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Abstract 19 

Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, 20 

which if not properly controlled can potentially lead to geomechanical damage (i.e., fracturing of 21 

the caprock or reactivation of faults) and subsequent CO2 leakage. Brine extraction is one approach 22 
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for managing formation pressure, effective stress, and plume movement in response to CO2 23 

injection. The management of the extracted brine can be expensive (i.e., due to transportation, 24 

treatment, disposal, or re-injection), with added cost to the carbon capture and sequestration 25 

(CCS); thus, minimizing the volume of extraction brine is of great importance to ensure that the 26 

economics of CCS are favorable. The main objective of this study is to demonstrate the use of 27 

adaptive optimization methods in the planning of brine extraction and to investigate how the 28 

quality of initial site characterization data and the use of newly acquired monitoring data (e.g. 29 

pressure at observation wells) impact the optimization performance. We apply an adaptive 30 

management approach that integrates monitoring, calibration, and optimization of brine extraction 31 

rates to achieve pre-defined pressure constraints. Our results show that reservoir pressure 32 

management can be extremely benefited by early and high frequency pressure monitoring during 33 

early injection times, especially for poor initial reservoir characterization. Low frequencies of 34 

model calibration and optimization with monitoring data may lead to optimization problems, 35 

because either pressure buildup constraints are violated or excessively high extraction rates are 36 

proposed. The adaptive pressure management approach may constitute an effective tool to manage 37 

pressure buildup under uncertain reservoir conditions by minimizing the volumes of extracted 38 

brine while controlling pressure buildup. 39 

Keywords: CO2 storage, pressure management, fault activation, caprock fracturing, parameter 40 

uncertainty, brine extraction 41 

1 Introduction 42 

Injection of CO2 into the subsurface at industrial scale can result in significant fluid 43 

pressure increase in a reservoir, which can be a limiting factor for sequestration capacity in saline 44 

aquifers (Zhou and Birkholzer, 2011; Thibeau et al., 2014). The possibility of distant pressure-45 
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related impacts need to be considered, which if not properly controlled can lead to potential 46 

environmental impacts (Zhou and Birkholzer, 2011). These potential environmental concerns 47 

include groundwater contamination (Apps et al., 2010; Birkholzer et al., 2009) stemming from 48 

pressure-driven brine leakage through conductive pathways, such as improperly plugged 49 

abandoned wells or distant faults (Metz et al., 2005), and the potential for fault reactivation and 50 

possibly seal breaching (Morris et al., 2011; Rutqvist et al., 2007). Large areas with pressure 51 

increases can also require more complex and costly site characterization and monitoring (US EPA, 52 

2008; Oldenburg et al., 2016).  53 

Concerns about local- or regional-scale pressurization have motivated research on 54 

engineering approaches for subsurface pressure control, usually involving some strategies of 55 

extracting resident brines from a storage reservoir while CO2 is injected. The potential benefits of 56 

employing brine extraction wells to manage pressure in the reservoir include reduced stress on the 57 

sealing formation, reduced risk of brine and CO2 intrusion into other formations, increased storage 58 

capacity, and reduced area of review for regulatory assessment (Birkholzer and Zhou, 2009). In 59 

recent years, pressure management approaches via brine extraction have been studied in generic 60 

modeling exercises to demonstrate the proof of concept and feasibility (e.g. Bergmo et al., 2011), 61 

but so far brine extraction has not been used in actual geological carbon storage (GCS) projects, 62 

mainly because the currently injected CO2 volume are limited and large-scale pressure increases 63 

are rare. However, for large-scale projects expected in future GCS deployment, modeling analyses 64 

reveal that brine extraction can be very beneficial and in some cases necessary, enhancing storage 65 

capacity and injectivity (Buscheck et al., 2012; Buscheck et al., 2014; Pongtepupathum et al., 66 

2017; Ziemkiewicz et al., 2016) and reducing risk of environmental impacts and induced 67 

seismicity (Birkholzer et al., 2012). For example, the industrial-scale Gorgon CO2 storage project 68 
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in Australia considered the possibility of brine extraction through four wells located to the west of 69 

the site (Flett et al., 2008; Greig et al., 2016; Liu et al., 2013).  70 

Ensuring safety and robustness against failure is critical and must be integrated into actual 71 

GCS projects (Harp et al., 2017). ‘A factor of safety’ is a concept applied in all engineering 72 

applications. In our work we assumed that the threshold values for critical pressures already 73 

include the factor of safety. The main goal of this study is to investigate the influence of two factors 74 

on the extraction rates of brine for pressure management. These two factors are i) the quality of 75 

data of the initial site characterization, and ii) the frequency of model calibration and optimization 76 

calculations based on newly acquired monitoring data.  77 

In preparation for deployment of future large-scale GCS projects, the U.S. Department of 78 

Energy (DOE) created the Brine Extraction and Storage Test (DOE-BEST) program to evaluate 79 

the technical feasibility of managing subsurface pressures associated with large-scale CO2 80 

injection volumes and to assess the cost and effectiveness of desalination technologies for saline 81 

waters containing high total dissolved solids (TDS). Two projects funded under this program are 82 

currently in the final planning and design phase.  The projects will demonstrate management of 83 

reservoir pressure through brine extraction in actual field settings and test desalination approaches 84 

for the utilization of the extracted brines (DOE, 2016). 85 

Recognizing the potential management cost of extracted brine (Harto and Veil, 2011), 86 

recent work by Birkholzer et al. (2012) and Cihan et al. (2015) aimed to develop flexible 87 

optimization methods for pressure control, with the goal of minimizing the volume of extracted 88 

brine while maximizing CO2 storage and meeting other constraints needed for safe and efficient 89 

GCS operations. For given pressure constraints, such as the maximum allowable pore pressure 90 

along a critically stressed fault, the optimization algorithm finds optimal solutions for placement 91 



 

5 

of extraction wells and transient pumping rates. Example applications of optimization algorithms 92 

to hypothetical CO2 storage scenarios in realistic field settings demonstrate that strategic extraction 93 

can achieve a significant reductions in the total volume of extracted brine while limiting pressure 94 

increases (Cihan et al., 2015).  95 

The knowledge of subsurface properties is always incomplete. Especially during the 96 

planning stages of CO2 projects, site characterization data are often quite limited and there are 97 

large uncertainties in rock properties. Thus, predictive models for the reservoir conditions upon 98 

CO2 injection are initially associated with large model uncertainties. These models can be 99 

improved through calibration using monitoring data obtained during the operation of the projects. 100 

Based on new data received and subsequent improvement of the existing models, optimization 101 

calculations may then need to be revised and operational decisions for controlling and managing 102 

subsurface pressurization may need to be updated. The oil industry commonly uses the so-called 103 

“closed-loop” approach, which includes optimization and model-updating algorithms for reservoir 104 

management (Aitokhuehi and Durlofsky, 2005; Sarma et al., 2006). Observations such as well-log 105 

measurements, production rates (oil, gas, and water), and 4D seismic data are collected to improve 106 

knowledge of uncertain parameters and then used to improve the prediction of reservoir simulation 107 

models (Evensen et al., 2007; Nævdal et al., 2005; Skjervheim et al., 2005). 108 

The goal of this study is to apply an adaptive management approach that combines 109 

monitoring + inversion + optimization in an integrated framework for pressure control in GCS 110 

applications. We use this framework to develop and implement a pressure management strategy at 111 

a hypothetical site. In terms of geological setting and well configurations, the hypothetical example 112 

resembles one of the DOE-BEST projects, which will provide a testbed for demonstrating adaptive 113 

pressure management. However, the spatial and temporal scales of the hypothetical scenario 114 



 

6 

investigated in this study are much larger than the planned field test scenario in this DOE-BEST 115 

project. It is important to note that the actual DOE -BEST project demonstration site has no known 116 

faults, whereas the hypothetical scenario reported here includes a critically stressed hypothetical 117 

fault which needs to be protected from hypothetical reservoir pressure increases. 118 

Using the hypothetical injection application as an example case, we focus on testing and 119 

demonstrating an adaptive management approach to understand the influence of two factors on the 120 

optimized extraction rates for pressure management. These factors are: 1) the quality of data 121 

obtained during the initial site characterization such as hydraulic properties of the reservoir system, 122 

and 2) the frequency of model calibration and optimization calculations based on newly acquired 123 

monitoring data. Our objective is to demonstrate that adaptive management can effectively manage 124 

pressure effects associated with fluid injection, such as the potential for inducing seismic events 125 

and leakage along hypothetical faults, and that it can do so under realistic conditions where 126 

reservoir data are uncertain. The management strategy that we use for the hypothetical site 127 

combines two complementary brine extraction methods: (1) “active” extraction of brine from the 128 

injection reservoir to the surface with optimized time-varying pumping rates, and (2) “passive” 129 

pressure relief, which relies on the pressure increase in the injection reservoir to provide the driving 130 

force for resident brine to flow through a relief well; in this case, transferring fluids into suitable 131 

deeper geological layers than the injection layer (Figure 1). The advantage of “passive” pressure 132 

relief is that once a relief well is drilled and completed there are no additional costs for brine 133 

pumping or handling, in contrast to “active” extraction. The disadvantage is that “passive” brine 134 

extraction cannot be optimized to the project needs; the brine volume transferred out of the storage 135 

reservoir into other formations is a function of their pressure differentials.  For this same reason, 136 
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“passive” brine extraction requires that the receiving units are not overpressurized to the point 137 

where they cannot passively receive the brine. 138 

 139 

Figure 1. Schematic showing the pressure management strategy in this study to reduce risk of 140 

caprock failure and risk of fault reactivation. The schematic shows the five top aquitards as well 141 

as the five top aquifers of Table 1(from 22 to 18). Injection of CO2 occurs into two reservoir layers 142 

(aquifers 22 and 21 in Table 1). Brines are extracted from two wells, one of them “actively” 143 

pumping to the surface, the other “passively” moving brines into deeper layers. The back of the 144 

schematic figure shows a hypothetical critically stressed fault, for which a maximum allowable 145 

pressure change has been defined. Another pressure limit is defined to avoid caprock damage. 146 
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 147 

The paper is organized as follows. Section 2 presents brief descriptions of the adaptive 148 

management methodology, the reservoir modeling approaches, the optimization and calibration 149 

problem solved, and selected scenarios of the adaptive management approach. In section 3 and 150 

section 4, the results of the sensitivity analysis of site characterization are presented and discussed. 151 

Section 5 summarizes the main conclusions of this study. 152 

2 Adaptive management approach 153 

Adaptive management involves (1) analysis and interpretation of monitoring data acquired 154 

during the field test, (2) reservoir model testing, (3) updating of model parameters using inverse 155 

modeling methods, and (4) revised optimization plus, if necessary, modification of reservoir 156 

management schemes (i.e., time-dependent extraction rates, changes in extraction schemes) based 157 

on the updated reservoir model predictions. In this study, we use a computer algorithm that 158 

automatically accomplishes the steps above at a selected frequency to estimate future minimum 159 

extraction rates based on the existing reservoir model.  160 

The initial reservoir model, based on available site characterization data, is used to estimate 161 

the initial and future minimum extraction rates that provide acceptable pressure conditions. These 162 

acceptable conditions, or pressure constraints need to be defined before the start of the 163 

optimization. An optimization algorithm coupled to the reservoir model then generates optimal 164 

extraction rates that may vary during the project period (Stage 1). Depending on the reservoir 165 

conditions, extraction may not need to start at the beginning of injection in most cases. However, 166 

if the initially estimated values are not zero, the extraction well(s) start pumping using the 167 

calculated initial extraction rate(s). As soon as newly acquired data become available during the 168 

operation (e.g., pressure changes at the observation wells, geophysical measurements), the model 169 
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predictions are compared against the observations (Stage 2). If the model predictions are 170 

significantly different from the observations, which is typically the case, especially during early 171 

operation, then the reservoir model is updated or recalibrated with the new data using an inverse 172 

modeling tool (Stage 3).  After the model calibration process, the algorithm goes back to Stage 1 173 

to estimate new optimal extraction rates at the current and future times that satisfy the constraints 174 

based on the predictions with the existing model. The extraction well(s) continue operating at the 175 

current extraction rate until new data are analyzed and the model and extraction rates are updated. 176 

The adaptive management algorithm may continue to be used throughout the injection and perhaps 177 

post-injection phase to ensure that the extraction rates are minimized and pressure constraints are 178 

met.  179 

2.1 Reservoir flow model 180 

For this study, a multilayered reservoir model was constructed using the existing well logs, 181 

lithologic logs, sidewall core data, and well test data gathered from an existing well near the DOE-182 

BEST project field site. The targeted reservoir system is a thick (about 700 m) sequence of very 183 

porous and permeable fluvial and fluvial deltaic sandstones alternating with shale. Injection occurs 184 

only into the upper two sandstone layers at a total rate of 1,090 m3/d (~ equivalent to about 0.3 Mt 185 

of CO2 injection) over 30 years. We assume that there is a concern about caprock fracturing and 186 

potential fault slip due to increased pressures near the injection well and along a hypothetical fault 187 

which is a few kilometers away from the injection well. We furthermore assume that the critical 188 

pressure changes for caprock fracturing and fault slip are ΔPcrt,c = 8 MPa and ΔPcrt,f = 0.4 MPa, 189 

respectively.  As mentioned before, the pressure management strategy involves a passive relief 190 

well and an active extraction well to control pressure changes (see Figure 1).  191 
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To efficiently simulate the fluid flow and pressure changes in the reservoir system, we 192 

employ a semi-analytical model for single‐phase flow in multilayered systems that has capabilities 193 

to represent multiple injection/extraction and leaky wells, diffuse flow through aquifer-aquitard 194 

interfaces, and focused brine leakage or flow through leaky wells (Cihan et al. 2011). We 195 

approximate the target reservoir with its sandstone and shale layers as aquifers and aquitards, 196 

respectively, where fluid flow is assumed horizontal in the aquifers and vertical in the aquitards. 197 

Initially, hydrostatic pressure is assumed for the whole system of aquifers and aquitards. Each 198 

aquifer and aquitard may have different hydraulic properties and thicknesses; however, within each 199 

aquifer and aquitard, properties and thickness remain uniform. Leaky wells are represented as 200 

Darcy‐type flow pathways with segment‐wise property variations (e.g., well radii, permeability, 201 

screened/cased in well‐aquifer segments, plugged/unplugged in well‐aquitard segments). The 202 

segments correspond to intersections of each well with individual layers of the multilayered 203 

system. Further details of the semi-analytical solution approach and a description of the computer 204 

program to compute the solution in terms of pressure changes can be found in Cihan et al. (2011). 205 

The leaky well feature of the semi-analytical model is particularly useful for this study to represent 206 

the passive relief well in our hypothetical scenario. Table 1 lists the identified 22 aquifer and 22 207 

aquitard layers (from bottom to top) of the target reservoir system with their hydraulic properties 208 

including thickness, hydraulic conductivity and specific storativity. Aquifer Layers 21 and 22 (top 209 

two aquifer layers) are the injection layers. 210 

 211 

  212 
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Table 1. Reference (‘true’) hydraulic property values of reservoir layers containing aquifers 213 

alternating with aquitards. The bottom layer is an aquifer, and the top layer is an aquitard. 214 

Aquifers  Aquitards 

Layer Thickness 

(m) 

K=Kxx 

(m/d) 

S=Ss 

(m-1) 

Layer Thickness 

(m) 

K’=Kzz 

(m/d) 

S’=Ss 

(m-1) 

1 (bot) 42.062 0.176 1.856E-06 1 6.706 4.729E-04 1.065E-06 

2 18.288 0.207 2.025E-06 2 6.096 1.537E-03 1.081E-06 

3 10.973 0.674 2.025E-06 3 6.706 4.032E-03 1.452E-06 

4 29.261 0.237 1.940E-06 4 7.925 6.706E-04 1.162E-06 

5 8.534 0.144 1.856E-06 5 18.593 1.889E-03 1.065E-06 

6 30.785 0.182 1.680E-06 6 10.973 1.548E-03 1.743E-06 

7 15.850 0.670 2.000E-06 7 9.449 3.124E-03 1.355E-06 

8 23.470 0.498 2.001E-06 8 14.021 1.809E-03 1.150E-06 

9 13.106 0.871 1.990E-06 9 5.791 1.059E-03 1.162E-06 

10 16.459 0.447 2.025E-06 10 9.144 3.859E-03 1.452E-06 

11 9.144 0.321 2.025E-06 11 8.534 4.960E-03 1.020E-06 

12 3.048 0.826 1.940E-06 12 7.315 2.301E-03 1.258E-06 

13 23.165 0.284 1.940E-06 13 1.829 1.462E-03 1.162E-06 

14 10.973 0.338 2.025E-06 14 4.572 1.896E-03 1.646E-06 

15 34.138 0.720 3.122E-06 15 12.192 5.159E-04 5.808E-07 

16 55.778 0.195 2.025E-06 16 9.449 1.032E-03 1.936E-06 

17 3.962 1.032 3.037E-06 17 2.438 6.190E-04 1.452E-06 

18 14.021 0.037 2.278E-06 18 12.192 5.732E-03 2.420E-06 

19 46.634 0.273 2.607E-06 19 3.962 5.159E-05 8.713E-07 

20 23.165 0.403 2.563E-06 20 7.620 1.032E-03 1.646E-06 

21 10.668 0.503 2.244E-06 21 2.438 2.053E-09 8.713E-07 

22 3.048 0.375 2.306E-06 22 (top) 86.563 4.769E-04 1.258E-06 

 215 

In actual field demonstrations, higher-fidelity numerical models are typically more 216 

appropriate, but in this demonstration application, we prefer using the semi-analytical solution to 217 

be able to conduct ultrafast model calibration and optimization calculations within the adaptive 218 

management framework. Brine flow and pressure changes along the far-field fault and brine flow 219 

through the passive well outside the CO2 plume zone can be described reasonably well by the 220 

single-phase flow models —without considering local two‐phase and variable density effects—221 

simply by representing the injection of CO2 as an equivalent volume of saline water (Nicot 2008; 222 
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Cihan et al., 2013). However, Cihan et al. (2013) showed that the analytical solution for single-223 

phase brine flow would slightly overpredict pressure buildup within the CO2 plume zone, 224 

compared to the multiphase simulator TOUGH2/ECO2N (Pruess 2005). This in turn leads to 225 

slightly higher brine extraction rates, calculated by the optimization algorithm, than actually 226 

required.  Thus, we may consider the optimization results based on the analytical model to be on 227 

the conservative side.   228 

 229 

2.2 Optimization  230 

The specific goal of the optimization in this study is to minimize the volume of extracted 231 

brine while effectively controlling pressure buildup such that (1) the caprock fracturing pressure 232 

is not exceeded, and (2) reactivation along a hypothetical fault near the injection location can be 233 

avoided. (These pressure constraints are a proxy for any other pressure constraints one may need 234 

to define in a given project.) If the total volume of injected fluid is Vinj, and the total volume of 235 

extracted fluid is Vext, then the goal is to minimize the extraction ratio defined by Vext/ Vinj. Costs 236 

associated with the pumping per volume of injected or produced fluid and treatment of extracted 237 

brine are assumed to be proportional to the extraction ratio defined in Eq. (1). Formally, the 238 

specific optimization problem that involves the objective function and the constraints, respectively, 239 

can be expressed as:  240 

Minimize 𝑓(𝒑) = 𝑉𝑒𝑥𝑡 𝑉𝑖𝑛𝑗⁄    
(1) 

 

Subject to  𝑔1(𝒑) = 𝑚𝑎𝑥{∆𝑃(𝑥𝑜𝑏𝑠, 𝑡)} − ∆𝑃𝑐𝑟𝑡,𝑓 < 0, 

𝑔2(𝒑) = 𝑚𝑎𝑥{∆𝑃(𝑥𝑜𝑏𝑠, 𝑡)} − ∆𝑃𝑐𝑟𝑡.𝑐 < 0 

(2) 
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where p is the parameter vector that may include constant or time-dependent function parameters 241 

for controlling extraction rates and, in the most general case, the number and locations of extraction 242 

wells if one decides to have the algorithm select an optimal well design. For this study, we assume 243 

that the location of extraction wells is known, and that the extraction rate(s) are optimized as piece-244 

wise time-dependent parameters. The two constraints in Eq. (2) represent the pressure management 245 

goal of keeping reservoir pressure increases in defined impact zones below critical pressure 246 

buildup values (with respect to the pressure prior to the injection, P(t)=P(t)-P(t=0)). We assume 247 

in the first constraint (g1) that the fault slip risk becomes too high if the pressure buildup at any 248 

location in the impact zone (hypothetical fault) exceeds ΔPcrt,f. Pressure buildup along the impact 249 

zone is recorded through a vector of observation points (xobs), as many as required. In addition to 250 

the pressure buildup constraint along the fault, we take into account the fracturing pressure 251 

constraint (g2) near the injection well (ΔPcrt,c).  252 

 To solve the optimization problem, we apply a constrained differential evolution (CDE) 253 

algorithm modified from a differential evolution algorithm (Deb, 2000; Cihan et al., 2015) within 254 

each step of the adaptive management framework. The CDE algorithm is particularly useful for 255 

solving global optimization problems involving well placement and dynamic injection/extraction 256 

control (e.g., Cihan et al., 2015). As mentioned above, we assume in this study that the well 257 

locations are known, and we employ CDE to solve only the problem of dynamic extraction control. 258 

2.3 Calibration  259 

The specific goal of the calibration in this study is to minimize the error between pressure 260 

measurements observed and pressure measurements generated with the simulations (Equation 3).  261 

For the inverse estimations conducted at each step of the adaptive algorithm, we use the same 262 

method (CDE) as in Stage 1 to inversely estimate unknown reservoir properties using observed 263 
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hydraulic pressure buildups. With regards to monitoring data available in our hypothetical 264 

example, we assume that pressure measurements are made at each aquifer (22 aquifers) and at 265 

three locations: in the injection well, the active extraction well, and the passive relief well.  266 

Minimize ℎ(𝒒) =    ∑ ∑ (
𝑃(𝒙,𝑡)−𝑃(𝒙𝑜𝑏𝑠,𝑡)

𝑃(𝒙𝑜𝑏𝑠,𝑡)
)

𝑁𝑇𝑖𝑚𝑒
1

𝑁𝑂𝑏𝑠
1    (3) 

where q is the parameter vector that include the aquifer and aquitards properties to be calibrated,  267 

𝑁𝑂𝑏𝑠 is the equal to the number of locations (66 = 22*3), and 𝑁𝑇𝑖𝑚𝑒 is the number of observations 268 

along time.  269 

The observation values are generated by using the true model with the reference properties 270 

in Table 1 and then these are compared with the observation values generated by the properties of 271 

the model. 272 

2.4 Scenarios of the adaptive management framework 273 

We employ the adaptive optimization framework to optimize the frequency in which data 274 

should be collected and how we could do to make this a better and safer site. For this purpose we 275 

study the effects of two factors on the optimized volume of extracted brine: 1) the quality of data 276 

obtained during the initial site characterization (e.g. hydraulic properties of the reservoir system), 277 

and 2) the frequency of model calibration and optimization calculations based on the monitoring 278 

data. Table 2 summarizes the different sensitivity scenarios for these two factors. By considering 279 

several levels of uncertainty for the initial property data of the reservoir system (over or under-280 

estimated), we study their effects on the calculated values of the optimal brine extraction ratios in 281 

Eq. (1). Under uncertain initial reservoir conditions, we also investigate the effects of the frequency 282 

of model updates a on the performance of adaptive optimization. In the section 4, we present 283 

comparisons of the extraction rates calculated for ‘true’ reservoir properties versus the estimated 284 
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ratios for ‘uncertain’ reservoir properties, with different-level initial guesses and different-285 

frequency model updates. 286 

 287 

Table 2. Scenarios considered for the adaptive management framework 288 

Frequency of model update 
Deviations from the actual hydraulic 

properties 

Fixed frequencies of 30yr, 10yr, 6yr, 5yr, 3yr, 

and variable frequency (from 3 days at very 

early times to 3yr at late times) 

Over and under-estimated properties at time=0: 

+20%, +40%, -20%, -40% 

 289 

The uncertain hydraulic properties considered in this study are the hydraulic conductivity 290 

and specific storage parameters of one of the injection aquifers (Aquifer Layer 22) and 291 

corresponding overlying aquitard (Aquitard Layer 22). We select this layer because the pressure 292 

changes are most sensitive to their properties. The reservoir properties of the other aquifer layers 293 

(1-21) are tied to those of Aquifer Layer 22, and the properties of the other aquitard layers (1-21) 294 

are tied to those of Aquitard Layer 22, which reduces the number of unknowns from 88 to 4. 295 

Because of the petrological similarities of the aquitard layers, we can assume that the relative ratios 296 

of the estimated parameters can be assumed reasonably accurate for all aquifer layers and all 297 

aquitard layers, respectively. In other words, we can recalculate the reservoir properties of Aquifer 298 

and Aquitard Layers 1-21 based on the inversely estimated properties of Layer 22 (K22, K22’, Ss22, 299 

Ss22’), assuming that parameter ratios are fixed (Ki/K22, Ssi/Ss22, Ki’/K22’, Ssi’/Ss22’, i=1,…,21, 300 

calculated using Table 1), where the prime sign indicates aquitard.  301 
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3. Results  302 

3.1 Results without pressure management 303 

We first present pressure results in the target reservoir for CO2 injection without any 304 

pressure management. Figure 2 shows maximum pressure changes as a function of time near the 305 

well and along the fault in response to fluid injection at 1,090 m3/d (~ equivalent to about 0.3 Mt 306 

of CO2 injection) for 30 years into an injection zone at about 1,500 m depth from the surface. The 307 

injection zone corresponds to Aquifer Layers 21 and 22. The total injection rate is distributed into 308 

the two aquifer layers of the model proportionally according to their transmissivity values. 309 

Significant differences can be observed between the five reservoir property cases (i.e., true, -40%, 310 

-20%, +20%, +40%). In Figure 2a, the forward modeling results with under-estimated reservoir 311 

properties (-20% and -40%) indicate that the caprock pressure buildup constraint of 8 MPa can be 312 

reached very quickly as soon as the injection starts. The model results with over-estimated 313 

reservoir properties (+20% and +40%) show no risk of caprock failure, while the true model shows 314 

that the critical pressure buildup of fracturing the caprock is reached after about 22 years of 315 

injection. Figure 2b shows that fault slip can occur within about three to twelve years of injection 316 

for all reservoir property cases, under- or over-estimated. The estimated time for the constraint 317 

violation (fault pressure above 0.4 MPa) decreases with decreasing aquifer hydraulic conductivity 318 

values.  319 

 320 
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321 

Figure 2. Profiles of maximum pressure buildup (in MPa) (a) at the caprock and (b) at the fault. 322 

(Note that Cihan et al.’s computer program (2011) produces the results in terms of head in meters, 323 

and to convert the head buildup to pressure buildup, we used a uniform brine density of 1126.026 324 

kg/m3.) 325 

 326 

3.2 Results applying adaptive management approach 327 

  Figure 3 shows pressure buildup contours for the +20% case in Aquifer Layer 22 where 328 

the pressure buildup front has the largest extent compared to the other layers, for two pressure 329 

management scenarios: Figure 3a shows a simulation where only the passive relief well operates, 330 

which transfers brine from the injection reservoirs to deeper layers. Figure 3b shows results for a 331 

case where passive relief and active extraction operate together. In the first case, there is no 332 

optimization since the passive brine transfer depends only on the vertical pressure differential 333 

between injection layers and deeper layers. In contrast, the active brine extraction rates in Figure 334 

3b are optimized to meet the given pressure constraints. 335 

(a) (b) 
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  336 

 337 

 338 

Figure 3. Pressure buildup contours (in MPa) at time=30 years with (a) only passive extraction 339 

and (b) passive and active extraction (updates every 3 years) for the +20% case in Layer 22. 340 

 341 

As seen in Figure 3a, passive pressure relief alone is not sufficient to reduce the injection-342 

induced pressure buildup below the desired critical value of 0.4 MPa near the hypothetical fault. 343 

Therefore, active brine extraction is needed to satisfy the pressure constraints, especially near the 344 

fault. With the objective of determining optimal dynamic extraction rates, we ran our automated 345 

adaptive optimization algorithm that starts with the different initial guesses of the reservoir 346 

(a) 

(b) 
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properties (-40%, -20%, +20%, and +40%). For each of these cases, we also varied the model 347 

update frequency to understand its impact on the performance of the adaptive pressure 348 

management (Table 2). As a reminder, the monitoring data used for model calibration in this study 349 

are the pressure measurements at the top two aquifer layers of three wells (injection, passive relief, 350 

and extraction). We assume here that monitoring data collection and model update are conducted 351 

at the same frequency. In practice, monitoring data collection for pressure changes should be 352 

expected to be much more frequent than the model updates. 353 

Figure 3b displays an example of a successful pressure management optimization for the 354 

+20% case where updates of the monitoring, calibration, and optimization steps occur every three 355 

years. When the adaptive management through active and passive extractions is applied, the 356 

pressure buildup along the fault is controlled and does not exceed the maximum critical pressure 357 

of 0.4 MPa at the end of the injection (time = 30 years). Despite the fact that the passive relief well 358 

alone as a pressure control approach is not sufficient for this scenario, its use together with the 359 

active extraction reduces the total volume of extracted brine by up to 20%. The benefit of using 360 

passive relief wells in reducing brine extraction volumes can vary depending on the magnitudes of 361 

the pressure buildup constraints and their distances from the injection well (Birkholzer et al., 362 

2012). 363 

Figure 4 summarizes the results of applying adaptive management to the different property 364 

and model calibration scenarios listed in Table 2. The figure shows the total extraction ratio (over 365 

the duration of the project) as a function of the model update and optimization frequency (t), 366 

starting with every three years up to 30 years. Cases that consider a model update frequency (t) 367 

of 30 years do not include monitoring or model update through calibration; they simply apply 368 

constant extraction rates optimized using the initial guesses.  369 
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 370 

Figure 4. Summary of the adaptive optimization results: Variation of the estimated brine 371 

extraction ratio as a function of initial deviations from reservoir properties and model update 372 

frequency (t). 373 

 374 

Figure 4 shows that for the reference scenario (‘true’ model), more frequent updates 375 

decrease the objective function from 𝑉𝑒𝑥𝑡 𝑉𝑖𝑛𝑗⁄ =12.8% for t=30 years to 𝑉𝑒𝑥𝑡 𝑉𝑖𝑛𝑗⁄ =9.1% for t=3 376 

years. In this case, a better optimization is achieved when the extraction rates are updated every 377 

three years rather than operating with a constant extraction rate over 30 years. Optimization results 378 

are more complicated for the scenarios involving uncertain initial model properties, in which case 379 

the full monitoring + inversion + optimization cycle is conducted. For example, looking at the 380 

cases with under-estimated initial parameters (-20% and -40%), the calculated optimal extraction 381 

ratios are significantly higher than the actual optimal extraction ratios for all model update cases, 382 

in particular if the model updates are conducted less frequently. This occurs because the reservoir 383 
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system is initially managed with a non-optimal model using the under-estimated reservoir 384 

properties, and it takes several iteration cycles to estimate more reliable reservoir properties with 385 

analyses of the monitoring pressure data. As the frequency of monitoring data analyses and model 386 

updates increases (moving to the left on the time axis in Figure 4), the calculated extraction ratios 387 

approach the true values. On the other hand, scenarios with over-estimated initial hydraulic 388 

properties have a lower value of 𝑉𝑒𝑥𝑡 𝑉𝑖𝑛𝑗⁄  than the reference scenario; in other words, the extracted 389 

volume is under-estimated, specifically for cases with low frequency of updates (t>6 years); 390 

when the number of updates increases, the 𝑉𝑒𝑥𝑡 𝑉𝑖𝑛𝑗⁄  approaches the true case. We show in Figure 391 

5 that extracting less brine than necessary can result in not meeting the desired pressure constraints, 392 

i.e., possibly causing failure of the caprock or activation of the fault, a result of the inaccurate 393 

models used for optimization.  394 

4 Discussion 395 

4.1 Influence of initial hydraulic properties uncertainty 396 

The potential impact of pressure management optimization with inaccurate models is 397 

shown in Figure 5 for all the cases of over- and under-estimated reservoir properties and a model 398 

calibration conducted every 10 years. This figure shows the evolution of the maximum pressure 399 

buildup at the injection well (Figure 5a) and near the fault (Figure 5b), compared to the respective 400 

pressure constraints for caprock failure and fault slip, respectively. Initially, the model prediction 401 

of the pressure changes is not accurate due to incorrect hydraulic properties and insufficient data 402 

collected. For the scenarios with under-estimated reservoir properties (-40% and -20%), the 403 

extraction rates are over-estimated because the pressure buildup in the reservoir is over-estimated; 404 

thus, the optimization assumes that more brine extraction is needed to stay below the caprock 405 
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fracturing pressure buildup at the injection well. As a result of these excessively high extraction 406 

rates specifically within the first ten years, the reservoir pressure near the injection well remain 407 

significantly lower than the pressure limit for caprock fracturing, a safe but also costly practice. In 408 

contrast, for scenarios with over-estimated initial hydraulic properties (+20% and +40%), the 409 

extraction rate calculated by the optimization is significantly under-estimated. As a result, the 410 

observed pressure buildup at the fault exceeds the critical value (Figure 5b, results in blue), 411 

potentially causing fault reactivation and leakage. In general, a low frequency of model updates 412 

may produce excessive extraction volumes for under-estimated initial hydraulic properties, 413 

whereas for over-estimated initial hydraulic properties, a violation of pressure buildup constraints 414 

can occur affecting the robustness and safety of the GCS operation. The adaptive management 415 

strategy can reduce the risk of failure due to the uncertainties in the reservoir properties, and 416 

especially at early times frequent updates of the model are needed to increase the safety and the 417 

confidence of the GCS operation over long injection periods. However, safety factors and the 418 

associated uncertainties must be included when determining the optimization constraints (e.g., 419 

Harp et al., 2017). 420 

Although the 10-year frequency for the model update is an extreme case as generally one 421 

would not wait 10 years for incorporating new monitoring data for model calibration, the results 422 

point to the importance of conducting a pressure management optimization with adequately 423 

calibrated prediction models based on frequent model updates, in particular early in the project. At 424 

later project stages, since more data have been collected and used to estimate the reservoir 425 

properties during the calibration step, the algorithm calculates more reliable extraction rates for 426 

controlling the pressure in the reservoir system. 427 

 428 
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(a) 

 
 

(b) 

 
 429 
Figure 5. Maximum pressure buildup evolution registered from the observation points in response 430 

to applied optimal extraction rates, produced by a scenario with low frequency of updates (t= 10 431 

years): (a) at the caprock, and (b) along the fault. 432 

 433 

4.2 Influence of model update frequency at early times 434 

Concerns about inadequate optimization in both directions, either excessive extraction 435 

rates (when properties are under-estimated) or potential pressure constraint violation (when 436 
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properties are over-estimated) can be eliminated if one conducts much more frequent model 437 

updates, especially at early times. For example, we demonstrate below that for cases with under-438 

estimated properties, frequent model updates at early times are highly beneficial to prevent the 439 

excessive extractions. Considering the scenario with hydraulic properties under-estimated by 20%, 440 

the pressure at the injection well reaches the critical pressure buildup for caprock fracturing within 441 

50 days (without pressure management) and very high extraction rates are estimated with model 442 

updates conducted infrequently (say every three or every ten years). In contrast, if model updates 443 

are applied using daily pressure data during this time interval, the calculated optimal extraction 444 

rates will be very close to those for the true model even if the initial reservoir properties are off. 445 

Figure 6 shows that the root-mean-square error (RMSE) between predicted and observed pressure 446 

significantly drops (by ~four orders of magnitude) within a month or so (after four updates), which 447 

means that the calibrated hydraulic properties are similar to the true values. However, note that for 448 

more complex reservoir systems, depending on the number and type of the observations, the 449 

convergence of the model results to the observations may take much longer.  450 

 451 
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 452 
Figure 6. Scenario -20%: changes in the root-mean-square error (RMSE) between model 453 

predicted heads and observed heads for high frequency updates between time =0-60 days. 454 

 455 

Thus, inadequate optimization can be avoided if more updates of the reservoir properties 456 

are included during the early stages of injection. Figure 7 illustrates that the optimized extraction 457 

rates computed for scenario -20% are close to the true optimal extraction rates of the reference 458 

case when we include model updates with monitoring data at a frequency of as low as 3 days 459 

within the early injection period. In contrast, when no initial updates are applied at earlier times 460 

(i.e., t is fixed and equal to 3 years), the extraction rate is strongly over-estimated during the first 461 

three years (solid black line), because the initial hydraulic properties of the injection formations 462 

are under-estimated and the model wrongly projects strong pressure buildup at the injection well.  463 

 464 
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 465 
Figure 7. Calculated extraction rates based on the scenario with initial hydraulic parameters 466 

deviated by -20% are compared with the actual optimal rates for the ‘true’ model. ‘no model 467 

updates at early times’ (solid black line) corresponds to a fixed model update frequency of 468 

three years, and ‘frequent model updates at early times’ (dashed black) corresponds to variable 469 

frequencies of model updates (changing from three days at very early times to three years at 470 

late times). 471 

 472 

With more initial updates, profiles of the pressure buildup (Figure 8) oscillate near the 473 

critical value due to step-wise changes in the operational extraction rates, but they never exceed 474 

the critical pressure buildups of the caprock or the fault, keeping the maximum pressure under 475 

control. As expected, the impact of the high extraction rates during the first three years in the 476 

model without frequent updates at early times is manifested on the pressure profiles. This model 477 

presents lower pressure buildups near the fault and at the injection well in comparison to the model 478 

with more frequent updates at early times. As mentioned above, the model with no updates at early 479 
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times (solid line) over-estimates the extraction rate for the first period when hydraulic properties 480 

have not been yet updated. This strongly decreases the pressure buildup and does not require new 481 

extraction until time=12 years when pressure buildup at the fault approaches the maximum 482 

pressure allowed. In contrast, the model with more frequent updates at early times requires 483 

pumping, correctly, at a much earlier time (6 years). For the scenarios investigated here with 484 

initially under-estimated hydraulic conductivity values and less frequent updates at early times, 485 

our results show that the critical pressure buildup along the fault appears as the most stringent 486 

constraint, because the maximum pressure changes along the caprock, near the injection well, 487 

never comes too close to the critical pressure buildup value. 488 

 489 
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490 

 491 

Figure 8. Maximum pressure changes ‘observed’ based on the ‘true’ model for the scenario 492 

with initial hydraulic parameters deviated by -20%. ‘no model updates at early times’ (solid 493 

black line) corresponds to a fixed model update frequency of three years, and ‘frequent updates 494 

at early times’ (dashed black) corresponds to variable frequencies of model updates (changing 495 

from three days at very early times to three years at late times): (a) Pressure buildup at the 496 

injection well, and (b) Pressure buildup along the fault.  497 

(a) 

(b) 
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4.3 Computational cost of the adaptive management approach 498 

As already pointed out in Cihan et al. (2015), the number of forward calls required by the 499 

CDE algorithm used in Stage 1 and Stage 3 of the approach is high. For the scenarios applied in 500 

this study (Table 2), the maximum number of calls of the forward model for one observation time 501 

is 1,010 for the optimization (Stage 1) and 3,020 for the calibration (Stage 3), corresponding to a 502 

CPU time (or process time) of 45 minutes and 11 minutes, respectively. Note that simulations were 503 

conducted in a regular desktop PC applying parallelization. These CPU times for both stages are 504 

very affordable since we employ a semi-analytical model (Section 2.1) and obviously higher CPU 505 

times are expected if a reservoir simulator is employed. However, the adaptive management 506 

approach can easily be parallelized to work in a high performance computing cluster. We also 507 

would like to highlight that simulations related to early observations, and consequently related to 508 

better and safer results, are tied to short time of simulations (less than 15 days, Figure 8). Therefore, 509 

CPU times of the forward simulations of the reservoir simulator should be much lower (order of 510 

magnitudes) than for later stages of the injection. 511 

5 Conclusions 512 

Industrial scale injection of CO2 into the subsurface can cause reservoir pressure increases 513 

that can be properly controlled via pressure management schemes such as brine extraction. Such 514 

control is important as excessive pressure buildup in a reservoir may result in groundwater 515 

contamination stemming from leakage through conductive pathways, such as improperly plugged 516 

abandoned wells or distant faults, or may trigger fault reactivation and possibly seal breaching. 517 

Knowledge of the subsurface properties is always incomplete, especially during the planning 518 

stages of CO2 projects because of limited site characterization data and related uncertainties. Thus, 519 

during the operation of a given project, the subsurface system behavior needs to be monitored 520 
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continuously, and the models and their predictions need to be frequently updated to effectively and 521 

safely control reservoir pressure. 522 

In this study, we developed and applied an automated adaptive pressure management 523 

algorithm to understand primarily the effects of initial site characterization and frequency of model 524 

updates (calibration) and optimization calculations on the accuracy and the success of managing a 525 

subsurface reservoir system. Adaptive optimized management uses advanced automated 526 

optimization algorithms and suitable process models. Adaptive management integrates 527 

monitoring, forward modeling, inverse modeling and optimization in an iterative way. The 528 

hypothetical scenario considered here assumes CO2 injection into a deep aquifer-aquitard 529 

(sandstone-shale) sequence, where pressure buildup from injection increases the risk of caprock 530 

failure and fault activation. We designed and optimized a pressure management strategy involving 531 

a passive relief well and an active brine extraction well to reduce pressure increases to avoid 532 

caprock damage near the injection well and decrease the risk of activating a nearby fault. 533 

Our results show that that the success of adaptive pressure management depends strongly 534 

on the frequency rate of model updates and calibration, particularly at early times. Less frequent 535 

optimization + monitoring/testing + calibration cycles may lead to pressure buildups that exceed 536 

constraints at initial times potentially resulting in excessively high extraction rates. These 537 

conditions can be avoided or eliminated if optimization + monitoring/testing + calibration 538 

calculations are conducted with greater frequency, especially during the early injection period. The 539 

high extraction rates that the optimization algorithm finds initially for under-estimated hydraulic 540 

properties can be decreased if more model updates are conducted at the onset of injection. 541 

Similarly, early model improvement for cases with initial over-estimation of d hydraulic properties 542 
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avoids the risk of under-estimating the extraction rates during the first injection years, which could 543 

result in a violation of the pressure constraints imposed for the optimization model.  544 

We demonstrated the effectiveness of adaptive pressure management for a simple case of 545 

a reservoir system with a limited set of monitoring data from three observation wells. This 546 

framework could easily be expanded to include diverse data sets with observations made at other 547 

locations and/or over large areas comprising different physical processes such as salinity, 548 

temperature, geophysical or satellite deformation, etc. We conclude that adaptive management 549 

constitutes an effective tool to manage subsurface pressure and plume control in application to 550 

geological CO2 storage which could be extended to other fields where injection of fluid takes place 551 

(e.g., geothermal reservoirs). 552 
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FIGURES 683 

 684 

Figure 1. Schematic showing the pressure management strategy in this study to reduce risk of 685 

caprock failure and risk of fault reactivation. The schematic shows the five top aquitards as well 686 

as the five top aquifers of Table 1 (from 22 to 18). Injection of CO2 occurs into two reservoir layers 687 

(aquifers 22 and 21 in Table 1). Brines are extracted from two wells, one of them “actively” 688 

pumping to the surface, the other “passively” moving brines into deeper layers. The back of the 689 

schematic figure shows a hypothetical critically stressed fault, for which a maximum allowable 690 

pressure change has been defined. Another pressure limit is defined to avoid caprock damage. 691 

 692 

Figure 2. Profiles of maximum pressure buildup (in MPa) (a) at the caprock and (b) at the fault. 693 

(Note that Cihan et al.’s computer program (2011) produces the results in terms of head in meters, 694 

and to convert the head buildup to pressure buildup, we used a uniform brine density of 1126.026 695 

kg/m3.) 696 

 697 

Figure 3. Pressure buildup contours (in MPa) at time=30 years with (a) only passive extraction and 698 

(b) passive and active extraction (updates every 3 years) for the +20% case in Layer 22. 699 

 700 

Figure 4. Summary of the adaptive optimization results: Variation of the estimated brine 701 

extraction ratio as a function of initial deviations from reservoir properties and model update 702 

frequency (t). 703 

 704 
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Figure 5. Maximum pressure buildup evolution registered from the observation points in response 705 

to applied optimal extraction rates, produced by a scenario with low frequency of updates (t= 10 706 

years): (a) at the caprock, and (b) along the fault. 707 

 708 

Figure 6. Scenario -20%: changes in the root-mean-square error (RMSE) between model 709 

predicted heads and observed heads for high frequency updates between time =0-60 days. 710 

 711 

Figure 7. Calculated extraction rates based on the scenario with initial hydraulic parameters 712 

deviated by -20% are compared with the actual optimal rates for the ‘true’ model. ‘no model 713 

updates at early times’ (solid black line) corresponds to a fixed model update frequency of 3 714 

years, and ‘frequent model updates at early times’ (dashed black) corresponds to variable 715 

frequencies of model updates (changing from 3 days at very early times to 3 years at late times). 716 

 717 

Figure 8. Maximum pressure changes ‘observed’ based on the ‘true’ model for the scenario 718 

with initial hydraulic parameters deviated by -20%. ‘no model updates at early times’ (solid 719 

black line) corresponds to a fixed model update frequency of 3 years, and ‘frequent updates at 720 

early times’ (dashed black) corresponds to variable frequencies of model updates (changing 721 

from 3 days at very early times to 3 years at late times): (a) Pressure buildup at the injection 722 

well, and (b) Pressure buildup along the fault.  723 

  724 
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TABLES 725 

 726 

Table 1. Reference (‘true’) hydraulic property values of reservoir layers containing aquifers 727 

alternating with aquitards. The bottom layer is an aquifer, and the top layer is an aquitard. 728 

 729 

Table 2. Scenarios considered for the adaptive management framework 730 

 731 
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