
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit

Flutter on Windows Desktop: a
Use Case Based Study

Stefan Zindl

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Marco Aiello

Supervisor: Prof. Dr. Marco Aiello

Commenced: February 1, 2021

Completed: August 2, 2021

Abstract

In the last years, the number of different computer platforms increased from Desktop, mobile devices,
tablets to the Web. Among others, cross-platform frameworks enable to target all platforms. One
of those cross-platform frameworks is Flutter which is developed by Google and targets Windows
Desktop in beta stage since 2020. Because of this early stage, it is relevant to verify how well
Flutter already works on Windows Desktop. In the first part of this bachelor thesis, we compare a
simple image gallery in Flutter and WPF with .NET 5. The implementation in both frameworks
worked well with similar kind of realization. Our comparison concentrates on metrics such as
code, startup time, and packaged size. In addition, we measure RAM usage and CPU usage. We
measure these in two scenarios which we automated with a simulation script. In the second part,
we focus on the available third-party extensions and the current missing functionalities of the
Flutter framework. Our results indicate that we could implement the Flutter application with 55%
less code and with a 70 times faster startup time. Surprisingly, Flutter uses less RAM most of the
time, but instead, it needs more CPU to process the images. Nevertheless, there are some missing
important functionalities for Desktop applications such as adding icons in the system tray or adding
a menubar to the application. We show that some functionality is still missing in the current stage
of the Flutter framework, but it has a good chance to become a well established framework for new
developers.

Keywords: Desktop, WPF, Windows, Cross-Platform, Flutter, Use-Case Study

3

Kurzfassung

In den letzten Jahren entstanden viele neue Computer-Platfformen von Desktop, Mobiltelefonen,
Tablets und das Web. Vorallem plattformübergreifende Frameworks haben dazu beigetragen, alle
Plattformen zu unterstützen. Dazu zählt das neuartige Framework Flutter, welches von Google
entwickelt und seit 2020 auch Windows Desktop in Beta Version unterstützt. Daher ist es relevant
zu überprüfen, wie weit die Implementierung fortgeschritten ist, wofür wir es mit dem Desktop-
Framework WPF vergleichen, indem wir eine einfache Bildergalerie in Flutter und WPF mit .NET
5 implementieren. Die Umsetzung in beiden Frameworks konnten wir mit kleinen Unterschieden
gut bewerkstelligen. In unserer Bachelorarbeit konzentrieren wir uns im Rahmen des Vergleiches
auf die Anzahl der Codezeilen, Startzeit der Applikation und die Größe des Installationspakets.
Zwei weitere Metriken, RAM- und CPU-Verbrauch, messen wir in zwei Szenarien, welche wir
vollständig automatisiert haben. Im zweiten Teil betrachteten wir auf das Framework genauer,
welche zusätzlichen Erweiterungen es für Flutter bereits gibt und welche Funktionalitäten noch
fehlen. Als Ergebnis fanden wir heraus, dass unsere Flutter-Anwendung mit 55% weniger Codezeilen
implementiert werden konnte und die Applikation 70 Mal schneller startet. Überraschend war auch,
dass Flutter während den Szenarien weniger RAM, stattdessen aber mehr CPU zum Verarbeiten
der Bilder benötigt. In Bezug auf das Framework selbst haben wir festgestellt, dass es bereits
viele Drittanbieter-Abhängigkeiten für Flutter auf Windows gibt, was es für Entwickler attraktiv
macht. Nichtdestotrotz fehlen einige bekannte Funktionalitäten, wie Tray-Icons oder eine Menübar.
Fehlende Funktionalitäten haben wir bei dem jetzigen Stand des Frameworks zu erwarteten, dennoch
hat Flutter eine gute Chance ein etabliertes Framework für Neueinsteiger bei Entwicklern zu werden.

Schlüsselwörter: Desktop, WPF, Windows, plattformübergreifend, Flutter, Fallstudie

4

Contents

1 Introduction 13

2 Background Information 15
2.1 WPF . 15
2.2 Flutter . 18
2.3 Related Technologies . 22

3 State of the Art 25
3.1 Related Work . 25
3.2 Contribution . 26

4 Reference Application Development 27
4.1 Features . 27
4.2 Implementation . 29

5 Experiment Setup 35
5.1 Test Scenarios . 36
5.2 Metrics . 37
5.3 Test Execution . 38

6 Experiment Results 41
6.1 RAM Usage . 41
6.2 CPU Usage . 43
6.3 Packaged Size . 44
6.4 Code Size . 44
6.5 Startup Time . 45

7 Flutter Feature Completeness 47
7.1 Packages . 47
7.2 Features . 48
7.3 Widgets . 49

8 Conclusion and Outlook 51

Bibliography 53

A Reference Application 57
A.1 Flutter Version . 57
A.2 WPF Version . 58

5

List of Figures

2.1 Overview of WPF architecture (Sushil, 2015) 16
2.2 .NET - A unified platform (Richard, 2019) . 17
2.3 Main layers of Flutter architecture . 19
2.4 Code sample Figure 2.3 as widget tree . 21
2.5 Chronology of framework releases . 22

4.1 Mockup image gallery application . 27
4.2 Import procedure . 28
4.3 Detail view Procedure . 28
4.4 Model-view-viewmodel pattern . 29
4.5 Structure of application . 30

5.1 Testsystem configuration . 35
5.2 Command in our test script . 39

6.1 System memory usage during import images scenario 42
6.2 System memory usage during detail view scenario 42
6.3 CPU usage during import scenario . 43
6.4 CPU usage during detail view scenario . 44
6.5 Packaged size of applications in megabytes . 44
6.6 Average startup time in ms . 45

7.1 Availability of the top 100 most popular Dart packages by platform (Müller, 2021) 47
7.2 Example of similar packages with different target platforms 48
7.3 Simple menu bar in WPF (wpf-tutorial, 2021) 49
7.4 Menu in WPF Fluent Design . 50

A.1 Start page without loaded images . 57
A.2 Start page with loaded images . 57
A.3 Detail view . 58
A.4 Start page without loaded images . 58
A.5 Start page with loaded images . 59
A.6 Detail view . 59

7

List of Tables

5.1 Action during import scenario . 36
5.2 Actions during detail view scenario . 36

6.1 Code analyse for WPF application . 45
6.2 Code analyse for Flutter application . 45

9

Acronyms

CPU Computer Processing Unit. 3, 4, 13

MVVM Model-view-viewmodel. 29

RAM Random Access Memory. 3, 4, 13

UI User Interface. 13

UWP Universal Windows Platform. 22

WPF Windows Presentation Foundation. 3, 4, 5, 7, 9, 13

XAML Extensible Application Markup Language. 15

11

1 Introduction

Flutter is an open source cross-platform User Interface (UI) tool-kit. It has one code base and can
target mobile devices, Web and even Desktop. For this tool-kit there is some research with Flutter
on mobile devices and Web development technologies such as React Native and Electron. Flutter
on Windows is currently in beta stage which is a reason that there has not been much research
about Flutter targeting Windows Desktop. Nevertheless, Desktop applications are still developed
for business, professional, or performance-critical areas. Therefore we compare Flutter with the
Desktop application framework Windows Presentation Foundation (WPF) with .NET 5 which we
call WPF in this thesis. This bachelor thesis fills the research gap evaluating Flutter on Windows
Desktop. To set our thesis in context, we limit our research by answering the following research
questions:

Research Question 1:
Is Flutter an alternative compared to Desktop application framework
WPF with .NET 5?
Research Question 2:
What are the current limitations of Flutter?

To answer the first research question, we need to define the area we work on. To get there, we develop
a simple image gallery application in both frameworks. With each framework, we implement two
use cases: importing images and displaying an image in full size. With a simulation script, we
measure the Computer Processing Unit (CPU) and Random Access Memory (RAM) usage during
both scenarios. In addition, we compare the packaged size, startup time, and code size.

For answering the second research question, we research missing features and packages for
developing a Windows Desktop application. After that, we focus on some features which are
missing in the framework itself.

Our thesis is structured as the following. In chapter 2, we focus on the history of the Desktop
application for WPF, the .NET, and Flutter. In chapter 3, we have a look at related work to those
frameworks. In chapter 4, we first describe our features and secondly, we describe the most
significant parts which came up during our development process. In chapter 5, we describe how we
set up and execute our experiment to get the values for measuring the metrics CPU usage and RAM
usage, code and application size, and startup time. Chapter 6 shows the results of our experiment
and interprets those to find possible answers for our first research question. Chapter 7 answers the
second research question to find limitations of Flutter. In the last chapter, we give a brief conclusion
and an outlook of Flutter and which further work can be done with this thesis.

13

2 Background Information

Before we can talk about our reference applications, we take a brief look into their technologies.
The reference applications are developed in WPF with .NET 5 and Flutter. Therefore, we describe
its architectures first and then we show programming examples in both frameworks. In section 2.3,
we classify these frameworks into the broad available frameworks and on the history of the .NET
ecosystem. Finally, we also show some similar technologies which can be used for developing
Desktop applications.

2.1 WPF

WPF is one of the UI tool-kits for Windows and was developed by Microsoft and published in
2006 (Georg, 2018). It provides many features for developers to create the UI for applications.
The features include layout, resources, controls, and other elements. WPF uses the declarative
based XML language Extensible Application Markup Language (XAML) to create the layout of the
application, which we focus on in subsection 2.1.2. C# is most used to develop the logic behind the
UI. The latest version of WPF uses .NET 5 (see subsection 2.1.3) which provides the developer a
broad variety of libraries such as I/O, security libraries, and data-access. In addition, .NET provides
the NuGet package manager (Microsoft, 2021b), which allows adding more dependencies to the
application.

2.1.1 Architecture

The main feature of our application is to display images onto the screen. For this reason, we take a
look into the architecture of WPF, which is illustrated in the following Figure 2.1. The third and inner-
most layer is the operating system itself. It provides all device drivers, and basic functionality such
as window manager and displaying graphics. Additionally, it provides other low level functionalities.

Common Language Runtime (CLR) is the runtime for the application. It manages and com-
piles the code before executing the general machine code (Warren et al., 2016). CLR is a part of
.NET 5 (see subsection 2.1.3) framework.

The Unmanaged Code layer is divided into two sections. "[..] Media Integration Layer (MIL) and
resides in milCore.dll. The purpose of the milCore is to interface directly with DirectX and provide
basic support for 2D and 3D surface. This section is unmanaged code because it acts as a bridge
between WPF managed and the DirectX/User32 unmanaged API" (Sushil, 2015). The second
section contains WindowsCodecs, which is an other low-level API for processing decode/encode
images into vector graphics and display them on the screen (Sushil, 2015).

15

2 Background Information

Presentation Framework

Presentation CoreWindows Base

WPF Managed Code

Windows Codecs

WPF Unmanaged Code

GDIUser32 Device Drivers

Milcore

Direct3DCLR

Operating
System

.NET 5

WPF

Figure 2.1: Overview of WPF architecture (Sushil, 2015)

The top layer is the WPF Managed Code which includes the Presentation Framework that
provides developers the ability to create the layout with panels and content of the control. An
example of a layout written in XAML is shown in Listing 2.1.

2.1.2 XAML

XAML is a declarative markup language for creating and developing a UI for the WPF. It enables
the developer to create visible UI elements with the simple syntax in XML. It also includes layout
elements such as panels, grid, and others (George, 2021).

<Window x:Class="WpfApplication1.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

16

2.1 WPF

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Image Gallery" Height="300" Width="300">
<Stackpanel Orientation="Horizontal">

<TextBlock Text="Good Morning" />
<TextBlock Text="Hello World" />

</Stackpanel>
</Window>

Listing 2.1: WPF example to create a window

Listing 2.1 shows an example of two text boxes inside a window with the specified attributes width
and height which are wrapped inside a stack panel vertically orientated to place them above each
other. XAML supports not only specifying the elements in a vertical and horizontal way, but also in
depth, which means the further down elements are listed in code the more it shows in the front,
which enables to overlap elements.

2.1.3 .NET 5

.NET 5 is an open source cross-platform Application Programming Interface (API) framework
developed and published firstly in 2020 on GitHub by Microsoft (Microsoft, 2021a; Milanović,
2020). The goal of .NET 5 is to combine all prior .NET implementations among others such as
.NET Core, .NET Framework, Xamarin with Mono, and to run on multiple devices. This also
makes it possible to extend .NET 5 much easier to more platforms.

Win Forms
WPF
UWP

Desktop Web

.NET Standard

.NET 5

Infrastructure

Runtime Components Compilers Languages

Cloud Mobile Gaming IoT AI

ASP .NET Azure
Xamarin
MAUI Unity ARM32

ARM64 ML.NET

Figure 2.2: .NET - A unified platform (Richard, 2019)

Figure 2.2 shows the architecture and an overview of the frameworks that support .NET 5. You can
see that .NET 5 supports the most important areas. From Desktop over mobile to Internet of Things
(IoT). The low-level layer provides the runtime in which the compiled UI runs. It also provides
the latest language feature of C# 9 (Milanović, 2020). The minimal version of Visual Studio for
developing in .NET 5 is 16.8 (Lander, 2020).

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>

<OutputType>WinExe</OutputType>

17

https://github.com/microsoft/dotnet

2 Background Information

<TargetFramework>net5.0-windows10.0.19041.0</TargetFramework>
<TargetPlatformVersion>7.0</TargetPlatformVersion>
<UseWPF>true</UseWPF>

</PropertyGroup>
</Project>

Listing 2.2: WPF .Net 5 Project .csproj confugration

After we create a new project, we first need to update the project configuration, which in-
cludes the project file .csproj. Listing 2.2 gives an example of how a configuration looks like.
For a platform specific compilation for Windows we set the attribute TargetFramework to
net5.0-windows10.0.19041.0.

2.2 Flutter

Flutter is an open source cross-platform UI tool-kit developed and published on Github by Google
in 2017. The current version of Flutter is 2.2.0 which was released in May 2021 (Flutter, 2021c) .
The goal of Flutter is to provide one single code base to target different platforms. There is already
a stable version of Flutter for Android, iOS, Web, and Linux. Flutter on Windows it is on its beta
stage. Flutter has received attention exponentially in the last months. 39% of all cross-platform
developers already choose Flutter over other cross-platform frameworks. In 2019 it has risen by 9%.
React Native is the most used cross-platform framework with a market share of 42% (Baron, 2021).

Flutter is still a growing and evolving framework. It has started with Mobile development,
Web and now there are also projects using Flutter for embedded systems. Toyota started using Flutter
for the UI in their automotive (Dilan, 2021). Not only Google uses Flutter, but also it is popular
for mobile applications like Google Assistant, Google Ads, and from well-known companies like
eBay, BMW, and Alibaba. Among those companies, also Cononical, the maker of Ubuntu, has
started to replace its installer, which was written in Python (Sneddon, 2021). Flutter is not used
only for applications on existing operating systems, but also Google develops the new operating
system Fuchsia which uses Flutter for the UI (Google, 2021b).

Compared to WPF 2.1 which uses XAML for the UI and C# for the backend, Flutter uses
the programming language for both the UI elements and its backend section 2.2.

2.2.1 Architecture

The Flutter Framework is built mainly in three layers, which are shown in Figure 2.3. For
developers, the first layer is the most important one, which is the API to access features for the UI
development. The API includes widgets, rendering, animation, painting gestures, and other high
level functionalities (Flutter, 2021d).

The second layer includes the of the portable runtime which hosts the Flutter applications.
It also includes core libraries for features such as animations, graphics, plugin architecture and
toolchains (GitHub, 2021b).

18

https://github.com/flutter/flutter

2.2 Flutter

The toolchains are mostly written in C and C++ and enable creating an executable for the
specified platform. (Flutter, 2021b). Sells describes the toolchain for Flutter running on Windows:
It creates a Shell which uses mostly Skia to render at native speed to an underlying DirectX surface.
Additionally it creates a runner which loads and executes the Flutter application. The runner is
written in C and C++ and is added to the project. The developer has the ability to add native code to
it (Sells, 2020).

Embedder
Platform-specific

Native Plugins App Packaging

Thread Setup Event Loop

. . .

Engine
C/C++

Composition Rendering

Dart Runtime I/O

. . .

Framework
Dart

Widgets Rendering

Animation Painting

Gestures . . .

Figure 2.3: Main layers of Flutter (Flutter, 2021b)

2.2.2 Development

The Flutter UI is developed also with a declarative UI programming style like XAML, which means
that we describe the state we want to draw on the screen. The component based approach also
enables reusing widgets multiple times in the project (flutter, 2021).
1 class MyApp extends StatelessWidget {
2 @override
3 Widget build(BuildContext context) {
4 return MaterialApp(
5 title: 'Flutter Conuter Sample',
6 home: MyHomePage(),
7);
8 }
9 }

10

11 class MyHomePage extends StatefulWidget {
12 @override

19

2 Background Information

13 _MyHomePageState createState() => _MyHomePageState();
14 }
15

16 class _MyHomePageState extends State<MyHomePage> {
17 int _counter = 0;
18

19 void _incrementCounter() {
20 setState(() {
21 _counter++;
22 });
23 }
24

25 @override
26 Widget build(BuildContext context) {
27 return Scaffold(
28 appBar: AppBar(
29 title: Text(widget.title),
30),
31 body: Center(
32 child: Column(
33 children: <Widget>[
34 Text(
35 'You have pushed the button this many times:',
36),
37 Text(
38 '$_counter',
39),
40],
41),
42),
43 floatingActionButton: FloatingActionButton(
44 onPressed: _incrementCounter,
45 child: Icon(Icons.add),
46),
47);
48 }
49 }

Listing 2.3: Basic example in Flutter

A new Flutter project can be created with the command flutter create <project name>.
The new project includes sample code, which the above code (see Listing 2.3) is a part of. All
elements are seen as widgets, which are splitted in two main categories StatelessWidget and
StatefulWidget. StatelessWidgets are used to display a widget, which can not be modified
during runtime.The code sample in Listing 2.3 includes the StatelessWidget Center, which is
used to center its child. The Text-widget instead is a StatefulWidget, which can be rebuilt in a
new state using a new value. In our example, we use the method setState for the state management
to update the variable _counter. We trigger this method by using the FloatingActionButton.

In contrast to XAMLs visual elements, layouts and even the Padding are widgets. The Column
widget is used to display its children in a vertical order and the widget Padding is used to define the
padding of another widget. In the application, all widgets together are ordered as a tree structure.
For example Figure 2.4 shows our above code sample in Figure 2.3 in a widget tree.

20

2.2 Flutter

MyApp

MyHomePage

Scaffold

Center

Column

Text

Text

FloatingActionButton

Figure 2.4: Code sample Figure 2.3 as widget tree

2.2.3 Dart

Flutter uses the object-oriented, client-optimized programming language Dart, which is developed
by Google and it was released in 2011 (Google, 2021a). Dart also includes further features such as
garbage-collection type inference, and improvements for better performance. It is used for Web,
Desktop, Mobile, and even building server applications. The syntax of Dart is mostly influenced by
C, C++, and JavaScript and can be compiled to native code or JavaScript (Wikipedia, 2021b).

The current version of Dart is version 2.13 and its latest major feature is supporting sound
null safety, which was introduced in version 2.12 (Dart, 2021; Google, 2021a). Null safety lets
add a "?" the the type of variable, which means that this variable can set to null. By using null
safty the most important advantage is, that the application won‘t crash anymore when this variable
is set to null during runtime. Listing 2.4 shows some language features.

With the Dart package manager pub which is hosted on pub.dev, packages can be added to
the Flutter project as new dependencies to extend the Flutter framework.
1 /// Represents a class of a person.
2 class Person{
3 var name;
4 String? surname;
5

6 Person(this.name,{this.surname});
7 }
8

9 /// entry point of the program.
10 void main() {
11 var person = Person('John',surname:'Doe');
12

13 /// prints the name Max to the console.
14 print(person.name);

21

2 Background Information

15 }

Listing 2.4: Object Oriented example in Dart

Listing 2.4 is an example written in Dart. First, it shows how a class named Person can be created.
It has two variables: a non-nullable variable called name and a nullable one called surname. These
variables are set in the constructor of the class. The first parameter is the variable name which is
required to be set. The second parameter is an optional named parameter which does not be set.
Below the class, the code example shows the main method which is the entry point of the dart
program. A new object called person will be created with the values John for the name and the
optional surname parameter is set to Doe. The last line of the main method prints John, which is
the variable name of the person object.

2.3 Related Technologies

1995

Qt

2002

Windows.Forms

2002

.NET Framework 1

2006

WPF

2007

PWA

2013

Electron

2014

Xamarin.Forms

2017

Flutter

2014

.NET Native UWP

2020

.NET 5

2021

.NET 6 planned

Figure 2.5: Chronology of framework releases

Figure 2.5 shows a brief timeline of the evolution and release dates of important frameworks which
are used for Windows desktop applications. Above the timeline, the figure features frameworks
which only target the windows operating system are shown. These frameworks will be discussed in
more detail in section 2.1. Underneath the timeline different cross-platform solutions are shown.

In 2002, Microsoft developed the first version of .NET API with the Windows.Forms UI
framework (Wikipedia, 2021c). In 2006 Microsoft developed WPF, which was shown in more
detail in section 2.1. Universal Windows Platform (UWP) is also developed by Microsoft and
was released in 2008. UWP was designed to have one application with one framework to target
many different devices. The target devices include personal computers with Windows, HoloLens,
XBox, Surface Hub and especially the former Windows Phone.

22

2.3 Related Technologies

".NET Multi-Platform App UI (MAUI) is a cross-platform framework for creating native
mobile and desktop apps with C# and XAML. Using .NET MAUI, we can develop apps that can
run on Android, iOS, macOS, and Windows from a single shared code-base." (GitHub, 2021c).
MAUI is the next major step after Xamarin.Forms with more advantages and improvements in
startup tracing, faster rendering and more performance (David, 2021).

Qt is another well-known cross-platform framework to mention, which was already developed in
1995 and some companies still use this framework. The application can run on many different
platforms such as mobile phone, Desktop, and even in cars. On Windows, it is used by AMD and
Intel (Wiki, 2019) for driver settings UI.

Progressive Web Application (PWA): Web based frameworks are a different approach de-
veloping Desktop applications. Those frameworks make it possible to run an application in almost
every Web browser on any device. The most known Web frameworks are Angular, React Native and
Vue. PWAs are close to native applications, they also have access to the operating system, they work
offline and they also have native integration with features such as Desktop notifications (Khan, 2018).

Electron is an open source cross-platform framework running Web applications on a desk-
top environment. Electron consists of three components. Electron includes the Chromium‘s
rendering librariy, the JavaScript library Node.js which is built upon the V8 JavaScript engine and
an interface for common operating system operatons (Rieseberg, 2021). In addition it includes the
package manager npm, which provides many additional functionalities such as testing or debug
tools.

23

3 State of the Art

As mentioned in section 2.2, Flutter targets Mobile, Desktop, and Web. Even though the framework
is already popular between developers, it has not reached much attention in research yet. It has not
received much research despite being a popular framework amongst developers. WPF existed for
a similar framework, developed in 2006 by Microsoft that also seems to lack extensive research.
WPF has existed for a longer time. Nevertheless, there is not much research, which has been done
about WPF. Reasons are likely that in universities Linux and Web technologies are preferred.

3.1 Related Work

The bachelor thesis from Müller [2021] covers a use-case study. The study compares a dictionary
application written in Electron and in Flutter running on a Linux operating system. Since Flutter
is a pretty new UI tool-kit, the goal is to find out how the Flutter application runs on a desktop
computer and compare measured metrics. This experiment was limited to the Linux operating
system. The hypothesis for this research was that Flutter as a Desktop application is not yet a
viable choice for Desktop development, but still can be used for it with improvements and further
developments. The research concludes that there are still missing features which are needed to work
on a bigger project with Flutter. It further concluded that Flutter is not a revolutionary framework,
but could be a viable choice in the future (Müller, 2021).

Another study for consideration in regards to Web frameworks for Desktop applications was
conducted by Scoccia and Autili [2020]. "This study fills the gap that Web frameworks have not
been empirically studied so far"(Scoccia et al., 2020). The goal of the study is to find out how
the Web frameworks have an impact on their advantages and disadvantages during the Desktop
applications development. For the methodology, they analyzed 453 desktop web applications
published on GitHub and performed quality and quantity analyses to find traits and issues. As a
result of the analyise they found out that developing Web applications with a team can work well.
Obstacles can be lack of compatibility and bugs regarding the target platform. The study did not
investigate any of requirements for the development itself and maintenance work (Scoccia et al.,
2020).

Another bachelor thesis by Olsson [2020] compares the performance and look and feel between
Flutter and native applications written in Kotlin for Android and Swift for iOS. She implemented an
application to compare the metrics and came to the conclusion that the CPU performance is almost
identical to native implementations. In addition, she created a survey to find out if people notice a
difference between the Flutter UI and the native one. The survey concluded that Flutter mimics the
native look, but still differences remain. Furthermore, she concludes that flutter performs well and
is a good choice for Mobile development (Olsson, 2020) .

25

3 State of the Art

Finally, the bachelor thesis by Wu [2018] compares Flutter and React Native in its character-
istics. He developed reference applications to compare them in different areas. Wu compared the
applications in performance metrics such as disk space usage, scrolling in the app and frame per
seconds (FPS). In addition, he compared the possible state management options. He came to the
conclusion that React Native is an efficient framework and that it is a convenient platform to develop
with. Wu also concluded that Flutter has good tooling support already and applications written in
Flutter perform well (Wu, 2018).

3.2 Contribution

Since Flutter is a relatively new technology, there is not much research out there. Still, the studies
above are covering almost all target platforms for which Flutter can be used. The studies cover the
comparison to Mobile development, Web and Electron on a Linux Desktop using Web technologies.
As a comparison tool they developed an application with which they use to collect data for different
metrics. Most metrics seem to be CPU and RAM. In addition they use the code analysis to find out
if there are many differences in line of code and code complexity. In our research we could not find
any research about Flutter targeting Windows platform.

26

4 Reference Application Development

In order to answer our research questions, we implement a simple image gallery. An image
gallery combines common features for many users. Figure 4.2 shows the first mock up of our
implementation. In the next sections, we describe our features and important issues during our
implementation in WPF and Flutter.

Figure 4.1: Mockup image gallery application

4.1 Features

For the reference application we found two features to be important for both the user and developer.
The first feature is to import images (see 4.1.1) and the second is to display an image in the size of
the application (see 4.1.2) with its details.

27

4 Reference Application Development

4.1.1 Import

(a) Initial (b) Choose folder (c) Load images

Figure 4.2: Import procedure

Figure 4.2 shows the procedure on how we can import the images. In the initial state (a) no images
are loaded yet. Before we import images, we can specify how many images should be loaded from
the folder by typing the number in the textfield on the bottom of the application. For importing an
image folder, we click the import button which opens up the import dialog where we can choose the
folder to import. We accept the choice by clicking on the import button (b) and the application
starts to import the images contained in the selected folder, asynchronously (c). When there are
more images than what is displayed on the start page we can use the scroll view to see all of the images.

We added this feature to showcase some different features of the framework. First we use a
native option to open a folder picker. Next, we are interested in how the frameworks performs
importing images. In addition, we are scrolling through images, which enables us to see how well
each framework perform scrolling through a larger list of images.

4.1.2 Detail View

(a) Initial loaded images (b) Detail page

Figure 4.3: Detail view Procedure

28

4.2 Implementation

This feature is only active when images are loaded (a). We can click on an image to see its details.
The image pops up in the size of the application window and displays its details below the image
(b). We only display the most important information to illustrate where the details can be listed.

We added the second feature, because we wanted to find out how the loading in full size affect the
metrics on each framework.

4.2 Implementation

For the implementation it is not only necessary to implement the features itself. It is also important
to structure to code itself. We can structure the code with the Model-view-viewmodel (MVVM)
state management pattern. In WPF this pattern is already best practice to use this pattern compared
to Flutter there is not a best practice, but rather there are different options to choose. The MVVM
pattern allows us to separate the UI and its logic and the data itself. MVVM consists mainly of four
elements The user interacts, which is a passive view and without any logic included. Each view
has a view model, where the logic of the view is implemented. It handles the user interaction and
passes the data to different services and back to the view to update its state. The services provide
the handling to external components such as a database or a web service and consumed by the view
models.

ViewModel

View

Model

Services

Data Bindings

Notifications
Commands

Figure 4.4: Model-view-viewmodel pattern

29

4 Reference Application Development

For the MVVM pattern there are not only advantages, but also disadvantages. In the following there
are some of them listed (Bonniwell, 2018):

Advantages:

• Speed and performance enhancements

• Faster screen saving/loading

• Developer team can be split into front-end and backend developers for more efficiency
development

Disadvantages: MVVM not only creates advantages, but also disadvantages, which can affect
especially in small teams:

• It creates much overhead for simple applications

• High memory consumption in large applications

• Complexity of the application increases

For our implementation we designed our structure as shown in Figure 4.5. We added the view
GallerImagePage which communicates with the view model GalleryImagePageViewModel,
which includes the logic to import images from the folder explorer. The In both frameworks we
could not face any problems to implement the pattern.Though we faced to some other obstacles,
which we focus in the following sections 4.2.1 for WPF and section 4.2.2 for Flutter implementation.
We also show which steps we took to configure our project first. In addition, we show how we
implemented the first feature in both frameworks.

GalleryImagePageViewModel

GalleryImagePage

GalleryImageViewModel GalleryImage

Figure 4.5: Structure of application

30

4.2 Implementation

4.2.1 WPF

For our WPF implementation, we started to configure our project first. Listing 2.2 shows
our configuration of our application, which is an updated version of the configuration we
mentioned in the Background information chapter. First, we set our target Framework to
net5.0-windows10.0.19041.0.

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>

<OutputType>WinExe</OutputType>
<TargetFramework>net5.0-windows10.0.19041.0</TargetFramework>
<TargetPlatformVersion>7.0</TargetPlatformVersion>
<UseWPF>true</UseWPF>
<UseWindowsForms>true</UseWindowsForms>

</PropertyGroup>
<ItemGroup>

<PackageReference Include="MahApps.Metro.IconPacks" Version="4.8.0" />
<PackageReference Include="MaterialDesignThemes.MahApps" Version="0.1.6" />
<PackageReference Include="Microsoft.UI.Xaml" Version="2.5.0" />

</ItemGroup>
</Project>

Listing 4.1: Used Packages in WPF application

Next, we added the possibility to activate the usage of WPF itself. By default,
WPF has no access to use the native file explorer. We were able through Windows-
Forms to access the file explorer with the help of WindowsForms by adding the at-
tribute <UseWindowsForms>true</UseWindowsForms>. At last, we added the depen-
dency MaterialDesignTheme.MahApps and MahApps.Metro.IconPacks to be able to use
Google Material Design, which is also used by our Flutter application. These updates were our
first obstacle, because we have not used .NET 5 for a new project. When the configuration was
done, we could start the implementation of our application. First, we started with the UI itself.
Listing 4.2 shows a snippet from the start page. For our images, we used a simple list box, it is
bound to the view model of our Images saved in the property GalleryImages and used in line 7 in
Listing 4.2. To limit the images in the list view, we set the height to 300 pixels.
1 [...]
2 <ListBox
3 [...]
4 SelectionChanged="ListView_SelectionChanged"
5 ItemsSource="{Binding GalleryImages}">
6 <ListBox.ItemTemplate>
7 <DataTemplate>
8 <Image Source="{Binding GalleryImage}" Height="300"/>
9 </DataTemplate>

10 </ListBox.ItemTemplate>
11 </ListBox>
12 [...]

Listing 4.2: List view of images in our WPF application

We implemented the structure mentioned in Figure 4.5. During development we did not face more
issues than we did during the Flutter implementation.

31

4 Reference Application Development

4.2.2 Flutter

The development of a Flutter application for Windows is almost identical to developing in Flutter in
Android, which we developed in Android Studio. The only difference is, that we had to specify the
build target by using the command flutter build windows (Flutter, 2021a). Before we could
start to implement the application itself, we added additional packages to the dependencies (see
Listing 4.3) which are necessary to implement our features. We discussed them in section 4.1.
get_it: ^7.1.3
provider: ^5.0.0
file_selector: ^0.8.2
file_selector_windows: ^0.0.2
file_selector_platform_interface: ^2.0.2
url_launcher: ^6.0.3
path_provider: ^2.0.1

Listing 4.3: Used packages in our Flutter application

One of these packages is for accessing the file explorer. Since the package manager has lot of
different packages, there are also similar packages which have the same goal but are developed
by different developers. In our case, we first saw the package File Picker, but found it to not
be available on Windows yet. We ended up using the package File Selector as indicated in in
Listing 4.3. Because the File Selector was not fully implemented in one package, we needed to add
two additional packages file_selector_windows and file_selector_platform_interface.
Those packages enabled us to use a folder selector for our application. In chapter 7, we discuss
more about packages and their limitations in the current stage of Flutter.

1 [...]
2 Scrollbar(
3 isAlwaysShown: true,
4 child: ListView(
5 padding: const EdgeInsets.all(12.0),
6 children: model.images.map((image) {
7 return ImageView(image: image);
8 }).toList(),
9),

10)
11 [...]

Listing 4.4: List view of images in our Flutter application

Next, we implemented the list view for our image in the start page of our application. Listing 4.5
is part of the implementation. During our simulation, we recognized the scroll viewer would not
appear automatically. To fix this, we added a scroll bar widget that surrounded the list view, so that
it is visible the whole time. While implementing the feature, we saw that the levels of widget trees
grow very fast. The widget list view needs a child for the image to display. To follow a good style,
we extracted images into a separate StatelessWidget, which we called imageView and used it in
Listing 4.5 line 6. Listing 4.4 shows the code snippet of the image. For our feature to display the
image in full size, we surrounded the image with the GestureDetector widget, which allows it to
handle click events. We used the click event to go to the Detailpage, which displays the image in
full and lists the image details underneath.

32

4.2 Implementation

In chapter 2 Background Information we saw how the standard state management can be used by
using the method setState in a StatefulWidget. In this method, the logic is integrated into the
UI tree itself. This state management leads to some difficulties for testing the application and adding
additional features to it. That is one more reason to use the MVVM pattern which we showed at the
beginning of this chapter. Unfortunately, there is no best practice for implementing the MVVM
pattern in Flutter, but rather there are different packages and we decided to implement the MVVM
solution by FilledStack, since we could work with this implementation easily.

While experimenting with the the simulation script (see chapter 5) for the Flutter application,
we noticed that the function for entering text automatically in a text field, which is provided
by the Python library PythonAutoGUI, did not work. We could not find any solution on their
GitHub page or in other sources on the Web. That caused a deviation in our process in our
simulation tool. In the simulation of the scenario we left out typing the value in the text box
automatically. We did not need to add any waiting time, because both simulations WPF and
Flutter simulate the next steps at the same time. Instead we set the value of the text field to 30 by
default. Other obstacles we faced during development were the error messages while we created the
UI. The messages are unclear, which took us a while to understand and to figure out what went wrong.

Summarized, the implementation in Flutter was quite easy to finish.The structure of this declarative
programming language enables a straightforward implementation of the widget tree, which also
allows a fast realization of the applications. In total we needed more time to finish the Flutter
version due to the above mentioned obstacles and problems we faced. At the end we could create
both application, which look almost the same. We added screenshots of both implementations in
Appendix A.1 and Appendix A.2.
1 ImageView{
2 [...]
3 GestureDetector(
4 onTap: () {
5 model.goToDetailPage(image);
6 },
7 child: Padding(
8 padding: const EdgeInsets.only(bottom: 4.0),
9 child: Container(

10 height: 300,
11 child: Image.file(
12 File(model.galleryImage.path),
13 fit: BoxFit.scaleDown,
14),
15),
16),
17 [...]
18 }

Listing 4.5: Image widget from our Flutter application

33

https://github.com/FilledStacks/flutter-tutorials/tree/master/014-provider-v3-updates/2-final

5 Experiment Setup

After we developed the reference applications, we set up the experiment to measure our metrics.
First we list hardware and software that we are using for the experiment and show distortions which
can occur. Additionally, we define our test scenarios with aforementioned features in section 5.1.

In section 5.2, we show how we measure RAM usage, CPU usage, the startup time, pack-
aged size and code size. In section 5.3 we describe how we run the simulation tool to retrieve
results. For our experiment, we used one setup for all measurements:

Hardware CPU AMD Ryzen 5 2400 G
GPU Radeon Vega Graphics 3.600 MHz
System Memory 32 GB

Software Operating System Windows
Windows Version 10.0.19042.985
Flutter Version 2.0.1
Simulation script

Figure 5.1: Testsystem configuration

Figure 5.1 shows our hardware and software configuration. We run our experiment only on Windows
version 10.0.19042.985 for WPF and for Flutter we use version 2.0.1 with Dart 2.13. We
perform our scenarios with the release version of both frameworks. To measure our metrics, we
used our developed simulation script in Python.

During the experiment, we recognized that there could be different situations which lead to
values which can affect our results of the measurements. To avoid this, we tried to minimize the
following distortions to get the best results. First RAM and CPU need to be cleared, so there are no
caches stored from our application or running unexpected processes in the background. During
each run, we measure RAM usage and CPU usage for the whole system. Additionally, Windows
may start processes in the background which could influence our measured values. As a solution
we first set up our test system in a way that there are no further programs which start after rebooting
our test system for each test run.

35

5 Experiment Setup

5.1 Test Scenarios

For each feature (see section 4.1) we decided to create a test scenario. In each scenario, we we
retrieve a value every 0.5 second, which seems a good intervall to evaluate the results.

Import: Table 5.1 describes the steps we took during our import scenario. As for the first
step, we specify that we want to load 30 images (step 1) from a folder which we select in the folder
explorer (steps 2 and 3). After selecting the folder with the images, the program loads all 30 images
into the listview of our start page. The image size is between 95 Kilobytes and 20 Megabytes
and 107 Megabytes in total. For the loading process (step 4), we defined a waiting time for 60
seconds for a clear result, which we can see in chapter 6. When all images are loaded, we want to
simulate, user behavior by scrolling down the scroll view within 7 seconds (step 5). For the last step
we scroll up again within 2 seconds (step 6).

Step Second Action
1 1 Type 30 in textfield
2 2 Open folder explorer
3 6 Import image folder
4 7 - 67 Loading images process
5 68 Scroll view to bottom
6 75 Scroll view to top

Table 5.1: Action during import scenario

Detail view: In the first scenario, we were focusing on the import of images and how the frameworks
differ in that regard. Table 5.2 describes our second scenario. We start the application where two
images are already loaded (step 1) automatically with the size of 15.8 Megabyte in total. After the
loading process, we click on the first image to display the image in the size of the application with
details placed below (step 2). When we click on the same image again, we go back to the start page
(step 3). We repeat that for the second image (step 4 and 5). In the last steps, we want to observe if
there is a difference when we repeat steps 2-5 again. For a better result, we added a waiting time for
3 seconds after each click.

Step Second Action
1 0 - 3 Import 2 images
2 3 Click on first image
3 6 Click on image to go back to start page
4 9 Click on second image
5 12 Click on image to go back to start page
6 15 Click on first image again
7 18 Click on image to go back to start page
8 21 Click on second image again
9 42 Click on image to go back to start page

Table 5.2: Actions during detail view scenario

36

5.2 Metrics

In addition to both scenarios, we added a third scenario, which measures the idle state of
our operating system. We define the idle state as follows: our application is not running. Only
our Python script and Windows itself is running.This scenario allows us to understand how much
the operating system needs without our application running. Therefore, we can subtract the idle
values from the values of our first scenario to get the exact values on how much CPU and RAM our
application uses.

5.2 Metrics

In our research we are focusing first on existing tools which we could use to measure the metrics
CPU, RAM. But we could only find profilers which are used for only one programming language.
For example the built-in profiler in Visual Studio for .NET is used for WPF but can not be used
for our Flutter application. We came to the conclusion that we need our case the best solution to
develop our own Python scripts. This way, we can also design the scripts specially to target our
application.

Before we can compare our applications we need to define metrics. Each metric needs to
be specific, relevant, and measurable while our scenario is running. In our Python script, we made
use of the cross-platform library psutil, which allows us to measure RAM and CPU usage.

5.2.1 RAM Usage

In our Python script, we use the method psutli.virtual_memory() which returns the RAM
usage value in bytes back (Psutil, 2021). The amount of RAM we measure describes how many
bytes are being used on the operating system. It includes the operating system itself and any
programs which are running at that moment.

5.2.2 CPU Usage

The CPU usage describes how much of the CPU‘s total capacity is used within a specific
time (Wikipedia, 2021a). We use the method psutil.cpu_percent(interval = 0.5 seconds)
to measure the CPU and collect the value with an interval of 0,5 second. This metric is relevant to
see how efficient the framework works in our application.

5.2.3 Startup Time

We define startup time as the following: We start our stopwatch the time when we start our applica-
tion and end when all components are loaded for the first time and we can interact with the application.

37

5 Experiment Setup

The startup time metric is especially interesting for the developer cycle, because the applica-
tion needs to restart often to verify and test the updated code. For the user itself it is negligible,
because the application usually gets started once a day. Also nowadays the personal computer has
enough capacity to start a program without a large lack of performance.

5.2.4 Packaged Size

On Windows there is not a general way to package an application so we decided to use create a zip
which contains the compressed executable and its necessary binaries for the dependencies. We then
compare the size of the archive. The packaged size it is relevant for example to upload the package
into the cloud where it can be distributed to different clients.

5.2.5 Code Size

The line of code can play a big factor in bigger projects. When a feature can be implemented with
less code, it might lead to less maintainable code, which also implies less bugs. We then used the
open source program Sloc Cloc and Code (scc) to count all code lines of each project (Boyter,
2021). It was necessary to execute the executable in the terminal ./scc.exe inside our project.
The tool automatically generates a table displaying how many lines of code are used grouped by
programming languages.

5.3 Test Execution

1 def run(args):
2 we = MeasureRun(args)
3 we.start_app()
4 we.wait_for(seconds=5)
5 we.start_measurements()
6 we.run_scenario()
7 we.stop()
8 we.wait_for(seconds=8)
9 we.stop_app()

Listing 5.1: Simulation script in Python

For our simulation script, we use the Python library PyAutoGUI. This library enables us to simulate
our scenarios, which we defined in section 4.1. The simulation provides accurate results for a
representative comparison. Before we can start the simulation, we need to make sure the applications
are centered on the screen. Listing 5.1 shows the routine of our simulation script to measure our
metrics for both applications. We summarize our routine as follows: First we start the application
(line 3), second we start to measure the usage statistics (line 5). Line 6 starts the simulation we have
specified in our script all (see Figure 5.2). When the scenario is over, we stop measuring and end
the application. Our script receives three parameters. The first parameter --framework specifies
for which framework we run the simulation: wpf or flutter.The next parameter --operation
specifies which scenario we want to measure, which allows the values import and detailimage.

38

5.3 Test Execution

The last parameter --attempt stands for at which run we are at. We decided to repeat our
experiment twenty times, as it seems to be a good repetition to get a broader view of the results, in
which we can calculate meaningful median of our result.

python measure.py --framework wpf --operation import --attempt 1

Figure 5.2: Command in our test script

39

6 Experiment Results

After we executed our test twenty times, we got our raw data from each run. We can compare the
results from our scenarios (see section 5.1), we needed to process the data first. We recognized the
idle values from our third scenario were not always zero. It seems that on our test system, Windows
needed to execute programs in the background. First we thought we made a mistake so we started
to measure it a second time, which did lead to the same results. So we decided to subtract all values
from the averages of our results and the idle values. As a result, we had some negative values,
because some values from the idle state were greater than we measured in our scenarios. We knew
that the values of the idle scenario should be zero, which led us to replace all negative values with
the value zero. The results then seemed more realistic for further investigation.

To enclose our results is to mention that they can not be seen as a general performance test
for the whole framework, but rather it is a specific view of how the frameworks perform processing
and displaying images to the screen. We have also seen that scrolling in Flutter works much
smoother than in our WPF application. For a more detailed performance check we need necessary
to verify more parts of the frameworks. Further possible investigations are illustrated including the
scroll view in chapter 8.

Additionally we could not type in the amount of images in the text field from the Flutter ap-
plication in our simulation automatically, which meant that we had to wait so that the timeline
is parallel to our WPF version. As a result, our values might not be from the same exact time
step. In the following, we relate to the steps in the scenarios, which we described in Table 5.1 and
Table 5.2.

6.1 RAM Usage

Figure 6.1 shows the RAM usage for our first scenario, and Figure 6.2 the second scenario. We
described them in detail in Table 5.1 and Table 5.2. In both figures the red line represents WPF‘s
RAM usage statistics and the blue dotted line Flutter‘s RAM usage. In the both scenarios there is
in common that WPF needs more RAM after the application has started, during importing, and
displaying the images.

Focused on each scenario, we need to mention that the first scenario shows that WPF needs up to
584 Megabytes for importing the images (see steps 2 Table 5.2) which is about twice as much as
Flutter needs. We also see that WPF needs around five seconds more time to process the images
until they are imported and displayed to the screen. At the end of the scenario during the steps 4
and 5, we recognize that using the scroll viewer in Flutter is less efficient in contrast to WPF. The

41

6 Experiment Results

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

250

500

750

1,000

1,250

1,500

Time in seconds

M
em

or
y

us
ag

e
in

m
eg

ab
yt

es

WPF
Flutter

Figure 6.1: System memory usage during import images scenario

2 4 6 8 10 12 14 16 18 20 22
0

250

500

750

1,000

Time in seconds

M
em

or
y

us
ag

e
in

m
eg

ab
yt

es

WPF
Flutter

Figure 6.2: System memory usage during detail view scenario

RAM usage in WPF increases steadily as expected, because we loaded all images at once and not
when they are seen on the screen. Surprisingly, our WPF implementation uses more RAM than in
our Flutter version, when the scenario is done.

The results of our second scenario look as expected. As mentioned in subsection 4.2.2, we navigate
to a new page to display the image in full, which leads the Flutter framework to reload the images
after we go back. In our scenario, we can see this effect in time steps 3,7, and 9, which represent the
peaks in the graph.

In conclusion, Flutter consumes in both scenarios less RAM compared to WPF for the majority of
the time. One reason could be that Flutter processes and uses the RAM in a more efficient way. The
image process can be affected by the framework itself or our implementation.

42

6.2 CPU Usage

6.2 CPU Usage

Figure 6.3 and Figure 6.4 show the CPU usage for each scenario. In both figures, the red line
represents the measured values of the WPF application and the blue dotted line represents the
Flutter CPU usage statistics. We have seen in the previous section that WPF needs more RAM
most of the time, in contrast our result in CPU usage shows that Flutter needs more CPU in both
scenarios almost through the whole scenarios.

In the first scenario, it is significant that after loading the images, Flutter still needs 3% and
18%, even when the images are already imported. During the scroll view in step 5 and 6, Flutter
needs up to 50% which is 40% more than WPF.

In the second scenario, it seems Flutter loads the images much more efficiently than WPF,
which we can see at the beginning of the scenario in step 1. It is also remarkable, that Flutter
and WPF needs only 2% CPU to display the first image in full screen for the first time, but
in step 6 Flutter needs up to 23% CPU for the same scenario. The other peaks in steps 3,
5, 7, and 9 occur when the Flutter application goes from the detail view back to the start page.
We assume the higher distinction, because of the difference in implementation (see subsection 4.2.2).

In conclusion Flutter uses more CPU compared to WPF. The higher CPU usage indicates
that the Flutter Framework processes more for handling the images to reach the lower RAM usage
we have seen in the previous section.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

10

20

30

40

50

Time in seconds

CP
U

us
ag

e
in

pe
rc

en
ta

ge WPF
Flutter

Figure 6.3: CPU usage during import scenario

43

6 Experiment Results

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

Time in seconds

CP
U

us
ag

e
in

pe
rc

en
ta

ge WPF
Flutter

Figure 6.4: CPU usage during detail view scenario

6.3 Packaged Size

15.88WPF
7.98Flutter

0 5 10 15 20

Figure 6.5: Packaged size of applications in megabytes

The Figure 6.5 shows the size of the zipped applications. Our Flutter application is almost 50%
smaller, which relates to the fact, that we needed less code for the application (see section 6.4 and
we assume that the Flutter libraries are smaller. These sizes are relevant to know for distributing
the application. The only thing which is different in both applications is that we added the
Material Design to the WPF application. So without these dependencies the WPF application is
6.231 Megabytes which is then 22% larger than the Flutter package.

6.4 Code Size

Table 6.1 and Table 6.2 show the static code analysis of our applications. For our result we are
only interested in the code lines which we were coded by ourself. For the WPF we only used
C# and XAML, which in sum we used 1.508 lines of code to implement our application.
Compared to the Flutter we used only Dart with 832 lines. The other programming language are
auto generated and are needed to be able to execute the application on Windows. For the Flutter
application it seems significant that it needs several more files to create the underlying Win32
application which starts our Flutter application.

44

6.5 Startup Time

Programming Language Files Lines Code
C# 20 1260 978

XAML 5 248 240
JSON 1 10 10
Total 26 1518 1228

Table 6.1: Code analyse for WPF application

Programming Language Files Lines Code
C Header 42 3205 1670

Dart 20 832 692
C++ 12 1351 1052
XML 7 115 64

CMake 5 250 32
Shell 1 13 2

YAML 1 80 21
Total 88 5846 3533

Table 6.2: Code analyse for Flutter application

6.5 Startup Time

19Flutter
1320WPF

0 250 500 750 1000 1250

Figure 6.6: Average startup time in ms

In our experiment we used the executable .exe file to start our application. The above Figure 6.6
shows the average startup time for both application Flutter and WPF. We see surprisingly that
WPF needs 1320 ms in average until the application is started. In contrast Flutter needs 19 ms on
average.

45

7 Flutter Feature Completeness

7.1 Packages

The website for the packages is pub.dev. On its landing page you can see first the favorite packages
which are being used for flutter. During our research the three popular packages are image_picker,
shared_preferences and flutter_cache_management. Flutter targets different platforms so
we can filter the packages by the platform and how popular the packages are.

Figure 7.1 shows a short overview of how many packages from the first 100 most popular
packages are available for developing each platform. Since Flutter has started to target mobile
platforms Android and iOS, there are the most available packages with 99 out of 100. For Windows
there are already 75 of them available. As previously mentioned, Flutter for Windows in beta
stage is quite remarkable since there are already so many popular packages available. The most
popular package available for every platform is a path package that allows us to work with filepath
operations. The package http provides basic high-level functions to consume Hypertext Transfer
Protocol (HTTP) resources (Pub.dev, 2021a,b). Since the Flutter framework consists of minimal
functionalities we need to use many dependencies bigger projects. In our research we found that
there are conflicts between the used versions of a package. An example is to use the package
with version http 1.01 and an other package with version1.12.0 is not possible. To resolve
this conflict the package needs to be updated, so that all packages and the project itself use the
same package version. It can be much work especially when a bigger project which needs many
packages. To prevent this conflict it also helps to verify who develops the package and how often it
gets updated. In addition to these issues, it is important to make sure the package is available on
the platform the application should run on. The development of packages is open-source, so every
developer can develop a package and publish it on the pub.dev website. So it the completeness of
the functionality is not guaranteed.

Web

Linux

Windows

MacOS

iOS

Android

75

76

77

87

99

99

Figure 7.1: Availability of the top 100 most popular Dart packages by platform (Müller, 2021)

47

7 Flutter Feature Completeness

Package Name file_picker 3.03 filesystem_picker 1.0.4
Target Platform Android, iOS, Web Android, iOS, Linux, MacOS, Windows

Figure 7.2: Example of similar packages with different target platforms

Figure 7.2 shows two corresponding packages for providing the same solution to a file picker in the
application with different target platforms. For example, the package file_picker does not target
Windows. Therefore, it is also necessary to verify the target platforms before it can be used in the
application. Since Flutter is in an early stage, it is likely that many packages will add more target
platforms in the future.

7.2 Features

Since Flutter is open-source and is developed on GitHub, it is possible to participate in new features
which will be implemented into the Flutter framework. During our research, there were more than
5.000 issues open, which includes improvements and new features. For Windows in particular, there
are 283 issues open. We found the following issues the most important. The following features are
already listed in Github and some are already work in progress:

• Resize window with Flutter: In our app we changed the window size before its initialization
to fit our needs. While researching, we could not find a package which worked for our case
to size the window. We were required to change the window size in the native C++ Code
directly. The configuration for the window size is in the main.cpp. This file is located in the
runner folder.

• Screen center position: In Flutter it is not possible to start the application window in the
center of the screen on Windows. It would have helped us for our experiment where it was
necessary to center the application first. For this reason, we also updated the start position of
our application in the main.cpp file (GitHub, 2021a).

• Textfield shortcuts: This feature would enable the use of shortcuts in text fields. For example
Shift+End would set the cursor to the end of the text inside the textfield (GitHub, 2021d).

• UWP support in plugins: Our application will be launched from an underlying Win32
application to run it on Windows. With this feature it is possible to replace the Win32
application with an UWP application (Github, 2021d).

• Window fullscreen mode: Currently Flutter it is not possible to set the application window
to fullscreen (Github, 2021c).

• Context menu: A context menu is not available on the Desktop. On GitHub the developers
are still discussing which features it should include and how it is the best way to implement
it (Github, 2021e).

• System tray icons for desktop: The system tray icons are important on the Desktop to
display which applications are running in the background. For now, it is undecided whether
it will be added to the Flutter framework or offered as separate package (Github, 2021a).

48

https://github.com/flutter/flutter

7.3 Widgets

• Application appears always on top: Currently, it is not possible to configure the Flutter
application, that the window stays always on top of all applications. As an example on GitHub
it is mentioned the Task manager (Github, 2021b).

7.3 Widgets

For fast application development, it is necessary to have a variety of APIs which help developers to
implement the desired features. One way is to use third party packages like discussed in the previous
section. Disadvantages are that they need to rely on that the packages get updated for example, that
they fit to breaking changes in the Flutter Framework and works in a proper way and the plugin
needs to be complete. A more secure way for the developer is that the Flutter Framework provides
the features. The Flutter team has many more developers who develop, test, and periodically deploy
new updates to the framework. This allows the developers to be sure that the features are working
properly and get improved. Accordingly, Flutter is a new and small framework with still missing
features. We want to illustrate the widget menu bar and the Fluent Design which are attractive and
rich the framework for more desktop development with Flutter.

Menu bar: For most Desktop applications, a menu bar is essential. Figure 7.3 shows a simple
example of what a menu bar looks like in WPF. The menu bar is not yet available in the Flutter
Framework, but we found a prototype on GitHub where developers are working on implementing
this feature. They are not sure yet, if it will be included in the Flutter Framework or it is available as
a external package.

Figure 7.3: Simple menu bar in WPF (wpf-tutorial, 2021)

In the current state of Flutter, it is not possible to add a menubar to the application.

Fluent Design: For the user, it is not only important that all features are available to use,
but it is also essential that the user enjoys the look and feel while he works with the application.
For a better and more integrated look and feel, developers created different design guidelines for
each platform. Flutter already implements these guidelines for Android (Material Design) and iOS
(Cupertino), but at this stage, Fluent Design is not yet implemented. Figure 7.4 shows an example
of a side menu in Fluent Design. As a step further, there is already an open issue on GitHub.

49

7 Flutter Feature Completeness

Nevertheless, we found a prototype on GitHub, which is considered as a new feature for the Flutter
Framework or it will get published as a new package (Google, 2021c). Additionally, we found the
unofficial package fluent_ui, which already includes most of these guidlines (pub.dev, 2021).

Figure 7.4: Menu in WPF Fluent Design

50

https://github.com/google/flutter-desktop-embedding/tree/master/plugins/menubar
https://pub.dev/packages/fluent_ui

8 Conclusion and Outlook

Flutter is a new cross-platform UI tool-kit. It is a light-weight framework which already targeted
mobile devices, the Web, and also recently Windows Desktop. We think it is a promising framework
which made us curious to find out how well it already works on Windows compared to the longer
existing WPF UI tool-kit developed by Microsoft. In addition, we wanted to find out which features
are still missing to use this framework for a productive application. We decided to implement a
simple image gallery in both frameworks for a use case study to answer our research questions
which allows us to take our results and adapt them to many different other applications which are
working with images. For the comparison, we chose the metrics RAM and CPU usage. We used
our simulation script to collect the metrics during two different scenarios. The first scenario is
about importing images into a list view and using its scroll view. The second scenario is to display
an image in full size. In both scenarios, we discovered that WPF consumes more RAM compared to
Flutter. In contrast, Flutter needs more CPU for the majority of the time. During scrolling, Flutter
uses up to 50% CPU which is a remarkable result to observe that also tells us that Flutter is not
fully optimized yet. The results of our package size, implementation size, and startup time are
also surprising. The Flutter application requires 55% less code, and its packaged size is about
7.98 Megabytes which is about 50% smaller compared to WPF. Application startup times are
also 70 times faster on Flutter.

In our second part, we were researching additional packages for Flutter and verify if there
are features for Desktop missing. First, we found out that Windows has 75 packages out of 100 of the
first popular packages on pub.dev. The most important features for developing Desktop applications
are already available. On the contrary, we recognized that significant features are still missing. The
most useful feature would be to create a context menu which will be used in many applications. In ad-
dition, a widget for a menu bar, which is an important widget for Desktop applications, is still missing.

After evaluating our results, we can answer our research questions:

Research Question 1:
Is Flutter an alternative compared to Desktop application framework
WPF with .NET 5?
Research Question 2:
What are the current limitations of Flutter?

As far as our first research question is concerned, we think that new developers can prefer Flutter
over WPF to develop simple applications. In bigger projects, the higher CPU usage can play
a bigger role which could lead to performance issues. Nevertheless, our performance results
show that Flutter already performs well regarding RAM usage. Because Flutter is only in the
beta stage, we are sure that Google and many other developers will improve the framework to

51

8 Conclusion and Outlook

reach more companies who are willing to use Flutter in their projects. The answer to our second
research question confirms our previous answer. We think there are some limitations as mentioned
above, but Flutter can be a good choice for simple applications. If special features are required,
it should be verified that the desired functionality is available either in the framework or as a package.

In a nutshell Flutter is a great UI tool-kit which has potential for growth. After our research, we
think it is important to first specify the features the application will need. Second, this choice is
very individual and the developers’ knowledge must also be taken into consideration.

At long last, it is to mention that we only could work on some functionality of the frame-
work which gave us a specific view to answer our research questions. For further estimation and
understanding of the performance and feature completeness of Flutter and even other functionalities
of the framework it needs more research in different aspects.

There are many further features which help to understand how the framework is processing
images. In our reference application, we loaded all images at once into the list view, which causes
the high RAM usage we have seen in our results. For a further comparison, the implementation
can be modified so that the images are loaded when they need to be displayed on the screen.
This modification especially changes the RAM usage, and can be compared perfectly with our
implementation. Our reference applications can also be extended with new features, which allow
new use cases. New features could be editing images or importing videos. To rate these features,
we found a suitable metric FPS in the thesis written by Wu (see section 3.1). This metric is not only
suitable for importing videos in our gallery but also for our existing feature using the scroll view.
It is especially interesting if the framework can hold a stable FPS or if it is fluctuating. It is not
only relevant to extend the application but also use different test systems, because we could not
measure Graphical Processing Unit (GPU) usage because of the missing libraries for AMD graphic
cards. It is a good expansion for our experiment to execute it on different hardware, especially on
a test system with much less RAM and a weaker CPU to find out if Flutter works with the same
performance or if there are significant differences.

We think there are many relevant research topics, which can profit from our experiment and
its results. The research will especially help developers to understand and improve Flutter in the
future.

52

Bibliography

[Bar21] Baron. Cross-platform mobile frameworks used by software developers worldwide
in 2019 and 2020. 2021. url: https://www.statista.com/statistics/
869224/worldwide-software-developer-working-hours (cit. on p. 18).

[Bon18] Bonniwell. The 5W’s of MVVM. July 2018. url: https://www.sagitec.com/
blog/the-5ws-of-mvvm (cit. on p. 30).

[Boy21] Boyter. scc. 2021. url: https://github.com/boyter/scc (cit. on p. 38).
[Dar21] Dart. Sound null safety. 2021. url: https://dart.dev/null-safety (cit. on

p. 21).
[Dav21] David. “The New .NET Multi-platform App UI David Ortinau”. In: (2021). url:

https://devblogs.microsoft.com/xamarin/the- new- net- multi-
platform-app-ui-maui (cit. on p. 23).

[Dil21] Dilan. Toyota’s Flutter-based in-vehicle user experience. May 2021. url: https:
//dilan.me/toyotas-flutter-based-in-vehicle-user-experience
(cit. on p. 18).

[Flu21a] Flutter. Desktop support for Flutter. 2021. url: https://flutter.dev/desktop
(cit. on p. 32).

[Flu21b] Flutter. Flutter architectural overview. 2021. url: https://flutter.dev/docs/
resources/architectural-overview (cit. on p. 19).

[Flu21c] Flutter. Flutter on Github. 2021. url: https://github.com/flutter/flutter
(cit. on p. 18).

[Flu21d] Flutter. “User interface”. In: (2021). url: https : / / flutter . dev / docs /
development/ui (cit. on p. 18).

[flu21] flutter. Introduction to declarative UI. 2021. url: https://flutter.dev/docs/
get-started/flutter-for/declarative (cit. on p. 19).

[Geo17] D. George. WPF Architecutre. Mar. 2017. url: https://docs.microsoft.
com/en-us/dotnet/desktop/wpf/advanced/wpf-architecture?view=
netframeworkdesktop-4.8.

[Geo18] D. Georg. Get started (WPF). Jan. 2018. url: https://docs.microsoft.com/
en-us/dotnet/desktop/wpf/getting-started/?view=netframeworkdes
ktop-4.8 (cit. on p. 15).

[Geo21] D. George. XAML overview (WPF .NET). Dec. 2021. url: https://docs.
microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-
5.0#what-is-xaml (cit. on p. 16).

[Git21a] GitHub. [Windows] Consider adding initial screen center position #86244. 2021.
url: https://github.com/flutter/flutter/issues/86244 (cit. on p. 48).

53

https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours
https://www.sagitec.com/blog/the-5ws-of-mvvm
https://www.sagitec.com/blog/the-5ws-of-mvvm
https://github.com/boyter/scc
https://dart.dev/null-safety
https://devblogs.microsoft.com/xamarin/the-new-net-multi-platform-app-ui-maui
https://devblogs.microsoft.com/xamarin/the-new-net-multi-platform-app-ui-maui
https://dilan.me/toyotas-flutter-based-in-vehicle-user-experience
https://dilan.me/toyotas-flutter-based-in-vehicle-user-experience
https://flutter.dev/desktop
https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview
https://github.com/flutter/flutter
https://flutter.dev/docs/development/ui
https://flutter.dev/docs/development/ui
https://flutter.dev/docs/get-started/flutter-for/declarative
https://flutter.dev/docs/get-started/flutter-for/declarative
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-architecture?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-architecture?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/advanced/wpf-architecture?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/getting-started/?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/getting-started/?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/getting-started/?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-5.0#what-is-xaml
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-5.0#what-is-xaml
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/xaml/?view=netdesktop-5.0#what-is-xaml
https://github.com/flutter/flutter/issues/86244

Bibliography

[Git21b] GitHub. Flutter Engine. 2021. url: https://github.com/flutter/engine
(cit. on p. 18).

[Git21c] GitHub. Introducing .NET Multi-platform App UI (MAUI). 2021. url: https:
//github.com/dotnet/maui (cit. on p. 23).

[Git21d] GitHub. TextField: Missing keyboard shortcuts for Windows #77020. 2021. url:
https://github.com/flutter/flutter/issues/77020 (cit. on p. 48).

[Git21e] Github. [Desktop] Add support for system tray icons #81644. 2021. url: https:
//github.com/flutter/flutter/issues/81644 (cit. on p. 48).

[Git21f] Github. [Desktop] Allow "always on top" like Windows Task Manager or Android
Emulator #79840. Apr. 2021. url: https://github.com/flutter/flutter/
issues/79840 (cit. on p. 49).

[Git21g] Github. [window_size] Allow toggling full screen #679. 2021. url: https://
github.com/google/flutter-desktop-embedding/issues/679 (cit. on
p. 48).

[Git21h] Github. Add UWP support to plugin template #85836. 2021. url: https://
github.com/flutter/flutter/issues/85836 (cit. on p. 48).

[Git21i] Github. “Proposal: desktop context menu fidelity”. In: (2021). url: https://
github.com/flutter/flutter/issues/74255 (cit. on p. 48).

[Goo21a] Google. Dart. 2021. url: https://dart.dev (cit. on p. 21).

[Goo21b] Google. Fuchsia. 2021. url: https://fuchsia.dev/fuchsia-src/contribut
e/roadmap/2021/flutter_on_fuchsia_velocity (cit. on p. 18).

[Goo21c] Google. menubar. 2021. url: https : / /github . com / google / flutter-
desktop-embedding/tree/master/plugins/menubar (cit. on p. 50).

[Kha18] Khan. The Pros and Cons of Progressive Web Apps. 2018. url: https://clutch.
co/app-developers/resources/pros-cons-progressive-web-apps
(cit. on p. 23).

[Lan20] R. Lander. Announcing .NET 5.0. Nov. 2020. url: https://devblogs.microsof
t.com/dotnet/announcing-net-5-0 (cit. on p. 17).

[Mic21a] Microsoft. dotnet/core. Ed. by GitHub. 2021. url: https://github.com/
dotnet/core (cit. on p. 17).

[Mic21b] Microsoft. Nuget. 2021. url: https://www.nuget.org (cit. on p. 15).

[Mil20] M. Milanović. A Brief Walk Through .Net Ecosystem. 2020. url: https://milan.
milanovic.org/post/a-brief-walk-through-net-ecosystem (cit. on
p. 17).

[Mül21] E. Müller. “Web technologies on the desktop: an early look at Flutter”. Bachelor
thesis. 2021. url: https://elib.uni-stuttgart.de/handle/11682/11515
(cit. on pp. 25, 47).

[Ols20] Olsson. A Comparison ofPerformance and LooksBetween Flutter and NativeAppli-
cations. June 2020. url: https://www.diva-portal.org/smash/get/diva2:
1442804/FULLTEXT01.pdf (cit. on p. 25).

54

https://github.com/flutter/engine
https://github.com/dotnet/maui
https://github.com/dotnet/maui
https://github.com/flutter/flutter/issues/77020
https://github.com/flutter/flutter/issues/81644
https://github.com/flutter/flutter/issues/81644
https://github.com/flutter/flutter/issues/79840
https://github.com/flutter/flutter/issues/79840
https://github.com/google/flutter-desktop-embedding/issues/679
https://github.com/google/flutter-desktop-embedding/issues/679
https://github.com/flutter/flutter/issues/85836
https://github.com/flutter/flutter/issues/85836
https://github.com/flutter/flutter/issues/74255
https://github.com/flutter/flutter/issues/74255
https://dart.dev
https://fuchsia.dev/fuchsia-src/contribute/roadmap/2021/flutter_on_fuchsia_velocity
https://fuchsia.dev/fuchsia-src/contribute/roadmap/2021/flutter_on_fuchsia_velocity
https://github.com/google/flutter-desktop-embedding/tree/master/plugins/menubar
https://github.com/google/flutter-desktop-embedding/tree/master/plugins/menubar
https://clutch.co/app-developers/resources/pros-cons-progressive-web-apps
https://clutch.co/app-developers/resources/pros-cons-progressive-web-apps
https://devblogs.microsoft.com/dotnet/announcing-net-5-0
https://devblogs.microsoft.com/dotnet/announcing-net-5-0
https://github.com/dotnet/core
https://github.com/dotnet/core
https://www.nuget.org
https://milan.milanovic.org/post/a-brief-walk-through-net-ecosystem
https://milan.milanovic.org/post/a-brief-walk-through-net-ecosystem
https://elib.uni-stuttgart.de/handle/11682/11515
https://www.diva-portal.org/smash/get/diva2:1442804/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1442804/FULLTEXT01.pdf

Bibliography

[Psu21] Psutil. psutil documentation. 2021. url: https://psutil.readthedocs.io/
en/latest (cit. on p. 37).

[Pub21a] Pub.dev. Http 0.13.3. 2021. url: https://pub.dev/packages/http (cit. on
p. 47).

[Pub21b] Pub.dev. Path 1.8.0. 2021. url: https://pub.dev/packages/path (cit. on
p. 47).

[pub21] pub.dev. fluent_ui 2.2.1. June 2021. url: https://pub.dev/packages/fluent_
ui (cit. on p. 50).

[Ric19] Richard. “Introducing .NET 5”. In: (May 2019). url: https://devblogs.
microsoft.com/dotnet/introducing-net-5 (cit. on p. 17).

[Rie21] F. Rieseberg. Chapter 1. What Is Electron? 2021. url: https://www.oreilly.
com/library/view/introducing-electron/9781491996041/ch01.html
(cit. on p. 23).

[SA20] Scoccia, Autili. “Web Frameworks for Desktop Apps: an Exploratory Study”. In:
(Oct. 2020). url: https://dl.acm.org/doi/pdf/10.1145/3382494.3422171
(cit. on p. 25).

[Sel20] Sells. Announcing Flutter Windows Alpha. 2020. url: https://medium.com/
flutter/announcing-flutter-windows-alpha-33982cd0f433 (cit. on
p. 19).

[Sne21] Sneddon. First Look: Ubuntu is Working on a Brand New Installer. Feb. 2021. url:
https://www.omgubuntu.co.uk/2021/02/ubuntu-is-working-on-a-
brand-new-installer (cit. on p. 18).

[Sus15] Sushil. Overview of Windows Presentation Foundation (WPF) Architecture. Mar.
2015. url: https://www.c- sharpcorner.com/UploadFile/819f33/
overview-of-windows-presentation-foundation-wpf-architectu (cit.
on pp. 15, 16).

[Wik19] Q. Wiki. About Qt. 2019. url: https://wiki.qt.io/About_Qt (cit. on p. 23).
[Wik21a] Wikipedia. CPU time. June 2021. url: https://en.wikipedia.org/wiki/

CPU_time (cit. on p. 37).
[Wik21b] Wikipedia. Dart (programming language). 2021. url: https://en.wikipedia.

org/wiki/Dart_(programming_language (cit. on p. 21).
[Wik21c] Wikipedia. Windows Forms. June 2021. url: https://en.wikipedia.org/

wiki/Windows_Forms (cit. on p. 22).
[wpf21] wpf-tutorial. The WPF Menu control. 2021. url: https://wpf-tutorial.com/

common-interface-controls/menu-control (cit. on p. 49).
[Wu18] Wu. “React Native vs Flutter, cross-platform mobile application frameworks”. Mar.

2018. url: https://www.theseus.fi/bitstream/handle/10024/146232/
thesis.pdf?sequence=1 (cit. on p. 26).

[WWTW16] Warren, Wagner, Turn, Wenzel. “What is "managed code"?” In: (June 2016). url:
https://docs.microsoft.com/en-us/dotnet/standard/managed-code
(cit. on p. 15).

If not otherwise specified, all links were last followed on Aug 2, 2021.

55

https://psutil.readthedocs.io/en/latest
https://psutil.readthedocs.io/en/latest
https://pub.dev/packages/http
https://pub.dev/packages/path
https://pub.dev/packages/fluent_ui
https://pub.dev/packages/fluent_ui
https://devblogs.microsoft.com/dotnet/introducing-net-5
https://devblogs.microsoft.com/dotnet/introducing-net-5
https://www.oreilly.com/library/view/introducing-electron/9781491996041/ch01.html
https://www.oreilly.com/library/view/introducing-electron/9781491996041/ch01.html
https://dl.acm.org/doi/pdf/10.1145/3382494.3422171
https://medium.com/flutter/announcing-flutter-windows-alpha-33982cd0f433
https://medium.com/flutter/announcing-flutter-windows-alpha-33982cd0f433
https://www.omgubuntu.co.uk/2021/02/ubuntu-is-working-on-a-brand-new-installer
https://www.omgubuntu.co.uk/2021/02/ubuntu-is-working-on-a-brand-new-installer
https://www.c-sharpcorner.com/UploadFile/819f33/overview-of-windows-presentation-foundation-wpf-architectu
https://www.c-sharpcorner.com/UploadFile/819f33/overview-of-windows-presentation-foundation-wpf-architectu
https://wiki.qt.io/About_Qt
https://en.wikipedia.org/wiki/CPU_time
https://en.wikipedia.org/wiki/CPU_time
https://en.wikipedia.org/wiki/Dart_(programming_language
https://en.wikipedia.org/wiki/Dart_(programming_language
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Forms
https://wpf-tutorial.com/common-interface-controls/menu-control
https://wpf-tutorial.com/common-interface-controls/menu-control
https://www.theseus.fi/bitstream/handle/10024/146232/thesis.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/146232/thesis.pdf?sequence=1
https://docs.microsoft.com/en-us/dotnet/standard/managed-code

A Screenshots of the Reference Application

A.1 Flutter Version

Figure A.1: Start page without loaded images

Figure A.2: Start page with loaded images

57

A Screenshots of the Reference Application

Figure A.3: Detail view

A.2 WPF Version

Figure A.4: Start page without loaded images

58

Figure A.5: Start page with loaded images

Figure A.6: Detail view

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background Information
	2.1 wpf
	2.2 Flutter
	2.3 Related Technologies

	3 State of the Art
	3.1 Related Work
	3.2 Contribution

	4 Reference Application Development
	4.1 Features
	4.2 Implementation

	5 Experiment Setup
	5.1 Test Scenarios
	5.2 Metrics
	5.3 Test Execution

	6 Experiment Results
	6.1 RAM Usage
	6.2 CPU Usage
	6.3 Packaged Size
	6.4 Code Size
	6.5 Startup Time

	7 Flutter Feature Completeness
	7.1 Packages
	7.2 Features
	7.3 Widgets

	8 Conclusion and Outlook
	Bibliography
	A Screenshots of the Reference Application
	A.1 Flutter Version
	A.2 wpf Version

