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Notation

In the following, we list the main symbols and acronyms used in this thesis. Additional
notation is defined in the corresponding sections.

Abbreviations and acronyms

MPC model predictive control
w.l.o.g. without loss of generality
w.r.t. with respect to
s.t. such that
SISO single-input single-output
MIMO multi-input multi-output
QP quadratic program
LP linear program
SDP semidefinite program
LMI linear matrix inequality
LQR linear quadratic regulator
LTI linear time-invariant
LTV linear time-varying
LDI linear difference/differential inclusion
LPV linear parameter varying
CLF control Lyapunov function
i-ISS incremental input to state stability
i-OSS incremental output to state stability
i-IOSS incremental input-output to state stability
FBI Francis-Byrnes-Isidori
BINF Byrnes-Isidori normal form
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Real numbers, complex numbers, and sets

R set of real numbers
R≥0 (R>0) set of non-negative (positive) real numbers
C set of complex numbers
|z| absolute value of z ∈ C

i imaginary unit, i.e., i2 = −1
I set of integers
I≥a set of integers greater than or equal to a ∈ R

bac largest integer smaller than or equal to a ∈ R

dae smallest integer greater than or equal to a ∈ R

[a, b]; [a, b); (a, b] intervals {x ∈ R | a ≤ x ≤ b}, {x ∈ R | a ≤ x < b},
{x ∈ R | a < x ≤ b} for a, b ∈ R

I[a,b] set of integers in the interval [a, b]
mod(a, b) modulo operator for a, b ∈ I≥0, with mod(a, b) = a for a ∈ I[0,b−1]

and mod(a, a) = 0
int(X) interior of a set X ⊂ Rn

Bε(x) ball of radius ε centered around x ∈ Rn, i.e.,
Bε(x) = {z ∈ Rn | ‖x− z‖ ≤ ε}

vert(Θ) vertices θi ∈ Rn of a polytopic set Θ ⊂ Rn

Comparison functions [146]

K A function α : R≥0 → R≥0 is a class K function, i.e., α ∈ K,
if it is continuous, strictly increasing, and α(0) = 0.

K∞ A function α : R≥0 → R≥0 is a class K∞ function, i.e., α ∈ K∞,
if α ∈ K and α is radially unbounded, i.e., limr→∞ α(r) = ∞.

L A function δ : R≥0 → R≥0 is a class L function, i.e., δ ∈ L,
if it is continuous, decreasing, and limr→∞ δ(r) = 0.
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Vectors, matrices, and norms

In identity matrix with dimension n× n
0n×m n×m matrix of zeros
A> transpose of matrix A ∈ Rn×m

‖x‖ euclidean norm of x ∈ Rn

‖x‖2
Q weighted euclidean norm x>Qx for a positive definite

matrix Q = Q> ∈ Rn×n and x ∈ Rn

‖x(·)‖2
Q For a sequence x(·) ∈ XT, T ∈ I≥1, X ⊆ Rn and a positive definite

matrix Q = Q> ∈ Rn×n we denote ∑T−1
k=0 ‖x(k)‖

2
Q =: ‖x(·)‖2

Q.
λmax(Q) (λmin(Q)) maximum (minimum) eigenvalue of a symmetric matrix Q = Q>

λmax(P/Q) (λmin(P/Q)) maximum (minimum) generalized eigenvalue of symmetric
matrices P = P>, Q = Q>, i.e., largest (smallest) constant λ ∈ R

where P− λQ is singular
diag(X1, . . . , Xr) block-diagonal matrix with main diagonal blocks X1, . . . , Xr, r ∈ I≥1

A � 0 (A � 0) matrix A ∈ Rn×n is positive definite (positive semidefinite), i.e.,
A = A> and x>Ax > 0 (x>Ax ≥ 0) for all x ∈ Rn with x 6= 0

A ≺ 0 (A � 0) matrix A ∈ Rn×n is negative definite (negative semidefinite), i.e.,
the matrix −A is positive definite (positive semidefinite)

(x, y) stacked vector [x>, y>]> ∈ Rn+m for x ∈ Rn, y ∈ Rm

Derivatives
∂F
∂x |(x,y) For a continuously differentiable function F(x, y), F : Rn1 ×Rn2 → Rm,

∂F
∂x |(x,y) ∈ Rm×n1 denotes the matrix of partial derivatives of F w.r.t. x,
evaluated at the point (x, y) (Jacobi matrix).

∂2F
∂x2 |(x,y) For a twice continuously differentiable function F : Rn1 ×Rn2 → R,

∂2F
∂x2 |(x,y) ∈ Rn1×n1 denotes the matrix of second order partial derivatives
of F w.r.t. x, evaluated at the point (x, y) (Hessian matrix).
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Abstract

In this thesis, we develop and analyse model predictive control (MPC) schemes that
are suitable for dynamic operation and nonlinear constrained systems. While most
theoretical contributions for MPC consider the problem of stabilizing a given steady-
state, in this thesis we are particularly interested in the challenges related to dynamic
operation, e.g., trajectory tracking, online changing operation conditions, or output
regulation, which are encountered in a wide range of practical control problems. In
this thesis, we pursue two complementary MPC approaches for dynamic operation.
First, we propose novel MPC design procedures, which are tailored to the challenges
of dynamic operation. Second, we consider rather intuitive MPC formulations which
provide advantages in terms of implementability and derive desirable guarantees for the
closed loop. Altogether, both approaches lead to the development of novel MPC design
procedures for dynamic operation and corresponding theoretical analysis yielding
desirable closed-loop properties, which are the contributions of this thesis.

Design procedures

To be more precise, this thesis contains three novel MPC design procedures that are
suitable for dynamic operation (see Chapter 3). Firstly, we present a reference generic
offline design procedure for terminal ingredients (terminal cost/set), which is applicable
for the stabilization of dynamic reference trajectories and nonlinear systems. This design
procedure yields parametrized terminal ingredients that do not need to be recomputed
if the desired mode of operation (trajectory/setpoint) changes online. Secondly, we
use these terminal ingredients in combination with additional optimization variables
in the form of artificial reference trajectories to develop a tracking MPC framework that
is suitable for online changing dynamic target signals. In particular, this framework
ensures recursive feasibility and constraint satisfaction irrespective of online changes
in the user defined desired target signal and yields exponential stability of the optimal
mode of operation. Furthermore, an extension is developed that allows for a partial
time scale separation between trajectory tracking and trajectory planning. Thirdly, we
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Abstract

propose an economic MPC framework for dynamic operation of nonlinear constrained
systems with a general (economic) cost function. The resulting approach yields desirable
closed-loop (economic) performance guarantees and can operate under online changing
cost functions. The applicability and practical benefits of the proposed MPC designs are
demonstrated with different nonlinear examples from literature.

Analysis methods

Regarding the analysis of MPC formulations without any tailored design procedure (see
Chapter 4), we have the following three contributions. Firstly, we analyse the closed loop
resulting from a trajectory tracking MPC implementation without terminal ingredients.
Assuming that the system is incrementally stabilizable, we can ensure stability of any
reachable dynamic reference trajectory using a sufficiently long prediction horizon.
We also extend the existing theoretical results for MPC without terminal ingredients,
deriving improved performance bounds. Secondly, we extend the setup to the output
regulation problem, where an exosystem generates an output reference that needs to
be tracked. For minimum-phase systems, we show that simply minimizing a quadratic
output stage cost can successfully solve the output regulation problem and stabilize the
regulator manifold. We also provide a design using an incremental input regularization
that is suitable for non-minimum-phase systems. Thirdly, we investigate the case of
unreachable dynamic reference trajectories. Using tools from economic MPC, we show
that the MPC scheme (approximately) “finds“ the optimal reachable trajectory in closed
loop. All the results are illustrated through numerical examples.

The main goal of this thesis is to demonstrate that MPC is a control method that is
suitable for dynamic operation of nonlinear constrained systems. To this end, we con-
sider trajectory tracking, output regulation and general economic problems, introduce
corresponding MPC designs and derive rigorous theoretical properties for the resulting
closed loop such as stability, performance and constraint satisfaction.
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Deutsche Kurzfassung

Analyse und Entwurf prädiktiver Regelungsmethoden zum dynamischen Betrieb
nichtlinearer Systeme

Die prädiktive Regelung (Englisch: model predictive control, MPC) ist eine moderne,
optimierungsbasierte Regelungsmethode, die für allgemeine nichtlineare Systeme ge-
eignet ist und allgemeine Gütekriterien und Beschränkungen berücksichtigen kann.
Aufgrund dieser Flexibilität ist MPC sowohl in industriellen Anwendungen als auch
in der theoretischen Forschung weit verbreitet. Die vorliegende Arbeit befasst sich
mit der Entwicklung und Analyse von MPC-Algorithmen zum dynamischen System-
betrieb nichtlinearer beschränkter Systeme. Wir befassen uns im Speziellen mit den
Herausforderungen, die mit der Anwendung von MPC-Algorithmen zum dynamischen
Betrieb nichtlinearer Systeme verbunden sind. Ein solcher dynamischer Systembetrieb,
z. B. Stabilisierung einer dynamischen Referenztrajektorie, Ausgangsregelung (Englisch:
output regulation) oder allgemeine Änderungen des Systembetrieb in Echtzeit, ist in
einer Vielzahl von Anwendungen notwendig. Wir beschäftigen uns mit zwei sich ergän-
zenden MPC-Methoden zum dynamischen Systembetrieb. Einerseits entwickeln wir
neue MPC-Algorithmen und Entwurfsverfahren, die an den dynamischen Systembetrieb
angepasst sind. Andererseits betrachten wir einfache, intuitive MPC-Formulierungen
ohne aufwendige Entwurfsverfahren und analysieren die Eigenschaften des geschlosse-
nen Regelkreises. Der Beitrag der vorliegenden Arbeit ist die Entwicklung neuer MPC
Entwurfsverfahren zum dynamischen Systembetrieb und eine entsprechende theoreti-
sche Analyse, welche die gewünschten Eigenschaften für den geschlossenen Regelkreis
garantiert.

Entwurfsverfahren

Die vorliegende Arbeit beinhaltet drei neue MPC-Entwurfsverfahren zum dynamischen
Systembetrieb (s. Kapitel 3): Zunächst stellen wir ein referenz-generisches Entwurfs-
verfahren vor zur Berechnung von parametrisierten Endkosten/Endbeschränkungen
für nichtlineare Systeme, mit der die Stabilisierung dynamischer Referenztrajektorien
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erreicht wird. Die Besonderheit liegt darin, dass die entsprechenden Berechnungen
nicht erneut ausgeführt werden müssen, wenn sich die gewünschte Systembetriebsart
(Referenztrajektorie/Sollwert) während des Systembetriebes ändert. Zweitens werden
künstliche Referenztrajektorien verwendet, um eine MPC-Methode zu entwickeln, welche
für Änderungen der dynamischen Soll-Signalen in Echtzeit geeignet ist. Im Speziellen
garantiert diese MPC-Methode rekursive Lösbarkeit und die Einhaltung von Beschrän-
kungen unabhängig von den Soll-Signalen. Desweiteren sorgt die Methode dafür, dass
die optimale Systembetriebsart exponentiell stabilisiert wird. Zusätzlich wird eine Me-
thode entwickelt, um die Trajektorienplanung und deren Stabilisierung teilweise zu
entkoppeln. Drittens entwickeln wir eine ökonomische MPC-Methode zur optimalen
dynamischen Regelung von nichtlinearen beschränkten Systemen mit allgemeinem
(ökonomischem) Gütekriterium. Der resultierende geschlossene Regelkreis erfüllt eine
wünschenswerte (ökonomische) Regelgüte und ermöglicht einen dynamischen System-
betrieb trotz Änderungen in der Kostenfunktion in Echtzeit. Die Anwendbarkeit und
die Vorteile der entwickelten MPC-Entwurfsverfahren werden anhand verschiedener
nichtlinearer Beispiele aus der Literatur demonstriert.

Analysemethoden

Die vorliegende Arbeit beinhaltet die folgenden drei Beiträge zur Analyse von MPC-
Algorithmen ohne aufwendige Entwurfsverfahren (s. Kapitel 4). Zuerst analysieren wir
die Eigenschaften eines MPC-Algorithmus zur Stabilisierung von Referenztrajektorien
ohne jegliches Offline-Design. Wir garantieren, dass jede dynamisch erreichbare Refe-
renztrajektorie stabilisiert wird, falls das System inkrementell stabilisierbar ist und ein
ausreichend langer Prädiktionshorizont verwendet wird. Zusätzlich werden die existie-
renden theoretischen Ergebnisse für MPC-Algorithmen ohne aufwendige Entwurfsver-
fahren erweitert. Als zweites betrachten wir das Ausgangsregelungsproblem (Englisch:
output regulation), in dem ein Exo-System ein Ausgangssignal generiert, welches vom
System stabilisiert werden soll. Wir zeigen, dass ein einfacher MPC-Algorithmus, der
nur eine quadratische Kost auf den Ausgangs minimiert, das Ausgangsregelungspro-
blem erfolgreich lösen kann, falls das System minimalphasig ist. Für nicht-minimalphasige
Systeme entwickeln wir ein MPC-Entwurfsverfahren mit inkrementeller Regularisierung
des Steuereingangs. Zuletzt betrachten wir den Fall, in dem die gegebene dynamische
Referenztrajektorie nicht erreichbar ist. Durch die Nutzung von ökonomischen MPC-
Analysemethoden können wir zeigen, dass der MPC-Algorithmus die optimale erreichba-
re Referenztrajektorie “findet”. Die theoretischen Ergebnisse werden durch verschiedene
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numerische Beispiele illustriert.
Das Ziel dieser Arbeit ist es zu zeigen, dass die prädiktive Regelung (MPC) eine

regelungstechnische Methode ist, welche für den dynamischen Betrieb nichtlinearer
beschränkter Systeme geeignet ist. Zu diesem Zweck betrachten wir die Stabilisierung
dynamischer Referenztrajektorien, das Ausgangsregelungsproblem und die optimale
ökonomische Regelung, entwerfen entsprechende MPC-Algorithmen und zeigen Eigen-
schaften des geschlossenen Regelkreises, wie z. B. Stabilität, Regelgüte und Einhaltung
von Beschränkungen.
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Chapter 1

Introduction

1.1 Motivation

Model predictive control (MPC) [126, 236] is a modern optimization-based control
strategy, which is based on the repeated solution of finite horizon (open-loop) opti-
mal control problems. This method generates feedback in closed-loop operation by
implementing only the initial part of the optimized input trajectory and repeating the
online optimization in the next sampling time in a receding horizon fashion. Since MPC
only requires the solution to finite-horizon open-loop optimal control problems, it is less
restricted by the curse of dimensionality associated with optimal control and dynamic
programming [35]. The core advantages of MPC are: (i) the direct inclusion of hard
state and input constraints; (ii) the applicability to general nonlinear systems; (iii) the
consideration of general performance criteria. Due to these properties, MPC is a control
method that is widely used in practice and actively researched in academia. There
exist well-established theoretical results in MPC to stabilize a given steady-state [193],
which is the standard setting considered in literature. In addition, much active research
is devoted to the numerical challenges in MPC or robustness issues due to model
mismatch, compare for example [79] and [33, 153].

However, in control applications, the challenges and control goals often go beyond
the stabilization of a pre-determined steady-state. In this thesis, we are particularly
interested in addressing the challenges associated with dynamic operation, which has
received significantly less attention in the corresponding MPC literature. By dynamic
operation, we encompass the following three theoretical challenges encountered in
practice:

(i) Stationary operation is not desired:
There are numerous control applications in which the system should not be oper-
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Chapter 1 Introduction

ated at steady-state and instead a trajectory/path should be followed or periodic
operation is desired. In motion control problems, as for example encountered
in robotics or autonomous driving, the system needs to move along a specified
trajectory or path. Also, in many control problems, the system needs to be oper-
ated in a time-varying or periodic fashion due to external time-varying variables
influencing the dynamics, constraints or cost functions. Examples for this problem
setup include heating, ventilation, and air conditioning (HVAC) systems [235, 255]
or water distribution networks [165, 282], which are all affected by the day/night
cycle in temperature, price or demand. Lastly, there also exist time-invariant
control problems that require dynamic/periodic operation in order to improve the
performance compared to steady-state operation. Examples for such problems are
power generation using kites [80], where dynamic movement utilizes the wind en-
ergy to produce electricity, and maximizing the yield of a continuous stirred-tank
reactor (CSTR) [24].

(ii) Desired mode of operation changes online:
Changes in the desired mode of operation are frequently encountered in control

applications. In robotics or autonomous driving, the desired reference/path is
often generated online by a separate external unit (e.g., using artificial intelligence
and visual feedback) and thus can change unpredictably, compare, e.g., [JK30].
In economically-oriented problems like HVAC [235, 255], kites [80] or power
networks [JK27], the optimal mode of operation is dependent on external quantities,
such as the weather forecast or the supply/demand, both of which tend to fluctuate
in an unpredictable fashion, compare [102]. All of these control problems require
a controller to change the mode of operation online based on external variables.

(iii) Desired mode of operation cannot be directly specified in terms of a given state
and input setpoint/trajectory:
In many control applications, the control goal can not be easily specified in terms

of a reachable state and input setpoint/trajectory. In motion control problems (e.g.,
robotics or autonomous driving), the desired control goal is typically specified
in terms of a path/trajectory in the Cartesian space, which corresponds to some
output of the system, compare, e.g., [94, JK30]. In addition, since this Cartesian
reference is often provided by an external unit, it is often not physically realizable
(due to the dynamics or constraints of the systems), compare, e.g., [151, JK30].
Furthermore, in process control, HVAC [235, 255], power networks [JK27] or water
distribution networks [165, 282], the control goal can often be more naturally
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1.2 Related work

expressed in terms of economic criteria, e.g., the production yield or energy con-
sumption. In all of these control problems, a desired state trajectory/setpoint is at
most indirectly specified, while the true control goal is more naturally expressed
in terms of output variables or general economic cost functions [96].

Hence, in many practical control problems, the desired mode of operation is dynamic,
subject to online changes, and not explicitly specified in terms of suitable state and
input pairs. The goal of this thesis is to develop frameworks to design and analyse
MPC schemes that guarantee closed-loop properties despite the presented challenges
encountered in dynamic operation of nonlinear constrained systems. In the following two
sections, we discuss the related literature and summarize the main contributions of this
thesis.

1.2 Related work

In this section, we provide a brief overview over the research in MPC, with a specific
focus on stability theory and existing approaches related to the challenges inherent to
dynamic operation. A more detailed discussion regarding the contribution of this thesis
in comparison to the related work can be found in the corresponding sections. The basic
principle of MPC is as follows: At each time t, we measure the state x(t) and determine
an optimal input trajectory u∗(·|t) over a finite horizon N by solving an optimal control
problem. In particular, we predict the corresponding future state trajectory x∗(·|t) and
minimize a cost function JN over the finite horizon window N. Then, we apply the
first part of the resulting optimal input trajectory over the sampling interval and repeat
this procedure at the next sampling time t + 1 with a shifted horizon. A more in-depth
introduction into MPC theory can be found in [126, 236], compare also the overview
articles [190, 229].

Stability in MPC

Most standard MPC schemes consider a positive definite (typically quadratic) stage cost
` to stabilize a desired steady-state. Although such formulations are often successfully
applied in practice, without additional modifications or assumptions, the closed loop
resulting from the application of MPC is in general not stabilizing and may also not
necessarily be (inherently) robust, compare [212, 231] and [118]. There is a long history
and development of MPC design procedures, especially related to terminal ingredients

3



Chapter 1 Introduction

(terminal cost and terminal set) that can be added to the optimal control problem
to ensure stability of a desired steady-state. In particular, first stability results for
nonlinear systems have been obtained using zero-terminal constraints [192], which have
subsequently been relaxed to dual mode formulations [196]. These design procedures
have been generalized to terminal costs Vf and terminal sets Xf [107], infinite-horizon
or truncated predictions as a terminal cost [74, 175], quadratic terminal costs and
ellipsoidal terminal sets [55], culminating in general conditions on terminal costs and
sets, compare [193] for an overview. Results with implicitly-enforced terminal set
constraints can be found in [162]. Under appropriate stabilizability conditions and
with a sufficiently long prediction horizon N, stability in MPC can also be guaranteed
without any terminal ingredients (terminal cost and terminal set) [7, 37, 86, 120, 123,
127, 237, 267], which is often termed unconstrained MPC (due to the lack of a terminal
set constraint). There also exist design procedures that utilize relaxed conditions on
the terminal ingredients in combination with a sufficiently long prediction horizon N,
compare [119], [145] and [238, 239]. A discussion on the drawbacks and merits of using
terminal ingredients in MPC can be found in [188], and this issue will also be briefly
elaborated on in Sections 2.3 and 5.2. Lastly, there also exist alternative stabilizing
design procedures using Lyapunov, passivity or contraction constraints [195, 216, 230]
and various a posteriori analysis techniques [152, 168, 227].

In summary, although there exists a long history of research in stability properties
of MPC, the analysis of MPC without terminal ingredients is typically limited to
positive definite stage costs with a global reachability assumption (with the notable
exceptions [119] and [37]) and the resulting bounds are sometimes conservative. In
Section 4.1, we extend/improve the results in [37, 119, 175] by providing improved
bounds for MPC without terminal ingredients based on: a) local stabilizability conditions;
b) detectable/observable positive semidefinite stage costs; and c) extended prediction horizons
with a (locally) stabilizing controller.

Trajectory tracking with MPC

In trajectory tracking, the problem of stabilizing a given steady-state is replaced by
the stabilization of a time-varying (typically state and input) trajectory. The theoretical
results for MPC with and without terminal ingredients for the stabilization of steady-
states directly extend to this case, if suitably adjusted terminal ingredients can be
constructed and modified reachability conditions hold, compare [236, Thm. 2.39] and
[126, Ass. 6.30]. An important generalization of the trajectory tracking problem is
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path following, where only an (output) path is specified and the exact timing and
velocity in which this path should be tracked is an additional degree of freedom. The
theoretical results from trajectory tracking can be extended to this path-following setting
by using an extended state and input space to formulate the problem, compare [91,
94]. Suitable design procedures for the terminal ingredients for asymptotically constant
reference trajectories and periodic reference trajectories can be found in [91, 93] and
[23], respectively. Results without terminal ingredients can be found in [194] and [95].
However, these results are not directly applicable to output1 reference trajectories/paths,
since MPC theory without terminal constraints typically relies on a positive definite
stage cost, with the main exception being [119], compare also [126, Sec. 10.3].

In summary, the existing design procedures for terminal ingredients are limited to
special classes of trajectories and the consideration of output trajectories in MPC without
terminal ingredients is an open problem. In Section 3.1, we provide a novel design
procedure for the terminal ingredients that is applicable to general time-varying refer-
ence trajectories and avoids repeated design procedures in case of changing reference
trajectories. Furthermore, in Sections 4.1 and 4.2, we provide a framework to study
the stabilization of input-output and output trajectories using MPC without terminal
constraints, without requiring the construction of a corresponding state trajectory.

Changing mode of operation

Online changes in the steady-state to be stabilized are common in practice and hence
there has been much research on MPC formulations for setpoint tracking.

Terminal ingredients

The standard design procedure for terminal ingredients [55, 193] is typically based
on the linearization around the desired steady-state and hence requires an additional
design step each time the desired setpoint changes. For linear systems, a polytopic
terminal set can be constructed offline using the concept of maximal output admissible
sets [114] in combination with an augmented state space model (cf. [58, 163]). Given a
stabilizing feedback for different setpoints, an infinite-horizon terminal cost for tracking
has been proposed in [176], similar to [74]. A fixed quadratic terminal cost for different
setpoints has been suggested in [105] using the concept of pseudo linearization, which,
however, turns out to be difficult to apply in practice. In [274, 275], the nonlinear system

1In the continuous-time setting, an output stage cost ` for flat outputs is 0-detectable and hence the
integral cost is positive definite [95].
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is locally described as an LTV/LDI system and thus a quadratic terminal cost Vf can be
computed, which is valid for a local set of steady-states. By switching between different
local LTV/LDI models from a discrete set and their corresponding quadratic terminal
costs Vf, a piece-wise quadratic terminal cost Vf for the (typically one-dimensional)
steady-state manifold can be computed.

In summary, the existing design methods for terminal ingredients in case of online
changing operation are limited to setpoint tracking and both the parametrization and
scalability issues may limit the practical application. In Section 3.1.3, we provide a
design procedure for terminal ingredients using an LPV description, which results
in a continuously differentiable terminal cost, is not restricted to low dimensional
steady-state manifolds, and is even applicable to dynamic trajectories.

Recursive feasibility - Artificial references

In addition to the challenges related to the computation of suitable terminal ingredients,
online changes in the reference setpoint to be stabilized can cause feasibility issues,
even in the linear case. In [32], a predictive command governor is used to determine a
(parametrized) virtual reference sequence to ensure constraint satisfaction of a given
primal controller. In [58], the dual mode MPC formulation (cf. [196]) is extended to
tracking by using invariant sets [114] and including a feasibility recovery mode, which
adjusts the reference to ensure feasibility, analogous to a reference governor [113]. An
extension to the nonlinear case can be found in [57], compare also [56]. Similarly, in [189]
the reference setpoint is updated in an external loop based on a feasibility condition.
For the special case of integrating processes, a joint MPC formulation that computes
the stationary output/reference and the control input is proposed in [52]. A general
formulation for setpoint tracking based on artificial references is presented in [161,
163]. The basic idea is to include an artificial reference setpoint r as an additional
decision variable in the MPC and then use a stabilizing MPC formulation to track the
artificial setpoint r in combination with an offset cost of the artificial reference point r
relative to the desired reference. This tracking MPC formulation has been subsequently
extended to zone tracking [100], modified terminal constraints [256], periodic/dynamic
trajectories [149, 165, 166], robust formulations [159, 223, 296], nonlinear dynamics [164],
non-convex steady-state manifolds [63, 64], positive semidefinite stage costs ` for input-
output (data-driven) models [JK4], distributed formulations [2, 61, 104, 135], and (local)
optimality guarantees [103]. Similar formulations are also considered in offset-free
tracking MPC [201, 218], compare also [174]. Bounds on the tracking error under
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bounded variation of the reference are derived in [88] by modifying the design in [163],
compare also [77, 199] for error bounds using a robust MPC design.

Overall, the consideration of dynamic/periodic operation has received little attention
(with the notable expectations [149, 165, 166]) and the computational complexity associ-
ated with artificial periodic/dynamic trajectories may limit the practical applicability. In
Section 3.2, we unify and extend the existing theoretical results using artificial periodic
reference trajectories for nonlinear constrained systems. In addition, we overcome scala-
bility issues that are inherent in this MPC formulation with artificial periodic reference
trajectories by providing a partial time scale separation.

Economic costs in MPC

Traditionally, economic objectives are considered using a two-layer control architecture,
where the economically optimal setpoint/trajectory is determined in the upper layer
using a so-called real-time optimization (RTO) and the lower layer consists of a controller
that stabilizes/tracks this setpoint/trajectory. Directly minimizing the economic cost
in an economic MPC formulation [96] can improve (transient) performance compared
to simply stabilizing the optimal steady-state, compare, e.g., [234]. Although economic
MPC is a relatively recent research field, there exist well-established performance
guarantees for economic MPC schemes with terminal ingredients [16, 19, 78, 167],
including performance guarantees w.r.t. periodic operation [295]. Tracking formulations
that are locally equivalent to an economic MPC formulation are presented in [76, 293,
294]. Performance bounds for economic MPC without terminal ingredients can be
found in [122, 128, 129, 130, 132, 210], compare also [291] and [8] for modifications to
reduce the length of the necessary prediction horizon N (in case the system is optimally
operated at steady-state). These results are based on a dissipativity condition and turnpike
arguments, compare [JK1, JK2, 70, 92, 98, JK25, 203, 207].

In Section 4.3, we study unreachable reference trajectories in the context of economic
MPC without terminal ingredients and extend the analysis in [122, 132] to time-varying
problems and relax the standard (global) controllability condition.

Changing cost functions in economic MPC

In order to cope with online changes in the economic cost function and hence the
economically optimal mode of operation, additional modifications are needed. In
case that only a finite set of transitions is possible, connecting orbits between the
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modes of operation can be precomputed and recursive feasibility and performance
can be guaranteed using a dwell-time assumption [20]. At the expense of transient
performance, a tracking MPC formulation based on artificial setpoints/trajectories can be
used to stabilize the (economically) optimal setpoint/trajectory [165], compare also [133,
139]. Purely economic MPC formulations based on artificial reference setpoints can be
found in [87, 102, 206, 208], compare also [68, 82, 101] for robust modifications. Similar
economic formulations are also used in [150] for asymptotic consensus of distributed
agents with conflicting economic objectives. To address dynamic/periodic operation,
economic MPC schemes with periodicity constraints have been proposed in [138, 282],
but performance guarantees w.r.t. an optimal periodic orbit can only be established
under very restrictive conditions. For linear systems, performance guarantees w.r.t.
periodic operation are established in [43] based on strong duality, additional constraint
tightening, and a sufficiently large positive definite offset cost.

In summary, the literature does not address MPC formulations that are: suitable
for nonlinear systems and online changing modes of operation; consider a purely
economic objective; and provide economic performance guarantees compared to optimal
dynamic/periodic operation. In Section 3.3, we present an economic MPC formulation
for nonlinear systems using artificial periodic reference trajectories and provide closed-
loop performance guarantees relative to periodic optimal operation.

1.3 Contribution and outline of this thesis

In the following, we detail the outline of this thesis and clarify the contributions.

Chapter 2: Preliminaries - Stability in MPC

In this chapter, we provide a basic introduction to MPC. In particular, we briefly
summarize the basic stability results for MPC with and without terminal ingredients,
which forms the basis of this thesis. In addition, we provide a discussion regarding the
respective merits of these two complementary MPC designs.

Chapter 3: Novel design procedures for MPC schemes with dynamic operation

In this chapter, we present a framework to design MPC schemes for dynamic operation
of nonlinear constrained systems. In particular, we tackle the various challenges associ-
ated with dynamic operation by providing MPC formulations using artificial periodic
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reference trajectories for tracking of output trajectories and minimization of general
economic cost functions, respectively.

In Section 3.1, we consider the problem of designing a trajectory tracking MPC with
terminal ingredients for reachable dynamic state and input trajectories. In order to avoid
repeated cumbersome design procedures due to changes in the reference trajectory, we
propose a reference generic offline computation of the terminal ingredients for a set of
reachable reference trajectories. The proposed approach considers the linearization of
the nonlinear system around all possible points in the constraint set and describes the
linearized system as a quasi-LPV system, where the reference r is the external parameter.
Based on this description and a suitable parametrization of the terminal ingredients,
we derive a design procedure in terms of LMIs. The proposed offline design needs to
be executed only once, resulting in parametrized terminal ingredients that can also be
directly used if the reference trajectory changes unpredictably.

In Section 3.2, we employ an MPC approach based on artificial reference trajectories
in order to address the issues of recursive feasibility under online changing references
and unreachable output references. We extend and unify the existing theoretical results
for tracking MPC with artificial periodic references to consider: nonlinear systems,
periodic (possibly unreachable) output target signals, general terminal ingredients (both
terminal equality constraints and terminal cost/set), and ensure exponential stability of
the optimal reachable periodic trajectory. In MPC approaches with artificial references, a
reference constraint is typically specified offline, which determines the region of opera-
tion and limits the size of the terminal set and may reduce the performance. We present
a method to automate this trade-off between region of operation and performance by
introducing the terminal set size as an additional optimization variable in the MPC. For
problems with a large period length, the joint optimization of the artificial reference
trajectory and stabilizing MPC may not be real-time implementable for computational
reasons. To circumvent this problem, we present a partially decoupled formulation, where
a standard tracking MPC and a periodic trajectory planning problem are solved in par-
allel on different time scales, while retaining the feasibility and convergence properties
of the original formulation.

In Section 3.3, we study the more general problem of economic optimal control. In
particular, we consider the case where the economic stage cost depends on external
variables that can unpredictably change online. To ensure recursive feasibility despite
these online changes, we again consider an MPC formulation using artificial periodic
reference trajectories. Instead of considering a tracking formulation, we propose a
fully economic formulation to improve the performance. We demonstrate that naive
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extensions of existing economic MPC formulations to the periodic setup do not neces-
sarily yield the desired performance guarantees. Instead, we suitably modify the MPC
formulation and guarantee that (on average) the closed loop economic performance is
no worse than the performance at a locally optimal periodic orbit. We also extend the
design procedures for terminal ingredients to economic costs and dynamic/periodic
reference trajectories.

In Section 3.4, we demonstrate the applicability of the proposed MPC design methods
and show performance improvement compared to state of the art approaches. We first
compare the performance of the different MPC formulations using a setpoint tracking
example with a CSTR. We demonstrate the additional performance improvements
of using suitable terminal ingredients, online optimized terminal set size, and direct
economic formulations. Then, we showcase the applicability to periodic output regulation
(including unreachable target signals) with a nonlinear ball and plate system. Finally,
we demonstrate economic performance improvement using dynamic operation with an
HVAC and a CSTR example.

In summary, the main contributions of this chapter are the following:

• We develop a reference generic offline computation for the terminal ingredients.

• We extend and unify existing trajectory tracking MPC formulations by using
an artificial periodic reference trajectory providing a novel proof, introducing
online optimization of the terminal set size, and presenting a partially decoupled
reference planner to ensure applicability to long period lengths.

• We propose a novel economic MPC formulation using artificial periodic reference
trajectories and establish corresponding performance guarantees.

• We demonstrate the performance benefits of the proposed designs using numerical
examples from literature.

The results of Chapter 3 have been previously presented in [JK15, JK16, JK22, JK26].

Chapter 4: Analysis of MPC schemes for dynamic operation without offline design

In this chapter, we present a framework to analyse trajectory tracking MPC formulations
without terminal ingredients. Instead of providing an intricate design procedure, we
consider simple and intuitive MPC formulations without any offline design or terminal
ingredients, and provide intrinsic system theoretic properties that guarantee desired
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closed-loop performance for trajectory tracking and output regulation, also in the case
of unreachable reference trajectories.

In Section 4.1, we study a simple trajectory tracking MPC for reachable reference
trajectories, which requires no offline design. Given a (local) incremental stabilizability
condition, we ensure exponential stability with a user-specified region of attraction, given
a sufficiently large prediction horizon N. The presented results also improve existing
results for MPC without terminal constraints to yield less conservative performance
bounds based on a local reachability assumption and sublevel set arguments. The
corresponding theoretical derivations are also extended to positive semidefinite (input-
output) stage costs using a detectability condition (i-IOSS) and improved bounds are
derived using a stronger observability condition (ν-step i-OSS). Furthermore, guaranteed
stability with significantly shorter prediction horizons is enabled by using an extended
prediction horizon with some known (locally) stabilizing control law.

In Section 4.2, we extend the problem setup to output regulation. In the output
regulation problem, only an output reference trajectory is specified, which is generated
by an exosystem. For minimum-phase systems, we show that simply minimizing
quadratic output stage cost can guarantee exponential stability of the regulator manifold.
This result is particularly appealing, since, in contrast to classical control results, we do
not need to solve the Francis-Byrnes-Isidori (FBI) equations. We additionally provide
theoretical results for non-minimum-phase systems by using an (incremental) input
regularization.

In Section 4.3, we study the properties of the trajectory tracking MPC without terminal
ingredients in case the reference trajectory is not reachable. Using tools from economic
MPC and suitable uniqueness conditions, we ensure that the MPC scheme (practically)
stabilizes the reachable trajectory which has the minimal distance to the desired (un-
reachable) trajectory. We also extend the existing theory for economic MPC without
terminal constraints to consider only local stabilizability/controllability conditions using
sublevel set arguments.

In Section 4.4, we consider the special case of linear system. We show that the
posed conditions coincide with classical conditions considered in the output regulation
literature and prove that the considered dissipation-based characterization of the non-
resonance condition is equivalent to the classical rank-based condition. In addition, we
provide less conservative bounds, especially for the MPC formulation with extended
prediction horizon.

In Section 4.5, we provide numerical examples to illustrate the presented theoretical
results. We consider a simple linear example to compare the provided performance
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bounds. We demonstrate the applicability to trajectory tracking with a nonlinear CSTR
example. Then, we show the practicality of the output regulation MPC formulation using
offset-free tracking of a nonlinear cement milling circuit under noisy error feedback.
Finally, we study the case of unreachable reference trajectories using the example of an
asynchronous motor.

In summary, the main contributions of this chapter are the following:

• We analyse a simple trajectory tracking MPC formulation and establish exponential
stability for reachable reference trajectories using an incremental stabilizability
assumption.

• We extend this theory to output regulation and provide sufficient conditions to
ensure stability of the regulator manifold.

• We studied the case of unreachable reference trajectories and guarantee (practical)
stability of the optimal reachable trajectory.

• We extend the existing theory for MPC without terminal ingredients in multiple
directions.

• We illustrate the applicability of the theoretical results using numerical examples.

The results of Chapter 4 have been previously presented in [JK10, JK19, JK21, JK23,
JK24].

Chapter 5: Conclusions

In this chapter, we summarize the contributions of this thesis, contrast the two comple-
mentary MPC frameworks, and provide some directions for future research.

Appendices

Appendices A, B and C contain supplementary material regarding: suboptimality
estimates in MPC with terminal ingredients; extending the reference generic design of
the terminal ingredients to more general tracking stage costs; and incremental stability.
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Chapter 2

Preliminaries - Stability in MPC

In this chapter, we recapitulate the basic stability results for MPC with and without
terminal ingredients and briefly discuss their respective merits.

2.1 Stabilizing MPC with terminal ingredients

In the following, we briefly summarize the standard theoretical results for stabilizing
MPC with terminal ingredients, analogous to the general results that can, for example,
be found in [236] or [126, Chap. 5].

We consider a nonlinear discrete-time system

x(t + 1) = f (x(t), u(t)), x(0) = x0,

with the state x(t) ∈ X ⊆ Rn, the control input u(t) ∈ U ⊆ Rm, the dynamics
f : X×U → X, the initial condition x0 ∈ X, and the time step t ∈ I≥0. We consider
general pointwise-in-time constraints

(x(t), u(t)) ∈ Z ⊆ X×U, t ∈ I≥0. (2.1)

The control goal is to stabilize a feasible setpoint (xs, us) ∈ Z, f (xs, us) = xs, while
satisfying the constraints (2.1).

At each time t ∈ I≥0, given the current state x(t), the MPC control law is determined
based on the following optimization problem:

Problem 2.1.

minimize
u(·|t)

JN(x(·|t), u(·|t)) (2.2a)
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subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (2.2b)

x(0|t) = x(t), (2.2c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (2.2d)

x(N|t) ∈ Xf, (2.2e)

where

JN(x(·|t), u(·|t)) =
N−1

∑
k=0

`(x(k|t), u(k|t)) + Vf(x(N|t)). (2.2f)

In this problem, ` : X ×U → R is the stage cost, Vf : Xf → R is the terminal
cost, Xf ⊆ X is the terminal set, N ∈ I≥1 is the prediction horizon, u(·|t) ∈ UN is
the predicted input trajectory and x(·|t) ∈ XN+1 is the corresponding predicted state
trajectory. We assume that `, Vf and f are continuous, and the sets Z and Xf are
compact, which guarantees that Problem 2.1 has a minimizer, assuming a feasible
solution exists, compare [236, Prop. 2.4]. We denote the1 minimizer of Problem 2.1 by
u∗(·|t) and the corresponding state trajectory by x∗(·|t). The value function is defined
as VN(x(t)) := JN(x∗(·|t), u∗(·|t)). The receding horizon control law is defined by the
following algorithm.

Algorithm 2.2. (Stabilizing MPC Algorithm with terminal ingredients)
Offline: Specify the constraint set Z, the stage cost `, and the prediction horizon N. Design a
suitable terminal cost Vf and a terminal set Xf.
Online: At each time step t ∈ I≥0, measure the current state x(t), solve Problem 2.1, and apply
the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t). (2.3)

In the following, we present standard conditions that can be used to ensure asymptotic
stability of the steady-state xs.

Assumption 2.3. (Stabilizing stage cost) There exist functions α`, α`, αf ∈ K∞ such that
α`(‖x − xs‖) ≤ `min(x) ≤ α`(‖x − xs‖) for all (x, u) ∈ Z, Vf(x) ≤ αf(‖x − xs‖) for all
x ∈ Xf, and `(xs, us) = 0, Vf(xs) = 0, with `min(x) := infu∈U `(x, u).

1In case the minimizer is not unique, one minimizer can be selected.
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Assumption 2.4. (Terminal ingredients) There exists a terminal control law kf : Xf → U such
that the following conditions hold for all x ∈ Xf:

(i) (x, kf(x)) ∈ Z,

(ii) f (x, kf(x)) ∈ Xf,

(iii) Vf( f (x, kf(x)))−Vf(x) ≤ −`(x, kf(x)) + `(xs, us).

Assumption 2.5. (Weak controllability) There exists a function αV ∈ K∞ such that for any
state x(t) ∈ X such that Problem 2.1 is feasible, the following bound holds: VN(x(t)) ≤
αV(‖x(t)− xs‖).

Conditions (i)–(ii) of Assumption 2.4 ensure that the terminal set Xf is positively
invariant under the terminal control law kf and the resulting state and input satisfy
the constraints. Assumption 2.3 ensures that the stage cost ` is positive definite w.r.t.
the steady-state xs and thus Assumption 2.4 (iii) ensures that Vf is a (local) control
Lyapunov function (CLF). Assumption 2.5 is a technical condition that follows directly
from Assumptions 2.3–2.4 if xs ∈ int(Xf).

The following theorem summarizes the resulting closed-loop properties.

Theorem 2.6. Let Assumptions 2.3–2.5 hold. If the initial condition x0 is such that Problem 2.1
is feasible at t = 0, then the closed-loop system (2.3) resulting from Algorithm 2.2 satisfies
the constraints (2.1), Problem 2.1 is feasible for all t ∈ I≥0, and xs is asymptotically stable.
Furthermore, the following performance bound holds for the closed loop:

J cl
∞ (x0) :=

∞

∑
t=0

`(x(t), u(t)) ≤ VN(x0).

This result with a corresponding proof can, for example, be found in [236, Thm. 2.19]
and similarly in [126, Thm. 5.5]. Similar continuous-time results can be found in [55,
107]. We point out that this stability result does not necessarily require that the global
minimizer of Problem 2.1 is found at each time t ∈ I≥0. Instead, the same guarantees
hold for suboptimal solutions with a suitable warm-start, compare [253].

The simplest design to satisfy Assumption 2.4 is a terminal equality constraint
(Xf = {xs}, kf = us, Vf = 0, TEC) [192], which directly satisfies Assumption 2.4
and requires some technical (local) controllability property to ensure satisfaction of
Assumption 2.5. A less conservative design procedure has been derived in [55] for
the continuous-time case, which is briefly recapitulated analogous to [236, Sec. 2.5.5].
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Suppose that f is twice-continuously differentiable and the stage cost is quadratic,
i.e., `(x, u) = ‖x − xs‖2

Q + ‖u− us‖2
R. Assume further that (xs, us) ∈ int(Z) and the

linearized dynamics around (xs, us) are given by x(t + 1) = Ax(t) + Bu(t), with (A, B)
stabilizable. Then, we can compute the discrete-time linear quadratic regulator (LQR) for
the system (A, B) and cost function (Q + εIn, R) with some ε > 0, resulting in a positive
definite matrix P ∈ Rn×n and a stabilizing feedback matrix K ∈ Rm×n. There exists
a small enough constant α > 0 such that Vf(x) = ‖x − xs‖2

P, kf(x) = us + K(x − xs),
Xf = {x ∈ X| Vf(x) ≤ α} satisfy Assumption 2.4. Furthermore, Assumption 2.5 directly
follows by using xs ∈ int(Xf) and the fact that Vf is a local upper bound to the value
function VN. This design procedure uses the fact that due to the factor ε > 0, the
linearized dynamics strictly satisfy condition (iii) in Assumption 2.4 and the difference
between the nonlinear system and the linearization can be bounded locally.

2.2 Stabilizing MPC without terminal ingredients

In the following, we briefly summarize the standard theoretical results for stabilizing
MPC without terminal ingredients, analogous to the general results that can, for example,
be found in [126, Chap. 6].

The setup and MPC algorithm are exactly as in Section 2.2, only the optimization
problem is modified such that no terminal constraints or terminal cost are considered.

Problem 2.7.

minimize
u(·|t)

JN(x(·|t), u(·|t)) (2.4a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (2.4b)

x(0|t) = x(t), (2.4c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (2.4d)

with

JN(x(·|t), u(·|t)) =
N−1

∑
k=0

`(x(k|t), u(k|t)). (2.4e)

The value function is defined as VN(x(t)) := JN(x∗(·|t), u∗(·|t)), where u∗(·|t) is the
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minimizer and x∗(·|t) is the corresponding state trajectory. The following algorithm
specifies the receding horizon control law.

Algorithm 2.8. (Stabilizing MPC Algorithm without terminal ingredients)
Offline: Specify the constraint set Z, the stage cost `, and the prediction horizon N.
Online: At each time step t ∈ I≥0, measure the current state x(t), solve Problem 2.7, and apply
the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t). (2.5)

Instead of appropriately designing terminal ingredients, MPC schemes without terminal
ingredients rely on suitable stabilizability conditions.

Assumption 2.9. (Exponential cost controllability) There exist a constant γ ≥ 1 such that for
any x ∈ X and any prediction horizon N ∈ I≥1, Problem (2.7) is feasible and the value function
satisfies VN(x) ≤ γ`(x, u), ∀(x, u) ∈ Z.

Assumption 2.9 ensures that the constraint set is control invariant and that for any
feasible state, there exists an open-loop input trajectory which asymptotically steers the
system to the desired steady-state xs.

The following theorem summarizes the corresponding closed-loop properties.

Theorem 2.10. Let Assumptions 2.3 and 2.9 hold. Then, there exists a constant N0 > 0
such that for any prediction horizon N > N0, the closed-loop system (2.5) resulting from
Algorithm 2.8 satisfies the constraints (2.1) and xs is asymptotically stable. Furthermore, there
exists a constant αN ∈ (0, 1] such that the following suboptimality estimate holds for the closed
loop:

J cl
∞ (x0) :=

∞

∑
t=0

`(x(t), u(t)) ≤ VN(x0)

αN
≤ V∞(x0)

αN
.

This result and a corresponding proof can be found in [126, Thm. 6.20], compare
also [123]. Similar continuous-time results can be found in [237].

2.3 Summary and discussion

In this chapter, we presented basic stability results for MPC schemes with and without
terminal ingredients. In both cases, the stage cost ` is assumed to be positive definite
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w.r.t. the desired steady-state xs. In MPC formulations with terminal ingredients,
suitable offline design methods are required to satisfy Assumption 2.4, while MPC
formulations without terminal ingredients instead rely on stabilizability conditions
(Ass. 2.9) and a sufficiently long prediction horizon N. In this thesis, we consider
MPC schemes with and without terminal ingredients, which are treated separately in
Chapter 3 and Chapter 4, respectively. Although the corresponding MPC algorithms
are quite similar, the methods used in the analysis and design are quite distinct. Since
these two approaches are at the core of this thesis, we will summarizes some of the
main difference and respective advantages in the following. A detailed discussion on
this issue can also be found in [188] and [126, Sec. 7.4].

The first and probably most crucial difference is the fact that MPC schemes with
terminal ingredients require an offline design step to determine suitable terminal
ingredients. This step can often be time consuming for challenging applications or may
result in conservatively small terminal sets Xf. A second drawback of MPC schemes
with terminal ingredients is the fact that the region of attraction can be severely reduced
due to the terminal set constraint (2.2e). These two factors are some of the main reasons
why MPC without terminal ingredients is often seen as an attractive alternative for
nonlinear systems. The drawbacks of MPC without terminal ingredients are often more
indirect. Given the exponential cost controllability condition (Ass. 2.9), it is possible to
compute a sufficiently large prediction horizon N0 such that closed-loop properties can
be guaranteed. However, these estimates can often be very conservative and a short
prediction horizon may result in a destabilizing MPC, compare for example [231]. This
is in contrast to MPC schemes with terminal ingredients, which guarantee all desired
closed-loop properties even for arbitrary short prediction horizons N, assuming initial
feasibility of Problem 2.1.

We point out that a local version of the exponential cost controllability condition (Ass. 2.9)
is strongly related to existence of a suitable local CLF satisfying the conditions in
Assumption 2.4, compare [252]. However, an important difference is that the terminal
cost Vf (Ass. 2.4) needs to have a simple analytical expression, while MPC schemes
without terminal ingredients only require a constant γ ≥ 1 over approximating the
value function, which can be significantly easier to obtain in practice.

Another point of difference is the resulting closed-loop performance bound. In partic-
ular, MPC without terminal ingredients provides suboptimality estimates αN ∈ (0, 1],
that relate the closed-loop performance with the infinite-horizon optimal performance.
In order to obtain similar guarantees for MPC with terminal constraints, the difference
between the finite-horizon cost VN(x) and the infinite horizon cost V∞(x) needs to be
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bounded, as as exemplified in [126, Thm. 5.22] and [131, Thm. 6.2/6.4] (assuming that
the terminal cost locally approximates the infinite-horizon cost well). Given the simpli-
fied setting typically considered in MPC without terminal constraints, suboptimality
estimates αN ∈ (0, 1] can also be directly computed for MPC with terminal ingredients.
A corresponding proof can be found in Appendix A (compare also Prop. 4.37), which,
to the best knowledge of the author, also constitutes a novel result.

The differences between MPC formulation with and without terminal ingredients
will be revisited in Section 5.2, with a particular focus on the novel MPC formulations
developed in this thesis for dynamic operation.
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Chapter 3

Novel design procedures for MPC
schemes with dynamic operation

In this chapter, we present a framework to design MPC schemes with terminal ingre-
dients for dynamic operation. In particular, the proposed design methods and MPC
formulations address the challenges associated with dynamic operation identified in
Section 1.1: (i) non-stationary operation, (ii) online changes in the mode of operation,
(iii) optimal mode of operation is not directly specified in terms of given state and input
setpoints/trajectories.

In Section 3.1, non-stationary operation is considered with a trajectory tracking MPC
for reachable dynamic trajectories. Furthermore, a novel reference generic offline design
for the terminal ingredients is derived, which is mainly relevant for online changes in
the mode of operation. In Section 3.2, online changes in the mode of operation are considered
by using an MPC formulation with artificial reference trajectories. This formulation is
subsequently further improved by introducing online optimized terminal ingredients.
In addition, a partially decoupled tracking and trajectory planning MPC formulation is
developed to allow for a partial time scale separation. In Section 3.3, we further extend
this formulation to account for general economic control goals, thus considering the
case that the optimal mode of operation is not directly specified in terms of given state and
input setpoints/trajectories. In Section 3.4, we demonstrate the practicality of the different
proposed methods using numerous numerical examples. The results presented in this
chapter are based on Köhler et al. [JK15, JK16, JK22, JK26].
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Chapter 3 Novel design procedures for MPC schemes with dynamic operation

3.1 Trajectory tracking MPC and reference generic offline

computations

In this section, we consider the problem of tracking a given state and input trajectory
using an MPC scheme with terminal ingredients. As shown in Section 2.1, terminal
ingredients (terminal cost, terminal set, and terminal control law) can be useful to ensure
desired closed-loop properties (recursive feasibility, stability and constraint satisfaction)
for MPC schemes. The main contribution of this section is the development of a novel
reference generic offline design procedure for the corresponding terminal ingredients
(Sec. 3.1.3). This section is based on and taken in parts literally from [JK15]1 and [JK16]2.

3.1.1 Trajectory tracking MPC

In the following, we present a trajectory tracking MPC formulation using terminal
ingredients and establish exponential stability of reachable reference trajectories. We
consider the following nonlinear discrete-time system

x(t + 1) = f (x(t), u(t)), x(0) = x0,

with the state x(t) ∈ X ⊆ Rn, the control input u(t) ∈ U ⊆ Rm, the dynamics
f : X×U → X, the initial condition x0 ∈ X, and the time step t ∈ I≥0. We impose
pointwise-in-time constraints on the state and input

(x(t), u(t)) ∈ Z ⊆ X×U, t ∈ I≥0. (3.1)

We assume that Z is compact and f is continuous. We consider the problem of stabilizing
a state and input reference trajectory r(t) := (xr(t), ur(t)) ∈ X×U ⊆ Rn+m.

Assumption 3.1. (Reachable reference trajectory) There exists a set Zr ⊆ int(Z) such that the
reference trajectory satisfies

r(t) ∈ Zr, xr(t + 1) = f (xr(t), ur(t)), ∀t ∈ I≥0. (3.2)

1J. Köhler, M. A. Müller, and F. Allgöwer. “A nonlinear model predictive control framework using
reference generic terminal ingredients.” In: IEEE Trans. Automat. Control 65.8 (2020). extended version:
arXiv:1909.12765, pp. 3576–3583©2019 IEEE.

2J. Köhler, M. A. Müller, and F. Allgöwer. “A nonlinear tracking model predictive control scheme for
unreachable dynamic target signals.” In: Automatica 118 (2020). extended version: arXiv:1911.03304,
p. 109030©2020 Elsevier Ltd.
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3.1 Trajectory tracking MPC and reference generic offline computations

This assumption characterizes the fact that the reference trajectory r is reachable, i.e.,
follows the dynamics f and lies (strictly) in the constraint set Z. We use the following
set to characterize the conditions (3.2):

(r, r+) ∈ R := {(r, r+) = ((xr, ur), (x+r , u+
r )) ∈ Zr ×Zr | x+r = f (xr, ur)}.

The case of unreachable reference trajectories will be considered in Section 3.2 using
artificial reference trajectories.

Remark 3.2. (Reference constraint set) The setR is later used to characterize all feasible reference
trajectories for which the terminal ingredients should guarantee certain properties. This set can
be modified to incorporate additional incremental input constraints ‖ur(t + 1)− ur(t)‖∞ ≤ ε

with some ε > 0, which can reduce the conservatism of the design of the terminal ingredients.
Additional restrictions to the considered set of reference trajectories that could be considered
include asymptotically constant trajectories [91, 93] or periodic trajectories [23]. Setpoints are
included as a special case by choosing Zr based on the steady-state manifold and considering
R = {(r, r+) ∈ Zr ×Zr | r = r+}, compare also Remark 3.20.

Define the tracking error er(t) := x(t)− xr(t). The control goal is to achieve (uniform)
stability of the tracking error er = 0, while ensuring satisfaction of the constraints (3.1).
For simplicity of exposition, we consider a quadratic reference tracking stage cost

`(x, u, r) = ‖x− xr‖2
Q + ‖u− ur‖2

R, (3.3)

with positive definite weighting matrices Q ∈ Rn×n, R ∈ Rm×m.

We assume that the future reference trajectory is exactly known and denote the
reference trajectory r over the prediction horizon N ∈ I≥1 by r(·|t) ⊆ ZN+1

r , with
r(k|t) := r(t + k) for all t ∈ I≥0, k ∈ I[0,N]. We consider a terminal set Xf ⊆ X×Z and
a continuous terminal cost Vf : X×Z→ R≥0. At each time t ∈ I≥0, given the current
state x(t) and the reference trajectory r(·|t) ∈ ZN+1

r , the MPC control law is determined
based on the following optimization problem:

Problem 3.3.

minimize
u(·|t)

JN(x(·|t), u(·|t), r(·|t)) (3.4a)

23



Chapter 3 Novel design procedures for MPC schemes with dynamic operation

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (3.4b)

x(0|t) = x(t), (3.4c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (3.4d)

(x(N|t), r(N|t)) ∈ Xf, (3.4e)

where

JN(x(·|t), u(·|t), r(·|t)) :=
N−1

∑
k=0

`(x(k|t), u(k|t), r(k|t)) + Vf(x(N|t), r(N|t)). (3.4f)

The solution to this optimization problem is an optimal input trajectory u∗(·|t),
the corresponding state trajectory x∗(·|t), and the value function VN(x(t), r(·|t)) :=
JN(x∗(·|t), u∗(·|t), r∗(·|t)). The following algorithm summarizes the closed-loop opera-
tion.

Algorithm 3.4. (Trajectory tracking MPC Algorithm)
Offline: Specify the constraint set Z, the stage cost ` (Q, R), the prediction horizon N, and
design suitable terminal ingredients (Vf, Xf).
Online: At each time step t ∈ I≥0, measure the current state x(t), obtain the reference trajectory
r(·|t), solve Problem 3.3, and apply the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t), t ∈ I≥0. (3.5)

We consider the following conditions for the terminal ingredients.

Assumption 3.5. (Terminal ingredients) There exists a terminal control law kf : X×Z→ U

such that the following properties hold for any (r, r+) ∈ R and any (x, r) ∈ Xf:

Vf(x+, r+) ≤Vf(x, r)− `(x, kf, r), (3.6a)

(x, kf(x, r)) ∈Z, (3.6b)

(x+, r+) ∈Xf, (3.6c)

with x+ = f (x, kf(x, r)).
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3.1 Trajectory tracking MPC and reference generic offline computations

Assumption 3.6. (Local upper bound - value function) There exist constants cu ≥ 1, ε > 0
such that for any reference trajectory r(·|t) satisfying the conditions in Assumption 3.1, any
x(t) ∈ X with ‖x(t)− xr(t)‖Q ≤ ε, Problem 3.3 is feasible and the value function satisfies

VN(x(t), r(·|t)) ≤ cu‖x(t)− xr(t)‖2
Q. (3.7)

Assumption 3.5 summarizes standard conditions on the terminal ingredients, which
correspond to the conditions in Assumption 2.4 for R = {(xs, us), (xs, us)}. Assump-
tion 3.6 ensures that Problem 3.3 is locally feasible and the value function admits a
local quadratic upper bound. The design of suitable terminal ingredients satisfying
Assumptions 3.5–3.6 is discussed in detail in the remainder of this section.

Remark 3.7. (More general terminal conditions) The conditions in Assumption 3.5 could be
relaxed in two directions at the expense of a more involved offline design and cumbersome
notation. Firstly, the terminal cost Vf, the terminal control law kf and the terminal set Xf are
parametrized by one point r ∈ Zr of the reference trajectory. Instead, the terminal ingredients
could depend on the full future reference trajectory r(·|t), as for example considered in [91, 93]
and [23] for asymptotically constant and periodic reference trajectories, respectively. Secondly,
Assumption 3.1 ensures that the reference r(t) is contained within a control invariant subset
Z∞ ⊆ Zr. Thus, Assumption 3.5 could be relaxed such that conditions (3.6) only need to be
satisfied for points r ∈ Z∞. The exact characterization of the set Z∞ is, however, challenging
and thus we consider the stricter conditions formulated in Assumption 3.5. Furthermore, in
Assumption 3.6 the quadratic bounds could also be generalized using K∞-functions (cf. Ass. 2.3).

The following theorem summarizes the theoretical properties of the closed-loop
system (3.5).

Theorem 3.8. Let Assumptions 3.1, 3.5, and 3.6 hold. If the initial condition x0 is such that
Problem 3.3 is feasible at t = 0, then the closed-loop system (3.5) resulting from Algorithm 3.4
satisfies the constraints (3.1), Problem 3.3 is feasible for all t ∈ I≥0, and er = 0 is (uniformly)
exponentially stable. Furthermore, the following performance bound holds for the closed loop:

J cl
∞ (x0) :=

∞

∑
t=0

`(x(t), u(t), r(t)) ≤ VN(x0, r(·|0)).

Proof. This theorem is a straightforward extension of standard MPC results in [236],
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compare also [93]. Given the optimal solution u∗(·|t), the candidate sequence

u(k|t + 1) =

u∗(k + 1|t) k ∈ I[0,N−2]

kf(x∗(N|t), r(N|t)) k = N − 1
,

is a feasible solution of Problem 3.3 and implies

VN(x(t + 1), r(·|t + 1)) ≤ VN(x(t), r(·|t))− `(x(t), u(t), r(t)). (3.8)

Compactness of Z in combination with the local quadratic upper bound (3.7) implies

‖x(t)− xr(t)‖2
Q ≤ VN(x(t), r(·|t)) ≤ cv‖x(t)− xr(t)‖2

Q,

for some cv ≥ cu ≥ 1, for all x(t) such that Problem 3.3 is feasible, compare [236,
Prop. 2.16]. Uniform exponential stability follows from standard Lyapunov arguments
using the time-varying Lyapunov function VN , compare [126, Thm. 2.22], [236, Thm. 2.32].
The performance bound follows by summing up Inequality (3.8) and using VN ≥ 0 with
`, Vf ≥ 0. �

This theorem ensures that the trajectory tracking MPC enjoys all the standard desirable
properties. We point out that the result in Theorem 3.8 does not require local feasibility
of Problem 3.3, and thus Assumption 3.6 could be relaxed to a weak-controllability
condition, similar to Assumption 2.5. However, the considered stronger property also
holds for the standard design procedures discussed in the remainder of this section and
will be vital for the MPC formulations using artificial reference trajectories in Section 3.2.

We point out that Problem 3.3 can be modified using the constraint tightening
in [JK17, JK29] to ensure robust reference tracking, compare [JK15, App. B] for the
technical details. As a complementary result to Theorem 3.8, in Section 4.1 trajectory
tracking without terminal ingredients is considered, which is particularly interesting in
case Assumption 3.1 does not hold, compare Section 4.3.

3.1.2 Terminal ingredients

In the following, we discuss terminal ingredients satisfying Assumptions 3.5–3.6. In
particular, we discuss terminal equality constraints and terminal sets based of a given
local CLF.

First, we consider a simple terminal equality constraint (TEC), which is also called a
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3.1 Trajectory tracking MPC and reference generic offline computations

zero-terminal constraint (ZTC) [192] in case (xr, ur) = 0.

Definition 3.9. (Local incremental finite-time controllability) A system is said to be locally
incrementally uniformly finite-time controllable on a set Z̃ ⊆ X×U, if there exist constants ν ∈
I≥1, cctr ≥ 1, εctr > 0 such that for any trajectory z(k + 1) = f (z(k), v(k)), (z(k), v(k)) ∈ Z̃,
k ∈ I≥0, z(0) = z0 ∈ X and any initial condition x0 ∈ X satisfying ‖x0 − z0‖ ≤ εctr, there
exists an input sequence u(·) ∈ Uν satisfying

x(k + 1) = f (x(k), u(k)), x(0) = x0, x(ν) = z(ν), (3.9a)

‖x(k)− z(k)‖2 + ‖u(k)− v(k)‖2 ≤ cctr‖x0 − z0‖2, k ∈ I[0,ν−1]. (3.9b)

This controllability condition is for example satisfied if the dynamics f is continuously
differentiable and the linearization along any feasible trajectory is ν-step (uniformly)
controllable. The following proposition shows that a simple terminal equality constraint
satisfies all the desired properties, if this controllability condition holds.

Proposition 3.10. Suppose that the system is locally incrementally uniformly finite-time
controllable on the set Zr (Def. 3.9). Then, for any prediction horizon N ≥ ν, Assumptions 3.5–
3.6 hold with Xf = {(x, r) ∈ X×Zr | x = xr}, kf(x, r) = ur, Vf(x, r) = 0.

Proof. Satisfaction of Assumption 3.5 follows directly from the definition of the terminal
equality constraint and the reachable reference trajectory (cf. Ass. 3.1). Consider
Problem 3.3 at time t with a state x(t) ∈ X satisfying ‖x(t) − xr(t)‖Q ≤ ε, with a
constant ε ∈ (0, εctr

√
λmin(Q)] and a prediction horizon N ∈ I≥ν. Using controllability

from Definition 3.9, there exists an input trajectory u(·|t) ∈ Uν that drives the state
x(t) to xr(ν|t) in ν steps. We obtain a feasible candidate input sequence u(·|t) ∈ UN

for Problem 3.3 by appending u(k|t) = ur(k|t), k ∈ I[ν,N−1] x(k|t) = xr(k|t), k ∈ I[ν,N].
Inequality (3.9b) ensures

‖x(k|t)− xr(k|t)‖2
Q + ‖u(k|t)− ur(k|t)‖2

R (3.10)

≤cctr
max{λmax(Q), λmax(R)}

λmin(Q)
‖x(t)− xr(t)‖2

Q

≤cctr
max{λmax(Q), λmax(R)}

λmin(Q)
ε2, k ∈ I[0,ν−1].

Given that r(k|t) ∈ Zr ⊆ int(Z), there exists a small enough (uniform) constant
ε ∈ (0, εctr

√
λmin(Q)] such that Inequality (3.10) ensures (x(k|t), u(k|t)) ∈ Z, k ∈

I[0,N−1]. Thus, the considered candidate input sequence u(·|t) ∈ UN satisfies the
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constraints in Problem 3.3 and thus Problem 3.3 is locally feasible. Finally, the local
quadratic upper bound (3.7) follows directly from Inequality (3.10) with cu := ν ·

cctr
max{λmax(Q), λmax(R)}

λmin(Q)
≥ 1. �

While a terminal equality constraint is easy to design and implement, it can also be
very conservative, yielding a small region of attraction and potentially unnecessarily
aggressive closed-loop behaviour.

The standard alternative to using a terminal equality constraint involves the design of
a local CLF.

Proposition 3.11. Suppose there exists a constant α1 > 0 such that the terminal cost Vf :
X×Z→ R≥0 and the terminal control law kf : X×Z→ U satisfy Inequality (3.6a) for all
(x, r) ∈ X×Zr satisfying Vf(x, r) ≤ α1. Assume further that Vf admits a quadratic upper
bound, i.e., there exists a constant cu ≥ 1 such that

Vf(x, r) ≤ cu‖x− xr‖2
Q, ∀(x, r) ∈ X×Zr. (3.11)

Then, there exists a constant α ∈ (0, α1] such that Assumptions 3.5–3.6 hold with Xf =

{(x, r) ∈ X×Zr | Vf(x, r) ≤ α}.

Proof. To show satisfaction of Assumption 3.5, we need to show that the positive
invariance property (3.6c) and constraint satisfaction (3.6b) hold. First, note that Inequal-
ity (3.6a) and ` ≥ 0 ensure that the terminal set Xf is positively invariant for α ≤ α1.
Denote ∆x = x− xr, ∆u = kf(x, r)− ur. Inequality (3.6a) in combination with Vf ≥ 0
ensures that

‖∆x‖2
Q + ‖∆u‖2

R = `(x, kf(x, r), r) ≤ Vf(x, r) ≤ α1, ∀(x, r) ∈ Xf.

Given that Zr ⊆ int(Z), there exists a small enough constant ε2 > 0 such that Bε2(r) ⊆ Z

for all r ∈ Zr. Thus, Condition (3.6b) holds for α ≤ α2 with

α2 := ε2
2 min{λmin(Q), λmin(R)} > 0. (3.12)

Hence, choosing α := min{α1, α2} > 0 ensures satisfaction of Assumption 3.5. Assump-
tion 3.5 ensures that for all (x, r) ∈ Xf, the terminal control law kf is a feasible solution
of Problem 3.3, which implies VN(x(t), r(·|t)) ≤ Vf(x(t), r(t)) ≤ cu‖x(t)− xr(t)‖2

Q, com-

pare [236, Sec. 2.4]. Assumption 3.6 follows by noting that ‖x− xr‖2
Q ≤ ε2 :=

α

cu
implies

(x, r) ∈ Xf. �
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Such an MPC design with a local CLF is also called quasi-infinite horizon (QINF) MPC,
since the terminal cost is a local over-approximation of the infinite-horizon tail-cost,
compare [55]. A joint offline design procedure for Vf and kf based on a local Taylor
approximation is discussed in the next section. In addition, a construction of Vf in terms
of a finite-tail sequence with a stabilizing feedback kf can be found in Proposition 4.34,
similar to [175].

Discussion

One of the main benefits of using a terminal cost/set (QINF, Prop. 3.11) is that the
desired properties also hold for an arbitrarily small prediction horizon N (assuming
Problem 3.3 is initially feasible). Furthermore, the values of cu and ε can be computed
explicitly and are typically significantly less conservative than the ones associated with
terminal equality constraints (TEC, Prop 3.10). This has a significant impact on the
closed-loop performance, which is quantitatively investigated with a numerical example
in Section 3.4.1. The main advantage of using a terminal equality constraint (Prop. 3.10)
is the fact that no offline design is required.

3.1.3 Reference generic offline computations

In Proposition 3.11, we provided a design for the terminal ingredients, given a known
local CLF Vf. In the following, we first review state of the art approaches to compute
such a local CLF and terminal ingredients offline, especially for dynamic trajectory
tracking. Then, we extend the existing methods by presenting a reference generic offline
computation, which addresses the challenge desired mode of operation changes online (cf.
Sec. 1.1 (ii)). In particular, in Lemma 3.12 we provide sufficient conditions for continu-
ously parametrized terminal ingredients based on the Jacobian. Then, in Lemma 3.13

and Proposition 3.15 tractable semidefinite programs (SDPs) are derived to compute
the corresponding parametrized terminal ingredients. The overall offline procedure is
summarized in Algorithm 3.22. The extension of this offline design procedure to more
general (non-quadratic) tracking stage costs and economic stage costs can be found in
Appendix B and Section 3.3.5, respectively. Details regarding the continuous-time case
can be found in [JK15, App. C].
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Existing design procedure for terminal ingredients

For linear stabilizable systems, a terminal set and terminal cost can be computed based
on the LQR and the maximal output admissible set [114]. For the purposes of stabilizing
a given setpoint, a suitable design procedure for nonlinear systems with a stabilizable
linearization has been provided in [55, 236], which is also discussed in Section 2.1.

In Section 1.1, we identified non-stationary operation as the first challenge regarding
dynamic operation. In the offline design of terminal ingredients, this requires an
extension of the design in [55, 236] to dynamic trajectories. For the case of dynamic
trajectory tracking, the nonlinear system can be locally approximated as a linear time-
varying (LTV) system. Using such a description, in [91, 93] a time-varying terminal
cost Vf(x, t) and terminal control law kf(x, t) are computed offline for asymptotically
constant trajectories using the Riccati differential equation. Similarly, in [23] periodic
trajectories are considered and periodically time-varying terminal ingredients Vf(x, t),
kf(x, t) are computed using linear matrix inequalities (LMIs). Although there already
exist design methods for trajectory tracking, these methods are limited to special classes
of trajectories (periodic or asymptotically constant) and the complexity of the offline
design scales with the length of the reference trajectory r(·).

The second challenge for dynamic operation is that the desired mode of operation changes
online (cf. Sec. 1.1, (ii)). Regarding the design of terminal ingredients, online changing
reference trajectories or setpoints typically necessitate repeated re-design of the terminal
ingredients. Thus, offline procedures independent of the reference are desired, which
we refer to as reference generic offline computations. For the special case of setpoint
tracking, this issue has received significant attention in literature. In [105], the issue of
finding a setpoint independent quadratic terminal cost has been investigated based on
the concept of pseudo linearization. While in principle very appealing, the computation
of such a pseudo linearization for general nonlinear systems seems unpractical. In [176],
a locally stabilizing controller is assumed and the terminal cost and constraints are
defined implicitly based on the infinite horizon tail cost. The main drawback of this
method is the implicit description of the terminal cost, which can significantly increase
the online computational demand. Terminal ingredients based on finite tail sequences
can be found in [175] and will also be discussed in Section 4.1.5. In [164], the feasible
setpoints are partitioned into disjoint sets and for each such set a linear stabilizing
controller and quadratic terminal cost are designed using the methods in [274, 275]
based on a local LTV system description. This method is mainly limited to systems with
a one dimensional steady-state manifold, due to the otherwise complex and difficult
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partitioning. In addition, the piece-wise definition can also lead to numerical difficulties,
especially in combination with artificial reference trajectories (Sec. 3.2). Thus, there
exist reference generic design methods for setpoint tracking, but the parametrization and
scalability issues may limit the practical application. Furthermore, to the best knowledge
of the author, similar methods for dynamic trajectories are not addressed in literature.

The last challenge identified in Section 1.1 is that the optimal mode of operation is not
directly specified in terms of given state and input setpoints/trajectories (cf. Sec. 1.1, (iii)). This
corresponds to the consideration of a general stage cost `, which is neither quadratic in
(x, u) nor positive (semi-)definite. Such more general stage costs are studied in economic
MPC [96]. A corresponding design for terminal ingredients for fixed steady-states can
be found in [16]. In addition to the usual stabilizing quadratic component, the economic
terminal cost Vf(x) also contains a linear gradient correcting term. In [208, Rk. 8],
for changing setpoints r, the computation of a continuously parametrized terminal
cost Vf(x, r) was proposed using the pole placement formula. However, to the best
knowledge of the author, this approach cannot be directly translated into a simple
optimization problem and hence has never been implemented in a numerical example.
A (possibly conservative) positive definite terminal cost Vf based on a CLF has been
proposed in [10, 11]. For the special case of output-tracking/path-following stage costs
` and asymptotically constant reference trajectories a design has been proposed in [91,
94].

Overall, design procedures for economic terminal costs Vf for dynamic trajectories
and reference generic offline computations have not been addressed in literature.

We present a reference generic offline computation, which is applicable to general
dynamic trajectories (not just asymptotically constant or periodic) and does not neces-
sitate repeated offline computations under online changing operation conditions. The
main idea is to parametrize the Jacobian of the nonlinear dynamics as a quasi-linear
parameter-varying (LPV) system and then use gain-scheduling methods to compute
parametrized terminal ingredients using LMIs [40]. The extension of this design proce-
dure to more general output tracking stage costs and economic stage costs can be found
in Appendix B and Section 3.3.5, respectively.
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Sufficient conditions based on the Jacobian

Suppose the dynamics f are continuously differentiable and denote the Jacobian of f
evaluated around an arbitrary point (xr, ur) = r ∈ Zr by

A(r) =
[

∂ f
∂x

]∣∣∣∣
(xr,ur)

, B(r) =
[

∂ f
∂u

]∣∣∣∣
(xr,ur)

. (3.13)

Lemma 3.12. Suppose that f is twice continuously differentiable. Assume that there exist a
continuously parametrized matrix K : Zr → Rm×n and a continuously parametrized positive
definite matrix P : Zr → Rn×n such that for any (r, r+) ∈ R, the following matrix inequality
is satisfied

(A(r) + B(r)K(r))>P(r+)(A(r) + B(r)K(r)) � P(r)− (Q + K(r)>RK(r))− εIn, (3.14)

with some ε > 0. Then, there exists a constant α > 0 such that Vf(x, r) = ‖x − xr‖2
P(r),

kf(x, r) = ur + K(r) · (x− xr), and Xf = {(x, r) ∈ X×Zr | Vf(x, r) ≤ α} satisfy Assump-
tions 3.5–3.6.

Proof. The proof is very much in line with the result for setpoints in [55, 236]. Given
Proposition 3.11, we only need to show that Vf locally satisfies (3.6a). The local quadratic
upper bound (3.11) holds with cu := maxr∈Zr λmax(P(r)) using the fact that P is
continuous and Zr is compact. In the following, we show that there exists a small
enough constant α1 > 0 such that Inequality (3.6a) holds for all Vf(x, r) ≤ α1. Denote
∆x := x− xr and ∆u := kf(x, r)− ur = K(r)∆x. Using a first order Taylor approximation
at r = (xr, ur), we get

f (x, kf(x, r)) = f (xr, ur) + A(r)∆x + B(r)∆u + Φ(∆x, r),

with the remainder term Φ. The terminal cost satisfies

Vf(x+, r+) = ‖ f (x, u)− f (xr, ur)‖2
P(r+) = ‖(A(r) + B(r)K(r))∆x + Φ(∆x, r)‖2

P(r+)

≤‖(A(r) + B(r)K(r))∆x‖2
P(r+) + ‖Φ(∆x, r)‖2

P(r+)

+ 2‖Φ(∆x, r)‖P(r+)‖(A(r) + B(r)K(r))∆x‖P(r+)

(3.3),(3.14)
≤ Vf(x, r)− ε‖∆x‖2 − `(x, kf(x, r), r) + ‖Φ(∆x, r)‖2

P(r+)

+ 2‖Φ(∆x, r)‖P(r+)‖(A(r) + B(r)K(r))∆x‖P(r+). (3.15)
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Using the continuity of P(r), K(r) and the compactness of the constraint set Zr, there
exist finite non-negative constants

ku := max
r∈Zr
‖K(r)‖ ≥ 0, cl := min

r∈Zr
λmin(P(r)) ≥ λmin(Q) > 0, (3.16)

cu,2 := max
r∈Zr

λmax(P(r)− (εI + Q + K(r)>RK(r))) ≥ 0.

Suppose that for all Vf(x, r) ≤ α1, the remainder term Φ is locally Lipschitz3 continuous
in the first argument with a constant LΦ satisfying

‖Φ(∆x, r)‖ ≤ LΦ‖∆x‖, LΦ :=
√

cu,2 + ε

cu
−
√

cu,2

cu
. (3.17)

Then, for all Vf(x, r) ≤ α1, we have

‖Φ(∆x, r)‖2
P(r+) + 2‖Φ(∆x, r)‖P(r+)‖(A(r) + B(r)K(r))∆x‖P(r+)

(3.14),(3.16),(3.17)
≤

(
L2

Φcu + 2LΦ
√

cu
√

cu,2

)
‖∆x‖2

=

(
cu

(
LΦ +

√
cu,2

cu

)2

− cu,2

)
‖∆x‖2

(3.17)
≤ ε‖∆x‖2,

which, in combination with Inequality (3.15), implies Inequality (3.6a). Twice continuous
differentiability of f in combination with compactness of Z, Zr implies that there exists
some constant T > 0 with

‖Φ(∆x, r)‖ ≤ T
(
‖∆x‖2 + ‖∆u‖2

) (3.16)
≤ T(1 + k2

u)‖∆x‖2, ∀r ∈ Zr.

Thus, for all Vf(x, r) ≤ α1, we have ‖∆x‖ ≤
√

α
cl

and the Lipschitz bound (3.17) holds by
choosing

α1 :=cl

(
LΦ

T(1 + k2
u)

)2

> 0. (3.18)

�

As a summary, given matrices P, K satisfying (3.14), we can compute a local Lip-

3In line with existing procedures [55], we first derive a sufficient local Lipschitz bound LΦ and then
obtain a local region α1 (3.18). Alternatively, it is possible to directly use the quadratic bound
‖Φ(∆x, r)‖ ≤ c‖∆x‖2 and work with higher order terms to obtain α1, compare [JK24, Prop. 1].
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schitz bound (3.17), which in turn implies a maximal terminal set size α1. Then, in
Proposition 3.11 the constraint sets Z and Zr in combination with K, P imply an upper
bound α2 to ensure constraint satisfaction. Thus, Assumptions 3.5–3.6 hold for any
α ≤ min{α1, α2}. This result is an extension of the design in [55, 236] to arbitrary dy-
namic references. We point out that any terminal cost Vf satisfying Assumptions 3.5–3.6
also constitutes a (local) incremental CLF (cf. App. C) for a class of system trajectories,
compare also the discussion in Section 4.1.4.

Design procedure based on a quasi-LPV presentation

Lemma 3.12 states that matrices satisfying Inequality (3.14) can directly be used to
construct terminal ingredients satisfying Assumptions 3.5–3.6 with a suitable terminal set
size α. In the following, we formulate computationally tractable optimization problems
to compute parametrized matrices that satisfy the conditions in Lemma 3.12. The
following lemma transforms the conditions in Inequality (3.14) to equivalent conditions
that are linear in the arguments.

Lemma 3.13. Suppose there exist continuously parametrized matrices X : Zr → Rn×n,
Y : Zr → Rm×n, and Xmin ∈ Rn×n that satisfy the following constraints

min
X, Y, Xmin

− log det Xmin (3.19a)

s.t.


X(r) (A(r)X(r) + B(r)Y(r))> (Q + εIn)1/2X(r) (R1/2Y(r))>

∗ X(r+) 0 0
∗ ∗ In 0
∗ ∗ ∗ Im

 � 0, (3.19b)

Xmin � X(r), (3.19c)

∀(r, r+) ∈ R. (3.19d)

Then, P = X−1, K = YP satisfy (3.14) for all (r, r+) ∈ R.

Proof. The proof uses standard LMI techniques, compare [40]. Defining X = P−1 and
multiplying (3.14) from left and right with X yields

X(r)−

A(r)X(r) + B(r)Y(r)
(Q + εIn)1/2X(r)

R1/2Y(r)


>P(r+) 0 0

0 In 0
0 0 Im


A(r)X(r) + B(r)Y(r)

(Q + εIn)1/2X(r)
R1/2Y(r)

 � 0.
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Using the Schur complement, this reduces to (3.19b), which is linear in the matrices X,
Y. �

The optimization problem (3.19) is convex, linear in X, Y and minimizes the worst-
case terminal cost (P(r) � X−1

min ∀r ∈ Zr). So far, the result is only conceptual, since the
optimization problem (3.19) is an infinite programming problem (infinite dimensional
optimization variables with infinite dimensional constraints). In particular, we need a
finite parametrization of X, Y and the infinite constraints need to be converted into a
finite set of sufficient constraints.

We approach this problem from the perspective of quasi-LPV systems and gain
scheduling [243]. First, we write the Jacobian (3.13) as

A(r) = A0 +
p

∑
j=1

θj(r)Aj, B(r) = B0 +
p

∑
j=1

θj(r)Bj, (3.20)

with some nonlinear continuously differentiable parameters θ = (θ1, . . . , θp) : Zr → Rp

and constant matrices Ai ∈ Rn×n, Bi ∈ Rn×m, i ∈ I[0,p]. This can always be achieved
with p ≤ n(n + m). We impose the same structure on the optimization variables with

X(r) = X0 +
p

∑
j=1

θj(r)Xj, Y(r) = Y0 +
p

∑
j=1

θj(r)Yj, (3.21)

and constant matrices Xi ∈ Rn×n, Yi ∈ Rm×n, i ∈ I[0,p]. Using the parametrization (3.20)-
(3.21), the optimization problem (3.19) contains only a finite number of optimization
variables, but still needs to be verified for all (r, r+) ∈ R.

Remark 3.14. (Input affine systems) For input affine systems of the form f (x, u) = fx(x) + Bu,
the Jacobian (3.20) and correspondingly the parameters θi only depend on xr. Thus, the resulting
terminal ingredients are solely parametrized by the state xr.

Finite dimensional SDP

In order to convert the infinite dimensional constraints in (3.19) to a set of sufficient
LMIs, we match the constraint sets R on the reference r to polytopic constraints on the
parameters θ. We need a polytopic set Θ ⊆ Rp ×Rp that satisfies

(θ(r), θ(r+)) ∈ Θ, ∀(r, r+) ∈ R. (3.22)
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A particularly simple structure that satisfies this condition is the following joint polytopic
constraint set

Θ := {(θ, θ+) ∈ Θ×Θ | θ+ ∈ {θ} ⊕Ω}, (3.23)

with hyperboxes Θ = {θ ∈ Rp | θi ∈ [θi, θi], i ∈ I[1,p]}, Ω = {∆θ ∈ Rp | ∆θi ∈
[vi, vi], i ∈ I[1,p]}. The constants θi, θi, vi, vi need to satisfy θ(r) ∈ Θ for all r ∈ Zr

and θ(r+) ∈ θ(r)⊕Ω for all (r, r+) ∈ R. The following proposition provides a finite
dimensional SDP to compute a terminal cost using the 6p vertices of the set Θ (3.23).

Proposition 3.15. Let Condition (3.22) hold with Θ according to (3.23). Suppose that there
exist matrices Xi, Yi, i ∈ I[0,p], Λi, i ∈ I[1,p], Xmin that satisfy the following constraints

min
Xi, Yi, Λi, Xmin

− log det Xmin (3.24a)

s.t.


X(θ) X(θ)A(θ)> + Y(θ)>B(θ)> (Q + ε)1/2X(θ) (R1/2Y(θ))>

∗ X(θ+) 0 0
∗ ∗ I 0
∗ ∗ ∗ I


�
(

∑
p
i=1 θ2

i Λi 0
0 0

)
, (3.24b)

Xmin � X(θ), (3.24c)

∀(θ, θ+) ∈ vert(Θ), (3.24d)(
0 (AiXi + BiYi)

>

(AiXi + BiYi) 0

)
−Λi � 0, Λi � 0, i ∈ I[1,p]. (3.24e)

Then, the matrices P = X−1, K = YP, satisfy Inequality (3.14) for all (r, r+) ∈ R, with X, Y
according to (3.21).

Proof. Due to Lemma 3.13, it suffices to show that X(r), Y(r) satisfy the constraints
in (3.19). Condition (3.22) and Λi � 0 imply that any solution that satisfies the con-
straints (3.24b) for all (θ, θ+) ∈ Θ, also satisfies the constraints (3.19b) for all (r, r+) ∈ R.
It remains to show that it suffices to check the inequality on the vertices of the constraint
set Θ. This last result is a consequence of multi-convexity [21, Cor. 3.2], compare
also [112]. In particular, if a function f is multi-concave along the edges of the constraint
set Θ, then it attains its minimum at a vertex of Θ and thus it suffices to verify (3.24b)
over the vertices of Θ. The edges of Θ (3.23) are characterized by {θi, θ+i , θ+i − θi},
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i ∈ I[1,p]. A function is multi-concave if the second derivative w.r.t. these directions is
negative semidefinite, compare [21, Cor. 3.4]. Similar to [21, Cor. 3.5], the additional
constraint (3.24e) ensures that the function is multi-concave. Thus, it suffices to verify
Inequality (3.24b) on the vertices of the constraint set Θ. �

Remark 3.16. (Simplified formulation) The result in Proposition 3.15 remains valid, if the
set Θ in (3.23) is replaced by the set Θ = {(θ, θ+) | θ ∈ Θ, θ+ − θ ∈ Ω}. This set has
only 4p vertices and the induced conservatism of this over-approximation is negligible if Ω is
small compared to Θ. The computational complexity can be further reduced by considering
(block-)diagonal multipliers Λi = λi I.

As discussed in Remark 3.2, we can include additional constraints on the considered
set of references R, which makes the offline computation less conservative. The ad-
vantages and applicability of the proposed design procedure are demonstrated in the
numerical examples in Section 3.4, compare also the numerical examples in [JK15].

Remark 3.17. (LPV methods) The main result is that we can formulate the offline design
procedure similar to the gain-scheduling synthesis of (quasi)-LPV systems and thus can draw
on a well established field to formulate offline LMI procedures, compare [243]. We point out
that the usage of LPV methods and gain scheduling for nonlinear systems has a long history
(cf., e.g., connection to incremental stability [110] and application to tracking MPC [56]) and
continues to be an active field, compare computational MPC approaches in [116], incremental
system properties [148, 270, 280, 281] and the recent overview in [202]. If the parameters
θi are chosen based on a vertex representation (θi ≥ 0, ∑

p
i=1 θi = 1), the multi-convexity

condition (3.24e) can alternatively be replaced by positivity conditions of the polynomials,
compare for example [200]. In [184], a convexification with an additional matrix is considered.
In [15], a piece-wise parameter-dependent Lyapunov function is computed by partitioning the
set Θ into smaller hyperboxes and computing constant matrices P, K for each interval. In case
Ω = Rp, necessary and sufficient conditions for poly-quadratic stability can be found in [69]
based on [75]. Parameter dependent Lyapunov functions for bounded rate of variant using a
linear fractional transformation (LFT) and full block multipliers can be found in [276, 285]. If we
restrict the parametrization to constant matrices P, we can use the synthesis procedures in [249]
based on a LFT and full block multipliers, compare also [248, 250, 268].

Remark 3.18. (Sum-of-squares) An alternative solution to this problem is sum-of-squares (SOS)
optimization [220], which is also frequently used to compute Lyapunov or storage functions,
compare, e.g., [JK1, 62, 85, 225]. Assuming A, B are polynomial, consider matrices X, Y
polynomial in r (with a specified order d) and ensure that the matrix in (3.19b) or (3.14)
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is positive definite on Zr. A similar approach is suggested in [178] to compute a control
contraction metric (CCM) for continuous-time systems, which is a strongly related problem. SOS
optimization is also used for the computation of invariant sets in setpoint tracking and reference
governors in [62], which is closely related to the tracking formulation considered in Section 3.2.
We do not pursue SOS approaches here since many systems require a high order polynomial to
approximate the nonlinear dynamics and the computational complexity grows exponentially in
nd, thus potentially prohibiting the practical application. In addition, considering the constraint
r ∈ Zr is crucial in the discrete-time case and requires additional generalized S-procedure
variables (cf., e.g., [JK1, Sec. 4]). The connection between CCM and LPV gain-scheduling design
is discussed in [280], compare also Appendix C.

Remark 3.19. (Gridding) A common heuristic to ensure that parameter dependent LMIs such
as (3.19) hold for all (r, r+) ∈ R is to consider the constraints on sufficiently many sample
points in the constraint set, compare [21, Sec. 4.2]. Due to continuity, the constraint is typically
satisfied on the full constraint set, if it (strictly) holds on a sufficiently fine grid. If this method
is applied, it is crucial to a posteriori verify satisfaction of Condition (3.6a), e.g., by using a
finer grid. For the simple structure of R in Assumption 3.1, this gridding can be achieved by
gridding r ∈ Zr, computing x+r = f (xr, ur), and considering all u+

r such that (x+r , u+
r ) ∈ Zr.

This approach does not introduce additional conservatism, but is computationally challenging for
high dimensional systems. If some parameters (e.g., ur) enter the LMIs affinely and are subject to
polytopic constraints, it suffices to consider the vertices of the corresponding constraint set.

Remark 3.20. (Special case - setpoint tracking) Setpoint tracking is included in the previous
derivation as a special case with R = {(r, r+) ∈ Zr ×Zr | r+ = r} and the steady-state
manifold Zr. In this case, the SDP in Proposition 3.15 significantly simplifies with Ω = {0},
Θ = {(θ, θ+) ∈ Θ×Θ | θ+ = θ}, resulting in only 2p vertices. Furthermore, it suffices to
consider the steady-state manifold Zr to determine the parameters θ(r) that characterize the
Jacobian A(r), B(r), compare, e.g., [62]. Thus, the dimension p is typically significantly smaller
in the setpoint tracking case, which also reduces the computational complexity of SOS or heuristic
gridding.

Remark 3.21. (General stage cost `) For simplicity of exposition, we consider positive definite
quadratic stage costs `(x, u, r) (3.3) in this section. The presented reference generic offline
design procedure can be readily extended to more general (twice continuously differentiable)
tracking stage costs `, such as output tracking stage costs `(x, u, r) = ‖h(x, u)− h(xr, ur)‖2

S(r)
for some smooth output h : Z → Y, compare Appendix B. The non-trivial extension to
economic (indefinite) stage costs `eco is detailed in Section 3.3.5. Analogous derivations for the
continuous-time case can be found in [JK15, App. C].
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Terminal set size α

The terminal set size α derived in Lemma 3.12 and Proposition 3.11 can be quite
conservative which reduce the region of attraction and closed-loop performance of the
MPC formulation. In the following, we outline how a non-conservative value α can be
computed (given P and K) in order to reduce the conservatism.

For simplicity, we consider a polytopic constraint set Z = {r = (x, u) ∈ Rn+m|
Lj · r ≤ lj, j ∈ I[1,nz]}. The largest constant α2 such that α ≤ α2 implies constraint
satisfaction (3.6b) can be computed with

α2 := max
α

α (3.25)

s.t. ‖P(r)−1/2
(

In K>(r)
)

L>j ‖2α ≤ (lj − Ljr)2,

∀r ∈ Zr, j ∈ I[1,nz].

This problem can be efficiently solved by gridding the constraint set Zr, solving the
resulting linear program (LP) for each point r and taking the minimum. In the special
case that P, K are constant, this reduces to one small scale LP. Similar procedures can be
applied for nonlinear Lipschitz continuous constraints, compare Section 3.2.2.

Determining a non-conservative constant α1, related to the local CLF Vf can be
significantly more difficult. Conceptually, a corresponding value can be computed with
the following non-convex optimization problem:

α1 := max
α

α (3.26)

s.t. (3.6a) holds ∀(r, r+) ∈ R, ∀x : Vf(x, r) ≤ α.

In the special case of stabilizing a fixed steady-state (R = {0, 0}), this reduces to
the procedure suggested in [55, Rk. 3.1]. Convex solvers, such as sequential quadratic
programming (SQP), cannot be employed to determine α1 using (3.26), since the problem
is highly non-convex and local minima would result in terminal ingredients that do not
satisfy Assumption 3.5. Alternatively, heuristic sampling approaches can be used to
directly check the constraints in (3.26) (cf. [JK15, Alg. 1]). The conservatism of using
Lipschitz bounds can also be reduced by considering Hölder continuity and computing
the corresponding bounds using sampling4 [117, 232]. The overall offline procedure to
compute the terminal ingredients (Ass. 3.5) is summarized in the following algorithm.

4For general nonlinear dynamics, even the computation of the Lipschitz constant LΦ is challenging and
may require global solvers or heuristic sampling.
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Algorithm 3.22. Reference generic offline computation - Terminal ingredients

1: Define θ parametrizing the Jacobian (3.20).
2: Compute P, K using LMIs:

Determine hyperboxes Θ, Ω according to (3.22), (3.23).
Solve SDP (3.24)
(Alternatives: Gridding, SOS,. . .)

3: Compute the size of the terminal set α := min{α1, α2}:
a) compute α2 using (3.25) or (3.12),
b) compute α1 using (3.26) or (3.18).

Remark 3.23. (Linear difference inclusion, LDI) The applicability of the proposed approach
strongly hinges on sufficiently smooth dynamics, since we use arguments based on the Jaco-
bian (3.13) and local Taylor approximations (Lemma 3.12), and thus cannot be applied if f is not
continuously differentiable. Even if f is twice continuously differentiable, the terminal set size
α1 may be very small. Both of these issues can be addressed by replacing the Jacobian (3.13) with
a local LDI of the following form:
For any r ∈ Zr, any (x, u) ∈ Bε(r), there exists some (A, B) ∈ ΘLDI(r) such that

f (x, u)− f (xr, ur) = A(x− xr) + B(u− ur).

Compared to the first-order Taylor approximation, this characterization has no remainder term
Φ, but for any reference point r ∈ Zr a set of matrices A, B needs to be considered (typically a
convex hull). For r fixed, this is conceptually similar to [274, 275] where the nonlinear system
is locally characterized as an LTV system. Using such a characterization, the complexity of the
resulting SDP increases, since for any point r, multiple matrices A, B need to be considered. An
advantage is that the value α1, which is typically difficult to compute, can be set a priori through
the constant ε. A detailed numerical investigation regarding the applicability of this approach
is, however, still missing. In the special case of constant matrices P, K, the SDP significantly
simplifies, analogous to [289, Lemma 2]. Similar LDI descriptions are also used in [286] to
determine suitable time-varying terminal ingredients online.

Remark 3.24. (Application to robust MPC) In this thesis, we focus on nominal system prop-
erties for dynamic operation and neglect stability and feasibility issues due to model mismatch.
However, we wish to point out that Algorithm 3.22 can analogously be used to compute an
incremental Lyapunov function Vδ(x, xr) (cf. [18]). Such incremental Lyapunov functions or
similarly contraction metrics (cf. [169, 178]) have recently been increasingly employed to derive
corresponding (tube-based) robust MPC approaches for nonlinear systems, compare [29, 39, JK8,
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JK13, JK17, JK18, JK29, JK30, 251, 257, 258, 273]. A suitable adaptation of the LMIs to compute
incremental Lyapunov functions tailored to such a robust MPC approach can be found in [215].
A more detailed exposition regarding the connection of the proposed offline design to incremental
stability, contraction metrics and nonlinear robust MPC approaches can be found in Appendix C.

Summary

In this section, we studied trajectory tracking for reachable reference trajectories using
an MPC scheme with terminal ingredients. The main contribution of this section was the
development of a reference generic offline design procedure for the terminal ingredients
based on a quasi-LPV parametrization of the linearized dynamics. The presented
offline procedure (Alg. 3.22) is more involved than the offline computation for one
specific setpoint [55, 236] or trajectory [23, 91]. However, the main advantage of the
proposed procedure is the fact that no repeated offline computations are necessary to
account for changing operation conditions. This feature is particularly relevant for MPC
designs based on artificial reference trajectories, which are studied in the next section.
The applicability of this design procedure to nonlinear systems is demonstrated with
numerical examples in Section 3.4, compare also the numerical examples in [JK15].

3.2 Tracking MPC formulations using artificial reference

trajectories

In Section 3.1, we presented a trajectory tracking MPC formulation for reachable dynamic
reference trajectories. In this section, we extend the problem to output target signals,
which may be unreachable and subject to unpredictable changes online. To cope with
this problem, we consider an MPC formulation using an artificial periodic reference
trajectory and present a theoretical analysis that generalizes and unifies existing results
to nonlinear systems, periodic unreachable output trajectories and generalized conditions on
the terminal ingredients (Sec. 3.2.1). Furthermore, we improve this MPC formulation by
including an online optimization of the terminal set size and the reference constraint set,
which significantly improves the performance by using an additional scalar optimization
variable (Sec. 3.2.2). In addition, we show how stabilization and dynamic trajectory
planning can be formulated as partially decoupled optimization problems, which
reduces the computational demand by introducing a partial time scale separation while
ensuring recursive feasibility and convergence (Sec. 3.2.3). This section is based on and
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taken in parts literally from [JK16]5.

3.2.1 Nonlinear tracking MPC for dynamic target signals

In the following, we generalize the trajectory tracking problem considered in Section 3.1,
by considering a predicted exogenous target signal ye for some plant output y. Com-
pared to the reference tracking problem (Sec. 3.1): a) the desired reference/target is
specified with some output target ye instead of a state and input reference trajectory
(xr, ur); b) the desired target ye is not necessarily reachable (Ass. 3.1 does not hold)
and thus only the distance should be minimized; c) the target signal ye may change
unpredictably during online operation. Thus, by considering unpredictably changing
unreachable output target signals ye this section mainly focuses on the challenge that
the optimal mode of operation is not directly specified in terms of given state and input set-
points/trajectories (cf. Sec. 1.1, (iii)) and online changes in the mode of operation (cf. Sec. 1.1,
(ii)). To handle these challenges, we use an MPC formulation with artificial reference
trajectories. To allow for tractable formulations, we limit the class of non-stationary
operation (cf. Sec. 1.1, (i)) to T-periodic trajectories instead of the general time-varying
trajectories considered in Section 3.1.

Related work

MPC formulations using artificial reference setpoints/trajectories are a promising tool to
handle unreachable target signals, compare [103, 161, 163]. By using terminal constraints
for the artificial reference, these MPC formulations provide a large region of attraction
and ensure recursive feasibility independent of the (typically exogenous) target signal
ye. This MPC formulation was originally proposed in [163] for linear systems and piece-
wise constant state references, using an artificial setpoint and the maximal admissible
invariant set for tracking as the terminal constraint. In [166], this approach is extended
to periodic output target signals, using artificial periodic trajectories, an additional strict
convexity assumption, and a terminal equality constraint, compare also [165]. In [164],
the setpoint tracking formulation in [163] is extended to nonlinear systems and piece-wise
constant output target values ye. We generalize and unify the methodologies from [163,
164, 166] to design nonlinear MPC schemes that exponentially stabilize the optimal
reachable periodic trajectory given a possibly unreachable periodic output target signal,

5J. Köhler, M. A. Müller, and F. Allgöwer. “A nonlinear tracking model predictive control scheme for
unreachable dynamic target signals.” In: Automatica 118 (2020). extended version: arXiv:1911.03304,
p. 109030©2020 Elsevier Ltd.
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using general conditions on the terminal ingredients and suitable convexity conditions
on the set of feasible periodic output trajectories.

MPC formulation

We consider a predicted exogenous target signal ye(·|t) ∈ YT of length T ∈ I≥1 (ideally
representing a T-periodic signal, cf. Ass. 3.26), a nonlinear continuous output function
h : Z→ Y and some compact output space Y ⊆ Rny . We want to minimize the weighted
distance between this target signal and the output, i.e., minimize ∑∞

t=0 ‖h(x(t), u(t))−
ye(t|t)‖2

S, with some positive definite weighting matrix S ∈ Rny×ny . At time t ∈ I≥0,
given the target signal ye(·|t) ∈ YT, an optimal periodic orbit can be determined based
on the following periodic optimal control problem.

Problem 3.25.

minimize
r(·|t)

JT,e(r(·|t), ye(·|t)) (3.27a)

subject to

(r(j|t), r(mod(j + 1, T)|t)) ∈ R, j ∈ I[0,T−1], (3.27b)

with

JT,e(r(·|t), ye(·|t)) :=
T−1

∑
j=0
‖ h(xr(j|t), ur(j|t))︸ ︷︷ ︸

=:yr(j|t)

−ye(j|t)‖2
S =: ‖yr(·|t)− ye(·|t)‖2

S, (3.27c)

where mod denotes the modulo operator. The solution to this optimization problem is
the6 optimal reachable T-periodic reference trajectory r∗T(·|t) = (x∗T(·|t), u∗T(·|t)) and the
minimum is denoted by VT,e(ye(·|t)) := JT,e(r∗T(·|t), ye(·|t)). The corresponding output
reference is denoted by y∗T(·|t) ∈ YT, with y∗T(k|t) = h(r∗T(k|t)), t ∈ I≥0, k ∈ I[0,T−1]. For
the stability analysis, we assume that the target signal ye is consistent and T-periodic.

Assumption 3.26. (Consistently periodic target signal) For any t ∈ I≥0, the target signal ye

satisfies

ye(mod(k + 1, T)|t) = ye(k|t + 1), ∀k ∈ I[0,T−1].

6Uniqueness of the minimizer will be ensured in the later derivation using suitable convexity conditions.
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This assumption characterizes the fact that the prediction of ye is exact. Assuming the
target signal is T-periodic (Ass. 3.26), the optimal reachable T-periodic reference r∗T is
also consistent, i.e., r∗T(mod(k + 1, T)|t) = r∗T(k|t + 1) ∀t ∈ I≥0, k ∈ I[0,T−1].

At each time t ∈ I≥0, given the current state x(t) and the target signal ye(·|t) ∈ YT,
the MPC control law is determined by the following optimization problem:

Problem 3.27.

minimize
u(·|t), r(·|t)

JN(x(·|t), u(·|t), r(·|t)) + JT,e(r(·|t), ye(·|t)) (3.28a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (3.28b)

x(0|t) = x(t), (3.28c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (3.28d)

(x(N|t), r(N|t)) ∈ Xf, (3.28e)

(r(j|t), r(j + 1|t)) ∈ R, j ∈ I[0,T−1], (3.28f)

r(l + T|t) = r(l|t), l ∈ I[0,max{0,N−T}]. (3.28g)

The solution to this optimization problem is an optimal input trajectory u∗(·|t),
the corresponding state trajectory x∗(·|t), the artificial reference trajectory r∗(·|t) =

(x∗r (·|t), u∗r (·|t)), and the value function

WN,T(x(t), ye(·|t)) := JN(x∗(·|t), u∗(·|t), r∗(·|t)) + JT,e(r∗(·|t), ye(·|t)).

Compared to the trajectory tracking MPC formulation in Section 3.1, in the considered
MPC formulation the reference trajectory r is a decision variable and correspondingly
the constraints on the reference trajectory Zr, R (cf. Ass. 3.1) can be adjusted, compare
also Section 3.2.2. The rationale behind this optimization problem is to penalize the
(standard) tracking cost JN w.r.t. some artificial periodic reference r together with the
distance of the output of this artificial reference to the target signal using JT,e. As
we will see later in the theoretical analysis (Thm. 3.31) and the numerical examples
(Sec. 3.4.1–3.4.2), this formulation ensures that the closed loop smoothly tracks the
optimal reachable periodic trajectory x∗T. The following algorithm summarizes the
closed-loop operation.
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3.2 Tracking MPC formulations using artificial reference trajectories

Algorithm 3.28. (Tracking MPC Algorithm with artificial reference trajectory)
Offline: Specify the constraint sets Z, Zr, the weighting matrices (Q, R, S), the prediction
horizon N, the period length T, and design suitable terminal ingredients Vf, Xf (cf. Sec. 3.1).
Online: At each time step t ∈ I≥0, measure the current state x(t), obtain the target signal
ye(·|t), solve Problem 3.27, and apply the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t), t ∈ I≥0. (3.29)

Theoretical analysis

In the following, we derive the theoretical properties of the closed-loop system based
on Problem 3.27. The theoretical analysis mainly requires two assumptions: a) suitable
conditions on the terminal ingredients (Ass. 3.5–3.6) and b) a convexity and uniqueness
condition for the set of periodic output trajectories yr(·|t) ∈ YT.

Assumption 3.29. (Convexity and uniqueness) There exists a (unique) Lipschitz continu-
ous function g : YT → ZT

r such that for any trajectory r(·|t) satisfying the constraints in
Problem 3.25, it holds (gx(yr(·|t)), gu(yr(·|t))) := g(yr(·|t)) = r(·|t) = (xr(·|t), ur(·|t)).
Furthermore, the set of feasible solutions of Problem 3.25 is convex in yr(·|t), i.e., given two
feasible solutions r1, r2 ∈ ZT

r with corresponding outputs yr,1, yr,2 ∈ YT, the reference r = g(yr)

is a feasible solution of Problem 3.25 with yr = βyr,1 + (1− β)yr,2, β ∈ [0, 1].

Similar convexity conditions are also used in [166, Ass. 2] and [164, Ass. 1-2] for the
linear periodic problem and the nonlinear setpoint tracking problem, respectively. This
assumption implies that Problem 3.25 is a strictly convex optimization problem and the
minimizer r∗T is unique. Thus, for any yr 6= y∗T it is possible to incrementally change yr

such that it remains feasible and the cost JT,e decreases. Furthermore, due to convexity
the directional derivative of JT,e at y∗T in any feasible direction is non-negative, i.e., for
any reference r(·|t) satisfying the constraints in Problem 3.25, the corresponding output
yr(·|t) satisfies

∂JT,e

∂yr(·|t)

∣∣∣∣
(y∗T(·|t),ye(·|t))

(yr(·|t)− y∗T(·|t)) ≥ 0, (3.30)

which can be equivalently written as

JT,e(r(·|t), ye(·|t)) ≥ VT,e(ye(·|t)) + ‖y∗T(·|t)− yr(·|t)‖2
S. (3.31)
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Remark 3.30. (Convexity and uniqueness) Similar to [164, Rk. 1], existence of g can be ensured
based on the implicit function theorem, if a rank condition on the linearization of a suitably
defined T-step system is satisfied and f , h are continuously differentiable, compare also the
nonresonance condition in Section 4.2. In case such a unique map g does not exist, the issue of
stabilizing a unique state trajectory can be resolved by fixing a unique map g in Problem 3.27,
compare [135] and the MPC formulation in [164, Eq. (9)].
Even in case the set of reachable periodic trajectories or the steady-state manifold Zr (T = 1)
are non-convex, the convexity condition on the output trajectory (Ass. 3.29) may still hold,
compare [63] and the numerical example in Section 3.4.1. Furthermore, in case the set of feasible
steady-state outputs yr is a non-convex set in normal form (e.g., star-shaped), satisfaction of
the convexity condition can be explicitly enforced by using a homeomorphic transformation of
the output ỹ = φ(h(x, u)), compare [64]. If the convexity condition in Assumption 3.29 is not
satisfied, the MPC scheme will not necessarily stabilize the optimal reachable trajectory x∗T, but
could instead stabilize a suboptimal periodic trajectory. The main alternative to using a tracking
MPC scheme with simultaneous optimization of the artificial trajectory (Problem 3.27) would
be to directly solve Problem 3.25 and then apply a tracking MPC for this reachable reference
trajectory r∗T, compare Section 3.1. If Problem 3.25 is solved with a standard convex solver, the
solver may end in the same local minimum as the closed loop based on Algorithm 3.28. Thus,
even if the convexity condition is not satisfied, the MPC formulation in Problem 3.27 is still an
appropriate choice.

The following theorem establishes exponential stability of the optimal reachable trajec-
tory x∗T given suitable terminal ingredients (Ass. 3.5–3.6) and the convexity condition on
the set of feasible periodic output trajectories (Ass. 3.29). This result generalizes and
unifies the results in [164, 166] by considering nonlinear dynamics, periodic reference
trajectories, establishing exponential stability, and unifying the consideration of different
terminal ingredients (Ass. 3.5–3.6, Prop. 3.10–3.11).

Theorem 3.31. Let Assumptions 3.5 and 3.6 hold. If the initial condition x0 is such that
Problem 3.27 is feasible at t = 0, then the closed-loop system (3.29) resulting from Algorithm 3.28
satisfies the constraints (3.1) and Problem 3.27 is feasible for all t ∈ I≥0, independently of the
target signal ye. If additionally Assumptions 3.26 and 3.29 hold, then the optimal reachable
trajectory x∗T is (uniformly) exponentially stable for the resulting closed-loop system (3.29).

Proof. Part I: Recursive Feasibility: It suffices to note that feasibility of Problem 3.27

does not depend on the target signal ye. Correspondingly, the candidate input sequence
u(·|t + 1) in Theorem 3.8 with the shifted reference r(k|t + 1) = r∗(mod(k + 1, T)|t),
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k ∈ I[0,T−1] is a feasible solution of Problem 3.27.
Part II: Stability: Consider a periodic target signal (Ass. 3.26), which is denoted by
ye(t + k) := ye(k|t). Thus, the minimizer of Problem 3.25 is a periodic trajectory, i.e.,
x∗T(k + t) := x∗T(k|t), t ∈ I≥0, k ∈ I[0,T−1], and we write JT,e(r(·), t) := JT,e(r(·), ye(·|t)),
VT,e := VT,e(ye(·|t)), with JT,e (periodically) time-varying in the second argument
and VT,e constant in time. Define the candidate Lyapunov function W(x(t), t) :=
WN,T(x(t), ye(·|t))−VT,e and the tracking error eT(t) := x(t)− x∗T(t). In the following,
we show that there exist constants αW, cv > 0 such that

W(x(t + 1), t + 1) ≤W(x(t), t)− ‖x(t)− x∗r (0|t)‖2
Q, (3.32a)

αW‖eT(t)‖2
Q ≤W(x(t), t) ≤ cv‖eT(t)‖2

Q, (3.32b)

holds for all x(t) such that Problem 3.27 is feasible. The shifted reference r(·|k + 1) in
Part I satisfies JT,e(r(·|t + 1), t + 1) = JT,e(r∗(·|t), t). Thus, feasibility in combination
with Inequality (3.8) implies W(x(t + 1), t + 1) −W(x(t), t) ≤ −`(x(t), u(t), r∗(0|t)),
which implies (3.32a). Lipschitz continuity of g implies

‖x∗r (0|t)− x∗T(0|t)‖Q ≤ ‖x∗r (·|t)− x∗T(·|t)‖Q (3.33)

=‖gx(y∗r (·|t))− gx(y∗T(·|t))‖Q ≤ Lg‖y∗r (·|t)− y∗T(·|t)‖S,

with some constant Lg > 0. Thus, strong convexity (cf. (3.31)) implies

JT,e(r∗(·|t), t)−VT,e ≥ ‖y∗T(·|t)− y∗r (·|t)‖2
S

≥1/L2
g‖x∗T(·|t)− x∗r (·|t)‖2

Q ≥ 1/L2
g‖x∗T(0|t)− x∗r (0|t)‖2

Q.

Correspondingly, using the fact that a2 + b2 ≥ 1
2(a + b)2 for all a, b ∈ R yields the lower

bound

W(x(t), t) ≥ ‖x(t)− x∗r (0|t)‖2
Q + JT,e(r∗(·|t), t)−VT,e

≥‖x(t)− x∗r (0|t)‖2
Q + 1/L2

g‖x∗T(0|t)− x∗r (0|t)‖2
Q ≥ αW‖eT(t)‖2

Q,

with αW := 1
2 min{1, 1/L2

g} > 0. In case ‖eT(t)‖2
Q ≤ ε2, Assumption 3.6 ensures

that r(·|t) = r∗T(·|t) is a feasible solution of Problem 3.27, which implies W(x(t), t) ≤
cu‖eT(t)‖2

Q. As in Theorem 3.8, compact constraints together with this local upper
bound imply the upper bound in (3.32b) with some constant cv ≥ cu, compare [236,
Prop. 2.16]. Inequalities (3.32) imply (uniform) stability of x∗T for the closed-loop system,
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but not necessarily asymptotic or exponential stability.
Part III: Exponential stability - case distinction:
Case 1: Consider

‖x(t)− x∗r (0|t)‖2
Q ≥ γ‖y∗r (·|t)− y∗T(·|t)‖2

S, (3.34)

with a later specified constant γ > 0. Then, Inequalities (3.32a) and (3.33) imply

W(x(t + 1), t + 1)−W(x(t), t)
(3.32a)
≤ − ‖x(t)− x∗r (0|t)‖2

Q

(3.34)
≤ −1

2

(
‖x(t)− x∗r (0|t)‖2

Q + γ‖y∗r (·|t)− y∗T(·|t)‖2
S

)
(3.33)
≤ − 1

2

(
‖x(t)− x∗r (0|t)‖2

Q +
γ

L2
g
‖x∗r (0|t)− x∗T(0|t)‖2

Q

)

≤− 1
4

min

{
1,

γ

L2
g

}
‖x(t)− x∗T(t)‖2

Q.

Case 2: Assume

‖x(t)− x∗r (0|t)‖2
Q ≤ γ‖y∗r (·|t)− y∗T(·|t)‖2

S. (3.35)

Compactness of Y implies that there exists a constant y > 0 such that ‖yr − ỹr‖2
S ≤ y2,

for any trajectories yr, ỹr ∈ YT. This implies

‖x(t)− x∗r (0|t)‖2
Q

(3.35)
≤ γ‖y∗r (·|t)− y∗T(·|t)‖2

S ≤ γy2.

For γ ≤ γ1 := ε2/y2, we have ‖x(t)− x∗r (0|t)‖2
Q ≤ ε2. Thus, Assumption 3.6 implies

‖x∗(1|t)− x∗r (1|t)‖2
Q ≤ JN(x∗(·|t), u∗(·|t), r∗(·|t))) (3.36)

(3.7)
≤ cu‖x(t)− x∗r (0|t)‖2

Q

(3.35)
≤ γcu‖y∗r (·|t)− y∗T(·|t)‖2

S ≤ γcuy2.

For γ ≤ γ2 := ε2/(4cuy2) ≤ γ1 this implies ‖x(t + 1) − x∗r (1|t)‖Q ≤ ε/2. Consider
yr(j|t + 1) = h(r(j|t + 1)), j ∈ I[0,T−1], where r(·|t + 1) is the candidate reference from
Part I of the proof. At time t + 1, define an auxiliary reference

ŷr := βyr(·|t + 1) + (1− β)y∗T(·|t + 1), β ∈ [0, 1], (3.37)

with the corresponding state and input trajectory g(ŷr) = r̂ = (x̂r, ûr). Convexity (cf.
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Ass. 3.29) ensures that the auxiliary reference r̂ is a feasible solution of Problem 3.25 at
t + 1. The definition (3.37) implies

ŷr − yr(·|t + 1) = (1− β)(y∗T(·|t + 1)− yr(·|t + 1)). (3.38)

The cost JT,e satisfies

JT,e(r̂, t + 1)−JT,e(r∗·|t, t) = (ŷr − yr(·|t + 1))>S(ŷr + yr(·|t + 1)− 2ye(·|t + 1))
(3.37)
= (1− β)(y∗T(·|t + 1)− yr(·|t + 1))>S

((1 + β)yr(·|t + 1) + (1− β)y∗T(·|t + 1)− 2ye(·|t + 1))

=− (1− β2)‖y∗r (·|t)− y∗T(·|t)‖2
S

+ (1− β)
∂JT,e

∂yr(·|t + 1)

∣∣∣∣
(y∗T(·|t+1),ye(·|t+1))

(y∗T(·|t + 1)− yr(·|t + 1))

(3.30)
≤ − (1− β2)‖y∗r (·|t)− y∗T(·|t)‖2

S. (3.39)

Lipschitz continuity (cf. (3.33)) implies

‖x(t + 1)− x̂r(0)‖Q ≤ ‖x(t + 1)− x∗r (1|t)‖Q + ‖x∗r (1|t)− x̂r(0)‖Q

≤ε

2
+ Lg‖yr(·|t + 1)− ŷr‖S

(3.38)
=

ε

2
+ Lg(1− β)‖yr(·|t + 1)− y∗T(·|t + 1)‖S.

For β ∈ [β1, 1] with β1 := 1− ε/(2Lgy), this implies ‖x(t + 1)− x̂r(0)‖Q ≤ ε. Thus,
Assumption 3.6 ensures that there exists some state and input sequence (x̂, û) such that
(x̂, û, r̂) is a feasible solution of Problem 3.27 at time t + 1 and the tracking cost satisfies

JN(x̂, û, r̂)
(3.7)
≤ cu‖x(t + 1)− x̂r(0)‖2

Q (3.40)

≤2cu(‖x(t + 1)− x∗r (1|t)‖2
Q + ‖x∗r (1|t)− x̂r(0)‖2

Q)

≤2cu‖x(t + 1)− x∗r (1|t)‖2
Q + 2cuL2

g‖yr(·|t + 1)− ŷr‖2
S

(3.38)
≤ 2cu‖x(t + 1)− x∗r (1|t)‖2

Q + 2cuL2
g(1− β)2‖y∗r (·|t)− y∗T(·|t)‖2

S,

where the second to last inequality follows from Lipschitz continuity, compare (3.33).
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Correspondingly, we have

W(x(t + 1), t + 1)−W(x(t), t)

≤JN(x̂, û, r̂) + JT,e(r̂, t + 1)−JT,e(r∗(·|t), t)− ‖x(t)− x∗r (0|t)‖2
Q

(3.39),(3.40)
≤ 2cu‖x(t + 1)− x∗r (1|t)‖2

Q − ‖x(t)− x∗r (0|t)‖2
Q

− ((1− β2)− 2cuL2
g(1− β)2)︸ ︷︷ ︸

=:c2(β)

‖y∗r (·|t)− y∗T(·|t)‖2
S

(3.33),(3.36)
≤ (2c2

uγ− c2(β)/2)‖y∗r (·|t)− y∗T(·|t)‖2
S

− c2(β)/(2L2
g)‖x∗r (0|t)− x∗T(0|t)‖2

Q − ‖x(t)− x∗r (0|t)‖2
Q

≤(2c2
uγ− c2(β)/2)‖y∗r (·|t)− y∗T(·|t)‖2

S

−min
{

1
2

, c2(β)/(4L2
g)

}
‖x(t)− x∗T(0|t)‖2

Q.

Let β = β2 := arg maxβ∈[β1,1] c2(β), with c2(β2) > 0. For γ ≤ γ3 := c2(β2)/(4c2
u), this

implies

W(x(t + 1), t + 1)−W(x(t), t) ≤ −min
{

1
2

, c2(β2)/(4L2
g)

}
‖x(t)− x∗T(t)‖2

Q.

Combine: Combining these two cases yields

W(x(t + 1), t) ≤W(x(t), t)− γT‖x(t)− x∗T(t)‖2
Q, (3.41)

γT :=min

{
c2(β2)

4L2
g

,
1
4

,
γ

4L2
g

}
, γ := min{γ1, γ2, γ3}.

Uniform exponential stability follows using Inequalities (3.32b), (3.41) and standard
Lyapunov arguments. �

Discussion

Theorem 3.31 ensures exponential stability of the optimal reachable trajectory x∗T by
showing quadratic lower and upper bounds and an exponential decay of the Lyapunov
function W := WN,T − VT,e. The exponential decay of W is shown by utilizing two
distinct candidate solutions, namely (x̂, û, r̂) and the standard candidate solution from
Theorem 3.8. In particular, we distinguish whether the tracking error ‖x∗r (0|t)− x(t)‖2

Q

is large/small (γ) compared to the output tracking cost JT,e − VT,e. If the reference
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tracking error is large, then the standard candidate solution (cf. Thm. 3.8) ensures a
sufficient exponential decrease in the Lyapunov function W. On the other hand, if the
reference tracking error is small enough (γy2), then the convexity condition (Ass. 3.29)
ensures that the artificial reference r can be incrementally (β < 1) moved towards the
optimal reachable reference r∗T, which decreases the output tracking cost JT,e. The local
quadratic bound (3.7) (Ass. 3.6) on the value function VN ensures that the optimization
problem is feasible with the incrementally moved reference r̂ and that the increase
in the tracking cost JN is quadratically bounded. Finally, there exists a sufficiently
small change (β2 < 1) such that this auxiliary candidate solution (x̂, û, r̂) ensures an
exponential decay in W.

Remark 3.32. (Model uncertainty and offset-free tracking) Similar to the derivations in [164,
166], Theorem 3.31 assumes no model mismatch, which is rarely the case in practical applications.
To ensure robust recursive feasibility despite disturbances, Problem 3.27 needs to be adjusted using
constraint tightening techniques from robust MPC (cf. [159]). A corresponding formulation for
nonlinear robust setpoint tracking MPC (T = 1) can be found in the recent paper [JK30], which
combines the formulation presented in Section 3.2.2 with the nonlinear robust MPC formulation
in [JK29]. An additional modification to explicitly include the model mismatch in tracking MPC
formulations with artificial setpoints has been proposed in [247] (for linear systems), which
allows for stronger robust convergence guarantees.
In addition to possible feasibility issues, model mismatch typically also implies non-zero offset,
even in case of constant references. For the special case of setpoint tracking (T = 1), this issue
is typically resolved using offset-free MPC formulations (cf. [201, 218] and references therein),
which rely on a disturbance estimator for constant offsets or velocity formulations (cf. [36, 59,
159, 176, 213]). In order to transfer this concept to T-periodic trajectories, the dimension of the
disturbance model must be increased (cf. [173]) or the velocity formulation needs to be adjusted
for periodic signals (cf. Sec. 4.2.3). An alternative approach to ensure offset-free tracking is
to use a parameter estimation scheme with an adaptive MPC formulation, under appropriate
assumptions on the model mismatch, compare, e.g., [45, 219] or [82]. Extending the proposed
approach to ensure offset-free tracking for dynamic/periodic trajectories despite deterministic
model mismatch requires further research.

Remark 3.33. (Extensions and open issues) The proposed approach can be extended to sta-
bilize the economically optimal reachable reference trajectory r, as an extension to the linear
approach in [165], assuming that Problem 3.25 remains (strictly/strongly) convex (Ass. 3.29).
In Section 3.3, we extend the proposed formulation to use a purely economic cost function,
similar to [87, 206, 208]. Recently, in [JK4] for the special case of linear systems, the analysis
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in Theorem 3.31 was extended to stage costs ` with Q only positive semidefinite using suitable
observability conditions, which is especially relevant for input-output and data-driven models,
compare [JK3, JK4, JK5, JK6, 51, 65, 66, 180, 181, 182, 183]. The consideration of nonperiodic
dynamic target signals in this framework is still an open topic.

Remark 3.34. (Reference governor) Setpoint stabilization is a special case in Theorem 3.31 with
T = 1 and Zr corresponding to the feasible steady-state manifold (cf. Rk. 3.20). In this case,
the considered MPC formulation is strongly related to the reference governor problem [113],
compare also earlier MPC formulations [58] using a feasibility recovery mode. In particular, for
a horizon of N = 0, we can define the MPC control law as u(t) = kf(x(t), r∗(0|t)), in which
case Problem 3.27 only adjusts the artificial reference r to ensure constraint satisfaction, while a
locally stabilizing controller kf is applied in closed loop, analogous to a reference governor. Due
to this similarity, the reference generic offline computations (Sec. 3.1.3) can equally be used to
compute the necessary ingredients for a reference governor, compare also [62].

Remark 3.35. (Stability properties) For the special case of setpoint tracking (T = 1), an
analogous MPC formulation has been considered in [164]. In the following, we wish to highlight
some of the main differences. The considered theoretical derivation is based on the rather general
conditions on the terminal ingredients (Ass. 3.5–3.6), which allow a unified analysis of terminal
equality constraints and differently parametrized terminal cost/set formulation, including the
continuously parametrized terminal ingredients from Section 3.1.3. Furthermore, Theorem 3.31
ensures exponential stability with a convergence rate cv−γT

cv
< 1 and and the Lyapunov function

W, while the proof in [164] uses an argument of contradiction7, which does not guarantee any
specific rate of convergence. For the linear case, a similar difference can be found in literature,
with a proof of contradiction in [163] and stronger Lyapunov decrease properties in [166] and [2,
Lemma V.4].

3.2.2 Online optimized terminal set size and reference constraint set

In the following, we generalize the parametrization of the terminal set Xf and the
reference constraint set Zr in order to further improve performance. In particular, for
the design in Proposition 3.11 (analogous to the design in [55]), the size of the terminal
set Xf depends on the constant α > 0, which is the minimum of two values: α1 and α2.
The first (α1) needs to be such that Inequality (3.6a) holds, compare Lemma 3.12 and the
optimization problem (3.26). The second (α2) ensures constraint satisfaction (3.6b) and

7In [164], it is shown that x(t) = x∗r (t) implies x(t) = x∗T . Combining this with the fact that
limt→∞ ‖x(t)− x∗r (t)‖ = 0, the authors in [164] assert limt→∞ ‖x(t)− x∗T‖ = 0.
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depends on the difference between Z and Zr, compare the proof of Proposition 3.11

and the optimization problem (3.25). Thus, by specifying a reference constraint set Zr

offline, we trade off achievable terminal set size (and hence convergence speed of the
closed loop) against operation close to the boundary of the constraint set Z. In the
following, we show how α can be optimized online, instead of using a preassigned
reference constraint set Zr.

Related work

For linear systems with polytopic constraints, the maximal invariant set for tracking
directly yields a polytopic terminal set Xf ⊆ X×Zr [163]. Due to scalability issues with
this approach, different modifications have been considered in the literature. In [296],
an ellipsoidal invariant set for tracking is considered, resulting in a quadratic expression
for α(r). In [256], the terminal set is a polytope centered around the artificial reference r
and scaled with an additional optimization variable α. In [164], for nonlinear systems,
the reference constraint set Zr is partitioned and for each partition i a constant size αi

is used. More recently, in [62] an explicit polynomial expression for α(r) is computed
offline using SOS optimization. In case that a fixed dynamic trajectory r is considered, a
time-varying function α(t) can be computed offline [91, 93].

We extend the previous approaches to nonlinear dynamics, nonlinear (Lipschitz
continuous) constraints, and dynamic reference trajectories. Instead of finding an
explicit nonlinear function α(r(·|t)) offline (as done in [62, 164, 296]), we include α as
a scalar optimization variable in the MPC optimization problem. Thus, the proposed
modification does not require any additional complex offline design and the online
computational complexity is only marginally increased.

Proposed formulation

In order to automate the trade-off regarding α, we need a condition, which is simple to
evaluate and guarantees satisfaction of Condition (3.6b) for a specific r ∈ Z. To this end,
we assume Lipschitz continuity of the constraints.

Assumption 3.36. (Lipschitz continuous constraints) There exist Lipschitz continuous functions
gi : Rn+m → R with Lipschitz constants Li ≥ 0, i ∈ I[1,nz] such that{

(x, u) ∈ Rn+m | gi(x, u) ≤ 0, i ∈ I[1,nz]

}
⊆ Z.
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Lemma 3.37. Let Assumption 3.36 hold. Suppose that `(x, kf(x, r)) ≤ Vf(x, r), ∀(x, r) ∈
X×Z. Then, there exist continuous functions ci : Z → R≥0, i ∈ I[1,nz] such that for any
r = (xr, ur) ∈ Z, x ∈ X, the following inequalities hold

gi(x, kf(x, r)) ≤ gi(xr, ur) + ci(r)
√

Vf(x, r), i ∈ I[1,nz].

Proof. For all i ∈ I[1,nz], a constant function ci can be directly obtained using

gi(x, kf(x, r))− gi(xr, ur) ≤ Li‖(x, kf(x, r))− (xr, ur)‖

≤Li

√
`(x, kf(x, r), r)

min{λmin(Q), λmin(R)}
(3.6a)
≤ Li√

min{λmin(Q), λmin(R)}︸ ︷︷ ︸
=:ci

√
Vf(x, r). �

Note that Vf(x, r) ≥ `(x, kf(x, r)) follows directly if Inequality (3.6a) holds for all
r ∈ Z (not just r ∈ Zr). While this proof only provides a constructive formula for
constant functions ci, for many important special cases less conservative functions ci

depending on r can be constructed. In particular, in case of polytopic constraints, i.e.,
gi(r) = Lir− li, and Vf, kf parametrized according to Lemma 3.12, simple functions are
given by the following formula

ci(r) := ‖P−1/2(r)
(

In K>(r)
)

L>i ‖, i ∈ I[1,nz], (3.42)

which is based on the support function [60, Equation (10)]. In case P, K are computed
using the parametrization P = X−1, K = YP from Lemma 3.13 or Proposition 3.15 with
X, Y continuously differentiable, then the functions ci in Equation (3.42) are continuous
and can be efficiently implemented in CasADi [17] with P−1/2 as the symbolic Cholesky
decomposition of X. Given the functions ci, some arbitrary lower bound αmin > 0,
and the terminal cost Vf, the proposed MPC formulation is given by the following
optimization problem.

Problem 3.38.

minimize
u(·|t), r(·|t), αs(t)

JN(x(·|t), u(·|t), r(·|t)) + JT,e(r(·|t), ye(·|t)) (3.43a)
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subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (3.43b)

x(0|t) = x(t), (3.43c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (3.43d)

Vf(x(N|t), r(N|t)) ≤ α2
s(t), (3.43e)

√
αmin ≤ αs(t) ≤

√
α1, (3.43f)

xr(j + 1|t) = f (xr(j|t), ur(j|t)), j ∈ I[0,T−1], (3.43g)

gi(r(j|t)) + αs(t) · ci(r(j|t)) ≤ 0, i ∈ I[1,nz], j ∈ I[0,T−1], (3.43h)

r(l + T|t) = r(l|t), l ∈ I[0,max{0,N−T}]. (3.43i)

The solution to this optimization problem is an optimal input trajectory u∗(·|t),
the corresponding state trajectory x∗(·|t), the artificial reference trajectory r∗(·|t) =

(x∗r (·|t), u∗r (·|t)), an online optimized terminal set size α∗s (t), and the value function
WN,T(x(t), ye(·|t)). Compared to Problem 3.27, the reference constraints (3.28f) are
replaced by (3.43g)–(3.43h), the terminal set constraint (3.28e) is replaced by (3.43e)
and we have one additional scalar optimization variable αs subject to (3.43f). For a
fixed value α = α2

s , Problem 3.38 corresponds to Problem 3.27 in case the terminal
set Xf is structured as in Proposition 3.11 and the reference constraint set is given by
Zr =

{
r ∈ Rn+m | gi(r) + αsci(r) ≤ 0, i ∈ I[1,nz]

}
. The following algorithm summarizes

the closed-loop operation.

Algorithm 3.39. (Tracking MPC Algorithm with artificial reference trajectory and online
optimized terminal set size)
Offline: Specify the constraint set Z, the weighting matrices (Q, R, S), the prediction horizon N,
the period length T, and the minimal size αmin > 0. Design suitable terminal ingredients Vf, kf

(cf. Sec. 3.1) and construct the functions ci (cf. Lemma 3.37 or (3.42)).
Online: At each time step t ∈ I≥0, measure the current state x(t), obtain the target signal
ye(·|t), solve Problem 3.38, and apply the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t), t ∈ I≥0. (3.44)
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Theoretical analysis

In order to analyse the resulting closed loop, we define the following reference constraint
set

Z̃r =
{

r ∈ Z | gi(r) +
√

αminci(r) ≤ 0, i ∈ I[1,nz]

}
,

which ensures that any solution of Problem 3.38 satisfies r∗(j|t) ∈ Z̃r, j ∈ I[0,T−1]

since αs ≥
√

αmin (cf. (3.43f)). The following proposition confirms that the proposed
enhancement preserves the theoretical properties in Theorem 3.31.

Proposition 3.40. Consider Zr = Z̃r. Let Assumptions 3.26, 3.29, and 3.36 hold. Suppose
that Vf, kf, α1 satisfy the conditions in Proposition 3.11 and that Vf(x, r) ≥ `(x, kf(x, r)) for
all (x, r) ∈ X×Z. If the initial condition x0 is such that Problem 3.38 is feasible at t = 0,
then the closed-loop system (3.44) resulting from Algorithm 3.39 satisfies the constraints (3.1),
Problem 3.38 is feasible for all t ∈ I≥0, and the optimal reachable trajectory x∗T is (uniformly)
exponentially stable.

Proof. First, note that every feasible solution of Problem 3.27 is also a feasible solution of
Problem 3.38 with αs =

√
αmin, if the terminal set Xf is chosen based on Proposition 3.11

with α = αmin. Recursive feasibility follows with the same candidate input using
αs(t + 1) = α∗s (t). Parts II and III of Theorem 3.31 remain true since Inequality (3.7)
holds for all references r(·|t) ∈ Z̃r with ε =

√
αmin/cu > 0 (cf. Prop. 3.11). Satisfaction

of Assumption 3.29 with Z̃r ensures that the reference ŷr (3.37) satisfies the constraints
in Problem 3.38 with αs =

√
αmin. �

In summary, the optimization over αs provides an additional degree of freedom which
can significantly enlarge the terminal set, lead to faster convergence and results in a
larger region of attraction. The performance benefits and applicability of this online
optimization of α will be demonstrated with numerical examples in Sections 3.4.1 and
3.4.2.

Remark 3.41. (Connection to (tube-based) robust MPC approaches) The tightened constraints
on the reference r (3.43h) are analogous to the tightened constraints in recent robust MPC
schemes, where αs characterizes a tube in terms of a sublevel set of an incremental Lyapunov
function [29, JK13, JK17, JK18, JK29, JK30]. Due to this correspondence, we conjecture that
Lipschitz continuity of the constraints (Ass. 3.36) can be relaxed to general continuity conditions
(cf. [JK29, App. B]) and even non-smooth collision avoidance constraints can be considered
(cf. [JK36]), at the expense of additional computational complexity. Furthermore, for linear
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systems with polytopic constraints (gi linear), a polytopic8 function Ṽf and constants ci can be
computed (cf. [JK11] and [JK29, Sec. IV.B]). In this case, Problem 3.38 reduces to a linearly
constrained quadratic program (QP). For this special case and T = 1, the constraints (3.43h)
correspond to [256, Eq. (18f)].

Remark 3.42. (Relaxed reference constraints using contraction rate) It is possible to further
relax the tightened reference constraints (3.43h), by taking into account the fact that the terminal
cost is contractive with some constant ρ ∈ [0, 1), i.e.,

Vf( f (x, kf(x, r)), r+) ≤ ρ2Vf(x, r), ∀ (r, r+) ∈ R, ∀x : Vf(x, r) ≤ α1, (3.45)

compare [JK15, Prop. 1]. In particular, by redefining αs =
√

α−√αmin we can replace the
constraints (3.43e), (3.43f), (3.43h) with the following less conservative constraints

Vf(x(N|t), r(N|t)) ≤ (αs(t) +
√

αmin)
2,

gi(r(j|t) + (αs(t)ρmod(j+T−N,T) +
√

αmin)ci(r(j|t)) ≤ 0, i ∈ I[1,nz], j ∈ I[0,T−1],

αs(t) ∈ [0,
√

α1 −
√

αmin],

where mod denotes the modulo operator. The result in Proposition 3.40 remains valid with the
candidate solution αs(t + 1) = ρα∗s (t), which satisfies (αs(t + 1) +

√
αmin)

2 = α(t + 1) ≥
max{ρ2α∗(t), αmin}, with α∗(t) = (α∗s (t) +

√
αmin)

2. These relaxed constraints are especially
useful in transient operation with active constraints on the reference r and ρT � 1.

3.2.3 Partially decoupled reference updates

In the following, we demonstrate that the joint stabilization and trajectory planning
MPC formulation (Problem 3.27/3.38) can be formulated as two partially decoupled
optimization problems. With this partially decoupled formulation, we can significantly
reduce the online computational demand by introducing a partial time scale separation.

Motivation

The main premise of the proposed approach using artificial reference trajectories (Sec. 3.2)
is that the operating conditions change on a time scale similar to the system dynamics,
which in turn necessitates frequent online updates of the reference trajectory r. The most

8In this case the terminal set Xf and the constants ci are computed based on the polytopic Lyapunov
function Ṽf, while a different quadratic terminal cost Vf is used in the cost function JN .
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challenging problems are those, where the operating conditions change at a time scale
similar to the system dynamics, while the target signal and hence the optimal system
operation is determined based on long term considerations that involve a significantly
larger time scale, i.e., the period length T is very large. An example of such a multi time
scale problem would be the power grid, compare, e.g., [154], where real time decisions
are made every 5 minutes, while the planning horizon is 7 days yielding T ≥ 2 · 103. For
such problems, it is vital that the reference r is updated frequently, while at the same
time it may be computationally too expensive to solve the joint planning and regulation
problem (Problem 3.27/3.38) in each time step t.

Related work

The issue of time scale separations in predictive control is a long standing problem
with a divers set of methodologies and heuristics considered in literature. For example,
in process control, planning and control are often performed on different time scales
with different models [171]. One classical approach to improve scalability of MPC to
longer prediction horizons N is to parametrize the predicted input sequence using
move blocking [115]. Another standard method to limit the computational demand is
to optimize less frequently by considering a longer sampling period (or equivalently a
multi-step implementation [125]). The lack of fast feedback can be compensated by using
an additional lower-level feedback [134], as is common practice in process control [71,
229]. Since for many nonlinear systems it may be difficult to design a simple stabilizing
feedback, a tracking MPC analogous to Section 3.1 can be used in the lower-level, as
suggested in [191]. The decoupled formulation in [191] is a special case of the MPC
formulation derived in the following, considering terminal equality constraints (α = 0)
and no updates in the reference trajectory (M = ∞).

The methodology closest to to the proposed approach is contract-based MPC [90,
172], which can be used to decompose large problems in a hierarchical setting [26] by
using (tube-based) robust MPC methods to capture uncertainty in the planning of other
subsystems. Similarly, in a long horizon planning problem a simplified model can be
used to capture the long term effects with a reduced computational complexity [27, 44].

Basic idea

The basic idea of the proposed approach is illustrated in Figure 3.1. At each time
t ∈ I≥0, a standard tracking MPC (cf. Sec. 3.1) computes the control action u(t) based
on the measured plant state x(t) and a fixed reference trajectory r(·|t). The reference
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Plant
x+ = f (x, u)

Tracking MPC
(Problem 3.45)

Execute every time t ∈ I≥0

Reference Planner
(Problem 3.46)

Execute in interval t ∈ I[ti ,ti+1]

x(t)

u∗(t|t)

αtr(ti)

r∗(·|ti), α∗s (ti)

ye(·|ti)

Figure 3.1. Schematic overview of the communication and parallel computation in
the partially decoupled planning and tracking MPC approach. The tracking MPC is
executed in every time step t ∈ I≥0, while the communication to the reference planner
is limited to ti = i ·M, M ∈ I≥1. Thus, the reference planning optimization problem
(Problem 3.46) can be solved in the time interval [ti, ti+1].

planner operates in parallel to compute the new reference trajectory r(·|ti+1) with
the corresponding terminal set size αs(ti+1) based on the target signal ye(·|ti). In
particular, the reference planner operates with a different sampling period ti = i ·M
and sends the updated reference every M ∈ I≥1 time steps to the tracking MPC. Thus,
the computationally more demanding reference planning problem can be solved in
the time interval [ti, ti+1]. The planner accounts for the most recent state of the plant
x(ti) indirectly based on αtr(ti+1), which corresponds to a feasible terminal set size in
the tracking MPC for the reference trajectory r(·|ti) (prior to the update). Recursive
feasibility is ensured by imposing additional constraints on the terminal state of the
tracking MPC and the corresponding point on the reference trajectory. This partial
coupling is visualized in Figure 3.2. In particular, consistency is ensured by enforcing: a)
At time ti+1 there exists a state trajectory such that x(N|ti+1) is in a terminal set around
r∗(N + M|ti) with the reduced size αtr(ti+1); b) The new computed reference trajectory
r(·|ti+1) with the corresponding terminal set size αs(ti+1) is such that the following
implication holds

Vf(x, r∗(N + M|ti)) ≤ αtr(ti+1) ⇒ Vf(x, r(N|ti+1)) ≤ α2
s(ti+1). (3.46)

In Figure 3.2, we see that although this consistency constraint limits the update of
reference trajectory, it still allows for a large degree of freedom since the additional
constraint only restricts the point r(N|ti+1).

The consistency constraint can be seen as an analogue to contract-based design
methods. From a communication and computation point of view, the decomposition
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Figure 3.2. Illustration of the needed coupling constraint between the tracking MPC
and the reference planner: Predicted state trajectory x(·|t), t ∈ {ti, ti+1} (blue, dashed),
closed-loop state trajectory (blue, solid), artificial reference trajectory r(·|ti) (red, dashed-
dotted) with terminal set based on αs(ti) and αtr(ti+1) (red, dotted), new artificial
reference trajectory r(·|ti+1) (green, dashed-dotted) with terminal set based on αs(ti+1)
(green, dotted) at time ti (left) and time ti+1 (right).

is similar to cascade and hierarchical approaches. The proposed approach strongly
differs from existing methods by providing a formulation tailored to the tracking MPC
with artificial reference trajectories, guaranteeing feasibility for nonlinear systems, and
allowing for a flexible trade-off between computational complexity and fast/frequent
reference updates using a factor M ∈ I≥1.

In the following, we detail the different components. First, a continuity condition on
the terminal cost Vf will be exploited to derive simple sufficient conditions for the set
inclusion (3.46). Next, the tracking MPC with a contractive terminal set constraint is
presented, which allows for a priori bounds on αtr(ti+1). Then, the reference planner
with the coupling constraint is presented, the overall algorithm is summarized, and
finally Proposition 3.48 provides feasibility and convergence guarantees.

Continuity of the terminal cost

To obtain a simple to evaluate sufficient condition for the set inclusion (3.46), we consider
the following continuity assumption for the terminal cost Vf.

Assumption 3.43. (Continuity of the terminal cost) There exists a function γf ∈ K∞ such that
for any (xr, ur) = r ∈ Z, (x̃r, ũr) = r̃ ∈ Z, x ∈ X:√

Vf(x, r̃) ≤
√

Vf(x, r)(1 + γf(‖r− r̃‖)) +
√

Vf(xr, r̃). (3.47)

The following proposition shows that the terminal cost based on the reference generic
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offline computation (cf. Sec. 3.1.3) satisfies Assumption 3.43.

Proposition 3.44. Suppose Vf(x, r) = ‖x− xr‖2
P(r) , P = X−1 with X according to (3.21) and

θ : Z→ Rp continuously differentiable. Then, Assumption 3.43 holds with a linear function γf.

Proof. The fact that θ is continuously differentiable directly implies that X is continuously
differentiable w.r.t. r. Thus, also the matrix P = X−1 is continuously differentiable in r
for any r ∈ Z, using the fact that X is positive definite with uniform lower and upper
bounds. This property in combination with compact constraints and uniform bounds
on P ensures that there exists a Lipschitz constant LP > 0 such that

P(r̃)− P(r) � LP · P(r)‖r− r̃‖, ∀r, r̃ ∈ Z.

This implies

‖x‖P(r̃) ≤
√
‖x‖2

P(r) + LP‖x‖2
P(r)‖r− r̃‖ = ‖x‖P(r)

√
1 + LP‖r− r̃‖

≤‖x‖P(r)(1 + LP‖r− r̃‖), (3.48)

for any x ∈ X. Thus, Inequality (3.47) follows from√
Vf(x, r̃) = ‖x− x̃r‖P(r̃) ≤ ‖x− xr‖P(r̃) + ‖xr − x̃r‖P(r̃)

(3.48)
≤
√

Vf(x, r)(1 + LP‖r− r̃‖) + ‖xr − x̃r‖P(r̃),

with γf(c) := LP · c. �

This result essentially follows from the continuously differentiable parametrization
and the triangular inequality. In the special case of constant matrices P, Condition (3.47)
is satisfied with γf = 0. In addition to the continuity property (3.47), the following
design exploits the fact that the terminal cost is contractive with some factor ρ ∈ [0, 1),
compare (3.45).

Contractive tracking MPC

Suppose that at time ti = i ·M, i ∈ I≥0, we have trajectories x(·|ti), u(·|ti), r∗(·|ti), α∗s (ti),
that satisfy the constraints in Problem 3.38. Given the reference trajectory r∗(·|ti), the
tracking MPC considers the shifted reference trajectory r(j|t) = r∗(mod(j + t− ti, T)|ti),
j ∈ I[0,T−1], t ∈ I[ti,ti+M−1] (until the reference trajectory is updated at ti+1). The terminal
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set size is updated as follows

αtr(t) =ρ2(t−ti) max{αmin, Vf(x(N|ti), r(N|ti))}, t ∈ I[ti,ti+M−1], (3.49)

with the contraction rate ρ ∈ [0, 1) satisfying Condition (3.45). At each time t ∈ I≥0,
given the current state x(t), the reference trajectory r(·|t) ∈ Z̃N+1

r and αtr(t), the
reference tracking MPC is given by the following optimization problem:

Problem 3.45.

minimize
u(·|t)

JN(x(·|t), u(·|t), r(·|t)) (3.50a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (3.50b)

x(0|t) = x(t), (3.50c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (3.50d)

Vf(x(N|t), r(N|t)) ≤ αtr(t). (3.50e)

The solution to this optimization problem is an optimal input trajectory u∗(·|t) and
the corresponding state trajectory x∗(·|t). Problem 3.45 is similar to Problem 3.3 in
Section 3.1.1, but with a contractive terminal set constraint (3.50e). Note that the
contractive terminal constraint (3.50e) with αtr according to (3.49) is similar to the
contractive constraint used in [216].

Reference planner

In parallel, the reference is updated based on a reference planning problem. At each
time ti = i ·M, i ∈ I≥0, given r∗(·|ti), αtr(ti) and the target signal ye(·|ti), the reference
trajectory is updated based on the following optimization problem:

Problem 3.46.

minimize
r(·|ti+1), αs(ti+1)

JT,e(r(·|ti+1), ye(·|ti+1)) (3.51a)
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subject to

ρM
√

αtr(ti)(1 + γf(‖r∗(N + M|ti)− r(N|ti+1)‖))

+
√

Vf(x∗r (N + M|ti), r(N|ti+1)) ≤ αs(ti+1), (3.51b)
√

αmin ≤ αs(ti+1) ≤
√

α1, (3.51c)

xr(j + 1|ti+1) = f (xr(j|ti+1), ur(j|ti+1)), j ∈ I[0,T−1], (3.51d)

gk(r(j|ti+1)) + αs(ti+1) · ck(r(j|ti+1)) ≤ 0, k ∈ I[1,nz], j ∈ I[0,T−1], (3.51e)

r(l + T|ti+1) = r(l|ti+1), l ∈ I[0,max{0,N+M−T}], (3.51f)

ye(j|ti+1) = ye(mod(j + M, T)|ti), j ∈ I[0,T−1]. (3.51g)

The solution to this optimization problem is an optimal reference trajectory r∗(·|ti+1)

and the corresponding terminal set size α∗s (ti+1). The constraint (3.51b) is a simple
sufficient condition for the consistency constraint (3.46) exploiting the continuity bound
in Assumption 3.43. Note that the constraints on the reference r can be further relaxed
using the formula in Remark 3.42. Since we start to solve Problem 3.46 at time ti, the
target signal ye(·|ti+1) is not yet available and instead in (3.51g) the currently available
target signal ye(·|ti) is shifted by M time steps (assuming it is T-periodic). We point
out that we use the information available at time ti, in order to compute the reference
trajectory at time ti+1.

Overall algorithm

The overall procedure is summarized in Algorithm 3.47.

Algorithm 3.47. (Tracking MPC Algorithm with partially decoupled reference updates)
Offline: Specify the constraint set Z, the weighting matrices (Q, R, S), the prediction horizon N,
the period length T, the reference update frequency M, and the minimal size αmin > 0. Design
suitable terminal ingredients Vf, kf (cf. Sec. 3.1). Construct the functions ci (cf. Lemma 3.37 or
(3.42)) and γf (cf. Ass. 3.43 or Prop. 3.44).
Online: Execute at each time step ti = i ·M, i ∈ I≥0:
Obtain the reference r∗(·|ti) from the reference planner (Problem 3.46).
Get x(N|ti) from the candidate solution of the Tracking MPC (Problem 3.45).
Compute αtr(ti) using (3.49).
Execute in parallel:
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Tracking MPC
for t ∈ I[ti,ti+M−1] do

Update r(·|t), αtr(t) (3.49).
Solve Problem 3.45.
Apply the control input u(t) = u∗(0|t).

end for

Reference planner
Obtain the target signal ye(·|ti).
Solve Problem 3.46.
Get r∗(·|ti+1), α∗s (ti+1).

Problem 3.45 represents a standard tracking MPC (Sec. 3.1.1) that is executed in each
time step t with a fixed (periodic) reference trajectory r and a shrinking terminal set αtr.
On the other hand, Problem 3.46 can be solved in the interval [ti, ti+M], thus allowing
to solve larger planning problems (T � 1) by updating the reference r less frequently
(M ∈ I≥1). Condition (3.51b) constrains how the updated reference r may deviate from
the previous solution, which partially couples the planning (Problem 3.46) and regula-
tion problem (Problem 3.45). Compared to a joint optimization (cf. Problems 3.27/3.38),
the practical convergence under changing operation conditions may be slower, since
the reference is updated less frequently and the constraint (3.51b) may limit the rate
of change, compare the numerical example in Section 3.4.2. However, the partially de-
coupled updates in Algorithm 3.47 can significantly reduce the computational demand,
especially in case of long planning horizons T.

Theoretical analysis

The following proposition shows that the proposed partially decoupled reference up-
dates ensure feasibility and convergence.

Proposition 3.48. Let the conditions in Proposition 3.40 and Assumption 3.43 hold. Suppose
further that Algorithm 3.47 is initialized at t = t0 = 0 with r∗(·|t0), α∗s (t0) satisfying
the constraints (3.51c)–(3.51f) in Problem 3.46, αtr(t0) ≤ α∗s (t0) and x(t0) are such that
Problem 3.45 is feasible. Then, the closed-loop system resulting from Algorithm 3.47 satisfies
the constraints (3.1), Problem 3.45 is feasible for all t ∈ I≥0 and Problem 3.46 is feasible for
all ti = i ·M, i ∈ I≥0. Assume further9 that there exists a constant c > 0 such that for every
constraint k ∈ I[1,nz], we have either infr∈Z ck(r) ≥ c or supr∈Z ck(r) = 0. Then, the resulting
reference r∗(·|ti) converges to the optimal reachable trajectory x∗T in finite time and the state x(t)
converges (uniformly) exponentially to x∗T.

Proof. Part I: Recursive feasibility: First, for t ∈ I[ti,ti+M−1] the reference r(·|t) satisfies
the tightened constraints (3.51e) with α∗s (ti). Thus, feasibility of Problem 3.45 at time ti

9This condition excludes the special case where ck(r) = 0 for some (but not all) r ∈ Z and can always be
ensured by adding a small positive constant to ck.
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implies recursive feasibility of Problem 3.45 at time t with the updated terminal set size
αtr(t) ≤ α∗s (ti) according to Equation (3.49), using the standard MPC candidate solution
from Theorem 3.31/Proposition 3.40 and the contractivity (3.45). Correspondingly, at
time ti+1, the candidate solution satisfies

Vf(x(N|ti+1), r∗(N + M|ti)) ≤ ρ2Mαtr(ti). (3.52)

The constraint (3.51b) ensures√
Vf(x(N|ti+1), r∗(N|ti+1))

(3.47),(3.52)
≤ ρM

√
αtr(ti)(1 + γf(‖r∗(N + M|ti)− r∗(N|ti+1)‖))

+
√

Vf(x∗r (N + M|ti), r∗(N|ti+1))

(3.51b)
≤ α∗s (ti+1),

which in combination with the update (3.49) and the constraint (3.51c) implies αtr(ti+1) ≤
α∗s (ti+1). At time ti+1 a feasible solution of Problem 3.46 is given by the previous ref-
erence r shifted by M steps, i.e., r(j|ti+1) = r∗(mod(j + M, T)|ti), j ∈ I[0,T−1], with the
candidate terminal set size

αs(ti+1) = max
{

ρM
√

αtr(ti) + 0.5
(

1− ρM
)√

αmin,
√

αmin

}
,

and Condition (3.51b) is strictly satisfied using the fact that Vf(x∗r (N + M|ti), r(N|ti+1)) =

0 by definition.
Part II: Convergence: Consider the auxiliary candidate reference r̂ based on ŷr

from the definition (3.37) with some βti ∈ [0, 1). Suppose βti is chosen such that
‖r̂− r(·|ti+1)‖ ≤ ε, with some constant ε > 0. There exists a constant ε1 > 0 such that
for ε ≤ ε1 this auxiliary reference r̂ satisfies the constraint (3.51b) with

ρM
√

αtr(ti)(1 + γf(‖r(N|ti+1)− r̂(N)‖)) +
√

Vf(xr(N|ti+1), r̂(N))

≤ρM
√

αtr(ti) +
√

α1ρMγf(ε1) + ε1
√

cu := ρM
√

αtr(ti) + 0.5
(

1− ρM
)√

αmin

≤αs(ti+1).

We show satisfaction of (3.51e) for the auxiliary reference r̂ with a case distinction.
Case 1: Suppose that αs(ti+1) =

√
αmin. In this case, Condition (3.51e) is equivalent
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to r̂ ∈ Z̃r = Zr, which is guaranteed by the convexity condition (cf. Ass. 3.29) as in
Proposition 3.40.
Case 2: αs(ti+1) = ρM

√
αtr(ti) + 0.5

(
1− ρM)√αmin. Given ck continuous (cf. Ass. 3.43)

and Z compact, there exists a function δ ∈ K∞ such that for any r, r̃ ∈ Z: ck(r) −
ck(r̃) ≤ δ(‖r − r̃‖), k ∈ I[1,nz]. For constraints k ∈ I[1,nz] with ck = 0, feasibility of
Condition (3.51e) is independent of αs and thus follows from convexity (Ass. 3.29).
For the other constraints k ∈ I[1,nz] satisfaction of Condition (3.51e) at ti+1 follows
from feasibility of (3.51e) at ti together with the definition of the candidate reference
r(j|ti+1) = r∗(mod(j + M, T)|ti), αtr(ti) ≤ α∗s (ti) and ck(r) ≥ c:

gk(r̂(j)) + αs(ti+1)ck(r̂(j))
(3.51e)
≤ gk(r̂(j))− gk(r(j|ti+1)) + αs(ti+1)ck(r̂(j))−

√
αtr(ti)ck(r(j|ti+1))

Ass. 3.36
≤ Lk‖r(j|ti+1)− r̂(j)‖+

(
αs(ti+1)−

√
αtr(ti)

)
ck(r(j|ti+1))

+ αs(ti+1)δ(‖r(j|ti+1)− r̂(j)‖)

≤Lkε +
√

α1δ(ε)−
(

1− ρM
)(√

αtr(ti)− 0.5
√

αmin

)
ck(r(j|ti+1))

(3.49)
≤ Lkε +

√
α1δ(ε)−

(
1− ρM

)
· 0.5
√

αmin · c ≤ 0,

where the last inequality holds for ε ≤ ε2 with ε2 > 0 sufficiently small. The reference
satisfies

‖r(·|ti+1)− r̂‖ ≤ Lg‖ŷr − yr(·|ti)‖S
(3.38)
= (1− βt)Lg‖y∗T(·|ti+1)− yr(·|ti+1)‖S,

with the Lipschitz constant Lg > 0 (cf. Ass. 3.29). Thus, choosing

βti = max
{

1− ε

Lg‖yr(·|ti+1)− y∗T(·|ti+1)‖S
, 0
}

< 1,

with ε = min{ε1, ε2} > 0, the candidate reference r̂ is feasible. In case ‖yr(·|ti+1)−
y∗T(·|t)‖S ≥ ε/Lg, this implies

JT,e(r̂, ti+1)−JT,e(r∗(·|ti), ti)
(3.39)
≤ −(1− βt)(ε/Lg)

2 ≤ −ε3/(L3
gy),

with y as defined in the proof of Theorem 3.31. In case ‖yr(·|ti+1)− y∗T(·|t)‖S ≤ ε/Lg,
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the candidate reference converges to the optimal reference trajectory in one step, i.e.,
βt = 0, JT,e(r̂, ti+1) = VT,e. This decrease in combination with JT,e −VT ≤ y2 ensures
convergence of JT,e to VT and thus r to r∗T in at most Tmax := Md(yLg/ε)3 + 1e time
steps. Exponential convergence of x to x∗T follows from exponential stability (Thm. 3.8)
and finite-time convergence of the reference r. �

The result in Proposition 3.48 essentially builds on three properties. First, the con-
straints on the reference planner (Problem 3.46) and the tracking MPC (Problem 3.45)
with the contracting terminal set size (3.49) are such that the proposed algorithm is
recursively feasible (cf. Fig. 3.2 for an illustration). Second, in each time step ti, it is
possible to incrementally reduce the tracking cost JT,e, which in combination with con-
vexity (Ass. 3.29) and compact constraints implies that the reference planner converges
to the optimal reference r∗T in finite time. Third, once the reference planner converged
in finite time, the tracking MPC (Problem 3.45) ensures exponential stability of the
reference r = r∗T (cf. Thm. 3.8) and thus exponential convergence of x(t) to x∗T(t). We
point out that we only showed convergence for this partially coupled approach, as
opposed to uniform stability10 in Theorem 3.31/Proposition 3.40.

Remark 3.49. (Extensions) It is possible to adjust Algorithm 3.47 such that the reference
planner does not require explicit information from the tracking MPC, by replacing the update
αtr(t) in (3.49) and only using the fact that the terminal set is ρ-contractive. Although this
may simplify the computation, the closed-loop convergence of the tracking MPC is typically
significantly faster, which is why the update (3.49) can speed up the convergence rate of the
reference planner. It is possible to implement Algorithm 3.47 in an asynchronous fashion with M
changing online by adjusting the constraint (3.51b) to hold for any M ∈ [Mmin, Mmax] ⊂ I≥1.
Thus, the reference planner needs to solve Problem 3.46 until ti + Mmax, but the reference can
also be updated earlier starting at ti + Mmin. The computational complexity of the reference
planner (Problem 3.46) can be further reduced using a simplifying parametrization for the set
of artificial periodic reference trajectories r(·|t). For example, the reference input ur could be
parametrized to reduce the number of decision variables, e.g., using move-blocking [115]. In this
case, the constraints in the optimization problem would be time-varying and we may experience
some performance degradation due to the more restricted class of reference trajectories r(·|t), i.e.,
in general limi→∞ JT,e(r(·|ti), ye(·|ti)) > VT,e .

10We conjecture that stability can be preserved by adding a suitable regularization penalizing ‖r(k|ti+1)−
r∗(k + M|ti)‖, k ∈ I[0,N] in the cost JT,e to compensate the potential cost increase in the tracking MPC
cost JN , compare also the discussion in Remark 3.83.
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Summary

In this section, we studied tracking MPC formulations based on artificial reference
trajectories. The proposed design is applicable to output target signals, which may be
unreachable and subject to unpredictable changes online, and provides a large region
of attraction. The provided theoretical analysis ensures exponential stability of the
optimal reachable periodic trajectory and unifies/generalizes previous theoretical results
(cf. [164, 166]) by considering nonlinear dynamics and periodic operation (Sec. 3.2.1). We
further extended this formulation by introducing an additional degree of freedom in
the parametrization of the terminal set and the reference constraint set (Sec. 3.2.2). This
modification automates a trade-off typically faced in the offline design procedure which
results in improved performance and an increased the region of operation. In addition,
we introduced a partially decoupled MPC formulation that allows for a partial time
scale separation between trajectory tracking and trajectory planning (Sec. 3.2.3). This
formulation is particularly relevant to ensure real-time implementability of the proposed
MPC formulation in case of long planning horizons T. In the next section, we further
extended these tracking MPC formulation with artificial reference trajectories to directly
consider general economic stage costs.

3.3 Economic MPC with artificial reference trajectories

In Section 3.2, we presented a tracking MPC formulation for (possibly unreachable)
output target signals using artificial reference trajectories. In this section, we extend
the problem to general time-varying economic stage costs `eco, possibly subject to unpre-
dictable changes online. In particular, we consider an MPC formulation with an artificial
periodic trajectory and a purely economic cost formulation (no tracking stage cost `). We
demonstrate by means of a simple academic example that a naive extension of existing
approaches (cf. [87, 206, 208]) to the periodic economic problem, does not necessarily
yield the desired closed-loop performance guarantees (Sec. 3.3.1). We present a revised
economic MPC formulation, imposing additional constraints on the artificial periodic
trajectory (Sec. 3.3.2) and derive performance guarantees relative to the limiting artificial
reference trajectory (Sec. 3.3.3). Finally, in Section 3.3.4 improved a priori performance
bounds are derived using a self-tuning weight (cf. [206, 208]). The design of the terminal
ingredients for economic dynamic problems are detailed in Section 3.3.5. Some variants
and extensions to the proposed economic MPC framework are presented in Section 3.3.6.
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This section is based on and taken in parts literally from [JK26]11.

3.3.1 Dynamic operation and pitfalls in economic MPC

In the following, we generalize the tracking problem considered in Section 3.2, by
considering an economic (not necessarily positive definite) time-varying stage cost
`eco(x, u, t, ye), which may depend on some exogenous parameters ye. In addition,
we demonstrate that a naive extension of existing generalized terminal setpoint con-
straints to periodic reference trajectories r, does not necessarily imply desirable economic
performance guarantees.

As in Section 3.2, we allow for online changes in the mode of operation (cf. Sec. 1.1, (ii))
by using T-periodic artificial reference trajectories. Compared to the tracking problem
(Sec. 3.2), the control goal is directly specified with the economic stage cost `eco and
the optimal mode of operation is not necessarily T-periodic. Instead of guaranteeing
stability of some (optimal) T-periodic trajectory, we guarantee that the closed-loop
performance is at least as good (on average) as a (local) optimal T-periodic trajectory.
Thus, by considering an economic MPC formulation this section mainly addresses the
additional challenge when the optimal mode of operation is not directly specified in terms of
given state and input setpoints/trajectories (cf. Sec. 1.1, (iii)).

Motivation

Periodic and time-varying operation is natural in many control problems. For example,
water distribution networks [165, 282], electrical networks [224] or building and HVAC
systems [235, 255] are inherently time-varying/periodic control problems due to changes
in the cost or dynamics related to the day-night cycle. Even in the time-invariant problem
of maximizing the production in (nonlinear) CSTRs, periodic/dynamic operation can
be economically beneficial, compare [24]. Periodic operations also naturally arise in
periodic/cyclic scheduling [241] and power generation using kites [80]. Furthermore,
in most of these problems, the control goal can be more naturally expressed with an
economic objective, e.g., maximize the production yield in process control or minimize
the energy consumption in HVAC. Thus, we present a economic MPC framework with
performance guarantees for (periodic) time-varying problems with an economic stage
cost `eco, possibly dependent on external variables ye.

11J. Köhler, M. A. Müller, and F. Allgöwer. “Periodic optimal control of nonlinear constrained sys-
tems using economic model predictive control.” In: J. Proc. Contr. 92 (2020). extended version:
arXiv:2005.05245, pp. 185–201©2020 Elsevier Ltd.
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Related work

Economic MPC [96] is a variant of MPC that directly aims at improving a user-specified
economic stage cost `eco, which can improve (transient) performance compared to simply
stabilizing the optimal mode of operation (cf. [234]). In case the system is optimally
operated at steady-state, economic MPC schemes with suitable terminal ingredients
directly enjoy relative performance guarantees [16, 19, 78, 167]. Similarly, in [10, 241,
295] performance guarantees relative to a periodic trajectory are obtained by using
terminal constraints for an a priori known optimal periodic trajectory. Analogous results for
more general sets than periodic orbits can be found in [81, 186]. All of these approaches
do not incorporate online changes in the optimal system operation.

In case of optimal operation at steady-state, results for economic MPC without any
terminal ingredients (cf. Sec. 4.3 for a thorough discussion) can be found in [122, 132],
with extensions to the periodic and general time-varying setup in [210] and [128, 129,
130], respectively. Due to the absence of terminal ingredients these approaches can
directly handle online changes in the cost function and require no a priori specification
of the optimal mode of operation, but the performance guarantees require difficult to
verify a priori assumptions (strict dissipativity, overtaking optimality) and possibly a
very long prediction horizon N.

If there exists only a finite set of possible modes of operation, feasible transition
trajectories can be computed offline to avoid feasibility issues [20].

To operate under online changing conditions, the economically optimal periodic
trajectory can be stabilized using a tracking MPC with artificial reference trajectories
(cf. Sec. 3.2) in combination with an economic cost JT,eco for the artificial reference
(assuming convexity, cf. Rk. 3.33), compare [165] for corresponding results for linear
systems. Similar stability results for linear systems can be found in [43] based on strong
duality. For nonlinear systems, stability of the optimal periodic trajectory is established
in [133] by regularizing the non-periodicity in the input and economic cost, instead of
directly using a tracking stage cost. However, the system may not be optimally operated
periodically and the usage of a tracking/regularization cost can limit the economic
performance.

Purely economic MPC formulations based on artificial setpoints have been presented
in [87, 206, 208], compare also [102]. These approaches can operate reliably under
online changing operation conditions and provide performance guarantees relative to
the optimal steady-state. Economic MPC schemes with periodicity constraints have been
proposed in [138, 282], but performance guarantees w.r.t. an optimal periodic orbit can
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only be established under very restrictive conditions (cf. [138, Lemma 3, Thm. 4]) and
may not necessarily hold for linear convex problems (cf. [282, Example 6]).

In summary, the related literature does not address MPC formulations that are:
suitable for nonlinear systems and online changing modes of operation; consider a purely
economic objective; and provide economic performance guarantees compared to optimal
dynamic/periodic operation. We extend the economic MPC formulations in [87, 206, 208]
to the periodic case and suitably modify the optimization problem to guarantee closed-
loop performance bounds. As a special case, we obtain a modified version of the MPC
approaches based on periodicity constraints [138, 282] with performance guarantees, if
we consider a prediction horizon of N = 0.

Setup

Compared to the setup in Sections 3.1–3.2, we consider an economic stage cost `eco

and a time-varying periodic problem, with a known period length T ∈ I≥1. For many
systems (e.g., HVAC or water distribution networks) this periodicity is inherent to the
problem setup (in the dynamics or cost function). In time-invariant problems (e.g.,
CSTRs), this period length T is a user-specified decision variable that influences the
possible performance improvement compared to steady-state operation (cf. [133]). Both
cases are illustrated in the numerical examples in Sections 3.4.3–3.4.4.

We consider a nonlinear time-varying discrete-time system

x(t + 1) = f (x(t), u(t), t), x(0) = x0,

with the state x(t) ∈ X ⊆ Rn, the control input u(t) ∈ U ⊆ Rm, the dynamics
f : X×U× I≥0 → X, the initial condition x0 ∈ X, and the time step t ∈ I≥0. We
impose time-varying constraints on the state and input

(x(t), u(t), t) ∈ Z ⊆ X×U× I≥0, t ∈ I≥0. (3.53)

For the artificial reference trajectory, we consider a reference constraint set Zr, which
satisfies the following condition: There exists a constant ε > 0 such that for all (r, t) ∈ Zr,
r̃ ∈ Bε(r), we have (r̃, t) ∈ Z (analogous to Assumption 3.1). The economic performance
measure is given by a general (non-convex) time-varying function `eco : X×U× I≥0 ×
Y → R, which may depend on external parameters ye ∈ Y, with Y ⊂ Rp compact.
This function is called the economic stage cost `eco and the main control goal is the
minimization of the closed-loop economic stage cost `eco while satisfying constraints.
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We assume that the dynamics f , the economic stage cost `eco, and the constraint sets
Z, Zr are periodically time-varying with the (known) period length T, i.e.,

f (x, u, t) = f (x, u, t + T), ∀(x, u, t) ∈ X×U× I≥0,

`eco(x, u, t, ye) = `eco(x, u, t + T, ye), ∀(x, u, t, ye) ∈ X×U× I≥0 ×Y,

(r, t) ∈ Z⇔ (r, t + T) ∈ Z, (r, t) ∈ Zr ⇔ (r, t + T) ∈ Zr, ∀t ∈ I≥0.

The set of feasible T-periodic artificial reference trajectories r ∈ (X×U)T at time t is
denoted by

(r, t) ∈ ZT :=
{
(r(·), t) = (xr(·), ur(·)), t) ∈ (X×U)T × I≥0 | (r(k), t + k) ∈ Zr,

xr(mod(k + 1, T)) = f (xr(k), ur(k), t + k), k ∈ I[0,T−1]

}
and is assumed to be non-empty. We define a periodic shift operationRT, which satisfies
RT

Tr = r and (r, t) ∈ ZT ⇒ (Rk
Tr, t + k) ∈ ZT, ∀t ∈ I≥0, k ∈ I≥0.

In the following, we often denote `eco(r, t, ye) = `eco(xr, ur, t, ye) for r = (xr, ur) with
some abuse of notation.

For simplicity, we assume that `eco and f are continuous and the sets Z, Zr are
compact for a fixed t ∈ I≥0, i.e., ‖r‖ ≤ C, ∀(t, r) ∈ Z, which implies that `eco is bounded
for all states and inputs satisfying the constraints (3.53).

At each time step t ∈ I≥0, a predicted sequence of parameters ye(·|t) ∈ YT is available
as an external signal with ye(t) = ye(0|t), similar to the target signal in Section 3.2. For
the performance analysis, we assume that the parameter predictions ye are consistent
and T-periodic.

Assumption 3.50. (Consistently periodic parameter predictions) For any t ∈ I≥0, the parameter
predictions ye satisfies

ye(mod(k + 1, T)|t) = ye(k|t + 1), ∀k ∈ I[0,T−1].

Remark 3.51. (Price signal) The parameters ye might incorporate online changing prices or
general changes in the desired production/operation. In case some of the constraints in Z are
relaxed to soft constraints using penalty terms in the stage cost `eco, the external parameters ye

can also model online changes in these soft constraints.

At time t ∈ I≥0, given the parameter prediction ye(·|t) ∈ YT, an optimal T-periodic
orbit can be determined based on the following periodic optimal control problem
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Problem 3.52.

minimize
r(·|t)

JT,eco(r(·|t), t, ye(·|t)) (3.54a)

subject to

(r(·|t), t) ∈ ZT, (3.54b)

with

JT,eco(r(·|t), t, ye(·|t)) :=
T−1

∑
j=0

`eco(r(j|t), t + j, ye(j|t)). (3.54c)

The solution to this optimization problem is an optimal T-periodic orbit r∗T(·|t),
r∗T(j|t) = (x∗T(j|t), u∗T(j|t)), j ∈ I[0,T−1]. If the external parameters are consistently T-
periodic (Ass. 3.50), then an optimal periodic trajectory at the next time step is given
by shifting a previous optimal trajectory, i.e., r∗T(·|t + 1) = RTr∗T(·|t). Given some
initialization at t = 0, the closed-loop average economic cost is defined as

J cl
eco,∞ := lim sup

K→∞

1
K

K−1

∑
k=0

`eco(x(k), u(k), k, ye(k)). (3.55)

If the optimal periodic trajectory is known in advance and the parameter predictions are
consistent (Ass. 3.50), standard economic MPC formulations with terminal ingredients
(cf. [10, 241, 295]) guarantee that the average closed-loop performance is no worse than
the average performance at the optimal periodic orbit, i.e.,

J cl
eco,∞ ≤

JT,eco(r∗T(·|0), 0, ye(·|0))
T

. (3.56)

The control goal is to minimize this closed-loop average cost (3.55) (ideally satisfy-
ing (3.56)) and satisfy the constraints (3.53). In addition, the controller is expected to
retain feasibility under online changes in the parameters ye and adapt the mode of
operation accordingly.

Pitfalls - Generalized periodic constraints

In the following, we show that a naive extension of existing generalized terminal setpoint
constraints in [87, 206, 208] to periodic reference trajectories r, does not necessarily imply
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the desirable economic performance guarantees and thus requires further modifications
which we will introduce in Section 3.3.2.

Consider the scalar time-invariant system with f (x, u) = u, x ∈ {0, 1, 2}, which is
depicted as a graph in Figure 3.3 with some arbitrary small positive constant ε > 0,
similar to [210, Example 4]. The optimal periodic orbit is x∗T = (1, 2) (and phase shifts
thereof) with cost JT,eco(r∗T) = ε and T = 2.

0 1 2u=0
`eco(x,u)=1

u=1
`eco(x,u)=0

u=2
`eco(x,u)=1+ε

u=1
`eco(x,u)=−1

Figure 3.3. Academic counter example - Illustration of feasible transitions©2020 Elsevier
Ltd.

The following economic MPC scheme with an artificial periodic trajectory can be
viewed as a generalization of the methods in [87, 206, 208] based on artificial setpoints:

min
u(·|t), r(·|t)

N−1

∑
k=0

`eco(x(k|t), u(k|t)) + JT,eco(r(·|t)) (3.57a)

s.t. x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (3.57b)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (3.57c)

r(·|t) ∈ ZT, x(N|t) = xr(0|t), x(0|t) = x(t). (3.57d)

This optimization problem computes an open-loop trajectory x∗(·|t) starting at x(t) that
ends on some periodic trajectory r∗(·|t) ∈ ZT. In closed-loop operation, the optimization
problem (3.57) is solved in each time step t ∈ I≥0 and the first part of the optimized
input trajectory is applied to the system, i.e., u(t) = u∗(0|t), x(t + 1) = x∗(1|t), t ∈
I≥0. Although the economic MPC schemes in [87, 206, 208] often have additional
modifications (e.g., terminal cost, self-tuning weights, additional constraints on r), the
problem we discuss in the following remains the same.

Consider the initial condition x0 = 0 and a prediction horizon of N = 2. The artificial
reference is the optimal periodic orbit xr(k|t) ∈ {1, 2}, k ∈ I[1,2]. The only feasible
trajectories that satisfy x(N|t) = x(2|t) ∈ {1, 2} are u(·|t) = (0, 1) and u(·|t) = (1, 2),
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and the corresponding open-loop cost is 1 + 0 and 0 + 1 + ε, respectively. Thus, the
optimal solution to the optimization problem (3.57) satisfies x∗(1|t) = 0 = x(t), t ∈ I≥0.
Correspondingly, the closed-loop system based on the optimization problem (3.57) stays
at x(t) = 0, yielding the closed-loop economic cost `eco(x(t), u(t)) = 1, ∀t ∈ I≥0 and
does not achieve the same performance as the artificial periodic reference r∗. This
issue can persist, even if we choose an arbitrarily large (even) prediction horizon N. In
particular, with the MPC formulation in (3.57), we can only ensure

J cl
eco,∞ ≤ max

k∈I[0,T−1]

`eco(r∗T(k)) = 1 + ε.

This is in contrast to existing results for the steady-state case (T = 1) in [87, 206, 208],
which ensure the superior bound (3.56). The same problem appears in economic MPC
schemes without terminal constraints for periodic problems, compare [210, Examples
4 and 18]. One way to alleviate this problem is to apply the first T components of the
open-loop input sequence u∗(·|t) (cf. multi-step MPC in [210, 272]), which transforms
the problem to a higher dimensional steady-state problem (cf. T-step system in [210,
211, 272]). Since we wish to consider problems with possibly large period lengths T, this
solution seems, however, inadequate. If we would use an economic MPC scheme based
on periodicity constraints [138, 282], the closed-loop system would also stay at x(t) = 0
for all t ∈ I≥0, since there exists only one feasible periodic orbit starting at x0 = 0. The
theoretical results in [138] do not apply, since the one-step controllability condition [138,
Lemma 4] is not satisfied.

To summarize, as also discussed in [241], the existing approaches with online op-
timized periodic reference trajectories r do not come with any closed-loop performance
guarantees similar to (3.56). In the following, we show that the performance guaran-
tees (3.56) can be recovered, by suitably adjusting the economic MPC formulation.

3.3.2 Proposed economic MPC formulation

In the following, we detail the proposed economic MPC scheme and discuss the relation
to other existing methods. The main idea is to directly minimize the predicted economic
stage cost `eco with some continuous (economic) terminal cost Vf,eco : X×ZT ×YT → R

and a terminal set Xf ⊆ X×ZT around the artificial reference trajectory r. In addition,
we use an updating scheme to ensure that the optimized artificial reference trajectory
r converges to the best possible periodic orbit r∗T. At each time t ∈ I≥0, given the
current state x(t), the predicted parameters ye(·|t) ∈ YT, memory states κ(·|t) ∈ RT, a
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self-tuning weight β(t) ≥ 0, and a constant cκ > 0, the MPC control law is defined by
the following optimization problem:

Problem 3.53.

minimize
u(·|t), r(·|t)

N−1

∑
k=0

`eco(x(k|t), u(k|t), t + k, ye(mod(k, T)|t)) (3.58a)

+ Vf,eco(x(N|t), r(·|t), t + N, ye(·|t))
+ β(t) · JT,eco(r(·|t), t + N, ye(·|t))

subject to

x(k + 1|t) = f (x(k|t), u(k|t), t + k), k ∈ I[0,N−1], (3.58b)

x(0|t) = x(t), (3.58c)

(x(k|t), u(k|t), t + k) ∈ Z, k ∈ I[0,N−1], (3.58d)

(x(N|t), r(·|t), t + N) ∈ Xf, (3.58e)

(r(·|t), t + N) ∈ ZT, (3.58f)

ye(·|t) = R
N
T ye(·|t), (3.58g)

∆κ(t) =
T−1

∑
j=0

[`eco(r(j|t), t + N + j, ye(j|t))− κ(j|t)] , (3.58h)

`eco(r(j|t), t + N + j, ye(j|t)) ≤ κ(j|t)− cκ∆κ(t), j ∈ I[0,T−1]. (3.58i)

The solution to this optimization problem is an optimal input trajectory u∗(·|t),
the corresponding state trajectory x∗(·|t), the artificial reference trajectory r∗(·|t) =

(x∗r (·|t), u∗r (·|t)), and the value function

W(t) :=
N−1

∑
k=0

`eco(x∗(k|t), u∗(k|t), t + k, ye(mod(k, T)|t))

+ Vf,eco(x∗(N|t), r∗(·|t), t + N, ye(·|t)) + β(t) · JT,eco(r∗(·|t), t + N, ye(·|t)).

The self-tuning weight β and the memory state κ are updated as follows

β(t + 1) =B(β(·), κ(·), x(·)), (3.59a)

κ(j|t + 1) =`eco(r∗(mod(j + 1, T)|t), t + N + 1 + j, ye(j|t + 1)), j ∈ I[0,T−1]. (3.59b)

The economic cost of the artificial reference trajectory r∗ is saved in the memory states
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κ (3.59b) using the more recent parameter predictions ye available at time t + 1. The
tuning weight β(t) can be determined by some general (causal) update rule B [206,
208], or simply chosen by a user as constant (cf. Prop. 3.84, [87]) or a time-varying
signal (cf. [206, Update rule 1]). The input trajectory minimizes the predicted economic
cost (3.58a) with a terminal cost Vf,eco, to be specified later (Ass. 3.55). The economic
cost of the artificial periodic reference trajectory r is weighted with a self-tuning (time-
varying) weight β(t) (cf. (3.58a)), similar to [87, 206, 208]. The resulting state and
input trajectory satisfy the dynamics (3.58b)–(3.58c) and the posed state and input
constraints (3.58d). In addition, the terminal state of the predicted state sequence
satisfies a terminal set constraint Xf (cf. Ass. 3.55 below) involving the artificial reference
trajectory (3.58e). The artificial reference is a feasible periodic orbit (3.58f). The variable
ye (cf. (3.58g)) corresponds to the parameter trajectory ye(·|t), periodically shifted by the
prediction horizon N, to be in phase with the artificial reference trajectory r. The reason
why the economic terminal cost Vf,eco may depend on the full parameter prediction
ye(·|t) ∈ YT, instead of simply considering ye(0|t) becomes evident in the design of the
terminal cost (cf. Sec. 3.3.5).

Conditions (3.58h)–(3.58i) pose additional constraints on the improvement of the
economic cost of the artificial reference r compared to κ(j|t), similar to [87, 206,
208]. In particular, if ∆κ is negative (the cost JT,eco of the reference improves), then
`eco(r(j|t), t+ N + j, ye(j|t)) can be larger than κ(j|t). Hence, the constraint (3.58i) is less
restrictive than `eco(r(j|t), t + N + j, ye(j|t)) ≤ κ(j|t). The memory states κ in combina-
tion with the self-tuning weight β and the constant cκ are crucial to establish the desired
performance guarantees and are discussed in more detail in the following theoretical
analysis, compare also the alternative MPC formulation in Section 3.3.6.

Compared to the tracking MPC formulation in Section 3.2, we directly minimize
the economic cost `eco over the prediction horizon N and require additional con-
straints (3.58h)–(3.58i) and update steps (3.59). Compared to the MPC formulations
in [87, 206, 208] (T = 1), a T-dimensional memory state is considered and the revised
constraints (3.58h)–(3.58i) are used.

The constant cκ > 0 and the terminal ingredients Vf,eco, Xf are designed offline,
which is detailed in Section 3.3.5. The memory states κ(·|0) can be initialized arbitrarily
large such that the constraint (3.58i) is inactive at t = 0. The tuning variable β can be
initialized with any positive scalar, most naturally β(0) = 1. The overall procedure is
summarized by the following algorithm.

Algorithm 3.54. (Economic MPC Algorithm with artificial reference trajectory)
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Offline: Specify the constraint sets Z, Zr, the economic cost `eco, the prediction horizon N, and
the period length T. Design suitable terminal ingredients Vf,eco, Xf (cf. Sec. 3.3.5). Specify the
update rule B and the constant cκ. Initialize the self-tuning weight β(0) and the memory states
κ(·|0).
Online: At each time step t ∈ I≥0, measure the current state x(t), obtain the predicted parameters
ye(·|t), solve Problem 3.53, and apply the control input u(t) := u∗(0|t). Update the self-tuning
weight β (3.59a) and the memory state κ (3.59b).

Existing schemes = special cases

In the following, we discuss in detail how various existing methods for economic MPC
are contained in this formulation as special cases.

The proposed formulation can best be viewed as an extension to the MPC formulations
in [87, 206, 208], which consider an artificial reference setpoint (T = 1). In particular, if
we assume a time-invariant problem setup and choose T = 1, we get the optimization
problem and closed-loop operation in [87, 206, 208]. For cκ ≥ 0, the constraints (3.58h)–
(3.58i) are equivalent to `eco(r(t)) ≤ κ(t) = `eco(r∗(t− 1)) which is used in [87, 206,
208] to ensure that the cost of the artificial reference r is non-increasing. Although one
can directly see that [87, 206, 208] is a special case of the posed formulation, it is not
obvious from the onset that the extension of [87, 206, 208] to periodic problems should
be given by Problem 3.53. A more intuitive extension might be to use the constraint
JT,eco(r(·|t)) ≤ κ(t) = JT,eco(r∗(·|t − 1)) (as an alternative to (3.58h)–(3.58i)). The
possibly suboptimal performance of such an approach has, however, been illustrated
in the numerical example in Section 3.3.1. In Section 3.3.6 we show that we can
guarantee the same properties with this more intuitive constraint, if we instead suitably
reformulate the cost function. Another possible formulation for periodic orbits would
be the constraint `eco(r(j|t)) ≤ κ(j|t) (choosing cκ = 0 in (3.58i)). This modification is
sufficient to avoid the pitfall in Section 3.3.1, if the artificial reference is initialized as
an optimal periodic orbit r∗T. However, this more restrictive constraint can potentially
prevent the artificial reference trajectory r to converge to the optimal periodic orbit r∗T.

If we consider a prediction horizon of N = 0 and a terminal equality constraint
Xf = {xr(0) = x}, then the proposed formula yields a modified version of the MPC
scheme using periodicity constraints [138, 282]. The only difference would be the
additional performance constraints on the periodic orbit (3.58h)–(3.58i). Crucially, if we
choose a suitable terminal cost and terminal set (cf. Ass. 3.59), then we can establish
closed-loop performance guarantees (Thm. 3.65), which are in general not valid for MPC
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schemes using periodicity constraints [138, 282]. In particular, the terminal ingredients
(Ass. 3.59) relax the one-step controllability condition [138, Lemma 4] to a stabilizability
condition. In Lemma 3.78, we discuss how to retain the performance guarantees with a
terminal equality constraint.

The tracking MPC scheme [165] can be viewed as a modified version, which uses a
tracking stage cost ` in Problem 3.53, similar to the MPC formulations in Section 3.2,
and hence does not require the additional tuning variable β or memory states κ.

The standard economic MPC formulations for periodic orbits [10, 295] and steady-
states [16, 19] are contained as a special case, if we fix the artificial reference trajectory
r = r∗T.

3.3.3 Relative performance guarantees

In Proposition 3.56, we show that the proposed formulation is recursively feasible, using
standard conditions on the terminal ingredients (Ass. 3.55). If the external parameters are
consistently T-periodic (Ass. 3.50), Proposition 3.58 shows that the average closed-loop
performance is no worse than the performance of the limiting artificial references.

Terminal ingredients: The following assumption captures the (standard) conditions for
the terminal ingredients.

Assumption 3.55. (Economic terminal ingredients) There exists a terminal control law kf :
X×ZT → U such that the following properties hold for any time t ∈ I≥0, parameter prediction
ye ∈ YT, periodic reference (r, t) ∈ ZT, and any state (x, r, t) ∈ Xf:

(x+, r+, t + 1) ∈Xf, (3.60a)

(x, u, t) ∈Z, (3.60b)

Vf,eco(x+, r+, t + 1, y+e )−Vf,eco(x, r, t, ye) ≤`eco(r(0), t, ye(0))− `eco(x, u, t, ye(0)),
(3.60c)

with x+ = f (x, u, t), r+ = RTr, y+e = RTye, u = kf(x, r, t).

Compared to Assumption 3.5, we consider a time-varying setup and an economic
stage cost (`eco(r, t, ye) 6= 0). Due to the definition of the reference constraint set ZT,
Assumption 3.55 can be satisfied with a simple terminal equality constraint (TEC):

Xf = {(x, r, t) ∈ X×ZT | x = xr(0)}, kf(x, r, t) = ur(0), Vf,eco(x, r, t, ye) = 0, (3.61)
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similar to Proposition 3.10. However, for the improved performance guarantees dis-
cussed in Section 3.3.4 below we will require stronger conditions for the terminal set (cf.
Ass. 3.59 and Sec. 3.3.6), compare also [208] and Lemma 3.78.

Recursive feasibility: The following proposition shows that feasibility of the proposed
economic MPC algorithm is guaranteed, independent of the exogenous parameters ye.

Proposition 3.56. Let Assumption 3.55 hold. If Problem 3.53 is feasible at t = 0, then the closed-
loop system resulting from Algorithm 3.54 satisfies the constraints (3.53) and Problem 3.53 is
feasible for all t ∈ I≥0, independently of the parameter prediction ye(·|t).

Proof. This result is a straightforward extension of existing results for MPC with artifi-
cial reference trajectories [87, 102, 138, 163, 164, 165, 166, 206, 208, 282], compare also
Theorem 3.31. Given the feasible reference trajectory (r∗(·|t), t + N) ∈ ZT at time t, the
shifted reference trajectory r(·|t + 1) = RTr∗(·|t) satisfies (3.58f). This reference trajec-
tory satisfies the constraints (3.58i) with equality, since ∆κ(t + 1) = 0. A corresponding
candidate input sequence is given by

u(k|t + 1) =

u∗(k + 1|t) k ∈ I[0,N−2]

kf(x∗(N|t), r∗(·|t), t + N) k = N − 1
.

The resulting state and input sequences satisfy the constraints (3.58d) and the terminal
constraint (3.58e) due to Assumption 3.55. �

Self-tuning weight: Define the change in the weight β as γ(t) := β(t + 1) − β(t),
t ∈ I≥0. The following assumption characterizes the properties the update scheme
B (3.59a) should have such that relative performance guarantees hold despite online
changing values of β.

Assumption 3.57. [206, Ass. 1] (Self-tuning weight - bounded rate of change γ) There exists
a constant cγ ∈ R such that the sequence β(·) satisfies lim supt→∞ γ(t) ≤ 0 and γ(t) ≤ cγ,
β(t) ≥ 0 for all t ∈ I≥0.

A more nuanced discussion and an alternative condition on B resulting in slightly
weaker performance guarantees can be found in [206]. Define the cost of the optimal
artificial reference trajectory as

κ(t + 1) :=
T−1

∑
j=0

κ(j|t + 1) = JT,eco(r∗(·|t), t + N, ye(·|t + 1)), t ∈ I≥0. (3.62)
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If the external parameters ye(·|t) are consistently T-periodic (Ass. 3.50), then the con-
straint (3.58i), and the update (3.59b) with cκ ≥ 0 ensure that ∆κ(t) := κ(t + 1)− κ(t) ≤
0 and thus κ is non-increasing. Boundedness of `eco implies boundedness of κ. Thus
κ(t) converges to some finite limit κ∞ := limt→∞ κ(t).

Average performance bounds: The following proposition establishes that the closed-
loop performance is no worse than κ∞, i.e., the performance of the limiting artificial
trajectories r.

Proposition 3.58. Let Assumptions 3.50, 3.55, and 3.57 hold. If Problem 3.53 is feasible
at t = 0, then the closed-loop system resulting from Algorithm 3.54 satisfies the following
performance bound

lim sup
K→∞

∑TK−1
t=0 `eco(x(t), u(t), t, ye(t))

TK
≤ κ∞

T
. (3.63)

Proof. Proposition 3.56 provides a feasible candidate solution u(·|t + 1), r(·|t + 1) to
Problem 3.53 at time t + 1, given feasibility at time t ∈ I≥0. Hence, we can use the cost
of the candidate solution to upper bound the value function W(t + 1). The terminal cost
(Ass. 3.55) in combination with consistent parameters ye(·|t) (Ass. 3.50) and T-periodicity
ensure

W(t + 1)−W(t) + `eco(x(t), u(t), t, ye(t))

≤`eco(r∗(0|t), t + N, ye(0|t)) + γ(t)κ(t + 1)
(3.59b)
= κ(T − 1|t + 1) + γ(t)κ(t + 1),

similar to [206, Thm. 1], [208, Thm. 1]. The definition of κ in (3.59b), consistent parame-
ters ye(·|t) (Ass. 3.50) and the constraints (3.58h)–(3.58i) ensure

κ(j|t + 1)
(3.59b)
= `eco(r∗(j + 1|t), t + N + j + 1, ye(j|t + 1))

(3.58i)
≤ κ(j + 1|t)− cκ∆κ(t), j ∈ I[0,T−1], (3.64)

with κ(T|t) := κ(0|t). Using Inequality (3.64) recursively implies

κ(T − 1|t + k + 1) ≤κ(k|t)− cκ

k

∑
j=0

∆κ(t + j), k ∈ I[0,T−1]. (3.65)
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Using the definition of κ in (3.62), we can bound the T-step sum as

T−1

∑
k=0

κ(T − 1|t + 1 + k)
(3.65)
≤

T−1

∑
k=0

(
κ(k|t)− cκ

k

∑
j=0

∆κ(t + j)

)

≤
T−1

∑
k=0

κ(k|t)− cκT
T−1

∑
k=0

∆κ(t + k)

(3.62)
= κ(t)− cκT

T−1

∑
k=0

∆κ(t + k) = κ(t) + cκT(κ(t)− κ(t + T)).

Thus, the closed-loop transient cost over one period T satisfies

W(t + T)−W(t) +
t+T−1

∑
k=t

`eco(x(k), u(k), k, yeco(k)) (3.66)

≤κ(t) + cκT(κ(t)− κ(t + T)) +
T−1

∑
k=0

γ(t + k)κ(t + 1 + k).

Abbreviate `eco(t) := `eco(x(t), u(t), t, ye(t)) and define κe(t) := κ(t)− κ∞. Then, In-
equality (3.66) evaluated over a time interval K · T, K ∈ I≥1 starting at t = 0 can be
rewritten as

W(K · T)−W(0) (3.67)

≤Kκ∞ + cκT(κ(0)− κ(TK)) +
K−1

∑
k=0

κe(k · T) +
KT−1

∑
t=0

[γ(t)κ∞ + γ(t)κe(t + 1)− `eco(t)].

The remainder of the proof is analogous to [206, Thm. 1]. Boundedness of `eco, Vf,eco

and β(t) ≥ 0 ensures that W(TK) is lower bounded and thus

0 ≤ lim inf
K→∞

W(TK)−W(0)
K

.
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Taking averages on both sides of Inequality (3.67) yields

0 ≤ lim inf
K→∞

W(TK)−W(0)
K

(3.67)
≤ κ∞ + lim sup

K→∞

1
K

K−1

∑
k=0

κe(k · T) + lim
K→∞

cκT
K

(κ(0)− κ(TK))

+ lim sup
K→∞

1
K

[
KT−1

∑
t=0

γ(t)κ∞ + γ(t)κe(t + 1)

]
− lim sup

K→∞

1
K

KT−1

∑
t=0

`eco(t)

≤κ∞ − lim sup
K→∞

1
K

TK−1

∑
t=0

`eco(t),

which implies the desired performance bound (3.63). The first inequality uses the fact
that

lim inf
n

(an − bn) ≤ lim inf
n
−bn + lim sup

n
an = lim sup

n
an − lim sup

n
bn.

The second inequality follows from

γ(t) ≤ cγ, κe(t) ∈ [0, ∞), t ∈ I≥0,

lim
t→∞

κe(t) = 0, lim sup
t→∞

γ(t) ≤ 0, lim
t→∞

∆κ(t) = 0. �

Proposition 3.58 extends the performance bounds in [206, Thm. 1] from the steady-
state case (T = 1) to periodic problems (T > 1). In particular, we showed that the
constraints (3.58h)–(3.58i) with cκ allow us to relate the difference in the value function
W over T-steps with κ, the cost of the artificial reference trajectory.

3.3.4 Improved a priori performance bounds

In the following, we provide sufficient conditions to ensure that the cost of the artificial
periodic orbit converges to a local minimum.

Terminal ingredients: The following assumption is a stronger version of Assump-
tion 3.55, which is used to derive the improved performance guarantees.

Assumption 3.59. (Contractive terminal set) Consider Xf, Vf,eco, kf satisfing Assumption 3.55.
There exist a function Vδ : X×ZT → R≥0 and functions αδ,1, αδ,2, αδ,3, αδ,4 ∈ K∞ such that
for any time t ∈ I≥0, any periodic references (r, t) ∈ ZT, (r̃, t) ∈ ZT and any (x, r, t) ∈ Xf,
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the following inequalities hold

Vδ(x+, r+, t + 1)−Vδ(x, r, t) ≤− αδ,1(‖x− xr(0)‖), (3.68a)

αδ,2(‖x− xr(0)‖) ≤ Vδ(x, r, t) ≤αδ,3(‖x− xr(0)‖), (3.68b)

|Vδ(x, r, t)−Vδ(x, r̃, t)| ≤αδ,4(‖r− r̃‖), (3.68c)

with x+ = f (x, u, t), u = kf(x, r, t), r+ = RTr. Furthermore, there exist functions α :
ZT → R≥0, αδ,5 ∈ K∞ and constants α ≥ α > 0 such that the terminal set is given by
Xf = {(x, r, t) ∈ X×ZT | Vδ(x, r, t) ≤ α(r, t)} and the following conditions hold

|α(r, t)− α(r̃, t)| ≤ αδ,5(‖r− r̃‖), α(r, t) = α(r+, t + 1) ∈ [α, α]. (3.69)

These conditions ensure that the terminal set Xf has a non-empty interior (in x for
r, t fixed) and thus explicitly exclude terminal equality constraints. In particular, Vδ

needs to be a (continuous) incremental CLF with feedback kf, which can be designed
analogous to the tracking terminal cost Vf in Section 3.1.3 with αδ,1, αδ,2, αδ,3 quadratic
(cf. Lemma 3.12). For this design choice Condition (3.68c) holds with a quadratic
function αδ,4, compare Proposition 3.44. Furthermore, the fact that α may depend on
(r, t) allows the usage of the online optimized terminal set size from Section 3.2.2, with
the continuous function

α(r, t) := min

{
min

i∈I[1,nz],j∈I[0,T−1]

−gi(r(j), t)
ci(r(j), t)

,
√

α1

}
, (3.70)

if ZT, gi, ci, α1 are chosen appropriately. The computation of a suitable economic terminal
cost Vf,eco is detailed in Section 3.3.5.

The following lemma shows that the reference r can be incrementally changed in
closed-loop operation without losing recursive feasibility.

Lemma 3.60. Let Assumptions 3.55 and 3.59 hold. Then, there exists a constant ε > 0 such
that at each time t ∈ I≥, for any (r, t) ∈ ZT, (x, r, t) ∈ Xf, for all (r̃, t + 1) ∈ ZT satisfying
r̃ ∈ Bε(RTr), it holds that

(x+, r̃, t + 1) ∈ Xf, x+ = f (x, kf(x, r, t), t).

Proof. First, note that Assumption 3.59 ensures that the positive invariance condi-
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tion (3.60a) is strictly satisfied, i.e,

Vδ(x+,RTr, t + 1)
(3.68a)
≤ Vδ(x, r, t)− αδ,1(‖x− xr(0)‖)

(3.68b)
≤ Vδ(x, r, t)− αδ,1(α

−1
δ,3 (Vδ(x, r, t))) ≤ sup

c∈[0,α(r,t)]
c− αδ,1(α

−1
δ,3 (c))

(3.69)
≤ α(r, t)−min{αδ,1(α

−1
δ,3 (α/2)), α/2}︸ ︷︷ ︸

=:∆α>0

, (3.71)

where the last step follows using the case distinction c ≤ α/2 and c ≥ α/2 and the fact
that α(r, t) ≥ α. Given ‖RTr− r̃‖ ≤ ε, we have

Vδ(x+, r̃, t + 1)
(3.68c)
≤ Vδ(x+,RTr, t + 1) + αδ,4(ε)

(3.71)
≤ α(r, t)− ∆α + αδ,4(ε)

(3.69)
≤ α(r̃, t) + αδ,5(ε) + αδ,4(ε)− ∆α = α(r̃, t),

with ε := (αδ,4 + αδ,5)
−1(∆α). �

This result is an extension of [208, Lemma 1]. For comparison, in the tracking MPC
scheme in Section 3.2 we only required that the reference can be incrementally moved if
x ∈ Bε(xr) using Assumption 3.6.

Self-tuning weight: Given a state x at time t ∈ I≥0, the set of periodic reference
trajectories r with a terminal set Xf that can be reached within the prediction horizon N
is defined as

RN(x, t) :=
{

r ∈ (X×U)T | (r, t + N) ∈ ZT, ∃u ∈ UN s.t.

x(t) = x, (x(N + t), r, t + N) ∈ Xf,

x(k + 1) = f (x(k), u(k), k), (x(k), u(k), k) ∈ Z, k ∈ I[t,t+N−1]

}
.

Given additionally ye(·|t) ∈ YT, κ(·|t) ∈ RT, we define the set of reference trajectories
that also satisfy the constraints (3.58h)–(3.58i) as

RN(x, t, ye(·|t), κ(·|t)) := {r ∈ RN(x, t) | s.t. r satisfies (3.58h)–(3.58i)}.

Given a point x ∈ X at time t ∈ I≥0 with some fixed ye(·|t) ∈ YT, κ(·|t) ∈ RT, the cost
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of the best reachable periodic orbit is given as

JT,eco,min(x, t, ye(·|t), κ(·|t)) := min
r(·)∈RN(x,t,ye(·|t),κ(·|t))

JT,eco(r(·), t + N, ye(·|t)). (3.72)

Assumption 3.61. (Self-tuning weight - increasing weight) The update rule B is such that for
any ye satisfying Assumption 3.50 and for all sequences x(·), κ(·), it holds that

κ∞ − lim inf
t→∞

JT,eco,min(x(t), t, ye(·|t), κ(·|t)) > 0 ⇒ lim inf
t→∞

β(t) = ∞.

The main idea is that in closed-loop operation the self-tuning weight β increases if
necessary and thus ensures that the artificial trajectory converges to the optimal mode
of operation, compare [206, 208]. A detailed discussion on update schemes B satisfying
Assumptions 3.57 and 3.61 is given in [206].

Periodic continuity: As discussed in Sections 3.3.1–3.3.2, the constraints (3.58h)–(3.58i)
are crucial for the desired properties. However, these constraints limit how the shape
of the artificial reference trajectory may change. In particular, for cκ = 0 this constraint
ensures that the reference can only be updated if the economic cost on all points r(j|t),
j ∈ I[0,T−1] of the reference trajectory r does not increase. For cκ arbitrarily large, the
constraint (3.58i) becomes inactive, if the overall cost of the artificial trajectory decreases
(∆κ < 0). However, both for numerical and technical reasons we consider the smooth
constraints (3.58i) with a finite value cκ. Thus, we require the following technical
continuity assumption on the periodic optimal control problem (Problem 3.52).

Assumption 3.62. (Continuity of periodic optimal control problem) There exists a constant
cκ > 0 such that at any time step t ∈ I≥0, for any parameters ye ∈ YT, for any periodic
trajectory (r, t) ∈ ZT, which is not a local minimum of Problem 3.52, and any ε > 0, there
exists a reference trajectory (r̃, t) ∈ ZT with ‖r − r̃‖ ≤ ε, JT,eco(r̃, t, ye) < JT,eco(r, t, ye),
that satisfies

cκ ≥
`eco(r̃(j), t + j, ye(j))− `eco(r(j), t + j, ye(j))

JT,eco(r, t, ye)−JT,eco(r̃, t, ye)
, j ∈ I[0,T−1]. (3.73)

This assumption ensures that it is possible to incrementally change the overall cost
JT,eco, with incremental changes in the reference r and a change in the local cost
`eco proportional to the overall improvement in JT,eco. If we expand the fraction by
∆r = r − r̃ and take the limit ∆r → 0, we can see that this condition is similar to a
continuity assumption on the fraction of the gradients of `eco and JT,eco. A modified
MPC formulation, which does not require Assumption 3.62, is presented in Section 3.3.6.
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The following lemma shows that the continuity condition (Ass. 3.62) in combination
with the contractive terminal set (Ass. 3.59) ensure convergence to local minima.

Lemma 3.63. Let Assumptions 3.50, 3.55, 3.59 and 3.62 hold. Suppose that Problem 3.53
is feasible at time t ∈ I≥0 and the optimal artificial reference trajectory r∗(·|t) is not a local
minimizer of Problem 3.52. Then, there exists a reference r̃ ∈ RN(x(t + 1), t + 1, ye(·|t +
1), κ(·|t + 1)), which is a feasible candidate solution of Problem 3.53 at time t + 1, and satisfies

JT,eco(r̃, t + N + 1, ye(·|t + 1)) < JT,eco(RTr∗(·|t), t + N + 1, ye(·|t + 1)). (3.74)

Proof. Given that RTr∗T(·|t) is not a local minimizer, Assumption 3.62 ensures that
there exists a feasible periodic reference trajectory r̃, that improves the reference
cost JT,eco (3.74) and satisfies ‖r − r̃‖ ≤ ε and (3.73). Satisfaction of the posed con-
straints (3.58h)–(3.58i) follows from (3.73), by noting that

∆κ(t) = JT,eco(r̃, t + N + 1, ye(·|t + 1))−JT,eco(RTr∗(·|t), t + N + 1, ye(·|t + 1)).

With ε according to Lemma 3.60, the candidate input u(·|t + 1) from Proposition 3.58

satisfies the terminal set constraint (3.58e) with the incrementally changed reference r̃
and is thus a feasible solution of Problem 3.53. �

A priori performance bounds: The following proposition establishes a priori performance
bounds on the artificial reference trajectory.

Proposition 3.64. Let Assumptions 3.50, 3.55, 3.59 and 3.62 hold. Assume that Problem 3.53
is feasible at t = 0. If the update rule B satisfies Assumption 3.61, then κ∞ is a local minimum
of Problem 3.52 for the closed-loop system resulting from Algorithm 3.54.

Proof. This result is a direct extension of the self-tuning economic MPC results in [208,
Thm. 2/3, Cor. 1]. Using a proof of contradiction one can show that Assumption 3.62 im-
plies κ∞ = limt→∞ JT,eco,min(x(t), t, ye(·|t), κ(·|t)), compare [208, Thm. 2], [206, Thm. 2].
Suppose there exists a limiting artificial reference r, which is not a local minimizer
of Problem 3.52. Lemma 3.63 ensures that there exists a feasible reference r̃ with an
improved cost, which implies JT,eco,min < κ∞ and thus contradicts the assumption. �

The following theorem summarizes the theoretical properties of the proposed MPC
scheme.

Theorem 3.65. Let Assumptions 3.55 hold and assume that Problem 3.53 is feasible at t = 0.
Then, Problem 3.53 is recursively feasible for all t ∈ I≥0 for the closed-loop system resulting
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from Algorithm 3.54. Assume further that Assumptions 3.50, 3.57, 3.59, 3.61 and 3.62 hold.
Then, κ∞ is a local minimum of Problem 3.52 and the following performance bound holds

lim sup
K→∞

∑TK−1
t=0 `eco(x(t), u(t), t, ye(t))

K
≤ κ∞.

Proof. The results follow directly from Propositions 3.56, 3.58, and 3.64. �

Corollary 3.66. Let Assumptions 3.50, 3.55, 3.59, and 3.62 hold. Assume that Problem 3.53
is feasible at t = 0. If the update rule B is chosen as update scheme 2 or 6 in [206], then the
closed-loop average economic performance resulting from Algorithm 3.54 is no worse than the
performance at a locally optimal periodic orbit (local minimum of Problem 3.52).

Proof. This results follows directly from Theorem 3.65. It suffices to note that the update
schemes 2 and 6 in [206] satisfy Assumptions 3.57 and 3.61, compare [206, Lemmas 1

and 4]. �

This result extends the performance guarantees in [208] to economic MPC schemes
with artificial periodic trajectories (T > 1) and thus provides performance guarantees rel-
ative to (locally) optimal periodic operation. The proposed economic MPC formulation
(Alg. 3.54) ensures the desired closed-loop performance, if

(a) The parameter predictions are consistent (Ass. 3.50),

(b) Suitable terminal ingredients are employed (Ass. 3.55 and 3.59),

(c) An update rule B is used (Ass. 3.57 and 3.61),

(d) The periodic continuity condition holds (Ass. 3.62).

Condition (a) is intuitively needed to yield performance guarantees using MPC. Explicit
design procedures satisfying Condition (b) are detailed in Section 3.3.5. Relaxations of
Conditions (c) and (d) can be found in Section 3.3.6.

Remark 3.67. (Continuous-time formulation) For simplicity, we have presented the proposed
MPC framework in a discrete-time setting. However, the approach can be directly applied to
continuous-time problems by defining the discrete-time stage cost `eco and dynamics f implicitly
as the integration of some continuous-time dynamics fc and the average continuous-time cost
`eco,c over some sampling period Ts. One advantage of considering a continuous-time formulation
is that the design of terminal ingredients satisfying Assumption 3.5 (cf. Sec. 3.3.5) simplifies,
compare [JK15, App. C]. Furthermore, in a continuous-time setting it is possible to use a variable
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sampling time Ts ∈ [Ts, Ts] ⊆ R>0, by considering the decision variable u = (uc, Ts), where
uc denotes the (typically piece-wise constant) control input. As a result, in a time-invariant
setting the fixed constant T does not directly impose a time length on the set of periodic orbits
ZT, but only a finite parametrization. The constants Ts, Ts need to be chosen such that the
(possibly explicit) discretization scheme is stable and the MPC can react fast enough. This
modification is equally applicable to the tracking MPC formulation in Section 3.2, assuming
that a continuous-time output target ye is specified. The advantages of such a continuous-time
MPC formulation are also explored in a numerical example in [JK26, App. A]. We point out
that the benefits of using such a variable continuous-time period length have also been recently
investigated in [133] using a direct multiple shooting method.

Remark 3.68. (MPC formulations using periodicity constraints) For a horizon N = 0, we
can define the MPC control law as u(t) = kf(x(t), r∗(·|t), t). In this case, Problem 3.53 only
determines a periodic optimal reference trajectory r∗(·|t), which is restricted to be close to the
current state x(t) due to the terminal set constraint. If the terminal set constraint Xf were
chosen as a terminal equality constraint (3.61), Problem 3.53 would compute a periodic trajectory,
starting at the current state x(t), which was also proposed in the MPC formulations in [138,
282]. Such an economic MPC formulation with a periodicity constraint directly guarantees
the relative performance bounds in Proposition 3.58. However, in contrast to Proposition 3.64,
in general such a formulation does not ensure convergence to a local minimum. In particular,
in [138, Lemma 3, Thm. 4], convergence could only be guaranteed using a restrictive one-step
controllability condition. Furthermore, even in the linear convex case, such a formulation may
fail to convergence, compare [282, Example 6]. By using the contractive terminal set Xf from
Assumption 3.59 with N = 0, the proposed formulation can relax the periodicity constraint
employed in [138, 282] and thus provide stronger performance guarantees.

Remark 3.69. (Model uncertainty in economic MPC) The consideration of model uncertainty in
the considered economic MPC framework is interesting for multiple reasons. Recursive feasibility
and constraint satisfaction can be handled analogous to the tracking MPC in Sections 3.1–3.2,
compare Remarks 3.24, 3.32 and 3.41. The economic stage cost `eco can be adjusted to account for
the uncertainty in the predictions, which allows for robust performance guarantees, compare [30,
31, 82, JK35, 271, 272]. Optimal operation with uncertain deterministic model-mismatch/offsets
requires additional care and has been considered in literature for the special case of T = 1.
In [82], a set bounding deterministic disturbances is updated online and used in the cost function,
extending [206, 208] to a robust setting and reducing conservatism online (for linear systems).
Instead of only estimating a disturbance/offset as done in offset-free tracking [201, 218], the
gradient of the economic stage cost `eco at steady-state can be additionally estimated using
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modifier adaptation. This gradient can be directly used in the economic MPC scheme to ensure
convergence to the (economically) optimal steady-state, compare [9, 99, 217, 269].

3.3.5 Terminal costs for economic periodic operation

In the following, we provide design procedures to compute a suitable economic ter-
minal cost Vf,eco satisfying Assumption 3.59. We extend the approach in [16] to dy-
namic/periodic trajectories, by considering the linearized dynamics and local quadratic
approximations of the economic stage cost `eco (using the first and second derivative).
The online evaluation of this terminal cost Vf,eco involves an additional adjoint peco (sim-
ilar to the local gradient correction employed in [291]), which needs to be recomputed
online for any periodic reference trajectory r. In order to reduce the computational
complexity, we also present a simpler, more conservative, design procedure with a
positive definite terminal cost Vf,eco similar to the design in [10, 11]. In addition, we also
show how Algorithm 3.54 can be adjusted to retain the a priori performance bounds
(Thm. 3.65) with a simple terminal equality constraint.

Linear-quadratic local auxiliary stage cost

The following lemma extends the results in [16, Lemma 22-23] to compute an auxiliary
stage cost `eco,q which locally upper bounds the stage cost `eco.

Lemma 3.70. Suppose that Vδ, kf, α satisfy the conditions (3.68)–(3.69) in Assumption 3.59.
Suppose further that the sublevel sets of Vδ are convex in x, the controller kf is twice continuously
differentiable in x, continuous in r, and satisfies kf(xr, r, t) = ur(0). In addition, assume that
the stage cost `eco and the dynamics f are twice continuously differentiable w.r.t. ξ = (x, u) ∈
Rn+m. Then, the function `eco(x, r, t, ye) := `eco(x, kf(x, r, t), t, ye)− `eco(r(0), t, ye) is twice
continuously differentiable w.r.t. x. Furthermore, for any ε > 0, there exists a constant α1 > 0
and a positive semidefinite matrix S : Zr × Y → R(n+m)×(n+m) such that the following
conditions hold for any (r, t) ∈ ZT, ye ∈ Y and any x ∈ X with Vδ(x, r, t) ≤ α1:

S(r(0), t, ye) �`eco,ξξ(r(0), t, ye), (3.75a)

`eco,q(x, r, t, ye) ≥`eco(x, r, t, ye) +
ε

2
‖x− xr(0)‖2, (3.75b)
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with

`eco,q(x, r, t, ye) :=‖x− xr(0)‖2
Qeco(r,t,ye)

+ `eco,x(xr(0), r, t, ye) · (x− xr(0)), (3.75c)

Qeco(r, t, ye) :=

(
In

kf,x(xr(0), r, t)

)>
S(r(0), t, ye)

(
In

kf,x(xr(0), r, t)

)

+ 2εIn +
m

∑
j=1

`eco,uj(r(0), t, ye)kf,j,xx(xr(0), r, t), (3.75d)

where `eco,ξξ : Zr×Y→ R(n+m)×(n+m) denotes the Hessian of `eco w.r.t. ξ = (x, u) ∈ Rn+m,
`eco,uj : Zr×Y→ R the Jacobian of `eco w.r.t. the j-th component of u, kf,x : X×ZT → Rm×n

the Jacobian of kf w.r.t. x, `eco,x : X×ZT ×Y → R1×n the Jacobian of `eco w.r.t. x, and
kf,j,xx : X×ZT → Rn×n the Hessian of the j-th component of kf w.r.t. x, j ∈ I[1,m].

Proof. The derivative of `eco w.r.t. x is the total derivative of `eco w.r.t. x, for u = kf.
Hence, the Jacobian and Hessian of `eco are given by

`eco,x = `eco,ξ

(
In

kf,x

)
, `eco,xx =

(
In k>f,x

)
`eco,ξξ

(
In k>f,x

)>
+

m

∑
j=1

`eco,uj kf,j,xx,

where `eco,ξ : Zr ×Y → R1×(n+m) denotes the Jacobian of `eco w.r.t. ξ = (x, u). Twice
continuous differentiability of `eco and compact constraints imply that there exists a
finite constant

c := sup
(r,t)∈Zr,ye∈Y

λmax(`eco,ξξ(r, t, ye)).

Thus, the matrix S := (max{c, 0})In+m is positive semidefinite and satisfies S � `eco,ξξ .
The construction in (3.75d), the definition of the Hessian `eco,xx and S � `eco,ξξ directly
imply Qeco(r, t, ye) � `eco,xx(xr(0), r, t, ye) + 2εIn. Similar to [16, Lemma 22], there
exists a small enough constant α1 > 0 (uniform in r, t, ye) such that Qeco(r, t, ye) �
`eco,xx(x, r, t, ye) + εIn, ∀(r, t) ∈ ZT, ye ∈ Y, x ∈ X : Vδ(x, r, t) ≤ α1. Abbreviate
∆x = x− xr(0), which implies `eco,q = ‖∆x‖2

Qeco
+ `eco,x · ∆x. Convexity of the sublevel

sets of Vδ implies that Vδ(xr(0) + s∆x, r, t) ≤ α1 for all s ∈ [0, 1] and any Vδ(xr(0) +
∆x, r, t) ≤ α1. Hence, we can use the mean value theorem for vector functions [236,
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Prop. A.11 (b)], similar to [16, Lemma 23], to obtain

`eco,q(x, r, t, ye)− `eco(x, r, t, ye)

=
∫ 1

0
(1− s)∆x>

(
Qeco(r, t, ye)− `eco,xx(xr(0) + s · ∆x, r, t, ye)

)
∆xds

≥
∫ 1

0
(1− s)ε‖∆x‖2ds = ε/2‖∆x‖2. �

Basically, `eco,q is a local linear-quadratic over-approximation of the stage cost `eco.
Hence, we will formulate a sufficient condition for Inequality (3.60c) using the auxiliary
stage cost `eco,q. We point out that Lemma 3.70 does not impose any definiteness
conditions on the Hessian of the stage cost `eco, but instead upper bounds the Hessian
using the positive semidefinite matrix S.

Sufficient conditions based on the linearization

Denote the Jacobian of f evaluated around an arbitrary point (xr, ur, t) = (r, t) ∈ Zr by

A(r, t) :=
[

∂ f
∂x

]∣∣∣∣
(xr,ur,t)

, B(r, t) :=
[

∂ f
∂u

]∣∣∣∣
(xr,ur,t)

.

Given some periodic trajectory (r(·|t), t) ∈ ZT, the Jacobian w.r.t. x of the system
dynamics f in closed loop with the terminal control law kf is given by

Acl(r(·|t), t) := A(r(0|t), t) + B(r(0|t), t)kf,x(r(·|t), t).

In the following, we introduce a periodic adjoint trajectory peco(j|t) ∈ Rn, j ∈ I[0,T−1],
which can be computed online based on the following set of n · T linear (in peco) equality
constraints

A>cl (R
j
Tr(·|t), t + j)peco(j + 1|t) (3.76)

=peco(j|t)− `
>
eco,x(xr(j|t),Rj

Tr(·|t), t + j, ye(j|t)), j ∈ I[0,T−1],

with peco(N|t) := peco(0|t). In the setpoint case (T = 1), this reduces to p>eco(Acl− In) =

−`>eco,x, similar to [16, 208]. Similar to the adjoints used in [291], this vector peco corrects
the effect of `eco,x, the gradient of the stage cost.

The following proposition shows that such an online computed adjoint vector peco in
combination with an offline computed matrix valued function Peco provides a suitable
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terminal cost for dynamic operation with economic cost.

Proposition 3.71. Suppose the conditions in Lemma 3.70 hold. Assume that there exists
a continuously parametrized positive definite matrix Peco : ZT → Rn×n such that for all
(r, t) ∈ ZT, ye ∈ Y, the following matrix inequality is satisfied

A>cl (r, t)Peco(RTr, t + 1)Acl(r, t)− Peco(r, t) � −Qeco(r, t, ye)− ε̃In, (3.77)

with some ε̃ > 0 and Peco(r, t + T) = Peco(r, t). Then, for any periodic reference (r(·|t), t) ∈
ZT, parameters ye(·|t) ∈ YT, the conditions (3.76) have a unique solution peco(·|t), which
is denoted by the continuous function peco : ZT ×YT → Rn with peco(r(·|t), t, ye(·|t)) :=
peco(0|t). There exists a constant α1 > 0 such that the terminal cost

Vf,eco(x, r, t, ye) := ‖xr(0)− x‖2
Peco(r,t) + p>eco(r, t, ye) · (x− xr(0)), (3.78)

satisfies Condition (3.60c) with Xf = {(x, r, t) ∈ X×ZT | Vδ(x, r, t) ≤ α1}.

Proof. Part I: Condition (3.77) ensures that the linearized (time-varying) dynamics along
the periodic trajectory r are (uniformly) exponentially stable, which implies

det(In −ΠT−1
j=0 A>cl (R

j
Tr, t + j)) > 0. (3.79)

Thus, the constraints (3.76) have a unique solution peco for any (r, t) ∈ ZT, ye ∈ YT,
compare (3.83). Hence, the map peco : ZT ×YT → Rn is well defined and continuous in
r, ye due to the uniform bound (3.79) and Acl, `eco,x continuous in r and ye.
Part II: Denote ∆x = x− xr(0). The first order Taylor approximation at x = xr(0) yields

∆x+ = f (x, kf(x, r, t), t)− f (xr(0), ur(0), t) = Acl(r, t)∆x + Φ(∆x, r, t),

with the remainder term Φ. Twice continuous differentiability of f and compact
constraints imply that the remainder term is uniformly Lipschitz continuous in the
terminal set, i.e., ‖Φ(∆x, r, t)‖ ≤ LΦ‖∆‖ for all (r, t) ∈ ZT, with a constant LΦ arbitrary
small for α1 arbitrary small. Using this bound in combination with Condition (3.77)
implies that there exists a sufficiently small constant α1 > 0 such that the nonlinear
system (locally) satisfies

‖∆x+‖2
Peco(RTr,t+1) − ‖∆x‖2

Peco(r,t),≤ −‖∆x‖2
Qeco(r,t,ye)

, (3.80)

for all (x, r, t) ∈ Xf, ye ∈ Y, compare the proof of Lemma 3.12 for details. Given that T is
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finite, `eco,x is uniformly bounded and Condition (3.79) holds, the function peco admits
a uniform norm bound peco := max(r,t)∈ZT ,ye∈YT ‖peco(r, t, ye)‖. Using the definition of
peco, we get

p>eco(RTr, t + 1,RTye)∆x+ (3.81)

≤p>eco(RTr, t + 1,RTye)Acl(r, t)∆x + peco‖Φ(∆x, r, t)‖
(3.76)
= p>eco(r, t, ye)∆x− `eco,x(xr(0), r, t, ye(0))∆x + peco‖Φ(∆x, r, t)‖
≤p>eco(r, t, ye)∆x− `eco,x(xr(0), r, t, ye(0))∆x + ε/2‖∆x‖2,

where the last inequality holds for a sufficiently small constant α1 > 0, given the
properties of the remainder term Φ. By combining Inequalities (3.80)–(3.81) and using
the auxiliary stage cost `eco,q from Lemma 3.70, the terminal cost (3.78) satisfies

Vf,eco(x+,RTr, t + 1,RTye)−Vf,eco(x, r, t, ye)

≤− ‖∆x‖2
Qeco(r,t,ye(0)) − `eco,x(xr(0), r, t, ye(0))∆x +

ε

2
‖∆x‖2

(3.75b)
≤ −`eco(x, r, t, ye(0)),

for all (x, r, t) ∈ Xf, ye ∈ YT and hence Condition (3.60c) holds. �

The following result combines the economic terminal cost Vf,eco from Proposition 3.71

with the (standard) terminal set design in Proposition 3.11, to provide a complete design
procedure for terminal ingredients satisfying Assumptions 3.55 and 3.59.

Corollary 3.72. Suppose that the stage cost `eco and the dynamics f are twice continuously
differentiable w.r.t. (x, u). Assume that there exist a continuously parametrized matrix kf,x :
ZT → Rm×n and continuously parametrized positive definite matrix Peco : ZT → Rn×n, with
Peco(r, t + T) = Peco(r, t), kf,x(r, t + T) = kf,x(r, t) such that for all (r, t) ∈ ZT, ye ∈ Y,
Inequality (3.77) holds with some ε̃ > 0. Then, there exists a function α : ZT → R≥0 such that

kf(x, r, t) =ur(0) + kf,x(r, t) · (x− xr(0)), (3.82a)

Xf ={(x, r, t) ∈ X×ZT | ‖x− xr(0)‖2
Peco(r,t) ≤ α(r, t)}, (3.82b)

and Vf,eco according to (3.78) satisfy Assumptions 3.55 and 3.59.

Proof. Given that Peco and Qeco + ε̃In are positive definite with uniform lower and
upper bounds, the conditions (3.68a)–(3.68b) in Assumption 3.59 are satisfied with the
incremental Lyapunov function Vδ(x, r, t) = ‖x− xr(0)‖2

Peco(r,t) and quadratic functions
αδ,1, αδ,2, αδ,3 ∈ K∞. Convexity of the terminal set Xf w.r.t. x (compare conditions
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Lemma 3.70) follows from Vδ quadratic in x and Peco positive definite. Condition (3.68c)
follows from Vδ quadratic and the assumed continuity of Peco w.r.t. r, similar to
Proposition 3.44. Conditions (3.60a), (3.60c), (3.68a)–(3.68c) hold for any α ≤ α1, using
Proposition 3.71. Furthermore, given that references r inside Zr strictly satisfy the
constraints in Z and kf,x is bounded, there exists a small enough constant α2 > 0 such
that conditions (3.60b), (3.69) hold for any α ≤ α2. Hence, choosing the constant terminal
set size α(r, t) := min{α1, α2} satisfies all the conditions (Condition (3.69) is trivially
satisfied in this case). �

With this result, we can directly specify a procedure to compute suitable terminal
ingredients. First, symbolic expressions for the Jacobians A, B, `eco,ξ and the Hessian
`eco,ξξ are computed. Then, a positive semidefinite matrix S is computed, which satisfies
Condition (3.75a). This can either be achieved with a constant matrix S (cf. proof of
Lemma 3.70) or by computing a suitably parametrized matrix S using LMIs.

Given S, we have to compute a (continuously) parametrized matrix Peco such that
Condition (3.77) holds. Suppose we want to compute a feedback of the form (3.82a)
(kf,xx = 0). In this case, Condition (3.77) with Qeco according to Condition (3.75d) is
equivalent to Inequality (B.2) in Appendix B with the following (output) tracking stage
cost

˜̀ =‖(C + Dkf,x)∆x‖2
S + (2ε + ε̃)‖∆x‖2,

C =

(
In

0m×n

)
∈ R(n+m)×n, D =

(
0n×m

Im

)
∈ R(n+m)×m.

Hence, we can use Lemma B.3/Proposition B.4 in Appendix B to compute suitable
matrices kf,x and Peco, using LMIs and a quasi-LPV parametrization, analogous to the
design in Section 3.1.3.

Given that peco needs to satisfy Condition (3.76) with equality, an offline parametriza-
tion for peco seems intractable (with the exception of linear systems, compare Sec-
tion 3.3.6). Hence, we can simply add12 the constraint (3.76) to Problem 3.53 and
compute peco(·|t) online. Finally, regarding the terminal set size α, we first compute the
constant α1 > 0 such that Condition (3.60c) holds for all Vδ(x, r, t) ≤ α1, e.g., using the
optimization problem (3.26). There are two options to compute a terminal set size α that
also ensures constraint satisfaction (3.60b). The fact that the set Zr is smaller than the
set Z can be used to compute a constant α ∈ (0, α1], similar to the optimization problem
12Due to the prediction horizon N the time index t changes to t + N in (3.76) and ye(·|t) is replaced by

ye(·|t) = RN
T ye(·|t).
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in (3.25). However, such a constant α depends on the choice of Zr and thus can yield
arbitrary small values α (and thus slow convergence of r, compare Lemma 3.60), or
requires restrictive constraints on the set of periodic trajectories ZT. This problem can
be alleviated by using a reference dependent terminal set size α(r, t) ∈ [α, α] (cf. (3.70)),
which can be implemented using an additional scalar optimization variable α in Prob-
lem 3.53, as done in Section 3.2.2. The overall design procedure is summarized in
Algorithm 3.73.

Algorithm 3.73. Offline computation - Terminal ingredients for Economic MPC

1: Compute the symbolic Jacobians, A, B, `eco,ξ and the Hessian `eco,ξξ .
2: Determine the matrix S � 0 such that S � `eco,ξξ (3.75a).
3: Compute the matrices Peco and kf,x such that Inequality (3.77) holds (cf. SDP App. B).
4: Compute the maximal terminal set size α1 > 0 (cf. Eq. (3.26)).
5: Derive α(r, t) ∈ (0, α1] for constraint satisfaction:

a) Compute the constant α2 > 0 (cf. Eq. (3.25)) and set α = min{α1, α2}.
b) Use α(r, t) with an additional scalar optimization variable (cf. Sec. 3.2.2).

The proposed procedure is a combination and extension of the reference generic offline
computations in Section 3.1.3, the terminal cost for economic MPC [16] and the online
computation of peco using Equation (3.76). Regarding the online operation, we simply
include the constraints (3.76) to compute peco(·|t) and possibly constraints to compute
α(r, t) online (cf. Sec. 3.2.2) in Problem 3.53. This procedure significantly simplifies
in the special case of linear systems with linear/quadratic stage costs `eco, which is
discussed in Section 3.3.6. Furthermore, in the special case of artificial setpoints (T = 1),
we recover the schemes in [87, 206, 208] and Algorithm 3.73 provides a corresponding
procedure to derive suitable terminal ingredients.

Remark 3.74. (Parametrization using ye) The matrix Peco can also be parametrized by ye, to
yield a less conservative terminal cost Vf,eco. However, the incremental Lyapunov function Vδ

used for the terminal set Xf (Ass. 3.59) may not depend on ye to ensure recursive feasibility
independent of online changes in the parameters ye. Thus, the choice of Xf in Corollary 3.72 is
only valid for Peco independent of ye.

Remark 3.75. (Computation of peco) As already discussed, the vector peco needs to be computed
online using Equations (3.76), which adds n · T optimization variables and n · T equality con-
straints (linear in peco) to Problem 3.53. Abbreviate A(j|t) = A(r(j|t), t + j), B(j|t) =

B(r(j|t), t + j), `eco,ξ(j|t) = `eco,ξ(r(j|t), t + j, ye(j|t)) and suppose the feedback kf,x is
parametrized in the form kf,x(j|t) = Y(j|t)X−1(j|t) with matrices X, Y (cf. Sec. 3.1.3 and
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App. B). Then, multiplying the constraints (3.76) by X from the left yields the following
equivalent constraint

(A(j|t)X(j|t) + B(j|t)Y(j|t))>peco(j + 1|t)

=X(j|t)peco(j|t)−
(

X(j|t) Y>(j|t)
)
`>eco,ξ(j|t),

where we use kf,xX = Y and the formula for `eco,x from the proof of Lemma 3.70. The resulting
constraint can be implemented directly in terms of X, Y.

The constraints (3.76) can also be compressed and replaced by directly using an explicit ex-
pression for peco(0|t). Denote `eco,x(j|t) = `eco,x(xr(j|t), r(·|t), t + j, ye(j|t)) and Acl(k|t) =
Πk−1

j=0 Acl(R
j
Tr(·|t), t + j). Then, peco(0|t) satisfying Condition (3.76) can be equivalently

computed using

peco(r(·|t), t, ye(·|t)) :=
(

In − A>cl (T|t)
)−1 T−1

∑
j=0

A>cl (j|t)`>eco,x(j|t). (3.83)

Furthermore, if the period length T is very large, an approximate solution can be obtained
by assuming Acl(j|t) ≈ 0 for j ∈ I[Tc,T] with some Tc < T, which results in peco(0|t) ≈

∑Tc−1
j=0 A>cl (j|t)`>eco,x(j|t). The fact that we need to take the full reference trajectory r into

account to compute the correct gradient correction peco indicates that the computation of an
(indefinite) economic terminal cost for nonperiodic time-varying trajectories may be non-trivial.

Positive definite terminal cost Vf,eco

The terminal cost Vf,eco designed in Corollary 3.72 is not positive definite with respect to
the reference trajectory, which provides a better performance, analogous to the terminal
cost in [16]. However, the computational complexity of Problem 3.53 may increase
due to long expression of peco in Equation (3.83). In the following, we provide an
alternative design, resulting in a positive definite terminal cost Vf,eco, which may be
more conservative but easier to implement. The design procedure is inspired by the
positive definite economic terminal cost in [11, Prop. 2] and [10, Prop. 27].

Proposition 3.76. Suppose that the conditions in Corollary 3.72 hold. Then, there exists a
constant c > 0 such that Xf, kf according to (3.82) and the following terminal cost satisfy
Assumptions 3.55 and 3.59:

Vf,eco(x, r, t) := ‖x− xr(0)‖2
Peco(r,t) + c‖x− xr(0)‖Peco(r,t).
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Proof. Denote ∆x = x − xr(0), u = kf(x, r, t), x+ = f (x, u, t), r+ = RTr, ∆x+ = x+ −
x+r (0). Given that Vδ(x, r, t) = ‖∆x‖2

Peco(r,t) satisfies Conditions (3.68a)–(3.68b) with
αδ,1, αδ,2, αδ,3 quadratic, there exists a constant ρ ∈ [0, 1) such that Vδ(x+, r+, t + 1) ≤
ρ2Vδ(x, r, t) for any (x, r, t) ∈ Xf. Furthermore, we have

`eco(x, r, t, ye)
(3.75b)
≤ `eco,q(x, r, t, ye) ≤ ‖∆x‖2

Qeco(r,t,ye)
+ a1‖∆x‖Peco(r,t), (3.84)

with some constant a1 > 0 using uniform bounds on the gradient `eco,x and the eigenval-
ues of Peco (continuous and compact constraints). Inequality (3.60c) follows by choosing
c := a1/(1− ρ) > 0 with

Vf,eco(x+, r+, t + 1) = ‖∆x+‖2
Peco(r+,t+1) + c‖∆x+‖Peco(r+,t+1)

≤‖∆x‖2
Peco(r,t) − ‖∆x‖2

Qeco(r,t,ye)
+ cρ‖∆x‖Peco(r,t)

=Vf,eco(x, r, t)− ‖∆x‖2
Qeco(r,t,ye)

− a1‖∆x‖Peco(r,t)

(3.84)
≤ Vf,eco(x, r, t)− `eco(x, r, t, ye).�

Similar design procedures can be used with polynomial bounds on the incremental
Lyapunov function Vδ and a polynomial continuity bound on `eco, compare [JK26,
Prop. 5].

Terminal equality constraints

In the following, we discuss how to replace the general terminal set (Assumption 3.59)
with a simple terminal equality constraint (TEC, cf. (3.61)). In principle, Condi-
tions (3.68a)–(3.68c) are quite general and not restrictive, but the explicit knowledge of
Vδ (which characterizes the terminal set Xf) and the design of the economic terminal
cost Vf,eco can pose challenges. A simple alternative is to consider a TEC, which requires
no complex design procedure. The following analysis is similar to [87] and [164], which
also considered TEC in the steady-state case. We consider the following finite-time local
incremental controllability condition, similar to Definition 3.9.

Assumption 3.77. (Local incremental finite-time controllability) There exist constants ν ∈ I≥1,
ε > 0 such that for any references (r, t) ∈ ZT, (r̃, t) ∈ ZT with ‖r− r̃‖ ≤ ε, there exists an
input sequence u ∈ Uν such that

x(0) =xr(0), x(ν) = x̃r(ν),

x(k + 1) = f (x(k), u(k), t + k), (x(k), u(k), t + k) ∈ Z, k ∈ I[0,ν−1].
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This condition is for example satisfied with ν ≤ n if the linearization along any
feasible periodic trajectory is (uniformly) controllable [236, Ass. 2.37], [165, Ass. 2],
compare also [87, Ass. 7] [210, Ass. 10]. Typically, an additional continuity bound on `eco

is imposed (cf. [164, Ass. 4] or (3.9b)), which is, however, not necessary in the considered
setup with the bounded stage cost `eco and the self-tuning weight β. The following
result is an adaptation of Lemmas 3.60 and 3.63 to TEC using Assumption 3.77 and a
multi-step implementation.

Lemma 3.78. Let Assumptions 3.50, 3.62 and 3.77 hold. Consider a terminal equality con-
straint (3.61) and a prediction horizon N ∈ I≥ν. Suppose that Problem 3.53 is feasible at
time t ∈ I≥0 and the optimal artificial reference trajectory r∗(·|t) is not a local minimizer
of Problem 3.52. Suppose further that Algorithm 3.54 is replaced by the following ν-step
implementation

u(t + k) = u∗(k|t), k ∈ I[0,ν−1], x(t + ν) = x∗(ν|t). (3.85)

Then, there exists a reference r̃ ∈ RN(x(t + ν), t + ν, ye(·|t + ν), κ(·|t + ν)), which is a feasible
solution of Problem 3.53 at time t + ν and satisfies

JT,eco(r̃, t + N + ν, ye(·|t + ν)) < JT,eco(Rν
Tr∗(·|t), t + N + ν, ye(·|t + ν)).

Proof. Given that (Rν
Tr∗(·|t), t + N + ν) ∈ ZT is not a local minimizer, Assumption 3.62

ensures that there exists a reference (r̃, t + N + ν) ∈ ZT, that satisfies the posed con-
straints (3.58h)–(3.58i), improves the reference cost JT,eco and satisfies ‖r̃−Rν

Tr∗(·|t)‖ ≤
ε. Due to the multi-step implementation (3.85), the sequence u(k|t + ν) = u∗(k + ν|t),
k ∈ I[0,N−ν−1] yields a state trajectory x(·|t+ ν) that satisfies x(N− ν|t+ ν) = x∗(N|t) =
x∗r (0|t). Correspondingly, we can append the input sequence u(·|t + ν) with the can-
didate solution u ∈ Uν from Assumption 3.77, which satisfies the constraints (3.58d)–
(3.58f). �

Compared to the results in Lemmas 3.60 and 3.63 based on a contractive terminal set,
the resulting properties with terminal equality constraints are only valid if we apply
the first ν parts of the computed input sequence. For comparison, in the MPC formu-
lation in Section 3.2 with the positive definite tracking stage cost `, such a multi-step
implementation is not needed, since the closed-loop system eventually converges to a
neighbourhood of the artificial reference trajectory r, compare also [164, Thm. 2], [165,
Thm. 3] [166, Thm. 2]. The main benefit of the terminal equality constraint implemen-
tation is the simple design. Although we need to use a multi-step implementation
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with ν steps, we would like to point out that ν is independent of T, and hence this
method does not suffer from the same limitations as the approaches based on T-step
systems, such as [210, 272]. On the other hand, an implementation with a suitable
terminal cost (Ass. 3.59) can use a shorter prediction horizon N, requires no multi-step
implementation and typically yields better closed-loop performance, compare, e.g., the
numerical example in [JK26, App. A].

Remark 3.79. (Alternatives to multi-step) In [87], a similar economic MPC scheme for setpoints
(T = 1) has been considered with terminal equality constraints. However, instead of a ν-step
MPC implementation (3.85), in [87, Algorithm 3] it was suggested to augment the MPC with
an algorithm that decides at each time t ∈ I≥0 if the previous candidate solution or the standard
MPC feedback is applied. In particular, if the cost of the artificial reference r does not improve by
a minimal amount ε̃, the previous candidate solution is applied. Given Assumption 3.77, after at
most ν steps, it is possible to incrementally move the reference trajectory and thus improve the
cost. Hence, by augmenting the MPC with such an algorithm, it may not be necessary to apply
the first ν steps of the computed input trajectory, which can speed up convergence.

For the linear case, a different alternative to a multi-step implementation can be found in [43].
In particular, by tightening the state and input constraints Z along the prediction horizon N in
an increasing fashion, the candidate solution employed in Proposition 3.58 strictly satisfies the
posed state and input constraints. Thus, if the reference trajectory is incrementally moved the
input sequence can be suitably adjusted using controllability such that both the posed state and
input constraints and the terminal equality constraint hold.

Remark 3.80. (Extended horizon terminal cost) Another method to obtain a terminal cost in
MPC is to use an extended prediction horizon M ∈ I≥0 (cf. [175] and Sec. 4.1.5), which has
been extended to the economic MPC setting in [167]. In particular, a terminal cost based on
some stabilizing feedback kf could be chosen as Vf,eco(x, r, t, ye) = ∑M

k=0 `eco(xf(k), uf(k), t +
k, ye(k)), where xf(k) corresponds to the closed-loop system with uf(k) = kf(xf(k),Rk

Tr, t + k)
starting at xf(0) = x. The advantage of such a truncated series terminal cost is the relative
easy implementation, which only requires a stabilizing feedback kf in the offline design and
does not pose any additional differentiability assumptions. Furthermore, the resulting terminal
cost is neither quadratic nor positive definite and thus for M large can improve performance.
However, in the economic case for any finite M ∈ I≥0, such a terminal cost does not satisfy
Assumption 3.55 and thus deteriorates the resulting performance bounds, compare [167, Thm. 5].
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3.3.6 Variations and extensions

In the following, we elaborate on some extensions and variants of the proposed economic
MPC framework. Overall, the proposed economic MPC framework provides desired
performance guarantees, if the constant cκ, the self-tuning weight β(t) and the terminal
ingredients Vf,eco, Xf are chosen properly (Ass. 3.55, 3.57, 3.59, 3.61, and 3.62). The
design of the terminal ingredients is elaborated in Section 3.3.5. In the following,
we show how the problem can be reformulated to get rid of the constant cκ and the
continuity condition in Assumption 3.62, while retaining the performance guarantees
from Theorem 3.65. Furthermore, we provide performance bounds for constant weights
β (not satisfying Assumption 3.61) in Proposition 3.84. Finally, we also discuss the
computational complexity for the special case of convex problems.

Modified reference cost

The proposed economic MPC formulation in Problem 3.53 uses standard conditions for
the terminal ingredients (Ass. 3.55) and contains many economic MPC formulations as
special cases, compare [10, 16, 19, 87, 138, 206, 208, 282, 295]. However, the formulation
also requires the additional constraints (3.58h)–(3.58i), based on the continuity condition
(Ass. 3.62), which is non-standard. In the following, we briefly show an alternative
solution to this problem, based on a modified cost for the artificial reference trajectory
r. The following result is based on [JK25, Prop. 1], which in turn is motivated by the
analysis of non-monotonic Lyapunov functions [6].

Lemma 3.81. Let Assumption 3.55 hold. Then, for any ye ∈ YT, (r, t) ∈ ZT, (x, r, t) ∈ Xf,
the modified terminal cost

Ṽf,eco(x, r, t, ye) :=Vf,eco(x, r, t, ye) +
T−2

∑
k=0

T − 1− k
T

`eco(r(k), t + k, ye(k)) (3.86)

satisfies

Ṽf,eco(x+,RTr, t + 1,RTye)− Ṽf,eco(x, r, t, ye) ≤ −`eco(x, u, t, ye(0)) + JT,eco(r, t, ye)/T,

with x+ = f (x, u, t), u = kf(x, r, t).

Proof. Abbreviate `eco(k) = `eco(r(k), t + k, ye(k)), Ṽf,eco = Ṽf,eco(x, r, t, ye), Ṽ+
f,eco =
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Ṽf,eco(x+,RTr, t + 1,RTye). The modified terminal cost satisfies

T(Ṽ+
f,eco − Ṽf,eco) = T(V+

f,eco −Vf,eco) +
T−2

∑
k=0

(T − 1− k)(`eco(k + 1)− `eco(k))

(3.60c)
≤ − T`eco(x, u, t, ye(0)) + (T + 1− T)`eco(0) + `eco(T − 1) +

T−2

∑
k=1

`eco(k)

=− T`eco(x, u, t, ye(0)) + JT,eco(r, t, ye). �

We point out that the modification of the cost in Lemma 3.81 is applicable to terminal
equality constraints (cf. Lemma 3.78) and terminal costs/sets (Ass. 3.59). The following
proposition shows that this modified reference cost can ensure the same performance
bounds as the economic MPC formulation in Problem 3.53, without using the continuity
condition (Ass. 3.62).

Proposition 3.82. Let Assumptions 3.50, 3.55, and 3.57 hold. Consider Problem 3.53 with
Vf,eco replaced by Ṽf,eco (3.86) and the constraints (3.58h)–(3.58i) replaced by

JT,eco(r(·|t), t + N, ye(·|t)) ≤ κ(t) :=
T−1

∑
j=0

κ(j|t). (3.87)

If the modified Problem 3.53 is feasible at t = 0, then the closed-loop system resulting from
Algorithm 3.54 satisfies the performance bound (3.63).

Proof. Similar to Proposition 3.58, the candidate solution from Proposition 3.56 with the
modified terminal cost implies

W(t + 1)−W(t) + `eco(x(t), u(t), t, ye(t))

≤JT,eco(r∗(·|t), t + N, ye(·|t + 1))/T + γ(t)κ(t + 1)
(3.62)
= κ(t + 1)/T + γ(t)κ(t + 1).

Correspondingly, the T-step bound (3.66) holds with cκ = 0, since κ(t + 1) ≤ κ(t). The
remainder of the proof follows from the arguments in Proposition 3.58, similar to [206,
Thm. 1], [208, Thm. 1]. �

The properties in Proposition 3.64 and Theorem 3.65 hold equally with the modified
terminal cost Ṽf,eco and a contractive terminal set (Ass. 3.59), with the simpler con-
straint (3.87) (without requiring Assumption 3.62). The main advantage of using this
modified terminal cost Ṽf,eco is that the technical continuity condition Assumption 3.62

is not required. Furthermore, the number of constraints in Problem 3.53 is smaller
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and the set of feasible artificial reference trajectories is larger. This modified reference
cost yields an objective function, which, to the best knowledge of the author, differs
from any existing MPC formulation (for T > 1). The practical effect on the closed-loop
performance is studied in the numerical example in Section 3.4.4. For the academic
example considered in Section 3.3.1 with a terminal equality constraint and T = 2, the
modified cost is given by Ṽf,eco(r) = 1

2`eco(r(0)). With this modified cost the closed loop
also "does the right thing", i.e., converges to the optimal T-periodic orbit {1, 2}.

Overall, compared to the MPC formulation initially presented in Section 3.3.2 this
modified MPC formulation is superior in terms of theoretical properties (Ass. 3.62 not
required) and practical implementation (fewer nonlinear constraints in Problem 3.53).
The main benefit of first presenting Problem 3.53 is the fact that this formulation is a
clear generalization of existing economic MPC formulations [10, 16, 19, 87, 138, 206, 208,
282, 295] which are contained as a special case (which is less obvious with the modified
cost Ṽf,eco), compare the discussion in Section 3.3.2.

Remark 3.83. (Partially decoupled reference updates) Similar to the MPC formulation in
Section 3.2.3, the computational complexity of Problem 3.53 can be reduced by using two
partially decoupled optimization problems to compute the input u ∈ UN and the reference
trajectory (r, t) ∈ ZT, respectively. In addition to the computational savings, such a formulation
has additional distinct advantages in the economic setting. First, since the reference planner only
minimizes JT,eco, no self-tuning weight is needed. Second, in the tracking case in Section 3.2.3
we could only guarantee convergence but not stability. We conjecture that stronger transient
performance guarantees in the economic setting can be recovered, if the formulation is slightly
adjusted. In particular, considering the modified terminal cost Ṽf,eco (cf. Prop. 3.82), the primal
economic MPC formulation directly ensures that the difference in the value function is bounded
by: the closed-loop stage cost `eco, the average cost at the periodic reference JT,eco/T and an
additional term bounding the deterioration in Ṽf,eco due to the change in the reference trajectory.
Thus, if the reference planner also considers a bound on this performance deterioration, we
conjecture that the partially decoupled formulation enjoys transient performance guarantees
analogous to Theorem 3.65. Note that for the tracking MPC formulation in Section 3.2.3, a
similar bound on the increased cost can be considered in the reference planner. However, in the
tracking case the reference trajectory changes the full tracking cost JN, not just some terminal
cost. Thus, bounding the cost deterioration in JN using conservative bounds may significantly
slow down convergence.
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Constant weights β

A large self-tuning weight β(t) can deteriorate the transient performance, but is useful
to ensure convergence of the artificial reference to a local minimizer (cf. Prop. 3.64). In
the following, we show that similar performance bounds hold when choosing a large
constant weight β. In particular, in [87] a competing approach to [206, 208] has been
considered with a constant weight β. Instead of changing the weight β online to achieve
(locally) optimal performance, a fixed weight β is considered and a suboptimality bound
on the performance is established. The following proposition shows that the same result
applies here, as an alternative to Proposition 3.64, similar to [87, Prop. 2].

Proposition 3.84. Let Assumptions 3.50, 3.55 and 3.62 hold and assume that β is constant,
i.e., β(t) = β, t ∈ I≥0. Assume that Problem 3.53 is feasible at some time t ∈ I≥0. Then,
there exists a function β : R≥0 → R≥0 such that for any ε > 0, β ≥ β(ε) implies κ(t + 1) ≤
JT,eco,min(x(t), t, ye(·|t), κ(·|t)) + ε.

Proof. Denote the minimizer and the minimum of the optimization problem (3.72) at
time t ∈ I≥0 by r∗min(·|t) and JT,eco,min(t), respectively. By definition, there exists
a feasible input sequence ũ with corresponding state sequence x̃ such that r∗min(·|t)
satisfies the constraints in Problem 3.53. Due to optimality, we have

W(t) ≤
N−1

∑
k=0

`eco(x̃(k), ũ(k), t + k, ye(mod(k, T)|t))

+ Vf,eco(x̃(N), r∗min(·|t), t + N, ye(·|t)) + βJT,eco min(t).

This is equivalent to

β(JT,eco(r∗(·|t), t + N, ye(·|t))−JT,eco,min(t))

≤
N−1

∑
k=0

`eco(x̃(k), ũ(k), t + k, ye(mod(k, T)|t))− `eco(x∗(k|t), u∗(k|t), t + k, ye(mod(k, T)|t))

+ Vf,eco(x̃(N), r∗min(·|t), t + N, ye(·|t))−Vf,eco(x∗(N|t), r∗(·|t), t + N, ye(·|t)) ≤ η,

with some (uniform) finite constant η > 0. The last inequality follows from bounded-
ness of `eco, Vf,eco (continuous functions and compact constraints) and N finite. This
inequality directly implies

κ(t + 1) = JT,eco(r∗(·|t), t + N, ye(·|t)) ≤ JT,eco,min(t) + ε,
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for β ≥ β(ε) := η/ε. �

Thus, for a large enough weight β, the cost of the artificial periodic orbit r is arbitrarily
(ε) close to the cost of the optimal reachable periodic orbit (3.72). Combining this result
with Lemma 3.63 and the stronger terminal ingredients (Ass. 3.59), JT,eco,min is a local
minimum of Problem 3.52. Correspondingly, it is possible to derive performance bounds
similar to Theorem 3.65 with an additional suboptimality term ε, compare [87, Thm. 2].
For the special case of T = 1 (artificial setpoint), more details on the effect of β on the
closed loop can be found in [206, 208] and [87].

Convex problems

In the following, we discuss the special case, when the periodic optimal control problem
(Problem 3.52) is convex. Suppose that the dynamics f are affine, i.e., f (x, u, t) = A(t)x+
B(t)u + c(t), and the constraint sets Z and Zr are polytopes, which implies that ZT is a
convex polytope. For `eco convex, this implies that the periodic optimal control problem
(Problem 3.52) is convex and Corollary 3.66 guarantees that the closed-loop performance
is no worse than operation at an optimal T-periodic orbit. In the following, we discuss
how the design procedure for the terminal ingredients and the online optimization
simplifies for the considered special case. Since we have a linear (time-varying) system,
we consider a linear time-varying feedback k f ,x = K(t) and a time-varying matrix S(t, ye)

satisfying Condition (3.75a). Thus, the matrix Qeco(t, ye) in Lemma 3.70 is independent
of r and we can consider a time-varying matrix Peco(t) to satisfy Condition (3.77) in
Proposition 3.71. Matrices Peco(t), K(t) satisfying Condition (3.77) can be computed by
solving T coupled LMIs similar to [23]. Alternatively, the computation of K(t), Peco(t)
can be achieved using the discrete-time LQR for a suitably defined T-step system with
x̃ ∈ X and ũ ∈ UT.

For the terminal set Xf, we can either use an ellipsoidal set Xf = {(x, r, t) | ‖x −
xr(0)‖2

Peco(t)
≤ α} or a polytopic (periodically time-varying) invariant set Xf

13.
In case `eco is quadratic in (x, u), Lemma 3.70 and Proposition 3.71 contain no

nonlinear terms that need to be locally over-approximated and hence we can set ε =

ε̃ = 0 and α1 arbitrary large. Furthermore, if `eco is convex and quadratic in (x, u) and
Vf,eco, Xf is chosen according to Corollary 3.72, Problem 3.53 contains a quadratic cost
function and convex linear and quadratic constraints.14

13The optional consideration of an online optimized terminal set size α(r, t) can be expressed using linear
constraints, for both cases.

14In addition to the possibly ellipsoidal terminal set, the constraints (3.58i) are quadratic, leading to a
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In the special case that `eco is linear in (x, u), the vector peco can be explicitly computed
(independent of the online optimized reference r) for given parameters ye using Equa-
tion (3.83). Furthermore, since S = 0 the terminal cost is linear (Peco = 0). Alternatively,
with a polytopic incremental Lyapunov function Vδ, a polytopic terminal cost Vf,eco

analogous to Proposition 3.76 can be used in Problem 3.53, which can be implemented
using linear constraints. Thus, if a polyhedral terminal set is chosen, Problem 3.53

with a linear cost `eco and a linear or polytopic terminal cost Vf,eco only requires the
solution to a linear program (LP), which can be done efficiently. In case that some of
the input variables u are also subject to integer constraints (cf. for example periodic
scheduling problems with discrete decisions [241] and the HVAC numerical example in
Section 3.4.3), the problem can be formulated as a mixed-integer linear program (MILP).

Summary

In this section, we studied an economic MPC formulation with artificial periodic reference
trajectories for time-varying economic stage costs `eco, possibly subject to unpredictable
changes online. We showed that a naive extension of existing economic MPC approaches
(cf. [87, 206, 208]) to artificial periodic reference trajectories does not necessarily yield
the desired closed-loop performance guarantees (Sec. 3.3.1). We provided performance
guarantees relative to the (limiting) artificial reference trajectory (Sec. 3.3.3) by either
imposing additional constraints on the artificial reference (Sec. 3.3.2) or using a novel
cost function inspired by non-monotonic Lyapunov functions (Sec. 3.3.6). Furthermore,
by using a self-tuning weight β(t) (Sec. 3.3.3) or a large constant weight β (Sec. 3.3.6) for
the artificial reference trajectory we ensured that the artificial reference (approximately)
converges to a local minimum. As a result, we proved an average performance bound
relative to a locally optimal periodic orbit. We showed that in the special case of N = 0
(no prediction horizon) the proposed approach reduces to a modified version of the
MPC formulations based on periodicity constraints in [138, 282] but with stronger
performance guarantees (Rk. 3.68).

In addition, we presented a design procedure for the terminal ingredients that is
applicable to economic costs and artificial dynamic trajectories (Sec. 3.3.5). In particular,
we combined the reference generic offline design (Sec. 3.1.3) with the standard design
for economic terminal costs [16], extended to periodic artificial reference trajectories
using a periodic adjoint trajectory peco in the MPC formulation. In the special case of

non negligible increase in the online computation. Given that peco in Equation (3.83) is linear in r,
the terminal cost Vf,eco is quadratic in the decision variables. However, convexity of the overall cost
function is not obvious and may require β large enough.
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linear system dynamics f with a linear economic stage cost `eco the adjoint trajectory
peco can be computed offline and the overall economic MPC problem reduces to an LP
(Sec. 3.3.6).

In the next section, the performance benefits of the presented MPC design methods
in this chapter are demonstrated using numerical examples.

3.4 Numerical examples

In the previous sections, we developed a reference-generic offline design of terminal in-
gredients for nonlinear trajectory tracking MPC (Sec. 3.1.3), a tracking MPC formulation
with artificial reference trajectories (Sec. 3.2), optimized terminal sets (Sec. 3.2.2), partially
decoupled tracking and trajectory planning MPC formulation (Sec. 3.2.3), and an economic
MPC formulation with artificial reference trajectories (Sec. 3.3). In the following, we
provide numerical examples to demonstrate the practical applicability of these MPC
design procedures and quantify the performance benefits of various design options. In
Section 3.4.1, we consider a setpoint tracking problem (T = 1) for a nonlinear CSTR
and demonstrate the performance benefits of using using suitable terminal ingredients
(Sec. 3.1.3), online optimized terminal sets (Sec. 3.2.2), and economic MPC formulations
(Sec. 3.3). In Section 3.4.2, we consider tracking of periodic target signals (Sec. 3.2)
for a nonlinear ball and plate system and investigate the practicality of the partially
decoupled reference updates (Sec. 3.2.3). In Section 3.4.3, we consider economic opti-
mal operation (Sec. 3.3) with a simple building temperature (HVAC) example and a
time-varying periodic setup. In Section 3.4.4, we consider the (classical) time-invariant
problem of maximizing the yield of a nonlinear CSTR and demonstrate performance
benefits of dynamic operation using the economic MPC formulation from Section 3.3.
Additional examples showing the applicability of the reference generic offline computa-
tion (Sec. 3.1.3) to nonlinear dynamic problems can be found in [JK13, JK15, JK29, JK36].
For the following examples, the offline and online computation is done in Matlab using
SeDuMi-1.3 [261] and CasADi [17], respectively. This section is based on and taken in
parts literally from [JK16]15 and [JK26]16.

15J. Köhler, M. A. Müller, and F. Allgöwer. “A nonlinear tracking model predictive control scheme for
unreachable dynamic target signals.” In: Automatica 118 (2020). extended version: arXiv:1911.03304,
p. 109030©2020 Elsevier Ltd.

16J. Köhler, M. A. Müller, and F. Allgöwer. “Periodic optimal control of nonlinear constrained sys-
tems using economic model predictive control.” In: J. Proc. Contr. 92 (2020). extended version:
arXiv:2005.05245, pp. 185–201©2020 Elsevier Ltd.
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3.4.1 Setpoint tracking - performance comparison

The following example demonstrates the performance benefits of the parametrized
terminal ingredients (Sec. 3.1.3), the online optimized terminal set (Sec. 3.2.2), and the
economic MPC formulation (Sec. 3.3) at the example of setpoint tracking (T = 1). We
consider the following CSTR model

ẋ =

 1
θf
(1− x1)− kx1e−

M
x2

1
θf
(xf − x2) + kx1e−

M
x2 − αfu(x2 − xc)

 , x = (x1, x2) ∈ R2, u ∈ R,

with the concentration x1, the temperature x2, and the coolant flow rate u, taken
from [191]. The parameters are θf = 20, k = 300, M = 5, xf = 0.3947, xc = 0.3816,
αf = 0.117. The discrete-time model is defined with an Euler discretization and the
sampling time Ts = 0.1s. We consider the setpoint tracking problem considered in
Section 3.2 with T = 1 and the output y = h(x, u) = x2.

The constraint set is given by Z = [0, 1]2 × [0, 2], the weights for the quadratic stage
cost (cf. (3.3)) are Q = I2 and R = 0.01, the output weighting (cf. (3.27c)) is S = 103,
and the feasible steady-state manifold for the reference r is Zr = {(x, u) | f (x, u) =

x, x2 ∈ [0.43, 0.86]}. We point out that the convexity and uniqueness conditions in
Assumption 3.29 hold, even though the set Zr is clearly not convex, compare Figure 3.4.

We compute the terminal ingredients using Algorithm 3.22 and Lemma 3.13 with
a quasi-LPV parametrization using θ : Z → R4, gridding17 (cf. Rk. 3.19) the one-
dimensional steady-state manifold Zr with 100 points, and setting ε = 1. The overall
offline computations are accomplished in less than 10 seconds.

Regarding the terminal set size α, we compare the fixed value α = 1.3 · 10−2 based on
Zr (cf. (3.25)) with the online optimized, reference dependent value α(r) ∈ [αmin, α1] =

[10−1, 10−4] (cf. Sec. 3.2.2). The functions ci are chosen according to (3.42). The
resulting size of the terminal set for different setpoints r ∈ Z̃r can be seen in Figure 3.4.
The online optimization of α(r) (blue), allows us to consider points r /∈ Zr and thus
yields a significantly larger operating area. For points r ∈ Zr, the constant terminal
set size α (red) is considerably smaller and thus conservative. In [164], it has been
suggested to partition Zr and compute different constants αi for each partitioning. The

17The convex formulation from Proposition 3.15 is equally applicable. However, gridding results in less
conservative terminal ingredients and for the one-dimensional steady-state manifold the computational
complexity of gridding can be neglected. A quantitative comparison of gridding and Proposition 3.15

for a different CSTR model including dynamic trajectories (T > 1) and a Runge-Kutta discretization
(resulting in non-trivial parameters θi) can be found in [JK15, Sec. V.A].
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terminal set with 3 equally spaced partitions of Zr is also displayed in Figure 3.4. The
terminal set based on partitioning is always an inner approximation to the continuously
parametrized terminal sets with α(r) ≥ αi for all r ∈ Zr. In addition, the continuously
parametrized terminal ingredients are well suited for standard solvers with automatic
differentiation, contrary to the piecewise constant definitions used in [164]. In [62],
it was suggested to compute an explicit polynomial expression for α(r) offline using
SOS. For the present example, an explicit polynomial map may require a high order
polynomial to explicitly capture the shape α(r) in Figure 3.4. Thus, the approach in [62]
may experience scalability issues for T > 1 or multi-dimensional steady-state manifolds.
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Figure 3.4. Left: Temperature vs. concentration: Setpoints xr (black) with corresponding
terminal set Xf for setpoint dependent α(r) (blue ellipses), constant α = 0.013 (red
ellipses) and piece-wise constant αpartition (green ellipses). Right: Terminal set size α
over setpoints yr, for online optimized α(r) (solid, blue), constant α (dotted, red) and
piece-wise constant αpartition (dashed, green).©2020 Elsevier Ltd.

Starting at x0 = (0.9492, 0.43), the output target is ye = 0.6519, as in the numerical
example in [191]. We implemented the setpoint tracking MPC from Section 3.2.1 (T = 1)
using a terminal equality constraint (Prop. 3.10, TEC) and the parametrized terminal
ingredients (Lemma 3.12, QINF-α). Furthermore, we implemented the approach using an
online optimized terminal set size (Prop. 3.40, QINF-α(r)). In addition, we implemented
the economic formulation (Sec. 3.3) by replacing the tracking stage cost `(x, u, r) (3.3)
with `eco(x, u) = ‖y − ye‖2. This approach was also implemented with a terminal
equality constraint (TEC) and the parametrized terminal ingredients (QINF-α/α(r),
Cor. 3.72). We also considered a reference governor18 (Gov), which corresponds to the

18The local controller kf(x, r) (Ass. 3.5) is applied. The reference r is updated by increments y+r =
yr,+0.003, if (x, r+) ∈ Xf with the constant terminal set size α = 0.013.
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candidate solution (N = 0) in the stability proof (cf. Rk. 3.34).
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Figure 3.5. Left: Exemplary closed loop (temperature vs. time): Setpoint tracking MPC
(Sec. 3.2) with terminal equality constraint and (TEC, black, solid, N = 9), terminal
cost/set with fixed α (red, dashed-dotted, QINF-α, N = 1) and online optimized α(r)
(red, dashed, QINF-α(r), N = 1); Economic formulations `eco (Sec. 3.3) with terminal
equality constraint (TEC, black, dotted, N = 4), terminal cost/set with fixed α (red,
dotted, QINF-α, N = 1) and online optimized α(r) (red, dotted, QINF-α(r), N = 1); and
reference governor (magenta, circles, Gov). Right: Tracking cost ∑5000

t=0 ‖y(t)− ye(t)‖2 rel-
ative to reference governor v.s. number of decision variables (condensed19 formulation)
in Problems 3.27/3.38/3.53.©2020 Elsevier Ltd.

Figure 3.5 shows a quantitative performance comparison and exemplary closed-loop
trajectories for the different MPC formulation. The different prediction horizons N have
been chosen such that a similar performance is achieved, which again highlights the fact
that the proposed design procedures (QINF-α(r)) can improve performance while simul-
taneously reducing the computational complexity. For N = 1, Problem 3.27/3.38/3.53

only requires 2/3 scalar optimization variables. Comparing the performance of the
tracking MPC (Sec. 3.2) with suitably designed terminal ingredients (QINF) to a simple
terminal equality constraint (TEC) formulations, we see a significant reduction of the
tracking error even for N = 1. We see a similar performance improvement when the
terminal set Xf with a fixed constant α (Sec. 3.2.1) is replaced by an online optimized
size α(r) (QINF-α(r)). Furthermore, we see that a suitably designed reference governor
can compete with a badly designed tracking MPC (TEC), for short horizons N. More-

19The equality constraints to compute the predicted state trajectory x(·|t) and the adjoints peco(·|t) are
assumed to be condensed and thus the state trajectory x(·|t) ∈ Rn(N+1) and the adjoints peco(·|t) ∈
RnT are not treated as decision variables. Similarly, xr and ur are treated as an explicit function of
yr ∈ R and are thus captured with a scalar decision variable yr.
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over, the benefits of optimizing the terminal set size α(r) online are clearly visible. In
addition, it seems that the economic formulation `eco (Sec. 3.3) consistently achieves
a better performance in the considered tracking problem. The considered example
clearly demonstrates that a) the inclusion of suitable terminal ingredients is a major
factor to ensure desired closed-loop performance (as articulated in [188]) and b) the
outlined procedure to compute terminal ingredients, including online optimization of
the terminal set size (Sec. 3.2.2), are well suited to improve the performance in nonlinear
tracking MPC.

Remark 3.85. (Alternative MPC formulations) The closed-loop performance of the terminal
equality constraint MPC (TEC) is very sensitive to the offset weighting, e.g., for S = 102 the
convergence rate decreases by one order of magnitude, while the MPC formulation with terminal
cost/set (QINF) is almost unaffected. In [164, Sec. III.B], it was suggested to implicitly enforce
the terminal constraint by scaling the terminal cost Vf with some sufficiently large scaling factor
ω. For the considered example this corresponds to ω ≈ 4 · 103. Such a large terminal cost results
in numerical difficulties due to the ill-conditioning and the corresponding optimal solution is
virtually indistinguishable from the terminal equality constraint MPC (since the high terminal
cost implicitly enforces a terminal set constraint on sublevel sets). An alternative solution to this
problem would be to directly implement a stabilizing MPC without any terminal ingredients or
artificial steady-state, compare Section 2.2 and Chapter 4. Such an MPC formulation is quite
sensitive to the stage cost Q, R and the considered prediction horizon N. For N ∈ I[1,30], this
MPC formulation simply gets stuck at a steady-state close to the initial state, while for N = 40,
the MPC formulation yields fast convergence similar to the proposed tracking MPC formulation
(Sec. 3.2) with N = 15 (QINF-α) or N = 20 (TEC). If we use a stabilizing MPC with terminal
ingredients and a fixed artificial reference r, a prediction horizon of N ≥ 500 is required to
ensure initial feasibility, yielding a performance comparable to the proposed QINF-α(r) with
N = 30. Thus, the artificial steady-state r significantly reduces the computational demand and
results in a smooth closed-loop operation.

3.4.2 Periodic trajectory tracking - partially decoupled reference

updates

The following example shows the applicability of the tracking MPC formulation in
Section 3.2 for periodic output target signals and nonlinear systems. In addition, we
demonstrate the practicality of the partially decoupled approach from Section 3.2.3.
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We consider a nonlinear ball and plate system, taken from [223] with

z̈1 =
5
7

(
z1β̇2

1 + β̇1z2β̇2 + g sin(β1)
)

, z̈2 =
5
7

(
z2β̇2

2 + β̇2z1β̇1 + g sin(β2)
)

,

x =(z1, z2, ż1, ż2, β1, β2, β̇1, β̇2) ∈ R8, u = (β̈1, β̈2) ∈ R2, y = (z1, z2) ∈ R2,

with the position zi and the angle βi, i ∈ I[1,2]. We use an Euler discretization of this
model with step size Ts = 0.1s to get a nonlinear discrete-time system. The constraint
set is Z = [−0.06, 0.06]2 × [−0.2× 0.2]2 × [−π/3, π/3]2 × [−1, 1]2 × [−2, 2]2 ⊆ R10, the
stage cost weights are Q = I8 and R = 0.1 · I2, and the output weighting is S = I2. The
Jacobian matrices A(r), B(r) are parametrized with θ ∈ R9 (cf. Sec. 3.1.3). Constant
matrices P, K satisfying the conditions in Lemma 3.12 with Zr = Z are computed
using Proposition 3.15. The offline computation considers 29 = 512 vertices and is
accomplished in 40 seconds. In [JK22], parametrized matrices P, K are computed for
the same example, which allows for a larger constraint set (e.g., |β̇i| ≤ 2). However,
the matrices are only parametrized using the 3 most relevant parameters θi and the
offline computation considers 29 · 23 = 4096 vertices, which increases the overall offline
computation time to approximately one hour.

In [166, 223], a linearized version of this model has been considered to study periodic
reference tracking. Given the theoretical results in Section 3.2 (and the reference generic
terminal ingredients from Section 3.1.3), we extend these results to the nonlinear model.
The initial condition and the target signal ye are chosen similar to [166, 223] and the
period length is T = 16. The target signal ye is first an (unreachable) rectangular signal
and suddenly changes to a circle (cf. Fig. 3.6). We implement the proposed approach
with N = 1 and online optimized terminal set size (Sec. 3.2.2). In addition, we also
implement the approach with the partially decoupled reference update (Sec. 3.2.3) with
N = 1, M = 2. The resulting closed-loop trajectories can be seen in Figure 3.6. Initially,
a large terminal set size α is optimal as it allows the controller to quickly move the
reference but restricts the reference to have a large distance to the constraints. Then, the
reference moves continuously to the optimal reachable trajectory x∗T and the terminal set
size α decreases to αmin = 10−8. As a result, the closed-loop trajectory shows initially
fast convergence and then smoothly converges to the optimal trajectory x∗T. The same
effect can again be observed when the target signal ye suddenly changes at t = 5.5s.
The approach using partially decoupled reference updates (Sec. 3.2.3) has a slower
convergence rate. On the other hand, this approach only uses N ·m = 2 optimization
variables to determine the control input u and the reference update, which requires
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Figure 3.6. Trajectories of z1, z2 for the closed-loop system x (blue, solid), the artificial
reference r (dash-dot, green), the target signal ye (dotted, red) and the state constraints
(black, thick solid line). The closed-loop trajectories z1, z2 for the closed-loop system
based on partially decoupled updates (Sec. 3.2.3) (dashed, magenta) is also displayed.
Bottom right: Closed-loop evolution of the online optimized terminal set size α for
the joint optimization (Sec. 3.2.2) (black, solid) and based on the partially decoupled
updates (Sec. 3.2.3) (dashed, magenta).©2020 Elsevier Ltd.
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n + mT + 1 = 41 optimization variables, can be solved in intervals of M · Ts = 200ms,
thus greatly reducing the online computational demand. For comparison, the joint
optimization in Problem 3.38 requires m(N + T) + n + 1 = 43 decision variables and
needs to be solved every Ts = 100ms. The tracking error ∑∞

t=0 ‖y(t) − ye(t)‖2
S with

different values M ∈ I[1,5] relative to the joint optimization in Problem 3.38 is displayed
in the following table.

M 1 2 3 4 5

relative cost 111% 116% 155% 217% 254%

Overall, this example demonstrates that the MPC formulation from Section 3.2 is
suitable for nonlinear dynamic tracking problems and that we can flexibly trade-off
computationally demand vs. convergence speed with M ∈ I≥1 using the partially
decoupled formulation from Section 3.2.3.

3.4.3 Economic optimal operation - periodic problem

In the following, we show the applicability of the proposed economic MPC framework
(Sec. 3.3) to periodic problems subject to online changing performance measures. We
consider a simple building temperature evolution example from [242, Sec. IV.A] governed
by

mẋ(t) = −k(x(t)− Tamb(t)) + qamb(t)− u(t),

with air temperature x, cooling rate u, ambient temperature Tamb, rate of direct heat by
the ambient qamb and model constants m, k > 0. The cooling rate u is generated using
Nchiller = 2 chillers and is subject to the following (time-invariant) disjoint constraint
set u ∈ U = {0} × [0.75, 1]× [1.5, 2], which is implemented using an additional discrete
decision variable v ∈ {0, 1, 2}, corresponding to the number of active chillers. The state
is subject to periodically time-varying comfort bounds Tmin(t) ≤ x ≤ Tmax(t). The
corresponding discrete-time system is given by

x(t + 1) = Ax(t) + Bu(t) + e(t), (x(t), u(t), t) ∈ Z.

The objective is to minimize the electricity cost20 given by the economic stage cost
`eco = ye · u, with the external price profile ye. This example has a linear cost, affine
20The proposed framework can also consider peak-demand prices using the formulation in [242] or

unpredictably changing constraint sets (reflecting comfort levels set by a user) using soft constraints
(cf. Rk. 3.51).
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dynamics (cf. convex setup in Sec. 3.3.6) and a time-varying setup with period length
T = 24.

In [242], for fixed periodic price signals ye (Ass. 3.50), it was shown that periodic
economic MPC formulations [10, 241, 295] outperform tracking MPC formulations,
such as [165] and the MPC formulations in Sections 3.1 and 3.2. We consider the
more challenging problem, where the price profile ye changes each day. Furthermore,
we assume that only the price profile for the current day is available as a forecast,
which is modelled using the external predictions ye that change every 24 hours, i.e.,
ye(·|t + 1) = RTye(·|t) for all t ∈ I≥0: mod(t, 24) 6= 0. The considered price profile ye

is taken from the real data considered in [235] over the span of one week.
We implemented the economic MPC formulation from Section 3.3 using N = 2,

β = 10 with the modified cost Ṽf,eco from Proposition 3.82 and a terminal equality
constraint (TEC), where Lemma 3.78 holds with ν = 1 for the considered scalar stable
system. As a result, Problem 3.53 is a small scale mixed-integer linear program (MILP),
which is solved to optimality using intlinprog from Matlab. The resulting closed loop
can be seen in Figure 3.7. The closed loop yields a periodic like operation for each
day, with small changes between each day based on the different price profile ye. The
adjustment of the closed-loop response based on the price ye can be directly seen with
the applied input u, which is always at a maximum when the electricity price ye is
low. We also compared the proposed MPC framework to the optimal21 operation in
Figure 3.7, assuming full knowledge of the future price profile ye(t) for all coming
days. The proposed framework results in state and input trajectories very similar to the
optimal operation with a minimal increase of 0.1% in the overall electricity price `eco.

Overall, this example shows the applicability of the proposed economic MPC scheme
(Sec. 3.3) for convex time-varying problems. In particular, we showed reliable opera-
tion under unpredictable online changing condition with close to optimal (hindsight)
performance.

3.4.4 Economic performance improvement using dynamic operation

In the following, we consider the classical problem of increasing the yield of a CSTR
with dynamic operation, compare [24]. In this example, we compare the performance of
the proposed economic MPC approach (Sec. 3.3) with periodicity constraint MPC [138,
282] and tracking MPC formulations [165] (cf. Sec. 3.2). We first demonstrate average
performance improvement of the economic MPC framework (Sec. 3.3) compared to fixed

21To allow for a consistent comparison, the same initial and final state is considered.
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Figure 3.7. Transient performance under online changing price signals ye for temperature
control problem. Left: Closed-loop temperature x of the proposed approach (blue, solid)
and the optimal operation (red, dotted), with time-varying constraints Tmin / max (black,
dashed). Right: Closed-loop applied cooling rate u for the proposed approach (blue,
solid) and optimal operation (red, dotted); and the price signal ye (green, dotted).©2020

Elsevier Ltd.

periodic operation (T > 1) or steady-state operation (T = 1). Then, we show reliable
economic performance under online changing dynamic operation due to changing cost
functions.

We consider a continuous-time model of a CSTRẋ1

ẋ2

ẋ3

 =


1− x1 − 104x2

1 exp
(
−1
x3

)
− 400x1 exp

(
−0.55

x3

)
104x2

1 exp
(
−1
x3

)
− x2

u− x3

 ,

where u ∈ R is related to the heat flux and x = (x1, x2, x3) ∈ R3 correspond to the
concentration of the reaction, the desired product and the temperature, compare [24,
209], [96, Sec. 3.4]. The constraint sets are

Zr =[0.05, 0.4]× [0.05, 0.2]2 × [0.059, 0.439], Z = [0.03, 1]3 × [0.049, 0.449].

We consider the economic stage cost `eco(x, u, ye) = −x2 + ye · (u− us)2 with us = 0.1491
and ye ∈ Y = [0, 1]. If the external parameter is ye = 0, the stage cost `eco tries to
maximize the production of the desired product x2. The online tunable part in the cost
function is a regularization of the input u relative to the optimal steady-state input us.
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For ye = 1, the system is optimally operated at a steady-state (xs, us), while for ye = 0
dynamic operation can significantly outperform steady-state operation, compare [96,
Sec. 3.4]. Hence, treating ye as an external variable allows a user to smoothly transition
between steady-state and dynamic operation. The discrete-time model is defined with
a fourth order Runge-Kutta discretization and a sampling time of Ts = 0.05.22 For the
following simulations, the initial condition is always chosen as the optimal steady-state
xs and β(t) = 10 for all t ∈ I≥0.

Average performance improvement

We first consider the problem of maximizing the concentration x2 (ye = 0) to show
average performance improvements. In the absence of transient changes (ye constant),
the average performance of periodicity constraint MPC [138, 282] and tracking MPC
formulations (cf. [165], Sec. 3.2) are equivalent for a fixed T (assuming that convergence
is achieved). Similarly, the proposed framework yields the same asymptotic perfor-
mance as the economic MPC schemes in [10, 241, 295], assuming that r converges. We
implemented the proposed approach with T ∈ {1, 10, 20}, N ∈ I[1,50] and tested differ-
ent proposed designs regarding the terminal ingredients (Vf, Xf, Cor. 3.72, Prop. 3.76,
Lemma 3.78) and the cost function (Ṽf, Lemma 3.81, Prop. 3.82). The detailed numerical
results for all the considered implementations can be found in [JK26, App. A]. In the
following, we only consider the approach utilizing the positive definite terminal cost Vf

from Proposition 3.76 in combination with the modified cost Ṽf from Lemma 3.81, which
seems most suitable for practical applications (in terms of computational complexity
and performance). Figure 3.8 exemplarily shows the performance of this approach
with T ∈ {1, 10, 20} for increasing N in comparison to the average cost at the optimal
periodic orbit of length T = {10, 20} and the optimal steady-state (T = 1). We note
that, neglecting small initial deviations23, the proposed EMPC outperforms optimal
periodic operation with the same period length T, even though a constant value β is
used (Ass. 3.61 does not hold and Prop. 3.84 only guarantees ε suboptimality). The
performance increases (for both purely periodic operation and the economic MPC) if we
increase T or N. This implies that the proposed economic MPC framework (Sec. 3.3)
utilizing periodic orbits (T > 1) and additional predictions (N ≥ 1) with a purely
22In [96, 209] a sampling time of Ts = 0.1 is used. However, with the considered fourth order explicit

Runge-Kutta discretization, a sampling time of Ts = 0.1 does not preserve stability of the continuous-
time system. In addition, we consider xi ≥ 0.03 instead of xi ≥ 0, to avoid discretization errors for
xi ≈ 0.

23The average performance is computed in the interval t ∈ I[1000,2000] starting with initial condition
x = xs. Thus, for very short horizons N, κ has not yet converged.
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economic formulation can outperform periodicity constrained formulations [138, 282]
(N = 0), steady-state formulations [87, 102, 206, 208] (T = 1) and periodic tracking
formulations (cf. [164, 165, 166], Sec. 3.2, with ` positive definite), even if the operating
conditions do not change online (Ass. 3.50 holds).
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Figure 3.8. Average performance improvement due to dynamic operation relative to the
optimal steady-state xs - CSTR. Periodic operation (dotted) vs. proposed economic MPC
scheme (solid with circles) for T = 1 (blue), T = 10 (green) and T = 20 (red).©2020

Elsevier Ltd.

Transient performance under online changing conditions

In the following, we study the performance of the proposed scheme under online
changing conditions, i.e., ye unpredictably time-varying. This corresponds to a scenario
where a user can freely tune the desired mode of operation online. The resulting closed
loop for the proposed economic MPC scheme with N = 10, T = 20 can be seen in
Figure 3.9. As ye → 0 (e.g., t = 15 or t = 246), the system operates dynamically
to increase production x2 and once the weight ye on the input deviation increases
the system quickly minimizes the control effort and smoothly converges to the new
optimal mode of operation, i.e., the steady-state xs (e.g., t ∈ I[185,246], t ∈ I[400,470]). In
this scenario, the MPC scheme on average increases production by 2.8% compared
to steady-state operation, while a 5% increase was achieved for ye ≡ 0 (cf. Fig. 3.8).
For comparison, the performance of the economic MPC (Sec. 3.3), the tracking MPC
(cf. [165], Sec. 3.2), both with T = 20, N ∈ I[0,50], and the periodicity constraint MPC [138,
282] with T ∈ I[0,90] can be seen in Figure 3.9. The number of decision variables in a
condensed formulation are n + m · (T + N) for the economic MPC (Sec. 3.3) and the
tracking MPC (cf. [165], Sec. 3.2), and m · T for the periodicity constraint MPC [138,
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3.4 Numerical examples

282] (N = 0). Thus, the x-axis (N + T) in Figure 3.9 is a measure for the computational
complexity. First, note that we can improve the performance of the economic MPC by
increasing N. Similarly, the performance of the periodicity constraint MPC [138, 282]
improves for a larger period length T, but at a smaller pace. Thus, given the same
number of decision variables, the proposed economic MPC formulation can achieve
a better performance. For small values of N the performance of the tracking MPC is
similar to the economic MPC. However, in contrast to the economic MPC formulation, the
economic performance of the tracking MPC does not improve significantly with a large
horizon N (since the region of attraction is not the limiting factor). Additional numerical
results, comparing the performance to economic MPC without terminal constraints [122,
128, 129, 130, 132, 210] and investigating the effect of the various degrees of freedoms in
the formulation on closed-loop performance (terminal ingredients (Sec. 3.3.5), alternative
cost formulations (Sec. 3.3.6), continuous-time formulations (Rk. 3.67)) can be found
in [JK26, App. A].
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Figure 3.9. Dynamic operation under online changing conditions - CSTR. Left: Exem-
plary closed-loop trajectories of economic MPC (Sec. 3.3) for N = 10, T = 20. Deviation
in production x2 − x2,s (blue, solid), deviation in heat flux u− us (red, dashed), price
signal ye (green, dotted). All signals are normalized to |x| ≤ 1. Right: Transient perfor-
mance `eco(x, u, ye) = −x2 + ye · (u−us)2 relative to steady-state operation `eco,s = −x2,s.
Economic MPC approach from Section 3.3 (blue, solid), tracking MPC (cf. [165], Sec. 3.2)
(red, dashed) with T = 20 and N ∈ I[0,50] and periodicity constraint MPC [138, 282]
(green, dotted) with T ∈ I[0,90].©2020 Elsevier Ltd.

To summarize, in the considered example we have shown the applicability of the
proposed economic MPC with artificial periodic reference trajectories (Sec. 3.3) to
nonlinear economic control problems. In particular, the proposed approach: (i) improves
performance compared to (fixed) steady-state or periodic operation, (ii) reliably operates
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Chapter 3 Novel design procedures for MPC schemes with dynamic operation

under online changing conditions, (iii) in general achieves better performance than
periodicity constraint formulations [138, 282] or tracking formulations (cf. [165], Sec. 3.2).

3.5 Summary

In this chapter, we presented different MPC designs for dynamic operation of nonlinear
constrained systems. In particular, we investigated tracking of unreachable target
signals (Sec. 3.2) and periodic/dynamic economic operation (Sec. 3.3). In both cases, we
used artificial periodic reference trajectories to provide a large region of attraction and
guarantee feasibility independent of online changes in the control goal (target signal
ye/economic cost `eco). In case of consistent periodic target signals/cost functions, we
derived desired closed-loop performance guarantees: stability of the optimal reachable
trajectory/average performance no worse than performance at a (local) optimal periodic
orbit. In addition, we investigated various extensions to enhance performance, such as
offline computation of parametrized terminal ingredients Vf, kf (Sec. 3.1.3, Sec. 3.3.5),
reference dependent terminal sets size α (Sec. 3.2.2) and partially decoupled reference
updates (Sec. 3.2.3). We demonstrated the efficacy of the proposed MPC designs using
nonlinear constrained examples from literature (Sec. 3.4). In the next chapter, we
investigate the complementary problem of achieving similar closed-loop guarantees
with simpler MPC formulations that require no offline design and use no terminal
ingredients.
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Chapter 4

Analysis of MPC schemes for dynamic
operation without offline design

In this chapter, we present a framework to analyse the closed-loop properties of MPC
formulations without terminal ingredients for dynamic operation. The following results
can be viewed as complementary to Chapter 3, focusing on simpler MPC formulation
without terminal ingredients or artificial reference trajectories. In particular, we address
the challenges associated with dynamic operation identified in Section 1.1: (i) non-
stationary operation and (iii) optimal mode of operation is not directly specified in terms of
given state and input setpoints/trajectories. The considered MPC formulations naturally
cope with challenge (ii) online changes in the mode of operation, since neither terminal
ingredients nor offline design procedures are necessary.

In Section 4.1, tracking for reachable dynamic state and input trajectories is consid-
ered. Incremental system properties and a lower bound on the prediction horizon N are
derived, which guarantee exponential stability of the closed loop. Also, closed-loop sta-
bility with positive semidefinite input-output stage costs is analysed using an additional
detectability/observability condition. Furthermore, improved lower bounds on the
prediction horizon are derived using an extended prediction horizon. In Section 4.2, the
more general output regulation setup is considered, with the main additional challenge
that the optimal mode of operation is only indirectly specified in terms of minimizing
a quadratic output stage cost. In the analysis, we uncover strong connections to the
classical conditions considered the output regulation literature, including feasibility of
the regulator equations, detectability conditions, the minimum-phase property, and the
nonresonance condition. The results are intriguing, since we guarantee stability of the
regulator manifold, without explicitly solving the regulator equations. In Section 4.3,
we investigate unreachable reference trajectories and derive sufficient conditions to
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

ensure practical stability of the (unknown) optimal reachable trajectory using tools
from economic MPC. In Section 4.4, the theoretical results are revisited for the special
case of linear system dynamics. In Section 4.5, we illustrate the theoretical results and
demonstrate improved bounds using numerical examples. The results presented in this
chapter are based on Köhler et al. [JK10, JK19, JK21, JK23, JK24].

This chapter also contains various results on MPC without terminal constraints,
including improved performance bounds, that may be of independent interest1.

4.1 Trajectory tracking MPC without terminal ingredients

In Section 3.1, we studied trajectory tracking of reachable reference trajectories by de-
signing an MPC scheme with suitable terminal ingredients. In this section, we consider
the complementary problem of analysing an MPC scheme without terminal ingredients
(similar to Section 2.2) and derive system theoretic conditions that guarantee stability
of the reference trajectory. The main contributions of this section are: a) improved
performance and stability bounds for MPC without terminal ingredients based on a
local cost controllability condition and positive definite stage costs or alternatively a
detectability/observability condition on the stage cost; b) sufficient conditions in terms of
incremental system properties for these abstract conditions in the context of trajectory
tracking; and c) a closed-loop analysis in case an extended prediction horizon is used.
We first present the setup and the considered MPC formulation (Sec. 4.1.1). Next, we
prove exponential stability based on a local cost controllability condition for positive
definite sage costs (Sec. 4.1.2) and for positive semidefinite stage costs using additional
detectability/observability conditions (Sec. 4.1.3). Then, we show that the considered as-
sumptions can be reduced to incremental system properties (Sec. 4.1.4) and demonstrate
that improved bounds can be derived using an extended prediction horizon (Sec. 4.1.5).

1 Theorem 4.5 improves the results in [37] based on local cost controllability conditions, which is
further improved in Remark 4.32 using an LP analysis. Theorem 4.12 extends the results in [119] for
detectable stage costs ` by deriving performance bounds and considering local stabilizability conditions.
Proposition 4.14 further improves these bounds using an observability condition. Theorem 4.37 derives
significantly shorter prediction horizons by using an extended prediction. Theorem 4.50 shows that
stability can be ensured, even if the stage cost is not (directly) detectable. Theorem 4.80 relaxes the
controllability assumptions in [122] using sublevel set arguments for the rotated value function.
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4.1 Trajectory tracking MPC without terminal ingredients

This section is based on and taken in parts literally from [JK24]2, [JK19]3, and [JK10]4.

4.1.1 Trajectory tracking MPC

In the following, we present the considered trajectory tracking MPC formulation without
terminal ingredients. The setup is analogous to Section 3.1 and is detailed again for
completeness. We consider a nonlinear discrete-time system

x(t + 1) = f (x(t), u(t)), x(0) = x0,

with the state x(t) ∈ X ⊆ Rn, the control input u(t) ∈ U ⊆ Rm, the dynamics
f : X×U → X, the initial condition x0 ∈ X, and the time step t ∈ I≥0. We impose
pointwise-in-time constraints on the state and input

(x(t), u(t)) ∈ Z ⊆ X×U, t ∈ I≥0, (4.1)

and assume that Z is compact and f is continuous. We consider the problem of
stabilizing a state and input reference trajectory r(t) := (xr(t), ur(t)) ∈ X×U ⊆ Rn+m

and assume that the future reference trajectory is exactly known. Denote the tracking
error by er(t) := x(t)− xr(t). The control goal is to achieve constraint satisfaction (4.1)
and (uniform) asymptotic stability of the tracking error er = 0 for a (preferably large)
set of initial conditions, called the region of attraction. To this end, we consider a
continuous (tracking) stage cost ` : Z × I≥0 → R≥0. At each time t ∈ I≥0, given
the current state x(t), the MPC control law is determined based on the following
time-varying optimization problem:

Problem 4.1.

minimize
u(·|t)

JN(x(·|t), u(·|t), t) (4.2a)

2J. Köhler, M. A. Müller, and F. Allgöwer. “Nonlinear reference tracking: An economic model predictive
control perspective.” In: IEEE Trans. Automat. Control 64.1 (2019), pp. 254–269©2018 IEEE.

3J. Köhler, M. A. Müller, and F. Allgöwer. “Constrained nonlinear output regulation using Model Predic-
tive Control.” In: IEEE Trans. Automat. Control (2021). extended version: arXiv:2005.12413©2021 IEEE.

4J. Köhler and F. Allgöwer. “Stability and performance in MPC using a finite-tail cost.” In: Proc. IFAC
Conf. Nonlinear Model Predictive Control. 2021, pp. 166–171©2021 the authors.
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (4.2b)

x(0|t) = x(t), (4.2c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (4.2d)

where

JN(x(·|t), u(·|t), t) :=
N−1

∑
k=0

`(x(k|t), u(k|t), t + k). (4.2e)

The solution to this optimization problem is an optimal input trajectory u∗(·|t), the cor-
responding state trajectory x∗(·|t), and the value function VN(x(t), t) := JN(x∗(·|t), u∗(·|t), t).
To simplify the theoretical exposition regarding feasibility, we define VN(x(t), t) = ∞ in
case Problem 4.1 does not admit a feasible solution. The following algorithm summarizes
the closed-loop operation.

Algorithm 4.2. (Trajectory tracking MPC Algorithm)
Offline: Specify the constraint set Z, the stage cost `, and the prediction horizon N.
Online: At each time step t ∈ I≥0, measure the current state x(t), solve Problem 4.1, and apply
the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t), t ∈ I≥0. (4.3)

Compared to the MPC formulations in Chapter 3, we consider a simple reference
tracking MPC formulation without terminal ingredients or artificial reference trajectories.
Thus, the considered MPC formulation requires no complex design procedures or
additional optimization variables. Furthermore, the absence of hard terminal constraints
avoids potential feasibility issues due to changing reference trajectories or disturbances.
Due to this fact, Algorithm 4.2 can be directly applied if the reference trajectory changes
online. In contrast to the tracking MPC formulation in Section 3.2 based on artificial
reference trajectories, we also do not need to restrict the analysis to periodic reference
trajectories. These properties make the considered MPC scheme particularly suitable for
practical implementations.
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4.1 Trajectory tracking MPC without terminal ingredients

4.1.2 Theoretical analysis

In the following, we derive sufficient conditions for exponential stability of the track-
ing error er = 0. There exists a large body of literature that study the stability and
performance of similar MPC schemes without terminal ingredients, often also called
unconstrained MPC (due to the lack of terminal constraints), compare [7, 37, 86, 119, 120,
123, 126, 127, 237, 267].

As is standard in the corresponding literature [37, 120, 123, 127, 237, 267], we as-
sume that the stage cost is positive definite, analogous to Assumption 2.3, which is
characterized using the function `min(x, t) := infu∈U `(x, u, t).

Assumption 4.3. (Tracking stage cost) There exist functions α`, α` ∈ K∞ such that α`(‖x−
xr(t)‖) ≤ `min(x, t) ≤ α`(‖x − xr(t)‖) for all (x, t) ∈ X× I≥0 and `(xr(t), ur(t), t) = 0,
for all t ∈ I≥0.

We point out that this assumption includes the case where the stage cost is indepen-
dent of u and ur, in which case the input reference ur does not need to be known (cf.
Ass. 4.16).

The standard analysis for MPC without terminal ingredients relies on an asymp-
totic/exponential cost controllability [120, 123, 127, 237, 267], which provides a suitable
bound for the infinite-horizon cost for all x ∈ X. However, this condition can be rather
restrictive in case of unstable system dynamics or hard state constraints. In [37], this
analysis has been extended to only require a local5 bound on the cost function, which
is significantly less restrictive, compare also [86, 252]. Thus, in accordance with the
existing literature, we consider a local exponential cost controllability assumption.

Assumption 4.4. (Local exponential cost controllability) There exist constants γ > 1, ε > 0
such that for all N ∈ I≥1, for all (x, t) ∈ X× I≥0 satisfying `min(x, t) ≤ ε, Problem 4.1 is
feasible and the value function satisfies

VN(x, t) ≤ γ · `min(x, t). (4.4)

We note that for ` quadratic this assumption is similar to Assumption 3.6. Sufficient
conditions for Assumption 4.4 will be discussed in detail in Section 4.1.4.

5We point out that local cost controllability conditions have also been used earlier in [239, Ass. 4], [238,
Ass. 1]. However, the corresponding guarantees require an explicit terminal constraint to be included
in Problem 4.1, unlike the method in [37] based on sublevel set arguments, which are also adopted in
this chapter.
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

The following theorem drives a lower bound NV for prediction horizon N such that
asymptotic stability of the reference trajectory under the closed-loop system is ensured.

Theorem 4.5. Let Assumptions 4.3–4.4 hold. Then, for any V > 0, there exists a constant
NV > 0 such that for all N > NV and any initial condition (x0, 0) ∈ XV := {(x, t) ∈
X× I≥0 | VN(x, t) ≤ V}, the closed-loop system (4.3) resulting from Algorithm 4.2 satisfies the
constraints (4.1), Problem 4.1 is feasible for all t ∈ I≥0, and er = 0 is (uniformly) asymptotically
stable. Furthermore, there exists a constant αM ∈ (0, 1] such that the following performance
bound holds for the closed loop:

J cl
∞ (x0) :=

∞

∑
t=0

`(x(t), u(t), t) ≤ VN(x0, 0)/αM ≤ V∞(x0, 0)/αM. (4.5)

Proof. The proof is split into three parts. Part I and II show that the value function VN

satisfies the following bounds at time t ∈ I≥0, assuming (x(t), t) ∈ XV :

`min(x(t), t) ≤ VN(x(t), t) ≤γV`min(x, t), (4.6a)

VN(x(t + 1), t + 1)−VN(x(t), t) ≤− αM`(x(t), u(t), t), (4.6b)

with later specified constants γV ≥ αM > 0. Part III establishes that (x(t), t) ∈ XV

holds recursively for all t ∈ I≥0, derives the performance bound (4.5) and establishes
uniform asymptotic stability. Abbreviate `(k|t) := `(x∗(k|t), u∗(k|t), t + k), e∗r (k|t) :=
x∗(k|t)− xr(t + k) and V(k|t) := VN−k(x∗(k|t), t + k), k ∈ I[0,N−1].
Part I: The lower bound in Inequality (4.6a) follows directly from ` ≥ 0 and

VN(x(t), t) ≥ `(x(t), u(t), t) ≥ `min(x(t), t).

Define γV := max
{

γ, V
ε

}
. Assumption 4.4 in combination with VN(x(t), t) ≤ V implies

the upper bound in Inequality (4.6a). This can be shown with a case distinction based
on whether `min(x(t), t) ≤ ε, similar to [37]. If `min(x(t), t) ≤ ε, Assumption 4.4
directly guarantees the upper bound since γV ≥ γ by definition. On the other hand, if
`min(x(t), t) > ε, we have VN(x(t), t) ≤ V ≤ V/ε · `min(x(t), t) ≤ γV`min(x(t), t).
Part II: In the following, we show that Condition (4.6b) holds with some αM ∈ (0, 1].
The basic idea of the following proof is to decompose the prediction horizon N in two
parts: I[0,kx−1] and I[kx,N−1], with some later specified kx ∈ I[0,N−1]. For the interval
I[kx,N−1], we can then exploit a local upper bound on the value function (cf. Ass. 4.4) to
use standard arguments (cf. [37, 123]) and thus derive Inequality (4.6b) with αM > 0 for
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4.1 Trajectory tracking MPC without terminal ingredients

N large enough.
For any k′ ∈ I[0,N−1], the principle of optimality ensures

VN(x(t), t) =
N−1

∑
k=0

`(k|t) =
k′−1

∑
k=0

`(k|t) + V(k′|t). (4.7)

We denote the smallest element k ∈ I[0,N−1], which satisfies V(k|t) ≤ γε by kx, as-
suming it exists. In the following, we prove kx ∈ I[0,N0] with N0 :=

⌈
γV − γ

⌉
=⌈

max
{

0,
V − γε

ε

}⌉
∈ I≥0. For contradiction, assume that kx > N0. Then, by definition

(cf. (4.7), ` ≥ 0) we have V(k|t) > γε for all k ∈ I[0,N0]. Using the same arguments
as in Part I with V replaced by γε ensures that V(k|t) > γε implies `(k|t) > ε. Thus,
Condition (4.7) ensures

V(N0|t) < V(0|t)− εN0 ≤ V − εN0 ≤ V − ε(γV − γ) ≤ γε,

which contradicts kx > N0. Hence, we have kx ∈ I[0,N0] and V(k|t) ≤ V(kx|t) ≤ γε

for all k ∈ I[kx,N−1]. Furthermore, V(k|t) ≤ γε, k ∈ I[kx,N−1] implies V(k|t) ≤ γ`(k|t),
k ∈ I[kx,N−1] using Assumption 4.4 and a case distinction whether `(k|t) ≤ ε, analogous
to the arguments in Part I. In addition, it holds

V(kx|t) ≤ γ min{`(kx|t), ε} ≤ γ min{`(0|t), ε}, (4.8)

where the second inequality follows from the definition of kx, i.e., `(0|t) ≤ ε implies
kx = 0. We can use the bounds in [123, Variant 2], [267] for the remaining horizon of
length N − kx ≥ N − N0 =: M to show

`(N − 1|t) ≤
(

γ− 1
γ

)N−kx−1

V(kx|t)
(4.8)
≤ γ

(
γ− 1

γ

)M−1

min{`(0|t), ε}. (4.9)

For M ≥ M0 :=
2 log γ− log(γ− 1)
log γ− log(γ− 1)

=
log γ

log γ− log(γ− 1)
+ 1, Inequality (4.9) ensures
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`(N − 1|t) ≤ ε. Thus, we can again invoke Assumption 4.4, which yields

VN(x(t + 1), t + 1) ≤
N−1

∑
k=1

`(k|t)− `(N − 1|t) + V2(x∗(N − 1|t), t + N − 1)

(4.4)
≤ VN(x(t), t)− `(0|t) + (γ− 1)`(N − 1|t)

(4.9)
≤ VN(x(t), t)− `(0|t) + (γ− 1)M

γM−2 `(0|t)

≤VN(x(t), t)−
(

1− (γ− 1)M

γM−2

)
︸ ︷︷ ︸

:=αM

`(0|t). (4.10)

For M > M1 :=
2 log γ

log γ− log(γ− 1)
, this ensures αM > 0. Thus, for

N > NV :=
2 log γ + max{0,− log(γ− 1)}

log γ− log(γ− 1)︸ ︷︷ ︸
=:M

+N0. (4.11)

we have M > M := max{M0, M1} and all the previous bounds hold.
Part III: Condition (4.6b) with ` ≥ 0 and αM > 0 ensures that VN is non-increasing
and thus (x(t), t) ∈ XV holds for all t ∈ I≥0. Hence, the results in Part I and II hold
for all t ∈ I≥0. Inequalities (4.6) in combination with the lower/upper bounds on
`min (Ass. 4.3) ensure that VN(x, t) is a (uniform) time-varying Lyapunov function,
which implies uniform asymptotic stability of er = 0, compare [126, Thm. 2.22], [236,
Thm. 2.32]. The performance bound (4.5) follows directly from Inequality (4.6b) with
V∞(x, t) ≥ VN(x, t) ≥ 0. �

We have shown that for any prediction horizon N > NV and any initial condition
x0 with VN(x0, 0) ≤ V, the closed-loop system asymptotically stabilizes the reference
trajectory. The basic idea of this proof can be summarized as follows. Given a specified
region of attraction (x(t), t) ∈ XV , we have V(k|t) ≤ γε for all k ∈ I[N0,N−1], which
implies V(k|t) ≤ γ`(k|t) (cf. Ass. 4.4). Thus, standard arguments from MPC without
terminal ingredients (cf. [123]) can be used for the remaining horizon M = N − N0 to
bound the cost of the appended piece. A simpler version of this proof can be found
in [JK24, Thm. 2], which results in the more conservative bounds N0 = γV − 1 ≥ γV − γ.
For N0 = 0, the formulas and bounds for αM, M in (4.10), (4.11) are equivalent to
[123, Variant 2], [267], where Assumption 4.4 is assumed globally. In Section 4.1.5, we
show how the local bound M can be further reduced using analysis methods from the
literature (cf. LP analysis in [120, 127]) or employing finite-tail costs from [175]. We
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4.1 Trajectory tracking MPC without terminal ingredients

point out that the proof of V(kx|t) ≤ γε is similar to the proof in [162] to demonstrate
implicit satisfaction of the terminal set constraint based on sublevel set arguments. Note
that Problem 4.1 can be modified using constraint tightening to ensure robust reference
tracking under bounded disturbance, compare [JK17] for the technical details.

Remark 4.6. (Comparison - performance bounds) The resulting theoretical guarantees are closely
related to [37], where setpoint stabilization without terminal constraints is studied based on
a local cost controllability assumption (cf. Ass. 4.4). The analysis presented in [37] directly
uses the regional upper bound γV and proceeds as in [123, Variant 2], [267], without splitting

the horizon in two components N0, M. This approach results in NV =
2 log γV

log γV − log(γV − 1)
(assuming w.l.o.g. γV ≥ 2). For γ = γV , this bound is equivalent to the derived bound in
Equation (4.11). However, for γV � γ, the derived bound can be significantly less conservative.
In the limit, for V → ∞, the bound in [37, Rk. 5] approaches N ≥ 2V

ε log V, while the derived
bound (4.11) approaches N ≥ V

ε . The proposed proof explicitly exploits the fact that we have
additional (tighter) bounds for the points k ∈ I[N0,N−1], which are close enough to the reference
trajectory r. This proof highlights some intrinsic properties and difficulties in establishing
regional results based on local properties. If we wish to increase the region of attraction XV ,
we can simply increase the prediction horizon N by N0 = V−γε

ε compared to the local bound
M ≥ M. This leaves the suboptimality index αM in the performance bound (4.5) untouched.
Such simple connections are rather hard to conclude using the method in [37].

Remark 4.7. (Tightness) The resulting bound on the region of attraction XV has a certain
tightness property in the following sense. Consider a system satisfying the local cost controllability
condition in Assumption 4.4 and we wish to estimate the largest constant V, resulting in closed-
loop stability for (x0, 0) ∈ XV . One can show that any lower bound on the prediction horizon
N, solely based on this information, has to satisfy N ≥ V/ε ≥ N0 in order to ensure stability.
In other words, one can construct examples that satisfy Assumption 4.4 and there exist initial
conditions VN(x0, 0) ≤ V with Nε < V that cannot be stabilized.6 Thus, alternative estimates
on the sufficient prediction horizon NV , which are only based on Assumption 4.4, can never be
smaller than V

ε .

6We define the region of attraction based on sublevel sets VN instead of V∞. If the guaranteed region of
attraction is defined as a sublevel set of V∞, we can also construct examples that are not closed-loop
stable using a prediction horizon N < V/ε.
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

4.1.3 Positive semidefinite cost and detectability/observability

In the following, we extend the theoretical analysis in Theorem 4.5 to stage costs `

that are only positive semidefinite, i.e., do not satisfy Assumption 4.3. This extension
is interesting and relevant for multiple reasons. A standard example for positive
semidefinite stage costs are input-output stage costs `, which appear naturally in case
only some output reference yr is specified, compare, e.g., output path following in [94].
Furthermore, in case an input-output model resulting from system identification is
used (cf., e.g., input-output LPV systems [1, 51] and non-parametric input-output
models [180, 181, 182, 183]) the consideration of positive semidefinite input-output stage
costs is natural. In addition, recent data-driven MPC approaches [JK3, JK4, JK5, JK6,
65, 66] use an implicit (linear) model of the system in terms of input-output data and
thus cannot directly use a stage cost ` satisfying Assumption 4.3. Furthermore, the
consideration of input-output stage costs is a pre-requisite for the theoretical analysis of
the output regulation MPC considered in Section 4.2. Overall, input-output stage costs
` and input-output models are of practical and theoretical relevance, but the existing
theoretical results for MPC either consider terminal ingredients or assume that the stage
cost ` is positive definite (with the exception of [119]).

Theorem 4.12 extends the theoretical analysis in Theorem 4.5 based on a detectability
condition for the considered stage cost `. Proposition 4.14 improves the quantitative
performance bounds by using a suitable observability condition for the stage cost `. The
theoretical analysis in this section is an extension of the results in [119], using a local
bound on the cost function, deriving a performance bound, and improving the overall
bounds on the prediction horizon.

Theoretical analysis

Problem 4.1 and Algorithm 4.2 remain unchanged and only Assumption 4.3 and thus
also Assumption 4.4 are modified. In particular, without Assumption 4.3, `min(x, t) being
small does not necessarily imply that er is small and thus Assumption 4.4 is unrealistic.
Instead, the role of `min is replaced by a continuous function σ : X × I≥0 → R≥0,
the state measure [119], which assume to be bounded in terms of the tracking error
er = x− xr(t).

Assumption 4.8. (State measure) There exist functions α, α ∈ K∞ such that α(‖x− xr(t)‖) ≤
σ(x, t) ≤ α(‖x− xr(t)‖) for all (x, t) ∈ X× I≥0.

The following conditions replace Assumptions 4.3–4.4, similar to [119, SA3/4].

130



4.1 Trajectory tracking MPC without terminal ingredients

Assumption 4.9. (Local exponential cost controllability) There exist constants γs, ε > 0 such
that for all N ∈ I≥1, for all (x, t) ∈ X× I≥0 satisfying σ(x, t) ≤ ε, Problem 4.1 is feasible and
the value function satisfies

VN(x, t) ≤ γsσ(x, t). (4.12)

This condition is analogous to Assumption 4.4, with the difference that `min is replaced
by σ. Compared to [119, SA4], Assumption 4.9 only requires a local bound. This is
similar to how the local bounds in Assumption 4.4 and in [37] are a less restrictive
version of the global bound assumed in [120, 123, 127, 237, 267].

Assumption 4.10. (Detectable stage cost `) There exists a function W : X× I≥0 → R≥0 and
constants γo, εo > 0 such that

W(x, t) ≤γoσ(x, t), (4.13a)

W( f (x, u), t + 1)−W(x, t) ≤− εoσ(x, t) + `(x, u, t), (4.13b)

for any (x, u, t) ∈ Z× I≥0.

Remark 4.11. (Connection to dissipativity) Assumption 4.10 is a special case of the strict
dissipativity condition typically used in economic MPC [96, 203], with ` playing the role of
the supply rate. The main difference is that W satisfies the upper bound (4.13a), while in
economic MPC only boundedness (from below) of the storage W is assumed, compare [136]. This
small technical difference is the main reason that the analysis of economic MPC schemes without
terminal ingredients is more involved and the resulting performance bounds are significantly more
conservative than results for stabilizing MPC without terminal ingredients, compare [122, 132]
and Section 4.3. Note that Assumption 4.10 is trivially satisfied with W = 0 if `(x, u) ≥ σ(x),
which is the case we studied in Theorem 4.5.

The following theorem combines the ideas of [119, Thms. 1–2] to address positive
semidefinite stage costs ` (Ass. 4.10) with the methods in Theorem 4.5 to consider a less
restrictive local bound for the cost function (Ass. 4.9).

Theorem 4.12. Let Assumptions 4.9 and 4.10 hold. Then, for any Y > 0, there exists a
constant NY > 0 such that for all N > NY and any initial condition (x0, 0) ∈ XY := {(x, t) ∈
X× I≥0 | VN(x, t) + W(x, t) ≤ Y}, the closed-loop system (4.3) resulting from Algorithm 4.2
satisfies the constraints (4.1), and Problem 4.1 is feasible for all t ∈ I≥0. Furthermore, there
exists a constant αM ∈ (0, 1] such that the following performance bound holds for the closed
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loop:

J cl
∞ (x0) :=

∞

∑
t=0

`(x(t), u(t), t) ≤ 1
αM

V∞(x0, 0) +
1− αM

αM
γoσ(x0, 0). (4.14)

If additionally Assumption 4.8 holds, then er = 0 is (uniformly) asymptotically stable.

Proof. The proof is split into three parts. Part I and II show that the function YN :=
VN + W satisfies the following bounds at time t ∈ I≥0, assuming (x(t), t) ∈ XY:

εoσ(x(t), t) ≤ YN(x(t), t) ≤γYσ(x(t), t), (4.15a)

YN(x(t + 1), t + 1)−YN(x(t), t) ≤− αMεoσ(x(t), t), (4.15b)

with later specified constants γY > 0, αM ∈ (0, 1]. Part III establishes that (x(t), t) ∈
XY holds recursively for all t ∈ I≥0, derives the performance bound (4.14) and es-
tablishes uniform asymptotic stability. Abbreviate `(k|t) := `(x∗(k|t), u∗(k|t), t + k),
σ(k|t) = σ(x∗(k|t), t + k), Y(k|t) = VN−k(x∗(k|t), t + k) + W(x∗(k|t), t + k), k ∈ I[0,N−1]

and Y(N|t) = W(x∗(N|t), t + N).
Part I: The lower bound in Inequality (4.15a) follows with `, W ≥ 0, and

YN(x(t), t) ≥ `(0|t) + W(x(t), t)
(4.13b)
≥ εoσ(0|t) + W(x∗(1|t), t + 1) ≥ εoσ(0|t).

In case σ(x(t), t) ≤ ε, we directly obtain the bound YN(x(t), t) ≤ (γs + γo)σ(x(t), t)
using Conditions (4.12) and (4.13a). The upper bound in Inequality (4.15a) holds with
γY := max

{
γs + γo, Y

ε

}
using this inequality, (x(t), t) ∈ XY and a case distinction

whether or not σ(x(t), t) ≤ ε, analogous to Theorem 4.5.
Part II: The detectability condition (Ass. 4.10) implies for any k1, k2 ∈ I[0,N], k2 ≥ k1:

Y(k2|t)−Y(k1|t) =W(x∗(k2|t), t + k2)−W(x(k1|t), t + k1)−
k2−1

∑
j=k1

`(j|t) (4.16)

(4.13b)
≤ − εo

k2−1

∑
j=k1

σ(j|t).

Denote the smallest element k ∈ I[0,N−1], which satisfies Y(k|t) ≤ (γs + γo)ε by kx,
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assuming it exists. In the following, we prove kx ∈ I[0,N0] with

N0 :=
⌈

γY − (γs + γo)

εo

⌉
=

⌈
max

{
Y− (γs + γo)ε

ε · ε0
, 0

}⌉
. (4.17)

For contradiction, suppose kx > N0. Then, Inequality (4.16) with σ ≥ 0 implies
Y(k|t) ≥ Y(N0|t) > (γs + γo)ε for all k ∈ I[0,N0]. Using the same arguments as in Part
I, this implies σ(k|t) > ε, k ∈ I[0,N0] (cf. proof Thm. 4.5). In this case, Inequality (4.16)
with k1 = 0, k2 = N0 implies

Y(N0|t) < Y(0|t)− N0ε · ε0 ≤ Y− N0ε · ε0
(4.17)
≤ (γs + γo)ε,

which contradicts kx > N0. Thus, we have kx ∈ I[0,N0]. Note that Y(kx|t) ≤ (γs + γo)ε

implies Y(kx|t) ≤ (γs + γo)σ(kx|t) using the case distinction from Part I with Y =

(γs + γo)ε. Hence, it holds

Y(kx|t) ≤ (γs + γo)min{σ(kx|t), ε} ≤ (γs + γo)min{σ(0|t), ε}, (4.18)

where the second inequality follows from the definition of kx, i.e., σ(0|t) ≤ ε implies
kx = 0. Considering Inequality (4.16) with k1 = kx and k2 = N implies that there exists
a k′ ∈ I[kx,N−1] such that

σ(k′|t) ≤ Y(kx|t)−Y(N|t)
εo(N − kx)

(4.18)
≤ (γs + γo)min{σ(0|t), ε}

εo(N − N0)
. (4.19)

Define M := N − N0. For M > M0 := (γs + γo)/εo, we have k′ 6= 0 and σ(k′|t) ≤ ε.
Thus, Assumption 4.9 ensures that starting at (x∗(k′|t), t + k′), there exists a feasible
state and input trajectory satisfying the bound (4.12), which implies

VN(x(t + 1), t + 1) + `(0|t) ≤
k′−1

∑
k=0

`(k|t) + VN−k′+1(x∗(k′|t), t + k′) (4.20)

(4.12)
≤ VN(x(t), t) + γsσ(k′|t)

(4.19)
≤ VN(x(t), t) +

γs(γs + γo)

εoM
σ(0|t).

Combining Conditions (4.20) and (4.13b), the function YN satisfies Inequality (4.15b)
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with

αM := 1− γs(γs + γo)

ε2
oM

. (4.21)

Furthermore, αM ∈ (0, 1] for M > M1 := γs(γs + γo)/ε2
o. All the arguments hold with

N > NY := N0 + M with M := max{M0, M1} = γs+γo
εo

max
{

1, γs
εo

}
.

Part III: Inequality (4.15b) ensures that YN is non-increasing and thus (x(t), t) ∈ XY
holds for for all t ∈ I≥0. Analogous to Theorem 4.5, Inequalities (4.15) in combination
with Assumption 4.8 ensure uniform uniform asymptotic stability of er = 0. Combining
Conditions (4.15b), (4.20) and the fact that εo(1− αM) = γs(γs+γo)

εo M , we have

αM(VN(x(t + 1), t + 1)−VN(x(t), t)) + (1− αM)(YN(x(t + 1), t + 1)−YN(x(t), t))

≤αM(1− αM)εoσ(0|t)− αM`(0|t)− (1− αM)αMεoσ(0|t) = −αM`(0|t).

Using this inequality in a telescopic sum and YN = VN + W, we get

αMJ cl
∞ (x0) ≤ αMVN(x0, 0) + (1− αM)YN(x0, 0) = VN(x0, 0) + (1− αM)W(x0, 0).

The performance bound (4.14) follows with V∞(x, t) ≥ VN(x, t) and Inequality (4.13a).
�

Compared to [119, Thm. 1], Theorem 4.12 considers a less restrictive local bound
(Ass. 4.9) to show stability. In addition, we provide a performance bound (4.14) similar
to the suboptimality estimates usually obtained in MPC without terminal constraints
(with ` positive definite), compare, e.g., [123, 126, 237] and Theorem 4.5. In particular,
the performance bound (4.14) and the definition of αM (4.21) imply that as N → ∞, we
recover J cl

∞ (x0) = V∞(x0, 0), similar to standard results with ` positive definite [123,
126, 237]. We note that for MPC formulations with terminal ingredients (Sec. 3.1), the
consideration of positive semidefinite stage costs ` is rather straightforward using the
Lyapunov function YN = VN + W, compare, e.g., [JK3, Thm. 2], [236, Thm. 2.24].

Improved performance bounds using observability

In the following, we improve the performance bounds in Theorem 4.12 by using an
additional observability condition for the stage cost `. In particular, the horizon NY in
Theorem 4.12 scales with γs(γs + γo), which is comparable to the bound in [123, Variant
1] and [119]. However, if ` is positive definite (Ass. 4.3) the derivations in [37, 267], [123,
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4.1 Trajectory tracking MPC without terminal ingredients

Variant 2] and Theorem 4.5 provide bounds where NY scales with 2γ log γ, which can
be significantly less conservative. In the following, we show how we can obtain similar
bounds for NY, αM using an additional/stronger finite-time observability condition.

Assumption 4.13. (Observable stage cost `) There exist constants ν ∈ I≥1 and co > 0 such
that for any trajectory (x(t), u(t)) ∈ Z, x(t + 1) = f (x(t), u(t)), t ∈ I≥0, the following
bound holds

σ(x(t + ν), t + ν) ≤ co

t+ν−1

∑
k=t

`(x(k), u(k), k), ∀t ∈ I≥0. (4.22)

The following proposition shows that we can improve the performance bounds in
Theorem 4.12 with this observability condition.

Proposition 4.14. Let Assumptions 4.9, 4.10, and 4.13 hold. Then, the results in Theorem 4.12
hold with NY, αM replaced by

NY,ν :=ν

(⌈
max{log(γsco), log(γ2

s co/εo)}
log(γsco + 1)− log(γsco)

⌉
+ N0,ν + 1

)
, (4.23a)

αM,ν :=1− γ2
s co

εo

(
γsco

γsco + 1

)Mν

, (4.23b)

with Mν :=
⌊

N−ν(N0,ν+1)
ν

⌋
and N0,ν :=

⌈
max

{
co

Y−γsε
ε , 0

}⌉
.

Proof. Abbreviate `(k|t) := `(x∗(k|t), u∗(k|t), t + k), V(k|t) := VN−k(x∗(k|t), t + k), k ∈
I[0,N−1], σ(k|t) = σ(x∗(k|t), t + k), k ∈ I[0,N]. The following proof is similar to Theo-
rem 4.5 and uses arguments from [123, Variant 2], [37, 267] over ν-steps by exploiting
Assumption 4.13. We define

γY,s := max

{
γs,

Y
ε

}
, N0,ν := dco(γY,s − γs)e =

⌈
max

{
co

Y− γsε

ε
, 0

}⌉
∈ I≥0.

(4.24)

We denote the smallest element k ∈ I[0,N−1], which satisfies V(k|t) ≤ γsε by kx, assuming
it exists. In the following, we prove kx ∈ I[νN0,ν,N−1]. For contradiction, assume
kx > νN0,ν. Then, analogous to the proof in Theorem 4.5, we have V(k|t) > γsε,
k ∈ I[0,νN0,ν], which implies σ(k|t) > ε for all k ∈ I[0,νN0,ν]. Thus, Assumption 4.13
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implies

V(0|t)−V(νN0,ν|t) =
νN0,ν−1

∑
k=0

`(k|t) =
N0,ν−1

∑
k=0

ν−1

∑
j=0

`(ν · k + j|t)

≥ 1
co

N0,ν−1

∑
k=0

σ(ν · (k + 1)|t) > εN0,ν

co

(4.24)
≥ Y− γsε.

Since V(0|t) ≤ YN(x(t), t) ≤ Y by definition, this contradicts V(νN0,ν) > γsε and
thus shows kx ∈ I[0,νN0,ν]. Furthermore, we have V(k|t) ≤ γs min{σ(k|t), ε} for all
k ∈ I[kx,N−1], analogous to the proof in Theorem 4.5. In addition, it holds

V(νN0,ν|t) ≤ V(kx|t) ≤ γs min{σ(kx|t), ε} ≤ γs min{σ(0|t), ε}, (4.25)

where the last inequality follows from the definition of kx, i.e., σ(0|t) ≤ ε implies kx = 0.
Using observability (Ass. 4.13), we obtain for any p ∈ I[ν(N0,ν+1),N−1]:

N−1

∑
k=p

`(k|t) = V(p|t) ≤ γsσ(p|t)
(4.22)
≤ γsco

p−1

∑
k=p−ν

`(k|t). (4.26)

Furthermore, we get

N−1

∑
k=p−ν

`(k|t) =
p−1

∑
k=p−ν

`(k|t) +
N−1

∑
k=p

`(k|t) (4.27)

(4.26)
≥ 1

γsco

N−1

∑
k=p

`(k|t) +
N−1

∑
k=p

`(k|t) = γsco + 1
γsco

N−1

∑
k=p

`(k|t)

for any p ∈ I[ν(N0,ν+1),N−1]. Define Mν :=
⌊

N−ν(N0,ν+1)
ν

⌋
∈ I≥0. Applying Inequal-

ity (4.27) recursively (similar to [123, Variant 2], [37, 267]), we obtain

1
co

σ(N|t)
(4.22)
≤

N−1

∑
k=N−ν

`(k|t) ≤
N−1

∑
k=ν(Mν+N0,ν)

`(k|t) (4.28)

(4.27)
≤
(

γsco

γsco + 1

)Mν N−1

∑
k=νN0,ν

`(k|t) ≤
(

γsco

γsco + 1

)Mν

V(νN0,ν|t).

For Mν ≥ Mν,0 :=
log(γsco)

log(γsco + 1)− log(γsco)
, Inequality (4.28) implies σ(N|t) ≤ ε. We
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can use Assumption 4.9 to obtain

VN(x(t + 1), t + 1)−VN(x(t), t) + `(0|t)
(4.12)
≤ γsσ(N|t)

(4.28)
≤ γsco

(
γsco

γsco + 1

)Mν

V(νN0,ν|t)
(4.25)
≤ γ2

s co

(
γsco

γsco + 1

)Mν

σ(0|t). (4.29)

Analogous to the derivation in Theorem 4.12, combining Inequalities (4.13b) and (4.29),
we obtain

YN(x(t + 1), t + 1)−YN(x(t), t) ≤ −αM,ν · εo · σ(x(t), t)

with αM,ν according to Equation (4.23b). For Mν > Mν,2 :=
log(γ2

s co/εo)

log(γsco + 1)− log(γsco)
,

we have αM,ν > 0. Finally, defining Mν := max{Mν,0, Mν,1}, the derivations hold for
M > Mν with N > NY,ν = ν(dMνe+ N0,ν + 1), which corresponds to the expression in
Equation (4.23a). The remainder of the proof is analogous to Theorem 4.12. �

This proposition showed that even for positive semidefinite stage costs `, we can
derive performance bounds that scale similarly to [37, 267], [123, Variant 2] and The-
orem 4.5, assuming that the observability condition (Ass. 4.13) holds. Note that the
suboptimality 1− αM,ν in Equation (4.23b) decays exponentially in Mν, compared to
1− αM in Equation (4.21), which decays with 1/M. Furthermore, the horizon NY,ν only
grows linearly with Y, similar to Theorem 4.5. A simpler proof with more conservative
bounds w.r.t. Y, directly using the bounds in [37, 267], [123, Variant 2] over ν steps, can
be found in [JK19, App. A].

4.1.4 Conditions for cost controllability, detectability and observability

using incremental system properties

In the following, we provide intuitive conditions in terms of intrinsic (incremen-
tal) system properties, that ensure satisfaction of the local cost controllability con-
dition (Ass. 4.4/4.9) and the detectability/observability condition of the stage cost `
(Ass. 4.10/4.13). We first consider the setting in Section 4.1.2 with a quadratic positive
definite stage cost ` (Ass. 4.16) and provide sufficient conditions for the local cost con-
trollability (Ass. 4.4) using an incremental stabilizability property (Prop. 4.19). We also
discuss the connection between Assumption 4.4 and the design of terminal ingredients
(Prop. 4.20). Then, we consider the more general setup in Section 4.1.3 for the special
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case of quadratic stage costs ` that only penalize inputs and outputs (Ass. 4.22). In
Proposition 4.23, we show that the corresponding local cost controllability (Ass. 4.9)
holds if the system is incrementally stabilizable and the output is Lipschitz continuous.
Sufficient conditions for the detectability/observability condition of the stage cost `
(Ass. 4.10/4.13) are provided in Propositions 4.25/4.27 using incremental detectability
(i-IOSS) and finite-step observability (ν-step i-OSS).

Throughout this section, we consider reachable reference trajectories.

Assumption 4.15. (Reachable reference trajectory) There exists a set Zr ⊆ int(Z) such that
the reference trajectory satisfies

r(t) ∈ Zr, xr(t + 1) = f (xr(t), ur(t)), ∀t ∈ I≥0.

This assumption characterizes the fact that the reference trajectory r is reachable,
i.e., follows the dynamics f and lies (strictly) in the constraint set Z, analogous to
Assumption 3.1. The case of unreachable reference trajectories cannot be treated with the
arguments in Theorem 4.5/4.12 and will be considered in Section 4.3 using arguments
from economic MPC.

Positive definite stage cost - local cost controllability

In order to draw on connections to exponential stability and the terminal ingredients in
Section 3.1, we consider a quadratic stage cost.

Assumption 4.16. (Quadratic tracking stage cost) The stage cost ` is given by

`(x, u, t) = ‖x− xr(t)‖2
Q + ‖u− ur(t)‖2

R, t ∈ I≥0, (4.30)

with a positive definite weighting matrix Q ∈ Rn×n and a positive semidefinite matrix R ∈
Rm×m.

Note that Assumption 4.16 implies satisfaction of Assumption 4.3 with `min(x, t) =
‖x− xr(t)‖2

Q, α`(c) = c2 · λmin(Q), and α`(c) = c2 · λmax(Q).

Remark 4.17. (Non-quadratic stage cost) While the theoretical analysis in Theorem 4.5 applies
to a rather general class of stage costs, verifying satisfaction of Assumption 4.4 for non-quadratic
stage costs and choosing a suitable non-quadratic stage cost can be significantly more difficult.
However, e.g., Brockett’s nonholonomic integrator or unicycle models cannot be stabilized by the
considered MPC formulation (Problem 4.1) if a quadratic sage cost is chosen, compare [212]. For
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such systems, also the design procedures for the terminal ingredients from Section 3.1.3 are not
applicable and the terminal cost Vf may need to be non-smooth, compare [42]. Nonetheless, it may
still be possible to verify Assumption 4.4 and thus derive closed-loop guarantees by considering a
suitable non-quadratic stage cost ` and constructing an explicit open-loop input that yields the
desired bound, compare [119, Examples 1-2], [284].

In the following, we show that Assumption 4.4 follows naturally from an exponential
stabilizability property. Since we are interested in the stability of an arbitrary (reachable)
reference trajectory, we frame this assumption in the context of incremental stability [18,
29, 264, 265], which is related to contractivity and universal stabilizability [178].

Definition 4.18. (Local uniform incremental exponential stabilizability) A system is said to be
locally incrementally uniformly exponentially stabilizable on a set Z̃ ⊆ X×U, if there exist
constants ρ ∈ [0, 1), ε0, c1, c2 > 0 such that for any trajectory (z(k), v(k)) ∈ Z̃, z(k + 1) =
f (z(k), v(k)), k ∈ I≥0, for any initial condition x(0) ∈ X satisfying ‖x(0)− z(0)‖2 ≤ ε0,
there exists an input sequence u(·) ∈ U such that

‖x(k)− z(k)‖ ≤c1ρk‖x(0)− z(0)‖, ‖u(k)− v(k)‖ ≤ c2‖x(k)− z(k)‖, k ∈ I≥0, (4.31)

with x(k + 1) = f (x(k), u(k)), k ∈ I≥0.

This definition ensures that any (reachable) reference trajectory is locally exponentially
stabilizable with some linearly bounded control input. For brevity, in this thesis, we
often simply refer to this system property as incrementally stabilizable, since we only
consider local, uniform, and exponential bounds. In case this condition holds with
u(·) = v(·) (c2 = 0) and Z̃ = X×U, then the system is incrementally stable [18, 29,
67, 265], which is closely related to contractive systems [169] and convergent dynam-
ics [221], compare [264]. These incremental system properties, including their numerical
verification, are discussed in detail in Appendix C.

Proposition 4.19. Let Assumptions 4.15–4.16 hold. Suppose the system is locally incrementally
uniformly exponentially stabilizable on the set Zr (Def. 4.18). Then, Assumption 4.4 holds.

Proof. Without loss of generality, suppose t = 0 and `min(x(0), 0) = ‖er(0)‖2
Q ≤ ε, with

some later specified constant ε ∈ (0, λmin(Q) · ε0]. Consider (z(k), v(k)) = (xr(k), ur(k)),
k ∈ I≥0, which satisfies the conditions in Definition 4.18 due to Assumption 4.15.
Part I: First, we show that the input sequence u(·|0) = u(·) from Definition 4.18

is a feasible solution of Problem 4.1. Note that Inequalities (4.31) ensure that the
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corresponding state and input trajectories satisy

‖x(k|0)− xr(k)‖2 + ‖u(k|0)− ur(k)‖2
(4.31)
≤ c2

1(1 + c2
2)ρ

2k‖er(0)‖2

(4.30)
≤

c2
1(1 + c2

2)ρ
2k

λmin(Q)
`min(x(0), 0) ≤

c2
1(1 + c2

2)

λmin(Q)
ε, k ∈ I[0,N−1]. (4.32)

Given that (xr(k), ur(k)) ∈ int(Z), there exists a sufficiently small (uniform) constant
ε ∈ (0, λmin(Q) · ε0] such that Inequality (4.32) guarantees satisfaction of the con-
straints (4.2d), i.e., (x(k|0), u(k|0)) ∈ Z, k ∈ I[0,N−1].
Part II: Given that the considered input trajectory u(·|0) satisfies the constraints in
Problem 4.1, we have VN(x(0), 0) ≤ JN(x(·|0), u(·|0), 0). Analogous to Inequality (4.32),
we directly get

`(x(k|0), u(k|0), k) = ‖x(k|0)− xr(k)‖2
Q + ‖u(k|0)− ur(k)‖2

R
(4.31)
≤

c2
1(λmax(Q) + λmax(R)c2

2)

λmin(Q)
ρ2k‖er(0)‖2

Q.

Using the geometric series ∑N−1
k=0 ρ2k = 1−ρ2N

1−ρ2 ≤ 1
1−ρ2 , the bound (4.4) holds with

γ :=
C

1− ρ2 , C :=
c2

1(λmax(Q) + λmax(R)c2
2)

λmin(Q)
. �

This proposition shows that we can locally bound the value function VN, if the
reference trajectory is reachable and the system is incrementally stabilizable (Def. 4.18).
To ensure satisfaction of Assumption 4.4 for a specific reference trajectory r, it suffices if
this specific reference trajectory can be exponentially stabilized. Assuming this property
for any reachable trajectory on a constraint set Zr enables us to provide guarantees for
generic classes of reference trajectories. Similar results for setpoint stabilization can be
found in [123], [126, Sec. 6.2].

The following proposition clarifies how the terminal ingredients in Section 3.1 are
related to the cost controllability condition (Ass. 4.4).

Proposition 4.20. Let Assumptions 4.15–4.16 hold. Suppose there exist functions Vf and kf,
and a set Xf satisfying Assumptions 3.5–3.6. Then, Assumption 4.4 holds with γ = cu and cu

according to Inequality (3.7).

Proof. First, we note that Assumptions 3.5–3.6 ensure that for any ‖er(t)‖2
Q ≤ ε2, Prob-

lem 3.3 is feasible and the value function corresponding to Problem 3.3 is bounded
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4.1 Trajectory tracking MPC without terminal ingredients

by cu‖er(t)‖2
Q. Since any feasible solution of Problem 3.3 is a feasible solution of Prob-

lem 4.1, also Problem 4.1 is feasible for all ‖er(t)‖2
Q ≤ ε2. Second, since the terminal cost

Vf is non-negative, for the same input trajectory u(·|t), the cost function in Problem 4.1
is never larger than the cost function in Problem 3.3. Thus, the value function in Prob-
lem 4.1 is never larger than the value function in Problem 3.3 and hence Inequality (3.7)
ensures that Assumption 4.4 holds with γ = cu. �

This result is analogous to the setpoint stabilization result in [252]. Combining Propo-
sition 4.20 and Theorem 4.5, we arrive at the following statement: Whenever it is possible
to compute a terminal cost for reference tracking (with a quadratic upper bound), e.g.,
using the method in Section 3.1 or [23, 91], then there exists a sufficiently large prediction
horizon N such that the MPC scheme without terminal ingredients (Alg. 4.2) solves the
trajectory tracking problem. Thus, the MPC formulation without terminal ingredients
can be applied whenever the tracking MPC with terminal ingredients (Sec. 3.1) ensures
(exponential) stability. The main difference is the fact that Problem 4.1 does not require
an explicit offline design to compute Vf, Xf, but may require a large prediction horizon
N to satisfy the conditions in Theorem 4.5.

Remark 4.21. (Necessity of condition) We wish to point out that the incremental stabilizability
condition (Def. 4.18) is not just a sufficient condition to ensure exponential stability of er = 0, but
also a necessary condition in a certain sense (compare also the necessary conditions for universal
trajectory tracking in [287]). Suppose that the considered MPC scheme guarantees exponential
stability for all reference trajectories satisfying Assumption 4.15 with some non-vanishing region
of attraction (non-empty interior) and some prediction horizon N. Then, clearly, the control law
defining the MPC policy satisfies the conditions in Definition 4.18 (the input bound requires
R � 0). In particular, the properties in Definition 4.18 are essentially equivalent to the properties
guaranteed in Theorem 4.5 (neglecting the extended region of attraction and the performance
bound).

Input-output stage cost - detectability/observability

For the case of positive semidefinite stage cost (cf. Sec. 4.1.3), we consider the important
special case of quadratic input-output stage cost.

Assumption 4.22. (Quadratic input-output tracking stage cost) The stage cost ` is given by

`(x, u, t) = ‖h(x, u)− yr(t)‖2
Q + ‖u− ur(t)‖2

R, t ∈ I≥0, (4.33)
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with positive definite weighting matrices Q ∈ Rn×n, R ∈ Rm×m, a Lipschitz continuous output
map h : Z→ Y ⊆ Rp, and the output reference yr(t) := h(xr(t), ur(t)).

We point out that we require R positive definite and hence both yr and ur are required
for the implementation. The relaxation of this condition to allow for R = 0 is one of the
main technical challenges addressed in Section 4.2. Lipschitz continuity of h is needed
to derive a quadratic bound on the value function using the geometric series (Prop. 4.23)
and to show observability of the stage cost ` (Prop. 4.27).

The following proposition shows that incremental stabilizability implies the local cost
controllability (Ass. 4.9), similar to Proposition 4.19.

Proposition 4.23. Let Assumptions 4.15 and 4.22 hold. Suppose the system is locally incremen-
tally uniformly exponentially stabilizable on the set Zr (Def. 4.18). Then, Assumptions 4.8–4.9
hold with σ(x(t), t) = ‖x− xr(t)‖2.

Proof. Assumption 4.8 holds directly with α(c) = α(c) = c2. Consider w.l.o.g. t =

0. Local feasibility of the input sequence u(·) from Definition 4.18 for Problem 4.1
follows analogous to Proposition 4.19 with a suitably adjusted ε ∈ (0, ε0], by replacing
`min/λmin(Q) with σ. Analogous to Inequality (4.32), h Lipschitz continuous with
Lipschitz constant Lh implies

`(x(k|0), u(k|0), k) = ‖h(x(k|0), u(k|0))− h(xr(k), ur(k))‖2
Q + ‖u(k|0)− ur(k)‖2

R

≤L2
hλmax(Q)‖x(k|0)− xr(k)‖2 + (λmax(Q)L2

h + λmax(R))‖u(k|0)− ur(k))‖2

(4.31)
≤ (L2

hλmax(Q)(1 + c2
2) + c2

2λmax(R))c2
1ρ2k‖er(0)‖2

Q, k ∈ I[0,N−1].

Using the geometric series, the bound (4.12) holds with

γs :=
Cs

1− ρ2 , Cs := c2
1(L2

hλmax(Q)(1 + c2
2) + c2

2λmax(R)). �

Analogous to Proposition 4.19, if there exist terminal ingredients Vf, kf, Xf satisfying
the standard conditions (Ass. 3.5–3.6) with the input-output stage cost (Ass. 4.22) and
Vf(x, t) ≤ cuσ(x, t), then Assumption 4.9 also holds with γs = cu.

Assumption 4.10 with the input-output stage cost ` (Ass. 4.22) requires that for
(u, h(x, u)) ≡ (ur, yr), the state x (exponentially) converges to xr, which corresponds to
a detectability condition on the output h. One standard characterization of detectability
for nonlinear systems is incremental input-output to state stability (i-IOSS) with a
corresponding i-IOSS Lyapunov function [14, 50, 147, 205].
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4.1 Trajectory tracking MPC without terminal ingredients

Assumption 4.24. (exponential i-IOSS) There exists an i-IOSS Lyapunov function Vo : X×
X → R≥0 and constants co, co, co,1, co,2 > 0, ρo ∈ [0, 1) such that for all (x, u) ∈ Z,
(z, v) ∈ Z:

co‖x− z‖2 ≤ Vo(x, z) ≤co‖x− z‖2, (4.34a)

Vo( f (x, u), f (z, v))− ρoVo(x, z) ≤co,1‖u− v‖2 + co,2‖h(x, u)− h(z, v)‖2. (4.34b)

Proposition 4.25. Let Assumptions 4.15, 4.22, and 4.24 hold. Then, Assumptions 4.8 and 4.10
hold with σ(x(t), t) = ‖x− xr(t)‖2.

Proof. Consider some t ∈ I≥0, (z, v) = (xr(t), ur(t)), and W(x, t) = c · Vo(x, xr(t))
with c := min

{
λmin(R)

co,1
, λmin(Q)

co,2

}
> 0. The upper bound (4.13a) follows directly from

Inequality (4.34a) with γo := c · co and σ(x, t) = ‖x− xr(t)‖2. Inequality (4.13b) holds
with εo := c · (1− ρo) · co > 0 using

W( f (x, u), t + 1)−W(x, t)
(4.34b)
≤ c

(
co,1‖u− ur(t)‖2 + co,2‖h(x, u)− h(xr(t), ur(t))‖2

)
− c(1− ρo)Vo(x, xr(t))

(4.34a)
≤ c · co,1

λmin(R)
‖u− ur(t)‖2

R +
c · co,2

λmin(Q)
‖h(x, u)− yr(t)‖2

Q − c(1− ρo)co‖x− xr(t)‖2

(4.33)
≤ − εoσ(x, t) + `(x, u, t). �

A corresponding i-IOSS Lyapunov function Vo can be computed using results for
differential detectability [245] or more generally results from incremental dissipativity [270].

Regarding Assumption 4.13, we consider a finite step incremental output to state
stability (i-OSS) condition, which is similar to standard observability characterizations
used in the literature for optimization-based observer design [236, Def. 4.28], [12, Def. 1].

Assumption 4.26. (ν-step i-OSS) There exist constants ν ∈ I≥1, cobs > 0 such that for any
trajectory satisfying x(k + 1) = f (x(k), u(k)), z(k + 1) = f (z(k), u(k)), (x(k), u(k)) ∈ Z,
(z(k), u(k)) ∈ Z, k ∈ I≥0, the following inequality holds

‖x(t)− z(t)‖2 ≤ cobs

t+ν−1

∑
j=t
‖h(x(j), u(j))− h(z(j), u(j))‖2, ∀t ∈ I≥0. (4.35)

Assumption 4.26 implies that two trajectories subject to the same input u generate the
same output y over ν steps only if they had the same initial condition.
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Proposition 4.27. Let Assumptions 4.15, 4.22 and 4.26 hold and suppose that f is Lipschitz
continuous. Then, Assumptions 4.8 and 4.13 hold with σ(x(t), t) = ‖x− xr(t)‖2.

Proof. Suppose w.l.o.g. t = 0. Consider x̃(0) = x(0), z(k) = xr(k), v(k) = ur(k), and
x̃(k + 1) = f (x̃(k), v(k)), x(k + 1) = f (x(k), u(k)), k ∈ I[0,ν−1]. Assumption 4.26 yields

σ(x(0), 0) = ‖x(0)− z(0)‖2
(4.35)
≤ cobs

ν−1

∑
j=0
‖h(x̃(j), v(j))− yr(j)‖2. (4.36)

The assumed Lipschitz continuity of f implies

‖x(k)− x̃(k)‖2 ≤ c1

ν−1

∑
j=0
‖u(j)− v(j)‖2, k ∈ I[1,ν], (4.37)

with some constant c1 > 0. Similarly, Lipschitz continuity of f implies for any k ∈ I[1,ν]:

c2σ(x(k), k) =c2‖x(k)− z(k)‖2 ≤ 2c2‖x̃(k)− z(k)‖2 + 2c2‖x(k)− x̃(k)‖2

(4.37)
≤ 2c2L2k

f ‖x(0)− z(0)‖2 + 2c2c1

ν−1

∑
j=0
‖u(j)− v(j)‖2

≤σ(x(0), 0) +
ν−1

∑
j=0
‖u(j)− v(j)‖2, (4.38)

with the Lipschitz constant Lf ≥ 0 and c2 =
1

2 max{1, L2ν
f , c1}

> 0, where we used

‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2) in the first inequality. Using further Lipschitz continuity of h
and ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2), we have

‖h(x̃(j), v(j))− yr(j)‖2 (4.39)

≤2‖h(x(j), u(j))− yr(j)‖2 + 2L2
h(‖x̃(j)− x(j)‖2 + ‖u(j)− v(j)‖2), j ∈ I[0,ν−1].
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Combining all these inequalities, we arrive at

c2σ(x(ν), ν)
(4.38)
≤ σ(x(0), 0) +

ν−1

∑
j=0
‖u(j)− v(j)‖2

(4.36)
≤

ν−1

∑
j=0

cobs‖h(x̃(j), v(j))− yr(j)‖2 + ‖u(j)− v(j)‖2

(4.39)
≤

ν−1

∑
j=0

2cobs(‖h(x(j), u(j))− yr(j)‖2 + L2
h(‖x̃(j)− x(j)‖2 + ‖u(j)− v(j)‖2))

+ ‖u(j)− v(j)‖2

(4.37)
≤

ν−1

∑
j=0

2cobs‖h(x(j), u(j))− yr(j)‖2 + (1 + 2cobsL2
h(1 + νc1))‖u(j)− v(j)‖2

(4.33)
≤ max

{
2cobs

λmin(Q)
,

1 + 2cobsL2
h(1 + νc1)

λmin(R)

}
︸ ︷︷ ︸

=:cobs

ν−1

∑
j=0

`(x(j), u(j), j). �

Assumption 4.13 can be viewed as a final-state observability property (cf. [236,
Def. 4.29]) and correspondingly Proposition 4.27 is analogous to [236, Prop. 4.31],
which showed that observability in combination with (uniform) continuity implies
final-state observability.

Note that in case a multi-step implementation is used (cf. [125]), Assumption 4.13

directly ensures that we have a positive definite stage cost over ν steps, which is in
accordance with the classical notion of observability. We point out that in the continuous-
time case, the integral of observable input-output stage costs is positive definite, which
in turn simplifies the closed-loop analysis.

Remark 4.28. (Input-output model - extended state) An important class of systems are input-
output models, such as the Nonlinear AutoregRessive model with eXogeneous inputs (NARX),
with the (typically non-minimal) state x(t) = (y(t− ν), . . . , y(t− 1), u(t− ν), . . . , u(t− 1)) ∈
Yν ×Uν compare, e.g., [JK5, JK6, 83, 180, 181, 182, 183]. Such systems naturally satisfy
Assumptions 4.10 and 4.13 for quadratic input-output stage costs (Ass. 4.22). To show this,
consider w.l.o.g. r(t) = 0. With `(x, u) = ‖y‖2 + ‖u‖2 and σ(x) = ‖x‖2, Inequality (4.22) in
Assumption 4.13 holds with equality for co = 1. Furthermore, for such systems Assumption 4.10
holds with

W(x(t)) =
1
ν

ν

∑
k=1

(ν + 1− k) · (‖y(t− k)‖2 + ‖u(t− k)‖2) =: ‖x(t)‖2
Po

,
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γo = 1, and εo = 1/ν. The proof of this statement is analogous to [JK33, Lemma 4]. In
particular, Condition (4.13b) holds with equality. Note that by using an IOSS Lyapunov
function W, the analysis in [181, 182] could also be carried out with the natural Lyapunov
function Y = VN + W instead of considering ∑n

j=0 VN(x(k− j)) as a Lyapunov function.

Summary

To summarize the results in this section so far: Suppose the system is incrementally
exponentially stabilizable (Def. 4.18) and a positive definite quadratic stage cost `

(Ass. 4.16) is used in Problem 4.1. By combining Proposition 4.19 with the analysis in
Theorem 4.5, we arrive at the following result: For any reachable reference trajectory r
(Ass. 4.15) and any desired region of attraction (characterized with V), there exists a large
enough prediction horizon N such that the reference tracking error er is exponentially7

stable for all initial conditions in the region of attraction. An explicit bound NV can be
computed based on system constants and the desired region of attraction. If the system is
incrementally stabilizable on some subset Zstab ⊆ Zr, we can obtain similar guarantees
if r(t) ∈ Zstab, t ∈ I≥0. Overall, this result allows us to give guarantees on a whole set of
reference trajectories, without requiring an analysis or design step for a specific reference
trajectory r. Furthermore, if it is possible to compute suitable terminal ingredients, then
the conditions hold and an explicit bound can directly be computed (Prop. 4.19). We
obtain similar guarantees in the case of quadratic input-output stage costs (Ass. 4.22)
given an additional detectability/observability condition (Ass. 4.24/4.26). However, the
quantitative bounds on the horizon NY in Theorem 4.12/Proposition 4.14 may be more
conservative.

4.1.5 Shorter horizons and improved bounds

The previous results provide insightful connections between the region of attraction
XV , XY, the suboptimality index αM, system constants ρ, ν, co, εo, and a sufficiently large
prediction horizon NV , NY. However, for some applications, the resulting guarantees
may be too conservative and the horizon NV , NY may be too large to implement the
MPC scheme in real-time due to computational restrictions. Thus, in the following we
discuss different methods to achieve the same guarantees with a shorter horizon N. To
simplify the subsequent discussion, we focus on the setting with a positive definite stage
cost ` (Ass. 4.3,4.16, Thm. 4.5). The following improvements are focused on the local

7With `min quadratic, the bounds (4.6) ensure uniform exponential stability of er = 0.
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prediction horizon bounds M > M (cf. (4.11)), which has also received more attention
in literature.

First, using results from literature (cf. [120, 123, 126, 127, 267]), we discuss the effect
of multi-step implementations (Rk. 4.29), horizon-dependent bounds γN for the (local)
cost controllability (Rk. 4.30), and terminal weights (Rk. 4.31). Furthermore, we improve
the performance bounds derived in Theorem 4.5 using a linear programming analysis
similar to [120, 127] (Rk. 4.32). Then, in Theorem 4.37, we merge and extend results
on finite-tail sequences [175], approximate/relaxed terminal costs [238, 239, 267] and
implicit terminal constraints [162]. In particular, we modify/simplify Problem 4.1 and
derive guarantees without directly resorting to the standard cost controllability condition
(Ass. 4.4).

Improved bounds - results from literature

Remark 4.29. (Multi-step implementation) The performance bounds in Theorem 4.5 can be
improved using a multi-step implementation, i.e., applying the first Nc ∈ I≥1 steps (Nc is also
called control horizon) of the optimal open-loop input sequence u∗(·|t) to the system and only
re-optimizing at time t + Nc. Corresponding bounds for the suboptimality estimate αN can
be found in [127, Thm. 5.4], which can be significantly less conservative. In particular, for
Nc = bN/2c the lower bounds on the stabilizing horizon N scale linearly with γ. The fact that
Problem 4.1 only needs to be solved every Nc steps also reduces the computational demand and
thus may allow for a larger prediction horizon N. However, this is also a practical drawback
since the lack of frequent re-optimization may deteriorate robustness properties. This drawback
can be partially compensated by solving Problem 4.1 in each time step t, but with a time-
varying/shrinking prediction horizon N(t) = N −mod(t, Nc), compare [125]. Alternatively,
given a fixed desired suboptimality estimate αN, we can opportunistically apply a more recent
updated solution, whenever the guarantees (relaxed dynamic programming inequality) remain
valid, compare [283].

Remark 4.30. (Horizon dependent cost controllability bounds) The constant γ > 1 in As-
sumption 4.4 can be replaced by horizon dependent constants γN > 1, N ∈ I≥2. Similar to
Proposition 4.19, if the system is incrementally stabilizable (Def. 4.18), these constants can

be computed as γk =
1− ρ2k

1− ρ2 · C, using the geometric series. In the proof of Theorem 4.5,
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Inequality (4.9)) can then be replaced by

`(N − 1|t) ≤
(

M−M0

∏
k=2

γk − 1
γk

)
V(N0 + M0|t) ≤

(
γM − 1

γM

)M0
(

M−M0

∏
k=2

γk − 1
γk

)
V(kx|t),

with N0 = dγV−γMe, M0 =
log(γM)

log(γM)− log(γM − 1)
+ 1, and `(k|t) ≤ ε for k ≥ N0 + M0.

The resulting suboptimality index is then given by

αM :=1− (γM − 1)(γ2 − 1)
(

γM − 1
γM

)M0−1
(

M−M0

∏
k=2

γk − 1
γk

)
.

Thus, similar to [126, Prop. 6.19], [123, Extension (a)], [267, Thm. 1], we can directly improve
the performance bounds in Theorem 4.5 by using horizon dependent bounds γk ≤ γ. Compared
to the formula in [126, Prop. 6.19] based on global cost controllability (N0 = 0), this bound
requires a larger horizon N = N0 + M and the first terms in the product are γM ≥ γk,
k ∈ I[M−M0+1,M−1].

Remark 4.31. (Terminal weight) It is possible to ensure stability with a significantly smaller
prediction horizon N (compared to Theorem 4.5), if the cost function JN in Problem 4.1 is
adjusted by multiplying the stage cost ` at k = N − 1 with some weight ω > 1, compare [127],
[126, Sec. 10.2], [123, Extension (d)]. Similar to Proposition 4.19, if the system is incrementally

stabilizable (Def. 4.18), the local cost controllability (Ass. 4.4) holds with γk =
1− ρ2(k−1)

1− ρ2 C +

ρ2(k−1)C · ω, using the geometric series. Thus, given some ν ∈ I≥1 with Cρ2ν < 1, we can

choose ω :=
1− ρ2ν

(1− ρ2)(1− ρ2νC)
≥ 1 to ensure ω ≥ γν+1. Then, [127, Thm. 5.1] ensures

closed-loop stability for N > ν (assuming Assumption 4.4 holds globally) if the first Nc = ν

inputs are applied in a multi-step implementation (cf. Rk. 4.31). Thus, by combining a large
terminal weight, horizon dependent bounds, and a multi-step implementation, we can ensure

stability with a horizon N >
log(C)

log(1/ρ2)
+ 1, which is significantly shorter than the bound M

in Theorem 4.5 and independent of γ. In addition, a large terminal weight may increase the
region of attraction XV characterized by V, compare [162]. However, a large terminal weight ω

can also deteriorate closed-loop performance.

Remark 4.32. (Linear programming analysis) In case of global cost controllability, better
(tight) estimates for the suboptimality index αM have been obtained using the LP analysis
in [126, Prop. 6.18], [120, 127]. In particular, the bound M0 based on Inequality (4.9) to
ensure `(N− 1) ≤ `(kx|t) cannot be improved and essentially corresponds to the bound derived
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in [162]. However, for γ large the bound M1 in the proof of Theorem 4.5 to ensure αM > 0
introduces additional conservatism.

In the following, we show how an LP analysis can be used to improved the bonds for M, αM

in Theorem 4.5. In order to provide a more general analysis, we assume that `min(x(t), t) ≤
Vk(x(t), t) ≤ γk`min(x(t), t), for all k ∈ I≥2, and all `min(x(t), t) ≤ ε, with constants ε > 0,
γk ≥ 1, and γk non-decreasing in k (cf. Rk. 4.30). We seek the worst-case (in terms of αM)
`(k|t), k ∈ I[0,N−1], VN(x(t + 1), t + 1) that could occur in closed-loop operation, which is
represented by the scalar optimization variables `k ≥ 0, k ∈ I[0,N−1], µ ≥ 0. Correspondingly,
the best estimate αM satisfying Inequality (4.6b) corresponds to minimum of (∑N−1

k=0 `k − µ)/`0,
for all feasible `k, µ. Analogous to Theorem 4.5, we know that V(k|t) ≤ γM`k for k ≥ N0 :=⌈

max
{

V − γMε

ε
, 0
}⌉

. Thus, we know that ∑N−1
j=k `j ≤ γM min{`k, ε}, for all k ≥ N0.

Furthermore, analogous to Inequality (4.9), this bound ensures

N−1

∑
j=k

`j ≤
(

γM − 1
γM

)k−N0

V(N0|t)︸ ︷︷ ︸
≤γMε

≤ ε, k ∈ I≥N0+M0 , (4.40)

where the last inequality follows from k ≥ N0 + M0, with M0 :=
⌈

log(γM)
log(γM)−log(γM−1)

⌉
, compare

Remark 4.30. The bound (4.40) ensures `k ≤ ε, for k ≥ N0 + M0. Thus, the value function
at the next time step can be upper bounded as µ ≤ ∑k−1

j=1 `j + γN−k+1`k, k ≥ N0 + M0 using
the local cost controllability (assuming M0 ≥ 1 w.l.o.g.). Furthermore, we have ∑N−1

j=k `j ≤
γN−k`k, k ≥ N0 + M0. Given the derived bounds, the best estimate αM guaranteed to satisfy
VN(x(t+ 1), t+ 1) ≤ VN(x(t), t)− αM`(x(t), u(t), t) can be computed based on the following
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LP, similar to [120, Lemma 4.6]:

αM :=min
`k, µ

N−1

∑
k=0

`k − µ, (4.41a)

s.t. `k ≥ 0, k ∈ I[0,N−1], µ ≥ 0, (4.41b)
N−1

∑
j=k

`j ≤ γM`k, k ∈ I[N0,N0+M0−1], (4.41c)

N−1

∑
j=k

`j ≤ γN−k`k, k ∈ I[N0+M0,N−2], (4.41d)

µ ≤
k−1

∑
j=1

`j + γN−k+1`k, k ∈ I[N0+M0,N−1] (4.41e)

`N0 ≤ `0, (4.41f)

`0 = 1. (4.41g)

The objective (4.41a) corresponds to αM, since `0 = 1 (w.l.o.g.), compare Condition (4.41g).
Condition (4.41f) corresponds to Inequality (4.8) with kx = N0 (w.l.o.g.). Compared to the
LP in [120, 127], Condition (4.41c) considers γM instead of γN−k, and the bounds (4.41c),
(4.41d)–(4.41e) are only imposed for k ≥ N0 and k ≥ N0 + M0, respectively. In case the cost
controllability is assumed globally, we have N0 = M0 = 0 and obtain the LP in [120, 127] as a
special case.

In the following, we reformulate the LP (4.41) in order to derive a more compact formula for
αM and thus allow for a clearer comparison to the bounds in the literature [120, 127]. The values
`j, j ∈ I[0,N0−1] are irrelevant and can simply be compensated by redefining µ̃ = µ−∑N0−1

k=0 `k.
Using the same arguments as in [127, Prop. 5.2], [126, Sec. 6.8], the constraint (4.41e) is
active for j = N − 2 (assuming N ≥ N0 + M0), i.e., µ = ∑N−2

k=1 `k + γ2`N−1. In addition,
we know that `N0 = `0 = 1. Thus, by considering M = N − N0 and ˜̀k = `k+N0 , µ̃ =
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∑M−2
k=0

˜̀k − 1 + γ2 ˜̀M−1, we arrive at the following equivalent LP

αM := min
˜̀k

1− (γ2 − 1) ˜̀M−1 (4.42a)

s.t. ˜̀k ≥ 0, k ∈ I[0,M−1], (4.42b)
M−1

∑
j=k

˜̀ j ≤ γM ˜̀k, k ∈ I[0,M0−1], (4.42c)

M−1

∑
j=k

˜̀ j ≤ γM−k ˜̀k, k ∈ I[M0,M−2], (4.42d)

M−2

∑
j=k

˜̀ j + γ2 ˜̀M−1 ≤ γM−k+1
˜̀k, k ∈ I[M0,M−2] (4.42e)

˜̀0 = 1. (4.42f)

Note that Inequality (4.42e) corresponds to Inequality (4.41e) using the explicit expression
for µ̃. The LP (4.42) is equivalent to the LP in [120, 127] with a shorter horizon M =

N − N0 and with Inequalities (4.42d)–(4.42e) only for k ≥ M0. Suppose that γk1+k2 ≤
γk1 + γk2 holds, i.e., the bound is “submultiplicative” (cf. [126]). Then, for k ∈ I[M0,M−2],
the constraints (4.42d) are implied by the constraints (4.42e) and can be dropped (cf. [126,
Sec. 6.8]). Analogous to [127, Thm. 5.4.], the optimal solution to the LP (4.42) satisfies the
remaining constraints with equality and can thus be recursively derived, resulting in ˜̀∗

k =(
∏M−k−2

j=1
γ2+j

γ2+j − 1

)
γ2

γM−k+1 − 1
˜̀∗

M−1, k ∈ I[M0,M−2]. The solution ˜̀k, k ∈ I[0,M0] can also

be defined recursively based on the constraints (4.42c), resulting in ˜̀∗
M0−1 =

(
γM − 1

γM

)M0−1

.

Finally, using these equations and Condition (4.42c) with k = M0 − 1, the resulting subopti-
mality index is given by

αM = 1−
(γ2 − 1)(γM − 1)

(
γM − 1

γM

)M0−1

1 + ∑M−2
k=M0

(
∏M−k−2

j=1
γ2+j

γ2+j − 1

)
γ2

γM−k+1 − 1

.

Considering γk = γ, this formula simplifies to

αM = 1− (γ− 1)M

γM0−1(γM−M0 − (γ− 1)M−M0)
, (4.43)
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which corresponds to the formula in [127, Thm. 5.4] for M0 = 1 (we assumed M0 ≥ 1). The
overall resulting lower bound for M to ensure αM > 0 with Equation (4.43) is significantly less
conservative than the bound in Theorem 4.5, but is more conservative than the bound in [127,
Thm. 5.4] (based on global cost controllability) since we can only impose the constraint (4.42e)
for k ≥ M0. We point out that alternatively it is possible to directly utilize the bounds in the
literature based on global cost controllability (cf. [120, 123, 126, 127, 267]) to compute αM,

M by redefining N0 :=
⌈

γM(V − ε)

ε

⌉
, which, however, may result in a significantly smaller

region of attraction XV .

Relaxed terminal costs - extended prediction horizon

Most of the literature on MPC without terminal ingredients (cf. [37, 86, 120, 123, 126, 127,
237, 267]) is based on the cost controllability condition (cf. Ass. 4.4) and thus for γ large
the resulting guarantees typically become conservative. In the following, we overcome
this issue by explicitly using a known continuous control law κ : X× I≥0 → U in the
MPC formulation.

Given some initial state x at time t, we define the closed-loop state and input response
under the feedback κ by the continuous functions φx : I≥0 ×X× I≥0 → X and φu :
I≥0 ×X× I≥0 → U:

φx(0, x, t) :=x,

φu(k, x, t) :=κ(φx(k, x, t), t + k), k ∈ I≥0,

φx(k + 1, x, t) := f (φx(k, x, t), φu(k, x, t)), k ∈ I≥0.

The following assumptions captures the desired properties under the stabilizing feedback
κ.

Assumption 4.33. (Known locally stabilizing controller) There exist constants ρ ∈ [0, 1),
C ≥ 1, ε > 0 such that for all (x, t) ∈ X× I≥0, satisfying `min(x, t) ≤ ε, we have

`(φx(k, x, t), φu(k, x, t), t + k) ≤ Cρ2k`min(x, t), k ∈ I≥0, (4.44a)

(φx(k, x, t), φu(k, x, t)) ∈ Z, k ∈ I≥0. (4.44b)

Analogous to Proposition 4.19, Assumption 4.33 implies satisfaction of the cost
controllability (Ass. 4.4) with γ = C/(1− ρ2).

Given these (local) stability properties of the feedback κ, we can construct a local CLF
based on a finite-tail sequence. Given a horizon length M ∈ I≥1, we define the finite-tail
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cost Vf,M : X× I≥0 → R≥0 as

Vf,M(x, t) := (4.45)∑M−1
k=0 `(φx(k, x, t), φu(k, x, t), t + k) if (φx(k, x, t), φu(k, x, t)) ∈ Z, k ∈ I[0,M−1]

∞ otherwise

The following proposition shows that Vf,M is a relaxed terminal cost.

Proposition 4.34. Let Assumptions 4.3 and 4.33 hold. Then, for any M ∈ I≥1, there exist
constants cM, cM ≥ 1, αM ≤ 1 such that for all (x, t) ∈ X× I≥0 satisfying `min(x, t) ≤ ε, we
have

cM`min(x, t) ≤Vf,M(x, t) ≤ cM`min(x, t), (4.46a)

Vf,M( f (x, κ(x, t)), t + 1) ≤Vf,M(x, t)− αM`(x, κ(x, t), t), (4.46b)

Vf,∞(x, t) ≤Vf,M(x, t) +
1− αM

1− ρ2 `min(x, t). (4.46c)

Furthermore, there exists a constant M > 0 such that for any M > M, we have αM > 0. In
addition, for any M ∈ I≥1, there exists a constant cM,M+1 ≥ 0 such that for all (x, t) ∈ X× I≥0

with Vf,M(x) ≤ ε, we have

Vf,M+1(x, t)−Vf,M(x, t) ≤ cM,M+1Vf,M(x, t). (4.46d)

Proof. Denote `k = `(φx(k, x, t), φu(k, x, t), t + k), k ∈ I≥0. Inequality (4.46a) follows

directly from Inequalities (4.44) and `min(x, t) ≤ ε with cM := 1, cM := C
1− ρ2M

1− ρ2 .

Furthermore, for `min(x, t) ≤ ε, satisfaction of Inequality (4.46b) follows with

Vf,M( f (x, κ(x, t)), t + 1)−Vf,M(x, t) = −`0 + `M

(4.44a)
≤ − `0 + Cρ2M`min(x, t) ≤ − (1− Cρ2M)︸ ︷︷ ︸

=:αM

`0.
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For M > M :=
log(C)

log(1/ρ2)
, we have αM > 0. Inequality (4.46c) follows similarly with

lim
M′→∞

Vf,M′(x, t)−Vf,M(x, t) =
∞

∑
k=M

`k

(4.44a)
≤ C`min(x, t)

∞

∑
k=M

ρ2 = C
ρ2M

1− ρ2 `min(x, t) =
1− αM

1− ρ2 `min(x, t).

Note that given `0 ≤ Vf,M(x, t), Inequality (4.46d) directly follows from Inequality (4.46c)
for cM,M+1 = 1− αM = Cρ2M. In the following, we use an LP analysis similar to [120,

127] to prove Inequality (4.46d) with cM,M+1 = Cρ2M 1− ρ2

1− ρ2M ≤ 1 − αM. Assump-

tion 4.33 and `j ≤ Vf,M(x, t) ≤ ε, j ∈ I[0,M−1] ensure

`k ≤ Cρ2(k−j)`j, j ∈ I[0,M−1], k ∈ I[j+1,M].

Furthermore, Condition (4.46d) is equivalent to `M ≤ cM,M+1 ∑M−1
k=0 `k. We normalize

the stage cost using ˜̀k := `k/Vf,M(x, t), k ∈ I[0,M]. A valid constant cM,M+1 can be
computed using the following LP:

cM,M+1 :=max
˜̀k

˜̀M (4.47a)

s.t.
M−1

∑
k=0

˜̀k = 1, (4.47b)

˜̀M ≤ Cρ2(M−k) ˜̀k, k ∈ I[0,M−1]. (4.47c)

Using a standard argument of contradiction, the constraints (4.47c) are all active and

thus the analytical solution is given by cM,M+1 := Cρ2M 1− ρ2

1− ρ2M = C2ρ2M/cM. �

This proposition ensures that for M > M, Vf,M is a local CLF, which is analogous to
the result in [175]. Inequality (4.46b) is similar to the standard inequality required for
the terminal cost Vf (cf. Ass. 3.5), with an additional relaxation factor αM ∈ (0, 1]. A
similar relaxed terminal cost has been considered in [119, Ass. 5] with αM = 0. In [239,
Ass. 2, Prop. 2], [267, A3] a relaxed condition similar to (4.46b) is considered, which
does not necessarily require Vf,M to be a CLF. The continuous-time analogue to the
finite-tail cost Vf,M would be an integral-based terminal cost, which was suggested
in [238], however, without a fixed input u = κ. Note that Vf = Vf,M/αM satisfies the
conditions in Proposition 3.11 with α1 = εcM/αM > 0 and can thus also be used to
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derive valid terminal ingredients satisfying Assumptions 3.5–3.6.
Given the relaxed terminal cost, we can specify a modified MPC optimization problem.

At each time t ∈ I≥0, given the current state x(t), the MPC control law is determined
based on the following optimization problem:

Problem 4.35.

minimize
u(·|t)

JN,M(x(·|t), u(·|t), t) (4.48a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (4.48b)

x(0|t) = x(t), (4.48c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (4.48d)

where

JN,M(x(·|t), u(·|t), t) :=
N−1

∑
k=0

`(x(k|t), u(k|t), t + k) + Vf,M(x(N|t), t + N). (4.48e)

The solution to this optimization problem is an optimal input trajectory u∗(·|t),
the corresponding state trajectory x∗(·|t), and the value function VN,M(x(t), t) =

JN,M(x∗(·|t), u∗(·|t), t). To simplify the theoretical exposition regarding feasibility,
we define VN,M(x(t), t) = ∞, in case Problem 4.35 does not admit a feasible solution.
The following algorithm summarizes the closed-loop operation.

Algorithm 4.36. (Trajectory tracking MPC Algorithm - finite-tail terminal cost)
Offline: Specify the constraint set Z, the stage cost `, the prediction horizon N ∈ I≥1, the
extended horizon M ∈ I≥1, and the control law κ.
Online: At each time step t ∈ I≥0, measure the current state x(t), solve Problem 4.35, and apply
the control input u(t) := u∗(0|t).

Problem 4.35 can be seen as a modified version of Problem 3.3, where the terminal cost
Vf is replaced by an approximate terminal cost Vf,M and the terminal constraint is omitted
(as, e.g., done in [162]). Alternatively, we can also see Problem 4.35 as a special case
of Problem 4.1 by taking into account the formula we used for Vf,M in Equation (4.45).
In particular, if we consider the prediction horizon Ñ = N + M in Problem 4.1 and
constrain the last M inputs to be u(k|t) = κ(x(k|t), t + k), k ∈ I[N,N+M−1], we end up
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with Problem 4.35. Note that Problem 4.35 optimizes over an input sequence u(·|t) of
length N, but predicts the system response over an extended prediction horizon N + M,
as also done in [83, 164, 167, 175].

The following theorem establishes the closed-loop properties.

Theorem 4.37. Let Assumptions 4.3 and 4.33 hold. Then, for any V > 0, M ∈ I≥1, there exists
a constant NV,M > 0 such that for all N > NV,M and any initial condition (x0, 0) ∈ XV :=
{(x, t) ∈ X× I≥0 | VN,M(x, t) ≤ V}, the closed-loop system resulting from Algorithm 4.36
satisfies the constraints (4.1), Problem 4.35 is feasible for all t ∈ I≥0, and er = 0 is (uniformly)
asymptotically stable. Furthermore, there exist constants αN,M ∈ (0, 1], εN,M ∈ (0, 1] such that
the following performance bound holds for the closed loop:

J cl
∞ (x0) :=

∞

∑
k=0

`(x(k), u(k), k) ≤ 1
εN,M

VN,M(x0, 0) ≤ 1
αN,M

V∞(x0, 0). (4.49)

Proof. The proof is split into three parts, analogous to Theorem 4.5. Part I and II show
that the value function VN,M satisfies the following bounds at time t ∈ I≥0, assuming
(x(t), t) ∈ XV :

`min(x(t), t) ≤ VN,M(x(t), t) ≤γV`min(x, t), (4.50a)

VN,M(x(t + 1), t + 1)−VN,M(x(t), t) ≤− εN,M`(x(t), u(t), t), (4.50b)

with later specified constants γV ≥ εN,M > 0. Part III establishes that (x(t), t) ∈ XV

holds recursively for all t ∈ I≥0, derives the performance bound (4.49) and estab-
lishes uniform asymptotic stability. Abbreviate `(k|t) := `(x∗(k|t), u∗(k|t), t + k) and
V(k|t) := VN−k,M(x∗(k|t), t + k), k ∈ I[0,N] with u∗(N|t) = κ(x∗(N|t), t + N).
Part I: The lower bound in Inequality (4.50a) follows directly from ` ≥ 0, analo-
gous to Theorem 4.5. Note that for `min(x(t), t) ≤ ε, Assumption 4.33 ensures that
u(k|t) = κ(x(k|t), t + k), k ∈ I[0,N−1] is a feasible solution to Problem 4.35, yield-

ing VN,M(x(t), t) ≤ γ`min(x(t), t) with γ := C/(1− ρ2). Define γV := max
{

γ, V
ε

}
.

The upper bound in Inequality (4.50a) follows from this local upper bound and
VN,M(x(t), t) ≤ V, analogous to Theorem 4.5 .
Part II: In the following, we show that Condition (4.50b) holds with some εN,M ∈ (0, 1].
For any k′ ∈ I[0,N], the principle of optimality ensures

VN,M(x(t), t) =
N−1

∑
k=0

`(k|t) + Vf,M(x∗(N|t), t + N) =
k′−1

∑
k=0

`(k|t) + V(k′|t).
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Define N0 :=
⌈
γV − γ

⌉
=

⌈
max

{
0,

V − γε

ε

}⌉
∈ I≥0. Analogous to Theorem 4.5, one

can show kx ∈ I[0,N0] and V(k|t) ≤ γε for all k ∈ I[kx,N], where kx is the smallest element
k ∈ I[0,N], which satisfies V(k|t) ≤ γε. Correspondingly, this implies V(k|t) ≤ γ`(k|t),
k ∈ I[kx,N−1] using a case distinction whether `(k|t) ≤ ε. Furthermore, it holds that

V(kx|t) ≤ γ min{`(kx|t), ε} ≤ γ min{`(0|t), ε}, (4.51)

where the second inequality follows from the definition of kx, i.e., `(0|t) ≤ ε implies

kx = 0. Define ρ2
γ :=

γ− 1
γ
∈ [0, 1). Given that V(k|t) ≤ γ`(k|t), k ∈ I[kx,N], we can use

the bounds in [123, Variant 2], [267] for the remaining horizon of length N− kx ≥ N−N0

to show

Vf,M(x∗(N|t), t + N) =V(N|t) ≤ ρ
2(N−kx)
γ V(kx|t)

(4.51)
≤ ρ

2(N−N0)
γ γ min{`(0|t), ε}. (4.52)

Note that for N ≥ N1 := N0 +
log(γ)

log(1/ρ2
γ)

, we have `(N|t) ≤ V(N|t) ≤ ε and thus we

can use the bounds from Proposition 4.34. This yields

VN,M(x(t + 1), t + 1) ≤
N−1

∑
k=1

`(k|t) + V1,M(x∗(N|t), t + N)

≤
N−1

∑
k=1

`(k|t) + Vf,M+1(x∗(N|t), t + N)

=VN,M(x(t), t)− `(0|t) + Vf,M+1(x∗(N|t), t + N)−Vf,M(x∗(N|t), t + N)

(4.46d)
≤ VN,M(x(t), t)− `(0|t) + cM,M+1Vf,M(x∗(N|t), t + N)

(4.52)
≤ VN,M(x(t), t)− `(0|t) + cM,M+1ρ

2(N−N0)
γ γ`(0|t)

Prop. 4.34
= VN,M(x(t), t)−

(
1− C2ρ2Mρ

2(N−N0)
γ

γ

cM

)
︸ ︷︷ ︸

=:εN,M

`(0|t).

For N > N2 := N0 +
log(ρ2MC2γ/cM)

log(1/ρ2
γ)

, this ensures εN,M > 0. Thus, given any M ∈ I≥1,
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for

N > NM := max{N1, N2} =N0 +
max

{
log(ρ2MC2γ/cM), log(γ)

}
log(1/ρ2

γ)

=N0 +
log(γ) + max{log(cM,M+1), 0}

log(γ)− log(γ− 1)
, (4.53)

all the previous bounds hold.
Part III: Condition (4.50b) with ` ≥ 0 and εN,M > 0, ensure that VN,M is non-increasing
and thus (x(t), t) ∈ XV holds for all t ∈ I≥0. Hence, the results in Part I and II hold for
all t ∈ I≥0. Inequalities (4.50) and Assumption 4.3 ensure uniform asymptotic stability of
er = 0. Regarding the performance bound (4.49), the first inequality directly follows from
Inequality (4.50b). Given an initial condition (x0, 0) ∈ XV , define an infinite horizon
optimal trajectory x∞(k), u∞(k), k ∈ I≥0 with V∞(x0, 0) = ∑∞

k=0 `(x∞(k), u∞(k), k).
Note that V∞(x0, 0) ≥ VN,M(x0, 0) would directly imply (4.49) with αN,M = εN,M and
thus we can w.l.o.g. consider V∞(x0, 0) ≤ VN,M(x0, 0) ≤ V. Using Assumption 4.33,
`min(x∞(k), k) ≤ ε implies V∞(x∞(k), k) ≤ γ`min(x∞(k), k). Thus, we can use the same
steps from Part II to show that the infinite-horizon optimal trajectory satisfies

V∞(x∞(N), N) ≤ρ
2(N−N0)
γ min{γε, V∞(x0, 0)}.

We have `min(x∞(N), N) ≤ V∞(x∞(N), N) ≤ ε using N ≥ N1 and thus Inequality (4.46a)
yields Vf,M(x∞(N), N) ≤ cM`min(x∞(N), N). The initial part of the infinite-horizon
optiml trajectory is a feasible candidate solution to Problem 4.35, implying

VN,M(x0, 0) ≤V∞(x0, 0) + Vf,M(x∞(N), N)

≤
(

1 + cMρ
2(N−N0)
γ

)
V∞(x0, 0).

Inequality (4.49) follows with αN,M :=
εN,M

1 + cMρ
2(N−N0)
γ

∈ (0, εN,M]. �

Remark 4.38. (Comparison to state of the art) This result is interesting for multiple reasons.
First, it generalizes and unifies the “standard” results for MPC without terminal ingredients
(Thm. 4.5, [37, 120, 123, 126, 127, 267], M = 0) and MPC with terminal ingredients (Sec. 3.1,
[55, 74, 162, 236], αM = 1), by considering an “approximate” terminal cost (cf. Prop 4.34).
Compared to the standard MPC arguments with terminal ingredients, weaker conditions are
imposed on the terminal cost and no explicit terminal set constraint is used. The price we have to
pay for this relaxation is that a horizon N > NM is required. However, compared to the standard
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bounds in MPC without terminal ingredients (cf. [37, 120, 123, 126, 127, 267], M = 0),
the bounds derived in Theorem 4.37 can be significantly less conservative, as explained in the
following. To simplify the following discussion, suppose that Assumption 4.33 holds globally (as
assumed in most of the literature) and approximate γ ≈ cM (which holds for M large). Then,
Theorem 4.37 ensures stability, if ρ2Mρ2N

γ C2 < 1. For comparison, the standard bounds (cf. [123,
Variant 2],[37, 131, 267]) (essentially) require γ2ρ2N

γ < 1. Neglecting8 the difference between
C and γ, for M = 0 we recover the existing bounds as a special case. More importantly, the
provided bound may be significantly less conservative, if ρ is significantly smaller than ργ. Note
that for ργ based on Proposition 4.34 it holds:

γ =
C

1− ρ2 , 1− ρ2
γ =

1
γ
=

1− ρ2

C
≥ 1− ρ2.

Hence, for C large, the bounds based on the cost controllability can become very conservative.
In Section 4.5, the different bounds are quantitatively compared with numerical examples.

Using the bounds γk from Remark 4.30, we can replace ρ
2(N−N0)
γ by ∏N

k=N0+1
γk,M − 1

γk,M
, with

VN,M(x, t) ≤ γN,M`min(x, t), γk,M = C
1− ρ2(k+M)

1− ρ2 , resulting in less conservative bounds.

We conjecture that the bounds in Theorem 4.37 can be further improved using an LP analysis,
analogous to [123, Variant 3], [120, 127] (cf. Rk. 4.32).

Although the underlying MPC formulation including Vf,M is almost equivalent to the MPC
formulation in [175], the proof deviates significantly. In particular, in [175, Eq. (13)] it is simply
assumed that the following inequality holds for any feasible solution

`(φx(M, x∗(N|t), t + N), φu(M, x∗(N|t), t), t + N) < `(x(t), u∗(0|t), t).

In our analysis, on the contrary, we provide explicit verifiable assumptions in terms of lower
bounds on the prediction horizon NM that ensure the desired closed-loop properties.

The difference in the suboptimality estimate αN,M and εN,M illustrates the different
role of the prediction horizon N and the extended prediction horizon M regarding
stability (4.50) and performance (4.49), with limN+M→∞ εN,M = 1, limN→∞ αN,M = 1. In
particular, in case M = 0, we have αN,M = εN,M and the same constant is used for the
relaxed dynamic programming inequality (4.50b) and the performance bound (4.49).
However, in the considered case we can improve the stability properties by increasing
the extended prediction horizon M ∈ I≥1. Although an increased extended horizon M

8In case the bounds with γk are used (cf. Rk. 4.30), this difference becomes less relevant.
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

also improves the suboptimality estimate αN,M, we can only approach infinite horizon
performance (αN,M = 1) if the prediction horizon N approaches infinity. This is rather
natural, since we did not assume that the local feedback κ is optimal in any sense.

Summary

In this section, we analysed the closed-loop properties of trajectory tracking MPC
without terminal ingredients. Given a local cost controllability condition, we provided
performance bounds in dependence of the considered region of attraction XV and the
prediction horizon N (Sec. 4.1.2). In addition, we extended this analysis to positive
semidefinite stage costs using a detectability or observability condition (Sec. 4.1.3).
Furthermore, we provided significantly less conservative bounds by employing an LP
analysis or using an extended prediction horizon (Sec. 4.1.5). Finally, we showed that for
reachable reference trajectories and quadratic stage costs, the considered assumptions
can be reduced to incremental system properties, such as incremental stabilizability,
i-IOSS, and finite-step i-OSS (Sec. 4.1.4). In the next section, we study the more general
output regulation problem, where the desired state and input reference trajectory xr, ur

is not known.

4.2 Output regulation MPC

In Section 4.1, we analysed the closed-loop properties of a trajectory tracking MPC
scheme without any terminal ingredients. In this section, we generalize the setup
to the output regulation problem (Sec. 4.2.1). The proposed output regulation MPC
simply minimizes a quadratic output stage cost. Hence, contrary to classical design
approaches, the application of the proposed output regulation MPC does not require
the solution to the regulator (Francis-Byrnes-Isidori, FBI) equations or any other offline
design procedure. We show that for minimum-phase systems such a simple design
ensures exponential stability of the regulator manifold, if a sufficiently large prediction
horizon N is used (Sec. 4.2.2). We also provide a stability proof in case of unstable zero
dynamics using an incremental input regularization and an additional nonresonance
condition (Sec. 4.2.3). This section is based on and taken in parts literally from [JK19]9.

9J. Köhler, M. A. Müller, and F. Allgöwer. “Constrained nonlinear output regulation using Model Predic-
tive Control.” In: IEEE Trans. Automat. Control (2021). extended version: arXiv:2005.12413©2021 IEEE.
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4.2 Output regulation MPC

4.2.1 Output regulation problem

In the following, we generalize the reference trajectory tracking problem considered
in Section 4.1 to the output regulation problem. Compared to the reference tracking
problem (Sec. 4.1) we have the following differences: a) the plant is augmented with an
exosystem that generates disturbances and the output reference; b) the optimal mode
of operation is the regulator manifold, which is only implicitly characterized by an
output y. In particular, the lack of input regularization poses a non-trivial problem
and constitutes the key technical challenge addressed in this section. By considering
the output regulation problem this section mainly addresses the additional challenge
when the optimal mode of operation is not directly specified in terms of given state and input
setpoints/trajectories (cf. Sec. 1.1, (iii)).

Related work

Output regulation is one of the fundamental problems in control theory, combining
dynamic trajectory tracking, disturbance rejection and output-feedback in a common
framework [48, 53, 144, 222], compare also the (robust) servomechanism problem [72].
The classical solution is to solve the regulator/FBI equations [53, 144]. This reduces the
problem to the stabilization of a dynamic state and input trajectory, which can, e.g., be
studied using the notion of convergent dynamics [222]. Alternatively, the plant can be
augmented using the internal model principle [109]. This approach directly lends itself to
the error feedback case and can also be applied to nonlinear systems using an immersion
property and an analytical description of the zero dynamics (cf. [143]), compare [47, 185,
228]. Hence, the classical solutions to the nonlinear output regulation problem require a
non-trivial offline design procedure (e.g., solving a partial differential equation [144]),
which is a bottleneck for practical implementation. In the following, we present an MPC
approach that solves the output regulation problem and does not require any offline
design such as, e.g., solving the regulator equations.

The special case of constant exogenous signals is often studied in MPC under the
rubric of offset-free tracking or setpoint tracking. Existing solutions compute the
optimal steady-state offline/online [164, 174], use velocity formulations [36, 176] or
deploy disturbance observers [201, 213], to reduce the problem to the stabilization of
a given steady-state. In case of exogenous signals with a known period length T, the
output regulation problem can be solved by computing the optimal T-periodic trajectory
offline [89] or online (cf. Sec. 3.2). In [5], output regulation is studied using a local
(polynomial) approximation to the regulator equations and the dynamic programming
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equations, but no closed-loop guarantees are obtained. In summary, the existing MPC
approaches reduce the output regulation problem to the stabilization of a given state and
input trajectory by explicitly computing the solution to the regulator equations online
or offline, and thus reduce the problem to trajectory tracking MPC (cf. Sec. 3.1/4.1). In
the proposed MPC formulation, the analysis is based on detectability notions similar to
Assumption 4.10 and Theorem 4.12, and hence we require neither a positive definite
stage cost nor terminal ingredients. Thus, the implementation does not require a
computation of the solution to regulator equations.

Setup

We consider the following nonlinear discrete-time system

xp(t + 1) = fp(xp(t), w(t), u(t)), xp(0) = xp,0, (4.54a)

w(t + 1) = s(w(t)), w(0) = w0, (4.54b)

y(t) = h(xp(t), w(t), u(t)), (4.54c)

with the plant state xp(t) ∈ Xp ⊆ Rnp , the state of the exosystem w(t) ∈W ⊆ Rq, the
control input u(t) ∈ U ⊆ Rm, the output y(t) ∈ Y ⊆ Rp, the time step t ∈ I≥0, the
initial conditions xp,0 ∈ Xp, w0 ∈W, the plant dynamics fp : Xp ×W×U→ Xp, the
dynamic of the exosystem s : W→W and the output equation h : Xp ×W×U→ Y.
The exogenous signal w affects both the plant dynamics (4.54a) and the output (4.54c),
and thus can model deterministic dynamic disturbances and references. Compared to
the setup in Section 4.1, the overall system is comprised of a plant and an autonomous
exosystem that jointly generate some output y. We impose general point-wise in time
constraints of the form

(xp(t), w(t), u(t)) ∈ Z ⊆ Xp ×W×U, t ∈ I≥0. (4.55)

The control goal is to achieve output nulling (limt→∞ ‖y(t)‖ = 0), while satisfying the
constraints (4.55). The classical solution to the output regulation problem is to compute
functions πx : W→ Xp, πu : W→ U, which satisfy

πx(s(w)) = fp(πx(w), w, πu(w)), ∀w ∈W, (4.56a)

0 =h(πx(w), w, πu(w)), ∀w ∈W. (4.56b)
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Equations (4.56) are called the discrete-time regulator equations or FBI equations. In [53,
Thm. 2], it was shown that the regulator equations are locally solvable, if the zero
dynamics of the plant are hyperbolic and the exosystem is neutrally stable.10 Given
a solution to the regulator equations (4.56), output regulation can be reduced to the
problem of stabilizing the state and input reference trajectory (πx(w(t)), πu(w(t))),
t ∈ I≥0.

Assumption 4.39. (Regulator equations) The regulator equations (4.56) admit a solution πx, πu.
Furthermore, there exists a constant ε > 0 such that for any w ∈W and any xp ∈ Bε(πx(w)),
u ∈ Bε(πu(w)), we have (xp, w, u) ∈ Z.

Uniqueness of both, πx and πu, will be ensured based on an additional minimum-
phase or nonresonance condition posed latter.

Assumption 4.39 ensures that the nonlinear constrained output regulation problem is
locally solvable, analogous to Assumptions 3.1/4.15 in the trajectory tracking case. Corre-
spondingly, if the functions πx, πu are known we can directly solve the output regulation
problem with the trajectory tracking MPC schemes from Sections 3.1/4.1. Also, in case
we know some feedback κ that can (locally) stabilize the trajectory (πx(w(t)), πu(w(t))),
the output regulation problem can be solved for initial conditions close to the regulator
manifold (cf. [JK19, Prop. 1]). Similarly, in [222], πu is used as a feedforward input and
the dynamics are assumed to be convergent, which is closely related to incrementally
stable dynamics (cf. [264]). We point out that such classical solutions only provide a
local solution to the constrained output regulation problem and require knowledge of
πx, πu, the solution to the regulator equations (4.56). Both of these restrictions will be
relaxed in the proposed MPC approach.

Remark 4.40. (Classical design procedures) Although we view the design using πx, πu and a
stabilizing feedback as the classical solution to the output regulation problem (cf. [48, 53, 144,
222]), especially in the area of error feedback much progress has taken place. In particular, the
immersion property, which requires that the dynamic output feedback is able to generate the
feedforward input πu(w), is highly relevant. In [47, 185, 228], an internal model property is used
to augment the model before designing a controller. The construction of this internal model uses
a function τ, which is constructed using an analytical description of the zero dynamics (cf. [47,
Lemma 7.1]) and hence requires an analytical expression of the model in the Byrnes-Isidori
normal form (BINF). Connections between the proposed MPC design and classical tools such as
10The zero dynamics is hyperbolic, if the eigenvalues of the Jacobian linearization do not lie on the unit

circle. The exosystem is neutrally stable, if the equilibrium w = 0 is stable in the sense of Lyapunov
and the eigenvalues of its Jacobian linearization lie on the unit circle.
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the regulator equations (4.56), zero dynamics and the BINF will appear throughout this section.
However, one crucial difference will be that these concepts are only used in the analysis, while
the implementation requires no complex offline procedures, which is one of the main benefits of
the considered MPC framework.

4.2.2 Output regulation MPC for minimum-phase systems

In the following, we present the proposed output regulation MPC scheme. We show
that simply minimizing a quadratic cost on the predicted output y over a sufficiently
long prediction horizon N solves the constrained nonlinear output regulation problem,
if the system is minimum-phase, i.e., has stable zero dynamics.

We first present the output regulation MPC and introduce preliminaries regarding
relative degree and the zero dynamics. As one of the main technical contributions,
we show that the minimum-phase property implies a cost detectability (cf. Ass. 4.10)
for a look-ahead stage cost `y,d. Then, we show the desired closed-loop properties by
extending the proof of Theorem 4.12.

Output regulation MPC

In the following, we present the output regulation MPC. We denote the overall state by
x(t) := (xp(t), w(t)) ∈ X := Xp×W ⊆ Rn and the overall dynamics by f : X×U→ X

with f (x, u) := ( fp(xp, w, u), s(w)). Given a solution to the regulator equations, we can
define the regulator manifold asA = {x = (xp, w) ∈ X | xp = πx(w)}. Correspondingly,
the output regulation problem is equivalent to the stabilization of the (unknown) set
A, where the output y is zero. Note that due to the autonomous exosystem (4.54b), the
overall system cannot be stabilizable and thus only stability of a subset can be achieved.
In order to drive the system to the regulator manifold, we consider the following stage
cost

`y(x, u) := ‖h(xp, w, u)‖2
Q, (4.57)

which penalizes the output y with some positive definite matrix Q = Q> ∈ Rp×p.

At each time t ∈ I≥0, given the current state x(t) = (xp(t), w(t)), the MPC control
law is determined based on the following optimization problem:
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Problem 4.41.

minimize
u(·|t)

JN,y(x(·|t), u(·|t)) (4.58a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (4.58b)

x(0|t) = x(t), (4.58c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (4.58d)

where

JN,y(x(·|t), u(·|t)) :=
N−1

∑
k=0

`y(x(k|t), u(k|t)). (4.58e)

For simplicity, we assume that fp, s, and h are continuous and the constraint set Z

is compact. The solution to this optimization problem is an optimal input trajectory
u∗(·|t), the corresponding state trajectory x∗(·|t), and the value function VN,y(x(t)) :=
JN,y(x∗(·|t), u∗(·|t)). To simplify the theoretical exposition, we define VN,y(x(t)) = ∞,
in case Problem 4.41 does not admit a feasible solution. The following algorithm
summarizes the closed-loop operation.

Algorithm 4.42. (Output regulation MPC Algorithm)
Offline: Specify the constraint set Z, the weighting matrix Q, and the prediction horizon N.
Online: At each time step t ∈ I≥0, measure the current state x(t) = (xp(t), w(t)), solve
Problem 4.41, and apply the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u∗(0|t)) = x∗(1|t), t ∈ I≥0. (4.59)

Remark 4.43. (Error feedback and robustness) In order to solve Problem 4.41, we need to
be able to predict both the plant state xp and the exosystem state w. Thus, we assume that
x = (xp, w) can be measured online and an accurate prediction model is available. The output
regulation problem is classically posed without state measurements and solved using a dynamic
error feedback, compare [144], [142, Ch. 8] and [47, 228]. In this thesis, we restrict ourselves to
the nominal case of exact state measurements, but the proposed output regulation MPC can be
naturally extended to the error feedback case using an observer and tools from output-feedback
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MPC [106]. A corresponding theoretical analysis can be found in [JK19, App. B], where we show
finite-gain L2-stability in the presence of noisy output measurements, given some simplifying
assumptions (mainly no state constraints).

Compared to the trajectory tracking problem analysed in Theorem 4.12 with the
quadratic input-output stage cost (cf. Ass. 4.22), we face two additional challenges in
the output regulation setting. First, instead of studying the stability of a time-varying
reference trajectory r(t), we study the stability of the regulator manifold A. Second, the
stage cost `y does not contain any input regularization.

The extension to set stability is rather straightforward and only requires a modification
of Assumption 4.8. In general, the results on MPC without terminal constraints can
be directly extended in this direction, compare [119, 155]. On the other hand, the lack
of input regularization poses a non-trivial problem and constitutes the main technical
challenges addressed in the analysis of the output regulation MPC. In particular, if
we would include an input regularization in the output stage cost `y (4.57), then the
stability analysis from Theorem 4.12 could be directly applied to the output regulation
setting (cf. [JK19, Cor. 1]). However, in order to implement an input regularization, i.e.,
penalize ‖u− πu(w)‖2, we would require knowledge of πu(w) and hence would need
to solve the regulator equations (4.56).

Cost controllability

First, we require a bound on the value function (cf. Ass. 4.4/4.9), which will be derived
based on a stabilizability condition similar to Definition 4.18.

Definition 4.44. (Local incremental uniform exponential stabilizability of the plant) The plant is
said to be locally incrementally uniformly exponentially stabilizable on a set Z̃ ⊆ X×U, if there
exist constants ρ ∈ [0, 1), ε0, c1, c2 > 0 such that for any trajectory (zp(k), w(k), v(k)) ∈ Z̃,
zp(k + 1) = fp(zp(k), w(k), v(k)), w(k + 1) = s(w(k)), k ∈ I≥0 and for any initial condition
xp(0) ∈ Xp satisfying ‖xp(0)− zp(0)‖2 ≤ ε0, there exists an input sequence u(·) ∈ U such
that

‖xp(k)− zp(k)‖ ≤c1ρk‖xp(0)− zp(0)‖, ‖u(k)− v(k)‖ ≤ c2‖xp(k)− zp(k)‖, (4.60)

with xp(k + 1) = fp(xp(k), w(k), u(k)), k ∈ I≥0.

Note that compared to the trajectory tracking problem in Section 4.1, we only assume
stabilizability of the plant dynamics xp and not the overall state x, since the exosys-
tem (4.54b) is autonomous and typically Lyapunov stable. For brevity, in this thesis,
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we often simply refer to this system property as incremental stabilizability, since we only
consider local, uniform, and exponential bounds.

Analogous to Propositions 4.19/4.23, this stabilizability property can be used to derive
a local bound on the value function, assuming the regulator equations admit a solution
(Ass. 4.39).

Proposition 4.45. Let Assumption 4.39 hold. Suppose the plant is locally incrementally
uniformly exponentially stabilizable on the set Z (Def. 4.44) and that h is Lipschitz continuous.
Then, there exist constants γs, ε > 0 such that for all N ∈ I≥1 and all x ∈ X satisfying σ(x) :=
‖xp−πx(w)‖2 ≤ ε, Problem 4.41 is feasible and the value function satisfies VN,y(x) ≤ γsσ(x).

Proof. Considering (zp(k), vp(k)) = (πx(w(k|t)), πu(w(k))) ∈ int(Z), k ∈ I[0,N−1] (Ass. 4.39),
there exists a constant ε ∈ (0, ε0] such that u(·) from Definition 4.44 is a feasible so-
lution of Problem 4.41 if σ(x(t)) = ‖xp(t) − πx(w(t))‖2 = ‖xp(t) − zp(t)‖2 ≤ ε (cf.
[JK19, Prop. 1]), analogous to Propositions 4.19/4.23. Similar to Propositions 4.19/4.23,
Inequalities (4.60) imply that the corresponding state and input trajectory satisfy

‖xp(k|t)− πx(w(k|t)‖2 + ‖u(k|t)− πu(w(k|t))‖2 ≤ c2
1(1 + c2

2)ρ
2kσ(x(t)), (4.61)

with c1, c2 > 0, ρ ∈ [0, 1) from Definition 4.44. Lipschitz continuity of h with Lipschitz
constant Lh ≥ 0 implies

VN,y(x(t)) ≤
N−1

∑
k=0
‖h(xp(k|t), w(k|t), u(k|t))‖2

Q

(4.56b),(4.61)
≤ c2

1(1 + c2
2)L2

hλmax(Q)σ(x(t))
N−1

∑
k=0

ρ2k ≤
c2

1(1 + c2
2)L2

hλmax(Q)

1− ρ2︸ ︷︷ ︸
=:γs

σ(x(t)).�

The stabilizability condition (Def. 4.44) could be relaxed to only hold for (zp, v) =
(πx(w), πu(w)), which is less restrictive (compare convergent dynamics in [222]). How-
ever, the benefit of considering incremental stabilizability is the fact that it can be verified
without solving the regulator equations (4.56), which is one of the main motivations of
the proposed output regulation MPC.

Relative degree - Byrnes-Isidori normal form

In the following, we consider a single-input-single-output (SISO) system without a
direct feed through term, i.e., m = p = 1 and h(xp, w, u) = h(x). We assume that the
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system has no direct feed through in order to consider the same setup as in the relevant
literature, compare [197]. The case of square multi-input-multi-output (MIMO) systems
is discussed in Remark 4.52 below. For ease of notation, Assumptions 4.46–4.48 below
regarding the relative degree and the zero dynamics will be posed globally.

We consider the case, where the system has a well defined relative degree d ∈ I≥0,
which is characterized using the Byrnes-Isidori normal form (BINF), similar to [197,
Prop. 2.1].

Assumption 4.46. (Byrnes-Isidori normal form) There exist a constant d ∈ I[0,np−1] and
functions Φk : Rnp ×W → R, k ∈ I[1,d+1], Φη : Rnp ×W → Rnp−d−1, Φ̃ : Rnp ×W →
Rnp , Fd+1 : Rnp ×W×U→ R, and Fη : Rnp ×W×U→ Rnp−d−1 such that the following
conditions hold for all (xp, w, u) ∈ X×U:

Φ1(xp, w) :=h(xp, w), (4.62a)

Φk+1(xp, w) :=Φk( fp(xp, w, u), s(w)), k ∈ I[1,d], (4.62b)

Φ̃(Φ(xp, w), w) =xp, (4.62c)

Fd+1(Φ(xp, w), w, u) :=Φd+1( fp(xp, w, u), s(w)), (4.62d)

Fη(Φ(xp, w), w, u) :=Φη( fp(xp, w, u), s(w)), (4.62e)

with Φ := [Φ1, . . . , Φd+1, Φ>η ]> : X→ Rnp . Furthermore, the functions Φ, Φ̃, Fd+1, and Fη

are Lipschitz continuous.

Given the transformation Φ and its inverse Φ̃ (cf. (4.62c)), the plant dynamics can
be equivalently represented with the state ζ = [z1, . . . , zd+1, η>]> = Φ(xp, w). Condi-
tions (4.62a)–(4.62b) ensure that the states zk, k ∈ I[1,d+1] correspond to a discrete-time
integrator chain of the output h and Equations (4.62d)–(4.62e) define the remaining
dynamics. The corresponding equivalent dynamics in BINF are given by

zk(t + 1) =zk+1(t), k ∈ I[1,d], (4.63a)

zd+1(t + 1) =Fd+1(ζ(t), w(t), u(t)), (4.63b)

η(t + 1) =Fη(ζ(t), w(t), u(t)), (4.63c)

y(t) =z1(t), t ∈ I≥0. (4.63d)

In the following, we denote Φz := [Φ1, . . . , Φd+1]
>. Lipschitz continuity of Φ̃ and Φ

ensures that stability of the original plant xp can be equivalently studied based on the
transformed state ζ. With the representation (4.63), we directly have [y(t), . . . , y(t +
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d)]> = Φz(x(t)), i.e., the input u(t) cannot influence the output y(t + k), k ∈ I[0,d]. If

the relative degree is well-defined, then ∂Fd+1
∂u 6= 0, i.e., at time t ∈ I≥0 the input u(t)

can influence the output y(t + d + 1), which will be ensured through Assumption 4.47

below. We point out that in Assumption 4.46 (and in Ass. 4.48 below) we only consider
the BINF for the plant state xp, but not the exosystem state w. In particular, the zero
dynamics of x also contain the dynamics in w, which are in general not contractive.

Assumption 4.47. (Well-defined zero dynamics) There exist a control law α̃ : Rnp ×W→ U

and constants ch1 , ch2 > 0 such that

ch1 |∆u| ≤ |Fd+1(ζ, w, α̃(ζ, w) + ∆u)| ≤ ch2 |∆u|, (4.64)

for all (ζ, w, α̃(ζ, w) + ∆u) ∈ Rnp ×W×U.

Consider the set LD := {x ∈ X | Φz(x) = 0}, as in [198]. If x(t) ∈ LD, then
y(t + k) = 0 for k ∈ I[0,d]. Condition (4.64) ensures that there exists a unique feedback
law α(x) := α̃(Φ(x), w) such that the manifold LD is positively invariant, which ensures
that the system has well-defined zero dynamics, compare [47, Sec. V]. The requirement
of a unique control law is relevant for well-posedness of the zero dynamics and also the
reason we restrict ourselves to SISO (or square MIMO) systems.

Minimum-phase systems and detectability

The following assumption ensures that the system is minimum-phase, i.e., the zero
dynamics are asymptotically stable, using an ISS Lyapunov function.

Assumption 4.48. (Minimum-phase) There exist constants cη, cη > 0, ρη ∈ [0, 1), and an ISS
Lyapunov function Vη : Rnp−d−1 ×W → R≥0 such that for all (w, z, η, u) ∈ W×Rd+1 ×
Rnp−d−1 ×U, we have

cη‖η − η̃w‖2 ≤ Vη(η, w) ≤ cη‖η − η̃w‖2, (4.65a)

Vη(Fη(ζ, w, u), w+) ≤ ρηVη(η, w) + ‖z‖2 + (u− α̃(ζ, w))2, (4.65b)

with η̃w = Φη(πx(w), w), w+ = s(w), ζ = (z, η).

Given a system with exosystem state w and consistently zero output (z ≡ 0, u ≡ α̃, cf.
Ass. 4.46–4.47), Assumption 4.48 implies that the state η exponentially converges to
η̃w, which corresponds to the “stationary” value of η for (xp, u) = (πx(w), πu(w)).
Furthermore, the dynamics of η with z = 0, u = α̃ are a diffeomorphic copy of the
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plant dynamics fp on LD. Thus, Assumption 4.48 characterizes the stability of the zero
dynamics of the plant, i.e., the minimum-phase property. We point out that in [158], the
strong minimum-phase property has been characterized using the notion of output-input
stability, which is similar to the considered ISS characterization, but does not require the
BINF (Ass. 4.46), compare [158, Example 2]. Furthermore, in [84] the minimum-phase
property is characterized using a more general dissipation inequality.

The following proposition shows that the minimum-phase property guarantees the
stage cost detectability condition (Ass. 4.10) with a look-ahead stage cost `y,d as an
extension to Proposition 4.25.

Proposition 4.49. Let Assumptions 4.39, 4.46, 4.47, and 4.48 hold. Then, there exists a function
W : X→ R≥0 and constants εo, γo > 0 such that for any (x, u) ∈ Z

W(x) ≤γoσ(x), (4.66a)

W( f (x, u))−W(x) ≤− εoσ(x) + `y,d(x, u), (4.66b)

with `y,d(x, u) := h(x)2 + Fd+1(Φ(x), w, u)2 and σ(x) = ‖xp − πx(w)‖2.

Proof. Assumptions 4.47–4.48 directly imply

Vη(Fη(ζ, w, u), s(w))−Vη(η, w) (4.67)
(4.65)
≤ − (1− ρη) · cη‖η −Φη(πx(w), w)‖2 + (u− α̃(ζ, w))2 + ‖z‖2

(4.64)
≤ − (1− ρη) · cη‖η −Φη(πx(w), w)‖2 +

Fd+1(ζ, w, u)2

ch1

+ ‖z‖2.

Note that the dynamics in z = Φz(x) = [z1, . . . , zd+1]
> ∈ Rd+1 (4.63a)–(4.63b) corre-

spond to a finite impulse response (FIR) filter with input Fd+1 and output y, which is
hence detectable. For linear systems, detectability is equivalent to the existence of a
quadratic IOSS Lyapunov function (cf. Ass. 4.24), compare [50]. Thus, there exists a
positive definite matrix Pz and some constants c̃o,1, c̃o,2 > 0 satisfying

‖z(t + 1)‖2
Pz
− ‖z(t)‖2

Pz
≤ −‖z(t)‖2 + c̃o,1Fd+1(ζ(t), w(t), u(t))2 + c̃o,2y(t)2, (4.68)

for all t ∈ I≥0. The function W̃(ζ, w) := c1Vη(η, w)+ c2‖z‖2
Pz

with c2 := 1
max{c̃o,2,2c̃o,1}

> 0,
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c1 :=
min{ch1

,c2}
2 > 0 satisfies

W̃(ζ(t + 1), w(t + 1))− W̃(ζ(t), w(t))
(4.67)–(4.68)
≤ − ε̃o(‖z(t)‖2 + ‖η(t)−Φη(πx(w(t)), w(t))‖2) + Fd+1(ζ(t), w(t), u(t))2 + y(t)2

≤`y,d(x(t), u(t))− εo ‖xp(t)− πx(w(t))‖2︸ ︷︷ ︸
=σ(x)

,

with ε̃o := min
{

c2
2 , c1(1− ρη)cη

}
> 0 and εo = ε̃o/L2

Φ̃, where LΦ̃ > 0 is the Lipschitz

constant of Φ̃ from Assumption 4.46. The function W(x) := W̃(Φ(xp, w), w) also satisfies
the upper bound (4.66a) using

W(x) =c1Vη(Φη(xp, w), w) + c2‖Φz(xp, w)‖2
Pz

≤c1cη‖Φη(xp, w)−Φη(πx(w), w)‖2 + c2λmax(Pz)‖Φz(xp, w)−Φz(πx(w), w)‖2

≤max{c1cη, c2λmax(Pz)}L2
Φ ‖xp − πx(w)‖2︸ ︷︷ ︸

=σ(x)

,

and thus satisfies Inequalities (4.66). �

Due to the well-defined zero dynamics (Ass. 4.47), minimizing Fη in the look-ahead
stage cost `y,d corresponds to an input regularization with respect to the input u = α(x).
Based on this fact, the result in Proposition 4.49 can be intuitively interpreted in the
form of a detectability notion. In particular, detectability ensures that for (u, y) ≡ 0,
the plant state xp is asymptotically stable. The minimum-phase property implies that
the state xp − πx(w) is asymptotically stable on the set LD, which corresponds to the
zero dynamics with y ≡ 0, u ≡ α(x). Hence, the minimum-phase property is similar
to detectability for a shifted input ũ = u − α(x) and replaces the i-IOSS condition
(Ass. 4.24) used in Proposition 4.25 and Theorem 4.12 in the later analysis. We point
out that this (implicit) input regularization w.r.t. u = α(x) is different compared to a
standard input regularization w.r.t. πu(w), since in general α(xp, w) 6= πu(w), except
for xp = πx(w).

The look-ahead stage cost satisfies `y,d(x(t), u(t)) = y(t)2 + y(t + d + 1)2 and hence
it is possible to directly implement an MPC scheme with this look-ahead stage cost
`y,d without explicitly using the BINF from Assumption 4.46 and guarantee stability
analogous to Theorem 4.12. The same stage cost has also been suggested in [5, Eq. (44)]
to study infinite horizon optimal regulation and approximations thereof. Even though
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this stage cost can be implemented, in Theorem 4.50 we show that we obtain the
same properties using the output stage cost `y (4.57), albeit with a potentially larger
prediction horizon N. The benefit of directly using the output stage cost `y are a more
intuitive MPC formulation and the fact that the relative degree d is not used in the
implementation, which is particularly important for the MIMO case (cf. Rk. 4.52).

Closed-loop stability

In the following, we show that, given the minimum-phase property (Ass. 4.48), the
proposed output regulation MPC (Problem 4.41) ensures stability of the regulator
manifold.

Theorem 4.50. Let Assumptions 4.39, 4.46, 4.47, and 4.48 hold. Suppose the plant is locally
incrementally uniformly exponentially stabilizable on the set Z (Def. 4.44). Assume further
that πx (Ass. 4.39) and h are Lipschitz continuous. Then, for any constant Y > 0, there
exists a constant NY > 0 such that for all N > NY and any initial condition x0 ∈ XY :=
{x ∈ X | 2VN,y(x)− ‖Φz(x)‖2 + W(x) ≤ Y}, the closed-loop system (4.59) resulting from
Algorithm 4.42 satisfies the constraints (4.55), Problem 4.41 is feasible for all t ∈ I≥0, and the
regulator manifold A is exponentially stable.

Proof. The proof is structured as follows: We first show that the minimizer for the cost
function JN,y in Problem 4.41 coincides with the minimizer for a finite-horizon cost
based on the look-ahead stage cost `y,d with an additional positive semidefinite terminal
cost. Then, we exploit the fact that `y,d satisfies the detectability condition (Prop. 4.49)
and extend the proof of Theorem 4.12. Finally, we establish exponential stability of the
regulator manifold by providing corresponding lower and upper bounds for σ.
Part I: The output stage cost `y(x) and the look-ahead stage cost`y,d(x, u) are such that
for any trajectory satisfying the dynamics (4.54), we have `y,d(x(t), u(t)) = `y(x(t)) +
`y(x(t + d + 1)), t ∈ I≥0, compare the BINF (4.63). Define the open-loop cost by
JÑ,y,d(x(·|t), u(·|t)) := ∑Ñ−1

k=0 `y,d(x(k|t), u(k|t)), Ñ ∈ I≥1. For any N > d + 1, we have

2JN,y(x(·|t), u(·|t)) =‖Φz(x(t))‖2 + JN−d−1,y,d(x(·|t), u(·|t)) + ‖Φz(x(N − d− 1|t))‖2,

where we use the fact that Jd+1,y(x(·|t), u(·|t)) = ‖Φz(x(t))‖2, compare the BINF (4.63).
Hence, minimizing the cost JN,y yields the same minimizers as minimizing the look-
ahead stage cost `y,d over a shorter prediction horizon Nd := N − d− 1 and adding a
positive semidefinite terminal cost.
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Part II: In the following, we analyse the closed loop using the shifted value function

ṼN,y(x(t)) :=2VN,y(x(t))− ‖Φz(x(t))‖2

=JNd,y,d(x∗(·|t), u∗(·|t)) + ‖Φz(x∗(Nd|t))‖2.

Proposition 4.45 ensures that ṼN,y(x) ≤ 2VN,y(x) ≤ γ̃sσ(x), γ̃s := 2γs, for σ(x) ≤
ε. Furthermore, due to Proposition 4.49, we have W( f (x, u)) −W(x) ≤ −εoσ(x) +
`y,d(x, u). Consider the Lyapunov candidate function YN,y(x) := W(x) + ṼN,y(x), which
implies XY = {x ∈ X | YN,y(x) ≤ Y}. Analogous to the proof in Theorem 4.12, we have

εoσ(x) ≤ YN,y(x) ≤ γ̃Yσ(x), γ̃Y := max{γ̃s + γo, Y/ε}. (4.69)

Abbreviate σ(k|t) = σ(x∗(k|t)), Y(k|t) = YN−k,y(x∗(k|t)), k ∈ I[0,Nd−1] and Y(Nd|t) =

Φz(x∗(Nd|t))+W(x∗(Nd|t)). The following steps are analogous to Theorem 4.12. Propo-
sition 4.49 implies that for any k1, k2 ∈ I[0,Nd]

, k2 ≥ k1:

Y(k2|t)−Y(k1|t) ≤ −εo

k2−1

∑
j=k1

σ(j|t). (4.70)

There exists a point kx ∈ I[0,N0] with N0 :=
⌈

γY − (γ̃s + γo)

εo

⌉
such that Y(kx|t) ≤

(γ̃s + γo)min{ε, σ(0|t)}. Inequality (4.70) with k1 = kx and k2 = Nd implies that there
exists a k′ ∈ I[kx,Nd−1] such that

σ(k′|t) ≤ Y(kx|t)−Y(Nd|t)
εo(Nd − kx)

≤ (γ̃s + γo)min{σ(0|t), ε}
εo(Nd − N0)

.

Define Md := Nd − N0. For Md > M1 := (γ̃s + γo)/εo, we have k′ 6= 0 and σ(k′|t) ≤ ε.
Analogous to the derivation of Inequality (4.20), we can use Proposition 4.45 to arrive at

ṼN,y(x(t + 1)) + `y,d(x(t), u(t)) ≤ ṼN,y(x(t)) +
γ̃s(γ̃s + γo)

εoMd
σ(x(t)).

Combining this inequality with Inequality (4.66b), we have

YN,y(x(t + 1))−YN,y(x(t)) ≤ −αMεo · σ(x(t)), αM := 1− γ̃s(γ̃s + γo)

εoMd
, (4.71)

with αM ∈ (0, 1] for M > M2 := γ̃s(γ̃s + γo)/ε2
o. All the arguments hold with N >
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NY := N0 + d + 1 + M with M := max{M1, M2} and x(t) ∈ XY holds recursively for all
t ∈ R≥0.
Part III: Define the point-to-set distance ‖x‖A := infs∈A ‖x − s‖. In the following,
we show that there exists a constant cπ > 0 such that cπσ(x) ≤ ‖x‖2

A ≤ σ(x), which
in combination with Inequalities (4.69) and (4.71) ensures exponential stability of A
using standard Lyapunov arguments. For given (xp, w) ∈ X, denote some minimizer
by w̃ := arg minw̃∈W ‖(πx(w̃), w̃)− (xp, w)‖. Given the assumed Lipschitz continuity of
πx with some Lipschitz constant Lπ ≥ 0, we have

σ(x) =‖xp − πx(w)‖2

≤2(‖xp − πx(w̃)‖2 + ‖πx(w̃)− πx(w)‖2)

≤2 max{L2
π, 1}‖(xp, w)− (πx(w̃), w̃)‖2 =: 1/cπ‖x‖2

A,

where the first inequality uses ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any a, b ∈ Rnp . Further-
more,

‖x‖A =‖(πx(w̃), w̃)− (xp, w)‖≤‖xp − πx(w)‖ =
√

σ(x),

which finishes the proof. �

Discussion

This result implies that the proposed output regulation MPC scheme (Problem 4.41)
solves the nonlinear constrained regulation problem if:

(a) The regulator problem is (strictly) feasible (Ass. 4.39),

(b) The plant is incrementally stabilizable (Def. 4.44) and minimum-phase (Ass. 4.46–
4.48),

(c) A sufficiently large prediction horizon N > NY is used.

Condition (a) ensures that the output regulation is well posed, Condition (b) restricts
the applicability to certain system classes and Condition (c) can always be ensured at
the expense of additional computational complexity. We emphasize that in order to
apply the proposed MPC scheme, we do not need to solve the regulator equations (4.56).
This is only possible, since we do not use a positive definite stage cost ` or terminal
ingredients, both of which would drastically simplify the theoretical analysis but would
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necessitate knowledge of πx(w). Thus, compared to classical solutions (cf. [53, 144, 222])
the proposed MPC scheme has the following advantages:

• Explicit solution to the regulator equations (4.56) is not required,

• No explicit stabilizing controller κ is needed for the implementation,

• The MPC scheme enjoys a larger region of attraction.

Compared to the MPC schemes in [89], Section 3.2, and [164, 176], we do not pose any
periodicity conditions on w or restrict ourselves to constant values w. The restriction
to minimum-phase systems will be relaxed in Section 4.2.3 using an incremental input
regularization.

Remark 4.51. (Instability for non-minimum-phase systems) The output regulation MPC based
on Problem 4.41 is in general not stabilizing for non-minimum-phase systems. Consider
the following academic linear system x+ = 0.5x + u, y = x − u with no constraints, i.e.,
Z = X ×U = R2. This system is stable and has a direct feed through. The solution
of Problem 4.41 with the output stage cost `y = y2 = (x − u)2 satisfies u∗(0|t) = x(t),
x(t + 1) = 1.5x(t), y(t) = 0 and VN,y(x(t)) = 0 for any horizon N ∈ I≥1 and all t ∈ I≥0.
Thus, the MPC scheme minimizes the output ‖y‖, but the resulting state and input trajectory is
unstable. This problem is inherently related to the singular cost `y and the existence of unstable
zero dynamics. A similar phenomenon appears in high-gain controllers which force the output
y to zero in a short time and thus often fail to stabilize systems with unstable zero dynamics
(non-minimum-phase), compare [73, Sec. 3.4]. If the system has an arbitrarily small (non-zero)
initial condition x0 and is subject to compact input constraints u(t) ∈ U, the closed-loop output
satisfies y(t) = 0, t ∈ I[0,K] with some finite constant K. Then, once the state is sufficiently large,
the input u = x does not satisfy the input constraint and thus the output y becomes non-zero.
This demonstrates that for general non-minimum-phase systems, an input regularization as used
in Section 4.1 is vital. Thus, in the next section an incremental input regularization will be used
to ensure stability for non-minimum-phase systems.

Remark 4.52. (MIMO systems) The results in this section can be naturally extended to square
(m = p) MIMO systems with `y(x) := ‖y‖2

Q := ∑
p
i=1 y2

i qi, qi > 0, albeit with a more involved
notation. In this case the BINF (4.63) (cf. Ass. 4.46) contains integrator states zi,k, i ∈ I[1,p],
k ∈ I[1,di+1] and nonlinear maps Fi,di+1 for each output component yi, with different relative
degrees di ∈ I≥0. Assumptions 4.47–4.48 remain unchanged with Fd := (Fi,di+1, . . . , Fp,dp+1).
Proposition 4.49 remains true with the look-ahead stage cost `y,d(x(t), u(t)) = `y(x(t)) +

∑
p
i=1 qiy2

i (t + di + 1). In Theorem 4.50, we consider JN−d−1,y with d = maxi di and obtain the
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different non-negative “terminal cost” ‖Φz(x(N− d− 1|t))‖2
Qd

+ ∑
p
i=1 ∑N−1

k=N−(d−di)
qiy2

i (k|t)

with Qd = diag(qi) ∈ R∑
p
i=1(1+di)×∑

p
i=1(1+di). The remainder of the proof remains unchanged.

Remark 4.53. (Classical design) The application of the proposed output regulation MPC with the
stage cost `y does not require the solution to the regulator equations πx, πu, the transformation
of the system to the BINF, knowledge of the relative degree d, or even a stabilizing controller
κ. The analysis uses the fact that the nonlinear functions Φz, πx, πu, Vη, . . . exist, but the
exact formulas for these terms are not required for the actual implementation. This fact and
the constraint handling capabilities of the MPC are the main benefits of the proposed MPC
framework, compare also the discussion in Remark 4.40.

We point out that the zero dynamics are also vital in the classical output regulation lit-
erature [143] and while there exist results for non-minimum-phase systems, “most methods
[. . . ] only address systems in normal form with a (globally) stable zero dynamics” [228]. In
Section 4.2.3, we will provide a slightly modified MPC design using an incremental input
regularization that also ensures stability in the presence of unstable zero dynamics.

Remark 4.54. (Implicit terminal cost - extremely short prediction horizons) The analysis contains
a terminal cost Jd+1,y(x(N|t)), which is locally equivalent to the value function VN,y with
the unique optimal input u = α(x) (cf. Ass- 4.46–4.47). Thus, in the absence of constraints,
a horizon N > d + 1 is sufficient to ensure stability for such minimum-phase systems, which
can be significantly less conservative than the usual bounds obtained in MPC without terminal
constraints [123, 237, 267], compare also the bounds in Section 4.1.5. We conjecture similar
(short horizon) guarantees can be derived in the presence of state and input constraints, which
is subject of current research. Due to this property we also conjecture that the incremental
stabilizability condition (Def. 4.44) can be replaced by an additional continuity bound of the
feedback α in Assumption 4.47. However, Definition 4.44 allows us to treat the output regulation
MPC for minimum-phase systems similarly to the trajectory tracking MPC (Sec. 4.1) and the
output regulation MPC for non-minimum-phase systems (Sec. 4.2.3).

Remark 4.55. (Detectability conditions do not hold with `y) Although Theorem 4.50 ensures
stability and utilizes a proof similar to Theorem 4.12, this is only possible by utilizing the look-
ahead stage cost `y,d in the analysis. The detectability condition (cf. Ass. 4.10, Inequalities (4.66))
is in general not valid with the output stage cost `y. Consider the trivial SISO FIR filter
y(t) = u(t− 2), with x(t) = (u(t− 1), u(t− 2)), σ(x) = ‖x‖2, which clearly satisfies the
conditions in Theorem 4.50. Inequality (4.66b) for x = (0, 0) implies that W((u, 0)) = 0 for
all u ∈ R. Now consider x = (x0, 0) with x0 6= 0 and u ∈ R: Inequality (4.66b) implies
W((u, x0)) ≤ W((x0, 0))− εox2

0 + 0 < 0, which contradicts the assumption that W is non-
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negative. Thus, this system does not satisfy Assumption 4.10/Inequalities (4.66) with the output
stage cost `y.

Remark 4.56. (Input affine system) In the special case of input affine systems f (x, u) = f0(x) +

g0(x)u, we have α(x) = − f d+2
0 (x)

f d+1
0 ◦g0(x)

, where we abbreviate f k+1
0 (x) := f k

0 ◦ f0, k ∈ I[0,d+1].

Thus, the well-defined relative degree (Ass. 4.47) reduces to f0 Lipschitz continuous and f d+1
0 ◦ g0

non-singular with a uniform lower and upper bound on | f d+1
0 (x) ◦ g0(x)| for all x ∈ X.

Remark 4.57. (Flat systems and observability) In the special case that y is a flat output we
have no zero dynamics, i.e., np = d + 1 in Assumption 4.46. Thus, the system (4.63) reduces
to an FIR filter with the input Fd+1. Hence, similar to Propositions 4.27 and 4.49, one can
show that the look-ahead stage cost `y,d satisfies the stronger observability condition (Ass. 4.13)
with co = 1, ν = d + 1 = np (cf. Rk. 4.28). Correspondingly, less conservative bounds on the
prediction horizon NY can be derived following the arguments in Proposition 4.14. We point out
that for continuous-time flat systems, the integral of the stage cost `y is positive definite, which
in turn simplifies the closed-loop analysis (cf. [95]).

4.2.3 Output regulation MPC for non-minimum-phase systems

The theoretical analysis in Section 4.2.2 is only applicable to minimum-phase systems
and, as demonstrated with a simple example in Remark 4.51, the lack of input regular-
ization can lead to instability for non-minimum-phase systems. The trajectory tracking
MPC formulation in Section 4.1 avoids these problems by using an input regularization,
which would require knowledge of the optimal feedforward input πu(w) for the consid-
ered output regulation problem. In the following, we show how these restrictions can
be relaxed for periodic exogenous signals by using an incremental input regularization.

Incremental input formulation for periodic exogenous signals

The main idea is to reformulate the problem such that the optimal feedforward input
vanishes by using an incremental input regularization in the MPC formulation. To allow
for this reformulation, we focus on periodic exogenous signals.

Assumption 4.58. (Periodic exogenous signals) There exists a known period length T ∈ I≥1

such that w(t + T) = w(t) for all t ∈ I≥0 with w evolving according to (4.54b).

In the classical output regulation literature (cf. [48, 53, 144, 222]), the exosystem is
assumed to be neutrally/Poisson stable, which in the linear case reduces to constant or

177



Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

harmonic/periodic exogenous signals w and hence Assumption 4.58 holds with T being
the least common multiple of the different period lengths.

Define a memory state for the past applied inputs as ξ(t) := (u(t− 1), . . . , u(t− T)) ∈
UT with some initial condition ξ(0) = ξ0 ∈ UT. Define the change in the periodicity of
the control input as ∆u(t) := u(t)− u(t− T). We consider the following stage cost

`y,∆(x, u, ∆u) := ‖h(x, w, u)‖2
Q + ‖∆u‖2

R, (4.72)

with positive definite matrices Q ∈ Rp×p, R ∈ Rm×m. Compared to the output stage
cost in Equation (4.57) this cost contains an additional incremental input regularization.

At each time t ∈ I≥0, given the current state x(t) = (xp(t), w(t)) and the past control
inputs ξ(t), the output regulation MPC control law is determined based on the following
optimization problem:

Problem 4.59.

minimize
u(·|t)

JN,y,∆(x(·|t), u(·|t), ∆u(·|t)) (4.73a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (4.73b)

∆u(k|t) = u(k|t)− u(t + k− T), k ∈ I[0,max{N,T}−1], (4.73c)

∆u(k|t) = u(k|t)− u(k− T|t), k ∈ I[T,N−1], (4.73d)

x(0|t) = x(t), (4.73e)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1], (4.73f)

where

JN,y,∆(x(·|t), u(·|t), ∆u(·|t)) :=
N−1

∑
k=0

`y,∆(x(k|t), u(k|t), ∆u(k|t)). (4.73g)

The solution to this optimization problem is an optimal input trajectory u∗(·|t), the
corresponding state and incremental input trajectory x∗(·|t), ∆u∗(·|t), and the value
function VN,y,∆(x(t), ξ(t)) := JN,y,∆(x∗(·|t), u∗(·|t), ∆u∗(·|t)). To simplify the theoretical
exposition, we define VN,y,∆(x(t), ξ(t)) = ∞ in case Problem 4.41 does not admit a
feasible solution. The following algorithm summarizes the closed-loop operation.
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Algorithm 4.60. (Output regulation MPC Algorithm for non-minimum-phase systems)
Offline: Specify the constraint set Z, the weighting matrices Q, R, the prediction horizon N, and
the period length T.
Online: At each time step t ∈ I≥0, measure the current state x(t) = (xp(t), w(t)) and the past
control inputs ξ(t), solve Problem 4.59, and apply the control input u(t) := u∗(0|t).

The resulting closed-loop system is given by

x(t + 1) = f (x(t), u(t)) = x∗(1|t), u(t) = u∗(0|t), t ∈ I≥0. (4.74)

The difference to Problem 4.41 in Section 4.2.2 is the usage of an incremental input
regularization ‖∆u‖2

R that penalizes nonperiodic input signals u. Although the optimal
feedforward solution (πx(w), πu(w)) is unknown, we know that w and hence πu(w) is
T-periodic (Ass. 4.58). Thus, intuitively speaking, we know that the optimal solution
should drive (y, ∆u) to the origin using the considered stage cost `y,∆. We point out
that a stage cost penalizing nonperiodic trajectories has also been recently considered
in [133] for periodic optimal control.

Note that the computational complexity of Problem 4.59 is almost equivalent to
Problem 4.41. In particular, the computational complexity of Problem 4.41 only depends
on the prediction horizon N and not on the period length T, and the prediction horizon
N is not necessarily larger than T. Hence, in contrast to the approaches in Sections 3.2–
3.3, the MPC formulation does not scale with the period length T and large values of T
are not a problem.

Theoretical analysis

The basic idea of the following theoretical analysis is that for the augmented plant state
xp,a = (xp, ξ) ∈ Xp ×U =: Xp,a and the augmented state xa := (xp,a, w) ∈ Xp,a ×W =:
Xa we can treat ∆u as a control input and thus the stage cost (4.72) is similar to the
input-output stage cost (4.30) in Section 4.1. Hence, by showing stabilizability and
detecability conditions similar to Assumptions 4.9–4.10 for the augmented system we
can use the arguments in Theorem 4.12 to conclude stability of the regulator manifold.
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Augmented system

Define the block cyclic permutation matrix E0 ∈ RmT×mT and the selection matrices E1,
E2 ∈ RmT×m as

E0 :=

(
0m×(T−1)m Im

I(T−1)m 0(T−1)m×m

)
, E1 :=

(
Im

0(T−1)m×m

)
, E2 :=

(
0(T−1)m×m

Im

)
.

The dynamics of the memory state ξ and the control input u can be compactly expressed
as

u(t) =E>2 ξ(t) + ∆u(t), (4.75a)

ξ(t + 1) =E0ξ(t) + E1∆u(t) = (E0 − E1E>2 )ξ(t) + E1u(t). (4.75b)

The matrix E0 satisfies ∏T−1
k=0 E0 = ET

0 = ImT, the eigenvalues of E0 are λk = e2πik/T,
k ∈ I[0,T−1], all with a geometric and algebraic multiplicity of m (due to the block
structure) and the eigenvalues of E0 − E1E>2 are λk = 0, k ∈ I[0,mT−1]. We note that
E>1 E0 = E>2 .

Feasibility of the regulator equations (Ass. 4.39) allows us to naturally construct an
augmented regulator manifold Aa := {xa = (xp,a, w) ∈ Xa | xp,a = πx,a(w)} with
πx,a := (πx, πu ◦ sT−1, . . . , πu) : W → Xp,a, πu,a(w) := 0. The corresponding state
measure for the augmented system is given by

σa(xa) := ‖(xp, ξ)− πx,a(w)‖2 ≥ ‖xp − πx(w)‖2,

which satisfies σa(xa(t)) = 0 if and only if (xp(t), ξ(t)) = (πx(w(t)), πu(w(t− 1)), . . . , πu(w(t−
T))) using periodicity (Ass. 4.58). The main benefit of analysing the augmented sys-
tem is the fact that πu,a(w) = 0, which allows for the implementation of the input
regularization.

Stabilizability

The following proposition shows cost controllability similar to Proposition 4.45.

Proposition 4.61. Let Assumptions 4.39 and 4.58 hold. Suppose the plant is locally incremen-
tally uniformly exponentially stabilizable on the set Z (Def. 4.44) and that h is Lipschitz continu-
ous. Then, there exist constants γs,a, ε > 0 such that for all N ∈ I≥1 and all xa ∈ Xa satisfying
σa(xa) ≤ ε, Problem 4.59 is feasible and the value function satisfies VN,y,∆(xa) ≤ γs,aσ(xa).
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4.2 Output regulation MPC

Proof. The set of feasible input sequences u(·|t) ∈ UN for Problem 4.41 and Problem 4.59

are equivalent. Hence, for σa(xa) ≤ ε, with ε ∈ (0, ε0] from Proposition 4.45 the
input sequence from Proposition 4.45 is a feasible solution to Problem 4.59. Denote
u(k− T|t) = u(t + k− T), w(k− T|t) = w(k|t) for k ∈ I[0,T−1]. The corresponding input
sequence satisfies the following bound

‖∆u(k|t)‖2
R = ‖u(k|t)− u(k− T|t)‖2

R
Ass. 4.58

= ‖u(k|t)− πu(w(k|t)) + πu(w(k− T|t))− u(k− T|t)‖2
R

≤2‖u(k|t)− πu(w(k|t))‖2
R + 2‖πu(w(k− T|t))− u(k− T|t)‖2

R, k ∈ I[0,N−1].

Furthermore, analogous to Proposition 4.45 we have

‖u(k|t)− πu(w(k|t))‖2
R ≤ c2

1c2
2ρ2kλmax(R)‖xp(t)− πx(w(t))‖2, k ∈ I[0,N−1], (4.76)

with c1, c2 > 0, ρ ∈ [0, 1) from Definition 4.44. In addition, the definition of the
augmented state measure σa directly implies

T−1

∑
k=0
‖u(k− T|t)− πu(w(k− T|t))‖2

R ≤ λmax(R)σa(xa(t)). (4.77)

Combining these bounds, we get

N−1

∑
k=0
‖∆u(k|t)‖2

R

≤
N−1

∑
k=0

2‖u(k|t)− πu(w(k|t))‖2
R + 2‖u(k− T|t)− πu(w(k− T|t))‖2

R

≤
N−1

∑
k=0

4‖u(k|t)− πu(w(k|t))‖2
R + 2

T−1

∑
k=0
‖u(k− T|t)− πu(w(k− T|t))‖2

R

(4.76),(4.77)
≤

N−1

∑
k=0

4c2
1c2

2ρ2kλmax(R)‖xp(t)− πx(w(t))‖2 + 2λmax(R)σa(xa(t))

≤
(

4c2
1c2

2
1− ρ2 + 2

)
λmax(R)︸ ︷︷ ︸

=:γs,u

σa(xa(t)).

The desired bound follows by combining this bound on the input regularization with
the bound on the output stage cost in Proposition 4.45 with γs,a := γs + γs,u. �
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Memory states
ξ+ = E0ξ + E1∆u

u = E>2 ξ + ∆u

Plant
x+p = fp(xp, w, u)
y = h(xp, w, u)

Exosystem
w+ = s(w)

u

w

∆u y

Figure 4.1. Illustration of the augmented system as a series connection of two detectable
systems.

An alternative proof based on a joint incremental Lyapunov function can be found
in [JK19, Prop. 5].

Detectability and the nonresonance condition

In order to use the stability analysis in Theorem 4.12, we require a cost detectability
condition similar to Assumption 4.10. Analogous to Proposition 4.25, the detectability
condition holds if the augmented plant is i-IOSS (cf. Assumption 4.24). The augmented
plant xp,a is a series connection of the two detectable systems: xp and ξ with the overall
input ∆u and overall output y = h, obtained by connecting the input/output u, compare
Figure 4.1.

In order to prove detectability of a series connection both systems need to be detectable
and an additional nonresonance condition is required.

Assumption 4.62. (exponential i-IOSS plant) There exists an i-IOSS Lyapunov function
W : Xp ×Xp ×W → R≥0 and constants co, co, co,1, co,2 > 0, ρo ∈ [0, 1) such that for all
(xp, w, u) ∈ Z, (zp, w, v) ∈ Z:

co‖xp − zp‖2 ≤ Vo(xp, zp, w) ≤ co‖xp − zp‖2, (4.78a)

Vo( fp(xp, w, u), fp(zp, w, v), s(w))− ρoVo(xp, zp, w)

≤co,1‖u− v‖2 + co,2‖h(xp, w, u)− h(zp, w, v)‖2. (4.78b)

Abbreviate the augmented plant dynamics by fp,a(xp,a, w, u) := ( fp(xp, w), (E0 −
E1E>2 )ξ + E1u).

Assumption 4.63. (Nonresonance condition) There exists an incremental storage function
VR : Xp,a ×Xp,a ×W → R≥0 and constants cR,u, cR > 0 such that for all (xp, w, u) ∈ Z,
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(zp, w, v) ∈ Z, ξ ∈ UT, Ξ ∈ UT:

VR(xp,a, zp,a, w) ≤ cR,u‖xp,a − zp,a‖2, (4.79a)

VR( fp,a(xp,a, w, u), fp,a(zp,a, w, v), s(w))−VR(xp,a, zp,a, w) (4.79b)

≤cR

(
‖∆u− ∆v‖2 + ‖h(xp, w, u)− h(zp, w, v)‖2

)
− ‖u− v‖2,

with xp,a = (xp, ξ), zp,a = (zp, Ξ), ∆u = u− E>2 ξ, and ∆v = v− E>2 Ξ.

Given that condition (4.79) corresponds to an incremental dissipativity condition, it
can be verified using the results in [270] based on differential dissipativity. Loosely
speaking, conditions (4.79) imply that if two systems have a similar initial condition,
produce a similar output and are driven by a similar incremental input ∆u, ∆v, then
the input u, v applied to the plant has to be similar. In particular, if both systems are
driven by a periodic input u, v and generate the same output trajectory y, then the
two periodic input trajectories u, v must be equivalent. Thus, this condition excludes
the possibility of two distinct periodic inputs u, v resulting in the same output y.
This condition seems to be a relaxed version of input detectability/observability, as for
∆u = ∆v = 0 (periodic inputs) it essentially requires that y ≡ 0 implies u ≡ 0 (assuming
zero initial conditions), similar to [137, Def. 3]. In the linear case, this is equivalent to
assuming that the poles generating a T-periodic input signal u with Equations (4.75)
(assuming ∆u = 0) are not cancelled by zeros of the plant, which corresponds to the
well established nonresonance condition, compare Section 4.4 for a detailed proof. We
point out that in [185] a different nonlinear extension of the nonresonance condition has
been proposed, which is characterized using a rank condition on the lie derivatives as
opposed to the proposed dissipativity characterization. Although both characterizations
correspond to the classical nonresonance condition in the linear case, the considered
formulation using dissipation inequalities with a storage function allows us to directly
construct an i-IOSS Lyapunov function to establish detectability of the augmented plant,
as shown in the following proposition. Define the augmented stage cost `a(xa, u) :=
‖h(x, u, w)‖2

Q + ‖u− E>2 ξ‖2
R, which satifies `a(xa(t), u(t)) = ‖y(t)‖2

Q + ‖∆u(t)‖2
R and is

thus equivalent to `y,∆ from Equation (4.72). Abbreviate the augmented state dynamics
by fa : Xa ×U→ Xa with fa(xp,a, w, u) := ( fp,a(xp,a, w, u), s(w)) and the constraint set
of the augmented state by Za := {(xp, ξ, w, u) ∈ Xa ×U | (xp, w, u) ∈ Z}.

Proposition 4.64. Let Assumptions 4.39, 4.58, 4.62 and 4.63 hold. Then, there exists a function
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Wa : Xa → R≥0 and constants γa,o, εa,o > 0 such that

Wa(xa) ≤γa,oσa(xa), (4.80a)

Wa( fa(xa, u))−Wa(xa) ≤− εa,oσa(xa) + `a(xa, u), (4.80b)

for any (xa, u) ∈ Za ⊆ Xa ×U.

Proof. Consider the feasible trajectory zp,a = (zp, Ξ) = πx,a(w), ∆v = πu,a(w) = 0,
v = E>2 Ξ, z+p,a = (z+p , Ξ+) = πx,a(w+), w+ = s(w) (cf. Assumption 4.39). First note that
the linear dynamics of ξ with the input ∆u and the output u = E>2 ξ + ∆u are observable.
Thus, there exists a quadratic i-IOSS Lyapunov function Vξ(ξ, Ξ) = ‖ξ − Ξ‖2

Pξ,o
with a

positive definite matrix Pξ (cf. [50]) satisfying

Vξ(ξ
+, Ξ+) ≤ ρξVξ(ξ, Ξ) + ‖∆u− ∆v‖2 + ‖u− v‖2, (4.81)

with ρξ ∈ [0, 1) and ξ+ = E0ξ + E1∆u, ∆u = u− E>2 ξ. Consider the storage function

Wa(xp,a, w) := c3
(
Vo(xp, zp, w) + Vξ(ξ, Ξ) + c2VR(xp,a, zp,a, w)

)
,

with c2 := co,1 + 1, Vo, VR from Assumptions 4.62 and 4.63, and a later specified constant
c3 > 0. The upper bound (4.80a) holds with γa,o := c3(max{co, λmax(Pξ,o)}+ c2cR,u).
Inequality (4.80b) holds with

(Wa( fa(xa, u))−Wa(xa))/c3

(4.78b),(4.79b),(4.81)
≤ − (1− ρo)Vo(xp, zp, w) + co,1‖u− v‖2 + co,2‖h(xp, w, u)− h(zp, v, w)‖2

− (1− ρξ)Vξ(ξ, Ξ) + ‖∆u− ∆v‖2 + ‖u− v‖2

+ c2

(
cR‖∆u− ∆v‖2 + cR‖h(xp, w, u)− h(zp, v, w)‖2 − ‖u− v‖2

)
=− (1− ρo)Vo(xp, zp, w)− (1− ρξ)Vξ(ξ, Ξ) + (1 + c2cR)‖∆u− ∆v‖2

+ (co,1 + 1− c2)︸ ︷︷ ︸
=0

‖u− v‖2 + (co,2 + c2cR)‖h(xp, w, u)− h(zp, v, w)︸ ︷︷ ︸
(4.56b)
= 0

‖2

(4.78a)
≤ − (1− ρo)co‖xp − zp‖2 − (1− ρξ)λmin(Pξ)‖ξ − Ξ‖2

+
(1 + c2cR)

λmin(R)
‖∆u− ∆v‖2

R +
co,2 + c2cR

λmin(Q)
‖h(xp, w, u)‖2

Q

≤− εa/c3 · σa(xa) + `a(xa, u)/c3,
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with c3 := min
{

λmin(R)
1 + c2cR

,
λmin(Q)

co,2 + c2cR

}
> 0, σa(xa) = ‖xp,a − zp,a‖2 = ‖xp − zp‖2 +

‖ξ − Ξ‖2, εa := min{(1− ρo)co, (1− ρξ)λmin(Pξ,o)} · c3 > 0. �

Final result

With Propositions 4.61 and 4.64 and Theorem 4.12, we can summarize the theoreti-
cal properties of the incremental input regularized output regulation MPC scheme
(Problem 4.59).

Theorem 4.65. Let Assumptions 4.39, 4.58, 4.62 and 4.63 hold. Suppose further that the
plant is locally incrementally uniformly exponentially stabilizable on the set Z (Def. 4.44) and
that πx, πu, s, and h are Lipschitz continuous. Then, for any Y > 0, there exists a constant
NY > 0 such that for all N > NY and any initial condition (x0, ξ0) =: xa,0 ∈ XY,a := {xa ∈
Xa | VN,y,∆(xa) + Wa(xa) ≤ Y}, the closed loop system (4.74) resulting from Algorithm 4.60
satisfies the constraints (4.55), Problem 4.59 is feasible for all t ∈ I≥0, and the (augmented)
regulator manifold Aa is exponentially stable.

Proof. Propositions 4.61 and 4.64 derive inequalities on the value function VN,y,∆, the
storage Wa and the state measure σa, which are equivalent to the conditions in As-
sumptions 4.9 and 4.10. Thus, we can directly use the arguments in Theorem 4.12

with the Lyapunov function YN,a := VN,y,∆ + Wa, resulting in inequalities analogous to
Inequalities (4.69), (4.71) in Theorem 4.50. Exponential stability of the regulator manifold
follows from πx,a Lipschitz continuous (cf. proof Thm. 4.50, Part III). �

Discussion

This result implies that the output regulation MPC scheme (Problem 4.59) solves the
nonlinear constrained regulation problem if:

(a) The regulator problem is (strictly) feasible (Ass. 4.56),

(b) The plant is incrementally stabilizable (Def. 4.44) and detectable (Ass. 4.62),

(c) The exogenous signal is periodic (Ass. 4.58) and a technical nonresonance condition
holds (Ass. 4.63),

(d) A sufficiently large prediction horizon N > NY is used.
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Compared to Section 4.2.3, the possibly restrictive minimum-phase property is relaxed
to a detectability condition. However, we require periodicity of the exogenous signal
w with a known period length T and a technical nonresonance condition. Overall, the
rigorous theoretical guarantees in combination with the fact that no complex design
procedure is required for the implementation makes the proposed output regulation
MPC framework suitable for practical application.

Remark 4.66. (Existing MPC solutions for periodic problems) For the special case of periodic
signals w, there also exist competing approaches to solve the regulator problem. Given w0 and the
period length T, the T-periodic trajectory (πx(w(t)), πu(w(t))), t ∈ I[0,T−1] can be obtained
by solving one (potentially large) nonlinear program (NLP), as suggested in [89]. Then, the
output regulation problem reduces to the problem of stabilizing a given state and input trajectory,
for which MPC approaches with and without terminal ingredients exist, compare Sections 3.1
and 4.1, respectively. If we consider online changing operating conditions or the error feedback
setting (Rk. 4.43), the estimates for w may change online and thus the large scale NLP would
have to be solved repeatedly during online operation. The problem of recomputing a periodic
reference trajectory online can be integrated in the MPC formulation using artificial reference
trajectories, compare Section 3.2.

The main advantage of the proposed MPC approach is its simplicity. No offline design for the
terminal ingredients is required. No periodic trajectory (πx(w(t)), πu(w(t))), t ∈ I≥0 needs to
be computed offline/online. The overall algorithm, design, and online optimization problem is
simple. One of the main drawbacks is that, depending on system dynamics, a large prediction
horizon N may be required resulting in a potentially larger computational complexity compared
to direct trajectory stabilization with given maps πx, πu satisfying the regulator equations (4.56)
(cf. Sec. 3.1/4.1). The advantages of avoiding offline computations are especially relevant if the
MPC formulation is combined with some model/parameter update scheme to address system
uncertainty (cf. adaptive MPC formulations in [45, 82, JK11, JK13, 219, JK37]).

Remark 4.67. (Offset-free setpoint tracking - incremental input penalty) The problem of offset-
free setpoint tracking is a special case of the output regulation problem with s(w) = w and
T = 1. In this case, ∆u penalizes the change in the control input u, which is quite common in
the MPC literature, especially in case of offset-free setpoint tracking, compare [36, 176, 213]
and [174, Cor. 4]. Thus, the proposed formulation is rather intuitive and similar to existing
standard approaches for setpoint tracking MPC. For comparison, in [176] a linear dynamic
controller is used to characterize the terminal cost and set and in [164] artificial setpoints are
used to track changing setpoints. The issue of estimating the disturbances has been treated
in [201, 213] for linear and nonlinear systems with disturbance observers and can also be treated
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in the proposed framework, compare Remark 4.43. Compared to many of the existing approaches,
the lack of any complex offline design is one of the main benefits of the proposed MPC framework,
as it requires no terminal ingredients, artificial setpoints, or a solution to the regulator equations.

Remark 4.68. (Nonresonance condition = tracking condition) In the case of nonlinear setpoint
tracking MPC, it is often assumed that there exists a unique (Lipschitz continuous) map from
any output y to a corresponding steady-state and input (xp, u), compare [164, Ass. 1] or [176,
Ass. 1]. Given fp, h continuously differentiable, this condition is equivalent to a rank condition
on the Jacobian (cf. [164, Rk. 1], [236, Lemma 1.8]), which is equivalent to the nonresonance
condition for constant exogenous signals, compare [185]. We point out that the rank-based and
dissipation-based nonresonance characterizations are equivalent in the linear case (cf. Prop. 4.86
in Sec. 4.4). Thus, the tracking condition [164, Ass. 1] is strongly related (if not equivalent) to
the dissipation-based characterization in Assumption 4.63 for T = 1. Furthermore, a similar
characterization to [164, Ass. 1] can be used for periodic trajectories (cf. Ass. 3.29 in Sec. 3.2),
which seems to be an alternative characterization for the property in Assumption 4.63.

Summary

In this section, we studied the closed-loop properties of a simple tracking MPC scheme
without terminal ingredients for the output regulation problem. In particular, the
proposed output regulation MPC simply minimizes a quadratic output stage cost and
does not require any complex offline design procedures (e.g., solving the regulator/FBI
equations). We proved that this simple design ensures exponential stability of the regu-
lator manifold for a sufficiently long prediction horizon N, if the plant is minimum-phase
(stable zero dynamics) and incrementally exponentially stabilizable. We also provided
a modified MPC formulation that uses an incremental input regularization, assuming
that the exogenous signals are periodic. For this modified MPC formulation, we could
relax the minimum-phase assumption to a detectability condition (i-IOSS) in combination
with a technical nonresonance assumption. Overall, the proposed output regulation
MPC formulations are particularly appealing since no complex design procedures are
required and the closed loop converges to the (in general unknown) regulator manifold.
In the next section, we study the more general case when the underlying tracking
problem is not feasible (Ass. 4.15/4.39 does not hold) by considering unreachable reference
trajectories.
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4.3 Unreachable reference trajectories

In Sections 4.1 and 4.2, we studied the closed-loop properties of simple tracking MPC
schemes without terminal ingredients, assuming that the underlying tracking problem
is feasible (Ass. 4.15/4.39 holds). In this section, we study the closed-loop properties
in case this assumption is not satisfied, i.e., if the reference trajectory is not reachable
(Sec. 4.3.1). In particular, we leverage tools used in economic MPC without terminal
constraints, such as dissipativity, to derive a region of attraction and guarantee (practical)
stability of the unknown optimal reachable trajectory (Sec. 4.3.2). This section is based
on and taken in parts literally from [JK24]11.

4.3.1 Unreachable reference trajectories in MPC

In the following, we generalize the trajectory tracking problem considered in Section 4.1
by allowing for unreachable reference trajectory (Ass. 4.15 does not hold) in the theo-
retical analysis. Thus, by considering an unreachable reference trajectories this section
mainly addresses the additional challenge when the optimal mode of operation is not directly
specified in terms of given state and input setpoints/trajectories (cf. Sec. 1.1, (iii)). The setup
and the MPC algorithm are equivalent to Section 4.1, only Assumption 4.15 is dropped
and thus a different theoretical analysis is required. We present these results only for
the trajectory tracking case (Sec. 4.1) to avoid a cumbersome notation, but they can be
naturally extended to the output regulation setting (Sec. 4.2), compare Remark 4.84.

Motivation

The motivation to consider unreachable reference trajectories in this chapter is equivalent
to the motivation in Section 3.2. In particular, the reference trajectory is often generated
by an external unit. Furthermore, even if the reference trajectory is generated based on
a model, often a different (typically coarser) model is used in the reference planning.
Thus, the considered reference trajectory often does not satisfy the dynamics and
hence we cannot guarantee stability of this reference trajectory. Since the provided
reference trajectory does not constitute a viable mode of operation, the optimal mode of
operation is unclear a priori. Thus, we investigate sufficient conditions to ensure that
the closed-loop “finds” the optimal mode of operation.

11J. Köhler, M. A. Müller, and F. Allgöwer. “Nonlinear reference tracking: An economic model predictive
control perspective.” In: IEEE Trans. Automat. Control 64.1 (2019), pp. 254–269©2018 IEEE.
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Related work

For unreachable reference trajectories, the trajectory tracking MPC (Problem 4.1) corre-
sponds to an economic MPC formulation (cf. [96]), since the (point-wise) minimizer of
the stage cost does in general not coincide with the optimal mode of operation. Similar is-
sues also appear in the case of steady-state operation (cf. [234]), although in this case it is
easier to determine the optimal steady-state and thus use terminal ingredients (Chap. 3).
We point out that Problem 4.1 and the optimal mode of operation are time-varying. In
case the system is optimally operated at a steady-state, the optimal mode of operation
can be equivalently characterized using dissipativity [19, 207], which implies the turnpike
property [70, 92, 98]. Based on these properties, closed-loop performance and (practical)
stability can be ensured if a sufficiently long prediction horizon is used [122, 132],
compare also modified economic MPC formulations in [8, 291] and the robust extension
in [JK35]. Extensions of this dissipativity characterization for more general optimal
modes of operation (periodic orbits, sets,. . .) and corresponding closed-loop properties
can be found in [81, JK25, 186, 203, 210, 295]. The following derivation extends the
analysis in [122, 132] to time-varying problems and relaxes the standard controllability
conditions by employing sublevel set arguments. More recently, in [128, 129, 130], for
general time-varying economic MPC problems, dissipativity, turnpike and closed-loop
performance/stability results have been derived.

Alternatively, the problem of unreachable setpoints/trajectories could also be tackled
using artificial reference trajectories (Sec. 3.2) or treating unpredictable changes in the
reference as a disturbance [77, 199].

4.3.2 Theoretical analysis

We consider the trajectory tracking MPC from Section 4.1 with a quadratic tracking
stage cost (Ass. 4.16). We first define the optimal mode of operation and introduce
suitable continuity and dissipativity conditions. Then, we establish suitable turnpike
properties in Lemmas 4.77 and 4.78. Finally, Theorems 4.79 and 4.80 show that the
closed loop practically tracks the optimal (unknown) mode of operation if a sufficiently
long prediction horizon N is used.

Strict dissipativity and rotated cost

In the following, the reference trajectory can be seen as an arbitrary bounded time-
varying signal, which is not necessarily related to the system dynamics. For the
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theoretical analysis, we limit ourselves to T−periodic reference trajectories, i.e., there
exists T ∈ I≥1: r(t + T) = r(t), ∀t ∈ I≥0, to avoid some technical challenges associated
with general time-varying problems. In view of the more recent results in [128, 129, 130]
for general time-varying problems, the following results can be extended to nonperiodic
trajectories.

Given the periodic reference trajectory r = (xr, ur), we can define the best reachable
T−periodic trajectory with the following periodic optimal control problem (analogous
to Problem 3.25/3.52).

Problem 4.69.

minimize
x(·),u(·)

JT(x(·), u(·), 0) (4.82a)

subject to

x(k + 1) = f (x(k), u(k)), (x(k), u(k)) ∈ Z, k ∈ I[0,T−1], x(T) = x(0), (4.82b)

with JT according to Equation (4.2e) and ` from Equation (4.30).

The solution to this optimization problem is the12 optimal reachable T-periodic
state and input trajectory xT(·) ∈ XT, uT(·) ∈ UT and the minimum is denoted by
VT,min := JT(xT(·), uT(·), 0). Contrary to existing results for optimal periodic operation
(cf. [166, 210, 295] or Sec. 3.2/3.3), the implementation of the considered MPC scheme
(Alg. 4.2) does not require knowledge of the period length T or the optimal reachable
trajectory xT. Instead, this is only used as an analysis tool. For the implementation of the
MPC algorithm we only require the next N steps of the reference trajectory r = (xr, ur).

Clearly, if the goal is to stay close to the reference trajectory (xr, ur), a desirable
property of the MPC would be to track the unknown reference xT. To establish such a
property, we require (strict) constraint satisfaction of xT, similar to Assumption 4.15.

Assumption 4.70. (Strict feasibility of the optimal reachable trajectory) The optimal reachable
trajectory from Problem 4.69 satisfies (xT(t), uT(t)) ∈ int(Z), t ∈ I≥0.

This condition is intuitively needed to ensure that the MPC can steer the system to the
optimal reachable trajectory xT, without imposing additional controllability conditions.
This requirement may limit the applicability of the following theory to scenarios, where

12Uniqueness of the minimizer will be ensured in the later derivation using a suitable dissipativity
condition.
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the original reference trajectory r is mainly not reachable due to the dynamics. We can
relax this requirement to allow for active input constraints, if the stabilizability condition
(Def. 4.18) is strengthened to stability (c2 = 0).

Denote the stage cost of the optimal reachable trajectory by `T(k) = `(xT(k), uT(k), k),
k ∈ I[0,T−1]. The stage cost difference `T(k) − `(x, u, k) can be positive or negative,
depending on (x, u, k) ∈ Z× I≥0. Moreover, even if the system is initialized at the
optimal T−periodic solution, i.e., x0 = xT(0), the solution of Problem 4.1 does in general
not follow this optimal trajectory due to the finite time horizon N. Thus, we consider
the notion of practical asymptotic stability.

Lemma 4.71. ( [132, Thm. 2.4], [126, Thm. 2.23])
Let V : Rn × I≥0 → R≥0 be a time-varying practical Lyapunov function, with

α1(‖e(t)‖) ≤ V(e(t), t) ≤α2(‖e(t)‖),
V(e(t + 1), t + 1)−V(e(t), t) ≤− α3(‖e(t)‖) + θ,

for all V(e(t), t) ≤ V, V > η := α2(α
−1
3 (θ)) + θ and α1, α2, α3 ∈ K∞, θ > 0. Then, for all

initial conditions V(e(0), 0) ≤ V, the origin e = 0 is uniformly practically asymptotically stable
and the system uniformly converges to the set {(e, t) ∈ Rn × I≥0|V(e, t) ≤ η}.

Denote the tracking error with respect to the optimal reachable trajectory by eT(t) :=
x(t)− xT(t). We study the reference tracking problem in the economic MPC framework
using strict dissipativity.

Assumption 4.72. (Strict dissipativity) There exists a bounded time-varying periodic storage
function λ : X× I≥0 → R, λ(x, k) = λ(x, k + T) such that for all (x, u, k) ∈ Z× I≥0, we
have

L(x, u, k) := `(x, u, k)− `T(k) + λ(x, k)− λ( f (x, u), k + 1) ≥ α`(‖x− xT(k)‖), (4.83)

with α` ∈ K∞. Furthermore, there exists a function γλ ∈ K∞ such that for all (x, k) ∈ X× I≥0,
the storage functions is bounded by

|λ(x, k)| ≤ γλ(‖x− xT(k)‖). (4.84)

Condition (4.83) corresponds to a strict dissipativity characterization with the supply
rate s(x, u, k) = `(x, u, k) − `T(k). This condition ensures that the rotated stage cost
L : Z × I≥0 → R≥0 is positive definite w.r.t. the optimal reachable trajectory xT.
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Inequality (4.84) is a (local) continuity assumption on the storage function λ, which, in
combination with ZX := {x ∈ X | ∃u ∈ U : (x, u) ∈ Z} compact ensures boundedness
of λ on ZX. In [210, 295], periodic optimal control for time-invariant problems is
considered and the corresponding rotated stage cost is positive definite with respect to a
periodic orbit instead of a specific point on the orbit, compare also [JK25] for a discussion
on the different notions of periodic dissipativity. In the considered trajectory tracking
problem the phase is uniquely specified by the time-varying stage cost `, compare
also [128, 129, 130] regarding dissipativity in time-varying (nonperiodic) economic MPC
problems.

For general nonlinear dynamical systems with an arbitrary dynamical reference
trajectory (xr, ur), computing suitable storage functions λ is a challenging task, compare,
e.g., [JK1, 225] for SOS approaches. For our purposes, it suffices to show the existence
of such storage functions, which is discussed in the following lemma.

Lemma 4.73. Let Assumption 4.70 hold. Assume that the system is locally (uniformly)
controllable around xT [260, Def. 3.6.4] and that the system is uniformly suboptimally operated
off the trajectory xT according to [211, Def. 12]13. Then, Assumption 4.72 is satisfied.

Proof. Part I: Proving existence of a bounded storage λ is an extension of the results
in [207], with the main difference in [207, Thm. 4] and [204, Thm. 4.12]. The local control-
lability assumption in combination with the definition of uniform suboptimal operation,
enables us to construct a periodic trajectory with lower cost to prove dissipativity by
contradiction. The rest of the proof does not change compared to the steady-state case
and guarantees that there exists a bounded storage λ on ZX. For x /∈ ZX we can define
λ(x) := c ∈ R with a sufficiently small constant c such that Inequality (4.83) holds (cf.
proof [JK25, Prop. 2]).
Part II: In order to show local continuity (4.84), we use the assumed local uniform con-
trollability in combination with continuity of the stage cost `, analogous to the continuity
result in [226]. In particular, w.l.o.g. suppose λ(xT(k), k) = 0 and define the supply
rate s̃(x, u, k) := `(x, u, k)− `T(k)− α`(‖x− xT(k)‖). Then, given an arbitrary point x(k)
with ‖eT(k)‖ sufficiently small, we can steer the system to xT(k + ν) in ν ∈ I≥1 steps
with a uniformly bounded supply s̃ by combining Assumption 4.70 with the assumed

13The original proof [204, Thm. 4.12] only showed dissipativity on the control invariant set X∞, but can
be extended to hold on ZX, by adjusting the definition of uniform suboptimal operation to account
for trajectories x /∈ X∞ (cf. [JK25, Sec. III.E]).
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uniform controllability. Using a telescopic sum for Inequality (4.83), this implies

λ(xT(k + ν), k + ν)︸ ︷︷ ︸
=0

−λ(x(k), k) ≤
k+ν−1

∑
j=k

s̃(x(j), u(j), j) ≤ αλ(‖eT(k)‖), αλ ∈ K∞,

which proves the local lower bound in Inequality (4.84). The local upper bound fol-
lows with the same reasoning by steering the system to some x, starting at xT(k).
Local validity of Condition (4.84) and boundedness of λ directly implies satisfaction of
Condition (4.84) for all x ∈ X. �

To study stability properties, we further define the rotated value function, which plays
the role of a positive definite Lyapunov function with respect to the optimal reachable
trajectory xT. The rotated open-loop cost J̃N : XN ×UN × I≥0 → R≥0 is defined by

J̃N(x(·|t), u(·|t), t) :=
N−1

∑
k=0

L(x(k|t), u(k|t), t + k)

(4.83)
= JN(x(·|t), u(·|t), t) + λ(x(t), t)− λ(x(N|t), t + N)−

N−1

∑
k=0

`T(t + k)︸ ︷︷ ︸
=:cN(t)

. (4.85)

The rotated MPC problem is given by the following optimization problem.

Problem 4.74.

minimize
u(·|t)

J̃N(x(·|t), u(·|t), t) (4.86a)

subject to

x(k + 1|t) = f (x(k|t), u(k|t)), k ∈ I[0,N−1], (4.86b)

x(0|t) = x(t), (4.86c)

(x(k|t), u(k|t)) ∈ Z, k ∈ I[0,N−1]. (4.86d)

The solution to this optimization problem is an optimal (rotated) input trajectory
ũ∗(·|t), the corresponding state trajectory x̃∗(·|t), and the rotated value function ṼN(x(t), t) :=
J̃N(x̃∗(·|t), ũ∗(·|t), t). To simplify the theoretical exposition regarding feasibility, we
define ṼN(x(t), t) = ∞, in case Problem 4.74 does not admit a feasible solution. Note
that unlike the case with terminal constraints [19, 295], this rotated cost does in general
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not have the same minimizer as the original cost (u∗ 6= ũ∗), which makes the stability
proof more involved, compare [122, 132, 210].

Stabilizability and turnpike property

In the following, we derive a turnpike property with respect to the optimal reference xT

based on local stabilizability and strict dissipativity. The following proposition bounds
the open-loop cost, by combing the ideas of Proposition 4.19 with the strict dissipativity
in Assumption 4.72.

Proposition 4.75. Let Assumptions 4.16, 4.70 and 4.72 hold. Suppose the system is locally
incrementally uniformly exponentially stabilizable on the set Z (Def. 4.18). Then, there exist
constants cT, γ, c̃ > 0 and a function αu ∈ K∞ such that for all N ∈ I≥1, for all (x(t), t) ∈
X× I≥0 satisfying ‖eT(t)‖ ≤ cT, the following bounds hold

VN(x(t), t) ≤ γ‖eT(t)‖2
Q + cN(t) + c̃‖eT(t)‖, (4.87a)

ṼN(x(t), t) ≤ αu(‖eT(t)‖). (4.87b)

Proof. Consider an input sequence u(·|t) ∈ UN stabilizing the optimal reachable trajec-
tory (xT, uT) (cf. Definition 4.18). Feasibility of this trajectory for Problems 4.1/4.74

follows from (xT(t), uT(t)) ∈ int(Z) and cT small enough, compare the proof of
Proposition 4.19. Denote the corresponding state trajectory by x(·|t) with eT(k|t) :=
x(k|t)− xT(t + k), k ∈ I[0,N−1]. Based on ` quadratic, Z compact, and the bounds in
Inequalities (4.31), the corresponding stage cost satisfies

`(x(k|t), u(k|t), t + k) ≤`T(t + k) + c̃1‖eT(k|t)‖2 + c̃2‖eT(k|t)‖
(4.31)
≤ `T(t + k) + c̃3ρ2k‖eT(t)‖2 + c̃4ρk‖eT(t)‖, k ∈ I[0,N−1],

with some positive constants c̃1, c̃2, c̃3, c̃4 > 0. Inequality (4.87a) follows by summing up
this inequality and using the geometric series with ρ ∈ [0, 1), compare [JK24, Prop. 3]
for details. The rotated cost satisfies

J̃N(x(·|t), u(·|t), t)
(4.85)
= JN(x(·|t), u(·|t), t)− cN(t) + λ(x(t), t)− λ(x(N|t), t + N)

≤γ‖eT(t)‖2
Q + c̃‖eT(t)‖+ γλ(‖eT(t)‖) + γλ(‖eT(N|t)‖︸ ︷︷ ︸

≤c1‖eT(t)‖

).

194



4.3 Unreachable reference trajectories

Correspondingly we get the bound

αu(r) := γλmax(Q) · r2 + c̃ · r + γλ(r) + γλ(c1 · r), (4.88)

with αu ∈ K∞. In conclusion, we have constructed a feasible input sequence u(·|t) that
exponentially stabilizes the optimal reference xT, resulting in a local upper bound on
the value function VN and the rotated value function ṼN. �

In addition to the upper bound on the value function and the rotated value function,
we also need an additional local continuity bound on the value function.

Assumption 4.76. (Local continuity value function) There exists a function αV ∈ K∞ such
that for all (x1, x2, t) ∈ X×X× I≥0 satisfying x1 ∈ BcT(xT(t)), x2 ∈ BcT(xT(t)) with cT

from Proposition 4.75, the value function from Problem 4.1 satisfies

|VN(x1, t)−VN(x2, t)| ≤ αV(‖xT(t)− x1‖+ ‖xT(t)− x2‖). (4.89)

For general nonlinear systems, this local continuity condition can be ensured if the
system is locally finite-time controllable (cf. Def. 3.9, Ass. 3.77), compare [210, Thm. 16]
and [122, Thm. 6.4].

Given the bounds in Proposition 4.75, strict dissipativity (Ass. 4.72) and continuity of
the value function (Ass. 4.76), we can establish a turnpike property and local bounds on
the corresponding finite horizon cost.

Lemma 4.77. Let Assumptions 4.16, 4.70, 4.72 and 4.76 hold. Suppose the system is locally
incrementally uniformly exponentially stabilizable on the set Z (Def. 4.18). Then, there exist
functions σ, σ̃ ∈ L such that the following properties hold for all N ∈ I≥1, all M ∈ I[1,N], and
all ‖eT(t)‖ ≤ cT with cT according to Proposition 4.75:
The optimal solution of Problem 4.1 contains at least M points k ∈ I[0,N−1] that satisfy

‖x∗(k|t)− xT(t + k)‖ ≤ σ(N −M + 1). (4.90)

The optimal solutions of Problems 4.1 and 4.74 contain at least M points kx ∈ I[0,N−1] that
simultaneously satisfy

‖x∗(kx|t)− xT(t + kx)‖ ≤σ̃(N −M), ‖x̃∗(kx|t)− xT(t + kx)‖ ≤ σ̃(N −M). (4.91)
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Furthermore, for N ≥ M + σ̃−1(cT) the corresponding open-loop costs satisfy

J̃kx(x∗(·|t), u∗(·|t), t) ≤ J̃kx(x̃∗(·|t), ũ∗(·|t), t) + 2γλ(σ̃(N −M)) + αV(2σ̃(N −M)).
(4.92)

Proof. The proof is composed of four parts. In Part I, the rotated cost of the optimal
solution of Problem 4.1 is bounded. In Part II, the turnpike of the optimal solution (4.90)
is established. In Part III, the combined turnpike property (4.91) is derived. In Part
IV, Inequality (4.92) is shown. Denote e∗(k|t) = x∗(k|t)− xT(t + k), ẽ∗(k|t) = x̃∗(k|t)−
xT(t + k), k ∈ I[0,N].
Part I: First, define the set Z̃X := {x̃ ∈ X | ∃(x, u) ∈ Z : f (x, u) = x̃}, with14 x∗(N|t) ∈
Z̃X and Z̃X compact since f continuous and Z compact. We bound the rotated cost of
the optimal solution of Problem 4.1 using Proposition 4.75 and Assumption 4.72:

J̃N(x∗(·|t), u∗(·|t), t)
(4.85)
= VN(x(t), t)− cN(t) + λ(x(t), t)− λ(x∗(N|t), t + N)

(4.84),(4.87a)
≤ γ‖eT(t)‖2

Q + c̃‖eT(t)‖+ γλ(‖eT(t)‖) + γλ(‖e∗T(N|t)‖)
(4.88)
≤ αu(‖eT(t)‖) + C ≤ αu(cT) + C,

with

C := max
k∈I[0,T−1]

max
x∈Z̃X

γλ(‖x− xT(k)‖). (4.93)

Similarly, the rotated value function satisfies

ṼN(x(t), t) ≤ J̃N(x∗(·|t), u∗(·|t), t) ≤ αu(cT) + C.

Part II: Define

σ(N −M + 1) := α−1
`

(
αu(cT) + C
N −M + 1

)
, σ ∈ L.

Suppose there exist N −M + 1 instances k ∈ I[0,N−1] with ‖e∗T(k|t)‖ > σ(N −M + 1).

14This set is only required since, in contrast to the MPC formulation in [122], Problem 4.1 does not
include the additional constraint x∗(N|t) ∈ ZX.
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Using Assumption 4.72, the rotated cost satisfies

J̃N(x∗(·|t), u∗(·|t), t) =
N−1

∑
k=0

L(x∗(k|t), u∗(k|t), t + k)

> (N −M + 1)α`(σ(N −M + 1)) = αu(cT) + C.

This is a contradiction to the derived bound for J̃N. Thus, at least M instances k ∈
I[0,N−1] satisfy ‖e∗T(k|t)‖ ≤ σ(N −M + 1).
Part III: Similar to Part II, given any N0 ∈ I≥1. There exist at most N0 instances
k ∈ I[0,N−1] that satisfy ‖e∗T(k|t)‖ > σ(N0 + 1) or ‖ẽ∗T(k|t)‖ > σ(N0 + 1) respectively.
Using arguments similar to [122, Sec. 7, Eq. (21)], there exist at least M = N − 2N0

points kx, that simultaneously satisfy

‖e∗T(kx|t)‖ ≤ σ̃(N −M), ‖ẽ∗T(kx|t)‖ ≤ σ̃(N −M),

with

σ̃(N −M) := α−1
`

(
2

αu(cT) + C
N −M

)
, σ̃ ∈ L.

Part IV: Given the derivation in Part III, Assumptions 4.72 and 4.76, and σ̃(N−M) ≤ cT,
we have

J̃kx(x∗(·|t), u∗(·|t), t)
(4.85)
= VN(x(t), t) + λ(x(t), t)− λ(x∗(kx|t), t + kx)− ckx(t)

−VN−kx(x∗(kx|t), t + kx)

≤Jkx(x̃∗(·|t), ũ∗(·|t), t) + λ(x(t), t)− λ(x∗(kx|t), t + kx)− ckx(t)

+ VN−kx(x̃∗(kx|t), t + kx)−VN−kx(x∗(kx|t), t + kx)

(4.85)
= J̃kx(x̃∗(·|t), ũ∗(·|t), t) + λ(x̃∗(kx|t), t + kx)− λ(x∗(kx|t), t + kx)

+ VN−kx(x̃∗(kx|t), t + kx)−VN−kx(x∗(kx|t), t + kx)

(4.84),(4.89),(4.91)
≤ J̃kx(x̃∗(·|t), ũ∗(·|t), t) + 2γλ(σ̃(N −M)) + αV(2σ̃(N −M)). �

The following lemma shows that similar bounds hold on sublevel sets of the rotated
value function ṼN, which is necessary to derive a suitable region of attraction.

Lemma 4.78. Let Assumptions 4.70, 4.72, and 4.76 hold. Then, for any V > 0, there exists
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a function σ̃V ∈ L such that for any (x(t), t) ∈ X× I≥0, N ∈ I≥1 with ṼN(x(t), t) ≤ V
and any M ∈ I[1,N], the optimal solutions of Problems 4.1 and 4.74 contain at least M points
kx ∈ I[0,N−1], that simultaneously satisfy

‖e∗T(kx|t)‖ ≤ σ̃V(N −M), ‖ẽ∗T(kx|t)‖ ≤ σ̃V(N −M).

Furthermore, for N ≥ M + σ̃−1
V

(cT) the corresponding open-loop costs satisfy

J̃kx(x∗(·|t), u∗(·|t), t)− J̃kx(x̃∗(·|t), ũ∗(·|t), t) (4.94)

≤2γλ(σ̃V(N −M)) + αV(2σ̃V(N −M)).

Proof. The rotated Lyapunov function (Problem 4.74) satisfies

ṼN(x(t), t) = JN(x̃∗(·|t), ũ∗(·|t), t)− cN(t) + λ(x(t), t)− λ(x̃∗(N|t), t + N).

Correspondingly we have

J̃N(x∗(·|t), u∗(·|t), t) = VN(x(t), t)− cN(t) + λ(x(t), t)− λ(x∗(N|t), t + N)

≤JN(x̃∗(·|t), ũ∗(·|t), t)− cN(t) + λ(x(t), t)− λ(x∗(N|t), t + N)

=ṼN(x(t), t) + λ(x̃∗(N|t), t + N)− λ(x∗(N|t), t + N)

≤V + 2C,

with C according to Equation (4.93). The rest of the proof is analogous to Lemma 4.77

with

σ̃V(N −M) := α−1
`

(
2

V + 2C
N −M

)
. �

We have established turnpike properties of the optimal solutions x∗(·|t), x̃∗(·|t) on
any sublevel sets of ṼN. Note that the bounds are quantitatively significantly more
conservative than the local bounds in Lemma 4.77.

Closed-loop properties

Given these preliminaries, we can study the closed-loop properties of the MPC scheme
for unreachable reference trajectories. To study practical tracking, we introduce the
set ScT := {(x, t) ∈ X× I≥0|ṼN(x, t) ≤ α`(cT)} with cT according to Proposition 4.75

and α` according to Assumption 4.72. The following theorem establishes local practical

198



4.3 Unreachable reference trajectories

tracking of the optimal reachable trajectory xT.

Theorem 4.79. Let Assumptions 4.16, 4.70, 4.72 and 4.76 hold. Suppose the system is locally
incrementally uniformly exponentially stabilizable on the set Z (Def. 4.18). Then, there exists
a constant Ñ1 > 0 such that for all N ≥ Ñ1 and any initial condition (x0, 0) ∈ ScT , the
closed-loop system (4.3) resulting from Algorithm 4.2 satisfies the constraints (4.1), Problem 4.1
is feasible for all t ∈ I≥0, and eT = 0 is uniformly practically asymptotically stable.

Proof. The proof is split into three parts. Part I and II show that the rotated value
function ṼN satisfies the following bounds at time t ∈ I≥0, assuming (x(t), t) ∈ ScT :

α`(‖eT(t)‖) ≤ ṼN(x(t), t) ≤αu(‖eT(t)‖), (4.95a)

ṼN(x(t + 1), t + 1)− ṼN(x(t), t) ≤− α`(‖eT(t)‖) + θ̃(N − 2), (4.95b)

with some θ̃ ∈ L. Part III establishes that (x(t), t) ∈ ScT holds recursively for all
t ∈ I≥0 and establishes uniform practical asymptotic stability. Abbreviate e∗T(k|t) :=
x∗(k|t)− xT(t + k) and ẽ∗T(k|t) := x̃∗(k|t)− xT(t + k), k ∈ I[0,N−1].
Part I: Boundedness of ṼN : The lower bound is based on the strict dissipativity property
in Assumption 4.72, yielding

ṼN(x(t), t) ≥ L(x(t), ũ∗(0|t), t) ≥ α`(‖eT(t)‖).

This property in combination with ṼN(x(t), t) ≤ α`(cT) implies ‖eT(t)‖ ≤ cT. The upper
bound then directly follows from Proposition 4.75.
Part II: Decrease of ṼN: With Lemma 4.77, Inequalities (4.91) and M = 2, there exists a
kx ∈ I[1,N−1] such that

‖e∗T(kx|t)‖ ≤ σ̃(N − 2), ‖ẽ∗T(kx|t)‖ ≤ σ̃(N − 2).

For N ≥ Ñ0 := 2+ σ̃−1(cT), we can apply the results of Proposition 4.75 and Lemma 4.77.
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Using the dynamic programming principle, we have

ṼN(x(t + 1), t + 1)

≤
kx−1

∑
k=1

L(x∗(k + 1|t), u∗(k + 1|t), t + k) + ṼN−kx+1(x∗(kx|t), t + kx)

(4.87b),(4.92)
≤ J̃kx(x̃∗(·|t), ũ∗(·|t), t)− L(x(t), u(t), t)

+ αu(σ̃(N − 2)) + 2λγ(σ̃(N − 2)) + αV(2σ̃(N − 2))
(4.83),(4.91)
≤ ṼN(x(t), t)− α`(‖eT(t)‖) + θ̃(N − 2)),

with θ̃ := αu(σ̃) + 2γλ(σ̃) + αV(2σ̃) ∈ L.
Part III: Practical asymptotic stability: In order to apply this argument recursively, we
have to ensure that ṼN(x(t), t) ≤ α`(cT) holds recursively. Using Inequalities (4.95) and
Lemma 4.71, we can recursively establish the following bound for all t ∈ I≥0:

ṼN(x(t), t) ≤αu(α
−1
` (θ̃(N − 2))) + θ̃(N − 2) =: αθ(N − 2) ≤ α`(cT),

for all

N ≥ Ñ1 := 2 + α−1
θ (α`(cT)). (4.96)

Thus, for all N ≥ Ñ1 ≥ Ñ0 the set ScT is positively invariant. Furthermore, the origin
eT = 0 is uniformly practically asymptotically stable with the practical Lyapunov
function ṼN (cf. Lemma 4.71). �

The following theorem shows that we can increase the region of attraction by increas-
ing the prediction horizon N.

Theorem 4.80. Let Assumptions 4.16, 4.70, 4.72, and 4.76 hold. Suppose the system is locally
incrementally uniformly exponentially stabilizable on the set Z (Def. 4.18). Then, for any
V > 0, there exists a constant ÑV > 0 such that for all N > ÑV and any initial condition
(x0, 0) ∈ XV := {(x, t) ∈ X× I≥0 | ṼN(x, t) ≤ V}, the closed-loop system (4.3) resulting
from Algorithm 4.2 satisfies the constraints (4.1), Problem 4.1 is feasible for all t ∈ I≥0, and
eT = 0 is uniformly practically asymptotically stable.

Proof. Part I and II show that the rotated value function ṼN satisfies the following
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bounds at time t ∈ I≥0, assuming (x(t), t) ∈ XV :

α`(‖eT(t)‖) ≤ ṼN(x(t), t) ≤αu,V(‖eT(t)‖),
ṼN(x(t + 1), t + 1)− ṼN(x(t), t) ≤− α̃N,V(‖eT(t)‖) + θ̃(N − 2),

with some αu,V , α̃N,V ∈ K∞. Part III establishes that (x(t), t) ∈ XV holds recursively
for all t ∈ I≥0 and shows uniform practical asymptotic stability. Abbreviate e∗T(k|t) :=
x∗(k|t)− xT(t + k) and ẽ∗T(k|t) := x̃∗(k|t)− xT(t + k), k ∈ I[0,N−1].
Part I: Boundedness of ṼN: Using the bound V and Proposition 4.75, the function

αu,V(r) :=

max{αu(r), r
cT

V} if r ≤ cT

max{αu(cT), V}+ ε(r− cT) else
,

satisfies αu,V ∈ K∞ and ṼN(x(t), t) ≤ αu,V(‖eT(t)‖) for arbitrary small ε > 0. The lower
bound is analogous to Theorem 4.79.
Part II: Decrease of ṼN : The following derivation is split in two Parts (a), (b) depending
on whether ‖eT(t)‖ ≤ c̃T := α−1

u (α`(cT)) ≤ cT or not, which are unified in (c).
(a) Assume ‖eT(t)‖ ≤ c̃T, which implies (x(t), t) ∈ ScT by Proposition 4.75. Then we can
use the derivations from Theorem 4.79 to conclude

ṼN(x(t + 1), t + 1) ≤ ṼN(x(t), t)− α`(‖eT(t)‖) + θ̃(N − 2).

For N ≥ Ñ1 we have positive invariance of ScT .
(b) Assume ‖eT(t)‖ > c̃T. Lemma 4.78 with M = 1 ensures that there exists a kx ∈
I[0,N−1] such that

‖e∗T(kx|t)‖ ≤ σ̃V(N − 1), ‖ẽ∗T(kx|t)‖ ≤ σ̃V(N − 1).

For N ≥ 1 + σ̃V(c̃T), we have ‖e∗T(kx|t)‖ ≤ c̃T and thus kx ≥ 1. Using Proposition 4.75,
we get

ṼN−kx+1(x∗(kx|t), t + kx) ≤ αu(‖e∗T(kx|t)‖) ≤ αu(σ̃V(N − 1)).
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

This yields

ṼN(x(t + 1), t + 1)

≤
kx−1

∑
k=1

L(x∗(k + 1|t), u∗(k + 1|t), t + k) + ṼN−kx+1(x∗(kx|t), t + kx)

(4.94)
≤ J̃kx(x̃∗(·|t), ũ∗(·|t), t)− L(x(t), u(t), t)

+ αu(σ̃V(N − 1)) + 2γλ(σ̃V(N − 1)) + αV(2σ̃V(N − 1))

≤ṼN(x(t), t)− α`(‖eT(t)‖) + θ̃V(N − 1),

with θ̃V := αu(σ̃V) + 2γλ(σ̃V) + αV(2σ̃V) ∈ L. For

N > Ñ2 := θ̃−1
V

(α`(c̃T)) + 1, (4.97)

we have θ̃V(N − 1) < α`(c̃T) and thus

ṼN(x(t + 1), t + 1)− ṼN(x(t), t) ≤ −α̃2,N,

with α̃2,N := α`(cT)− θ̃V(N − 1) > 0.
(c) Given (a) and (b) we can unify the results as follows. Let N > ÑV := max{Ñ1, Ñ2}
with Ñ1, Ñ2 according to Equations (4.96) and (4.97). The function

α̃N,V(r) :=


min

{
α`(r), α̃3,N

r
c̃T

}
if r ≤ c̃T

min{α`(c̃T), α̃3,N}+
r− c̃T

rmax − c̃T
ε2 else

with rmax = maxx1,x2∈ZX
‖x1 − x2‖, ε2 = 1

2(θ̃(N − 2) + α̃2,N) and α̃3,N = α̃2,N + θ̃(N −
2)− ε2 > 0 satisfies α̃N,V ∈ K∞ and

ṼN(x(t + 1), t + 1)− ṼN(x(t), t) ≤ −α̃N,V(‖eT(t)‖) + θ̃(N − 2).

Part III: Recursive feasibility and practical asymptotic stability: Based on the decrease
condition in Part II b) we have ṼN(x(t), t) ≤ V recursively satisfied and the derivations
in Part I and II hold for all t ∈ I≥0. Furthermore, (x(t), t) converges to the set ScT in at
most k̃ :=

⌈
V−α`(cT)

α̃2,N

⌉
steps. From the derivations in Part II (a) and Theorem 4.79 we

further know that this set is positively invariant for the closed-loop dynamics. Thus, the
origin eT = 0 is uniformly practically asymptotically stable.
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4.3 Unreachable reference trajectories

We have shown, for any prediction horizon N > ÑV and any initial condition with
ṼN(x(0), 0) ≤ V, the closed-loop uniformly converges to the set ScT , which is centered
around the optimal trajectory xT. �

Discussion

We point out that in the economic MPC analysis in Theorem 4.80 the method to extend
the region of attraction differs strongly from the analysis in Theorems 4.5 for reachable
reference trajectories. Note that Theorem 4.80 also implies the following closed-loop
asymptotic average performance bound:

lim sup
K→∞

1
K

K−1

∑
t=0

`(x(t), u(t), t) = lim sup
K→∞

1
K

K−1

∑
t=0

L(x(t), u(t), t) ≤ VT,min

T
+ θ̃(N − 2).

Overall, the resulting closed-loop system approximately achieves the same performance
as the unknown optimal reachable trajectory xT.

Remark 4.81. (Interpretation) By combining Theorem 4.80 with Lemma 4.73, we have a
set of suitable assumptions that ensure practical tracking for general reference trajectories.
Given an in general unreachable (periodic) reference trajectory (xr, ur), there exists a trajectory
(xT, uT) (Problem 4.69), which is reachable and as close as possible to the given reference
trajectory. Assume that the system is uniformly suboptimally operated off xT, which means
that any trajectory with a close to optimal cost has a turnpike property with respect to xT.
Such an assumption is not very restrictive due to the positive definite cost Q, assuming the
minimizer xT is unique. Then, Lemma 4.73 ensures strict dissipativity (Ass. 4.72) if the
system is locally controllable around xT. Finally, Theorem 4.80 ensures practical tracking of
xT, provided the prediction horizon N is chosen large enough. The main requirements are local
stabilizability/controllability (Def. 4.18), that xT lies strictly in the constraint set (Ass. 4.70) and
is unique. To summarize, the closed-loop system "does the right thing" in that it "finds" the best
trajectory xT, which is as close as possible to the unreachable reference, given that a large enough
prediction horizon N is used.

Remark 4.82. (Related MPC results) Compared to the results in [210], the period length T
is not needed for the online implementation. This is mainly due to the different setup and the
corresponding difference in the dissipativity assumption (time-varying vs. orbit).

Compared to the result in [122, Thm. 4.2], where economic MPC in case of steady-state
optimality is considered, the presented theorem relaxes the controllability assumption. A direct
extension of the results in [122] to arbitrary reference trajectories would require a finite-time
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controllability assumption on the full state space X (similar assumptions are used in [126, Sec.
8], [210], [98]). In contrast, our result only requires local stabilizability and utilizes level sets
similar to [37]. On level sets we automatically have a finite-time controllability property with
respect to the set ScT , as derived in Lemma 4.78 and exploited in Theorem 4.80. We note that the
more recent results in [129] also implicitly require a global stabilizability/controllability condition
(cf. [129, Ass. 1]). Furthermore, the proof in [129, Thm. 4] also uses a case distinction analogous
to Theorem 4.80 to ensure positive invariance of the sublevel set of the rotated Lyapunov function
ṼN.

In contrast to competing results for unreachable reference trajectories based on artificial
reference trajectories (cf. Sec. 3.2, [89, 166]), the presented approach can practically track the
optimal reference without explicitly computing it.

Compared to reachable reference trajectories (Sec. 4.1), a drawback is that the bounds on the
prediction horizon N depend on quantities that are defined by the optimal reachable trajectory
(cT,C), for which hard bounds are difficult to obtain in practice (similar problems also appear
in [122], where economic MPC in case of steady-state optimality is considered). Hence, in
economic MPC without terminal ingredients the bounds on the prediction horizon N are
typically more of a conceptual nature.

Remark 4.83. (Nonperiodic problems) In case we have a nonperiodic reference trajectory r, closed-
loop stability and performance bounds for the MPC scheme over any finite interval K ∈ I≥1 can
still be ensured with the presented theorems. In particular, consider a T-periodic reference (x̃r, ũr),
with (x̃r(t), ũr(t)) = (xr(t), ur(t)), for all t ∈ I[0,N+K] and the period length T ≥ N + K.
Clearly, over the finite interval K the closed-loop system for both reference trajectories with the
same initial condition cannot be distinguished. Thus, the theorems regarding periodic reference
trajectories can be used to describe the performance over any finite-time interval. This is especially
relevant in case the reference trajectory becomes reachable after some finite-time interval, see the
numerical example in Section 4.5. An extension of the presented analysis to general nonperiodic
reference trajectories could be based on the concept of overtaking optimality [128], compare the
more recent results in [129, 130].

Remark 4.84. (Unreachable trajectories in output regulation) The considered arguments re-
garding unreachable reference trajectories can also be used for the output regulation problem
(Sec. 4.2) in case the regulator equations do not admit a solution (Ass. 4.39 does not hold). This is
especially relevant if the system is under-actuated (p > m) or opposing goals (minimum energy
and exact tracking) are combined (cf. [34]). In this case, the optimal trajectory xT is replaced
by some maps π̃x : W → Xp, π̃u : W → U, that also satisfy the dynamics (cf. (4.56a)), but
do not always yield zero output (Condition (4.56b) does not hold). For the special case of linear
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dynamics and no exosystem, in [34] modified regulator equations are derived to compute the
solution with minimal error. Note that the “optimal” mapping yielding the smallest output is in
general a function of the initial condition w0. In particular, for a given initial condition w0 the
output regulation problem can be equivalently written as an output reference tracking problem
(cf. Sec. 4.1) with time-varying dynamics. Correspondingly, in this case the role of the distance
‖eT‖2 is replaced by the “state measure” σ(x) = ‖xp − π̃x(w)‖2. Note that for w periodic
(Ass. 4.58), we have a time-invariant problem and the optimal mode of operation is periodic,
similar to [210]. However, a crucial difference is the fact that w is autonomous and that hence the
optimal (reachable) mode of operation may depend on the initial condition w0, compare also [81].
Note that in [JK25, Cor. 4] also economic MPC without terminal ingredients for time-invariant
problems and optimal periodic operation is analysed. However, the corresponding conditions are
rarely applicable in practice.

Summary

In this section, we studied the closed-loop properties of a tracking MPC scheme with-
out terminal ingredients in case the reference trajectory is unreachable. We provided
sufficient conditions in terms of uniqueness of the optimal mode of operation and
stabilizability/controllability conditions that guarantee desirable properties of the closed
loop. In particular, we characterized a sufficiently long prediction horizon N and a
region of attraction that ensure that the closed loop (practically) tracks the (unknown)
optimal mode of operation. In the next section, we study the special case of linear system
dynamics and show how the assumptions imposed in this chapter simplify.

4.4 Linear systems

In this section, we show how the derivations and conditions in Sections 4.1–4.3 simplify
in case of linear system dynamics. We first show how the conditions in Section 4.2
reduce to classical conditions considered in the output regulation literature (Sec. 4.4.1).
Then, we provide simpler conditions for the tracking MPC in case of unreachable
reference trajectories (Sec. 4.4.2). Finally, we show less conservative bounds for MPC
without terminal ingredients (Sec. 4.4.3). This section is based on and taken in parts
literally from [JK24]15 and [JK19]16.
15J. Köhler, M. A. Müller, and F. Allgöwer. “Nonlinear reference tracking: An economic model predictive

control perspective.” In: IEEE Trans. Automat. Control 64.1 (2019), pp. 254–269©2018 IEEE.
16J. Köhler, M. A. Müller, and F. Allgöwer. “Constrained nonlinear output regulation using Model Predic-

tive Control.” In: IEEE Trans. Automat. Control (2021). extended version: arXiv:2005.12413©2021 IEEE.
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4.4.1 Output regulation

In the following, we revisit the output regulation problem from Section 4.2 for the special
case of linear systems and show how the corresponding system theoretic conditions
simplify. Furthermore, in Proposition 4.86 we show the equivalence of the (classical)
rank/eigenvalue-based characterization of nonresonance and the proposed dissipation-
based condition (Ass. 4.63).

Setup

In the special case of linear systems, the system (4.54) reduces to

x+p = fp(xp, w, u) := Axp + Bu + Pxw,

w+ = s(w) := Sw,

y = h(xp, w, u) = Cxp + Du− Pyw.

Stabilizability/Detectability

The incremental stabilizability condition (Def. 4.44) reduces to stabilizability of (A, B)
and a stabilizing input is given by the linear control law u(k) = K(x(k)− z(k)) + v(k),
with (A + BK) Schur. Detectability of (A, C) is equivalent to i-IOSS (Ass. 4.62) with
a quadratic i-IOSS Lyapunov function Vo(xp, zp, w) = ‖xp − zp‖2

Po
, compare [50]. The

finite step i-OSS condition (Ass. 4.26) reduces to observability of (A, C) with the lag
ν ∈ I[1,np]. The regulator equations (4.56) (Ass. 4.39) reduce to

ΠS = AΠ + BΓ + Px, 0 = CΠ + DΓ− Py, (4.98)

with πx(w) = Πw, πu(w) = Γw, and matrices Π ∈ Rnp×q, Γ ∈ Rm×q. Note that
satisfaction of Assumption 4.10 for R � 0 and (A, C) detectable has also been shown
in [136, Cor. 2], analogous to Proposition 4.25. In case of polytopic constraints Z,
quadratic cost functions Vf, `, and a linear feedback κ, the MPC optimization problems
in Sections 4.1-4.3 reduce to standard quadratic programs (QPs).

Nonresonance condition

Consider the case where the matrix S has only eigenvalues λ of the form λ = e2πik/T

with some period length T ∈ I≥1 (Ass. 4.58), which encompasses constant and sinusoidal
exogenous signals w. Correspondingly, all eigenvalues of S are on the unit circle, i.e.,
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|λ| = 1, as is standard in literature [53, (A1)], [144, H1]. For simplicity, we consider
square systems, i.e., m = p. To characterize the transmission zeros of a linear transfer
matrix, we use Rosenbrock’s system matrix

G(λ) :=

(
A− λInp B

C D

)
.

In particular, λ ∈ C is a zero of the transfer matrix if the matrix G(λ) does not have full
rank, compare [73]. The classical nonresonance condition (cf. [141, Lemma 4.1]) reduces
to rank(G(λk)) = np + m for all λk which are eigenvalues of S, i.e., the transmission
zeros of the plant do not coincide with the poles of the exosystem. Feasibility of
the regulator equations (4.98) can be ensured if this nonresonance condition holds,
compare [141, Lemma 4.1]. Furthermore, the matrices Π, Γ are unique since m = p.
Hence, in case Z = Rnp+q+m, Assumption 4.39 holds if rank(G(λ)) = np + m for all λk

which are eigenvalues of S.

The augmented plant dynamics with input ∆u and output y (cf. Fig. 4.1) are charac-
terized by the matrices

Aa :=

(
A BE>2
0 E0

)
, Ca :=

(
C DE>2

)
, Ba =

(
B
E1

)
, Da = D.

The following proposition shows that if the above nonresonance condition holds for
all T-periodic exosystems, then the augmented plant is detectable, i.e., the result in
Proposition 4.64 remains valid.

Proposition 4.85. Consider a square linear system with (A, C) detectable. Suppose that
rank(G(λk)) = np + m for all k ∈ I[0,T−1] with λk = e2πik/T. Then, (Aa, Ca) is detectable.

Proof. Detectability of (Aa, Ca) is equivalent to

rank

A− λInp BE>2
0 E0 − λImT

C DE>2

 = n + Tm, (4.99)

for all λ ∈ C, which satisfy |λ| ≥ 1. First, consider an eigenvalue λk = e2πik/T, in
which case rank(E0 − λk ImT) = m(T − 1). W.l.o.g. consider m = 1. The eigenvector
ξk = [e−2πik/T, . . . , e−2πikT/T]> satisfies (E0− λk I)ξk = 0. Furthermore, we have E>2 ξk =

e−2πikT/T = 1. Thus, Condition (4.99) is equivalent to rank(G(λk)) = np + m. For
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λk 6= e2πik/T, the rank condition reduces to detectability of (A, C). Thus, (Aa, Ca) is
detectable. �

This result considers λk = e2πik/T for k ∈ I[0,T−1] instead of only the eigenvalues of S
(cf. [141, Lemma 4.1]). This is due to the fact that the incremental input regularization
in Section 4.2.3 simply penalizes the non-periodicity of the control input. In case of
redundant inputs m > p, we may be able to achieve the same output trajectory y with
different input trajectories u, in which case the augmented plant (cf. Fig. 4.1) is not
detectable. Thus, we only consider square linear systems.

The following proposition shows that the dissipation-based characterization in As-
sumption 4.63 is equivalent to the rank condition in Proposition 4.85 for linear systems.

Proposition 4.86. Consider a square linear system with (A, C) detectable. Then, Assump-
tion 4.63 holds if and only if rank(G(λk)) = np + m for all λk = e2πik/T, k ∈ I[0,T−1].

Proof. Part I: Suppose Assumption 4.63 holds, but there exists some λk = e2πik/T such
that rank(G(λk)) < np + m, i.e., there exists some (complex) vector (xp, u) 6= 0 such
that Axp + Bu = λkxp, Cxp + Du = 0. This implies the existence of a T−periodic state
and input trajectory (xp, u), which satisfies Cxp(t) + Du(t) = 0, t ∈ I≥0. The periodicity
of this trajectory implies that the incremental input satisfies ∆u = 0. Using linearity,
we consider (zp, v, ∆v) = 0 in Assumption 4.63 without loss of generality. Plugging the
trajectories in Condition (4.79b), using a telescopic sum and VR ≥ 0, we arrive at

k−1

∑
t=0
‖u(t)‖2 ≤ VR(xp,a(0), zp,a(0), w(0)), ∀k ∈ I≥1. (4.100)

Since u periodic and the sum in Inequality (4.100) takes a finite value for any k ∈ I≥1,
this immediately implies u ≡ 0. Finally, since y ≡ 0 and (A, C) detectable, xp ≡ 0. Thus,
the only periodic solution that satisfies y ≡ 0 is the trivial solution (xp, u) ≡ 0 and thus
rank(G(λk)) = np + m.
Part II: Suppose rank(G(λk)) = np + m and (A, C) is detectable. Then, Proposition 4.85

ensures that (Aa, Ca) is detectable. Thus, (cf. [50]) there exists a positive definite matrix
Po,a ∈ R(np+Tm)×(np+Tm) satisfying

‖Aaxp,a + Ba∆u‖2
Po,a
− ‖xp,a‖2

Po,a
≤ −ε‖xp,a‖2 + ‖∆u‖2 + ‖Cxp,a + D∆u‖2 (4.101)

for any xp,a ∈ Rnp+Tm, ua ∈ Rm with some ε > 0. Consider VR(xp,a, zp,a, w) = c · ‖xp,a−
zp,a‖2

Po,a
with c := 2/ε > 0. Inequality (4.79a) holds with cR,u := c · λmax(Po,a). The
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definition of the memory state ξ implies

‖u‖2 (4.75)
= ‖E>2 ξ + ∆u‖2 ≤ 2‖∆u‖2 + 2 ‖E2E>2 ‖︸ ︷︷ ︸

=1

‖ξ‖2. (4.102)

W.l.o.g. consider (zp,a, v, ∆v, w) = 0 in Assumption 4.63 using linearity. Condition (4.79b)
holds with cR := c + 2 > 0 using

VR(Aaxp,a + Ba∆u, 0, 0)−VR(xp,a, 0, 0)
(4.101)
≤ − c · ε‖xp,a‖2 + c‖∆u‖2 + c‖Cxp + Du‖2

≤− 2‖ξ‖2 + (cR − 2)‖∆u‖2 + cR‖h(xp, w, u)‖2

(4.102)
≤ − ‖u‖2 + cR

(
‖∆u‖2 + ‖h(xp, w, u)‖2

)
. �

We point out again that the rank condition rank(G(λk)) = np + m is similar to the
eigenvalue/rank conditions used for input observability/detectability in [137, Thms. 2–
3], which is a closely related problem. A crucial relaxation in the conditions in Propo-
sition 4.86 is that only periodic inputs need to be observable/detectable and thus the
rank condition only needs to hold for the values λk corresponding to the period length
T, as opposed to all λk (outside the unit disc).

Minimum-phase - stable zeros

In the following, we revisit the conditions used in Section 4.2.2. We consider a SISO
system as in Section 4.2.2. The relative degree d ∈ I≥0 in Assumption 4.46 corresponds
to CAkB = 0, k ∈ I[0,d] and CAd+1B 6= 0, and the maps Φ, Φ̃ are linear. Furthermore, the

zero dynamics are always well-defined (Ass. 4.47), using α(x) = Kαx with Kα = − CAd+2

CAd+1B .
If we consider the closed-loop system with u = Kαx + ũ we have η+ = Aηη + Aη,zz +
Bη,uũ + Bη,ww and the zero dynamics are stable if Aη is Schur. In this case, the dynamics
in η are obviously also ISS w.r.t. z, ũ with a quadratic function Vη = ‖η − η̃w‖2

Pη
and

thus Assumption 4.48 holds. The eigenvalues of Aη characterizing the zero dynamics
correspond to the zeros of the transfer function (assuming (A, B, C, D) corresponds to a
minimal realization), compare [73, 143].

Remark 4.87. (Singular LQR) In the absence of constraints and without exosystem, Problem 4.41
with linear dynamics corresponds to the singular (R = 0) LQR with a finite horizon. Hence,
Theorem 4.50 ensures stability for a receding horizon implementation of finite-horizon singular
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LQR, if (A, B) is stabilizable and the zero dynamics are stable.

Remark 4.88. (Dissipativity) As discussed in Remark 4.11, the detectability condition in
Assumption 4.10 is a special case of strict dissipativity [136], which is often considered in
economic MPC. There exist recent papers analysing dissipativity for linear quadratic problems,
e.g., also for (A, C) not detectable [124, Thm. 6.1]. However, the connection between zero
dynamics and detectability (cf. Prop. 4.49), and hence (strict) dissipativity, seems largely
unexplored in the recent economic MPC literature. This may be particularly relevant, since
Remark 4.55 shows that even for trivial systems the detectability condition (Ass. 4.10) may not
hold, while closed-loop stability can still be guaranteed.

Summary

Suppose we have a linear square system that satisfies

• (A, B) stabilizable, (A, C) detectable,

• Eigenvalues of S satisfy λk = e2πik/T, T ∈ I≥1,

• Nonresonance condition: rank(G(λk)) = np + m, ∀k ∈ I[0,T−1], λk = e2πik/T,

• No constraints17: Z = Rnp+q+m.

Then, the conditions in Theorem 4.65 hold and the output regulation MPC with in-
cremental input regularization (Alg. 4.59) solves the output regulation problem for N
sufficiently large. Furthermore, in case rank(G(λ)) = np + m for all λ ∈ C satisfying
|λ| ≥ 1 (stable zeros, Ass. 4.48), also the MPC scheme without input regularization
(Alg. 4.42) solves the output regulation problem for N sufficiently large. In case the joint
system (xp, w) is detectable, we can also design an error feedback MPC that ensures
finite-gain L2-stability for noisy output measurements (cf. [JK19, App. B]).

In the linear case, we clearly see that the considered conditions align with the typical
assumptions employed to solve the output regulation problem, compare the necessary
and sufficient conditions in [72, Thm. 2]. We emphasize again that one of the main
benefits of the output regulation MPC (in addition to the constraint handling capabilities)
is the fact that πx, πu are not used in the implementation, since the computation thereof
can be a practical bottleneck for nonlinear systems.

17The result equally holds for general nonlinear constraint sets Z if we can ensure that (πx(w), πu(w), w)
is in the interior of Z, compare Assumption 4.39.
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4.4.2 Unreachable reference trajectory - strong duality

In the following, we show how the conditions regarding unreachable reference trajecto-
ries (Sec. 4.3) simplify in the linear setting.

Lemma 4.89. Let Assumptions 4.16 and 4.70 hold. Assume that Z is a convex set, f is
linear and R is positive definite. Then, Assumption 4.72 is satisfied with linear periodic storage
functions λ(x(k), k) = λ>k eT(k), γλ(r) = r maxk ‖λk‖. The rotated stage cost is given by

L(x, u, k) = ‖x− xT(k)‖2
Q + ‖u− uT(k)‖2

R.

Proof. Assumption 4.70 ensures that the constraints Z are not active in Problem 4.69. The
first part of this lemma is a standard result in convex optimization (strong duality) with
the dual variables λ [41, 292]. This result requires a strictly convex cost (R, Q positive
definite) and convex constraints (linear system, Z convex) with Slater’s condition. The
special structure of the rotated cost is due to the inactive constraints, see also [70, Prop.
4.3]. �

Thus, for linear systems with a quadratic stage cost we have linear storage functions
and a quadratic rotated stage cost L. This results can also be generalized for quadratic
input-output stage costs (Ass. 4.33), with y = h(x, u) = Cx + Du and (A, C) detectable.
Ignoring the time-varying aspect, we have a linear-quadratic stage cost ` and can thus
use the results in [124] to construct a linear-quadratic storage function λ, where the
quadratic part serves the same role as an i-IOSS Lyapunov function (cf. Prop. 4.25).
Notably, due to the compact constraints Z, detectability of (A, C) can be relaxed to
having no unobservable eigenvalue λ on the unit circle to derive pre-dissipativity using
an indefinite quadratic term in the storage function, compare [124] for details.

Based on Lemma 4.89, we can also simplify the conditions in Theorem 4.79/4.80

to require ` quadratic (Ass. 4.16), f (x, u) = Ax + Bu, (A, B) controllable18, Z convex,
and (xT, uT) ∈ int(Z) (Ass. 4.70). Furthermore, since L is quadratic the bounds on the
rotated Lyapunov function in Inequalities (4.95) simplify to

‖eT(t)‖2
Q ≤ ṼN(x(t), t) ≤γV‖eT(t)‖2

Q,

ṼN(x(t + 1), t + 1)− ṼN(x(t), t) ≤− ‖eT(t)|2Q + θ̃V(N − 1),

18Except for VN locally continuous (Ass. 4.76) we only need (A, B) stabilizable. In case Z = Rn+m, the
value function is linear-quadratic and thus naturally locally continuous. For Z polytopic and any
N ∈ I≥1 the value function is piece-wise quadratic and hence locally continuous (although the author
is not aware of a proof regarding a uniform continuity bound for all N ∈ I≥1). Note that the rotated
value function ṼN is locally quadratic and hence continuous since (xT , uT) ∈ int(Z) and L quadratic.
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with some θ̃V ∈ L and γV > 0 analogous to the case of reachable reference trajectories
(cf. Thm. 4.5). The formulas in Section 4.3 can be correspondingly simplified but remain
conservative with C = maxk maxx∈Z̃X

λ>k (x− xT(k)) potentially very large.
In the linear setting the assumptions are simpler and easier to verify. Conceptually

similar results were obtained in [132, Thm. 3.11] for linear quadratic economic MPC,
assuming no constraints, i.e., Z = Rn+m.

4.4.3 Stability in linear MPC

In the following, we show how some of the bounds in Section 4.1 simplify in case of
linear system dynamics f (x, u) = Ax + Bu. W.l.o.g. consider r = 0. The incremental
stabilizability condition (Def. 4.18) reduces to stabilizability of (A, B) and a stabilizing
input is given by the linear control law u(k) = K(x(k)− z(k)) + v(k), with (A + BK)
Schur. For ` quadratic and positive definite (Ass. 4.16) we can compute the LQR
resulting in a feedback matrix K ∈ Rm×n and a positive definite matrix P ∈ Rn×n. The
smallest cost controllability constant γ (Ass. 4.4) can be computed with γ = λmax(P/Q),
where λmax(P/Q) denotes the maximal generalized eigenvalue. Similarly, the horizon
dependent constants γk (Rk. 4.30) can be computed based on the finite horizon LQR.

Detectable stage cost

Detectability of (A, C) is equivalent to i-IOSS (Ass. 4.24) with a quadratic i-IOSS Lya-
punov function Vo(x, z) = ‖x− z‖2

Po
, compare [50]. Computing a storage W satisfying

Assumptions 4.10 with the largest possible εo > 0 can be posed as an equivalent LMI
with W = ‖x‖2

Po
. Thus, in the linear setting, there exist explicit formulas for the Lya-

punov functions ‖x‖2
P, ‖x‖2

Po
associated with the cost controllability and the detectability,

respectively. This can be used to improve the bounds in Theorem 4.12/Proposition 4.23

by choosing σ(x) 6= ‖x‖2. For example, by choosing σ(x) = ‖x‖2
P, we get γs = 1,

γo = λmax(Po/P), which may result in less conservative bounds M.

Global cost controllability

For linear systems with no state constraints (Z = Rn ×U) and A Schur stable, in
addition to the local cost controllability (Ass. 4.4), we have VN(x) ≤ γgl`min(x) for all
x ∈ Rn with some constant γgl ≥ γ, which can be computed based on the Lyapunov
equation A>PA− P + Q = 0. Thus, in this case we can also show global exponential
stability with a sufficiently large horizon N > Ngl (cf. [119, Cor. 4]). In addition, the
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bounds regarding the region of attraction (cf. proof Thm. 4.5) can be improved with

V(N0|t) ≤
(

γgl−1
γgl

)N0
V ≤ γε for N0 ≥ log(V)−log(γε)

log(γgl)−log(γgl−1) . The corresponding bound

results in NV = N0 + M, M :=
log(γglγ)−N0(log(γgl)−log(γgl−1))

log(γ)−log(γ−1) , which reduces to the
standard bound in [123, Variant 2], [267], Theorem 4.5 in case γ = γgl.

Extended prediction horizon

Regarding the MPC with extended horizon (Sec. 4.1.5), we can improve the theoretical
analysis in multiple directions in the linear setting.

A natural choice for the feedback κ (Ass. 4.33) is the LQR feedback u = Kx. Non-
conservative bounds for the constants cM, cM, αM (Prop. 4.34) can directly be com-
puted using the solution of the finite-horizon discrete-time Lyapunov equation PM =

∑M−1
k=0 Ak

KQK Ak
K with AK = A + BK, QK = Q + K>RK. Correspondingly, the constants

can be computed as a (generalized) eigenvalue, e.g., αM = λmin((A>K PM AK − PM)/QK).
In addition, Assumption 4.33 can be naturally strengthened in case of linear systems

with polytopic constraints. In particular, Conditions (4.44) hold for all x ∈ X0, where
the polytopic set X0 is the maximal positive invariant set (cf. [114]). Furthermore, since
this set is finitely determined, there exists a constant M ∈ I≥1 such that Vf,M(x) < ∞,
M ≥ M, implies x ∈ X0, compare also [83, Thm. 5]. Hence, we can use the bounds (4.44)
without requiring Vf,M ≤ ε and thus avoid the additional conservatism in the bound N1

in Theorem 4.37. Notably, this property with M ≥ M ensures persistent feasibility for
any N ∈ I≥1, compare [83].

In case the stabilizing feedback κ corresponds to the LQR, Z is polytopic, and M ≥ M,
we can also strengthen the guarantees regarding the suboptimality index αN,M ≤ εN,M

in Theorem 4.37. In particular, we have Vf,M(x) ≤ V∞,0(x) for any x ∈ X0, i.e., the
finite-tail cost is a lower bound to the infinite horizon cost. Thus, the performance
bound (4.49) simplifies to αN,M := εN,M and hence we can achieve infinite horizon
optimal performance with a finite value N, if M → ∞. We note that this result is not
surprising, since limM→∞ Vf,M corresponds to a standard LQR terminal cost and if the
standard terminal set constraint Xf is inactive (which is the case for a sufficiently large
horizon N), then infinite horizon optimal performance is achieved.

In the following, we briefly discuss that for linear systems improved bounds, similar to
the ones from Theorem 4.37, also hold for a standard MPC without terminal constraints
(Problem 4.1), i.e., without explicitly using an extended prediction horizon M with some
stabilizing feedback κ. The main advantage when considering linear systems is that
locally, if the constraints are not active, non-conservative characterizations of the optimal
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

solution (e.g., a relaxed dynamic programming inequality) can be directly derived based
on the finite-horizon LQR. Hence, we can replace Assumption 4.33 by similar stability
properties for the finite-horizon LQR with a time-varying control law κ. Then, we can
use the fact that for N large enough, the principle of optimality guarantees that in the
last M steps the open-loop optimal trajectory coincides with the finite-horizon LQR.
The main benefit of this alternative analysis is the fact that we can directly exploit the
typically stronger guarantees of the finite-horizon LQR in the MPC stability analysis.

Summary

In this section, we revisited the results in Sections 4.1–4.3 for the special case of linear
system dynamics. We showed that the conditions considered in the output regulation
MPC (Sec. 4.2) reduce to classical conditions from the output regulation literature.
Furthermore, we discussed that the strict dissipativity condition used in the analysis
of unreachable reference trajectories (Sec. 4.3) is naturally satisfied in the linear setting
due to strong duality. Finally, we also showed how the performance bounds for MPC
without terminal ingredients (Sec. 4.1) simplify and improve for linear systems. In the
next section, we demonstrate the practicality of the theoretical results derived in this
chapter using numerical examples.

4.5 Numerical examples

In the previous sections, we studied MPC without terminal constraints for tracking of
reachable and unreachable reference trajectories (Sec. 4.1/4.3), output regulation MPC
(Sec. 4.2), and derived lower bounds on the prediction horizon N to guarantee stabil-
ity/performance. In the following, we provide numerical examples that demonstrate
the applicability of the considered MPC formulation for nonlinear dynamic problems
and numerically investigate the conservatism of the derived bounds. In Section 4.5.1, we
consider a linear academic example and compare the different bounds on the prediction
horizon N. In Section 4.5.2, we illustrate the applicability of the trajectory tracking
MPC for reachable reference trajectories and nonlinear systems (Sec. 4.1), and discuss
potential sources of conservatism in the derived bounds. Then, Section 4.5.3 shows
the applicability of the output regulation MPC (Sec. 4.2) at the example of nonlinear
offset-free tracking MPC with error feedback (Rk. 4.43). Finally, Section 4.5.4 demonstrates
the applicability of the tracking MPC in the case of unreachable dynamic reference tra-
jectories (Sec. 4.3) with a simple linear example. For the following examples, the offline
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and online computation is done in Matlab using SeDuMi-1.3 [261] and CasADi [17],
respectively. This section is based on and taken in parts literally from [JK24]19 and
[JK19]20.

4.5.1 Performance bounds - MPC without terminal ingredients

In the following, we consider a simple system to compare the bounds from Theorems 4.5,
4.12, 4.37, Proposition 4.14, and Remark 4.30. In order to demonstrate the necessity of a
sufficiently long prediction horizon N we study the classical four tank system from [231].
To enable a simple analytical comparison, we first examine a linear system without
constraints. The corresponding linear discrete-time model is characterized by

A =


0.932 0 0.041 0

0 0.918 0 0.033
0 0 0.924 0
0 0 0 0.937

 , B =


0.017 0.001
0.001 0.023

0 0.061
0.072 0

 , C =
(

I2 02

)
, D = 02,

compare [JK3, JK4, JK5]. Note that the system is square, linear, stable, and non-minimum-
phase. Without loss of generality, we consider the problem of stabilizing the origin (in
the linear setting without constraints, any reachable reference trajectory r simply shifts
the state and input). We use the quadratic stage cost ` = ‖x‖2

Q + ‖u‖2
R, R = 10−4 Im,

Q = C>C + 10−2 In, which primarily penalizes the output y = Cx, similar to [JK3, JK4,
231]. For any horizon N ∈ I[2,16] the MPC formulation without terminal ingredients
(Alg. 4.2) results in an unstable closed-loop system. Furthermore, for horizons N ≤ 28
the value function VN is not a valid Lyapunov function.

Stability based on cost controllability

For the system under consideration, the cost controllability (Ass 4.4) is satisfied for
γ ≈ 73. Consequently, Theorem 4.5 ensures stability with N ≥ 622. Alternatively, we
can ensure stability for N ≥ 313 based on the LP analysis in [120, 127] (cf. Rk. 4.32).
Using the improved bounds in Remark 4.30 based on γk we obtain stability with
N ≥ 170. Using the bounds γk in the LP analysis, we can improve this bound further
and guarantee stability for N ≥ 162 (cf. [127, Thm. 5.4], Rk. 4.32).

19J. Köhler, M. A. Müller, and F. Allgöwer. “Nonlinear reference tracking: An economic model predictive
control perspective.” In: IEEE Trans. Automat. Control 64.1 (2019), pp. 254–269©2018 IEEE.

20J. Köhler, M. A. Müller, and F. Allgöwer. “Constrained nonlinear output regulation using Model Predic-
tive Control.” In: IEEE Trans. Automat. Control (2021). extended version: arXiv:2005.12413©2021 IEEE.
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

These rather large and conservative bounds are mainly a consequence of the high
value of γ, which is due to the relatively large penalty on the output y in the stage cost
`. Hence, in case the stage cost is fixed (not a tuning variable), analysis based on cost
controllability with `min as done in most of the literature (cf. [120, 123, 127, 237, 267])
can sometimes be quite conservative.

Extended prediction horizon

The conservatism induced by a large constant γ can be partially compensated by
employing the extended prediction horizon from Theorem 4.37. In Figure 4.2, we can
see the suboptimality index αN,M = εN,M (cf. Sec. 4.4.3) depending on the prediction
horizon N for different values of M ∈ {5, 10, 20}. In addition, we show the performance
bounds from Remark 4.30 with γk. For simplicity, we did not use the formula involving
γk (cf. Rk. 4.30) for the extended prediction horizon, since the difference is rather small
for M large. We can clearly see that the minimum prediction horizon to guarantee
performance and stability can be significantly relaxed by using an extended prediction
horizon M. For example, for M = 20, we can guarantee stability for any horizon N ≥ 0.
However, for small values of M the bounds in Remark 4.30 involving γk can also be less
conservative. Numerically we find that for M = 5 the closed loop with Algorithm 4.36 is
stable for N > 2 and the value function VN,M is a Lyapunov function for N > 14, which
are significantly shorter horizons compared to N > 17 and N > 28 for Algorithm 4.2.
Overall, using an extended prediction horizon allows for significantly shorter prediction
horizons compared to the bounds directly based on cost controllability. Nevertheless,
depending on the choice of `, the bounds can still be conservative since they also use
`min and γ.

Detectable/Observable stage cost

Although the stage cost is positive definite, we can also use the more general derivations
in Theorem 4.12 and Proposition 4.14 based on detectability/observability of the stage
cost (Ass. 4.10/4.13). For simplicity, we consider the state measure σ(x) = ‖x‖2

P

with P based on the LQR. Correspondingly, Assumption 4.9 holds with γs = 1 and
Assumption 4.10 holds with W = 0, γo = 0 and εo = λmin(Q/P) = 0.0137. Thus,
Theorem 4.12 ensures stability for N > 5.3 · 103 which is quite conservative.

We can additionally make use of the fact the stage cost is observable, i.e., satisfies
Assumption 4.13 with ν = 2 and co ≈ 40.65, which can be computed as a generalized
eigenvalue. For these constants Proposition 4.14 guarantees stability for N > 660.
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50 100 150 200

0

0.5

1

Figure 4.2. Guaranteed suboptimality index αN,M with extended prediction horizon for
M ∈ {5, 10, 20} (blue, solid; green, dashed; red, dash-dot), N ∈ I[0,200] and suboptimality
index αN without extended prediction horizon (M = 0, magenta, dotted) based on γk
(Rk. 4.30), N ∈ I[2,200].

Note that this bound is only slightly more conservative than the bounds based on
Theorems 4.5, which exploit the positive definiteness of `.

If the stage cost is slightly changed to Q = C>C + 10−6 I4 (closer to an I/O cost), then
we get γ > 6 · 103 and the bound in Theorem 4.5 deteriorates with NV > 105, while
the bound in Proposition 4.14 yields NY,ν ≈ 104. Thus, although the standard bounds
based on cost controllability (cf. Thm. 4.5, [120, 123, 127, 237, 267]) are typically less
conservative, the bounds based on detectability/observability (cf. Thm. 4.12/Prop. 4.14)
can be superior for positive definite stage costs ` in cases where the stage cost is mainly
composed of an input-output stage costs with only a small positive definite component.

Cost tuning

Based on this example, the guarantees and properties of MPC without terminal ingre-
dients may seem rather conservative. This is, however, mainly due to the choice of
the stage cost `, which is chosen to highlight the general need for a sufficiently large
prediction horizon N also for simple linear stable systems without constraints. If we
instead choose Q = In, we get γ ≈ 7.8, Theorem 4.5 ensures stability for any horizon
N ≥ 30, and Theorem 4.37 with M = 1 ensures stability for any horizon N ≥ 1. Besides,
with the bounds γk (cf. Rk. 4.30) we can even guarantee stability for any N ∈ I≥2. Thus,
the resulting guarantees are highly dependent on the choice of the stage cost `.
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

Discussion

We considered a simple stable unconstrained linear system from the literature [231]
to study general properties of MPC without terminal ingredients. Depending on the
prediction horizon N, the closed loop may be unstable and we can use the results in
Theorem 4.5 (analogous to the literature [120, 123, 127, 237, 267]) to derive a lower
bound on the prediction horizon N to guarantee stability. In addition, the bounds can
be improved using the constants γk ≤ γ (cf. Rk. 4.30) and the LP analysis (cf. [120, 127],
Rk. 4.32). Significantly less conservative bounds can be obtained if an extended horizon
M (cf. Thm. 4.37) is used. Furthermore, we showed that even in the case of positive
definite stage costs `, the bounds derived from the observability of the stage cost ` (cf.
Prop. 4.14) can be less conservative compared to the standard bounds based on cost
controllability (cf. [120, 123, 127, 237, 267], Thm. 4.5), since additional information is
used in Assumption 4.13. Finally, we note that the cost controllability condition (Ass. 4.4)
often gives an easy insight how the stage cost could be modified in order to guarantee
stability with shorter horizons N. The same conclusions hold for nonlinear constrained
systems with the main difference that verifying the corresponding conditions (e.g.,
Ass. 4.4) is more challenging and the resulting bounds also depend on the considered
region of attraction XV .

4.5.2 Reference tracking and region of attraction

The following example illustrates the theoretical results in Section 4.1 for trajectory
tracking MPC with reachable references and nonlinear constrained systems. We consider
a discrete-time version of a continuous stirred tank reactor (CSTR) taken from [191]:

f (x, u) =

 x1 +
h
θ (1− x1)− hkx1e−

M
x2

x2 +
h
θ (x f − x2) + hkx1e−

M
x2 − hαu(x2 − xc)

 ,

with the temperature x1, the concentration x2, the coolant flow rate u and the sampling
time Ts = 0.1s (cf. the example in Sec. 3.4.1). The constraint set is given by Z =

[0, 1] × [0.5, 1] × [0, 2] and we have a quadratic stage cost (Ass. 4.16) with Q = I2,
R = 10−4. The reference constraint set is given by Zr = [0.05, 0.4]× [0.6, 0.9]× [0.5, 1.5].
The local cost controllability condition (Ass. 4.4) is validated for generic references
r ∈ Zr by computing a parametrized terminal cost Vf and terminal control law kf (cf.
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Alg. 3.22)21 resulting in γ = 62 (cf. Prop. 4.20).
We consider a reachable (Ass. 4.15) periodic reference trajectory that connects two

equilibria as shown in Figure 4.3. A numerical investigation shows that the same
controller kf implies the tighter bound γ = 21.9, ε = 10−5 along this specific reference
trajectory. We note that the restriction to local cost controllability (Ass. 4.4) is crucial
since for ε = 10−4 the same local control law is not feasible and thus validating a cost
controllability constant γ is challenging. We point out that the improved bounds based
on γk (Rk. 4.30) are more difficult to apply for this problem since computing γ for
general nonlinear problems is already time consuming. According to Theorem 4.5, a
prediction horizon of N > NV = M ≈ 132 ensures local (V = γε) exponential stability.
The reference trajectory and the local sets ‖er(t)‖2

Q ≤ ε are shown in Figure 4.3. This
small region of attraction is mainly due to the active input constraint.

If a prediction horizon of N = 200 is used, Theorem 4.5 provides the region of
attraction V = (γ + N −M)ε ≈ 9 · 10−4. This guaranteed region of attraction with one
exemplary open-loop solution is depicted in Figure 4.3. Note that the guaranteed region
of attraction could be significantly increased by generalizing the trajectory tracking MPC
formulation to path following [3, 91, 94]. Theorem 4.5 ensures that after N0 ≈ 68 steps
the optimal open-loop solution enters the local region of attraction, while in Figure 4.3
we have V(kx|t) ≤ γε for kx ≥ 7 and `(kx|t) ≤ ε for kx ≥ 9, which highlights the
potential conservatism of this result.

Discussion

Remark 4.90. (Comparison - performance bounds N) The proposed reference tracking MPC
ensures stability with a prediction horizon of N = 200 and requires no complex design procedure.
As discussed in Remark 4.6, the bounds in [37] are based on the same local cost controllability
condition and hence could also be used to derive a lower bound on the prediction horizon. In order
to guarantee exponential stability for V = 9 · 10−4 = 90ε, these derivations require a prediction
horizon of N > 805. Thus, the proof technique presented in Theorem 4.5 is significantly less
conservative compared to the method in [37]. If we improve the bound M using the LP analysis
in Remark 4.32, we ensure local stability with N ≥ 81 and can guarantee the same region of
attraction XV with N ≥ 150.

In the closed-loop simulations, we find that the MPC with prediction horizon N = 10 ensures
exponential stability for all initial conditions considered in Theorem 4.5, confirming again that
21Lemma 3.13 is used with Zr gridded using 303 points. The conditions in Proposition 3.11 hold with

α1 = 0.1, which is validated with a finer grid consisting of size 5 · 10−3 in Zr, each with 103 random
points ∆x, compare [JK15, Alg. 1].
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Figure 4.3. Concentration vs. temperature. Left: periodic reference trajectory xr (solid)
with local region of attraction ‖er(t)‖2

Q ≤ ε (ellipses). Right: Increased region of attrac-
tion VN(x0, 0) ≤ V (dots) and exemplary open-loop solution x∗(·|0) (dashed).©2018
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the improved theoretical bounds on N in Theorem 4.5 can still be quite conservative.
If we use the approach in Theorem 4.37 with M = 1, we obtain cM,M+1 ≈ 1 and thus

local stability can be ensured for NM =
log(γ)

log(γ)−log(γ−1) = 66, improving the bounds in
Theorem 4.5 by a factor 2. If we further increase M to 10 we get cM,M+1 = 0.075 and thus
N2 =

log(γcM,M+1)
log(γ)−log(γ−1) ≈ 10.8. This is a significant decrease in the overall prediction horizon

N + M and thus the computational complexity to ensure local stability.

Remark 4.91. (Alternative MPC solutions) To apply the methods in [23, 91], one has to
construct terminal sets and costs along the reference trajectory. Those approaches require offline
computations for an explicit reference trajectory. As a consequence, online changes in the
reference trajectory are hard to deal with. On the other hand, the guarantees for the tracking
MPC without terminal ingredients (Sec. 4.1) are valid for all feasible reference trajectories r
(Ass. 4.15), assuming that the cost controllability (Ass. 4.4) is validated for all feasible reference
trajectories. It is also possible to use parametrized terminal ingredients based on the design in
Section 3.1. However, the resulting terminal cost can be conservative (γ = 21 vs. cu = 62) and
the offline design can be time consuming.

We considered a nonlinear constrained trajectory tracking problem and showed the
applicability of the theoretical results in Section 4.1. We demonstrated that the results
in Theorem 4.5 significantly improve the bounds in [37] (N ≥ 200 vs. N ≥ 805). In
addition, the LP analysis in Remark 4.32 further improved the bounds in Theorem 4.5
(N ≥ 81 vs. N ≥ 132). Based on the extended horizon MPC formulation (cf. Thm. 4.37),
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the lower bounds on the prediction horizon could again be significantly reduced (e.g.,
M = 1, NM ≥ 66 vs. N ≥ 132). Thus, the benefits of the derived theoretical results
(Thm. 4.5, Rk. 4.32, Thm. 4.37) in terms of less conservative performance bounds for
nonlinear MPC without terminal ingredients has been demonstrated. However, this
numerical example also demonstrates potential sources of conservatism regarding the
theoretical guarantees.

4.5.3 Output regulation and and offset-free tracking

In the following example, we demonstrate the applicability of the output regulation
MPC (Sec. 4.2) to nonlinear offset-free tracking MPC using both, the pure output cost
formulation (Sec. 4.2.2) and the incremental input formulation (Sec. 4.2.3). We consider
the following nonlinear model of a cement milling circuit taken from [174]:

0.3ẋ1 =− x1 + (1− α(x2, u2))φ(x2),

ẋ2 =− φ(x2) + u1 + x3,

0.01ẋ3 =− x3 + α(x2, u2)φ(x2),

φ(x2) =max{0,−0.1116 · x2
2 + 16.50x2},

α(x2, u2) =
φ0.8(x2) · u4

2

3.56 · 1010 + φ0.8(x2) · u4
2

,

with x ∈ R3, u ∈ R2. The discrete-time model is computed using the 4th order Runge
Kutta method and a sampling time of one minute22. The system is subject to compact
input constraints and no state constraints with Z = X×U = Rn × [80, 150]× [165, 180].
The output is given by y = (x1, x3)− (w1, w2), where w corresponds to the constant
output reference w = (110, 425).

In the following, we briefly show that the considered assumptions hold on the subset
x2 ∈ [45, 55], w ∈W = [100, 120]× [410, 430], which provides a sufficiently large region
of attraction. First, the unique solution to the regulator equations (Ass. 4.39) can be

22The time unit in the model is hours.
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analytically computed as

πx(w) =

[
w1, 73.9−

√
5.5 · 103 − 8.9(w1 + w2), w2

]>
,

πu(w) =

[
w1, 434

(
w2

w1

)0.25

(w1 + w2)
−0.2

]>
,

which is also Lipschitz continuous on the considered region. The plant is open-loop
incrementally stable and hence trivially satisfies the incremental stabilizability condition
(cf. Definition 4.44). In particular, we computing (via gridding) a constant contraction
metric [169, 178], which corresponds to a quadratic incremental Lyapunov function Vδ (cf.
App. C). Correspondingly, the system also trivially satisfies the detectability condition
(Ass. 4.62) with Vo = Vδ. Furthermore, one can show that the system is flat and contains
no zero-dynamics. Hence, the conditions regarding the minimum-phase property
(Ass. 4.46–4.48) are trivially satisfied. Similarly, the nonresonance condition (Ass. 4.63)
follows due to the absence of zero-dynamics (cf. the discussion in Section 4.2.3) and
a corresponding quadratic incremental storage function VR can be computed similar
to [245, 270]. Hence, we have shown that all the considered assumptions hold. However,
due to the complexity of the system the resulting bounds on the sufficiently long
prediction horizon N from the derived theorems are too conservative to be applied.
Thus, we simply implement the two MPC schemes (Sec. 4.2.2/Sec. 4.2.3) with N = 6,
Q = I2 and R = 0/R = 10−2 · I2.

The resulting closed loop for xp(0) = (120, 55, 450) can be seen in Figure 4.4. Both
MPC formulations smoothly track the output reference, while satisfying the active input
constraints. If we compare the MPC formulation with and without input regularization
(Sec. 4.2.2/Sec. 4.2.3) , the resulting closed-loop state trajectories are almost indistin-
guishable, while the absence of input regularization leads to more aggressive control
inputs.

Noisy error feedback and inherent robustness

Now we consider more the realistic scenario of noisy error feedback as discussed in
Remark 4.43, i.e., only noisy output measurements ỹ = y + η are available, with η

uniformly distributed in [−1, 1]2. As in [174], we design an extended Kalman filter (EKF)
as an observer and implement the output regulation MPC in a certainty equivalent
fashion, compare [JK19, App. B] for details. The EKF uses an initial variance of
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Figure 4.4. Offset-free tracking with state feedback (left) and noisy error feedback (right):
With incremental input regularization (solid) and without input regularization (dotted).
From top to bottom: u1 (magenta), u2 (black), x1 (red), x2 (green), x3 (blue). Output
reference (w1, w2) = (110, 425) and input constraints are dashed. Time in minutes.©2021

IEEE.
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Σ = 100 · In and unit variance for noise and disturbances in the design. The initial state
estimate is given by x̂(0) = (x̂p(0), ŵ(0)) = (100, 50, 400, 100, 400). The resulting closed
loop can be seen in Figure 4.4. We can see that for both MPC formulations the control
performance is rather insensitive to the noise and estimation error. The resulting closed-
loop state trajectories for the two MPC formulations are almost indistinguishable, while
the absence of input regularization leads to more aggressive control inputs, especially
in u1.

Discussion

The main benefit of the proposed approach is its simplicity. For the implementation, we
only require a prediction model, input and output weights Q, R, and a sufficiently long
prediction horizon N needs to be chosen. In case of error feedback, we additionally
need to design a stable observer, e.g., here an EKF. Most importantly, the proposed
design does not require any complex offline computations. This is in contrast to most
approaches for output regulation (cf. [53, 89, 176, 222]), that typically first need to
compute a solution to the regulator equations (4.56), which is in general non-trivial.
Furthermore, compared to classical approaches to output regulation (cf., e.g., [53, 222]),
the proposed approach offers a large region of attraction despite the presence of hard
input constraints.

We note that at least in the nominal state feedback case, the tracking MPC formulations
in Section 3.2 are also applicable to this problem and can guarantee stability with a short
prediction horizon N, even in case of unreachable trajectories (Ass. 4.39 does not hold).
Compared to such tracking MPC formulations with artificial references, the proposed
approach has the following advantages:

(a) No complex offline design for terminal ingredients,

(b) No feasibilities issues and strong stability properties in the noisy error feedback
case due to the absence of terminal constraints,

(c) A larger region of attraction,

(d) No additional decision variables to compute the optimal mode of operation
x = πx(w) online, especially in case T 6= 1.

Thus, the proposed output regulation MPC has practical benefits compared to classical
output regulation methods (cf. [53, 222]) and competing tracking MPC formulations (cf.
Sec. 3.2).
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4.5 Numerical examples

4.5.4 Unreachable reference trajectories and linear systems

In the following, we study a linear system with an unreachable reference trajectory
to illustrate the theoretical results in Section 4.3. We consider an asynchronous motor
with the parameters23 from [54], and the sampling time of Ts = 0.1ms. This model
corresponds to a linear system subject to ellipsoidal constraints

x+ =Ax + Bu, x =
(

is,α, is,β, Ψr,α, Ψr,β

)
, u =

(
us,α, us,β

)
,

Z =
{
(x, u) | i2

s,α + i2
s,β ≤ i2

, Ψ2
r,α + Ψ2

r,β ≤ Ψr, u2
s,α + u2

s,β ≤ u2
}

,

with the stator current is,αβ, the rotor flux Ψr,αβ, and the input voltage u.

Periodic operation

Typically, induction machines are controlled in the rotated dq-frame, in which the
system is described by nonlinear differential equations. In the αβ-frame, we have a
linear system and stationary operation is described by a periodic trajectory. Thus, we
can transform a nonlinear setpoint stabilization problem into a linear reference tracking
problem.

For the reference tracking MPC we use the stage cost Q = I4, R = I2, which implies
γ = 2.5 using Proposition 4.20 and the LQR (cf. Sec. 4.4.3). Based on Theorem 4.5, the
prediction horizon N > NV = M ≈ 3.7 is sufficient for local (V = γε) stability of the
periodic operation. Note that using the formula from Remark 4.30 with γ2 = 2.22, we
can guarantee (local) stability for any horizon N ∈ I≥1.

An exemplary plot of two periodic trajectories with the local region of attraction
(V∞(x, t) ≤ γε) projected on the stator current is,αβ can be seen in Figure 4.5. We want
to focus on the problem of transitioning from one periodic operation to another.

Changing mode of operation and unreachable reference trajectory

In order to transition from one reachable periodic trajectory to another, one can generate
a reference trajectory connecting the two periodic trajectories. In practice, computing a
reachable reference trajectory can be a difficult task24. Thus, as a reference trajectory

23To simplify the following derivations, the stator flux Ψs is scaled by a factor of 103 and the input voltage
is scaled by a factor of 10. The angular velocity ω is constant. We consider the constraints i = 1,
Ψr = 284, and u = 0.02.

24It is possible to compute a connecting reference trajectory in the dq-frame based on a flatness property
of the asynchronous motor, compare, e.g., nonlinear constrained trajectory optimization based on
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Figure 4.5. Phase plot stator current is,αβ: two periodic reference trajectories (solid) with
(projected) local region of attraction V∞(x, t) ≤ γε (ellipses). Each corresponds to a
specific operation point in the dq-frame.©2018 IEEE

xr we linearly interpolate between the two trajectories over T = 1800 steps creating
an almost reachable reference trajectory. Correspondingly, there exists an optimal
reachable25 reference trajectory xT (Problem 4.69). Theorem 4.79 can be used26 to ensure
local practical stability of the optimal reachable trajectory xT if a sufficiently large
prediction horizon N is used. In Figure 4.6, we can see the (partially) unreachable
reference trajectory xr, the optimal reachable trajectory xT and the local region of
attraction ScT . In addition, an exemplary closed-loop simulation with N = 10 can be
seen, which practically tracks the optimal reference trajectory xT. An alternative, naive,
method would be to directly change the reference trajectory at some point t, for which
reliable theoretical guarantees are hard to obtain and practical simulations also lead to
unsatisfactory results27.

flatness in [97].
25Problem 4.69 is originally based on periodic reference trajectories. As discussed in Remark 4.83,

nonperiodic trajectories can be treated as periodic trajectories over any finite-time span.
26Theorem 4.79 with the simplifications in Section 4.4.2 requires a prediction horizon of N ≥ Ñ1 ≈ 5 · 106,

which is quite conservative. This conservatism is due to the conservative bound C used in the turnpike
property (Lemma 4.77).

27Theorem 4.5 can be used to analyse the region of attraction. Due to the large distance between the
trajectories and the presence of hard state and input constraints, we have VN(x0, 0) ≈ 1010ε and
thus we would require a prediction horizon N ≈ 1010, which is unrealistic. Also numerically we
find that even with relatively large horizons (N = 400), there exists no point kx ∈ I[0,N−1] with
`(kx|t) ≤ ε. If we simply implement this method with a prediction horizon of N = 10, the MPC
has in general undesirable non-smooth operation accompanied by numerical difficulties stemming
from active nonlinear state and input constraints, and we experience repeated feasibility issues and
constraint violations.
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Figure 4.6. Phase plot stator current is,αβ: unreachable reference trajectory xr (blue,
solid) connecting two periodic reference trajectories, optimal reachable trajectory xT
(red, dashed-circle) with (projected) local region of attraction ScT (red ellipses) and
closed-loop MPC trajectory xMPC (black, dashed).©2018 IEEE

Discussion

We have demonstrated that the simple reference tracking MPC formulation (Alg. 4.2)
ensures practical tracking of the unknown optimal reachable trajectory xT. Thus, we have
provided a method to enable operation changes without complex design procedures.
Note that most other reference tracking approaches [23, 91] are unsuited to track such
an unreachable, nonperiodic reference trajectory. Furthermore, MPC formulations based
on periodic artificial reference trajectories (cf. Sec. 3.2) would experience computational
challenges due to the long period length, with a possible exception being the partially
decoupled approach from Section 3.2.3.

4.6 Summary

In this chapter, we analysed the closed-loop properties of simple MPC formulations
for dynamic operation of nonlinear constrained systems, complementary to the MPC
design methods proposed in Chapter 3. In particular, we analysed tracking MPC formu-
lations without terminal ingredients for reachable and unreachable reference trajectories
(Sec. 4.1/Sec. 4.3) and output regulation (Sec. 4.2). In all the considered cases, we
ensured desired closed-loop properties (constraint satisfaction, stability, performance),
given suitable system properties (stabilizability, detectability, nonresonance, etc.) and
lower bounds on the prediction horizon N. In particular, we provided corresponding
formulas relating a desired guaranteed performance αM, αM,ν, αN,M, θ̃(N) (w.r.t. the
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Chapter 4 Analysis of MPC schemes for dynamic operation without offline design

infinite horizon optimal solution) and region of attraction XV , XY to a sufficiently large
prediction horizon NV , NY, NY,ν. In addition, we provided various improvements over
existing theoretical bounds for MPC without terminal ingredients, such as considering
local stabilizability conditions (Sec. 4.1.2, Sec. 4.3.2), analysis based on stage cost observ-
ability (Sec. 4.1.3), and analysis based on an extended horizon M (Sec. 4.1.5), compare
footnote 1. We demonstrated the practicality of the theoretical analysis using numerical
examples (Sec. 4.5).
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Conclusions

In the following, we summarize the main results of this thesis, discuss the respective
advantages of the two complementary MPC frameworks proposed in Chapters 3 and 4,
and mention possible directions for future research.

5.1 Summary

This thesis addressed the problem of dynamic operation of nonlinear constrained
systems. We presented two complementary MPC frameworks, each with corresponding
design methods and theoretical analysis tools, in order to address the challenges
associated with dynamic operation. In the first framework (Chap. 3), we focused
on novel design procedures and MPC formulations, while in the second framework
(Chap. 4), we considered simple MPC formulations (without terminal ingredients) and
derived system theoretic conditions on the control problem that ensure the desired
closed-loop properties.

Design procedures

In Chapter 3, we investigated constructive design procedures to enhance existing MPC
formulations to ensure applicability and high performance for dynamic problems. We
first considered the problem of tracking a reachable reference trajectory and discussed
some of the practical limitations of the existing design methods. In order to overcome
these limitations, we presented a reference generic offline design procedure (Sec. 3.1),
resulting in parametrized terminal ingredients, which are valid for any reachable
reference trajectory. The main idea was to recast the offline design problem equivalent
to a gain-scheduling problem for quasi-LPV systems by suitably parametrizing the
Jacobian of the dynamics and the terminal ingredients. This allowed us to use the
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rich literature for LPV systems and derive an SDP, which only needs to be solved once,
irrespective of changes in the reference trajectory.

As a second contribution in Chapter 3, we considered unreachable output target
signals, which may be subject to unpredictable changes online (Sec. 3.2). In order to
address these challenges, we extended the previous trajectory tracking MPC formula-
tion using artificial reference trajectories and restricted the MPC formulation to periodic
trajectories. This MPC formulation can directly incorporate the parametrized terminal
ingredients and thus avoid conservative terminal equality constraints. Given relatively
general conditions on the terminal ingredients and a convexity condition, we proved
exponential stability of the optimal reachable trajectory. We extended this MPC for-
mulation using an online optimized terminal set size and reference constraint set to
improve performance. In order to address the computational complexity associated
with long artificial periodic reference trajectories, we introduced a partially decoupled
MPC formulation, which provides a partial time scale separation between trajectory
planning and tracking.

As a third contribution in Chapter 3, we studied a more general dynamic control
problem with an economic objective (Sec. 3.3). We combined the MPC formulation using
artificial periodic reference trajectories with a purely economic objective and avoided
the use of any positive definite tracking cost. Thus, the considered formulation is
purely economically oriented and can yield a better transient performance than tracking
formulations. In order to arrive at the desired performance guarantees, we required
stronger assumptions on the terminal ingredients, a self-tuning weight for the artificial
reference and an additional technical modification to avoid potential pitfalls in the
periodic economic setting.

Since Chapter 3 involves different design procedures with potential performance
benefits, we included many nonlinear numerical examples to study the practicality
and performance benefits of the proposed formulations (Sec. 3.4). In particular, we
demonstrated significant performance improvements when using parametrized terminal
ingredients and an online optimized terminal set size (Sec. 3.4.1). We show that the
partially decoupled reference updates allow for a tunable reduction in the computational
complexity with small performance degradation (Sec. 3.4.2). We establish substantial
economic performance benefits for the proposed economic formulation (Sec. 3.4.3–3.4.4).

In conclusion, the results presented in Chapter 3 provide a collection of design
methods and ensure highly performant dynamic operation using MPC.
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5.1 Summary

Analysis methods

In Chapter 4, we studied the closed-loop properties of simple and intuitive MPC
formulations for dynamic operation. In particular, we considered MPC formulations
without terminal ingredients, which require no offline design and are hence easy
to implement. We first considered the problem of tracking a reachable reference
trajectory using an MPC without terminal ingredients (Sec. 4.1). If the system is locally
incrementally stabilizable, then the problem satisfies a local cost controllability condition
for any reachable reference trajectory and thus exponential stability can be guaranteed
using a sufficiently large prediction horizon N. We extended this analysis to positive
semidefinite input-output stage costs ` using a suitable detectability/observability
condition and a modified proof. In order to allow for shorter prediction horizons, we
also studied the closed-loop properties with an extended prediction horizon based on a
known control law κ.

As a second contribution, we considered the problem of output regulation, where
an output reference is generated by an exosystem (Sec. 4.2). The considered MPC
formulation does not require the solution of the regulator/FBI equations and instead
implicitly tracks the output-zeroing regulator manifold. Our analysis revealed that
an additional minimum-phase property is crucial to provide closed-loop guarantees.
Since this simple formulation may result in stability issues in case of unstable zero
dynamics, we also proposed an input regularization for periodic problems to overcome
this limitation to minimum-phase systems. With this modified formulation, we derived
the desired guarantees under a suitable detectability condition (i-IOSS) and a technical
nonresonance condition.

Finally, as a third contribution, we studied the properties of the previous trajectory
tracking MPC formulation in case the reference trajectory is not reachable (Sec. 4.3). We
derived sufficient conditions such that the simple tracking MPC formulation (practically)
stabilizes the best reachable trajectory if a sufficiently long prediction horizon N is
employed. This result was derived using tools from economic MPC, such as uniqueness
conditions in terms of dissipation inequalities.

In the special case of linear system dynamics, the conditions for the theoretical results
in Chapter 4 reduce to standard system properties, such as detectability, stabilizability
and conditions on the zeros of the transfer matrix (Sec. 4.4). We illustrated the theoretical
results and their practical applicability with numerical examples (Sec. 4.5). In addition,
we quantitatively compared the derived stability and performance bounds to state of
the art results.
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In conclusion, Chapter 4 provides a variety of analysis methods that guarantee sta-
bility and a desired performance with simple MPC formulations without any complex
design procedures merely on the basis of system theoretic properties (e.g., incremen-
tal stabilizability, detectability, minimum-phase). This chapter also contains various
improved bounds for MPC without terminal constraints based on local stabilizability
conditions, positive semidefinite stage costs and extended prediction horizons that may
be of independent interest.

5.2 Discussion

In the following, we elaborate on the complementary nature of the theoretical results in
Chapters 3 and 4, and more generally on MPC formulations with and without terminal
ingredients for nonlinear dynamic problems.

In both chapters, we first considered the problem of tracking a reachable reference
trajectory (cf. Sec. 3.1/4.1). In both MPC approaches, we require the same system
property, namely (local) incremental stabilizability (cf. Def. 4.18, Prop. 4.20, Rk. 4.21). The
main difference is the fact that the design in Section 3.1 requires an explicit computation
of a local CLF Vf, while the MPC approach in Section 4.1 only requires a scalar bound
γ > 0 on Vf (cf. Prop. 4.20), which is often easier to compute (cf. App. C). However, this
simpler design may come at the price of performance degradation or the requirement
to use a long prediction horizon N, compare the numerical example in [JK15]. This
is analogous to the standard trade-off faced when choosing an MPC scheme with or
without terminal ingredients for setpoint stabilization, compare [188]. We point out that
Section 4.1.5 offers an intermediate solution which only requires the offline design of
a stabilizing feedback κ and ensures stability with a shorter prediction horizon N. An
important difference compared to the standard problem of stabilizing a given steady-
state is that both the design of the terminal ingredients (Sec. 3.1) and the verification
of the cost controllability condition (cf. Sec. 4.1.4, App. C) are more challenging in the
considered case of dynamic operation.

Although the setups considered in Sections 3.2 and 4.2 are not equivalent, both setups
include tracking of periodic output signals as an important special case. In particular,
the uniqueness condition used in Section 3.2 (cf. Ass. 3.29) is essentially equivalent to
the nonresonance condition (Ass. 4.63) used in Section 4.2.3, compare Remark 4.68. A
first distinction can be made regarding the class of reference trajectories or target signals.
The approach in Section 3.2 naturally accommodates unreachable target signals and
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sudden changes in the state of the exosystem. Although unpredictable changes in the
reference can generally lead to feasibility issues for the MPC formulation in Section 4.2,
for many practical problems (no state constraints, incrementally stable) we can retain
the theoretical properties due to the absence of terminal constraints (cf. [JK19, App. B]).
In case of unreachable reference trajectories (Ass. 4.15/4.39 does not hold), we can
still provide guarantees without artificial references (Sec. 4.3), but this result requires
dissipation conditions, which are difficult to verify, and potentially a significantly longer
prediction horizon N. On the other hand, for minimum-phase systems, the approach
presented in Section 4.2 is not limited to periodic trajectories and can be directly applied
to general time-varying reference trajectories. Furthermore, even if the underlying
problem is periodic, the complexity of the MPC formulation in Section 4.2 does not
directly depend on the period length T, while the approach in Section 3.2 explicitly
computes a T-periodic reference trajectory. This complexity limitation was also the main
motivation to provide the partially decoupled formulation (Sec. 3.2.2), which can reduce
this problem.

The last and most general control problem considered in this thesis concerns optimal
dynamic operation with an economic stage cost `eco. In Section 3.3, we presented an
economic MPC formulation with guaranteed performance, which requires no prior
assumptions on the optimal mode of operation. The main limitation of this approach
is the fixed period length T used for the artificial reference trajectory. Although we
did not study the general economic case in Chapter 4, the analysis in Section 4.3
regarding unreachable reference trajectories can be extended to general time-varying
economic problems, compare [128, 129, 130]. The main benefit of such an economic
MPC formulation without terminal ingredients is that the approach can be directly
applied to general time-varying problems and is not limited to performance guarantees
w.r.t. periodic operation. However, the corresponding performance guarantees may
require a very long prediction horizon N and use a turnpike property w.r.t. a specific
trajectory (cf. overtaking optimality in [128]). This turnpike property holds for example
in case of linear systems with strictly convex cost (cf. Sec. 4.4.2 and [130]), but does not
necessarily hold for general nonlinear time-invariant problems [210].

Overall, the results of Chapters 3 and 4 consider similar problems (trajectory tracking,
output regulation, economic operation) and the resulting MPC formulations have
different advantages and disadvantages. The MPC formulations from Chapter 3 typically
require an explicit offline design procedure and are often restricted to periodic problems,
with potential scalability issues for very long period lengths T. However, neither short
prediction horizons N nor unreachable reference targets pose a problem for the MPC
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formulations in Chapter 3. On the other hand, the MPC formulations from Chapter 4

often require a significantly longer prediction horizon N and some of the conditions
may be difficult to verify a priori, but the approaches are directly applicable to general
time-varying problems and can “find” the optimal mode of operation in closed loop.
This shows the complementary nature of the two MPC frameworks presented in this
thesis, each with their own respective advantages.

5.3 Outlook

In this thesis, we provided analysis results and design procedures for dynamic operation
with MPC, based on which additional future research topics can be pursued.

In this thesis, we neglected issues regarding external disturbances and uncertain
predictions. To account for such a model mismatch, robust MPC methods are required
to ensure recursive feasibility, compare, e.g., [33, 118, JK29, 160] and references therein.
First steps in this direction can be found in [JK15, App. B] and [JK30], where the tracking
MPC formulations in Sections 3.1 and 3.2 have been augmented with the (tube-based)
robust MPC approach from [JK17, JK29], which is based on incremental stabilizability
(Def. 4.18). Additionally, an analysis for this robust MPC formulation without terminal
ingredients can be found in [JK17], which is applicable to the trajectory tracking tracking
MPC in Section 4.1 in case of positive definite stage costs (Sec. 4.1.1). Initial robustness
results for the output regulation problem (Sec. 4.2) have been derived in [JK19, App. B],
but this issue requires further research. In particular, in the output regulation setting, the
overall system is not stabilizable and disturbances in the exosystem result in deviations
in the reference trajectory which complicates the closed-loop stability analysis. Hence,
in addition to the classical robustness issues considered in MPC, uncertainty in the
reference trajectory, as for example treated in [77, 88, 199], is largely an open problem.
For the economic MPC formulation in Section 3.3, the consideration of uncertain
predictions also requires additional attention. Specifically, in the economic setting robust
performance guarantees may require the usage of a cost function that takes uncertainty
into account [30, 31, 82, JK35, 271, 272]. Furthermore, in various applications such as
HVAC, additional uncertainty in forecasts and changing prices need to be taken into
account to guarantee closed-loop performance.

The results presented in this thesis have been derived based on the initial results in
Sections 3.1 and 4.1 for trajectory tracking. A natural extension of this work would be
to consider more general path-following MPC formulations [91, 94] (cf. also the recent
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works [28, 244]) which introduce an additional degree of freedom and can overcome
intrinsic performance limitations of tracking formulations [3, 4]. In this direction, the
reference generic offline computations (Sec. 3.1) could be extended to the path following
problem. Furthermore, although there exist some results for path-following MPC
without terminal ingredients [95, 194], a more general theoretical framework could be
derived in combination with the output regulation MPC from Section 4.2. In addition,
adopting a continuous-time parametrization for the periodic artificial trajectories used in
Sections 3.2–3.3 could significantly relax the periodicity condition, compare Remark 3.67

and [133].
The offline computation of the parametrized terminal ingredients (Sec. 3.1) could

be extended in multiple directions. Improving the scalability of the SDP (Lemma 3.13,
Prop. 3.15), e.g., by using distributed formulations similar to [60, 279], would be valu-
able. A more detailed investigation regarding the alternative LDI-based formulation
(cf. Rk. 3.23) would be of interest to make the approach applicable to a broader class
of nonlinear systems and easier to automate by avoiding difficulties in computing α1

(cf. (3.26) and Prop. 3.11). Quantitative/numerical comparisons regarding the perfor-
mance/conservatism of the quadratically parametrized terminal cost Vf (Sec. 3.1.3) and
the finite-tail cost Vf,M (Sec. 4.1.5) would also be of practical relevance. Furthermore,
exploring the applicability of the proposed offline procedure to other control problems,
such as computing invariant sets for reference governors (cf. Rk. 3.34), verifying de-
tectability for moving horizon estimation (MHE) [14, 147, 205], and developing robust
MPC formulations (cf. App. C), is of interest.

Further investigations regarding the performance in case of changing reference signals
for the tracking MPC in Section 3.2 would be interesting (cf. [88]), in particular deriving
regret like bounds similar to [157, 214]. In addition, the issue of decoupling the
computational complexity from the period length T has been considered in Section 3.2.3,
but this problem deserves further research. Alternative solutions based on simplified
parametrizations of the artificial reference trajectory may prove useful, e.g., using
move-blocking [49, 115] or models of different granularity [27, 44]. In addition, the
corresponding theoretical properties in the economic case (Sec. 3.3) may require further
attention (cf. Rk. 3.83). Due to the similarities with contract-based MPC design (cf. [26,
90, 172]), it may be possible to extend the approach in Section 3.2.3 to derive hierarchical
and distributed MPC formulations with more flexible asynchronous communication
protocols.

Regarding the results in Chapter 4, the resulting bounds for a sufficiently long
prediction horizon N are sometimes too conservative to be applied in practice and
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thus less conservative bounds are desired. A promising avenue for less conservative
bounds is the extended prediction horizon MPC (Sec. 4.1.5). We conjecture the bounds
for the extended prediction horizon can be improved using an LP analysis analogous
to [120, 127] (cf. Rk. 4.32). Furthermore, an analysis of the extended prediction horizon
MPC (Sec. 4.1.5) for detectable/observable stage costs (Sec. 4.1.3) may be particularly
interesting for data-driven input-output models [1, JK3, JK4, JK5, JK6, JK7, 51, 65, 66,
180, 181, 182, 183], since the design of standard terminal ingredients is often non-trivial.

A further investigation into proofs for MPC without terminal ingredients that utilize
system properties like minimum-phase or do not use the value function as a Lyapunov
function (cf. [119], Sec. 4.1.2) may be promising. For example, a completely different
analysis regarding stability with short horizons may be possible with the output stage
cost `y for minimum-phase systems (cf. Rk. 4.54). In addition, it may be possible
to obtain practical heuristic tuning methods for stage costs ` = ‖y‖2 + λ‖u‖2. In
particular, for λ small, we expect guaranteed stability for minimum-phase systems and
thus automatic tuning methods like λ-tracking (cf. [46, 140]) may be applicable to MPC.
We point out that we can also define an appropriate output y = Cx + Du to guarantee
the minimum-phase property (cf. zero assignment problem [25, Sec. 4.5.1]) and thus
obtain a systematically motivated way to design the stage cost.

Regarding the output regulation problem (Sec. 4.2), it would be interesting to further
generalize some of the assumptions to derive necessary and sufficient conditions (e.g.,
using converse Lyapunov theorems for i-IOSS). In particular, considering a more general
characterization of the minimum-phase property (independent of the BINF) would be
interesting, e.g., based on output-input stability [158] or dissipation inequalities similar
to [84]. Furthermore, for the error-feedback case (Rk. 4.43) the consideration of more
general nonlinear bounds in the proof would be interesting.

The results in Section 4.3 are largely an extension of existing approaches for economic
MPC without terminal constraints, which require more research to address some of
the practical issues. In particular, the resulting guarantees are often only of conceptual
nature and the exact bounds on the prediction horizon are too conservative to be applied
in practice (since the bound on the storage function λ can be very large, even for linear
problems). This limitation can be reduced by modifying the MPC optimization problem
(cf. [291] or [8]). Extending such approaches to dynamic problems is both theoretically
and practically an interesting open problem.

In conclusion, the results derived in this thesis open up various research directions
regarding novel MPC design and analysis methods, which are relevant for dynamic
operation of nonlinear constrained systems using model predictive control.
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Appendix A

Suboptimality estimates for MPC with
terminal ingredients

In the following, we briefly derive suboptimality estimates αN ∈ (0, 1] w.r.t. infinite-
horizon performance for MPC with terminal ingredients. We point out that similar
suboptimality estimates can be found in [131, Thm. 6.2/6.4] and [126, Thm. 5.22],
considering an additional non-vanishing constant η > 0 bounding the difference between
the terminal cost Vf and the infinite-horizon optimal cost V∞. Furthermore, in [121,
Thm. 6.6], for N large enough, a suboptimality bound based on relatively general
conditions is derived. The following (simple) exposition shows that for any horizon N ∈
I>0, for conditions comparable to the literature for MPC without terminal ingredients
(cf. [120, 123, 127]), MPC with terminal ingredients also guarantees a suboptimality
index αN > 0 w.r.t. the infinite horizon optimal performance.

We consider the setup from Section 2.1, with the following simplifying conditions.

Assumption A.1. Assumptions 2.3–2.5 hold with αf = αV = γα` with a constant γ ≥ 1.
Furthermore, Xf = X.

We point out that assuming Xf = X is comparable to considering the asymptotic
controllability condition (Assumption 2.9) on the full state space. Both conditions can
be relaxed using sublevel set arguments, compare, e.g., [37] and Section 4.1. The linear
bound γ is naturally satisfied if the stage cost ` and the terminal cost Vf are quadratic.

The following theorem provides suboptimality estimates for MPC with terminal
ingredients.

Theorem A.2. Let Assumption A.1 hold. Then, for any N ∈ I>0, there exists a constant
αN ∈ (0, 1] such that for any x0 ∈ X, the closed-loop system (2.3) resulting from Algorithm 2.2
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satisfies the following performance bound:

J cl
∞ (x0) :=

∞

∑
t=0

`(x(t), u(t)) ≤ VN(x0) ≤
V∞(x0)

αN
.

Furthermore, limN→∞ αN = 1.

Proof. Given an initial condition x0 ∈ X, denote an infinite horizon optimal trajectory
as x∞(k), u∞(k), k ∈ I≥0 with V∞(x0) = ∑∞

k=0 `(x∞(k), u∞(k)). Since Xf = X, the initial
part of this trajectory is a feasible candidate solution to Problem 2.1, implying

VN(x0) ≤ V∞(x0) + Vf(x∞(N)). (A.1)

Assumption A.1 ensures that V∞(x) ≤ Vf(x) ≤ γ`min(x) for all x ∈ X. Using standard
arguments from MPC without terminal ingredients (cf. Sec. 4.1.2, [123, Variant 2]), this
implies that the optimal solution satisfies

Vf(x∞(N)) ≤ γV∞(x∞(N)) ≤ ρ2N
γ γV∞(x0), (A.2)

with ρ2
γ :=

γ− 1
γ
∈ [0, 1). Combining (A.1)–(A.2), we arrive at

VN(x0) ≤ (1 + ρ2N
γ γ)V∞(x0) =:

1
αN

V∞(x0).

Note that for any N ∈ I>0, we have αN > 0 and furthermore, limN→∞ αN = 1. �

Similar derivations for a more general setup can be found in Theorem 4.37.
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Appendix B

Terminal ingredients - extensions

In the following, we discuss how the derivation in Section 3.1 can be extended to deal
with an output tracking stage cost `. This section is based on and taken in parts literally
from [JK15, App. D]1.

As an alternative to the quadratic stage cost in (3.3), consider the following output
reference tracking stage cost

`(x, u, r) = ‖h(x, u)− h(xr, ur)‖2
S(r), (B.1)

with a nonlinear twice continuously differentiable output function h : Z→ Y, Y ⊆ Rny

and a continuously parametrized positive definite weighting matrix S : Zr → Rny×ny .
Such a stage cost can be used for output regulation, output trajectory tracking, output
path following or manifold stabilization, compare [91, 94] and Sections 4.1–4.2. In
addition, the design of terminal ingredients for economic stage costs (cf. Sec. 3.3.5) also
builds on the following derivation.

We denote the Jacobian of the output h around an arbitrary point r ∈ Zr by

C(r) =
[

∂h
∂x

]∣∣∣∣
(xr,ur)

, D(r) =
[

∂h
∂u

]∣∣∣∣
(xr,ur)

.

The following lemma establishes sufficient conditions for Assumptions 3.5–3.6 with the
stage cost (B.1) based on the Jacobian, similar to Lemma 3.12.

Lemma B.1. Suppose that f , h are twice continuously differentiable. Assume that there exists a
continuously parametrized matrix K : Zr → Rm×n and a continuously parametrized positive
definite matrix P : Zr → Rn×n such that for any (r, r+) ∈ R, the following matrix inequality

1J. Köhler, M. A. Müller, and F. Allgöwer. “A nonlinear model predictive control framework using
reference generic terminal ingredients.” In: IEEE Trans. Automat. Control 65.8 (2020). extended version:
arXiv:1909.12765, pp. 3576–3583©2019 IEEE.

239



Appendix B Terminal ingredients - extensions

is satisfied

(A(r) + B(r)K(r))>P(r+)(A(r) + B(r)K(r))− P(r) (B.2)

�− (C(r) + D(r)K(r))>S(r)(C(r) + D(r)K(r))− ε̃In

with some constant ε̃ > 0. Then, there exists a sufficiently small constant α > 0 such that
Vf(x, r) = ‖x− xr‖2

P(r), kf(x, r) = ur + K(r) · (x− xr), Xf = {(x, r) ∈ X×Zr | Vf(x, r) ≤
α} satisfy Assumptions 3.5–3.6.

Proof. A first order Taylor approximation at r = (xr, ur) yields

h(x, kf(x, r))− h(xr, ur) = (C(r) + D(r)K(r))∆x + Φ̃(∆x, r),

with the remainder term Φ̃ and ∆x = x− xr. The stage cost satisfies

`(x, kf(x, r), r) ≥‖(C(r) + D(r)K(r))∆x‖2
S(r) + ‖Φ̃(∆x, r)‖2

S(r) (B.3)

− 2‖Φ̃(∆x, r)‖S(r)‖(C(r) + D(r)K(r))∆x‖S(r).

Given continuity and compactness, there exists a constant

cy := max
r∈Zr
‖C(r) + D(r)K(r)‖S(r), (B.4)

and we consider w.l.o.g.2 c2
y ≥ ε̃/2. For a sufficiently small α > 0, the remainder term

Φ̃ satisfies the following (local) Lipschitz bound for all (x, r) ∈ Xf:

‖Φ̃(∆x, r)‖S(r) =: L̃x,r‖∆x‖, (B.5)

L̃x,r ≤ L̃Φ := cy −
√

c2
y − ε̃/2. (B.6)

2In case ε̃/2 ≥ c2
y, the following derivation yields the same bound using Lx,r(Lx,r − 2cy) ≤ −c2

y ≤ −ε̃/2.
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This implies

`(x, kf(x, r))
(B.3),(B.5)
≥ ‖(C(r) + D(r)K(r))∆x‖2

S(r) + L̃2
r,x‖∆x‖2 − 2L̃r,x‖∆x‖2‖C(r) + D(r)K(r)‖S(r)

(B.4)
≥ ‖(C(r) + D(r)K(r))∆x‖2

S(r) + L̃r,x(L̃r,x − 2cy)‖∆x‖2

(B.6)
≥ ‖(C(r) + D(r)K(r))∆x‖2

S(r) + L̃Φ(L̃Φ − 2cy)‖∆x‖2

(B.6)
= ‖(C(r) + D(r)K(r))∆x‖2

S(r) − ε̃/2‖∆x‖2.

The second to last step follows by using the fact that the function L(L− 2cy) attains it
minimum for L ∈ [0, L̃Φ] at L = L̃Φ < cy. Combining the derived bound on `(x, kf(x, r))
with (B.2) ensures that the terminal cost Vf satisfies Inequality (3.15) in Lemma 3.12 with
the modified stage cost and with ε = ε̃/2. The remainder of the proof is analogous to
Lemma 3.12. �

Remark B.2. (Special case: quadratic cost) For the linear output h(x, u) = (Q1/2x, R1/2u)> ∈
Rn+m and S = In+m, we recover the conditions in Lemma 3.12 with the quadratic stage
cost (3.3).

Lemma B.3. Suppose that there exist continuously parametrized matrices X : Zr → Rn×n, Y :
Zr → Rm×n and Xmin ∈ Rn×n that satisfy the following constraints

min
X(r),Y(r),Xmin

− log det Xmin (B.7a)

s.t.


X(r) (A(r)X(r) + B(r)Y(r))> (C(r)X(r) + D(r)Y(r))>

√
ε̃X(r)

∗ X(r+) 0 0
∗ ∗ S−1(r) 0
∗ ∗ ∗ In

 � 0,

(B.7b)

Xmin � X(r), ∀(r, r+) ∈ R. (B.7c)

Then, P = X−1, K = YP satisfy (B.2) for all (r, r+) ∈ R.

Proof. The proof is similar to Lemma 3.13, compare also [40]. Define X(r) = P−1(r) and
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Y(r) = K(r)X(r). Multiplying (B.2) from left and right with X(r) yields

(A(r)X(r) + B(r)Y(r))>P(r+)(A(r)X(r) + B(r)Y(r))− X(r) + ε̃X(r)InX(r)

+ (C(r)X(r) + D(r)Y(r))>S(r)(C(r)X(r) + D(r)Y(r)) � 0.

This can be equivalently written as

X(r)−

A(r)X(r) + B(r)Y(r)
C(r)X(r) + D(r)Y(r)√

ε̃X(r)


>P(r+) 0 0

0 S(r) 0
0 0 In


A(r)X(r) + B(r)Y(r)

C(r)X(r) + D(r)Y(r)√
ε̃X(r)

 � 0.

Using the Schur complement, this reduces to (B.7), which is linear in X, Y. �

Similar to Proposition 3.15, we can obtain a tractable SDP, if in addition to the
parametrizations (3.20)–(3.21), the parameters θi are chosen such that

S−1(r) = S0 +
p

∑
i=1

θi(r)Si.

Proposition B.4. Let Condition (3.22) hold with Θ according to (3.23). Suppose that there exist
matrices Xi, Yi, i ∈ I[0,p], Λi, i ∈ I[1,p], Xmin that satisfy the following constraints

min
Xi, Yi, Λi, Xmin

− log det Xmin (B.8a)

s.t.


X(θ) (A(θ)X(θ) + B(θ)Y(θ))> (C(θ)X(θ) + D(θ)Y(θ))>

√
ε̃X(θ)

∗ X(θ+) 0 0
∗ ∗ S−1(θ) 0
∗ ∗ ∗ In

 (B.8b)

�
(

∑
p
i=1 θ2

i Λi 0
0 0

)
,

Xmin � X(θ), (B.8c)

∀(θ, θ+) ∈ vert(Θ), (B.8d) 0 (AiXi + BiYi)
> (CiXi + DiYi)

>

(AiXi + BiYi) 0 0
(CiXi + DiYi) 0 0

 � Λi, Λi � 0, i ∈ I[1,p].

(B.8e)
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Then, P = X−1 and K = YP satisfy (B.2).

Proof. The proof is analogous to Proposition 3.15 based on Lemma B.3. The con-
straint (B.8e) ensures multi-convexity. �

Remark B.5. (Stability properties) Depending on the output h and the reference r, there
may exist multiple solutions that achieve exact output tracking. Thus, we can in general not
expect stability of the reference r, but instead convergence to a corresponding set or manifold,
compare [91]. Stability can be ensured using additional assumptions regarding detectability of
the output h involving incremental input-output to state stability (i-IOSS) arguments, compare,
e.g., [JK3, Thm. 2], [236, Thm. 2.24] and also the results in Sections 4.1–4.2.
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Appendix C

Incremental system properties

The goal of this section is to concisely summarize some of the main theoretical results
in the literature regarding incremental system properties, especially in connection with
their application in MPC theory. The content of this section is largely a summary of the
relevant theoretical results in [18, 169, 178, 264] and a discussion regarding the relation
to conditions and design procedures in this thesis. First, we define incremental stability,
incremental Lyapunov functions, and contraction metrics. Then, we discuss control
contraction metrics, universal stabilizability and its relation to incremental stabilizability
(Def. 4.18). Furthermore, we contrast the SDP design for (local) incremental Lyapunov
functions (Sec. 3.1.3) with approaches from the literature on incremental stability and
contraction metrics. Finally, we discuss the applicability of incremental system properties
in the context of MPC.

Incremental stability

In the following, we define some standard concepts regarding incremental stability. We
consider a nonlinear discrete-time system

x(t + 1) = f (x(t), u(t)), x(0) = x0, (C.1)

with the state x(t) ∈ X = Rn, the control input u(t) ∈ U = Rm, the dynamics
f : X×U→ X, the initial condition x0 ∈ X, and the time step t ∈ I≥0. Given an initial
condition x ∈ X, and an input sequence u(·), we denote the system response with input
u at time t by φ(t, x, u(·)). We consider the following definition regarding incremental
stability, analogous to [18].

Definition C.1. (Incremental stability) System (C.1) is incrementally (globally) exponentially
stable, if there exist constants C ≥ 1, ρ ∈ [0, 1) such that for all u(·) ∈ U, all ξ, η ∈ X and all
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t ∈ I≥0, the following holds

‖φ(t, ξ, u(·))− φ(t, η, u(·))‖ ≤ Cρk‖ξ − η‖.

This definition implies that if the system is driven by some fixed input trajectory u(·),
then the state converges to a fixed trajectory (assuming existence), independent of the
initial condition. This system property is related to the notion of convergent dynamics [221].
Incremental stability can equivalently be characterized using an incremental Lyapunov
function Vδ : X×X→ R≥0 satisfying

cl‖x1 − x2‖2 ≤ Vδ(x1, x2) ≤cu‖x1 − x2‖2, (C.2a)

Vδ( f (x1, u), f (x2, u)) ≤ρ2Vδ(x1, x2), (C.2b)

for any (x1, x2, u) ∈ X × X ×U with constants cl, cu > 0, ρ ∈ [0, 1), compare [18,
Thm. 1], [264, Thm. 9]. We note that in [264] a time-varying system f with no input u is
considered and the resulting incremental Lyapunov function is time-varying. However,
in the continuous-time converse Lyapunov proof in [18] external signals are explicitly
considered and a time-invariant function Vδ is obtained. In the considered setting of
exponential stability, there exists a finite constant T ∈ I≥1 such that

Vδ(x1, x2) := sup
u(·)∈UT

T−1

∑
t=0
‖φ(t, x1, u(·))− φ(t, x2, u(·))‖2,

is a valid incremental Lyapunov function (cf. proof. Prop. 4.34). Incremental stability
can also be studied using the Jacobian and contraction metrics/differential Lyapunov
functions [108, 169]. Suppose f is continuously differentiable and denote the Jacobian of
f by

A(x, u) =
[

∂ f
∂x

]∣∣∣∣
(x,u)

, B(x, u) =
[

∂ f
∂u

]∣∣∣∣
(x,u)

.

The differential dynamics of system (C.1) are given by

δx(t + 1) = A(x, u)δx(t) + B(x, u)δu(t), (C.3)

where δx(t) ∈ Rn and δu(t) ∈ Rm are called the virtual displacement and correspond to
an infinitesimal displacement w.r.t. x, u. Uniform exponential stability of the differential
dynamics can be studied using a contraction metric [169] or equivalently a differential
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Lyapunov function [108].

Definition C.2. (Contraction metric) The system (C.1) is contracting with the contraction
metric M : X → Rn×n, if there exist constants c1, c2 > 0, ρ ∈ [0, 1) such that for all
(x, u) ∈ X×U, we have

c1 In � M(x) �c2 In (C.4a)

A>(x, u)M( f (x, u))A(x, u) �ρ2M(x). (C.4b)

Note that the conditions (C.4) correspond to Lyapunov inequalities for uniform expo-
nential stability of the differential dynamics (C.3) with the differential Lyapunov function
Vx(x, δx) = ‖δx‖2

M(x) and δu = 0, compare [108]. Condition (C.4b) is often equivalently
expressed in terms of the generalized Jacobian F(x, u) = Θ( f (x, u))A(x, u)Θ−1(x), with
M = Θ>Θ [169, 264].

In the considered case of exponential stability and continuously differentiable dynam-
ics, incremental stability (Def. C.1) is equivalent to the existence of a contraction metric
(Def. C.2) (cf. [111, 264]) and Vδ is also called a contraction analysis Lyapunov func-
tion [264]. In particular, given any two states x1, x2 ∈ X, denote the set of continuously
differentiable curves γ : [0, 1] → X with γ(0) = x1, γ(1) = x2 by Γ(x1, x2). Then, the
Riemannian energy function

Vδ(x1, x2) = inf
γ∈Γ(x1,x2)

(∫ 1

0

∂γ

∂s

∣∣∣∣>
s

M(γ(s))
∂γ

∂s

∣∣∣∣
s

)
ds, (C.5)

is a valid incremental Lyapunov function, i.e., Inequalities (C.2) hold. The minimizing
curve γ∗ is called the geodesic [178]. Under the conditions of the Hopf-Rinow theorem,
this geodesic exists and the Riemannian distance satisfies d(x1, x2) =

√
Vδ(x1, x2)

(cf. [178]). In case of a constant metric M ∈ Rn×n, the Riemannian energy is given by
the quadratic function Vδ(x1, x2) = ‖x1 − x2‖2

M and the geodesic γ∗ is a straight line,
compare also the results in [67, 221] regarding convergent dynamics and incremental
quadratic stability. We point out that earlier results regarding the equivalence of
differential stability and incremental stability for continuous-time systems can be found
in [111, Thm. 3.4], based on an operator view point using the Gâteaux derivative, which
results in an LTV system equivalent to (C.3). Note that Inequalities (C.4) are similar to
the matrix inequalities considered in Lemma 3.12 and correspondingly the approaches
discussed in Section 3.1.3 can be used to compute a contraction metric (SOS, LPV,
gridding,. . .).
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Incremental stabilizability

In the following, we consider the problem of designing a smooth feedback1 κ : X→ U

such that the closed-loop with u = κ(x) + v is contracting [178]. Denote the Jacobian by

K(x) :=
[

∂κ

∂x

]∣∣∣∣
x
. The contraction condition (C.4) for the closed loop changes to

(A(x, u) + B(x, u)K(x))>M( f (x, u))(A(x, u) + B(x, u)K(x)) � ρ2M(x). (C.6)

If this condition holds, the metric M is called a control contraction metric (CCM) and the
system is said to be universally exponentially stabilizable [178]. Furthermore, in [178], for
continuous-time systems, Condition (C.6) is translated into a necessary and sufficient
condition for the contraction metric M, independent of the feedback K. Using the dual
metric W = M−1 and Y = KW, the joint design of the feedback K and metric W is
translated into a convex infinite dimensional problem, which can be solved using SOS
optimization and polynomial parametrization. In order to stabilize a given trajectory
(xr, ur), the feedback can be computed with a corresponding path integral of δu = K(x)δx

along the geodesic γ∗ ∈ Γ(x, xr) (cf. [178, Eq. (6)]). In [156], an efficient evaluation of this
control input based on the pseudospectral method was proposed. In [277], a continuous-
time dynamic realization was presented based on the gradient flow, which converges to
the geodesic and thus to the stabilizing control law.

In the following, we discuss the relation of universal stabilizability and the offline design
in [178] to the considered local incremental stabilizability (Def. 4.18) and the SDP design
in Sections 3.1.3. At first glance, the two system properties seem almost equivalent:
For any reachable trajectory (z, v) we can construct a control law/input sequence
that exponentially stabilizes the trajectory. The main difference are the relaxations in
Definition 4.18, to only consider trajectories in some constraint set Z̃ and to only consider
local initial conditions. Thus, we can always ensure that the system is incrementally
stabilizable (Def. 4.18) by constructing a CCM and explicit bounds c1, c2 > 0, ρ ∈ [0, 1)
can be computed based on M, K. However, for many physical systems global incremental
stabilizability may be too restrictive. In particular, the model (especially discrete-time

1In general, universal stabilizability only requires the existence of a tracking feedback κtr to drive x
to z, which allows for κtr(x, z, v) 6= κ(x)− κ(z) + v. In this case, the matrix K may also depend on
u. The corresponding feedback is given by a path integral, which has a unique solution if f and K
are affine in u, even though δu(x, u, δx) is not completely integrable [178] (assuming an additional
technical conditions holds [177]). Existence of a feedback K(x) can be ensured by posing slightly
stronger conditions on the contraction metric M(x) [178, Conditions C1/C2]. In case these conditions
do not hold, we can consider the augment state (x, u) and treat the change in the control input as the
new input, as suggested in [257].
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polynomial models) may only be a reasonable approximation of the true system on
some subset Z̃ ⊆ X×U. In case the considered subset Z̃ is positively invariant and
connected, converse Lyapunov results and incremental Lyapunov functions based on
contraction metrics can still be applied (cf. [13] and [108]), compare also [111] for convex
subsets. However, such a set may be rather conservative, while the considered notion
(Def. 4.18) allows us to consider stabilizability of trajectories that satisfy some general a
priori known constraints Z̃, which is especially relevant in the constrained control case
considered in the present thesis. The fact that we only assume local stabilizability is a
direct consequence of the fact that we consider (z, v) ∈ Z̃ 6= Rn ×Rm, with Z̃ neither
convex nor positive invariant, which is not treated in the literature [18, 169, 178, 264].
In particular, in case Z̃ = Rn ×Rm local incremental stability directly implies global
incremental stability [18, Prop. 3.4]. Thus, although the formulation in Definition 4.18

may seem heuristic compared to the “standard” global conditions (cf. [18, 169, 178, 264]),
the corresponding relaxations in the conditions are crucial to allow the applicability
for many nonlinear constrained systems (cf. the following discussion regarding offline
design methods). Note that even though these technical issues may prevent us from
guaranteeing stabilizability on the full set Z̃, using additional continuity properties,
Lemma 3.12 ensures that Vδ(x, z) = ‖x− z‖2

M(x) is a valid (local) incremental CLF (cf.
Prop. 4.19).

Design procedures

In the following, we focus on the different methods in the literature to compute incre-
mental Lyapunov functions/contraction metrics and contrast them with the SDP design
in Section 3.1.3. For continuous-time polynomial systems, the conditions (C.4)/(C.6)
can be translated into an SOS problem [178]. However, for discrete-time polynomial
systems global exponential stability is very restrictive and the restriction (z, v) ∈ Z̃

requires additional S-procedure variables, which increases the computational complexity.
In earlier work, the connection between gain scheduling and incremental stability is
shown, allowing for a simple LMI design in case M(x) = M [110, Thm. 7.3], compare
also [254] where a general LPV synthesis based on a LFT was suggested. The design
procedure in Section 3.1.3 can be seen as an extension of these ideas by parametrizing
the differential/incremental Lyapunov function and using the LMI techniques in [21].
We point out that the LPV design methods require bounds on the parameters θ, which
are easy to obtain in case a compact constraint set Z̃ is considered. This highlights the
benefits of considering the relaxed (local, constraint) stabilizability condition (Def. 4.18)
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instead of the standard global incremental stability/stabilizability [18, 169, 178, 264].
More recently, the connection between LPV/gain-scheduling design, CCMs, and incre-
mental stability has received a lot of attention [148, 280, 281]. These recent contributions
can take restrictions of the targeted reference behaviour B into account using virtual
CCMs (VCCMs) [281] and also address dynamic output feedback with a corresponding
(non-trivial) controller realization [148]. The corresponding synthesis problem (cf. [281,
Prop. 8]) are state dependent matrix inequalities similar to Lemma 3.13. We point out
that these methods have also been extended to incremental dissipativity for quadratic
storage and supply functions [270] and robust analysis based on differential IQCs [278].

In addition, we point out that for special classes of systems (feedback linearizable,
strict-feedback form) an incrementally stabilizing feedback can be directly constructed,
without using differential dynamics, compare [170] and [290]. Sample based methods to
verify/compute incremental Lyapunov functions and contraction metrics can be found
in [187] and [262, 266]. Figure C.1 summarizes the different approaches to compute
incremental Lyapunov functions Vδ with a corresponding stabilizing feedback κ.

Incremental system properties in MPC

In the following, we discuss how incremental Lyapunov functions or more generally
incremental storage functions can be used in MPC.

Parametrized terminal cost and cost controllability

In Section 3.1, we showed that a parametrized local CLF Vf(x, r) for arbitrary dynamic
reference trajectories can be efficiently used in trajectory tracking MPC formulations
(Sec. 3.1/3.2). Since the local CLF Vf is equivalent to a (local) incremental Lyapunov
function, any other approach to compute incremental Lyapunov functions could in
principle be used to replace the LPV parametrization and the SDP based design in
Section 3.1.3. However, a major advantage of the (simple) approach in Section 3.1.3 is
the fact that the corresponding terminal cost/incremental Lyapunov function Vf is easy
to evaluate online. In particular, with Vf(x, r) = (x− xx)>(X0 + ∑j θj(r)Xj)

−1(x− xr)

(cf. Lemma 3.12/3.13, (3.21)), evaluating Vf mainly requires the evaluation of p scalar
functions θj and one n × n matrix inverse P = X−1, which allows for an efficient
implementation using, e.g., CasADi [17]. On the other hand, the incremental Lyapunov
functions based on CCMs seem unsuitable for such MPC formulations due to the rather
implicit description in equation (C.5) (with the notable exception of constant metrics M).
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Nonlinear system
x+ = f (x, u)

Differential dynamics
δx+ = A(x, u)δx + B(x, u)δu

Differential stability

Incremental Lyapunov function
Vδ(x+, z+) ≤ ρ2Vδ(x, z)

[18, 264]

diff.

SOS [178]
LPV, LMIs [21, 110, 148,
JK15, 243, 249, 280, 281]

Riemannian Energy
[108, 111, 169, 178]
Controller realiza-

tion [148, 156, 277]

twice diff., local, constraint set Z̃ [JK15]
behavioural restriction B, VCCM [281]

Feedback linearization [170]
Backstepping [290]

Figure C.1. Overview: From nonlinear systems to incremental stability. For special
system classes an incrementally stabilizing feedback can be directly designed (cf. [170,
290]). Otherwise, assuming continuously differentiable dynamics f , the differential
dynamics can be analysed and differential stability can be enforced/analysed using SOS
optimization, LPV gain scheduling or other LMI methods (cf. [21, 110, 148, JK15, 243,
249, 280, 281]). A corresponding incremental Lyapunov function Vδ (cf. [18, 264]) is then
given by the Riemannian Integral (cf. [108, 111, 169, 178]) . The corresponding control
input is based on a path integral, which can be computed online (cf. [156]) or a suitable
dynamic controller realization can be designed (cf. [148, 277]). Additional restrictions on
the class of trajectories/references can be considered using VCCMs [281]. Alternatively,
by relaxing the requirement to local stability, [JK15] (cf. Sec. 3.1.3) allows for a simpler
parametrization of the incremental Lyapunov function and the consideration of general
constraints Z̃.
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Thus, the difference in the parametrization of the corresponding incremental Lyapunov
functions is crucial for applications that require an explicit description of Vδ.

Note that although the incremental Lyapunov function Vδ based on contraction
metrics (C.5) is in general too complex to be directly used in an MPC scheme, it
is possible to compute an upper bound of the form Vδ(x1, x2) ≤ ‖x1 − x2‖2

M
, with

M � M(x), ∀x ∈ X (cf. [258, Lemma IV.3]). Such upper bounds on the incremental
Lyapunov function can be used to derive a cost controllability constant γ (cf. Ass. 4.4,
Prop. 4.19), which is used in the theoretical analysis in Chapter 4.

Uncertainty propagation in robust MPC

Consider a perturbed system x(t + 1) = f (x(t), u(t), w(t)), where w(t) ∈ W is some
unknown but bounded disturbance/uncertainty. The concepts related to incremental
stability are well suited to bound the deviation of a perturbed trajectory from some
nominal planned trajectory (e.g., using the incremental L2-gain). Such bounds are crucial
in robust MPC, where a possible deviation from the nominally predicted trajectory
needs to be taken into account to ensure constraint satisfaction despite disturbances
and model mismatch. In particular, we can consider the stronger notion of incremental
input to state stability (i-ISS) [29, 265, 290]:

Vδ( f (x, v, w1), f (z, v, w2)) ≤ ρ2Vδ(x, z) + αw(‖w1 − w2‖), αw ∈ K, (C.7)

which imposes some additional continuity conditions on the dynamics f and the
incremental Lyapunov function Vδ (C.2). Given some compact bound w ∈ W, we
can compute a robust positive invariant (RPI) set Ω = {(x, z) | Vδ(x, z) ≤ w}, w :=
αw(maxw∈W ‖w‖)/(1− ρ2) for the joint dynamics of the perturbed state x and a nominal
state z [29, 257, 258], i.e., ( f (x, u, w), f (z, u, 0)) ∈ Ω for all (x, z) ∈ Ω. Then, we can
directly employ a tube-based nonlinear robust MPC scheme to ensure robust constraint
satisfaction, compare [29, 257, 258]. In case Vδ and thus Ω is based on contraction metrics,
the set Ω has a highly nonlinear expression (cf. (C.5)), which significantly increases
the online computational complexity (with the notable exception of constant metrics
M). However, we can compute an ellipsoidal set that over-approximates the RPI set
Ω ⊆ {(x, z) | ‖x− z‖2

M ≤ w}, with M(x) � M (cf. [258, Lemma IV.3]), which can be used
to efficiently implement the constraint tightening. In addition, we can also exploit the fact
that the Riemannian distance d(x1, x2) =

√
Vδ(x1, x2) satisfies the triangular inequality

to simplify the robust MPC design, compare [215, Ass. 1], [38, Prop. 5.3]. Furthermore,
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by dropping the standard optimization over the nominal initial state z(0|t) (cf. [29, 257,
258]), the robust MPC reduce to a robust trajectory optimization (independent of x)
with reduced computational complexity. Alternatively, by using the simpler (and more
conservative) parametrization in Section 3.1.3 with Vδ(x, z) = ‖x− z‖2

M(x), the initial
state constraint can be reduced to a quadratic constraint in z.

Alternatively, we can directly use the bound (C.7) to compute an over-approximation
of the k-step reachable set as

Rk ⊆ {z | Vδ(x∗(k|t), z) ≤ εk} ⊆ {z | ‖x∗(k|t)− z‖2
M ≤ εk}, k ∈ I[0,N],

with εk > 0 based on a geometric series involving ρ ∈ [0, 1), compare [JK17, JK29]. Thus,
robust closed-loop properties can be ensured by tightening the constraints sets along
the prediction horizon based on this over-approximation. This approach is quite easy to
apply, since it only requires a modification of the open-loop constraints based on bounds
of the incremental Lyapunov function Vδ. The approach can also be applied if the system
is incrementally stabilizable by additionally tightening the input constraints to ensure
that we can stabilize the previous optimal solution [JK17, JK29]. Thus, this approach
requires neither an explicit description of the incremental Lyapunov function Vδ for of
the incrementally stabilizing feedback κ, but only suitable bounds which can be directly
obtained in case CCMs are used. We point out that the SDP design procedure for Vδ in
Section 3.1.3 can be adjusted to directly optimize the parameters used in the robust MPC
(e.g., ρ), compare [215]. This robust MPC design based on incremental stabilizability has
also been extended to deal with state and input dependent uncertainties [JK29], output
feedback [JK18], robust adaptive MPC [JK11, JK13] and stochastic uncertainty [251]. In
addition, experimental results, extensions to safe learning under stochastic uncertainty,
numerical comparisons, and an application to safe approximate MPC can be found
in [JK30], [273], [39] and [JK8, JK30].

Overall, incremental system properties are a natural tool to study uncertainty propa-
gation and develop (tube-based) robust MPC formulations, which naturally generalize
standard linear MPC approaches based on polytopic and ellipsoidal sets [153].

Detectability and output-feedback

An i-IOSS Lyapunov function Vo verifying the stage cost detectability in Chapter 4 can
be computed using results for differential detectability [245]. Furthermore, since i-IOSS
is a special case of incremental dissipativity, the method in [270] based on differential
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Appendix C Incremental system properties

dissipativity could be used to verify such system properties. In addition, contraction
metrics can be used to construct nonlinear observers based on universal detectability [179,
246, 288], which can be used for output-feedback MPC (cf. [JK18]). Alternatively, a
nonlinear observer can be designed using moving horizon estimation (MHE), which is
an optimization-based method for state estimation (dual to MPC), compare [12, 205, 233].
The theoretical stability results for MHE are typically based on an i-IOSS assumption (cf.
Ass. 4.24), which can be verified offline using, e.g., [245, 270].

System identification and incremental stability/stabilizability priors

Often the system model f is unknown and needs to be estimated from data. From a
control perspective, it is beneficial if the learned/identified model has certain system
theoretic properties, which may be known a priori, such as (incremental) stability. Recent
neural network identification methods with guaranteed i-ISS and a corresponding MPC
formulation exploiting this property in the design of the terminal ingredients can be
found in [22, 263]. Identification of incrementally stabilizable systems using CCMs and
incrementally stable systems using contraction metrics can be found in [240, 259].
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