds. O

The next corollary is a consequence of Theorem 6.2. A radical embedding B — A implies
that B is obtained from A by a finite number of steps of gluing two primitive idempotents;
cf. [41, Example 3]. If A and B are stably equivalent and the Auslander-Reiten conjecture
holds, these primitive idempotents must correspond to a simple projective vertex and a simple

injective vertex; cf. [22, Proposition 4.11].

Corollary 6.12. Let A =kQ/I and B = kQ/I be two finite dimensional algebras. Under the

assumption of the Auslander-Reiten conjecture, the following are equivalent.

(1) There is a radical embedding B — A such that A and B are stably equivalent.
(2) There exists o as in Definition 6.3 such that E,(A)°° ~ B.

(3) There exists N as in Definition 6.7 such that Exn(B)°P ~ A.

Let B = kQ/I be a finite dimensional algebra and A as in Definition 6.7. We have seen in
Theorem 6.11 that Ex(B)° and B are stably equivalent. If we choose N such that n € N
for every node T,, € mod B, then Ex/(B)° is an algebra without nodes stably equivalent to B.
Thus, we recover for our setting that every algebra is stably equivalent to an algebra without
nodes. This has been shown by Martinez-Villa in [31, Theorem 2.10.(a,c)] using a different
method.

Suppose that ' is the triangular matrix algebra without nodes given in [31, Theorem 2.10.(a)]
which is stably equivalent to B. Then there is a radical embedding B — I'; see [22, Remark
after Theorem 2.10] for more details. Under the assumption of the Auslander-Reiten conjecture,
I is isomorphic to Ex(B)°P. In fact, by Corollary 6.12 there exists N as in Definition 6.7 such
that E)\/(B)°? >~ I'. The next lemma and Theorem 6.11 show that I' o E}\(B)° ~ E)/(B).

Lemma 6.13. Let A=kQ/I and B = k:@/f be two finite dimensional algebras. Suppose that
B is obtained from A by a finite number of steps of gluing a simple projective vertex and a

simple injective vertex. Let N C [1,t] such that there exists an n € N with T ~ T,, for every
node T of B.

If A has no nodes, then Ex(B)® ~ A.
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Proof. By Theorem 6.11, there exists a set N/ as in Definition 6.7 such that Ex»(B)P ~ A.
We show that N = N’. Then A ~ Ey»(B)°P >~ E(B)°P.

We have N” C N by definition of V. Assume given an r € N with r ¢ N”.

Let @, € proj B be the projective module which has the node T, as simple top. By Lemma 6.1,
we have fg = 0 for all non-isomorphisms f : Q; — @, and g : Q, — Q; with 4,5 € [1,].
Since r ¢ N, there is a column [ > |[A’| in the following matrix description of E(B)°P

corresponding to the projective module @), .

(&n,n k Homp(Th, Qn) ) (HomB(Tm, Q)
m,neN’

0 Om.n k 0 ) ]
’ meN’, je[1,t]\N’

(HomB(Qia Qj))

En+(B) =
( 0 HomB(Qi,Qn)>

i€[L\N", neN’ ,J€[LE\N'

Let P, be the indecomposable projective Ex(B)°P-module corresponding to this column. Re-
call that Homg(T,,, @Q,) ~ Homg(Q,,,Q,) for m € N’; c¢f. Remark 6.8. By the above and
Lemma 6.1.(2), the simple top of P, is a node in Ex+(B)°P. A contradiction, since we assumed
that A ~ Ex~(B)°® has no nodes. O

Finally, we give a remark about iterating the constructions of this chapter in an arbitrary order.

Remark 6.14. Let A = kQ/I and B = k@/lz be two finite dimensional algebras. We say that
A is obtained from B by deleting nodes if B is obtained from A by gluing a simple projective

vertex and a simple injective vertex.

Under the assumption of the Auslander-Reiten conjecture the following are equivalent.

(1) There exists an algebra C' = kQ¢/Ic together with radical embeddings A — C' and
B — C' such that A, B and C' are pairwise stably equivalent.

(2) The algebra B is obtained from A by a finite number of steps of either deleting a node

or gluing a simple projective vertex and a simple injective vertex in any order.

(3) There exist V' C [1,s] and N7 C [1,¢] as in Definition 6.7 such that Ex(A)° ~ E»(B)°P

as algebras.

It follows from Theorem 6.2 that (1) implies (2). The equivalence of (1) and (3) is a consequence
of Corollary 6.12. Suppose that B is obtained from A by either deleting a node or gluing a
simple projective vertex and a simple injective vertex. By Lemma 6.13, A and B can be
embedded into a unique algebra without nodes which is obtained from A and B via sets N and
N’ as in Definition 6.7. This holds for every step in the situation of (2). Thus, (2) implies (3).
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Example in Chapter 7. In Example 7.16 we construct all algebras B that are stably equivalent
to the algebra A in Section 7.4 such that there is a radical embedding B < A. In particular,
we calculate the matrix algebras F,(A) and Ex(B) defined in this chapter.






Chapter 7

Examples

Let A and B be two finite dimensional algebras given by quivers with admissible relations. As

such, the semisimple quotients of A and B are separable.

Every section in this chapter is a self-contained example intended to illustrate different results
of the previous chapters. However, we often reference calculations done previously during the

same section. Throughout this chapter we use the following notation.

For a vertex i of the quiver, we denote the indecomposable projective A-module corresponding
to ¢ by P; and the indecomposable projective B-module corresponding to ¢ by ();. By abuse
of notation, the corresponding simple module is sometimes denoted by S; in both mod A and
mod B.

Let a be an arrow from vertex i to j in the quiver of A. Right multiplication by « gives a
morphism between the indecomposable projective left-modules F;* — P;. By abuse of notation,
we denote this morphism by a as well. On the other hand, left multiplication by a gives a
morphism between the indecomposable projective modules P; — F;. We denote the morphism
given by left multiplication with the arrow «, 3, v, d or € by a, b, ¢, d or e respectively. The

same notation is used for morphisms in B.

7.1 Algebras stably equivalent of Morita type

In this section we take a closer look at two algebras A and B found in [29, Example 1] which
are stably equivalent of Morita type. Another focus will be on the equivalence F of Chapter 2

and perfect exact sequences.

In Example 7.1 we construct the image of a morphism under the functor F : mod B — Lp as
done in the proof of Lemma 2.4. The next four examples discuss perfect exact sequences. First,
we take a look at some perfect exact sequences and their corresponding distinguished triangles in
Example 7.2; cf. Proposition 2.18. As stated in Proposition 2.21, the pseudo-cokernel induces a

perfect exact sequence as well. This is discussed in Example 7.3. In Example 7.4, we specifically
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consider perfect exact sequences with projective middle term. Finally, in Example 7.5, we
explicitly follow the construction in Chapter 3 to show that a perfect exact sequence in mod A
is preserved under a stable equivalence mod A — mod B. In the last example of this section,
Example 7.6, we verify that A and B are stably equivalent of Morita type using the results in

Chapter 5 and discuss some properties of this equivalence.

We consider two algebras A and B given by the following quivers and relations.

Quiver of A Quiver of B
1 - > 2
o4 \ B \
'\ % l—2—2"3
3 0 v
Relations of A Relations of B
afya=~vaf =0 af=ad=v6=0and da =~y

The algebra A has the following indecomposable projective modules. We also note their images

*

under the functor (—)*.

P =73, Py:=7, Py = Pl =3, Py =, Py =

Y

— W N =
DN — O DN
N — W
— N W
DN QO = DN
— N W

The algebra B has the following indecomposable projective modules. We also note their images

*

under the functor (—)*.

1 2 3 1 2 3
Ql = 2 Q2 = 137 Qi’) = 27 QT = 2 Q; ::137 Q; =2
2 3 2 3

The following table collects some properties of A and B.

Property A B
Nakayama algebra yes no
gldim A 4 4

Indecomposable projective-injective modules || P, Ps | Q2, Q3
Indecomposable strongly projective-injective modules || Py, Py | @2, Q3
domdim A 3 3
v-domdim A 3 3

Nodes none none




7.1 Algebras stably equivalent of Morita type 155

The Auslander-Reiten quivers of A and B can be written as follows.

Auslander-Reiten quiver of A Auslander-Reiten quiver of B
T I
3/2\2/1\1 \13/2\2/ \ /
-------------------- ---- 13 — {rmmmmmm e 2 e
%< 5f< % 2 —: 5 13
1/ NSNS \1 Y \2/ \
—————————— ] ¢ g s S B T s
_________________________ <____
3

For now, we concentrate on the algebra B. We will return to the algebra A later, when

discussing properties of stable equivalences between A and B.

Example 7.1. Let X := 123 and Y = % in mod B. We aim to construct the image of the
non-zero morphism f : X — Y under the equivalence F : mod B — Lp as in Lemma 2.4. Since
f factors through the projective module @3, we expect f* = F(f) to be homotopic to zero in

Lp C K*(proj B). The minimal projective resolution of X is given by the following complex.
d
lae),
0= 5 Q—>Q®Qs Q™ Q=0

We have the exact sequence 0 — X* — Q5 — Q5 — Tr(X) — 0 with X* = 123 and Tr(X) = 123

in B-mod. We extend da : Q5 — Q5 to a minimal projective resolution of Tr(X) in B-mod.

[C) (a>

0— Qz Q1@Q3 ——>Q§—>O

Applying (—)* and combining the resulting complex with the projective resolution from above,
we obtain the complex F%, = F5 = F(X) € L.
13

L5 dx) g dx g dx’ o dx g dxl o dX 1 9% o B Ry
PS5 Pyt 5 PP 2 P22 By F y F » F2 = Fy = It

L Ty b (T Ty T (T T

0—>Q1—>Q2—>Q1@Q3—>Q2—>Q2—>Q1@Q3—>Q2—>Q1—>0

Similarly, we obtain the complex F; = Fy = F(Y).
2
d74 d73 d72 = 1 O
e Ot v N Do e N Ly e A B 2

0 » Q1 —5 Qy — Qs 25 Qs B Qy 5 Q — 0
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Now, we can lift the morphism f : X — Y to a morphism between the projective resolutions

T<o F'y of X and 7o Fy of Y.
(%)
(ac)

Py 00— 01 -5 0,0 0 Qs Q) b 0,

l lﬂ Lo Lo ol

. d b
T<o Fy 0 > 0 > (1 > (2 o Qs = Q3

This induces a morphism Tr(f) : Tr(Y) — Tr(X) in B-mod. As before, we can lift this map
to a morphism between the projective resolutions 7= Fy'" of Y* and 721 Fy" of X*. We choose

the first two morphisms as in the lift 7<o F'y — 7<¢ Fy of f.

ok * o * 6 * 5 *
751 Fy 0 s 0 > Q > Q5 y Q5 5 Qs
To1Fy 0 > Q1 > (3 Y QIO Ry — Q5 — (5

In conclusion, we obtain the morphism f* = F(f) : Fy — F5y.

wo, oG g ()

Fy 0—Q1 5 Q— Qi dQs; —F Qr— Qi @®Qs Q- Q — 0

— Q2 —
N T e A

d b
0 s 0 > Q1 b Qg — % Qs > Qo —2— (O s 0 s 0

b
-

Q@
We have a homotopy h* : Fy — Fy[—1] with ! = () Ql@Qgéanndhk—Ofork‘#l
Thus, f* =0 in K(proj B) as expected since f = 0 in

Similarly, we can construct all images under F for indecomposable non-projective B-modules.
This results in the following list of all indecomposable complexes in the category Lg. Note that

we group complexes which are connected by applying a shift in Lg.

degree : -5 —4 -3 —2 -1 0 1 2 3 4
d (ac) <*db>
F§[3]:F1°23[2]=F2°[1]=F1'1 0 — Q1 = Q—"Q18Q3 —'Q2 4 Q@ —— 0
Fi[2] = F3[1] = F3 : 0— Q15 Qs — Q3 25 Qs > Q —“~> 0
2 1 d d
- oo, ) e (5
Fs o 0— Q1 — Q2 —"Q1 Q3 —" Q2 Qr —"Q1®Q3 —" Q2 — Q1 — 0

The categories mod B and Lg can be visualized as follows. In particular, the right hand side
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contains information about possible shifts in L. The dashed lines indicate zero relations.

3 o 2 o R— F3[2]
AN SN SN
i B 2 - - Blt) e Py e B[R
2 13 3 13 3
7N N, N SN N TN
S — R — § wmmmmeee- 5 Fi[1] ------ F3[3] --ooe- Ff oo F[1]

We continue with an example about perfect exact sequences in mod B.

Example 7.2. Consider the following short exact sequence in mod B.

np0%3%§%2%0

A direct calculation shows that 7, is a perfect exact sequence. In fact, we obtain the following

exact sequence in B-mod after applying (—)* to 7.

13

(m)*:0— % — 9 = 3—=0

For instance, we have (%) ~ Ker(Q5 — Q) ~ 123. By Proposition 2.18 we therefore obtain

an induced distinguished triangle in K(proj B).

Fy — F5 = F; —
3

We can use the information about the Auslander-Reiten quiver of B and the category Lp to

verify this result in a different way.

The sequence 0 — % - 26 Q3 — ‘;’ — 0 is an almost split sequence with non-projective
starting term. Thus, it is a perfect exact sequence; cf. Example 2.11. We obtain the following
distinguished triangle in Lp.

Fs — F; — F5 —
3 2
This induces the distinguished triangle
Fy — F3 — F5 —
3

since F5[—1] = F; € Lp. We obtain a perfect exact sequence
2

0%3%%@@%2%0
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with () € proj B. Since the simple module 3 is not projective, this sequence is isomorphic to
the short exact sequence

n1:0—>3—>§—>2—>0

by Lemma 1.5. In particular, ) ~ 0 and 7, is perfect exact.

Now, consider the following short exact sequence in mod B.

n2:0—>2—>123—>1693—>0

A direct calculation shows that 7, is not a perfect exact sequence. In fact,

(7}2)*:0—>0@3—>§—>%

is not a short exact sequence in B-mod. Note that 2 — 123 factors through the projective

module ();. Thus, Lemma 2.13 verifies as well that 7, cannot be a perfect exact sequence.

Example 7.3. We consider the pseudo-cokernel of the injective morphism f : 2 — 123 in

mod B. Let X :=2and Y := 123. We calculate as follows using that f* ~ 0 in Kb(proj A) since
f factors through ;.
<a00)
0 ac 13

%(f):HO(kOC(f)'):COk QO —— 1O DQ; [ =105

We have Fiy = Q, = % and Cok(f) = 1@ 3. We write 7 : % — 1 and f": % — 123 for the
respective non-zero morphism. This results in the following short exact sequence of the form
0 — Fy — Cok(f) — Cok(f) — 0 given in Lemma 2.22.

w f!
053 613 S 1es o0

In particular, we have that Cok(f) and Cok(f) are not stably isomorphic. Thus, Lemma 2.22

shows that

m0—2513 s1e350

is not a perfect exact sequence as we have already seen in the previous example. However, we
can extend f to a perfect exact sequence starting in X by Proposition 2.21. This perfect exact
sequence of the form 0 —+ X — F% &Y — Cok(f) — 0 is given by

w f!
. (%)
0—>2—>( )%@123—>1@123—>0
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where f = d f’ with d induced by d% : F'$ — F%. This perfect exact sequence is isomorphic to

the direct sum of a perfect exact sequence and a split exact sequence.

70
d 0 <01>
02140 )§@123—>1@123—>0

Note that f no longer explicitly occurs in this short exact sequence.

Example 7.4. We illustrate some of the results for perfect exact sequences with projective
middle term in Section 2.3. Let S; be the simple module with projective cover ); for 1 <7 < 3.

Note that the dominant dimension of B is positive.

We have S} =0, S5 = 1 and S5 = 3 in B-mod. As stated in Lemma 2.26, the projective cover
()1 of S is not injective since S; = 0. On the other hand, we have Q2, Q)3 € Pp. Moreover,
ST = 0 implies Fél = 0 so that F§ € Lp is the minimal projective resolution of S;. In

particular, Fg [1] ¢ Lp as seen above.
In contrast, S; # 0 so that Fg [1] € Lp by Lemma 2.24. In fact, F§ [1] = F3 and the
2
distinguished triangle Fg, — 0 — F3 — in K(proj B) induces a perfect exact sequence with
2

projective middle term Q3 = F§,; cf. Lemma 2.25.

O—>3—>Q3—>§—>O

On the other hand, for the non-simple module X := 123 we also have X* = 123 # 0. Equiv-
alently, this means Fy = Q1 ® Q3 # 0. However, Fy[1] € Lp since H(F%) # 0. While we
have a non-zero morphism X — @1 @ @3, it is not injective. Thus, the implication (5) = (4)

in Lemma 2.24 does not hold in general.

Example 7.5. We give an example for the construction done in Section 3.2 about perfect exact
sequences and stable equivalences. Since A is a Nakayama algebra, we often use the following
notation for morphisms between indecomposable modules in mod A during this example. By
abuse of notation, the embedding of a submodule is denoted by f and the projection onto a

quotient module by g. We mainly want to distinguish which morphisms are zero or the identity.

We have a stable equivalence o : mod A — mod B induced by the Auslander-Reiten quivers.

2 1 9
S 2 . S <
N 0N SN TN
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Note that both A and B have no nodes and are of finite representation type. In particular, the
assumptions of Corollary 3.20 hold. We aim to show that the perfect exact

f

Lis150

=N

7o : 0 —

—IN =

in mod A is preserved by the stable equivalence a using the constructions of Chapter 3. The

short exact sequence 1) is in fact perfect exact by Lemma 2.14.

Following the proof of Theorem 3.19, we first construct a series of perfect exact sequences. We

use the notation of Construction 3.11. For the construction step 1y ~» 7y we need the following

()

2 (10) 3 9 \1) ]
X0 : 0—>21’)—>3@3—>§—>0
1

almost split sequence.

For the construction step 7, ~~ 7; we need the following almost split sequence.

2 (r9) 1 <_fg> 1

This results in the following chain of morphisms ending in the almost split sequence 7. Note

1
that the composite % — % of the middle morphisms in the chain is non-zero.
1
1
2
o 0 > 3 ! S % 741 > 0
1 1
l(f 9) l(1 0)
L, G7) sy ()
i 9 9 \o o 1\ .
Mo 0—)3@3—>3@2 > 1 > 0
1 13
0 9
610
2 f 1 g
m : 0 > 3 » Z2’> 1 > 0
() (10)
l 1-g l g
T 0—>§@2—>§@2 > 1 > 0
0 g
l(l) l<1>
Ny 0 > 2 ! S % RN | > 0
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All occurring almost split sequences have non-projective starting terms. Thus, they are pre-
served by the stable equivalence «; cf. Proposition 3.17. By abuse of notation, we denote the

perfect exact sequence in mod B corresponding to a perfect exact sequence 1 in mod A by a(n).

Inductively, we now construct perfect exact sequences in mod B starting with 7,. The sequence
a(n9) is the almost split sequence in mod B starting in «(2) = %
2 3 3

a(ng) : O—>3—>2@§—>2—>0
Moreover, we have the almost split sequence a(x;) in mod B corresponding to the almost split
sequence 1.

. 2 2 .2

We want to use Lemma 3.18 applied to 7; and «(7;). In order to obtain a perfect exact

sequence corresponding to 7y, we have to form the direct sum of the split sequence consisting
1
of the module % =« (%) and the sequence a(n;). We also rearrange the modules to fit the

ordering in Lemma 3.18.

3
2 .2 2 3
(1@%)@2—)2%0

Now, we can use Lemma 3.8 as in the proof of Lemma 3.18 to obtain a perfect exact sequence
in mod B corresponding to 7.
2 2 3 3

In the notation of Lemma 3.8.(1) this equates to the following assignment.

_ 2 2.2 _ -

X =3 U=13% P:=0 V=2
3

2.2 2 _ _2

U=1®3 Vieja®2 V=2 Z =3

For the next step, we have the almost split sequence «a(xo) in mod B corresponding to the

almost split sequence yg.
a(xo) : 0—>3—>123—>%—>0
Again, we want to use Lemma 3.18. This time, 7y is the direct sum of 77; and a split sequence

consisting of the projective module P;. Thus, we have (7)) ~ «(n;). Applying Lemma 3.8,

we obtain a perfect exact sequence in mod B corresponding to 1.

3
a(no) : 0—>3—>§—>%—>0
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A direct calculation verifies that «(np) is in fact a perfect exact sequence. Note that «(ng) has

a projective middle term, as was the case for 7.

Before continuing with the next example, we collect all indecomposable complexes in the cate-

gories L4 and Lp. Note that the complexes in L5 have already been listed in Example 7.1.

The category L4 consists of the following indecomposable complexes.

degree : -5 —4 -3 —2 -1 0 1 2 3 4
F5[3]:F:1;[2]:F%‘[1]:F5: 0— P 5P pbhp P50
FERl=F]=F: 0-—P5%P9Sp %P %P 5P—0
3 2
! F5% 0—P 5P Spp ApSpYp %P0

3
The category Lp consists of the following indecomposable complexes.

degree : -5 —4 -3 -2 -1 0 1 2 3 4

d

o ek

BB =Pl =B =F: 00— Qb 0,50, 20, Y0, % 01 —— 0
F2=Fl=F: 0—Q %Q Qs Q% Q %= 0
C (%) (%)
a ¢ —b a c —
Fy o 04’@1$Q2(H)Q1€BQ3HQ2%Q2(H)Q1@Q3HQ2$Q1HO

13
Example 7.6. It was shown in [29, Example 1] that A and B are stably equivalent of Morita
type. We aim to verify this with our techniques. We have a functor G : proj A — proj B given

(s2) (o)

by the following.

0bc 0 be
PY5P = QeQ; — QD Qs P, P = Q0@ — Q1903

do d o

b —b1 ba —bbe
Ps=P = QioQ3 —=Q23Q3 Ps—P = Q@3 ——=Q2DQ3

ac 0 ¢

. 01 b b1
Ph=P = QodQ3——=Q1DQ3 Ph=P = @QoQ;——=0QdQ;3

0c 00

acb 0bc cha —bbc
P,— P = Q®Q3 ——= Q2DQ3 Ph— P = Q®Q3 —=Q20Q3

Let Mp == G(A) = (Q2® Q3) ® (Q2 ® Q3) ® (@1 ® Q3). We write A\, : A — A for the left
multiplication with € A. Then M has a left A-module structure given by z - m := mG(\,)
for x € A and m € M. Together, we obtain a bimodule 4Mg. We show that the functor
— ®a M :mod A — mod B induces a functor L4 — Lp by componentwise application.

Consider the complex F3 € L4.

F 0P 5P%p%p 5P 0
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We have the following morphism ¢ : F; ® 4 M — F} in K(proj B).

() oo Ge) o ()G

0 — QPR —— Qb —> 1 OQs — QdQ; —> Q1 dU; —— 0
6 0., oy 16 1)
0 > > Q2 > Q1D Qs > Q2 Q1 > 0

Conversely, we do have the following morphism ¢ : F} — F§ ®4 M in K(proj B).

d (o) %)
0 > 1 > Qo > Q1D Q3 > Qo s > 0

Py e 1oy Py e

—— 1 ®Q3 — Q2@Q3 Ql@Qs QQ@Q?) Q1 Q3 —— 0

We have ¢ ¢ = idp: and a direct calculation shows that ¢ = idpyg,a in K(proj B). As
a result, [y ®4 M ~ I} € Lp. Similarly, we have isomorphisms F} ®4 M ~ F; and
2

1
3

Fs @4 M ~ F%, in Lp.

3 13
Since — ®4 M commutes with the shift, this results in a functor — ®4 M : L, — L. In
particular, — ®,4 M : mod A — mod B preserves projective resolutions and therefore is an
exact functor; see also the proof of Theorem 5.13. It remains to show that — ®4 M induces a
stable equivalence. Then, M and Hompg(M, B) induce a stable equivalence of Morita type by
Theorem 5.13.

The irreducible morphism f : 2 — % in mod A can be lifted to a morphism between the

projective presentations.
P LN b » 2 > 0

| )

b(l\ \
P3 /Pl //2

o

Applying G to this projective presentation and taking the cokernel gives the morphism f ®@ M

() :

QOQs — Q2B Q3 > 3 > 0

6 o

Q1D Qs *?Q2@Q3 —»2®¢; — 0

since — ® 4 M is exact.
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We see that f @ M is isomorphic in mod B to the unique non-zero morphism % — 2. Similarly,
we can check this for all other irreducible morphisms. Together, we obtain that — ®4 M ~ a,
where « is the stable equivalence induced by the Auslander-Reiten quiver we discussed in

Example 7.5. This shows that — ®4 M is a stable equivalence.

If we already know that — ®4 M is a stable equivalence, then M and Hompg(M, B) induce
a stable equivalence of Morita type if one of the conditions of Theorem 5.19.(2) is satisfied.
We have seen above, that — ® 4 M induces an equivalence L4 — L. Moreover, A is a
Nakayama algebra without nodes and S35 ®4 M is simple in mod B. Finally, we also have

natural isomorphisms vg(P ®4 M) ~ va(P) ®4 M. In fact, we have the following.

v(P; @A M) ~vp(Qa®Q3) Q2 ® Qs = P, @4 M ~va(P)®@a M fori=1,2

1
vp(Ps ®a M) 2VB(Ql@sz)2%696232§<§§>A]\42VA(P3) ®a M

By Theorem 5.8, a stable equivalence of Morita type induces triangulated equivalences
Hp(proj A) =~ Hp(proj B) and Hep(proj A) =~ Hep(proj B) via componentwise application of
—®a M. However, —®4 M does not induce an equivalence between H(proj A) and H(proj B).
In fact, we have P; € H(proj A) concentrated in degree zero with Endy(proja)(Ps) ~ k. On the
other hand, we have Endyproj ) (P @ M) ~ Endy(proj By (Q1 ® Q3) 22 k. The same argument
shows that — ®4 M does not induce an equivalence between IC(proj A) and K(proj B).

At the end of this example, we return to the perfect exact sequence 7y of Example 7.5.

9 1
Mo : O—>3—>§—>1%0
1

Applying — ®4 M, we obtain the following perfect exact sequence.

2 2 3 3
no ®@a M : 02331321302 —=5—0
2 2 3

This sequence is the direct sum of the split exact sequence 0 — Q) RN > — 0 and the following

perfect exact sequence we constructed in Example 7.5.

3 3
0—>3%2—>2—>0
3



7.2 Algebra with infinite global dimension 165

7.2 Algebra with infinite global dimension

In this section we discuss some of the results which are specific to an algebra with infinite global
dimension. We start in Example 7.7 by comparing the stable Grothendieck group G5(A)
with the group G}(A) introduced in Definition 4.15. The next Example 7.8 is dedicated to
calculate the stable category of Gorenstein-projective modules of A. The last example of this
section, Example 7.9, compares the different triangulated subcategories of K(proj A) discussed
in Chapter 4. In particular, we list complexes which show that all of these categories can be
different.

Let A be the quiver algebra over k given by the quiver

1 @ s 9
3

with relations Sya = vyaf = 0. The algebra has the following indecomposable projective

*

modules. We also note their images under (—)*.

: 2 3 ! 2 3
P1 223, PQI:?), PgZ: 1, Pl* 2227 P2* = 1, P; =2
1 1 2 1 3 1
We collect some properties of A.
Property | A

Nakayama algebra | yes
gldim A | oo
Indecomposable projective-injective modules | Py, P
Indecomposable strongly projective-injective modules | Py
domdim A | 2
v-domdim A | 0

Nodes | none

The Auslander-Reiten quiver of A can be written as follows.

[u—
YT
N
|
|
|
|
|
|
|
|
[\]
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The category L4 contains the following indecomposable complexes. Note that we group com-

plexes which are connected by applying a shift in L4.

degree : -5 —4 -3 —2 —1 0 1 2 3
Fy 0— P -% P %P5 P—0
F%'[l]:FZ:: N N L - Y LY Ry )
Fi[l] = F; - 0—P %P 3P %P 5P %P ...
Rl=F: - —>P%P%P5%P %P 5P%SP5P%P -

1

The categories mod A and £, can be visualized as follows. In particular, the right hand side

contains information about possible shifts in £4. The dashed lines indicate zero relations.

VAR AN
. — — - N — Fo[1] ------- Fr -
NG N SN V. VN
1 -mmmmmmeee 3 p R 1 Fr o Fy] ------ F3[1] ----—-- F

Example 7.7. We aim to calculate the group GJ(A) of Definition 4.15. Recall that we have
GL(A) ~ Go(Hp(proj A)) by Theorem 4.16. In case that F*[1] € L4 for F* € L4, we have the

following distinguished triangle in £ 4.
F*—-0— F[1] —

By Proposition 2.18, we obtain a corresponding perfect exact sequence with projective middle

term. This implies [X] = —[Y] in GJ(A) if Fy[1] ~ Fy € L4. Using this, the perfect exact
sequence

9 1

0—=3—=22—=1-0
3
. T2 ] 1
with F7[1] = F5 yields [3} = —[51] and ?)) = 0. Furthermore, we have [2] = —[S3] and
3
E’] = —[Ss] since F}[1] = F3 and F5[1] = F5. The perfect exact sequence
2 1

O—>Sl—>i)’—>S3—>0
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implies [ﬂ = [S1] + [S3]. In conclusion, we obtain the following.

5] =14

3] =-lsu

5] = 18] = [81] + 53]
!

2

13

Thus, GJ(A) is generated by the classes of the simple modules S; and Ss.

We want to compare this with the stable Grothendieck group G§f(A). By Remark 4.18, we
have a surjective group homomorphism GJ(A) — G5{(A). In particular, the above equations
still hold in G§f(A). Additionally, we know that the class in G§f(A) of every module with finite

projective dimension is zero. Hence, we obtain [g] [S1]ss = 0 in GF(A). This results in the

st:
following.

Thus, G§'(A) is already generated by the class of the simple module S3.

Example 7.8. We calculate the category of stable Gorenstein-projective modules.

We have F;[2k] ~ F; € L4 for all k € Z. By Lemma 4.38, we obtain that F; and Fj are
1

indecomposable complexes in Ky, (proj A). None of the other complexes are periodic, so that
these are the only ones. In particular, we have that the indecomposable modules of Gproj A

are given by 2 and i{) with no non-zero morphism between them.

Note that A is a Gorenstein algebra. Thus, Dy, (A) is equivalent to Gproj A.

Example 7.9. Consider the following inclusions of categories.

Kiac(proj A) « s L4 > Hp(proj A) — Hyp(proj A) — H(proj A) — K(proj A)

] |7

Gproj A —— mod A

Since (0) C stp A C P4 C proj A are proper subsets, the above inclusions must be proper as
well; see also Theorem 4.45 and Lemma 4.29. We verify this by constructing a complex for

each category.
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Recall the indecomposable elements of L4 listed above. In Example 7.8 we have already seen

that Ky (proj A) is a proper subset of £ 4. On the other hand, every shift of F7 is still an element
2

3
of Hp(proj A) but no longer an element of £4. However, not every complex in Hp(proj A) is

obtained by shifting a complex in L 4.

Consider the following complexes in K(proj A).

. b b

Gy 0 y Py s P -2 P, Py %P5 Py » 0
Go‘ \P b\P ac\P b\P ac\P b\P \O
2 - AR 7 3 7 2 7 3 7 2 7 3 7 2 7
G.' \P b\P ac\P b\P (lC\P ba\P N

3 - AR 7 3 7 2 7 3 7 2 7 3 7 1 /O
. b b b b b

Gy s P =% PSP 2SS PSS PSSR

A direct calculation yields that H*(G3) € {0,553} for all k € Z. Since Sz € 1P4, we have
G5 € Hp(proj A); cf. Lemma 4.5. However, neither G nor a shift thereof is an element of £ 4.

For the next complex, we have H*(G3) € {0,5,} for all k € Z where S, occurs only as coho-
mology in the degree of the last non-negative term. Since Sy € L(stp A) but Sy €-P4, we have
G5 € Hep(proj A) and G5 & Hp(proj A); cf. Lemma 4.5.

The complex G has % as non-zero cohomology in a single degree. Since % ¢ L(stp A), we obtain
G5 & Hep(proj A) as before. However, we have H*(G%) = 0 in all other degrees and G3 is right
bounded, so that G% is an element of H(proj A).

Finally, we have H*(GY) = 2 for all k. Thus, G} € K(proj A) is not an element of H(proj A).
Note that the truncation 7<o Gj and the truncation 750G} are not an element of H(proj A) as
well. However, we have G € +K°(stp A) which affirms that the restriction to the category

H(proj A) is necessary in the definition of the smallest triangulated subcategory that contains
Ly.
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7.3 Triangulated categories inside C(proj A)

The main purpose of this section is to calculate the categories Hp(proj A) and Hgp(proj A)
of Chapter 4 explicitly. This is done in Example 7.10. In the next Example 7.11, we follow
the constructions in Section 4.1 which where used to show the minimality of Hp(projA).
Finally, we illustrate the associated self-injective algebra of A and its connection to the category
Htp(proj A) in Example 7.12.

Let A be the quiver algebra over k given by the quiver

1
/ \
2 b > 3

with relations o = ya = 0 = de = 0. The algebra has the following indecomposable

5
y4 —= 35

projective modules. We also note their images under (—)*.

2
P12:%, P2::L;)’ P312134, P4 :é)l’ P5Z—5
.k P2 .3 .4 P _5
Pl = g, Py =1, Pyi=3, P =3, 5 =4
We collect some properties of A.
Property | A

Nakayama algebra | no
gldimA | 5
Indecomposable projective-injective modules | Py, P, Py
Indecomposable strongly projective-injective modules | Py, P
domdim A | 0
v-domdim A | 0
Nodes | 57, S, Sy

The Auslander-Reiten quiver of A can be written as follows.

4 2
5 i
/ \ 3/ \2
D {-==mmm-- 4 (- 1 ¢ 3
\3/‘ \ / \
14 $=-- 3 A= 2 - 1
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The category L4 contains the following indecomposable complexes.

degree:  —6 -5 —4 -3 -2 -1 0 1 2 3
F; 0 P p -4 pbtyp 2 p_°,p 0
4
F3 0 p-p-4p-typ 9o sp _L,p 2 p_<p 0
3 a0 c
e d (b 0) Oe d
F3.Z 0 Ps Py Py —"Pod PP Py P; — 0

Furthermore, we have Fj[4] = F3[3| = F5[2] = F}[1] = F3.
1 4

The categories mod A and £4 can be visualized as follows. In particular, the right hand side

contains information about possible shifts in £4. The dashed lines indicate zero relations.

T 2 B o [ F;
NN NS TN
; S 2 2 S F;[2]
v ,
1 Fi[3)  Fi[4)

Example 7.10. We aim to calculate the categories Hp(proj A) and Hgy,(proj A). Since A has
finite global dimension, both categories are contained in K°(proj A) ~ H(projA). First, we
construct all complexes in Hg,(proj A). Afterwards we can identify those that are an element
of Hp(proj A).

A complex F* € Hyp(proj A) satisfies H*(F*) € *(stpA). The following indecomposable
modules are an element of +(stp A). These are precisely those that have no composition factor
isomorphic to S7 or 55.

3 4
37 4> 47 5 5

Similarly, we obtain the indecomposable modules in +P4 which we will need later.
3
3, 1 4

We will use an integer n > 1 to index some of our complexes. We write (P, — P;)~" for the
periodic complex
A R N - LNy RNy

with P, appearing n-times. Furthermore, we write P ER (P, 5 P70 2L Py @ for the complex

(1 0)

fo
P——= P,®(Q where f: P — P, and g : P, — P, & () are morphisms in proj A.
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We have the following indecomposable complexes in H,(proj A) with n > 1.

degree: —8 -7 —6 -5 —4 -3 -2 -1 0 1
Py - 0 —— P — 0
Py 0—— P —0
Se 0 P —— P, 0
Xl(n)’: 04)P3 b (P2 = Pl)HnL}P;g;)O
Xa(n)* : 0— P, % Py b (P, 4 P)7m S Py —— 0
X3(n)* : 0— P P-4 Py b (P, —%— P)7" -5 Py —— 0
b a cb (a 0) (i)

Yi(n)* : 0— P32 (P, S P)y~>D) 2p — 2P @P, 5P —0
)
a0 d

Ya(n)® 0— P, -4 Py 2 (P, % p)~(n=D) b p (9, Pl ® Py ~5 P — 0
e d b a cb (a 0) @

Y3(n)* 0— PP S P35 (P, S P)70-) &P -~ s PGP ~$P;—0
a0 c
b a (Cb 0) Oe d

Zl(n)': 04)P34)(P24)P1)*>(n71)HPQ@P5*>P1@P4 P34>0
a0 c
d b a _y(ev 0) e d

ZQ(TL)’Z 0*>P44)P34)(P24)P1)_>(" )HPQ@P5*>P1@P4 Ps — 0
a0 c
e d b a 1 (Cb O) Oe d

Z3(n)* : 0*>P5*>P4—>P3H(P2%P1)*(” " PP —Y PP, P;s — 0

It remains to show that every indecomposable complex in Hs,(proj A) is isomorphic to a shift
of an entry of this list. First, we note that this holds for the elements of £,. More precisely,

the indecomposable complexes in £, are isomorphic to one of the following complexes.
X3(1)", Xs(1)"[=1], X5(1)*[=2], X3(1)*[=3], Xs(1)"[—4], X5(2)"[-2], Zs5(1)°

Let F* € Hgp(proj A). By Lemma 4.6, there exists a projective resolution P* of a cohomology
in L(stp A) and a complex C* € H,(proj A) such that there is a distinguished triangle of the
following form.

P -k] - F* = C" —
In this triangle, k& € Z is chosen such that H(F*) = 0 for i < k. Then we have H'(C*) = 0
for i < k. As in the proof of Lemma 4.7, we inductively arrive at a complex C* with

C*[r] € L4 for some r € Z. For the purposes of this example, we will use the shifted tri-
angle C*[—1] — P*[—k| — F* — .
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Let P* be a projective resolution of a module in +(stp A). Let C* be a complex appearing in
the list above. In particular, this includes all indecomposable complexes in £4. Let k € Z such
that H(C*) = 0 for i < k+ 1. That is, C* is exact in every degree smaller or equal to k and

also exact in degree k + 1. Consider the following distinguished triangle.
o L pr—k] = O(f) —

For every possible choice of P*, C*, k and f*, a direct calculation shows that C'(f)* is isomorphic
to a direct sum of complexes appearing in the list above. Thus, every indecomposable complex

F* € Hgp(proj A) is isomorphic to a shift of a complex in this list.

The following complexes are the indecomposable elements of Hp(proj A) up to shifts. These

are precisely the complexes appearing in the list above with cohomology in +7Pj.
S*, Xi(n)', Xs(n)*, Zi(n)*, Zs(n)® forn>1

One of the Auslander-Reiten components in K°(proj A) containing £ 4 can be written as follows.
The other component is given by a shift of [1]. Both components together form precisely the
category Hgp(proj A); cf. also Remark 4.28.

Complexes F* € L4 are marked as . Complexes F* € Hp(proj A) are marked as [1:7:’]

X3 (3)"[4]
A
1 Z3(2)" [-2) ¢ X ()[4 -

X3(2)' (2] - Vi)' [-2) - Z(1) (-2 < K24

L SN N S N S N
Zo(1) |« X () (2] e Va(1)° [22] 4= Zo(1)°[=2) ¢ X (1) 4] :

LS NN SN S N SN

N
.
N
%
%
N
b
N
/
\
%

Example 7.11. We use the methods provided in Section 4.1 to verify that the complex

Fr=X(1):05P5P%P 5P —0



7.3 Triangulated categories inside KC(proj A) 173

is an element of every triangulated subcategory T of K’(proj A) that contains £4. By going
through the following steps in reverse order, this also provides a way to construct F* via
complexes in L4. Note that in this example, several steps that were necessary for the general

case are either simplified or not necessary at all.
Step 1. It suffices to consider projective resolutions of modules in +Py; cf. Lemma 4.7.

We have HO(F*) = i, H=3(F*) = Sy and H*(F*) = 0 for k ¢ {0, —3}. Furthermore, we have
Ho(F?) = 0. In particular, note that H*(F*) € 1P, as stated in Lemma 4.5.

In the notation of Lemma 4.7, we may choose » = 0. Then k£ = —3 is the only degree in Z.,

with non-zero cohomology. The minimal projective resolution of Sy is given by
S° 20—>P5gp4—>0.

We have the following distinguished triangle in K’(proj A); cf. Lemma 4.6.

. S

~

N o T

b
P3 > Py a)Pl C>P3

Lo !

d b
>P3 > Py a)Pl C>P3

o
B

Moo

~

e}
2
=

In this case, we already have C(f*) = F; € L. No further construction is necessary during this
1

step. It remains to consider the projective resolution S* of Sj.
Step 2. Tt suffices to consider projective resolutions of simple modules in ~PA; cf. Lemma 4.9.

Only one projective resolution was used in step 1. In this case, nothing needs to be done during

this step, since S* is already a projective resolution of a simple module.
Step 3. All projective resolutions of simple modules S € +P,4 are in 7; cf. Lemma 4.10.

Consider the projective resolution S* of S;. The injective hull of Sy is given by I := 3. Note
that I is not projective since S, is an element of *P4. We obtain the following distinguished

triangle.

>P5 = > Py

RN

d b
0 >P5 e>P4 >P3 > 1o = >P1 < >P3

T e, 9% 19 |

0 y Py —< P, —45 Py s PP —5 P o P, y P

~

OO <— O

~
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We have C(g*) ~ F; € L4. Note that 0 — 4 — i — 3 — 0 is not a perfect exact sequence,

since the first morphism factors through the projective module P3 = 134.

In conclusion, we have the following two distinguished triangles with F3, Fs € L4.
1

RNy o N, SN This triangle implies S* € 7.
1
S*[3] EANY LR F; — This triangle implies F* € T .
1

Example 7.12. We discuss the associated self-injective algebra of A. Consider the following
complex F* := X5(1)" € Hyp(proj A).

O—>P4i>P3i)P2$P1£>P3—>O

Let e = e;+e5 be the sum of the primitive idempotents corresponding to the strongly projective-

injective modules P; and P,. The algebra eAe is isomorphic to the quiver algebra A’ given by

the quiver
1 a: 2
/8/
and relations o/ ' = ' o’ = 0. We denote the indecomposable projective modules by P| := %
2

and P, := 7. Let S} be the simple module in mod A" corresponding to P. We obtain the
following complex (Fe)* € K?(mod eAe).

(Fe)™ — (Fe)™ — (Fe)™? — (Fe) ™! — (Fe)? — (Fe)!

L

0 > S > Py > Py > 51 > 0

As stated by Lemma 4.30, we see that (F'e)* is exact in every degree. On the other hand, it
seems difficult to construct Hgp, (proj A) by lifting exact complexes in K(mod eAe) to projective

complexes in Hgp,(proj A).

7.4 Algebras stably equivalent by deleting nodes

In this section, we discuss two stably equivalent algebras A and B. The algebra A has no
nodes, whereas the algebra B has two nodes. We mainly aim to illustrate the constructions of
Chapter 6 in Example 7.16. In Example 7.15 we additionally take a look at some properties
discussed in the previous chapters that are not preserved by stable equivalences induced by

deleting nodes.
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Independently of this, Example 7.13 provides two short exact sequences that are not perfect
exact. This is done in context of Lemma 2.13. Moreover, we show in Example 7.14 that the

non-projective simple modules of A do not generate the group GI(A).

We consider two algebras A and B given by the following quivers and relations.

Quiver of A Quiver of B
12592 7,3
le | =2 .5/~
8 5
4—"255-24¢6
Relations of A Relations of B
ae=v0=0 ae=7v0=0a=07=0

The algebra A has the following indecomposable projective modules. We also note their images

*

under the functor (—)*.

] 2 4 5
Pl:zga P2:2327 P3:37 P4:57 P5:67 P6:6
9 3 5 6
Py =1, 5 =1 Py = %, Py =4, s =9y, Py ::g

The algebra B has the following indecomposable projective modules. We also note their images

*

under the functor (—)*.

1 5 6

Ql = %7 Q? = 127 Q5 = o’ Qﬁ = 5
.3 .2 .5 .. 0
Q7 = % Qs = 1 Q5 = 26 Qg = g

The following table collects some properties of A and B.

Property A B

Nakayama algebra || no no
gldim A 2 00
Indecomposable projective-injective modules Py 1

Indecomposable strongly projective-injective modules || none Q1
domdim A 0 0
Nodes || none | Si, Sg
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The Auslander-Reiten quivers of A and B can be written as follows.

Auslander-Reiten quiver of A Auslander-Reiten quiver of B
2 2
3 4 g 1 4-mmmmm- 2
Ny 20N Ny 20N
35 ¢--mmmmm 5( ******** 4 15 ¢--ammmm 5< ******** 6
I AV VI A AV VN
2 24 5 2 26
6 35 ¢ 5 6 15 €77 5
SN N, TN SN NN
6 ¢-—----—--- D ------ 35 $---0- 24 1 6 ¢-—---—-—--- S b------ 15 ¢~ 2 4= 1
NGNS NS NN, S N S
5T 3 2 5T T 2
N/ N/
2 2
3 1

Example 7.13. We discuss two short exact sequences which are not perfect exact.

Consider the following short exact sequence in mod A.

M : 0—>5—>254—>121—>0

Using Lemma 2.13, we can show that 7, is not a perfect exact sequence. The morphism 5 — 254

factors through the projective module P,. However, P, is not a direct summand of the middle

term of 7.

A characterization using the left morphism of the short exact sequence does exist for Nakayama
algebras; cf. Lemma 2.14. In general, there are short exact sequences whose left morphism is
non-zero in mod A but which are not perfect exact. The following short exact sequence is an
example of this.

M2 0—>5—>325—>§—>0
We see that 75 is not perfect exact since (325 — 5*) ~ (1 — 4) is not surjective. In contrast
to 11, the morphism 5 — 325 does not factor through a projective module.
Example 7.14. The non-projective simple modules of A are not a generating system of GJ(A).

In fact, consider the module X := g Since X is injective, every short exact sequence starting

in X is split. Furthermore, every morphism ending in X factors through the projective module

P5. Thus, the only non-split short exact sequence with X as middle or ending term is
0—>S5;—P —X—0.

However, this is not a perfect exact sequence since P3 = S3 is projective.

In conclusion, the class of X must be an element of every generating system of G§(A); see also

Remark 4.19. In particular, GJ(A) is non-zero.
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We compare this with the group GJ(B). In mod B, we have the following almost split sequence
2
ending in X' = g
025 —-Qy— X =0

This time, the starting term S; is not projective in mod B so that this is a perfect exact
sequence. Therefore, we have [X'] = —[S] in GI(B).

Example 7.15. We detail some of the differences between mod A and mod B. Let a be the

stable equivalence mod A — mod B induced by the Auslander-Reiten quivers above. As a

consequence of the previous example, o cannot induce an isomorphism between G}(A) and
GL(B). This is because S; is a node in mod B.

Consider the following perfect exact sequence in mod B. In fact, this is an almost split sequence

with non-projective starting term; cf. Example 2.11.

O—>6—>g—>5—>0

However, the simple module Sg in mod B is a node. Thus, the stable equivalence a does
not preserve this perfect exact sequence. In fact, there is no short exact sequence starting in
Sy € mod A, where a(Sy) 2 Ss € mod B.

Since gldim A < oo, the category L4 consists of bounded complexes. On the other hand,
we have gldim B = oo so that L£p contains some unbounded complexes. In particular, there
cannot exist an equivalence £, — Lp which is induced by an exact functor mod A — mod B.
Moreover, A has no strongly projective-injective modules, whereas Pg = stp B is non-zero.
Finally, there is a totally acyclic complex -+ — Q5 = Q¢ — Q5 — Qs — --- in mod B while
there cannot exist a totally acyclic complex in mod A. In summary, we have the following two

chains of subcategories, where all inclusions are proper.

0 = Kiac(proj A) C L4 C Hp(proj A) C Hyp(proj A) = H(proj A) ~ K’(proj A)
0 C Kiac(proj B) C L C Hp(proj B) = Hgyp(proj B) C H(proj B)

In particular, a does not induce an equivalence between Ki,.(proj A) and Ky, (proj B).

Example 7.16. In Chapter 6, we have seen how to construct stably equivalent algebras by
deleting nodes or by gluing a simple projective vertex and a simple injective vertex. We aim
to list all algebras which can be obtained from A or B by repeating these steps for a finite
number of times in any order. Note that over an algebraically closed field, the Auslander-

Reiten conjecture holds for A and B since both are of finite representation type.

We start by constructing the algebra A from B as described in Definition 6.7. Let N' = {1, 6}
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corresponding to the nodes S; and Sg in mod B. We obtain the following matrix algebra.

k Homp(S1,Q1) 0 Homp(S1,Qs) Homp(Si,Q2) Homp(S1,Qs)

0 k 0 0 0 0
En(B) = 0 Hompg(Ss, Q1) k Homp(Ss, Q) Homp(Ss, Q2) Homp(Ss, Qs)

0 0 0 k 0 0

0 Homp(Q2,Q1) 0 Homp(Q2,Qs) Homp(Q2,Q2) Homp(Q2,Qs)

0 Homp(Q5,Q1) 0 Homp(@s,Qs) Homp(Qs,Q2) Homp(Qs,Qs)

As a k-vector space this is isomorphic to the following matrix.

kK 'k 0 0 kK O
0 kK 00 0O
0 0 kK 0 kK k
En(B) ~
n(B) 00 0 kK 0O
0 kK 0 0 kK O
0 0 0 k k k

We label the columns and rows of this matrix by 1 to 6. Then Ex/(B)° is isomorphic to the

quiver algebra given by the quiver

~
—_

5
> 3

with relations «e = v§ = 0. Thus, we recover Ey(B)°P? ~ A as algebras. Up to equivalence,
this is the unique algebra without nodes stably equivalent to B such that there is a radical
embedding B — A; cf. Lemma 6.13.

Now, we construct the algebra B from A as described in Definition 6.3. Let J := {3, 6} and
o:J — {1,4} with 30 = 1 and 60 = 4. This corresponds to gluing the simple projective
vertex 3 with the simple injective vertex 1 and the simple projective vertex 6 with the simple
injective vertex 4. We obtain the following matrix algebra.

k® HOHIA(Pg, P1> HOII]A(P3,P4) HOIHA(P3, PQ) (

E (A) B HOInA(PG,Pl) k D HOH]A(PG,P4) HOII]A(PG,PQ) HOII]A(Pﬁ,Pg,
T Hom (P, Py) Homu(Py, ;)  Homu(Ps, P») (
( ) (

HOmA(P5,P1) HOmA(P5,P4) HOII]A P5,P2

As a k-vector space this is isomorphic to the following matrix.

K 0 k 0
0 k k k
EU(A)ZI@OI{O
0 k k k
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We label the columns and rows of this matrix by 1 to 4. Then E,(A)°P is isomorphic to the

quiver algebra given by the quiver

| =23 2 ——4
3 5

with relations ae =9 = fa =0y = 0. Thus, we recover E,(A)°® ~ B as algebras.

The following are all other possible choices for J and o together with the resulting algebra

E,(A)°P. In each case, we only give the corresponding quiver and relations.

J = {3, 6} with

o \ /B \
' 2 >3 > 1 with relations
30 =4 and 66 =1 Xls/ ae=70=0y=0a=0
4

J = {3} with
30 =1

with relations

ae=v0=pa=0

J = {3} with 2 5 3 with relations
30 =14 ' /la 5 ae=7v0=0pv=0

J = {6} with 1 2 3 with relations
: 5 e
6o =1 \ ae=v0=0a=0
4 ——5
& \ ﬁ \
J = {6} with 2 3 4 with relations
60 =4 ' la 5 ae=70=0v7=0
51

By Remark 6.14, this is a complete list of all algebras C' that are stably equivalent to A and B
such that C is obtained from A or B by a finite number of steps of either deleting a node or

gluing a simple projective vertex and a simple injective vertex in any order.
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