Improving Collective I/0 Performance with Machine Learning Supported
Auto-tuning

Ayse Bagbaba
The High-Performance Computing Center Stuttgart (HLRS)
University of Stuttgart
Stuttgart, Germany
Email: bagbaba@hlrs.de

Abstract—Collective Input and output (I/0O) is an essential
approach in high performance computing (HPC) applications.
The achievement of effective collective I/O is a nontrivial job
due to the complex interdependencies between the layers of /O
stack. These layers provide the best possible I/O performance
through a number of tunable parameters. Sadly, the correct
combination of parameters depends on diverse applications
and HPC platforms. When a configuration space gets larger,
it becomes difficult for humans to monitor the interactions
between the configuration options. Engineers has no time or
experience for exploring good configuration parameters for
each problem because of long benchmarking phase. In most
cases, the default settings are implemented, often leading to
poor I/O efficiency. I/O profiling tools can not tell the optimal
default setups without too much effort to analyzing the tracing
results. In this case, an auto-tuning solution for optimizing
collective I/0 requests and providing system administrators or
engineers the statistic information is strongly required. In this
paper, a study of the machine learning supported collective I/O
auto-tuning including the architecture and software stack is
performed. Random forest regression model is used to develop
a performance predictor model that can capture parallel
I/O behavior as a function of application and file system
characteristics. The modeling approach can provide insights
into the metrics that impact I/O performance significantly.

Keywords-Collective 1/0; Auto-tuning; Machine learning;
MPI-IO

I. INTRODUCTION

Input and output (I/O) performance impacts the entire
system utilization and productivity. Understanding the I/O
requests of user applications, parallel I/O stack and even the
specification of storage systems helps the computing centers
to increase their efficiency.

Collective I/O is an essential approach in high perfor-
mance computing(HPC) applications. The achievement of
effective collective I/O is a nontrivial job due to the complex
inter-dependencies between the layers of I/O stack [1].
The complexity of today’s supercomputers has significantly
increased the challenges of optimizing the parallel applica-
tions’ performance [2]. Different layers of the parallel I/O
subsystem offers a set of tunable parameters to achieve the
best possible /O performance [1]. However, the configura-
tion of these parameters demand a balance among diverse
factors, such as the I/O application, storage hardware, data

size, and number of processors. When a configuration space
gets larger, it becomes difficult for humans to monitor the
interactions between the configuration options. Engineers
has no time or experience for exploring more than just a few
good configuration parameters for each problem because of
long benchmarking phase. Therefore, default configuration
setup for I/O tuning is done by system administrators. In
most cases, the default settings lead to poor I/O performance
[1]. As the complexity of large-scale HPC systems grow, this
brings further difficulties to achieve high-performance I/O
through lack of global optimizations. Available I/O profiling
tools can not tell the optimal system default setups by easily
analyzing the tracing results by experts [3]. In this case,
there is an increasing demand for new studies to address
these challenges.

This paper presents a case study of a machine learning
supported I/O auto-tuning for the popular collective I/O
implementation of ROMIO. This study tries to tune I/O
configuration parameters between layers transparently to
improve the I/O performance of parallel applications and
to provide statistical information to system administrators.

The collective I/O implementations are commonly used
in checkpointing and analysis of computational science ap-
plications [2]. Considering its highly variable performance,
collective I/O is a good target to optimize. The provision
of expert knowledge from observations automatically would
be useful. Analytical or black-box models could be used for
predicting performance and providing statistical information
of collective I/O. Using a predictive modeling approach can
give insights into the file system metrics with an important
impact on I/O performance [4].

The main contributions of the paper are the following.
First, it states challenges of the different layers’ run time
factors on the optimization process. Second, it points collec-
tive I/O performance variability and work on development
of an machine learning supported auto-tuning to hide the
complexity of different layers from developers. Third, it
evaluates development of predictive performance models to
extract expert knowledge from observations automatically.

The rest of the article is structured as follows: Section
II motivates this work and gives related work regarding I/O

research. Section III presents experiment results with several
important performance factors in collective I/O implemen-
tations and the modeling approach. Section IV provides an
overview of the proposed methodology. Section V presents
implementation of auto-tuning and performance models.
Section VI concludes the paper and discusses future steps.

II. RELATED WORK

Among different optimizing potentialities, I/O request is
one of the most inquired parts [3]. ROMIO [5], a widely used
MPI-IO implementation, offers collective I/O optimization
with the promise to improve I/O performance by merging
the I/O requests of different processes in a single call.

Optimizing collective I/O has been deeply investigated.
The challenge of this approach is that parameters need to
be carefully evaluated and tuned. Tools such as Vampir [6]
and Darshan [7] can be used for monitoring and analysis of
system state and performance, however; they are helpful in
the profiling, they cannot set configuration parameters [8].

Scalable 1/O for extreme performance (SIOX) has an I/O
tracing thread running on each compute node to inquire the
appropriate I/O access patterns and to achieve a real-time
parallel I/O optimization, but overhead produced by the MPI
instrumentation is too high in a production environment [9].
Pattern-driven parallel I/O tuning for HDF5 applications is
developed to optimize I/O performance of HDFS5 applica-
tions across platforms and applications automatically [10]. A
solution based on MPI-IO library could be more widely used
and supports parallel HDFS5. [3] presents an I/O auto-tuning
framework for MPI-IO library, with an approach trying all
combinations of possible configuration parameters to find the
best. Using statistical methods in such a framework would
improve I/O performance and save core hours. Investigating
how to improve the ranking of optimal configurations and
how to improve collective IO performance for small files is
still an important issue in auto-tuning.

Several studies have attempted to include machine learn-
ing in the I/O analysis and optimization steps. Due to
complexity of the state-of-the-art file systems, using an-
alytical models are often inadequate and time consuming
for expected predictive accuracy [11]. Upon this, several
researchers have focused on empirical and machine learning
approaches to model the I/O performance. Decision tree
algorithm is used to develop an I/O performance model
for optimization of ROMIO data sieving approach [9]. A
semi-empirical solution to model the performance of MPI-
IO operations is developed in [1]. Isaila et al. [2] integrated
analytical and machine learning approaches to model the
performance of ROMIO collectives.

III. THE PROBLEM AND SETUP

A. Experiments

To compare an efficient optimization to an inefficient one,
Interleaved Or Random (IOR) benchmark is used to simulate

Table I: Technical Details of Hazel Hen (Cray XC40)

Architecture | Cray XC40
Intel Xeon E5-2680 v3
Hardware Cray Aries Network

7712 Compute nodes

90 Service nodes

Lustre 7 MDTs 54 OSTs
Cray Sonexion 2000
3.75 GB/s per OST

File System
Storage
Bandwidth

the applications’ I/O write requests in different problem sizes
with 1200 processes on Hazel Hen (Cray XC40) with Lustre
file system at HLRS. Technical details of Hazel Hen and
Lustre file system are given in Table I.

The MPI collective I/O simulations ran with changing
configuration parameters such as data transfer size, num-
ber of processes, Lustre striping values and permission of
collective I/O optimizations in ROMIO. In Figure 1, the
I/O simulations were configured with MPI collective I/O
write operation that access a single shared file, using same
data transfer size on each process for each case, and by
using MPI hints to control the Lustre striping setups. The
results of each case are obtained from 10 running samples.
In the first case of Figure 1, for a small data transfer size
(32KB) on Lustre, the writing performance of striping over
4 Object Storage Targets (OSTs) with 1 MB stripe size is
about 71 % better than the performance of striping over
16 OSTs with 1 MB stripe size. Disabling the collective
buffering optimization in ROMIO, which is normally not
recommended, achieved about 269 % writing performance
improvement in the second case of Figure 1 for a non-
small data transfer size 64 MB. Third and fourth cases of
Figure 1 show that there is an optimal range for Lustre stripe
size depending on data transfer size, because collective I/O
performance does not keep raising together with stripe size.

The problems shown in these cases are just a tip of the
iceberg. The challenge of collective I/O is that configura-
tion parameters needs to be carefully evaluated and tuned
by an expert. In long benchmarking step with different
benchmarks, a lot of potential I/O optimization have been
identified to improve the performance of HPC systems by
avoiding unsuccessful tuning attempts.

B. Performance Factors

There are many factors involved in the collective I/O
performance that can be grouped into the access pattern
of application, parallel file system features, and hardware
characteristics. Collective buffering is an important collec-
tive I/O optimization to limit the number of writers during
a collective file operation [12].

By researching the characteristics of application, Lustre
file system and the ROMIO MPI-IO library, it can be
seen that the following parameters impact collective I/O
performance significantly:

Shared file collective write 32 KB Data

7

£ 350 number of OSTs : 4

=

=

el

= 300 A

2

2 number of OSTs : 16

250 - e
200 4 I‘ .
Configuration 1 Configuration 2
Shared file collective write 80 MB Data

13000
= striping size : 16 MB
o 12000
Z
< 11000 4
b=
b=
2= 10000 -
T
=
& 9000

8000 4 striping size : 1 MB
o)
7000

T T
Configuration 1 Configuration 2

Bandwidth [MB/s]

Bandwidth [MB/s]

Shared file collective write 64 MB Data

14000 -

collective optimization : disable
12000 -

10000 -

8000

cppllective optimization : automatic
6000 1

bonfiguration 1 IConfiguration 2
Shared file collective write 80 MB Data

—_—

_

striping size : 32 MB

13000
12500
12000

11500
striping size : 128 MB
11000
o

10500
T

g m——

T
Configuration 2

10000 A

T
Configuration 1

Figure 1: Collective I/O Simulation Results by Applying Different Configurations for Shared File Write.

number of MPI processes: concurrency have a signifi-
cant impact on the I/O performance.

data transfer size: different data transfer sizes re-
quire different optimal configurations. Grouping of data
transfer sizes with similar optimal configurations would
be a reasonable approach.

MPI-10 subroutine: tuning of different MPI-1O subrou-
tines (collective vs. non-collective) are different.
romio_cb_read: the collective buffering optimization
for reading operations can be enabled or disabled.
romio_cb_write:the collective buffering optimization
for writing operations can be enabled or disabled.
striping_factor: specifies the number of Lustre OSTs
(stripe_count) to stripe new files.

striping_unit: specifies the size (in bytes) of each Lustre
file system OST stripe unit (stripe_size) used for new
files

cb_buffer_size: specifies the total buffer space that can
be used for collective buffering on each target node,
usually a multiple of cb_block_size. in the current
default collective I/O algorithm of Cray MPI on Hazel
Hen, the value of the collective buffer size, equals to
the value of striping_unit.

cb_nodes: specifies the number of target nodes to be
used for collective buffering.

How to set the values of these configuration parameters

and how to create a performance predictor based on them
are the main challenges for this study.

C. Modeling

A modeling approach is considered that can model the
I/O performance in terms of the application and file system
characteristics. The performance model can be formally used
to define the I/O performance of an application as follows:

¢ =fla, (,w),

where « represents a set of observable parameters that
describe application characteristics (I/O pattern, I/O opera-
tion, benchmark), (represents a set of observable parameters
that describe file system and/or I/O characteristics (Lustre
parameters), and w represent uncontrolled non-observable
parameters. In the modeling approach, our aim is to un-
derstand the relationship between ¢ and the parameters
(a, ¢). For a given set of input parameter values in (a,
(), the function f should give a prediction. If it provides
distributional information (such as standard deviation) the
variability in ¢ can be captured as well.

The modeling approach represents the similar cases that
can be represented by using a single model. Machine learn-
ing may provide an appropriate method to analyze effects
of these parameters on collective I/O behaviour.

(D

IV. METHODOLOGY
A. I/O Auto-tuning
In this study, optimization approach consists of three basic
steps:

« identifying configurations’ searching scope,
o choosing the best configuration parameters,
e suggesting or tuning.

Auto-tuning System

Configuration

Log files
J Wwith
Files

i

performance
results

Settings

Analysis
Module
Performance
Predictor

Self-implemented
collective /O
benchmark

Figure 2: Overall Architecture of the Machine Learning
Supported Auto-tuning Approach.

The auto-tuning system has tuning, optimization engine
and analysis modules, and a monitoring module surrounds
the system like a run-time tracer (Figure 2). These modules
built on the MPI-IO library. As soon as user applications call
MPI-IO subroutines, the tuning module is triggered to apply
optimal configurations before executing the I/O operation
transparently. After executing I/O operations, monitoring
module records the performance results of I/O requests
into log files to feed the optimization engine who extracts
optimal configurations based on historical running logs for
approaching a higher I/O performance in future steps. Opti-
mization engines’ task is to select proper configuration file
based on number of processes and to find best configuration
set in the file. Analysis module runs independently of the
other modules and works like a decision support system. It
supports system administrators to analyze I/O requests based
on log files and helps to understand the relationship be-
tween configuration parameters and performance results by
applying performance predictor models. It parses the records
and generates CSV files containing all information. Different

statistical approaches can be integrated into analysis module
to model I/O performance in terms of performance factors.

A large amount of I/O log files are required to feed the
optimizing engine to extract ideal configurations from a va-
riety of I/O requests. To check all possible configurations for
real engineering applications would need too many computer
resources. Therefore, I have worked on a self-implemented
I/O benchmark to simulate collective 1/0. Using the 1/O
benchmark, modules can extract basic optimal configurations
knowledge base in the training step. In time, scientists and
engineers can use the auto-tuning system to optimize their
applications, and so training data set could be expanded. It
provides more up-to-date results.

”One process” tracing policy (rank 0 MPI process, to be
responsible for the monitoring task) is used to keep overhead
of monitoring module less. The file access time by each
I/O process is not the same. Therefore, the longest one that
indicates time of an effective I/O operation is chosen by
using MPI_ALLREDUCE.

The monitoring module records all configuration parame-
ters, the aggregated data transfer size and the processing time
of the slowest process to the log file. The bandwidth (MB/s)
is calculated and recorded as well by using these aggregated
data transfer size and processing time. The content of a
configuration file is a subset of the corresponding log file
that includes only configuration parameters.

The auto-tuning approach follows the current MPI stan-
dard, runs transparently to the users and improve I/O perfor-
mance automatically. These features supports to be usable
for engineers and scientists with little knowledge of parallel
I/0, and to be portable across multiple HPC platforms.

B. Performance Models

Configuration Parameters

n Observed:
n_bytes

status
5 factor

S_unit
n_cb_nodes

Validation Input:

Estimated output:

Performance

n
n_bytes
status
s_factor
S_unit

n_ch nodes

Figure 3: Performance model provides a performance esti-
mate.

Table II: Training Set Configurations’ Scope

Name Value

n 24-1200

n_bytes 256 B - 196 MB
n_cb_nodes 1-16

s_factor 1-16

s_unit 1 MB - 32MB

status automatic; disable; enable
10 pattern collective

While aim is to perform the machine learning supported
auto-tuning (online), in this study, the performance is mod-
eled and machine learning algorithms are investigated offline
to evaluate the performance predictions (Figure 3).

Configuration parameters may be fixed or variable. In this
study, the fixed configuration parameter is the access pattern,
”MPI_File_write_all” collective function. The variable con-
figuration parameters are the number of processes (n; 24 to
1200), number of bytes (n_bytes; 256 B to 196 MB), state of
collective buffering optimization (status; automatic, disable,
enable), number of collective buffering nodes (n_cb_nodes;
1 to 16), Lustre striping factor - number of OSTS- (s_factor;
1 to 16) and Lustre striping unit (s_unit; 1 MB to 32 MB)
listed in Table II). The optimization criteria is the perfor-
mance, the bandwidth achieved under the self-implemented
parallel I/O benchmark. These configuration parameters and
computed performance for each configuration are stored in
a CSV file. The file generates a data set to be used in
training and validation of the performance model as a task of
auto-tuning analysis module. The evaluation is conducted by
loading the data set into the the scikit-learn Python library.
Random forest regression algorithm is applied on the CSV
files to learn and extract knowledge from numerous decision
trees instead of producing a single decision tree.

Random forest is a supervised learning algorithm which
uses ensemble learning method for classification and re-
gression. The trees in random forests can run in parallel.
There is no interaction between these trees while building
the trees. It works by building a multitude of decision trees
at training step and gives mean prediction (regression) of
the individual trees. These decision trees are aggregated into
a random forest ensemble that combines their input. Then,
results are aggregated, so it can outperform any individual
decision tree’s output [13].

The first step is to create a performance predictor model to
be expected from a given set of fixed and variable parameters
listed in Table II. This performance model is trained on a
number of samples so that an output value can be estimated
for any given parameter set. After training the model using
a subset of data set (the training set) and performance is
estimated on the validation set (Figure 3).

V. EVALUATION
A. Evaluation 1: Influence of Auto-tuning

Evaluations were made on Hazel Hen (Cray XC40) with
an InfiniBand connected Lustre file system at High Per-
formance Computing Center Stuttgart (HLRS). Technical
details of Hazel Hen and Lustre file system are given in
Table I.

As I/0 benchmark software, IOR was used in evalua-
tions to measure I/O performance. The performance factors
mentioned in Section III-B have been considered in the
prototype. The values of these factors were chosen in the
range of values as given in Table II.

The default setup for striping configuration on Lustre
was striping_factor=4 and striping_unit=1048576 on Hazel
Hen. Figure 4 presents the achievement with auto-tuning
by writing 32 MB data transfer size to a single shared-file
collectively. When the benchmark scaled, the improvement
continued to increase. The success of the approach varies
between 50-130% at scale in the performance gain by
finding out the optimal ones that are better than the default
configurations.

In non-blocking and independent MPI-IO operations the
MPI_ALLREDUCE function may be a hidden problem if
the application scales out. But in the collective MPI-IO
operations, this does not cause a trouble because collective
functions synchronize the MPI processes implicitly. The
overhead can be ignored in such cases. The overhead of
the approach on 1 MPI process is measured as 0.02 seconds
for MPI open and 0.2 seconds for MPI write.

B. Evaluation 2: Validation of Performance Model

To evaluate the quality of the performance model, predic-
tion errors in MB/s for training sets under different depths
of trees in the random forest are given in Table III with
accuracy, Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) values. The random forest regressor
performs better than mean performance used as the baseline.
Training set size is 2153, test set size is 539 for all tests.
The Random Forest performance model is extracted based
on 100 iterations. Time taken to build model is 3.19 seconds.

The observed and predicted bandwidth results are shown
in Figure 5 when using depth of tree is 4 with 90.52%
accuracy, in Figure 6 when using depth of tree is 10 with
99.68% accuracy. The figures show the true performance
predictions (black dots) and the predicted performance (red
dots). Often a predicted performance matches one of the
nearby observed values; the reason is that the original data
point is not contained in the training set and thus the
performance model learns from nearby values and uses them
as approximation.

It can be seen that RMSE score and MAE are both very
good (Table III). This means that a well-fitting model
have been found to predict the bandwidth value of a given

120 Processes Collective Write 32 MB Data a Single-Shared-File

FRS—
[— —

collective optimization : automatic
striping size : 4AMB
number of OSTs : 10

5000

4500 4

4000 4

Bandwidth [MB/s]

3500 4
collective optimization : automatic
striping size : 1IMB
number of OSTs : 4

—_—TY

|—4I?|

Default

3000

Optimized
480 Processes Collective Write 32 MB Data a Single-Shared-File

—
——

collective optimization : automatic
striping size : 8BMB
number of OSTs : 16

8000 -

7000 4

6000 4

5000

Bandwidth [MB/s]

collective optimization : automatic
striping size : 1IMB
number of OSTs : 4

4000 o

e

3000 4 _——

Default Optimized

Bandwidth [MB/s]

Bandwidth [MB/s]

240 Processes Collective Write 32 MB Data a Single-Shared-File

R
collective optimization : automatic

striping size : 4MB
number of OSTs : 16

8000

7000

6000

5000

collective optimization : automatic
striping size :
number of OSTs : 4

4000

3000 —_—

Default

bptimized

1200 Processes Collective Write 32 MB Data a Single-Shared-File

collective optimjzation : disable
striping sjze : 8MB
number off OSTs : 16

18000
16000
14000
12000
10000

8000

collective optimization : automatic
striping size : 1MB
number of OSTs : 4

6000

4000

Default Optimized

Figure 4: Default Setups on Hazel Hen vs. Auto-tuning.

Table III: Prediction errors in MB/s for training sets under
different depth of each tree in the forest.

Prediction errors under different depths

max_depth Accuracy | MAE RMSE
3 82.16 % 495.86 | 963.36
4 90.52 % 287.92 | 576.51
5 95.15 % 147.25 | 325.94
7 98.87 % 46.27 180.32
10 99.68 % 24.85 167.20

configuration set and this model can provide statistical
information like an expert. A decision tree with height 4 is
shown in Figure 7. Using machine learning and extracting
rules from such a tree can provide less time consuming
and error-prone rather than the measurements by hand. The
configuration set promising the best performance is chosen
by the predictive model and support auto-tuning modules.
Parameter set for each configuration is stored in an
attribute matrix. Therefore, the number of attributes will
affect the size of the matrix, also the processing time.
Attributes that can better give results are called high-level
attributes and more important than the others in terms of
the performance of the predictive model. Instead of using
all attributes, the use of some high-level attributes not only
reduces the number of transactions, but also increases per-
formance of regression model. Feature selection algorithms
can be implemented to achieve identification of effective
attributes in future work. Moreover, there can be a further

improvement to the metric by doing some preprocessing
before fitting the data.

VI. CONCLUSION AND FUTURE WORK

In this study, a machine learning supported collective
I/O auto-tuning solution for engineering applications is pre-
sented that can be understood by engineers or scientists with
little knowledge of parallel I/O without any post-processing
step. The auto-tuning solution is implemented upon the MPI-
IO library to be compatible with MPI based engineering
applications, and be portable to different HPC platforms as
well.

This study shows several challenges faced when optimiz-
ing collective I/O with collective buffering and use random
forest regression to develop a predictor model in auto-tuning
solution to estimate I/O performance based on the results
of the previous runs. After evaluating the predictor model
under various conditions, it is determined as an accurate
indicator of the expected collective I/O performance. The
configuration set promising the best performance is chosen
by the predictive model and support auto-tuning modules.
The success of the approach varies between 50-130% at
scale by finding out the optimal ones that are better than the
default configurations. Incorporating findings of predictive
model with the auto-tuning system has the potential to
further reduce the training time and size of the training set.

The parameters discussed in this paper are system depen-
dent, but new parameters can be easily integrated to auto-

25000

20000

15000

bandwidth [MB/s]

10000

5000

Random Forest Regressor Prediction (trained by 2153 instances)

Actual performance bandwidth
predicted bandwidth

.
. 0e® .
.
.
. .
- .
.
:
L4 .
e o 8 . . . - . 8o o
. .
. .
. . .
.
.
tm oo . - : . . 0
“ . . « %o ., --
e * . . * * .
*8 pe o0 3330 g ol s te o ote b
'I I.‘ . . ‘-.. I. .

L XY D
‘o-t\

T LTI ..J'.- .n-..-‘

"" -' .‘0- L "-"" ,.r. '.S* o-': ."o$ l'u{-.

h-fn---:
"ot o sqggyt
P o vy N LAY

s
[J
oo

index

500

Figure 5: Random forest regression performance model with max_depth = 4, Accuracy: 90.52 %.

25000

20000

15000

bandwidth [MB/s]

10000

5000

Random Forest Regressor Prediction (trained by 2153 instances)

Actual performance bandwidth
Predicted bandwidth

.e
-® s
.
. .
. .
.
.
¢ s
.
e]
L
L]
L}
e []
.
0 s ‘
. ° .
L] o 0 °
o .
.
-« ® °
. ¢ - ¢ . o g°
oo . o b ® o * . L} L4 L
. . . .
o . . S . . * . o®
. ®e . . * .
. * . o *y . . St °
.
[..’- e, %o o 3 °, o,‘.’,‘ ,.., . e . ’-,'%’.on 0.‘
. Y o0 (¥4 e 2%ee o . - .
‘.‘ ' %0 0os @ MR - ol og.‘o. . [N oo Pom ; I IR "'\" s o
' 8°%eme o * .f °
"‘" ‘e :f’.‘.‘ o & % 0".'&.0“-0 “oo\o 0’;". c‘ 2o 9% o5, ”"J' [X TP AL R AR N .‘\
0 100 200 300 400 500

index

Figure 6: Random forest regression performance model with max_depth = 10, Accuracy: 99.68 %.

mse - 28263231.5
‘Samples = 454
value - 54539

striping fadtor <= 1.5
mse = 40660513.7
samples = 77

value = 14609.3

np <= 960.0
mse = 4682697.1
‘samples - 377
value = 3553.7

samples = 12
value = 26250.5

samples - 65

Striping_unil <= 1572864.0
mse = 63636798.4
value = 12574.9

Striping_faclor <= 6.0
mse = 8823854.3

np <= 180.0
mse = 397266
samples = 465
value = 658.6

value - 2161.7 | { value - 1366.2 value = 769.6

mso - 3798537.3
samples - 37
value = 14963.5

mso - 11452738
samples - 28
value = 9942.6

mso - 970700.2
samples = 76
value = 6461.2

mso - 586555.7
samples - 226
value = 3824.9

samples - 43
value = 314.1

mse=1432.9 | (‘mse - 62508512
samples - 3 samples - 9
value = 40687.7 value = 22125.5

[mse - 14292

mso - 689.1
samples - 3
value = 174

s - 110728
samples = 70
value = 1918.6

mso - 182512
samples - 146
value = 1533.3

mso - 7489.0
samples - 163
value = 1204.7

mso - 2042.4
samples - 168
value = 880.7

mso - 89125
samples - 146

7 value = 397.3 value = 640.6

mse = 26847.6
2 | | samples=76
value = 24209

samples - 73
value = 457.0

Figure 7: A subtree demonstration of random forest regression model.

tuning configuration files. Future efforts will further explore
more accurate representations and characteristics of the
configuration parameters and machine learning techniques.
As future work, the auto-tuning solution will be tested on
engineering applications in different professional areas to
show the usability.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 Framework Programme research and
innovation programme under the Marie Sklodowska-Curie
agreement No 721865. I wish to acknowledge the support
of Dr. José Gracia, Christoph Niethammer and Xuan Wang.

REFERENCES

[1] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir,
“Improving parallel I/O autotuning with performance model-
ing”, in 23rd International Symposium on High-Performance
Parallel and DistributedComputing. ACM, 2014, pp. 253-256.

[2] F.Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R.

Ross,and P. Hovland, “Collective I/O tuning using analytical

and machine learning models”, in International Conference on

Cluster Computing. IEEE, 2015, pp. 128-137.

[3] H. Wang, (2017). A light weighted semi-automatically 1/O-
tuning solution for engineering applications (Doctoral disser-
tation). Retrieved from OPUS - Publication Server of the
University of Stuttgart, http://dx.doi.org/10.18419/0pus-9763.
[4] S. Madireddy, P. Balaprakash, PH. Carns, R. Latham, R.B.
Ross, S. Snyder, S.M. Wild, ”Modeling I/O Performance
Variability Using Conditional Variational Autoencoders”, 2018
IEEE International Conference on Cluster Computing (CLUS-

TER), 109-113, 2018.

[5] R. Thakur, W. Gropp, E. Lusk, ”"Data sieving and collective
I/O in ROMIO”, in: FRONTIERS 1999: Proceedings of the
The 7th Symposium on the Frontiers of Massively Parallel
Computation, p. 182. IEEE Computer Society, Washington,DC,

1999.

[6] A. Knupfer, H.Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M.S. Muller, W.E. Nagel, "The vampir perfor-
mance analysis tool-set”, In: M. Resch, R. Keller, V. Himmler,
B. Krammer, A. Schulz, (eds.) Tools for High Performance
Computing, Proceedings of the 2nd International Workshop on

Parallel Tools,pp. 139-155. Springer, Heidelberg, 2008.

The dominant label is assigned to the leaf nodes.

[7] Argonne National Laboratory: Darshan.
http://www.mcs.anl.gov/project/darshan-hpc-io-
characterization-tool

[8] J. Kunkel, M. Zimmer, E. Betke, “Predicting Performance

of Non-contiguous I/O with Machine Learning”, in: Kunkel

J., Ludwig T. (eds) High Performance Computing. ISC High

Performance 2015. Lecture Notes in Computer Science, vol

9137. Springer, Cham.

[9] J. M. Kunkel, M. Zimmer, N. Hiibbe, A. Aguilera, H. Mickler,

X. Wang, A. Chut, T. Bonisch, J. Liittgau, R. Michel, and

J. Weging, “The SIOX Architecture — Coupling Automatic

Monitoring and Optimization of Parallel I/O”, in Proceedings

of the 29th International Conference on Supercomputing -

Volume 8488, ser. ISC 2014, Leipzig, Germany: Springer-

Verlag New York, Inc., 2014, pp. 245-260, ISBN: 978-3-

319-07517-4. DOI: 10.1007/978-3-319-07518-1_16. [Online].

Available: http://dx.doi.org/10.1007/978-3-319- 07518-1_16.

[10] B. Behzad, S. Byna, Prabhat, and M. Snir, “Pattern-driven
Parallel I/0 Tuning”, in Proceedings of the 10th Parallel Data
Storage Workshop, ser. PDSW 15, Austin, Texas: ACM, 2015,
pp. 43-48, ISBN: 978-1-4503-4008-3. DOI: 10.1145/2834976
. 2834977. [Online]. Available: http : / / doi . acm . org / 10 .
1145/2834976.28349717.

[11] S., Madireddy, “Machine Learning Based Parallel I/O Pre-
dictive Modeling: A Case Study on Lustre File Systems”,
in: ISC’18: International Conference on High Performance
Computing, 2018.

[12] D. Devendran, S. Byna, B. Dong, B.V. Straalen, H. Johansen,
N. Keen, N.F., Samatova, “Collective I / O Optimizations
for Adaptive Mesh Refinement Data Writes on Lustre File
System”, 2016.

[13] S. Benedict, R. S. Rejitha, P. Gschwandtner, R. Prodan and T.
Fahringer, “Energy Prediction of OpenMP Applications Using
Random Forest Modeling Approach,” 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop,
Hyderabad, 2015, pp. 1251-1260.

