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Abstract

In this thesis we present a new lookup based shortest path distance computation scheme. Like many
other lookup based schemes, this new approach consists of two stages, a preprocessing and a query
stage.
After the properties, which need to be met by the results of the preprocessing, are formally defined,
we propose different preprocessing procedures as well as procedures which are able to use those
results to calculate shortest path distances.
The proposed new query procedure is able to decide whether a given query can be answered when
the preprocessed data is incomplete.
This makes it possible to prune the preprocessed data according to arbitrary memory constraints,
while a speed up of orders of magnitude in comparison to conventional techniques can be achieved.
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1 Introduction

Various techniques and algorithms have been developed to solve shortest path distance problems,
and while Dijkstra’s algorithm [Dij59] can be used to solve the problem, a lot of speed up techniques
have been developed to address the problem of answering a large numbers of shortest path distance
queries in a short time.
Most of these techniques make use of the fact that the graph is known beforehand and can be
transformed in a way to later speedup shortest path distance queries.
While the simplest lookup based technique is to precompute all shortest path distances of a graph
using Dijkstra’s algorithm and storing them in a lookup table, it is not applicable for large graphs
because of the huge memory consumption of the lookup table. Because of this, more sophisticated
lookup based techniques, such as Hub Labels [ADGW11] or Transit Nodes [BFSS07] have been
developed. Those proposed schemes use more ingenious techniques to achieve fast shortest path
distance queries, while only using a reasonable amount of memory.

In this thesis a new such technique based on cluster-pairs is proposed, which also consists of a
preprocessing and a query stage. In the beginning, the idea was to find a scheme for grid graphs,
which makes use of the idea of well separated pair decompositions, but then a more efficient
technique which is also applicable to general graphs was discovered. Unlike Hub Labels, this
new technique, which is based on cluster-pairs, is able to arbitrarily prune the information stored
per node, while still calculating correct shortest path distances if possible. While the proposed
preprocessing procedure requires a high memory consumption, the query routine can compete with
even the fastest state of the art techniques. Similar to Hub Labels, the proposed preprocessing
scheme stores information per node, in order to answer the shortest path distance queries. Thus
for nodes B and C, only the information stored at those nodes is required. As a result, the original
graph will only be needed during the preprocessing stage and therefore can be discarded once the
preprocessing is done, if necessary.

In the second chapter, the theoretical fundamentals, such as graphs, grid graphs or shortest

paths are formally defined. The chapter also introduces existing methods to calculate shortest path
distances, as well as some speed up techniques.
The third chapter contains the newly developed cluster-pair based shortest path distance calculation
methods. First a scheme which only works for grid graphs is described. Then a generalized
technique which works for all graphs is introduced, making the restricted scheme for grid graphs
obsolete.
In the fourth chapter, benchmarks of different versions of the proposed algorithms are compared to
each other and to Hub Labels [DGSW14] in terms of runtime, success rate and memory usage. The
last chapter summarizes the thesis and gives some ideas for further optimizations and improvements
of the proposed shortest path distance calculation schemes.
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2 Basics

In this chapter different concepts and algorithms are presented, which are needed to understand and
compare the algorithms proposed in this work. At first graphs as well as grid graphs are formally
defined, then the shortest path distance problem, as well as different algorithms to solve it, are
presented.

2.1 Graphs

A graph � is defined as a tuple � = (+, �) where + is a set of nodes and � is the set of edges.

For directed graphs � ⊆ + ×+ , which means edges connecting nodes have a direction.

Edges of undirected graphs do not have such a direction, and therefore � ⊆
(+

2
)

Since road networks do contain one-way roads most of them are modeled as directed graphs. It is
also worth mentioning that undirected graphs can be easily represented as directed graphs by the
addition of two edges (D, E) and (E, D) for an undirected edge {D, E}.

A weighted graph is a graph with a cost function 2 : � → R. For road networks the cost function
is often used as a metric for the distance which is associated with an edge. Because of this road
networks are often modeled as directed weighted graphs. In this thesis only weighted graphs with
positive edge weights and therefore only cost functions 2 : � → R+ are considered.

A simple path between two nodes B, C ∈ + is defined as a sequence of pairwise disjoint nodes
G1, . . . G8 with G1 = B and G8 = C, such that ∀1 < : ≤ 8 : (G:−1, G:) ∈ � .
A shortest path between two nodes B, C ∈ + in a weighted graph � = (+, �) with a cost function
2 : � → R+ is defined as the simple path c between B and C where

∑
4∈c 2(4) is minimal.

Figure 2.1 shows a visual representation of a directed graph � = (+, �) with + = {1, 2, 3, 4, 5} and
� = {(1, 2), (2, 3), (2, 4), (3, 5), (5, 2), (5, 4)}. A valid simple path between node 1 and 5 would be
1, 2, 3, 5.

Figure 2.1: Example of a directed graph

15



2 Basics

2.2 Grid Graphs

A grid graph is a model of a<×= grid as a graph. Given a<×= grid, every cell (8, 9) is represented as
a node E ∈ + . Two nodes can only be connected by an edge, if the cell which they represent are direct
neighbors in the grid. This means ((8B, 9B), (8C , 9C )) = (B, C) = 4 ∈ � ⇒ |8B − 8C | + | 9B − 9C | = 1.
Grid graphs also exist for other types of grids, like for example triangular grids, but in the following
only grid graphs for square grids are considered. Grid graphs are often used to model maps in
computer games, such as Baludurs Gate or Dragon Age: Origins [Stu12]. Figure 2.2 shows an
example of such a map used in the computer game Balurs Gate II. The white cells of the grid are
represented by nodes in the graph, which are connected to the nodes representing the neighbor
cells if they are also white in the grid. In such a case the white cells of a grid are referred to as
walkable.

Figure 2.2: Example grid graph used in Baldurs Gate II [Stu12]

2.3 Shortest Path Distances

The shortest path distance between two nodes B and C in a graph � = (+, �) with cost function
2 : � → R+ is defined as

∑
4∈c>?C

2(4) where c>?C is a shortest path between B and C in graph �
and cost function 2. To calculate the shortest path distance between two given nodes B and C various
approaches have been developed.

Exploration based shortest path distance calculation

An algorithm which works for graphs without negative edge weights is Dijkstra’s algorithm [Dij59].
The algorithm starts from the source and explores the graph, always following the most promising
candidate nodes until the target node itself is the most promising candidate and the cost of the
shortest path from the source to the target node can be reported.
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2.3 Shortest Path Distances

Algorithm 1: Dijkstra
Data: Graph � (+, �), B, C ∈ + , edge cost function 2
Result: shortest path distance between B and C
for E ∈ + do

2>BC [E] = ∞
// Q is a min-heap where the top node has always the smallest value in the 2>BC map;
<8=�40? &;
& ← B;
2>BC [B] = 0;
while ¬&.4<?CH do

2DAA4=C ← &.?>?;
if 2DAA4=C = C then

return 2>BC [2DAA4=C]
for E ∈ =486(2DAA4=C) do

if 2>BC [2DAA4=C] + 2((2DAA4=C, E)) < 2>BC [E] then
2>BC [E] = 2>BC [2DAA4=C] + 2((2DAA4=C, E));
if E ∉ & then

& ← E;

&.A4ℎ40?();
return∞

Algorithm 2.1: Dijkstra’s Algorithm

To further speedup the Dijkstra’s algorithm Contraction Hierarchies [GSSD08] can be used. In
order to gain a speedup, the shortest path distance computation is split into two stages:

1. Preprocessing: In this stage, the new shortcut edges � ′ are added to the graph � = (+, �)
and a level function ; : + → N is introduced, such that for every two nodes B and C, there
exists a shortest path G0, . . . , G8 from B to C, such that ; (G0) < . . . < ; (G<) > . . . > ; (G8)
where < = argmax0≤:≤8 ; (G:) and therefore G< is the node with the highest level on the
shortest path from B to C.

2. Query: For a given source and target, two modified versions of Dijkstra’s algorithm are
performed, one starting from the source another starting from the target. The one which
starts from the target is performed on a graph where all edges (D, E) ∈ � are reversed. Those
modified versions do only consider edges (D, E) ∈ � where ; (D) < ; (E).

Since the modified version of Dijkstra’s algorithm only considers edges (D, E) ∈ � where ; (D) < ; (E),
the search space is much smaller for road networks, which is why Contraction Hierarchies gain
a speedup in comparison to Dijkstra’s algorithm. The idea of splitting the shortest path distance
computation into a preprocessing and query stage is used by multiple other speedup techniques
including the one proposed in this thesis.
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2 Basics

Lookup based shortest path distance calculation

Another approach to calculate shortest path distances are lookup based methods. The simplest
lookup based method would be to calculate shortest path distances for all (B, C) ∈ + × + to store
them in a lookup table. For this purpose, Dijkstra’s algorithm can be used. While this would result
in O(1) queries, the preprocessing time as well as the memory overhead would be unreasonable
for big graphs. Different other lookup based techniques were developed which do need much less
memory and preprocessing time, like Transit node routing [BFSS07] or Hub Labels [DGSW14].

The basic idea of hub labels is to calculate labels ! (E) for every node E ∈ + such that for two given
nodes B and C only the labels ! (B) and ! (C) need to be inspected. Once such labels are computed for
every node, the graph is not needed anymore to answer shortest path distance queries. To achieve
this the labels ! (E) of a node E ∈ + have the form:

! (E) = {(ℎ, 3 (E, ℎ)) : ℎ ∈ � (E)}

where:

� (E) is a set of important nodes for E called hubs.

3 (E, ℎ) is the optimal shortest path distance between nodes E and hub ℎ.

Those labels need to be computed such that for any pair (B, C) ∈ + ×+ there exists (ℎB, 3B,ℎ) ∈ ! (B)
and (ℎC , 3C ,ℎ) ∈ ! (C) such that ℎC = ℎB and 3B,ℎ + 3C ,ℎ = 3 (B, C).

Because of the fact that the calculation of the shortest path distance between two nodes B and C can
be achieved by finding a label ; ∈ ! (B) ∩ ! (C), which minimizes the distance between B and C, only
! (B) and ! (C) are needed. If such labels are given from a preprocessing stage, the labels for each
node are stored sorted lexicographically. For labels stored in such a way Algorithm 2.2 can be used
to answer shortest path distance queries for nodes B and C. Since |! (B) ∩ ! (C) | could be greater than
1, all the common labels need to be looked at and the one which minimizes the distance between B
and C can be used to report shortest path distance. This means that a shortest path distance for B and
C can be answered in O(|! (B) | + |! (C) |)
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2.3 Shortest Path Distances

Algorithm 2: HubLabelQuery
Data: Source B, Target C
Result: 3>?C (B, C) or UNREACHABLE
14BC = UNREACHABLE;
83GB = 0;
83GC = 0;
while 83GB < |! (B) | ∧ 83GC < |! (C) | do
(ℎB, 3B,ℎ)B = ! (B) [83GB];
(ℎC , 3C ,ℎ)B = ! (C) [83GC ];
if ℎB = ℎC ∧ 14BC > 3B,ℎ + 3C ,ℎ then

14BC = 3B,ℎ + 3C ,ℎ;
83GB = 83GB + 1;
83GC = 83GC + 1;

else if ℎB < ℎC then
83GB = 83GB + 1;

else
83GC = 83GC + 1;

return 14BC

Algorithm 2.2: Hub Label Query
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3 Cluster-Pair based Distance Calculation

The basic idea of cluster-pair based distance calculation is to separate a given graph � = (+, �)
into a set of cluster pairs S = {(�8 , �8) | 8 ∈ N}, such that for each pair (D, E) ∈ + ×+ with D ≠ E
there exists a pair (�, �) ∈ S with 0 ∈ � ∧ 1 ∈ �.
We say a pair (�, �) ∈ S answers a pair of nodes (D, E) ∈ + ×+ iff D ∈ � and E ∈ �.
Furthermore, given a pair (�, �) ∈ S, it should be easy to report the optimal distances for paths
from nodes D ∈ � to E ∈ �. We call such a pair (�, �) ∈ S a separation and the sets � and � node
patches.

When given such a set S, calculating the shortest path distance between two given nodes B and C,
boils down to finding a separation (�, �) ∈ S answering (B, C) and reporting the distance of an
optimal path from B to C.

This means the challenge of finding the optimal distances for a grid graph fast breaks down into two
sub-challenges:

• Preprocessing: calculating set S with the given properties and a way of reporting the
distances of the optimal ways between nodes of � and �.

• Query: for a given pair D, E ∈ + , finding a set 0 ∈ � ∧ 1 ∈ � or 1 ∈ � ∧ 0 ∈ � must be fast.

In the following different approaches for the preprocessing and query phase are presented.

3.1 Cluster Pairs for Grid Graphs

3.1.1 Well Separated Pair Decomposition

The idea of node separations comes from the well-separated pair decomposition, which organizes a
given point set % such that the Θ(=2) pairwise distances are encoded into a structure of only size
O(=) [CK95].

In order to achieve this, a quadtree is built for the point set %. This quadtree can then be used with
algorithm 3.1 to calculate the well separated pair decomposition. To achieve this algorithm 3.1
needs to be initially called with the root of the quadtree as input.
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3 Cluster-Pair based Distance Calculation

Algorithm 3: SeparateWSPD
Data: QuadTree Nodes -,.
Result: Cluster Set S
if - = . then

return ∅
if B8I4(-) < B8I4(. ) then

return (4?0A0C4,(%� (., -)
if 0A4,4;;(4?0A0C43 (-,. ) then

return {(-,. )}
return

⋃
�∈2ℎ8;3 (- ) (4?0A0C4,(%� (�,. )

Algorithm 3.1: Calculation of a Well Separated Pair Decomposition

Notice how the areWellSeparated(X, Y) function can be used to find out whether two clusters -
and . are well-separated.

3.1.2 Well Separated Pair Decompositions of Grid Graphs

For a given grid graph � = (+, �) a well separated pair decomposition can be calculated by first
calculating a quadtree for the nodes + of grid graph and then using the approach presented in
section 3.1.1. In order to use the well separated pair decomposition of the grid graph for answering
queries regarding the optimal shortest path distance between two nodes B and C, a suitable condition
which specifies if a cluster pair (�, �) is well separated is required. A condition which can be used
for this purpose is the following:

areWellSeparated(A, B) =

{
1, if ∃?0 ∈ � : ∃?1 ∈ � : ∀B ∈ � : ∀C ∈ � : ?0, ?1 ∈ c>?C (B, C)
0, else

where:

c>?C (B, C) is the optimal path from B to C

This means there exists a node ?0 ∈ � and a node ?1 ∈ � which are both part of all shortest paths
from � to �. Figure 3.1 shows an example of such a separation with ?0 and ?1 colored in red.

Figure 3.1: Example of a valid separation of a grid graph [Stu12]
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3.1 Cluster Pairs for Grid Graphs

Calculating Candidates for ?0 and ?1

?0 and ?1 both need to be part of all shortest paths from � to �. Therefore the distance 3>?C (?0, ?1)
between (?0, ?1) needs to be minimal, otherwise the shortest path c>?C (?0, ?1) would be a sub-path
of another shorter path, which is impossible.
Therefore candidates for ?0 and ?1 for given node sets � and � can be calculated with:

(?0, ?1) = argmin
(G,H) ∈�×�

3>?C (G, H)

Algorithm 3.2 shows how to check, if two node sets � and � are well-separated. With this
areWellSeparated function and the algorithm 3.1 a well-separated pair decomposition for grid
graphs can be computed. Since the grid graph is assumed to be undirected, the decomposition
satisfies the condition that (D, E) ∈ +×+ with D ≠ E, there exists a pair (�, �) ∈ Swith D ∈ �∧E ∈ �
or E ∈ � ∧ D ∈ �.

Algorithm 4: areWellSeparated
Data: QuadTree Nodes �, �
Result: Boolean

(?0, ?1) = argmin(G,H) ∈�×� 3>?C (G, H)
for G ∈ � do

for H ∈ � do
if 3>?C (G, H) ≠ 3>?C (G, ?0) + 3>?C (?0, ?1) + 3>?C (H, ?1) then

return FALSE

return TRUE

Algorithm 3.2: Well Separation Check for Grid Graphs

Answering Shortest Path Distance Queries

While there exists a technique to retrieve cluster pairs for query points in O(1) [FMS03], it is not
applicable to the cluster pairs built for the grid graph. This is the case, because the clusters built for
the grid graph do not use the original 0A4,4;;(4?0A0C43 of well separated pair decompositions
with euclidean distance, but a modified version which was designed to work for grid graphs. Because
of this, the required cell wide F cannot be computed from the euclidean distance between two
points, which is required to apply the constant time query scheme proposed in [FMS03].

In order to use a decomposition of a grid graph as presented above to answer shortest path
distance queries, it needs to be stored in a specific way. Given a decomposition of a grid graph
S = {(�8 , �8) | 8 ∈ N} every node = ∈ + needs to store the node sets X= with

X= = {- ⊆ + | (-,. ) ∈ S ∧ = ∈ . ∨ (., -) ∈ S ∧ = ∈ . }

This means that every node needs to store the node sets, which are well separated with the node sets
it is a member of. Any node = ∈ + also needs to store the ?0, ?1 for all (�, �) where = ∈ � or
= ∈ � and the distance 3>?C (30, 31).
With this information stored per node algorithm 3.3 can be used to answer shortest path distance
queries for nodes B, C ∈ + .
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3 Cluster-Pair based Distance Calculation

Algorithm 5: WSPDDistanceQuery
Data: Nodes B, C ∈ +
Result: 3>?C (D, E)
� = - ∈ XB F8Cℎ C ∈ -
(?0, ?1) = ;>>:D?%B(B, C, �)
if B = ?0 ∧ C = ?1 then

return 3>?C (?0, ?1)
if B = ?0 then

return 3>?C (?0, ?1) +,(%��8BC0=24&D4AH(?1, E)
if C = ?1 then

return,(%��8BC0=24&D4AH(B, ?0) + 3>?C (?0, ?1)
return,(%��8BC0=24&D4AH(B, ?0) + 3>?C (?0, ?1) +,(%��8BC0=24&D4AH(?1, E)

Algorithm 3.3: Distance Query for Decomposed Grid Graph

3.1.3 Optimization

Avoiding Neighbors

Since the distance from a node to its neighbor is easily calculatable in a grid graph, all separations
(�, �) with |- | = |. | = 1 and the nodes of � are neighbors of the nodes of �, can be omitted. This
changes the query routine only slightly, such that for two given nodes D, E first it needs to be checked
if D and E are neighbors. If they are, 3>?C (D, E) can be immediately reported as 1.

Separation Weight Optimization

Algorithm 3.1, which is used to calculate the well separated pair decomposition for a given quadtree,
currently only checks if two quadtree nodes are well-separated if they have a level difference of at
most one in the quadtree. This can be used to further optimize a well separated pair decomposition,
which was calculated by Algorithm 3.1. Given two quadtree nodes �, � which are well-separated
according to Algorithm 3.2, it is possible that there exists a parent node of � in the quadtree, which
is well-separated with �. The same is true for the parent nodes of � and the quadtree node �. This
is the case because increasing the size of a node set � or � also adds new candidates for nodes ?0
and ?1 and because Algorithm 3.1 does not check all combinations quadtree nodes.
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3.1 Cluster Pairs for Grid Graphs

Algorithm 6: WSPDOptimization
Data: Well Separated Pairs (�, �) ∈ S
Result: Optimized Well Separated Pairs S′
S′ = ∅;
for (�, �) ∈ S do

if ∃(�, �) ∈ S′ : � × � ⊆ � × � then
continue;

14BC_F486ℎC = |�| · |�|;
(�′, �′) = (�, �);
for % ∈ ?0A4=CB(�) do

if 0A4,4;;(4?0A0C43 (-,. ) ∧ |% | · |�| > 14BC_F486ℎC then
14BC_F486ℎC = |% | · |�|;
(�′, �′) = (%, �);

for % ∈ ?0A4=CB(�) do
if 0A4,4;;(4?0A0C43 (-,. ) ∧ |�| · |% | > 14BC_F486ℎC then

14BC_F486ℎC = |�| · |% |;
(�′, �′) = (�, %);

S′ = S′ ∪ {(�′, �′)};
return S′

Algorithm 3.4: Optimize WSPD of a Grid Graph

These properties can be used to apply Algorithm 3.4 to a well separated pair decomposition of
a grid graph, to search for node separations (�, �), optimizing |�| · |�|, while node separations
(�, �) are omitted if another node separation can be used to answer all node pairs (D, E) ∈ � × �.
The set of node separations S′ is therefore greater or equal in size in comparison to the original set
S. This means every node D needs to store less node separations, which results in faster query times
and less memory overhead compared to the unoptimized node separations.

Trivial Separation

The areWellSeparated function can be extended to also check for other types of separation. Another
separation condition which can be used in addition is the following:

areWellSeparated(A, B) =

{
1, if ∀B ∈ � : ∀C ∈ � : 3>?C (B, C) = |B1 − C1 | + |B2 − B2 |
0, else

Figure 3.2 shows such a separation for a grid graph. Given two nodes B ∈ � and C ∈ � in such a
separation, 3>?C (B, C) can be easily calculated by |B1 − C1 | + |B2 − B2 |. Because of this property, such
a separation is called a trivial separation.
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Figure 3.2: Example of a trivial separation of a grid graph [Stu12]

3.2 Generalized Cluster Pairs

The method presented in Section 3.1.2 only works for grid graphs, since a quadtree built on top of
the graph is needed. Therefore, to also build node separations for a directed graph � = (+, �), the
node sets �, � of a separation (�, �) cannot be based on quadtree nodes.
Instead, node sets are grown from two initial, distinct nodes B, C ∈ + . As a condition, to decide
whether two node sets �, � can be used as a separation (�, �) the following term is used:

(3.1) areSeparation(A, B) =

{
1, if ∃?�� ∈ + : ∀B ∈ � : ∀C ∈ � : ?�� ∈ c>?C (B, C)
0, else

The node ?�� is referred to as the portal node of separation (�, �). Since these new separations
(�, �) are not based on well separated pair decompositions, they are referred to as node selections
instead of node separations.

To grow such node sets �, �, initial nodes B, C ∈ + are selected randomly, such that B ≠ C. From an
optimal shortest path c>?C (B, C) a node ?�� ∈ c>?C (B, C) is selected.
({B}, {C}) with node ?�� is now a valid selection for the definition above. For a given valid
selection (�, �) Algorithm 3.5 and 3.6 can be used to enlarge the selection while remaining valid.

Algorithm 7: canBeAddedToA
Data: Valid Selection (�, �), ?��, E ∈ +
Result: �>>;40=
for 1 ∈ � do

if 3>?C (E, ?��) + 3>?C (?��, 1) ≠ 3>?C (E, 1) then
return FALSE

return TRUE

Algorithm 3.5: Check if ({E} ∪ �, �) is a valid selection for a valid selection (�, �)
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Algorithm 8: canBeAddedToB
Data: Valid Selection (�, �), ?��, E ∈ +
Result: �>>;40=
for 0 ∈ � do

if 3>?C (0, ?��) + 3>?C (?��, E) ≠ 3>?C (0, E) then
return FALSE

return TRUE

Algorithm 3.6: Check if (�, {E} ∪ �) is a valid selection for a valid selection (�, �)

In order to find a set S = {(�8 , �8) |8 ∈ N} such that for every pair B, C a selection (�, �) ∈ S with
B ∈ � and C ∈ � can be found, Algorithm 3.7 can be used.

Algorithm 9: calculate-S-1
Data: Graph � (+, �)
Result: S
S = ∅;
T = + ×+ ;
while T ≠ ∅ do
(B, C) = randomly selected from T;
?�� = node from c>?C (B, C);
� = {B};
� = {C};
for E ∈ + do

if canBeAddedToA(�, �, ?��, E) then
� = � ∪ {E};

if canBeAddedToB(�, �, ?��, E) then
� = � ∪ {E};

T = T \ � × �;
S = S ∪ {(�, �)};

return S

Algorithm 3.7: Calculate S for a given Graph � = (+, �)

A problem which occurs for Algorithm 3.7, is that for a valid selection (�, �), a new node E ∈ + ,
will be added to either � or �, even if the addition does not further reduce the size of T and
therefore is not needed to improve the capacity of S to answer more B, C shortest path distance
queries. While this would not harm the ability to answer queries, it does drastically increase the
memory amount needed. Selection sets S calculated by Algorithm 3.8, which mitigates this issue,
were up to 99.999582% smaller than selection sets calculated by Algorithm 3.7.

27



3 Cluster-Pair based Distance Calculation

Algorithm 10: calculate-S-2
Data: Graph � (+, �)
Result: S
S = ∅;
T = + ×+ ;
while T ≠ ∅ do
(B, C) = randomly selected from T;
?�� = node from c>?C (B, C);
� = {B};
� = {C};
for E ∈ + do

if canBeAddedToA(�, �, ?��, E) ∧T ∩ {E} × � ≠ ∅ then
� = � ∪ {E};

if canBeAddedToB(�, �, ?��, E) ∧T ∩ � × {E} ≠ ∅ then
� = � ∪ {E};

T = T \ � × �;
S = S ∪ {(�, �)};

return S

Algorithm 3.8: Calculate smaller S for a given Graph � = (+, �)

Figure 3.3 shows an example of a valid selection which was grown using algorithm 3.8 on a grid
graph, whereas Figure 3.4 shows an example of a valid selection of a directed graph model of the
road network of Andorra. The nodes of the different sets � and � are colored in the different colors
green and blue, whereas the portal node is colored in red.

Figure 3.3: Example of a valid selection of a grid graph [Stu12]

28



3.2 Generalized Cluster Pairs

Figure 3.4: Example of a valid selection of a road network of Andorra

Answering Shortest Path Distance Queries

The previous section explains how to calculate a selection set for a given graph. How this selection
set S can be used to answer shortest path distance queries for node pairs (B, C) will be explained in
this section.

At first, all selections (�, �) ∈ S need to be sorted in descending order according to |�| · |�|. This
step could be omitted, but ensures that shortest path distances can be found as fast as possible.
Every selection in this sorted list then can be uniquely identified by the index 8 at which it is stored
in the sorted list. Now every node = ∈ + needs to store two lists of tuples ( and ) .

(= = {(8, 3 (E, ?��8
)) | (�, �) at index 8 ∧ E ∈ �}

)= = {(8, 3 (?��8
), E) | (�, �) at index 8 ∧ E ∈ �}

where:

?��8
is the portal node of selection (�, �) at index 8

Those lists ( and ) contain tuples with

• an index 8, which identifies a selection

• the optimal distance between the node and the portal node of selection at index 8

To ensure fast shortest path distance queries, those lists of tuples need to be sorted by the index
of the selection they represent. Furthermore, neither selection set S nor the graph � = (+, �) are
required anymore to answer shortest path distance queries. To find the shortest path distance for
given nodes B and C, the (B list of B and the )C list of C need to be searched for a common selection
index. Once a common selection index 8 is found, the optimal path distance from B to C can be
reported as the distance 3 (B, ?��8

) + 3 (?��8
, C), which is the sum of the second elements of the

found tuple entries.
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Algorithm 11: distanceQuery
Data: Source B, Target C
Result: 3>?C (B, C) or UNREACHABLE
83GB = 0;
83GC = 0;
while 83GB < B8I4((B) ∧ 83GC < B8I4()C ) do

8B = (B [83GB] .8=34G;
8C = )C [83GC ] .8=34G;
if 8B = 8C then

3B = (B [83GB] .38BC0=24;
3C = )C [83GC ] .38BC0=24;
return 3B + 3C

else if 8B < 8C then
83GB = 83GB + 1;

else
83GC = 83GC + 1;

return UNREACHABLE

Algorithm 3.9: Distance Query using Lists (B and )C

In contrast to the query scheme used by Hub Labels [DGSW14], this one does not need to find
all the common indices of selections, but is able to report the shortest path distance when one
common selection has been found. Since this query scheme does not contain any recursion and
only performs a linear scan over the sorted lists, it performs much faster than the query scheme
proposed in Section 3.1.2.

Another interesting property of this query scheme occurs when list ( or ) or even both of them are
incomplete. Since the algorithm can report every common selection index in ( and ) , a missing
index does not result in a wrong distance, but in UNREACHABLE.
Combined with another shortest path distance backup routine, this makes it possible to arbitrarily
limit the sizes of the lists ( and ) while still reporting correct distances for all queries. To do so,
first algorithm 3.9 is used to calculate the shortest path distance. If this query results in UNREACHABLE,
the backup routine will be used instead.

3.2.1 Optimization

This section explains different approaches to minimize the total number of node selections, which
results in less node selections stored per node and therefore faster query times, as well as a smaller
memory overhead.

Optimizing )= and (= stored per Node

Currently the node selections stored by one node E can overlap which means there could be a subset
of the selections stored by E which would be sufficient to answer all queries. This means that
the lists ( and ) of every node can be optimized by using an algorithm which optimizes the set
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cover problem. For this purpose, a simple greedy approach can be used, which in every step adds
the selection (�, �) ∈ )=, which adds most nodes which cannot be reached from node = by the
currently selected selections )2DAA ⊂ )=. In the same way (= is optimized, by the addition of the
node selection (�, �) ∈ (=, which adds the most nodes which currently cannot reach = as a target
when the currently selected selections (2DAA ⊂ (= are used.

Such an optimization of lists ( and ) has the following problem:
If a node selection (�, �) can be omitted because other selections (�1, �1) . . . (�8 , �8) can be
used to answer all queries (D, E) ∈ � × �, all the nodes E are not allowed to omit one of the node
selections (�1, �1) . . . (�8 , �8), otherwise there could exist pairs (B, C) ∈ + ×+ where B and C do
not store any node selection (-,. ) which could answer the distance query (B, C).
To avoid this problem two sets (:44? and ):44? are created, where all the selections which cannot be
omitted are kept. Selections which are in (:44? are not allowed to be omitted for any optimization
of any list (. The same needs to be ensured for ):44? and for any ) . After every optimization of any
lists ( and ) , with the results (′ and ) ′, (:44? and ):44? need to be updated to (:44? = (:44? ∪ ) ′
and ):44? = ):44? ∪ (′.

Limiting )= and (= stored per Node

As mentioned in Section 3.2, the proposed query routine is able to report correct distances, even if
the lists ( and ) are incomplete. This can be utilized to limit the size of the two lists. When lists
( and ) are optimized as described in Section 3.2.1, a size limit can be ensured for the lists by
stopping the greedy algorithm when the number of added selections exceeds the given size limit.
This can be used to calculate node selections, while it can be ensured that the result does not exceed
a given memory constraint.

3.2.2 Shortest Path Extraction

While node selections can be used to calculate the shortest path distances between two nodes, they
currently cannot answer shortest path queries. In this section two different approaches are presented,
showing how node selections can be used to answer shortest path queries.

Explicit Node Selection Tree Views

A node selection (�, �) containing all nodes of shortest paths from node from � to � can be seen as
two trees � and � with the center of the selection as root. Such a selection (�, �) has the following
property:

(3.2) ∀B ∈ � : ∀C ∈ � : ∀G ∈ c>?C (B, C) : G ∈ � ∨ G ∈ �

where:

c>?C (B, C) is an optimal path from B to C
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Figure 3.5 shows such a selection (�, �). The nodes in blue are the set �, the nodes in green are
the set �. The node in red is the portal node of the node selection. In this representation all edges
of the nodes which are not part of a shortest path from a node B ∈ � to a node C ∈ � are omitted.
Such a structure of a node selection will be called a tree view of the selection in the following.

Figure 3.5: Example of a complete tree view

For such a selection shortest paths queries can be answered when a tree view of them is explicitly
stored in memory. In order to do this, nodes need to store a pointer to itself in the tree view of the
selection in addition to the selection index and the distance to ?��. To answer shortest path queries
these pointers can be used to locate B and C in the tree view of the selection which answers the
shortest path distance query. Once the position of B and C in such a tree view has been found, the
shortest path can be constructed by chasing the outgoing edges starting from node B in the tree view
until a node with multiple outgoing edges is found. The same needs to be done for node C in the
tree view, but with ingoing edges. The shortest path between nodes B and C can be constructed by
concatenation of the two node sequences found by the forward search from B and the backward
search from C in the tree view.

This cannot be done for all node selections, because they do not satisfy Equation 3.2. Since most of
the tree views of node selection do not satisfy this property their tree views have holes and therefore
cannot be used directly for constructing shortest paths. Figure 3.6 shows a tree view of such a node
selection. The nodes colored in gray are not an element of � ∪ �.
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Figure 3.6: Example of tree view with a hole

In such a case the tree view needs to also include nodes which are not elements in � or � of the
node selection (�, �). The tree view only needs to store the first nodes which are not in the node
selection, but are on a shortest path from any node B ∈ � to ?�� or on the shortest path from
?�� to any node C ∈ �. The construction of a path from B to C is the same as for node selections
satisfying Equation 3.2, but once two nodes G ∉ � and H ∉ � are being found while the searches,
have been started from B and C in the tree view, a new shortest path query for nodes G and H has to
be performed, which can be answered recursively by either another node selection or any backup
routine which is able to answer shortest path queries.

Implicit Node Selection Tree Views

While the previous proposed solution is able to answer shortest path queries, the explicitly stored
tree views of the node selections can be omitted. Every node does not need to store a pointer into
the tree view of a node selection, but to the node which would be its successor in the tree view. This
encodes the whole tree view implicitly into the storage of the lists ( and ) of the nodes of a graph.
If a tree view had a hole, as described in Figure 3.6 the stored pointer would not be able to point
to a next element, but needs to encode the node which would come next in the shortest paths. As
described before, this storage structure can answer shortest path queries recursively by the usage of
the implicitly stored node selection tree views, while it is only required to store one pointer per
node per selection more, in comparison to only shortest path distance calculations.

The approach to answer shortest path distance queries presented in this section can be used for
arbitrary graphs. This makes it possible to also use it for grid graphs. It turns out that in comparison
to the well separation pair decomposition based approach, presented in Section 3.1, less information
needs to be stored per node, as well as the average runtime per query is much better.
Another advantage over the grid graph specific approach is the ability to prune the stored information
per node while remaining the ability to answer shortest path distance queries correct. This is
not possible with the query scheme proposed in Section 3.1.2, because of the recursive structure
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of Algorithm 3.3. In order to correctly answer a shortest path distance query for nodes B and C,
all recursive calls of Algorithm 3.3 also need to be answered correctly, which is unlikely if the
information stored per node is pruned. This makes the later proposed approach superior to the grid
graph specific approach, which is why in the following only the approach presented in this section
is considered.
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In this chapter, different versions of the algorithm presented in Section 3.2 are compared to each
other and to Hub Labels [DGSW14]. For the benchmarks three different graphs where used from
the Open Street Map graph data1. Table 4.1 shows the different graphs used to compare the different
approaches. It was not possible to preprocess bigger graphs, because algorithm 3.8 needs to store all
pairs (B, C) ∈ + ×+ , which caused a to high memory consumption for bigger graphs. Algorithm 3.8
needs to compute the distance between two nodes while growing selection sets. For this, a lookup
table of the distances was used, but any distance oracle could have been used there. The used
hardware was a AMD Ryzen Threadripper 1950X 16-Core Processor with 256 GB RAM.

Graph |V| |E|
Andorra 26516 49968
Malta 77950 153505
Bremen 130276 248309

Table 4.1: Graphs used for the benchmarks

For the benchmarks the distances for all pairs (0, 1) ∈ + ×+ were computed and then grouped by
their dijkstra rank.

Dijkstra Rank

The dijkstra rank of a node pair (B, C) ∈ + ×+ is defined as the number of nodes pulled out of the
heap by dijkstras algorithm presented in algorithm 2.1 when started with initial node B as source
and C as target.

4.1 Preprocessing

The preprocessing times, as well as memory consumption are quite high. Table 4.2 shows the
different preprocessing times as well as the time used for the optimization presented in Section 3.2.1
and the RAM usage during the preprocessing phase.

1https://download.geofabrik.de
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Graph Preprocessing Time Optimization Time Preprocessing Memory Consumption
Andorra 1.16 min 7.23 min 9 GBs
Malta 31.7 min 52.1 min 42 GBs
Bremen 74.6 min 144.1 min 173 GBs

Table 4.2: Preprocessing Times and Memory Consumption

4.2 Memory

Table 4.3 compares the number of stored items per node between unrestricted selection sets and Hub
Labels. In both cases these are two numbers per item. For the Hub Labels these are the ids of the
nodes and the distances to the nodes, For the selection sets these are the distances to centers of the
node selections, as well as the id which identifies the node selection. It turns out that Hub Labels
need to store fewer items per node, which results in a smaller memory footprint. To avoid high
memory requirements for node selections, the number of items stored per node can be restricted, as
proposed in Section 3.2.1.

Graph Hub Labels unrestrained Node Selection
Andorra 59.92 61.81
Malta 92.70 207.63
Bremen 80.90 196.66

Table 4.3: Average number of items stored per node

4.3 Query

In this section the query routine proposed in Section 3.2 is compared to Hub Labels. Furthermore
different size limits for the information stored per node, as proposed in Section 3.2.1, are compared
to each other. The benchmarks were created by grouping all queries (B, C) ∈ + ×+ by their dijkstra
rank and by calculating the shortest path distances of all those queries together. Then the runtimes
of all those queries were divided by the number of queries which were run together. Because there
are not many queries with the highest dijkstra rank, the runtime of the queries with the highest
dijkstrank of a graph were not stable accross different evaluations.

4.3.1 Runtime

Figure 4.1 shows the different algorithms in comparison with the dijkstra algorithm used for
Contraction Hierarchies [GSSD08] As it can be seen, this algorithm is overall much slower when
compared to Hub Labels and the node selection based algorithms. Because of that, the following
figures do not include this algorithm, but only Hub Labels and the different versions of the node
selection based algorithms.
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Figure 4.1: Runtime in microseconds per query for the Andorra graph including CH-Dijkstra

In the following the different runtimes of Hub Labels and different node selection queries, as
described in Algorithm 3.9, are compared. The difference between the node selection based
approaches are how big the lists ( and ) were allowed as described in Section 3.2.1. Since limiting
the sizes of lists ( and ) can lead to the query algorithm reporting UNREACHABLE, even if there is a
shortest path, in which case a real world application would need to call a backup routine to calculate
the optimal shortest path distance, the queries which were benchmarked were split into two different
sets. The first set contains only queries for which the benchmarked algorithm was able to find an
optimal shortest path distance, the second one only contained the queries where UNREACHABLE was
reported.

Runtime of queries answered with an optimal distance

Figures 4.2, 4.3 and 4.4 show the average time of a successful query in microseconds per dijkstra
rank. When lists ( and ) are unlimited, queries with a lower dijkstra rank take longer than the
ones with a high rank. This is the case, because queries with a high dijkstra rank can be answered
more often by node selections with big node sets � and �, which, according to Section 3.2, have
smaller indices and therefore can be found faster when scanning through sorted lists ( and ) . The
same can be observed even for size limited lists ( and ) , but not as noticeably as without limits. In
comparison to Hub Labels, Figures 4.2, 4.3 and 4.4 show that for high dijkstra ranks, queries can be
answered faster with node selection based queries. Even for small dijkstra ranks the queries are
faster compared to Hub Labels when the sizes of lists ( and ) were limited by an appropriate size.
As it can be seen in Figures 4.3 and 4.4, even a size limit of 50 elements per list ( and ) is enough
to achieve a performance comparable to Hub Labels for all queries independent of their dijkstra
rank. Only for the Andorra graph, have Hub Labels been faster for queries with a small dijkstra
rank even for size limits as small as 20 elements per list.
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Figure 4.2: Runtime in microseconds per query for the Andorra graph

Figure 4.3: Runtime in microseconds per query for the Malta graph

Figure 4.4: Runtime in microseconds per query for the Bremen graph
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Runtime of queries answered with UNREACHABLE

Figures 4.5, 4.6 and 4.7 show the average time of a query returning UNREACHABLE in microseconds per
dijkstra rank. As expected, the average runtime of queries which are not successful is independent
of their dijkstra rank. This is due to the fact that lists ( and ) need to be scanned through and
the query routine cannot return early because ( ∩ ) = ∅ and therefore no common index can be
found. The smaller the limiting factor for ( and ) is chosen, the faster an unsuccessful query can be
performed because of the smaller sizes of ( and ) .

Figure 4.5: Runtime in microseconds per query for the Andorra graph

Figure 4.6: Runtime in microseconds per query for the Malta graph
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Figure 4.7: Runtime in microseconds per query for the Bremen graph

4.3.2 Success Rate

Figures 4.8, 4.9 and 4.10 show the success rate of queries for different size restrictions, as proposed
in Section 3.2.1, depending on the dijkstra rank of the queries. The success rate ? at dijkstra rank A ,
means that a random query with a dijkstra rank of A can be answered with a probability of ?. It can
be observed the higher the dijkstra rank of a query, the higher its probability to be able to answer the
query. Almost all the restriction sizes are able to answer queries with high dijkstra ranks reliably,
which makes the node selection based approach to shortest path distance computation useable even
with strict restrictions on the number of items stored per node.

Figure 4.8: Success rate of different restricted node selection based queries for the Andorra graph
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Figure 4.9: Success rate of different restricted node selection based queries for the Malta graph

Figure 4.10: Success rate of different restricted node selection based queries for the Bremen graph

Table 4.4 shows the success rate of a random query for the three graphs for different size limits of
the lists ( and ) . It can be observed that even for small size limits ≤ 5, depending on the graph, up
to 70.5% of all shortest path distance queries can be answered. Even when the lists ( and ) are
limited to a size of two, which corresponds to saving four integers per node, between 18.9% and
48.5% of all queries can be answered successfully.

Graph
|( | , |) | ≤ 50 ≤ 40 ≤ 30 ≤ 20 ≤ 10 ≤ 5 ≤ 4 ≤ 3 ≤ 2 ≤ 1

Andorra 0.997 0.996 0.990 0.976 0.884 0.705 0.650 0.616 0.485 0.209
Malta 0.934 0.913 0.867 0.806 0.614 0.423 0.386 0.308 0.222 0.086
Bremen 0.934 0.912 0.882 0.788 0.634 0.463 0.410 0.351 0.189 0.088

Table 4.4: Success rates for whole graphs
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5 Conclusion and Outlook

In this thesis a new lookup based shortest path distance calculation scheme has been developed.
The proposed query algorithm is able to find out if the shortest path distance for a given node
pair (B, C) can be calculated, which makes it possible to prune the graph data calculated by the
proposed preprocessing scheme in an arbitrary way, because once it is obvious that the query
algorithm produces an obviously invalid result (UNREACHABLE), a backup routine applied to calculate
the shortest path distance. Additionally, when compared to state of the art techniques for shortest
path distance calculations a noticeable speed up can be observed. This makes the proposed shortest
path distance query scheme able to compete with other state of the art techniques.

Outlook

The preprocessing scheme proposed in this thesis takes a long time to complete. Additionally, the
memory usage makes it unusable for big graphs. For the future, this needs to be addressed to make
node selection based shortest path distance calculation applicable.

As a distance oracle for the preprocessing, a lookup table was used. Instead of a lookup table, another
fast shortest path distance query scheme could also be applied, such as Hub Labels [DGSW14], Transit
Nodes [BFSS07] or an interpolation between Contraction Hierarchies and Hub Labels [Fun20].
This would drastically decrease the memory usage of the preprocessing algorithm.

Another way to further decrease the memory usage of the preprocessing algorithm would be to get
rid of the necessity to store all pairs (B, C) ∈ + ×+ , which are currently needed to ensure that for
any such pair (B, C) there exists a selection which is able to answer a shortest path distance query for
nodes B and C. If this could be avoided, the memory consumption of the preprocessing algorithm
could be small enough to even preprocess big graphs.

Currently, the nodes only store the information needed in two 64-bit integers. This could be further
optimized by the usage of different encodings or other compressions, such as common prefix
compression, the same way it can be done for Hub Labels [ADGW11].

Another possible optimization could be the merging of node selections. Maybe it will possible to
merge two node selections (�, �) and (�, �) to a new node selection (� ∪ �, � ∪ �) if a new
portal node ?=4F is chosen for the merged selection. This could further minimize the number of
node selections and therefore the amount of information stored per node, as well as the runtime of
the query routine.

Furthermore, it needs to be researched if the information density stored per node can be further
optimized by reduction to other optimization problems, such as the hitting set problem.
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5 Conclusion and Outlook

In this thesis, only grid graphs were considered, in which every node has at most four neighbors. It
is common to also add diagonal cells in a grid as neighbors in a grid graph. This could lead to new
challenges and optimization opportunities not covered by this thesis.
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