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Abstract

In this thesis we consider the Schrödinger operator

HN =−
N∑

i=1

1

2mi
∆xi +

∑
1≤i< j≤N

Vi j (xi −x j ) (0.0.1)

corresponding to a system of one- or two-dimensional quantum particles which in-

teract via non-vanishing short-range potentials Vi j . We consider the operator in the

so-called center of mass frame and denote the associated operator by H .

Our goal is to investigate virtual levels of the operator H , by which we mean that

H = −∆+V ≥ 0 and the essential spectrum is stable under small perturbations, but

for any ε> 0 the perturbed operator −(1−ε)∆+V has a negative eigenvalue. We prove

that in this case there exists a weak solution ψ of the equation

Hψ= 0

for which we show that it is an eigenfunction of H if the system consists of N ≥ 3

one-dimensional or N ≥ 4 two-dimensional particles. We also provide estimates for

the rate of decay of the function ψ.

Later, we study multi-particle Schrödinger operators for particles in dimension one

or two with respect to the Efimov effect. This effect is a phenomenon which appears

in systems of three three-dimensional particles, namely the three-body Hamiltonian

has an infinite number of bound states provided the Hamiltonians of the two-body

subsystems have a virtual level. We deal with the question whether an Efimov type

effect can occur in systems of N ≥ 3 one- or two-dimensional particles. We prove

that this is not the case if N = 3 or if N ≥ 4 and the particles are one-dimensional or if

N ≥ 5 and the particles are two-dimensional.
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Zusammenfassung

In dieser Arbeit betrachten wir den Schrödinger-Operator

HN =−
N∑

i=1

1

2mi
∆xi +

∑
1≤i< j≤N

Vi j (xi −x j ), (0.0.2)

der ein System von ein- oder zwei-dimensionalen Quantenteilchen beschreibt, deren

Wechselwirkung durch Potentiale Vi j beschrieben wird. Wir betrachten den Opera-

tor im Schwerpunktsystem und bezeichnen ihn im Folgenden mit H .

Unser Ziel ist es, virtual levels des Operators H zu untersuchen. Darunter verste-

hen wir, dass H = −∆+V nicht-negativ ist, dass das wesentliche Spektrum von H

stabil unter kleinen Störungen ist, aber dass für jedes ε > 0 der gestörte Operator

−(1− ε)∆+V einen negativen Eigenwert besitzt. Wir beweisen, dass in diesem Fall

eine schwache Lösung ψ der Gleichung

Hψ= 0

existiert und dass sie eine Eigenfunktion von H ist, wenn das System aus N ≥ 3 eindi-

mensionalen oder N ≥ 4 zweidimensionalen Teilchen besteht. Außerdem geben wir

eine Abschätzung für die Abfallrate dieser Lösung im Unendlichen an.

Anschließend untersuchen wir Mehrteilchen-Schrödingeroperatoren für ein- oder

zwei-dimensionale Teilchen im Hinblick auf den Efimov-Effekt. Dieser beschreibt

ein Phänomen, das in Systemen von drei drei-dimensionalen Teilchen auftritt. Der

Operator, der das Dreiteilchensystem beschreibt, hat unendlich viele Eigenwerte,

falls die Operatoren, die zu den Zweiteilchen-Teilsystemen gehören, ein virtual level

besitzen. Wir zeigen, dass ein solcher Effekt in Systemen von drei ein- oder zweidi-

mensionalen Teilchen, N ≥ 4 eindimensionalen Teilchen oder N ≥ 5 zweidimension-

alen Teilchen nicht auftritt.
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1. Introduction

1.1. Spectral theory of Schrödinger operators

In this thesis we investigate a multi-particle Schrödinger operator

HN =−
N∑

i=1

1

2mi
∆xi +

∑
1≤i< j≤N

Vi j (xi −x j ) (1.1.1)

which acts on L2(Rd N ) and corresponds to a system of N ≥ 3 one- or two-dimensional

quantum particles. Here, d ∈ {1,2} is the spatial dimension of the particles, mi > 0 is

the mass of the i th particle, xi describes its position inRd ,∆xi is the Laplace operator

onRd describing the dynamics of the i th particle and the potentials Vi j :Rd N →R are

real-valued functions which describe the pair interaction between the particles. Our

goal is to study the discrete spectrum of the associated Schrödinger operator with

removed center of mass of the system. Before we explain the context of our studies

and discuss the main results of this thesis let us introduce some basics.

Spectral theory of Schrödinger operators has become a large field in mathematical

physics and investigates qualitative and quantitative properties of the spectrum of

operators

H =−∆+V (1.1.2)

acting on L2(Rd ). Under broad conditions the operator H is self-adjoint on L2(Rd ),

see for example the famous work of T. Kato [38].

The spectrum of H consists of two parts, namely the discrete spectrum, which con-

sists of isolated eigenvalues of finite multiplicity, and the essential spectrum. Typi-

cal questions concerning the discrete spectrum of H are whether it is finite or infi-

nite, properties of the eigenvalue counting function or of the eigenfunctions. Con-

cerning the essential spectrum one is interested for example in the spectral type
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1. Introduction

(densely pure point, singular continuous or absolutely continuous spectrum) and in

the behavior of solutions corresponding to the time-dependent Schrödinger equa-

tion, which is related to scattering theory.

For the Schrödinger operator H =−∆+V corresponding to a single particle with a

potential V decaying at infinity, it is well known that the essential spectrum is given

by [0,∞). In this case the answer to the question whether the operator has a finite or

an infinite number of negative eigenvalues depends on the sign and the rate of decay

of V . If |V (x)| ≤ C |x|−2−δ for some constants C , δ > 0 and large values of |x|, then

H has a finite number of negative eigenvalues. On the other hand, if there exist con-

stants C , δ> 0, such that V (x) ≤−C |x|−2+δ for large values of |x|, then H has infinitely

many negative eigenvalues. We refer to [40, 58] for a more detailed discussion.

For the case of multi-particle systems the situation is quite different. Even if the

pair potentials are compactly supported, the potential V , which in this case is the

sum of the pair potentials, does not necessarily decay as |x| → ∞. This makes the

spectral analysis for multi-particle Schrödinger operators much more complicated.

In general the essential spectrum does not coincide with the semi-axis [0,∞) and

its determination is a challenging problem. The famous HVZ theorem, named after

W. Hunziker, C. van Winter and G. Zhislin, determines the bottom of the essential

spectrum of multi-particle Schrödinger operators. The question whether the discrete

spectrum is finite or infinite is in general difficult to answer and non-intuitive effects,

such as the Efimov effect, can appear.

Concerning the quantum mechanical point of view we only want to give a few

terms which seem to be important for this work. The Schrödinger operator H de-

scribes the dynamics of a single particle or of a system of several particles. A function

ψ ∈ L2(Rd ) with ‖ψ‖L2(Rd ) = 1 is called a state of the system and according to Max

Born |ψ(x)|2 can be interpreted as the probability to find the particle(s) at the posi-

tion x ∈Rd . The total energy of the system is given by the quadratic form

ˆ
Rd

|∇ψ|2 dx +
ˆ
Rd

V |ψ|2 dx, (1.1.3)

where the first integral describes the kinetic energy and the second integral the po-

tential energy. Negative eigenvalues of H are interpreted as the possible energy levels

and the corresponding eigenfunctions are bound states of the system.

12



1.2. The Efimov effect

1.2. The Efimov effect

In this work we consider the operator HN given in (1.1.1) with regard to the Efimov

effect. In this section we describe this effect and give a brief overview over its history.

One of the goals of this thesis is to investigate the occurrence of the Efimov effect for

systems of one- or two-dimensional particles.

1.2.1. Efimov’s prediction

In 1970, V. Efimov predicted a counter-intuitive phenomenon which can be stated as

follows: A system of three quantum particles in dimension three, interacting through

attractive short-range potentials, has an infinite number of bound states if the Hamil-

tonians of the two-body subsystems do not have negative spectrum and at least

two of them are resonant [16]. By a zero energy resonance we mean that there ex-

ists a (weak) solution ψ of the Schrödinger equation Hψ = 0 which is not square-

integrable. A physical interpretation of resonances is that particles are “close to bind”,

i.e., they spend some time together (they resonate), before they separate again.

Heuristically, the Efimov effect can be explained as follows: Although any two par-

ticles interact via a short-range potential (i.e., fast decaying potential), the third par-

ticle leads to an effective long-range potential which decays as C
|x|2 for some C < 0 and

thus leads to the infinitude of the discrete spectrum.

One of the special features of the Efimov effect is its universality. This does not

mean that the effect occurs in any system, but any system satisfying the conditions

for the occurance has the same universal features [47]. For example, for the eigen-

values it was predicted that they tend exponentially to the accumulation point zero,

namely

En ∼ exp

(
−2πn

s0

)
as n →∞, (1.2.1)

where s0 > 0 is a universal constant [16]. These universal features depend only on a

few general properties, e.g., the masses of the particles. In particular, the effect does

not depend on the form of two-body forces - it is only their resonant character that we

require.1

1V. Efimov, [16]

13



1. Introduction

1.2.2. Mathematical proofs of the Efimov effect

The first mathematical proof of the effect was given by D.R. Yafaev [78]. He assumed

that the Hamiltonians h corresponding to the two-body subsystems have a virtual

at zero, i.e., h ≥ 0 and any small negative perturbation of the potential leads to a

negative eigenvalue. In this case zero is a resonance of the operator h. Using sym-

metrized Faddeev equations and investigating integral operators he showed that the

three-body Hamiltonian H has infinitely many eigenvalues if for at least two of the

subsystem the corresponding Hamiltonian has a virtual level. He also proved that

the effect does not occur if at most one of the Hamiltonians corresponding to the

subsystems has a virtual level [80].

Later, A.V. Sobolev [69] completed the mathematical proof by deriving the asymp-

totics

lim
z→0−

N (z)

| ln(|z|)| =A0 > 0, (1.2.2)

for the counting function N (z) of the eigenvalues below z, where the constant A0

does not depend on the potentials. This asymptotics is in accordance with the pre-

diction (1.2.1).

In the years after Yafaev’s proof of the Efimov effect this topic attracted many math-

ematicians and different techniques were developed and many results obtained. We

can not discuss all of them, but we want to mention two which seem to be of special

interest.

First, in the papers of Yu.N. Ovchinnikov and I.M. Sigal [55] and of H. Tamura [71]

it is demonstrated how the long-range interaction in the three-body system appears,

which leads to the infiniteness of the discrete spectrum.

Second, it was shown by S.A. Vugalter and G.M. Zhislin that the existence of the

Efimov effect depends on the nature of the virtual levels in the two-body subsystems.

Precisely, it was proved in [74] that if the virtual levels in the two-body subsystems

correspond to eigenvalues, then the Hamiltonian of the three-particle system has

only a finite number of eigenvalues. In particular, their technique shows that the ef-

fect does not occur in systems of three three-dimensional fermions. This, together

with the result of Yafaev [80] underlines the important role of virtual levels, concern-

ing both their existence and their behaviour. The technique developed in [74] plays

an important role in the work at hand.
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1.2.3. Physical experiments and new interest on the effect

For a long time the Efimov effect was regarded by many as a theoretical peculiarity.

Because it is very difficult to create and to control resonant short-range interactions,

it took more than 30 years before in 2006 it was verified in an ultra-cold gas of caesium

atoms by a group of phycisists in Innsbruck [41]. This experiment was a milestone

and opened the way to many further experiments in different systems of ultra-cold

atoms in many laboratories all over the world [19, 29, 9].

In addition, it lead to a resurgence of interest to the Efimov effect and today one no

longer speaks only of the Efimov effect, but even of Efimov physics. In the last years

many scientists have worked in different directions of this subject and generaliza-

tions of the Efimov effect to different systems were investigated. Some of them are

presented in the following. For a more detailed discussion and to underline the rich-

ness of this subject we refer to the review of P. Naidon and S. Endo [47] which contains

400 references.

1.3. Generalizations of the Efimov effect

It is a natural and interesting question to ask whether the Efimov effect can occur if

we vary

• the spatial dimension of the particles,

• the number of particles

or if we restrict the operator to subspaces of certain symmetries, e.g., if we consider

fermionic systems. Investigations of such questions involve several difficulties. The

low-energy behavior of Schrödinger operators, and therefore the behavior of virtual

levels, depends strongly on the dimension. As we have described before, the nature

of virtual levels has a big impact on the existence of the Efimov effect. For systems

consisting of three or more particles the potential V , which is the sum of all pair

interactions, does not decay in all directions of the configuration space. This causes

great difficulties on a technical level and requires new methods.

15



1. Introduction

1.3.1. Absence of the Efimov effect in higher dimensions

and for multi-particle systems

It is well known, see for example [5, 22], that for dimension d ≥ 5 virtual levels of two-

body Schrödinger operators correspond to eigenvalues, which implies the absence

of the Efimov effect [5]. For dimension d = 4 virtual levels correspond to resonances.

It was shown in [5] that also in this case the Efimov effect is absent. The case of one-

or two-dimensional particles will be explained below.

A few years after Efimov’s discovery of the effect, R.D. Amado and F.C. Greenwood

predicted that it does not exist for systems consisting of N ≥ 4 three-dimensional

particles [3]. As already mentioned, such a problem is difficult to solve because the

potential does not decay and Faddeev equations, which were used in the proofs for

the three-particle case, become very complicated in the multi-particle case. The first

mathematical proof was provided by D. Gridnev by the use of generalized Faddeev

equations [25]. Recently, a proof based on variational methods was given in [7] under

less restrictive conditions on the pair potentials. The work [7] also covers the case of

particles in dimension d ≥ 4. A major step in the proof of the absence of the effect

for such systems is to show that virtual levels of the Hamiltonians of the subsystems

consisting of N −1 particles are eigenvalues.

For fermionic systems of three three-dimensional particles the Efimov effect does

not occur, see for example [74]. However, for two-dimensional fermions a so-called

super Efimov effect appears, which is explained later.

1.3.2. On the Efimov effect for systems of one- or

two-dimensional particles

In recent years quite a lot of attention has been paid to the question whether an Efi-

mov type effect might occur for systems of one- or two-dimensional particles. Before

presenting some of the known results and new predictions, let us point out a fun-

damental difference between systems of particles in dimension one or two and in

dimension d ≥ 3 which makes investigation of systems of one- or two-dimensional

particles interesting and challenging.
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1.3. Generalizations of the Efimov effect

A crucial difference between dimension one and two and higher dimensions

It is well known that for dimension d ≥ 3 Hardy’s inequality holds, namely

ˆ
Rd

|∇u|2 dx ≥ (d −2)2

4

ˆ
Rd

|u|2
|x|2 dx, u ∈C∞

0 (Rd ). (1.3.1)

This means that for sufficiently fast decaying potentials V , e.g., V ∈C∞
0 (Rd ), the po-

tential energy is controlled by the kinetic energy. In other words, sufficiently weak

interactions can not bind a particle. For dimensions one and two this is differ-

ent. Hardy’s inequality does not hold for these dimensions and one can show that

the Laplace operator is critical, i.e., for every potential V ∈ C∞
0 (Rd ) with V 6= 0 and´

Rd V (x)dx < 0 the operator −∆+λV has a negative eigenvalue for any λ> 0, see for

example [64].

Absence of the Efimov effect in dimension one and two and occurance of
the super Efimov effect

It was shown by S. Vugalter and G. Zhislin by the use of variational methods that for

systems of three one- or two-dimensional particles the Efimov effect does not exist

[73]. This result was proved under very restrictive assumptions on the pair poten-

tials. Later, in [76] these restrictions were relaxed, but unfortunately Lemma 1 in [76]

contains a mistake. This mistake will be corrected in this work.

In 2013 the physicists Y. Nishida, S. Moroz and D.T. Son predicted the existence of a

so-called super Efimov effect for systems of three two-dimensional spinless fermions

[51]. More precisely, they claimed that if the two-body subsystems are resonant, then

the Hamiltonian of the three-body system has infinitely many bound states. The de-

nomination super Efimov effect is motivated by the observation that the eigenvalues

tend to zero much faster than in the three-dimensional case. Namely, it was predicted

in [51] that the eigenvalues En asymptotically behave as

En ∼ exp

(
−2exp

(
3πn

4
+θ

))
as n →∞ (1.3.2)

for a constant θ depending on the potentials. Thus, for the eigenvalues one has a

double exponential scaling, while for the original Efimov effect it is exponential.

17



1. Introduction

The first mathematical proof for the existence of this effect was given by D.K. Grid-

nev in 2014 [26], together with the asymptotics

lim
z→0

N (z)

| ln | ln(z2)|| =
8

3π
(1.3.3)

for the eigenvalue counting function. This asymptotics is in accordance with the pre-

diction (1.3.2) given in [51]. The proof of Gridnev is based on methods similar to [69]

and [78], namely on an application of the Birman-Schwinger principle, the use of

symmetrized Faddeev equations and a reduction of the problem to counting eigen-

values of an integral operator.

Besides the difference in the asymptotics of the eigenvalues there is another differ-

ence between dimensions two and three. Namely, the Efimov effect exists for systems

of three three-dimensional particles without symmetry restrictions and is absent for

a system of three fermions. This is exactly the other way round in dimension two.

The question whether there is an Efimov type effect for systems of more than three

one- or two-dimensional particles was open and is an important part of this thesis.

Recent predictions for systems of one- or two-dimensional particles

To underline the richness of the Efimov physics we conclude this overview chapter

by presenting some recent predictions which can be found in the physics literature.

It is predicted that Efimov type effects occur for several systems of N one- or two-

dimensional particles under the assumption that interaction in subsystems with less

than N −1 particles is absent, there is an effective N −1 particle short-range interac-

tion and the Hamiltonians corresponding to subsystems consisting of N −1 particles

have a resonance at zero. For example, it is expected that such an effect exists for

systems of four two-dimensional [52] or five one-dimensional particles [50, 53].

Further investigations deal with the question whether a so-called confinement-

induced Efimov effect can be observed. This means that the particles, or at least

some of them, are confined in certain subspaces of the three-dimensional space, pos-

sibly with different dimensions. There are several systems for which a confinement-

induced Efimov effect is expected, see for example [53] or the review [47] for a list of

possible systems.

To our knowledge, from a mathematical point of view these questions are still open.
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1.4. Discussion of the main results of this thesis

1.4. Discussion of the main results of this thesis

This thesis is based on the following two articles.

1. S. Barth, A. Bitter and S. Vugalter, On the Efimov effect in systems of one- or two-

dimensional particles, submitted to Journal of Mathematical Physics (2020)

2. S. Barth, A. Bitter and S. Vugalter, Decay properties of zero-energy resonances of

multi-particle Schrödinger operators and why the Efimov effect does not exist for

systems of N ≥ 4 particles, submitted to Reviews in Mathematical Physics (2020)

The main part of the thesis is based on the first of these articles and only a small part

of the second article is a constituent of this thesis. Our main goal is to investigate the

existence and non-existence of the Efimov effect for systems consisting of N ≥ 3 one-

or two-dimensional particles with short-range pair interactions.

1.4.1. Results on virtual levels of Schrödinger operators

As mentioned before, the investigation of the existence of the Efimov effect requires

a detailed study of the virtual levels of the Schrödinger operators corresponding to

the subsystems. We say that a Schrödinger operator H =−∆+V has a virtual level at

zero if H ≥ 0 and for any sufficiently small ε> 0

σess(H +ε∆) = [0,∞) and infσ (H +ε∆) < 0. (1.4.1)

As a warm-up we start by the study of virtual levels of one-particle Schrödinger op-

erators in dimension one or two with a short-range potential and prove that there

exists a weak solution ϕ0 of the equation Hϕ0 = 0 which is not in L2(Rd ), i.e., zero is

a resonance of H . We also prove that for d ∈ {1,2} and operators H ≥ 0 the condition

infσ (H +ε∆) < 0 for any ε> 0 is equivalent to

infσ
(
H −ε(1+|x|)−2)< 0 (1.4.2)

for any ε > 0. This equivalence is obvious for dimensions d ≥ 3 but not for d = 1 or

d = 2 and is important in some of the proofs of the multi-particle results.
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1. Introduction

We extend our studies to the case of multi-particle Schrödinger operators corre-

sponding to a system of N ≥ 3 one- or two-dimensional particles with masses mi > 0.

These operators are considered in the center of mass frame, i.e., acting on L2(X0),

where

X0 =
{

x = (x1, . . . xN ) ∈Rd N :
N∑

i=1
mi xi = 0

}
. (1.4.3)

Our main result concerning virtual levels is a sufficient condition in terms of a Hardy

type constant, such that a virtual level of a system of N d-dimensional particles cor-

responds to a simple eigenvalue. Namely, let

M = {
ψ ∈C 1

0 (X0 \ {0}) : ψ(x) = 0 for xi = x j ,1 ≤ i , j ≤ N , i 6= j
}

(1.4.4)

and

C̃H (X0) = inf
0 6=ψ∈M

‖∇ψ‖
‖|x|−1ψ‖ . (1.4.5)

We prove that virtual levels correspond to eigenvalues if C̃H (X0) > 1 and we give esti-

mates for the decay rates of the corresponding eigenfunctions in dependence of the

constant C̃H (X0).

As an application of this result we show that the condition C̃H (X0) > 1 is fulfilled

for systems of N ≥ 3 one-dimensional or N ≥ 4 two-dimensional particles and for

systems of N ≥ 3 one- or two-dimensional fermions. Hence, for such systems virtual

levels are eigenvalues.

It is remarkable that concerning the decay rate of the eigenfunctions correspond-

ing to a virtual level the case of one-dimensional particles is different from that of

higher dimensions. For particles with spatial dimension d ≥ 3 the decay rate depends

on the Hardy constant CH = d(N−1)−2
2 , which coincides with the constant C̃H (X0) if

the dimension of the particles is d ≥ 2. Since for one-dimensional particles the sets

{x ∈ X0 : xi = x j for some i 6= j } have co-dimension one in X0, we have C̃H (X0) > CH

in this case. This leads to a higher decay rate. We discuss the case of one-dimensional

particles separately.

The case of four two-dimensional particles is a special case which is not covered by

the above given criterion. Here we do not know whether a virtual level corresponds to

an eigenvalue. However, we show that there exists a weak solutionϕ0 of the equation

Hϕ0 = 0 which is possibly not square integrable.
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1.4. Discussion of the main results of this thesis

1.4.2. Results on the absence of the Efimov effect

The results obtained for virtual levels of Schrödinger operators are applied to prove

the absence of the Efimov effect for systems of N ≥ 4 one-dimensional or N ≥ 5

two-dimensional particles. We also prove that for systems of N ≥ 4 one- or two-

dimensional fermions the Efimov effect does not occur. Finally, we prove the non-

existence of the effect for systems of three one- or two-dimensional particles inter-

acting via short-range potentials. The only case of multi-particle systems with short-

range pair interactions for which the question of existence or non-existence of the

Efimov effect remains open is the case of four two-dimensional particles. With these

results we can add some examples to the list of systems for which the Efimov effect

does not exist, see Table 1.1.

Number and dimension of particles No symmetry restrictions Fermions
d = 3, N = 3 3 [78] 7 [74]
d ≥ 3, N ≥ 4 7 [25, 7] 7 [7]
d ≥ 4, N ≥ 3 7 [5, 7] 7 [5, 7]

d = 1, N = 3 7 [73, 8] 7 [8]

d = 1, N ≥ 4 7 [8] 7 [7]

d = 2, N = 3 7 [73, 8] 3 [26]

d = 2, N ≥ 5 7 [8] 7 [7]

d = 2, N = 4 open 7[7]

Table 1.1.: Existence and non-existence of the Efimov effect for systems of N d-
dimensional particles. The marked cases are considered in this work.

1.4.3. Techniques used for the main results

The main result concerning virtual levels, namely the criterion that virtual levels cor-

respond to eigenvalues, is based on the following two steps:

(i) A generalization of the one-particle result to the case of non-decaying, but form

bounded potentials, i.e., potentials V satisfying for any ε> 0

〈|V |ψ,ψ〉 ≤ ε‖∇ψ‖2 +C (ε)‖ψ‖2, ψ ∈ H 1(Rd ). (1.4.6)
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1. Introduction

Under this condition we show that virtual levels correspond to eigenvalues if

there exist constants γ0 > 0, α0 > 1 such that for any ψ ∈ H 1(Rd ) supported

away from the origin we have

(1−γ0)‖∇ψ‖2 −α0‖|x|−1ψ‖2 ≥ 0. (1.4.7)

(ii) Use of geometric methods to show that condition (1.4.7) is fulfilled. These

methods include an appropriate partition of unity of the configuration space

by which we separate regions where particles are in groups which are moved

apart.

This strategy is similar to the one used in [7], where virtual levels of systems of par-

ticles in spatial dimension d ≥ 3 have been studied. We extend this technique to

dimension d ∈ {1,2}. On this way, we have to overcome several differences and diffi-

culties, most of which arise from the lack of Hardy’s inequality in the one- and two-

dimensional space. Some of them are fundamental, others are on a technical level.

Let us give two examples here. First, when studying virtual levels the so-called ho-

mogenous Sobolev space Ḣ 1(Rd ) plays an important role. For d ≥ 3 this space can

be defined as the space of all functions ψ ∈ L1
loc(Rd ) with

∣∣{x ∈Rd : |ψ(x)| >µ}
∣∣ < ∞

for all µ> 0 and ∇ψ ∈ L2(Rd ), equipped with the norm ‖ψ‖Ḣ 1 = ‖∇ψ‖. However, the

straightforward generalization to dimension d = 1 or d = 2 does not lead to a function

space and one has to find a different appropriate space. A second difficulty which we

want to mention here occurs when we construct the partition of unity to separate the

particles. This method requires an appropriate estimate of the resulting localization

error. For particles in space dimension d ≥ 3 one can use an estimate given in [74].

Due to the lack of Hardy’s inequality in lower dimensions this estimate does not work

in our case and we need to find an improved one.

The key idea for the proof of the absence of the Efimov effect is due to [74]

where the finiteness of the negative spectrum was proved for systems of three

three-dimensional particles if virtual levels in the two-body subsystems correspond

to eigenvalues. This idea was generalized in [7] to multi-particle systems of d-

dimensional particles with d ≥ 3. We extend this strategy to the one- and two-

dimensional case. Again, the absence of Hardy’s inequality causes several difficulties

which have to be overcome.
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1.4. Discussion of the main results of this thesis

1.4.4. Outline of the thesis

This thesis is organized as follows.

In the second chapter we consider Hardy type inequalities. Since such inequali-

ties play an important role in this thesis and there are fundamental differences be-

tween dimension one or two and higher dimensions, we discuss this in detail. We

give counter-examples for the one- and two-dimensional case and present several

inequalities which are important for us. Furthermore, we introduce homogeneous

Sobolev spaces Ḣ 1(Rd ) for d ≥ 3 and analogous spaces H̃ 1(Rd ) for dimensions one

and two.

In the third chapter we introduce Schrödinger operators by perturbation methods.

We also introduce the center of mass frame of multi-particle Schrödinger operators

and provide several tools which will be used later.

In the fourth chapter we study virtual levels of Schrödinger operators. We start

by considering one-particle Schrödinger operators with short-range potentials and

extend the investigations to the multi-particle case. We prove that for systems of

N ≥ 3 one-dimensional or N ≥ 4 two-dimensional particles virtual levels correspond

to eigenvalues.

In the fifth chapter we prove that the Efimov effect does not occur in systems of

N = 3 one- or two-dimensional, N ≥ 4 one-dimensional or N ≥ 5 two-dimensional

particles.
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2. Hardy type inequalities and
homogeneous Sobolev spaces

In this chapter we collect several integral inequalities of the Hardy type, which are of

great importance in the further course of this work. We start by presenting Hardy’s

inequality for the semi-axis and its extensions to dimension d ≥ 3. We point out the

differences between dimensions d ≥ 3 and lower dimensions. We also present some

inequalities which are similar to Hardy’s inequality being helpful in later sections. At

the end of this chapter we introduce homogeneous Sobolev spaces Ḣ 1(Rd ) for di-

mension d ≥ 3 and similar spaces H̃ 1(Rd ) for dimensions d = 1 and d = 2.

We point out that all of the following results are known and can be found in the

literature. At the same time, the list is by far incomplete. There are many general-

izations of the Hardy inequality in different directions, e.g., for Lp norms, domains,

pseudo-differential operators or Schrödinger operators with magnetic field. We re-

strict the demonstration to the cases which are relevant for this work and refer to

[10, 15, 54] for further generalizations and discussions. We also recommend to the

interested reader the beautiful article [42] which gives an overview over the history of

the development of Hardy’s inequality.

2.1. Hardy type inequalities

2.1.1. Hardy’s inequality for the semi axis

We start by presenting some inequalities for functions on the semi axis R+ = (0,∞),

one of which is Hardy’s inequality for the semi axis. Later, these inequalities will be

used to derive Hardy’s inequality for higher dimensions.
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2. Hardy type inequalities and homogeneous Sobolev spaces

Theorem 2.1.1 (Hardy’s inequality for the semi axis).

(i) For any function u ∈ H 1
0 (R+) we have

ˆ ∞

0
t−2|u(t )|2 dt ≤ 4

ˆ ∞

0
|u′(t )|2 dt . (2.1.1)

(ii) Let α>−1. Then for any function u ∈ H 1(R+) with u′ ∈ L2(R+, tα+2 dt )

ˆ ∞

0
tα|u(t )|2 dt ≤ 4

(α+1)2

ˆ ∞

0
tα+2

∣∣u′(t )
∣∣2 dt . (2.1.2)

Remark 2.1.2. (i) Inequality (2.1.1) is often reffered to as Hardy’s original inequal-

ity on the half line (actually Hardy proved an integral version of this inequality,

see [31]).

(ii) The constants 4 and 4
(α+1)2 in inequalities (2.1.1) and (2.1.2) are sharp. There are

no minimizers of the inequalities, i.e., the inequalities are strict unless u = 0.

(iii) The condition limt→0 u(t ) = 0 is necessary for (2.1.1) to hold, see e.g., [12]. In-

deed, for n ∈N let the function un :R+ →R be given by

un(t ) =
(
1− t

n

)
+

. (2.1.3)

Then un ∈ H 1(R+) with |u′
n(t )| = 1

n for t < n and u′
n(t ) = 0 for t > n. Therefore,

we have ˆ ∞

0
(u′

n(t ))2 dt = 1

n
→ 0 as n →∞. (2.1.4)

On the other hand, un(t ) → 1 as n → ∞, uniformly on every compact set.

Hence, for large n inequality (2.1.1) is violated. This shows that the condition

limt→0 u(t ) = 0 is necessary for (2.1.1) to hold.

Let us give the simple

Proof of Theorem 2.1.1. Assume that u ∈C 1
0 (R+). Then we can write

ˆ ∞

0

|u|2
t 2

dt =− u2

t 2

∣∣∣∣t=∞

t=0
+2Re

ˆ ∞

0

uu′

t
dt = 2Re

ˆ ∞

0

uu′

t
dt . (2.1.5)
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2.1. Hardy type inequalities

Hence, by the Cauchy-Bunjakowski-Schwarz inequality we get

ˆ ∞

0

|u|2
t 2

dt ≤ 2

(ˆ ∞

0

|u|2
t 2

dt

) 1
2
(ˆ ∞

0
|u′|2 dt

) 1
2

. (2.1.6)

This proves statement (i) for C 1
0 (R+)-functions. Now assume that u ∈ H 1

0 (R+) and let

(un)n∈N be a sequence of functions in C 1
0 (R+) which converges to u in H 1(R+). Then,

due to ˆ ∞

0

|un −um |2
t 2

dt ≤ 4

ˆ ∞

0
|∇(un −um)|2 dt , n,m ∈N, (2.1.7)

the sequence (un)n∈N is a Cauchy-sequence in L2
(
R+, t−2dt

)
and thus converges to

a function v ∈ L2
(
R+, t−2dt

)
. On the other hand, we have un → u in H 1(R+) and

therefore u(t ) = v(t ) for almost every t ∈ R+. This completes the proof of assertion

(i). The proof of statement (ii) is a simple modification.

2.1.2. Hardy’s inequality in higher dimensions

In this section we present how Hardy’s inequality for dimension d ≥ 3 can be derived

from the scalar inequalities given in Theorem 2.1.1. We also give an example which

shows why Hardy’s inequality does not hold for dimension d = 2 and give the proof

of a Hardy type inequality under additional assumptions in this dimension. We start

with a short parenthesis on spherical harmonics which is useful to extend Hardy

type inequalities to higher dimensions and which we will come back to from time to

time later in this thesis.

Spherical harmonics

We recall some basics about spherical harmonics, which can be found for example

the book [66] of B. Simon. For d ≥ 2 we denote by −∆Sd−1 the Laplace-Beltrami op-

erator on L2(Sd−1). If we use polar coordinates r = |x| and ω = x
|x| we will also write

−∆ω := −∆Sd−1 . The Laplace operator −∆ on L2(Rd ) can be represented in polar co-

ordinates as

−∆u =−
(
∂2

r u + d −1

r
∂r u + 1

r 2
∆ωu

)
(2.1.8)
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2. Hardy type inequalities and homogeneous Sobolev spaces

and we have

|∇u|2 = |∂r u|2 + 1

r 2
|∇ωu|2 . (2.1.9)

The operator −∆Sd−1 is non-negative, self-adjoint and has compact resolvent. Its

eigenvalues are given by µl = l (l +d −2), l ∈N0 with multiplicity ν0 = 1 and

νl =
2 if d = 2,

(2l+d−2)(l+d−3)
(d−2)!l ! if d ≥ 3

(2.1.10)

for l ≥ 1. Eigenfunctions Yl of −∆Sd−1 corresponding to the eigenvalue µl are called

spherical harmonics of degree l . We find an orthonormal basis {Yl ,m : l ≥ 0, m =
1, . . . ,νl } of L2(Sd−1) consisting of spherical harmonics Yl ,m of degree l . Let u ∈ L2(Rd )

and let r = |x| andω= x
|x| be polar coordinates. Then u(r ·) ∈ L2(Sd−1) for almost every

r > 0 and we have

u(x) = ∑
l ,m

ul ,m(r )Yl ,m(ω), where ul ,m(r ) :=
ˆ
Sd−1

u(rω)Yl ,m(ω)dω. (2.1.11)

Since the functions Yl ,m are orthonormal in L2(Sd−1), we get

ˆ
Sd−1

|u(rω)|2 dω= ∑
l ,m

|ul ,m(r )|2. (2.1.12)

Moreover, if u ∈ H 1(Rd ), then u(r ·) ∈ H 1(Sd−1) for almost every r > 0 and by (2.1.9)

and the definition of Yl ,m we have

ˆ
Sd−1

|∇u(rω)|2 dω= ∑
l ,m

(∣∣∣u′
l ,m(r )

∣∣∣2 + l (l +d −2)

r 2

∣∣ul ,m(r )
∣∣2

)
. (2.1.13)

A different way to define spherical harmonics is via harmonic homogeneous poly-

nomials. A function u : Rd → R is said to be harmonic if ∆u = 0 and homogeneous

if there exists λ > 0, such that u(ρx) = ρλu(x) for any ρ > 0 and x ∈ Rd . Let p be a

harmonic homogeneous polynomial of degree l > 0. Then its restriction to Sd−1 is a

spherical harmonic of degree l .
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2.1. Hardy type inequalities

Hardy’s inequality for dimension d ≥ 3

Now we use Theorem 2.1.1 and the facts about spherical harmonics to derive the

following result, which is often referred to as the classical Hardy inequality.

Theorem 2.1.3 (Hardy’s inequality for d ≥ 3). Let d ∈N, d ≥ 3 and u ∈ H 1(Rd ). Then

we have ˆ
Rd

|x|−2|u|2 dx ≤ 4

(d −2)2

ˆ
Rd

|∇u|2 dx. (2.1.14)

We sketch the proof.

Proof. For the proof we use spherical coordinates r = |x| andω= x
|x| . Then, for almost

every ω ∈ Sd−1 the function r 7→ u(rω) is weakly differentiable and the derivative is

in L2(R+,r d−1 dr ). By (2.1.9) we get

ˆ
Rd

|∇u|2 dx ≥
ˆ
Sd−1

ˆ ∞

0
r d−1|∂r u(rω)|2 dr dω. (2.1.15)

Applying Theorem 2.1.1 for fixed ω ∈Sd−1 and with α= d −3 we get

ˆ ∞

0
r d−1|∂r u(rω)|2 dr ≥ (d −2)2

4

ˆ ∞

0
r d−3|u(rω)|2 dω. (2.1.16)

Integration over Sd−1 completes the proof.

Hardy’s inequality for dimension two

Note that for dimension d = 2 the constant on the right hand side of (2.1.14) is in-

finite and therefore the inequality is meaningless in this case. There exists no finite

constant C > 0, such that

ˆ
R2

|x|−2|u|2 dx ≤C

ˆ
R2

|∇u|2 dx (2.1.17)

holds for all functions u ∈ H 1(R2). This can be seen in the following example which

can be found in [12].
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2. Hardy type inequalities and homogeneous Sobolev spaces

Example 2.1.4. For n ∈N, n ≥ 2 let the function un :R2 →R be given by

un(x) =
1 if |x| ≤ 1,

(ln(n))−1(ln(n)− ln(|x|))+ else.
(2.1.18)

Then we have un ∈ H 1(R2) and

|∇un | =


0 if |x| < 1,

(ln(n))−1|x|−1 if 1 < |x| < n,

0 if |x| > n.

(2.1.19)

Therefore,
´
R2 |∇un |2 dx → 0 for n → ∞. At the same time, we have un(x) → 1 for

n → ∞, uniformly on every compact set. This example shows that there exists no

C > 0, such that inequality (2.1.17) holds for all functions u ∈ H 1(R2).

By adding an additional, logarithmic so-called Hardy weight one gets the following

Hardy type inequality for dimension two. It can be found in a more general form in

[70].

Theorem 2.1.5 (Hardy type inequality for d = 2). Let u ∈ H 1(R2) be represented in

polar coordinates r = |x| and ω= x
|x| as

u(x) =
∞∑

l=−∞
ul (r )

eilω

p
2π

. (2.1.20)

If u0(1) = ´
S1 u(ω)dω= 0, then the following inequality holds.

ˆ
R2

|∇u|2 dx ≥ 1

4

ˆ
R2

|u0|2
|x|2 ln2(|x|) dx +

ˆ
R2

|u −u0|2
|x|2 dx. (2.1.21)

Remark 2.1.6. (i) Note that u0 is a radial function. We have seen that for such

functions the logarithmic term in Hardy’s inequality is necessary. Theorem

2.1.5 shows that for functions which are orthogonal to radial functions the log-

arithmic term can be omitted. These are exactly those functions which satisfy´
S1 u(Rω)dω= 0 for all R > 0.
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2.1. Hardy type inequalities

(ii) For the radial part u0 in the expansion of u the condition u0(1) = 0 is necessary.

This can be seen by the following example which can be found in [70]. Let

ϕ ∈C 1(R) be a function satisfying 0 ≤ϕ(t ) ≤ 1 and

ϕ(t ) = 1 for −1 ≤ t ≤ 1 and ϕ(t ) = 0 for |t | > 2. (2.1.22)

Furthermore, for n ∈N let

un(x) =ϕ
(

ln(|x|)
n

)
. (2.1.23)

Then we have

ˆ
R2

|un |2
|x|2 (

1+ ln2(|x|)) dx = n

ˆ ∞

−∞

ϕ2(t )

1+n2t 2
dt . (2.1.24)

On the other hand,

ˆ
R2

|∇un |2 dx = 1

n

ˆ ∞

−∞

∣∣ϕ′(t )
∣∣2 dt . (2.1.25)

By sending n to infinity we see that (2.1.21) does not hold for all of the func-

tions un . Therefore, we find that the condition u(1) = 0 is necessary for radial

functions.

(iii) Let u be given as in Theorem 2.1.5. Then, as an immediate consequence of

Theorem 2.1.5 we have

ˆ
|∇u|2 dx ≥ 1

4

ˆ |u|2
|x|2(1+ ln2(|x|))

dx. (2.1.26)

The proof of Theorem 2.1.5 is based on the following integral inequality for func-

tions u :R+ →C.

Proposition 2.1.7. For any function u ∈ H 1(R+) with u′ ∈ L2(R+, t dt ) and u(1) = 0

ˆ ∞

0
t−1 (ln(t ))−2 |u(t )|2 dt ≤ 4

ˆ ∞

0
t |u′(t )|2 dt . (2.1.27)
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2. Hardy type inequalities and homogeneous Sobolev spaces

Proof. Let u be as in the proposition and v(t ) = u(et ), t ∈ R+. Then v ∈ H 1
0 (R+) with

v ′(t ) = u′(et )et . Therefore,

ˆ ∞

0
|v ′(t )|2 dt =

ˆ ∞

0
|u′(et )|2e2t dt =

ˆ ∞

1
|u′(s)|2 sds. (2.1.28)

Hence, by the one-dimensional Hardy inequality (2.1.1) we get

ˆ ∞

1
|u′(s)|2 sds =

ˆ ∞

0
|v ′(t )|2 dt

≥ 1

4

ˆ ∞

0
|v(t )|2t−2 dt = 1

4

ˆ ∞

1
|u(s)|2s−1(ln s)−2 ds.

(2.1.29)

If we define v(t ) = u(e−t ), t ∈R+, we get analogously

ˆ 1

0
|u′(s)|2 sds ≥ 1

4

ˆ 1

0
|u(s)|2s−1(ln s)−2 ds. (2.1.30)

This completes the proof.

Now we turn to the

Proof of Theorem 2.1.5. Due to u0(1) = 0, Proposition 2.1.7 can be applied to the

function u0 and yields

ˆ ∞

0
|u′

0(r )|2 r dr ≥ 1

4

ˆ ∞

0
r−1 (ln(r ))−2 |u0(r )|2 dr. (2.1.31)

Therefore, by the use of (2.1.12) and (2.1.13) we get

ˆ
R2

|∇u|2 dx =
ˆ ∞

0

∞∑
l=−∞

(
|u′

l (r )|2 + l 2

r 2
|ul (r )|2

)
r dr

≥ 1

4

ˆ ∞

0
r−2 (ln(r ))−2 |u0(r )|2 r dr +

ˆ ∞

0

∑
l 6=0

1

r 2
|ul (r )|2 r dr

= 1

4

ˆ
R2

|u0|2
|x|2 ln2(|x|) dx +

ˆ
R2

|u −u0|2
|x|2 dx.

(2.1.32)

This completes the proof of Theorem 2.1.5.
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2.1.3. Further Hardy type inequalities

In the following we collect some further inequalities which will be used later in this

thesis.

Hardy type inequality for functions being orthogonal to radial functions

The following inequality can be found for example in [17].

Lemma 2.1.8. Let d ≥ 2. Then for all functions u ∈ H 1(Rd ) satisfying the condition´
Sd−1 u(rω)dω= 0 for all r ≥ 0 we have

ˆ
Rd

|u|2
|x|2 dx ≤ 4

d 2

ˆ
Rd

|∇u|2 dx. (2.1.33)

Proof. Let u ∈ H 1(Rd ). By substituting u = |x| 2−d
2 v and using polar coordinates we get

ˆ
Rd

(
|∇u|2 − (d −2)2

4

|u|2
|x|2

)
dx =

ˆ
Rd

|∇v |2|x|2−d dx

=
ˆ ∞

0

ˆ
Sd−1

(∣∣∣∣∂v

∂r

∣∣∣∣2

+ |∇ωv |2
r 2

)
dωr dr

≥
ˆ ∞

0

ˆ
Sd−1

r−1|∇ωv |2 dωdr.

(2.1.34)

By assumption, for almost every r > 0 the function v(r ·) is orthogonal to the eigen-

function corresponding to the first eigenvalue of the Laplace-Beltrami operator on

Sd−1. Since the second eigenvalue is given by d −1, we have

ˆ
Sd−1

|∇ωv(rω)|2 dωdr ≥ (d −1)

ˆ
Sd−1

|v(rω)|2 dω (2.1.35)

and therefore

ˆ ∞

0

ˆ
Sd−1

r−1|∇ωv(rω)|2 dωdr ≥ (d −1)

ˆ
Rd

|x|−d |v |2 dx

= (d −1)

ˆ
Rd

|x|−2|u|2 dx.
(2.1.36)

This, together with (2.1.34) and (d−2)2

4 +d −1 = d 2

4 completes the proof.
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Hardy’s inequality for sectors

The following Hardy type inequality can be found in [48, Proposition 4.1].

Lemma 2.1.9. Let d ≥ 2 and let Ω⊂Rd be a cone with vertex at the origin, i.e.,

Ω= {(r,ω) : r ≥ 0, ω ∈Σ}, (2.1.37)

where Σ⊂Sd−1 is a Lipschitz domain. Then for any function u ∈ H 1
0 (Ω)

ˆ
Ω

|∇u|2 dx ≥
((

d −2

2

)2

+λ0(Σ)

)ˆ
Ω

|x|−2|u|2 dx, (2.1.38)

where λ0(Σ) is the first eigenvalue of the Dirichlet problem for the Laplace-Beltrami

operator on Σ. Moreover, the constant in (2.1.38) is sharp.

Proof. We use spherical coordinates r = |x| and ω= x
|x| and expand the function u as

u(x) =
∞∑

k=1
uk (r )ϕk (ω), (2.1.39)

where {ϕk : k ∈ N} is an orthonormal basis of L2(Σ) consisting of eigenfunctions of

the Laplace-Beltrami operator on Σ. Then, similar to (2.1.13) we have

ˆ
Ω

|∇u|2 dx =
ˆ ∞

0

∞∑
k=1

(
|u′

k (r )|2 + λk (Σ)

r 2
|uk (r )|2

)
r d−1dr

≥
ˆ ∞

0

∞∑
k=1

(
|u′

k (r )|2 + λ0(Σ)

r 2
|uk (r )|2

)
r d−1dr,

(2.1.40)

where λk (Σ) is the k-th eigenvalue of the Dirichlet Laplacian onΣ. For d ≥ 3 we apply

Theorem 2.1.1 (ii) with α= d −3 to the function uk . This yields

ˆ
Ω

|∇u|2 dx ≥
ˆ ∞

0

∞∑
k=1

(
(d −2)2

4r 2
|uk (r )|2 + λ0(Σ)

r 2
|uk (r )|2

)
r d−1dr. (2.1.41)

Using ˆ ∞

0

∞∑
k=1

r−2|uk (r )|2 r d−1dr =
ˆ
Ω

|x|−2|u(x)|2 dx (2.1.42)

completes the proof.
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Hardy’s inequality for exterior domains

Now we give a Hardy type inequality for integrals over sets {x : |x| ≥ ν} for some ν> 0.

Lemma 2.1.10. The following assertions hold.

(i) Let d = 2 and u ∈ H 1(R2) with supp(u) ⊂ {x : |x| < 1} or supp(u) ⊂ {x : |x| > 1}.

Then, for any constant ν> 0 we have

ˆ
{|x|≥ν}

|u|2
|x|2(1+ ln2(|x|))

dx ≤ 4

ˆ
{|x|≥ν}

|∇u|2 dx. (2.1.43)

(ii) Let d ≥ 3. Then for any function u ∈ H 1(Rd ) and ν≥ 0 we have

ˆ
{|x|≥ν}

|u|2
|x|2 dx ≤ 4

(d −2)2

ˆ
{|x|≥ν}

|∇u|2 dx. (2.1.44)

Proof of Lemma 2.1.10. Since the function v(x) = |x|−2
(
1+ (ln(|x|))2

)−1
is radial, it

suffices to show that the inequality holds for radial functions. Let u ∈ H 1(R2) be radial

with supp(u) ⊂ {x : |x| < 1}. Then the function ũ, given by

ũ(x) =
u(x) if |x| ≥ ν,

u(ν) if |x| < ν,
(2.1.45)

is also an element of H 1(R2). Applying the two-dimensional Hardy inequality (2.1.26)

to the function ũ, using that ũ is constant for |x| ≤ ν and that ũ and u coincide for

|x| ≥ ν completes the proof of statement (i). The proof of statement (ii) is similar.

Poincaré-Friedrichs’s inequality

The following inequality can be found for example in [1, Theorem 6.30].

Theorem 2.1.11 (Poincaré-Friedrichs’s inequality). Let Ω⊆Rd be a bounded domain

with diameter D > 0. Then for any function u ∈ H 1
0 (Ω) we have

ˆ
Ω

|∇u|2 dx ≥ 2

D2

ˆ
Ω

|u|2 dx. (2.1.46)
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2. Hardy type inequalities and homogeneous Sobolev spaces

Proof. Without loss of generality we assume that Ω lies between the lines xd = 0 and

xd = D . Then, we have

u(x) =
ˆ xd

0

d

dt
u(x ′, t )dt , (2.1.47)

where x = (x ′, xd ) with x ′ = (x1, . . . , xd ). Therefore, by the use of Hölder’s inequality

we get

ˆ
Ω

|u|2 dx =
ˆ
Rd

dx ′
ˆ D

0
|u(x ′, xd )|2 dxd

≤
ˆ
Rd

dx ′
ˆ D

0
xd dxd

ˆ D

0
|∇u(x ′, t )|2 dt

≤ D2

2

ˆ
Rd

dx ′
ˆ D

0
|∇u(x ′, t )|2 dt = D2

2

ˆ
Ω

|∇u|2 dx.

(2.1.48)

This completes the proof.

2.2. Homogeneous Sobolev spaces

Now we introduce function spaces which come into play when we deal with virtual

levels of Schrödinger operators. We refer to [20] for the proofs of the statements and

a more detailed discussion.

For dimensions d ≥ 3 the homogeneous Sobolev space Ḣ 1(Rd ) is defined as the

space of all functions u : Rd → C satisfying the conditions u ∈ L1
loc(Rd ), ∇u ∈ L2(Rd )

and meas({τ : |u(x)| > τ}) <∞ for all τ> 0, equipped with the norm

‖u‖Ḣ 1 =
(ˆ

Rd
|∇u|2 dx

) 1
2

. (2.2.1)

One can show that for functions in Ḣ 1(Rd ), d ≥ 3, Hardy’s inequality (2.1.14) holds.

This can be used to prove that Ḣ 1(Rd ) is a Hilbert space and that C∞
0 (Rd ) is dense in

Ḣ 1(Rd ). Note that functions u ∈ Ḣ 1(Rd ) do not have to be elements of L2(Rd ).

If we try to extend the definition of Ḣ 1(Rd ) to dimensions d = 1 and d = 2, we face

problems which are caused by the lack of Hardy’s inequality in these dimensions. To

point this out, we note that for d ≥ 3 it follows immediately from Hardy’s inequal-

ity that a sequence (un)n∈N of C∞
0 (Rd ) functions with ∇un → 0 in L2(Rd ) as n → ∞
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2.2. Homogeneous Sobolev spaces

converges to zero in L2(Rd , |x|−2 dx) and in particular in L2
loc(Rd ). However, for di-

mensions one and two we have seen examples of sequences (un)n∈N with

∇un → 0 in L2(Rd ) and un → 1 in L2
loc(Rd ), (2.2.2)

see Remark 2.1.2 and Example 2.1.4. This shows that the form
´
Rd |∇u|2 dx degener-

ates on constant functions and that the completion of C∞
0 (Rd ) with respect to this

form does not lead to a function space. To get rid of this degeneration we add a local

L2 norm to
´
Rd |∇u|2 dx. Precisely, we define

‖u‖H̃ 1 =
(ˆ

Rd
|∇u|2 dx +

ˆ
{|x|≤1}

|u|2 dx

) 1
2

(2.2.3)

and the space H̃ 1(Rd ) as

H̃ 1(Rd ) =
{

u ∈ L1
loc(Rd ), ∇u ∈ L2(Rd )

}
(2.2.4)

equipped with the norm (2.2.3). Then H̃ 1(Rd ) is a function space. Moreover, the

one- and two-dimensional Hardy inequalities (2.1.1) and (2.1.21) can be extended to

functions in H̃ 1(Rd ). This can be used to prove the following inequalities.

Proposition 2.2.1. Let d ∈ {1,2}. There exists a constant C > 0 such that for all func-

tions u ∈ H̃ 1(Rd )

ˆ ∞

0

|u|2
1+x2

dx ≤C‖u‖2
H̃ 1 if d = 1, (2.2.5)

ˆ
R2

|u|2
1+|x|2 ln2(|x|) dx ≤C‖u‖2

H̃ 1 if d = 2. (2.2.6)

This can be used to show the following important result.

Proposition 2.2.2. Let (un)n∈N be a sequence of functions in H̃ 1(Rd ) which converges

weakly in H̃ 1(Rd ) to a function u ∈ H̃ 1(Rd ). Then for any bounded measurable set

A ⊂Rd we have χAun →χAu in L2(Rd ).

Another important consequence of Proposition 2.2.1 is the following

Proposition 2.2.3. H̃ 1(Rd ) is a Hilbert space and C∞
0 (Rd ) is dense in H̃ 1(Rd ).
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3. Multi-particle Schrödinger
operators

3.1. Schrödinger operators

In this section we introduce the Schrödinger operator

H =−∆+V (3.1.1)

as a self-adjoint operator on L2(Rd ), where d ∈ N, by the use of perturbation meth-

ods. Here, ∆ is the Laplace operator and V is the operator of multiplication with a

real-valued potential, also denoted by V . Perturbation theory for Schrödinger oper-

ators has been intensively studied and two common ways to define the Schrödinger

operator with such methods have emerged: The definition as a sum of operators or

as the sum of closed quadratic forms. Later we will mainly use the quadratic form

approach, but we present them both.

3.1.1. Schrödinger operators defined as the sum of operators

This way goes back to the famous work of T. Kato [38] using the Kato-Rellich theorem.

We sketch this method here.

Definition 3.1.1 (Relative operator boundedness, see [67], p.528). Let A,B be densely

defined operators on a Hilbert space H . We say that B is A-bounded if

(i) D(A) ⊆ D(B),
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3. Multi-particle Schrödinger operators

(ii) there exist constants a,b > 0, such that for any u ∈ D(A) we have

‖Bu‖ ≤ a‖Au‖+b‖u‖. (3.1.2)

For an operator B which is A-bounded we call the infimum over all a for which there

exists a b > 0 such that condition (3.1.2) holds, the A-bound for B . If this is zero, we

say B is infinitesimally A-bounded.

Theorem 3.1.2 (Kato-Rellich-Theorem, cf. Theorem 7.1.14 in [67]). Let A be a self-

adjoint operator and suppose that B is a symmetric operator which is relatively A-

bounded with A-bound a < 1. Then the operator A+B defined on D(A) is self-adjoint.

If A is bounded below, so is A+B.

For the concrete case of Schrödinger operators, in which we are interested here, we

give the following

Example 3.1.3 (−∆-bounded potentials). Let A = −∆ on L2(Rd ). We collect some

conditions for a potential V to be −∆-bounded with relative bound less than one.

In these cases the Kato-Rellich Theorem applies and H = −∆+V is self-adjoint on

L2(Rd ).

(i) Assume that V ∈ Lp (Rd )+L∞(Rd ) with

p ≥ 2 if d = 1,2,3,

p > 2 if d = 4,

p ≥ d

2
if d ≥ 5.

(3.1.3)

Then V is −∆-bounded with relative bound zero, see for example [67, Theorem

7.1.18.]

(ii) In terms of Lp
loc(Rd ) requirements the conditions (3.1.3) are necessary. Other

conditions have been formulated in terms of convolutions, e.g., the so-called

Stummel conditions, see [67] or [68] for details.
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3.1. Schrödinger operators

3.1.2. Schrödinger operators introduced via quadratic forms

From the physical definition of observables it is sufficient to define the sum C =
−∆+V in an expectation value sense, i.e., 〈u,Cu〉 = 〈u,−∆u〉+ 〈u,V u〉. The follow-

ing approach was developed by B. Simon [63], defining the Schrödinger operator via

quadratic forms by the use of the KLMN theorem. It turns out that the sum of the

quadratic form is associated with a self-adjoint operator for a larger class of poten-

tials than given by (3.1.2). For variational techniques used in this work the approach

via quadratic forms is the more natural one.

Let us brievly repeat some basic facts of quadratic forms and the connection with

self-adjoint operators. It is well known that there is a one-to-one correspondence

between closed semi-bounded forms and self-adjoint semi-bounded operators. Fol-

lowing [11], we repeat some fundamental facts.

Definition 3.1.4 (Quadratic forms associated with self-adjoint operators). Let H be

a Hilbert space. We say that a closed form Q : d [Q]×d [Q] → R is associated with an

operator A if

(i) D(A) ⊆ d [Q],

(ii) (Au, v) =Q[u, v] u ∈ D(A), v ∈ d [Q].

Theorem 3.1.5. Let H be a Hilbert space.

(i) Assume that A = A∗ is a self-adjoint bounded below operator. Then there exists

a unique closed, bounded below quadratic form Q which is associated with A.

(ii) Let Q be a closed and bounded below quadratic form. Then there exists a unique

self-adjoint bounded below operator A = A∗, such that Q is associated with A.

Its domain is given by

D(A) = {x ∈ d [Q] : ∃h ∈H Q[u, v] = (h, v) for all v ∈ d [Q]}. (3.1.4)

Now we introduce the concept of relative form-boundedness.

Definition 3.1.6 (Relative form boundedness, cf. [67], p. 578). Let Q : d [Q]×d [Q] →
R be a quadratic form and P a sesquilinear form on d [Q]. We say that P is form
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3. Multi-particle Schrödinger operators

bounded with respect to Q if there exist constants a,b > 0 with

|P [u,u]| ≤ aQ[u]+b‖u‖2, u ∈ d [Q]. (3.1.5)

Given a form P which is form bounded with respect to Q, we call the infimum over

all a > 0 for which there is a b > 0 such that (3.1.5) holds, the relative form bound.

The following theorem is known as the KLMN theorem (named after Kato [39], Li-

ons [44], Lax-Milgram [43] and Nelson [49]).

Theorem 3.1.7 (KLMN theorem, see [63], Theorem 2). Let A ≥ 0 be a self-adjoint op-

erator associated with a quadratic form Q and assume that P is a symmetric bilinear

form which is form bounded with respect to Q with relative form bound a < 1. Then the

quadratic form u 7→ 〈u, Au〉+P [u], u ∈ d [Q], is associated with a self-adjoint bounded

below operator C .

This theorem can be used to introduce Schrödinger operators via quadratic forms.

Let the quadratic form Q, given by

d [Q] = H 1(Rd ), Q[u] =
ˆ
Rd

|∇u|2 dx, u ∈ d [Q], (3.1.6)

be associated with the Laplacian on L2(Rd ). Assume that V is a real-valued potential,

such that the form

P [ϕ,ψ] =
ˆ
Rd

Vϕψdx (3.1.7)

is form bounded with respect to Q with bound less than one. In this case we some-

times simply say that V is form bounded with respect to −∆. Then, by Theorem 3.1.7

there exists a self-adjoint operator H associated with the form u 7→Q[u]+P [u,u]. Its

domain is given by

D(H) = {u ∈ H 1(Rd ) : −∆u +V u ∈ L2(Rd )} (3.1.8)

and for u ∈ D(H) we have

Hu =−∆u +V u (3.1.9)

in the distributional sense [63]. In the following we denote by H = −∆+V the op-

erator given by (3.1.9), where we note that this is not necessarily the sum of opera-
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3.1. Schrödinger operators

tors and therefore an abuse of notation. If not stated otherwise, we will consider the

Schrödinger operator in the sense of quadratic forms.

Remark 3.1.8. (i) The operator −∆+V defined as quadratic form is an extension

of the operator defined in the sense of an operator sum. Its domain may be

larger than that of the operator sum.

(ii) Obviously, −∆u +V u ∈ L2(Rd ) is fulfilled if both summands are in L2(Rd ), but

also if there are cancellations.

(iii) For dimensions d ∈ {1,2,3} the KLMN theorem, compared with the Kato-Rellich

theorem, allows stronger local singularities on the potential V , cf. [32]. While

the Kato-Rellich theorem requires essentially V ∈ L2
loc(Rd ), a potential V is form

bounded with respect to −∆ with bound less than one if V ∈ Lp
loc(Rd )+L∞(Rd )

for all p with

p ≥ 1 if d = 1, p > 1 if d = 2, and p ≥ 3

2
if d = 3, (3.1.10)

see for example [13].

We complete this abstract part with a remark which can be found in a similar

form in [35, Theorem 2.2] and which will be useful for introducing multi-particle

Schrödinger operators later.

Remark 3.1.9. (i) The set of potentials V which are relatively −∆-bounded on Rd

in the sense of Definition 3.1.1 (respectively Definition 3.1.6) is a real vector

space.

(ii) Let Rd = X1
⊕

X2 be an orthogonal decomposition of Rd with corresponding

coordinates x = x1 + x2. Assume that V : Rd → R depends only on x1. Then

V is relatively −∆-bounded on Rd in the sense of Definition 3.1.1 (respectively

Definition 3.1.6) if and only if it is relatively −∆-bounded on X1 in the sense of

Definition 3.1.1 (respectively Definition 3.1.6).
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3. Multi-particle Schrödinger operators

3.1.3. Eigenvalues and resonances

Later we will deal with the question whether there is an eigenvalue at the edge of the

spectrum. The following abstract theorem gives a criterion for this.

Theorem 3.1.10 (Minimizers are eigenfunctions, see Theorem 10.2.2 in [11]). Assume

that A is a self-adjoint, bounded below operator, associated with the quadratic form

Q. If there exists a minimizer of Q, i.e., a function u0 ∈ d [Q] with ‖u0‖ = 1 and

Q[u0] = inf
u∈d [Q],‖u‖=1

Q[u], (3.1.11)

then u0 is an eigenfunction of A corresponding to the ground state eigenvalue.

Now let H = −∆+V be associated with the quadratic form Q with form domain

H 1(Rd ),

Q[u] =
ˆ
Rd

|∇u|2 dx +
ˆ
Rd

V |u|2 dx. (3.1.12)

If the infimum of Q[u] over all u ∈ H 1(Rd ) is attained, then by Theorem 3.1.10 it is

the ground state eigenvalue of the operator H . If the infimum is not attained by a

function in H 1(Rd ), but the potential V is chosen in such a way that the form Q can

be defined for functions in Ḣ 1(Rd ), respectively H̃ 1(Rd ), and there exists a minimizer

of Q[u] in this space, then we say that H has a ground state resonance.

Another Hardy type inequality

Now we give an estimate for potentials which are relatively form bounded and decay

at infinity. This estimate is a simple application of the Hardy type inequality given in

Proposition 2.2.1 and will play an important role later in this thesis.

Lemma 3.1.11. Assume that V is relatively form bounded and satisfies

|V (x)| ≤C (1+|x|)−2−ν, |x| ≥ A (3.1.13)

for some ν, A,C > 0. Then there exists a constant C̃ > 0, such that for all u ∈ H̃ 1(Rd ) we

have ˆ
Rd

|V (x)||u(x)|2 dx ≤ C̃‖u‖2
H̃ 1 . (3.1.14)
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3.2. Multi-particle Schrödinger operators

3.2. Multi-particle Schrödinger operators

Now we consider a system of N ≥ 2 one- or two-dimensional quantum particles with

masses mi > 0 and position vectors xi ∈Rd , i = 1, . . . , N with d ∈ {1,2}. Such a system

is described by the Hamiltonian

HN =−
N∑

i=1

1

2mi
∆xi +

∑
1≤i< j≤N

Vi j (x), (3.2.1)

acting on L2(Rd N ). Here, the operator

H0 =−
N∑

i=1

1

2mi
∆xi (3.2.2)

describes the kinetic part and the potentials Vi j describe the pair interactions be-

tween the particles indicated by i and j . We assume that the potentials Vi j are not

identically zero and that they can be represented by functions vi j :Rd →R as

Vi j (x) = vi j (xi j ) with xi j = xi −x j . (3.2.3)

We will always assume that the functions vi j are relatively form bounded with relative

bound zero, i.e., for any ε > 0 there exists a constant C (ε) > 0, such that for every

ψ ∈ H 1(Rd ) we have

〈|vi j |ψ,ψ〉 ≤ ε‖∇ψ‖2 +C (ε)‖ψ‖2. (3.2.4)

Moreover, we assume that there exist constants A,C ,ν> 0, such that

|vi j (x)| ≤C (1+|x|)−2−ν , x ∈Rd , |x| ≥ A. (3.2.5)

3.2.1. Separation of the center of mass of the system

The center of mass of the system is a constant of motion, i.e., it moves with constant

velocity. It is common practice to fix the center of mass at the origin and to consider

instead of the operator HN an operator which describes the dynamics of the system

relative to the center of mass. In the following we separate the center of mass of the
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system, following [21, 62]. We introduce on Rd N the scalar product 〈·, ·〉m , given by

〈x, y〉m = 2
N∑

i=1
mi 〈xi , yi 〉, |x|2m = 〈x, x〉m , x, y ∈Rd N . (3.2.6)

Here, we denote by 〈·, ·〉 the standard scalar product on Rd . The index m in the defi-

nition of the scalar product 〈·, ·〉m is chosen in order to emphasize that it is weighted

with the masses of the particles. Let X be the space Rd N equipped with the scalar

product 〈·, ·〉m and let

X0 =
{

x = (x1, . . . , xN ) ∈ X :
N∑

i=1
mi xi = 0

}
(3.2.7)

be the space of relative positions of the particles and let Xc = X ª X0 be the space of

the center of mass position of the system. We denote by P0 and Pc the orthogonal

projections from X on X0 and Xc , respectively. Furthermore, we introduce ∆, ∆0 and

∆c as the Laplace-Beltrami operators on L2(X ), L2(X0) and L2(Xc ), respectively.

Remark 3.2.1. The choice of the scalar product 〈·, ·〉m is natural and appropriate in

the sense that the Hamiltonian H0, defined in (3.2.2), is (minus) the Laplace-Beltrami

operator on Rd N with respect to 〈·, ·〉m . Put differently, if we choose an orthogonal

basis {e1, . . . ,ed N } of X = (Rd N ,〈·, ·〉m) and corresponding coordinates y1, . . . yd N , then

we have

H0 =−∑ ∂2

∂y2
i

=−∆. (3.2.8)

Corresponding to the decomposition L2(X ) = L2(X0)⊗L2(Xc ) we find

−∆=−∆0 ⊗ Id+ Id⊗ (−∆c ). (3.2.9)

Moreover, since for every x ∈ X we have

(P0x)i − (P0x) j = xi −x j , (3.2.10)

the potential V (x) =∑
1≤i< j≤N vi j (xi j ) satisfies

V (x) =V (P0x). (3.2.11)

46



3.2. Multi-particle Schrödinger operators

Therefore, HN is unitarily equivalent to the operator

H ⊗ Id+ Id⊗ (−∆c ), (3.2.12)

where the operator H , acting on L2(X0) is given by

H =−∆0 +V. (3.2.13)

In view of (3.2.12) the center of mass of the system moves like a free particle and the

operator H corresponds to the relative motion of the system. The operator H is the

main subject of the following studies.

Remark 3.2.2. (i) Under the above assumptions on the potentials the operator H

is self-adjoint on L2(X0), which follows from the KLMN theorem and Remark

3.1.9.

(ii) Separating the center of mass reduces the problem of an N -particle system to

a problem of a system consisting of N −1 particles. In particular, the two-body

Schrödinger operator in the center of mass frame can be considered as a one-

particle operator.

3.2.2. Clusters and Cluster Hamiltonians

Now we introduce the concept of so-called cluster Hamiltonians, c.f. for example

[59]. A cluster C of the system is defined as a non-empty subset of {1, . . . , N } and we

denote by |C | the number of particles contained in C . To decouple a cluster C from

the whole system we define

X0[C ] = {x ∈ X0 : xi = 0 if i 6∈C }. (3.2.14)

Note that for x ∈ X0[C ] ∑
i∈C

mi xi = 0, (3.2.15)
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i.e., X0[C ] is the space of the relative positions of the particles in the cluster C . Let

∆0[C ] be the Laplace-Beltrami operator on L2(X0[C ]) and

V [C ] = ∑
i , j∈C , i< j

Vi j (3.2.16)

the potential of the pair interactions between the particles in the cluster C . Then for

1 < |C | < N the cluster Hamiltonian with reduced center of mass, acting on L2(X0[C ]),

is given by

H [C ] =−∆0[C ]+V [C ] (3.2.17)

and describes the internal dynamics of the cluster C . For C = {1, . . . , N } we have

X0[C ] = X0, so we set H [C ] = H . For |C | = 1 we have X0[C ] = {0} and we set H [C ] = 0.

Clusters C with 1 < |C | < N are called non-trivial clusters.

3.2.3. Partitions of the system

For p ≥ 2 we say that Z = {C1, . . . ,Cp } is a cluster decomposition or partition of the

system of order |Z | = p if the Ci ∈ Z are non-empty, disjoint clusters whose union is

the whole system. Let

X0(Z ) = ⊕
Ck∈Z

X0[Ck ], Xc (Z ) = X ªX0(Z ). (3.2.18)

This gives rise to the decomposition

L2(X0(Z )) = ⊗
Ck∈Z

L2(X0[Ck ]). (3.2.19)

By abuse of notation we denote the operators

Id⊗·· ·⊗ Id⊗ (−∆0[Ck ])⊗ Id⊗·· ·⊗ Id (3.2.20)

and

Id⊗·· ·⊗ Id⊗H [Ck ]⊗ Id⊗·· ·⊗ Id, (3.2.21)
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acting on L2(X0(Z )), by −∆0[Ck ] and H [Ck ], respectively. Let ∆0(Z ) be the Laplace-

Beltrami operator on L2(X0(Z )), then

−∆0(Z ) = ∑
Ck∈Z

−∆0[Ck ]. (3.2.22)

The cluster decomposition Hamiltonian of the partition Z is defined by

H(Z ) = ∑
Ck∈Z

H [Ck ] (3.2.23)

and describes the joint internal dynamics of the clusters in Z . We denote the poten-

tial of the inter-cluster interaction by

I (Z ) =V − ∑
Ck∈Z

V [Ck ]. (3.2.24)

Then, corresponding to the decomposition L2(X0) = L2(X0(Z )) ⊗ L2(Xc (Z )), the

Hamiltonian of the whole system can be written as

H = H(Z )⊗ Id+ Id⊗ (−∆c (Z ))+ I (Z ), (3.2.25)

where ∆c (Z ) is the Laplace-Beltrami operator on L2(Xc (Z )).

3.2.4. Systems of fermions and bosons

Now we consider a system of N identical one- or two-dimensional particles, i.e., mi =
m j for all 1 ≤ i , j ≤ N and the potentials satisfy

vi j (x) = vi j (−x), vi j (x) = vkl (x), x ∈Rd (3.2.26)

for i 6= j , k 6= l .

In quantum physics identical particles are considered to be indistinguishable,

which means that if we interchange two particles, the new wave function should de-

scribe the same physical state. Two unit vectors in the quantum Hilbert space de-

scribe the same physical state if and only if they differ by a constant of absolute value
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1. Hence, for identical particles we have

u(x1, . . . , xi , . . . , x j , . . . , xN ) =λu(x1, . . . , x j , . . . , xi , . . . , xN ) (3.2.27)

for some λwith |λ| = 1. Two values of λ are of special interest, namely λ=±1. We say

that a system is fermionic ifλ=−1 and bosonic ifλ=+1. In other words, for fermions

the operator HN is restricted to the space of functions which are anti-symmetric with

respect to exchange of particles, i.e., HN acts on L2
as(Rd N ) which is the space of all

functions ψ ∈ L2(Rd N ) satisfying

ψ(x1, . . . , xN ) = sgn(π)ψ(xπ(1), . . . , xπ(N )) (3.2.28)

for all permutations π of the set {1, . . . , N }. Here, sgn(π) is the signature of π. For a

system of bosons the operator HN is restricted to the space of functions which are

symmetric with respect to permutation of particles, i.e., it acts on L2
sym(Rd N ), i.e., the

space of all functions in L2(Rd N ) which are symmetric with respect to permutations

of particles.

It is worth mentioning that any two fermions can not have the same quantum state,

which is known as the Pauli exclusion principle. Bosons and fermions differ in their

internal angular momentum (spin). Fermions have a half-integer spin, while bosons

obey an integer spin. For our considerations the spin does not play a role and we

shall not discuss it further. We refer to [30] for more details.

Similarly as in the case of Hamiltonians without symmetry restrictions we can in-

troduce the Hamiltonians Has and Hsym which are the Hamiltonians of a fermionic,

repectively bosonic system in the center of mass frame, acting on L2
as(X0) and

L2
sym(X0), respectively. Analogously we can define the cluster Hamiltonians Has[C ]

and Hsym[C ] for clusters of fermions and bosons, respectively.

3.2.5. Relative coordinates q and ξ and separation of

clusters

For a cluster C we denote by P0[C ] the projection from X0 on X0[C ] and for x ∈ X0 we

denote

q[C ] = P0[C ]x. (3.2.29)
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3.2. Multi-particle Schrödinger operators

We notice that q[C ] = (q1, . . . , qN ) is a vector in Rd N and the component qi ∈ Rd is

zero if i 6∈C and

qi = xi −xC if i ∈C , (3.2.30)

where

xC = 1

M [C ]

∑
j∈C

m j x j (3.2.31)

is the center of mass position of the cluster C . Here, M [C ] = ∑
i∈C

mi is the total mass

of the system. In other words, if i ∈C , then qi describes the position of the particle i

relative to the center of mass of C , cf. Figure 3.1.

1

2

3

C

q2
q1

q3
5

4

xC

Figure 3.1.: If the particle i is in the cluster C , then qi describes its position relative to
the center of mass of the cluster C . If i ∉C , then qi = 0.

Now let Z = {C1, . . . ,Cp } be a partition of the system. We introduce the projections

P0(Z ) and Pc (Z ) from X0 to X0(Z ) and Xc (Z ), respectively. For x ∈ X0 let

q(Z ) = P0(Z )x, ξ(Z ) = Pc (Z )x. (3.2.32)

Note that the i th components of q(Z ) and ξ(Z ) are vectors qi ∈ Rd and ξi ∈ Rd given

by

qi = xi −xCl , ξi = xCl (3.2.33)

where Cl is the cluster which contains the particle i . It is obvious that

q(Z ) = ∑
Ck∈Z

q[Ck ]. (3.2.34)
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3. Multi-particle Schrödinger operators

Now we introduce several subsets of X0 which will be important later.

Definition 3.2.3. For κ> κ′ > 0, R > 0 and partitions Z with 1 < |Z | < N we define the

regions

B(R) = {x ∈ X0 : |x|m ≤ R} ,

K (Z ,κ) = {
x ∈ X0 : |q (Z ) |m ≤ κ|ξ (Z ) |m

}
KR (Z ,κ) = {

x ∈ X0 : |q (Z ) |m ≤ κ|ξ (Z ) |m , |x|m ≥ R
}

KR (Z ,κ′,κ) = KR (Z ,κ) \ KR (Z ,κ′)

(3.2.35)

Using these sets we can separate regions in X0 where the particles are divided into

several groups which are moved apart. Since these objects play an important role

later, let us brievly discuss the coordinates q(Z ) and ξ(Z ) and the regions K (Z ,κ).

For further discussions see for example [4, 75]. By (3.2.33) and the definition of the

scalar product 〈·, ·〉m we find

|q(Z )|2m = 2
p∑

l=1

∑
i∈Cl

mi |xi −xCl |2, (3.2.36)

i.e., |q(Z )|m is a weighted average of the distance of the particles from the center of

mass of the cluster to which they belong. It follows immediately from (3.2.36) that if

the particle i belongs to the cluster Cl , then

|xi −xCl | ≤ (2m0)−
1
2 |q(Z )|m , (3.2.37)

where m0 = min{ml : l = 1, . . . , N }. Now assume that |Z | = 2, i.e., Z = {C1,C2}. Then

|ξ(Z )|2m = 2
∑

i∈C1

mi |xC1 |2 +2
∑

j∈C2

m j |xC2 |2

= 2M [C1]|xC1 |2 +2M [C2]|xC2 |2
(3.2.38)

Since the center of mass of the whole system is fixed at the origin, it follows

|ξ(Z )|2m = 2M [C1]M [C2]

M [C1]+M [C2]
|xC1 −xC2 |2, (3.2.39)

i.e., |ξ(Z )|2m is a weighted distance between the centers of mass of the two clusters.
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3.2. Multi-particle Schrödinger operators

We keep the assumption |Z | = 2 and describe the region K (Z ,κ). Let x ∈ K (Z ,κ)

and i , j ∈C1, k ∈C2. Then, by (3.2.37) and the definition of K (Z ,κ) we have

|xi −xC1 | ≤ (2m0)−
1
2 |q(Z )|m ≤ (2m0)−

1
2κ|ξ(Z )|m (3.2.40)

and analogously

|xk −xC2 | ≤ (2m0)−
1
2κ|ξ(Z )|m (3.2.41)

Hence, for κ> 0 small enough we get by the use of (3.2.39)

|xi −xk | = |xi −xC1 +xC1 −xC2 +xC2 −x j | ≥ c(m,κ)|ξ(Z )|m , (3.2.42)

where the constant c(m,κ) is given by

c(m,κ) =
(

M1 +M2

2M1M2

) 1
2 −2κ (2m0)−

1
2 . (3.2.43)

and depends on the masses of the particles and κ. On the other hand, we have

|xi −x j | ≤ 2κ (2m0)−
1
2 |ξ(Z )|m . (3.2.44)

This shows that for small κ > 0 and any x ∈ K (Z ,κ) the distance between any two

particles in the same cluster is small compared to the distance between particles from

different clusters. This means that x ∈ K (Z ,κ) corresponds to the situation that the

two clusters in the partition Z are separated.

|ξ|m

|q|m

|q|m = κ|ξ|m

K (Z ,κ)

C1
C2

X0

Figure 3.2.: x ∈ K (Z ,κ), |Z | = 2, describes two separated clusters.

53



3. Multi-particle Schrödinger operators

From the above observations we get the following

Lemma 3.2.4. There exists a constant κ0 > 0, such that for all 0 < κ< κ0 and any pair

of partitions Z 6= Z ′ with |Z | = |Z ′| = 2 we have

K (Z ,κ)∩K (Z ′,κ) = {0}. (3.2.45)

This result can be generalized to partitions consisting of more than two clusters,

namely

Theorem 3.2.5. For any system of N ≥ 3 particles there exist constantsκ(2), . . . ,κ(N−1)

and κ′(2), . . . ,κ′(N −1) with κ(l ) > κ′(l ) for 1 < l < N , such that for any 1 < l < N and

any pair of partitions Z 6= Z ′ with |Z | = |Z ′| = l we have

K ((Z ,κ(l ))∩K
(
(Z ′,κ(l )

)⊆ ⋃
Z̃ :|Z̃ |<l

K
(
Z̃ ,κ′(|Z̃ |)) . (3.2.46)

This theorem was proved in an appendix of M. Antonets, G. Zhislin, and I. Shere-

shevskijto [4] to the book of K. Jörgens and J. Weidmann [37]. The appendix exists in

Russian only, an English version can be found in [7].

3.2.6. Further important tools

To study the spectrum of multi-particle Schrödinger operators we will make use of

geometric methods. In this section we collect some tools which will be useful later.

The IMS localization formula

An important tool for these methods is the use of a partition of unity and the IMS

localization formula.

Definition 3.2.6 (Partition of Unity). A partition of unity of a space X is a finite family

of functions Jα : X → [0,1] with bounded distributional derivatives and
∑
α J 2

α = 1.

Remark 3.2.7. (i) Note that sometimes for a partition of unity {Jα} one demands∑
α Jα = 1 (without the squares). We require that the sum of squares of the func-

tions Jα equals one because this is more convenient for our purpose.
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3.2. Multi-particle Schrödinger operators

(ii) In the literature often it is required that a partition of unity consists of smooth

functions Jα, see for example [14]. Since we consider the operators in the sense

of quadratic forms, the requirements of the above given definition are suffi-

cient, cf. for example [65]. Later, our concretely chosen partitions of unity con-

sist of non-smooth functions.

Theorem 3.2.8 (IMS Localization Formula, cf. [14], Theorem 3.2, [65]). Let {Jα} be a

partition of unity and let H = H0 +V for a potential V satisfying (3.2.4). Then

H =∑
α

JαH Jα−
∑
α

|∇Jα|2. (3.2.47)

Remark 3.2.9. (i) The localization formula was first derived by R. Ismagilov [36],

rediscovered by J. Morgan [45] and used in J. Morgan and B. Simon [46]. Later,

its importance was discovered by I. M. Sigal [61]. This explains why it is known

as the IMS formula.

(ii) For apparent reasons the term
∑
α
|∇Jα|2 is called localization error.

(iii) Later we will choose an appropriate partition of unity which separates regions

in the configuration space where particles are in several groups that are moved

apart. Then the IMS formula allows us to estimate the Schrödinger operator

of the whole system by studying the cluster Hamiltonians and estimating the

localization error. A crucial part of the work will be to find an appropriate esti-

mate for the localization error. Such an estimate can be found in Section 4.3.3.

The HVZ theorem

Recall that for a one-body Schrödinger operator h = −∆+V with a potential V de-

caying at infinity the essential spectrum coincides with the semi-axis [0,∞). In the

case of multi-particle systems the localization of the essential spectrum is a challeng-

ing problem. The famous HVZ theorem, named after W. Hunziker [34], C. van Winter

[72] and G.M. Zhislin [81] gives an answer to this question. We formulate the theorem

with the conditions for the pair potentials Vi j for which we will apply it later.

Theorem 3.2.10 (HVZ Theorem, cf. [58], Theorem XIII.17, and [18]). Let H be the

Hamiltonian of a system of N ≥ 3 particles in the center of mass frame, where the po-
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3. Multi-particle Schrödinger operators

tentials Vi j satisfy (3.2.4) and (3.2.5). For a partition Z let Σ(Z ) = infσ(H(Z )) and

Σ := min
Z : |Z |≥2

Σ(Z ). Then the essential spectrum of H is given by

σess(H) = [Σ,∞). (3.2.48)

Remark 3.2.11. (i) Let Z = {
C1, . . . ,Cp

}
be a partition of the system with p > 1.

Then

σ(H(Z )) =
p∑

k=1
σ (H [Ck ]) . (3.2.49)

(ii) Assume that infσess(H) < 0, then by (3.2.49) and the HVZ theorem there exists

a cluster, such that the corresponding cluster Hamiltonian has negative spec-

trum. On the other hand, if there exists a cluster C with |C | < N −1, such that

infσ(H [C ]) < 0, then infσess(H) < 0. Indeed, let Z be the partition which con-

sists of the cluster C and such that the remaining clusters in Z contain only one

particle each. Then σ(H(Z )) = σ(H [C ]) and therefore by (3.2.49) and the HVZ

theorem infσess(H) < 0. This observation will be used later in the thesis.

3.2.7. Notation and Convention

We conclude this chapter by briefly explaining some notations which will be used in

the further course of this thesis.

Given a partition Z = {C1, . . . ,Cp } with coordinates q = q(Z ) and ξ = ξ(Z ) we will

write −∆q instead of −∆0(Z ) and −∆ξ instead of −∆c (Z ). Corresponding to a decom-

position X0 = X1
⊕

X2 and L2(X0) = L2(X1)⊗L2(X2) we can consider operators Ai on

L2(Xi ) as operators on L2(X0), namely as

A1 ⊗ Id and Id⊗ A2, (3.2.50)

respectively. In this sense we will sometimes consider the cluster Hamiltonians H [C ]

and the cluster decomposition Hamiltonian H(Z ) as operators on L2(X0) without

changing the notation. From time to time we will also consider the operators as oper-

ators acting on L2(Rk ), where k ∈N is the dimension of the corresponding subspace

of X0.
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4. Virtual levels of Schrödinger
operators

4.1. Introduction

The behavior of Schrödinger operators at the bottom of the essential spectrum has

attracted many mathematicians. In particular, the solvability of the Schrödinger

equation

(−∆+V )ψ= 0 (4.1.1)

and properties of such solutions are of interest for Schrödinger operators H =−∆+V

which are critical in the sense that σess(H) = [0,∞) and the negative spectrum of the

operator is empty, but any negative perturbation creates a negative eigenvalue. Such

problems have been studied for example in [24, 56, 57, 79].

Concerning the behaviour at infinity of solutions of the equation (4.1.1) for a crit-

ical operator H = −∆+V several scenarios are possible. While it is well known that

eigenfunctions corresponding to eigenvalues below the essential spectrum decay ex-

ponentially at infinity [2], the situation at the threshold of the essential spectrum is

quite different. It is not even ensured that in this case the solution of the Schrödinger

equation Hψ = 0 is an eigenfunction, it can also be a resonant state, as for example

in the case of a one-particle Schrödinger operator in dimension three [79]. In some

cases the decay of solutions of (4.1.1) is sub-exponential [7, 33] or only polynomial,

see [7].

In the context of the Efimov effect, which we are interested in, it is important to

understand the behavior of the Schrödinger operator near the bottom of its essential

spectrum. In particular, the question whether so-called virtual levels correspond to

eigenvalues or to threshold resonances is important.
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4. Virtual levels of Schrödinger operators

By a virtual level of a Schrödinger operator H =−∆+V we mean that

• H ≥ 0,

• infσ(H +ε∆) < 0 for any ε> 0,

• infσess(H +ε∆) = 0 for any sufficiently small ε> 0,

i.e., any small negative perturbation of the operator leads to a negative eigenvalue

while the essential spectrum is stable under small perturbations. Recently, virtual

levels of Hamiltonians corresponding to systems of N ≥ 3 particles with space di-

mension d ≥ 3 have been studied in [7] and [24]. There, it has been proved that in the

presence of a virtual level the solution of (4.1.1) is an eigenfunction corresponding to

the eigenvalue zero. This observation was the key to show the absence of the Efimov

effect for systems of N ≥ 4 particles in dimension d ≥ 3.

The main goal of this chapter is to study virtual levels of Schrödinger operators

corresponding to systems of one- or two-dimensional particles and in particular to

answer the question whether they correspond to eigenvalues or to resonances. In

doing so we have to bear in mind the following difference concerning criticality of

Schrödinger operators between dimensions d ≥ 3 and d = 1 or d = 2. In the first

case, Hardy’s inequality implies that for any bounded and sufficiently fast decaying

potential V we have

h(λ) =−∆+λV ≥ 0 (4.1.2)

for all sufficiently small λ > 0. However, for dimension d = 1 or d = 2 the Laplace

operator is critical, namely the following result holds.

Theorem 4.1.1 (The Laplacian is critical for dimensions one and two, see, e.g., [64]).

Let V 6= 0. For d = 1 assume that
´

(1+ x2)|V (x)|dx <∞ and for d = 2 assume that for

δ> 0 small enough we have

ˆ
|V (x)|1+δdx <∞ and

ˆ
(1+|x|2)1+δ|V (x)|dx <∞. (4.1.3)

Then the operator h(λ) =−∆+λV has a negative eigenvalue for any λ> 0 if and only

if
´

V (x)dx ≤ 0.
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4.2. Virtual levels of one-particle Schrödinger operators

Remark 4.1.2. (i) Besides the critical behavior of the Laplacian, in [64] also the

behavior of the eigenvalues in case of
´

V (x)dx < 0 has been studied. The ob-

servation that the Laplacian is critical will be important in our following stud-

ies.

(ii) As mentioned above, for dimension d ≥ 3 the Laplace operator is not critical

due to Hardy’s inequality. If we subtract a Hardy term i.e., consider the operator

H =−∆− (d −2)2

4
|x|−2, (4.1.4)

we get a critical operator. In [77] a necessary and sufficient condition is given

for potentials V , such that H(λ) = −∆− (d−2)2

4 |x|−2 +λV has a negative eigen-

value for any λ> 0.

Let us give a short outline of this chapter. We start in Section 4.2 with the case

of one-particle Schrödinger operators, which is rather for the sake of completeness.

Some of the results of this section are ingredients in the proofs of the multi-particle

results, but might be of independent interest. In Section 4.3 we extend the studies to

multi-particle systems. Our main result is Theorem 4.3.3, where we present a crite-

rion that virtual levels correspond to a zero eigenvalue. We also show that this cri-

terion is fulfilled for systems of N ≥ 3 one-dimensional or N ≥ 4 two-dimensional

particles.

4.2. Virtual levels of one-particle Schrödinger

operators

4.2.1. Introduction

In this section, which is based on [8], we consider the Schrödinger operator

h =−∆+V (4.2.1)

acting on L2(Rd ) with d ∈ {1,2}. We assume that the potential V is not identically zero

and that for any ε> 0 there exists a constant C (ε) > 0, such that for every ψ ∈ H 1(Rd )
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4. Virtual levels of Schrödinger operators

we have

〈|V |ψ,ψ〉 ≤ ε‖∇ψ‖2 +C (ε)‖ψ‖2. (4.2.2)

Moreover, we assume that the potential is short-range, i.e.,

|V (x)| ≤C (1+|x|)−2−ν , x ∈Rd , |x| ≥ A (4.2.3)

for some constants A,C ,ν> 0. We use the small letter h for the Schrödinger operator

to emphasize that we deal with a one-particle operator. For ε ∈ (0,1) we write

hε = h +ε∆=−(1−ε)∆+V. (4.2.4)

Definition 4.2.1. Assume that the potential V satisfies (4.2.2) and (4.2.3). We say that

the operator h, defined in (4.2.1), has a virtual level at zero if h ≥ 0 and for any ε ∈ (0,1)

infσ (hε) < 0 (4.2.5)

For d ≥ 3 it is an immediate consequence of Hardy’s inequality that for short-range

potentials the operator h has a virtual level at zero if and only if h ≥ 0 and for any

ε> 0 the operator h̃ =−∆+V −ε(1+|x|2)−1 has a discrete eigenvalue below zero. For

dimension one or two, where Hardy’s inequality does not hold, this equivalence is not

evident. On the other hand, since the Laplace operator is critical in these dimensions,

see Theorem 4.1.1, the condition h ≥ 0 implies
´∞
−∞V (x)dx > 0. This observation is a

crucial ingredient in the proof of the following theorem.

Theorem 4.2.2 (Necessary and sufficient condition for a virtual level). Let d = 1 or

d = 2. We assume that V 6= 0 satisfies (4.2.2) and (4.2.3) and that h ≥ 0. Furthermore,

let U be a bounded, strictly negative potential satisfying for |x| ≥ A the condition

|U (x)| ≤C |x|−2 if d = 1 and |U (x)| ≤C |x|−2 ln−2(|x|) if d = 2 (4.2.6)

for some C > 0, A > 1. Then h has a virtual level at zero if and only if for any ε> 0 and

for any function ψ ∈ H 1(Rd ) we have

infσ (h +εU ) < 0. (4.2.7)
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Before we turn to the proof of Theorem 4.2.2, let us collect some consequences that

will be useful later in this thesis for the multi-particle case.

Corollary 4.2.3. Assume that V 6= 0 satisfies (4.2.2) and (4.2.3), h = −∆+V ≥ 0 and

that h does not have a virtual level at zero. Then for small ε0 > 0 the operator hε0 ≥ 0

also does not have a virtual level. Fixing such an ε0 > 0 and applying Theorem 4.2.2 to

the operator hε0 we find for U given by (4.2.6) an ε1 > 0, such that

(1−ε0)‖∇ψ‖2 +〈Vψ,ψ〉+ε1〈Uψ,ψ〉 ≥ 0 (4.2.8)

for any function ψ ∈ H 1(Rd ).

Corollary 4.2.4. Assume that h ≥ 0 does not have a virtual level and that the potential

V 6= 0 satisfies (4.2.2) and (4.2.3). Then by choosing U according to Theorem 4.2.2 with

U (x) =−1 for |x| ≤ 1 we obtain from (4.2.8) that for any ψ ∈ H̃ 1(Rd )

‖ψ‖2
H̃ 1 ≤

1+ε1 −ε0

ε1
‖∇ψ‖2 + 1

ε1
〈Vψ,ψ〉. (4.2.9)

Proof of Theorem 4.2.2. Here we only prove that the absence of a virtual level of h

implies that (4.2.7) does not hold. The other direction follows from Theorem 4.2.6,

which we will prove later, and the variational principle.

Let d = 1. Without loss of generality we can assume that U (x) = −(1+ |x|)−2. For

ψ ∈ H 1(R) we write

ψ0(x) =ψ(x)−ψ(0). (4.2.10)

Then we have

ˆ ∞

−∞

|ψ(x)|2
1+x2

dx ≤ 2|ψ(0)|2
ˆ ∞

−∞

1

1+x2
dx +2

ˆ ∞

−∞

|ψ0(x)|2
1+x2

dx. (4.2.11)

Computing the first integral and applying the Hardy inequality for the semi axis for

the second integral, which is possible because ψ0(0) = 0, we get

ˆ ∞

−∞

|ψ(x)|2
1+x2

≤ 2π|ψ(0)|2 +8‖ψ′‖2, (4.2.12)

where we used that ψ′ =ψ′
0. Let us estimate |ψ(0)|, which is done in the following
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Lemma 4.2.5. Assume that the conditions of Theorem 4.2.2 are fulfilled. Then there

exist constants C0, C1 > 0 which are independent of ψ ∈ H̃ 1(Rd ), such that

|ψ(0)|2 ≤C−1
0 〈Vψ,ψ〉+C1‖ψ′‖2. (4.2.13)

Proof of Lemma 4.2.5. From the identity

〈Vψ,ψ〉 =
ˆ ∞

−∞
V (x)|ψ(0)|2 dx +

ˆ ∞

−∞
V (x)|ψ0(x)|2 dx

+2Re

ˆ ∞

−∞
V (x)ψ(0)ψ0(x)dx

(4.2.14)

we get

〈Vψ,ψ〉 ≥
ˆ ∞

−∞
V (x)|ψ(0)|2 dx +

ˆ ∞

−∞
V (x)|ψ0(x)|2 dx

−2

ˆ ∞

−∞
|V (x)||ψ(0)ψ0(x)|dx.

(4.2.15)

Note that for any δ> 0

2|ψ(0)ψ0(x)| ≤ δ|ψ(0)|2 +δ−1|ψ0(x)|2, (4.2.16)

which together with (4.2.15) implies

〈Vψ,ψ〉 ≥ |ψ(0)|2
∞̂

−∞
(V (x)−δ|V (x)|) dx

+
∞̂

−∞
|ψ0(x)|2 (

V (x)−δ−1|V (x)|) dx

≥ |ψ(0)|2
∞̂

−∞
(V (x)−δ|V (x)|)dx

− (1+δ−1)

∞̂

−∞
|V (x)||ψ0(x)|2 dx.

(4.2.17)
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Using Lemma 3.1.11 to estimate the last term on the r.h.s of (4.2.17) we get

〈Vψ,ψ〉 ≥ |ψ(0)|2
∞̂

−∞
(V (x)−δ|V (x)|)dx −C (1+δ−1)‖ψ0‖2

H̃ 1 (4.2.18)

for some C > 0. Due to ψ0(0) = 0 we have ‖ψ0‖2
H̃ 1 ≤ C ′‖ψ′

0‖2 for some C ′ > 0. This,

together with (4.2.18) yields

〈Vψ,ψ〉 ≥ |ψ(0)|2
∞̂

−∞
(V (x)−δ|V (x)|)dx −C (δ)

ˆ ∞

−∞
|ψ′

0(x)|2 dx. (4.2.19)

Since
´∞
−∞V (x)dx > 0, we can choose the constant δ> 0 sufficiently small, such that

ˆ ∞

−∞
(V (x)−δ|V (x)|)dx ≥ 1

2

ˆ ∞

−∞
V (x)dx =: C0 > 0. (4.2.20)

This, together with (4.2.19) and ψ′(x) =ψ′
0(x) implies

|ψ(0)|2 ≤C−1
0 〈Vψ,ψ〉+C1(δ)‖ψ′‖2 (4.2.21)

for some constant C1(δ) > 0 which depends on V and δ only. This completes the

proof of Lemma 4.2.5.

Combining (4.2.12) with (4.2.13) yields

ˆ ∞

−∞

|ψ(x)|2
1+x2

dx ≤ (
2πC−1

0 〈Vψ,ψ〉+C2(δ)‖ψ′‖2) , (4.2.22)

where C2(δ) =C1(δ)+8. Now let 0 6=ψ ∈ H 1(Rd ) be fixed. We distinguish between two

cases:

(i) If 2πC−1
0 〈Vψ,ψ〉 <C2(δ)‖ψ′‖2, then (4.2.22) yields

ε1

∞̂

−∞

|ψ(x)|2
1+x2

dx ≤ 2ε1C2(δ)‖ψ′‖2. (4.2.23)

63



4. Virtual levels of Schrödinger operators

Now since h does not have a virtual level, for ε> 0 small enough we find

〈hψ,ψ〉−ε‖ψ′‖2 ≥ 0, (4.2.24)

where ε can be chosen independently of ψ. Hence, in view of (4.2.23) we can choose

ε1 > 0 sufficiently small to conclude that

〈hψ,ψ〉−ε1

ˆ ∞

−∞

|ψ(x)|2
1+x2

dx ≥ 0. (4.2.25)

(ii) If 2πC−1
0 〈Vψ,ψ〉 ≥C2(δ)‖ψ′‖2, we have in particular 〈Vψ,ψ〉 > 0 and by (4.2.22)

ε1

∞̂

−∞

|ψ(x)|2
1+x2

dx ≤ 4ε1πC−1
0 〈Vψ,ψ〉. (4.2.26)

By choosing 0 < ε1 < (4π)−1C0 we obtain

〈hψ,ψ〉−ε1

∞̂

−∞

|ψ(x)|2
1+x2

dx

= ‖ψ′‖2 +〈Vψ,ψ〉−ε1

∞̂

−∞

|ψ(x)|2
1+x2

dx ≥ ‖ψ′‖2 ≥ 0.

(4.2.27)

This implies (4.2.25) in both cases and therefore, because ε1 can be chosen indepen-

dently of ψ, the statement of Theorem 4.2.2 for the case d = 1.

Now we assume that d = 2. For ψ ∈ H 1(R2) we write ψ0(x) =ψ(x)−a0, where

a0 = 1

2π

ˆ
S1
ψ(ω)dω. (4.2.28)

Then
´
S1 ψ0(ω)dω= 0 and thus we can apply the two-dimensional Hardy inequality

(2.1.26) to the function ψ0. Proceeding as in the proof of the one-dimensional case

yields the statement for d = 2 and therefore completes the proof of Theorem 4.2.2.
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4.2.2. Solutions of the Schrödinger equation in the presence

of a virtual level

For the case d = 3 it was shown by D. Yafaev that the one-particle Schrödinger op-

erator h with h ≥ 0 and a short-range potential V has a virtual level at zero if and

only if the equation hψ = 0 has a solution in Ḣ 1
(
R3

)
. This solution does not belong

to L2
(
R3

)
and decays as |x|−1 for |x| →∞ and therefore virtual levels of one-particle

Schrödinger operators in dimension three correspond to resonances, see [79]. For

dimension d = 4 virtual levels also correspond to resonances [5], while for d ≥ 5 they

correspond to eigenvalues, see for example [22]. We investigate the analogue prob-

lem for the cases d = 1 and d = 2. We prove the following

Theorem 4.2.6. Assume that d ∈ {1,2} and that V 6= 0 satisfies the conditions (4.2.2)

and (4.2.3). If h has a virtual level at zero, then the following assertions hold:

(i) There exists a solutionϕ0 ∈ H̃ 1(Rd ), ϕ0 6= 0, of the equation −∆ϕ0+Vϕ0 = 0, i.e.,

for all ψ ∈ H̃ 1(Rd )

〈∇ϕ0,∇ψ〉+〈Vϕ0,ψ〉 = 0. (4.2.29)

(ii) If d = 1, then for the functions ϕ0 satisfying (4.2.29) we have

(1+| · |)− 1
2−εϕ0 ∈ L2(R) for any ε> 0. (4.2.30)

(iii) Let d = 2. Then for the functions ϕ0 satisfying (4.2.29) we have

(1+| · |)−1 (1+| ln(| · |)|)− 1
2−εϕ0 ∈ L2(R2) for any ε> 0. (4.2.31)

(iv) If in addition the potential V is relatively −∆-bounded in the sense of operators

i.e., there exists a constant C > 0, such that

‖Vψ‖2 ≤C
(‖∆ψ‖2 +‖ψ‖2) (4.2.32)

holds for all functions ψ ∈ H 2(Rd ), then there exists a constant δ0 > 0, such that

for any function ψ ∈ H 1(Rd ) satisfying 〈∇ψ,∇ϕ0〉 = 0

〈hψ,ψ〉 ≥ δ0‖∇ψ‖2. (4.2.33)
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Remark 4.2.7. (i) Note that the left-hand side of (4.2.29) is well-defined due to

conditions (4.2.2) and (4.2.3) and inequalities (2.2.5) and (2.2.6).

(ii) In Theorem 4.2.6 we give a lower bound on the decay rate of solutions of the

Schrödinger equation corresponding to virtual levels. It is easy to see that if

the potentials are compactly supported and V (x) = V (|x|) for d = 2, then the

estimates (4.2.30) and (4.2.31) are almost sharp. It is also easy to see that in this

case the solutionϕ0 is constant outside of the support of V and therefore it can

not be an eigenfunction - zero is a resonance of h.

(iii) Theorem 4.2.6 provides the owing direction in the proof of Theorem 4.2.2,

namely that the existence of a virtual level implies

infσ (h +εU ) < 0 (4.2.34)

for any function U which satisfies (4.2.6) and any ε> 0.

Proof of Theorem 4.2.6

Since for any ε > 0 we have infσdisc(hε) < 0, we find a sequence of eigenfunctions

ψn ∈ H 1(Rd ) corresponding to a sequence of eigenvalues En < 0 of the operator hn−1 ,

i.e.,

− (
1−n−1)∆ψn +Vψn = Enψn . (4.2.35)

We normalize the functionsψn by the condition ‖ψn‖H̃ 1 = 1. Then there exists a sub-

sequence, also denoted by (ψn)n∈N, which converges weakly in H̃ 1(Rd ) to a function

ϕ0 ∈ H̃ 1(Rd ). We show that this function fulfills the properties stated in the theorem.

We break down the proof into several steps. At first, we show that ϕ0 satisfies

‖∇ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0. (4.2.36)

This is done in Lemma 4.2.8. Then, in Lemma 4.2.9, we show that the sequence

(ψn)n∈N satisfies an estimate for a weighted L2(Rd ) norm which is uniform in n ∈N.

From this we conclude the estimates (4.2.30) and (4.2.31) forϕ0, see Corollary 4.2.11.

Finally, in Lemma 4.2.12 we prove uniqueness of the solution.
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4.2. Virtual levels of one-particle Schrödinger operators

Lemma 4.2.8. Assume that h has a virtual level at zero and that V satisfies (4.2.2) and

(4.2.3). Then the function ϕ0 defined above is not zero and for any ψ ∈ H̃ 1(Rd )

〈∇ϕ0,∇ψ〉+〈Vϕ0,ψ〉 = 0. (4.2.37)

Proof of Lemma 4.2.8. At first, we show that 〈Vψn ,ψn〉 converges to 〈Vϕ0,ϕ0〉 for

n →∞, which is the difficult part of the proof. To do this we consider the behavior of

Vψn for small and large values of |x| separately. For small |x| we use that ψn →ϕ0 in

L2
loc(Rd ) and for large |x| we use the fast decay of the potential V at infinity. Let R > 0

be fixed and

〈Vψ,ψ〉B(R) =
ˆ

B(R)
V |ψ|2 dx, ψ ∈ H̃ 1(Rd ), (4.2.38)

where B(R) = {x ∈Rd : |x| ≤ R}. We write

〈Vψn ,ψn〉B(R) −〈Vϕ0,ϕ0〉B(R) = 〈V (ψn −ϕ0),ψn〉B(R) +〈Vϕ0,ψn −ϕ0〉B(R) (4.2.39)

and show that both summands on the r.h.s. tend to zero as n →∞. Let χ :Rd → [0,1]

be a differentiable function, such that

∇χ is bounded, χ(x) = 1 if x ∈ B(R), χ(x) = 0 if x ∉ B(R +1). (4.2.40)

Then we get by monotony and by the Cauchy-Bunjakowski-Schwarz inequality

〈|V ||ψn −ϕ0|, |ψn |〉B(R) ≤ 〈|V | 1
2 |ψn −ϕ0|χ, |V | 1

2 |ψn |χ〉
≤ (〈|V ||ψn −ϕ0|χ, |ψn −ϕ0|χ〉

) 1
2
(〈|V |ψnχ,ψnχ〉

) 1
2 .

(4.2.41)

We estimate the two factors on the r.h.s. of (4.2.41) separately. By assumption (4.2.2)

we get

〈|V ||ψn −ϕ0|χ, |ψn −ϕ0|χ〉 ≤ ε‖∇
(|ψn −ϕ0|χ

)‖2 +C (ε)‖(ψn −ϕ0)χ‖2, (4.2.42)

where ε > 0 can be chosen arbitrarily small, independently of n ∈ N. Because of

‖∇ψn‖ ≤ 1, ‖∇ϕ0‖ ≤ 1, the boundedness of χ and ∇χ and because χ is compactly

supported, the first term on the r.h.s. of (4.2.42) gets arbitrarily small, uniformly in

n ∈ N, if ε > 0 is small enough. The second term tends to zero as n →∞ because χ
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4. Virtual levels of Schrödinger operators

has compact support and ψn →ϕ0 in L2
loc(Rd ). Hence, we obtain

〈|V ||ψn −ϕ0|χ, |ψn −ϕ0|χ〉→ 0 (n →∞). (4.2.43)

Similarly, we can show that 〈|V |ψnχ,ψnχ〉 is uniformly bounded for n ∈N and there-

fore in view of (4.2.41) we conclude that 〈|V ||ψn −ϕ0|, |ψn |〉B(R) tends to zero for

n → ∞. Analogously we get 〈Vϕ0,ψn −ϕ0〉B(R) → 0 as n → ∞. We conclude that

for any fixed R > 0

ˆ
{|x|≤R}

V (x)|ψn(x)|2 dx −→
ˆ

{|x|≤R}
V (x)|ϕ0(x)|2 dx as n →∞. (4.2.44)

Now we consider the behavior of
´

{|x|≥R} V (x)|ψn(x)|2 dx for sufficiently large R > 0.

By taking R > A, condition (4.2.3) together with the Hardy type inequality (2.2.5) for

d = 1 and (2.2.6) for d = 2, respectively, implies

ˆ
{|x|>R}

|V (x)||ψn(x)|2 dx ≤C

ˆ
{|x|>R}

|ψn(x)|2
(1+|x|)2+ν dx

≤C R− ν
2 ‖ψn‖2

H̃ 1 =C R− ν
2 ,

(4.2.45)

where the constant C does not depend on n ∈ N. Due to the semi-continuity of the

norm we have ‖ϕ0‖H̃ 1 ≤ 1, and therefore we get similarly to (4.2.45)

ˆ
{|x|>R}

|V (x)||ϕ0(x)|2 dx ≤C R− ν
2 . (4.2.46)

We see by (4.2.45) and (4.2.46) that by taking R > 0 large enough both integral tails´
{|x|>R} |V (x)||ψn(x)|2 dx and

´
{|x|>R} |V (x)||ϕ0(x)|2 dx can be done arbitrarily small,

uniformly in n ∈N. This, together with (4.2.44) implies

〈Vψn ,ψn〉→ 〈Vϕ0,ϕ0〉 as n →∞. (4.2.47)

Now we prove that ϕ0 6= 0 and that ϕ0 satisfies the equation

‖∇ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0. (4.2.48)
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By definition of the functions ψn and due to the convergence of ψn to ϕ0 in L2
loc(Rd )

we have

〈Vψn ,ψn〉 ≤−(
1−n−1)‖∇ψn‖2

=−(
1−n−1)(1−

ˆ
{|x|≤1}

|ψn |2 dx

)
−→−1+

ˆ
{|x|≤1}

|ϕ0|2 dx

(4.2.49)

as n →∞. Due to (4.2.47) this yields

〈Vϕ0,ϕ0〉 ≤−1+
ˆ

{|x|≤1}
|ϕ0|2 dx =−1−‖∇ϕ0‖2 +‖ϕ0‖2

H̃ 1 (4.2.50)

and therefore

‖∇ϕ0‖2 +〈Vϕ0,ϕ0〉 ≤−1+‖ϕ0‖2
H̃ 1 . (4.2.51)

This inequality together with h ≥ 0 implies ‖ϕ0‖H̃ 1 ≥ 1. On the other hand, we have

‖ϕ0‖H̃ 1 ≤ liminf
n→∞ ‖ψn‖H̃ 1 = 1. (4.2.52)

Therefore, we conclude ‖ϕ0‖H̃ 1 = 1 and

‖∇ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0. (4.2.53)

Standard arguments show that ϕ0 satisfies (4.2.29).

By Lemma 4.2.8 we have proved statement (i) of Theorem 4.2.6. Let us continue

and prove the estimates (4.2.30) and (4.2.31) for the weighted L2(Rd ) norm of ϕ0.

First, we prove an estimate for the functions ψn , namely the following lemma.

Lemma 4.2.9. Assume that V satisfies (4.2.2) and (4.2.3) and that h has a virtual level

at zero. Let (ψn)n∈N be a sequence of eigenfunctions corresponding to negative eigen-

values En < 0 of the operator hn−1 , normalized as ‖ψn‖H̃ 1 = 1. Then the following

assertions hold:

(i) If d = 1, then for any 0 ≤α< 1
2 there exists a C > 0, such that for all n ∈N

‖∇(| · |αψn
)‖ ≤C and ‖(1+| · |)α−1ψn‖ ≤C . (4.2.54)

69



4. Virtual levels of Schrödinger operators

(ii) If d = 2, then for any 0 ≤α< 1
2 there exists a C > 0, such that for all n ∈N

‖∇(| ln(| · |)|αψn
)‖ ≤C (4.2.55)

and

‖(1+| · |)−1(1+| ln(| · |)|)α−1ψn‖ ≤C . (4.2.56)

Remark 4.2.10. The idea of the proof stems from [2], where exponential decay has

been proved for eigenfunctions corresponding to eigenvalues below the essential

spectrum. The estimates for the decay rate depend on the distance of the eigenvalue

to the essential spectrum. We learned the idea from [27, 28]. In our case each of the

eigenfunctionsψn corresponds to an eigenvalue below the essential spectrum, which

implies that each of theψn decays exponentially. However, the sequence of eigenval-

ues En tends to zero as n →∞, which is the threshold of the essential spectrum of h.

This is the reason why we do not have exponential decay with a uniform exponential

decay constant for all ψn . In [7] a similar statement of the lemma was proved for the

case d ≥ 3. The proof for d ∈ {1,2} is based on the same ideas. However, due to the

lack of Hardy’s inequality in these dimensions, the proof differs in some places and

we have to work more carefully. Therefore, we give the complete proof.

Proof of Lemma 4.2.9. Let G be a differentiable, bounded, real-valued function with

bounded derivative. Then, the eigenvalue equation

− (1−n−1)∆ψn +Vψn = Enψn (4.2.57)

yields

(
1−n−1)〈∇ψn ,∇(

G2ψn
)〉+〈Vψn ,G2ψn〉 = En‖Gψn‖2 < 0. (4.2.58)

Note that

〈∇ψn ,∇(
G2ψn

)〉+〈∇(
G2ψn

)
,∇ψn〉−2‖∇(

Gψn
)‖2 =−2〈ψn , |∇G|2ψn〉, (4.2.59)
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which is the basis for the IMS formula. Since

〈∇(
G2ψn

)
,∇ψn〉+〈∇ψn ,∇(

G2ψn
)〉 = 2Re〈∇ψn ,∇(

G2ψn
)〉, (4.2.60)

we get

Re〈∇ψn ,∇(
G2ψn

)〉−〈∇(Gψn),∇(Gψn)〉 =−〈ψn , |∇G|2ψn〉. (4.2.61)

On the other hand, by (4.2.58) we see that 〈∇ψn ,∇(
G2ψn

)〉 is real and therefore

〈∇ψn ,∇(G2ψn)〉 = ‖∇(Gψn)‖2 −‖ψn∇G‖2. (4.2.62)

Substituting this identity into (4.2.58) implies

(
1−n−1)(‖∇(Gψn)‖2 −‖ψn∇G‖2)+〈V Gψn ,Gψn〉 < 0. (4.2.63)

Proof of statement (i). Let d = 1 and 0 ≤α< 1
2 be fixed. For ε> 0 and R > 1 we define

G(x) =Gε,R (x) = |x|α
1+ε|x|αχR (x), (4.2.64)

where χR is a smooth function with

χR (x) =
0, |x| ≤ R,

1, |x| ≥ 2R.
(4.2.65)

Then by definition, the function Gε,R vanishes in the region {x ∈ Rd : |x| < R}. For

|x| > 2R we can estimate the gradient of Gε,R as

∣∣∇Gε,R (x)
∣∣= α|x|α−1

(1+ε|x|α)2
= α|x|−1

1+ε|x|α |Gε,R | ≤α|x|−1|Gε,R | (4.2.66)

and for R < |x| < 2R we have

∣∣∇Gε,R (x)
∣∣≤ ∣∣∣∣ α|x|α−1

(1+ε|x|α)2
χR (x)

∣∣∣∣+ ∣∣Gε,R (x)∇χ(x)
∣∣≤C (R), (4.2.67)
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for some C (R) depending on R only, and not on ε. By (4.2.67) we get

ˆ
{R≤|x|≤2R}

|∇Gε,R |2|ψn |2 dx ≤C0

ˆ
{R≤|x|≤2R}

|ψn |2 dx, (4.2.68)

for some C0 > 0 which depends on R only. Now we use inequality (2.2.5) to estimate

the r.h.s. of (4.2.68). We get

ˆ
{R≤|x|≤2R}

|ψn |2 dx ≤ (1+4R2)

ˆ
{R≤|x|≤2R}

|ψn |2
1+x2

dx

≤CH (1+4R2)‖ψn‖2
H̃ 1 ,

(4.2.69)

where CH is a Hardy type constant in (2.2.5). This, together with (4.2.68) and the

normalization ‖ψn‖H̃ 1 = 1 implies

ˆ
{R≤|x|≤2R}

|∇Gε,R |2|ψn |2 ≤C1 (4.2.70)

for some C1 > 0 which is independent of n ∈ N and ε > 0. Substituting (4.2.66) and

(4.2.70) into (4.2.63) we obtain(
1−n−1)‖∇(Gε,Rψn)‖2 +〈V Gε,Rψn ,Gε,Rψn〉

−α2
ˆ

{|x|>2R}

|Gε,Rψn |2
|x|2 dx ≤C2,

(4.2.71)

where C2 > 0 does not depend on n ∈ N or ε > 0. The function Gε,Rψn is supported

outside the ball with radius R. Therefore, choosing R > A we can use (4.2.3) and apply

Hardy’s inequality for the semi axis, which yields

(1−γ0)‖∇(Gε,Rψn)‖2 +〈V Gε,Rψn ,Gε,Rψn〉−α2〈|x|−2Gε,Rψn ,Gε,Rψn〉 ≥ 0 (4.2.72)

for all α with α2 < 1
4 and all γ0 < (1− 4α2). For n > 2γ−1

0 the estimates (4.2.71) and

(4.2.72) imply
γ0

2
‖∇(Gε,Rψn)‖2 ≤C2. (4.2.73)

Taking the limit ε→ 0 yields

‖∇(| · |αψn
)‖ ≤C (4.2.74)
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for some C > 0. Applying Hardy’s inequality for the semi axis to the function Gε,Rψn ,

using (4.2.74) and taking the limit ε→ 0 implies

‖(1+| · |)α−1ψn‖ ≤C . (4.2.75)

This completes the proof of Lemma 4.2.9 for d = 1.

Proof of statement (ii). Let d = 2 and 0 < α< 1
2 be fixed. For any ε> 0 and R > 1 we

define the function

G̃ε,R (x) = | ln(|x|)|α
1+ε| ln(|x|)|αχR (x), (4.2.76)

where χR :Rd →R is a smooth function with

χR (x) =
0, |x| ≤ R,

1, |x| ≥ 2R.
(4.2.77)

Similarly to (4.2.66), for |∇G̃ε,R | we have

|∇G̃ε,R | = α lnα−1(|x|)
|x|(1+ε lnα(|x|))2

≤α G̃ε,R

|x| ln(|x|) , |x| > 2R, (4.2.78)

while for R < |x| < 2R the gradient ∇G̃ε,R is bounded by a constant which depends on

R only. Now the proof goes along the same line as the proof of statement (i). For the

sake of completeness we present it in detail. By the use of inequality (2.2.6) we have

ˆ
{R≤|x|≤2R}

|ψn |2 dx ≤ (1+4R2 ln2(4R))

ˆ
{R≤|x|≤2R}

|ψn |2
1+|x|2 ln2(|x|) dx

≤CH (1+4R2 ln2(4R))‖ψn‖2
H̃ 1 ,

(4.2.79)

where CH is a Hardy type constant in (2.2.6). Due to the boundedness of |∇G̃ε,R | in

the region R < |x| < 2R we find

ˆ
{R≤|x|≤2R}

|∇G̃ε,R |2|ψn |2 ≤C1 (4.2.80)

for some C1 > 0 depending on R only. Substituting (4.2.78) and (4.2.80) into (4.2.63)
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we obtain (
1−n−1)‖∇(ψnG̃ε,R )‖2 +〈V G̃ε,Rψn ,G̃ε,Rψn〉

−α2
ˆ

{|x|>2R}

|G̃ε,Rψn |2
|x|2 ln2(|x|) dx ≤C2,

(4.2.81)

where C2 > 0 does not depend on n ∈ N or ε > 0. Since the function G̃ε,Rψn is sup-

ported outside the ball with radius R, by choosing R > A, using (4.2.3) and the two-

dimensional Hardy inequality we get

(1−γ0)‖∇(G̃ε,Rψn)‖2 +〈V G̃ε,Rψn ,G̃ε,Rψn〉

−α2
ˆ

{|x|>2R}

|G̃ε,Rψn |2
|x|2 ln2(|x|) dx ≥ 0

(4.2.82)

for allα2 < 1
4 and γ0 < (1−4α2). For n > 2γ−1

0 the estimates (4.2.81) and (4.2.82) imply

γ0

2
‖∇(G̃ε,Rψn)‖2 ≤C2. (4.2.83)

Taking the limit ε→ 0 yields

‖∇(|ln(| · |)|αψn
)‖ ≤C (4.2.84)

Applying the two-dimensional Hardy inequality and taking the limit ε→ 0 completes

the proof as in the one-dimensional case.

Now we use Lemma 4.2.9 to derive the claimed estimates (4.2.30) and (4.2.31) of

the weighted L2(Rd ) norm of the function ϕ0.

Corollary 4.2.11. The weak limit ϕ0 of the sequence (ψn)n∈N has the following prop-

erties.

(i) If d = 1, then

(1+| · |)α−1ϕ0 ∈ L2(R) for any α< 1

2
. (4.2.85)

(ii) If d = 2, then

(1+| · |)−1 (1+ ln(| · |))α−1ϕ0 ∈ L2(R2) for any α< 1

2
. (4.2.86)
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Proof of Corollary 4.2.11. Let d = 1 and letα< 1
2 be fixed. We show thatψn converges

to ϕ0 in L2
(
Rd , (1+|x|)2(α−1) dx

)
. For R > 0 and α0 ∈

(
α, 1

2

)
we have

ˆ
{|x|≥R}

(1+|x|)2(α−1) |ψn |2 dx

≤ (1+R)2(α−α0)
ˆ

{|x|≥R}
(1+|x|)2(α0−1) |ψn |2 dx.

(4.2.87)

Since by Lemma 4.2.9 we have ‖(1+| · |)α0−1ψn‖ ≤ C uniformly for n ∈ N and due to

α−α0 < 0, the r.h.s. tends to zero as R →∞. Sinceψn converges toϕ0 in L2
loc(Rd ), this

yields the proof of part (i) of the Corollary. The case d = 2 follows analogously.

By Corollary 4.2.11 we have proved assertions (ii) and (iii) of Theorem 4.2.6 and

move on to the proof of assertion (iv). We prove it in the following Lemma.

Lemma 4.2.12. Assume that h has a virtual level at zero and that the potential V

satisfies (4.2.2) and (4.2.3). Then, there exists a δ0 > 0, such that for any ψ ∈ H̃ 1(Rd )

with 〈∇ψ,∇ϕ0〉 = 0

〈hψ,ψ〉 ≥ δ0‖∇ψ‖2. (4.2.88)

Proof of Lemma 4.2.12. The proof is a straightforward modification of the proof of

Lemma 2.10 in [7]. Assume for a contradiction that (4.2.88) does not hold i.e., there

exists a sequence of functions ψ̃n ∈ H 1(Rd ) with ‖ψ̃n‖H̃ 1 = 1, 〈∇ψ̃n ,∇ϕ0〉 = 0 and(
1−n−1

)‖∇ψ̃n‖2 +〈V ψ̃n ,ψ̃n〉 < 0. Repeating the arguments of Lemmas 4.2.8-4.2.11

we see that there exists a function ϕ1 ∈ H̃ 1(Rd )∩L2
(
Rd , (1+|x|)−2 dx

)
with ‖∇ϕ1‖2 +

〈Vϕ1,ϕ1〉 = 0, such that ψ̃k →ϕ1 in L2
(
Rd , (1+|x|)−2 dx

)
. Sinceϕ0 andϕ1 both satisfy

(4.2.29), any linear combination of ϕ0 and ϕ1 is also a minimizer of the quadratic

form of h. Due to the orthogonality 〈∇ψ̃k ,∇ϕ0〉 = 0 and the convergence of ψ̃k to ϕ1

the functions ϕ0 and ϕ1 are linearly independent. Therefore, the subspace of linear

combinations of ϕ0 and ϕ1 contains two non-trivial functions which are orthogonal

in the sense of the weighted L2 scalar product with weight (1+|x|)−2. This implies that

there exists a minimizer of the quadratic form of h which has non-trivial positive and

non-trivial negative part and each of them is also a minimizer of the quadratic form

of h. This contradicts the unique continuation theorem [60, Theorem 2.1] and the

Lemma is proved.

This completes the proof of Theorem 4.2.6.
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4.3. Virtual levels of multi-particle Schrödinger

operators

4.3.1. Introduction

Now we turn to the multi-particle case. We consider the Hamiltonian H correspond-

ing to a system of N ≥ 2 one- or two-dimensional particles in the center of mass frame

as it was introduced in Section 3.2.1. We assume that the potentials Vi j describing the

pair interactions between the particles are given by

Vi j (x) = vi j (xi j ), x = (x1, . . . , xN ) ∈Rd N , xi j = xi −x j (4.3.1)

with vi j satisfying vi j 6= 0 and (4.2.2) and (4.2.3). In the following we shall not distin-

guish between Vi j and vi j and sometimes we write Vi j (xi j ) instead of Vi j (x). Recall

that after reduction of the center of mass the case N = 2 coincides with the one-

particle case considered in Section 4.2. Hence, we will only consider the case N ≥ 3.

Let us extend the definition of virtual levels to multi-particle Schrödinger operators.

Definition 4.3.1. Assume that the potentials Vi j satisfy (4.2.2) and (4.2.3). For a clus-

ter C ⊆ {1, . . . , N } we say that the cluster Hamiltonian H [C ] has a virtual level at zero

if H [C ] ≥ 0 and

(i) there exists a constant ε0 > 0, such that

infσess (H [C ]+ε0∆0[C ]) = 0, (4.3.2)

(ii) for any ε ∈ (0,1)

infσ (H [C ]+ε∆0[C ]) < 0. (4.3.3)

Remark 4.3.2. Assume H [C ] ≥ 0 for a cluster C . Then condition (4.3.2) is fulfilled if

and only if for no subcluster C̃ ⊂ C with 1 < |C̃ | < |C | the cluster Hamiltonian H [C̃ ]

has a virtual level at zero. Indeed, if there exists such a cluster C̃ , for which the corre-

sponding Hamiltonian has a virtual level, then we have infσ
(
H [C̃ ]+ε∆0[C̃ ]

) < 0 for

any ε ∈ (0,1) and according to the HVZ theorem condition (4.3.2) can not be fulfilled

for H [C ].

76



4.3. Virtual levels of multi-particle Schrödinger operators

On the other hand, assume that (4.3.2) does not hold for some cluster C and any

ε ∈ (0,1). We show that there exists a cluster C0, such that H [C0] has a virtual level at

zero. By the HVZ theorem there exists a subcluster C̃ of C with C̃ 6=C , such that

infσ
(
H [C̃ ]+ε∆0[C̃ ]

)< 0 (4.3.4)

holds for any ε>∈ (0,1). Among these clusters we choose one with the smallest num-

ber of particles and denote it by C0. If |C0| = 2, the Hamiltonian H [C0] can be con-

sidered as a one-particle operator with short-range potential, and therefore we have

infσess (H [C0]+ε∆0[C0]) = 0 for any ε ∈ (0,1). Hence, H [C0] has a virtual level at zero.

If |C0| ≥ 3, then, because C0 is the smallest cluster for which (4.3.4) holds for any

ε ∈ (0,1), for any subcluster C ′ ( C0 with |C ′| > 1 inequality (4.3.4) does not hold for

all ε ∈ (0,1) i.e., we have

infσ
(
H [C ′]+ε∆0[C ′]

)= 0 (4.3.5)

for some ε> 0. Since C has only a finite number of particles, we can choose this ε> 0,

such that (4.3.5) holds for any subcluster of C0. Thus, by the HVZ theorem we have

for some ε0 > 0

infσess (H [C0]+ε0∆0[C0]) = 0 (4.3.6)

Since in addition infσ (H [C0]+ε∆0[C0]) < 0 for any ε> 0, H [C0] has a virtual level.

It was shown in [24] that for systems of N ≥ 3 particles in dimension three virtual

levels correspond to eigenvalues. In [7] this result was extended to space dimension

d ≥ 3 and for the corresponding eigenfunction ϕ0 the following estimate was given,

∇0
(| · |αmϕ0

) ∈ L2(X0) and (1+| · |m)α−1ϕ0 ∈ L2(X0) (4.3.7)

for any 0 ≤α< d(N−1)−2
2 .

Our goal is to generalize these results to systems of one- and two-dimensional par-

ticles. In the next paragraph we give a criterion in terms of a Hardy type constant en-

suring that virtual levels correspond to eigenvalues. This criterion, which is the main

result of this chapter, applies for systems of N ≥ 3 one-dimensional or N ≥ 4 two-

dimensional particles. Later, in Sections 4.3.4-4.3.7 we discuss some special cases

and prove some further results. If not stated otherwise, the results are from [8].
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4.3.2. The main result: A sufficient condition that virtual

levels correspond to eigenvalues

Let

M = {
ψ ∈C 1

0 (X0 \ {0}) : ψ(x) = 0 for xi = x j ,1 ≤ i , j ≤ N , i 6= j
}

(4.3.8)

and

C̃H (X0) = inf
0 6=ψ∈M

‖∇0ψ‖
‖|x|−1

m ψ‖ . (4.3.9)

The main theorem of this chapter is the following

Theorem 4.3.3. Let H be the Hamiltonian of a system of N ≥ 3 d-dimensional par-

ticles with d ≥ 1, where the potentials Vi j 6= 0 satisfy (4.2.2) and (4.2.3). Assume that

H has a virtual level at zero and for the constant C̃H (X0) defined in (4.3.9) we have

C̃H (X0) > 1. Then

(i) zero is a simple eigenvalue of H and for the corresponding eigenfunction ϕ0 we

have

∇0
(| · |αmϕ0

) ∈ L2(X0) and (1+| · |m)α−1ϕ0 ∈ L2(X0) (4.3.10)

for any 0 ≤α< C̃H (X0).

(ii) There exists a constant δ0 > 0, such that for any function ψ ∈ H 1(X0) satisfying

〈∇0ϕ0,∇0ψ〉 = 0 we have

(1−δ0)‖∇0ψ‖2 +〈Vψ,ψ〉 ≥ 0. (4.3.11)

This theorem has the following immediate consequences for systems of one- or

two-dimensional particles.

Corollary 4.3.4 (Virtual levels for systems of N ≥ 4 two-dimensional particles). If

d = 2 and N ≥ 4, then C̃H (X0) coincides with the Hardy constant for the 2(N −1) di-

mensional space X0 i.e., C̃H (X0) = N −2 > 1. Therefore, Theorem 4.3.3 can be applied.

In particular, it shows that in this case the solution ϕ0 of the Schrödinger equation

corresponding to the virtual level is a non-degenerate eigenfunction satisfying

(1+| · |m)α−1ϕ0 ∈ L2(X0) for any α< N −2. (4.3.12)
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Corollary 4.3.5 (Virtual levels for systems of N ≥ 4 one-dimensional particles). If

d = 1 and N ≥ 4, each of the hyperplanes {xi = x j } divides the space X0 into two half-

spaces. Taking one of these hyperplanes and using that the Hardy constant for the half-

space is given by N−1
2 , see for example [48, Proposition 4.1], we get C̃H (X0) ≥ N−1

2 > 1.

Hence, Theorem 4.3.3 can be applied. This implies that zero is a simple eigenvalue of

H and the corresponding eigenfunction ϕ0 satisfies

(1+| · |m)α−1ϕ0 ∈ L2(X0) for any α< N −1

2
. (4.3.13)

Remark 4.3.6. (i) The case of three particles is not covered by Corollary 4.3.4 and

Corollary 4.3.5. For systems of three one-dimensional particles virtual levels

correspond to eigenvalues as we will see in Section 4.3.4. For the case of three

two-dimensional particles the condition given in Theorem 4.3.3 is not fulfilled.

We will discuss this case in Section 4.3.5.

(ii) Note that in Theorem 4.3.3 and Corollaries 4.3.4 and 4.3.5 we give estimates for

the decay rates of the solution ϕ0. It was shown in [6] that for systems of parti-

cles in dimension d ≥ 3 the solutionϕ0 decays with the same rate as the funda-

mental solution of the Laplace operator in L2(Rk ) with k = d(N −1). There, the

estimate for the decay rate given in (4.3.7) was combined with the representa-

tion of the solution ϕ0 as convolution with the Green function. This method

can not directly be extended to the one- or two-dimensional case due to the

different behavior of the Green function, and it seems to be more difficult to

obtain the exact decay rate. In fact, there are not only technical differences, but

also a different decay behavior occurs for one-dimensional particles as we will

see later (see Section 4.3.4).

4.3.3. Proof of Theorem 4.3.3

The proof consists of several steps. Recall that for multi-particle systems the poten-

tial V does not decay in all directions even if the pair potentials Vi j are compactly

supported. In the first step we generalize Theorem 4.2.6, where we studied virtual

levels of Schrödinger operators with short-range potentials, to potentials which do

not decay in all directions. Later, we will show that the Hamiltonian H of the system,
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considered as an operator on L2(Rd(N−1)), satisfies the conditions of this theorem. To

do this we use geometric methods which include a partition of unity of the config-

uration space. Since the estimates for the localization error which can be found in

the literature are not appropriate in dimensions one and two, we will need improved

estimates.

Virtual levels of one-particle Schrödinger operators with

non-decaying potentials

Theorem 4.3.7. Consider the operator h =−∆+V acting on L2(Rk ), k ∈N, where the

potential V satisfies (4.2.2). Suppose that h has a virtual level at zero and that there

exist constants α0 > 1, b > 0 and γ0 ∈ (0,1), such that for any functionψ ∈ H 1(Rk ) with

supp(ψ) ⊂ {x ∈Rd : |x| ≥ b} we have

〈hψ,ψ〉−γ0‖∇ψ‖2 −〈α2
0|x|−2ψ,ψ〉 ≥ 0. (4.3.14)

Then zero is a simple eigenvalue of h. The eigenfunction ϕ0 satisfies

∇(| · |α0ϕ0
) ∈ L2(Rk ) (4.3.15)

and for any α<α0

(1+| · |)α−1ϕ0 ∈ L2(Rk ) if k 6= 2,

and (1+| · |)α−1(1+ ln(| · |))−1ϕ0 ∈ L2(Rk ) if k = 2.
(4.3.16)

Moreover, there exists a constant δ0 > 0, such that for any function ψ ∈ H 1(Rk ) with

〈∇ψ,∇ϕ0〉 = 0

〈hψ,ψ〉 ≥ δ0‖∇ψ‖2. (4.3.17)

Remark 4.3.8. (i) For dimensions k ≥ 3 the statement of Theorem 4.3.7 has been

proved in [7, Theorem 2.1]. Here, we generalize it to dimensions k = 1 and k = 2.

Since the proof is very similar to the one of Theorem 2.1 in [7], supplemented

by arguments of the proof of Theorem 4.2.6, we skip it here. We give the proof

of Theorem 4.3.7 for dimensions k = 1 and k = 2 in Appendix A.1.
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(ii) Later, we will apply this theorem with dimension k = d(N − 1) for the multi-

particle Schrödinger operator corresponding to a system of N d-dimensional

particles.

(iii) For dimension k = 1 or k = 2 Theorem 4.3.7 considers the case which is in some

sense complementary to the one studied in Theorem 4.2.6. In Theorem 4.2.6

we assumed that the potential V decays fast at infinity. In Theorem 4.3.7 we

do not have decay of the potential at infinity. Instead of this we use inequality

(4.3.14) for functionsψwhich are supported far away from the origin. This con-

dition can not be fulfilled for k = 1 and k = 2 if V decays fast at infinity, because

the term −〈|x|−2ψ,ψ〉 can not be controlled by the kinetic energy. Moreover,

under the conditions of Theorem 4.3.7 virtual levels correspond to eigenvalues

of h. In contrast to that, under the conditions of Theorem 4.2.6 they correspond

to resonances.

Estimate of the localization error

As already mentioned, to prove Theorem 4.3.3 we apply Theorem 4.3.7 to the multi-

particle operator H . To show that the conditions of this theorem are fulfilled we use

geometric methods which are similar as in [7]. A central element of these methods

is a separation of clusters of the particles in the system. This is done by a partition

of unity of the configuration space which separates regions K (Z ,κ) corresponding

to different partitions Z . An important step is to find an appropriate estimate of the

resulting localization error.

If the dimension of the particles is d ≥ 3, one can use an estimate given in [74,

Lemma 5.1]. This estimate shows that when we separate a cone K (Z ,κ), then the

localization error can be estimated as ε|q(Z )|−2
m with an arbitrarily small ε > 0. For

particles in dimension d ≥ 3 one can then use Hardy’s inequality to control this term

by a small part of the kinetic energy. However, in our case, where the particles are

one- or two-dimensional, the estimate given in [74] cannot be used, because Hardy’s

inequality for dimension two needs a different Hardy weight. Therefore, we need a

significant improvement of the estimate of the localization error. This is given in the

following theorem.
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Theorem 4.3.9. Given ε > 0 and 0 < κ < 1, for each partition Z with |Z | ≥ 2 one can

find a constant 0 < κ′ < κ and piece-wise differentiable functions uZ , vZ : X0 →R, such

that

u2
Z + v2

Z = 1, uZ (x) =
1 if x ∈ K

(
Z ,κ′

)
,

0 if x ∉ K (Z ,κ)
(4.3.18)

and

|∇0uZ |2 +|∇0vZ |2 < ε
[|vZ |2|x|−2

m +|uZ |2|q|−2
m ln−2 (|q|m |ξ|−1

m

)]
(4.3.19)

for x ∈ K
(
Z ,κ′,κ

)
. Here, q = q(Z ) and ξ= ξ(Z ).

|ξ|m

|q |m

0 < uZ < 1

uZ = 0

uZ = 1

|q|m = κ′|ξ|m

|q|m = κ|ξ|m

Figure 4.1.: The function uZ

To prove Theorem 4.3.9 we will use an auxiliary result for scalar functions, namely

the following

Lemma 4.3.10. For any ε> 0 and any 0 <β< 1 one can find a constant 0 <α<β2 and

a non-increasing function u ∈ H 1(α,β)∩C ([α,β]) which is piece-wise continuously

differentiable, such that u(α) = 1, u(β) = 0 and

(u′(t ))2 ≤ εt−2 ln−2(t ), α≤ t ≤β. (4.3.20)

Proof of Lemma 4.3.10. Let ε > 0 and β ∈ (0,1) be fixed. For any 0 < γ < 1 and α ∈
(0,β2) let uα,γ : [α,β] →R be given by

uα,γ(t ) :=


∣∣ln(αβ−1)
∣∣−γ ∣∣ln(tβ−1)

∣∣γ if α≤ t ≤β2,∣∣ln(αβ−1)
∣∣−γ ∣∣lnβ∣∣γ−1 ∣∣ln(tβ−1)

∣∣ if β2 ≤ t ≤β.
(4.3.21)
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It is evident that u is continuous and piecewise continuously differentiable and sat-

isfies uα,γ(α) = 1 and uα,γ(β) = 0. We will show that for appropriately chosen α,γ> 0

the function u′
α,γ satisfies the estimate claimed in the lemma. At first, we show that

the claimed estimate holds on the interval (α,β2), uniformly for 0 <α< β2 if γ> 0 is

small enough. Afterwards, we fix such γ> 0 and choose α> 0 sufficiently small, such

that we get the claimed estimate on the interval (β2,β) as well. Forα< t <β2 we have(
u′
α,γ(t )

)2 = γ2
∣∣ln(αβ−1)

∣∣−2γ ∣∣ln(tβ−1)
∣∣2(γ−1)

t−2. (4.3.22)

Note that due to αβ−1 < 1 and tβ−1 < 1 for α≤ t ≤β2 we have
∣∣ln(αβ−1)

∣∣≥ ∣∣ln(tβ−1)
∣∣.

This yields (
u′
α,γ(t )

)2 ≤ γ2
∣∣ln(tβ−1)

∣∣−2
t−2, α< t <β2. (4.3.23)

Since for t ,β≥ 0

t ≤β2 ⇐⇒ p
t ≤β ⇐⇒ tβ−1 ≤p

t (4.3.24)

and because of β< 1, we have
∣∣ln(tβ−1)

∣∣≥ ∣∣lnp
t
∣∣= 1

2 |ln t | . This implies

(
u′
α,γ(t )

)2 ≤ 4γ2| ln t |−2t−2, α< t <β2. (4.3.25)

Choosing γ such that 0 < γ<
p
ε

2 we get

(
u′
α,γ(t )

)2 ≤ ε| ln t |−2t−2, α< t <β2. (4.3.26)

Now we fix 0 < γ<
p
ε

2 and estimate (u′
α,γ(t ))2 for β2 < t <β. In this case we have

(
u′
α,γ(t )

)2 = ∣∣ln(αβ−1)
∣∣−2γ ∣∣lnβ∣∣2(γ−1) t−2. (4.3.27)

Since β< 1, we have | lnβ2| ≥ | ln t | for β2 ≤ t ≤β and therefore

(
u′
α,γ(t )

)2 ≤ ∣∣ln(αβ−1)
∣∣−2γ ∣∣lnβ∣∣2(γ−1) | lnβ2|2| ln t |−2t−2

= 4
∣∣ln(αβ−1)

∣∣−2γ ∣∣lnβ∣∣2γ | ln t |−2t−2 ≤ ε| ln t |−2t−2
(4.3.28)

if α is chosen small enough. This completes the proof of Lemma 4.3.10.
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Now we turn to the

Proof of Theorem 4.3.9. Let Z be a partition of the system with |Z | ≥ 2 and let ε > 0

and 0 < κ< 1 be fixed. We construct functions uZ , vZ which satisfy the conditions of

Theorem 4.3.9. This is done in several steps. For the sake of convenience we write q

and ξ instead of q(Z ) and ξ(Z ), respectively.

Step 1: Definition of the functions uZ and vZ in the vicinity of |q|m = κ|ξ|m .

Let v1 ∈ H 1(R+) be a function satisfying

• v1 is non-decreasing on R+,

• v1(t ) = 1 for t ≥ κ and 0 ≤ v1(t ) < 1 for t < κ,

• v ′
1(t )(1− v2

1(t ))−
1
2 → 0 as t → κ−.

For x ∈ X0, x = q +ξ, let

vZ (x) = v1

( |q|m
|ξ|m

)
, uZ (x) =

√
1− v2

Z (x). (4.3.29)

Then for x ∈ K (Z ,κ) we have

|∇0uZ |2 +|∇0vZ |2 = |∇0vZ |2
(
1− v2

Z

)−1

= (v ′
1(t ))2 (

1− v2
1(t )

)−1 (
1+|q|2m |ξ|−2

m

) |ξ|−2
m ,

(4.3.30)

where t = |q |m |ξ|−1
m . For x ∈ K (Z ,κ) we have |ξ|−2

m ≤ (
1+κ2

) |x|−2
m and |q|m

|ξ|m ≤ κ. This

implies

|∇0uZ |2 +|∇0vZ |2 ≤ (v ′
1(t ))2 (

1− v2
1(t )

)−1
(1+κ2)2|x|−2

m . (4.3.31)

Since v ′
1(t )(1− v2

1(t ))−
1
2 → 0 as t ↗ κ, we can find 0 < κ′′ < κ so close to κ that

(v ′
1(t ))2 (

1− v2
1(t )

)−1
(1+κ2)2 ≤ εv2

1(t ), κ′′ ≤ t < κ. (4.3.32)

This implies

|∇0uZ |2 +|∇0vZ |2 ≤ εv2
Z |x|−2

m , x ∈ K (Z ,κ) \ K (Z ,κ′′). (4.3.33)
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Step 2: Definition of vZ for x ∈ K (Z ,κ′′).

Now we define vZ for x ∈ K (Z ,κ′′). By Lemma 4.3.10, for given ε̃ > 0 we find a con-

stant 0 < κ′ < κ′′ and a non-decreasing function v2, such that

• v2(κ′′) = v1(κ′′),

• v2(κ′) = 0

•
(
v ′

2(t )
)2 ≤ ε̃|t |−2 ln−2 t for κ′ < t < κ′′.

We choose v2 in such a way that v2 is strictly increasing on (κ′,κ′′). For x ∈ K (Z ,κ′′)
with x = q +ξ, let

vZ (x) = v2

( |q|m
|ξ|m

)
, uZ (x) =

√
1− v2

Z (x). (4.3.34)

Then, similar to (4.3.30) we have

(|∇0uZ |2 +|∇0vZ |2
)

u−2
Z = (v ′

2(t ))2 (
1− v2

2(t )
)−1

u−2
Z · (1+ t 2) |ξ|−2

m , (4.3.35)

where t = |q|m |ξ|−1
m . Since v2 is increasing and uZ =

√
1− v2

Z , we have

(v ′
2(t ))2(1− v2

2(t ))−1u−2
Z ≤ (

v ′
2(t )

)2 (
1− v2

2(k ′′)
)−2

, t ≤ κ′′. (4.3.36)

Substituting this estimate into (4.3.35) and using t ≤ κ′′ we get

(|∇0uZ |2 +|∇0vZ |2
)

u−2
Z ≤ (v ′

2(t ))2 (
1− v2(k ′′)2)−2 (

1+ (κ′′)2) |ξ|−2
m . (4.3.37)

Recall that v2(κ′′) is possibly close to one, but strictly less then one. Because of(
v ′

2(t )
)2 ≤ ε̃|t |−2 ln−2 t we get

(|∇0uZ |2 +|∇0vZ |2
)

u−2
Z ≤ ε̃t−2 ln−2 t

(
1− v2(k ′′)2)−2 (

1+ (κ′′)2) |ξ|−2
m . (4.3.38)

Choosing ε̃ > 0 so small that ε̃
(
1− v2(k ′′)2

)−2 (
1+ (κ′′)2

) < ε and using t = |q|m |ξ|−1
m

completes the proof of Theorem 4.3.9.
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Proof of Theorem 4.3.3

Now we turn to the proof of Theorem 4.3.3. It is an application of Theorem 4.3.7

and we use geometric methods to prove that all conditions of the latter theorem

are fulfilled. Since the pair potentials Vi j are relatively form bounded, so is V =∑
1≤i< j≤N Vi j (xi j ). Hence, we only need to show that condition (4.3.14) is fulfilled

for any 0 ≤α< C̃H (X0). This is done in the following

Lemma 4.3.11. Let d ∈ {1,2} and N ≥ 3. Assume that the potentials Vi j satisfy (4.2.2)

and (4.2.3). Furthermore, suppose that H has a virtual level at zero. Then for any

0 ≤ α < C̃H (X0) there exist constants γ0, R > 0, such that for any function ϕ ∈ H 1(X0)

with supp(ϕ) ⊂ {x ∈ X0 : |x|m ≥ R} we have

L[ϕ] := (1−γ0)‖∇0ϕ‖2 +〈Vϕ,ϕ〉−α2‖|x|−1
m ϕ‖2 ≥ 0. (4.3.39)

To explain the strategy we give the proof for the case N = 3 first.

Proof of Lemma 4.3.11 for N = 3. In the proof we use the idea of the proof of Theo-

rem 4.4 in [7], where an analogue statement was proved for d ≥ 3. We take κ > 0 so

small that cones K (Z ,κ) and K (Z ′,κ) do not overlap for different partitions Z 6= Z ′ of

the system into two clusters. This is possible because of Lemma 3.2.4. For given

ε > 0 we choose functions uZ according to Theorem 4.3.9. Recall that in (4.3.39)

we only consider functions ϕ which are supported outside the ball B(R) with ra-

dius R > 0. Since the cones K (Z ,κ) do not overlap, the functions uZ with |Z | = 2

and V =
√

1−∑
Z :|Z |=2 u2

Z , restricted to X0 \ B(R), are a partition of unity of X0 \ B(R).

Therefore, we get by Theorem 4.3.9

L[ϕ] ≥ ∑
Z :|Z |=2

L2[ϕuZ ]+L′
2[V ϕ], (4.3.40)

where the functionals L2,L′
2 : H 1(X0) →R are given by

L2[ψ] = (1−γ0)‖∇0ψ‖2 +〈Vψ,ψ〉−α2‖|x|−1
m ψ‖2

−ε‖|q(Z )|−1
m ln−1 (|q(Z )|m |ξ(Z )|−1

m

)
ψ‖2

KR (Z ,κ′,κ),

L′
2[ψ] = (1−γ0)‖∇0ψ‖2 +〈Vψ,ψ〉− (α2 +ε)‖|x|−1

m ψ‖2.

(4.3.41)
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We recall that by Theorem 4.3.9 the constants ε > 0 and κ > 0 in (4.3.41) can be

chosen arbitrarily small if κ′ > 0 is sufficiently small. Note also that the terms

ε‖|x|−1
m ψ‖2 and ε‖|q(Z )|−1

m ln−1 (|q(Z )|m |ξ(Z )|−1
m

)
ψ‖2

KR (Z ,κ′,κ) come from the estimate

of the localization error given in Theorem 4.3.9. We estimate the functional L by

estimating L2[ϕuZ ] and L′
2[V ϕ] separately.

Estimate of the functional L2[ϕuZ ].

Let Z = {C1,C2} be an arbitrary partition of the system into two clusters. Our goal is to

prove that L2[ϕuZ2 ] ≥ 0 holds for any function ϕ ∈ H 1(X0) with supp(ϕ) ⊂ {|x|m ≥ R},

whenever R > 0 is large enough and the constants ε,κ > 0 in the definition of L2 are

sufficiently small. Since we consider a fixed breaking Z , we can omit the index Z in

the following computations. We write q and ξ instead of q(Z ) and ξ(Z ), respectively

and denote ψ=ϕuZ . We rewrite

L2[ψ] =〈H(Z )ψ,ψ〉−γ0‖∇qψ‖2 + (
1−γ0

)∥∥∇ξψ∥∥2 +〈I (Z )ψ,ψ〉
−α2

∥∥|x|−1
m ψ

∥∥2 −ε∥∥|q |−1
m ln−1 (|q |m |ξ|−1

m

)
ψ

∥∥2
KR (Z ,κ′,κ) .

(4.3.42)

First, we estimate the inter-cluster potential I (Z ). We assume that |C1| = 2 and de-

note the particles in the cluster C1 by i , j and the particle in C2 by k. Then by (3.2.42)

for x ∈ K (Z ,κ)

|xi −xk | ≥ c|ξ|m and |x j −xk | ≥ c|ξ|m (4.3.43)

for some c > 0 depending on the masses of the particles and the constant κ only.

Since for x ∈ KR (Z ,κ) we have |ξ|m ≥ (
1+κ2

)− 1
2 |x|m , we can choose R > 0 so large

that c|ξ|m ≥ A holds for all x ∈ KR (Z ,κ), where A is the constant in the condition

(4.2.3). Therefore, we can estimate

|I (Z )(x)| ≤ |Vi k (x)|+ |V j k (x)| ≤C |ξ|−2−ν
m ≤ ε|ξ|−2

m , (4.3.44)

where ε> 0 can be chosen arbitrarily small if R > 0 is large enough. Furthermore, on

the support ofψwe have |q|m ≤ κ|ξ|m and therefore the Poincaré-Friedrichs inequal-

ity (Theorem 2.1.11) yields

γ0‖∇qψ‖2 ≥ γ0

2κ2
‖|ξ|−1

m ψ‖2. (4.3.45)
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By choosing κ> 0 small enough this together with (4.3.44) implies

γ0‖∇qψ‖2 +〈I (Z )ψ,ψ〉−α2
∥∥|x|−1

m ψ
∥∥2 ≥ 0 (4.3.46)

and therefore

L2[ψ] ≥ 〈H(Z )ψ,ψ〉−2γ0‖∇qψ‖2 −ε∥∥|q |−1
m ln−1 (|q |m |ξ|−1

m

)
ψ

∥∥2
KR (Z ,κ′,κ) . (4.3.47)

To estimate the r.h.s. of (4.3.47) we distinguish between the case of one-dimensional

and the case of two-dimensional particles.

(i) If the particles are one-dimensional, we have dim(X0(Z )) = 1 and due to |C2| = 1

〈H(Z )ψ,ψ〉 = 〈H [C1]ψ,ψ〉 and ‖∇q(Z )ψ‖ = ‖∇q[C1]ψ‖, (4.3.48)

where here we consider the operators H(Z ) and H [C1] as operators on L2(X0). We

will use the letters q for q(Z ) and q[C1] and ξ for ξ(Z ) and ξ[C1] simultaneously. We

estimate the last term on the r.h.s. of (4.3.47) by

ε
∥∥|q |−1

m ln−1 (|q |m |ξ|−1
m

)
ψ

∥∥2
KR (Z ,κ′,κ) ≤ ε‖(1+|q |m)−1ψ‖2

KR (Z ,κ′,κ), (4.3.49)

which is true for κ> 0 small enough and R > 0 sufficiently large. This yields

L2[ψ] ≥ 〈H [C1]ψ,ψ〉−2γ0‖∇qψ‖2 −ε‖(1+|q |m)−1ψ‖2
KR (Z ,κ′,κ). (4.3.50)

Since C1 consists of two particles and H [C1] is the operator with the center of mass of

C1 removed, we can consider H [C1] as one-particle Schrödinger operator on L2(R).

Moreover, by Remark 4.3.2 the operator H [C1] does not have a virtual level. There-

fore, we can use Corollary 4.2.3 to conclude that L2[ψ] ≥ 0 for ε> 0 and γ0 > 0 small

enough and R > 0 sufficiently large.

(ii) If the particles are two-dimensional, we have dim(X0(Z )) = 2. In this case we use

that since H [C1] does not have a virtual level, we have

〈H [C1]ψ,ψ〉 ≥ 3γ0‖∇q[C1]ψ‖2 (4.3.51)
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4.3. Virtual levels of multi-particle Schrödinger operators

for γ0 > 0 small enough. This, together with (4.3.47) and (4.3.48) implies

L2[ψ] ≥ γ0‖∇qψ‖2 −ε∥∥|q|−1
m ln−1 (|q|m |ξ|−1

m

)
ψ

∥∥2
KR (Z ,κ′,κ) . (4.3.52)

To estimate the r.h.s. of (4.3.52) we introduce the new variable y = q
|ξ|m . Then we get

γ0‖∇qψ‖2 −ε∥∥|q |−1
m ln−1 (|q |m |ξ|−1

m

)
ψ

∥∥2
KR (Z ,κ′,κ)

≥
ˆ ˆ

{κ′|ξ|m≤|q|m≤κ|ξ|m }

(
γ0|∇qψ|2 −ε|q|−2

m

∣∣ln−2 (|q |m |ξ|−1
m

)∣∣ |ψ|2) dq dξ

=
ˆ

1

|ξ|2m

ˆ
{κ′|≤|y |m≤κ}

(
γ0|∇yψ̃(y,ξ)|2 −ε|y |−2

m

∣∣ln−2 (|y |m)∣∣ |ψ̃(y,ξ)|2) dy dξ,

(4.3.53)

where ψ̃(y,ξ) =ψ(y |ξ|m ,ξ). Note that ψ̃(y,ξ) = 0 for |y |m ≥ κ. By choosing κ < 1 we

have (ln |y |m)−2 ≤C (1+(ln |y |m)2)−1 for some C > 0 and |y |m ≤ κ. Therefore, applying

the two-dimensional Hardy type inequality, given in Lemma 2.1.10, to the function

ψ̃(y,ξ) for fixed ξ shows that the r.h.s. of (4.3.53) is non-negative for sufficiently small

ε> 0. This proves L2[ψ] ≥ 0.

Estimate of L′
2[V ψ].

Note that V ϕ is supported in the region where all particles are separated. More

precisely, supp
(
V ϕ

) ⊆ X0 \ K (Z ,κ′) for all partitions Z with |Z | = 2. Let i , j ,k be

pairwise distinct and Z (k) = {{i , j }, {k}}. Then for x ∈ X0 \ K (Z (k),κ′) we have

|xi −x j |2 = m1m2

m1 +m2
|q(Z (k))|2m ≥ m1m2

m1 +m2

(
1+ (κ′)−2)−1 |x|2m . (4.3.54)

Hence, for x ∈ supp
(
V ϕ

)
we have |xi −x j | ≥ A if R > 0 is large enough and thus

|Vi j (x)| ≤ c|x|−2−ν
m ≤ ε|x|−2

m . (4.3.55)

Inserting this estimate in the definition of L′[V ϕ] we get

L′
2[V ϕ] ≥ (1−γ0)‖∇0(V ϕ)‖2 − (α2 +4ε)‖|x|−1

m V ϕ‖2. (4.3.56)
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4. Virtual levels of Schrödinger operators

Since V ϕ can be approximated (in the norm of H 1(X0)) by functions in M , we get

‖∇0(V ϕ)‖2 ≥ (
C̃H (X0)

)2 ‖|x|−1
m V ϕ‖2. (4.3.57)

Due to 0 ≤ α< C̃H (X0) we obtain L′
2[V ϕ] ≥ 0 for γ0 > 0 and ε> 0 small enough. This

completes the proof of Lemma 4.3.11 for the case N = 3.

Remark 4.3.12. Note that for particles with space dimension d ≥ 3 one can directly

use the absence of virtual levels for the cluster Hamiltonians and Hardy’s inequality

to estimate the r.h.s of (4.3.47). For the case of two-dimensional particles we used the

two-dimensional Hardy type inequality, which required an improved estimate of the

localization error and the substitution (4.3.53). For the one-dimensional case Hardy’s

inequality can not be used because the function ϕ(·,ξ) does not vanish for q = 0. In

this case we used
´
R

V (x)dx > 0 to compensate for the localization error.

Now we extend the proof of Lemma 4.3.11 to systems of more than three particles.

Proof of Lemma 4.3.11 for N ≥ 4. The proof is a generalization of the one for the

three-particle case. We estimate the functional L in cones K (Z ,κ) corresponding to

partitions Z with increasing order |Z |. Let κ2 > 0 be so small that cones K (Z ,κ2)

and K (Z ′,κ2) do not overlap for different partitions Z 6= Z ′ with |Z | = |Z ′| = 2. Then

analogously to the three-particle case we get

L[ϕ] ≥ ∑
Z :|Z |=2

L2[ϕuZ ]+L′
2[V (2)ϕ], (4.3.58)

where V (2) =
√

1−∑
Z :|Z |=2 u2

Z for |x|m ≥ R and the functionals L2,L′
2 : H 1(X0) → R

are defined analogously to (4.3.41). By estimating the inter-cluster potential I (Z ) as

in the case N = 3 we arrive at

L2[ψ] ≥ 〈H(Z )ψ,ψ〉−2γ0‖∇qψ‖2 −ε∥∥|q|−1
m ln−1 (|q |m |ξ|−1

m

)
ψ

∥∥2
KR (Z ,κ′,κ) . (4.3.59)

Since the Hamiltonians H [C ] with |C | > 1 do not have virtual levels, we have

〈H(Z )ψ,ψ〉 ≥ 3γ0‖∇qψ‖2 (4.3.60)
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4.3. Virtual levels of multi-particle Schrödinger operators

for sufficiently small γ0 > 0 and therefore, by (4.3.59),

L2[ψ] ≥ γ0‖∇qψ‖2 −ε∥∥|q|−1
m ln−1 (|q|m |ξ|−1

m

)
ψ

∥∥2
KR (Z ,κ′,κ) (4.3.61)

if γ0 > 0 is small enough. If d = 1 and N = 4, we have dim(X0(Z )) = 2 and we can

proceed as in the case of three two-dimensional particles. In all other cases we have

dim(X0(Z )) ≥ 3 and we estimate

ε
∥∥|q |−1

m ln−1 (|q |m |ξ|−1
m

)
ψ

∥∥2
KR (Z ,κ′,κ) ≤ ε‖(1+|q|m)−1ψ‖2

KR (Z ,κ′,κ) (4.3.62)

and use the Hardy type inequality (2.1.44) to derive L2[ψ] ≥ 0 for small ε> 0.

To estimate L′
2[V (2)ϕ] we make a partition of unity of the set

S = X0 \
(
B(R)

⋃
Z :|Z |=2

K (Z ,κ′2)
)
, (4.3.63)

which contains the support of V (2)ϕ. Let κ3 ∈ (0,1) be so small that K (Z ,κ3) and

K (Z̃ ,κ3) for partitions Z 6= Z̃ with |Z | = |Z̃ | = 3 do not overlap on the set S given in

(4.3.63). Such a constant κ3 exists due to Theorem 3.2.5. By applying Theorem 4.3.9

we get

L′
2[V (2)ϕ] ≥ ∑

Z :|Z |=3
L3[V (2)ϕuZ ]+L′

3[V (3)ϕ], (4.3.64)

where V (3) = V (2)
√

1−∑
Z :|Z |=3 u2

Z on S and the functionals L3,L′
3 : H 1(X0) → R are

given by

L3[ψ] = (1−γ0)‖∇0ψ‖2 +〈Vψ,ψ〉− (α2 +ε)‖|x|−1
m ψ‖2

−ε‖|q(Z )|−1
m ln−1 (|q(Z )|m |ξ(Z )|−1

m

)
ψ‖2

KR (Z ,κ′3,κ3),

L′
3[ψ] = (1−γ0)‖∇0ψ‖2 +〈Vψ,ψ〉− (α2 +ε)‖|x|−1

m ψ‖2

(4.3.65)

for some ε > 0 which can be chosen arbitrarily small. By the same arguments as for

partitions Z with |Z | = 2 we can prove L3[V (2)ϕuZ ] ≥ 0 for all partitions Z into three

clusters. If N ≥ 5, we continue this process for all partitions Z with |Z | ≤ N −1 and

finally arrive at the point where it remains to estimate the functional

L′[ψ̃] := (1−γ0)‖∇0ψ̃‖2 +〈V ψ̃,ψ̃〉− (α2 +ε)‖|x|−1
m ψ̃‖2 ≥ 0 (4.3.66)
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4. Virtual levels of Schrödinger operators

for functions ψ̃ := V (N−1)ϕ supported in the region where all particles are separated

from each other, namely there exists a constant c > 0, such that we have |xi j | ≥ c|x|m
for x ∈ supp(V (N−1)ϕ). Therefore, we can estimate

|V (x)| ≤C (1+|x|m)−2−ν ≤ ε(1+|x|m)−2 (4.3.67)

if R > 0 is large enough. This implies

L′[V (N−1)ϕ] ≥ (1−γ0)‖∇0
(
V (N−1)ϕ

)‖2 − (α2 +2ε)‖|x|−1
m V (N−1)ϕ‖2. (4.3.68)

Similarly to (4.3.57) we have

∥∥∇0
(
V (N−1)ϕ

)∥∥2 ≥ (
C̃H (X0)

)2 ∥∥|x|−1
m V (N−1)ϕ

∥∥2
. (4.3.69)

Since 0 ≤ α < C̃H (X0), we can choose γ0 > 0 and ε > 0 sufficiently small to obtain

L′[V (N−1)ϕ] ≥ 0. This completes the proof of Lemma 4.3.11 and therefore the proof of

Theorem 4.3.3.

4.3.4. The special case of one-dimensional particles

Recall that in Theorem 4.3.3 we proved a condition, such that virtual levels corre-

spond to eigenvalues. Concerning the decay behavior of the corresponding eigen-

functionϕ0 the case of one-dimensional particles is special. Recall that if the dimen-

sion of the particles is d ≥ 3, then ϕ0 decays with the same rate as the fundamental

solution of the Laplacian in Rk with k = d(N − 1), see [6]. By the estimate (4.3.13)

given in Corollary 4.3.5 we see that for one-dimensional particles ϕ0 decays faster

than the fundamental solution in RN−1. This can be explained by the fact that for

one-dimensional particles the sets {xi = x j } are hyperplanes in X0, which implies that

the constant C̃H (X0) is larger than the Hardy constant CH (X0) for the whole space.

For the estimate given in Corollary 4.3.5 we used that functions in M are zero on

the hyperplanes {xi = x j } and applied the Hardy inequality for the half space. In

fact, we only used that these functions vanish on one of the hyperplanes {xi = x j }.

By taking into account that they vanish on all of them we can improve the estimate

given in Corollary 4.3.5. We demonstrate this exemplarily for two cases.
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4.3. Virtual levels of multi-particle Schrödinger operators

Theorem 4.3.13. (i) For a system of three one-dimensional particles with masses

m1, m2, m3 > 0 and pairwise distinct i , j ,k ∈ {1,2,3} let

θi = arccos

( p
m j mk√

mi +m j
p

mi +mk

)
. (4.3.70)

Then

C̃H (X0) = π

θ0
, where θ0 = max{θi , i = 1,2,3}. (4.3.71)

In particular, for systems of three one-dimensional particles virtual levels of the

operator H correspond to simple eigenvalues.

(ii) For a system of four identical one-dimensional particles we have C̃H (X0) = 13
2 .

Remark 4.3.14. (i) It is easy to see that π
3 ≤ θ0 ≤ π

2 . Therefore, in case of three one-

dimensional particles the constant C̃H (X0) takes its maximal value C̃H (X0) = 3

for θ0 = π
3 , which corresponds to the case m1 = m2 = m3. On the other hand,

if one of the masses mi tends to infinity while the other masses are bounded,

then θ0 → π
2 and therefore C̃H (X0) → 2.

(ii) Note that by Theorem 4.3.13 (ii) we get a significantly improved estimate for

the decay rate compared to the one given in Corollary 4.3.5, where C̃H (X0) was

estimated by 3
2 .

Proof of Theorem 4.3.13 (i)

The proof consist of two steps: First, we prove some geometric properties of the

space X0 which is planar in case of three one-dimensional particles. Later, we will

use the Hardy type inequality for sectors, given in Theorem 2.1.9, to derive the value

of C̃H (X0).

Lemma 4.3.15. Let d = 1 and N = 3. Then the lines x1 = x2, x1 = x3 and x2 = x3 divide

the space X0 into six sectors S1,S2, . . . ,S6 with angles θ1 = θ4, θ2 = θ5 and θ3 = θ6 where

θi , i = 1,2,3 is given by

θi = arccos

( p
m j mk√

mi +m j
p

mi +mk

)
. (4.3.72)
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Proof of Lemma 4.3.15. At first, we describe the half lines x1 = x2 ≥ 0, x1 = x3 ≤ 0 and

x2 = x3 ≥ 0. It is clear that they are spanned by the vectors

u12 =
(
1,1,−m1 +m2

m3

)>
, u13 =

(
−1,

m1 +m3

m2
,−1

)>
,

and u23 =
(
−m2 +m3

m1
,1,1

)>
, respectively.

(4.3.73)

For a better understanding of the following steps we illustrate the half lines in a coor-

dinate system. To this end we choose an orthogonal basis {v1, v2} of X0 with

v1 =
(
1,1,− (m1+m2)

m3

)>
, v2 =

(
−m2,m1,0

)>
(4.3.74)

and denote by (α,β) the coordinates corresponding to this basis. In this coordinate

system the vectors ui j have the following coordinates (αi j ,βi j ):

(α12,β12) = (1,0), (α13,β13) =
(

m3

m1 +m2
,

m1 +m2 +m3

m2(m1 +m2)

)
,

(α23,β23) =
(
− m3

m1 +m2
,

m1 +m2 +m3

m1(m1 +m2)

) (4.3.75)

Hence, we can illustrate the half lines x1 = x2 ≥ 0, x1 = x3 ≤ 0 and x2 = x3 ≥ 0 in the

following picture:

x1 = x3 ≤ 0

x1 = x2 ≥ 0

x2 = x3 ≥ 0

v2

Figure 4.2.: The half lines x1 = x2 ≥ 0, x1 = x3 ≤ 0 and x2 = x3 ≥ 0

Let S1 be the sector between the half lines x1 = x2 ≥ 0 and x1 = x3 ≤ 0, S2 the sector

between the half lines x1 = x2 ≤ 0 and x2 = x3 ≥ 0 and S3 the sector between the half

lines x2 = x3 ≥ 0 and x1 = x3 ≤ 0, where we always choose the one sector with angle

0 < θi <π, cf. Figure 4.3.
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v2

x1 = x3 ≤ 0

x1 = x2 ≥ 0

x2 = x3 ≥ 0

S1

S3

S2
θ2 θ1
θ3

Figure 4.3.: The sectors S1, S2, S3

For i ∈ {4,5,6} we define the sector Si = −Si−3 i.e., Si is the sector which we get by

reflecting the sector Si−3 at the origin. It is obvious that for the angle θi of the sector

Si , i ∈ {4,5,6}, we have θi = θi−3.

v2

x1 = x3 ≤ 0

x1 = x2 ≥ 0

x2 = x3 ≥ 0

S1

S3

S2
θ1

θ4
S4 S6

S5

Figure 4.4.: Definition of the sectors Si

Now we compute the angles θi of the sectors Si , i = 1,2,3. They are given by the

formula

cos(θi ) = 〈ui j ,ui k〉m

|ui j |m |u j k |m
, i 6= j ,k, j 6= k. (4.3.76)

For i = 1 we get

〈u12,u13〉m =−m1 +m2 · m1 +m3

m2
+m3 · m1 +m2

m3
= m1 +m2 +m3. (4.3.77)

Moreover, we have

|u12|m =
√

m1 +m2 +m3 · (m1 +m2)2

m2
3

=
p

m1 +m2
p

m1 +m2 +m3p
m3

(4.3.78)
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and analogously

|u13|m =
p

m1 +m3
p

m1 +m2 +m3p
m2

. (4.3.79)

This yields

cos(θi ) =
p

m2m3p
m1 +m2

p
m1 +m3

. (4.3.80)

Therefore, the angle θ1 satisfies (4.3.72). The other angles can be computed analo-

gously.

Lemma 4.3.16. Let Si be one of the sectors given by Lemma 4.3.15 with angle θi and

assume that ψ ∈ H 1
0 (Si ). Then we have

‖∇0ψ‖ ≥ π

θi
‖|x|−1

m ψ‖. (4.3.81)

and the constant π
θi

is sharp.

Proof of Lemma 4.3.16. According to Theorem 2.1.9, functions v ∈ H 1(R2) supported

in a sector S ⊂R2 satisfy

‖∇v‖ ≥ (Λ(G))
1
2 ‖|x|−1v‖, (4.3.82)

were Λ(G) is the first eigenvalue of the Dirichlet problem for the Laplace-Beltrami

operator in G = S∩S1. The Laplace-Beltrami operator on G can be identified with the

Laplacian on the interval (0,θ) where θ is the angle of S. The Dirichlet eigenvalues of

the Laplacian on an interval of length l > 0 are given by λk =
(

kπ
l

)2
, k ∈N. Therefore,

we have Λ(G) = (
π
θ

)2, which implies that for any function v ∈ H 1(R2) supported in S

we have

‖∇v‖ ≥ π

θ
‖|x|−1v‖. (4.3.83)

The sharpness of the constant π
θi

follows from the sharpness of the Hardy type con-

stant in Theorem 2.1.9. This completes the proof of Lemma 4.3.15.

The proof of Theorem 4.3.13 (i) is a direct combination of Lemma 4.3.15 and

Lemma 4.3.16.
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Proof of Theorem 4.3.13 (ii)

The idea is to find a homogeneous harmonic polynomial p which vanishes on the

sets xi = x j . Recall that we have dim(X0) = 3 for systems of four one-dimensional

particles. We choose the following orthonormal basis {v1, v2, v3} of X0, given by

v1 = 1p
2

(1,−1,0,0)> , v2 = 1p
6

(1,1,−2,0)> , v3 = 1p
12

(1,1,1,−3)> .

with coordinates λ1, λ2, λ3. Then the hyperplanes {xi = x j } can be represented as

follows:

x1 = x2 ⇐⇒ λ1 = 0,

x1 = x3 ⇐⇒ p
3λ1 +3λ2 = 0,

x1 = x4 ⇐⇒ p
6λ1 +

p
2λ2 +4λ3 = 0,

x2 = x3 ⇐⇒ −p3λ1 +3λ2 = 0,

x2 = x4 ⇐⇒ −p6λ1 +
p

2λ2 +4λ3 = 0,

x3 = x4 ⇐⇒ −2
p

2λ2 +4λ3 = 0.

(4.3.84)

Let the polynomial p :R3 →R be given by

p(λ1,λ2,λ3) =λ1

(p
3λ1 +3λ2

)(p
6λ1 +

p
2λ2 +4λ3

)(
−p3λ1 +3λ2

)
·
(
−p6λ1 +

p
2λ2 +4λ3

)(
−2

p
2λ2 +4λ3

)
.

(4.3.85)

Then p is a homogeneous harmonic polynomial of degree six which by (4.3.84) van-

ishes if and only if xi = x j for some i 6= j . Hence, its restriction to S2 is a spheri-

cal harmonic of degree six and therefore, by the discussion of spherical harmonics

in Chapter 2, an eigenfunction of the Laplace-Beltrami operator on S2 correspond-

ing to the eigenvalue 6 ·7 = 42. Moreover, p does not change sign inside the sectors

Si . Hence, its restriction to Si ∩S2 is an eigenfunction to the first eigenvalue of the

Laplace-Beltrami on Si ∩S2, equipped with Dirichlet boundary conditions. By The-

orem 2.1.9 we get

C̃H (X0) =
(

1

4
+ 168

4

) 1
2 = 13

2
, (4.3.86)

which completes the proof of Theorem 4.3.13 (ii).
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4.3.5. The case of three two-dimensional particles

Note that for systems of three two-dimensional particles we have C̃H (X0) = 1 and

therefore Theorem 4.3.3 does not apply in this case. We can not say whether virtual

levels correspond to eigenvalues or to resonances, but we prove the following

Theorem 4.3.17. Let H be the Hamiltonian of a system of three two-dimensional par-

ticles. Assume that the potentials Vi j 6= 0 satisfy (4.2.2) and (4.2.3) and that H has a

virtual level at zero. Then there exists a function ϕ0 ∈ H̃ 1(X0), ϕ0 6= 0, satisfying

‖∇0ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0 (4.3.87)

and

(1+| · |m)−αϕ0 ∈ L2(X0) for any α> 0. (4.3.88)

Proof of Theorem 4.3.17

To prove Theorem 4.3.17 we take a sequence (ψn)n∈N of eigenfunctions correspond-

ing to eigenvalues En < 0 of the operator H +n−1∆0, i.e.,

− (
1−n−1)∆0ψn +Vψn = Enψn . (4.3.89)

We normalize the functionsψn by ‖∇0ψn‖ = 1. Note that due to dim(X0) = 4 the space

Ḣ 1(X0) is a Hilbert space. Therefore, there exists a subsequence of (ψn)n∈N, also de-

noted by (ψn)n∈N, which converges weakly in Ḣ 1(X0) to a function ϕ0 ∈ Ḣ 1(X0). Due

to the Rellich-Kondrachov thereon we have convergence of ψn to ϕ0 in L2
loc(X0). We

split the proof into several steps.

Step 1: ϕ0 6= 0 and it satisfies the decay property (4.3.88).

Due to Lemma 4.3.11 there exist constants γ0 > 0 and R > 0, such that for every func-

tion ψ ∈ H 1(X0), supported in the region {|x|m ≥ R}, we have

(1−γ0)‖∇0ψ‖2 +〈Vψ,ψ〉 ≥ 0. (4.3.90)

Applying Lemma 2.3 in [7] we see that the weak limit ϕ0 ∈ Ḣ 1(X0) of the sequence

(ψn)n∈N of eigenfunctions normalized by ‖∇0ψn‖ = 1 is not zero.
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In the next step we show that ϕ0 satisfies the estimate (4.3.88) on the decay rate. To

do this we first give the following estimate for a weighted L2 norm of the functions

ψn .

Lemma 4.3.18. Let H be the Hamiltonian of a system of three two-dimensional parti-

cles. Assume that the potentials Vi j satisfy (4.2.2) and (4.2.3) and that H has a virtual

level at zero. Then, for any 0 ≤ α < 1 there exists a constant C > 0, such that for all

n ∈N we have

‖∇0
(| · |αmψn

)‖ ≤C and ‖ (1+| · |m)α−1ψn‖ ≤C . (4.3.91)

Proof. The proof is an easy modification of the proof of Lemma A.1.1 in the Appendix,

together with the observation that C̃H (X0) = 1.

By Lemma 4.3.18 we get convergence of (ψn)n∈N to ϕ0 in L2(X0, (1+|x|m)−αdx) for

any α> 0. This shows that the function ϕ0 satisfies (4.3.88).

Step 2: 〈Vϕ0,ϕ0〉 is well-defined.

Note that in contrast to Theorem 4.2.6 and Theorem 4.3.7 we neither have fast decay

of V nor do we know whether ϕ0 is in L2(X0), which makes this part difficult. We

prove that 〈Vi jϕ0,ϕ0〉 is well-defined for each pair of particles β = (i , j ). Since each

Vi j satisfies (4.2.2) and (4.2.3), by Lemma 3.1.11 we have

ˆ
|Vi j (qβ)| · |ϕ0(qβ,ξβ)|2 dqβ ≤C‖ϕ0(·,ξβ)‖2

H̃ 1(X0[C ])
, a.e. ξβ, (4.3.92)

where here and in the following for a pair of particles β = (i , j ) we denote by qβ,ξβ

the variables q[C ], ξ[C ] with C = {i , j }. In view of (4.3.92), to prove well-definedness

of 〈Vi jϕ0,ϕ0〉 it suffices to show

ˆ ˆ
{|qβ|m≤1}

|ϕ0|2 dqβdξβ <∞. (4.3.93)

In other words, it is enough to prove that the restriction of the function ϕ0 to cylin-

drical regions {(qβ,ξβ) : |qβ|m ≤ 1}, β ∈ {(1,2), (1,3), (2,3)}, is square-integrable.
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Let χ1 :R+ → [0,1] be a function with χ1 ∈C 1(R+) and (1−χ2
1)

1
2 ∈C 1(R+), satisfying

χ1(t ) = 0, 0 ≤ t ≤ 1, χ1(t ) = 1, t ≥ 2. (4.3.94)

For b > 0 and x ∈ X0 let χ(x) = χ1

( |x|m
b

)
. The first step to prove that 〈Vi jϕ0,ϕ0〉 is

well-defined is the following

Lemma 4.3.19. Letψn and χ be defined as above. Then, for any ε> 0 we can find b > 0

and n0 ∈N, such that for all n > n0 we have

(i) ‖∇0
(
χψn

)‖ < ε, (ii) 〈Vi jχψn ,χψn〉 < ε, i , j ∈ {1,2,3}. (4.3.95)

Proof of Lemma 4.3.19. For ψ ∈ H 1(X0) let

L[ψ] = ‖∇0ψ‖2 +〈Vψ,ψ〉. (4.3.96)

Then, by the IMS localization formula we get

L[ψn] = L[(1−χ2)
1
2ψn]+L[χψn]

−
ˆ

X0

(
|∇0χ|2 +|∇0(1−χ2)

1
2 |2

)
|ψn |2 dx.

(4.3.97)

Since χ is supported in the region {|x|m ≥ b}, by Lemma 4.3.11 with α= 0 we get

L[χψn] ≥ γ0‖∇0
(
χψn

)‖2 (4.3.98)

for some γ0 > 0 if b > 0 is large enough and therefore by (4.3.97)

γ0‖∇0
(
χψn

)‖2 ≤ L[ψn]−L[(1−χ2)
1
2ψn]

+
ˆ

X0

(
|∇0χ|2 +|∇0(1−χ2)

1
2 |2

)
|ψn |2 dx.

(4.3.99)

We estimate the terms on the r.h.s of (4.3.99) separately. By definition of the functions

ψn the first term can be estimated as

L[ψn] ≤ 1

n
‖∇0ψn‖2 = 1

n
. (4.3.100)
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Due to H ≥ 0 the second term on the r.h.s. of (4.3.99) is non-positive. Now we esti-

mate the last term on the r.h.s. of (4.3.99). Note that ∇0χ and ∇0
(
1−χ2

) 1
2 are sup-

ported in the region {b ≤ |x| ≤ 2b} and satisfy

|∇0χ|2 +|∇0
(
1−χ2) 1

2 |2 ≤ C

b2
(4.3.101)

for some C > 0 which does not depend on b. This, together with the estimate (4.3.91)

on the decay rate of ψn yields, uniformly in n ∈N,

ˆ
X0

(
|∇0χ|2 +|∇0(1−χ2)

1
2 |2

)
|ψn |2 dx ≤ 4C

ˆ
{|x|m≥b}

|ψn |2
|x|2m

dx ≤ ε1(b) (4.3.102)

for some ε1(b) with ε1(b) → 0 as b →∞. Combining this with (4.3.99) and (4.3.100)

we obtain

γ0‖∇0
(
χψn

)‖2 ≤ 1

n
+ε1(b). (4.3.103)

Therefore, for fixed ε > 0 we can choose n0 ∈ N and b > 0 large enough, such that

‖∇0
(
χψn

)‖2 ≤ ε holds uniformly for n ≥ n0. This completes the proof of statement

(i) of the Lemma.

Now we turn to the proof of assertion (ii). We fix a pair of particles (i0, j0) and note

that

〈Vi0 j0χψn ,χψn〉 = L[χψn]−‖∇0
(
χψn

)‖2 − ∑
(i , j )6=(i0, j0)

〈Vi jχψn ,χψn〉, (4.3.104)

i.e., 〈Vi0 j0χψn ,χψn〉 can be estimated by estimating the r.h.s. of (4.3.104). For the first

term we get by (4.3.97) and (4.3.102)

L[χψn] ≤ L[ψn]+C

ˆ
{|x|m≥b}

|ψn |2
|x|2m

dx. (4.3.105)

Now, by using L[ψn] ≤ 1
n and the estimate (4.3.91) for the functions ψn we obtain

L[χψn] ≤ 1

n
+ε2(b), (4.3.106)
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where ε2(b) → 0 as b →∞. Substituting this in (4.3.104) we get

〈Vi0 j0χψn ,χψn〉 ≤ 1

n
+ε2(b)− ∑

(i , j )6=(i0, j0)
〈Vi jχψn ,χψn〉. (4.3.107)

Let us estimate the last term on the r.h.s. of (4.3.107). Since the Hamiltonians of the

clusters consisting of two particles do not have negative spectrum, we have

〈Vi jχψn ,χψn〉 ≥−‖∇0
(
χψn

)‖2 (4.3.108)

and therefore by statement (i) of the Lemma

〈Vi jχψn ,χψn〉 ≥−‖∇0
(
χψn

)‖2 ≥−ε, (4.3.109)

where the constant ε > 0 can be chosen arbitrarily small if b > 0 and n ∈N are suffi-

ciently large. Inserting this in (4.3.107) we get

〈Vi0 j0χψn ,χψn〉 ≤ 1

n
+ε2(b)+2ε, (4.3.110)

which completes the proof of Lemma 4.3.19.

Now we use Lemma 4.3.19 to prove the well-definedness of 〈Vi jϕ0,ϕ0〉. Recall that

for this purpose we want to show that

ˆ ˆ
{|qβ|m≤1}

|ϕ0|2 dqβdξβ <∞. (4.3.111)

Since Vi j 6= 0 and the cluster Hamiltonians for non-trivial clusters do not have virtual

levels, by Corollary 4.2.4 we get

ˆ ˆ
{|qβ|m≤1}

|χψn |2 dqβdξβ ≤C1‖∇qβ(χψn)‖2 +C2〈Vi jχψn ,χψn〉 (4.3.112)

for some C1,C2 > 0 and any pair of particles β = (i , j ). Now by Lemma 4.3.19 we see

that the r.h.s. of (4.3.112) can be done arbitrarily small if the constant b > 0 in the

definition of the function χ and n ∈N are sufficiently large. Hence, for any ε > 0 we
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can estimate ˆ ˆ
{|qβ|m≤1}

|χψn |2 dqβdξβ ≤ ε. (4.3.113)

Recall that for |ξβ|m > 2b we have χ(x) = 1. Therefore, (4.3.113) yields

ˆ
{|ξβ|m≥2b}

ˆ
{|qβ|m≤1}

|ψn(x)|2 dx =
ˆ

{|ξβ|m≥2b}

ˆ
{|qβ|m≤1}

|χψn(x)|2 dx ≤ ε (4.3.114)

for b > 0 and n ∈N large enough. Furthermore, we have ψn →ϕ0 in L2
loc(X0). Hence,

ˆ
{|ξβ|m≤2b}

ˆ
{|qβ|m≤1}

|ψn |2 dqβdξβ→
ˆ

{|ξβ|m≤2b}

ˆ
{|qβ|m≤1}

|ϕ0|2 dqβdξβ. (4.3.115)

This, together with (4.3.114) shows that the integral

ˆ ˆ
{|qβ|m≤1}

|ϕ0|2 dqβdξβ (4.3.116)

is bounded and thus 〈Vi jϕ0,ϕ0〉 is well-defined.

Step 3: 〈Vi jψn ,ψn〉 converges to 〈Vi jϕ0,ϕ0〉.
At first, we consider the integral

ˆ
{|ξβ|m≥2b}

ˆ
|Vi j ||ψn |2 dqβdξβ (4.3.117)

and prove that it can be done arbitrarily small if b > 0 and n ∈N are large enough. By

Lemma 3.1.11 we have

ˆ
{|ξβ|m≥2b}

ˆ
|Vi j ||ψn |2 dqβdξβ

≤C

ˆ
{|ξβ|m≥2b}

(ˆ
|∇qβψn |2 dqβ+

ˆ
{|qβ|m≤1}

|ψn |2 dqβ

)
dξβ.

(4.3.118)

Note that by Lemma 4.3.19 we get for arbitrary ε> 0

ˆ
{|ξβ|m≥2b}

ˆ
|∇qβψn |2 dqβdξβ =

ˆ
{|ξβ|m≥2b}

ˆ
|∇qβ(χψn)|2 dqβdξβ ≤ ε (4.3.119)
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if b > 0 and n ∈ N are large enough. Substituting this inequality and (4.3.114) in

(4.3.118) yields ˆ
{|ξβ|m≥2b}

ˆ
|Vi j ||ψn |2 dqβdξβ ≤ 2ε. (4.3.120)

Due to ˆ
|Vi j ||ϕ0|2 dqβdξβ <∞, (4.3.121)

which is true as we have seen in the previous steps of the proof, we also obtain

ˆ
{|ξβ|m≥2b}

ˆ
|Vi j ||ϕ0|2 dqβdξβ ≤ ε (4.3.122)

for b > 0 large enough. Now we consider the region {|ξβ|m ≤ 2b}. Due to the decay

property (4.2.3) of the potentials Vi j and the estimates (4.3.91) and (4.3.88) for ψn

and ϕ0 we get ˆ
{|ξβ|m≤2b}

ˆ
{|qβ|m≥b1}

|Vi j ||ψn |2 dqβdξβ < ε (4.3.123)

and ˆ
{|ξβ|m≤2b}

ˆ
{|qβ|m≥b1}

|Vi j ||ϕ0|2 dqβdξβ < ε, (4.3.124)

where ε > 0 can be chosen arbitrarily small if b1 > 0 is large enough and estimate

(4.3.123) holds uniformly for n ∈N.

Estimates (4.3.120) and (4.3.122) - (4.3.124) show us that to prove the convergence

〈Vi jψn ,ψn〉→ 〈Vi jϕ0,ϕ0〉 it suffices to show that 〈Vi jψn ,ψn〉Ω→〈Vi jϕ0,ϕ0〉Ω for the

compact set

Ω := {x ∈ X0 : x = qβ+ξβ,‖qβ|m ≤ b1, |ξβ|m ≤ 2b}. (4.3.125)

We write

〈Vi jψn ,ψn〉Ω−〈Vi jϕ0,ϕ0〉Ω = 〈Vi j (ψn −ϕ0),ψn〉Ω+〈Vi jϕ0, (ψn −ϕ0)〉Ω. (4.3.126)

Since ψn converges to ϕ0 in L2
loc(X0), ‖∇qβψn‖ ≤ 1, ‖∇qβϕ0‖ ≤ 1 and the potential Vi j

satisfies (4.2.2), both summands on the r.h.s. of (4.3.126) tend to zero as n →∞. This,

together with the estimates (4.3.120) - (4.3.124) yields 〈Vi jψn ,ψn〉 → 〈Vi jϕ0,ϕ0〉 for

every pair (i , j ) of particles and therefore 〈Vψn ,ψn〉→ 〈Vϕ0,ϕ0〉 as n →∞.
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Step 4: ϕ0 satisfies ‖∇0ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0.

Since by definition of the functions ψn

〈Vψn ,ψn〉 ≤−(
1−n−1) (4.3.127)

and 〈Vψn ,ψn〉→ 〈Vϕ0,ϕ0〉, we get 〈Vϕ0,ϕ0〉 ≤−1. Moreover, we have

‖ϕ0‖Ḣ 1 ≤ liminf
n→∞ ‖ψn‖Ḣ 1 = 1. (4.3.128)

On the other hand, H ≥ 0 and therefore

‖∇0ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0, (4.3.129)

which completes the proof of Theorem 4.3.17.

4.3.6. Virtual levels of fermionic systems

Now we consider a system of N ≥ 3 one- or two-dimensional identical fermions with

corresponding Hamiltonian Has. Our goal is to prove that virtual levels correspond

to eigenvalues for systems of N ≥ 3 one-or two-dimensional particles. This section is

based on [7].

Definition 4.3.20. Assume that the potentials Vi j satisfy (3.2.26), (4.2.2) and (4.2.3).

Let C ⊆ {1, . . . , N } be a cluster of the system. We say that the cluster Hamiltonian

Has[C ] has a virtual level at zero if Has[C ] ≥ 0 and

(i) there exists a constant ε0 > 0, such that

infσess (−(1−ε0)∆0[C ]+V [C ]) = 0, (4.3.130)

(ii) for any ε> 0 we have

infσ (H [C ]+ε∆0[C ]) < 0. (4.3.131)

Here, the operators in (4.3.130) and (4.3.131) are considered as operators restricted

to the subspace of functions which are anti-symmetric with respect to permutations

of particles in the cluster C .
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A crucial role in the proof of Theorem 4.3.3 is played by Hardy’s inequality. Since by

definition the wave-function for a system of fermions is anti-symmetric with respect

to permutation of particles and therefore orthogonal to constant functions, we can

use the Hardy type inequality (2.1.33) for fermionic systems and prove the following

Theorem 4.3.21. Let Has be the Hamiltonian corresponding to a system of N ≥ 3 one-

or two-dimensional identical fermions. Assume that the potentials Vi j satisfy the con-

ditions (3.2.26), (4.2.2) and (4.2.3) and that Has has a virtual level at zero. Then zero is

an eigenvalue of Has and the corresponding eigenspace W0 is finite-dimensional. For

any ϕ0 ∈W0

∇0
(| · |αmϕ0

) ∈ L2(X0) and (1+| · |m)α−1ϕ0 ∈ L2(X0) (4.3.132)

for any 0 ≤α<α0, where

α0 =
3 if d = 1, N = 3,

d(N−1)
2 else.

(4.3.133)

There exists a constant δ0 > 0, such that for any ψ ∈ H 1(X0) satisfying 〈∇0ϕ0,∇0ψ〉 = 0

for all ϕ0 ∈W0

(1−δ0)‖∇0ψ‖2 +〈Vψ,ψ〉 ≥ 0. (4.3.134)

Remark 4.3.22. (i) Note that in contrast to Theorem 4.3.3, where the operator H

was considered without symmetry restrictions, in the fermionic case zero is not

a simple eigenvalue. However, its multiplicity is still finite.

(ii) Comparing the estimates of the decay rate with the ones without symmetry

restrictions we see that for fermions we get better ones. This is not surprising

because the Hardy type constant for anti-symmetric functions is larger than for

functions without symmetry restrictions.

Proof of Theorem 4.3.21

The proof is based on the following abstract Theorem 4.3.23 which is a straightfor-

ward modification of Theorem 4.2.6 to Schrödinger operators with symmetry restric-

tions.
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Theorem 4.3.23. Let k ∈N and let has =−∆+V be the Schrödinger operator acting on

the subset of L2(Rk ) which consists of functions which are orthogonal (w.r.t. the L2(Rk )

scalar product) to all functions which depend on |x| only. Suppose that V satisfies

(4.2.2). Furthermore, assume that

has ≥ 0 and infσ (has +ε∆) < 0 (4.3.135)

for any ε > 0. If there exist constants α0 > 1, b > 0 and γ0 > 0, such that for any ψ in

the form domain of has with supp(ψ) ⊂ {x ∈Rk : |x| ≥ b} we have

〈hasψ,ψ〉−γ0‖∇ψ‖2 −α2
0〈|x|−2ψ,ψ〉 ≥ 0, (4.3.136)

then zero is an eigenvalue of has with finite multiplicity. Let W0 be the corresponding

eigenspace. Then for any ϕ0 ∈W0 we have

∇(| · |α0ϕ0
) ∈ L2(Rk ) and (1+| · |)α−1ϕ0 ∈ L2(Rk ) (4.3.137)

for anyα<α0. Moreover, there exists a constant δ0 > 0, such that for any functionψ in

the form domain of has with 〈∇ψ,∇ϕ0〉 = 0 for all ϕ0 ∈W0 we have

〈hasψ,ψ〉 ≥ δ0‖∇ψ‖2. (4.3.138)

We shall not prove this theorem, but turn to the

Proof of Theorem 4.3.21. We show that the conditions of Theorem 4.3.23 are fulfilled

for anyα<α0 withα0 given by (4.3.133). To do this we use similar geometric methods

as in the proof of Theorem 4.3.3 to show that for any 0 ≤ α < α0 we find constants

γ0, R > 0, such that for any functionϕ ∈ H 1
as(X0) with supp(ϕ) ⊂ {x ∈ X0 : |x|m ≥ R} we

have

L[ϕ] := (1−γ0)‖∇0ϕ‖2 +〈Vϕ,ϕ〉−α2‖|x|−1
m ϕ‖2 ≥ 0. (4.3.139)

Then the statement of Theorem 4.3.21 follows from Theorem 4.3.23. Let κ > 0 be so

small that cones K (Z ,κ) and K (Z ′,κ) do not overlap for different partitions Z 6= Z ′ of

the system into two clusters and for given ε> 0 we choose functions uZ according to
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Theorem 4.3.9. Then we have

L[ϕ] ≥ ∑
Z :|Z |=2

L2[ϕuZ ]+L′
2[V ϕ], (4.3.140)

where the functionals L2,L′
2 : H 1

as(X0) →R are defined as in (4.3.41). Note that for ϕ ∈
H 1

as(X0) the functionsϕuZ and V ϕ are also elements of H 1
as(X0). To show L2[ϕuZ ] ≥ 0

we note that sinceϕuZ is anti-symmetric with respect to permutations of particles, it

is orthogonal to functions depending on |q(Z )|m only, and so is ϕuZ . Therefore, we

can apply the Hardy type inequality (2.1.33) to the functionϕuZ (·,ξ) for fixed ξ in the

d(N −2)-dimensional space L2(X0(Z )), which yields

‖∇q
(
ϕuZ

)‖2 ≥ (d(N −2))2

4

∥∥|q(Z )|−1
m ϕuZ

∥∥2
. (4.3.141)

The rest of the proof of L2[ϕuZ ] ≥ 0 is a straightforward modification of the proof of

Lemma 4.3.11.

To prove that L′
2[V ϕ] ≥ 0 we distinguish between several cases. If d = 1 and N = 3,

we have dim(X0) = 2 and since the particles are identical, the lines xi = x j cut the

space X0 into six congruent sectors, each of angle π
3 . Therefore, as in the proof of

Theorem 4.3.13 we have

‖∇0
(
V ϕ

)‖2 ≥ 9‖|x|−1
m

(
V ϕ

)‖2. (4.3.142)

Repeating the same arguments as in the proof of Lemma 4.3.11 yields L′
2[V ϕ] for the

case d = 1 and N = 3. For d = 2 and N = 3 we use the observation that the func-

tion V ϕ is orthogonal (with respect to the L2(X0) scalar product) to all functions de-

pending on |x|m only. Therefore, we can apply the Hardy type inequality (2.1.33) for

dimension four, which yields

‖∇0
(
V ϕ

)‖2 ≥ 4‖|x|−1
m V ϕ‖2. (4.3.143)

Now L′
2[V ϕ] ≥ 0 follows in the same way as in the proof of Lemma 4.3.11. If the system

consists of more than three particles, we continue to estimate the functional L′
2[V ϕ]

in cones corresponding to partitions Z with |Z | = 3, . . . , N −1. Finally, we arrive at the
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4.3. Virtual levels of multi-particle Schrödinger operators

point where it remains to estimate the functional

L′[ψ̃] := (1−γ0)‖∇0ψ̃‖2 +〈V ψ̃,ψ̃〉− (α2 +ε)‖|x|−1
m ψ̃‖2 ≥ 0 (4.3.144)

for functions ψ̃ := V (N−1)ϕ ∈ H 1
as(X0) supported in the region where all particles are

separated from each other. Since ψ̃ is orthogonal to all functions which depend on

|x|m only, we can use the Hardy type inequality (2.1.33) to estimate

∥∥∇0
(
V (N−1)ϕ

)∥∥2 ≥ (d(N −1))2

4
‖|x|−1

m V ϕ‖2. (4.3.145)

Now we complete the proof of Theorem 4.3.21 in the same way as in the proof of

Lemma 4.3.11.

4.3.7. A sufficient and necessary condition for virtual levels

of multi-particle Schrödinger operators

In this paragraph we extend the equivalent definition of virtual levels for one-particle

Schrödinger operators with short-range potentials, given in Theorem 4.2.2, to the

multi-particle case.

Theorem 4.3.24. Let H be the Hamiltonian corresponding to a system of N ≥ 3 one- or

two-dimensional particles, where the potentials Vi j 6= 0 satisfy (4.2.2) and (4.2.3) and

assume that H ≥ 0. Then H has a virtual level at zero if and only if the following two

assertions hold.

(i) There exists an ε0 > 0, such that for any cluster C with 1 < |C | < N we have

H [C ]−ε0
(
1+|q[C ]|2m(ln(|q[C ]|m))2)−1 ≥ 0. (4.3.146)

(ii) For any ε> 0 we have

infσ
(
H −ε(

1+|x|2m ln2(|x|m)
)−1

)
< 0. (4.3.147)
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Proof of Theorem 4.3.24. The proof consists of four steps.

Step 1: If H has a virtual level at zero, then condition (i) of Theorem 4.3.24 holds, i.e.,

there exists an ε0 > 0, such that for any cluster C with 1 < |C | < N we have

H [C ]−ε0
(
1+|q[C ]|2m(ln(|q[C ]|m))2)−1 ≥ 0. (4.3.148)

We prove this by induction over the number of particles N ≥ 2 in the whole system.

The base case N = 2 was considered in Theorem 4.2.2. Assuming that the statement

is true for systems consisting of N particles, we show that it also holds for systems of

N +1 particles. Assume for a contradiction that the Hamiltonian of a system of N +1

particles has a virtual level at zero and that there exists a cluster C with 1 < |C | < N+1,

such that for all ε0 > 0 inequality (4.3.148) does not hold. Among such clusters we

choose one with the smallest number of particles and denote it by C0. If C0 consists

of only two particles, then by Theorem 4.2.2 the condition

infσ
(
H [C0]−ε(

1+|q[C0]|2m(ln(|q[C0]|m)2)−1
)
< 0 (4.3.149)

for any ε ∈ (0,1) implies that C0 has a virtual level at zero. This is a contradiction

to Remark 4.3.2 Hamiltonians, because the Hamiltonian of the whole system has a

virtual level at zero. Therefore, C0 must consist of at least three particles. Thus, by

definition C0 satisfies (4.3.149) for any ε> 0 and for each cluster C̃ (C0 with |C̃ | > 1

H [C̃ ]−ε0
(
1+|q[C̃ ]|2m(ln(|q[C̃ ]|m))2)−1 ≥ 0 (4.3.150)

for an ε0 > 0. Hence, by induction assumption H [C0] has a virtual level at zero. Again,

this is a contradiction to the assumption that H has a virtual level at zero. We con-

clude that if H has a virtual level at zero, then condition (i) of Theorem 4.3.24 holds.

Step 2: If H has a virtual level at zero, then condition (ii) of Theorem 4.3.24 holds, i.e.,

for any ε> 0

infσ
(
H −ε(

1+|x|2m ln2(|x|m)
)−1

)
< 0. (4.3.151)

Recall that in case of d = 1, N ≥ 3 or d = 2, N ≥ 4 zero is an eigenvalue of H . Tak-

ing the corresponding eigenfunction as a trial function shows that (4.3.151) is ful-

filled for any ε > 0. For d = 2, N = 3 we do not know whether zero is an eigen-
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value. However, by Theorem 4.3.17 we know that there is a functionϕ0 ∈ H̃ 1(X0) with

‖∇0ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0 and therefore we get (4.3.151) in this case as well. Hence, if

H has a virtual level at zero, then condition (ii) of Theorem 4.3.24 is also true.

Step 3: If conditions (i) and (ii) of Theorem 4.3.24 are fulfilled, then condition (i) of

Definition 4.3.1 holds, i.e., there exists a constant ε0 > 0, such that

infσess (H +ε0∆0) = 0. (4.3.152)

Recall that according to Remark 4.3.2 it is sufficient to prove the absence of virtual

levels for H [C ] for all clusters C with 1 < |C | < N +1. Assume for a contradiction that

there exists a cluster C1 with 1 < |C1| < N + 1, such that H [C1] has a virtual level at

zero. Then, as we proved in Step 2, we have

infσ
(
H [C1]−ε(

1+|q[C1]|2m(ln(|q[C1]|m))2)−1
)
< 0. (4.3.153)

This is a contradiction to condition (ii) of Theorem 4.3.24. Hence, condition (i) of

Definition 4.3.1 is fulfilled.

Step 4: If conditions (i) and (ii) of Theorem 4.3.24 are fulfilled, then condition (ii) of

Definition 4.3.1 holds, i.e.,

infσ (H +ε∆0) < 0 (4.3.154)

for any ε > 0. Assume that (4.3.147) is fulfilled for any ε > 0. If dim(X0) ≥ 3, we can

use Hardy’s inequality to conclude that (4.3.154) holds. If dim(X0) < 3, i.e., the system

consists of three one-dimensional particles, we take a sequence of eigenfunctionsψn

corresponding to negative eigenvalues of the operator H−n−1
(
1+|x|2m(ln(|x|m))2

)−1
,

normalized by ‖ψn‖H̃ 1 = 1. Applying the same arguments as in the proof of Theorem

4.3.13 we see that ψn converges in L2(X0) to a function ψ0 which is an eigenfunction

of the operator H corresponding to the eigenvalue zero. For this function we have

(1−ε)‖∇0ψ0‖2 +〈Vψ0,ψ0〉 =−ε‖∇0ψ0‖2 < 0 (4.3.155)

for any ε > 0. This proves that condition (ii) of Definition 4.3.1 is fulfilled and com-

pletes the proof of Theorem 4.3.24.
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5. Absence of the Efimov effect
for systems of one- or
two-dimensional particles

5.1. Introduction and results

In this chapter we prove the absence of the Efimov effect for systems of N = 3 one- or

two-dimensional particles and for systems of N ≥ 4 one-dimensional or N ≥ 5 two-

dimensional particles. We also prove that it does not occur in systems of N ≥ 4 one-

or two-dimensional fermions.

For systems consisting of more than three particles the absense of the effect will be

proved by adapting the technique of [74] and [7]. The main ingredient in this proof is

the fact that virtual levels of the cluster Hamiltonians correspond to eigenvalues as it

was shown in the previous chapter.

For systems of three one- or two-dimensional particles the absence of the effect

was proved in [73] under very restrictive assumptions on the potentials, namely they

had to be short-range and negative at infinity or compactly supported. Later, in [76]

the restrictions on the potentials were relaxed. There, the proof was given for the

case of two-dimensional fermions only. Unfortunately, it contains a mistake. In fact,

for three two-dimensional particles the super Efimov effect exists, see [26]. Below we

use the strategy of [76], correct the mistake and give the complete proof for the case

of one-dimensional as well as for two-dimensional particles.

The main part of this chapter is based on [8]. Theorem 5.1.3, which shows the

absence of the Efimov effect for fermionic systems, is based on [7]. Our main result

of this chapter is the following

113



5. Absence of the Efimov effect for systems of one- or two-dimensional particles

Theorem 5.1.1 (Absence of the Efimov effect for multi-particle systems). Let d = 1

and N ≥ 4 or d = 2 and N ≥ 5. Suppose that every pair potential Vi j 6= 0 satisfies (4.2.3)

and is operator bounded with respect to −∆with relative bound zero, i.e., for any ε> 0

there exists a constant C (ε) > 0, such that

‖Vi jψ‖2 ≤ ε‖∆ψ‖2 +C (ε)‖ψ‖2, ψ ∈ H 2(Rd ). (5.1.1)

Moreover, assume that H [C ] ≥ 0 for all clusters C with |C | = N −1 and that there exists

ε ∈ (0,1), such that

σess (−(1−ε)∆0[C ]+V [C ]) = [0,∞). (5.1.2)

Then the discrete spectrum of H is finite.

Remark 5.1.2. (i) Note that in Theorem 5.1.1 the cluster Hamiltonian H [C ] with

|C | = N −1 may have a virtual level at zero. For clusters C ′ with 1 < |C ′| < N −1

however, the Hamiltonian H [C ′] is not allowed to have a virtual level, which is

a consequence of (5.1.2) and the HVZ theorem.

(ii) The question whether the Efimov effect can appear in systems of four two-

dimensional particles remains open. This is related to the question whether

virtual levels in systems of three two-dimensional particles correspond to

eigenvalues or to resonances. If they correspond to eigenvalues, it is a signal

for the absence of the effect. However, even if they correspond to resonances

it might be that the effect is absent, as it is for example the case for systems of

three four-dimensional particles [5].

We also prove the absence of the Efimov effect for systems of N ≥ 4 one- or two-

dimensional fermions, namely the following

Theorem 5.1.3 (Absence of the effect for fermionic systems). Let Has be the Hamilto-

nian corresponding to a system of N ≥ 4 one- or two-dimensional particles, where the

potentials satisfy (3.2.26), (4.2.3) and (5.1.1). Furthermore, assume that Has[C ] ≥ 0 for

all clusters with |C | = N −1 and there exists an ε ∈ (0,1), such that

σess (Has[C ]+ε∆0[C ]) = [0,∞). (5.1.3)

Then the discrete spectrum of Has is finite.
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For systems of three one- or two-dimensional particles we prove the following re-

sults.

Theorem 5.1.4 (Absence of the effect for three one-dimensional particles). Let H be

the Hamiltonian corresponding to a system of N = 3 one-dimensional particles. Sup-

pose that H [C ] ≥ 0 for any two-particle cluster C and that each pair potential Vi j satis-

fies (4.2.2) and (4.2.3). Then the discrete spectrum of H is finite. The same is true for the

operator Has corresponding to a system of three identical one-dimensional fermions.

Theorem 5.1.5 (Absence of the effect for three two-dimensional particles). Let H be

the Hamiltonian corresponding to a system of N = 3 two-dimensional particles. As-

sume that H [C ] ≥ 0 for any two-particle cluster C and that the pair potentials Vi j sat-

isfy (4.2.2) and (4.2.3) and that they are radially symmetric, i.e., Vi j (xi j ) = Vi j (|xi j |).

Then the discrete spectrum of H is finite.

Remark 5.1.6. Recall that for three two-dimensional fermions the so-called super

Efimov effect appears. This, together with Theorem 5.1.5 shows that systems of two-

dimensional particles behave very different than systems of three-dimensional par-

ticles. While for system of three three-dimensional particles without symmetry re-

strictions the Efimov effect occurs and is absent for systems of fermions, for two-

dimensional particles it is just the other way round.

5.2. Proofs of the results

5.2.1. A criterion for the finiteness of the discrete spectrum

To prove the finiteness of the discrete spectrum of the operator H we show that for

some constants ε> 0 and β> 0

〈Hψ,ψ〉−ε‖|x|−βm ψ‖2 ≥ 0 (5.2.1)

holds for all functionsψ ∈ H 1(X0) which are supported far away from the origin. This

criterion is due to G. Zhislin who used it in a slightly different form in [82]. A precise

formulation of this criterion is given in the following
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Lemma 5.2.1 (Criterion for the finiteness of the discrete spectrum). Let h = −∆+V

in L2(Rk ), k ∈N, where V satisfies (4.2.2). Assume there exist constants β,ε, b > 0, such

that

〈hψ,ψ〉−ε‖|x|−βψ‖2 ≥ 0 (5.2.2)

for anyψ ∈ H 1(Rk ) with suppψ⊂ {x ∈Rk , |x| ≥ b}. Then the following assertions hold.

(i) infσess(h) ≥ 0.

(ii) The operator h has at most a finite number of negative eigenvalues.

(iii) Zero is not an infinitely degenerate eigenvalue of h.

Remark 5.2.2. (i) Again, we use the small letter h for the Hamiltonian in this ab-

stract case. The capital letter H is reserved for the multi-particle operator.

(ii) In [82] condition (5.2.2) was formulated and used with β = 1. In our proofs of

the absence of the Efimov effect the parameterβ= 1 is not sufficient because at

some point we use Hardy’s inequality to compensate for the term −ε‖|x|−βm ψ‖2.

For the case of two-dimensional particles this is not possible if β = 1 because

the two-dimensional Hardy inequality requires an additional logarithmic fac-

tor, see Section 2.1.2. We will show that the operator H , considered as an oper-

ator on L2(Rk ) with k = d(N −1) satisfies condition (5.2.2) for some β> 1.

To prove Lemma 5.2.1 we use the following

Lemma 5.2.3. Assume that V satisfies (4.2.2) and let h =−∆+V , acting on L2(Rk ). Let

β> 0, ε> 0 and b̃ > b > 0. Then there exist a function χ1 ∈C 1(Rk ), 0 ≤χ1 ≤ 1, with

χ1(x) =
1, |x| ≤ b,

0, |x| ≥ b̃
(5.2.3)

and a constant C > 0, such that for all ψ ∈ H 1(Rk ) we have

〈hψ,ψ〉 ≥ 〈hψχ1,ψχ1〉−C‖ψχ1‖2

+〈hψχ2,ψχ2〉−ε‖|x|−βψχ2‖2
{b≤|x|≤b̃}

,
(5.2.4)

where χ2 =
√

1−χ2
1.
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Proof of Lemma 5.2.3. Let β,ε > 0 and b, b̃ > 0 with b̃ > b be fixed. Furthermore, let

u : R+ → [0,1] be a C 1-function, such that u(t ) = 1 for t ≤ b and u(t ) = 0 for t ≥ b̃.

We assume that u is strictly monotonically decreasing on (b, b̃). Let v =
p

1−u2. We

choose u in such a way that v ′(t )(1− v2(t ))−
1
2 → 0 as t → b̃−. For x ∈Rk let

χ1(x) = u(|x|), χ2(x) = v(|x|). (5.2.5)

Then we have

|∇χ1|2 +|∇χ2|2 = |∇χ2|2
1−χ2

2

= (v ′(|x|))2

1− v2(|x|) . (5.2.6)

Since v ′(|x|)(1− v2(|x|))−
1
2 → 0 as |x| → b̃− and v(|x|) is close to one for |x| close to b̃,

we can choose b < b′ < b̃ so close to b̃ that

(v ′(|x|))2

1− v2(|x|) ≤ εv2(|x|)|x|−2β, b′ ≤ |x| ≤ b̃. (5.2.7)

This, together with (5.2.6) implies

|∇χ1|2 +|∇χ2|2 ≤ εχ2
2(x)|x|−2β, b′ ≤ |x| ≤ b̃. (5.2.8)

Now we estimate |∇χ1|2 + |∇χ2|2 for b ≤ |x| ≤ b′. Recall that for b < t < b′ we have

u(t ) > u(b′) > 0 and 0 < v(t ) < v(b′) < 1. Hence, we get

|∇χ1|2 +|∇χ2|2 = (v ′(|x|))2

1− v2(|x|) ≤Cu2(|x|)|x|−2β, b ≤ |x| ≤ b′ (5.2.9)

for some C > 0. Due to the IMS formula we have

〈hψ,ψ〉 = 〈hψχ1,ψχ1〉+〈hψχ2,ψχ2〉−
ˆ (|∇χ1|2 +|∇χ2|2

) |ψ|2 dx. (5.2.10)

This, together with (5.2.8) and (5.2.9) completes the proof of Lemma 5.2.3.

Now we turn to the

Proof of Lemma 5.2.1. We construct a finite-dimensional subspace M ⊂ L2(Rk ), such

that 〈hψ,ψ〉 > 0 holds for any ψ ∈ H 1(Rk ) with ψ 6= 0 which is orthogonal to M . Let

ε,β,b > 0, such that (5.2.2) is fulfilled and let χ1 and χ2 be functions according to
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Lemma 5.2.3. Then by condition (5.2.2) for any function ψ ∈ H 1(Rk )

〈hψ,ψ〉 ≥ 〈hψχ1,ψχ1〉−C‖ψχ1‖2 +〈hψχ2,ψχ2〉−ε‖|x|−βψχ2‖2
{b≤|x|≤b̃}

≥ 〈hψχ1,ψχ1〉−C‖ψχ1‖2,

because supp(χ2) ⊂ {x ∈ Rk : |x| ≥ b}. Thus, to prove statements (i)-(iii) it suffices to

show that

〈hψχ1,ψχ1〉−C‖ψχ1‖2 ≥ 0 (5.2.11)

holds for any functionψ ∈ H 1(Rk ) withψ⊥ M (with respect to the L2(Rk ) scalar prod-

uct) for some finite-dimensional space M ⊂ H 1(Rk ). By condition (4.2.2) we get

〈hψχ1,ψχ1〉−C‖ψχ1‖2 ≥ (1−ε)‖∇(
ψχ1

)‖2 −C ′‖ψχ1‖2 (5.2.12)

for some C ′ > 0. For l ∈N let

Ml := {
ϕ1χ1, . . . ,ϕlχ1

}
, (5.2.13)

where {ϕ1, . . . ,ϕl } is an orthonormal set of eigenfunctions corresponding to the l low-

est eigenvalues of the Laplacian, acting on L2
(
{|x| ≤ b̃}

)
with Dirichlet boundary con-

ditions. For ψ⊥ Ml we have ψχ1 ⊥ϕ1, . . .ϕl , which for sufficiently large l implies

‖∇(ψχ1)‖2 ≥ (1−ε)−1 C ′‖ψχ1‖2. (5.2.14)

Therefore, we conclude L[ψχ1] > 0. This proves statements (i)-(iii) of Lemma 5.2.1.

5.2.2. Proof of Theorem 5.1.1

The idea of the proof stems from [74], where it was proved that the Hamiltonian of

a system consisting of three three-dimensional particles has a finite number of neg-

ative eigenvalues provided virtual levels for the two-body Hamiltonians correspond

to eigenvalues. In [7] this strategy was extended to prove the absence of the Efimov

effect for systems consisting of N ≥ 4 particles in dimension d ≥ 3. We generalize this

to the case of one-or two-dimensional particles.
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For ε> 0 we define the functional L : H 1(X0) →R as

L[ϕ] := 〈Hϕ,ϕ〉−ε‖|x|−2
m ϕ‖2 (5.2.15)

and prove that L[ϕ] ≥ 0 for any functionϕ ∈ H 1(X0) with supp(ϕ) ⊂ {|x|m ≥ R} if R > 0

is large enough and ε > 0 is small enough. Then the finiteness of the discrete spec-

trum of H follows from Lemma 5.2.1. We notice that the choice of β= 2 as exponent

in ‖|x|−βm ϕ‖2 is somewhat random and the proof works for any β> 1.

In what follows we always assume κ > 0 to be so small that KR (Z ,κ)∩KR (Z ′,κ) = ;
for all partitions Z 6= Z ′ with |Z | = |Z ′| = 2 and any R > 0. By applying Theorem 4.3.9

we get

L[ϕ] ≥ ∑
Z :|Z |=2

L2[ϕuZ ]+L′
2[ϕV ], (5.2.16)

where we recall that supp
(
ϕ

)⊂ X0 \ B(R), V =
√

1−∑
Z :|Z |=2 u2

Z on X0 \ B(R) and the

functionals L2 and L′
2 are defined by

L2[ψ] := 〈Hψ,ψ〉−ε‖|x|−2
m ψ‖2

−ε1
∥∥|q(Z )|−1

m | ln(|q(Z )|m |ξ(Z )|−1
m )|−1ψ

∥∥2
KR (Z ,κ′,κ) ,

L′
2[ψ] := 〈Hψ,ψ〉− (ε+ε1)‖|x|−2

m ψ‖2.

(5.2.17)

We recall that the constants κ > 0 and ε1 > 0 can be chosen arbitrarily small and

κ′ ∈ (0,κ) depends on κ and ε1 only. At first, we prove L2[ϕuZ ] ≥ 0. We distinguish

between the following two types of partitions Z = {C1,C2}:

(i) Neither H [C1] nor H [C2] has a virtual level at zero,

(ii) H [C1] or H [C2] has a virtual level at zero.

In the first case there exists a constant µ0 > 0, such that

〈H(Z )ψ,ψ〉 ≥µ0‖∇q(Z )ψ‖2 (5.2.18)

holds for any function ψ ∈ H 1(X0). Repeating the arguments which were used in the

proof of Lemma 4.3.11 we get L2[ϕuZ ] ≥ 0.
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We turn to case (ii) and assume that H [C1] has a virtual level. Then by the as-

sumption of the theorem we have |C1| = N −1 and |C2| = 1. Recall that H [C1] is the

Hamiltonian of a cluster which is decoupled from the system and can therefore be

considered as the Hamiltonian of a system of N −1 particles with removed center of

mass. Therefore, according to the results of Chapter 4 zero is a simple eigenvalue

of H [C1]. Let ϕ0 ∈ H 1(X0[C1]) be the corresponding eigenfunction normalized by

‖ϕ0‖L2(X0[C1]) = 1. Note that because of |C2| = 1 we have

〈H(Z )ψ,ψ〉 = 〈H [C1]ψ,ψ〉 and ‖∇q(Z )ψ‖2 = ‖∇q[C1]ψ‖2, (5.2.19)

where we consider the operators H(Z ) and H [C1] as operators on L2(X0). We will use

the letters q for q(Z ) and q[C1], and ξ for ξ(Z ) and ξ[C1] simultaneously. Similar to

[74] we define

f (ξ) := ‖∇qϕ0‖−2〈∇q
(
ϕuZ (·,ξ)

)
,∇qϕ0〉L2(X0(Z )) (5.2.20)

and

g (q,ξ) :=ϕuZ (q,ξ)−ϕ0(q) f (ξ). (5.2.21)

Then we have

ϕuZ =ϕ0 f + g and 〈∇q g (·,ξ),∇qϕ0〉L2(X0(Z )) = 0 (5.2.22)

for almost every ξ. We write

L2[ϕuZ ] = 〈H [C1]g , g 〉+〈H [C1]ϕ0 f ,ϕ0 f 〉+2Re〈g , H [C1]ϕ0 f 〉
+‖∇ξ

(
ϕuZ

)‖2 +〈I (Z )ϕuZ ,ϕuZ 〉−ε‖|x|−2
m ϕuZ‖2

−ε1‖|q|−1
m | ln(|q |m |ξ|−1

m )|−1ϕuZ‖2
KR (Z ,κ′,κ),

(5.2.23)

where we recall that I (Z ) is the inter-cluster potential describing the interaction be-

tween particles from different clusters in the partition Z . Due to H [C1]ϕ0 = 0 the

second term and the third term on the r.h.s. of (5.2.23) are zero. We estimate the term

〈I (Z )ϕuZ ,ϕuZ 〉. Recall that uZ is supported in the cone K (Z ,κ) and ϕ is supported

in the region {x ∈ X0 : |x|m ≥ R}. Therefore,

|ξ|m ≥ (1+κ2)−
1
2 |x|m ≥ R

2
, x ∈ supp(ϕuZ ) (5.2.24)
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if κ > 0 is small enough. This, together with the assumption that the pair potentials

Vi j satisfy (4.2.3), implies that for fixed ε2 > 0 we have

|I (Z )(x)| ≤C |ξ|−2−ν
m ≤ ε2

4
| ln(|ξ|m)|−2|ξ|−2

m (5.2.25)

for x ∈ KR (Z ,κ) if R > 0 is large enough. Since by (5.2.24) ϕuZ (q,ξ) = 0 for |ξ|m ≤ R
2 ,

we can apply the one- or two-dimensional Hardy type inequality in the ξ-variable

(without loss of generality we can assume that R > 2, so the conditions for the one-

or two-dimensional Hardy inequality are fulfilled) to obtain

|〈I (Z )ϕuZ ,ϕuZ 〉| ≤ ε2

4
‖| ln(|ξ|m)|−1|ξ|−1

m ϕuZ‖2 ≤ ε2‖∇ξ(ϕuZ )‖2. (5.2.26)

This, together with (5.2.23) implies

L2[ϕuZ ] ≥〈H [C1]g , g 〉+ (1−ε2)‖∇ξ
(
ϕuZ

)‖2 −ε‖|x|−2
m ϕuZ‖2

−ε1‖| ln(|q |m |ξ|−1
m )|−1|q |−1

m ϕuZ‖2
KR (Z ,κ′,κ).

(5.2.27)

Since ∥∥|x|−2
m ϕuZ

∥∥2 ≤ ∥∥|ξ|−1
m (ln−1 |ξ|m)ϕuZ

∥∥2
(5.2.28)

for |x|m > 1 and we have |ξ|m ≥ R
2 on the support of ϕuZ , we get by the one- or two-

dimensional Hardy inequality

4ε‖∇ξ
(
ϕuZ

)‖2 −ε‖|x|−2
m ϕuZ‖2 ≥ 0. (5.2.29)

Note that here is the place where we need the assumption β > 1 in Lemma 5.2.1.

Substituting this inequality into (5.2.27) yields

L2[ϕuZ ] ≥ 〈H [C1]g , g 〉+ (1−ε3)‖∇ξ
(
ϕuZ

)‖2

−ε1‖| ln(|q |m |ξ|−1
m )|−1|q|−1

m ϕuZ‖2
KR (Z ,κ′,κ),

(5.2.30)

where ε3 = ε2 +4ε. Now we estimate the term

〈H [C1]g , g 〉−ε1‖| ln(|q |m |ξ|−1
m )|−1|q|−1

m ϕuZ‖2
KR (Z ,κ′,κ). (5.2.31)
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This is done in the following

Lemma 5.2.4. Let 1 <α< C̃H (X0), where the constant C̃H (X0) is given by (4.3.9), and

let C1 be a cluster with |C1| = N −1. Furthermore, let the functions f and g be defined

by (5.2.20) and (5.2.21). Then for ε1 > 0 small enough and R > 0 sufficiently large we

have

〈H [C1]g , g 〉−ε1‖| ln(|q |m |ξ|−1
m )|−1|q|−1

m ϕuZ‖2
KR (Z ,κ′,κ)

≥−
ˆ

{|ξ|m≥R
2 }
|ξ|−2α

m | f (ξ)|2 dξ.
(5.2.32)

Proof of Lemma 5.2.4. Due to Theorem 4.3.3 the orthogonality in (5.2.22) implies

〈H [C1]g , g 〉 ≥ δ0‖∇q g‖2 (5.2.33)

for some δ0 > 0. Therefore, we have

〈H [C1]g , g 〉−ε1‖| ln(|q |m |ξ|−1
m )|−1|q |−1

m ϕuZ‖2
KR (Z ,κ′,κ)

≥ δ0‖∇q g‖2 −ε1‖| ln(|q|m |ξ|−1
m )|−1|q|−1

m ϕuZ‖2
KR (Z ,κ′,κ).

(5.2.34)

Since ϕuZ =ϕ0 f + g , we also have

|∇q (ϕuZ )|2 = |∇q (ϕ0 f + g )|2 ≤ 2|∇qϕ0 f |2 +2|∇q g |2, (5.2.35)

which yields

‖∇q g‖2
KR (Z ,κ′,κ) ≥

1

2
‖∇q (ϕuZ )‖2

KR (Z ,κ′,κ) −‖∇qϕ0 f ‖2
KR (Z ,κ′,κ). (5.2.36)

If d = 1 and N = 4, we have dim(X0(Z )) = 2. In this case we use that ϕuZ = 0 for

|q |m = κ|ξ|m and apply the two-dimensional Hardy type inequality, similarly as in

the proof of Lemma 4.3.11, to get

δ0

2
‖∇q (ϕuZ )‖2

KR (Z ,κ′,κ) −ε1‖| ln(|q|m |ξ|−1
m )|−1|q|−1

m ϕuZ‖2
KR (Z ,κ′,κ) ≥ 0 (5.2.37)

if ε1 > 0 is small enough. In all other cases we have dim(X0(Z )) ≥ 3 and we can apply

Hardy’s inequality to get (5.2.37). Combining (5.2.37) with the inequalities (5.2.36)
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and (5.2.34) yields

〈H [C1]g , g 〉−ε1‖| ln(|q|m |ξ|−1
m )|−1|q |−1

m ϕuZ‖2
KR (Z ,κ′,κ)

≥−δ0‖∇qϕ0 f ‖2
KR (Z ,κ′,κ).

(5.2.38)

Now we estimate the term ‖∇qϕ0 f ‖2
KR (Z ,κ′,κ). Recall that by Theorem 4.3.3 we have

∣∣∇q
(|q |αmϕ0

)∣∣ ∈ L2(X0(Z )) and (1+|q|m)α−1ϕ0 ∈ L2(X0(Z )) (5.2.39)

for any 0 ≤α< C̃H (X0). This implies

|q |αm
∣∣∇qϕ0

∣∣ ∈ L2(X0(Z )). (5.2.40)

Due to f (ξ) = 0 for |ξ|m ≤ R
2 we have

ˆ
KR (Z ,κ′,κ)

|∇qϕ0 f |2 dx =
ˆ

{|ξ|m≥R
2 }
| f (ξ)|2

ˆ
{κ′|ξ|m≤|q|m≤κ|ξ|m }

|∇qϕ0|2 dq dξ

=
ˆ

{|ξ|m≥R
2 }
| f (ξ)|2

ˆ
{κ′|ξ|m≤|q|m≤κ|ξ|m }

|q|−2α
m |q |2αm |∇qϕ0|2 dq dξ (5.2.41)

≤ (κ′)−2α
ˆ

{|ξ|m≥R
2 }
|ξ|−2α

m | f (ξ)|2
ˆ

{κ′|ξ|m≤|q|m≤κ|ξ|m }
|q|2αm |∇qϕ0|2 dq dξ,

where in the last inequality we used |q |m ≥ κ′|ξ|m for x ∈ KR (Z ,κ′,κ). Since by (5.2.40)

|q |αm |∇qϕ0| ∈ L2(X0(Z )), we can choose R > 0 so large that

ˆ
{κ′|ξ|m≤|q|m≤κ|ξ|m }

|q|2αm |∇qϕ0|2 dq ≤ (κ′)2αδ−1
0 (5.2.42)

for |ξ|m ≥ R
2 . This yields

−δ0‖∇qϕ0 f ‖2
KR (Z ,κ′,κ) ≥−

ˆ
{|ξ|m≥R

2 }
|ξ|−2α

m | f (ξ)|2 dξ, (5.2.43)

which completes the proof of Lemma 5.2.4.
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Remark 5.2.5. Note that for particles in dimension d ≥ 3 one can apply Hardy’s in-

equality to the function g to get

δ0‖∇q g‖2 −ε1‖| ln(|q |m |ξ|−1
m )|−1|q |−1

m ϕuZ‖2
KR (Z ,κ′,κ)

≥−2ε1‖| ln(|q|m |ξ|−1
m )|−1|q|−1

m ϕ0 f ‖2
KR (Z ,κ′,κ).

(5.2.44)

Then, the term on the r.h.s. of (5.2.44) can be estimated by the use of the decay rate

ofϕ0 given in Theorem 4.3.3. This was the strategy in [7]. However, if dim(X0(Z )) = 2,

which is the case if d = 1 and N = 4, Hardy’s inequality can not be applied to the

function g because the condition g (q, ·) = 0 for |q|m = 1 is not fulfilled. Therefore, we

estimated the term 〈H [C1]g , g 〉 differently. We created the zero condition artificially

by adding the function ϕ0 f , applied the two-dimensional Hardy inequality to the

function ϕuZ and estimated the resulting error ‖∇qϕ0 f ‖.

We continue to estimate the functional L2[ϕuZ ]. Combining (5.2.30) and (5.2.32)

yields

L2[ϕuZ ] ≥ (1−ε3)‖∇ξ(ϕuZ )‖2 −ε1

ˆ
{|ξ|m≥R

2 }
|ξ|−2α

m | f (ξ)|2 dξ. (5.2.45)

In the next step we estimate the term ‖∇ξ(ϕuZ )‖2. This is done in the following

lemma which is based on [74, Lemma 5.3].

Lemma 5.2.6. Let δ> 0. There exists a constantω> 0 which depends on ‖ϕ0‖, ‖∇qϕ0‖
and ‖∆qϕ0‖ only, such that

‖∇ξ
(
ϕuZ

)‖2 ≥ω
(
‖|ξ|−1−δ

m ϕ0 f ‖2 +‖|ξ|−1−δ
m g‖2

)
. (5.2.46)

Proof of Lemma 5.2.6. SinceϕuZ (q,ξ) = 0 for |ξ|m ≤ R
2 , we can apply the one- or two-

dimensional Hardy inequality in the space Xc (Z ) toϕuZ (q, ·) for fixed q . This implies

‖∇ξ
(
ϕuZ

)‖2 ≥ 1

4
‖|ξ|−1−δ

m ϕuZ‖2 = 1

4
‖|ξ|−1−δ

m ϕ0 f +|ξ|−1−δ
m g‖2

≥ 1

4

(
‖|ξ|−1−δ

m ϕ0 f ‖2 +‖|ξ|−1−δ
m g‖2

)
− 1

2
|〈|ξ|−1−δ

m ϕ0 f , |ξ|−1−δ
m g 〉|

(5.2.47)
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for any δ> 0. Since 〈∇qϕ0,∇q g (·,ξ)〉L2(X0(Z )) = 0 for almost every ξ, we have

〈∇q |ξ|−1−δ
m ϕ0 f ,∇q |ξ|−1−δ

m g 〉 = 0. (5.2.48)

Moreover, the condition on the potentials implies that the domain of the operator

H [C1] is given by H 2(X0[C1]). Using this together with the orthogonality (5.2.48), we

can use Lemma 5.3 in [74] and find a constantω> 0 depending on ‖ϕ0‖, ‖∇qϕ0‖ and

‖∆qϕ0‖ only, such that

∣∣∣〈|ξ|−1−δ
m ϕ0 f , |ξ|−1−δ

m g 〉
∣∣∣≤ 1

2
(1−4ω)

(
‖|ξ|−1−δ

m ϕ0 f ‖2 +‖|ξ|−1−δ
m g‖2

)
. (5.2.49)

Substituting this inequality in (5.2.47) yields

‖∇ξ
(
ϕuZ

)‖2 ≥ω
(
‖|ξ|−1−δ

m ϕ0 f ‖2 +‖|ξ|−1−δ
m g‖2

)
, (5.2.50)

which completes the proof of Lemma 5.2.6.

By combining (5.2.45) with (5.2.46) and using ‖ϕ0‖ = 1 we get

L2[ϕuZ ] ≥ (1−ε3)ω

ˆ
{|ξ|m≥R

2 }
|ξ|−2−2δ

m | f (ξ)|2 dξ

−ε1

ˆ
{|ξ|m≥R

2 }
|ξ|−2α

m | f (ξ)|2 dξ.
(5.2.51)

Choosing δ≤α−1 and ε1,ε3 > 0 small enough yields L2[ϕuZ ] ≥ 0.

To complete the proof of Theorem 5.1.1 it remains to show L′
2[ϕV ] ≥ 0 for every

ϕ ∈ H 1(X0) with supp(ϕ) ⊂ {x ∈ X0 : |x|m ≥ R}, where L′
2 is the functional defined in

(5.2.17). Note that for all partitions Z = {C1, . . . ,Cp } with p = 3,4, . . . , N −1 the Hamil-

tonians H [Ci ] do not have a virtual level if |Ci | > 1. Hence, we can estimate the func-

tional L′
2[V ϕ] ≥ 0 in cones corresponding to partitions Z with |Z | ≥ 3 in the same way

as in the proof of Lemma 4.3.11. In the region which remains after separation of the

cones corresponding to all partitions Z with |Z | ≤ N −1 we have |Vi j (xi j )| ≤ |x|−2−ν
m

for all i 6= j . Using Hardy’s inequality in the space X0 yields L[ψ] ≥ 0 and applying

Lemma 5.2.1 completes the proof of Theorem 5.1.1.
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5.2.3. Proof of Theorem 5.1.3

The proof of Theorem 5.1.3 goes along the same line as that of Theorem 5.1.1. The

only difference is that for clusters C with |C | = N − 1 virtual levels correspond to

eigenvalues which are not simple, but of finite multiplicity. Therefore, we find a

decomposition which is similar to (5.2.20) – (5.2.22) with a function g which is or-

thogonal to the corresponding eigenspace W0 of the operator H as[C ] corresponding

to the eigenvalue zero. Namely, let ϕi , i = 1, . . . ,dimW0 be eigenfunctions satisfying

〈∇qϕi ,∇qϕ j 〉 = 0 for i 6= j . Furthermore, for k = 1, . . . ,dim(W0) let

fk (ξ) = ‖∇qϕk‖−2〈∇q
(
ϕuZ (·,ξ)

)
,∇qϕk〉L2(X0(Z )) (5.2.52)

and

g (q,ξ) =ϕuZ (q,ξ)−∑
k

fk (ξ)ϕk (q). (5.2.53)

Then we have 〈∇q g ,∇qϕk〉 = 0 for all k. Using the Hardy type inequality (2.1.33) for

functions which are orthogonal to all functions depending on |x|m only and repeating

the arguments of the proof of Theorem 5.1.1 proves Theorem 5.1.3.

5.2.4. Proof of Theorem 5.1.4

Recall that in the proof of Theorem 5.1.1 we used that virtual levels of cluster Hamil-

tonians H [C ] with |C | = N −1 correspond to eigenvalues. This is not the case if the

system consists of three particles and we need a different strategy. We start by prov-

ing several lemmas for one-dimensional Schrödinger operators. The first one gives

an estimate of the corresponding quadratic form, restricted to an interval (−b,b).

Lemma 5.2.7. Consider the Schrödinger operator h =−∆+V on L2(R), such that h ≥ 0

and the potential V satisfies (4.2.2) and (4.2.3). Then there exists a constant C > 0, such

that for any b0 > A and any function ψ ∈ H 1(R)

J [ψ,b0] : =
ˆ b0

−b0

(|ψ′(t )|2 +V (t )|ψ(t )|2) dt

≥−C b−1−ν
0

(|ψ(b0)|2 +|ψ(−b0)|2) .

(5.2.54)

Here, ν and A are constants given by (4.2.3).
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Proof of Lemma 5.2.7. Let ψ ∈ H 1(R) and b0 > A. For n ≥ 2 we define the function ψn

as

ψn(t ) =



ψ(t ) if −b0 ≤ t ≤ b0,

0 if t <−nb0 or t > nb0,

ψ(−b0) nb0+t
b0(n−1) if −nb0 < t <−b0,

ψ(b0) nb0−t
b0(n−1) if b0 < t < nb0.

(5.2.55)

t

ψn(t )

b0 nb0−nb0 −b0

Figure 5.1.: Function ψn

Since ψ and ψn coincide for −b0 ≤ t ≤ b0, we have

〈hψn ,ψn〉 ≤
ˆ b0

−b0

(|ψ′(t )|2 +V (t )|ψ(t )|2) dt

+
ˆ −b0

−nb0

(|ψ′
n(t )|2 +|V (t )||ψn(t )|2)dt

+
ˆ nb0

b0

(|ψ′
n(t )|2 +|V (t )||ψn(t )|2) dt .

(5.2.56)

Let us estimate the two last integrals of the r.h.s of (5.2.56). Since

ψ′
n(t ) = ψ(−b0)

b0(n −1)
for t ∈ (−nb0,−b0), (5.2.57)

we get ˆ −b0

−nb0

|ψ′
n(t )|2 dt = |ψn(−b0)|2

b0(n −1)
< ε, (5.2.58)

where ε > 0 is a constant which can be chosen arbitrarily small if n ∈ N is large
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enough. Due to 0 ≤ nb0+t
b0(n−1) ≤ 1 for t ∈ (−nb0,−b0) we get

−b0ˆ

−nb0

|V (t )||ψn(t )|2dt ≤ |ψ(−b0)|2
−b0ˆ

−nb0

|V (t )|dt (5.2.59)

Analogously, we find ˆ nb0

b0

|ψ′
n(t )|2 dt = |ψn(b0)|2

b0(n −1)
< ε (5.2.60)

and
nb0ˆ

b0

|V (t )||ψn(t )|2dt ≤ |ψ(b0)|2
nb0ˆ

b0

|V (t )|dt . (5.2.61)

Substituting these estimates in (5.2.56) yields

〈hψn ,ψn〉 ≤ J [ψ,b0]+|ψ(−b0)|2
−b0ˆ

−nb0

|V (t )|dt

+|ψ(b0)|2
nb0ˆ

b0

|V (t )|dt +2ε.

(5.2.62)

For any 0 < δ< ν we have −1−ν+δ<−1. Since b0 ≥ A, we get by (4.2.3)

ˆ nb0

b0

|V (t )|dt ≤ cb−1−δ
0

ˆ ∞

A
t−1−ν+δdt ≤ c1b−1−δ

0 (5.2.63)

for some constants c,c1 > 0. Analogously we have

ˆ −b0

−nb0

|V (t )|dt ≤ c1b−1−δ
0 . (5.2.64)

Due to h ≥ 0 we conclude from (5.2.62), (5.2.63) and (5.2.64) that

J [ψ,b0] ≥−cb−1−δ
0

(|ψ(b0)|2 +|ψ(−b0)|2)−2ε.

Since ε> 0 can be chosen arbitrarily small, this completes the proof.
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The next lemma is an easy application of the Hardy inequality for the semi-axis.

Lemma 5.2.8. Let C0 > 0. Then for any sufficiently large b > 0 and for any ψ ∈ H 1(R)

we have ˆ ∞

b

(|ψ′(t )|2 −C0t−2−ν|ψ(t )|2) dt ≥−2C0b−1−ν|ψ(b)|2. (5.2.65)

Proof of Lemma 5.2.8. Let b > 0, ψ ∈ H 1(R) and ψ̃(t ) =ψ(t )−ψ(b). Then ψ̃′(t ) =ψ′(t )

and we have

ˆ ∞

b

(|ψ′(t )|2 −C0t−2−ν|ψ(t )|2) dt

≥
ˆ ∞

b

(|ψ̃′(t )|2 −2C0t−2−ν|ψ̃(t )|2) dt −2C0

ˆ ∞

b
t−2−ν|ψ(b)|2 dt .

(5.2.66)

Since ψ̃(b) = 0, we can use the one-dimensional Hardy inequality, which for suffi-

ciently large b > 0 yields

ˆ ∞

b

(|ψ̃′(t )|2 −2C0t−2−ν|ψ̃(t )|2) dt ≥ 0. (5.2.67)

This, together with (5.2.66) implies

ˆ ∞

b

(|ψ′(t )|2 −C0t−2−ν|ψ(t )|2) dt ≥−2C0|ψ(b)|2
ˆ ∞

b
t−2−νdt . (5.2.68)

Computing the integral on the r.h.s. of (5.2.68) completes the proof.

The following lemma is the one-dimensional analogue of Lemma 2 in [76].

Lemma 5.2.9. Let b2 > b1. Then for any ψ ∈ H 1(R) and i = 1,2 we have

|ψ(bi )|2 ≤ 2(b2 −b1)−1
ˆ b2

b1

|ψ(t )|2 dt +2(b2 −b1)

ˆ b2

b1

|ψ′(t )|2 dt . (5.2.69)

Proof of Lemma 5.2.9. For t ∈ (b1,b2) we write

ψ(t ) =
ˆ t

b1

ψ′(s)ds +ψ(b1). (5.2.70)
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Therefore, we have

|ψ(b1)|2 ≤ 2|ψ(t )|2 +2

(ˆ b2

b1

|ψ′(s)|ds

)2

, t ∈ (b1,b2). (5.2.71)

Applying the Cauchy-Bunjakovsky-Schwarz inequality to the integral on the r.h.s. of

(5.2.71) yields

|ψ(b1)|2 ≤ 2|ψ(t )|2 +2(b2 −b1)

ˆ b2

b1

|ψ′(s)|2 ds, t ∈ (b1,b2). (5.2.72)

Integrating both sides of (5.2.72) over (b1,b2) and dividing by (b2 −b1) implies

|ψ(b1)|2 ≤ 2(b2 −b1)−1
ˆ b2

b1

|ψ(t )|2 dt +2(b2 −b1)

ˆ b2

b1

|ψ′(t )|2 dt , (5.2.73)

which yields (5.2.69) for i = 1. To prove the statement for b2 we can use the identity

ψ(t ) =−
ˆ b2

t
ψ′(s) ds +ψ(b2) (5.2.74)

and proceed as in the proof for b1. This completes the proof of Lemma 5.2.9.

Now we turn to the

Proof of Theorem 5.1.4. As in the proof of Theorem 5.1.1 we show that

L[ϕ] :=
ˆ (|∇0ϕ|2 +V |ϕ|2 −ε|x|−4

m |ϕ|2) dx ≥ 0 (5.2.75)

holds for all functions ϕ ∈ H 1(X0) with supp(ϕ) ⊂ {|x|m ≥ R} if ε > 0 is small enough

and R > 0 is sufficiently large. Then the statement of the theorem follows from the

criterion given in Lemma 5.2.1. In the following we assume that κ> 0 is so small that

the cones K (Z ,κ) and K (Z ′,κ) corresponding to different partitions do not overlap.

Let Z = {C1,C2} be a partition of the system into two clusters, where we assume that

|C1| = 2. At first, we estimate the part of the quadratic form L corresponding to the

cone K (Z ,κ), i.e., in the region where two particles are close to another and the third

particle is separated from them. We denote the particles in the cluster C1 by i and j
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and the third particle by k.

i

j C1 kC2

Figure 5.2.: Partition Z = {C1,C2}

Because we will need subtle geometric arguments in the following, we introduce a

basis of X0 and work with the corresponding coordinates. Recall that dim(X0(Z )) = 1

and dim(Xc (Z )) = 1. Choosing a vector u1 ∈ X0(Z ) and a vector u2 ∈ Xc (Z ), both

normalized with respect to the norm |ui |m = 1, we get an orthonormal basis of X0.

Denote by q̃ and ξ̃ the coordinates corresponding to the basis {u1,u2}. Then we have

|q |m = |q̃|, |ξ|m = |ξ̃| and we can represent KR (Z ,κ) as

KR (Z ,κ) = {
(q̃ , ξ̃) ∈R2 : |q̃ | ≤ κ|ξ̃|, |q̃|2 +|ξ̃|2 ≥ R2} (5.2.76)

and ϕ=ϕ(q̃ , ξ̃) as a function of q̃ and ξ̃. We estimate the integral

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx (5.2.77)

in several steps. First, we estimate it by an integral over the edge of KR (Z ,κ).

Step 1: Estimate of (5.2.77) by an integral over ∂KR (Z ,κ)

We write

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx

=
ˆ

KR (Z ,κ)

(|∂q̃ϕ|2 +Vi j |ϕ|2
)

dx

+
ˆ

KR (Z ,κ)

(
|∂ξ̃ϕ|2 + (Vi k +V j k )|ϕ|2 −ε|x|−4

m |ϕ|2
)

dx

(5.2.78)
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and estimate the two integrals on the r.h.s of (5.2.78) separately. Let x∗ = (q̃ , ξ̃) be

a point of intersection of the ball B(R) with the set {|q̃| = κ|ξ̃|}. Then we have |ξ̃| =(
1+κ2

)− 1
2 R =: γ and

x = (q̃ , ξ̃) ∈ KR (Z ,κ) =⇒ |ξ̃| ≥ γ, |q̃ | ≤ κ|ξ̃|. (5.2.79)

At the same time we have for x∗ that |q̃| = (
1+κ−2

)− 1
2 R =: η and

x = (q̃ , ξ̃) ∈ KR (Z ,κ) ⇐⇒ |ξ̃| ≥
κ

−1|q̃ | if |q̃ | ≥ η,√
R2 −|q̃|2 if |q̃| ≤ η,

(5.2.80)

cf. Figure 5.3.

ξ̃

q̃

B(R)

KR (Z ,κ)

q̃ = κξ̃

q̃ =−κξ̃

η

γ

Figure 5.3.: The set KR (Z ,κ)

Since ϕ(x) = 0 for |x|m ≤ R, by (5.2.79) we have

ˆ
KR (Z ,κ)

(|∂q̃ϕ|2 +Vi j |ϕ|2
)

dx

=
ˆ

{|ξ̃|≥γ}

ˆ
{|q̃|≤κ|ξ̃|}

(|∂q̃ϕ|2 +Vi j |ϕ|2
)

dq̃ dξ̃.
(5.2.81)
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By applying Lemma 5.2.7 to the function ϕ(·, ξ̃) for fixed ξ̃ we get

ˆ
{|ξ̃|≥γ}

ˆ
{|q̃|≤κ|ξ̃|}

(|∂q̃ϕ|2 +Vi j |ϕ|2
)

dq̃ dξ̃

≥−C

ˆ
{|ξ̃|≥γ}

|ξ̃|−1−ν (|ϕ(κξ̃, ξ̃)|2 +|ϕ(−κξ̃, ξ̃)|2) dξ̃
(5.2.82)

for some C > 0.

ξ̃

q̃

B(R)

q̃ = κξ̃

q̃ =−κξ̃

ϕ(κξ̃, ξ̃)

ϕ(−κξ̃, ξ̃)

Figure 5.4.: Estimate of the integral over the set {q̃ : −κξ̃ ≤ q̃ ≤ κξ̃} for fixed ξ̃ by the
value of ϕ at the points (−κξ̃, ξ̃) and (κξ̃, ξ̃).

Now we estimate the second integral on the right hand side of (5.2.78). Since the

particle k is separated from the particles i and j and the potentials satisfy (4.2.3), we

can estimate

|Vi k (xi k )|+ |V j k (x j k )| ≤ c|ξ̃|−2−ν (5.2.83)

for some c > 0 if R > 0 is large enough. This, together with |x|−1
m ≤ |ξ̃|−1 implies

ˆ
KR (Z ,κ)

(
|∂ξ̃ϕ|2 + (Vi k +V j k )|ϕ|2 −|x|−4

m |ϕ|2
)

dx

≥
ˆ

KR (Z ,κ)

(
|∂ξ̃ϕ|2 −C |ξ̃|−2−ν|ϕ|2

)
dx

(5.2.84)

for some C > 0, where without loss of generality we assumed that ν< 2. To estimate

the integral on the r.h.s. of (5.2.84) we first integrate over the variable ξ̃ for fixed q̃ . In
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view of (5.2.80) we have

ˆ
KR (Z ,κ)

(
|∂ξ̃ϕ|2 − c|ξ̃|−2−ν|ϕ|2

)
dx

=
ˆ

{|q̃|<η}

ˆ
{
|ξ̃|≥

p
R2−|q̃|2

}(|∂ξ̃ϕ|2 − c|ξ̃|−2−ν|ϕ|2
)

dξ̃dq̃

+
ˆ

{|q̃ |≥η}

ˆ
{|ξ̃|≥κ−1|q̃|}

(
|∂ξ̃ϕ|2 − c|ξ̃|−2−ν|ϕ|2

)
dξ̃dq̃ .

(5.2.85)

Recall that ϕ(x) = 0 for |x| ≤ R and thus ϕ(q̃ , ξ̃) = 0 if |q̃ | ≤ η and |ξ̃| ≤ √
R2 −|q̃|2.

Hence, we can apply the one-dimensional Hardy inequality for fixed q̃ , which implies

ˆ
{|q̃|<η}

ˆ
{
|ξ̃|≥

p
R2−|q̃|2

}(|∂ξ̃ϕ|2 − c|ξ̃|−2−ν|ϕ|2
)

dξ̃dq̃ ≥ 0 (5.2.86)

if R > 0 is large enough. To estimate the second integral on the r.h.s of (5.2.85) we

apply Lemma 5.2.8 with b = κ−1|q̃| and with the analogue statement for b =−κ−1|q̃|,
which yields

ˆ
{|q̃ |≥η}

ˆ
{|ξ̃|≥κ−1|q̃|}

(
|∂ξ̃ϕ|2 − c|ξ̃|−2−ν|ϕ(x)|2

)
dξ̃dq̃

≥−C

ˆ
{|q̃|≥η}

|q̃ |−1−ν (|ϕ(q̃ ,κ−1|q̃ |)|2 +|ϕ(q̃ ,−κ−1|q̃ |)|2) dq̃
(5.2.87)

for some C > 0.

ξ̃

q̃

B(R)

q̃ = κξ̃

q̃ =−κξ̃

ϕ(q̃ ,κ−1q̃)

Figure 5.5.: Estimate of the integral over the set {ξ̃ : ξ̃≥ κ−1q̃} for fixed q̃ by the value
of ϕ at the point (q̃ ,κ−1q̃)
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By combining (5.2.82) and (5.2.87) with (5.2.78) we get

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx

≥−C

ˆ
{|ξ̃|≥γ}

|ξ̃|−1−ν (|ϕ(κ|ξ̃|, ξ̃)|2 +|ϕ(−κ|ξ̃|, ξ̃)|2) dξ̃

−C

ˆ
{|q̃|≥η}

|q̃|−1−ν (|ϕ(q̃ ,κ−1|q̃ |)|2 +|ϕ(q̃ ,−κ−1|q̃|)|2) dq̃ .

(5.2.88)

Note that the integrals on the r.h.s of (5.2.88) are in fact integrals of the function ϕ

over the edges of the cone K (Z ,κ). In the following we estimate these integrals.

Step 2: Estimate of the boundary integrals over ∂KR (Z ,κ)

We estimate the integrals on the r.h.s. of (5.2.88) over the edges of KR (Z ,κ) by an

integral over the set KR (Z ,κ,κ′) with some κ′ > κ. At first, we consider the integral

ˆ
{|ξ̃|≥γ} |ξ̃|−1−ν (|ϕ(κ|ξ̃|, ξ̃)|2 +|ϕ(−κ|ξ̃|, ξ̃)|2) dξ̃, (5.2.89)

which is comprised of the integrals over the four edges of KR (Z ,κ) given by

{
q̃ =±κξ̃, ξ̃≥ γ}

,
{

q̃ =±κξ̃, ξ̃≤−γ}
. (5.2.90)

We introduce polar coordinates (ρ,ω) in the two-dimensional space X0 and denote

ω0 = arctan(κ) ∈ (
0, π2

)
. Then the integral over the straight line

{
q̃ = κξ̃, ξ̃≥ γ}

can be

represented as

ˆ
{ξ̃≥γ}

ξ̃−1−ν|ϕ(κξ̃, ξ̃)|2 dξ̃= cos(ω0)

ˆ ∞

R
ρ−1−ν|ϕ(ρ,ω0)|2 dρ. (5.2.91)

We choose κ′ > κ such that K (Z ,κ′) and K (Z ′,κ′) do not overlap for any pair of two-

cluster partitions Z 6= Z ′ and denote ω1 = arctan(κ′) ∈ (
0, π2

)
. By applying Lemma

5.2.9 to the function ϕ(ρ, ·) for fixed ρ and with b1 =ω0 and b2 =ω1 we find

|ϕ(ρ,ω0)|2 ≤C (ω0,ω1)

ˆ ω1

ω0

(|ϕ(ρ,ω)|2 +|∂ωϕ(ρ,ω)|2) dω (5.2.92)
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for some C (ω0,ω1) > 0. Substituting inequality (5.2.92) into (5.2.91) we get

ˆ ∞

R
ρ−1−ν|ϕ(ρ,ω0)|2 dρ

≤C (ω0,ω1)

ˆ ∞

R

ˆ ω1

ω0

ρ−1−ν (|ϕ(ρ,ω)|2 +|∂ωϕ(ρ,ω)|2) dωdρ

=C (ω0,ω1)

ˆ ω1

ω0

ˆ ∞

R
ρ−1−ν (|ϕ(ρ,ω)|2 +|∂ωϕ(ρ,ω)|2) dρdω.

(5.2.93)

Applying inequality (2.1.27) for fixed ω ∈ (ω0,ω1) yields

C (ω0,ω1)

ˆ ∞

R
ρ−1−ν|ϕ(ρ,ω)|2 dρ ≤ ε

ˆ ∞

R
|∂ρϕ(ρ,ω)|2ρdρ (5.2.94)

where ε> 0 can be chosen arbitrarily small if R > 0 is large enough. Substituting this

inequality into (5.2.93) and using

∣∣∣∣∂ϕ∂ρ
∣∣∣∣2

+ 1

ρ2

∣∣∣∣∂ϕ∂ω
∣∣∣∣2

≤ |∇0ϕ|2 (5.2.95)

we obtain ˆ ∞

R
ρ−1−ν|ϕ(ρ,ω0)|2 dρ ≤ ε

ˆ
KR (Z ,κ,κ′)

|∇0ϕ|2 dx (5.2.96)

for sufficiently large R > 0. Inserting this inequality in (5.2.91) yields

ˆ
{ξ̃≥γ}

ξ̃−1−ν|ϕ(κξ̃, ξ̃)|2 dξ̃≤ ε
ˆ

KR (Z ,κ,κ′)
|∇0ϕ|2 dx. (5.2.97)

The other integrals on the r.h.s. of (5.2.88) can be estimated in the same way. There-

fore, we obtain

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx ≥−8εC

ˆ
KR (Z ,κ,κ′)

|∇0ϕ|2 dx. (5.2.98)

Since in (5.2.88) C is a fixed constant and ε > 0 can be chosen arbitrarily, we will

assume C = 1 in the following. Summing inequality (5.2.98) over all partitions Z with

|Z | = 2, inserting the resulting inequality into the definition of L and using that the
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cones K (Z ,κ′) and K (Z ′,κ′) do not overlap, we get

L[ϕ] ≥
ˆ

K c
R (κ)

(
(1−8ε)|∇0ϕ|2 +V |ϕ|2 −ε|x|−4

m |ϕ|2) dx, (5.2.99)

where K c
R (κ) = X0 \

(
B(R)∪⋃

Z :|Z |=2 K (Z ,κ)
)
. Note that K c

R (κ) is a region in X0, where

all particles are far away from each other and we can estimate |V (x)| ≤ C |x|−2−ν
m .

Moreover, we can assume ν< 2 and thus |x|−4
m ≤ |x|−2−ν

m . Hence, we get

L[ϕ] ≥
ˆ

K c
R (κ)

(
(1−8ε)|∇0ϕ|2 − (C +ε)|x|−2−ν

m |ϕ|2) dx. (5.2.100)

Using polar coordinates (ρ,ω) and |∇0ϕ| ≥
∣∣∣∂ϕ∂ρ ∣∣∣ we find

L[ϕ] ≥
ˆ
ω∈I

ˆ ∞

R

(
(1−8ε)

∣∣∂ρϕ∣∣2 − (C +ε)ρ−2−ν|ϕ|2
)
ρdρdω, (5.2.101)

where I ⊂ [0,2π] is the set of angles corresponding to the region K c
R (κ). Now since

ϕ(ρ,ω) = 0 for ρ ≤ R, we can apply inequality (2.1.27) to the function u(ρ) = ϕ(ρ,ω)

for fixed ω ∈ I . Choosing R sufficiently large yields L[ϕ] ≥ 0 and thus the finiteness of

the discrete spectrum of H . All arguments used above can be applied to the operator

Has, which completes the proof of Theorem 5.1.4.

5.2.5. Proof of Theorem 5.1.5

In the proof of this theorem we follow the same strategy as in the proof of Theo-

rem 5.1.4. First, we give some auxiliary Lemmas which are the two-dimensional ana-

logues to Lemma 5.2.7 and Lemma 5.2.8.

Lemma 5.2.10. Let d = 2 and consider the operator h = −∆+V acting on L2
(
R2

)
,

where we assume that h ≥ 0 and V (x) = V (|x|) satisfies (4.2.2) and (4.2.3). Then there

exists a constant c > 0, such that for any b0 > A and for any function ψ ∈ H 1(R2)

J [ψ,b0] :=
ˆ

{|x|≤b0}

(|∇ψ(x)|2 +V (x)|ψ(x)|2) dx

≥−cb−ν
0

ˆ 2π

0
|ψ(b0,ω)|2 dω.

(5.2.102)
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Remark 5.2.11. Lemma 5.2.10 does not hold if we restrict the operator h to anti-

symmetric functions. This is the reason why our proof of Theorem 5.1.5 does not

work for a fermionic system, where the super Efimov effect is known to exist.

Proof of Lemma 5.2.10. Let ψ ∈ H 1(R2) and b0 > A. We introduce polar coordinates

x = (ρ,ω) and write ψ(x) =
∞∑

n=−∞
ψn(x) with ψn(x) = Rn(ρ)e inω. For k ∈N, k ≥ 2, let

Rk
n(ρ) :=


Rn(ρ) if ρ ≤ b0,

Rn(b0) ln
(
kb0ρ

−1
)

(lnk)−1 if b0 < ρ ≤ kb0,

0 if ρ > kb0.

(5.2.103)

We set ψk
n : R2 → C, ψk

n(x) = Rk
n(|x|)einω. Then we have J [ψk

n ,b0] = J [ψn ,b0] and

therefore

J [ψ,b0] =
∞∑

n=−∞
J [ψk

n ,b0] for any k ≥ 2. (5.2.104)

Now we estimate J [ψk
n ,b0] for fixed k,n ∈N with k ≥ 2. Due to

|∇ψ|2 = |∂ψ
∂ρ

|2 + 1

ρ2
|∂ψ
∂ω

|2 ≥ |∂ψ
∂ρ

|2 (5.2.105)

and V (x) =V (|x|) we can estimate

J [ψk
n ,b0] ≥ 2π

b0ˆ

0

(
|∂ρRk

n(ρ)|2 +V (ρ)|Rk
n(ρ)|2

)
ρdρ. (5.2.106)

Using 〈hψ̃k
n ,ψ̃k

n〉 ≥ 0 for the radial function ψ̃k
n(x) = Rk

n(|x|) and (5.2.106) yields

J [ψk
n ,b0] ≥−2π

∞̂

b0

(
|∂ρRk

n(ρ)|2 +V (ρ)|Rk
n(ρ)|2

)
ρdρ. (5.2.107)

Easy computation shows that

∂ρRk
n(ρ) =

−Rn(b0) (ln(k))−1ρ−1 if b0 < ρ < kb0,

0 if ρ > kb0.
(5.2.108)
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This implies

∞̂

b0

|∂ρRk
n(ρ)|2ρdρ ≤ |Rn(b0)|2(ln(k))−2

ˆ kb0

b0

ρ−1 dρ = |Rn(b0)|2(ln(k))−1. (5.2.109)

Since |V (ρ)| ≤C
(
1+ρ)−2−ν for ρ > b0, we get

∞̂

b0

|V (ρ)||Rk
n(ρ)|2ρdρ ≤C |Rn(b0)|2(ln(k))−2

kb0ˆ

b0

(1+ρ)−2−ν (
ln(kb0ρ

−1)
)2
ρdρ

≤C |Rn(b0)|2
kb0ˆ

b0

(1+ρ)−2−νρdρ, (5.2.110)

where for the last inequality we used that (ln(k))−2
(
ln(kb0ρ

−1)
)2 ≤ 1 for ρ ∈ (b0,kb0).

By inserting
kb0ˆ

b0

(1+ρ)−2−νρdρ ≤
∞̂

b0

ρ−1−νdρ = b−ν
0 (5.2.111)

in inequality (5.2.110) we find

∞̂

b0

|V (ρ)||Rk
n(ρ)|2ρdρ ≤C |Rn(b0)|2b−ν

0 . (5.2.112)

Combining (5.2.107) with (5.2.109) and (5.2.112) we obtain

J [ψk
n ,b0] ≥−2πC |Rn(b0)|2b−ν

0 −2π|Rn(b0)|(ln(k))−1. (5.2.113)

Recall that the left hand side of (5.2.113) coincides with J [ψn ,b0] and in particular

does not depend on k. Therefore, sending k to infinity and using

2π
∞∑

n=−∞
|Rn(b0)|2 =

ˆ 2π

0
|ψ(b0,ω)|2 dω (5.2.114)

completes the proof of Lemma 5.2.10.
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The following lemma is analogous to Lemma 5.2.8.

Lemma 5.2.12. Let C0 > 0. Then for any sufficiently large b > 0 and for anyψ ∈ H 1(R2)

ˆ
{|x|≥b}

(|∇ψ(x)|2 −C0|x|−2−ν|ψ(x)|2) dx ≥−2C0b−ν
ˆ 2π

0
|ψ(b,ω)|2 dω. (5.2.115)

Proof of Lemma 5.2.12. Let ψ ∈ H 1(R2). We write ψ=ψ0 +ψ1 with ψ0 =P m=0ψ and

ψ1 = P |m|≥1ψ, where P m is the projection onto the space of functions with angular

momentum m. Then for ψ1 we have

|∇ψ1|2 = |∂ρψ1|2 + 1

ρ2
|∂ωψ1|2 ≥ 1

ρ2
|ψ1|2 (5.2.116)

and therefore ˆ
{|x|≥b}

(|∇ψ1(x)|2 −C0|x|−2−ν|ψ1(x)|2) dx ≥ 0 (5.2.117)

if b > 0 is sufficiently large. Hence, it suffices to prove (5.2.115) for the radial function

ψ0. For the sake of convenience we shall not distinguish between ψ0(x) and ψ0(|x|).

For |x| ≥ b let ψ̃(x) =ψ0(x)−ψ0(b). Then ψ̃ is also radial and ψ̃(b) = 0. We extend ψ̃

with zero to the region {|x| < b}. Similarly to the one-dimensional case we obtain

ˆ
{|x|≥b}

(|∇ψ0(x)|2 −C0|x|−2−ν|ψ0(x)|2) dx

≥
ˆ

{|x|≥b}

(|∇ψ̃(x)|2 −2C0|x|−2−ν|ψ̃(x)|2) dx

−
ˆ

{|x|≥b}
2C0|x|−2−ν|ψ0(b)|2 dx.

(5.2.118)

Since ψ̃(x) = 0 for |x| ≤ b, we can apply the two-dimensional Hardy inequality to

the function ψ̃, which implies that the first integral on the r.h.s of (5.2.118) is non-

negative. Hence, we arrive at

ˆ
{|x|≥b}

(|∇ψ0(x)|2 −C0|x|−2−ν|ψ0(x)|2) dx ≥−2C0

ˆ
{|x|≥b}

|x|−2−ν|ψ0(b)|2 dx. (5.2.119)

Computing the integral on the r.h.s. of (5.2.119) completes the proof of Lemma 5.2.12.
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Proof of Theorem 5.1.5. Let

L[ϕ] :=
ˆ (|∇0ϕ|2 +V |ϕ|2 −ε|x|−4

m |ϕ|2) dx. (5.2.120)

We show that L[ϕ] ≥ 0 for all functions ϕ ∈ H 1(X0) with supp(ϕ) ⊂ {|x|m ≥ R} if ε> 0

is small enough and R > 0 is sufficiently large. First, we estimate the part of L[ϕ] cor-

responding to the cone K (Z ,κ) for an arbitrary partition Z into two clusters. Assume

that Z = {C1,C2} with C1 = {i , j } and C2 = {k}. Note that the spaces X0(Z ) and Xc (Z )

are both two-dimensional. We choose orthonormal bases of X0(Z ) and Xc (Z ) and de-

note by q̃1, q̃2, ξ̃1, ξ̃2 the corresponding coordinates. We write q̃ = (q̃1, q̃2), ξ̃= (ξ̃1, ξ̃2)

and ϕ=ϕ(q̃ , ξ̃). Similarly to (5.2.78) we write

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx =

ˆ
KR (Z ,κ)

(|∇q̃ϕ|2 +Vi j |ϕ|2
)

dx

+
ˆ

KR (Z ,κ)

(
|∇ξ̃ϕ|2 + (Vi k +V j k )|ϕ|2 −ε|x|−4

m |ϕ|2
)

dx. (5.2.121)

To estimate the integrals on the r.h.s of (5.2.121) we introduce the polar coordinates

q̃ = (ρ1,β1) and ξ̃= (ρ2,β2) in the planar spaces X0(Z ) and Xc (Z ). For the first integral

on the r.h.s. of (5.2.121) we use Lemma 5.2.10 for fixed ξ̃with b0 = κ|ξ̃|. Then similarly

to (5.2.82) we get

ˆ
KR (Z ,κ)

(|∇q̃ϕ|2 +Vi j |ϕ|2
)

dx =
ˆ

{|ξ̃|≥γ}

ˆ
{|q̃|≤κ|ξ̃|}

(|∇q̃ϕ|2 +Vi j |ϕ|2
)

dx

≥−C

ˆ
{|ξ̃|≥γ}

|ξ̃|−ν
ˆ 2π

0
|ϕ(κ|ξ̃|,β1, ξ̃)|2 dβ1 dξ̃

(5.2.122)

for some C > 0, where γ= (
1+κ2

)− 1
2 R is analogous to the proof of Theorem 5.1.4. For

the second integral on the r.h.s. of (5.2.121) we use Lemma 5.2.12 for fixed q̃ and with

b = κ−1|q̃|, which similarly to (5.2.87) yields

ˆ
KR (Z ,κ)

(
|∇ξ̃ϕ|2 + (Vi k +V j k )|ϕ|2 −ε|x|−4

m |ϕ|2
)

dx

≥−C

ˆ
{|q̃|≥η}

|q̃ |−ν
ˆ 2π

0
|ϕ(q̃ ,κ−1|q̃|,β2)|2 dβ2 dq̃

(5.2.123)
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for some C > 0, where η = (
1+κ−2

)−1
R is analogous to the proof of Theorem 5.1.4.

Combining (5.2.122) and (5.2.123) with (5.2.121) implies

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx

≥−C

ˆ
{|ξ̃|≥γ}

|ξ̃|−ν
ˆ 2π

0
|ϕ(κ|ξ̃|,β1, ξ̃)|2 dβ1 dξ̃

−C

ˆ
{|q̃|≥η}

|q̃|−ν
ˆ 2π

0
|ϕ(q̃ ,κ−1|q̃ |,β2)|2 dβ2 dq̃ .

(5.2.124)

In the set {(|q̃|, |ξ̃|) ∈ R+×R+} we introduce the polar coordinates (ρ,ω), where ρ2 =
|q̃ |2 + |ξ̃|2 = |x|2m and ω = arctan

( |q̃ |
|ξ̃|

)
∈ [0, π2 ). Then for ρ1 = |q̃| and ρ2 = |ξ̃| we have

ρ1 = ρ sin(ω) and ρ2 = ρ cos(ω). Furthermore, we represent the function ϕ(x) as a

function ϕ̃(ρ,ω,β1,β2). Note that the integrals on the r.h.s of (5.2.124) are integrals

of the function |ϕ(x)|2 over the set where |q̃ | = κ|ξ̃|, i.e., where ω = ω0 = arctan(κ).

Hence, for the first integral on the r.h.s of (5.2.124) we get

ˆ
{|ξ̃|≥γ}

|ξ̃|−ν
ˆ 2π

0
|ϕ(κ|ξ̃|,β1, ξ̃)|2 dβ1 dξ̃

=
ˆ ∞

γ

ˆ 2π

0

ˆ 2π

0
ρ−ν

2 |ϕ(κρ2,β1,ρ2,β2)|2 dβ1 dβ2ρ2dρ2

= c

ˆ ∞

R

ˆ 2π

0

ˆ 2π

0
ρ−ν|ϕ̃(ρ,ω0,β1,β2)|2 dβ1 dβ2ρdρ,

(5.2.125)

where c > 0 is a constant which comes from the transformation of variables if we

represent the function ρ2 7→ϕ(κρ2,β1,ρ2,β2) as function ρ 7→ ϕ̃(ρ,ω0,β1,β2), where

ω0 = arctan(κ). In the first equality in (5.2.125) we used that dim(Xc (Z )) = 2, which

implies that the Jacobian of the transformation to polar coordinates in Xc (Z ) gives a

factor ρ2. In the last equality of (5.2.125) we used that the function ϕ̃ is zero for ρ < R.

Similarly we get

ˆ
{|q̃|≥η}

|q̃|−ν
ˆ 2π

0
|ϕ(q̃ ,κ−1|q̃|,β2)|2 dβ2 dq̃

= c ′
ˆ ∞

R

ˆ 2π

0

ˆ 2π

0
ρ−ν|ϕ̃(ρ,ω0,β1,β2)|2 dβ1 dβ2ρdρ

(5.2.126)
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5.2. Proofs of the results

for some c ′ > 0 . By combining (5.2.125) and (5.2.126) with (5.2.124) we obtain

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx

≥−C

ˆ ∞

R

ˆ 2π

0

ˆ 2π

0
ρ1−ν|ϕ̃(ρ,ω0,β1,β2)|2 dβ1 dβ2 dρ

(5.2.127)

for some C > 0. Now as in the proof of Theorem 5.1.4 we estimate the integral on

the r.h.s. of inequality (5.2.127), which is an integral over the edge of KR (Z ,κ) given

by {|q̃| = κ|ξ̃|, |x|m ≥ R}, by an integral over the set K (Z ,κ,κ′) for some κ′ which is

slightly larger than κ. For this purpose let κ′ > κ be so small that the cones KR (Z ,κ′)
and KR (Z ′,κ′) do not overlap for partitions Z 6= Z ′ with |Z | = |Z ′| = 2 and denote

ω1 = arctan(κ′). We apply Lemma 5.2.9 to the function ϕ(ρ, ·,β1,β2) for fixed ρ,β1,β2

and with b1 =ω0, b2 =ω1. Then we get

ˆ ∞

R

ˆ 2π

0

ˆ 2π

0
ρ1−ν|ϕ̃(ρ,ω0,β1,β2)|2 dβ1 dβ2 dρ

≤C (ω0,ω1)

ˆ ∞

R

ˆ 2π

0

ˆ 2π

0

ˆ ω1

ω0

ρ1−ν|ϕ̃(ρ,ω,β1,β2)|2 dωdβ1 dβ2 dρ

+C (ω0,ω1)

ˆ ∞

R

ˆ 2π

0

ˆ 2π

0

ˆ ω1

ω0

ρ1−ν|∂ωϕ̃(ρ,ω,β1,β2)|2 dωdβ1 dβ2 dρ,

(5.2.128)

where C (ω0,ω1) depends on ω0 and ω1 only. Applying the Hardy type inequality

(2.1.2) to the function u(ρ) = ϕ̃(ρ,ω,β1,β2) with α= 1−ν (where without loss of gen-

erality we assume ν< 2, so α>−1), we obtain

ˆ ∞

R
ρ1−ν|ϕ̃(ρ,ω,β1,β2)|2 dρ ≤C

ˆ ∞

R
ρ3−ν|∂ρϕ̃(ρ,ω,β1,β2)|2 dρ (5.2.129)

for some C > 0. Therefore, we get

ˆ ∞

R
ρ1−ν (|ϕ̃(ρ,ω,β1,β2)|2 +|∂ωϕ̃(ρ,ω,β1,β2)|2) dρ

≤ R−ν
ˆ ∞

R
ρ3

(
|∂ρϕ̃(ρ,ω,β1,β2)|2 + |∂ωϕ̃(ρ,ω,β1,β2)|2

ρ2

)
dρ.

(5.2.130)
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5. Absence of the Efimov effect for systems of one- or two-dimensional particles

Recall that (ρ,ω) are the polar coordinates corresponding to (|q̃ |, |ξ̃|), which implies

|∂ρϕ̃(ρ,ω,β1,β2)|2 + |∂ωϕ̃(ρ,ω,β1,β2)|2
ρ2

= |∂|q̃ |ϕ|2 +|∂|ξ̃|ϕ|2 ≤ |∇0ϕ|2. (5.2.131)

This yields

R−ν
ˆ ∞

R

ˆ 2π

0

ˆ 2π

0

ˆ ω1

ω0

ρ3
(
|∂ρϕ̃(ρ,ω,β1,β2)|2 + |∂ωϕ̃(ρ,ω,β1,β2)|2

ρ2

)
dωdβ1 dβ2 dρ

≤ ε
ˆ

KR (Z ,κ,κ′)
|∇0ϕ|2 dx, (5.2.132)

where ε> 0 can be chosen arbitrarily small if R > 0 is sufficiently large. Here we used

that the Jacobian of the transformation from the coordinates x = (q̃1, q̃2, ξ̃1, ξ̃2) to the

variables (ρ,ω,β1,β2) is given by ρ3 sin(ω)cos(ω) and that we can estimate

0 < sin(ω0)cos(ω0) ≤ sin(ω)cos(ω) (5.2.133)

for any ω ∈ (ω0,ω1) if 0 < κ< κ′ < 1. Combining (5.2.132) with (5.2.130), (5.2.128) and

(5.2.127) we get

ˆ
KR (Z ,κ)

(|∇0ϕ|2 +V |ϕ|2 −ε|x|−4
m |ϕ|2) dx ≥−ε

ˆ
KR (Z ,κ,κ′)

|∇0ϕ|2 dx. (5.2.134)

This inequality is analogous to inequality (5.2.96) in the proof of Theorem 5.1.4. Now

we can complete the proof of Theorem 5.1.5 by repeating the same steps as in the

proof of Theorem 5.1.4 if we replace the scalar form of the two-dimensional Hardy

inequality by the scalar form of the four-dimensional one, i.e., (2.1.2) with α= 1.
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A.1. Proof of Theorem 4.3.7

The proof of Theorem 4.3.7 is a modification of the proof of Theorem 2.1 in [7]. As in

the proof of Theorem 4.2.6 we take a sequence of eigenfunctions ψn ∈ H 1(Rk ) which

correspond to eigenvalues En < 0 of the operator hn−1 , normalized by ‖ψn‖H̃ 1 = 1.

Then we find a function ϕ0 which is the weak limit of a subsequence of (ψn)n∈N and

which will turn out to be the eigenfunction stated in the theorem.

Let us briefly explain how the strategy of the proof of Theorem 4.3.7 differs from

that of Theorem 4.2.6. In the latter we used the fast decay of the potential to show that

〈Vψn ,ψn〉 converges 〈Vϕ0,ϕ0〉 and concluded thatϕ0 is a minimizer of the quadratic

form of h. Here we will use the assumption (4.3.14) to derive a uniform estimate

for a weighted L2(Rk ) norm of the functions ψn , which guarantees L2(Rk ) conver-

gence of the sequence (ψn)n∈N, from which we conclude convergence of 〈Vψn ,ψn〉
to 〈Vϕ0,ϕ0〉. We start by providing the following uniform estimate of the decay rate

of ψn .

Lemma A.1.1. Assume that h has a virtual level at zero, where V satisfies (4.2.2) and

suppose that (4.3.14) holds for some α0 > 1. Then there exists a constant C > 0, such

that for any eigenfunction ψn ∈ H 1(Rk ) corresponding to a negative eigenvalue of the

operator hn−1 , normalized by ‖ψn‖H̃ 1 = 1, we have

‖∇(| · |α0ψn)‖ ≤C (A.1.1)

and

‖(1+| · |)α0−1ψn‖ ≤C if k = 1

and ‖(1+| · |)α0−1(1+| ln(| · |)|)−1ψn‖ ≤C if k = 2.
(A.1.2)
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Proof of Lemma A.1.1. The proof is a straightforward modification of the proof of

Lemma 4.2.9. Let k = 1 and

Gε,R (x) = |x|α0

1+ε|x|α0
χR (x), (A.1.3)

with a smooth cutoff function χR satisfying

χR (x) =
0, |x| ≤ R,

1, |x| ≥ 2R.
(A.1.4)

By repeating the same computations as in the proof of Lemma 4.2.9 we arrive at

(
1−n−1)‖∇(ψnGε,R )‖2 +〈V Gε,Rψn ,Gε,Rψn〉

−α2
0

ˆ
{|x|>2R}

|Gε,Rψn |2
|x|2 dx ≤C2,

(A.1.5)

where the constant C2 > 0 does not depend on n ∈N or ε> 0. The function Gε,Rψn is

supported outside the ball with radius R. Therefore by assumption (4.3.14) we have

(1−γ0)‖∇(Gε,Rψn)‖2 +〈V Gε,Rψn ,Gε,Rψn〉−α2
0〈|x|−2Gε,Rψn ,Gε,Rψn〉 ≥ 0 (A.1.6)

for some α0 > 1 and γ0 > 0. For n > 2γ−1
0 the estimates (A.1.5) and (A.1.6) imply

γ0

2
‖∇(Gε,Rψn)‖2 ≤C2. (A.1.7)

Taking the limit ε → 0 yields ‖∇(| · |α0ψn
)‖ ≤ C for some C > 0. Applying Hardy’s

inequality for the half-line to the function Gε,Rψn and taking the limit ε→ 0 implies

‖(1+| · |)α0−1ψn‖ ≤C . (A.1.8)

This completes the proof of Lemma 4.2.9 for k = 1. The proof for k = 2 goes along the

same line.

Since (ψn)n∈N converges weakly in H̃ 1(Rk ) to ϕ0, we have strong convergence
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A.1. Proof of Theorem 4.3.7

ψn →ϕ0 in L2
loc(Rk ). This, together with the uniform estimate (A.1.2) for some α0 > 1

implies strong convergence in L2(Rk ) and that ϕ0 satisfies

(1+| · |)α−1ϕ0 ∈ L2(Rk ) (A.1.9)

for anyα<α0. It remains to prove thatϕ0 is an eigenfunction. Note that 〈Vψn ,ψn〉→
〈Vϕ0,ϕ0〉 as n →∞, which follows from assumption (4.2.2), the L2(Rk ) convergence

of ψn to ϕ0 and due to the boundedness of ‖∇ψn‖ and ‖∇ϕ0‖. Now as in the proof of

Lemma 4.2.8 we get

‖∇ϕ0‖2 +〈Vϕ0,ϕ0〉 = 0 (A.1.10)

and ‖ϕ0‖H̃ 1 = 1. In conclusion, we have ψn * ϕ0 in H̃ 1(Rk ), ψn → ϕ0 in L2(Rk ) and

‖ψn‖H̃ 1 →‖ϕ0‖H̃ 1 . This implies ψn →ϕ0 in H 1(Rk ). Hence, by (A.1.10) and Theorem

3.1.10 ϕ0 is an eigenfunction corresponding to the eigenvalue zero. Repeating the

arguments of the proof of Lemma A.1.1 for the functionϕ0 shows∇(| · |α0ϕ0
) ∈ L2(Rk ).

To complete the proof of Theorem 4.3.7 it remains to prove (4.3.17). We prove the

assertion in the following lemmas which are analogouos to Lemmas 2.6-2.8 in [7]. We

adapt them to the case of k = 1,2.

Lemma A.1.2. Assume that V satisfies (4.2.2), that h has a virtual level at zero and

that (4.3.14) holds for some α0 > 1. Let a(n) → 0 be a sequence of real numbers with

a(n) 6= 0 for all n ∈ N and (ψn)n∈N a sequence of real-valued eigenfunctions of the

operator ha(n) corresponding to some negative eigenvalues, normalized as ‖ψn‖H̃ 1 = 1.

Then (ψn)n∈N converges in H 1(X0) to the function ϕ0 defined above. In other words:

All such sequences of eigenfunctions converge to the same limit.

Proof of Lemma A.1.2. Assume for a contradiction that (ψn)n∈N does not converge

to ϕ0. Then, there exists a constant µ > 0 and a subsequence (ψnk )k∈N, such that

‖ψnk −ϕ0‖H 1 ≥ µ. Due to ‖ψnk‖H̃ 1 = 1 there exists a subsequence of (ψnk )k∈N, also

denoted by (ψnk )k∈N, which converges weakly to a function ϕ1 ∈ H̃ 1(Rk ). Repeat-

ing the arguments above, we see that ϕ1 is an eigenfunction of h corresponding to

the eigenvalue zero with ‖ϕ1‖H̃ 1 = 1 and we have convergence of (ψnk )k∈N to ϕ1 in

H 1(Rk ). Since an eigenvalue of a Schrödinger operator coinciding with the bottom of

the spectrum cannot be degenerate [23], we have ϕ1 =ϕ0. This is a contradiction to

the choice of (ψnk )k∈N.
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Lemma A.1.3. For any sufficiently small ε > 0 the operator hε has only one negative

eigenvalue and this is non-degenerate.

Proof of Lemma A.1.3. Suppose for a contradiction that there exists a sequence of

real numbers a(n) ∈ (0,1) with a(n) → 0 as n → ∞, such that for any n ∈ N the op-

erator ha(n) = −(1− a(n))∆+V has at least two eigenvalues. Recall that the lowest

eigenvalue of ha(n) is non-degenerate. We consider two sequences of eigenfunctions

ψ(1)
n and ψ(2)

n of ha(n), normalized by ‖ψ(1)
n ‖H̃ 1 = ‖ψ(2)

n ‖H̃ 1 = 1, where ψ(1)
n corresponds

to the lowest eigenvalue and ψ(2)
n corresponds to the second eigenvalue. Then ψ(1)

n

and ψ(2)
n are orthogonal in L2(Rk ). On the other hand, by Lemma A.1.2 ψ(1)

n and ψ(2)
n

both converge in L2(Rk ) to ϕ0, which is a contradiction.

Lemma A.1.4. There exists a constant δ0 > 0, such that for every function ψ ∈ H 1(Rk )

with 〈∇ψ,∇ϕ0〉 = 0

(1−δ0)‖∇ψ‖2 +〈Vψ,ψ〉 ≥ 0. (A.1.11)

Proof. We prove the Lemma by contradiction. Assume that there is no such constant

δ0 > 0. Then there exists a sequence of functions gn ∈ H 1(Rk ) with

〈∇gn ,∇ϕ0〉 = 0 and 〈hn−1 gn , gn〉 < 0. (A.1.12)

Note that for c1,c2 ∈C we have

〈hn−1 (c1gn + c2ϕ0), (c1gn + c2ϕ0)〉
= c2

1〈hn−1 gn , gn〉+ c2
2〈hn−1ϕ0,ϕ0〉+2Rec1c2〈hn−1 gn ,ϕ0〉.

(A.1.13)

Furthermore, it is easy to see that

Re〈hn−1 gn ,ϕ0〉 = Re〈gn ,hϕ0〉−n−1 Re〈∇gn ,∇ϕ0〉 = 0 (A.1.14)

and

〈hn−1ϕ0,ϕ0〉 = 〈hϕ0,ϕ0〉−n−1‖∇ϕ0‖2 =−n−1 (A.1.15)

for every n ∈N. Hence, we conclude that for any linear combination c1gn +c2ϕ0 with

c1, c2 6= 0 we have

〈hn−1 (c1gn + c2ϕ0), (c1gn + c2ϕ0)〉 < 0. (A.1.16)
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Since by (A.1.12) the functions ϕ0 and gn are linearly independent, for any n ∈ N
we can find a linear combination fn of ϕ0 and gn , such that fn is orthogonal to the

ground state of hn−1 . According to Lemma A.1.3 for sufficiently large n ∈ N the op-

erator hn−1 has only one negative eigenvalue, which yields 〈hn−1 fn , fn〉 ≥ 0. This is a

contradiction to (A.1.16).

Lemma A.1.3 completes the proof of Theorem 4.3.7.
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