
University of Stuttgart
Institute of Geodesy

Characterizing storage-based drought
using satellite gravimetry

Master Thesis

Peyman Saemian

Stuttgart, October 2021

Supervisors: Prof. Dr.-Ing. Nico Sneeuw
University of Stuttgart

Dr.-Ing. Mohammad J. Tourian
University of Stuttgart





Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen
direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit
wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt
und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

III





Abstract

Drought is a complex phenomenon leading to a wide range of socio-economic, environmen-
tal, and political problems. The storage-based drought which represents the persistent lack of
water in different levels of the Total Water Storage (TWS) from deep groundwater to surface
water plays a vital role in proactive drought management. Despite its necessity, TWS could not
be monitored due to the lack of consistent measurements from regional to continental scale.
Since its launch in 2002, the Gravity Recovery and Climate Experiment (grace) mission and
its successor GRACE Follow-On have provided unique observations of the TWS change at the
global scale. In this study, we have investigated characterizing the storage-based drought at
the global scale using GRACE measurements.

To this end, the Equivalent Water Height (EWH) has been retrieved from GRACE level 02 solu-
tions. We have addressed the short record of GRACE observations in capturing the full hydro-
climate variations. Based on our analysis, regions with a considerable direct human interven-
tion like overexploitation of groundwater in the Middle East, regions that were affected by
climate change like ice-melting over the Mackenzie river basin in Canada, or extreme precip-
itation events over the Ob river basin in the boreal regions are more sensitive to the length of
ewh time series. Due to the crucial need for a long (at least 30 years) record of EWH, we have
extended GRACE observations back to 1980 using an ensemble of models. The extended dataset
has been developed using a pixel-wise selection of best-performed models among global hy-
drological models, land surface models, and atmospheric reanalysis models. The extended
dataset has been used in the study for drought characterization over the grac period.

The proposed Storage-based Drought Index (SDI) successfully captured the documented
drought events globally in terms of intensity and spatio-temporal distribution. Moreover, the
analysis of SDI over the five classes of drought from D0 as abnormally dry to D4 as exceptional
drought showed that most regions have suffered at least once from the storage-based drought
over the GRACE period (2002–2016). Besides, the map of exceptional drought frequency
highlights regions with significant groundwater extraction like California, the Middle East,
and north of India and regions with exceptional shifts in the precipitation and temperature
pattern and intensity like Amazon in South America and China. Finally, our comparison of
SDI with three most widely used drought indices namely the Standardized Precipitation Index
(SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Palmer Drought
Severity Index (PDSI) reveals that despite their high correlation over climate-driven regions,
these indices failed to characterize anthropogenic drought events, especially over regions with
considerable groundwater withdraws. The study allows for a more informative storage-based
drought with a more robust climatology as the reference, thus enabling a more realistic risk
assessment.
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Chapter 1

Introduction

1.1 Introduction to drought

Water plays a vital role in all sectors of our society including agricultural, industrial, and energy
sectors. Earth is known as a blue planet. There is no shortage of water as nearly 70 percent of
our planet is covered by water (about 326 million trillion gallons of water). Water can freeze
into ice or evaporate into the air, but it does not leave our planet. Despite its abundance, only
2.5 percentage of all those water is freshwater and the rest is saltwater. Even then, we only
access just 1 percent of our freshwater while much of it is trapped in glaciers and snowfields.
Essentially, only 0.007 percent of the Earth’s water is available to fulfill human needs and access
to it depends on where we live.

Water scarcity occurs almost every year in many parts of the world. On one hand, the demand
for water for each of these sectors has increased manyfold due to the growth of population
(UN, 2012). On the other hand, the amount of sources for fulfilling this water demand is
limited. Other factors, such as climate change and contamination of water supplies, aggravate
this unequal supply-demand balance. It is expected that over the coming decades, we will
live in a warmer world with more climatic extremes, including drought which will bring
socio-political tensions.

Drought is a recurring hazard with slow onset. It can be the consequence of anthropogenic
effects, natural change in the climate, or the combination of these two. Drought produces a
complex web of impacts that accumulate over a considerable period of time (e.g., weeks to
months). It can virtually affect any climate region and has wide-ranging impacts on many
sectors of society. Drought ranks among the most costly of the all-natural disaster (Bruce, 1994;
Obasi, 1994). Half of the world’s terrestrial surface is prone to drought. As a result, drought is
a widespread phenomenon (Kogan, 1997).

To reduce the damage from them, it is crucial to characterize droughts. This enables operations
such as drought early warning (Kogan, 2000) and drought risk analysis (Hayes et al., 2004).
Among several methodologies, quantitative measures called drought indices are prevailing
for drought characterization (Tsakiris et al., 2007). These indices characterize drought levels
by incorporating data from one or several variables (indicators) such as precipitation and
evapotranspiration into a single numerical value (Zargar et al., 2011).
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Scientists have developed such indices using multiple factors including drought nature and
characteristics and the impacts considered. Manifold drought indices have been developed
(more than 150, Niemeyer et al. (2008)). The nature of drought indices reflects different events
and conditions; they can reflect climate dryness anomalies (mainly based on precipitation)
or correspond to delayed agricultural and hydrological impacts such as soil moisture loss
or lowered reservoir levels. In addition, the categorization of drought indices can also be
based on the data and technology used. For example, a considerable number of indices use
remote-sensing imaging to detect vegetation health as an indicator of drought.

1.2 Storage-based drought

The terrestrial water storage (TWS) is defined as the total water stored on the surface (e.g., lakes,
reservoirs, rivers, and snow water equivalent), over the entire soil profile, and in groundwater.
TWS is a key part of the global hydrological cycle and plays a major role in Earth’s climate
system exerting important control over the water, energy, and biochemical fluxes (Famiglietti,
2004). It shows the variation in the combination of all mentioned components and is blind to
their separate change. However, it has the potential to consider a deficiency in some of those
elements (e.g., groundwater) that are hard to track individually.

In spite of its importance, until recently TWS has not been adequately measured at the
continental scale (Lettenmaier and Famiglietti, 2006). Traditional monitoring of terrestrial
water storage mainly depends on in situ measurements and model simulations. On one hand
in situ data, including boreholes, soil moisture stations, and lake water level measurements
are too costly to have an adequate network of measuring stations. Furthermore, statistical in-
terpolation methods will bring an additional error into spatially continuous data. On the other
hand, land surface models (LSMs) or hydrological models are able to simulate components
of TWS. However, these models often lack important components of TWS in their process,
e.g., groundwater or deep soil moisture (Rodell et al., 2004b). It is difficult to evaluate the
reliability of TWS and its component from LSMs due to the lack of in situ data (Long et al., 2015).

From 2002 to 2017, the GRACE (Gravity Recovery and Climate Experiment) mission provided a
precise survey of Earth’s time-variable gravity field, with unprecedented temporal (monthly)
and spatial (down to the scales of a few hundred kilometers) sampling (Tapley et al., 2004)
(see Appendix A for more details). GRACE has measured and monitored monthly changes
in how mass is redistributed within and among Earth’s atmosphere, oceans, land, and ice
sheets, as well as within Earth itself. The mission followed by the Gravity Recovery and
Climate Experiment Follow-On (GRACE-FO) mission, was launched on May 22, 2018. The
GRACE-FO will continue its predecessor mission by providing the Earth’s time-variable gravity
field, testing new technology. From the hydrologic perspective, the main product of GRACE
mission is the Terrestrial Water Storage change (∆TWS): monthly change in the total water
stored on the surface (e.g., lakes, reservoirs, rivers, and snow water equivalent), over the entire
soil profile, and in groundwater.
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During the last decade, GRACE-based observations of ∆TWS have been used extensively to
quantify and understand hydrological processes encompassing evapotranspiration estimation
(e.g., Rodell et al. (2004a); Long et al. (2014); Castle et al. (2016)), snow water equivalent
volumes (Frappart et al., 2006), groundwater storage change (e.g., Rodell et al. (2009); Sun et al.
(2012); Chen et al. (2016); Scanlon et al. (2015)), and river basin discharge (Syed et al., 2005).
The contribution of GRACE in assessing large-scale hydrological extremes, namely drought
and flood, started as the temporal length of GRACE increased. In particular, storage-based and
groundwater droughts have been introduced into the drought monitoring community using
GRACE-based estimates of ∆TWS. Although GRACE is blind to individual components, it has
the potential to detect a deficiency in some of those elements (e.g., groundwater). As a result,
a GRACE-based drought indicator provides more holistic and realistic diagnoses of drought
conditions than commonly used indices like the standardized precipitation index (SPI) and
Palmer drought severity index (PDSI)), at regional scales (Houborg et al., 2012; Long et al., 2013).

During the last decade, several studies have investigated the contribution of GRACE-based stor-
age change products to drought monitoring. The early contribution of GRACE with drought
identification evoked by Seitz et al. (2008). Then, Yirdaw et al. (2008) employed GRACE to iden-
tify the 2002/2003 Canadian Prairie droughts and introduced the total storage deficit index
(TSDI). Afterward, Chen et al. (2010) utilized TWS anomaly from GRACE to identify drought
events in the La Plata basin, in Argentina. Houborg et al. (2012) developed GRACE-based
drought indicators and enhanced its spatial resolution using data assimilation. Long et al.
(2013) and Wang et al. (2014) investigated the correlation between the depletion in GRACE TWSA

time series and the drought events in Texas and the Haihe river basin (HRB) in Northern China,
respectively. Recently some more sophisticated drought indices using GRACE TWS anomaly
have been introduced (e.g., GRACE-based Hydrological Drought Index (GHDI) by Yi and Wen
(2016), and GRACE-DSI by Zhao et al. (2017a)).

1.3 Problem Statement, Objectives and Outline

Problem Statement GRACE satellite mission has provided unique information much-needed
for the global tracking of water storage changes until late 2017. Moreover, its successor, the
GRACE follow-on mission, was launched in early 2018. Existing GRACE-based drought indices
in some basins showed high correlation with other drought indices and have been suggested
as a tool for drought monitoring and risk management. However, most of those indices suf-
fer from the relatively short length of the GRACE time series. GRACE-based indices have cor-
rectly identified several historical drought events. However, the classification of storage-based
droughts has remained incomplete as several events have been characterized with a different
class of severity and in some cases duration.

Objectives The overall objectives of this study are:

1 to establishe a new storage-based drought index

2 to charectrize storage-based drought events globally using the new index
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3 to determine the performance of the new drought index in identifying some globally
well-known drought events during the time period of GRACE

4 to compare the GRACE-based dimensionless drought index with common drought indices
such as the Standardized Precipitation Index (SPI), the Palmer Drought Severity Index
(PDSI), and the Standardized Precipitation Evapotranspiration Index (SPEI).

During establishing the new index, we investigate the steps proposed in the literature.
For example, we examine the effect of detrending the GRACE EWH time series for drought
characterizing. We also evaluate the short data record length of GRACE EWH to sample the full
range of wetness and dryness required.

Outline In chapter 2, the main concepts related to drought monitoring in general and the
contribution of GRACE in drought monitoring will be discussed. The main part of the method-
ology, including handling GRACE products and challenges to achieve a GRACE-based drought
index, is explained in chapter 3. Moreover, in this chapter, possible solutions to each of those
challenges will be elaborated. The result of the drought index (both spatial and temporal evo-
lution) is presented in chapter 4. Furthermore, the GRACE-based drought index is compared
with the main historical drought events around the world and with other drought indices in
this chapter. Finally, the summary and outlook are provided in Chapter 5.
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Chapter 2

Drought monitoring

Drought is a complex phenomenon with not a specific single universally accepted definition.
Therefore, it is dificult to identify its key characteristics such as duration, severity, and spatial
extent. However, drought can be traditionally classified according to three physically-based
perspectives (Mishra and Singh, 2010):

• Meteorological: lack of precipitation

• Agricultural : deficit in soil moisture and vegetation response

• Hydrological: deficit in the runoff, streamflow, or groundwater storage

Moreover, a new class of drought called socio-economic drought (Mehran et al., 2015), also
termed as anthropogenic drought (AghaKouchak, 2015), has been proposed recently. It is
mainly related to the overuse or abuse of water due to human activities that can lead to water
stress in an area.

The four perspectives of drought are different in timing, impact, and recovery rate with a
rapid sense of dryness in meteorological drought, an intermediate response in agricultural and
long-term dryness indicative of hydrological drought (Figure 2.1). It can be concluded from
the figure that drought designations among sectors may or may not coincide in space and time
(Wilhite, 2000). This means that several weeks of dryness may trigger an agricultural drought
but it may not be sensed by groundwater or have little effect on streamflow. Moreover, the
same duration of dryness may cause a severe drought in one region but may be classified as
just abnormally dry in one another.

Drought, either due to natural effects or due to human activities, requires taking measures to
counteract it. Traditionally, our responses to drought events have been conducted in a very
reactive, post-event fashioned which has been called crisis management. A crisis is an event
that occurs at a specific time that is usually unforeseen, public in nature, and has the poten-
tial to cause great harm to different sectors. In contrast, a risk is an activity or event that has
the potential to harm those sectors. Whereas crisis management is concerned with respond-
ing to, managing, and recovering from an unforeseen event, risk management is concerned with
identifying, assessing, and mitigating activities or events that could harm society. Risk man-
agement in the drought concept includes preparedness planning, mitigation, monitoring, and
early warning, and also prediction to reduce the impacts of drought. Drought monitoring,
defined as tracking the severity and location of drought, plays a vital role in this risk-based
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management frame. It can be considered as a pillar source for a successful drought policy
besides the impact assessment and mitigating.

Figure 2.1: Sequence of drought occurrence and impacts for commonly accepted drought types (Wilhite, 2000)

Droughts can occur due to shortage and reduction of water in any compartment of the water
resources, e.g., lakes, surface water resources, or underground water. Also, during the past
50 years, many efforts have emphasized climate- and hydrological-based indicators and
indices that track fluctuations in the components of the hydrological cycle (e.g., precipitation,
temperature, streamflow, and soil moisture). As a result, one of the main goals in drought
monitoring development is to improve the ability to provide relevant and timely drought
information. This information can be delivered to decision-makers as an early warning.

The more we know about drought and its definitions, the better we can investigate and mon-
itor it. As a result, in this chapter, we will discuss the complexity of drought and drought
monitoring. Definitions, characteristics of drought, and the challenges it presents for effec-
tive monitoring and early warning for risk management goals are explained. Aridity and heat
waves are not categorized in drought. Differences between these two phenomena with drought
are elaborated further in this chapter. Finally, the role of spaceborne sensors augmenting the
in situ-based climate and hydrology data for the use of drought monitoring for both past and
present are introduced.
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2.1 Drought versus aridity and heatwaves

Three terms namely drought, aridity, and heatwaves have different definitions that need to be
discussed before further steps in understanding drought. Aridity is defined, in meteorology
and climatology, as the degree to which a climate lacks effective, life-promoting moisture
(Glossary of Meteorology, American Meteorological Society). In other words, aridity is a
permanent feature of climate which is restricted to low rainfall areas (Wilhite, 1992). It is
widespread in the drylands of the world, where a shortage of water prevails through the
whole, or most of, the year. While in contrast, drought is a temporary aberration and can
occur in virtually all climate zones, both in high and low rainfall areas (Mishra and Singh, 2010).

Aridity is measured by comparing long-term average water supply (precipitation) to long-term
average water demand (evapotranspiration). If demand is greater than supply, on average,
then the climate is arid. Aridity can be investigated mainly based on (1) climate variables
(index of aridity), or (2) the number of days when water balance favors plant growth (length
of the growing season) (Kassas, 2008). Drought, on the other hand, is defined as a period of
abnormally dry weather, sufficiently long enough to cause a serious hydrological imbalance.

The Food and Agriculture Organization of the United Nations (FAO), has used freely available
satellite images and found that 41 percent of the world’s land surface —an area twice the
size of Africa— can be classified as drylands. Drylands are divided into four aridity zones.
The least arid of the four is the dry sub-humid zone, such as the Sudanian savanna in West
Africa, the grasslands in South America, the steppes in southern Siberia, and the Canadian
prairie. Most dryland forests occur in this zone, as do some large irrigated, intensively farmed
areas along perennial rivers. The driest is the hyper-arid zone, which is dominated by deserts,
including the Sahara and the Arabian desert (Figure 2.2).

As the temperature (surface and air) is rising and the precipitation patterns are shifting during
recent decades, the frequency of both droughts and heatwaves are increasing. However,
drought and heatwave represent each a different phenomenon (Chang and Wallace, 1987).
Whilst there is no conclusive definition for each of these two related events, we can define
them as follow: Heatwave clearly comprises exceptionally high air temperatures that last
for several days (can continue to even several weeks). The descriptive phrase of high air
temperature can vary in a different part of the world, related to their climate. For example
in the USA, a heatwave is defined as a period of more than three consecutive days where
temperatures exceed 32.2°C (90°F), while in central Europe, the term heatwave normally refers
to periods of several days when the maximum daytime air temperatures exceed 30°C. On the
other hand, drought is commonly understood to be a relative concept that denotes reduced
water availability in a particular region for a period that exceeds the long-term average. The
combination of a heatwave and drought has dire socio-economic consequences (Mishra and
Singh, 2010). It is worthwhile to mention that extreme heat events are responsible for more
deaths annually than hurricanes, lightning, tornadoes, floods, and earthquakes combined
(Min et al., 2011).
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Figure 2.2: Map of the global distribution of climatic zones (source: UNEP-WCMC)

Numerous studies have documented that human-induced climate change has increased the
frequency and severity of heatwaves across the globe (Jones et al., 2007; Gutowski et al., 2008;
Hansen et al., 2012; Meehl et al., 2009). The combination of high humidity and high night-time
temperature (known as high-humidity heatwaves) can make for a deadly pairing (referred to
as hyperthermia), offering no relief and posing a particular threat for the elderly. It has shown
an increasing trend during past 3–4 decades (Coumou and Rahmstorf, 2012; Russo et al., 2015;
Mora et al., 2017) (see Figure 2.3). Droughts and heatwaves are connected (persistent heatwaves
may lead to a class of drought). As an example, the prolonged drought over large parts of
Europe is associated with the summer heatwave in 2003.
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Figure 2.3: Increase of the number of heatwaves during the last 3–4 decades. The number of deadly days have been selected
globally during each year based on the average daily relative humidity and temperature (Mora et al., 2017).

2.2 Complexity of drought

According to Wilhite (2000), drought is one of the most complex, but least understood among
all natural hazards (e.g., floods, earthquakes, hurricanes). Even though this was mentioned in
Wilhite’s book about 18 years ago, it is still true for some reasons. First, a worldwide accepted
definition of drought is still missing. Although numerous definitions have been proposed so
far, the literature lacks one precise definition that fulfills both the scientific and policymaker’s
expectations. The difficulty of defining drought comes from the different points of view of
several sectors. Consequently, the thresholds for declaring drought are arbitrary in most cases.
Moreover, drought is defined as a natural phenomenon while in many cases, distinguishing
between the role of nature and humans would be quite difficult. The recent human activities
adversely affected the climate and water resources. These anthropogenic actions have led to
accelerating, intensifying, and even in some cases triggering some severe droughts worldwide.
Application and region-related definitions of drought seem more realistic and pragmatic, even
for the decision-makers.
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Second, drought is known as a creeping phenomenon. It may stay in a region for years after
the termination, which makes the determination of the onset and the end of drought quite
challenging. Drought is characterized by determining its onset, termination, and intensity.

Third, in contrast to floods, hurricanes, earthquakes, and tornadoes the effects of drought are
non-structural and seldom result in structural damage (Mishra and Singh, 2010). Moreover,
drought affects a wide geographical area, in most cases wider than any other natural hazard.
Because of these two features, quantifying the impact and damages is quite a burdensome task
compared with other natural hazards.

Drought indices summarise the complexity of drought into a single number and have improved
drought monitoring and mitigation. In the following, some of the most widely used drought
indices among the extensive list of them are explained.

2.3 Main drought indices

Several drought indices have been developed so far, each related to one or two different classes
of drought (i.e., meteorological, agricultural, hydrological, and socio-economical droughts).
Zargar et al. (2011) reviewed 74 operational and proposed drought indices and describes re-
search directions. In each of these indices either the deficiency in water for each component of
the TWS or the impact of drought (i.e., change in the vegetation quality and quantity) have been
considered to develop the index. Some of the more common and practical indices include:

• Palmer Drought Severity Index (PDSI; Palmer (1965))

• Rainfall Anomaly Index (RAI; Van Rooy (1965))

• Crop Moisture Index (CMI; Palmer (1968))

• Bhalme and Mooly Drought Index (BMDI; Bhalme and Mooley (1980))

• Surface Water Supply Index (SWSI; Shafer (1982))

• Standardized Precipitation Index (SPI; McKee et al. (1993); McKee (1995))

• Vegetation Condition Index (VCI; Liu and Kogan (1996))

• Soil Moisture Drought Index (SMDI; Hollinger et al. (1993))

• Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al. (2010))

Each of the indices has its own strengths and weaknesses. In what follows, some of the most
widely used indices are introduced briefly. These indices will be to be compared further with
the proposed GRACE-based drought index.
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2.3.1 Standardized Precipitation Index

Description McKee et al. (1993) introduced the Standardized Precipitation Index (SPI) as a
simple, easy to calculate, and statistically relevant drought index. It measures accumulated
precipitation deficits over varying timescales from sub-seasonal to interannual. SPI can be
computed for a variety of timescales. It represents the surface soil moisture (SM) variability
in shorter timescales, the streamflow and reservoir levels in medium scales, and groundwater
variations for longer timescales (Mishra and Singh, 2010). SPI is originally calculated for 3-, 6-
,12-, 24- and 48-month timescales. Table 2.1 shows the phenomena reflected and the application
by each of these timescales up to 12-months timescales. These timescales represent the impact
of drought on the availability of the different water resources. However, SPI only quantifies the
precipitation deficit. Hence, it is highly sensitive to the preliminary data and the length of the
record.

Calculation The SPI is calculated in the following sequence:

• Preparing a monthly precipitation data set for a period of m months, ideally a continuous
period of at least 30 years. We refer to that as the long-term time series.

• For a i-month timescale, accumulate the precipitation values from month j − (i − 1) to
month j and attribute to month j.

• Fitting the Gamma probability distribution to the long-term accumulated precipitation.

• Calculating the probability of observed precipitation using Cumulative Distribution
Function (CDF) from the fitted distribution.

• Finally, transferring the calculated probability to the standard normal variate (Z-score)
using inverse standard normal CDF. Z-score for precipitation data is termed as SPI.

Typically, precipitation has a negatively skewed distribution i.e. smaller magnitudes occur
with larger frequencies. Thus, instead of a common normal Probability Distribution Function
(PDF), Gamma distribution provides a better fit for the data. The probability density function
of the gamma distribution is defined as:

g(x) =
1

βαΓ(α)
xα−1e−x/β for x > 0, (2.1)

where α > 0 is a shape parameter,β > 0 is a scale parameter, x > 0 is the amount of precipi-
tation, and Γ(α) is the gamma function. More detailed descriptions of the gamma distribution
can be found in Lloyd-Hughes and Saunders (2002) and Guttman (1998).
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Table 2.1: Phenomena reflected by specific-duration standardized precipitation indices (SPI) and their applications (NDMC)

SPI duration Phenomena reflected Application

1 [mo] Short-term conditions Short-term soil moisture and crop stress
(especially during the growing season)

3 [mo] Short- and medium-term A seasonal estimation of precipitation
moisture conditions

6 [mo] Medium-term trends Potential for effectively showing the pre-
in precipitation -cipitation over distinct seasons.

e.g., for California, the 6 month SPI can
effectively indicate of the amount of pre-
-cipitation from Oct. to Mar.

9 [mo] Precipitation patterns over If SPI9 < −1.5 then it is a good indication
a medium time scale that substantial impacts can occur in agr-

-iculture (and possibly other sectors)

12 [mo] Long-term precipitation patterns Possibly tied to streamflows, reservoir
levels, and also groundwater level

Table 2.2: drought/wetness classification by SPI

SPI value drought/wetness condition

2.00 or more Extremely wet
1.50–1.99 Severely wet
1.00–1.49 Moderately wet
0.00–0.99 Mildly wet
-0.99–0.00 Mild drought
-1.49–1.00 Moderate drought
-1.99–1.50 Severe drought
-2 or less Extreme drought

2.3.2 Palmer drought severity index

Description The Palmer Drought Severity Index (PDSI) is perhaps the most widely used re-
gional drought index for monitoring drought. Palmer (1965) formulated PDSI by estimating
moisture supply and demand using precipitation and temperature as the inputs of a two-layer
soil model. Despite its widespread application, PDSI inherit some limitations including:

• PDSI assumes all precipitation as rainfall (i.e., no contribution for snowfall) which makes
the use of it problematic in winter and at high elevations.

• It responses slowly to developing and diminishing droughts (Hayes et al., 1999).
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• PDSI is more applicable for agricultural droughts due to its innate time scale (Alley, 1984;
Guttman, 1998; McKee, 1995; Willeke et al., 1994).

Calculation Here we explain the methodology for calculating PDSI mainly based on the
Palmers paper (Palmer, 1965). The paper describes in detail how to calculate the PDSI using a
1-month time step. First, for each month of every year, four values related to the soil moisture
and their complementary potential values are computed. These eight values are evapotranspi-
ration (ET), recharge (R), runoff (RO), loss (L), potential evapotranspiration (ETp), potential
recharge (PR), potential runoff (PRO), and potential loss (PL). The four potential values are
weighted according to the climate of the area using α, β, γ, and δ. These weighted factors are
called the water balance coefficients and are calculated using the following equation:

αi =
ETi

ETp,i
, βi =

Ri

PRi
, γi =

ROi

PROi
, δi =

Li

PLi
(2.2)

where i ranges over the months of the year. The bar over a term indicates an average value for
the whole time period of data. The weighted factors give us the climatically appropriate for
existing conditions CAFEC potential values. The CAFEC precipitation, P̂, is calculated using a
combination of potential values. It represents the amount of precipitation needed to maintain
a normal soil moisture level for a single month:

P̂ = αiETP + βiPR + γiPRO− δiPL (2.3)

The difference between actual precipitation and P̂ is called the moisture departure denoted d:

d = P− P̂ (2.4)

The interpretation of d is both time and spatial-dependent. This prevents straightforward com-
parisons from being made between different values of d. To overcome that, the moisture de-
parture is weighted using K, which is called the climatic characteristic. To calculate K, Palmer
derived two following equations:

K′i = 1.5 log1 0(
ETP,i+Ri+ROi

Pi+Li
+ 2.8

Di
) + 0.5 (2.5)

Ki =
17.67

∑12
j=1 DjK′j

K′i (2.6)

The value 17.67 is an empirical constant that Palmer derived using data from nine locations
in seven states of the United States (Palmer, 1965). The result of multiplying the moisture
departure, d, by K is called the moisture anomaly index, or the Z index, shown as:

Z = dk (2.7)

The Z index is used to calculate the PDSI value for a given month using the following for-
mula:
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Xi = 0.897Xi−1 + (
1
3
)Zi. (2.8)

The two constant values in the formula, called the duration factors, were derived empirically
by Palmer from two stations, western Kansas and central Iowa, and affect the sensitivity of the
index to the precipitation events.

2.3.3 Standardized precipitation evapotranspiration index

Description The Standardized Precipitation Evapotranspiration Index (SPEI) first introduced
by Vicente-Serrano et al. (2010) has been applied in comparative studies. SPEI measures
the combination of water supply (precipitation) and water demand (evapotranspiration as
computed from temperature). Warmer temperatures tend to increase evapotranspiration,
which generally makes droughts more intense. The SPEI extends the SPI by incorporating
precipitation and evapotranspiration in determining drought and shows advantages over the
SPI in capturing temperature impact on water demand. Unlike PDSI, which closely tracks
soil moisture levels within the upper soil layer, SPEI like SPI is more sensitive to the main
component of the terrestrial water balance (Guttman, 1998). It has been claimed that SPEI

outperforms the two aforementioned indices (SPI and PDSI) by taking their weaknesses into
account.

Calculation SPEI is calculated in a similar method as SPI, but instead of only precipitation, we
use the climatic water balance. The climatic water balance is defined as the difference between
precipitation and potential evapotranspiration. Drought results from an imbalance between
these two components. Water demand is usually measured by evapotranspiration (the amount
of water that would be evaporated and transpired by plants). There is a distinction made
between potential evapotranspiration (ETp) and actual evapotranspiration (ETa). ETp is the
demand or maximum amount of water that would be evaporated if enough water were avail-
able (from precipitation and soil moisture). ETa is how much water, in reality, is evaporated
and is limited by the amount of water that is available. ETa is always less than or equal to ETp,
so ETp is used for the water demand component of the drought equation.

The spatial distribution of the aforementioned drought indices namely SPI, PDSI, and SPEI is
show in Figure 2.4 over the continental United States (CONUS) for June 2012. SPI and SPEI

share the same pattern and intensity while PDSI shows drought over a larger extent and with
higher intensity. The difference in the PDSI can be explained as it is also sensitive to the variation
of the soil moisture which is not explored for the other two indices.

The drought maps provided weekly by the U. S. Drought Monitor (USDM) are one of the
most widely used quantitative information in many studies for validation and comparison. To
produce these maps, USDM uses many indices and indicators, which makes the final results
more robust. In the thesis, we have compared our results with USDM maps for certain events.
section 2.4 provides introduce USDM briefly.
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SPI PDSI SPEI

Figure 2.4: Different drought indices for the continental United States (CONUS) June 2012.

2.4 U.S. drought monitoring

The U.S. Drought Monitor (USDM), established in 1999, releases a weekly map of drought
conditions in the United States. These maps are produced jointly by the National Oceanic
and Atmospheric Administration NOAA, the U.S. Department of Agriculture USDA, and the
National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln. The map
is based on measurements of climatic, hydrologic, and soil conditions as well as reported
impacts and observations from more than 350 contributors around the country. Eleven
climatologists from the partner organizations take turns serving as the lead author each week.
The authors examine all the data and use their best judgment to reconcile any differences in
what different sources are saying. The analysts producing the map also weigh the indices
according to how well they perform in various parts of the country and at different times of
the year. Additional indicators are often needed in the West, where winter snowfall in the
mountains has a strong bearing on water supplies. It is this combination of the best available
data, local observations, and experts’ best judgment that makes the U.S. Drought Monitor
more versatile than other drought indicators.
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Chapter 3

New storage-based drought index

3.1 Total Water Storage change from GRACE

GRACE has measured the time variable Earth's gravity field for about 15 years. We assume
that most of the mass redistribution takes place within a thin layer of thickness H, including
the portion of the atmosphere, oceans, ice caps, and below groundwater storage. Moreover,
we pretend that this thin layer consists of water. As a result, the surface mass density can be
converted into water height, commonly denoted as Equivalent Water Height (EWH) (Wahr et al.,
1998):

EWH(θ, λ) =
aρave

3ρw

∞

∑
l=0

2l + 1
1 + kl

l

∑
m=0

Plm(cos θ)[∆Clm cos mλ + ∆Slm sin mλ], (3.1)

where θ and λ are the co-latitude and longitude respectively. ρw is the average density of
water (= 1000 kg/m3), ρave is the average density of the Earth (= 5517 kg/m3), and kl denote
the degree-dependent load Love numbers used to account for the change in shape of the
elastic Earth. Plm are the fully normalized Legendre polynomials of degree l and order m while
∆Clm and ∆Slm are the fully nomalized dimensionless spherical harmonic coeficients after
subtracting the temporal mean. For more information about the derivation of water storage
change from GRACE, see Appendix A.

The GRACE mission has released monthly gravity field solutions for ∼ 15 years. Each solution
consists of a set of spherical harmonic coefficients (SHs), Clm and Slm. They are provided by
three GRACE data processing centers of the Science Data System (SDS), including the Center for
Space Research (CSR) at the University of Texas at Austin, the Geoforschungszentrum (GFZ)
in Potsdam, and the NASA Jet Propulsion Laboratory (JPL). Other groups (external to SDS)
that also provide solutions include the Goddard Space Flight Center (NASA, Rowlands et al.
(2002)), the Delft Institute of Earth Observation and Space Systems (DEOS; Klees et al. (2008)),
the Institute of Geodesy (ifG) at the Graz University of Technology (ITSG,Kvas et al. (2019)),
and others. Differences come from several issues including the background models used, the
period over which the orbits are integrated, the weighting of the data, the maximum degree of
the estimated gravity harmonics (Bettadpur, 2007; Flechtner, 2007; Watkins and Yuan, 2012).
Temporal gravity field models developed by different institutions and agencies can be found
at http://icgem.gfz-potsdam.de/series (last access: 1 October 2021). In this thesis, we have
used the unconstrained solutions from ITSG-Grace2018 Kvas et al. (2019).
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Figure 3.1 shows the scheme of the data processesing used in this thesis to quantify TWSA using
GRACE level-02 data. The processing includes:

• The lowest-degree zonal harmonic coefficients, C20 and C30 are replaced by the coeffi-
cients derived from Satellite Laser Ranging (SLR) data Cheng et al. (2013).

• The degree-1 coefficients are added to the GRACE fields of accounting for the movement
of the Earth’s center of mass Swenson et al. (2007).

• The Glacial Isostatic Adjustment (GIA) signal is corrected following AG and Zhong (2012).

• The SHs are corrected to ellipsoidal harmonics based on the method developed by Li et al.
(2017) as the real shape of the Earth is more like an ellipsoid than a sphere.

• The primary (including S2, S1, and P1) and secondary (including M2, O2, O1, and Q1)
residual tidal aliasing error are carefully removed following Tourian (2013).

• The long-term (2004–2010) mean of the SHs are subtracted as a representative of the static
gravity field to calculate the geoid anomaly.

Figure 3.1: Flowchart of obtaining EWH in this thesis.

The monthly GRACE gravity field solutions suffer from correlated noise (cf. Figure 3.2)
which comes from a range of random errors on the instrument data. Moreover, the maps of
surface water height showed distinctive North-South striping patterns, because of GRACE’s
polar orbit configuration. There is a trade-off between the resolution and noise i.e., a higher
(lower) degree of spherical harmonics coefficients would have larger (smaller) errors during
the mission design. Therefore, one simple way to lower the noise would be to truncate the
spherical harmonic series around degrees 20–30. However, for applications with high spatial
resolution demand, such as hydrology, the monthly results include a complex noise.

The nature of the noise in GRACE is strongly anisotropic. In this thesis, we compared eight
filter versions (denoted by DDK1 to DDK8) from the DDK anisotropic decorrelation filter
developed by Kusche et al. (2009). Each version corresponds to different degrees of smoothing
which decrease by the numbers in their names. The result for DDK3 is mainly used for
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the drought analysis due to its better performance in eliminating the noises comparing to
DDK4–DDK8. The filters DDK1 and DDk2 are ignored as they overfilterg both noise and
signal (cf. Figure 3.3). The gravity solutions in terms of spherical harmonic coefficients are
truncated to degree/order 96 spanning the time interval April 2002–June 2017.

Figure 3.2: The GRACE EWH for October 2006, before and after filtering (DDK3).

Filtering results in leakage of signals. Therefore, to mitigate the leakage, we have used the
forward modeling approach proposed by Chen et al. (2013). The final global fields of monthly
EWH are retrieved from the residual coefficients, converted in to the 0.5 ° × 0.5 ° grids. It is
important to mention that the two neighboring grid cells are not completely independent due
to the spatial smoothing filter. Finally, in order to achieve EWH time series for a region, the
basin-scale time series is obtained as the weighted average of the GRACE EWH cell, with a
weight proportional to the cell area falling within the basin boundary. Figure 3.4 illustrates the
time series of EWH over Tigris river basin located in the Middle East using the aforementioned
DDK1 to DDK8 filters.
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Figure 3.3: The GRACE EWH for April 2006, obtained from DDK1 to DDK8.
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Figure 3.4: The GRACE EWH time series for the Tigris river basin in Iraq, obtained by applying DDK1 to DDK8 filters.
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3.2 Total water storage deficits

Imagine that we have calculated the time series of EWH from GRACE for a region, e.g.
Figure 3.5(top). From the perspective of drought identification, all parts of the time series
that manifest water storage deficiency can represent a potential drought period. Therefore,
we need a baseline to quantify the occurrence and severity of water storage deficits. One
common approach to quantify this baseline is called climatology, e.g. (Thomas et al., 2014).
The climatology represents the normal behavior of a region for a specific parameter related to
the weather conditions. We can compute the monthly climatology for the GRACE EWH time
series in each study region by averaging the values for each month of the satellite record
(e.g., all Januaries in the ∼ 15-year record are averaged). Then, to quantify the deficiencies,
we subtract the climatology from the GRACE EWH time series (Figure 3.5(middle)). We call
the result EWH anomalies or EWHA, the negative values of which represent the water storage
deficits. Characterizing drought will be finally to associate different categories of drought into
the period which is colored in red in Figure 3.5(bottom). Before elaborate more on the final
steps, in the following section, the possible choice of calculating the long-term monthly mean
(climatology) is discussed.

-15

-5 

5  

15 

E
W

H
 [
c
m

]

-15

-5 

5  

15 

c
lim

a
to

lo
g
y
 [
c
m

]

2002 2004 2006 2008 2010 2012 2014 2016

-15

-5 

5  

15 

E
W

H
A

 [
c
m

]

Figure 3.5: Time series of, Top:GRACE EWH, middle: climatology (obtained from the GRACE time period),
and bottom: the GRACE EWH anomalies for the Tigris located in Iraq.

3.3 The short record of GRACE EWH

In contrast to weather which is the condition of the atmosphere over a brief period, climate
represents the composite of day-to-day weather over a longer period. To establish a robust
Climatology, a record of the climate variables for at least 30 years is preferable. Even 60 years of
data might be needed to capture all the climate variations. However, the GRACE EWH period
(2002–2016) is not long enough to capture the full range of wetness and dryness of a region
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(Sun et al., 2017; Thomas et al., 2014; Wang and Russell, 2016). On one hand, agricultural
areas have expanded in the last decade in several basins globally, which has led to a dramatic
increase in groundwater extraction. This over-extraction has accelerated the negative trend
in water storage in those regions. On the other hand, climate change in the same period
has changed the pattern, intensity, and trend of the climate variables such as precipitation,
temperature, and humidity. As a result, considering the period of GRACE (2002–2016) for the
climatology calculation might lead to biased estimation.

Despite its importance, the effect of the short record of GRACE EWH time series on character-
izing the storage-based drought has not been quantified. Only in the study by Zhao et al.
(2017a), the standardized PDSI is compared within two periods, 2002–14 and 1982–2014. They
found that the 13-year climatology will end up with underestimation (or overestimates) of the
severity of the drought over 28% of their study domain (all land regions excluding Antarctica,
Greenland, and barren ground). They suggest that stakeholders should correct the drought
classification in these regions. Their study addressed the short record of data, however, the
PDSI is sensitive to the change in the soil moisture which is only a fraction of the whole column
of water. This implies that the comparison is blind to the change of groundwater and also sur-
face runoff that includes a big portion of the EWH in many regions. Moreover, no minimum
threshold for the time duration has been reported in the literature which would be sufficient
to capture variations of the EWH in a region. The threshold might not be a single global fixed
value, due to the different climate regions. As a result, any threshold would rather pursue a
spatial distribution.

To compare the climatology within the GRACE period (2002–2016) with a longer period, we
have used the ensemble mean of a group of models (EWHL) including atmospheric models,
global hydrological models, and land surface models (see section 3.4 for more details). Fig-
ure 3.6 shows the climatology of EWH over selected basins within three time periods, namely
1980–2016 (40 years), 2002–2016 (GRACE observation period), and 1980–2002 (pre GRACE). The
difference between the climatology within 2002–2016 compared with a longer time period
is undeniable throughout the whole year in basins that have experienced significant anthro-
pogenic effects like groundwater extractions (like in Tigris, Death Valley, and the Ganges) or
a dramatic climate change (like in Murray, Amazon, and Mackenzie). In other basins like Ob,
Niger, or Mississippi the discrepancies mainly happen over cold months (October till February)
while the warm months remain unchanged as we extend the sampling period for climatology.
Figure 3.6 highlights the importance of longer sampling time for calculating the climatology.
Moreover, the results reveal that the effect of the time period on the climatology will be basin-
dependent and varies due to the geo-hydrological and climatological characteristics of each
basin.

3.4 External climatology from models

In section 3.3 it is concluded that we need a longer time series of EWH than the GRACE obser-
vation period to calculate the climatology. One approach would be to reconstruct GRACE EWH

time series. Humphrey et al. (2017) have reconstructed GRACE EWH using a statistical model
based on two climate variables namely precipitation and temperature. Some other studies have
assimilated GRACE observations into the hydrological models (Eicker et al., 2014; Kumar et al.,
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Figure 3.6: Long-term monthly mean (climatology) of EWH over selected basins within three periods namely 1980–2016 (40
years), 2002–2016 (GRACE observation period), and 1980–2002 (pre GRACE).

2016; Khaki et al., 2017; Schumacher et al., 2018). Recently, machine learning methods like the
Long Short-Term Memory (LSTM) or Deep Neural Network (DNN) have been employed to re-
construct GRACE EWH at regional to global scales (Wang et al., 2021; Sun et al., 2020; Jing et al.,
2020).

In this study, due to a lack of comprehensive study comparing these method, we propose an
ensemble of the models listed in Table 3.1. We include Land Surface Models (LSMs), Global
hydrological models, and atmospheric reanalysis models to calculate an ensemble mean. These
models estimate EWH time series with a time period of at least 30 years are listed in the Table 3.1.
The linear trend of the models are compared with three GRACE-based observations namely CSR
GRACE RL06 Mascon solutions version 02 (Save, 2020; Save et al., 2016), JPL GRACE RL06
Mascon solutions version 02 (Wiese et al., 2019), and the approach proposed in ??. Based on the
trend results, we canclude that the performance of the models varies globally and there is no
superior model or small group of models among all. Therefore, in this study, we have untelized
all models rather than selecting one or two among them.

To calculate the ensemble mean of the models, for each grid cell, first, we compare the Root
Mean Squares (RMS) of the signal in the models within 2003–2012 (the insection between mod-
els and GRACE) with the corresponding value from GRACE EWH time series. Then, based on
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Table 3.1: Summary of datasets used in this study.

Model time period Provider Organisation/Center Reference

ERA5 1979–2016 ECMWF Hersbach et al. (2020)
WGHM 1901–2016 Goethe University Frankfurt Müller Schmied et al. (2021)
PCRGLOB-WB 1979–2012 Utrecht University Wada et al. (2014); Sutanudjaja et al. (2018)
CLM5 1940–2014 ESG at NCAR Lawrence et al. (2019)
HTESSEL 1979–2012 ECMWF Balsamo et al. (2015)
JULES 1979–2012 CEH Best et al. (2011); Clark et al. (2011)
LISFLOOD 1979–2012 JRC Van Der Knijff et al. (2010)
ORCHIDEE 1979–2012 CNRS Polcher et al. (2011)
SURFEX-TRIP 1979–2012 Meteo France Decharme et al. (2013)
W3RA 1979–2012 CSIRO Van Dijk (2010)
HBV-SIMREG 1979–2012 JRC Lindström et al. (1997)

Figure 3.7: Linear trends obtained over the period 2002–2009 from the models.

the comparison, we select datasets with RMS difference of less than 30% of the GRACE EWH RMS.
Finally, we calculate the ensemble mean of the selected datasets within 1980–2010. We use the
new ensemble to calculate the climatology for each grid cell (or basin). Figure 3.8 shows the
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comparison between the ensemble mean of the selected models with GRACE EWH time series
over selected basins.

Figure 3.8: EWH time series from GRACE observations and the ensemble of the models for selected basins.

3.5 The storage-based drought index (SDI)

Step one we subtract the climatology from the GRACE EWH time series of each cell. We call the
new time series the EWH anomaly EWHA. Negative values of the anomalies have the potential
to be considered as drought. Two more subtle issues need to be considered before achieving
the final formula for a Storage Based Drought Index (SDI):

• First, it happens sometimes in a region that the rainfall, that we expect to fall in a certain
month, falls with one or two-month delay. This weather lateness cannot be considered as
a drought. To address this concern, we accumulate the anomalies three months backward.

• Second, the GRACE EWH spatial resolution is coarse. Despite this coarse spatial resolu-
tion, each region may include a heterogeneous distribution of vegetation, climate vari-
ables (such as temperature, or rainfall.), and other compartments of the supply-demand
balance of water. As a result, the range of humidity and aridity can change for that cells
during the time period of GRACE (See Zhao et al. (2017b) for more details). To address
this variation, we divide the three-month backward accumulated anomalies of each cell
by its standard deviation during the whole time period of GRACE.

After considering two mentioned issues, for each grid cell, the dimensionless quantity of the
SDI is defined as follow:
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SDIi,j =
EWHAi,j + EWHAi,j−1 + EWHAi,j−2

3σj
(3.2)

where i is the year ranging from 2002 to 2016; j is the month ranging from January to December;
and σj is the standard deviation of the residuals in month j. Figure shows the result of the
calculation for EWHA and EWHA for the Tigris basin in Iraq.

Figure 3.9: The 4 main steps in calculating SDI from the original EWH time series.
Here the results are shown for the Tigris basin in Middle East.

Step two We classify drought into four levels of drought intensity (ranging from D1 to D4)
and one level of "abnormal dryness" (D0) (Table 3.2). To make it consistent with other available
drought maps, colors and percentile values are taken from the U.S. Drought Monitor (USDM),
i.e., 30%, 20%, 10%, 5%, and 2% (Svoboda et al., 2002).

Table 3.2: USDM classification for drought characterization (Svoboda et al., 2002)

Category Description Color Percentile range

D0 Abnormaly dry 21–30

D1 Moderate drought 11–20

D2 Severe drought 6–10

D3 Extreme drought 3–5

D4 Exceptional drought 0–2

Lower and upper limits of the percentile range for each class of drought are calculated using
the Cumulative Distribution Function (CDF) of the longer time series. To do that, first, we
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calculated the CDF of SDI time series of the model. Then we investigated the best theoretical
distribution function that fits with the empirical distribution. We examined more than 20 dif-
ferent distribution functions and calculated the error compared to the empirical distribution.
Figure 3.10 shows the result of the comparison for the five best theoretical distribution func-
tions and the errors for a cell inside the Tigris basin. Due to the high errors, we decided to
directly employ the empirical CDF instead of fitting a theoretical function. Figure 3.11 presents
the projection of the percentile ranges on the CDF obtained from the longer time series for a cell
inside the Tigris basin. The class of drought for each month is defined using the quantile values
from the empirical CDF.

Figure 3.10: Left: The CDF distribution for the four best theoretical distribution functions (among 20 distribution functions)
compared with empirical distribution. Tight: The related error in the three best best theoretical distribution compared with

the empirical distribution
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Figure 3.11: The projection of the percentile values for the different classes of drought on the empirical CDF of the long-time
series of SDI for the Tigris basin. Quantile values will be then used for drought characterization
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Chapter 4

Results and discussions

4.1 Global distribution of drought

Figure 4.1(a) shows the SDI over the global domain, excluding Antarctica and Greenland for
July 2010, a month in which major drought conditions occurred worldwide (AghaKouchak,
2015). The drought map highlights severe to exceptional drought in western Russia, northern
India, Amazon, Chile and Argentina, southeast Asia, eastern China, and central Africa. This is
a global gridded storage-based drought map. Moreover, we calculated the global basin-scale
SDI by aggregating the EWH from models and GRACE for each basin. Figure 4.1(b) presents the
global basin-wide map for the same date as Figure 4.1(a). Figure 4.1 indicates that drought is a
scale-dependent phenomenon.

Abnormally dry Moderate drought Severe drought Extreme drought Exceptional drought

Figure 4.1: Global maps of drought characterization for July 2010, (a) gridded map and (b) basin-scale map.

Drought classes occur with different frequencies globally. We quantified the spatial distribu-
tion of the occurrence for each class of drought within the time period of the GRACE mission.
Figure 4.2 shows the result for each class, from D1 to D4. Based on the result in Figure 4.2, some
regions like Ogallala Aquifer in the United States, Northern India, Tigris and Euphrates basins
in the Middle East, and eastern China have experienced more exceptional droughts during the
last two decades. Most regions of the world have suffered at least one type of drought within
2002–2016.

4.2 Time evolution of drought for main catchments

Drought is a creeping phenomenon which evolves over time. We investigated the evolution
of drought for 27 major basins within the time period of GRACE (cf. Figure 4.3). Some of the
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Figure 4.2: Spatial distribution of the frequency for each class of drought within the GRACE period (2002–2016).

basins suffered from more than one known drought period like Tigris and Euphrates in West
Asia. Some of them are located in wet regions where we do not expect a drought period, like
Amazon. Figure 4.3 shows the result for some selected basins. All the basins have suffered
from different classes of drought in different periods. Some basins have experienced drought
only for the first decade like Niger and Murray. In contrast, Tigris and Ganges, and Mackenzie
have mostly suffered from drought in the second decade. The rest of the basins faced drought
in different time periods of the whole time span. Some of the drought periods lasted just for
a few months while some others stayed in a region for several months to several years, like
Tigris.

4.3 Performance of the SDI during extreme hydrologic events

We evaluated the performance of the SDI results during some reported drought events during
2002–2016. Figure 4.4 shows SDI maps for selected parts of the world, each for specific dates:

Australia 2006 During October–December, Australia experienced one of the worst
droughts on record (van Dijk et al., 2013).

Middle East 2012 A great part of Middle East suffered from drought (Gray, 2016; Saemian
et al., 2020a).

Europe 2012 Southwestern Europe faced a significant drought during all seasons except
Autumn. A lot of countries during this year experienced dry months compare to the
last few decades including Germany, France, the United Kingdom, Portugal, and Spain
(WMO, 2013).

North America 2012 By September approximately 64.6% of the United State suffered a
moderate to exceptional drought (WMO, 2013).

South America 2010 Severe drought happened in southwestern of Amazon, the Mato
Grosso state in Brazil, and north-central Bolivia (Lewis et al., 2011). It is reported that in
October 2010, the Rio Negro river (one major tributary of the Amazon) experienced its
lowest level since 1902 (Xu et al., 2011).
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Figure 4.3: Time evolution of the SDI over selected basins.

Africa 2005 Southeastern Africa suffered a drought period (Guha-Sapir and Below, 2015).

All these documented droughts were captured well in the intensity and spatial distribution by
SDI as is shown in Figure 4.4.
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Dec. 2006 Australia Jan. 2012 Middle East Mar. 2012 Europe

Sep. 2012 North America Oct. 2010 South America Dec. 2005 Africa

Abnormally dry Moderate drought Severe drought Extreme drought Exceptional drought

Figure 4.4: SDI results during some reported droughts.

4.4 Comparison of SDI with other drought indices

Figure 4.5 and Figure 4.6 show the time series of SDI over selected basins compared with
SPI with different time scales (first column), SPEI with different time scales (second column),
PDSI (third column). The last column shows the indices with the highest correlation at each
column with SDI. Using the result from Rodell et al. (2018) (Figure 4.7), we have divided the
selected basins in two groups. In the first group, Figure 4.5, the basins that have experienced
considerable groundwater extraction have been selected. In the second group, Figure 4.6, we
have selected basins with trend (positive or negative) from climate change (Ob, Niger and
Mackenzie), basin with a considerable seasonal variation that has experienced both drought
and floods (Amazonas), and finally Murray in Australia that is inluenced via ENSO resulted in
millinium drought.

Generally, the agreement between these two indices improves with the longer timescale. Over
the first group, Figure 4.5 shows a reasonable agreement between SPI and SPEI before the neg-
ative trend while via the period with the considerable groundwater extractions, these two in-
dices failed to capture the storage based drought. The main reason for poor correlation over
these regions comes from the fact that the SPI relies only on precipitation while other water
fluxes, such as evapotranspiration, groundwater, and ice and snow cover play key roles in
the determination of the dry and wet conditions in these regions. While SPEI captures some
human interventions signals via evapotranspiration, it still lacks the changes in groundwa-
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ter and snow melting. SDI consider all the variation in the EWH and hence perform better
over regions with significant anthropogenic effects. The PDSI on the other hand shows a better
agreement comparing to SPI and SPI while still failed to capture the dramatic negative trends
in the EWH cause by the accelerated groundwater extraction within 2015–2016 in Death Val-
ley, Yellow River, and Indus. The results suggest a notable contribution from SDI in detecting
significant human groundwater withdraws while other drought indices miss the intensity of
drought class.

In the second group (Figure 4.6), SPI and SPEI can capture the storage-based drought in re-
gions where precipitation (with or without evapotranspiration) played the main role in the
EWH variations, like Ob, Amazonas, and Murray basin. These basins were facing meteoro-
logical or agricultural rather than hydrological droughts over the study period. Like in the
first group, the agreement between these two indices improves with the longer timescale. By
increasing the time scale for calculating the SPI (or SPEI), the index reflects different phenom-
ena from short-term soil moisture and crop stress to long-term precipitation patterns. Hence,
the SPI-12 usually reveals the impact of drought on streamflows and even groundwater levels,
which is more suitable for hydrological drought monitoring (WMO, 2012). The same story as
the first group holds for Mackenzie but here instead of extreme groundwater extraction, the
basin has observed a significant negative trend due to the ice-sheet loss (cf. Figure 4.7). The
PDSI follows SDI in most basins except those with a considerable negative trend in Mackenzie
and the positive trend in Niger.
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Figure 4.5: Comparison of drought indices namely SPI, SPEI, and PDSI with SDI over selected basins. The basins are located in
regions with considerable groundwater extraction.
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Figure 4.6: Comparison of drought indices namely SPI, SPEI, and PDSI with SDI over selected basins.

Figure 4.7: Trends in EWH (in centimetres per year) based on GRACE observations from April 2002 to March 2016 together
with the posible interpretation over certain spots (Source: (Rodell et al., 2018)).
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4.5 Comparison of SDI with USDM

We compared the result of SDI with the USDM maps for two recorded drought periods. The
first event is the 2011 drought in Texas (Long et al., 2013). Figure 4.8 top shows drought char-
acterization for August 2011, based on USDM and SDI. To examine the consequence of using
only the short record of GRACE for climatology, we have shown the result of SDI using only
GRACE EWH data as well. SDI captured the intensity and location of the drought in the Conti-
nental United States (CONUS) in general and in Texas. However, the short record of GRACE led
to a miss-classification of the drought, although some similarities can be observed over some
spots.

Throughout history, California has experienced many droughts, such as 1841, 1864, 1924, 1928–
1935, 1947–1950, 1959–1960, 1976–1977, 2006–2010, and 2012–2017. We selected February 2016
as the middle of the last known drought periods in California. Figure 4.8 shows the result of
drought characterization from the two aforementioned approaches. SDI captured the drought
location and severity in California while the drought misclassified when using only the time
record of GRACE. The comparison shows that SDI characterized exceptional drought over a
larger extent than USDM. This might have happened since SDI is sensitive to all the variations
in the water storage including the groundwater change, while the USDM does not take the deep
water variations into account. In general, Figure 4.8 highlights the importance of the length of
the EWH time series in the calculation of climatology.
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Figure 4.8: Drought classificiation from USDM, SDI, and SDI using only GRACE for the CONUS during August 2011 and
February 2016.

4.6 Comparison of different approach for calculating SDI

In chapter 3, the methodology for calculating SDI is discussed. Generally, to calculate SDI we
would reach crossroads twice. Once in deciding whether to remove trend in the EWH time
series and the other time when we calculate climatology from the GRAC period or a longer time
period. Figure 4.9 shows the comparison between:
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• the approach proposed in this study (Figure 4.9 column (b))

• using only GRACE EWH for climatology while do not detrend the time series (Figure 4.9
column (c))

• using a longer period for calculating climatology but detrending the time series (Fig-
ure 4.9 column (d))

Three basins namely Death Valley, Tigris, and Mackenzie have experienced a dramatic nega-
tive trend in their EWH mainly in the second half of the last decade. The index proposed in
this study can characterize drought in these regions while using only GRACE EWH for clima-
tology will result in underestimating drought class and detrending the EWH time series shows
periodic drought rather than a persistent significant water scarcity reported in those regions.
The Yangtze river basin represents a region with no significant trend except for a weak positive
trend in 2016. In this basin, generally, the discrepancies between different scenarios of calculat-
ing a storage-based drought index are minimal except for the last year where detrending EWH

time series results in characterizing drought condition while the basin experience a wet year.
Finally, the results over the Murray basin show that after detrending the millennium drought
(2001–2009) can not be characterized and result in the mischaracterization of drought over the
wet years (2010–2012) in this region. The GRACE period climatology would affect the severity
and onset of the exceptional drought period. Figure 4.9 highlight the importance of longer time
series for calculating climatology and depict the mischaracterization of drought by detrending
the EWH time series.
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Figure 4.9: The storage-based drought index under different scenarios over selected basins: column (a) shows all together,
column (b) illustrates the approach proposed in this study (SDI), column (c) depict the SDI but using GRACE climatology,

and clolumn (d) shows the SDI but over a detrended EWH.
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Chapter 5

Summary and outlook

Drought is a compelling phenomenon happening globally at different climate zone with
expanding negative economical, social, and political consequences. Monitoring drought at
regional to global scale boosts our preparedness against the repercussions while enabling
realistic risk assessments. Drought indices have been developed to summarize its complexity
using quantitative approaches. Many drought indices have been developed so far using
precipitation (e.g., SPI), precipitation and evapotranspiration (e.g., SPEI), and soil moisture
(e.g., PDSI) to name but a few.

Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has measured the
Earth’s time-variable gravity field with unprecedented accuracy. The quantified redistribution
of the mass within and among the Earth’s atmosphere, oceans, land, and ice sheets from
GRACE observation has made a quantum leap in hydrological applications. Monitoring
extreme hydrological events like drought from GRACE measurements. In this study, we have
investigated characterizing drought (i.e., its onset, duration, and severity) using satellite
gravimetry observations. The introduction to drought and its fundamental differences with
aridity and heatwaves have been discussed. To develop the new drought index, we have
first quantified EWH from GRACE level 02 solutions. We have addressed the short record of
GRACE time series for calculating the reference storage change, climatology, and quantified
its importance over some selected basins. We found that the role of time series length for
calculating climatology is significant over regions with considerable human intervention like
extreme groundwater extractions in the Middle East or catchments with a considerable neg-
ative or positive trend mainly caused by climate change like the ice-melting over Mackenzie
river basin in Canada or extreme precipitation events over Ob river basin as a boreal catchment.

Considering the vital need for a long (at least 30 years) record of EWH, we have extended
GRACE observation back to 1980 using an ensemble of models (global hydrological models,
land surface models, and atmospheric reanalysis models). The extended time series were then
used to calculate climatology and percentile values. The results from the proposed SDI have
presented both at gridded scale and basin-scale. Generally, The most extreme to exceptional
storage-based droughts were observed over the Middle East, central Africa, northern India,
mid and south America. The analysis from a different class of drought showed that most of
the regions have suffered at least one type of drought within the study period (2002–2016).
Exceptional drought frequency map showed the hot spots that have undergone significant
negative trends via groundwater extractions like in the Middle East or exceptional shift in the
precipitation pattern and intensity. The proposed SDI showed a considerable performance in
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detecting some of the globally well-known documented droughts in terms of intensity and
spatio-temporal distribution.

We have compared the storage-based drought with three most widely used drought indices
namely SPI, SPEI, and PDSI. The results showed that the aforementioned indices follow SDI

well over regions where the storage is driven by the climate rather than human activities.
However, these indices failed to characterize drought over regions with significant human
intervention like Tigris in the Middle East or Death Valley in the United States. In general, the
correlation between the indices and SDI increases by the number of scales in their calculation.
We have also investigated the consequence of using only GRACE EWH for climatology and
detrending the time series before calculating the drought index. Both detrending and using
the short record of GRACE would result in mischaracterizing drought, especially over regions
with a considerable trend (positive or negative).

The comparison from the extended time series with the GRACE observation within 2002–2010
showed a considerable agreement. However, we did not compare our results with the other
approaches to extend the GRACE observation like using the Machine Learning (ML) methods
using hydrological and climatic variables. Moreover, GRACE EWH estimations include uncer-
tainty that needs to be incorporated in characterizing storage-based drought (Saemian et al.,
2020b). Finally, the successor of GRACE mission called GRACE Follow-On has been launched in
May 2018 with about a year gap with GRACE. To have a continuous measurement of EWH and
SDI this gap needs to be bridged.
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Chapter 6

Appendixes

6.1 Satellite gravimetry applied to drought monitoring

The Earth’s gravity is the sum of gravitational attraction and centrifugal force exerts on an
object on or near its surface. It varies in strength and direction spatiotemporally. Thus,
the Earth’s gravity is a vector function of 3 coordinates or a vector field, taking the form
of a not-quite-smooth ellipsoid. It consists of both static and time-variable components.
The earlier includes the total mass of the Earth and mass heterogeneities and are orders of
magnitude stronger. In the 1950s scientists including Jeffries (1952) addressed the time variable
components (e.g., ocean tides that change gravitational potential). In principle, any mass
displacements in, on or above the Earth manifest as variation in the gravity field.

The Earth’s gravity field and its changes with time are used in various Earth-science related
disciplines, such as geodesy, aerospace engineering, oceanography, climatology, and solid-
Earth physics. The dynamic mechanism of the lithosphere, mantle convection, glacial isostatic
adjustment (GIA), sea level change, hydrology, the mass balance of ice sheets and glaciers, and
to name but a few, are some detailed applications (Dickey et al., 1999; Jin et al., 2010, 2011;
Simons and Hager, 1997; Velicogna and Wahr, 2006; Tapley et al., 2004).

Three techniques have been used so far as classical measurements of Earth’s gravity field. The
first one is the surface gravity measurements (including terrestrial and airborne gravity data),
works on the principle of measuring the constant downward acceleration of gravity (Crossley
et al., 2013). Although the ground-based gravimeters measure the gravitational force (absolute
or relative), the survey is costly and the labor work is hard. Moreover, the final result is more
locally and the spatio-temporal resolution is low. The second technique employs the satellite
radar altimetry measurements. Satellite altimetry measures the time taken by a radar pulse
to travel from the satellite antenna to the surface and back to the satellite receiver. Combined
with precise satellite location data, altimetry measurements yield sea-surface heights. This
height empowers us to estimate the gravity field and the geoid over the ocean. Despite its
revolutionized impact in sea-level measurements, the satellite altimetry still subject to various
errors and spatio-temporal resolutions. The third technique utilizes laser ranging artificial
Earth’s satellite (also known as satellite gravimetry). The satellite gravimetry, excluding the
difficulties of the two mentioned techniques, has greatly improved the gravity field precision
and its application in geodesy, oceanography, hydrology, and geophysics. Incorporating all
aforementioned techniques can give us the comprehensive gravity field models. The Figure 6.1
shows a map of the static gravity field from one of the most recent solutions, the Earth’s
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Gravity Model 2008 (EGM08) (Pavlis et al., 2008).

Figure 6.1: The static (average) Earth’s gravity field (EGM08 model, from Pavlis et al. (2008)). Source: Bureau
Gravimetrique International.

In this chapter, first, a brief introduction about satellite gravimetry is discussed in section 6.2
followed by information about GRACE satellite mission in section 6.3. Equation 6.3 ex-
plains the derivation of terrestrial water storage from GRACE products (spherical harmonic
coefficinets).

6.2 Satellite gravimetry

Satellite gravimetry is a successful innovation and an outstanding breakthrough in the field of
geodesy, following the Global Position System (GPS). Satellite orbital motion is largely affected
by the gravitational force and other non-conservation forces. As a result, orbit solutions using
a precise satellite tracking observation based on satellite laser ranging (SLR) enable us to
estimate the Earth’s gravity field. The laser pulse emits to a satellite, covered with reflectors.
The run-trip travel time is measured after receiving the reflected pulse. We can determine
the orbit using the sufficient amount of the position of the points(Wouters et al., 2014). Using
this technique started with the Sputnik in 1957 and followed by the Laser Geodynamics
Satellites (LAGEOS), launched in the 1970s and 1990s and still in operation today. However,
satellite motion is determined not only by gravitational force but also by surface force (e.g.,
atmospheric drag and solar radiation pressure). As a result, all those satellites have to orbit the
Earth at a high altitude(≈ 6000 km) to minimize the non-gravitational forces. However, the
high altitude restricts the spatial resolution of the final Earth’s gravity field typically to 10000
km (e.g., (Cheng et al., 1989; Rummel et al., 2002)).

The recent development of low-earth orbit (LEO) satellite gravimetry has significantly im-
proved the Earth’s gravity field model’s precision and spatio-temporal resolution. Using LEO

enabled scientists to provide global, regular and dense data sets of high and homogeneous
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quality. Since 2000, three satellite missions have been launched and dedicated to the gravity
field recovery, i.e., Challenging Mini-Satellite Payload (CHAMP; (Reigber et al., 2002)), Gravity
Recovery and Climate Experiment (GRACE), and the Gravity Field and Steady-state Ocean Cir-
culation Explorer (GOCE). Each of these three satellite mission follows one specific technique
of tracking. These three techniques are as follow:

• High-low satellite to satellite tracking (hl-SST) (used for (CHAMP): In this mode, a low
Earth orbiter is tracked by the high orbiting GPS and the satellites, relative to a network
of ground stations. Moreover, non-gravitational forces on the low orbiter are measured
by accelerometry (Figure 6.2a).

• High-low/low-low satellite to satellite tracking (hl-SST/ll-SST) (GRACE): In this mode,
besides the hl-SST concept, the relative movement of two low and same orbiter satellite
following each other is measured by an inter-satellite link (Figure 6.2b).

• High-low satellite to satellite tracking/satellite gravity gradient mode (GOCE): In this
mode, in addition to the hl-SST concept, the acceleration differences between test-masses
and the ensemble of them inside one low orbiting satellite are measured (Figure 6.2c).

Figure 6.2: Concepts of: a: satellite-to-satellite tracking in the high-low mode (SST-hl); b: satellite-to-satellite tracking in the
low-low mode (SST-ll) combined with SST-hl; c: satellite gradiometry combined with SST-hl

6.3 GRACE satellite mission

Since 2002, the US-German GRACE (Gravity Recovery and Climate Experiment) mission
provided a precise survey of Earth’s time-variable gravity field, with unprecedented temporal
and spatial sampling down to the scales of a few hundred kilometers Tapley et al. (2004) (see
Figure 6.3 for more details). The mission past the milestone of a 5-year design lifetime and
produced data to near end of 2017. GRACE has measured and monitored monthly changes
in how mass is redistributed within and among Earth’s atmosphere, oceans, land and ice
sheets, as well as within Earth itself. In the GRACE mission the higher resolution obtained by
measuring the differential signal (demonstrates as changes in position and speed) between
two satellite (test masses).
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Figure 6.3: GRACE is a twin satellite mission orbiting the Earth at an initial altitude of about 500 km in a polar orbit
(89°inclination), and 220 km apart (source: NASA).

The two GRACE satellites have completed about 15 years of continuous measurements. The
mission followed by the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO)
mission, launched in May 22, 2018. The GRACE-FO will continue its predecessor mission by
providing the Earth’s time-variable gravity field, testing new technology. GRACE observations
have been used in many scientific fields, ranging from verifying the "Lense-Thirring effect"
of general relativity (Ciufolini et al., 2009) to detecting a giant meteorite impact underlain the
Wilkes Land, Antarctica (von Frese et al., 2009), to even atmospheric science (Bruinsma et al.,
2006; Bruinsma and Forbes, 2007). However, GRACE mainly enhanced our understanding of the
Earth’s subsystems (land, ocean, ice, and the solid Earth), correlating the mass redistribution
with different components of the Earth’s system.

6.4 Water storage change from GRACE

GRACE provided detailed measurement for Earth's gravity field commonly illustrated in terms
of the shape of geoid: the equipotential surface corresponding to mean sea level over the
oceans. The Earth's gravitational field is described by the geopotential V, using the follow-
ing synthesis relation:
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where G is the gravitational constant, M is the total mass of the Earth, ae represent the mean
equatorial radius of the Earth, r is the spherical coordinates radius, θ and λ are the co-latitude
and longitude respectively. Plm are the fully normalized Legendre polynomials of degree l
and order m while Clm and Clm are the fully nomalized dimentionless spherical harmonic
coeficients, referred to as Stokes coefficients in geodesy. The Plm can be calculated using the
following equation:
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m
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2l l!
dl+m
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GRACE instead of a static gravity potential (Equation 6.1) provides the time-variable gravity
information which is represented by change in the sphrical harmonic coefficients. This vari-
ablity can be seen as either the change in V from one time to the other, or the difference with
respect to a time average of V. We considered the later interpretation and removed the long-
term mean of spherical harmonic coefficients from monthly values. These residual spherical
harmonic coefficients are denoted by ∆Clm and ∆Slm can be shown as follow, considering the
density redistribution (∆ρ(r, θ, φ)) as the main cause of the geoid change:

{
∆Clm

∆Slm

}
=

3
4πaρave(2l + 1)

∫ ∫ ∫
v

∆ρ(r, θ, λ)Plm(cosθ)× (
r
a
)l+2

{
cos(mλ)

sin(mλ)

}
sinθdθdφdr,

(6.3)
Where ρave is the average density of the Earth (= 5517 kg/m3). We assume that most of the
mass redistribution takes place within a thin layer of thickness H, including those portion of
the atmosphere, oceans, ice caps, and below groundwater storage with significant mass fluctu-
ations. When H is thin enought (i.e. (lmax + 2)H/a) << 1) then ( r

a )
l+2 will be approximately

equal to 1 and by replacing the volume integral of ∆ρ by the surface integral of ∆σ Equation 6.3
becomes:

{
∆Clm

∆Slm

}
=

3
4πaρave(2l + 1)

∫
Ω

∆σ(θ, λ)Plm(cosθ)×
{

cos(mλ)

sin(mλ)

}
dΩ, (6.4)

We can assume this thin layer consists of water. As a result, the surface mass density can be
converted into water height, commonly denoted as equivalent water height (EWH) Wahr et al.
(1998):

EWH(θ, λ) = ρwater∆ρ(θ, λ) =
aρave

3ρwater

∞

∑
l=0

(2l + 1)
(1 + kl)

l

∑
m=0

Plm(cosθ)× (cosθ)(Clm cosmλ+Slm sinmλ),

(6.5)
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where ρwater is the average density of water (ρwater = 1000kg/m3) and kl is the Love number.

The GRACE Project has now released gravity field solutions for ∼ 15 years. Each solution con-
sists of a set of spherical harmonic coefficients, Clm and Slm. Monthly GRACE global gravity so-
lutions are provided by three GRACE data processing centers of the Science Data System (SDS),
including the Center for Space Research (CSR) at the University of Texas at Austin, the Geo-
forschungszentrum (GFZ) in Potsdam, and the NASA Jet Propulsion Laboratory (JPL). GRACE

solutions are distributed by the NASA PODAAC (http://podaac.jpl.nasa.gov/grace/). Other
groups (external to SDS) that also provide GRACE solutions include the Goddard Space Flight
Center (NASA, Rowlands et al. (2002)), the Delft Institute of Earth Observation and Space Sys-
tems (DEOS; Klees et al. (2008)), the Groupe de Recherche de Geodesie Spatiale (GRGS, Lemoine
et al. (2007)), the Institute of Theoretical Geodesy (ITG) at the University of Bonn (Eicker et al.
(2008), 2008), and others. Differences in those aforementioned approaches of the processing
centers comes from several issues including the background models used, the period over
which the orbits are integrated, weighting of the data, the maximum degree of the estimated
gravity harmonics, to name but a few (Bettadpur (2007);Flechtner (2007);Watkins and Yuan
(2012)).
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