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Abstract

We consider the functor from the stable module category to the homotopy category constructed

by Kato in [18]. This functor gives an equivalence between the stable module category and

a full subcategory L of the unbounded homotopy category of projective modules. Moreover,

the functor induces a correspondence between distinguished triangles in the homotopy category

and perfect exact sequences in the module category.

In general, the stable module category and the category L are not triangulated. We provide a

description of a triangulated hull of L inside the homotopy category and discuss its Grothendieck

group. We also construct a larger subcategory which is shown to be characteristic inside the

homotopy category under suitable assumptions. Both subcategories coincide with L if and

only if the algebra is self-injective. Furthermore, stable equivalence of Morita type are shown

to preserve both subcategories.

Another focus is put on the relationship between stable equivalences and perfect exact se-

quences. On the one hand, we give sufficient conditions for a stable equivalence to preserve

perfect exact sequences up to projective direct summands. A stable equivalence which preserves

perfect exact sequences in this way is shown to induce a triangulated equivalence between the

categories of stable Gorenstein-projective modules. On the other hand, given a stable equiva-

lence that is induced by an exact functor, we provide various sufficient conditions under which

the equivalence is a stable equivalence of Morita type. In particular, stable equivalences of

Morita type arise from equivalences that are given by tensoring with an arbitrary bimodule on

the level of the category L .

Finally, we give a description of all algebras that can be obtained by deleting or inserting nodes

via stable equivalences constructed by Koenig and Liu in [22].
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Zusammenfassung

Wir betrachten den Funktor von der stabilen Modulkategorie in die Homotopiekategorie, der

in [18] von Kato konstruiert wurde. Hierdurch ergibt sich eine Äquivalenz zwischen der sta-

bilen Modulkategorie und einer vollen Teilkategorie L der unbeschränkten Homotopiekategorie

von projektiven Moduln. Der Funktor induziert außerdem eine Korrespondenz zwischen den

ausgezeichneten Dreiecken in der Homotopiekategorie und den perfekt exakten Sequenzen in

der Modulkategorie.

Die stabile Modulkategorie und die Kategorie L sind im Allgemeinen nicht trianguliert. Wir

geben eine Beschreibung einer triangulierten Hülle von L innerhalb der Homotopiekategorie an

und untersuchen ihre Grothendieck Gruppe. Weiterhin konstruieren wir eine größere Teilkat-

egorie, die unter geeigneten Annahmen eine charakteristische Teilkategorie der Homotopiekat-

egorie ist. Beide Teilkategorien stimmen genau dann mit der Kategorie L überein, wenn die

Algebra selbstinjektiv ist. Zusätzlich zeigen wir, dass stabile Äquivalenzen vom Morita Typ

beide Teilkategorien erhalten.

Ein weiterer Schwerpunkt wird auf den Zusammenhang zwischen stabilen Äquivalenzen und

perfekt exakten Sequenzen gelegt. Zum Einen werden hinreichende Bedingungen angegeben,

unter welchen eine stabile Äquivalenz perfekt exakte Sequenzen, bis auf projektive direkte

Summanden, erhält. Es wird gezeigt, dass eine stabile Äquivalenz, die perfekt exakte Sequen-

zen in diesem Sinne erhält, eine triangulierte Äquivalenz zwischen den Kategorien der stabilen

Gorenstein-projektiven Moduln induziert. Zum Anderen betrachten wir stabile Äquivalenzen,

die von einem exakten Funktor induziert werden. Wir geben verschiedene hinreichende Bedin-

gungen an, unter welchen solche Äquivalenzen eine stabile Äquivalenz vom Morita Typ sind.

Insbesondere führen Äquivalenzen auf der Ebene der Kategorie L, welche durch ein Tensor-

produkt mit einem beliebigen Bimodul gegeben sind, zu stabilen Äquivalenzen vom Morita

Typ.

Schließlich konstruieren wir alle Algebren, die durch das Streichen oder Einsetzen von Knoten

entstehen können. Dies benutzt die Beschreibung solcher stabiler Äquivalenzen von Koenig

und Liu in [22].
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Introduction

To study the representation theory of finite dimensional algebras A and B, one often considers

equivalences between three associated categories. The strongest of these is given by Morita

equivalences between the categories of finitely generated modules modA and modB. A weaker

link is provided by equivalences between the derived categories D(modA) and D(modB). Fi-

nally, we have stable equivalences between the stable module categories modA and modB.

Thereby, the stable module category is defined by quotienting out morphisms factoring through

projective modules. While there is a theory for derived equivalences developed by Keller([20])

and Rickard([37]) generalizing the Morita theory for module categories, so far no such theory

is known for stable equivalences. Unlike the others, the stable module category in general is

neither abelian nor triangulated. In contrast, Morita equivalences preserve the abelian struc-

ture of the module category and derived equivalences preserve the triangulated structure of

D(modA).

As such, a stable equivalence often preserves relatively few properties. In particular, a stable

equivalence does not need to be induced by a functor on the level of the module category. There-

fore, several smaller, more specific classes of stable equivalences have been studied. Motivated

by results for self-injective algebras and group algebras, Broué introduced the class of stable

equivalences of Morita type; cf. [7]. These are induced by exact functors between the module

categories which, under mild assumptions, form an adjoint pair. Stable equivalences of Morita

type have been shown to preserve many properties of the algebra; see for example [24,26,35,42].

If A is a self-injective algebra, the stable module category has a triangulated structure with

triangles induced by short exact sequences. Rickard ( [38]) and Keller-Vossieck ( [21]) have

shown independently that derived equivalent self-injective algebras are stably equivalent of

Morita type. In this way, stable equivalences arise naturally for self-injective algebras. Con-

versely, results by Asashiba in [2] and Dugas in [12] show that for self-injective algebras of finite

representation type, every stable equivalence induces a derived equivalence and thus a stable

equivalence of Morita type. Furthermore, a different result by Rickard in [39] states that for

self-injective algebras every stable equivalence that is induced by an exact functor between the

module categories is isomorphic to a stable equivalence of Morita type.
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12 Introduction

For arbitrary finite dimensional algebras it remains an open problem whether stable equivalences

induced by exact functors are of Morita type. Progress has been made by Dugas and Martinez-

Villa in [13], who have shown that a stable equivalence induced by tensoring with a bimodule

AMB which is projective on both sides is of Morita type if HomA(M,A) is projective over B.

In a different direction, Liu and Xi provide several methods to construct stable equivalences of

Morita type from given ones; cf. [28–30]. In practice, it remains difficult to determine whether

two algebras are stably equivalent of Morita type.

For general stable equivalences the obstruction to nice properties is often given by the existence

of a node. Nodes are non-projective, non-injective simple modules S where the middle term

of the almost split sequence starting in S is projective. This has been studied by Auslander

and Reiten in [4] and later Mart́ınez-Villa in [32,33]. By excluding algebras with nodes, stable

equivalences preserve most short exact sequences and almost split sequences up to projective

direct summands; cf. [4] and [33]. Furthermore, Mart́ınez-Villa has shown in [33] that stable

equivalences in this setting preserve the global and dominant dimension of algebras as well as

the stable Grothendieck group. Note that stable equivalences which are induced by two exact

functors preserve nodes; cf. [27].

Finally, a complementary class of stable equivalences is given by deleting nodes from the algebra.

In [31], Mart́ınez-Villa has shown that every algebra is stably equivalent to an algebra without

nodes in this way. He and Montaño-Bermúdez study and extend stable equivalences which are

induced by node deletion or node insertion in [34]. Using a different approach, Koenig and Liu

show in [22] that such stable equivalences can be described by bimodules which are projective

on one side.

In this thesis, we consider other concepts and categories associated to the stable module category

and examine when they are preserved by a stable equivalence. This is based on the following

work by Kiriko Kato who gives a description of the stable module category inside the homotopy

category.

As seen above, there seems to be a close connection between the stable module category and

the derived category in case that A is self-injective. A similar approach for rings which are

not necessarily self-injective has been to study the relationship of the stable module category

with the homotopy category of projective modules K(projA). In the context of commutative

rings, Yoshino introduces in [43] an equivalence between the stable category of modules with

finite projective dimension and a full subcategory of the homotopy category. A similar tech-

nique was used by Amasaki in [1]. In [18], Kato extends this equivalence to a functor from

the stable module category to the unbounded homotopy category of projective modules. This

results in a full subcategory LA of the homotopy category which is equivalent to the stable

module category. Furthermore this equivalence modA
∼−→ LA provides a correspondence be-

tween the distinguished triangles in K(projA) and so called perfect exact sequences in modA.
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Here, a short exact sequence is called perfect exact if the induced sequence under the functor

HomA(−, A) is exact as well. Using these concepts, Kato constructs a weak kernel and a weak

cokernel for the stable module category and contrasts this with the abelian structure of modA.

Later, in [19], the same methods are utilized by her to characterize morphisms which are stably

equivalent to a monomorphism.

Although these results where introduced for modules over commutative rings, the main tech-

niques still work for modules over general finite dimensional algebras. This provides the basis for

most of the results in this thesis, in particular we will make use of the equivalence modA→ LA.
However, we focus more on stable equivalences, perfect exact sequences and the triangulated

structure of the homotopy category.

For the latter, we discuss the category LA ⊂ K(projA) in situations where the stable module

category is not triangulated. In this setting, LA still contains or is contained in triangulated

subcategories of K(projA). An example of this is the homotopy category of totally acyclic

complexes Ktac(projA). The corresponding objects in modA are the Gorenstein-projective

modules. The framework of perfect exact sequences provides an intrinsic description of totally

acyclic complexes inside LA; cf. Lemma 4.38. Furthermore, the equivalence modA → LA by

Kato restricts to the known triangulated equivalence between the category GprojA of stable

Gorenstein-projective modules and Ktac(projA); cf. Lemma 4.40. On the other hand, LA can

be enlarged to a triangulated category inside K(projA). We define two triangulated subcate-

gories of K(projA) as perpendicular categories such that they have LA as a subcategory; cf.

Definition 4.1. The category HP(projA) has objects which do not have non-zero morphisms

to bounded complexes of projective-injective modules. The category Hstp(projA) has objects

which do not have non-zero morphisms to bounded complexes of strongly projective-injective

modules. In summary, we will obtain the following chain of subcategories. With the exception

of modA ≃ LA, all of these are triangulated categories.

Ktac(projA) LA HP(projA) Hstp(projA) K(projA)

GprojA modA

∼ ∼

While Hstp(projA) is a larger category than HP(projA), it is closed under a functor νK which

is induced by the Nakayama functor νA; cf. Definition 4.22. If A has finite global dimension

νK is equivalent to the derived Nakayama functor between the bounded homotopy categories

Kb(projA)→ Kb(projA). Our result is as follows.
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Theorem A (Theorem 4.11, Theorem 4.26). Let A be a finite dimensional k-algebra.

(1) The category HP(projA) is the smallest triangulated subcategory of K(projA) that con-

tains LA and is closed under isomorphisms.

(2) The category Hstp(projA) is the smallest triangulated subcategory of K(projA) that con-
tains LA and is closed under νK and under isomorphisms.

As an application of the first result, we discuss the Grothendieck group of the triangulated

category HP(projA). Via the equivalence modA→ LA, we obtain an alternative Grothendieck

group GP
0(A) of modA; cf. Definition 4.15. In contrast to the known stable Grothendieck group,

GP
0(A) is defined via perfect exact sequences instead of short exact sequences. As such, it can be

non-zero even for algebras of finite global dimension. Regarding the second result, a theorem

by Fang, Hu and Koenig ( [14, Theorem 4.3] ) implies that Hstp(projA) is a characteristic

subcategory of Kb(projA) if A has finite global dimension and ν-dominant dimension at least

1; cf. Corollary 4.32. We also provide an extension of this consequence for algebras of arbitrary

global dimension; cf. Theorem 4.35.

In case that A is a self-injective algebra, modA is already a triangulated category. Therefore, LA
is a triangulated subcategory of K(projA) and all previously mentioned subcategories coincide.

In this sense, the above constructions are compatible with the existing structure of modA and

K(projA). We show, that this characterizes the property of A to be self-injective.

Theorem B (Theorem 4.45). The following are equivalent for a finite dimensional algebra A.

(1) A is self-injective.

(2) LA is a triangulated subcategory of K(projA).

(3) LA = HP(projA).

(4) LA is closed under taking shifts in K(projA).

(5) LA = Ktac(projA).

If one of the above conditions holds, the functor modA→ LA is an equivalence of triangulated

categories. Furthermore, we have Ktac(projA) = LA = HP(projA) = Hstp(projA).

The remaining part of this work studies different classes of stable equivalences. Our main focus

is on stable equivalences that preserve the property of short exact sequences to be perfect exact.

Necessarily, such a stable equivalence cannot be induced by deleting or inserting a node. The

following result provides sufficient conditions in which this property is preserved. We say that

a morphism f : X → Y in modA has finite depth, if f ̸∈ radn(X, Y ) for some n ∈ Z⩾1. See

Definition 3.13 for more details.
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Theorem C (Theorem 3.19). Let α : modA→ modB be a stable equivalence.

Suppose given a perfect exact sequence 0 → X
f−→ Y ⊕ P g−→ Z → 0 without split summands

where X has no node as a direct summand, P ∈ projA and Y has no projective direct summand.

Suppose that f p and g π have finite depth for every projection p onto an indecomposable direct

summand of Y and every projection π onto an indecomposable direct summand of Z. Then

there exists a perfect exact sequence

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

in modB with P̃ ∈ projB such that f̃ ≃ α(f) and g̃ ≃ α(g).

In particular, this provides conditions on the algebras A and B under which every stable

equivalence preserves perfect exact sequences in this way. While the assumption on the depth

of f and g is necessary for our proof, it seems unclear whether a similar result holds in a

more general setting. However, if a stable equivalence preserves perfect exact sequences it also

preserves the stable category of Gorenstein-projective modules and the Grothendieck group

GP
0(A) introduced above.

Theorem D (Corollary 3.20, Theorem 4.42, Theorem 4.17). Let α : modA → modB be a

stable equivalence between finite dimensional algebras without nodes. Consider the following

conditions.

(1) Let 0 → X
f−→ Y ⊕ P

g−→ Z → 0 be a perfect exact sequence in modA without split

summands where P ∈ projA and Y has no projective direct summand. Then there exists

a perfect exact sequence

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

in modB with P̃ ∈ projB such that f̃ ≃ α(f) and g̃ ≃ α(g).

(2) The equivalence α induces a triangulated equivalence Ktac(projA) → Ktac(projB). This

induces a triangulated equivalence GprojA→ GprojB.

(3) The equivalence α induces an isomorphism GP
0(A)→ GP

0(B).

If condition (1) holds for α and its quasi-inverse, conditions (2) and (3) hold. If A and B have

finite representation type, all three conditions hold.

For the stronger class of stable equivalences of Morita type the above results hold without any

assumptions on the finite dimensional algebras A and B. In particular, such stable equivalences

map perfect exact sequences to perfect exact sequences. We show the following further results

for the subcategories of K(projA) introduced above.
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Theorem E (Theorem 5.8). Suppose AMB and BNA are bimodules that induce a stable equiva-

lence of Morita type such that M and N do not have any non-zero projective bimodule as direct

summand.

(1) Applying −⊗AM componentwise induces an equivalence of categories LA → LB.

If A and B are self-injective, this is an equivalence of triangulated categories.

(2) Applying −⊗AM componentwise induces an equivalence of triangulated categories

HP(projA)→ HP(projB).

(3) Applying −⊗AM componentwise induces an equivalence of triangulated categories

Hstp(projA)→ Hstp(projB).

Note that any stable equivalence induces an equivalence between LA and LB. Yet, in general,

there is no explicit description of this induced functor inside K(projA). On the other hand, if

we know that a bimodule M induces an equivalence − ⊗A M : LA → LB, we can show that

M and HomB(M,B) induce a stable equivalence of Morita type; cf. Theorem 5.13. This builds

upon the result of Dugas and Mart́ınez-Villa in [13] mentioned above. As an application, we

find new conditions under which a stable equivalence that is induced by an exact functor is of

Morita type. The last three conditions will be shown using perfect exact sequences.

Theorem F (Theorem 5.19). Let A and B be finite dimensional algebras whose semisimple

quotients are separable. Suppose given a bimodule M which is projective as left A- and as

right B-module such that − ⊗A M induces a stable equivalence modA → modB. If one of

the following conditions holds, M and HomB(M,B) induce a stable equivalence of Morita type

between A and B.

(i) The functor −⊗AM induces an equivalence LA → LB.

(ii) The homology Hk((F
• ⊗AM)∗) vanishes for F • ∈ LA and k ⩾ 0.

(iii) There exist natural isomorphisms νB(P ⊗AM) ≃ νA(P )⊗AM for all P ∈ projA.

(iv) There exists a natural isomorphism M ⊗B DB ≃ DA⊗AM of right B-modules.

(v) The algebras A and B have no nodes. At least one of A or B has dominant dimension

at least 1 and finite representation type. Moreover, for all simple A-modules S whose

injective hull is not projective, the image S ⊗AM is an indecomposable B-module.
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(vi) The algebras A and B have no nodes. At least one of A or B is a Nakayama algebra.

Moreover, for all simple A-modules S whose injective hull is not projective, the image

S ⊗AM is an indecomposable B-module.

(vii) The algebras A and B have dominant dimension at least 1. There is a bimodule BLA

which is projective as left B- and right A-module and which induces the inverse stable

equivalence. Moreover, for all simple A-modules S whose injective hull is not projective,

the image S ⊗AM is an indecomposable B-module.

Finally, we consider stable equivalences that are induced by either deleting or inserting a node.

For all stable equivalences discussed so far, nodes were either excluded by assumption or pre-

served by the equivalence. Koenig and Liu provide an explicit description of stable equivalences

that are induced by gluing idempotents corresponding to a simple projective and a simple injec-

tive module; cf. [22]. We provide a construction that describes all algebras that can be obtained

from a given algebra in this way; cf. Theorem 6.11.

This thesis is structured as follows. The first chapter, Chapter 1, provides a summary of

definitions and results important for the later chapters. At the beginning, a list of often used

notations and conventions is included. Afterwards, we focus on the stable module category

and on the homotopy category of projective modules. The chapter concludes with a short

section about projective-injective modules. Note that a list of symbols with short explanations

is attached at the end of this thesis.

Chapter 2 focuses on the equivalence modA→ LA and on perfect exact sequences. This collects

and adapts Kato’s results in [18] and [19]. We include modified versions of the proofs given by

Kato and often fill in several details. Moreover, we provide further technical properties of perfect

exact sequences. The next chapter, Chapter 3, is dedicated to show that certain perfect exact

sequences are preserved by stable equivalences as stated in Theorem C. The following Chapter 4

covers the triangulated categories Ktac(projA), HP(projA) and Hstp(projA). In particular,

Theorem A and Theorem B are proven. Furthermore, the result of the previous chapter is used

to verify parts (2) and (3) of Theorem D. Chapter 5 discusses stable equivalences of Morita type

in more detail. In the first section, we apply this to the categories of the previous chapter and

give the proof of Theorem E. The rest of the chapter provides conditions under which a stable

equivalence is of Morita type; cf. Theorem F. Finally, the case of stable equivalences induced

by gluing a simple injective and a simple projective vertex of a quiver algebra is treated in

Chapter 6. This part is mostly independent of the previous chapters.

The last chapter, Chapter 7, is dedicated to some extended examples. Each section of this

chapter focuses on one or two algebras in greater detail. At the beginning of every section,

several facts about the algebras are collected. Furthermore, examples during a section may
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reference results stated in earlier parts of the same section. However, every section of Chapter 7

can be read independently. Throughout this thesis, we often point to specific parts of this

chapter intended to be read as an example for the current topic. On the other hand, this

chapter can also be read as a self-contained part at the end of the thesis.



Chapter 1

Preliminaries

In this chapter, we introduce the main definitions and notations used throughout this thesis. We

focus on the stable module category (Section 1.2) and on the homotopy category (Section 1.3).

At the end of this chapter is a short section about projective-injective modules. We begin with

a list of general notations and conventions which are used later without further comment.

The general setup for every chapter is the following. Let k be a field. Let A and B be finite

dimensional k-algebras. We assume that A and B have no semisimple summands. For some

chapters, we impose additional assumptions.

1.1 Notation

We use the following notation and conventions.

• By an A-module we understand a right A-module, if not specified otherwise. We denote

the category of right A-modules by ModA. The full subcategory of projective modules

is denoted by ProjA. The full subcategory of injective modules is denoted by InjA.

• We denote the category of finitely generated right A-modules by modA. Similarly for

projA and injA. The corresponding categories of finitely generated left A-modules are

denoted by A-mod, A-proj and A-inj respectively. If not specified otherwise, all modules

are assumed to be finitely generated.

• Let X, Y and Z be sets. We write morphisms on the right. That is, given morphisms

X
f−→ Y

g−→ Z and x ∈ X we denote the image of x under f by xf and the composite of

f and g by X
fg−→ Z.

• Let C, D and E be categories. We write functors on the left. That is, given functors

F : C → D and G : D → E we denote the image of an object C under F by F(C) and
the composite of F and G by C G◦F−−→ E .

19



20 1 Preliminaries

• For an A-module X and n ∈ Z⩾0, we write X⊕n for the direct sum of n copies of X.

• We often write morphisms between direct sums of modules as matrices. That is, given

morphisms fi,j : Xi → Yj between A-modules X1, X2, Y1 and Y2, we write

f :=

(︃
f1,1 f1,2

f2,1 f2,2

)︃
: X1 ⊕X2 → Y1 ⊕ Y2

for the morphism f with (x1, x2)f = (x1f1,1 + x2f2,1, x1f1,2 + x2f2,2) for x1 ∈ X1 and

x2 ∈ X2.

• Let u and v be two idempotent elements of A. We identify along

HomA(uA, vA)
∼−→ vAu

f ↦→ uf

(uy ↦→ vxuy)←[ vxu

• For morphisms X
f−→ Y and X ′ f ′−→ Y ′ we write f ≃ f ′ if there exist isomorphisms α, β

such that the following diagram commutes.

X Y

X ′ Y ′

f

α β

f ′

• Let X be an A-module. We often write 1 = 1X for the identity map idX on X.

• We denote the composition length of an A-module X by l(X) .

• We say that a short exact sequence η : 0 → X
f−→ Y

g−→ Z → 0 has a split summand

if η ̸= 0 and there exists a decomposition η ≃ η1 ⊕ η2 into the direct sum of two short

exact sequences ηi : 0 → Xi
fi−→ Yi

gi−→ Zi → 0 for i = 1, 2 such that η1 is a split exact

sequence. That is, if there exist isomorphisms φ1, φ2 and φ3 such that the following

diagram commutes with η1 a split exact sequence.

η : 0 X Y Z 0

η1 ⊕ η2 : 0 X1 ⊕X2 Y1 ⊕ Y2 Z1 ⊕ Z2 0

f

φ1

∼

g

φ2

∼

φ3

∼(︄
f1 0

0 f2

)︄ (︄
g1 0

0 g2

)︄

• Let A be an additive category and S be a full subcategory of A. We write ⊥S for the

full subcategory of A consisting of all objects X in A such that HomA(X,Z) = 0 for all

Z ∈ S. Analogously, we define S⊥.
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We recall the definition of several important functors and introduce relevant notation.

(1) The k-duality Homk(−, k) : modA → A-mod will be denoted by D(−) := Homk(−, k).
Note that D(−) is exact and takes projective modules to injective modules and vice versa.

(2) The functor HomA(−, A) : modA → A-mod will be denoted by (−)∗ := HomA(−, A)
Note that (−)∗ restricts to an equivalence (−)∗ : projA→ A-proj.

(3) We define the Nakayama functor νA : modA→ modA as the composite ν(−) := D((−)∗).
We sometimes write ν instead of νA if there is no ambiguity. Note that ν restricts to an

equivalence projA→ injA. The quasi-inverse is given by ν−1
A = (D(−))∗.

For P ∈ projA and X ∈ modA, we have a natural isomorphism

HomA(X, νP ) ≃ DHomA(P,X).

(4) Let X ∈ modA with projective presentation P−1 → P 0 → X. Then the syzygy

Ω(X) = Ker(P 0 → X) defines a functor Ω : modA → modA. The transpose of X

given by Tr(X) := Cok((P 0)∗ → (P−1)∗) defines a duality modA→ A-mod.

1.2 Stable module category

We recall the definition of the stable module category and collect some basic properties. Addi-

tionally, some elementary proofs are included.

Definition 1.1. The stable module category modA is the category with the same objects as

modA and with morphisms HomA(X, Y ) := HomA(X, Y )/PHomA(X, Y ) for X, Y ∈ modA. A

morphism f : X → Y is an element of PHomA(X, Y ) if there exists a P ∈ projA such that f

factors through P .

Remark 1.2. Let X, Y ∈ modA and f, g ∈ HomA(X, Y ).

(1) We sometimes write f for the image of f in HomA(X, Y ). However, we often denote

morphisms in modA by f as well, if there is no ambiguity.

We sometimes write X
st≃ Y or f

st≃ g if X ≃ Y or f ≃ g in modA respectively.

(2) Let P ∈ projA. We have P ≃ 0 in modA via stable and mutually inverse isomorphisms

P → 0 and 0→ P .
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(3) Note that f = 0 in modA if and only if f factors through the projective cover p : P → Y

of Y .

In fact, if f factors through a projective module Q via α : X → Q and β : Q→ Y , then

we obtain a morphism β′ : P → Q with f = αβ = αβ′p.

Q

P Y

β′
β

p

We have the following basic characterization of isomorphic modules and morphisms in the stable

module category. We follow the proof given in [19, Lemma 2.3 and 2.6] and fill in some details.

Lemma 1.3. Suppose given X, Y,X ′, Y ′ ∈ modA and morphisms f : X → X ′ and g : Y → Y ′.

(1) We have X
st≃ Y if and only if there exist P,Q ∈ projA such that X ⊕Q ≃ Y ⊕ P .

(2) We have f
st≃ g if and only if there exist P, P ′, Q,Q′ ∈ projA, morphisms f̃ and g̃ which

restrict to f and g respectively and isomorphisms φ, φ′ such that the following diagram

commutes.
X ⊕Q X ′ ⊕Q′

Y ⊕ P Y ′ ⊕ P ′

f̃

φ

∼

φ′∼

g̃

Proof. Ad (1). Suppose that α : X → Y is a stable isomorphism with inverse β in modA.

Then αβ − idX factors through the projective cover P of X and β α− idY factors through the

projective cover Q of Y . Hence there exist morphisms

sX : X → P tX : P ↠ X

sY : Y → Q tY : Q↠ Y

such that αβ+sX tX = idX and β α+sY tY = idY . Moreover, there exist morphisms a : P → Q

and b : Q→ P such that the following diagrams commute.

P

Q Y

a tX α

tY

Q

P X

b
tY β

tX

We show that

(︃
α sX

tY −b

)︃
: X ⊕Q→ Y ⊕ P and

(︃
β sY

tX −a

)︃
: Y ⊕ P → X ⊕Q are mutually inverse
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isomorophisms. We have the following.(︄
α sX

tY −b

)︄(︄
β sY

tX −a

)︄
=

(︄
αβ + sXtX αsY − sXa
tY β − b tX tY sY + b a

)︄
=

(︄
idX αsY − sXa
0 tY sY + b a

)︄
(︄
β sY

tX −a

)︄(︄
α sX

tY −b

)︄
=

(︄
βα + sY tY βsX − sY b
tXα− a tY tXsX + a b

)︄
=

(︄
idY βsX − sY b
0 tXsX + a b

)︄

Using that P and Q are the projective covers of X and Y respectively, the equations

(tY sY + b a)tY = tY (idY − βα) + tY βα = tY

(tXsX + a b)tX = tX(idX − αβ) + tXαβ = tX

imply that tY sY + b a = idQ and tXsX + a b = idP . With this, we obtain

tX(αsY − sXa) = a tY sY − tXsXa = a− a b a− a+ a b a = 0

tY (βsX − sY b) = b tXsX − tY sY b = b− b a b− b+ b a b = 0

so that αsY − sXa = 0 and βsX − sY b = 0 since tX and tY are surjective.

Ad (2). We only have to show that f
st≃ g implies the existence of the diagram above.

By assumption, we have stable isomorphisms α and α′ such that the following diagram com-

mutes in modA.

X X ′

Y Y ′

f

α

∼

α′∼

g

Part (1) now provides isomorphisms φ : X ⊕ Q → Y ⊕ P and φ′ : X ′ ⊕ Q′ → Y ′ ⊕ P ′ with

P, P ′, Q,Q′ ∈ projA. We use the notation of part (1). Since α g = f α′ in modA, we also have

a morphism u : X → Q′ such that α g − f α′ = u tY ′ . Finally, using that Q is projective, we

obtain a morphism v : Q→ Q′ such that the following diagram commutes.

Q

Q′ Y ′

v
tY g

tY ′

Together, we can define a morphism

(︃
f u

0 v

)︃
: X ⊕Q→ X ′ ⊕Q′ which restricts to f . Now,

g̃ := φ−1

(︄
f u

0 v

)︄
φ′ =

(︄
β sY

tX −a

)︄(︄
f u

0 v

)︄(︄
α′ sX′

tY ′ −b′

)︄
: Y ⊕ P → Y ′ ⊕ P ′
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restricts to the following morphism Y → Y ′.

β f α′ + β u tY ′ + sY v tY ′ = β f α′ + β(α g − f α′) + sY tY g = βα g + (idY − β α)g = g

This gives the claimed commutative diagram.

X ⊕Q X ′ ⊕Q′

Y ⊕ P Y ′ ⊕ P ′

(︄
f u

0 v

)︄

φ

∼

φ′∼
φ−1

(︄
f u

0 v

)︄
φ′

We also note the following characterization of a stable isomorphism.

Lemma 1.4. Suppose given a surjective morphism Y
f−→ Z in modA.

Then f is a stable isomorphism if and only if f is a split epimorphism with projective kernel.

Proof. Suppose that f is a stable isomorphism. By Lemma 1.3.(1), there exist projective

modules P and Q such that Y ⊕ Q ≃ Z ⊕ P . Let K := Ker(f). We obtain the following

morphism of short exact sequences.

0 P Y ⊕Q Z 0

0 K Y Z 0

(︄
1

0

)︄
f

Since Y ⊕Q ≃ Z ⊕ P , the upper sequence splits and we obtain that the lower sequence is also

split. Furthermore, K ⊕ Z ≃ Y is a direct summand of Y ⊕Q ≃ Z ⊕ P . Hence, K is a direct

summand of P and therefore projective.

On the other hand, suppose that f is a split epimorphism with projective kernel P . The split

exact sequence

0→ P → Y
f−→ Z → 0

yields Y ≃ Z ⊕ P . By Lemma 1.3.(1), we obtain that f is a stable isomorphism.

In specific circumstances we can use short exact sequences to induce stable isomorphisms.

Lemma 1.5. ([19, Lemma 2.14]) Suppose given a morphism between two short exact sequence

in modA.

0 X1 Y1 Z1 0

0 X2 Y2 Z2 0

f1

α

g1

β γ

f2 g2
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Assume that γ is an isomorphism and that β is a stable isomorphism. Then α is a stable

isomorphism.

If additionally X1 and X2 have no projective direct summand, then α and β are isomorphisms.

Proof. We follow the proof in [19, Lemma 2.14, part (1)].

Let ρ : P → X2 be the projective cover of X2 and Q = Ker(X1 ⊕ P → X2). Consider the

following commutative diagram with exact rows and columns. Note that the exactness of the

middle column follows from the assumption that γ is an isomorphism.

0 0 0

0 Q Q 0 0

0 X1 ⊕ P Y1 ⊕ P Z1 0

0 X2 Y2 Z2 0

0 0 0

u v
(︄
f1 0

0 1

)︄

(︄
α

ρ

)︄

(︄
g1

0

)︄

(︄
β

ρ f2

)︄
γ

∼

f2 g2

By Lemma 1.4, we have that

(︃
β

ρ f2

)︃
is a split epimorphism with Q projective, since β is a stable

isomorphism. Hence v is a split monomorphism which implies that u is a split monomorphism

as well. By Lemma 1.4, we obtain that α is a stable isomorphism.

If X1 and X2 have no projective direct summand, then α is an isomorphism in modA. Using

that β is part of a morphism of short exact sequences, this implies that β is an isomorphism

as well.

The following results can be found in [45, Propositions 5.1.8 and 5.1.10].

Proposition 1.6. We have the following for a self-injective algebra A.

(1) The syzygy functor Ω : modA→ modA is a self-equivalence of categories.

(2) The category modA is triangulated with suspension functor Ω−1 and distinguished trian-

gles isomorphic to those induced by short exact sequences.
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1.3 Homotopy category of complexes

We start with some notation and conventions for the category of complexes C(modA). An

element F • = (F k)k∈Z ∈ C(modA) will be written as a cochain complex with differential

(dk)k∈Z := (dkF )k∈Z as follows.

· · · → F−2 d−2

−−→ F−1 d−1

−−→ F 0 d0−→ F 1 d1−→ F 2 → · · ·

We denote the cohomology of F • in degree k ∈ Z by Hk(F • ) := Ker dk/ Im dk−1. We say that

F • is exact in degree k ∈ Z, if Hk(F • ) = 0.

The shift [1] of a complex F • ∈ C(modA) is given as F • [1] := (F k+1)k∈Z with differentials given

by (−dkF )k∈Z. This yields an autoequivalence [n] : C(modA)→ C(modA) for all n ∈ Z.

For n ∈ Z, truncation τ⩽n F • of F • is defined as follows.

· · · → F n−2 dn−2

−−−→ F n−1 dn−1

−−−→ F n → 0→ 0→ · · ·

We often abbreviate F⩽n := τ⩽n F
• and similarly for F⩾n := τ⩾n F

• . We also use the notation

F⩽n to indicate that F k = 0 for k > n. An A-module X will be identified with the complex

X ∈ C(modA) consisting of X concentrated in degree zero.

By componentwise application, the equivalence (−)∗ = HomA(−, A) : projA→ A-proj can be

extended to the following equivalence.

(−)∗ : C(projA)→ C(A-proj) : F • → F ∗
• = F • ,∗

Here, we write (F ∗
k )k∈Z := (F k,∗)k∈Z :=

(︁
(F k)∗

)︁
k∈Z as the chain complex with differentials

dF
∗

k := dk,∗F :=
(︁
dkF
)︁∗

for k ∈ Z.

· · · → F ∗
2

d∗1−→ F ∗
1

d∗0−→ F ∗
0

d∗−1−−→ F ∗
−1

d∗−2−−→ F ∗
−2 → · · ·

We denote the homology of F ∗
• in degree k ∈ Z by Hk(F

∗
• ) = Ker(d∗k−1)/ Im(d∗k). In this sense,

we use both chain complexes and cochain complexes in our notation. However, we reserve the

notation of chain complexes for dualized cochain complexes.

Similarly to (−)∗, the functors D and ν also induce equivalences D : C(modA) → C(A-mod)

and ν : C(projA)→ C(injA) respectively.

Now, we introduce notation for the homotopy category and the derived category of complexes.

We are mainly interested in the homotopy category of unbounded complexes of projective

modules K(projA). Let A be an additive subcategory of modA.
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The homotopy category K(A) is the category with complexes in C(A) as objects and ho-

motopy equivalence classes of morphisms of complexes as morphisms. Recall that a mor-

phism f • : F • → G• in K(A) is said to be homotopic to zero, if there exist morphisms

hk : F k → Gk−1 for k ∈ Z such that hkdk−1
G + dkF h

k+1 = fk. The morphism h• = (hk)k∈Z will

be called a homotopy with homotopy maps hk. Two morphisms f • and g• in HomA(F
• , G• )

are called homotopy equivalent if f • − g• is homotopic to zero.

If A is an abelian category, the derived category D(A) is the localization of the homotopy

category at the class of quasi-isomorphisms. Recall that a morphism of complexes f • : F • → G•

is called a quasi-isomorphism if the induced morphisms Hk(f • ) : Hk(F • ) → Hk(G• ) is an

isomorphism for all k ∈ Z.

We write C+(A), K+(A) and D+(A) for the subcategory consisting of left bounded complexes

in C(A), K(A) and D(A) respectively. Similarly, we write C−(A), K−(A) and D−(A) for

right bounded complexes. The subcategory of left and right bounded complexes is denoted by

Cb(A), Kb(A) or Db(A). By C+,b(A), K+,b(A) and D+,b(A) we denote the subcategory of left

bounded complexes that are bounded in cohomology. Finally, the subcategories C+,b∗(projA),
K+,b∗(projA) and D+,b∗(projA) consist of the left bounded complexes F • with bounded homol-

ogy H• (F ∗
• ). The analogue categories for right bounded complexes are defined similarly.

Definition 1.7. A complex F • ∈ K(projA) is said to be totally acyclic, if Hk(F • ) = 0 and

Hk(F
∗
• ) = 0 for all k ∈ Z. The full subcategory of totally acyclic complexes in K(projA) is

denoted by Ktac(projA).

Definition 1.8. Let f • : F • → G• be a morphism in C(modA). The mapping cone C(f)• of

f • is given by the complex (F k+1 ⊕Gk)k∈Z with differential d•
C defined as follows for k ∈ Z.

dkC :=

(︄
−dk+1

F fk+1

0 dkG

)︄

Let f • : F • → G• in C(modA) with mapping cone C(f)• ∈ C(modA). We have the following

short exact sequence in C(modA).

0→ G• (0 1)
−−−→ C(f)•

(︄
−1

0

)︄
−−−−→ F • [1]→ 0

We will often need information about the vanishing of cohomology or homology of C(f)• .

Lemma 1.9. Suppose given f • : F •
1 → F •

2 in K(projA).

(1) Assume that there exist l1, l2 ∈ Z with H⩽li(F •
i ) = 0 for i = 1, 2. Let l := min(l1 − 1, l2).

We have H⩽l(C(f)• ) = 0.
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(2) Assume that there exist r1, r2 ∈ Z with H⩾ri((Fi)
∗
• ) = 0 for i = 1, 2.

Let r := max(r1 − 1, r2). We have H⩾r(C(f)
∗
• ) = 0.

Proof. We have the following componentwise split exact sequence in C(projA).

0→ F •
2 → C(f)• → F •

1 [1]→ 0

This induces a long exact sequence of cohomology.

· · · → Hk(F •
1 )→ Hk(F •

2 )→ Hk(C(f)• )→ Hk+1(F •
1 )→ Hk+1(F •

2 )→ · · ·

Since the short exact sequence is componentwise split exact, we also obtain a long exact sequence

of homology.

· · · → Hk+1((F2)
∗
• )→ Hk+1((F1)

∗
• )→ Hk(C(f)

∗
• )→ Hk((F2)

∗
• )→ Hk((F1)

∗
• )→ · · ·

We have that Hk+1(F •
1 ) = 0 for k ⩽ l1 − 1 and Hk(F •

2 ) = 0 for k ⩽ l2. Hence, the first long

exact sequence implies that Hk(C(f)• ) = 0 for k ⩽ min(l1 − 1, l2).

We have that Hk+1((F1)
∗
• ) = 0 for k ⩾ r1 − 1 and Hk((F2)

∗
• ) = 0 for k ⩾ r2. Hence, the second

long exact sequence implies that Hk(C(f)
∗
• ) = 0 for k ⩾ max(r1 − 1, r2).

The following results can be found in [45, Proposition 3.5.25 and 3.5.40].

Proposition 1.10. Let A be an additive category. Let A′ be an abelian category.

The homotopy category K(A) and the derived category D(A′) are triangulated categories with

suspension functor [1] and distinguished triangles isomorphic to triangles of the following form.

F • f •

−→ G• → C(f)• →

Note that all subcategories of K(A) discussed above are triangulated subcategories. In partic-

ular, Ktac(projA) is a triangulated category.

We recall the following equivalences of triangulated categories; cf. [45, Proposition 3.5.43].

Theorem 1.11. There exist triangulated equivalences between the following categories.

(1) D−(modA) ≃ K−(projA) and D+(modA) ≃ K+(injA).

(2) Db(modA) ≃ K−,b(projA) and Db(modA) ≃ K+,b(injA).

(3) Db(modA) ≃ Kb(projA) and Db(modA) ≃ Kb(injA) if gldimA <∞.
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We will need in the future that the perpendicular category of a triangulated category is trian-

gulated.

Lemma 1.12. Suppose given a triangulated category T and a full triangulated subcategory S
of T . Then ⊥S is a triangulated subcategory of T .

Proof. Suppose given X ∈ ⊥S. For k ∈ Z and S ∈ S we have

HomT (X[k], S) ≃ HomT (X,S[−k]) = 0

since S[−k] ∈ ⊥S. Thus, X[k] ∈ ⊥S.

Suppose given a distinguished triangle X
f−→ Y

g−→ Z
h−→ in T with X, Y ∈ ⊥S. We show that

Z ∈ ⊥S. Let v : Z → S be a morphism in T with S ∈ S. This induces a morphism of triangles

via a morphism u : Y → S.

X Y Z X[1]

0 S S 0

f

0

g

u

h

v 0

idS

Since Y ∈ ⊥S, we obtain that g v = u = 0. This induces another morphism of triangles via a

morphism w : X[1]→ S.

X Y Z X[1]

S[−1] 0 S S

f g

0

h

v w

idS

Since X[1] ∈ ⊥S, we obtain that v = hw = 0. This shows that Z ∈ ⊥S.

Finally, we recall the definition of the Grothendieck group of a triangulated category.

Definition 1.13. Let T be a triangulated category.

Let L be the free abelian group generated by the isomorphism classes of objects of T . Let R

be the subgroup of L generated by the classes

[X]− [Y ] + [Z]

where X → Y → Z → is a distinguished triangle.

The Grothendieck group G0(T ) of T is defined as the quotient L/R.

Remark 1.14. Let X ∈ K(modA). Note that [X] = −[X[1]] in G0(K(modA)). In fact, we

have a distinguished triangle X → 0→ X[1]→ so that [X] + [X[1]] = 0.
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1.4 Projective-injective modules

In this section we discuss concepts related to A-modules which are both projective and injective.

The full subcategory of projective-injective A-modules will be denoted by PA. Furthermore, we

will need the following special class of projective-injective modules.

Definition 1.15. Amodule Z ∈ modA is called strongly projective-injective if νkZ is projective

for all k ∈ Z⩾0. The full subcategory of strongly projective-injective A-modules will be denoted

by stpA.

Note that strongly projective-injective modules are projective-injective. In fact, for an inde-

composable module P ∈ projA, the module ν(P ) is indecomposable injective. Thus, νk(P )

is projective-injective for k ⩾ 1 if P ∈ stpA. Since A is finite dimensional, there are only

finitely many indecomposable projective modules. Thus, there exist m,n ∈ Z⩾0 with m < n

such that νm(P ) ≃ νn(P ). Applying ν−m, we obtain P ≃ νn−m(P ) ∈ PA. If P ∈ stpA is

not indecomposable, we have seen that all indecomposable direct summands of P are strongly

projective-injective. Hence, P is strongly projective-injective as well.

We state the definitions of two homological dimensions. The first, dominant dimension, was

introduced by Nakayama. The latter has been introduced in [14] by Fang, Hu and Koenig.

Definition 1.16. Let 0→ A→ I0 → I1 → I2 → · · · be a minimal injective resolution of A.

(1) The dominant dimension of A is defined as the largest d ∈ Z⩾0 such that Ik is projective-

injective for all k < d. We set d =∞ if Ik is projective-injective for all k ⩾ 0. We denote

the dominant dimension of A by domdimA.

(2) The ν-dominant dimension of A is defined as the largest d ∈ Z⩾0 such that Ik is strongly

projective-injective for all k < d. We set d = ∞ if Ik is strongly projective-injective for

all k ⩾ 0. We denote the ν-dominant dimension of A by ν -domdimA.

We will use these two dimensions mainly for the following properties.

Remark 1.17.

(1) Let domdimA ⩾ 1. In this case, every projective module can be embedded into a

projective-injective module. Thus, we have ⊥(projA) =⊥PA.

(2) Let ν -domdimA ⩾ 1. In this case, every projective-injective module is strongly

projective-injective. In fact, consider the embedding I ↪→ Z for a projective-injective

module I and Z ∈ stpA. Since I is injective, this morphisms splits and I is strongly

projective-injective as a direct summand of Z.

As a direct consequence, we have domdimA = ν -domdimA and ⊥(projA) = ⊥(stpA).



Chapter 2

Stable module category and
homotopy category

Let k be a field. Let A be a finite dimensional k-algebra without semisimple summands.

In this chapter, we discuss some of the concepts which where introduced by Kiriko Kato in [18]

and [19] in the context of commutative rings. However, many of her results still hold for

non-commutative finite dimensional k-algebras.

In the first section, we look at the construction of a functor from the stable module category

to the homotopy category. This functor will restrict to an equivalence F : modA → LA with

some full subcategory LA of K(projA). In [18], Kato uses this equivalence to define a weak

kernel and weak cokernel in the stable module category.

In the second section, we consider a special class of short exact sequences, called perfect exact

sequences. These are short exact sequences that remain exact under the functor HomA(−, A).
Importantly, a perfect exact sequence corresponds to a distinguished triangle in K(projA) via
the equivalence F . In [19], Kato characterizes morphisms which are stably equivalent to a

monomorphism via the cohomology of the mapping cone in the image of F . Such a morphism

is always part of a unique perfect exact sequence.

Finally, the last section is dedicated to perfect exact sequences with projective middle term

and their connection to the shift in K(projA).

2.1 A functor to the homotopy category

This section is dedicated to the construction of a functor F : modA→ K(projA). This functor
restricts to an equivalence F : modA → LA with quasi-inverse H0(τ⩽0 (−)), where LA is a

subcategory of K(projA) which we introduce below. Throughout this section, we follow [19].

31
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Definition 2.1 (Kato). Let LA be the full subcategory of K(projA) defined as follows.

LA = {F • ∈ K(projA) | H<0(F • ) = 0, H⩾0(F
∗
• ) = 0}

We often write L := LA.

Note that a complex F • in LA can be truncated via τ⩽0 (−) to a projective resolution of some

A-module. Similarly, the truncation τ⩾−1(F
∗
• ) is a projective resolution of some left A-module.

The latter will be used to verify that H0(τ⩽0 (−)) is an equivalence as is illustrated in the next

example.

Example 2.2. Let A be the quiver algebra over k given by

1 2 3 4α β γ

with relation αβ γ = 0. The algebra has the following indecomposable projective modules. We

also note their images under (−)∗.

P1 :=
1
2
3
, P2 :=

2
3
4
, P3 :=

3
4, P4 := 4, P ∗

1 = 1, P ∗
2 = 2

1, P ∗
3 =

3
2
1
, P ∗

4 =
4
3
2

The following two complexes are an element of LA. We note the degree above the complexes.

−3 −2 −1 0 1 2

F • : 0 P4 P2 P1 0

G• : 0 P4 P3 P1 0

βγ(−) α(−)

γ(−) αβ(−)

On the other hand, the minimal projective resolution 0 → P4 → P2 → 0 of H0(τ⩽0 F
• ) = 2

3 is

not an element of LA. Consider the lift of the morphism 2
3 →

1
2 to a morphism between the

minimal projective resolutions of H0(τ⩽0 F
• ) = 2

3 and H0(τ⩽0G
• ) = 1

2.

0 P4 P2 0

0 P4 P3 P1 0

βγ(−)

0 α(−)

γ(−) αβ(−)

This morphism is non-zero in K(projA). In contrast, there is no non-zero morphism between

F • and G• in K(projA). This corresponds to the fact that the morphism 2
3 →

1
2 factors through

the projective module P1.
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The following is the key result needed for the main theorem of this section. We give an expanded

version of the proof found in [19, Lemma 2.8], filling in several details.

Lemma 2.3. ([18, Lemma 2.1])

Let f • be a morphism in K(projA). Then H0(τ⩽0 f
• ) = 0 in modA if f • = 0 in K(projA).

Let f • be a morphism in LA. Then H0(τ⩽0 f
• ) = 0 in modA if and only if f • = 0 in K(projA).

Proof. Suppose given f • : F • → G• in K(projA) such that f • = 0 in K(projA). We show that

H0(τ⩽0 f
• ) factors through the projective module F 1.

By assumption, there exists a homotopy h• : F • → G• [−1] with fk = dkF h
k+1 + hk dk−1

G for

k ∈ Z. We define the following two morphisms in C(modA).

τ⩽0 F
• · · · F−2 F−1 F 0 0 · · ·

F 1 · · · 0 0 F 1 0 · · ·

τ⩽0G
• · · · G−2 G−1 G0 0 · · ·

η•

d−2
F d−1

F

d0F

φ• h1

d−2
G d−1

G

We verify that τ⩽0 f
• = η•φ• in K(projA) via the homotopy τ⩽0h

• .

τ⩽0 F
• · · · F−2 F−1 F 0 0 · · ·

τ⩽0G
• · · · G−2 G−1 G0 0 · · ·

(τ⩽0 f
• )−η• φ•

d−2
F d−1

F

h−1 h0
0

d−2
G d−1

G

For k ⩽ −1 we have by definition of h• that

fk − ηkφk = fk = dkF h
k+1 + hk dk−1

G

For k = 0 we have by definition of η• and φ• that

f 0 − η0φ0 = d0F h
1 + h0 d−1

G − d
0
F h

1 = h0 d−1
G .

Therefore, we have

H0
(︁
τ⩽0 f

•
)︁
= H0

(︁
η•φ• )

)︁
= H0

(︁
η•
)︁
H0
(︁
φ•
)︁

so that H0(τ⩽0 f
• ) factors through the projective module F 1.
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Conversely, suppose given f • : F • → G• in L such that H0(τ⩽0 f
• ) = 0. First, we construct

homotopy maps sk+1 : F k+1 → Gk for k ⩽ −1 and tk+1 : F k+1 → Gk for k ⩾ 1. In a second

step, we will use these maps to show that f • = 0.

By assumption, H0(τ⩽0 f
• ) factors through the projective cover p : P → H0(τ⩽0G

• ). Suppose

given a morphism α : H0(τ⩽0 F
• )→ P in modA with α p = H0(τ⩽0 f

• ). Write G0 ρ−→ H0(τ⩽0G
• )

for the canonical surjection. Since P is projective, p factors through G0.

H0(τ⩽0 F
• )

P

G0 H0(τ⩽0G
• )

α

p
∃β

ρ

Write g := αβ : H0(τ⩽0 F
• ) → G0, so that H0(τ⩽0 f

• ) = g ρ factors through G0. Note that

τ⩽0 F
• and τ⩽0G

• are projective resolutions of H0(τ⩽0 F
• ) and H0(τ⩽0G

• ) respectively. There-

fore, the morphism g and ρ lift to morphisms of complexes g• and ρ• such that we have

H0(τ⩽0 g
• ) = g and H0(τ⩽0 ρ

• ) = ρ respectively.

τ⩽0 F
• · · · F−2 F−1 F 0 0 · · ·

G0 · · · 0 0 G0 0 · · ·

τ⩽0G
• · · · G−2 G−1 G0 0 · · ·

g•

d−2
F d−1

F

s−1 g0s0

ρ• ρ0

d−2
G d−1

G

By construction, we have τ⩽0 f
• = g• ρ• in K(projA). Hence, there exist homotopy maps

sk+1 : F k+1 → Gk for k ⩽ −1 such that

fk = fk − gk ρk = sk dk−1
G + dkF s

k+1, for k ⩽ −1.

Now we construct homotopy maps tk+1 : F k+1 → Gk for k ⩾ 1. Note that H0(τ⩽0 f
• )∗ = 0.

Since H⩾0(F
∗
• ) = 0, we have natural isomorphisms

H0(τ⩽0 F
• )∗ ≃ Ker(F ∗

0 → F ∗
−1) ≃ Cok(F ∗

2 → F ∗
1 ) = H1(τ⩾1F

∗
• )

so that H0(τ⩽0 f
• )∗ ≃ H1(τ⩾1f

∗
• ). As above, we obtain that H1(τ⩾1f

∗
• ) factors through F ∗

1 via

morphisms g̃ : H1(τ⩾1G
∗
• ) → F ∗

1 and ρ̃ : F ∗
1 → H1(τ⩾1F

∗
• ). These maps lift to morphisms of

complexes g̃• and ρ̃• such that H1(τ⩾1g̃• ) = g̃ and H1(τ⩾1ρ̃• ) = ρ̃ respectively.
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Consider the following commutative diagram.

τ⩾1G
∗
• · · · G∗

3 G∗
2 G∗

1 0 · · ·

F ∗
1 · · · 0 0 F ∗

1 0 · · ·

τ⩾1F
∗
• · · · F ∗

3 F ∗
2 F ∗

1 0 · · ·

g̃•

d2,∗G d1,∗G

t∗3 g̃1t∗2

ρ̃• ρ̃1

d2,∗F d1,∗F

By construction, we have τ⩾1f
∗
• = g̃• ρ̃• in K(projA). Hence, there exist homotopy maps

t∗k+1 : G
∗
k → F ∗

k+1 for k ⩾ 1 such that

f ∗
k = f ∗

k − g̃k ρ̃k = dk−1,∗
G t∗k + t∗k+1 d

k,∗
F , for k ⩾ 2.

Applying (−)∗, we obtain homotopy maps tk+1 : F k+1 → Gk for k ⩾ 1 such that

fk = tk dk−1
G + dkF t

k+1, for k ⩾ 2.

For the final step, let hk := sk for k ⩽ 0 and hk := tk for k ⩾ 2. We already have that

fk = hk dk−1
G + dkF h

k+1 for k ∈ Z \ {0, 1}. The situation can be visualized as follows.

F • · · · F−2 F−1 F 0 F 1 F 2 F 3 · · ·

G• · · · G−2 G−1 G0 G1 G2 G3 · · ·

f •

d−2
F

f−2

d−1
F

f−1

h−1

d0F

f0
h0

d1F

f1

d2F

f2
h2

f3
h3

d−2
G d−1

G d0G d1G d2G

We define a morphism f̃ • : F • → G• as follows.

f̃k := 0, for k ⩽ −1
f̃ 0 := f 0 − h0 d−1

G

f̃ 1 := f 1 − d1F h2

f̃k := 0, for k ⩾ 2

We verify that f̃ • is a morphism of complexes.

d−1
F f̃ 0 = d−1

F f 0 − d−1
F h0 d−1

G = f−1d−1
G − (f−1 − h−1 d−2

G )d−1
G = 0

d0F f̃
1 = d0F (f

1 − d1F h2) = d0F f
1 = f 0 d0G = (f 0 − h0 d−1

G )d0G = f̃ 0 d0G

f̃ 1 d1G = f 1 d1G − d1F h2 d1G = d1F f
2 − d1F (f 2 − d2F h3) = 0
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By construction, the morphisms f̃ • and f • are equal in K(projA).

F • · · · F−1 F 0 F 1 F 2 · · ·

G• · · · G−1 G0 G1 G2 · · ·

f̃ •

d−1
F

0

d0F

f̃
0

d1F

f̃
1

u1

0

d−1
G d0G d1G

We have f̃ 0,∗ d−1,∗
F = d−1,∗

G f̃−1,∗ = 0, so that f̃ 0,∗ factors through Ker(d−1,∗
F ) = Im(d0,∗F ). Using

that G0,∗ is projective, we obtain a morphism u1,∗ : G0,∗ → F 1,∗ such that f̃ 0,∗ = u1,∗ d0,∗F .

Applying (−)∗, we get that f̃ 0 = d0F u
1.

We define a morphism ˜̃f • : F • → G• as follows.

˜̃fk := 0, for k ⩽ 0
˜̃f 1 := f̃ 1 − u1 d0G
˜̃fk := 0, for k ⩾ 2

We verify that ˜̃f • is a morphism of complexes.

d0F
˜̃f 1 = d0F f̃

1 − d0F u1 d0G = f̃ 0 d0G − f̃ 0 d0G = 0

˜̃f 1 d1G = f̃ 1 d1G − u1 d0G d1G = 0

By construction, the morphisms ˜̃f • and f̃ • are equal in K(projA).

F • · · · F−1 F 0 F 1 F 2 F 3 · · ·

G• · · · G−1 G0 G1 G2 G3 · · ·

˜̃f •

d−1
F

0

d0F

0

d1F

˜̃f1

d2F

0

v2

0

v3

d−1
G d0G d1G d2G

We have that ˜̃f 1,∗ d0,∗F = d0,∗G
˜̃f 0,∗ = 0. As above, we obtain a morphism v2,∗ : G1,∗ → F 2,∗

such that ˜̃f 1,∗ = v2,∗ d1,∗F . Applying (−)∗, this results in ˜̃f 1 = d1F v
2. Moreover, we have

that d1,∗G v2,∗ d1,∗F = d1,∗G
˜̃f 1,∗ = 0. Again, we obtain a morphism v3,∗ : G2,∗ → F 3,∗ such that

d1,∗G v2,∗ = v3,∗ d2,∗F . Applying (−)∗, this results in v2 d1G = d2F v
3.

Letting vk := 0 for k ̸= 2, 3, we constructed a homotopy v• : F • → G• [−1] such that the

following holds for all k ∈ Z.
˜̃fk = vk dk−1

G + dkF v
k+1

In conclusion, f • = f̃ • = ˜̃f • = 0 in K(projA).
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The next lemma provides the construction of the functor F : modA → K(projA). We follow

the proof given in [19, Lemma 2.9] with some added details.

Lemma 2.4. ([18, Proposition 2.3 and 2.4])

Suppose given X, Y ∈ modA and a morphism f ∈ HomA(X, Y ).

(1) There exists a complex F •
X ∈ LA such that

H0(τ⩽0 F
•
X)

st≃ X.

Furthermore, F •
X is uniquely determined in K(projA) by X ∈ modA up to isomorphism.

(2) There exists a morphism f • ∈ HomK(projA)(F
•
X , F

•
Y ) such that

H0(τ⩽0 f
• )

st≃ f.

Furthermore, f • is uniquely determined in K(projA) by f up to isomorphism.

Proof. Ad (1). Let P • ∈ K(projA) be a projective resolution of X.

P • : · · · → P−2 d−2
P−−→ P−1 d−1

P−−→ P 0

Let Q• ∈ K(A-proj) be a projective resolution of Tr(X) = Cok(dP
∗

−1) such that we have the

following exact sequence.

· · · → Q−2
d−2
Q−−→ Q−1 = P ∗

0

d−1
Q =dP

∗
−1−−−−−→ Q0 = P ∗

−1 → Tr(X)→ 0

Applying (−)∗, we obtain the following complex in K(projA).

Q∗
0

dQ
∗

−1−−→ Q∗
−1

dQ
∗

−2−−→ Q∗
−2

dQ
∗

−3−−→ Q∗
−3 → · · ·

We define a complex F •
X ∈ K(projA) via

F k
X :=

⎧⎨⎩ P k , k ⩽ −1

Q∗
−1−k , k ⩾ 0

dkF :=

⎧⎨⎩ dkP , k ⩽ −1

dQ
∗

−2−k , k ⩾ 0 .

Since we have d−1
P = dQ

∗

−1, this is in fact a complex. Note that F •
X can be visualized as follows.

· · · F−2
X F−1

X F 0
X F 1

X F 2
X · · ·

· · · P−2 P−1 P 0 = Q∗
−1 Q∗

−2 Q∗
−3 · · ·

d−2
F d−1

F d0F d1F

d−2
P d−1

P
dQ

∗
−2 dQ

∗
−3
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By construction, we have τ⩽0F
•
X = τ⩽0P

• so that H0(τ⩽0F
•
X) ≃ X and Hk(F •

X) = 0 for k < 0.

Moreover, we have τ⩾−1F
• ,∗
X = τ⩽0Q

• so that Hk(F
• ,∗
X ) = H−1−k(Q• ) = 0 for k ⩾ 0.

It remains to show that F •
X is uniquely determined in K(projA) by X up to isomorphism.

However, we first show the existence of f • in part (2).

Ad (2). Let f in modA be a lift of f . Let F • := F •
X and G• := F •

Y be elements of L as

constructed above.

Since τ⩽0F
• and τ⩽0G

• are projective resolutions, we can lift f to a morphism of complexes φ• .

τ⩽0F
• · · · F−2 F−1 F 0 0 · · ·

τ⩽0G
• · · · G−2 G−1 G0 0 · · ·

φ• φ−2 φ−1 φ0

Similarly, we can lift Tr(f) : Tr(Y ) → Tr(X) to a morphism of complexes τ⩾−1G
∗
•
ρ∗•−→ τ⩾−1F

∗
• .

Applying (−)∗ yields a morphism of complexes ρ• : τ⩾−1F
• → τ⩾−1G

• .

τ⩾−1G
∗
• · · · G∗

1 G∗
0 G∗

−1 0 · · ·

τ⩾−1F
∗
• · · · F ∗

1 F ∗
0 F ∗

−1 0 · · ·

ρ∗• ρ∗1 ρ∗0 ρ∗−1

By construction of Tr(f), we may choose ρ−1 = φ−1 and ρ0 = φ0. Combining both, we obtain

a morphism of cochain complexes f • : F • → G• via τ⩽0f
• := τ⩽0φ

• and τ⩾1f
• := τ⩾1ρ

• . We

have H0(τ⩽0f
• ) = H0(τ⩽0φ

• ) ≃ f by construction.

We conclude the proof by showing that f • and F •
X are unique up to isomorphism in K(projA).

Suppose given F • and G• in LA with H0(τ⩽0F
• )

st≃ X and H0(τ⩽0G
• )

st≃ X respectively. By

adding a trivial complex · · · → 0→ P 0 1−→ P 1 → 0→ · · · as a direct summand in K(projA) if
necessary, we may assume that H0(τ⩽0F

• ) ≃ H0(τ⩽0G
• ) in modA.

Let φ : H0(τ⩽0F
• )→ H0(τ⩽0G

• ) be an isomorphism with inverse ρ. Since projective resolutions

are unique up to isomorphism in K(projA), the construction of part (2) yields morphisms φ•

and ρ• in K(projA) such that H0(τ⩽0(φ
• ρ• )) = idX and H0(τ⩽0(ρ

• φ• )) = idX . By Lemma 2.3,

we can conclude that φ• ρ• = idF • and ρ• φ• = idG• in K(projA). Hence, F • ≃ G• in K(projA).

Now, suppose given f •
1 and f •

2 in LA with H0(τ⩽0 f
•
1 ) ≃ f and H0(τ⩽0 f

•
2 ) ≃ f in modA

respectively. We have isomorphisms φ and ψ in modA such that φH0(τ⩽0 f
•
1 )ψ = H0(τ⩽0 f

•
2 ).

As above, φ and ψ lift to isomorphisms φ• and ψ• in K(projA). We obtain

H0(τ⩽0 f
•
2 ) = H0(τ⩽0 φ

• )H0(τ⩽0 f
•
1 )H

0(τ⩽0 ψ
• ) = H0(τ⩽0 (φ

•f •
1ψ

• ))

in modA so that φ•f •
1ψ

• = f •
2 by Lemma 2.3. Thus, f •

1 ≃ f •
2 in K(projA).
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Remark 2.5. For X ∈ modA we fix F •
X ∈ LA such that τ⩽0 F

•
X is the minimal projective

resolution of X and τ⩾−1F
• ,∗
X is the minimal projective resolution of Tr(X). In this case,

τ⩾1F
• ,∗
X is the minimal projective resolution of X∗. Note that the minimal projective resolution

of P ∈ projA is the complex with P concentrated in degree 0. Thus, F k
P = 0 for k ̸= 0, 1 and

F •
P = (· · · → 0→ P → P → 0→ · · · ).

For X
f−→ Y in modA we fix F •

X

f •

−→ F •
Y as a lift of f in K(projA) with F •

X and F •
Y as above.

In particular,

H0(τ⩽0F
•
X) ≃ X

H0(τ⩽0F
•
Y ) ≃ Y

H0(τ⩽0f
• ) ≃ f

even if X or Y have projective direct summands. Moreover, F 0
X is the projective cover of X

and F 1,∗
X the projective cover of X∗. If X is simple, ν(F 0

X) is the injective hull of X.

The results so far are summarized in the following theorem given in [18, Theorem 2.6]. In the

future, we will often use this equivalence without further comment.

Theorem 2.6 (Kato). The mapping X ↦→ F •
X defines a functor F : modA→ K(projA). The

functor F restricts to an equivalence

F : modA
∼−→ LA

with quasi-inverse H0(τ⩽0 (−)) : LA → modA.

Proof. Note that F and H0(τ⩽0 (−)) are well-defined by Lemma 2.3. Let f and g in modA.

We verify that F(f)F(g) = F(fg). We have

H0
(︁
τ⩽0F(fg)

)︁
= fg = f g = H0

(︁
τ⩽0F(f)

)︁
H0
(︁
τ⩽0F(g)

)︁
= H0

(︁
τ⩽0 (F(f)F(g))

)︁
.

By Lemma 2.3, we obtain F(f)F(g) = F(fg). In conclusion, this shows that F defines a

functor F : modA→ K(projA) via the construction of Lemma 2.4.

As chosen in Remark 2.5, we have a natural transformation H0(τ⩽0 (−)) ◦ F ≃ idmodA. On the

other hand, we also have a transformation η : F ◦ H0(τ⩽0 (−)) ≃ idLA
by Lemma 2.4.(1). It

remains to show that η is natural. Let f • : F • → G• in LA.

F(H0(τ⩽0 F
• )) F •

F(H0(τ⩽0G
• )) G•

ηF •

F(H0(τ⩽0 f
• )) f •

ηG•
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By Remark 2.5, F(H0(τ⩽0 F
• )) is a complex which is taken to H0(τ⩽0 F

• ) under the functor

H0(τ⩽0 (−)). Similarly for G• . Thus, applying H0(τ⩽0 (−)) to the diagram yields

H0
(︁
τ⩽0 (ηF • f • )

)︁
= H0(τ⩽0 ηF • )H0(τ⩽0 f

• ) = H0(τ⩽0 f
• )

H0
(︁
τ⩽0 (F(H0(τ⩽0 f

• ))ηG• )
)︁
= H0

(︁
τ⩽0 (F(H0(τ⩽0 f

• ))
)︁
H0(τ⩽0 ηG• ) = H0(τ⩽0 f

• ).

Now, we obtain ηF • f • = F(H0(τ⩽0 f
• ))ηG• by Lemma 2.4.(2). Note that the identity on a

module X is lifted to the identity on F •
X .

Example in Chapter 7. A calculation of the functor F and the category LB can be found in

Example 7.1 for the algebra B of Section 7.1.

By Lemma 1.9 we have the following properties of C(f)• for a morphism f • in L.

Remark 2.7. Suppose given F • , G• ∈ LA.

(1) Let f • : F • → G• in L ⊆ K(projA). Then Hk(C(f)• ) = 0 for k < −1 and Hk(C(f)
∗
• ) = 0

for k ⩾ 0. In particular, C(f)• ∈ L if and only if H−1(C(f)• ) = 0.

(2) Let f • : G• → F • [1] in K(projA). Then C(f)• [−1] ∈ L.

The mapping cone C(f)• can be used to characterize properties of a morphism f in modA.

In [19, Theorem 3.9], Kato shows that a morphism is stably equivalent to a monomorphism if

and only if H−1(C(f)• ) = 0. In [18, Definition and Lemma 3.1], the mapping cone is used to

define a weak kernel and a weak cokernel in modA.

Definition 2.8 (Kato). Suppose given a morphisms f ∈ modA.

We define the pseudo-kernel Ker(f) and the pseudo-cokernel Cok(f) of f as

Ker(f) := H0
(︁
τ⩽0 (C(f)

• [−1])
)︁

Cok(f) := H0
(︁
τ⩽0C(f)

•
)︁

respectively. Both are uniquely determined in modA by f up to isomorphism.

For a morphism f in modA, we have the following distinguished triangle in K(projA).

C(f)• [−1] u•

−→ F •
X

f •

−→ F •
Y

v•

−→ C(f)•

This induces morphisms u := H0(τ⩽0 u
• ) : Ker(f) → X and v := H0(τ⩽0 v

• ) : Y → Cok(f).

The following lemma shows that Ker(f) and Cok(f) have the properties of a weak kernel and

weak cokernel respectively.
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Lemma 2.9. ([18, Lemma 3.3 and 3.5])

Let f : X → Y be a morphism in modA.

(1) We have u f = 0 and f v = 0 in modA.

(2) Suppose given t : T → X with t f = 0 in modA. There exists a morphism

h ∈ HomA(T,Ker(f)) such that hu = t in modA.

(3) Suppose given t : Y → T with f t = 0 in modA. There exists a morphism

h ∈ HomA(Cok(f), T ) such that v h = t in modA.

Proof. Ad (1). We have u•f • = 0 and f •v• = 0. By Lemma 2.3, we obtain that u f = 0 and

f v = 0 in modA.

Ad (2). We have a morphism t• : F •
T → F •

X with t•f • = 0 by Theorem 2.6. This induces a

morphism of distinguished triangles.

C(f)[−1] F •
X F •

Y

F •
T F •

T 0

u• f •

1

h• t•

Let h := H0(τ⩽0 h
• ). By Lemma 2.3 we obtain hu = t in modA. Part (3) is shown similarly.

We will return to the pseudo-kernel and pseudo-cokernel at the end of the next section.

2.2 Perfect exact sequences

In this section, we introduce a special class of short exact sequences. We will see that a perfect

exact sequence corresponds to a distinguished triangle in K(projA) via the equivalence F . In
later chapters, we will use perfect exact sequences mainly in the context of stable equivalences.

Definition 2.10. A short exact sequence 0 → X → Y → Z → 0 in modA is called perfect

exact if the induced sequence 0→ X∗ → Y ∗ → Z∗ → 0 is exact in A-mod.

Example 2.11. (1) Let A be self-injective. Since HomA(−, A) is an exact functor, every

short exact sequence is perfect exact.

(2) A short exact sequence 0 → X → Y → Z → 0 is perfect exact if the induced morphism

HomA(Y,A)→ Hom(X,A) is surjective. In particular, this holds if X∗ = 0.
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(3) Let A be hereditary. Then HomA(X,A) = 0 for all X ∈ modA not projective. Thus,

every short exact sequence starting in a non-projective module is perfect exact by (2).

(4) A short exact sequence 0 → X
f−→ Y

g−→ Z → 0 is perfect exact, if f ̸= 0 and g is

irreducible.

In fact, using that g is irreducible, a morphism p : X → A induces either a morphism

α : A → Y with pα = f or a morphism β : Y → A with f β = p. However, in the first

case we obtain f = 0.

(5) An almost split sequence 0→ X
f−→ EX

g−→ τ−1(X)→ 0 is perfect exact if and only if X

is not projective.

In fact, a morphism p : X → A induces a morphism β : EX → A with f β = p if and only

if p is not split. However, this holds if and only if X is not projective, since the starting

term of an almost split sequence is indecomposable.

Recall that PA denotes the category of projective-injective A-modules. In case that the dom-

inant dimension of A is at least 1, a module X ∈ ⊥PA satisfies X∗ = 0. In particular, short

exact sequences with middle term in⊥PA are perfect exact.

Lemma 2.12. Suppose that domdimA ⩾ 1. Let Y ∈⊥PA. Let Y ′ be a submodule of Y .

We have (Y ′)∗ = 0 and every short exact sequence 0 → X → Y ′ → Z → 0 in modA is a

perfect exact sequence.

Proof. Let Y ′ be a submodule of Y . Since the embedding Y ′ ↪→ Y is injective, the condition

Y ∈⊥P implies that Y ′ is contained in ⊥P as well. Using that domdimA ⩾ 1, we obtain that

Hom(Y ′, A) = 0.

Suppose given a short exact sequence 0 → X → Y ′ → Z → 0 in modA. Since X is isomor-

phic to a submodule of Y , we have seen above that X∗ = 0. Thus, the result follows from

Example 2.11.(2).

The following lemma can be useful to check if a short exact sequence can be perfect exact. If the

starting morphism of a perfect exact sequence factors through an indecomposable projective

module P , then P must be a direct summand of the middle term.

Lemma 2.13. Suppose given a perfect exact sequence 0→ X
f−→ Y

g−→ Z → 0. Let P ∈ projA

be indecomposable. Suppose that ι : X ′ ↪→ X is the embedding of a direct summand of X.

If ι f = u v with u : X ′ → P and v : P → Y then v is a split monomorphism.
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Proof. Let π : X → X ′ with ιπ = idX .

X Y Z

X ′

P

f

π

g

u

ι

v

Since Y ∗ → X∗ is surjective, we obtain a morphism σ : Y → P with f σ = π u. Thus, we

have u = ι π u = ι f σ = u v σ. Inductively, we obtain u = u(v σ)n for all n ∈ Z⩾0. Since P is

indecomposable, v σ is either an automorphism or nilpotent. However, if u = u(v σ)n = 0 for

some n, we obtain f = π u v = 0. A contradiction. Thus, v σ is an automorphism and v is a

split monomorphism.

Example in Chapter 7. For the algebra A in Section 7.4 we discuss two short exact sequences

that are not perfect exact in Example 7.13. The first does not satisfy the condition of the

previous lemma. In the second perfect exact sequence, the starting morphism does not factor

through a projective module. In particular, we see that not every short exact sequence satisfying

the conditions of the previous lemma is perfect exact.

The situation is better for Nakayama algebras.

Lemma 2.14. Let A be a Nakayama algebra. Suppose given a short exact sequence

η : 0→ X
f−→ Y

g−→ Z → 0 without split summands.

The sequence η is perfect exact if the following holds for all embeddings ι : X ′ → X of in-

decomposable direct summands of X and for all projections π : Y → Y ′ onto indecomposable

direct summands of Y . If ι f π factors through an indecomposable projective A-module P via

i : P → Y ′, then i is a split monomorphism.

Proof. Suppose given a non-zero morphism u : X → P with P ∈ projA. Since A is a Nakayama

algebra, there exists a projective-injective module Q with an embedding i : P ↪→ Q.

0 X Y Z 0

P

Q

f

u

g

v

i

Since Q is injective, we obtain a morphism v : Y → Q such that f v = u i. It remains to show

that there exists a morphisms w : Y → P with w i = v. If i is a split monomorphism, P is
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injective and we are done. It suffices to consider indecomposable projective modules P and Q

with a non-split embedding i : P ↪→ Q.

Claim. Suppose P and Q are indecomposable projective modules with P = rad(Q). Then there

exists a morphism w : Y → P with w i = v.

Y

0 rad(Q) Q Q/ rad(Q) 0

v
w

i p

Note that Q/ rad(Q) is simple. If v is not surjective, v p must be zero. Hence, there exists a

w : Y → P as claimed. Suppose that v is surjective and thus Q a direct summand of Y . Then

there exists an embedding ι : X ′ → X of an indecomposable direct summand X ′ of X such

that ι f v factors through rad(Q). Since rad(Q) is indecomposable projective, the assumption

implies that rad(Q) is a direct summand of Y . A contradiction. Thus, v can not be surjective

and the claim holds.

Now, assume that P = radn(Q) ∈ projA with Q indecomposable projective. We finish the

proof by induction on n. The case n = 1 holds by the claim above. Since A is a Nakayama

algebra, radk(Q) must be projective for all 1 ⩽ k ⩽ n. By induction hypothesis, v : Y → Q

factors through radn−1(Q). Using the claim for radn−1(Q) instead of Q, we obtain that this

morphism factors through rad(radn−1(Q)) = radn(Q) = P and we are done.

We note that the projective summand of the middle term in a perfect exact sequence is uniquely

determined by the induced sequence in modA.

Lemma 2.15. Suppose given two perfect exact sequences 0 → X
f1−→ Y1

g1−→ Z → 0 and

0→ X
f2−→ Y2

g2−→ Z → 0 in modA.

If there exists a stable isomorphism β : Y1 → Y2 such that β g2 = g1 in modA, then the two

sequences are isomorphic.

Proof. Using that both sequences are perfect exact, we may assume that X and Z have no

projective direct summand. Otherwise, both sequences have an isomorphic split sequence as a

direct summand.

Let Yi = Mi ⊕ Pi with Pi ∈ projA and Mi without projective direct summands for i = 1, 2.

The stable isomorphism β induces an isomorphism β′ : M1
∼−→ M2 such that β′ g2 is equal to

the restriction of g1 toM1. Since P1 is projective, there exists a morphism (a b) : P1 →M2⊕P2

such that the following diagram commutes with α induced by the universal property of the
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kernel.

0 X M1 ⊕ P1 Z 0

0 X M2 ⊕ P2 Z 0

f1

α

g1(︄
β′ 0

a b

)︄
f2 g2

By Lemma 1.5 we obtain that these two sequences are isomorphic.

Remark 2.16. Let 0 → X
(f u)
−−−−→ Y ⊕ P

(︄
g

v

)︄
−−−→ Z → 0 be a perfect exact sequence with

P ∈ projA and Y without projective direct summand. Then the previous lemma shows that

P is uniquely determined up to isomorphism by the sequence X
f−→ Y

g−→ Z.

We also need the following observation in the future. Let 0 → X
(f u)
−−−−→ Y ⊕M

(︄
v

w

)︄
−−−→ Z → 0

be a short exact sequence in modA. If 0→ X
f−→ Y

g−→ Z → 0 is another short exact sequence

in modA, the two sequences are isomorphic since A is finite dimensional.

For our purposes, the next two results provide the key property of a perfect exact sequence.

Under the equivalence F : modA → LA, perfect exact sequences in modA correspond to

distinguished triangles in K(projA).

Lemma 2.17. The following are equivalent for a sequence of complexes P • f •

−→ Q• g•

−→ R• in

K(projA).

(1) There exists a short exact sequence 0 → P • s•−→ Q•
1

t•−→ R• → 0 in C(projA) and an

isomorphism φ• : Q•
1 → Q• in K(projA) such that s• φ• = f • and φ• g• = t• in K(projA).

(2) The sequence P • f •

−→ Q• g•

−→ R• → is a distinguished triangle in K(projA).

Proof. Suppose that P • f •

−→ Q• g•

−→ R• h•

−→ P •+1 is a distinguished triangle in K(projA).

Write C• := C(h• )[−1] ∈ C(projA). By assumption, we have the following exact sequence.

0→ P • (0 1)
•

−−−−→ C•

(︄
−1

0

)︄•

−−−−→ R• → 0

By construction of C• as the shifted mapping cone of h• , there is an isomorphism C• φ•

−→ Q•

such that s• φ• = f • and φ• g• = t• in K(projA).

Conversely, suppose that there exists such an exact sequence 0 → P • f •

−→ Q•
1

g•

−→ R• → 0 in

C(projA). Since Rk is projective for all k ∈ Z the sequence splits in every degree via a morphism

σk : Rk → Qk
1, that is σ

k gk = idkR. Furthermore, there exists a morphism χk : Rk → P k+1 such
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that the following diagram commutes.

Rk

P k+1 Im(fk+1)

χk

dkR σ
k+1−σk dkQ1

fk+1

Note that Im(dkR σ
k+1 − σk dkQ1

) ⊆ Im(fk+1) since (dkR σ
k+1 − σk dkQ1

)gk+1 = dkR − σk gk dkR = 0.

For k ∈ Z we have

(︁
χk dk+1

P + dkR χ
k+1
)︁
fk+2 = χk fk+1 dk+1

Q1
+ dkR

(︁
dk+1
R σk+2 − σk+1 dk+1

Q1

)︁
= dkR σ

k+1 dk+1
Q1
− σk dkQ1

dk+1
Q1
− dkR σk+1 dk+1

Q1
= 0

so that χ• d•
P [1] = −χ• d•

P [1] = d•
R χ

• [1] since f • is injective. Thus, χ• : R• → P • [1] is a

morphism of complexes.

The differential of C• := C(χ• )[−1] = R• ⊕ P • is then given by

d•
C :=

(︄
d•
R −χ•

0 d•
P

)︄
.

We show that the following is an isomorphism of short exact sequences with σ• = (σk)k∈Z.

0 P • C• R• 0

0 P • Q•
1 R• 0

(0 1)
•

(︄
1

0

)︄•

(︄
σ•

f •

)︄
f • g•

By construction of σ• , this is a commutative diagram. It remains to show that

(︃
σ•

f •

)︃
is a

morphism of complexes. We calculate as follows for k ∈ Z.(︃
dkR −χk

0 dkP

)︃(︃
σk+1

fk+1

)︃
=

(︃
dkR σ

k+1−χk fk+1

dkP f
k+1

)︃
=

(︃
σk

fk

)︃
dkQ1

In conclusion, R• χ•

−→ P • [1] → C• [1] → R• [1] is a distinguished triangle which induces the

following distinguished triangle.

P • → Q•
1 → R• χ•

−→ P • [1]

By assumption, this triangle is isomorphic to the sequence P • f •

−→ Q• g•

−→ R• χ•

−→ P • [1] in

K(projA).
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The following proposition is based on [19, Proposition 3.6]. We will give a modified and ex-

panded version of the proof found in [18, Lemma 2.7].

Proposition 2.18 (Kato). Suppose given a sequence X
f−→ Y

g−→ Z in modA such that Y has

no projective direct summand. The following are equivalent.

(1) There exists a projective module P and morphisms p and q such that

0→ X
(f p)
−−−→ Y ⊕ P

(︄
g

q

)︄
−−−→ Z → 0

is a perfect exact sequence in modA.

(2) There exists a short exact sequence 0 → F •
X

s•−→ G• t•−→ F •
Z → 0 in C(projA) and an

isomorphism φ• : G• → F •
Y in K(projA) such that s• φ• = f • and φ• g• = t• in K(projA).

(3) The sequence F •
X

f •

−→ F •
Y

g•

−→ F •
Z → is a distinguished triangle in K(projA).

Remark 2.19. Suppose that 0 → X
f−→ Y

g−→ Z → 0 is a perfect exact sequence in modA.

Let F •
X

f •

−→ F •
Y

g•

−→ F •
Z → be the induced sequence in LA obtained by applying the functor

F of Theorem 2.6. The proposition above now states that this is a distinguished triangle in

K(projA).

On the other hand, suppose that X • f •

−→ Y • g•

−→ Z• h•

−→ X • [1] is a distinguished triangle in

K(projA) such that X • , Y • and Z• are elements of LA. We have seen that this induces a

short exact sequence 0 → X • s•−→ C(h)• [−1] t•−→ Z• → 0 in C(projA). During the proof of the

proposition we will show the following. Applying H0(τ⩽0 (−)), the quasi-inverse of F , induces
a perfect exact sequence 0 → H0(τ⩽0X

• ) → H0
(︁
τ⩽0 (C(h)

• )
)︁
→ H0(τ⩽0 Z

• ) → 0 in modA.

Furthermore, we have H0
(︁
τ⩽0 (C(h)

• [−1])
)︁
≃ H0(τ⩽0 Y

• ) in modA.

By Remark 2.5 and Remark 2.16, these constructions are mutually inverse up to isomorphism

in modA and K(projA) respectively. If the conditions in the proposition hold, the projec-

tive module P in (1) is uniquely determined up to isomorphism. Furthermore, we have that

H0(τ⩽0G
• ) ≃ Y ⊕ P and G• = C(h)• [−1] where h• : F •

Z → F •
X [1].

Proof of Proposition 2.18. The equivalence of (2) and (3) is shown in Lemma 2.17.

Ad (1) ⇒ (2). We repeat the construction of Lemma 2.4 with a specific projective resolution

of Y ′ := Y ⊕ P . Suppose given minimal projective resolutions P⩽0 of X and Q⩽0 of Z.

· · · → P−2 d−2
X−−→ P−1 d−1

X−−→ P 0 → 0

· · · → Q−2 d−2
Z−−→ Q−1 d−1

Z−−→ Q0 → 0
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The horseshoe lemma gives us the following projective resolution of Y ′ = Y ⊕ P .

...
...

...

0 P−1 P−1⊕Q−1 Q−1 0

0 P 0 P 0⊕Q0 Q0 0

0 X Y ′ Z 0

(1 0)

d−1
X

(︄
0

1

)︄

d−1
Y d−1

Z

(1 0)

πX

(︄
0

1

)︄

(︄
α

β

)︄
πZ

f g

with dkY =

(︄
dkX 0

σk dkZ

)︄
and a morphism σk : Qk → P k+1 for k ⩽ −1 such that dk−1

Y dkY = 0.

Similarly, we construct projective resolutions of X∗, (Y ′)∗ and Z∗ in A-mod

...
...

...

0 Q2 P 2⊕Q2 P 2 0

0 Q1 P 1⊕Q1 P 1 0

0 Z∗ (Y ′)∗ X∗ 0

(0 1)

d̃1Z

(︄
1

0

)︄

d̃1Y d̃1X

(0 1)

pZ

(︄
1

0

)︄

(︄
a

b

)︄
pX

g∗ f∗

with d̃kY =

(︄
d̃kX σ̃k

0 d̃kZ

)︄
and a morphism σ̃k : P k+1 → Qk for k ⩾ 1 such that d̃k+1

Y d̃kY = 0.

Applying HomA(−, A) to the second diagram and combining it with the first yields

· · · P−1 P 0 P 1,∗ P 2,∗ · · · F •
X

· · · P−1⊕Q−1 P 0⊕Q0 P 1,∗⊕Q1,∗ P 2,∗⊕Q2,∗ · · · G•

· · · Q−1 Q0 Q1,∗ Q2,∗ · · · F •
Z

d−1
X

(1 0)

d0X

(1 0)

d̃1,∗X

(1 0) (1 0) s•

d−1
Y

(︄
0

1

)︄
d0Y

(︄
0

1

)︄
d̃1,∗Y

(︄
0

1

)︄ (︄
0

1

)︄
t•

d−1
Z d0Z d̃1,∗Z
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with d0X := πX p
∗
X , d

0
Z := πZ p

∗
Z and

d0Y :=

(︄
αa∗ αb∗

βa∗ βb∗

)︄
=

(︄
πX fa

∗ πX f g p
∗
Z

β a∗ β g p∗Z

)︄
=

(︄
d0X 0

σ0 d0Z

)︄

where σ0 := βa∗. Write dkX := d̃k,∗X , dkY := d̃k,∗Y , dkZ := d̃k,∗Z and σk := σ̃k,∗ for k ⩾ 1.

We obtain the complexes

F k
X =

{︄
P k, k ⩽ 0

P k,∗, k > 0
Gk :=

{︄
P k⊕Qk, k ⩽ 0

P k,∗⊕Qk,∗, k > 0
F k
Z =

{︄
Qk, k ⩽ 0

Qk,∗, k > 0

with the differentials defined above. By construction, all three complexes are elements of L.
Additionally, we obtain two morphisms of complexes

s• := (1 0)
•
: F •

X → G• and t• :=

(︃
0

1

)︃•

: G• → F •
Z .

We have the following.

H0 (τ⩽0F
•
X) ≃ X H0 (τ⩽0s

• ) ≃ f

H0 (τ⩽0G
• ) ≃ Y ⊕ P st≃ Y H0 (τ⩽0t

• ) ≃ g

H0 (τ⩽0F
•
Z) ≃ Z

Moreover, 0 → F •
X

s•−→ G• t•−→ F •
Z → 0 is an exact sequence of complexes. The stable isomor-

phism Y ⊕ P → Y lifts to an isomorphism φ• : G• → F •
Y in K(projA) with H0(τ⩽0φ

• ) ≃ idY .

Lemma 2.3 now shows that s• φ• = f • and φ• g• = t• in K(projA).

Ad (2) ⇒ (1). The short exact sequence 0→ F •
X

s•−→ G• t•−→ F •
Z → 0 induces the following short

exact sequence by applying τ⩽0 (−).

0→ τ⩽0F
•
X

τ⩽0s
•

−−−→ τ⩽0G
• τ⩽0t

•

−−−→ τ⩽0F
•
Z → 0

This yields a short exact sequence of cohomology. Note that H−1(τ⩽0 F
•
Z) = 0 since F •

Z ∈ L.

0→ X
s−→ H0(τ⩽0G

• )
t−→ Z → 0

Since F k
Z is projective for all k ∈ Z, the sequence 0 → F •

X
s•−→ G• t•−→ F •

Z → 0 splits in every

degree. Therefore, 0→ F
• ,∗
Z

t• ,∗−−→ G• ,∗ s• ,∗−−→ F
• ,∗
X → 0 is also exact. As above, the sequence

0→ τ⩾1F
• ,∗
Z

τ⩾1t
• ,∗

−−−−→ τ⩾1G
• ,∗ τ⩾1s

• ,∗

−−−−→ τ⩾1F
• ,∗
X → 0
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induces a short exact sequence of homology using that H2(F
• ,∗
X ) = 0 since F •

X ∈ L.

0→ Z∗ → H1(τ⩾1G
• ,∗)→ X∗ → 0

Since G• ∈ L, we have H1(τ⩾1G
• ,∗) = Cok(d1,∗G ) = Ker(d−1,∗

G ) ≃ Cok(d−1
G )∗ = H0(τ⩽0G

• )∗.

Therefore,

0→ X
s−→ H0(τ⩽0G

• )
t−→ Z → 0

is a perfect exact sequence.

We know that H0(τ⩽0G
• )

st≃ Y . Furthermore, via this ismorphism we have s ≃ f and t ≃ g.

Using that Y has no projective direct summand, Lemma 2.15 shows that the above sequence

is isomorphic to

0→ X
(f p)
−−−→ Y ⊕ P

(︄
g

q

)︄
−−−→ Z → 0

for a P ∈ projA unique up to isomorphism. In particular, we have H0(τ⩽0G
• ) ≃ Y ⊕ P .

Example in Chapter 7. For the algebra B in Section 7.1 we discuss a perfect exact sequences

and its corresponding distinguished triangle in Example 7.2.

At the end of this section, we return to the pseudo-kernel and pseudo-cokernel of Definition 2.8

and discuss their relationship with perfect exact sequences. We start with two short exact

sequences containing the pseudo-kernel given in [18]. For the proof of part (2), we follow [18,

Lemma 3.6.(1)].

Lemma 2.20. Suppose given a morphism g : Y → Z in modA. We have the following short

exact sequences.

(1) 0→ Ker(g)→ Y ⊕ F 0
Z

(︄
g

π

)︄
−−−→Z → 0 with π : F 0

Z → Z the natural projection.

(2) 0→ Ker(g)→ Ker(g)→ L→ 0 with L = Ker(F 0
Z → Cok(g))

st≃ Ω(Cok(g)).

In particular, Ker(g) ≃ Ker(g)⊕ F 0
Z if g is surjective and Ker(g) ≃ Ker(F 0

Z → Cok(g)) if g is

injective.

Proof. The distinguished triangle F •
Y

g•

−→ F •
Z

h•

−→ C(g)• → induces a short exact sequence of

complexes 0→ C(g)• [−1]→ C(h)• [−1]→ F •
Z → 0. Applying H0(τ⩽0 (−)) to this sequence, we

obtain a short exact sequence 0→ Ker(g)→ H0(τ⩽0 (C(h)
• [−1]))→ Z → 0 via the long exact

cohomology sequence. We show that H0(τ⩽0 (C(h)
• [−1])) ≃ Y ⊕ F 0

Z .
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We have H0(τ⩽0 (C(h)
• [−1])) = (F 0

Z ⊕ F 0
Y ⊕ F−1

Z )/ Im(d−2
C(h)) with

d−2
C(h) =

⎛⎜⎝−d
−1
Z 0 1

0 −d−1
Y g−1

0 0 d−2
Z

⎞⎟⎠ .

We have mutually inverse isomorphism φ : H0(τ⩽0 (C(h)
• [−1])) → F 0

Z ⊕ F 0
Y / Im(d−1

Y ) and

ψ : F 0
Z ⊕ F 0

Y / Im(d−1
Y )→ H0(τ⩽0 (C(h)

• [−1])) in modA defined as follows.

φ :=

⎛⎜⎝ 1 0

g0 1

d−1
Z 0

⎞⎟⎠ , ψ :=

(︄
1 0 0

−g0 1 0

)︄

Using that F 0
Y / Im(d−1

Y ) ≃ Y , part (1) follows.

We obtain the following commutative diagram with exact rows and columns. Let L be the

kernel of the morphism F 0
Z → Cok(g).

0 0 0

0 Ker(g) Y Im(g) 0

0 Ker(g) Y ⊕ F 0
Z Z 0

0 L F 0
Z Cok(g) 0

0 0 0

We obtain a short exact sequence 0 → Ker(g) → Ker(g) → L → 0. Recall that F 0
Z is the

projective cover of Z. If g is surjective, we have L ≃ F 0
Z and the sequence splits.

In general, the short exact sequence in (1) of Lemma 2.20 is not perfect exact. The situation is

different for the pseudo-cokernel. The following is a special case of [19, Theorem 3.9] restricted

to injective morphisms. We give a modified proof adapted to this situation.

Proposition 2.21 (Kato). Suppose given an injective morphism f : X → Y in modA.

We have H−1(C(f)• ) = 0. Furthermore, there exists a perfect exact sequence

0→ X
(f d)
−−−→ Y ⊕ F 1

X → Cok(f)→ 0.
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Proof. Let Z := Cok(f) and denote the induced short exact sequence as follows.

0→ X
f−→ Y

g−→ Z → 0.

The morphisms f and g induce two distinguished triangles in K(projA) and a morphism of

complexes ψ• : C(f)• → F •
Z making the following diagram commutative.

F •
X F •

Y C(f)•

C(g)• [−1] F •
Y F •

Z

f •

φ•

(0 1)

ψ•=

(︄
0

g•

)︄
g•

We obtain a morphism φ• : F •
X → C(g)• [−1] with H0(τ⩽0 φ

• ) : X → Ker(g). Since g is

surjective, H0(τ⩽0 φ
• ) is a stable isomorphism by Lemma 2.20. In particular, F •

X ≃ F •
Ker(g) in

K(projA). Note that τ⩽0 F
•
Ker(g) and τ⩽0 (C(g)

• [−1]) are projective resolutions of isomorphic

modules and thus isomorphic themselves. As a result, we can assume that φk = id for k ⩽ 0

up to isomorphism in K(projA). In particular, we have Hk(C(φ)• ) = 0 for k ⩽ 0.

Consider the following commutative diagram of distinguished triangles.

F •
X F •

Y C(f)•

C(g)• [−1] F •
Y F •

Z

C(φ)• 0 C(ψ)•

f •

φ•

(0 1)

ψ•

g•

We obtain C(φ)• [1] ≃ C(ψ)• so that Hk(C(ψ)• ) = 0 for k < 0. Now, the distinguished triangle

F •
Z → C(ψ)• → C(f)• [1]→

provides H−1(C(f)• ) = 0 by Lemma 1.9. This implies H−1(C(f)• ) ∈ LA; cf. Remark 2.7. In

conclusion, we have a distinguished triangle

F •
X

f •

−→ F •
Y → C(f)•

h•

−→ F •
X [1]

in LA which induces a perfect exact sequence

0→ X → H0(τ⩽0 (C(h)
• [−1]))→ Cok(f)→ 0

in modA by Proposition 2.18. It remains to show that H0(τ⩽0 (C(h)
• [−1])) ≃ Y ⊕ F 1

X .
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We have H0(τ⩽0 (C(h)
• [−1])) = (F 1

X ⊕ F 0
Y ⊕ F 0

X)/ Im(d−1
C(h)) with

d−1
C(h) =

⎛⎜⎝d
0
X −f 0 −1
0 −d−1

Y 0

0 0 d−1
X

⎞⎟⎠ .

We have mutually inverse isomorphism φ : H0(τ⩽0 (C(h)
• [−1])) → F 1

X ⊕ F 0
Y / Im(d−1

Y ) and

ψ : F 1
X ⊕ F 0

Y / Im(d−1
Y )→ H0(τ⩽0 (C(h)

• [−1])) in modA defined as follows.

φ :=

⎛⎜⎝ 1 0

0 1

d0X −f 0

⎞⎟⎠ , ψ :=

(︄
1 0 0

0 1 0

)︄

Using that F 0
Y / Im(d−1

Y ) ≃ Y , the result follows.

Let 0 → X
f−→ Y

g−→ Z → 0 be a short exact sequence in modA. We have seen that every

monomorphism can be completed to a perfect exact sequence.

0→ X
(f d)
−−−→ Y ⊕ F 1

X → Cok(f)→ 0.

This induces a morphism c : Cok(f)→ Z such that the following diagram commutes.

0 X Y ⊕ F 1
X Cok(f) 0

0 X Y Z 0

(f d)

(︄
1

0

)︄
c

f g

The morphism c can be used to characterize perfect exact sequences. The short exact sequence

in the following lemma and its proof can be found in [18, Lemma 3.6.(2)].

Lemma 2.22. Suppose given a short exact sequence 0→ X
f−→ Y

g−→ Z → 0 in modA.

There exists a short exact sequence of the form

0→ F 1
X → Cok(f)

c−→ Z → 0.

Moreover, 0→ X
f−→ Y

g−→ Z → 0 is a perfect exact sequence if and only if Cok(f) and Cok(f)

are stably isomorphic in modA.

Proof. Let L := Ker(c). The following commutative diagram with exact rows and columns



54 2 Stable module category and homotopy category

shows that L ≃ F 1
X ∈ projA.

0 0 0

0 0 F 1
X L 0

0 X Y ⊕ F 1
X Cok(f) 0

0 X Y Z 0

0 0 0

(0 1)
(f d)

(︄
1

0

)︄
c

f g

Let φ : Cok(f) → Z be a stable isomorphism. Recall that Cok(f) = H0(τ⩽0C(f)
• ). In the

distinguished triangle F •
X → F •

Y → C(f)• →, we have C(f)• ∈ LA by Proposition 2.21. Now,

φ induces an isomorphism φ• : C(f)• → F •
Z in LA so that F •

X → F •
Y → F •

Z → is also a

distinguished triangle via a morphism g̃• : F •
Y → F •

Z .

F •
X F •

Y C(f)•

F •
X F •

Y F •
Z

f •

∼

φ•

f • g̃•

By Proposition 2.18, we obtain a perfect exact sequence 0 → X
(f p)
−−−→ Y ⊕ P → Z → 0 in

modA. Using Remark 2.16 we see that this perfect exact sequence is isomorphic to the short

exact sequence 0→ X
f−→ Y

g−→ Z → 0.

On the other hand, if 0→ X → Y → Z → 0 is perfect exact, then

F •
X

f •

−→ F •
Y → F •

Z →

is a distinguished triangle with F •
Z ≃ C(f)• in LA. Hence, Cok(f) = H0(τ⩽0C(f)

• )
st≃ Z via c

by Lemma 2.3.

Example in Chapter 7. For the algebra B in Section 7.1 we calculate the pseudo-cokernel of

a morphism and the corresponding short exact sequences in Example 7.3. Furthermore, we

illustrate that the perfect exact sequence in Proposition 2.21 can be quite different from the

original short exact sequence in case that Cok(f) and Cok(f) are not stably isomorphic.

For more details on the pseudo-kernel and pseudo-cokernel see [18] and [19, Section 2]. More-

over, both are used in [19, Section 4] to further characterize morphisms which are stably equiv-
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alent to a monomorphism. In the context of commutative Gorenstein rings, Kato shows that a

morphism is stably equivalent to a monomorphism if and only if its kernel is a submodule of a

free module. We will go in a different direction and focus on perfect exact sequences.

2.3 Perfect exact sequences with projective middle term

Perfect exact sequences with projective middle term are of special importance for us. The

corresponding distinguished triangle is induced by the shift in K(projA). The next lemma

focuses on the ending term of such a perfect exact sequence.

Lemma 2.23. The following are equivalent for Z ∈ modA.

(1) Ext1A(Z,A) = 0

(2) There exists a perfect exact sequence 0→ X → P → Z → 0 with P ∈ projA.

(3) Every short exact sequence ending in Z is perfect exact.

(4) F •
Z [−1] ∈ LA

Proof. Suppose given a short exact sequences 0 → X → Y → Z → 0 in modA. Applying

HomA(−, A), we obtain the following exact sequence.

0→ HomA(Z,A)→ HomA(Y,A)→ HomA(X,A)→ Ext1A(Z,A)→ Ext1A(Y,A)

Thus, the short exact sequence is perfect exact if Ext1A(Z,A) = 0. If in addition Y is projective,

then the converse holds as well. Note that there always is a short exact sequence of the form

0→ X → P → Z → 0 with P the projective cover of Z.

We verify the equivalence of (2) and (4). Consider the following distinguished triangle in

K(projA).
F •
Z [−1]→ 0→ F •

Z →

By Proposition 2.18, F •
Z [−1] ∈ LA if and only if we have a perfect exact sequence

0→ X → P → Z → 0

in modA with P ∈ projA and X := H0(τ⩽0 F
•
Z [−1]). In this case, F •

Z [−1] ≃ F •
X ∈ LA.

Now, we consider the starting term of a perfect exact sequence with projective middle term.

We are mainly interested in the case of simple modules.
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Recall that F 0
X is the projective cover of X ∈ modA. If F 1

X = 0, the complex F •
X is the minimal

projective resolution of X.

Lemma 2.24. The following are equivalent for X ∈ modA.

(1) F •
X [1] ∈ LA.

(2) H0(F • ) = 0.

(3) There exists an embedding X ↪→ A.

(4) There exists a perfect exact sequence 0→ X → P → Z → 0 in modA with P ∈ projA.

Furthermore, (1), (2), (3) and (4) imply the following equivalent conditions.

(5) X∗ ̸= 0.

(6) ν(X) ̸= 0.

(7) F 1
X ̸= 0.

If X is simple, all seven conditions are equivalent.

Proof. If F •
X [1] ∈ LA, we have H0(F •

X) = 0. In this case, X = Cok(d−1
X ) ≃ Im(d0X) which

embeds into F 1
X ∈ projA.

Suppose that f : X ↪→ A is injective. By Proposition 2.21, we obtain a perfect exact sequence

of the following form.

0→ X → A⊕ F 1
X → Cok(f)→ 0

Since A⊕ F 1
X ∈ projA, part (4) follows.

By Proposition 2.18, a perfect exact sequence

0→ X → P → Z → 0

induces the following distinguished triangle in LA.

F •
X → 0→ F •

Z →

In this case, F •
X [1] ≃ F •

Z ∈ LA. This shows the equivalence of (1), (2), (3) and (4).

There is nothing to show for the implication (3) ⇒ (5). Since ν(X) = DHomA(X,A) = 0 if

and only if HomA(X,A) = 0, conditions (5) and (6) are equivalent. Using that τ⩾1F
• ,∗
X is the

minimal projective resolution of X∗, we obtain the equivalence of (5) and (7).

If X is simple, condition (5) implies condition (3).
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If it exists, there is only one perfect exact sequence without split summands starting in a module

X which has projective middle term. A more general result for morphisms stably equivalent to

a monomorphism has been shown as part of [19, Theorem 3.9].

Lemma 2.25. Suppose given X ∈ modA such that there exists a perfect exact sequence starting

in X with projective middle term.

The short exact sequence 0→ X
d−→ F 1

X → Cok(d)→ 0 is perfect exact in modA. Every perfect

exact sequence starting in X with projective middle term is isomorphic to a direct sum of this

sequence and a split exact sequence of projective modules.

Proof. By assumption, Lemma 2.24 shows that F •
X [1] ∈ LA. As a consequence, we have that

X = Cok(d−1
X ) ≃ Im(d0X) is a submodule of F 1

X . In particular, 0→ X
d−→ F 1

X → Cok(d)→ 0 is

a perfect exact sequence since d∗ : F 1,∗
X → X∗ is surjective.

Suppose given a perfect exact sequence 0 → X
f−→ P

g−→ Z → 0 in modA with P ∈ projA.

Recall that d∗ : F 1,∗
X → X∗ is the projective cover of X∗. We obtain a morphism s : F 1

X → P

with d s = f . We also have that f ∗ : P ∗ → X∗ is surjective. Therefore, s∗ : P ∗ → F 1,∗
X is

a split epimorphism which implies that s : F 1
X → P is a split monomorphism. This induces

a morphism of short exact sequences and the following commutative diagram with exact rows

and columns.
0 X F 1

X Cok(d) 0

0 X P Z 0

0 Cok(s) Cok(t) 0

d

s t

f g

We obtain an isomorphism Cok(s) ≃ Cok(t). Note that Cok(s) is projective as a direct sum-

mand of P . Moreover, since s is a split monomorphism, so is t.

Finally, we note the following characterization of an algebra with positive dominant dimension.

Recall that ν(F 0
S) is the injective hull of S if S ∈ modA is simple.

Lemma 2.26. Let S ̸= 0 be a simple A-module. Then ν(F 0
S) ̸∈ PA if ν(S) = 0. Moreover,

domdimA ⩾ 1 if and only if ν(S) = 0 for all simple A-modules S ̸= 0 with ν(F 0
S) ̸∈ PA.

Proof. Suppose ν(F 0
S) ∈ PA. Then HomA(S, ν(F

0
S)) ̸= 0 with ν(F 0

S) ∈ projA. By Lemma 2.24

we obtain that ν(S) ̸= 0.

Now, suppose that domdimA ⩾ 1 and let S be a simple A-module with ν(S) ̸= 0. Then there

exists a P ∈ projA with HomA(S, P ) ̸= 0 by Lemma 2.24. By assumption, P embeds into
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a projective-injective module Z. However, this means that the injective hull ν(F 0
S) of S is a

direct summand of Z ∈ PA.

Conversely, suppose that ν(S) = 0 for all simple A-modules S ̸= 0 with ν(F 0
S) ̸∈ PA. Suppose

given Q ∈ projA not injective with injective hull νP for some P ∈ projA. For every S

in soc(Q) = soc(νP ) we have that ν(S) ̸= 0 by Lemma 2.24 and therefore ν(F 0
S) ∈ PA by

assumption. Hence, ν(P ) =
⨁︁

S| soc(ν(P )) ν(F
0
S) ∈ PA which was the injective hull of Q. We

obtain domdimA ⩾ 1.

Example in Chapter 7. We illustrate some of the previous results in Example 7.4 for the

algebra B of Section 7.1.



Chapter 3

Perfect exact sequences and
stable equivalences

Let k be a field. Let A and B be finite dimensional k-algebras without semisimple summands.

Throughout this chapter, we will denote the almost split sequence starting in an indecomposable

non-injective A-module X as follows.

0→ X → EX → τ−1(X)→ 0

This chapter is dedicated to examine what happens to perfect exact sequences under stable

equivalences modA→ modB. Being perfect exact can be seen as a property of a given sequence

in modA. For later use, we introduce the following shortened notion for stable equivalences

that preserve this property.

Definition 3.1. Let η : 0 → X
f−→ Y ⊕ P

g−→ Z → 0 be a perfect exact sequence in modA

without split summands such that P is projective and Y has no projective direct summand.

We say that a functor α : modA→ modB preserves the perfect exact sequence η if there exists

a perfect exact sequence

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

in modB with P̃ ∈ projB such that f̃ ≃ α(f) and g̃ ≃ α(g) in modB.

We will see later that stable equivalences of Morita type preserve perfect exact sequences; cf.

Lemma 5.5. For now, we can show that a stable equivalence preserves perfect exact sequences

with projective middle term if the stable equivalence and its quasi-inverse are induced by an

exact functor. Furthermore, an exact functor preserves arbitrary perfect exact sequences if and

only if it preserves the pseudo-cokernel discussed in the previous chapter; cf. Definition 2.8.

In this case, the exact functor maps perfect exact sequences to perfect exact sequences; cf.

Remark 2.16.

59
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Proposition 3.2. Let AMB be a bimodule which is projective as left A- and right B-module

such that − ⊗A M : modA → modB is an exact functor which induces a stable equivalence

modA→ modB.

(1) The following are equivalent.

(i) The functor −⊗AM preserves perfect exact sequences with projective middle term.

(ii) For all Z ∈ modA we have Ext1B(Z ⊗AM,B) = 0 if Ext1A(Z,A) = 0.

(2) If there is a bimodule BLA which is projective as left B- and right A-module and which

induces the inverse stable equivalence, then the equivalent conditions of part (1) hold.

(3) The functor − ⊗A M preserves a perfect exact sequence 0 → X
f−→ Y

g−→ Z → 0 if and

only if there exists a stable isomorphism Cok(f ⊗M)
st≃ Cok(f)⊗AM in modB.

Proof. Ad (1). Suppose given Z ∈ modA with Ext1(Z,A) = 0. We have seen in Lemma 2.23

that in this case there exists a perfect exact sequence ending in Z with projective middle term.

Thus, (i) implies that there also is a perfect exact sequence in modB with ending term Z⊗AM
and projective middle term. Using Lemma 2.23 again, we obtain Ext1B(Z ⊗AM,B) = 0. This

shows the implication (i) ⇒ (ii).

On the other hand, suppose that 0→ X → P → Z → 0 is a perfect exact sequence in modA

with P ∈ projA. Then Ext1(Z,A) = 0 so that (ii) implies Ext1B(Z ⊗A M,B) = 0. Now, by

Lemma 2.23, every short exact sequence ending in Z ⊗A M is perfect exact. In particular,

this holds for the induced short exact sequence 0 → X ⊗A M → P ⊗A M → Z ⊗A M → 0.

Therefore, the implication from (ii) to (i) holds as well.

Ad (2). We show condition (ii) of part (1). Suppose given Z ∈ modA with Ext1(Z,A) = 0.

We write Z ′ := Z ⊗A M ∈ modB. Let 0 → B → Y ′ g′−→ Z ′ → 0 be a short exact sequence in

Ext1B(Z ⊗AM,B). Since −⊗B L is exact, we obtain the following short exact sequence.

0→ B ⊗B L→ Y ′ ⊗B L
g′⊗L−−−→ Z ′ ⊗B L→ 0

Note that Z ′ ⊗B L = Z ⊗A M ⊗B L ≃ Z in modA and B ⊗B LA ≃ LA ∈ projA. Using that

Ext1A(Z,A) = 0, this implies that g′ ⊗B L is a split epimorphism with projective kernel. By

Lemma 1.4, we obtain that g′⊗B L is a stable isomorphism. As a consequence, g′⊗B L⊗AM is

a stable isomorphism as well. Using that g′⊗B L⊗AM ≃ g′ in modB and that g′ is surjective,

we obtain that g′ is a split epimorphism by Lemma 1.4. In conclusion, Ext1B(Z ⊗AM,B) = 0.

Ad (3). Suppose that η : 0→ X
f−→ Y

g−→ Z → 0 is a perfect exact sequence. Using Lemma 2.22,

− ⊗A M preserves the perfect exact sequence if and only if there is a stable isomorphism

Cok(f ⊗M)
st≃ Cok(f ⊗M). The same lemma provides a stable isomorphism φ : Cok(f)→ Z
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in modA since η is perfect exact. This induces a stable isomorphism Cok(f)⊗AM
st≃ Z⊗AM .

Using that −⊗AM is right exact, we have the following.

Cok(f)⊗AM
st≃ Z ⊗AM ≃ Cok(f)⊗AM ≃ Cok(f ⊗M)

In conclusion, we have that Cok(f⊗M)
st≃ Cok(f⊗M) if and only if Cok(f⊗M)

st≃ Cok(f)⊗AM
in modB

For an arbitrary stable equivalence to preserve perfect exact sequences, we have to at least

exclude short exact sequences that start with a node; see also Example 7.15. We recall the

definition of a node. See [31] for more details.

Definition 3.3. A simple A-module S is called a node if it is neither projective nor injective

and the middle term ES of the almost split sequence starting in S is projective.

We will use the following immediate characterization of a node; see also [4, Proposition 2.5].

Lemma 3.4. Suppose given an almost split sequence with X not injective.

0→ X
f−→ EX

g−→ Z → 0

(1) We have f = 0 in modA if and only if X or EX is projective.

We have g = 0 in modA if and only if Z or EX is projective.

(2) Suppose that X is simple and not projective. Then X is a node if and only if f = 0.

Proof. Ad (1). It immediately follows that f = 0 if X or EX is projective. Suppose that

f = 0. Then there exists a projective module P ∈ projA and morphisms u : X → P and

v : P → EX such that f = u v. Since f is irreducible, either u is a split monomorphism or v a

split epimorphism. Thus, either X or EX is projective.

Similarly we obtain that g = 0 if and only if Z or EX is projective since g is irreducible as well.

Ad (2). Since X is neither projective nor injective, X is a node if and only if EX is projective.

The result now follows from part (1).

We also use that a node cannot be a direct summand of the middle term in an almost split

sequence.

Lemma 3.5. Suppose given an almost split sequence 0→ X
f−→ EX

g−→ Z → 0 in modA.

The middle term EX does not have a node as a direct summand.
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Proof. Assume that ι : N ↪→ EX is is the embedding of a direct summand such that N is a

node. We have an almost split sequence

0→ N
s−→ EN

t−→ τ−1(N)→ 0

starting in N with EN projective. The morphism ι g : N → Z factors through s via a morphism

u : EN → Z, that is ι g = s u. Since ι g and s are irreducible, we obtain that u is a split

monomorphism. Thus, EN is a projective direct summand of Z. A contradiction.

In [4, Proposition 3.5], Auslander and Reiten provide the following result for the case of short

exact sequences using functor categories. This was later generalized to a larger class of short

exact sequences in [33, Theorem 1.7] by Mart́ınez-Villa.

Theorem 3.6 (Auslander, Reiten). Let α : modA→ modB be a stable equivalence.

Let 0 → X
f−→ Y ⊕ P g−→ Z → 0 be a short exact sequence in modA without split summands

such that X is indecomposable, P ∈ projA and Y has no projective direct summand.

If X is not a node and not projective, there exists a short exact sequence

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

in modB with P̃ ∈ projB such that α(f) ≃ f̃ and α(g) ≃ g̃ in modB.

We aim to prove a similar result for perfect exact sequences. However, our method follows

an algorithmic approach. A perfect exact sequence will be linked to an associated almost

split sequence by a series of intermediate perfect exact sequences. For this series to end,

we additionally have to assume a finiteness condition on the morphisms in the perfect exact

sequence.

3.1 Construction of perfect exact sequences

In this section, we give two methods to construct perfect exact sequences from existing ones.

We start with a construction via pushout and pullback which will be used to merge a perfect

exact sequence with an almost split sequence.

Lemma 3.7. Suppose given a short exact sequence 0→ X
f−→ Y

g−→ Z → 0 in modA.

(1) Let 0 → X
u−→ U

v−→ V → 0 be a short exact sequence in modA such that f = uα via a

morphism α : U → Y . Then there exists a short exact sequence such that the following
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diagram commutes.

0 X Y Z 0

0 U Y ⊕ V Z 0

f

u

g

(1 0)
(α v)

(︄
g

β

)︄

If 0→ X
u−→ U

v−→ V → 0 and the upper row of this diagram are perfect exact, then so is

the lower row.

(2) Let 0 → U
u−→ V

v−→ Z → 0 be a short exact sequence in modA such that g = α v via a

morphism α : Y → V . Then there exists a short exact sequence such that the following

diagram commutes.

0 X U ⊕ Y V 0

0 X Y Z 0

(β f )

(︄
u

α

)︄

(︄
0

1

)︄
v

f g

If 0 → U
u−→ V

v−→ Z → 0 and the lower row of this diagram are perfect exact, then so is

the upper row.

Proof. Ad (1). For now, we only show the existence of the short exact sequence. We verify

that the following is a pushout-square.

X Y

U Y ⊕ V

f

u (1 0)
(α v)

By assumption, this diagram commutes. Suppose given T ∈ modA together with morphism

t1 : Y → T and t2 : U → T such that f t1 = u t2. We construct φ : Y ⊕ V → T such that the

following diagram commutes.

X Y

U Y ⊕ V

T

f

u (1 0)
t1

(α v)

t2

φ
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We have u(t2 − α t1) = u t2 − f t1 = 0. Hence, there exists a unique β : V → T such that

v β = t2 − α t1.
X U V

T

u v

t2−α t1

β

This yields a unique φ =

(︃
t1

β

)︃
such that the diagram above commutes. In conclusion, letting

T := Z, the pushout-square induces the following commutative diagram with exact rows.

0 X Y Z 0

0 U Y ⊕ V Z 0

f

u

g

(1 0)
(α v)

(︄
g

β

)︄

Ad (2). For now, we only show the existence of the short exact sequence. We verify that the

following is a pullback-square.

U ⊕ Y V

Y Z

(︄
u

α

)︄
(︄
0

1

)︄
v

g

By assumption, this diagram commutes. Suppose given T ∈ modA together with morphism

t1 : T → V and t2 : T → Y such that t1 v = t2 g. We construct φ : T → U ⊕ Y such that the

following diagram commutes.

T

U ⊕ Y V

Y Z

φ

t1

t2 (︄
u

α

)︄(︄
0

1

)︄
v

g

We have (t1 − t2α)v = t1v − t2g = 0. Hence, there exists a unique β : T → U such that

β u = t1 − t2α.
U V Z

T

u v

t1−t2α

β

This yields a unique φ = (β t2) such that the diagram above commutes. In conclusion, letting
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T := X, the pullback-square induces the following commutative diagram with exact rows.

0 X U ⊕ Y V 0

0 X Y Z 0

(β f )

(︄
u

α

)︄

(︄
0

1

)︄
v

f g

Perfect exact sequences. Suppose that 0→ X
f−→ Y

g−→ Z → 0 is a perfect exact sequence. That

is, 0→ Z∗ g∗−→ Y
f∗−→ X∗ → 0 is exact in A-mod. If additionally, 0→ V ∗ v∗−→ U∗ u∗−→ X∗ → 0 is

exact, we can apply (2) for left A-modules to obtain the following exact sequence.

0→ Z∗ (β∗ g∗)
−−−−−→ V ∗ ⊕ Y ∗

(︄
v∗

α∗

)︄
−−−→ U∗ → 0

Hence, 0→ U
(α v)
−−−−→ Y ⊕V

(︄
g

β

)︄
−−−→ Z → 0 is perfect exact. Similarly, if 0→ U

u−→ V
v−→ Z → 0 is

perfect exact, applying part (1) for left A-modules yields the following perfect exact sequence.

0→ X
(β f )
−−−−→ U ⊕ Y

(︄
u

α

)︄
−−−→ V → 0

This concludes the proof.

The next construction via the snake lemma will be used to reverse the process of the previous

lemma.

Lemma 3.8. The following holds.

(1) Suppose given two short exact sequences in modA of the following form.

0→ X
(s ι)
−−−→ U ⊕ P

(︄
t

π

)︄
−−−→ V → 0

0→ U
(v t)
−−−→ Y ⊕ V

(︄
g

w

)︄
−−−→ Z → 0

Then 0→ X
(sv ι)
−−−−→ Y ⊕ P

(︄
g

−πw

)︄
−−−−−→ Z → 0 is a short exact sequence. If the given two

sequences are perfect exact, then so is this sequence.
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(2) Suppose given two short exact sequences in modA of the following form.

0→ U
(s ι)
−−−→ V ⊕ P

(︄
t

π

)︄
−−−→ Z → 0

0→ X
(f v)
−−−→ Y ⊕ U

(︄
w

s

)︄
−−−→ V → 0

Then 0→ X
(f −vι)
−−−−−→ Y ⊕ P

(︄
wt

π

)︄
−−−→ Z → 0 is a short exact sequence. If the given two

sequences are perfect exact, then so is this sequence.

Proof. Ad (1). For now, we only show the existence of the short exact sequence. Note that

there is an isomorphism of sequences

0 U ⊕ P Y ⊕ V ⊕ P Z 0

0 U ⊕ P Y ⊕ V ⊕ P Z 0

(︄
v t 0

0 0 1

)︄ ⎛⎜⎝ g

w

0

⎞⎟⎠

∼

⎛⎜⎝1 0 0

0 1 0

0 π 1

⎞⎟⎠(︄
v t 0

0 π 1

)︄ ⎛⎜⎝ g

w

−π w

⎞⎟⎠

so that the lower sequence is exact as well. Consider the following commutative diagram.

0 0 X

0 0 U ⊕ P U ⊕ P 0

0 Y ⊕ P Y ⊕ V ⊕ P V 0

Y ⊕ P Z 0

(s ι)

(︄
v t 0

0 π 1

)︄ (︄
t

π

)︄(︄
1 0 0

0 0 1

)︄ ⎛⎜⎝0

1

0

⎞⎟⎠
⎛⎜⎝ g

w

−π w

⎞⎟⎠(︄
g

−π w

)︄

The snake lemma yields a short exact sequence

0→ X
(s v ι)
−−−−→ Y ⊕ P

(︄
g

−π w

)︄
−−−−−→ Z → 0.

Ad (2). For now, we only show the existence of the short exact sequence. Note that there is
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an isomorphism of sequences

0 X Y ⊕ U ⊕ P V ⊕ P 0

0 X Y ⊕ U ⊕ P V ⊕ P 0

(f v 0)

⎛⎜⎝w 0

s 0

0 1

⎞⎟⎠

∼

⎛⎜⎝1 0 0

0 1 −ι
0 0 1

⎞⎟⎠
(f v −v ι)

⎛⎜⎝w 0

s ι

0 1

⎞⎟⎠

so that the lower sequence is exact as well. Consider the following commutative diagram.

0 X Y ⊕ P

0 U Y ⊕ U ⊕ P Y ⊕ P 0

0 V ⊕ P V ⊕ P 0 0

Z 0 0

(f −v ι)

(f v −v ι)

(0 1 0)

(s ι)

⎛⎜⎝1 0

0 0

0 1

⎞⎟⎠
⎛⎜⎝w 0

s ι

0 1

⎞⎟⎠

(︄
t

π

)︄

The snake lemma yields a short exact sequence

0→ X
(f −v ι)
−−−−−→ Y ⊕ P

(︄
w t

π

)︄
−−−−→ Z → 0.

Perfect exact sequences. Suppose that in part (1) the sequences

0→ V ∗ (t∗ π∗)
−−−−−→ U∗ ⊕ P ∗

(︄
s∗

ι∗

)︄
−−−→ X∗ → 0

0→ Z∗ (g∗ w∗)
−−−−−→ Y ∗ ⊕ V ∗

(︄
v∗

t∗

)︄
−−−→ U∗ → 0

are exact. We can apply part (2) for left A-modules to obtain the short exact sequence

0→ Z∗ (g∗ −w∗π∗)
−−−−−−−→ Y ∗ ⊕ P ∗

(︄
v∗s∗

ι∗

)︄
−−−−−→ X∗ → 0.

Hence, the sequence 0→ X → Y ⊕ P → Z → 0 of part (1) is perfect exact.
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Now, suppose that in part (2) the sequences

0→ Z∗ (t∗ π∗)
−−−−−→ V ∗ ⊕ P ∗

(︄
s∗

ι∗

)︄
−−−→ U∗ → 0

0→ V ∗ (w∗ s∗)
−−−−−→ Y ∗ ⊕ U∗

(︄
f∗

v∗

)︄
−−−→ X∗ → 0

are exact. We can apply part (1) for left A-modules to obtain the short exact sequence

0→ Z∗ (t∗w∗ π∗)
−−−−−−→ Y ∗ ⊕ P ∗

(︄
f∗

−ι∗v∗

)︄
−−−−−→ X∗ → 0.

Hence, the sequence 0→ X → Y ⊕ P → Z → 0 of part (2) is perfect exact.

3.2 Perfect exact sequences and almost split sequences

We aim to show that certain perfect exact sequences are preserved by stable equivalences

modA→ modB. We proceed as follows.

First, we construct a chain of perfect exact sequences η0 → η1 → · · · → ηl in modA such

that ηl is a direct sum of almost split sequences. By remembering the steps taken during

this construction, we can reconstruct a perfect exact sequence in modB corresponding to the

original perfect exact sequence η0. This is done by using almost split sequences during each

step of the construction, which are preserved by a stable equivalence between algebras without

nodes. An example of the construction done in this section is given in Example 7.5.

In order for this chain to be finite, we need to assume some condition on the morphisms

in the perfect exact sequence. This condition is satisfied for all morphisms if A is of finite

representation type.

In case that the starting term of the perfect exact sequence is not indecomposable, we need the

following remark.

Remark 3.9. Suppose given X ∈ modA without injective direct summands. Let X =
⨁︁

iXi

be the decomposition of X into indecomposable direct summands.

We denote the direct sum of all almost split sequences starting in the Xi as follows.

0→ X
s−→ EX

t−→ T (X)→ 0

In particular, EX =
⨁︁

iEXi
and T (X) =

⨁︁
i τ

−1(Xi).
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Recall that almost split sequences with X not projective are perfect exact; cf. Example 2.11.(5).

We use Lemma 3.7 to combine a perfect exact sequence with such almost split sequences.

Lemma 3.10. Suppose given a perfect exact sequence η : 0 → X
f−→ Y

g−→ Z → 0 in modA

without split summands.

Recall from Remark 3.9 the sequence 0→ X
s−→ EX

t−→ T (X)→ 0. Then there exists a perfect

exact sequence

η̃ : 0→ EX
(v t)
−−−→ Y ⊕ T (X)

(︄
g

w

)︄
−−−→ Z → 0

in modA such that f = s v. We often denote this sequence by η̃.

Proof. By assumption, X has neither injective nor projective direct summands, otherwise the

given exact sequence would have a split direct summand. Hence, there exists a perfect exact

sequence that is the direct sum of almost split sequences starting in direct summands of X; cf.

Remark 3.9.

0→ X
s−→ EX

t−→ T (X)→ 0

Moreover, f is not a split morphism. Therefore, f factors through s via a morphism EX
v−→ Y ,

that is f = s v.

By Lemma 3.7.(1), we obtain that 0 → EX
(v t)
−−−→ Y ⊕ T (X)

(︄
g

w

)︄
−−−→ Z → 0 is a perfect exact

sequence with some morphism w : T (X)→ Z.

Construction 3.11. Suppose given a perfect exact sequence η0 : 0→ X0
f0−→ Y0

g0−→ Z0 → 0 in

modA without split summands.

We construct perfect exact sequences ηk recursively. Let k ⩾ 0 such that ηk has no split

summands. Recall the perfect exact sequence η̃k from Lemma 3.10 and the morphism of short

exact sequences from Lemma 3.7. We define ηk+1 to be the sequence obtained from η̃k by

removing all split summands. Then ηk+1 is a perfect exact sequence without split summands

and a direct summand of η̃k. In particular, we have the projection of the short exact sequence

onto its direct summand. In general, the middle morphism is not the natural projection.

ηk 0 Xk Yk Zk 0

η̃k 0 EXk
Yk ⊕ T (Xk) Zk 0

ηk+1 0 Xk+1 Yk+1 Zk+1 0

sk

fk

(1 0)

gk

(vk tk )

(︄
gk

wk

)︄

πk

fk+1 gk+1

Note that for all k, the module Zk+1 is a direct summand of Zk and consequently also of Z0.
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Furthermore, if ηk is an almost split sequence, η̃k will be a split sequence and therefore ηk+1 = 0.

In fact, in this case vk is an isomorphism.

In general, this construction will not terminate, as the following example shows.

Example 3.12. Let k be an algebraically closed field. We consider the Kronecker algebra A

given by the following quiver.

1 2

Since A is hereditary, every short exact sequence starting in a non-projective module is perfect

exact; cf. Example 2.11. We denote the indecomposable A-modules by their dimension vector.

Let n ∈ Z⩾0. The preprojective component of the Auslander-Reiten quiver of A consists of the

modules with dimension vector
(︂

n
n+ 1

)︂
. The preinjective component consists of the modules

with dimension vector
(︂
n+ 1
n

)︂
. Finally, a module with dimension vector

(︂
n
n

)︂
is in the regular

component. In particular, the indecomposable projective modules are given by P1 =
(︂
1
2

)︂
and

P2 =
(︂
0
1

)︂
. Recall that the almost split sequence starting in a module in the preprojective

component is given by the following.

0→
(︂

n
n+ 1

)︂
s−→
(︂
n+ 1
n+ 2

)︂
⊕
(︂
n+ 1
n+ 2

)︂
t−→
(︂
n+ 2
n+ 3

)︂
→ 0

We consider the following perfect exact sequence in modA. Note that the starting and middle

term of this sequence are in different components of the Auslander-Reiten sequence.

η0 : 0→
(︂
2
3

)︂
f0−→
(︂
3
3

)︂
g0−→
(︂
1
0

)︂
→ 0

We show by induction, that the perfect exact sequence ηn of Construction 3.11 is given as

follows.

ηn : 0→
(︂
n+ 2
n+ 3

)︂⊕n+1

→
(︂
3
3

)︂
⊕
(︂
n+ 3
n+ 4

)︂⊕n
→
(︂
1
0

)︂
→ 0

In fact, we have the following construction step from n to n+ 1 with notation as in Construc-

tion 3.11.

ηn : 0
(︂
n+ 2
n+ 3

)︂⊕n+1 (︂
3
3

)︂
⊕
(︂
n+ 3
n+ 4

)︂⊕n (︂
1
0

)︂
0

η̃n : 0
(︂
n+ 3
n+ 4

)︂⊕2n+2
(︃(︂

3
3

)︂
⊕
(︂
n+ 3
n+ 4

)︂⊕n)︃
⊕
(︂
n+ 4
n+ 5

)︂⊕n+1 (︂
1
0

)︂
0

ηn+1 : 0
(︂
n+ 3
n+ 4

)︂⊕n+2 (︂
3
3

)︂
⊕
(︂
n+ 4
n+ 5

)︂⊕n+1 (︂
1
0

)︂
0

fn

sn (1 0)

(vn tn )

fn+1



3.2 Perfect exact sequences and almost split sequences 71

For all n ⩾ 0, we have that fn+1 is not irreducible. Thus, the perfect exact sequence ηn cannot

be almost split for any n ⩾ 0.

Now, consider the following perfect exact sequence.

η0 : 0→
(︂
2
3

)︂
f0−→
(︂
3
4

)︂
g0−→
(︂
1
1

)︂
→ 0

This time, f0 is an irreducible morphism in the preprojective component. However, the ending

term is still in a different component of the Auslander-Reiten quiver. Similarly to the induction

above, we can show that ηn of Construction 3.11 is given as follows.

ηn : 0→
(︂
n+ 2
n+ 3

)︂
→
(︂
n+ 3
n+ 4

)︂
→
(︂
1
1

)︂
→ 0

Again, ηn is not an almost split sequence for any n ⩾ 0.

As seen above, we need a condition on both f0 and g0 for Construction 3.11 to terminate with

an almost split sequence. This condition will be given via the radical of modA.

Definition 3.13. The radical rad(modA) of modA has the same objects as modA with mor-

phisms f ∈ radA(X, Y ) if gfh is not an isomorphism for all g ∈ HomA(Z,X), h ∈ HomA(Y, Z)

and Z ∈ modA indecomposable. Recursively, we can define rad0(X, Y ) := HomA(X, Y ) and

radnA(X, Y ) := {fg : f ∈ radA(X,Z) and g ∈ radn−1
A (Z, Y ) for a Z ∈ modA} for n ∈ Z⩾1.

Let f : X → Y be a morphism in modA. Following [9], we say that f has depth n ⩾ 0, if

f ∈ radnA(X, Y ), but f ̸∈ radn+1(X, Y ). In case that f ∈ radnA(X, Y ) for all n ⩾ 0, we set

depth f =∞.

For more details on the radical see [6, Section V.7]. We list some properties that are important

for our purposes.

Remark 3.14. Let X, Y ∈ modA.

(1) The n-th radical radnA(X, Y ) is a two-sided ideal for n ∈ Z⩾0. Furthermore, we have

radnA(X, Y ) ⊆ radn−1
A (X, Y ) ⊆ · · · ⊆ rad2

A(X, Y ) ⊆ radA(X, Y ).

(2) Suppose that f : X → Y has depth zero. Then there exists a Z ∈ modA indecomposable

and morphisms g : Z → X, h : Y → Z such that gfh is an isomorphism. In particular, g

and h split so that Z is a common direct summand of X and Y .

(3) Let f : X → Y be a morphism with depth f = n. For all morphisms g : X ′ → X and

h : Y → Y ′ in modA we have depth(gfh) ⩾ n since the n-th radical is an ideal.
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(4) Suppose that X or Y is indecomposable. An irreducible morphism f : X → Y has

depth 1. If both X and Y are indecomposable, f : X → Y is irreducible if and only if

depth f = 1.

Furthermore, a direct sum of irreducible morphisms still has depth 1. In fact, every

non-zero restriction to an indecomposable direct summand is irreducible and thus in the

radical.

(5) If A is of finite representation type, every morphism in modA has finite depth; cf. [6,

Theorem 7.7].

We will assume that f0 p has finite depth for every projection p onto an indecomposable direct

summand. The next result shows that this property gets passed on to all fk for k ⩾ 0.

Lemma 3.15. Suppose given a perfect exact sequence η0 : 0→ X0
f0−→ Y0

g0−→ Z0 → 0 in modA

without split summands. We use the notation of Construction 3.11.

Suppose that f0 p0 has finite depth for every projection p0 : Y0 → Y ′
0 onto an indecomposable

direct summand Y ′
0 of Y0.

Then fk pk has finite depth for all k ⩾ 0 and every projection pk : Yk → Y ′
k onto an indecom-

posable direct summand Y ′
k of Yk.

Proof. We proceed by induction on k and show that depth(fk+1 pk+1) is finite for k ⩾ 0. We

use the following expanded notation from Construction 3.11.

Xk Yk

EXk
Yk ⊕ T (Xk)

Xk+1 Yk+1

sk

fk

(1 0)

ρk

(vk tk ) (︄
φk

ψk

)︄
fk+1

Recall that 0 → Xk
sk−→ EXk

tk−→ T (Xk) → 0 is a direct sum of almost split sequences for all

k ⩾ 0. Since

(︃
φk

ψk

)︃
is split, Y ′

k+1 is either an indecomposable direct summand of Yk or an

indecomposable direct summand of T (Xk).

Suppose that Y ′
k+1 is a direct summand of T (Xk). In this case, we have ρk fk+1 pk+1 = tkψkpk+1.

Using that ψkpk+1 is a split epimorphism, tkψkpk+1 is irreducible so that depth(tkψkpk+1) = 1.

This implies depth(fk+1 pk+1) ⩽ depth(ρk fk+1 pk+1) = depth(tkψkpk+1) = 1.

Suppose that Y ′
k+1 is a direct summand of Yk. In this case, we have sk ρk fk+1 pk+1 = fk φk pk+1.

Using that φkpk+1 is a split epimorphism, we know that depth(fk φk pk+1) < ∞ by induction

hypothesis. This implies depth(fk+1 pk+1) ⩽ depth(skρk fk+1 pk+1) = depth(fk φk pk+1) <∞.
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We aim to show that Construction 3.11 ends with an almost split sequence under the assumption

that f0 p and g0 π have finite depth for every projection p and π onto an indecomposable direct

summand. We use the assumption on f0 to show that the middle morphism in the construction

will eventually be an element of the radical. Together with the assumption on g0 this guarantees

that we arrive at a split sequence. Finally, we will use that ηl is an almost split sequence if and

only if η̃l is a split sequence.

Lemma 3.16. Suppose given a perfect exact sequence η0 : 0→ X0
f0−→ Y0

g0−→ Z0 → 0 in modA

without split summands. Suppose that f0 p and g0 π have finite depth for every projection p onto

an indecomposable direct summand of Y0 and every projection π onto an indecomposable direct

summand of Z0.

Then there exists an l ∈ Z⩾0 such that ηl in Construction 3.11 is a direct sum of almost split

sequences.

Proof. We first prove that there exists an l ∈ Z⩾0 such that η̃l is a split sequence. Construc-

tion 3.11 yields the following sequence of morphisms of short exact sequences. We aim to show

that there is an l ⩾ 0 such that g0 π0 · · · πl = 0.

η0 0 X0 Y0 Z0 0

η̃0 0 EX0 Y0 ⊕ T (X0) Z0 0

η1 0 X1 Y1 Z1 0

η̃1 0 EX1 Y1 ⊕ T (X1) Z1 0

η2 0 X2 Y2 Z2 0

...
...

...
...

s0

f0

(1 0)

g0

(v0 t0 )

(︄
g0

w0

)︄

π0

s1

f1

(1 0)

g1

(v1 t1 )

(︄
g1

w1

)︄

π1

f2 g2

For k ⩾ 0, let φk : Yk → Yk+1 be the morphism given by the sequence above. Assume that

g0 π0 · · · πk = φ0 · · ·φk gk+1 ̸= 0 for k ⩾ 0. In particular, φk is non-zero for all k ⩾ 0.

Assume that for all N ⩾ 0 there exists a k ⩾ N such that φN · · ·φk ∈ rad(YN , Yk+1). Thus,

for all n ⩾ 0 there exists a k ⩾ 0 such that g0π0 · · · πk = φ0 · · ·φkgk+1 ∈ radn(Y0, Zk+1). On

the other hand, g0π0 · · · πk is non-zero for all k and Z0 has only finitely many indecomposable

direct summands. Using that πk is a split epimorphism, this implies that there must exist a

k′ ⩾ 0 such that g0π0 · · · πk ≃ g0π0 · · · πk′ for all k ⩾ k′. Thus, we have a projection π onto an
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indecomposable direct summand Z ′ of Z0 such that g0 π ∈ radn(Y0, Z
′) for all n. However, g0 π

has finite depth by assumption. A contradiction.

Therefore, there exists an N ⩾ 0 such that for all k ⩾ N we have φN · · ·φk ̸∈ rad(YN , Yk+1).

By Lemma 3.15, there exists an 1 ⩽ m <∞ such that depth(fN p) < m for all projections p of

YN onto an indecomposable direct summand.

We know that the composite φ := φNφN+1 · · ·φN+m−1 is neither zero, nor in the radical

radA(YN , YN+m). Thus, there exists an indecomposable non-zero module M ∈ modA and

morphisms i :M → YN and p : YN+m →M such that the composite

M
i−→ YN

φ−→ YN+m
p−→M

is an isomorphism. In particular, φp is split so that depth(fN φp) < m. By commutativity of

the diagram, we have that fN φp factors through sk for N ⩽ k ⩽ (N +m− 1). However, as a

direct sum of irreducible morphism, sk has depth 1 for k ⩾ 0. We obtain depth(fN φp) ⩾ m,

a contradiction.

In conclusion, there exists a minimal l ⩾ 0 such that φ0 · · ·φl gl+1 = g0 π0 · · · πl is zero. Since

η0 is not split, the epimorphism g0 is non-zero and we obtain π0 · · · πl = 0. However, this is a

surjection of Z onto its direct summand Zl+1. This implies Zl+1 = 0 and thus ηl+1 = 0 since

ηl+1 has no split summands. By construction, this means that η̃l is a split sequence. It remains

to show, that ηl is an almost split sequence. Suppose that η̃l is split.

η̃l : 0→ EXl

(vl tl)−−−−→ Yl ⊕ T (Xl)

(︄
gl

wl

)︄
−−−→ Zl → 0

We obtain that EXl
⊕ Zl ≃ Yl ⊕ T (Xl). However, Zl is not a direct summand of Yl since ηl is

not a split sequence by construction. Hence, Zl is a direct summand of T (Xl). Furthermore,

0 → Xl → EXl
→ T (Xl) → 0 has no split direct summands as a direct sum of almost split

sequences. Hence, EXl
and T (Xl) have no common direct summand.

In conclusion, this results in Zl ≃ T (Xl) and Yl ≃ EXl
via some isomorphism ψ : EXl

→ Yl

with (ψ 0) ≃ (vl tl). Since sl(vl tl) = (fl 0), we obtain an isomorphism of short exact sequences.

0 Xl EXl
T (X) 0

ηl : 0 Xl Yl Zl 0

sl tl

∼

ψ

∼

fl gl

Hence, ηl is the direct sum of all almost split sequences starting in direct summands of Xl.

The following result is a reformulation of [4, Proposition 2.4] using Lemma 3.4.(2).
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Proposition 3.17 (Auslander-Reiten). Let modA
α−→ modB be a stable equivalence.

Let 0 → X
f−→ Y ⊕ P g−→ Z → 0 be an almost split sequence in modA, where X is not a node

and not projective, P ∈ projA and Y does not have projective direct summands.

Then there exists an almost split sequence in modB

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

where P̃ is projective such that f̃ ≃ α(f) and g̃ ≃ α(g) in modB.

Inductively, we aim to construct perfect exact sequences in modB corresponding to ηk for

0 ⩽ k ⩽ l. The next lemma will be used as the induction step.

Lemma 3.18. Let modA
α−→ modB be a stable equivalence.

Suppose given a perfect exact sequence η : 0 → X
f−→ Y ⊕ P g−→ Z → 0 in modA without split

summands, where P ∈ projA and Y has no projective summand. Suppose that X has no node

as a direct summand.

Assume furthermore, that there exists a Q̃ ∈ projB such that

0→ α(EX)
( ṽ t̃)
−−−→ (α(Y )⊕ Q̃)⊕ α(T (X))

(︄
g̃

w̃

)︄
−−−→ α(Z)→ 0

is a perfect exact sequence in modB where ṽ ≃ α(v) and g̃ ≃ α(g); cf. Lemma 3.10.

Then there exist P̃ ∈ projB and a perfect exact sequence in modB

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

with f̃ ≃ α(f) and g̃ ≃ α(g) in modB.

Proof. Note that X has no projective direct summand, since the given perfect exact sequence

has no split direct summands. Recall that in this case, we have the perfect exact sequence

0 → X
s−→ EX

t−→ T (X) → 0; cf. Remark 3.9. By Proposition 3.17, there exists an R̃ ∈ projB

such that

0→ α(X)
( s̃ ι̃)
−−−→ α(EX)⊕ R̃

(︄
t̃

π̃

)︄
−−−→ α(T (X))→ 0

is a perfect exact sequence in modB with s̃ = α(s). By assumption, we have the following

perfect exact sequence in modB with ṽ = α(v) and g̃ = α(g).

0→ α(EX)
( ṽ t̃)
−−−→ (α(Y )⊕ Q̃)⊕ α(T (X))

(︄
g̃

w̃

)︄
−−−→ α(Z)→ 0
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Lemma 3.8.(1) now provides the following perfect exact sequence.

0→ α(X)
( s̃ṽ ι̃)
−−−−→ (α(Y )⊕ Q̃)⊕ R̃

( g̃ −π̃w̃)
−−−−−→ α(Z)→ 0

We have s̃ ṽ ≃ α(s)α(v) = α(s v) = α(f) and g̃ ≃ α(g) in modB; cf. Lemma 3.10.

We are now ready to prove the main result of this chapter.

Theorem 3.19. Let α : modA→ modB be a stable equivalence.

Suppose given a perfect exact sequence 0 → X
f−→ Y ⊕ P g−→ Z → 0 without split summands

where X has no node as a direct summand, P ∈ projA and Y has no projective direct summand.

Suppose that f p and g π have finite depth for every projection p onto an indecomposable direct

summand of Y and every projection π onto an indecomposable direct summand of Z. Then

there exists a perfect exact sequence

0→ α(X)
f̃−→ α(Y )⊕ P̃ g̃−→ α(Z)→ 0

in modB with P̃ ∈ projB such that f̃ ≃ α(f) and g̃ ≃ α(g) in modB.

Proof. We denote the given perfect exact sequence by η0 and use the notation of Construc-

tion 3.11. By Lemma 3.16 there exists an l ∈ Z⩾0 and perfect exact sequences ηk for 1 ⩽ k ⩽ l

such that ηl is a direct sum of almost split sequences. Furthermore, ηk+1 is a direct summand

of the sequence η̃k.

η̃k : 0→ EXk
→ Yk ⊕ T (Xk)→ Z → 0

By assumption, X0 has no node as a direct summand. Let k ⩾ 1 and assume that Xk has a

node as a direct summand. Since Xk is a direct summand of EXk−1
, the node is also a direct

summand of EXk−1
. However, by Lemma 3.5 the middle term of an almost split sequence has

no nodes as direct summand. A contradiction. Thus Xk has no node as a direct summand for

all 0 ⩽ k ⩽ l.

We verify by induction on 0 ⩽ k ⩽ l that the assertion holds for ηk.

Let k = l. Then the given perfect exact sequence is a direct sum of almost split sequences and

the claim holds by Proposition 3.17.

Let 0 ⩽ k < l. Suppose that the assertion holds for ηk+1. We know that η̃k is the direct sum

of ηk+1 and a split exact sequence. Therefore, α preserves the perfect exact sequence η̃k as

well. As a consequence, we can apply Lemma 3.18 to obtain that α preserves the perfect exact

sequence ηk and its morphisms.

In conclusion, the assertion holds for all perfect exact sequences ηk with 0 ⩽ k ⩽ l. In particular,

it holds for η0.
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Example in Chapter 7. In Example 7.5 we give an explicit example for the construction used

in the proof of the theorem.

As seen in Example 3.12, the assumption on the depth of f and g is needed for our proof of

this theorem. However, it seems unclear whether this assumption is really necessary for the

result to hold.

With regard to Definition 3.1, we have the following corollary using Remark 3.14.

Corollary 3.20. Let A and B be finite dimensional algebras without nodes. Suppose that A

and B have finite representation type.

Then every stable equivalence α : modA→ modB and its quasi-inverse preserve perfect exact

sequences.

The constructions of this chapter can also be used to characterize perfect exact sequences.

Remark 3.21. Suppose that A and B have finite representation type. We use the notation of

Construction 3.11 and Lemma 3.16. Let η0 be a short exact sequence in modA without split

summands.

η0 : 0→ X0
f0−→ Y0

g0−→ Z0 → 0

The short exact sequence η0 is perfect exact if and only if Xk has no projective direct summand

for all 0 ⩽ k ⩽ l.

In fact, we have seen that ηk is a perfect exact sequence without split summands if η0 is perfect

exact. Thus, Xk cannot have a projective direct summand. Conversely, suppose that Xk has no

projective direct summand for 0 ⩽ k ⩽ l. Then ηl is a perfect exact sequence; cf. Example 2.11.

Let 0 ⩽ k < l. Inductively, we may assume that ηk+1 is a perfect exact sequence. Now, applying

Lemma 3.8.(1) to the following two perfect exact sequences shows that η0 is perfect exact.

0 Xk EXk
T (Xk) 0

η̃k : 0 EXk
Yk ⊕ T (Xk) Zk 0

sk tk

(vk tk )

(︄
gk

wk

)︄

Here we used that ηk+1 is a direct sum of η̃k and a split exact sequence.





Chapter 4

Triangulated subcategories inside the
homotopy category

Let k be a field. Let A and B be finite dimensional k-algebras without semisimple direct

summands. In general, the stable module category modA is not triangulated. However, we

have seen that modA is equivalent to the category LA which is a full subcategory of the

triangulated category K(projA); cf. Theorem 2.6. Note that for arbitrary algebras LA is not

even closed under taking shifts. This can be seen, for instance, in the setting of Example 2.2.

In this chapter, we discuss several triangulated categories that are related to LA. In the first two

sections, we characterize the smallest triangulated subcategory of K(projA) that contains LA
and is closed under isomorphisms. Moreover, we discuss its Grothendieck group. In Section 4.3,

we extend the category of Section 4.1, to a triangulated category closed under an equivalence

induced by the Nakayama functor. Afterwards, we consider the triangulated category of stable

Gorenstein-projective modules. This category is equivalent to the category of totally acyclic

modules Ktac(projA), which is the largest subcategory of LA that is triangulated. In a final

section, we specialize to self-injective algebras. In this case, modA is already triangulated and

all these categories coincide. We will see that LA is closed under taking shifts inside K(projA)
if and only if A is self-injective.

Two extended examples for the categories discussed in this chapter are given in Section 7.2 and

Section 7.3. Occasionally, we refer to specific parts of these examples.

Recall that PA denotes the category of projective-injective A-modules. The subcategory of

strongly projective-injective A-modules is denoted by stpA. We begin by defining the following

subcategories with a left bound on cohomology and a right bound on homology.

Definition 4.1. We denote by H(projA) the full subcategory of K(projA) consisting of all

complexes F • ∈ K(projA) such that there exist l, r ∈ Z with H<l(F • ) = 0 and H⩾r(F
∗
• ) = 0.

We denote by HP(projA) the full subcategory of H(projA) consisting of all complexes in
⊥Kb(PA) = {F • ∈ K(projA) : HomK(projA)(F

• , Z• ) = 0 for all Z• ∈ Kb(PA)}.

We denote by Hstp(projA) the full subcategory of H(projA) consisting of all complexes in
⊥Kb(stpA) = {F • ∈ K(projA) : HomK(projA)(F

• , Z• ) = 0 for all Z• ∈ Kb(stpA)}.
79
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Remark 4.2. (1) Note that H(projA) is a triangulated subcategory of K(projA). By con-

struction, H(projA) is closed under taking shifts. By Lemma 1.9, we see that for a

morphism f : F • → G• in H(projA), the distinguished triangle F • → G• → C(f)• →
lies in H(projA).

By Lemma 1.12, we obtain that HP(projA) and Hstp(projA) are triangulated subcate-

gories of H(projA). Furthermore, HP(projA) and Hstp(projA) are closed under isomor-

phisms in K(projA).

(2) We have a chain of subcategories HP(projA) ⊆ Hstp(projA) ⊆ H(projA) ⊆ K(projA).
Furthermore, LA ⊆ H(projA) letting l = 0 and r = 0 in the definition of H(projA).
In this sense, the boundary conditions of H(projA) can be seen as a weaker version of

those in LA. They will be used in Lemma 4.7. In particular, the smallest triangulated

subcategory of K(projA) that contains LA must be contained in H(projA).

(3) In general, complexes in H(projA) are neither left bounded nor right bounded. However,

we have H(projA) ≃ Kb(projA) if and only if gldimA <∞.

In fact, every complex in H(projA) can be truncated on the right to obtain a projective

resolution in modA. Thus, the complex must split eventually, if it is unbounded on

the left and gldimA < ∞. Similarly, every complex in H(projA) can be truncated on

the left to obtain a projective resolution in A-mod after applying (−)∗. Moreover, every

projective resolution of a left or right A-module occurs in this way.

(4) Note that HP(projA) = Hstp(projA) = H(projA) if A has no projective-injective mod-

ules. In particular, we have that HP(projA) = Hstp(projA) ≃ Kb(projA) is the bounded
derived category of A if additionally gldimA <∞. The same holds for Hstp(projA) and

H(projA) if A has no strongly projective-injective modules.

The categories discussed in this chapter can be visualized as follows. Note that the inclusion

LA ↪→ HP(projA) will be verified in Lemma 4.4. In general, this chain of subcategories has

a proper inclusion at every position; see also Example 7.9. However, we will show later in

Theorem 4.45 that Ktac(projA) = LA = HP(projA) = Hstp(projA) if and only if A is self-

injective.

Ktac(projA) LA HP(projA) Hstp(projA) H(projA) K(projA)

GprojA modA

∼ F∼

In general, with the exception of LA, none of these categories are preserved by a stable equiv-

alence; cf. Example 7.15. We will see in Chapter 5 that the situation is different for stable
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equivalences of Morita type.

For now, we discuss HP(projA) in more detail in the first section of this chapter. Later, in

Section 4.3, we return to the category Hstp(projA).

4.1 A triangulated hull in K(projA)

The aim of this section is to show that HP(projA) is the smallest triangulated subcategory

of K(projA) that contains LA and is closed under isomorphisms. In order to prove this, we

have to verify that LA is contained in HP(projA) and that a complex F • ∈ HP(projA) is an

element of any triangulated subcategory of K(projA) that contains LA and is closed under

isomorphisms. The first assertion follows from the next two results. For the second assertion,

we then proceed as follows.

Initially, we observe that a complex is in ⊥Kb(PA) if and only if its cohomology is in ⊥PA; cf.
Lemma 4.5. Next, we reduce the problem in Lemma 4.7 to projective resolutions of modules

in ⊥PA. As a further reduction step, we see in Lemma 4.9 that it is enough to consider sim-

ple modules in ⊥PA. Finally, we show in Lemma 4.10 that the assertion holds for projective

resolutions of simple modules in⊥PA.

We start with the following lemma. In an exact degree, a complex in K(modA) has no non-zero

morphism to a projective module or from an injective module. The same holds for the dual

complex in K(A-proj).

Lemma 4.3. Let F • ∈ K(modA) and k ∈ Z.

(1) If Hk(F • ) = 0 then HomK(modA)(F
• , Z[−k]) = 0 for Z ∈ injA.

(2) If Hk(F • ) = 0 then HomK(modA)(Z[−k], F • ) = 0 for Z ∈ projA.

Now, assume that F • ∈ K(projA).

(1’) If Hk(F
∗
• ) = 0 then HomK(projA)(Z[−k], F • ) = 0 for Z ∈ projA with Z∗ ∈ A-inj.

(2’) If Hk(F
∗
• ) = 0 then HomK(projA)(F

• , Z[−k]) = 0 for Z ∈ projA.

Proof. Ad (1) and (2). Suppose given a morphism of complexes f • : F • → Z[−k]. In particular,

we have dk−1fk = 0.

· · · F k−1 F k F k+1 · · · F •

· · · 0 Z 0 · · · Z[−k]

dk−1

fk−1

dk

fk fk+1 f •
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By assumption, we have that Ker dk = Im dk−1 ⊆ Ker fk. Thus, there exists a morphism

g : F k/ Ker dk → Z such that the following diagram commutes.

F k

F k/ Ker dk F k+1

Z

π

fk

dk

d̃k

g

Since Z is injective, there exists a morphism h : F k+1 → Z with d̃k h = g. We obtain

dk h = π d̃k h = π g = fk

so that f • = 0. This shows part (1). Part (2) follows dually.

Ad (1’) and (2’). Since HomK(projA)(Z[−k], F • ) ≃ HomK(A-proj)(F
∗
• , Z

∗[−k]), part (1′) follows

from part (1) applied to left A-modules.

Similarly, since HomK(projA)(F
• , Z[−k]) ≃ HomK(A-proj)(Z

∗[−k], F ∗
• ), part (2

′) follows from part

(2) applied to left A-modules.

We extend the previous result to morphisms between complexes. In particular, this lemma

shows that LA is contained in HP(projA).

Lemma 4.4. Let F • ∈ K(projA).

(1) If H• (F • ) = 0, then HomK(modA)(F
• , Z• ) = 0 for all Z• ∈ Kb(injA).

(2) If H• (F ∗
• ) = 0, then HomK(projA)(F

• , Z• ) = 0 for all Z• ∈ Kb(projA).

(1’) If H• (F ∗
• ) = 0, then HomK(projA)(Z

• , F • ) = 0 for all Z• ∈ Kb(projA) with Z∗
• ∈ Kb(A- inj).

(2’) If H• (F • ) = 0, then HomK(projA)(Z
• , F • ) = 0 for all Z• ∈ Kb(projA).

(3) If F • ∈ LA, then F • ∈ HP(projA) .

Proof. At first we show the following claim.

Claim. Let Z• ∈ Kb(modA). We have HomK(modA)(F
• , Z• ) = 0 if HomK(modA)(F

• , Zk) = 0 for

all k ∈ Z.

Suppose that Z• is non-zero. Since Z• is bounded, there exists an l ∈ Z such that Z l ̸= 0 and

Zk = 0 for k < l. Moreover, there exists an r ∈ Z such that Zr ̸= 0 and Zk = 0 for k > r.
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We proceed by induction on the number of non-zero terms of Z• .

Suppose that l = r. Then Z• = Z l and HomK(modA)(F
• , Z l) = 0 by assumption.

Suppose that l < r. By induction, we can assume that HomK(modA)(F
• , Z⩽r−1) = 0. Thus,

there exist homotopy maps hk : F k → Zk−1 for k ⩽ r such that

hk dk−1
Z + dkF h

k+1 = fk, for k < r.

Consider the following diagram.

· · · F r−2 F r−1 F r F r+1 · · · F •

· · · Zr−2 Zr−1 Zr 0 · · · Z•

d r−2
F

fr−2

d r−1
F

fr−1

hr−1

d r
F

fr

hr hr+1

f •

d r−2
Z d r−1

Z d r
Z

Note that

d r−1
F

(︁
f r − hr d r−1

Z

)︁
= f r−1 d r−1

Z − f r−1 d r−1
Z + hr−1 d r−2

Z d r−1
Z = 0

so that f r − hr d r−1
Z induces a morphism of complexes F • → Zr. However, we have that

HomK(modA)(F
• , Zr) = 0 by assumption. This yields a homotopy map hr+1 : F r+1 → Zr with

d rF h
r+1 = f r − hr d r−1

Z ⇔ d rF h
r+1 + hr d r−1

Z = f r.

In conclusion, we obtain HomK(modA)(F
• , Z• ) = 0.

By Lemma 4.3.(1, 2′), we have HomK(modA)(F
• , Zk) = 0 for k ∈ Z in the situation of part

(1) and (2) respectively. Hence, part (1) and (2) follow from the claim above. Note that for

Z• ∈ K(projA), we have HomK(projA)(Z
• , F • ) = 0 if and only if HomK(A-proj)(F

∗
• , Z

∗
• ) = 0.

Thus, (1′) and (2′) follow from the versions of (1) and (2) for left A-modules respectively.

Finally, let F • ∈ LA and Z• ∈ Kb(PA). By definition, we have Hk(F • ) = 0 for k < 0 and

Hk(F
∗
• ) = 0 for k ⩾ 0. In particular, F • ∈ H(projA). Furthermore, Lemma 4.3.(1) shows that

HomK(projA)(F
• , Zk) = 0 for k < 0 and Lemma 4.3.(2′) shows that HomK(projA)(F

• , Zk) = 0 for

k ⩾ 0. Now, the claim above gives HomK(projA)(F
• , Z• ) = 0 so that F • ∈ ⊥Kb(PA). Together,

we obtain F • ∈ HP(projA) which shows part (3).

The next several results aim to show that a complex F • ∈ HP(projA) is contained in any

triangulated subcategory of K(projA) that contains LA and is closed under isomorphisms. We

start with the following important observation about complexes inHP(projA) andHstp(projA).
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Lemma 4.5. Let F • ∈ K(modA).

(1) F • ∈ ⊥Kb(PA) if and only if Hk(F • ) ∈⊥PA for all k ∈ Z.

(2) F • ∈ ⊥Kb(stpA) if and only if Hk(F • ) ∈ ⊥(stpA) for all k ∈ Z.

(1’) F • ∈ Kb(ν−1PA)⊥ if and only if Hk(F • ) ∈ (ν−1PA)⊥ for all k ∈ Z.

(2’) F • ∈ Kb(stpA)⊥ if and only if Hk(F • ) ∈ (stpA)⊥ for all k ∈ Z.

Proof. Let I be a full subcategory of injA. We show that we have F • ∈ ⊥Kb(I) if and only if

Hk(F • ) ∈ ⊥I for all k ∈ Z. Letting I = PA we obtain part (1) and letting I = stpA we obtain

part (2).

Suppose that F • ∈ ⊥Kb(I). We fix a k ∈ Z with Hk(F • ) ̸= 0. Let Z ∈ I and suppose given a

morphism f : Hk(F • )→ Z.

Consider the following commutative diagram. The morphism α exists since Z is injective.

· · · F k−1 F k F k+1 · · ·

Ker dk F k/ Im dk−1

Hk(F • )

Z

dk−1 dk

πι

p

α

f

Since dk−1 π α = 0, this yields a morphism of complexes π α : F • → Z[−k]. By assumption,

there exists a homotopy map h : F k+1 → Z with dk h = π α. We have

0 = ι dk h = ι π α = p f

so that f = 0.

Conversely, let Hk(F • ) ∈ ⊥I for all k ∈ Z. Suppose given a morphism of complexes F • f •

−→ Z•

with Z• in Kb(I). Let r ∈ Z be maximal such that Zr ̸= 0. By applying a shift [−r] we may

assume that r = 0. We show that f • = 0 by induction on the number of non-zero terms of Z• .

Suppose that Zk = 0 for k ̸= 0. We have d−1
F f 0 = f−1 d−1

Z = 0 so that there exists a morphism

α : F 0/ Im dk−1
F → H0(F • ) with f 0 = π α. This results in a morphism g = i α : H0(F • ) → Z0
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such that the following diagram commutes.

· · · F−1 F 0 F 1 · · ·

Ker d0 F 0/ Im d−1
F

H0(F • )

· · · 0 Z0 0 · · ·

d−1
F d0F

π

f0

ι

p

α

i

g

d−1
Z d0Z

By assumption, g = 0. Hence ι f 0 = ι π α = p i α = p g = 0. This yields a morphism of

complexes as follows.

· · · 0 Ker d0 F 0 F 1 · · ·

· · · 0 0 Z0 0 · · ·

ι d0

f0

Since Z0 is injective, this morphism must be zero in K(modA) by Lemma 4.3.(1) so that there

exists a morphism h : F 1 → Z0 with d0h = f 0. This implies that f • : F • → Z• is zero as well.

For the induction step, we consider the complex τ<0Z
• = Z<0. By induction hypothesis, we

may assume that HomK(modA)(F
• , Z<0) = 0. Hence there exist homotopy maps hk : F k → Zk−1

for k ⩽ 0 such that hk−1 dk−2
Z + dk−1

F hk = fk−1.

· · · F−2 F−1 F 0 F 1 · · ·

· · · Z−2 Z−1 Z0 0 · · ·

d−2
F

f−2

d−1
F

f−1h−1

d0F

f0
h0

f1

d−2
Z d−1

Z

Note that

d−1
F

(︁
f 0 − h0 d−1

Z

)︁
= f−1 d−1

Z − f
−1 d−1

Z + h−1 d−2
Z d−1

Z = 0

so that f 0 − h0 d−1
Z induces a morphism of complexes F • → Z0.

Now we are in the same situation as above and we can conclude that there exists a morphism

F 1 h1−→ Z0 such that d0Fh
1 = f 0−h0 d−1

Z . However, this yields h0 d−1
Z +d0Fh

1 = f 0. Thus f • = 0.

It remains to show part (1’) and part (2’). Let C be either ν−1PA or stpA. In both cases,

I := D C is a full subcategory of A-inj. In particular, we can apply the arguments above for I.
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Suppose given Z• ∈ Kb(C). Note that DZ• ∈ Kb(I) and

HomK(modA)(Z
• , F • ) ≃ HomK(A-mod)(DF

• ,DZ• ).

Thus, the arguments above for left A-modules show that there exists a Z• ∈ Kb(C) with

HomK(modA)(Z
• , F • ) ̸= 0 if and only if there is a AZ ∈ I with HomA(AH

k(DF • ), AZ) ̸= 0.

Since D(−) is exact, we have

HomA(AH
k(DF • ), AZ) ≃ HomA(A(DHk(F • )), AZ) ≃ HomA((DZ)A,H

k(F • )A).

Using that DZ ∈ D I ≃ C, we are done.

For a given complex F • ∈ H(projA), we want to construct a complex in L which is related to

F • via distinguished triangles; cf. Lemma 4.7. This is done by removing non-zero cohomology

of F • with projective resolutions. Using the boundary conditions in the definition of H(projA),
there are only finitely many positions we have to consider until we arrive at a complex in L.
The distinguished triangles that arise during the proof also give a way to calculate the class of

F • in the Grothendieck group of HP(projA).

Because it will be needed later, we first state the induction step in a more general lemma.

Lemma 4.6. Suppose given F • ∈ H(projA). Let k ∈ Z be minimal with Hk(F • ) ̸= 0. Let H be

a submodule of Hk(F • ) with P • a projective resolution of H. Then there exists a distinguished

triangle P • [−k]→ F • → C• → such that the following holds.

(1) We have Hj(C• ) = 0 for j < k and τ⩾kC
• = τ⩾kF

• .

(2) There is a short exact sequence 0→ H → Hk(F • )→ Hk(C• )→ 0. In particular, we have

Hk(C• ) = 0 if H = Hk(F • ).

(3) Suppose that F • ∈ LA with k = 0. Then we also have C• ∈ LA. In this setting, we have

a short exact sequence 0→ H → H0(τ⩽0 F
• )→ H0(τ⩽0C

• )→ 0.

Proof. We have an injective morphism f : H → Cok dk−1
F since H is a submodule of Hk(F • )

which embedds into Cok dk−1
F . Since k is minimal such that Hk(F • ) ̸= 0, we know that

Hj(F • ) = 0 for j < k. Hence, we can lift f to a morphism of complexes f • : P⩽0[−k]→ F • . In

particular, we have f 0 dkF = 0 since f factors through Hk(F • ).

· · · P−2 P−1 P 0 0 0 · · · P⩽0[−k]

· · · F k−2 F k−1 F k F k+1 F k+2 · · · F •

d−2
P

f−2

d−1
P

f−1 f0 f •

dk−2
F dk−1

F dkF dk+1
F
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We write C• := C(f)• for the mapping cone. We denote the natural projections by πP : P 0 → H

and by πF : F k → Cok dk−1
F . Note that τ⩾kC

• = τ⩾kF
• . Moreover Hj(C• ) = 0 for j ⩽ k − 2 by

Lemma 1.9. For part (1), it remains to show that Hj(C• ) = 0 for j = k − 1.

Let (x, y) ∈ Ker dk−1
C ⊆ P 0 ⊕ F k−1. Then (x, y)

(︃
f0

dk−1
F

)︃
= 0, i.e. xf 0 = −y dk−1

F . We have

0 = y dk−1
F πF = −xf 0πF = −x πP f

which implies x πP = 0 since f is injective. Thus, there exists an element q ∈ P−1 with

q d−1
P = x. Moreover,(︁

qf−1 + y
)︁
dk−1
F = q d−1

P f 0 + y dk−1
F = xf 0 + y dk−1

F = −y dk−1
F + y dk−1

F = 0

so that we obtain p ∈ F k−2 with p dk−2
F = qf−1 + y. We calculate

(−q, p)
(︃

−d−1
P f−1

0 dk−2
F

)︃
=
(︁
x,−qf−1 + p dk−2

F

)︁
=
(︁
x,−qf−1 + qf−1 + y

)︁
= (x, y) .

The distinguished triangle P • [−k]→ F • → C• → induces a long exact sequence of cohomology.

Hk−1(C• )→ Hk(P • [−k])→ Hk(F • )→ Hk(C• )→ 0

We have seen above, that Hk−1(C• ) = 0. Using that Hk(P • [−k]) = H0(P • ) ≃ H, we obtain a

short exact sequence 0→ H → Hk(F • )→ Hk(C• )→ 0. This shows part (2).

For part (3), suppose that F • ∈ LA and k = 0. We have Hj(C• ) = 0 for j < 0 by part (1).

Using Lemma 1.9.(2), we obtain that C• = C(f)• ∈ LA. Since τ⩾0C• = τ⩾0F
• , we have

N := Cok
(︁
H0(F • ) ↪→ H0(τ⩽0 F

• )
)︁
≃ Im(d0F ) ≃ Im(d0C) ≃ Cok

(︁
H0(C• ) ↪→ H0(τ⩽0C

• )
)︁
.

Let H̃ ≃ Ker
(︁
H0(τ⩽0 F

• ) → H0(τ⩽0C
• )
)︁
. Consider the following commutative diagram with

exact rows and columns.

0 0 0

0 H H0(F • ) H0(C• ) 0

0 H̃ H0(τ⩽0 F
• ) H0(τ⩽0C

• ) 0

0 N N 0

0 0 0

We obtain H ≃ H̃ and the short exact sequence 0→ H → H0(τ⩽0 F
• )→ H0(τ⩽0C

• )→ 0.
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Lemma 4.7. Let T be a triangulated subcategory of K(modA) that contains L and is closed

under isomorphisms. The following holds for a complex F • ∈ H(projA) with integers l ⩽ r

such that H<l(F • ) = 0 and H⩾r(F
∗
• ) = 0.

(1) If T contains the minimal projective resolution of Hk(F • ) for all k < r, then F • ∈ T .

(2) We abbreviate G• := F(Hr(τ⩽rF
• )) ∈ LA. For l ⩽ k < r let P •

k be the minimal projective

resolution of Hk(F • ). We have [F • ] =
∑︁r−1

k=l (−1)k[P
•
k ] + (−1)r[G• ] in G0(H(projA)).

Proof. Suppose that F • ̸= 0. By definition of H(projA), there always exist l, r ∈ Z with

H<l(F • ) = 0 and H⩾r(F
∗
• ) = 0. We can choose r ∈ Z such that l ⩽ r. We proceed by induction

on N := r − l.

If N = 0, that is l = r, then H<r(F • ) = 0 and H⩾r(F
∗
• ) = 0. Thus, F • [r] ∈ L and we have

F • ∈ T . Furthermore, [F • ] = (−1)r[F • [r]] = (−1)r[G• ] since Hr(τ⩽rF
• ) = H0

(︁
τ⩽0(F

• [r])
)︁
.

We consider the case N > 0, that is l < r. By Lemma 4.6, we have a distinguished triangle

P • [−l]→ F • → C• →

with P • the minimal projective resolution of Hl(F • ). Moreover, Hj(C• ) = 0 for j ⩽ l and

τ⩾lC
• = τ⩾lF

• . In particular, this means H<l+1(C• ) = 0 and H⩾r(C
∗
• ) = 0. Hence, by induction,

we have C• ∈ T and [C• ] =
∑︁r−1

k=l+1(−1)k[P
•
k ]+ (−1)r[G• ] since Hk(C• ) ≃ Hk(F • ) for k ⩾ l+1.

Using that P • [−l] → F • → C• → is a distinguished triangle with P • ∈ T , we conclude that

F • ∈ T since T is closed under isomorphisms. Moreover, we have that

[F • ] = (−1)l[P • ] + [C• ] =
r−1∑︂
k=l

(−1)k[P •
k ] + (−1)r[G• ].

Recall that we aim to show that a complex F • ∈ HP(projA) is contained in any triangulated

subcategory that contains L and is closed under isomorphisms. The previous results state

that it is enough to consider projective resolutions of modules in ⊥P. In a next step, we

further reduce this to composition factors of such modules. Again, we additionally obtain a

formula for the class in the Grothendieck group. Note that no further steps are necessary in

case that domdimA ⩾ 1. In this context, a module X ∈ ⊥P already satisfies X∗ = 0. By

Lemma 2.24.(5,7), we obtain that F •
X ∈ L is the minimal projective resolution of X.

The next lemma will be used with I = PA in this section, as well as with I = stpA in

Section 4.3.

Lemma 4.8. Let I be a full subcategory of injA. The following are equivalent for X ∈ modA.

(i) X ∈ ⊥I.

(ii) S ∈ ⊥I for every composition factor S of X.
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Proof. Ad (i) ⇒ (ii). Let S be a composition factor of X. Suppose given an injective module

I together with a morphism S
f−→ I.

Since S is a composition factor of X, there exists a submodule M of X such that S ↪→ X/M .

Using that I is injective, we obtain a morphism X/M
g−→ I such that the following diagram

commutes.
S X/M

I

f
g

If f is non-zero then the composite map X ↠ X/M
g−→ I is non-zero as well.

Ad (ii) ⇒ (i). Suppose given an A-module I together with a non-zero morphism f : X → I.

Let S be in the socle of Im f ≃ X/Ker f . Then S is a composition factor of X and the

composite S ↪→ Im f ↪→ I is non-zero.

Lemma 4.9. Let T be a triangulated subcategory of K(modA) that is closed under isomor-

phisms.

Suppose X is an A-module with minimal projective resolution P⩽0. The following holds.

(1) If T contains the minimal projective resolution of every composition factor S of X, then

we have P⩽0 ∈ T .

(2) Let n := l(X) and suppose Q⩽0i are the minimal projective resolutions of the composition

factors of X. Then [P⩽0] =
∑︁n

i=1[Q
⩽0
i ] in G0(H(projA)).

Proof. We show the assertions by induction on the length of X. Let l(X) = 1. Then X is

simple and P⩽0 ∈ T by assumption.

Let l(X) > 1. Then there exist A-modules S and Y with l(S) = 1 and l(Y ) < l(X) such that

there is a short exact sequence

0→ S → X → Y → 0.

By assumption and induction respectively, the minimal projective resolutions Q⩽0 of S and R⩽0

of Y are contained in T . Furthermore, assertion (2) holds for R⩽0.

Using the horseshoe lemma, the short exact sequence of modules induces a short exact sequence

of complexes with P̃⩽0 ≃ P⩽0 in K(projA).

0→ Q⩽0 → P̃⩽0 → R⩽0 → 0

By Lemma 2.17, we have a distinguished triangle

Q⩽0 → P⩽0 → R⩽0 →
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so that P⩽0 ∈ T and [P⩽0] = [Q⩽0] + [R⩽0].

The following lemma is the last we need to prove the main theorem of this section. Note that

the short exact sequence starting in the simple module is not perfect exact in general; see also

Example 7.11.

Lemma 4.10. Suppose S is a simple A-module with minimal projective resolution P⩽0. Let I

be the injective hull of S together with a short exact sequence 0→ S → I → C → 0 in modA.

If S ∈ ⊥PA, then there exists a distinguished triangle P⩽0 → F •
I → F •

C → in K(projA).
In particular, P⩽0 ∈ T for any triangulated subcategory T of K(projA) that contains L and is

closed under isomorphisms.

Proof. We extend P⩽0 to an element P • ∈ L such that P • ≃ F •
S .

In case P 1 = 0, we obtain P⩽0 = P • ∈ L ⊆ T . In this case, S∗ = 0 and 0→ S → I → C → 0

is a perfect exact sequence. The result now follows from Proposition 2.18. Hence, suppose that

P 1 ̸= 0 for the remainder of the proof.

Let I be the injective hull of S with embedding f : S ↪→ I. Consider F •
I ∈ L. By assumption,

I is not projective so that F •
I is non-zero. Our aim is to construct a morphism of complexes

f • : P⩽0 → F •
I with C(f)• ∈ L.

· · · P−2 P−1 P 0 0 · · · P⩽0

· · · F−2
I F−1

I F 0
I F 1

I · · · F •
I

d−2
P

f−2

d−1
P

f−1 f0 f •

d−2
F d−1

F d0F

The morphism d0F factors through I via a morphism i : I → F 1
I . Since S is simple, the composite

map S
f−→ I

i−→ F 1
I is either injective or zero. If fi is injective, there exists a morphism p : F 1

I → I

with f = (fi)p since I is an injective module. As a consequence, we have f = f(i p) = f(i p)n

for all n > 0. Since S is simple, I is indecomposable and thus the composite i p is either an

automorphism or (i p)n is zero for some n > 0. If i p is an automorphism, i is split so that

I is projective-injective as a direct summand of F 1
I . However, I is not projective-injective by

assumption. If (i p)n = 0, we also have f = f(i p)n = 0. A contradiction in both cases. Thus,

the composite fi cannot be injective and must be zero.

This yields S ↪→ Ker(i) ≃ Ker
(︁
I → Im d0F

)︁
≃ Ker

(︁
H0(τ⩽0 F

•
I ) → F 0

I /Ker(d0F )
)︁
≃ H0(F •

I ).

Since f is non-zero, S is isomorphic to a submodule of H0(F •
I ). Using Lemma 4.6, we obtain a

distinguished triangle P⩽0
f •

−→ F •
I → C(f)• → with C(f)• ≃ F •

C ∈ LA.

We are now ready to show the main result of this section.
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Theorem 4.11. Let A be a finite dimensional k-algebra.

The category HP(projA) is the smallest triangulated subcategory of K(projA) that contains the
category LA and is closed under isomorphisms.

Proof. By Lemma 4.4.(3), we have that L ⊆ HP(projA). By Remark 4.2.(1), HP(projA) is a

triangulated subcategory of K(projA) that is closed under isomorphisms. Together, we obtain

that HP(projA) is a triangulated category containing L.

Suppose that T is another triangulated subcategory of K(modA) that contains L and is closed

under isomorphisms. We show that HP(projA) ⊆ T .

Recall that HP(projA) ⊆ ⊥Kb(PA). By Lemma 4.5 and Lemma 4.7 it suffices to show that

the minimal projective resolution of every A-module X ∈ ⊥PA is an element of T . Moreover,

by Lemma 4.9 it suffices to show that the minimal projective resolution of every composition

factor of X is an element of T . Let S be such a composition factor. Then S is an element of
⊥PA by Lemma 4.8. Using Lemma 4.10, we now obtain that the minimal projective resolution

of S is an element of T .

Instead of defining HP(projA) as a subcategory of ⊥Kb(PA), we also can consider right per-

pendicular categories.

Remark 4.12. The following are equivalent for a complex F • ∈ K(projA).

(1) F • ∈ ⊥Kb(PA).

(2) Hk(F • ) ∈⊥PA for all k ∈ Z.

(3) Hk(F • ) ∈ (ν−1PA)⊥ for all k ∈ Z.

(4) F • ∈ Kb(ν−1PA)⊥.

In particular, we have F • ∈ HP(projA) if and only if F • ∈ Kb(ν−1PA)⊥ and F • ∈ H(projA).

In fact, the equivalence of (1) and (2), as well as the equivalence of (3) and (4) were shown in

Lemma 4.5. The equivalence of (2) and (3) follows from the natural isomorphism

HomA(X, νP ) ≃ DHomA(P,X)

for all P ∈ projA and X ∈ modA.

Examples in Chapter 7. We visualize the categories HP(projA) and Hstp(projA) in Exam-

ple 7.10 of Section 7.3. Note that we will discuss Hstp(projA) in more detail later in Section 4.3.
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In Example 7.11, we explicitly follow the steps in the proof of Theorem 4.11 and illustrate the

constructions done in this section.

We close with a characterization of HP(projA) inside H(projA) in case that A has dominant

dimension at least one.

Remark 4.13. Let domdimA ⩾ 1 and F • ∈ H(projA). Then F • ∈ HP(projA) if and only if

ν(Hk(F • )) = 0 for all k ∈ Z.

In fact, we have F • ∈ HP(projA) if and only if Hk(F • ) ∈⊥PA for all k ∈ Z by Lemma 4.5.(1).

However, under the assumption domdimA ⩾ 1, we have ⊥PA =⊥ projA. Thus, Hk(F • ) ∈⊥PA
if and only if (Hk(F • ))∗ = 0.

4.2 Grothendieck group

We recall the definition of the stable Grothendieck group as stated in [33].

Definition 4.14. Let L be the free abelian group generated by the isomorphism classes of

objects in modA without projective direct summands. Let R be the subgroup of L generated

by the classes

[X]− [Y ] + [Z]

where 0→ X ⊕ P → Y ⊕Q→ Z → 0 is a short exact sequence with P,Q ∈ projA and where

X and Y may be zero.

The stable Grothendieck group Gst
0 (A) of A is defined as the quotient L/R.

Mart́ınez-Villa has shown in [33, Theorem 2.1] that stably equivalent algebras without nodes

and without semisimple summands have isomorphic stable Grothendieck groups.

We consider the Grothendieck group G0(HP(projA)) of the triangulated category HP(projA).

Using the equivalence F : modA→ LA, we obtain a Grothendieck group GP
0(A) for the stable

module category which is defined via perfect exact sequences. We show that GP
0(A) is invariant

under stable equivalences which preserve perfect exact sequences.

Definition 4.15. Let L be the free abelian group generated by the isomorphism classes of

objects in modA without projective direct summands. Let R′ be the subgroup of L generated

by the classes

[X]− [Y ] + [Z]

where 0→ X → Y ⊕ P → Z → 0 is a perfect exact sequence with P ∈ projA.

The group GP
0(A) is defined as the quotient L/R′.
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The next theorem follows from the results provided in Section 4.1.

Theorem 4.16. The equivalence F : modA→ LA induces an isomorphism

GP
0(A) ≃ G0(HP(projA)).

Proof. By Proposition 2.18, every perfect exact sequence 0→ X → Y ⊕P → Z → 0 in modA

with P projective induces a distinguished triangle F •
X → F •

Y → F •
Z → in L ⊆ HP(projA)

and vice versa. Hence, the natural map σ : GP
0(A) → G0(HP(projA)) given by [X] ↦→ [F •

X ] is

well-defined. Since split exact sequences are perfect exact, σ is a group homomorphism.

Suppose given X ∈ modA. Let S1, . . . , Sn be the composition factors of X. For 1 ⩽ k ⩽ n, let

Sk ↪→ Ik be the injective hull of Sk together with a short exact sequence 0→ Sk → Ik → Ck → 0

in modA. Note that the modules Ik and Ck are uniquely determined by X up to isomorphism.

Throughout the proof, we write IX :=
⨁︁n

k=1 Ik and CX :=
⨁︁n

k=1Ck for a given A-module X.

If X is the zero module, we set IX = 0 and CX = 0.

Claim 1. Let X ∈⊥PA with minimal projective resolution P • . We have ([IX ]− [CX ])σ = [P • ].

Proof of claim 1. Let Q•
k be the minimal projective resolution of Sk for 1 ⩽ k ⩽ n. By

Lemma 4.9.(2), we have [P • ] =
∑︁n

k=1[Qk]. For all 1 ⩽ k ⩽ n we additionally have that

[Q•
k] = [F •

Ik
]− [F •

Ck
] by Lemma 4.10. Together, we obtain

([IX ]− [CX ])σ =
n∑︂
k=1

[Ik]σ − [Ck]σ =
n∑︂
k=1

[F •
Ik
]− [F •

Ck
] =

n∑︂
k=1

[Qk] = [P • ].

This proves the claim.

Suppose given a complex G• ∈ HP(projA). Let l ∈ Z such that H<l(G• ) = 0. Let r ∈ Z⩾l such
that H⩾r(G

∗
• ) = 0. We aim to define a map

σ̃′ : HP(projA)→ GP
0(A) : G

• ↦→
r−1∑︂
k=l

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r[Hr(τ⩽rG
• )].

Claim 2. Suppose given F •
X ∈ LA for X ∈ modA with H0(F •

X) non-zero. Suppose given a

submodule H of H0(F •
X) together with a short exact sequence 0 → H → X → N → 0. We

have [X] = [IH ]− [CH ] + [N ] in GP
0(A).

If H = H0(F •
X), then we have [X] = [H0(τ⩽0 F

•
X)] = [IH ]− [CH ]− [H1(τ⩽1F

•
X)] in G

P
0(A).

Proof of claim 2. We proceed by induction on the number of composition factors of H.

Suppose that S := H is simple. Let I ∈ modA be the injective hull of S. Since S is a

submodule of X, there exists an injective module J ∈ modA such that I ⊕ J is the injective
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hull of X. Let P • be the minimal projective resolution of S. By Lemma 4.6.(2,3), we have the

following distinguished triangle

P • u•

−→ F •
X → F •

N →

and a short exact sequence 0 → S → H0(F •
X) → H0(F •

N) → 0. Additionally, we have the

following distinguished triangle by Lemma 4.10 with w• : P • → F •
I induced by the embedding

S ↪→ I. Note that S ∈⊥PA since H0(F •
X) ∈⊥PA.

P • (w• 0)
−−−−→ F •

I ⊕ F
•
J → F •

C ⊕ F
•
J →

The embedding S ↪→ I ⊕ J factors through the embedding S ↪→ X via an injective morphism

X → I ⊕ J . This induces a morphism of complexes (v•
1 v•

2) : F •
X → F •

I ⊕ F •
J such that

u• (v•
1 v•

2) = (w• 0) in K(projA). Let K• := C
(︁
(v1 v2)

)︁•
be its mapping cone. Note that

K• ∈ LA by Proposition 2.21. We have the following distinguished triangle.

F •
X

(v•
1 v•

2 )−−−−−→ F •
I ⊕ F

•
J → K• →

Now, the octahedral axiom gives another distinguished triangle.

F •
N → F •

C ⊕ F
•
J → K• →

By Proposition 2.18 the two triangles above induce perfect exact sequences such that

[X]− [N ] = [I] + [J ]− [H0(τ⩽0K
• )]− ([C] + [J ]− [H0(τ⩽0K

• )]) = [I]− [C].

This verifies the claim in the case that S = H is simple. Now, suppose that H has n > 1

many composition factors. Let 0 → U → H → T → 0 be a short exact sequence in modA

with T a simple module. Let X̃ := Cok(U → X). By induction, we may assume that we have

[X] = [IU ] − [CU ] + [X̃] in GP
0(A). Consider the following commutative diagram with exact

rows.
0 U H T 0

0 U X X̃ 0

0 0 N N 0

Since 0 → H → X → N → 0 is a short exact sequence, we obtain another short exact

sequence 0 → T → X̃ → N → 0. By Lemma 4.6.(2,3), we have a short exact sequence

0→ U → H0(F •
X)→ H0(F •

X̃
)→ 0. Thus, T is a submodule of H0(F •

X̃
). Using that T is simple,
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we can show as above that [X̃] = [IT ]−[CT ]+[N ]. Since [IH ] = [IU ]+[IT ] and [CH ] = [CU ]+[CT ],

combining all equations yields [X] = [IH ]− [CH ] + [N ] in GP
0(A).

If H = H0(F •
X), we have that H0(F •

N) = 0 and τ⩾0F
•
X = τ⩾0F

•
N by Lemma 4.6.(1,2). Using

Lemma 2.24.(2,4), we obtain [N ] = −[H1(τ⩽1F
•
N)] = −[H1(τ⩽1F

•
X)] in GP

0(A). In conclusion,

[X] = [IH ]− [CH ] + [N ] = [IH ]− [CH ]− [H1(τ⩽1F
•
X)]. This proves the claim.

Claim 3. Suppose given a complex G• ∈ HP(projA). Let l ∈ Z such that H<l(G• ) = 0. Let

r1 ∈ Z⩾l such that H⩾r1(G
∗
• ) = 0. We write Xk := Hk(τ⩽kG

• ). Then the element

r1−1∑︂
k=l

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r1 [Xr1 ]

in GP
0(A) is independent of the choice of l and r1 provided H<l(G• ) = 0 and H⩾r1(G

∗
• ) = 0.

That is, for every r2 ⩾ r1, we have

(−1)r1 [Xr1 ] =

r2−1∑︂
k=r1

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r2 [Xr2 ].

Proof of claim 3. The independence of l of the sum above follows from IHk(G• ) = 0 and

CHk(G• ) = 0 for k < l. We show that

0 =

r2−1∑︂
k=r1

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r2 [Xr2 ]− (−1)r1 [Xr1 ].

by induction on r2 ∈ Z⩾r1 . For r2 = r1 there is nothing to show. For the induction step, we

may assume that the equation holds for some r2 ⩾ r1. We obtain

r2∑︂
k=r1

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r2+1[Xr2+1]− (−1)r1 [Xr1 ]

= (−1)r2([IHr2 (G• )]− [CHr2 (G• )]) + (−1)r2+1[Xr2+1]− (−1)r2 [Xr2 ].

Note that H⩾r2(G
∗
• ) = 0 and H⩾r2((F

•
Xr2

[−r2])∗) = H⩾0((F
•
Xr2

)∗) = 0. Furthermore, we have

Hr2(τ⩽r2(F
•
Xr2

[−r2])) = H0(τ⩽0 F
•
Xr2

) ≃ Xr2 = Hr2(τ⩽r2G
• ). Since projective resolutions are

unique up to isomorphism inK(projA), this implies that τ⩾r2G
• ≃ τ⩾r2(F

•
Xr2

[−r2]) inK(projA).
In particular, we have Hr2(G• ) ≃ Hr2(F •

Xr2
[−r2]) = H0(F •

Xr2
). Using claim 2, we obtain

[IHr2 (G• )]− [CHr2 (G• )] = [H0(τ⩽0 F
•
Xr2

)] + [H1(τ⩽1F
•
Xr2

)]

= [Hr2(τ⩽r2G
• )] + [Hr2+1(τ⩽r2+1G

• )]

= [Xr2 ] + [Xr2+1].
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Thus, we have

(−1)r2([IHr2 (G• )]− [CHr2 (G• )]) + (−1)r2+1[Xr2+1]− (−1)r2 [Xr2 ] =

(−1)r2([Xr2 ] + [Xr2+1]) + (−1)r2+1[Xr2+1]− (−1)r2 [Xr2 ] = 0.

This proves the claim.

Suppose given a complex G• ∈ HP(projA). Let l ∈ Z such that H<l(G• ) = 0. Let r ∈ Z⩾l such
that H⩾r(G

∗
• ) = 0. We define a map σ̃′ as follows.

σ̃′ : HP(projA)→ GP
0(A) : G

• ↦→
r−1∑︂
k=l

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r[Hr(τ⩽rG
• )].

By claim 3 this definition is independent of the choice of l and r.

Claim 4. Let G• → K• → L• → be a distinguished triangle in HP(projA). We have that

([G• ]− [K• ] + [L• ])σ̃′ = 0 in GP
0(A).

Proof of claim 4. Let l ∈ Z such that H<l(G• ) = 0, H<l(K• ) = 0 and H<l(L• ) = 0. Let r ∈ Z⩾l
such that H⩾r(G

∗
• ) = 0, H⩾r(K

∗
• ) = 0 and H⩾r(L

∗
• ) = 0. By Lemma 2.17, we have a split short

exact sequence of complexes 0 → τ⩽rG
• → τ⩽rK̃

• → τ⩽rL
• → 0 with K̃• ≃ K• in K(projA).

Note that [Hr(τ⩽rK̃
• )] = [Hr(τ⩽rK

• )]. This results in the following long exact sequence of

cohomology.

0→ Hl(G• )→ Hl(K• )→ · · · → Hr−1(L• )
δ−→ Hr(τ⩽rG

• )→ Hr(τ⩽rK̃
• )→ Hr(τ⩽rL

• )→ 0

Recall that for X ∈ modA the modules IX and CX are uniquely determined up to isomorphism

by the composition factors of X. The long exact sequence of cohomology now implies that

r−1∑︂
k=l

(−1)k([IHk(G• )]−[IHk(K• )]+[IHk(L• )]−[CHk(G• )]+[CHk(K• )]−[CHk(L• )])+(−1)r([IIm(δ)]−[CIm(δ)]) = 0

We write X := Hr(τ⩽rG
• ) and X̃ := Hr(τ⩽rG

• )/ Im(δ) ≃ Ker
(︁
Hr(τ⩽rK̃

• ) → Hr(τ⩽rL
• )
)︁
.

Note that Im(δ) ≃ Cok
(︁
Hr−1(K• )→ Hr−1(L• )

)︁
↪→ Hr(G• ) ≃ H0(F •

X). Thus, Lemma 4.6.(1,3)

implies τ⩾0F
•
X = τ⩾0F

•
X̃
so that X∗ ≃ X̃∗. Moreover, [Hr(τ⩽rG

• )] = [X] = [IIm(δ)]−[CIm(δ)]+[X̃]

by claim 2. Together with the above, we obtain

([G• ]− [K• ] + [L• ])σ̃′

=
r−1∑︂
k=l

(−1)k([IHk(G• )]− [IHk(K• )] + [IHk(L• )]− [CHk(G• )] + [CHk(K• )]− [CHk(L• )])

+ (−1)r([Hr(τ⩽rG
• )]− [Hr(τ⩽rK

• )] + [Hr(τ⩽rL
• )])

= − (−1)r([IIm(δ)]− [CIm(δ)]) + (−1)r([Hr(τ⩽rG
• )]− [Hr(τ⩽rK

• )] + [Hr(τ⩽rL
• )])
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= (−1)r([X̃]− [X] + [Hr(τ⩽rG
• )]− [Hr(τ⩽rK

• )] + [Hr(τ⩽rL
• )])

= (−1)r([X̃]− [Hr(τ⩽rK̃
• )] + [Hr(τ⩽rL

• )])

It remains to show that the short exact sequence 0 → X̃ → Hr(τ⩽rK̃
• ) → Hr(τ⩽rL

• ) → 0 is

perfect exact. The componentwise split sequence 0 → τ⩾r+1L
∗
• → τ⩾r+1K̃

∗
• → τ⩾r+1G

∗
• → 0

induces the following short exact sequence.

0→ Hr+1(τ⩾r+1L
∗
• )→ Hr+1(τ⩾r+1K̃

∗
• )→ Hr+1(τ⩾r+1G

∗
• )→ 0

Recall that H⩾r(L
∗
• ) = 0. Thus, we have

Hr+1(τ⩾r+1L
∗
• ) ≃ Cok(L∗

r+2 → L∗
r+1) ≃ Ker(L∗

r → L∗
r−1) ≃ Hr(τ⩽rL

• )∗.

Similarly for the other two terms. This results in the following short exact sequence.

0→ Hr(τ⩽rL
• )∗ → Hr(τ⩽rK̃

• )∗ → X∗ → 0

Since X∗ ≃ X̃∗, we obtain that 0 → X̃ → Hr(τ⩽rK̃
• ) → Hr(τ⩽rL

• ) → 0 is a perfect exact

sequence. This proves the claim.

Using claim 4, the map σ̃′ induces a map

σ̃ : G0(HP(projA))→ GP
0(A) : [G

• ] ↦→
r−1∑︂
k=l

(−1)k([IHk(G• )]− [CHk(G• )]) + (−1)r[Hr(τ⩽rG
• )].

We show that σ σ̃ = idGP
0 (A)

and σ̃ σ = idG0(HP (projA)). Then σ and σ̃ are mutually inverse

isomorphisms.

For X ∈ modA, we have [X]σ σ̃ = [F •
X ]σ̃ = [H0(τ⩽0 F

•
X)] = [X] since we can choose l = r = 0

in the definition of σ̃. On the other hand, suppose given G• ∈ HP(projA). Let P •
k be the

minimal projective resolution of Hk(G• ) for l ⩽ k ⩽ r− 1 where l, r ∈ Z with H<l(G• ) = 0 and

H⩾r(G
∗
• ) = 0. Let Xr := Hr(τ⩽rG

• ). Using claim 1, we have ([IHk(G• )]− [CHk(G• )])σ = [P •
k ]. By

Lemma 4.7.(2), we have [G• ] =
∑︁r−1

k=l (−1)k[P
•
k ] + (−1)r[F •

Xr
]. Together, we obtain

[G• ]σ̃ σ =
r−1∑︂
k=l

(−1)k([IHk(G• )]− [CHk(G• )])σ + (−1)r[Xr]σ

=
r−1∑︂
k=l

(−1)k[P •
k ] + (−1)r[F •

Xr
] = [G• ].

Recall that a stable equivalence modA→ modB preserves perfect exact sequences if A and B

are of finite representation type and have no nodes; cf. Definition 3.1 and Corollary 3.20.
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Theorem 4.17. Let α : modA → modB be a stable equivalence such that α and its quasi-

inverse preserve perfect exact sequences. Then α induces an isomorphism GP
0(A)→ GP

0(B).

Proof. By assumption, every perfect exact sequence 0→ X → Y ⊕P → Z → 0 in modA with

P projective induces a perfect exact sequence

0→ α(X)→ α(Y )⊕ P ′ → α(Z)→ 0

with P ′ ∈ projB.

Hence, the natural map GP
0(A)→ GP

0(B) given by [X] ↦→ [α(X)] is well-defined. Since α is an

equivalence, this map is an isomorphism.

Note that Gst
0 (A) = 0 if gldimA <∞. In fact, we have [Ω(X)] = −[X] by setting Y = 0 in the

definition of Gst
0 (A) = 0. If Ωn(X) is projective for some n ⩾ 1, we obtain [X] = 0.

In general, GP
0(A) can be non-zero even in case of finite global dimension; cf. Example 7.14.

Moreover, Gst
0 (A) and G

P
0(A) are not isomorphic, even for algebras of infinite global dimension.

See Example 7.7 for more details. However, the following holds.

Remark 4.18. We have a surjective group homomorphism

GP
0(A)→ Gst

0 (A) : [X] ↦→ [X]st .

If A is self-injective, this is an isomorphism.

In fact, every perfect exact sequence in the definition of GP
0(A) is also a short exact sequence of

the form stated in the definition of Gst
0 (A). If A is self-injective, every short exact sequence is

perfect exact. After potentially removing a split exact sequence starting in a projective module,

every short exact sequence is of the form as stated in Definition 4.15.

We close this section with a remark on generating systems of GP
0(A).

Remark 4.19. By construction, GP
0(A) is generated by the indecomposable modules in modA.

Thus, G0(HP(projA)) is generated by [F • ] for F • ∈ L indecomposable by Theorem 4.16.

However, in general GP
0(A) is not generated by the non-projective simple modules in modA;

cf. Example 7.14. In comparison, every simple minded system over A is a generating system of

Gst
0 (A) as was shown in [23, Lemma 2.3]. In particular, this holds for the simple A-modules.
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4.3 Nakayama closure

In general, the triangulated category HP(projA) discussed in Section 4.1 is neither character-

istic in K(projA), nor in H(projA). In particular, for algebras of finite global dimension, the

category is not closed under the derived Nakayama functor. However, the category HP(projA)

can be enlarged to the category Hstp(projA) by replacing the projective-injective modules with

strongly projective-injective modules.

In this section, we consider an equivalence νK : K+,b∗(projA) → K−,b(projA) induced by the

Nakayama functor νA : projA → injA where νA(P ) = D(P ∗) = DHomA(P,A). In case that

gldimA <∞, we retrieve the derived Nakayama functor Kb(projA)→ Kb(projA). Our aim is

to show that Hstp(projA) is the smallest triangulated subcategory of K(projA) that contains
LA and is closed under νK and under isomorphisms. Assuming that A can be embedded

into a strongly projective-injective module, we give conditions under which Hstp(projA) is

characteristic in H(projA).

For the main proof, we will be able to reuse most of the results of Section 4.1. The main

new technical result in Lemma 4.24 shows that a projective resolution of a simple module in
⊥(stpA) is contained in any triangulated subcategory that contains L and is closed under νK

and under isomorphisms.

For now, we start with a lemma on the Nakayama functor, which will be needed later. Note

that in general the Nakayama functor on modA is not fully faithful.

Lemma 4.20. Let X be an A-module and Z ∈ PA. Then HomA(ν
−1X,Z) ≃ HomA(X, νZ) as

k-vector spaces.

Proof. Let I • ∈ K+(injA) be an injective presentation of X.

X I0 I1
dI

Applying ν−1 componentwise, we obtain a sequence Q• ∈ K+(projA).

ν−1X Q0 Q1ι dQ

Note that we have X = Ker(dI) and ν
−1X = Ker(dQ) since ν

−1 is left exact.

Claim. We have HomA(X,Z) ≃ HomK(injA)(I
• , Z) and HomA(ν

−1X,Z) ≃ HomK(projA)(Q
• , Z)

for Z ∈ injA.

Suppose given Y ∈ modA and a sequence 0 → Y → C0 → C1 in modA with Ker(C0 d−→ C1).

This gives a complex C• ∈ K(modA) with Ck = 0 for k ̸∈ {0, 1}. We show that this implies

HomA(Y, Z) ≃ HomK(modA)(C
• , Z).
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Let f be a non-zero morphism in HomA(Y, Z). Since Z is injective, there exists a morphism

φ0 : C0 → Z such that the following diagram commutes.

Y C0 C1

Z

ι

f φ0

d

Set φk = 0 for all k ̸= 0. We obtain φ• ∈ HomK(modA)(C
• , Z).

Let C0 φ̃0

−→ Z be another morphism such that f = ι φ̃0. Then ι(φ0− φ̃0) = 0 and we obtain the

following morphism of complexes.

Y C0 C1

0 Z 0

ι d

φ0−φ̃0

By Lemma 4.3.(1) this yields φ0 − φ̃0 = 0 so that fφ0 = φ̃0. Thus, f ↦→ fψ := φ• defines a

k-linear map

HomA(Y, Z)
ψ−→ HomK(modA)(C

• , Z).

It remains to show that ψ is an isomorphism. Suppose that φ• = fψ = 0 in K(modA). In this

case, there exists a morphism h : C1 → Z such that d h = φ0. However, this implies

0 = ι d h = ι φ0 = f

so that ψ is injective. Now, suppose given a morphism φ• ∈ HomK(modA)(C
• , Z). Setting

f := ι φ0 ∈ HomA(Y, Z), we obtain fψ = φ• so that ψ is surjective. This concludes the proof

of the claim.

We obtain the following sequence of isomorphisms using that ν : K(projA) → K(injA) is an

equivalence.

HomA(ν
−1X,Z) ≃ HomK(projA)(Q

• , Z)

≃ HomK(injA)(I
• , νZ)

≃ HomA(X, νZ)

The next lemma provides one part of the functor νK : K+,b∗(projA) → K−,b(projA). Recall

that the equivalence ν : projA→ injA given by the Nakayama functor ν(−) = D(−)∗ induces

an equivalence K(projA)→ K(injA) via F • ↦→ (νF k)k∈Z.
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Lemma 4.21. The equivalence of triangulated categories

ν : K(projA) ∼−→ K(injA)

induced by the Nakayama functor restricts to an equivalence of triangulated categories

K+,b∗(projA)
∼−→ K+,b(injA).

Proof. Recall that ν(X) = D(X∗) for an A-module X. Suppose given P • ∈ K+,b∗(projA).

Thus, we have P ∗
• ∈ K−,b(A-proj) and we obtain D(P ∗

• ) = νP • ∈ K+,b(injA) since D is exact.

Recall that ν−1(X) =
(︁
D(X)

)︁∗
for an A-module X. Suppose given I • ∈ K+,b(injA). Applying

D(−) to I • componentwise, we obtain a complex D I • ∈ K−,b(A-proj) since D is exact. In

particular D I • is bounded in cohomology so that
(︁
D I •

)︁∗
= ν−1I • ∈ K+,b∗(projA).

In conclusion, ν restricts to an equivalence K+,b∗(projA)
∼−→ K+,b(injA).

Recall that the canonical functors K+(modA) → D+(modA) and K−(modA) → D−(modA)

induce equivalences of triangulated categories.

K+,b(injA)
∼−→ Db(modA)

∼−→ K−,b(projA)

Composing these equivalences with the one from Lemma 4.21 yields an equivalence of triangu-

lated categories K+,b∗(projA)→ K+,b(injA)→ K−,b(projA).

Definition 4.22. We denote the above composite of equivalences by

νK : K+,b∗(projA)
∼−→ K−,b(projA).

We say that a triangulated subcategory T of K(modA) is closed under νK if the restriction of

νK to the full subcategory with objects in T ∩ K+,b∗(projA) has an essential image in T .

Remark 4.23. Recall that H(projA) is the full subcategory of K(projA) consisting of all

complexes F • ∈ K(projA) such that there exist l, r ∈ Z with H<l(F • ) = 0 and H⩾r(F
∗
• ) = 0.

In particular, K+,b∗(projA) and K−,b(projA) are subcategories of H(projA).

(1) Let gldimA <∞. Then Hstp(projA) =
⊥Kb(stpA) ∩ Kb(projA) and νK is equivalent to

the derived Nakayama functor Kb(projA) ∼−→ Kb(projA).

(2) If A is self-injective, we will see that Hstp(projA) = HP(projA) = LA; cf. Theorem 4.45.

Furthermore, the restriction of νK toHstp(projA)∩K+,b∗(projA) is zero, since all non-zero

complexes in Hstp(projA) are unbounded. Thus, LA is trivially closed under νK in this

case.
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We aim to show that Hstp(projA) is the smallest triangulated subcategory of K(projA) that
contains LA and is closed under νK and under isomorphisms. It remains to verify that a

projective resolution P⩽0 of a simple module S ∈ ⊥(stpA) is an element of every triangulated

category that contains L and is closed under νK and under isomorphisms. Note that no further

steps are necessary, if ν -domdimA ⩾ 1. In this case a module X ∈ ⊥(stpA) satisfies X∗ = 0.

By Lemma 2.24.(5,7), we obtain that F •
X ∈ LA. Our strategy for the general proof is as follows.

We consider a complex Q• ∈ K(projA) such that νK(Q
>0) ≃ P⩽0 and Q⩽0 is a projective

resolution of ν−1S. Furthermore, ν−1S embeds into Q1. If Q1 is not injective, the result

follows from Lemma 4.10. Otherwise, we inductively construct new simple modules Sk which

embed into ν−k(Q1). By assumption, ν(Q1) cannot be strongly projective-injective, so that

this procedure terminates with a ν−k(Q1) which is not injective.

Lemma 4.24. Let T be a triangulated subcategory of K(projA) that contains L and is closed

under νK and under isomorphisms.

Suppose S is a simple A-module with minimal projective resolution P⩽0. If S ∈ ⊥(stpA), then

P⩽0 ∈ T .

Proof. Suppose that S is injective. Then we have S∗ = 0, otherwise S is projective and thus

strongly projective-injective, a contradiction. Hence, F •
S is the minimal projective resolution of

S which is contained in LA.

For the remainder of the proof we assume that S is not injective. Let S ↪→ νQ1 → νQ2 be the

minimal injective presentation of S with Q1, Q2 ∈ projA.

Extend Q1 → Q2 to an element Q• [2] ∈ L. Then the truncation Q⩽0 is the minimal projective

resolution of ν−1S = Ker (Q1 → Q2).

· · · Q−1 Q0 Q1 Q2 · · ·

ν−1S

Note that Q>0 ∈ K+,b∗(projA). Applying νK yields νK(Q
>0) ≃ P⩽0 in K−,b(projA) since νQ>0

is an injective resolution of S. Hence, Q>0 ∈ T implies P⩽0 ∈ T since T is closed under νK.

Moreover, we have the distinguished triangle

Q>0 → Q• → Q⩽0 → Q>0[1]

so that Q>0 ∈ T if and only if Q⩽0 ∈ T since T is closed under isomorphisms. It remains to

show that Q⩽0 ∈ T . If ν−1S = 0, we have Q⩽0 = 0 and we are done at this point.
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Note that dimk HomA(S, νQ
1) = 1 and dimk HomA(S, I) = 0 for any injective module I ̸≃ νQ1

since S is simple. Suppose that νQ1 is projective-injective. Otherwise S ∈ ⊥P and thus

P⩽0 ∈ T by Lemma 4.10. By assumption, νQ1 is not strongly projective-injective.

Claim. It suffices to consider the case that Q1 ∈ projA is not injective.

Assume that Q1 ∈ PA. For every Z ∈ PA with Z ̸≃ Q1, that is νZ ̸≃ νQ1, we have

dimk HomA(ν
−1S,Q1) = dimk HomA(S, νQ

1) = 1

dimk HomA(ν
−1S,Z) = dimk HomA(S, νZ) = 0

by Lemma 4.20. Therefore, there exists a unique composition factor S0 of ν−1S with an

embedding into Q1. Furthermore, every other composition factor S ′ of ν−1S lies in⊥PA.

By Lemma 4.10 this means that the minimal projective resolution of every composition factor

which is not isomorphic to S0 is an element of T . Therefore, by Lemma 4.9, the minimal

projective resolution Q⩽0 of ν−1S is an element of T if the minimal projective resolution of S0

is an element of T . Note that S0 ∈ ⊥stpA. If not, then Q1 must be strongly projective-injective

and therefore νQ1 as well so that S ̸∈ ⊥(stpA).

Now we can repeat the process described above for S0 instead of S and Q1 instead of νQ1.

Inductively, for k ⩾ 0, this results in a simple module Sk ∈ ⊥(stpA) which is a composition

factor of ν−1(Sk−1). Furthermore, Sk embeds into ν−k(Q1). Since A is finite dimensional and

Q1 is not strongly projective-injective, there exists a k ∈ Z such that ν−k(Q1) is projective but

not injective. Thus, it suffices to show that the minimal projective resolution of Sk is in T .
This concludes the proof of the claim.

As a result, we can assume that Q1 is not injective. We show that ν−1S ∈⊥PA. If not, there is
a Z ∈ PA such that dimk Hom(ν−1S,Z) ̸= 0. However, using that νQ1 is the injective hull of

S, we have

dimk Hom(ν−1S,Z) ≃ dimk Hom(S, νZ) = 0

since Z ̸≃ Q1 ̸∈ PA, that is νZ ̸≃ νQ1. This yields ν−1S ∈⊥PA. Hence, the minimal projective

resolution Q⩽0 of ν−1S is an element of T by Lemma 4.10.

We give an example of the procedure used in the proof of Lemma 4.24.

Example 4.25. Let A be the quiver algebra over k given by

1 2 5

4 3

α ε

βδ

γ
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with relations βγδ = γδα = δαβ = αε = 0. The algebra has the following indecomposable

projective modules. We also note their images under the functor (−)∗.

P1 :=

1
2
3
4

, P2 :=
2
3 5
4
, P3 :=

3
4
1
, P4 :=

4
1
2
, P5 := 5

P ∗
1 =

1
4
3
, P ∗

2 =
2
1
4
, P ∗

3 =
3
2
1
, P ∗

4 =

4
3
2
1

, P ∗
5 = 5

2

We have the orbit P3 = ν(P1) = ν2(P4) = ν3(P2) under the Nakayama functor with ν(P3)

not projective. Therefore, P1, P3 and P4 are projective-injective but not strongly projective-

injective. Let T be a triangulated subcategory of K(projA) that contains L and is closed

under νK and under isomorphisms. We have νK : Kb(projA) → Kb(projA), since A has finite

global dimension. We aim to show that the minimal projective resolution of the simple module

S := 1 = soc(P3) is in T .

The minimal injective presentation of S is given by (P3 → P1) = (ν(P1) → ν(P4)). Thus, we

set Q1 := P1 and extend P1
d−→ P4 to the following element in LA denoted by Q• [2] in the proof

above.

0→ P5 → P2 → P1 → P3 → P1
d−→ P4 → P2 → P4 → P3 → 0

In particular, we have ν−1S = Ker(d) = 3
4. It now suffices to show that the minimal projective

resolution of ν−1S is an element of T .

Since Q1 = P1 is injective, we inductively construct new simple modules Sk which embed into

ν−k(Q1). This terminates with ν−2(Q1) = P2 which is not injective.

We set S0 := 4 as the unique composition factor of 34 that embeds into P1 = ν0(Q1) ∈ PA.
Note that the other composition factor 3 is an element of ⊥PA. Thus, it suffices to show that

the minimal projective resolution of S0 is an element of T ; cf. Lemma 4.10.

We repeat the steps above for S0. The minimal injective presentation ν(P4)→ ν(P3) results in

the following complex in LA.

0→ P5 → P2 → P1 → P3 ⊕ P5 → P2 → P4
d0−→ P3 → 0

We have ν−1(S0) = Ker(d0) = 2 = soc(P4).

We set S1 := 2, which embeds into P4 = ν−1(Q1) ∈ PA. The minimal injective presentation

ν(P2)→ ν(P1) results in the following complex in LA.

0→ P5 → P2
d1−→ P1 → P3 → P2 → P4 → P3 → 0

We have ν−1(S1) = Ker(d1) = 5 = P5 in the socle of P2.
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We set S2 := P5, which embeds into P2 = ν−2(Q1) ̸∈ PA. Thus, the minimal projective

resolution of S2 is an element of T by Lemma 4.10.

We are now ready to prove the main result of this section.

Theorem 4.26. Let A be a finite dimensional k-algebra.

The category Hstp(projA) is the smallest triangulated subcategory of K(projA) that contains

LA and is closed under νK and under isomorphisms.

Proof. Note that HP(projA) ⊆ Hstp(projA) ⊆ H(projA) and stpA ⊆ PA. By Lemma 4.4.(3),

we have that L ⊆ HP(projA) ⊆ Hstp(projA). Furthermore, Hstp(projA) is a triangulated

subcategory of K(projA) that is closed under isomorphisms by Remark 4.2.

We show that Hstp(projA) is closed under νK. Let F • ∈ Hstp(projA) ∩ K+,b∗(projA). Since

νK
(︁
Kb(stpA)

)︁
≃ Kb(stpA), we have νKF

• ∈ ⊥Kb(stpA). Since K−,b(projA) ∩ ⊥Kb(stpA) is

contained in Hstp(projA), we obtain νK(F
• ) ∈ Hstp(projA). In conclusion, Hstp(projA) is a

triangulated category that contains L and is closed under νK and under isomorphisms.

Suppose that T is another triangulated subcategory of K(projA) that contains L and is closed

under νK and under isomorphisms. We show that Hstp(projA) ⊆ T .

By Lemma 4.5 and Lemma 4.7 it suffices to show that the minimal projective resolution of

every A-module X ∈ ⊥(stpA) is an element of T . Moreover, by Lemma 4.9 it suffices to show

that the minimal projective resolution of every composition factor of X is an element of T .
Let S be such a composition factor. Then S is an element of ⊥(stpA) by Lemma 4.8. Using

Lemma 4.24, we now obtain that the minimal projective resolution of S is an element of T .

Similarly as for HP(projA), we can characterize Hstp(projA) using right perpendicular cate-

gories; cf. Remark 4.12.

Remark 4.27. The following are equivalent for a complex F • ∈ K(projA).

(1) F • ∈ ⊥Kb(stpA).

(2) Hk(F • ) ∈ ⊥(stpA) for all k ∈ Z.

(3) Hk(F • ) ∈ (stpA)⊥ for all k ∈ Z.

(4) F • ∈ Kb(stpA)⊥.

In particular, we have F • ∈ Hstp(projA) if and only if F • ∈ Kb(stpA)⊥ and F • ∈ H(projA).

We also note the following for the Auslander-Reiten quiver of Db(modA).
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Remark 4.28. Suppose that A has finite global dimension. An Auslander-Reiten triangle in

H(projA) ≃ Kb(projA) is of the following form; cf. [15, Theorem 1.4].

ν(F • )[−1]→ G• → F • →

Thus, Hstp(projA) is the union of some Auslander-Reiten components in Kb(projA).

Example in Chapter 7. We explicitly describe all indecomposable complexes of HP(projA)

and Hstp(projA) in Example 7.10 for the algebra A of Section 7.3. We also visualize both

categories together with their subcategory LA.

We observe the following for the case of HP(projA) = Hstp(projA). The second part is a direct

consequence of Lemma 2.26.

Lemma 4.29. The following holds.

(1) HP(projA) = Hstp(projA) if and only if PA = stpA.

(2) ν-domdimA ⩾ 1 if and only if PA = stpA and ν(S) = 0 for all simple A-modules S with

ν(F 0
S) ̸∈ PA.

Proof. Ad (1). Suppose that PA = stpA. Then we have ⊥Kb(PA) = ⊥Kb(stpA) so that

HP(projA) = Hstp(projA).

On the other hand, suppose that HP(projA) = Hstp(projA). In particular, this means

that ⊥Kb(PA) = ⊥Kb(stpA). Assume that Z ∈ PA is indecomposable and not an element

of stpA. Then we have soc(Z) ̸≃ soc(Z ′) for all Z ′ ∈ stpA indecomposable. We obtain

HomA(soc(Z), Z
′) = 0 for all Z ′ ∈ stpA indecomposable. Hence, soc(Z) ∈ ⊥(stpA). Using

Lemma 4.5, the assumption ⊥Kb(PA) = ⊥Kb(stpA) implies that soc(Z) ∈ ⊥PA. However, we

have HomA(soc(Z), Z) ̸= 0, a contradiction.

Ad (2). Suppose that ν -domdimA ⩾ 1. Then PA = stpA and domdimA ⩾ 1 by Re-

mark 1.17.(2). Now, Lemma 2.26 implies that ν(S) = 0 for all simple A-modules S with

ν(F 0
S) ̸∈ PA.

Conversely, suppose that PA = stpA. Then ν -domdimA = domdimA. With Lemma 2.26 we

have domdimA ⩾ 1.

Let e be a basic idempotent element in A such that add(eA) = stpA. The algebra eAe is

called an associated self-injective algebra; cf. [13, Section 4]. We give a characterization of

Hstp(projA) inside H(projA) using the algebra eAe.
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Lemma 4.30. Let e be a basic idempotent element in A such that add(eA) = stpA and let

F • ∈ K(modA). Then F • ∈ ⊥Kb(stpA) if and only if (Fe)• ∈ K(mod eAe) is acyclic.

Suppose that F • ∈ H(projA). Then F • ∈ Hstp(projA) if and only if (Fe)• ∈ K(mod eAe) is

acyclic.

Proof. We use that (Fe)• ∈ K(mod eAe) is acyclic if and only if Hk
(︁
(Fe)•

)︁
= 0 for all k ∈ Z.

Since Ae is a projective left A-module, the functor − ⊗A Ae is exact. Thus, we have that

Hk
(︁
(Fe)•

)︁
≃ Hk(F • )e. By assumption, ν(eA) ≃ eA so that

Hk(F • )e ≃ HomA

(︁
eA, Hk(F • )

)︁
≃ D HomA

(︁
Hk(F • ), ν(eA)

)︁
≃ D HomA

(︁
Hk(F • ), eA).

Note that HomA

(︁
Hk(F • ), eA) = 0 if and only if Hk(F • ) ∈ ⊥(stpA) = ⊥(︁add(eA))︁. Further-

more, we have Hk(F • ) ∈ ⊥(stpA) for all k ∈ Z if and only if we have F • ∈ ⊥Kb(stpA) by

Lemma 4.5.

Example in Chapter 7. We illustrate the associated self-injective algebra and its connection

to the category Hstp(projA) in Example 7.12 of Section 7.3.

In [14], Fang, Hu and Koenig show that derived equivalences between two algebras restrict

to derived equivalences between their associated self-injective subalgebras, provided the two

given algebras have ν-dominant dimension at least one. Their result is based on the following

theorem.

Theorem 4.31. ([14, Theorem 4.3]) Let A and B be derived equivalent k-algebras, both of

ν-dominant dimension at least 1. Then any derived equivalence Db(modA)
∼−→ Db(modB)

restricts to an equivalence of triangulated subcategories Kb(stpA) ∼−→ Kb(stpB).

Recall that H(projA) ≃ Kb(projA) ≃ Db(modA), if gldimA < ∞. We have the following

corollary for our situation.

Corollary 4.32. Let A and B be derived equivalent k-algebras, both of ν-dominant dimension

at least 1. Assume that A and B have finite global dimension.

Then any derived equivalence Kb(projA) → Kb(projB) restricts to an equivalence of triangu-

lated subcategories Hstp(projA)→ Hstp(projB).

In particular, Hstp(projA) = HP(projA) is a characteristic subcategory of Kb(projA).

We aim to state a similar result for equivalences H(projA)→ H(projB) without a restriction

on the global dimension of A. We follow the same strategy used in [14]. As the main tool for

proving the above theorem, they provide the following proposition.
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Proposition 4.33. ([14, Proposition 4.2])

Let XA :=
{︁
P • ∈ Kb(stpA)|P • ≃ νA(P

• ) in Db(modA)
}︁
. Suppose that A has ν-dominant

dimension at least 1.

Then Kb(stpA) is the smallest triangulated full subcategory of Kb(projA) that contains XA and

is closed under taking direct summands.

Furthermore, we need a way to restrict an equivalence H(projA) → H(projB) to bounded

complexes. For this, we adapt the characterization ofKb(projA) insideK−,b(projA). A complex

X • ∈ K−,b(projA) is an element of Kb(projA) if and only if for all Y • ∈ K−,b(projA) there

exists an N ∈ Z such that HomK(projA)(X
• , Y • [−n]) = 0 if n < N .

Lemma 4.34. Let X • ∈ H(projA).

(1) We have X • ∈ K+,b∗(projA) if for all Y • ∈ H(projA) there exists an N ∈ Z such that

HomH(projA)(X
• , Y • [−n]) = 0 if n < N .

(2) We have X • ∈ K−,b(projA) if for all Y • ∈ H(projA) there exists an N ∈ Z such that

HomH(projA)(Y
• [n], X • ) = 0 if n < N .

(3) Suppose that X ∈ Kb(stpA). Let Y • ∈ H(projA). Then there exists an N ∈ Z such that

HomH(projA)(Y
• [n], X • ) = 0 and HomH(projA)(X

• , Y • [−n]) = 0 if n < N .

Proof. Ad (1). It suffices to show, that X • is bounded on the left.

We assume that X • is unbounded on the left. Since X • ∈ H(projA), there exists an N0 ∈ Z
such that Hn(X • ) = 0 for n < N0. Furthermore, there exists an N < N0 such that Ker(dnX) is

not projective for n < N . Otherwise the complex X • would be isomorphic to a complex which

is left bounded by removing split direct summands.

Let {S1, . . . , Sl} be a complete set of pairwise non-isomorphic simple A-modules. We write

S :=
⨁︁l

i=1 Si. Let Y
• be the minimal projective resolution of S. Note that Y • is an element of

H(projA). We show that HomH(projA)(X
• , Y • [−n]) ̸= 0 for n < N .

Let n < N . We write X := Hn(τ⩽nX
• ) = Ker(dn+1

X ) ∈ modA using that n + 1 ⩽ N < N0.

Suppose that f is the composite of the natural projection p : X → X/ rad(X) and the natural

embedding X/ rad(X) → S. Since Hk(X • ) = 0 and Hk(Y • [−n]) = 0 for k < n, the morphism
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f lifts to a morphism f • of complexes.

X • · · · Xn−1 Xn Xn+1 · · ·

X

S

Y • [−n] · · · Y −1 Y 0 0 · · ·

f • f−1 f0 f

Assume that f • = 0. By Lemma 2.3.(1), this implies that f factors through the projective

cover P of X/ rad(X) = Im(f). Since p is surjective, we obtain a morphism g : P → X.

P

X X/ rad(X)

g

p

Using thatX/ rad(X) ≃ P/ rad(P ), we obtain that g is surjective so thatX is a direct summand

of P . This is a contradiction to the choice of Ker(dn+1
X ) = X as non-projective. Therefore, the

morphism f • : X • → Y • [−n] is non-zero.

Ad (2). We have X • ∈ K−,b(projA) if and only if X∗
• ∈ K+,b∗(A-proj).

We rename X∗
• as U • via Uk := X∗

−k ∈ K+,b∗(A-proj) so that U • [1] shifts the complex to the

left. In contrast, X∗
• [1] is a shift to the right.

U • = X∗
• : · · · U−1 = X∗

1 U0 = X∗
0 U1 = X∗

−1 · · ·

U • [1] = X∗
• [−1] : · · · U−1 = X∗

1 U0 = X∗
0 U1 = X∗

−1 · · ·

Since part (1) also holds for left A-modules, it suffices to show that for all V • ∈ H(A-proj)
there exists an N ∈ Z such that we have HomH(A-proj)(U

• , V • [−n]) = 0 if n < N .

Let V • ∈ H(A-proj) and write V k = Y ∗
−k ∈ H(A-proj) for a complex Y • ∈ H(projA). By

assumption, we have an N ∈ Z such that the following holds for n < N .

0 = HomH(A-proj)(Y
• [n], X • ) ≃ HomH(A-proj)(X

∗
• , Y

∗
• [n]) = HomH(A-proj)(U

• , V • [−n])

Ad (3). Suppose given X • ∈ Kb(stpA) and Y • ∈ H(projA). Without loss of generality we

may assume that Xk = 0 for k > 0. Let l ∈ Z⩾0 such that Xk = 0 for k < −l.

Let N1 ∈ Z such that Hn(Y • ) = 0 for all n < N1. Using that X>0 = 0, Lemma 4.4.(1) implies
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that HomH(projA)(Y
• [n], X • ) = 0 if n < N1.

Y • [n] · · · Y n−l−1 Y n−l Y n−l+1 · · · Y n−1 Y n Y n+1 · · ·

X • 0 X−l X l−1 · · · X−1 X0 0

Let N2 ∈ Z such that H−n(Y
∗
• ) = 0 for n < N2. Using that Xk = 0 for k < −l, Lemma 4.4.(1’)

implies that HomH(projA)(X
• , Y • [−n + l]) = 0 if n < N2. Note that X∗

• ∈ Kb(A-inj) since

X • ∈ Kb(stpA).

X • 0 X−l X−l+1 · · · X−1 X0 0

Y • [−n+ l] · · · Y −n−1 Y −n Y −n+1 · · · Y −n+l−1 Y −n+l Y −n+l+1 · · ·

Let N := min{N1, N2−l}. Then HomH(projA)(Y
• [n], X • ) = 0 and HomH(projA)(X

• , Y • [−n]) = 0

if n < N .

In [38, Proposition 5.2] Rickard has shown that any standard derived equivalence commutes

with the Nakayama functor. It seems unclear whether the same holds true for an equivalence

between H(projA) and H(projB). Therefore, we add a further assumption in contrast to

Theorem 4.31. In case that gldimA < ∞, we are in the situation of Theorem 4.31 where the

additional steps of the following theorem are not needed.

Theorem 4.35. Suppose given two finite dimensional k-algebras A and B both with ν-dominant

dimension at least 1. Let α : H(projA) → H(projB) be a triangulated equivalence such that

there is a natural isomorphism νB(α(X
• )) ≃ α(νAX

• ) for all X ∈ Kb(stpA).

Then α restricts to an equivalence Kb(stpA) ≃ Kb(stpB). Moreover, α restricts to an equiva-

lence between HP(projA) = Hstp(projA) and HP(projB) = Hstp(projB).

Proof. Suppose given X • ∈ Kb(stpA). By Lemma 4.34.(3), there is an N ∈ Z such that

we have HomH(projA)(Y
• [n], X • ) = 0 and HomH(projA)(X

• , Y • [−n]) = 0 for all n < N and

Y • ∈ H(projA).

Let n < N and Z• ∈ H(projB). Since α is an equivalence, there exists a Y • ∈ H(projA) with
α(Y • ) = Z• . We have the following.

HomH(projB)(Z
• [n], α(X • )) ≃ HomH(projA)(Y

• [n], X • ) = 0

HomH(projB)(α(X
• ), Z• [−n]) ≃ HomH(projA)(X

• , Y • [−n]) = 0.

Hence, by Lemma 4.34.(1, 2), we obtain α(X • ) ∈ Kb(projB).
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Now, suppose that X • ∈ XA; cf. Proposition 4.33. By assumption, we have α(X • ) ≃
α(νA(X

• )) ≃ νB(α(X
• )), which implies that α(X • ) ∈ XB. In conclusion, we have shown,

that α(XA) ⊆XB. By Proposition 4.33, we therefore obtain α(Kb(stpA)) ⊆ Kb(stpB).

Let β be a quasi-inverse of α. Repeating the arguments from above, we similarly obtain

that β(Kb(stpB)) ⊆ Kb(stpA). Together, we can conclude that α induces an equivalence

Kb(stpA) ≃ Kb(stpB).

Recall that Hstp(projA) is the full subcategory of H(projA) with objects in ⊥Kb(stpA). Hence,
α also induces an equivalence Hstp(projA) ≃ Hstp(projB). Since ν -domdimA ⩾ 1 and

ν -domdimB ⩾ 1, we have Hstp(projA) = HP(projA) and Hstp(projB) = HP(projB); cf.

Lemma 4.29.

4.4 Stable Gorenstein-projective modules

So far, we have discussed triangulated categories that contain LA. On the other hand, modA

always contains the triangulated category of stable Gorenstein-projective modules. This cat-

egory has a close connection with the homotopy category of totally acylic complexes inside

K(projA); cf. Definition 1.7. We begin with the definition of Gorenstein-projective modules.

Definition 4.36. An A-module X is said to be Gorenstein-projective if there exists a totally

acyclic complex F • ∈ Ktac(projA) such that H0(τ⩽0 F
• ) ≃ X.

Let GprojA be the full subcategory of modA consisting of Gorenstein-projective modules.

Let GprojA be the full subcategory of modA consisting of Gorenstein-projective modules.

Note that a projective A-module P is Gorenstein-projective via the complex 0→ P → P → 0.

The following lemma collects some facts about the category of Gorenstein-projective modules

which can be found in [11, Section 2.1]. The first property implies that every short exact

sequence in GprojA is perfect exact; cf. Lemma 2.23.

Lemma 4.37.

(1) Ext1A(X,A) = 0 for X ∈ GprojA.

(2) The syzygy functor Ω : GprojA→ GprojA is a self-equivalence of categories.

(3) The category GprojA is triangulated with suspension Ω−1 and distinguished triangles

isomorphic to those induced by short exact sequences.

Note that Ktac(projA) is contained in LA. Using this, a Gorenstein-projective module X can

be characterized via its image F •
X in LA.
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Lemma 4.38. The following are equivalent for X ∈ modA.

(1) X is Gorenstein-projective.

(2) F •
X ∈ Ktac(projA).

(3) F •
X [k] ∈ LA for all k ∈ Z.

Proof. Suppose that X is Gorenstein-projective. Assume that X is not projective, otherwise

F •
X ≃ 0 in L.

By definition, there exists a totally acyclic complex P • ∈ Ktac(projA) such that H0(τ⩽0P
• ) ≃ X.

However, such a complex P • is an element of L. Therefore, we have that F •
X ≃ P • by Theo-

rem 2.6, since H0(τ⩽0P
• ) ≃ X = H0(τ⩽0F

•
X). We obtain that FX is totally acyclic.

Recall that H0(τ⩽0 F
•
X) = X. Hence, (2) implies (1). Furthermore, a totally acyclic complex

F • satisfies Hk(F • ) = 0 and Hk(F
∗
• ) = 0 for all k ∈ Z. Thus, (2) also implies (3).

Now, suppose that F •
X [k] ∈ L for all k ∈ Z. We show that F •

X is a totally acyclic complex.

Using that LA := {F • ∈ K(projA) | H<0(F • ) = 0, H⩾0(F
∗
• ) = 0}, we obtain the following for

all k ∈ Z.

Hk(F •
X) = H−1(F •

X [k + 1]) = 0

Hk((F
∗
X)• ) = H0((F

∗
X)• [k]) = H0 ((F

•
X [k])

∗) = 0

In conclusion, F •
X ∈ Ktac(projA).

Example in Chapter 7. In Example 7.8 the totally acyclic complexes in K(projA) for the

algebra A of Section 7.2 are calculated using the previous lemma.

Remark 4.39. The category Ktac(projA) is the largest subcategory of LA that is triangulated

as a subcategory of K(projA).

In fact, a triangulated category is closed under shifts. However, a complex F • in LA with

F •
X [k] ∈ LA for all k ∈ Z is totally acyclic by Lemma 4.38.

We recover that the category of stable Gorenstein-projective modules is equivalent toKtac(projA).

See [8, Theorem 4.4.1] or [25, Proposition 7.2] for different approaches.

Lemma 4.40. The equivalence F : modA → LA restricts to an equivalence of triangulated

categories

GprojA
∼−→ Ktac(projA).
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Proof. Lemma 4.38 shows that F restricts to an equivalence GprojA → Ktac(projA). It

remains to show that this is a triangulated functor.

Using Lemma 4.37.(1), we know that every short exact sequence in GprojA is a perfect exact

sequence by Lemma 2.23. By Proposition 2.18, the functor F maps perfect exact sequences to

distinguished triangles in K(projA) and therefore preserves triangles. In particular, a perfect

exact sequence

0→ Ω(X)→ P → X → 0

with X ∈ GprojA and P ∈ projA corresponds to the following triangle.

F •
Ω(X) → 0→ F •

X →

Thus, we have a natural isomorphism F •
X [−1] ≃ F •

Ω(X) so that F commutes with the shift.

We note that condition (3) in Lemma 4.38 can be expressed via the existence of perfect exact

sequences with projective middle term. Recall that a stable equivalence modA → modB

preserves perfect exact sequences if A and B are of finite representation type and have no

nodes; cf. Definition 3.1 and Corollary 3.20. Furthermore, every stable equivalence induced by

an exact functor preserves perfect exact sequences with projective middle term if the inverse

equivalence is also induced by an exact functor; cf. Proposition 3.2.

Lemma 4.41. Let α : modA→ modB be a stable equivalence such that α and its quasi-inverse

preserve perfect exact sequences with projective middle term. Suppose given X ∈ modA and

k ∈ Z.

We have F •
X [k] ∈ LA if and only if F •

α(X)[k] ∈ LB.

Proof. If F •
X [1] ∈ LA, there exists a Y ∈ modA such that F •

Y ≃ F •
X [1] in K(projA). We have a

distinguished triangle F •
X → 0→ F •

Y → in K(projA). By Proposition 2.18, the triangle induces

a perfect exact sequence 0 → X → P → Y → 0 with some P ∈ projA. By assumption, we

obtain a perfect exact sequence 0 → α(X) → Q → α(Y ) → 0 with some Q ∈ projB. By

Proposition 2.18 the sequence induces a distinguished triangle in LB.

Fα(X) → 0→ Fα(Y ) →

We obtain that Fα(X)[1] ≃ Fα(Y ) ∈ LB. Swapping the roles of X and Y shows that F •
X [−1] ∈ LA

implies Fα(X)[−1] ∈ LB as well. Inductively, we have that F •
X [k] ∈ LA implies F •

α(X)[k] ∈ LB
for all k ∈ Z.

Let β : modB → modA be the quasi-inverse of α. The same argument as above yields

F •
β(α(X))[k] ∈ LA if Fα(X)[k] ∈ LB. Since β(α(X)) ≃ X in modA, Lemma 2.4.(1) shows that

F •
X [k] ≃ F •

β(α(X))[k] ∈ LA for k ∈ Z.
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In the setting of the previous lemma, a stable equivalence restricts to an equivalence between

the stable categories of Gorenstein-projective modules. If α additionally preserves arbitrary

perfect exact sequences, this restriction is a triangulated equivalence.

Theorem 4.42. Let α : modA → modB be a stable equivalence such that α and its quasi-

inverse preserve perfect exact sequences. Then α restricts to a triangulated equivalence

GprojA→ GprojB .

Proof. Let X ∈ GprojA. By Lemma 4.38, we have that F •
X [k] ∈ LA for all k ∈ Z. Using

Lemma 4.41 and Lemma 4.38 again, we obtain that α(X) ∈ GprojB. In conclusion, α restricts

to an equivalence

α : GprojA→ GprojB .

It remains to show that this is a triangulated functor.

By Lemma 4.37.(1) all short exact sequences of Gorenstein-projective modules are perfect

exact, so that α preserves short exact sequences and thus distinguished triangles. We show

that α(Ω(X)) ≃ Ω(α(X)) in GprojB for all X ∈ GprojA.

Let 0 → Ω(X) → P → X → 0 be a short exact sequence without split summands where P is

the projective cover of X. We know that this sequence lies in GprojA and therefore must be

a perfect exact sequence. By assumption, we obtain a perfect exact sequence

0→ α(Ω(X))→ P̃ → α(X)→ 0

in GprojB with P̃ ∈ projB. By Proposition 2.18, this induces the following distinguished

triangle.

F •
α(Ω(X)) → 0→ F •

α(X) →

Thus, we have a natural isomorphism F •
α(Ω(X)) ≃ F •

α(X)[−1]. On the other hand, consider

the short exact sequence 0 → Ω(α(X)) → Q → α(X) → 0 with Q the projective cover of

α(X) in modB. As above, this is a perfect exact sequence and therefore induces the following

distinguished triangle.

F •
Ω(α(X)) → 0→ F •

α(X) →

Thus, we also have a natural isomorphism F •
α(X)[−1] ≃ F •

Ω(α(X)). Together, we obtain a natural

isomorphism F •
α(Ω(X)) ≃ F •

Ω(α(X)) in LA. Finally, this induces the claimed natural isomorphism

α(Ω(X)) ≃ Ω(α(X)) in GprojB.

We have seen that a stable equivalence which preserves perfect exact sequences induces an

equivalence on the level of Ktac(projA). It seems unclear, whether such an equivalence induces
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an equivalence on the level of HP(projA) or Hstp(projA). However, we will see in Theorem 5.8

that this holds for stable equivalences of Morita type. We close this section with a short

comparison of some triangulated categories connected to modA.

Remark 4.43. We have a chain of subcategories

Ktac(projA) ⊆ LA ⊆ HP(projA) ⊆ Hstp(projA).

The categories Ktac(projA), HP(projA) and Hstp(projA) are triangulated for all finite dimen-

sional algebras. In particular, Ktac(projA) is a triangulated subcategory of HP(projA). In

contrast to HP(projA), we have that Ktac(projA) is zero if gldimA <∞.

By a theorem of Beligiannis, the category Ktac(ProjA) is compactly generated. In fact, let I •

be an injective resolution of A, then

Ktac(ProjA) ≃
{︃
F • ∈ K(ProjA)

⃓⃓⃓⃓
⃓ HomK(ProjA)(A[n], F

• ) = 0

HomK(ProjA)(ν
−1I • [n], F • ) = 0

for n ∈ Z

}︄

where A and ν−1I • are compactly generated in K(ProjA). See [11, Appendix B] for more

details. As an analogue, we have the following isomorphism using Remark 4.12

HP(projA) ≃
{︁
F • ∈ H(projA)|HomH(projA)(Z[n], F

• ) for n ∈ Z
}︁

with Z the direct sum of all indecomposable projective modules in ν−1PA ⊆ projA. In partic-

ular, Z is a direct summand of A. Furthermore, Z is compactly generated in K(ProjA) since
Z∗ ∈ K−,b(A-proj); cf. [11, Lemma B.0.3] which uses [17, Theorem 2.4]. However, HP(projA)

is not closed under taking direct sums and thus cannot be compactly generated. The same

holds for both H(projA) and H(ProjA).

Finally, we shortly mention the singularity category Dsg(A) ≃ K−,b(projA)/Kb(projA). Recall
that Dsg(A) is a triangulated category as well. If A is self-injective, there exist isomorphisms

Dsg(A) ≃ modA ≃ LA; cf. [36, Theorem 2.1]. Similarly as for Ktac(projA), we have that Dsg(A)

is zero if gldimA < ∞. Moreover, if A is a Gorenstein algebra, we have Dsg(A) ≃ GprojA;

cf. [8, Theorem 4.4.1].

4.5 Self-injective algebras

In this short section, we discuss the case of self-injective algebras. Recall that the category

modA is triangulated, if A is self-injective.
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Lemma 4.44. Let A be self-injective.

Then LA is a triangulated subcategory of K(projA) and F : modA→ LA is an equivalence of

triangulated categories.

Proof. If A is self-injective, HomA(−, A) is exact so that we have

H<0(F • ) = 0⇔ H<0(F ∗
• ) = 0

H⩾0(F ∗
• ) = 0⇔ H⩾0(F • ) = 0.

Together, we obtain that LA = {F • ∈ K(projA) | Hk(F • ) = 0, k ∈ Z}. Hence, LA is closed

under shifts. As another consequence, a morphism f • : F • → G• in LA is a quasi-isomorphism

and therefore C(f)• ∈ LA. In conclusion, LA is a triangulated subcategory of K(projA). It

remains to show that F is triangulated.

Suppose given X ∈ modA with F •
Ω−1(X) ∈ LA. Then

· · · → F−2
Ω−1(X) → F−1

Ω−1(X) → F 0
Ω−1(X) → 0

is a projective resolution of Ω−1(X). Therefore, we have that H−1
(︂
τ⩽−1 F

•
Ω−1(X)

)︂
st≃ X so that

F •
X
∼= F •

Ω−1(X)[−1] or equivalently F
•
X [1]
∼= F •

Ω−1(X). Hence, F commutes with the shift.

If A is self-injective, every short exact sequence is perfect exact. Moreover, every distinguished

triangle in modA is induced by a short exact sequence. Therefore, Proposition 2.18 shows that

F maps distinguished triangles in modA to distinguished triangles in LA.

We recall the objects of the following full subcategories of K(projA).

H(projA) = {F • ∈ K(projA) | ∃ l, r ∈ Z with H<l(F • ) = 0, H⩾r(F
∗
• ) = 0}

Hstp(projA) = H(projA) ∩ ⊥Kb(stpA)

HP(projA) = H(projA) ∩ ⊥Kb(PA)

LA = {F • ∈ K(projA) | H<0(F • ) = 0, H⩾0(F
∗
• ) = 0}

Ktac(projA) = {F • ∈ K(projA) | Hk(F • ) = 0, Hk(F
∗
• ) = 0 for k ∈ Z}

The connection between these categories can be visualized as follows. By Lemma 4.40, the

diagram is commutative.

Ktac(projA) LA HP(projA) Hstp(projA) H(projA) K(projA)

GprojA modA

∼ F∼



4.5 Self-injective algebras 117

Note that HP(projA) and Ktac(projA) are triangulated categories for all finite dimensional

algebras. In general, LA is not a triangulated category and all inclusions are proper; cf. Exam-

ple 7.9. However, all these categories coincide if and only if A is self-injective.

Theorem 4.45. The following are equivalent for a finite dimensional algebra A.

(1) A is self-injective.

(2) LA is a triangulated subcategory of K(projA).

(3) LA = HP(projA).

(4) LA is closed under taking shifts in K(projA).

(5) LA = Ktac(projA).

If one of the above conditions holds, F : modA → LA is an equivalence of triangulated cate-

gories. Furthermore, we have Ktac(projA) = LA = HP(projA) = Hstp(projA).

Proof. It was shown in Lemma 4.44 that condition (2) holds if A is self-injective. The impli-

cation (2) ⇒ (3) holds by Theorem 4.11. Since HP(projA) is a triangulated subcategory of

K(projA), condition (3) implies condition (4). Furthermore, we have seen the equivalence of

conditions (4) and (5) in Lemma 4.38.(2,3).

We verify the implication (5)⇒ (1). An algebra A is self-injective if and only if every finitely

generated module is reflexive; cf. [6, IV. Proposition 3.4]. Let X ∈ modA. We show that X is

reflexive, that is (X∗)∗ ≃ X. We have

X∗ =
(︁
H0(τ⩽0F

•
X)
)︁∗ ≃ H0(τ⩽0 F

• ,∗
X ) ≃ H1(τ⩾1F

• ,∗
X )

since (−)∗ = HomA(−, A) is left exact and F •
X ∈ LA.

· · · F ∗
2 F ∗

1 F ∗
0 F ∗

−1 · · ·

X∗

Using that H0(F •
X) = 0 since F •

X ∈ LA = Ktac(projA), we similarly obtain

(X∗)∗ = (H1(τ⩾1F
• ,∗
X ))

∗ ≃ H1(τ⩾1F
•
X) ≃ H0(τ⩽0F

•
X) = X.

In conclusion, all conditions are equivalent. It was shown in Lemma 4.44 that F : modA→ LA
is an equivalence of triangulated categories if A is self-injective. Furthermore, in this case we

have stpA = PA = projA so that Hstp(projA) = HP(projA).
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Finally, we have the following consequence for the stable Grothendieck group.

Remark 4.46. If A is self-injective, we have the following sequence of isomorphisms.

Gst
0 (A) ≃ G0(modA) ≃ G0(LA) = G0(HP(projA)) ≃ GP

0(A)

The first isomorphism is shown in [40, Proposition 1.1]. The second is induced by the equiva-

lence F : modA→ LA, while the last isomorphism is shown in Theorem 4.16. We have already

seen in Remark 4.18 that Gst
0 (A) and G

P
0(A) are isomorphic if A is self-injective.



Chapter 5

Stable equivalences of Morita type

Let k be a field. Let A and B be finite dimensional k-algebras without semisimple summands.

In general, stable equivalences fail to preserve many homological properties of finite dimensional

algebras. The situation is better for stable equivalences induced by exact functors between

modA and modB. That is, if the equivalence is given by − ⊗A M with an A-B-bimodule

which is projective as left A- and as right B-module. An important class of such equivalences

are stable equivalences of Morita type.

At the beginning of this chapter, we discuss stable equivalences of Morita type in more detail.

In particular, we will see that such equivalences preserve perfect exact sequences. As the main

result of the first section, we show that stable equivalences of Morita type induce equivalences on

the level of LA, HP(projA) and Hstp(projA). These equivalences are given by componentwise

application of −⊗AM .

In the second section, we start with an equivalence LA → LB given by −⊗AM for an arbitrary

bimodule M . As we will see, this is enough to induce a stable equivalence of Morita type. This

provides a way to determine if a stable equivalence which is induced by an exact functor is of

Morita type. In the final section, we use this result to give conditions under which an exact

functor that induces an equivalence modA→ modB is already a stable equivalence of Morita

type. This is done using results of previous chapters about perfect exact sequences.

We recall the definition and collect some properties of stable equivalences of Morita type.

Definition 5.1 (Broué). Let AMB and BNA be bimodules such that AM , MB, BN and NA are

projective. We say that M and N induce a stable equivalence of Morita type if

AM ⊗B NA ≃ A⊕ P and BN ⊗AMB ≃ A⊕Q

as bimodules such that APA and BQB are projective bimodules.

We note two properties of stable equivalences of Morita type with regards to projective modules.

119
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Remark 5.2. (1) Suppose given an A-B-bimodule M such that MB is a projective B-

module. Then P ⊗A MB is a projective B-module for all P ∈ projA. In fact, P is a

direct summand of A⊕n for some n ∈ Z⩾1. Moreover, we have the following isomorphism

of right B-modules.

A⊕n ⊗AM ≃M⊕n

Together, we obtain that P ⊗A M is a direct summand of M⊕n which is projective as a

right B-module. In conclusion, P ⊗AM ∈ projB.

(2) Suppose given a projective bimodule APA. Then X ⊗A PA is a projective A-module for

all X ∈ modA. In fact, we have

X ⊗A (AA⊗k AA) ≃ X ⊗k A

for all X ∈ modA. Note that APA is a direct summand of (AA⊗kAA)⊕n for some n ∈ Z⩾1.
Since X ⊗k A is projective in modA, so is X ⊗A P .

The functors given by a stable equivalence of Morita type form an adjoint pair. This result was

first shown in [13, Corollary 3.1] for algebras whose semisimple quotients are separable.

Lemma 5.3. ([10, Lemma 4.1]) Suppose AMB and BNA are bimodules that induce a stable

equivalence of Morita type such that M and N do not have any non-zero projective bimodule

as direct summand.

The functor −⊗AM is left and right adjoint to −⊗B N . Furthermore, HomB(M,B) ≃ N as

B-A-bimodules and HomA(N,A) ≃M as A-B-bimodules.

Following [13], we state several consequences of this lemma. We also include the respective

proofs.

Lemma 5.4. Suppose AMB and BNA are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

The following holds for X ∈ modA.

(1) X ⊗AM is injective as a B-module if X ∈ injA.

(2) X ⊗AM is projective-injective as a B-module if X ∈ PA.

(3) There exists a natural isomorphism of left B-modules.

(X ⊗AMB)
∗ ≃ BN ⊗A X∗
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(4) There exists a natural isomorphism of B-modules.

νB(X ⊗AMB) ≃ νA(X)⊗AMB

(5) X ⊗AM is strongly projective-injective as a B-module if X ∈ stpA.

Proof. Ad (1) and (2). We use that −⊗AM is right adjoint to −⊗B N ; cf. Lemma 5.3.

If X ∈ modA is injective, HomB(−, X ⊗A M) ≃ HomA(− ⊗B N,X) is an exact functor since

−⊗B N is exact. Thus, X ⊗AM ∈ injB.

If X ∈ projA, then X ⊗AM is a projective B-module since MB ∈ projB. Therefore, we have

X ⊗AM ∈ PB if X ∈ PA.

Ad (3). Recall that HomB(M,B) ≃ N by Lemma 5.3. We have the following sequence of

natural isomorphisms. For the last isomorphism, we use that NA is projective and XA finitely

generated.

(X ⊗AMB)
∗ = HomB(X ⊗AMB, BBB)

≃ HomA(XA,HomB(AMB, BBB))

≃ HomA(XA, BNA)

≃ BN ⊗A X∗

Ad (4). Recall that HomA(N,A) ≃ M by Lemma 5.3. Applying D(−) to part (3) yields the

following sequence of natural isomorphisms.

νB(X ⊗AMB) = Homk((X ⊗AMB)
∗, k)

≃ Homk(BN ⊗A X∗, k)

≃ HomA(BNA,Homk(X
∗, k))

≃ HomA(BNA, νA(X))

≃ νA(X)⊗A HomA(BNA, AAA)

≃ νA(X)⊗AMB

Ad (5). Let X ∈ stpA. Using part (4), we have that νkB(X ⊗AMB) ≃ νkA(X)⊗AMB ∈ projB

for k ∈ Z. Thus, X ⊗AMB ∈ stpB.

We are now able to show that a stable equivalence of Morita type preserves perfect exact

sequences.

Lemma 5.5. Suppose AMB and BNA are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.
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If 0→ X
f−→ Y

g−→ Z → 0 is a perfect exact sequence in modA, then

0→ X ⊗AM
f⊗M−−−→ Y ⊗AM

g⊗M−−−→ Z ⊗AM → 0

is a perfect exact sequence in modB. Similarly, the functor −⊗BN maps perfect exact sequences

in modB to perfect exact sequences in modA.

Proof. Let η : 0→ X
f−→ Y

g−→ Z → 0 be a perfect exact sequence in modA. Since −⊗AM is

an exact functor, 0→ X ⊗AM
f⊗M−−−→ Y ⊗AM

g⊗M−−−→ Z ⊗AM → 0 is a short exact sequence in

modB. By Lemma 5.4.(3) there exist isomorphisms such that the following diagram commutes.

0 (Z ⊗AM)∗ (Y ⊗AM)∗ (X ⊗AM)∗ 0

0 N ⊗A Z∗ N ⊗A Y ∗ N ⊗A X∗ 0

(g⊗M)∗

∼

(f⊗M)∗

∼ ∼

N⊗g∗ N⊗f∗

Since N ⊗A− is an exact functor and η perfect exact, the lower sequence is exact. This implies

that the upper sequence is exact as well. Consequently,

0→ X ⊗AM
f⊗M−−−→ Y ⊗AM

g⊗M−−−→ Z ⊗AM → 0

is a perfect exact sequence.

5.1 Induced equivalences in K(projA)

In this section we aim to show that a stable equivalence of Morita type modA→ modB induces

equivalences between LA → LB, HP(projA) → HP(projB) and Hstp(projA) → Hstp(projB).

The next lemma collects some preliminary results in this direction. For parts (3) and (4), recall

that stpA ⊆ PA.

Lemma 5.6. Suppose AMB and BNA are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

Write AM ⊗B NA ≃ A⊕ P as bimodules with APA projective. The following holds.

(1) X ⊗AM ∈⊥PB if X ∈⊥PA.

(2) X ⊗AM ∈ ⊥(stpA) if X ∈ ⊥(stpA).

(3) X ⊗A PA ∈ stpA for all X ∈ modA.

(4) X ⊗AM ⊗B N ≃ X if X ∈ ⊥(stpA).
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Proof. Ad (1) and (2). For Z ∈ PB or Z ∈ stpB we have with Lemma 5.3 that

HomB(X ⊗AM,Z) ≃ HomA(X,Z ⊗B N) = 0

since Z ⊗B N ∈ PA or Z ⊗B N ∈ stpA respectively by Lemma 5.4.(2,5).

Ad (3). We follow [16, Lemma 3.1]. With Lemma 5.4.(4), we have

ν(A)⊕ ν(P ) ≃ ν(A⊕ P )

≃ ν(A⊗AM ⊗B N)

≃ ν(A)⊗AM ⊗B N

≃ ν(A)⊗A (A⊕ P )

≃ ν(A)⊕ ν(A)⊗A P

so that ν(P ) ≃ ν(A)⊗AP . Since ν(A) is finitely generated, there exists an n ⩾ 0 and a surjection

A⊕n ↠ ν(A). This induces a surjection A⊕n ⊗A P ↠ ν(A) ⊗A P with A⊕n ⊗A P ≃ P⊕n. By

Remark 5.2.(2), we have that ν(A) ⊗A P is projective. Hence, ν(P ) is a direct summand of

P⊕n and we obtain that P ∈ stpA.

Let X ∈ modA. It remains to show that X ⊗A PA ∈ stpA. As above, there exists an n and a

surjection A⊕n ↠ X. By applying − ⊗A P , we obtain P⊕n ↠ X ⊗A PA. Thus, X ⊗A PA is a

direct summand of P⊕n ∈ stpA; cf. Remark 5.2.(2).

Ad (4). We have

X ⊗AM ⊗B N ≃ X ⊗A (AA ⊕ PA) ≃ X ⊕ (X ⊗A PA).

By part (3) we know that X ⊗A PA ∈ stpA. On the other hand, we have X ⊗AM ∈ ⊥(stpB)

by part (2). Similarly, we also have that Y ⊗B N ∈ ⊥(stpA) for all Y ∈ ⊥(stpB). Together we

obtain X ⊗AM ⊗B N ∈ ⊥(stpA). Thus, X ⊗A PA must be zero and X ⊗AM ⊗B N ≃ X.

The next lemma will be used to show that a stable equivalence of Morita type induces functors

LA → LB and H(projA)→ H(projB).

Lemma 5.7. Suppose AMB and BNA are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

The following holds for a complex F • ∈ K(projA) and all k ∈ Z.

(1) Hk(F • ⊗AM) = 0 if Hk(F • ) = 0.

(2) Hk

(︁
(F • ⊗AM)∗

)︁
= 0 if Hk(F

∗
• ) = 0.
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Proof. Using that −⊗AM is an exact functor, we have Hk(F • ⊗AM) ≃ Hk(F • )⊗AM .

Using that N ⊗A − is an exact functor, we have with Lemma 5.4.(3) that

Hk

(︁
(F • ⊗AM)∗

)︁
≃ Hk(N ⊗A F ∗

• ) ≃ N ⊗A Hk(F
∗
• ).

Now, the result follows since −⊗AM and N ⊗B − are additive functors.

We have already seen in Theorem 4.42 that every stable equivalence that preserves perfect

exact sequences induces an equivalence on the level of Ktac(projA). In particular, this holds

for stable equivalences of Morita type. Now, we can show that a stable equivalence of Morita

type induces equivalences on the level of some of the other categories discussed in Chapter 4.

Theorem 5.8. Suppose AMB and BNA are bimodules that induce a stable equivalence of Morita

type such that M and N do not have any non-zero projective bimodule as direct summand.

(1) Applying −⊗AM componentwise induces an equivalence of categories LA → LB.

If A and B are self-injective, this is an equivalence of triangulated categories.

(2) Applying −⊗AM componentwise induces an equivalence of triangulated categories

HP(projA)→ HP(projB).

(3) Applying −⊗AM componentwise induces an equivalence of triangulated categories

Hstp(projA)→ Hstp(projB).

Proof. Ad (1). By Remark 5.2.(1), − ⊗A M induces a functor K(projA) → K(projB) by

componentwise application. Now, Lemma 5.7 shows that −⊗AM induces a well-defined functor

LA → LB. Consider the following diagram.

modA modB

LA LB

F

∼

∼
−⊗AM

∼

F

−⊗AM

Recall that the quasi-inverse of F is given by H0(τ⩽0 (−)); cf. Theorem 2.6. Let F • ∈ LA.
Since −⊗AM is exact, we have H0 (τ⩽0 (F

• ⊗AM))) ∼= H0 (τ⩽0F
• )⊗AM so that the diagram

commutes. This shows that −⊗AM induces an equivalence of categories LA → LB.

Furthermore, if A and B are self-injective, the equivalence F is triangulated by Lemma 4.44.

Thus, this diagram shows that the functor − ⊗A M induces an equivalence of triangulated

categories LA → LB.
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Ad (2) and (3). By Lemma 5.7, the functor −⊗AM induces a functor H(projA)→ H(projB).

Since −⊗AM is applied componentwise, this is a triangulated functor.

Suppose given F • ∈ HP(projA). We verify that F •⊗AM ∈ ⊥Kb(PB). By Lemma 4.5 it suffices

to show that Hk(F • ⊗A M) ≃ Hk(F • ) ⊗A M is an element of ⊥PB for k ∈ Z. However, this

holds by Lemma 5.6.(1) since Hk(F • ) ∈⊥PA by Lemma 4.5. In conclusion, −⊗AM induces a

functor HP(projA)→ HP(projB).

Similarly, −⊗AM induces a functorHstp(projA)→ Hstp(projB). It remains to show that these

are equivalences of triangulated categories. Recall thatHP(projA) is contained inHstp(projA).

Let F • ∈ Hstp(projA) with r ∈ Z such that H⩾r(F
∗
• ) = 0. We verify by induction on

N := |{j ∈ Z<r |Hj(F • ) ̸= 0}| that we have a natural isomorphism F • ⊗A M ⊗B N ≃ F • .

Since F • ∈ H(projA), we know that H• (F • ) is left bounded and therefore N < ∞. We write

G• := F • ⊗AM ⊗B N .

Let N = 0. Then F • [r] ∈ LA and the assertion holds by part (1) since −⊗AM commutes with

the shift.

Let N > 0 and k ∈ Z<r minimal such that Hk(F • ) ̸= 0. By Lemma 4.6, we have a distinguished

triangle

P • [−k]→ F • → C• →

with P • a projective resolution of Hk(F • ). Moreover, Hj(C• ) = 0 for j ⩽ k and τ⩾kC
• = τ⩾kF

• .

Applying −⊗AM ⊗B N to this triangle, we obtain a new distinguished triangle.

P • [−k]⊗AM ⊗B N → G• → C• ⊗AM ⊗B N →

By Lemma 5.6.(4), we have Hk(F • ) ⊗A M ⊗B N ≃ Hk(F • ) since Hk(F • ) ∈ ⊥(stpA) by

Lemma 4.5. Hence, we have a natural isomorphism P • ⊗A M ⊗B N ≃ P • in K(projA) and

obtain the following distinguished triangle.

P • [−k]→ G• → C• ⊗AM ⊗B N →

By induction, we can assume that there is a natural isomorphism C• ⊗AM ⊗B N ≃ C• . This

induces another distinguished triangle.

P • [−k] G• C•

P • [−k] F • C•

The induced morphism now yields a natural isomorphism G• = F • ⊗AM ⊗B N ≃ F • .
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Note that in general, a stable equivalence of Morita type does not induce an equivalence between

H(projA) and H(projB). Similarly, it does not induce an equivalence between K(projA) and
K(projB). This is discussed at the end of Example 7.6.

5.2 Functors in K(projA) inducing stable equivalences

In Theorem 5.8.(1) we have seen that a stable equivalence of Morita type induces an equivalence

on the level of L given by tensoring with a bimodule M . We aim to show that any equivalence

−⊗AM : LA → LB with an arbitrary bimoduleBMA induces a stable equivalence of Morita type

modA→ modB. The proof is based on the following theorem by Dugas and Mart́ınez-Villa.

Theorem 5.9. ( [13, Theorem 2.9]) Let A and B be finite dimensional k-algebras whose

semisimple quotients are separable. Suppose that AMB is projective as left A- and as right

B-module such that −⊗AM induces a stable equivalence modA→ modB.

If BNA := HomA(M,A) is projective over B, then M and N induce a stable equivalence of

Morita type between A and B.

Remark 5.10. Suppose given a projective bimodule APA. Then X ⊗A PA is a projective

A-module for all X ∈ modA; cf. Remark 5.2.(2). The converse does not hold in general.

However, it does hold, if we assume that the semisimple quotients of A and B are separable;

cf. [5, Corollary 3.1] and also [13, Theorem 2.8]. This separability assumption is satisfied in the

following cases among others.

• k is a perfect field.

• A and B are given by quivers with relations.

We need a slightly different version of the above theorem, where BNA = HomB(M,B) instead

ofBNA = HomA(M,A).

Corollary 5.11. Let A and B be finite dimensional k-algebras whose semisimple quotients are

separable. Suppose that AMB is projective as left A- and as right B-module such that −⊗AM
induces a stable equivalence modA→ modB.

If BNA := HomB(M,B) is projective over A, then M and N induce a stable equivalence of

Morita type between A and B.

Proof. Using that MB is projective, we have the following sequence of natural isomorphisms

for all Y ∈ modB.

HomB(X ⊗AM,YB) ≃ HomA(XA,HomB(MB, YB)A) ≃ HomA(XA, Y ⊗B HomB(M,B)A)

≃ HomA(XA, Y ⊗B NA)
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Thus, −⊗AM is left adjoint to −⊗BN . By a result of Auslander and Kleiner in [3, Proposition

1.1], we obtain that −⊗AM is left adjoint to −⊗BN in modA since −⊗AM and −⊗BN take

projective modules to projective modules. Hence, −⊗BN : modB → modA is the quasi-inverse

of −⊗AM : modA→ modB. In particular, −⊗A N induces a stable equivalence.

We set BM̃A :=BNA and AÑB := HomB(N,B). Then AÑB ≃ AMB as bimodules and M̃ and

Ñ are are projective on both sides. The result follows by applying Theorem 5.9 to M̃ and Ñ

while switching the role of A and B.

Note that BNA is projective over A if and only if BN ⊗A − is an exact functor. We aim to

use that a complex F • ∈ LA can be thought of as a projective resolution F⩽0 in modA and

a projective resolution F ∗
⩾−1 in A-mod. Additionally, we need an analogue of Lemma 5.4.(3)

under slightly different assumptions.

Lemma 5.12. Suppose that M is an A-B-bimodule. Let BNA := HomB(AMB, B).

For every P ∈ projA there exists a natural isomorphism of left B-modules

(P ⊗AMB)
∗ ≃ BN ⊗A P ∗.

Proof. We have the following natural isomorphism of left B-modules.

(P ⊗AMB)
∗ = HomB(P ⊗AMB, BBB)

≃ HomA(PA,HomB(MB, BBB))

= HomA(PA, BNA)

We show hat HomA(PA, BNA) ≃ BN ⊗A P ∗ using that PA is projective and that NA is finitely

generated.

Since BB ⊗k AA is projective as a right A-module and since PA is finitely generated, we have

the following natural isomorphism of left B-modules.

HomA(PA, BB ⊗k AA) ≃ BB ⊗k AA ⊗A P ∗

Moreover, HomA(PA, BB ⊗k A⊕n
A ) ≃ BB ⊗k A⊕n ⊗A P ∗ for all n ∈ Z⩾1.

Let NA = ⟨g1, . . . , gn⟩ be a minimal generating system of N as a right A-module with n ∈ Z⩾1.
Consider the following surjective map.

B ⊗k A⊕n φ−→ BNA

b⊗ (a1, . . . , an) ↦→ b

n∑︂
k=1

gkak
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Note that φ is a morphism of B-A-bimodules, so that Ker(φ) is also a B-A-bimodule. In

particular, Ker(φ) is an A-submodule of B ⊗k A⊕n. Since A is finite dimensional, Ker(φ) is

finitely generated as a right A-module. Therefore, there exists an m ∈ Z⩾1 and a surjective

morphism B ⊗k A⊕m → Ker(φ) as above.

We obtain a presentation B ⊗k A⊕m → B ⊗k A⊕n → BNA → 0 of N via bimodules. Consider

the following commutative diagram with exact rows. For the upper row we have used that PA

is projective.

HomA(P,B ⊗k A⊕m) HomA(P,B ⊗k A⊕n) HomA(P,N) 0

B ⊗k A⊕m ⊗A P ∗ B ⊗k A⊕n ⊗A P ∗ N ⊗A P ∗ 0

∼ ∼ ∼

By the above, the two morphisms on the left are isomorphisms. Therefore, we obtain a natural

isomorphism of left B-modules HomA(PA, BNA) ≃ BN ⊗A P ∗.

We are now ready to state the main result of this section.

Theorem 5.13. Let A and B be finite dimensional k-algebras whose semisimple quotients are

separable.

Suppose given a bimodule AMB such that applying − ⊗A M componentwise induces an equiv-

alence LA
∼−→ LB. Let BNA := HomB(M,B). Then M and N induce a stable equivalence of

Morita type between A and B.

Proof. We show that M is projective as left A- and as right B-module and we show that N

is projective as left B- and right A-module. Since − ⊗A M maps projective A-modules to

projective B-modules, we have that M ∈ projB. Moreover, this means that N ∈ B-proj.

LetX ∈ modA. Suppose given a projective resolution P • ∈ K(projA) ofX. Then τ⩽0 F
•
X ≃ P •

in K(projA). Using that − ⊗A M is a right exact functor with image in LB, we obtain that

F •
X ⊗AM ≃ F •

X⊗M . Hence, P • ⊗AM ≃ τ⩽0 (F
•
X ⊗AM) ≃ τ⩽0 F

•
X⊗M is a projective resolution

of X ⊗AM . Thus, we have TorAi (X,M) ≃ H−i(P • ⊗AM) = 0 for all i ⩾ 1. This implies that

M is projective as a left A-module.

Let Y be a left A-module. Suppose given a projective resolution Q• of Y in K(A-proj). There

exists an X ∈ modA such that TrX = Y . Then τ⩾−1F
• ,∗
X ≃ Q• in K(A-proj). By Lemma 5.12

we have that τ⩾−1(N ⊗A F • ,∗
X ) ≃ τ⩾−1(F

•
X ⊗AM)∗ as complexes.

· · · N ⊗A F ∗
1 N ⊗A F ∗

0 N ⊗A F ∗
−1 N ⊗A Tr(X) 0

· · · (F 1 ⊗AM)∗ (F 0 ⊗AM)∗ (F−1 ⊗AM)∗ Tr(X ⊗AM) 0

∼ ∼ ∼ ∼
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Since F •
X ⊗AM ∈ LB, we have that τ⩾−1(F

•
X ⊗AM)∗ is a projective resolution of Tr(X ⊗M).

Hence

N ⊗A Q• ≃ τ⩾−1(N ⊗A F • ,∗
X ) ≃ τ⩾−1(F

•
X ⊗AM)∗

is a projective resolution of N ⊗A Tr(X). Thus, we have TorAi (N,Tr(X)) ≃ H−i(N ⊗A Q• ) = 0

for i ⩾ 0. This implies that N is projective as a right A-module.

Since the functor − ⊗A M induces an equivalence LA
∼−→ LB and is exact, this also induces

an equivalence modA → modB. Now, Corollary 5.11 shows that M and N induce a stable

equivalence of Morita type between A and B.

The above result can be useful to check if a stable equivalence induced by an exact func-

tor − ⊗A M is a stable equivalence of Morita type. More precisely, one needs to check if

Hk

(︁
(F • ⊗A M)∗

)︁
= 0 for F • ∈ LA and k ⩾ 0. We also state the following consequence which

can be used in a similar way. Recall that if M and HomB(M,B) do not have any non-zero

projective bimodule as direct summand and if they induce a stable equivalence of Morita type,

then νB(X ⊗AM) ≃ νA(X)⊗AM for every X ∈ modA; cf. Lemma 5.4.(4).

Corollary 5.14. Let A and B be finite dimensional k-algebras whose semisimple quotients are

separable. Let AMB be a bimodule which is projective as left A- and as right B-module such

that −⊗AM induces a stable equivalence modA→ modB.

Then M and HomB(M,B) induce a stable equivalence of Morita type between A and B if one

of the following equivalent conditions holds.

(1) There exist natural isomorphisms νB(P ⊗A M) ≃ νA(P ) ⊗A M of right B-modules for

every P ∈ projA.

(2) There exists a natural isomorphism M ⊗B DB ≃ DA⊗AM of right B-modules.

Proof. Suppose that condition (1) holds. Let F • ∈ LA. Note that −⊗AM is exact since AM

is projective. By assumption, we have the following for k ⩾ 0.

Hk((F
• ⊗AM)∗) = 0

⇔ Hk(νB(F
• ⊗AM)) = 0

⇔ Hk(νA(F
• )⊗AM) = 0

⇔ Hk(νA(F
• ))⊗AM = 0

⇔ Hk(F
∗
• )⊗AM = 0

The last equation holds, since F • ∈ LA. As a result, we have F • ⊗A M ∈ LB and − ⊗A M
induces an equivalence LA → LB. By Theorem 5.13, we obtain that M and HomB(M,B)

induce a stable equivalence of Morita type between the algebras A and B.
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It remains to show the equivalence of (1) and (2). We have the following natural isomorphisms

of right B-modules.

νA(A)⊗AM ≃ DHomA(A,A) ≃ DA⊗AM

D(M ⊗B DB) = Homk(M ⊗B DB, k) ≃ HomB(M,Homk(DB, k)) ≃ HomB(M,B) =M∗
B

Using the above, we see that condition (1) implies condition (2) by letting P = A.

DA⊗AM ≃ νA(A)⊗AM ≃ νB(A⊗AM) ≃ νB(M) ≃M ⊗B DB.

Since every projective A-module is a direct summand of A⊕n for some n ∈ Z, this also shows

that (2) implies (1).

5.3 Stable equivalences induced by exact functors

Suppose thatBMA is a bimodule which is projective as left A- and as right B-module such that

−⊗AM induces a stable equivalence modA→ modB.

For self-injective algebras, Rickard has shown in [39, Theorem 3.2] that such a functor is iso-

morphic to a stable equivalence of Morita type. Dugas and Mart́ınez-Villa provide the following

generalization for arbitrary algebras which satisfy the separability condition. A stable equiva-

lence that is induced by an exact functor −⊗AM is of Morita type if and only if HomA(M,A)

is projective on both sides. We have already made use of this result in the previous section; cf.

Theorem 5.9.

We aim to give other sufficient conditions for −⊗AM to be a stable equivalence of Morita type.

In order to use our previous results, we will need to assume that − ⊗A M preserves perfect

exact sequences with projective middle term. Furthermore, we will assume that A has positive

dominant dimension in order to ensure that the cohomology of a complex in L vanishes under

the functor (−)∗.

In order to use Theorem 5.13, we show that −⊗AM induces an equivalence on L. Since −⊗AM
is exact, it remains to check that Hk((F

• ⊗A M)∗) = 0 vanishes for F • ∈ L in non-negative

degrees. The following theorem by Yoshino provides a way to relate Hk(F
∗
• ) with (Hk(F • ))∗

and Ext1A
(︁
Cok(dkF ), A

)︁
. We give a modified version of the proof adapted to our notation.

Theorem 5.15. ([44, Theorem 2.3]) Suppose given F • ∈ K(projA) and M ∈ modA.

For all k ∈ Z there exists an exact sequence

0→ Ext1A
(︁
Cok(dkF ),M

)︁
→ Hk

(︁
HomA(F

• ,M)
)︁
→ HomA

(︁
Hk(F • ),M

)︁
→ Ext2A

(︁
Cok(dkF ),M

)︁
.
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Proof. Let k ∈ Z. Note that Hk(F • ) = Ker dk/ Im dk−1 and Cok dk−1 = F k/ Im dk−1. Applying

HomA(−,M) to the short exact sequence

0→ Hk(F • )→ Cok dk−1 p−→ Im dk → 0,

we obtain the following exact sequence.

0→ Hom(Im dk,M)
(p,M)−−−→ HomA(Cok d

k−1,M)→ HomA(H
k(F • ),M)→ Ext1(Im dk,M)

Since F k+1 is projective, the short exact sequence 0 → Im dk → F k+1 → Cok dk → 0 yields

that Ext1(Im dk,M) ≃ Ext2(Cok dk,M). Thus, we have an exact sequence

0→ Cok
(︁
(p,M)

)︁
→ HomA(H

k(F • ),M)→ Ext2(Cok dk,M).

It remains to show the existence of a short exact sequence

0→ Ext1A(Cok d
k,M)→ Hk(HomA(F

• ,M))→ Cok
(︁
(p,M)

)︁
→ 0.

Applying HomA(−,M) to the exact sequence F k−1 dk−1

−−→ F k → Cok dk−1 → 0, we obtain the

following exact sequence.

0→ HomA(Cok d
k−1,M)→ HomA(F

k,M)
(dk−1,M)−−−−−→ HomA(F

k−1,M)

Hence, we have an isomorphism λ : Ker(dk−1,M)
∼−→ HomA(Cok d

k−1,M).

Furthermore, the short exact sequence 0→ Im dk
i−→ F k+1 → Cok dk → 0 gives rise to the exact

sequence

HomA(F
k+1,M)

(i,M)−−−→ HomA(Im dk,M)→ Ext1(Cok dk,M)→ 0,

using that F k+1 is projective. Moreover, since dk factors through Im dk via i, we obtain that

(dk,M) factors through (i,M).

HomA(F
k+1,M) HomA(F

k,M)

HomA(Im dk,M)

(dk,M)

(i,M)

Therefore, we have Im
(︁
(i,M)

)︁
= Im

(︁
(dk,M)

)︁
which yields the following short exact sequence,

induced from the sequence above.

0→ Im
(︁
(dk,M)

)︁
→ HomA(Im dk,M)→ Ext1(Cok dk,M)→ 0
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In conclusion, we constructed the following commutative diagram with exact rows and columns.

0 0 0 Ext1(Cok dk,M)

0 Im
(︁
(dk,M)

)︁
HomA(Im dk,M) Ext1(Cok dk,M) 0

0 Ker
(︁
(dk−1,M)

)︁
HomA(Cok d

k−1,M) 0 0

Hk
(︁
HomA(F

• ,M)
)︁

Cok
(︁
(p,M)

)︁
0 0

(p,M)

λ
∼

The snake lemma now provides the desired short exact sequence.

0→ Ext1A(Cok d
k,M)→ Hk(HomA(F

• ,M))→ Cok
(︁
(p,M)

)︁
→ 0

Recall that (Hk(F • ))∗ = 0 for F • ∈ LA and k ∈ Z if domdimA ⩾ 1, as we have seen in

Remark 4.13. By Lemma 2.24, the vanishing of S∗ for a simple module S is invariant under

stable equivalences that preserve perfect exact sequences with projective middle term.

Lemma 5.16. Let Y ∈ modA such that every short exact sequence 0 → X → Y ′ → S → 0

with Y ′ a submodule of Y and S a simple A-module is a perfect exact sequence.

Then Y ∗ = 0 if and only if S∗ = 0 for all composition factors S of Y .

Proof. We proceed by induction on the length of Y . There is nothing to show for l(Y ) = 1 so

we assume l(Y ) > 1. There exists a short exact sequence

0→ X → Y → S → 0

with S a simple A-module and l(X) < l(Y ). By assumption, this sequence is perfect exact.

This implies that

0→ S∗ → Y ∗ → X∗ → 0

is a short exact sequence. Thus Y ∗ = 0 if and only if X∗ = 0 and S∗ = 0. Since X is a

submodule of Y , we are done by induction.

Recall that a complex F • in LA satisfies Hk(F • ) ∈ ⊥PA for all k ∈ Z. If domdimA ⩾ 1, the

assumptions of the lemma above hold for the cohomology of F • by Lemma 2.12. We also have

seen that an exact functor − ⊗A M preserves perfect exact sequences with projective middle

term if and only if Ext1(Z,A) = 0 implies Ext1B(Z ⊗A M,B) = 0 for all Z ∈ modA; cf.

Proposition 3.2.(1). We are now ready to prove the main result of this section.
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Proposition 5.17. Let A and B be finite dimensional k-algebras whose semisimple quotients

are separable. Assume that A and B have dominant dimension at least 1.

Suppose given a bimodule AMB which is projective as left A- and as right B-module such that

−⊗AM induces a stable equivalence modA→ modB. Assume furthermore that the following

conditions hold.

(1) The stable equivalence −⊗AM and its quasi-inverse preserve perfect exact sequences with

projective middle term.

(2) For all simple A-modules S whose injective hull is not projective, the image S ⊗AM is a

simple B-module.

Then M and HomB(M,B) induce a stable equivalence of Morita type between A and B.

Proof. Suppose given F • ∈ LA. Using that − ⊗A M is an exact functor, it remains to show

that Hk((F
• ⊗AM)∗) = 0 for k ⩾ 0. In this case, the assertion follows from Theorem 5.13. By

Theorem 5.15, the vanishing of Hk((F
• ⊗A M)∗) is implied by Ext1B(Cok(d

k
F⊗M), B) = 0 and

Hk(F • ⊗AM)∗ = 0. We fix a k ⩾ 0.

We show that Ext1B(Cok(d
k
F⊗M), B) = 0. Since F • ∈ LA, we have Hk(F

∗
• ) = 0. The exact

sequence in Theorem 5.15 now implies that Ext1A(Cok(d
k
F ), A) = 0. By Proposition 3.2.(1) and

assumption (1), we obtain that Ext1B(Cok(d
k
F )⊗AM,B) = 0. Using that −⊗AM is exact, we

additionally have that

Cok(dkF )⊗AM ≃ Cok(dkF ⊗AM) = Cok(dkF⊗M).

This results in Ext1B(Cok(d
k
F⊗M), B) = 0.

We show that Hk(F • ⊗A M)∗ = 0. By Lemma 4.5, we have Hk(F • ) ∈ ⊥PA. In particular, we

have Hk(F • )∗ = 0 since domdimA ⩾ 1. It suffices to show the following claim.

Claim. Let X ∈ modA with X ∈⊥PA. Then (X ⊗AM)∗ = 0.

We prove the claim by induction on the length l := l(X) of X. Since − ⊗A M is exact, we

have l = l(X) = l(X ⊗A M). Note that we have X∗ = 0 since domdimA ⩾ 1 by assumption.

Moreover, the assumptions of Lemma 5.16 are satisfied by Lemma 2.12. In particular, we have

S∗ = 0 for all composition factors S of X. Furthermore, S ⊗A M is a simple B-module by

assumption (2) since νA(S) = 0 implies νA(F
0
S) ̸∈ PA; cf. Lemma 2.26.

Let l = 1 so that X and X ⊗A M are simple modules. Thus, (X ⊗A M)∗ = 0 if and only if

X∗ = 0 by Lemma 2.24.(4,5) since − ⊗A M preserves perfect exact sequences with projective

middle term by assumption (1). We have seen above, that S∗ = 0 for all composition factors S

of X.
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Let l > 1. Suppose given a composition factor S of X together with a short exact sequence

0→ U → X → S → 0 .

By Lemma 2.12, we have U∗ = 0 and this is a perfect exact sequence. Using that l(U) < l, we

can assume that (U ⊗AM)∗ = 0 by induction. Thus, the induced short exact sequence

0→ U ⊗AM → X ⊗AM → S ⊗AM → 0

is perfect exact in modB. In particular, applying (−)∗, we obtain a short exact sequence in

B-mod with (U ⊗AM)∗ = 0.

0→ (U ⊗AM)∗ → (X ⊗AM)∗ → (S ⊗AM)∗ → 0

As in the case l = 1, we also have (S ⊗AM)∗ = 0. This shows that (X ⊗AM)∗ = 0.

Let S be a simple module whose injective hull is not projective. For algebras without nodes, a

stable equivalence maps S up to projective direct summands to a simple module. This follows

from a result by Mart́ınez-Villa in [33, Proposition 2.4]. We slightly adapt his proof to show

the following analogue for stable equivalences that are induced by an exact functor.

Lemma 5.18. Let AMB be a bimodule that is projective as left A- and as right B-module such

that − ⊗A M induces a stable equivalence modA → modB. Suppose that the inverse stable

equivalence is also induced by an exact functor.

Let S be a non-projective simple A-module with injective hull I such that I is not projective.

We have S ⊗AM ≃ S ′ ⊕ P such that S ′ is a simple B-module and P ∈ projB.

Proof. The stable equivalence −⊗AM induces a one-to-one correspondence between the isomor-

phism classes of indecomposable non-projective modules in modA and in modB. We denote

this correspondence by α′. Let π : I ↠ I/S be the natural projection, which is an irreducible

morphism. Since I is not projective, we know that π ̸= 0 in modA. By [6, Lemma X.1.2], we

obtain that the morphism α′(π) : α′(I)→ α′(I/S) which is induced by π ⊗M is irreducible.

Using that the stable equivalence and its quasi-inverse are induced by an exact functor, α′(I)

is an indecomposable injective and non-projective B-module; cf. [27, Lemma 3.5]. Thus,

S ′ := soc(α′(I)) is a simple B-module. We have S ′ ⊆ Ker(α′(π)) since π ⊗M is not a stable

isomorphism. This induces a morphism

f : α′(I)/S ′ → α′(I/S)
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such that π′ f = α′(π) with π′ the natural projection π′ : α′(I) ↠ α′(I)/S ′. However, α′(π)

is irreducible and thus f must be a split epimorphism. Now, consider the natural projection

π′ : α′(I)↠ α′(I)/S ′. Let β′ be the inverse of the correspondence α′. As above, we obtain that

f ′ : I/S → β′(α′(I)/S ′)

is a split epimorphism. As a consequence, α′(I/S) is a direct summand of α′(I)/S ′. Together

with the split epimorphism f , this results in α′(I)/S ′ ≃ α′(I/S).

Write I ⊗AM ≃ α′(I)⊕ P and (I/S)⊗AM ≃ α′(I/S)⊕Q with P, Q ∈ projB. Consider the

following commutative diagram with C the cokernel of the induced morphism S ′ → S ⊗AM .

0 S ′ α′(I) α′(I/S) 0

0 S ⊗AM I ⊗AM (I/S)⊗AM 0

0 C P Q 0

Since −⊗AM is exact and α′(I/S) ≃ α′(I)/S ′, all rows are short exact sequences. In particular,

the bottom row splits since Q is projective. Thus, C is projective as well and we obtain

S ⊗AM ≃ S ′ ⊕ C.

We summarize the results of the last two sections and include situations in which the assump-

tions are satisfied.

Theorem 5.19. Let A and B be finite dimensional k-algebras whose semisimple quotients are

separable. Suppose given a bimodule AMB which is projective as left A- and as right B-module

such that − ⊗A M induces a stable equivalence modA → modB. If one of the following

conditions holds, M and HomB(M,B) induce a stable equivalence of Morita type between A

and B.

(i) The functor −⊗AM induces an equivalence LA → LB.

(ii) The homology Hk((F
• ⊗AM)∗) vanishes for F • ∈ LA and k ⩾ 0.

(iii) There exist natural isomorphisms νB(P ⊗AM) ≃ νA(P )⊗AM for all P ∈ projA.

(iv) There exists a natural isomorphism M ⊗B DB ≃ DA⊗AM of right B-modules.

(v) The algebras A and B have no nodes. At least one of A or B has dominant dimension

at least 1 and finite representation type. Moreover, for all simple A-modules S whose

injective hull is not projective, the image S ⊗AM is an indecomposable B-module.
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(vi) The algebras A and B have no nodes. At least one of A or B is a Nakayama algebra.

Moreover, for all simple A-modules S whose injective hull is not projective, the image

S ⊗AM is an indecomposable B-module.

(vii) The algebras A and B have dominant dimension at least 1. There is a bimodule BLA

which is projective as left B- and right A-module and which induces the inverse stable

equivalence. Moreover, for all simple A-modules S whose injective hull is not projective,

the image S ⊗AM is an indecomposable B-module.

Proof. If condition (i) holds, we have seen in Theorem 5.13 that M and HomB(M,B) induce a

stable equivalence of Morita type between A and B. Let F • ∈ LA. Since −⊗AM is an exact

functor, we know that Hk(F • ⊗AM) = 0 for k ⩽ −1. Thus, condition (ii) implies condition (i).

By Corollary 5.14, condition (iii) and (iv) also imply condition (i). The last three conditions

(v), (vi) and (vii) are a consequence of Proposition 5.17 using the following additional results.

Since − ⊗A M : modA → modB is a stable equivalence, A is of finite representation type

if and only if B is of finite representation type. Moreover, by [33, Theorem 2.3], α preserves

the dominant dimension if A and B have no nodes. Note that a Nakayama algebra is of finite

representation type and has dominant dimension at least 1. In (v) and (vi) we now use that a

stable equivalence between algebras without nodes and of finite representation type preserves

perfect exact sequences by Corollary 3.20. In the setting of part (vii), perfect exact sequences

with projective middle term are preserved by Proposition 3.2. Finally, for a simple A-module

S, we have that S ⊗A M is isomorphic to a direct sum of a simple module and a projective

module by [33, Proposition 2.4] in the setting of part (v) and (vi) and by Lemma 5.18 in the

setting of part (vii). If S ⊗A M is indecomposable, S ⊗A M must be isomorphic to a simple

B-module. Therefore, both assumptions of Proposition 5.17 are satisfied if condition (v), (vi)

or (vii) holds.

Remark 5.20. Suppose that AMB is a bimodule such that − ⊗A M induces an equivalence

LA → LB as in part (i) of the previous theorem. Let S be a simple A-module with S∗ = 0.

If domdimA ⩾ 1, this holds for simple A-modules whose injective hull is not projective. Then

F⩽0S = F •
S ∈ LA is a projective resolution of S = H0(τ⩽0 F

•
S); cf. Lemma 2.24. Thus,

F •
S ⊗A M ∈ LB is a projective resolution of S ⊗A M . In particular, (S ⊗A M)∗ = 0 by

Lemma 2.24 and we obtain that S ⊗M has no projective direct summand. Thus, S ⊗A M is

indecomposable.

Suppose AMB and BNA are bimodules that induce a stable equivalence of Morita type. If AMB

and BNA are indecomposable as bimodules, we even have that S⊗M is indecomposable for all

simple A-modules S; cf. [23, Lemma 4.4].

It seems unclear whether the assumption in the previous theorem on the image S ⊗A M of a

simple A-module can be dropped if we assume that AMB is an indecomposable bimodule.
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Example in Chapter 7. The algebras A and B in Section 7.1 are stably equivalent of Morita

type. In Example 7.6, we give a bimodule that induces a stable equivalence. Using the results

of this chapter, we verify that this is a stable equivalence of Morita type.





Chapter 6

Stable equivalences with nodes

Let k be a field. Let A = kQ/I and B = kQ̃/Ĩ be finite dimensional quiver algebras given by

quivers Q and Q̃ and by admissible ideals I and Ĩ respectively. We assume that A and B have

no semisimple summands.

Starting with a finite dimensional algebra B with nodes, Mart́ınez-Villa constructed an algebra

A without nodes so that A is stably equivalent to B; cf. [31, Theorem 2.10]. More generally,

he considered algebras which are stably equivalent and which can be obtained from each other

by either deleting or inserting a node. See also [34].

Inserting a node can be described with the following process. Let e1, . . . , en, u, v be a complete

set of primitive idempotents in A. We say that B is obtained from A by gluing the primitive

idempotents u and v if B is generated by e1, . . . , en, u + v and all arrows in A. This induces

a radical embedding f : B ↪→ A, that is, an injective algebra monomorphism f : B ↪→ A with

rad(Bf) = rad(A). Now, the simple B-module corresponding to u+ v is a node. Here, we use

the following characterization of a node.

Lemma 6.1. ([31, Lemma 1])

Let S be a simple A-module with projective cover P . The following are equivalent.

(1) S is either injective or a node.

(2) For all non-isomorphisms f : P1 → P and g : P → P2 with P1 and P2 indecomposable

projective A-modules, we have f g = 0.

(3) S is not a composition factor of rad(P0)/ soc(P0) for any indecomposable projective A-

module P0.

Let B be an algebra that is obtained from A by a finite number of steps of gluing a simple

projective vertex and a simple injective vertex. In [22], Koenig and Liu used a different approach

than Mart́ınez-Villa to construct bimodules that induce a stable equivalences between A and

B in this setting. We aim to give an explicit description of all algebras that can be obtained in

this way. The following is an excerpt of [22, Theorem 4.12].

139
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Theorem 6.2 (Koenig, Liu). Let A = kQ/I and B = kQ̃/Ĩ be two finite dimensional algebras

such that there is a radical embedding f : B ↪→ A. Consider the following conditions.

(1) A and B are stably equivalent.

(2) B is obtained from A by a finite number of steps of gluing a simple projective vertex and

a simple injective vertex.

(3) There exists a pair of bimodules which induce inverse stable equivalences between modA

and modB.

Then (2) implies (3) and thus also implies (1). Under the assumption of the Auslander-Reiten

conjecture, all three conditions are equivalent. In particular, if A or B has finite representation

type, then all three conditions are equivalent.

Recall that the Auslander-Reiten conjecture states that two stably equivalent finite dimensional

algebras have the same number of non-isomorphic non-projective simple modules; cf. [6, Con-

jecture 5, page 409]. The Auslander-Reiten conjecture was proven for algebras of finite repre-

sentation type by Mart́ınez-Villa in [32].

An extended example of the constructions in the next two sections can be found in Example 7.16.

Throughout this chapter, we use the following notation.

We denote the number of isomorphism classes of simple A modules by s and the number of

isomorphism classes of simple B modules by t. Let {P1, . . . Ps} and {Q1, . . . Qt} be a complete

set of non-isomorphic indecomposable projective A-modules and B-modules respectively. For

i ∈ [1, s], we denote the simple top of Pi by Si. For i ∈ [1, t], we denote the simple top of Qi by

Ti. Thus, {S1, . . . Ss} and {T1, . . . Tt} are a complete set of non-isomorphic simple A-modules

and B-modules respectively.

We write [n,m] = {z ∈ Z|n ⩽ z ⩽ m} for n, m ∈ Z. Given n,m ∈ Z, we write δm,n = 1 ∈ k
if m = n and δm,n = 0 ∈ k if m ̸= n. For n ∈ Z⩾1 and i ∈ [1, n] we denote by ei the n × n
matrices having entry 1 at position (i, i) and entry 0 elsewhere.

Recall that we write morphisms between direct sums of modules as matrices. We extend the

usual notation for matrix algebras as follows. In particular, we will allow multiplication of

morphisms that are not composable and thus we sometimes have to add a direct summand

isomorphic to k on the diagonal. Let n ∈ Z⩾1 and suppose given A-modules Xi and Yi for

i ∈ [1, n]. For i, j ∈ [1, n] let Vi,j be the k-vector space defined as follows.

Vi,j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HomA(Xi, Yj) if i ̸= j

HomA(Xi, Xi) if i = j and Xi = Yi ̸= 0

k ⊕ HomA(Xi, Yi) if i = j and either Xi ̸= Yi or Xi = Yi = 0
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We often abbreviate k ⊕ HomA(Xi, Yi) ≃ k by k if Xi = Yi = 0. Now, we have the following

multiplication of elements in (Vi,j)i,j∈[1,n] induced by multiplication of matrices.

(vi,j)i,j∈[1,n] · (wi,j)i,j∈[1,n] :=

(︄
n∑︂
l=1

vi,l · wl,j

)︄
i,j∈[1,n]

for (vi,j)i,j∈[1,n], (wi,j)i,j∈[1,n] ∈ (Vi,j)i,j∈[1,n]

It remains to define vi,l · wl,j for i, j, l ∈ [1, n]. The idea is to use composition of morphisms

while setting the composite of non-composable morphisms to zero. Let v ∈ Vi,l and w ∈ Vl,j.

In case that i ̸= j, we define v · w ∈ Vi,j = HomA(Xi, Yj) as follows.

v · w :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if v = f ∈ HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yj) with Yl ̸= Xl

f g if v = f ∈ HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yj) with Yl = Xl

x g if v = x+ f ∈ k ⊕HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yj)

f y if v = f ∈ HomA(Xi, Yl) and w = y + g ∈ k ⊕HomA(Xl, Yj)

In case that i = j with Xi = Yi ̸= 0, we define v · w ∈ Vi,j = HomA(Xi, Xi) as follows.

v · w :=

⎧⎨⎩ 0 if v = f ∈ HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yi) with Yl ̸= Xl

f g if v = f ∈ HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yi) with Yl = Xl

In case that i = j and either Xi ̸= Yi or Xi = Yi = 0, we define v ·w ∈ Vi,j = k⊕HomA(Xi, Yi)
as follows.

v · w :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 + 0 if v = f ∈ HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yj) with Yl ̸= Xl

0 + f g if v = f ∈ HomA(Xi, Yl) and w = g ∈ HomA(Xl, Yj) with Yl = Xl

x y + (f y + x g) if v = x+ f ∈ k ⊕HomA(Xi, Yl) and w = y + g ∈ k ⊕HomA(Xl, Yj)

In this way, we obtain a matrix algebra (Vi,j)i,j∈[1,n]. The identity of (Vi,j)i,j∈[1,n] is given by

the diagonal matrix (vi,j)i,j with vi,j = 0 for i ̸= j and vi,i = idXi
if Xi = Yi ̸= 0 and

vi,i = 1 + 0 ∈ k ⊕ HomA(Xi, Yi) otherwise.

We illustrate this with an example. Let X, Y and Z be non-zero A-modules which are pairwise

non-isomorphic. For the elements⎛⎝x+ a b

c d

⎞⎠ ,

⎛⎝x′ + a′ b′

c′ d′

⎞⎠ ∈
⎛⎝k ⊕HomA(X,Y ) HomA(X,Z)

HomA(Z, Y ) HomA(Z,Z)

⎞⎠
we have ⎛⎝x+ a b

c d

⎞⎠ ·
⎛⎝x′ + a′ b′

c′ d′

⎞⎠ =

⎛⎝x x′ + x a′ + a x′ + b c′ x b′ + b d′

c x′ + d c′ d d′

⎞⎠ .
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6.1 Algebras obtained by gluing idempotents

Consider an algebra A with simple projective and simple injective modules. We construct a

new algebra Eσ(A) which is obtained by gluing pairs of simple projective vertices and simple

injective vertices. These pairs will be described by an injective map σ.

Definition 6.3. Suppose given J ⊆ {j ∈ [1, s] |Sj ∈ projA} together with an injective map

σ : J ↪→ {i ∈ [1, s] |Si ∈ injA}

so that Pj = Sj is a simple projective module and Sjσ is a simple injective module for j ∈ J .
Let P :=

⨁︂
r∈[1,s]\(J∪Jσ)

Pr so that AA =
⨁︁
j∈J

(Pj ⊕ Pjσ)⊕ P .

We define the following matrix algebra corresponding to σ.

Eσ(A) :=

⎛⎝(︁δi,j k ⊕ HomA(Pi, Pjσ)
)︁
i,j∈J

(︁
HomA(Pi, P )

)︁
i∈J(︁

HomA(P, Pjσ)
)︁
j∈J EndA(P )

⎞⎠
Since A has no semisimple summand, we have that jσ ̸∈ J for j ∈ J , that is J ∩ J σ = ∅.
In particular, Pjσ ̸≃ Pi for i, j ∈ J . Thus, the first |J | columns of this matrix correspond to

indecomposable projective Eσ(A)
op-modules whose simple top is the node obtained by gluing

a simple projective and a simple injective vertex; cf. Lemma 6.1.(2). In total, the number of

non-isomorphic indecomposable projective Eσ(A)
op-modules is

|J |+ | [1, s] \ (J ∪ Jσ)| = s− |J |.

Remark 6.4. Let i, j ∈ J . Note that P ∗
iσ is a simple left A-module since Si ∈ injA and thus

νPiσ ≃ Siσ. Using that Pj and P
∗
iσ are simple and that iσ ̸= j, we have the following.

HomA(Piσ, Pj) = 0

HomA(Piσ, P ) ≃ HomA(P
∗, P ∗

iσ) = 0

HomA(P, Pj) = 0

HomA(Pi, Pj) ≃ δi,j k

HomA(Piσ, Pjσ) ≃ HomA(P
∗
jσ, P

∗
iσ) ≃ δi,j k

This can be used to rewrite the endomorphism algebra of A.

EndA(A) ≃

⎛⎝(︁HomA(Pi ⊕ Piσ, Pj ⊕ Pjσ)
)︁
i,j∈J

(︁
HomA(Pi ⊕ Piσ, P )

)︁
i∈J(︁

HomA(P, Pj ⊕ Pjσ)
)︁
j∈J EndA(P )

⎞⎠
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≃

⎛⎜⎜⎜⎜⎝
⎛⎝ HomA(Pi, Pj) HomA(Pi, Pjσ)

HomA(Piσ, Pj) HomA(Piσ, Pjσ)

⎞⎠
i,j∈J

⎛⎝ HomA(Pi, P )

HomA(Piσ, P )

⎞⎠
i∈J(︂

HomA(P, Pj) HomA(P, Pjσ)
)︂
j∈J

EndA(P )

⎞⎟⎟⎟⎟⎠

≃

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j k HomA(Pi, Pjσ)

0 δi,j k

⎞⎠
i,j∈J

⎛⎝HomA(Pi, P )

0

⎞⎠
i∈J(︂

0 HomA(P, Pjσ)
)︂
j∈J

EndA(P )

⎞⎟⎟⎟⎟⎠
On the other hand, we have the following by rewriting

(︁
δi,j k⊕ HomA(Pi, Pjσ)

)︁
i,j∈J as an upper

triangular matrix.

Eσ(A) ≃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j xj ai,j

0 δi,j xj

⎞⎠
i,j∈J

⎛⎝bi

0

⎞⎠
i∈J(︂

0 cj

)︂
j∈Jk

d

⎞⎟⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

xj ∈ k for j ∈ J

ai,j ∈ HomA(Pi, Pjσ), bi ∈ HomA(Pi, P ) for i, j ∈ J

cj ∈ HomA(P, Pjσ) for j ∈ J

d ∈ EndA (P )

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Together, we obtain a radical embedding Eσ(A)

op ↪→ EndA(A)
op ≃ A.

We aim to show that every algebra which is obtained from A by a finite number of steps of

gluing a simple projective vertex and a simple injective vertex is of the form Eσ(A)
op for some

σ as in Definition 6.3. As a first result, we show that Eσ(A)
op can be obtained in this way.

Lemma 6.5. Suppose given J and σ as in Definition 6.3.

There exists a radical embedding Eσ(A)
op ↪→ A such that Eσ(A)

op is obtained from A by a finite

number of steps of gluing a simple projective vertex and a simple injective vertex.

In particular, Eσ(A)
op and A are stably equivalent.

Proof. By Remark 6.4 there exists a radical embedding Eσ(A)
op ↪→ A.

Let J = {j1, . . . , jl} for some 1 ⩽ l ⩽ s. For 0 ⩽ r ⩽ l we write Jr := {j1, . . . , jr} ⊆ J and

P̃r :=
⨁︂

p∈[r+1,l]

(Pp ⊕ Ppσ)⊕ P.

Note that J0 = ∅ and P̃0 = AA on the one hand and Jl = J and P̃l = P on the other hand.
Consider the following algebra for r ∈ [0, l] with pairwise identical diagonal entries in the first
2r columns.

Ar :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j xj ai,j

0 δi,j xj

⎞⎠
i,j∈Jr

⎛⎝bi

0

⎞⎠
i∈Jr(︂

0 cj

)︂
j∈Jr

d

⎞⎟⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
xj ∈ k for j ∈ Jr
ai,j ∈ HomA(Pi, Pjσ), bi ∈ HomA(Pi, P̃r) for i, j ∈ Jr
cj ∈ HomA(P̃r, Pjσ) for j ∈ Jr
d ∈ EndA(P̃r)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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We obtain the following chain of subalgebras.

Eσ(A)
op = Aop

l ⊆ Aop
l−1 ⊆ · · · ⊆ Aop

1 ⊆ Aop
0 = EndA(A)

op ≃ A

Fix r ∈ [0, l− 1] and consider the inclusion Aop
r+1 ⊆ Aop

r . Notice that Aop
r+1 is obtained from Aop

r

by gluing the simple projective vertex corresponding to column 2r+1 and the simple injective

vertex corresponding to row 2r + 2.

Ar =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝δi,j xj ai,j

0 δi,j xj

⎞⎠
i,j∈Jr

⎛⎝ 0 ai,r+1

0 0

⎞⎠
i∈Jr

⎛⎝ bi

0

⎞⎠
i∈Jr⎛⎝ 0 ar+1,j

0 0

⎞⎠
j∈Jr

⎛⎝ x ar+1,r+1

0 y

⎞⎠ ⎛⎝br+1

0

⎞⎠
(︂

0 cj

)︂
j∈Jr

(︂
0 cr+1

)︂
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

x, y, xj ∈ k for j ∈ Jr

ai,j ∈ HomA(Pi, Pjσ) for i, j ∈ Jr+1

bi ∈ HomA(Pi, P̃r+1) for i ∈ Jr+1

cj ∈ HomA(P̃r+1, Pjσ) for j ∈ Jr+1

d ∈ EndA(P̃r+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ar+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝δi,j xj ai,j

0 δi,j xj

⎞⎠
i,j∈Jr

⎛⎝ 0 ai,r+1

0 0

⎞⎠
i∈Jr

⎛⎝ bi

0

⎞⎠
i∈Jr⎛⎝ 0 ar+1,j

0 0

⎞⎠
j∈Jr

⎛⎝ xr+1 ar+1,r+1

0 xr+1

⎞⎠ ⎛⎝br+1

0

⎞⎠
(︂

0 cj

)︂
j∈Jr

(︂
0 cr+1

)︂
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

xj ∈ k for j ∈ Jr+1

ai,j ∈ HomA(Pi, Pjσ) for i, j ∈ Jr+1

bi ∈ HomA(Pi, P̃r+1) for i ∈ Jr+1

cj ∈ HomA(P̃r+1, Pjσ) for j ∈ Jr+1

d ∈ EndA(P̃r+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
This shows that Eσ(A)

op is obtained from A by a finite number of steps of gluing a simple

projective vertex and a simple injective vertex. With Theorem 6.2 we obtain that Eσ(A)
op and

A are stably equivalent.

Lemma 6.6. Let A = kQ/I and B = kQ̃/Ĩ be two finite dimensional algebras such that there

is a radical embedding B ↪→ A. Suppose that B is obtained from A by a finite number of steps

of gluing a simple projective vertex and a simple injective vertex.

Then there exist J and σ as in Definition 6.3 such that Eσ(A)
op ≃ B.

Proof. By assumption, we have a finite sequence of subalgebras

B ≃ Al ⊆ Al−1 ⊆ · · · ⊆ A1 ⊆ A0 = A

where each Ar+1 is obtained from Ar by gluing a sink vr+1 and a source wr+1 for 0 ⩽ r ⩽ l− 1.

Let u1, . . . , up, vr+1, wr+1 be a complete set of primitive orthogonal idempotents of Ar with some

p ∈ N. Then Ar+1 is the subalgebra of Ar generated by u1, . . . , up, vr+1 + wr+1 and rad(Ar).

The simple Ar+1-module corresponding to the vertex vr+1 + wr+1 is a node. In particular,

vr+1+wr+1 is neither a sink nor a source in Ar+1. Thus, a complete set of primitive orthogonal

idempotents of A is of the form u1, . . . uq, v1, w1, . . . , vl, wl for some q ∈ N. Moreover, a complete

set of primitive orthogonal idempotents of Al is of the form u1, . . . uq, v1+w1, . . . , vl+wl where

vr is a sink and wr is a source in A0 = A for 1 ⩽ r ⩽ l.
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Note that A has s = q + 2l many non-isomorphic indecomposable projective modules. By

reordering, we can choose J := [1, l] ⊆ [1, s] such that Pj = vjA for j ∈ J . Let σ : J ↪→ [1, s]

such that Pjσ = wjA for j ∈ J . We write PA := (u1 + · · ·+ uq)AA so that

AA =
⨁︂
j∈J

(Pj ⊕ Pjσ)⊕ P

as in Definition 6.3. By Remark 6.4, we have that

EndA(A0) = EndA(A) ≃

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j k HomA(Pi, Pjσ)

0 δi,j k

⎞⎠
i,j∈J

⎛⎝HomA(Pi, P )

0

⎞⎠
i∈J(︂

0 HomA(P, Pjσ)
)︂
j∈J

EndA(P )

⎞⎟⎟⎟⎟⎠ .

From this, we obtain Al by gluing the sink vr and the source wr for each 1 ⩽ r ⩽ l which
correspond to the columns 2r − 1, 2r of the matrix algebra.

EndAl
(Al) ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j xj ai,j

0 δi,j xj

⎞⎠
i,j∈J

⎛⎝bi

0

⎞⎠
i∈J(︂

0 cj

)︂
j∈Jk

d

⎞⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

xj ∈ k for j ∈ J

ai,j ∈ HomA(Pi, Pjσ) for i, j ∈ J

bi ∈ HomA(Pi, P ) for i ∈ J

cj ∈ HomA(P, Pjσ) for j ∈ J

d ∈ EndA (P )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
By Remark 6.4, this is precisely Eσ(A). Hence, B ≃ Al ≃ EndAl

(Al)
op ≃ Eσ(A)

op.

6.2 Algebras obtained by deleting nodes

Consider an algebra B with nodes. We construct a new algebra EN (B) such that B is obtained

from EN (B) by gluing pairs of simple projective and simple injective vertices. This process can

be seen as deleting nodes from the algebra B; cf. [34].

Definition 6.7. Suppose given a subset N ⊆ [1, t] such that Tn ∈ modB is a node for n ∈ N .

Let Q :=
⨁︂

r∈[1,t]\N

Qr.

We define the following matrix algebra corresponding to N .

EN (B) :=

⎛⎜⎜⎜⎝
⎛⎝ δm,n k HomB(Tm, Qn)

0 δm,n k

⎞⎠
m,n∈N

⎛⎝HomB(Tm, Q)

0

⎞⎠
m∈N(︂

0 HomB(Q,Qn)
)︂
n∈N

EndB(Q)

⎞⎟⎟⎟⎠
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Note that for 1 ⩽ n ⩽ |N | the simple EN (B)op-module corresponding to the column 2n − 1

is projective and the simple EN (B)op-module corresponding to the column 2n is injective. In

total, the number of non-isomorphic indecomposable projective EN (B)op-modules is

2|N |+ |[1, t] \ N | = t+ |N |.

Remark 6.8. Using that Tm is a node for m ∈ N we have the following for all m,n ∈ N .

HomB(Qm, Q) ≃ HomB(Tm, Q)

rad
(︁
HomB(Qm, Qn)

)︁
≃ HomB(Tm, Qn)

HomB(Qm, Qn) ≃

⎧⎨⎩
⎛⎝x a

0 x

⎞⎠⃓⃓⃓⃓⃓⃓x ∈ k, a ∈ HomB(Tm, Qn)

⎫⎬⎭
This can be used to rewrite the endomorphism algebra of B.

EndB(B) ≃

⎛⎝(︁HomB(Qm, Qn)
)︁
m,n∈N

(︁
HomB(Qm, Q)

)︁
m∈N(︁

HomB(Q,Qn)
)︁
n∈N EndB(Q)

⎞⎠

≃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
⎛⎝ δm,n xn am,n

0 δm,n xn

⎞⎠
m,n∈N

⎛⎝bm

0

⎞⎠
m∈N(︂

0 cn

)︂
n∈N

d

⎞⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

xn ∈ k for n ∈ N

am,n ∈ HomB(Tm, Qn) for m,n ∈ N

bm ∈ HomB(Tm, Q) for m ∈ N

cn ∈ HomB(Q,Qn) for n ∈ N

d ∈ EndB(Q)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We obtain a radical embedding B ≃ EndB(B)op ↪→ EN (B)op.

Now, consider both algebras A and B together. We aim to show that there exists a σ as in

Definition 6.3 such that Eσ(A)
op ≃ B if and only if there exists an N as in Definition 6.7 such

that EN (B)op ≃ A.

Lemma 6.9. Let A = kQ/I be a finite dimensional algebra. Let J ⊆ [1, s] and suppose given

an injective map σ : J ↪→ [1, s] such that Sj ∈ projA and Sjσ ∈ injA for j ∈ J .

Let B := Eσ(A)
op and N = [ 1, |J | ]. Then EN (B)op is isomorphic to A as an algebra.

Proof. We abbreviate l := |J | and E := Eσ(A). In particular, B = Eop. Note that the matrix

description of E in Definition 6.3 has l+1 columns. For 1 ⩽ j ⩽ l we have the indecomposable

projective Eop-modules Qj corresponding to the first l columns of this matrix. Furthermore,

we have the projective Eop-module Q corresponding to the column l + 1 of this matrix.

Recall that the simple B-module Tj with projective cover Qj is a node for 1 ⩽ j ⩽ l. Thus,

EN (B)op is well-defined. We show that EN (B) ≃ EndA(A).
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Let J = {j1, . . . , jl} using the ordering of J . The choice N = [ 1, |J | ] = [1, l] induces a

bijection N → J via n ↦→ jn. Now, the equivalence of right B-modules and left E-modules

induces the following isomorphisms for m,n ∈ N = [1, l]. We also use that Tm is a node; cf.

Remark 6.8.

HomB(Tm, Qn) ≃ rad
(︁
HomB(Qm, Qn)

)︁
≃ rad

(︁
HomE(Eem, Een)

)︁
≃ em rad(E)en

≃ HomA(Pjm , Pjnσ)

HomB(Tm, Q) ≃ HomB(Qm, Q) ≃ HomE(Eem, Eel+1) ≃ emEel+1 ≃ HomA(Pjm , P )

HomB(Q,Qn) ≃ HomE(Eel+1, Een) ≃ el+1Een ≃ HomA(P, Pjnσ)

EndB(Q) ≃ EndE(Eel+1) ≃ el+1Eel+1 ≃ EndA(P )

We obtain the following sequence of isomorphisms.

EN (B) =

⎛⎜⎜⎜⎜⎝
⎛⎝ δm,n k HomB(Tm, Qn)

0 δm,n k

⎞⎠
m,n∈N

⎛⎝HomB(Tm, Q)

0

⎞⎠
m∈N(︂

0 HomB(Q,Qn)
)︂
n∈N

EndB(Q)

⎞⎟⎟⎟⎟⎠

≃

⎛⎜⎜⎜⎜⎝
⎛⎝ δjm,jn k HomA(Pjm , Pjnσ)

0 δjm,jn k

⎞⎠
m,n∈N

⎛⎝HomA(Pjm , P )

0

⎞⎠
m∈N(︂

0 HomA(P, Pjnσ)
)︂
n∈N

EndA(P )

⎞⎟⎟⎟⎟⎠

≃

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j k HomA(Pi, Pjσ)

0 δi,j k

⎞⎠
i,j∈J

⎛⎝HomA(Pi, P )

0

⎞⎠
i∈J(︂

0 HomA(P, Pjσ)
)︂
j∈J

EndA(P )

⎞⎟⎟⎟⎟⎠
By Remark 6.4, we have

EndA(A) ≃

⎛⎜⎜⎜⎜⎝
⎛⎝ δi,j k HomA(Pi, Pjσ)

0 δi,j k

⎞⎠
i,j∈J

⎛⎝HomA(Pi, P )

0

⎞⎠
i∈J(︂

0 HomA(P, Pjσ)
)︂
j∈J

EndA(P )

⎞⎟⎟⎟⎟⎠
which is isomorphic to EN (B) by the above.

Lemma 6.10. Suppose given a subset N ⊆ [1, t] such that Tn ∈ modB is a node for n ∈ N .

Let A := EN (B)op as well as J = {2n− 1 ∈ N | n ∈ [ 1, |N | ]} = {1, 3, 5, . . . , 2|N | − 1} and

σ : J → [ 2, 2|N | ] : j ↦→ j + 1.

Then Eσ(A)
op is isomorphic to B as an algebra.



148 6 Stable equivalences with nodes

Proof. We abbreviate l := |N | and E := EN (B). In particular, A = Eop. Note that the

matrix description of E in Definition 6.7 has 2l + 1 columns. For 1 ⩽ r ⩽ 2l we have the

indecomposable projective Eop-modules Pr corresponding to the first 2l columns of this matrix.

Furthermore, we have the projective Eop-module P corresponding to the column 2l+ 1 of this

matrix.

Recall that the simple A-module S2r−1 with projective cover P2r−1 is projective for 1 ⩽ r ⩽ l.

Moreover, the simple A-module S2r with projective cover P2r is injective for 1 ⩽ r ⩽ l. Thus,

Eσ(A)
op is well-defined. We show that Eσ(A) ≃ EndB(B).

Let N = {n1, . . . , nl} using the ordering of N . The choice of J and σ gives two bijections

J → N via j ↦→ n j+1
2

and J σ → N via jσ = j + 1 ↦→ n j+1
2

.

Let i, j ∈ J withm := n i+1
2
∈ N and n := n j+1

2
∈ N . The equivalence between right A-modules

and left E-modules induces the following isomorphisms.

HomA(Pi, Pjσ) = HomA(Pi, Pj+1) ≃ HomE(Eei, Eej+1) ≃ eiEej+1 ≃ HomB(Tm, Qn)

HomA(Pi, P ) ≃ HomE(Eei, Ee2l+1) ≃ eiEe2l+1 ≃ HomB(Tm, Q)

HomA(P, Pjσ) = HomA(P, Pj+1) ≃ HomE(Ee2l+1, Eej+1) ≃ e2l+1Eej+1 ≃ HomB(Q,Qm)

EndA(P ) ≃ EndE(Ee2l+1) ≃ e2l+1Ee2l+1 = EndB(Q)

We obtain the following sequence of isomorphisms.

Eσ(A) =

⎛⎝(︁δi,j k ⊕ HomA(Pi, Pjσ)
)︁
i,j∈J

(︁
HomA(Pi, P )

)︁
i∈J(︁

HomA(P, Pjσ)
)︁
j∈J EndA(P )

⎞⎠
≃

⎛⎝(︁δm,n k ⊕HomB(Tm, Qn)
)︁
m,n∈N

(︁
HomB(Tm, Q)

)︁
m∈N(︁

HomB(Q,Qn)
)︁
n∈N EndB(Q)

⎞⎠
≃

⎛⎝(︁HomB(Qm, Qn)
)︁
m,n∈N

(︁
HomB(Qm, Q)

)︁
m∈N(︁

HomB(Q,Qn)
)︁
n∈N EndB(Q)

⎞⎠ (Remark 6.8)

≃ EndB(B)

We can now state the main result of this chapter.

Theorem 6.11. Let A = kQ/I and B = kQ̃/Ĩ be two finite dimensional algebras. The

following are equivalent.

(1) There exists a radical embedding B ↪→ A such that B is obtained from A by a finite

number of steps of gluing a simple projective vertex and a simple injective vertex.

(2) There exists σ as in Definition 6.3 such that Eσ(A)
op ≃ B.
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(3) There exists N as in Definition 6.7 such that EN (B)op ≃ A.

If one of the conditions holds, A and B are stably equivalent.

Proof. The implication (1) ⇒ (2) is shown in Lemma 6.6. The converse (2) ⇒ (1) is shown

in Lemma 6.5. The implication (2) ⇒ (3) is shown in Lemma 6.9. The converse (3) ⇒ (2)

is shown in Lemma 6.10. Finally, Theorem 6.2 shows that A and B are stably equivalent if

condition (1) holds.

The next corollary is a consequence of Theorem 6.2. A radical embedding B ↪→ A implies

that B is obtained from A by a finite number of steps of gluing two primitive idempotents;

cf. [41, Example 3]. If A and B are stably equivalent and the Auslander-Reiten conjecture

holds, these primitive idempotents must correspond to a simple projective vertex and a simple

injective vertex; cf. [22, Proposition 4.11].

Corollary 6.12. Let A = kQ/I and B = kQ̃/Ĩ be two finite dimensional algebras. Under the

assumption of the Auslander-Reiten conjecture, the following are equivalent.

(1) There is a radical embedding B ↪→ A such that A and B are stably equivalent.

(2) There exists σ as in Definition 6.3 such that Eσ(A)
op ≃ B.

(3) There exists N as in Definition 6.7 such that EN (B)op ≃ A.

Let B = kQ̃/Ĩ be a finite dimensional algebra and N as in Definition 6.7. We have seen in

Theorem 6.11 that EN (B)op and B are stably equivalent. If we choose N such that n ∈ N
for every node Tn ∈ modB, then EN (B)op is an algebra without nodes stably equivalent to B.

Thus, we recover for our setting that every algebra is stably equivalent to an algebra without

nodes. This has been shown by Mart́ınez-Villa in [31, Theorem 2.10.(a,c)] using a different

method.

Suppose that Γ is the triangular matrix algebra without nodes given in [31, Theorem 2.10.(a)]

which is stably equivalent to B. Then there is a radical embedding B ↪→ Γ; see [22, Remark

after Theorem 2.10] for more details. Under the assumption of the Auslander-Reiten conjecture,

Γ is isomorphic to EN (B)op. In fact, by Corollary 6.12 there exists N ′ as in Definition 6.7 such

that E ′
N (B)op ≃ Γ. The next lemma and Theorem 6.11 show that Γ ≃ E ′

N (B)op ≃ EN (B)op.

Lemma 6.13. Let A = kQ/I and B = kQ̃/Ĩ be two finite dimensional algebras. Suppose that

B is obtained from A by a finite number of steps of gluing a simple projective vertex and a

simple injective vertex. Let N ⊂ [1, t] such that there exists an n ∈ N with T ≃ Tn for every

node T of B.

If A has no nodes, then EN (B)op ≃ A.
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Proof. By Theorem 6.11, there exists a set N ′ as in Definition 6.7 such that EN ′(B)op ≃ A.

We show that N = N ′. Then A ≃ EN ′(B)op ≃ EN (B)op.

We have N ′ ⊆ N by definition of N . Assume given an r ∈ N with r ̸∈ N ′.

Let Qr ∈ projB be the projective module which has the node Tr as simple top. By Lemma 6.1,

we have f g = 0 for all non-isomorphisms f : Qi → Qr and g : Qr → Qj with i, j ∈ [1, t].

Since r ̸∈ N ′, there is a column l > |N ′| in the following matrix description of EN ′(B)op

corresponding to the projective module Qr.

EN ′(B) :=

⎛⎜⎜⎜⎜⎝
⎛⎝ δm,n k HomB(Tm, Qn)

0 δm,n k

⎞⎠
m,n∈N ′

⎛⎝HomB(Tm, Qj)

0

⎞⎠
m∈N ′, j∈[1,t]\N ′(︂

0 HomB(Qi, Qn)
)︂
i∈[1,t]\N ′, n∈N ′

(︂
HomB(Qi, Qj)

)︂
i,j∈[1,t]\N ′

⎞⎟⎟⎟⎟⎠
Let Pl be the indecomposable projective EN ′(B)op-module corresponding to this column. Re-

call that HomB(Tm, Qr) ≃ HomB(Qm, Qr) for m ∈ N ′; cf. Remark 6.8. By the above and

Lemma 6.1.(2), the simple top of Pl is a node in EN ′(B)op. A contradiction, since we assumed

that A ≃ EN ′(B)op has no nodes.

Finally, we give a remark about iterating the constructions of this chapter in an arbitrary order.

Remark 6.14. Let A = kQ/I and B = kQ̃/Ĩ be two finite dimensional algebras. We say that

A is obtained from B by deleting nodes if B is obtained from A by gluing a simple projective

vertex and a simple injective vertex.

Under the assumption of the Auslander-Reiten conjecture the following are equivalent.

(1) There exists an algebra C = kQC/IC together with radical embeddings A ↪→ C and

B ↪→ C such that A, B and C are pairwise stably equivalent.

(2) The algebra B is obtained from A by a finite number of steps of either deleting a node

or gluing a simple projective vertex and a simple injective vertex in any order.

(3) There exist N ⊆ [1, s] and N ′ ⊆ [1, t] as in Definition 6.7 such that EN (A)op ≃ EN ′(B)op

as algebras.

It follows from Theorem 6.2 that (1) implies (2). The equivalence of (1) and (3) is a consequence

of Corollary 6.12. Suppose that B is obtained from A by either deleting a node or gluing a

simple projective vertex and a simple injective vertex. By Lemma 6.13, A and B can be

embedded into a unique algebra without nodes which is obtained from A and B via sets N and

N ′ as in Definition 6.7. This holds for every step in the situation of (2). Thus, (2) implies (3).
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Example in Chapter 7. In Example 7.16 we construct all algebras B that are stably equivalent

to the algebra A in Section 7.4 such that there is a radical embedding B ↪→ A. In particular,

we calculate the matrix algebras Eσ(A) and EN (B) defined in this chapter.





Chapter 7

Examples

Let A and B be two finite dimensional algebras given by quivers with admissible relations. As

such, the semisimple quotients of A and B are separable.

Every section in this chapter is a self-contained example intended to illustrate different results

of the previous chapters. However, we often reference calculations done previously during the

same section. Throughout this chapter we use the following notation.

For a vertex i of the quiver, we denote the indecomposable projective A-module corresponding

to i by Pi and the indecomposable projective B-module corresponding to i by Qi. By abuse

of notation, the corresponding simple module is sometimes denoted by Si in both modA and

modB.

Let α be an arrow from vertex i to j in the quiver of A. Right multiplication by α gives a

morphism between the indecomposable projective left-modules P ∗
i → P ∗

j . By abuse of notation,

we denote this morphism by α as well. On the other hand, left multiplication by α gives a

morphism between the indecomposable projective modules Pj → Pi. We denote the morphism

given by left multiplication with the arrow α, β, γ, δ or ε by a, b, c, d or e respectively. The

same notation is used for morphisms in B.

7.1 Algebras stably equivalent of Morita type

In this section we take a closer look at two algebras A and B found in [29, Example 1] which

are stably equivalent of Morita type. Another focus will be on the equivalence F of Chapter 2

and perfect exact sequences.

In Example 7.1 we construct the image of a morphism under the functor F : modB → LB as

done in the proof of Lemma 2.4. The next four examples discuss perfect exact sequences. First,

we take a look at some perfect exact sequences and their corresponding distinguished triangles in

Example 7.2; cf. Proposition 2.18. As stated in Proposition 2.21, the pseudo-cokernel induces a

perfect exact sequence as well. This is discussed in Example 7.3. In Example 7.4, we specifically

153
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consider perfect exact sequences with projective middle term. Finally, in Example 7.5, we

explicitly follow the construction in Chapter 3 to show that a perfect exact sequence in modA

is preserved under a stable equivalence modA → modB. In the last example of this section,

Example 7.6, we verify that A and B are stably equivalent of Morita type using the results in

Chapter 5 and discuss some properties of this equivalence.

We consider two algebras A and B given by the following quivers and relations.

Quiver of A Quiver of B

1 2

3

α

βγ 1 2 3
α β

δ γ

Relations of A Relations of B

αβ γ α = γ α β = 0 αβ = α δ = γ δ = 0 and δ α = β γ

The algebra A has the following indecomposable projective modules. We also note their images

under the functor (−)∗.

P1 :=

1
2
3
1

, P2 :=

2
3
1
2

, P3 :=
3
1
2
, P ∗

1 :=

1
3
2
1

, P ∗
2 :=

2
1
3
2

, P ∗
3 :=

3
2
1

The algebra B has the following indecomposable projective modules. We also note their images

under the functor (−)∗.

Q1 :=
1
2, Q2 :=

2
1 3
2
, Q3 :=

3
2
3
, Q∗

1 :=
1
2, Q∗

2 :=
2
1 3
2
, Q∗

3 :=
3
2
3

The following table collects some properties of A and B.

Property A B

Nakayama algebra yes no

gldimA 4 4

Indecomposable projective-injective modules P1, P2 Q2, Q3

Indecomposable strongly projective-injective modules P1, P2 Q2, Q3

domdimA 3 3

ν -domdimA 3 3

Nodes none none
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The Auslander-Reiten quivers of A and B can be written as follows.

Auslander-Reiten quiver of A Auslander-Reiten quiver of B

2
3
1
2

1
2
3
1

3
1
2

2
3
1

1
2
3

1
2

3
1

2
3

1
2

1 3 2

1
2 3 2

1
1
2

1 3
2

2
1 3
2

2
1 3 2

3
2 1 2

3
3
2

3
2
3

For now, we concentrate on the algebra B. We will return to the algebra A later, when

discussing properties of stable equivalences between A and B.

Example 7.1. Let X := 2
1 3 and Y := 3

2 in modB. We aim to construct the image of the

non-zero morphism f : X → Y under the equivalence F : modB → LB as in Lemma 2.4. Since

f factors through the projective module Q3, we expect f • = F(f) to be homotopic to zero in

LB ⊆ Kb(projB). The minimal projective resolution of X is given by the following complex.

0→ Q1
d−→ Q2

(a c)
−−−→ Q1 ⊕Q3

(︄
d

−b

)︄
−−−→ Q2

ad−→ Q2 → 0

We have the exact sequence 0→ X∗ → Q∗
2 → Q∗

2 → Tr(X)→ 0 withX∗ = 13
2 and Tr(X) = 2

1 3
in B-mod. We extend δα : Q∗

2 → Q∗
2 to a minimal projective resolution of Tr(X) in B-mod.

0→ Q∗
1
α−→ Q∗

2

(δ −β)
−−−−→ Q∗

1 ⊕Q∗
3

(︄
α

γ

)︄
−−−→ Q∗

2
δα−→ Q∗

2 → 0

Applying (−)∗ and combining the resulting complex with the projective resolution from above,

we obtain the complex F •
2
1 3

= F •
X = F(X) ∈ LB.

F−5
X F−4

X F−3
X F−2

X F−1
X F 0

X F 1
X F 2

X F 3
X F 4

X

0 Q1 Q2 Q1 ⊕Q3 Q2 Q2 Q1 ⊕Q3 Q2 Q1 0

d−5
X d−4

X d−3
X d−2

X d−1
X d0X d1X d2X d3X

d (a c)

(︄
d

−b

)︄
ad (a c)

(︄
d

−b

)︄
a

Similarly, we obtain the complex F •
3
2
= F •

Y = F(Y ).

F−4
Y F−3

Y F−2
Y F−1

Y F 0
Y F 1

Y F 2
Y F 3

Y

0 Q1 Q2 Q3 Q3 Q2 Q1 0

d−4
Y d−3

Y d−2
Y d−1

Y d0Y d1Y d2Y

d c bc b a
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Now, we can lift the morphism f : X → Y to a morphism between the projective resolutions

τ⩽0 F
•
X of X and τ⩽0 F

•
Y of Y .

τ⩽0 F
•
X 0 Q1 Q2 Q1 ⊕Q3 Q2 Q2

τ⩽0 F
•
Y 0 0 Q1 Q2 Q3 Q3

d

0

(a c)

0

(︄
d

−b

)︄

0

ad

0 c

d c bc

This induces a morphism Tr(f) : Tr(Y ) → Tr(X) in B-mod. As before, we can lift this map

to a morphism between the projective resolutions τ⩾1F
• ,∗
Y of Y ∗ and τ⩾1F

• ,∗
X of X∗. We choose

the first two morphisms as in the lift τ⩽0 F
•
X → τ⩽0 F

•
Y of f .

τ⩾1F
• ,∗
Y 0 0 Q∗

1 Q∗
2 Q∗

3 Q∗
3

τ⩾1F
• ,∗
X 0 Q∗

1 Q∗
2 Q∗

1 ⊕Q∗
3 Q∗

2 Q∗
2

0

α

0

β

(0 β )

γβ

γ 0

α (δ −β )

(︄
α

γ

)︄
δα

In conclusion, we obtain the morphism f • = F(f) : F •
X → F •

Y .

F •
X 0 Q1 Q2 Q1 ⊕Q3 Q2 Q2 Q1 ⊕Q3 Q2 Q1 0

F •
Y 0 0 Q1 Q2 Q3 Q3 Q2 Q1 0 0

f •

d

0

(a c)

0

(︄
d

−b

)︄

0

ad

0

(a c)

c

(︄
d

−b

)︄
(︄
0

b

)︄ a

0 0

d c bc b a

We have a homotopy h• : F •
X → F •

Y [−1] with h1 =
(︃

0

1

)︃
: Q1 ⊕Q3 → Q3 and hk = 0 for k ̸= 1.

Thus, f • = 0 in K(projB) as expected since f = 0 in modB.

Similarly, we can construct all images under F for indecomposable non-projective B-modules.

This results in the following list of all indecomposable complexes in the category LB. Note that
we group complexes which are connected by applying a shift in LB.

degree : −5 −4 −3 −2 −1 0 1 2 3 4

F •
2
3
[3] = F •

1 3
2
[2] = F •

2 [1] = F •
1 : 0 Q1 Q2 Q1 ⊕Q3 Q2 Q1 0

F •
3 [2] = F •

3
2
[1] = F •

2
1
: 0 Q1 Q2 Q3 Q3 Q2 Q1 0

F •
2
1 3

: 0 Q1 Q2 Q1 ⊕Q3 Q2 Q2 Q1 ⊕Q3 Q2 Q1 0

d (a c)

(︄
d

−b

)︄
a

d c bc b a

d (a c)

(︄
d

−b

)︄
ad (a c)

(︄
d

−b

)︄
a

The categories modB and LB can be visualized as follows. In particular, the right hand side
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contains information about possible shifts in LB. The dashed lines indicate zero relations.

3 2
1 F •

3 F •
3 [2]

1 3
2

2
1 3 2 F •

2
3
[1] F •

2
1 3

F •
2
3
[2]

3
2 1 2

3
3
2 F •

3 [1] F •
2
3
[3] F •

2
3

F •
3 [1]

We continue with an example about perfect exact sequences in modB.

Example 7.2. Consider the following short exact sequence in modB.

η1 : 0→ 3→ 2
3 → 2→ 0

A direct calculation shows that η1 is a perfect exact sequence. In fact, we obtain the following

exact sequence in B-mod after applying (−)∗ to η1.

(η1)
∗ : 0→ 1

2 →
1 3
2 → 3→ 0

For instance, we have
(︂
2
3

)︂∗
≃ Ker(Q∗

2 → Q∗
1) ≃

1 3
2 . By Proposition 2.18 we therefore obtain

an induced distinguished triangle in K(projB).

F •
3 → F •

2
3
→ F •

2 →

We can use the information about the Auslander-Reiten quiver of B and the category LB to

verify this result in a different way.

The sequence 0 → 2
3 → 2 ⊕ Q3 → 3

2 → 0 is an almost split sequence with non-projective

starting term. Thus, it is a perfect exact sequence; cf. Example 2.11. We obtain the following

distinguished triangle in LB.
F •
2
3
→ F •

2 → F •
3
2
→

This induces the distinguished triangle

F •
3 → F •

2
3
→ F •

2 →

since F •
3
2
[−1] = F •

3 ∈ LB. We obtain a perfect exact sequence

0→ 3→ 2
3 ⊕Q→ 2→ 0
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with Q ∈ projB. Since the simple module 3 is not projective, this sequence is isomorphic to

the short exact sequence

η1 : 0→ 3→ 2
3 → 2→ 0

by Lemma 1.5. In particular, Q ≃ 0 and η1 is perfect exact.

Now, consider the following short exact sequence in modB.

η2 : 0→ 2→ 1 3
2 → 1⊕ 3→ 0

A direct calculation shows that η2 is not a perfect exact sequence. In fact,

(η2)
∗ : 0→ 0⊕ 3→ 2

3 →
1
2

is not a short exact sequence in B-mod. Note that 2 → 1 3
2 factors through the projective

module Q1. Thus, Lemma 2.13 verifies as well that η2 cannot be a perfect exact sequence.

Example 7.3. We consider the pseudo-cokernel of the injective morphism f : 2 → 1 3
2 in

modB. Let X := 2 and Y := 1 3
2 . We calculate as follows using that f • ≃ 0 in Kb(projA) since

f factors through Q1.

Cok(f) = H0(τ⩽0C(f)
• ) ≃ Cok

⎛⎜⎜⎝Q2 ⊕Q2

(︄
−a 0 0
0 a c

)︄
−−−−−→ Q1 ⊕Q1 ⊕Q3

⎞⎟⎟⎠ ≃ 1⊕ 1 3
2

We have F 1
X = Q1 = 1

2 and Cok(f) = 1 ⊕ 3. We write π : 12 → 1 and f ′ : 12 →
1 3
2 for the

respective non-zero morphism. This results in the following short exact sequence of the form

0→ F 1
X → Cok(f)→ Cok(f)→ 0 given in Lemma 2.22.

0→ 1
2

(π f ′)
−−−−→ 1⊕ 1 3

2 → 1⊕ 3→ 0

In particular, we have that Cok(f) and Cok(f) are not stably isomorphic. Thus, Lemma 2.22

shows that

η2 : 0→ 2
f−→ 1 3

2 → 1⊕ 3→ 0

is not a perfect exact sequence as we have already seen in the previous example. However, we

can extend f to a perfect exact sequence starting in X by Proposition 2.21. This perfect exact

sequence of the form 0→ X → F 1
X ⊕ Y → Cok(f)→ 0 is given by

0→ 2
(d f )
−−−→ 1

2 ⊕
1 3
2

(︄
π f ′

0 −1

)︄
−−−−−→ 1⊕ 1 3

2 → 0



7.1 Algebras stably equivalent of Morita type 159

where f = d f ′ with d induced by d0X : F 0
X → F 1

X . This perfect exact sequence is isomorphic to

the direct sum of a perfect exact sequence and a split exact sequence.

0→ 2
(d 0)
−−−→ 1

2 ⊕
1 3
2

(︄
π 0

0 1

)︄
−−−−→ 1⊕ 1 3

2 → 0

Note that f no longer explicitly occurs in this short exact sequence.

Example 7.4. We illustrate some of the results for perfect exact sequences with projective

middle term in Section 2.3. Let Si be the simple module with projective cover Qi for 1 ⩽ i ⩽ 3.

Note that the dominant dimension of B is positive.

We have S∗
1 = 0, S∗

2 = 1
2 and S∗

3 = 3 in B-mod. As stated in Lemma 2.26, the projective cover

Q1 of S1 is not injective since S∗
1 = 0. On the other hand, we have Q2, Q3 ∈ PB. Moreover,

S∗
1 = 0 implies F 1

S1
= 0 so that F •

S1
∈ LB is the minimal projective resolution of S1. In

particular, F •
S1
[1] ̸∈ LB as seen above.

In contrast, S∗
3 ̸= 0 so that F •

S3
[1] ∈ LB by Lemma 2.24. In fact, F •

S3
[1] = F •

3
2
and the

distinguished triangle F •
S3
→ 0 → F •

3
2
→ in K(projB) induces a perfect exact sequence with

projective middle term Q3 = F 1
S3
; cf. Lemma 2.25.

0→ 3→ Q3 → 3
2 → 0

On the other hand, for the non-simple module X := 2
1 3 we also have X∗ = 13

2 ̸= 0. Equiv-

alently, this means F 1
X = Q1 ⊕ Q3 ̸= 0. However, F •

X [1] ̸∈ LB since H0(F •
X) ̸= 0. While we

have a non-zero morphism X → Q1 ⊕ Q3, it is not injective. Thus, the implication (5) ⇒ (4)

in Lemma 2.24 does not hold in general.

Example 7.5. We give an example for the construction done in Section 3.2 about perfect exact

sequences and stable equivalences. Since A is a Nakayama algebra, we often use the following

notation for morphisms between indecomposable modules in modA during this example. By

abuse of notation, the embedding of a submodule is denoted by f and the projection onto a

quotient module by g. We mainly want to distinguish which morphisms are zero or the identity.

We have a stable equivalence α : modA→ modB induced by the Auslander-Reiten quivers.

2
3
1

1
2
3

3 2
1

3
1

2
3

1
2

1 3
2

2
1 3 2

1 3 2 1 3
2 1 2

3
3
2

α



160 7 Examples

Note that both A and B have no nodes and are of finite representation type. In particular, the

assumptions of Corollary 3.20 hold. We aim to show that the perfect exact

η0 : 0→
2
3
1

f−→
1
2
3
1

g−→ 1→ 0

in modA is preserved by the stable equivalence α using the constructions of Chapter 3. The

short exact sequence η0 is in fact perfect exact by Lemma 2.14.

Following the proof of Theorem 3.19, we first construct a series of perfect exact sequences. We

use the notation of Construction 3.11. For the construction step η0 ⇝ η̃0 we need the following

almost split sequence.

χ0 : 0→
2
3
1

(f g)
−−−→

1
2
3
1

⊕ 2
3

(︄
−g
f

)︄
−−−−→

1
2
3
→ 0

For the construction step η1 ⇝ η̃1 we need the following almost split sequence.

χ1 : 0→ 2
3

(f g)
−−−→

1
2
3
⊕ 2

(︄
−g
f

)︄
−−−−→ 1

2 → 0

This results in the following chain of morphisms ending in the almost split sequence η2. Note

that the composite

1
2
3
1

→ 1
2 of the middle morphisms in the chain is non-zero.

η0 : 0
2
3
1

1
2
3
1

1 0

η̃0 : 0

1
2
3
1

⊕ 2
3

1
2
3
1

⊕
1
2
3

1 0

η1 : 0 2
3

1
2
3

1 0

η̃1 : 0
1
2
3
⊕ 2

1
2
3
⊕ 1

2 1 0

η2 : 0 2 1
2 1 0

f

(f g)

g

(1 0)(︄
1−g
0 f

)︄

(︄
0

1

)︄

(︄
g

g

)︄

(︄
g

1

)︄

f

(f g)

g

(1 0)(︄
1−g
0 f

)︄

(︄
0

1

)︄

(︄
g

g

)︄

(︄
g

1

)︄
f g
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All occurring almost split sequences have non-projective starting terms. Thus, they are pre-

served by the stable equivalence α; cf. Proposition 3.17. By abuse of notation, we denote the

perfect exact sequence in modB corresponding to a perfect exact sequence η in modA by α(η).

Inductively, we now construct perfect exact sequences in modB starting with η2. The sequence

α(η2) is the almost split sequence in modB starting in α(2) = 2
3.

α(η2) : 0→ 2
3 → 2⊕

3
2
3
→ 3

2 → 0

Moreover, we have the almost split sequence α(χ1) in modB corresponding to the almost split

sequence χ1.

α(χ1) : 0→ 2
1 3 →

2
1 ⊕

2
3 → 2→ 0

We want to use Lemma 3.18 applied to η1 and α(η̃1). In order to obtain a perfect exact

sequence corresponding to η̃1, we have to form the direct sum of the split sequence consisting

of the module 2
1 = α

(︃1
2
3

)︃
and the sequence α(η2). We also rearrange the modules to fit the

ordering in Lemma 3.18.

α(η̃1) : 0→ 2
1 ⊕

2
3 → (21 ⊕

3
2
3
)⊕ 2→ 3

2 → 0

Now, we can use Lemma 3.8 as in the proof of Lemma 3.18 to obtain a perfect exact sequence

in modB corresponding to η1.

α(η1) : 0→ 2
1 3 →

2
1 ⊕

3
2
3
→ 3

2 → 0

In the notation of Lemma 3.8.(1) this equates to the following assignment.

X := 2
1 3 U := 2

1 ⊕
2
3 P := 0 V := 2

U = 2
1 ⊕

2
3 Y := 2

1 ⊕
3
2
3

V = 2 Z := 2
3

For the next step, we have the almost split sequence α(χ0) in modB corresponding to the

almost split sequence χ0.

α(χ0) : 0→ 3→ 2
1 3 →

2
1 → 0

Again, we want to use Lemma 3.18. This time, η̃0 is the direct sum of η1 and a split sequence

consisting of the projective module P1. Thus, we have α(η̃0) ≃ α(η1). Applying Lemma 3.8,

we obtain a perfect exact sequence in modB corresponding to η0.

α(η0) : 0→ 3→
3
2
3
→ 3

2 → 0
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A direct calculation verifies that α(η0) is in fact a perfect exact sequence. Note that α(η0) has

a projective middle term, as was the case for η0.

Before continuing with the next example, we collect all indecomposable complexes in the cate-

gories LA and LB. Note that the complexes in LB have already been listed in Example 7.1.

The category LA consists of the following indecomposable complexes.

degree : −5 −4 −3 −2 −1 0 1 2 3 4

F •
2 [3] = F •

3
1
[2] = F •

1
2
[1] = F •

3 : 0 P3 P2 P3 P1 P3 0

F •
2
3
1

[2] = F •
1 [1] = F •

1
2
3

: 0 P3 P2 P2 P1 P1 P3 0

F •
2
3

: 0 P3 P2 P3 P1 P2 P3 P1 P3 0

b ac ba c

b acb a cba c

b ac ba cb ac ba c

The category LB consists of the following indecomposable complexes.

degree : −5 −4 −3 −2 −1 0 1 2 3 4

F •
2
3
[3] = F •

1 3
2
[2] = F •

2 [1] = F •
1 : 0 Q1 Q2 Q1 ⊕Q3 Q2 Q1 0

F •
3 [2] = F •

3
2
[1] = F •

2
1
: 0 Q1 Q2 Q3 Q3 Q2 Q1 0

F •
2
1 3

: 0 Q1 Q2 Q1 ⊕Q3 Q2 Q2 Q1 ⊕Q3 Q2 Q1 0

d (a c)

(︄
d

−b

)︄
a

d c bc b a

d (a c)

(︄
d

−b

)︄
ad (a c)

(︄
d

−b

)︄
a

Example 7.6. It was shown in [29, Example 1] that A and B are stably equivalent of Morita

type. We aim to verify this with our techniques. We have a functor G : projA→ projB given

by the following.

P2
a−→ P1 ↦→ Q2 ⊕Q3

(︄
1 0

0 bc

)︄
−−−−→ Q2 ⊕Q3 P2

ac−→ P3 ↦→ Q2 ⊕Q3

(︄
a c

0 bc

)︄
−−−−→ Q1 ⊕Q3

P3
b−→ P2 ↦→ Q1 ⊕Q3

(︄
d 0

−b 1

)︄
−−−−−→ Q2 ⊕Q3 P3

ba−→ P1 ↦→ Q1 ⊕Q3

(︄
d 0

−b bc

)︄
−−−−−→ Q2 ⊕Q3

P1
c−→ P3 ↦→ Q2 ⊕Q3

(︄
a c

0 1

)︄
−−−−→ Q1 ⊕Q3 P1

cb−→ P2 ↦→ Q2 ⊕Q3

(︄
0 c

−b 1

)︄
−−−−−→ Q2 ⊕Q3

P2
acb−−→ P2 ↦→ Q2 ⊕Q3

(︄
0 c

0 bc

)︄
−−−−→ Q2 ⊕Q3 P1

cba−−→ P1 ↦→ Q2 ⊕Q3

(︄
0 0

−b bc

)︄
−−−−−→ Q2 ⊕Q3

Let MB := G(A) = (Q2 ⊕ Q3) ⊕ (Q2 ⊕ Q3) ⊕ (Q1 ⊕ Q3). We write λx : A → A for the left

multiplication with x ∈ A. Then M has a left A-module structure given by x ·m := mG(λx)
for x ∈ A and m ∈ M . Together, we obtain a bimodule AMB. We show that the functor

−⊗AM : modA→ modB induces a functor LA → LB by componentwise application.

Consider the complex F •
3 ∈ LA.

F •
3 : 0→ P3

b−→ P2
ac−→ P3

ba−→ P1
c−→ P3 → 0
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We have the following morphism φ : F •
3 ⊗AM → F •

1 in K(projB).

0 Q1 ⊕Q3 Q2 ⊕Q3 Q1 ⊕Q3 Q2 ⊕Q3 Q1 ⊕Q3 0

0 Q1 Q2 Q1 ⊕Q3 Q2 Q1 0

(︄
d 0

−b 1

)︄
(︄
1

0

)︄
(︄
a c

0 bc

)︄
(︄
1

b

)︄
(︄
d 0

−b bc

)︄ (︄
a c

0 1

)︄
(︄
1

0

)︄ (︄
1

0

)︄
d (a c)

(︄
d

−b

)︄
a

Conversely, we do have the following morphism ψ : F •
1 → F •

3 ⊗AM in K(projB).

0 Q1 Q2 Q1 ⊕Q3 Q2 Q1 0

0 Q1 ⊕Q3 Q2 ⊕Q3 Q1 ⊕Q3 Q2 ⊕Q3 Q1 ⊕Q3 0

d

(1 0)

(a c)

(1 0)

(︄
d

−b

)︄
a

(1 −c)
(1 0)(︄

d 0

−b 1

)︄ (︄
a c

0 bc

)︄ (︄
d 0

−b bc

)︄ (︄
a c

0 1

)︄

We have ψ φ = idF •
1
and a direct calculation shows that φψ = idF •

3 ⊗AM in K(projB). As

a result, F •
3 ⊗A M ≃ F •

1 ∈ LB. Similarly, we have isomorphisms F •
1
2
3

⊗A M ≃ F •
2
1

and

F •
2
3
⊗AM ≃ F •

2
1 3

in LB.

Since − ⊗A M commutes with the shift, this results in a functor − ⊗A M : LA → LB. In

particular, − ⊗A M : modA → modB preserves projective resolutions and therefore is an

exact functor; see also the proof of Theorem 5.13. It remains to show that −⊗AM induces a

stable equivalence. Then, M and HomB(M,B) induce a stable equivalence of Morita type by

Theorem 5.13.

The irreducible morphism f : 2 → 1
2 in modA can be lifted to a morphism between the

projective presentations.

P3 P2 2 0

P3 P1
1
2 0

b

a f

ba

Applying G to this projective presentation and taking the cokernel gives the morphism f ⊗M
since −⊗AM is exact.

Q1 ⊕Q3 Q2 ⊕Q3
2
3 0

Q1 ⊕Q3 Q2 ⊕Q3 2⊕Q3 0

(︄
d 0

−b 1

)︄

(︄
1 0

0 bc

)︄
f⊗M

(︄
d 0

−b bc

)︄
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We see that f ⊗M is isomorphic in modB to the unique non-zero morphism 2
3 → 2. Similarly,

we can check this for all other irreducible morphisms. Together, we obtain that −⊗AM ≃ α,

where α is the stable equivalence induced by the Auslander-Reiten quiver we discussed in

Example 7.5. This shows that −⊗AM is a stable equivalence.

If we already know that − ⊗A M is a stable equivalence, then M and HomB(M,B) induce

a stable equivalence of Morita type if one of the conditions of Theorem 5.19.(2) is satisfied.

We have seen above, that − ⊗A M induces an equivalence LA → LB. Moreover, A is a

Nakayama algebra without nodes and S3 ⊗A M is simple in modB. Finally, we also have

natural isomorphisms νB(P ⊗AM) ≃ νA(P )⊗AM . In fact, we have the following.

νB(Pi ⊗AM) ≃ νB(Q2 ⊕Q3) ≃ Q2 ⊕Q3 ≃ Pi ⊗AM ≃ νA(Pi)⊗AM for i = 1, 2

νB(P3 ⊗AM) ≃ νB(Q1 ⊕Q3) ≃ 2
1 ⊕Q3 ≃

1
2
3
⊗AM ≃ νA(P3)⊗AM

By Theorem 5.8, a stable equivalence of Morita type induces triangulated equivalences

HP(projA) ≃ HP(projB) and Hstp(projA) ≃ Hstp(projB) via componentwise application of

−⊗AM . However, −⊗AM does not induce an equivalence between H(projA) and H(projB).

In fact, we have P3 ∈ H(projA) concentrated in degree zero with EndH(projA)(P3) ≃ k. On the

other hand, we have EndH(projB)(P3 ⊗M) ≃ EndH(projB)(Q1 ⊕ Q3) ̸≃ k. The same argument

shows that −⊗AM does not induce an equivalence between K(projA) and K(projB).

At the end of this example, we return to the perfect exact sequence η0 of Example 7.5.

η0 : 0→
2
3
1
→

1
2
3
1

→ 1→ 0

Applying −⊗AM , we obtain the following perfect exact sequence.

η0 ⊗AM : 0→ 3⊕
2
1 3
2
→

2
1 3
2
⊕

3
2
3
→ 3

2 → 0

This sequence is the direct sum of the split exact sequence 0→ Q2
1−→ Q2 → 0 and the following

perfect exact sequence we constructed in Example 7.5.

0→ 3→
3
2
3
→ 3

2 → 0
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7.2 Algebra with infinite global dimension

In this section we discuss some of the results which are specific to an algebra with infinite global

dimension. We start in Example 7.7 by comparing the stable Grothendieck group Gst
0 (A)

with the group GP
0(A) introduced in Definition 4.15. The next Example 7.8 is dedicated to

calculate the stable category of Gorenstein-projective modules of A. The last example of this

section, Example 7.9, compares the different triangulated subcategories of K(projA) discussed
in Chapter 4. In particular, we list complexes which show that all of these categories can be

different.

Let A be the quiver algebra over k given by the quiver

1 2

3

α

βγ

with relations β γ α = γ α β = 0. The algebra has the following indecomposable projective

modules. We also note their images under (−)∗.

P1 :=

1
2
3
1

, P2 :=
2
3
1
, P3 :=

3
1
2
, P ∗

1 :=

1
3
2
1

, P ∗
2 :=

2
1
3
, P ∗

3 :=
3
2
1

We collect some properties of A.

Property A

Nakayama algebra yes

gldimA ∞
Indecomposable projective-injective modules P1, P3

Indecomposable strongly projective-injective modules P1

domdimA 2

ν -domdimA 0

Nodes none

The Auslander-Reiten quiver of A can be written as follows.

1
2
3
13

1
2

2
3
1

1
2
3

1
2

3
1

2
3

1
2

1 3 2
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The category LA contains the following indecomposable complexes. Note that we group com-

plexes which are connected by applying a shift in LA.

degree : −5 −4 −3 −2 −1 0 1 2 3

F •
1
2
3

: 0 P2 P1 P1 P3 0

F •
1
2
[1] = F •

3 : · · · P2 P3 P2 P3 P1 P3 0

F •
1 [1] = F •

2
3
: 0 P2 P1 P2 P3 P2 P3 · · ·

F •
3
1
[1] = F •

2 : · · · P3 P2 P3 P2 P3 P2 P3 P2 P3 · · ·

a cba c

ac b ac ba c

a cb ac b ac

b ac b ac b ac b ac

The categories modA and LA can be visualized as follows. In particular, the right hand side

contains information about possible shifts in LA. The dashed lines indicate zero relations.

1
2
3

F •
1
2
3

3
1

2
3

1
2 F •

3
1

F •
1 [1] F •

1
2

1 3 2 1 F •
1 F •

1
2
[1] F •

3
1
[1] F •

1

Example 7.7. We aim to calculate the group GP
0(A) of Definition 4.15. Recall that we have

GP
0(A) ≃ G0(HP(projA)) by Theorem 4.16. In case that F • [1] ∈ LA for F • ∈ LA, we have the

following distinguished triangle in LA.

F • → 0→ F • [1]→

By Proposition 2.18, we obtain a corresponding perfect exact sequence with projective middle

term. This implies [X] = −[Y ] in GP
0(A) if F •

X [1] ≃ F •
Y ∈ LA. Using this, the perfect exact

sequence

0→ 2
3 →

1
2
3
→ 1→ 0

with F •
1 [1] = F •

2
3
yields

[︂
2
3

]︂
= − [S1] and

[︃1
2
3

]︃
= 0. Furthermore, we have

[︂
1
2

]︂
= −[S3] and[︂

3
1

]︂
= −[S2] since F

•
1
2
[1] = F •

3 and F •
3
1
[1] = F •

2 . The perfect exact sequence

0→ S1 → 3
1 → S3 → 0



7.2 Algebra with infinite global dimension 167

implies
[︂
3
1

]︂
= [S1] + [S3]. In conclusion, we obtain the following.

[︂
1
2

]︂
= −[S3][︂

2
3

]︂
= −[S1][︂

3
1

]︂
= −[S2] = [S1] + [S3][︃1

2
3

]︃
= 0.

Thus, GP
0(A) is generated by the classes of the simple modules S1 and S3.

We want to compare this with the stable Grothendieck group Gst
0 (A). By Remark 4.18, we

have a surjective group homomorphism GP
0(A) → Gst

0 (A). In particular, the above equations

still hold in Gst
0 (A). Additionally, we know that the class in Gst

0 (A) of every module with finite

projective dimension is zero. Hence, we obtain
[︂
2
3

]︂
st
= [S1]st = 0 in Gst

0 (A). This results in the

following. [︂
3
1

]︂
st
= −

[︂
1
2

]︂
st
= −[S2]st = [S3]st[︃1

2
3

]︃
st

=
[︂
2
3

]︂
st
= [S1]st = 0

Thus, Gst
0 (A) is already generated by the class of the simple module S3.

Example 7.8. We calculate the category of stable Gorenstein-projective modules.

We have F •
2 [2k] ≃ F •

2 ∈ LA for all k ∈ Z. By Lemma 4.38, we obtain that F •
2 and F •

3
1
are

indecomposable complexes in Ktac(projA). None of the other complexes are periodic, so that

these are the only ones. In particular, we have that the indecomposable modules of GprojA

are given by 2 and 3
1 with no non-zero morphism between them.

Note that A is a Gorenstein algebra. Thus, Dsg(A) is equivalent to GprojA.

Example 7.9. Consider the following inclusions of categories.

Ktac(projA) LA HP(projA) Hstp(projA) H(projA) K(projA)

GprojA modA

∼ F∼

Since (0) ⊂ stpA ⊂ PA ⊂ projA are proper subsets, the above inclusions must be proper as

well; see also Theorem 4.45 and Lemma 4.29. We verify this by constructing a complex for

each category.
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Recall the indecomposable elements of LA listed above. In Example 7.8 we have already seen

thatKtac(projA) is a proper subset of LA. On the other hand, every shift of F •
1
2
3

is still an element

of HP(projA) but no longer an element of LA. However, not every complex in HP(projA) is

obtained by shifting a complex in LA.

Consider the following complexes in K(projA).

G•
1 : 0 P2 P1 P2 P3 P1 P3 0

G•
2 : · · · P3 P2 P3 P2 P3 P2 0

G•
3 : · · · P3 P2 P3 P2 P3 P1 0

G•
4 : · · · P1 P1 P1 P1 P1 P1 · · ·

a cb ac ba c

b ac b ac b

b ac b ac ba

cba cba cba cba cba

A direct calculation yields that Hk(G•
1) ∈ {0, S3} for all k ∈ Z. Since S3 ∈ ⊥PA, we have

G•
1 ∈ HP(projA); cf. Lemma 4.5. However, neither G•

1 nor a shift thereof is an element of LA.

For the next complex, we have Hk(G•
2) ∈ {0, S2} for all k ∈ Z where S2 occurs only as coho-

mology in the degree of the last non-negative term. Since S2 ∈ ⊥(stpA) but S2 ̸∈⊥PA, we have
G•

2 ∈ Hstp(projA) and G
•
2 ̸∈ HP(projA); cf. Lemma 4.5.

The complex G•
3 has

1
2 as non-zero cohomology in a single degree. Since 12 ̸∈

⊥(stpA), we obtain

G•
3 ̸∈ Hstp(projA) as before. However, we have H

k(G•
3) = 0 in all other degrees and G•

3 is right

bounded, so that G•
3 is an element of H(projA).

Finally, we have Hk(G•
4) =

2
3 for all k. Thus, G•

4 ∈ K(projA) is not an element of H(projA).
Note that the truncation τ⩽0G

•
4 and the truncation τ⩾0G

•
4 are not an element of H(projA) as

well. However, we have G•
4 ∈ ⊥Kb(stpA) which affirms that the restriction to the category

H(projA) is necessary in the definition of the smallest triangulated subcategory that contains

LA.
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7.3 Triangulated categories inside K(projA)

The main purpose of this section is to calculate the categories HP(projA) and Hstp(projA)

of Chapter 4 explicitly. This is done in Example 7.10. In the next Example 7.11, we follow

the constructions in Section 4.1 which where used to show the minimality of HP(projA).

Finally, we illustrate the associated self-injective algebra of A and its connection to the category

Hstp(projA) in Example 7.12.

Let A be the quiver algebra over k given by the quiver

1

2 3 4 5

α

β

γ

δ ε

with relations αβ = γ α = β δ = δ ε = 0. The algebra has the following indecomposable

projective modules. We also note their images under (−)∗.

P1 :=
1
2, P2 :=

2
3
1
, P3 :=

3
1 4, P4 :=

4
5, P5 := 5

P ∗
1 :=

1
3
2
, P ∗

2 := 2
1, P ∗

3 := 3
2, P ∗

4 := 4
3, P ∗

5 := 5
4

We collect some properties of A.

Property A

Nakayama algebra no

gldimA 5

Indecomposable projective-injective modules P1, P2, P4

Indecomposable strongly projective-injective modules P1, P2

domdimA 0

ν -domdimA 0

Nodes S1, S2, S4

The Auslander-Reiten quiver of A can be written as follows.

4
5

2
3
1

5 4 3
1

2
3

3
1 4 3 2 1

1 3
4

1
2
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The category LA contains the following indecomposable complexes.

degree : −6 −5 −4 −3 −2 −1 0 1 2 3

F •
3
4
: 0 P5 P4 P3 P2 P1 P3 0

F •
2
3
: 0 P5 P4 P3 P2 P1 P2 P1 P3 0

F •
3 : 0 P5 P4 P3 P2 ⊕ P5 P1 ⊕ P4 P3 0

e d b a c

e d b a cb a c

e d (b 0)

(︄
a 0

0 e

)︄ (︄
c

d

)︄

Furthermore, we have F •
4 [4] = F •

3
1
[3] = F •

2 [2] = F •
1 [1] = F •

3
4
.

The categories modA and LA can be visualized as follows. In particular, the right hand side

contains information about possible shifts in LA. The dashed lines indicate zero relations.

4 3
1

2
3 F •

4 F •
4 [1] F •

2
3

3 2 F •
3 F •

4 [2]

1 3
4 F •

4 [3] F •
4 [4]

Example 7.10. We aim to calculate the categories HP(projA) and Hstp(projA). Since A has

finite global dimension, both categories are contained in Kb(projA) ≃ H(projA). First, we

construct all complexes in Hstp(projA). Afterwards we can identify those that are an element

of HP(projA).

A complex F • ∈ Hstp(projA) satisfies Hk(F • ) ∈ ⊥(stpA). The following indecomposable

modules are an element of ⊥(stpA). These are precisely those that have no composition factor

isomorphic to S1 or S2.

3, 3
4, 4, 4

5, 5

Similarly, we obtain the indecomposable modules in⊥PA which we will need later.

3, 3
4, 4

We will use an integer n ⩾ 1 to index some of our complexes. We write (P2
a−→ P1)

→n for the

periodic complex

P2
a−→ P1

cb−→ P2
a−→ P1

cb−→ · · · cb−→ P2
a−→ P1

with P2 appearing n-times. Furthermore, we write P
f−→ (P2

a−→ P1)
→0 g−→ P2⊕Q for the complex

P
(f 0)
−−−→ P2 ⊕Q where f : P → P2 and g : P1 → P2 ⊕Q are morphisms in projA.
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We have the following indecomposable complexes in Hstp(projA) with n ⩾ 1.

degree : −8 −7 −6 −5 −4 −3 −2 −1 0 1

P •
5 : 0 P5 0

P •
4 : 0 P4 0

S• : 0 P5 P4 0

X1(n)
• : 0 P3 (P2 P1)

→n P3 0

X2(n)
• : 0 P4 P3 (P2 P1)

→n P3 0

X3(n)
• : 0 P5 P4 P3 (P2 P1)

→n P3 0

Y1(n)
• : 0 P3 (P2 P1)

→(n−1) P2 P1 ⊕ P4 P3 0

Y2(n)
• : 0 P4 P3 (P2 P1)

→(n−1) P2 P1 ⊕ P4 P3 0

Y3(n)
• : 0 P5 P4 P3 (P2 P1)

→(n−1) P2 P1 ⊕ P4 P3 0

Z1(n)
• : 0 P3 (P2 P1)

→(n−1) P2 ⊕ P5 P1 ⊕ P4 P3 0

Z2(n)
• : 0 P4 P3 (P2 P1)

→(n−1) P2 ⊕ P5 P1 ⊕ P4 P3 0

Z3(n)
• : 0 P5 P4 P3 (P2 P1)

→(n−1) P2 ⊕ P5 P1 ⊕ P4 P3 0

e

b a c

d b a c

e d b a c

b a cb (a 0)

(︄
c

d

)︄

d b a cb (a 0)

(︄
c

d

)︄

e d b a cb (a 0)

(︄
c

d

)︄

b a (cb 0)

(︄
a 0

0 e

)︄ (︄
c

d

)︄

d b a (cb 0)

(︄
a 0

0 e

)︄ (︄
c

d

)︄

e d b a (cb 0)

(︄
a 0

0 e

)︄ (︄
c

d

)︄

It remains to show that every indecomposable complex in Hstp(projA) is isomorphic to a shift

of an entry of this list. First, we note that this holds for the elements of LA. More precisely,

the indecomposable complexes in LA are isomorphic to one of the following complexes.

X3(1)
• , X3(1)

• [−1], X3(1)
• [−2], X3(1)

• [−3], X3(1)
• [−4], X3(2)

• [−2], Z3(1)
•

Let F • ∈ Hstp(projA). By Lemma 4.6, there exists a projective resolution P • of a cohomology

in ⊥(stpA) and a complex C• ∈ Hstp(projA) such that there is a distinguished triangle of the

following form.

P • [−k]→ F • → C• →

In this triangle, k ∈ Z is chosen such that Hi(F • ) = 0 for i < k. Then we have Hi(C• ) = 0

for i ⩽ k. As in the proof of Lemma 4.7, we inductively arrive at a complex C• with

C• [r] ∈ LA for some r ∈ Z. For the purposes of this example, we will use the shifted tri-

angle C• [−1]→ P • [−k]→ F • → .
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Let P • be a projective resolution of a module in ⊥(stpA). Let C• be a complex appearing in

the list above. In particular, this includes all indecomposable complexes in LA. Let k ∈ Z such

that Hi(C• ) = 0 for i ⩽ k + 1. That is, C• is exact in every degree smaller or equal to k and

also exact in degree k + 1. Consider the following distinguished triangle.

C• f •

−→ P • [−k]→ C(f)• →

For every possible choice of P • , C• , k and f • , a direct calculation shows that C(f)• is isomorphic

to a direct sum of complexes appearing in the list above. Thus, every indecomposable complex

F • ∈ Hstp(projA) is isomorphic to a shift of a complex in this list.

The following complexes are the indecomposable elements of HP(projA) up to shifts. These

are precisely the complexes appearing in the list above with cohomology in⊥PA.

S• , X1(n)
• , X3(n)

• , Z1(n)
• , Z3(n)

• for n ⩾ 1

One of the Auslander-Reiten components in Kb(projA) containing LA can be written as follows.

The other component is given by a shift of [1]. Both components together form precisely the

category Hstp(projA); cf. also Remark 4.28.

Complexes F • ∈ LA are marked as F • . Complexes F • ∈ HP(projA) are marked as F • .

X3(3)
• [−4]

Z3(2)
• [−2] X1(2)

• [−4]

Y3(2)
• [−2] Z1(1)

• [−2] X2(2)
• [−4]

X3(2)
• [−2] Y1(1)

• [−2] Z2(1)
• [−2] X3(2)

• [−4]

Z3(1)
• X1(1)

• [−2] Y2(1)
• [−2] Z3(1)

• [−2] X1(1)
• [−4]

Y3(1)
• S• [1] X2(1)

• [−2] Y3(1)
• [−2] S• [−1] X2(1)

• [−4]

X3(1)
• P •

4 [1] P •
5 [2] X3(1)

• [−2] P •
4 [−1] P •

5 X3(1)
• [−4]

Example 7.11. We use the methods provided in Section 4.1 to verify that the complex

F • := X1(1)
• : 0→ P3

b−→ P2
a−→ P1

c−→ P3 → 0
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is an element of every triangulated subcategory T of Kb(projA) that contains LA. By going

through the following steps in reverse order, this also provides a way to construct F • via

complexes in LA. Note that in this example, several steps that were necessary for the general

case are either simplified or not necessary at all.

Step 1. It suffices to consider projective resolutions of modules in⊥PA; cf. Lemma 4.7.

We have H0(F • ) = 3
4, H

−3(F • ) = S4 and Hk(F • ) = 0 for k ̸∈ {0, −3}. Furthermore, we have

H0(F
∗
• ) = 0. In particular, note that Hk(F • ) ∈⊥PA as stated in Lemma 4.5.

In the notation of Lemma 4.7, we may choose r = 0. Then k = −3 is the only degree in Z<r
with non-zero cohomology. The minimal projective resolution of S4 is given by

S• : 0→ P5
e−→ P4 → 0 .

We have the following distinguished triangle in Kb(projA); cf. Lemma 4.6.

0 P5 P4 0 S• [3]

0 0 P3 P2 P1 P3 0 F •

0 P5 P4 P3 P2 P1 P3 0 C(f • )

e

d f •

b a c

e d b a c

In this case, we already have C(f • ) = F •
3
4
∈ L. No further construction is necessary during this

step. It remains to consider the projective resolution S• of S4.

Step 2. It suffices to consider projective resolutions of simple modules in⊥PA; cf. Lemma 4.9.

Only one projective resolution was used in step 1. In this case, nothing needs to be done during

this step, since S• is already a projective resolution of a simple module.

Step 3. All projective resolutions of simple modules S ∈⊥PA are in T ; cf. Lemma 4.10.

Consider the projective resolution S• of S4. The injective hull of S4 is given by I := 3
4. Note

that I is not projective since S4 is an element of ⊥PA. We obtain the following distinguished

triangle.

0 P5 P4 0 S•

0 P5 P4 P3 P2 P1 P3 0 F •
I

0 P5 P4 P3 P2 ⊕ P5 P1 ⊕ P4 P3 0 C(g• )

e

0 d g•

e d b a

(1 0)

c

(1 0)

e d (b 0)

(︄
a 0

0 e

)︄ (︄
c

d

)︄
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We have C(g• ) ≃ F •
3 ∈ LA. Note that 0 → 4 → 3

4 → 3 → 0 is not a perfect exact sequence,

since the first morphism factors through the projective module P3 =
3
1 4.

In conclusion, we have the following two distinguished triangles with F •
3
4
, F •

3 ∈ LA.

S• g•

−→ F •
3
4
→ F •

3 → This triangle implies S• ∈ T .

S• [3]
f •

−→ F • → F •
3
4
→ This triangle implies F • ∈ T .

Example 7.12. We discuss the associated self-injective algebra of A. Consider the following

complex F • := X2(1)
• ∈ Hstp(projA).

0→ P4
d−→ P3

b−→ P2
a−→ P1

c−→ P3 → 0

Let e = e1+e2 be the sum of the primitive idempotents corresponding to the strongly projective-

injective modules P1 and P2. The algebra eAe is isomorphic to the quiver algebra A′ given by

the quiver

1 2
α′

β′

and relations α′ β′ = β′ α′ = 0. We denote the indecomposable projective modules by P ′
1 :=

1
2

and P ′
2 := 2

1. Let S ′
1 be the simple module in modA′ corresponding to P ′

1. We obtain the

following complex (Fe)• ∈ Kb(mod eAe).

(Fe)−4 (Fe)−3 (Fe)−2 (Fe)−1 (Fe)0 (Fe)1

0 S ′
1 P ′

2 P ′
1 S ′

1 0

∼ ∼ ∼ ∼ ∼ ∼

As stated by Lemma 4.30, we see that (Fe)• is exact in every degree. On the other hand, it

seems difficult to construct Hstp(projA) by lifting exact complexes in K(mod eAe) to projective

complexes in Hstp(projA).

7.4 Algebras stably equivalent by deleting nodes

In this section, we discuss two stably equivalent algebras A and B. The algebra A has no

nodes, whereas the algebra B has two nodes. We mainly aim to illustrate the constructions of

Chapter 6 in Example 7.16. In Example 7.15 we additionally take a look at some properties

discussed in the previous chapters that are not preserved by stable equivalences induced by

deleting nodes.
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Independently of this, Example 7.13 provides two short exact sequences that are not perfect

exact. This is done in context of Lemma 2.13. Moreover, we show in Example 7.14 that the

non-projective simple modules of A do not generate the group GP
0(A).

We consider two algebras A and B given by the following quivers and relations.

Quiver of A Quiver of B

1 2 3

4 5 6

α β

ε

γ δ

1 2 5 6
α

β

ε
γ

δ

Relations of A Relations of B

α ε = γ δ = 0 α ε = γ δ = β α = δ γ = 0

The algebra A has the following indecomposable projective modules. We also note their images

under the functor (−)∗.

P1 :=
1
2
3
, P2 :=

2
3 5
6
, P3 := 3, P4 :=

4
5, P5 :=

5
6, P6 := 6

P ∗
1 := 1, P ∗

2 := 2
1, P ∗

3 :=
3
2
1
, P ∗

4 := 4, P ∗
5 := 5

2 4, P ∗
6 :=

6
5
2

The algebra B has the following indecomposable projective modules. We also note their images

under the functor (−)∗.

Q1 :=
1
2
1
, Q2 :=

2
1 5
6
, Q5 :=

5
6, Q6 :=

6
5

Q∗
1 :=

1
2
1
, Q∗

2 :=
2
1, Q∗

5 :=
5
2 6, Q∗

6 :=
6
5
2

The following table collects some properties of A and B.

Property A B

Nakayama algebra no no

gldimA 2 ∞
Indecomposable projective-injective modules P1 Q1

Indecomposable strongly projective-injective modules none Q1

domdimA 0 0

Nodes none S1, S6
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The Auslander-Reiten quivers of A and B can be written as follows.

Auslander-Reiten quiver of A Auslander-Reiten quiver of B

3
2
5
6

2
3 5
6

2
5 4

5
6

2
3 5

2 4
5

6 5 2 4
3 5 2 1

4
5

2
3

1
2

1
2
3

1
2
5
6

2
1 5
6

2
5 6

5
6

2
1 5

2 6
5

6 5 2 6
1 5 2 1

6
5

2
1

1
2

1
2
1

Example 7.13. We discuss two short exact sequences which are not perfect exact.

Consider the following short exact sequence in modA.

η1 : 0→ 5→ 2 4
5 →

2
4 → 0

Using Lemma 2.13, we can show that η1 is not a perfect exact sequence. The morphism 5→ 2 4
5

factors through the projective module P4. However, P4 is not a direct summand of the middle

term of η1.

A characterization using the left morphism of the short exact sequence does exist for Nakayama

algebras; cf. Lemma 2.14. In general, there are short exact sequences whose left morphism is

non-zero in modA but which are not perfect exact. The following short exact sequence is an

example of this.

η2 : 0→ 5→ 2
3 5 →

2
3 → 0

We see that η2 is not perfect exact since ( 23 5
∗
→ 5∗) ≃ (1 → 4) is not surjective. In contrast

to η1, the morphism 5→ 2
3 5 does not factor through a projective module.

Example 7.14. The non-projective simple modules of A are not a generating system of GP
0(A).

In fact, consider the module X :=
2
5
6
. Since X is injective, every short exact sequence starting

in X is split. Furthermore, every morphism ending in X factors through the projective module

P2. Thus, the only non-split short exact sequence with X as middle or ending term is

0→ S3 → P2 → X → 0.

However, this is not a perfect exact sequence since P3 = S3 is projective.

In conclusion, the class of X must be an element of every generating system of GP
0(A); see also

Remark 4.19. In particular, GP
0(A) is non-zero.
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We compare this with the group GP
0(B). In modB, we have the following almost split sequence

ending in X ′ =
2
5
6
.

0→ S1 → Q2 → X ′ → 0

This time, the starting term S1 is not projective in modB so that this is a perfect exact

sequence. Therefore, we have [X ′] = −[S1] in G
P
0(B).

Example 7.15. We detail some of the differences between modA and modB. Let α be the

stable equivalence modA → modB induced by the Auslander-Reiten quivers above. As a

consequence of the previous example, α cannot induce an isomorphism between GP
0(A) and

GP
0(B). This is because S1 is a node in modB.

Consider the following perfect exact sequence in modB. In fact, this is an almost split sequence

with non-projective starting term; cf. Example 2.11.

0→ 6→ 5
6 → 5→ 0

However, the simple module S6 in modB is a node. Thus, the stable equivalence α does

not preserve this perfect exact sequence. In fact, there is no short exact sequence starting in

S4 ∈ modA, where α(S4)
st≃ S6 ∈ modB.

Since gldimA < ∞, the category LA consists of bounded complexes. On the other hand,

we have gldimB = ∞ so that LB contains some unbounded complexes. In particular, there

cannot exist an equivalence LA → LB which is induced by an exact functor modA→ modB.

Moreover, A has no strongly projective-injective modules, whereas PB = stpB is non-zero.

Finally, there is a totally acyclic complex · · · → Q5 → Q6 → Q5 → Q6 → · · · in modB while

there cannot exist a totally acyclic complex in modA. In summary, we have the following two

chains of subcategories, where all inclusions are proper.

0 = Ktac(projA) ⊂ LA ⊂ HP(projA) ⊂ Hstp(projA) = H(projA) ≃ Kb(projA)

0 ⊂ Ktac(projB) ⊂ LB ⊂ HP(projB) = Hstp(projB) ⊂ H(projB)

In particular, α does not induce an equivalence between Ktac(projA) and Ktac(projB).

Example 7.16. In Chapter 6, we have seen how to construct stably equivalent algebras by

deleting nodes or by gluing a simple projective vertex and a simple injective vertex. We aim

to list all algebras which can be obtained from A or B by repeating these steps for a finite

number of times in any order. Note that over an algebraically closed field, the Auslander-

Reiten conjecture holds for A and B since both are of finite representation type.

We start by constructing the algebra A from B as described in Definition 6.7. Let N = {1, 6}
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corresponding to the nodes S1 and S6 in modB. We obtain the following matrix algebra.

EN (B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k HomB(S1, Q1) 0 HomB(S1, Q6) HomB(S1, Q2) HomB(S1, Q5)

0 k 0 0 0 0

0 HomB(S6, Q1) k HomB(S6, Q6) HomB(S6, Q2) HomB(S6, Q5)

0 0 0 k 0 0

0 HomB(Q2, Q1) 0 HomB(Q2, Q6) HomB(Q2, Q2) HomB(Q2, Q5)

0 HomB(Q5, Q1) 0 HomB(Q5, Q6) HomB(Q5, Q2) HomB(Q5, Q5)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
As a k-vector space this is isomorphic to the following matrix.

EN (B) ≃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k k 0 0 k 0

0 k 0 0 0 0

0 0 k 0 k k

0 0 0 k 0 0

0 k 0 0 k 0

0 0 0 k k k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We label the columns and rows of this matrix by 1 to 6. Then EN (B)op is isomorphic to the

quiver algebra given by the quiver

2 5 1

4 6 3

α β

ε

γ δ

with relations α ε = γ δ = 0. Thus, we recover EN (B)op ≃ A as algebras. Up to equivalence,

this is the unique algebra without nodes stably equivalent to B such that there is a radical

embedding B ↪→ A; cf. Lemma 6.13.

Now, we construct the algebra B from A as described in Definition 6.3. Let J := {3, 6} and
σ : J → {1, 4} with 3σ = 1 and 6σ = 4. This corresponds to gluing the simple projective

vertex 3 with the simple injective vertex 1 and the simple projective vertex 6 with the simple

injective vertex 4. We obtain the following matrix algebra.

Eσ(A) =

⎛⎜⎜⎜⎜⎝
k ⊕ HomA(P3, P1) HomA(P3, P4) HomA(P3, P2) HomA(P3, P5)

HomA(P6, P1) k ⊕ HomA(P6, P4) HomA(P6, P2) HomA(P6, P5)

HomA(P2, P1) HomA(P2, P4) HomA(P2, P2) HomA(P2, P5)

HomA(P5, P1) HomA(P5, P4) HomA(P5, P2) HomA(P5, P5)

⎞⎟⎟⎟⎟⎠
As a k-vector space this is isomorphic to the following matrix.

Eσ(A) ≃

⎛⎜⎜⎜⎜⎝
k2 0 k 0

0 k k k

k 0 k 0

0 k k k

⎞⎟⎟⎟⎟⎠
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We label the columns and rows of this matrix by 1 to 4. Then Eσ(A)
op is isomorphic to the

quiver algebra given by the quiver

1 3 2 4
α

β

ε
γ

δ

with relations α ε = γ δ = β α = δ γ = 0. Thus, we recover Eσ(A)
op ≃ B as algebras.

The following are all other possible choices for J and σ together with the resulting algebra

Eσ(A)
op. In each case, we only give the corresponding quiver and relations.

J := {3, 6} with
3σ = 4 and 6σ = 1

:
2 3 1

4

α

ε

β

γδ

with relations

α ε = γ δ = β γ = δ α = 0

J := {3} with
3σ = 1

:
1 2

3 4 5

α

ε
β

γ δ

with relations

α ε = γ δ = β α = 0

J := {3} with
3σ = 4

:
2 3

1 4 5

α

εβ

γ δ

with relations

α ε = γ δ = β γ = 0

J := {6} with
6σ = 1

:
1 2 3

4 5

α β

ε

γ

δ
with relations

α ε = γ δ = δ α = 0

J := {6} with
6σ = 4

:
2 3 4

5 1

α β

ε

δ

γ

with relations

α ε = γ δ = δ γ = 0

By Remark 6.14, this is a complete list of all algebras C that are stably equivalent to A and B

such that C is obtained from A or B by a finite number of steps of either deleting a node or

gluing a simple projective vertex and a simple injective vertex in any order.
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(−)∗ Functor HomA(−, A) : modA→ A-mod Section 1.1

Cok(f) Pseudo-cokernel of a morphism f in modA defined as
Cok(f) = H0(τ⩽0C(f)

• ) with f • = F(f)
Definition 2.8

C(modA) Category of complexes Section 1.3

C(f)• Mapping cone of a morphism f • in C(modA) Definition 1.8

depth f Depth of a morphism f in modA Definition 3.13

D(modA) Derived category Section 1.3

domdimA Dominant dimension of A Definition 1.16

Dsg(A) Singularity category Remark 4.43

D Duality Homk(−, k) : modA→ A-mod Section 1.1

EX Middle term of the almost split sequence starting in an
A-module X

Chapter 3

EN (A) Matrix algebra obtained from A by deleting nodes Definition 6.7

Eσ(A) Matrix algebra obtained from A by gluing idempotents Definition 6.3

F Equivalence F : modA→ LA Theorem 2.6

f • : F •
X → F •

Y Image in K(projA) under F of f : X → Y in modA Remark 2.5

GprojA Category of Gorenstein-projective modules Definition 4.36

GprojA Stable category of Gorenstein-projective modules Definition 4.36

G0(T ) Grothendieck group of a triangulated category T Definition 4.15

GP
0(A) Alternative Grothendieck group of A defined via perfect

exact sequences
Definition 4.14

Gst
0 (A) Stable Grothendieck group of A Definition 4.14
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Hk(F • ) Cohomology of a complex F • in degree k Section 1.3

H(projA) Full subcategory of K(projA) with objects F • such that
there exist l, r ∈ Z with H<l(F • ) = 0 and H⩾r(F

∗
• ) = 0

Definition 4.1

HP(projA) Full subcategory of H(projA) with objects in ⊥Kb(PA) Definition 4.1

Hstp(projA) Full subcategory of H(projA) with objects in ⊥Kb(stpA) Definition 4.1

K(modA) Homotopy category Section 1.3

Ktac(projA) Homotopy category of totally acyclic complexes Definition 1.7

Ker(f) Pseudo-kernel of a morphism f in modA defined as
Ker(f) = H0

(︁
τ⩽0 (C(f)

• [−1])
)︁ Definition 2.8

LA Essential image of the functor F : mod→ K(projA) Definition 2.1

l(X) Composition length of an A-module X Section 1.1

modA Stable module category Definition 1.1

νA Nakayama functor
(︁
D(−)

)︁∗
: modA→ modA Section 1.1

νK Functor νK : K+,b∗(projA)→ K−,b(projA) which is
induced by the Nakayama functor

Definition 4.22

ν -domdimA ν-dominant dimension of A Definition 1.16

PA Subcategory of projective-injective A-modules Section 1.4

⊥S Full subcategory of A with objects X such that
HomA(X

• , Y • ) = 0 for Y • ∈ S
Section 1.1

radA(X, Y ) Morphisms in the radical of modA Definition 3.13

stpA Subcategory of strongly projective-injective A-modules Definition 1.15

T (X) Ending term in the direct sum of all almost split
sequences starting in an A-module X

Remark 3.9

Tr(X) Transpose of an A-module X Section 1.1

τ⩽k Brutal truncation of a complex Section 1.3

XA Full subcategory of Kb(stpA) with objects P • such
that P • ≃ νA(P

• )
Proposition 4.33


	Abstract
	Zusammenfassung
	Introduction
	Preliminaries
	Notation
	Stable module category
	Homotopy category of complexes
	Projective-injective modules

	Stable module category and homotopy category
	A functor to the homotopy category
	Perfect exact sequences
	Perfect exact sequences with projective middle term

	Perfect exact sequences and stable equivalences
	Construction of perfect exact sequences
	Perfect exact sequences and almost split sequences

	Triangulated subcategories inside the homotopy category
	A triangulated hull in K(proj A)
	Grothendieck group
	Nakayama closure
	Stable Gorenstein-projective modules
	Self-injective algebras

	Stable equivalences of Morita type
	Induced equivalences in K(proj A)
	Functors in K(proj A) inducing stable equivalences
	Stable equivalences induced by exact functors

	Stable equivalences with nodes
	Algebras obtained by gluing idempotents
	Algebras obtained by deleting nodes

	Examples
	Algebras stably equivalent of Morita type
	Algebra with infinite global dimension
	Triangulated categories inside K(proj A)
	Algebras stably equivalent by deleting nodes

	Bibliography
	List of Symbols

