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Kurzzusammenfassung

In der vorliegenden Arbeit wird ein neuer Störungsansatz für Elektrolytlösungen en-

twickelt. Bei der Anwendung von Störungstheorien auf Elektrolytlösungen, die mit

Hilfe des nichtprimitiven Modells modelliert werden, ergibt sich aufgrund der Lang-

reichweitigkeit der elektrostatischen Wechselwirkungen das Problem von divergieren-

den Korrelationsintegralen. Um dieses Problem zu umgehen werden hier die elektro-

statischen Wechselwirkungspotentiale in kurzreichweitige und langreichweitige Anteile

aufgetrennt. Die kurzreichweitigen Anteile werden zur Formulierung einer Störungs-

theorie dritter Ordnung verwendet. Die zu den langreichweitigen Potentialanteilen

gehörende Helmholtzenergie wird durch einen analytischen Korrekturterm, der aus der

'local molecular �eld' (LMF) Theorie resultiert, berücksichtigt. Mit Hilfe von Daten

aus Molekularsimulationen wird der grundlegende Ansatz, eine Störungstheorie für

kurzreichweitige Paarpotentiale und einen analytischen Korrekturterm zu verwenden,

validiert. Die selben Daten werden verwendet, um die Störungstheorie dritter Ordnung

zu bewerten und systematisch Möglichkeiten zu deren weiterer Verbesserung zu iden-

ti�zieren.

Um das nichtprimitive Modell�uid von harten dipolaren und ionisch geladenen Kugeln

umfänglicher zu beleuchten, werden zusätzlich Simulationsdaten für das chemische Po-

tential dieser Modellelektrolytlösung erzeugt. Diese Daten können zur Bewertung von

physikalisch basierten Zustandsgleichungen sowie zur Anpassung solcher Gleichungen

an die Simulationsdaten verwendet werden.

Summary

In this work, a new perturbation approach for electrolyte solutions is developed. When

applying perturbation theory to electrolyte solutions described with the nonprimitive

model, the problem of diverging correlation integrals occurs due to the long-ranged

behavior of the electrostatic interactions. To overcome this problem, the electrostatic

pair potentials are here divided into a short- and a long-ranged part. For the short-

ranged part a third order perturbation expansion is developed. The Helmholtz energy

contribution arising from the long-ranged part is accounted for by an analytical term

resulting from 'local molecular �eld' (LMF) theory. Using molecular simulation data,

the basic approach of using short-ranged pair potentials and and the analytical cor-

rection is validated. The same simulation data is employed for assessing third order

perturbation expansion itself and to systematically identify possibilities for further im-

provements of the theory.



In order to further analyze the nonprimitive model �uid consisting of dipolar and

charged hard spheres, molecular simulation data for mean ionic chemical potentials

of such model electrolyte solutions are produced. This data can be used for assess-

ing physically-based equations of state and to adjust such equations of state to the

simulation data.
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1.1 Basics of thermodynamic perturbation theory

Statistical Thermodynamics provides the link between molecular interactions and macro-

scopic properties of pure substances and mixtures. This link is given by partition func-

tions that connect thermodynamic potentials with the energy resulting from molecular

interactions. In this work, the key quantity is Helmholtz energy A, given as (see,

e.g. Refs. 4 and 5)

A = − 1

β
ln

[
1

N ! Λ3N

∫
exp

(
−βU(r̃N)

)
dr̃N

]
(1.1)

where the corresponding partition function is contained in the brackets, as the argu-

ment of the logarithm [4,5]. Further, β = 1/kT with k being the Boltzmann constant

and T as temperature, N is the particle number, Λ the de Broglie wavelength and

U(r̃) the total energy arising from the molecular interactions. The short notation r̃

comprises the positions of the molecules as well as their orientation, and
∫
... dr̃N is a

shorthand notation for the N -dimensional integral over all possible molecular positions

and orientations.

For determining the energy U(r̃N) of a microstate it is in many cases su�cient to

only consider pair interactions between the particles, i.e. to neglect multi body in-

teractions [5]. Speci�cally, the energy U(r̃N) of a system of �xed (partial) charges can

exactly be expressed as the sum of pairwise interactions. Similarly, a system of hard

particles is exactly described through only pairwise interactions. Then, the total energy

is given by

U(r̃N) =
N∑
i=1

N∑
j>i

uij(ij) (1.2)

where uij(ij) is a shorthand notation for uij(r̃i, r̃j) and represents the pair potential

between two particles i and j.

When formulating a perturbation expansion according to Zwanzig [6], the intermolecular

pair potential is divided into a reference part uref
ij (ij) and a perturbation part wij(ij).

Both parts need to be additive, thus the sum of reference and perturbation part recovers

uij(ij), representing the pair potential of interest. In addition, a coupling parameter λ

that ranges between 0 and 1 is introduced according to

uλ,ij(ij) = uref
ij (ij) + λ · wij(ij). (1.3)

For λ = 0 the intermolecular pair potential is solely the reference potential, whilst for

λ = 1 the pair potential of interest is approached. With this de�nition, the total energy
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U , and consequently also Helmholtz energy A is a function of λ. Thus, the Helmholtz

energy of the system of interest, A(λ = 1), can be described by a Taylor expansion in

terms of λ as

A(λ = 1) =
∞∑
n=0

1

n!

(
∂nA

∂λn

)
λ=0

(1.4)

In practice, of course, such an expansion can only be formed to a limited order of n,

and thus the expansion can in practice not be exact. The required order of the ex-

pansion for su�ciently converged results depends on the system of interest and on the

reference potential that is employed [4]. For example, for describing simple soft core po-

tentials such as Lennard-Jones-Potential, two prominent perturbation approaches that

use di�erent reference potentials (and, accordingly, di�erent perturbation potentials)

exist. For describing the Lennard-Jones-Fluid, the theory of Barker and Henderson [7,8]

requires a second order expansion to reach acceptable accuracy, whilst for the theory

of Weeks, Chandler and Anderson [9�11] a �rst order expansion is su�cient. A system-

atic analysis of both expansions to higher order was recently given by van Westen and

Gross [12]. Another requirement for the Taylor expansion is a di�erentiable function,

which limits the expansion to conditions, where the reference �uid does not undergo a

phase transition (for example to a solid phase).

From the above equations, the perturbation term of �rst order can for a homogeneous

system be derived as (for details, see Appendix B or Refs. 4 and 5)

A = A(λ = 0) +

(
∂A

∂λ

)
λ=0

= Aref +
ρ2

2

∫
w12(12) g

ref(12)dr̃1dr̃2 (1.5)

with ρ = N/V as particle density and gref(12) as two-particle correlation function of the

reference system. The integral in Eq. (1.5), and accordingly similar integrals occurring

in the higher order terms, are referred to as correlation integrals. Often, for engineering

models, analytic expressions (ansatz functions) are parametrized for such correlation

integrals, and thus Helmholtz energy is given as explicit function of Temperature T ,

Volume V and particle number N .

As can be seen from Eq. (1.5), precise knowledge of the reference system is required for

obtaining a viable theory: Aref(T, ρ) needs to be described, the two-particle correlation

function gref(12) is required, and for the higher order terms also higher correlation

functions need to be known with su�cient accuracy.

Hard sphere (HS) model is one of the most widely used models to describe the be-

havior of �uids and also one of most studied ones [13]. It is also a common choice for

the reference system. The advantage of this reference �uid is its simplicity. The only

molecular interaction that is considered is in�nite repulsion, leading to a trivial tem-
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perature dependence. The dimensionless Helmholtz energy βA/N is independent of

temperature. Many equations of state exist for HS �uids, the most prominent one

being the equation of Carnahan and Starling [14]. An extensive overview of over 80

equations of state for the hard sphere �uid is given in Ref. 15, and a comprehensive

discussion of the thermodynamic properties and the multi-particle correlation func-

tions has been published in Ref. 13. Besides being a well studied system, HS system

yields the major advantage that the two-particle correlation function ghs(12) as well as

the multi-particle correlation functions only depend on density and are independent of

temperature. Thus, the correlation integrals are also a function of density only (given of

course that w12(12) is also independent from temperature), so that analytic expressions

(ansatz functions) of those integrals can be parametrized as simple functions of density.

1.2 Statistical thermodynamic approaches for elec-

trolyte solutions

Some reviews on equations of state for electrolyte solutions that include equations

based on statistical thermodynamics have appeared [16�18]. Here, the most important

approaches and the available molecular models are discussed.

In statistical thermodynamic approaches, there are two di�erent classes of models that

have been employed for modeling electrolyte solutions. In the �rst one, referred to as

'primitive model', the multipolar solvent is modeled as continuum and is characterized

by its static dielectric constant ε. Only the ions are modeled explicitly as point charges,

either with or without a repulsive core. Thus, only the interactions between the ions

have to be considered explicitly, resulting in only three types of interactions that occur

in that model (cation-cation, anion-anion, cation-anion). According to Coulomb's law,

the intermolecular potential of the point charges scales linearly with ε−1. The static di-

electric constant needs to be known quite precisely for obtaining accurate results from

primitive model approaches [19�24]. The main advantage of this model is its simplicity.

The disadvantage is in the requirement for providing the dielectric constant, which

itself is a state function dependent on temperature, pressure and composition.

The second molecular model employed for electrolyte solutions is called 'nonprimitive

model'. Nonprimitive model electrolyte solutions consist of explicitly modeled ions

surrounded by an also explicitly modeled solvent of multipolar (in many cases dipolar)

solvent species. For that model, all electrostatic interaction sites are superimposed

with a repulsive core. Since all intermolecular interactions are considered explicitly, at
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least �ve types of interactions occur (cation-cation, anion-anion, cation-anion, cation-

multipole, anion-multipole, multipole-multipole). That leads to a higher complexity,

but also to a more physically based model compared to primitive model. Because the

solvent is modeled explicitly, nonprimitive models have the advantage that there is no

need to have precise knowledge of ε.

Besides distinguishing di�erent molecular models for electrolyte solutions, one can also

distinguish two di�erent statistical mechanical approaches that can be employed for

describing the thermophysical properties of those models. In addition to perturbation

theory (PT) as introduced in section 1.1, integral equation theories can be employed.

Those theories are based on the Ornstein-Zernike equation [4,25]

h(r12) = c(r12) + ρ

∫
c(r13)h(r23)dr3 (1.6)

with which the pair correlation function g(r12) is determined. Once g(r12) is known,

other thermodynamic quantities can be derived. In Eq. (1.6), h(r12) is de�ned as

g(r12) − 1, further c(rij) is the direct correlation function of particles i and j and rij

is the distance between them. For �uids with orientation-dependent interactions, the

generalized coordinates r̃i and r̃ij can be introduced in Eq. (1.6) including the orien-

tational coordinates, and for mixtures, a sum over all types of species for particle 3

is introduced [5]. Integral equations require a closure`, which is an ansatz function for

the short-ranged direct correlation function c(rij). The di�culty of integral equations

is that suitable closures of a �uid are a priori not known and de�ning them requires a

good deal of empirical knowledge and serendipity.

For electrolyte solutions, the probably most prominent closure relation for solving the

Ornstein-Zernike equation are hypernetted chain (HNC) and mean spherical approx-

imation (MSA). HNC is known to be accurate [26], but its main disadvantage is that

it requires solving a set of highly nonlinear equations which makes it computationally

demanding [4]. Further it is known to show non-physical behavior for low densities, as

analyzed by Høye et al. [27]. MSA is less accurate, but it allows deriving equations that

are explicit in terms of thermodynamic quantities [4,28,29]. Thus, MSA is much more

commonly used than HNC.

Primitive model theories

The most prominent approach employing the primitive molecular model is Debye-

Hückel [30] (DH) theory. In DH theory, the ionic charges are not superimposed by a

repulsive core, and thus it is quite imprecise at high ion concentrations. Nonetheless,
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the original equation as well as extended versions are still in use today. The theory is

especially valuable for describing the behavior of electrolyte solutions at in�nite dilu-

tion. In that limit, DH theory is exact. In fact, the behavior of the mean ionic activity

γ± at in�nite dilution is only possible to explain due to DH theory [18].

For primitive model electrolyte solutions, an MSA approximation was given by Wais-

man and Lebowitz [31,32] for equal size ions and by Blum and Høye [28,29] for ions with

arbitrary diameters. Comparison of MSA with DH theory showed that the results of

both approaches are basically of equivalent quality and that the results are dominated

by the dielectric constant ε [24,33]. Comparison of primitive model MSA with data from

Monte Carlo (MC) simulations reveal that the internal energy is not estimated satis-

fyingly by the theory [34�36].

In several studies, primitive model MSA has been applied to real electrolyte solu-

tions [37�40]. In those studies, the ion diameter was treated as parameter that was

adjusted to experimental data. It was shown that the approach then matches experi-

mental osmotic and activity coe�cients astonishingly well.

Perturbation theories have also been applied to the primitive molecular model of elec-

trolyte solutions. A perturbation approach was presented by Stell and Lebowitz [41]. In

the work of Larsen et al. [42], MSA and the theory of Stell and Lebowitz were compared

to data obtained from MC simulations for 1:1 and 2:2 electrolyte solutions. For that

comparison, model electrolyte solutions with well de�ned dielectric constants and equal

hard sphere diameters of cations and anions were used. It was shown that both ap-

proaches give nearly identical results for both, 1:1 and 2:2 electrolyte solutions and that

those results are in good agreement with the MC data for the 1:1 electrolyte solution.

In a later work, Chan [43] applied the theory of Stell and Lebowitz to real electrolyte

systems. In that work, the ion diameters were adjusted to experimental data of activity

coe�cients. Although the experimental data could be reproduced rather accurately,

ion diameters that di�er signi�cantly from Pauling diameters had to be used.

Nonprimitive model theories

A nonprimitive MSA approach was derived by Blum [44] and Adelman and Deutch [45] for

equal size particles and by Wei and Blum [46,47] for particles with arbitrary size. Non-

primitive MSA was compared to MC simulation data in several works [34�36,48]. The

studies reveal that internal energy as well Helmholtz energy predicted by nonprimitive

MSA are only in moderate agreement to the simulation data. One reason for that is

that the ion-dipole contribution to internal energy estimated by MSA is of poor accu-

racy since the orientation of the dipolar solvent around the ions is not captured by the
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theory [34].

Nonprimitive MSA has been applied to real electrolyte solutions by Li et al. [34], Seyfkar

et al. [49] and Herzog et al. [50]. In those studies, the ion diameters have been treated as

parameters that were adjusted to experimental data. The mean ionic activity coe�-

cients as well as the osmotic coe�cients of real electrolyte systems could be described

as a function of ion concentration for a variety of electrolyte solutions with fair accu-

racy.

The main challenge with a perturbation approach for nonprimitive model electrolyte

solutions is that some of the correlation integrals of the theory diverge due to the long-

range nature of the ionic interactions. The �rst perturbation approach for nonprimitive

model electrolyte solutions has been presented by Henderson, Blum and Tani [51] (HBT

theory). They overcame the problem of diverging terms by approximating a �nite value

for the sum of terms of third order theory that contain diverging correlation integrals.

As result, they obtained an explicit expression for Helmholtz energy as a power series

in terms of β1/2.

Subsequent studies, however, showed that their theory does not give satisfactory re-

sults. The most obvious de�ciency is that the Padé approximation suggested by Hen-

derson et al. has singularities for some ion concentrations [1,52].

Wu et al. [53] and Liu et al. [35,36] compared the results of HBT theory to data for inter-

nal energy obtained from MC simulations. The predictions of the theory show mayor

deviations from the simulation results. Furthermore, it is shown that primitive as well

as nonprimitive model MSA is more accurate than the HBT approach [35,36]. Chan [54]

employed HBT theory for calculating activity coe�cients of real electrolyte solutions.

The author concludes that the theory does not satisfactorily predict the experimental

data.

All of the above mentioned studies conclude that HBT theory su�ers from signi�cant

inaccuracies. Therefore, a detailed analysis of that theory has been carried out as part

of this work. Besides some minor errors that are easy to correct, an inaccurate approx-

imation that is crucial for resummation of the diverging integrals has been found. A

detailed discussion of our analysis is given in Appendix A.

Besides HBT theory, some other perturbation approaches for nonprimitive model elec-

trolytes have been proposed. As one part of an extensive study of the charged and

dipolar hard sphere mixture [55�58], Eggebrecht and Ozler developed a perturbation the-

ory [58] that is very similar to the one of Henderson et al. They employed MC simulation

data for evaluating prefactors of some of the terms of their theory, i.e. they changed

the factors by adjusting them to MC simulation results. Furthermore, they employed

an expression for static dielectric constant depending on the dipolar strength and used
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a Padé approximation di�erent from the one suggested by Henderson et al. As part

of their study, they compared the results of their modi�ed HBT theory to MC data of

internal energy, Helmholtz energy and compressibility and showed that their theory is

quite accurate [58].

An entirely di�erent approach for overcoming the problem of diverging correlation in-

tegrals was presented by Wu et al. [53]. Instead of using the resummation technique as

suggested by Henderson et al. and Eggebrecht and Ozler, they considered a mixture

of charged and neutral hard spheres as reference system. This way, no diverging terms

occur since the long-ranged ionic interactions are captured in the reference part. For

describing the reference system, they employed the MSA approach of Blum and Høye.

By comparison with MC simulation data of internal energy, they showed that their

theory is much more accurate than HBT theory.

Quite similar hybrid theories consisting of MSA and a perturbation expansion have

been proposed by Cong et al. [59] and Liu et al. [35,36]. In their theories, they replaced

the ion-ion-interaction term of HBT theory with a term obtained from the primitive

model MSA approach of Blum and Høye. However, Liu et al. showed that this kind

of theory gives less accurate results than nonprimitive model MSA [35,36].

As part of their study, Liu et al. [35,36] conducted a comparison of MSA and perturbation

approaches for polar �uids and ion-dipole mixtures. The results show that perturbation

theories are more accurate than MSA for polar systems. The only system of their study

for which perturbation theory gave less accurate results than MSA is the mixture of

charged and dipolar hard spheres for which they employed HBT theory. Because some

errors have been made when deriving HBT theory, the work of Liu et al. gives rise to

the hope that a properly formulated perturbation expansion for electrolyte solutions

can outperform integral equation theories, such as MSA.

1.3 Chemical potential of electrolyte solutions from

molecular simulations

Two di�erent pathways for determining macroscopic properties from intermolecular

pair potentials exist: (i) �uid theories, i.e. integral theories or perturbation theories as

discussed in Sec. 1.1 and 1.2 and (ii) molecular simulations.

In general, molecular simulations yield the advantage of giving exact results within

their statistical uncertainty. On the other hand side, they are computationally de-

manding and therefore time-consuming. Thus, molecular simulation is not a suitable

tool for practical engineering applications, such as process simulation and optimization.
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Fluid theories, in contrast, can be cast into a set of algebraic equations that can be

solved quickly and with low computational cost. To reach that goal, simpli�cations and

approximations need to be applied. Thus, �uid theories can only provide approximate

descriptions of a chosen molecular model.

It is obvious that molecular simulation provides a powerful tool for developing, as-

sessing and re�ning �uid theories. Simulations yield one decisive advantage over data

of real systems: they provide exact data of the chosen molecular model. Thus, the

accuracy of the �uid theory can be judged entirely independent from the quality of the

molecular model itself.

For the model electrolyte solution used in this work, i.e. the ion-dipole HS mixture

as described in Sec. 2.1, existing studies that compare theories with MC data are lim-

ited to internal energy, Helmholtz energy and compressibility. The reason is that only

this simulation data is available in literature. Chemical potential data has not been

reported yet, although this data is particularly important, being the key quantity for

phase equilibrium calculation. Therefore, mean ionic chemical potential data for the

ion-dipole HS mixture has been determined in MC simulations as part of this work.

For primitive model electrolytes, plenty of simulation studies have been published so

far [26,60�74]. For this model, standard Widom test particle method [75] can be used for

determining the chemical potential of the ions, noting only that ion pairs have to be

sampled simultaneously. This simple and e�cient method fails for electrolytes for which

the the solvent is modeled explicitly. For nonprimitive models, special sampling tech-

niques are required, and only few studies on chemical potentials exist. In the following,

an overview of the di�erent techniques employed in those studies is given. A similar

overview has been presented by Nezbeda et al. [76] and also in our third publication,

Ref. 3.

Chemical potential calculations using thermodynamic integration have been carried

out by Ferrario et al. [77], Sanz and Vega [78], Aragones et al. [79] as well as Benavides et

al. [80]. All those authors employ Kirkwood thermodynamic integration schemes [81], i.e.

methods similar to what is referred to as 'λ-integration method' in Sec. 3.2 of this work

for determining chemical potentials of real electrolyte solutions. The advantage of such

methods is that they are easy to implement and they are well established techniques.

The main disadvantage is that a number of independent simulations are required for

obtaining one data point. Thus, they are demanding with respect to computation time.

More e�cient methods with which chemical potential can be computed in one single

simulation have been used by Lísal et al. [82], Mou£ka, Smith and coworkers [83�88], Pana-

giotopoulos and coworkers [89�91] and Paluch et al. [92,93].

In the works of Lísal et al. and Mou£ka, Smith and coworkers, chemical potential has
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been determined by Osmotic Ensemble simulations [82,83]. In this ensemble, chemical

potential of the ions is in fact determined indirectly since it is an input to the sim-

ulation. During the simulations, the particle number of the solvent is kept constant,

whilst the number of ions �uctuates. Thus, the composition of liquid is determined

for a given chemical potential of the ions. Whilst Lísal et al. employed a molecular

dynamics algorithm, Mou£ka, Smith and coworkers used MC simulations.

Panagiotopoulos and coworkers determined the chemical potential of the ions via Ben-

nett Acceptance Ratio Method [94] in molecular dynamics simulations.

The method that has been employed by Paluch et al. and also in this work is expanded

ensemble transition matrix method [95,96] with a biasing function determined by Wang-

Landau method [97].

It is worth mentioning that all of the above studies used soft core potentials and molec-

ular force �elds that aim for representing real electrolyte solutions. Thus, for this work,

their results play a subordinate role.



2 New perturbation theory for non-

primitive model electrolyte solutions

Parts of this chapter are literal quotes from the �rst two publications, Ref. 1 and Ref. 2.

In both of those works, the newly developed perturbation theory is described. To obtain

a well readable document, parts from both publications are quoted to this chapter.

The origin of the sections is as follows:

• Section 2.1 has not been published previously.

• Major parts of section 2.2 are a literal quote from the �rst publication, Ref. 1,

where the section was published as 'II. Thermodynamic perturbation theory of

nonprimitive model electrolyte solutions'.

• Section 2.3 is a literal quote from the second publication, Ref. 2, where the section

was published as '2. Short- and long�ranged electrostatic interactions from LMF

theory'.

• Major parts of section 2.4 are a literal quote from the second publication,

Ref. 2, where the section was published as '3.1. Third order perturbation the-

ory' and '3.2 Further development of the theory'.

• Major parts of section 2.5 are a literal quote from the �rst publication, Ref. 1,

where the section was published as 'C. Application of 3rd order perturbation theory

to the decomposed potential'.

• Section 2.6 has not been published previously. A graphical representation of the

data of the static dielectric constant ε from molecular simulations given in this

section, however, has been published in the �rst publication, Ref. 1.

• Sections 2.7.1 and 2.7.2 are literal quotes from the second publication, Ref. 2.

Section 2.7.1 was published in Ref. 2 as 'Appendix A. Correlation integrals from
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molecular simulations', subsection 2.7.2 as '3.3. Assessing Kirkwood superposi-

tion approximation'.
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2.1 Molecular model

In this entire work, electrolyte solutions are modeled as a mixture of charged and dipo-

lar hard spheres.

The basic intermolecular pair potentials that occur in our model mixture can be de-

scribed as a superposition of the hard sphere potential uhs(12) and an electrostatic

potential ues(12), i.e. u(12) = uhs(12) + ues(12). Here, the short notation '(12)' com-

prises the intermolecular distance r12 as well as the orientation ω1 and ω2 of the

particles.

The hard sphere contribution to the potential is de�ned as

uhs(12) =

∞, for r12 ≤ 1
2
(σ1 + σ2)

0, for r12 >
1
2
(σ1 + σ2)

(2.1)

where σi denotes the hard sphere diameter of a particle and r12 is the scalar distance

between the particles, r12 = |r12|.
The electrostatic pair potentials that are relevant for a mixture containing point charges

(index 'c') and point dipoles (index 'd') are the charge-charge-potential ucc(12), the

charge-dipole-potential ucd(12) and the dipole-dipole-potential udd(12). Those are

ucc(12) =
q1q2
r12

(2.2)

ucd(12) =
q1µ2

r212
(µ̂2 · r̂12) (2.3)

udd(12) = −µ1µ2

r312
[3 (µ̂1 · r̂12) (µ̂2 · r̂12)− (µ̂1 · µ̂2)] (2.4)

where qi is the charge of the ions, µi is the dipole moment of the solvent (both in CGS

units), µ̂i is the unit direction vector of a dipole and r̂ij is the unit direction vector

between the particles.

For obtaining a compact theory, some simplifying de�nitions are made. The �rst one

is that all components, cations, anions and the dipolar component have identical hard

sphere diameters σ. The second one is that only monovalent ions are regarded, and q =

q+ = −q− where the indice '+' and '−' denote cations and anions, respectively. This

leads to the simpli�cation that the ionic species can be comprised as charged species

without further distinguishing between cations and anions. Due to electroneutrality,

the mole fraction of cations, x+, and the mole fraction of anions, x−, are the same.

Thus, the composition of the mixture can be described by one ion mole fraction x =

x+ + x−. The mole fraction of the solvent is then (1− x).
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With the above simpli�cations, the complexity of the perturbation theory presented in

the upcoming sections reduces signi�cantly because these de�nitions allow regarding

the model solution as a quasi�binary mixture of hard sphere ions and dipoles.

In addition to the simpli�cations discussed above, it is useful to regard the model

parameters as dimensionless quantities. The dimensionless squared charge of an ion is

de�ned as

q∗ 2 =
βq2

σ
, (2.5)

the dimensionless squared dipole moment is

µ∗ 2 =
βµ2

σ3
(2.6)

and the dimensionless intermolecular distance is de�ned as

r∗12 = r12/σ. (2.7)

With those de�nitions, the pair potentials can be rewritten in terms of dimensionless

quantities as

βuhs(12) =

∞, for r∗12 ≤ 1

0, for r∗12 > 1
(2.8)

and

βucc(12) =
q∗1q

∗
2

r∗12
(2.9)

βucd(12) =
q∗1µ

∗
2

r∗ 2
12

(µ̂2 · r̂12) (2.10)

βudd(12) = −µ∗
1µ

∗
2

r∗ 3
12

[3 (µ̂1 · r̂12) (µ̂2 · r̂12)− (µ̂1 · µ̂2)] . (2.11)

Introducing dimensionless quantities yields not only the advantage of a more compact

notation. By using q∗ and µ∗, the dependance on temperature is comprised in those

quantities. When additionally introducing the dimensionless particle number density

ρ∗ = ρσ3 (2.12)

where ρ = N/V with N as number of particles and V as system volume, a thermody-

namic equilibrium state is fully de�ned by q∗, µ∗, ρ∗ and x.



2. New perturbation theory for nonprimitive model electrolyte solutions 19

2.2 General perturbation approach for the charged

and dipolar hard sphere mixture

According to perturbation theory, as introduced by Zwanzig [6], the intermolecular pair

potential u(12) is divided into a reference part uref(12) and a perturbation part w(12)

according to

uλ(12) = uref(12) + λ · w(12) (2.13)

where the coupling parameter λ ranges from 0 to 1. [...] The full Hamiltonian is

obtained from Eq. (2.13) for uλ=1(12), i.e., for the coupling parameter λ = 1. The

reference system can, for example, be a Lennard-Jones �uid or a hard sphere �uid.

For the remainder of this study we consider the hard-sphere �uid (index `hs') as the

reference. The perturbation part represents in our case the electrostatic potential [...].

With the de�nition of uλ(12), the Helmholtz energy is given by

Aλ = − 1

β
lnQλ (2.14)

with the partition function

Qλ =
1

N ! Λ3N

∫
exp

(
−βU(r̃N , λ)

)
dr̃N (2.15)

where for brevity we use r̃ for the space coordinate r as well as the orientational

vector ω. The con�gurational energy of the system is U(r̃N , λ) =
∑N

i

∑N
j>i uλ,ij(ij).

The total Helmholtz energy of the system can then be written as a Taylor expansion

around λ = 0, as

A =Aref +

(
∂A

∂λ

)
λ=0

λ+
1

2

(
∂2A

∂λ2

)
λ=0

λ2

+
1

6

(
∂3A

∂λ3

)
λ=0

λ3 +O(λ4) (2.16)

evaluated at λ = 1.

The partial derivatives in Eq. (2.16) are obtained using Eq. (2.14) and (2.15). The

derivation of the theory up to 3rd order is lengthy and is provided [...] {in appendix B}.

Here we only state the �nal result for a nonprimitive model electrolyte solution as a

ternary mixture of cations, anions and dipolar solvent. The dimensionless residual
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Helmholtz energy ares = β(A− Ahs)/N is approximately (to third order), given as

ares =− 1

4
ρβ2

3∑
α=1

3∑
γ=1

xαxγ

∫
ghsαγ(12)

〈
w2

αγ(12)
〉
dr12

+
1

6
ρ2β3

3∑
α=1

3∑
γ=1

3∑
τ=1

xαxγxτ

×
∫

ghsαγτ (123) ⟨wαγ(12)wατ (13)wγτ (23)⟩ dr12dr13 (2.17)

with ρ as the number density, xα denotes the molar fraction of component α and

ghsαγ(12) and ghsαγτ (123) are the pair- and the three-particle correlation functions of the

hard sphere �uid, respectively. The angular brackets indicate that the squared pair and

the three-particle potentials are averaged over the orientations of the dipolar solvent.

Other terms that would appear are zero for the model we use due to electroneutrality

and the fact that the orientational averaged dipole-dipole-potential is zero.

When applying the coulomb 1/r12 and the dipolar 1/r312 potential to Eq. (2.17), the

correlation integrals containing two or more ionic particles in both, 2nd and 3rd order

term, diverge. The rest of the terms converge and could be directly solved. The main

challenge when developing a PT for electrolyte solutions is to deal with the diverging

integrals.

{For obtaining converging correlation integrals the electrostatic potentials are decom-

posed into a short-ranged pair potential and a long-ranged part. The division is similar

to what is known as the Ewald summation in molecular simulations. For the short-

ranged part of the electrostatic interactions we propose a perturbation theory. That is

possible, because for a short-ranged potential the perturbation theory does not su�er

from diverging correlation integrals. The Helmholtz energy due to the long-ranged part

of the potential is described through the local molecular �eld (LMF) theory [98], which

for electrostatic interactions delivers an appropriate analytic expression. In the next

section, the key features of LMF theory are presented. Additionally, it is made clear

why this approach is particularly suitable for applying it together with a perturbation

theory of the charged and dipolar hard sphere mixture.}

2.3 Short- and long-ranged electrostatic interactions

from LMF theory

LMF theory provides a general framework for capturing long-ranged parts of inter-

molecular pair potentials in a mean �eld manner. When applying LMF theory to any
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molecular system (homogeneous as well as inhomogeneous systems), the intermolecular

pair potential uij is split into a short-ranged part usr
ij and a long-ranged part ulr

ij,

uij = usr
ij + ulr

ij. (2.18)

Both parts, usr
ij as well as u

lr
ij have to ful�ll well de�ned prerequisites. Those are

F sr
ij = −

∂usr
ij

∂rij
≈ 0 for large rij (2.19)

F lr
ij = −

∂ulr
ij

∂rij
≈ 0 for small rij (2.20)

and thus, that the force F sr
ij arising from the short-ranged potential determines the

(short-ranged) �uid structure without any impact of the long-ranged force F lr
ij . When

applying LMF theory to electrostatic systems, the split of the charge-charge pair po-

tential ucc,ij according to

βucc,ij =
q∗i q

∗
j

r∗ij
= βusr

cc,ij + βulr
cc,ij (2.21)

with

βusr
cc,ij =

q∗i q
∗
j

r∗ij
· erfc

(
r∗ij
α∗

)
(2.22)

βulr
cc,ij =

q∗i q
∗
j

r∗ij
· erf

(
r∗ij
α∗

)
(2.23)

ful�lls the above conditions, given that the damping parameter α∗ is within a care-

fully chosen range. [...] In the limit of α∗ → 0, the complementary error function

erfc
(
r∗ij/α

∗) is zero, and βucc,ij = βulr
cc,ij. For α∗ → ∞, erfc

(
r∗ij/α

∗) is one, and

βucc,ij = βusr
cc,ij. For any α∗ between those limits, the short- and the long-ranged part

of the potential contribute to the total pair potential, and the short-ranged contribution

increases with increasing α∗. When also charge-dipole and dipole-dipole interactions

are taken into account, as is the case in the perturbation theory presented in Sec. 2.2,

the short-ranged charge-dipole and dipole-dipole interactions, usr
cd,ij and usr

dd,ij, can be

obtained from Eq. (2.22). Those are (see also Ref. 1)

βusr
cd,ij =

q∗i µ
∗
j

r∗ 2
ij

Kij

(
µ̂j · r̂ij

)
(2.24)

βusr
dd,ij = −

µ∗
iµ

∗
j

r∗ 3
ij

[
Mij (µ̂i · r̂ij)

(
µ̂j · r̂ij

)
−Kij

(
µ̂i · µ̂j

)]
(2.25)
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with

Kij = erfc

(
r∗ij
α∗

)
+

2√
π

r∗ij
α∗ exp

(
−r∗ 2

ij /α
∗ 2
)

(2.26)

Mij = 3 erfc

(
r∗ij
α∗

)
+

6√
π

r∗ij
α∗ exp

(
−r∗ 2

ij /α
∗ 2
)

+
4√
π

r∗ 3
ij

α∗ 3
exp

(
−r∗ 2

ij /α
∗ 2
)
. (2.27)

In Eqs. (2.24) and (2.25), µ̂i and r̂ij denote unit vectors [...]. The applicability of the

general LMF approach to homogeneous systems with electrostatic pair potentials has

been shown in previous studies of Weeks and colleagues [99�102].

For homogeneous mixtures of ions and dipoles interacting with short-ranged pair po-

tentials according to Eqs. (2.22), (2.24) and (2.25), Rodgers and Weeks [102] developed

the analytical long-range contribution to internal energy

β
U lr

N
=− 1

α∗√π
xq∗ 2 − 2

3

1

α∗ 3
√
π
(1− x)µ∗ 2

+
1

2α∗ 3π
3
2ρ∗

ε− 1

ε
(2.28)

that is based on LMF theory. [...] ε is the static dielectric constant of the solution.

In contrast to the primitive model, where precise knowledge of ε is crucial, Eq. (2.28)

is much less sensitive to ε. For the systems studied in this work, ε is large, and the

assumption of in�nite dielectric constant does not signi�cantly in�uence the results of

Eq. (2.28). Thus, as discussed and shown in Refs. 1 and 102 {as well as Sec. 2.6},

factor (ε− 1)/ε can be assumed as unity here without introducing a severe error.

Damping the coulomb potential according to Eq. (2.22) to make it converge faster is well

known from simulation methods such as Ewald summation [103], Wolf summation [104],

the Zahn method [105] or the damped shifted force method [106]. The term to correct for

this damping given by Rodgers and Weeks, Eq. (2.28), is a correction to the ensemble

averaged energy. Thus, it can directly be employed as Helmholtz energy contribution.

The equality U lr = Alr is justi�ed by considering the microscopic de�nition of Helmholtz

energy,

A = − 1

β
ln

[
1

N ! Λ3N

∫
exp

(
−βU(rN))

)
drN

]
(2.29)
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[...] Inserting U(rN) = U sr(rN) + U lr into Eq. (2.29) yields

A = − 1

β
ln

[
1

N ! Λ3N

∫
exp

(
−β(U sr(rN) + U lr)

)
drN

]
= − 1

β
ln

[
1

N ! Λ3N

∫
exp

(
−βU sr(rN)

)
drN

]
︸ ︷︷ ︸

≡Asr

+U lr. (2.30)

which shows that the long-ranged Helmholtz energy contribution is an intermolecu-

lar potential energy. That is in accordance with intuition, because the structure of

the �uid (i.e. the pair correlation function) and thus the entropic contribution from

the intermolecular potential is determined by the short-ranged part of the potential -

for a properly chosen division of the potential, the long-ranged part has no entropic

contribution. In dimensionless form relative to the hard sphere �uid, we get

β
A− Ahs

N︸ ︷︷ ︸
=ares

= β
Asr − Ahs

N︸ ︷︷ ︸
=asr

+ β
Alr

N︸︷︷︸
=alr

(2.31)

where the index 'hs' indicates the hard sphere contribution, i.e. Ahs is the Helmholtz

energy of the pure hard sphere �uid. The index 'res' denotes the residual part with

respect to the hard sphere �uid in this entire manuscript. The long-range contribution

alr is identical to the correction term given in Eq. (2.28).

Eq. (2.30) and (2.31) are only valid if the long-ranged contribution is not a function of

the molecular positions rN , and thus, if the conditions given by Eq. (2.19) and (2.20)

are ful�lled. To ensure this α∗ has to be chosen carefully. Therefore, in Sec. 3, we

present a way for determining suitable values of α∗ using molecular simulations.

2.4 A perturbation expansion in combination with

LMF theory

When considering nonprimitive model electrolyte solutions with high-temperature ex-

pansion as introduced [...] {in Sec. 2.2}, one faces diverging correlation integrals, and

the main challenge for perturbation theories of such models is to overcome this prob-

lem.

In our perturbation approach [1], we employ the division of Helmholtz energy according

to Eqs. (2.30) and (2.31). Then, the perturbation expansion can be formed in terms

of the short-ranged Helmholtz energy contribution Asr only, and the short-ranged po-

tentials from Eq. (2.22), (2.24) and (2.25) are relevant in the expansion. Using this
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procedure, all correlation integrals converge.

{Applying the short-ranged potentials to Eq. (2.17),} the short-range contribution for

a third-order perturbation theory is, at the outset, simply asr = asr2 +asr3 (for the model

system regarded here, the �rst order term, asr1 , vanishes), where the second order is

asr2 =asrcc + asrcd + asrdd (2.32)

with

asrcc = −1

4
ρ∗β2x2

∫
ghs(12)

(
usr
cc,12

)2
dr∗12 (2.33)

asrcd = −1

2
ρ∗β2x(1− x)

∫
ghs(12)

〈(
usr
cd,12

)2〉
µ̂i

dr∗12 (2.34)

asrdd = −1

4
ρ∗β2(1− x)2

∫
ghs(12)

〈(
usr
dd,12

)2〉
µ̂i

dr∗12 (2.35)

and for the third order terms we get

asr3 =asrccc + asrccd + asrcdd + asrddd (2.36)

where

asrccc =
1

6
ρ∗ 2β3x3

∫
ghs(123)usr

cc,12u
sr
cc,13u

sr
cc,23dr

∗
12dr

∗
13 (2.37)

asrccd =
1

2
ρ∗ 2β3x2(1− x)

×
∫

ghs(123)
〈
usr
cd,12u

sr
cd,13u

sr
cc,23

〉
µ̂i
dr∗12dr

∗
13 (2.38)

asrcdd =
1

2
ρ∗ 2β3x(1− x)2

×
∫

ghs(123)
〈
usr
dd,12u

sr
cd,13u

sr
cd,23

〉
µ̂i
dr∗12dr

∗
13 (2.39)

asrddd =
1

6
ρ∗ 2β3(1− x)3

×
∫

ghs(123)
〈
usr
dd,12u

sr
dd,13u

sr
dd,23

〉
µ̂i
dr∗12dr

∗
13. (2.40)

Here, ⟨...⟩µ̂i
denotes unweighted averaging of orientations of the dipolar particles and

ghs(12) and ghs(123) are the two- and three-particle correlation functions of the hard

sphere �uid. {The orientational averaged potentials given below have also been given

in the �rst publication, Ref. 1. For the perturbation terms of second order, those
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potentials are

β2
〈(

usr
cd,12

)2〉
µ̂i

=
1

3

q∗ 2
1 µ∗ 2

2

r∗ 4
12

K2
12 (2.41)

β2
〈(

usr
dd,12

)2〉
µ̂i

=
1

9

µ∗ 2
1 µ∗ 2

2

r∗ 6
12

(
M2

12 − 2M12K12 + 3K2
12

)
(2.42)

and those of third order terms are given as

β3
〈
usr
cd,12u

sr
cd,13u

sr
cc,23

〉
µ̂i

=
1

3

µ∗ 2
1 q∗ 2

2 q∗ 2
3

r∗ 2
12 r

∗ 2
13 r

∗
23

K12K13 cosω1 erfc

(
r∗23
α∗

)
(2.43)

β3
〈
usr
dd,12u

sr
cd,13u

sr
cd,23

〉
µ̂i

=
1

9

µ∗ 2
1 µ∗ 2

2 q∗ 2
3

r∗ 3
12 r

∗ 2
13 r

∗ 2
23

K13K23 (M12 cosω1 cosω2 −K12 cos(ω1 + ω2))

(2.44)

β3
〈
usr
dd,12u

sr
dd,13u

sr
dd,23

〉
µ̂i

=
1

27

µ∗ 2
1 µ∗ 2

2 µ∗ 2
3

r∗ 3
12 r

∗ 3
13 r

∗ 3
23

× (−M23K12K13 −M13K12K23 −M12K13K23 + 3K12K13K23

+M12M13K23 cos
2 ω1 +M12M23K13 cos

2 ω2 +M13M23K12 cos
2 ω3

+M12M13M23 cosω1 cosω2 cosω3) (2.45)

Here, ωi denote the interior angles of the triangle formed by the three particles and

Kij and Mij are given by Eq. (2.26) and (2.27). For α∗ → ∞, Kij = 1 and Mij = 3.

Then, the damped pair potentials approach the full (original) electrostatic potentials

given by Eq. (2.9) to (2.11). For those potential functions, the orientational averaging

has been performed by Rasaiah and Stell [107]. For the full electrostatic potentials, the

orientational averaged potentials given above are thus identical to the ones given by

those authors, except for β3
〈
usr
dd,12u

sr
cd,13u

sr
cd,23

〉
µ̂i
. For this term, Rasaiah and Stell gave

a wrong prefactor of 2/9 instead of 1/9.}

Inserting the orientational averaged potentials [...] {given by Eq. (2.41) to (2.45) into
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the general approach}, we get the �nal expressions for our perturbation theory

asrcc = −πρ∗x2q∗ 4 Icc(ρ
∗, α∗) (2.46)

asrcd = −2

3
πρ∗x(1− x)q∗ 2µ∗ 2 Icd(ρ

∗, α∗) (2.47)

asrdd = −1

9
πρ∗(1− x)2µ∗ 4 Idd(ρ

∗, α∗) (2.48)

asrccc =
4

3
π2ρ∗ 2x3q∗ 6 Iccc(ρ

∗, α∗) (2.49)

asrccd =
4

3
π2ρ∗ 2x2(1− x)q∗ 4µ∗ 2 Iccd(ρ

∗, α∗) (2.50)

asrcdd =
4

9
π2ρ∗ 2x(1− x)2q∗ 2µ∗ 4 Icdd(ρ

∗, α∗) (2.51)

asrddd =
4

81
π2ρ∗ 2(1− x)3µ∗ 6 Iddd(ρ

∗, α∗). (2.52)

In the above equations, Iij(k) represent the correlation integrals that only depend on the

dimensionless density ρ∗ and the damping parameter α∗. Those integrals can be solved

numerically, given that appropriate expressions for ghs(12) and ghs(123) are available.

In Sec. 2.5 we describe our procedure for obtaining numerical results. Those results

are given [...] {as supplementary material of the second publication, Ref. 2.}

Since the Taylor expansion of the short-ranged potentials does not converge using third

order, in [...] {the �rst publication, Ref. 1,} we followed the suggestion of Rushbrooke,

Stell, and Høye [108] in applying the Padé approximation

asr =
asr2

1− asr3 /a
sr
2

(2.53)

which is used for the short-ranged Helmholtz energy contribution in Eq. (2.31). [...]

A Padé approximation is essential for bringing the results of the third order theory

even to the correct order of magnitude. However, Eq. (2.53) leads to the problem

that the di�erent contributions to the Helmholtz energy are not purely additive as

they are in a basic Taylor expansion. Terms with a low absolute value, like add and

addd, are dominated by terms of high absolute value, such as acc and accc, at high ion

concentrations. To avoid this problem, we suggest rearranging the Taylor expansion as

ares =asrcc + asrccc

+ asrdd + asrddd

+ asr2 − asrcc − asrdd︸ ︷︷ ︸
=asrcd

+ asr3 − asrccc − asrddd︸ ︷︷ ︸
≡asr3,cd

+alr (2.54)
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and forming a modi�ed Padé approximation

asrmod =
asrcc

1− asrccc/a
sr
cc

+
asrdd

1− asrddd/a
sr
dd

+
asrcd

1− asr3,cd/a
sr
cd

. (2.55)

The term asr3,cd, de�ned in Eq. (2.54), collects the ion-dipole cross contributions, as

asr3,cd = asrcdd + asrccd. Similarly rearranged Padé approximations have also been used by

other authors [35,36,53,54,58,59]. As will be shown in Sec. 3.4, substituting Eq. (2.53) with

Eq. (2.55) signi�cantly improves the results of the theory without changing the basic

perturbation equations. [...]

2.5 Numerical solution of the correlation integrals

[...] The evaluation of numerical results for the now converging correlation integrals

requires an appropriate description for the three-particle correlation function ghs(123).

The most accurate correlation functions are those obtained by computer simulations as

presented, e.g., by Bildstein and Kahl [109] or by Müller and Gubbins [110]. An alternative

to this elaborate method for obtaining ghs(123) are analytical or empirical approaches

some of which have been compared in Ref. 111. For example, the integral equation

method proposed by Attard [112] has proven to give good results [109]. In this work, we

use the Kirkwood superposition approximation [81]

g(123) = g(12)g(13)g(23). (2.56)

The superposition approximation is known to be less accurate compared to other meth-

ods, especially at high densities [109], but is has the advantage of a much simpler form

than other approaches. [...]

{The procedure for numerical calculation of the correlation integrals has been given

in the second publication, Ref. 2. For the hard sphere pair correlation functions, data

from molecular simulation was used. For densities between ρ∗ = 0.2 and 1, very precise

data for ghs(r) has been given by Kolafa et al. [113], and thus this data was employed

for that density regime. For densities lower than ρ∗ = 0.2, data obtained from our

own simulations was used. Numerical solutions for the di�erent correlation integrals

for densities 0 ≤ ρ∗ ≤ 1.0 and damping parameters 0.2 ≤ α∗ ≤ 5.0 are given as supple-

mentary material of the second publication, Ref. 2. In the �rst publication, Ref. 1, we

gave solutions for those integrals obtained with ghs(r) from Percus-Yevick theory [114].

I parametrized analytical ansatz functions to those numerical solutions. The functions

turned out to be moderately accurate and caused problems especially for small α∗,
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where the values of the integrals are close to zero. In that region, some of the func-

tions became negative because of a too rough adjustment, and the resulting Helmholtz

energy obtained by Padé approximations were not reasonable. Therefore, I decided to

give tabulated values of the numerical solutions in the second publication, Ref. 2 and

use cubic spline interpolation instead of analytical functions.}

Fig. 2.1a and 2.1b show how the di�erent correlation integrals Iij(k) vary with the

parameter α∗ for a density of ρ∗ = 0.681. Parameter α∗ de�nes the division of the

potential according to Eq. (2.21). As can be seen, for large values of α∗ and thus

for vanishing damping, the correlation integrals Icd, Idd, and Iddd approach a limit-

ing value. For larger values of α∗ than the ones covered in Fig. 2.1b, this is also the

case for Icdd. These correlation integrals approach �nite values even for the original

(undamped) potential, i.e., for α∗ → ∞. In contrast Icc, Iccc and Iccd diverge for the

original (undamped) potential and it is these correlation integrals that require special

techniques like resummation in HBT theory or decomposition of the potentials as done

in this work. In the limit of α∗ → ∞ and x = 0, the only remaining terms in [...] {the

third order perturbation expansion} are the undamped dipolar terms. In this limit, our

theory reduces to the one presented by Rushbrooke, Stell and Høye [108] for the dipolar

hard sphere �uid. [...]

1 The Figures shown in the original publication, Ref. 1, di�er from the �gures shown here: the
correlation integrals shown here are based on data obtained with ghs(12) from molecular simulations,
i.e. the �gures show the Iij(k) given as supplementary material of the second publication, Ref. 2. This
data was generated after Ref. 1 had been published.
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Fig. 2.1: Correlation integrals at a constant density of ρ∗ = 0.68.
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2.6 In�uence of the static dielectric constant on the

results of the theory

By applying LMF theory to the perturbation expansion, our �uid theory depends on

the static dielectric constant ε, as the long ranged Helmholtz energy contribution alr

given by Eq. (2.28) is a function of (ε−1)/ε. As opposed to a primitive model, however,

the sensitivity of our theoretical approach towards ε is small, as demonstrated in this

section.

Outside of this section, we assume in�nite ε, and thus (ε−1)/ε = 1 in this entire work.

In order to assess the impact of this assumption on alr, we determined ε for varying

dipole moment, ionic charge and ion concentration at a constant liquid-like density

of ρ∗ = 0.6786 in molecular simulations. The details on the simulation technique are

given in Ref. 1.

As an alternative to the simple approximation employed in this work, one can also

employ other ways for determining ε. A theoretical approach that has been presented

by Tani et al. [115] is tested against the simulation data here. From perturbation theory

for the pure dipolar hard sphere �uid, they obtained the simple expression

εth = 1 + 3y + 3y2 + 3y3
(
9Idd∆
16π2

− 1

)
(2.57)

with

y =
4

9
πµ∗ 2ρ∗. (2.58)

In the above equation, Idd∆ is a correlation integral that is given in Ref. 115. In their

work, Tani et al. showed that Eq. (2.57) gives fairly good results for the dipolar hard

sphere �uid. Later, Henderson et al. [51] suggested using the approach also for roughly

estimating the dielectric constant of model electrolyte solutions. They simply replaced

the total density ρ∗ in Eq. (2.58) with the density of the dipolar species, i.e. they

suggested replacing y in Eq. (2.57) with

ỹ =
4

9
πµ∗ 2ρ∗(1− x). (2.59)

By doing this, the e�ect of decreasing number of dipolar particles with increasing ion

concentration is accounted for, but the e�ect of the ionic species on ε is neglected.

Therefore, Henderson et al. pointed out that the approach might be a crude approx-

imation. Nonetheless, we here follow their suggestion and employ Eq. (2.57) with y
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replaced by ỹ from Eq. (2.59).

In Tab. 2.1, the results of Eq. (2.57), denoted as εth, are compared to results from

molecular simulations, denoted as εsim, for three di�erent combinations of µ
∗ 2 and q∗ 2

and varying ion mole fraction x. A graphical representation of parts of this data is

given in Fig. 2.2. The data con�rms that the theoretical approach works very well for

the pure dipolar �uid. However, signi�cant deviation from the simulation data can be

observed already for quite low ion concentrations x.

Both, theory and simulations show that ε is large for the systems with large dipole

Tab. 2.1: Static dielectric constant for three systems at a constant total density of ρ∗ =
0.6786 from molecular simulations (εsim) and from the theoretical approach given by
Eq. (2.57) (εth). A graphical representation of the data for εsim has been published
in the �rst publication, Ref. 1.

x εsim εth

µ∗ 2 = 0.5; q∗ 2 = 32
0 3.11 ± 0.03 3.15
0.032 2.99 ± 0.02 3.06
0.064 2.88 ± 0.03 2.97
0.12 2.72 ± 0.04 2.81
0.176 2.53 ± 0.02 2.66

µ∗ 2 = 2.5; q∗ 2 = 160
0 32.6 ± 4.8 31.9
0.032 20.3 ± 1.7 30.0
0.064 13.2 ± 0.8 28.1
0.12 10.6 ± 1.4 25.1
0.176 8.1 ± 1.3 22.2

µ∗ 2 = 4.0; q∗ 2 = 160
0 85.4 ± 22.9 84.1
0.032 50.0 ± 13.8 78.4
0.064 30.4 ± 4.8 72.9
0.12 23.3 ± 5.2 63.9
0.176 14.7 ± 3.2 55.7

moments of µ∗ 2 = 2.5 and 4.0 at low ion concentrations x. With increasing x, the sim-

ulations reveal a rapid decrease of ε, and the lowest value of those systems is ε = 8.079

which corresponds to (ε− 1)/ε = 0.876. For the system with µ∗ 2 = 0.5, ε is in a range

between 2.53 and 3.11, resulting in the lowest value of (ε− 1)/ε = 0.605.

The simulation data, the theory given by Eq. (2.57) and the basic assumption ε = ∞
allow us to calculate alr in three di�erent ways. The most exact results are obtained by

determining alrsim, the long range contribution calculated using εsim. With those values

as reference data, we can assess alr∞, the long ranged contribution assuming ε = ∞
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Fig. 2.2: Static dielectric constant over ion concentration for two of the regarded systems
with ρ∗ = 0.6786: ▼ εsim for µ∗ 2 = 4.0 and q∗ 2 = 160; εth for µ∗ 2 = 4.0
and q∗ 2 = 160; ▲ εsim for µ∗ 2 = 2.5 and q∗ 2 = 160; εth for µ∗ 2 = 2.5 and
q∗ 2 = 160;

and alrth with εth from Eq. (2.57). For this, we calculated the relative deviation of alr∞
and alrth from the reference alrsim, denoted as δalr∞ and δalrth, respectively. In Tab. 2.2,

those relative deviations are summarized for the model solutions regarded here for an

exemplary value of α∗ = 1.5 (as is shown in Sec. 3.4, this is a reasonable value of α∗

for the given liquid-like density of ρ∗ = 0.6786).

The data given in Tab. 2.2 shows that the assumption of in�nite dielectric constant

causes the largest error in alr for x = 0, the pure dipolar �uid, with a large deviation

of over 40 % for µ∗ 2 = 0.5. For the two systems with µ∗ 2 ≥ 2.5, the deviations are

much lower in that limit. With increasing ion concentration, the error caused in alr by

assuming in�nite ε decreases for all systems, although the approximation itself becomes

more inaccurate. This is caused by the fact that for increasing x, the contribution of

the ions, i.e. the �rst term in Eq. (2.28), gains more and more impact on alr and the

in�uence of the dielectric constant on alr decreases.

The above consideration, however, has shown that Eq. (2.57) is most accurate in the

region of low ion concentrations, and thus in the region where ε has the largest impact

on alr. As can be seen from the data given in Tab. 2.2, employing the ansatz of Tani

et al., Eq. (2.57), signi�cantly lowers the deviation from the exact alrsim especially for
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Tab. 2.2: Relative deviations δalr∞ and δalrth.

x δalr∞ / % δalrth / %

µ∗ 2 = 0.5; q∗ 2 = 32
0 43.3 0.560
0.032 3.175 0.070
0.064 1.705 0.047
0.12 0.983 0.033
0.176 0.724 0.035
µ∗ 2 = 2.5; q∗ 2 = 160
0 0.501 −0.010
0.032 0.090 0.029
0.064 0.073 0.039
0.12 0.050 0.029
0.176 0.045 0.029
µ∗ 2 = 4.0; q∗ 2 = 160
0 0.113 −0.002
0.032 0.034 0.012
0.064 0.030 0.018
0.12 0.022 0.014
0.176 0.024 0.018

low x. The same conclusion has been recently drawn by Theiss and Gross [116] who

carried out a similar analysis as part of a work in which they present a fourth order

perturbation theory for dipolar hard spheres. In their work, the same alr as given in

this work is employed for the limit of x = 0.

The above considerations show that for large dipole moments, assuming ε = ∞ does

not introduce a signi�cant error to the theory. In the following, we only consider liquid-

like densities and dipole moments µ∗ 2 ≥ 2.5 and therefore assume in�nite ε. However,

the study also shows that for low dipole moments, this is not a good assumption. In

such cases, more realistic values, e.g. determined by Eq. (2.57) should be used.

2.7 Validation of Kirkwood superposition approxima-

tion by MC simulations

Before assessing the new third order perturbation approach, the accuracy of the third

order perturbation terms themselves has to be ensured. For their numerical evaluation,

Kirkwood superposition approximation (KSA) has been employed, as is discussed in

Sec. 2.5. In this section, a method for determining the correlation integrals Iijk in

MC simulations is presented. Using the simulation results, it is shown that KSA has
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negligible in�uence on the theory.

2.7.1 Correlation integrals from molecular simulations

The correlation integrals formulated in Eq. (2.46) to (2.52) can be sampled in MC simu-

lations. In this section, we derive expressions for calculating the third order correlation

integrals in terms of canonical ensemble averages of the hard sphere �uid. We explain

the route to this ensemble average expression in detail for one correlation integral, i.e.

for Iccd. The same scheme is analogously applied to the remaining integrals.

For deriving a suitable expression, it is helpful to start with the third order terms of

the basic perturbation expansion, i.e. with the terms given in Eqs. (2.37) to (2.40). For

the ion-ion-dipole term, Eq. (2.38), the required orientational averaged three-particle

potential is [...] {given by Eq. (2.43).} The remaining orientational averaged potentials

required for the rest of the terms are given [...] {by Eqs. (2.44) and (2.45)}. Insert-

ing Eq. (2.43) into Eq. (2.38) and additionally replacing the three-particle correlation

function ghs(123) with its de�nition

ghs(123) =
N(N − 1)(N − 2)

ρ∗ 3Z∗ hs

∫
exp

(
−βUhs

)
dr∗N>3 (2.60)

(where Z∗ hs is the con�guration integral of the hard sphere �uid) yields

asrccd =
1

6
ρ∗ 2x2(1− x)q∗ 4µ∗ 2(N − 1)(N − 2)

1

Z∗ hs

×
∫

K12K13 cosω1 erfc (r∗23/α
∗)

r∗ 2
12 r

∗ 2
13 r

∗
23︸ ︷︷ ︸

≡ϕccd
123

exp
(
−βUhs

)
dr∗N (2.61)

=
1

6
ρ∗ 2x2(1− x)q∗ 4µ∗ 2(N − 1)(N − 2)

〈
ϕccd
123

〉
NV T,hs

(2.62)

where we took advantage of monovalent ions (|q∗i | = q∗) and regard only one dipolar

solvent species (µ∗
i = µ∗). Additionally, for brevity, we write the argument of the

integral, and thus the term that has to be sampled, as ϕccd
123. The angular brackets

⟨...⟩NV T,hs denote the canonical ensemble average in the hard sphere �uid.

By requiring equality of Eq. (2.62) with Eq. (2.50), we get

Isimccd (ρ
∗, α∗) =

1

8

(N − 1)(N − 2)

π2ρ∗ 2

〈
ϕccd
123

〉
NV T,hs

. (2.63)
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For getting reasonable statistics, it is not useful to select one particle triplet and sam-

ple ϕccd
123 of this triplet only. We can simply substitute ϕccd

123 with the average of a given

number of triplets, 1/Ntr

∑Ntr

m=1 ϕ
ccd
ijk,m where i, j, k are selected randomly and Ntr is

the number of triplets regarded. We select a �xed number Ntr instead of regarding all

possible triplets since it dramatically reduces computation time (but gives less accurate

statistical averages). The �nal expression for Isimccd from molecular simulations in NV T

ensemble is thus

Isimccd (ρ
∗, α∗) =

1

8

(N − 1)(N − 2)

π2ρ∗ 2

〈
1

Ntr

Ntr∑
m=1

ϕccd
ijk,m

〉
NV T,hs

. (2.64)

By repeating the procedure described above for the remaining terms of third order, we

see that the equations for all correlation integrals are identical to Eq. (2.64), except

for di�erent ϕijk. Those are
2

ϕccc
ijk =

erfc(r∗ij/α
∗)erfc(r∗ik/α

∗)erfc(r∗jk/α
∗)

r∗ijr
∗
ikr

∗
jk

(2.65)

ϕcdd
ijk =

KikKjk (Mij cosωi cosωj −Kij cos(ωi + ωj))

r∗ 3
ij r

∗ 2
ik r

∗ 2
jk

(2.66)

ϕddd
ijk =

1

r∗ 3
ij r

∗ 3
ik r

∗ 3
jk

(−MjkKijKik −MikKijKjk

−MijKikKjk + 3KijKikKjk

+MijMikKjk cos
2 ωi

+MijMjkKik cos
2 ωj

+MikMjkKij cos
2 ωk

+MijMikMjk cosωi cosωj cosωk) (2.67)

where Kij and Mij are de�ned by Eqs. (2.26) and (2.27) and ωi,j,k are the interior

angles of the triangle formed by the three particles. For sampling Iijk, we carried out

NV T MC simulations of the hard sphere �uid for di�erent particle numbers N between

200 and 19000. The damping parameter was kept at a constant value of α∗ = 1.5 and

we considered two di�erent densities, ρ∗ = 0.6786 and ρ∗ = 0.8. The systems were

equilibrated for 10000 MC cycles. We then sampled all of the ϕijk every 10 cycles for

a total of 50000 cycles. The number of particle triples Ntr was chosen to be 1 · 107 in
all simulations, independent from the total number of particles. The cuto� was set to

0.25 · L, where L is the length of the simulation box.

2 in the originally published manuscript, Ref. 2, the brackets in Eq. (2.67) are missing due to a
misprint.
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Fig. 2.3 shows one representative correlation integral, Iccd, versus the particle number

for ρ∗ = 0.6786 and α∗ = 1.5. Each data point is the average of �ve independent simu-

lations. The statistical uncertainty is the standard deviation of those �ve simulations.

It can be seen that the simulated Isimccd approaches a limiting value already for quite low

particle numbers. This value is in excellent agreement with the results from numerical

integration [...]. Similar behavior can also be observed for the remaining correlation

integrals that are not shown here. From our simulation study, the values of Isimijk used

for calculating δIijk in Tab. 2.3 were obtained by taking the average of the simulated

values of all simulations with N ≥ 7000.
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Fig. 2.3: Iccd versus particle number for ρ∗ = 0.6786 and α∗ = 1.5: ▲ results from molecular
simulations, Isimccd ; result of numerical integration using Kirkwood superposition
approximation, Eq. (2.56), for ghs(123).

2.7.2 In�uence of KSA on the results of the perturbation theory

As mentioned in Sec. 2.5, we use Kirkwood superposition approximation (KSA) [81]

[...] for approximating the three-particle correlation function of the hard sphere �uid

[...] because of its simple form. In doing so we follow other theories for polar �u-

ids [42,51,108,117,118].

In the studies of Barker et al. [119,120] and Tani et al. [115], the validity of KSA for Iddd

in the limit of α∗ → ∞ (undamped potentials) has already been tested by comparison
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with molecular simulation data. In their work, they found good agreement between

numerically calculated and simulated values. Beyond only dipolar �uids, the impact of

using Eq. (2.56) in theories for electrolyte solutions is unknown. To ensure that KSA

does not introduce signi�cant errors to the theory, we computed Iijk in MC simulations.

[...]

In Tab. 2.3, Iijk from numerical integration are compared to the simulation results.

As can be seen, the deviation between both methods is in the order of one percent or

lower for typical liquid phase densities and a damping parameter of α∗ = 1.5 (which is

a reasonable choice of α∗, as will be shown in [...] Sec. 3.4.2).

The Padé approximation of the third order theory further damps the errors of Iijk in

Tab. 2.3: Relative deviation δIijk between the value from numerical integration (using Kirk-
wood superposition approximation) and simulated value for α∗ = 1.5.

ρ∗ δIccc / % δIccd / % δIcdd / % δIddd / %

0.6786 0.52 0.61 1.22 1.24
0.8 0.27 0.26 0.46 −0.35

the calculation of asr. Tab. 2.4 shows the errors in Helmholtz energy caused by Kirk-

wood's superposition approximation for di�erent choices of q∗, µ∗ and ion mole fraction

x. This comparison clearly reveals that the errors in asr are well below one percent, so

that KSA does not introduce severe errors to the theory.

Tab. 2.4: Relative errors δasr and δasrmod of the perturbation theory caused by using Kirkwood
superposition approximation in numerical calculation of Iijk.

x δasr / % (Eq. (2.53)) δasrmod / % (Eq. (2.55))

ρ∗ = 0.6786; µ∗ 2 = 4.0; q∗ 2 = 160
0 −0.67 −0.67
0.032 −0.71 −0.66
0.064 −0.62 −0.63
0.12 −0.55 −0.59
0.176 −0.53 −0.56
ρ∗ = 0.8; µ∗ 2 = 2.5; q∗ 2 = 100
0 0.17 0.17
0.032 −0.20 0.02
0.064 −0.24 −0.04
0.12 −0.26 −0.09
0.176 −0.26 −0.13



3 Evaluation of the perturbation the-

ory by comparison with MC simu-

lation data

Parts of this chapter are literal quotes from the second publication, Ref. 2.

The origin of the sections is as follows:

• Section 3.1 has not been published previously.

• Sections 3.2, 3.3, 3.4 and 3.5 including all subsections are literal quotes from the

second publication, Ref. 2, where the sections have been published with identical

headings as used in this work.
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3.1 Preliminary remark

In the theory presented in the previous chapter, the intermolecular pair potential is

decomposed into a short- and a long-ranged part. For obtaining expressions for the

corresponding Helmholtz energy contributions asr and alr, some basic approximations

were made.

The short-ranged part is described by a Padé approximated third order Taylor expan-

sion. For the calculation of numerical results of the correlation integrals, Kirkwood

superposition approximation was employed.

The long-range contribution alr is captured in a mean �eld manner by a term resulting

from LMF theory. Furthermore, the expression for alr depends on the static dielectric

constant that is assumed to be in�nity.

In the previous chapter, it has been shown that neither the Kirkwood superposition

approximation nor the assumption of in�nite dielectric constant causes severe errors

in the corresponding expressions for asr and alr. In this chapter, the accuracy of the

Padé approximated third order Taylor expansion for asr as well as the accuracy of

the long-range contribution term, Eq. (2.28), is assessed by comparison with data from

molecular simulations. For this, the (exact) total residual Helmholtz energy ares as well

as the short-ranged part asr are calculated with di�erent thermodynamic integration

schemes in MC simulations. Using the resulting data, the exact long-ranged contri-

bution can be determined as alr = asr − ares. The simulation results are thus used to

individually assess the theoretical expressions for asr and alr.

3.2 Thermodynamic integration methods in molecu-

lar simulations

Thermodynamic integration is a standard method for calculating Helmholtz energies

relative to any arbitrary reference point or reference system. It is obtained by inte-

grating a suitable Helmholtz energy derivative from the chosen reference state to the

desired state.

In this section, we present two di�erent Helmholtz energy derivatives for thermody-

namic integration in molecular simulations. One of those methods signi�cantly reduces

our simulation e�ort for calculating the Helmholtz energy contribution arising from the

short-ranged part of the electrostatic pair potential. We note that other e�cient meth-

ods exist for sampling Helmholtz energies (see, e.g., Ref. 121).
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3.2.1 Total Helmholtz energy from λ-integration

The most common thermodynamic integration method in molecular simulations is one

where the intermolecular pair potential uij between two particles i and j is split into a

reference part uref
ij and a residual part ures

ij according to

uij = uref
ij + λ · ures

ij (3.1)

where λ is a coupling parameter between 0 and 1 for the reference �uid and for the

target �uid, respectively. In our study, we use the hard sphere �uid as reference part,

uref
ij = uhs

ij and the electrostatic potential as residual part, ures
ij = ues

ij .

With this de�nition, the Helmholtz energy can be written as

A− Ahs =

∫ 1

0

(
∂A

∂λ

)
dλ. (3.2)

The partial derivative of A with respect to λ is obtained from the partition function

as average of the total electrostatic energy ⟨
∑

i

∑
j>i u

es
ij⟩NV T,λ calculated in a system

of particles interacting with scaled pair potentials de�ned by Eq. (3.1). The residual

Helmholtz energy from λ-integration is

ares =

∫ 1

0

1

N

〈∑
i

∑
j>i

βues
ij

〉
NV T,λ

dλ. (3.3)

We calculated the argument of the integral in Eq. (3.3) for 20 equidistant values of

λ between 0.05 and 1. For the model system we use, the argument is zero for λ = 0

which gives us an additional value.

The integrand of Eq. (3.3) over λ is strictly monotonic as shown in [...] {Fig. 3.11}.

Simple trapezoidal rule for numerical integration is su�ciently accurate. Adding two

additional supporting points in the steepest region between λ = 0 and 0.05 changed

the results only within statistical uncertainty (for a state point that is not included

in this study, but similar to the ones regarded here). Thus, increasing the number of

supporting points does not signi�cantly change the results of numerical integration.

1 Fig. 3.1 was not part of the original publication, Ref. 2. It is given in the appendix of the �rst
publication, Ref. 1.
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Fig. 3.1: Integrand in Eq. (3.3) versus λ for ρ∗ = 0.6786, µ∗ 2 = 4.0, q∗ 2 = 160, x = 0.176.
Error bars are within symbol size.

3.2.2 Short-ranged contribution to Helmholtz energy from α-

integration

An important objective of this study is to assess the short-ranged contribution asr and

the long-ranged part alr of the Helmholtz energy. An individual evaluation of the under-

lying perturbation theory (asr) and the correction term of Weeks and coworkers [98,102]

(alr) is not only valuable in itself, the analysis will also reveal a reasonable value (or

range) for the damping parameter α∗. What is needed are molecular simulations for the

short-ranged Helmholtz energy asr. As a simulation technique, in principle, we could

apply the standard λ-integration scheme, sampling only the short-ranged electrostatic

potentials in Eq. (3.3) instead of the total electrostatic potential. With this approach,

each data point would require 20 single simulations, and the computational e�ort for

calculating asr(α∗) for a variety of di�erent systems would be high.

The simulation e�ort can be considerably reduced by considering α∗ instead of λ as

the integration path variable and using the derivative of the Helmholtz energy with

respect to α∗ instead of λ for the thermodynamic integration. The short-ranged part
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of the pair potential is

βusr
ij = βuhs

ij + βusr
cc,ij = βuhs

ij +
q∗i q

∗
j

r∗ij
· erfc

(
r∗ij
α∗

)
. (3.4)

In the simulations, point dipoles are modeled by two point charges, as is explained

in Sec. 3.3 below. Thus, in contrast to the perturbation theory, all short-ranged elec-

trostatic interactions are described as (short-ranged) charge-charge potentials, without

the need to distinguish between charge-charge, charge-dipole and dipole-dipole inter-

actions. For α∗ → 0, the complementary error function erfc(r∗ij/α
∗) is zero, and the

short-ranged part of the Helmholtz energy as a function of α∗ can be obtained from

Asr − Ahs =

∫ α∗

0

(
∂Asr

∂α̃∗

)
dα̃∗. (3.5)

The required partial derivative is(
∂Asr

∂α̃∗

)
=

1

Z̃α̃∗

∫ (∑
i

∑
j>i

∂usr
ij

∂α̃∗

)
exp

(
−βU sr(α̃∗, rN)

)
drN (3.6)

with

∂usr
ij

∂α̃
=

q∗i q
∗
j

α̃∗ 2

2√
π
exp

(
−
r∗ 2
ij

α̃∗ 2

)
(3.7)

From Eq. (3.5) � (3.7), it follows that the short-ranged contribution to the Helmholtz

energy from α∗-integration can be determined in the NV T ensemble from

asr = β
Asr − Ahs

N

=

∫ α∗

0

〈
1

N

∑
i

∑
j>i

q∗i q
∗
j

α̃∗ 2

2√
π
exp

(
−
r∗ 2
ij

α̃∗ 2

)〉
NV T,α̃∗

dα̃∗ (3.8)

Using Eq. (3.8), each additional data point asr(α∗) in a series of increasing α∗-values

can be calculated with only one single simulation (by integrating over the previous

asr(α∗) results).

Since this approach for thermodynamic integration has not been tested or applied so

far, we carefully analyzed the accuracy of this method. Fig. 3.2 shows the argument of

the integral in Eq. (3.8) over the parameter α∗ for particle numbers of N = 1000 and

N = 2000 for the same density, with accordingly increased simulation box volume (for

a representative state point). We �rst regard the left-hand side of Fig. 3.2, where one
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observes, the argument �rst decreases and has a minimum before increasing smoothly.

We realize it is essential to have a su�ciently �ne α∗-grid in the region of α∗ lower than

1. A su�cient number of supporting points is important because errors propagate with

increasing α∗ when using the α-integration scheme. We therefore chose ∆α∗ = 0.05

for α∗ ≤ 1. For α∗ > 1, we increased ∆α∗ to 0.1. For the numerical integration, we

integrated cubic splines adjusted to the simulation data.

When regarding the right-hand region of Fig. 3.2 we observe the argument of Eq. (3.8)
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Fig. 3.2: Integrand in Eq. (3.8) versus α∗ for ρ∗ = 0.6786, µ∗ 2 = 4.0, q∗ 2 = 160, x = 0.176:
△ N = 1000 particles; ▲ N = 2000 particles. Error bars are within symbol size.

to be system size dependent. The tail of the (grid-)curve in Fig. 3.2 must converge

to zero in order to allow the convergence of asr to ares for α∗ → ∞. The system-size

dependent `run-away' of the (grid-)curve is caused by the increasing range of the usr
ij(α

∗)

potential with increasing α∗, while restricting a constant cuto� radius for evaluating

the potential at half the length of the simulation box. Our study requires analyzing

the short- and long-ranged Helmholtz energy only to values α∗ < 3. It is therefore

su�cient to obtain correct values for the integrand in Eq. (3.8) for α∗ ≤ 3, and thus

to simulate systems with N=2000 particles.
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3.3 Simulation details

All of the simulations were carried out in an NV T ensemble with a total of N = 1000

particles for the λ-integration and N = 2000 particles for the α-integration. For pure

dipolar �uids (with x = 0), we equilibrated for at least 5 ·104 MC cycles and considered

5·104 cycles for sampling (where one cycle comprises N MC moves) for both thermody-

namic integration methods. The systems containing ions required longer simulations.

Those systems were equilibrated for 105 cycles. Subsequently, we sampled the desired

quantities for 105 cycles for λ-integration and for 5 · 104 cycles for the α-integration

scheme.

For the λ-integration, we used standard Ewald summation [103] as it is described in

detail e.g. in Ref. 122 or Ref. 123 with an Ewald parameter of 5.6 and 7 k-vectors in

each spatial direction.

In all simulations we used the `ion extended dipole model`, in which the dipoles are

modeled with two point charges of the same magnitude with opposite signs, separated

by a small distance d = 0.1 · σ. The dipole moments were de�ned by adjusting the

magnitude of the point charges. We validated this model by comparing our results to

literature data of internal energies of Caillol et al. [124] and Eggebrecht and Ozler [58]

who both used point dipoles in their simulations. In Ref. 1, a slightly more detailed

discussion of the literature concerning the ion extended dipole model is given.

In accordance with the study of Eggebrecht and Ozler [58], we also studied ion-dipolar

mixtures at a reduced density of ρ∗ = 0.6786. In addition we conducted simulations

for ρ∗ = 0.8, as a signi�cantly higher liquid density. We vary the ionic mole fraction in

5 steps.

3.4 Results

The two simulation techniques described above allow us to determine comprehensive

results for the total electrostatic Helmholtz energy contribution ares in ion-dipole sys-

tems, as well as for only the short-ranged part of the electrostatic Helmholtz energy

contribution asr.

In this section, we �rst discuss the di�erent Helmholtz energy contributions obtained

from molecular simulations. We then use the simulation data to evaluate the long-

range correction term alr given by Eq. (2.28). Finally, we analyze and evaluate the

third order perturbation theory for the short-ranged Helmholtz energy described in

Sec. 2.4.
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3.4.1 Helmholtz energy contributions from molecular simula-

tions

Fig. 3.3 shows ares as well as asr for a �xed α∗ = 1.5 with increasing ion concentration

for one of the systems studied in this work. Both, ares and asr decrease nearly linear

with ion concentration. [...] The di�erence between both values, ares and asr, however,

increases rapidly with increasing ion concentration. For the pure dipolar �uid, at x = 0,

the short-ranged contribution covers 91 % of the total electrostatic Helmholtz energy,

whereas the value is only 55 % for the state point with x = 0.176. That is in accordance

with intuition, because dipolar interactions are e�ectively more short-ranged leading

to relatively small contribution from alr. In Sec. 3.4.2 we will show that α∗ = 1.5 is

indeed a meaningful value for α∗.

The contribution of the long-ranged part of the electrostatic potential to the total
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Fig. 3.3: Helmholtz energy over ion concentration x for ρ∗ = 0.6786, µ∗ 2 = 4.0, q∗ 2 = 160:
▲ short-range contribution asr for α∗ = 1.5 from simulations with α-integration;
▼ total residual Helmholtz energy ares from simulation with λ-integration. Error
bars are within symbol size.

Helmholtz energy can be obtained from our simulation data as

alrsim = aresλ − asrα . (3.9)
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The indices `λ' and `α' in this equation are only indicative of the simulation technique

used for obtaining the value of ares and asr, respectively.

In Fig. 3.4 we analyze the short-ranged and long-ranged contributions to the Helmholtz

energy from molecular simulations for varying damping parameter α∗ . The state point

corresponds to the largest ion concentration x of Fig. 3.3. The short-ranged part,

starting at zero for α∗ = 0, decreases for increasing α∗. The long-ranged contribution

alrsim starts at ares for low values of α∗ and increases with rising α∗. The remarkable

feature is that both, the short- and the long-ranged part contribute signi�cantly to the

Helmholtz energy within the entire range of α∗ shown here. A su�ciently accurate

description of both contributions is thus essential for a reliable calculation of ares.
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Fig. 3.4: Contributions to Helmholtz energy for varying α∗ for ρ∗ = 0.6786, µ∗ 2 = 4.0,
q∗ 2 = 160, x = 0.176: ▲ short-range contribution asr from simulations with α-
integration; ▼ long-range contribution alrsim from simulations; total residual
Helmholtz energy ares from simulation with λ-integration. Error bars are within
symbol / line size.

3.4.2 Evaluation of the long-range term alr

For evaluating the analytical correction term of Rodgers and Weeks, Eq. (2.28), we

can now compare this term with with simulation results for alrsim. In Fig. 3.5, this is



3. Evaluation of the perturbation theory by comparison with MC simulation data 47

done for the same state point as shown in Fig. 3.4. For very low values of α∗, the ana-

lytical term shows non-physical behavior as it diverges towards −∞. With increasing

α∗, however, alr approaches the simulation data. For any 1.5 ≤ α∗ ≤ 3, it is within

statistical uncertainties of the simulation data.

In order to assess Eq. (2.28) for various ion concentrations, we choose a di�erent
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Fig. 3.5: Comparison of long-ranged Helmholtz energy contributions for ρ∗ = 0.6786, µ∗ 2 =
4.0, q∗ 2 = 160, x = 0.176: ▲ long-range contribution from molecular simulations,
alrsim; long-range correction alr of Rodgers and Weeks [102], Eq. (2.28). Error
bars are within symbol size.

representation in Fig. 3.6. We add the quasi-exact short-ranged contribution asrα ob-

tained from molecular simulations to alr for two system-densities and at di�erent ion

concentrations x. As can be seen, ares (and thus alr) is for all conditions in good agree-

ment with the reference data ares for α∗ ≥ 1.5 (for liquid densities). A similar behavior

was also observed by Rodgers and Weeks [102], however, in internal energy rather than

in Helmholtz energy. They tested their correction term in molecular simulations of

SPC/E water [125], using damped electrostatic pair potentials, applying Eq. (2.28) as

a long-range contribution to the internal energy. For all state points we studied, the

errors introduced by the expression alr of Rodgers and Weeks are well below 1 % for

any α∗ ≥ 1.5. We thus choose α∗ = 1.5 as the lowest possible value for which employ-

ing short-ranged pair potentials according to Eqs. (2.22), (2.24) and (2.25) together
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(a) ρ∗ = 0.6786, µ∗ 2 = 4.0, q∗ 2 = 160
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Fig. 3.6: Assessing alr for two di�erent system-densities and for various ion mole fractions:
▲ ares = asr + alr using the alr-expression of Rodgers and Weeks [102], Eq. (2.28);

ares from λ-integration. Error bars are within symbol / line size.
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with the expression for alr of Rodgers and Weeks gives su�ciently accurate results.

The work of Weeks and coworkers shows that this choice of α∗ also represents �uid

structure, g(r), of ionic model �uids for liquid-like densities [99,100]. It is important to

note that this value might be di�erent for systems that are signi�cantly di�erent from

the ones considered in this work.

As a lower bound of α∗ for the basic LMF, Weeks and coworkers [99,100,126,127] speci�ed

the nearest neighbor distance, α∗
min = (2 · ρ∗)−1/3. This requirement corresponds to

α∗
min = 0.903 for ρ∗ = 0.6786 and α∗

min = 0.855 for ρ∗ = 0.8. This lower bound is not

violated using a value of 1.5 for the densities we studied. Reasonable values for α∗ to

gain accurate thermodynamic results are, however, much larger than nearest neighbor

distance, as has also been highlighted by Rodgers et al. [102,127]

An upper bound for α∗ only exists when LMF approach is applied in molecular simu-

lations. These errors, however, are not native in the long-range correction; they occur

due to truncation of the short-ranged potential, as discussed in Sec. 3.2.2.

3.4.3 Evaluation of third order perturbation theory

Having validated the basic approach of our �uid theory, we can now use the simulation

data directly for comparison with the theory.
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Fig. 3.7: Short-ranged Helmholtz energy: comparison of simulation data with the results of
the perturbation theory for ρ∗ = 0.6786, µ∗ 2 = 4.0, q∗ 2 = 160: ▲ asr from molecular
simulation; asr from standard Padé approximation, Eq. (2.53); asrmod from
modi�ed Padé approximation, Eq. (2.55). Error bars are within symbol size.

In Fig. 3.7, the two variants of the Padé approximations for the third order theory

introduced above are compared to results of molecular simulations. Fig. 3.7a shows

the case of a pure dipolar �uid with x = 0. In that case, both Padé approximations

from Eq. (2.53) and Eq. (2.55) are identical. For α∗ → ∞ and x = 0, our theory ap-

proaches the one of Rushbrooke et al. [108] for the dipolar hard sphere �uid. For all state

points containing ions (Fig. 3.7b and 3.7c), the modi�ed Padé approximation given by

Eq. (2.55) clearly gives much better results than the original one, Eq. (2.53). Both

approximations match the simulated short-ranged contribution to Helmholtz energy

well for low values of α∗. This is understood, because the perturbation expansion con-

verges faster with decreasing α∗, and consequently the Padé approximated third order

expansion gives the best results for low values of α∗. Unfortunately, also the theory

with the new variant of the Padé approximation starts to deviate signi�cantly from

the reference simulation data for values of α∗ outside of α∗ < 0.9. This con�icts with

the analysis of the long-ranged part of the Helmholtz energy from the previous section,

which is valid only for α∗ ≥ 1.5. The deviations of theory from results of molecular
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simulations further increase for higher ion concentrations.

There are two levels of approximation in the third order theory we are here studying.

First, the perturbation expansion is truncated after the term of third order and rear-

ranged in a Padé approximation, and secondly, the three-particle distribution function

in the third order term is approximated with a Kirkwood superposition approximation.

In Sec. 2.7, it is shown that errors caused by Kirkwood superposition approximation

are below one percent. Thus, we conclude that for non-primitive model electrolyte

solutions and to a lesser extent also for purely dipolar �uids, third order perturbation

theory written as a Padé approximant is not su�cient.

There are two obvious approaches to improve the representation of the theory. First,

we can formulate an e�ective third order theory in which we adjust the correlation

integrals Iij(k) of the third order perturbation terms to molecular simulation data. The

second approach is to formulate a theory of fourth order. The fourth order term requires

numerical values of four-particle correlation integrals. Those six dimensional integrals

contain four-particle correlation functions, and numerical solution with su�cient ac-

curacy is demanding. Alternatively, one can either sample them in MC simulations as

we did with the third order integrals in this work or one can adjust the fourth order

theory to simulation data of ares.

All of the suggested procedures can be carried out at a constant value of α∗. Removing

the dependance on α∗ signi�cantly reduces the complexity of the theory. Our analysis

suggests α∗ = 1.5 as a suitable value.

3.5 Conclusions

[...] The analytical LMF-term of Rodgers and Weeks [102] describing the long-range con-

tribution of the electrostatic potential was found to be in excellent agreement to results

from molecular simulations for a damping parameter α∗ ≥ 1.5 for the liquid-like sys-

tems we studied. This �nding con�rms the approach of decomposing the electrostatic

potential into a damped, short-range part, for which we formulate a perturbation theory

and into a long-range part, is very promising for electrolyte solutions. For perturba-

tion theories, the approach overcomes the problem of diverging correlation integrals

and improves convergence of the perturbation expansion.

By comparison of the short-ranged contribution of perturbation theory with simula-

tion data, we gained detailed information about the shortcomings of the theory. We

showed that a modi�ed Padé approximation according to Eq. (2.55), in which the

charge-charge, the dipole-dipole and the charge-dipole terms are Padé approximated

separately, can signi�cantly improve the theory without changing the basic terms of
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the perturbation expansion. However, even then, third order Taylor expansion gives

good results only for low values of α∗. From this observation, we conclude that one

should either formulate e�ective third order terms or one has to extend the theory to

fourth order.



4 Chemical potential of nonprimitive

model electrolyte solutions from molec-

ular simulations

Parts of this chapter are literal quotes from the third publication, Ref. 3.

The origin of the sections is as follows:

• Section 4.1 has not been published previously.

• Section 4.2, 4.3 and 4.4 including all subsections are literal quotes from the third

publication, Ref. 3, where the sections have been published with identical headings

as used in this work.
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4.1 Preliminary remark

For electrolyte solutions, it is convenient to give the chemical potential as mean ionic

chemical potential µ± (or, equivalently, the mean ionic activity coe�cient γ±). Here,

the index '±' indicates a pair of ions, and thus in this notation the number of ion pairs is
de�ned as N± = N+ = N−. This di�ers from the description used in previous sections,

where the ionic mole fraction x was de�ned as mole fraction of ions, x = x+ + x−, and

accordingly the number of ions was de�ned as NI = N+ + N−. In this section, it is

crucial to carefully distinguish between the two notations. Henceforth, the index 'I' is

used whenever I refer to the number of ions and index '±' is used to indicate quantities

de�ned based on ion pairs.

The di�erence in notations also means that care has to be taken when evaluating

chemical potential from the perturbation expansion presented above. The mean ionic

chemical potential can be obtained as partial derivative of Helmholtz energy with

respect to ion pairs, i.e. as

µ±(T, ρ, xI) =

(
∂A

∂N±

)
T,V,Nj ̸=I

. (4.1)

When evaluating the partial derivative of A with respect to the number of ions from

the perturbation theory, one would calculate the chemical potential as

µI(T, ρ, xI) =

(
∂A

∂NI

)
T,V,Nj ̸=I

(4.2)

due to the de�nition of the number of ions employed. Obviously, NI = 2 ·N±, and the

mean ionic chemical potential can be easily converted from the theory as µ± = 2 · µI .

4.2 Simulation methods

We determine the chemical potential by sampling the transition probabilities between

neighboring macrostates in Monte Carlo (MC) simulations. In this section, we describe

how the chemical potential is estimated from those probabilities and we discuss di�erent

methods for their computation. A system size study is performed to ensure that �nite

size e�ects are negligible for the results of this study.
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4.2.1 Chemical potential from transition probabilities

In molecular simulations, the mean ionic chemical potential at given density ρ, tem-

perature T and ion concentration xI can be calculated via

µ±(T, ρ, xI) =

(
∂A

∂N±

)
T,V,Nj ̸=I

≈ (AN+1 − AN) = − 1

β
ln

QN+1

QN

(4.3)

whereA is the Helmholtz energy andQ is the partition function. Index 'N ' indicates the

N -particle system and index 'N +1' refers to the N -particle system with an additional

pair of ions. We use the formulation of µ± in terms of ion pairs since we use standard

Ewald summation, and thus have to ensure electroneutrality of the system at any time

of the simulation.

From Eq. (4.3), it follows that the chemical potential relative to the ideal gas, denoted

as residual part βµres
± is

βµres
± = β

(
µ± − µig

±

)
= − ln

ZN+1

ZN

(4.4)

where Z is the con�guration integral and µig
± is the ideal gas chemical potential of the

mixture. The ratio of partition functions in Eq. (4.4) can be calculated in di�erent

ways in molecular simulations.

The most common approach is Widom test particle method [75]. The prerequisite for

the applicability of this approach is that the con�gurations in the N -particle system

are a subset of the important region of the (N + 1)-particle system. A very clear and

detailed account of this prerequisite is given by Kofke and Cummings [128]. For high

densities, for example, Widom test particle method is known to give wrong results

because the test particle always overlaps with other particles in the system. Then,

none of the tested (N + 1)-particle con�gurations are part of the (N + 1)-important

con�gurational space.

For nonprimitive model electrolyte solutions, problems occur even for low densities be-

cause there is a very distinct structure surrounding ions, with very pronounced ordering

of the dipolar particles or formation of highly ordered ion clusters. Therefore, inserting

test particles without considering their surrounding structure does not resemble the

(N + 1)-important con�gurational space. This problem can be overcome by subdivid-

ing the region between the N - and the (N + 1)-particle ensemble into subensembles

in which the test particles (and thus, their corresponding surrounding structure) are
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partially present. Then, the chemical potential can be written as

βµres
± = − ln

(
ZN+κ1

ZN+κ0

· ZN+κ2

ZN+κ1

· ... · ZN+κn

ZN+κn−1

)
(4.5)

where for κ0 = 0 the test particles are ideal gas particles and for κn = 1 the test

particles are fully present. The κi between those values simply scale the potential

parameter(s) of the test particle(s), e.g. the hard sphere diameter or the charge of the

ions are scaled. By choosing κi properly, su�cient phase space (con�gurational space)

overlaps towards the neighboring subensemble.

Various methods exist for calculating ZN+κi
/ZN+κi−1

in simulations, and an overview

of some common techniques is given e.g. in Ref. 128.

For the model electrolyte system regarded, it is useful to �rst separate the hard sphere

contribution to the chemical potential according to

βµres
± = β∆µ2hs + β∆µc (4.6)

with

β∆µ2hs = − ln

(
ZN+2hs

ZN

)
(4.7)

β∆µc = − ln

(
ZN+κ1

ZN+2hs

· ... · ZN+κn

ZN+κn−1

)
(4.8)

where the index 'N +2hs' indicates the system of N particles plus two uncharged hard

spheres, ∆µ2hs is the chemical potential contribution of two uncharged hard spheres

and ∆µc is the chemical potential arising from the charges. For large systems, ∆µ2hs

equals twice the chemical potential of one hard sphere, ∆µ2hs ≈ 2 ·∆µhs.

Separating the hard sphere contribution from the electrostatic part yields the advantage

that ∆µhs can be calculated by standard Widom test particle method with very little

statistical uncertainty for the densities studied in this work. We now focus on the

more demanding calculation of the electrostatic part de�ned by Eq. (4.8), where κ0

now denotes the system of N particles with two additional (uncharged) hard sphere

particles.

The methods we use for the estimation of ∆µc are based on the calculation of the

transition probabilities between the di�erent states κi. The ratios of the partition

functions are then replaced according to

ZN+κi

ZN+κi−1

=
P (κi)

P (κi−1)
(4.9)
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where P (κi) and P (κi−1) denote the probabilities of �nding the system in the macro-

scopic state (N + κi) and (N + κi−1), respectively. In this work, we use capital letters

for the macrostate probabilities and small letters for microstate probabilities. Further,

we indicate subensembles by κi instead of (N + κi).

Considering detailed balance for the macroscopic probabilities,

P (κi) · T (κi → κi−1) = P (κi−1) · T (κi−1 → κi) (4.10)

one can rewrite Eq. (4.9) as

ZN+κi

ZN+κi−1

=
T (κi−1 → κi)

T (κi → κi−1)
. (4.11)

with T (κi−1 → κi) and T (κi → κi−1) as transition probabilities from subensemble κi−1

to κi and vice versa. Substituting Eq. (4.11) into Eq. (4.8) yields

β∆µc =− ln

(
T (κ0 → κ1)

T (κ1 → κ0)
· T (κ1 → κ2)

T (κ2 → κ1)

×... · T (κn−1 → κn)

T (κn → κn−1)

)
(4.12)

where for κ0 the labeled (test) particles are two uncharged hard spheres. For evaluating

the transition probabilities, we used two di�erent methods.

Multistage sampling method

A very simple way to obtain the transition probabilities is simulating every subensemble

κi in one single simulation. The transition probabilities to the neighboring subensem-

bles κi+1 and κi−1, henceforth jointly referred to as κj, are calculated by performing

trial moves κi → κj. From those trial moves, the macroscopic transition probabilities

are obtained as

T (κi → κj) = ⟨t(κi → κj)⟩ , (4.13)

t(κi → κj) = min

[
1,

p(κj)

p(κi)

]
(4.14)

where ⟨...⟩ denotes the canonical ensemble average, t(κi → κj) are the microscopic

transition probabilities and p(κi,j) = exp(−βU(κi,j)) are the probabilities of the mi-

crostates. In this work, we refer to this method as multistage sampling method.

It is a simple way of estimating the transition probabilities, but requires considerable

simulation e�ort. We compared the method to the expanded ensemble transition ma-
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trix method.

Expanded ensemble method

A computationally e�cient method is the expanded ensemble [95,96] transition matrix

(EETM) method [129�131]. In this work, we use the EETM method combined with

Wang-Landau [97] approach as suggested by Shell et al. [132]. That approach was recently

applied to electrolyte solutions by Paluch et al. [92,93].

The advantage of the EETM method is that all subensembles are sampled in one single

simulation. This is achieved by not only performing subensemble changes κi → κj as

trial moves, but also accepting them with a biased probability

tb(κi → κj) = min

[
1,

exp(ηj)

exp(ηi)

p(κj)

p(κi)

]
(4.15)

where ηi,j are biasing weights of the di�erent states κi,j.

The transition probabilities in this method are obtained from a collection matrix C

that is collected as follows: If a move κi → κj is performed, the matrix is updated

according to

C(κi, κi → κj) ⇒ C(κi, κi → κj) + t(κi → κj) (4.16)

C(κi, κi → κi) ⇒ C(κi, κi → κi) + 1− t(κi → κj) (4.17)

where t(κi → κj) are the unbiased microscopic transition probabilities de�ned by

Eq. (4.14). This matrix update is performed regardless if the move is accepted or not.

If any other MC move is performed, the matrix update is

C(κi, κi → κi) ⇒ C(κi, κi → κi) + 1. (4.18)

From this collection matrix, the desired macroscopic transition probabilities are calcu-

lated as

T (κi → κj) =
C(κi, κi → κj)∑
k C(κi, κi → κk)

. (4.19)

As can be seen from Eq. (4.16) to (4.19), the collection matrix C, and thus the tran-

sition probabilities T (κi → κj), are independent from the weight factors ηi. However,

those weight factors are important for ensuring well-balanced sampling of all subensem-

bles κi.
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The bias potential can be chosen according to the problem at hand. We choose

exp(ηj)/ exp(ηi) = P (κi)/P (κj) ensuring equal average acceptance ratios for trial

moves towards other subensembles, because then exp(ηj)p(κj)/ exp(ηi)p(κi) (in Eq. (4.15))

is on average constant for all i and j. From detailed balance, Eq. (4.10), then follows

exp(ηj)

exp(ηi)
=

P (κi)

P (κj)
=

T (κj → κi)

T (κi → κj)
. (4.20)

Since only the ratios exp(ηj)/ exp(ηi) are required, one can arbitrarily set η0 = 0 and

obtain all other weight factors from

ηi+1 = ηi + ln
T (κi+1 → κi)

T (κi → κi+1)
. (4.21)

for 0 ≤ i ≤ (n− 1).

Employing Eq. (4.21) requires knowledge of the transition probabilities, which are of

course unknown at the beginning of the simulation. Therefore, during equilibration of

the simulations, we use a Wang-Landau scheme instead of Eq. (4.21) for obtaining the

weight factors ηi. In the Wang-Landau scheme we initialize all ηi with zero and update

any current state κi after every MC move according to

ηi ⇒ ηi − γ (4.22)

where γ is a constant greater than 0. When every state κi has been visited at least

10,000 times, we lower γ by a constant factor τ ,

γ ⇒ τ · γ (4.23)

In this work, we started with γ = 0.01 and used τ = 0.2. A su�ciently precise guess

of the weight factors was then obtained very e�ciently. We used the Wang-Landau

procedure during the entire equilibration of the EETM simulations. In the production

phase, the weight factors were obtained from Eq. (4.21). We started sampling a collec-

tion matrix Cw when γ ≤ 10−4. By combining the Wang-Landau with transition matrix

scheme, we bene�t from the advantages of both methods: while the Wang-Landau ap-

proach is known to give a good �rst estimate of the weight factors very e�ciently, the

transition matrix scheme converges faster and gives more accurate results. A more

detailed discussion on that topic has been given, for example, by Shell et al. [132] and

Maerzke et al. [133].
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4.2.2 Finite size e�ects

We use the standard Ewald summation [103] for calculating the electrostatic interactions.

The key feature of this method is that a system much larger than the one that simulated

is mimicked by assuming that the simulation box is surrounded by periodic images of

itself. The total electrostatic potential of one point charge is the sum of pair interactions

with all other charges in the original box and with all image charges located in the

image boxes, including its own images. For a detailed derivation and discussion of

Ewald sum, see e.g. Refs. 123 and 122.

The concept of considering a labeled (test) ion pair in�nitely often in their periodic

images is in certain contradiction with Eq. (4.3) that requires adding a single pair of

ions to the N -particle system. Using Ewald summation, we implicitly add a pair of ions

to the simulation box as well as to every periodic image of the original box. Hence, we

do not add one single pair of ions, but rather increase the ion pair density ρ± = N±/V

by ∆ρ± = 1/V where V is the volume of the simulation box. However, Eq. (4.3) can

be rewritten as

µ±(T, ρ, xI) =

(
∂A

∂N±

)
T,V,Nj ̸=I

=
1

V

(
∂A

∂ρ±

)
T,V,ρj ̸=I

≈ (Aρ±+∆ρ± − Aρ± .) (4.24)

From this, it can be seen that Ewald summation changes the increment of the numerical

derivative from ∆N± = 1 to ∆ρ± = 1/V , but is a valid technique to use for our study.

For in�nitely large systems, Eq. (4.3) and Eq. (4.24) give identical results. However,

when using systems of only a few hundred to thousand particles, the e�ects of system

size on chemical potential need to be investigated carefully.

The system size study presented here involves both, the multistage sampling method

described in Sec. 4.2.1 as well as the EETM scheme discussed in Sec. 4.2.1. Addition-

ally, we tested a possible route to mimic an in�nitely large system in which the test

particles do not a�ect each other in any way. For this, we carried out simulations (using

multistage sampling) omitting all of the test particle to test particle interactions in the

trial moves (κi → κj). This way, the direct in�uence of the test particle interactions on

chemical potential is eliminated. It is important to note that by omitting those direct

interactions, not all of their in�uence on each other is eliminated. Omitting particular

interactions in Ewald summation is not entirely straightforward. Therefore, we give

details of our implementation in Appendix D.

For testing the system size dependence of di�erent procedures for calculating the chemi-

cal potential, we picked one exemplary state point and estimated the chemical potential
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for varying particle numbers between 500 and 1500. In Fig. 4.1, the chemical potential

contribution of the charges β∆µc obtained by the di�erent methods is shown, for the

inverse particle number 1/N as an abscissis. It can be seen that both, the multistage

sampling approach and the EETM method show no signi�cant system size dependence

when standard Ewald summation is used. Furthermore, the results of those methods

are in very good agreement. The chemical potentials are, within statistical uncertainty,

identical for all N except for N = 500. In contrast, the multistage sampling method

where the test particle interactions are omitted gives results very di�erent from the

other methods, with a pronounced system size dependence. For an in�nitely large

system (1/N → 0), the results of all approaches should of course be identical. From

this study we conclude that omitting the test particle interactions is not a good way

of mimicking an in�nitely large system.

Further, we conclude that standard Ewald summation is well suited for the multistage

sampling approach as well as for the EETM method. The calculated chemical poten-

tials do not show a pronounced system size dependence even for moderate number of

particles. For the state point considered so far, 500 particles are su�cient for avoiding

pronounced �nite size e�ects. Because this �nding should to some extent depend on

the state point (e.g. ion concentration or ionic charge) we decided to perform all sim-

ulations with 1000 particles and using the standard Ewald sum.

4.2.3 Simulation details

The Ewald damping parameter was set to 5.6, and we used 7 k-vectors in each spacial

direction.

The dipoles of the solute were modeled by two point charges of the same magnitude

with opposite signs, separated by a distance of 0.1 · σ. The desired dipole moment µ∗2

was adjusted by adjusting the strength of those point charges. Our previous work [1,2]

con�rmed that this set-up resembles point dipoles without measurable deviation. All

simulations were carried out with a total of 1000 particles.

For all simulations (multistage sampling and EETM), we used 61 subensembles lead-

ing to 61 values of κi ranging from 0 to 1. For obtaining good statistical averages, we

aimed for (approximately) constant ratios T (κj → κi)/T (κi → κj). From Eq. (4.12),

it can be seen that this is equivalent to equal contributions to chemical potential of

all ratios T (κj → κi)/T (κi → κj), and Eq. (4.21) shows that this also means constant

steps in the weight factors, i.e. ηi+1 − ηi ≈ const. We observed that constant steps

in the weight factors can roughly be achieved by discretizing κi according to a square
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Fig. 4.1: System size dependence of the di�erent methods for ρ∗ = 0.6786, µ∗2 = 4.0,
q∗2 = 100, xI = 0.032: △ multistage sampling method without images; ▽ stan-
dard multistage sampling approach; ⋄ EETM method.

root function, according to κi =
√
κ̃i with κ̃i chosen equidistant between 0 and 1.

Besides translational and rotational MC moves, we also performed particle swap moves

where two particles were interchanged in some cases. For those moves, we ensured equal

probability of selecting any species. We �rst selected the species of the �rst particle

with a probability of 1/Nsp, where Nsp is the number of species. Then, we randomly

selected a particle of that species. The same procedure was repeated for picking the

second particle. When swap moves were performed in simulations involving test parti-

cles, each of the two test particles was considered as an own species.

For estimating statistical uncertainty, the simulations were subdivided into 10 blocks.

For every block, one individual chemical potential was estimated. The statistical un-

certainty given in this work is the 95% con�dence interval calculated from those 10

values.

Pre-equilibration

Equilibration of some of the systems we simulated is very demanding. Appendix C

shows how maliciously slow some systems relax to an equilibrated state, due to the

formation of charge clusters. For the sampling of the total chemical potential, we had

to carry out at least two simulations, one for the hard sphere contribution and one
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for the electrostatic part. For the multistage sampling method, even more simulations

were required. To save computation time, we equilibrated all the N -particle systems

of interest once and used those equilibrated systems to initialize simulations for sam-

pling chemical potentials. We refer to the equilibration of the N -particle systems as

pre-equilibration.

At the beginning of pre-equilibration runs, all particles were arranged on a cubic lattice

con�guration. Then, 106 particle swaps were performed without performing displace-

ment or rotation moves. After this, a normal NV T simulation without particle swaps

was carried out.

For all state points with an ion concentration xI < 0.064, pre-equilibration was per-

formed for 5 · 105 MC cycles. For xI ≥ 0.064, the N -particle systems were pre-

equilibrated for 1.5 · 106 cycles. We de�ne one MC cycle as N MC moves.

Hard sphere contribution

The contribution of two uncharged hard spheres de�ned by Eq. (4.6) was estimated

by calculating the chemical potential of one hard sphere using a standard Widom test

particle method and employing the relation β∆µ2hs ≈ 2β∆µhs.

Starting from pre-equilibrated systems, N trial test particle insertions were performed

after every cycle for a total of 105cycles. For those simulations, no additional equili-

bration was carried out before sampling.

Multistage sampling method

For simulations with the multistage sampling approach, we carried out 61 independent

simulations, one for each κi. At the beginning of each simulation, the two additional

test particles were inserted into the pre-equilibrated N -particle systems (according to

their Boltzmann weights). Then, 106 particle swaps were carried out without perform-

ing thermal moves. Afterwards, the systems were equilibrated for 105 cycles. After

equilibration, the desired transition probabilities were sampled for 2 · 105 cycles. Trial
moves κi → κj were performed after each cycle.

Expanded ensemble transition matrix method

Like the simulations with multistage sampling, the simulations with EETM sampling

were also initiated by inserting two test particles into the pre-equilibrated N -particle

systems, followed by equilibration for 105 cycles. During the equilibration period, we

used the Wang-Landau method for estimating the weight factors ηi (Sec. 4.2.1). When

γ ≤ 10−4, we started collecting a transition matrix Cw for subsequent weight factor



4. Chemical potential of nonprimitive model electrolyte solutions from molecular simulations 65

estimation from transition probabilities according to Eq. (4.21).

After equilibration, the weight factors were calculated from Cw and Eq. (4.21) instead

of Wang-Landau method. We kept on sampling Cw for the entire simulation and up-

dated the weight factors every 1000 cycles. Simultaneously, for estimating the chemical

potential, a second transition matrix Cµ was sampled for a total of 106 MC cycles. We

collected a second transition matrix, because for block averaging the chemical potential

in 10 independent blocks, β∆µc was calculated at the end of each block and the second

transition matrix Cµ was zeroed afterwards.

During the entire EETM simulations, 10 % of the MC moves were trial subensemble

changes (κi → κj), 5 % were trial particle swaps and the rest were translational or

rotational NV T moves.

4.3 Results

Before presenting our simulation results, we reemphasize that we observed very slow

equilibration behavior for some state points. All state points in Tab. 4.1 marked with

a '†' were, despite all e�ort, possibly not entirely equilibrated after pre-equilibration.

Slow equilibration behavior as well as its impact on the data given in Tab. 4.1 is dis-

cussed in detail in Appendix C.

We carried out a series of simulations with constant density ρ∗ = 0.6786. The results

are summarized in Tab. 4.1. For this density, we separately varied ion mole fraction

xI , dipole moment µ∗2 and ionic charge q∗2, in order to single out the appropriate

parameter dependencies.

A �rst comparison between results from multistage sampling and from the EETM

method was shown in section 4.2.2 in the context of studying the �nite size e�ects. We

further compare both sampling schemes by comparing values for the chemical potential

from both methods for a system of µ∗2 = 4.0 and q∗2 = 100 and for varying xI . Tab. 4.1

con�rms that both methods agree very convincingly for the entire concentration range.

The deviation between the methods is below 1% for all considered state points, but

the statistical uncertainty of the multistage sampling method is slightly smaller com-

pared to the EETM method. The advantage of multistage sampling method is put into

perspective, however, by the fact that calculating one value of β∆µc through the multi-

stage sampling approach requires more than 10 times the CPU time of a corresponding

EETM simulation. We therefore conclude that the EETM method is superior to the

multistage sampling approach due to the much higher e�ciency. The rest of the data

we present was obtained using EETM sampling.



4. Chemical potential of nonprimitive model electrolyte solutions from molecular simulations 66

Tab. 4.1: Results for the ionic chemical potential of hard dipoles and hard ions at a constant
density, ρ∗ = 0.6786. The sampling methods, multistage sampling (MS) or EETM,
determine the electrostatic part only. Identical hard-sphere contributions were used
for sampling methods. For state points marked with '†' we found particularly
slow equilibration behavior, see Appendix C. The numbers in brackets give the
uncertainty of the last digit(s).

xI 2β∆µhs β∆µc βµres
±

µ∗2 = 4.0; q∗2 = 100; EETM method
0.016 11.32 (5) −147.92 (17) −136.60 (22)
0.032 11.21 (7) −148.00 (37) −136.79 (43)
0.064 11.07 (6) −148.05 (29) −136.98 (35)
0.096 10.87 (5) −149.00 (47) −138.14 (52)
0.128 10.64 (5) −149.67 (30) −139.03 (36)
0.160† 10.42 (4) −149.68 (42) −139.26 (46)
0.192† 10.26 (4) −150.20 (49) −139.94 (54)

µ∗2 = 4.0; q∗2 = 100; MS method
0.016 11.32 (5) −148.26 (10) −136.95 (14)
0.032 11.21 (7) −148.57 (12) −137.36 (19)
0.064 11.07 (6) −149.31 (25) −138.23 (31)
0.096 10.87 (5) −149.42 (19) −138.55 (23)
0.128 10.64 (5) −149.98 (21) −139.34 (26)
0.160† 10.42 (4) −150.42 (27) −140.00 (31)

µ∗2 = 2.5; q∗2 = 100; EETM method
0.016 12.33 (5) −142.15 (19) −129.82 (24)
0.032 12.20 (4) −142.79 (17) −130.59 (21)
0.064 11.98 (3) −145.21 (57) −133.23 (60)
0.096 11.79 (4) −145.56 (35) −133.78 (39)
0.128† 11.55 (4) −146.72 (64) −135.17 (68)

µ∗2 = 4.0; q∗2 = 160; EETM method
0.016 11.23 (5) −237.98 (35) −226.75 (40)
0.032 11.09 (9) −238.77 (48) −227.68 (57)
0.064 10.83 (5) −238.78 (40) −227.95 (45)
0.096 10.58 (6) −239.93 (132) −229.35 (138)
0.128 10.30 (9) −240.12 (37) −229.82 (47)
0.160† 10.01 (9) −240.74 (59) −230.73 (68)
0.192† 9.69 (9) −242.98 (129) −233.29 (138)
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Fig. 4.2 gives a graphical representation of the total chemical potential βµres
± with vary-

ing ion mole fraction xI for constant density ρ∗ = 0.6786, dipole moment µ∗2 = 4.0 and

ionic charge q∗2 = 100. The diagram shows results of two additional calculation series:

one for a system with increased ionic charge (q∗2 = 160) and one system with decreased

dipole moment (µ∗2 = 2.5). All of the data series show an approximately linear course
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Fig. 4.2: Residual chemical potential βµres
± for varying ion mole fraction xI at a constant

density ρ∗ = 0.6786.

of chemical potential with changing xI . Additionally it can be seen that the chemical

potential only slightly decreases with increasing ion concentration. This observation

is in agreement with previous studies that found nearly linear behavior of Helmholtz

energy with varying ion concentration [1,2,55]. The results presented in Fig. 4.2 show

that a signi�cant variation of µ∗2 = 4.0 by 37.5% changes the chemical potential by

only about 4 to 5%. Whereas increasing the charge by 60% (from q∗2 = 100 to 160)

at �xed µ∗2 = 4.0 leads to a pronounced decrease of chemical potential of about 65%.

Thus, as expected, the chemical potential is dominated by the permanent charges q∗2.

We proceeded with analyzing a variation of the total density ρ∗ at �xed µ∗2 = 4.0

and q∗2 = 100. We investigated total densities of ρ∗ = 0.6 and 0.8 and determined

the chemical potential for a number of di�erent ion mole fractions xI . The results are

summarized in Tab. 4.2.

In Fig. 4.3 visualizes how the chemical potential changes with total density ρ∗ for

µ∗2 = 4.0, q∗2 = 100 and for two di�erent ion mole fractions, xI = 0.016 and 0.128,
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Tab. 4.2: Results for the ionic chemical potential for systems with dipole moment µ∗2 = 4.0,
ionic charge q∗2 = 100 obtained from the EETM method. The numbers in brackets
give the uncertainty of the last digit(s).

xI 2β∆µhs β∆µc βµres
±

ρ∗ = 0.6
0.016 8.66 (3) −145.59 (22) −136.93 (25)
0.032 8.58 (4) −145.66 (10) −137.09 (14)
0.064 8.41 (3) −146.52 (38) −138.11 (41)
0.096 8.25 (3) −146.27 (27) −138.02 (31)
0.128 8.04 (2) −147.40 (47) −139.37 (49)

ρ∗ = 0.8
0.016 8.66 (3) −145.59 (22) −136.93 (25)
0.032 8.58 (4) −145.66 (10) −137.09 (14)
0.064 8.41 (3) −146.52 (38) −138.11 (41)
0.096 8.25 (3) −146.27 (27) −138.02 (31)
0.128 8.04 (2) −147.40 (47) −139.37 (49)

respectively. The diagram shows the total chemical potential, βµres
± , but also only

the electrostatic part of the chemical potential, ∆µc. Whereas ∆µc decreases with in-

creasing density, the total chemical potential increases. That is caused by the rapidly

increasing hard sphere contribution. It can be concluded that the magnitude of chem-

ical potential is determined by the electrostatic interactions. The slope of βµres
± in

direction of varying ρ∗, however, is mainly determined by the repulsive hard sphere

interactions.



4. Chemical potential of nonprimitive model electrolyte solutions from molecular simulations 69

0.55 0.6 0.65 0.7 0.75 0.8 0.85

ρ
*

-160

-155

-150

-145

-140

-135

-130

ch
em

ic
al

 p
o
te

n
ti

al

x
I
=0.016 x

I
=0.128

Fig. 4.3: Chemical potential contributions for varying density for µ∗2 = 4.0, q∗2 = 100: △
electrostatic contribution β∆µc; ▽ residual chemical potential βµres

±

4.4 Conclusions

This work provides values for ionic chemical potentials for the restricted nonprimitive

model of electrolyte solutions consisting of hard sphere dipoles and hard-sphere cations

and anions. We investigated systems with varying charge, dipole moment, ion mole

fraction and density. The electrostatic part of the chemical potential, β∆µc, was calcu-

lated from the transition probabilities of neighboring macrostates. Those probabilities

were obtained from two di�erent methods, i.e. multistage sampling and expanded en-

semble transition matrix (EETM) sampling. We showed that both methods give almost

identical results, with the EETM method being superior due to higher computational

e�ciency.

We carefully analyzed �nite size e�ects of two di�erent approaches for mimicking an

in�nitely large system when using Ewald summation for the electrostatic interactions.

We showed that employing standard Ewald summation is a suitable method for deter-

mining the chemical potential from transition probabilities.
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In this work, a new framework for formulating a perturbation theory for nonprim-

itive model electrolyte solutions has been developed. The diverging correlation inte-

grals appearing in native perturbation expansions have been avoided by splitting the

intermolecular pair potential into a short- and a long-ranged term. I developed a per-

turbation theory in terms of short-ranged potentials that yields converging correlation

integrals. The Helmholtz energy for the long-ranged pair potential is captured in an

analytical term derived from local molecular �eld (LMF) theory.

Monte Carlo (MC) molecular simulation method has been used for distinct computa-

tion of quantities of model electrolyte solutions. With the simulation data, assumptions

that were made when deriving and applying the theory, i.e. Kirkwood superposition

approximation and the assumption of in�nite static dielectric constant, were assessed

and I found them to be su�ciently justi�ed.

By computing total Helmholtz energies for model electrolyte solutions consisting of

dipolar hard spheres and charged hard spheres and by computing the contribution to

Helmholtz energy arising from the short-ranged part of the electrostatic pair poten-

tials, the basic framework and the applicability of LMF theory to the model system

has been validated. The work showed that parameter α∗ that de�nes the split between

the short- and long-ranged part of the potential needs to be equal or larger than 1.5

for obtaining accurate results from LMF approach.

By comparing the third order perturbation theory with the MC data, the main de�-

ciency of the theory, i.e. the limitation to order three, could be revealed. It was shown

that the Padé-approximated theory for electrolyte solutions is only satisfyingly accu-

rate for low values of α∗ (well below α∗ = 1.5). This leaves a con�ict with the �nding

that α∗ should be at least 1.5 for LMF theory to be su�ciently accurate. I therefore

conclude that the short-ranged contribution to Helmholtz energy, i.e. the perturbation

expansion, needs to be modi�ed. This can be either achieved by evaluating higher

order terms or by forming an e�ective third order theory e.g. by adjusting the values

of the correlation integrals to MC data.

In order to validate Kirkwood superposition approximation, a method for computing

correlation integrals in MC simulations has been implemented successfully. Some fur-

ther optimization of this method with respect to computation time can lead to e�cient

estimations of the fourth order terms of the perturbation theory.

In addition to developing a new �uid theory for electrolyte solutions, comprehensive

simulation data for nonprimitive model electrolyte solutions is presented in this work.

This data can be used for assessing and re�ning the presented theory as well as other

�uid theories that employ the same molecular model.
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All sections of the Appendix have been published as part of previous publications.

The origin of the sections is as follows:

• Appendix A is a literal quote from the �rst publication, Ref. 1, where the section

was published as 'Appendix B: Inaccuracies in HBT Theory'

• Appendix B is a literal quote from the �rst publication, Ref. 1, where the section

was published as 'A New Perturbation Theory for Electrolyte Solutions: Supple-

mentary material'

• Appendix C is a literal quote from the third publication, Ref. 3, where the section

was published as 'Appendix A: Equilibration of the systems'

• Appendix D is a literal quote from the third publication, Ref. 3, where the sec-

tion was published as 'Appendix B: Removing the test particle to test particle

interactions in Ewald summation'

• Appendix E is a literal quote from the second publication, Ref. 2, where the section

was published as 'Appendix B: Tabulated simulation results'



A Inaccuracies in HBT theory

At the start of this work, we analysed the HBT theory and found some inaccuracies not

all of which are easy to correct. One error goes back to previous work of Rasaiah and

Stell [107], who laid an important foundation to perturbation theory of electrostatic sys-

tems, but unfortunately gave the orientational averaged charge-dipole-dipole potential

too large by a factor of two. This results in a wrong correlation for Icdd in HBT theory.

But, since it is a constant prefactor, one can easily correct this error by multiplying

Icdd with one half.

In Ref. 51 we further identi�ed a inaccurate solution of the correlation integral

I ′′cc =

∫ (
ghs(r)− 1

)
r dr. (A.1)

We solved the integral for various densities using highly accurate values of ghs(r) from

molecular simulations by Kolafa et al. [113] and found the correlation given by Henderson

et al. [51] to be inaccurate (possibly caused by a misprint). The correlation provided by

Larsen et al. [42] on the other hand is in good agreement to the numerical results using

ghs(r) from the molecular simulations. Therefore, we simply considered the correlation

for Icdd from Larsen et al. in our calculations.

Having a close look at the mathematics used when resumming the diverging correlation

integrals, we found the inaccurate approximation

1

1− 9y
≈
(
1− 3

2
y

)2

, (A.2)

where y = 4/9·πβµ2ρ(1−x) = 4/9·πµ∗2ρ∗(1−x). For the systems [...] {we considered in

our �rst publication, Ref. 1}, y is in the range between 0.39 and 3.79. Figure A.1 shows

that this is not a useful approximation for most values of y. One can speculate that

this approximation was introduced in order to recover the Debye-Hückel limit for low

ion concentrations. Since the approximation, Eq. (A.2), is crucial for the resummation,

there is no easy way to correct it.
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Fig. A.1: Approximation used in HBT theory. The solid line is the function f(y) = 1/(1−9y),
the dashed line denotes f(y) = (1− 3/2 y)2.



B Derivation of third order perturba-

tion theory

In this [...] {section}, we provide more detail on the derivation of the basic perturbation

equation used in our work, i.e. we describe the route from Eq. (2.16) to Eq. (2.17) in

the main document. The Eq. (2.17) is not entirely derived. Rather we give a detailed

derivation of the 1st order term for pure substances and mixtures, then apply the pro-

posed (damped) electrostatic potentials and show how some terms of the theory vanish

for the model electrolyte solution. More brie�y, we then derive the 2nd order contri-

bution. From the exemplary derivation of the 1st and 2nd order term, one can easily

derive the higher order perturbation theory. Doing so is lengthy, but straightforward.

The basic Taylor expansion around λ = 0, Eq. (2.16) in the main document, eval-

uated at λ = 1 writes

A− Aref =

(
∂A

∂λ

)
λ=0

+
1

2

(
∂2A

∂λ2

)
λ=0

+
1

6

(
∂3A

∂λ3

)
λ=0

(B.1)

or in terms of the dimensionless residual Helmholtz energy relative to the hard sphere

system

ares = β
A− Ahs

N
=

β

N

(
∂A

∂λ

)
λ=0︸ ︷︷ ︸

≡a1

+
β

2N

(
∂2A

∂λ2

)
λ=0︸ ︷︷ ︸

≡a2

+
β

6N

(
∂3A

∂λ3

)
λ=0︸ ︷︷ ︸

≡a3

(B.2)

The partial derivatives are obtained using the Helmholtz energy de�nition

Aλ = − 1

β
lnQλ (B.3)
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with the partition function

Qλ =
1

N ! Λ3N

∫
exp

(
−βU(r̃N , λ)

)
dr̃N︸ ︷︷ ︸

≡Zλ

(B.4)

1st order contribution

Pure substances

To obtain the �rst order, we can write

∂A

∂λ
= − 1

β

∂ (lnQλ)

∂λ
= − 1

β

1

Zλ

∂Zλ

∂λ

=
1

Zλ

∫
∂U(r̃N , λ)

∂λ
exp

(
−βU(r̃N , λ)

)
dr̃N (B.5)

For pairwise additive potentials, from the de�nition given in Eq. (2.13) of the main

document follows that

U(r̃N , λ) = U ref(r̃N) + λ ·W (r̃N) (B.6)

and thus

∂U(r̃N , λ)

∂λ
= W (r̃N) (B.7)

and

W (r̃N) =
N∑
i

N∑
j>i

wij(ij) (B.8)

With this, Eq. (B.5) becomes

∂A

∂λ
=

1

Zλ

∫ N∑
i

N∑
j>i

wij(ij) exp
(
−βU(r̃N , λ)

)
dr̃N (B.9)

Since the integration is carried out over all (indistinguishable) particles, the integrals

in Eq. (B.9) have the same contribution for all particle combinations i, j. Thus, we

can simply count the number of identical contributions arising from the double sum∑N
i

∑N
j>iwij(ij), and in this (easy) case the result is N(N−1)/2. Writing the integral
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for two arbitrary particles 1 and 2, Eq. (B.9) becomes

∂A

∂λ
=

1

Zλ

N(N − 1)

2

∫
w12(12) exp

(
−βU(r̃N , λ)

)
dr̃N (B.10)

Finally, we can introduce the two particle correlation function, de�ned as

gλ(12) =
1

Zλ

N(N − 1)

ρ2

∫
exp

(
−βU(r̃N , λ)

)
dr̃N>2 (B.11)

where dr̃N>2 means that the integration runs over all N particles except particles 1

and 2. Using this correlation function, Eq. (B.10) can be written as

∂A

∂λ
=

1

2
ρ2
∫

w12(12)

[
1

Zλ

N(N − 1)

ρ2

∫
exp

(
−βU(r̃N , λ)

)
dr̃N>2

]
dr̃1dr̃2

=
ρ2

2

∫
w12(12) gλ(12) dr̃1dr̃2 (B.12)

For λ = 0, gλ=0(12) = ghs(12), and consequently(
∂A

∂λ

)
λ=0

=
ρ2

2

∫
w12(12) g

hs(12) dr̃1dr̃2 (B.13)

As de�ned in the main document, the r̃i contain the spacial coordinates of particle i

as well as its orientation ωi. Since the hard sphere correlation function ghs(12) is not

a function of ωi, the integrals dω1 and dω2 are carried out only over the potentials.

This results in unweighted orientational averaged potentials, indicated by the angular

brackets. Applying this to the above equation, we get(
∂A

∂λ

)
λ=0

=
ρ2

2

∫
⟨w12(12)⟩ ghs(12) dr1dr2

=
ρ2

2
V

∫
⟨w12(12)⟩ ghs(12) dr12 (B.14)

where now r1 and r2 are position vectors and r12 is the distance vector without any

information about the particle orientation. Finally, for the dimensionless 1st order

contribution a1 for pure substances, we get

a1 =
β

N

(
∂A

∂λ

)
λ=0

= β
ρ

2

∫
⟨w12(12)⟩ ghs(12) dr12 (B.15)
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Mixtures

The procedure to obtain a1 for mixtures is quite similar to the route for pure substances.

Eq. (B.8) for a mixture of C components writes

W (r̃N) =
1

2

C∑
α

C∑
γ

Nα∑
iα

Nγ∑
jγ

iα ̸=jγ ∀ α=γ

wiαjγ(iα jγ) (B.16)

where iα denotes the ith particle of component α and jγ the jth particle of component

γ. Nα and Nγ are number of particles of components α and γ, respectively. The

condition iα ̸= jγ ∀ α = γ avoids that interactions of particles with themselves are

included.

Analog to Eq. (B.9) for pure substances, we now get

∂A

∂λ
=

1

2

1

Zλ

∫ C∑
α

C∑
γ

Nα∑
iα

Nγ∑
jγ

iα ̸=jγ ∀ α=γ

wiαjγ(iα jγ) exp
(
−βU(r̃N , λ)

)
dr̃N (B.17)

For of a mixture, the particles between the di�erent components are distinguishable

and identical contributions to the integral in the above equation arise from identical

combinations iα and jγ. Again, by counting the number of such identical contributions,

we get Nα(Nα−1) identical contributions for α = γ and Nα ·Nγ ones otherwise. Thus,

∂A

∂λ
=
1

2

1

Zλ

C∑
α

C∑
γ

Nα(Nγ − δαγ)

∫
w1α2γ(1α 2γ) exp

(
−βU(r̃N , λ)

)
dr̃N (B.18)

where we introduced the Kronecker delta, as δαγ = 1 for α = γ and δαγ = 0, otherwise.

For mixtures, the two particle correlation function writes

gλ,1α2γ(1α 2γ) =
Nα(Nγ − δαγ)

ραργ

1

Zλ

∫
exp

(
−βU(r̃N , λ)

)
dr̃N

α̸=1

dr̃N
γ ̸=2

(B.19)

Applying Eq.(B.19) to Eq. (B.18) similar to the way we did for pure substances gives

∂A

∂λ
=

1

2

C∑
α

C∑
γ

ραργ

∫
w1α2γ(1α 2γ)gλ,1α2γ(1α 2γ)dr̃1αdr̃2γ (B.20)
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Again, by using gλ=0,1α2γ(1α 2γ) = ghs1α2γ(1α 2γ) and applying the short notation for

the orientational averaging, this becomes

(
∂A

∂λ

)
λ=0

=
1

2

C∑
α

C∑
γ

ραργ

∫
⟨w1α2γ(1α 2γ)⟩ ghs1α2γ(1α 2γ)dr1αdr2γ

=
ρ2

2
V

C∑
α

C∑
γ

xαxγ

∫
⟨w1α2γ(1α 2γ)⟩ ghs1α2γ(1α 2γ)dr1α2γ (B.21)

with xα = Nα/N and xγ = Nγ/N being the molar fractions of the components. By

slightly changing the index (without any loss of information), we get the dimensionless

�rst order contribution as

a1 = β
ρ

2

C∑
α=1

C∑
γ=1

xαxγ

∫
⟨wαγ(12)⟩ ghsαγ(12)dr12 (B.22)

Generally, it can be seen that the Kronecker operator cancels out when introducing the

two particle correlation function. We will make use of this observation for the mixture

terms of higher orders.

Application of the electrostatic potentials

Having derived the general 1st order perturbation term for any mixture, we can apply

the electrostatic potentials used in this work to Eq. (B.22). For brevity, we here use

the standard potentials as given by Eq. (2.2) to (2.4) in the main document. Using the

damped potentials [...] gives the exactly same results for the orientational averaged

potentials and for a1.

According to the nonprimitive approach, an electrolyte solution is a ternary mixture

of cations (index +), anions (index −) and dipoles (index d), and therefore α, γ ∈
{+,−, d}. Using equally charged ions with an absolute charge of q, the potentials are

w++(12) = w−−(12) =
q2

r12
(B.23)

w+−(12) = −w++(12) = − q2

r12
(B.24)

and electroneutrality of the mixture requires

x+ = x− (B.25)
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For the pair potentials containing dipoles, we get

w+d(12) =
qµ

r212
(µ̂2 · r̂12) (B.26)

w−d(12) = −w+d(12) = − qµ

r212
(µ̂2 · r̂12) (B.27)

wdd(12) = − µ2

r312
[3 (µ̂1 · r̂12) (µ̂2 · r̂12)− (µ̂1 · µ̂2)] (B.28)

and

xd = 1− x+ − x− (B.29)

where µ is the dipole moment of the solvent.

The (unweighted) orientational averaged potentials as they are required for Eq. (B.22)

are

⟨w+d(12)⟩ =
∫
w+d(12)dω2∫

dω2

= 0 (B.30)

⟨w−d(12)⟩ =
∫
w−d(12)dω2∫

dω2

= 0 (B.31)

⟨wdd(12)⟩ =
∫
wdd(12)dω1dω2∫

dω1dω2

= 0 (B.32)

From this, one can already see that the terms containing dipoles in Eq. (B.22) vanish,

and the remaining ones are the terms where α and γ are charges. Applying those

remaining terms to the equation for a1 gives one '++'�term, one '−−'�term and two

'+−'�terms. Since the concentrations of the ionic components are identical and the

potentials given in Eq. (B.23) to Eq.(B.25) have the same magnitude but opposite

signs, the sum of the contributions due to the cations and anions also vanishes.

Therefore, for our model electrolyte solution, a1 = 0.

2nd order contribution

Pure substances

The second order contribution can be obtained by di�erentiating Eq. (B.9) with respect

to λ. Doing this gives
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∂2A

∂λ2
=

∂

∂λ

[
1

Zλ

∫
W (r̃N) exp

(
−βU(r̃N , λ)

)
dr̃N

]
= − 1

Z2
λ

∂Zλ

∂λ

∫
W (r̃N) exp

(
−βU(r̃N , λ)

)
dr̃N

− β

Zλ

∫
W (r̃N)W (r̃N) exp

(
−βU(r̃N , λ)

)
dr̃N (B.33)

From Eq. (B.5) we see that

∂Zλ

∂λ
= −βZλ

∂A

∂λ
(B.34)

Applying Eq. (B.8), (B.9) and (B.34) to Eq. (B.33) gives

∂2A

∂λ2
= β

(
∂A

∂λ

)2

− β

Zλ

∫ ( N∑
i

N∑
j>i

wij(ij)
N∑
k

N∑
l>k

wkl(kl)

)
exp

(
−βU(r̃N , λ)

)
dr̃N

(B.35)

As we did for the 1st order contribution, we again count the distinguishable interaction

contributions arising from the product of the double sum over the pair potentials. The

results of that counting are summarized in Tab. B.1. Using those results in Eq. (B.35)

Interaction type Number of identical contributions
w12(12)w12(12) N(N − 1)/2
w12(12)w13(13) N(N − 1)(N − 2)
w12(12)w34(34) N(N − 1)(N − 2)(N − 3)/4

Tab. B.1: Contributions to 2nd order term for pure substances.

gives

∂2A

∂λ2
=β

(
∂A

∂λ

)2

− β

Zλ

[
N(N − 1)

2

∫
w2

12(12) exp
(
−βU(r̃N , λ)

)
dr̃N

+N(N − 1)(N − 2)

∫
w12(12)w13(13) exp

(
−βU(r̃N , λ)

)
dr̃N

+
N(N − 1)(N − 2)(N − 3)

4

∫
w12(12)w34(34) exp

(
−βU(r̃N , λ)

)
dr̃N

]
(B.36)
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Applying the n�particle distribution functions (for pure substances)

gnλ(r̃
n) =

1

ρn
N !

(N − n)!

1

Zλ

∫
exp

(
−βU(r̃N , λ)

)
dr̃N>n (B.37)

Eq. (B.35) becomes

∂2A

∂λ2
= β

(
∂A

∂λ

)2

− β

[
1

2
ρ2
∫

w2
12(12)gλ(12)dr̃1dr̃2

+ ρ3
∫

w12(12)w13(13)gλ(123)dr̃1dr̃2dr̃3

+
1

4
ρ4
∫

w12(12)w34(34)gλ(1234)dr̃1dr̃2dr̃3dr̃4

]
(B.38)

and(
∂2A

∂λ2

)
λ=0

= β

(
∂A

∂λ

)2

λ=0

− β

[
1

2
ρ2V

∫ 〈
w2

12(12)
〉
ghs(12)dr12

+ ρ3V

∫
⟨w12(12)w13(13)⟩ ghs(123)dr12dr13

+
1

4
ρ4V

∫
⟨w12(12)w34(34)⟩ ghs(1234)dr12dr13dr14

]
(B.39)

For the dimensionless 2nd order term for pure substances, using Eq. (B.14), we get

a2 =
β

2N

(
∂2A

∂λ2

)
λ=0

=
1

8
β2ρ2N

(∫
⟨w12(12)⟩ ghs(12)dr12

)2

− 1

4
β2ρ

∫ 〈
w2

12(12)
〉
ghs(12)dr12

− 1

2
β2ρ2

∫
⟨w12(12)w13(13)⟩ ghs(123)dr12dr13

− 1

8
β2ρ3

∫
⟨w12(12)w34(34)⟩ ghs(1234)dr12dr13dr14 (B.40)

Mixtures

As can be seen from Eq. (B.40), deriving the 2nd order term for mixtures requires a

rather excessive use of indices. However, the structure of the equations observed in

Sec. B allows us to directly formulate the 2nd order term for mixtures from Eq. (B.40)
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as

a2 =
1

8
β2ρ2N

(
C∑

α=1

C∑
γ=1

xαxγ

∫
⟨wαγ(12)⟩ ghsαγ(12)dr12

)2

− 1

4
β2ρ

C∑
α=1

C∑
γ=1

xαxγ

∫ 〈
w2

αγ(12)
〉
ghsαγ(12)dr12

− 1

2
β2ρ2

C∑
α=1

C∑
γ=1

C∑
τ=1

xαxγxτ

∫
⟨wαγ(12)wατ (13)⟩ ghsαγτ (123)dr12dr13

− 1

8
β2ρ3

C∑
α=1

C∑
γ=1

C∑
τ=1

C∑
φ=1

xαxγxτxφ

∫
⟨wαγ(12)wτφ(34)⟩ ghsαγτφ(1234)dr12dr13dr14

(B.41)

Application of the electrostatic potentials

Applying the electrostatic potentials as given in Sec. B, the �rst, third and fourth

term in Eq. (B.41) vanish for the same reasons that have been discussed for the a1

term. The second term remains since the square of the charge-charge potentials given

by Eq. (B.23) and (B.24) have the same sign and do not cancel. Also, neither the

orientational average of the squared charge-dipole nor of the squared dipole-dipole

potential vanishes, as can be seen from Eq. (2.41) and (2.42) of the main document.

Thus, the remaining 2nd order term in our work is

a2 = −1

4
β2ρ

C∑
α=1

C∑
γ=1

xαxγ

∫ 〈
w2

αγ(12)
〉
ghsαγ(12)dr12 (B.42)

3rd order contribution

In this document, we do not derive the higher order terms. As shown for a1 and a2,

this can be easily done by di�erentiating Eq. (B.35) once more with respect to λ, and

the resulting general equation for a3 contains correlation integrals of up to 6 particles.

After applying the electrostatic potentials, the remaining term for the 3rd order is

a3 =
1

6
ρ2β3

C∑
α=1

C∑
γ=1

C∑
τ=1

xαxγxτ

∫
⟨wαγ(12)wατ (13)wγτ (23)⟩ ghsαγτ (123)dr12dr13 (B.43)



C Slow equilibration behavior

Equilibration of some of the systems is very demanding. This is the case especially for

state points with high ion mole fraction xI and/or low ratio q∗2/µ∗2.

Slow equilibration behavior is manifested by a small, but constant decrease of potential

energy U∗ = βU/N during the entire pre-equilibration phase. The e�ect is rather easy

to overlook, because it is not unambiguously apparent for, say, 100,000 cycles, where

each cycle consists of N MC moves. In this section, we discuss the behavior for one

exemplary state point and assess its in�uence on the chemical potential data given in

this work.

The drift in U∗ can be revealed by subdividing the pre-equilibration simulation into

blocks and regarding the block averages over simulation time. In Fig. C.1, U∗ is shown

for various block averaged values for a system for which we observed slow equilibration

behavior. The pre-equilibration simulation was subdivided into 25 blocks, each consist-

ing of 60,000 MC cycles. As can be seen, there is a constant decrease of U∗ during the

entire simulation. The scale of U∗ in Fig. C.1 shows that the drift of energy, however,

is lower than 1 % for the here considered system as well as all other systems.

Although the e�ect of slow equilibration is quite low when regarding U∗ only, it

is important to assess its impact on chemical potential. Hence, we also subdivided

the simulations (multistage sampling) for the same state point as the one that led to

Fig. C.1 into 25 blocks (instead of 10 like we did for error estimation) consisting of

8000 MC cycles each. In Fig. C.2, the block averages of β∆µc are displayed for these

25 block averages. Note, that the simulations were initialized with the possibly not

entirely equilibrated system. We observe no obvious drift of chemical potential over

simulation time. In addition to this examination, we did not observe any systemati-

cal increase or decrease of the 10 block averages we calculated for error estimation in

each simulation, neither with the multistage sampling approach nor with the EETM

method. We thus do not expect large impact of the slow equilibration on values of the

chemical potential we report in this work.
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Fig. C.1: Block averages of U∗ of the pre-equilibration simulation for the state point with
ρ∗ = 0.6786, µ∗2 = 4.0, q∗2 = 100, xI = 0.160. The dashed rule represents the total
average.
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Fig. C.2: Block averages of β∆µc of the multistage sampling simulation for the state point
with ρ∗ = 0.6786, µ∗2 = 4.0, q∗2 = 100, xI = 0.160. The dashed rule represents the
total average.



D Removing the test particle to test

particle interactions in Ewald sum-

mation

To test an alternative way of mimicing an in�nitely large system with Ewald sum-

mation, we omitted the interactions between a test particle and its periodic images

when sampling the transition probabilities. Omitting pair interactions is not entirely

straightforward in the Ewald summation. In this section, we brie�y describe how this

can be done in a computationally e�cient way. For detailed derivations or discussions

of Ewald summation we refer to standard textbooks on molecular simulation tech-

niques, e.g. in Refs. 123 and 122.

The basic Ewald sum equation for calculating the electrostatic part U es of the total

potential energy is

U es = U real + U fourier − U self (D.1)

with

U real =
Nc∑
i=1

Nc∑
j>i

qiqjerfc(α rij/L)

rij
(D.2)

U fourier =
1

2L3

∑
k ̸=0

4π

k2

∣∣∣∣∣
Nc∑
i=1

qi exp(i k · ri)

∣∣∣∣∣
2

exp (−k2L2/(4α2)) (D.3)

U self =
α√
πL

Nc∑
i=1

q2i (D.4)

where Nc is the number of charges, α is the Ewald parameter, k is the Fourier trans-

formed lattice vector, ri is the position of the charge, L is the length of the simulation

box and k2 = |k|2.
The �rst term, U real, is a sum of pair potentials in which interactions between the test
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particles can easily be omitted. The second term, U fourier, does not explicitly contain

pair interactions but only a single sum over all charges and all k-vectors. Thus, it is

not possible to simply omit certain pair interactions in this term.

The third term, U self , is a correction term that subtracts the interactions of the charges

with themselves. Those self interactions are inherent in U fourier.

In order to enable us to identify certain pair interactions in Eq. (D.3), we use the

alternative formulation

U fourier =
1

2L3

∑
k ̸=0

4π

k2

Nc∑
i=1

Nc∑
j=1

qiqj exp(i k · (rj − ri)) exp (−k2L2/(4α2)) (D.5)

We could now just substitute Eq. (D.3) with Eq. (D.5) in the simulations and omit

the test particle interactions (and, at the same time, also omit those interactions in

the self interaction term, Eq. (D.4)). However, Eq. (D.5) contains a double sum over

all charges for each k-vector, which is of course a disadvantage of this formulation

of U fourier compared to Eq. (D.3) (that only contains a single sum). A more e�cient

way for omitting interactions is to �rst calculate the total U fourier from Eq. (D.3) and

then subtract the contribution arising from test particle-test particle interactions. This

contribution can be obtained by Eq. (D.5). In doing so, one implicitly subtracts the

self interactions of the test particles. Thus, the test particles have to be omitted in the

self interaction term, Eq. (D.4), in order to not subtract them twice.

Applying this procedure, the expression for the total electrostatic potential without

the interactions of the test particle to its periodic images is

Ũ es =
Nc∑
i=1
i/∈tp

Nc∑
j>1
j /∈tp

qiqjerfc(α rij/L)

rij

+
1

2L3

∑
k ̸=0

4π

k2

∣∣∣∣∣
Nc∑
i=1

qi exp(i k · ri)

∣∣∣∣∣
2

exp (−k2L2/(4α2))

− 1

2L3

∑
k ̸=0

4π

k2

Ntp∑
i∈tp

Ntp∑
j∈tp

qiqj exp(i k · (rj − ri)) exp (−k2L2/(4α2))

− α√
πL

Nc∑
i=1
i/∈tp

q2i (D.6)

where 'tp' denotes all test particles.

From Eq. (D.6), an expression for calculating ∆Ũ es in the trial moves (κi → κj) can

easily be obtained.



E Tabulated simulation results of the

study presented in Sec. 3

In this section, the simulation results of our study are tabulated. In Tabs. E.1 and E.2,

the results for asr from α-integration are given. The results for ares are summarized in

Tab. E.3.
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Tab. E.1: Simulation results for asr from α-integration (Eq. (3.8)) for ρ∗ = 0.6786, µ∗ 2 = 4.0,
q∗ 2 = 160

α∗ x = 0 x = 0.032 x = 0.064 x = 0.12 x = 0.176

0.2 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.25 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.3 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.35 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.4 −0.003 (0) −0.003 (0) −0.003 (0) −0.003 (0) −0.003 (0)
0.45 −0.026 (0) −0.026 (0) −0.025 (0) −0.025 (0) −0.024 (0)
0.5 −0.111 (0) −0.113 (0) −0.115 (0) −0.117 (1) −0.120 (1)
0.55 −0.307 (0) −0.319 (1) −0.331 (1) −0.352 (1) −0.372 (1)
0.6 −0.619 (1) −0.660 (1) −0.701 (1) −0.773 (2) −0.843 (2)
0.65 −1.010 (1) −1.106 (1) −1.202 (2) −1.366 (3) −1.532 (3)
0.7 −1.428 (1) −1.603 (2) −1.780 (3) −2.084 (5) −2.390 (5)
0.75 −1.830 (2) −2.107 (3) −2.384 (3) −2.865 (6) −3.350 (7)
0.8 −2.194 (2) −2.585 (3) −2.977 (4) −3.659 (7) −4.348 (8)
0.85 −2.511 (2) −3.024 (4) −3.537 (4) −4.432 (9) −5.333 (10)
0.9 −2.781 (2) −3.418 (4) −4.051 (5) −5.164 (9) −6.279 (12)
0.95 −3.009 (2) −3.766 (4) −4.518 (6) −5.843 (10) −7.173 (14)
1.0 −3.200 (3) −4.074 (4) −4.942 (6) −6.468 (11) −8.004 (15)
1.1 −3.497 (3) −4.586 (5) −5.667 (7) −7.566 (12) −9.483 (17)
1.2 −3.709 (3) −4.988 (5) −6.257 (7) −8.489 (14) −10.744 (18)
1.3 −3.864 (3) −5.310 (5) −6.745 (8) −9.270 (14) −11.818 (20)
1.4 −3.979 (3) −5.572 (5) −7.153 (8) −9.936 (15) −12.741 (21)
1.5 −4.066 (3) −5.788 (6) −7.498 (8) −10.507 (15) −13.541 (22)
1.6 −4.133 (3) −5.969 (6) −7.793 (9) −11.004 (16) −14.240 (23)
1.7 −4.186 (3) −6.124 (6) −8.049 (9) −11.438 (16) −14.854 (24)
1.8 −4.227 (3) −6.256 (6) −8.273 (9) −11.821 (17) −15.399 (25)
1.9 −4.261 (3) −6.372 (6) −8.471 (9) −12.162 (17) −15.885 (25)
2.0 −4.288 (3) −6.473 (6) −8.646 (9) −12.467 (17) −16.320 (25)
2.1 −4.310 (3) −6.562 (6) −8.803 (9) −12.743 (17) −16.714 (26)
2.2 −4.329 (3) −6.642 (6) −8.944 (9) −12.991 (17) −17.070 (26)
2.3 −4.344 (3) −6.714 (6) −9.071 (9) −13.217 (17) −17.394 (26)
2.4 −4.357 (3) −6.778 (6) −9.187 (9) −13.424 (17) −17.691 (26)
2.5 −4.368 (3) −6.836 (6) −9.293 (9) −13.613 (18) −17.964 (26)
2.6 −4.378 (3) −6.890 (6) −9.390 (9) −13.787 (18) −18.215 (27)
2.7 −4.386 (3) −6.939 (6) −9.480 (10) −13.948 (18) −18.448 (27)
2.8 −4.394 (3) −6.985 (6) −9.563 (10) −14.098 (18) −18.664 (27)
2.9 −4.403 (3) −7.029 (6) −9.643 (10) −14.239 (18) −18.866 (27)
3.0 −4.416 (3) −7.074 (6) −9.720 (10) −14.373 (18) −19.058 (27)
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Tab. E.2: Simulation results for asr from α-integration (Eq. (3.8)) for ρ∗ = 0.8, µ∗ 2 = 2.5,
q∗ 2 = 100

α∗ x = 0 x = 0.032 x = 0.064 x = 0.12 x = 0.176

0.2 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.25 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.3 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.35 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0) 0.000 (0)
0.4 −0.002 (0) −0.002 (0) −0.002 (0) −0.001 (0) −0.001 (0)
0.45 −0.015 (0) −0.014 (0) −0.014 (0) −0.014 (0) −0.014 (0)
0.5 −0.062 (0) −0.063 (0) −0.064 (0) −0.065 (0) −0.067 (1)
0.55 −0.168 (0) −0.175 (0) −0.182 (1) −0.194 (1) −0.206 (1)
0.6 −0.338 (1) −0.361 (1) −0.385 (1) −0.426 (2) −0.467 (2)
0.65 −0.553 (1) −0.606 (1) −0.660 (1) −0.755 (3) −0.851 (3)
0.7 −0.783 (1) −0.882 (1) −0.982 (2) −1.156 (3) −1.332 (4)
0.75 −1.008 (2) −1.164 (2) −1.321 (2) −1.596 (4) −1.877 (5)
0.8 −1.214 (2) −1.434 (2) −1.658 (3) −2.050 (4) −2.452 (7)
0.85 −1.395 (2) −1.685 (2) −1.979 (3) −2.496 (5) −3.029 (8)
0.9 −1.550 (2) −1.912 (2) −2.279 (3) −2.924 (6) −3.589 (8)
0.95 −1.682 (2) −2.116 (3) −2.554 (4) −3.326 (6) −4.123 (10)
1.0 −1.794 (2) −2.296 (3) −2.804 (4) −3.700 (7) −4.626 (11)
1.1 −1.967 (2) −2.599 (3) −3.237 (4) −4.367 (8) −5.532 (12)
1.2 −2.092 (2) −2.839 (3) −3.593 (5) −4.931 (9) −6.308 (14)
1.3 −2.184 (2) −3.033 (3) −3.890 (5) −5.410 (9) −6.974 (15)
1.4 −2.252 (2) −3.191 (3) −4.139 (5) −5.821 (10) −7.548 (15)
1.5 −2.303 (2) −3.322 (4) −4.351 (6) −6.174 (10) −8.046 (16)
1.6 −2.343 (2) −3.433 (4) −4.532 (6) −6.483 (10) −8.480 (17)
1.7 −2.375 (2) −3.527 (4) −4.690 (6) −6.753 (11) −8.863 (17)
1.8 −2.399 (2) −3.608 (4) −4.828 (6) −6.991 (11) −9.203 (17)
1.9 −2.419 (2) −3.679 (4) −4.950 (6) −7.204 (11) −9.506 (17)
2.0 −2.435 (2) −3.741 (4) −5.058 (6) −7.394 (11) −9.778 (18)
2.1 −2.449 (2) −3.796 (4) −5.155 (6) −7.565 (11) −10.024 (18)
2.2 −2.460 (2) −3.846 (4) −5.243 (6) −7.720 (11) −10.246 (18)
2.3 −2.469 (2) −3.890 (4) −5.322 (7) −7.861 (11) −10.449 (18)
2.4 −2.477 (3) −3.929 (4) −5.394 (7) −7.989 (11) −10.634 (18)
2.5 −2.483 (3) −3.966 (4) −5.460 (7) −8.107 (12) −10.805 (18)
2.6 −2.489 (3) −3.999 (4) −5.521 (7) −8.216 (12) −10.962 (18)
2.7 −2.495 (3) −4.030 (4) −5.577 (7) −8.317 (12) −11.107 (18)
2.8 −2.502 (3) −4.060 (4) −5.631 (7) −8.412 (12) −11.244 (18)
2.9 −2.510 (3) −4.091 (4) −5.683 (7) −8.503 (12) −11.372 (18)
3.0 −2.525 (3) −4.125 (4) −5.737 (7) −8.592 (12) −11.497 (18)
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Tab. E.3: Simulation results for ares from λ-integration (Eq. (3.3))

x = 0 x = 0.032 x = 0.064 x = 0.12 x = 0.176

ρ∗ = 0.6786; µ∗ 2 = 4.0; q∗ 2 = 160
−4.450 (5) −8.055 (6) −11.675 (10) −18.041 (14) −24.424 (19)
ρ∗ = 0.8; µ∗ 2 = 2.5; q∗ 2 = 100
−2.532 (3) −4.728 (5) −6.934 (6) −10.828 (10) −14.766 (14)


