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Abstract

This thesis studies the complexity of the power word problem in graph groups. The power word
problem is a variant of the word problem, where the input is a power word. A power word is a
compact representation of a word. It may contain powers px , where p is a finite word and x is
a binary encoded integer. A graph group, also known as right-angled Artin group or partially
commutative group is a free group augmented with commutation relations. We show that the
power word problem in graph groups can be decided in polynomial time, and more precisely it
is AC0-Turing-reducible to the word problem of the free group with two generators F2. Being
a generalization of graph groups, we also look into the power word problem in graph products.
The power word problem in a fixed graph product is AC0-Turing-reducible to the word problem
of the free group F2 and the power word problem of the base groups. Furthermore, we look into
the uniform power word problem in a graph product, where the dependence graph and the base
groups are part of the input. Given a class of finitely generated groups C, the uniform power word
problem in a graph product is C= L-Turing-reducible to the word problem in the free group F2 and
the uniform power word problem in C. Finally, we show that as a consequence of our results on the
power word problem the uniform knapsack problem in graph groups is NP-complete.

Kurzfassung

In dieser Arbeit untersuchen wir die Komplexität des Power-Wort Problems in Graph Gruppen. Das
Power-Wort Problem (engl. power word problem) ist eine Variante des Wort Problems (engl. word
problem), bei der die Eingabe als Power-Wort (engl. power word) gegeben ist. Ein Power-Wort ist
eine kompakte Darstellung eines Wortes. Dieses kann Potenzen px enthalten, wobei p ein Wort
und x eine binär kodierte ganze Zahl ist. Eine Graph Gruppe (engl. graph group), auch bekannt
als Rechtwinklige Artin-Gruppe oder Freie Partiell Kommutative Gruppe, ist eine Freie Gruppe
mit Kommutationsrelationen. Wir zeigen, dass das Power-Wort Problem in Graph Gruppen in
polynomieller Zeit gelöst werden kann. Noch genauer zeigen wir, dass es AC0-Turing-reduzierbar
auf das Wort Problem der Freien Gruppe mit zwei Erzeugenden F2 ist. Zusätzlich werden Graph
Produkte (engl. graph products) betrachtet, dabei handelt es sich um eine Verallgemeinerung
von Graph Gruppen. Im Fall von Graph Produkten zeigen wir, dass das Power-Wort Problem
AC0-Turing-reduzierbar auf das Wort Problem der Freien Gruppe F2 und das Power-Wort Problem
der zugrundeliegenden Gruppen ist. Weiterhin betrachten wir das uniforme Power-Wort Problem in
Graph Produkten. Bei diesem sind der Abhängigkeitsgraph und die zugrundeliegenden Gruppen
Teil der Eingabe. Wir zeigen, dass für eine Klasse von endlich erzeugten Gruppen C das uniforme
Power-Wort Problem in einem Graph Produkt C= L-Turing-reduzierbar auf das Wort Problem
der Freien Gruppe F2 und das uniforme Power-Wort Problem in C ist. Aus unseren Ergebnissen
schließen wir, dass das uniforme Rucksack Problem (engl. uniform knapsack problem) in Graph
Gruppen NP-vollständig ist.
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1 Introduction

In the field of algorithmic group theory, the word problem is an important area of study. More than
a century ago, in 1911, Max Dehn [Deh11] recognized the importance of the word problem. Given
a word in the generators of a finitely generated group, the word problem is to decide whether that
word is equal to the identity in the group. An important discovery in the field has been the existence
of finitely presented groups with undecidable word problem [Boo58; Nov55]. However, there are
many groups with solvable word problem. For these groups, the algorithmic complexity of the word
problem is studied.

In this thesis we study a variant of the word problem, called the power word problem, where the
input is represented in a more compact form. The input is given as two lists [p1, . . . , pn] and
[x1, . . . , xn], where pi is a word in the generators of the group and xi is a binary encoded integer for
each i. Then, the problem is to decide whether px1

1 . . . pxn
n is equal to the identity in the group. The

power word problem has been proposed by Markus Lohrey and Armin Weiß [LW19]. One of their
results is that the power word problem for a finitely generated free group is AC0-Turing reducible to
the word problem in the free group with two generators F2.

A graph group, also known as right-angled Artin group or partially commutative group is a free
group augmented with commutation relations. Often, the notion of a dependence graph is used to
describe which generators commute. The nodes of the dependence graph are the generators of the
group. Two generators commute if they are not connected in the dependence graph.

A concept closely related to graph groups are partially commutative monoids, also referred to as
trace monoids. A partially commutative monoid is a free monoid augmented with a commutation
relation. Similar to graph groups, a dependence graph is used to describe the commutation relation.
Elements of a partially commutative monoid are often represented as a directed acyclic graph.

Graph products are a generalization of graph groups. The concept has been introduced by Elisabeth
R. Green in 1990 [Gre90]. Given a set of groups, a graph product is a free product of those groups
augmented with commutation relations. As with graph groups, we use a dependence graph. Each
node of the dependence graph corresponds to a group. Generators of two different groups commute,
if the nodes corresponding to those groups are not connected in the dependence graph.

There are other approaches to representing the input to the word problem in a compact form. One
of them is the compressed word problem introduced by Markus Lohrey in 2004 [Loh04]. The input
is given as a straight-line program, that is a context free grammar that produces a single word. The
compressed word problem of a graph group can be solved in polynomial time [HLM12].

The knapsack problem is a classical optimization problem. Informally, it can be described as
follows. There are n different items, each with a weight and a value. The goal is to choose how
many of each item to take, without exceeding the weight limit, while maximizing the value. When
formulated as a decision problem, the question is whether a specific value can be achieved, while
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1 Introduction

staying within the weight limit. Karp has shown in 1972, that the decision variant of the knapsack
problem is NP-complete [Kar72]. In 2015, Myasnikov et al. have formulated the knapsack problem
for arbitrary groups [MNU15].

The knapsack problem for fixed graph groups has been studied by M. Lohrey and G. Zetzsche. They
have shown that for certain graph groups the knapsack problem is NP-complete [LZ16].

1.1 Outline

In Chapter 2 we define the notation used throughout this thesis, we give formal definitions for
partially commutative monoids and graph groups, and we introduce some basic tools for working
with graph groups. Following that, Chapter 3 introduces different variants of the word problem
discussed in this thesis, and we give an introduction to circuit complexity and counting complexity
classes. In Chapter 4 we formally define graph products. Then, we present various known results,
that will be used in this thesis. We conclude the chapter, by defining a cyclic normal form for graph
products, and discussing how to encode the input for the power word problem.

Chapter 5 states conditions under which two elements of a graph group (respectively graph product)
are conjugate. The results presented in this chapter are important tools to solving the power
word problem in the next two chapters. In Chapter 6 and Chapter 7, we present a solution to the
power word problem in graph groups and graph products. Each chapter begins by describing the
preprocessing steps required for the algorithm. Then a symbolic rewriting system in defined which
is used to prove the correctness of the following shortening process. There is some redundancy
between the two chapters. Parts of the proof are identical or very similar. The chapter on graph
groups may seem superfluous as the results presented there are implied by our results on graph
products. However, solving the power word problem in graph products is more involved as there are
more details to take care of. We hope that including the proof for the simpler case of graph groups,
will aid in understanding the proof for graph products.

Finally, in Chapter 8, we discuss the consequences of our results to the uniform knapsack problem
in graph groups. Concluding the thesis, we summarize our results in Chapter 9.
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2 Preliminaries

The free monoid over Σ is the set M(Σ) = Σ∗ together with the concatenation operation. An element
of the free monoid is called a word1. The identity is the empty word which is denoted by 1. The set
Σ is called an alphabet. The size of the alphabet is σ = |Σ |. An element of Σ is referred to as a
character, a letter or a symbol.

Let x = uwv for some x, u,w, v ∈ Σ∗. We say u is a prefix, w is a factor and v is a suffix of x. We
call u a proper prefix if u , x. Similarly, w is a proper factor if w , x and v is a proper suffix if
v , x.

Let G be a group. We write 1G to identify the identity in G. If the group is obvious from the
context, we may omit the index G. Let S ⊆ G. We say that S is a generating set, if every group
element can be expressed as a combination (w. r. t. the group operation) of elements of S and their
inverses. We say that G is finitely generated (f.g.), if there is a finite generating set S.

Let X be an arbitrary set. Let X−1 = {x−1 | x ∈ X} be a disjoint copy of X which acts as a set of
symbolic inverses. Let Σ = X ∪ X−1. We have an involution on Σ by x 7→ x−1 which is extended to
an involution on Σ∗ by (x1 · · · xn)−1 7→ x−1

n · · · x
−1
1 . The free group with generating set X is defined

as F(X) = M(Σ)/{aa−1 = 1 | a ∈ Σ}. By F2 we denote the free group with two generators. A word
w ∈ Σ∗ is called reduced, if for all v ∈ Σ∗ with w =G v it holds that |w | ≤ |v |. This is equivalent to
saying that there are no factors aa−1 in w, where a ∈ Σ.

Let G be a finitely generated group with generating set X . We express elements of G as words over
Σ = X ∪ X−1. We write w1 =G w2 to denote that two words w1,w2 ∈ Σ

∗ represent the same group
element. In contrast, if we write w1 = w2, then w1 and w2 are equal as words. Note that w1 = w2
implies w1 =G w2, but the implication does not hold the other way.

A subgroup H of a group G is denoted by H ≤ G. Let G and H be groups. Then G ×H denotes the
direct product of those groups, G ∗ H denotes the free product of those groups, G o H denotes the
semi-direct product. We write G ' H if there is an isomorphism from G to H.

1Also known as string in the literature.
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2 Preliminaries

2.1 Rewriting Systems

A relation S ⊆ Σ∗ × Σ∗, where Σ is an alphabet, is called a rewriting system. We use the notation
l → r to denote that (l, r) ∈ S. Based on the set S, the rewriting relation =⇒

S
is defined as

u =⇒
S

v ⇐⇒ ∃l, r, p, q ∈ Σ∗ : u = plq, v = prq, l → r .

In addition we define the following:

•
+
=⇒
S

is the transitive closure of =⇒
S

.

•
∗
=⇒
S

is the reflexive, transitive closure of =⇒
S

.

• We write u
k
=⇒
S

v to denote that u can be rewritten to v in exactly k steps.

• We write u
≤k
=⇒
S

v to denote that u can be rewritten to v using at most k steps.

We say that a word w ∈ Σ∗ is irreducible w. r. t. S, if there is no v ∈ Σ∗ with w =⇒
S

v. The set of
irreducible words is defined as IRR(S) = {w ∈ Σ∗ | w is irreducible}.

2.2 Partially Commutative Monoids

Let M(Σ) = Σ∗ be the free monoid over the set of generators Σ. Let I ⊆ Σ × Σ be symmetric and
irreflexive. The relation I describes which generators commute. Hence, I is called the commutation
relation. It is also known as independence relation. The relation D = (Σ×Σ)\ I is called dependence
relation. It is often visualized as dependence graph.

We obtain a partially commutative monoid2, by amending a commutation relation. It is defined as

M = M(Σ)/{ab = ba | (a, b) ∈ I}.

Elements of a partially commutative monoid can be visually represented as a directed acyclic graph.
Each distinguished letter in the word is a node in the graph. Let w = u1 . . . un. There is an edge
ui → u j , if i < j and (ui, u j) ∈ D. Often, transitive edges are omitted for better visibility.

Example 2.1 Let Σ = {a, b, c}. Let I be the symmetric closure of {(a, b)}. Let w = cbaca. Then
w is represented by the following graph.

c
b

a
c a

2

2Also known as trace monoid in literature.
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2.2 Partially Commutative Monoids

The partially commutative monoid M is said to be connected if the dependence graph D is connected.
A word v ∈ M is said to be connected if the induced subgraph of D, consisting only of the letters
occurring in v, is connected.

We extend the definitions of the terms prefix, suffix and factor to partially commutative monoids.
Let x =M uwv for some x, u,w, v ∈ Σ∗. We say u is a prefix, w is a factor and v is a suffix of x.

Example 2.2 LetΣ = {a, b, c}. Let I be the symmetric closure of {(a, b), (b, c)}. Letw = cbacabca.
Now c is a prefix of w, b is a prefix of w, but a is not. An example for a factor is bbc as w can be
written as w =M caca bbc a. 2

In this thesis we frequently work with a power of some word. The following lemma describes the
shape of a prefix, suffix or factor of such a power.

Lemma 2.3 Given an element p ∈ M , where p is connected, and an integer k ∈ N, the following is
true for the shape of prefixes, suffixes and factors of pk .

(i) A prefix w of pk can be written as w = pxws · · ·w1 where x ∈ N, s < σ and wi is a proper
prefix of p for each i.

(ii) A suffix w of pk can be written as w = w1 · · ·wtpx where x ∈ N, t < σ and wi is a proper
suffix of p for each i.

(iii) Given a factor w of pk at least one of the following is true.

• w is a factor of p.

• We can write w = u1 · · · utpxvs · · · v1 where x ∈ N, s, t < σ, ui is a proper suffix of p
for 1 ≤ i ≤ s and vi is a proper prefix of p for 1 ≤ i ≤ t. 2

Proof We look at three statements.

(i) Let w be a prefix of pk . We can rewrite w by grouping the letters belonging to the same
instance of p in pk .

w = w̃1w̃2 . . . w̃r

w̃r contains at least one letter. w̃i−1 contains all instances of all letters in p that do not commute
with some letter in w̃i . It follows that w̃r−j contains all instances of all letters that are reachable
from a letter in w̃r in the dependence graph restricted to letters in p with at most j steps. For
j ≥ σ − 1 we obtain that w̃r−j contains all instances of all letters in p, thus w̃r−j = p. Hence,
there is an s ≤ σ − 1, and the lemma follows with wi = w̃r−i and x = r − s.

(ii) Let w be a suffix of pk . The proof is symmetric to (i).

(iii) Let w be a factor of pk . We distinguish two cases.

• w is a factor of p. The lemma follows immediately.

• w is not a factor of p. There are u, v, r, s with w = uv and k = r + s such that u is a
suffix of pr and v is a prefix of ps. The lemma follows from the results in (i) and (ii). �
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2 Preliminaries

· · ·ppppppppppppppppp
wswswswswswswswswswswswswswswswsws

ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1ws−1
w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1

Figure 2.1: Prefix of some px .

Figure 2.1 illustrates case (i) of Lemma 2.3. The lemma not only applies to elements of partially
commutative monoids, but also to freely reduced elements of graph groups and graph products,
which is how it will be used most often in this thesis. The relation between graph groups, graph
products and partially commutative monoids will be discussed further in the subsequent sections.

2.3 Graph Groups

Graph groups are defined similarly to partially commutative monoids. Again we have the symmetric
commutation relation I ⊆ Σ × Σ. We require that (a, b) ∈ I if and only if (a−1, b) ∈ I. The set
G = F(X)/{ab = ba | (a, b) ∈ I} is a graph group, also known as free partially commutative group
or right-angled Artin group. The name graph group is due to the commutation relation being
commonly visualized as an undirected graph.

Similar to free groups, we call a word w ∈ Σ∗ freely reduced, if for all v ∈ Σ∗ with w =G v it holds
that |w | ≤ |v |.

Graph groups and partially commutative monoids are tightly connected. The following lemma
shows, how equality in a graph group and the corresponding partially commutative monoid are
related.

Lemma 2.4 Let G = F(X)/{ab = ba | (a, b) ∈ I} and let the corresponding monoid be M =
M(Σ)/{ab = ba | (a, b) ∈ I}. Given u, v ∈ Σ∗ the following holds.

(i) u =M v =⇒ u =G v.

(ii) If u and v are freely reduced, then u =M v ⇐⇒ u =G v. 2

Proof We look at two statements.

(i) It follows directly from the definition of M and G, that u =M v =⇒ u =G v.

(ii) We only need to show that for freely reduced u and v, we have u =G v =⇒ u =M v. As u
and v are freely reduced, they do not contain factors of the form aa−1. Therefore, they are
equal up to the commutation of letters, which is an operation that is allowed in M , and thus
u =M v. �
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2.4 Projection to Free Monoids

2.4 Projection to Free Monoids

A graph group can be projected to a product of free monoids [Wra88]. Let Ai ⊆ Σ be a family of
sets fulfilling the following properties.

1. ∀i : a−1 ∈ Ai if and only if a ∈ Ai.

2. (a, b) ∈ D if and only if ∃j : a, b ∈ Aj .

The family Ai could consist of all sets {a, a−1, b, b−1} of non-commuting elements, i. e., where
(a, b) ∈ D [Dub85]. An alternative is to use the maximal cliques in the dependence graph [Dub86].

Let πi : Σ∗ → A∗i be the projection to the free monoid A∗i , defined by πi(a) = a for a ∈ Ai , πi(a) = 1
otherwise. We define a projection to a direct product of free monoids, Π : Σ∗ → A∗1× · · · × A∗

k
,w 7→

(π1(w), . . . , πk(w)).

Using Lemma 2.4, we adapt two lemmata for partially commutative monoids presented in [Dub86]
to hold for graph groups, by requiring that all elements are freely reduced.

Lemma 2.5 [Dub86, Proposition 1.2] For freely reduced u, v ∈ G we have u =G v if and only if
Π(u) = Π(v). 2

Lemma 2.6 [Dub86, Proposition 1.7] Let w ∈ Σ∗ be freely reduced in G. There are u ∈ Σ∗ and
t > 1 with w =G ut if and only if there is a family F with Π(w) = Ft . 2

13





3 Algorithmic Complexity and Problems

In this chapter we formally define the decision problems discussed in this thesis. Then, we introduce
circuit complexity and counting complexity classes.

Definition 3.1 (word problem) Let G be a group with a presentation over the alphabet Σ. The
word problem WP(G) is to decide for w ∈ Σ∗ whether w =G 1. 2

Definition 3.2 (power word problem) Let G be a group with a presentation over the alphabet
Σ. The input consists of a list of words w1, . . . ,wn ∈ Σ

∗ and a list of binary encoded integers
x1, . . . , xn ∈ Z. We interpret the input as w = wx1

1 . . .wxn
n . The power word problem PowWP(G) is

to decide whether w =G 1. 2

Definition 3.3 (generalized word problem) Let G be a group with a presentation over the alphabet
Σ. Let H ≤ G. The generalized word problem GWP(G,H) is to decide for w ∈ Σ∗ whether w ∈ H.2

3.1 Circuit Complexity

The idea behind circuit complexity classes is to characterize the complexity of a function f by
the size or depth of a boolean circuit that computes f . Circuit complexity classes can be seen as
language classes or as function classes. The boolean circuit consists of input and output gates
as well as the usual and, or and not gates. The gates of the circuit with their connections form a
directed acyclic graph.

A single circuit has a fixed input size. Thus, we consider a family of circuits C = (Ci)i∈N. We say
that C computes a function f , if on the input of w, Cn produces the output f (w), where n is the
length of the binary encoding of w.

In this thesis we use the following circuit complexity classes:

• NCi: The class of functions computed by a family of boolean circuits of depth O(logi(n)),
where the fan-in of each gate is bounded by a constant.

• ACi: The class of functions computed by a family of boolean circuits of depth O(logi(n)).
There is no bound on the fan-in of an individual gate.

• TCi: The class of functions computed by a family of boolean circuits of depth O(logi(n)),
with the addition of majority gates. Again, there is no bound on the fan-in of an individual
gate.

15



3 Algorithmic Complexity and Problems

Note that the above definition does not impose any restrictions on the computability and computational
complexity of the mapping n 7→ Cn. If we add such restrictions to a circuit complexity class, then
we call it uniform. We only consider the DLOGTIME-uniform variant of the circuit complexity
classes. A family of circuits C is DLOGTIME-uniform, if the following conditions are fulfilled.

• The type of a distinguished gate can be decided in DLOGTIME.

• Whether two gates are connected, can be decided in DLOGTIME.

To emphasize that we refer to the DLOGTIME-uniform variant of the circuit complexity class, we
add the prefix u, e. g., we write uAC0 to denote DLOGTIME-uniform AC0.

Throughout this thesis we use Turing reductions to characterize the computational complexity of
different decision problems. In the context of circuit complexity classes, Turing reductions are
realized by allowing for oracle gates in the boolean circuit. An oracle gate can compute an arbitrary
function or decide an arbitrary language. A problem A is AC0-Turing reducible to a problem B, if A
can be decided by a family of boolean circuits in AC0, that may also contain oracle gates which
decide B. We write A ∈ uAC0(B) to denote that A is uAC0-Turing reducible to B. We may use
oracle gates from a set of languages C. In that case we write A ∈ uAC0(C) to indicate that A can be
decided in uAC0 with oracle gates for the problems in C.

3.2 Counting Complexity Classes

Counting complexity classes are built on the idea of counting the number of accepting and rejecting
paths of a Turing machine. For a non-deterministic Turing machine M, let acceptM denote the
number of accepting paths and let rejectM denote the number of rejecting paths. We define
gapM = acceptM − rejectM .

In this thesis we make use of two counting complexity classes. The first is GapL, which contains all
functions that can be computed as the difference of accepting and rejecting paths of a logarithmic
space-bounded Turing machine. The second is C= L, which contains a language L, if there is a
function f in GapL, such that f evaluates to zero for exactly the words contained in L. These
classes are formally defined as follows.

GapL =
{
gapM | M is a non-deterministic, logarithmic space-bounded Turing machine

}
C= L = {L | There is f ∈ GapL with ∀w∈Σ∗ : w ∈ L ⇐⇒ f (w) = 0}

16



4 Graph Products

Graph products are a generalization of graph groups. The concept has been introduced by Elisabeth
R. Green in 1990 [Gre90]. Just like a graph group is a free group augmented with commutation
relations, a graph product is a free product extended with commutation relations. Any graph group
can be written as a graph product of single generator free groups. It follows that the results presented
in this chapter can also be applied to graph groups.

We begin with a formal definition of graph products. Then we have a look at geodesics, which are
the graph product equivalent to a freely reduced representative. Ee have a look at normal forms,
introducing a cyclic normal form for graph products. Finally, we discuss how the input to the power
word problem can be encoded in a way suitable to AC0-Turing reductions.

Definition 4.1 Given a set L, let (Gα)α∈L be a family of groups. Let I ⊆ L × L be an irreflexive,
symmetric relation. We call I the independence relation. The alphabet of the graph product is

Γ =
⋃
α∈L

(Gα \ {1}).

For w ∈ Γ we define alph(w) = α where w ∈ Gα. We extend the independence relation over Γ × Γ
by I = {(u, v) | (alph(u), alph(v)) ∈ I}. The graph product is the group

GP(L, I; (Gα)α∈L) = 〈Γ | uv = [uv] for u, v ∈ Gα; uv = vu for (u, v) ∈ I〉 2

The equivalent to a freely reduced word in a graph product is a geodesic. A geodesic representative
of a group element is a representative of minimum length. We use the terms geodesic, freely
reduced and irreducible synonymously.

Let w = w1 . . .wn be freely reduced. Then there are no i ≤ j < k such that alph(wi) = alph(wk)

and (wi,wi+1 . . .wj) ∈ I, (wk,wj+1 . . .wk−1) ∈ I. Otherwise there would be a contradiction as
w =G w1 . . .wi−1wi+1 . . .wj[wiwk]wj+1 . . .wk−1wk+1 . . .wn, which is shorter than w.

When talking about prefixes, suffixes or factors of a freely reduced element of a graph product, we
mean a prefix (respectively suffix, factor) in the corresponding partially commutative monoid M(Γ).
By ≤L we denote a linear order on the set L.

Example 4.2 Let G1 = 〈a, b〉, G2 = 〈c〉. Let L = {1, 2} and I = ∅. Let G = GP(L, I; (Gα)α∈L).

Consider the reduced word w = [ab][c] ∈ G. Here [ab] is a prefix of w in the partially commutative
monoid M(Γ), but [a] is not. 2

The geodesic problem geoG , is the problem of computing a geodesic representative of an arbitrary
group element w ∈ G. Jonathan Kausch [Kau17] has shown that the geodesic problem in graph
products is uAC0-Turing reducible to the word problem.
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4 Graph Products

Lemma 4.3 [Kau17, Theorem 6.3.3]

• Given a graph product G = GP(L, I; (Gα)α∈L) of f.g. groups, we have

geoG ∈ uAC
0(WP(G)).

That is a geodesic of w ∈ G can be computed in uAC0 with oracle gates for the word problem
of G.

• Given a non-trivial class of f.g. groups C, we have

geoGP C ∈ uAC
0(WP(GPC)).

That is a geodesic of w ∈ G = GP(L, I; (Gα)α∈L), where G1, . . .Gn and I are part of the
input, can be computed in uAC0 with oracle gates for the uniform word problem of GPC. 2

We introduce the notion of a cyclically reduced word. A word w ∈ Γ∗ is cyclically reduced if
for all u, v ∈ Γ∗ with w =G uv the transposed word vu is a geodesic. Jonathan Kausch [Kau17]
obtained the following results on the complexity of computing a cyclically reduced conjugate in
graph products.

Lemma 4.4 [Kau17, Theorem 7.3.4]

• Given a graph product G = GP(L, I; (Gα)α∈L) of f.g. groups, a cyclically reduced conjugate
of w ∈ G can be computed in uAC0 with oracle gates for the word problem of G.

• Given a non-trivial class of f.g. groups C, a cyclically reduced conjugate of w ∈ G =
GP(L, I; (Gα)α∈L), where G1, . . .Gn and I are part of the input, can be computed in uAC0

with oracle gates for the uniform word problem of GPC. 2

Similar to graph groups, there is a tight connection between graph products and partially commutative
monoids. We reformulate Lemma 2.4 for graph groups.

Lemma 4.5 Let G = GP(L, I; (Gα)α∈L) and let the corresponding partially commutative monoid
be M = M(Γ)/{ab = ba | (a, b) ∈ I}. Given u, v ∈ Γ∗ the following holds.

(i) u =M v =⇒ u =G v.

(ii) If u and v are freely reduced, then u =M v ⇐⇒ u =G v. 2

Proof We look at two statements.

(i) It follows directly from the definition of M and G, that u =M v =⇒ u =G v.

(ii) We only need to show that for freely reduced u, v, we have u =G v =⇒ u =M v. As u and v

are freely reduced, they do not contain factors of the form ab, where a and b are from the
same base group and thus ab =G [ab]. Therefore, they are equal up to the commutation of
letters, which is an operation that is allowed in M , and thus u =M v. �

18



4.1 Cyclic Normal Form

We define the family of free monoids A =
{
Γα ∪ Γβ | (α, β) ∈ D

}
. This fulfills the requirements

laid out in Section 2.4. Let Π be defined as in Section 2.4. Similar to graph groups, we adapt
two lemmata for partially commutative monoids presented in [Dub86] to hold for graph products.
Here, we require that all elements are freely reduced. For the second lemma this means that we
additionally require w to not be from a single base group.

Lemma 4.6 [Dub86, Proposition 1.2] Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups.
For freely reduced u, v ∈ G we have u =G v if and only if Π(u) = Π(v). 2

Lemma 4.7 [Dub86, Proposition 1.7] Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups.
Let w be freely reduced in G, where w is not from a single base group Gα. Then, there are u ∈ Γ∗

and t > 1 with w =G ut if and only if there is a family F with Π(w) = Ft . 2

A normal form is a unique representative of a group element. The geodesic presented above is not
necessarily unique. However, a normal form can be obtained by choosing the geodesic representative
that is lexicographically smallest. For this purpose assume we have a linear order on L. This is also
called the length lexicographical normal form. Let nfG be the problem of computing the length
lexicographical normal form of a group element of G. Jonathan Kausch [Kau17] obtained the
following results on the complexity of the normal form problem in graph products.

Lemma 4.8 [Kau17, Theorem 6.3.9] Given a graph product G = GP(L, I; (Gα)α∈L) of f.g. groups,
it holds that

nfG ∈ uAC0({nfGα | α ∈ L} ∪ {WP(G)}).

That is the length lexicographical normal form of a group element w ∈ G can be computed in uAC0

with oracle gates for the normal form problem in each Gα and the word problem of G. 2

Lemma 4.9 [Kau17, Theorem 6.3.15] Given a non-trivial class of f.g. groups C, we have

nfGP C ∈ uAC
0(C= LnfC ).

That is the length lexicographical normal form of w ∈ G = GP(L, I; (Gα)α∈L), where G1, . . .Gn

and I are part of the input, can be computed in uAC0 with oracle gates for the uniform word problem
in C= LnfC . 2

4.1 Cyclic Normal Form

In this section we adapt the cyclic normal form for graph groups presented in [CGW09] to graph
products. The key property of this cyclic normal form is that, given a word w, all cyclic normal
forms conjugate to w are cyclic permutations of each other. The authors of [CGW09] have shown
that their cyclic normal form can be computed in linear time for graph groups. We show that for a
graph products G of f.g. groups it can be computed in uAC0 with oracle gates for the word problem
in G and for the normal form problem in each base group. We also look at the uniform case, where
the groups and independence graph are part of the input.

Definition 4.10 Let w ∈ Γ∗ be cyclically reduced. We say w is a cyclic normal form if w is a length
lexicographical normal form and all its cyclic permutations are length lexicographic normal forms.2
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4 Graph Products

Let u, v ∈ Σ∗ be two elements of a partially commutative monoid M . We say that u and v are related
by commutation if u =M v and we can write u = w1 . . .wn, v = w1 . . .wi−1wi+1wiwi+2 . . .wn. We
say that u and v are related by cycling if they are conjugate and we can write u = w1 . . .wn and
v = wnw1 . . .wn−1.

Lemma 4.11 Let u, v be cyclic normal forms. Then u and v are conjugate if and only if u is a cyclic
permutation of v. 2

Proof This proof follows the proof given in [CGW09] for graph groups. If u is a cyclic permutation
of v, then u and v are obviously conjugate. We only need to show the other direction. Assume u is
conjugate to v. Then u and v are related by a sequence of commutations and cyclings.

u = w1 → w2 → · · · → wr = v

We show by induction on L that there is a sequence consisting of cyclings only, that relates u and
v. If there are no commutations then we are done. Otherwise, let γ ∈ L be the largest element of
L (with respect to ≤L), such that there is a distinguished letter c ∈ Gγ in w that is involved in a
commutation. We track the letter c during the sequence of cyclings and commutations. We write
each wi as wi = w′icw

′′
i .

Let wj → wj+1 be the first commutation involving c. Since w is a cyclic normal form and there
is no element larger than c involved in a commutation, this commutation must have the form
wj = w′

j+1bcw′′j → w′
j+1cbw′′j = wj+1, where b ∈ Gβ with (β, γ) ∈ I and β < γ. The takeaway

from looking at the first commutation involving the distinguished letter c is that there is at least one
commutation involving c where c commutes to the left of a smaller letter.

Let wp → wp+1 be the last commutation where c commutes to the left of a smaller letter. This
commutation has the form wp = w′

p+1acw′′p → w′
p+1caw′′p = wp+1, where a ∈ Gα with (α, γ) ∈ I

and α < γ. We also track the distinguished letter a.

Assume that the distinguished letters a and c do not commute again. Recall that we can write
each wq with q > p as wq = w′qcw′′q . We look at the cyclic permutation cw′′qw

′
q and consider the

position of a. We have cw′′qw
′
q = cyqazq where (cyq, a) ∈ I. Thus, cyqazq represents the same

group element as acyqzq and therefore we obtain the contradiction that any wq , especially wr = v

is not a cyclic normal form.

It follows, that the distinguished letters a and c will commute again in the opposite direction. Let
ws = c denote this commutation in the opposite direction. We have the following sequence of
commutations and cycling from wp to ws+1.

wp = w′p+1acw′′p → w′p+1caw′′p → · · · → w′scaw′′s+1 → w′sacw′′s+1 = ws+1

We can replace it with a new sequence

wp = w′p+1acw′′p → v′p+1acv′′p+1 → · · · → v′s−1acv′′s−1 → v′sacv′′s = ws+1,

where v′′q v
′
q is a cyclic permutation of yqzq.

The new sequence has two commutations involving the distinguished letter c less then the original
sequence. Applying this argument repeatedly we conclude that there is a sequence with no
commutations involving the distinguished letter c, or any other letter from Gγ. By induction, there
is a sequence from u to v that does not involve any commutations. �
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4.1 Cyclic Normal Form

Theorem 4.12 In the following, w is irreducible and connected.

• Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Then a cyclic normal form
conjugate to a group element w ∈ G can be computed in uAC0 with oracle gates for the
normal form problem in each Gα and the word problem of G.

• Given a non-trivial class of f.g. groups C, a cyclic normal form conjugate of w ∈ G =
GP(L, I; (Gα)α∈L), where G1, . . .Gn and I are part of the input, can be computed in uAC0

with oracle gates for the uniform word problem in C= LnfC . 2

Proof Let w ∈ Γ∗ be the input. Let σ = |L|. We can assume w to be cyclically reduced, as a
cyclically reduced conjugate can be computed in uAC0 with oracle gates for the word problem in G
by Lemma 4.4. A cyclic normal form of w can be computed with the following steps.

(i) Compute the length lexicographical normal form w̃ = nfG(wσ).

(ii) Let w̃ = ydz, where d ∈ Gα such that α is maximal w. r. t. ≤L , y ∈ (Γ \ Gα)
∗ and z ∈ Γ∗.

Compute the cyclic permutation dzy. That is, we rotate the first occurrence of d to the front

(iii) Compute the length lexicographical normal form nfG(dzy). We have nfG(dzy) = uσ , where
u is a cyclic normal form conjugate to w.

First, we look at the complexity in the non-uniform case. Our algorithm requires solving the normal
form problem twice, which by Lemma 4.8 can be done in uAC0 with oracle gates for the normal
form problem in each Gα and the word problem of G. In addition, we need to compute a cyclic
permutation which can be done in uAC0.

Second, we look at the complexity in the uniform case. By Lemma 4.9, solving the normal form
problem can be done in uAC0 with oracle gates for the uniform word problem in C= LnfC . Again,
the cyclic permutation can be computed in uAC0.

Third, we show that our algorithm is correct, i. e., it computes a cyclic normal form. Observe that
there can be no prefix of z that commutes with d. That is because w̃ is a length lexicographic
normal form and d is chosen such that there is no larger letter that commutes with d. Additionally,
there can be no prefix of y that commutes with dz. Assume there is such a prefix ỹ. Then yỹ is a
prefix of w2σ , and we can write yỹ =G w1 . . .wk where each wi is a prefix of w and k ≥ σ. As yỹ
commutes with d, w1 is not equivalent to w, a contradiction to Lemma 2.3.

From these facts it follows that if dzy =G ez′y′, then d = e. The second normal form computation
does not alter the letters, it only rearranges them, as the individual letters are in normal form as a
result of the previous normal form computation. Thus, nfG(dzy) must start with the letter d.

Let û = y−1wy. Obviously nfG(dzy) =G ûσ . We show that nfG(dzy) = nfG(û)σ by showing that
nfG(û)σ is normal. Observe that nfG(û) is cyclically reduced, as w is cyclically reduced and y is a
prefix of wσ . It follows that nfG(û)σ is cyclically reduced.

Assume that nfG(û)σ is not the length lexicographic normal form. Then we have k < σ, a ∈ Γα and
b ∈ Γβ with (α, β) ∈ I, α <L β and nfG(û)k = x1bx2, nfG(û) = y1ay2 such that bx2y1 is reduced,
but bx2y1a is not. It follows that a commutes with bx2y1. Most importantly a commutes with
y1. Hence, a is a prefix of y1 and therefore also a prefix of nfG(û). It follows a = d, which is a
contradiction as d is the largest letter in w, but a is smaller than some letter b in w.
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4 Graph Products

We conclude that nfG(û)σ is the length lexicographic normal form and therefore nfG(dzy) =
nfG(û)σ . It remains to show that u = nfG(û) is a cyclic normal form. Let v be a cyclic permutation
of u. Then v is a factor of nfG(û)σ which is the length lexicographic normal form. Therefore, v is
also in length lexicographic normal form. We conclude that u is a cyclic normal form. �

In a fixed graph group the normal form problem and the word problem can be solved in uAC0 with
oracle for the word problem of the free group F2 [Kau17, Corollary 5.6.7, Theorem 6.3.9]. We
derive the following special case of the above lemma for graph groups.

Corollary 4.13 Let G be a graph group. Then a cyclic normal form conjugate of some irreducible,
connected w ∈ G can be computed in uAC0(WP(F2)). 2

4.2 Input Encoding

In this section we look at how to encode the input for the power word problem in graph groups and
graph products. In the following we will use blocks of constant size to encode the different parts of
the input. This type of encoding is most suitable to the AC0-Turing reductions used in this thesis.

Elements of the graph group G are represented by words over Σ. Let the input for the power word
problem be px1

1 . . . pxn
n . Let ` be the maximal number of bits required to encode any pi and let r

be the maximum number of bits required to encode any xi. We may assume that n ≥ ` and n ≥ r ,
as we can pad the input with the identity element to achieve this. Now the input is encoded in 2n
blocks of n bits each as follows.

p1 x1 · · · pn xn

When looking at graph products we need to spend some more time thinking about how we encode a
group element pi. The group element is represented as a word over Σ, the disjoint union of the
alphabets of the base groups. Let pi = pi,1 . . . pi,m. Let k be the number of bits required to encode
the id of the base group (some α ∈ L). Let ` be the maximum number of bits required to encode
any character of any Σα. Again we can assume k ≥ n, ` ≥ n and n ≥ m, and pad with zeros/ the
identity element as necessary. This leads to the following binary encoding of a single pi requiring
2n blocks of n bits each.

alph(pi,1) pi,1 · · · alph(pi,n) pi,n

We encode the input to the power word problem similar to graph groups, the difference is in the
encoding of a pi, which now requires 2n2 bits, and therefore we need 2n3 + n2 bits in total.

p1 x1 · · · pn xn
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5 Conjugacy in Graph Groups and Graph
Products

In this chapter we look at specific conditions under which two elements of a graph group or graph
product are conjugate. More precisely we are interested in conditions for two powers px and qy

under which p is conjugate to q. The results presented in this chapter are essential to solving the
power word problem in the subsequent chapters.

We begin with an intermediate lemma on conjugacy in partially commutative monoids. On top
of that we build our theorems giving conditions under which two elements of a graph group
(respectively graph product) are conjugate or even equal.

Lemma 5.1 Let M be a partially commutative monoid. Let p, q, v ∈ M , x, y ∈ N such that p and q
are primitive and connected and v is a common factor of px and qy . For each projection πi we can
write πi(p) = p̃sii and πi(q) = q̃rii where p̃i and q̃i are primitive. If p2 is a factor of v and q2 is a
factor of v then for all projections p̃i and q̃i are conjugate as words and ri = si. 2

Proof We look at a projection πi . Since v is a factor of px and qy , it holds that πi(v) is a factor of
πi(px) = p̃sii and πi(qy) = q̃rii . Thus πi(v) has periods | p̃i | and |q̃i |. As p2 is a factor of v, πi(p2) is
a factor of πi(v). This yields the lower bound 2| p̃i | on the length of πi(v). By symmetry, we obtain
the lower bound 2|q̃i | on the length of πi(v). Combining those we have

|πi(v)| ≥ max{2| p̃i |, 2|q̃i |} ≥ | p̃i | + |q̃i | ≥ | p̃i | + |q̃i | − 1

Thus, by the theorem of Fine and Wilf [FW65], we have that | p̃i | = |q̃i |. As p is a factor of v, we
have that p̃i is a factor of πi(v) and by transitivity also of πi(qy) = q̃ri ·yi . Therefore p̃i and q̃i are
conjugate.

Assume that for some i we have si , ri. Then there are α and β such that αsi = βri. W. l. o. g. let
β , 1 and gcd{α, β} = 1. Now β divides si.

Let J be the set of indices j such that αsj = βrj . Clearly i ∈ J. Let l be an index such that
Al ∩ Aj , ∅ for some j in J. Let a ∈ Al ∩ Aj We have sl | p̃l |a = |p|a = sj | p̃j |a as the number of
a’s in each projection is |p|a. Similarly, we have rl |q̃l |a = |q |a = rj |q̃j |a, which is equivalent to
rl | p̃l |a = rj | p̃j |a (as p̃i and q̃i are conjugate for all i). Thus, we obtain

αsl | p̃l |a = αsj | p̃j |a = βrj | p̃j |a = βrl | p̃l |a

Comparing coefficients, the result αsl = βrl is obtained. By induction, we get J = {1, . . . , k} thus
every si is divisible by β, and we can write p = uβ contradicting p being primitive. �

When applying the lemma to a graph group we need p, q and v to be freely reduced, so that we can
apply our knowledge about partially commutative monoids. Additionally, we require p and q to be
cyclically reduced, as px and qx need to be freely reduced.
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Corollary 5.2 Let G be a graph group. Let p, q, v ∈ G, x, y ∈ N such that p and q are primitive,
connected and cyclically reduced, v is freely reduced and v is a common factor of px and qy . For
each projection πi we can write πi(p) = p̃sii and πi(q) = q̃rii where p̃i and q̃i are primitive. If p2 is
a factor of v and q2 is a factor of v then for all projections p̃i and q̃i are conjugate as words and
ri = si. 2

To apply the lemma to graph products we additionally require that neither p nor q are from a single
base group, as otherwise a power of p (respectively q) would not be freely reduced, which is a
requirement to apply the lemmata about partially commutative monoids. The term freely reduced
refers to a geodesic in the context of graph products.

Corollary 5.3 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Let p, q, v ∈ G,
x, y ∈ N such that p and q are primitive, connected and cyclically reduced, v is freely reduced, v
is a common factor of px and qy , and there is no α ∈ L such that p ∈ Gα or q ∈ Gα. For each
projection πi we can write πi(p) = p̃sii and πi(q) = q̃rii where p̃i and q̃i are primitive. If p2 is a
factor of v and q2 is a factor of v then for all projections p̃i and q̃i are conjugate as words and
ri = si. 2

5.1 Graph Groups

We begin with a theorem giving conditions under which for two powers px and qy we have that p is
equal to q in a graph group. The proof follows almost directly from the previous lemmata.

Theorem 5.4 Let G be a graph group. Given p, q ∈ G with p and q being primitive, connected and
cyclically reduced, positive integers x and y, a suffix β of px and a prefix α of qy , where β and α
are freely reduced and βα =G 1, if |β| = |α | > (σ + 1) ·max{|p|, |q |} then p =G q−1. 2

Proof Using Lemma 2.3 and the length bound on α and β we obtain that p2 is a suffix of β and q2

is a prefix of α. Observe that β =G α−1. Thus β is a common suffix of px and q−y . p2 and q−2 are
both suffixes of β. By Corollary 5.2 the projections πi(p) and πi(p−1) are conjugate. As both are
suffixes of πi(β) they are equal, i. e., πi(p) = πi(q−1). Using Lemma 2.5 we obtain p =G q−1. �

We continue with a more intricate result on the conjugacy of two group elements.

Theorem 5.5 Let G be a graph group. Let Ω be a set of words w ∈ G with the following properties.

• w ,G 1,

• w is primitive,

• w is connected,

• w is cyclically reduced,

• w uniquely represents its conjugacy class and the conjugacy class of its inverse.

Given p̂, q̂ ∈ Ω, x̂, ŷ ∈ Z, a factor u of p̂x and a factor v of q̂y , where u and v are freely reduced and
uv =G 1, if |u| = |v | > 2(σ + 1)(| p̂| + |q̂ |) then p̂ =G q̂. 2
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Proof We have u =G v−1, thus v−1 is a factor of p̂x and therefore v is a factor of p̂−x .

LetΩ± = Ω∪Ω−1 be the extension ofΩ that includes the inverse of each element. Let x = | x̂ |, y = | ŷ |.
There are p, q ∈ Ω± such that p ∈ {p̂, p̂−1}, q ∈ {q̂, q̂−1} and v is a common factor of px and qy .

As |v | ≥ 2σ(|p|+ |q |) ≥ 2σ |p| > |p|, v cannot be a factor of p. Thus, by Lemma 2.3 v can be written
as v = u1 · · · utpzvs · · · v1. The length of v is given by |v | = |u1 |+ · · ·+ |ut |+ z · |p|+ |ws |+ · · ·+ |w1 |.
Solving for z we obtain z = |v |− |u1 |−···− |ut |− |ws |−···− |w1 |

|p | . Since wi and u j are factors of p, we have
|ui |, |wj | ≤ |p|. It follows that z ≥ |v |−(t+s) |p |

|p | . We know that t, s < σ, thus t, s ≤ σ − 1 and
(t + s) ≤ 2σ − 2. Therefore z ≥ |v |−2σ |p |+2 |p |

|p | . The inequality on the length of v gives us
|v | ≥ 2σ(|p| + |q |) ≥ 2σ |p|. Plugging that in we obtain z ≥ 2σ |p |−2σ |p |+2 |p |

|p | =
2 |p |
|p | = 2. Hence,

p2 is a factor of v. By symmetry q2 also is a factor of v.

We write πi(px) = p̃si |x |i and πi(qx) = q̃si |x |
i . By Corollary 5.2 the projections πi(p) and πi(q) are

conjugate. As q is a factor of v it is a factor of px . We write px = αqβ. Clearly qβα is conjugate
to px . Therefore πi(qβα) is conjugate to πi(px). Since πi(qβα) starts with q̃i, has period |q̃i | and
length si |x | · |q̃i |, we have πi(qβα) = q̃i si |x |. It follows that qβα = q |x |. Thus px is conjugate to
q |x | and therefore p is conjugate to q. Since p and q uniquely represent their conjugacy class it
follows that p = q. As p̂ and q̂ uniquely represent their conjugacy class and the conjugacy class of
their respective inverses, which in the first case includes p, and in the second case includes q, it
must hold that p̂ = q̂. �

5.2 Graph Products

We adapt the theorems from the previous section to graph products. The main difference is that we
prohibit elements which can be expressed as an element of a single base group. The proofs in this
section are a verbatim copy of the proofs we have presented for graph groups.

Theorem 5.6 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Let p, q ∈ G such
that p and q are primitive, connected, cyclically reduced, and there is no α ∈ L such that p ∈ Gα

or q ∈ Gα. Given positive integers x and y, a suffix β of px and a prefix α of qy , where β and α are
freely reduced and βα =G 1, if |β| = |α | > (σ + 1) ·max{|p|, |q |} then p =G q−1. 2

Proof Using Lemma 2.3 and the length bound on α and β we obtain that p2 is a suffix of β and q2

is a prefix of α. Observe that β =G α−1. Thus β is a common suffix of px and q−y . Both p2 and
q−2 are suffixes of β. By Corollary 5.3 the projections πi(p) and πi(p−1) are conjugate. As both are
suffixes of πi(β) they are equal, i. e., πi(p) = πi(q−1). Using Lemma 4.6 we obtain p =G q−1. �

Theorem 5.7 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Let Ω be a set of
words w ∈ G with the following properties.

• w ,G 1,

• w is primitive,

• w is connected,

• w is cyclically reduced,
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• w uniquely represents its conjugacy class and the conjugacy class of its inverse.

• There is no α ∈ L, such that w ∈ Gα.

Given p̂, q̂ ∈ Ω, x̂, ŷ ∈ Z, a factor u of p̂x and a factor v of q̂y , where u and v are freely reduced and
uv =G 1, if |u| = |v | > 2(σ + 1)(| p̂| + |q̂ |) then p̂ =G q̂. 2

Proof We have u =G v−1, thus v−1 is a factor of p̂x and therefore v is a factor of p̂−x .

LetΩ± = Ω∪Ω−1 be the extension ofΩ that includes the inverse of each element. Let x = | x̂ |, y = | ŷ |.
There are p, q ∈ Ω± such that p ∈ {p̂, p̂−1}, q ∈ {q̂, q̂−1} and v is a common factor of px and qy .

As |v | ≥ 2σ(|p|+ |q |) ≥ 2σ |p| > |p|, v cannot be a factor of p. Thus, by Lemma 2.3 v can be written
as v = u1 · · · utpzvs · · · v1. The length of v is given by |v | = |u1 |+ · · ·+ |ut |+ z · |p|+ |ws |+ · · ·+ |w1 |.
Solving for z we obtain z = |v |− |u1 |−···− |ut |− |ws |−···− |w1 |

|p | . Since wi and u j are factors of p, we have
|ui |, |wj | ≤ |p|. It follows that z ≥ |v |−(t+s) |p |

|p | . We know that t, s < σ, thus t, s ≤ σ − 1 and
(t + s) ≤ 2σ − 2. Therefore z ≥ |v |−2σ |p |+2 |p |

|p | . The inequality on the length of v gives us
|v | ≥ 2σ(|p| + |q |) ≥ 2σ |p|. Plugging that in we obtain z ≥ 2σ |p |−2σ |p |+2 |p |

|p | =
2 |p |
|p | = 2. Hence,

p2 is a factor of v. By symmetry q2 also is a factor of v.

We write πi(px) = p̃si |x |i and πi(qx) = q̃si |x |
i . By Corollary 5.3 the projections πi(p) and πi(q) are

conjugate. As q is a factor of v, it is a factor of px . We write px = αqβ. Clearly qβα is conjugate
to px . Therefore, πi(qβα) is conjugate to πi(px). Since πi(qβα) starts with q̃i , has period |q̃i | and
length si |x | · |q̃i |, we have πi(qβα) = q̃i si |x |. It follows that qβα = q |x |. Thus px is conjugate to
q |x | and therefore p is conjugate to q. Since p and q uniquely represent their conjugacy class, it
follows that p = q. As p̂ and q̂ uniquely represent their conjugacy class and the conjugacy class of
their respective inverses, which in the first case includes p, and in the second case includes q, it
must hold that p̂ = q̂. �
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6 The Power Word Problem in Graph Groups

In this section we show that the power word problem in graph groups can be decided in polynomial
time and is uAC0-Turing-reducible to the word problem in the free group F2. To achieve this we
show that the exponents can be replaced with smaller ones, bounded by a polynomial in the length
of the input.

Our proof uses ideas and techniques presented by Lohrey and Weiß [LW19], who studied the power
word problem in free groups. Following their approach we divide our proof into the following major
steps.

• In a preprocessing step we replace all powers with powers of a word in Ω.

• We define a symbolic rewriting system, which we will use to prove correctness of the
reduction.

• We define the shortened word, calculating how much can be removed from each exponent.

Theorem 6.1 Let G be a graph group. The power word problem in G is uAC0-Turing reducible to
the word problem in the free group F2. 2

6.1 Preprocessing

The preprocessing consists of three steps.

1. Cyclically reducing powers.

2. Replacing powers with powers of connected words.

3. Replace each power with a power of a word in Ω.

The input of the power word problem is a word over Σ∗ ×Z. However, we can also write it as a word
over Σ∗ ∪ (Σ∗ × Z), adding the identity element in between the powers. Thus, we write the input
as w = u0px1

1 u1 . . . pxn
n un, where ui, pi ∈ Γ∗ and xi ∈ Z. Note that the ui are 1 at the beginning,

however this will change during the preprocessing.

Step 1: Cyclically reducing powers. For each pi a cyclically reduced conjugate p̃i is computed.
The power pxi

i is replaced with αi p̃xi
i βi , where pxi

i =G αi p̃
xi
i βi and αi =G β−1

i . By Lemma 2.3 we
know there are αi and βi such that |αi | = |βi | < σ | p̃|. We can view αi as part of ui−1 and βi as part of
ui , thus we can assume that for the next step the input again has the shape w = u0px1

1 u1 . . . pxn
n un.
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6 The Power Word Problem in Graph Groups

Step 2: Replacing powers with powers of connected words. We compute connected
components of pi , i. e., pi,1, . . . pi,k such that pi =G pi,1 . . . pi,k , each pi, j is connected and for each
j , ` it holds that pi,` commutes with pi, j . Observe that k ≤ σ. We replace the power pxi

i with
pxi
i,1 . . . pxi

i,k
.

Step 3: Replace each power with a power of a word in Ω. LetΩ ⊆ Γ̃∗ be the set containing
only words w with the following properties.

• w ,G 1,

• w is primitive,

• w is connected,

• w is cyclically reduced,

• w is a cyclic normal form,

• w is minimal among its cyclic permutations and the cyclic permutations of a cyclic normal
form of its inverse.

This definition fulfills the requirements of Theorem 5.5.

All requirements except for w being primitive and the last two requirements are already fulfilled
after the previous two preprocessing steps. To take care of the last two requirements, for each pi
we compute a cyclic normal form and a cyclic normal form of its inverse. Then we compute the
minimal element p̃i w. r. t. some linear order on Σ among all cyclic permutations of the two cyclic
normal forms. If p̃i is conjugate to the inverse of pi we set x̃i = −xi, otherwise x̃i = xi. There are
αi and βi with pxi

i =G αi p̃
x̃i
i βi such that α =G β−1 and |αi | = |βi | < σ | p̃|. Again, we view αi as

part of ui−1 and βi as part of ui , thus we can assume that the input for the next reduction step, that is
computing the shortened word, has the shape w = u0px1

1 u1 . . . pxn
n un.

Now that each pi is a cyclic normal form, it is easy to check whether a given pi is primitive, and
replace it with a primitive factor if necessary. As pi is a cyclic normal form we know that if
pi =G qr , then pi = nf(q)r (compare proof of Theorem 4.12). Thus, we only need to check for
periods in pi.

Lemma 6.2 Let G be a graph group with independence relation I. Then the preprocessing as
described above can be done in uAC0 with an oracle gate for the word problem in G. 2

Proof The cyclically reduced conjugate in step one can be computed in uAC0 with oracle gate for
the word problem in G by Lemma 4.4.

To compute connected components of a power pxi
i we define the predicate conpi ( j, `) for j, ` ∈ Σ

which is true if j and ` are connected in D(pi), the dependence graph restricted to the letters in pi .
The two vertices are connected if there is an undirected path from j to ` of length at most σ − 1.
The following equation is equivalent to conpi ( j, `).

∃i1, . . . iσ−1 : i1 = j ∧ iσ−1 = ` ∧ (i1, i2) < I ∧ · · · ∧ (iσ−2, iσ−1) < I
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6.2 Symbolic Rewriting System

Furthermore we define the predicate smallestpi ( j) which is true if j is the smallest letter in the
connected component of j. The following equation is equivalent to smallestpi ( j).

∀` ∈ Σ : ` ≥ j ∨ ¬ conpi ( j, `)

We define the projections πpi, j for pi = ai,1 . . . ai,k by

ai,` 7→
{
ai,` if conpi ( j, ai,`) ∧ smallestpi ( j),
1 otherwise.

Observe that pi =G πpi,1 . . . πpi,σ and each πpi, j is connected.

To compute a representative for pi from Ω, we first compute a cyclic normal form conjugate to pi
and a cyclic normal form conjugate to p−1

i . By Theorem 4.12, we can compute a cyclic normal form
in uAC0 with an oracle gate for the word problem in G. Computing cyclic permutations, selecting
the smallest, and checking for periods in the word and replacing the word with a primitive factor
can be done in uAC0. Hence, we have shown, that the preprocessing can be done in uAC0 using an
oracle gate for the word problem in G. �

6.2 Symbolic Rewriting System

Let G be a graph group with independence relation I. Let S be a rewriting system for G defined by
the following relations, where a is an element of Σ, a−1 is the inverse of a in Σ and u is an element
of Σ∗.

aua−1 → u if (a, u) ∈ I

For p ∈ Ω we define

∆p =

βpxα

�������
x ∈ Z,
α ∈ IRR(S) is a prefix of pσ sgn x , p is no prefix of α,
β ∈ IRR(S) is a suffix of pσ sgn x and p is no suffix of β.


We define the alphabet ∆ by ∆′ =

⋃
p∈Ω ∆p, ∆′′ = Σ and ∆ = ∆′ ∪ ∆′′.

Lemma 6.3 Given βpxα ∈ ∆′ it holds that |α | < (σ − 1)|p| and |β | < (σ − 1)|p|. 2

Proof By Lemma 2.3 we can write α = pkws · · ·w1 with s < σ where each wi is a prefix of p.
As p is not a prefix of α we have k = 0. Regarding the length of α we obtain |α | =

∑s
i=1 |wi | <∑s

i=1 |p| = s |p| ≤ (σ − 1)|p|. The bound on the length of β follows by symmetry. �
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6 The Power Word Problem in Graph Groups

The rewriting systemT over∆∗ is defined by the following rules. In the following βpxα, δpyγ, δqyγ ∈

∆′; a, b ∈ ∆′′; r ∈ ∆′′∗; d, e ∈ Z and u ∈ ∆∗.

βpxαuδpyγ → βpx+y+dγu if αδ
∗
=⇒
S

pd and (p, π(u)) ∈ I(6.1)

βpxαuδpyγ → βpx−dα′uδ′py−eγ if @c ∈ Z : αδ
∗
=⇒
S

pc or (p, π(u)) < I,(6.2)

βpxαu ∈ IRR(S), uδpyγ ∈ IRR(S) and

pxαuδpy
∗
=⇒
S

px−dα′uδ′py−e ∈ IRR(S)

βpxαuδqyγ → βpx−dα′uδ′qy−eγ if pxαuδqy ∗
=⇒
S

px−dα′uδ′qy−e ∈ IRR(S) and p , q(6.3)

βpxα→ r if βα
∗
=⇒
S

r ∈ IRR(S) and x = 0(6.4)

auβpxα→ uβ′px−dα if (a, u) ∈ I and auβpx ∗
=⇒
S

uβ′px−d ∈ IRR(S)(6.5)

βpxαua→ βpx−dα′u if (a, u) ∈ I and pxαua
∗
=⇒
S

px−dα′u ∈ IRR(S)(6.6)

aub→ u if (a, u) ∈ I and a = b−1(6.7)

Lemma 6.4 For u, v ∈ ∆∗ it holds that

(i) π(IRR(T)) ⊆ IRR(S),

(ii) u
∗
=⇒
T

v implies π(u)
∗
=⇒
S

π(v),

(iii) π(u) =G 1 if and only if u
∗
=⇒
T

1. 2

Proof Assume we have an element t ∈ IRR(T) with π(t) < IRR(S). Then there is a factor aua−1

of t, where a ∈ Σ, u ∈ Σ∗ and (a, u) ∈ I. As the letters of t are irreducible over S the preimages
of a and a−1 must be located in different letters of t. Let ti and tj be the letters of t that contain
the preimages of a and a−1. Note that a is a suffix of ti and a−1 is a prefix of tj . All the letters in
between hold parts of the preimage of u, thus commute with a. It follows that one of the rules of T
can be applied contradicting t ∈ IRR(T). Thus, π(IRR(T)) ⊆ IRR(S).

For (ii) observe that the rules of T only allows such reductions that are also allowed in S.

(iii) follows from (i) and (ii). If u
∗
=⇒
T

1 then π(u)
∗
=⇒
S

1 by (ii). If u
∗
=⇒
T

v ∈ IRR(T) with v , 1

then π(u)
∗
=⇒
S

π(v) by (ii) and π(v) ∈ IRR(S) by (i). �

Lemma 6.5 The following length bounds hold:

• Rule (6.2): |d | ≤ 2σ and |e| ≤ 2σ

• Rule (6.3): |d | ≤ 3(σ + 1)|q |Σ and |e| ≤ 3(σ + 1)|p|Σ

• Rule (6.4): |r |Σ < 2(σ − 1)|p|Σ

• Rules (6.5) and (6.6): |d | ≤ 1 2
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6.2 Symbolic Rewriting System

Proof When applying rule (6.2) we distinguish two cases. If (p, π(u)) ∈ I then there is a prefix
α̂ ∈ IRR(S) of α and a suffix δ̂ ∈ IRR(S) if δ such that αδ

∗
=⇒
S

α̂δ̂ ∈ IRR(S) and α̂δ̂ is no

power of p. Let p1, p2 ∈ IRR(S) be cyclically reduced conjugates of psgn(x) and psgn(y) such that
p1 =G α̂−1psgn(x)α̂ and p2 =G δ̂psgn(y)δ̂−1. As p is primitive and α̂ ,G δ̂−1 we have p1 ,G p2.

Let α′′ be a suffix of px α̂ that cancels with a prefix δ′′ of δ̂py . Then α′′ is a suffix of p∞1
and δ′′ is a prefix of p∞2 . From Theorem 5.4 it follows |α′′ | ≤ (σ + 1)|p|Σ. By Lemma 6.3,
|α′ |Σ < (σ − 1)|p|Σ. We write pdα̂ = α′α′′. It follows that |pd |Σ + |α̂ |Σ = |α

′ |Σ + |α
′′ |Σ, and thus

d |p|Σ ≤ |α′ | + |α′′ | ≤ (σ − 1)|p|Σ + (σ + 1)|p|Σ. Solving for d we obtain d ≤ 2σ. The bound on
|e| follows by symmetry.

If (p, π(u)) < I observe that any prefix v of δpy that cancels with a suffix of pxα must commute
with u. Thus, psgn(y) cannot be a factor of v and by Lemma 2.3 v must be a prefix of δp(σ−1) sgn(y).
Thus |e| ≤ σ − 1 < 2σ. The bound on |e| follows by symmetry.

When applying rule (6.3) a suffix of pxα cancels with a prefix of δqy . Thus we can write pdα = α′α′′

and δqe = δ′′δ′ where α′′δ′′
∗
=⇒
S

1. α′′ is a factor of
(
psgn(x))∞ and δ′′ is a factor of

(
qsgn(y))∞. It

holds that |α′′ |Σ = |δ′′ |Σ ≤ 2(σ + 1)(|p|Σ + |q |Σ). Otherwise, we would have p = q by Theorem 5.5
contradicting p , q. By Lemma 6.3, |α′ |Σ < (σ−1)|p|Σ and |δ′ |Σ < (σ−1)|q |Σ. It follows |pdα |Σ =

|α′α′′ |Σ < (σ + 1)2(σ + 1)(|p|Σ + |q |Σ) + (σ − 1)|p|Σ < 3(σ + 1)(|p|Σ + |q |Σ) ≤ 3(σ + 1)|p|Σ |q |Σ.
Combining this with |d | · |p|Σ = |pd |Σ ≥ |pdα |Σ and solving for |d | we obtain |d | < 3(σ + 1)|q |Σ.
By symmetry, it follows that |e| < 3(σ + 1)|p|Σ.

In Rule (6.4) we have |r |Σ ≤ |αβ |Σ. By Lemma 6.3, |α |Σ < (σ − 1)|p|Σ and |β|Σ < (σ − 1)|p|Σ.
Therefore, |r |Σ < 2(σ − 1)|p|Σ.

When applying rule (6.5) a−1 is a prefix of βpx . Thus either a−1 is a prefix of β in which case d = 0
or if it is not a−1 must be a prefix of psgn x in which case |d | = 1. The same bound on rule (6.6)
follows by symmetry. �

Definition 6.6 Let w = w1 . . .wn ∈ ∆
∗. We define

• µ(w) = max{|p|Σ | wi = βpxα ∈ ∆′},

• λ(w) = |w |∆′′ +
∑

wi=βpxα∈∆′ |p|Σ and

• π(w) = π(w1) . . . π(wn), π(a) = a for a ∈ ∆′′ and π(βpxα) = βpxα for βpxα ∈ ∆′. 2

Lemma 6.7 The rewriting system T , applied to a word w ∈ ∆∗, has the following properties.

1. Rules (6.4) and (6.1) can be applied at most |w |∆′ times in total.

2. Rules (6.2) and (6.3) can be applied at most 2σ |w |∆′ times.

3. The number of applications of rules (6.5), (6.6) and (6.7) is at most 2(σ − 1)λ(w). 2

Proof

1. For an application w1 =⇒
T

w2 of rule (6.4) or (6.1) it holds that |w1 |∆′ > |w2 |∆′. Thus there
can be at most |w |∆′ applications of that rule.
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6 The Power Word Problem in Graph Groups

2. When looking at the number of times the rules (6.2) and (6.3) can be applied we only need to
consider the letters from ∆′ in w. The rules can be applied only once to each pair of letters
from ∆′. Furthermore, each letter βpxα ∈ ∆′ can cancel with at most σ other letters to its
right (and at most σ other letters to its left). Hence, up to σ |w |∆′ applications are possible
initially (or may be unblocked by applications of rules (6.5), (6.6) and (6.7)). Each removal of
a letter from ∆′ by rule (6.4) enables up to σ additional applications of rules (6.2) and (6.3).
In total the two rules can be applied at most 2σ |w |∆′ times.

3. For a transition w1 =⇒
T

w2 the following holds.

• |w2 |∆′′ = |w1 |∆′′ if the applied rule is (6.1), (6.2) or (6.3).

• |w2 |∆′′ ≤ |w1 |∆′′ + 2(σ − 1)|p|Σ if the applied rule is (6.4) as that rule adds several letters
from ∆′′ to w2, namely a prefix α of p(σ−1) sgn(x) and a suffix β of p(σ−1) sgn(x). We
obtain the bound |α |Σ + |β|Σ ≤ 2(σ − 1)|p|Σ.

• |w2 |∆′′ ≤ |w1 |∆′′ − 1 if the applied rule is (6.5), (6.6) or (6.7).

Let w = a1 . . . an. Rule (6.4) is the only one that increases | · |∆′′. It can be applied at
most |w |∆′ times. Its applications increase | · |∆′′ by at most

∑
ai=βip

x
i αi ∈∆

′ 2(σ − 1)|pi |Σ =
2(σ−1)

∑
ai=βip

x
i αi ∈∆

′ |pi |Σ. Each application of rule (6.5), (6.6) or (6.7) decreases | · |∆′′ by at
least one. Therefore, those rules can be applied at most |w |∆′′+2(σ−1)

∑
ai=βip

x
i αi ∈∆

′ |pi |Σ ≤
2(σ − 1)λ(w) times. �

Corollary 6.8 If w
∗
=⇒
T

v, then w
≤k
=⇒
T

v with k = 4σλ(w). 2

Proof Each rule can only be applied finitely many times. Adding up the bounds from Lemma 6.7
we obtain a bound of (2σ + 1)|w |∆′ + 2(σ − 1)λ(w) ≤ (2σ + 1)λ(w) + 2(σ − 1)λ(w) ≤ 4σλ(w).�

Definition 6.9 Let w ∈ ∆∗ and p ∈ Ω. We write w = u0β1py1α1u1 . . . βmpymαmum with ui ∈
(∆ \ ∆p)

∗. We define

ηp =

m∑
j=1

yj ,

ηip =

i∑
j=1

yj

2

Lemma 6.10 Let u, v ∈ ∆∗ and u =⇒
T

v. Given a prefix v′ of v there is a prefix u′ of u such that for
all p ∈ Ω

|ηp(u′) − ηp(v′)| ≤ 4(σ + 1)µ(u).

If the applied rule is neither (6.1) nor (6.4), then for all p ∈ Ω and 0 ≤ i ≤ m

|ηip(u) − η
i
p(v)| ≤ 4(σ + 1)µ(u). 2
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6.3 The Shortened Word

Proof We can assume, that v′ contains a letter from ∆p, otherwise the Lemma is trivial. Moreover,
we can assume that v ∈ ∆∗∆p, as appending or removing letters from ∆ \ ∆p does not change ηp.

Let the applied rule be l → r ∈ T . To prove the first part of the lemma we distinguish three cases.

(i) The right-hand side of the rule is not in v′. In that case we choose u′ = v′.

(ii) The right-hand side of the rule is completely in v′. We write v′ = αrβ. We choose u′ = αlβ.
The Lemma follows with the bounds from Lemma 6.5.

(iii) The right-hand side r of the rule overlaps with v′. It follows that r = βpyαu and consequently
we can write l = β′pxα′u′. We write v′ = v′′βpyα. If rule (6.1) has been applied we
choose u′ = v′′l. Otherwise, one of rules (6.2), (6.3) or (6.6) has been applied. We choose
u′ = v′′β′pxα′. The Lemma follows with the bounds from Lemma 6.5.

To see that the second statement of the lemma is true, observe that in case the applied rule is
neither (6.1) nor (6.4), there is a one-to-one correspondence between letters from ∆p in u and v.�

6.3 The Shortened Word

In this section we describe the shortening process. Given u ∈ ∆∗ and some p ∈ Ω we consider
all letters from ∆p in u. We write u = u0β1py1α1u1 . . . βmpymαmum with ui ∈ (∆ \ ∆p)∗. In the
following we define a set C of intervals to be carved out of the exponents during the shortening
process.

Definition 6.11 Let C =
{
[lj, rj] | 1 ≤ j ≤ k

}
be a set of finite, non-empty, non-overlapping

intervals, where k = |C|. We assume the intervals to be ordered, i. e., rj ≤ lj+1. We define the size
of an interval dj = rj − lj + 1.

An element u ∈ ∆∗ is said to be compatible with C, if for every prefix u′ of u it holds that
ηp(u′) < [lj, rj] for all 1 ≤ j ≤ k. 2

Definition 6.12 Let C compatible with u. The shortened version of u is

SC(u) = u0β1pz1α1u1 . . . βmpzmαmum.

The new exponents are defined as

zi = yi − sgn(yi) ·
∑
j∈Ci

dj ,

where Ci is the set of intervals to be removed from yi, defined by

Ci =

{{
j | 1 ≤ j ≤ k, ηi−1

p (u) < lj ≤ rj < ηip(u)
}

if yi > 0{
j | 1 ≤ j ≤ k, ηip(u) < lj ≤ rj < ηi−1

p (u)
}

if yi < 0 2

Lemma 6.13 If u ∈ IRR(T) then SC(u) ∈ IRR(T). 2
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6 The Power Word Problem in Graph Groups

Proof We prove the lemma by showing that sgn(yi) = sgn(zi) and zi , 0. As the intervals in C are
ordered, there are α and β such that Ci contains all indices from α to β. In case yi > 0 we have

zi = yi −
∑
j∈Ci

dj

= yi −

β∑
j=α

dj

= yi −

β∑
j=α

(rj − lj + 1)

≤ yi − rβ − lα + 1
≤ yi − (η

i
p(u) − 1) − (ηip(u) + 1) + 1

= yi − η
i
p(u) − η

i
p(u) + 1

= yi − yi + 1
= 1

The case yi < 0 follows by symmetry. �

Definition 6.14 We define the distance between some ηip(·) and the closest interval from C as

distp(u, C) = min
{
|ηip(u) − x | | 1 ≤ i ≤ m, x ∈ [l, r] ∈ C

}
. 2

From that definition the following statement follows immediately.

Corollary 6.15 distp(u, C) > 0 if and only if u is compatible with C. 2

We want to show, that given some requirements are fulfilled, any rewriting step that is possible on u
is also possible on SC(u).

Lemma 6.16 If distp(u, C) ≥ 4(σ + 1)µ(u) and u =⇒
T

v, then SC(u) =⇒
T
SC(v). 2

Proof Observe that u is compatible with C. By Lemma 6.10 we have dist(v, C) > 0 and thus v is
compatible with C. It follows that SC(u) and SC(v) are well-defined.

To prove the Lemma we compare the shortened version of u and v and show that a rule from T can
be applied.

We distinguish which rule from T has been applied to u.

• If rule (6.2), (6.3), (6.5), (6.6) or (6.7) has been applied, the shortening process has the same
effect on u and v, i. e., Ci(u) = Ci(v). The same rule that has been applied to u to obtain v

can also be applied to SC(u) to obtain SC(v).

• If rule (6.4) is applied, then C`(v) = C`(u) for ` < i and C`(v) = C`+1(u) for ` ≥ i. We also
know yi = 0, which is not altered by the shortening process, i. e., Ci(u) = ∅. Thus, the same
rule can be applied to SC(u) to obtain SC(v).
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• Assume rule (6.1) has been applied.

Let

u = u0β1py1α1u1 . . . βipyiαiuiβi+1pyi+1αi+1ui+1 . . . βmpymαmum.

The result of applying the rule is

v = u0β1py1α1u1 . . . βipyi+yi+1+dαi+1uiui+1 . . . βmpymαmum

On powers not modified by the rule the shortening process behaves the same on u and v, i. e.,
C`(v) = C`(u) for ` < i and C`(v) = C`+1(u) for ` > i. The result of the shortening process
on v is

SC(v) = u0β1pz1α1u1 . . . βipz̃iαi+1uiui+1 . . . βmpzmαmum,

where z̃i = yi + yi+1 + d − sgn(yi + yi+1 + d) ·
∑
`∈Ci (v) d` .

When applying rule (6.1) to the corresponding letters of SC(u) we obtain

v̂ = u0β1pz1α1u1 . . . βipzi+zi+1+dαi+1uiui+1 . . . βmpzmαmum,

We need to show that z̃i = zi+zi+1+d, i. e., zi+zi+1 = yi+yi+1−sgn(yi+yi+1+d)·
∑
`∈Ci (v) d` .

Observe that dist(u, C) > d, thus if sgn(yi+yi+1+d) , sgn(yi+yi+1)we have Ci(u) = Ci+1(u),
Ci(v) = ∅ and the lemma follows. From now on we can assume sgn(yi + yi+1 + d) =
sgn(yi + yi+1).

First, consider the case that yi and yi+1 have the same sign. In that case Ci(v) = Ci(u)∪Ci+1(u)
we have

zi + zi+1 = yi − sgn(yi) ·
∑

`∈Ci (u)

d` + yi+1 − sgn(yi+1) ·
∑

`∈Ci+1(u)

d`

= yi + yi+1 − sgn(yi + yi+1) ·
∑

`∈Ci (v)

d`

Second, we look at the case where yi and yi+1 have opposite sign. We assume |yi | > |yi+1 |.
The other case is symmetric. Now Ci(v) = Ci(u) \ Ci+1(u).

zi + zi+1 = yi − sgn(yi) ·
∑

`∈Ci (u)

d` + yi+1 − sgn(yi+1) ·
∑

`∈Ci+1(u)

d`

= yi + yi+1 − sgn(yi)
©«

∑
`∈Ci (u)

d` −
∑

`∈Ci+1(u)

d`
ª®¬

= yi + yi+1 − sgn(yi + yi+1) ·
∑

`∈Ci (v)

d` �

Lemma 6.17 If distp(u, C) ≥ 4k(σ + 1)µ(u) and u
≤k
=⇒
T

v, then SC(u)
≤k
=⇒
T
SC(v). 2
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6 The Power Word Problem in Graph Groups

Proof We prove the lemma by induction. If k = 1 then the statement follows from Lemma 6.16.

If k > 1, then there is a u′ ∈ ∆∗ such that

u =⇒
T

u′
≤k−1
=⇒
T

v.

By Lemma 6.10 we have distp(u′, C) ≥ 4(k − 1)(σ + 1)µ(u). As none of the rules of T increases

µ(·), it follows that distp(u′, C) ≥ 4(k − 1)(σ + 1)µ(u′). Therefore, SC(u′)
≤k−1
=⇒
T
SC(v) by

induction. By Lemma 6.16 we have SC(u)
≤k−1
=⇒
T
SC(u′). Combining those statements we conclude

SC(u)
≤k
=⇒
T
SC(v). �

Lemma 6.18 If distp(u, C) ≥ 16(σ + 1)2λ(u)2, then π(u) =G 1 if and only if π(SC(u)) =G 1. 2

Proof Let k = 4σλ(u). From the precondition of the lemma we conclude distp(u, C) ≥ 4k(σ +
1)λ(u) ≥ 4k(σ + 1)µ(u).

First, let π(u) =G 1. By Lemma 6.4 that is equivalent to u
∗
=⇒
T

1. Which by Corollary 6.8 is

equivalent to u
≤k
=⇒
T

1. By Lemma 6.17 we have SC(u)
≤k
=⇒
T
SC(1) = 1. Applying Corollary 6.8 and

Lemma 6.4 again we obtain π(SC(u)) =G 1.

Second, assume π(u) =G v ∈ IRR(S), with v ,G 1. Again, applying Corollary 6.8 and Lemma 6.4
that is equivalent to u

≤k
=⇒
T

ṽ, with ṽ ∈ IRR(T), ṽ ,G 1. By Lemma 6.13 SC(v) is irreducible. As
the shortening process does not remove any letters, but only replaces them we have SC(ṽ) ,G 1.
Again, applying Corollary 6.8 and Lemma 6.4, we obtain π(SC(u)) =G SC(ṽ) ,G 1. �

We continue by defining a concrete set of intervals CKu,p that will be used to show that the exponents
of the shortened word are bounded by a polynomial.

Let {c1, . . . c`} =
{
ηip(u) | 0 ≤ i ≤ m

}
be the ordered set of ηip(u), i. e., c1 < · · · < c` . We define

the set of intervals

(6.8) CKu,p = {[ci + K, ci+1 − K] | 1 ≤ i < `, ci+1 − ci ≥ 2K} .

Lemma 6.19 Let K = 16(σ+1)2λ(u)2 andSC(u) = u0β1pz1α1u1 . . . βmpzmαmum for some u ∈ ∆∗.
Then |zi | ≤ 32m(σ + 1)2λ(u)2 for 1 ≤ i ≤ m. 2
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6.3 The Shortened Word

Proof

|zi | =

������yi − sgn(yi) ·
∑
j∈Ci

dj

������
= |yi | −

∑
j∈Ci

dj

(i)
= |yi | −

∑
j∈Ci

max{0, cj+1 − cj − 2K + 1}

≤ |yi | −
∑
j∈Ci

cj+1 − cj − 2K + 1

= |yi | −
∑
j∈Ci

cj+1 − cj +
∑
j∈Ci

2K − 1

=
∑
j∈Ci

2K − 1
(ii)
≤ m(2K − 1) ≤ m2K

We used the following facts.

(i) Definition of CKu,p in (6.8).

(ii) |Ci | ≤ |C
K
u,p | ≤ m.

The lemma follows by plugging in the formula for K . �

Proof (of Theorem 6.1) To prove the lemma we apply the shortening process presented above
and then solve the word problem.

We begin with the preprocessing described in Section 6.1. By Lemma 6.2 the preprocessing can
be done in uAC0 with an oracle gate for the word problem in G. Following the preprocessing
we have a word w = u0px1

1 u1 . . . pxn
n un. We proceed with the shortening procedure for each

p ∈ {pi | 1 ≤ i ≤ n}. The shortening procedure can be computed in parallel for each p. The
computation of the shortened word requires iterated additions which is in uTC0, and therefore can
be done in uAC0 with oracle gates for WP(F2). By Lemma 6.19 the exponents of the shortened
word are bounded by a polynomial. Thus, the shortened word can be represented as a word ŵ of
polynomial length over the alphabet Σ. We can decide whether the power word w is equal to the
identity by deciding whether the word ŵ is equal to the identity, i. e., we have reduced the power
word problem in G to the word problem in G.

The word problem in a graph group is uAC0-Turing reducible to the word problem of the free group
F2 [Kau17, Corollary 5.6.7]. �

37



6 The Power Word Problem in Graph Groups

6.4 Example

In this section we will illustrate the algorithm for solving the power word problem with a detailed
example. Let G be the graph group with the following dependence graph D.

a b c d e

We will go through the individual steps of the algorithm for the following input word w.

w = (aaabbaa−1c)2048000 (adaadebddbec)−4096000 (aaabbc)2048000 (ddd−1de)8192000

The first preprocessing step is to replace each power with a power of a cyclically reduced conjugate.
We replace aaabbaa−1c with the cyclically reduced conjugate aabbac and we replace ddd−1de by
dde. In the second case only free reduction has been applied. The result of the preprocessing step
is the following word.

a (aabbac)2048000 a−1 (adaadebddbec)−4096000 (aaabbc)2048000 (dde)8192000

The second step is to identify connected components in the induced dependence graph of each
power. Then we replace each power with powers of connected words. In our example this only
affects (adaadebddbec)−4096000. We can identify the connected components in the directed acyclic
graph associated with the word adaadebddbec.

a

d

a a

d
e

b b

d d
e

c

Splitting adaadebddbec into the connected words aaabbc and ddedde we obtain

a (aabbac)2048000 a−1 (aaabbc)−4096000 (ddedde)−4096000 (aaabbc)2048000 (dde)8192000.

The third and last preprocessing step is to replace each power with a power of some word in Ω. This
includes making sure each word is primitive and finding conjugates in Ω. In our example ddedde is
not primitive. We replace (ddedde)−4096000 with (dde)−8192000. Then aabbac is not in Ω, we have
to use the conjugate aaabbc. This leads to the following word.

u = aa−1 (aaabbc)2048000 aa−1 (aaabbc)−4096000 (dde)−8192000 (aaabbc)2048000 (dde)8192000

At this point it is easy to observe that the word we chose for our example is equal to the identity of
the group. By Lemma 6.19, we have

K = 16(σ + 1)2λ(u)2 = 788544,
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6.4 Example

2048000

2048000 − K

−2048000

−2048000 + K

K

−K

Figure 6.1: Computation of the shortened word.

with σ = 5 and λ(u) = 37. Note that, for the sake of the example, we have calculated λ(u) of the
word after the preprocessing. In an actual implementation we would need to use an upper bound
based on the input length and the maximum length increase due to preprocessing.

The value K determines the size of the intervals to be cut out from the exponents, as defined in
Equation (6.8). See Figure 6.1 for an illustration of the intervals when applying the shortening
process to all powers of aaabbc. The hatched areas represent the intervals to be cut out. Our
example is symmetric, both intervals have the size 470913. Applying the shortening process to all
powers, we obtain the shortened word

aa−1 (aaabbc)1577087 aa−1 (aaabbc)−3154174 (dde)−1577087 (aaabbc)1577087 (dde)1577087.
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7 The Power Word Problem in Graph
Products

In this section we show that the power word problem in graph products can be solved in uAC0 with
oracles for the word problem and for the power word problem of the base groups. We use the same
techniques we have used in the previous chapter to solve the power word problem for graph groups.
We show that the exponents can be replaced with smaller ones, bounded by a polynomial in the
input. The polynomial is larger than the on we obtained for graph groups.

An important difference to the previous chapter on the power word problem in graph groups is, that
we will be required to solve the power word problem in the base groups of the graph product. The
reason is that we cannot replace exponents of powers that are of a single base group, with smaller
ones. Those will remain after the reduction step. We define solving the word problem with powers
of individual letters as the simple power word problem. The last two sections of this chapter are
dedicated to solving the simple power word problem.

Definition 7.1 (simple power word problem) Let G be a graph product. The input consists of a
list of letters a1, . . . , an ∈ Γ and a list of binary encoded integers x1, . . . , xn ∈ Z. We interpret
the input as w = ax1

1 . . . axn
n . The simple power word problem SPowWP(G) is to decide whether

w =G 1. 2

Definition 7.2 (generalized simple power word problem) Let G be a graph product. Let H ≤ G.
The input consists of a list of letters a1, . . . , an ∈ Γ and a list of binary encoded integers
x1, . . . , xn ∈ Z. We interpret the input as w = ax1

1 . . . axn
n . The generalized simple power word

problem GSPowWP(G,H) is to decide whether w ∈ H. 2

We proceed similar to the previous chapter. Especially the sections on the symbolic rewriting
system and the shortened word are in large parts identical with only minor adjustments.

• In a preprocessing step we replace all powers with powers of a word in Ω.

• We define a symbolic rewriting system, which we will use to prove correctness of the
reduction.

• We define the shortened word, calculating how much can be removed from each exponent.

• We solve the simple power word problem.

Theorem 7.3 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. The power word
problem in G can be decided in uAC0 with oracle gates for the word problem in the free group F2
and for the power word problem in each base group Gα. 2
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7 The Power Word Problem in Graph Products

Theorem 7.4 Let C be a non-trivial class of f.g. groups, G = GP(L, I; (Gα)α∈L). The uniform
power word problem in G, where G1, . . .Gn and I are part of the input, can be solved in C= L with
oracle gates for the uniform power word problem PowWPC. 2

7.1 Preprocessing

Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups.

The preprocessing consists of five steps.

1. Cyclically reducing powers.

2. Replacing powers with powers of connected words.

3. Removing powers of a single letter.

4. Replacing each letter with a normal form specific to the input.

5. Replacing each power with a power of a word in Ω.

Let Γ =
⋃
α∈L Gα be the alphabet of G. The input of the power word problem is a word over

Γ∗ ∪ (Γ∗ ×Z). We can write the input as w = u0px1
1 u1 . . . pxn

n un, where ui, pi ∈ Γ∗ and xi ∈ Z. Note
that some ui may be 1.

Step 1: Cyclically reducing powers. For each pi a cyclically reduced conjugate p̃i is computed.
The power pxi

i is replaced with αi p̃xi
i βi, where pxi

i =G αi p̃
xi
i βi and αi =G β−1

i . By Lemma 2.3
we know there are αi and βi such that |αi | = |βi | < |L| · | p̃|. We can view αi as part of ui−1
and βi as part of ui, thus we can assume that for the next step the input again has the shape
w = u0px1

1 u1 . . . pxn
n un.

Step 2: Replacing powers with powers of connected words. We compute connected
components of pi , i. e., pi,1, . . . pi,k such that pi =G pi,1 . . . pi,k , each pi, j is connected and for each
j , ` it holds that pi,` commutes with pi, j . Observe that k ≤ |L|. We replace the power pxi

i with
pxi
i,1 . . . pxi

i,k
.

Step 3: Removing powers of a single letter. We define the alphabet Γ̃ = Γ × Z, where (v, z)
represents the letter vz . Note that Γ̃ is the alphabet of the simple power word problem in G. We
replace any power pxi

i where pi ∈ Gα for some α ∈ L with the letter [pxi
i ] ∈ Γ̃. For the next step we

still assume that the input has the shape w = u0px1
1 u1 . . . pxn

n un, however from here on ui ∈ Γ̃∗.
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7.1 Preprocessing

Step 4: Replace each letter with a normal form specific to the input. For each i we
write pi = ai,1 . . . ai,ki , where ai, j ∈ Γ. Let N = [a1,1, a−1

1,1, a1,2, . . . a1,k1, a
−1
1,k1

, . . . , an,1, . . . a−1
n,kn
]

be the list of letters (and their inverses) occurring in some power. For convenience, we write
N = [n1, . . . n |N |]. We replace each pi with p̃i = ãi,1 . . . ãi,ki , where ãi, j is the first element in N
equivalent to ai, j . Note that we need to solve the word problem in the base groups Gα to compute
this. After that transformation, any two letters ãi, j and ã`,m representing the same element are equal
as words. Thus, the letters are in a normal form. That normal form is dependent on the input of the
power word problem in G, but that is not an issue for our application. Again, we assume the input
for the next step to be w = u0px1

1 u1 . . . pxn
n un.

Step 5: Replace each power with a power of a word in Ω. LetΩ ⊆ Γ̃∗ be the set containing
only words w with the following properties.

• w ,G 1,

• w is primitive,

• w is connected,

• w is cyclically reduced,

• there is no α ∈ L, such that w ∈ Gα,

• all letters of w are in normal form (w. r. t. the normal form defined in step 4),

• w is a cyclic normal form,

• w is minimal w. r. t. ≤L among its cyclic permutations and the cyclic permutations of a cyclic
normal form of its inverse.

This definition fulfills the requirements of Theorem 5.7.

All requirements except for w being primitive and the last two requirements are already fulfilled
after the previous four preprocessing steps. To take care of the last two requirements, for each pi
we compute a cyclic normal form and a cyclic normal form of its inverse. Then we compute the
minimal element p̃i w. r. t. ≤L among all cyclic permutations of the two cyclic normal forms. If
p̃i is conjugate to the inverse of pi we set x̃i = −xi, otherwise x̃i = xi. There are αi and βi with
pxi
i =G αi p̃

x̃i
i βi such that αi =G β−1

i and |αi | = |βi | < |L| · | p̃|. Again, we view αi as part of ui−1
and βi as part of ui , thus we can assume that the input for the next reduction step, that is computing
the shortened word, has the shape w = u0px1

1 u1 . . . pxn
n un.

Now that each pi is a cyclic normal form, it is easy to check whether a given pi is primitive, and
replace it with a primitive factor if necessary. As pi is a cyclic normal form we know that if
pi =G qr , then pi = nf(q)r (compare proof of Theorem 4.12). Thus, we only need to check for
periods in pi.
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7 The Power Word Problem in Graph Products

7.1.1 The non-uniform case

Lemma 7.5 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Then the preprocessing
as described above can be done in uAC0 with oracle gates for the word problem in G and for the
word problem in the base groups Gα. 2

Proof The cyclically reduced conjugate in step one can be computed in uAC0 with oracle gate for
the word problem in G by Lemma 4.4.

To compute connected components of a power pxi
i we define the predicate conpi ( j, `) for j, ` ∈ L

which is true if j and ` are connected in D(pi), the dependence graph restricted to the letters in pi .
The two vertices are connected if there is an undirected path from j to ` of length at most |L| − 1.
The following equation is equivalent to conpi ( j, `).

∃i1, . . . i |L |−1 : i1 = j ∧ i |L |−1 = ` ∧ (i1, i2) < I ∧ · · · ∧ (i |L |−2, i |L |−1) < I

Furthermore we define the predicate smallestpi ( j) which is true if j ∈ L is the smallest member of
L in the connected component of j. The following equation is equivalent to smallestpi ( j).

∀` ∈ L : ` ≥ j ∨ ¬ conpi ( j, `)

We define the projections πpi, j for pi = ai,1 . . . ai,k by

ai,` 7→
{
ai,` if conpi ( j, alph(ai,`)) ∧ smallestpi ( j),
1 otherwise.

Observe that pi =G πpi,1 . . . πpi, |L | and each πpi, j is connected.

Replacing each power of a single letter with the corresponding letter from the input alphabet of the
power word problem of the base group can obviously be done in uAC0.

To compute our normal form we define the predicate nfletterN (ni, a) to decide whether ni ∈ N is
the normal form of a. The predicate is equivalent to

alph(ni) = alph(a) ∧ ni =Galph(a) a ∧ ∀nj ∈ N : alph(nj) , alph(a) ∨ nj ,Galph(a) ni ∨ j ≥ i.

We define the following mapping of a letter to its normal form.

πnfletter : a 7→ ni where nfletterN (ni, a).

To compute a representative for pi from Ω, we first compute a cyclic normal form conjugate to pi
and a cyclic normal form conjugate to p−1

i . By Theorem 4.12, we can compute a cyclic normal form
in uAC0 with oracle gates for the word problem in G and for the normal form problem in each Gα.
Using the mapping πnfletter presented above we can compute our normal form in uAC0. Computing
cyclic permutations, selecting the smallest, checking for periods and replacing each power with a
primitive factor is obviously in uAC0. Hence, we have shown, that the preprocessing can be done in
uAC0 using oracle gates for the word problem in G and for the word problem in each Gα. �
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7.1 Preprocessing

7.1.2 The uniform case

Lemma 7.6 Let C be a non-trivial class of f.g. groups. Given w ∈ G = GP(L, I; (Gα)α∈L), where
G1, . . .Gn and I are part of the input, the preprocessing as described above can be done in uAC0

with oracle gates for C= L and for the uniform word problem of GPC. 2

Proof The cyclically reduced conjugate in step one can be computed in uAC0 with oracle gate for
the uniform word problem of GPC by Lemma 4.4.

To compute connected components of a power pxi
i we define the predicate conpi ( j, `) for j, ` ∈ L

which is true if j and ` are connected in D(pi) (the dependence graph restricted to the letters in
pi). The two vertices are connected if there is an undirected path from j to ` of length at most
|L| − 1. Computing the conpi predicate in the uniform case requires solving the undirected path
connectivity problem. By [Rei08] this can be done in LOGSPACE and thus in C= L.

Furthermore, we define the predicate smallestpi ( j) which is true if j ∈ L is the smallest member of
L in the connected component of j. The following equation is equivalent to smallestpi ( j).

∀` ∈ L : ` ≥ j ∨ ¬ conpi ( j, `)

We define the projections πpi, j for pi = ai,1 . . . ai,k by

ai,` 7→
{
ai,` if conpi ( j, alph(ai,`)) ∧ smallestpi ( j),
1 otherwise.

Observe that pi =G πpi,1 . . . πpi, |L | and each πpi, j is connected.

Replacing each power of a single letter with the corresponding letter from the input alphabet of the
power word problem of the base group can obviously be done in uAC0.

To compute our normal form we define the predicate nfletterN (ni, a) to decide whether ni ∈ N is
the normal form of a. The predicate is equivalent to

alph(ni) = alph(a) ∧ ni =Galph(a) a ∧ ∀nj ∈ N : alph(nj) , alph(a) ∨ nj ,Galph(a) ni ∨ j ≥ i.

We define the following mapping of a letter to its normal form.

πnfletter : a 7→ ni where nfletterN (ni, a).

To compute a representative for pi from Ω, we first compute a cyclic normal form conjugate to pi
and a cyclic normal form conjugate to p−1

i . By Theorem 4.12, we can compute a cyclic normal
form in uAC0 with oracle gates for the uniform word problem in C= LnfC and GPC. Using the
mapping πnfletter presented above as oracle for nfC we can use the oracle for C= L instead of C= LnfC .
Computing cyclic permutations, selecting the smallest, checking for periods and replacing each
power with a power of a primitive factor can be done in uAC0. Hence, we have shown, that the
preprocessing can be done in uAC0 using oracle gates for C= L and for the uniform word problem
of GPC. �
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7 The Power Word Problem in Graph Products

7.2 Symbolic Rewriting System

Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Let S be the rewriting system for G
defined by the following relations, where a, b ∈ Γ and u ∈ Γ∗.

aub→ [ab]u if alph(a) = alph(b) and (a, u) ∈ I

For p ∈ Ω we define

∆p =

βipxα

�������
x ∈ Z,
α ∈ IRR(S) is a prefix of pσ sgn x , p is no prefix of α,
β ∈ IRR(S) is a suffix of pσ sgn x and p is no suffix of β.


Recall, that we defined the input alphabet of the simple power word problem Γ̃ = Γ × Z. A letter
(v, z) ∈ Γ̃ is interpreted as vz . In Γ̃∗ we can have powers of individual letters (which are words in
the base groups), but not powers of words containing letters from multiple base groups. We define
the alphabet ∆ by ∆′ =

⋃
p∈Ω ∆p, ∆′′ = Γ̃ and ∆ = ∆′ ∪ ∆′′. In the following, let σ = |L|.

Lemma 7.7 Given βpxα ∈ ∆′ it holds that |α | < (σ − 1)|p| and |β | < (σ − 1)|p|. 2

Proof By Lemma 2.3 we can write α = pkws · · ·w1 with s < σ where each wi is a prefix of p.
As p is not a prefix of α we have k = 0. Regarding the length of α we obtain |α | =

∑s
i=1 |wi | <∑s

i=1 |p| = s |p| ≤ (σ − 1)|p|. The bound on the length of β follows by symmetry. �

The rewriting systemT over∆∗ is defined by the following rules. In the following βpxα, δpyγ, δqyγ ∈

∆′; a, b ∈ ∆′′; r ∈ ∆′′∗; d, e ∈ Z; 0 ≤ k ≤ σ; ai ∈ ∆′′ and u ∈ ∆∗.

βpxαuδpyγ → βpx+y+dγu if αδ
∗
=⇒
S

pd and (p, π(u)) ∈ I(7.1)

βpxαuδpyγ → βpx−dα′a1 · ·· akuδ′py−eγ if @c ∈ Z : αδ
∗
=⇒
S

pc or (p, π(u)) < I,(7.2)

βpxαu ∈ IRR(S), uδpyγ ∈ IRR(S) and

pxαuδpy
∗
=⇒
S

px−dα′a1 · ·· akuδ′py−e ∈ IRR(S)

βpxαuδqyγ → βpx−dα′a1 · ·· akuδ′qy−eγ if p ,G q and(7.3)

pxαuδqy ∗
=⇒
S

px−dα′a1 · ·· akuδ′qy−e ∈ IRR(S)

βpxα→ r if βα
∗
=⇒
S

r ∈ IRR(S) and x = 0(7.4)

auβpxα→ a′uβ′px−dα if (a, u) ∈ I and auβpx ∗
=⇒
S

a′uβ′px−d ∈ IRR(S)(7.5)

βpxαua→ βpx−dα′ua′ if (a, u) ∈ I and pxαua
∗
=⇒
S

px−dα′ua′ ∈ IRR(S)(7.6)

aub→ ru if (a, u) ∈ I, alph(a) = alph(b) and r = [ab](7.7)

Lemma 7.8 For u, v ∈ ∆∗ it holds that

(i) π(IRR(T)) ⊆ IRR(S),
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7.2 Symbolic Rewriting System

(ii) u
∗
=⇒
T

v implies π(u)
∗
=⇒
S

π(v),

(iii) π(u) =G 1 if and only if u
∗
=⇒
T

1. 2

Proof Assume we have an element t ∈ IRR(T) with π(t) < IRR(S). Then there is a factor aub of t,
where a, b ∈ Γ̃, ab

∗
=⇒
S
[ab], u ∈ Γ∗ and (a, u) ∈ I. As the letters of t are irreducible over S the

preimages of a and b must be located in different letters of t. Let ti and tj be the letters of t that
contain the preimages of a and b. Note that a is a suffix of ti and b is a prefix of tj . All the letters in
between hold parts of the preimage of u, thus commute with a. It follows that one of the rules of T
can be applied contradicting t ∈ IRR(T). Thus π(IRR(T)) ⊆ IRR(S).

For (ii) observe that the rules of T only allows such reductions that are also allowed in S.

(iii) follows from (i) and (ii). If u
∗
=⇒
T

1 then π(u)
∗
=⇒
S

1 by (ii). If u
∗
=⇒
T

v ∈ IRR(T) with v , 1

then π(u)
∗
=⇒
S

π(v) by (ii) and π(v) ∈ IRR(S) by (i). �

Lemma 7.9 The following length bounds hold:

• Rule (7.2): |d | ≤ 2σ and |e| ≤ 2σ

• Rule (7.3): |d | ≤ 4(σ + 1)|q |Γ and |e| ≤ 4(σ + 1)|p|Γ

• Rule (7.4): |r |Γ < 2(σ − 1)|p|Γ

• Rules (7.5) and (7.6): |d | ≤ 1 2

Proof When applying rule (7.2) we distinguish two cases. If (p, π(u)) ∈ I then αβ is no power of
p. Most importantly we have αβ ,G 1. Let p1, p2 ∈ IRR(S) be cyclically reduced conjugates of p
such that p1 =G α−1pα and p2 =G δpδ−1. As p is primitive and α ,G δ−1, we have p1 ,G p2.

Let α′′ be the suffix of pxα and δ′′ the prefix of δpy such that α′′δ′′
∗
=⇒
S

a1 . . . ak . Then α′′ is
a suffix of p∞1 and δ′′ is a prefix of p∞2 . From Theorem 5.6 it follows |α′′ | ≤ (σ + 1)|p|Γ. By
Lemma 7.7, |α′ |Γ < (σ − 1)|p|Γ. We write pdα = α′α′′. It follows that |pd |Γ + |α |Γ = |α

′ |Γ + |α
′′ |Γ,

and thus d |p|Γ ≤ |α′ | + |α′′ | ≤ (σ − 1)|p|Γ + (σ + 1)|p|Γ. Solving for d we obtain d ≤ 2σ. The
bound on |e| follows by symmetry.

If (p, π(u)) < I observe that if there is some prefix δ′′ of δpy and some suffix α′′ of pxα such that
α′′δ′′

∗
=⇒
S

a1 . . . ak then δ′′ must commute with u. Thus, psgn(y) cannot be a factor of δ′′ and by

Lemma 2.3 δ′′ must be a prefix of δp(σ−1) sgn(y). Thus |e| ≤ σ − 1 < 2σ. The bound on |e| follows
by symmetry.

When applying rule (7.3) we have a suffix α′′ of pxα and a prefix δ′′ of δqy such that α′′δ′′
∗
=⇒
S

a1 . . . ak . Thus, we can write pdα = α′α′′ and δqe = δ′′δ′. Let α′′′ be a suffix of α′′ and δ′′′ be
a prefix of δ′′ such that α′′′δ′′′

∗
=⇒
S

1 and the length of α′′′ and δ′′′ is maximal. α′′′ is a factor

of
(
psgn(x))∞ and δ′′′ is a factor of

(
qsgn(y))∞. It holds that |α′′′ |Γ = |δ′′′ |Γ ≤ 2(σ + 1)(|p|Γ + |q |Γ).

Otherwise, we would have p = q by Theorem 5.7 contradicting p , q. By Lemma 7.7, |α′ |Γ <
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7 The Power Word Problem in Graph Products

(σ − 1)|p|Γ and |δ′ |Γ < (σ − 1)|q |Γ. We also have |α′′ | ≤ |α′′′ | +σ and |δ′′ | ≤ |δ′′′ | +σ. It follows
|pdα |Γ = |α

′α′′ |Γ < 2(σ+1)(|p|Γ+ |q |Γ)+σ+(σ−1)|p|Γ < 4(σ+1)(|p|Γ+ |q |Γ) ≤ 4(σ+1)|p|Γ |q |Γ.
Combining this with |d | · |p|Γ = |pd |Γ ≥ |pdα |Γ and solving for |d | we obtain |d | < 4(σ + 1)|q |Γ.
By symmetry, it follows that |e| < 4(σ + 1)|p|Γ.

In Rule (7.4) we have |r |Γ ≤ |αβ |Γ. By Lemma 7.7, |α |Γ < (σ − 1)|p|Γ and |β|Γ < (σ − 1)|p|Γ.
Therefore, |r |Γ < 2(σ − 1)|p|Γ.

When applying rule (7.5) there is a single letter prefix b of βpx with alph(a) = alph(b). Either b
is a prefix of β in which case d = 0 or if it is not, then b must be a prefix of psgn x in which case
|d | = 1. The same bound on rule (7.6) follows by symmetry. �

Definition 7.10 Let w = w1 . . .wn ∈ ∆
∗. We define

• µ(w) = max{|p|Γ | wi = βpxα ∈ ∆′},

• λ(w) = |w |∆′′ +
∑

wi=βpxα∈∆′ |p|Γ and

• π(w) = π(w1) . . . π(wn), π(a) = a for a ∈ ∆′′ and π(βpxα) = βpxα for βpxα ∈ ∆′. 2

Lemma 7.11 The rewriting system T , applied to a word w ∈ ∆∗, has the following properties.

1. Rules (7.4) and (7.1) can be applied at most |w |∆′ times in total.

2. Rules (7.2) and (7.3) can be applied at most 2σ |w |∆′ times.

3. The number of applications of rules (7.5), (7.6) and (7.7) is at most 2σ3λ(w) + 2σ2λ(w)2. 2

Proof

1. For an application w1 =⇒
T

w2 of rule (7.4) or (7.1) it holds that |w1 |∆′ > |w2 |∆′. Thus there
can be at most |w |∆′ applications of that rule.

2. When looking at the number of times the rules (7.2) and (7.3) can be applied we only need to
consider the letters from ∆′ in w. The rules can be applied only once to each pair of letters
from ∆′. Furthermore, each letter βpxα ∈ ∆′ can cancel with at most σ other letters to its
right (and at most σ other letters to its left). Hence, up to σ |w |∆′ applications are possible
initially (or may be unblocked by applications of rules (7.5), (7.6) and (7.7)). Each removal of
a letter from ∆′ by rule (7.4) enables up to σ additional applications of rules (7.2) and (7.3).
In total the two rules can be applied at most 2σ |w |∆′ times.

3. For a transition w1 =⇒
T

w2 the following holds.

• |w2 |∆′′ = |w1 |∆′′ if the applied rule is (7.1).

• Each application of rules (7.2) or (7.3) increases | · |∆′′ by up to σ.

• Each application of rule (7.4) increases | · |∆′′ by up to 2(σ − 1)λ(w), as that rule adds
several letters from ∆′′ to w2, more precisely it adds a prefix α of p(σ−1) sgn(x) and a
suffix β of p(σ−1) sgn(x). We compute the bound |α |∆′′ + |β|∆′′ ≤ 2(σ − 1)|p|∆′′.
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7.2 Symbolic Rewriting System

We first look at length-reducing applications of rules (7.5), (7.6) and (7.7), where the length
| · |∆′′ is reduced. Initially, there are |w |∆′′ letters from ∆′′. Rules (7.2), (7.3) and (7.4) in total
create up to 2σ2 |w |∆′ + 2(σ − 1)λ(w)|w |∆′ additional letters. Thus we can bound the number
of length-decreasing applications by (2σ2 + 2(σ − 1)λ(w) + 1)λ(w).

To bound the total number of applications of rules (7.5), (7.6) and (7.7), we look the number of
possible applications. Up to 2|w |∆′′ such applications are possible initially. Rules (7.2), (7.3)
and (7.4) in total create up to 2σ2 |w |∆′ + 2(σ − 1)λ(w)|w |∆′ additional letters from ∆′′,
thus allowing up to twice that many additional applications of rules (7.5), (7.6) and (7.7).
Each length-decreasing application of those rules allows up σ − 1 additional applications.
Therefore, those rules can be applied at most 2|w |∆′′ +2σ2 |w |∆′ +2(σ−1)λ(w)|w |∆′ + (2σ2 +

2(σ − 1)λ(w) + 1)λ(w)(σ − 1) ≤ 2σ3λ(w) + 2σ2λ(w)2 times. �

Corollary 7.12 If w
∗
=⇒
T

v, then w
≤k
=⇒
T

v with k = 3σ3λ(w) + 3σ2λ(w)2. 2

Proof Each rule can only be applied finitely many times. Adding up the bounds from Lemma 7.11
we obtain a bound of (2σ + 1)|w |∆′ + 2σ3λ(w) + 2σ2λ(w)2 ≤ 3σ3λ(w) + 3σ2λ(w)2. �

Definition 7.13 Let w ∈ ∆∗ and p ∈ Ω. We write w = u0β1py1α1u1 . . . βmpymαmum with
ui ∈ (∆ \ ∆p)∗. We define

ηp =

m∑
j=1

yj ,

ηip =

i∑
j=1

yj

2

Lemma 7.14 Let u, v ∈ ∆∗ and u =⇒
T

v. Given a prefix v′ of v there is a prefix u′ of u such that for
all p ∈ Ω

|ηp(u′) − ηp(v′)| ≤ 4(σ + 1)µ(u).

If the applied rule is neither (7.1) nor (7.4), then for all p ∈ Ω and 0 ≤ i ≤ m

|ηip(u) − η
i
p(v)| ≤ 4(σ + 1)µ(u). 2

Proof We can assume, that v′ contains a letter from ∆p, otherwise the Lemma is trivial. Moreover,
we can assume that v ∈ ∆∗∆p, as appending or removing letters from ∆ \ ∆p does not change ηp.

Let the applied rule be l → r ∈ T . To proof the first part of the lemma we distinguish three cases.

(i) The right-hand side of the rule is not in v′. In that case we choose u′ = v′.

(ii) The right-hand side of the rule is completely in v′. We write v′ = αrβ. We choose u′ = αlβ.
The Lemma follows with the bounds from Lemma 7.9.
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7 The Power Word Problem in Graph Products

(iii) The right-hand side r of the rule overlaps with v′. It follows that r = βpyαu and consequently
we can write l = β′pxα′u′. We write v′ = v′′βpyα. If rule (7.1) has been applied we
choose u′ = v′′l. Otherwise, one of rules (7.2), (7.3) or (7.6) has been applied. We choose
u′ = v′′β′pxα′. The Lemma follows with the bounds from Lemma 7.9.

To see that the second statement of the lemma is true, observe that in case the applied rule is
neither (7.1) nor (7.4), there is a one-to-one correspondence between letters from ∆p in u and v.�

7.3 The Shortened Word

In this section we describe the shortening process. Given u ∈ ∆∗ and some p ∈ Ω we consider
all letters from ∆p in u. We write u = u0β1py1α1u1 . . . βmpymαmum with ui ∈ (∆ \ ∆p)∗. In the
following we define a set C of intervals to be carved out of the exponents during the shortening
process.

Definition 7.15 Let C =
{
[lj, rj] | 1 ≤ j ≤ k

}
be a set of finite, non-empty, non-overlapping

intervals, where k = |C|. We assume the intervals to be ordered, i. e., rj ≤ lj+1. We define the size
of an interval dj = rj − lj + 1.

An element u ∈ ∆∗ is said to be compatible with C, if for every prefix u′ of u it holds that
ηp(u′) < [lj, rj] for all 1 ≤ j ≤ k. 2

Definition 7.16 Let C compatible with u. The shortened version of u is

SC(u) = u0β1pz1α1u1 . . . βmpzmαmum.

The new exponents are defined as

zi = yi − sgn(yi) ·
∑
j∈Ci

dj ,

where Ci is the set of intervals to be removed from yi, defined by

Ci =

{{
j | 1 ≤ j ≤ k, ηi−1

p (u) < lj ≤ rj < ηip(u)
}

if yi > 0{
j | 1 ≤ j ≤ k, ηip(u) < lj ≤ rj < ηi−1

p (u)
}

if yi < 0 2

Lemma 7.17 If u ∈ IRR(T) then SC(u) ∈ IRR(T). 2
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7.3 The Shortened Word

Proof We prove the lemma by showing that sgn(yi) = sgn(zi) and zi , 0. As the intervals in C are
ordered, there are α and β such that Ci contains all indices from α to β. In case yi > 0 we have

zi = yi −
∑
j∈Ci

dj

= yi −

β∑
j=α

dj

= yi −

β∑
j=α

(rj − lj + 1)

≤ yi − rβ − lα + 1
≤ yi − (η

i
p(u) − 1) − (ηip(u) + 1) + 1

= yi − η
i
p(u) − η

i
p(u) + 1

= yi − yi + 1
= 1

The case yi < 0 follows by symmetry. �

Definition 7.18 We define the distance between some ηip(·) and the closest interval from C as

distp(u, C) = min
{
|ηip(u) − x | | 1 ≤ i ≤ m, x ∈ [l, r] ∈ C

}
. 2

From that definition the following statement follows immediately.

Corollary 7.19 distp(u, C) > 0 if and only if u is compatible with C. 2

We want to show, that given some requirements are fulfilled, any rewriting step that is possible on u
is also possible on SC(u).

Lemma 7.20 If distp(u, C) ≥ 4(σ + 1)µ(u) and u =⇒
T

v, then SC(u) =⇒
T
SC(v). 2

Proof Observe that u is compatible with C. By Lemma 7.14 we have dist(v, C) > 0 and thus v is
compatible with C. It follows that SC(u) and SC(v) are well-defined.

To prove the lemma we compare the shortened version of u and v and show that a rule from T can
be applied.

We distinguish which rule from T has been applied to u.

• If rule (7.2), (7.3), (7.5), (7.6) or (7.7) has been applied, the shortening process has the same
effect on u and v, i. e., Ci(u) = Ci(v). The same rule that has been applied to u to obtain v

can also be applied to SC(u) to obtain SC(v).

• If rule (7.4) is applied, then C`(v) = C`(u) for ` < i and C`(v) = C`+1(u) for ` ≥ i. We also
know yi = 0, which is not altered by the shortening process, i. e., Ci(u) = ∅. Thus, the same
rule can be applied to SC(u) to obtain SC(v).
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7 The Power Word Problem in Graph Products

• Assume rule (7.1) has been applied.

Let

u = u0β1py1α1u1 . . . βipyiαiuiβi+1pyi+1αi+1ui+1 . . . βmpymαmum.

The result of applying the rule is

v = u0β1py1α1u1 . . . βipyi+yi+1+dαi+1uiui+1 . . . βmpymαmum

On powers not modified by the rule the shortening process behaves the same on u and v, i. e.,
C`(v) = C`(u) for ` < i and C`(v) = C`+1(u) for ` > i. The result of the shortening process
on v is

SC(v) = u0β1pz1α1u1 . . . βipz̃iαi+1uiui+1 . . . βmpzmαmum,

where z̃i = yi + yi+1 + d − sgn(yi + yi+1 + d) ·
∑
`∈Ci (v) d` .

When applying rule (7.1) to the corresponding letters of SC(u) we obtain

v̂ = u0β1pz1α1u1 . . . βipzi+zi+1+dαi+1uiui+1 . . . βmpzmαmum,

We need to show that z̃i = zi+zi+1+d, i. e., zi+zi+1 = yi+yi+1−sgn(yi+yi+1+d)·
∑
`∈Ci (v) d` .

Observe that dist(u, C) > d, thus if sgn(yi+yi+1+d) , sgn(yi+yi+1)we have Ci(u) = Ci+1(u),
Ci(v) = ∅ and the lemma follows. From now on we can assume sgn(yi + yi+1 + d) =
sgn(yi + yi+1).

First, consider the case that yi and yi+1 have the same sign. In that case Ci(v) = Ci(u)∪Ci+1(u)
we have

zi + zi+1 = yi − sgn(yi) ·
∑

`∈Ci (u)

d` + yi+1 − sgn(yi+1) ·
∑

`∈Ci+1(u)

d`

= yi + yi+1 − sgn(yi + yi+1) ·
∑

`∈Ci (v)

d`

Second, we look at the case where yi and yi+1 have opposite sign. We assume |yi | > |yi+1 |.
The other case is symmetric. Now Ci(v) = Ci(u) \ Ci+1(u).

zi + zi+1 = yi − sgn(yi) ·
∑

`∈Ci (u)

d` + yi+1 − sgn(yi+1) ·
∑

`∈Ci+1(u)

d`

= yi + yi+1 − sgn(yi)
©«

∑
`∈Ci (u)

d` −
∑

`∈Ci+1(u)

d`
ª®¬

= yi + yi+1 − sgn(yi + yi+1) ·
∑

`∈Ci (v)

d` �

Lemma 7.21 If distp(u, C) ≥ 4k(σ + 1)µ(u) and u
≤k
=⇒
T

v, then SC(u)
≤k
=⇒
T
SC(v). 2
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Proof We prove the lemma by induction. If k = 1 then the statement follows from Lemma 7.20.

If k > 1, then there is a u′ ∈ ∆∗ such that

u =⇒
T

u′
≤k−1
=⇒
T

v.

By Lemma 7.14 we have distp(u′, C) ≥ 4(k − 1)(σ + 1)µ(u). As none of the rules of T increases

µ(·), it follows that distp(u′, C) ≥ 4(k − 1)(σ + 1)µ(u′). Therefore SC(u′)
≤k−1
=⇒
T
SC(v) by

induction. By Lemma 7.20 we have SC(u)
≤k−1
=⇒
T
SC(u′). Combining those statements we conclude

SC(u)
≤k
=⇒
T
SC(v). �

Lemma 7.22 If distp(u, C) ≥ 12(σ+1)3λ(u)2(σ+λ(u)), then π(u) =G 1 if and only if π(SC(u)) =G
1. 2

Proof Let k = 3σ3λ(w) + 3σ2λ(w)2. From the precondition of the lemma we conclude
distp(u, C) ≥ 4k(σ + 1)λ(u) ≥ 4k(σ + 1)µ(u).

First, let π(u) =G 1. By Lemma 6.4 that is equivalent to u
∗
=⇒
T

1. Which by Corollary 6.8 is

equivalent to u
≤k
=⇒
T

1. By Lemma 6.17 we have SC(u)
≤k
=⇒
T
SC(1) = 1. Applying Corollary 6.8 and

Lemma 6.4 again we obtain π(SC(u)) =G 1.

Second, assume π(u) =G v ∈ IRR(S), with v ,G 1. Again, applying Corollary 6.8 and Lemma 6.4
that is equivalent to u

≤k
=⇒
T

ṽ, with ṽ ∈ IRR(T), ṽ ,G 1. By Lemma 6.13 SC(v) is irreducible. As
the shortening process does not remove any letters, but only replaces them we have SC(ṽ) ,G 1.
Again, applying Corollary 6.8 and Lemma 6.4, we obtain π(SC(u)) =G SC(ṽ) ,G 1. �

We continue by defining a concrete set of intervals CKu,p that will be used to show that the exponents
of the shortened word are bounded by a polynomial.

Let {c1, . . . c`} =
{
ηip(u) | 0 ≤ i ≤ m

}
be the ordered set of ηip(u), i. e., c1 < · · · < c` . We define

the set of intervals

(7.8) CKu,p = {[ci + K, ci+1 − K] | 1 ≤ i < `, ci+1 − ci ≥ 2K} .

Lemma 7.23 Let K = 12(σ + 1)3λ(u)2(σ + λ(u)) and SC(u) = u0β1pz1α1u1 . . . βmpzmαmum for
some u ∈ ∆∗. Then |zi | ≤ 24m(σ + 1)3λ(u)2(σ + λ(u)) for 1 ≤ i ≤ m. 2
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Proof

|zi | =

������yi − sgn(yi) ·
∑
j∈Ci

dj

������
= |yi | −

∑
j∈Ci

dj

(i)
= |yi | −

∑
j∈Ci

max{0, cj+1 − cj − 2K + 1}

≤ |yi | −
∑
j∈Ci

cj+1 − cj − 2K + 1

= |yi | −
∑
j∈Ci

cj+1 − cj +
∑
j∈Ci

2K − 1

=
∑
j∈Ci

2K − 1
(ii)
≤ m(2K − 1) ≤ m2K

We used the following facts.

(i) Definition of CKu,p in (7.8).

(ii) |Ci | ≤ |C
K
u,p | ≤ m.

The lemma follows by plugging in the formula for K . �

7.4 The non-uniform Case

In this section we show that the power word problem in graph groups can be solved in uAC0 with
oracles for the power word problem in the base groups Gα and for the word problem of the free
group F2. First, we reduce the power word problem to the simple power word problem, where each
power is restricted to a single base group. We do this using the shortening process presented in the
previous section. To solve the simple power word problem, we need to handle the remaining powers
which are restricted to a single base group. We do that by using the oracles for the power word
problem in the base groups.

Lemma 7.24 Let G be a graph product. The power word problem PowWP(G) is uAC0-Turing
reducible to the simple power word problem SPowWP(G) and the word problem of the free group
WP(F2). 2

Proof We begin with the preprocessing described in Section 7.1. By Lemma 7.5 the preprocessing
can be done in uAC0 with oracles for the word problem in G and for the power word problem in each
Gα. We can use the oracle for the simple power word problem SPowWP(G) in G to solve the word
problem in G and the power word problem in each Gα. Following the preprocessing we have a word
w = u0px1

1 u1 . . . pxn
n un. We proceed with the shortening procedure for each p ∈ {pi | 1 ≤ i ≤ n}.

The shortening procedure can be computed in parallel for each p. The computation of the shortened
word requires iterated additions which is in uTC0, and therefore can be done in uAC0 with oracle
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gates for WP(F2). By Lemma 7.23 the exponents of the shortened word are bounded by a polynomial.
Thus, the shortened word can be represented as a word ŵ of polynomial length over the alphabet
(Γ × Z). We can solve the power word problem of w by solving the simple power word problem of
ŵ. �

Before solving the simple power word problem in G we introduce lemmata to help us achieve this
goal. The following lemma is due to Jonathan Kausch [Kau17].

Lemma 7.25 [Kau17, Lemma 5.4.4] Let B be a f.g. group, R a (possibly infinite) set, let
G = ∗v∈RB(v) with B(v) ' B and 1 ∈ R a distinguished element. Then, it holds that G ' F(X)o B,
where F(X) is a free group with basis

X = {g(v) | 1 , g ∈ B, 1 , v ∈ R}. 2

Let B be a f.g. group, R be a finite list. We begin by looking at a specific free product. Jonathan
Kausch [Kau17, Lemma 5.4.5] has shown that for the free product G = ∗v∈RB(v), the word problem
can be solved in uAC0 with oracle gates for WP(B) and WP(F2). We show a similar result for the
simple word problem. Our proof is mostly identical to the one presented in [Kau17], with only a
few changes to account for the different encoding of the input.

Lemma 7.26 Let B be a f.g. group, R be a finite list. Let G ' ∗v∈RB(v). Let the input be
w =

(
w
(v1)
1

)x1
. . .

(
w
(vn)
n

)xn
∈ (B×R ×Z)∗, where the exponents xi are encoded as binary numbers.

Then the problem w ∈ G can be decided in uAC0 with oracles for the power word problem in B and
for the word problem of the free group F2. 2

Proof By Lemma 7.25 we have G ' F(X)o B. The set X is given by

X = {g(v) | 1 , g ∈ B, 1 , v ∈ R}.

Let ϕ : G → B be the homomorphism defined by ϕ(b(v)) = b. We can assume ϕ(w) =

wx1
1 . . .wxn

n =B 1 as otherwise w ,G 1. Now our aim is to write w as a member of the kernel of ϕ,
which is F(X).

Let gi = wx1
1 . . .wxi

i ∈ (B × Z)
∗. Observe that we can construct the gi in uAC0. We have

w =G g
(v1)
1 ·

n∏
i=2

(
g
(vi−1)
i−1

)−1
· g
(vi )
i .

Using the fact that gn = ϕ(w) =B 1 we can rewrite w as part of the kernel.

w =G

n−1∏
i=1

g
(vi )
i ·

(
g
(vi+1)
i

)−1
.

Next we define a finite subset Y ⊆ X , such that w ∈ F(Y ) ≤ F(X). To achieve this we set

Y = {g(vi )i , g
(vi+1)
i | 1 ≤ i ≤ n − 1}.
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7 The Power Word Problem in Graph Products

From this definition it follows that |Y | ≤ 2(n − 1). Note that two generators gvi , g
u
j ∈ Y are equal if

and only if v = u and gi =B gj . The following circuit can decide whether two generators are equal
using the oracle for the power word problem in B.

Eq(v, i, u, j) ≡
(
v = u ∧ gig

−1
j ∈ PowWP(B)

)
As a last step we simplify the basis by mapping it to the set Ŷ = {x1, . . . x2(n−1)}. We use the
following map ψ : Y → Ŷ .

gvi 7→



xk, if v = vi and
k = min{ j ≤ i | gvii = g

vj
j },

xk, if v = vi+1 and
k = min{1 ≤ j ≤ n | gvi+1

i = g
vj
j } exists,

xk+n−1 if v = vi+1 and
k = min{1 ≤ j ≤ n | gvi+1

i = g
vj
j } otherwise.

The map ψ can be computed in uAC0 with oracle gates for the power word problem in B and defines
an isomorphism between F(Y ) and F(Ŷ ). By [Kau17, Theorem 5.2.5] the uniform word problem of
ŵ = ψ(w) in F(Ŷ ) can be reduced to the word problem in F2 in uAC0. �

The next step is to look at a specific amalgamated product. The following lemma is due to Jonathan
Kausch [Kau17].

Lemma 7.27 [Kau17, Lemma 5.5.2] Let G = P ∗A (B × A). Given a retract π : G→ P, it holds
that G ' ker π o P and

ker π ' ∗v∈P/AB(v). 2

Lemma 7.28 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. For a subset S ⊆ L
we define the induced subgroup GS = GP(S, IS; (Gα)α∈S), where IS = I ∩ (S × S). It holds that

GSPowWP(GS,G) ∈ uAC0(SPowWP(G)),

that is the generalized simple power word problem GSPowWP(GS,G) can be decided in uAC0 with
an oracle for the simple power word problem in G. 2

Proof Consider the projection π : (Γ × Z)∗ 7→ (ΓS × Z), with

π(ax) =

{
ax if alph(a) ∈ S,
1 otherwise.

Let w = wx1
1 . . .wxn

n be the input of the generalized simple power word problem. We have
w =G π(w) if and only if w ∈ GS . That is equivalent to w−1π(w) =G 1, the projection π can be
computed in uAC0. �
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7.4 The non-uniform Case

Lemma 7.29 Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. It holds that

SPowWP(G) ∈ uAC0({WP(F2)} ∪ {PowWP(Gα) | α ∈ L}),

that is the simple power word problem in G can be solved in uAC0 with oracles for the power word
problem in each base group Gα and the word problem of the free group F2. 2

Proof We proceed by induction on the cardinality of L. If |L | = 1, we can solve the simple
power word problem in G by solving the power word problem in the base group. Otherwise,
let β ∈ L be fixed. We define L ′ = L \ {β}, I ′ = I ∩ (L ′ × L ′), P = GP(L ′, I ′; (Gα)α∈L′),
link(β) = {γ | (β, γ) ∈ I} and link(Gβ) = GP(link(β), I ∩ (link(β) × link(β)); (Gα)α∈link β). Now
we can write G as amalgamated product G = P∗link(Gβ ) (link(Gβ)×Gβ). By the induction hypothesis
we can solve the simple power word problem in P and link(Gβ) with oracles for the power word
problem in each base group Gα and the word problem of the free group F2. By Lemma 7.28 we
can reduce the generalized simple power word problem of link(Gβ) in P to the simple power word
problem in P. It remains to show how to solve the simple power word problem in the amalgamated
product.

Let the input be w = wx1
1 . . .wxn

n ∈ (Γ ×Z)
∗. Recall that ΓP =

⋃
α∈L′ Γα. We define the projections

πP : Γ∗ → Γ∗P and πβ : Γ∗ → Γ∗β by

πP(a) =


a if a ∈ ΣP,
a if a ∈ ΣA,
1 if a ∈ ΣB,

πβ(a) =


1 if a ∈ ΣP,
1 if a ∈ ΣA,
a if a ∈ ΣB.

Let pi = πP(wi) and bi = πB(wi). For the following construction we assume that πP(w) =
px1

1 . . . pxn
n =P 1, as otherwise w ,G 1. By Lemma 7.27 we have G ' ∗v∈P/AB(v)o P. We want to

write w as part of the kernel of πP. We define gi = px1
1 . . . pxi

i . Note that the gi can be computed
in uAC0. We have w =G g1bx1

1 g−1
1 g2bx2

2 . . . g−1
n−1gnbxnn . Observe that gn = πP(w) =G 1 and thus

w =G g1bx1
1 g−1

1 . . . gnbxnn g−1
n .

We compute

vi = min{1 ≤ j ≤ n | giA = gj A}

= min{1 ≤ j ≤ n | gig−1
j ∈ A}.

The computation can be reduced to the simple power word problem in G in uAC0 by Lemma 7.28.

Now we have w =G 1 if and only if πP(w) =G 1 and (bx1
1 )
(v1) . . . (bxnn )(vn) = 1 in ∗v∈RB(v). The

lemma follows with Lemma 7.26. �

Proof (Proof of Theorem 7.3) The proof, that the power word problem in a graph product G of
f.g. groups can be decided in uAC0 with oracles for the word problem in the free group F2 and the
power word problem in each base group Gα follows from the previous lemmata. By Lemma 7.24,
the power word problem in G is uAC0-Turing reducible to the simple power word problem in G and
the word problem in the free group F2. By Lemma 7.29, the simple power word problem in G is
uAC0-Turing reducible to the word problem in the free group F2 and the power word problem in
each base group Gα. �
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7 The Power Word Problem in Graph Products

7.5 The uniform Case

In this section we look at the uniform power word problem in graph groups. First, we reduce the
power word problem to the simple power word problem, where each power is restricted to a single
base group, using the shortening process presented in the previous section. Then we directly solve
the simple power word problem.

Lemma 7.30 Let C be a non-trivial class of f.g. groups, G = GP(L, I; (Gα)α∈L). The uniform
power word problem PowWP GPC, where G1, . . .Gn and I are part of the input, can be solved in
uAC0 with oracles for C= L and the simple power word problem SPowWP(GPC). 2

Proof We begin with the preprocessing described in Section 7.1. By Lemma 7.6 the preprocessing
can be done in uAC0 with oracles for C= L and for the uniform word problem of GPC. We can use
the oracle for the uniform simple power word problem SPowWP(GPC) to solve the uniform word
problem in GPC. Following the preprocessing we have a word w = u0px1

1 u1 . . . pxn
n un. We proceed

with the shortening procedure for each p ∈ {pi | 1 ≤ i ≤ n}. The shortening procedure can be
computed in parallel for each p. The computation of the shortened word requires iterated additions
which is in uTC0, and therefore can be done in uAC0 with oracle gates for WP(F2). By [LZ77]
the word problem of the free group F2 can be solved in LOGSPACE and therefore in C= L. By
Lemma 7.23 the exponents of the shortened word are bounded by a polynomial. Thus, the shortened
word can be represented as a word ŵ of polynomial length over the alphabet (Γ × Z). We can solve
the power word problem of w by solving the simple power word problem of ŵ. �

Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. The following embedding of G
into a (possibly infinite-dimensional) linear group has been presented in [Kau17]. The mapping
σ : G→ GL(ZΓ) is defined by w 7→ σw , whereσw = σw1 . . . σwn for a factorization w = w1 . . .wn.
The mapping σa : ZΓ → ZΓ is defined as the linear extension of

σa(b) =


−a if a, b ∈ Γα for some α and ab =Gα 1,
[ab] − a if a, b ∈ Γα for some α and ab ,Gα 1,
b + 2a if a ∈ Γα, b ∈ Γβ for some α , β and (α, β) < I,
b if a ∈ Γα, b ∈ Γβ for some α , β and (α, β) ∈ I .

The following lemma is due to Jonathan Kausch [Kau17].

Lemma 7.31 [Kau17, Lemma 3.3.4] Let w ∈ Γ∗ be a reduced trace and we =G uev such that
e ∈ Γε , u, v ∈ Γ∗ and e is the single maximal element of ue. Moreover, let

σw(e) =
∑
c∈Γ

λc · c,

and let u = u0a1u1 . . . anun be the α-factorization of u, then for c ∈ Γα we have λc ≥ 0 and

λc > 0⇐⇒ For some i with 1 ≤ i ≤ n : c =G

{
ai . . . an if α , ε,
ai . . . an · c if α = ε. 2
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7.5 The uniform Case

Algorithm 7.1 Computing the coefficient a ∈ Γα of σw(x) in GapL

Input: a,w1 . . .wn; where wi = gxii
(k, `, s) ← (n + 1, n + 1, 1)
for i in [n, . . . , 1] do

if k = n + 1 ∧ ` = n + 1 then // σwi (x) = 2wi + x
5: Guess “Branch 1”, “Branch 2” or “Branch 3”

if “Branch 1” or “Branch 2” then (k, `, s) ← (i, i, 1)
if “Branch 3” then (k, `, s) ← (n + 1, n + 1, s)

else if alph(gi) = alph(gk) then // σwi (πα(wk . . .w`)) = [wiπα(wk . . .w`)] − wi

Guess “Branch 1” or “Branch 2”
10: if “Branch 1” then (k, `, s) ← (i, `, s)

if “Branch 2” then (k, `, s) ← (i, i,−s)
else if (alph(gi), alph(gk)) < I then // σwi (πα(wk . . .w`)) = πα(wk . . .w`) + 2wi

Guess “Branch 1”, “Branch 2” or “Branch 3”
if “Branch 1” then (k, `, s) ← (k, `, s)

15: if “Branch 2” or “Branch 3” then (k, `, s) ← (i, i, s)
else // σwi (πα(wk . . .w`)) = πα(wk . . .w`)

(k, `, s) ← (k, `, s)
end if

end for
20: if k , n + 1 ∧ a =Gα πα(wk . . .w`) then // Use oracle for PowWPC

if s = 1 then accept
if s = −1 then reject

else
Guess “Branch 1” or “Branch 2”

25: if “Branch 1” then accept
if “Branch 2” then reject

end if

Our solution to the uniform simple power word problem is based on the solution to the word
problem presented in [Kau17]. The underlying idea is to add an additional free group 〈x〉 to the
graph product, which is dependent on all other groups. Let πα be the projection to Γα, defined
by πα(a) = a for a ∈ Γα and πα(a) = 1 for a < Γα. As a consequence of Lemma 7.31 we have
σw(x) = x if and only if w =G 1. Non-zero coefficients of σw(x) are a subword of πα(w) for some
α ∈ L.

Lemma 7.32 Let C be a non-trivial class of f.g. groups, G = GP(L, I; (Gα)α∈L). The uniform
simple power word problem in G, where G1, . . .Gn and I are part of the input, can be solved in
C= L with oracle gates for the uniform power word problem PowWPC. 2

Proof Let w = px1
1 . . . pxn

n ∈ G, where pi ∈ Γ and xi ∈ Z. If w ,G 1 then there are α ∈ L and
1 ≤ k ≤ ` ≤ n such that the coefficient πα(pxk

k
. . . px`

`
) is not zero.

To compute the coefficients we use Algorithm 7.1. The computation of σw(x) can be regarded as a
tree. Each inner node is annotated with a coefficient and a sign, and corresponds to a contribution
of either +1 or −1 to that coefficient. The coefficient is stored using two indices k and ` into the
input. We use (k, `) = (n + 1, n + 1) to represent x.
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7 The Power Word Problem in Graph Products

x

b

b

accept reject

b

b

accept reject

x

a

accept

a

accept

x

accept reject

Figure 7.1: Computation of the coefficient λa of σab(x) by Algorithm 7.1. Each inner node is
labeled with the coefficient it contributes to. The algorithm stores the coefficient using
two indices k and `. The nodes on the second level correspond to σb(x), the nodes on
the third level correspond to σab(x). If they are labeled with a they have one leaf node
as a child which is an accepting path (or a rejecting path if the sign is negative). If they
are not labeled with a, then there are two leaf node children, one is an accepting path,
the other a rejecting path, so they do not affect the result of the computation.

The root node is x. Let w = w′a, with a ∈ Γ. Then σw(x) = σw′(σa(x)). The nodes on the second
level, that is the children of the root node, correspond to σa. The last level made up of inner nodes
corresponds to σw . At that point the algorithm checks if the node is annotated with the coefficient
that should be computed. That is done using the oracle for the uniform power word problem in C. If
the node is annotated with the coefficient that should be computed, then the computation will accept
the input if the sign is positive, and reject if the sign is negative. The coefficient is computed as the
difference of the number of accepting paths and the number of rejecting paths. Nodes not labeled
with the coefficient that should be computed will have two leaf nodes as children, one accepting and
one rejecting computation path, thus they do not affect the result. Therefore, the computation of a
coefficient is in GapLPowWP C , and we can check in C= LPowWP C whether a coefficient is zero. An
example of a computation tree is presented in Figure 7.1.

We can check whether all coefficients are zero, as C= LPowWP C is closed under finite conjunc-
tions [CMTV98]. �

Proof (of Theorem 7.4) Let C be a non-trivial class of f.g. groups, G = GP(L, I; (Gα)α∈L). The
uniform power word problem in G, where G1, . . .Gn and I are part of the input, can be solved in
uAC0 with oracle gates for C= L and the uniform power word problem PowWPC. By Lemma 7.30,
the uniform power word problem in G is uAC0-Turing reducible to the simple power word problem
in G and the word problem of C= L. By Lemma 7.32, the simple power word problem in G is
C= L-Turing reducible to the uniform power word problem PowWPC. �
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8 Consequences for the Knapsack Problem in
Graph Groups

The knapsack problem (over Z) is a classical optimization problem. It is defined as follows. There
are n items, with weight wi and value vi . There is a maximum weight W . The goal is to maximize
the total value

∑
xivi, while not exceeding the weight bound

∑
xiwi ≤ W , where xi ∈ Z, xi ≥ 0.

When posed as a decision problem, there is a target value V , and the question is whether there are xi
such that

∑
xivi ≥ V , while not exceeding the weight bound. This decision variant of the knapsack

problem is one of the 21 problems shown to be NP-complete by Karp in 1972 [Kar72].

Myasnikov et al. have formulated the classical knapsack problem for arbitrary groups [MNU15].
Their definition is a follows.

Definition 8.1 Let G be a group. Let g1, . . . , gn, g ∈ G. Then the knapsack problem is to decide
whether there are x1, . . . , xn ∈ Z, with xi ≥ 0, such that

gx1
1 . . . gxnn =G g. 2

Using the above definition, with the group Z the input is encoded unary and not binary (as with the
classical knapsack problem). Thus the problem becomes easier. However, if we choose a group G
that is sufficiently complex, the problem will be NP-complete again, even for groups with the word
problem in P.

M. Lohrey and G. Zetzsche have studied the knapsack problem for fixed graph groups. They have
shown the following results for a fixed graph group G with independence relation I [LZ16].

• If I is a complete graph, then the knapsack problem for G is uTC0-complete.

• If I does not contain an induced cycle of four nodes (C4) or an induced path of length four
(P4), then the knapsack problem for G is LogCFL-complete.

• If I contains an induced C4 or P4, then the knapsack problem for G is NP-complete.

We consider the uniform knapsack problem for graph groups. That is, the variant of the knapsack
problem where the group, most importantly the independence graph I, is part of the input. We use
our result on the uniform power word problem in graph groups to give a crude algorithm for solving
the uniform knapsack problem in graph groups.

Theorem 8.2 The uniform knapsack problem for graph groups is NP-complete. On the input of an
alphabet Σ, an independence relation I ⊆ Σ and group elements g1, . . . , gn, g, it can be decided in
NP whether there are x1, . . . , xn ∈ Z with xi ≥ 0 such that

gx1
1 . . . gxnn =G g. 2
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8 Consequences for the Knapsack Problem in Graph Groups

Proof The proof idea is to guess a solution and then verify it using the algorithm for solving the
power word problem.

By [LZ18, Theorem 3.11], there is an exponential bound on the solution. More precisely there is a
polynomial p(n), such that if there is a solution, then there is a solution x1, . . . , xn with xi ≤ 2p(n).
Therefore, we can guess all potential solutions within the bound in NP, and if there is a solution, we
will guess a solution.

From Theorem 7.4 it follows that the uniform power word problem in graph groups can be decided
in P. Hence, the uniform knapsack problem can be decided in NP. Finally, NP-completeness
follows immediately from the NP-completeness of the knapsack problem for a certain fixed graph
groups, which has been shown in [LZ16]. �
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9 Conclusion

This thesis has studied the power word problem, a variant of the word problem, in graph groups and
graph products. The underlying idea to our solutions to this problem is to replace the exponents
with smaller ones, bounded by a polynomial in the size of the input. We call the resulting word the
shortened word. Once we have the shortened word, we can expand the powers and then solve the
word problem. The majority of this thesis is proving the correctness of that algorithm.

The core observation underlying our proof is that if there are two different powers and we apply free
reduction, then the amount of characters that cancel is limited. In Chapter 5 we have formalized this
observation and given an upper bound on the number of characters that can cancel. We used these
bounds to calculate how much we can reduce the exponents when computing the shortened word.

To show that our solution for the power word problem is correct, we have shown that the shortened
word is equal to the identity if and only if the original input word is equal to the identity. As a
technical instrument to facilitate the proof, we have defined a symbolic rewriting system over an
infinite alphabet.

We analysed the computational complexity of the power word problem in graph groups and graph
products in Chapter 6 and Chapter 7. Following that, in Chapter 8 we have looked at the implications
of our research to the knapsack problem. Our contribution can be summarized as follows.

• The power word problem in a fixed graph group is uAC0-Turing reducible to the word problem
in the free group with two generators F2.

• The power word problem in a fixed graph product G = GP(L, I; (Gα)α∈L) is uAC0-Turing
reducible to the power word problem each base group Gα and the word problem in the free
group F2.

• Given a non-trivial class C of f.g. groups, the uniform power word problem for graph products
can be decided in C= L with oracles for the uniform power word problem in C.

• We extended upon the work of M. Lohrey and G. Zetzsche by showing NP-completeness for
the uniform knapsack problem in graph groups.
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