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Abstract/Zusammenfassung

Abstract

Uncertainty Quantification (UQ) generalizes computer simulations by introducing stochas-

tic terms. This allows for propagation, characterization, and inference of uncertainties,

based on evaluations of the underlying simulation. However, for large-scale problems the

simulation is usually computationally demanding, which makes standard UQ approaches

infeasible. Reliable surrogate models are needed to approximate diverse quantities of

interest from few simulation runs. In this data-scarce regime, adaptive discretization is

key to the extraction of as much information as possible from few data points. Therefore,

we use spatially adaptive sparse grids, which we combine with B-spline basis functions

to allow for higher-order approximation, access to derivatives, and numerically exact

integration.

In this thesis we propose the use of B-splines and spatially adaptive sparse grids to

create accurate and versatile surrogates for UQ. First, we develop new B-spline basis func-

tions that for the first time achieve optimal approximation order on non-boundary sparse

grids. Second, we combine and customize numerous numerical techniques to enable

the surrogates to tackle a wide range of UQ tasks. In particular, the surrogates provide

forward propagation of uncertainties through the calculation of stochastic moments, sen-

sitivity analysis and dimension reduction through active subspaces, and optimization and

efficient sampling based on gradient information. Third, we demonstrate the combined

potential of B-splines and sparse grids for UQ with four real-world applications, where our

approach outperforms state-of-the-art methods. The applications include an otherwise

unrealizable decision-making tool for COVID-19 tests, improved parameter calibration

for an engine test-bench, and forward UQ investigations of a tsunami prediction and a

subsurface CO2 storage.

13



ABSTRACT/ZUSAMMENFASSUNG

Kurzzusammenfassung

Die Quantifizierung von Unsicherheiten (UQ) ist ein Fachgebiet an der Schnittstelle von

Stochastik, Informatik und Ingenieurswissenschaften, das sich mit dem Einschätzen von

Risiken, sowie dem Charakterisieren und Reduzieren von Unsicherheiten beschäftigt.

Indem Computersimulationen realer Prozesse um stochastische Terme ergänzt werden,

tritt eine ganzheitliche Betrachtung an die Stelle individueller spezifischer Ergebnisse.

Klassische UQ Methoden basieren auf Auswertungen der zugrundeliegende Simulation,

was aber für umfangreiche Probleme sehr rechenaufwändig werden kann. Deshalb wer-

den verlässliche Surrogat-Modelle benötigt um die vielfältigen Zielgrößen ausgehend von

wenigen Simulationsauswertungen zu approximieren. Adaptive Diskretisierung ist der

Schlüssel, um trotz dieser Datenknappheit möglichst viel Information aus wenigen Da-

tenpunkten zu gewinnen, deshalb verwenden wir räumlich adaptive dünne Gitter. Diese

kombinieren wir mit B-spline Basisfunktionen, um Approximationen höherer Ordnung,

Zugang zu Ableitungen und numerisch exakte Integration zu ermöglichen. Allerdings

müssen wir, um den Fluch der Dimensionalität zu vermeiden, die Randpunkte der dünnen

Gitter auslassen, obwohl diese für die volle Approximationsqualität der Basis eigentlich

zwingend notwendig wären.

In dieser Arbeit kombinieren wir B-splines und räumlich adaptive dünne Gitter um

präzise und vielseitige Surrogate für UQ zu erstellen. Zuerst entwickeln wir neue B-

spline Basisfunktionen, welche erstmalig auch auf randlosen dünnen Gittern die optimale

Approximationsordnung erreichen. Dann passen wir mehrere numerische Verfahren so

an, dass sie unseren Surrogaten ermöglichen ein breites Spektrum von UQ-Aufgaben zu

bewältigen; insbesondere die Vorwärts-Ausbreitung von Unsicherheiten durch das Berech-

nen stochastischer Momente, Sensitivitätsanalyse und Dimensionsreduktion durch aktive

Unterräume, sowie Optimierung und effiziente Stichprobennahme basierend auf Gradi-

enteninformation. Schließlich demonstrieren wir das kombinierte Potential von B-splines

und dünnen Gittern für UQ anhand von vier realen Anwendungen aus unterschiedlichen

Fachgebieten. Diese beinhalten eine ansonsten nicht verwirklichbare Entscheidungshilfe

für COVID-19 Tests, verbesserte Parameterkalibrierung für einen Motorteststand, sowie

Vorwärts-UQ Untersuchungen für eine Tsunamivorhersage und einen unterirdischen CO2

Speicher, bei denen unsere Surrogate den Stand der Technik übertreffen.
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1
Introduction

Only 80 years ago, during the second World War, the first large-scale computer simu-

lations were performed by John von Neumann and Stanislaw Ulam [Bor19]. Since then,

computer simulations have become one of the major tools in many scientific fields, and

are by now considered the third pillar of science, next to theory and experiments [Bun14].
With continuously increasing computational power at decreasing cost [Sch97], as well

as many theoretical improvements from mathematics and computer sciences, the accu-

racy and significance of simulations is increasing rapidly. Still, exact simulation of real

world systems can quickly turn into a Sisyphean task. Computer simulations will always

be only simplified approximations of a tiny portion of reality, where few key parame-

ters are identified, ideal assumptions are presumed and minor phenomena are ignored.

Therefore, quantifying uncertainty and estimating confidence is essential for thorough

investigations.

The field of Uncertainty Quantification (UQ) as we know it today, was established in

the mid 1990s and has constantly grown, and gained in importance ever since [Sul15].
Uncertainty quantification expands traditional simulations with stochastic descriptions,

and thus allows to take into account otherwise neglected effects that cannot be handled

explicitly. Conversely, by deriving probabilistic properties of a model from observations,

UQ enables parameter calibration and, more generally, solutions for inverse problems.

The main challenge in UQ is that brute-force stochastic simulation techniques are in-

feasible for large-scale problems. Therefore, surrogates, i.e., replacement models which

recreate the original up to sufficient accuracy, are required.

Complex simulations are often very expensive in terms of required hardware and run-

times, thus, it is important to keep the amount of simulation runs for surrogate creation

as low as possible. In this data-scarce regime, adaptive discretization methods offer

great cost-benefit ratio by iteratively choosing the most promising next evaluation point
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based on the current data-set. Spatially adaptive sparse grids are such a discretization

approach for the creation of surrogates for expensive and high-dimensional objectives.

In contrast to full grids, i.e., uniform isotropic Cartesian products, their number of inner

grid points grows multiple orders of magnitude slower, mitigating the so-called curse of

dimensionality. The quality of sparse grid surrogates depends mainly on the underlying

basis functions. Originally hat functions were used, but they were soon generalized to

piecewise polynomial C0 elements which achieve higher-order approximation. Because

the C0 elements are not differentiable, B-splines were then adapted to sparse grids,

resulting in differentiable higher-order approximations.

So far, boundary grid points are necessary to achieve the full approximation potential,

but because the number of boundary points of sparse grids grows exponentially in the

number of dimensions, the boundary must be omitted. To compensate for this, so-called

modified basis functions have been used until now, but these only work well for objectives

with zero second derivatives. Universally applicable higher-order basis functions on non-

boundary sparse grids have not been available until now. In this thesis we introduce

the theoretical foundation for such basis functions, and then demonstrate their practical

usefulness for uncertainty quantification based on four real-world applications, where

we take advantage of several beneficial properties of B-spline basis functions. Their

higher-order approximation quality results in accurate representations. Furthermore,

splines can be integrated and differentiated numerically exact, because they are piecewise

polynomials. The former is essential for the calculation of stochastic moments, and we

use the latter for optimization, sensitivity analysis, and sophisticated sampling.

The outline of this thesis is as follows. We introduce sparse grids in Chap. 2, starting

from univariate hierarchical basis functions. Generalizing these to multi-dimensional

settings, we are able to define regular sparse grids. An overview over the number of

grid points then motivates to generally omit boundary points, before we introduce spatial

adaptivity which further reduces the required number of grid points.

B-spline basis functions are the core of our approaches, and we introduce them

in Chap. 3. We establish the necessary theory and describe the state-of the-art, before

we introduce two new types of B-spline basis functions for non-boundary sparse grids,

extended not-a-knot B-splines and boundaryless not-a-knot B-splines. Despite their different

motivation and definition, we prove that both bases in fact span the same space. To

demonstrate the new basis function’s approximation quality, we then perform a numerical

comparison with established basis functions, where the new approaches always perform

comparable or better than the other bases.

In Chap. 4 we introduce the required stochastic theory, and explain how UQ benefits

from our surrogates. We define the polynomial chaos expansion, a popular UQ surrogate
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technique, which we will later use for comparison. We then present two UQ techniques

for which B-splines can be used to advantage. First, Bayesian inference for the solution

of inverse problems, where we enable a modern sampling technique through our surro-

gate’s derivatives. Second, active subspaces, a dimension-reduction technique based on

sensitivity analysis, which requires integration of the surrogate’s squared derivatives.

Then we demonstrate the accuracy and versatile applicability of B-splines on sparse

grids for UQ based on four real-world applications. In Chap. 5 we create a surrogate for

a subsurface carbon dioxide storage benchmark. By comparing our results to four other

state-of-the art UQ techniques, we demonstrate how well even complex simulations and

their stochastic moments can be represented using our approach.

Then, in Chap. 6, we present the results of a collaboration with Bosch Research,

where we perform Bayesian inference for a real DC motor test-bench. Where so far

Metropolis-Hastings and Approximate Bayesian Computation have been used for sampling

the posterior, the gradients provided by the B-spline surrogate enable the more advanced

Hamiltonian Monte Carlo sampling.

In Chap. 7 we perform a comprehensive forward UQ study for the simulation of

tsunami run-ups. The study includes calculating the expected run-up, narrowing down the

probable scenarios, and gradient-based optimization revealing the worst-case scenario.

In the last application, in Chap. 8, we perform a simulation comparing the effec-

tiveness of different pool testing strategies with respect to COVID-19 characteristics. An

interactive website allows the general public to receive recommendations customized

for their individual environments. As the simulation would take hours of run-time to

complete, the website utilizes a surrogate model which is almost exact with respect to

stochastic fluctuations.

We end with concluding remarks and the appendix, which contains extensive proofs

and additional details on the applications, that would have interrupted the flow of reading

in the main text.
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2
Sparse Grids

“ The curse of dimensionality [is] a malediction

that has plagued the scientist from the earliest

days.

— Richard E. Bellman [Bel61]

Uniform, isotropic tensor product grids, also called full grids, are a simple and widely

used approach for the discretization of hypercubes. While full grids sample the entire

domain evenly, their number of grid points grows exponentially in the number of di-

mensions. This prevents their practical usage for domains in more than three or four

dimensions, a behavior known as the curse of dimensionality [Bel61].

Sparse grids are a discretization scheme designed to mitigate the curse of dimen-

sionality. For increasing dimension, their number of grid points increases significantly

slower than that of their full grid counterparts, whereas the asymptotic error decay for

interpolation is only deteriorated by a logarithmic factor. The underlying methodology

of sparse grids was first described by Smolyak in the 1960s [Smo63], in a form that is

by now known as the combination technique [Gri90]. It is based on multiple approxi-

mations, each much coarser than the corresponding full grid. Still, their superposition

reaches more accuracy than any of the component grids by itself. In the 1990s Zenger

introduced sparse grids based on a hierarchical basis [Zen91]. Further seminal work

was performed by Bungartz [Bun92; Bun98; Bun04], and Griebel [Gri90]. Since then,

sparse grids have been applied in a wide range of disciplines [Peh15], among others for
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interpolation [Sic11], quadrature [Ger98], partial differential equations [Wid08; Nob08],
data-mining [Gar01; Pfl10], uncertainty quantification [Fra15; Fra17], density estima-

tion [Peh14], optimization [Val16; Val19], classification [Pfl10; Pfa16], clustering [Pfa19]
and economics [Bun12; Sch18].

In this chapter, we introduce sparse grids based on hierarchical basis functions. We

first define univariate hierarchical subspaces in Sec. 2.1 for arbitrary basis functions,

and then present the traditionally used bases in Sec. 2.2. Using tensor products, we

generalize the univariate concepts to arbitrary dimensions in Sec. 2.3. An estimate on the

importance of individual subspaces then motivates regular sparse grids in Sec. 2.4, which

we define with and without boundary points. The former provide more accuracy than the

latter, however, the number of boundary grid points grows exponentially in the number

of dimensions. Thus, for increasing dimension only non-boundary grids can be applied.

In Sec. 2.5, we reduce the required number of grid points for accurate approximations

even further by defining spatially adaptive sparse grids. In contrast to regular sparse grids,

they are automatically refined according to the quantity of interest. We mainly follow

established literature [Bun04; Pfl10; Val19] for this introductory chapter and summarize

the concepts, which we will need later on. The formulation and derivation of Thm. 2.2

are new contributions of this thesis.

Notation. Let v ∈ RD be a D-dimensional vector for D ∈ N. Throughout this thesis, the

term dimension D refers to the overall number of input parameters of a function. This

should not be confused with other notions of dimension such as the number of spatial

dimensions or the number of degrees of freedom. The `1-norm |v |1, the Euclidean norm

|v |2, and the maximum norm |v |∞ of v are defined as

|v |1 :=
D
∑

d=1

|vd |, |v |22 :=
D
∑

d=1

v2
d , |v |∞ := max

1≤d≤D
|vd |.(2.1)

Bold numbers represent vectors with constant entries, e.g., 1 is the D-dimensional unit

vector (1, . . . , 1)T ∈ RD. Operations for D-dimensional multi-indices are performed

component-wise,

`≤ k ⇐⇒ `d ≤ kd ∀ 1≤ d ≤ D,(2.2)

max(`, k) = (max(`1, k1), . . . ,max(`D, kD))
T .(2.3)

Let (Ω, F,µ) be a measure space with the set Ω ⊂ RD, a σ-algebra F , and a measure µ

on (Ω, F). For measurable functions f : Ω ⊂ RD → R and 0 < p <∞, we define the Lp

norm as
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‖ f ‖p :=

�∫

Ω

| f (x )|pdx

�
1
p

,(2.4)

and Lp(Ω) as the space of all measurable functions f for which it holds ‖ f ‖p <∞. For

multi-indices k ∈ ND
0 , mixed derivatives are defined as

∂ |k|1

∂ x k
f =

∂ |k|1

∂ x k1
1 · · ·∂ x kD

D

f .(2.5)

We define the Sobolev semi-norm | f |Hk
mix

and Sobolev norm ‖ f ‖Hm
mix

as

| f |Hk
mix

:=









∂ |k|1

∂ x k
f









2

, ‖ f ‖2
Hm

mix
:=

∑

0≤k≤m

| f |2
Hk

mix
,(2.6)

where k, m ∈ ND
0 . The Sobolev space with dominating mixed derivatives H2

mix is the space

of functions for which mixed partial derivatives of second order exist and are finite,

H2
mix := { f : Ω ⊂ RD→ R | ‖ f ‖2

H2
mix
<∞},(2.7)

and H2
0,mix is the space of all functions f ∈ H2

mix, which vanish on the boundary ∂Ω.

Furthermore, we define the gradient ∇ f of a function f : RD→ R as

∇ f :=







∂ f
∂ x1
...
∂ f
∂ xD






,(2.8)

and the Jacobian J f of a function f : RD→ Rm as

J f :=







∂ f1
∂ x1

· · · ∂ f1
∂ xD

...
. . .

...
∂ fm
∂ x1

· · · ∂ fm
∂ xD






,(2.9)

provided that the derivatives in Equations (2.8) and (2.9) exist. Numerically, we can only

handle compact sub-volumes Ω ⊂ RD, and sparse grids can only be defined on tensor-

products of finite intervals. To simplify notation and implementation, we therefore restrict

ourselves to the unit interval [0,1]D without loss of generality.
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CHAPTER 2: SPARSE GRIDS

2.1 Univariate Interpolation

We now first introduce univariate nodal bases and the concept of hierarchical bases. Then,

we show their equivalence with respect to interpolation.

2.1.1 Interpolation in the Nodal Basis

Discretizing the unit interval [0,1] uniformly with grid width h` := 2−` for level ` ∈ N0

results in Ω`, the full grid of level `, which consists of 2` + 1 grid points x`,i,

Ω` := {x`,i | i ∈ K`}, x`,i := i · h`,(2.10)

where K` := {0, . . . , 2`} is the full index set of level `, and we call i ∈ K` the index. With

each grid point x`,i, we associate a basis function ϕ`,i : [0,1]→ R, and for all ` ∈ N0 we

require the functions {ϕ`,i | i ∈ K`} to be linearly independent. We imagine a one-to-one

correspondence between basis functions and grid points, and therefore call this the nodal

basis. The space of all linear combinations of the nodal basis functions of level ` is

V` := span{ϕ`,i | i ∈ K`}.(2.11)

Any function f : [0,1]→ R in the full grid space V` can be interpolated on the full grid

Ω`. This means that we can determine coefficients c`,i ∈ R such that

f̂` :=
2`
∑

i′=0

c`,i′ϕ`,i′ , f̂`(x`,i) = f (x`,i), ∀x`,i ∈ Ω`.(2.12)

The interpolation problem (2.12) is well-defined and yields unique coefficients c`,i′ , be-

cause the basis functions are linearly independent. The function f̂` is called the full grid

interpolant of f of level `. Interpolation on the full grid is illustrated in Fig. 2.1.

2.1.2 Interpolation in the Hierarchical Basis

The nodal full grid basis consists of 2` + 1 equally important basis functions. We now

introduce an equivalent hierarchical basis of decreasing importance. This will later allow

us to balance the total number of grid points and the resulting approximation quality.

Because the full grids Ω` are nested, i.e., each grid point with an even index on level ` is

equal to a grid point with an odd index on level (`− 1), we can re-order the grid points
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2.1 UNIVARIATE INTERPOLATION

f (x)

f̂ (x)

0 1

f̂`(x) =
∑

i′
c`,i′ϕ`,i′(x)

0 1

FIGURE 2.1 One-dimensional piecewise linear interpolation of the function f with nodal hat
basis functions, on a non-boundary full grid, resulting in the full grid interpolant
f̂` of level 3.

hierarchically. Let I` be the one-dimensional hierarchical index set of level `,

I` :=

(

{0,1} `= 0,

{i ∈ K` | i odd} ` > 0.
(2.13)

With this we decompose the full grid Ω` into hierarchical subgrids,

Ω` =
⋃̀

`′=0

{x`′,i | i ∈ I`′}.(2.14)

The basis functions corresponding to each hierarchical subgrid span the corresponding

hierarchical subspace W` of level `,

W` := span{ϕ`,i | i ∈ I`}.(2.15)

Analogously to the decomposition of the full grid Ω` into subgrids in Eq. (2.14), we

decompose the full grid space V` into the direct sum of hierarchical subspaces W`. This

decomposition is called hierarchical splitting.

LEMMA 2.1 (univariate hierarchical splitting)

If the hierarchical subspaces W`′ are subspaces of V` for `′ ≤ ` and the hierarchical basis

functions ϕ`′,i′ are linearly independent for `′ ≤ `, i′ ∈ I`′ , then

V` =
⊕̀

`′=0

W`′ .(2.16)
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0 1

f (x) f̃`(x) =
∑

`′

∑

i′
α`′,i′ϕ`′,i′(x)

0 1

FIGURE 2.2 One-dimensional piecewise linear interpolation of the same function f as
in Fig. 2.1, but with hierarchical hat basis functions on a non-boundary sparse
grid of level 3. The resulting approximation f̃` is identical to f̂` in V`. The left
image also illustrates why the hierarchical interpolation coefficients are called
“surpluses”.

PROOF See [Val19]. �

Under the requirements of this lemma, it holds V` = V`−1⊕W`. Therefore, the spaces

are called nested. Following Lm. 2.1, any function f : [0, 1]→ R in the full grid space V`
can be represented in the hierarchical basis. As in Eq. (2.12), we can calculate coefficients

α`′,i′ ∈ R, such that

f̃` :=
∑̀

`′=0

∑

i′∈I`′

α`′,i′ϕ`′,i′ , f̃`(x`,i) = f (x`,i), ∀x`,i ∈ Ω`.(2.17)

It is important to note that f̃` is the same function as f̂` from Eq. (2.12), but evolved in

a different basis for the same space. This fact is illustrated in Figures 2.1 and 2.2. In a

sparse grid context, the coefficients α`′,i′ are called hierarchical surpluses. The process

of calculating the surpluses from objective values at the grid points is generally called

interpolation, but in a sparse grid context also the term hierarchization is used.

Hierarchical splitting via prolongation. We now derive a criterion for hierarchical

splitting which will become particularly useful in Chap. 3, when we introduce new hierar-

chical B-spline bases. Let {ϕ`,k | k ∈ K`} be basis functions, which are linearly independent

for each `≥ 0, but for which it is not known whether the corresponding hierarchical basis

{ϕ`′,i′ | 0≤ `′ ≤ `, i′ ∈ I`′} is linearly independent. Let further
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2.1 UNIVARIATE INTERPOLATION

span{ϕ`−1,k | k ∈ K`−1}= V`−1 ⊂ V` = span{ϕ`,i | i ∈ K`} for all `≥ 1,(2.18)

then there exists the prolongation matrix P ∈ R(2`+1)×(2`−1+1) of level `, which has entries

pi,k, such that

ϕ`−1,k =
∑

i∈K`

pi,k ϕ`,i,(2.19)

for all k ∈ K`−1. Now for any given linear combination f :=
∑

k∈K`−1
ckϕ`−1,k, where

c := (ck)k∈K`−1
is the vector of coefficients, we can calculate c̃ := Pc. Using Eq. (2.19) and

exploiting the finiteness of the sums yields

f =
∑

k∈K`−1

ckϕ`−1,k =
∑

k∈K`−1

ck

∑

i∈K`

pi,k ϕ`,i =
∑

i∈K`

∑

k∈K`−1

pi,kck

︸ ︷︷ ︸

c̃i

ϕ`,i =
∑

i∈K`

c̃iϕ`,i.(2.20)

Let now g :=
∑

k∈K`−1
ckϕ`−1,k +

∑

j∈I`
d jϕ`, j be a linear combination of the nodal basis

functions of level ` − 1 and the hierarchical basis functions of level ` with coefficients

c := (ck)k∈K`−1
and d := (d j) j∈I` . We apply Eq. (2.20) and combine the resulting sums

exploiting I` ⊂ K`,

g =
∑

k∈K`−1

ckϕ`−1,k +
∑

j∈I`

d jϕ`, j =
∑

i∈K`

c̃iϕ`,i +
∑

j∈I`

d jϕ`, j =
∑

i∈K`

(c̃i + d̃i)ϕ`,i

=
∑

i∈K`

aiϕ`,i,
(2.21)

where

ai := (c̃i + d̃i), d̃i :=

(

di if i ∈ I`,

0 else.
(2.22)

Next, we split the matrix P into matrices P1 ∈ R(2
`−1+1)×(2`−1+1) and P2 ∈ R(2

`−1)×(2`−1+1),

where P1 contains the rows of P corresponding to basis functions of level `, which are

not part of the hierarchical basis, {ϕ`,k | k ∈ K`\I`} and P2 contains the rows of P

corresponding to basis functions of level `, which are part of the hierarchical basis,

{ϕ`,k | k ∈ I`}. With this, the identity matrix 1 ∈ R(2`−1)×(2`−1), and the zero matrix

0 ∈ R(2`−1+1)×(2`−1), we define

A :=

�

P1 0

P2 1

�

∈ R(2
`+1)×(2`+1).(2.23)

27



CHAPTER 2: SPARSE GRIDS

Combining the coefficients c and d into a vector (c d)T we can formulate the transfor-

mation of Eq. (2.21) as a matrix operation

A ·

�

c

d

�

=

�

(ai)i∈K`\I`

(ai)i∈I`

�

.(2.24)

If P1 is regular, then A is regular because we can explicitly state its inverse,

A−1 :=

�

P−1
1 0

−P2P−1
1 1

�

,(2.25)

Consequently, any linear combination of the nodal basis of level ` can be represented as

a linear combination of the nodal basis of level `− 1 and the hierarchical basis of level `,

by applying the inverse of A. This is summarized in the following theorem.

THEOREM 2.2 (hierarchical splitting via prolongation)

Let V`−1 ⊂ V`. If P1, defined as above, is regular, then

V` =
⊕̀

`′=0

W`′ .(2.26)

In particular, the hierarchical basis functions {ϕ`′,i′ | 0 ≤ `′ ≤ `, i′ ∈ I`′} are linearly

independent.

Note, that this theorem is also valid if no boundary points are used, i.e., the indices

0 and 2` are removed from K`. The same derivation can be used, only the matrices

in Eq. (2.23) must be defined accordingly smaller.

2.2 Basis Functions

Hat functions. We introduce sparse grids based on generic hierarchical basis functions

ϕ`,i. Traditionally however, piecewise linear hat functions are used [Bun04],

ϕ`,i = b1
`,i(x) :=max(1− |x/h` − i|, 0).(2.27)

This basis fulfills the following fundamental property, also known as incremental property,

ϕ`,i(x`′,i′) = 0, `′ < `, i′ ∈ I`′ ,

ϕ`,i(x`,i′) = δi,i′ , i′ ∈ I`,
(2.28)
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x2,1 x1,1 x2,3 x3,7 x0,1

p3,7

x0,0

FIGURE 2.3 The hierarchical C0 element p3,7 of degree 4 is defined as the Lagrange polyno-
mial in x3,7 with respect to {x0,0, x1,1, x2,3, x3,7, x0,1} truncated to (x2,3, x0,1).

which enables efficient hierarchization in multivariate settings through the unidirectional

principle. This scheme decomposes a linear operator in D dimensions into multiple

applications of corresponding univariate linear operators [Bal94]. The unidirectional

principle is in particular applied for fast hierarchization. The major disadvantage of

the piecewise linear hat function basis (2.27) is that their approximation order, i.e., the

convergence of the L2 interpolation error, is limited to O(h−2
`
).

Hierarchical C0 elements. In a first attempt to improve the approximation order, Bun-

gartz introduced piecewise D-polynomial C0 elements p`,i [Bun98]. These basis functions

are hierarchical piecewise polynomials of arbitrary degree. They are defined as Lagrange

polynomials with respect to certain grid points of the same and lower levels, but trun-

cated to (x`,i−1, x`,i+1), see Fig. 2.3 for an illustration. Consequently, these basis functions

satisfy the fundamental property Eq. (2.28), and the univariate principle can be applied.

While the C0 elements provide better approximation order than simple hat functions,

they are not continuously differentiable. This is a significant drawback, as there are many

relevant applications that require gradient information. For example, in this thesis we

make use of gradients for active subspaces in Sec. 4.4, Bayesian inference in Chap. 6, and

optimization in Chap. 7. Therefore, in recent years, B-splines have become increasingly

popular with sparse grids. We introduce them comprehensively in Chap. 3.

Modified basis functions. The so far mentioned basis functions share the property that

for level ` > 0 they evaluate to zero on the domain’s boundary. In higher dimensions,

when non-boundary sparse grids must be used, this constrains the approximation quality

at the boundary. Therefore, Pflüger introduced modified basis functions, which extrap-
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FIGURE 2.4 Classical hierarchical basis functions for sparse grids of level `= 0, . . . , 3.

olate heuristically towards the boundary [Pfl10]. For linear hat functions, this means

that the left-most and right-most functions of each level are linearly continued towards

the boundary, resulting in the modified piecewise linear basis b1,m
`,i . See Sec. 3.2.1 for

more details on this, and Fig. 2.4 for an illustration. For the hierarchical C0 elements, the

modification consists of omitting the boundary support points x0,0 and x0,1, and reducing

the polynomial degree by two. We denote modified hierarchical C0 elements by pm
`,i.

2.3 Multivariate Interpolation

The concepts from Sec. 2.1 and the basis functions from Sec. 2.2 are easily generalized

towards arbitrary D-dimensional spaces by using tensor products. Level and index become

multi-indices

` := (`d)
D
d=1 ∈ N

D
0 , i := (id)

D
d=1 ∈ N

D
0 ,(2.29)

and the grid width and grid points are defined component-wise,

h` :=
�

2−`d
�D

d=1
, x`,i :=

�

idh`d

�D

d=1
.(2.30)
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Summarizing all grid points of level ` now yields the D-dimensional full grid of level

` ∈ ND
0 ,

Ω` := {x`,i | i = 0, . . . ,2`},(2.31)

where the notation i = 0, . . . ,2` abbreviates all indices i = (id)
D
d=1 with 0 ≤ id ≤ 2`d for

d = 1, . . . , D. The univariate basis functions are generalized through tensor products,

ϕ`,i : [0,1]D→ R, ϕ`,i(x ) :=
D
∏

d=1

ϕ`d ,id (xd),(2.32)

where x := (xd)
D
d=1 ∈ [0,1]D, and the multivariate full grid space V` of level ` is accord-

ingly defined as

V` := span{ϕ`,i | i = 0, . . . ,2`}.(2.33)

The multivariate hierarchical index set is defined via Cartesian products, I` := I`1
×· · ·× I`D

.

Generalizing Eq. (2.14) and Eq. (2.15), we decompose the full grid Ω` into hierarchical

subgrids,

Ω` =
⋃̀

`′=0

{x`′,i | i ∈ I`′},(2.34)

and define hierarchical subspaces of level `,

W` := span{ϕ`,i | i ∈ I`},(2.35)

with which we can state the multivariate hierarchical splitting.

LEMMA 2.3 (multivariate hierarchical splitting)

Let ` ∈ ND
0 . If and only if the hierarchical subspaces W`′ are subspaces of V` for `′ ≤ ` and

the hierarchical basis functions ϕ`′,i ′ are linearly independent for `′ ≤ `, i ′ ∈ I` then

V` =
⊕̀

`′=0

W`′ .(2.36)

PROOF See [Val19]. �

Under the assumptions of Lm. 2.3 any function f : [0,1]D → R in V` can be repre-

sented equivalently in the full basis and in the hierarchical basis, i.e., there exist coeffi-
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cients c`,i ′ ∈ R and α`′,i ′ ∈ R such that

f̂` :=
2`
∑

i ′=0

c`,i ′ϕ`,i ′ ,(2.37)

f̃` :=
∑̀

`′=0

∑

i ′∈I`′

α`′,i ′ϕ`′,i ′ ,(2.38)

f̂`(x`,i) = f̃`(x`,i) = f (x`,i), ∀x`,i ∈ Ω`,(2.39)

and f̂` = f̃` in V`.

The total number of grid points of Ω`, the D-dimensional full grid of level `, is

|Ω`|=
∏D

d=1(2
`d+1). Usually the same level ` ∈ N0 is chosen in each dimension, resulting

in a total of (2`+1)D grid points. This exponential growth of the number of grid points with

respect to the dimension D is the previously mentioned curse of dimensionality [Bel61].
It makes execution and storage needs unfeasible even for moderately high dimensional

settings.

2.4 Regular Sparse Grids

We introduced the hierarchical decomposition in Sec. 2.1.2 to allow estimates on the

importance of individual basis functions. Because of the hierarchy, this is directly related

to the size of the interpolation coefficients. In multi-dimensional settings, the coefficients

often decrease with the level sum |`|1 [Smo63; Zen91]. For example, in [Bun04; Gar12]
it is shown that for functions f ∈ H2

0,mix each component of Eq. (2.38) can be estimated

by













∑

i ′∈I`′

α`′,i ′ϕ`′,i ′













2

∈ O(2−|`
′|1).(2.40)

Motivated by this estimate on the importance of the individual hierarchical components,

we now define sparse grids. Sparse grids omit grid points whose corresponding basis func-

tions have small support and contribute only little to the overall function approximation

according to Eq. (2.40).
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A Scheme of hierarchical subspaces W` in two dimensions
up to level `= (3,3).

B Regular full grid of
level `= 3.

C Regular sparse grid of
level `= 3.

FIGURE 2.5 Decomposition of the full grid space V` on the full grid Ω` into hierarchical
subspaces. Illustrated with piecewise linear hat basis functions.

DEFINITION 2.4 (regular sparse grid with boundary)

The D-dimensional regular sparse grid of level ` ∈ N0 including boundary is defined as

Ωs,b
`,D :=

⋃

|`′|1≤`

{x`′,i | i ∈ I`′},(2.41)

where s and b do not denote exponents, but stand for sparse and boundary. The corre-

sponding D-dimensional regular sparse grid space V s,b
`,D of level ` is defined as

V s,b
`,D :=

⊕

|`′|1≤`

W`′ .(2.42)

Figure 2.5 illustrates this decomposition of the full grid into hierarchical subgrids and

the resulting sparse grid. The definition of I` as Cartesian product in Eq. (2.13) allows a

straightforward definition of sparse grids without boundary through omitting the zeroth

level.
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A Regular non-boundary sparse grid of level 5. B Full grid of level 5.

FIGURE 2.6 The number of grid points of the subgrids forming a non-boundary sparse grid
Ωs
`,D and a full grid Ω` in three-dimensional space, represented as volumes.

Own representation based on an illustration by Stephen Roberts.

DEFINITION 2.5 (regular sparse grid without boundary)

The D-dimensional regular non-boundary sparse grid of level ` ∈ N, is defined as

Ωs
`,D :=

⋃

1≤`′,|`′|1≤`

{x`′,i | i ∈ I`′},(2.43)

and the corresponding D-dimensional regular non-boundary sparse grid space V s
`,D of level

`, is defined as

V s
`,D :=

⊕

1≤`′,|`′|1≤`

W`′ .(2.44)

For fixed dimension D, the number of grid points of a regular sparse grid of level

` grows like O(h−1
`
(log h−1

`
)D−1). This is significantly less than O(h−D

`
), the growth rate

of the corresponding full grid, as is illustrated in Fig. 2.6. Still, under some smoothness

assumptions, cf. Eq. (2.40), the L2-error of a hat-function sparse grid interpolant with

homogeneous zero boundary conditions decays like O(h2
`
(log h−1

`
)D−1), which deteriorates

only slightly from the full grid error decay of O(h2
`
) [Bun04]. This major statement on

sparse grids shows that sparse grids indeed mitigate the curse of dimensionality. Thus,

they allow for approximations that would be infeasible based on full grids. We now go

into more detail on the number of grid points.
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LEMMA 2.6 (number of sparse grid points)

The number of grid points of a regular D-dimensional sparse grid with boundary of level ` is

|Ωs,b
`,D|=

D
∑

d=0

2d
�

D
d

�

|Ωs
`,D−d |,(2.45)

where the number of inner grid points, which is the number of grid points of a regular

D-dimensional non-boundary sparse grid of level `, is

|Ωs
`,D|=

`+1
∑

d=0

2d
�

D− 1+ d
D− 1

�

.(2.46)

PROOF See [Bun04]. �

Lemma 2.6 tells us that the boundary of a regular sparse grid consists of sparse

grids of lower level on each facet of the unit hypercube [0, 1]D. However, the number of

facets of a hypercube grows exponentially in the number of dimensions. To mitigate this

growth, and to reduce the number of boundary points, in practice boundary sparse grids

are set up a little different from Eq. (2.41). The major problem of Ωs,b
`,D is that boundary

points are introduced already on level zero and inner points only from level one onwards.

The discretization on the boundary is thus always a level finer than the discretization

along the main axis. Enforcing on the boundary the same level of discretization as on the

corresponding hyperplane through the grid point on level one, x1,1, defines sparse grids

with aligned boundary,

Ωs,1
`,D :=

⋃

`′∈Ls,1
`,D

{x`′,i | i ∈ I`′}, Ls,1
`,D := {`′ ∈ ND

0 | |max(`′,1)|1 ≤ `}.(2.47)

A sparse grid with aligned boundary can be thought of as having no level zero in the

subspace scheme, but introducing the boundary points together with the midpoint on level

one. For moderate dimensionalities the number of boundary grid points of a sparse grid

with aligned boundary is still manageable and the benefit of better boundary resolution

outweighs the cost of additional points. However, for increasing dimension the boundary

grid points must be omitted to prevent the curse of dimensionality, cf. Tab. 2.1.

The level of boundary points and inner points can even be completely decoupled,

see [Val19] for more details. However, for high dimension or expensive objective func-

tions, the boundary will always pose a severe limitation. We therefore do not pursue

this approach, but in the next chapter our main focus is to derive basis functions which

compensate for omitting all boundary points.
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D |Ω`| |Ω
s,b
`+D−1,D| |Ωs,1

`,D| |Ωs
`,D|

1 33 33 33 31
2 1,089 385 257 129
3 35,937 3,809 1,505 351
4 1.2 · 106 35,585 7,681 769
5 3.9 · 107 3.2 · 105 36,033 1,471
6 1.3 · 109 2.9 · 106 1.6 · 105 2,561
7 4.3 · 1010 2.5 · 107 6.8 · 105 4,159
8 1.4 · 1012 2.3 · 108 2.7 · 106 6,401
9 4.6 · 1013 2.0 · 109 1.1 · 107 9,439

10 1.5 · 1015 1.8 · 1010 4.3 · 107 13,441

TABLE 2.1 Number of grid points for a full grid Ω`, a sparse grid with boundary Ωs,b
`+D−1,D,

a sparse grid with aligned boundary Ωs,1
`,D and a non-boundary sparse grid Ωs

`,D

of level `= 5, respectively. The level shift for Ωs,b
`+D−1,D ensures the same inner

grid as Ωs
`,D and enables a meaningful comparison. For increasing dimension

D the number of boundary sparse grid points exceeds the number of inner grid
points by several orders of magnitude.

2.5 Adaptive Sparse Grids

Regular sparse grids mitigate the curse of dimensionality by selecting only the most im-

portant hierarchical subspaces. However, regular sparse grids still discretize the objective

domain uniformly. For heterogeneous functions too few grid points are spent in regions

of interest, while too many grid points lie in regions of little significance. The only way to

improve a regular sparse grid’s sampling is to increase the level `, which introduces many

hierarchical subgrids at once. Often the objective function f , which must be evaluated at

each grid point, is very expensive, and more grid points mean longer computation times.

2.5.1 Dimensional Adaptivity

One way to potentially reduce the number of sparse grid points, while keeping comparable

approximation quality, is dimensional adaptivity [Ger03], which is mainly used in the

context of the combination technique. Instead of level-wise adding multiple hierarchical

subspaces at once, the subspaces are added individually. The next subspace is chosen by

balancing the expected improvement of the approximation and the cost in terms of the

number of additional grid points. Only admissible subspaces can be added, i.e., subspaces

for which all predecessor subspaces are already part of the sparse grid. If the objective

function is very sensitive to a subset of parameters and rather independent of others,
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dimensional adaptivity can reduce the number of necessary grid points. However, each

admissible subspace contains twice as many grid points as one of its predecessors and

thus dimensional adaptivity still introduces many grid points in regions of little interest.

2.5.2 Spatial Adaptivity

Truly locally customized sparse grids are obtained by using spatial adaptivity, which does

not add whole hierarchical subspaces, but only refines individual grid points. From the

hierarchical perspective it is only natural not to think level-wise of sparse grids, but instead

to view them as a tree-like structure. This tree then must not be balanced, but the depth of

each branch can be customized. Thus, in contrast to regular and dimensionally adaptive

sparse grids, spatially adaptive sparse grids are capable to resolve specific local features

better than the remaining domain. Spatially adaptive sparse grids were first introduced

by Zenger [Zen91] and further studied in particular by Bungartz [Bun04; Bun08] and

Pflüger [Pfl10].

We generalize the definitions of regular sparse grids and regular sparse grid spaces

using an arbitrary finite set I of level-index pairs (`, i), where ` ∈ ND
0 , and i ∈ I`. The

sparse grid Ωs and the according sparse grid space V s corresponding to I are

Ωs := {x`,i | (`, i) ∈ I}, V s := span{ϕ`,i | (`, i) ∈ I}.(2.48)

We define the hierarchical children C(`, i) of a grid point x`,i as all points x`′,i ′ for which

there exists 1≤ t ≤ D, such that

`d = `
′
d , id = i′d ∀d ∈ {1, . . . D}\{t},

`′t = `t + 1,

i′t ∈

(

{1} `t = 0,

{2it − 1, 2it + 1} `t > 0.

(2.49)

For a given sparse grid Ωs, we define the set of refineable grid points Iref ⊂ I as the set of

level-index pairs of grid points for which not all hierarchical children are yet in Ωs,

Iref := {(`, i) ∈ I | C(`, i)6⊂Ωs}.(2.50)

Given an objective function f : [0,1]D → R, we can now create a spatially adaptive

sparse grid. The first step is to initially scan the domain using a regular sparse grid Ωs of

small level `. Next we identify one or multiple grid points x`∗,i∗ ∈ Ωs, which have major

influence on the quantity of interest. Then the grid is refined by adding for each x`∗,i∗ all

37



CHAPTER 2: SPARSE GRIDS

kink

A Regular sparse grid of level 5 with 257 grid
points. L2-approximation error: 8.9 · 10−4.

B Spatially adaptive sparse grid with 250 grid
points. L2-approximation error: 6.3 · 10−6.

FIGURE 2.7 Interpolating f (x , y) :=
�

�x − 2
3

�

�

�

�y − 2
3

�

� with linear basis functions on aligned
boundary sparse grids. The objective function has a kink at x = 2

3 , y = 2
3 , which

is harder to approximate. The spatially adaptive grid focuses on resolving
around the kink, which results in a better approximation.

≤ 2D hierarchical children C(`∗, i∗) that are not yet part of the sparse grid. The number

of grid points to be refined in each step must be chosen depending on the problem at

hand to balance exploration and exploitation. On the one hand, a too small number can

lead to a greedy behavior, refining around the same local feature over and over again. On

the other hand, for a too large number the resulting sparse grid becomes close to regular.

When using boundary grids, additionally to all children C(`∗, i∗), we also add all

ancestor boundary grid points A(`∗, i∗) to keep the grid consistent. These are

A(`∗, i∗) := {x`,i | `, i ∈ ND
0 ,

∃t ∈ {1, . . . , D} s.t. `t = 0,

∃n ∈ N s.t. (`∗, i∗) ∈ Cn(`, i)},

(2.51)

with C1(`, i) := C(`, i), and Cn(`, i) :=
⋃

x`′ ,i′∈Cn−1(`,i) C(`
′, i′) for n > 1 containing the

children of the n-th generation. The refinement procedure is iterated until a threshold

for the maximum number of grid points is exceeded, see Alg. 2.1 for an algorithmic

description and Fig. 2.7 for an illustration.

Let Ωs be a sparse grid with respect to any feasible level-index set I. Note that

this includes any regular or adaptive sparse grid. We denote the according sparse grid
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f , objective function
M, maximum number of grid points
T, number of grid points to be refined in each step
`0, initial level

1 function Ωs,α= SpatialRefinement( f , M, T, `0)
2 Ωs← regular sparse grid of level `0
3 while |Ωs|< M do
4 α← interpolation coefficients for f w.r.t. Ωs

5 Iref← {(`, i) ∈ I | C(`, i)6⊂Ωs}
6 for 1≤ t < T do
7 (`∗, i∗)← argmax(`,i)∈Iref |α`,i |
8 Ωs← Ωs ∪ C(`∗, i∗)
9 Iref← Iref\{(`∗, i∗)}
10 if boundary grid then
11 Ωs← Ωs ∪ A(`∗, i∗)
12 α← interpolation coefficients for f w.r.t. Ωs

13 return Ωs,α

ALGORITHM 2.1 Creation of a sparse grid with surplus adaptive spatial refinement.

representation of an objective function f : [0,1]D→ R as f̃ , and define it as

f̃ :=
∑

(`′,i ′)∈I

α`′,i ′ϕ`′,i ′ , such that f̃ (x`,i) = f (x`,i), ∀(`, i) ∈ I.(2.52)

Surplus refinement. The most popular criterion for the identification of x`∗,i∗ , the grid

point to be refined, is surplus-based refinement [Bun04; Pfl10]. Because of the hierarchical

basis, larger surpluses |α`,i | imply a worse local approximation. Consequently, x`∗,i∗ is

chosen as

(`∗, i∗) = argmax
(`,i)∈Iref

|α`,i |.(2.53)

Surplus refinement for multiple outputs. In our applications, objective functions will

often have multiple output quantities, i.e.,

f : RD→ Rm

x 7→ f (x ) = ( f 1(x ), . . . , f m(x ))T .
(2.54)

For each output component f k(x ) we need to create an individual sparse grid represen-

tation, i.e., calculate coefficients αk
`′,i ′

. However, we use the same underlying sparse grid

39



CHAPTER 2: SPARSE GRIDS

for all output components and refine it with respect to the overall maximal surplus,

(`∗, i∗) = argmax
(`,i)∈Iref, k=1,...,m

|αk
`,i |.(2.55)

Using the same underlying sparse grid for all outputs allows us to construct the QR

decomposition of the interpolation matrix only once, and then apply it consecutively to

all outputs. Thus, creating surrogates for arbitrarily many outputs is only linearly more

expensive than for a single output. The above criterion can easily be generalized for

objective functions with outputs of different magnitudes by adding weight terms.

We also experiment with other refinement criteria than surplus refinement, which is

discussed in Chap. 5.

SG++. All the sparse grid concepts introduced in this chapter, as well as the new B-spline

basis functions from the next chapter, and the new UQ approaches are available within

the sparse grid framework SG++, which is open-source and freely available [SGpp; Pfl10].
All numerical results and comparisons in this thesis were obtained through the author’s

own implementations within this framework.
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3
B-Splines

“ A technique used [. . . ] during World War Two to

construct templates for airplanes by passing thin

wooden planks (’splines’) through points laid out

on the floor.

— Robin Forrest [Bar95]

In the last section, we presented hierarchical polynomial C0 elements, which were

designed to improve the approximation quality of simple hat basis functions on sparse

grids. However, the approximation power of C0 elements is still limited because of their

non-differentiability. Global polynomials would be a differentiable higher-order approxi-

mation alternative, but to improve the accuracy of the approximation and to increase the

number of degrees of freedom, the polynomial degree must be increased. This can lead to

Runge’s phenomenon [Run01], which introduces oscillations. Interpolation in Chebyshev

points, i.e., using Chebyshev polynomials, avoids this and in fact minimizes the effect of

Runge’s phenomenon. However, Chebyshev polynomials are still globally defined, which

makes adapting to local features of the objective function difficult. Furthermore, Faber

showed that for every given sequence of sets of interpolation nodes, there exists a contin-

uous function for which the interpolation process on those nodal sets diverges [Fab14].
Consequently, there is no universal global scheme of interpolation that suits all problems.

Therefore, we now turn our attention to splines, which combine the piecewise de-

sign of C0 elements and the higher-order approximation and differentiability of global
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polynomials by dividing the parameter space into smaller intervals and defining local

piecewise polynomials on each segment. This approach enables local adaptivity and

avoids Runge’s phenomenon. The transition at the intersection of intervals is smooth

enough to guarantee higher-order approximation quality.

Splines were first studied by Schoenberg in 1946 [Sch46]. Because of temporary

business secrecy, his work was independently continued by de Boor [Bir65; DeB78],
Bézier [Béz66], and de Casteljau [DeC63] around 1960. This coincides with the de-

velopment of the Finite Element Method (FEM), which was advantageously applied in

combination with B-splines [Höl03]. The combination of the two techniques remains

fruitful to this day, and has been further improved through non-uniform rational B-

splines (NURBS) [Pie12] and isogeometric analysis (IGA) [Hug05]. B-splines have by

now become a standard tool in numerical mathematics [Qua10] and are used in numer-

ous fields. In recent years, B-splines were applied to sparse grids for high-dimensional

approximation and optimization [Pfl10; Sic11; Val18; Val19], and in this chapter we con-

tinue this work. In particular, we lay the theoretical foundation for the usage of B-splines

with non-boundary sparse grids, which are crucial in higher dimensionalities.

Section 3.1 recapitulates the essential B-spline definitions and theorems. It concludes

with the definition of hierarchical B-splines for sparse grids in Sec. 3.1.1 and boundary

treatment in Sec. 3.1.2. Section 3.2 then focuses on B-splines on non-boundary sparse

grids. This section is a major contribution to the theory of B-splines on sparse grids. We

recapitulate the status quo, namely modified B-splines in Sec. 3.2.1, which can lead to

a significant decline of the approximation order. We then introduce two new B-spline

bases for the usage on sparse grids, neither of which suffers from this decline, hierarchical

extended B-splines in Sec. 3.2.2 and hierarchical boundaryless not-a-knot B-splines in

Sec. 3.2.3. The chapter closes with a comparison of the approximation quality of the

introduced basis functions in Sec. 3.3.

This chapter and the Appendix A.1 contain the major theoretical contributions of

this thesis: the new extended not-a-knot B-spline basis, and the new boundaryless not-

a-knot B-spline basis, as well as the proof for hierarchical splitting. These bases have

already been presented in publications [Reh18; Reh21b; Reh21c], but the formal proof

of hierarchical splitting, as well as the thorough comparison with established bases, are

shown for the first time in this thesis. The boundaryless not-a-knot B-splines are based

on a discussion with Dr. Stefan Zimmer (University of Stuttgart, Germany).
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3.1 B-Splines

Splines are defined through knot sequences, which divide the area of interest into sections,

on each of which the spline is a polynomial of a specified degree. A major advantage

of splines is that degrees of freedom can be introduced by adding more knots to the

sequence, while the polynomial degree stays constant. This makes them more flexible

and preferable over global polynomials. Many different types of splines exist, but one has

by now become established as the basis for the space of splines. Its advantages are, among

others, a simple and elegant theory based on recursiveness, optimal approximation order,

and fast numerical algorithms. We introduce these basis splines, or B-splines, in the same

manner as Höllig [Höl13].
Let ξ := (ξ0, . . . ,ξz+n) be a knot sequence, that is, a non-decreasing sequence of real

numbers ξk for k ∈ {0, . . . , z + n} and z, n ∈ N. This notation is meant to imply that

z splines of degree n will be defined through the knot sequence, which determines a

partitioning of a subset [ξ0,ξz+n) ⊂ R into knot intervals [ξk,ξk+1), k = 0, . . . , z + n− 1.

The knots need not be unique and the maximal number of repetitions of ξk in the sequence

ξ is called its multiplicity.

DEFINITION 3.1 (B-spline)

For a knot sequence ξ, the B-spline bn
k,ξ of index k and degree n is defined by the Cox-

de-Boor recursion [Cox72; De 72],

bn
k,ξ(x) :=







x − ξk

ξk+n − ξk
bn−1

k,ξ (x) +
ξk+n+1 − x
ξk+n+1 − ξk+1

bn−1
k+1,ξ(x) n≥ 1,

χ[ξk ,ξk+1)(x) n= 0,
(3.1)

where terms with zero denominator are discarded, and the characteristic function χ[ξk ,ξk+1)

evaluates to one in the interval [ξk,ξk+1) and zero elsewhere.

Each B-spline bn
k,ξ is uniquely determined by its knots and degree. Its support is [ξk,ξk+n+1],

and on each nonempty knot-interval [ξk,ξk+1), the B-spline is a non-negative polynomial

of degree ≤ n. These properties can be shown by induction [Höl13]. When iterating over

all splines of a knot sequence, we write k ∼ ξ, which can be read as k = 0, . . . , z − 1. The

simplest and most common knot sequence is the uniform knot sequence ξu which has

knots ξu
k := kh for index k ∈ Z and segment length h ∈ R.
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0 1 2 3 4 5 6
0

1 b0 b1 b2 b3 b4 b5

FIGURE 3.1 The standard uniform B-splines b0, . . . , b5.

DEFINITION 3.2 (cardinal splines)

The standard uniform B-spline bn is defined on the knots 0,1, . . . , n+ 1, i.e., bn := bn
0,ξu

with grid width h= 1. The uniform B-splines for an arbitrary uniform knot sequence ξu

with grid width h are scaled translates of bn,

bn
k,ξu = bn((x − ξu

k)/h), k ∼ ξu.(3.2)

Their linear combinations
∑

k∼ξu ck bn
k,ξu are called cardinal splines of degree n and grid

width h. The standard uniform B-splines of degrees 0 to 5 can be seen in Fig. 3.1.

The recursive definition of B-splines (3.1) directly implies a recursive formula for their

derivatives as the weighted difference of two B-splines of lower degree. Consequently,

the derivative of a B-spline of degree n with knots ξk, . . . ,ξk+n+1 is given by

d
d x

bn
k,ξ(x) =

n
ξk+n − ξk

bn−1
k,ξ (x)−

n
ξk+n+1 − ξk+1

bn−1
k+1,ξ(x),(3.3)

where again terms with zero denominator are discarded. It follows from this formula

that bn
k,ξ is (n− µ)-times continuously differentiable at a knot ξi of multiplicity µ ≤ n.

In particular, B-splines are continuous if all knots have multiplicity ≤ n. This property is

further formalized through the definition of n-regularity, which is illustrated in Fig. 3.2.

DEFINITION 3.3 (knot sequence regularity)

The parameter interval Dn
ξ

:= [ξn,ξz] is the maximal interval on which the B-splines

bn
k,ξ, k ∼ ξ form a partition of unity. A knot sequence ξ is n-regular, if each B-spline

bn
k,ξ, k ∼ ξ, is continuous and nonzero at some points in Dn

ξ .

In particular, for a knot sequence ξ to be n-regular all knot multiplicities must be ≤ n,

ξn < ξn+1, and ξz−1 < ξz.

To better resolve details or singularities, a given B-spline representation can be refined

by inserting an additional knot. Böhm’s algorithm gives the coefficients for the resulting

spline in a consistent representation.
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ξ0 ξn ξz ξz+n
0

1

Dn
ξ

b30,ξ b31,ξ · · · b3z−1,ξ

FIGURE 3.2 All relevant (i.e., non-zero) cubic B-splines on the knot sequence
ξ= (ξ0, . . . ,ξz+n), and the parameter interval Dn

ξ .

THEOREM 3.4 (Böhm’s algorithm)

Let ξ= (ξ0, . . . ,ξz+n) be a given knot sequence and ζ= (ζ0, . . . ,ζz+n+1) be the knot sequence

obtained by inserting a knot η in ξ into the interval [ξ j,ξ j+1). If

f =
z−1
∑

k=0

ck bn
k,ξ =

z
∑

i=0

c̃i b
n
i,ζ,(3.4)

then the new coefficients (c̃i)zi=0 can be expressed in terms of the coefficients (ck)z−1
k=0,

c̃i :=















ci if 0≤ i ≤ j − n,
η−ξi
ξi+n−ξi

ci +
ξi+n−η
ξi+n−ξi

ci−1 if j − n+ 1≤ i ≤ j,

ci−1 if j + 1≤ i ≤ z.

(3.5)

PROOF See [Boe80]. �

Multiple knots can be inserted by iteratively applying Böhm’s algorithm, which is illus-

trated in Fig. 3.3.

One of the major theorems in spline theory is the Marsden identity. It states that B-

splines can represent all polynomials of degree ≤ n, and thus are indeed a generalization

of global polynomials.

THEOREM 3.5 (Marsden identity)

Let ξ be an n-regular knot sequence. Any polynomial of degree ≤ n, restricted to x ∈ Dn
ξ ,

can be represented as a linear combination of B-splines. In particular,

(x − y)n =
z−1
∑

k=0

ψn
k,ξ(y)b

n
k,ξ(x),(3.6)

where ψn
k,ξ(y) := (ξk+1 − y) · · · (ξk+n − y).
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∑
ckb

n
k initial knots ξ inserted knots Ξ

FIGURE 3.3 Illustration of Böhm’s algorithm (Thm. 3.4). On top is a function approximated
on Dn

ξ by cubic B-splines on a knot sequence ξ. Mirrored at the center line
is the same function approximated by cubic B-splines on the knot sequence
ζ= ξ∪Ξ, where Ξ are additional knots inserted using Böhm’s algorithm.

PROOF See [Höl13]. �

We now define the space of splines.

DEFINITION 3.6 (spline space)

Let n ∈ N, and ξ be an n-regular knot sequence. We use the term Sn
ξ for the space of

splines of degree ≤ n. It consists of all functions on the parameter interval Dn
ξ that are

• polynomials of degree ≤ n on the nondegenerate knot intervals of Dn
ξ , and

• (n−µ) times continuously differentiable at an interior knot of Dn
ξ with multiplicity

µ.

The name-giving basis property of B-splines is confirmed by the following theorem.

THEOREM 3.7 (basis splines)

The B-splines bn
k,ξ, k ∼ ξ, restricted to Dn

ξ form a basis for the spline space Sn
ξ. Consequently,

any spline s ∈ Sn
ξ can be written as a linear combination of the B-splines corresponding to ξ,

s(x) =
∑

k∼ξ

ck bn
k,ξ(x), x ∈ Dn

ξ ,(3.7)

with uniquely determined coefficients ck ∈ R.

PROOF See [Höl13]. �

For the remainder of the thesis we construct spline approximations of functions
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f through interpolation. This requires interpolation points (x i)z−1
i=0 ∈ Dn

ξ . Then the in-

terpolation matrix A = (ai,k)z−1
i,k=0 can be constructed, where each entry is defined as

ai,k := bn
k,ξ(x i). If the interpolation points are chosen such that A is regular, then the

interpolant f̃ evaluated at x ∈ Dn
ξ is given by

f̃ (x) =
z−1
∑

k=0

ck bn
k,ξ(x),(3.8)

where (ck)z−1
k=0 := A−1b, and b := ( f (x i))

z−1
i=0 . By construction, it holds f (x i) = f̃ (x i) for

all interpolation points (x i)z−1
i=0 .

Unlike for global polynomials, the local support of the B-spline basis implies that there

must be a restriction on the placement of the interpolation points for well-posedness of

spline interpolation problems. This restriction is characterized by the Schoenberg-Whitney

conditions.

THEOREM 3.8 (Schoenberg-Whitney conditions)

For a spline space Sn
ξ with finite knot sequence ξ = (ξ0, . . . ,ξz+n), and a point sequence

x0 < · · ·< xz−1 of interpolation points in the parameter domain Dn
ξ , there exists a unique in-

terpolating spline s =
∑z−1

k=0 ck bn
k,ξ ∈ Sn

ξ for arbitrary values y0 = f (x0), . . . , yz−1 = f (xz−1),
if and only if

ξk < xk < ξk+n+1,(3.9)

for k = 0, . . . , z − 1.

PROOF See [Sch53; Höl13]. �

The error of spline approximations converges with optimal order with respect to the

degree n. This is formalized in the following theorem, which uses the notation Cn+1 for

the space of (n+ 1)-times continuously differentiable functions.

THEOREM 3.9 (error of full grid spline interpolation)

Let the knot sequence ξ= (ξ0, . . . ,ξn+z) and interpolation points (x i)z−1
i=0 fulfill the Schoenberg-

Whitney conditions. The error of a spline interpolant s =
∑

k∼ξ ck bn
k,ξ ∈ Sn

ξ with respect to a

smooth function f ∈ Cn+1 can be estimated by

| f (x)− s(x)| ≤ c(n,‖A−1‖∞)‖ f (n+1)‖∞hn+1, x ∈ Dn
ξ ,(3.10)

where the constant c depends on the degree and the maximum norm of the inverse of the

interpolation matrix A, h is the maximum length of knot intervals, and it is assumed that

the parameter interval Dn
ξ = [ξn,ξz] contains all interpolation points as well as for each
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B-spline a largest interval in its support.

PROOF See [Höl13]. �

Multivariate B-splines are defined via tensor products.

DEFINITION 3.10 (multivariate B-splines)

The D-variate B-spline of degree (n1, . . . , nD) with respect to the knot sequences ξ =
(ξ1, . . . ,ξD) is

b(n1,...,nD)
k,ξ (x ) =

D
∏

d=1

bnd
kd ,ξd
(xd).(3.11)

Its knots in the d-th coordinate direction are ξd,kd
, . . . ,ξd,kd+nd+1.

Usually, we use the same degree n in all coordinate directions, and simply write

n instead of (n, . . . , n). The above tensor product structure allows us to focus on the

univariate case for the rest of this chapter, the multivariate counterparts then follow

automatically [Val19].

3.1.1 Hierarchical B-Splines

For the usage on sparse grids, we need to define hierarchical B-splines. This can be done

in a straightforward way by using a knot sequence that matches the sparse grid points.

Let ξn,u
`

:= (ξn,u
`,0 , . . . ,ξn,u

`,2`+2n) be the uniform knot sequence with grid width h` = 2−`,

where ξn,u
`,k := (k − n)h`. This results in hierarchical uniform B-splines bn

`,k of degree n,

level ` and index k,

bn
`,k := bn

k+ n−1
2 ,ξn,u

`

, k = 0, . . . , 2`.(3.12)

Hierarchical subspaces spanned by B-splines are defined analogously to Eq. (2.15). They

are combined into sparse grids following Equations (2.42) and (2.44). From here on, we

will introduce B-spline variations and knot sequences in a hierarchical manner, because

in this thesis we will apply them on sparse grids, and not in the nodal context.

For even degrees Eq. (3.12) is not applicable, because the index k+ n−1
2 would have

to be interpreted as the midpoint between two consecutive grid points. This runs contrary

to the concept of hierarchical splitting from Lm. 2.1, which is the theoretical foundation of

sparse grids. Therefore, as is common, from now on we will only use odd degrees [Val19].
This still includes the basic linear case n= 1 as well as the most popular cubic case n= 3.

Note on hierarchical B-splines. The term ‘hierarchical B-splines’ is unfortunately also

used for B-splines on grids of varying grid width which are generated by iteratively halving
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the grid width for subsections of the domain, cf. [Höl13]. This kind of hierarchical splines

is not used in this thesis, and by “hierarchical” we always refer to basis functions according

to Equations (2.13) and (2.15)

3.1.2 Not-a-knot B-Splines

Usually, B-splines are introduced for bi-infinite knot sequences on the whole real axis.

In the previous section, however, we have introduced B-splines for finite knot sequences

ξ. This was reasonable considering that we ultimately want to work with B-splines

primarily on sparse grids which are defined on finite hypercubes. However, the finite

uniform knot sequences do not fulfill the Schoenberg-Whitney conditions of Thm. 3.8.

Generally speaking, the problem is that the dimension of the spline space is z, but,

when interpolating in the knots, there are only z − (n − 1) interpolation points inside

Dn
ξu . Consequently, (n− 1) additional conditions are required. The Schoenberg-Whitney

conditions require in particular that all interpolation points are inside Dn
ξ . However, for

the so far introduced hierarchical B-splines it holds Dn
ξn,u
`

( [0, 1], as the first n−1
2 and last

n−1
2 sparse grid points are outside Dn

ξn,u
`

.

The most common approaches to resolve such boundary problems and to validate

the Schoenberg-Whitney conditions are boundary knots of higher multiplicity at 0 and

1 [Höl13], specifying derivative values at the boundaries [DeB78], or the not-a-knot

condition [De 66; Höl13; Val19]. The first two options require the boundary points,

which is unfortunate for the usage on sparse grids, as we discussed following Lm. 2.6.

Therefore, we focus on the not-a-knot condition which requires continuity of the n-th

derivative at the n−1
2 left-most and n−1

2 right-most knots inside Dn
ξu , excluding the boundary

points.

Requiring continuity at these points means that a spline s must be a single polynomial

of degree n on [0, x`,(n+1)/2] and [x`,2`−(n+1)/2, 1]. It leaves no degrees of freedom at the

(n − 1) knots which are affected by the condition. The condition is thus equivalent to

excluding these knots completely from the knot sequence ξ, but keeping them in the set

of interpolation nodes. Consequently, the hierarchical uniform not-a-knot sequence of

level ` and degree n, ξn,nak
`

:= (ξn,nak
`,0 , . . . ,ξn,nak

`,2`+n+1
), is defined as

ξn,nak
`,k :=















ξn,u
`,k k = 0, . . . , n,

ξn,u
`,k+(n−1)/2 k = n+ 1, . . . , 2`,

ξn,u
`,k+n−1 k = 2` + 1, . . . , 2` + n+ 1.

(3.13)

This definition is only applicable if there are at least (n−1) inner knots that can be removed
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from the uniform knot sequence, which is the case for level ` ≥ Λnak(n) := dlog2(n)e. If

` < Λnak(n) we use ξn,nak
`,k := ξn,u

`,k and Lagrange polynomials

L`,k(x) :=
∏

0≤m≤2`,
m6=k

x − ξn,u
`,m

ξn,u
`,k − ξ

n,u
`,m

, k = 0, . . . , 2`.(3.14)

This ensures a basis for the polynomial space on the first levels. Finally, the hierarchical

not-a-knot B-spline basis bn,nak
`,k of degree n, level ` and index 0≤ k ≤ 2` is defined as

bn,nak
`,k (x) :=







bn
k,ξn,nak

`

(x) `≥ Λnak(n),

L`,k(x) ` < Λnak(n).
(3.15)

These functions fulfill the Schoenberg-Whitney conditions and form a basis of the spline

space Sn,nak
`

:= Sn
ξn,nak
`

. An illustration of hierarchical not-a-knot B-splines can be found

later in the overview Fig. 3.6B.

Hierarchical splitting. The main motivation for the development of the above basis

was having a B-spline basis which can be used on sparse grids. The following theorem

verifies that this goal has now been accomplished, i.e., Lm. 2.1 is satisfied. In particular,

it shows that the span of hierarchical not-a-knot B-splines includes the polynomial space

of highest achievable degree with respect to the number of basis functions. This is an

elemental property for the approximation quality of the basis.

THEOREM 3.11 (hierarchical splitting for not-a-knot B-splines)

Let V n,nak
`

be the nodal not-a-knot space as in Eq. (2.33) and W n,nak
`

be the hierarchical

not-a-knot subspaces as in Eq. (2.15). Then it holds

Sn,nak
`

= V n,nak
`

=
⊕̀

`′=0

W`′ .(3.16)

Furthermore, if 0 ≤ ` < Λnak(n), then P2` ⊆ Sn,nak
`

, and if otherwise ` ≥ Λnak(n), then

Pn ⊆ Sn,nak
`

, where Pn is the polynomial space of degree n on [0,1].

PROOF See [Val19]. �

The approximation quality of splines persists on sparse grids. If the objective function

is sufficiently smooth, the L2-error of the interpolation with not-a-knot B-splines of degree

n on a D-dimensional regular sparse grid of level ` decays asymptotically like

O(hn+1
`
(log2 h−1

`
)D−1) = O(2−(n+1)``D−1),(3.17)
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see [Sic11] for more details.

3.2 Non-Boundary B-Splines

As we have seen in Sec. 2.4, the number of boundary points of a sparse grid still grows

exponentially for increasing dimensionality. Thus, for higher dimensionalities the bound-

ary points must be omitted and non-boundary grids must be used. However, without

boundary points and the according basis functions, the B-spline basis does not span the

space of splines anymore. So far, in a sparse grid context, this problem was addressed

by using modified B-splines, which extrapolate towards the boundary by enforcing zero

second derivatives. This works well if the objective function shares this property, but in

general it does not. In particular the space of modified B-splines does not even include

the monomials xm for m> 1. Therefore, we now introduce two new spline bases for non-

boundary sparse grids, which have previously been published in [Reh18; Reh21b]. The

two bases are motivated by exact representation of polynomials, a reasonable minimum

requirement for spline approximation. In practice, the new bases perform significantly

better also for non-polynomial objective functions.

3.2.1 Modified B-Splines

To address an objective function with natural boundary conditions Pflüger introduced

modified basis functions [Pfl10], which were further developed by Valentin [Val19]. The

idea is to modify the hierarchical not-a-knot B-spline basis in such a way that the second

derivative vanishes on the boundary. Hierarchical modified not-a-knot B-splines bn,m
`,k of

degree n, level `≥ 1, and index k are defined as,

bn,m
`,k (x) :=







































1 `= 1, k = 1,

bn,nak
`,k (x) + 2bn,nak

`,k−1(x) `≥ 2, k = 1, n= 1,

bn,nak
`,k (x)−

d2

d x2 bn,nak
`,k (0)

d2

d x2 bn,nak
`,k−1(0)

bn,nak
`,k−1(x) `≥ 2, k ∈ {1, . . . , n+1

2 }, n> 1,

bn,m
`,2`−k(1− x) `≥ 2, k ∈ {2` − n+1

2 , . . . , 2` − 1},

bn,nak
`,k (x) otherwise.

(3.18)

Note that for degree n= 1 the second derivative always vanishes. Therefore, the modifi-

cation is defined as the linear continuation of the left-most and right-most B-splines. An

illustration of hierarchical modified B-splines can be found later in the overview Fig. 3.6C.
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3.2.2 Extended B-Splines

Extending B-splines is a technique for maintaining the polynomial representation property

when omitting grid points. It was first presented in the context of weighted and extended

B-splines (WEB-splines) [Höl01; Höl03], and then generalized for usage in hierarchical

subdivision [Mar17]. The idea of the extension is to transfer the contribution of omitted

B-splines to close remaining ones. This is made possible by Marsden’s identity Thm. 3.5,

which allows to represent the coefficients of omitted B-splines as linear combinations of

remaining B-splines. Thus, the ability to represent polynomials exactly can be preserved.

Following the approach of WEB-splines, we now introduce hierarchical extended not-

a-knot B-splines for nonboundary sparse grids. First, we derive extended not-a-knot B-

splines for fixed level `, the generalization to a hierarchical basis then follows immediately.

Let Pn be the space of polynomials of degree ≤ n. Höllig and Hörner simplify Mars-

den’s identity (Thm. 3.5) for the uniform knot sequence. They deduce that the coefficients

for the representation of any polynomial of degree ≤ n with respect to x are themselves

again polynomials of degree ≤ n, but with respect to the index k [Höl03]. The same

reasoning with respect to the not-a-knot knot sequence yields that for all m = 0, . . . , n

there exist polynomials qm ∈ Pn, such that for the coefficients qm(k), k ∈ K` it holds

xm =
∑

k∈K`

qm(k)b
n,nak
`,k ,(3.19)

where K` = {0, . . . , 2`} is the full index set of level `. We divide the index set K` into

indices of outer boundary splines Ko
`

:= {0, 2`} and indices of inner splines K i
`

:= K`\Ko
`
=

{1, . . . , 2` − 1}, such that

xm =
∑

i∈K i
`

qm(i)b
n,nak
`,i +

∑

j∈Ko
`

qm( j)b
n,nak
`, j .(3.20)

The polynomials qm are of degree ≤ n, thus we can compute qm( j) from the values at any

(n+ 1) inner indices. In particular, we can determine qm as the polynomial interpolant

of the values qm(i), i ∈ K i
`
( j), where K i

`
( j) are the (n+ 1) inner indices i ∈ K i

`
that are

closest to j. Thus, there exist unique coefficients ei, j ∈ R, such that

qm( j) =
∑

i∈K i
`
( j)

ei, jqm(i).(3.21)

We formulate the according system of linear equations, and solve it to obtain explicit

values for ei, j, which we call the extension coefficients. They are stated in Tab. 3.1. Any

basis of Pn can be formulated as a linear combination of the monomials xm. Therefore,
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Degree n Extension coefficients [e1,0, . . . , en+1,0]

1 [2,−1]
3 [5,−10,10,−4]

5

¨

[8,−28,42,−35,20,−6] `= 3,

[8,−28,56,−70,56,−21] ` > 3

TABLE 3.1 Extension coefficients ei, j for degrees n ∈ {1, 3, 5}. Only the coefficients for the
extension at the left boundary are shown, i.e., j = 0. The right boundary is
treated symmetrically. For degree 5 and level 3, the left and right extensions
overlap, resulting in a special case.

when formulating the system of linear equations which yields the extension coefficients

for an arbitrary basis, the resulting system is only a linear transformation of the system

with respect to monomials. Consequently, the values of the extension coefficients are

independent of our derivation based on monomials.

Note that it is not strictly necessary to use K i
`
( j), the inner indices which are closest

to the outer index j, as any (n+ 1) inner indices would do. However, using the closest

indices makes the resulting basis more stable [Höl03]. See Fig. 3.4 for an illustration of

the extension procedure.

We now represent an arbitrary polynomial P ∈ Pn using the extension coefficients.

We call Ko
`
(i) := { j ∈ Ko

`
| i ∈ K i

`
( j)} the dual of K i

`
( j). Following Eq. (3.20) it holds

P =
n
∑

m=0

pm xm =
n
∑

m=0

∑

i∈K i
`

pmqm(i)b
n,nak
`,i +

n
∑

m=0

∑

j∈Ko
`

pmqm( j)b
n,nak
`, j(3.22)

for uniquely defined coefficients pm, qm(i), qm( j) ∈ R. Exploiting the finiteness of the

sets K i
`

and Ko
`
, we interchange the sums,

P =
∑

i∈K i
`

�

n
∑

m=0

pmqm(i)

�

bn,nak
`,i +

∑

j∈Ko
`

�

n
∑

m=0

pmqm( j)

�

bn,nak
`, j .(3.23)

By the definition of the extension coefficients ei, j in Eq. (3.21), and because Ko
`
(i) is the

dual of K i
`
( j) it holds
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inner splines closest inner splines boundary splines

ξ0 ξn
0 x`,1 . . .

ξn+1 . . . . . .ξ2`
. . . x`,2`−1

ξ2`+1
1

ξ2`+n+1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

bn,nak
`,0 bn,nak

`,1 bn,nak
`,2

bn,nak
`,3 bn,nak

`,4
bn,nak
`,2`bn,nak

`,2`−1bn,nak
`,2`−2

bn,nak
`,2`−3bn,nak

`,2`−4

FIGURE 3.4 Schematic illustration of the extension of not-a-knot B-splines of degree n= 3
on a one-dimensional regular grid of level ` = 4. The boundary splines with
indices j ∈ K` = {0,16} are added to the n+ 1 closest inner splines K i

`
(0) =

{1,2, 3,4} and K i
`
(16) = {12,13, 14,15}, indicated with arrows.

P =
∑

i∈K i
`

�

n
∑

m=0

pmqm(i)

�

︸ ︷︷ ︸

=:βi

 

bn,nak
`,i +

∑

j∈Ko
`
(i)

ei, j b
n,nak
`, j

!

︸ ︷︷ ︸

=:bn,e
`,i

(3.24)

=
∑

i∈K i
`

βi b
n,e
`,i ,(3.25)

with coefficients βi ∈ R. Consequently, we define the extended not-a-knot B-spline bn,e
`,i

of degree n, level ` and index i as

bn,e
`,i :=

(

bn,nak
`,i +

∑

j∈Ko
`
(i) ei, j b

n,nak
`, j `≥ Λ(n),

L`,i(x) ` < Λ(n),
(3.26)

where Λ(n) := dlog2(n+ 2)e. Again Lagrange polynomials are employed on lower levels.

This ensures the polynomial basis property, as long as there are not enough inner knots

for the extension, i.e., less than (n+ 1) inner knots. The corresponding knot sequence of

degree n and level ` is ξn,e
`

:= (ξn,nak
`,1 , . . . ,ξn,nak

`,2`+n). With this we have derived the following

corollary.

COROLLARY 3.12 (extended not-a-knot B-splines recreate polynomials)

If `≥ Λ(n), then Pn ⊂ span{bn,e
`,i | i ∈ K i

`
}.

With this corollary we have achieved our goal of non-boundary B-spline basis func-
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tions spanning the space of splines. It remains to prove the correctness of the hierarchical

splitting for the hierarchical extended B-spline basis. In the next section we first introduce

another approach for polynomial representing non-boundary B-splines, and then prove

that both new bases span the same space.

3.2.3 Boundaryless not-a-knot B-Splines

The motivation for not-a-knot B-splines (see Sec. 3.1.2) is that dim Sn
ξu = z for uniform

knots, while Dn
ξu contains only z− (n−1) interpolation points. Therefore, another (n−1)

additional conditions are needed. Not-a-knot B-splines fix this issue by removing the
n−1

2 left-most and n−1
2 right-most knots from the uniform knot sequence. Unfortunately,

omitting the boundary points makes the problem reappear. Following the idea of the not-

a-knot condition, we now introduce the boundaryless not-a-knot knot sequence ξn,bnk
`

,

which revalidates the Schoenberg-Whitney conditions after omitting the boundary points.

The approach itself is simple and intuitive. We remove the two boundary interpolation

nodes of the not-a-knot sequence and compensate for this by omitting two more knots

on top of the not-a-knot condition. Consequently, the n+1
2 left-most and n+1

2 right-most

knots are removed from the uniform knot sequence, and the boundaryless not-a-knot

knot sequence ξn,bnk
`

= (ξn,bnk
`,0 , . . . ,ξn,bnk

`,2`+n−1
) is defined through

ξn,bnk
`,k :=















ξn,u
`,k k = 0, . . . , n,

ξn,u
`,k+(n+1)/2 k = n+ 1, . . . , 2` − 2,

ξn,u
`,k+n+1 k = 2` − 1, . . . , 2` + n− 1.

(3.27)

This definition is only applicable if there are at least (n+ 1) inner knots in ξn,nak
`

, which

is the case for ` ≥ Λ(n). The boundaryless not-a-knot B-spline basis bn,bnk
`,k of degree n,

level ` and index k is given by

bn,bnk
`,k (x) :=







bn
k,ξn,bnk

`

(x) `≥ Λ(n),

L`,k(x) ` < Λ(n).
(3.28)

We define the space of polynomial recreating splines of degree n and level `≥ 1,

Sn,poly
`

:= span{bn,bnk
`,k | k ∈ Kbnk

`
:= {0, . . . , 2` − 2}},(3.29)

and prove that the new basis indeed preserves the polynomial space Pn if `≥ Λ(n), and

otherwise preserves the polynomial space of highest achievable degree, given the number

of available grid points.
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LEMMA 3.13 (space of polynomial recreating splines)

If `≥ Λ(n), then Pn ⊆ Sn,poly
`

. If otherwise 0< ` < Λ(n), then P2`−1 ⊆ Sn,poly
`

.

PROOF For 0< ` < Λ(n), the boundaryless not-a-knot B-splines bn,bnk
`,k are defined to be

Lagrange polynomials and thus span the according polynomial space of polynomial degree

2` − 1. Let ` ≥ Λ(n), then from Eq. (3.27) it follows immediately that Dn
ξn,bnk
`

= [0,1].

Furthermore, the knot-sequence is n-regular, and thus the lemma follows from Marsden’s

identity (Thm. 3.5). �
Hierarchical boundaryless not-a-knot B-splines are defined in the usual way with a

slight adjustment. Because we have removed an extra knot on the left side, the indexing

is off and the basis function associated with grid point x`,k is bn,bnk
`,k−1. In order to correct

this, we introduce one auxiliary knot and its according basis function for the definition of

hierarchical boundaryless not-a-knot B-splines. It does not matter where this knot lies, as

long as it is to the left of all other knots. For simplicity, we use ξn,u
`,−1, which is the left-next

point of the underlying uniform knot sequence, cf. Eq. (3.27). By adding this knot and its

according basis functions the indices of the basis functions to the right of it are increased

by one, such that now the grid point x`,k consistently corresponds to the basis function

bn,bnk
`,k . The boundaryless not-a-knot sequence including the auxiliary knot is illustrated

in Fig. 3.5, hierarchical boundaryless not-a-knot B-splines are illustrated in Fig. 3.6E.

In the context of sparse grids, it has already been shown that hierarchical uniform

B-splines and hierarchical not-a-knot B-splines of degrees n ∈ {1,3,5} are linearly inde-

pendent [Val19]. The same holds for hierarchical boundaryless not-a-knot B-splines. We

now show that they span the same space Sn,poly
`

as the full basis of level `.

THEOREM 3.14 (hierarchical boundaryless nak B-splines are linearly independent)

For degree n ∈ {1,3, 5} the hierarchical boundaryless not-a-knot splines

{bn,bnk
`′,k | 1≤ `

′ ≤ `, k ∈ I`′}(3.30)

are a basis of Sn,poly
`

.

PROOF Uses Thm. 2.2. Details in Appendix A.1.1. �

Extended not-a-knot B-splines are defined by adding outer basis functions to the

left-most and right-most inner basis functions. It is astonishing that the resulting basis is

independent of the actual position of the outer knots. The basis solely depends on the

inner knots and the degree. We use this property to prove that extended and boundaryless

not-a-knot B-splines span the same spline space.
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FIGURE 3.5 Overview of knot sequences of level `= 3, and nodal B-splines of degree n= 3
on the unit interval [0, 1]. Knots which are removed because of the not-a-knot
condition are indicated with black crosses.

THEOREM 3.15 (extended and boundaryless nak B-splines span the same space)

Let Sn,e
`

:= span{bn,e
`,i | i ∈ {1, . . . , 2` − 1}}. Then Sn,e

`
= Sn,poly

`
.

PROOF See Appendix A.1.2. �

With this we have achieved our goal. The extended not-a-knot B-spline basis, as

well as the boundaryless not-a-knot B-spline basis, for the first time, allow differentiable

higher-order approximations on non-boundary sparse grids. In terms of numerical ap-

proximation there is no difference between the two bases when using regular grids.

However, the basis functions are different and so are their surpluses. Thus, when using

spatially adaptive grids the two bases perform slightly differently.

Interpolation condition. It is not immediately clear to what extent the adjustments of

extended and boundaryless not-a-knot B-splines influence their practical applicability. In

case of the extended not-a-knot B-splines, adding outer basis functions to inner ones, and
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FIGURE 3.6 Hierarchical cubic B-spline bases of level 0, . . . , 4. Basis functions including
the boundary in the upper row, non-boundary bases in the lower row. The
not-a-knot condition is indicated with crosses.
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FIGURE 3.7 Interpolation matrix condition for univariate B-splines of degrees n ∈ {1,3, 5}
on regular sparse grids. On level 0 only boundary basis functions exist. For
levels 1 and 2 Lagrange polynomials are used by the respective bases, which
causes the jumps in between level 2 and 3. From level 3 onwards the condition
of all non-boundary basis functions of the same degree increase similarly except
for a constant factor.

thus increasing their support, might severely impair the condition κ(A) of the interpolation

matrix A, which is defined as

κ(A) := ‖A‖2 ‖A−1‖2.(3.31)

However, this is not the case. In Fig. 3.7, we see the condition of the univariate inter-

polation matrix with respect to a univariate regular sparse grid for not-a-knot B-splines

on a boundary grid, modified, extended, and boundaryless not-a-knot B-splines. For

each degree n ∈ {1,3,5}, the interpolation conditions of all non-boundary basis func-

tions increase similarly and differ only by a constant factor. Not-a-knot B-splines on

non-boundary grids always have the smallest condition. However, they are only included

as a reference for unadjusted behavior. They are not usable for applications in practice as

will be demonstrated in the next section. Extended not-a-knot B-splines generally have

a smaller interpolation condition than boundaryless not-a-knot B-splines. For increasing

degree, the condition of not-a-knot B-splines on boundary grids becomes comparatively

worse until, for degree n= 5, the boundary points and according basis functions impair

the interpolation condition more than the adjustments of extended and boundaryless

not-a-knot B-splines.
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Fundamental property. Apart from our newly introduced hierarchical extended and

boundaryless not-a-knot B-splines, there exist other B-spline-related basis functions that

were specifically designed for usage on sparse grids. Recall that hierarchical C0 elements

are defined to fulfill the same fundamental property as linear hat functions, i.e.,

ϕ`,i(x`′,i′) = 0 `′ < `, i′ ∈ I`′ ,

ϕ`,i(x`,i′) = δi,i′ i′ ∈ I`,
(3.32)

cf. Sec. 2.2. This property allows fast hierarchization through the univariate principle,

without the need to solve a system of linear equations. B-splines have larger support,

which on the one hand contributes to their improved approximation quality. On the other

hand it makes solving a system of linear equations necessary when preparing a sparse grid

surrogate. Therefore, weakly fundamental B-splines bn,wf and modified weakly funda-

mental B-splines bn,wf,m have been developed [Val19]. These bases fulfill the fundamental

property (3.32) by construction and can make use of the quick hierarchization. How-

ever, the support of the basis functions is increased, and some basis functions must be

constructed and stored individually. Furthermore, although no system of linear equa-

tions must be solved, either a breadth first search must be performed, which reintroduces

complexity and run-time, or some additional grid points must be added to enable the

unidirectional principle. The remaining advantage of weakly fundamental splines is their

reduced memory requirement. In the next section we demonstrate that, with respect

to accuracy, weakly fundamental splines are generally outperformed by extended and

boundaryless not-a-knot B-splines and therefore we do not use them in practice.

3.3 Numerical Comparison

We now compare the approximation quality of the basis functions which we have in-

troduced in the last sections. For this we use straightforward objective functions whose

smoothness and behavior is known, and we demonstrate how this influences the approx-

imation quality of the individual bases.

Let f : Ω ⊂ RD → R be an objective function. We interpolate it using sparse grids

and various basis functions resulting in a surrogate f̃ , respectively. Then, we compute

the Root Mean Square Error (RMSE), also known as discrete L2-error, and the more

informative Normalized Root Mean Square Error (NRMSE),
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RMSE( f , f̃ ) :=

�

M
∑

m=1

�

f (x m)− f̃ (x m)
�2

�1/2

,(3.33)

NRMSE( f , f̃ ) :=
RMSE( f , f̃ )

maxm( f (x m))−minm( f (x m))
,(3.34)

based on M = 10000 uniformly distributed random samples x 1, . . . , x M ∈ Ω.

We first use regular sparse grids for univariate objective functions to demonstrate the

influence of the objective’s smoothness. Then, we use regular sparse grids for multivariate

functions to demonstrate the influence of high dimensionality. Finally, we show the addi-

tional improvements of spatial adaptivity. Our comparison includes classical hierarchical

C0 elements p on boundary grids, and their modified counterparts pm for non-boundary

grids, not-a-knot B-splines bn,nak on boundary grids and on non-boundary grids, as well as

their modified counterparts for non-boundary grids bn,m. Furthermore, we compare with

weakly fundamental not-a-knot B-splines, again for boundary grids bn,wf, and modified

for non-boundary grids bn,wf,m. Finally, we include the two new bases, which were intro-

duced in the last section: extended not-a-knot B-splines bn,e and boundaryless not-a-knot

B-splines bn,bnk. Both were designed to outperform and replace the modification of basis

functions. All mentioned basis functions are applied with degrees n ∈ {1,3, 5}.
Note that similar basis functions, like bn,e and bn,bnk, perform alike on regular grids

and thus in the plots one conceals the other. We indicate this in the text accordingly.

However, on spatially adaptive grids the different coefficients lead to slightly different

refinement behavior. Therefore, although two bases theoretically span the same space,

the quality of their adaptive interpolants usually differs.

3.3.1 Univariate Functions

We use two univariate objective functions to demonstrate the direct link between smooth-

ness of the objective function and the quality of the approximations. The results are

displayed in Fig. 3.8.

Smooth function. Our first objective function, f (x) = ex , is infinitely smooth. In one

dimension, there are only two boundary points, independent of the sparse grid’s level

and thus they do not yet have a notable negative influence. In fact, the basis functions

on boundary grids perform the best overall and reach optimal convergence rates. The

extended B-splines and boundaryless not-a-knot B-splines have the same optimal order

of convergence, and their NRMSE is in between the boundary splines and the boundary

C0 elements. The modified functions perform much worse, because the exponential

function does not have zero second derivatives. The modified bases are all stuck at
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FIGURE 3.8 Convergence of regular sparse grid approximations for univariate objective
functions. Convergence orders in gray.
A-C: f (x) = ex is in C∞ but optimal convergence rates are achieved only by
boundary basis functions and the new bases bn,e and bn,bnk.
D: f (x) = |x − 1

3 | is in C0, convergence is limited overall.
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the convergence order of linear functions, independent of their degree. Here, and for

all examples to come, the not-a-knot B-splines without boundary points or boundary

adjustment perform considerably worse than all other bases. This clearly demonstrates

the necessity for boundary adjustment when using non-boundary sparse grids.

Non-differentiable function. The absolute value function f (x) = |x − 1
3 | is continuous

but has a non-differentiable kink in x = 1
3 . Figure 3.8D shows that this leads to a conver-

gence rate of h−2 for all basis functions, independent of their degree, and demonstrates

the necessity for sufficient smoothness of the objective function. However, this limited

convergence can be overcome through spatial adaptivity as can be seen later in Fig. 3.10.

3.3.2 Multivariate Functions

The next two objective functions demonstrate that for increasing dimension, extended

and boundaryless not-a-knot B-splines outperform the other basis functions. The results

are displayed in Fig. 3.9.

Friedman. The 5-dimensional benchmark function f (x ) = 10sin(πx1 x2) + 20(x3 −
0.5)2 + 10x4 + 5x5 was introduced by Friedman [Fri83; Fri91]. Five dimensions are al-

ready enough for non-boundary sparse grids to significantly outperform their boundary

counterparts. In Figures 3.9A to 3.9C extended and boundaryless not-a-knot B-splines

outperform all other basis functions notably. Their NRMSE is up to four orders of magni-

tude smaller than that of the other bases.

Zero second derivatives. The function f (x ) =
∑8

d=1 sin(2πxd) has zero second deriva-

tives at the boundary of the domain [0, 1]8. This is the ideal scenario for modified B-spline

basis functions, and indeed they perform best, as can be seen in Figures 3.9D to 3.9F.

However, the new extended B-splines and boundaryless not-a-knot B-splines show the

same order of convergence. This demonstrates the generality of the new basis functions.

If no knowledge on the derivatives is available, e.g., for black-box simulations, the new

basis functions can always be applied, without risking a significant drawback, making

modified B-splines obsolete in practice. The boundary sparse grids have become unusable

in this 8-dimensional space. They spend large amounts of grid points on the boundary

without notably resolving the inner domain. The other basis functions do not suffer as

much from the higher dimensionality. Still, their convergence order decreases.
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FIGURE 3.9 Convergence of regular sparse grid approximations for multivariate objective
functions. Convergence orders in gray.
A-C: The new bases bn,e and bn,bnk outperform all other bases for the 5-
dimensional Friedman function.
D-F: The non-boundary splines bn,m, bn,e and bn,bnk outperform all others for
the 8-dimensional trigonometric function.
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3.3.3 Spatial Adaptivity

Now that we have seen the regular convergence behavior, we demonstrate that spatial

adaptivity can significantly improve the approximation quality. To do so, we reconsider

two of last section’s objective functions: The univariate absolute function, which is not

differentiable, and the 8-dimensional sum of sines, which results in slower convergence

rates because of its higher dimensionality. The results are displayed in Fig. 3.10.

Non-differentiable function. The non-differentiability of f (x) = |x − 1
3 | limits the con-

vergence of all basis functions on regular sparse grids. Spatial adaptivity overcomes this.

Instead of spreading grid points over the whole domain, it consecutively refines towards

the non-differentiable kink. With this, lower-order basis functions are able to resolve the

function up to numerical precision, which is shown in Figures 3.10A to 3.10C. Higher-

order functions still struggle, because close to the discontinuity their approximation is

deteriorated by oscillations introduced by the Gibbs phenomenon.

Sum of sines. For regular sparse grids, the highest achievable convergence rate is lim-

ited, but spatial adaptivity employs grid points much more efficiently. After an initial

scan of the domain, spatial adaptivity boosts the convergence so significantly that it even

exceeds the optimal convergence rates of regular grids. Figures 3.10D to 3.10F show

that modified, extended, and boundaryless not-a-knot B-splines perform all equally well,

leaving the other basis functions behind. The NRMSE is several orders of magnitude

better than for regular grids in Fig. 3.9.

Summary. In this chapter we presented the status-quo of B-spline basis functions for

sparse grids. We then introduced two new bases, extended not-a-knot B-splines, and

boundaryless not-a-knot B-splines, which are both designed to maintain the polynomial

recreation property on nonboundary sparse grids. With this, higher-order differentiable

basis functions for non-boundary sparse grids are available for the first time. In the final

section of this chapter we compared the new bases with established sparse grid basis

functions, and the new bases always performed comparable or better.
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FIGURE 3.10 Convergence of spatially adaptive sparse grid approximations. Convergence
orders in gray.
A-C: Spatial adaptivity allows accurate representation of the C0 function for
lower order bases.
D-F: Spatial adaptivity significantly improves the approximation order for the
8-dimensional triangular function.
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4
Uncertainty Quantification

“ All models are wrong. The practical question is

how wrong do they have to be to not be useful.

— George E. P. Box [Box87]

Uncertainty Quantification (UQ) is a broad term, which may be summarized as the

treatment of models with stochastic methods to incorporate uncertainties, primarily but

not exclusively, of the input parameters. This is particularly important for the assessment

of risks, estimating the reliability of systems, and characterizing and reducing uncertain-

ties. Stochastic formulations allow handling many effects, which otherwise would have

to be neglected due to complexity or insufficient information. Uncertainty quantifica-

tion proceeds in two directions: forward, which means that uncertainties are propagated

through the model to “determine the effect of input uncertainties on response metrics of

interest” [Eld09a], and inverse, where potential original states are assigned the likelihood

of resulting in observed outcomes. Both directions have in common that the focus lies

on probability distributions instead of scalar values, allowing a holistic understanding

instead of specific isolated results.

Simulations in the context of UQ are often very expensive in terms of computation

time and hardware resources. Therefore, a detailed investigation solely based on evalua-

tions of the simulation is usually inefficient, or might even be unfeasible. This problem

can be dealt with by creating a surrogate, that is, a sufficiently accurate approximation

for the original model.

67



CHAPTER 4: UNCERTAINTY QUANTIFICATION

In this chapter, we first establish the stochastic notation in Sec. 4.1, before we intro-

duce two expansion methods in Sec. 4.2. The first, stochastic collocation, allows forward

propagation of uncertainty through our surrogates. The second, polynomial chaos ex-

pansion, is a popular surrogate technique in UQ, which we use for comparison in our

applications. In Sec. 4.3 we then introduce Bayesian inference, which is the most promi-

nent technique for inverse UQ. Bayesian inference relies primarily on efficient sampling.

We reference a state-of-the-art sampling algorithm, and explain how it can be enabled

through our surrogates, accelerating this difficult task. Finally, in Sec. 4.4 we first de-

fine active subspaces, an emerging dimension reduction technique based on sensitivity

analysis, before we present a new integration algorithm based on active subspaces and

B-splines.

This chapter mainly summarizes the stochastic basics required for the UQ applications

in the upcoming chapters, and Sec. 4.2 has already been published as part of [Reh21b].
Section 4.4 contains the second major contribution to the theory of B-splines on sparse

grids for UQ: the new integration algorithm for functions with a one-dimensional active

subspace. The algorithm has already been published in [Reh19], but the formulated proof

for Thm. 4.4 has never been presented before.

4.1 Introduction to UQ

Before we can present the new methods, we must establish the probabilistic notation.

Basic probability theory. Let X be a random variable with values in Ω ⊆ RD, and a

probability density function %X such that the probability of any event A⊆ Ω is

P(A) = P(X ∈ A) =

∫

A

%X(x )dx ,(4.1)

and it holds
∫

Ω

%X(x )dx = 1, %X > 0.(4.2)

We restrict ourselves to the hypercube case,

Ω :=
D
⊗

d=1

Ωd :=
D
⊗

d=1

[`d , ud],(4.3)
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where `d , ud ∈ R, and `d < ud for d = 1, . . . , D. Random variables X and Y are indepen-

dent if and only if their joint density %X ,Y satisfies

%X ,Y (x , y) = %X(x )%Y (y),(4.4)

for all x , y ∈ Ω. The expected value, or mean of X is defined as

E[X] :=

∫

Ω

x%X(x )dx .(4.5)

The variance of X is defined as the expected value of the squared deviation from the mean

of X ,

V[X] := E[(X −E[X])2],(4.6)

which can be expanded to

V[X] = E[X2]−E[X]2.(4.7)

The standard deviation of X is given by

s[X] := +
Æ

V[X].(4.8)

Given a data-set of M ∈ N values, for example stemming from measurements or model

evaluations the p-th percentile is the smallest value in this set, such that p percent of the

data are less than or equal to that value.

Monte Carlo. The oldest and most simple approach in UQ is the Monte Carlo (MC)

method, which is still relevant and widely used today. It was introduced by John von

Neumann and Stanislaw Ulam, who worked for the nuclear weapons project in the

1940s [Bor19]. Being secret, the project required a code name, and because of the

underlying random sampling, it was named after the casino in Monaco, where Ulam’s

uncle used to gamble [Met87]. One of the main purposes of the Monte Carlo method is

integration, which makes it popular for the calculation of stochastic moments. The above

stochastic quantities can be approximated by drawing a set of M samples x 1, . . . , x M from

the distribution %X and calculating

EMC[X] :=
1
M

M
∑

m=1

x m,(4.9)
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CHAPTER 4: UNCERTAINTY QUANTIFICATION

VMC[X] :=
1
M

M
∑

m=1

(x m −EMC[X])
2 ,(4.10)

sMC[X] := +
Æ

VMC[X].(4.11)

The law of large numbers states that the above terms almost surely converge towards

E[X], V[X], and s[X] respectively [Sul15]. In practice, often one does not know the

density from which to sample explicitly. Instead, samples x 1, . . . , x M are provided in

the form of measurements or data, and one assumes that these samples follow an un-

known distribution. Monte Carlo calculations are intuitive and simple to apply, which

makes them very popular. However, Monte Carlo integration only converges at a rate

of O(
p

M) [Caf98]. This means that to halve the error for M samples, 4M samples are

needed, which is too slow for many practical applications.

Multivariate objectives. When dealing with time-dependent problems, the objective is

often formulated as a multivariate function, mapping from the parameter space to the

discretized space of T ∈ N time steps,

f : Ω ⊆ RD→ RT

X 7→ ( f1(X), . . . , fT (X)) .
(4.12)

For such multivariate quantities, we define the stochastic moments component-wise, i.e.,

E[ f ] = (E[ f1], . . . ,E[ fT ]) ∈ RT ,

V[ f ] = (V[ f1], . . . ,V[ fT ]) ∈ RT ,

s[ f ] = (s[ f1], . . . , s[ fT ]) ∈ RT .

(4.13)

Sources of uncertainty. Uncertainty is a very broad term and can arise from a wide

variety of sources. Classically it is classified into two categories, aleatoric uncertainty

and epistemic uncertainty. Aleatoric uncertainty is inherent randomness, the knowledge

of which cannot be determined sufficiently enough. However, aleatoric uncertainty can

often be described by data, and thus it can still be taken into account. Epistemic uncer-

tainty refers to a lack of knowledge, or intentional simplifications. Usually both kinds of

uncertainties are present in real-world applications. A further distinction of uncertainty

sources includes observational uncertainty stemming from noise and inaccurate measure-

ments, structural model uncertainty coming from a lack of knowledge or missing relevant

physical processes when modeling the computer simulation, and numerical uncertainty

which is introduced by inaccuracies of numerical methods.

A key element of UQ is the focus on distributions and probabilities, instead of scalar
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4.1 INTRODUCTION TO UQ

FIGURE 4.1 Abstract illustration of uncertainty quantification. Uncertain parameters and
their according distributions can be propagated through a model to obtain
a stochastic description of the outcome (forward UQ). Conversely, parameter
distributions can be estimated from measurements or evaluations (inverse UQ).

values. Rather than specific input-output pairs, integral quantities and the overall like-

lihood of events are considered. In general two approaches are distinguished, which

we will discuss now in more detail: forward UQ and inverse UQ. Both are illustrated

in Fig. 4.1.

Forward UQ. Let f : Ω ⊆ RD→ Rm be a black-box function, which maps input parame-

ters to a scalar or vector-valued output. We will refer to f as the model, the simulation,

or the objective function contextually. In forward UQ, each input parameter is assigned a

probability density function, which summarizes the according uncertainty from various

sources. The distributions are propagated through the model, which results in stochastic

metrics describing the effect of the input uncertainties on response metrics of interest.

Of particular interest are stochastic moments, which describe the expected outcome and

deviation thereof. We perform forward UQ through stochastic collocation, which we

introduce in the next section.

Inverse UQ. Inverse UQ is concerned with determining causal factors from observed

results. We want to determine unknown model input parameters x based on data com-

prised of observed model outputs Y = f (x ). This task is often complicated by noise which

overlays the observations, i.e., Y ′ = f (x ) + ε for a noise term ε. Therefore, instead of

finding an explicit solution, it makes more sense to find the parameter values which are

most likely to have resulted in the given observations Y ′. The most popular approach for

71



CHAPTER 4: UNCERTAINTY QUANTIFICATION

inverse UQ is Bayesian inference, which we introduce in Sec. 4.3 and apply in Chap. 6.

4.2 Expansion Methods

We now present the two most popular approaches for forward uncertainty propagation

based on surrogates, stochastic collocation and polynomial chaos expansion.

4.2.1 Stochastic Collocation

Let f : Ω ⊆ RD→ Rm be the objective function. Stochastic collocation describes the process

of replacing it by a surrogate f̃ , and approximating the stochastic moments of f through

the moments of f̃ . In this thesis we create surrogates with B-splines and sparse grids,

f ≈ f̃ :=
∑

i∼I

αi bi.(4.14)

From this we approximate the mean and variance using Gauss-Legendre quadrature,

E[ f ]≈ E[ f̃ ] =
∫

Ω

f̃ (x )% f (x )dx ≈
∑

k

f̃ (x k)% f (x k)ωk,(4.15)

V[ f ]≈ V[ f̃ ] = E[ f̃ 2]−E[ f̃ ]2,(4.16)

where x k are the points andωk the weights of the quadrature rule. B-splines are piecewise

polynomials of degree n and thus exactly integrable using quadrature rules of appropriate

order, i.e. d n+1
2 e, on each knot segment. Depending on the distribution % f this quadrature

order may not suffice and must be increased appropriately.

4.2.2 Polynomial Chaos Expansion

Polynomial Chaos Expansion (PCE) is one of the most popular techniques in UQ for the

creation of surrogates and the calculation of stochastic moments. The underlying idea of

projecting a full-complexity model onto orthogonal polynomial basis functions was origi-

nally established by Wiener [Wie38]. We now introduce PCE briefly and later on compare

our surrogates based on B-splines, sparse grids, and stochastic collocation to this tech-

nique. We describe generalized PCE based on the Wiener-Askey scheme [Xiu02; Eld09b],
which is the most common PCE approach. The scheme can be seen in Tab. 4.1. It shows

polynomial bases which are optimal for standard distributions. Optimal here means or-

thogonal with respect to the weight function, which differs from the density by a constant

factor that normalizes it to unit integral. If other distribution types are required, nonlin-

ear variable transformations like Rosenblatt [Ros52] and Nataf [Der86] can be applied,
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Distribution Density function Polynomial Basis Weight function Support

Normal 1p
2π

e
−x2

2 Hermite Hen(x) e
−x2

2 (−∞,∞)
Uniform 1

2 Legendre Pn(x) 1 [−1,1]

Beta (1−x)α(1+x)β

2α+β+1B(α+1,β+1) Jacobi P(α,β)
n (x) (1− x)α(1+ x)β [−1,1]

Exponential e−x Laguerre Ln(x) e−x [0,∞)
Gamma xαe−x

Γ (α+1) gen. Laguerre L(α)n (x) xαe−x [0,∞)

TABLE 4.1 Connection between standard continuous probability density functions and the
Wiener-Askey scheme of continuous polynomial bases which are orthogonal
with respect to the corresponding weight function [Eld09b].

but convergence rates are typically decreased by this [Eld09b]. Alternatively orthogonal

polynomials can be generated numerically to match the given distributions [Eld09a].

The orthogonal polynomial basis functions from the Wiener-Askey scheme are used

to approximate the functional form between random inputs and stochastic outputs as a

series expansion. This expansion takes the form

f (X) = γ0Φ0 +
∞
∑

i1=1

γi1Φ1(X i1) +
∞
∑

i1=1

i1
∑

i2=1

γi1,i2Φ2(X i1 , X i2) + . . . ,(4.17)

where the dimension of the random vector is unbounded and each additional set of nested

summations adds an additional order of polynomials to the expansion. The order-based

indexing can be replaced by term-based indexing to simplify the representation [Eld09b],
resulting in

f (X) =
∞
∑

k=0

γkΨk(X),(4.18)

with a direct correspondence between γi1,i2,... and γk, and between Φ j(X i1 , X i2 , . . . ) and

Ψk(X), see [Eld09b] for more details. The PCE coefficients γk are often calculated using

spectral projection,

γk =
〈 f ,Ψk〉% f

〈Ψk,Ψk〉% f

=
1

〈Ψk,Ψk〉% f

∫

Ω

f Ψk% f dx ,(4.19)

where 〈·, ·〉% f
is the scalar product with respect to the density % f . The spectral projection

in Eq. (4.19) requires the calculation of high-dimensional integrals. For this task often

sparse grids in form of the combination technique are applied [Eld09b]. Alternatively,
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the PCE coefficients can be calculated via regression.

A major advantage of PCE is, that once the expansion has been calculated, stochastic

moments can be extracted without further costly integration. Because of the orthonor-

mality of the polynomial basis functions, because E[g · h] = 〈g, h〉% f
, and because Ψ0 ≡ 1

it holds

E[ f ] = E

�∞
∑

k=0

γkΨk

�

=
∞
∑

k=0

γkE [1 ·Ψk] =
∞
∑

k=0

γkE [Ψ0 ·Ψk]
︸ ︷︷ ︸

=δ0,k

= γ0.(4.20)

Using this, we derive a simplified formula for the variance of PCE as well,

V[ f ] = E
�

( f −E[ f ])2
�

= E





�∞
∑

k=0

γkΨk − γ0

�2


= E





�∞
∑

k=1

γkΨk

�2




=
∞
∑

k=1

γ2
kE[Ψ

2
k ]

︸ ︷︷ ︸

=1

=
∞
∑

k=1

γ2
k.

(4.21)

In practice the infinite expansion (4.18) must be truncated. Traditionally polynomials up

to a specific total order are used. It follows then from Eq. (4.21) that truncated PCE must

underestimate the variance.

4.2.3 Numerical Comparison

We now compare PCE and stochastic collocation using a benchmark for UQ approximation

methods. The benchmark is a real-world application, modeled by the U.S. office of nuclear

waste isolation [Har83]. A borehole is drilled through an aquifer above a nuclear waste

repository, through this repository and into an aquifer below. The input parameters

describing this scenario and their distributions are defined in Tab. 4.2. The response

Q ∈ R is the flow in m3/yr,

Q =
2πTu(Hu −H`)

ln(r/rw)
�

1+ 2LTu
ln(r/rw)r2

wKw
+ Tu

T`

� .(4.22)

On the basis of this benchmark, we now compare our approach based on sparse grids,

B-splines, and stochastic collocation to PCE. We use the DAKOTA library [Dak14], an

industry standard for UQ computations, to perform the PCE. We also add the results of

simple Monte Carlo quadrature to the comparison, to demonstrate the urgent need for

more advanced UQ methods. The objective function is smooth, therefore we use degree

n= 5 for all B-spline bases. A first comparison has already been published in [Reh21b].
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Name Description Distribution

rw radius of borehole (m) N(µ= 0.1,σ = 0.0161812)
r radius of influence (m) log N(µ= 7.71,σ = 1.0056)
Tu upper aquifer transmissivity (m2/yr) U[63070,115600]
Hu upper aquifer potentiometric head (m) U[990,1110]
T` lower aquifer transmissivity (m2/yr) U[63.1,116]
H` lower aquifer potentiometric head (m) U[700,820]
L borehole length (m) U[1120,1680]
Kw borehole hydraulic conductivity (m/yr) U[9855,12045]

TABLE 4.2 The eight input parameters and according distributions for the borehole
model Eq. (4.22) from [Har83].

Now we add boundaryless not-a-knot B-splines, which were not yet developed at the time

of publication. On regular grids they perform exactly like the extended splines, as is to

be expected. On adaptive grids they behave slightly different, because their surpluses

differ and thus different grid points are chosen for refinement. For mean and variance

we use a reference solution computed with extended not-a-knot B-splines of degree 5 on

a spatially adaptive sparse grid of 35,000 grid points. We verify this reference solution

by calculating a similar one using DAKOTA’s PCE based on a sparse grid of level 5 with

34, 290 grid points. The difference between both results for mean and variance is smaller

than 10−11, respectively.

Looking at the NRMSE in Fig. 4.2A, we see that extended B-splines and the bound-

aryless not-a-knot B-splines perform best among the regular grids. In particular, they

outperform PCE. The boundary not-a-knot B-splines on regular grids are far behind, be-

cause they cannot adequately resolve the inner domain of an 8-dimensional space. All

sparse grid methods significantly improve when using spatial adaptivity, and extended

B-splines on spatially adaptive sparse grids perform best among the studied methods.

Note that not-a-knot B-splines without boundary points or any boundary treatment do

not converge at all, which demonstrates once again the urgent need for compensation

when omitting the boundary points.

B-splines are numerically exact integrable, and no additional error is introduced when

performing stochastic collocation. Therefore, the errors for the stochastic quantities look

similar to the NRMSE. The polynomial chaos expansion slightly outperforms the other

methods for the approximation of the mean in Fig. 4.2B. This is to be expected, as the

mean approximation does not depend on the whole expansion, but only its first coefficient,

cf. Eq. (4.20).

Figure 4.2C shows that for the variance approximation, B-splines on adaptive sparse
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FIGURE 4.2 Errors for the borehole model (4.22) with not-a-knot B-splines (bn,nak) with
and without boundary points, modified (bn,m), extended (bn,e), and bound-
aryless not-a-knot B-splines (bn,bnk) of degree n = 5. Regular sparse grids
are represented with dashed lines, adaptive sparse grids with solid lines. For
comparison results from PCE and Monte Carlo are included.

grids outperform PCE, because PCE by definition underestimates this quantity, as we

explained following Eq. (4.21). The Monte Carlo results are several orders of magnitudes

worse than the results for the more advanced techniques, which confirms the need for

the latter.

4.3 Bayesian Inference

Parameter calibration is the task of identifying the parameters of a model f : RD→ R such

that the output resembles a real process that is captured in form of experimental measure-

ments or observations. The real process is often expensive in terms of required materials
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and execution time, therefore only few measurements Y = {y1, . . . , y M}, M ∈ N are avail-

able. Additionally, the measurements are usually perturbed by noise, which makes the

parameter calibration problem ill-posed in the sense of Hadamard, meaning that neither

existence, nor uniqueness, nor stability of the solution can be guaranteed [Had02].

One method to find a set of parameters fitting the observations is regression. The idea

is to find the parameter configuration x ∗ ∈ RD, which minimizes the difference between

the data Y and the model evaluation f (x ∗). To make the problem well-posed and inhibit

noise influence, a regularization term can be added. A popular example for this approach

is the least squares formulation with a Tikhonov regularization term C [Tik77],

x ∗ = argmin
x

�

1
2
‖Y − f (x )‖2

2 +λC(x )
�

.(4.23)

However, the quality of regression approaches heavily depends on the choice of regular-

ization, and the result is only a single parameter configuration x ∗ with no information

about the remaining parameter space. Furthermore, depending on the structure of the

problem, it might be difficult to avoid local minima.

Therefore, another more informative approach is a central aspect of UQ, Bayesian

inference. Instead of proposing only a single solution x ∗, every feasible parameter combi-

nation is assigned the relative probability of matching the observations. This information

is summarized in a probability distribution. Even the measurement noise can be comprised

in the Bayesian formulation, and then be inferred along, resulting in another distribution

describing the noise behavior. The general idea of Bayesian inference is that starting from

a prior belief, additional information or new observations are incorporated, and the belief

is updated according to Bayes’ rule, eventually resulting in the posterior distribution.

Formally, we define the conditional probability P(A | B), that is, the likelihood of event A

occurring given that B is true, as

P(A | B) :=
P(A∩ B)

P(B)
,(4.24)

where we assume that P(B) 6= 0. Let now X be a random variable describing the parame-

ters of the model f . We want to compute a distribution describing how likely X is to take

a value x , given observations Y . This is called the posterior distribution π(X = x | Y ). Any

information that we have a priori can be incorporated in the prior distributionπ(X), which

is an initial guess for the unknown posterior distribution. The likelihood π(Y | X = x )
returns the plausibility of the measurements Y given parameter x . Bayes formula brings
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together these terms [Bay63],

π(X | Y ) =
π(Y | X) π(X)

π(Y )
,(4.25)

whereπ(Y ) :=
∫

π(X)π(Y | X)dx is the marginal likelihood, a normalization factor which

is usually ignored in practice, because it is constant with respect to x .

Hierarchical modeling. The full power of Bayesian inference is achieved by using hi-

erarchical models [Gel06b; Gel13]. Assume we have a set of experiments with outcomes

y j, j = 1, . . . , M . Let further X j = (X j
1, . . . , X j

D) ∈ Ω ⊆ R
D be the parameter combinations

for each outcome y j, with likelihood π(y j | X j). If the parameter combinations X j are

exchangeable, that is, if the joint distribution is independent of their ordering, then each

observation y j can be regarded as outcome of the same experiment, based on the respec-

tive realization of an underlying joint probability model. Thus, we model the distribution

of each parameter X d conditionally on hyper-parameters θ , which themselves are given

a probabilistic specification. The hyper-parameters θ then describe a family of distribu-

tions, and each parameter combination X j is an instance of such a distribution. Because

the underlying distribution is completely described by the hyper-parameters, it suffices

to infer π(θ | Y ) to obtain π(X | Y ). We make this more clear with a quick example.

Let f : R→ R depend only on a single parameter x , and let y1 = f (x1) and y2 =
f (x2) be two experimental outcomes for unknown realizations x1 of X1 and x2 of X2. In

simple Bayesian modeling, one would infer one distribution for each parameter X1 and

X2 respectively. In hierarchical Bayesian modeling in contrast, one would assume that X1

and X2 are both instances of a common underlying probability model. For example, one

could assume that they are both normally distributed, but with slightly different means

µ1 and µ2, and standard deviations σ1 and σ2. Consequently, we assume that there are

underlying distributions µ and σ such that µ1,µ2 are realizations of µ, and σ1,σ2 are

realizations of σ. For example µ and σ could be uniformly distributed, µ ∼ U[θ1,θ2],
σ ∼ U[θ3,θ4] with hyper-parameters θ = (θ1,θ2,θ3,θ4) ∈ R4.

Markov Chain Monte Carlo. In general the posterior distribution π(X | Y ) cannot be

evaluated directly and must be approximated numerically based on samples. Follow-

ing Eq. (4.25) it holds

π(X | Y )∝ π(Y | X)π(X).(4.26)

The right-hand side of Eq. (4.26) can be evaluated point-wise for any x ∈ Ω. Making use

of this we generate a set of samples that is distributed following π(X | Y ) to estimate the
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density numerically. However, sampling soon becomes very expensive, in particular for

high dimensional parameter spaces, where often the distribution is concentrated locally,

and therefore negligibly small in most parts of the space. For efficient sampling, the next

sample point must be determined iteratively based on the present set of samples, such

that it contributes much new information.

One of the most widely used strategies for sampling distributions is Markov Chain

Monte Carlo (MCMC) [Bro11]. A Markov chain (x 1, x 2, . . . ) is a progression of points in

the parameter space, generated by repeatedly applying a random map, the Markov tran-

sition. For the number of samples going to infinity, the Markov chain samples converge

towards the target distribution [Ros95]. MCMC samples are typically autocorrelated, i.e.,

consecutive samples are close to each other and do not provide independent information.

Therefore, the quality of C ∈ N chains of N ∈ N samples each is not measured in the

number of total samples CN , but with the effective sample size Neff ∈ N. The effective sam-

ple size quantifies the number of exact independent samples from the target distribution,

which provide the same estimation power as the N autocorrelated samples. It is defined

as [Gel13]

Neff :=
CN

1+ 2
∑∞

t=1ρt

,(4.27)

where ρt is the lag-t autocorrelation over the history of the Markov chain. This is the

correlation between two chains offset by t positions (i.e., a “lag” in time-series terminol-

ogy). The lag-t autocorrelation can usually not be quantified analytically, but it can be

estimated from the drawn samples [Gel13]. In practice, sampling libraries provide an

estimate for Neff [Sal16].

Metropolis-Hastings. For applying MCMC, it remains to define the Markov transition.

One of the most popular approaches is the Metropolis-Hastings (MH) algorithm [Met53;

Has70], which consists of two steps: The proposal, which is a stochastic perturbation of the

current state, and the correction, which rejects bad proposals. Let g(x | x t) be an arbitrary

initial density that suggests the next sample, based on the current sample x t . Starting

from an initial point x 1, iteratively a new proposal x ∗ is generated by sampling from the

jumping distribution at time t, g(x ∗ | x t). Then the ratio of densities is calculated,

r :=
π(x ∗ | Y )
π(x t | Y )

,(4.28)
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and the next sample is set to be

x t+1 =

(

x ∗ with probability min(r, 1),

x t otherwise.
(4.29)

Often a Gaussian distribution is used for the initial density g, making the Markov chain a

random walk.

The Metropolis-Hastings algorithm is easy to understand and implement, therefore

it is still widely applied. However, it scales bad with dimensionality and complexity of

the target distribution [Bet17]. To efficiently sample the distribution, large jumps into

unexplored regions of high probability mass are necessary. However, for simple random

jumping, almost all proposals will be neglected. Additionally, the samples are correlated

by construction, thus the effective sample size can be significantly smaller than the actual

number of samples. To make up for this, at least partially, often the first samples are

disregarded and considered as tuning samples or burn-in, which narrows down the region

of interest.

Still, jump proposals exploiting the geometry of the distribution and following con-

tours of high probability result in a much more efficient sampling than the Metropolis-

Hastings algorithm. One strategy, which accomplishes this favorable goal is Hamiltonian

Monte Carlo (HMC).

Hamiltonian Monte Carlo and NUTS. Hamiltonian Monte Carlo is an MCMC tech-

nique for efficiently sampling probability distributions. It was originally developed in

1987 [Dua87], but only recently has become known to a broad audience [Nea11; Bet17],
when high-performance implementations became available [Sal16; Car17]. The idea of

HMC is to construct a vector field aligned with the target probability density function

by using its gradients. This is done using differential geometry, which classically is used

for the description of the physics of Hamiltonian mechanics, e.g., gravitation and orbits.

Following the Hamiltonian vector field, the sampler rapidly moves through the parameter

space, while being constrained to relevant regions. Several parameters need to be tuned,

such that this can be done efficiently. In particular, it must be decided how long to follow

the trajectories. The No-U-Turn Sampler (NUTS) is an implementation of HMC, which

jumps to the next trajectory after it followed the current one for a semicircle, and starts

to go back towards already explored space [Hof14].
In comparison to the classical Metropolis-Hastings algorithm using a Gaussian ran-

dom walk proposal strategy, HMC significantly reduces the autocorrelation between its

samples. Exploiting the gradient information, HMC maintains a high probability of sam-

ples being accepted event though making large jumps through the parameter space. In
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fact, for NUTS the effective sample size Neff can even be larger than the actual number of

samples N , if the lag-t autocorrelation in Eq. (4.27) becomes negative [Sta18]. This is

caused by NUTS simulating the Hamiltonian forward and backward in time at random,

doubling the time at each iteration, which potentially leads to antithetical sampling.

HMC pays for its efficient sampling with the requirement for gradients of the poste-

rior. Commonly, automatic differentiation is used to evaluate these gradients [Mar19], but

if the objective is a black-box function, then this approach is not feasible. In Chap. 6 we

use B-splines on sparse grids to approximate a black box simulation and then estimate the

parameters matching real-world measurements using NUTS based on the B-spline surro-

gate’s derivatives. For this we use the NUTS implementation of the pymc3 library [Sal16].
Further information on Hamiltonian Monte Carlo and NUTS can be found in [Nea11;

Bet17].

4.4 Active Subspaces

An important part of UQ modeling is sensitivity analysis [Chr02; Sal08], which is “the

study of how uncertainty in the output of a model can be apportioned to different sources

of uncertainty in the model input” [Sal04]. It allows for better understanding, testing,

and improving models [Pan97]. Sensitivity analysis identifies inputs that cause significant

uncertainty in the output, and thus points out where further research or a reparametriza-

tion is necessary. Conversely, the analysis also identifies insignificant parameters which

have almost no influence on the quantity of interest. Such parameters can be omitted to

reduce the dimension, and thus the overall complexity of the model. In this section, we

present the beneficial combination of active subspaces, an emerging sensitivity analysis

tool used for dimension reduction, and B-splines on sparse grids.

So far, in the context of sparse grids, sensitivity analysis has mainly been performed

through Analysis of Variance (ANOVA) [Gri05; Feu10]. ANOVA is based on the concept of

disassembling a function into individual terms, each of which only depends on a subset

of the input parameters,

f (x1, . . . , xD) = f0 +
∑

j1

f j1(x j1) +
∑

j1< j2

f j1, j2(x j1 , x j2) + · · ·+ f1,...,D(x1, . . . , xD).(4.30)

The first component f0 is constant and represents the function’s average, the following

components depend on an increasing number of parameters, where the one-dimensional

components f j1 represent the variances with respect to the corresponding dimension,

and so forth, until the last component f1,...,D, which is fully D-dimensional. If the terms

of the decomposition (4.30) decay rapidly, then only superpositions of low-dimensional
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FIGURE 4.3 The function f (4.31) is a one-dimensional hat function, rotated by about 27
degrees. ANOVA fails to find the intrinsic one-dimensional structure because
it is not axis-parallel (indicated with black lines).

functions govern the essential features. Thus, high-dimensional terms can be omitted

without losing significant information.

ANOVA works well, if all essential features of the function f are axis-parallel. How-

ever, non-axis-parallel features can not be found by ANOVA. The following example

function,

f (x1, x2) :=max(1− |5y − 2.5|, 0), y = x1 cos(0.15π)− x2 sin(0.15π),(4.31)

is a one-dimensional hat function rotated by about 27 degrees, illustrated in Fig. 4.3.

Because of the rotation, ANOVA fails to find the simple one-dimensional structure [Sch19].
In contrast to ANOVA, the concept of active subspaces is well suited for the detection of

such features. Active subspaces provide a new basis for the parameter space based on

estimating the directions of most expected change, accordingly rotating the domain and

assigning each rotated direction a relevance estimate. We now introduce active subspaces

following Constantine [Con15a].

Let f : [0, 1]D→ R be differentiable and Lipschitz continuous, where the restriction to

the unit hypercube is without loss of generality. The input parameters X = (X1, . . . , X D)
are random variables and have an associated probability density %X : Ω ⊆ RD → R.

Lipschitz continuity implies that the gradient’s norm is bounded by a constant L ∈ R,

‖∇X f (x )‖2 ≤ L for all x ∈ [0,1]D.(4.32)
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Let C ∈ RD×D be the average of the outer product of the function’s gradient with itself,

C :=

∫

[0,1]D
(∇X f )(∇X f )T%X dx .(4.33)

This means that each entry of C = (Ci, j)Di, j=1 is the average of the product of partial

derivatives,

Ci, j :=

∫

[0,1]D

∂ f
∂ x i

∂ f
∂ x j

%X dx , i, j = 1, . . . , D.(4.34)

The matrix C is positive semidefinite,

v T C v =

∫

[0,1]D
(v∇X f )2%X dx ≥ 0 for all v ∈ RD,(4.35)

and since C is also symmetric, it has a real eigenvalue decomposition,

C = WΛW T , Λ= diag(λ1, . . . ,λD), λ1 ≥ · · · ≥ λD ≥ 0,(4.36)

where W ∈ RD×D is the orthogonal matrix of normalized eigenvectors w 1, . . . , w D. With-

out loss of generality, we assume Λ and W to be sorted decreasingly according to the

eigenvalues λ1, . . . ,λD. The following lemma describes the relationship of the mean

squared directional derivatives and the eigendecomposition of C .

LEMMA 4.1 (mean squared derivative and eigendecomposition)

The mean squared directional derivative of f with respect to the eigenvector w k is equal to

the corresponding eigenvalue,

E
�

�

(∇X f )T w k

�2�

=

∫

[0,1]D

�

(∇X f )T w k

�2
%X dx = λk, i = 1, . . . , D.(4.37)

PROOF By the definition of the matrix C in Eq. (4.33),

λk = w T
k C w k = w T

k

�

∫

[0,1]D
(∇X f )(∇X f )T%X dx

�

w k =

∫

[0,1]D

�

(∇X f )T w k

�2
%X dx .

(4.38)

�

The eigenvectors in W define a new basis through a rotation of the domain of f .

It follows from Lm. 4.1, that if λk = 0 for some k ∈ {1, . . . , D}, then f is constant
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along the direction w k. Using the rotated D-dimensional basis W , no information is

lost when omitting w k. This property motivates the term inactive subspace, introduced

by Russi [Rus10], for directions w k with no or only small average change. We now

formalize this by separating the eigenvalues and eigenvectors. Let 1≤ t < D,

Λ=

�

Λ1

Λ2

�

, Λ1 := diag(λ1, . . . ,λt), Λ2 := diag(λt+1, . . . ,λD),(4.39)

W = (W 1 W 2) , W 1 := (w 1, . . . , w t) , W 2 := (w t+1, . . . , w D) .(4.40)

Next, we define new variables X1 and X2,

X1 := W T
1 X , X2 := W T

2 X .(4.41)

Any input X can now be expressed as a combination of X1 and X2,

X = W W T
︸ ︷︷ ︸

Id

X = W 1W T
1 X +W 2W T

2 X = W 1X1 +W 2X2,(4.42)

because W is orthogonal. With this we extend Lm. 4.1.

LEMMA 4.2 (decomposition into active and inactive subspaces)

The mean squared gradients of f with respect to X1 and X2 satisfy

∫

[0,1]D
(∇X1 f )T (∇X1 f )%X dx = λi + · · ·+λt ,(4.43)

∫

[0,1]D
(∇X2 f )T (∇X2 f )%X dx = λt+1 + · · ·+λD.(4.44)

PROOF See [Con15a]. �

It follows from Lm. 4.2 that, on average, small perturbations of X1 change f more

than small perturbations of X2. How much more is determined by the eigenvalues in Λ1

and in Λ2. If there is a significant drop between the values λt and λt+1, then the inputs

X2 can be omitted, reducing the dimension, but losing only little information. With this

motivation, X1 are called the active variables and X2 are called the inactive variables.

Furthermore, the range of the eigenvectors in W 1 is called active subspace, and the range

of the eigenvectors in W 2 is called inactive subspace. The method of active subspaces

is mainly used for dimension reduction, but the sizes of the eigenvalues λ1, . . . ,λD also

provide a sensitivity analysis of the input parameters [Jef15; Con17a]. Error estimates

and more details are available in the literature [Con15a]. The focus of this work is the
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calculation of the matrix C .

Related methods. The eigendecomposition of C is traditionally approximated by using

Monte Carlo quadrature with M ∈ N samples x 1, . . . , x M following %X [Con15a],

C ≈ Ĉ =
1
M

M
∑

i=1

(∇X f (x i))(∇X f (x i))
T = Ŵ Λ̂Ŵ

T
.(4.45)

This is equivalent to applying a Singular Value Decomposition (SVD) to the gradient

samples [Rus10; Con15a],

1
p

D
(∇X f (x 1), . . . ,∇X f (x M)) = Ŵ

p

Λ̂V̂ .(4.46)

A closely related method is Principal Component Analysis (PCA) [Wol87], also called

discrete Karhunen-Loève transformation [Sul15]. This method linearly transforms data

to a new orthogonal coordinate system, such that the greatest variance is associated with

the first coordinate, the second greatest variance with the second coordinate and so forth.

Through this, correlated variables are linearly transformed into relatively uncorrelated

variables [Flu88]. Just like active subspaces, PCA can be computed using either an

eigenvalue decomposition of the covariance matrix, or by using SVD. The main difference

is, that PCA seeks a low-dimensional linear parametrization of a random vector, such

that its covariance is well-approximated and the resulting parameters are uncorrelated.

In contrast, active subspaces help to approximate a scalar valued function of several

variables, by identifying directions along which the scalar-valued function changes more

on average in terms of its gradient.

Approximating active subspaces. The most expensive part of active subspace detec-

tion is the calculation of the matrix C . If the gradient of f is explicitly known, or can be

sampled, Monte Carlo quadrature can be used to approximate C as indicated in Eq. (4.45).

However, Monte Carlo quadrature converges very slowly. Furthermore, computer simu-

lations do in general not provide access to their gradients at all. Therefore, the gradients

must be approximated. This has so far been done with linear or quadratic ridge func-

tions [Con15a; Con17b; Gre18], but if f is not of linear or quadratic shape, these methods

can only approximate f and ∇ f up to a certain degree. We therefore, for the first time,

use B-splines and sparse grids to approximate the matrix C . Parts of this have already

been published in [Reh19]. B-splines can approximate complex functions more accurately

than simple linear or quadratic ridge functions. Because B-splines can be differentiated

and integrated numerically exact, the accuracy of the approximation is incorporated into
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the calculation of the matrix C . Additionally, the sparse grid is beneficial for the calcula-

tion of the potentially high-dimensional integrals. We demonstrate the improved active

subspace approximation for two example functions in Sec. 4.4.2, but first we present a

new theoretical result on integration with respect to an active subspace.

4.4.1 One-Dimensional Active Subspaces Integration

We now introduce a new integration algorithm for the special case of one-dimensional

active subspaces. The use case might seem limited at first, but in practice one-dimensional

active subspaces are commonly found, even in complex simulations. Notable examples

include simulations for solar cells [Con15c], lithium-ion batteries [Con17b], or airfoil

shapes [Gre18].
Assume λ1 > 0 and λ2 = · · · = λD = 0, then f has an exact one-dimensional active

subspace spanned by W 1 = w 1, and there exists a function g such that,

g : [a, b]→ R,

g(y) = g(W T
1 x ) = f (x ),

(4.47)

where x ∈ [0,1]D, and a := minx W T
1 x , b := maxx W T

1 x . We approximate g using

not-a-knot boundary B-splines on a one-dimensional spatially adaptive sparse grid with

level-index set I, resulting in the surrogate g̃,

f (x ) = g(y)≈ g̃(y) =
∑

(`,i)∈I

α`,i b
n,nak
`,i (y).(4.48)

In general g is unknown, so we need to approximate it from evaluations of f . For every

grid point x`,i, (`, i) ∈ I we solve x ′ = argminx ‖W T
1 x − x`,i‖2 and interpolate in the pairs

(x`,i, f (x ′)).
Now we want to integrate g̃ subject to the volume of the inactive subspace. Calculat-

ing this (D−1)-dimensional volume numerically is an expensive task, only slightly cheaper

than the original D-dimensional integral, because the shape of the inactive subspace is

that of a zonotope and not a simple hypercube [Con15a]. However, we combine Ramsay’s

definition of M-splines [Ram88] and Schoenberg’s theorem on simplex volumes [Cur66],
and show that the volume of the complicated (D− 1)-dimensional inactive subspace can

be formulated exactly as a sum of B-splines [Reh19]. This is achieved by decomposing

the domain into simplices and applying the upcoming Thm. 4.4, which formulates the

volume of a projected simplex in terms of a scaled B-spline. First we recall the definition

of a simplex, then we state the theorem.
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DEFINITION 4.3 (simplex)

A simplex σ in RD is the convex hull of D+ 1 vertices v0, . . . , v D ∈ RD. The vertices must

be affinely independent, i.e., v1 − v0, . . . , v D − v0 must be linearly independent. The

simplex can then formally be defined as

σ :=

¨

t0v0 + · · ·+ tDv D
�

�

�

D
∑

d=0

td = 1 and td ≥ 0 for all d = 0, . . . , D

«

.(4.49)

The volume Vσ of a simplex σ is [Ste66]

Vσ =
|det A|

D!
, where A := [v1 − v0, . . . , v D − v0] ∈ RDx D.(4.50)

THEOREM 4.4 (The volume of a projected simplex is an M-spline)

The density function Φ(x1) obtained by projecting orthogonally onto the first coordinate x1

the volume of a D-dimensional simplex σ of volume Vσ, so located that its D + 1 vertices

v0, . . . , v D project orthogonally into the knot sequence ξσ := (ξσ0 , . . . ,ξσD), is given by

Φ(x1) = Vσ ·M D
0,ξσ(x1),(4.51)

where the M-spline M D
0,ξσ can be represented as a scaled B-spline,

M D
0,ξσ =

D
ξσD − ξ

σ
0

bD
0,ξσ .(4.52)

PROOF See Appendix A.2.1. �

This theorem, which is illustrated in Fig. 4.4, tells us that the volume of a D-dimensional

simplex, projected onto a one-dimensional line, is equal to a scaled B-spline. Thus, by

triangulating the unit cube with simplices, we can exactly represent the volume of the

(D−1)-dimensional hyperplane {x ∈ [0, 1]D | W T
1 x = y} as a sum of M-splines. Let SD be

the group of all permutations of {1, . . . , D}. Every permutation τ in SD defines a simplex

στ ⊂ [0,1]D via

στ := {x = (x1, . . . , xD) ∈ [0,1]D | 0≤ xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(D) ≤ 1}.(4.53)

By construction these simplices triangulate the hypercube [0, 1]D and have equal volume
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FIGURE 4.4 The volume of the two-dimensional simplexσ is projected onto the x-axis. This
equals the scaled M-spline defined on the knot sequence ξσ = (ξσ0 ,ξσ1 ,ξσ2 ) of
projected corners v0, v1, v2 as described in Thm. 4.4.

V1. It follows from Thm. 4.4 that V (y) is given by

V (y) = V1

∑

τ∈SD

M D
0,ξστ
(y).(4.54)

Combining these observations results in the new integration algorithm,

∫

[0,1]D
f (x )dx =

∫ b

a

g(y)V (y)d y(4.55)

≈
∫ b

a

∑

(`,i)∈I

α`,i bn,nak
`,i (y)V1

∑

τ∈SD

M D
0,ξστ
(y)d y(4.56)

= V1

∑

(`,i)∈I

α`,i

∑

τ∈SD

∫ b

a

bn,nak
`,i (y)M

D
0,ξστ
(y)d y.(4.57)

Without Thm. 4.4 the (D − 1)-dimensional volume V (y) must be numerically approxi-

mated, which is expensive and introduces additional inaccuracies. In our new formula-

tion (4.57) however, the volume is exactly captured in form of splines, which are inte-

grated numerically exact using Gaussian quadrature of appropriate order. The complexity

of calculating integrals has been eliminated and the method’s accuracy solely depends on

how well g̃ approximates g.

Practical limitations. The major limitation of the algorithm in practice is the triangu-

lation of the D-dimensional unit hypercube. Our decomposition Eq. (4.53) relies on D!

simplices. This is not optimal, but minimal triangulation of the unit cube is a compli-
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cated task. Optimal triangulations have so far only been found for up to D = 7 [Hug96].
For higher dimensionalities only a lower bound for the number of simplices is known,

(D + 1)
D−1

2 [Gla12]. Furthermore, if the initial assumption λ2 = · · ·λD = 0 does not

hold then Eq. (4.55) does not hold either. However, according to Lm. 4.2 if λ2, . . . ,λD

are relatively small in comparison to λ1 then Eq. (4.57) remains a good approximation

for the integral of f . The contributions of w 2, . . . , w D can be interpreted as noise and

interpolating the pairs (x`,i, f (x ′)) might become unstable. This instability should be

able to be overcome by using regression with a suitable regularization term instead of

interpolation.

4.4.2 Numerical Results

We now demonstrate the recognition of active subspaces and the new integration al-

gorithm with two example functions. Hereby, we compare cubic B-splines on spatially

adaptive sparse grids to the Python Active Subspaces Utility Library (PASUL) [Pas16].

PASUL. PASUL is one of the most popular numerical active subspace libraries. It provides

routines for the detection of active subspaces based on Monte Carlo quadrature. If the

derivatives of the objective function are not available, PASUL uses approximations based

on linear or quadratic ridge functions. These are based on M ∈ N samples, drawn from

the density %X . The objective function f is evaluated at each sample, and either a global

linear or global quadratic model is least-squares fitted accordingly [Con15a; Pas16]. The

linear model has coefficients c ∈ R and b ∈ RD,

f (x )≈ c + bT x ,(4.58)

and provides the constant gradient approximation ∇ f (x )≈ b. The quadratic model has

coefficients c ∈ R, b ∈ RD and a symmetric matrix H ∈ RD×D,

f (x )≈
1
2

x T Hx + bT x + c.(4.59)

The gradient is then approximated via ∇ f (x )≈ Hx + b. These simple models have been

used in several real world applications, among others for determining the active subspace

of a hypersonic scramjet simulation [Con15b], or that of an airfoil shape [Gre18]. Once

the active subspace is approximated, PASUL can approximate the function g on the active

variables using a least-squares fitted polynomial approximation. In the following com-

parison we tried all polynomial degrees in {1, . . . , 10} and added the best result to our

comparison. The PASUL library also provides a routine which integrates the objective

function over the active subspace with respect to the volume of the inactive subspace
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V (y). Quadrature nodes are constructed on the active variables using a Delaunay trian-

gulation. The quadrature weights are the relative frequencies within a histogram based

on sampling the original variables, mapping them to the active variables, and assigning

each sample to the triangle onto which it is projected. In case of a one-dimensional active

subspace, the triangulation is reduced to intervals [Pas16].

We assume uniform distributions and use two closed form example functions with

clear active subspaces for demonstrational purpose. The derivatives of these example

functions can easily be derived, but we use that only for the calculation of reference

values. For the detection of active subspaces, we assume not to have derivative knowledge,

as would be the case in practice. The first example function demonstrates that active

subspaces of general dimensionality are well approximated by B-splines on sparse grids.

The second example function demonstrates the integration algorithm for functions with

a one-dimensional active subspace.

Let now f1 : [0,1]8→ R be defined as

f1(x) =
p

a1 x1 + a2 x2 + (a3 x3 + a4 x4)
3 − sin(a5 x5 + a6 x6)− cos(a7 x7 + a8 x8),(4.60)

with coefficients a = (a1, . . . , a8) ∈ R8 randomly chosen under condition that |a|2 = 2 1.

This function consists of a square root, a polynomial part, and two trigonometric parts,

which all rely on different subsets of the input parameters, resulting in f1 having a four-

dimensional active subspace. Figure 4.5A shows the NRMSE of approximating f1 with

PASUL’s linear and quadratic ridge functions, and with B-splines on sparse grids. Even

thought the function f1 is relatively simple, both ridge functions are severely restricted,

and neither even reaches an NRMSE of 10−1 before the error stagnates. This is to be

expected, because the approximation qualities of the linear and quadratic approaches are

strictly limited. In contrast, the NRMSE of the B-spline approaches converges towards

zero, and shows no stagnation. The quality of the response surface is directly related to

the quality of the derived active subspace, as can be seen in Fig. 4.5B. Again the quality

of the ridge function approximations soon stagnates. The classical approach, based on

linear or quadratic ridge functions, and Monte Carlo quadrature vividly reaches its limits.

The B-spline approaches converge towards zero, yielding good approximations of the

four-dimensional active subspace.

1The results in Fig. 4.5 are based on
a=[1.2314893703893552, 0.38523139441115317, 0.6394417061820445, 0.36059074362452487,
0.33945470566336716, 0.6960580203613244, 0.19537123690744182, 1.076207757948391]
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FIGURE 4.5 Errors of the surrogates and resulting active subspace approximations for the
example function f1, based on a linear ridge function, quadratic ridge function,
and cubic B-splines on adaptive sparse grids.

The second objective function f2 : [0,1]8→ R is given by

f2(x ) =
sin(γ

∑8
i=1 x i + 1)

γ
∑8

i=1 x i + 1
,(4.61)

where we choose γ = 0.75. This function has a one-dimensional active subspace. We

now investigate the quality of the active subspace approximation, before we apply the

new integration algorithm based on the detected active subspace. Figure 4.6A shows

the NRMSE of approximating f2, again with linear and quadratic ridge functions, and

B-splines on sparse grids. The behavior is the same as in the previous example. The ridge

functions barely converge and the error soon stagnates, whereby the quadratic ridge

function is better than the linear one. The error of the B-spline approximations converges

towards zero. Again, the NRMSE behavior is related to the quality of active subspace

detection, which can be seen in Fig. 4.6B. After the pre-convergence phase, all B-spline

approximations have an active subspace approximation error multiple magnitudes smaller

than the ridge functions.

Now that we have found the one-dimensional active subspace based on our ap-

proximations, we want to exploit this information to integrate the function f2. The
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FIGURE 4.6 Errors of the surrogates and resulting active subspace approximations for the
example function f2, based on a linear ridge function, quadratic ridge function,
and cubic B-splines on adaptive sparse grids.

corresponding univariate function g2 : [0,
p

8]→ R is given by

g2(y) =
sin(γ

p
8y + 1)

γ
p

8y + 1
.(4.62)

In Fig. 4.7A we show the error of approximating g2 from evaluations of f2 and the approx-

imated active subspace. The results directly depend on the quality of the approximated

active subspace. Thus, the integration error resembles the behavior in Fig. 4.6B. After the

pre-convergence phase, the B-spline-based approximations outperform the polynomial

approximations.

Using Eq. (4.62) and (4.57) we calculate a numerically exact reference value for

the integral
∫

[0,1]8 f2(x )dx . In Fig. 4.7B the error of approximating this integral is

shown. The integration algorithm (4.57) is numerically exact, therefore the only er-

ror source for the B-spline-based integrations is the quality of the approximation of g2.

Indeed, for the B-spline approaches the integral convergence plot looks almost exactly

like Fig. 4.7A. To emphasize the numerical exactness of the integration algorithm we

provided the algorithm with the exact active subspace W1. Additionally, we plotted the

error
�

�

�

∫

[0,
p

8] g2(y)d y −
∫

[0,
p

8] g̃2(y)d y
�

�

�, where g̃2 is the B-spline approximation of g2 on

a univariate sparse grid. The two errors converge alike, demonstrating that indeed the

integration algorithm reduces the complexity of the original high-dimensional integral
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FIGURE 4.7 Errors of the approximations g̃2 calculated from f2 using an approximation for
the active subspace (left). Errors for approximating the integral

∫

[0,1]8 f2(x )dx
with a univariate integral based on the approximations for g2 with a linear and
a quadratic ridge function, and cubic B-splines on adaptive sparse grids, the
error for approximating the integral with the spline-based quadrature algorithm
supplied with the exact active subspace W1, and the error for integrating g2
with not a knot B-splines on a one-dimensional adaptive sparse grid (right).

to the complexity of univariate integration, where the error is solely determined by the

approximation of the active subspace.
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5
Application I

Subsurface CO2 Storage

“ If we are to have any hope of keeping global

temperature [increases] down below 2◦C then we

desperately need to develop ways to capture and

store carbon dioxide.

— Stuart Haszeldine [McK]

The progressive industrialization of the last centuries has led to a drastic increase

in global energy demand. This in turn resulted in vast amounts of waste, among others

carbon dioxide (CO2), which must be stored securely. Storing CO2 in geological for-

mations is an interim technology with high potential to mitigate CO2 emissions, and to

weaken the greenhouse effect [IPC05; IPC11]. In order to minimize the risks involved,

any potential storage site must be investigated extensively, whereby investigations are

complicated by the fact that subsurface properties, like porosity or permeability, are ob-

servable only to a limited extent. Consequently, a lot of uncertainty is present when

modeling such processes. This uncertainty can usually not be described analytically, but

instead measurements and observations are used to describe a data-driven model.

To compare multiple different UQ methodologies for such scenarios, Köppel et al.

established a data-driven benchmark for probabilistic risk assessment for a subsurface

CO2 storage [Köp18]. The results and underlying model are publicly available [KöpDa].
In this chapter we run the same benchmark with B-splines on sparse grids using different
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aquitard

leaky well

aquifer

CO2 plume
100 m aquifer

screening
interval
30 m

30 m

100 m

injection well

FIGURE 5.1 Cross-section of the CO2 storage benchmark’s physical domain from [Ebi07].
CO2 is injected at high pressure through the central injection well, spreads in
the lower aquifer and partially escapes over time through the leaky well.

spatial refinement strategies, and add the results to the comprehensive comparison.

We first introduce the CO2 subsurface storage benchmark in Sec. 5.1, before we

present two alternative refinement criteria for spatial adaptivity in Sec. 5.2. In Sec. 5.3

we first show how different B-splines perform in the benchmark, then describe the other

UQ methodologies, and finally compare them to our approach.

This chapter is based on a collaboration with Dr. Fabian Franzelin and Prof. Dr. Sergey

Oladyshkin (both SimTech, University of Stuttgart, Germany), and continues the com-

parison from [Köp18]. The presented results have already been published in [Reh21a].
The collaborators provided the previous results and the underlying benchmark in form of

a black-box simulation. The author of this thesis implemented the new spatial adaptiv-

ity criteria for B-splines, and added B-splines on sparse grids to the overall comparison,

demonstrating the high competitiveness of this approach. In particular the new results

outperform the previous ones based on sparse grids with hierarchical C0 elements.

5.1 Carbon Dioxide Storage Model

Carbon dioxide can be captured at industrial facilities, compressed into a liquid state, and

pumped into deep underground formations. There it dissolves into the local formation

water through a variety of geochemical reactions [Roc04]. This approach, known as

carbon capture and storage (CCS), is considered a major factor in the battle against

climate change [Has18]. In practice, it is of absolute importance to accurately estimate

the behavior of a storage site before a decision can be made on its usage. Otherwise,
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5.1 CARBON DIOXIDE STORAGE MODEL

Name Description Range Unit

Φ reservoir porosity [0,0.8] –
q CO2 injection rate [0.6,1.4] · 10−4 m3/s
θ relative permeability degree [2,4] –

TABLE 5.1 Input parameters for the CO2 storage benchmark.

the high pressure used to pump CO2 into the reservoir could cause structural failures

leading to earthquakes, pollution of drinking water, or the CO2 could escape back into

the atmosphere. The investigation is complicated by the fact that the raw data obtained

from such storage sites can hardly be described by theoretical stochastic distributions.

Additionally, external driving forces and material properties are observable only to a

limited extent and at high costs [Köp18]. Thus, data-driven UQ approaches must be used

to incorporate observations and measurements.

To give an overview of the available methods and to compare their performance,

Köppel et al. set up a benchmark for carbon dioxide storage and implemented it with four

different forward UQ methods. The benchmark domain is illustrated in Fig. 5.1. Carbon

dioxide is pumped through the central injection well into an aquiferous reservoir, sepa-

rated from an upper aquifer by an aquitard. The CO2 starts spreading in the lower aquifer

and, after some time, reaches a leaky well. Through this well some CO2 escapes back to

the atmosphere over time. The relevant quantities in this scenario are the expected value

and standard deviation of the total amount of escaping CO2 over a period of 100 days.

With this information the suitability of the potential storage site can then be assessed.

The benchmark is modeled as a multiphase flow problem in porous media. The

original model, which is based on the multiphase version of Darcy’s law and the mass

balance of the brine (water) and the CO2 (gas) phase, was derived by Class et al. [Cla09].
It was then modified, resulting in a system of partial differential equations [Nor11].
A coordinate transformation finally resulted in the following PDE formulation [Ola11;

Köp18],

Φ
∂ Sg

∂ τ
−

1
r
∂

∂ r

�

qCp fg(θ )
�

− q = 0,(5.1)

which is formulated in a radial coordinate system depending on the coordinate r, which

is the distance from the injection well in meters. The other components of Eq. (5.1)

are the saturation of the gas-phase Sg , the time of the simulation τ, a pressure constant

Cp, and the fractional flow function fg , which depends on the saturation of liquid- and
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FIGURE 5.2 Histograms of the 10 000 Monte Carlo samples forming the data-driven distri-
butions for the parameters of the CO2 storage benchmark.

gas-phase. As initial conditions, the aquifer is filled with brine, and CO2 is injected at a

constant rate at the center of the physical domain. The lateral boundary conditions are

constant Dirichlet conditions and equal to the initial conditions. All other boundaries

are no-flow boundaries. The hyperbolic transport equation (5.1) depends on a spatial as

well as a temporal coordinate. In the physical space a semi-discrete central-upwind finite

volume scheme is applied [Kur05]. The temporal space is discretized using second order

Runge-Kutta.

There are three uncertain parameters in Eq. (5.1), which we summarize in Tab. 5.1.

The reservoir porosity Φ models uncertainty of material properties, the CO2 injection rate

q models uncertainty in the boundary conditions, and the relative permeability degree

θ models uncertainty from the non-linearity of the conceptual model, i.e., uncertainty

from the conceptualization of the model. No explicit distributions are known for these

uncertain parameters, instead a set of 10 000 samples is provided with the benchmark and

a data-driven approach is used to incorporate the uncertainty information. The reference

stochastic moments were calculated using the Monte Carlo method (cf. Equations (4.9)

and (4.10)), and for consistency we too use Monte Carlo to compute the moments of our

surrogate with respect to the data. Histograms of this data are shown in Fig. 5.2.

The multiphase flow problem is strongly nonlinear and solving it for a given param-

eter combination is computationally demanding. This is also the reason for the small

number of parameters of the benchmark, which were designed to still allow for a Monte

Carlo based reference solution. For the full derivation of Eq. (5.1) and more details on

the model and the simulation we refer to [Kur05; Ola11; Köp18]. An overview of the

current status of modeling CO2 storage in deep saline aquifers is given in [Cel15].
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5.2 SPATIAL ADAPTIVITY

5.2 Spatial Adaptivity

In addition to surplus-based refinement, cf. Sec. 2.5, for this application we gave two

other spatial adaptivity refinement strategies a try. These refinement criteria were derived

and employed by Franzelin in the context of the same CO2 storage benchmark [Fra17].

Let f̃ =
∑

(`,i)∈I α`,iϕ`,i be the current interpolant of the objective function f , and %

be a probability density function. The idea of the first refinement strategy is to minimize

the functional

J(I) :=

∫

�

f (x )− f̃ (x )
�2
%(x )dx ,(5.2)

i.e., to minimize the weighted L2-error. To do so, we determine

(`∗, i∗) = argmax
(`,i)∈Iref

| J(I\{(`, i)}) |

= argmax
(`,i)∈Iref

|α`,i |
�∫

ϕ`,i(x )
2%(x )dx

�
1
2

,
(5.3)

and refine by iteratively adding the children C(`∗, i∗) to the sparse grid. This strategy

is called L2-based refinement. The second criterion is derived analogously by setting

J(I) := E[ f − f̃ ], which leads to expected-value-based refinement [Fra15],

(`∗, i∗) = argmax
(`,i)∈Iref

| α`,i E[ϕ`,i] |.(5.4)

We set E[ϕ`,i] to E%[ϕ`,i] if the probability density function % is analytically known. In

data-driven scenarios, where only samples of an unknown probability density function

are available, we use EMC[ϕ`,i].

The two refinement strategies promise improvements for the approximation of their

corresponding quantities. However, they require multiple integrations in each refinement

step, and they are thus much more expensive than surplus-based refinement.

5.3 Numerical Results

The subsurface storage simulation uses 250 time steps to discretize the time period of

100 days. It returns ( f1, . . . , f250), where ft is the amount of escaping CO2 at time t. We

create one surrogate f̃t for each time step, all based on the same underlying adaptive

sparse grid, and measure the average L2-error of the quantities of interest over all time
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steps,

εE =

�

250
∑

t=1

�

EMC( ft)−EMC( f̃t)
�2

�
1
2

1
250

,(5.5)

εs =

�

250
∑

t=1

�

sMC( ft)− sMC( f̃t)
�2

�
1
2

1
250

.(5.6)

5.3.1 Results for B-spline Bases

Figure 5.3 shows the convergence for boundary not-a-knot B-splines, as well as modified,

extended and boundaryless not-a-knot B-splines of degrees n ∈ {1,3,5} using surplus-

based, weighted L2, and expected-value-based spatial refinement respectively. For degrees

n = 1 and n = 3 the non-boundary splines outperform the boundary approach, which

requires too many grid points on the boundary. For degree n = 5 some quintic bases

become unstable. This is caused by a discontinuity of the underlying subsurface flow

simulation, which is due to the CO2 displacement front resembling a shock. The discon-

tinuity also generally prevents higher-order splines from reaching optimal convergence

order. Instead, all stable bases perform rather similar. At an error of around 5 · 10−4 the

convergence stagnates as the accuracy of the Monte Carlo reference solution is reached.

Linear B-splines generally perform better at computing the standard deviation, while

the stable quintic B-splines perform slightly better in computing the expected value. The

cubic B-splines lie in between. This can be traced back to the discontinuity. Closer to the

discontinuity a smooth surrogate of degree 5 oscillates. While in the calculation of the

expected value these oscillations cancel each other, for the calculation of the standard

deviation this is not the case. Squaring the integrand means that each oscillation is taken

into account and deteriorates the result. The higher the degree, the worse the oscillations

of the surrogate. Thus, the smooth surrogate of degree 5 is superior for mean calculations,

but inferior for standard deviation. This also explains why cubic B-splines lie in between

the others. They are not as smooth as the quintic splines, but in contrast to linear splines

they oscillate close to discontinuities.

Overall, the smallest expected value error is achieved by modified B-splines of degree

5 using weighted L2 refinement. The overall smallest standard deviation error is achieved

by all non-boundary B-splines of degree 1 using weighted L2 refinement, because all

boundaryless B-splines behave alike for degree n = 1, cf. Sec. 3.2. We compare these

results to other UQ methodologies in the next section.
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FIGURE 5.3 Average mean error and average standard deviation error for approximations
of the subsurface storage benchmark using four different spline types, degrees
n ∈ {1, 3, 5} and three different refinement criteria (L2-based, expected-value-
based, surplus-based).
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FIGURE 5.4 Mean and standard deviation of CO2 saturation at t = 100 days based on
boundaryless not-a-knot B-splines of degree 1 on L2-based spatially adaptive
grid points of increasing refinement in comparison to the reference Monte Carlo
solution using 104 samples. The CO2 saturation decreases with the distance
from the injection well.

Figure 5.4 shows the approximated mean and standard deviation of the benchmark

exemplarily for linear boundaryless not-a-knot B-splines on L2-based spatially adaptive

sparse grids of increasing size at the end of the simulation time. It can be seen that already

for a sparse grid of only 111 points the characteristics of the objectives are adequately

resolved. This shows that our method is applicable even in extremely data-scarce regimes.

Still, as is to be expected, for increasing grid size the approximation then gets closer to

the reference.

Assessment of the refinement criteria. For the application in this chapter we used

the weighted L2-based and expected-value-based refinement strategies from [Fra17]. As

can be seen in Fig. 5.3, the differences between the different criteria and surplus-based

refinement are marginal. However, the L2 as well as the expected-value-based refinement

require multiple integrations in each refinement step and are thus more expensive than

the traditional surplus-based refinement which needs no additional calculations at all.

Therefore, we do not pursue these two approaches, but in the upcoming applications we

only use surplus-based refinement. We interpret these results however not so much as

failure of the L2-based and expected-value-based refinement, but rather as a confirma-

tion of the quality of the traditional surplus criterion, which prioritizes the ares of most
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importance for a great variety of quantities of interest.

5.3.2 Comparison of UQ Methods

We now compare the best B-spline surrogates from the previous section with all meth-

ods from the original comparison [Köp18]. First we give a brief description for each

comparative method.

Arbitrary polynomial chaos expansion. A variant of PCE (cf. Sec. 4.2.2), which does

not rely on analytical standard distributions from the Wiener-Askey scheme. Instead,

it adapts to arbitrary probability distributions given in form of data [Ola12]. Statistical

moments are derived from the dataset and used to numerically construct an orthonormal

polynomial basis. Then an expansion is constructed just like with the generalized PCE

in Eq. (4.17).

Spatially adaptive sparse grids with hierarchical C0 elements. Sparse grids were al-

ready present in the original comparison. There, piecewise d-polynomial C0-elements on

boundary grids and modified C0-elements on non-boundary grids were used, cf. Sec. 2.2.

The sparse grids were refined using the same three spatial adaptivity criteria that we

presented in Sec. 5.2, of which weighted L2-refinement gave the best results.

Kernel greedy interpolation. Linear combinations of radial basis functions are a pop-

ular method for the creation of surrogates [Wen95]. In this comparison they are repre-

sented in the form of C2 Wendland kernels [Wen04]. In contrast to sparse grids, these

basis functions do not belong to a structured mesh. Instead, starting from a large set

of potential evaluation points, a vectorial kernel orthogonal greedy algorithm iteratively

picks the most promising points. The kernel functions are centered at these scattered

points and the coefficients of the surrogate are calculated using interpolation.

Hybrid stochastic Galerkin. An intrusive method, which does not construct a surro-

gate. Instead, the stochastic domain is decomposed into stochastic elements (cubic subsets

of the domain), each of which gets its own individual orthonormal polynomial PCE ba-

sis [Bür14]. This stochastic discretization yields a representation of the original partial

differential equation as linear combination of deterministic coefficients and polynomials

with random arguments. For the application at hand, a uniform distribution is assumed

and Legendre polynomials are used.

Figure 5.5 shows the results of the overall comparison. Our surrogates perform

highly competitive and show the smallest mean error for moderate numbers of model
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FIGURE 5.5 Comparison of average mean and standard deviation error of B-splines on
sparse grids with the four methods from the original comparison: arbitrary
polynomial chaos expansion, Kernel Greedy Interpolation, Hybrid Stochastic
Galerkin, modified C0 elements pm on a non-boundary sparse grid, and C0

elements p on a boundary sparse grid.

runs. In particular, for both quantities of interest our B-splines approaches outperform the

former sparse grid results which were based on (modified) hierarchical C0 elements. For

standard deviation all methods fall short for the Kernel Greedy Interpolation. However,

the graph does not take into account that for this method actually a shape parameter

δ must be tuned. This is usually done based on additional model runs which would

increase the cost of Kernel Greedy Interpolation, and thus deteriorate its performance

in the comparison. These additional model runs were not taken into account in the

comparison, althought multiple fixed δ were tested a-priori.

Summary. We used surrogates based on B-splines and sparse grids to approximate an

expensive benchmark for subterranean CO2 storage. Using stochastic collocation, we

calculated the quantities of interest and compared the results with established UQ meth-

ods. The good results of our methods are, to some extent, caused by the flexibility in the

degree. Quintic B-splines perform better for the standard deviation of this simulation,

while the mean is captured better with linear basis functions. Choosing the degree de-

pending on the problem at hand and the desired quantity of interest resulted in one of

the best results of the comparison. The authors of the original study also explain that the

uncertain parameters of the problem strongly influence the non-linearity of the underly-

ing flow problem. This leads to Gibbs phenomena and oscillations of the corresponding

surrogates. These effects are weakened considerably by the use of spline functions of
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moderate degree. The application also demonstrates that in practice higher degrees can

be dangerous. While we have seen their improved convergence behavior for smooth

objectives in Sec. 3.3, the discontinuities in this application led to unstable behavior.
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6
Application II

Bayesian Inference for a DC Engine

“ Under Bayes’ theorem, no theory is perfect.

Rather, it is a work in progress, always subject to

further refinement and testing.

— Nate Silver [Sil12]

In order to better understand the behavior of essential electrical and mechanical

components, and to create virtual prototypes, Bosch Research is interested in quantitative

ways to determine the effect of parameter uncertainties in simulation and measurement.

To mimic real counterparts as closely as possible, measurements capturing their behavior

must be transferred to calibrateable simulations. In recent years, a test-bench for an

electric direct current (DC) motor has been established to explore the technical possibil-

ities of such a digital pendant [Gla16; Gla17; Joh19]. To account for varying material

properties and production tolerances, it is important that uncertainties are taken into

account and the reliability of the results is formulated explicitly. Therefore, hierarchi-

cal Bayesian modeling is used to infer the probability of model parameters from the

test-bench measurements.

The most expensive part of Bayesian inference is the sampling of the posterior.

So far, in context of the DC motor test-bench, mainly Metropolis-Hastings has been

used [Gla16]. Recently, Approximate Bayesian Computation was used and improved
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these results [Joh21a; Joh21b]. The NUTS algorithm, which we introduced in Sec. 4.3

is another modern and efficient sampling approach. The idea of applying NUTS for the

test-bench inference problem was considered highly promising, but so far it was put aside

because the simulation does not provide any derivative information, and basic approx-

imations thereof are too expensive. This chapter describes a collaboration with Bosch

Research, in which we demonstrate the powerful coupling of the NUTS algorithm and

B-splines on spatially adaptive sparse grids, which provide good approximations for the

mandatory derivatives.

In a first step, in Sec. 6.1 we use an artificial setup for which the analytical solution

is known, and for which measurements are created synthetically by adding Gaussian

noise to evaluations. This allows us to accurately measure the quality of the surrogate,

its Jacobian and the inference results, as well as the influence of noise. However, the

real benefit of our approach is demonstrated in Sec. 6.2, where we use real test-bench

measurements and a complex black-box simulation modeling the motor behavior. With

this we demonstrate that NUTS enabled through the derivatives of our surrogates is

applicable in practice, and that it delivers results fulfilling industry requirements.

This original chapter is based on a collaboration with Dr. Michael Schick, and Dr.

David John (both Bosch Research). New contributions are the usage of NUTS based

on the derivatives of a surrogate from B-splines on sparse grids, and the resulting pa-

rameter calibration. The collaborators contributed the DC motor models, the real-world

benchmark measurements, and the ABC results, which have previously been published

in [Joh21a; Joh21b].

6.1 Artificial Problem

A DC motor is classically composed of a rotor between the two poles of a magnetic field,

called the stator. The rotor is surrounded by the armature winding, which consists of

several coils. When electrical current flows through the armature winding, the rotor

becomes magnetic and starts to turn according to the permanent magnetic field of the

stator. The commutator, located on the rotor, changes the poles of the rotor after each

turn of 180 degrees leading to continuous torque. Assuming no mechanical load, this

physical behavior can be described by an ODE system derived from one equation for the

electrical side and one equation for the mechanical side. The two output quantities of the

system are the armature current I(A) and the rotational speed ω(rad/s) over time t(s),
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Name Description Distribution Unit

R resistance N(µR, σ2
R) µR = 9.0 σR = 0.9 Ω

cg motor constant N(µcg
,σ2

cg
) µcg

= 3.0 σcg
= 0.3 Nm/A

cm motor constant N(µcm
,σ2

cm
) µcm

= 0.5 σcm
= 0.05 V s/rad

L inductance N(µL , σ2
L) µL = 0.11 σL = 0.011 H

J torque of inertia N(µJ , σ2
J ) µJ = 0.1 σJ = 0.01 kg m2

D friction N(µD, σ2
D) µD = 0.1 σD = 0.01 kg m/s

TABLE 6.1 Input parameters for the DC motor ODE system (6.1). For each input parameter
we set up a distribution to parametrize the DC motor ODE system. The spec-
ification of these distributions is chosen arbitrarily in order to investigate the
proposed inference methods. We assume all distributions to be independent.

dI(t)
d t

= −
R
L

I(t)−
cm

L
ω(t) +

V
L

,

dω(t)
d t

=
cg

J
I(t)−

D
J
ω(t),

(6.1)

where we use a constant voltage of V = 12V , and initial values I(0) =ω(0) = 0. The six

input parameters are summarized in Tab. 6.1. Note that the following inference does not

depend on this particular choice of distributions and that the presented method works for

non-normal distributions too. Still, in practice normal distributions are often the default

choice and thus they are used for the test-bench, too. For further details on this ODE

system and the general modeling of electrical motors we refer to the literature [Tol18].

We set up the objective function to be the numerical solution of the initial value prob-

lem (6.1) on the time domain [0, 6] seconds, which is discretized using Nt = 601 equidis-

tant time steps. Given values for all six input parameters, we use the odeint routine

from the SciPy library [Vir20], which is based on the FORTRAN library odepack [Hin83],
to solve Eq. (6.1). The resulting objective function is

fODE = ( f
I

ODE, f ωODE) : R6→ R2×Nt ,

X 7→ I ,ω,
(6.2)

where X = (R, cg , cm, L, J , D) is the vector of input random variables, and I = (I0, . . . , INt−1),
and ω= (ω0, . . . ,ωNt−1) are the discretized outputs.

In this first scenario an analytical solution for Eq. (6.1) is known, and it is stated

in Appendix B.1. However, as analytical solutions are generally not available, we perform

the inference using the numerical approach (6.2), which lets us incorporate the numerical

uncertainty stemming from inaccuracies of the solver. Still, we make use of the analytical
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FIGURE 6.1 Average errors over time for the approximations of the artificial DC motor
functions f I

ODE and f ωODE, and their Jacobians for cubic B-splines on regular and
adaptive sparse grids.

solution to verify the accuracy of the surrogate and its Jacobian.

6.1.1 Surrogate Convergence

Using the analytical solution of the coupled ODE system (6.1) and its Jacobian, we create

a reference data set of 1000 evaluations. We interpolate the objective function fODE

with various cubic B-splines on regular and spatially adaptive sparse grids, to find out

which combination works best. Higher degrees do not provide any better convergence,

indicating a limited smoothness of the objective function.

The resulting average NRMSE and Jacobian error for both outputs are illustrated

in Fig. 6.1. All non-boundary B-splines outperform not-a-knot B-splines including the
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boundary, because in this six-dimensional scenario the boundary splines cannot ade-

quately resolve the inner domain. Among the non-boundary splines the extended B-

splines perform slightly best, and therefore we will use these in the upcoming inference

section. Note, that the error of the surrogate and its Jacobian can usually not be de-

termined in practice. Still, all basis functions approximate the objective well and none

would significantly impair the results, when choosing ignorantly.

6.1.2 Inference for the Artificial Motor Model

Synthetic measurement data. We now assume the parameter distributions in Tab. 6.1

to be unknown, and want to infer them from M noisy measurements. In this artificial

scenario we will use perturbed evaluations of fODE itself. Such synthetic data is compre-

hensible and allows a detailed comparison of the inference results to reference values. To

simplify notation, let (·) from now on indicate that we apply something for both outputs,

I and ω. We create synthetic measurements y (·)i , i = 1, . . . , M by drawing a sample x i

from the joint product distribution of the parameters, evaluating the objective function,

and adding noise,

y (·)i = f (·)ODE(x i) + ε
(·),(6.3)

where ε(·) is a sample of independent and identically normally distributed Gaussian noise

with standard deviation σI = 0.1 and σω = 0.5 respectively. This noise emulates the mea-

surement errors and inaccuracies which are inevitable when working with real physical

set-ups. We summarize the measurements in the data-set Y ,

Y := {y I
i , yωi | i = 1, . . . , M}.(6.4)

The synthetic measurements can be seen in Fig. 6.2.

Hierarchical Bayesian model. We formulate the stochastic inverse problem as a hier-

archical model, assuming Gaussian distributions for each parameter from Tab. 6.1 and

inferring the hyper-parameters. In order to infer the unknown probability distribution

π(X), where X = (R, cg , cm, L, J , D), we first set up the hierarchical distributions for each

input parameter,

π(X d | µ̃X d
, σ̃X d

)∼ N(µ̃X d
, σ̃2

X d
), d = 1, . . . , 6,(6.5)
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FIGURE 6.2 Twenty synthetic noisy measurements of the motor model (6.2), each color
represents one time series. The black time series are I(µR, . . . ,µD) and
ω(µR, . . . ,µD) with no noise.

where µ̃X d
∈ R, and σ̃X d

∈ R+ are hyper-parameters for d = 1, . . . 6, and we summarize

the hyper-parameters in a vector,

θ =
�

µ̃R, µ̃cg
, µ̃cm

, µ̃L, µ̃J , µ̃D, σ̃R, σ̃cg
, σ̃cm

, σ̃L, σ̃J , σ̃D

�

.(6.6)

Because we assumed the distributions for the parameters X d to be independent, we

approximate the desired overall distribution as the product distribution,

π(X) =
6
∏

d=1

π(X d | θ ).(6.7)

The Nt-dimensional likelihoods for each measurement y (·)i are

π(y (·)i | x i,σ
(·)
i ) = N

�

y (·)i − f̃ (·)ODE(x i), Σ
(·)
i

�

,(6.8)

where x i is a realization of X , Σ(·)i = diag(σ(·)i ) ∈ R
Nt×Nt are the noise terms along time

discretization, and f̃ (·)ODE are the sparse grid surrogates for f I
ODE and f ωODE, respectively.

We summarize the noise terms as σ = (σI
i ,σ

ω
i )

M
i=1 and assume the likelihood for all

measurements Y to be

π(Y | X ,σ) =
M
∏

i=1

N
�

y I
i − f̃ I(x i), Σ

I
i

�

N
�

yωi − f̃ ω(x i), Σ
ω
i

�

.(6.9)
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We set up π0(θ ), the prior of the hyper-parameters, as

π0(µ̃X d
)∼ U(0.9 µX d

, 1.1 µX d
), π0(σ̃X d

)∼ HalfCauchy(1), d = 1, . . . , 6.(6.10)

The HalfCauchy distribution is the doubled right half of the Cauchy distribution and

generally recommended as a weakly informative prior for hierarchical Bayesian model-

ing [Gel06a; Pol12]. The measurement noises σ are hierarchically modeled as

π(σI
i | σ̃)∼ N(0, σ̃I

i ), π(σωi | σ̃)∼ N(0, σ̃ωi ), i = 1, . . . , M ,(6.11)

with hyper-parameters σ̃ := (σ̃I
i , σ̃

ω
i )

M
i=1 and their priors π0(σ̃)

π0(σ̃
I
i )∼ N(0.1,0.1), π0(σ̃

ω
i )∼ N(0.1,0.1), i = 1, . . . , M .(6.12)

Consequently, to approximate the posterior distribution π(θ ,σ | Y ), we need to sample

the hyper-parameters θ , the measurement noise standard deviations σ, and the realiza-

tions x i, i = 1, . . . , M . This is a total of 12+ 2M + 6M parameters to sample from. Bayes

inference for such problems has already been performed multiple times [Gla16; Joh21a;

Joh21b]. However, so far only two input parameters were used, while our scenario

comprises six parameters.

Inference Results. The two objective quantities I and ω are each approximated with

an individual surrogate created spatially adaptive with extended not-a-knot B-splines

of degree 3. The surrogates are set up to be refined until they exceed 500 grid points,

resulting in 539 grid points for I and 581 grid points for ω, starting from level 1 and

refining 10 points per iteration. We compare Metropolis-Hastings using N = 1000 and

N = 10000 to NUTS using N = 100 and N = 200 samples, both based on the above

surrogates. For each sampling set-up we sample two chains, each using N tuning samples

as burn-in, before actually sampling N samples.

First we look at the inferred densities, illustrated in Fig. 6.3. For most hyper-

parameters, the NUTS results for N = 200 differ only slightly from the N = 100 results,

indicating that already for only 100 samples the sampler has almost converged. In con-

trast, some of the Metropolis-Hastings densities have two peaks, indicating that the two

chains did not converge against a common target, and a larger number of tuning samples

would be necessary. The Metropolis-Hastings results are particularly worse than NUTS for

the noise terms σI and σω. The peaks for single chains for µR and µL can be explained by

luck with respect to the random starting value, because the second chain using a different

starting value did not converge noticeably towards the peak respectively.
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FIGURE 6.3 Gaussian kernel density estimates of the inference samples of Metropolis-
Hastings and NUTS for N samples and an equal number of tuning samples. For
each hyper-parameter the true maximum likelihood without noise is indicated
with a solid line, the mean or standard deviation of the samples are indicated
with dashed lines.
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FIGURE 6.4 Number of effective samples Neff of Metropolis-Hastings and NUTS for N sam-
ples and an equal number of tuning samples for the inference of the hyper-
parameters of the artificial motor.

Second, we look at the number of effective samples in Fig. 6.4. For Metropolis-

Hastings the number of effective samples is very inconsistent across the different hyper-

parameters. For few of them it is very large, but for most others it is rather close to

zero. NUTS conversely has a noticeable number of effective samples for almost all hyper-

parameters and NUTS 200 outperforms the other methods for most of them. Note,

that the number of effective samples for NUTS is sometimes even larger than N , which

can be explained by negative lag-t autocorrelation, cf. Sec. 4.3. Overall NUTS delivers

significantly better results for a small fraction of the number of samples of Metropolis-

Hastings, where the usage of NUTS became possible only through the good Jacobian

approximations of our surrogate based on B-splines and sparse grids.

6.2 Motor Test-Bench and Simulation

The real motor test-bench is set up around a windshield wiper electric motor. In produc-

tion these motors have varying properties due to tolerances, material uncertainties and

different suppliers. The motors need to be able to cope with rapidly changing and varying

load due to rain, wind or snow. Therefore, the test-bench is capable of varying the load

torque T(Nm) via a magnetic powder brake, imitating such demands. Furthermore, in

practice the voltage can vary significantly because of different batteries, battery age and

the electric consumption of other devices. Therefore, the voltage U(V) of the test-bench

is attached to a controllable power source. The quantities of interest measuring motor

performance are the current I(A) and the rotational speed ω(rad/s), which is recorded

at a shaft connecting a worm gear at the powder brake to the motor. For more details on
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Name Description Distribution Unit

U voltage N(µU ,σ2
U) µU = 13.5 σU = 0.7 V

T load torque N(µT ,σ2
T ) µT = 2.5 σT = 0.2 Nm

TABLE 6.2 Input parameters of the black box DC motor model and the distributions used
for creating the measurements. We assume the distributions to be independent.

the test-bench see [Gla16].
Real measurements were created by repeatedly running the test-bench motor for

varying voltage and load torque inputs, where the two input parameters take values that

are sampled from the Gaussian normal distributions specified in Tab. 6.2. The resulting

raw measurements were then preprocessed. Outliers, stemming from unreliabilities of

the powder break were detected and removed, the starting points of the measurements

were aligned, the data was cut off after 6 seconds, filtered to remove some noise, and

down-sampled to reduce data size, see [Joh21a] for more details. This preprocessing

resulted in a data-set of 100 noisy measurements of current I and rotational speed ω,

Y := {y I
i , yωi | i = 1, . . . , 100},(6.13)

where for a fixed index i the discrete measurement signals

y I
i := [y I

i (t0), . . . , y I(t600)],(6.14)

yωi := [yωi (t0), . . . , yω(t600)],(6.15)

are each of size Nt := 601 on equidistant time steps t0, . . . , t600 in [0,6] seconds. The

measurements can be seen in Fig. 6.5.

Simulation. The simulation model of the test-bench is an updated and more complex

version of the basic ODE system (6.1). A model of the worm gear is added to the mechan-

ical part of the ODE, and a detailed thermal model interconnection of the electrical and

mechanical part is introduced. Instead of assuming constant stationary temperatures, a

warm up phase is modeled, where the temperature increases from an initial state to a

stationary level over time. Furthermore, several linear and nonlinear dependencies in

between resistance, temperature, friction, current and velocity are introduced. We do

not go into detail for this model, but use a black-box implementation. The corresponding

objective function is
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FIGURE 6.5 The 100 measurements of the motor test-bench, each color represents one time
series.

f = ( f I , f ω): R2→ R2×Nt

U , T 7→ I ,ω,
(6.16)

mapping the voltage U and load torque T to current I := (I0, . . . , I600) and angular velocity

ω := (ω0, . . . ,ω600) discretized over time.

6.2.1 Surrogate Convergence

We approximate the simulation outputs (6.16) with various B-spline basis functions on

regular and spatially adaptive sparse grids. The results can be seen in Fig. 6.6. The

NRMSE stagnates around 10−5 for I and around 10−6 for ω, because our surrogates

reach the accuracy of the simulation itself, which is limited due to tolerances of the

underlying solver. All splines deliver comparable results, but not-a-knot B-splines on

boundary grids converge slightly faster than the others. This is to be expected for a two-

dimensional parameter space, where the number of boundary points does not dominate

to such extend as in higher dimensional spaces. Most spatially adaptive sparse grids

outperform their regular counterparts. In particular, for I the not-a-knot B-splines on

adaptive boundary grids need less than a third of the regular grid points to reach maximum

accuracy. The underlying grids of the surrogates we use for the upcoming inference are

displayed in Fig. 6.7.

6.2.2 Inference for the Real Motor Model

Hierarchical Bayesian model. As in the artificial scenario in Sec. 6.1.2, we model the

input parameters hierarchically. We want to infer the unknown probability distribution
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FIGURE 6.6 Approximation errors for the DC motor test-bench simulation for cubic splines
on regular and spatially adaptive sparse grids. NRMSE calculated based on
1000 reference points and averaged over time.
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FIGURE 6.7 Spatially adaptive sparse grids for cubic not-a-knot B-splines including the
boundary. For 263 grid points (I , left) and 266 grid points (ω, right) maximum
accuracy is achieved.
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π(X), where now X = (U , T ). For both inputs we assume normal distributions,

π(U | µ̃U , σ̃U)∼ N(µ̃U , σ̃2
U), π(T | µ̃T , σ̃T )∼ N(µ̃T , σ̃2

T ),(6.17)

where µ̃U , µ̃T ∈ R, and σ̃U , σ̃T ∈ R+ are hyper-parameters, which we summarize in a

vector θ := (µ̃U , σ̃U , µ̃T , σ̃T ). We then approximate the desired distribution by

π(X) = π(U | θ ) π(T | θ ).(6.18)

The likelihoods for each measurement y (·)i are defined as in the artificial scenario,

π(y (·)i | x i,σ
(·)
i ) = N

�

y (·)i − f̃ (·)(x i), Σ
(·)
i

�

,(6.19)

as are the likelihoods for all measurements Y ,

π(Y | X ,σ) =
M
∏

i=1

N
�

y I
i − f̃ I(x i), Σ

I
i

�

N
�

yωi − f̃ ω(x i), Σ
ω
i

�

.(6.20)

We set up the prior of the hyper-parameters,π0(θ ), as

π0(µ̃U)∼ U(0.8 µU , 1.2 µU), π0(σ̃U)∼ U(0.5 σU , 1.5 σU),

π0(µ̃T )∼ U(0.75 µT , 1.25 µT ), π0(σ̃T )∼ U(0.375 σT , 1.625 σT ).
(6.21)

The measurement noises σ, are hierarchically approximated by

π(σI
i | σ̃)∼ N(0, σ̃I

i ), π(σωi | σ̃)∼ N(0, σ̃ωi ), i = 1, . . . , M ,(6.22)

with hyper-parameters σ̃ := (σ̃I
i , σ̃

ω
i )

M
i=1 for which we assume priors π0(σ̃)

π0(σ̃
I
i )∼ N(0.25,0.1), π0(σ̃

ω
i )∼ N(1.0,0.1), i = 1, . . . , M .(6.23)

Consequently, to approximate the posterior distributionπ(θ ,σ | Y )we need to sample the

hyper-parameters θ , the measurement noise standard deviations σ, and the realizations

x i, i = 1, . . . , M . This is a total of 4+ 2M + 2M = 404 parameters to sample from.

The test-bench measurements and the simulation model have already been used

in previous publications [Joh21b; Joh21a]. There Approximate Bayesian Computation

(ABC) methods were used to approximate the posterior. We summarize the ABC approach

in the next paragraph, and then compare with their results.
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Approximate Bayesian Computation. The aim of ABC methods is to calculate an ap-

proximation π̂(X | Y ) of the true posterior π(X | Y ). This is done using a distance

measure between simulated values and observed data. A new sample is accepted if the

distance is smaller than a specified threshold δ. The crux is to appropriately define the

distance measure and the threshold. To reduce the problem’s complexity and increase

the acceptance rate, summary statistics are used. This means that the time series are

reduced to few key values, such that instead of the distance between full time series, only

the distance between the summary statistics is taken. For the results which we use in our

comparison, the summary statistics of the data Y are its Monte Carlo mean and standard

deviation,

S(Y ) = (EMC [ f
I], EMC [ f

ω], sMC [ f
I], sMC [ f

ω]).(6.24)

The summary statistics of the generative model are the according means and standard de-

viations with respect to π(X | θ ), calculated with Gauss-Hermite sparse grid quadrature.

The distance measure is then the L2-norm of the difference of the summary statistics, and

δ is set to 1.5. Unfortunately the summary statistics prevent the method from inferring

the noise terms σI ,σW , which must be estimated a priori and then are kept constant

throughout the inference. For more information on ABC we refer to [Naj16; Joh21b].

To speed up the sampling process within ABC, a polynomial chaos expansion sur-

rogate is used. The coefficients are calculated based on a level 5 sparse grid of 181

points yielding an error of 10−3 for the current I and 10−4 for the angular velocity ω,

which is both an order of magnitude larger than the errors of our sparse grid surrogates,

cf. Fig. 6.6. The improved performance of our approach can be explained by the different

underlying ideas of the two concepts. In contrast to PCE which approximates a function

well with respect to a distribution, surplus adaptive sparse grids approximate the function

itself. Because only little is known about the distributions before sampling, PCE cannot

be applied effectively in this scenario.

Inference results. For the test-bench we use the same sampling strategy as in the ar-

tificial scenario, i.e., for each set-up, we sample two chains, each using a burn-in of N

tuning samples before drawing the actual N samples. Bosch Research provided us with

their results based on ABC, which was set up to create 1500 samples [Joh21a; Joh21b].
By construction the ABC samples are uncorrelated, and thus it is reasonable to compare

this number to the Neff of NUTS and Metropolis-Hastings. In Fig. 6.8 it can be seen

that because the MH samples are highly correlated, 5000 tuning samples and equally

many actual samples are required to produce a number of effective samples similar to

the 1 500 ABC samples. For NUTS it only takes 500 tuning and actual samples to reach a
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FIGURE 6.8 Number of effective samples for inference of the test-bench hyper-parameters.
ABC cannot infer the noise terms σI and σω.

comparable number of effective samples. Just like in the artificial scenario, the negative

autocorrelation mentioned in Sec. 4.3 make NUTS highly effective. In fact, when creating

1 500 samples with NUTS, their approximation quality is significantly beyond that of ABC.

The inferred posterior distributions can be seen in Fig. 6.9. Because the number

of samples was chosen such that their Neff is roughly the same, NUTS 500 and MH

5000 perform very comparable. This number of samples is indeed already sufficient to

accurately represent the posterior, as can be seen from the NUTS 1500 results. While

the number of effective samples is significantly higher, it only confirms the results of

the previous two, and does not add much new information to the posterior estimates.

The ABC results however differ notably from the others. For µU and µT the MH and

NUTS results are focused close to the true values. ABC’s posterior is much broader,

and while it does capture the true value, it is much less certain. For σU and σT ABC

is a bit more focused than the other methods. As mentioned in Sec. 6.2.2, ABC cannot

infer the noise hyper-parameters σI and σω, but must use a-priori estimations, which

are indicated as Dirac distributions in the plots. Creating artificial data and perturbing it

using the different noise estimates from Fig. 6.9 shows that NUTS and MH are close to the

truth, but ABC significantly underestimates the noise. This less accurate noise estimation

directly influences all inference results, and likely explains the broader posteriors for µU

and µT .

Run-times. We intentionally postpone a detailed discussion of run-times for this section.

While an evaluation of the sparse grid surrogate is about 10000 times faster than an

evaluation of the black-box simulation, averaged over 1 000 evaluations each, our choice

of pymc3 as sampling library comes with a major drawback. The objective function

must be handed to pymc3 in form of a theano [The16] operator and wrapping the SG++

121



CHAPTER 6: APPLICATION II BAYESIAN INFERENCE FOR A DC ENGINE
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FIGURE 6.9 Gaussian kernel density estimates of the inference samples of Metropolis-
Hastings, NUTS, and ABC. For each hyper-parameter the underlying maximum
likelihood without noise is indicated with a solid line, the mean or standard
deviation of the samples are indicated with dashed lines. For the noise terms
σI ,σω no true information is available. For ABC the noise terms are not in-
ferred but estimated a-priori and thus indicated here as Dirac distribution.

evaluation for theano slows down the overall evaluation significantly. The same holds

for evaluations of the gradients. For M measurements, NUTS and MH both require 2M

evaluations of the surrogate, but NUTS requires an additional 2M gradient evaluations.

Consequently, the slow-down from the wrapper affects NUTS much worse, and so in fact

NUTS and MH both require roughly the same amount of time to reach a similar number

of effective samples, although NUTS requires considerably less total samples.

Summary. This chapter shows a first investigation regarding the combined potential of

sparse grids, B-splines and the NUTS algorithm for parameter calibration. For this we

demonstrated that the surrogate derivatives are accurate enough to allow using the NUTS

algorithm for a complex black-box function. Furthermore, we showed that NUTS requires

significantly fewer samples than Metropolis-Hastings to reach a similar accuracy. While

the wrapper slow-down prevents a comparable superiority of NUTS with respect to run-

time, a re-implementation using non-wrapped NUTS, and preferably in C/C++ instead

of Python, would significantly outperform MH and allow a fair run-time comparison with

ABC. Also, we only used a two-dimensional set-up for the real test-bench. This allowed

comparability because all work on the test-bench so far has been done for similar set-ups.
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However, as we have shown in Sec. 6.1 our approach can handle larger input parameter

spaces too.
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7
Application III

Forward UQ for a Tsunami Simulation

“ A Powerful Wave

Relentless Wall of Water

Kept Moving Inland.

— Haiku by R. Gasperson [Gas]

In this chapter we conduct a comprehensive forward UQ study to gain a better un-

derstanding for a tsunami wave simulation. Starting from records of an actual tsunami

wave, we vary the shape of the incoming wave, and observe the resulting impact on the

run-up at the coast. The underlying wave simulation is computationally very expensive,

and more than a handful of direct calculations are infeasible. Therefore, a surrogate is

required. Unfortunately, because of shocks in the underlying solution, the smoothness of

the objective is only of first order. We still use higher-order basis functions for the surro-

gate, because they provide gradients which allow us to optimize the objective. Moreover,

although the approximation error converges at a limited rate, the surrogate reaches the

accuracy of the simulation itself. We compare our B-splines on sparse grids with the

UQ library DAKOTA, and our approach reaches slightly better results for all quantities of

interest.

This chapter is based on a collaboration with Prof. Dr. Stephen Roberts (Australian Na-

tional University, Canberra, Australia). The presented results have already been published
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FIGURE 7.1

in [Reh21c]. The collaborator provided the underlying tsunami wave simulation, which

is based on previous work [Baa17]. The author of this thesis adjusted the parametrization

of the waves, prepared the simulation data, created the surrogate, and conducted the

forward UQ study.

7.1 The Tsunami Model

The Hokkaido-Nansei-Oki Tsunami. On the 12th of July 1993 an earthquake near the

island Hokkaido west of the Japanese mainland caused the Hokkaido-Nansei-Oki tsunami.

While run-ups reached up to 3.5 meters on the Japanese mainland, in the Monai valley

on Okushiri island the run-up height reached almost 30 meters. It was suggested that

Muen island, located in front of the Monai valley might have caused this through a lens

effect. An experimental study was conducted to investigate the lens effect hypothesis

and a 1/400 scale model of the region was constructed in form of a 205m long water

tank [Mat01]. The bathymetry of the domain, Muen island and the Monai valley can

be seen in Fig. 7.1A. The experiments reproduced the run-ups and found them to be

independent of the presence of Muen island. Still, following this thorough investigation,

accurate experimental data is now available, and the setting is used as a benchmark for

the simulation of tsunamis [Nie05; Syn07].
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Benchmark implementation. The experimental data is used to model the benchmark

tsunami in ANUGA [Rob15], a fluid dynamics simulation framework of the Australian

National University and Geoscience Australia, which uses the finite-volume method to

solve the non-linear shallow water equations. Inside ANUGA, the domain is discretized

as an unstructured mesh of triangular cells. The governing equations are solved within

each cell to track water depth and horizontal momentum over time. The simulation is

initialized with the domain’s geometry, the initial water level, and the incoming tsunami

wave in form of a boundary condition. This initial incoming wave is then propagated

through the domain. The resulting quantity of interest is the time-dependent average

height of the water layer measured on top of Monai valley. This simulation with ANUGA

is based on previous work [Baa17], where it was shown that a multi-fidelity combination

technique surrogate of mixed resolutions converges towards a high resolution combina-

tion technique surrogate. In contrast to this, our investigation focuses on the convergence

of a spatially adaptive fixed-resolution surrogate towards the actual simulation, as well

as a thorough forward UQ analysis. We discretize the computational domain by 64× 64

adaptive triangles, which is illustrated in Fig. 7.1B. The mesh is refined around Monai

valley to capture the height of the water layer most accurately in the area of interest. The

underlying code is publicly available [Hno20].

7.1.1 Wave Shape Parametrization

We assume that the total energy of the tsunami wave is known, but its actual shape is

uncertain. Based on this we investigate how the shape of the incoming tsunami waves

influences the run-up. The varying wave shapes are based on the original tsunami wave

shape that was captured in the experiments. We decompose this original wave into

Gaussian bumps and vary the shape of each bump, forming new wave shapes related

to the original. Finally, the energy of the new wave is normalized to the energy of the

original wave. This parametrization is a continuation of previous work by de Baar et

al. [Baa17].
Formally, let W (t) be the original incoming wave, depending on time t ∈ [0,22.5]

in seconds. We define the initial residual r0(t) :=W (t) and then iteratively fit the largest

possible Gaussian bump. The d-th Gaussian bump is described by its height ηd , its width

τd and its center νd , which are given by

ηd ,τd ,νd := argminη,τ,ν

∫ 22.5

0

�

�

�

�

rd−1(t)−ηexp
�

−
(t −τ)2

2ν2

�

�

�

�

�

2

d t.(7.1)
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FIGURE 7.2 The original wave W (left) is decomposed into D = 6 Gaussian bumps (center),
which form the artificial wave W n

p (right), here with θ = 1. To create different
wave shapes, the height of the d-th Gaussian bump is multiplied by the wave
shape parameter θd ∈ [0.5,1.5], then the energy of the wave is normalized.

The according d-th residual is then defined as

rd(t) := rd−1(t)−ηd exp

�

−
(t −τd)2

2ν2
d

�

.(7.2)

This process is iterated for d = 1, . . . , D, until the total number of D Gaussian bumps is

reached. The new incoming wave Wp is then parameterized as

Wp(t,θ ) :=
D
∑

d=1

θdηd exp

�

−
(t −τd)2

2ν2
d

�

,(7.3)

where θ := [θ1, . . . ,θD] ∈ [0.5,1.5]D are uncertain wave shape parameters. The d-th

parameter θd determines an increased or decreased contribution of the d-th Gaussian

bump, depending on whether θd < 1, or 1< θd . Finally, we normalize the new wave Wp,

by rescaling it such that is holds the same amount of energy as the original wave W ,

W n
p (t,θ ) :=Wp(t,θ )

‖W (t)‖2

‖Wp(t,θ )‖2
,(7.4)

where ‖ · ‖2 is the L2-norm with respect to time t. For the experiments we use D = 6

Gaussian bumps, for which the average L2-difference over time between the original

incoming wave and the artificial wave is only 0.51mm. See Fig. 7.2 for an illustration of

the wave decomposition.

Inside the ANUGA simulation, the time domain [0,22.5] is discretized with 451

uniform time steps tm := m 22.5
450 , m= 0, . . . , 450. Our objective function is therefore the
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mapping

f : RD→ R451,

θ 7→
�

f0(θ ), . . . , f450(θ )
�T

,
(7.5)

where fm(θ ) =W n
p (tm,θ ).

We assume that the shape parameters θ are i.i.d. and follow a truncated normal

distribution centered at the original wave, i.e., θd ∼ N(µ,σ) with mean µ = 1.0 and

standard deviation σ = 0.125. We truncate this distribution to the interval [0.5,1.5]
which contains more than 99, 99% of the distributions mass.

The aim of our study is to understand how the uncertainty in the wave shape param-

eters θ influences the height of the tsunami run-ups. A single evaluation of the ANUGA

tsunami simulation requires one hour1, therefore we replace the simulation by a surrogate

on which we then perform the UQ analysis.

7.2 Numerical Results

The underlying objective function f from Eq. (7.5) corresponds to a 1 : 400 scale model

of the real tsunami wave. To make the results of this chapter more intuitively understand-

able, we scale them by a factor of 400, resulting in values which correspond to actual

real tsunami heights in meters. For comparison and verification we use the UQ toolbox

DAKOTA [Dak14]. The major advantage of our approach, implemented in SG++, over

DAKOTA is that once we have prepared the surrogate, all the following quantities can

directly be accessed and no further evaluation of the expensive objective function is nec-

essary. DAKOTA uses polynomial chaos expansion (cf Sec. 4.2.2) for the approximation

of the objective function and for the calculation of stochastic moments. It does however

not allow optimization based on the PCE surrogate. Instead, the objective function must

be evaluated again.

7.2.1 Accuracy of the Surrogate

We measure the approximation error for all methods based on the same set of 10000

reference wave shape parameters, randomly sampled following the joint parameter dis-

tribution. The average L2-error over time can be seen in Fig. 7.3. All non-boundary

sparse grid approaches perform alike. This is the same effect we have seen in Sec. 3.3.1,

1Raijin supercomputer at NCI Australia, a Fujitsu Primergy-Lenovo NextScale system. Evaluations were
distributed, whereby each individual simulation was performed using one node with 2× 8 core Intel
Xeon E5-2670 (Sandy Bridge) 2.6GHz
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FIGURE 7.3 Average L2-error in meters for not-a-knot boundary B-splines, modified B-
splines, extended not-a-knot B-splines, and boundaryless not-a-knot B-splines
on regular and spatially adaptive Sparse Grids, and polynomial chaos expan-
sion.

where insufficient smoothness of the objective prevents higher-order basis functions to

reach their full potential. Here, because of shocks in the underlying solution, the tsunami

simulation itself is only first order accurate, hence higher-order B-splines and the PCE

do not converge with optimal order. Nevertheless, we are using cubic splines, which

although not reaching optimal order, still slightly outperform linear ones. What is even

more important is that they provide gradients, which we make use of in order to optimize

the surrogate in the next section.

We refine each surrogate until it exceeds 1000 grid points. The boundary sparse

grid spends too many grid points on the boundary and too few inside the domain and

thus has the largest approximation error. The B-splines on non-boundary sparse grids

perform better, and spatial adaptivity lets their error fall below that of the PCE, thus

showing the best overall approximation quality. All methods stagnate at an average L2-

error of around 10−3 meters, i.e., one millimeter. This stagnation is caused by small

inaccuracies of the underlying parametrization. As we mentioned in the previous section,

the six-dimensional decomposition into Gaussian bumps represents the original wave

only up to an error in the order of a millimeter. The error is then propagated through

the simulation and prevents a more accurate surrogate. This also explains well the only

slight improvement from spatial adaptivity. Just when the domain is sufficiently scanned

to actually make use of the adaptivity, maximum accuracy is already reached.
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7.2.2 UQ Analysis

By propagating the uncertainty of the wave shape parameters through the simulation,

we can better understand how run-ups behave typically and in extreme cases. For this

forward uncertainty quantification we calculate three stochastic key quantities. As all

B-spline variants on non-boundary sparse grids perform similarly, we exemplarily show

only the UQ results for extended not-a-knot B-splines. They are summarized in Fig. 7.4A.

Percentiles. The evaluation of our surrogate is computationally cheap, and we make

use of this to propagate the uncertainty in the simplest manner. We evaluate the surrogate

on a large parameter set following the according distribution to quantify the variation of

the outcomes. Using a parameter set of 100000 samples drawn from the distribution,

we derive the 5-th and 95-th percentile component-wise with respect to time. These

percentiles are defined as the values below which 5% or 95% of the values can be found

respectively.

Expected value. The second UQ key quantity we compute is the expected value, which

for time-dependent functions is defined component-wise as in Eq. (4.13),

E[ f ] =
�

E[ f0], . . . ,E[ f450]
�

.(7.6)

We compute the mean using stochastic collocation to integrate the surrogate with respect

to the probability distribution of the wave shape parameters. DAKOTA’s PCE can return

the mean immediately without further computations following Eq. (4.20). We measure

the accuracy of the calculated means using a reference solution based on a boundaryless

not-a-knot B-spline surrogate of degree n = 3 on a regular sparse grid of level 6 with

10625 grid points. Our adaptive surrogate based on 1267 grid points has an average

L2-difference of 0.0028 m to the reference mean and its worst deviation for any time

step is 0.017 m. This is slightly more accurate than the DAKOTA PCE which uses 2465

function evaluations to approximate the mean with an average L2-difference of 0.0030

m and worst deviation over all time steps of 0.019 m.

Shape optimization. An important question that arises in the context of our tsunami

simulation is which wave shape leads to the largest run-up and thus to the most destructive

tsunami wave. To determine the shape, we have to optimize the objective function over

time,

θmax := argmax
θ
(max

m
f̃m(θ )).(7.7)
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FIGURE 7.4 Summary of the forward UQ analysis.

Because we used cubic splines for our surrogate, we have access to the surrogate’s gra-

dients. This allows us to optimize the surrogate using the gradient descent algorithm

following [Val19]. We start at θ 0 := [θ 0
1 , . . . ,θ 0

D], the grid point with maximum function

value. Then, in each iteration step, the gradient descent algorithm chooses a search

direction s j oriented like the normalized gradient, to determine θ j+1 := [θ j+1
1 , . . . ,θ j+1

D ],

θ j+1 := θ j +δ j
∇ f̃ (θ j)

‖∇ f̃ (θ j)‖2

.(7.8)

The step size δ j is determined using the Armijo line search algorithm [Noc06]. The

optimization of our surrogate results in a maximum height of 30.92m. This run-up

value is larger than the value of any of the 100000 evaluations we used to calculate

the percentiles. It turns out that the optimal configuration lies on the boundary of the

domain, and therefore, for this quantity of interest, the boundary not-a-knot B-splines

perform even better resulting in

θmax = [1.5, 0.5, 1.5, 0.671875, 0.5, 0.5],

max
m

f̃m(θ
max) = 31.05672m.

(7.9)

The optimal incoming wave can be seen in Fig. 7.4B. The DAKOTA toolbox does not

offer optimization based on its PCE surrogate. Instead, it uses the mesh adaptive di-

rect search algorithm (MADS) [Aud06] based on quadratic polynomials, which requires

another 2500 evaluations of the objective function. This is a significant drawback in

comparison to SG++, which performs all operations on the same initially constructed
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surrogate. DAKOTA’s optimization then results in shape parameters corresponding to a

run-up of 31.0206m, which is a little smaller than our result with boundary.

Summary. All three key quantities of the comprehensive forward UQ analysis are sum-

marized in Fig. 7.4A. This image gives a good overview of how different incoming wave

shapes can influence the tsunami run-up behavior. Using non-boundary sparse grids we

were able to represent the expensive tsunami simulation up to its own numerical accu-

racy using only around 100 evaluations. We then calculated percentiles, the expected

value, and optimized the surrogate using the differentiability of the B-spline bases. For all

these key quantities our results are slightly better than those of the industry standard UQ

library DAKOTA. In particular, our approach does not require an expensive re-sampling

for optimization, but simply uses the already prepared surrogate.
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Application IV

Pool Testing for COVID-19

“ Testing is our way out.

— Paul Romer [Rom20])

8.1 Introduction

In the beginning of the year 2020 the coronavirus SARS-CoV-2, which causes the COVID-

19 disease, spread around the world. It was declared a pandemic by the World Health

Organization (WHO) on March 11, 2020 [Cuc20]. The virus is highly infectious, and until

submission of this work caused at least 128, 235, 377 infections worldwide, of which more

than 2, 804, 036 people died [JHU]. One of the characteristics of the virus are people being

contagious without the appearance of symptoms. This explains in part the exponential

growth in the number of infections in the early phase of the pandemic, where infections

were passed on unnoticed. Rapid and repeated testing of the population became key to

the containment of the disease [McC20; Pet20a; Pet20b]. Massive testing allows targeted

countermeasures for clusters of infection, and early interruption of infection chains. The

speed of testing is crucial, but among others it is limited by supply of and access to

diagnostic tests and laboratory capacities, which make a regular periodical population

wide screenings of a countries’ population using individual tests unfeasible.

One way to significantly increase testing capacities is pooled testing. This approach

135



CHAPTER 8: APPLICATION IV POOL TESTING FOR COVID-19

dates back to the second world war, when Dorfman first applied it for syphilis test-

ing [Dor43]. Today it is regularly applied in many fields such as HIV testing [Pil04; Pil05]
or blood screening [Seo15]. The idea of pool testing is to group the samples of k ∈ N
individuals into one joint pool. Then only a single test is used for the whole pool. If, on

the one hand, the result is negative, all k samples are declared negative and k− 1 tests

have been saved. If, on the other hand, the result is positive further testing is required to

divide the group into good and infected samples. This follow-up testing can be done by

a variety of different approaches.

After first studies demonstrated that the diagnostic tests used for COVID-19 are sensi-

tive enough to allow pooled testing [Yel20; Hog20], the author of this thesis collaborated

with two research groups to create a decision-making-tool for comparison of pool testing

approaches. The results were published in a study, which showed that testing strategies

based on pooling increase the speed and throughput of screening for COVID-19 signif-

icantly [Wol20], and a provisional patent application for the method [Pfl20] was filed.

The tool provides practical guidance to public health authorities and governments on

how to best deploy limited testing resources to maximize the number of people tested in

the shortest amount of time possible. Common pool testing methods are compared with

respect to COVID-19 specifics and multiple quantities of interest. Efficiency is measured

in identified cases per test, given a limited testing capacity. Furthermore, an interactive

website [Cov20] allows the specification of relevant parameters resulting in individual

recommendations. The available computing resources for the website are limited and

only little waiting time is tolerable for users. Therefore, it is impossible to run multiple

hours of full scale simulations, and instead a response surface based on B-splines and

sparse grids has been realized.

In this chapter we summarize this work on pool testing for COVID-19. In Sec. 8.2

we introduce the different pool testing strategies, explain the modeling approach and

present the results of the study. Then, in Sec. 8.3 we create B-spline and sparse grid based

response surfaces, which replace the compute-intensive simulation with an error of less

than 1% with respect to stochastic fluctuations.

The results in this chapter have already been published in [Wol20]. They were ob-

tained in a collaboration with Prof. Dr. Timo de Wolff and Janin Heuer (both University

of Braunschweig, Germany), and Dr. Martin-Immanuel Bittner (Arctoris, Oxford, United

Kingdom). The collaborators contributed medical expertise, parts of the simulation frame-

work, conceptualization, and validation. The author of this thesis contributed the major

part of the simulation framework and the response surfaces for the website. In this thesis

we add a new discussion on the accuracy of the response surfaces and the stochastic

fluctuations.
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8.2 Simulation of Pool-Based Testing

The study uses a simulation approach to identify the most effective testing strategy. It is

based on a newly developed general framework for the comparison of mass testing pro-

cedures for infection with COVID-19. The underlying code is publicly available [Cod20],
and can easily be adapted to other scenarios and diseases.

The comparison includes the following six pool testing strategies, which are illus-

trated in Fig. 8.1.

Individual testing. Each sample gets tested individually. This is the commonly used

approach which serves as the baseline for our comparison.

Two level pooling. If a pool is tested positive, all contained samples are tested individ-

ually. This is the original pooling strategy proposed by Dorfman in 1943 [Dor43].

Binary splitting. A binary tree approach. If a pool of size k is tested positive, it is split

into two pools of size k/2, and a pooled test is performed on each of the two new sets.

The procedure is repeated recursively until each sample is either identified to be positive

or negative [Sob59].

Recursive binary splitting (RBS). A recent improvement to the binary splitting al-

gorithm that tries to trade off between the total number of tests and the recursive

depth [Che15]. If a pool tests positive at one level of the tree hierarchy, then a sin-

gle positive case is identified via binary search and removed from the pool. The method

is called recursively with the remaining samples. See Appendix B.2 for more details.

Purim. A matrix-based pooling approach [Far20]. Individuals are represented as entries

of a matrix. Columns and rows of the matrix form groups which are tested in a first testing

round. In a second round cross-sections of positively tested rows and columns are tested

individually.

Sobel R-1. A decision tree approach based on the assumption of a binomial distribution

of the test results. Pool sizes are adapted according to the minimization of the expected

number of remaining tests [Sob59]. The method is stochastically optimal if the infection

rate is known and can be seen as the upper bound for the efficiency of pool testing strate-

gies. See Appendix B.2 for more details.

Using the above six strategies we cover all fundamental principles of group testing in a

representative comparison. While there are many more pool testing strategies in general,
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A Individual testing B Two level pooling

C Binary splitting D Recursive binary splitting

E Purim F Sobel R-1

FIGURE 8.1 Illustrations of the six compared pool testing approaches based on [Wol20].

most of them can be interpreted as modifications of at least one of the above meth-

ods [Du00].

Model. We model the testing procedure with seven simulation parameters and one meta

parameter. The inputs and outputs of the simulation are summarized in Tab. 8.1. Inside

the simulation all members of the given population are represented individually, and

each is infected with the probability of the given infection rate I . Then the pool testing
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8.2 SIMULATION OF POOL-BASED TESTING

Inputs Description Range Unit Outputs

I infection rate [0,100] % time to test population
s1 test sensitivity [0,100] % number of used tests
s2 test specificity [0,100] % number true positives
k pool size [1,32] individuals number false positives
P population size [1,∞) individuals identified cases per test
c daily test capacity [1,∞) samples
T test duration [1,∞) h

r simulation runs [1,∞) repetitions

TABLE 8.1 Input parameters for the pool testing simulation, and the according input ranges.
The outputs are returned as expected values and standard deviations over r
simulation runs.

strategies are applied, whereby the test sensitivity s1 and specificity s2 are determined

by the user. We allow pools of up to k = 32 individuals, following clinical studies which

have shown reliable results for up to this size [Yel20]. The simulation uses time steps of

the length of a given test duration T . Because each individual is infected with the given

probability, and thus the distribution of infected individuals over the whole population is

random, there is stochastic uncertainty present. To account for this, the whole simulation

is repeated r times, and the final outputs are the means and standard deviations calculated

from the repetitions.

Optimal pool size. There is a major correlation between infection rate and group size.

For small infection rates most pools are tested negative. Thus, the pooling methods are

most efficient when the pools are as large as possible. However, when the infection rate

increases smaller pools become more efficient until the optimal pool size is one, and

the method resembles individual testing. Therefore, we optimize the group size for the

given infection rate and each method. This has been done before for specific testing

strategies [Han20; Xio19], but we do so in a comparative benchmark. Because of the

long run-times of the actual simulation, we create one response surface for each testing

method based on cubic boundary not-a-knot B-splines and spatially adaptive sparse grids.

From this we tabulate the expected time to test a reference population of P = 100000

individuals given the infection rate for all pool sizes k ∈ {1, . . . , 32}, see Fig. 8.2. The

simulation then looks up the optimal pool size for each method and infection rate.
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individual testing two level pooling binary splitting RBS Purim Sobel R-1
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FIGURE 8.2 Expected time to test the population for pool sizes k ∈ {1, . . . , 32} and infection
rates of 1%, 10%, and 20%. The results are obtained from a response surface.
From this the optimal pool sizes are determined. Sobel R-1 internally opti-
mizes the pool size, where the initial pool size only serves as an upper bound.
Therefore, large initial pool sizes do not impair its efficiency.

8.2.1 Results

Our simulations show that for infection rates of up to at least 20% all pooled testing

strategies are significantly more efficient in terms of the expected number of identified

sick individuals per test than individual testing, see Fig. 8.3A. This can be explained by

the fact that for small infection rates most pools are tested negative, and optimal pool

sizes are large. Pooled methods can then rule out most groups using only a single test.

Turning this argument around for large infection rates, when many pools are positive,

pool testing could result in extra work compared to individual testing if pool sizes are

chosen too large. However, because we optimize the pool size, this effect does not occur

in our simulations. Instead, for each pooling approach, there is a certain infection rate

from which the optimal group size is one, and in fact individual testing is used.

Scenarios. We consider five realistic country-based scenarios as of April 2020, to reflect

a broad variety of population sizes and testing capacities (United Kingdom, United States,

Singapore, Italy, Germany). They can be seen in Fig. 8.3B. We assume a sensitivity

of s1 = 99% based on data reported by LabCorp to the United States Food and Drug

Administration and an estimated false-positive rate of 1% [Lab20]. The simulations

show, among others, that testing 10% of the US population for an infection rate of 1%

would take 225 days when testing individually, but only between 21 and 46 days using

pooled testing; a speedup by a factor of up to 10.8. This would enable to repeatedly test

frontline medical staff and public workers in order to maintain stability of the medical

system and the economy.
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individual testing two level pooling binary splitting RBS Purim Sobel R-1
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FIGURE 8.3 Efficiency of pool testing approaches. Measured in identified cases per test and
time to test the population.
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FIGURE 8.4 Accuracy of pooled testing approaches, calculated for a reference population
of 100000 individuals and an infection rate of 1%.
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Pool test accuracy. A minor downside of pooled testing is that a screening campaign

based on a hierarchical approach on average identifies fewer cases than individual testing.

The expected rate of identified cases (true positives) therefore drops by between 1% and

5% in total, see Fig. 8.4A. However, referring to Fig. 8.3A the improvement in terms

of identified cases per test is so significant, that although few infected individuals are

missed, overall the pooling strategies are still significantly more efficient. Additionally,

the likelihood of incorrectly classifying a subject as infected is reduced from 1% to almost

0%, because multiple sequential tests reduce the false positive rate with every additional

test. Thus, unnecessary quarantines can be prevented almost entirely; an important

consideration for the economy, see Fig. 8.4B.

Apart from efficiency, a major consideration for the choice of pooling strategy is the

potential sequential depth, i.e., the maximum number of times one sample is added to

different pools. The durability of the sample might be limited, so that only a certain

sequential depth is feasible. For our maximum pool size of 32 individuals, binary splitting

requires at most six sequential steps of testing of a single sample. Purim and two level

testing can always be carried out in two sequential testing steps. For recursive binary

splitting and Sobel-R1, re-pooling the batch sizes can lead to large numbers of sequential

stages, they are thus restricted in their practical applicability.

Overall our study provides a clear rationale for adoption of pool-based testing to

increase speed and throughput of testing for COVID-19. Our simulations indicate that

population-wide testing is only possible by making use of pool-based strategies. Other-

wise, testing even 10% of the US population would take more than seven months as of

April 2020.

8.3 Response Surface

The pool-testing simulation is publicly available [Cod20], however, its usage requires

basic programming skills. To make the simulation available for decision-makers, doctors

and the interested public, we have additionally provided a website [Cov20], which allows

the specification of custom scenarios and returns the key information of the simulation.

The web-server is however limited in its computational resources and not able to perform

full scale simulations within an acceptable response time. Therefore, the computational

intensive tasks are outsourced to a response surface.

In a first internal step the response surface optimizes the group sizes for the specified

infection rate. In a second step the actual results depending on the optimal group size

are queried and returned to the user. The whole process takes only a fraction of a second

and is not noticeable to the user, who receives immediate results for his or her request.
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8.3 RESPONSE SURFACE

individual testing two level pooling binary splitting RBS Purim Sobel R-1
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FIGURE 8.5 Convergence of the response surfaces for the pool testing simulation, based
on a reference population of 100000 individuals and 10 repetitions of the
simulation. The response surfaces are created with spatially adaptive sparse
grids and not-a-knot boundary B-splines of degree 3.

For the response surfaces we use spatially adaptive sparse grids including the bound-

ary and cubic not-a-knot B-splines. We create individual response surfaces for each of

the six methods, allowing method-specific adaptive refinement. Figure 8.5 shows the

NRMSE of the response surfaces for increasing numbers of grid points and all six testing

approaches. All methods but individual testing start with good convergence rates but

soon stagnate and for around 1500 grid points achieve the best possible approximation.

For individual testing the same effect occurs, but the underlying objective function is

linear. Therefore, the response surface immediately reaches the point of the best pos-

sible approximation. This limit to the approximation accuracy for each method can be

explained by stochastic fluctuations.

Stochastic fluctuations. Individuals of the virtual population are infected randomly

with respect to the infection rate. To account for outliers, the outputs of the simulation

in Tab. 8.1 are calculated as expected values over r runs. This converges towards the

actual expected value for increasing r. However, the outputs of the simulation, which

are used as inputs for learning the response surface, still contain stochastic fluctuations.

We need to investigate the size of these fluctuations to find a trade-off between run-time

and accuracy.

There is a hard limit on the overall achievable accuracy given by the population

size. As our simulation treats members of the population individually, it can not take

fractional individuals into account. Given a population of 10a individuals for a ∈ N0, the
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infection rate can only be taken into account up to its a-th decimal. Therefore, we use a

reference population of fixed size, and scale the results to the actual input population P.

This ensures enough accuracy for smaller populations, it prevents extreme run-times for

very large populations, and it provides the same accuracy for all inputs.

The stochastic fluctuations mainly depends on two of the input parameters, the

population size P and the number of simulation runs r. We now measure this relation for

various combinations of these key parameters. Let x i, i ∈ {1, . . . , 100} be 100 randomly

chosen points in the parameter space for a fixed population size P, and a fixed number

of repetitions r. For every testing strategy we evaluate the simulation ten times at each

point, resulting in evaluation sets (w1,1, . . . , w1,10), . . . , (w100,1, . . . , w100,10). From this we

approximate the stochastic fluctuations εi at each point x i as the largest variation between

two measurements

εi :=max
j

wi, j −min
j

wi, j.(8.1)

We then approximate the overall noise ε for population size P and r repetitions as

ε :=max
i
εi.(8.2)

This is a rough estimate on how much the simulation evaluations vary, which serves

as an upper bound on up to which order of magnitude the response surface can learn

meaningful values at all. The quality of the response surfaces, measured as NRMSE,

matches the approximative noise ε, as can be seen in Fig. 8.6. In particular, it is not

possible for any response surface to provide more accurate results. It should be noted

that for noisy data overfitting is a potential risk. However, as can be seen in Fig. 8.6 this

is not the case here. Instead, the error stagnates just as expected.

Based on this investigation we have decided to use a reference population of P =
100000 individuals, r = 10 simulation runs, a reference daily test capacity of c = 1000

individuals, and a reference test duration of T = 5 hours to train the response surface.

The outputs are then scaled accordingly. With this setup the stochastic fluctuations and

thus the overall error are significantly smaller than 1%.

Summary. We have developed a valuable decision support tool to improve the test-

ing for COVID-19. We found that at no extra cost testing for the disease can be made

significantly more efficient by using pooled testing. To the best of our knowledge, our

study [Wol20] presented the first comprehensive, comparative assessment of optimized

testing strategies for effective large-scale screening for infection with COVID-19. At the

point of writing the study, other research groups had investigated two level pooling with
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FIGURE 8.6 Approximate stochastic noise of the simulation, here illustrated for cases iden-
tified per test. The x-axis consists of population/number of repetitions pairs,
where the population is given in 1000 (k). For a subset of these pairs the
NRMSE of response surfaces with maximum accuracy is plotted. The con-
vergence rate of O(

p
N) illustrates the dependency of the accuracy on the

underlying Monte Carlo method.
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optimized pool size, matrix-based approaches for pooled screening and binary splitting

for COVID-19 [Far20; Täu20; Sin20; Sha20; Nor20; Nar20]. However, the presented

study was the only one that includes models of all these central categories of approaches,

benchmarking and comparing them with each other. In particular, our comparison was the

only one comparing tree-based approaches with a matrix-based approach. To make the

results available and allow custom requests, an interactive online tool is provided. This is

only possible, because the online tool can rely on a response surface which approximates

the simulation with an error of similar size as the underlying stochastic fluctuations.

Pooled testing has been sufficiently applied in practice by now, for example in

Ghana [Sib20] where otherwise no wide-range testing would have been possible. An-

other example is the Chinese Province Qingdao where, after first infections were reported

in October 2020, two stage pooling was used to test all 10.9 million residents [Nej20].
All infected individuals were found and quarantined and the likely mass-outbreak of

Covid-19 was prevented without a lockdown.
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9
Conclusion

In this thesis we have introduced surrogates with B-splines on sparse grids for un-

certainty quantification. We have investigated the potential of this approach using sev-

eral real-world applications, and compared the results with established UQ methods.

The various application areas have been as heterogeneous as UQ itself. They have re-

quired, among others, differentiation, integration, optimization, and efficient discretiza-

tion, which demonstrates the great versatility and general applicability of our approach.

The main contributions of this thesis can be summarized as follows:

• We have presented two new equivalent non-boundary B-spline bases, and we have

proved that they span the desired function space, allowing higher-order approxi-

mations on spatially adaptive non-boundary sparse grids for arbitrary objectives.

We have compared our new bases with state-of-the-art hierarchical bases for sparse

grids, and the new bases have always performed comparable or better.

• Using stochastic collocation we have demonstrated that our surrogates can perform

accurate forward UQ by propagating uncertainties through simulations, and calcu-

lating stochastic key quantities.

• We have used the gradients of our surrogates to enable the otherwise unfeasible

usage of the efficient NUTS algorithm. With this we have performed inverse UQ and

efficiently sampled the posterior of hierarchical Bayesian models.

• Exploiting the integrability and differentiability of our surrogates, we have detected

active subspaces, and outperformed the status-quo numerical toolbox for this task,

PASUL. Furthermore, we have developed a new integration algorithm for functions

with a one-dimensional active subspace based on a spline representation of otherwise

difficult to compute high-dimensional volume.
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We demonstrated the practical usability of our surrogate approach with four applica-

tions from different fields. In the first application we performed a benchmark calculation

for subterranean storage of carbon dioxide. This required the accurate representation of

an expensive objective with a discontinuity, and the calculation of its stochastic moments.

By comparing our results with four other state-of-the-art UQ methods we demonstrated

that our approach is highly competitive.

In our second application we performed inverse UQ, by using the NUTS algorithm to

sample the posterior from Bayesian inference. Although this algorithm is very efficient,

it requires gradient information, which for complex simulations is generally not avail-

able. By creating a surrogate and using its derivatives, we were able to apply NUTS for

real-world measurements from a DC motor test-bench resulting in accurate parameter

calibration fulfilling industry requirements.

We then performed a thorough forward UQ analysis for a simulation of tsunami

run-ups. For this we created a surrogate which reached the accuracy of the underlying

simulation itself, calculated stochastic moments and percentiles, and optimized the wave

shape, leading to the maximum run-up.

The last application dealt with a recent topic of interest, pool testing for COVID-

19, where we simulated and compared multiple testing strategies. In the according

publication only a small selection of scenarios could be presented, therefore an interactive

website has been created to allow for individual recommendations. This was only possible,

because the expensive actual simulations could be replaced by a surrogate, which is

accurate almost up to stochastic fluctuations.

This thesis has demonstrated the great potential of the combination of B-splines and

sparse grids. Of course, in research solving one problem presents a dozen new ones, and

many starting points for future work exist.

• All investigated applications allowed direct evaluation, thus we have been able to

focus on interpolation. Our methods, however, can easily be generalized to become

a data-driven approach by using regression instead.

• The probability distributions of the parameters in our applications have either been

specified as standard closed form distributions, or we have used Monte Carlo quadra-

ture to incorporate samples. B-splines on sparse grids could also be used to smoothly

approximate the unknown distribution from samples, i.e., to perform a kernel density

estimation.

• The extension of B-splines in Sec. 3.2 has been motivated by weighted and extended

B-splines (WEB-splines). It should be possible to generalize WEB-splines themselves

in a hierarchical manner, and thus to use them on sparse grids. This would allow
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more accurate sparse grid approximations on domains with difficult geometry.

• B-splines on sparse grids are of course not restricted to applications from UQ. The

newly introduced bases and methods can also be used for applications from other

fields that require accurate and smooth approximation from few data points, deriva-

tive information, integration, optimization, or collocation.
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A
Appendix: Proofs

This appendix chapter contains proofs which were too long to be included in the main

text, where they would have disturbed the flow of reading.

A.1 Proofs for Chapter 3

A.1.1 Proof of the linear independence of hierarchical boundaryless
not-a-knot B-Splines

THEOREM 3.14 (hierarchical boundaryless nak B-splines are linearly independent)

For degree n ∈ {1,3, 5} the hierarchical boundaryless not-a-knot splines

{bn,bnk
`′,k | 1≤ `

′ ≤ `, k ∈ I`′}(3.30)

are a basis of Sn,poly
`

.

PROOF For level ` < Λ(n) the boundaryless not-a-knot B-spline basis is defined via

Lagrange polynomials, only from level ` = Λ(n) onwards B-splines are used. The state-

ment is clearly true for the Lagrange polynomials on the first levels ` < Λ(n) − 1. For

` ≥ Λ(n)− 1 we show the statement by using Thm. 2.2. We first consider degree n = 1.

The single Lagrange polynomial of level ` = Λ(n)− 1 = 1 is representable through the

nodal boundaryless not-a-knot B-spline basis of level ` = Λ(n) = 2, resulting in the

prolongation matrix

P =
�

1 2 1
�

.(A.1)

The matrix P1 is simply P1 = (1), which is regular, and thus Thm. 2.2 can be applied.

151



APPENDIX A: APPENDIX: PROOFS

Let now `≥ Λ(n). We begin by using Böhm’s algorithm (Thm. 3.4) to represent the

nodal boundaryless not-a-knot B-spline basis of level ` through the nodal boundaryless

not-a-knot B-spline basis of level `+ 1, by iteratively inserting all new knots of ξn,bnk
`+1 into

ξn,bnk
`

. We obtain the prolongation matrix P ∈ R(2`−1)×(2`+1−1), which has entries pi,k, such

that

bn,bnk
`,k =

∑

i∈Kbnk
`+1

pi,k bn,bnk
`+1,i(A.2)

for all k ∈ Kbnk
`

. For degree n= 1 and level `= 2, the matrix P is given by

P =







1 0.5 0.25 0 0 0 0

0 0.5 0.75 1 0.75 0.5 0

0 0 0 0 0.25 0.5 1






.(A.3)

Therefore, the matrix P1 is given by

P1 =







0.5 0.5 0

0 1 0

0 0.5 0.5






.(A.4)

We perform two Gauss elimination steps on P1. First, we subtract the second row 0.5

times from the first row. Second, we perform the analogous operation on the last row.

These operations can be written as multiplications with Frobenius matrices F1 and F2.

Let the result be P̃1 = F1F2P1, then P̃1 is diagonally dominant and thus regular. It follows

that P1 is regular because we can explicitly construct its inverse, P−T
1 = P̃1

−T
F1F2. Let

now level ` > 2, then the matrix P1 is given by

(A.5) P1 =

0.5 0.5
1

1
0.5 0.5

























The same strategy of a partial Gaussian elimination of the first and last row can be applied.

The result are diagonally dominant matrices, which are thus regular.

For degrees n= 3 and n= 5 an analogous procedure of partial Gaussian elimination

can be performed. For brevity, we do not state them explicitly because many more elim-

inations steps are necessary. But ultimately the matrices become diagonally dominant.

Thus, they are regular, which again implies the regularity of P1. Consequently, Thm. 2.2
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can be applied for n ∈ {1,3, 5}. �

A short note on the degree. We believe that Thm. 3.14 holds for all degrees n ∈ N.

Unfortunately, the previous proof technique using partial Gaussian elimination does no

longer work for degree n > 5. Because in this thesis we focus on spline degrees n ∈
{1,3, 5}, this implies no restriction to our work. However, for a generally valid theory, it

remains to show P1’s regularity for all n ∈ N.

A.1.2 Proof that extended and boundaryless not-a-knot B-Splines
span the same space

We’ll need truncated power functions for the proof of the next theorem.

DEFINITION A.1 (truncated power function)

For u ∈ R the truncated power function with exponent n ∈ N is defined as

un
+ :=

(

0 u< 0,

un u≥ 0.
(A.6)

Before B-splines were developed, splines were constructed using truncated power func-

tions. This approach is known to be open to severe ill-conditioning [Boo72]. Still, for the

upcoming proof we can make use of the representation of a spline as linear combination

of truncated power functions. A B-spline of degree n can be written as

bn
k,ξ(x) = (ξk+n+1 − ξk)(−1)n((x − ·)n+[ξk, . . . ,ξk+n+1])(A.7)

where f [ξk, . . . ,ξk+n+1] are the divided differences of a function f , see [DeB78; Str94]
for more details.

THEOREM 3.15 (extended and boundaryless nak B-splines span the same space)

Let Sn,e
`

:= span{bn,e
`,i | i ∈ {1, . . . , 2` − 1}}. Then Sn,e

`
= Sn,poly

`
.

PROOF For level ` < Λ(n) Sn,e
`

and Sn,poly
`

are both spanned by Lagrange polynomials

and thus equal. Let now `≥ Λ(n).
Extended not-a-knot B-splines are linear combinations of not-a-knot B-splines in-

cluding the boundary B-splines. Therefore, Sn,e
`
⊆ Sn

ξn,nak
`

. The boundaryless not-a-knot

knot-sequence is defined by removing knots from the not-a-knot sequence. It follows

immediately from Böhm’s algorithm that Sn,poly
`

⊆ Sn
ξn,nak
`

. Let s =
∑

k∼ξn,nak
`

ck bn,nak
`,k ∈ Sn

ξn,nak
`

be a spline with coefficients ck ∈ R. We now show that s ∈ Sn,e
`
⇐⇒ s ∈ Sn,poly

`
.

According to Marsden’s identity, the extension coefficients ei, j depend only on the

degree n and not on the particular choice of the underlying polynomial basis, cf. Sec. 3.2.2.
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Therefore, s is an extended spline in Sn,e
`

if and only if its first coefficient c0 and its last

coefficient c2` are correctly represented by the linear combination of extension coefficients

and the next n+ 1 inner coefficients. We can formulate this as

s ∈ Sn,e
`
⇐⇒(A.8a)

�

−1, e1,0, . . . , en+1,0

�







c0
...

cn+1






= 0 ∧(A.8b)

�

e2`−n−1,2` , . . . , e2`−1,2` ,−1
�







c2`−n−1
...

c2`






= 0.(A.8c)

For x in the left-most inner knot-segment [ξn,nak
`,n ,ξn,nak

`,n+1), s is a polynomial of degree n,

s
[ξn,nak
`,n ,ξn,nak

`,n+1)
(x) = a0 + a1 x + · · ·+ an xn,(A.9)

where s
[ξn,nak
`,n ,ξn,nak

`,n+1)
(x) is the polynomial which equals s on the knot segment [ξn,nak

`,n ,ξn,nak
`,n+1)

with coefficients am ∈ R. Note that the polynomial itself is globally defined and thus can

be evaluated for all x ∈ R.

We now look at x in the next knot-segment [ξn,nak
`,n+1,ξn,nak

`,n+2). Already knowing s on the

previous segment, there is only one degree of freedom left, which is introduced by ξn,nak
`,n+1

and according to Eq. (A.7) can be represented by a truncated power function multiplied

with a coefficient dleft ∈ R,

s
[ξn,nak
`,n+1,ξn,nak

`,n+2)
(x) = s

[ξn,nak
`,n ,ξn,nak

`,n+1)
(x) + dleft(x − ξ

n,nak
`,n+1)

n
+.(A.10)

The spline s on [ξn,nak
`,n ,ξn,nak

`,n+2) is now represented in two different bases, in the B-splines

bn,nak
`,k with coefficients c0, . . . , cn+1, and in the monomial and truncated power function

basis with coefficients a0, . . . , an, dleft. Transforming from one basis to the other, the

coefficients c0, . . . , cn+1 of the spline s can be uniquely identified from a0, . . . , an, dleft. In

particular there exists a linear transformation matrix A ∈ Rn+1×n+1, such that

A











a0
...

an

dleft











=











c0
...

cn

cn+1











.(A.11)
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Using this, Eq. (A.8b) becomes

�

−1, e1,0, . . . , en+1,0

�

A











a0
...

an

dleft











= 0.(A.12)

We now look at the product of the extension coefficients and the matrix A. Let this be

�

v0, . . . , vn+1

�

:=
�

−1, e1,0, . . . , en+1,0

�

A.(A.13)

Consider any monomial xm for m ∈ {0, . . . , n}. According to Cor. 3.12 xm ∈ Sn,e
`

. Because

the corresponding coefficients are a0 = · · · = am−1 = am+1 = · · · = an = dleft = 0 and

am = 1, it follows from Eq. (A.12)

0=
�

−1, e1,0, . . . , en+1,0

�

A

















0
...

1
...

0

















=
�

v0, . . . , vn+1

�

















0
...

1
...

0

















= vm.(A.14)

Consequently, vm = 0 for all m ∈ {0, . . . , n}. We apply an analogous procedure to

Eq. (A.8c) based on (dright, a2`−n−1, . . . , a2`)T , for dright ∈ R. Combining the two, Eq. (A.8)

becomes

s ∈ Sn,e
`
⇐⇒ vn+1dleft = 0 ∧ v2`−n−1dright = 0.(A.15)

We focus again one the first of the two right hand sides. Following from Eq. (A.10), the

matrix A has the following structure

A=











a0,0 . . . a0,n 0
...

...
...

an,0 . . . an,n 0

an+1,0 . . . an+1,n w











(A.16)

for entries ai, j ∈ R and w 6= 0. Therefore, vn+1 = en+1,0w. As in [Höl03], en+1,0 can

be written as Lagrange polynomial in the knots, which implies in particular en+1,0 6= 0.

Therefore, it holds vn+1 6= 0. Analogously we derive v2`−n−1 6= 0, and by combining both,
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Eq. (A.15) becomes

s ∈ Sn,e
`
⇐⇒ dleft = 0∧ dright = 0.(A.17)

This means that s ∈ Sn,e
`

if and only if the coefficients for the basis at ξn,nak
`,n+1 and ξn,nak

`,2`−n−1

are zero, i.e., the spline is smooth at these knots. Consequently, extended not-a-knot B-

splines do not depend on the position of outer knots, but only on the smoothness at inner

knots and their degree, which is exactly the definition of the boundaryless not-a-knot

sequence ξn,bnk
`

, see Eq. (3.27). Therefore, the two bases span the same space.

�

A.2 Proofs for Chapter 4

The upcoming proof is based on Schoenberg’s original work [Cur66], which makes use

of the following result of Peano [Dav63; Cur66],

LEMMA A.2 (divided difference and M-spline)

Let f ∈ C D be a D times continuously differentiable function, and f [ξ0,ξ1, . . . ,ξD] be the

divided difference of f with respect to ξ0,ξ1, . . . ,ξD. Then

f [ξ0,ξ1, . . . ,ξD] =
1
D!

∫ ξD

ξ0

M D
0,ξ(x) f

(D)(x)d x ,(A.18)

where ξ= (ξ0, . . . ,ξD), and the M-spline M D
0,ξ is defined as in Thm. 4.4.

Furthermore, we need the following lemma by Hermite and Gennochi [Nör24; Cur66],

LEMMA A.3 (divided difference as simplex integral)

Let f be an analytic function, then

f [ξ0, . . . ,ξD] =

∫

· · ·
∫

τD

f (D)(ξ0 t0 + · · ·+ ξD tD)d t1 · · · d tD,(A.19)

where the integration is performed over the simplex

τD :=

¨

t1 ≥ 0, · · · , tD ≥ 0 | 1≥
D
∑

d=1

td , and t0 = 1− t1 − · · · − tD

«

.(A.20)
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A.2.1 Proof that the volume of a projected simplex is an M-spline

THEOREM 4.4 (The volume of a projected simplex is an M-spline)

The density function Φ(x1) obtained by projecting orthogonally onto the first coordinate x1

the volume of a D-dimensional simplex σ of volume Vσ, so located that its D + 1 vertices

v0, . . . , v D project orthogonally into the knot sequence ξσ := (ξσ0 , . . . ,ξσD), is given by

Φ(x1) = Vσ ·M D
0,ξσ(x1),(4.51)

where the M-spline M D
0,ξσ can be represented as a scaled B-spline,

M D
0,ξσ =

D
ξσD − ξ

σ
0

bD
0,ξσ .(4.52)

PROOF The vertices of σ are v d = (vd
1 , . . . , vd

D) for d = 0, . . . , D. The requirements of

the theorem state that projecting these vertices onto their first coordinate results in the

knot sequence ξσ = (ξσ0 , . . . ,ξσD). This means v0
1 = ξ

σ
0 , v1

1 = ξ
σ
1 , · · · , vD

1 = ξ
σ
D.

Let now f be an analytic function. By applying Cavalieri’s principle, we obtain

∫

· · ·
∫

σ

f (D)(x1)d x1 . . . d xD =

∫ ξσD

ξσ0

Φ(x1) f
(D)(x1)d x1.(A.21)

We apply integration by substitution to the n-fold integral on the left-hand side and

change to new variables t1, . . . , tD defined by

x1 = v0
1

�

1−
D
∑

d=1

td

�

+ v1
1 t1 + · · ·+ vD

1 tD,

...

xD = v0
D

�

1−
D
∑

d=1

td

�

+ v1
D t1 + · · ·+ vD

D tD.

(A.22)

The absolute value of the determinant of the Jacobian of the substitution’s partial deriva-

tives is

�

�

�

�

det
∂ (x1, . . . , xD)
∂ (t1, . . . , tD)

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

det











v1
1 − v0

1 v2
1 − v0

1 , · · · , vD
1 − v0

1

v1
2 − v0

2 , · · · , vD
2 − v0

2
...

v1
D − v0

D, · · · , vD
D − v0

D











�

�

�

�

�

�

�

�

�

�

= |det A|,(A.23)
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for the matrix A := [v1 − v0, . . . , v D − v0] ∈ RDx D. We make use of the formula for the

volume of simplices in Eq. (4.50), and obtain

|det A|= D!Vσ.(A.24)

The integral on the left-hand side of (A.21) is transformed into the integral on the right-

hand side of (A.19) multiplied by D!Vσ. Inserting (A.19) into (A.21) yields

f [ξσ0 , . . . ,ξσD]D!Vσ =

∫ ξσD

ξσ0

Φ(x1) f
(D)(x1)d x1.(A.25)

We insert (A.18) into Eq. (A.25), resulting in

Vσ

∫ ξσD

ξσ0

M D
0,ξσ
(x1) f

(D)(x1)d x1 =

∫ ξσD

ξσ0

Φ(x1) f
(D)(x1)d x1,(A.26)

which holds for all analytic functions f . By the continuity of Φ(x1), we conclude

VσM D
0,ξσ
= Φ. �
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Application Details

B.1 Additional Details for Chapter 6

The analytical solution for the ODE system (6.1) for initial values I(0) = ω(0) = 0

is [Sto18],

I(t) = c1eλ1 t v11 + c2eλ2 t v21 +
V (λ1v21 −λ2v11)
Lλ1λ2(v11 − v21)

,

ω(t) = c1eλ1 t + c2eλ2 t +
V (λ1 −λ2)

Lλ1λ2(v11 − v21)
,

(B.1)

where

λ1 = −
LD−µ+ JR

2J L
,

λ2 = −
LD+µ+ JR

2J L
,

v1 =

�

v11

v12

�

=

�

d
cg
− LD−µ+JR

2Lcg

1

�

,

v2 =

�

v21

v22

�

=

�

d
cg
− LD+µ+JR

2Lcg

1

�

,

c1 = −
V

Lλ1(v21 − v11)
,

c2 =
V

Lλ2(v21 − v11)
,

µ=
q

(JR− LD)2 − 4cmcg J L.
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B.2 Additional Details for Chapter 8

B.2.1 Recursive Binary Splitting

S, a set of samples, at least one infected
1 function DIG(S)
2 T ← S
3 while |T |> 1 do
4 Select a subset T ′ of size d|T |/2e from T. Test T ′

5 if T ′ is infected then
6 T ← T ′

7 else
8 Identify all samples in T ′ as good
9 T ← T\T ′

10 Identify the single sample in T as infected
11 Return all unidentified samples of S

ALGORITHM B.1 Binary splitting procedure DIG identifies one infected sample and an
unspecified number of good samples from a sample set S [Che15].

S, a set of samples which are either good or infected
c ∈ {1,∗}, status indicator   c = 1: S contains at least one infected,

1 c = ∗: no information available
2 function RBS(S, c)
3 if |S|== 1 then
4 if c == ∗ then Test and identify single sample in S, exit
5 else if c == 1 then Identify single sample in S as infected, exit
6 else if |S|> 1 then
7 if c == ∗ then
8 Test S
9 if S is not contaminated then

10 Identify all samples in S as good, exit
11 Partition S into subsets S1, S2, s.t. |S1|= d|S|/2e and |S2|= |S| − d|S|/2e
12 Test S1 and S2
13 if S1 is good and S2 is infected then
14 S′2 = DIG(S2)   identifies one infected and an unspecified number of good samples
15 if S′2 6= ; then RBS(S′2,∗)
16 else if S1 is infected and S2 is good then
17 S′1 = DIG(S1)   identifies one infected and an unspecified number of good samples
18 if S′1 6= ; then RBS(S′1,∗)
19 else if S1 and S2 are infected then
20 RBS(S1, 1)
21 RBS(S2, 1)

ALGORITHM B.2 Recursive Binary Splitting (RBS) classifies all samples of a sample set S
to be either good or infected [Che15].
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B.2.2 Sobel R-1

The procedure R-1, introduced by Sobel and Groll, is an optimal pool testing algorithm

in the sense that the expected number of tests to identify all infected samples is minimal,

see [Sob59] for the proof of the optimality. At every stage of the algorithm, the current n

samples are organized in two sets. The infected set I of size m≥ 0, for which it is known

that it contains at least one infected sample, and the binomial set B, which contains the

remaining n − m ≥ 0 samples. Sobel and Groll assume a binomial distribution of the

test results with q the probability of a sample being good, and p the probability of being

infected. Then the expected number of remaining pool tests is given recursively by

H(n) = 1+ min
1≤k≤n

(qk H(n− k) + (1− qk) G(k, n)),(B.2)

for m= 0, and

G(m, n) = 1+ min
1≤k≤m−1

��

qk − qm

1− qm

�

G(m− k, n− k) +

�

1− qk

1− qm

�

G(k, n)

�

,(B.3)

for n≥ m≥ 2. The boundary cases are defined as

H(0) = 0, G(1, n) = H(n− 1) for n≥ 1.(B.4)

The algorithm refers to m> 1 as the G-situation, and to m= 0 as the H-situation.

In the algorithm the optimal group size k for the next pool test is determined. This

is done by testing all feasible k using the G or H formula respectively. This step can be

precalculated in advance, such that the algorithm only has to look up the optimal group

size for the next pool test in a table. The algorithm starts with n= |S| and m= 0.
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S, a set of samples
1 function R-1(S)
2 B← S   binomial set
3 I ← ;   infected set
4 while B 6= ; or I 6= ; do
5 if |I |== 0 then   H-situation, determine infected set I
6 k← optimal group size for next pool test
7 T ← subset of size k from B
8 Test T
9 if T is good then

10 Identify samples in T as good and remove them
11 else if T is infected then
12 I ← I ∪ T
13 else   G-situation, identify one infected sample in I
14 while |I |> 1 do
15 k← optimal group size for next pool test
16 T ← subset of size k from I
17 Test T
18 if T is good then
19 Identify samples in T as good and remove them
20 else if T is infected then
21 B← B ∪ I\T
22 Identify single sample in I as infected and remove it

ALGORITHM B.3 Sobel R-1 algorithm [Sob59].
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