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Zusammenfassung

Parallele Seilroboter sind vielseitige Robotersysteme, die skaliert und rekonfiguriert wer-
den können, um den spezifischen Anforderungen verschiedenster Anwendungen gerecht zu
werden. Während unterschiedliche Modelle, Berechnungsmethoden und Parameteridenti-
fikationsschemata in der Seilroboterliteratur zu finden sind, fehlt bisher eine systematische
Analyse des Modellauswahlprozesses für Seilroboter. Die Frage nach dem optimalen Modell
für eine bestimmte Anwendung kann nur durch eine gleichzeitige Betrachtung der Modell-
struktur zusammen mit seiner optimalen Parametrisierung gezeigt werden. Dies muss im
Kontext eines eigenständigen physikalischen Robotermodells erfolgen, der auch diejenigen
physikalischen Eigenschaften einbezieht, die im Kontrollmodell nicht vorhanden sind. In
dieser Arbeit wird die Wirkung verschiedener Modellierungsannahmen für die Analyse der
Genauigkeit der Positionsverfolgung und des Arbeitsbereichs mit Hilfe eines Meta-Modells
untersucht. Mit Schwerpunkt auf den sicherheitskritischen Echtzeit-Anwendungen, stellt
sich die eingeschränkte Modellkomplexität für einen zuverlässigen und sicheren Betrieb
als unerlässlich dar. Am Anfang der hier gezeigten Arbeit stehen die Kinematikmodelle,
die als Mindestanforderung für die Steuerung von Seilrobotern zu betrachten sind. Durch
schrittweise Erhöhung der Modellkomplexität hin zu einem elastostatischen Modell, wird
ermöglicht den inneren Spannungszustand abzubilden, der einem überbestimmten Seil-
roboter inhärent ist.

Die Kombination von Modellierung und Parameteroptimierung in der Analyse zusammen
mit einem physikalischen Referenzmodell erlaubt es, die optimale Leistung abzuschätzen,
die für eine bestimmte Modellklasse erreichbar ist. Dies ermöglicht fundierte Entscheidun-
gen auf der Grundlage der geschätzten Leistung zu treffen. Die experimentelle Analyse
und Validierung der Modelle erfolgt auf dem Cable-Robot-Simulator, der im Rahmen dieser
Arbeit entwickelt wurde. Die Ergebnisse zeigen den Vorteil der gleichzeitigen Modellerstel-
lung und Optimierung, welcher durch den Vergleich von optimierten Modellen und einem
Nominalmodell erhalten wird. Mit diesem Ansatz kann die Genauigkeit eines nominalen
Modells mit einem mittleren Positionsfehler von 39,8 mm und mittlereren Rotationsfehler
von 1,19 Grad auf einen mittleren Positionsfehler von 2,73 mm und Rotationsfehler von
0,11 Grad für ein optimales elastostatisches Modell verbessert werden. Kraftvorhersagen
für das elastostatische Modell wurden von 2426 N für das nominale Modell auf 582 N für das
optimale Modell für einem Gesamtkraftbereich von 9000 N verbessert. Da der CableRobot-
Simulator als höchst repräsentativ für Seilroboter bzgl. Architektur, Maßstab, Genauigkeit
und Sicherheitsanforderungen anzusehen ist, sollten die Ergebnisse aus dieser Arbeit gut
auf andere Systeme dieser Klasse übertragbar sein.



Short Summary

While various models, computation methods, and parameter identification schemes are
proposed in the literature on CDPRs, a systematic analysis of the model selection process
for CDPRs is missing. The answer to the question, which is the optimal model for a
specific application, can only be provided by a concurrent consideration of the model
structure together with its optimal parametrization. This must be done in the context of
a distinct physical robot model which incorporates physical properties not present in the
control model.

This thesis investigates the effect of different modeling assumptions using a meta-model
for the analysis of the position tracking accuracy and workspace. Focusing on safety
critical real-time applications such as motion simulation with human-in-the loop control,
constrained model complexity is essential for reliable and safe operation. The investigation
starts with kinematics models that can be considered as minimal requirement for the
operation of CDPRs and gradually increases model complexity to an elastostatic model
which allows to deal with the inner tension state inherent to overconstrained CDPRs.

Combining modeling and parameter optimization in the analysis together with a ground
truth model allows to estimate the optimal performance which can be reached for a certain
model class. This allows for an informed decision based on the estimated performance
rating in context of the ground truth model. The experimental investigation and validation
of the models is done on the Cable-Robot Simulator which was developed during this work.
Results show the advantage of concurrent model building and optimization by comparing
the prediction accuracy of optimized models of different complexity with the nominal model
which is obtained by highly accurate laser-tracking measurements. With this approach the
accuracy of a nominal model was improved from a mean position error of 39.8 mm and
mean rotation error of 1.19 deg to a mean position error of 2.73 mm and rotation error
of 0.11 deg for an optimal elastostatic model. Force predictions for the elastostatic model
were improved from 2426 N for the nominal model to 582 N for the optimal model for
a total force range of 9000 N. The main contribution to model accuracy is provided by
an accurate estimate of the platform load and secondary by an accurate estimate of the
system stiffness. Considering the CableRobot Simulator as highly representative for cable-
driven parallel robots by means of architecture, scale, accuracy, and safety requirements,
experimental results from this thesis should transfer well to other systems of this class.
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Symbols

AT Structure matrix
AT

1 Frist part of partitioned structure matrix
AT

2 Second part of partitioned structure matrix
AT

[SD] Structure matrix for set of dependent cables
AT

[SI] Structure matrix for set of independent cables
AT

sf Structure matrix for cabin truss
KM Cartesian reference frame of the control model
KPHYS Cartesian reference frame of the physical system
∆a Frame geometry adjustment matrix
∆amax Maximal frame adjustment value
∆amin Minimal frame adjustment value
∆b Cabin geometry adjustment matrix
∆ϵf̄ Difference in mean force prediction error
∆ϵx̄ Difference in mean pose error
∆q Cable elongation
∆q̄ Residual cable length for all poses
∆wxy Wrench projection on xy-plane
E Wire rope elasticity module
H Matrix kernel
I Identity matrix
Id Inertia tensor of drum
Ihc Inertia tensor of heli cabin
Ihc,z Inertia tensor of heli cabin around yaw axis
Ist Inertia tensor of stator
Jqx Jacobian for mapping of platform and cable velocities
Jxq Inverse mapping of platform and cable velocities
K Joint space stiffness
K[SD] Joint space stiffness
K[SI] Joint space stiffness
Ksf Joint space stiffness for truss system
KC Joint space cable stiffness
KG Geometrical stiffness
KG[SD] Geometrical stiffness for dependent cables



8 Symbols

KG[SI] Geometrical stiffness for independent cables
KGa Geometrical stiffness regarding changes in frame ge-

ometry parametrization a
KGab Geometrical stiffness regarding changes in frame and

platform geometry parametrization ab
Kwx System stiffness
M Hessian
0 Zero matrix
JP Geometric Jacobian
R0P Platform rotation matrix
Rx(ϕx) Elemental rotation around x-axis
Ry(ϕy) Elemental rotation around y-axis
Rz(ϕz) Elemental rotation around z-axis
SC Paramter set
SD Parameter set of dependent model structure
SI Parameter set of independent model structure
S Paramter set
TA Torque form heli platform
TM Heli motor torque
aN Nominal frame geometry
ai Frame attachment point i

aini Initial frame geometry
aopt Optimal frame geometry
arand Random frame geometry matrix
ax1 Sub-vector element form frame geometry
αmax Maximal angular acceleration for heli cabin
bN Nominal platform geometry
bi Platform attachment point i

bopt Optimal platform geometry
β Pulley angle around center axis
κ Matrix condition number
dW Max distance of a sample set
da Max distance of cable attachment points
dr Drum radius
δli Differential cable vector
δϕ Infinitesimal euler rotations
δϕx Infinitesimal rotation around x-axis
δϕy Infinitesimal rotation around y-axis
δϕz Infinitesimal rotation around z-axis
δui Cable unit vector differential
ex Unit base vector x
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ey Unit base vector y
ez Unit base vector z
κlin Linear elastic model
ϵf̄ Mean force tracking error
ϵϕ Rotation error
ϵϕx Rotation error around x-axis
ϵϕy Rotation error around y-axis
ϵϕz Rotation error around z-axis
ϵq Cable length error
ϵq̄ Mean cable length error
ϵq̄opt Mean optimal cable length error
ϵq̄V Mean validation cable length error
ϵr Position error
ϵrx Position error x
ϵry Position error y
ϵrz Position error z
ϵx Pose error
ϵxN Pose error for nominal model
ϵxj Pose error at pose j
ϵx̄ Mean pose error
ϵr̄ Mean position error
ϵr̄opt Mean optimal position error
ϵr̄V Mean validation position error
ϵϕ̄ Mean pose rotation error
ϵϕ̄opt

Mean optimal rotation error
ϵϕ̄V

Mean validation rotation error
ϵxopt Pose error for optimal model
f Cable forces
fA Inner forces of heli platform
f[D] Forces of dependent cables
f[I] Forces of independent cables
fT Constant motor torque force
f̄M Measured cable forces for sample set
f̂ Mixed force vector
fref Reference cable forces
fsfi Truss member force i
fM Measured cable forces
f̄M Set of measured cable forces
fmax Maximal allowed cable forces
fm Central cable forces
fmin Minimal allowed cable forces



10 Symbols

fP Predicted cable forces
fsf Internal forces of cabin space frame
υ Forward kinematics
υel Elastostatic forward kinematics
υopt,c Optimal model from candidate set
υ̂ Inverse kinematics of ground truth model
γ Statics for kinematics model
γsk Statics for standard kinematics model
φ Inverse kinematics
φN Nominal inverse kinematics
φel Elastostatic model
φex Extended kinematics model
φj Evaluated model a j-th sampling point
φopt Optimal model
φopt,c Optimal model from candidate set
φpl Pulley model
φ̂ Ground truth model
φsg Surrogate model
φsk Inverse kinematics standard model
k Cable stiffness
kF Cable unit stiffness
kFopt Optimal stiffness parameters
ksf Carbon fiber space frame stiffness
li Cable vector i

m Number of cables
mI Number of independent cables
mc Cable mass
η Model composition
ηel Standard model for elastostatics
n Number of degrees of freedom (DOF)
nc Number of model candidates
np Number of model parameters
nq Number of joint space sensor readings
ns Number of samples
p Parameter vector
pA,i Pulley reference point
pB,i Pulley cable contact point
pM,i Pulley center point
pD Model design parametrization
p̂ Ground truth parametrization
pN Nominal model parametrization
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pab Geometric model parameters
pη Parameterized model composition
pηopt Optimal parametrization for model composition
pκ Elastic model parametrization
pex Parametrization for model extension
pγ Statics model parametrization
pini Initial model parametrization
pj Paramter j
pk Parametrization k

pk+1 Parametrization k + 1
pφ Standard kinematics parameter vector
p̂φ Kinematics ground truth parametrization
plin Linear elastic model parametrization
popt Optimal model parametrization
ppl Pulley model parametrization
p̂ Physical or ground truth parameters
ϕ Platform rotation vector
ϕm Measured platform rotation vector
qN Nominal cable length
q0 Initial cable length in workspace
qD Dependent cable length
qI Independent cable length
qi Free cable length in workspace
q̄θM Measured cable length
qoff Cable offsets associated with the pretension state f0

qoff,N Nominal cable offsets
qP Predicted cable length
qsf Length of truss members
qθ Controlled cable length
q̄θ Controlled cable length for all samples
q̄θV Input validation sample set
q̇θ Controlled cable velocity
qθi Controlled cable length for individual cable
q∗
θ

Axio control cable length
qθtc Twincat control cable length
r Platform position vector
rm Measured platform position vector
rp Pulley radius
r System redundancy
rx x-position
ry y-position
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rz z-position
ρ Residual function
ρq Residual function for cable length
ρwe Residual function for wrench
τ Motor torque
τref Motor torque reference
τx Exerted torque by human subject around x-axis
τy Exerted torque by human subject around y-axis
ui Unit cable direction vector i

usfi Unit vector of platform truss
wA1 Internal wrench of heli axis for upper section
wA2 Internal wrench of heli axis for lower section
wT Augmented wrench
wρq Weighting factor for cable length residual
wρwe Weighting factor for wrench residual
wsf Joint loads of space frame
wsfi External wrench for truss node i

wxy Projected wrench on xy-plane
we External wrench
weopt Optimal wrench from load identification
WWF Wrench feasible workspace
WN Nominal workspace
WR Reachable workspace
WM Control model workspace
WGT Ground truth workspace
WOPT Optimal workspace
WPHYS Physical workspace
x Platform pose, generalized coordinates
x0 Equilibrium state pose
x̂ Actual platform pose
x̄ Reference pose set
xθ Desired platform pose
ẋ Platform velocity
xerr Pose error
xini Initial platform pose
xM Measured pose
x̄M Measured pose set
x̄MV Validation pose set
xmax Upper pose boundary
xmin Lower pose boundary
xP Predicted pose
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x̄P Predicted pose set
xref Reference pose
x̄ref Reference pose set
xs Tracked position of human subject
xsf Truss node displacement
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1 Introduction

The technology of cable-driven parallel robots (CDPRs) combines the concept of conven-
tional parallel robots with the well established technology of cable-driven machines as used
for stage systems, cranes, elevators, cable cars, and similar applications. Using cables for
actuation has the goal of creating robots for large workspaces with minimized actuated
mass and an increased dynamic range. While conventional parallel robots such as hexa-
pod systems shown in Fig. 1.1a have a very limited workspace, the possibility of scaled up
workspaces achievable with cable-driven parallel robots can immediately be seen by exam-
ples such as the cable cam or FAST telescope (Nan 2006; Tang et al. 2011) in Fig. 1.1b
with a diameter of 500 m.

(a) Haxapod motion platform (b) FAST telescope

Figure 1.1: Examples for parallel kinematics with rigid and cable-driven links and different
workspaces

There are many ways to design cable-driven parallel robots by varying the number of
cables and geometric structure of the platform and frame. Fundamental research on cable-
driven parallel robots regarding design (Gagliardini et al. 2014, 2018), control, kinematics,
and system dynamics has been conducted by different research institutes around the world.
Prototypes for industrial applications such as maintenance, 3D printing (Barnett and Gos-
selin 2015; Izard et al. 2017; Zhong and Qian 2018), storage and warehouse applications
(Hassan and Khajepour 2009; Miermeister et al. 2014), and motion simulation (Miermeis-
ter et al. 2016) were developed. A comprehensive overview of the various designs and
existing prototypes can be found in (Pott 2018a).

This thesis focuses on configurations with a redundantly constrained platform with
m = 8 cables for robots with n = 6 degrees of freedom (DOF) which are widely used
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in the research community such as the IPAnema family at Fraunhofer IPA (Pott 2013),
CoGiRo at Lirmm (Lamaury and Gouttefarde 2013), MARIONET at Inria (Merlet 2010),
Segesta at University of Duisburg-Essen (Hiller et al. 2005), and the CableRobot Simula-
tor (Miermeister et al. 2016) at the Max Planck Institute for Biological Cybernetics. The
CableRobot Simulator was developed during this thesis in an collaboration between the
Max Planck Institute for Biological Cybernetics and the Fraunhofer IPA using the concept
of CDPRs for the design of a new generation of motion simulators. Using cables to control
the motion of the simulator cabin allowed to utilize the advantages of CDPRs to build a
lightweight motion platform with high flexibility for the mounting of various cabins and
an exceptional large workspace. An icosahedron cabin for general purpose scenarios and
a helicopter cabin for flight simulation were integrated during this work and are shown in
Fig. 1.2a, 1.2b.

(a) The icosahedron shaped carbon fiber plat-
form provides space for one or two seats
while keeping the weight below 80 kg

(b) The helicopter simulator uses a chassis from
a Cabri G2 helicopter which is mounted to
an endless rotating yaw-axis

Figure 1.2: The CableRobot simulator in operation with two different cabins.

For any given application, the question of robot performance with regards to position
tracking accuracy, the reachable workspace, and safety and reliability is essential. The key
element influencing these three properties is the motion controller. As outlined in more
detail in the next section, for any given CDPR setup, a motion control model has to be
found which performs well regarding the stationary positioning accuracy and allows to
reach the entire workspace. In general, the requirements for pose tracking accuracy may
differ with the use case e.g. pick and place applications or 3D printers require a certain
level in position accuracy. Motion simulators require accurate acceleration tracking which
translates to a requirement on pose tracking accuracy for the low frequency components
of vehicle motion. For high frequencies components of the motion signal such as engine
vibrations, correct directional alignment is of less importance. A subject’s perception of
acceleration in a motion simulator is determined by the actual dynamic acceleration of the
simulator cabin as well as the gravitational force. Motion cueing with tilt coordination
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(Nesti et al. 2012) allows to use the gravitational force vector for the reproduction of sus-
tained accelerations in the limited operational space of the simulator. Considering that the
correct perception of the acceleration depends on the correct alignment of the gravitational
force vector, platform orientation, and direction of motion, an accurate calibration of the
system kinematics is essential.

Likewise to requirements for positioning accuracy, the requirement for the reachable
workspace also varies with the application. To use the same example as above, a pick-
and-place task with given target locations for example requires a very different workspace
than a 3d printing process where the maximum reachable volume is of interest. While it
is desirable to maximize the position accuracy and reachable workspace, this comes at the
expense of increased model complexity, costly high accuracy sensors, and an increasing
demand in computational power. For applications such as motion simulation it is impor-
tant to limit model complexity for safety reasons. Models with an extensive number of
parameters and system states are more difficult to check and maintain. The search for a
simple yet accurate model relates directly to the question of parameter identification and
sensitivity analysis in order to find the optimal model with regards to accuracy, reachable
workspace, computational costs, and safety. In the following a detailed overview of these
important aspects is given.

Position Tracking Accuracy is determined by the robot hardware and control model. An
optimal hardware design tries to minimize the necessary model assumptions and puts less
demands on the control model. For CDPR design this are point-like cable outlets, rigid
lightweight cables, and simple powertrain mechanics. These design goals often cannot
be met and point-like cable outlets have to be replaced by pulleys due to the minimal
bending radii of the cables. Cables also have high elasticties compared to rigid links adding
compliance to the system. The motion controller which drives the hardware influences the
stationary as well as the dynamic position tracking accuracy. The stationary accuracy
is determined by the kinematics, statics, and compliance of the CDPR which have to be
accounted for by the control model. A model which considers all of these properties is
called an elasto-geometric or elastostatic model. Having a properly designed elastostatic
model is the foundation for accurate stationary and dynamic tracking accuracy. Models for
dynamic tracking accuracy are usually used in a closed-loop configuration and rely on real-
time sensor data to minimize the tracking error. This in general loosens the requirement
for model position accuracy, but in case of CDPRs the platform position often is not
measurable and has to be reconstructed from winch encoder values bringing back the
requirement for an accurate model.

Workspace In contrast to serial and parallel kinematics with rigid links, the workspace
of a CDPR is not geometrically defined by its joint limits and collision space but by the
necessity to maintain a force and torque equilibrium at each pose using only positive
cable forces resulting from the fact that cables can only exert pulling forces. The detailed
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concept and definitions for the general workspace of CDPRs can be found in (Verhoeven
et al. 1998a,b; Verhoeven 2004). Further types of workspaces where defined using different
criteria to measure if poses belong to the workspace. The wrench-closure workspace or
controllable workspace is defined by all poses which fulfill the static equilibrium condition
with positive cable forces and also regarding the force transmission ratio of the individual
cables to rate the quality of the pose (Gouttefarde and Gosselin 2004; Verhoeven and
Hiller 2000). One of the most useful definitions for the workspace of CDPRs used in actual
applications is the wrench-feasible workspace (Gouttefarde et al. 2007) which is defined by
all poses that can be reached with positive cable forces in a predefined force range. This
definition relates to the fact that cable forces have to obey to a lower limit to avoid slack
cables and to an upper limit to avoid overload of the cables, drives, and guiding structures.
Further definitions for CDPR workspaces consider cable collisions (Blanchet and Merlet
2014; Merlet 2004; Perreault et al. 2010) or system dynamics (Gosselin 2013) but are not
further considered in this thesis.

Reliability and Safety Although essential for many CDPR applications not much work
has been published with respect to the reliability and safety of motion controllers for
CDPRs. This may be caused by the fact that most demonstrators are still operated
at research facilities and not used in interaction with humans despite the fact that many
application ideas target safety critical applications. Proposals for the use as a rescue system
(Merlet and Daney 2010), as gait rehabilitation trainer (Lamine et al. 2017; Surdilovic
and Bernhardt 2004; Wu et al. 2011), or motion simulation (Kljuno and Williams 2008;
Schmidt 2013) are all safety critical and need careful consideration of the motion control
architecture. Some aspects regarding the design of safe hardware for cable-driven thrill
ride application is addressed in (Dietz et al. 2012). Safety applications in general demand a
safe control architecture and safe control hardware and therefore limit the range of usable
control architectures and computer hardware. While complex models may give better
accuracy, implementation may not be feasible in safety critical applications.

Beside the CableRobot Simulator, only few other application exist where CDPRs are
operated in close vicinity to humans. Mostly known is the Skycam (Cone 1985) which is
a cable-driven suspended camera system that is operated above large crowds of people.
Another application was implemented by the University of Stuttgart for the EXPO 2015
using a suspended CDPR design to move synchronized animation screens above a crowd
of visitors (Tempel et al. 2015a) leading to SIL-3 safety requirements. The setup used
certified stage equipment for the winches and space frame structures. Trajectories for the
show were optimized with an offline path planning software considering workspace, force
distributions, and collision space. The trajectories were tested, certified, and replayed
during the show. The CableRobot Simulator (Miermeister et al. 2016) which was designed
and used for the modelling in this thesis, also uses SIL-3 certified stage equipment in
combination with an industrial rated control solution. This allows the use for realtime
human-in-the loop physics simulations and with motion cueing algorithms which is shown
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in more detail in Chap. 6.

1.1 Literature Review of Models for Position Control and Workspace
Computation

The process of choosing a model structure is difficult to formalize and usually relies solely
on the experience of the robot designer. With respect to the model structure, one can find
many publications proposing models with various degree of complexity which can be chosen
for the control of a CDPR but little work has been conducted on the systematic comparison
of theses models with respect to pose accuracy and their impact on the workspace. This
relates to the fact that most models are provided without a clear definition of their physical
environmental context. A meaningful estimate of the model accuracy and the workspace
can only be done for a defined physical context which allows to model deviations between
model assumptions and environmental conditions. The standard model (Pott 2018a)is
the most basic kinetostatic model for the control of CDPRs is extensively described in
(Verhoeven 2004) including the analysis of force distributions. The model is used in most
CDPR prototypes and methods for its parameter identification and measurements of the
stationary control accuracy are reported in (Duan et al. 2014; Jin et al. 2018; Miermeister
and Pott 2012; Miermeister et al. 2012; Sandretto et al. 2013).

Extensions of the standard model concerning the geometry of the redirection pulleys
can be found in (Bruckmann et al. 2008; Miermeister and Pott 2010; Pott 2012; Schmidt
and Pott 2013; Tempel et al. 2015b). A simulative analysis was conducted by (Pott 2012)
comparing the pulley model to the standard kinematics model considering the outputs of
the associated inverse kinematics, the outputs of the force distribution algorithm, and the
impact on workspace computations. An experimental analysis was conducted by (Schmidt
and Pott 2013) comparing the forward kinematics solution of the standard and pulley
model to the respective laser tracker measurements on the IPAnema demonstrator.

An extension regarding the geometry and statics of sagging cables with mass is described
in (Gouttefarde et al. 2012; Kozak et al. 2006; Nguyen et al. 2013; Riehl et al. 2009) and
in combination with pulley kinematics in (Gouttefarde et al. 2014).

Models regarding the kinematics of the winch winding mechanism capture a variety of
winch designs and are mostly specific to the respective CDPR assembly. Winch designs
as used for the MARIONET CDPR (Merlet and Daney 2010) use a simplified winch as-
sembly where the cable is wound up on the drum without guiding mechanism leading to
overlapping of the cable on the winch and an unpredictable cable contact point and chang-
ing winding diameter. The deviations from predictions of the kinematics model caused by
such assembly are difficult to model and sensor concepts for compensation are proposed
using cameras for pose estimation (Miermeister et al. 2014)or color markers for accurate
cable length measurements(Merlet 2019). Drums with helical grooves allow to capture
the winding behavior with a geometric model considering the winding helix and the cable
length between the drum contact point and the first redirection pulley. Such winch de-
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signs are used in most stage system applications, as well as the CableRobot Simulator and
CoGiRo demonstrator. More sophisticated designs use guiding mechanisms to synchronize
the position of the first redirection pulley and the drum contact point. This mechanism
is described in (Fang 2005) and is used in an industrial rated winch design developed at
Fraunhofer IPA and also used for the IPAnema robots (Pott 2013). Even more detailed
analysis of the winding process including cable ovalization was performed by (Schmidt and
Pott 2016) measuring the effect of cable forces and cable speed on the winding behavior.

Beside geometry and statics, CDPRs are subject to compliance which are accounted
for by elasticity models. The most simple approach approximates the elastic behavior of
the cables by a linear spring and the associated well understood linear stiffness model
as can be found in (Verhoeven 2004). While the linear model is a first approximation
of the cable elasticity, measurement on different CDPRs showed nonlinear and hysteretic
behavior (Kraus et al. 2013b; Miermeister et al. 2015, 2016). An extended stiffness model
considering the effect of the cable catenary can be found in (Yuan 2015).

1.2 Model Classes and Complexity

All models of the previous section belong to the class of physical white-box models whose
inner structure and parameters can be interpreted in a physical way. Black-box models
in contrast use some abstract mathematical function which is parameterized in order to
best fit a certain sample set recorded from the CDPR. This can be polynomial models,
nonparametric models such as radial basis functions, or neural networks. Some authors
used the black-box approach to predict cable forces or model the behavior of the powertrain
(Piao et al. 2019).
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Figure 1.3: Incresing model complexity
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Models are approximations of the physical reality underlying the actual CDPR assembly.
The complexity of the model can vary as shown in Fig. 1.3 and the modeled effects mainly
depend on the models intended use, ranging from models with low complexity for realtime
control to ground truth models of high complexity which allow detailed simulative analysis
at the cost of longer computation times. Since white-box modelling is mostly based on
the intuition of a researcher, one must be very careful adding complexity to the models.
Beginning with a simple physical white-box model which captures the most important
features of the system behavior, such as the standard kinematics model for CDPRs, addi-
tional features can be added to the model. Extensions such as pulleys, sagging, friction etc.
allow to achieve better model predictions but may lead to overfitting an divergence from
physical reality. Proofing that the proposed model structure and parametrization actually
aligns with some physical effect must be carefully done to make it distinct from a black-box
model where similar results are achieved by physical unrelated abstract functions.

One should always keep in mind that a well parametrized simple model can perform
better than a poorly parameterized complex model. Complex models with additional pa-
rameters are usually less general yielding higher variance and may tend to overfit, need more
system resources for computation, are harder to maintain, and may show unpredictable
behavior causing additional safety issues. Finding the optimal model with respect to pre-
diction quality, one has to solve the bias-variance tradeoff problem as shown in Fig. 1.4
by the two black lines. The model prediction bias describes the error caused by model
simplifications, while the variance relates to the error caused by errors in the sampling
data which are used for parameter optimization. High variance models tend to cause large
generalization and out-of sample errors. Considering only these two factors, the optimal
model lies at the intersection of the bias and variance curve indicated by point A.
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Figure 1.4: Optimal model complexity under the consideration of the bias-variance tradeoff
and additional evaluation criteria
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For actual applications additional criteria such as computational effort, reliability, or
safety have to be considered for the control model. Adding these criteria to the overall cost
function during the model selection process adds strong arguments for favoring simplicity
over complexity and to use a pareto-optimal model that has a higher prediction bias as
indicated by point B in Fig. 1.4.

1.3 Problem Definition

Starting with a specific CDPR configuration, the central problem is finding a motion con-
trol model which allows to achieve sufficient stationary positioning accuracy, controls the
platform such that it reaches most of the workspace, while keeping the model complexity
at a minimal level.

The requirements for positioning accuracy and workspace reachability can be associated
with the CDPR setup leading to the question of the maximal reachable workspace and the
related positioning accuracy or they can be associated with a specific task leading to the
question if the model allows to reach the task workspace with sufficient accuracy.

The request for minimal model complexity usually comes from three directions. The
model should be fast to compute and deterministic to run on a real-time system. It should
be easy to test and understand the model to avoid unpredicted side effects which is espe-
cially important for safety critical applications. All parts of the model should contribute
to the model prediction in a significant way. This relates to the fact that over-complex
models with many parameters tend to overfit since different parts of the model provide
similar contributions to the model output.

While the literature from the previous overview address different aspects of CDPRS
which can be used in a model selection process, no systematic approach has been presented
so far which allows to select, optimize, compare, and measure the impact of the models and
their parameters with respect to the position accuracy, workspace, and model complexity.

1.4 Objective and Structure of this Thesis

The objective of this thesis is the systematic analysis of the model selection process and its
application to the synthesis of an optimal kinetostatic control model for the CableRobot
Simulator regarding its accuracy, workspace, and complexity. The CableRobot Simulator
unites many of the features discussed in CDPR literature such as large pulley diameters,
heavy steel cables which allow for significant sagging, and a large workspace. It also re-
quires high performance yet safe control models which allow for human-in-the-loop motion
simulation experiments. Results from model selection and analysis applied to the CableR-
obot Simulator should translate well to other CDPR systems.

The general structure of the selection process is shown in Fig. 1.5 and starts with the
model design (1) where the model structure and parametrization is chosen, e.g. geometrical
relations and parametrization of the platform, frame, and pulleys, or an elasticity model
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with its stiffness parameters. Second, the optimization step (2) where the parametrization
of the model is adjusted such that model predictions get optimally aligned with actual
measurements, and finally the evaluation step (3) where the model is rated, analyzed,
or compared to other models using specific performance criteria. In the following, the
different parts of this process and the respective chapters in the thesis are outlined.
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Figure 1.5: Meta model for control model generation

Starting with the model design (1), the models must be structured in perspective of the
iterative refinement step (c) such that they allow for a incremental variation of the model
complexity in terms of the structure and associated parametrization.

The second chapter derives the model structure and mathematical representations for
the modelling of cable-driven parallel robots focusing on physical first principal models.
The chosen physical representation is used to describe models of different complexity and
provide the foundation to analyze the effect of structural variations on the model predic-
tion accuracy and the workspace in chapter three. For each model, the forward and inverse
description is provided which is required for combining control models and ground truth
models in the proposed meta-modelling approach as well as the later parameter optimiza-
tion. In perspective of optimization, parameter identification, and sensitivity analysis,
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the associated gradient flow is derived analytically focusing on integrity with the modular
approach and structural variations. This allows to create the model structure in an in-
heritive manner such that model extensions can be added or composed while keeping the
meaning of its parametrization and the objective functions and Jacobians for optimization
unchanged.

The third chapter derives a meta-modelling approach as foundation for a unified com-
parison of different models in the context of a ground-truth model which represents a
system of higher complexity. The architecture of the meta-model involves the combination
of different physicals models and allows to make the distinction between different types of
model parametrizations, namely the nominal, physical, and optimal parametrization. This
differentiation between types of parametrization is identified as essential to the goal of
unified model comparison. In the following an analytic description of the pose accuracy in
context of the meta-model is derived and the reachable workspace is defined. The reachable
workspace extends the concepts of the wrench-feasible workspace allowing to regard the
combination of different model assumptions for the control model and ground-truth model.
The meta-model then is used to analyze control models of different structural complexity
together with their parametrization to understand the possible impact on the previously
defined pose tracking accuracy and reachable workspace based on the models from chapter
two.

Chapter four deals with the model optimization and parameter identification comple-
menting the structural analysis form chapter three. It shows the importance of a concurrent
model building and optimization process for physical modelling to obtain optimal predic-
tions and to avoid the problem of overfitting. The necessary objective function and the
associated Jacobians as well as the sample selection and numeric conditioning of the opti-
mization problem are derived based on the models and their differential counterparts form
chapter one.

Chapter five provides a detailed description of the CableRobot Simulator providing
the context for the following evaluation chapter. A detailed description of the control
system architecture and cabin designs, as well as the use for safety critical applications
is provided. System characteristics and results from the measurements of the different
system components in individual test-bench experiments are given to complete the picture
of the simulator.

The sixth chapter shows the model evaluation and the results for an optimal elastostatic
control model for the CableRobot Simulator using the proposed meta-modelling and model
selection process with the focus on minimal model complexity and comparing the different
approaches on parameter identification. Using the standard kinematics model as starting
point, its performance is analyzed comparing a model with a physical parametrization
against its optimal parametrization variant.

In the following, model complexity is increased and the elastostatic model is used to
compare a physical and optimal parametrization as well as the improvement with respect
to the simpler kinematics model. The elastostatic model is also applied to show the im-
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portance of model reduction taking the example of the constant orientation workspace
which can be reached by a lower dimensional kinematic model neglecting the platform
parameterization. In the final step, the elastostatic model allows to increase the reachable
workspace by controlling the tension states of the CableRobot Simulator. Safety compliant
integration of this more complex model into the real-time environment of the CableRobot
Simulator is presented by means of a surrogate model which is operated in parallel to the
kinematic model allowing deterministic real-time control of the tension state while staying
in the safety margins of the control system. The increased reachable workspace is used
as sampling volume to compute a final elastostatic control model which can be consid-
ered optimal for the given application and model structure showing significant accuracy
improvements compared to the initially used models.
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2 Cable-Driven Parallel Robot Models

Models are central to each phase of the life-cycle of a CDPR and needed for the design as
well as the operational phase for the control of the CDPR. Each phase requires a model
with a different level of accuracy and computational efficency as indicated in Fig. 2.1. In
the design phase, models are used for the design of the robot assembly and componennts
as well as the design of the robot controller. In the operational phase, they are used to
generate motion signals for the winches. Models for system and component design are
allowed to involve non-deterministic behavior and need to provide high efficiency to run
design optimization iterations. Accuracy demands for the design phase are less critical
as long as the general characteristics of the system is represented such that the required
components can be derived.
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Figure 2.1: Model accuracy and efficiency for different phases of the robot life-cycle

For the controller design, a more complex and realistic model maybe required to ana-
lyze the effect of different operational conditions. Computational efficiency and real-time
execution in this phase are secondary and different numerical methods such as variable
step-width solvers can be used to optimize runtime behavior. For the operational phase,
highly accurate and real-time capable models are essential. For applications such as the
CableRobot Simulator, additional safety requirements have to be met. An optimization
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and calibration step is required to reduce model complexity and runtime costs while in-
creasing accuracy with parameter optimization. Understanding the impact of the control
model on the pose accuracy and the workspace is crucial for the robot operation, but
elaborate experimental investigation have to be performed to measure the effect. Models
which are used for the design phase usually assume perfect alignment with physical real-
ity. This chapter focuses on a set of models and their differential counterparts from the
domain of physical first principal models as indicated in Fig. 2.2 which are shown to be
most promising for the accurate modeling of the kinematics, statics, and cable elasticities
of CDPRs. An overview of the various models with respect to their physical domain can
be found in (Pott 2018a).

Robot geometry System compliancePhysical properties

Model domain ElastostaticsStaticsKinematics
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Pulley model
Drum model
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Models

Differential elasto-geometry

Gradient flow
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Linear cable model
Powertrain compliance model
Non-linear cable model

System forces

Differential models

Figure 2.2: Model domains

Beside experimental investigation, the robot controller performance can be analyzed
during controller synthesis applying a simulative approach. Using the CDPR models for
control and simulation requires the computation of the inverse and forward solutions of the
respective models. Reviewing the models and defining the model structure in perspective of
the proposed control model selection and optimization process is part of this chapter. The
definition of the structure is done such that combination of different sub-models and their
differential counterparts can be used in a consistent way for model comparison, parameter
optimization, and sensitivity analysis. Ideally, model extensions are parameterized such
that a smooth transition between the base model and its extension can be performed. For
example, the addition of a pulley model to the standard kinematics model structure can
be performed using a pulley radius rp = 0 such that the behaviour of the base model and
extended model are identical and all derivatives exist with respect to the parametrization.

In Sec. 2.1, the general model structure in perspective of a control model is outlined
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addressing robot kinematics, statics, and elastostatics as general concepts. In the subse-
quent sections, the specific model definitions are and the their differential counterparts
and gradient flows are derived. The structures of the inverse models are addressed when
necessary.

2.1 Model Structure and Composition

The definition of the model structure in this section is the foundation for the definition of
the meta-model in Chap. 3 and the systematic and unified comparison of control models
and its parametrization in the later chapters. While this section provides the overview
of the model architecture, the following sections provide the details of the specific model
definitions.

Kinematics Models from the kinematic domain describe the geometric properties of the
CDPR determining the relation between the platform pose x and the joint space variables
qθ associated with the cable lengths and motor encoder values as shown in Fig. 2.3 where
φ relates to standard inverse kinematics model with its paramterization pφ = (a, b) and
a, b refer to the frame and platform geometry respectively.

x qθϕsk

pϕ = (a,b)

Figure 2.3: CDPR standard kinematics

The standard kinematic model can be replaced by models with increased complexity
which allow to consider effects from the pulley geometry, drum winding mechanism, or
the cable catenary for example. The detailed definitions for the standard kinematics and
pulley model are given in Sec. 2.2, 2.3. The depicted model in Fig. 2.3 shows the inverse
path for the standard kinematics which can be computed straight forward and in realtime.
The respective forward kinematics problem, where the platform pose for a given controlled
cable length has to be computed, is more difficult to solve and has to be computed in an
iterative manner. An extensive analysis of all possible solutions of the forward kinematics
problem can be found in (Husty 1996). Methods for finding a good initial guess and solving
the forward kinematics problem in real-time can be found for example in (Pott 2010). Since
the forward kinematics model can be considered as a special case of the elastostatic model
as shown in Eq. (2.81), all related issues are addressed in the context of the elastostatic
model.
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Statics A static model γsk as shown in Fig. 2.4 is based on the associated kinematic model
and considers the stationary force distributions at the platform. The static model can be
derived from the Jacobian ∂φ

∂x of the kinematics model described in Eq. (2.31) using the
concept of the kinetostatic dualism which relates to the dual mapping of velocities and
forces.

x

f

λ

we γsk

ϕsk

∂ϕsk
∂x

qθ

pϕ = (a,b)

Figure 2.4: CDPR kinetostatics based on standard model

The static equilibrium for suspended or fully constrained CDPRs is uniquely determined
by the external wrench we and the cable forces f . For overconstrained CDPRs with m > n,

infinite number of solutions for the force distribution f exist, allowing a variation of the
internal tension state using the scaling parameter λ for linear combinations of the nullspace
vectors as shown in Eq. (2.40). This can be used to control the cable forces for a given
pose and wrench combination or to identify valid pose states for the estimation of the
robot workspace. For more complex models such as the catenary model, computation of
the static force distribution gets more involved and the equilibrium state has to be found
iteratively. While the static model can be used for system analysis such as workspace
computations its use for the control of CDPRs takes additional effort which depends on
the specific approach to force control. In the commonly used setup of CDPRs, cable
forces are not directly controlled but the immediate consequence of cable length control.
The associated elastostatic model is described in the next paragraph. Control of the
cable forces can be done using an open-loop or closed-loop design. The development of a
closed-loop force control is extensively discussed in (Kraus et al. 2015; Kraus 2016). This
thesis focuses on the open-loop approach and model optimization to obtain accurate force
tracking. Computation of the forward paths of the static model is done similarly to the
forward kinematics and allows to find the stationary pose x and wrench we for a given
force distribution f .

Elastostatics Elastostatics or elastostatic models as depicted in Fig. 2.5 regard the com-
pliance of the system and connect cable forces f to geometric changes in the cable length
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denoted by ∆q. A widespread model for cable elasticities uses a linear spring model which
is parameterized by the stiffness constant pκ = kF. The detailed description of the cable
stiffness and its relation to the system stiffness is given in Eq. (2.33, 2.66), respectively.
This concludes the structural overview of models for kinematics, statics, and elasticities
which is the foundation for position and force control. Model extensions of the CDPR
models are assigned as a modification to one of the subsystems φ,γsk, κlin.
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Figure 2.5: CDPR elastostatics based on standard model

Modifications to the subsystems must comply with the a priori definitions of the physical
system and have to provide the respective interfaces between the submodules. For example
the kinematics description of φ can be extended using additional geometric structures
leading to φex . To be compliant, the extended model at least has to provide the geometric
parametrization φ = pab beside the parametrization for the extension pex . The model
structure of the extension must be chosen such that there exists a pex with

φex(x, pex) = φ(x, pab) ∀ x (2.1)

considering the inverse computations of the model. This also must hold true for the forward
computations q → x . The formalism to solve the structure depends on the specific path
and input-output configuration of the associated nonlinear equations. In some cases which
are discussed in more detail in the next sections, an explicit solution cannot be computed
and numerical methods such as Gauss-Newton or Levenberg-Marquardt (Marquardt 1963)
have to applied to find the solution.

2.2 Cable Robot Kinematics Model

Based on the general model structure in Sec. 2.1, a detailed description of the different robot
models is given in this and the following sections starting with the most fundamental con-
cepts of the robot kinematics. Cable-driven parallel robots in a spatial three dimensional
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configuration can be described by a mobile platform whose pose x is defined by the gener-
alized coordinates xT =

[
rx ry rz ϕx ϕy ϕz

]
where rT =

[
rx ry rz

]
refers

to platform position and ϕT =
[

ϕx ϕy ϕz
]

refers to the platform rotation defined by
three elemental rotations

R0P = Rx(ϕx)Ry(ϕy)Rz(ϕz) . (2.2)

The platform’s n degrees of freedom (DOF) are constrained by m cables which are con-
nected to winches on a fixed machine frame. For m ≤ n + 1 the platform pose is fully
controllable. The CableRobot Simulator which was used for modelling and experiments
in this thesis uses m = 8 cables and a spatial configuration with n = 6 DOF. The actual
platform pose x̂ is controlled by changing the cable length qi with i = 1 ... m using the
inverse kinematics

q = φ(x, pφ) (2.3)

which is defined by the geometrical parameters

pT
φ =

[
aT

1 · · · aT
m bT

1 · · · bT
m

]
(2.4)

where ai relates to the cables’ outlet points at the proximal winch side and bi relates to
the distal anchor points on the mobile platform side as shown in Fig. 2.6. The inverse
kinematics model allows to compute the cable vectors

li = ai − r − bi, (2.5)

with
bi = R0Pb(P)

i (2.6)

and their respective lengths
qi = ∥li∥2 , i = 1 ... m . (2.7)

The unit vector in the direction of an individual cable is defined by

ui =
li

qi
. (2.8)

These simplified model assumptions provide a first approximation to the actual robot
configuration and have to be extended by more detailed models such as pulley and cable
models to provide increased accuracy.

For the feed forward control of a CDPR, the desired platform pose xθ along a trajectory
is provided as input to the controller which in turn computes the associated cable lengths
in terms of the inverse kinematics from Eq. (2.5). For closed loop control and system
identification it may also be necessary to solve the forward kinematics

x = υ (2.9)
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Figure 2.6: Cable robot kinematics

with the associated residual function

ρ(x, qθ) = q(x) − qθ

!= 0 (2.10)

in order to find a platform pose x for a given cable configuration qθ. Solving the inverse
kinematics problem is done straigth forward computing the vector loop. For the forward
kinematics problem one has to solve the associated system of nonlinear equations defined
by Eq. (2.10) which has mutliple solutions. The general appraoch to find all solutions of
the forward kinematics of parallel robots is described in Husty 1996. For overconstrained
CDPRs no solution exits for inconsistent cable length configurations. Assuming elasticity
in the cables one may find the least squares solution by solving the associated optimization
problem

υ = min
x

(1
2
ρ(x)Tρ(x)

)
= min

x

1
2

∥q(x) − qθ∥2
2 = min

x

1
2

m∑
i=1

(
qi(x) − qθ,i

)2
. (2.11)

Efficient numeric solvers such as the Gauss-Newton and Levenberg-Marquardt solver use
the linear approximation ∂ρ

∂x = ∂q
∂x = Jqx and the respective first order taylor expansion

ρ(x0 + ∆x) = ρ(x0) + Jqx∆x (2.12)

of the residual function to compute the optimum of the linearized residual function in each
iteration step, i.e. find a ∆x such that the residual gets minimal

ρ(x0) + Jqx∆x
!= 0. (2.13)
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Considering ∂q
∂x = −A from Eq. (2.54) and ρ(x0) = q(x0) − qθ and qθ = qθ0 + ∆qθ, one

obtains the overconstrained linear system

q(x0) − qθ0 − ∆qθ︸ ︷︷ ︸
q̃

−A∆x = 0 (2.14)

whose solution is computed by the normal equation

∆x =
(

ATA
)−1

ATq̃ . (2.15)

For the special case where one starts from a geometrical consistent configuration on the
constraint manifold q(x0) − qθ0 = 0 this simplifies to q̃ = −∆qθ. Most solvers require
a sufficient initial guess x0 to work efficiently. How to find a sufficient initial guess by
interval analysis and solving the optimization problem with real-time constriants is shown
in (Pott 2010; Schmidt et al. 2014). A summary of the standard kinematic model is shown
in Fig. 2.7. The additional input qoff deals with the initial force distribution which has to
be chosen before operating the CDPR. This shows that a CDPR cannot be operated solely
based on kinematic considerations but that cable forces are an essential part of the setup.
Only combinations of qoff which match with the wrench closure condition Eq. (2.31) lead
to an accurate initial pose.

ϕkin xqθ

υkinx

ba
qoff

δxδqθ
Jqx = −A

(2.47)

J−1
qx = −

(
ATA

)−1
AT

︸ ︷︷ ︸
A∗

(2.52)

qθ

δqθδx

Figure 2.7: Standard kinematics model structure showing the input output relations for
inverse and forward kinematics together with the respective sensitivities.
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2.3 Pulley Kinematics

The cables of a CDPR are guided by redirection pulleys which are integrated in the drive
train between the winch and actual robot workspace. To minimize the impact of the
last pulley at the cable outlet point ai, ideally one would use pulleys with small radii to
minimize the geometric influence of the pulleys but bounding conditions such as a minimal
allowed bending radius for the cables and required meachnical durability put certain limits
on the minimum pulley radius rp. The formulation of the geometric relations associated
with the pulley kinematics is based on (Pott 2012; Schmidt and Pott 2013) resulting in
the inverse kinematics model

qθ = φpl(x, ppl) (2.16)

which considers the contact arc defined by angle βi as shown in Fig. 2.8 so that the cable
length computed by the inverse kinematics becomes

qi = qf,i + βirp . (2.17)

The associated parameter set

ppl =
[

a b rp uAz

]
(2.18)

consists of the base model paramterization a , b and the additional paramters for the
pulley radius rp,i and the pulley axis uAz . The angle βi is computed by

βi = arccos(
qf,i

bM
) + arccos(

bz

bM
) (2.19)

using the relations of the rectangular triangles in the plane defined by pB,i, pM,i, pA,i with

bM =
√

(bxy − rp)2 + b2
z (2.20)

and
bxy =

√
b2

x + b2
y . (2.21)

The free cable length qf,i is computed according to

qf,i = ∥li∥2 =
√

b2
M − r2

p . (2.22)

The spatial position of contact point pA,i is computed by rotating the radial vector

vr = rpuAx (2.23)

about the pulley axis at point pM,i

nM = uAx × uAz (2.24)

using the Rodrigues’ rotation formula

v̂r = vrcosβ + (nM × vr) sinβ + nM(nM · vr)(1 − cosβ) (2.25)
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Figure 2.8: Pulley kinematics

so that the cable vector can be computed from

li = pA,i − pB,i (2.26)

using
pA,i = ai − vr + v̂r . (2.27)

The forward kinematics problem for the extended pulley kinematics can be solved in the
same way as previously described in Eq. (2.10) using

qi = qf,i + qu,i (2.28)

with
qu,i = βirp (2.29)

for the residual function. The standard kinematics model and the pulley model allow a
description of the robot geometry where the pulley model provides a consistent extension
of the standard model keeping its paramterization and structure such that all differntial
relations can be inherited as is shown in Sec. 2.7. While kinematic models provide a
sufficient description for statically determined systems such as suspended cable robots, they
are missing the description of the inner tension states inherent to overconstrained CDPRs.
The problem of the geometric description arises for the forward kinematics solution where
the platform pose x has to be computed as least squares approximation from a given set
of cable lengths. In the next section, the elastostatics model is introduced which provides
a more natural and accurate solution to the problem of the forwards kinematics leading
to a weighted least squares problem Eq. (2.81) where the weighting matrix is defined by
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the cable elasticities. The elastostatic model also allows to model the tension distribution
propagation which describes the cable tension for all poses with respect to a given initial
tension distribution as is described in Sec. 3.5.

2.4 Statics and Elastostatics Model

The statics of a CDPR is derived from the kinematic models of the previous sections by
considering the platform as a free floating body whose position is solely determined by
the force equilibrium of the cable forces f and the external wrench we. Using the cable
unit vectors from the kinematic models as force direction vectors and merging it with the
platform geometry one can establish the so-called structure equation

[
u1 · · · um

b1 × u1 · · · bm × um

]
︸ ︷︷ ︸

AT

 f1
...

fm


︸ ︷︷ ︸

f

+
[

fe

τe

]
︸ ︷︷ ︸

we

= 0 (2.30)

γsk(x, f , we) = ATf + we = 0 (2.31)

where the cable forces f are mapped onto the platform using the structure matrix AT. The
statics model can be used to compute valid pose states, estimate the workspace border, or
to separate the internal and external cable forces. The connection between the cable forces
f from the statics model in Eq. (2.31) and the computed cable lengths qθ of the kinematics
model in Sec. 2.2 are established by the introduction of a cable elasticity model leading to
the elastotstatic model of CDPRs.

The elastostatic model uses a linear elastic cable model which accounts for the mechanical
compliance of the elastic cables and allows to establish a mapping between cable forces
and the geometric joint space variables

f ↔ qθ . (2.32)

The spring constant of the cable model is defined by

k = diag(q)−1kF . (2.33)

where the specific stiffness kF is given by the cable cross section A and Young’s modulus
E with

kFi = EAi . (2.34)

The difference between the actual cable length q(x) and the controlled cable length qθ

computed by the geometrical model is defined as

∆q = q(x) − qθ (2.35)
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and results in cable forces according to

f = diag(k)∆q . (2.36)

With Eq. (2.3, 2.35, 2.36) one obtains

qθ = φel(x, f) = φ(x) − ∆q(f) = q(x) − diag(k)−1f (2.37)

allowing to compute the cable length for a given platform pose x and desired cable force
distribution f . This formulation includes no assumptions about the external wrench and
system statics and choosing sensible force input vectors f requires additional knowledge
about the relation of the external wrench and cable forces as shown in Fig. 2.5 and described
by the system statics Eq. (2.31) representing an underdetermined inhomogeneous system of
equations with an infinite number of solutions f for a given wrench we. Force distributions
which are not matched by the external wrench will lead to motion of the platform. The
general solution to this problem is given by

f = −A+Twe︸ ︷︷ ︸
fext

+ Hλ︸︷︷︸
fint

,λ ∈ Rm−n (2.38)

where fext are the external forces computed with the m × 6 Moore-Penrose pseudo right
inverse

A+T = A
(

ATA
)−1

. (2.39)

The expression ATA+T = I represents the part of the cable forces caused by the external
wrench we lying in the image or column space of the strucutre matrix AT. The second part
represents the internal forces fint lying in the nullspace or kernel of structure matrix AT

where a basis is given by H =
[

h1 · · · hr

]
such that ATHλ = 0 for any λ ∈ Rm−n.

From Eq. (2.31, 2.38) it is possible to compute the internal part of a given force distribution
f using

fint = Hλ =
(

I − A+TAT
)

f (2.40)

where
(

I − A+TAT
)

is the projector onto the kernel of AT. With Eq. (2.38) the elasto-
geometrical model can be restated as

qθ = φel(x, we,λ) = q(x) − K−1f(x, we,λ) (2.41)

now providing full control over the platform pose, extenal wrench, and internal tension
state using the scaling parameter λ . The associated forward kinematics model similar
to Eq. (2.9) allows to compute the platform pose and cable forces for a given cable config-
uration and external platform wrench

(x, f) = υel(qθ, we) (2.42)

minimizing the residual function

ρ(x) = AT(x)f(x, qθ) + we . (2.43)
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Minimization of a residual function requires an optimization algorithm which usually rely
on the analytic Jacobians to improve runtime performance. The differential relations which
allow to compute the associated Jacobian ∂we

∂x can be found in the following differential
kinematics section in Eq. (2.76). While differential relations are important for optimizer
Jacobians, they are also essential to analyze the models from the last sections with respect
to their parameter sensitivities and the impact on model compositions. The next sections
provide the analytic differentials for the kinematics and elastostatics models and show
the associated gradient flows which then are used for the model analysis in Chap. 3 and
optimization in Chap. 4.

2.5 Differential Kinematics

Differential relations between parameters and state variables of the robot model are es-
sential for system identification, sensitivity analysis, forward kinematics, and the compu-
tation of force distributions. For an arbitray system component y = S(p), one can write
the diffrential relation using the gradient of the system’s output quantity y with respect
to a parameter p yielding δy = ∂S(p)

∂p
δp. Beginning with the inverse kinematics model

φ(x, pφ) from Eq. (2.5, 2.7), infinitesimal changes in the platform pose are denoted by

δx =
[

δrT ωT
]T

(2.44)

where ω refers to the infinitesimal rotation vector similar to the angular velocity vector
which is associated with time derivatives. The infinitesimal rotation vector is uniquely de-
fined and more convenient to work with than the specific derivatives of the chosen rotation
angle parametrization. For the angle parametrization from Eq. (2.2) the transformation
from infinitesimal angles to the infinitesimal rotation vector is given by

ω = JP
[

δϕx δϕy δϕz
]T

(2.45)

with the 3 × 3 geometric Jacobian

JP =
[

ex Rx(ϕx)ey Rx(ϕx)Ry(ϕy)ez
]

. (2.46)

The respective changes in the platform vectors bi = R0Pb(P)
i and cable attachment points

pB,i = r + bi are described by the 3 × 6 Jacobian

∂bi

∂x
=

[
0 −b̃i

]
(2.47)

and
∂pB,i

∂x
=

[
I −b̃i

]
(2.48)

considering the relation between the cross product and the skew symmetric matrix expres-
sion

δbi = ω × bi = −b̃iω . (2.49)
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With li = ai − pB,i it follows

∂li

∂x
= −

∂pB,i

∂x
= [ −I b̃i ] (2.50)

stating that the change in the cable vector li is inversely related to the change in the
location of the associated platform attachment point pB,i. To obtain the derivative of the
cable length qi with respect to the platform pose x, one can use the projection of δpB,i

onto the cable unit vector as shown in Fig. 2.8leading to

δqi = −uT
i δpB,i = uT

i δli . (2.51)

Using Eq. (2.51, 2.48) leads to

∂qi

∂x
=

[
−uT

i uT
i b̃i

]
. (2.52)

Restating Eq. (2.52) one obtains

δqi = −
[

uT
i (bi × ui)T

]
δx (2.53)

and
δq =

∂q
∂x

δx = −Aδx (2.54)

where the Jacobian Jqx = ∂q
∂x is expressed in terms of the transposed structure matrix AT.

The relation of δq = −Aδx where the platform velocities are mapped to cable velocities
and

we = −ATf (2.55)

where the cable forces are mapped to the platform wrench is called kinetostatic dual-
ism. Computing the derivative of the forward kinematics function υ is done by implicit
differentiation of the associated constraint manifold from Eq. (2.10)

∂q
∂x

=
∂qθ

∂x
(2.56)

so that
δx =

∂x
∂qθ

δqθ = −A−1δqθ . (2.57)

The inverse matrix of A(m×n) does not exist for overconstained CDPRs where m > n.
Instead, one has to solve the minimization problem using q̄ = −qθ which minimizes the
residual

min
δx

∥Aδx − δq̄∥ (2.58)

to find the least square optimal solution leading to the normal equation already stated
in Eq. (2.15)

δx = −
(

ATA
)−1

AT︸ ︷︷ ︸
A∗

δqθ (2.59)



2 Cable-Driven Parallel Robot Models 41

where A∗ is called the Moore-Penrose pseudo 6 × m left inverse with A∗A = I. This
allows to compute the pose increment δx for an arbitrarily given cable length increment
δqθ. In case δqθ is consistent with Eq. (2.54) the unique solution and in case δqθ is in-
consistent with Eq. (2.54) the least squares optimal solution is obtained. This result shows
that a model solely based on geometrical relations is a simplification which misses some
important properties of CDPRs since obviously one would have to explain the least squares
solution for inconsistent cable lengths x in a physical way. In fact it is possible to derive
the least squares solution of the forward kinematics as a special case of the elastostatic
model as shown in Eq. (2.81) using a stiffness matrix K = I and a zero wrench.

From Eq. (2.51)and
pB,i = ai − li (2.60)

one obtains the derivative

∂qi

∂li
=

∂qi

∂pB,i

∂pB,i

∂li
= −

∂qi

∂pB,i
I = uT

i . (2.61)

To complete the Jacobians of the kinematic standard model, the cable unit vector is derived
with respect to the cable vector

∂ui

∂li
=

∂(qi
−1li)

∂li
= qi

−2
(

∂li

∂li
qi − li

∂qi

∂li

)
(2.62)

leading to
∂ui

∂li
=

1
qi

(
I − uiuT

i

)
. (2.63)

Finally the derivative of the cable unit vector with respect to the platform pose is obtained
using the chain rule

∂ui

∂x
=

∂ui

∂li

∂li

∂pB,i

∂pB,i

∂x
. (2.64)

With Eq. (2.62, 2.60) and ∂li
∂pB,i

= −I this leads to

∂ui

∂x
=

1
qi

(
uiuT

i − I
) [

I −b̃i

]
. (2.65)

The complete graph for the gradient flow for the pose related quantities of the standard
kinematic model is shown in Fig. 2.9.

2.6 Differential Elastostatic Model

The differential relations of the elastostatic model are established using wrench closure
condition Eq. (2.31). Considering that the structure matrix AT(x) depends on the gen-
eralized coordinates x and that cable forces are functions of the cable lengths which in
turn are also expressed as functions of the generalized coordinates and the controlled cable
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δr

δφ

δqi

δpB,iδli δx[
I −b̃i

]
(1.47)
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i

(1.50)

−I
1
qi
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I− uiu
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Figure 2.9: Standard kinematics model gradient flow

length i.e. f(q(x), qθ) one obtains the implicit derivative with respect to x, qθ, and we

using sum notation(
∂AT

∂x
f + AT ∂f

∂q
∂q
∂x

)
δx + AT ∂f

∂qθ

δqθ + δwe = 0. (2.66)

Here the derivative

Kgsk =
∂AT

∂x
f =

m∑
i=1

∂vA,i

∂x
fi (2.67)

with

vA,i =
[

ui

bi × ui

]
. (2.68)

is called the geometrical stiffness. The partial derivatives ∂vA,i

∂x follow using ∂ui
∂x from Eq. (2.65)

and
∂bi

∂x
=

∂pB,i

∂x
−

∂r
∂x

= [ 0 b̃i ] (2.69)

from Eq. (2.48) and relation

∂ (bi × ui)
∂x

= b̃i
∂ui

∂x
− ũi

∂bi

∂x
. (2.70)

The effect of the geometrical stiffness KG relates to the change of the wrench caused by
the changing cable force directions when the platform is moved.

The second and third term in Eq. (2.66) describe the relation of the cable forces with
respect to change in the cable lengths with

∂fi

∂qi
= −

∂
(

kFi(1 − qθiqi
−1)

)
∂qi

=
kFiqθi

qi
2 = ki

qθi

qi
(2.71)

and
∂fi

∂qθi
= −

kFi

qi
= −ki (2.72)
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which can be simplified to

∂f
∂q

= −
∂f

∂qθ

= K = diag(k) (2.73)

for q ≈ qθ. Considering Eq. (2.54, 2.67, 2.73) one can rewrite Eq. (2.66) so that(
KG − ATKA

)
δx − ATKδqθ + δwe = 0 (2.74)

A complete picture of the elastostatic gradient flow is given in Fig. 2.10.
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Figure 2.10: Elastostatic gradient flow

The differential relation between the external wrench we and the platform pose x is
established under the assumption of a fixed controlled cable length δqθ = 0 using Eq. (2.74)
and considering

KC = ATKA (2.75)

yielding
∂we

∂x
= −Kwx = −KG + KC (2.76)

where the system stiffness Kwx is composed of the cable stiffness matrix KC and the
geometrical stiffness matrix KG from Eq. (2.67). The stiffness matrix KC maps the in-
cremental change of the platform pose to the joint space and the resulting cable forces
back to the cartesian space. The magnitude of the geometrical stiffness is low compared to
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the stiffness resulting from the cables and depends on the magnitude of the cable forces,
i.e. higher tension states result in higher geometrical stiffness. The low contribution
of the geometrical stiffness to the overall stiffness can be seen by comparing the change
of the magnitude of the cable forces caused by a directional change compared with the
force caused by a change in the cable length. The directional change of the cable force
is described by Eq. (2.65) showing that the impact for the geometric stiffness is inversely
related to the cable length. For typical setups where b < q and the tension states between
10 N < f < 10000 N the expected stiffness is < 10 kN/m. As comparison, the typical
stiffness for the cables of a CDPR lies between 500 − 3000 kN/m.

The associated compliance matrix as inverse of the stiffness matrix is denoted as

Cxw = Kwx
−1. (2.77)

and exists for the square n × n stiffness matrix if det(Kwx) ̸= 0 so that

δx = −Cxwδwe . (2.78)

The differential relation between platform pose x and the controlled cable length qθ is
derived from Eq. (2.74) assuming a constant external wrench i.e. δwe = 0 and using

Kwq = ATK (2.79)

leading to
δx = (KG − KC)−1 Kwq︸ ︷︷ ︸

Jxθ

δqθ . (2.80)

The extension from a solely geometrical model to an elastostatic model allows to describe
the mapping of velocities from joint space to Cartesian space for redundant CDPRs in
a physically consistent way. The connection to the forward kinematics can be shown
with Eq. (2.66, 2.74) for the special case of f = 0, we = 0, δwe = 0, where the obtained
solution corresponds to the modified normal equation with the weight matrix W = K,

δx = −
(

ATWA
)−1

ATWδqθ . (2.81)

Choosing W = cI, c > 0 with the identity matrix I, one obtains Eq. (2.59), the solution of
the foward kinematics where all residuals of the cable lengths are treated with the same
weight. In this sense, the forward kinematics provides a good approximation for robot
states with low cable forces and equal spring constants for all cables. It also should be
noted that the result is independent of the scaling factor c and that the result relies only
on the ratio between the individual spring constants.

Finally, the relation between incremental changes in the actual cable lengths q and the
controlled cable lengths qθ can be computed using Eq. (2.54, 2.80) yielding

δq = −Jqx (KG + KC)−1 Kwqδqθ . (2.82)
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2.7 Differential Pulley Model

The differentials of the pulley model are closely related to the standard geometric model
and can be derived without consideration of the trigonometric functions which are used to
describe the pulley orientations.

The Jacobian Jqx = −A is computed identical to the standard kinematic model consid-
ering the pulley contact point pA,i instead of the attachment point ai for the computation
of the structure matrix. This is due to the fact that the involute of the pulley as indicated
in Fig. 2.11 has the same tangent vector as a circle around pA,i and that the differential
arc length δqu,i and differential free cable length δqf,i cancel out each other.

bqf ba

βi

kA

pM

pB,i

pA,i

li, qf,i

ui

CA
T

δb

Figure 2.11: Pulley involute an differentials

For computations of the system stiffness and sensitivity analysis it is also important to
know the differentials of the free cable length and pulley arc length which can be computed
using the angular speed of the pulley about its center axis at pM,i with

ω =
∥δb⊥∥2

qf
(2.83)

and δb⊥ being the projection onto the involute tangent vector δb⊥ = δbûr so that

δqu = ∥δb⊥∥2
rp

qf
. (2.84)

Using Eq. (2.48) one obtains the Jacobian formulation for cable arc lenght

Jqux,i = ûr,i
rp,i

qf,i
JpBx,i . (2.85)
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The differential relation of the free cable length is derived in accordance with Eq. (2.50)
considering the pose dependent contact point in li = pA,i(x) − pB,i(x). The associated
Jacobian JpAxi

is computed by

JpAxi
= nM

ba

bxy
JpBx,i + uiJqux,i (2.86)

where the first part relates to the component perpendicular to the pulley plane and the
second part relates to the component on the pulley plane. Relation Eq. (2.50) now can be
restated as

Jlx,i =
∂li

∂x
= JpAxi

− JpBx,i . (2.87)

The elasto-geometrical relations for the pulley kinematics model can be adopted from
Sec. 2.6 without changes.
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3 Control Model Analysis

Analyzing and comparing the performance of different models is an essential task for the
optimal configuration of a CDPR system. The answer to the question, which is the optimal
model for a specific application, can only be provided by a concurrent consideration of
the model structure together with its optimal parametrization. This must be done in
the context of a distinct physical robot model which incorporates physical properties not
present in the control model. The comparison must be done with respect to a distinct
set of evaluation criteria where the pose tracking accuracy and the workspace are the
most important beside others as outlined in the next Sec. 3.1. This chapter derives a
meta-model as foundation for a unified comparison of different models in the context of a
ground-truth model which represents a system of higher complexity. The architecture of
the meta-model involves the combination of different physicals models and allows to make
the distinction between different types of model parametrizations, namely the nominal,
physical, and optimal parametrization as described in Sec. 3.2. The differentiation between
types of parametrization is identified as essential to the goal of unified model comparison.
The meta-model allows the analytic description of the pose accuracy in context of the
ground-truth model and is derived in Sec. 3.4 together with the definition of the reachable
workspace in Sec. 3.5. The reachable workspace extends the concept of the wrench-feasible
workspace allowing to regard the combination of different model assumptions for the control
model and ground-truth model. The meta-model then is used to analyze control models
of different structural complexity together with their parametrization to understand the
possible impact on the previously defined pose tracking accuracy and reachable workspace
based on the models from the last chapter.

3.1 Evaluation Criteria

Selecting the best model from the candidate set can only be done in perspective of a
requirement definition with respect to a specific application from which a set of evaluation
criteria is derived. The evaluation criteria then can be used in the sense of a knock-out
criteria defining a threshold which must be fulfilled by the model to get validated or in
the sense of a performance rating to compare the models of the canidated set against each
other. A list of evaluation criteria relevant for control models of CDPRs is stated below.

• Position accuracy is the main criterion focused on in this thesis and describe more
precisely in the next sections.
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Figure 3.1: Model selection based on the application requirement definition and associated
evaluation criteria.

• Workspace defines the volume which can be reached by CDPR using a specific the
control model.

• Identifiability considers the chosen model parametrization with respect to possible
measurements. The model must be chosen such that structural identifiability (Khalil
and Dombre 2004) is guaranteed and that it is possible to reach the necessary sample
space that leads to a well conditioned observation matrix as shown in Sec. 4.3. The
question of structural identifiability is closely coupled to the available sensors which
determine the observability of system states. Problems arise when the model is
structural unidentifiable i.e. the observation matrix is rank deficient no matter how
many different samples are taken from the possible sample space.

• Runtime performance is related to the complexity of the model in so far as each
additional submodel increases computational complexity and gets especially critical
for models whose solution has to be computed in an iterative manner using optimiza-
tion algorithms.

• Safety can be understood in the sense of simplicity. Complex models are more
difficult to understand and to test with respect to unintentional input-ouput behavior.

• Long term stability refers to the sensitivity of the model prediction with respect
to drifting model parameters and the possibility of parameter updates based on in-
process sensor data.



3 Control Model Analysis 49

• Bias, Variance refers to the prediction accuracy with respect to changes in mea-
surements or sample set.

While all these criteria are relevant for model evaluation, this thesis focuses mainly on
stationary pose prediction accuracy and the reachable workspace volume achievable with
the respective models. The influence of the other criteria are mentioned when necessary in
case they impact the goal of maximizing pose prediction accuracy and workspace volume.
In the next sections, the meta-model is derived and methods for the analysis and the
estimation of the evaluation of the pose prediction accuracy and workspace volume for
different models are derived.

3.2 Meta Model for Control Model Analysis

Comparing models with respect to the aforementioned evaluation criteria in a systematic
way requires a standardized context which allows to model the impact of variations in
the model structure and parametrization. This section introduces the meta model for the
simulative optimization and analysis of stationary accurate control models based on model
compositions from Chap. 2 and a ground truth model υ̂ which relates to a model of higher
complexity regarding the number of represented physical effects. The meta model is used
to analyze the influence of the model structure and its parametrization with regards to
different parts of the model selection process such as model optimization, measurements,
model prediction accuracy, and the reachable workspace. While the ground truth model in
principal does not need to be real-time capable and can be used to simulate computational
expensive effects, it makes sense to chose the same model structure as for the final control
model. This allows a more meaningful analysis as shown in Sec. 3.4 for position error
analysis and in Sec. 3.5 for the workspace analysis. That relates to the fact that deviations
between the control model and the ground truth model usually are small and a linear
analysis can be performed.

The basic structure of the meta-model is given in Fig. 3.2 showing the model composition
ηel for the standard elastostatic model and the ground truth model υ̂ .

Changing the model structure in terms of the model composition η relates to the model
design step (1) in the model selection process from Fig. 1.5. The impact of these structural
changes on the model evaluation (3) with respect to pose accuracy and workspace is part of
this chapter. Changing the model parametrization of η is mainly of interest for the model
optimization step (2) and is discussed in the respective chapter. For the structural analysis
in this chapter, the control model parametrization pη is directly derived from so called
physical parametrization p̂ providing the best value obtainable by direct measurement of
υ̂ . A more detailed distinction of the different model parametrization is given later in this
section.

Publications which propose new models or do experimental evaluations of these models
often make different assumptions about the context in which they are analyzed. This makes
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it difficult to compare the models and to make an informed choice on model selection for
a given application.
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Using model compositions η in the context of a ground truth model allows to address
different issues arising for the selection of the optimal model structure, the optimal model
parametrization, and the measured system quantities as shown in Fig. 3.3 and discussed in
the following.

1) Model structure Extensions to the model structure indicated by the green area in
Fig. 3.3, implicitly are analyzed under the assumption of idealized conditions i.e. the
model perfectly matches with reality. For example the workspace and stiffness proper-
ties of the elastostatic standard model are computed without consideration of a possible
misalignment between the model geometry and the model stiffness parameters compared
to the physical system parameters. In the meta-model, this would coincide with a model
structure η = υ̂ and a parametrization of pη = p̂ such that xM = x and fM = f . The
proposed structure allows to analyze the presumed impact of the surrounding system under
predefined conditions.

2) Model parametrization In the case of two models ηA,ηB with different underlying
structures, i.e. modifications to φ,γ, κlin which are evaluated using measurements (x, f) ,
the problem of comparability is induced mostly by the associated model parametrization.
In perspective of model selection and evaluation, it is therefore important to distinguish
different sets of parameters which in the context of this thesis will be called nominal
parameters, physical parameters, and optimal parameters: The difference between nominal
and physical parameters results form e.g. manufacturing and assembly errors.

• Nominal parameters pN are defined during the design phase and resemble the pa-
rameter set which should be realized on the CRPR system under idealized conditions.
These parameters are used before the implementation stage to investigate different
system properties and run analysis such as system stiffness, workspace, or collision
spaces analysis. They are also used as first best guess on the robot controller before
more exact measurements are available.

• Physical parameters p̂ denote the best estimate of the real physical properties
which are represented by the model. This would be the accurate locations of the
redirection pulleys as measured after assembly, or the cable stiffness coefficients mea-
sured during a cable elongation test performed on a test bench, or the platform mass
determined by a scale.

• Optimal parameters popt denote the parametrization which is found by an op-
timization procedure with respect to some input-output quantities, e.g. joint space
encoder values and platform pose measurements. They represent the best choice for a
given model to mimic the behavior which is determined by the taken measurements.
The optimal parameters depend on the number and distribution of measurements.
Comparing optimal parameters one-by-one with physical parameters can show signif-
icant differences although the parameter set in its entity provides good predictions.



52 3 Control Model Analysis

Model parametrizations can be obtained in two different ways, that is with direct mea-
surement or indirectly via parameter identification. In case of parameter identification, the
distinction between a partial or full parameter identification has to be made. Sometimes
a combination of the methods is used.

In the case of direct measurements, a specialized measurement device is used to deter-
mine a physical property of the system. This can be a laser-tracking system to measure
the geometric properties of a CDPR, or a scale or inertial measurement unit to measure
the mass properties of the platform, or a force sensor on a test bench to measure the elas-
ticity of a cable segment. In the meta-model from Fig. 3.3, this distinct parametrizations
pηA, pηB for the two different models in case of error-free measurements is represented by

pηA, pηB ⊂ p̂ ∧ pηA ̸= pηB (3.1)

where each model represents a different subset pηA, pηB of the physical reality p̂ . In
practice, this approach has the drawback that CDPR assemblies are prone to systematic
measurement errors which can accumulate, be amplified, and influence the output behav-
ior in unpredictable ways. Direct measurement of a parameter value is defined by the
measurement precision and accuracy (Walther and Moore 2005) as shown in Fig. 3.4 where
accuracy relates to the closeness of the measurement pφ and the true value p̂, and pre-
cision relates to the reproducibility of the measurements. Based on this definition and
referring to the direct measurements of the geometric parameters with a laser-tracker, the
laser-tracker provides high precision measurements but cannot guarantee high accuracy.
The accuracy of the measurement is not as much a property of the measurement device as
of the measurement process.
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Figure 3.4: Precision and accuracy of parameter measurements

For the geometry model, the measurement process defines the actual location pφ of the
laser-tracker measurements and while this defined location pφ can be measured with high
precision, it may not represent the accurate location assumed by the model. These system-
atic errors are caused by model simplifications leading to a difference of the physical and
modelled entity as is best seen in Fig. 3.5 where a platform anchor point and a redirection
pulley are shown which both are essential for the kinematics model of a CDPR. A direct
measurement of the kinematic parameters relates to a measurement of the cable contact
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points at the platform and frame. A measurement device such as a laser-tracker provides
position data with a precision of some 0.01 mm, but from the components in the photos it
can be seen that systematic measurement errors are likely to be introduced since the point-
shaped end-point of the cable model cannot be physically determined. The measurement
accuracy largely depends on the specific hardware design and the way the measurement is
performed. One has to reconstruct the actual contact point from a geometry in the close
vicinity as seen in Fig. 3.5b for the redirection pulley where the laser target is placed on
top of the pulley mechanism.

(a) Platform anchor point at the CRS carbon
fiber cabin

(b) Cable outlet with tilt pulley from the high
accuracy winch system from Fraunhofer IPA

Figure 3.5: CDPR components essential to the kinematics model

While the precision of the measurement device is known and can be compensated for
or be reported together with the evaluation results, this is not possible for the unknown
systematic errors of the measurement of the component. For the analysis in the meta-
model, the influence of measurement precision is neglected and only measurement accuracy
is considered which is expressed as

pφ = p̂φ + ϵφ . (3.2)

Together with Eq. (3.1), the final position accuracy and workspace of the CDPR is now
influenced by the unknown systematic parameter errors and their interaction with unmod-
eled parts of the CDPR. This makes analyzing the contribution of the model structure
difficult with regards to model performance.

The effects of direct measurement may also lead to over-complex models, that do not
show increases in the performance level compared to simpler models. Due to its cumulative
nature, each additional model adds new parameters with a systematic error and while
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the contribution of each additional model to the final model prediction gets smaller, the
systematic error increases until it exceeds the benefits. This is closely related to the bias
variance trade-off problem from Fig. 1.4.

Using the meta model from Fig. 3.2 allows to address the issues stated in Par. 1 above by
allowing the interaction of models with different structures and parametrizations and the
issues stated in Par. 2 by analyzing the impact of complete parameter set with respect to
the output behavior. In the following sections, the meta-model is used to analyze the pose
accuracy and to define the reachable workspace of a given control model. The control model
φ and its parametrization is chosen from a model candidate set together with a ground
truth model υ̂ which incorporates some properties which the control model φ should be
tested against. The control model in general expects a desired pose and/or force signal as
input and returns the associated geometric joint space values which in turn are processed
by the ground truth model to determine the actual platform pose and force distribution.
The resulting actual pose and cable length values than can be compared to the desired
values computing the performance of the different models using a common predefined error
metric as shown in the following section.

3.3 Error Metrics

The definition of an error metric is essential for the comparison of model candidates. While
the specific metric may vary depending on the intended use it is important to keep the
defined metric fixed for the entire model selection and optimization process. Not providing
the specific error metrics and sample space is a common problem when the results from
different source models in literature are compared against each other. Starting with the
most common error metric, the accuracy for a pose set WX with ns = |WX| samples, is
computed in the sense of the absolute mean pose prediction error by

ϵxj =
∥∥xPj

− xMj

∥∥
2

(3.3)

ϵx̄(x̄P, x̄M) =
ns∑

j=1

ϵxj n−1
s (3.4)

where ns is the number of samples in the input-output sample space WQ → WX defined by
the joint space input sample vector q̄θ =

[
qθ1 · · · qθns

]
, qθj ∈ WQ which is used to

compute model predictions xPj
= φ(p, qθj) for a given parametrization p and to generate

the associated pose measurements x̄M =
[

xM1 · · · xMns

]
, xMj

∈ WX . From that,
the relative mean pose prediction error is given by

ϵ̂x =
ϵx̄

dW
(3.5)

where
dW = max(dist(WS)) (3.6)
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is the distance between the most distant sample elements. For sampling patterns with a
simple bounding box spanned by the diagonal vector vbb this leads to

dW = ∥vbb∥2 . (3.7)

The relative error can be used as scale independent performance parameter. The absolute
and relative mean pose error are metrics which allows to evaluate the general usability of
a controller and are well suited for processes where no rigid limits for position accuracy
are required such as motion simulation or camera inspection tasks. For more demanding
process with strict limits on the maximum positioning error, it is necessary to use the
respective error metric for maximum loss (Shalev-Shwartz and Wexler 2016)

ϵxmax = max
j∈{1...ns}

∥∥xPj
− xMj

∥∥
2

. (3.8)

Evaluating and comparing model candidates with respect to pose prediction accuracy can
be done in perspective of a specific application or in context of other model candidates as
shown in Fig. 3.6 under predefined environmental conditions with the goal of finding the
optimal feed forward control model. An optimal model φopt = φ(popt) is defined by its
optimal parametrization popt which minimizes the error metric from Eq. (3.3) with

min
p

ns∑
j=1

∥∥φ(p, qθj) − xMj
(qθj)

∥∥
2

(3.9)

or the error metric from Eq. (3.8) minimizing the maxium loss

min
p

max
j∈{1...ns}

∥∥φ(p, qθj) − xMj
(qθj)

∥∥
2

. (3.10)

for a validation sample set (q̄θV, x̄MV) under predefined environmental conditions. Both
optimality criteria lead to the same minimizer if ϵx̄(popt) = 0. For the more usual case
of ϵx̄(popt) > 0 the minmax criterion is the stronger error bound since ϵxmax (p) ≥ ϵx̄(p)
and therefore is the preferred criterion when strict limits on the pose error are demanded
by the application. On the downside finding the minmax minimizer is more difficult than
finding the mean average minimizer and it is not robust with respect to outliers in the
sample data as the objective function is not always continuous differentiable.

The optimal model from a model candidate set with nc candidates is defined by

φopt,c = min
(

ϵx̄(x̄Popt,1, x̄M), · · · ϵx̄(x̄Popt,ns , x̄M)
)

(3.11)

where the pose prediction sample vectors x̄Popt,j are computed by the respective optimal
configuration of each individual model with

xPoptj
= υkin,j(popt) . (3.12)

From this, it gets clear that it is not possible to rate a specific model structure without
finding its optimal parametrization e.g. it is not possible to compare an elastostatic model
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Figure 3.6: Model rating of two exemplary models A, B, based on a common error metric,
operational conditions, and evaluation set. Keeping the conditions fixed for
the entire optimization and evaluation process is essential for the validity of
the results.

with a pulley model without finding the optimal parametrization of each model beforehand.
Therefore, the model rating process is closely tied to the optimization and calibration
process and may suffer from the same problems such as local minima.

Evaluation and optimization of the models with the predescribed error metrics is usu-
ally done with a sample set x̄M recorded on the CDPR. Modelling this process of error
evaluation and parameter optimization using the meta-model described in Sec. 3.2, allows
to derive an analytic description of the effects that can be expected for different model
assumptions. In the following section, the meta-model is used to simulate the process of
measurement and predict the pose error with respect to model structure and parameter
variations.
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3.4 Pose Accuracy

In order to compare different models with respect to their maximal reachable pose accuracy
for a given application, one has to do an actual implementation of a control model, acquire
a sample set, run a parameter optimization, and use the optimized model to create a second
sample set for the final model evaluation. The same has to be done for the other model
candidates subject to the comparison. Finally, one can use an error metric from Sec. 3.3
to rate and select the model with the best pose prediction accuracy.

For the theoretical analysis of the stationary pose tracking accuracy of the control model
and the associated optimization methods, the meta model from Fig. 3.2 is used to compute
pose deviations ∆x for CDPR model compositions η according to Chap. 2 in the context
of a ground truth model υ̂ as depicted in Fig. 3.7.
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Figure 3.7: Pose error estimation

For the following analysis of the pose accuracy, certain conditions have to be fulfilled by
the ground truth model υ̂ :

1) The ground truth model must be of equal or higher complexity as the control model
and the parametrization of the control model must be different or a subset of the ground
truth model parametrization.

2) The ground truth model must be at least an elastostatic model to provide a meaningful
interpretation of the pose accuracy.

3) The initial conditions and parametrization of the control model must be closely aligned
in order to perform linear analysis.

The following analysis is performed with the standard elastostatic model for the ground
truth model. The control model is to be assumed closely aligned with the ground truth
model using a subset of the ground-truth parametrization

pη ⊂ p̂ (3.13)

and identical initial conditions. The remaining parameters of p̂ are assumed to have small
impact on the results, e.g. the pulley radius parameter for a pulley model would be small
compared to the workspace size such that the impact becomes neglectable.



58 3 Control Model Analysis

The operational conditions are defined by the initial configuration xini with the associ-
ated initial geometrical cable lengths qθini = φ(xini) and the initial cable offset defined
by

qoff = φ̂(xini) − qθini (3.14)

resulting in the initial cable force distribution fini subject to wrench closure condition Eq. (2.31)
and the external wrench we which for simplicity is assumed to be constant during opera-
tion. The initial cable offset qoff does not change during robot operation so that the actual
platform pose becomes

x̂ = υ̂(φ(x) + qoff). (3.15)

The pose error xerr = x̂ − x for the nominal configuration pN can now be computed
using the full elasto-geometric forward kinematics υ̂ or using the linearized version which
provides accurate results in most cases as shown in the following.

Let x0, qθ0 be a pose and consistent controlled cable length, respectively, such that the
wrench-closure condition γsk(x0, qθ0 ) = 0 holds true and let

∆w = ATf(qθ) + we (3.16)

be the residual wrench for an arbitrary controlled cable length qθ and cable force f =
K (q(x) − qθ) then the associated residual cable force follows using Eq. (2.38) with

∆f = −A+T∆w . (3.17)

The residual wrench and residual forces ∆w, ∆f show the deviation from the equilibrium
point and cause undesired motion of the platform. Considering decomposition of an arbi-
trary force vector into its internal, external, and residual forces

f = fext + fint︸ ︷︷ ︸
f0

+∆f , (3.18)

then the force equilibrium point f0 which fulfills the wrench closure condition is obtained
using Eq. (2.38, 2.40) yielding

f0 = −A+Twe +
(

I − A+TAT
)

f(qθ) . (3.19)

The associated cable lengths are given by

qθ0 = q(x0) − K−1f0 . (3.20)

Using the linearized elasto-geometric model around the equilibrium point x0, qθ0 one ob-
tains the tangential plane

γsk (x0 + ∆x, f0 + ∆f) = γsk(x0, qθ0 ) + (KG − KC) ∆x + AT∆f︸ ︷︷ ︸
∆w

. (3.21)
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or alternatively using the residual cable length ∆qθ associated with the residual cable
forces ∆f reads

γsk
(

x0 + ∆x, qθ0 + ∆qθ

)
= γsk(x0, qθ0 ) + (KG − KC) ∆x + ATK∆qθ . (3.22)

With γsk(x0, qθ0 ) = 0 one obtains the pose error with respect to the residual wrench or
cable length

∆x = (KG − KC)−1 (
ATK∆qθ

)
= Cxw∆w . (3.23)

It is important to notice that the geometrical stiffness matrix KG(x0, qθ0 ) must be com-
puted at the correct linearization point f0 = f(qθ0 ).

For a kinematics control model φ, the residual wrench is a function of the initial ca-
ble force distribution whose magnitude stays constant but whose directional changes are
determined by the structure matrix causing the pose deviation

∆x(fini) = Cxw
(

AT(x, p)fini + we
)

. (3.24)

An example is shown in Fig. 3.8 where the error contour and vector field of the pose
deviations is depicted.
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Figure 3.8: Linearized workspace analysis showing error contour plots and the associated
vector field for the pose deviations ∆x .

Depending on the redundancy of the CDPR, the initial force distribution can be opti-
mized for multiple locations simultaneously.

For force control, the pose deviation only depends on the misalignment between the
control model and the physical system. Starting from the ideal elastostatic control model
where

pη = p̂ (3.25)
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the residual wrench cancels for the entire workspace

∆w = 0 . (3.26)

Linearizing the structure equation around the equilibrium state with respect to the elas-
tostatic model parameters pη = (a, b, kF, we) and the platform pose leads to(

∂AT

∂(pab)
f + AT ∂f

∂pab

)
︸ ︷︷ ︸

Jwab

∆pab + AT ∂f
∂kF︸ ︷︷ ︸

JwkF

∆kF + I∆we +
∂ATf

∂x︸ ︷︷ ︸
−Kwx

∆x = 0 (3.27)

so that the pose deviation with respect to model errors can be stated as

∆x(∆pab, ∆kF, ∆we) = Cxw (Jwab∆pab + JwkF∆kF + ∆we) . (3.28)

A detailed description of the respective Jacobians is given in the model optimization chap-
ter Sec. 6.4. An example for the parameter sensitivity is shown in Fig. 3.9 where the
sensitivity ∆x

∆ax1
is depicted by the iso-contours and vector field.
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Figure 3.9: Sensitivity of the pose error ∆x for changes in the robot frame parameteriza-
tion, examplary shown for ax1 where green indicates areas with low sensitivity
and red indicates areas with a sensitivity close to one. The vector field shows
the associated gradients.

The green areas indicate low sensitivity or high robustness with respect to model param-
eter variations, the red areas indicate a sensitivity close to one. The sensitivity for CDPRs
always stays below one due to the nature of its geometry. This and the fact that parts of
the parameter variation vector ∆pab lie in the nullspace of Jwab explain the robustness
of CDPRs with respect to errors in the geometry model. For system identification, the
sensitivity of the system can be increased by increasing the geometric stiffness in Jwab
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applying higher cable forces. The analytic description of the pose error and the sensitivity
are used in the following to compare model variations and optimize the model geometry
in Chap. 4. The pose deviation analysis for the example above shows that the initial cable
force distribution significantly impacts the pose accuracy when a kinematics control model
is used although the geometry of the control model and physical ground truth model are
identical. This is caused by the force propagation from one pose to another when the cable
forces are not actively controlled. The force propagation effect also impacts the workspace
of a CDPR as is shown in the next section.

3.5 Model Workspaces

Beside position accuracy, the workspace is one of the most important characteristics of a
CDPR and a lot of research has been performed on this topic mainly regarding methods
for analysis and the impact of different models on the workspace as well as structural
optimization of CDPRs to maximize the workspace.

The workspace of a CDPR can be defined considering different aspects such as wrench
feasibility, cable collision, and the system dynamics. Focusing on the system statics, the
so-called wrench-closure workspace (Gouttefarde et al. 2007) WWF is define by the set of all
poses where the wrench-closure condition Eq. (2.31) is fulfilled while the cable tensions stay
positive f > 0 . For practical applications, cable forces have to be limited to a predefined
range such that cable sagging and overload are avoided

WWF = {x : AT(x)f(x) + we = 0 ∧ fmin ≤ f(x) ≤ fmax} . (3.29)

The definition from Eq. (3.29) commonly implies perfect alignment between the model and
physical reality as well as the availability of force control. Rewriting definition Eq. (3.29)
in terms of a general statics model γ with a parametrization p leads to

WWF = {x : γ(x, p) = 0 ∧ fmin ≤ f(x, p) ≤ fmax} . (3.30)

Considering Eq. (3.29) and the meta-model as shown in Fig. 3.10, different workspaces with
respect to model structure and parametrization can be defined which in the following are
called the model workspace

WM = WWF(γ, p), (3.31)

the physical workspace
WPHYS = WWF(γ̂, p̂), (3.32)

and the reachable workspace

WR = {x : γ̂ ◦ η(x, p̂) = 0 ∧ fmin ≤ fM ≤ fmax ∧ ∥x − xM∥2 < ∆xmax} (3.33)

where fM, xM are the measured cable forces and poses, respectively.
The model workspace and physical workspace are assumed to be identical by most

publications on workspace analysis. Differentiating between both workspaces allows to
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Figure 3.10: Workspace estimation

study the effect of incomplete control models. This is addressed by introducing the so-called
reachable workspace from Eq. (3.33) as the workspace of the control model η in context
of the ground truth model υ̂ regarding the emerging force distribution and pose deviation
∆x which is of special interest for overconstrained CDPRs with kinematic control models.
For fully determined robotic systems with m = n such as serial kinematic robots, a control
model η which is solely based on kinematic considerations provides a good approximation of
the system behaviour υ̂ and therefore one obtains accurate results using η for a geometric
workspace analysis. For CDPRs with m ≤ n cables, a static analysis is sufficient to
determine valid poses in the workspace fulfilling Eq. (3.29). Small geometric deviations of
the kinematics and statics model do not have much impact on the workspace geometry.
Overconstrained CDPRs in contrast have to be modeled as an elastostatic system whose
properties are not reflected in a solely kinematic or statics model. Deviations from the
physical model lead to the emergence of cable force distribution which impact the reachable
workspace and cannot be influenced actively by the kinematics controller. The reachable
workspace WR of such setup is always smaller than the physical workspace WPHYS . Active
cable force control models allow to influence the cable forces during operation such that
most of the physical workspace WPHYS can be reached assuming a close alignment between
control model parametrization pη and physical parametrization p̂.

The analysis of the reachable workspace requires a method which allows to find the valid
force distribution for each pose. The analysis in practice therefore depends in the same
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way on the force distriubution algorithm as the wrench feasible workspace Eq. (3.33)
To compute the geometry of the reachable workspace, a visual representation of the set

defined by Eq. (3.33) has to be found. Two useful methods for this are the grid sampling
method and the workspace hull method proposed by (Pott 2008). These requires checking
the existence of a valid force distribution fM and the pose displacement ∆x which is
done according to Eq. (3.23). For the computation of the force distribution two cases
are differentiated, that is the reachable workspace of kinematics control models and the
reachable workspace of open loop force control models. In the first case, the validity of the
cable forces must be checked for

fmin ≤ f0 + ∆f ≤ fmax (3.34)

with
f0 + ∆f = f0 + K∆q = f0 + KJqx∆x . (3.35)

where ∆x is computed according to Eq. (3.24). In the second case, the reachable workspace
is identical with the wrench-feasible workspace for pη = p̂ and deviates according to Eq. (3.28)
for pη ̸= p̂.

In the context of model selection and system identification, the reachable workspace WR

is a key element required for the planning of the sampling space and the model evaluation
itself. For system identification, the questions is answered how the workspace is influenced
by the model parameters, how it evolves during optimization, and how it can be used
as primary objective for optimization itself. The workspace description in terms of the
model parametrization and model structure can be used to compute workspace differences
between two models in context of the meta-model for different cases as shown in Fig. 3.10.
Two control models ηA,ηB can be compared with respect to their different outputs in
the cable force distributions linked to the workspace hull. The comparison of two models
with small parametric deviations leads to the concept of the differential hull which was
introduced by (Pott 2018b) and can be used for the analysis and optimization of control
models. Computing the deviation between the predicted cable forces f and the emerging
cable forces fM allows to predict the deviation of the reachable workspace with respect
to the model workspace. Comparing the emerging cable forces of two different control
models leads to the concept of the differential hull of the reachable workspace WR which
is depicted in Fig. 3.9 showing the nominal reachable workspace indicated by the blue line
and the workspace differential indicated by the blue vector set and magenta outline caused
by the parameter variation ∆ax1 . The theories form this and the previous sections are
investigated in a detailed simulative analysis in the following sections.

3.6 Simulative Analysis

The following simualative analysis has the purpose to show the importance of the proposed
methodology to create a more realistic picture of the positioning behavior and workspace of
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CDPRs under the usual condition of incomplete control models. Especially the phenomena
of force propagation impacts the position accuracy and the reachable workspace depending
on the intial force conditions and paramter misalignment. The results from simulation
with a nominal parametrization also show the problem of using direct measurements of
the CDPR geometry for kinematic model parametrization. The results form the nominal
model are used as reference for the later model optimization in the next chapter.

The section starts with a comparison of the linear approximation and the full elastotstatic
forward kinematics for the estimation of the pose error and reachable workspace. For the
purpose of clarity, the examples are shown for a two-dimensional CDPR allowing better
visualization.

The pose tracking error of a motion controller using the standard kinematics model
φ which is operated on a physical system represented by an elastostatic ground truth
model υ̂ = υel is computed from the system compliance given in Eq. (3.23) and the initial
conditions from Eq. (3.14).
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(a) Pose prediction accuracy using a linearized
kinematics model φ with an elastic CDPR.
The vector field and contours show the pose
deviation ∆x, ∥∆x∥2 , respectively.
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Figure 3.11: Pose prediction accuracy and linearization error for a kinematics control model
apllied to an elastostatic ground truth model.

A visualization of this setup is shown in Fig. 3.11awhere the cable stiffness of the physical
system is to be assumed

kFi = 2000
kN
m

(3.36)
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Figure 3.12: Cable forces caused by the force propagation form the initial tension state and
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and the wrench and initial force distribution at the initial pose

xini =
[

0 5.2
]

(3.37)

are chosen as

we =
[

−1962.0 0
]

N (3.38)

and

fini = f (3.39)
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respectively. The geometric parameters of the frame are given by

a =


−6.000 8.000

5.000 8.000
−5.000 0.000

5.000 0.500

 . (3.40)

In Fig. 3.11a, the positioning error ∆x is represented by the arrows of the vector field and
the associated magnitude of the error by a contour plot providing information about the
direction and magnitude of the expected pose error. The pose tracking error zeros at three
locations inside the workspace including the initial position where the force distribution
was chosen such that the physical system is in a force equilibrium state. The two other
locations result from the initial force distribution which is propagated through the system
such that the wrench-closure condition is fulfilled at these locations. The maximum pose
errors occur close to the physical workspace border with a maximal error of 20 mm for the
depicted configuration.

The boundary of the wrench feasible workspace of the ground truth model (physical
workspace WPHYS ) is indicated by the red line describing all poses which can be reached
without violating the force conditions of the physical CDPR assembly. The workspace
contour of WPHYS is computed using a line search algorithm which is applied to the
wrench-feasible condition Eq. (3.29) to map a polyhedron onto the workspace boundary as
described in (Pott 2008). The boundary of the reachable workspace WR is shown by the
magenta line including all poses which can be reached by the standard kinematics model
for a given initial tension state f0 without violating the physical force limits. The cable
force predictions for an exemplary circular trajectory outlined in Fig. 3.11a are shown in
Fig. 3.12 together with the physical force limits and the constraint violation of f1, f2 at
the reachable workspace border. The poses of the workspace boundary relate to xM and
therefore represent the actual poses reached when operating the CDPR at the workspace
border. The blue boundary line indicates the reachable workspace border with respect to
control model reference poses x and therefore relate to all poses which can be provided
as reference pose to the controller without causing force violations in the system. The
difference in both representations is equal to the pose tracking error at the workspace
border as can be seen in the lower region of the workspace where the pose tracking error
is largest. Computing the areas of the reachable and physical workspace according to
(Pott 2018a), it can be seen that the reachable workspace of the kinematic controller
with a reachable area of 51 m2 covers only 73 percent of the physical workspace with an
reachable area of 70 m2. The definition of the reachable workspace in Eq. (3.33) allows to
apply a combined criterion of force limits and pose deviation limits. Using the combined
criterion leads to workspace boundaries indicated by the iso-lines from the pose deviation
plot. Narrowing the constraints on the pose tracking accuracy, the reachable workspace
becomes disconnected leading to separate regions where the CDPR can be operated with
sufficient accuracy.
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While the analysis of the reachable workspace WR in Fig. 3.11a is done computing the
full elastostatic forward kinematics, one can obtain accurate results using the linear model
according to Eq. (3.23) when the control model and ground truth model are similar enough
with respect to the structure and parametrization. This is shown in Fig. 3.11b where
computations of the pose deviations and reachable workspace for the linear model are
shown together with the linearization error indicated by the magnitude of residual platform
force depicted with the iso-lines. The impact of the linearization error in general is small
as can be seen by the green line compared to the magenta line which is associated with the
full elastogeometric forward kinematics. In the lower left and right region, it can be seen
that the linear approximation deviates significantly from the nonlinear analysis, although
a large part of this region already lies outside the wrench-feasible workspace.

The model also allows to optimize the initial tension state such that the tension for a
given region or trajectory becomes optimal with respect to some predefined criterion. A
criterion which regards the lower and upper force limits is defined by (Pott et al. 2009)
where the desired cable force is defined with a maximum distance from the force limits
that is fm = 0.5 (fmin + fmax) . The least squares optimal force distribution with respect
to fm along the trajectory is defined by

fref = fm − A+T
(

we + ATfm
)

. (3.41)

Another criterion proposed by (Kraus et al. 2013a) finds the minimal force distribution
to increase energy efficiency of the CDPR. The optimal initial tension distribution with
respect to fref along a given trajectory is computed by minimizing the path integral

min
fini

∫
s

(fref(s) − f(s, fini))2 ds (3.42)

or surface integral for areas and triple integral for volumes, respectively. Using Eq. (3.41) as
criterion and the trajectory from Fig. 3.11a as path for the path integral, the minimization
leads to a force distribution for the trajectory as shown in Fig. 3.14 where the dotted lines
show the reference force distribution according to Eq. (3.41) and the solid lines show the
least squares optimal approximation which is realized by choosing fini . The associated
modified reachable workspace is shown in Fig. 3.15. The trajectory now complies to the
force limits and optimally tracks the reference force fref .

3.7 System Parameter Analysis

While the meta-model allows to analyze the performance of a control model for a given
robot setup, it also allows to study the impact of certain system parameters in context
of the robot life cycle as depicted in Fig. 3.16. Row (D) shows the different phases of
the life-cycle. Row (A) and (B) depict the main parameters of two different physical
implementations of a CDPR system. Row (C) relates to the parametrization of the robot
control model. Usually the parameters of a CDPR are just stated as a fixed configuration
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Figure 3.14: Optimized cable forces
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Figure 3.15: Reachable workspace for optimized tension state for the kinematics control
model φ with an elastic CDPR.

for a specific model neglecting the overall context of the robot life-cycle with respect to
final aim of application performance.

The final robot performance can be analyzed with respect to three factors which are the
robot design (A,B), the robot model (C), and the impact of each phase of the life-cycle. The
robot design phase defines the final achievable performance by setting the physical limits
and defining the complexity of the system which has to be matched by the controller. For
example, setting the geometry parameters defines the physical limits of the wrench feasible
workspace. The robot performance is impacted by the hardware design parameters (A,B)
and the model parameters (C) as was derived for the positioning accuracy and reachable
workspace in the last sections. Optimal performance can be achieved by optimization of the
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Figure 3.16: System and model parameters during the different phases of the system life-
cycle.

model parameters minimizing the prediction error of (C) and measurements from (A,B).
A good alignment of the model (C) and physical reality (A,B) can be achieved by either
reducing complexity of the physical system in the design phase or by an increased model
complexity for the control model. Depending on the design of a CDPR, various parameters
may be considered for the selection of the optimal configuration such as the frame and
platform geometry, cable stiffness, cable offsets, pulley diameter, pulley orientation, power
train transfer behavior etc. .

A good design tries to minimize usage of components which have high sensitivity and
may impact the system performance when they are not correctly represented in the model.
For example, a design of a CDPR with point-like cable outlets is preferable to designs
with significant pulley diameters, when other requirements such as the minimal bending
radius of the cables can be avoided. While the final parameter space of the physical system
may vary largely with the final hardware components, some properties are common to all
CDPRs which are the spatial geometry of the platform and frame defined by b, a, the tilt
pulley radius rp , the cable stiffness defined by kF , and the cable offsets qoff which are
used to create a valid tension state fini.

Considering the aim of optimal robot operation with respect to pose accuracy and
workspace reachability, these parameters have different meaning in context of the dif-
ferent parts of the robot life cycle depicted in Fig. 3.16. The robot design phase and
optimization process usually relates to geometry defintion and its optimization (B): a, b .
Component design then defines properties of individual parts such as the cable or pulleys
which are necessary for the implementation (B): rp, kF. The assembly and setup process
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may requires to set parameters such as the cable offset (B): qoff to generate the initial
cable tension. While a standard CDPR with a kinematics model operates with a fixed set
of these parameters, more sophisticated robot designs allow to change the robot geometry
during operation by additional actuators depicted as (A): a(x) or the cable offsets using
force control (A): qoff(x). An example for a CDPR which allows for real-time modification
of the frame geometry is Segesta prototype from University Duisburg-Essen using linear
rails for the redirection pulleys (Reichert et al. 2015). In the following the effect of the
parameters rp, kF, qoff on the expected performance of the robot system φ̂ is investigated
using the meta-model and a fixed geometry configuration a, b. The next chapter then
deals with the optimization of the control model φ covering the second part of the robot
life-cycle depicted in Fig. 3.16.
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Figure 3.17: Stiffness variation

In Fig. 3.18 the impact of different design parameters with respect to the physical wrench
feasible workspace WPHYS, the reachable workspace WR, and pose tracking accuracy is
shown. The physical wrench feasible workspace is only impacted by the chosen model
geometry and external wrench. Fig. 3.17a, 3.17b show the same geometry and wrench
with the same wrench feasible workspace. Fig. 3.18a, 3.18b show the same setup with a
zero wrench and the associated wrench feasible workspace. Choosing cables with higher
stiffness allows to increase positioning accuracy but does not allow to increase the reachable
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workspace as shown in Fig. 3.17a for kF = 1000 kN
m and Fig. 3.17b for kF = 3500 kN

m .
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Figure 3.18: Cable tension variation

A complete exemplary analysis of the positioning accuracy which can be expected for a
kinematics control model with respect to a given cable stiffness is shown in Fig. 3.19. The
graph shows the proportion of the physical workspace which can be reached for a predefined
required accuracy using cables with a specified stiffness kF. The blue line for example
indicates the size of the reachable workspace for a required accuracy of ∆xmax = 5 mm .
The limit of the reachable workspace for the given setup and any possible stiffness kF or
required accuracy ∆xmax is indicated by the horizontal dashed line.

Changing the internal tension state impacts the positioning accuracy as well as the
reachable workspace as shown in Fig. 3.18a for fmax = 8000 N and Fig. 3.18b for fmax =
3000 N . Although higher tension in the cables may lead to better positioning accuracy of
the platform in case of wrench disturbances due to the increased geometrical stiffness, these
results show that tension state propagation significantly impacts the positioning accuracy
and that higher tension states lead to larger residual wrenches. Secondary the reachable
workspace is impacted significantly by the initial tension state and the optimal tension
level depends on the physical force limits fmin, fmax as shown in Fig. 3.20. The graph
shows the proportion of the physical workspace which can be reached for a given required
accuracy ∆xmax and initial force distribution computed by Eq. (3.41) with fmin = 1000 N
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and fmax as given on the x-axis.
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Figure 3.20: Relative workspace size for cable tension variation and error thresholds ∆x =
{1, 2, 5, 10} mm

The impact of the tension state in neglect of unknown disturbances varies depending on
the chosen required accuracy and depends on two factors. The first factor is the residual
wrench and as mentioned before, lower tension leads to higher accuracy which can be seen
for ∆xmax = 1 mm indicated by the red line. The second factor is the relation of the
initial force distribution with respect to the given physical force limits of the system. In
case the initial force distribution gets close to the lower or upper limits, a drop in the
reachable workspace can be expected as shown by the magenta line. This effect is the
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more important the more the accuracy requirement in Eq. (3.33) is relaxed and the force
distribution criterion takes over. Combining the results from Fig. 3.19, 3.20 the initial
force distribution defines the reachable workspace for which the positioning accuracy can
be adjusted by changing the system stiffness or decreasing the tension at the cost of the
reachable workspace. For system identification, the stiffness of the robot maybe unknown
at the beginning but based on this results it is possible to find the optimal initial force
distribution to maximize the initial sampling space for the measurement process. For the
example configuration, the optimal tension state for the maximal sampling range is given
by fmax ≈ 6000 N or the respective reference value fM ≈ 2500 N .
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Figure 3.21: Pose prediction accuracy using a kinematics model φ with an elastic CDPR
with pulleys.

3.8 Influence of Pulley Kinematics

Redirection pulleys are an essential component of most CDPRs and are used for the pow-
ertrain to guide the cables to the outlet points. From a control perspective, it would
be useful to avoid pulleys entirely and design the cable outlet such that it has point-like
properties and does not change during operation. Practical design requirements such as
minimal bending radii for cables and the use of cost efficient components usually lead to the
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use of standard tilt pulley mechanisms for the cable redirection. The pulley model as an
extension of the standard kinematics model was first proposed by (Bruckmann et al. 2008).
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An real-time capable approach for solving the forward kinematics of the pulley model was
proposed by (Schmidt and Pott 2013) A real-time capable dynamics model including the
pulley model was introduced in (Miermeister and Pott 2010) and used for hardware-in-the
loop dynamics simulations of CDPRs. A similar approach was used for the dynamic anal-
ysis of CDPRs in (Tempel et al. 2015b). While the modelling of pulleys intuitively makes
sense to improve the geometry model not much work has been conducted on analyzing the
impact of the model on the positioning accuracy and the robot workspace beside (Pott
2012) where the effect of the pulley kinematics with respect to the cable length deviation
and wrench feasible workspace was performed and (Schmidt and Pott 2013) where an ex-
perimental evaluation was conducted. Here a similar approach is used in combination with
the meta-model to complete the picture of the pulley model with respect to the expected
positioning error and expected impact on the reachable workspace.

The ground truth model υ̂ is extended by the pulley model from Sec. 2.3 where the
Jacobians for the forward kinematics are augmented by the respective differential relations
given in Sec. 2.7. The pulley radii are chosen as rp = 150 mm which is close to the
radius of the CableRobot Simulator with a rope diamater of 14 mm and a typical value
considering that the bending radius for steel ropes should be as high as possible but at
least ten times the rope diameter rp = 10dr to increase durability of the cables. The
difference of the control model with and without the pulley kinematics is shown for the
pyhsical wrench feasible and reachable workspace in Fig. 3.21. The pulley reference points
are aligned such that the tangential outlet point for all pulley radii is identical for the initial
configuration. The effect on the physical wrench feasible workspace is quite limited as was
also reported in (Pott 2012) and can be seen only for large variations in the pulley radii. The
workspaces WPHYS for rp = {0, 150, 400} mm are shown by the gray, red and green outline
respectively. The relative sizes of the workspaces for rp = {150, 400} mm in relation to
rp = 0 mm are 98.95, 97.54 percent, respectively. The small impact on the physical wrench
feasible workspace is due to the fact that the pulleys are relatively small in comparison
to the workspace and that the geometry of the static system is not much changed by
the pulleys. The size of the associated reachable workspaces for rp = {150, 400} mm is
shown by the magenta and green line. A more complete picture of the relative size and
positioning accuracy for WPHYS and WR is shown in Fig. 3.22. The limit of the reachable
workspace with respect to pulley size is indicated by the magenta line. The stronger
dependency on the pulley radius is caused by the distortion of the cable forces which
add to the residual wrench causing an increase in the position error and a decrease in
the reachable workspace. The associated regions which can be reached with a predefined
accuracy ∆xmax = {1, 2, 5, 10} mm are given by the red, green, blue, and yellow line.

For a control model with force control the position accuracy and reachable workspace
are significantly increased as shown in Fig. 3.23. In contrast to the analysis of the wrench
feasible physical workspace, the misalignment of the geometry is included in the analysis
and therefore provides a more accurate picture of the impact which is to be expected for
the unmodeled pulley geometry.
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This concludes the analysis of the physical system by means of the meta-model and pose
accuracy and reachable workspace as performance criteria. While this analysis provides
insights in the different factors which have to be considered for the initial setup of the
CDPR to maximize workspace and positioning accuracy using a nominal kinematics control
model, optimization and force control are further measures which allow to increase the
system performance and are discussed in the next chapter.
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4 Model Optimization

The previous chapter introduced the meta-model which is used to compare the impact of
different model structures and parametrizations with respect to selected evaluation criteria
from Sec. 3.4, 3.5 and error metrics from Sec. 3.3. Using the meta-modelling approach, the
kinematic and elastostatic control models were analyzed using the pose prediction accuracy
and the reachable workspace as evaluation criteria. While the analysis allows to estimate
and compare the expected performance of a model for a predefined parametrization, the
question of an optimal parametrization for a given model structure remains. Parameter
optimality is essential for the model selection process and is needed for the rating of
two model candidates ηA, ηB according to Eq. (3.11). In Fig. 4.1, two model candidates
are shown with the model structure ηA, ηB and their respective nominal and optimal
parametrization pη, pηopt . Using the methodology from the previous chapter it is possible
to compare the model candidates with respect to their pose prediction accuracy indicated
by ∆ϵx̄ as well as the workspace and force predictions (not shown here). Considering the
four system configurations of the meta-model S1, S2, S3, S4, most publications on the
modelling of CDPRs report results with respect to experimental or stimulative data from
a single model candidate pηA which corresponds to the system configuration S1 where the
nominal parametrization is used to operate the CDPR and estimate ϵx̄ . Some publications
use the nominal parametrization to compare different models pηA , pηB which corresponds
to an estimate of ∆ϵx̄ for system configuration S1, S3. For a meaningful comparison and
computation of ∆ϵx̄ careful reporting of the associated model parametrization pηA , pηB

is essential. Unknown parametrizations and experimental conditions make it difficult to
compare results from different publications.

Some publications report on the performance of optimal parameterized models ηA(pηA opt)
which correlates with the system configuration S2 and the estimation of ϵx̄(pηA opt) . To
the best of the authors knowledge, no publications exist where the model performance of
models for CDPRs with different structures and optimal parametrization are compared
to each other. This equates to the computation of ∆ϵx̄, ∆ϵf̄ for ηA(pηA opt),ηB(pηB opt)
in system configuration S2, S4. One of the key issues often observed for the proposal
of new physical first principal models, is the change of the model structure without a
thorough system identification and parameter optimization step. Therefore obtaining the
optimal parametrization for proper model comparison is part of this chapter. The following
evaluation chapter provides an experimental evaluation for models of different complexity
reporting the respective ∆ϵx̄, ∆ϵf̄ which allow to assess the usability of the model for the
specified application. The integration of the optimization process into the overall model
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Figure 4.1: Structure and parameter comparison

selection and evaluation process is shown in Fig. 4.2. The meta-model from the previous
chapter is used to describe the final evaluation of the optimal model as well as the data
acquisition and sampling process which itself depends on the initial control model.

4.1 Kinematics Model Optimization

Depending on the available measurements and models, different approaches can be used
for parameter identification. The parameter identification for the kinematics model in
Eq. (2.5, 2.7) can be achieved by direct measurement of the geometric parameters, di-

rect measurements of the platform pose also called open loop calibration (Hollerbach and
Wampler 1996; Mooring et al. 1993), or by measuring the encoder values leading to a
closed loop or auto-calibration scheme (Hanqi Zhuang and Lixin Liu 1996; Khalil and
Besnard 1999). Using direct measurement for calibration allows to determine errors in
the geometry parameters with respect to the nominal robot design. The resulting model
is accurate in the sense that the geometric relations of the control model and the actual
robot assembly match, but nonetheless does not provide the best positioning accuracy as
mentioned in the previous chapter. A numeric example is shown later in Fig. 4.6. In the
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Figure 4.2: Model optimization process

second case where the method of open loop calibration is used, direct pose measurements
are recorded to generate a sample set which allows calibration for CDPRs with arbitrary
number of cables including suspended cable-mechanisms. The third case, internal encoder
signals are used to record the sample set which is used for the auto-calibration procedure.
The application of an auto-calibration scheme using winch encoder signals is only possible
for overconstrained CDPRs with m > n. Using additional information from cable force
sensors also allows the identification for CDPRs in suspended configuration and with less
cables than degrees of freedom.

Considering the calibration method using direct pose measurements, in general one can
find a parameter set which minimizes the sum of errors between the model predictions

x̄P = υkin(q̄θ, p) (4.1)
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in operational space and the pose measurements

x̄M = υel(q̄θ, pN) (4.2)

as shown in Fig. 4.3 using the information of ns samples qθj , j = 1 ... ns and the loss
function from Eq. (4.3).
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ϕ
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xP
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pϕ

Figure 4.3: Kinematics model optimization in cartesian space

An initial control model is needed in order to acquire the sample set. The allowed
error of the initial model is limited by the requirement of cable tension boundaries on
all cables. Poses which cannot be reached within the force constraints i.e. poses with
loose or overtensioned cables leading to the definition of the reachable workspace WR from
Eq. (3.33). Usually an iterative scheme has to be applied where a small sample set is

captured to improve the initial model and to allow sample capturing in a larger workspace
volume. This approach allows to identify models for underconstrained and overconstrained
CDPRs with arbitrary numbers of cables but requires additional measurement equipment
such as laser or camera based pose trackers. Deriving the associated objective function

ρ(p) = x̄P(p) − x̄M (4.3)

with respect to the geometrical parameters p = (a, b) in terms of the forward kinematics
υ = x(q) one obtains the Jacobian according to

∂gsk(p)
∂p

=
∂x(q(p))

∂p
=

∂x
∂q

∂q
∂p

. (4.4)

For ∂x
∂q the inverse or pseudo-inverse ∂q

∂x
−1 = −A∗ in accordance with Eq. (2.59) has to

be computed. The Jacobian dq
dp is obtained considering li = ai − pB,i and the associated

derivative
Jlab,i =

∂li

∂(ai, b(P)
i )

=
[
I −R0P

]
(4.5)
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and Eq. (2.61) so that

Jqab,i =
∂qi

∂(ai, bi)
= uT

i Jlab,i. (4.6)

After optimization one obtains the calibrated model

x̄M ≈ x̄P = υel(q̄θ, popt) (4.7)

whose inverse φ(qθ, popt) is used to control the robot. Transforming the optimization
problem into the joint space leads to a structure as shown in Fig. 4.4 and with the trans-
formation of the pose error from Eq. (4.3) into the model joint space one gets the vector
of residuals

ρ = φ(x̄M, p) − q̄θ (4.8)

min
p

ns∑
j=1

∥∥φ(xMj
, p) − qθj

∥∥
2
. (4.9)
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Figure 4.4: Kinematics model optimization in joint space

Restating the residuals in terms of the inverse kinematics avoids the computation of
the inverse matrix associated with the forward kinematics. The results for a calibration
of the geometric control model are later shown exemplary for two sampling sets covering
a large and small area inside the workspace as shown in Fig. 4.6a, 4.6b. Minimizing the
residual function from Eq. (4.8) is a central aspect of the optimization problem. Efficient
numerical methods which allow to find local minimizer are part of the next section.

4.2 Residual Function Minimization

Considering the scalar multi-variable objective function ϵq(p) = 1
2ρ(p)Tρ(p) based on

the vector residual from Eq. (4.8) and let q̄θM = φ(x̄M, p, , ) one has to find the optimal
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parameter set popt with

min
p

(1
2
ρ(p)Tρ(p)

)
= min

p

1
2

∥∥q̄θM (p) − q̄θ

∥∥2
2

= min
p

1
2

nsm∑
i=1

(qMi(p) − qθi)2. (4.10)

Finding the optimal parametrization popt for Eq. (4.10) is a nonlinear least squares op-
timization problem whose solution can be found using a gradient descent solvers (Ruder
2016) or more advanced schemes such as the Gauss-Newton (Nocedal and Wright 2006) or
Levenberg Marquardt solver (Moré 1978) which allow faster convergence. Starting from a
sufficient initial guess pini for the model parameters, the basic step in each iteration of the
Gauss-Newton method is to find the least squares solution for the linearized system

pk+1 = min
p

∥ϵq(pk) + Jqp(pk) (p − pk)∥2 (4.11)

and use the solution as best guess for the next iteration. The gradient of the objective
function ϵq(p) follows from the chain rule with

∇ϵq(p) = JT
qpρ(p) (4.12)

where the Jacobian is computed from the vector residual

Jqp =
∂ρ(p)

∂p
. (4.13)

The first-order necessary condition for an optimal parametrization is defined by

∇ϵq(p) = JT
qpρ(p) = 0. (4.14)

The second order sufficient condition is given by the positive definite Hessian

M = ∇2ϵq = JT
qpJqp +

m∑
i=1

ρi∇2ρi is pos. definite. (4.15)

For small residual vectors ρ, one obtains a good approximation of the Hessian just using
the Jacobian expression

M ≈ JT
qpJqp. (4.16)

For the parameter optimization to work, it is necessary to have a well conditioned Jacobian
which is mainly influenced by the selected sample set and the weighting of the residuals as
shown in the next sections.
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4.3 Sample Selection and Matrix Condition

Sample selection aims at maximizing the information which is obtained form the system
during measurement. Methods for pose sample selection for parallel robots are described
extensively in (Hollerbach and Wampler 1996; Wampler et al. 1995) and regarding the
optimal number of poses in (Verl et al. 2008). All methods use the singular values of the
Jacobian to determine the quality of the selected sample set. Using the first order Taylor
expansion of the residual function from Eq. (4.8) leads to the normal equation comparable
to Eq. (4.10, 2.15) with

∆pab =
(

JT
qabJqab

)−1
JT

qab︸ ︷︷ ︸
J∗

qab

∆q̄ (4.17)

where ∆q̄ contains the joint space errors between pose predictions and measurements for all
m cables and ns sample poses resulting in a linear system of nq = nsm equations. Solving
the linear least squares normal equation allows to determine the parameter correction
vector ∆pab. The nq ×np Jacobian Jqab represents the sensitivity for the parameter vector
with respect to the measurements and can be used to rate the quality of the underlying
model and the selected sample set computing the condition number with respect to the
inverse of a full rank n × n square matrix

κ(A) = ∥A∥2

∥∥A−1
∥∥

2
=

σ1

σn
(4.18)

where σ1, σn are the largest and smallest singular value of A, respectively. The condition
κ is a measure for the relative sensitivity of the different parameter dimensions. A well-
conditioned matrix should have a condition number close to one such that a change in each
individual parameter has nearly the same effect on the output. This is the case when all
sample configurations are linear independent and the Jacobian becomes orthogonal with
κ(A) = 1. Larger condition numbers indicate that some degree of multicolinearity between
the sample configurations exists (Montgomery et al. 2012). For a sample set with more
samples than number of model parameters i.e. nq > np the condition of the Jacobian
matrix Jqab is defined in a similar way with repsect to the Moore-Penrose pseudo left
inverse by considering the singular value decomposition (SVD) for

Jqab = UΣVT (4.19)

and
J∗

qab = UΣ∗VT (4.20)

where Σ is the diagonal matrix with the singular values of Jqab with

Σ =
[

Σr

0

]
∈ Rnq×np , Σr = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rnp×np (4.21)

Σ∗ =
[
Σ∗

r 0
]

∈ Rnp×nq , Σ∗
r = diag(

1
σ1

, . . . ,
1

σr
, 0, . . . , 0) ∈ Rnp×np (4.22)
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leading to

κ(Jqab) =
∥∥Jqab

∥∥
2

∥∥J∗
qab

∥∥
2

=
σ1

σr
. (4.23)

While the selected sample set has significant impact on the condition number it is only one
of four influencing factors associated with the condition number for a specific calibration
problem which are the model structure, the model parameters, the parameter scaling, and
the sample set as shown in Fig. 4.5. The sample selection aims at minimizing the number of
samples while maximizing the obtained information. This may be achieved by distributing
the samples within the workspace

Condition
number

Model
parameters

Sample
selection

Parameter
scaling

Model
structure

Figure 4.5: Influences on matrix condition number.

While a low condition number indicates a well-posed calibration problem, the cause for
a high condition number may be difficult to identify due to the influences of the different
aspects of the calibration process. Sec. 6.4 shows these influencing factors in the context of
the elastostatics model where different issues with respect to sample selection and param-
eter scaling arise.

4.4 Model Rating

For the use of the a model it is important to rate the prediction accuracy of a model in
respect of the specific application requirements. As mentioned in Sec. 3.2 the prediction
accuracy depends on the model structure and its parametrization. In the following, an
error metric based on the mean average pose error from Eq. (3.3) is used to rate the
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model with respect to a given design parameter set

aD =


−6.0 8.0

5.0 8.0
−5.0 0.0

5.0 0.5

 m (4.24)

assuming an error free assembly process, that is aN = aD. Using the nominal parametriza-
tion for comparison shows the possible increase in performance for a given model class
without increasing model complexity. Choosing a sufficient sample set is essential for the
comparison and a standardized method must be used to obtain comparable results. In case
of a specific given application, the sample set can be defined by the respective requirements,
for example measuring and optimizing the accuracy of the system for certain operation
points. Obviously, the increase in accuracy depends on the size and location of the areas
and in general increase the closer and smaller such areas become. To make a more general
comparison of different models it makes sense to compare the mean prediction error for
an evenly sampled reachable or wrench feasible workspace WR . As an example a first
sample set with 25 samples is taken from an equidistant grid with nx,y = [5, 5] steps in
each direction of a bounding box with range ((-4, 0.5), (4, 6)) leading to the sample set as
depicted in Fig. 4.6a and defined by

WT1 = {−4, −2.4, · · · , 4} × {0.5, 1.6, · · · , 6} (4.25)

with the condition number from Eq. (4.23) being

cond(Jqab) = 3.2. (4.26)

The second sample set with 16 samples is taken from an equidistant grid with nx,y = [4, 4]
steps in each direction of a bounding box with range ((-3, 0.4), (2, 1)) in the lower workspace
leading to the sample set

WT2 = {−3, −1.75, · · · , 2} × {0.4, 0.55, · · · , 1} (4.27)

with the condition number
cond(Jqab) = 19.3. (4.28)

So both sample sets provide sufficient information to identify the geometric cable outlet
points. An additional sample set with 2500 samples is used to cross validate the model
outside the task sample space with an equidistant grid with nx,y = [50, 50] steps in each
direction of a bounding box with range ((-6.4, -0.5), (5.5, 8.5)) regarding the wrench fesible
workspace leading to

WV = {−6.40, −6.16, · · · , 5.50} × {−0.50, −0.32, · · · , 8.50} ∩ WWF (4.29)

where WWF is the workspace definition from Eq. (3.29). The operational conditions are
defined by a constant external wrench of we =

[
0.00 −1962.00

]
N and a specific ca-

ble stiffness of kF =
[
200000.00 200000.00 200000.00 200000.00

]
N
m . Running the
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parameter optimization of the geometric control model as described in Sec. 6.1 for both
scenarios one obtains the optimal parameter set aopt = aD + ∆a with

∆a1 =


15.077 69.386

−40.895 74.302
10.081 1.128

−12.443 15.892

 mm, ∆a2 =


18.400 131.750

−145.129 197.131
34.803 −135.463

−42.338 −203.331

 mm . (4.30)

Using the nominal paramterization aN and optimal parametrization aopt, the absolute and
relative mean error as well as the absolute and relative improvement are measured. The
optimal parametrization aopt leads to an increase in accuracy by 29.00 % reducing the
mean absolute pose error defined in Eq. (3.3) from ϵxN = 5.71 mm to ϵxopt = 4.06 mm
for the nominal configuration aN and sample set WT1. The relative error is computed as
defined in Eq. (3.5) with dW = 9.71 m leading to ϵ̂xN = 0.589 % and ϵ̂xopt = 0.418 %.

For the associated workspace cross validation set WV one obtains an increase in accuracy
by 9.52 % reducing the mean pose error from ϵxN = 9.61 mm to ϵxopt = 8.69 mm .

In the second case, the optimal paramterization leads to an increase in accuracy by 80.64
% reducing the mean absolute pose error from ϵxN = 11.78 mm to ϵxopt = 2.28 mm
for the sample set WT2. For the associated workspace cross validation set WV the ac-
curacy level changes by -33.57 % changing the mean pose error from ϵxN = 9.61 mm to
ϵxopt = 12.84. mm

Obviously the improvement is best for the sampled area for the first and second case.
For very specific task spaces as in the second example the increase may be even more
significant but coming with the cost of less out-of-sample performance.

The example shows that the accuracy of the kinematic standard model is quite limited
when applied to an elastic CDPR. Since one cannot reach a better performance than ϵxopt ,
the only way for reaching better performance without changing the model class is to reduce
the task workspace as shown in the example with WT1, WT2. The mean adjustment vector
norms are ∆a1, mean = 46.537 mm and ∆a2, mean = 181.344 mm. These deviations from
the nominal model are quite significant considering the accuracy with which the nominal
parameters can be measured using laser tackers and inversely it raises the question how
much effort should be put in direct measurement of the nominal parameters using high
precision devices.

4.5 Identification of the Elastostatic Model

The elastostatic model is founded on the structure equation Eq. (2.31) which describes the
static condition for all poses in the equlibrium state and the underlying structure from
the geometrical standard model described in Eq. (2.3) or the extended pulley kinematics
model from Eq. (2.16). Identification of the elastostatic model is more involved than the
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(b) Pose prediction accuracy for the optimized
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Figure 4.6: Pose prediction accuracy for two different sample sets.

identification of the standard kinematics model due to the different scales of the parameters,
different scales and reliability of the sensor inputs, and the possibility to optimize the
model with respect to different objective functions. Parameters for the geometry model
and parameters for the stiffness model for example have vastly different impact on the
combined error function. The same is true for the heterogeneous sensor data when position
measurements from a coordinate measurement system are combined with measurements
from the force sensors. These aspects are analyzed in more detail in the following sections.
Using a sample set with single samples defined by the given controlled cable lengths qθj

, the measured pose xMj
in equilibrium state, and the measured cable forces fM one has

to find the optimal parametrization for pκ = (a, b, kF, we) which minimizes the residual
wrench of the elastic model from Eq. (2.31) to guarantee a stable stationary state with
a valid force distribution and which minimizes the elastostatic inverse model according
to Eq. (2.37) to guarantee consistency of the geometric relations and stiffness properties.
The residual function according to Fig. 4.8 is stated as

ρ =
[

x̄P

f̄P

]
−

[
x̄M

f̄M

]
. (4.31)

In this case the states of the elastostatic model are treated as outputs which are computed
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Figure 4.7: Pose prediction accuracy for two different sample sets.
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Figure 4.8: Elastostatic model optimization in cartesian space

by the elastostatic forward kinematics minimizing

min
p


∑ns

j=1

∥∥xj − xMj

∥∥
2∑ns

j=1

∥∥AT(xj , p)K
(

q(xj , p) − qθj

)
+ we

∥∥
2∑ns

j=1

∥∥K
(

q(xj , p) − qθj

)
− fM

∥∥
2∑7m+n

j=1 λ|pj |

(4.32)



4 Model Optimization 89

where the minimizer p minimizes the four stated error functions. This is a complete
description of the objective functions for the optimization of elastostatic CDPR control
models which allow for optimal position and force control. While the general structure of
these residuals does not change for more complex models such as the pulley kinematics, the
parameter space and associated Jacobians do. The first and second part of Eq. (4.32) de-
scribe the pose error under the boundary constraint of the force equilibrium. The platform
load we and system stiffness are linear dependent with respect to the pose measurements
and therefore the third residual has to be included using the measured cable forces for
load and stiffness identification. The last equation is used to penalize the magnitude of
the parameters and to avoid overfitting for overcomplex models. In the specific case above,
the penalty term represents the lasso regularization. Using a quadratic penalty term leads
to the ridge regularization (Hastie2013; Hastie et al. 2009). The general concept for
the ridge and lasso regularization is indicated in Fig. 4.9. Using the p1-norm of the lasso
regularization allows to zero certain model parameters and therfore reduces the parameter
space and model complexity.

poptpopt

p1 p1

p2 p2
λ

λ

‖p‖1
‖p‖2

Figure 4.9: Ridge and lassor regularization

With that, the system consists of (2n + m) ns + 1 nonlinear equations and 7m + n

parameters. The Jacobian for the j-th platform pose follow from Eq. (3.27, 3.28) with

δxj = Cxwj

(
Jwabj

δpab + JwkFj
δkF + δwe

)
. (4.33)

Neglecting the pose index j, the Jacobian for the geometric parameters reads

Jwab =
∂γsk

∂(a, b)
= KGab + ATKJqab. (4.34)

The partial derivatives for the cable stiffness coefficients follow from f(kF) = kF
q (q − qθ)

with
JwkF =

∂γsk
∂kF

= ATdiag
(

e −
qθ

q

)
. (4.35)
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The 6 × 38 Jacobian for the elastostatic model with respect to the j-th sample then reads

Jwpj
=

[
Jwabj

JwkFj
I

]
(4.36)

and the full 6ns × 38 Jacobian for all ns samples is composed by

Jxp =

Cxw1 Jwp1 0 0

0
. . . 0

0 0 Cxwns Jwpns

 . (4.37)

The objective function from Eq. (4.32) requires to solve the forward kinematics for all
sample poses. Stating the residual in terms of the inverse elastostatic model reads

min
p


∑ns

j=1

∥∥AT(xMj
, p)fj + we

∥∥
2∑ns

j=1

∥∥φ(xMj
, p) − ∆q(fj , p) − qθj

∥∥
2∑7m+n

j=1 λ|pj |

(4.38)

with (n + m) ns + 1 nonlinear equations and 7m + n parameters. The associated structure
is shown in Fig. 4.10. One should recall that the wrench closure condition in the first part
of Eq. (4.38) does not incorporate any assumptions about system stiffness and is a solely
geometrical property regarding the force distribution. Together with inverse kinematics
from the second part of Eq. (4.38), one merges the position sampling data and the force
sampling data to establish the correct robot geometry. The additional part ∆q(f) regards
the elastic properties of the CDPR providing the information on how to translate actuator
values into cable forces.
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Figure 4.10: Identification of the inverse elastostatic ground-truth model

The residual for the elastostatic inverse kinematics can be rewritten as

γel = q(x, a, b)
(

1 − diag(kF)−1ef
)

− qθ = 0. (4.39)
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The partial derivative with respect to the geometric parameters yields

Jqabel
=

∂γel
∂(a, b)

= Jqab
(

1 −
(

diag(kF)−1ef
))

. (4.40)

The partial derivative with respect to the stiffness parameters yields

JqkF =
∂γel
∂kF

= q(x)diag(kF)−2ef . (4.41)

The elastostatic model can be optimized with regards to the kinematics constraints or with
respect to the wrench closure condition making it possible to weigh the criteria with respect
to the application. Optimizing the geometric parameters such that φ(xM) → qθ implies
a reproduction of the measured system behavior with υ̂ (φ(xM), qoff) → fM. The so found
model replicates the measured system behavior in an optimal way but may not perform
optimal for out of sample predictions, especially extrapolation. Using an kinematics model
for the initial sampling leads to a sample coverage as shown in Fig. 4.11 and additional
samples from the force space may have to be recorded separately to obtain accurate results.
The sampling the workspace volume with the kinematics model allows to cover around
74 % of the wrench feasible workspace regarding the pose data, but the force space is
only sampled at one location for each individual pose sample as is shown in Fig. 4.11.
Experiments showed that the stiffness parameter may not be estimated correctly when
the CDPR is operated at only one tension level as is shown in the evaluation chapter in
Fig. 5.7 since the stiffness itself changes with the tension level. An extensive sampling of
the 15 dimensional pose and force space in general is expensive but due to the coupling
of the cable forces, one only has to define the samples in the nullspace of the force space
reducing the overall sample space to 8 dimensions for a CDPR with m − n = 2 .

The initial sample set is obtained with a standard kinematics model with which the
control set points qθj are computed as indicated in Fig. 4.8. The initial tension state of
the robot configuration is defined by qoff leading to sample set defined by the reachable
workspace WR from Eq. (3.33).

Running parameter identification for the elastostatic model requires a well conditioned
Jacobian Jwp. As shown in Sec. 4.3, Fig. 4.5the condition of the Jacobian is influenced
by the sample set, the parameter scales, and the parameter selection itself. Choosing
an optimal sample set corresponds to finding a set of linear independent vectors. The
magnitude of all paramters should be in the same range to obtain a suffiecient optimization
landscape. The choice of parameters also influences the condition matrix and the sample
selection in so far as they have to be observable and linear independent from each other.

In contrast to the geometric standard model from Sec. 6.1 the elasto geometric model
includes parameters of vastly different manitudes as for example the geometry parameters
a within a typical range of ±10 m and the cable spring constants kF with typical values
around 1000 kN

m .

This difference may lead to a ill conditioned Jacobian Jwp and to slow convergence of the
optimization algorithm as well as larger errors in the final optimization result. Stopping
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Figure 4.11: Sampling spaces and model predictions for elastostatic identification with a
kinematics control model

criteria are more difficult to formulate in a consistent way for the different dimensions.
To avoid these problem, a preconditioning matrix can be used which allows to reduce the
conditioning number of the augmented linear system. The simplest preconditioning matrix
is the identity matrix while the optimal preconditioning matrix would be the inverse so
one would obtain the identity matrix with κ(Jwp) = 1 as a result. One common approach
to improve the condition is to use a scale-based condition matrix.

In the following the parameter identification and evaluation process for an elastostatic
control model from Sec. 4.4 with respect to an elastostatic ground truth model with pulley
kinematics and a parametrization as given in Tab. (4.1) is presented. The two most im-
portant steps are the determination of the sampling space, and the determination of the
parameter preconditioning matrix. The optimal sampling space is determined by max-
imizing the information criterion as well as by the reachable workspace. For accurate
initial control models the reachable sampling space is sufficiently large to obtain enough
information for parameter optimization. For largely unknown model parameters it maybe
necessary to use a force based identification scheme which does not rely on the the robot
geometry. Different algorithms and design of experiments methodologies (DOE) can be
used to select the optimal sample set based on the underlying model such as full-factorial
design, D-optimal, or I-optimal design (Antony 2014; Atkinson 2015). For the following
example, a full-factorial experiment is conducted and the workspace is uniformly sam-
pled with a grid of 5x5 points providing sufficient information for parameter identification.
Starting with the geometric parameters of the elasto-geometric model, the influence of the
different model parameters with respect to the condition of the Jacobian matrix is shown in
the following using an initial configuration as shown in Tab. (4.2) and Fig. 4.16a. Fig. 4.16a
also shows the sampling set inside the predicted workspace.
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a [[-6. 8. ] [ 5. 8. ] [-5. 0. ] [ 5. 0.5]] m

rp 0.15 m

kF [200000. 200000. 200000. 200000.] N
m

qoff [0. 0. 0. 0.] m

we [ 0. -1962.] N

Table 4.1: Ground truth parametrization

a [[-6. 8. ] [ 5. 8. ] [-5. 0. ] [ 5. 0.5]] m

kF [200000. 200000. 200000. 200000.] N
m

qoff [0. 0. 0. 0. 0. 0. 0. 0.] m

we [ 0. -1962.] N

Table 4.2: Initial parametrization
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Figure 4.12: Condition of Jwp with respect to parameter scaling weights skF, swe

The condition numbers for the individual parameter sets a, kF, we in Tab. (4.3) case a),
b), c) show that the individual residuals are sensitive to changes in the model parametriza-
tion and that the optimization problem is well conditioned when a geometry optimization,
a stiffness estimation, or load identification should be performed. While this works well
for partially unknown model parametrizations, usually all parameters are unknown for
the control model synthesis and should be calibrated simultaneously. Just using initial
conditions from Tab. (4.2) and the Jacobian from Eq. (2.66) leads to an ill posed prob-
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Case Parameters Condition number Jacobian size

a) p = a κ(Jwa) = 1.9 152×8

b) p = kF κ(JwkF) = 1.7 148×4

c) p = we κ(Jwe) = 1.0 146×2

d) p = (a, kF, we) κ(Jwe) = 6416799.6 158×14

e) p = (a, kF, we), skF = 106, swe = 103 κ(Jwe) = 55.0 158×14

Table 4.3: Condition of the jacobian matrices Jwp for different parameter sets and precon-
ditioning factors.

lem. For the example configuration and the parameter vector p = (a, kF, we) one would
obtain a 158×14 jacobian matrix Jwp with a condition number of 6.42e+06 indicated in
Tab. (4.3) by case d) which is caused by the difference in parameter magnitudes of kF and
a . Introducing the preconditioning matrix

Wpc = diag (skF, swe)) (4.42)

allows to change the relative scaling of the parameters. The impact of the weighting
parameters on the matrix condition is shown in Fig. 4.12. Optimization of both meta-
parameters leads to skF = 106, swe = 103 and a condition of 55.02 as shown in Tab. (4.3)
case e).
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Figure 4.13: Optimization progress
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Figure 4.14: Optimization progress
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Figure 4.15: Residual progression κ

aopt =


−5.853 8.050

4.841 8.042
−4.936 0.073

4.947 0.547

 , ∆a = aopt − a


0.147 0.050

−0.159 0.042
0.064 0.073

−0.053 0.047

 (4.43)

a [[-5.853 8.05 ][ 4.841 8.042][-4.936 0.073][ 4.947 0.547]] m

kF [206771.909 218680.096 239626.621 179146.542] N
m

we [ -0.526 -1889.905] N

Table 4.4: Optimal parametrization

Running the nominal elastostatics control model with the paramterization from Tab. (4.2)
and active force control using the compuation scheme form Eq. (3.41) leads to a pose error
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(a) Nominal elastostatics control model on elas-
tostatics ground-truth model with pulley
kinematics.
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(b) Optimal elastostatic control model with op-
timized geometry parameters aopt , system
stiffness kFopt , and wrench weopt

Figure 4.16: Elastostatic control model optimization
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Figure 4.17: Force tracking accuracy example for circular trajectory

distribution as shown in Fig. 4.16a with a mean of

ϵx̄ = 43.33 mm (4.44)

inside the reachable workspace WR(p) . The force tracking error for the nominal model
is shown for an exemplary circular trajectory from Fig. 4.16a in Fig. 4.17. The deviation
from the reference force is significant but does not constitute the main optimization crite-
rion for applications where mainly positioning accuracy is required. Optimization of the
elastostatic model is done with the respective pose and force measurements x̄M, f̄M and
a weighting factor wρwe = 1 and wρq = 10000 for the residuals from Eq. (4.38) and the
preconditioning matrix Wpc with scaling factors as indicated in Tab. (4.3) e). The states
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Figure 4.18: Force tracking accuracy for optimal control model on circular trajectory

for each iteration step of the optimization are shown for the robot geometry, system stiff-
ness and load identification in Fig. 4.13a, 4.13b, 4.14a respectively. The progression of the
Jacobian and residuals are shown in Fig. 4.14b, 4.15 leading to the optimal control model
with popt as shown in Tab. (4.4) . The regularization parameter could be set to λ = 0
since all parameters of the model show linear independency with respect to measurements.
An example, where model reduction is necessary, is shown in the evaluation chapter with
a model optimization for the translational workspace. Running the optimal elastostatic
control model allows to obtain a mean positioning error of

ϵx̄ = 30.05 mm (4.45)

inside the reachable workspace. The force tracking accuracy for the trajectory increases
as shown in Fig. 4.18. Although the results indicate that pulleys may have large impact
on the accuracy and the reachable workspace, it should also be noted that an optimal
parametrization of a standard kinematics model already reduces the error in large areas
of the workspace ϵx < 10 mm and larger observed errors in the position accuracy should
first be reduced by parameter optimization and subsequently by model extension. The
possible performance increase through parameter optimization is shown in more detail in
the evaluation chapter.
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5 The CableRobot Simulator

The CableRobot Simulator (CRS) is a novel motion simulation device which was developed
during this thesis and its data are used as basis for the following evaluation chapter. The
overall system development included the design of the mechanic frame structure, the control
architecture, and the design of two different simulator platforms, one icosahedron shaped
platform for general purpose experiments and a specialized helicopter training platform
incorporating an actual helicopter cabin. The system represents a completely new kind
of motion simulator and builds on the extensive research on cable-driven parallel robots
performed in the recent years at Fraunhofer IPA (Pott 2013, 2018a). Motion simulators
usually are based on parallel kinematic machines such as hexapod systems (Freeman et al.
1995; Salcudean et al. 1994) or more recently, on serial kinematic robots as was demon-
strated by (Bellmann et al. 2011; Nieuwenhuizen and Bülthoff 2013; Teufel et al. 2007)
which provide larger workspaces. Using the concept of CDPRs for the implementation of
the CableRobot Simulator allowed the design of a versatile motion simulator with high pay-
load capacity and unique motion capabilities. The following sections provide an overview
of the most relevant parts of the system architecture and design parameters.This system
is the main experimental testbed for the results presented in this thesis. Therefore, the
system setup is described in detail in the next sections. Actual measurements and results
from system identification for the relevant components are shown to provide a reference
setting for the parameter optimization in the following evaluation chapter.

5.1 Structural Design and System Properties

The initial structural design of the CRS was chosen to provide a large simulation space for
a large variety of motion perception studies ranging form basic research of the vestibulary
system to transport system comfort studies. The simulator cabin design is optimized with
regards to stability, cabin volume, and weight. Using an icosahedron truss structure allows
to minimize the weight while maximizing the cabin volume, since it provides the optimal
use of components regarding the tension flow through the structure. On the other side it
provides an optimal relation of nodes and edges with regards to a sphere enclosure. Using
carbon fiber rods for the edges and aerospace alloy for the nodes keeps the weight below
80 kg for the whole cabin without instrumentation. For the cable topology a cross over
configuration as shown in the figures was chosen to maximize the pitch and roll capability
of the cabin.

The CableRobot Simulator uses a set of eight winches mounted on the floor at two
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pA,1

pA,2

pA,3

pA,4

l1

l2

l3

l4

r

a4

b4

Figure 5.1: Kinematics structure of the CableRobot Simulator and the cable routing from
the winches over the proximal anchor points pA,i to the distal platform points
pB,i .

locations to actuate eight 14 mm steel cables which are guided by a pulley system and
connected to the simulator platform. The arrangement of the winches and powertrains
is mainly determined by the boundary constraints of the floor layout and the maximum
distance between the winches to the control cabinet which needs to be minimized to reduce
power losses and signal disturbances. Using two locations with respectively four winches
as shown in the floor plan Fig. 5.2 leads to cable length variations between 12 and 25 m
depending on the specific drive train path and the length inside the simulator workspace
as shown in Fig. 5.1 for l1 to l4 . The length in the workspace is associated with the inverse
kinematics of the CRS. The additional cable length inside the drive train is not considered
for the kinematics but adds compliance to the system and is therefore relevant for the
elastostatic modelling (see Sec. 6.4).

Each winch is driven by a 48 kW synchronous motor with a standstill torque of 3230 Nm
allowing for a maximum static cable force of 21180 N. Dimensioning of the system allows
a maximum cable force of 14000 N for each cable. Overload in the cables is prevented by
load monitoring using force sensors in the pulley axes. The acceleration capability depends
on the internal force states and the current system load. The system is designed such that
it is possible to reach platform accelerations of a = 14ms−2. A summary of the technical
specification is given in Tab. (5.1)

A more detailed analysis of the simulators system dynamics and transfer characteristics
is shown in the bode plot from Fig. 5.3 where the amplitude and phase response for an
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   DESIGN STANDARD DIN 56950

   SELF WEIGHT OF UNIT approx. 800 kg
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   NUMBER OF ROPES 1

   WINDING DIAMETER 305 mm
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   DYNAMIC LOAD OF LIFTING ROPE 14 kN
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LOAD CASE

   LINEAR SPEED 5 m/s
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Figure 5.2: Simulator floor plan.
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Max. linear and rotary acceleration
[

14 m
s2 100◦ 1

s2

]
Max. linear and rotary velocity

[
5 m

s 100◦ 1
s

]
Approximate translational workspace

[
4 m 5 m 5 m

]
Approximate rotational workspace

[
4◦ 5◦ 5◦

]
Feasible cable tension range

[
1000 N 14000 N

]
Max. payload including platform and passengers 1000 kg

Cut-off frequency dep. on weight and cable tension 5 − 14 1
s

Safety level of controller SIL 3

Drive power 8 × 48 kW

Pulley radius 161 mm

Winding diameter of winches 305 mm

Rope diameter 14 mm

Table 5.1: Technical specification of the CableRobot simulator

array of varying cable forces is depicted. Beside the cable tension state f , the overall cable
length l0, and the direction of motion sm = sign( dl

dt
) also impact the transfer behavior but

are not further considered here. The measurement of the transfer behavior in Fig. 5.3 is
stated with respect to a powertrain model using the motor torque τref as reference input
and the measured cable force fM = g(τref) determined at the pulley axis as indicated in
Fig. 5.4.

The identification is done by fixing the cables to the ground and applying a chirp signal
T (s) to the powertrain system from Fig. 5.4 to obtain the frequence response

F (s) = G(s)T (s) (5.1)

where the powertrain system G(s) includes the dynamics of the motor current and vector
control, the drum and rotor inertia Id, the cable mass mc, and cable elasticities k, as well
as pulley inertia Ip. The trace of the shift in the cutoff frequencies and peak gains for the
varying tension states which lead to the curve array from Fig. 5.3 are depecited in Fig. 5.5
showing the dependence of the transfer behavior with respect to the tension state. Varying
the cable tension between 1000 N and 10000 N leads to bandwidth variation from 12 to 19
Hz for control of the cable forces.

While the analysis of the input output behavior provides an accurate description of the
powertrain system dynamics, it does not provide detailed information about the different
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Figure 5.3: Power train transfer function
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Figure 5.4: Powertrain model

physical effects which lead to the observed behavior. A detailed analysis of the cable
dynamics of the CableRobot simulator with respect to the unsupported cable segments in
the workspace are performed in (Schenk et al. 2017) using a VICON tracking system as
external measurement device. With this camera based approach it is possible to measure
individual elastic coordinates of the cables with a sampling rate of 250 Hz. Using the
spatial data as shown in Fig. 5.6 provides the possibility to run a parameter identification
on finite element models as proposed by (Andersen et al. 2014).

The static behavior of the powertrain is measured with the same setup as indicated
in Fig. 5.4 showing a hysteretic behavior as depicted in Fig. 5.7 (A) which is an effect
that can be observed for most CDPRs, compare (Miermeister et al. 2015; Miyasaka et al.
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Figure 5.5: Shift in cutoff frequency and peak gain due to tension state

2016). Using simplified linear spring models in an elastostatic control model as described in
Sec. 2.4 whose parameters are determined by a least square linear fit to the measured data
of a single powertrain lead to errors up to 600 N. The magnitude of the error determined
by direct measurement of a single powertrain correlates closely with the mean error which
is obtained for a full elastostatic model optimization as is performed in Sec. 6.4 with an
error of ϵf̄ = 582 N.

Using a piecewise polynomial model for the loading and unloading path allows to reduce
the prediction error significantly. In Fig. 5.7 (A) the overlay of the measured data and
model predictions is indistinguishable and the error is reduced to around 0.5 % as shown
in Fig. 5.7 (B) for the loading and unloading polynomial. The associated change in the
cable stiffness is depicted in Fig. 5.7 (C) showing that the cable stiffness varies between
38 kN

m and 580 kN
m for cable elongations of 0 to 4.5 mm and the associated tensions states

between 500 N and 12000 N. While the polynomial hysteresis model provides an accurate
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Figure 5.6: VICON camera cable tracking. Longitudinal and lateral motion of eight mark-
ers are shown in the cross sections. A detailed analysis can be found in (Schenk
et al. 2017)

model for a single powertrain and fixed cable length, it introduces more complexity by
the additional parameters of the polynomials and the need for additional information such
as the direction of motion to accurately compute the model predictions. The increased
effort for modelling the hysteresis effect may be taken into account for applications where
the CDPR is operated with focus on the process wrench such as impedance control. For
the motion simulator, cable forces are only of concern as a criterion for minimal and
maximal cable forces and the reachable workspace. Using a linear elastic cable model
allows robust identification of the associated stiffness parameters and provides sufficient
prediction accuracy as shown in Sec. 6.4.

5.2 Icosahedron Platform

The platforms for the CRS are a central part of the system and described in the following
to complete the description of the experimental testbed of this thesis. The icosahedron
platform is designed to provide a lightweight versatile cabin which can be used for vari-
ous motion experiments such as vehicle simulation, perception threshold studies, motion
sickness experiments, and passenger comfort studies. The scope of experiments requires
the platform to be usable for motion experiments with passengers in sitting and upright
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Figure 5.7: Cable hysteresis behavior

standing position leading to a space frame design. It allows mounting a seat with body
tracking equipment shown in Fig. 5.8a and provides a spherical enclosure allowing to secure
probands also in standing position as shown in Fig. 5.8b.

To provide optimal structural force transfer between the cables around the spherical
enclosure with a diameter of 2.8 m, an icosahedron structure is chosen which provides the
best approximation to the sphere while keeping the number of force transmission elements
minimal. Using carbon fiber rods as connection elements provides high stiffness and break-
ing loads while keeping the mass of the space frame at 80 kg. The use of carbon fiber in
general allows to minimize the cabin weight but adds to the complexity of the design and
manufacturing process since it is difficult to predict the load capacity and failure behaviour
due to the anisotropic behavior of the carbon fabrics (Knops 2008). Manufacturing the
parts and creating reliable connectors also involves complex processes and test procedures
to obtain certified structural components which can be used in safety critical applications
such as the CRS. Using an icosahedron shaped space frame reduces complexity compared
to monocoque or unibody designs. Only one-dimensional load cases have to be considered
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(a) Configuration 1: Icosahedron cabin with
seat mounting and optical tracking for
vestibulary system studies.

(b) Configuration 2: Icosahedron cabin with up-
right standing passenger for transport sys-
tem comfort study.

Figure 5.8: Icosahedron cabin configurations for different simulation use cases.

for the force transmission elements which allows to use certified processes for carbon fiber
tube manufacturing and to define the respective interactions between adjacent elements.
Also, only one type of structural component has to be manufactured reducing manufactur-
ing cost for the most expensive carbon fiber parts. The rods are designed for a maximal
compression and expansion force of 151 kN where the critical load is defined for compres-
sion using the Euler case 2 buckling criterion (Gross et al. 2014). Connecting carbon fiber
materials and metal components to transfer large dynamic forces requires fatigue resistant
connectors which need specialized design to cope with the inherent anisotropic nature of
composite materials and the complex fracture behavior as well as the wide variety of failure
modes. All failure modes have to be accounted for to create the optimal joint design (Ca-
manho and Hallett 2011). Here, the connection between the aluminum nodes and carbon
fiber rods is established using a clamp connector with a radial wound roving which is used
to take up the expansion forces of the inner conus element to provide the frictional forces
for the axial load transfer as shown in Fig. 5.9b. All connection points have a self-centering
conic shape and can be used as cable attachment points allowing fast reconfiguration of the
cabin. A detailed methodology for cable robot reconfiguration can be found in (Trautwein
et al. 2018) and is not further considered in this thesis. The cables are connected to the
cones using universal joints where the rotational center pB,i as depicted in Fig. 5.9a is used
for the nominal geometry of the control model.

To check the stability of the cabin hull, the load distribution in the icosahedron space
frame is computed using a linear elastic model for the carbon fiber rods with a stiffness of
ksf. Analyzing the internal forces of the icosahedron cabin is done with the matrix stiffness
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(a) Icosahedron cabin cable connectors
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(b) Carbon fiber clamp connector load transfer

Figure 5.9: Icosaheron cabin structural components

method (Karnovsky and Lebed 2010) which provides a general formalism to analyze the
statics of truss structures. The formalism can be well integrated with the elastotstatic
model of cable-driven parallel robots from Sec. 2.6 since it resembles the same structure
and one can see the elastic model of a CDPR as a special case of a more general elastic
truss structure where the cables represent truss members or used as external load for the
platform truss. Using the same naming convention as used in the cable robot literature,
the positions and loads of the joints of the space frame (sf) are denoted by xsf, wsf and the
length and inner forces of the truss members are denoted by qsf, fsf respectively. Writing
the structure equation for the truss system one obtains

AT
sffsf + wsf = 0 (5.2)

where the structure for an exemplary configuration for a two-dimensional truss as depicted
in Fig. 5.10a yields

AT
sf =

 usf1 −usf2 0
0 usf2 usf3

−usf1 0 −usf3


(6×3)

(5.3)

using the truss unit vectors usfi ,

fsf =

fsf1
fsf2
fsf3


(3×1)

(5.4)
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for the truss member forces fsfi , and

wsf =

u1 0 0 0
0 u2 0 u4

0 0 u3 0


(6×4)


f1

f2

f3

f4


(4×1)

(5.5)

using the cable unit vectors ui and the cable forces fi . For a given load set wsf, the
joint displacements are computed from the stiffness matrix KCsf = AT

sfKsfAsf under the
assumption that no initial load is present such that the impact of the geometrical stiffness
can be neglected (compare Sec. 2.6) with

δxsf = KC
−1
sf wsf. (5.6)

For a system with n degrees of freedom, it is necessary to fix some joints to make the
system solvable by removing the ambiguities which would arise through the possible rigid
body transformations. Reversely, the member forces fsf follow from the node displacements
δx by

fsf = KsfAsfδx. (5.7)

In Fig. 5.10b an example for a worst case load analysis of the icosahedron cabin is shown,
where loads of 10 kN are applied to all joints beside the cable forces in order to simulate
equipment which is attached to the respective joints during motion simulation. Joints
indicated by the blue dots have fixed coordinates to remove rigid body motion for the
analysis.

wsf1

wsf2

wsf3

wsf4

fsf2

fsf1

fsf3

xsf1

xsf2

xsf3

usf1 usf2

usf3

(a) FEM space frame statics

2

11

1

 4

Y

 3  7

-2

0
-2

 6

 5

-1.5

 9

-1

X

-1

-10
1

-0.5

12  8

2

0

-2

Z

3

0.5

 2
1

 1

1.5

10

2

Nominal truss
Truss deformation
Joint load vectors
Joint reaction forces

(b) Icoshaderon space frame analysis

Figure 5.10: Icosahedron stability analysis
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An overview of the entire icosahedron platform setup and the basic configuration is
shown in Fig. 5.11 where the parametrization ai, bi of the nominal model is given by the
rows of the parameter matrices

a =



−5.380 7.677 6.524
−5.421 7.668 −1.242

5.016 7.555 6.503
5.117 7.638 −0.754
5.152 −6.182 6.642
5.218 −6.304 −0.615

−5.451 −6.492 6.630
−5.461 −6.509 −1.067


, b =



−1.383 0.528 −0.747
−0.799 1.245 0.746

1.454 0.370 −0.748
0.954 1.147 0.745
0.819 −1.268 −0.746
1.403 −0.551 0.746

−0.935 −1.170 −0.746
−1.434 −0.393 0.748


. (5.8)

The depicted workspace hull in Fig. 5.11 shows the wrench feasible constant orientation
workspace for the nominal configuration and a rotation with ϕ = 0 . The cabin can be
operated inside the workspace in an open-loop control mode for trajectory replay, or in
a human-in-the-loop mode using standard controllers. Operating the cabin in the close-
loop mode while providing a safe control strategy for the complex workspace boundary
is still subject to research. While most closed-loop experiments can be conducted using
standard input devices such as control sticks and pedals the design of the CRS also allows
the implementation force sensing schemes for the control of the icosahedron cabin. Due
to the size of the icosahedron cabin and the force sensors in the tilt pulleys, it is possible
to track the forces of passengers in standing and sitting position with high accuracy if an
accurate model is provided as is shown in the next section.

5.3 Icosahedron Cabin Force Sensing

The seat configuration mainly is used with a virtual reality head mounted displays to-
gether with an optical head tracking system which is robust against cabin acceleration in
comparison to the integrated IMU based trackers. Using the cabin in standing configura-
tion allows to implement balancing experiments and transportation comfort studies. This
configuration also allows the use of novel control schemes where the motion simulator in-
teractively reacts to weight rebalancing using the internal forces sensors of the redirection
pulleys. Although the system forces and loads are high with up to 10000 N per cable
compared to the differential weight changes caused by a subject with a weight of around
80 kg, is possible to track the motion of the subject estimating the center of gravity using
the structure equation from Eq. (2.31) and the projection onto the xy-plane

wxy(xs) =
[

0 0 0 1 0 0
0 0 0 0 1 0

]
AT(x)f(x, xs) − we (5.9)

where
wxy = 0 (5.10)
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Figure 5.11: CableRobot Simulator with icosahedron cabin and wrench feasible constant
orientation workspace

Figure 5.12: Test walking trajectory for dynamic load tracing

for the unloaded state. In Fig. 5.12 the experimental setup for load tracing on the icosa-
hedron platform is outlined. The wrench data for wxy from the recorded experiment is
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Figure 5.13: Interactive load tracking using platform wrench estimation

shown in Fig. 5.13a. Phase A and C show the initial and final state wxy = 0 before the
platform is accessed and after it is exited by the subject. Phase B shows the weight fz of
the subject and the exerted torque during the walk which is used to compute the subjects
relative positions xs as depicted in Fig. 5.13b. The values are recorded for a fixed zero
pitch and roll angle which allows a tracking accuracy of ±9.7 cm comparing the estimated
pose (red line) with the reference (green line). Increasing the roll and pitch angles leads
to a decrease in sensitivity since position changes in z-direction do not change the exerted
torque and cannot be detected. Beside the angle of the platform, the accuracy mainly
is influenced by the accuracy of geometry model which is used to compute the structure
matrix AT , Eq. (5.9). Obtaining the accurate kinematics model and load estimator for
the CRS is part of the evaluation chapter. While the icosahedron platform is designed as a
versatile general purpose platform, it lacks some features such as large rotation angles and
realistic interior design required for helicopter simulation. For this scenario, an additional
simulator platform based on an actual helicopter cabin was designed which is described in
the next section.

5.4 Helicopter Platform

For the simulation of hover flight scenarios a Cabri G2 helicopter cabin from Guimbal
depicted in Fig. 5.14a is integrated into the CableRobot Simulator as shown in Fig. 5.14b.
Adding the helicopter cabin provides additional realism for the simulation of flight ex-
periments, especially hover maneuvers which can be replicated without additional motion
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cueing filters. The platform configuration diverges significantly from the Icosahedron cabin
in so far as the cables are attached to the lower and upper part of the platform without
any over-crossing of the cables in vertical direction as can be seen in Fig. 5.16, 5.18. This
design decision had to be made in order to integrate the additional endless rotation yaw
axis shown in Fig. 5.16, 5.17a which allows free rotation of the helicopter cabin. Since
this measure reduces the angle of the four upper cables, the workspace in z-direction is
much more limited than for the icosahedron cabin as can be seen by comparing the wrench
feasible constant orientation workspace of the helicopter cabin to the icosahedron cabin as
depicted in Fig. 5.15.

(a) Guimbal Cabri G2 Helicopter (A. Tarditi -
Hélicoptères Guimbal)

(b) Guimbal Cabri G2 helicopter cabin mounted
to the CRS.

Figure 5.14: Helicopter simulator

Driving the endless yaw axis can be done with an onboard motor unit or more advanced
concepts with additional cables and an external motor unit as proposed in (Miermeister
and Pott 2015; Pott 2012; Reichenbach et al. 2019). The use of a cable-actuated yaw-axis
allows to reduce the cabin weight and may remove the necessity of power and signal supply
for some CDPR designs. Using an onboard motor solution on the other side provides more
accurate and easier control of the yaw axis and allows to use standard solutions for the
certified and safe operation of the yaw axis.

Additional requirements for the platform attachment points regard the minimization
of the exerted torque on the actuated yaw axis while still allowing to counteract torque
from the accelerated helicopter cabin. Furthermore, the height of the yaw axis has to
be minimal to minimize the negative impact on the workspace. Considering the torque
and forces which have to be transferred by the yaw axis, a mechanical model as shown
in Fig. 5.17b is applied. Compared to the design of other platforms for CDPRs where no
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Figure 5.15: Workspace comparison for the two different platform configurations using the
icosahedron and the helicopter cabin.

tight spatial restrictions for the general design of the space frame apply, the design of a
stator and rotor system which can be placed inside the helicopter hull is more challenging.
For stability, the stator must provide a large diameter to resists torque and bending forces
from the upper and lower cables. This can best be achieved by a hollow shaft design which
provides optimal torque transmission while keeping the weight at a minimum as shown in
Fig. 5.16.

The complementary rotor is driven by a belt and planetary gear unit as is indicated in
Fig. 5.16 (Drive unit). The upper part of the rotor shaft integrates a slip ring which allows
the transmission of signals and power for the helicopter controls. While the rotor and
stator unit are at a very similar position as the rotor shaft in the actual helicopter setup,
the load cases for operation in the simulator are not. This prohibits the reuse of existing
rotor shaft mounting points inside the helicopter cabin. Instead, the passenger seats are
decoupled from the carbon fiber structure of the cabin and are directly mounted to the
rotor frame as depcited in Fig. 5.16 to avoid any load transfer to the helicopter cabin.

Simulation of the stator and rotor forces is done using the free body model indicated
in Fig. 5.17b and partitioning of the structure matrix. Using a reference force distribution
computed according to Eq. (3.41), the wrenches wA1, wA2 depicted in Fig. 5.17b for the
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Figure 5.16: Endless rotating yaw-axis for helicopter cabin

upper and lower mouting unit are computed by[
wA1

wA2

]
=

[
AT

1 0
0 AT

2

] (
fm − A+T

(
we + ATfm

))
(5.11)

where the matrix partitions AT
1 , AT

2 relate to the respective cable forces. The external
wrench we for the static case is computed by total load of the rotor and stator system
including the helicopter cabin and two passengers as

we =
[
0 0 −7500 N 0 −600 Nm 0

]T
(5.12)

for the initial orientation of the cabin. For dynamic motion and rotation of the helicopter
cabin, the inertia tensors of the stator is estimated from CAD data with

Ist =

90.8 0 0
0 87 0
0 0 4.7

 kg m2 (5.13)

and

Ihc =

117 0 0
0 121 0
0 0 62.5

 kg m2 (5.14)
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for the cabin with two passengers. The rated maximum angular acceleration of the heli-
copter cabin is specified with

αmax = 300
deg

s
(5.15)

leading to a required maximum torque of

TM = Ihc,zαmax = 327 Nm. (5.16)

Using the platform configuration for the helicopter cabin given by

b =



0.233 0.404 0.753
0.327 0.120 −1.054

−0.327 0.050 0.865
−0.233 0.453 −0.940
−0.327 −0.050 0.865
−0.233 −0.453 −0.940

0.233 −0.404 0.753
0.327 −0.120 −1.054


(5.17)

and the frame parametrization a from Eq. (5.8) and using the examplary configuar-
tion x =

[
0 0 2.5 0 0 0

]
and the external wrench for maximum rotary cabin

acceleration we =
[
0 0 −7500 N 0 −600 Nm 327 Nm

]T
with Eq. (5.11) and

fmin = 1000 N, fmax = 9000 N leads to the cable forces

f =
[
7491 2431 7146 3049 7929 3156 8360 2679

]
N. (5.18)

The associated section wrenches wA1 define by the upper cable set 1,3,5,7 and wA2 defined
by the lower cable set 2,4,6,8 yield

wA1 =
[
−728 −100 10472 −156 829 −372

]
N, Nm (5.19)

wA2 =
[
728 100 −2972 156 −229 45

]
N, Nm. (5.20)

Using the wrench set to estimate the load transfer between the lower and upper part of
the cabin allows for realtime processing and monitoring of the internal cabin forces.

5.5 Helicopter Simulation

Using a helicopter cabin together with a cable actuation system as depicted in Fig. 5.18
provides a similar visual user experience as an actual helicopter hover flight since the
cables to do not obfuscate the field of view. Since the helicopter is operated without visual
cues, the application of motion cueing techniques such as tilt coordination (Berger et al.
2010) is also limited and and motion perception relies on an accurate physics model which
replicates the helicopter behavior. While the implementation of realistic helicopter models
has its own field of research and the implementation of various helicopter models on the
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Figure 5.18: CableRobot Simulator with helicopter cabin and wrench feasible constant ori-
entation workspace
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CableRobot Simulator is still in development, here a simplified physical first principal
helicopter model is implemented which provides the general template for more complex
models and allows human-in-the-loop control. Using physics based models in contrast
to linearized helicopter state space models also requires a physical representation of the
workspace border to keep the simulation states consistent with the actual cabin behavior.
Using a Newton-Euler rigid body model as shown in Eq. (5.21) which can be controlled
externally by manipulating thrust, pitch, roll, and yaw using the control inputs fth, τth[

mPE 0
0 IP

] [
ẍ
α

]
+

[
0

ω × (IPω)

]
=[

Dlin 0
0 DrotQ

] [
ẋ
q̇

]
+

[
fth + fe + g
τth + τe

] (5.21)

The environmental model provides aerial damping Dlin, Drot, and elastic safety walls whose
stiffness kw and damping coefficient dw can be chosen according to the test scenario

fe = (∆x · n) kwe + (ẋ · n) dwe. (5.22)

All six axes can be automatic controlled by PID-controllers operating in the helicopter fixed
frame to assist the passenger during flight. The motion data is mapped directly to the
motion controller of the cabin and therefore resembles a 1:1 mapping of simulated and real
motion without motion cueing and filtering. The reproducibility of physical simulations
on the cable robot is validated by an inertia measurement system on the platform which
allows to measure the linear and angular acceleration.

The simulation scenario can be parametrized to fit different applications such as heli-
copter hover training, disturbance control, and coupled mass experiments which allow to
simulate object handling during flight. Although this artificial simulation scenario is solely
ment for test purposes and has no claims on realistic flight simulation it contains all nec-
essary elements for various test cases with human-in-the-loop control allowing to change
flight dynamics, environmental properties, and safety borders. The difficulty level of the
application can be controlled by changing the support of the pitch, yaw, and roll controller
during flight. For the evaluation experiment as shown in Figure 5.19a, a bounding box for
collision detection with a size of 3 × 4 × 2 m3 with regards to the local reference frame of
the helicopter model was chosen. All axes can be controlled by a human operator using the
original helicopter controls. The acceleration tracking results of the test flight are shown in
Figure 5.19b. The data show that maximum accelerations during flight simulation where
around ±10 m/s2. The steep spikes indicate bounce backs from the safety zone around
the training area. The flight simulation modules are out of scope of this work, however the
capabilities determined with this simplified models allow for a large variety of simulations.
More sophisticated models which allow for load balancing and ground effect training are in
development. From the applications described in the previous sections, it becomes obvious
that the motion control system of the CRS must be SIL-3 certified and provide signal
round-trip times of around 1 ms to match the the requirements for human-in-the-loop
simulations. The next section provides a detailed description of the control architecture.
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Figure 5.19: Helicopter physics simulation including physical safety bounding box

5.6 Control Architecture and Hardware

The control architecture of the CRS is based on two separate control systems. One indus-
trial rated real-time controller based on the Beckhoff Twincat solution with a cycle time
of 250 µs which is used for the motion control algorithms. The second control system is
based on controllers from Waagner Biro stage systems which provide SIL 3 safety features
but operate only at a cycle time of 15 ms. An outline of the overall control architecture is
shown in Fig. 5.20.

A Cartesian motion signal from a trajectory generator, motion cueing algorithm, or
human-in-the-loop physical motion simulation is used to compute the desired platform pose
x and velocity ẋ in the motion generator. The motion control signal qθtc for the motors
is generated inside the Twincat controller by transforming the Cartesian pose (x, ẋ) into
joint space (qθ, q̇θ) using the kinematics model and forwarding it directly to the motor
drives allowing motion control with a cycle time of 1 ms. The same signal together with
the Cartesian pose is also routed to the Axio stage system controller and compared for
consistency with a redundant motion control signal by computing ∆qθ = q∗

θ
− qθtc at

a cycle time of 15 ms. In case of inconsistencies between both motion signals, the CRS
is forced into a safe emergency stop required by the applicable safety standards. The
threshold for the signal misalignment for the CRS drive signal is set to ∆qθlim = 100 mm.

While it is possible to compute complex motion control models on the Twincat controller
this holds not true for the Axio stage system controller which was not designed to perform
complex computations regarding computation power as well as available system memory.
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Figure 5.20: Control structure

This aspect combined with the safety requirements for human transport makes it neces-
sary to limit the model complexity for the kinematics to the standard kinematics model
from Eq. (2.3). The optimal parameter configuration and best achievable control perfor-
mance for the standard kinematics model is established in Sec. 6.1. In Sec. 3.5, 3.6 it was
shown that the workspace for a kinematics controller without force control is significantly
smaller than the possible wrench feasible workspace which is reachable with force control.

Since it is not possible to implement an actual closed-loop force controller as done by
(Kraus 2016) due to safety restrictions, a different approach was developed implementing a
feed forward force controller which allows force adjustments using model predictions which
are rendered into a surrogate model operating on top of the kinematics model as shown in
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Fig. 5.20. The surrogate model in general allows to compute arbitrary joint space values
for any given pose with

qoff = φsg(x). (5.23)

The error with respect to the desired pose and force state for the standard kinematics is
defined by [

∆x
∆f

]
=

[
xM − x
fM − f

]
, (5.24)

(xM, fM) = υ̂ ◦ φ(x). (5.25)

Under the assumption that the deviation of the kinematics standard model as stated in
Eq. (5.24) is small, one can find an ideal surrogate model

(xM, fM) = υ̂ ◦ (φ(x) + φsg(x)) (5.26)

such that (∆x, ∆f) → (0, 0) while respecting the limits

φsg(x) < ∆qθlim. (5.27)

This allows to control the platform pose and cable force state without violating the bounds
of the safety controller. As an additional requirement for the surrogate model to work
properly, it is assumed that the influence of external process forces is small and that a
feed forward controller can be applied without using real-time sensor data during opera-
tion. This holds true for motion simulation where no significant interaction between the
environment and the simulator cabin is taking place during operation. The variable pro-
cess wrench exerted by the passengers and additional equipment during the loading phase
can be measured before operation but turned out to be negligible. The unknown process
wrench exerted by the passengers during operation can also be neglected.

The surrogate model approach is real-time capable using a fixed computation time while
allowing the use of arbitrary complex models which are computed and sampled into the
surrogate model beforehand.
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6 Experimental Evaluation

This chapter evaluates the process described by the meta-model and tested by simulative
analysis Chap. 3 to compare the models of different complexity from Chap. 2 with respect
to their nominal and optimal configuration which is established by measurements from
the CRS testbench system Chap. 5 and optimization according to Chap. 4. Comparing the
physical measurements with the parameters obtained by input-output optimization, it is
shown which accuracies can be expected applying different models and parametrizations
to a real CDPR. Using the stringent process of incrementally increasing model complexity
and the associated parametrization, each stage shows the optimal performance which can
be achieved with the respective model class. The problem of overcomplex models is shown
by the special case of application where the CRS operation is restricted to a constant
orientation workspace. In this case it is shown that the associated model parametrization
for the platform geometry is not uniquely identifiable and that the same model predic-
tions can be achieved with a simpler model using a point like platform model. This also
demonstrates a case where the physical system parametrization and the optimal version
cannot be easily related to each other. So for example it is not possible to combine the
data from both approaches. ALso, the effect of force propagation and force control which
are described in Chap. 3,4 are shown by experimental data. The following section starts
with the standard kinematics using the nominal configuration as reference for the later
models and optimization.

6.1 Evaluation Methodology and Reference Model

To show the effectiveness of the proposed meta-modelling approach, this section establishes
the reference data, reference model, and reference parametrization which are used for the
subsequent evaluations. The evaluations regard the different model parametrizations, com-
paring the physical parametrization and optimal parametrization of each model as well as
the optimal parametrization of the different models against each other. The complex-
ity of the models is evaluated regarding their identifiability i.e. if the model complexity
is appropriately and can be uniquely identified according the methods in Chap. 4. The
question of optimality for the respective models is answered by successive data recordings
and optimization runs which allow to estimate the parameter variation for different data
sets and thus show the uniqueness of the model parametrization with respect to optimal
performance. The question of optimality is closely related to the question of parameter
sensitivity, i.e. the question how robust the CDPR can be operate with respect to changes
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in the system geometry. An overview of the methodology for the evaluation is shown in
Fig. 6.1. The overall process is structured such that it is representative for most CDRP
setups and results from this evaluation should be transferable to other CDPRs.
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Figure 6.1: Evaluation methodology.

For the reference model, the standard kinematics model from Chap. 2 is chosen. This
makes sense as it is the natural starting point for the development of most CDPR appli-
cations. Using the standard kinematics model together with methods for direct measure-
ment of the kinematics parameters also defines a situation which can be found for most
CDPRs after assembly setup. The standard kinematics model makes the least assumptions
about the system and only consists of the geometry parameters (a, b) which can be mea-
sured by coordinate measuring devices such as a laser tracker. Direct use of the nominal
parametrization from the design process is also possible if the assembly process can be
done with sufficient accuracy. To fully define the reference setup, an initial valid tension
state has to be defined making the CDPR operatable. Such setup of the kinematics model,
suffers from the unknown tension propagation, limiting the initial reachable workspace.
Also, the positioning accuracy is limited due to the effects described in Chap. 3.

Starting with the experimental analysis for the kinematics reference model φ from
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Eq. (2.3) , the physical geometric parameters are obtained using a Leica laser tracking
system. This measurements have to be adjusted to account for the pulley geometry which
are not modelled in the standard model leading to the nominal reference model configura-
tion pN =

[
aN bN

]
defined by

aN =



−5.247 7.865 6.437
−5.246 7.853 −1.210

5.263 7.581 6.484
5.267 7.568 −0.651
5.140 −6.415 6.513
5.148 −6.430 −0.633

−5.638 −6.503 6.501
−5.636 −6.517 −1.144


, bN =



0.233 0.404 0.771
0.327 0.120 −1.072

−0.327 0.050 0.883
−0.233 0.453 −0.958
−0.327 −0.050 0.883
−0.233 −0.453 −0.958

0.233 −0.404 0.771
0.327 −0.120 −1.072


. (6.1)

The required initial cable tension was manually set to

fini =
[

4049 1437 5190 977 2857 2990 4230 2213
]

N (6.2)

using a common practice for setting the initial tension state fini by keeping the plat-
form at a certain location while adjusting the cable offsets until a valid tension state is
reached. Although this setup is not optimal it is possible to control the CRS within the
constrains of positive cable forces to run an initial trajectory x̄ref generating the sample
set WS =

{
x̄M, q̄θ, f̄M

}
with ns = 91 samples. The pose sample set for the parameter

identification x̄M is shown in Fig. 6.2. The bounding box of the sampling region is given by
xmin =

[
−1.5 −1.5 1.25

]
and xmax =

[
1.5 1.5 2.0

]
. While this sample distribution

is sufficient to obtain a well conditioned Jacobian matrix according to criterion Eq. (4.23)
with a condition of

κ(Jqp) = 31.9, (6.3)

the chosen initial sample set had to be limited to a small volume to avoid cable force
violations from the cable tension propagation as described in Sec. 3.6. The associated
cable forces in a range of f =

[
272 7173

]
N for the eight cables for the given trajectory

are shown in Fig. 6.3. While the initial force distribution fini was chosen in a feasible
range of the force limits fmin = 1000 N and fmax = 9000 N, one can observe some cable
forces approaching critical low tension states during operation. This is caused by the
chosen initial cable force states and the model misalignment. The error ϵx, ϵx̄ define by
the error metric from Eq. (3.3, 3.4) of the nominal control model with respect to the
measured poses φ(x̄ref , pN) → x̄M is shown in Fig. 6.4a, 6.4b for the platform positions
and rotations respectively.

The mean position error is
ϵr̄ = 39.80 mm (6.4)

and the mean rotation error is
ϵϕ̄ = 1.19 deg. (6.5)
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Figure 6.3: Cable forces for sampling set and nominal parametrization

The associated cable length error

ϵq = φ(x, pN) − φ(xM, pN) (6.6)

is shown in Fig. 6.5 with a mean value of ϵq̄ = 23.52 mm.

Comparing the errors of the initial setup to similar measurements from the IPAnema
CDPR at Fraunhofer IPA which was conducted by (Kraus 2016), show position and rota-
tion errors as depicted in Fig. 6.6 with a similar range as measured on the CRS. The mean
errors for the IPAnema for the position error where reported to be ϵr̄ = 41.4 mm for the
unladen platform weight and ϵϕ̄ = 1.9◦ for the rotation error compared to ϵr̄ = 39.80 mm
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Figure 6.4: Pose and rotation error for the nominal model
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Figure 6.5: Cable length error for nominal parametrization

positioning error and ϵϕ̄ = 1.19 deg rotational error from the CRS. From this it can be
followed that the initial kinematics model provides an appropriate reference to reflect the
accuracy which can be achieved by the standard measurement process using direct coor-
dinate measurements conducted by laser trackers or similar equipment. While this result
show a certian performance level achievable with the kinematics model, it does not repre-
sent the optimal performance which can be reached with this model. Thus before adding
additional complexity, optimization of the kinematics model is performed to estimate its
true performance value. Optimization and validation of the optimal kinematics model is
part of the next section.
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Figure 6.6: Absolute position and orientation accuracy reached with an inverse kinematics
model on the IPAnema CDPR (Kraus 2016).

6.2 Kinematics Model Optimization

Optimizing the kinematics control model from the previous section has three purposes.
First the question is answered if the model complexity and parametrization is appropri-
ate by showing the identifiability of the parameters and the uniqueness of the optimum.
Secondary, the optimal model is used to compute the error for a validation trajectory, pro-
viding an estimate for the performance which is achievable with the kinematics model. The
results are later used to make a comparison with more complex models. Third, the model
is used to show that an optimization in the kinematics domain does not impact the force
domain of a CDPR and thus one obtains better positioning accuracy but cannot expect
an increase of the reachable workspace or better force distributions in the system. This
addresses a common misconception, that poses which cannot be reached by the CDPR
or problems with sagging cables may result from errors in the geometry model. In the
following, the parameter optimization and validation of the kinematics model is performed
in four steps to guarantee that the optimal model has been found:

• Find the optimal model parametrization based on the sample set above.

• Show the error prediction for the optimized model.

• Validating the error predictions by updating the control model and measuring the
pose errors for the updated model.
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• Using the second recorded sample set to run a second parameter optimization to
measure the impact of the parameter adjustments. For an ideal linearized, time
invariant, and noiseless system, one would obtain the same optimal parameter set as
for the first optimization run.

Running parameter optimization using algorithms such as the Trust Region Reflective
algorithm, the Trust Region Dogleg, or the Levenberg Marquardt algorithm (Branch et al.
1999; Moré 1978; Nocedal and Wright 2006) leads in alignment with Eq. (4.8) to the least
squares solution with the associated optimal parameter set

aopt =



−5.436 7.663 6.518
−5.489 7.699 −1.182

5.083 7.692 6.506
5.104 7.707 −0.619
5.252 −6.259 6.626
5.266 −6.306 −0.618

−5.417 −6.619 6.635
−5.465 −6.655 −1.185


, ∆a = aopt −a =



−0.189 −0.202 0.081
−0.243 −0.154 0.028
−0.180 0.111 0.022
−0.163 0.139 0.032

0.112 0.156 0.113
0.118 0.124 0.015
0.221 −0.116 0.134
0.171 −0.138 −0.041


(6.7)

The progression of ∆a during optimization is shown in Fig. 6.7a depicting the deviation
from the nominal configuration aN. The changes in the geometric parametrization with
∆amin = 15.30 mm and ∆amax = 242.64 mm are significant and align with the theoretical
results from Sec. 6.1.
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Figure 6.7: Optimization progress

The associated resdiual and condition number of the loss function and associated condi-
tion number are shown in Fig. 6.7b. The optimization algorithm converges in three steps
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and finds a global optimum as was tested with a uniform random distribution of the initial
parameter set using

aini = aN + arand with arand ∼ U(−0.5, 0.5) m. (6.8)

The estimated cable length prediction error yields ϵq̄opt = 4.08 mm. The associated pose
prediction error of the optimized model is computed with the forward kinematics model
xPj

= υkin(qθj , aopt) leading to a mean error of ϵr̄opt = 9.66 mm and ϵϕ̄opt
= 0.29 deg .

Applying the parameter set to the actual TwinCAT controller for validation leads to Vicon
recordings with pose and rotation errors as shown in Fig. 6.8a, 6.8b for all samples with
a mean error of ϵr̄V = 6.70 mm and ϵϕ̄V

= 0.31 deg. The gray lines in the background of
the figures indicate the error of the nominal model φ(pN) from Fig. 6.4 for comparison.
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Figure 6.8: Measured pose errors with optimized kinematics model.

The associated error in the respective cable length predictions is given in Fig. 6.9 with
a mean error over all cables and poses of ϵq̄V = 4.15 mm. The gray lines indicate the
nominal error of the model from Fig. 6.5 for comparison. This results show that the error
for an optimized kinematics standard model can be significantly decreased with respect
to the nominal parametrization whose position error is 594.1% and whose rotational error
is 377.2% higher than the optimized version. It should be noted that performance of the
nominal model cannot be further improved by more accurate measurements of the physical
geometric parameters which is equivalent to an accurate assembly according to the nominal
parameters from the technical drawing.

As described in Sec. 6.4, the impact of the geometric optimization on the cable force
distribution is small and does not change the workspace volume or stiffness properties in
a significant way. Comparing the measurements of the propagating force distributions for
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Figure 6.9: Cable length error for the optimized kinematics model in comparison to the
nominal model indicated by the gray line in the background (compare Fig. 6.5).

the nominal and optimized model

∆f = fopt − fN (6.9)

one obtains the results as shown in Fig. 6.10 for two selected cable forces f1, f2 and the
difference in the cable forces ∆f for all cables. The low impact of the geometric optimization
on the overall inner tension state can be understood by consideration of the joint space
optimization scheme form Fig. 4.4 where the residual ρ(p) = x̄P(p) − x̄M is minimized.
Running the optimization fits the model to the measured system state. In this particular
case, the predicted cable lengths to the measured cable lengths. For a perfect model fit
with ρ → 0, the cable lengths of the CDPR system in the entirety are unchanged. Only
the mapping between the poses x and the cable lengths q is changed. For a good initial
parametrization, the remapping of cable lengths to platform poses happens in the close
vicinity of each pose where the cable forces are quite similar. The observed deviations in
Fig. 6.10 are presumably caused by the model imperfections rρ > 0 and not by the model
adjustments where the remapping of the poses lies in the range of few 3 mm. Changes in
force distributions for poses that close together are negligible can cannot be measured with
the CRS force sensor setup. The mean of the force differences over all cable is ∆̄f = 431 N.

In the last validation step, a second optimization run with the new recorded data is per-
formed. The difference between the models obtained from the first and second optimization
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matics model.

yields

∆a2 = aopt2 − aopt



−0.014 −0.023 0.021
−0.034 −0.023 0.004
−0.009 −0.001 0.013
−0.010 −0.000 −0.042

0.014 0.028 0.025
0.021 0.018 0.007
0.019 −0.003 0.021
0.004 −0.025 0.087


. (6.10)

The mean position, rotation, and cable length errors of the second optimized model are
ϵr̄opt2 = 10.80 mm, ϵϕ̄opt2

= 0.29 deg, and ϵq̄opt2 = 3.10 mm respectively, compared with
the errors ϵr̄opt = 9.66 mm, ϵϕ̄opt

= 0.29 deg, and ϵq̄opt = 4.08 mm from the first optimized
model.

While the residual for the cable length predictions is further minimized this is not the
case for the Cartesian pose prediction. This may be caused by the fact that the objective
function is stated in joint space and does not consider different weights for the forward
kinematics transformation. Considering the overall model performance for the second opti-
mization run, it can be stated that the accuracy remains at a level around 4 mm, although
the parametrization of the robot geometry was changed significantly. This is due to the low
sensitivity of the cable length error with respect to individual geometry parameters, which
also explains the common observation that CDPRs can also be operated with roughly
estimated parameter sets, as long as high positioning accuracy is not required. Possible
parameter variations and their impact on the residuals are shown in Fig. 6.11 . The orange
line at the top shows the residual of the nominal kinematics model φN After optimization
the residual is reduced and reaches the level indicated by the blue line and the optimal
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kinematics model φopt . The solid lines show the 24 values of the frame geometry a and
their respective impact on the model residual. Lines with low gradients indicate parame-
ters which can be changed without having much impact on the residual. The gradient for
all parameters is below one. While this provides an overview of the general behavior close
to the optimal configuration it does not consider other system states such as the cable
forces which may add additional constraints limiting the range of possible parameter sets
for a given model accuracy class. A more accurate analysis of the parameter variations for
a given model error class have to consider the system stiffness as shown in Sec. 3.7. On the
other side, some parameters subject to larger variations without violating the error thresh-
olds. This can be seen in Fig. 6.11, 6.12. The intersection of the respective error boundary
φopt and a parameter variation line are the lower limit by which each parameter could by
varied without violating the error constraint. The black dots in Fig. 6.12 show the results
from a second paramter optimization with a different sample set. One can see the large
deviations from the previous optimum leading to φopt2. Concluding this section, it can be
stated that optimization of the kinematics model with a final error of ϵr̄opt2 = 10.80 mm,

compared to the initial error of ϵr̄ = 39.80 mm is a very important step with respect to the
goal of optimal application performance. The optimization should be conducted before any
other measures, especially before the implementation of additional model features. Using
an optimized standard kinematics model comes with low computational costs while pro-
viding better accuracy than other non-optimized more complex models. To demonstrate
the importance of using models with an appropriate level of complexity is shown in the
following section by an artificial use-case scenario implemented on the CRS.
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6.3 Model Complexity

In the following the assumption is made, that the CDPR is only operated in the constant
orientation workspace with an arbitrary but fixed orientation. Here, all angles are set to
zero ϕ = 0. Using the same kinematics model as in the previous section and the nominal
model parametrization obtained from laser-tracking measurements Eq. (6.1) the mean
positioning accuracy of the CRS is ϵr̄ = 37.6 mm for operation in the constant orientation
workspace. This is similar to the value reported before in Eq. (6.4). The kinematics
model consists of 48 parameters for the platform. Trying to optimize the model with
the same sample set as in the previous section excluding all poses with a rotational part
ϕ ̸= 0 leads to a bad conditioned Jacobian matrix κ(Jqp) = 10.3e10. This can be seen in
perspective of an insufficient sample set or in perspective of a insufficient model with too
many parameters. While in this case it would be possible to add the rotation samples to
make the identification problem solvable, it may not be possible for other over-complex
CDPR models to find an appropriate sample set. Keeping the sample set and running
the optimization problem with a lasso regularization as described in Sec. 6.4 leads to a
condition number of

κ(Jqp) = 892.50 (6.11)
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and the geometry parametrization

aopt =



−5.672 7.262 5.791
−5.841 7.571 −0.111

5.409 7.655 5.643
5.340 7.255 0.299
5.614 −6.238 5.733
5.505 −5.862 0.353

−5.660 −6.249 5.868
−5.784 −6.559 −0.081


, bopt =



0.002 0.004 0.008
0.003 0.001 −0.011

−0.003 0.001 0.009
−0.002 0.005 −0.010
−0.003 −0.001 0.009
−0.002 −0.005 −0.010

0.002 −0.004 0.008
0.003 −0.001 −0.011


. (6.12)

The mean pose prediction error of the model is

ϵr̄ = 3.15 mm . (6.13)

The associated pose and cable length errors are depicted in Fig. 6.13. The spatial con-
figuration of this parametrization is depicted in Fig. 6.14 showing the difference between
the physical reality (magenta lines) and model parametrization (blue lines). One can see
that the model outperforms the physical parametrization although the spatial geometry of
platform was effectively removed by zeroing all platform attachment points.
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Figure 6.13: Predicted pose and cable length error for the for constant orientation
workspace.

While the kinematics models form this and the previous sections allow to improve ac-
curacy for a given tension distribution, it cannot be used to improve the tension states.
Improving the tension states is desirable to obtain a larger reachable workspaces or to
compensate load changes during operation which is part of the next section.
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Figure 6.14: Comparison of the physical reality (magenta line) and optimal kinematics
model for constant orientation workspace (blue line).

6.4 Elastostatic Model Identification

In the previous section, the capabilities and limits for the kinematics standard model were
shown. While it is possible to significantly improve the pose prediction accuracy, the lack of
force control leads to a reduced reachable workspace WR . This is especially problematic
when the initial tension state is not chosen carefully in the first stage of the paramter
identification process where the CDPR has to be operated with a nominal parameter set.
Here the question is answered in how far the modelling of the system compliance affects the
pose prediction accuracy and if there is a tradeoff between the pose and force prediction
accuracy. Also, the maximum reachable prediction accuracy for the elastostatic model shell
be estimated and be compared to the nominal elastostatic model as well as the accuracy
of the kinematics model. The identification process again has to be executed in multiple
stages starting with an initial kinematics model which allows to explore the close vicinity
around the initial position acquiring a data set for the elasto-geometric model identification.
The capability of the elastostatic model to control the cable forces now allows to reach a
larger proportion of the wrench feasible workspace for further data acquisition which then
is used to finalize the elastostatic model.

The initial sample set is chosen from the region with the same bounding box xmin =
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−1.5 −1.5 1.25

]
and xmax =

[
1.5 1.5 2.0

]
as used for the kinematics model opti-

mization resembling the same distribution as shown in Fig. 6.2. To estimate the potential
prediction accuracy in the elastic domain of the model, additional tension tests where per-
formed at different poses inside the bounding box. Fig. 6.15 shows a complete overview of
the data relevant to the initial parameter identification procedure including the cartesian
coordinates of the sample set, the cable length offsets, the resulting cable forces at each
sampling point. All of the eight cables are shortened by 30 mm and returned to their
original length for each pose separately.
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Figure 6.15: Initial sample set for elasto-geometric identification

While the kinematic model requires a reasonable accurate initial parametrization to
control the CDPR for the initial sample set, the elasto-static model is not needed for
the sampling process. This has the advantage that in general no effort has to be put
in the separate estimation of physical parameters such as the platform mass and cable
stiffness coefficients which is done here only for comparison of the physical parameterized
nominal elastostatic model and the optimized elastostatic model. The identification of the
elastostatic model using a kinematics control model can be seen as an identification of the
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ground truth model in the meta model as depicted in Fig. 6.16.
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Figure 6.16: Identification of the elastostatic ground-truth model

Using the elasto-geometric model from with the associated 62-dimensional parameter
vector

p =
[

a b kF we
]

, (6.14)

the initial conditions for the nominal geometric model are chosen the same as for the
previous model using laser tracking data

a = aN and b = bN (6.15)

from Eq. (6.1). The initial conditions for the force related parameters are derived theoret-
ically and from measurements of the respective components. The nominal values for the
cable stiffness is derived from the geometrical and material properties and from a separate
test bench experiment as described in the previous section. Using a mean elasticity module
of

E = 110
kN

mm2 (6.16)

for straightened wire ropes according to (Pott 2018a) the specific cable stiffness is deter-
mined by

kFi = π (0.5dr)2 E = 16933
kN
m

(6.17)

This value seems to be to high with respect to the measured stiffness coefficients which
maybe caused by the additional compliances in the power-train. This are the space frame,
the different redirection pulleys, the additional cable length inside the space frame which is
not modelled, cable ovalization on the drum, and compliance of the platform attachment
points. Considering that the equivalent spring constant of a serial spring system the
equivalent compliance is computed by

cpowertrain = ccable + cpul + cframe + cwinch + . . . with c = k−1 (6.18)
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where the equivalent compliance is dominated by the element with the highest compliance.
In case of the ideal linear stiffness model for the cable may not be the leading factor for the
overall system compliance. Futher information on the detailed modelling of steel cables
can be found in (Feyrer 2015). Test-bench like tests as were performed in Sec. 5.1, Fig. 5.7
regard the elasticity of an entire power train and showing a strong dependency of the
measured stiffness coefficients on the tension state. Since the CRS is mainly operated in a
force range between 1000 N up to 9000 N, the median value of 5000 N and the associated
measured stiffness coefficient

kFi = 2000
kN
m

with i = 1 ... m, (6.19)

is chosen for the nominal model. Tests with different initial value sets showed robust
convergence to the global optimum. The platform weight for the helicopter cabin can be
determined from CAD data and approximated as central mass with

we =
[

0 0 −5500 N 0 −480 Nm 0
]T

(6.20)

or experimentally using the statics model and force sensor measurements. The wrench
determination from the force measurements is shown in the next paragraph together with
the initial cable offset estimation.

This parametrization fully defines the elastostatic model. To validate the model against
the data from Fig. 6.15 an initial cable offset qoff has to be chosen to control the initial
tension state. The cable offset or initial tension state can be seen as an additional parameter
for the elastostatic model which is not used in force control mode. If the elastostatic model
is used in passive mode the initial tension distribution is propagated to the other poses and
must be correctly predicted by an accurate elastostatic model. In force control mode, the
cable offsets are changed dynamically with regards to the set points of the force distribution
algorithm. While the cable offsets had to be chosen as part of the setup process in the
previous part, they had no direct meaning for the kinematics model. For the elastostatic
model they can be derived from the initial cable force distribution using the modeled
system elasticity. The initial cable force distribution for the helicopter cabin at pose

x =
[

0 0 1.5 0 0 0
]

(6.21)

which is associated with a cabin orientation in the global oriented frame as shown in
Fig. 6.17 is given by

fini =
[

3678 2169 4250 1708 3985 2394 4715 1684
]

N. (6.22)

Using this force distribution for load indentification leads to

we =
[

22.2 −163.4 −6005.5 179.9 −755.8 43.6
]

( N, Nm) . (6.23)

The load estimation has a good agreement with the computed approximation from CAD
data. The higher load and torque maybe caused by the unmodeled cable mass and addi-
tional components which are not included in the CAD model.
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Figure 6.17: Helicopter cabin load estimation with respect to the local reference frame
shown in the picture.

Using the estimated cable stiffness coefficients of kF = 2000 kN
m leads to the initial cable

offsets

qoff =
[

−0.019 −0.011 −0.022 −0.008 −0.019 −0.010 −0.023 −0.008
]

m.

(6.24)
One should note that the estimation of qoff is an essential step to obtain good agreement
of the model and measurements and has to be performed after every setup. Alternatively
the inverse process can applied for the robot setup. This would include the computation of
the initial force distribution and its associated cable length offsets which then have to be
applied to the CDPR. In practice this is difficult to achieve since the cable offsets are given
with respect to the nominal cable length in a tensionless state which is obfuscated by cable
sagging and other effects influencing the cable lengths in low tension states such as cable
withdrawal at the redirection pulleys and drums. The performance of the obtained elas-
tostatic model with the locally identified subsystem paramterization is shown in Fig. 6.18
for the pose prediction accuracy and in Fig. 6.19 for the force prediction accuracy.

The error of the force prediction mainly is caused by the inaccurate stiffness model,
since the estimation of the external cabin wrench is already quite accurate. For a CDPR
in suspended configuration, the force propagation could be solely computed from the geo-
metric properties. For an overconstrained CDPR as the CRS, the cable forces are not only
caused by the external wrench, but also by the internal tension state whose propagation
is influenced by the system stiffness as described in Chap. 3. While the force distribution
caused by the external wrench is not very sensitive to errors in the geometry model, the
sensitivity of the internal tension state with respect to geometry is amplified by the system
stiffness. This can be seen in Fig. 6.19 where the forces of the upper cables f1, f3 are mainly
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Figure 6.18: Pose prediction accuracy
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142 6 Experimental Evaluation

caused by the cabin wrench and the forces of the lower cables f2, f4 are mainly caused by
the internal tension state which leads to larger errors in the force predictions. The mean
position and rotation tracking error for the elastostatic model are

ϵr̄ = 34.5 mm and ϵϕ̄ = 1.03◦ (6.25)

respectively. The mean force tracking error of the model is

ϵf̄ = 2426.84 N. (6.26)

6.5 Elastostatic Model Optimization

While the elastostatic model in the previous section was parameterized using data from test
bench measurements for different subsystems, here the approach of a model optimization is
performed to estimate the maximum performance which can be achieved by the elastostatic
model class and which is the necessary minimal parametrization. The optimization is
performed using the data set from Fig. 6.15 with the measured pose and force data to
estimate the platform and frame geometry as well as cable stiffness coefficients and the
cabin wrench. The cable offsets are not part of the model parametrization but can be
predicted by the model. The sampled rotation space in the recording is small compared to
the translational sample space. The parametrization of the platform geometry therefore
has limited impact on the model prediction and has to be stabilized using ridge regression
from Sec. 6.4 for the parameter optimization adding a penalty function for the optimization
of the platform geometry parameters. Using the described sample set leads to condition
of the Jacobian varies between κ =

[
2838.6 2855.7

]
during the optimization run. The

optimal parametrization for the elastostatic model which minimizes the pose and force
prediction error is

aopt =



−5.431 7.505 6.496
−5.773 7.840 −1.195

5.186 7.736 6.514
5.259 7.673 −0.634
5.329 −6.298 6.556
5.486 −6.543 −0.523

−5.508 −6.784 6.651
−5.597 −6.881 −0.998


, ∆a = aopt − a



0.005 −0.158 −0.022
−0.284 0.141 −0.013

0.103 0.044 0.008
0.155 −0.034 −0.015
0.077 −0.039 −0.070
0.220 −0.237 0.095

−0.091 −0.165 0.016
−0.132 −0.226 0.187


(6.27)
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bopt =



0.238 0.246 0.707
0.076 0.267 −1.100

−0.220 0.090 0.865
−0.094 0.430 −0.907
−0.270 −0.086 0.818
−0.021 −0.673 −0.926

0.142 −0.541 0.790
0.179 −0.292 −0.999


, ∆b = bopt − b



0.005 −0.158 −0.064
−0.251 0.147 −0.028

0.107 0.040 −0.018
0.139 −0.023 0.051
0.057 −0.036 −0.065
0.212 −0.220 0.032

−0.091 −0.137 0.019
−0.148 −0.172 0.073


(6.28)

for the geometric parameters and

kF =
[
2010 1908 3356 1745 3100 2638 2544 1952

]T kN
m

(6.29)

we =
[
23.6 187.3 5929.9 −292.6 515.3 −360.0

]T
N (6.30)

for the cable stiffness and external wrench respectively. The load indentification shows
good agreement with the actual cabin setup estimating a total weight of -604.5 kg and a
torque of 360.0 Nm around the y-axis for the initial orientation of the helicopter cabin.
The progression of all 62 parameters to the global optimum is shown in Fig. 6.20 requiring
eight steps to converge.

Validation of the elastostatic model and the force control is done using a extended cube
who is sampled along the outer edges. The force control scheme from the meta-model is
applied to the CRS controller using a surrogate model which renders the respective cable
length variations of the force control into a static polynomial model. The polynomial
model is computational efficient, and provides deterministic runtime behavior. It can be
run in parallel to the kinematics model and does not create additional safety issues which
could be introduced by running the full elastotstatic model on the real-time system. In
order to control the cable forces between 1000 N upto 9000 N, a cable length variation of
41 mm is needed. This is also the differences between the controlled cable length outputs
from the elastostatic model and the kinematics model which has to be tolerated by the
Waagner Biro safety system. Using force control allows to operate the platform in a larger
volume which was not part of the ground-truth model identification process. The force
tracking accuracy of the elastostatic model with respect to the new sampling area is shown
in Fig. 6.21.

Using an elastostatic control model allows to reach optimal pose prediction accuracy as
well as optimal tension states during operation. Summarizing the results from this chapter,
it can be stated that the use of a parameter optimization scheme as defined in Chap. 4
is mandatory for the accurate operation of CDPRS and a significant improvement in the
accuracy can be expected compared to the direct measurement approach. This results
where expected from the analytic considerations in Chap. 3 and could be approved by this
findings. In the case of the CRS the accuracy was improved from initially 39.8 mm to 9.66
mm for the final kinematics model. The optimal performance of the elastostatic model was
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Figure 6.20: Optimization progress for all pamaters of the elastostatic model.

estimated to be 2.73 mm and 582 N. Similar to the kinematics model, this exceeded the
accuracy of the direct measurement approach with an initial error of 34.5 mm and 2426
N. Regarding model complexity and optimality it was shown that the investigated models
provide an appropriate complexity, which means they were identifiable and lead to similar
parameter values for different optimization runs making the parametrization distinct and
relatable to the physical reality. This can be seen in contrast to black box models where the
combination of generic functions is used to approximate reality. Generic black box models
usually have many similar parameter sets which perform equally well. Concerning the
importance of model complexity an example was derived limiting platform motion to the
constant orientation workspace. The use of direct measurements for parameter estimation
showed the same performance for the restricted workspace as for the entire workspace.
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Figure 6.21: Force control with optimized elastostatic model

For model optimization, the model parametrization had to be reduced from 48 parameter
to 24 parameters, removing the spatial representation of the simulator cabin to make the
model identifiable. The error of the initial model was measured to be 37.6 mm while the
reduced and optimized model showed a positioning error of 3.15 mm. From this it can
be concluded that the direct measurement approach is more robust for the identification
of complex physical CDPR models but comes at the cost of lower accuracy and higher
computational cost for the model predictions.
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7 Conclusion and Outlook

7.1 Conclusion

In this thesis a meta-model was proposed to define, optimize, and evaluate control models
for CDPRS regarding pose tracking accuracy and the reachable workspace in the context of
a ground truth model. The use of a ground truth model for the analysis allowed to study the
impact of parameter misalignment and varying model complexity on the position accuracy
and cable force distribution. Using the force distribution as criterion for the workspace
definition, the associated reachable wrench feasible workspace was defined. This allowed
to model the effect of parameter optimization on the data acquisition process as well as
the final model prediction accuracy.

The model candidates for the investigation were chosen with the focus on safety critical
applications such as the motion simulation on the Cable-Robot Simulator where safety
integrity level 3 is required for all components. Starting with a kinematics model and
gradually increasing complexity to a an elastostatics model, the modelling process was
accompanied by the analysis of the expected impact on the model performance level.

Results from the performed simulations and experimental evaluation showed that a si-
multaneous approach to modelling and optimization is necessary to obtain optimal model
performance. Models where individual parameters are not used for input-output optimiza-
tion but obtained by direct measurement showed to perform worse. Their performance
measures cannot be used as reliable source for model comparison since their respective
optimal performance level is unknown. Final evaluation on the Cable-Robot Simulator
showed the reliability of the approach by comparing the data for models of different com-
plexity to a nominal reference model. Applying the methodology to the control model of
the Cable-Robot Simulator allowed to reduce the initial mean position error from 39.8 mm
down to 2.73 mm. The associated mean rotation error was reduced from 1.19 deg down to
0.11 deg. Considering the overall size of the Cable-Robot Simulator with 10 × 14 × 8 m it
was shown that the proposed approach contributes to the accurate operation of large-scale
CDPRs. Considering the Cable-Robot Simulator as highly representative by means of size,
architecture, and choice of components, it can be expected that most of the findings in
this thesis transfer well to other CDPRs of this class.
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7.2 Outlook

Experimental evaluation of the proposed methodology showed the reachable performance
level for different models operated on the Cable-Robot Simulator. Although the results can
be compared to accuracy reports in literature from other CDPRs, their meaning is quite
limited due to the inconsistencies in modelling and performance measurements. Thus
based on this work, a more unified comparison of models and measurements from other
CDPRs can be obtained which would lead to a more objective estimate of the respective
performance measures. Further investigations can be performed in two directions. Run-
ning the analysis using the same model assumptions would allow direct comparison of the
performance level of the underlying hardware architecture including choice of cable ma-
terials, gears, or drive train assemblies. Secondary, further models from literature can be
integrated in the proposed framework providing a reliable benchmark which can be used
for the future development of CDPR applications and model selection.

Besides optimized modelling and data comparison, insights from the analysis can be
used to optimize the design and setup-process of CDPRs. Considering the sensitivity of
some parameters with respect to the reachable positioning accuracy, a cost analysis could
be performed which estimates the required measurement and assembly accuracy based
on predefined error tolerances. Findings from this work suggest that there is space for
improvement regarding the cost-performance-optimized design and setup of CDPRs which
is a key feature of industrial applicability. Common practice for the installation of CDPRs
involves cost intensive measurement equipment for the direct and accurate measurement
of system parameters such as laser tracking for the frame geometry. This thesis used two
systems, a laser tracker with 0.1 mm accuracy for direct parameter estimation and a Vicon
system with around 2 mm tracking accuracy for input output estimation. Considering
the better model performance using input-output optimization together with low-accuracy
measures leaves room for further improvements regarding the optimal trade-off between
accuracy and cost efficiency including model complexity and measurement devices.
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