
Improving the MPI-IO Performance of Applications
with Genetic Algorithm based Auto-tuning

Ayşe Bağbaba, Xuan Wang
The High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart

Stuttgart, Germany
Email: bagbaba@hlrs.de, xuan.wang.51@gmail.com

Abstract—Parallel I/O is an essential part of scientific applica-
tions running on high performance computing systems. Under-
standing an application’s parallel I/O behaviour and identifying
sources of performance bottlenecks require a multi-layer view
of the I/O. Typical parallel I/O stack layers offer many tunable
parameters that can achieve the best possible I/O performance.
However, scientific users do often not have the time nor the
experience for investigating the proper combination of these
parameters for each application use-case. Auto-tuning can help
users by automatically tuning I/O parameters at various layers
transparently. In auto-tuning, using naı̈ve strategy, running
an application by trying all possible combinations of tunable
parameters for all layers of the I/O stack to find the best settings
is an exhaustive search through the huge parameter space. This
strategy is infeasible because of the long execution times of trial
runs. In this paper, we propose a genetic algorithm based parallel
I/O auto-tuning approach that can hide the complexity of the I/O
stack from users and auto-tune a set of parameter values for an
application on a given system to improve the I/O performance.
In particular, our approach tests a set of parameters and then,
modifies the combination of these parameters for further testing
based on the I/O performance. We have validated our model
using two I/O benchmarks, namely IOR and MPI-Tile-IO. We
achieved an increase in I/O bandwidth of up to 7.74×over the
default parameters for IOR and 5.59×over the default parameters
for MPI-Tile-IO.

Index Terms—Parallel I/O; Auto-tuning; Genetic Algorithm;
MPI-IO; Lustre

I. INTRODUCTION

Today’s engineering applications running on high-
performance computing (HPC) systems are correspondingly
bottlenecked by the time it takes to perform input and
output (I/O) of data from/to the file system. Since some
applications spend most of their total execution times in
I/O, this becomes time and resource consuming task [1].
Understanding an application’s I/O behaviour and identifying
sources of performance bottlenecks require a multi-layer
view of the I/O. This is challenging due to the complex
inter-dependencies between the layers of I/O stack [2].

Figure 1 indicates a typical parallel I/O stack of many
current HPC systems, through which an I/O request nor-
mally goes: user application, high-level I/O library, Message
Passing Interface I/O (MPI-IO), Portable Operating System
Interface POSIX-I/O, parallel file system and storage system
[3]. Computer scientists have developed various algorithms,
I/O libraries and file management softwares to approach the

Fig. 1: Typical I/O Stack of an HPC System.

theoretical bandwidth limit within each layer of the I/O stack
[3].

Each layer in the I/O stack offers a set of tunable parameters
to adjust I/O performance of parallel applications to the
optimum level such as Lustre file system stripe size and
count, whether or not to perform collective I/O, number of
data aggregators for collective I/O etc. [2]. However, the best
combination of these parameters changes between systems and
from one application use-case to the other.

Application related parameters, storage hardware properties,
problem size and concurrency have an important effect on
I/O parameters [4]. For example, choosing a larger stripe
size and stripe count in the Lustre file system is normally
recommended. However, for a small data transfer size (32
KB), the writing performance of striping over 4 OSTs with
1 MB stripe size was about %55 better than the performance
of striping over 16 OSTs with 16 MB stripe size. On the
other hand, the writing performance by disabling collective
buffering optimization was about %173 better than the perfor-
mance by enabling collective buffering optimization for a large
data transfer size (64 MB). Disabling the collective buffering
accelerated large scale I/O operations for writing large data
collectively although it is an algorithm to accelerate the I/O
operations,



Since scientists are experts in their own professional fields,
they may have no time or experience for investigating the
proper combination of tunable I/O parameters for each ap-
plication use-case. Sometimes they might even drop the I/O
performance by mistake [3]. They mostly implement the
default settings which often causes poor I/O performance.
Moreover, as the configuration space gets larger with today’s
supercomputer systems being complex, it brings further dif-
ficulties for users and developers to monitor the interactions
between the configuration parameters and I/O performance [5].
Thus, there is an increasing demand for new studies to address
these challenges.

This paper presents a genetic algorithm based I/O auto-
tuning approach for MPI-IO ROMIO library and Lustre paral-
lel file system. This study tries to auto-tune I/O configuration
parameters between I/O stack layers transparently to the user
in order to improve the I/O performance of parallel applica-
tions running on HPC systems. In particular, our auto-tuning
approach generates a model using genetic algorithm (GA)
and searches good combinations of tunable I/O parameters
by using the model for higher I/O rate. The GA model can
determine the optimal set of parameter values with a small
number of tests rather than executing a number of application
runs with all possible parameter combinations. This study
makes the following contributions:

• It develops a GA based I/O auto-tuning approach that
can hide the complexity of multiple I/O stack layers from
users and increase I/O efficiency.

• It builds a model based on GA to search the I/O parameter
space.

• It uses the GA model to reduce the search space for good
configurations.

• It saves resources and core hours which are spent for trial
runs unnecessarily in a naı̈ve strategy.

• It considers the dynamic run-time conditions of a parallel
I/O system.

• It evaluates and demonstrates the proposed approach with
two main HPC I/O benchmarks.

The remainder of the paper is structured as follows: Section
II motivates this work and gives related work regarding I/O
research. Section III describes the background of the study,
I/O performance factors and general auto-tuning approach
which we propose for solving HPC I/O tuning problems. All
the experimental setup and results are presented in IV. Section
V concludes the paper and discusses some possible future
research steps.

II. RELATED WORK

Among various optimizing potentialities, I/O request is one
of the most requested parts. There are various approaches to
find good configuration parameters in a large search space
through auto-tuning to improve I/O performance of scientific
applications.

The challenge of optimizing parallel I/O is that configu-
ration parameters need to be sensibly evaluated and tuned.
Tools such as Vampir [6] and Darshan [7] can be used for I/O

monitoring and analysis, however; they cannot determine and
tune I/O configuration parameter values [8].

Scalable I/O for extreme performance [9] offers a real-
time parallel I/O optimization by assigning an I/O tracing
thread running on each compute node. However; overhead
produced by the MPI instrumentation is too high in a pro-
duction environment for this study. Pattern-driven parallel
I/O tuning for HDF5 applications is developed to optimize
I/O performance of HDF5 applications across platforms and
applications automatically [10]. Behzad et al. implemented
genetic algorithm in I/O auto-tuning to traverse the search
space systematically [11], [12]. A solution based on MPI-
IO library could be more widely used and supports parallel
HDF5. [3] presents an I/O auto-tuning framework for MPI-IO
library, with a naı̈ve strategy based auto-tuning that tries all
possible combinations of configuration parameters to find the
best. Improving parameter search strategy in such a framework
would save resources. Analytical models are often inadequate
and time consuming for expected predictive accuracy due to
complexity of the state-of-the-art file systems [13].

At this stage, there is a need for an auto-tuning solution
to search I/O parameter space effectively and auto-tune good
configurations transparently to the users for MPI-IO and Lustre
parallel file system which are widely used in scientific applica-
tions. It would also offer optimization possibilities for the other
file systems such as IBM Spectrum Scale and BeeGFS. The
parameters discussed in this paper are system dependent, but
new parameters could be easily integrated to the configuration
files.

III. AUTO-TUNING PARALLEL I/O

In this section, we describe the background of the study, I/O
performance factors and a GA based I/O auto-tuning approach
which we propose for solving HPC I/O tuning problems. We
show how our auto-tuning approach determines and auto-tunes
I/O parameters by using the GA model.

A naı̈ve strategy based auto-tuning requires running appli-
cation with all possible combinations of I/O parameters to
detect the best performing parameter set. This approach is an
exhaustive search through the huge parameter space due to
the long execution times of trial runs. It consumes time and
resources even for unsuccessful parameter sets for the given
application and system.

Figure 2 shows the overall architecture of our I/O
auto-tuning approach that has two modules: IO Tuner and
IO Optimizer. IO Tuner module automatically tunes a good
I/O parameter set proposed by a GA model IO Search in-
cluded in the IO Optimizer module. The IO Search executes
the application or benchmark with a preselected random initial
set of tunable parameters. I/O parameter search space is also
given as input. It searches the parameter space to find the best
performing parameter set iteratively. IO Tuner takes the found
configuration from IO Optimizer and dynamically links to
MPI-IO calls of the application. Then, I/O performance results
can be used to refit IO Search with the dynamic conditions
of a parallel I/O system adaptively.



Fig. 2: Overall Architecture of the Auto-tuning Approach

A. MPI-IO ROMIO Library

MPI-IO provides a high-level interface for applying parallel
I/O algorithms, controlling file layout on file system, partition-
ing file data among processes logically, issuing collective and
asynchronous/non-blocking data access etc. [3].

MPI info is an object that stores an unordered set of (key,
value) string pairs,and they are passed as info parameter to
MPI subroutines [3]. The MPI file info passes file access
information from user applications to MPI-IO libraries or even
the underlying distributed parallel file systems, so that the
parallel I/O performance can be improved.

Except MPI reserved file hints, different MPI imple-
mentations and MPI-IO libraries can define their own file
hints/info. For example, ROMIO defines romio cb read and
romio cb write to enable/disable the collective buffering for
MPI collective reading/writing subroutines. In addition, it de-
livers the MPI reserved file hints striping factor(=stripe count
in Lustre) and striping unit(=stripe size in Lustre) to the
underlying Lustre file system, which affect the Lustre file
striping configurations.

ROMIO is one of the most used MPI-IO libraries on the
market [3]. It consists of a large part of portable codes, a
small part of file system and running machine optimized codes.
To conquer the performance barrier of standard Unix I/O and
the portable barrier of POSIX I/O, ROMIO has designed and
implemented a component named Abstract-Device Interface
of I/O (ADIO). Various parallel I/O APIs for standard UNIX
and POSIX as well as specified file systems are implemented
in ADIO [3].

Two parallel I/O algorithms, data sieving and collective

I/O are integrated to achieve higher performance for small
data accesses as well as non-contiguous I/O requests. Another
optimizing possibility for MPI-IO is passing MPI hints to
ROMIO [3].

B. Lustre Parallel File System

The Lustre file system is an open-source, parallel file
system supporting many requirements of leadership class HPC
simulation environments. It is an object-based file system
composed of three components: Metadata Servers (MDSs),
Object Storage Servers (OSSs), and clients. Lustre clients are
installed in the compute nodes or I/O nodes of an HPC system,
which are connected with MDSs and OSSs via high speed
connecting networks such as InfiniBand [3].

Each MDS manages one or multiple Metadata Targets
(MDTs), which store the metadata information such as file
name, path, permissions etc. The OSSs provide file I/O ser-
vices and manage Object Storage Targets (OSTs), where the
application data are stored. The OSTs are like multiple disks
connecting to OSSs. Users can decide how many OSTs they
want to stripe their files over. This approach enables concurrent
accesses to multiple OSTs and eventually accelerates the I/O
requests. Besides the number of OSTs, users can also set the
stripe size, which indicates how many bytes can be stored in
one OST stripe before moving to the next OST or next stripe.
Different settings of these two factors lead to a huge difference
of I/O performance. One target of this study is to find out the
optimal combination for each I/O request and to set them at
run-time [3].



C. Performance Factors

There are many performance factors of I/O stack involved
in the I/O efficiency. By researching the application charac-
teristics, Lustre file system and the MPI-IO ROMIO library,
it can be seen that the following parameters can affect I/O
performance significantly:

• number of cores: Concurrency has a significant impact
on the I/O rate.

• problem size: Optimal configurations change depending
different problem sizes.

• MPI-IO subroutine: Tuning of different MPI-IO subrou-
tines (collective vs. individual) are different.

• romio cb read: The collective buffering optimization for
reading operations can be enabled or disabled.

• romio cb write: The collective buffering optimization for
writing operations can be enabled or disabled.

• striping factor: It specifies the number of Lustre OSTs
(stripe count) to stripe new files.

• striping unit: It specifies the size (in bytes) of each Lustre
file system OST stripe unit (stripe size) used for new
files.

• cb nodes: It specifies the number of target nodes to be
used for collective buffering.

Search scope of the parameters that we worked on in this
study is given in Table I. Our auto-tuning system can help
users and developers to explore how these parameters interact
with each other. It can traverse parameter space to determine a
good parameter set which can achieve high I/O performance.

TABLE I: Training Set Configurations’ Scope

Name Value
number of cores 64 - 1200
number of bytes 256 KB - 64 MB
number of aggregators 1 - 16
striping count 1 - 16
striping unit 1 MB - 16MB
collective I/O automatic; disable; enable
I/O pattern collective, individual

D. IO Optimizer: Configuration Search

Heuristic search algorithms such as genetic evolution algo-
rithms and simulated annealing can traverse a search space in a
reasonable amount of time [11]. Selecting less combinations of
parameters and running a small number of tests are reasonable
to search a huge and complex parameter space. We developed a
GA based model IO Search in IO Optimizer module to search
I/O parameter space.

IO Search randomly selects individuals of initial parameter
set. Then, it modifies the combination of parameters for
further testing based on the I/O performance. Over consecutive
generations, the population can approach an optimal param-
eter set which gives better I/O performance than the default
performance of the default settings.

A GA is a randomized search algorithm that mimics the
process of natural evolution by modifying a population of
individual solutions [14]. It randomly selects individuals of

initial population from the current population as parents. Then,
it uses these individuals to generate the children for the next
generation. Through iterative generations, the bad individuals
are eliminated, the good individuals are saved. Good children
are produced by good parents.

A set of operators such as reproduction, crossover, and
mutation is used to adjust the initial population to generate
successive populations with time [15]. Reproduction is a
process based on the objective function (fitness function) of
each individual to determine how “good” the individual is [15].
Thus, individuals with higher fitness value can contribute to
the next generation. Crossover is a process in which members
of the last population are mated at random in the mating pool
[15]. Mutation is the random change portions of the individual
with small probability [15]. Random mutations provide a
sampling of the remainder of the space [11]. A GA is expected
to converge to an optimal or near-optimal solution [11].

Figure 3 shows the workflow of our GA model IO Search.
The IO Search starts the GA for a given concurrency and
problem size with the I/O benchmark or application. A prede-
fined parameter space is given to the IO Search as an input
that includes all possible values of tunable parameters. At
first, the IO Search generates an initial population of I/O
parameters and creates a configuration file containing the
selected parameters to be used by the IO Tuner to auto-tune
the I/O application or benchmark.

In our experiments, population size is selected 10 by the
IO Search, it can be configured. The fitness value of an
individual is defined as the I/O bandwidth. As the IO Search
passes through a new generation, it calculates the fitness of in-
dividuals; namely I/O bandwidth. The best individuals named
as the “elite members” which give high I/O performance are
transferred to the next generation. The rest of the population
in the next generation is generated by applying crossovers
and mutations on the current population. These steps are
repeated for each generation until stop criteria is reached.
The IO Search defines the number of generations as 30 so
that maximum of 300 runs of the given I/O application or
benchmark can be executed by the IO Search.

Mutation rate is defined as 15% in the IO Search that means
mutation is applied on 15% of the current population for each
generation. Finally, the best-performing I/O parameters for the
given application and scale are stored in the configuration file.

E. IO Tuner: Setting I/O Parameters

IO Tuner is our tuning module which takes the best-
performing I/O parameters found by the IO Search included
in the IO Optimizer and then dynamically set these parameters
at different layers of the I/O stack. In this study, the IO Tuner
works on MPI-IO ROMIO library and Lustre parallel file
system parameters.

At first, the IO Tuner reads the configuration file including
optimal configurations generated by the IO Search. As soon
as I/O applications or benchmarks call MPI-IO subroutines,
IO Tuner is triggered to apply these optimal configurations
before executing the I/O operation transparently. It passes the



Fig. 3: Overall Architecture of the IO Search

intercepted MPI-IO functions of the application or benchmark
in the PMPI wrapper. At this stage, the optimal parameters
are set and then the original MPI-IO function is called. In
this way, auto-tuning can be done transparently to the users
without source code modification.

The previously found optimal configurations could be out of
date and no longer optimal. Sometimes users have achieved a
better I/O performance with some ”brand new” configurations.
After executing I/O operations, performance results can be
used to refit IO Search with the dynamic conditions of a
parallel I/O system adaptively for scientists and engineers to
find out the latest optimal configurations.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
proposed auto-tuning approach, I/O benchmarks used in this
study, supercomputer on which the experiments were con-
ducted.

A. Benchmarks

We chose two I/O benchmarks to evaluate our approach: In-
terleaved or Random (IOR) and MPI-Tile-IO. These represent
different I/O write motifs with different data sizes.

• IOR—I/O benchmark [16]: IOR (LLNL 2015) is an I/O
benchmark developed at Lawrence Livermore National
Laboratory (LLNL). It is one of the main HPC I/O
benchmarks because it is highly configurable and contains
different I/O interfaces. We have configured IOR in the

range from 32 MB to 64 MB block sizes to write in the
shared files collectively.

• MPI-Tile-IO [17]: The MPI-Tile-IO benchmark tests the
IO-performance in a real world scenario. It test how
it performs when its challenged with a dense 2D data
layout. We have configured MPI-Tile-IO number of tiles
as much as number of cores, and in the range from 8096
KB to 16184 KB element sizes.

B. System setup

The experiments were conducted on the NEC Cluster plat-
form (Vulcan) at HLRS (High Performance Computing Center
Stuttgart). Vulcan consists of several front end nodes for
interactive access and several compute nodes of different types
for execution of parallel programs. It has 761 nodes with total
24 cores, Centos 7 operating system, PBSPro Batchsystem,
Infiniband + GigE node-node interconnect, 500 TB (Lustre)
for vulcan global disk [18], the bandwidth is about 3 GB/sec.
The system consists of 54 OST storage targets, each of them
one RAID6 lun, 8+PQ, 2 TB disks.

The default setup of Lustre striping configuration on
the experimental file system is striping factor=4 and strip-
ing unit=1048576. OpenMPI version is from version 4.0.3.

C. Experimental Results

We conducted our experiments for two benchmarks in
different file sizes on Vulcan. In this section, we show the
results of our approach. The experiments have been repeated
multiple times both default and tuned configurations, and



(a) 240 cores

(b) 1200 cores

Fig. 4: Default vs. optimized write bandwidth on IOR for various transfer sizes running on 240 cores and 1200 cores of Vulcan.
Y-axis represents I/O bandwidth in MBps and x-axis represents transfer sizes (in MB). The scales of the I/O bandwidth axes
are different in the plots.

average values have been plotted. The default experiments
are measured by applying the system default settings that are
mostly defined by system administrators for HPC platform
users.

Summary of performance improvements we have obtained
by using the tuned parameters that our auto-tuning system
detected for IOR benchmark are summarized in Figure 4 on
Vulcan at 240 and 1200 cores concurrencies and for MPI-Tile-
IO benchmark in Figure 5 on Vulcan at 64 and 256 cores
concurrencies. Y-axis represents I/O bandwidth in megabytes
per second and x-axis represents data sizes. The scales of the
I/O bandwidth axes are different in the plots. Note that only a
subset of the combinations were run due to limited access to

the platform. For all experimental tests, the I/O bandwidth is
calculated as the ratio of the amount of data to be written into
a file to the time taken for writing the data. In the measured
I/O time, opening, writing, and closing the file overhead is
included.

IO Search ran for ∼ 2.5 hours and ∼ 4 hours for the two
concurrencies in IOR, ∼ 1.0 hours and ∼ 1.5 hours for the two
concurrencies in MPI-Tile-IO to search through the parameter
space. In most cases, GA passed through 10 to 30 generations.

Using our auto-tuning approach, we achieve an increase
in I/O bandwidth of up to 7.74×over the default parameters
for IOR benchmark and 5.59×over the default parameters
bandwidth for MPI-Tile-IO benchmark as shown in Figure 4



(a) 64 cores

(b) 256 cores

Fig. 5: Default vs. optimized write bandwidth on MPI-Tile-IO for various transfer sizes running on 64 cores and 256 cores of
Vulcan. Y-axis represents I/O bandwidth in MBps and x-axis represents element sizes of core times core number of tiles (in
KB). The scales of the I/O bandwidth axes are different in the plots.

and Figure 5.
Table 2 shows the I/O performances of the default and the

optimized experiments for two use-cases are shown in Figure
4 and Figure 5. We also show the speedup that the auto-tuned
settings achieved over the default settings for each experiment.

V. CONCLUSION AND FUTURE WORK

In this study, we presented a GA based I/O auto-tuning
approach to tune the parallel I/O stack parameters. It achieves
improvements for write bandwidths in main HPC I/O bench-
marks on supercomputer Vulcan. Thereby, the overhead to
find the best parameters is drastically reduced from long
execution times (application-dependent) for a naı̈ve strategy

to few hours(data-dependent). It is able to improve write
performance 7.74×over the default parameters for IOR bench-
mark. Moreover, our approach achieves an average bandwidth
improvement of 5.59×for non-contiguous writes in MPI-Tile-
IO. For any benchmark or I/O application, our model can be
applied with negligible effort.

This approach can be understood by users with little knowl-
edge of parallel I/O without any post-processing step. It is
implemented upon the MPI-IO library to be compatible with
MPI based engineering applications, and be portable to differ-
ent HPC platforms as well. The parameters discussed in this
paper are system dependent, but new parameters can be easily
integrated to the configuration files. Future efforts will further



TABLE II: I/O Speedups of Applications with Optimized Parameters over Default Parameters

Application IOR (MB/s) MPI-Tile-IO (MB/s)
#Cores 240 1200 64 256

Use case 1
Default 6238.56 6402.08 1974.462 6138.917
Tuned 12075.01 23859.15 2503.22 11257.42

Speedup 1.93 3.73 1.27 1.83

Use case 2
Default 4238.57 5412.91 1759.326 2122.027
Tuned 11186.23 41859.44 3075.17 11859.23

Speedup 2.64 7.74 1.75 5.59

explore more accurate representations of the configuration
parameters and statistical methods. As future work, the auto-
tuning solution will be tested on engineering applications in
different professional areas to show the usability.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the POP project, grant agreement No.
824080.

REFERENCES

[1] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 Characterization of petascale I/O workloads”, in 2009 IEEE
International Conference on Cluster Computing and Workshops, 2009.

[2] H. Luu, B. Behzad, R. Aydt and M. Winslett, ”A multi-level approach
for understanding I/O activity in HPC applications,” 2013 IEEE Inter-
national Conference on Cluster Computing (CLUSTER), Indianapolis,
IN, 2013, pp. 1-5.

[3] X. Wang, (2017). A light weighted semi-automatically I/O-tuning
solution for engineering applications (Doctoral dissertation). Retrieved
from OPUS - Publication Server of the University of Stuttgart,
http://dx.doi.org/10.18419/opus-9763. 1145/2834976.2834977.

[4] M. Agarwal, D. Singhvi, P. Malakar and S. Byna, ”Active Learning-
based Automatic Tuning and Prediction of Parallel I/O Performance”,
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop
(PDSW), Denver, CO, USA, 2019, pp. 20-29.

[5] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross,and
P. Hovland, “Collective I/O tuning using analytical and machine
learning models”, in International Conference on Cluster Computing.
IEEE, 2015, pp. 128–137.

[6] A. Knupfer, H.Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M.S. Muller, W.E. Nagel, ”The vampir performance analysis tool-
set”, In: M. Resch, R. Keller, V. Himmler, B. Krammer, A. Schulz,
(eds.) Tools for High Performance Computing, Proceedings of the
2nd International Workshop on Parallel Tools,pp. 139–155. Springer,
Heidelberg, 2008.

[7] Argonne National Laboratory: Darshan.
http://www.mcs.anl.gov/project/darshan-hpc-io-characterization-tool

[8] J. Kunkel, M. Zimmer, E. Betke, ”Predicting Performance of Non-
contiguous I/O with Machine Learning”, in: Kunkel J., Ludwig T. (eds)
High Performance Computing. ISC High Performance 2015. Lecture
Notes in Computer Science, vol 9137. Springer, Cham.

[9] J. M. Kunkel, M. Zimmer, N. Hübbe, A. Aguilera, H. Mickler, X.
Wang, A. Chut, T. Bönisch, J. Lüttgau, R. Michel, and J. Weging,
“The SIOX Architecture — Coupling Automatic Monitoring and
Optimization of Parallel I/O”, in Proceedings of the 29th International
Conference on Supercomputing - Volume 8488, ser. ISC 2014, Leipzig,
Germany: Springer-Verlag New York, Inc., 2014, pp. 245–260, ISBN:
978-3-319-07517-4. DOI: 10.1007/978-3-319-07518-1 16. [Online].
Available: http://dx.doi.org/10.1007/978-3-319- 07518-1 16.

[10] B. Behzad, S. Byna, Prabhat, and M. Snir, “Pattern-driven Parallel I/O
Tuning”, in Proceedings of the 10th Parallel Data Storage Workshop,
ser. PDSW ’15, Austin, Texas: ACM, 2015, pp. 43–48, ISBN: 978-1-
4503-4008-3. DOI: 10.1145/2834976 . 2834977. [Online]. Available:
http : / / doi . acm . org / 10 .

[11] B. Behzad, S. Byna, Prabhat, and M. Snir: Optimizing I/O Performance
of HPC Applications with Autotuning. ACM Trans. Parallel Comput.
5, 4, Article 15, 27 pages, (2019).

[12] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,M.
Sniret al., “Taming parallel I/O complexity with auto-tuning”, in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 68.

[13] S., Madireddy, “Machine Learning Based Parallel I/O Predictive Mod-
eling: A Case Study on Lustre File Systems”, in: ISC’18: International
Conference on High Performance Computing, 2018.

[14] Son H., Lee G., Kang K., Kang Y.-J., Youn B.D., Lee I., Noh Y. ”Indus-
trial issues and solutions to statistical model improvement: a case study
of an automobile steering column”, Structural and Multidisciplinary
Optimization, Volume 61, 2020. G. Saeed, 16 - Structural Optimization
for Frequency Constraints, Editor(s): Amir Hossein Gandomi, Xin-
She Yang, Siamak Talatahari, Amir Hossein Alavi, Metaheuristic
Applications in Structures and Infrastructures, Elsevier, 2013, Pages
389-417.

[15] W. Roetzel, X. Luo, D. Chen, Chapter 6 - Optimal design of heat
exchanger networks, Editor(s): Wilfried Roetzel, Xing Luo, Dezhen
Chen, Design and Operation of Heat Exchangers and their Networks,
Academic Press, 2020, Pages 231-317.

[16] Parallel file system I/O benchmark, http://github.com/LLNL/ior. Last
accessed 20 Feb 2021.

[17] MPI-Tile-IO benchmark, https://www.mcs.anl.gov/research/projects/
pio-benchmark/. Last accessed 20 Feb 2021.

[18] The NEC Cluster (Vulcan), https://kb.hlrs.de/platforms/index.php/
Vulcan. Last accessed 20 Feb 2021.

http://github.com/LLNL/ior
https://www.mcs.anl.gov/research/projects/pio-benchmark/
https://www.mcs.anl.gov/research/projects/pio-benchmark/
https://kb.hlrs.de/platforms/index.php/Vulcan
https://kb.hlrs.de/platforms/index.php/Vulcan

	Introduction
	Related Work
	Auto-tuning Parallel I/O
	MPI-IO ROMIO Library
	Lustre Parallel File System
	Performance Factors
	IO_Optimizer: Configuration Search
	IO_Tuner: Setting I/O Parameters

	Experimental Results
	Benchmarks
	System setup
	Experimental Results

	Conclusion and Future Work
	References

