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B

BTE Boltzmann transport equation. 22

C

C++ a compiled system programming language with a focus
on performance and e�ciency. 31

D

DNA deoxyribonucleic acid. 9–12, 15, 17–20, 29, 35, 65–73,
76–82, 86–89, 107–109, 111, 112, 114

dsDNA double-stranded DNA. 35, 36, 41, 66, 67, 72, 79, 80,
82, 84, 86–89

E
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ular dynamics simulations. 31, 32, 43, 45, 65–67, 119, 120

F

FEM a method to numerically solve di↵erential equations on a
mesh. 25, 52, 53

G
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git a distributed version control system. 117, 118

git submodule a reference to a snapshot of another git version
controlled project. 118

GROMACS Simulation package to perform all-atom molecular
dynamics simulations. 32, 33, 35

L

LAMMPS a parallel molecular dynamics software developed
at the Sandia National Laboratories. 32

LB lattice-Boltzmann. 23, 31, 42–44, 47

LBGK lattice Bhatnagar-Gross-Krook. 23

LBM a method to numerically solve a discretized version of the
Navier-Stokes equation on a lattice. 15, 22–25, 119

M

molecular dynamics a simulation method that is based on nu-
merically solving Newton’s equations of motion. 20, 21, 24,
25, 31, 32

MPI a standard describing an interface for passing messages
and data between distributed memory locations. 32

P

Python a interpreted, high-level programming language. It’s
language constructs aim to support writing clear code. 31,
45

R

RNA ribonucleic acid. 15, 18

T



Tcl a high-level, general-purpose, interpreted, dynamic program-
ming language. 45

W

WCA interaction modified version of the Lennard-Jones in-
teraction that only contains the repulsive part. 40





Chapter 1

Introduction

The deoxyribonucleic acid (DNA) molecule is built up by two
polynucleotides that form a double helix. It is widely known as
an information carrier for the building plans of any life on Earth.
Especially for this reason it is — and has already been for a long
time — of special interest in the scientific community to under-
stand the physical and chemical interactions between DNA and
its environment in great detail. The information contained in the
molecule is encoded in the sequence of nucleobases that form so-
called base pairs via hydrogen bonds. Thus, by knowing the
sequence of the nucleobases along the DNA strand it is possible
to gain any information about the building plan of life contained
in the molecule. This information can help to diagnose diseases,
e. g. in the area of non-invasive prenatal testing. Also, the un-
derstanding of the cancer disease has been largely influenced by
DNA sequencing [1]. Therefore, a lot of e↵ort has been put into
finding cost-e�cient and fast methods to sequence whole chro-
mosomes that contain the complete genetic information of an
organism.

One of the approaches to DNA sequencing is the so-called re-
sistive pulse sensing. The idea of using a setup of two electrolyte
reservoirs that are connected only by a tiny orifice in a membrane
to count and size particles can be tracked back to the experiments
of Wallace Coulter [2]. Back then he was interested in count-
ing red and white blood cells due to the politically unstable situ-
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10 CHAPTER 1. INTRODUCTION

ation in the 1940s that led to a fear of a nuclear war and with it
the need for a method to rapidly analyse human blood arose [3].
For a pure electrolyte solution the conductivity is approximately
constant, whereas spikes in the current can be observed if a blood
cell traverses the orifice. Therefore, by using this modulation ef-
fect Coulter was able to count the blood cells in the sample. In
the meantime, more refined setups allowed detecting smaller and
smaller analytes [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Nowadays, the
tiny orifices turned into pores with diameters on the nanometer
scale that are even capable of detecting single DNA molecules
and identifying di↵erent nucleotides is possible [14, 15] which has
already been commercially implemented [16, 17, 18, 19]. Mainly
two di↵erent types of nanopores are used in science and tech-
nology, namely biological nanopores and solid-state nanopores.
The biological nanopores most widely used and investigated are
the exotoxin ↵-hemolysin and the mycobacterial porin MspA
[20, 21]. The solid-state nanopores are fabricated by various
methods, e. g. ion or electron beam drilling through thin solid-
state membranes [22, 23], by utilizing dielectric breakdown be-
tween two electrolyte reservoirs separated by a thin silicon plate
[24, 25] or by heating and simultaneous pulling of glass tubes
[26, 27]. Especially the latter approach has been extensively
used to study DNA nanopore systems since the preparation is
very fast and cost e↵ective in comparison to fabrication methods
for other solid-state nanopores [28, 29, 30, 31].

Experimentally, various studies investigated the ionic cur-
rent modulation caused by the translocation of a DNA molecule
through a nanopore [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Nu-
merical studies of nanometre sized pores for sensing applications
can be found in Refs. [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55]. A general overview can be found in the review articles
in Refs. [56, 9, 57, 58, 59, 60, 13].

Numerical simulations have proven to be a viable tool to in-
vestigate soft-matter systems and often enable scientists to in-
vestigate details that are not accessible in experiments. Mod-
eling DNA-nanopore systems has since been a challenge due to
the large separation of length scales. The whole system includ-
ing the electrolyte reservoir often approaches several microme-
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ters in dimension, while the counter-ion layer in the vicinity of
the DNA varies on the length scale of Ångstroms to nanometers
and a single turn of the DNA’s helix is several nanometers in
length. All-atom simulations of the translocation of a short (20
base pairs) DNA molecule through an artificial nanometer sized
pore have first been performed in 2004 by Aksementiev et al.
[61] These simulations, however, had been restricted to short
DNA sequences and su↵ered from sampling issues. In order to
reduce the computational costs and improve on the sampling,
Kesselheim et al. [47] performed all-atom simulations of a 20
base pair sequence of DNA in a nanopore without the electrolyte
reservoirs. In addition, periodic boundary conditions had been
applied along the helix which enabled the measurement of the
ionic current without finite size e↵ects. These simulations had
been able to reproduce experimental values for the ionic current
through the pore as a function of the bulk electrolyte concen-
tration and revealed a previously unknown mobility reduction of
the ions in the vicinity of the DNA. In this work we used this
setup as a building block by replicating the double helix several
times and restrain this configuration in space in order to con-
struct more complex DNA origami structures on the all-atom
level of detail.

In order to reach longer time- and length-scales, so-called
coarse-grained DNA models with a reduced number of degrees
of freedom have since been developed in several groups [62, 63,
64, 65, 66, 56, 67, 68, 69, 70]. These models do not incorporate
the interaction between every atom with every other atom of
a system but combine several interaction sites into a single ef-
fective interaction. In addition, the interactions between solute
and solvent are often treated implicitly by introducing stochastic
collisions with an imaginary heat bath [71].

However, most of the coarse-grained DNA models do not ex-
plicitly incorporate electrostatic interactions and hydrodynamic
interactions within a united model. Especially, hydrodynamic
interactions often cannot be neglected for the electrophoretic
transport of biomolecules and polyelectrolytes in general[72, 73,
47, 74]. Electrostatic interactions on the other hand can in
some situations be treated via short-ranged interaction poten-
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tials between charged particles if electrostatic screening e↵ects
are very strong, i. e. in systems with a high electrolyte concen-
tration. However, the typical salt concentrations investigated for
DNA translocation setups do not allow to treat the interaction of
charged species as a short-ranged interaction. The length-scales
on which the electrostatic interactions are relevant range from
around 1 �A to about 10 nm. Weik et al. [52] developed a model
incorporating explicit hydrodynamics and electrostatic interac-
tions and were able to reproduce the aforementioned ion mobility
reduction near the DNA strand by incorporating a phenomeno-
logical frictional interaction between ions and the DNA. This
frictional interaction was incorporated in a momentum conserv-
ing way [75] and thus preserves the hydrodynamic interactions
in the system. Extensions to this model [76] even showed that it
is possible to reproduce experimental data on the salt-dependent
electrophoretic mobility [77] and persistence length [78]. In this
work this coarse-grained DNA model is used as a building block
for the investigation of more complex DNA structures.

Early continuum models [52] of DNA nanopore systems based
on a so-called cell-model [79, 80, 81, 54] failed to reproduce the
ionic current modulation that has been observed in experiments.
This is somehow expected due to the fact that these systems
did not take into account the DNA specific mobility reduction
of the ions around the DNA helices. By extending these models
and explicitly taking into account this frictional interaction a
mean field model capable of reproducing ionic current data from
experimental setups is presented in this thesis.

Publications

The following paper with draft status will soon be submitted and
is discussed in this dissertation:

Kai Szuttor, Patrick Kreissl, and Christian Holm. Investi-
gation of Finite Size E↵ects in DNA Nanopore Systems. To
be submitted (as of July 2021)
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Chapter 2

Theoretical Background

This chapter contains the basic theoretical framework needed to
understand and interpret the results of the studies presented in
this work. To this end, the most important concepts of (charged)
polymers are introduced in Sec 2.1. In the next section, the
properties of DNA are discussed, followed by sections that deal
with the technical frameworks that have been applied, namely
molecular dynamics (Sec. 2.4), the lattice-Boltzmann method
(LBM) (Sec. 2.5) and the finite element method (Sec. 2.6). Fi-
nally, the last two sections introduce the electrokinetic transport
phenomena electroosmosis and electrophoresis and the electroki-
netic equations that describe charged systems by means of partial
di↵erential equations.

2.1 Polymers and Polyelectrolytes

Polymers are molecules built up of connected subunits called
monomers. They can be found in many products of everyday
life, for example rubber, clothing, plastic bags, tires, paints, glue
and many more. However, polymers can also be found in many
biological systems, e. g. proteins like collagen or hemoglobin,
carbohydrates like starch, or nucleic acids like DNA and ribonu-
cleic acid (RNA). Polymers with groups that can dissociate in
aqueous solution are known as polyelectrolytes. The properties

15
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of polymers depend on the local interaction between monomers
but also on the interaction between monomers and the solvent.

The persistence length of polymers defines the length scale on
which the bond orientation correlation along the polymer decays
and therefore gives a measure for the sti↵ness of the chain: the
shorter the persistence length, the more flexible the polymer is
and vice versa. For polyelectrolytes the persistence length addi-
tionally depends on the concentration of salt ions in the solution.
The higher the concentration of salt, the more the like-charge re-
pulsion between monomers is reduced because of the screening
of electrostatic interactions.

The relevant length scale of electrostatic screening is the so-
called Debye-Hückel screening length which depends on the
salt concentration, the valency of the ions and the temperature:

�D =

 
"0"rkBT
PN

i=1
ciqi

! 1
2

, (2.1)

where "0 is the permittivity of free space, "r is the relative per-
mittivity, kB is the Boltzmann constant, T the temperature, N
the number of charged species, ci and qi the density and charge
of species i, respectively. This length scale naturally occurs in
the linearized Poisson-Boltzmann equation that describes the
electrostatics of electrolyte solutions.

An important dynamic quantity of interest of polyelectrolytes
is the electrophoretic mobility that describes the response of the
charged chain to an externally applied electric field. In the linear-
response regime the electrophoretic mobility is defined as the
ratio of the center of mass velocity and the applied field:

µ =
|vCOM|

|E|
, (2.2)

with |vCOM| the polymer’s center of mass velocity and |E| the
magnitude of the applied electric field.
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2.2 DNA

Deoxyribonucleic acid (DNA) is known to contain the informa-
tion for the building blocks of life. This section is therefore ded-
icated to take a short excursion into the biology of cells in order
to explain the role of DNA in the creation of life and provide
a broader context for why the DNA molecule is of such a great
interest in science and technology.

The DNA molecule is built up by two polynucleotides that
form a double helix. Each of the nucleotides is complementary
to another: adenine forms pairs with thymine and guanine with
cytosine (cf. Fig. 2.1). The base pair specific hydrogen bonds
as well as steric restrictions imposed by the sugar–phosphate
backbones lead to the helical structure of the DNA molecule.
On a larger scale the DNA is organized into nucleosomes which

Figure 2.1: The double-helical structure of the double-stranded
DNA molecule with its phosphate backbone and the base pairs.
Each of the nucleotides has three main chemical groups: the
phosphate, the sugar and the base group. Taken from Ref. [92].

are histone octomers around which DNA is wrapped in a spi-
ral. Furthermore, these nucleosomes are wrapped into fibers



18 CHAPTER 2. THEORETICAL BACKGROUND

with a diameter of about 30 nm. A dense pack of these fibers
is called chromatin which in turn form the chromosome on the
length scale of micrometers (cf. Fig. 2.2). The chromosomes

Figure 2.2: The double-stranded DNA is organized into larger
structures. It binds to certain proteins (histones) and wraps itself
around them. These structures are organized into chromatin and
the chromosome upon cell division. Taken from Ref. [92].

in turn live in the nucleus of a cell which contains all the DNA
and therefore genetic information of the cell. In such eukary-
otic cells the DNA serves as a template for the creation of single
stranded messenger RNA (mRNA) molecules. This is the so-
called transcription process in which the information from the
double-stranded DNA in the nucleus is read and by exploiting
the complementary base pairing an enzyme catalyzes the forma-
tion of the pre-mRNA molecule which in turn is processed to
the final mRNA. This molecule contains the information about
a single gene of the DNA. After this transcription process, the
mRNA is processed by the ribosome which is a specialized part
of the cell. In eukaryotic cells, the mRNA molecules leave the
nucleus and are transported to the cytoplasm. In the cytoplasm
the ribosomes maps a triplet of base pairs called codon to a sin-
gle amino acid and the sequence of amino acids form a protein.
Proteins in general are the “workhorses” of the cell, performing
all sorts of important steps in the life of a cell and therefore life
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in the more broad sense. It is important to remember at this
point that the origin of the building plan of these proteins is the
sequence of base pairs in the DNA molecule.

2.3 DNA origami molecules

The self-assembly of three-dimensional DNA structures exploits
the base specific binding mechanisms of DNA to form pre-programmed
structures on the nanometer scale. The basic element of such
structures are sections of double-stranded DNA with a pre-defined
length [93]. A single stranded so-called sca↵old strand of up
to several thousands bases is folded into more compact bundles
that are supported by so-called staple stands to enable the for-
mation of various three-dimensional shapes. With this approach

One elegant way to achieve a square lattice packing with constant 
cross-over spacing intervals is to assume B-form DNA has an aver-
age helicity of 10.67 bp per turn1,10. A fourfold symmetry emerges 
with the backbone of a strand rotating by 270° in intervals of 8 bp. 
Thus, cross-overs to four neighbors in fourfold symmetry may be 
placed in intervals of 8 bp, with cross-overs to one of the four neigh-
bors in 32-bp intervals.

A constant 8-bp cross-over spacing in square lattice packing 
causes underwinding of each of the double-helical domains from 
the native 10.5 bp to the imposed 10.67 bp per turn, resulting in 
twisting torques that are transmitted by cross-overs. The super-
position of internal torques can cause a global twist deformation 
of the entire object8,10. The global twist for objects in square- 
lattice packing can be eliminated by departing from a constant 
8-bp spacing between cross-overs10 to achieve effective double-
helical twist densities that are closer to the natural 10.5 bp per 
turn twist density. Elimination of global twist on the square lattice 
was found for effective double-helical twist densities around 10.4 
bp per turn10. Global twist in multilayer square lattice objects can 
also be minimized by creating objects with large torsional stiff-
ness in the helical direction10.

from the observer, 7 bp downstream the backbone of that strand 
will be at a position equivalent to 8 p.m., 14 bp downstream will 
be 4 a.m. the next day and 21 bp downstream it will again cor-
respond to the noon position. To constrain DNA double-helical 
domains to a honeycomb lattice, one can thus place cross-overs 
in constant intervals of 7 bp to each of three possible neighboring 
helical domains with connections between a particular pair of 
neighboring double-helical domains occurring every 21 bp.

Deviating from the constant 7-bp cross-over spacing rule in hon-
eycomb-lattice packing causes local undertwist or overtwist as well as 
axial strain8. The targeted creation of such local sources of mechani-
cal stress can be incorporated in the design to build objects that have 
global twist or global bending with tunable curvature (Fig. 1e–g)8.

Close-packing DNA double-helical domains onto a square lattice 
requires placing cross-overs to four nearest neighbors arranged in 
fourfold symmetry. Native B-form DNA geometry dictates a con-
stant cross-over spacing of 21 bp between a particular pair of neigh-
boring helical domains (Fig. 2a,b). It follows that cross-overs to the 
remaining three neighbors in the square lattice should be distributed 
with an average spacing of 21/4 = 5.25 bp. This can only be achieved 
by making use of nonconstant cross-over spacing intervals.

a

e

d

c

b

~0.34 nm

21 bp

21 bp

2nm

2.2−3nm

5��

3��

3��

5��

Figure 2 | The scaffolded DNA origami design concept. (a) In primitives of scaffolded DNA origami, DNA double helices are represented schematically either as 
two adjacent lines (left; the white line represents the scaffold strand in white and the staple strand in color) or solid cylinders (middle). A detailed rendering of a 
B-form double-helical domain is also shown (right). (b) Individual DNA double-helical domains may be connected to adjacent double-helical domains by interhelix 
cross-overs (arrows). The interhelix connections are formed by U-turns of the covalent phosphate backbone of either the staple or scaffold strand. Interhelix 
connections are depicted schematically as lines perpendicular to the lines that represent helices. In the cylinder representation, cross-overs are not drawn. (c) 
Examples of single- and multilayer scaffold routing solutions through DNA origami object. (d) Examples for complete scaffold-staple layouts, with staples colored 
differently to highlight their individual paths through the structures. (e) Single- and multilayer DNA origami objects in cylinder representation.

NATURE METHODS | VOL.8 NO.3 | MARCH 2011 | 223

PERSPECTIVE

Figure 2.3: The sca↵old strand (white) and the (various colors)
staple strands. Taken from Ref. [93].

not only single layered structures but also multi-layered DNA as
shown in Fig. 2.4 origamis are possible.
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To create a desired cuboid shape, the dimensions of the
target cuboid first must be specified, and these are determined
by the number of layers, the number of helices per layer,
and the length of each DNA helix. The maximum potential
size of the structure is limited by the length of the scaffold
strand. Unpaired scaffold bases often are introduced at the
ends of helices (as unpaired loops) to minimize undesired
multimerization. A longer unpaired loop is also needed to
span the distance from the starting point of the first helix to
the ending point of the last helix if the scaffold strand has a
circular loop topology. Alternatively, if a seam8 composed
of scaffold crossovers is implemented on the inside of the
structure, then a circular scaffold path can be accommodated
without the need for the long unpaired loop.

Next, the crossovers of the staple strands between neighboring
helices in the cuboid are assigned at the locations of the
intersection planes, following the patterns as shown in Figure
1b and c. These crossovers are labeled on the 2D scheme (Fig-
ure 1b) as thin lines, indicating direct connectivity of the
phosphate backbone. Nick points are then introduced to break

the staple strands into appropriate lengths ranging from 32 to
45 nucleotides (nt) long. Finally, the actual sequence of the
scaffold strand is threaded on the target scaffold path so that
the Watson-Crick-complementary sequences of the staple
strands can be determined.

Results and Discussion

Four different cuboid shapes with various dimensions were
designed and tested experimentally. The number of folded layers
of the DNA helical planes ranges from 2 to 8, as illustrated in
Figure 2a-d. The dimensions of the cuboids, m × n × d, where
m is the number of layers, n is the number of helices per layer,
and d is the number of base-paired helical turns, are 2 × 21 ×
15.75, 3 × 14 × 15.75, 6 × 12 × 7.5, and 8 × 8 × 9.0,
respectively, which are translated into the length scale marked
in the figures (assuming 3.5 nm per helical turn and 2.0 nm per
helical diameter with no gap between helices). The scaffold used
is the single-stranded M13mp18 (purchased from New England
Biolabs, cat # N4040S), which is 7249 nt long, or else a variant
with a site-directed insertion in the multiple cloning site that

Figure 2. 3D DNA origami solid blocks. (a) Two-layer structure. (b) Three-layer structure. (c) Six-layer structure. (d) Eight-layer structure. The 3D perspective
cylinder view and the projections of the top view and the side view are shown. Each cylinder represents a DNA double helix. For the 8-layer block in d, the
end-view projection is shown. On the right are the representative transmission electron microscope (TEM) micrographs of negatively stained particles
observed. The scale bars are 20 nm. For imaging, samples were adsorbed for 30 s onto glow-discharged grids (carbon-coated grid, 400 mesh, Ted Pella) and
stained with 0.7% uranyl formate. Excess stain was wicked away by touching with a piece of filter paper, then dried at room temperature. The samples were
imaged with a Philips CM200 microscope, operated at 200 kV in the bright field mode.

J. AM. CHEM. SOC. 9 VOL. 131, NO. 43, 2009 15905

Multilayer DNA Origami A R T I C L E S

Figure 2.4: An example for a multilayered DNA origami nanos-
tructure. The images on the right have been created with a
transmission electron microscope. The scale bars are 20 nm long.
Taken from Ref. [94].

2.4 Molecular Dynamics Simulation

Molecular dynamics simulations numerically solve Newton’s equa-
tions of motion for a system of interacting particles. These par-
ticles can either represent a single atom in the case of all-atom
simulations or a group of particles in coarse-grained models. Pre-
defined force fields describe the distance dependent non-bonded
and bonded interaction potentials between the components. In
addition, more complex 3- and 4-body interactions are possible,
e. g. bond-angle and dihedral potentials.

Since the forces are computed from distance-dependent pair
potentials, the most time-consuming part in a simulation is the
calculation of all distances between interacting components. The
most common integration algorithm is the so-called velocity Ver-

let algorithm [95]. The Verlet algorithm has two major draw-
backs if it is used in numerical simulations:

• in the update of the positions, the term of order �t2 is
much smaller than the other terms in the sum which leads
to numerical imprecision of the algorithm,

• velocity and position is not known at the same time step.

To overcome these drawbacks, the velocity Verlet algorithm
was developed by Swope et al. [95]. This update scheme is
mathematically equivalent to the aforementioned Verlet scheme



2.4. MOLECULAR DYNAMICS SIMULATION 21

but numerically more stable and the positions and the velocities
are available at the same time step :

ri (t +�t) = ri(t) +�tvi(t) +
�t2

2mi
Fi(t) + O

⇣
�t3

⌘
,

vi (t +�t) = vi(t) +
�t

2mi

⇥
Fi(t) + Fi (t +�t)

⇤
+ O

⇣
�t3

⌘
.

(2.3)

Often molecular dynamics simulations of solutes are carried
out with an implicit solvent in order to get rid of the huge num-
ber of degrees of freedom in the system which result from solute-
solvent interactions, thus saving a lot of computational costs.
The solvent is then only taken into account in an averaged man-
ner by introducing a friction and a random noise term in the
integration scheme.

In molecular dynamics simulations, the Langevin equation
is used as a heat bath to keep the temperature constant and
therefore simulating the statistics of particles in an NVT -ensemble.
The equations of motion are thus extended by a random force
leading to the following stochastic di↵erential equation [71]:

mi
d
2ri(t)
dt2 = �riU

�
ri(t)

�
� �mi

dri(t)
dt + Ri(t), (2.4)

where m denotes the mass of the particle, r the position, U the
interaction energy, � the friction coe�cient and R a random
force. The friction coe�cient � and the random force R are
connected by the so-called fluctuation-dissipation theorem. This
connection originates in the fact that both forces are caused by
collisions with solvent particles [96]. The fluctuation-dissipation
theorem states that if a process exists which turns energy into
heat (friction), there has to be a reverse process that turns out
to be the thermal fluctuations in Langevin dynamics. Thus,
the first two moments of the random force can be expressed as
follows:

⌦
Ri(t)

↵
t
= 0, (2.5)

⌦
Ri(t)Rj(t

0)
↵

t
= 6�kBTmi�i,j�(t � t0), (2.6)

where kBT is the thermal energy.
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2.5 Lattice Boltzmann Method

The lattice-Boltzmann method is a numerical method in the
realm of computational fluid dynamics that solves a discretized
version of the Boltzmann equation on a lattice. It can be shown
that this algorithm solves the Navier-Stokes equation under
the assumption of small Mach numbers and small density varia-
tions [97].

The particle density function f in the combined momentum-
and position-space is defined such that it satisfies the following
equation:

N =

Z

µ
d3 v

Z

µ
d3 rf (v, r, t) , (2.7)

where N denotes the number of particles in the system at time
t.

For velocity independent forces F acting on the particles the
evolution of the density function due to streaming in time can
be described by the total di↵erential with respect to time:

df

dt
=
@f

@t
+ v · rrf +

F

m
· rvf. (2.8)

The interaction between the pseudo-particles is described by a
collision. The change of the density function f due to collisions

is here be denoted by the expression
⇣
@f
@t

⌘

coll

. Due to the Liou-

ville-theorem [98], which states that the phase-space density of
a classical system with uncorrelated velocities (molecular chaos
approximation [99, 100]) is constant over time, the changes of
the density function due to streaming have to be balanced by
changes caused by collisions:

@f

@t
+ v · rrf +

F

m
· rvf =

✓
@f

@t

◆

coll

. (2.9)

This equation is known as the Boltzmann transport equation
(BTE).

In the LBM, the Boltzmann-equation (cf. Eq. (2.9)) is dis-
cretized in the velocity and time space. Velocities are restricted
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to a finite set of directions and magnitudes. The Boltzmann-
equation in this framework reads:

@

@t
fi + vi · rfi =

✓
@fi

@t

◆

coll

, (2.10)

where vi 2 {v0, . . . ,vQ} and fi := f(vi) [101]. For the collision

operator
⇣
@fi

@t

⌘

coll

several descriptions exist, di↵ering in the way

the modes of the probability density function relax to the equi-
librium distribution. For a single relaxation rate �, the collision
operator simplifies to the so-called lattice Bhatnagar-Gross-
Krook (LBGK) operator [102]:

✓
@fi

@t

◆

coll

= ��
�
fi � f eq

i

�
. (2.11)

Finally, the LBM equation in the single relaxation time approx-
imation reads:

fi (r + vi, t + �t) � fi (r, t) = ��
�
fi (r, t) � f eq

i (r, t)
�
. (2.12)

It is possible to calculate macroscopical physical quantities from
the discrete equilibrium particle density distributions f eq

i :
X

i

f eq

i = ⇢,

X

i

f eq

i vi↵ = ⇢u↵,

X

i

f eq

i vi↵vi� = ⇢c2

s�↵� + ⇢u↵u� ,

X

i

f eq

i vi↵vi�vi� =
⇢

3

�
u↵��� + u���↵ + u��↵�

�
+ ⇢u↵u�u� ,

(2.13)

where Greek indices denote Cartesian coordinates, u the fluid
velocity, ⇢ the fluid density and cs is a constant that depends on
the lattice model.

In the fluid simulation, the lattice-Boltzmann (LB) algo-
rithm in general is performed in two steps (the order can vary
between di↵erent implementations):
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• streaming step:
the populations on each lattice side propagate in the re-
spective velocity direction,

• collision step:
the collision operator is applied to all lattice sides and the
new populations for each of the discrete velocities are up-
dated.

In order to simulate solid boundaries within the LBM frame-
work, the so-called link-bounce-back algorithm can be used. If a
population of a fluid node gets streamed onto a boundary node,
the population is bounced back to the node it came from [103]
(see Fig. 2.5).

Figure 3: Illustration of on-grid bounce-back

does not distinguish the orientation of the boundaries and is ideal for simulating fluid flows in complex
geometries, such as the porous media flow.

The configuration of the mid-grid bounce-back introduces fictitious nodes and places the boundary
wall centered between fictitious nodes and boundary nodes of the fluid (see Figure 4). At a given
time step t, the distribution functions with directions towards the boundary wall would leave the
domain. Collision process is then applied and directions of these distribution functions are reversed
and they bounce back to the boundary nodes. We point out that the distribution functions at the
end of bounce-back in this configuration is the post-collision distribution functions.

Figure 4: Illustration of mid-grid bounce-back

Although the on-grid bounce-back is easy to implement, it has been verified that it is only first-order
accurate due to its one-sided treatment on streaming at the boundary. However the centered nature
of the mid-grid bounce-back leads to a second order of accuracy at the price of a modest complication.

3.2 Zou-He Velocity and Pressure BCs

In many physical situations, we would like to model flows with prescribed velocity or pressure (density)
at the boundary. This particular velocity/pressure BC we discuss here was originally developed by Zou
and He in [5]. For illustration, we consider that the velocity �uL = (u, v) is given on the left boundary.
After streaming, f0, f2, f3, f4, f6 and f7 are known. What’s left undetermined are f1, f5, f8 and ⇢ (see
Figure 5).

4

Figure 2.5: Sketch of the link-bounce-back boundary condition.
Node populations get bounced back from wall nodes which re-
sults in a no-slip boundary condition in the mid-plane between
fluid and boundary nodes. Taken from Ref. Bao and Meskas
[104]

In order to combine the LBM with classical molecular dynam-
ics simulation, the two methods have to be coupled. Ahlrichs

and Dünweg proposed a point coupling scheme [105, 106] which
exchanges momentum between the fluid and the particle. The
fluid velocity u at the particle coordinate r is calculated either by
two-point or three-point interpolation functions that arise from
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the neighboring LBM node velocities. In most applications of
coupled LBM/molecular dynamics simulations, the linear two-
point coupling is of su�cient precision [106]. The momentum
exchange is chosen according to Stokes’ friction proportional
to the di↵erence of the fluid velocity u and the velocity v(r) of
the particle. Therefore, the force Fparticle on the particle medi-
ated by the fluid reads:

Fparticle = �⇣ (v � u) , (2.14)

where ⇣ is the friction coe�cient. To ensure momentum conser-
vation, the respective force density is also applied to neighboring
lattice nodes.

2.6 Finite Element Method

The Finite element method (FEM) is used to numerically solve
partial di↵erential equations that naturally occur in many fields
of engineering and physics. The simulation domain is discretized
via a mesh which leads to an approximation of the governing dif-
ferential equations in the respective simulation domain with its
boundary conditions. Describing the (often) complex geometry
of the domain by smaller fragments simplifies finding a solution
for the overall domain by treating each fragment independently
[107]. These fragments give the methods its name, these frag-
ments are the finite elements. Each of the finite elements is
treated as an independent domain for which the partial di↵er-
ential equations are solved for. Of course the representation of
the geometry may not be exact and already at this point a sys-
tematic error is introduced, although it might be small if the
segmentation of the domain is done carefully.

In the next step, the unknown quantities are represented by
a linear combination of polynomials: X =

P
i ci�i, where ci are

coe�cients to be determined and �i are the polynomial func-
tions. The degree of the polynomial also dictates how man sub-
divisions per element are necessary: a linear polynomial only
needs two nodes whereas a quadratic polynomial needs three
nodes and so on. The coe�cients for the polynomials have to
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be determined such that the approximations for the unknowns
satisfy the di↵erential equations of interest at the nodes in an
approximate way [107]. Therefore, the approximate solution is
found by first expressing the di↵erential equation in the so-called
weak form.

The Poisson equation for electrostatics shall serve as an ex-
ample. In one dimension it reads:

�
d

dx

✓
"(x)

d�(x)

dx

◆
= ⇢(x), (2.15)

where " is the dielectric constant, � the electrostatic potential
and ⇢ the charge density. The domain of interest is 0  x  L

with the boundary conditions �(0) = �0 and
⇣
"(x)d�(x)

dx

⌘

x=L
=

C. The quantity of interest in this case is the electrostatic poten-
tial in the domain which will be approximated by polynomials:

�(x) ⇡ �N (x) =
X

i

ci�i(x) + �0(x). (2.16)

The approximation for the electrostatic potential leads to a dif-
ference between the left and the right-hand side of Eq. (2.15),
the so-called residual:

R = �
d

dx

✓
"(x)

d�N

dx

◆
� ⇢(x). (2.17)

There are several measures that can be used to define the quality
of the approximation that results from the respective coe�cients
ci of the polynomials. A commonly chosen way is to find coef-
ficients ci such that integrals over the domain for the weighted
residual vanish:

Z L

0

wi(x)R(x, ci) = 0, (2.18)

where wi(x) are the weight functions. The (often used) so-called
Galerkin method uses the polynomials of the approximation
as the weight functions, such that wi = �i. The condition in
Eq. (2.18) is the so-called weighted integral form. This form
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requires �i to be chosen such that the resulting approximate
representation of the electrostatic potential is di↵erentiable as
often as demanded by the Poisson equation while respecting
the boundary conditions.

There is another approach that makes it easier to incorpo-
rate boundary conditions and weakens the demands on the dif-
ferentiability of the electrostatic potential approximation. It is
therefore called the weak form of the problem statement and is
derived in the following for the case of the Poisson equation.
Starting from the integral statement, integrating by parts yields:

0 =

Z L

0

0

@wi(x)

 
�

d

dx

✓
"(x)

d�(x)

dx

◆!
� wi(x)⇢(x)

1

A dx

=

Z L

0

✓
"(x)

dwi(x)

dx

d�(x)

dx
� wi(x)⇢(x)

◆
dx

�


wi(x)"(x)

d�(x)

dx

�L

0

.

(2.19)

Note, that now the boundary condition for the electric flux ex-
plicitly occurs in the problem statement. Another important
advantage of this representation is the fact that the electrostatic
potential now has to only be di↵erentiable once and not twice
(as in the case of the weighted integral approach). The weight
functions wi have to vanish at x = 0 since the potential is ex-
plicitly defined and may not be changed by any weight at this
boundary. Thus, Eq. (2.19) yields:

Z L

0

✓
"(x)

dwi(x)

dx

d�(x)

dx
� wi(x)⇢(x)

◆
dx = wi(L)"(L)

d�(x)

dx

����
x=L

,

(2.20)

which is termed the weak form of Eq. (2.15). In order to nu-
merically solve the weak form, a suitable discretization has to
be used (as described above). After applying the discretization,
the weak form can be represented as A�N = b, where A is an
NxN matrix containing the coe�cients for �N and b contains
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the charge density portion of the Poisson equation. Note that,
depending on the basis functions that are used for the discretiza-
tion, the coe�cient matrix is often very sparse. This system of
equations can now be solved numerically.

2.7 Electroosmosis and Electrophoresis

Electroosmosis describes the electrokinetic transport phenomenon
that is observed if a charged surface is in contact with an elec-
trolyte solution and an external electrostatic potential gradient
is applied.

Consider a planar charged surface as depicted in Fig. 2.6. The
blue rectangle represents the charged surface whereas the den-
sity of the counter-ions in the electrolyte is shown in shades of
red. The mobile ions in the vicinity of the charged surface form
a double layer. This layer carries a net charge that is driven by
the electric field. In addition, the driven layer of ions pushes
the surrounding fluid along which results in a velocity profile as
shown in white in Fig. 2.6. The length-scale on which the elec-
trostatic potential in the counter-ion layer decays is the Debye

length (cf. Sec. 2.1). The resulting velocity profile of the fluid is
[108]:

vx(y) =
"

4⇡⌘

�
 (y) � ⇣

�
Ẽz, (2.21)

where " is the dielectric constant of the fluid (⇡ 80 for water
at room temperature), ⌘ is the dynamic viscosity of the fluid,
 is the electrostatic potential depending on the distance to the
charged surface, ⇣ is the electrostatic potential at the charged
surface and Ẽz is the electric field at y = �D. Far away from
the charged surface the flow is parallel to the surface (plug flow).
Therefore, the velocity in the bulk vbulk

x can be obtained from
Eq. (2.21) for a vanishing electrostatic potential  :

vbulk

x = �
"

4⇡⌘
⇣Ẽz (2.22)
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y
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�D
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E

Figure 2.6: A planar charged surface in contact with an elec-
trolyte solution under an externally applied electric field E =
Eêx.

Electrophoresis on the other hand describes the motion of a
charged object through a fluid caused by an externally applied
electric field. Again, the charged object’s charge is screened by
mobile ions in the fluid. The externally applied electric field also
exerts a force on the counter-ion cloud. The resulting force on
the counter-ions points in the opposite direction as the force on
the charged object. The portion of the force on the ions that
is transferred onto the particle via the fluid is called retardation
force. In addition, there is a so-called relaxation e↵ect of the
counter-ion cloud due to the movement of the charged object
that causes a deformation of the ionic double layer. The elec-
trophoretic mobility µ of a charged object is then defined as the
ratio of the steady state velocity v in direction of the external
field and the amplitude of the applied electric field E:

µ =
v

E
. (2.23)

2.8 Electrokinetic equations

This section introduces the basic theoretical framework that is
used to describe the DNA nanopore systems on a mean-field
level. More specific descriptions of the modeling and adaptions
of the equations introduced in this section can be found in the
model description in Sec. 3.3.
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The electrostatic potential  (r) of a charge density ⇢(r) can
be calculated from the Poisson equation (plus boundary condi-
tions):

r ·
�
"0"r(r)r (r)

�
= �⇢(r) = �e

X

i

zici(r), (2.24)

with "0 being the permittivity of free space, "r(r) the relative
permittivity of the medium containing the ions, zi the valency
of the ionic species i and ci the number density of species i.

On the mean-field level ion transport can be modeled by
means of the so-called Nernst-Planck equation:

r ·
⇥
�Dirci(r) � µizieci(r)r (r) + ciu(r)

⇤
= 0, (2.25)

where Di is the di↵usion constant of ion species i, ci the con-
centration, µi the mobility,  the electrostatic potential and u
the solvent velocity. Note that the ion mobility µ and the ion
di↵usivity D is connected via the Einstein relation: Di = µikBT .
The Nernst-Planck equation is an extension to Fickian di↵u-
sion which is based on conservation laws that describe the mass
conservation of the ionic species in every infinitesimally small vol-
ume taking into account the di↵erent kinds of fluxes that may
be present in the system. First, there is the di↵usive flux due to
concentration gradients:

ji
di↵usive

= �Dirci(r). (2.26)

The ion’s concentration tends to a homogeneous distribution due
to thermal motion (Brownian motion). Second, there is the
migration of ions caused by an electric field E(r):

ji
migration

= �µizieci(r)r (r) = µizieci(r)E(r). (2.27)

The migration term describes the ionic flux caused by electrophoretic
forces originating from electric fields acting on the charged species.
The third kind of flux describes the advection with the fluid:
ji
advective = ciu(r). Here, the ionic flux is caused by the fluid

flow velocity of the underlying solvent.
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The steady state description of an incompressible (r ·u(r) =
0) fluid flow under the influence of an external driving force f
can be described by Stokes’ equation:

�⌘r2u(r) = f(r), (2.28)

where ⌘ is the dynamic viscosity. This equation describes the
flow well under the assumption of low Reynolds numbers, i. e.
in systems where viscous forces are dominant compared to iner-
tial forces: Re = ⇢uL/µ ⌧ 1, with ⇢ being the fluid density and
L a characteristic length scale of the respective geometry.

In order to couple electrostatic e↵ects and the fluid flow, the
e↵ect of momentum transport between ions and the fluid has
to be taken into account. Therefore, the driving force f(r) in
Eq. (2.28) has to include the frictional forces that arise from
ions moving either due to di↵usion or an external electric field:

f(r) =
X

i

ji
di↵usive

+ ji
migration

µi
. (2.29)

In summary, this leads to a system of partial di↵erential equa-
tions that can be solved for a specific geometry and given bound-
ary conditions numerically.

MD Software — ESPResSo

All coarse-grained simulations in this work have been performed
with the molecular dynamics software ESPResSo (https://
espressomd.org) [109, 110, 111, 84]. ESPResSo’s key features
are:

• has a node parallel C++ core (backend),

• has a Python scripting interface (frontend),

• is able to couple molecular dynamics to a LB hydrodynam-
ics solver,

• contains implementations of solvers for long-range electro-
static interactions (in particular the P3M algorithm [112]).

https://espressomd.org
https://espressomd.org
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The combination of the key features listed above renders this
software an ideal and flexible tool to investigate the physics of
charged soft matter via molecular dynamics simulations. While
the backend of ESPResSo is implemented in a node-parallel fash-
ion using message passing interface (MPI) and is therefore capa-
ble of handling large-scale systems on highly parallel hardware
(i. e. compute clusters), the software is mostly used because
of the unique set of the aforementioned features plus the enor-
mously flexible frontend. Thus, compared to other molecular
dynamics software like GROMACS [113] or LAMMPS [114, 115]
the focus of ESPResSo is more on flexibility than on perfor-
mance.

The following short sample script shows the flexibility of hav-
ing a python interface to the molecular dynamics backend in
ESPResSo:

import numpy as np

import espressomd

system = espressomd.System(box_l=[10.0] * 3)
system.part.add(pos=np.random.random((100,3)) * system.box_l)
system.part[::2].q = 1.0
system.part[1::2].q = -1.0
system.non_bonded_inter[0,0].lennard_jones.set_params(sigma=1.0, epsilon=1.0, cutoff

=2**(1./6.), shift="auto")

Listing 2.1: ESPResSo code sample. (Tested with commit hash
3e2674a8f2b193b32c404dd4cab633cd8c5c76a3).

The listing above gives an idea how a simulation is built up step
by step and how the user can interact with the components at
each stage of the simulation:

• a simulation domain is initialized with size 10 in all direc-
tions

• 100 particles with random positions in the domain are
added

• half of the particles get a positive, the other half a negative
electrostatic charge assigned

• a non-bonded interaction is added.
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This bare minimum example already demonstrates the flexi-
bility compared to static parameter files (e. g. in the case of
GROMACS).

2.9 Resistive pulse sensing

Sensing molecules using nanopores is based on the modulation of
the ionic current in a setup where two electrolyte reservoirs are
connected by a nanopore (cf. Fig. 2.7). This technique is known
as resistive pulse sensing or as a Coulter-counter. The field
of nanopore based molecule detection and analysis has shown
growing interest in the soft matter scientific community in the
last years. The basic idea dates back to the late 1940s when
Wallace Coulter [2] invented a device to count red blood cells.
An electric field causes a steady ionic current and at the same
time drives charged particles or molecules through the nanopore.
During the translocation of the analyte a salt-dependent ionic
current modulation can be observed. Such systems were used
to study a range of analytes from DNA and proteins to viruses
[9, 10, 12]. Depending on the ratio between the pore diameter
and the analyte the signal-to-noise (SNR) ratio may be adjusted
and thereby the temporal and spatial resolution of the sensing
setup. However, also the translocation speed of the analyte plays
a crucial role for the SNR [116].
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INTRODUCTION
Resistive pulse sensors with nanoscale pores are conceptually simple single-molecule detec-
tors. They feature a single, well-de!ned nanoscale pore embedded in an insulating membrane.
The membrane separates two electrolyte-!lled compartments, each containing one electrode
(Figure 1a). The application of a voltage Vbias between the electrodes results in an ion current,
which in turn leads to potential drops and local electric !elds in the cell. Suitably strong electric
!elds can pull charged objects in solution toward and eventually through a suitably dimensioned
pore. Because the nanopore normally constitutes the largest source of resistance in the cell, such a
translocation event can cause a measurable ion current modulation (Figure 1b,c). Other modes of
detection, based on "uorescence, Raman spectroscopy, tunneling current, and capacitive sensing,
have been devised (1–6).

Nanopore sensing is closely related to two other well-established areas of research, namely
transport in solid-state micropores and channels on the one hand and in soft matter biologi-
cal pores and ion channels on the other. The former has found early application in the Coulter
counter, still a routine tool for cell counting in clinical settings today (7). The main difference is
one of scale: In microchannels, bulk effects usually dominate, whereas in nanochannels, transport
is more likely to be affected by a subtle interplay between surface charge effects, electroosmosis,
and electrophoresis (Figure 1c) (8). Biological pores typically have channel diameters in the low
nanometer regime and even below. Here, transport effects are in many ways molecular in that,
even the charge state of individual amino acid residues inside the pore, and direct binding inter-
actions between the analyte and the pore surface, can feature prominently in the measured ion
current (9–11). In addition to naturally occurring channel-forming proteins, arti!cial ones offer
great design "exibility and have attracted considerable interest recently (12).
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Figure 1
(a) Basic design of a nanopore sensor. The nanopore allows for the transport of liquid, ions, and analyte
(purple spheres) between the compartments. (b) Close-up of the pore region, here with cylindrical geometry
with diameter d and length L indicated. The charge of membrane surface (green) is balanced by counterions
in solution (orange). Above the pore: hemispherical capture volume of radius r; below the pore: integration
limits for RHille

acc and RHall
acc . (c) Illustration of an I(t) trace, obtained at constant Vbias. Downward spikes

correspond to translocation events. (Inset) Some key parameters, including the event duration τ, amplitude
∆I, and open-pore current I0.
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Figure 2.7: A schematic view on a resistive pulse sensing setup.
Taken from Ref. [13].



Chapter 3

Models for DNA nanopore

systems

In this chapter we describe the investigated simulation models
for the DNA structures with di↵erent levels of detail. The first
section 3.1 contains the model parameters for the DNA models
used in the all-atom molecular dynamics simulations. In Sec. 3.2
we describe the coarse-grained DNA models. Finally, the last
section 3.3 deals with the DNA model on the mean-field level.

3.1 All-atom DNA models

This section contains the all-atom models for double-stranded
DNA (dsDNA), a dsDNA origami and a quad formation of dsDNA
in an infinite cylindrical pore that has been investigated via
molecular dynamics simulations.

Infinite pore model

The model described in the following is mostly inherited from
Ref. [47], details have been adopted in order to make the setup
compatible with a more recent release of the simulation pack-
age GROMACS [113], namely the 2018 release. It served as a
reference model with known results to compare to and to make

35
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sure that the data analysis implementation (that will also be
used for other all-atom models) is valid. The all-atom model
for dsDNA is a homo-polymer build up of 20 stacked cytosine-
guanine base pairs. In order to reduce end e↵ects of the finite
DNA molecule it is periodically connected along the axis of the
helix. A cylindrical pore is constructed by two layers of parti-
cles with a generic Lennard-Jones interaction (cf. Sec. 2.4) with
a diameter of 0.5 nm, a Lennard-Jones interaction strength of
5.0 kJ mol�1 and a gap of 0.5 nm between adjacent pore parti-
cles. The simulation domain is constrained to a rectangular box
with dimensions of Lx = 15 nm, Ly = 15 nm, Lz = 6.67 nm
and periodic boundary conditions along the z axis. To com-
pensate for the charged backbone of the dsDNA molecule of 2 e
per base pair, 40 potassium ions have been added to the sys-
tem. Between 16 and 144 excess salt ion pairs have been added
to simulate di↵erent electrolyte reservoir concentrations. The
respective bulk salt concentrations have been estimated from
radial ion density profiles a posteriori. With the given range
of excess ion pairs, this resulted in bulk electrolyte concentra-
tions ranging from 0.07 mol l�1 to about 0.6 mol l�1. Follow-
ing Ref. [47], the phosphorous atoms’ and the pore particles’
positions have been restrained via a harmonic potential with a
strength of 1000 kJ mol�1 nm�1. After water molecules had been
added, an external electric field of 0.2 V nm�1 is applied along
the symmetry axis of the helix.

For the dsDNA the AMBER03 force field [117] and for the
ions a force field optimized for correct dynamics [118, 119, 120]
has been used. The water molecules are represented with the
so called SPC/E water model [121]. Bonds between the dsDNA
molecule and hydrogen atoms were fixed and the temperature of
the system was held constant via a stochastic velocity rescaling
approach. Further details of the simulation parameters can be
found in the Appendix Sec. 8.1.

DNA origami model

The model description in this section is part of the following
publication:
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Kai Szuttor, Florian Weik, Jean-Noël Grad, and Christian
Holm. Modeling the current modulation of bundled DNA
structures in nanopores. The Journal of Chemical Physics,
154(5):054901, 2021. doi: 10.1063/5.0038530

The basis of our all-atom model is a structure file of the
DNA origami provided to us by the Keyser group1 who did the
experimental work motivating this study [31]. We extracted a
periodically recurring segment of the origami and placed it in a
rectangular simulation box with periodic boundary conditions to
create an infinite origami that reproduced the shape of the origi-
nal structure, using bonded interactions across the unit cell. We
added a cylindrical pore wall built up of atoms with a purely re-
pulsive interaction potential. Similarly to the single DNA setup,
the dsDNA origami’s phosphorus atoms as well as the pore atoms
have been fixed in space via a harmonic potential. We solvated
the molecule in water and compensated the net charge by an
appropriate amount of potassium counter-ions. To simulate dif-
ferent bulk salt concentrations we exchanged a varying number of
water molecules with potassium chloride ion pairs. The bulk salt
concentrations have been estimated a posteriori from the charge
density profiles. The all-atom simulations have been performed
with the molecular dynamics software GROMACS version 2020.3
[113].

Details of the procedure of setting up the periodic chunk
of the origami molecule can be found in the Appendix section.
In the visualization of the simulated molecule in Fig. 3.1 the
inter-helix staple strands that stabilize the origami structure are
visible.

Quad DNA model

The model description in this section is part of the following
publication:

1Prof. Dr. U. F. Keyser



38CHAPTER 3. MODELS FOR DNA NANOPORE SYSTEMS

Figure 3.1: The side view (left) and cross-section (right) of the
all-atom origami molecule section in a pore. For clarity the water
molecules have been excluded.

Kai Szuttor, Florian Weik, Jean-Noël Grad, and Christian
Holm. Modeling the current modulation of bundled DNA
structures in nanopores. The Journal of Chemical Physics,
154(5):054901, 2021. doi: 10.1063/5.0038530

This model is constructed by placing four parallel strands
of the dsDNA described in Sec. 3.1 parallel to each other on a
2x2 lattice. The secondary structure of this model is very sim-
ilar to the actual all-atom origami model described above. The
main di↵erences are the missing interconnecting staple strands
(Fig. 3.2). Each of the four helices consists of 20 CG base pairs
which corresponds to two full turns of the helix. All other sim-
ulation parameters are adopted from the model above.

3.2 Coarse-grained DNA models

Existing three-bead model

The following model description is mainly inherited from Ref. [76]
and the first version of this model was first published in Ref. [52].
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Figure 3.2: Side view (left) and cross-section (right) of the sim-
ulated all-atom quad molecule in a pore.

However, during the verification of the model with more recent
versions of the simulation software and a full transcription of the
model from a deprecated interface scripting language, some pa-
rameters were adapted to reproduce static and dynamic results
from all-atom simulations.

This DNA model is based on a much coarser representation of
the base pairs as compared to the previously discussed all-atom
models of Sec. 3.1. Several atoms are combined into a single bead
which combines the lower-level interactions into a single e↵ective
interaction that is tuned to reproduce structural and dynamical
data from all-atom simulations. A single coarse-grained nucle-
obase pair consists of three beads: two beads represent the phos-
phate backbones of the two strands and the third bead replaces
the connecting nucleobase pair atoms, cf. Fig. 3.3b.

This three-bead base pair is simulated as a rigid body, so
there are only six degrees of freedom for its center of mass. The
distance between the backbone beads and the base pair bead is
set to Rbb = 7.9 �A and the angle between the connecting lines
of base pair and backbone beads is �bb = 144� (cf. Fig. 3.3b).
Together with the dsDNA model, an ion model has been adopted
based on the simple assumptions of charged hard spheres, the so-
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(a) Illustration of a short dsDNA
segment, taken from https:
//commons.wikimedia.org/
wiki/File:DNA_chemical_
structure.svg, visited at
21.04.2021.

(b) Visualization of a single base
pair as it is modelled by the
coarse-grained model.

called restricted primitive model [122]. The short-ranged non-
bonded interactions between ions and dsDNA beads as well as
ions and ions are described by a Lennard-Jones like interaction
potential of the following form:

VLJ(r) =

8
><

>:
4"

⇣
�

r�roff

⌘12

�

⇣
�

r�roff

⌘6

+ cshift

�
, if ro↵ < r < rcut + ro↵

0, else,

(3.1)

where r is the distance between two interacting particles, " is
the interaction strength in units of kBT , and ro↵ and cshift add
an o↵set in r or a shift in V , respectively. For the interaction
between two ions, the attractive part of Eq. (3.1) is not used,
but instead the so called Weeks-Chandler-Andersen inter-
action (WCA). The WCA interaction uses a cuto↵ distance of
rcut = 2

1
6� which is the location of the minimum of the attrac-

tive portion. Together with the appropriate shift cshift to zero
at rcut, this potential serves as a purely repulsive hard sphere
potential. Due to the fact that the exact parameters for the
dsDNA-ion interaction parameters have changed over the course

https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg


3.2. COARSE-GRAINED DNA MODELS 41

of the model improvement, a summary of the parameters is listed
in Table 3.1. In all non-bonded interactions between ions and
the DNA molecule the shift in the potential cshift has been cho-
sen such that the potential vanishes at the cuto↵ distance (rcut

is set to 2.5 � + ro↵).

Table 3.1: Non-bonded interaction parameters of the coarse-
grained model for the interaction between ions and dsDNA
beads. The particle diameter � is set to 4.25 �A in all cases.
Abbreviations used: BB for backbone, BP for basepair.

publication " ion BB ro↵ ion BB " ion BP ro↵ ion BP
Weik et al. [52] kBT 2.9 �A 0.75 kBT 0.06 �A
Rau et al. [76] kBT 0.0 kBT 0.75 �A

this work kBT 0.0 kBT 0.75 �A

The first version of the dsDNA model as published in [52]
did not include any bonded interactions since it has only been
used as rigid body model in the limit of time-scale separation of
the dsDNA’s and ion’s dynamics where the dsDNA has therefore
been fixed in space.

In the improved model as published in [76], two-, three- and
four-body interactions have been added. First, a harmonic bond
potential between the base pair bead of every segment has been
added (cf. Fig. 3.4a):

Vharmonic(r) =
1

2
Kharmonic

�
r � Rbasepair

�2
, (3.2)

where Kharmonic = 200 kBT
�2 defines the strength of the bonded

interaction and Rbasepair = 3.4 �A is the equilibrium distance.
The value for Rbasepair has been taken from experimental data
in Ref. [123].

Second, a bond-angle potential is defined to control the per-
sistence length of the dsDNA (cf. Fig. 3.4b) and another bond-
angle potential stabilizes the angle between the backbone and
the base pairs (cf. Fig. 3.4c). The bond-angle potentials are in
structure similar to the harmonic potential for the distance, but
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(a) The harmonic bonded poten-
tial between backbone beads.

(b) The bond angle harmonic po-
tential on the backbone beads.

(c) The bond angle harmonic po-
tential on the base pair beads.

(d) The dihedral angle potential.

Figure 3.4: A three base pair sequence of the coarse-grained
model with marked interaction partners for the four di↵erent
interactions as defined in [76].

depend on the di↵erence to a given equilibrium angle:

Vbond�angle =
1

2
KBB/BP

⇣
�� �BB/BP

⌘2

, (3.3)

where KBB/BP = 100 kBT
�2 again defines the interaction strength

and �BB/BP is the equilibrium angle for the case of the backbone
(cf. Fig. 3.4b) or base pair (cf. Fig. 3.4c) interaction, respec-
tively. The equilibrium angles are set to �BB = ⇡ and �BP = ⇡

2
.

The dihedral potential is defined as

Vdihedral = Kdihedral [1 � cos(�� �dihedral)] , (3.4)

where Kdihedral = 200kBT
�2 and �dihedral = 34.3�.

In order to incorporate hydrodynamic interactions the beads
are coupled to a LB fluid. The coupling is implemented following
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Weik et al. [52] Thus, the drag force of the fluid applied to a
particle is defined by

Ffric = ��
⇥
v � u(r)

⇤
, (3.5)

where v is the particle velocity, u denotes the bilinear inter-
polation of the fluid velocity at the particle position r, and �
is a frictional coupling constant. A stochastic thermostat is
added in a momentum conserving fashion that fulfills the fluctu-
ation dissipation theorem. The hydrodynamic radius rh is cal-
culated using Stokes’ law and the mobility of an isolated particle
µ = (6⇡ ⌘ rh)�1 using

1

rh

=
6⇡ ⌘

�
+

6⇡ g

a
, (3.6)

where ⌘ denotes the dynamic viscosity, a denotes the grid con-
stant of the LB method, and g is a numerical factor that depends
on the implementation and takes in our implementation the value
g = 0.04 [124, 106].

Quad DNA model

The model description in this section is part of the following
publication:

Kai Szuttor, Florian Weik, Jean-Noël Grad, and Christian
Holm. Modeling the current modulation of bundled DNA
structures in nanopores. The Journal of Chemical Physics,
154(5):054901, 2021. doi: 10.1063/5.0038530

We followed the modeling strategy for a coarse-grained model
of a dsDNA molecule as described in Sec. 3.2. In order to extend
the model to reproduce the geometry of a 2x2 origami molecule
we created a fixed arrangement of four parallel dsDNA strands
(cf. Fig. 3.5). Simulations have been performed with the release
4.0 of the MD software ESPResSo [84].

The segments of the coarse-grained dsDNA consist of a rigid
arrangement of three beads (two for the backbone and one for
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Figure 3.5: Visualization of the origami geometry for the coarse-
grained model.

the base pair). A scheme for a single base pair is shown in
Fig. 3.3b. Hydrodynamic interactions are included by coupling
molecular dynamics with a LB hydrodynamics solver. Using
the point coupling scheme [124, 106] to exchange momentum
between particles and the LB fluid, a nonphysical fluid flow as
observed along the grooves of the helix [52] which is suppressed
with additional beads that only interact with the fluid and are
part of the rigid body of each segment. To match the distance
dependent ion mobility in the vicinity of the DNA observed in
all-atom simulations [47], a frictional coupling force Fij is added
between the backbone particles and the ions:

Fij =

8
<

:
�⇣
⇣
1 �

rij

rc

⌘2

vij , rij  rc

0, else,
(3.7)

where ⇣ = 1.43 ⇥ 10�13 kg s�1 is a frictional constant, rij is the
inter-particle distance between DNA bead and ion, rc is the cut-
o↵ radius up to which the frictional interaction is enabled, vij

is the relative velocity. The two free parameters ⇣ and rc are
tuned to match the ion velocity profile of the respective all-
atom simulation for a single salt concentration. In addition to
the frictional force, a random force according to the fluctuation-
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dissipation theorem is applied. Details of the model can be found
in Ref. [76], exact values for all parameters are listed in below.

Table 3.2: Summary of pair interaction parameters.

interaction pair �[�A] ✏[kBT ] rcut[�] ro↵ [�]

ion-ion 4.25 1 2
1
6 0.0

ion-pore 4.25 1 2
1
6 0.0

ion-backbone 4.25 1 2
1
6 0.0

ion-basepair 4.25 1 2
1
6 0.18

Transcription of Tcl implementation

Since the development of the first version of the coarse-grained
model, the scripting interface of the simulation software ESPResSo
has switched from Tcl to a modern Python interface. Because
not only the interface of the software has changed over time, but
also the underlying simulation core has been refactored, a tran-
scription of such a simulation model is therefore non-trivial. This
made it mandatory to come up with a more elaborate and rig-
orous testing of the simulation script itself. We have, therefore,
moved the actual setup of the individual particles and their cor-
responding bonded interactions to a python module that mocks
the behavior of the simulation backend (ESPResSo) which makes
it possible to test the model independently of the simulation
package. Details can be found in Sec. 8.3 in the Appendix.

3.3 Mean-field model

The model description in this section is part of the following
publication:

Florian Weik, Kai Szuttor, Jonas Landsgesell, and Chris-
tian Holm. Modeling the current modulation of dsDNA in
nanopores – from mean-field to atomistic and back. Eu-
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ropean Physical Journal Special Topics, 227(14):1639–1655,
2019. doi: 10.1140/epjst/e2019-800189-3

Infinite pore model

The atomistic simulations demonstrated that the mobility of the
K+ ions is reduced close to the DNA surface [47]. The mobilities
are normalized to the respective bulk mobilities at their bulk
concentration to account for the well-known concentration de-
pendence of the bulk mobility [125]. These normalized mobilities
show a common radial profile for all concentrations and result in
a current reduction. Furthermore, it was possible to quantify the
current contributions from the additional and expelled ions. It
could be shown that, taken together, the expelled ions were al-
ways overcompensated by the additional ions brought in by the
DNA’s surface charge. This changes the overall interpretation
of the current blockade: It is not a balance between additional
and expelled ions, but between additional charge carriers and the
friction losses. This is di↵erent from the models by Smeets et al.
[126], which considered the ions expelled from the pore as the
primary e↵ect governing the current reduction, and by van Dorp
[54], who did not explicitly include the modified ion friction close
to the DNA but rather assumed a constant mobility.

The resulting currents as a function of concentration can be
inspected in Fig. 4.13, which also includes the experimental data.
The all-atom data fits the experimental data well. Especially the
so-called cross-over concentration, i. e., the salt concentration at
which the ionic currents with and without DNA are equal, is in
good agreement with experimental data. We want to stress here
that the force fields have not been fine-tuned for the specific ap-
plication, nor have Kesselheim et al. [47] looked for particular
combinations of force fields that yielded the best fit to experi-
mental data. However, the exact physical cause of this mobility
reduction still is not quite obvious. Potential explanations in-
clude electrofriction [127] and hydrodynamic interactions with
the complicated geometry of the DNA surface [128].

Since the strength and spatial dependence of this friction can
be quantified and extracted from the all-atom simulation data,
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we used this information and incorporated it in terms of a suit-
ably parametrized friction term in a coarse-grained molecular
dynamics model. This route was already followed successfully
in Ref. [52]. There, the electrolyte as well as the DNA molecule
were significantly coarse-grained: The water molecules were re-
placed by a LB fluid, which drastically reduces the number of
degrees of freedom while keeping the salt ions as explicit parti-
cles. The level of detail of the DNA molecule was reduced by
representing each base pair as one rigid body composed of three
beads. This allowed removing most of the chemical detail of the
molecule while preserving its double-helix structure. To reflect
the mobility reduction observed in the atomistic simulations, a
dissipative force FD between the salt ions and the DNA of the
following form was introduced:

FD
ij = �↵!(rij)vij . (3.8)

Here, ! = !(r) is a distance-dependent weight function for the
friction with

!(r) =

8
<

:

⇣
1 �

r
rc

⌘2

if r < rc

0 else,
(3.9)

where rc is the cut-o↵ value for the friction, vij and rij the rel-
ative velocity and distance between the ions and the beads of
the DNA model, and ↵ is a constant parameter characterizing
the strength of the friction. With this friction term, the cur-
rent modulation observed in experiment and the all-atom stud-
ies could be reproduced with the coarse-grained model. This
coarse-grained model could also be developed into a fully flexi-
ble model which reproduced all the electrokinetic properties of
finite length dsDNA fragments, like the salt dependence of the
persistence length, and the electrophoretic mobility as function
of the number of base pairs [76].

Here, we follow a new continuum approach where we incor-
porate a suitably parametrized friction term to the continuum
electrokinetic model by applying a simple force balance argu-
ment for the ions. As we will show, this enables us to re-
produce the current modulation observed in experiments on a
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mean-field level, which opens up doors for a fast exploration
of the parameter space, for example, when displacing the DNA
or inserting more complicated macromolecular objects like DNA
origami[129]. DNA origami molecules are tailored DNA strands
that can be designed to self-assemble into any desired shape.
Keyser et al. attached specific DNA origami onto glass nanopores,
trapping it at the tip of the nanocapillary to modify, e. g., its sen-
sitivity for single stranded DNA (ssDNA) detection [130, 131].
As a natural consequence we ask for the influence on the current
modulation of DNA origami inserted into a nanopore.

dpore = 10nm

d D
N

A
=

2.
2

n
m

x

y

Figure 3.6: Sketch of the continuum model in 2D. The dsDNA
(blue contour) is modeled as a charged cylinder within an un-
charged cylinder that represents the nanopore. The simulation
domain ⌦ is the area between the two cylinders.

In our electrokinetic model, we approximate the dsDNA as an
infinitely long cylinder which has a diameter and charge density
comparable to that of dsDNA confined in a cylinder with radius
rpore. The assumed geometry of the model is shown in Fig. 3.6.

We use cylindrical coordinates (r,', z) with respect to the
center of the simulation box. The problem domain is given by
⌦ = [rDNA, rpore] ⇥ [0, 2⇡] ⇥ R.

The salt ions are described as di↵usive species with concen-
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tration ci following the di↵usion-advection equation [132]

@tci = �r · ji (3.10)

ji = [�Dir + u + µiFi] ci, (3.11)

subject to jr = 0 on @⌦. Here ji is the ionic current density,
Di the di↵usion coe�cient of the ions, u the fluid velocity and
Fi the external force on the species, and µi their mobility. The
di↵usive species have valency zi, giving them the charges qi = ezi

per particle, where e is the elementary charge. The electrostatic
potential  is given by Poisson’s equation

� = �

P
i ezici

"0"r
, (3.12)

subject to @r (rpore) = ��pore/("0"r) = 0 and @r (rDNA) =
��DNA/("0"r). Here, �Pore and �DNA is the surface charge den-
sity of the DNA and the pore charge density respectively, "r is
the relative permittivity of the solvent.

The advective flow field u is taken into account by considering
Stokes’ equation:

⌘r2u � rp + f = 0 (3.13)

r · u = 0, (3.14)

where ⌘ is the dynamic viscosity, u and p are the velocity and
pressure fields, and f is the force density on the fluid caused by
the ions. We use no-slip boundary conditions u = 0 on @⌦.

Only the stationary case with @tc = 0 is considered, and, due
to the symmetry of the system, all axial and tangential deriva-
tives vanish. In addition no pressure gradient across the pore is
applied, so we also have @zp = 0.

This reduces Eq. (3.13) to the radial Stokes equation, the
other components of u are zero:

1

r
@r(r@ru

z) + fz = 0. (3.15)

Since there is no advection in radial direction (ur = 0) the
only force acting on the ions is electrostatics, and we have F r

i =
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�qi@r . With this the radial di↵usion-advection equation can
be formally integrated for the stationary case (jr = 0), giving

ci(r) = c0

i exp

✓
�

zie (r)

kBT

◆
. (3.16)

In this equation, c0

i is the bulk concentration of the species i,
where in the bulk  = 0 holds.

With this, the concentrations can be eliminated from Eq. (3.12),
yielding a radial Poisson-Boltzmann equation for the electro-
static potential  :

1

r
@r(r@r ) = �

1

"0"r

X

i

c0

i zie exp

✓
�

zie 

kBT

◆
. (3.17)

So far, the force density on the fluid f = f(ci, ji,u) and the
forces on the di↵usive species Fi are unspecified. This is where
we will introduce a friction term as described in the next section.

To determine the force densities on the ions and the fluid, we
consider the force balance for a single ion in z-direction. There
are three contributions to the forces F z

i acting on the ions:

1. external electric field:

F z,E
i = eziE

z, (3.18)

where Ez is the applied electric field,

2. friction between ions and the DNA:

F z,fric
i (r) = �↵!(r)vz, (3.19)

where ↵ is a numerical constant and ! a position-dependent
weight function as defined in Eq. (3.8) but taken from
the surface of the inner cylinder. The ions velocities can
be expressed in terms of the fluxes and concentrations as
vz = jz

i
ci

.
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3. Friction between the fluid and the ions F z,visc

i . As we will
see, this force is completely determined by the stationary
assumption and its form can be directly derived.

Inserting the definitions for the external force F z
i = F z,E

i +

F z,fric
i in Eq. (3.11), yields

jz
i =

"
u + µi

✓
eziE

z
� ↵!

jz
i

ci

◆#
ci, (3.20)

where we have used that @zci = 0. Solving for the current density
jz
i , we arrive at

jz
i (r) =

uz(r) + µieziEz

↵µi!(r) + 1
ci(r). (3.21)

Inserting this expression into Eq. (3.19) yields a new expres-
sion for the force between ions and DNA:

F z,fric
i (r) = �↵!(r)

uz(r) + µieziEz

↵µi!(r) + 1
. (3.22)

Since we are considering a stationary state, the net force on
the particles has to vanish, so that

F z,E
i + F z,fric

i + F z,visc

i = 0. (3.23)

Assuming a common mobility µ = µi for all species allows us
to calculate the force density on the fluid fz(r) = �

P
i ci(r)F

z,visc
i =P

i ci(F
z,E
i + F z,fric

i ):

fz(r) =
�↵!(r)

⇥P
i ci

⇤
uz(r) +

⇥P
i ezici

⇤
Ez

↵µ!(r) + 1
, (3.24)

Using (3.16) to eliminate the concentrations and assuming a
1:1 salt, we arrive at

fz(r) = �2c0

e sinh
⇣

e (⇢)
kBT

⌘
Ez + ↵!(r) cosh

⇣
e (⇢)
kBT

⌘
uz(r)

↵µ!(r) + 1
.

(3.25)
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For the total current density we get

jz(r) = 2ec0

eµ cosh
⇣

e (⇢)
kBT

⌘
Ez

� sinh
⇣

e (⇢)
kBT

⌘
uz(r)

↵µ!(r) + 1
. (3.26)

It can be observed that the presence of the friction term in
(3.25) changes the character of the equation for uz. For ↵ = 0, if
the solution of the Poisson-Boltzmann equation was known,
Stokes’ equation (3.15) could be integrated to yield a closed ex-
pression for jz. With the friction the force density f in Eq. (3.15)
depends on uz, and the equation is similar in mathematical struc-
ture to a linearized Poisson-Boltzmann equation, for which no
solutions in cylinders are known. Therefore, the conductivity of
the system is only known implicitly via a di↵erential equation,
and no closed expression for it can be given. It is hence not pos-
sible to write down an Ohm-type law of the form jz = �Ez with
some conductivity � = �(ci, Ez, . . . ).

The electric current I observed in the simulation is the radi-
ally integrated current density

I =

Z rpore

rDNA

rdrjz. (3.27)

The (ideal) current density of the empty uncharged pore is
simply given by

jz
id

= 2c0eµEz, (3.28)

resulting in the total current

I0 = ⇡r2

pore
jz
id

, (3.29)

and the absolute change in current �I is

�I = I � I0,

from which the relative change can be calculated.
We solve the coupled ODE system of Eq. (3.15) and Eq. (3.17)

with the force density term (3.24) for the Stokes’ equation nu-
merically. We then evaluate Eq. (3.27) to obtain the ionic cur-
rents. The numerical solutions are obtained by finite element
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method (FEM) calculations. To this end, the equation system
and geometry are implemented in a model for the commercial
FEM package Comsol MULTIPHYSICS 5.3a by Comsol AB.
Due to the low-dimensional nature and small size of the prob-
lem domain, the whole system can be regularly resolved with a
su�ciently fine mesh. Also, numerical artifacts such as spuri-
ous flows, which electrokinetic systems are prone to in general
[49], do not occur here because the di↵usion-advection/Poisson-
Boltzmann equation is only solved in directions orthogonal to
the flow velocity.

The geometry of the continuum model described in this ar-
ticle di↵ers from the coarse-grained molecular dynamics model
described in Ref. [52]: Here, we use a cylinder for the DNA, while
in the particle model, the double-helix structure is explicitly rep-
resented. We still use the same functional form as in Eq. (3.19)
for the friction and the same cuto↵ radius rc.

All other parameters are provided by the system under study.
As in the experiment [126], we assume an aqueous potassium
chloride solution at a temperature of T = 300K and the dynamic
viscosity of ⌘ = 0.001 Pa s for water. For the di↵usion coe�-
cients, we use the infinite dilution value of D = 2.0 ⇥ 10�9 m2 s�1

for both ionic species [133]. We assume that the Einstein rela-
tion is valid, and set µ = D

kBT = 4.8286 ⇥ 1011 s kg�1. We use
"r = 80 for water, resulting in a Bjerrum length of �B = 0.7 nm.
We employ a pore diameter of size dpore = 10nm except for the
calculations where the pore radius is varied. The numerical con-
stant ↵ introduced in Eq. (3.19) is chosen such that our model
matches the experiment well at the crossover salt concentration.
After this calibration, we use a fixed value of ↵ = 1.5 kg s�1 for
all parameter variations throughout the paper. It is crucial for
the transferability of the model that a single parameter yields
good results for all salt concentrations. The cuto↵ rc for the
position-dependent friction !(r) of Eq. (3.19) is set to 2.5 nm in
accordance with Ref. [52].

Current density for positively and negatively charged species
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(denoted by su�x + and �):

j+ =
uz + µeEz

↵µ! + 1
c+e, (3.30)

j� = �
uz

� µeEz

↵µ! + 1
c+e, (3.31)

where uz is the fluid velocity, µ the ion’s electrophoretic mobil-
ity, ↵ is a friction constant, ! the distance-dependent frictional
weight function, e the elementary charge and c+/c� are the num-
ber densities of the charged species. The total current density
reads:

jtotal = j+ + j� =
euz (c+ � c�) + µe2Ez (c+ + c�)

↵µ! + 1
(3.32)

Extension to an origami model

In order to resample the geometry of a DNA origami consisting
of a block of multiple interconnected DNA helices we used the
DNA representation of the mean field model as described in the
previous section as a building block. This building block is then
replicated as shown in the sketch in Fig. 3.7.
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dDNA = 2.2 nm

dorigami = 2.8 nm

dpore = 10nm

Figure 3.7: Sketch of the DNA origami model’s geometry.
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3.4 Mean field model of a finite pore-DNA

system

The model description in this section is part of a draft for a pub-
lication that has not been submitted at the time of writing.

The model under study incorporates two electrolyte reser-
voirs with a monovalent electrolyte solution of varying concen-
tration that are connected by a nanopore. The DNA is modeled
as a cylindrical object with rounded ends fixed at the center of
the pore. The DNA ends are modeled as hemispherical caps of
the same diameter as the DNA. We mainly follow the modeling
approach as described of Weik et al. [53] However, while they
neglect any finite size e↵ects of the pore and the DNA molecule,
the model in this work explicitly takes these e↵ects into account.
The sketch in Fig. 3.8 shows the whole simulation domain with
the two electrolyte reservoirs, the connecting nanopore and the
DNA in the center of the pore. The diameter of the pore is 10 nm
while the investigated pore length is 40 nm. The length of the
DNA is varied in the range from 0.4 to 1.6 pore lengths (i. e.
16 nm to 64 nm) in order to also investigate the conductivity for
systems where the DNA is significantly shorter or larger than the
nanopore. The overall system length has been set to 10 times
the pore length.

The mean field model employed in this work is based on
solving the electrokinetic equations (Poisson for electrostatics,
Nernst-Planck for ion transport and Stokes for hydrodynamics
of the solvent) for a charged cylinder representing the dsDNA
in an uncharged cylinder representing the nanopore following
the approach in Ref. [53]. The Nernst-Planck equation is mod-
ified to incorporate the friction between ions and the dsDNA
molecule that has previously been found to be crucial for coars-
ened dsDNA models in order to reproduce experimental and all-
atom simulation data on current modulation in nanopores [47,
52].

The di↵usion-advection equation for the fluxes of the ionic
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Figure 3.8: A sketch of the mean field model of a nanopore with
finite length. The system is axisymmetric and can therefore be
treated in two dimensions. The hemispheric areas at the top and
the bottom correspond to the cis and trans electrolyte reservoirs.

species j± in the system reads:

j± = [�Dr + u + µ±F±] c±, (3.33)

where D± is the di↵usion constant, u is the fluid velocity, µ± =
µ = D

kBT = 4.8286 ⇥ 1011 s kg�1 is the ion mobility, F± contains
any external forces, and c± the ion density. The external forces
are comprised of the electrostatic forces and the frictional forces:

F± = ez±E � ↵!

✓
0, 0,

jz
±

c±

◆|
. (3.34)

Due to the velocity dependent frictional force, this results in an
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algebraic equation for the fluxes along the pore (z component):

jz
±(r, z) =

2

4�D
@

@z
+ uz(r, z) + µ

 
ez±Ez(r, z) �

↵!(r, z)
jz
±(r, z)

c±(r, z)

!3

5 c±(r, z), (3.35)

where e is the elementary charge, z± the valency of the ions,
Ez the electric field strength along the symmetry axis, ↵ =
15 ⇥ 10�12 kg s�1 a numerical constant (controlling the amount
of frictional force) and ! is a position dependent weight function
for the frictional force (adopted from Ref. Weik et al. [53]):

!(r, z) =

8
<

:

⇣
1 �

r
rcut

⌘2

if r < rcut and |z| < lDNA
2

,

0 else,
(3.36)

where rcut = 1.4 nm is the cuto↵ distance for the friction. We
assume temperature of 300 K throughout all simulations.

The advective motion of ions is taken into account by means
of Stokes’ equations with incompressibility condition (cf. Eq. (3.13)).
A no-slip boundary condition u = 0 is applied on both the pore
and DNA surface. Hydrodynamic momentum exchange over the
reservoir boundaries (dashed lines in Fig. 3.8) is prevented by
applying a vanishing normal stress condition for the fluid flow.

Electrostatic interactions between ions are considered by solv-
ing the Poisson equation (cf. Eq. (3.12)). On the DNA bound-
ary, we set the surface charge density � = �0.136 C/m2. For
the pore surface a zero-charge condition n · r = 0 is applied,
where n denotes the unit vector normal to the boundary. For the
lower and upper boundaries (drawn with blue and red dashed
lines in Fig. 3.8) we set the electrostatic potentials  � = 0
and  + = lporeEz

ext
with lpore being the length of the pore

and Ez
ext

= 1 ⇥ 106 V m�1 being the approximate value for the
electric field in comparable experimental setups [31]. By choos-
ing the electrostatic potential di↵erence depending on the pore
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length and thereby keeping the electric field in the pore approx-
imately constant we are able to directly compare results from
di↵erent pores. The friction between ions and dsDNA results in
a coupling between electrostatic and advective forces on the ions.
The model’s inherent axisymmetry reduces the problem domain
to two dimensions. We solved the electrokinetic equations with
the finite-element method using the commercial software package
COMSOL Multiphysics® version 5.6.

E↵ective Pore Length

In experimental studies of Wang et al. [31] a similar setup to the
model presented in this manuscript has been utilized to investi-
gate the current modulation of complex DNA structures. One
of the more significant di↵erences, however, is the pore geome-
try. The glass capillaries used in the experimental study have a
diameter of about 10 nm at the tip but have a conical geometry
with an opening angle of about 6°. It is known from experimen-
tal [54] as well as simulation studies [53] that a wider nanopore
causes a larger magnitude of electroosmotic flow which leads to
a larger contribution of the advective current to the overall ionic
current. However, all-atom simulations in an infinite cylindrical
pore setup [47] revealed that this contribution is negligible for
infinite DNA nanopore systems. Nevertheless, even if this geo-
metric e↵ect might not be significant for the conductivity of the
system, the absolute length of the nanopore might influence the
importance of the finite size e↵ects. To get an estimate for up
to which length the conicity of the experimental pore a↵ects the
conductivity, we calculated the length-dependent pore resistance.
For an infinitesimal pore segment of length dz the resistance of
a conical pore with the cross-section area A(z) can be described
as

dR = ⇢
dz

A(z)
, (3.37)

where ⇢ is the bulk electrolyte resistance and A(z) = ⇡r(z)2 =
⇡(r1 + z tan↵)2 is the cross-section area of the pore at the po-
sition z measured from the tip of the pore. Here, ↵ denotes the
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opening angle of the conical pore geometry. Integrating Eq. 3.37
yields:

R(z) = ⇢

Z z

0

dz̃
1

A(z̃)
=
⇢

⇡

z

(r1(z + r1
tan↵ )) tan↵

(3.38)

In Fig. 3.9, Eq. 3.38 is shown for a pore length up to 1 µm. The
value of the bulk resistance ⇢ is arbitrarily set to unity. In the
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Figure 3.9: Length-dependent pore resistance for a conical pore
and the respective resistance in the infinite pore limit (a). The
di↵erence between the resistance of the conical pore with a given
length and the infinite pore limit (b). The crossing of the 5 %
line and the resistance curve is at about 900 nm.

limit of an infinitely long conical pore Eq. (3.38) converges to
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a resistance of R1 = ⇢
⇡ tan(↵)r1

. However, as shown in Fig. 3.9,

the largest contribution to the resistance (95% at about 900 nm)
suggests an e↵ective length of the pore on the order of several
hundred nanometers. Although this model only takes into ac-
count the resistance based on the geometry of the pore, the result
is in line with simulation studies in Ref. [30] in which the decay
of the electric field in the pore was used to estimate the sensing
length.

The DNA structures studied by Wang et al. in Ref. [31]
are between approximately 150 nm and 600 nm and are therefore
shorter than the estimated e↵ective pore length. This clearly
sets those DNA nanopore systems apart from many other ex-
perimentally investigated setups in which the DNA is orders of
magnitude longer than the pore.

Electric Dipole Field Model

This model assumes that the z-component of the total dipole
moment DNA nanopore system is created by a single pair of
charges at the two ends of the DNA on the symmetry axis. This
assumption is based on the observation that the charge density
is asymmetric along the DNA as shown in Fig. 3.10. Thus, the
electrostatic potential of these two charges (+q at z = �0.5 lDNA

and �q at z = 0.5 lDNA) reads:

�(r, z) =
|q|

4⇡✏0✏r

2

64

 
r2 +

✓
z +

lDNA

2

◆2
!� 1

2

�

 
r2 +

✓
z �

lDNA

2

◆2
!� 1

2

3

75 .

(3.39)

From the electrostatic potential, the z-component of the elec-
tric field at z = 0 can be calculated by taking the negative gra-
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Figure 3.10: The charge density along the z-axis at r = rDNA

for three di↵erent DNA lengths. The ion cloud at the vicinity
of the DNA is asymmetric due to the externally applied electric
field.

dient of the potential:

Edipole

z (r, z = 0) =
�
�r�(r, z)

�
z,z=0

=
2 |q| lDNA

⇡✏0✏r
�
l2
DNA

+ 4r2
� 3

2

.
(3.40)

We now insert the assumption that the system’s total dipole
moment is only caused by the two charges, i. e. |q| = |Pz|

lDNA

Edipole

z (r, z = 0) =
2 |Pz|

⇡✏0✏r
�
l2
DNA

+ 4r2
� 3

2

. (3.41)

FEM Mesh

The rotational symmetry of the investigated three-dimensional
system setup allows for its treatment using a quasi-two-dimensional
axisymmetric simulation domain. The FEM mesh for this do-
main was adapted (cf. Fig. 3.11) in order to properly resolve the
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Figure 3.11: Example of the customized mesh used for the FEM
simulations. The area around the electrically charged DNA sur-
face is resolved with quadrilateral elements to properly capture
the behavior in the Debye layer. The rest of the simulation do-
main consists of triangular mesh elements.

Debye layer near the negatively charged DNA. Using quadrilat-
eral elements close to the DNA surface, the geometry of the mesh
more closely follows the expected symmetry of the solution for
the Poisson equation for electrostatics which defines the smallest
length scale in the investigated DNA nanopore system.





Chapter 4

Results

This chapter contains the results of investigations for various
systems that incorporate the three di↵erent DNA models on the
all-atom (as described in Sec. 3.1), coarse-grained (as described
in Sec. 3.2) and mean-field (as described in Sec. 3.3) level of de-
tail. First, the validation and basic investigations for the coarse-
grained model are shown in Sec. 4.1 since this model was the
starting point for all the investigations. In Sec. 4.2, the mean-
field model is discussed in great detail. Afterwards, in Sec. 4.3 a
comparison of all three models in an origami configuration is dis-
cussed and compared to experiments. Finally, in Sec. 4.4 a finite
pore system is investigated by means of a mean-field description.

4.1 Coarse-grained model

The coarse-grained model as described in Section 3.2 had to be
validated against reference data since the implementation of such
a model in combination with an updated version of the simula-
tion package ESPResSo was non-trivial in several ways. First,
there are many interactions with respective parameters that have
to be set between the beads of the DNA model (cf. details in 3.2)
which had not been documented precisely for the original imple-
mentation that has been described in Refs. [52, 76]. Furthermore,
between publication of the aforementioned and the reimplemen-

65
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tation there has been a change of the interface scripting language
in ESPResSo and bug fixes for parts of the frictional interactions
for which the impact on the simulation results was not clear.

In order to validate the interactions between the ions and the
DNA model, we checked for the radial density profiles of the ions
around the DNA in an infinite pore system with a pore diame-
ter of 10 nm and compared the data to reference data of all-atom
simulations[47]. This comparison is shown in Fig. 4.1 for a single
salt concentration. Clearly the counter-ion structure resembles
the all-atom data very well. However, due to the coarser beads
of the DNA model the layering structure is not reproduced per-
fectly. The radial structure of the repressed co-ions around the
DNA matches very well with the reference data.
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Figure 4.1: Comparison of the ion densities retrieved from all-
atom and coarse-grained simulations of a single dsDNA molecule.

In order to compare not only static and structural data with
the all-atom reference the salt dependent current modulation in
an infinite pore system has been looked at. The current modu-
lation is defined by Imodulation = (IDNA � Iempty)/Iempty, where
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IDNA is the current through the pore if a DNA molecule is present
and Iempty is the current through an empty pore. The com-
parison in Fig. 4.2 shows a very good agreement between the
data of the reimplemented coarse-grained DNA model and the
all-atom reference data of Ref. Kesselheim et al. [47] This is a
very important reference benchmark for the ion-DNA interac-
tion including the distance dependent frictional interaction as
described in Sec. 3.2. The fact that the re-implementation in
combination with the updated version of ESPResSo (git hash:
846cc74bef84d28ba46563d0e9e845a9dc5afc80) is able to reproduce the cur-
rent modulation renders this model a good starting point for
further investigations, e. g. as a building block for DNA origami
molecules as presented in Sec. 3.2.
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Figure 4.2: Comparison of the ionic current modulation retrieved
from all-atom and coarse-grained simulations of a single dsDNA
molecule.

In order to study a finite DNA nanopore system with the
coarse-grained model the linear response regime for the elec-
trophoretic mobility of the DNA with respect to the applied
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electric field had to be estimated. This is the regime in which
the electrophoretic mobility of the DNA chain does not depend
on the externally applied electric field, i. e. the regime in which
the chain is not significantly deformed by the electric field. To
this end, the coarse-grained DNA chain with 20 base pairs has
been simulated in a cubic box with a side length of 20 nm. In
order to keep the system electroneutral the respective amount
of counter-ions has been added. Two di↵erent approaches to
measure the electrophoretic mobility have been examined: first,
using a Green-Kubo relation exploring cross correlations be-
tween the center of mass of the DNA and all charged particles in
the system, and second, applying an electric field and measuring
the velocity of the DNA’s center of mass. The Green-Kubo

relation as derived in Ref. [134] and applied in Refs. [135, 72]
reads:

µ =
1

3kBT

X

i

qi

Z 1

0

hvi(0)vCOM(⌧)i d⌧, (4.1)

with qi being the charge of particle i in the system, vi the particle
velocity and vCOM the velocity of the DNA’s center of mass.

Fig. 4.3 shows the result for both approaches. In the Figure
at the top the field strength dependent center of mass velocity
is shown (all in reduced units, absolute numbers are not rel-
evant) and in the Figure below the respective mobilities. For
electric field strengths below ⇡ 0.1 a constant mobility is mea-
sured whereas for higher external fields the mobility increases.
This is in line with literature values as presented in Ref. [136].
Deviations between the measured electrophoretic mobilities via
the Green-Kubo approach without applied field and the ap-
proach for varying external field can be attributed to poor statis-
tics of the cross-correlation that gets numerically integrated (cf.
Eq. (4.1)). A systematic error estimation for the Green-Kubo

estimation for the mobility has not been performed in the course
of this study.

Due to the fact that the electrostatic interactions between
charged particles are long-ranged and cannot be cut o↵ at some
finite distance there exist algorithms to treat charged particles
in periodic boundary conditions, namely the Particle-Particle
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Figure 4.3: Comparison of simulation results for the elec-
trophoretic mobility for di↵erent magnitudes of the external field.
The data shows that an external field up to about 0.1 in reduced
units leads to mobilities that are comparable to linear-response
theory. For higher field strengths a non-linear behavior can be
observed.

Particle-Mesh algorithm [112]. This algorithm is based on the
so-called Fast Fourier Transform(FFT) algorithm and therefore
scales as O(N log N), with N being the number of charged par-
ticles. However, this algorithm is still the most time-consuming
part of a molecular dynamics simulation of charged particles.
Therefore, in order to keep the number of charged particles min-
imal a system with only counter-ions has been investigated. To
this end, the simulation system contained the coarse-grained
DNA with 20 base pairs, the 40 counter-ions and a membrane
with a nanometer-sized cylindrical or conical pore with a length
of 60 base pairs. The investigation of di↵erences in the ionic
current due to the shape of the nanopore, i. e. the comparison
between conical and cylindrical geometries, is only possible if
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Figure 4.4: Snapshots of a visualization of a system of a finite
cylindrical (left) and conical (right) pore for the coarse-grained
model of a 20 base pair DNA.

the system contains a finite pore and the two reservoirs. The
opening angle of 6° for the conical pore used in the simulation is
motivated by the geometry of experimentally investigated glass
nanocapillaries in the context of DNA nanopore translocation
[31]. The diameter of the conical pore’s smaller orifice matches
the one of the cylindrical nanopore. Fig. 4.5 shows the ionic cur-
rent through the pore as a function of the center of mass of the
DNA. The conical pore system shows a slightly higher conduc-
tivity which may be attributed to a reduced interaction between
the counter-ions and the pore wall. Simulations of systems with
excess salt did not yield results with su�cient statistics due to
the fact that the electric field is nearly zero outside the pore.
Therefore, the DNA has to reach the pore mostly due to di↵u-
sion which renders these simulations very expensive in terms of
computational e↵ort. In order to find a computationally more
e�cient DNA model a mean-field approach has been investigated
in the next section.
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Figure 4.5: The ionic current as a function of the center of mass
for a coarse-grained model of a freely translocating DNA with
20 base pairs. No excess salt has been added to the system.

4.2 A mean field investigation of a DNA

nanopore system

The results presented in the this section are part of the following
publication (F. Weik and K. Szuttor contributed equally):

Florian Weik, Kai Szuttor, Jonas Landsgesell, and Chris-
tian Holm. Modeling the current modulation of dsDNA in
nanopores – from mean-field to atomistic and back. Eu-
ropean Physical Journal Special Topics, 227(14):1639–1655,
2019. doi: 10.1140/epjst/e2019-800189-3

The geometry of the continuum model described in this ar-
ticle di↵ers from the coarse-grained molecular dynamics model
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described in Ref. [52]: Here, we use a cylinder for the DNA, while
in the particle model, the double-helix structure is explicitly rep-
resented. We still use the same functional form as in Eq. (3.19)
for the friction and the same cuto↵ radius ⇢c.

All other parameters are provided by the system under study.
As in the experiment [126], we assume an aqueous potassium
chloride solution at a temperature of T = 300K and the dynamic
viscosity of ⌘ = 0.001 Pa s for water. For the di↵usion coe�-
cients, we use the infinite dilution value of D = 2.0 ⇥ 10�9 m2 s�1

for both ionic species [133]. The Einstein relation is assumed to
be valid, thus the mobility is set to µ = D

kBT = 4.8286 ⇥ 1011 s kg�1.
The relative permittivity of the medium is set to "r = 80 for
water, resulting in a Bjerrum length of �B = 0.7 nm. The
investigated pore diameter is dpore = 10nm. Deviating pore di-
ameters are mentioned explicitly in the section that contains the
study about the influence of the pore size. The numerical con-
stant ↵ introduced in Eq. (3.19) is chosen such that our model
matches the experiment well at the crossover salt concentration.
After this calibration, we used a fixed value of ↵ = 1.5 kg s�1 for
all parameter variations throughout the paper. It is crucial for
the transferability of the model that a single parameter yields
good results for all salt concentrations. The cuto↵ ⇢c for the
position-dependent friction !(⇢) of Eq. (3.19) is set to 2.5 nm in
accordance with Ref. [52].

As defined in Ref. [47], the current modulation is �I
I0

⌘

(Iwith DNA � I0)/I0, where I0 is the current of the empty pore,
given by Eq. (3.29). When the dsDNA is absent, the system just
consists of a bulk volume of an ideal electrolyte solution, and the
current is easily calculated analytically.

To verify that the conductivity modulation from the exper-
iment and the molecular dynamics simulations are reproduced,
we vary the bulk concentration c0 of the species from zero to
1 mol l�1, similar to the range covered in previous simulations
and experiments. The current change caused by the presence of
DNA in the pore was calculated according to Eq. (3.27) for each
salt concentration. The resulting current modulations are shown
in Fig. 4.13. The current modulation of the coarse-grained model
is reproduced very closely. However, removing the friction term
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results in significant deviations. This strongly suggests that the
friction coupling term introduced in the previous section can be
used to model the electrokinetic influence of the DNA.
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Figure 4.6: The current modulation for a single DNA in pores of
varying diameter dpore 2 [10 nm, 50 nm]. The inset enlarges the
region of the crossover concentration c⇤

salt
which is described in

the text.

In the following the dependency of the current modulation on
the properties of the pore is investigated. To this end, we repeat
the calculation of the current modulation for pores with di↵erent
diameters. The results are shown in Fig. 4.6. The trends we
observe for the pore size dependence of the current modulation
are similar to experimental results reported earlier by van Dorp
et al. [54]: In the investigated range of salt concentrations csalt

between 20 and 50mmol l�1, the change in relative conductivity
is larger for small pores than for larger pores.

Fig. 4.7 depicts the cross-over salt concentration c⇤
salt

as a
function of the pore size 1. The obtained data shows that c⇤

salt

1The crossover concentrations for di↵erent salt concentrations are ob-
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Figure 4.7: The crossover salt concentration dependence as func-
tion of the pore diameter.

has a weak dependence on the pore size. This may be of interest
to estimate the uncertainties for experimental results, now being
able to predict the influence of pore size variations on the current
modulation.

In general, the crossover concentration is influenced by the
relative importance of the friction and by the solvent velocity
uz. The relative importance of the friction can be defined as the
ratio of the volume in which friction influences the ions to the
total volume. Clearly, this ratio decreases with increasing pore
radius (⇢c/⇢pore ! 0 for large ⇢pore). As shown in Fig. 4.8, uz

is increased for larger pore sizes, which results in a larger advec-
tive velocity of the ions and in an increased frictional loss. The
resulting influence of the pore size on the current modulation is
therefore hard to predict. However, our results (cf. Fig. 4.6)
show that a larger pore leads to an increased conductivity, yet

tained from the current modulation curves in Fig. 4.9 via fitting a line to
the data points �I(csalt) around the zero crossing.
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this dependency is weak taking into account pore size uncertain-
ties in the experiment [126].
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Figure 4.8: The radial flow velocity profile u(⇢) for a varying
pore diameter at a salt concentration of csalt = 380mmol l�1.

Consistent with the previous explanation of a reduced influ-
ence of the DNA friction with increasing pore size, it is observed
that the change in cross-over salt concentrations is stronger for
small pore diameters as compared to larger pore diameters (cf.
Fig. 4.7).

In the experiment, a multitude of di↵erent pore types are
used, which are produced with di↵erent techniques. Moreover,
some pores carry a surface charge. This was neglected in our
previous molecular dynamics investigations. Specifically, glass
have a negative surface charge [137]. Hence, we investigated the
influence of pore surface charge �pore on the ionic current. In
our continuum model, the surface charge can be easily added by
changing the boundary condition for the electrostatic potential
in Eq.(3.12) from @⇢ (⇢pore) = 0 to @⇢ (⇢pore) = ��pore/("0"r).
In our calculation, we increased �pore in steps from zero (previ-
ous calculations) to a value of �0.15 Cm�2 , which are typical
surface charge densities for glass nanocapillaries [137]. In this
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Figure 4.9: The current modulation for a single DNA in pores
of varying charge densities on the pore.

case the current without DNA can no longer be determined by
Eq. (3.29), but is calculated numerically by removing the inner
cylinder from the setup. Fig. 4.9 shows the conductivity behavior
with various surface charges on the outer cylinder. We can see
that there is little influence of such a charge except for very low
salt concentrations. In the salt-free case, the current through the
pore is zero. Therefore, the current modulation curve diverges
for an uncharged pore at zero salt. For low salt concentrations
and low pore charges, the charge modulation curve seems to di-
verge, however it has a finite value. This can be explained by the
fact that the empty pore now is conductive even with no added
salt because of the counter ions compensating the surface charge.
Therefore, the ratio plotted remains finite at concentration zero.

Further increasing the surface charge density of the pore re-
veals a significant change of the current modulation at low salt
concentrations (cf. Fig. 4.9). The additional counterions of the
charged pore reduce the increase of the current that the counte-
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rions of the DNA provide compared to the empty but charged
pore. Therefore, the current modulation is reduced compared to
the uncharged pore.

dpore

dShift

Figure 4.10: Sketch of the shifted DNA.

So far, the DNA was assumed to be in the center of the pore.
This, of course, will reflect the experimental situation at most on
average. Therefore, we also calculated the influence of shifting
the DNA from the center of the pore via appropriately extend-
ing the one-dimensional model: The system no longer has radial
symmetry, thus the radial model has to be extended by explic-
itly taking into account the � dependence of the fields. To this
end, we varied dshift defined as in Fig. 4.10 from zero to 3.8 nm
in a pore with dpore = 10nm. Again, we looked at the current
modulation, which is shown in Fig. 4.11. We observe a mod-
erate reduction of the current with increasing dshift due to the
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reduced electroosmotic flow between DNA and pore boundary.
In Fig. 4.12, the change of the cross-over salt concentration c⇤

salt

as a function of the shift is shown. For small values of dshift, the
change is negligible. However, when the distance between the
DNA and the pore boundary is comparable to the Debye length,
the reduction in the current becomes more significant.
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Figure 4.11: The current modulation for a single DNA in a pore
with pore radius of 5 nm at various shifts of the DNA from the
center of the pore. The shift dshift is denoted in the legend. The
DNA shift ranges from 0 nm to 3.8 nm.

In the following, we briefly recapitulate the physical mecha-
nisms that influence the relative conductivity. For low salt con-
centrations, the current modulation is positive because the DNA
adds many counterions contributing to the ion current through
the pore. At higher salt concentrations, the current modulation
is negative because first, the DNA blocks some volume which is
not available for ion conductivity and second, the DNA friction
reduces the flow of ions. At the cross-over salt concentration,
the DNA-induced current blocking and the enhancement of the
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Figure 4.12: The crossover salt concentration for various shifts
of the DNA from the center of the pore. The crossover concen-
trations are derived from the data shown in figure 4.11.

current cancel each other. Therefore, the current modulation
vanishes at the crossover concentration c⇤

salt
.

Conclusion and Further Work

We have demonstrated how simulations performed on di↵erent
scales are able to elucidate the influence of a dsDNA on ionic
currents within a nanopore. The all-atom results of Kesselheim
et al. have shown that a distance-dependent friction is the key
ingredient for understanding the experimentally observed behav-
ior. In a previous study, we were able to use this information to
construct a viable coarse-grained molecular dynamics model that
reproduces a number of experimentally measured quantities like
the electrophoretic mobility and the electrostatic influence on the
persistence length. Building on this success, we use the frictional
information to parametrize a continuum model for electrokinetic
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Figure 4.13: The current modulation due to the presence of a
single dsDNA strand in a nanopore with diameter dpore = 10nm.
The dashed lines show the results of our model with and without
additional friction between ions and DNA. Experimental data is
taken from Ref. [126], all-atom simulation results from Ref. [47],
and coarse-grained simulation results from Ref. [52].

applications, reproducing transport properties from the more de-
tailed models. We applied the continuum model to investigate
the pore-size and pore-charge dependence of translocating DNA
molecules on the current modulation in glass nanocapillaries.
Our continuum model allows us to easily change model parame-
ters and quickly access the e↵ects of such changes.

We showed that depending on the salt concentration, there is
only weak to moderate influence of the pore size on the current
modulation. We further demonstrated that the current modula-
tion is robust against changes in the surface charge of the pore.
This is important because for some experimentally relevant pore
types like glass nanocapillaries, the surface charge is significant,
but also hard to control. Furthermore, the position of the DNA,
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which is fluctuating in the pore during the experiments, has been
found to have little influence on the current modulation, except
for those situations where the DNA strand is very close to the
pore wall.

A possibility to extend this model even further would be to
integrate the friction term in a continuum models for flexible
DNA like the finite element model by Allison et al. [138] How-
ever, so far this model could not adequately predict the mobil-
ity of DNA. Since our extended coarse-grained DNA model gave
good results for the free-draining mobility, such an incorporation
of the friction term could potentially improve also other mean-
field models. Another obvious path for further investigation is
to combine the friction model presented here with more elab-
orate models for glass nanocapillaries that some authors have
used before [50, 51] to investigate, e. g., DNA trapping in capil-
laries. In this context, it would also be interesting to study more
complicated DNA constructs such as DNA origami [131] in more
depth.

4.3 Mean-field model for dsDNA origami

The results presented in the following section are part of the fol-
lowing publication:

Kai Szuttor, Florian Weik, Jean-Noël Grad, and Christian
Holm. Modeling the current modulation of bundled DNA
structures in nanopores. The Journal of Chemical Physics,
154(5):054901, 2021. doi: 10.1063/5.0038530

Model agreement across scales

In the following, we will compare the salt-dependent current
modulation for the four aforementioned models (all-atom origami,
all-atom quad, coarse-grained and mean-field model). To get
a dimensionless number that we can directly compare across
the models, we looked at the relative change in ionic current
Imod =

�
IDNA � Iempty

�
/Iempty, where IDNA is the current of
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the pore with the DNA origami molecule inside and Iempty the
current of the empty pore with salt only. As shown in Fig. 4.14,
the agreement for the current modulation is very good among the
models, taking into account the statistical errors for each model.
Especially with regard to the crossover salt concentration c̃ where
the relative change in current vanishes (Imod(c̃) = 0), the results
of the four models agree within a small interval of the bulk salt
concentration. The fact that a quantitative agreement for these
models has already been observed for a single dsDNA molecule
in Refs. [47, 76, 53] and the agreement we found in this work
for a larger dsDNA bundle structure, suggests that our models
would also show consistent results for larger bundle structures,
e. g. for a system of 4-by-4 helices as investigated by Wang et al.
in Ref. [31] (cf. Fig. 4.18).

In order to investigate the location dependent contribution to
the current modulation, the relative current density modulation
across the pore jmod =

�
jDNA � jempty

�
/jempty (naming conven-

tion as for Imod) is shown in Fig. 4.15. In case of the all-atom
and the coarse-grained model, the current density for the empty
pore has been radially averaged to reduce the noise. For the
all-atom quad model, we additionally averaged the current den-
sity data for the filled pore by rotating the data by N⇡/2 with
N 2 {1, 2, 3} around the pore center, leveraging the D4 symme-
try group of the model’s geometry. As expected, we observe a
negative current density modulation in the area where the DNA
helices are located due to blockage and friction with the ions.
In the case of the all-atom origami model, the footprints of the
inter-helix connections are visible and neutralize the modulation
within a small area. For this model jmod is larger in the pore cen-
ter than between two adjacent helices whereas in the case of the
all-atom quad model it is the other way around. The two coarser
models (coarse-grained and mean-field) without inter-helix con-
nections both show a very similar current density modulation
profile compared to the all-atom quad model.

Since the current modulations for all investigated systems
show a very good agreement (cf. Fig. 4.14), the di↵erences in
the current density modulation profiles (cf. Fig. 4.15) have to
have the following characteristics: local di↵erences between the
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models are canceled out by complementary di↵erences in other
regions of the pore and these compensating e↵ects either do not
depend on the salt concentration or depend on it in a way that
preserves the ionic current’s dependency on the salt concentra-
tion.

To investigate the current density in greater detail, we ad-
ditionally analyzed the components that make up the current
density, namely the charge density profile and the ion velocity
profiles. The charge density profiles shown in Fig. 4.16 reveal
that the all-atom origami system has a slightly higher concentra-
tion of charges between adjacent helices but overall the profiles
for all four models look very similar. Thus, the charge density
profile does not explain the di↵erences in the relative current
density modulation we observed for the all-atom origami model
(cf. Fig. 4.15).

The velocity profiles for the molecular dynamics systems (as
described in Sec. 3.1, 3.1, 3.2) can be directly computed from
the trajectories of the ions. Ion velocities 2 for the mean-field
model have been obtained via the following expression:

vi(x, y)z =
ji(x, y)z

ci(x, y)
=

u(x, y)z + µieziEz

↵µ!(x, y) + 1
. (4.2)

A detailed explanation of the notation can be found in Sec. 3.3.
All velocity profiles shown in Fig. 4.17 are normalized with

the respective average ion velocity in the empty pore, thus en-
abling the direct comparison of the data for the di↵erent models.
While the velocity profiles for the anions do not show a signif-
icant deviation among the models, more prominent di↵erences
are visible between the cation (counter-ion) velocity profiles of
the all-atom origami and all-atom quad model. Here, the cation
velocity in the origami model is larger at the pore center com-
pared to the region between adjacent helices. On the other hand,
the opposite relation is observed for the quad model. These dif-
ferences in the velocity profiles together with the charge density
data shown in Fig. 4.16 thus explain the relative current modu-
lation di↵erences between those two models.

2The impression of di↵erent pore diameters is an interpolation artifact
due to di↵erent bin sizes.
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Figure 4.14: Relative change in ionic current through the
nanopore for all four investigated models for a 2-by-2 dsDNA
bundle. The results of all models agree within errors over the
whole range of investigated salt concentrations.
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Figure 4.15: Relative current density modulation for the all-atom
(left), the coarse-grained (mid) and the mean-field model (right).
The non-vanishing modulation at the pore walls for the all-atom
and coarse-grained models can be attributed to large current
density fluctuations and poor statistics. The salt concentration
for all models was approx. 0.18 mol l�1.
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Figure 4.16: Charge density profiles for the all-atom origami, the
all-atom quad, the coarse-grained and the mean-field model at
approx. 0.18 mol l�1.
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Figure 4.17: Normalized ion velocity profiles for the anions (top
row) and the cations (bottom row) at a salt concentration of
approx. 0.18 mol l�1. The velocities are normalized with the
respective empty pore ion velocities in order to get directly com-
parable dimensionless values.
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Comparison to experimental data

The group of Ulrich Keyser in Cambridge performed experiments
in a similar setting [31]. They conducted translocation experi-
ments using conical glass nanocapillary pores immersed in so-
lutions of KCl. These nanopores had a mean pore diameter of
14.2 nm. For comparison, we used 10 nm diameter pores in the
simulations. However, as shown in a previous publication [53] the
pore size does not significantly influence the current modulation.
The DNA origami molecules of Ref. [31] have been designed and
assembled of 4 or 16 parallel dsDNA double-helices connected by
periodically repeating crossover staple strands. Any possible oc-
currence of electroosmotic flow due to the charged glass walls has
been suppressed by adding a tuned amount of polyethylene gly-
col. Wang et al. reported a much smaller crossover salt concen-
tration c̃ (128 mmol l�1 for the 2-by-2 origami and 310mmol l�1

for dsDNA ) compared to similar experimental setups where
dsDNA translocation has been investigated [137]. Furthermore,
they found a non-monotonic behavior of c̃ with respect to the size
of the analyte: c̃dsDNA > c̃2-by-2 < c̃4-by-4, i. e. the crossover salt
concentration for 4-by-4 origami molecules is reportedly higher
(183 mmol l�1) than for the smaller 2-by-2 origami. From all-
atom simulations of an infinite pore system [47] with a dsDNA
molecule it is known that the ionic current is determined by two
competing e↵ects: (i) reduction in current due to friction be-
tween ions and DNA helices, and (ii) enhanced current due to
additional mobile (counter-) ions. The relative importance of
these e↵ects for the overall current modulation depends on the
bulk salt concentration of the electrolyte and is non-trivial.

Since we now can safely assume that the frictional e↵ects add
up linearly, we also investigated a 4-by-4 origami with our mean-
field model. An overview of the salt dependent current modula-
tion for di↵erent experimental systems and simulation models is
shown in Fig. 4.18. The data labeled as “mean-field” in the plot
legend refers to the respective model as described in Sec. 3.3 with
varying numbers of charged cylinders representing the di↵erent
numbers of DNA helices in the model. The current modulation of
the three mean-field systems shows a slight monotonic trend to-
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Figure 4.18: Comparison of the current modulation for di↵erent
setups. Experimental data taken from Refs. [126, 31].

wards higher crossover salt concentrations for larger DNA struc-
tures (cf. inset of Fig. 4.18) whereas the experimental results
show a large drop of c̃ to smaller salt concentrations from a
dsDNA molecule to the 2-by-2 origami. Furthermore, the 4-by-4
origami shows an increased value for c̃ compared to the 2-by-2
in the experiments of Wang et al. [31]. Thus, all of our simula-
tion results show a significant deviation for all origami systems
despite being accurate for the case of a single DNA molecule as
has been shown in Refs. [47, 52, 76, 84].

Comparing the experimental setup to our simulation models,
we presume deviations to result from one or combinations of the
following simplifications in our models: the pore entrance and
the finite molecule lengths are neglected, an alignment of the
molecule’s symmetry axis with the pore axis is assumed, and the
lateral position of the DNA structure’s symmetry axis is fixed to
the pore center.

Regarding the finite pore and analyte e↵ects, a possible de-
viation might be expected since the 2-by-2 origami molecule and
the 4-by-4 origami molecule are folded from the same sca↵old
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strand and therefore have a di↵erent aspect ratios which may
be related to the non-monotonic e↵ect of the molecule’s appar-
ent blocking area on the crossover salt concentration. Moreover,
Ref. [31] speculates about the possibility of a di↵usion limited
current through the origami structure.

Another possibility is that tilted conformations of the origami
molecules might occur that may lead to a higher e↵ective friction
between ions and origami and the pore. As the simulations show
(cf. Fig. 4.15), the highest current density is in the counter ion
layer around the helices. If these layers come closer to the pore
walls, this might also lead to a reduction in pore conductivity.
However, due to the like-charge repulsion of the glass capillary
and the DNA molecule, we expect this e↵ect to be minor.

The dependency of the pore conductivity on the position of
a single dsDNA molecule has already been investigated for the
mean-field model in Ref. [53]. No significant influence of the
molecules position on the pore conductivity had been found un-
less the gap between the DNA molecule and the pore wall is
smaller than the Debye length. Since the Debye length is ⇡

1

10

pore diameter at the experimentally reported crossover salt con-
centration, we do not expect this e↵ect to be significant. Also,
our current density profiles show that a non-negligible portion
of the current stems from ions inside the DNA structure which
is not directly influenced by the pore walls.

Conclusion

We presented a thorough investigation of four simulation models
for the current modulation of bundled DNA nanostructures. The
coarse-grained and mean-field models were parametrized only for
a single dsDNA molecule. Although the level of detail is rang-
ing from the all-atom scale to the mean field scale, we observe a
very good agreement among the models with respect to the salt
dependent current modulation in a nanopore. This means that
the frictional e↵ects are additive for the nanostructures which
opens up the door to build arbitrarily large DNA bundles from
dsDNA . Spatially resolving the current density across the pore
revealed slight di↵erent ion mobilities at the center of the pore.
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While the ion mobilities for the coarse-grained model and the
mean-field model are very similar, the all-atom origami model
shows a higher ion mobility at the center of the DNA nanostruc-
ture. The di↵erence in the current density in the pore center,
however, is compensated by slight di↵erences between adjoint
helices in the structure. In summary, our study shows that the
current modulation for an infinite pore system is robust against
changes to molecular details.

Furthermore, we compared our results to recent experiments
by Wang et al. [31] This comparison revealed a significant mis-
match of the crossover salt concentrations between our models
and experimental results (cf. Fig. 4.18). Compared to a single
dsDNA molecule, the experimental results show a much lower
ionic current if the bundled DNA structure is in the pore [31].
Wang et al. suggested this to be a non-linear e↵ect of the over-
lapping ion-DNA frictional interaction near the bundled DNA
structures. However, we do not observe such a drop in the cur-
rent density within the structures but a significant increase (com-
pared to the bulk) either between adjoint helices (all-atom quad,
coarse-grained and mean-field model) or at the pore center (all-
atom DNA origami). The two other possible suggestions for the
current reduction in Ref. [31], namely the idea of a di↵usion lim-
itation and end-e↵ects in the pore, cannot be investigated with
the models presented here.

A possible way of further investigations could be a model with
finite pore and analyte. Such a model is presented in Sec. 3.4
and the corresponding results in Sec. 4.4.

4.4 Mean field model of a finite pore-DNA

system

The results presented in the following section are part of a draft
for a publication that has not been submitted at the time of
writing.

The central physical quantity of interest is the ionic current
through the DNA nanopore system. In analogy to previous ex-
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perimental and theoretical studies [126, 31, 53, 82], we define the
following pore length independent current modulation:

Imod :=
Ifilled � Iempty

Iempty

, (4.3)

where Ifilled is the ionic current through the pore if a test molecule
is present in the pore and Iempty is the empty pore current. In
Fig. 4.19, the ionic current modulation is shown as a function
of the DNA length for di↵erent electrolyte bulk concentrations.
There is a significant drop in the modulation for shorter DNA
molecules if the molecule length falls below the pore length.
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Figure 4.19: The ionic current modulation as a function of the
DNA molecule’s length for di↵erent salt concentrations. The
length of the nanopore is 40 nm. The dashed lines show the
current modulation for an infinite pore (taken from results for
the model as presented in Ref. [53]).

Comparing the current modulation to data from the infinite
pore model of Ref. [53] (cf. Fig. 4.20), the curves for the finite
pore seem to converge towards the infinite pore reference for
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increasing ratios of lDNA/lpore. The di↵erences in the modulation
are larger for shorter molecules and smaller salt concentrations.
Consistent with results from all-atom simulations of an infinite
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Figure 4.20: The ionic current modulation as a function of salt
concentration di↵erent DNA molecule lengths. The data is also
compared to results from two infinite pore models on the mean-
field level [53] and the atomistic level of detail [47].

pore system as presented in Ref. [47], the ionic current through
the pore is dominated by the direct contribution caused by the
applied electric field (cf. Eq. (4.4)). As can be seen in Fig. 4.21a,
the advective current fraction due to electroosmotic flow along
the DNA is at most in the order of 5–6 percent. Notably, the ionic
current’s dependency on the DNA length has its maximum for
the lowest salt concentration, i. e. where the negatively-charged
surface is screened least. This is in line with the salt-dependent
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ionic current modulation in experimental systems [126, 31] and
simulation studies [47, 53, 82] of similar systems in which the
current modulation diverges in the limit of zero bulk electrolyte
concentrations.
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Figure 4.21: The advective (a) and direct (b) contributions to
the ionic current as a function of the DNA length.

Because of the much larger influence of the direct current on
the total current modulation, we focus further analysis on the
electric field and the amount of charge in the pore since these
quantities actually define the direct current density (neglecting
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constants):

jz
direct

(r, z) =
µe2Ez(r, z)

⇥
c+(r, z) + c�(r, z)

⇤

↵µ!(r, z) + 1
, (4.4)

where we reused the notation of Eq. 3.35.
In order to investigate the electric field’s dependency on the

DNA length we radially averaged the z-component of the field at
the center of the pore (z = 0 and r 2

⇥
rDNA, rpore

⇤
). Along this

horizontal line, the electric field vanishes for symmetry reasons if
no external field acts on the mobile charges of the system. How-
ever, as can be seen in Fig. 4.22 if an external field is applied
we observe a significant modulation of the electric field along
the pore as a function of the DNA length for small electrolyte
concentrations. In the most intuitive picture on the level of an
equivalent circuit model for the DNA nanopore system the DNA
acts as an increased resistance in the pore and the total resistance
of the DNA increases with its length. Thus, a larger portion of
the potential drops along the DNA which increases the electric
field in the pore. However, as Fig. 4.19 shows, the DNA actually
enhances the current in the pore (for bulk electrolyte concen-
trations up to around 400 mmol l�1). Therefore, this simplified
picture can not explain our observation of an increased electric
field.

The external electric field induces an electric dipole field
caused by the polarized counter-ion cloud around the negatively
charged DNA that weakens the externally applied field in the
pore. Fig. 4.23 shows the dependency of this dipole moment on
the DNA length. Here, again we see a significant dependency
on the DNA length for low salt concentrations. In addition, the
induced dipole moment decreases with the salt concentration.
Intuitively one might think that a larger dipole moment would
lead to a larger opposing field and therefore a weaker total field
in the pore center. The dipole electric field in the pore center,
however, also depends on the locations of the charges.

In the following, we want to develop a simple model to get
a better understanding of what the induced dipole moment’s
data actually means for the electric field in the pore. In this
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Figure 4.22: The average z-component of the electric field in the
center of the pore as a function of the DNA length normalized
by the average z-component of the electric field in the center of
an empty pore.

model we assume that all electrostatic e↵ects of the mobile ions
and the negatively charged DNA are included in the resulting
electric dipole field. We therefore calculate the electric field of
two charges that are located at the two ends of the DNA on the
symmetry axis of the system at (±0.5lDNA). This results in an
electric field in the center of the pore (cf. Sec. 3.4):

Edipole

z (r, z = 0) =
2 |Pz|

⇡"0"r
�
l2
DNA

+ 4r2
� 3

2

, (4.5)

where Pz is the induced dipole moment, "0 is the vacuum permit-
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Figure 4.23: The z-component of the total electric dipole of the
whole simulation domain. The inset image shows a sketch of the
ion cloud around the charged surface of the DNA: the external
field induces an asymmetry in the mobile ion distribution.

tivity and "r is the permittivity of water. The resulting electric
field radially averaged over the pore at z = 0 decreases with
increasing DNA length (cf. Fig. 4.24) which explains the obser-
vation of an increasing total electric field in the pore center: the
decreasing electric field strength of the induced dipole has less
influence on the total electric field for longer DNA molecules.
In addition, there is a reduced influence of the electric field on
the DNA length for increasing electrolyte concentrations. From
cs ⇡ 700 mmol l�1 on the DNA charge seems to be completely
screened. For these high salt concentrations the DNA can be
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seen as an additional resistor, therefore causing a higher portion
of the electrostatic potential to drop along the DNA which is
equivalent to a larger electric field strength.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
lDNA/lpore

0.0

0.5

1.0

1.5

2.0

h
E

d
ip

ol
e

z
(z

=
0)

i
[V

/m
]

⇥106

cs =100 mM

cs =200 mM

cs =300 mM

cs =400 mM

cs =500 mM

cs =600 mM

cs =700 mM

cs =800 mM

cs =900 mM

cs =1000 mM

Figure 4.24: The average z-component of the electric field caused
by a single

The second contributing factor to the direct current is the to-
tal charge in the pore. Therefore, we analyze the DNA length’s
influence on the ion density in the pore. In the pore, the presence
of the negatively charged DNA repels the co-ions and attracts
the counter-ions. In addition, this e↵ect is enhanced for longer
DNA molecules. The total ion density in the pore, however,
is enhanced (compared to the reservoir) and increases with the
length of the DNA. Therefore, the repulsion of co-ions is over-
compensated by the attraction of the counter-ions (cf. Fig. 4.25).
This observation is in line with the overall observation of a larger
ionic current through the pore for electrolyte concentrations of
up to about 400 mol l�1. We additionally analyzed the density of
the two ion species in the pore. The co-ions of the dsDNA are re-
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Figure 4.25: The averaged total ion density in the pore normal-
ized with the respective bulk values as a function of the DNA
length.

pelled from the pore and the density is well below the bulk value
for all investigated DNA lengths and salt concentrations. The
cation density, however, is enhanced in the pore and increases
with the length of the DNA (cf. Fig. 4.26).

Conclusion

We have shown that the current modulation of analytes in nanopore
sensing setups significantly depends on the length of the translo-
cating charged object if the length of the object is shorter than
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Figure 4.26: The average anion (a) and cation density (b) in the
pore normalized with the respective bulk values as a function of
the DNA length.

the sensing length of the pore for electrolyte concentrations up to
about 400mmol l�1. Our model in this work extends a previously
studied mean-field model [53] for an infinite dsDNA molecule in
an infinite pore to a model that includes a finite pore and the
cis- and trans-reservoirs of the Coulter-type sensing setup. Our
data shows that the ionic current increases with the length of



4.4. MEAN FIELD MODEL OF A FINITE PORE-DNA
SYSTEM 99

the DNA and converges to values of infinite pore models as pre-
sented in Refs. [47, 76, 53, 82]. Furthermore, we investigated
the underlying electrostatic e↵ects, namely the length-dependent
opposing electric field that results from the polarized ion cloud
around the DNA. This dipole field’s component parallel to the
pore gets smaller for an increasing DNA length which leads to
an overall increasing electric field in the pore. Such e↵ects are
not present our infinite pore models for DNA origamis as pre-
sented in Ref. [82] which might explain the deviation between
the simulation data of these models and experimental results of
Wang et al. [31].





Chapter 5

Outlook

5.1 Mean-field model

Finite pore model for DNA origamis

There are mainly two possibilities to develop an axisymmetric
model for the DNA origami in a finite pore. Either the vol-
ume or the surface area of the multi-cylinder origami model as
shown in Fig. 5.2 (adapted from Ref. [82]) can be mapped to an
axisymmetric single (hollow) cylinder geometry.

Mapping the volume Mapping the volume is equivalent to
mapping the cross-section area for a fixed length molecule. The
surface area of the four cylinders of the 2-by-2 origami is A2�by�2 =
4⇡r2

DNA
. The axisymmetric mapping to a single cylinder is found

by solving the following algebraic equation:

⇡r2

origami
= 4⇡r2

DNA

, rorigami = 2rDNA,
(5.1)

where rorigami is the radius of the cylinder for the axisymmetric
origami model. For the origami molecules we assume the re-
spective line charge density �origami to be scaled by the number
of helices. Therefore, the surface charge density �origami of the

101
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single cylinder representation is:

�origami =
�2�by�2

2⇡rorigami

= 2�dsDNA. (5.2)

With this mapping of the geometry and surface charge, the fric-
tion between the ions and the cylinder surface can be tuned such
that the salt concentration of vanishing ionic current modula-
tion through the pore matches to the results from the four single
cylinders.

0 100 200 300 400 500

cs [mMol]

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

I m
o
d

350 400 450

�0.05

0.00

0.05

2x2 reference data

4x4 reference data

2x2 single cyl.

4x4 single cyl.

Figure 5.1: Current modulation for the two models of a single
cylinder representing the origami molecules with 2-by-2 and 4-
by-4 double-stranded helices. The friction prefactor has been
tuned for a single salt concentration to optimize for a matching
cross over salt concentration. ↵2�by�2 = 2.81 ⇥ 10�11 kg s�1,
↵4�by�4 = 2.0 ⇥ 10�11 kg s�1.

Mapping the surface area Similarly, the four cylinder origami
model can be mapped to an axisymmetric hollow cylinder with
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dpore = 10nm

Figure 5.2: The mapping of the four cylinder DNA origami
model: either the volume is matched to a single cylinder (red
dashed line) or the surface is matched to a hollow cylinder (gray
dashed line).

the same surface area. Mapping the surface area is equivalent
to matching the circumference of the four single cylinders to
the sum of the circumference of the enveloping cylinder plus
the circumference of the inner cylinder of the hollow cylinder.
The radius for the enveloping cylinder is found to be r̃outer

origami
=

p
2 (rDNA + 0.5d)+ rDNA (cf. Fig. 5.3). The radius for the inner

cylinder is then defined by:

r̃inner

origami
=

Corigami � 2⇡r̃outer

origami

2⇡

=
8⇡rDNA � 2⇡

hp
2 (rDNA + 0.5d) + rDNA

i

2⇡

= 4rDNA �

hp
2 (rDNA + 0.5d) + rDNA

i
,

(5.3)

where Corigami is the summed circumferences of the four cylinder
origami. The surface charge density for this mapping is then the
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same as for a single DNA helix which might be a more realistic
mapping due to the importance of the friction between ions and
the DNA/origami surface.
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r
+

0
.5
d

p 2
(r
+
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r

Figure 5.3: The axisymmetric hollow cylinder model for a 2-
by-2 origami molecule. The radius of the enveloping circle is
r̃outer

origami
=

p
2 (r + 0.5d) + r where the subscript of the DNA

radius has been ommited for sake of brevity and d denotes the
gap between the surfaces of the DNA cylinders.

Influence of the molecule position along the symmetry
axis in the finite pore system Until now the finite pore
system has only been investigated for a single position of the
DNA centered in the pore. However, since there is an inherent
asymmetry in the system caused by the negative surface charge
density on the DNA it might be of interest to investigate the in-
fluence of varying but fixed molecule positions along the symme-
try axis on the ionic current modulation. This might give a more
detailed insight into the time dependent current signals that are
measured in experiments, e. g. how far outside the pore does the
DNA significantly influence the current in the pore. An answer
to this questions might make it possible to map the current sig-
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nal to positions of the molecule in the pore, an information that
is experimentally not directly accessible.

Figure 5.4: Sketch for investigations of di↵erent z positions of
the molecule along the symmetry axis. For each position zi a
steady state simulation may be done and the current through
the pore is measured.

Fig. 5.5 shows preliminary results for the position dependent
ionic current modulation through a nanopore with a length of
40 nm and a diameter of 10 nm at a bulk electrolyte concentra-
tion of 100 mmol l�1. There is a significant modulation at posi-
tions where the DNA end enters the pore and where it leaves the
pore. Notably, this modulation is about a factor of five larger
than the modulation observed for a completely filled pore. How-
ever, since this high modulation is only observed for a relatively
short part of the translocation of about 20 nm the sampling fre-
quency of experimental setups need to be su�ciently large to
capture such e↵ects. The translocation speed of a DNA through
a solid state nanopore is about 1 ⇥ 106 bp s�1-1 ⇥ 108 bp s�1, i. e.
v = 0.34 mms�1

� 34.0 mms�1 [139, 140]. That means that the
time interval that has to be resolved in the experiment is about
�t = �z

v ⇡ 0.588 µs � 5.88 µs. Therefore, to su�ciently sample
these events a sampling rate of about 1.7 MHz-17MHz would
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be necessary. In some publications the ionic current is sampled
with a much smaller frequency, e. g. 250 kHz in Ref. [30]. In
Ref. [141] a very high sampling rate of up to 10 MHz has been
used to measure the ionic current. However, they used a very
short pore combined with a large bias potential across the pore
which results in electric fields that are 1-2 orders of magnitude
larger than the fields investigated in this work (1 ⇥ 106 V m�1).
In addition, Shekar et al. [141] investigated single stranded DNA
for which we expect the entrance e↵ects to be smaller due to the
reduced line charge density compared to dsDNA.
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Figure 5.5: The ionic current modulation as a function of the
distance between the DNA tip and the pore entry (a) and as a
function of the distance between the DNA end and the pore exit
(b) for two di↵erent DNA lengths.



Chapter 6

Conclusion

The key point of this dissertation is the investigation of the ionic
current modulation of DNA structures in nanopores by means
of computer simulations.

After having covered the necessary theory to understand the
basic physics and the biological impact of DNA and important
concepts in the context of DNA nanopores systems in Chapter 2
the three di↵erent DNA modeling approaches are discussed in
Chapter 3. More precisely, three DNA models with a varying
degree of molecular details have been presented ranging from
an all-atom description to a coarse-grained model and finally
to a mean-field model. Technically, these models are imple-
mented within the framework of molecular dynamics (all-atom
and coarse-grained) and using finite-element simulations (mean-
field). These models have been used two-fold: first, as a model
for a double-stranded DNA helix as a reference model to vali-
date against readily available experimental data, and, second, as
a building block for the simulation of more complex multilayer
DNA origami structures. Common to all reference models has
been that none of them took finite pore or finite DNA e↵ects into
account. Therefore, these models assumed a translational sym-
metry along the pore and DNA. In addition, a realistic model
for an all-atom DNA origami has been described in Chapter 3
as well as the extension of the mean-field DNA nanopore model
to explicitly incorporate finite size e↵ects.
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A detailed description of the investigations for the di↵erent
DNA nanopore systems has been given in Chapter 4. First, the
validation for the re-implementation of the coarse-grained model
has been shown alongside the investigation of a finite pore sys-
tem and the comparison of systems with conical and cylindrical
pores. These results revealed a substantial sampling issue of fi-
nite pore systems that explicitly contain the electrolyte reservoir
due to the computational costs that are connected to systems
with many charged particles. Also, the fact that in these systems
the electric field outside the pore is nearly zero and the DNA has
to arrive at the pore by di↵usion which adds to the aforemen-
tioned sampling issues. Thus, investigations of the finite pore
systems via coarse-grained molecular dynamics simulations had
been done for the case of no excess salt only. Here, the coni-
cal pore showed a slightly higher conductivity as expected from
geometrical reasons. Interestingly, these simple systems already
hinted to an asymmetry in the ionic current as a function of the
DNA position comparing the cis- and the trans-reservoir pore
entries.

This motivated us in the next step to employ a mean-field
model that has previously been described and compared to ex-
isting data for the ionic current modulation in Chapter 4. Fur-
thermore, due to the low computational costs of this low resolu-
tion model several parameter studies like the investigation of the
influence of varying DNA positions in the pore’s cross-section as
well as the influence of a charged pore wall on the ionic current
through the pore had been possible. These parameter studies
revealed that the crossover salt concentration only weakly de-
pends on such changes and is only a↵ected for the extreme cases
where, e. g. the DNA being very close to the pore wall such
that the counter-ion layer is in close contact with the pore wall.
The influence of a charged pore wall could only be observed for
low salt concentration that had been significantly lower than the
crossover salt concentration.

Following the rigorous investigation of the mean-field model
for a single double-stranded DNA molecule, an extensive study of
a DNA origami nanopore system has been presented in Sec. 4.3.
In these studies a quite significant deviation to experimental data
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had been revealed. However, in these studies the three di↵erent
levels of detail (all-atom, coarse-grained and mean-field) did all
show a very good agreement with respect to the ionic current
modulation through the nanopore among each other. These sim-
ulations also revealed that local di↵erences between the models
are canceled out by complementary di↵erences in other regions
of the pore and these compensating e↵ects either do not depend
on the salt concentration or depend on it in a way that pre-
serves the ionic current’s dependency on the salt concentration.
Nevertheless, these results could not explain data from an ex-
perimental study. Therefore, the last section in this chapter had
been devoted to the rigorous investigation of results for a finite
DNA nanopore system.

Finally, this system revealed a significant dependency of the
ionic current through the nanopore on the length of the DNA if
the ratio of DNA length to pore length is smaller than unity. To
be more specific, we found that an induced electric dipole field
reduces the field strength of the externally applied electric field
in the nanopore. This dipole field’s component parallel to the
pore gets smaller for an increasing DNA length which leads to an
overall increasing electric field in the pore. Because these e↵ects
are neglected in the infinite pore model for DNA origamis their
data quite significantly deviates from experimental results.

In summary, it was shown that a modeling approach on mul-
tiple scales is necessary for DNA nanopore systems. On the one
hand is helps to overcome technical issues in some situations
(e. g. a high computational cost) and on the other hand it en-
ables the investigation of e↵ects that may not be feasible to be
covered by a single model. Also, by investigating models with
di↵erent levels of detail it is possible to extract the most signifi-
cant mechanisms that a↵ect electrokinetic transport phenomena
in DNA nanopore systems. To give an example, the ion mobility
reduction close to the DNA as it has been observed in all-atom
simulations enabled us to come up with coarser models of the
DNA molecule by adding a phenomenological frictional interac-
tion. On the other hand, the investigations we have done on the
DNA length dependency are not feasible within the framework
of all-atom simulations because of the very large system sizes
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and the corresponding computational costs.
In chapter 5 possible extensions for the mean-field model

are described. These extensions include a DNA Origami model,
which, due to a simplified geometry with rotational symmetry,
could be used to investigate the finite pore e↵ects in two dimen-
sions. Another model could be used to study the translocation
process through a finite pore in detail. Here, we were already
able to obtain first results, which were not known experimentally
so far.



Chapter 7

Zusammenfassung

Im Mittelpunkt dieser Dissertation steht die Untersuchung der
Ionenstrommodulation von DNA-Strukturen in Nanoporen mit-
hilfe von Computersimulationen. Im Folgenden wird eine kurze
Rekapitulation des Inhalts dieser Arbeit gegeben.

Nachdem die notwendige Theorie, die physikalischen Grund-
lagen und die biologische Bedeutung von DNA beschrieben wur-
den sowie wichtige Konzepte im Zusammenhang mit DNA-Nanoporen
Systemen in Kapitel 2 eingeführt wurden, werden die drei ver-
schiedenen DNA Modellierungsansätze in Kapitel 3 diskutiert.
Genauer gesagt, werden drei DNA-Modelle mit unterschiedlichen
molekularen Detailgrad vorgestellt, der von einer atomaren Be-
schreibung (

”
all-atom “), über ein vergröbertes Modell (

”
coarse-

grained“) und schließlich einem Mean-Field-Modell reicht. Tech-
nisch gesehen werden diese Modelle im Rahmen der Moleku-
lardynamik (atomares und vergröbertes Modell) und der Finite-
Elemente Methode (Mean-Field) umgesetzt. Diese Modelle wur-
den in zweierlei Hinsicht verwendet: zunächst als Modell für
eine doppelsträngige DNA als eine Art Referenzmodell, um es
mit leicht verfügbaren experimentellen Daten zu validieren, und
zweitens als Baustein für die Simulation von komplexeren mehr-
schichtigen DNA-Origami-Strukturen. Alle Referenzmodelle ha-
ben gemein, dass keines von ihnen E↵ekte endlicher Poren oder
einer endlichen DNA berücksichtigt. Entsprechend nehmen die-
se Modelle eine Symmetrie entlang der Pore und der DNA an.
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Darüber hinaus wurden zwei Erweiterungen entwickelt: zum einen
ein realistisches Modell für ein DNA-Origami und zum anderen
eine Erweiterung des Mean-Field Modells um endliche Porengeo-
metrien zu simulieren.

Die Ergebnisse zu den verschiedenen DNA-Nanoporen Sys-
temen wurde in Kapitel 4 detailliert beschrieben. Zunächst wird
dort die Validierung für die Re-Implementierung des vergröberten
Modells sowie die Untersuchung eines endlichen Porensystems
und der Vergleich von Systemen mit konischen und zylindri-
schen Poren dargestellt. Diese Ergebnisse zeigten, dass es für sol-
che Systeme inhärente Schwierigkeiten gibt, eine aussagekräftige
Statistik des Translokationsvorgangs zu erreichen. Dies lässt sich
für die Systeme mit endlicher Porengeometrie damit begründen,
dass das Elektrolytreservoir explizit enthalten ist und damit der
Berechnungsaufwand aufgrund der hohen Anzahl geladener Teil-
chen beträchtlich größer wird. Auch die Tatsache, dass in diesen
Systemen das elektrische Feld außerhalb der Pore nahezu Null ist
und die DNA durch Di↵usion zur Pore gelangen muss, verstärkt
die oben erwähnten Probleme der ine�zienten Datengenerie-
rung. Daher beschränkten wir die Untersuchungen der endlichen
Poren-Systeme auf vergröberte Molekulardynamik-Simulationen,
bei denen nur Gegenionen und keine zusätzlichesnSalz-Ionen vor-
liegen. Hier zeigte die konische Pore eine etwas höhere Leitfähigkeit,
wie es aus geometrischen Gründen zu erwarten ist. Interessan-
terweise zeigen diese einfachen Systeme bereits eine Asymmetrie
im elektrischen Strom als Funktion der DNA-Position, wenn man
die cis und die trans Poreneingänge vergleicht.

Im darau↵olgenden Kapitel wurden die Ergebnisse für das
Mean-Field Modell eines DNA-Nanoporen-Systems beschrieben
und mit experimentellen Literaturdaten für die Ionenstrommo-
dulation verglichen. Außerdem wurden aufgrund des geringen
Rechenaufwands dieses einfachen Modells verschiedene Parame-
terstudien unternommen. Zum Beispiel wurde der Einfluss un-
terschiedlicher DNA-Positionen im Porenquerschnitt sowie der
Einfluss einer geladenen Porenwand auf den Ionenstrom durch
die Pore untersucht. Diese Parameterstudien zeigten, dass die
Crossover-Salzkonzentration nur schwach von solchen Änderungen
abhängt und nur in Extremfällen beeinflusst wird, in denen z.B.
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die DNA sehr nahe an der Porenwand liegt, sodass die Gege-
nionenschicht in engem Kontakt mit der Porenwand steht. Der
Einfluss einer geladenen Porenwand konnte nur für niedrige Salz-
konzentrationen beobachtet werden, die deutlich unterhalb der
Crossover-Salzkonzentration lagen.

Nach der rigorosen Untersuchung des Mean-Field-Modells für
ein einzelnes doppelsträngiges DNA-Molekül, wurde eine um-
fangreiche Studie eines DNA-Origami-Nanoporensystems in Ka-
pitel 4.3 durchgeführt. In diesen Studien wurde eine signifikan-
te Abweichung zu experimentellen Daten festgestellt. Allerdings
zeigten die Modelle auf den drei verschiedenen Detailebenen (all-
atom, vergröbert und mean-field) eine sehr gute Übereinstimmung
hinsichtlich der Ionenstrom Modulation durch die Nanopore un-
tereinander. Dieses konsistente Bild ließ darauf schließen, dass
die im Experiment gemessenen Daten auf E↵ekte einer endli-
chen Geometrie zurückzuführen sein könnten. Die Simulationen
zeigten auch, dass lokale Unterschiede zwischen den Modellen
durch komplementäre Unterschiede in anderen Regionen der Po-
re ausgeglichen werden und diese kompensierenden E↵ekte nicht
von der Salzkonzentration abhängen, oder aber nur so von ihr
abhängen, dass die Abhängigkeit des Ionenstroms von der Salz-
konzentration erhalten bleibt. Dennoch konnten diese Ergebnisse
die Daten aus einer experimentellen Studie nicht erklären. Daher
war der letzte Abschnitt in diesem Kapitel der rigorosen Unter-
suchung eines Systems mit endlicher Geometrie gewidmet.

Dieses System schließlich zeigte eine signifikante Abhängigkeit
des Ionenstroms von der Länge der DNA, wenn das Verhältnis
von DNA-Länge zu Porenlänge kleiner als eins ist. Konkret wur-
de festgestellt, dass ein induziertes elektrisches Dipolfeld die Feldstärke
des von außen angelegten elektrischen Feldes in der Nanopore
reduziert. Die Komponente dieses Dipolfeldes parallel zur Pore
wird mit zunehmender DNA-Länge kleiner, was zu einem insge-
samt zunehmenden elektrischen Feld in der Pore führt. Da die-
se E↵ekte in dem unendlichen Porenmodell für DNA-Origamis
vernachlässigt werden, weichen deren Daten erheblich von den
experimentellen Ergebnissen ab.

Zusammenfassend haben wir gezeigt, dass ein Modellierungs-
ansatz auf mehreren Skalen für DNA-Nanoporen-Systeme not-
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wendig ist. Zum einen lassen dich dadurch technische Probleme
(wie etwa ein hoher Rechenaufwand) umgehen und zum anderen
ist die Untersuchung bestimmter E↵ekte möglich, die von einem
einzelnen Modell nicht abgedeckt werden können. So wäre es zum
Beispiel nicht möglich gewesen ein System mit explizit modellier-
tem Elektrolytreservoir auf der voll atomistischen Detailebene in
sinnvoller Zeit zu untersuchen. Auf der anderen Seite waren die
voll atomistischen Modelle notwendig, um etwa die Annahme der
einfachen Überlagerung der Reibungse↵ekte zwischen Ionen und
DNA zu überprüfen. Letztlich ist es durch die Untersuchung von
Modellen mit verschiedenen Detaillevel möglich, die wichtigsten
Mechanismen zu extrahieren, die zu den beobachteten E↵ekten
der Strommodulation in DNA-Nanoporensystemen führen. Hier
zeigte sich, dass sich die Modulation des Stromes als Funktion
der Salzkonzentration auch ohne atomare Auflösung modellie-
ren lässt und die verminderte Ionenmobilität durch eine e↵ektive
Reibung darstellen lässt.

In Kapitel 5 werden mögliche Erweiterungen für das Mean-
Field Modell beschrieben. Diese Erweiterungen beinhalten zum
einen ein DNA Origami Modell, mit dem aufgrund einer ver-
einfachten Geometrie mit Rotationssymmetrie die E↵ekte durch
eine endliche Pore in zwei Dimensionen untersucht werden kann.
Ein weiteres Modell könnte den Translokationsvorgang durch ei-
ne endliche Pore im Detail untersuchen. Hier wurden bereits erste
Ergebnisse gezeigt, die experimentell bisher nicht bekannt waren.
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Appendix

8.1 All-atom simulations

DNA origami

The 2-by-2 DNA origami as it has been investigated in Wang
et al. [31] is a bundle of 4 double helices that are interconnected
by shorter stable strands. The sca↵old strand contains 7250 nu-
cleobases. The whole structure is stabilized by 174 shorter sta-
ple strands. The exact sequence is listed in Table S9 of Ref. [31].
The whole structure has a translational symmetry along its main
axis with a period of 217.6 �A. This unit cell is shown below in
Fig. 8.1.

In the all-atom model for the origami structure, a segment
of the sca↵old strand and 7 staple strands are used: full-length
oligomers 9, 10, 67, 119, 150, and fragments of oligomers 66 and
68. The ends of the structure are connected across the periodic
boundaries to get a fully periodic molecule that can be used in
the context of the infinite pore model as described in Sec. 3.1.

The DNA origami is composed of a main strand with 7250 nu-
cleobases folded in 4 helices and 174 short strands that stabilize
the 4 helices. The system is periodic along the z-axis via trans-
lation symmetry with translation vector [0.0 �A, 0.0 �A, �217.6 �A].
There are no periodic boundaries though, so the molecular sys-
tem can be described as 27 translation images of the “unit cell”
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Figure 8.1: The unit cell of the 2-by-2 DNA origami structure
from two di↵erent perspectives A and B related by a rotation
of 45° around the main axis. The dashed lines represent the
periodic boundaries. The sca↵old strand is colored in black while
the 6 linker strands are colored in blue, red, green, yellow, ocher
and purple, respectively. This figure is taken from Ref. [82].

Figure 8.2: Close-up view of the main chain boundaries. The
cut is visible in the lower right corner of B.

plus one extra unit cell at both termini where the DNA topology
is di↵erent. The 174 linker strands can be divided in 6 categories.
These are also periodic with 28 translation images, plus 3 linkers
at both termini with a di↵erent geometry (28·6+2·3 = 174). The
unit cell is visualized in Figure 8.1. The main strand is cyclic,
although it has an artificial cut at one terminus (cf. Fig. 8.2B)
with just enough space to fit a single phosphate to close the cycle.



8.2. SOFTWARE DEVELOPMENT AND PROJECT
ORGANIZATION 117

8.2 Software Development and Project

Organization

During the development of simulation models one is confronted
not only with problems that belong to the field of theoretical
physics, but also a lot of technical issues come up along the way.
Computational physicists are de facto also software developers
and therefore face very similar challenges, e. g., achieving a good
software-testability, -maintainability and -extensibility. These
challenges do not only occur in the context of the software core
that implements the algorithmic details for, e. g. molecular dy-
namics, but also in the context of the end-user implemented code
that use some interface to the core implementation and thereby
implementing the actual representation of a model for a physi-
cal system. Some measures that turned out to be quite useful
to deal with the aforementioned software development goals are
therefore discussed in this section.

Simulation Project Organization

It is a central part in software development in general to incorpo-
rate some sort of version control. This brings several advantages,
e. g. the possibility to easily revert changes or independent de-
velopment of multiple users or features. In simulation studies
it turned out that there is a demand for new features in the
simulation core during the development of simulation models.
Therefore, the development of the actual simulation also incor-
porates development on the simulation engine. One way to deal
with this dependency of the simulation code on the core project
is to use the version control tool git and its submodule feature.
An example for a simulation project layout could look like the
following:

./finite pore
.git
simulation frontend

dna.py
simulation backend

.git
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src
In this example the shown directory root directory is un-

der version control via git (as indicated by the .git directory)
as well as the subfolder containing the simulation backend. Ex-
pressed in the git framework vocabulary: simulation backend
is a git submodule of the simulation project. This layout has the
advantages that it is always automatically documented which
snapshot of the backend has been used to produce the results
of the respective simulation project. This layout may even be
extended by another level, e. g. for having a collection of related
simulation projects combined in a single meta-project containing
several simulation projects as git submodules:

./nanopore translocation
.git
finite pore

.git

...
dna in bulk

.git

...
This makes it much more easy to handle inter-dependencies

on the versions between individual projects. Furthermore, in
git projects involving the content of publications the described
project layout serves as a documentation for the source of pub-
lished data and therefore leads to an improved reproducibility of
simulation results.

8.3 CGDNA - A python package to set up a

coarse grained dsDNA model

The non-trivial python code to set up the geometry and interac-
tions for a coarse-grained DNA model as described in Sec. 3.2,
a separate python package has been developed. The advantage
is that this programming code can be validated independently
of the actual usage in a specific simulation project. The python
package (called cgdna) contains several submodules with the fol-
lowing structure:
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• base_pair.py

This module contains a class that represents a single base-
pair. The parameters to this class are the center of mass
position, the angle between the basepair and the backbone
beads, the distance between the backbone and the basepair
and an azimuthal angle orientation.

• molecule.py This module contains a class to hold the global
parameters for the coarse-grained model like the distance
between the base pairs, the dihedral angle the number of
base pairs, the number of coupling points for the coupling
to the LBM.

• espresso.py In this module a class is implemented to hold
and validate parameters that are directly consumed by the
molecular dynamics software (in this case ESPResSo).

• cgdna.py This is the top level module to hold instances of
the aforementioned classes and handles queries to access
specific particles from the molecule. In addition, it adds
the various bonded interactions between the particles and
validates them.

Each of the classes contains a detailed documentation directly in
the source code. As an example, the doc-string of the top level
cgdna.DNA class is shown below.

class DNA:
"""

This class is supposed to be used in conjunction with ESPResSo to simulate

a cgDNA molecule.

Parameters

----------

system : :class:‘espressomd.System‘ instance

molecule_params : :class:‘cgdna.molecule.Parameters‘ instance

espresso_params : :class:‘cgdna.espresso.Parameters‘ instance

harmonic : :class:‘espressomd.interactions.HarmonicBond‘ instance

Harmonic potential between consecutive base pair particles.

angle_harmonic_bp_bp_bp: :class:‘espressomd.interactions.AngleHarmonic‘ instance

Bond-angle potential between consecutive base pair particles.

angle_harmonic_bp_bp_bb : :class:‘espressomd.interactions.AngleHarmonic‘

instance

Bond-angle potential between base_pair-base_pair base_pair-backbone

particles.

dihedral : :class:‘espressomd.interactions.Dihedral‘ instance

Dihedral potential.

with_filling_parts : :obj:‘bool‘
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Whether to add filling particles for hydrodynamic coupling (default: True).

By implementing so-called mocks for all external classes with
which the package has to interact (i. e. classes that are part of
a dependent package, in this case the ESPResSo package), it’s
possible to write unit tests for the implementation of the coarse-
grained model. This way, it is explicitly expressed what observ-
able behavior is assumed from the dependency. The mocked
classes only implement this behavior and no additional business
logic:

class Particle:
def __init__(self, **kwargs):

self.__dict__.update(kwargs)

def vs_auto_relate_to(self, id): # pylint: disable=unused-argument

pass

def add_bond(self, *args, **kwargs):
pass

class ParticleList:
def __init__(self):

self.particles = []

def __getitem__(self, item):
return self.particles[item]

def __iter__(self):
return self.particles.__iter__()

def add(self, **kwargs):
particle = Particle(**kwargs)
if id not in kwargs:

particle.id = len(self.particles)
self.particles.append(particle)
return particle

class System:
def __init__(self):

self.part = ParticleList()

In the following an example for the usage within a simulation
setup is shown. An instance of the cgdna.DNA class is created
and the inertia tensor for every basepair is set by looping over
the di↵erent particle types of the polymer and extracting the re-
spective information (mass and position). This would have been
much more error-prone and hard to validate without the sepa-
rate implementation of the DNA setup in the separate python
package.
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dna = cgdna.cgdna.DNA(
system,
get_molecule_params(p),
espresso_params,
harmonic_bond,
angle_harmonic1,
angle_harmonic2,
dihedral_bond,
True,

)

# inertia tensor

for bp, bb, com in zip(
dna.base_pair_particles,
zip(dna.backbone_particles[::2], dna.backbone_particles[1::2]),
dna.com_particles):
(

principal_moments,
principal_axes,

) = espressomd.rotation.diagonalized_inertia_tensor(
[bp.pos, bb[0].pos, bb[1].pos], [bp.mass, bb[0].mass, bb[1].mass

]
)
com.rinertia = principal_moments
com.quat = espressomd.rotation.matrix_to_quat(principal_axes)



122 CHAPTER 8. APPENDIX

8.4 Erklärung der Selbständigkeit

Die eingereichte Dissertation zum Thema Modeling the Trans-
location of DNA Structures through Nanopores stellt meine ei-
genständig erbrachte Leistung dar.

Ich habe ausschließlich die angegebenen Quellen und Hilfs-
mittel benutzt. Wörtlich oder inhaltlich aus anderen Werken
übernommene Angaben habe ich als solche kenntlich gemacht.

Die Richtigkeit der hier getätigten Angaben bestätige ich und
versichere, nach bestem Wissen die Wahrheit erklärt zu haben.

Stuttgart, den 9.8.2021
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