Institute of Architecture of Application Systems
University of Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Bachelor Thesis

Service composition in the domain
of travelling

Venilin Pirev
Course of Study: Medieninformatik
Examiner: Prof. Dr. Marco Aiello
Supervisor: Prof. Dr. Marco Aiello
Commenced: March 30, 2021

Completed: September 21, 2021

Abstract

Web services and personal assistants are used more and more in our everyday life. Unfortunately we
are very limited, when it comes to using them in a domain of travelling. Web service compositions
solve some of the problems the user faces, but also creates others. Most of the existing web
service compositions just aggregate different services, which makes it hard to deal with temporal
or spatial-based variables. This affects not only the run-time of the service, but also the delivered
results to the users. The solution we propose uses different appropriate temporal models with every
service, in order to avoid possible errors and undesired results. It also uses different spatial models
in this regard to create a seamless communication between the service and the different Application
Programming Interfaces (APIs). Furthermore the proposed solution will compose the different
responses in order to deliver a result, according to the users specification and requirements. The
evaluation in this thesis provides evidence of the significantly lower run-time of the solution, which
in most cases is twice as low compared to using conventional methods.

Contents

1 Introduction

1.1 Motivation e e e e e e e e
1.2 Example Scenario
1.3 Structure of the thesis

2 Background Information
2.1 Mathematical algorithms L Lo
2.2 Communicationmethods

3 Related Work

3.1 Domain independent planning for web services
3.2 Continual planning for web service composition
3.3 Webservice composition oo e
4 Design
4.1 Architecture
42 Temporal Model
43 Spatial Model
4.4 Specialcase e e
4.5 Compositionof the Results 0oL

5 Implementation

5.1 UsedAPIs

5.2 BackendLogic
6 Evaluation

6.1 Design of the Experiments

6.2 Results L

6.3 Summaryoftheresults

7 Conclusions

7.1 Summary e e e e e
7.2 Futurework
Bibliography

13
13
13
14

15
15
15

17
17
17
17

19
19
19
21
23
24

27
27
29

31
31
31
34

35
35
35

37

List of Figures

4.1 Allen’sinterval calculus relation 23
5.1 The website formcreated oL oL oo 27
5.2 Implementation Use-Case i e e e e 28
6.1 Age of the research participants 32
6.4 Run-time experimentresults L. 33

List of Algorithms

4.1 An algorithm using the Allen’s interval calculus 23
4.2 Analgorithm for sorting theresults 25
5.1 Ajaxrequesttothebackend L. 29
5.2 Request from the backendtothe API 30

Acronyms

API Application Programming Interface. 13
APls Application Programming Interfaces. 3
CSP Constraint Satisfaction Problem. 15

WSC Web Service Composition. 16

11

1 Introduction

1.1 Motivation

Web services have now become ubiquitous in our lives, helping us with menial tasks on a day-to-day
basis, like looking for a flight, asking Siri to set a timer etc. Unfortunately, web assistants are
currently incapable of executing complicated tasks which cannot be properly answered through a
simple question or query. The web is saturated with a lot of individual web services and assistants
incapable of communicating with each other. Thus, the need for a more domain-independent web
service, capable of connecting to several other web-services becomes more pressing as our requests
grow more complicated. We propose a solution with a specific domain to tackle the possibility of
web service compositions. By incorporating temporal and spatial models, we manage to provide
results to the user much faster and easier, than using different web services for every task. By
evaluating the run-time and the expectations of users, we compare our solution to the conventional
methods of executing certain tasks. For example, if one decides to travel, currently, one would need
to go through several websites to compare rates and fees before ultimately settling on what they
perceive to be the best possible option. However, information is often overlooked, such as national
holidays, visa requirements etc., thus widening the margin for error when travelling. [RSe03]
This gives us the impression, that a new way of booking for travelling is needed and the solution
presented in this thesis can be a good alternative.

1.2 Example Scenario

Consequently, we will attempt to replicate the behavior of a person when they try to book a trip or
vacation, by using only a single web service capable of communicating with other web-services, thus
simplifying the process for the end-user exponentially, similarly to this paper [Eir16]. By utilizing
the constraint satisfaction problem approach [KLAQ9], every particular concern can be accounted
for, such as — budget for flights and hotels in a certain area and weather conditions. Whether or
not every requirement has been met can be reviewed and compared, in order to achieve an optimal
set of possible solutions, or fail to find one if the requirements prove impossible to satisfy. Every
requirement can be mapped to an Application Programming Interface (API) of an already existing
service,as is described in [Ale11] and [J FO5] , for example, when searching for a hotel nearby,the
existing API of Booking.com or Airbnb can be used, for the flight search can be used skyscanner, for
weather check can be used openweathermap with up to 30-day forecast. By compiling all available
information, all specified requirements could potentially be satisfied and presented to the user via
an intuitive easy-to-understand GUI or Web App, allowing the user to make an informed decision
without the need for visiting multiple different sites to get this information. Initial information

13

1 Introduction

can be inputted by the user into the Web App or GUI and the result can subsequently be visually
represented by a graph, as well as text, ensuring that every user is able receive and comprehend the
given information [GZ09].

1.3 Structure of the thesis

In chapter 2 a necessary background knowledge is presented. Chapter 3 shortly gives us an overlook
of the researches done in this area. Afterwards the design and idea of the problem and solution are
introduced in chapter 4 and in chapter 5 our implementation and example solution is described. In
chapter 6 the evaluation of the design and implementation are given and the thesis concludes in
chapter 7.

14

2 Background Information

2.1 Mathematical algorithms

The most important approach, that we discuss is the Constraint Satisfaction Problem (CSP)
[Sal98]. The idea of the approach is assigning some requirements or questions to sets of variables
and with a predefined sets of constraints they are mapped in order to satisfy a specific number of
constraints. The problem is NP-complete and it is very researched in both Artificial Intelligence
and operations research.

Definition 2.1.1
The constraint satisfaction problem is a triple defined as P = (X, D, C)

o X =Xi,..., X, is a set of variables
e D =D,,..., D, is a respective set of domains for each variable

o C=Cy,...,Cyis a set of constraints

Allen’s interval calculus [All] is a calculus introduced by James F. Allen for reasoning temporal
models. It defines different relations between temporal intervals and also gives us a composition
table, that allows us to reason of events or temporal descriptions. The high level idea of the calculus
is to define the relation between two or more time intervals, for example if they are overlapping,
equal, precede each other and others.

2.2 Communication methods

Web service - There is no clear definition of the term web service. A Web service can be, either
communication between two computers via the internet, or a server listening to requests over the
network. They provide web-based interface to the data server and exchange data between systems
or applications. They are autonomous and are identified by URLs [Ion].

Web Application Programming Interface (API) is a software interface that allows two applications
to interact with each other without any user intervention. APIs provides product or service to
communicate with other products and services without having to know how they are implemented
and it is also a tool to push data to the server that can be processed by server code or may be saved
in any persistent layer.Web API works on HTTP and it can be also called or consumed by any kind
of application like Mobile App, Desktop App, and Web Application etc. Thus,Developing Web
API will give you a broad range of the Interface application,which can consume your Web API and
fetch information to show the users. Web API is not limiting you to stick with specific interface or
technology in order to interact with users.Most web services provide an API, which, with its set of

15

2 Background Information

commands and functions, is used to retrieve data. Here is one example: Twitter delivers an API that
authorizes a developer access tweets from a server and then collects data in JSON format. All web
services can be APIs, but not all APIs can be web services.[Cle]

Web API WCF Services

Database

I

Custom
Operations/
Logic

Database

1

Custom
Operations/
Logic

€ WCF Services/
WS* Specs

The most important difference between an API and a Web service is that web services must
always be accessed through a network and an API isn’t always accessible over the internet. A
web service is always considered an API, but not all APIs are web services. Another important
difference is that an API is platform independent. It can be accessed from a mobile app or a website
and a web service is more limited. Web Service Composition (WSC) - has the task of combining
already existing Web services and creating a new Web service. For example, when shopping online,
we use the web service of the online shop and another web service when paying. We can use a
WSC if the output parameters of one service can be used as the input parameters of another service,
these two services can be connected as a new service.

16

3 Related Work

3.1 Domain independent planning for web services

In the paper [Mar16], the writers do a research into automated planning that provides new insights
into the composition of services and helps provide automatic compositions that adapt to the changing
needs of users and environmental conditions. Most of the non domain-independent solutions cannot
efficiently process numerically valued variables, particularly recognition results or operator input,
and do not take into account the restoration of run-time contingencies due to incorrect service
behavior or exogenous events that disrupt the execution of the plan. The proposed solution uses
the constraint satisfaction problem. In order to meet the requirements of the service domains, the
RuGPlanner is equipped with a number of special features, including a representation of the state
of knowledge for modeling the uncertainty about the initial state and the result of the detection
actions as well as the efficient handling of numerically evaluated variables. In addition, it generates
plans with a high degree of parallelism, supports rich declarative language to express advanced
goals, and allows continuous review of the plan to handle recognition results, errors, and long
responses. Times or timeouts as well as the activities of external agents. The proposed planning
framework is assessed based on a number of scenarios to demonstrate its feasibility and efficiency
in different planning areas and execution conditions that reflect the concerns of different service
environments.

3.2 Continual planning for web service composition

Kaldeli, Lazovik and Aiello [KLLA11] talk about the challenges of aggregating loosely-coupled
software components with the idea to provide more functionality. By applying a framework that
uses the Constraint Satisfaction problem, they try to solve the composition of web services problem
and add more value-based functionalities to the solution. They propose an algorithm for interleaving
planning using and changing the constraint satisfaction problem using the feedback provided from
the run-time. They prove that their solution is better than previous approaches with demonstrating
that the product can be used in various situations and evaluating scenarios using real web services.

3.3 Web service composition

In this work [Mar(09], the main focus is the automatic web service composition and its problem
of the on-demand combination of loosely coupled service operations, which serve the purpose to
realise some complex task for the user. They present an approach that deals with the problem of
service composition using the constraint satisfaction problem. The writers also introduce a language

17

3 Related Work

that can express extended goals, when it is quipped with temporal constructs and maintainability
properties to avoid undesirable situations. Using the constraint satisfaction problem, the solution
proposed can model domains and goal via constraints in order to compute a valid plan.

18

4 Design

The Service composition we propose is not just an aggregate of different services, but more
appropriately described as a model [CST12]. A composition of different services is very complicated,
because every service has a different input and response. For example, some services use the name
of the destination city, others make use of a special code saved on their database. Additionally,
coordinates can also be used for this purpose, which are very exact. A composition between services
with different spatial or temporal models [BP03] is particularly difficult and we need to examine the
different models closer.

4.1 Architecture

Before we analyze the different models we need to define a general architectural design. The Web
Services architecture describes the way to instantiate the elements and implement the operations in
a practical manner.[Poi]

The architecture of a web service consists of three roles: service provider, service requester, and
service registry. The service provider hosts a network-associable module, a web service and
someone posts it to a service requester or service registry. This service requester uses a lookup
operation to get the description of the service locally or from the service registry. [Mic05]

The high level idea and general architecture of our web service composition is, a user uses the
composition to find their next trip. After giving all the information needed, our web service rewrites
the data in search queries and using API calls to other services, the information for the end result is
obtained. After careful processing of the data received and composition of the responses, the web
service delivers final set of solution or solutions. They are appropriate to the information the user
has provided and the conditions set. [Got02]

4.2 Temporal Model

The following section will serve to define what a temporal model is, as well as to provide context
regarding its relevance towards providing a solution to the service composition problem. When
using different services,an important aspect which plays a large role is what information they require
and provide us. Simply aggregating the services is not a valid solution and it will result in errors
and confusing output data.

For example - if an individual from Europe were to plan a vacation to Australia. We can assume
that this trip will last from the 1st till the 10th of any given month. A traditional service or assistant
would book a flight as well as a hotel for the relevant dates. However, a flight from Europe to

19

4 Design

Australia would take 22 to 40 hours, depending on connections and delays. Thus booking a hotel on
the 1st is superfluous as the guest will still be in transit during this time. This redundancy can be
avoided by incorporating departure and travelling time into the CSP.

Definition 4.2.1
We know that the constraint satisfaction problem [Mar06] is a triple defined as P = (X, D, C)

o First the variables must be defined
— departure time as V1

— traveling time as V2(not only flight duration but also approximate transportation time
to the hotel)

— It is imperative also to define the hotel check-in as V3.

® The domains of all variables, that we defined V1, V2, V3 are all the same [0-24], corresponding
to the times in the day.

e Subsequently, we must define the constraints

— First we have to defineV1 + V2 > V3, which implicates that we have to arrive at the
hotel at the check-in time or later

— we also define VI+V2<V3+24h

Maintaining the above-given example. If the departure time(V1) is on the 1st at 14 o’clock and
traveling time (V2) is 40 hours, then arrival at the hotel must occur on the 3rd at 6 o’clock. If the
hotel is booked on the 1st and the check-in time is at 14 o’clock the last constraint is not fulfilled,
which will mean the hotel has been overbooked. In this case the web service considers booking the
hotel on the second, which will satisfy both constraint and there will be no overbooking.

Furthermore, time zones are an additional point of contention. If different time zones are not
appropriately implemented in any travel solution, then this is conducive to a wide assortment of
potential issues such as missing a flight, not having accommodation booked upon arrival or, as in
the example, overbooking accommodation. This is why, the different services should be connected
perfectly, so that there are no mistakes of that nature and also the initial input should make sense to
them and converted in the right value if needed. To avoid that we need to rework our P definition

Definition 4.2.2
We know that the constraint satisfaction problem is a triple defined as P = (X, D, C)

o First we define all variables

departure time as V1

traveling time as V2(not only flight duration but also approximate transportation time
to the hotel)

The important part here is also to define the hotel check-in as V3.

We need to define a forth variable V4, which will represent the time difference between
the two locations

® The domains of all variables, that we defined

20

4.3 Spatial Model

— VI, V2, V3 are all the same [0-24], corresponding to the times in the day.

— The domain of the value V4 should not only be positive, but also should be restricted
to 12 to avoid mistakes.

® Then we define the constraints

— First we have to define 1 + V2 > V3, which implicates that we have to arrive at the hotel
at the check-in time or later

— After incorporating the value in the constraints above, we can notice a serious change
in the second example. The new constraint should look like this VI+V2+V4<V3+24h.

If we consider the same times as in the example before, but also add the time difference of 8 hours,
we will notice that we arrive on the 3rd at 14 o’clock, which will not satisfy the last constraint and
the web service has overbooked. Of course, the web service should change the date of the hotel to
avoid that.

There are many different ways that a time can be represented. It can be in following forms:
* dd.mm.yyyy - representing the date (d - day, m - month, y - year)
* CW - representing the week of the year (CW- calendar week)
* MM - representing the month (M - month)
e HH:MM - representing the time (H - hour, M - minute)

The representation should be intuitive to the users, but also for the different services. As discussed
before, different services may use different time models, this is why the proposed solution is to pick
one representation model that will be used not only for the input, but also for the result and if needed
this value can be transformed or converted. Additionally for time values, it is not so complicated to
change the format or just to take the week, in which the date is, but for spatial model it can be quite
difficult.

4.3 Spatial Model

Which brings us to the next important model, the spatial model. The same goes for the location
input here as well. If the flight service needs a name for the destination and the hotel service needs
coordinates, the initial input that the user gives should be converted for one of the services in order
to receive an appropriate result. There are a lot of ways to represent a location. As mentioned
before that could be one of the following

* name of a city
e ZIP code
¢ coordinates

* specific code, created from the service

21

4 Design

This can further complicate the solution. For most of the options, there shouldn’t be only the input
and some conversions, but also a different call should be made. Let us take an example.

If we use flight and hotel service that use different spatial models, let us assume the flight service
uses the name of the destination city and the hotel service uses coordinates of the place, one will
have to pick only one of the representations for the place to use for the input and results, because
otherwise there will be confusion. It should not be expected from the user to input a name of the
destination and as a result to receive coordinates or a code as a result and vice versa.

For the current example it will make more sense to use the name of the destination city, since there
aren’t a lot of people that know the coordinates of every city and also if the user doesn’t know them,
they will have to search for them, which defeats the purpose of this solution, since the goal is to
make the search much easier and quicker. That means the appropriate solution will be to pick the
most common representation, meaning name of the city.

After the composition receives the information, it will be easy to find the flight, but it wouldn’t
be possible to use the hotel service since it requires a different input and an answer wouldn’t be
received. A conversion in the background should happen and, in this scenario, a different service
should be used in order to obtain coordinates of a location. This will make the receiving of the
results a little bit slower, since we have to make another call, but a communication between the
services will be made and there could be results presented to the user.

The same goes if the hotel service used a ZIP code or code from their database, another call should
be made in order to complete the conversion of the location value. The best way to solve this solution
is to look at what inputs the different services require. After taking the name of the destination from
the input of the user, we can make as much transformations in the background, without requiring
the users input anymore.

Before starting the search, we can ask the services, what kind of inputs they require and prepare the
variables accordingly.

Definition 4.3.1
We know that the constraint satisfaction problem is a triple defined as P = (X, D, C)

o First we define all variables
— initial input as variable V)

— for every required input from the services we define V| _,, where n represents the number
of web services requiring that input

® The domains of all variables Dy_._,,, will be the same as defined from the corresponding web
services, so that the structure can be the same.

o And the only constraint here will be, if the output V,, is different from Vyy, V,,, needs to be
transformed to match it, where m is the output of the last service, that used the variable and
O<m<n

After we have all variables transformed and defined correctly, we can begin with the searching with
each web service and as the constraint states we can transform the output back to the initial type, if
needed so and deliver it to the user, so there is no confusion.

22

4.4 Special case

4.4 Special case

A very interesting example is, if a hotel cannot be found, for the dates given. Most, if not all the
web services will return an error.

XmY b% X meets Y

YmiX Y Y is met by X (i stands for inverse)

Figure 4.1: Allen’s interval calculus relation

We propose a solution using the Allen’s interval calculus [KNA99]. The Relation we see in Figure
4.1, can be used when the scenario, we described occurs.

Let us explain this, considering the following example. If a user wants to book a hotel for 10 days
during a national holiday, Christmas for example, when the availability is low, our web service
shouldn’t just return an error. Instead, it can use the Allen’s interval calculus to split the stay in two
or more parts, so that they don’t overlap and there are no days without a hotel left. If we just split
the 10 days in two, we have two stays, with 5 days each, that we can search for. If we find a solution,
this can be presented to the user as a possibility. If the conditions are not met, we can increment the
first part and decrement the second and do another search. This can be done respectively for each
part, until the conditions are met and a hotel is found, or until there aren’t any solutions found. The
response time will be much higher in this situations, but the chances of finding a solution are also
much greater.

Algorithm 4.1 An algorithm using the Allen’s interval calculus

Require: startDate, endDate
1: var duration = endDate - startDate
2: var splitRation = duration/2 + duration mod 2
3: if (searchForHotel(startDate, startDate + splitRation) AND searchForHotel(startDate + splitRa-
tion, endDate)) then
return true
end if
for i=1, i<splitRation, i++ do
if (searchForHotel(startDate, startDate + splitRation + i) AND searchForHotel(startDate +
splitRation + i, endDate)) then
return true
else if (searchForHotel(startDate, startDate + splitRation - i) AND searchForHotel(startDate
+ splitRation - i, endDate)) then

A A

o »

10: return true
11: end if
12: end for

13: return false

23

4 Design

In Algorithm 4.1 is represented how the Allen’s interval calculus can be used for this problem. First
we require the start date and the end date of the stay. After that we calculate how long the duration
is and we split the duration in half. If the duration is an even number, we will just divide it by two,
but if the duration is an odd number the modulo calculation will make sure there are no missed
dates, when booking the hotel.

In line 3, we check if we can find a solution with the initial splitting of the duration of the stay. We
use the method searchForHotel(), which has inputs the start date and the end date. The Method
returns true, if a hotel is found and saves the results in a buffer for later processing, or it returns false
if it doesn’t find anything. This part is out of the loop, because there is only one case to consider. If
the algorithm doesn’t find any results, the for loop will be triggered, where we respectively add
or subtract the number i to each stay. This way we can achieve the maximum possible options
of finding a solution. If we find a solution in the mean time, the method returns true and stops
searching, if this is not the case the algorithm will just return false.

4.5 Composition of the Results

After we are done with all the searching and sending of requests, we will have a lot of unprocessed
data, from which we need to extract the most valuable and meaningful information [Inc07].
Furthermore we need to deliver the best possible solution/solutions to the user.

Depending on the conditions, that the user has set, we can filter and order the results for each service.
For example, if the user is not concerned about the price of the flight, we can present the shortest or
one with less stops. The same goes for the hotel search, instead of showing the cheapest option, we
can return a hotel closer to the city center and one that has a higher rating.

If there are no conditions set, a good options will be to return the most affordable solution and a
solution that has a higher rating and it is not as affordable.

Because of the CSP integration when searching, all the solutions are compatible with each other,
which makes the composition of the results much easier.

In algorithm 4.2 we represent an example of how we can order the results. This is just a simple
solution of the problem. As input the algorithm takes the boolean variable price, when the variable
is true, we return just the most affordable flight, but if price is false, we return the flight with the
shortest duration. The algorithm can be slightly modified and instead of one variable for both the
flight and hotel results, we can use two different. For example, if the user wants the shortest flight,
but the most affordable hotel.

We begin with iterating trough the list of flights found and we pick the most suitable option,
considering the variable price. There could be other factors that play a role in the picking of the
final result, not only the rating as shown in the example. We do a iteration of all the list of hotels
and again we choose the best option considering the boolean price.

24

4.5 Composition of the Results

Algorithm 4.2 An algorithm for sorting the results

Require: price, listOfFlights, listOfHotels
1: var resultFlight
2: var resultHotel
3: for i=0, i<listOfFlights.length, i++ do
4 if price = true then
5: if reultFlight = null then
6: resultFlight = listOfFlights[i]
7 else if resultFlight.price > listOfFlights[i].price then
8 resultFlight = listOfFlights[i]
9

end if
10: else
11: if reultFlight = null then
12: resultFlight = listOfFlights[i]
13: else if resultFlight.duration > listOfFlights[i].duration then
14: resultFlight = listOfFlights[i]
15: end if
16: end if
17: end for
18: for i=0, i<listOfHotels.length, i++ do
19: if price = true then
20: if resultHotel = null then
21: resultHotel = listOfHotels[i]
22: else if resultHotel.price < listOfHotels[i].price then
23: resultHotel = listOfHotels[i]
24: end if
25: else
26: if reultHotel = null then
27: resultHotel = listOfHotels[i]
28: else if resultHotel.rating > listOfHotels[i].rating then
29: resultHotel = listOfHotels[i]
30: end if
31: end if
32: end for

33: return resultFlight
34: return resultHotel

25

5 Implementation

For the implementation of the solution, we created a small website, which has an example form for
the user to fill out and begin with the searching.

‘ @x Easy Travel seareh

SRR

Retun Travellers Search

Figure 5.1: The website form created

As shown in figure 5.1 the form contain just a few inputs:
1. radio buttons if the journey is one-way or return
. start location
. desired location

2
3
4. departure date
5. returning date
6

. number of people travelling

5.1 Used APIs

This is just the basic information that we need for the implemented example. After the user fills out
the form and clicks on the search bottom, all the information is transformed into queries and the
requests are send one after the other. For this we need 3 APIs:

1. Flight search API [teae]

27

5 Implementation

2. hotel search API [teac]
3. Weather search API [teaf]

A RS S,
User i

!
return

<include="

Flights information

User makes a
Request to the Web

service

The input information is
turned into queries for the
different APls

SP Algorithm making sure
every information collected
has been satisfied

collected

Weather information

Hotels information

Skyscanner API

collected

Booking.com API

collected

Figure 5.2: Implementation use-case

Figure 5.2 shows how we implemented our solution in the backend.

We use the rapidapi.com [tead] service, that provides all kinds of APIs. Some of them have basic
free plans with limitations, for example quota of requests per month, or number of requests per
second or some of them have limited access to the different calls. For the flight search we decided
to use the skyscaner API, because there were no limitations for the requests sent per month. In
order to find a result, a different call must be used first, that will give the code of the airport of the
desired city. After that the code can be inserted as a parameter. The response gives us information
about the departure date, if the flight is direct, the price and a lot of other information that may not
be used. For the weather forecast we chose weatherbit, because the request quota per month was the
highest and the API gives us up to 16 days(daily) forecast. In this option a different API must be
used first in order to find the latitude and the longitude of the desired city. The API we chose is

28

Openweathermap API

5.2 Backend Logic

GeocodeSupport [teab]. After receiving all the needed information for the location, the call can be
used, and the response gives a very detailed information. This API will be used only if the user
chooses a date 16 days from the current date, unfortunately we were not able to find a free API
that gives a forecast for more than 16 days ahead. And lastly the hotel search API is hotel4. First a
call is made to find out what is the destinationld of the desired place. After that we can receive
information ordered by price or star rating about the available accommodations. In the response
there is information about the rating of the hotel, the price, how far is from the city center and a lot
of other useful information.

5.2 Backend Logic

When implementing the solution we used, html [HOY11], css [McF12] and javascript [Gre10] for
the frontend and javascript, axios [npm], Node.js [HOY 10] and ajax [GarO5]for the backend.

After receiving all the information from the frontend, we parse the information to the backend,
where we make all the calls to the APIs. Initially only two calls are made, to get the airport codes
from the flight search API, after that the actual flight searching is done. The next step is looking
for the hotel and then finally a call to the weather API is made. All the results are passed to the
frontend and presented to the user.

Algorithm 5.1 Ajax request to the backend

await $.ajax({
url: 'http://localhost:3000/flight/'+from+'/'+to+'/"'+output["departure”],
dataType: 'text',
success: function(data) {
oneway = data;
b
type: 'GET'
D

Algorithm 5.1 is an example request, we send to the backend. First we define the url, with the
corresponding attributes(departure city, arrival city and the date of departure). This request is for
an one-way flight search, this is the reason, we don’t define a return date. The response data is in
form of a text, because we don’t return all the information the API sends us back. After that we safe
the information in the variable one-way and last we define that this is a GET function.

In Algorithm 5.2 is shown, how the same request looks like in the backend. The backend is listening
for the particular url we defined in the frontend and after a request is done, the following method is
triggered. We first safe all the information from the request in variables. The next step is configuring
the request to the API. We define, that it is a GET request, the url for the API with the corresponding
variables and the parameters. The headers we use are provided from the rapidapi service, which
allow us to use all the APIs used in the solution. After everything is set up the call is made using
axios and the result is sent back to the frondend.

29

5 Implementation

Algorithm 5.2 Request from the backend to the API

app.get('/flight/:FROM/:TO/:DEPARTURE', function (req, res) {
async function example() {
let from = req.params.FROM;
let to = req.params.TO;
let departure = req.params.DEPARTURE;
try {
var config = {
method: 'GET',
url: 'https://skyscanner-skyscanner-flight-search-v1.p.rapidapi.com/
apiservices/browseroutes/v1.0/US/USD/en-US/"'+from+'/"'+to+'/"'+departure,
params: {inboundpartialdate: departure},

headers: {
'x-rapidapi-key': '6f3c39a089msha49a9b46913e4eepl2aed4jsn235cf3969736",
'x-rapidapi-host': 'skyscanner-skyscanner-flight-search-v1.p.rapidapi.com’
}
b
axios(config)

.then(function (response) {
//console.log(JSON.stringify(response.data));
res.status(200);
res.send(response.data);

»

.catch(function (error) {
console.log(error);

DN

} catch (err) {
console.error(err);

};

30

6 Evaluation

6.1 Design of the Experiments

For the evaluation we did two different experiments with ten people. The first experiment was using
the solution and the conventional services, in order to receive information about the run-time. All
experiments were made on the same computer and internet connection to avoid anomalies in the
results. To avoid any confusion we also had all three conventional websites open on their main
page, as well as our solution. This way we eliminate the time of searching for the services and only
the searching in the services and the response time is considered. The second one was series of 5
questions using google forms [teaa]:

* Do you use personal assistants?

* How often do you use personal assistants?

* Would you use a personal assistant or a composition web service to find your next trip?
* Have you used a personal assistant or a composition web service to find a trip?

* Would you trust a personal assistant to book your next trip, without manually checking the
results?

Additionally we asked for the age of the subjects, to see if there is any correlation between
answers/run-time and their age.

6.2 Results

As mentioned in the previous section, before asking the users to use the solution or answer any
questions, we asked them about their age. As shown in figure 6.1, the participants are mostly
between 18-38, since these are the users that use services with travelling domain the most, but there
are representatives from all age groups.

31

6 Evaluation

Age of the research participants

so+ I 1
as-53 | 1
3943 N 1
20-33 I :

1522 I -

Figure 6.1: Age of the research participants

All the users were asked the same set of five questions as described in the previous section. The
first two are to get an idea, if they use personal assistants and how often. Only three of the people
have never used a personal assistant and they are the people from the age groups above 39. The rest
of the users use personal assistants at least few times a month.

Do you use personal assistants? How often do you use personal assistants?

oy | >
couple of times a week. _ 3
couple of times a month _ 2

When asking the next question, if some of the users have used a web composition to find a trip,
three of the participants answered with yes. When asked to give an example, they all answered
skyscanner []. In our opinion the answer is valid, but this web service composes the results of
another web services with the same purpose, meaning they all have the same temporal and spatial
model and return results with the same structure. It is good to see that the research participants
understand the meaning of the question and to see, if they actually remember that the composition
possibly did better job than the conventional method of searching for flights.

Have you used a personal assistant or a
composition web service to find a trip?

32

6.2 Results

The last two questions that we asked, help us to get an idea if the people who participated in the
experiment want to use a personal assistant or web service composition when looking for a trip.
Surprisingly nine people would use one, which gives us the information that they are ready for this
next step in the development in the personal assistants and web services, but only three of them
would actually trust it to book their trip.

Would you use a personal assistant or a

composition web service to find your next Would you trust a personal assistant to book your
trip? next trip, without manually checking the results?

- -

Finally we tested the run-time of our implementation compared to popular search engines for all the
services. All the users were provided with the websites already open and were given the task to
find results for the same trip. A return ticket from London to Paris, seven days hotel in Paris for
two people and additionally checking the weather in Paris. As it shown in figure 6.4, the run-time
when using our proposed implementation is more than twice as low compared to using conventional
searching tools. In the run-time evaluation the only thing considered is typing the information and
waiting for a response. When using the implementation described in chapter 5, the response time is
relatively high, because of the composition of the results and the fact that several different calls to
different APIs are made.

B Time with the service in minutes and seconds

B Time with the websites in minutes and seconds
o

o

o ~

(o

&

2:26
2:19
2:40
2:25
2:37

1:41

I 1:59

1:10
I 100

1:29

1:.08
I 114
I 052
I 2:08

I 055
I 2:12

1 2 3 4 5 6 7 8 9 10

I 1012
I 102

Figure 6.4: Run-time experiment results

33

6 Evaluation

6.3 Summary of the results

When looking at the results, we can see a trend that people from the higher age groups are unfamiliar
to web services and personal assistant, but some of them are willing to use one, when looking for
their next trip. Their response time, when using both the implementation and the conventional
websites is also higher compared to the other participants.

Another interesting aspect of the results is that most of the participants in the lower age groups have
used personal assistants and web service compositions and they are willing to use them again, but
they won’t trust them when booking their next trip, without manually checking the results.

34

7 Conclusions

7.1 Summary

Overall the conclusion we can make is, that the proposed implementation from chapter 5 provides a
twice as fast solution, when looking for a trip. The initial definition of the API calls and constraints
would cost some time, but when used by a lot of users, lowering the response time and effort from
the user’s side will be useful. Furthermore when evaluating the results, we can see that most users
are ready to use such a solution.

This thesis defines an approach of composing web services by using different temporal and spatial
models, to achieve perfect communication between the services. Using the CSP, we manage to
define several constraint, when looking for appropriate results and eliminate unpractical solutions.

The results we received from the evaluation show us that the proposed solution is appropriate, when
looking at the run-time and the research participants are willing to use it further. Perhaps after using
the solution in real time and in a real situation, they could build a trust towards the assistant or the
service and they could even book their trips, without manually checking the results beforehand. It
is important to remind, that the web service was tested locally with real data and APIs and only
providing realistic results in the console log.

7.2 Future work

The developed solution can be optimized further to lower the response time, update the interface,
better the composition of the API responses and extend the functionality. In this current climate,
adding the government requirement, when entering a different country can be very useful to the
end user. For example, vaccination requirements, test before arrival or after arrival, quarantine
obligations etc. More services can be added to extend the final information provided to the user.

When talking about the development of personal assistant, we have to consider also the domain
independent services. When using them, we ask and search for different solutions every time. In
most cases they just google, what we look for and give us the response. This won’t be an appropriate
solution, when looking for a trip. Even if we add similar solutions for a lot of different scenarios,
this will not make the assistant or the service domain independent. The constantly changing APIs,
will start delivering errors and we still can’t cover every need of the user.

35

Bibliography

[l
[Alel1]

[All]

[BPO3]

[Cle]

[CST12]

[Eir16]

[Gar05]

[Got02]

[Grel0]

[GZ09]

[HOY10]

[HOY11]

[Inc07]

[Ton]

[J FO5]

Sky scanner. URL: https://www.skyscanner.de/ (cit. on p. 32).

M. A. Alexander Lazovik Eirini Kaldeli. “Continual Planning with Sensing for Web
Service Composition”. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence (2011) (cit. on p. 13).

J.F. Allen. Allen’s interval algebra. URL: https://en.wikipedia.org/wiki/Allen27s_
interval_algebra (cit. on p. 15).

J.Y. Bart Orri“ens, M. P. Papazoglou. “Model Driven Service Composition”. In: M.E.
Orlowska et al. (Eds.): ICSOC 14 (2003), pp. 75-90 (cit. on p. 19).

T. Cleo. What are API and Web Service. URL: //www.cleo.com/blog/knowledge-base-
web-services (cit. on p. 16).

M. Carman, L. Serafini, P. Traverso. “Web Service Composition as Planning”. In:
ITC-IRST, Via Sommarive 18 (2012) (cit. on p. 19).

M. A. Eirini Kaldeli Alexander Lazovik. “Domain-independent planning for services in
uncertain and dynamic environments”. In: Artificial Intelligence 236 (2016), pp. 30-64
(cit. on p. 13).

J.J. Garrett. “Ajax: A New Approach to Web Applications”. In: Medical Reference
Services Quarterly (2005) (cit. on p. 29).

K. Gottschalk. “Introduction to web services architecture”. In: Ibm Systems Journal 40
(2002), pp. 170-179 (cit. on p. 19).

B.B.J. V. Gregor Richards Sylvain Lebresne. “An Analysis of the Dynamic Behavior
of JavaScript Programs”. In: (2010) (cit. on p. 29).

D. Gotz, M. X. Zhou. “Characterizing users’ visual analytic activity for insight prove-
nance”. In: Information Visualization 8 (2009), pp. 42-55 (cit. on p. 14).

M. B. HOY. “Node.js: Using JavaScript to Build High-Performance Network Programs”.
In: IEEE Internet Computing 14 (2010), pp. 80-83 (cit. on p. 29).

M. B. HOY. “HTMLS5: A New Standard for the Web”. In: Medical Reference Services
Quarterly 30 (2011), pp. 50-55 (cit. on p. 29).

D. M. Incheon Paik. “Automatic Web Services Composition Using Combining HTN and
CSP”. In: Seventh International Conference on Computer and Information Technology

1 (2007) (cit. on p. 24).

Ionos. Dienste von Maschine zu Maschine. URL: https://www.ionos.de/digitalguide/
websites/web-entwicklung/webservice/ (cit. on p. 15).

S. K. J. Fan. “A snapshot of public web services”. In: SIGMOD Rec 34 (2005), pp. 24-32
(cit. on p. 13).

37

https://www.skyscanner.de/
https://en.wikipedia.org/wiki/Allen27s_interval_algebra
https://en.wikipedia.org/wiki/Allen27s_interval_algebra
/www.cleo.com/blog/knowledge-base-web-services
/www.cleo.com/blog/knowledge-base-web-services
https://www.ionos.de/digitalguide/websites/web-entwicklung/webservice/
https://www.ionos.de/digitalguide/websites/web-entwicklung/webservice/

Bibliography

[KLAO9]

[KLA11]

[KNA99]

[Mar06]

[Mar09]

[Marl6]

[McF12]

[Mic05]

[npm]

[Poi]

[RSe03]

[Sal98]

[teaa]

[teab]

[teac]

[tead]

[teae]

38

E. Kaldeli, A. Lazovik, M. Aiello. “Extended Goals for Composing Services”. In:
Proceedings of the Nineteenth International Conference on Automated Planning and

Scheduling (2009) (cit. on p. 13).

E. Kaldeli, A. Lazovik, M. Aiello. “Continual Planning with Sensing for Web Service
Composition”. In: AAAI Conference on Artificial Intelligence 25 (2011), pp. 1198-1203
(cit. on p. 17).

M. KNAUFF. “The cognitive adequacy of Allen’s interval calculus for qualitative spatial
representation and reasoning”. In: Spatial Cognition and Computation 1 1 (1999),
pp.- 261-290 (cit. on p. 23).

D. Maruyama. A Flexible and Dynamic CSP Solver for Web Service Composition in
Semantic Web Environment. Incheon Paik, 2006. 1sBN: 8780367820196 (cit. on p. 20).

A.L. Marco Aiello Eirini Kaldeli. “Extended Goals for Composing Services”. In:
Proceedings of the Nineteenth International Conference on Automated Planning and
Scheduling 25 (2009), pp. 362-365 (cit. on p. 17).

A.L. Marco Aiello Eirini Kaldeli. “Domain-independent planning for services in
uncertain and dynamic environments”. In: Artificial Intelligence 236 (2016), pp. 30-64
(cit. on p. 17).

D.S. McFarland. CSS the missing manual. The missing manual. POGUE
PRESSO’REILLT, 2012. 1sBN: 9780198520115 (cit. on p. 29).

M. P. S. Michael N. Huhns. “A Semantic Web Services Architecture”. In: IEEE Computer
Society 5 (2005), pp. 72-81 (cit. on p. 19).

npm. Axios. URL: https://www.npmjs.com/package/axios#global-axios-defaults
(cit. on p. 29).

J. T. Point. Architecture of Web Services. URL: https://www. javatpoint.com/restful-
web-services-architecture-of-web-services (cit. on p. 19).

A. R.Sethuramana Dr.T.Sasiprabha. “An Effective QoS Based Web Service Composition
Algorithm for Integration of Travel Tourism Resources”. In: International Conference
on Intelligent Computing, Communication Convergence 48 (2003), pp. 541-547 (cit. on
p- 13).

B. M. S. Sally C. Brailsford Chris N. Potts. “Constraint satisfaction problems: Algorithms
and applications”. In: European Journal of Operational Research (1998) (cit. on p. 15).

google team. Google Forms. URL: https://www.google.com/forms/about/ (cit. on
p. 31).
rapidapi team. Forward Reverse Geocoding APl Documentation. URL: https://

rapidapi . com/GeocodeSupport/api/forward-reverse-geocoding/details (cit. on
p. 29).

rapidapi team. Hotels Overview. URL: https://rapidapi.com/apidojo/api/hotels4/
details (cit. on p. 28).

rapidapi team. RapidAPI Consumer Quick Start Guide. URL: https://docs.rapidapi.
com/docs/consumer-quick-start-guide (cit. on p. 28).

rapidapi team. Skyscanner Flight Search Overview. URL: https://rapidapi.com/
skyscanner/api/skyscanner-flight-search/details (cit. on p. 27).

https://www.npmjs.com/package/axios#global-axios-defaults
https://www.javatpoint.com/restful-web-services-architecture-of-web-services
https://www.javatpoint.com/restful-web-services-architecture-of-web-services
https://www.google.com/forms/about/
https://rapidapi.com/GeocodeSupport/api/forward-reverse-geocoding/details
https://rapidapi.com/GeocodeSupport/api/forward-reverse-geocoding/details
https://rapidapi.com/apidojo/api/hotels4/details
https://rapidapi.com/apidojo/api/hotels4/details
https://docs.rapidapi.com/docs/consumer-quick-start-guide
https://docs.rapidapi.com/docs/consumer-quick-start-guide
https://rapidapi.com/skyscanner/api/skyscanner-flight-search/details
https://rapidapi.com/skyscanner/api/skyscanner-flight-search/details

Bibliography

[teaf] rapidapi team. Weather Overview. URL: https://rapidapi.com/weatherbit/api/
weather/details (cit. on p. 28).

39

https://rapidapi.com/weatherbit/api/weather/details
https://rapidapi.com/weatherbit/api/weather/details

	1 Introduction
	1.1 Motivation
	1.2 Example Scenario
	1.3 Structure of the thesis

	2 Background Information
	2.1 Mathematical algorithms
	2.2 Communication methods

	3 Related Work
	3.1 Domain independent planning for web services
	3.2 Continual planning for web service composition
	3.3 Web service composition

	4 Design
	4.1 Architecture
	4.2 Temporal Model
	4.3 Spatial Model
	4.4 Special case
	4.5 Composition of the Results

	5 Implementation
	5.1 Used APIs
	5.2 Backend Logic

	6 Evaluation
	6.1 Design of the Experiments
	6.2 Results
	6.3 Summary of the results

	7 Conclusions
	7.1 Summary
	7.2 Future work

	Bibliography

