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Abstract

This thesis consists of three parts. In the first part we consider multi-
component flows through porous media. We introduce a hyperbolic
system of partial differential equations which describes such flows,
prove the existence of solutions, the convergence in a long-time-large-
friction regime to a parabolic limit system, and finally present a new
numerical scheme to efficiently simulate flows in this regime.
In the second part we study two-phase flows where both phases
are considered compressible. We introduce a Navier–Stokes–Allen–
Cahn phase-field model and derive an energy-consistent discontin-
uous Galerkin scheme for this system. This scheme is used for the
simulation of two complex examples, namely drop–wall interactions
and multi-scale simulations of coupled porous-medium/free-flow sce-
narios including drop formation at the interface between the two do-
mains.
In the third part we investigate two-phase flows where one phase is
considered incompressible, while the other phase is assumed to be
compressible. We introduce an incompressible–compressible Navier–
Stokes–Cahn–Hilliard model to describe such flows. Further, we
present some analytical results for this system, namely a computable
expression for the effective surface tension in the system and a formal
proof of the convergence to a (quasi-)incompressible system in the
low Mach regime. As a first step towards a discontinuous Galerkin
discretization of the system, which is based on Godunov fluxes, we
introduce the concept of an artificial equation of state modification,
which is examined for a basic single-phase incompressible setting.
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Abstract
This thesis consists of three parts. In the first part we consider multi-component
flows through porous media. We introduce a hyperbolic system of partial differ-
ential equations which describes such flows, prove the existence of solutions, the
convergence in a long-time-large-friction regime to a parabolic limit system, and
finally present a new numerical scheme to efficiently simulate flows in this regime.
In the second part we study two-phase flows where both phases are considered
compressible. We introduce a Navier–Stokes–Allen–Cahn phase-field model and
derive an energy-consistent discontinuous Galerkin scheme for this system. This
scheme is used for the simulation of two complex examples, namely drop–wall
interactions and multi-scale simulations of coupled porous-medium/free-flow sce-
narios including drop formation at the interface between the two domains.
In the third part we investigate two-phase flows where one phase is considered in-
compressible, while the other phase is assumed to be compressible. We introduce
an incompressible–compressible Navier–Stokes–Cahn–Hilliard model to describe
such flows. Further, we present some analytical results for this system, namely a
computable expression for the effective surface tension in the system and a for-
mal proof of the convergence to a (quasi-)incompressible system in the low Mach
regime. As a first step towards a discontinuous Galerkin discretization of the sys-
tem, which is based on Godunov fluxes, we introduce the concept of an artificial
equation of state modification, which is examined for a basic single-phase incom-
pressible setting.



viii Abstract

Zusammenfassung
Diese Arbeit besteht aus drei Teilen. Der erste Teil befasst sich mit Mehrkompo-
nentenströmungen durch poröse Medien. Wir führen ein System von hyperboli-
schen partiellen Differentialgleichungen ein, das diese Art von Strömungen be-
schreibt. Für dieses System beweisen wir die Existenz von Lösungen. Außerdem
beweisen wir den Übergang zu einem parabolischen Grenzsystem in Strömungs-
regimen, die durch lange Zeiten und große Reibung charakterisiert sind. Zuletzt
wird ein neues numerisches Verfahren vorgestellt, das eine effiziente numerische
Simulation von Strömungen in diesem asymptotischen Regime erlaubt.
Im zweiten Teil untersuchen wir Zweiphasenströmungen, wobei beide Phasen als
kompressibel betrachtet werden. Für deren Beschreibung führen ein Navier–Sto-
kes–Allen–Cahn Phasenfeldmodell ein. Zur Diskretisierung desModells leitenwir
ein energiekonsistentes discontinuous Galerkin Verfahren her. Dieses Verfahren
wird zur Simulation zweier komplexer Beispiele benutzt. Zum einen für Tropfen–
Wand Interaktionen und zum anderen für Multiskalen Simulationen von gekop-
pelter Strömung in porösen Medien und freier Strömung. Dabei wird die Bildung
von Tropfen an der Grenzfläche zwischen dem porösen Medien Gebiet und dem
Gebiet der freien Strömung berücksichtigt.
Der dritte Teil beschäftigt sich mit Zweiphasenströmungen, bei denen eine Phase
als kompressibel betrachtet wird, wohingegen die andere Phase als inkompres-
sibel angenommen wird. Zur Beschreibung solcher Strömungen führen wir ein
inkompressibles–kompressibles Navier–Stokes–Cahn–HilliardModell ein und prä-
sentieren für dieses zwei analytische Resultate. Zum einen ein berechenbarer Aus-
druck für die effektive Oberflächenspannung im System und zum anderen ein for-
maler Beweis der Konvergenz zu einem (quasi-)inkompressiblen Grenzsystem im
Regime für kleine Machzahlen. Als ersten Schritt zu einem discontinuous Galer-
kin Verfahren, welches auf Godunov-Flüssen basiert, stellen wir ein Konzept vor,
das auf einer künstlichen Zustandsgleichung basiert. Dieses Konzept wird dann
für den einfacheren Fall einer inkompressiblen Einphasenströmung untersucht.
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Preface
This thesis deals with two peculiar features of fluid dynamics occurring in many
real-world scenarios — multi-component and multi-phase flows. These are ubiq-
uitous in our everyday life. For example even the air we breath is a mixture of
several gases (mainly nitrogen and oxygen). A simple example to illustrate multi-
phase flows is rain. In this case water in its liquid form moves through the multi-
component gas mixture of air. An additional example are evaporation and con-
densation processes during the formation of fog. Of course there are considerably
more examples in different fields, including technical, environmental, chemical,
and biological applications.
In this thesis we focus on two main topics of multi-component and multi-phase
flows, specifically on interfaces and asymptotic regimes. The thesis contains con-
tributions to the modeling, the analysis, and the numerical discretization for such
flows. These topics are investigated in three parts.
In the first part of this thesis, we study compressible multi-component flow in porous
media, e.g. in soil. We derive a hyperbolic system of partial differential equa-
tions which is capable to describe such kind of flows. Further, we consider a spe-
cific asymptotic regime of the flow, namely for large times and high friction. Ex-
tending results for single-component flow in porous media, using entropy tech-
niques of [32, 33, 38], we show rigorously that smooth solutions of the hyperbolic
system converge to a nonlinear parabolic limit system. Concerning the numeri-
cal discretization, the limit regime is challenging. In order to simulate flows in
this asymptotic regime, we present a new numerical scheme which preserves the
asymptotic behavior of the system.
In the second part, we examine multi-phase flow, precisely compressible–compress-
ible liquid–vapor flow, i.e. both phases are compressible. In this case the descrip-
tion of the dividing interface of the two phases is of crucial importance. We use
a diffuse-interface description by employing a Navier–Stokes–Allen–Cahn phase-
field model. We are able to develop a novel energy-consistent numerical scheme
based on discontinuous Galerkin techniques. For two scenarios we show that the
scheme is able to deal with complex flow situations. The first example is droplet–
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wall interaction. There, the contact line, i.e. the interface between the solid wall,
the liquid, and the vapor poses the major challenge. We develop a numerical treat-
ment that allows to include different contact angles.The second example is a multi-
scale framework to simulate the growth and detachment of drops at the interface
between a porous medium and the free flow. We show that with help of the phase-
field model, our multi-scale approach is capable to describe drop-related processes
at the interface between the porous-medium and the free-flow domain.
Finally, in the third part we consider a similar situation as in the second part, how-
ever for the specific, but important flow regimes, where the liquid phase is con-
sidered as incompressible fluid, i.e. incompressible–compressible liquid–vapor flows.
Consequently, we use a different phase-field model in this part. For this model we
formally show in an asymptotic regime, particularly a low Mach regime, the con-
vergence to a model where both phases are incompressible. Moreover, in order
to discretize the corresponding system, we present an idea towards a discontin-
uous Galerkin scheme, based on Godunov fluxes. The main issue to define these
Godunov fluxes is the solution of Riemann problems at the interfaces between
elements of the underlying computational mesh.
The content of this work lead to several publications. Most of the content of Chap-
ters 2–4 in Part I has been published in [89]. In Part II, Chapter 5 lead to the joint
publication [4]. The remaining chapters have been partially published in [86, 88].
In all the above mentioned publications I provided the main contributions. Finally,
Part III lead to joint work [78, 87], where both authors contributed equally.
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Introduction 1
Multi-component fluid flows in porous media appear in various fields of applica-
tions such as fuel cells, oxygen sensors, and respiratory airways [18, 22, 53, 109].
To demonstrate the modeling challenge we elaborate the last example.
As stated in [22], following the model of Weibel [104], the bronchial tree can be
divided into two parts. The upper conducting zone and the lower respiratory zone.
In the lower part, the velocity of the air is very small. Therefore, mainly diffusive
effects determine the dynamics of the gas mixture in this region of the bronchial
tree. For the treatment of certain diseases of the lung, the gas mixture Heliox
(20%O2, 80%He) is used to improve the patient’s well-being [9]. In order to achieve
the greatest benefit for the patient, analysis based on mathematical models can be
performed.
For modeling the afore-mentioned situation, the classical Fickian diffusion law
[46] is too simplistic to capture important diffusive effects in the lower respira-
tory zone. Important phenomena, for instance uphill diffusion [70, 105], cannot be
described by this approach. Uphill diffusion means flux of a mixture constituent
from regions of low concentrations to ones with high concentration, see [23] and
references therein. This phenomenon can occur in mixtures with at least three
constituents. Duncan & Toor have given an experimental example of a three-
component gas mixture in [41], which clearly demonstrates the uphill diffusion
effect even in a simple configuration.
A generalization of the Fickian approach roots in the classical works of Maxwell
[80] and Stefan [99]. It led to the concept which is nowadays called Maxwell–
Stefan (MS) diffusion. A main difference to Fick’s diffusion model is the use of
chemical potential gradients as driving forces, in contrast to concentration gradi-
ents. The MS concept employs binary interactions between different constituents
of the mixture. It captures more complex diffusive effects, but leads to a coupled
nonlinear system of partial differential equations (PDE) and is therefore mathe-
matically more challenging.



6 1 Introduction

In this part of the thesis we provide a mathematical model for compressible multi-
component flow in fully saturated porous media on the Darcy-scale. This model
takes the form of a nonlinear hyperbolic balance law. Therefore, global classical
solutions might not exist [34]. However, we show that dissipative effects of the
Maxwell–Stefan diffusion and porous media friction suffice to ensure the classical
well-posedness for initial data close to equilibrium. Note that we account for the
effect of the solid skeleton in the porous medium (PM) similar to dusty gas models
from [77, 105]. The PM is treated as an additional component of the mixture with
vanishing velocity and constant density. In contrast to dusty gas models, which
rely on the kinetic theory of gases, we utilize the continuum thermodynamics (CT)
framework as developed in [20].
The solutions to the resulting system satisfy an entropy condition. This implies
the validity of the second law of thermodynamics. If we drop the MS coupling
terms, we obtain a system of uncoupled equations each of which correspond to
the compressible Euler equations with friction. This hyperbolic model describes
single-component flow through porous media. It has been shown in [44, 58, 59,
71, 75] that the solutions to this system tend, in a long-time limit, to the solution
to a parabolic porous-media equation. We establish a corresponding result for the
multi-component case that yields a parabolic system of porous-media equations
in the limit. This parabolic system is similar to the multi-component system of
[65].
The numerical discretization of hyperbolic systems in such a long-time-large-fric-
tion asymptotic regime, characterized by 𝜀 > 0, is challenging. This stems from
the fact that the type of the limiting system is different from the type for finite
values of 𝜀. Chapter 5 of this part is dedicated to derive an asymptotic preserving
(AP) [63] numerical scheme. That means a scheme which preserves the asymp-
totic limit from the hyperbolic system to the parabolic system at the discrete level.
For fixed mesh size and time step size the AP scheme transforms into a stable
discretization of the limiting system as 𝜀 tends to zero.
This part is organized as follows. In Chapter 2 we derive the governing equations
for compressiblemulti-component flow in porousmediawithin the CT framework.
We start with multiple Euler equations with friction, which are coupled by a right
hand side using Maxwell–Stefan cross-diffusion terms. In the subsequent Chap-
ter 3 we prove the existence of smooth solutions to this system. To this end, we
show that the dissipative effects due to MS diffusion and friction fit into the well-
posedness theory [108] for general hyperbolic balance laws (see Theorem 3.2).
The second major result, namely the existence of a parabolic limit system is estab-
lished in Chapter 4. We utilize a relative entropy framework to prove our main
Theorem 4.3. For this purpose we adapt techniques from [71], where the conver-
gence of the compressible Euler systemwith friction to the porous media equation
has been proven.
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In Chapter 5 we derive an AP scheme which preserves the asymptotic limit on a
discrete level. Equippedwith this schemewe conduct some numerical experiments
where we illustrate the phenomenon of uphill diffusion and verify the asymptotic
convergence rate fromTheorem 4.3 numerically.
We finally conclude in Chapter 6.
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in Porous Media 2

First, in Section 2.1 we review a single-component model and show available ana-
lytical results. In the remainder of this part we will generalize them to the multi-
component case. In Section 2.2 the multi-component model is derived using fun-
damental thermodynamical principles. It follows the presentation in [20] for free
flow problems and extends the classical Fickian diffusion modeling to a Maxwell–
Stefan approach.

2.1 Single-Component Flow
Compressible single-component flow with friction, induced by the resistance of
the solid skeleton in a porousmedium, can be described on amacroscopic averaged
scale by the Euler–Darcy model, see [76] and references therein. We consider an
isothermal situation. For 𝑡 ∈ (0, 𝑇 ), 𝑇 > 0 and 𝑥 ∈ ℝ𝑑 , 𝑑 ∈ ℕ, the unknowns mass
density 𝜌 = 𝜌(𝑥, 𝑡) > 0 and momentum𝑚 = 𝜌𝑣 ∈ ℝ𝑑 with velocity 𝑣 = 𝑣(𝑥, 𝑡) ∈ ℝ𝑑

satisfy the system

𝜕𝑡𝜌 + div(𝑚) = 0,
𝜕𝑡𝑚 + div (𝑚 ⊗ 𝑚

𝜌 + 𝑝(𝜌)𝐼 𝑑) = −𝑀𝑚. in ℝ𝑑 × (0, 𝑇 ) (2.1)

Here 𝑝 = 𝑝(𝜌) is the smooth pressure function, 𝑀 > 0 is the mobility constant,
and 𝐼 𝑑 is the 𝑑-dimensional identity tensor. Note that we use in (2.1) the same
notation for the divergence operator applied to vector- or matrix-valued functions,
see Appendix A.
It is well-known that (2.1) is a hyperbolic system of nonlinear balance laws as long
as the pressure is monotonically increasing. Hence, shock-type singularities might
evolve in finite time, independent of the initial data’s regularity. The system (2.1)
is endowed with an entropy–entropy flux pair (see (2.2) below), which can be used
to ensure an appropriate form of the second law of thermodynamics for classical
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as well as weak solutions. Precisely, solutions to (2.1) are required to satisfy the
entropy inequality

𝜕𝑡𝜂(𝜌,𝑚) + div(𝑞(𝜌, 𝑚)) ≤ 0 in D′(ℝ𝑑 × (0, 𝑇 )).
The entropy–entropy flux pair (𝜂, 𝑞) is given by

𝜂(𝜌,𝑚) = 1
2
|𝑚|2
𝜌 + 𝜌𝜓(𝜌), 𝑞(𝜌, 𝑚) = 1

2𝑚
|𝑚|2
𝜌2 + 𝑚(𝜓(𝜌) + 𝜌𝜓 ′(𝜌)). (2.2)

Here, given a smooth pressure function 𝑝 = 𝑝(𝜌) as equation of state (EOS), the
Helmholtz free energy density 𝜌𝜓 is determined from the Gibbs–Duhem relation

𝜌𝜓(𝜌) = 𝜌(𝜌𝜓)′(𝜌) − 𝑝(𝜌). (2.3)

The nonlinear flux in (2.1) can generate shock waves. However, the dissipative
effect of the friction term, i.e. the right hand side, might suffice to counteract the
destabilizing effect of the flux. Indeed, depending on the initial data and the size of
the mobility constant 𝑀 , the initial value problem (IVP) for (2.1) can have global
smooth solutions (see e.g. [44]). We will show that a similar result holds for the
multi-component case. Furthermore, the dissipative friction effect leads to certain
limit regimes such that the system (2.1) changes its characteristic type in the limit.
We consider a long-time and large-mobility regime in (2.1), i.e., the time 𝑡 is scaled
by a small parameter 𝜀 > 0 and the mobility 𝑀 by 𝜀−1. After rescaling (2.1) and
renaming the variables in an obvious way, (2.1) is recasted in the form

𝜀𝜕𝑡𝜌𝜀 + div(𝑚𝜀) = 0,

𝜀𝜕𝑡𝑚𝜀 + div (𝑚
𝜀 ⊗ 𝑚𝜀

𝜌𝜀 + 𝑝(𝜌𝜀)𝐼 𝑑) = −1𝜀 𝑀𝑚𝜀 in ℝ𝑑 × (0, 𝑇 ). (2.4)

The sequence {𝜌𝜀}𝜀>0 of densities 𝜌𝜀 > 0, solving the initial value problems for
(2.4), converge for 𝜀 → 0 towards a solution ̄𝜌 of the IVP for the porous-medium
equation

𝜕𝑡 ̄𝜌 − 𝑀−1 div(∇𝑝( ̄𝜌)) = 0 in ℝ𝑑 × (0, 𝑇 ). (2.5)

This is shown in [71] (see also [59]). In other words, the hyperbolic balance laws
turn into a parabolic evolution with much more regular solution behavior. In the
following, we derive a corresponding result for the multi-component case.
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2.2 Multi-Component Flow
While single-component flow in a porous medium is well understood, much less is
known for multi-component flow. As long as bulk viscosity is neglected, standard
model approaches take the form of the Euler equations with a damping term in the
momentum equations, like (2.1). However, for flow of multi-component gaseous
mixtures in porous media, inter-component viscosity effects become important.
They do not occur in the single-component case. The classical Fick’s law for dif-
fusion does not suffice to describe these phenomena. As a possible remedy we
follow a Maxwell–Stefan ansatz. In order to derive governing equations in a ther-
modynamically consistent way, we follow the work of Bothe & Dreyer [20]. They
establish governing equations for multi-component free flow, i.e. without a porous
medium.

2.2.1 Multi-Component Flow and Maxwell–Stefan Diffusion

Let a fluid mixture consist of 𝑛 ∈ ℕ components 𝐴1, ..., 𝐴𝑛 with corresponding
mass densities 𝜌𝑖 = 𝜌𝑖(𝑥, 𝑡) > 0 and velocities 𝑣 𝑖 = 𝑣 𝑖(𝑥, 𝑡) ∈ ℝ𝑑 , 𝑖 = 1, ..., 𝑛. We de-
fine the total mass density 𝜌 and the barycentric velocity 𝑣 (not to be interchanged
with the single-component case in Section 2.1) as

𝜌 ≔
𝑛
∑
𝑖=1

𝜌𝑖 , 𝑣 ≔ 1
𝜌

𝑛
∑
𝑖=1

𝜌𝑖𝑣 𝑖 .

Further, we define the diffusion velocities

𝑢𝑖 ≔ 𝑣 𝑖 − 𝑣 ∈ ℝ𝑑 .
We ignore mass exchange as well as exterior forces. Restricting ourselves to the
case of a simple mixture, the component pressures 𝑝𝑖 depend on 𝜌𝑖 only, i.e. they
satisfy 𝑝𝑖 = 𝑝𝑖(𝜌𝑖). For 𝑖 = 1, … , 𝑛 we start from the partial balances of mass and
momentum given by

𝜕𝑡𝜌𝑖 + div(𝜌𝑖𝑣 𝑖) = 0, (2.6a)
𝜕𝑡(𝜌𝑖𝑣 𝑖) + div(𝜌𝑖𝑣 𝑖 ⊗ 𝑣 𝑖 + 𝑝𝑖(𝜌𝑖)𝐼 𝑑) = 𝑓 𝑖 . (2.6b)
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Here 𝑓 𝑖 ∈ ℝ𝑑 states the momentum production due to diffusive mixing, later spec-
ified with the Maxwell–Stefan ansatz. As a natural requirement the conservation
law for total momentum has to hold, which implies the condition

𝑛
∑
𝑖=1

𝑓 𝑖 = 0. (2.7)

The crux is to find an expression for 𝑓 𝑖 such that, with the (physical) entropy
production 𝜁 (see (2.9) below), the second law of thermodynamics holds true.
We introduce for each component 𝐴𝑖 a strictly convex free energy density ℎ𝑖(𝜌𝑖)
= 𝜌𝑖𝜓𝑖(𝜌𝑖) that relates to the partial pressure 𝑝𝑖(𝜌𝑖) via the Gibbs–Duhem equations
(see (2.3) for the single-component velocity)

ℎ𝑖(𝜌𝑖) + 𝑝𝑖(𝜌𝑖) = 𝜌𝑖ℎ′𝑖 (𝜌𝑖).
Thus, the strict convexity of 𝜌𝑖𝜓𝑖 implies

𝑝′𝑖 (𝜌𝑖) > 0.
Moreover, the function

ℎ(𝜌1, … , 𝜌𝑛) ≔
𝑛
∑
𝑖=1

ℎ𝑖(𝜌𝑖) (2.8)

is a mixture free energy density for simple mixtures.
For the special case of simple isothermal, inviscid fluid mixtures without chemi-
cal reactions, the entropy production 𝜁 of some solution (𝜌1, … , 𝜌𝑛, 𝑚⊤1 , … ,𝑚⊤𝑛 ) of
(2.6a), (2.6b) is derived in [20] and reads as

𝜁 = −
𝑛
∑
𝑖=1

𝑢𝑖 ⋅ 𝑓 𝑖 . (2.9)

According to the second law of thermodynamics, the entropy production 𝜁 is not
allowed to be negative. Using (2.7), we infer the condition

𝜁 = −
𝑛−1
∑
𝑖=1

(𝑢𝑖 − 𝑢𝑛) ⋅ 𝑓 𝑖 ≥ 0. (2.10)
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In the following we take the Maxwell–Stefan ansatz for 𝑓 𝑖 to guarantee that (2.10)
holds true. Let

T̃ ≔ (𝜏𝑖𝑗)𝑛−1𝑖,𝑗=1 ≻ 0, with 𝜏𝑖𝑗 = 𝜏𝑖𝑗(𝜌𝑖 , 𝜌𝑗) (2.11)

be a positive-definite matrix. With (2.11) we set

𝑓 𝑖 ≔ −
𝑛−1
∑
𝑗=1

𝜏𝑖𝑗(𝑢𝑗 − 𝑢𝑛), 𝑖 = 1, ..., 𝑛 − 1. (2.12)

In order to make the right hand side in (2.12) symmetric with respect to the com-
ponents, we extend T̃ ∈ ℝ(𝑛−1)×(𝑛−1) to the Maxwell–Stefan matrix [100] T ≔
(𝜏𝑖𝑗)𝑛𝑖,𝑗=1 ∈ ℝ𝑛×𝑛 by

𝜏𝑛𝑗 ≔ −
𝑛−1
∑
𝑖=1

𝜏𝑖𝑗 , 𝑗 = 1, ..., 𝑛 − 1, 𝜏𝑖𝑛 ≔ −
𝑛−1
∑
𝑗=1

𝜏𝑖𝑗 , 𝑖 = 1, ..., 𝑛. (2.13)

Additionally let

𝜏𝑖𝑗 ≤ 0 for all 𝑖 ≠ 𝑗. (2.14)

In the case of binary interactions, the matrix T is symmetric. Furthermore, pro-
vided (2.11), it can be proven to be positive semi-definite, see [20].
The following ansatz for the components of T̃ is made to match the requirements
(2.13) and (2.14). We define

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗) ≔ −𝜏𝑖𝑗(𝜌𝑖 , 𝜌𝑗)𝜌𝑖𝜌𝑗
(𝑖 ≠ 𝑗) (2.15)

and 𝜆𝑖𝑖 through (2.13), i.e.

𝜆𝑖𝑖 ≔ −
𝑛
∑

𝑗=1,𝑗≠𝑖
𝜆𝑖𝑗

𝜌𝑗
𝜌𝑖
.

With 𝑟 ≔ (𝜌1, … , 𝜌𝑛)⊤, we introduce the negative semi-definite matrix

Λ = Λ(𝑟) = (𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗))
𝑛

𝑖,𝑗=1
∈ ℝ𝑛×𝑛 . (2.16)
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With the definitions (2.13), we infer from (2.12)

𝑓 𝑖 = −
𝑛
∑
𝑗=1

𝜏𝑖𝑗(𝑢𝑗 − 𝑢𝑛), 𝑖 = 1, ..., 𝑛, (2.17a)

𝑛
∑
𝑗=1

𝜏𝑖𝑗 = 0, 𝑖 = 1, ..., 𝑛. (2.17b)

Thus, by replacing 𝑢𝑛 with 𝑢𝑖 in (2.17a), we obtain a symmetrical version of (2.12),
namely

𝑓 𝑖 =
𝑛
∑
𝑗=1

𝜏𝑖𝑗(𝑢𝑖 − 𝑢𝑗), 𝑖 = 1, ..., 𝑛. (2.18)

With (2.18) and the symmetry of T , the entropy production (2.9) can be written as

𝜁 = −
𝑛
∑
𝑖=1

𝑢𝑖 ⋅ 𝑓 𝑖 = −12
𝑛
∑
𝑖,𝑗=1

𝜏𝑖𝑗 |𝑢𝑖 − 𝑢𝑗 |2.

Obviously, condition (2.14) is necessary to achieve 𝜁 ≥ 0. Due to (2.15) the entropy
production reads as

𝜁 = 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗)𝜌𝑖𝜌𝑗 |𝑣 𝑖 − 𝑣𝑗 |2. (2.19)

Finally, with the Maxwell–Stefan ansatz the constitutive law for the momentum
production 𝑓 𝑖 results from (2.15) and (2.18) as

𝑓 𝑖 = −
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗)𝜌𝑖𝜌𝑗(𝑣 𝑖 − 𝑣𝑗). (2.20)

Note that in (2.20) the diffusion velocities are replaced by the velocities of the
corresponding component.
With this result the partial momentum balances (2.6b) become

𝜕𝑡(𝜌𝑖𝑣 𝑖) + div(𝜌𝑖𝑣 𝑖 ⊗ 𝑣 𝑖 + 𝑝𝑖(𝜌𝑖)𝐼 𝑑) = −
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗)𝜌𝑖𝜌𝑗(𝑣 𝑖 − 𝑣𝑗).
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2.2.2 Compressible Multi-Component Flow in Porous Media

In the previous section we considered a free flow problem. In this section we in-
clude the porous medium in our model.
We realize the porous medium matrix as a static component 𝐴pm of the mixture
with velocity 𝑣pm = 0 and density 𝜌pm = const.
The component 𝐴pm needs no equations for the mass and momentum balance.
However, we have to account for the effects on the other components. Hence, the
sum from (2.20) extends to

−
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗)𝜌𝑖𝜌𝑗(𝑣 𝑖 − 𝑣𝑗) − 𝜆𝑖,pm(𝜌𝑖 , 𝜌pm)𝜌pm𝜌𝑖(𝑣 𝑖 − 𝑣pm).

In the sequel we ignore the explicit dependence of 𝜆𝑖,pm on the component densi-
ties 𝜌𝑖 and proceed with the mobility constants

𝑀𝑖 = 𝑀𝑖(𝜌pm) ≔ 𝜆𝑖,pm(𝜌pm)𝜌pm.
Then we arrive at our final Euler–Darcy–MS system which reduces in the single-
component case to (2.1).
Define with 𝑚𝑖 = 𝜌𝑖𝑣 𝑖 for 𝑖 = 1, … , 𝑛, the momentum vector 𝑚 = (𝑚⊤1 , … ,𝑚⊤𝑛 )⊤.
We search for the function 𝑈 = (𝑟⊤, 𝑚⊤)⊤ with values in the state space

𝐺 = ℝ𝑛+ × ℝ𝑛𝑑 , (2.21)

that satisfies themulti-component Euler–Darcy systemwithMaxwell–Stefan type
diffusion

𝜕𝑡𝜌𝑖 + div(𝑚𝑖) = 0,
𝜕𝑡𝑚𝑖 + div (𝑚𝑖 ⊗ 𝑚𝑖

𝜌𝑖
+ 𝑝𝑖(𝜌𝑖)𝐼 𝑑)

= −𝑀𝑖𝑚𝑖 −
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗)(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗)
in ℝ𝑑 × (0, 𝑇 ), (2.22)

subject to the initial condition

𝑈(⋅, 0) = 𝑈0 ≔ (𝑟⊤0 , 𝑚⊤0 )⊤ = (𝜌1,0, … , 𝜌𝑛,0, 𝑚⊤1,0, … ,𝑚⊤𝑛,0)⊤ in ℝ𝑑 . (2.23)

Due to the arguments from Section 2.2.1 we note that the second law of thermo-
dynamics is automatically satisfied along smooth solution trajectories of (2.22)–
(2.23).
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Remark 2.1: 1. By including the porous medium, the condition (2.17b) contains
the summand of the porous-medium part as well. We neglect this fact. That
means precisely that we neglect the effect of the porous medium on the conser-
vation of momentum (2.20). This is in accordance with the single-component
case. The effect of the porous medium has the character of a body force.

2. It turns out in experiments that the 𝜆𝑖𝑗 are only weakly dependent on the mix-
ture. Often affine functions suffice to describe this dependence, see [100].

3. The structure of the porous medium is only captured in the scalar parameter𝑀𝑖 .
If the porous medium is not homogeneous and isotropic, one should allow for
matrix-valued parameters with spatial dependence.

4. The terms𝑀𝑖 scale with the density of the porous medium, which is significantly
larger than the densities of a gaseous mixture. Hence, typically it holds 𝑀𝑖 ≫
𝜆𝑖𝑗 .

Similar to Section 2.1, we consider a long-time/large-mobility/large-diffusion re-
gime for (2.22). To be precise, let ̄𝑥 , ̄𝑡 , ̄𝜌 > 0, ̄𝑣, ̄𝑝, �̄� , and �̄� be the characteristic
scales of the corresponding quantities. The long-time/large-mobility/large-diffu-
sion regime is characterized by

̄𝑥
̄𝑣 ̄𝑡 = 𝑂(𝜀), ̄𝑝

̄𝑣2 ̄𝜌 = 𝑂(1), �̄� ̄𝑥
̄𝑣 = 𝑂(𝜀−1) and

�̄� ̄𝜌 ̄𝑥
̄𝑣 = 𝑂(𝜀−1),

using a small parameter 𝜀 > 0. After rescaling the system (2.22) and renaming the
unknown as 𝑈 𝜀 = (𝑟 𝜀⊤ = (𝜌𝜀1 , … , 𝜌𝜀𝑛), 𝑚𝜀⊤ = (𝑚𝜀⊤1 , … ,𝑚𝜀⊤𝑛 ))⊤ it reads in this regime
as

𝜀𝜕𝑡𝜌𝜀𝑖 + div(𝑚𝜀𝑖 ) = 0,

𝜀𝜕𝑡𝑚𝜀𝑖 + div (𝑚
𝜀
𝑖 ⊗ 𝑚𝜀𝑖
𝜌𝜀𝑖

+ 𝑝𝑖(𝜌𝜀𝑖 )𝐼 𝑑)

= −1𝜀 𝑀𝑖𝑚𝜀𝑖 −
1
𝜀

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝜀𝑗𝑚𝜀𝑖 − 𝜌𝜀𝑖𝑚𝜀𝑗),
in ℝ𝑑 × (0, 𝑇 ) (2.24)

with the (𝜀-dependent) initial conditions
𝑈 𝜀(⋅, 0) = 𝑈 𝜀0 ≔ (𝑟 𝜀⊤0 , 𝑚𝜀⊤0 )⊤ = (𝜌𝜀1,0, … , 𝜌𝜀𝑛,0, 𝑚𝜀⊤1,0, … ,𝑚𝜀⊤𝑛,0)⊤ in ℝ𝑑 . (2.25)

As for the single-component case we will show that the multi-component case
admits global smooth solutions exploiting the dissipative effect due to friction as
well as due to the Maxwell–Stefan diffusion.
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The other major goal is to prove that the density component sequence {𝑟 𝜀}𝜀>0 of
solutions to the IVP (2.24)–(2.25) converges for 𝜀 → 0 to the vector-valued density
field ̄𝑟 = ( ̄𝜌1, ..., ̄𝜌𝑛)⊤ solving the system of porous medium equations

𝜕𝑡 ̄𝑟 − div ((B( ̄𝑟))−1∇𝑝( ̄𝑟)) = 0 in ℝ𝑑 × (0, 𝑇 ), (2.26)

subject to the initial conditions

̄𝑟 (⋅, 0) = ̄𝑟0 in ℝ𝑑 . (2.27)

In (2.26) we used the vector-valued pressure

𝑝( ̄𝑟) = (𝑝1( ̄𝜌1), ..., 𝑝𝑛( ̄𝜌𝑛))⊤,
and the matrices

B( ̄𝑟) = B̃( ̄𝑟) ⊗ 𝐼 𝑑 ∈ ℝ𝑛𝑑×𝑛𝑑 ,
B̃( ̄𝑟) = diag(𝑀𝑖) − diag( ̄𝜌𝑖)Λ ∈ ℝ𝑛×𝑛 . (2.28)

The matrix Λ from (2.16) is negative semi-definite. This implies that B̃ is positive
definite due to 𝑀𝑖 > 0 and the positivity of the densities ̄𝜌𝑖 > 0. In particular
B is positive definite as the Kronecker product of two positive definite matrices.
For the definition of the generalized gradient/divergence operators in the system
(2.26) and the Kronecker matrix product ⊗ in (2.28) we refer to Appendix A.
Remark 2.2: 1. For the single component case 𝑛 = 1 the system (2.26) reduces to

the porous-media equation (2.5).

2. If no porous medium is present, i.e.𝑀𝑖 = 0, the system (2.26) in this framework
corresponds for perfect gas laws to the following version of the Maxwell–Stefan
equations formulated for the molar concentrations 𝑐𝑖 often seen in the literature,
e.g. in [65]:

𝜕𝑡𝑐𝑖 + div 𝐽 𝑖 = 0,

∇𝑐𝑖 = −
𝑛
∑

𝑗=1,𝑗≠𝑖

𝑐𝑗𝐽 𝑖 − 𝑐𝑖𝐽 𝑗
𝐷𝑖𝑗

. (2.29)

Here𝐷𝑖𝑗 =
𝑅

𝑐M𝑖M𝑗𝜆𝑖𝑗
, with the ideal gas constant 𝑅, total molar concentration

𝑐 = ∑𝑛
𝑖=1 𝑐𝑖 and molar masses M𝑖 .
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3. Without a porous medium contribution, a different (high friction) scaling for
multi-component flow is considered in [60]. For the limit 𝜀 → 0 the authors
show the convergence to a hyperbolic zeroth-order system with a parabolic first
order correction system which is of Maxwell–Stefan type similar to (2.29).



Existence of
Smooth Solutions in

Multiple Space
Dimensions 3

The main result in this chapter is Theorem 3.2 on the classical well-posedness of
the IVP for system (2.22). To this end, we propose an entropy concept for (2.22)
and adapt a result of Yong [108] on hyperbolic balance laws, see Appendix B. It
exploits dissipative effects of the balance terms that counteract the development of
singularities driven by the hyperbolic flux [34]. To state and prove our main result
Theorem 3.2, we summarize below all assumptions on the system (2.22) according
to the notations from Chapter 2.

Assumption 3.1: We make the following assumptions:

1. The functions 𝜆𝑖𝑗 ∈ 𝐶∞((0, ∞)2, ℝ), 𝑖, 𝑗 = 1, … , 𝑛, satisfy (2.15) and (2.17b).

2. The symmetric matrix Λ(𝑟) = (𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗))
𝑛

𝑖,𝑗=1
is negative semi-definite for all

𝑟 ∈ (0, ∞)𝑛.
3. The free energy densities ℎ𝑖 = 𝜌𝑖𝜓𝑖 ∈ 𝐶3((0, ∞)) are strictly convex for 𝑖 =

1, … , 𝑛.
4. The mobility constants 𝑀𝑖 are positive for 𝑖 = 1, … , 𝑛.
Theorem B.1 applies to general hyperbolic balance laws.
With 𝑈 = (𝜌1, … , 𝜌𝑛, (𝑚⊤1 , … ,𝑚⊤𝑛 ))⊤ we can rewrite (2.22) in this form, that is

𝜕𝑡𝑈 +
𝑑
∑
𝛼=1

𝜕𝑥𝛼 𝐹𝛼 (𝑈 ) = 𝑆(𝑈 ) = ( 0
𝑠(𝑟 , 𝑚)) . (3.1)
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The fluxes 𝐹𝛼 (𝑈 ) ∈ ℝ(𝑑+1)𝑛 and the source 𝑠(𝑟 , 𝑚) ∈ ℝ𝑛𝑑 are given by

𝐹𝛼 (𝑈 ) = (𝑚(𝛼)
1 , … ,𝑚(𝛼)𝑛 , 𝑚

(𝛼)
1
𝜌1

𝑚⊤1 + 𝑝1(𝜌1)𝑒⊤𝛼 , … , 𝑚
(𝛼)𝑛
𝜌𝑛

𝑚⊤𝑛 + 𝑝𝑛(𝜌𝑛)𝑒⊤𝛼)
⊤

(3.2)

𝑠(𝑟 , 𝑚) =
⎛
⎜⎜⎜
⎝

−𝑀1𝑚1 − ∑𝑛
𝑗=1 𝜆1𝑗(𝜌𝑗𝑚1 − 𝜌1𝑚𝑗)

−𝑀2𝑚2 − ∑𝑛
𝑗=1 𝜆2𝑗(𝜌𝑗𝑚2 − 𝜌2𝑚𝑗)

⋮
−𝑀𝑛𝑚𝑛 − ∑𝑛

𝑗=1 𝜆𝑛𝑗(𝜌𝑗𝑚𝑛 − 𝜌𝑛𝑚𝑗)

⎞
⎟⎟⎟
⎠
.

Here we used 𝑚𝑖 = (𝑚(1)
𝑖 , … ,𝑚(𝑑)

𝑖 )⊤ and 𝑒𝛼 ∈ ℝ𝑑 denotes the 𝛼-th unit vector.
Furthermore, we require an entropy–entropy flux pair (𝜂, 𝑞) ∈ 𝐶2(𝐺) for (3.1) on
the state space 𝐺 from (2.21). Following [34], the tuple (𝜂, 𝑞) is called an entropy–
entropy flux pair to the system (2.22) provided D2 𝜂(𝑈 ) is positive-definite and the
compatibility conditions

D 𝜂(𝑈 )D 𝐹𝛼 (𝑈 ) = D 𝑞𝛼 (𝑈 ), 𝛼 = 1, … , 𝑑, (3.3)

are satisfied for all𝑈 ∈ 𝐺. Motivated by the considerations in Chapter 2we suggest
for (2.22) the functions

𝜂(𝑈 ) = 1
2

𝑛
∑
𝑖=1

|𝑚𝑖 |2
𝜌𝑖

+
𝑛
∑
𝑖=1

ℎ𝑖(𝜌𝑖), 𝑞(𝑈 ) = 1
2

𝑛
∑
𝑖=1

𝑚𝑖
|𝑚𝑖 |2
𝜌2𝑖

+ 𝑚𝑖ℎ𝑖(𝜌𝑖)′. (3.4)

Note that 𝜂 in (3.4) is obviously strictly convex, by Assumption 3.1 (iii).
Equipped with the assumptions and definitions above, we state our mainTheorem.

Theorem 3.2 (Global classical well-posedness of the IVP for (2.22)):
Let 𝑠 ≥ ⌊𝑑/2⌋ + 2 and let Assumption 3.1 hold. Consider a static equilibrium solution
�̂� ∈ 𝐺 to (2.22) of the form

�̂� = ( ̂𝜌1, ..., ̂𝜌𝑛, 0, ..., 0)⊤, ̂𝜌𝑖 > 0, 𝑖 = 1, ..., 𝑛. (3.5)

Then there exists a constant 𝑐1 > 0, such that for all 𝑈0 ∈ 𝐻 𝑠(ℝ𝑑) with
‖𝑈0 − �̂� ‖𝐻 𝑠 ≤ 𝑐1

and all 𝑇 > 0 the IVP (2.22)–(2.23) has an unique solution 𝑈 ∈ 𝐶([0, 𝑇 ), 𝐻 𝑠(ℝ𝑑))
taking values in the state space 𝐺.
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Additionally, the solution 𝑈 satisfies the entropy inequality

𝜕𝑡𝜂(𝑈 ) + div 𝑞(𝑈 ) ≤ −𝜁 −
𝑛
∑
𝑖=1

𝑀𝑖
|𝑚𝑖 |2
𝜌𝑖

, (3.6)

with 𝜁 = ∑𝑛
𝑖,𝑗=1

𝜆𝑖𝑗 (𝜌𝑖 ,𝜌𝑗 )
2𝜌𝑖𝜌𝑗

|𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 |2 (see (2.19)).

Proof. For better readability we omit the argument (𝜌𝑖 , 𝜌𝑗) of the functions 𝜆𝑖𝑗 .
With (3.1) we match the setting (6.3) to apply Theorem B.1. We compute the Jaco-
bian for the equilibrium state �̂� from (3.5)

D𝑚 𝑠(�̂� ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−𝑀1 −
𝑛
∑

𝑗=1,𝑗≠1
̂𝜌𝑗𝜆1𝑗 ̂𝜌1𝜆12, … ̂𝜌1𝜆1𝑛

̂𝜌2𝜆21 ⋱ ⋮
⋮ ⋱ ̂𝜌𝑛−1𝜆𝑛−1𝑛−1
̂𝜌𝑛𝜆𝑛1 … ̂𝜌𝑛𝜆𝑛𝑛−1 −𝑀𝑛 −

𝑛
∑

𝑗=1,𝑗≠𝑛
̂𝜌𝑗𝜆𝑛𝑗

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⊗ 𝐼 𝑑 .

From Assumption 3.1 (i) we have ̂𝜌𝑖𝜆𝑖𝑖 = −∑𝑛
𝑗=1,𝑗≠𝑖 ̂𝜌𝑗𝜆𝑖𝑗 which implies

D𝑚 𝑠(�̂� ) = (−M +RΛ) ⊗ 𝐼 𝑑 ,
with M = diag(𝑀𝑖) ∈ ℝ𝑛×𝑛, R = diag( ̂𝜌𝑖) ∈ ℝ𝑛×𝑛 being positive-definite. The
Jacobian D𝑚 𝑠(�̂� ) ≺ 0 is in particular a regular matrix which implies the first
condition in Theorem B.1.
For the entropy 𝜂 from (3.4) and any open set Ĝ ⊂ 𝐺 containing �̂� we have
D 𝜂(𝑈 ) ∈ ℝ𝑛(𝑑+1),D2 𝜂 ∈ ℝ𝑛(𝑑+1)×𝑛(𝑑+1), 𝑈 ∈ Ĝ. The derivatives of 𝜂 read with (2.8)
as

D 𝜂(𝑈 ) = (𝜕(𝜌1𝜓1)
𝜕𝜌1

(𝜌1) −
|𝑚1|2
2𝜌21

, … , 𝜕(𝜌𝑛𝜓𝑛)
𝜕𝜌𝑛

(𝜌𝑛) −
|𝑚𝑛 |2
2𝜌2𝑛

, 𝑚
⊤1

𝜌1
, … , 𝑚

⊤𝑛
𝜌𝑛

)
⊤
,

D 𝜂(�̂� ) = (𝜕(𝜌1𝜓1)
𝜕𝜌1

( ̂𝜌1), … , 𝜕(𝜌𝑛𝜓𝑛)
𝜕𝜌𝑛

( ̂𝜌𝑛), 0⊤, … , 0⊤)
⊤
,

D2 𝜂(𝑈 ) =
⎛
⎜
⎜
⎝

diag ( 1
𝜌𝑖
𝑝′𝑖 (𝜌𝑖) +

|𝑚𝑖 |2
𝜌3𝑖

) blockdiag (−𝑚𝑖
𝜌2𝑖

)
⊤

blockdiag (−𝑚𝑖
𝜌2𝑖

) diag ( 1
𝜌𝑖

⊗ 1𝑑)

⎞
⎟
⎟
⎠
.
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For the definition of the operator blockdiag, the Kronecker product ⊗ and the
entry-wise product ⊙we refer to the Appendix A. From the definition of the fluxes
𝐹𝛼 in (3.2) we compute

D 𝐹𝛼 (𝑈 )

= (
0𝑛×𝑛 𝐼 𝑛 ⊗ 𝑒⊤𝛼

blockdiag (−𝑚𝑖𝑚(𝛼)
𝑖

𝜌2𝑖
+ 𝑝′𝑖 (𝜌𝑖)𝑒𝛼) diag (𝑚(𝛼)

𝑖
𝜌𝑖

1𝑑) + blockdiag (𝑒𝛼 ⊙ 𝑚𝑖
𝜌𝑖
)) ,

where 𝑒𝛼 denotes the 𝛼-th unit vector and 1𝑑 ≔ (1, … , 1)⊤ ∈ ℝ𝑑 . We see that the
matrix

D2 𝜂(𝑈 )D 𝐹𝛼 (𝑈 )

=
⎛
⎜
⎜
⎜
⎝

diag ( |𝑚𝑖 |2𝑚(𝛼)
𝑖

𝜌4𝑖
− 𝑝′𝑖 (𝜌𝑖)𝑚(𝛼)

𝑖
𝜌2𝑖

) blockdiag (𝑝
′𝑖 (𝜌𝑖)
𝜌𝑖

𝑒𝛼 −
𝑚𝑖𝑚(𝛼)

𝑖
𝜌3𝑖

)
⊤

blockdiag (𝑝
′𝑖 (𝜌𝑖)
𝜌𝑖

𝑒𝛼 −
𝑚𝑖𝑚(𝛼)

𝑖
𝜌3𝑖

) diag (𝑚
(𝛼)
𝑖
𝜌2𝑖

1𝑑 , … , 𝑚
(𝛼)𝑛
𝜌2𝑛

1𝑑)

⎞
⎟
⎟
⎟
⎠

is symmetric. Altogether we have verified the second condition in Theorem B.1,
up to now for any open set Ĝ that contains the equilibrium state �̂� .
To check the third condition in Theorem B.1 let 𝑈 , �̂� ∈ Ĝ. We use the symmetry
of Λ and (2.19) to obtain

−(D 𝜂(𝑈 ) − D 𝜂(�̂� )) ⋅ 𝑆(𝑈 ) =
𝑛
∑
𝑖=1

𝑀𝑖
|𝑚𝑖 |2
𝜌𝑖

+
𝑛
∑
𝑗=1

𝜆𝑖𝑗 (
𝜌𝑗
𝜌𝑖
|𝑚𝑖 |2 − 𝑚𝑖 ⋅ 𝑚𝑗)

=
𝑛
∑
𝑖=1

𝑀𝑖
|𝑚𝑖 |2
𝜌𝑖

+ 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗𝜌𝑖𝜌𝑗
|||
𝑚𝑖
𝜌𝑖

− 𝑚𝑗
𝜌𝑗

|||
2

=
𝑛
∑
𝑖=1

𝑀𝑖
|𝑚𝑖 |2
𝜌𝑖

+ 𝜁 . (3.7)

Furthermore, we now choose G as a compact, convex subset of Ĝ such that we
have for all 𝑈 ∈ G the estimate

|𝑆(𝑈 )|2 =
𝑛
∑
𝑖=1

|||𝑀𝑖𝑚𝑖 +
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗)|||
2

≤
𝑛
∑
𝑖=1

2𝑀2𝑖 |𝑚𝑖 |2 + 2|||
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗)|||
2
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≤
𝑛
∑
𝑖=1

2𝑀2𝑖 |𝑚𝑖 |2 + 2𝑛2
𝑛
∑
𝑖,𝑗=1

𝜆2𝑖𝑗 |𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 |2

≤ 2 ̂𝑐G
𝑛
∑
𝑖=1

𝑀𝑖
|𝑚𝑖 |2
𝜌𝑖

+ 2 ̃𝑐G
𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗𝜌𝑖𝜌𝑗
|||
𝑚𝑖
𝜌𝑖

− 𝑚𝑗
𝜌𝑗

|||
2
,

with

̂𝑐G = (max
𝑖=1,...,𝑛

𝑀𝑖) ⋅ (max
𝑖=1,...,𝑛

max
𝜌𝑖∈G

𝜌𝑖) ,

̃𝑐G = 𝑛2 ( max
𝑖,𝑗=1,...,𝑛

max
𝜌𝑖 ,𝜌𝑗∈G

𝜆𝑖𝑗(𝜌𝑖 , 𝜌𝑗)) ⋅ (max
𝑖=1,...,𝑛

max
𝜌𝑖∈G

𝜌𝑖)
2
.

Hence, we get from (3.7) with 𝑐−1G = 2max { ̂𝑐G , ̃𝑐G} the inequality

−𝑐G |𝑆(𝑈 )|2 ≥ (D 𝜂(𝑈 ) − D 𝜂(�̂� ))𝑆(𝑈 ) in G,
which implies the third condition.
Finally,

D 𝑆(𝑈 ) = ( 0𝑛×𝑛 0𝑛×𝑛𝑑
A(𝑈 ) D𝑚 𝑠(𝑈 )) ,

with A(�̂� ) = 0𝑛𝑑×𝑛. Evaluating at �̂� yields

D 𝑆(�̂� ) = ( 0𝑛×𝑛 0𝑛×𝑛𝑑
0𝑛𝑑×𝑛 D𝑚 𝑠(�̂� )) .

The lower right block of this matrix is invertible as shown above. Consequently,

ker(D 𝑆(�̂� )) = span{𝑒1, ..., 𝑒𝑛} ⊂ ℝ𝑛(𝑑+1).
Due to the zero block in D 𝐹𝑗(�̂� ), the corresponding eigenvectors must have non-
zero entries at the 𝑛 + 1-th to 𝑛(𝑑 + 1)-th position. Therefore, the last condition of
Theorem B.1 holds.
We verified all the conditions of Theorem B.1. Hence, the system (2.22) with 𝑈0 as
initial value has an unique solution 𝑈 = 𝑈 (𝑥, 𝑡) ∈ 𝐶([0, 𝑇 ), 𝐻 𝑠(ℝ𝑑)), 𝑠 ≥ ⌊𝑑/2⌋ + 2.
The entropy inequality (3.6) is a consequence of (3.3), (3.7), and D 𝜂(�̂� )𝑆(𝑈 ) =
0.
Remark 3.3: 1. Note that due to 𝑠 ≥ ⌊𝑑/2⌋ + 2 we have with the Sobolev embed-

ding theorem even 𝑈 ∈ 𝐶1(ℝ𝑑 × (0, 𝑇 )).
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2. The symmetry ofD2 𝜂(𝑈 )D 𝐹𝑗(𝑈 ) follows directly from the compatibility condi-
tion (3.3) of the entropy–entropy flux pair and the strict convexity of 𝜂. However,
since the matrices are needed in the proof, we checked this property by hand.



Convergence to
the Parabolic
Limit System 4

The goal of this chapter is to prove the convergence of solutions to (2.24)–(2.25)
to solutions to an IVP for the parabolic limit system (2.26), as 𝜀 tends to zero.
Due to Theorem 3.2, there exists for each 𝜀 > 0 an unique global solution 𝑈 𝜀 =
(𝑟 𝜀⊤, 𝑚𝜀⊤)⊤ to the IVP for the 𝜀-scaled system (2.24). However, the convex set G
might depend on 𝜀 such that the set of admissible initial conditions could shrink
to the equilibrium for 𝜀 → 0. Nevertheless, the techniques of [90] allow to show
that there exists a time interval, independent of 𝜀, where solutions 𝑈 𝜀 exist. Hence,
we assume that there is a time 𝑇 > 0 and a compact, convex set G such that for all
𝜀 > 0 the solutions 𝑈 𝜀 exist on the interval (0, 𝑇 ) and are contained in G.
Our convergence proof relies on the relative entropy method which traces back to
[32, 33], and [38]. This technique only requires one solution to be a strong (in fact
Lipschitz continuous) solution, whereas the other can be a discontinuous entropy
solution. We regard the solutions to (2.24) as weak solutions and the solution to
the limit system as strong solution. We rely on the technical framework that has
been established in [71]. First, we prove a dissipation relation (Proposition 4.1) for
so-called relative entropies in Section 4.1 and finally, we conclude the convergence
estimate with the main result in Theorem 4.3 of Section 4.2.
In the following, we omit the arguments of 𝜆𝑖𝑗 . With a slight misuse of notation
we use the expression (𝑟 𝜀 , 𝑚𝜀) for the solution 𝑈 𝜀 .

4.1 The Relative Entropy Estimate
Let us consider (2.24)–(2.25) for 𝜀 > 0. To obtain a convergence estimate for the
solutions (𝑟 𝜀 , 𝑚𝜀) to (2.24)–(2.25), we fix well-prepared functions for the initial
conditions in (2.25) and (2.27) in ℝ𝑑 .
Let 𝑅0 > 0 and ̂𝑟 ∈ (0, ∞)𝑛 be given. We restrict the initial data (𝑟 𝜀0, 𝑚𝜀0) ∈ 𝐿∞(ℝ𝑑)
in (2.25) to take values in G and to satisfy

(𝑟 𝜀0(𝑥), 𝑚𝜀0(𝑥)) = ( ̂𝑟 , 0) for |𝑥| > 𝑅0. (4.1)
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For the initial data ̄𝑟0 ∈ 𝐶3(ℝ𝑑) of the limit equation (2.26), we impose the analo-
gous condition

̄𝑟0(𝑥) = ̂𝑟 , for |𝑥| > 𝑅0. (4.2)

Using the entropy–entropy flux pair (𝜂, 𝑞) from (3.4), we define an entropy solution
(𝑟 𝜀 , 𝑚𝜀) ∈ 𝐿∞(ℝ𝑑 × (0, 𝑇 )) to (2.24)–(2.25) as a weak solution to (2.24)–(2.25) that
takes values in G and satisfies

𝜕𝑡𝜂(𝑟 𝜀 , 𝑚𝜀) + 1
𝜀 div 𝑞(𝑟

𝜀 , 𝑚𝜀)

+ 1
𝜀2 (

𝑛
∑
𝑖=1

𝑀𝑖
|𝑚𝜀𝑖 |2
𝜌𝜀𝑖

+ 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗𝜌𝜀𝑖 𝜌𝜀𝑗
|||
𝑚𝜀𝑖
𝜌𝜀𝑖

− 𝑚𝜀𝑗
𝜌𝜀𝑗

|||
2
) ≤ 0 (4.3)

in D′(ℝ𝑑 × [0, 𝑇 )). Note that entropy flux scales with 𝜀−1 according to the flux
scaling in (2.24).
Further, let ̄𝑟 ∈ 𝐶3,1(ℝ𝑑 × (0, 𝑇 )) ≔ {𝑔 | 𝑔(⋅, 𝑡) ∈ 𝐶3(ℝ𝑑), 𝑡 ∈ (0, 𝑇 ), 𝑔(𝑥, ⋅) ∈
𝐶1((0, 𝑇 )), 𝑥 ∈ ℝ𝑑 }, with ̄𝑟 ∈ (0, ∞)𝑛, be a smooth solution to (2.26)–(2.27). We
observe that ̄𝑟 satisfies for all 𝜀 > 0 the expanded, but equivalent system

𝜕𝑡 ̄𝑟 + 1
𝜀 div(�̄�) = 0,

�̄� = −𝜀(B( ̄𝑟))−1∇𝑝( ̄𝑟).
(4.4)

Recall that the matrix B has been defined in (2.28). The regularity of ̄𝑟 implies
�̄� ∈ 𝐶2,1(ℝ𝑑×(0, 𝑇 )). Note that �̄� depends on 𝜀 which is suppressed in the notation.
Through evaluation of �̄� at initial time, the equivalent formulation (4.4) of system
(2.26) causes with (4.2) the compatibility condition

�̄�(𝑥, 0) = −𝜀B( ̄𝑟0(𝑥))−1∇𝑝( ̄𝑟0(𝑥)) = 0 for |𝑥| > 𝑅0. (4.5)

For this choice of �̄� we define now the relative entropy expression

𝜂(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�) ≔𝜂(𝑟 𝜀 , 𝑚𝜀) − 𝜂( ̄𝑟 , �̄�)
− D𝑟 𝜂( ̄𝑟 , �̄�) ⋅ (𝑟 𝜀 − ̄𝑟) − D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ (𝑚𝜀 − �̄�)

=12
𝑛
∑
𝑖=1

𝜌𝜀𝑖
|||
𝑚𝜀𝑖
𝜌𝜀𝑖

− �̄�𝑖
̄𝜌𝑖
|||
2
+

𝑛
∑
𝑖=1

ℎ𝑖(𝜌𝜀𝑖 | ̄𝜌𝑖), (4.6)

with
ℎ𝑖(𝜌𝜀𝑖 | ̄𝜌𝑖) ≔ ℎ𝑖(𝜌𝜀𝑖 ) − ℎ𝑖( ̄𝜌𝑖) − ℎ′𝑖 ( ̄𝜌𝑖)(𝜌𝜀𝑖 − ̄𝜌𝑖).
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The relative entropy flux is defined by

𝑞(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�) ≔ 𝑞(𝑟 𝜀 , 𝑚𝜀) − 𝑞( ̄𝑟 , �̄�) − (D𝑟 𝜂( ̄𝑟 , �̄�)⊤ ⊗ 𝐼 𝑑)(𝑚𝜀 − �̄�)
− (𝐼 𝑑 ⊗ D𝑚1 𝜂( ̄𝑟 , �̄�)⊤, … , 𝐼 𝑑 ⊗ D𝑚𝑛 𝜂( ̄𝑟 , �̄�)⊤)(𝐹 (𝑟 𝜀 , 𝑚𝜀) − 𝐹( ̄𝑟 , �̄�))

=
𝑛
∑
𝑖=1

(12𝑚
𝜀𝑖
|||
𝑚𝜀𝑖
𝜌𝜀𝑖

− �̄�𝑖
̄𝜌𝑖
|||
2
+ 𝜌𝑖(ℎ′𝑖 (𝜌𝜀𝑖 ) − ℎ′𝑖 ( ̄𝜌𝑖)) (

𝑚𝜀𝑖
𝜌𝜀𝑖

− �̄�𝑖
̄𝜌𝑖
)

+ �̄�𝑖
̄𝜌𝑖
ℎ𝑖(𝜌𝜀𝑖 | ̄𝜌𝑖)), (4.7)

with 𝐹 being a vectorial collection of the momentum fluxes given by

𝐹(𝑟 , 𝑚) = [(𝑚𝑖 ⊗ 𝑚𝑖
𝜌𝑖

+ 𝑝𝑖(𝜌𝑖)(𝑒⊤1 , 𝑒⊤2 , … , 𝑒⊤𝑑 )⊤)]
𝑛

𝑖=1
∈ ℝ𝑛𝑑2 . (4.8)

In the last formula we used the notation

[𝑢𝑖]𝑛𝑖=1 ≔ (𝑢⊤1 , … , 𝑢⊤𝑛 )⊤ ∈ ℝ𝑛𝑚 , 𝑢𝑖 ∈ ℝ𝑚 , 𝑖 = 1, … , 𝑛,
which appears frequently in the sequel. Additionally, Theorem A.1 will be used
often.
After artificially expanding the system (2.26) to obtain (4.12), we are able to com-
pare the solutions (𝑟 𝜀 , 𝑚𝜀) and ( ̄𝑟 , �̄�) to (2.24) and (4.12), respectively.

Proposition 4.1: Let Assumption 3.1 hold, let the pressure 𝑝𝑖 satisfy (4.17), and let
the initial functions (𝑟 𝜀0, 𝑚𝜀0) ∈ 𝐿∞(ℝ𝑑) and ̄𝑟0 ∈ 𝐶3(ℝ𝑑) satisfy (4.1)–(4.2).
Consider for 𝜀 > 0 an entropy solution (𝑟 𝜀 , 𝑚𝜀) ∈ 𝐿∞(ℝ𝑑 × (0, 𝑇 )) to (2.24), (2.25)
and a smooth solution ( ̄𝑟 , �̄�) ∈ 𝐶3,1(ℝ𝑑 × [0, 𝑇 )) × 𝐶2,1(ℝ𝑑 × [0, 𝑇 )) to (2.26)–(2.27),
supposed to take values in a convex, compact set G ⊂ 𝐺.
Then, with 𝜓 ∈ 𝐶∞0 (ℝ𝑑 × [0, 𝑇 ), (0, ∞)) we have the estimate

∫
𝑇

0
∫
ℝ𝑑

𝜂(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�)𝜕𝑡𝜓 + 1
𝜀 𝑞(𝑟

𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�) ⋅ ∇𝜓 d𝑥 d𝑡

≥ − ∫
ℝ𝑑

𝜂(𝑟 𝜀0, 𝑚𝜀0| ̄𝑟0, �̄�(⋅, 0))𝜓(⋅, 0) d𝑥

+ ∫
𝑇

0
∫
ℝ𝑑

( 1
𝜀2 𝑅𝜀(𝑟

𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) + 𝑄𝜀 + 𝐸𝜀)𝜓 d𝑥 d𝑡, (4.9)
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with

𝑅𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) = 𝑅1,𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) + 𝑅2,𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�),

𝑅1,𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) =
𝑛
∑
𝑖=1

𝑀𝑖𝜌𝜀𝑖
|||
𝑚𝜀𝑖
𝜌𝜀𝑖

− �̄�𝑖
̄𝜌𝑖
|||
2
,

𝑅2,𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) = 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗[𝜌𝜀𝑖 𝜌𝜀𝑗
|||(
𝑚𝜀𝑖
𝜌𝜀𝑖

− 𝑚𝜀𝑗
𝜌𝜀𝑗

) − (�̄�𝑖
̄𝜌𝑖
− �̄�𝑗

̄𝜌𝑗
)|||

2

+ 𝜌𝜀𝑖 (
�̄�𝑖
̄𝜌𝑖
− �̄�𝑗

̄𝜌𝑗
) ⋅ (𝑚

𝜀𝑖
𝜌𝜀𝑖

− �̄�𝑖
̄𝜌𝑖
) (𝜌𝜀𝑗 − ̄𝜌𝑗)

−𝜌𝜀𝑗 (
�̄�𝑖
̄𝜌𝑖
− �̄�𝑗

̄𝜌𝑗
) ⋅ (𝑚

𝜀𝑗
𝜌𝜀𝑗

− �̄�𝑗
̄𝜌𝑗
) (𝜌𝜀𝑖 − ̄𝜌𝑖)] ,

𝑄𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) = 1
𝜀 (D

2 𝜂( ̄𝑟 , �̄�) ⊗ 𝐼 𝑑)∇ ( ̄𝑟
�̄�) ⋅ ( 0

𝐹(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�)) ,

𝐸𝜀(𝑟 𝜀 , 𝑚𝜀 , ̄𝑟 , �̄�) = ̄𝑒𝜀 ⋅ [
𝜌𝜀𝑖
̄𝜌𝑖
(𝑚

𝜀𝑖
𝜌𝜀𝑖

− �̄�𝑖
̄𝜌𝑖
)]

𝑛

𝑖=1
,

̄𝑒𝜀 = ̄𝑒𝜀( ̄𝑟 , �̄�) = 1
𝜀 [div (

�̄�𝑖 ⊗ �̄�𝑖
̄𝜌𝑖

)]
𝑛

𝑖=1
− 𝜀𝜕𝑡(B( ̄𝑟)−1∇𝑝( ̄𝑟)).

(4.10)

Before we present the proof of Proposition 4.1, we summarize two remarks on
the scaling of the remainder terms 𝑄𝜀 and 𝐸𝜀 with respect to 𝜀. These remarks are
needed in Section 4.2.
Remark 4.2: 1. The first factor of 𝑄𝜀 depends only on ( ̄𝑟 , �̄�). Although �̄� in-

volves 𝜀, the factor is independent of 𝜀, i.e.,
1
𝜀 ((D

2
𝑟,𝑚 𝜂( ̄𝑟 , �̄�) ⊗ 𝐼 𝑑)∇ ̄𝑟 + (D2

𝑚,𝑚 𝜂( ̄𝑟 , �̄�) ⊗ 𝐼 𝑑)∇�̄�)

= 1
𝜀 [∇ (�̄�𝑖

̄𝜌𝑖
)]

𝑛

𝑖=1
= −∇ (diag ( 1

̄𝜌𝑖 ⊗ 1𝑑
)B( ̄𝑟)−1∇𝑝( ̄𝑟)) = 𝑂(1).

2. Recalling the definition of B from (2.28), the smoothness of ̄𝑟 and 𝑝 implies

̄𝑒𝜀 =
1
𝜀 [div (

�̄�𝑖 ⊗ �̄�𝑖
̄𝜌𝑖

)]
𝑛

𝑖=1
− 𝜀𝜕𝑡(B( ̄𝑟)−1∇𝑝( ̄𝑟))

= 1
𝜀 [div (diag (

1
̄𝜌𝑖 ⊗ 1𝑑

) [�̄�𝑖 ⊗ �̄�𝑖]𝑛𝑖=1)] − 𝜀𝜕𝑡(B( ̄𝑟)−1∇𝑝( ̄𝑟))
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= 𝜀 [div (diag ( 1
̄𝜌𝑖 ⊗ 1𝑑

) [B̃( ̄𝑟)−1∇𝑝𝑖( ̄𝜌𝑖) (B̃( ̄𝑟)−1∇𝑝𝑖( ̄𝜌𝑖))
⊤]

𝑛

𝑖=1
)]

− 𝜀𝜕𝑡(B( ̄𝑟)−1∇𝑝( ̄𝑟))
= 𝑂(𝜀). (4.11)

Hence the vector ̄𝑒𝜀 = 𝑂(𝜀) in 𝐸𝜀 is of order 𝑂(𝜀).
Proof of Proposition 4.1. To simplify the notation we may omit the index 𝜀 and
write (𝑟 , 𝑚) = (𝑟 𝜀 , 𝑚𝜀). The entropy solution (𝑟 , 𝑚) to the IVP for (2.24) satisfies
the inequality (4.3).
In order to derive a similar expression for the solution ̄𝑟 of the IVP for (2.26), we
further rewrite the equivalent system (4.4) for ( ̄𝑟 , �̄�).
With 𝜆𝑖𝑖𝑟𝑖 = −∑𝑖≠𝑗 𝜆𝑖𝑗𝑟𝑗 , (2.15), and (2.17b), it is easy to see that the solution ( ̄𝑟 , �̄�)
of (4.4) also satisfies

𝜕𝑡 ̄𝑟 + 1
𝜀 div(�̄�) = 0,

𝜕𝑡�̄� + 1
𝜀 div(𝐹 ( ̄𝑟 , �̄�)) = [ − 1

𝜀2𝑀𝑖�̄�𝑖 −
1
𝜀2

𝑛
∑
𝑗=1

𝜆𝑖𝑗( ̄𝜌𝑗�̄�𝑖 − ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1
+ ̄𝑒𝜀( ̄𝑟 , �̄�),

(4.12)

with ̄𝑒𝜀 from (4.10) and 𝐹 from (4.8).
With (4.12) and (3.4) we see that ( ̄𝑟 , �̄�) satisfies in the sense of distributions

𝜕𝑡𝜂( ̄𝑟 , �̄�) + 1
𝜀 div 𝑞( ̄𝑟 , �̄�) = − 1

𝜀2 (
𝑛
∑
𝑖=1

𝑀𝑖
|�̄�𝑖 |2

̄𝜌𝑖
+ 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗 ̄𝜌𝑖 ̄𝜌𝑗
|||
�̄�𝑖
̄𝜌𝑖
− �̄�𝑗

̄𝜌𝑗
|||
2
)

+ D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ ̄𝑒𝜀 . (4.13)

Before we use the entropy relations (4.3) and (4.13), we return to the weak formu-
lations: We subtract the weak formulations of (4.12) from the weak formulation
for (2.24) and obtain for the mass balance equations

− ∫
𝑇

0
∫
ℝ𝑑

𝜕𝑡𝜙 ⋅ (𝑟 − ̄𝑟) + 1
𝜀 ∇𝜙 ⋅ (𝑚 − �̄�) d𝑥 d𝜏

− ∫
ℝ𝑑

𝜙(𝑥, 0) ⋅ (𝑟0 − ̄𝑟0) d𝑥 = 0. (4.14)

Using the definition of ̄𝑒𝜀 in (4.10) yields for the momentum components

− ∫
𝑇

0
∫
ℝ𝑑

𝜕𝑡𝜃 ⋅ (𝑚 − �̄�) + 1
𝜀 ∇𝜃 ⋅ (𝐹 (𝑟 , 𝑚) − 𝐹( ̄𝑟 , �̄�)) d𝑥 d𝜏
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− ∫
ℝ𝑑

𝜃(𝑥, 0) ⋅ (𝑚0 − �̄�(⋅, 0)) d𝑥

= ∫
𝑇

0
∫
ℝ𝑑

𝜃 ⋅ ( − 1
𝜀2 [𝑀𝑖(𝑚𝑖 − �̄�𝑖)]

𝑛

𝑖=1

+ [
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 + ̄𝜌𝑗�̄�𝑖 − ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1
− ̄𝑒𝜀) d𝑥 d𝜏 . (4.15)

Here, 𝜙 and 𝜃 are vector-valued test functions with compact support in ℝ𝑑 ×[0, 𝑇 ).
With some function 𝜓 ∈ 𝐶∞0 (ℝ𝑑 × [0, 𝑇 ), (0, ∞)) we make the specific choices

𝜙(𝑥, 𝜏) = 𝜓(𝑥, 𝜏)D𝑟 𝜂( ̄𝑟(𝑥, 𝜏 ), �̄�(𝑥, 𝜏 )),
𝜃(𝑥, 𝜏) = 𝜓(𝑥, 𝜏)D𝑚 𝜂( ̄𝑟(𝑥, 𝜏 ), �̄�(𝑥, 𝜏 )),

which lead in (4.14) and (4.15) to

∫
𝑇

0
∫
ℝ𝑑

(D𝑟 𝜂 ( ̄𝑟 , �̄�) ⋅ (𝑟 − ̄𝑟) + D𝑚 𝜂 ( ̄𝑟 , �̄�) ⋅ (𝑚 − �̄�)) 𝜓𝑡 d𝑥 d𝑡

+ ∫
𝑇

0
∫
ℝ𝑑

1
𝜀2 ((D𝑟 𝜂 ( ̄𝑟 , �̄�) ⊗ ∇𝜓) ⋅ (𝑚 − �̄�)

+ (D𝑚 𝜂 ( ̄𝑟 , �̄�) ⊗ ∇𝜓) ⋅ (𝐹 (𝑟 , 𝑚) − 𝐹( ̄𝑟 , �̄�))) d𝑥 d𝑡

= − ∫
ℝ𝑑

(D𝑟 𝜂 ( ̄𝑟0, �̄�0) ⋅ (𝑟0 − ̄𝑟0)

+ D𝑚 𝜂 ( ̄𝑟0, �̄�(⋅, 0)) ⋅ (𝑚0 − �̄�(⋅, 0)) )𝜓(⋅, 0) d𝑥

− ∫
𝑇

0
∫
ℝ𝑑

𝐽𝜀𝜓 d𝑥 d𝑡. (4.16)

The term 𝐽𝜀 in (4.16) is defined as

𝐽𝜀 ≔D𝑚 𝜂( ̄𝑟 , �̄�)

⋅ (− 1
𝜀2 [𝑀𝑖(𝑚𝑖 − �̄�𝑖) +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 − ̄𝜌𝑗�̄�𝑖 + ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1
− ̄𝑒𝜀)

+ 𝜕𝑡[D𝑟 𝜂( ̄𝑟 , �̄�)] ⋅ (𝑟 − ̄𝑟) + 𝜕𝑡[D𝑚 𝜂( ̄𝑟 , �̄�)] ⋅ (𝑚 − �̄�)
+ 1
𝜀 ∇(D𝑟 𝜂(𝑟 , 𝑚)) ⋅ (𝑚 − �̄�) + 1

𝜀 ∇(D𝑚 𝜂( ̄𝑟 , �̄�)) ⋅ (𝐹 (𝑟 , 𝑚) − 𝐹( ̄𝑟 , �̄�)).
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Combining the entropy inequality (4.3) for (𝑟 𝜀 , 𝑚𝜀), the entropy equation (4.13) for
( ̄𝑟 , �̄�), and the relation (4.16), the definition of the relative entropy–entropy flux
pair in (4.6)–(4.7) implies that the following inequality holds in the weak sense:

𝜕𝑡𝜂(𝑟 , 𝑚| ̄𝑟 , �̄�) + 1
𝜀 div 𝑞(𝑟 , 𝑚| ̄𝑟 , �̄�)

≤ − 1
𝜀2 (D𝑚 𝜂(𝑟 , 𝑚) ⋅ [𝑀𝑖𝑚𝑖 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗)]
𝑛

𝑖=1
)

+ 1
𝜀2 (D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ [𝑀𝑖�̄�𝑖 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗( ̄𝜌𝑗�̄�𝑖 − ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1
)

− D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ ̄𝑒𝜀 − 𝐽𝜀 .
In the term 𝐽𝜀 we use (4.13) and Theorem A.1 to compute the time derivative of
∇𝑚𝜂( ̄𝑟 , �̄�) by the chain rule. This leads to

𝐽𝜀 = − 1
𝜀2 D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ [𝑀𝑖(𝑚𝑖 − �̄�𝑖) +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 − ̄𝜌𝑗�̄�𝑖 + ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1

− D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ ̄𝑒𝜀

+ D2 𝜂( ̄𝑟 , �̄�)𝜕𝑡 ( ̄𝑟
�̄�) ⋅ ( 𝑟 − ̄𝑟

𝑚 − �̄�)

+ 1
𝜀 (D

2 𝜂( ̄𝑟 , �̄�) ⊗ 𝐼 𝑑)∇ ( ̄𝑟
�̄�) ⋅ ( 𝑚 − �̄�

𝐹(𝑟 , 𝑚) − 𝐹( ̄𝑟 , �̄�))

= − 1
𝜀2 D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ [𝑀𝑖(𝑚𝑖 − �̄�𝑖) +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 − ̄𝜌𝑗�̄�𝑖 + ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1

− D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ ̄𝑒𝜀

+ D2 𝜂( ̄𝑟 , �̄�) (
0

[− 1
𝜀2𝑀𝑖�̄�𝑖 − 1

𝜀2 ∑
𝑛
𝑗=1 𝜆𝑖𝑗( ̄𝜌𝑗�̄�𝑖 − ̄𝜌𝑖�̄�𝑗)]

𝑛

𝑖=1
+ ̄𝑒𝜀) ⋅ ( 𝑟 − ̄𝑟

𝑚 − �̄�)

+ 1
𝜀 (D

2 𝜂( ̄𝑟 , �̄�) ⊗ 𝐼 𝑑)∇ ( ̄𝑟
�̄�) ⋅ ( 0

𝐹(𝑟 , 𝑚| ̄𝑟 , �̄�)) .
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Finally, we proceed with this expression for 𝐽𝜖 and deduce

𝜕𝑡𝜂(𝑟 , 𝑚| ̄𝑟 , �̄�) + 1
𝜀 div 𝑞(𝑟 , 𝑚| ̄𝑟 , �̄�)

= − 1
𝜀2 (D𝑚 𝜂(𝑟 , 𝑚) ⋅ [𝑀𝑖𝑚𝑖 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗)]
𝑛

𝑖=1
)

+ 1
𝜀2 (D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ [𝑀𝑖�̄�𝑖 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗( ̄𝜌𝑗�̄�𝑖 − ̄𝜌𝑖�̄�𝑗)]
𝑛

𝑖=1
)

+ 1
𝜀2 D𝑚 𝜂( ̄𝑟 , �̄�) ⋅ [𝑀𝑖(𝑚𝑖 − �̄�𝑖) +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗 + ̄𝜌𝑖�̄�𝑗 − ̄𝜌𝑗�̄�𝑖)]
𝑛

𝑖=1

− D2 𝜂( ̄𝑟 , �̄�) (
0

− 1
𝜀2 [𝑀𝑖�̄�𝑖 + ∑𝑛

𝑗=1 𝜆𝑖𝑗( ̄𝜌𝑗�̄�𝑖 − ̄𝜌𝑖�̄�𝑗)]
𝑛
𝑖=1
) ⋅ ( 𝑟 − ̄𝑟

𝑚 − �̄�)

− D2 𝜂( ̄𝑟 , �̄�) (0̄𝑒) ⋅ (
𝑟 − ̄𝑟
𝑚 − �̄�) − 1

𝜀 (D
2 𝜂( ̄𝑟 , �̄�) ⊗ 𝐼 𝑑)∇ ( ̄𝑟

�̄�) ⋅ ( 0
𝐹(𝑟 , 𝑚| ̄𝑟 , �̄�))

= − 1
𝜀2 𝑅𝜀 − 𝑄𝜀 − 𝐸𝜀 .

The last line follows from the definitions in (4.10) and concludes the proof.

4.2 The Convergence Estimate
In this section we make an additional assumption on the pressure.
Let there exist constants 𝑎𝑖 > 0, 𝑖 = 1, … , 𝑛 such that

𝑝′′𝑖 (𝑟) ≤ 𝑎𝑖
𝑝′𝑖 (𝑟)
𝑟 for all 𝑟 > 0, and 𝑖 = 1, ..., 𝑛. (4.17)

The condition (4.17) is satisfied for instance for the isentropic pressure laws 𝑝𝑖(𝑟) =
𝑘𝑖𝑟𝛾𝑖 (𝛾𝑖 ≥ 1, 𝑘𝑖 > 0) with 𝑎𝑖 ≥ 𝛾𝑖 − 1, if 𝛾𝑖 > 1 and any 𝑎𝑖 > 0, if 𝛾𝑖 = 1.
Due to (4.17) we have

1
𝑎𝑖
𝑝″𝑖 (𝑟) ≤ ℎ″𝑖 (𝑟) =

𝑝′𝑖 (𝑟)
𝑟 . (4.18)

Note that

𝑝𝑖(𝜌𝑖 | ̄𝜌𝑖) = 𝑝𝑖(𝜌𝑖) − 𝑝𝑖( ̄𝜌𝑖) − 𝑝′𝑖 ( ̄𝜌𝑖)(𝜌𝑖 − ̄𝜌𝑖)
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= (𝜌𝑖 − ̄𝜌𝑖)2 ∫
1

0
∫
𝜏

0
𝑝″(𝑠𝜌𝑖 + (1 − 𝑠) ̄𝜌𝑖) d𝑠 d𝜏 .

Hence, with

|𝐹 (𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�)| = 𝜂(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�) +
𝑛
∑
𝑖=1

𝑝𝑖(𝜌𝑖 | ̄𝜌𝑖) − ℎ𝑖(𝜌𝑖 | ̄𝜌𝑖),

the inequality (4.18) implies with some 𝑐 > 0
|𝐹 (𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�)| ≤ 𝑐𝜂(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�). (4.19)

Here, 𝐹(𝑟 , 𝑚| ̄𝑟 , �̄�) = 𝐹(𝑟 , 𝑚) − 𝐹( ̄𝑟 , �̄�) − D 𝐹( ̄𝑟 , �̄�)(𝑟 − ̄𝑟 , 𝑚 − �̄�).
Weneed to introduce a slightly different entropy–entropy flux pair to obtain a con-
vergence estimate that corresponds to convergence in standard Lebesgue spaces.
Subtracting the constant 𝜂( ̂𝑟 , 0) = ∑𝑛

𝑖=1 ℎ𝑖( ̂𝜌𝑖) from the entropy 𝜂, we obtain a mod-
ified entropy–entropy flux pair (�̃�, �̃�) with the property �̃�( ̂𝑟 , 0) = 0 by setting

�̃�(𝑟 , 𝑚) = 𝜂(𝑟 , 𝑚) − 𝜂( ̂𝑟 , 0), �̃�(𝑟 , 𝑚) = 𝑞(𝑟 , 𝑚).
Since (2.24) is a hyperbolic balance law, due to (4.1) and the uniform bound in
G, the functions (𝑟 𝜀 − ̂𝑟 , 𝑚𝜀) have uniform compact support. Again, the uniform
boundedness implies that there are constants 𝐾1, 𝐾2 > 0 such that for any 𝜀 > 0
the entropy solution (𝑟 𝜀 , 𝑚𝜀) to (2.24)–(2.25) satisfies

max
𝑖=1,…,𝑛

sup
𝑡∈[0,𝑇 ]

{∫
ℝ𝑑

|𝜌𝜀𝑖 (𝑥, 𝑡) − ̂𝜌𝑖(𝑥, 𝑡)| d𝑥} ≤ 𝐾1,

sup
𝑡∈[0,𝑇 ]

{∫
ℝ𝑑

�̃�(𝑟 𝜀(𝑥, 𝑡), 𝑚𝜀(𝑥, 𝑡)) d𝑥} ≤ 𝐾2.
(4.20)

As discussed in the introduction to Chapter 4 we will consider a classical solution
̄𝑟 to (2.26). Let ( ̄𝑟 , �̄�) ∈ 𝐶3,1(ℝ𝑑 × [0, 𝑇 )) × 𝐶2,1ℝ𝑑 × [0, 𝑇 )) be a classical solution to
(2.26) (respectively the equivalent system (4.4)), (2.27) with initial data satisfying
(4.2). Since (2.26) is a regular parabolic system we can assume under correspond-
ing conditions on ̄𝑟0,that ( ̄𝑟 , �̄�) is also contained in G. With the relative entropy
�̃�(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�) = 𝜂(𝑟 𝜀 , 𝑚𝜀 | ̄𝑟 , �̄�) − ∑𝑛

𝑖=1 ℎ𝑖( ̂𝜌𝑖), we measure the distance between the
solutions (𝑟 𝜀 , 𝑚𝜀) and ( ̄𝑟 , �̄�) via the expression

𝜑𝜀(𝑡) ≔ ∫
ℝ𝑑

�̃�(𝑟 𝜀(𝑥, 𝑡), 𝑚𝜀(𝑥, 𝑡)| ̄𝑟 (𝑥, 𝑡), �̄�(𝑥, 𝑡)) d𝑥. (4.21)
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Note that the conditions (4.1), (4.2), and (4.5) show that 𝜑𝜀(0) is finite. Due to the
strict convexity of �̃� there are some constants 𝑐, 𝐶 > 0 (which depend on G) such
that

𝑐|(𝑠, 𝑛) − ( ̄𝑠, �̄�)|2 ≤ �̃�(𝑠, 𝑛| ̄𝑠, �̄�) ≤ 𝐶|(𝑠, 𝑛) − ( ̄𝑠, �̄�)|2, (4.22)

holds for all vectors (𝑠, 𝑛), ( ̄𝑠, �̄�) ∈ G. The relation (4.22) relies on a Taylor expan-
sion of �̃�. The constants 𝑐 and 𝐶 depend on the expansion point of this expansion.
If G approaches the boundary of the state space 𝐺 (2.21), i.e. 𝜌𝑖 → 0 for some
𝑖 ∈ {1, … , 𝑛}, the constants 𝑐 , 𝐶 degenerate in the limit. These constants also de-
pend on the pressure laws 𝑝𝑖(𝑟), 𝑖 = 1, … , 𝑛. For the example of isentropic pressure
laws they depend on the adiabatic exponent 𝛾𝑖 . For typical physical applications
with 𝛾𝑖 ∈ [1, 2] the relation (4.22) holds.
As a consequence, since the solutions (𝑟 𝜀 , 𝑚𝜀) and ( ̄𝑟 , �̄�) take values in G, expres-
sion (4.21) is compatible with the 𝐿2-difference of the solutions. We can now state
the final theorem.

Theorem 4.3 (Asymptotic behavior for (2.24)): Let Assumption 3.1 hold, let the
pressure 𝑝𝑖 satisfy (4.17), and let the initial functions (𝑟 𝜀0, 𝑚𝜀0) ∈ 𝐿∞(ℝ𝑑) and ̄𝑟0 ∈
𝐶3(ℝ𝑑) satisfy (4.1), (4.2).
Consider for 𝜀 > 0 an entropy solution (𝑟 𝜀 , 𝑚𝜀) ∈ 𝐿∞(ℝ𝑑 × (0, 𝑇 )) to (2.24), (2.25)
and a smooth solution ( ̄𝑟 , �̄�) ∈ 𝐶3,1(ℝ𝑑 × [0, 𝑇 )) × 𝐶2,1ℝ𝑑 × [0, 𝑇 )) to (2.26), (2.27),
supposed to take values in a convex, compact set G ⊂ 𝐺.
Then there exist constants 𝑐𝑖 > 0, 𝑖 = 1, … , 𝑛 such that for

𝑀𝑖 ≥ 𝑐𝑖 max
𝑗=1,…,𝑛

max
(𝑟𝑖 ,𝑟𝑗 )∈G×G

{|𝜆𝑖𝑗(𝑟𝑖 , 𝑟𝑗)|} (4.23)

we have the estimate

𝜑𝜀(𝑡) ≤ 𝐾(𝜑𝜀(0) + 𝜀4) (𝑡 ∈ (0, 𝑇 ]). (4.24)

Here 𝐾 > 0 is a constant that depends only on 𝑇 , G, and ̄𝑟 but not on 𝜀.
Remark 4.4: 1. If the initial data (𝑟 𝜀0, 𝑚𝜀0) converge for 𝜀 → 0 to ( ̄𝑟0, �̄�(⋅, 0)) in

𝐿2loc(ℝ𝑑), the estimate (4.24) implies

‖(𝑟 𝜀 , 𝑚𝜀)(⋅, 𝑡) − ( ̄𝑟 , �̄�)(⋅, 𝑡)‖𝐿2(ℝ𝑑 ) → 0,
due to the compatibility relation (4.22).

2. The condition (4.23) holds especially for 𝜆𝑖𝑗 = 0, 𝑖, 𝑗 = 1, … , 𝑛 what corresponds
exactly to [71]. In gaseous mixtures (4.23) is expected to hold, see Remark 2.1.
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Proof (of Theorem 4.3). For the proof we write again (𝑟 , 𝑚) = (𝑟 𝜀 , 𝑚𝜀).
We consider the relative entropy statement from (4.9) in Proposition 4.1 which
holds also for the entropy pair (�̃�, �̃�). As test function 𝜓 we make the choice
𝜓(𝑥, 𝑡) = 𝜃𝜅(𝜏)𝜔𝑅(𝑥) with 𝜃𝜅 given for 𝜅 > 0 by

𝜃𝜅(𝜏) ≔
⎧
⎨
⎩

1, 0 ≤ 𝜏 < 𝑡,
𝑡−𝜏
𝜅 + 1, 𝑡 ≤ 𝜏 < 𝑡 + 𝜅,
0, 𝜏 ≥ 𝑡 + 𝜅,

and with 𝜔𝑅 given for 𝑅, 𝛿 > 0 by

𝜔𝑅(𝑥) =
⎧
⎨
⎩

1, |𝑥| < 𝑅,
1 + 𝑅−|𝑥|

𝛿 , 𝑅 < |𝑥| < 𝑅 + 𝛿,
0, else.

By taking the limit 𝑅 → ∞, using the asymptotic properties (4.1)–(4.2) of (𝑟 , 𝑚)
and ( ̄𝑟 , �̄�), and finally sending 𝜅 → 0, we obtain using the definition of 𝜙𝜀 from
(4.21) the inequality

𝜑𝜀(𝑡) +
1
𝜀2 ∫

𝑡

0
∫
ℝ𝑑

𝑅𝜀(𝑟 , 𝑚, ̄𝑟 , �̄�) d𝑥 d𝜏

≤ 𝜑𝜀(0) + ∫
𝑡

0
∫
ℝ𝑑

(|𝑄𝜀 | + |𝐸𝜀 |) d𝑥 d𝜏 , (4.25)

with 𝑄𝜀 , 𝐸𝜀 , and 𝑅𝜀 from (4.10) in Proposition 4.1.
Due to Remark 4.2 and (4.19) it holds

∫
𝑡

0
∫
ℝ𝑑

|𝑄𝜀 | d𝑥 d𝜏 ≤ 𝐶1 ∫
𝑡

0
𝜑𝜀(𝜏) d𝜏 ,

where 𝐶1 > 0 depends on the 𝐿∞-norm of ∇ ̄𝑟 but not on 𝜀. The error term 𝐸𝜀 can
be estimated for any number 𝐶2 > 0 with Young’s inequality by

∫
𝑡

0
∫
ℝ𝑑

|𝐸𝜀 | d𝑥 d𝜏 ≤𝐶2𝜀2
2 ∫

𝑡

0
∫
ℝ𝑑

𝑛
∑
𝑖=1

|||
̄𝑒𝜀,𝑖
̄𝜌𝑖
|||
2
𝜌𝑖 d𝑥 d𝜏

+ 1
2𝐶2𝜀2 ∫

𝑡

0
∫
ℝ𝑑

𝑛
∑
𝑖=1

𝑀𝑖𝜌𝑖
|||
𝑚𝑖
𝜌𝑖

− �̄�𝑖
̄𝜌𝑖
|||
2
d𝑥 d𝜏 .
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Additionally, we have from (4.11) with ̄𝑒𝜀 = 𝑂(𝜀) (see Remark 4.2) the inequality

∫
𝑡

0
∫
ℝ𝑑

𝑛
∑
𝑖=1

|||
̄𝑒𝜀,𝑖
̄𝜌𝑖
|||
2
𝜌𝑖 d𝑥 d𝜏 ≤

𝑛
∑
𝑖=1

(‖‖‖
̄𝑒𝜀,𝑖
̄𝜌𝑖
‖‖‖
2

𝐿∞
∫
𝑡

0
∫
ℝ𝑑

||𝜌𝑖 − ̂𝜌𝑖 || d𝑥 d𝜏

+| ̂𝜌𝑖 | ∫
𝑡

0
∫
ℝ𝑑

|||
̄𝑒𝜀,𝑖
̄𝜌𝑖
|||
2
d𝑥 d𝜏)

≤ 𝐶3𝜀2𝑡,
where the constant 𝐶3 > 0 depends on 𝑇 , 𝐾1 from (4.20), G, and also on ̄𝑟 through
(4.11).
Plugging these estimates into (4.25) leads to

𝜑𝜀(𝑡) +
1
𝜀2 ∫

𝑡

0
∫
ℝ𝑑

𝑅𝜀(𝑟 , 𝑚, ̄𝑟 , �̄�) − 1
2𝐶2

𝑅1,𝜀(𝑟 , 𝑚, ̄𝑟 , �̄�) d𝑥 d𝜏

≤ 𝜑𝜀(0) + 𝐶1 ∫
𝑡

0
𝜑𝜀(𝜏) d𝜏 + 𝐶3𝜀4𝑡.

We need the integral on the left hand side of the last estimate to be positive. The
integrand reads as

𝑅𝜀(𝑟 , 𝑚, ̄𝑟 , �̄�) − 1
2𝐶2

𝑅1,𝜀(𝑟 , 𝑚, ̄𝑟 , �̄�) = (1 − 1
2𝐶2

) 𝑅1,𝜀 + 𝑅2,𝜀 .

The term 𝑅1,𝜀 is positive and scales with the mobilities 𝑀𝑖 , whereas the term 𝑅2,𝜀
can have arbitrary sign and scales with the diffusion coefficients 𝜆𝑖𝑗 .
Hence, if the first term dominates, we can assure positivity of the integral. This
follows with (4.10), (4.23), and choosing 𝐶2 sufficiently large. Then, Gronwall’s
inequality yields a constant 𝐾 > 0 such that

𝜑𝜀(𝑡) ≤ 𝐾(𝜑𝜀(0) + 𝜀4), 𝑡 ∈ (0, 𝑇 ].



Asymptotic
Preserving

Numerical Scheme 5
In Chapter 2 we derived the Euler–Darcy–MS model which describes compress-
ible multi-component porous-media flow. This model has the type of a system of
hyperbolic balance laws. However, in certain regimes, characterized by a small pa-
rameter 𝜀 > 0, the solution to this system converges to the solution to a parabolic
limit system for 𝜀 → 0. This is proven in Chapter 4. In the present chapter we
introduce a numerical scheme for simulations of the system in the asymptotic
regime. The scheme is designed to be asymptotic preserving. This means that the
asymptotic limit of the system is preserved on the discrete level. To be precise, for
fixed mesh size Δ𝑥 and time step width Δ𝑡 , for 𝜀 → 0 the scheme yields a consis-
tent discretization of the limit system. AP schemes go back to [63]. For a review
on AP schemes we refer to [64].
The idea of AP schemes is illustrated in Figure 5.1. We consider the hyperbolic

Δ → 0

Δ → 0𝐻 𝜀Δ

𝜀 → 0

𝑃Δ

𝐻 𝜀

𝜀 → 0

𝑃

Figure 5.1: Illustration of asymptotic preserving schemes.

model 𝐻 𝜀 with the corresponding numerical discretization 𝐻 𝜀Δ. This discretization
is consistent, i.e. for discretization parameter Δ → 0 (mesh size or time step), we
recover the model 𝐻 𝜀 . The hyperbolic model 𝐻 𝜀 tends for 𝜀 → 0 to the parabolic
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limit system 𝑃 , which is independent of 𝜀. If a limit discretization 𝑃Δ of 𝐻 𝜀Δ for
𝜀 → 0 with fixed Δ exists and is a consistent discretization of 𝑃 , we call the
scheme 𝐻 𝜀Δ asymptotic preserving.
We derive an AP scheme for the Euler–Darcy–MS system in Section 5.1. Next,
in Section 5.2, we present numerical experiments which illustrate the concept of
uphill diffusion. Further, we numerically check the convergence rate (4.24) with
respect to 𝜀. To this end we use a discrete version of the relative entropy and
compare the numerical solution to the 𝜀 system with a reference solution to the
parabolic limit system.

5.1 AP Scheme for the Euler–Darcy–MS Model
Consider the system (2.24)–(2.25) in one space dimension, i.e. 𝑑 = 1. This system
serves as model 𝐻 𝜀 , see Figure 5.1.
For 𝑖 = 1, … , 𝑛 the system reads as:

𝜀𝜕𝑡𝜌𝜀𝑖 + 𝜕𝑥𝑚𝜀𝑖 = 0,

𝜀𝜕𝑡𝑚𝜀𝑖 + 𝜕𝑥 (
𝑚𝜀𝑖

2

𝜌𝜀𝑖
+ 𝑝𝑖(𝜌𝜀𝑖 ))

= −1𝜀 𝑀𝑖𝑚𝜀𝑖 −
1
𝜀

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝜀𝑗𝑚𝜀𝑖 − 𝜌𝜀𝑖𝑚𝜀𝑗 )

in ℝ × (0, 𝑇 ), (5.1)

with initial conditions

𝑈 𝜀(⋅, 0) = 𝑈 𝜀0 ≔ (𝑟 𝜀⊤0 , 𝑚𝜀⊤0 )⊤ = (𝜌𝜀1,0, … , 𝜌𝜀𝑛,0, 𝑚𝜀1,0, … ,𝑚𝜀𝑛,0)⊤ in ℝ. (5.2)

In this chapter we want Theorem 4.3 to hold. Hence, we make the same assump-
tions on the data as in the previous chapters, namely Assumption 3.1. Additionally,
let the pressure functions 𝑝𝑖 satisfy (4.17).
We consider entropy solutions to (5.1)–(5.2). To this end recall the entropy–entropy
flux pair (3.4) and entropy inequality (4.3):

𝜕𝑡𝜂(𝑟 𝜀 , 𝑚𝜀) + 1
𝜀 𝜕𝑥𝑞(𝑟

𝜀 , 𝑚𝜀) + 1
𝜀2 (

𝑛
∑
𝑖=1

𝑀𝑖
𝑚𝜀𝑖

2

𝜌𝜀𝑖
+ 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗𝜌𝜀𝑖 𝜌𝜀𝑗 (
𝑚𝜀𝑖
𝜌𝜀𝑖

− 𝑚𝜀𝑗
𝜌𝜀𝑗

)
2
) ≤ 0,

with

𝜂(𝑈 ) = 1
2

𝑛
∑
𝑖=1

𝑚2𝑖
𝜌𝑖

+
𝑛
∑
𝑖=1

ℎ𝑖(𝜌𝑖), 𝑞(𝑈 ) = 1
2

𝑛
∑
𝑖=1

𝑚𝑖
𝑚2𝑖
𝜌2𝑖

+ 𝑚𝑖ℎ𝑖(𝜌𝑖)′.
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We recap the convergence of solutions to (5.1)–(5.2) to solutions to (2.26)–(2.27) as
proven in Chapter 4. In one space dimension the limit system reads

𝜕𝑡 ̄𝑟 − 𝜕𝑥((B( ̄𝑟))−1𝜕𝑥𝑝( ̄𝑟)) = 0 in ℝ × (0, 𝑇 ), (5.3)

with initial conditions

̄𝑟 (⋅, 0) = ̄𝑟0 in ℝ,
where

B( ̄𝑟) = diag(𝑀𝑖) − diag( ̄𝜌𝑖)Λ ∈ ℝ𝑛×𝑛 . (5.4)

This limit system corresponds tomodel 𝑃 in Figure 5.1.The relative entropy 𝜂(𝑟 𝜀 , 𝑚𝜀

| ̄𝑟 , �̄�) (4.6) served as yardstick to measure the convergence. InTheorem 4.3, we es-
tablished the convergence estimate (4.24):

𝜑𝜀(𝑡) ≤ 𝐾(𝜑𝜀(0) + 𝜀4) (𝑡 ∈ (0, 𝑇 ]),
with (4.21)

𝜑𝜀(𝑡) = ∫
ℝ
𝜂(𝑟 𝜀(𝑥, 𝑡), 𝑚𝜀(𝑥, 𝑡)| ̄𝑟 (𝑥, 𝑡), �̄�(𝑥, 𝑡)) d𝑥. (5.5)

Our goal is to verify this analytical result numerically. That means we aim to re-
cover the convergence rate of 𝜀4 for the approximate solutions 𝑈 𝜀 and ̄𝑈 obtained
by appropriate numerical schemes.
For this purpose, first we note that the momentum solutions𝑚𝜀𝑖 in (5.1) scale with
𝜀, i.e. 𝑚𝜀𝑖 = 𝜀�̃�𝜀𝑖 . Hence, we drop the tilde notation and investigate the following
system in one space dimension

𝜕𝑡𝜌𝜀𝑖 + 𝜕𝑥𝑚𝜀𝑖 = 0,

𝜕𝑡𝑚𝜀𝑖 + 𝜕𝑥 (
𝑚𝜀𝑖

2

𝜌𝜀𝑖
) + 1

𝜀2 𝜕𝑥𝑝𝑖(𝜌
𝜀𝑖 ) = − 1

𝜀2 (𝑀𝑖𝑚𝜀𝑖 +
𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝜀𝑗𝑚𝜀𝑖 − 𝜌𝜀𝑖𝑚𝜀𝑗 )) .
(5.6)

The corresponding entropy inequality and entropy–entropy flux pair read

𝜕𝑡𝜂(𝑟 𝜀 , 𝑚𝜀) + 1
𝜀 𝜕𝑥𝑞(𝑟

𝜀 , 𝑚𝜀) + 1
𝜀2 (

𝑛
∑
𝑖=1

𝑀𝑖
𝑚𝜀𝑖

2

𝜌𝜀𝑖
+ 1
2

𝑛
∑
𝑖,𝑗=1

𝜆𝑖𝑗𝜌𝜀𝑖 𝜌𝜀𝑗 (
𝑚𝜀𝑖
𝜌𝜀𝑖

− 𝑚𝜀𝑗
𝜌𝜀𝑗

)
2
) ≤ 0,
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with

𝜂(𝑈 ) = 1
2𝜀

2
𝑛
∑
𝑖=1

𝑚2𝑖
𝜌𝑖

+
𝑛
∑
𝑖=1

ℎ𝑖(𝜌𝑖), 𝑞(𝑈 ) = 1
2

𝑛
∑
𝑖=1

𝜀3𝑚𝑖
𝑚2𝑖
𝜌2𝑖

+ 𝜀𝑚𝑖ℎ𝑖(𝜌𝑖)′. (5.7)

5.1.1 IMEX Splitting

We derive an AP scheme based on ideas from [17] and [35].
Recall the rescaled system (5.6). According to [35] we split the scheme in two
parts. One is treated explicitly and the other one implicitly. Methods of this type
are called Implicit–Explicit (IMEX)Methods .The entire stiff source term is handled
implicitly and the pressure term is split into an explicit and an implicit part. For
this purpose we introduce a parameter 𝛼 ∈ (0, 1/𝜀2] which dictates how much of
the pressure term is handled explicitly and implicitly. Consequently, we rewrite
(5.6) as

𝜕𝑡𝜌𝑖 + 𝜕𝑥𝑚𝑖 = 0,

𝜕𝑡𝑚𝑖 + 𝜕𝑥 (
𝑚2𝑖
𝜌𝑖

+ 𝛼𝑝𝑖(𝜌𝑖)) = − 1
𝜀2 (𝑀𝑖𝑚𝑖 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗)

+ (1 − 𝛼𝜀2)𝜕𝑥𝑝𝑖(𝜌𝑖)).

(5.8)

Then, we solve the system (5.8) as proposed in [17] by using a splitting method.
First, we solve

𝜕𝑡𝜌𝑖 + 𝜕𝑥𝑚𝑖 = 0,

𝜕𝑡𝑚𝑖 + 𝜕𝑥 (
𝑚2𝑖
𝜌𝑖

+ 𝛼𝑝𝑖(𝜌𝑖)) = 0 (5.9)

with the Finite Volume (FV) method employing the standard Lax–Friedrichs nu-
merical flux [101].
Afterwards we solve in a second step

𝜕𝑡𝜌𝑖 = 0,

𝜕𝑡𝑚𝑖 = − 1
𝜀2 (𝑀𝑖𝑚𝑖 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗(𝜌𝑗𝑚𝑖 − 𝜌𝑖𝑚𝑗) + (1 − 𝛼𝜀2)𝜕𝑥𝑝𝑖(𝜌𝑖))
(5.10)

with the implicit Euler method.
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Consider an uniform mesh with cells (𝑥𝑘−1/2, 𝑥𝑘+1/2)𝑘∈ℤ with 𝑥𝑘+1/2 ≔ 𝑘 + 1/2Δ𝑥 and
uniform cell size Δ𝑥 . Further, let 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑇 be a time mesh.
Additionally, let Δ𝑡𝑛 ≔ 𝑡𝑛+1 − 𝑡𝑛 > 0. In the following, the subscripts 𝑖, 𝑗 denote
the corresponding constituents of the fluid mixture, while 𝑘 denotes the 𝑘-th cell
midpoint of the spatial discretization. The piecewise constant solution at time 𝑡𝑛
in cell 𝑘 is denoted by 𝑈 𝑛

𝑘 ≔ (𝑟𝑛𝑘 , 𝑚𝑛
𝑘)⊤.

In the first step, utilizing a FV scheme, we have to ensure the Courant–Friedrichs–
Lewy (CFL) condition [30]

𝜆𝑛max
Δ𝑡𝑛
Δ𝑥 ≤ 1

2 , (5.11)

where

𝜆𝑛max ≔ max
𝑖,𝑘

{||𝑚𝑛
𝑖,𝑘/𝜌𝑛𝑖,𝑘 ± √𝛼𝑝

′𝑖 (𝜌𝑛𝑖,𝑘)||} (5.12)

denotes the largest absolute Eigenvalue of the Jacobian D 𝐹(𝑈 𝑛) of the flux 𝐹(𝑈 𝑛).
Note that if the pressure term is handled fully explicit, i.e. 𝛼 = 𝜀−2, the time step
width Δ𝑡𝑛 scales with 𝜀−1. This renders the scheme unfeasible for small values of 𝜀.
However, this is not the case if 𝛼 is chosen smaller. On the other hand, we cannot
set 𝛼 = 0 because we lose strict hyperbolicity of (5.9) in this case. In practice,
the choice of 𝛼 depends on the problem at hand. We comment on this issue in
Section 5.2. We describe the scheme in the following:

Algorithm 5.1 (AP scheme for Euler–Darcy–MS): Starting from 𝑡𝑛 we obtain from
the first step the intermediate discrete solution (𝜌⋆𝑖,𝑘 , 𝑚⋆

𝑖,𝑘) as

( 𝑟𝑚)
⋆

𝑘
= ( 𝑟𝑚)

𝑛

𝑘
− Δ𝑡
Δ𝑥 (

̂𝐹 𝑛
𝑘+1/2 − ̂𝐹 𝑛

𝑘−1/2),

with

̂𝐹 𝑛
𝑘+1/2 ≔

1
2(𝐹(𝑈

𝑛
𝑘+1) + 𝐹(𝑈 𝑛

𝑘 )) −
𝜆
2 (𝑈

𝑛
𝑘+1 − 𝑈 𝑛

𝑘 ).

Here, we choose
𝜆 ≥ sup

0≤𝑛≤𝑁
𝜆𝑛max,

with 𝜆𝑛max from (5.12). For this step we prescribe the CFL condition (5.11).
In the second step (see (5.10)) we then solve

𝜌𝑛+1𝑖,𝑘 − 𝜌⋆𝑖,𝑘
Δ𝑡 =0, (5.13a)



42 5 Asymptotic Preserving Numerical Scheme

𝑚𝑛+1
𝑖,𝑘 − 𝑚⋆

𝑖,𝑘
Δ𝑡 = − 1

𝜀2 (𝑀𝑖𝑚𝑛+1
𝑖,𝑘 +

𝑛
∑
𝑗=1

𝜆𝑖𝑗 (𝜌𝑛+1𝑗,𝑘 𝑚𝑛+1
𝑖,𝑘 − 𝜌𝑛+1𝑖,𝑘 𝑚𝑛+1

𝑗,𝑘 )

+(1 − 𝛼𝜀2)𝑝
𝑛+1
𝑖,𝑘+1/2 − 𝑝𝑛+1𝑖,𝑘−1/2

Δ𝑥 ) , (5.13b)

with

𝑝𝑛+1𝑖,𝑘+1/2 =
1
2 (𝑝𝑖(𝜌𝑛+1𝑖,𝑘 ) + 𝑝𝑖(𝜌𝑛+1𝑖,𝑘+1)) .

From (5.13a) follows 𝜌𝑛+1𝑖,𝑘 = 𝜌⋆𝑖,𝑘 , hence from now on we only consider (5.13b).
With

𝐴𝑛
𝑘(𝜀) ≔

1
Δ𝑡 𝐼𝑁 + 1

𝜀2 diag(𝑀𝑖) −
1
𝜀2 diag(𝜌

⋆
𝑖,𝑘)Λ,

equation (5.13b) is equivalent to

𝐴𝑛
𝑘(𝜀) (𝑚𝑛+1

1,𝑘 , … ,𝑚𝑛+1
𝑛,𝑘 )

⊤ = 1
Δ𝑡 (𝑚

⋆
1,𝑘 , … ,𝑚⋆

𝑛,𝑘)
⊤ − (1 − 𝛼𝜀2)

𝜀2
𝑝𝑛+1𝑖,𝑘+1/2 − 𝑝𝑛+1𝑖,𝑘−1/2

Δ𝑥 .

Remark 5.2: 1. As mentioned in [35] the choice of the parameter 𝛼 is difficult
because it depends in a complex way on 𝜀 and the required accuracy. In [17]
they choose 𝛼 = 1.

2. The hyperbolic CFL condition in Algorithm 5.1 does not lead to a stable dis-
cretization for small values of 𝜀. For the limit system even a parabolic CFL
condition is needed. Hence, in our numerical experiments in Section 5.2.2 we
choose a parabolic CFL condition to assure stability.

5.1.2 The AP Property of Algorithm 5.1

In the following we prove the AP property of the Algorithm 5.1. For the sake of
readability we consider the case of two components, i.e. 𝑘 = 2. However, this
generalizes straightforwardly to the case of arbitrary many components.

Theorem 5.3: The discrete numerical scheme prescribed through Algorithm 5.1 is
asymptotic preserving in the limit 𝜀 → 0. It transforms into a consistent discretiza-
tion of (5.3) as 𝜀 → 0.
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Proof. Without loss of generality consider the case of two components, 𝑘 = 2. The
explicit part (5.9) reads as

(𝜌1𝜌2)
⋆

𝑘
= (𝜌1𝜌2)

𝑛

𝑘
− Δ𝑡𝑛
Δ𝑥 (12 ((𝑚1

𝑚2
)
𝑛

𝑘+1
− (𝑚1

𝑚2
)
𝑛

𝑘−1
)

−𝜆2 ((𝜌1𝜌2)
𝑛

𝑘+1
− 2 (𝜌1𝜌2)

𝑛

𝑘
+ (𝜌1𝜌2)

𝑛

𝑘−1
))

(𝑚1
𝑚2

)
⋆

𝑘
= (𝑚1

𝑚2
)
𝑛

𝑘
− Δ𝑡𝑛
Δ𝑥 [12 ((

𝑚21
𝜌1

+ 𝛼𝑝1(𝜌1)
𝑚22
𝜌2

+ 𝛼𝑝2(𝜌2)
)
𝑛

𝑘+1

− (
𝑚21
𝜌1

+ 𝛼𝑝1(𝜌1)
𝑚22
𝜌2

+ 𝛼𝑝2(𝜌2)
)
𝑛

𝑘−1

)

−𝜆2 ((𝑚1
𝑚2

)
𝑛

𝑘+1
− 2 (𝑚1

𝑚2
)
𝑛

𝑘
+ (𝑚1

𝑚2
)
𝑛

𝑘−1
)]

(5.14)

and the implicit part (5.13) as

(𝜌1𝜌2)
𝑛+1

𝑘
= (𝜌1𝜌2)

⋆

𝑘
,

(𝑚1
𝑚2

)
𝑛+1

𝑘
= (𝐴𝑛

𝑘(𝜀))
−1 [ 1

Δ𝑡𝑛
(𝑚1
𝑚2

)
⋆

𝑘
− (1 − 𝛼𝜀2)

𝜀2
𝑝𝑛+1𝑘+1/2 − 𝑝𝑛+1𝑘−1/2

Δ𝑥 ] .
(5.15)

Now, we combine (5.14) and (5.15) to obtain

(𝜌1𝜌2)
𝑛+1

𝑘
= (𝜌1𝜌2)

𝑛

𝑘
− Δ𝑡𝑛
Δ𝑥 (12 ((𝑚1

𝑚2
)
𝑛

𝑘+1
− (𝑚1

𝑚2
)
𝑛

𝑘−1
)

−𝜆2 ((𝜌1𝜌2)
𝑛

𝑘+1
− 2 (𝜌1𝜌2)

𝑛

𝑘
+ (𝜌1𝜌2)

𝑛

𝑘−1
)) , (5.16)

(𝑚1
𝑚2

)
𝑛+1

𝑘
= (𝐴𝑛

𝑘(𝜀))
−1 [ 1

Δ𝑡𝑛
(𝑚1
𝑚2

)
𝑛

𝑘

− 1
Δ𝑥 (12 ((

𝑚21
𝜌1

+ 𝛼𝑝1(𝜌1)
𝑚22
𝜌2

+ 𝛼𝑝2(𝜌2)
)
𝑛

𝑘+1

− (
𝑚21
𝜌1

+ 𝛼𝑝1(𝜌1)
𝑚22
𝜌2

+ 𝛼𝑝2(𝜌2)
)
𝑛

𝑘−1

)

−𝜆2 ((𝑚1
𝑚2

)
𝑛

𝑘+1
− 2 (𝑚1

𝑚2
)
𝑛

𝑘
+ (𝑚1

𝑚2
)
𝑛

𝑘−1
))



44 5 Asymptotic Preserving Numerical Scheme

−(1 − 𝛼𝜀2)
𝜀2

𝑝𝑛+1𝑘+1/2 − 𝑝𝑛+1𝑘−1/2
Δ𝑥 ] , (5.17)

with

𝐴𝑛
𝑘(𝜀)−1 =Δ𝑡𝑛𝜀2 (𝜀4 + 𝜀2Δ𝑡𝑛(𝑀1 + 𝑀2 + 𝜆12(𝜌𝑛1,𝑘 + 𝜌𝑛2,𝑘))

+Δ𝑡2𝑛(𝑀1𝑀2 + 𝜆12(𝑀1𝜌𝑛1,𝑘 + 𝑀2𝜌𝑛2,𝑘)))
−1

(𝜀
2 + Δ𝑡𝑛(𝑀2 + 𝜆12𝜌𝑛1,𝑘) Δ𝑡𝑛𝜆12𝜌𝑛1,𝑘

Δ𝑡𝑛𝜆12𝜌𝑛2,𝑘 𝜀2 + Δ𝑡𝑛(𝑀1 + 𝜆12𝜌𝑛2,𝑘)) .

Now we investigate the scheme in the limit for 𝜀 → 0. We infer for (5.17)

(𝑚1
𝑚2

)
𝑛+1

𝑘
= − 1

𝑀1𝑀2 + 𝜆12(𝑀1𝜌𝑛1,𝑘 + 𝑀2𝜌𝑛2,𝑘)
𝑝𝑛+1𝑘+1/2 − 𝑝𝑛+1𝑘−1/2

Δ𝑥
(𝑀2 + 𝜆12𝜌𝑛1,𝑘 𝜆12𝜌𝑛1,𝑘

𝜆12𝜌𝑛2,𝑘 𝑀1 + 𝜆12𝜌𝑛2,𝑘)

= − ((𝑀1 0
0 𝑀2

) + 𝜆12 ( 𝜌𝑛2,𝑘 −𝜌𝑛1,𝑘
−𝜌𝑛2,𝑘 𝜌𝑛1,𝑘 ))

−1 𝑝𝑛+1𝑘+1/2 − 𝑝𝑛+1𝑘−1/2
Δ𝑥 . (5.18)

This is a consistent discretization of

𝑚 = −B−1𝜕𝑥𝑝,
cf. (5.4).
Hence, with (5.18) we obtain for (5.16) in the limit 𝜀 → 0,

(𝜌1𝜌2)
𝑛+1

𝑘
= (𝜌1𝜌2)

𝑛

𝑘
− Δ𝑡𝑛
2Δ𝑥2 ((−B

𝑛
𝑘 )−1(𝑝𝑛+1𝑘+1/2 − 𝑝𝑛+1𝑘−1/2) + (B𝑛

𝑘−1)−1(𝑝𝑛+1𝑘−1/2 − 𝑝𝑛+1𝑘−3/2))

+ 𝜆Δ𝑡𝑛
2Δ𝑥 ((𝜌1𝜌2)

𝑛

𝑘+1
− 2 (𝜌1𝜌2)

𝑛

𝑘
+ (𝜌1𝜌2)

𝑛

𝑘−1
) . (5.19)

Since 𝑟𝑛𝑘+1 − 2𝑟𝑛𝑘 + 𝑟𝑛𝑘−1 = 𝑂(Δ𝑥2) corresponds to numerical viscosity, this is a
consistent discretization for the limit system (5.3) independent of 𝜀. Therefore the
scheme (5.14)–(5.15) is asymptotic preserving.



5.2 Numerical Experiments 45

5.2 Numerical Experiments
In this section we perform numerical experiments in one space dimension. We
stress that the chosen initial values or parameters might not be realistic but help
to illustrate important characteristics of the systems (2.22) and (2.24).
In the following we distinguish the cases 𝜀 = 1 and 𝜀 ≪ 1.

5.2.1 Uphill Diffusion

In order to illustrate the concept of uphill diffusion [70], we set 𝜀 = 1 and consider
the free flow of a three component gas mixture, i.e. 𝑀𝑖 = 0, 𝑖 = 1, … , 3.
In the Duncan–Toor experiment [41] they consider two bulbs filled with a mixture
of H2, N2 and CO2. The bulbs are connected by a capillary.The initial compositions
in the left and right bulb are

H2 = 0 H2 = 0.501
N2 = 0.501 N2 = 0.499
CO2 = 0.499 CO2 = 0.

They found that the diffusion behavior of H2 andCO2 is similar to Fickian diffusion.
However, the second component, i.e. N2, shows the uphill diffusion behavior. The
composition in both bulbs is initially nearly the same. Nevertheless, diffusion takes
place, decreasing the composition in the left bulb while the composition in the
right bulb increases.
The idea is to simulate a similar situation as in Duncan and Toor’s experiment.
However, we use artificial values for densities and parameters to simplify compu-
tations.
The space domain throughout all simulations is

Ω ≔ (−1, 1).
As EOS, we use the perfect gas law

𝑝𝑖(𝜌𝑖) = 𝑐𝑖𝜌𝑖 , 𝑐𝑖 > 0, 𝑖 = 1, ..., 𝑁 ,
with 𝑐1 = 10, 𝑐2 = 5, and 𝑐3 = 3.
For the Maxwell–Stefan coefficients we use

𝜆12 = 30, 𝜆13 = 20, 𝜆23 = 10.
The spatial discretization consists of 400 cells, the time step width Δ𝑡𝑛 is computed
in every time step according to the CFL condition (5.11). We run the simulation up
to time 𝑇 = 0.25. Neumann boundary conditions are prescribed.
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As initial conditions we use

(
𝜌1,0
𝜌2,0
𝜌3,0

) = {(10
−5 8 12)⊤ , 𝑥 < 0

(1 7.9 10−5)⊤ , 𝑥 ≥ 0,
(
𝑚1,0
𝑚2,0
𝑚3,0

) = 0. (5.20)

In Figure 5.2 we depict the density part of the solution.

Figure 5.2: Illustration of the uphill diffusion phenomenon. Densities of the solution.
Left: Initial data for 𝑡 = 0, Right: Solution with Maxwell–Stefan diffusion
at time 𝑡 = 0.25.

The initial conditions (5.20) are shown in the left part in Figure 5.2. Uphill diffusion
can be observed in the second component (right). The second component in our
example corresponds to N2 in the Duncan–Toor experiment. As in the experiment,
although the density of the second component is nearly the same in the left and
right part of the domain, the density in the left part decreases over time, while it
increases in the right part. This is similar to the behavior observed experimentally
[41].
In summary this numerical experiment demonstrates that indeed the Euler–MS
model is capable of capturing effects like uphill diffusion.

5.2.2 Relative Entropy Convergence Rate

In this section we investigate the behavior of our Algorithm 5.1 for the system (5.1)
with decreasing 𝜀. The goal is to verify the convergence rate from Theorem 4.3
numerically. For this purpose we compare the solution to (5.6) obtained with our
Algorithm 5.1 to the solution to the limit system (5.3) obtained through (5.19). With
the scaled entropy (5.7) we introduce the discrete version of the relative entropy
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(5.5), namely

𝜙𝑛𝜀 ≔ ∑
𝑘∈ℤ

Δ𝑥𝜂𝜀,𝑛𝑘 , (5.21)

with the discrete relative entropy

𝜂𝜀,𝑛𝑘 ≔ 𝜂(𝑟 𝜀,𝑛𝑘 , 𝑚𝜀,𝑛
𝑘 | ̄𝑟𝑛𝑘 , �̄�𝑛

𝑘)

= 1
2𝜀

2
𝑛
∑
𝑖=1

𝜌𝜀,𝑛𝑖,𝑘
|||
𝑚𝜀,𝑛

𝑖,𝑘
𝜌𝜀,𝑛𝑖,𝑘

− �̄�𝑛
𝑖,𝑘
̄𝜌𝑛𝑖,𝑘

|||
2
+

𝑛
∑
𝑖=1

ℎ𝑖(𝜌𝜀,𝑛𝑖,𝑘 | ̄𝜌𝑛𝑖,𝑘).

We consider two examples with three components and different initial data. We
apply Neumann boundary conditions for all simulations. For both test cases we
use 𝛼 = 1.
Since we solve the parabolic limit system in an explicit fashion, it is natural that we
need a parabolic time step restriction. In [25] the discrete version of the relative
entropy estimate under a parabolic time step restriction for the 𝑝−system with
damping is proven.
Hence, we prescribe

𝜆 Δ𝑡𝑛Δ𝑥2 ≤ 1
2

also for the case 𝜀 > 0.
We compute approximate solutions for 𝜀 ∈ {1.0, 0.5, 0.3, 0.1, 0.03, 0.01, 0.001, 0.0001}
and vary the numbers of cells 𝑁cells ∈ {50, 100, 200, 500}.
For both test cases we employ the perfect gas EOS:

𝑝1(𝜌1) = 𝜌1,
𝑝2(𝜌2) = 1.2𝜌2,
𝑝3(𝜌3) = 0.8𝜌3.

For the first test case we choose the parameter:

𝑀1 = 𝑀2 = 𝑀3 = 1,
𝜆12 = 0.1,
𝜆23 = 𝜆13 = 0.
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The initial conditions are

(
𝜌1,0
𝜌2,0
𝜌3,0

) = {(2 1 3)⊤ , 𝑥 ≤ 0
(1 0.5 2) ⊤, 𝑥 ≥ 0, (

𝑚1,0
𝑚2,0
𝑚3,0

) = 0.

For the second test case we choose:

𝑀1 = 𝑀2 = 𝑀3 = 1,
𝜆12 = 0.1,
𝜆23 = 𝜆13 = 0.2.

The initial conditions are

(
𝜌1,0
𝜌2,0
𝜌3,0

) = (
1.5 + 0.75 cos(𝜋𝑥)
1.2 + 0.75 cos(𝜋𝑥)
1.35 + 0.375 cos(𝜋𝑥)

) , (
𝑚1,0
𝑚2,0
𝑚3,0

) = −B(𝑟0)−1𝜕𝑥𝑝(𝑟0).

Here, we use compatible initial condition, i.e. the momenta fulfill the analog ver-
sion of (5.18) for three components.
We present in Figure 5.3 the results for both test cases.The discrete (space) integral
Φ𝜀 (5.21) of the relative entropy is plotted at final time 𝑇 = 0.5. We can see that
the convergence rate of 𝜀4 is recovered for both test cases. This agrees with the
analytical result of Theorem 4.3.

(a) Discontinuous initial data. (b) Smooth initial data.

Figure 5.3: Log–log plot of space integral Φ𝑛𝜀 (5.21) of the relative entropy over 𝜀 at
time 𝑇 = 0.5. Solution for different number 𝑁cells of cells and initial data.
Left: discontinuous initial data, Right: smooth initial data.



Conclusion 6
In this first part we examined compressiblemulti-component flow in porousmedia.
We have presented how to derive the Euler–Darcy–MS system (2.22) in such away
that it automatically satisfies an entropy inequality and hence fulfills the second
law of thermodynamics. We utilized the CT framework of [20] for this purpose.
There exist smooth solutions globally in time to this system if the smooth initial
data are close enough to an equilibrium. This was proven in Chapter 3. Further,
in an asymptotic long-time-large-friction regime we proved the convergence to
a parabolic limit system generalizing results on the single-component case. Here,
we used a relative entropy framework. A numerical discretization for the Euler–
Darcy–MS system in afore-mentioned asymptotic regime is not straightforward
since the system changes its characteristic type from hyperbolic to parabolic in
the limit. To overcome this issue we introduced an AP scheme which turns into a
consistent discretization of the parabolic limit system in the limit. Equipped with
this scheme we illustrated the uphill diffusion phenomenon and verified the con-
vergence rate in the relative entropy in the discrete setting.





Appendix

A Operators and Matrix Algebra
We collect some definitions from vector analysis and matrix algebra which are
frequently used in Chapter 2–Chapter 4.
For some vector 𝑢(𝑥) = (𝑢1(𝑥), … , 𝑢𝑛(𝑥))⊤ ∈ ℝ𝑛 the (generalized) gradient is de-
fined as

∇𝑢(𝑥) ≔ (∇𝑢1(𝑥), … ∇𝑢𝑛(𝑥))⊤ ∈ ℝ𝑛𝑑 , (6.1)

and for 𝑣(𝑥) = (𝑣⊤1 (𝑥), … , 𝑣⊤𝑛 (𝑥))⊤ ∈ ℝ𝑛𝑑 the (generalized) divergence is given by

div(𝑣(𝑥)) ≔
𝑛
∑
𝑖=1

div(𝑣 𝑖(𝑥)).

By ⊗ we denote the Kronecker product of two matrices, i.e., with 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈
ℝ𝑝×𝑞

𝐴 ⊗ 𝐵 ≔ (
𝑎11𝐵 … 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
) ∈ ℝ𝑚𝑝×𝑛𝑞 ,

and by ⊙ the entry-wise product for matrices of identical dimensions. We define
blockdiag(𝑥 𝑖), with 𝑥 𝑖 ∈ ℝ𝑑 , 𝑖 = 1, … , 𝑛, as

blockdiag(𝑥 𝑖) ≔
⎛
⎜
⎜
⎜
⎝

𝑥1 0𝑑×1 ⋯ ⋯ 0𝑑×1
0𝑑×1 𝑥2 0𝑑×1 ⋯ 0𝑑×1
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0𝑑×1

0𝑑×1 ⋯ ⋯ 0𝑑×1 𝑥𝑛

⎞
⎟
⎟
⎟
⎠

∈ ℝ𝑛𝑑×𝑛.
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In addition, with matrices 𝐴𝑖 ∈ ℝ𝑑×𝑑 , 𝑖 = 1, … , 𝑛, let

blockdiag(𝐴𝑖) ≔
⎛
⎜⎜
⎝

𝐴1 0𝑑×𝑑 ⋯ 0𝑑×𝑑
0𝑑×𝑑 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0𝑑×𝑑

0𝑑×𝑑 ⋯ 0𝑑×𝑑 𝐴𝑛

⎞
⎟⎟
⎠
∈ ℝ𝑛𝑑×𝑛𝑑 .

We conclude with the following rules for the generalized gradient defined in (6.1).

Lemma A.1: For smooth functions 𝛼 ∶ ℝ𝑑 → ℝ, 𝑎∶ ℝ𝑑 → ℝ𝑛, 𝑏 ∶ ℝ𝑑 → ℝ𝑛, and
𝑐 ∶ ℝ𝑛 → ℝ𝑛 it holds

∇(𝛼(𝑥)𝑎(𝑥)) = 𝑎(𝑥) ⊗ ∇𝛼(𝑥) + 𝛼(𝑥)∇𝑎(𝑥),
∇(𝑐(𝑏(𝑥)) = (D𝑏 𝑐(𝑏(𝑥)) ⊗ 𝐼 𝑑)∇𝑏(𝑥).

Proof. We have

∇(𝛼(𝑥)𝑎(𝑥)) = (
∇(𝛼(𝑥)𝑎1(𝑥))

⋮
∇(𝛼(𝑥)𝑎𝑛(𝑥))

) = (
∇(𝛼(𝑥))𝑎1(𝑥) + 𝛼(𝑥)∇𝑎1(𝑥)

⋮
∇(𝛼(𝑥))𝑎𝑛(𝑥) + 𝛼(𝑥)∇𝑎𝑛(𝑥)

)

= 𝑎 ⊗ ∇𝛼(𝑥) + 𝛼(𝑥)∇𝑎(𝑥)
and

∇(𝑐(𝑏(𝑥)) = (
∇𝑐1(𝑏(𝑥))

⋮
∇𝑐𝑛(𝑏(𝑥))

) =
⎛
⎜⎜
⎝

∑𝑛
𝑖=1 D𝑏𝑖 𝑐1(𝑏(𝑥))∇𝑏𝑖(𝑥)

⋮
∑𝑛

𝑖=1 D𝑏𝑖 𝑐𝑛(𝑏(𝑥))∇𝑏𝑖(𝑥)

⎞
⎟⎟
⎠

= (
𝐷𝑏1𝑐1(𝑏(𝑥))𝐼 𝑑 … 𝐷𝑏𝑛𝑐1(𝑏(𝑥))𝐼 𝑑⋮ ⋮
𝐷𝑏1𝑐𝑛(𝑏(𝑥))𝐼 𝑑 … 𝐷𝑏𝑛𝑐𝑛(𝑏(𝑥))𝐼 𝑑

)∇𝑏(𝑥)

= (𝐷𝑏𝑐(𝑏(𝑥)) ⊗ 𝐼 𝑑)∇𝑏(𝑥).
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B Global Classical Well-Posedness of IVPs for
Hyperbolic Balance Laws

Let the state space 𝐺 ⊂ ℝ𝑛(𝑑+1) be open and denote by 𝑈 ∶ ℝ𝑑 × [0, 𝑇 ) → 𝐺 the
function that satisfies for some 𝑇 > 0 the IVP for the nonlinear system of balance
laws given by

𝜕𝑡𝑈 +
𝑑
∑
𝛼=1

𝜕𝑥𝛼 𝐹𝛼 (𝑈 ) = 𝑆(𝑈 ) in ℝ𝑑 × (0, 𝑇 ). (6.2)

Here, 𝑆 ∶ 𝐺 → ℝ𝑛(𝑑+1) and 𝐹𝛼 ∶ 𝐺 → ℝ𝑛(𝑑+1), 𝛼 = 1, … , 𝑑 are smooth functions
with

𝑆(𝑈 ) = ( 0
𝑠(𝑈 )) .

From now on we assume that 𝑈 can be split according to 𝑈 = (𝑟⊤, 𝑚⊤)⊤, with
𝑟 ∈ ℝ𝑛, 𝑚 ∈ ℝ𝑛𝑑 . The system (6.2) can then be written as

𝜕𝑡 ( 𝑟𝑚) +
𝑑
∑
𝛼=1

𝜕𝑥𝛼 𝐹𝛼 (𝑟 , 𝑚) = ( 0
𝑠(𝑟 , 𝑚)) . (6.3)

Theorem B.1 ([108]): Let 𝑠 ≥ 𝑠0 + 1 = ⌊𝑑/2⌋ + 2 be an integer and �̂� ∈ 𝐺 be a
constant equilibrium state such that the following conditions hold:

1. The Jacobian D𝑚 𝑠(�̂� ) ∈ ℝ𝑛𝑑×𝑛𝑑 is invertible.

2. There exists a strictly convex smooth entropy function 𝜂 ∶ G → ℝ, defined
in a convex, compact neighborhood G ⊂ 𝐺 of �̂� such that D2 𝜂(𝑈 )D 𝐹𝛼 (𝑈 ) is
symmetric for all 𝑈 ∈ G and all 𝛼 = 1, … , 𝑑 .

3. There is a positive constant 𝑐G such that for all 𝑈 ∈ G,

[D 𝜂(𝑈 ) − D 𝜂(�̂� )]𝑆(𝑈 ) ≤ −𝑐G |𝑆(𝑈 )|2,
where | ⋅ | denotes the Euclidean norm of a vector.

4. The kernel ker(D 𝑆(�̂� )) of the Jacobian D 𝑆(�̂� ) contains no eigenvector of the
matrix
∑𝑑

𝛼=1 𝜔𝛼 D 𝐹𝛼 (�̂� ), for any 𝜔 = (𝜔1, … , 𝜔𝑑) ∈ 𝕊𝑑−1.
Then there is a constant 𝑐1 > 0 such that for 𝑈0 ∈ 𝐻 𝑠(ℝ𝑑) with

‖𝑈0 − �̂� ‖𝑠 ≤ 𝑐1
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the system of balance laws (6.3) with 𝑈0 as its initial value has an unique global
solution 𝑈 = 𝑈 (𝑥, 𝑡) ∈ 𝐶([0, 𝑇 ); 𝐻 𝑠(ℝ𝑑)) satisfying

‖𝑈 (⋅, 𝑇 ) − �̂� ‖2𝑠 + ∫
𝑇

0
‖𝑆(𝑈 )(⋅, 𝑡)‖2𝑠 d𝑡 + ∫

𝑇

0
‖∇𝑈 (⋅, 𝑡)‖2𝑠−1 d𝑡 ≤ 𝑐2‖𝑈0 − �̂� ‖2𝑠

for any 𝑇 > 0 and some 𝑐2 > 0.



Compressible
Phase-FieldFlow

Part II





Introduction 1
In this part we study a fluid in two phases, namely liquid–vapor flow. Phase-field
models are widely used to simulate interfacial phenomena. They form a special
class of diffuse-interface (DI) models. In contrast to sharp-interface (SI) models,
the interface has a (small) finite thickness 𝛾 . In the interfacial region the different
phases are allowed to mix, see Figure 1.1.

liquid phase

vapor phase

Ω

𝛾

(a) Diffuse interface

ΩL(𝑡)

ΩV(𝑡)

n

Γ(𝑡)

(b) Sharp interface

Figure 1.1: Illustration of diffuse and sharp interfaces.

An additional variable, the phase-field, is introduced which allows to distinguish
the different phases. Since interface dynamics are determined on a molecular scale
and there indeed, to some extent, a mixture exists, this approach is reasonable.
However, the thickness of the interface is in practice artificially enlarged to the
macro-scale. It is important that diffuse-interfacemodels are consistentwith sharp-
interface models where the physical basis is simpler. Having this in mind another
point of view is that DI models are smeared out versions of the corresponding
sharp interface limit models.
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TheDImodel concept has the advantage that only one system of PDE on the entire
considered domain needs to be solved, whereas for sharp-interface models bulk
systems need to be solved, which are coupled across the interface by possibly com-
plex conditions. On the other hand the correct combination of the flow equations
with the phase-field dynamics is far from being obvious.
Based on energy principles, phase-fieldmodels can be derived in a thermodynamic
framework, see [5, 48] for an overview. They fulfill the second law of thermody-
namics, meaning that the Clausius–Duhem inequality [102] is satisfied. In the case
of isothermal models this is equivalent to an energy inequality. In addition, surface
tension is included in the system by means of energy principles and a resulting
capillary stress tensor contribution.
There are several (quasi-)incompressible [2, 74], compressible [19, 39, 106] and
recently even incompressible–compressible phase-field models [87, 96]. Hence,
phase-field models are a large class of models for different regimes. Depending on
the application, it is feasible to neglect the compressibility of one or two phases.
This is often the case for the liquid phase, namely in low Mach regimes.
In this part we consider a phase-field model, where both phases are assumed to
be compressible. This system can be regarded as a special case for one component
of the system [39]. However, it differs in the scaling of the double-well potential
𝑊 , which yields the correct surface tension, namely the expression (2.18). Addi-
tionally, in our version the viscosity parameter are different for each phase. This
is not the case in [39], where both phases share the same viscosity parameter. The
resulting system is of mixed hyperbolic–parabolic type.This renders its numerical
discretization non-straightforward. In Chapter 3 we develop an energy-consistent
discontinuous Galerkin scheme for our model. This is a high order scheme which
additionally enjoys the property of energy consistency, i.e. it satisfies an energy
inequality on the discrete level. Especially, in contrast to similar approaches [69],
we achieve second order of accuracy in time.
There are very little numerical examples using compressible phase-field models in
the literature. In [69] a simulation shows the evolution of static bubble ensembles
without gravity. However, with our scheme we are able to use the compressible
phase field model in complex numerical simulations. To illustrate the flexibility of
this phase-fieldmodel we provide two examples.The first one is related to droplet–
wall interactions. In this case especially the contact line dynamic is important.
We demonstrate how the phase-field model can be used in such scenarios. The
second example is the coupling of porous-medium and free flows. In this example
we want to include processes which are related to drops forming at the interface
between a porous medium and the free flow (FF) . There are different approaches,
however in all macro-scale approaches micro-scale information is lost. For that
reason we embed the phase-field model into a multi-scale framework and resolve
single drops directly.
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This part is structured as follows. In the following Chapter 2 we introduce the
isothermal compressible Navier–Stokes–Allen–Cahn (NSAC) phase-field model.
Further, we investigate some important properties. The energy inequality, which
renders the system thermodynamically consistent, the sharp-interface limit, and
the effective surface tension inside the model. In the subsequent Chapter 3 we
derive the energy-consistent discontinuous Galerkin (dG) scheme. To utilize the
model and numerical scheme, in Chapter 4 we give an example of droplet–wall
interaction and in Chapter 5 we present the example of the multi-scale framework
for coupled porous-medium and free flow. Finally, we conclude in Chapter 6.





A Compressible
Navier–Stokes–Allen–Cahn

Model 2
In this chapter we introduce a compressible Navier–Stokes–Allen–Cahn model.
We consider a viscous fluid at constant temperature. The fluid is assumed to exist
in two phases, a liquid phase denoted by subscript L and a vapor phase denoted
by subscript V. In each phase the fluid is thermodynamically described by the cor-
responding Helmholtz free energy density 𝜌𝑓L/V(𝜌). The fluid occupies a domain
Ω ⊂ ℝ𝑑 , 𝑑 ∈ ℕ. Let 𝜌 > 0 be the density of the fluid, 𝑣 ∈ ℝ𝑑 the velocity and
𝜑 ∈ [0, 1] the phase-field. Following [39] we assume that the dynamics of the fluid
is described by the isothermal compressible Navier–Stokes–Allen–Cahn system.
With the parameter 𝛾 > 0, which relates to surface tension, the Helmholtz free
energy density reads as

𝜌𝑓 (𝜌, 𝜑, ∇𝜑) = ℎ(𝜑)𝜌𝑓L(𝜌) + (1 − ℎ(𝜑))𝜌𝑓V(𝜌) +
1
𝛾 𝑊(𝜑) + 𝛾

2 |∇𝜑|
2. (2.1)

It consists of the interpolated free energy densities 𝜌𝑓L/V of the pure liquid and
vapor phases with the nonlinear interpolation function

ℎ(𝜑) = 3𝜑2 − 2𝜑3, (2.2)

and a mixing energy [26] using the double well potential 𝑊(𝜑) = 𝜑2(1 − 𝜑)2. We
assume that the free energy densities 𝜌𝑓L/V(𝜌) are convex functions. Let us define
the energy densities

𝜌𝜓(𝜑, 𝜌) ≔ ℎ(𝜑)𝜌𝑓L(𝜌) + (1 − ℎ(𝜑))𝜌𝑓V(𝜌) and

𝜌 ̃𝑓 (𝜑, 𝜌) ≔ 𝜌𝜓(𝜑, 𝜌) + 1
𝛾 𝑊(𝜑).

Then we can rewrite (2.1) as

𝜌𝑓 (𝜌, 𝜑, ∇𝜑) = 𝜌𝜓(𝜑, 𝜌) + 1
𝛾 𝑊(𝜑) + 𝛾

2 |∇𝜑|
2
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= 𝜌 ̃𝑓 (𝜑, 𝜌) + 𝛾
2 |∇𝜑|

2.

The hydrodynamic pressure 𝑝 is determined through the Helmholtz free energy
𝜌𝑓 by the thermodynamic relation

𝑝 = 𝑝(𝜌, 𝜑, ∇𝜑) = −𝜌𝑓 (𝜌, 𝜑, ∇𝜑) + 𝜌 𝜕(𝜌𝑓 )𝜕𝜌 (𝜌, 𝜑, ∇𝜑). (2.3)

We define the generalized chemical potential

𝜇 = 1
𝛾 𝑊

′(𝜑) + 𝜕(𝜌𝜓)
𝜕𝜑 − 𝛾Δ𝜑,

which steers the phase-field variable into equilibrium. Additionally, we denote by
𝜂 > 0 the (artificial) mobility.
The isothermal compressible NSAC system reads then as

𝜕𝑡𝜌 + div(𝜌𝑣) = 0, (2.4)
𝜕𝑡(𝜌𝑣) + div(𝜌𝑣 ⊗ 𝑣 + 𝑝𝐼 ) = div(𝑆) − 𝛾 div(∇𝜑 ⊗ ∇𝜑) in Ω × (0, 𝑇 ), (2.5)

𝜌𝜕𝑡𝜑 + 𝜌∇𝜑 ⋅ 𝑣 = −𝜂𝜇. (2.6)

Here, the dissipative viscous part of the stress tensor is

𝑆 = 𝑆(𝜑, ∇𝑣) = 𝜈(𝜑)(∇𝑣 + ∇𝑣⊤ − div(𝑣)𝐼 ),
with an interpolation of the viscosities 𝜇L/V of the pure phases

𝜈(𝜑) = ℎ(𝜑)𝜇L + (1 − ℎ(𝜑))𝜇V > 0. (2.7)

As long as wall effects are neglected, the energy of the system (2.4)–(2.6) at time
𝑡 is defined as

𝐸(𝑡) ≔ 𝐸free(𝑡) + 𝐸kin(𝑡)
= ∫

Ω
𝜌(𝑥, 𝑡)𝑓 (𝜌(𝑥, 𝑡), 𝜑(𝑥, 𝑡), ∇𝜑(𝑥, 𝑡)) + 1

2𝜌(𝑥, 𝑡)|𝑣(𝑥, 𝑡)|
2 d𝑥. (2.8)

Remark 2.1: 1. The phase-field 𝜑 is in general an artificial variable, however in
this case it can be viewed as a mass fraction 𝜑 = 𝑚V

𝑚 , with the mass 𝑚V of the
vapor constituent and the total mass 𝑚 of the fluid.
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2. The special form of the nonlinear interpolation function ℎ with ℎ′(0) = ℎ′(1)
≠ 0 guarantees that (2.4)–(2.6) allows for physical meaningful equilibria. This
can be easily seen by considering a static single-phase equilibrium 𝑣 = 0, 𝜑 ≡ 0.
If ℎ′(0) ≠ 0 then the right hand side of the phase-field equation (2.6) does not
vanish.

Assuming an impermeable no-slip wall and 90∘ static contact angle, we have the
boundary conditions

𝑣 = 0, (2.9)
on 𝜕Ω.

∇𝜑 ⋅ 𝑛 = 0 (2.10)

Additionally, the system is endowed with initial conditions

𝜌 = 𝜌0, 𝑣 = 𝑣0, 𝜑 = 𝜑0 on Ω × {0},

using suitable functions (𝜌0, 𝑣0, 𝜑0)∶ Ω → ℝ+ × ℝ𝑑 × [0, 1].
Remark 2.2 (Existence of solutions): There are results on existence of solutions to
similar systems than (2.4)–(2.6). These systems mainly differ in the scaling of the
second order operators. The scalings are needed in order to ensure the boundedness of
the phase-field variable. In [45] the existence of global-in-time weak solutions with-
out any restriction on the size of the initial data is proven. Further, in [67] the authors
prove the existence and uniqueness of local strong solutions for arbitrary initial data.
Our notion of weak solutions differs from [45]. We introduce a notion of weak solu-
tions in Definition 3.3 for a mixed-formulation of (2.4)–(2.6). This is the basis for the
derivation of our dG scheme Algorithm 3.11. However, there is no existence result for
Definition 3.3, hence we assume the existence of weak solutions.

2.1 Properties of the NSAC System
In this section we prove some important properties of the NSAC system.
In the next section we provide an energy inequality, which renders the NSAC
system (2.4)–(2.6) thermodynamically consistent.
Diffuse-interface models need to have a meaningful limit, if we let the interface
width tend to zero. In Section 2.1.2 we briefly comment on this so-called sharp-
interface limit.
In the subsequent Section 2.1.3, we investigate the surface tension in the system.
The Navier–Stokes–Kortweg (NSK) model is a different diffuse-interface model,
where the density acts like a phase-field. For the NSK model it is known that,
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for most scalings, the surface tension vanishes in the sharp-interface limit [40].
However, we show that for the NSAC system this is not the case and the SI limit
system still has a surface tension contribution.

2.1.1 Energy Inequality

For isothermal models thermodynamical consistency means to verify that solu-
tions of the problem at hand admit an energy inequality.
The energy introduced in (2.8) consists of the bulk free energies and the kinetic
energy. To describe the total energy the entropic part is missing. That means the
entropy production of the system (2.4)–(2.6) is exactly − d

d 𝑡 𝐸(𝑡). Hence, by assuring
that the energy 𝐸 decreases over time, we show increasing entropy and therefore
thermodynamical consistency.
For the system (2.4)–(2.6) we have the following result.

Theorem 2.3 (Energy inequality): Let (𝜌, 𝑣, 𝜑) with values in (0, ∞) × ℝ𝑑 × [0, 1]
be a classical solution to (2.4)–(2.6) in (0, 𝑇 ) × Ω satisfying the boundary conditions
(2.9)–(2.10) on 𝜕Ω × (0, 𝑇 ). Then for all 𝑡 ∈ (0, 𝑇 ) the following energy inequality
holds:

d
d 𝑡 𝐸(𝑡) =

d
d 𝑡 (𝐸free(𝑡) + 𝐸kin(𝑡))

= d
d 𝑡 (∫Ω

𝜌𝑓 (𝜌, 𝜑, ∇𝜑) + 1
2𝜌|𝑣|

2 d𝑥)

= −∫
Ω

𝜂
𝜌 𝜇

2 d𝑥 − ∫
Ω
𝑆 ∶ ∇𝑣 d𝑥 ≤ 0. (2.11)

As expected, we have entropy production due to phase transition and viscosity.

Proof. In a straightforward way we compute:

d
d 𝑡 𝐸(𝑡) =

d
d 𝑡 (∫Ω

𝜌𝑓 (𝜌, 𝜑, ∇𝜑) + 1
2𝜌|𝑣|

2 d𝑥)

= d
d 𝑡 (∫Ω

1
𝛾 𝑊(𝜑) + 𝜌𝜓(𝜌, 𝜑) + 𝛾

2 |∇𝜑|
2 + 1

2𝜌|𝑣|
2 d𝑥)

=∫
Ω
𝜑𝑡 (

1
𝛾 𝑊

′(𝜑) + 𝜕(𝜌𝜓)
𝜕𝜑 − 𝛾Δ𝜑) + 𝜌𝑡 (

𝜕(𝜌𝜓)
𝜕𝜌 − 1

2 |𝑣|
2) + (𝜌𝑣)𝑡 ⋅ 𝑣 d𝑥

+ ∫
𝜕Ω

𝜑𝑡(𝛾∇𝜑 ⋅ 𝑛) d𝑠.
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Now we use (2.4)–(2.6) to replace the time derivatives in the volume integrals.
Using (2.3) we obtain after basic algebraic manipulations

d
d 𝑡 𝐸(𝑡) = − ∫

Ω
div(𝜌𝑣) (𝜕(𝜌𝜓)𝜕𝜌 − 1

2 |𝑣|
2) + div(𝜌𝑣 ⊗ 𝑣) ⋅ 𝑣 d𝑥 − ∫

Ω

𝜂
𝜌 𝜇

2 d𝑥

− ∫
Ω
𝑣 ⋅ 𝜌∇ (𝜕(𝜌𝜓)𝜕𝜌 ) − div(𝑆) ⋅ 𝑣 d𝑥 + ∫

𝜕Ω
𝜑𝑡(𝛾∇𝜑 ⋅ 𝑛) d𝑠.

We integrate by parts and have

d
d 𝑡 𝐸(𝑡) = − ∫

Ω

𝜂
𝜌 𝜇

2 d𝑥 − ∫
Ω
𝑆 ∶ ∇𝑣 d𝑥

+ ∫
𝜕Ω

𝑆𝑣 ⋅ 𝑛 − 𝜌𝑣 (𝜕(𝜌𝜓)𝜕𝜌 + 1
2 |𝑣|

2) ⋅ 𝑛 d𝑠 + ∫
𝜕Ω

𝜑𝑡(𝛾∇𝜑 ⋅ 𝑛) d𝑠.

With the boundary conditions (2.9)–(2.10) we finally obtain

d
d 𝑡 𝐸(𝑡) = − ∫

Ω

𝜂
𝜌 𝜇

2 d𝑥 − ∫
Ω
𝑆 ∶ ∇𝑣 d𝑥.

This concludes the proof.

2.1.2 Sharp Interface Limit

From a physical point of view, basically no interface in the real world is completely
sharp. At least on the molecular-scale there is diffusive mixing. With this view,
diffuse-interface models approximate the interfaces by lifting the interfacial layer
from the molecular- to the macro-scale. On the other hand, from a more mathe-
matical point of view, DI models are an approximation to sharp-interface models.
In any case, DI models should recover physical admissible SI limits in order to give
accurate descriptions of flow dynamics.
The SI limit is investigated for NSAC models with slightly different scaling than
(2.4)–(2.6) in [39, 106, 107].
We briefly comment on the SI limits. The resulting SI limit systems depend on the
scaling.With a nondimensionalization, the system (2.4)–(2.6) essentially turns into

𝜕𝑡𝜌 + div(𝜌𝑣) = 0,
𝜕𝑡(𝜌𝑣) + div(𝜌𝑣 ⊗ 𝑣 + 𝑝𝐼 ) = 1

Re
div(𝑆) − 𝜀 div(∇𝜑 ⊗ ∇𝜑) in Ω × (0, 𝑇 ),

𝜌𝜕𝑡𝜑 + 𝜌∇𝜑 ⋅ 𝑣 = −𝜂𝑐𝜂𝜇,



66 2 A Compressible Navier–Stokes–Allen–Cahn Model

with
𝜇 = 1

𝜀𝑊
′(𝜑) + 𝜕(𝜌𝜓)

𝜕𝜑 − 𝜀Δ𝜑.

Here we omit the dimensionless quantities which are chosen to be 𝑂(1). They
do not affect the resulting SI limit system. Therefore we restrict ourselves to the
dimensionless quantities Re, 𝜀, and 𝜂𝑐 . Here, Re denotes the Reynolds number, 𝜀 is
related to the interface thickness, and 𝜂𝑐 to the mobility. The sharp-interface limit
is characterized by taking 𝜀 → 0.
In [39] they show that Re = 𝑂(1) is needed in order to obtain a two-phase Navier–
Stokes system in the limit. However, this either rules out mass fluxes across the
interface, i.e. no phase transition, or jumps in the density. This is the situation in
[106]. However, in [39] they choose Re = 𝑂(𝜀−2). This case leads to a two-phase
Euler system in the SI limit. Then, 𝜂𝑐 is chosen either as 𝜀−2 or 𝜀−3, where the for-
mer choice leads to a dissipative regime and the latter to a non-dissipative regime.
At the interface they obtain classical conditions like the Young–Laplace law and
Rankine–Hugoniot conditions.
In [107] a Navier–Stokes SI limit system with phase transition is obtained. How-
ever, for that purpose the double-well potential needs to have its minima at differ-
ent heights.This means that the energy cannot be controlled in the sharp interface
limit, only for positive fixed interface width.
In summary there are meaningful SI limits for our system (2.4)–(2.6), where de-
pending on the considered regime phase transition can occur.

2.1.3 Surface Tension

There are different interpretations of surface tension. It can be either viewed as a
force acting in tangential direction of the interface or as an excess energy stored
in the interface [61]. In line with our energy-based derivation in Section 2.1.1, we
consider a planar equilibrium profile and integrate the excess free energy density
over this profile. We assume that static equilibrium conditions hold, i.e. 𝑣 = 0.The
planar profile is assumed to be parallel to the 𝑥1-axis and density, velocity and
phase-field are independent from 𝑡 and the other space dimensions 𝑥𝑖 , 𝑖 ≠ 1. For
readability in the following we omit the subscript in 𝑥1. Then, the equilibrium is
governed by the solution of the following boundary value problem on the real line.
Find 𝜌 = 𝜌(𝑥), 𝜑 = 𝜑(𝑥) such that

(−𝜌𝜓 − 1
𝛾 𝑊(𝜑) − 𝛾

2 𝜑
2𝑥 + 𝜌 𝜕(𝜌𝜓)𝜕𝜌 )

𝑥
= −𝛾(𝜑2𝑥)𝑥 , (2.12)

1
𝛾 𝑊

′(𝜑) + 𝜕(𝜌𝜓)
𝜕𝜑 − 𝛾𝜑𝑥𝑥 = 0, (2.13)



2.1 Properties of the NSAC System 67

and
𝜌(±∞) = 𝜌V/L, 𝜑(−∞) = 0, 𝜑(∞) = 1, 𝜑𝑥(±∞) = 0. (2.14)

We assume that there exists a solution to (2.12)–(2.14). Multiplying (2.13) with 𝜑𝑥
and subtracting from (2.12) yields

𝜕(𝜌𝜓)
𝜕𝜌 = const. (2.15)

Multiplying (2.13) with 𝜑𝑥 , integrating from −∞ to some 𝑥 ∈ ℝ using (2.12) and
(2.14) leads to

1
𝛾 𝑊(𝜑(𝑥)) + 𝜌(𝑥)𝜓(𝜌(𝑥), 𝜑(𝑥)) − 𝜌V(𝑥)𝜓(𝜌V(𝑥), 0) =

𝛾
2 𝜑

2𝑥(𝑥). (2.16)

From (2.16) we obtain for 𝑥 → ∞

𝜌L𝜓(𝜌L, 1) = 𝜌V𝜓(𝜌V, 0) ≕ 𝜌𝜓 . (2.17)

As mentioned before, surface tension can be defined by means of excess free en-
ergy. Roughly speaking an excess quantity is the difference of the quantity in the
considered system and in a (sharp-interface) reference system where the bulk val-
ues are maintained up to a dividing interface. We specify the interface position 𝑥0
by vanishing excess density, i.e. the balance of mass of the two phases.
In summary, we define surface tension 𝜎 via the relationship

𝜎 =∫
𝑥0

−∞
𝜌𝑓 (𝜌, 𝜑, 𝜑𝑥) − 𝜌V𝜓(𝜌V, 0) d𝑥

+ ∫
∞

𝑥0
𝜌𝑓 (𝜌, 𝜑, 𝜑𝑥) − 𝜌L𝜓(𝜌L, 1) d𝑥,

where (𝜌, 𝜑) is a solution of (2.12)–(2.14). Using (2.16) we have

𝜎 =∫
𝑥0

−∞
𝛾𝜑2𝑥 d𝑥 + ∫

∞

𝑥0
𝛾𝜑2𝑥 + (𝜌V𝜓(𝜌V, 0) − 𝜌L𝜓(𝜌L, 1)) d𝑥.

With (2.17) it follows

𝜎 =∫
∞

−∞
𝛾𝜑2𝑥 d𝑥,
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and finally, with the substitution 𝜙 = 𝜑(𝑥) and (2.16), we obtain

𝜎 =√2∫
𝜑L

𝜑V
√𝑊(𝜙) + 𝛾(𝜌𝜓( ̂𝜌(𝜙), 𝜙) − 𝜌𝜓) d𝜙. (2.18)

In the last step we used the transformation from 𝑥 to 𝜙 integration. The free en-
ergies 𝜌𝑓L/V are assumed to be convex (see (2.1) above). Hence, the function 𝜌𝜓
is also convex in 𝜌. Due to (2.15) and the implicit function theorem there exists a
function ̂𝜌 such that 𝜌𝜓(𝜌, 𝜑) = 𝜌𝜓( ̂𝜌(𝜑), 𝜑).
One can see that the surface tension is mainly dictated by the double well potential
𝑊(𝜑). Additionally, there is a contribution due to the EOS of the different phases.
However, in the sharp-interface limit, i.e. 𝛾 → 0, this contribution vanishes.This is
a difference to (quasi-)incompressible models like in [74]. There is no contribution
due to the EOS and the surface tension is purely determined by the double well
potential. Of course surface tension is a material parameter and given by physics
depending on the considered fluids and walls.Therefore, in simulations the double
well should be scaled accordingly to yield the correct surface tension. However,
this can lead to numerical difficulties. To match typical surface tension values,
𝑊 has to be scaled with very small parameters. This in turn demands an even
smaller 𝛾 and therefore a high spatial resolution of the computational mesh. For
that reason, we use a moderate scaling in our numerical experiments in Chapters
4 and 5.



An
Energy-Consistent
Discontinuous

Galerkin Scheme
for NSAC 3

Phase-field modeling is based on a variational principle. Our model (2.4)–(2.6) is
thermodynamically consistent and follows the energy dissipation law (2.11). Nu-
merical schemes with artificial dissipation for stabilization can lead to problems
like increase of energy or parasitic currents [37, 61]. Hence, it is desirable that
the numerical scheme fulfills the energy dissipation inequality (2.11) on a dis-
crete level without artificial numerical dissipation. Additionally, as common for
all diffuse-interface models, we need to resolve steep gradients in the interfacial
area. This motivates the use of energy-consistent discontinuous Galerkin schemes to
solve phase-field systems [51, 69, 96].
The derivation of our scheme to solve the system (2.4)–(2.6) is based on [50]. In
contrast to [69], where an energy-consistent dG scheme for a similar model has
been derived, we obtain a numerical scheme with second order accuracy in time,
instead of order one. The resulting scheme is by construction energy-consistent
and mass conservative.
The derivation consists of multiple parts. First, in the following Section 3.1, we
derive a mixed non-conservative formulation, which is needed to prove the en-
ergy consistency of the scheme. Then, in Section 3.2, we derive the spatial semi-
discretization and in Section 3.3 the temporal semi-discretization. These are com-
bined in Section 3.4 to obtain the fully discrete Scheme, described in Algorithm 3.11.

3.1 Mixed Non-Conservative Formulation
In order to prove a discrete version of Theorem 2.3, we need to use the velocity 𝑣
and the variation of the energy 𝐸 with respect to the density 𝜌 and the phase-field
𝜑 as test functions. Since they depend nonlinearly on 𝜌, 𝜌𝑣, and 𝜑, we rely on a
mixed non-conservative form, which is derived in the following.
Recall the free energy density 𝜌𝑓 , and the notations 𝜌 ̃𝑓 and 𝜌𝜓 from (2.1). First,
we introduce auxiliary variables

𝜎 = ∇𝜑,
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𝜇 = 𝜕(𝜌 ̃𝑓 )
𝜕𝜑 − div(𝛾𝜎),

𝜏 = 𝜕(𝜌 ̃𝑓 )
𝜕𝜌 + 1

2 |𝑣|
2.

With these, we rewrite the system (2.4)–(2.6) into a non-conservative mixed for-
mulation

𝜕𝑡𝜌 + div(𝜌𝑣) = 0, (3.1)

𝜌𝜕𝑡𝑣 + div(𝜌𝑣 ⊗ 𝑣) − div(𝜌𝑣)𝑣 − 1
2𝜌∇|𝑣|

2 + 𝜌∇𝜏 = div(𝑆) + 𝜇∇𝜑, (3.2)

𝜕𝑡𝜑 + ∇𝜑 ⋅ 𝑣 = −𝜂𝜇𝜌 , (3.3)

𝜇 = 𝜕(𝜌 ̃𝑓 )
𝜕𝜑 − 𝛾 div(𝜎), (3.4)

𝜏 = 𝜕(𝜌 ̃𝑓 )
𝜕𝜌 + 1

2 |𝑣|
2, (3.5)

𝜎 = ∇𝜑, (3.6)

with the boundary conditions

𝑣 = 0, 𝜎 ⋅ 𝑛 = 0 on 𝜕Ω. (3.7)

We define weak solutions for this mixed system.This is the basis for our following
spatial dG semi-discretization.
We include the boundary conditions in the function spaces by defining

𝐻 10 (Ω) ≔ {𝜙 ∈ 𝐻 1(Ω)∶ 𝜙|𝜕Ω = 0},
𝐻 1𝑛 (Ω) ≔ {𝜙 ∈ (𝐻 1(Ω))𝑑 ∶ 𝜙|𝜕Ω ⋅ 𝑛 = 0}.

Let us introduce some notation in order to derive a spatial semi-discretization of
(3.1)–(3.6). Let T be a conforming shape regular triangulation of Ω. That means
T = {𝑇 } is a finite family of sets 𝑇 such that

1. 𝑇 ∈ T implies 𝑇 is an open simplex,

2. for any 𝑇1, 𝑇2 ∈ T we have ̄𝑇1 ∩ ̄𝑇2 is a full subsimplex of both, ̄𝑇1 and ̄𝑇2,
3. ⋃𝑇∈T ̄𝑇 = Ω̄.
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The meshsize ℎ is defined as

ℎ ≔ max
𝑇∈T

ℎ𝑇 ,

where ℎ𝑇 denotes the diameter of 𝑇 .
Definition 3.1 (Interface, boundary face): Let T be a mesh of the domain Ω. We
call a subset 𝑒 of Ω̄ a mesh face, if 𝑒 has positive (𝑑 − 1)-dimensional Hausdorff
measure and if one of the following conditions is fulfilled:

1. There are two distinct mesh elements 𝑇1, 𝑇2 ∈ T such that 𝑒 = 𝑇1 ∩ 𝑇2. In this
case we call 𝑒 an interface.

2. There exists 𝑇 ∈ T with 𝑒 = 𝜕𝑇 ∩ 𝜕Ω. Then we call 𝑒 a boundary face.

Let E be the set of interfaces of the triangulation T . Given amesh face 𝑒, we denote
𝑒 ∈ E if 𝑒 is in the interior of Ω and 𝑒 ∈ 𝜕Ω if 𝑒 is a boundary face.

Definition 3.2 (Broken Sobolev spaces, trace spaces): We define for 𝑘 ≥ 0 the
broken Sobolev space

𝐻 𝑘(T ) ≔ {𝜙 ∈ 𝐿2(Ω)∶ ∀𝑇 ∈ T , 𝜙|𝑇 ∈ 𝐻 𝑘(𝑇 )} ,
and similarly for 𝐻 10 (T ) and 𝐻 1𝑛 (T ).
In order to use functions defined in broken spaces restricted to the skeleton E of the
triangulation, we define the trace space

Tr(E) ≔ ∏
𝑇∈T

𝐿2(𝜕𝑇 ).

Equipped with this definition and notations we are now able to give the definition
of a weak solution to the system in mixed-formulation.

Definition 3.3 (Weak solution to (3.1)–(3.6) with (3.7)): The tuple

(𝜌, 𝑣, 𝜑) ∈ 𝐿2(0, 𝑇 ; 𝐻 1(T )) × (𝐿2(0, 𝑇 ; 𝐻 10 (T )))𝑑 × 𝐿2(0, 𝑇 ; 𝐻 1(T ))
with

(𝜕𝑡𝜌, 𝜕𝑡𝑣, 𝜕𝑡𝜑) ∈ 𝐿2(0, 𝑇 ; 𝐿2(T )) × (𝐿2(0, 𝑇 ; 𝐿2(T )))𝑑 × 𝐿2(0, 𝑇 ; 𝐿2(T ))
and

(𝜇, 𝜏 , 𝜎) ∈ 𝐿2(0, 𝑇 ; 𝐻 1(T )) × 𝐿2(0, 𝑇 ; 𝐻 1(T )) × 𝐿2(0, 𝑇 ; 𝐻 1𝑛 (T ))
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such that

(𝜕𝜌
̃𝑓

𝜕𝜌 , 𝜕𝜌
̃𝑓

𝜕𝜑 ) ∈ 𝐿2(0, 𝑇 ; 𝐿2(T )) × 𝐿2(0, 𝑇 ; 𝐿2(T ))

is called a weak solution to (3.1)–(3.6) with (3.7) iff

0 =∫
Ω
(𝜕𝑡𝜌 + div(𝜌𝑣))𝜓 d𝑥 + ∫

E∪𝜕Ω
𝐹1(𝜌, 𝑣, 𝜑, 𝜇, 𝜏 , 𝜎 , 𝜓 ) d𝑠, (3.8)

0 =∫
Ω
(𝜌𝜕𝑡𝑣 + div(𝜌𝑣 ⊗ 𝑣) − div(𝜌𝑣)𝑣

+ 𝜌∇𝜏 − 𝜇∇𝜑 − 1
2𝜌∇|𝑣|

2) ⋅ 𝑋 d𝑥

+ ∫
E∪𝜕Ω

𝐹2(𝜌, 𝑣, 𝜑, 𝜇, 𝜏 , 𝜎 , 𝑋 ) d𝑠 + 𝐵(𝑣, 𝑋 ; 𝜑),

0 =∫
Ω
(𝜕𝑡𝜑 + 𝑣 ⋅ ∇𝜑 + 𝜂𝜇𝜌 )Θ d𝑥 + ∫

E∪𝜕Ω
𝐹3(𝜌, 𝑣, 𝜑, 𝜇, 𝜏 , 𝜎 , Θ) d𝑠,

0 =∫
Ω
(𝜇 − 𝜕𝜌 ̃𝑓

𝜕𝜑 (𝜌, 𝜑) + 𝛾 div(𝜎)) 𝜒 d𝑥 + ∫
E∪𝜕Ω

𝐹4(𝜌, 𝑣, 𝜑, 𝜇, 𝜏 , 𝜎 , 𝜒) d𝑠,

0 =∫
Ω
(𝜏 − 𝜕𝜌 ̃𝑓

𝜕𝜌 (𝜌, 𝜑) − 1
2 |𝑣|

2) 𝜁 d𝑥 + ∫
E∪𝜕Ω

𝐹5(𝜌, 𝑣, 𝜑, 𝜇, 𝜏 , 𝜎 , 𝜁 ) d𝑠,

0 =∫
Ω
(𝜎 − ∇𝜑) ⋅ 𝑍 d𝑥 + ∫

E∪𝜕Ω
𝐹6(𝜌, 𝑣, 𝜑, 𝜇, 𝜏 , 𝜎 , 𝑍) d𝑠, (3.9)

∀(𝜓 , 𝑋 , Θ, 𝜒 , 𝜁 , 𝑍) ∈ 𝐻 1(T ) × (𝐻 10 (T ))𝑑 × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1𝑛 (T ).
Here,

𝐹1, 𝐹3, 𝐹4, 𝐹5 ∶𝐻 1(T ) × (𝐻 10 (T ))𝑑 × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1𝑛 (T ) × 𝐻 1(T )
→ 𝐿2(E),

𝐹2 ∶ 𝐻 1(T ) × (𝐻 10 (T ))𝑑 × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1𝑛 (T ) × (𝐻 10 (T ))𝑑

→ 𝐿2(E),
𝐹6 ∶ 𝐻 1(T ) × (𝐻 10 (T ))𝑑 × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1(T ) × 𝐻 1𝑛 (T ) × 𝐻 1𝑛 (T )

→ 𝐿2(E)
are elementwise fluxes, which are chosen in the sequel to fulfill our requirements. The
bilinear form 𝐵∶ (𝐻 10 (T ))𝑑 × (𝐻 10 (T ))𝑑 × 𝐻 1(T ) → ℝ corresponds to the weak for-
mulation of the divergence of the viscous stress tensor 𝑆. The notation ∫Ω • d𝑥 means
∑𝑇∈T ∫𝑇 • d𝑥 .
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Remark 3.4: 1. The spaces for the variational formulation are chosen in a way
that all occurring integrals are well-defined. However, we assume the existence
of weak solutions. There is no well-posedness analysis for this system up to our
knowledge. We use Definition 3.3 solely to derive the dG scheme Algorithm 3.11.

2. We have used a non-conservative formulation for the momentum balance equa-
tion in (3.2). However, it is too restrictive to have mass conservation, energy con-
sistency and conservation of momentum. We drop the momentum conservation
property in favor of the others.

3.2 Spatial Semi-Discretization
In the following, we develop the energy-consistent dG scheme. For convenience,
we split the derivation in two parts. The first one is the spatial semi-discretization,
presented in this section. The second part is the temporal semi-discretization, de-
rived in the next section. In order to obtain the full scheme, both parts need to be
combined.
In this section, we derive conditions for the fluxes 𝐹1, … , 𝐹6 of a generic scheme
applied to the mixed variational formulation (3.8)–(3.9). The desired properties of
this generic system are the conservation of mass and energy consistency.
We now define the discontinuous Galerkin space by

𝑉ℎ ≔ {𝑢 ∈ 𝐿2(Ω)∶ ∀𝑇 ∈ T , 𝑢|𝑇 ∈ ℙ𝑘} ,
○𝑉ℎ ≔ 𝑉ℎ ∩ 𝐻 10 (T ),
𝑛𝑉ℎ ≔ 𝑉ℎ ∩ 𝐻 1𝑛 (T ),

where ℙ𝑘 is the space of polynomials up to degree 𝑘.
Further, let Vℎ = 𝑉ℎ × ( ○𝑉ℎ)𝑑 × 𝑉ℎ × 𝑉ℎ × 𝑉ℎ×

𝑛𝑉ℎ.

Definition 3.5 (Jump and average operators): We define the jump and average
operators as follows: Let 𝑇1 and 𝑇2 be two mesh elements with a common facet 𝑒, Φ
a scalar-valued and 𝑢 a vector-valued function on Ω. In addition, let 𝑇 be a mesh
element with boundary facet 𝑒𝑏 = 𝜕𝑇 ∩ 𝜕Ω. Then,

{{Φ}}𝑒 ≔
1
2(Φ|𝑇1 + Φ|𝑇2), {{Φ}}𝑒𝑏 ≔ Φ|𝑇 ,

{{𝑢}}𝑒 ≔
1
2(𝑢|𝑇1 + 𝑢|𝑇2), {{𝑢}}𝑒𝑏 ≔ 𝑢|𝑇 ,

[[Φ]]𝑒 ≔ Φ|𝑇1𝑛𝑇1 + Φ|𝑇2𝑛𝑇2 , [[Φ]]𝑒𝑏 ≔ Φ|𝑇𝑛𝑇 ,
[[𝑢]]𝑒 ≔ 𝑢|𝑇1 ⋅ 𝑛𝑇1 + 𝑢|𝑇2 ⋅ 𝑛𝑇2 , [[𝑢]]𝑒𝑏 ≔ 𝑢|𝑇 ⋅ 𝑛𝑇 ,
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[[𝑢]]⊗,𝑒 ≔ 𝑢|𝑇1 ⊗ 𝑛𝑇1 + 𝑢|𝑇2 ⊗ 𝑛𝑇2 , [[𝑢]]⊗,𝑒𝑏 ≔ 𝑢|𝑇 ⊗ 𝑛𝑇 .
We omit the subscripts 𝑒, 𝑒𝑏 whenever no confusion can arise.

Equipped with the definitions above, we introduce the spatially discrete dG for-
mulation of the problem (3.1)–(3.6).
To discretize the viscous stress tensor, we use a coercive discrete bilinear form
𝐵ℎ ∶ (( ○𝑉ℎ)𝑑 × ( ○𝑉ℎ)𝑑 × 𝑉ℎ) → ℝ.
The generic spatially discrete problem reads

Algorithm 3.6 (Generic spatially semi-discrete scheme):
Find (𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ)∶ [0, 𝑇 ] → Vℎ such that

0 =∫
Ω
(𝜕𝑡𝜌ℎ + div(𝜌ℎ𝑣ℎ))𝜓 d𝑥 + ∫

E∪𝜕Ω
𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜓 ) d𝑠 (3.10)

0 =∫
Ω
(𝜌ℎ𝜕𝑡𝑣ℎ + div(𝜌ℎ𝑣ℎ ⊗ 𝑣ℎ) − div(𝜌ℎ𝑣ℎ)𝑣ℎ

+ 𝜌ℎ∇𝜏ℎ − 𝜇ℎ∇𝜑ℎ −
1
2𝜌ℎ∇|𝑣ℎ|

2) ⋅ 𝑋 d𝑥

+ ∫
E∪𝜕Ω

𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑋 ) d𝑠 + 𝐵ℎ(𝑣ℎ, 𝑋 ; 𝜑ℎ) (3.11)

0 =∫
Ω
(𝜕𝑡𝜑ℎ + 𝑣ℎ ⋅ ∇𝜑ℎ + 𝜂𝜇ℎ𝜌ℎ

)Θ d𝑥

+ ∫
E∪𝜕Ω

𝐹3(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, Θ) d𝑠 (3.12)

0 =∫
Ω
(𝜇ℎ −

𝜕𝜌 ̃𝑓
𝜕𝜑 (𝜌ℎ, 𝜑ℎ) + 𝛾 div(𝜎ℎ)) 𝜒 d𝑥

+ ∫
E∪𝜕Ω

𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜒) d𝑠 (3.13)

0 =∫
Ω
(𝜏ℎ −

𝜕𝜌 ̃𝑓
𝜕𝜌 (𝜌ℎ, 𝜑ℎ) −

1
2 |𝑣ℎ|

2) 𝜁 d𝑥

+ ∫
E∪𝜕Ω

𝐹5(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜁 ) d𝑠 (3.14)

0 =∫
Ω
(𝜎ℎ − ∇𝜑ℎ) ⋅ 𝑍 d𝑥 + ∫

E∪𝜕Ω
𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑍 ) d𝑠 (3.15)

∀ (𝜓 , 𝑋 , Θ, 𝜒 , 𝜁 , 𝑍) ∈ Vℎ.
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In order to complete the spatial semi-disrete scheme, we need to specify the discrete
bilinear form 𝐵ℎ. For the sake of maintaining the symmetry of the exact bilinear form
and to obtain a discrete coercivity property, we rely on a symmetric interior penalty
discretization [6]:

𝐵ℎ(𝑣, 𝑋 ; 𝜑ℎ) =∫
Ω
𝑆(∇𝑣, 𝜑) ∶ ∇𝑋 d𝑥

− ∑
𝑒∈E∪𝜕Ω

∫
𝑒
{{𝑆(∇𝑣, 𝜑)}} ∶ [[𝑋]]⊗ + {{𝑆(∇𝑋 , 𝜑)}} ∶ [[𝑣]]⊗ d𝑠

+ ∑
𝑒∈E∪𝜕Ω

∫
𝑒

𝛼𝐵
|𝑒| [[𝑣]]⊗ ∶ [[𝑋]]⊗ d𝑠.

(3.16)

If 𝛼𝐵 is chosen sufficiently large, we ensure coercivity of 𝐵ℎ(•, •; 𝜑).
To prove the mass conservation and energy consistency of (3.10)–(3.36) in Theo-
rem 3.8, we make use of the following proposition:

Proposition 3.7 (Elementwise integration): Let

𝐻 div(T ) ≔ {𝑢 ∈ (𝐿2(T ))𝑑 ∶ div(𝑢) ∈ 𝐿2(T )}.

If 𝑢 ∈ 𝐻 div(T ) and 𝜑 ∈ 𝐻 1(T ), then

∑
𝑇∈T

∫
𝑇
div(𝑢)𝜑 d𝑥 = ∑

𝑇∈T
(−∫

𝑇
𝑢 ⋅ ∇𝜑 d𝑥 + ∫

𝜕𝑇
𝜑𝑢 ⋅ 𝑛𝑇 d𝑠)

= ∑
𝑇∈T

−∫
𝑇
𝑢 ⋅ ∇𝜑 d𝑥 + ∫

E∪𝜕Ω
[[𝑢]]{{𝜑}} d𝑠 + ∫

E∪𝜕Ω
[[𝜑]]{{𝑢}} d𝑠

= −∫
Ω
𝑢 ⋅ ∇𝜑 d𝑥 + ∫

E∪𝜕Ω
[[𝜑𝑢]] d𝑠.

Proof. The identities follow by elementwise partial integration and the definition
of the jump and average operators, see Definition 3.5.

We present the theorem

Theorem 3.8: A generic scheme of the form (3.10)–(3.15)

1. conserves mass iff

∫
E∪𝜕Ω

𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 1) d𝑠 = −∫
E∪𝜕Ω

[[𝜌ℎ𝑣ℎ]] d𝑠
∀(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ) ∈ Vℎ.
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Here, 1 is the constant function with value 1 everywhere on Ω,
2. satisfies the energy dissipation equality

d
d 𝑡 (∫Ω

𝜌 ̃𝑓 (𝜌ℎ, 𝜑ℎ) +
𝛾
2 |𝜎ℎ|2 +

𝜌ℎ
2 |𝑣ℎ|2 d𝑥)

= −∫
Ω

𝜂
𝜌ℎ

𝜇2ℎ d𝑥 − ∫
Ω
𝐵ℎ(𝑣ℎ, 𝑣ℎ; 𝜑ℎ) d𝑥

≤ 0 (3.17)

iff

0 = − ∫
E∪𝜕Ω

𝛾𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − 𝛾[[𝜕𝑡𝜑ℎ𝜎ℎ]] d𝑠

− ∫
E∪𝜕Ω

𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜕𝑡𝜑ℎ) d𝑠 (3.18)

0 =∫
E∪𝜕Ω

𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜏ℎ) d𝑠

+ ∫
E∪𝜕Ω

𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑣ℎ) d𝑠

+ ∫
E∪𝜕Ω

𝐹3(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜇ℎ) + [[𝜌ℎ𝑣ℎ𝜏ℎ]] d𝑠. (3.19)

for all (𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ)∶ [0, 𝑇 ] → Vℎ.

Proof. 1. We use 𝜓 ≡ 1 in (3.10) and obtain

0 =𝜕𝑡 (∫
Ω
𝜌ℎ d𝑥) = ∫

Ω
𝜕𝑡𝜌ℎ d𝑥 = −∫

Ω
div(𝜌ℎ𝑣ℎ) d𝑥

− ∫
E∪𝜕Ω

𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 1) d𝑠.

We infer with Proposition 3.7 and 𝑣 = 0 on 𝜕Ω

= − ∫
E∪𝜕Ω

[[𝜌ℎ𝑣ℎ]]{{1}} d𝑠 − ∫
E∪𝜕Ω

𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 1) d𝑠.

2. With
𝐸(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜎ℎ) = ∫

Ω
𝜌 ̃𝑓 (𝜌ℎ, 𝜑ℎ) +

𝛾
2 |𝜎ℎ|2 +

𝜌ℎ
2 |𝑣ℎ|2 d𝑥

we want to show (3.17).
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Hence, we explicitly compute the time derivative

𝜕𝑡𝐸 =∫
Ω

𝜕𝜌 ̃𝑓
𝜕𝜌 (𝜌ℎ, 𝜑ℎ)𝜕𝑡𝜌ℎ +

𝜕𝜌 ̃𝑓
𝜕𝜑 (𝜌ℎ, 𝜑ℎ)𝜕𝑡𝜑ℎ +

1
2𝜕𝑡𝜌ℎ|𝑣ℎ|

2

+ 𝜌ℎ𝑣ℎ ⋅ 𝜕𝑡𝑣ℎ + 𝛾𝜎ℎ ∶ 𝜕𝑡𝜎ℎ d𝑥.

With (3.15) we obtain

𝜕𝑡𝐸 =∫
Ω

𝜕𝜌 ̃𝑓
𝜕𝜌 (𝜌ℎ, 𝜑ℎ)𝜕𝑡𝜌ℎ +

𝜕𝜌 ̃𝑓
𝜕𝜑 (𝜌ℎ, 𝜑ℎ)𝜕𝑡𝜑ℎ +

1
2𝜕𝑡𝜌ℎ|𝑣ℎ|

2

+ 𝜌ℎ𝑣ℎ ⋅ 𝜕𝑡𝑣ℎ + 𝛾𝜎ℎ ∶ ∇(𝜕𝑡𝜑ℎ) d𝑥

− 𝛾 ∫
E
𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) d𝑠.

Applying Proposition 3.7 yields

𝜕𝑡𝐸 =∫
Ω

𝜕𝜌 ̃𝑓
𝜕𝜌 (𝜌ℎ, 𝜑ℎ)𝜕𝑡𝜌ℎ +

𝜕𝜌 ̃𝑓
𝜕𝜑 (𝜌ℎ, 𝜑ℎ)𝜕𝑡𝜑ℎ +

1
2𝜕𝑡𝜌ℎ|𝑣ℎ|

2

+ 𝜌ℎ𝑣ℎ ⋅ 𝜕𝑡𝑣ℎ − 𝛾𝜕𝑡𝜑ℎ ⋅ div(𝜎ℎ) d𝑥

− 𝛾 ∫
E
𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − [[(𝜕𝑡𝜑ℎ)𝜎ℎ]] d𝑠

+ ∫
𝜕Ω

𝛾𝜕𝑡𝜑ℎ𝜎ℎ𝑛 d𝑠.

Using (3.11) and (3.13) we obtain

𝜕𝑡𝐸 =∫
Ω
𝜏ℎ𝜕𝑡𝜌ℎ + 𝜇ℎ𝜕𝑡𝜑ℎ − div(𝜌ℎ𝑣ℎ ⊗ 𝑣ℎ)𝑣ℎ + div(𝜌ℎ𝑣ℎ)|𝑣ℎ|2

− 𝜌ℎ𝑣ℎ∇𝜏ℎ + 𝜇ℎ𝑣ℎ∇𝜑ℎ +
1
2𝜌ℎ𝑣ℎ∇|𝑣ℎ|

2 d𝑥

− ∫
E
𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜕𝑡𝜑ℎ) d𝑠

− 𝛾 ∫
E
𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − [[(𝜕𝑡𝜑ℎ)𝜎ℎ]] d𝑠

+ ∫
𝜕Ω

𝛾𝜕𝑡𝜑ℎ𝜎ℎ𝑛 d𝑠 − ∫
E
𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑣ℎ) d𝑠
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− 𝐵ℎ(𝑣ℎ, 𝑣ℎ; 𝜑ℎ).
We eliminate the time derivatives of 𝜌 and 𝜑 with (3.10) and (3.12) which
results in

𝜕𝑡𝐸 =∫
Ω
−𝜏ℎ div(𝜌ℎ𝑣ℎ) − 𝜇ℎ∇𝜑ℎ ⋅ 𝑣ℎ − 𝜂 |𝜇ℎ|

2

𝜌ℎ
− div(𝜌ℎ𝑣ℎ ⊗ 𝑣ℎ)𝑣ℎ + div(𝜌ℎ𝑣ℎ)|𝑣ℎ|2 − 𝜌ℎ𝑣ℎ∇𝜏ℎ

+ 𝜇ℎ𝑣ℎ ⋅ ∇𝜑ℎ +
1
2𝜌ℎ𝑣ℎ∇|𝑣ℎ|

2 d𝑥

− ∫
E
𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜕𝑡𝜑ℎ) d𝑠

− 𝛾 ∫
E
𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − [[(𝜕𝑡𝜑ℎ)𝜎ℎ]] d𝑠

+ ∫
𝜕Ω

𝛾𝜕𝑡𝜑ℎ𝜎ℎ𝑛 d𝑠

− ∫
E
𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑣ℎ) d𝑠 − 𝐵ℎ(𝑣ℎ, 𝑣ℎ; 𝜑ℎ)

− ∫
E
𝐹3(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜇ℎ) d𝑠 − ∫

E
𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜏ℎ) d𝑠.

Finally, we obtain

𝜕𝑡𝐸 = − ∫
E
𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜕𝑡𝜑ℎ) d𝑠

− 𝛾 ∫
E
𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − [[𝜕𝑡𝜑ℎ𝜎ℎ]] d𝑠

+ ∫
𝜕Ω

𝛾𝜕𝑡𝜑ℎ𝜎ℎ ⋅ 𝑛 d𝑠

− ∫
E∪𝜕Ω

[[𝜌ℎ𝑣ℎ𝜏ℎ]] d𝑠 − ∫
E
𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜏ℎ) d𝑠

− ∫
E
𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑣ℎ) d𝑠 − ∫

E
𝐹3(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜇ℎ) d𝑠

− 𝐵ℎ(𝑣ℎ, 𝑣ℎ; 𝜑ℎ) − ∫
Ω
𝜂𝜇

2
ℎ
𝜌ℎ

d𝑥.
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To fulfill the discrete energy dissipation equation (3.17), we need

0 = − ∫
E
𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜕𝑡𝜑ℎ) d𝑠

− 𝛾 ∫
E
𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − [[𝜕𝑡𝜑ℎ𝜎ℎ]] d𝑠

+ ∫
𝜕Ω

𝛾𝜕𝑡𝜑ℎ𝜎ℎ ⋅ 𝑛 d𝑠

− ∫
E∪𝜕Ω

[[𝜌ℎ𝑣ℎ𝜏ℎ]] d𝑠 − ∫
E
𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜏ℎ) d𝑠

− ∫
E
𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑣ℎ) d𝑠

− ∫
E
𝐹3(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜇ℎ) d𝑠.

Note that when this equality holds, 𝐹6 cannot depend on 𝜌ℎ, 𝑣ℎ, 𝜏ℎ, 𝜇ℎ, 𝜎ℎ.
Additionally, every summand in 𝐷𝑡𝐹6 and 𝐹4 has to depend on 𝜕𝑡𝜑ℎ. Since
the trace of 𝜕𝑡𝜑ℎ is independent of the traces of the other quantities, the
terms containing 𝜕𝑡𝜑ℎ and the ones without 𝜕𝑡𝜑ℎ need to cancel each other.
This yields the two conditions (3.18) and (3.19).

The following (non-unique) choice of fluxes fulfills the condition of the theorem:

𝐹1 = −[[𝜌ℎ𝑣ℎ]]{{𝜓 }},
𝐹2 = −[[𝜏ℎ]]{{𝜌ℎ𝑋}} + [[𝜑ℎ]]{{𝜇ℎ𝑋}},
𝐹3 = −[[𝜑ℎ]]{{Θ𝑣ℎ}},
𝐹4 = −𝛾[[𝜎ℎ]]{{𝜒}},
𝐹6 = [[𝜑ℎ]]{{𝑍}}.

For stabilization reasons we might allow to dissipate a small additional amount of
energy. Then the conditions of Theorem 3.8 relax to

0 ≥ − ∫
E∪𝜕Ω

𝛾𝐷𝑡𝐹6(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜎ℎ) − 𝛾[[𝜕𝑡𝜑ℎ𝜎ℎ]] d𝑠

− ∫
E∪𝜕Ω

𝐹4(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜕𝑡𝜑ℎ) d𝑠,

0 ≤∫
E∪𝜕Ω

𝐹1(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜏ℎ) d𝑠 + ∫
E∪𝜕Ω

𝐹2(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝑣ℎ) d𝑠
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+ ∫
E∪𝜕Ω

𝐹3(𝜌ℎ, 𝑣ℎ, 𝜑ℎ, 𝜇ℎ, 𝜏ℎ, 𝜎ℎ, 𝜇ℎ) + [[𝜌ℎ𝑣ℎ𝜏ℎ]] d𝑠.

This allows the following choice of fluxes (𝛼1, 𝛼2, 𝛼3 ≥ 0):
𝐹1 = −[[𝜌ℎ𝑣ℎ]]{{𝜓 }} + 𝛼1[[𝜏ℎ]][[𝜓]], (3.20)
𝐹2 = −[[𝜏ℎ]]{{𝜌ℎ𝑋}} + [[𝜑ℎ]]{{𝜇ℎ𝑋}} + 𝛼2[[𝑣ℎ]][[𝑋]], (3.21)
𝐹3 = −[[𝜑ℎ]]{{Θ𝑣ℎ}} + 𝛼3[[𝜇ℎ]][[Θ]], (3.22)
𝐹4 = −𝛾[[𝜎ℎ]]{{𝜒}}, (3.23)
𝐹6 = [[𝜑ℎ]]{{𝑍}}. (3.24)

3.3 Temporal Semi-Discretization
Let 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑇 be a temporal decomposition of [0, 𝑇 ]. We set
Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛. Moreover, we denote Φ𝑛(⋅) = Φ(⋅, 𝑡𝑛) and Φ𝑛+1/2 = Φ𝑛+1+Φ𝑛

2 . The
temporal discretisation is of Crank–Nicholson type and chosen in a way that the
discrete energy inequality holds.The resulting scheme is of second order accuracy.

Algorithm 3.9 (Temporal semi-discrete energy-consistent scheme): With initial
conditions 𝜌0, 𝑣0, 𝜑0, 𝜇0, 𝜏 0, 𝜎 0 the temporal semi-discrete scheme reads as:
For 𝑛 ∈ ℕ0 find 𝜌𝑛+1, 𝑣𝑛+1, 𝜑𝑛+1, 𝜇𝑛+1, 𝜏𝑛+1, 𝜎𝑛+1 such that 𝑣𝑛+1 = 0 and 𝜎𝑛+1 ⋅ 𝑛 = 0
on 𝜕Ω and

0 =𝜌
𝑛+1 − 𝜌𝑛
Δ𝑡𝑛

+ div(𝜌𝑛+1/2𝑣𝑛+1/2) (3.25)

0 =𝜌𝑛+1/2 (𝑣
𝑛+1 − 𝑣𝑛
Δ𝑡𝑛

) + div(𝜌𝑛+1/2𝑣𝑛+1/2 ⊗ 𝑣𝑛+1/2) − div(𝜌𝑛+1/2𝑣𝑛+1/2)𝑣𝑛+1/2

− 1
2𝜌

𝑛+1/2∇|𝑣𝑛+1/2|2 + 𝜌𝑛+1/2∇𝜏𝑛+1/2 − 𝜇𝑛+1/2∇𝜑𝑛+1/2 − div(𝑆(𝜑𝑛+1/2, ∇𝑣𝑛+1/2)) (3.26)

0 =𝜑
𝑛+1 − 𝜑𝑛

Δ𝑡𝑛
+ ∇𝜑𝑛+1/2 ⋅ 𝑣𝑛+1/2 + 𝜂𝜇

𝑛+1/2

𝜌𝑛+1/2 (3.27)

0 =𝜇𝑛+1/2 − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) + 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2(𝜑𝑛+1 − 𝜑𝑛)
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+ 𝛾 div(𝜎𝑛+1/2) (3.28)

0 =𝜏𝑛+1/2 − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) + 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2(𝜌𝑛+1 − 𝜌𝑛)

− 1
4 (|𝑣𝑛+1|2 + |𝑣𝑛 |2) (3.29)

0 =𝜎𝑛+1 − ∇𝜑𝑛+1. (3.30)

The following theorem states that this temporal semi-discretization is energy-con-
sistent.

Theorem 3.10 (Discrete Energy Inequality):
The scheme specified by Algorithm 3.9 satisfies the following energy dissipation prop-
erty for all 0 ≤ 𝑛 ≤ 𝑁 :

∫
Ω
𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛) + 1

2𝜌
𝑛 |𝑣𝑛 |2 + 𝛾

2 |𝜎
𝑛 |2 d𝑥 = ∫

Ω
𝜌0 ̃𝑓 (𝜌0, 𝜑0) + 1

2𝜌
0|𝑣0|2 + 𝛾

2 |𝜎
0|2 d𝑥

−
𝑛−1
∑
𝑗=0

Δ𝑡𝑗 ∫
Ω
𝑆(𝜑𝑗+1/2, ∇𝑣𝑗+1/2) ∶ ∇𝑣𝑗+1/2 + 𝜂 |𝜇

𝑗+1/2|2
𝜌𝑗+1/2 d𝑥.

Proof. By multiplying (3.25) with 𝜏𝑛+1/2, (3.26) with 𝑣𝑛+1/2 and (3.27) with 𝜇𝑛+1/2 we
obtain after integrating over Ω

0 =∫
Ω

𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) + 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2Δ𝑡𝑛

+ 𝜌𝑛+1 − 𝜌𝑛
4Δ𝑡𝑛

(|𝑣𝑛+1|2 + |𝑣𝑛 |2)

+ div(𝜌𝑛+1/2𝑣𝑛+1/2)𝜏𝑛+1/2 d𝑥,

0 =∫
Ω

𝜌𝑛+1/2

2Δ𝑡𝑛
(|𝑣𝑛+1|2 − |𝑣𝑛 |2) + 𝑣𝑛+1/2 div(𝜌𝑛+1/2𝑣𝑛+1/2 ⊗ 𝑣𝑛+1/2)

− div(𝜌𝑛+1/2𝑣𝑛+1/2)|𝑣𝑛+1/2|2 − 1
2𝜌

𝑛+1/2∇|𝑣𝑛+1/2|2𝑣𝑛+1/2 + 𝜌𝑛+1/2𝑣𝑛+1/2∇𝜏𝑛+1/2

− 𝜇𝑛+1/2∇𝜑𝑛+1/2𝑣𝑛+1/2 − div(𝑆(𝜑𝑛+1/2, ∇𝑣𝑛+1/2)) ⋅ 𝑣𝑛+1/2 d𝑥,

0 =∫
Ω

𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) + 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2Δ𝑡𝑛
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− 𝜑𝑛+1 − 𝜑𝑛

Δ𝑡𝑛
𝛾 div(𝜎𝑛+1/2) + ∇𝜑𝑛+1/2 ⋅ 𝑣𝑛+1/2𝜇𝑛+1/2 + 𝜂 |𝜇

𝑛+1/2|2
𝜌𝑛+1/2 d𝑥.

We define

𝐼1 =
𝜌𝑛+1 − 𝜌𝑛

Δ𝑡𝑛
(𝜌

𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) + 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2(𝜌𝑛+1 − 𝜌𝑛)

+ 1
4 (|𝑣𝑛+1|2 + |𝑣𝑛 |2)) + 1

Δ𝑡𝑛
𝜌𝑛+1/2𝑣𝑛+1/2 ⋅ (𝑣𝑛+1 − 𝑣𝑛)

+𝜑
𝑛+1 − 𝜑𝑛

Δ𝑡𝑛
(𝜌

𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) + 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2(𝜑𝑛+1 − 𝜑𝑛)

− 𝛾 div(𝜎𝑛+1/2)) ,
𝐼2 = div(𝜌𝑛+1/2𝑣𝑛+1/2)𝜏𝑛+1/2 + 𝜌𝑛+1/2𝑣𝑛+1/2∇𝜏𝑛+1/2

= div(𝜌𝑛+1/2𝑣𝑛+1/2𝜏𝑛+1/2),
𝐼3 =𝑣𝑛+1/2 div(𝜌𝑛+1/2𝑣𝑛+1/2 ⊗ 𝑣𝑛+1/2) − div(𝜌𝑛+1/2𝑣𝑛+1/2)|𝑣𝑛+1/2|2 − 1

2𝜌
𝑛+1/2∇|𝑣𝑛+1/2|2𝑣𝑛+1/2

=0,
𝐼4 = − div(𝑆(𝜑𝑛+1/2, 𝑣𝑛+1/2) ⋅ 𝑣𝑛+1/2 + 𝜂 |𝜇

𝑛+1/2|2
𝜌𝑛+1/2 .

Now

Δ𝑡𝑛 ∫
Ω
𝐼1 d𝑥 = ∫

Ω
𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) + 1

2𝜌
𝑛+1|𝑣𝑛+1|2 + 𝛾

2 |𝜎
𝑛+1|2 d𝑥

− ∫
Ω
𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛) + 1

2𝜌
𝑛 |𝑣𝑛 |2 + 𝛾

2 |𝜎
𝑛 |2 d𝑥

and

∫
Ω
𝐼2 d𝑥 = 0,

since 𝑣 ⋅ 𝑛 = 0 on 𝜕Ω.
Additionally,

∫
Ω
𝐼4 d𝑥 = ∫

Ω
𝑆(𝜑𝑛+1/2, 𝑣𝑛+1/2) ∶ ∇𝑣𝑛+1/2 + 𝜂 |𝜇

𝑛+1/2|2
𝜌𝑛+1/2 d𝑥.
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Because of 0 = ∫Ω 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 d𝑥 the assertion is shown.

3.4 The Fully Discrete Scheme
Finally, in this section we present the fully discrete scheme of (3.1)–(3.6). This is
a combination of the two previous sections. The arguments of these sections can
be combined to obtain the fully discrete scheme with the desired properties. With
(2.1) the fully discrete scheme reads as follows:
Algorithm 3.11: Let a temporal decomposition 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑇 , with
Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛, and a triangulation T of Ω be given. With initial data (𝜌0ℎ, 𝑣0ℎ, 𝜑0

ℎ, 𝜇0ℎ,𝜏 0ℎ , 𝜎 0
ℎ) ∈ Vℎ, for 𝑛 = 0, … , 𝑁 − 1 find (𝜌𝑛+1ℎ , 𝑣𝑛+1ℎ , 𝜑𝑛+1

ℎ , 𝜇𝑛+1ℎ , 𝜏𝑛+1ℎ , 𝜎𝑛+1
ℎ ) ∈ Vℎ such

that

0 =∫
Ω
(𝜌

𝑛+1
ℎ − 𝜌𝑛ℎ
Δ𝑡 + div(𝜌𝑛+1/2

ℎ 𝑣𝑛+1/2
ℎ )) 𝜓 d𝑥 − ∫

E
[[𝜌𝑛+1/2

ℎ 𝑣𝑛+1/2
ℎ ]]{{𝜓 }} d𝑠, (3.31)

0 =∫
Ω
(𝜌𝑛+1/2

ℎ (𝑣
𝑛+1
ℎ − 𝑣𝑛ℎ
Δ𝑡 ) + div(𝜌𝑛+1/2

ℎ 𝑣𝑛+1/2
ℎ ⊗ 𝑣𝑛+1/2

ℎ ) − div(𝜌𝑛+1/2
ℎ 𝑣𝑛+1/2

ℎ )𝑣𝑛+1/2
ℎ

− 1
2𝜌

𝑛+1/2
ℎ ∇|𝑣𝑛+1/2

ℎ |2 + 𝜌𝑛+1/2
ℎ ∇𝜏 𝑛+1/2

ℎ − 𝜇𝑛+1/2
ℎ ∇𝜑𝑛+1/2

ℎ ) ⋅ 𝑋 d𝑥

− ∫
E
[[𝜏 𝑛+1/2

ℎ ]] ⋅ {{𝜌𝑛+1/2
ℎ 𝑋}} − [[𝜑𝑛+1/2

ℎ ]] ⋅ {{𝜇𝑛+1/2
ℎ 𝑋}} d𝑠 + 𝐵ℎ(𝑣𝑛+1/2

ℎ , 𝑋 ; 𝜑𝑛+1/2
ℎ ), (3.32)

0 =∫
Ω
(𝜑

𝑛+1
ℎ − 𝜑𝑛

ℎ
Δ𝑡 + ∇𝜑𝑛+1/2

ℎ ⋅ 𝑣𝑛+1/2
ℎ + 𝜂 𝜇

𝑛+1/2
ℎ
𝜌𝑛+1/2
ℎ

)Θ d𝑥 − ∫
E
[[𝜑𝑛+1/2

ℎ ]] ⋅ {{Θ𝑣𝑛+1/2
ℎ }} d𝑠, (3.33)

0 =∫
Ω
(𝜇𝑛+1/2

ℎ − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) + 𝜌𝑛 ̃𝑓 (𝜌𝑛 , 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛 , 𝜑𝑛)
2(𝜑𝑛+1 − 𝜑𝑛)

+ 𝛾 div(𝜎𝑛+1/2
ℎ )) 𝜒 d𝑥 − ∫

E
𝛾[[𝜎𝑛+1/2

ℎ ]]{{𝜒}} d𝑠, (3.34)

0 =∫
Ω
(𝜏 𝑛+1/2

ℎ − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛 , 𝜑𝑛+1) + 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) − 𝜌𝑛 ̃𝑓 (𝜌𝑛 , 𝜑𝑛)
2(𝜌𝑛+1 − 𝜌𝑛)

− 1
4 (|𝑣

𝑛+1
ℎ |2 + |𝑣𝑛ℎ|2)) 𝜁 d𝑥, (3.35)

0 =∫
Ω
(𝜎𝑛+1

ℎ − ∇𝜑𝑛+1
ℎ ) ⋅ 𝑍 d𝑥 + ∫

E
[[𝜑𝑛+1

ℎ ]] ⋅ {{𝑍}} d𝑠, (3.36)

holds for all (𝜓 , 𝑋 , Θ, 𝜒 , 𝜁 , 𝑍) ∈ Vℎ.
The discretization is chosen such that the discrete counterpart 3.12 of the energy
inequality is satisfied.
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Theorem3.12 (Fully discrete energy inequality): Thediscrete solution of the scheme
(3.31)–(3.36) conserves mass and satisfies the energy dissipation equality, i.e.

∫
Ω
𝜌𝑛+1ℎ ̃𝑓 (𝜌𝑛+1ℎ , 𝜑𝑛+1

ℎ ) + 𝛾
2 |𝜎

𝑛+1
ℎ |2 + 𝜌𝑛+1ℎ

2 |𝑣𝑛+1ℎ |2 d 𝑥

−∫
Ω
𝜌𝑛ℎ ̃𝑓 (𝜌𝑛ℎ , 𝜑𝑛

ℎ) +
𝛾
2 |𝜎

𝑛
ℎ|2 +

𝜌𝑛ℎ
2 |𝑣𝑛ℎ|2 d 𝑥

= −Δ𝑡 ∫
Ω
𝜂 |𝜇

𝑛+1/2
ℎ |2
𝜌𝑛+1/2
ℎ

d 𝑥 − Δ𝑡𝐵ℎ(𝑣𝑛+1/2
ℎ , 𝑣𝑛+1/2

ℎ ; 𝜑𝑛+1/2
ℎ ).

Proof. The proof is simply combining Theorem 3.8 and 3.10.

Remark 3.13 (Quotients of the free energy density): In the implementation we do
not use the difference quotients

𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) + 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2(𝜑𝑛+1 − 𝜑𝑛) (3.37)

and

𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1) + 𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛)
2(𝜌𝑛+1 − 𝜌𝑛) . (3.38)

We make two simplifications instead. First, we replace (3.37) and (3.38) with

𝜌𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1) − 𝜌𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛)
𝜑𝑛+1 − 𝜑𝑛 (3.39)

and

𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1/2) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1/2)
𝜌𝑛+1 − 𝜌𝑛 . (3.40)

It can be shown by means of Taylor expansions that these difference quotients are
an approximation of the original ones with error 𝑂((𝜌𝑛+1 − 𝜌𝑛)2), 𝑂((𝜑𝑛+1 − 𝜑𝑛)2),
respectively.
Secondly, since (3.39)–(3.40) might be badly conditioned (ill-defined) for small (van-
ishing) difference |𝜑𝑛+1 − 𝜑𝑛 | and |𝜌𝑛+1 − 𝜌𝑛 |, we replace them by the representation

𝜌𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1) − 𝜌𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛)
𝜑𝑛+1 − 𝜑𝑛
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=𝜌𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1/2) + 1
24

𝜕3
𝜕𝜑3 (𝜌𝑛+1/2𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1/2)) (𝜑𝑛+1 − 𝜑𝑛)2

and

𝜌𝑛+1 ̃𝑓 (𝜌𝑛+1, 𝜑𝑛+1/2) − 𝜌𝑛 ̃𝑓 (𝜌𝑛, 𝜑𝑛+1/2)
𝜌𝑛+1 − 𝜌𝑛

=𝜌𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1/2) + 1
24

𝜕3
𝜕𝜌3 (𝜌

𝑛+1/2𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1/2)) (𝜌𝑛+1 − 𝜌𝑛)2

+ 1
1920

𝜕5
𝜕𝜌5 (𝜌

𝑛+1/2 ̃𝑓 (𝜌𝑛+1/2, 𝜑𝑛+1/2))(𝜌𝑛+1 − 𝜌𝑛)4

The representation for the quotient with respect to 𝜑 is exact, since the double well is
a polynomial of degree 4. However, the representation for the quotient with respect
to 𝜌 is an approximation with error 𝑂((𝜌𝑛+1 − 𝜌𝑛)6).

3.5 Numerical Experiments

3.5.1 Convergence Studies

In this section we perform numerical experiments in order to verify the rate of
convergence of the Algorithm 3.11 with respect to space and time.
We implemented the energy-consistent dG solver 3.11 with the finite element tool-
box FEniCS, which is based on the C++ library DOLFIN [73]. In each time step
the nonlinear system is solved by an inexact Newton method. The linear subsys-
tems are approximated by a biconjugate gradient stabilizedmethod (bicgstab) with
an incomplete LU preconditioner. The absolute tolerance of both solvers is set to
10−10.
We test the convergence properties in one space dimension on Ω = [0, 1]. For that
reason we employ a manufactured solution

𝜌exact(𝑥, 𝑡) =
1
2 cos(5𝜋𝑡) cos(2𝜋𝑥) + 3

2 ,
𝑣exact(𝑥, 𝑡) = cos(5𝜋𝑡) cos(4𝜋𝑥), (3.41)

𝜑exact(𝑥, 𝑡) =
1
2 cos(5𝜋𝑡) cos(2𝜋𝑥) + 1

2 .
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We compute source terms 𝑆𝜌(𝑥, 𝑡), 𝑆𝑣(𝑥, 𝑡), and 𝑆𝜑(𝑥, 𝑡) for (2.4)–(2.6) such that
(𝜌exact, 𝑣exact, 𝜑exact) solves the systemwith source terms exactly.We use the Sympy
python library [82] for the symbolical calculations leading to the source terms.
For the equations of state in the bulk phases, we choose stiffened gas equations

𝜌𝑓L/V = 𝛼L/V𝜌 ln(𝜌) + (𝛽L/V − 𝛼L/V)𝜌 + 𝛾L/V,
with parameters

𝛼L = 1.5, 𝛼V = 1,
𝛽L = ln(2), 𝛽V = 0,
𝛾L = 0, 𝛾V = 0.5.

For the bulk viscosities we set 𝜇L = 𝜇V = 0.001. The capillary parameter is taken
𝛾 = 0.001 and themobility 𝜂 = 1.The double well is chosen as𝑊(𝜑) = 0.1𝜑2(1−𝜑)2.

3.5.1.1 Convergence in Space

For the computations we use a time step size depending on the dG polynomial
degree. For 𝑘 = 0, 1 we choose Δ𝑡 = 10⌊log10(1/𝑁)⌋, where 𝑁 denotes the number of
cells. For 𝑘 ≥ 2 we choose Δ𝑡 = 10⌊log10(1/𝑁 2)⌋.
We run the simulation up to 𝑇 = 0.03 on grids with different number𝑁 of cells. We
found that the convergence rate depends on the choice of stabilization parameters
𝛼𝐵 and 𝛼1, cf. (3.16),(3.20). This is especially true for 𝑘 = 1. We list the parameters
we used in Table 3.1. The other parameters 𝛼2, 𝛼3 (3.21),(3.22) are chosen to be 0.

𝑘 𝛼𝐵 𝛼1
0 1e-03 0
1 1.7e-03 6e-03
2 7e-03 1e-03
3 2e-02 1e-01

Table 3.1: Stabilization parameters used in the numerical experiments, depending on
polynomial degree 𝑘.

We investigate the errors of the discrete solution (𝜌ℎ, 𝑣ℎ, 𝜑ℎ) and the exact solution
(𝜌exact, 𝑣exact, 𝜑exact) (3.41) in 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) . The results in Tables 3.2–3.5 indicate
that the scheme converges with order 𝑘 + 1 in space and order 2 in time.
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𝑁 ‖𝜌 − 𝜌ℎ‖𝐿∞(𝐿2) EOC𝜌 ‖𝑣 − 𝑣ℎ‖𝐿∞(𝐿2) EOC𝑣 ‖𝜑 − 𝜑ℎ‖𝐿∞(𝐿2) EOC𝜑
16 5.3927e-02 – 1.6099e-01 – 3.9793e-02 –
32 2.3266e-02 1.21 7.9256e-02 1.02 1.9836e-02 1.00
64 1.0400e-02 1.16 3.9587e-02 1.00 9.9282e-03 1.00
128 5.0357e-03 1.05 2.0036e-02 0.98 5.0093e-03 0.99
256 2.5047e-03 1.01 1.0019e-02 1.00 2.5047e-03 1.00
512 1.2523e-03 1.00 5.0093e-03 1.00 1.2523e-03 1.00
1024 6.2624e-04 1.00 2.5050e-03 1.00 6.2624e-04 1.00
2048 3.1312e-04 1.00 1.2525e-03 1.00 3.1312e-04 1.00
4096 1.5656e-04 1.00 6.2624e-04 1.00 1.5656e-04 1.00
8192 7.8281e-05 1.00 3.1312e-04 1.00 7.8281e-05 1.00

Table 3.2: Numerical error in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) norm for dG polynomial degree
𝑘 = 0.

𝑁 ‖𝜌 − 𝜌ℎ‖𝐿∞(𝐿2) EOC𝜌 ‖𝑣 − 𝑣ℎ‖𝐿∞(𝐿2) EOC𝑣 ‖𝜑 − 𝜑ℎ‖𝐿∞(𝐿2) EOC𝜑
16 7.0177e-02 0.00 8.4485e-02 0.00 1.4141e-02 0.00
32 3.4156e-02 1.04 3.5802e-02 1.24 4.8521e-03 1.54
64 1.7161e-02 0.99 1.4091e-02 1.35 2.5639e-03 0.92
128 8.9180e-03 0.94 3.6522e-03 1.95 5.0880e-04 2.33
256 4.1448e-03 1.11 6.8157e-04 2.42 2.3976e-04 1.09
512 1.6387e-03 1.34 1.9353e-04 1.82 1.0784e-04 1.15
1024 5.8990e-04 1.47 2.5084e-05 2.95 3.5755e-05 1.59
2048 1.7574e-04 1.75 3.4145e-06 2.88 1.0780e-05 1.73

Table 3.3: Numerical error in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) norm for dG polynomial degree
𝑘 = 1.

𝑁 ‖𝜌 − 𝜌ℎ‖𝐿∞(𝐿2) EOC𝜌 ‖𝑣 − 𝑣ℎ‖𝐿∞(𝐿2) EOC𝑣 ‖𝜑 − 𝜑ℎ‖𝐿∞(𝐿2) EOC𝜑
16 9.4031e-03 – 5.0512e-03 – 1.0466e-03 –
32 1.3901e-03 2.76 5.2801e-04 3.26 1.3235e-04 2.98
64 3.4729e-05 5.32 3.0377e-05 4.12 2.6400e-06 5.65
128 3.3313e-06 3.38 3.8284e-06 2.99 2.3993e-07 3.46
256 3.2122e-07 3.37 4.7174e-07 3.02 2.9784e-08 3.01
512 2.9897e-08 3.43 5.9655e-08 2.98 3.7434e-09 2.99

Table 3.4: Numerical error in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) norm for dG polynomial degree
𝑘 = 2.
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𝑁 ‖𝜌 − 𝜌ℎ‖𝐿∞(𝐿2) EOC𝜌 ‖𝑣 − 𝑣ℎ‖𝐿∞(𝐿2) EOC𝑣 ‖𝜑 − 𝜑ℎ‖𝐿∞(𝐿2) EOC𝜑
16 1.1536e-03 – 6.7507e-04 – 7.9957e-05 –
32 5.2932e-05 4.45 1.6833e-05 5.33 3.7722e-06 4.41
64 2.5162e-06 4.39 8.9823e-07 4.23 2.3245e-07 4.02
128 1.4674e-07 4.10 3.3460e-08 4.75 1.3706e-08 4.08

Table 3.5: Numerical error in the 𝐿∞(0, 𝑇 ; 𝐿2(Ω)) norm for dG polynomial degree
𝑘 = 3.

3.5.1.2 Convergence in Time

Since the convergence order for 𝑘 = 1 is not completely clear, we conduct an
additional experiment in this section to investigate the convergence order with
respect to time. In order to ensure a low spatial discretization error we use dG
polynomials with degree 𝑘 = 5 for different Δ𝑡 on a grid with 64 cells. For the
simulation we use 𝛼𝐵 = 𝛼1 = 1.5. We investigate the errors of the discrete solution
(𝜌ℎ, 𝑣ℎ, 𝜑ℎ) and the exact solution (𝜌exact, 𝑣exact, 𝜑exact) (3.41) in 𝐿2(Ω) at final time
𝑇 = 0.03. The results in Table 3.6 shows that the scheme converges with order 2
in time.

Δ𝑡 ‖𝜌 − 𝜌ℎ‖𝐿2 EOC𝜌 ‖𝑣 − 𝑣ℎ‖𝐿2 EOC𝑣 ‖𝜑 − 𝜑ℎ‖𝐿2 EOC𝜑
1.00e-02 2.6833e-03 - 3.8994e-03 - 1.6787e-03 -
5.00e-03 6.4094e-04 2.07 9.3611e-04 2.06 3.9728e-04 2.08
1.00e-03 2.5357e-05 2.01 3.7026e-05 2.01 1.5626e-05 2.01
5.00e-04 6.3372e-06 2.00 9.2533e-06 2.00 3.9046e-06 2.00
1.00e-04 2.5348e-07 2.00 3.7009e-07 2.00 1.5616e-07 2.00
5.00e-05 6.3383e-08 2.00 9.2525e-08 2.00 3.9041e-08 2.00
1.00e-05 2.5908e-09 1.99 3.8099e-09 1.98 1.5698e-09 2.00

Table 3.6: Numerical error in the 𝐿2(Ω) norm at time 𝑇 = 0.03 for dG polynomial
degree 𝑘 = 5.

3.5.2 Energy Consistency

In this section we consider an example of two merging droplets in 2D. This illus-
trates on one hand that phase-field models are able to handle topological changes,
and on the other hand we investigate the discrete energy in order to illustrate the
discrete energy consistency from Theorem 3.10.
For the bulk viscosities we set 𝜇L = 0.0125 and 𝜇V = 0.00125. The capillary param-
eter is taken 𝛾 = 5 ⋅ 10−4 and the mobility 𝜂 = 10. The polynomial order of the dG
polynomials is 𝑘 = 2.
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For the EOS, we choose stiffened gas equations

𝜌𝑓L/V = 𝛼L/V𝜌 ln(𝜌) + (𝛽L/V − 𝛼L/V)𝜌 + 𝛾L/V, (3.42)

with parameters

𝛼L = 5, 𝛼V = 1.5,
𝛽L = −4, 𝛽V = 1.8,
𝛾L = 11, 𝛾V = 0.324.

Initially we have no velocity field, 𝑣0 = 0 and look at two kissing droplets. The
computational domain is Ω = [0, 1] × [0, 1]. The droplets are located at (0.39, 0.5)
and (0.6, 0.5)with radii 0.08 and 0.12.The initial density profile is smeared out with
value 𝜌L = 2.23 inside and 𝜌V = 0.3 outside the droplet. As expected the droplets
merge into one larger droplet. This evolution with 𝜂 = 10 is depicted in Figure 3.1.

Figure 3.1: Merging droplets. Density 𝜌 at times 𝑡 = 0, 𝑡 = 0.2, and 𝑡 = 2 for 𝜂 = 10.

We can observe that the model handles topological changes easily. However, the
dynamics of the phase-field relaxation are determined by the mobility 𝜂 which
needs to be chosen according to the problem.This is illustrated in Figure 3.2, where
the energy over time for different values of the mobility 𝜂 is plotted.
From Figure 3.2 we observe that the discrete energy decreases, as expected from
Theorem 3.10. Moreover, we see that the higher the value of 𝜂, the faster the energy
dissipation.
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Figure 3.2: Energy 𝐸 over time for droplet merging simulation with different values
for the mobility 𝜂.



Droplet–Wall
Interactions 4

In this chapter we consider droplet–wall interactions as example to employ the
NSAC model introduced in Chapter 2.
In the context of droplet impingement incompressibility is only justified for small
impact speeds. High impact speeds trigger compressibility effects of the liquid
droplet, which can determine the flow dynamics significantly. Examples for high
speed droplet impact scenarios can be found in many industrial applications such
as liquid-fueled engines, spray cooling or spray cleaning. In [55] it has been shown
that incompressible models are not adequate to describe high speed impacts, es-
pecially due to the fact that the jetting dynamics are influenced by a developing
shock wave in the liquid phase [54]. The time after the impact of the droplet until
jetting is actually smaller than the predicted time of incompressible models due
to the shock wave pattern. In [55] a compressible sharp-interface model is used
for the simulations. However, sharp-interface models become intricate in the pres-
ence of changes in droplet topology and contact line motion.
For this reason, we employ the compressible NSAC model (2.4)–(2.6), which al-
lows for complex interface morphologies and dynamic contact angles. To do so,
first we have to reconsider the boundary conditions we prescribe. Droplet–wall
interactions are characterized by a moving contact line (MCL) .The boundary con-
ditions (2.9)–(2.10) do not suffice to capture the MCL. Therefore, in the following
section we derive a complete set of boundary conditions that allow for MCL.

4.1 Boundary Conditions
The system (2.4)–(2.6) needs to be complemented with appropriate initial and
boundary conditions. We are now interested in MCL problems. With a sharp-
interface point of view, the contact line is the intersection of the liquid–vapor
interface with the solid wall. The requirement of a contact line moving along the
wall renders the derivation of boundary conditions nontrivial. Figure 4.1 depicts
a sketch of a compressible droplet impact scenario with the rebound shock wave
dynamics and a moving contact line. We derive boundary conditions to handle
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Rebound shock wave

𝑥1

𝑥2

𝑥3

DropletGas

Ω

Figure 4.1: Sketch of a compressible droplet impingement on a flat wall with moving
contact line.

MCL problems with the NSAC system (2.4)–(2.6) in this section.
For the incompressible case, so called general Navier boundary conditions (GNBC)
have been derived [93, 94]. Motivated by these works we extend the GNBC to the
compressible case.
Because phase-field modeling goes well with energy principles, cf. Chapter 2, we
add a wall free energy term ∫𝜕Ω 𝑔(𝜑) d𝑠 to the energy 𝐸 from (2.8) and obtain (with
a slight abuse of notation)

𝐸(𝑡) =∫
Ω
𝜌(𝑥, 𝑡)𝑓 (𝜌(𝑥, 𝑡), 𝜑(𝑥, 𝑡), ∇𝜑(𝑥, 𝑡)) + 1

2𝜌(𝑥, 𝑡)|𝑣(𝑥, 𝑡)|
2 d𝑥

+ ∫
𝜕Ω

𝑔(𝜑(𝑥, 𝑡)) d𝑠. (4.1)

Here 𝑔(𝜑) is the interfacial free energy per unit area at the fluid-solid boundary de-
pending only on the local composition [94]. The specific choice for 𝑔 is motivated
by Young’s equation. With a sharp-interface point of view we have

𝜎 cos(𝜃𝑠) = 𝜎S − 𝜎LS, (4.2)

with the surface free energy 𝜎 of the liquid, the static contact angle 𝜃s, surface free
energy 𝜎S of the solid, and interfacial free energy 𝜎LS between liquid and solid, see
Figure 4.2. We prescribe the difference in energy for 𝑔, i.e.

𝜎S − 𝜎LS = 𝑔(0) − 𝑔(1).

Then, we choose a smooth interpolation between the values ±Δ𝑔
2 = ± 𝑔(1)−𝑔(0)

2 . How-
ever, it was shown in [93] that the choice of the kind interpolation has no large
impact. Hence, for reasons of consistency, we use ℎ as interpolation function, see
(2.2). With (4.2) we obtain

𝑔(𝜑) ≔ −𝜎 cos(𝜃𝑠) (ℎ(𝜑) −
1
2) .
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𝜃𝑠𝜎S

𝜎

𝜎LS
Liquid

Vapor

Solid

Figure 4.2: Illustration of Young’s equation 𝜎 cos(𝜃𝑠) = 𝜎S − 𝜎LS.

A variation 𝛿𝜑 of 𝜑 leads to a variation 𝛿𝐸 of the energy (4.1), that is

𝛿𝐸 = ∫
Ω
𝜇𝛿𝜑 d𝑥 − ∫

𝜕Ω
𝐿(𝜑)𝜕𝜑𝜕𝜏

𝛿𝜑𝜏 d𝑠.

Here,
𝐿(𝜑) ≔ 𝛾 𝜕𝜑𝜕𝑛 + 𝑔′(𝜑)

can be interpreted as uncompensated Young stress [93]. The boundary tangential
vector is denoted by 𝜏 and 𝑛 denotes the outer normal. Thus, 𝐿(𝜑) = 0 is the
Euler–Lagrange equation at the fluid-solid boundary for minimizing the energy
(4.1) with respect to the phase-field variable. We assume a boundary relaxation
dynamics for 𝜑 given by

𝜕𝑡𝜑 + 𝑣 ⋅ ∇𝜏𝜑 = −𝛼𝜌 𝐿(𝜑),

with a relaxation parameter 𝛼 > 0. Here ∇𝜏 ≔ ∇− (𝑛 ⋅ ∇)𝑛 is the gradient along the
tangential direction. Since 𝑣 ⋅ 𝑛 = 0, we have 𝑣 ⋅ ∇𝜏𝜑 = 𝑣𝜏 𝜕𝜑

𝜕𝜏 , and finally we obtain

𝜕𝑡𝜑 + 𝑣𝜏
𝜕𝜑
𝜕𝜏 = −𝛼𝜌 𝐿(𝜑) on 𝜕Ω.

In order to complete the derivation of the GNBC, we incorporate a slip velocity
boundary condition. In single-phase models, the slip velocity is often taken pro-
portional to the tangential viscous stress. However, in our case we also have to
take the uncompensated Young stress into account. In [93] it is shown frommolec-
ular dynamic simulations that the slip velocity should be taken proportional to the
sum of the tangential viscous stress and the uncompensated Young stress. Hence,
with the slip length 𝛽 > 0 we prescribe the boundary condition

𝛽𝑣𝜏 + 𝜈(𝜑)𝜕𝑣𝜏𝜕𝑛 − 𝐿(𝜑)𝜕𝜑𝜕𝜏 = 0 on 𝜕Ω. (4.3)
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The last term in (4.3) drops out away from the interface and we have the classical
Navier-slip condition. On the other hand, in the interface region the additional
term acts and allows for correct contact line movement.
In summary we obtain the following GNBC for the MCL problem

𝑣 ⋅ 𝑛 = 0, (4.4)

𝛽𝑣𝜏 + 𝜈(𝜑)𝜕𝑣𝜏𝜕𝑛 − 𝐿(𝜑)𝜕𝜑𝜕𝜏 = 0, on 𝜕Ω (4.5)

𝜕𝑡𝜑 + 𝑣𝜏
𝜕𝜑
𝜕𝜏 = −𝛼𝜌 𝐿(𝜑). (4.6)

Remark 4.1 (Special cases): The boundary conditions (4.4)–(4.6) contain several
special cases. If we let the relaxation parameter 𝛼 tend to infinity, we end up with

𝑣 ⋅ 𝑛 = 0,
𝛽𝑣𝜏 + 𝜈(𝜑)𝜕𝑣𝜏𝜕𝑛 = 0,

𝐿(𝜑) = 0.
If additionally 𝜃𝑠 = 𝜋/2 we have

𝑣 ⋅ 𝑛 = 0,
𝛽𝑣𝜏 + 𝜈(𝜑)𝜕𝑣𝜏𝜕𝑛 = 0,

∇𝜑 ⋅ 𝑛 = 0.
Finally, by sending the slip length 𝛽 to infinity we obtain the no-slip condition

𝑣 = 0,
∇𝜑 ⋅ 𝑛 = 0.

4.1.1 Energy Inequality

The energy introduced in (4.1) consists of the bulk and wall free energies and the
kinetic energy.The addition of the wall free energy in comparison to (2.8) changes
slightly the corresponding energy inequality in Theorem 2.3.

Theorem 4.2 (Energy inequality with GNBC): Let (𝜌, 𝑣, 𝜑) with values in (0, ∞)
×ℝ𝑑 ×[0, 1] be a classical solution to (2.4)–(2.6) in (0, 𝑇 )×Ω satisfying the boundary
conditions (4.4)–(4.6) on (0, 𝑇 ) × 𝜕Ω. Then for all 𝑡 ∈ (0, 𝑇 ) the following energy
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inequality holds:

d
d 𝑡 𝐸(𝑡) =

d
d 𝑡 (𝐸free(𝑡) + 𝐸kin(𝑡) + 𝐸wall(𝑡))

= d
d 𝑡 (∫Ω

𝜌𝑓 (𝜌, 𝜑, ∇𝜑) + 1
2𝜌|𝑣|

2 d𝑥 + ∫
𝜕Ω

𝑔(𝜑) d𝑠)

= −∫
Ω

𝜂
𝜌 𝜇

2 d𝑥 − ∫
Ω
𝑆 ∶ ∇𝑣 d𝑥 − ∫

𝜕Ω
𝛽|𝑣𝜏 |2 d𝑠 − ∫

𝜕Ω

𝛼
𝜌 |𝐿(𝜑)|

2 d𝑠 ≤ 0.

Proof. The proof is completely analog to the proof ofTheorem 2.3.The extra terms
appear by using the boundary conditions (4.4)–(4.6) in the occurring boundary
integrals.

We now have entropy production due to phase transition, viscosity, wall slip, and
composition relaxation at the solid interface.

4.2 Numerical Experiments
In the following we present numerical simulations using the energy-consistent
discontinuous Galerkin scheme derived in Chapter 3, described by Algorithm 3.11.
We note that we present academic examples, i.e. chosen densities, velocity, and
regimes of physical parameters do not match realistic fluids. The reason behind
this is that for realistic EOS and density values for current numerical schemes
there is a slight mismatch between the density and phase-field profile. This leads
to a slightly too high percentage of liquid at very low density in the mixing zone
and thus large negative pressures.

4.2.1 Choice of Parameters

For the EOS in the bulk phases, we choose stiffened gas type EOS (3.42).
In order to avoid to prefer one of the phases, we choose the minima of the two
free energies 𝜌𝑓L/V to be at the same height.
Due to surface tension, the density inside a liquid droplet is slightly higher than
the value which minimizes 𝜌𝑓L. The value of the surrounding vapor is slightly
lower than the minimizer of 𝜌𝑓V. We choose the initial density profile accordingly.
For the bulk viscosities we set 𝜇L = 0.0125 and 𝜇V = 0.00125. If not stated otherwise
the mobility is taken 𝜂 = 10. The polynomial order of the dG polynomials is 𝑘 = 2.
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4.2.2 Contact Angle

In this example we address droplet–wall interactions. We consider the case of
static contact angle. This means we let the relaxation parameter 𝛼 in (4.6) tend to
infinity. In the limit we obtain the static contact angle boundary conditions.
We set the static contact angle 𝜃𝑠 = 0.1𝜋 ≈ 18∘. The computational domain is
Ω = [0, 1] × [0, 1]. The parameters for the equations of states are

𝛼L = 5, 𝛼V = 1.5,
𝛽L = −4, 𝛽V = 1.8,
𝛾L = 11, 𝛾V = 0.324.

The initial density profile is smeared out with value 𝜌L = 2.23 inside and 𝜌V = 0.3
outside the droplet. As initial condition we use a droplet sitting on a flat surface
with a contact angle of 90∘. The droplet position is (0.5, 0) with radius 0.2. Since
the initial condition is far away from equilibrium, we have dynamics on the wall-
boundary towards the equilibrium configuration. Thus, we can observe a wetting
dynamic, see Figure 4.3.

Figure 4.3: Wetting of smooth wall with GNBC boundary conditions for the static
limit 𝛼 → ∞ and contact angle 𝜃𝑠 = 0.1𝜋 . Density 𝜌 at 𝑡 = 0 and 𝑡 = 0.9.

Thewall contribution leads to a large force on the boundary, which renders the sys-
tem stiff. Althoughwe have an implicit schemewe increased the interface width to
be able to handle the boundary terms. Hence, we chose in this simulation 𝛾 = 10−2.

4.2.3 Droplet Impingement

With this example we consider droplet impingement. The computational domain
is the same as in Section 4.2.2. As initial condition we use a droplet at (0.5, 0.2)
with radius 0.1. The parameters for the equations of states are

𝛼L = 5, 𝛼V = 1.5,
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𝛽L = −0.8, 𝛽V = 1.8,
𝛾L = 5.5, 𝛾V = 0.084.

For the capillary parameter, we choose 𝛾 = 5 ⋅ 10−4. The initial density profile is
smeared out with value 𝜌L = 1.2 inside and 𝜌V = 0.3 outside the droplet. The initial
velocity inside the droplet is 𝑣𝑦 = −1.
Sharp-interface models based on the Navier–Stokes equations in the bulk become
ill-posed if no-slip conditions are imposed. However, solutions of phase-field mod-
els come with contact line movement even if no-slip conditions are used.
This is due to the fact that the contact line is regularized and the dynamics are
driven by evolution in the phase-field variable rather than advective transport.
This can be seen in Figure 4.4 where a droplet impact with no-slip conditions is
simulated. This is a special case of the GNBC, with 𝛼 → ∞ and 𝛽 → ∞.

Figure 4.4: Droplet impact simulation. Density 𝜌, chemical potential 𝜇 and Schlieren
picture at times 𝑡 = 0.005, 𝑡 = 0.13, 𝑡 = 0.21.

It can be seen that the generalized chemical potential 𝜇 is low at the contact line
which leads to fast dynamics in the phase-field. This leads to a moving contact
line. Additionally, especially in the Schlieren picture, we can see the (smeared out)
shock waves in the vapor phase and also in the liquid phase where the shocks
move faster due to a higher speed of sound in the liquid phase.
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In order to verify the compressibility of the droplet we plot the maximum of the
local Mach number 𝑀𝜌𝑓 = ̄𝑣√

̄𝜌
𝜌𝑓 in Figure 4.5. We can observe a peak right after

the impact.

Figure 4.5: Droplet impact simulation. Maximum of the local Mach number inside
the liquid phase.



The NSAC Model
Within a Multi-Scale

Framework 5
In this chapter we study the NSAC model (2.4)–(2.6) embedded in a multi-scale
framework to model coupled free-flow/porous-medium-flow (FF/PM) situations.
Coupled FF/PM systems occur in numerous natural and technical applications.
We are interested in two-phase liquid–vapor flows such that the porous medium
can be considered hydrophobic. The liquid wetting phase might emerge from the
porous-medium domain forming drops on the interface. In this context an impor-
tant aspect is the influence of the drops’ accumulation on the exchange processes
at the interface between the porous medium and its surrounding. Quantifying
these transfer fluxes of mass, momentum and energy is crucial for applications
like evaporation from soil, water management in fuel cells, the transport of thera-
peutic agents in the human body, or turbine heat exchange processes.
An approach to include drop-related processes in a macroscopic model concept is
presented in [7]. A simple homogenization technique is applied to take the drops’
influence on the macroscopic flow processes into account. The outcome of the
model are the drop volume evolution as well as the influence of the drops on the
coupling fluxes between free-flow and porous medium. A modified multi-scale ap-
proach is introduced in [3], where the drops are considered in additional balance
equations for the interface region. Again, the coupling fluxes are scaled depending
on the total drop volume at the interface between free-flow and porous medium.
While both approaches yield computationally efficient models, micro-scale infor-
mation is lost.
To overcome some of the disadvantages of a macroscopic ansatz, we develop in
this chapter a multi-scale coupling concept that governs the exchange of infor-
mation between the micro- and the macro-scale. In this new approach, drops are
resolved and computed with the help of a compressible phase-field model on the
micro-scale. Both, the free-flow and the flow in the porous medium are modeled
on the macro-scale. Instead of coupling these two flow regimes directly, informa-
tion is exchanged across the scales with the phase-field model to include the drops’
influence on the complete flow field. The coupling is bidirectional. On one hand
information from the porous medium is handed over to the phase-field model to
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compute drop formation and growth. On the other hand, information about the
drop behavior is given to the macro-scale model, which is then able to take the
drop’s influence into account.
The aim of this chapter is to obtain a conceptual model for the exchange of in-
formation between the micro-scale and the macro-scale in the context of drops
in a FF/PM system. In addition, we demonstrate the applicability of our model
by means of a basic show case. The show case is simplified in the sense that the
density difference between the two phases is quite small excluding typical vapor–
liquid density ratios. We conjecture that our multi-scale approach remains effec-
tive for such fluids but we are not aware of a numerical method that ensures the ro-
bust approximation of diffuse-interface models used for the micro-scale domains.
The chapter is structured as follows. In the next Section 5.1 we specify the prob-
lem description. In Section 5.2, the macro-scale models for free-flow and flow in
porous media are explained. In addition, a simple coupling concept which does
not take drops into account as well as its numerical implementation are presented.
Section 5.3 recaps the NSAC model used on the micro-scale. The multi-scale cou-
pling concept is presented in Section 5.4. The simplified fluid system is introduced
in Section 5.5, where some numerical results illustrate the coupling concept.

5.1 Problem Description
Our goal is to develop a model for coupling free flowwith porous-medium flow by
using a micro-scale model at the interface between the two domains which com-
prises the effect of liquid phases leaving the porous-medium domain and forming
drops at the interface. This concept is depicted in Figure 5.1.
We consider a viscous compressible Newtonian fluid at isothermal conditions.The
fluid occupies a domainΩmacro ⊂ ℝ3.The domain consists of a free-flow partΩmacro

ff
and a porous-medium part Ωmacro

pm which share the interface Γff−pm. In order to de-
rive conditions on the interface Γff−pm between the two domains, which incorpo-
rate the description of drops forming and detaching at this interface, for some
𝑁 ∈ ℕ we introduce micro-domains Ωmicro𝑖 , 𝑖 = 1, … , 𝑁 .
The number𝑁 ofmicro-domainsΩmicro𝑖 will depend on the pore distributionwithin
Ωmacro
pm . In fact, the precise choice of 𝑁 is constrained by the mesh resolution in

the discretization used for Ωmacro, see Section 5.4.3. We assume that all the pores
within one computational cell are of the same size. This allows to consider only
one micro-domain per cell. For more complicated structures it would be neces-
sary to connect to each cell multiple micro-domains with different radii for the
cuboid pores. However, the number 𝑁pores of pores inside one macro-cell needs to
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Free Flow

Porous Medium

Interface Γff−pm

Figure 5.1: Multi-scale approach for coupled free-flow/porous-mediums systems using
a micro-scale model for liquid drops forming at and detaching from the
interface.

Ωmacro Ωmicro𝑖

Ωmacro
ff

Ωmacro
pm

Figure 5.2: Sketch of the modeling concept with macro- and micro-domains Ωmacro

and Ωmicro𝑖 .

be taken into account when information gathered on the macro-domain is used to
prescribe inflow condition for the micro-domain Ωmicro𝑖 . This will be specified in
Section 5.5.
We consider a pseudo 3D problem in the sense that we fix the elongation in 𝑥3-
direction, i.e. the direction normal to the prevailing flow-direction, to unity. We
assume no flow in 𝑥3-direction. The shape of the drops is therefore cylindrical. In
the micro-domains Ωmicro𝑖 we mean by drop the liquid in the upper part of the
domain, sitting on the pore throat. Corresponding quantities are denoted with the
subscript drop.
Recap the following notations and definitions. We denote the fluid density by
𝜌 > 0, the velocity with 𝑣 ∈ ℝ3. For simplicity we assume single-component
two-phase flow, i.e. liquid–vapor flow and neglect gravity effects. The two phases
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of the fluid are denoted by the subscript 𝛼 ∈ {L,V}. In each phase 𝛼 the fluid is
thermodynamically described by the corresponding specific Helmholtz free ener-
gies per unit mass, denoted by 𝑓𝛼 = 𝑓𝛼 (𝜌). From them we can compute the partial
pressures with the relationship

𝑝𝛼 = 𝑝𝛼 (𝜌) = −𝜌𝑓𝛼 (𝜌) + 𝜌 𝜕(𝜌𝑓𝛼 )𝜕𝜌 (𝜌). (5.1)

This is the EOS which relates the pressure and the density of the fluid.
We may add superscripts macro and micro to indicate if we consider the corre-
sponding quantity on the macro- or on the micro-scale.
In the following two sections we specify the precise models used on the macro-
scale and on the micro-scale domain.

5.2 The Macro-Scale Model
In the following, neglecting drop-related processes, the macro-scale model and
the macro-scale coupling conditions are explained. The flow processes in the cou-
pled system are described by two sets of (macro-scale) evolution equations. The
equations to model the flow in the porous-medium domain Ωmacro

pm are given in
Section 5.2.1, whereas the free-flow model for Ωmacro

ff is presented in Section 5.2.2.
The coupling conditions for the exchange of mass and momentum are detailed in
Section 5.2.3. In Section 5.2.4 we conclude with an overview of the macro-scale
discretization.
As explained in Section 5.1, the domain Ωmacro ⊂ ℝ3 is supposed to split into Ωmacro

ff
and Ωmacro

pm . The flat interface Γff−pm separates the subdomains such that

Ωmacro = Ωmacro
ff ∪ Ωmacro

pm and Ωmacro
ff ∩ Ωmacro

pm = Γff−pm.

5.2.1 Flow Model in the Porous-Medium Domain Ωmacro
pm

In the subdomain Ωmacro
pm , we assume a two-phase flow in a rigid, non-deformable

porous medium. For 𝛼 ∈ {L,V} we consider the two fluids in the liquid phase
(𝛼 = L) and in the vapor phase (𝛼 = V), where the former is assumed to be the
non-wetting phase. Instead of resolving the porous structure, all quantities are av-
eraged over representative elementary volumes. Therefore, the flow processes are
described using the volume-averaged quantities porosity Φ, phase saturations 𝑆𝛼 ,
intrinsic permeability 𝐾 and relative permeabilities 𝑘𝑟 ,𝛼 . The porosity Φ describes
the ratio of void space volume and total volume. Each phase saturation 𝑆𝛼 is de-
fined as the phase volume per total volume. Hence, the saturations add up to one:
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Figure 5.3: Detailed geometry of the macro-scale model domains.

𝑆L + 𝑆V = 1. The intrinsic permeability 𝐾 = (𝐾𝑖𝑗) is a material parameter which
takes the effect of the porous structure on the micro-scale flow paths into account.
The relative permeabilities 𝑘𝑟 ,𝛼 = 𝑘𝑟 ,𝛼 (𝑆𝛼 ) depend on the phase saturations and
account for the permeability reduction due to the presence of the other phase.
For 𝛼 ∈ {L,V}, the mass balance in Ωmacro

pm is given by

Φ𝜕𝑡(𝜌𝛼 (𝑝𝛼 )𝑆𝛼 ) + div (𝜌𝛼 (𝑝𝛼 )𝑣𝛼) = 𝑞𝛼 , (5.2)

with 𝑞𝛼 accounting for a possible balance term.
For the momentum balance, Darcy’s law can be applied and rearranged to an equa-
tion for the phase velocity [15]. Since gravity is neglected, this results for 𝛼 ∈ {L,V}
in

𝑣𝛼 = −𝐾 𝑘𝑟 ,𝛼
𝜇𝛼

∇𝑝𝛼 . (5.3)

Here 𝜇𝛼 denotes the dynamic viscosity of the corresponding phase. With (5.3), the
phase velocity 𝑣𝛼 in Equation (5.2) can be replaced, which reduces the number of
equations to be solved. We choose the vapor pressure 𝑝V and the liquid saturation
𝑆L as primary unknowns in Ωpm and solve the mass balance equations (5.2) for
each phase separately. The pressures are linked by the capillary pressure

𝑝𝑐(𝑆V) = 𝑝L(𝑆V) − 𝑝V, (5.4)

where the function 𝑝𝑐 needs to be prescribed depending on the application. Hence,
we can reconstruct the liquid pressure from (5.4) with 𝑝V. Both phases are assumed
to be compressible and the viscosities 𝜇𝛼 to be constant. More details on modeling
flow in porous media can be found in e.g. [15, 57].
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5.2.2 The Flow Model in the Free-Flow Domain Ωmacro
ff

In Ωmacro
ff we assume to have a single-phase compressible gaseous free-flow. The

total mass balance is given as

𝜕𝑡𝜌V + div(𝜌V𝑣V) = 0, (5.5)

with the density 𝜌V = 𝜌V(𝑝V) and the velocity 𝑣V.
For the momentum balance, we employ the Navier–Stokes equations as

𝜕𝑡(𝜌V𝑣V) + div (𝜌V𝑣V ⊗ 𝑣V + 𝑝V𝐼 ) = div (𝜇V (∇𝑣V + ∇𝑣⊤V)) , (5.6)

where 𝑝V is the pressure, 𝐼 the identity tensor and 𝜇V the dynamic viscosity as in
Section 5.2.1.
As primary variables inΩmacro

ff we choose the pressure 𝑝V and the velocity 𝑣V. Due
to the fluid’s compressibility, the density depends on the pressure. This depen-
dency is characterized by the EOS (5.1), which will be specified later, see (5.30)
below.

5.2.3 The Macro-Scale Coupling Concept

The exchange of mass and momentum between free-flow and porous-medium do-
mains is modeled with the help of appropriate coupling conditions. These con-
ditions are prescribed at the interface Γff−pm as an interior boundary condition.
Additionally, on Γff and Γpm, (external) boundary conditions have to be set. The
interface Γff−pm is assumed to be devoid of thermodynamic properties, i.e. it can-
not store mass or momentum. Consequently, the continuity of fluxes across the
interface has to be guaranteed. The following coupling concept is taken from [83],
where the previously existing coupling concepts for single-phase systems are ex-
tended such that a two-phase flow in the porous medium can be considered. It is
based on the assumption of local thermodynamic equilibrium at the interface. For
an isothermal, immiscible system, only mechanical equilibrium at the interface
has to be taken into account for the coupling.
The stress balance in normal direction is given by

[𝑛 ⋅ (𝑝V𝐼 − 𝜇V(∇𝑣V + ∇𝑣⊤V) + 𝜌V𝑣V ⊗ 𝑣V) 𝑛]
ff = [𝑝V]

pm ,
with the respective unit outer normal vectors 𝑛. The square brackets indicate that
all variables are either taken from Ωmacro

ff or Ωmacro
pm , i.e. for some quantity 𝑢 and

𝑥 ∈ Γff−pm we define

[𝑢]ff = lim𝜀→0,𝜀>0 𝑢(𝑥 − 𝜀𝑛ff), [𝑢]pm = lim𝜀→0,𝜀>0 𝑢(𝑥 + 𝜀𝑛ff).
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The viscous forces in the porous medium are already accounted for in the Darcy
velocity (5.3).Therefore, the pressure 𝑝V on the porous medium side has to balance
the complete stress tensor from the free-flow side.
For the tangential forces at the interface, a condition for the tangential free-flow
velocity has to be formulated. An appropriate choice is the Beavers–Joseph–Saffman
condition [98]:

[(𝑣V + √𝐾𝑖𝑖
𝛼BJ

(∇𝑣V + ∇𝑣⊤V)𝑛) ⋅ 𝑡 𝑖]
ff

= 0, 𝑖 = 2, 3. (5.7)

In (5.7) we denote the tangential vector for dimension 𝑖 by 𝑡 𝑖 , the 𝑖-th diagonal
entry of the permeability tensor 𝐾 with 𝐾𝑖𝑖 and the Beavers–Joseph coefficient by
𝛼BJ. By using (5.7) we neglect the small tangential velocity in the porous medium
near the interface.
Assuming that all liquid that reaches the interface immediately evaporates into
the free-flow, the continuity of mass fluxes across Γff−pm is given as

[(𝜌V𝑣V) ⋅ 𝑛]ff = [(𝜌V𝑣V + 𝜌L𝑣L) ⋅ 𝑛]
pm .

As mentioned in the before, this assumption should be reconsidered since it does
not take into account the influence of drops at the interface.
In order to include drop-related effects in the model, we have to omit the assump-
tion of immediate evaporation. Then, only the gaseous fluxes are balanced, which
yields

[(𝜌V𝑣V) ⋅ 𝑛]ff = [(𝜌V𝑣V) ⋅ 𝑛]
pm . (5.8)

The conditions above lead to a well-posed model, however the corresponding
model cannot capture drops forming at the interface Γff−pm. To capture them, we
introduce in the following the phase-field model on the micro-scale to include
these effects.
Concerning the condition for the liquid phase at the upper boundary, we use an
outflow condition, based on the velocity

𝑣L = −𝐾 𝑘𝑟 ,L
𝜇L

∇𝑝L. (5.9)

To compute ∇𝑝L, we use information from the micro-scale domain. This will be
specified later, see (5.23).
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5.2.4 Numerical Discretization

We use the open-source simulator DuMu𝑥 [47] to solve the equations in the cou-
pled FF/PM flow system.
The spatial discretization is based on the finite-volume method. In the free-flow
domain, we apply a staggered grid, where the velocity components are shifted
by half a cell away from the cell centers, see [56]. For the porous medium, a cell-
centered two-point flux approximation scheme is used [1]. A fully-implicit Euler
method is used for the temporal discretization.
The global system is solvedmonolithically.The solution of the non-linear system is
based on Newton’s method. The linear subsystems are solved using the UMFPack
library.

5.3 The Micro-Scale Model
In this section we briefly recap the NSAC model. We utilize this model on the
micro-scale domains Ωmicro𝑖 . Boundary and initial conditions appropriate to the
problem setting are discussed in Section 5.3.2.

5.3.1 The Phase-Field Model in Ωmicro𝑖
On themicro-scale we employ the isothermal compressible Navier–Stokes–Allen–
Cahn model introduced in Chapter 2. The two-phase fluid occupies a domain
Ωmicro𝑖 ⊂ ℝ3, see Figure 5.4.
For the sake of readability we skip the indices 𝑖 of the state variables for the re-
mainder of this section. Recall the isothermal compressible Navier–Stokes–Allen–
Cahn system (2.4)–(2.6):

𝜕𝑡𝜌 + div(𝜌𝑣) = 0,
𝜕𝑡(𝜌𝑣) + div(𝜌𝑣 ⊗ 𝑣 + 𝑝𝐼 ) = div(𝑆) − 𝛾 div(∇𝜑 ⊗ ∇𝜑) in Ωmicro𝑖 × (0, 𝑇 ),

𝜌𝜕𝑡𝜑 + 𝜌∇𝜑 ⋅ 𝑣 = −𝜂𝜇.

5.3.2 Boundary and Initial Conditions

The computational domain Ωmicro𝑖 is depicted in Figure 5.4.
The boundary 𝜕Ωmicro𝑖 can be divided into an inflow boundary Γ𝑖,inflow, slip bound-
ary Γ𝑖,slip, no-slip boundary Γ𝑖,no−slip and symmetry boundary Γ𝑖,symmetry (see Fig-
ure 5.4) such that

𝜕Ωmicro𝑖 = Γ𝑖,inflow ∪ Γ𝑖,slip ∪ Γ𝑖,no−slip ∪ Γ𝑖,symmetry.
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Figure 5.4: Sketch of the computational domain Ωmicro𝑖 with the different boundary
types.

Assuming an impermeable wall at Γ𝑖,slip ∪ Γ𝑖,no−slip, the velocity must satisfy the
boundary condition

𝑣 ⋅ 𝑛 = 0, (5.10)
∇𝜑 ⋅ 𝑛 = 0, on Γ𝑖,slip. (5.11)

𝑣 = 0, (5.12)
∇𝜑 ⋅ 𝑛 = 0, on Γ𝑖,no−slip (5.13)

Note that the conditions (5.11), (5.13) realize static contact angle boundary condi-
tions with 𝜃𝑠 = 90∘.
To couple to the porous-medium macro-scale domain we prescribe at the inflow
Γ𝑖,inflow on the bottom

𝑣𝑥1(𝑥, 𝑡) = 0, (5.14)

𝑣𝑥2(𝑥, 𝑡) =
3

4𝑟pore
𝑣inflow (1 − (𝑥1 −

𝑙/2
𝑟pore

)
2
) , (5.15)

𝑣𝑥3(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Γ𝑖,inflow × [0, 𝑇final), (5.16)
𝜑(𝑥, 𝑡) = 1, (5.17)
𝜌(𝑥, 𝑡) = 𝜌L(𝑝), (5.18)
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where 𝑙/2 = 0.8 is the length of domain.The quantities 𝑣inflow and 𝜌L(𝑝) are obtained
from the solution in the porous-medium domain Ωmacro

pm .
Equation (5.15) realizes a parabolic velocity profile which is coupled to the scaled
velocity 𝑣inflow obtained from the macro-scale computation (cf. (5.33) below). In
fact, (5.15) implies

∫
Γ𝑖,inflow

𝑣𝑥2(𝑥) d𝑥 = 2∫
1

0
∫

𝑙/2

𝑙/2−𝑟pore
𝑣𝑥2(𝑥1) d𝑥1 d𝑥3 = 𝑣inflow.

Since there is no inflow in tangential direction, we can assume symmetry and
prescribe symmetrical boundary conditions on Γsymmetry.
It remains to endow the system with initial conditions. We assume that initially
the pore throat is filled with liquid, but no drop is formed. For 𝑥 ∈ Ωmicro, this
means

̃𝜌0(𝑥) = {𝜌L ∶ 𝑥2 ≤ 0,
𝜌V ∶ 𝑥2 > 0, (5.19)

�̃�0(𝑥) = {1 ∶ 𝑥2 ≤ 0,
0 ∶ 𝑥2 > 0, (5.20)

�̃�0(𝑥) = 0. (5.21)

The function �̃�0 = ( ̃𝜌0, �̃�0, ̃𝑣0) is discontinuous. However, such data can trigger
instabilities for the (numerical) solution of a diffuse-interface model. In order to
avoid a large initial layer in time, we replace �̃�0 by a regularization. We set the
discontinuous initial data from (5.19)–(5.21) and solve the diffusion problem

−𝜆Δ𝑢0 + 𝑢0 = �̃�0 on Ωmicro𝑖 ,
in order to obtain the final initial data 𝑢0. The diffusion coefficient 𝜆 is chosen
according to the thickness of the diffuse interface, which in turn is determined by
𝛾 . In our example the choice 𝜆 = 𝛾 2

2 lead to a good approximation of the interface
width.

5.3.3 Numerical Discretization

For the numerical discretization of the NSACmodel on the micro-scale we employ
the energy-consistent dG scheme from Chapter 3, given by Algorithm 3.11.
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5.4 Coupling the Different Scales
The new coupling concept presented in this chapter combines two models, act-
ing on different length scales, to a multi-scale model for the simulation of pro-
cesses with interaction between micro-scale drops and macroscopic FF/PM sys-
tems. Other than for instance in homogenization model concepts, the liquid drops
are resolved individually with help of the NSAC model presented in Section 5.3.
The drops grow due to outflow of liquid from the porous-medium domain and
detach at some point.
However, we cannot combine the two models presented in Sections 5.2 and 5.3 in
a straightforward way. The consideration to provide compatible quantities is de-
scribed in Section 5.4.1. The main multi-scale coupling strategy and data exchange
procedure are explained in Section 5.4.2. Notably, we formulate it directly at the
time-discrete level.

5.4.1 Compatibility of the Two Models

Fluid Parameters and Primary Variables

We need to be careful about consistent assumptions on the separate scales to use
in the respective models. The viscosity parameters 𝜇𝛼 used in the macro-domain
model need to be scaled according to (6.1). The same is true for the velocity 𝑣pm
from the macro-scale porous-medium model. The scaling of the velocity is de-
scribed below in detail and results in (5.33).
In order to couple the models of the macro- and micro-domains Ωmacro and Ωmicro𝑖 ,
we need to find a way to reconstruct the primary variables of each model from the
ones of the respective other domain. Due to the different balance equations used in
the two models, we have the primary variables 𝑝macro, 𝑣macro, 𝑆macro

l in Ωmacro and
𝜌micro𝑖 , 𝑣micro𝑖 , 𝜑micro𝑖 in Ωmicro𝑖 . For the precise exchange of information between the
two scales, the primary variables have to be linked to each other. The (common)
EOS of stiffened gas type enables us to compute the macro-scale pressure 𝑝macro

from the micro-scale density 𝜌micro𝑖 , and vice versa.Themacro-scale velocity 𝑣macro

in the porousmedium is scaledwith the porosity to obtain themicro-scale velocity,
which then corresponds to the velocity 𝑣micro𝑖 in the micro-scale model on Ωmicro𝑖 .
The phase-field variable 𝜑micro𝑖 is related to the volume-based liquid saturation
𝑆macro
𝑙 . However, we do not interchange information based on these quantities
directly. Thus, we do not need to specify the exact relation.
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Assumptions on the Pore Distribution in the Porous-Medium Domain

Since we have different length scales on the two model domains it is natural that
in one computational cell (macro-cell) on the macro-domain several pores can be
found. This depends on the spatial resolution used on the macro-domain Ωmacro

and the material characteristics of the porous medium. We assume for simplicity
that all pores within onemacro-cell have the same size.This allows us to solve only
one micro-problem in the micro-domain Ωmicro𝑖 per macro-cell. Note that with this
choice we restrict ourselves to homogeneous porousmedia. However, it is possible
to extend this approach to a heterogeneous pore-size distribution, which leads us
to solve multiple cell problems and combine their outputs.

5.4.2 The Coupling Strategy

The coupling strategy is based on the iterative exchange of data between the nu-
merical solvers of the two models. Given a time mesh 𝑡0 = 0 < 𝑡1 < 𝑡2 < …, let

𝑢macro𝑛 ≔ (𝑝macro, 𝑣macro, 𝑆macro
L )⊤(⋅, 𝑡𝑛)

and
𝑢micro𝑖,𝑛 ≔ (𝜌micro𝑖 , 𝑣micro𝑖 , 𝜑micro𝑖 )⊤(⋅, 𝑡𝑛).

For the sake of readability, the macro-scale solver is referred to as
MacroSolver = MacroSolver(𝑢micro) and the micro-scale solvers as
MicroSolver𝑖 = MicroSolver𝑖(𝑢macro) in the following.
The general multi-scale procedure to advance the solution from the discrete time
𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑛 is the following:
Algorithm 5.1 (Multi-Scale Procedure):

1. MicroSolver𝑖(𝑢macro𝑛 ) provides the solution of problem (2.4)–(2.6)with boundary
conditions (5.10)–(5.18), for all domains Ωmicro𝑖 in time-step (𝑡𝑛, 𝑡𝑛+1]. If 𝑡𝑛 = 0
or a drop has detached in 𝑡𝑛−1, we prescribe the condition (5.19)–(5.21), else we
use 𝑢micro𝑖,𝑛−1 .

2. MicroSolver𝑖 transfers solution 𝑢micro𝑖,𝑛+1 to MacroSolver.

3. MacroSolver(𝑢micro1,𝑛+1 , … 𝑢micro𝑁 ,𝑛+1) provides the solution to problem (5.2)–(5.3),(5.5)–
(5.9) in Ωmacro in time-step (𝑡𝑛, 𝑡𝑛+1].

4. MacroSolver hands back 𝑢macro𝑛+1 to MicroSolver𝑖 .
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For the detachment criterium used in step 1, we refer to Section 5.4.3. Note that
transferring the solution from one solver to the other seems trivial but can be
cumbersome in practice. Since we use the C++ based solver DuMu𝑥 to obtain the
macro-scale solution and a FEniCS based solver using Python for the micro-scale
problems, this step is actually not straightforward.
We observe, that the coupling is done explicitly in time, with both solvers using the
same time-step size.The time-step size in the micro-scale simulation is most of the
time more restrictive such that we could compute several (micro-) time-steps and
update afterwards. However, this leads to problems for the macro-scale Newton
iteration, which would need time-resolved initial guesses. Since the macro solver
is computationally less expensive anyway, we simply run both solvers with the
same time-step size.

5.4.3 Data Exchange in the Multi-Scale Algorithm

As shown in Figure 5.5, different data is exchanged between the scales.

Macro-scale domain Micro-scale domain

Free flow

Porous medium

Initial condition
Boundary conditions

Drop volumeCoupling condition
s

Figure 5.5: Visualization of the coupling concept. Data exchange between macro- and
micro-scale domains.

This exchange procedure can vary in complexity, depending on which data is ex-
changed across the scales. In this paper we use to following version.
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5.4.3.1 Data Exchange Between Ωpm and Ωmicro𝑖

The number 𝑁 of micro-domains Ωmicro𝑖 is now fixed to the number of macro-cells
at the boundary Γff−pm in the domain Ωmacro

pm in 𝑥1-direction. For each such cell we
communicate the flux 𝜌L𝑣pm = 𝜌𝑖,L𝑣 𝑖,pm. This is used for the boundary condition
on Ωmicro𝑖 . From the micro-scale we hand the drop volume 𝑉𝑖,drop, surface tension
𝜎𝑖 , and mean pressure ⟨𝑝micro𝑖 ⟩ to the macro-scale.
The mean pressure ⟨𝑝micro𝑖 ⟩ is computed as

⟨𝑝micro𝑖 ⟩ = ∫
Ωmicro𝑖

𝑝(𝜌micro(𝑥))1|{𝑥2=−0.3}(𝑥) d𝑥, (5.22)

where 1|{𝑥2=−0.3} denotes the indicator function, i.e. for a set 𝐴

1|𝐴(𝑥) = {1, 𝑥 ∈ 𝐴,
0, 𝑥 ∉ 𝐴. (5.23)

With this pressure, for the porous-medium domain, a flux across the upper bound-
ary can be computed by means of

𝑣𝑖,𝑥3 ,L = −𝐾 𝑘𝑟 ,L
𝜇L

Δ𝑝L,𝑖
Δ𝑥2

,

where Δ𝑝L,𝑖 denotes the difference of the pressure inside the 𝑖-th uppermost com-
putational cell of the porous-medium domain and the corresponding mean pres-
sure, and Δ𝑥2 denotes the difference of the cell center of this cell and the boundary
Γff−pm.
The drop volume and surface tension are computed from 𝑢micro𝑖 according to (5.28)
and (5.29). They are used to check the detachment criterion, see (5.27) below.
Therefore, all boundary conditions for the free-flow balance equations at the inter-
face depend directly on the processes happening in the porous medium as given
in Section 5.2.3.
Remark 5.2 (Mean pressure): Note that we compute themean pressure (5.22) slightly
above the lower boundary of the micro-domain. This due to the fact, that we prescribe
the density (and therefore the pressure) on the lower boundary. Hence, the mean pres-
sure is taken above the boundary layer, where it changes rapidly.

5.4.3.2 Data Exchange Between Ωff and Ωmicro𝑖

Themacro-scale solver evaluates the solution from the micro-scale domainsΩmicro𝑖
to determine whether a drop detaches. The detachment decision is done by bal-
ancing the forces acting on the drop. To do so, we balance forces for an artificially
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Figure 5.6: Force balance on a spherical drop.

designed macro-scale drop with the corresponding volume 𝑉𝑖,drop: The drag force
𝐹𝑖,drag is the force exerted by the macro-scale flow field, while the retention force
𝐹𝑖,ret is the force which holds the drop on the solid surface, as illustrated in Fig-
ure 5.6. The drag force can be computed as e.g. given in [111] by

𝐹𝑖,drag(𝑥, 𝑡) =
1
2𝜌𝑉 (𝑥, 𝑡)𝑣V,𝑥1(𝑥, 𝑡)

2𝑐d(Re)𝐴𝑖,proj(𝑡), (5.24)

with the drag coefficient 𝑐d(Re) = 30
√Re ([28]), the Reynolds number Re = 𝐿𝑣𝑉 𝜌𝑉

𝜇𝑉
, the

horizontal velocity component 𝑣V,𝑥1 and the projected area of the drop normal to
the flow direction 𝐴𝑖,proj(𝑡) = 𝑟𝑖,drop(𝑡)(1 − cos(𝜃))|𝑒𝑥3 |, where 𝑒𝑥3 denotes the three-
dimensional unit vector in 𝑥3 direction, 𝑟𝑖,drop is the drop radius on Ωmicro𝑖 , and 𝜃
is the given equilibrium contact angle between the liquid–vapor interface and the
solid surface.
The retention force can be computed in our setting as given in [27] by

𝐹𝑖,ret(𝑡) = 𝜎𝑖(𝑡)(cos(𝜋 − 𝜃𝑎) + cos(𝜃𝑟 ))|𝑒𝑥3 |. (5.25)

Here, 𝜃𝑎 is the advancing and 𝜃𝑟 is the receding contact angle. Therefore, the drop
deformation cannot be neglected for the computation of the retention force and
the assumption of a spherical drop has to be omitted here. Let the surface tension
coefficient computed in the micro-scale simulation be denoted by 𝜎𝑖 .
We evaluate the drag force at the phase interface 𝑥 𝑖 above the center of the drop.
As soon as this drag force exceeds the retention force at some point in time, i.e.

𝐹𝑖,drag(𝑥 𝑖 , 𝑡) > 𝐹𝑖,ret(𝑡) (5.26)

holds, a drop detaches from the solid surface, and is not considered anymore in
the (macro-scale) free-flow domain.
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Since the drop radius 𝑟𝑖,drop occurs in the drag force, we can obtain a condition to
determine the critical drop volume 𝑉𝑖,drop (5.28), for which a drop detaches, using
(5.26). Inserting Equations (5.24) and (5.25), and rearranging the terms leads to

𝑉𝑖,drop(𝑡) > 𝑉𝑖,critical(𝑡), (5.27)

with

𝑉𝑖,critical(𝑡) ≔
𝜋
2 (2𝜎𝑖(cos(𝜋 − 𝜃𝑎) + cos(𝜃𝑟 ))

(1 − cos(𝜃))
√Re

30𝜌𝑉 (𝑥 𝑖 , 𝑡)𝑣V,𝑥1(𝑥 𝑖 , 𝑡)2
)
2
|𝑒𝑥3 |.

Inequality (5.27) gives us a condition on the drop volume to determine whether a
drop detaches. If a drop detaches, the micro-solver is newly initiated according to
conditions (5.19)–(5.21).
The micro-scale model on the other hand uses the flux 𝜌pm𝑣pm from the macro-
scale solution inΩmacro

pm as boundary condition at the lower inflow boundary Γinflow.
The drop volume is computed by

𝑉𝑖,drop(𝑡) = 2∫
Ωmicro

𝜑(𝑥, 𝑡) d𝑥 − (𝑑𝑖,poreℎ𝑖,pore + 2𝑟2𝑖,circ (1 −
𝜋
4 )) |𝑒𝑥3 |, (5.28)

where ℎ𝑖,pore denotes the height of the pore and 𝑟𝑖,circ is the radius of the rounded
corner, see Figure 5.4.
The surface tension 𝜎𝑖 is calculated via

𝜎𝑖(𝑡) = 2𝛾 ∫
Γ𝑖,1

|𝑇∇𝜑(𝑆, 𝑡)|2 d𝑆, (5.29)

where 𝑇 denotes the trace operator.
Here Γ𝑖,1 denotes the boundary which consists of the left boundary of the pore,
the curved boundary and the lower boundary of the free-flow part, cf. Figure 5.4.
Considering (5.29), we note that the surface tension 𝜎𝑖 can be interpreted as the
energy in the interface region.
The exchange procedure as described above allows to obtain a qualitative under-
standing on the influence of both scales on each other. Of course, more data should
be exchanged to capture more aspects of the coupled system. A possible extension
is to take also into account information of the free-flow in the micro-scale simula-
tion. In this fashion we can directly simulate the deformation of the drop due to
free-flow velocity. First results in this direction are depicted in Figure 5.7.
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Figure 5.7: Micro-scale simulation of a deforming drop due stress by the free-flow ve-
locity field. Density 𝜌 with velocity glyph at two different times.

5.5 Numerical Experiments
In this sectionwe present numerical experiments and results to illustrate the usage
of our multi-scale model.

5.5.1 Fluid Properties

To illustrate the new multi-scale approach a somewhat artificial fluid system is
used. The fluid consists of a single component which occurs in its gaseous as well
as its liquid state. We use a stiffened-gas type EOS to relate the density to the
pressure of the compressible fluid, i.e.,

𝑝L(𝜌) = 5𝜌 − 5.5,
𝑝V(𝜌) = 1.5𝜌 − 0.084. (5.30)

Here 𝑝𝛼 (𝜌), 𝛼 ∈ {L,V}, denotes the partial pressure of the liquid (vapor) phase.
Using (5.1) this translates into the following free energy densities for the phase-
field model:

𝜌𝑓L(𝜌) = 5𝜌 ln(𝜌/𝜌0) − 5.8𝜌 + 5.5, (5.31)
𝜌𝑓V(𝜌) = 1.5𝜌 ln(𝜌/𝜌0) + 0.3𝜌 + 0.084, (5.32)

with 𝜌0 normalized to 1.
The parameters in (5.31), (5.32) are chosen in a way that the minima of the free
energy densities have the same height, i.e. no phase is energeticallymore favorable.
Additionally, we shift the location of the minima to the single-phase equilibrium
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values

𝜌L,EQ ≔ argmin
𝜌

𝜌𝑓L(𝜌) ≈ 1.2,

𝜌V,EQ ≔ argmin
𝜌

𝜌𝑓V(𝜌) ≈ 0.3.

For the viscosities in (5.3), (5.6), (2.7), we use 𝜇L = 0.1025 and 𝜇V = 0.01025.
As capillary pressure relation (5.4) we use the simple constant relation

𝑝𝑐(𝑆V) = 𝑝𝑐 ≔ 0.134.
This value is chosen such that the difference between the liquid pressure and the
vapor pressure is constant equal to the value in the single-phase equilibria, i.e.
𝑝L(𝜌L,eq) − 𝑝V(𝜌V,eq) = 0.134.

5.5.2 Setup of the Numerical Example

We choose the macroscopic domain as Ωmacro = [0, 0.25] × [0, 0.35]. The free-
flow part is Ωmacro

ff = [0, 0.25] × [0.25, 0.35] and the porous-medium part Ωmacro
pm =

[0, 0.25]×[0, 0.25]. To save computational effort, we use only one cell in 𝑥1-direction,
i.e. Δ𝑥1 = 0.25. In each subdomain we have three cells in 𝑥2-direction, i.e. Δ𝑥2,ff =
0.1/3 and Δ𝑥2,pm = 0.25/3, as shown in Figure 5.8.
The initial data are chosen as follows. In Ωmacro

ff , the pressure is initially set to 𝑝V =
0.366. For the horizontal velocity, a parabolic profile with a maximum velocity of
𝑣V,𝑥1 = 5 is assumed. The vertical velocity is 𝑣V,𝑥2 = 0. The initial pressure in Ωmacro

pm
is set to 𝑝V = 0.366 and the initial saturation is given as 𝑆L = 0.5.
For boundary and coupling conditions we set the following. On the left and upper
boundaries of Ωmacro

ff , the velocity components are set according to the initial val-
ues. The Dirichlet values on the right boundary are equal to the initial values. On
the left boundary, a no-flow condition is set for the mass balance. At the coupling
interface Γff−pm, the coupling conditions (5.7) and (5.8) are set as Neumann bound-
ary conditions for 𝑝V and 𝑣V. For the 𝑣L we use (5.9). No-flow boundary conditions
are prescribed at the left and right boundary. On the lower boundary, inflow rates
of 𝑞L = 0.5, 𝑞V = 0.3 are chosen. At Γff−pm, equation (5.8) is evaluated for the mass
balance of the vapor phase.
The porosity is set to Φ = 0.41 and the intrinsic permeability is 𝐾 = 0.9𝐼 . For the
relative permeabilities we use a linear material law, i.e. 𝑘𝑟 ,𝛼 (𝑆𝛼 ) = 𝑆𝛼 .
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Figure 5.8: Sketch of computational domain Ωmacro and macro-cells for the macro-
scale problem.

Themicroscopic domain is depicted in Figure 5.4.We have 2324 unstructured trian-
gle cells in the computational domain and dG polynomial degree 𝑘 = 1. As initial
values we employ (5.19)–(5.21), with 𝑟1,pore = 0.2 and ℎ1,pore = 0.4. Note that we use
ℎ1,pore = 2𝑟1,pore. This is an additional degree of freedom whose influence should
be investigate in future work by means of comparison to experimental data.
We assume 𝑁pore = 23 pores with diameter 𝑑1,pore = 4.4 ⋅ 10−3 for computational
cell in the macroscopic domain.
To ensure mass conservation, the flux through the boundary of one macro cell
needs to be equal to the sum of the micro fluxes through 𝑁pore pores, i.e.,

𝑙𝜌𝑣pm = 𝜌𝑣inflow𝑑pore𝑁pore ⇒ 𝑣inflow = 𝑙
𝑁pore𝑑pore

𝑣pm ≈ 2.47𝑣pm. (5.33)

Here, 𝑙 = 0.25 denotes the length of the macro cell.
Note that we get 𝑣pm from the macro-scale solution in Ωmacro

pm with the help of
Darcy’s law (5.3).
We run the simulation until the final time 𝑇end = 3.
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5.5.3 Results

We are first interested in the microscopic results, especially in the drop volume
and surface tension values over time. These quantities are depicted in Figure 5.9.
After some initial time a periodic behavior is reached. After detachment of a drop
we have a small initial layer since the phase-field simulation is newly initialized
after detachment. This can be seen in the rapid behavior of the surface tension
coefficient 𝜎 . The drop volume increases over time until a critical value of ap-
proximately 0.03 is reached. This value depends on the surface tension. We see
a periodic behavior which is expected due to the constant inflow and free-flow
velocities.
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Figure 5.9: Top: Surface tension value 𝜎 over time 𝑡 . Bottom: Drop volume 𝑉drop over
time 𝑡 .

In Figure 5.10 the phase-field variable of one micro-scale simulation is shown. On
the left we have the initial configuration at time 𝑡 = 0 and on the right the final
state before detachment at 𝑡 = 0.25. Close to the interfacewe have slightly negative
values for the phase-field variable which are unphysical. The problem of values
for the phase-field variable outside [0, 1] is common in numerical simulations of
phase-field models in multiple space dimensions [110].The choice of the nonlinear
interpolation function ℎ (see (2.2)) is used to deal with that issue. It limits the
contribution of phase-field values outside [0, 1].
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Figure 5.10: Result of micro-scale scale simulation. phase-field variable. Left: Initial
configuration at time 𝑡 = 0. Right: Configuration before detachment at
𝑡 = 0.25.

To investigate the influence of the micro-scale on the macro-scale behavior, we
compare the simulation with the case of no inflow at the porous medium, i.e. 𝑞𝛼 =
0. The drop volume and surface tension are depicted in Figure 5.11.
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Figure 5.11: Simulation without inflow. Top: Surface tension value 𝜎 over time 𝑡 . Bot-
tom: Drop volume 𝑉drop over time 𝑡 .Drop volume 𝑉drop over time 𝑡 .

We can see that no drop is formed.
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From the macro-scale solution, we plot the values for liquid saturation, liquid pres-
sure, and liquid and vapor velocitymagnitude for the uppermost cell in the porous-
medium domain over time. The results are depicted in Figure 5.12.
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Figure 5.12: Comparison of liquid saturation, liquid pressure, and liquid and vapor
velocity magnitude of multi-scale simulation with and without inflow.
The values of the uppermost cell in the porous-medium domain are plotted
over time. The dashed lines depict the result of the simulation without
inflow, while the solid lines show the result of the simulation with inflow.

It can be observed, that in both cases at 𝑡 = 3we are already close to an equilibrium
situation. The liquid saturation is quite low in both cases. However, due to the
inflow the liquid pressure is higher resulting in an outflow and the growth of
drops.



Conclusion
and Outlook 6

In this second part we studied a phase-field model for the description of compress-
ible two-phase flows. We introduced the NSAC model based on energy principles.
Further, we proved an energy inequality and therefore thermodynamic consis-
tency. We mentioned the topic of sharp-interface limits. We referred to works
which show that the NSACmodel yields physically meaningful SI limit systems. In
order to discretize the system, we derived an energy-consistent dG scheme, which
is a higher order scheme which satisfies an energy inequality on the discrete level.
We then showed with two examples the applicability of the NSAC model and our
scheme.
First, we presented a phase-field approach to model and simulate compressible
droplet impingement scenarios. For this, we derived generalized Navier boundary
conditions, which allows to describe moving contact line. They have been imple-
mented for static contact angles, which we illustrated with a boundary wetting
example. However, for future studies dynamic contact angle can be implemented
in order to observe jetting phenomena in the impact case.
As second example we presented a novel multi-scale approach to model coupled
porous-medium and free flow. The advantage of the approach is that it is capable
to describe droplet related processes at the interface between the porous-medium
and free-flow domain. This is achieved by introducing the micro-scale phase-field
model for the description of a single drop. A numerical example demonstrated
the advantage of the new model concept. In future work comparison studies with
experiments are interesting to discuss the areas of application for the multi-scale
approach.





Appendix

A Domain Enlargement
In the numerical example from Section 5.5, the pore diameter 𝑑pore in the micro
domain should be 4.4 ⋅ 10−3. However, we rescale the micro-domain such that the
pore diameter is ̄𝑑 = 0.4. That means we scale the length 𝑥1, and also 𝑥2 with

̄𝑑
𝑑 = 90.

We need to adapt the system in order to correct the scaling. The nondimensional
form of the system (2.4)–(2.6) reads as

𝜕𝑡𝜌 + div(𝜌𝑣) =0,

𝜕𝑡(𝜌𝑣) + div ⋅(𝜌𝑣𝑣⊤) + 1
𝑀2

𝜌𝜓
∇ (𝜌2 𝜕𝜓𝜕𝜌 ) = 1

𝑅𝑒 div(𝑆) +
1

𝑀2𝑊

1
𝛾 ∇𝑊(𝜑)

− 𝜀2
𝑀2𝑊

𝛾 div(∇𝜑∇𝜑⊤ − 1
2 |∇𝜑|

2𝐼 ),

𝜕𝑡(𝜌𝜑) + div(𝜌𝜑𝑣) = − 𝑀𝑝𝑀𝑊
2𝜂 ( 1

𝑀𝑊
2
𝑊 ′(𝜑)

𝛾 +
1

𝑀2
𝜌𝜓

𝜕(𝜌𝜓)
𝜕𝜑 − 𝜀2

𝑀𝑊
2 𝛾Δ𝜑) ,

with the Mach and Reynolds numbers

𝑀𝑊 = 𝑣𝑐√
𝜌𝑐𝛾 𝑐

𝑊 𝑐 , 𝑀𝜌𝜓 = 𝑣𝑐
√

𝜌𝑐
(𝜌𝜓)𝑐 𝑀𝑝 =

𝜂𝑐𝑡𝑐𝑊 𝑐

𝜌𝑐𝛾 𝑐 , 𝑅𝑒 = 𝜌𝑐𝑣𝑐𝑥𝑐
𝜇𝑐LV

.
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Moreover, the following small parameter is proportional to the interface thickness

𝜀 =
√

(𝛾 𝑐)2
(𝑥𝑐)2𝑊 𝑐 .

Here 𝑐 denotes the characteristic scale of the corresponding quantity.
In order to maintain the characteristic numbers we need to adapt 𝜇LV:

̄𝜇LV = 90𝜇LV, (6.1)

which means that we have to scale the viscosity parameter in the micro-scale
simulation by factor 90.
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Introduction 1
In Chapter 4 of Part II we discussed compressible effects in droplet impingement
scenarios utilizing the compressible NSAC model. Compressible effects of the liq-
uid phase are negligible for smaller impact velocities and therefore small Mach
numbers. In such cases the fluid can be considered incompressible. In [8] a volume-
of-fluid method is used to simulate incompressible droplet impacts. However, the
liquid and the vapor phase are both assumed to be incompressible. For the vapor
phase the assumption of incompressibility is often infeasible.
Aiming to quantify compressible effects, we consider an incompressible–compress-
ible phase-field model, based on [96]. This model is able to handle two phases, a
compressible vapor phase and an incompressible liquid phase. Up to now, very
little is known about this novel system. In [96] only an energy inequality for a
mixed-formulation of the ICNSCH system is proven. Hence, we investigate some
properties of this model. Namely, for our version of the ICNSCH model, we prove
an energy inequality which ensures thermodynamic consistency. Further, as nov-
elty, we investigate the surface tension in the system and the limit for small Mach
numbers. For the effective surface tension we derive the expression (2.36). For the
low Mach limit, we show formally, the convergence to a meaningful limit system,
the (quasi-)incompressible Lowengrub–Truskinovsky system. In [96] an energy-
consistent dG scheme similar to Algorithm 3.11 in Part II has been introduced,
but not implemented. In order to overcome the drawbacks of energy-consistent
dG schemes, like the restrictive time discretization and stabilization problems in
advection-dominated regimes, we present an idea towards a high-order dG scheme
based on Godunov fluxes to discretize the incompressible–compressible system.
This part is structured as follows. In the following Chapter 2 we introduce the in-
compressible–compressible–Navier–Stokes–Cahn–Hilliard (ICNSCH) system and
discuss the above-mentioned properties. In Chapter 3 we present an approach to-
wards a dG scheme to solve the system numerically. We show some preliminary
results in Chapter 4, where the applicability of our idea is shown in a single-phase
situation. Finally, we conclude in Chapter 5.





The ICNSCH Model 2
In this chapterwe present the incompressible–compressible–Navier–Stokes–Cahn–
Hilliard model. This model was originally derived in [96] with the motivation to
model the expansion of ametal foam inside a hollowmold. In contrast to theAllen–
Cahn-type models, like the one used in Part II, here the phases are conserved. In
particular, no phase transition can occur. Since, especially in isothermal condi-
tions, phase transition phenomena are often not of primary interest, the choice of
a Cahn–Hilliard-type model stands to reason. In this ICNSCH phase-field model
the vapor phase is considered compressible while the liquid phase is assumed to
be incompressible. The main difference in the derivation of this system, in con-
trast to the one in Part II, is that one has to rely on the specific Gibbs free energy
𝑔, rather than the specific Helmholtz free energy 𝑓 used in the fully compressible
case. This is due to the fact, that the Helmholtz free energy degenerates in the
incompressible case and no relation between the pressure 𝑝 and density 𝜌 can be
found. Hence, the Gibbs free energy 𝑔 = 𝑔(𝑝, 𝜑, ∇𝜑) is used, which allows to define
the following relation between pressure and density:

1
𝜌 = 𝜕𝑔

𝜕𝑝 . (2.1)

Note that the Gibbs free energy 𝑔 depends on the pressure 𝑝 and not on the density
𝜌 like the Helmholtz free energy. This leads to the fact that the corresponding
system has the pressure 𝑝 as unknown rather than the density 𝜌.
Let the fluid occupy a domain Ω ⊂ ℝ𝑑 , 𝑑 ∈ ℕ. The isothermal Navier–Stokes–
Cahn–Hilliard (NSCH) system for the pressure 𝑝 ∈ ℝ, velocity 𝑣 ∈ ℝ𝑑 and phase-
field variable 𝜑 ∈ [0, 1] reads in non-conservative form as

𝜕𝑡𝜌 + div(𝜌𝑣) = 0, (2.2)
𝜕𝑡(𝜌𝑣) + div(𝜌𝑣 ⊗ 𝑣) = div (𝑆 − 𝑝𝐼 + 𝐶) in Ω × (0, 𝑇 ), (2.3)

𝜌𝜕𝑡𝜑 + 𝜌∇𝜑 ⋅ 𝑣 = div (𝜂∇𝜇) , (2.4)
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with
1
𝜌 = 𝜑

𝜌L(𝑝)
+ 1 − 𝜑
𝜌V(𝑝)

, (2.5)

𝑔 = 𝑔(𝑝, 𝜑, ∇𝜑) = 𝑔0(𝑝, 𝜑) +
𝛾
2 |∇𝜑|

2, (2.6)

𝐶 = −𝜌𝛾∇𝜑 ⊗ ∇𝜑,
𝑆 = �̃� (∇𝑣 + ∇𝑣⊤ − 2

3 div(𝑣)𝐼 ) ,

𝜇 = 𝜕𝑔0
𝜕𝜑 − 1

𝜌 div (𝛾𝜌∇𝜑) . (2.7)

Here ( •) denotes thematerial derivative, i.e. •𝑥 = 𝑥𝑡+∇𝑥⋅𝑣 .The constant parameters
𝜂, 𝛾 and �̃� are the mobility, the capillary parameter and the viscosity. The system
(2.2)–(2.4) holds for both, compressible and incompressible fluids. In the following
we specify this property by fixing the density pressure relation 𝜌L/V(𝑝) for both
phases.
The liquid phase is modeled as an incompressible liquid with constant density, i.e.

𝜌𝐿(𝑝) =𝜌𝐿 = const. (2.8)

The vapor phase is assumed to be a perfect gas, i.e.

𝑝(𝜌V) =𝛼𝜌V, (2.9)

for some parameter 𝛼 > 0. Accordingly, with (2.5) follows

1
𝜌 = 𝜑

𝜌𝐿
+ 𝛼 1 − 𝜑

𝑝 . (2.10)

We integrate (2.1) from 𝑝0 to 𝑝 and combine it with (2.6) and (2.10) to obtain the
specific Gibbs free energy

𝑔(𝑝, 𝜑, ∇𝜑) = 𝜑 𝑝 − 𝑝0
𝜌𝐿

+ (1 − 𝜑) 𝛼 ln
𝑝
𝑝0

+ 𝛾
2 |∇𝜑|

2 + 𝑔1(𝜑).

A standard choice for the function 𝑔1(𝜑) is the double well potential

𝑔1(𝜑) = 𝑊(𝜑) = 𝛽𝜑2 (1 − 𝜑)2 , (2.11)

with 𝛽 > 0, cf. Chapter 2 in Part II.
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Then, the chemical potential 𝜇 in (2.7) becomes

𝜇 = 𝑝 − 𝑝0
𝜌𝐿

− 𝛼 ln
𝑝
𝑝0

+ 𝑊 ′(𝜑) − 1
𝜌 div (𝜌𝛾∇𝜑) .

With the assumption on the pressure-density relationship for both phases (2.8)–
(2.9), we now call the NSCHmodel (2.2)–(2.4) Incompressible–Compressible–NSCH
system.
In order to recast the ICNSCH system in the dimensionless form, we introduce the
generic nondimensional quantity 𝜗 ∗ = 𝜗/𝜗 𝑐 where 𝜗 𝑐 is denotes the characteristic
scale of the corresponding quantity. Consider the relations

𝑡𝑐 = 𝑙𝑐/𝑢𝑐 , and 𝑝𝑐 = 𝜌𝑐𝜇𝑐 ,
with 𝑡𝑐 and 𝑙𝑐 the characteristic time and length scale respectively, and the dimen-
sionless numbers

Ca = 𝛾
𝜇𝑐(𝑙𝑐)2 ,

Ma =
√
(𝑢𝑐)2
𝜇𝑐 ,

Re = 𝜌𝑐𝑢𝑐 𝑙𝑐
�̃�𝑐 ,

Pe = 𝜌𝑐𝑢𝑐 𝑙𝑐
𝜂𝑇 𝜇𝑐

,

𝑎 = 𝛼
𝜇𝑐 ,

𝑏 = 𝛽
𝜇𝑐 ,

with 𝜂𝑇 = 𝜂/𝑇 .
Omitting the (𝑐) notation, the nondimensional ICNSCH system reads

𝜕𝑡𝜌 + div(𝜌𝑣) = 0, (2.12)

𝜕𝑡(𝜌𝑣) + div(𝜌𝑣 ⊗ 𝑣) = div ( 1
Re

𝑆 − 1
Ma2

𝑝𝐼 + Ca
Ma2

𝐶) , in Ω × (0, 𝑇 ) (2.13)

𝜌𝜕𝑡𝜑 + 𝜌∇𝜑 ⋅ 𝑣 = div ( 1
Pe

∇𝜇) , (2.14)
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where
1
𝜌 = 𝜑

𝜌𝐿
+ 𝑎1 − 𝜑

𝑝 ,

𝑔(𝑝, 𝜑, ∇𝜑) = 𝜑 𝑝 − 𝑝0
𝜌𝐿

+ (1 − 𝜑) 𝑎 ln 𝑝
𝑝0

+ Ca
2 |∇𝜑|2 + 𝑏𝑊(𝜑) (2.15)

𝑆 = ∇𝑣 + ∇𝑣⊤ − 2
3 (div 𝑣) 𝐼 ,

𝐶 = −𝜌∇𝜑 ⊗ ∇𝜑,
𝜇 = 𝑝 − 𝑝0

𝜌𝐿
− 𝑎 ln 𝑝

𝑝0
+ 𝑏𝑊 ′(𝜑) − Ca

1
𝜌 div (𝜌∇𝜑) ,

𝑊 (𝜑) = 𝜑2 (1 − 𝜑)2 .
Notice that the chemical potential contribution in (2.14) is given by its gradients
only. Therefore, the choice of 𝑝0 is free.
Assuming an impermeable no-slip wall and 90∘ static contact angle, we have the
boundary conditions

𝑣 = 0, (2.16)
∇𝜑 ⋅ 𝑛 = 0, on 𝜕Ω × (0, 𝑇 ). (2.17)

Further, we assume no diffusion through the boundary, i.e.

∇𝜇 ⋅ 𝑛 = 0. (2.18)

Additionally, the system is endowed with initial conditions

𝑝 = 𝑝0, 𝑣 = 𝑣0, 𝜑 = 𝜑0 on Ω × {0},
using suitable functions (𝑝0, 𝑣0, 𝜑0)∶ Ω → ℝ × ℝ𝑑 × [0, 1].
The energy corresponding to (2.12)–(2.14) reads as

𝐸(𝑡) ≔ ∫
Ω
(12𝜌|𝑣|

2 + 1
Ma2

𝜌𝑔(𝑝, 𝜑, ∇𝜑) − 1
Ma2

𝑝) d𝑥. (2.19)

Note that we subtract the pressure in the energy. This is due to the following
relation between the specific Gibbs free energy 𝑔, specific Helmholtz free energy
𝑓 and specific energy 𝑒:

𝑓 = 𝑒 − 𝑇 𝑠
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𝑔 = 𝑒 − 𝑇 𝑠 + 𝑝
𝜌 = 𝑓 + 𝑝

𝜌 .

Here 𝑇 denotes the temperature and 𝑠 the specific entropy. From this relation it is
clear that

− d
d 𝑡 𝐸(𝑡) =

d
d 𝑡 ∫Ω

𝑇𝜌𝑠 d𝑥

is exactly the entropy production.
Remark 2.1 (Viscosity): In the original version of the ICNSCH system [96], the va-
por phase is inviscid. We drop this assumption, hence in our system (2.12)–(2.14) the
vapor phase has viscosity. However, for the readers convenience we assume the same
viscosity parameter �̃� for both phases. All our results generalize to the case of different
viscosity parameter interpolated by the phase-field variable.

2.1 Properties of the ICNSCH System
In this sectionwe study some properties of the ICNSCH system. In the next section
we provide an energy inequality, which renders the ICNSCH system (2.12)–(2.14)
thermodynamically consistent. In the subsequent Section 2.1.2, we investigate the
surface tension in the system. Section 2.1.3 investigates the limit of the ICNSCH
system for low Mach numbers. In this limit we show formally that the solutions
to the ICNSCH system converge to solutions of the quasi-incompressible Lowen-
grub–Truskinovsky (LT) system [74]. The latter system is a phase-field model,
where both phases are assumed to be incompressiblewith different densities. Hence
the addition quasi-incompressible.

2.1.1 Energy Inequality

Similar to the NSAC system in Part II, we can show that the ICNSCH system sat-
isfies an energy inequality. For isothermal models thermodynamical consistency
means to verify that solutions of the problem at hand admit an energy inequal-
ity. The entropy production of the system is exactly − d 𝐸

d 𝑡 (𝑡). Hence, by assuring
that the energy 𝐸 decreases over time, we show increasing entropy and therefore
thermodynamical consistency.
We formulate the following result:

Theorem 2.2 (Energy Inequality): Let (𝑝, 𝑣, 𝜑) with values in ℝ × ℝ𝑑 × [0, 1] be
a classical solution to (2.12)–(2.14) in Ω × (0, 𝑇 ) satisfying the boundary conditions
(2.16)–(2.18) on 𝜕Ω × (0, 𝑇 ).
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Then, for all 𝑡 ∈ (0, 𝑇 ) the following energy inequality holds:

d
d 𝑡 𝐸(𝑡) =

d
d 𝑡 (𝐸kin(𝑡) + 𝐸free(𝑡))

= d
d 𝑡 (∫Ω

1
2𝜌|𝑣|

2 + 1
Ma2

𝜌𝑔(𝑝, 𝜑, ∇𝜑) − 1
Ma2

𝑝 d𝑥)

= −∫
Ω

1
Ma2Pe

|∇𝜇|2 d𝑥 − ∫
Ω

1
Re

𝑆 ∶ ∇𝑣 d𝑥 ≤ 0. (2.20)

Proof. We directly compute:

d
d 𝑡 𝐸(𝑡) =

d
d 𝑡 (∫Ω

1
2𝜌|𝑣|

2 + 1
Ma2

𝜌𝑔(𝑝, 𝜑, ∇𝜑) − 1
Ma2

𝑝 d𝑥)

=∫
Ω
𝑣(𝜌𝑣)𝑡 −

1
2𝜌𝑡 |𝑣|

2 + 1
Ma2

𝜌𝑡𝑔 + 1
Ma2

𝜌𝑔𝑡 −
1

Ma2
𝑝𝑡 d𝑥

=∫
Ω
𝑣(𝜌𝑣)𝑡 −

1
2𝜌𝑡 |𝑣|

2 + 1
Ma2

𝜌𝑡𝑔 + 1
Ma2

𝜌 ( 𝜕𝑔𝜕𝜑 𝜑𝑡 +
𝜕𝑔
𝜕𝑝 𝑝𝑡 +

𝜕𝑔
𝜕∇𝜑∇𝜑𝑡)

− 1
Ma2

𝑝𝑡 d𝑥.

With (2.1) and (2.15) we obtain

d
d 𝑡 𝐸(𝑡) =∫Ω

𝑣(𝜌𝑣)𝑡 −
1
2𝜌𝑡 |𝑣|

2 + 1
Ma2

𝜌𝑡𝑔 + 1
Ma2

𝜌 𝜕𝑔𝜕𝜑 𝜑𝑡 +
Ca
Ma2

𝜌∇𝜑∇𝜑𝑡 d𝑥

Using integration by parts and the boundary condition (2.17) results in

=∫
Ω
𝑣(𝜌𝑣)𝑡 −

1
2𝜌𝑡 |𝑣|

2 + 1
Ma2

𝜌𝑡𝑔 + 1
Ma2

𝜌 𝜕𝑔𝜕𝜑 𝜑𝑡 −
Ca
Ma2

div(𝜌∇𝜑)𝜑𝑡 d𝑥.

Replacing the time derivatives in the volume integrals using (2.12)–(2.14) yields

d
d 𝑡 𝐸(𝑡) =∫Ω

𝑣 (− div(𝜌𝑣 ⊗ 𝑣) − 1
Ma2

∇𝑝 − Ca
Ma2

div(𝜌∇𝜑 ⊗ ∇𝜑) + 1
Re

div(𝑆))

− div(𝜌𝑣) ( 1
Ma2

𝑔 − 1
2 |𝑣|

2) + 1
Ma2

𝜕𝑔
𝜕𝜑 ( 1

Pe
Δ𝜇 − 𝜌𝑣 ⋅ ∇𝜑)

− Ca
Ma2

div(𝜌∇𝜑) ( 1
Pe

1
𝜌Δ𝜇 − 𝑣 ⋅ ∇𝜑) d𝑥

=∫
Ω
− div(𝜌𝑣 ⊗ 𝑣) ⋅ 𝑣 + 1

Re
div(𝑆) ⋅ 𝑣 + 1

2 div(𝜌𝑣)|𝑣|2
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− 1
Ma2

∇𝑝 ⋅ 𝑣 − 1
2
Ca
Ma2

𝜌𝑣∇(|∇𝜑|2) − 1
Ma2

div(𝜌𝑣)𝑔

+ 1
Ma2Pe

Δ𝜇 (𝜕𝑔𝜕𝜑 − Ca
1
𝜌 div(𝜌∇𝜑)) − 1

Ma2
𝜕𝑔
𝜕𝜑 𝜌𝑣 ⋅ ∇𝜑 d𝑥.

Using the definition of 𝜇 (2.7) leads to
d
d 𝑡 𝐸(𝑡) =∫Ω

− div(𝜌𝑣 ⊗ 𝑣) ⋅ 𝑣 + 1
Re

div(𝑆) ⋅ 𝑣 + 1
2 div(𝜌𝑣)|𝑣|2

− 1
Ma2

∇𝑝 ⋅ 𝑣 − 1
2
Ca
Ma2

𝜌𝑣∇(|∇𝜑|2) − 1
Ma2

div(𝜌𝑣)𝑔

+ 1
Ma2Pe

𝜇Δ𝜇 − 1
Ma2

𝜕𝑔
𝜕𝜑 𝜌𝑣 ⋅ ∇𝜑 d𝑥.

With the definition of 𝑔 (2.15) it holds

d
d 𝑡 𝐸(𝑡) =∫Ω

− div(𝜌𝑣 ⊗ 𝑣) ⋅ 𝑣 + 1
Re

div(𝑆) ⋅ 𝑣 + 1
2 div(𝜌𝑣)|𝑣|2

− 1
Ma2

div(𝜌𝑣)𝑔 − 1
Ma2

𝜌𝑣∇𝑔 + 1
Ma2Pe

𝜇Δ𝜇 d𝑥

=∫
Ω
− div(𝜌𝑣 ⊗ 𝑣) ⋅ 𝑣 + 1

Re
div(𝑆) ⋅ 𝑣 + 1

2 div(𝜌𝑣)|𝑣|2

− 1
Ma2

div(𝜌𝑣𝑔) + 1
Ma2Pe

𝜇Δ𝜇 d𝑥.

Finally, Gauss’s theorem, integration by parts and using the boundary conditions
(2.16)–(2.18) results in

d
d 𝑡 𝐸(𝑡) = − ∫

Ω

1
Re

𝑆 ∶ ∇𝑣 d𝑥 − ∫
Ω

1
Ma2Pe

|∇𝜇|2 d𝑥.

2.1.2 Surface Tension

In this section, we investigate the effective surface tension similarly to Section 2.1.3
in Part II. We consider the dimensionless ICNSCH system (2.12)–(2.14). Recall the
energy (2.19).
In order to derive the surface tension, we consider a planar equilibrium profile and
integrate the excess free energy density over this profile. The excess free energy is
the difference of the free energy in the considered system and in a (sharp-interface)
reference system where the bulk values are maintained up to a dividing interface.
We assume that static equilibrium conditions hold, i.e. 𝑣 = 0. The planar profile
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assumed to be parallel to the 𝑥1-axis while everything is independent from 𝑡 and
the other space dimensions 𝑥𝑖 , 𝑖 ≠ 1. For the sake of readability we omit the sub-
script in 𝑥1 in the following . Then the equilibrium is governed by the solution of
the following boundary value problem on the real line. Find 𝑝 = 𝑝(𝑥), 𝜑 = 𝜑(𝑥)
such that

𝑝𝑥 = −Ca(𝜌𝜑2𝑥)𝑥 , (2.21)
𝜇𝑥𝑥 = 0 (2.22)

and
𝑝(±∞) = 𝑝L/V, 𝜑(±∞) = 𝜑L/V, 𝜑𝑥(±∞) = 0. (2.23)

We assume that there exists a solution to (2.21)–(2.23). Integrating the reduced
momentum equation (2.21) from −∞ to some 𝑥 ∈ ℝ leads to the pressure

𝑝(𝑥) = 𝑝V − Ca𝜌(𝑥)𝜑2𝑥(𝑥). (2.24)

Equation (2.24) immediately yields for 𝑥 → ∞
𝑝L = 𝑝V. (2.25)

Even more, the pressure 𝑝 is constant equal to 𝑝L/V whenever 𝜑𝑥 vanishes, i.e.
outside the interface region.
Remark 2.3: Note that (2.24) yields that the hydrostatic pressure 𝑝 is not constant in
a planar equilibrium situation (i.e. without surface tension effects). This raises some
confusion due to the definition of (mechanical) thermodynamic equilibrium. However,
the pressure defined as 1

𝑑 trace(𝑇 ), with stress tensor 𝑇 = 𝑆 − 𝑝𝐼 + 𝐶 is constant in
this case.
We write

𝜇 = 𝜕𝑔0(𝜑, 𝑝)
𝜕𝜑 − Ca

𝜌 (𝜌𝜑𝑥)𝑥 . (2.26)

From (2.22) we have 𝜇 = 𝑐0𝑥 + 𝑐1, with some constants 𝑐0, 𝑐1 ∈ ℝ. If we consider
the asymptotic behavior for 𝑥 → ±∞ it becomes clear that 𝑐0 = 0 and hence

𝜇 = 𝑐1, (2.27)

with

𝑐1 = 𝑔0,𝜑(𝜑V, 𝑝V) = 𝑔0,𝜑(𝜑L, 𝑝L).



2.1 Properties of the ICNSCH System 137

Consider now (2.27) with the definition of 𝜇 (2.26):

𝑔0,𝜑 −
Ca
𝜌 (𝜌𝜑𝑥)𝑥 = 𝑐1. (2.28)

We multiply (2.28) by 𝜑𝑥 and obtain

𝑔0,𝑥 − 𝑔0,𝑝𝑝𝑥 −
Ca
2 (𝜑2𝑥)𝑥 − Ca

𝜌𝑥
𝜌 𝜑2𝑥 = 𝑐1𝜑𝑥 .

Using the relation between Gibbs free energy and pressure (2.1) yields

𝑔0,𝑥 −
𝑝𝑥
𝜌 − Ca

2 (𝜑2𝑥)𝑥 − Ca
𝜌𝑥
𝜌 𝜑2𝑥 = 𝑐1𝜑𝑥 .

Equation (2.21) leads to

𝑔0,𝑥 +
Ca
2 (𝜑2𝑥)𝑥 = 𝑐1𝜑𝑥

Finally, we integrate from −∞ to some 𝑥 ∈ ℝ and obtain

𝑔0(𝑝(𝑥), 𝜑(𝑥)) − 𝑔0(𝑝V, 𝜑V) +
Ca
2 𝜑2𝑥(𝑥) = 𝑐1(𝜑(𝑥) − 𝜑V). (2.29)

By sending 𝑥 → ∞ we have from (2.29)

𝑔0(𝑝V, 𝜑V) − 𝑐1𝜑V = 𝑔0(𝑝L, 𝜑L) − 𝑐1𝜑L.
We will use this relation later with the short notation

𝑔V − 𝑐1𝜑V = 𝑔L − 𝑐1𝜑L = 𝑔L/V − 𝑐1𝜑L/V. (2.30)

As mentioned before, surface tension can be defined by means of the excess free
energy. We specify the interface position 𝑥0 by vanishing excess density, i.e. the
balance of mass of the two phases. Hence, we fix the position of the interface by
demanding

∫
𝑥0

−∞
(𝜌𝜑 − 𝜌V𝜑V) d𝑥 = ∫

∞

𝑥0
(𝜌L𝜑L − 𝜌𝜑) d𝑥. (2.31)
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To obtain the surface tension, i.e. the excess free energy, we integrate the free
energy over the equilibrium profile and subtract the energy of a sharp-interface
reference system:

𝜎 =∫
𝑥0

−∞

1
Ma2

(𝜌𝑔(𝑝, 𝜑, 𝜑𝑥) − 𝜌V𝑔V) −
1

Ma2
(𝑝 − 𝑝V) d𝑥

+ ∫
∞

𝑥0

1
Ma2

(𝜌𝑔(𝑝, 𝜑, 𝜑𝑥) − 𝜌L𝑔L) −
1

Ma2
(𝑝 − 𝑝L) d𝑥.

With (2.24) and (2.25) it follows

𝜎 =∫
𝑥0

−∞

1
Ma2

(𝜌𝑔(𝑝, 𝜑, 𝜑𝑥) − 𝜌V𝑔V) +
Ca
Ma2

𝜌𝜑2𝑥 d𝑥

+ ∫
∞

𝑥0

1
Ma2

(𝜌𝑔(𝑝, 𝜑, 𝜑𝑥) − 𝜌L𝑔L) +
Ca
Ma2

𝜌𝜑2𝑥 d𝑥.

Due to the form of 𝑔, see (2.6), we get

𝜎 = 3Ca
2Ma2 ∫

∞

−∞
𝜌𝜑2𝑥 d𝑥 + 1

Ma2 ∫
𝑥0

−∞
𝜌𝑔0(𝑝, 𝜑) − 𝜌V𝑔V d𝑥

+ 1
Ma2 ∫

∞

𝑥0
𝜌𝑔0(𝑝, 𝜑) − 𝜌L𝑔L d𝑥.

Then, with (2.29) it holds

𝜎 = Ca
Ma2 ∫

∞

−∞
𝜌𝜑2𝑥 d𝑥 + 1

Ma2 ∫
𝑥0

−∞
𝜌𝑔V − 𝜌V𝑔V + 𝑐1𝜌(𝜑 − 𝜑V) d𝑥

+ 1
Ma2 ∫

∞

𝑥0
𝜌𝑔L − 𝜌L𝑔L + 𝑐1𝜌(𝜑 − 𝜑L) d𝑥.

We use the notation (2.30) to obtain

𝜎 = Ca
Ma2 ∫

∞

−∞
𝜌𝜑2𝑥 d𝑥 + 1

Ma2
(∫

𝑥0

−∞
(𝑔L/V − 𝑐1𝜑L/V)𝜌 + 𝑐1𝜌𝜑 − 𝜌V𝑔V d𝑥

+∫
∞

𝑥0
(𝑔L/V − 𝑐1𝜑L/V)𝜌 + 𝑐1𝜌𝜑 − 𝜌L𝑔L d𝑥) .
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With the vanishing excess density condition (2.31) we have

𝜎 = Ca
Ma2 ∫

∞

−∞
𝜌𝜑2𝑥 d𝑥 + 1

Ma2
(𝑔L/V − 𝑐1𝜑L/V) (∫

𝑥0

−∞
𝜌 − 𝜌V d𝑥 + ∫

∞

𝑥0
𝜌 − 𝜌L d𝑥) .

We assume that the second term drops out, see Remark 2.4, and finally obtain

𝜎 = Ca
Ma2 ∫

∞

−∞
𝜌𝜑2𝑥 d𝑥. (2.32)

We want to find a better form of the surface tension coefficient, which ideally does
not require knowledge of the equilibrium profile. Hence, we have a closer look at
(2.29) and plug in the specific terms for the ICNSCH system:

𝑔0(𝑝, 𝜑) =
𝜑
𝜌L

(𝑝 − 𝑝0) + 𝑎(1 − 𝜑) ln 𝑝
𝑝0

+ 𝑏𝑊(𝜑), (2.33)

𝑐1 =
𝜕𝑔0
𝜕𝜑 (𝑝V, 𝜑V) =

𝑝V − 𝑝0
𝜌L

− 𝑎 ln 𝑝V
𝑝0

, (2.34)

𝑊(𝜑L/V) = 𝑊 ′(𝜑L/V) = 0.
Thus, (2.29) reads:

𝑐1(𝜑 − 𝜑V) =𝑔0(𝑝, 𝜑) − 𝑔V + Ca
2 𝜑2𝑥 .

With (2.33) and (2.24) we infer

𝑐1(𝜑 − 𝜑V) =
𝜑
𝜌L

(𝑝V − 𝑝0) −
Ca
𝜌L

𝜌𝜑𝜑2𝑥 + 𝑎(1 − 𝜑) ln 𝑝
𝑝0

+ 𝑏𝑊(𝜑)

− 𝜑V
𝜌L

(𝑝V − 𝑝0) − 𝑎(1 − 𝜑V) ln
𝑝V
𝑝0

+ Ca
2 𝜑2𝑥 .

Substituting (2.34) yields

(𝑝V − 𝑝0
𝜌L

− 𝑎 ln 𝑝V
𝑝0

) (𝜑 − 𝜑V) =𝑏𝑊(𝜑) + (𝜑 − 𝜑V)
𝑝V − 𝑝0
𝜌L

+ 𝑎(1 − 𝜑) ln 𝑝
𝑝0

− 𝑎(1 − 𝜑V) ln
𝑝V
𝑝0

+ Ca
2 𝜑2𝑥 −

Ca
𝜌L

𝜌𝜑𝜑2𝑥 .
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Hence,

0 =𝑏𝑊(𝜑) + 𝑎(1 − 𝜑) (ln 𝑝
𝑝0

− ln
𝑝V
𝑝0

)

+ Ca
2 𝜑2𝑥 −

Ca
𝜌L

𝜌𝜑𝜑2𝑥 .

For the logarithm terms we use a Taylor expansion:

0 =𝑏𝑊(𝜑)
+ 𝑎(1 − 𝜑) (ln 𝑝

𝑝0
− (ln 𝑝

𝑝0
+ 1
𝑝 (𝑝V − 𝑝) + 𝑂(|𝑝 − 𝑝V|2)))

+ Ca
2 𝜑2𝑥 −

Ca
𝜌L

𝜌𝜑𝜑2𝑥 .

Using (2.24) and neglecting the higher order terms of the Taylor expansion, we
have

0 ≈𝑏𝑊(𝜑) − 𝑎(1 − 𝜑)
𝑝 Ca𝜌𝜑2𝑥 +

Ca
2 𝜑2𝑥 −

Ca
𝜌L

𝜑𝜌𝜑2𝑥

0 ≈𝑏𝑊(𝜑) − Ca𝜌𝜑2𝑥 (
𝜑
𝜌L

+ 𝑎(1 − 𝜑)
𝑝 ) + Ca

2 𝜑2𝑥

0 ≈𝑏𝑊(𝜑) − Ca
2 𝜑2𝑥 .

Thus, we obtain

Ca
2 𝜑2𝑥 ≈𝑏𝑊(𝜑). (2.35)

Finally, we plug (2.35) into (2.32) and obtain using the substitution 𝜙 = 𝜑(𝑥)

𝜎 = Ca
Ma2 ∫

∞

−∞
𝜌𝜑2𝑥 d𝑥

≈ √2Ca
Ma2 ∫

𝜑L

𝜑V
𝜌(𝜙, 𝑝(𝜙))√𝑏𝑊(𝜙) d𝜙. (2.36)

In the last step we used the transformation from 𝑥 to 𝜙 integration. Note that
𝑝 = 𝑝(𝜑, 𝜑𝑥) due to (2.10) and (2.24). Because of (2.35) we have 𝑝 = 𝑝(𝜑).
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We can see that the surface tension 𝜎 is computable. The capillary number Ca de-
termines the width of the interface. Hence, in practice, an interface width, which
can be realized by the numerical scheme can be prescribed and desired values of ef-
fective surface tension can be obtained by tuning theMach numberMa and double-
well parameter b. Of course this procedure might exclude some flow regimes.
Remark 2.4: The assumption

(∫
𝑥0

−∞
𝜌 − 𝜌V d𝑥 + ∫

∞

𝑥0
𝜌 − 𝜌L d𝑥) = 0

can be achieved together with (2.31) in the following way. The total mass should be
constant independent of the interface width. This can be obtained by choosing the
double-well potential 𝑊 in a way that the corresponding equilibrium profile of 𝜑 is
point symmetric. This is especially true for the standard double-well potential (2.11),
if the EOS related terms in (2.36) can be neglected.
Outside the interface the pressure is constant (2.24) and due to the equation of state
also the density is constant equal 𝜌L in the gas phase. That means in a sharp interface
limit, the assumption is true and since a positive interface width does not change the
total mass, it is also true in this case.

2.1.3 Low Mach Limit

In this section we investigate the consistency of the ICNSCH system with respect
to lowMach numbers. We formally show that the solutions to the ICNSCH system
converge to the solutions of the quasi-incompressible Lowengrub–Truskinovsky
system [74]. For the reader’s convenience we will drop 𝑝0 in the following, since
it has no impact on the result.
Recap the ICNSCH system in nondimensional form (2.12)–(2.14):

𝜕𝑡𝜌 + 𝑣 ⋅ ∇𝜌 + 𝜌 div(𝑣) = 0, (2.37)

𝜌𝜕𝑡𝑣 + 𝜌(𝑣 ⋅ ∇)𝑣 + 1
Ma2

∇𝑝 = 1
Re

div(𝑆) − Ca
Ma2

div(𝜌∇𝜑 ⊗ ∇𝜑), (2.38)

𝜌𝜕𝑡𝜑 + 𝜌𝑣 ⋅ ∇𝜑 = 1
Pe

Δ𝜇. (2.39)

Here,

𝜇 = 𝑝
𝜌L

− 𝑎 ln(𝑝) + 𝑏𝑊 ′(𝜑) − Ca
𝜌 div(𝜌∇𝜑),

𝜌−1 = 𝜑
𝜌L

+ (1 − 𝜑)𝑎𝑝 . (2.40)
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The Lowengrub–Truskinovsky system reads as

div(𝑣) = − 1𝜌
𝜕𝜌
𝜕𝜑 (𝜕𝑡𝜑 + 𝑣 ⋅ ∇𝜑), (2.41)

𝜌𝜕𝑡𝑣 + 𝜌(𝑣 ⋅ ∇)𝑣 + ∇𝑝 = div(𝑆) − div(𝜌∇𝜑 ⊗ 𝜑), (2.42)
𝜌𝜕𝑡𝜑 + 𝜌𝑣 ⋅ ∇𝜑 = Δ𝜇. (2.43)

Here,

𝜇 = 𝑊 ′(𝜑) − 𝑝
𝜌2

𝜕𝜌
𝜕𝜑 − 1

𝜌 div(𝜌∇𝜑),

𝜌−1 = 𝜑
𝜌L

+ (1 − 𝜑)
𝜌V

,

with the constant (but possibly different) densities 𝜌L and 𝜌V.
We consider the following regime:

Ma = 𝜀, Ca = 𝜀2, Re = 1, Pe = 𝜀2, 𝑏 = 𝜀2, 𝑎 = 1.
The regime is chosen in a way that we retain the viscous stress tensor and capillary
stress tensor in the limit.
First, we formulate (2.37) in terms of the pressure. Let us note

1
𝜌 = 𝑔𝑝 , 𝜌 = 1

𝑔𝑝
, (2.44)

𝑔 = 𝑔(𝑝, 𝜑, ∇𝜑), 𝑔𝑝 = 𝑔𝑝(𝑝, 𝜑),
𝜕𝑡𝜌 = − 1

𝑔2𝑝
(𝑔𝑝𝑝𝜕𝑡𝑝 + 𝑔𝑝𝜑𝜕𝑡𝜑),

∇𝜌 = − 1
𝑔2𝑝

(𝑔𝑝𝑝∇𝑝 + 𝑔𝑝𝜑∇𝜑).

Then, from (2.37) we have

1
𝑔2𝑝

(𝑔𝑝𝑝𝜕𝑡𝑝 + 𝑔𝑝𝜑𝜕𝑡𝜑) +
1
𝑔2𝑝

𝑣 ⋅ (𝑔𝑝𝑝∇𝑝 + 𝑔𝑝𝜑∇𝜑) −
1
𝑔𝑝

div(𝑣) = 0
𝑔𝑝𝑝
𝑔𝑝

(𝜕𝑡𝑝 + 𝑣 ⋅ ∇𝑝) + 𝑔𝑝𝜑
𝑔𝑝

(𝜕𝑡𝜑 + 𝑣 ⋅ ∇𝜑) − div(𝑣) = 0. (2.45)

Note that −𝑔𝑝𝑝𝑔𝑝
is the (isothermal) compressibility.
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We assume the asymptotic expansions:

𝜌 = 𝜌(0) + 𝜀𝜌(1) + 𝜀2𝜌(2) + … ,
𝑝 = 𝑝(0) + 𝜀𝑝(1) + 𝜀2𝑝(2) + … ,
𝑣 = 𝑣(0) + 𝜀𝑣(1) + 𝜀2𝑣(2) + … ,
𝜑 = 𝜑(0) + 𝜀𝜑(1) + 𝜀2𝜑(2) + … .

In the following we will use the superscripts (𝑖), 𝑖 ∈ ℕ0 for other quantities as
well to denote the 𝑖-th order part of the corresponding quantity.
Inserting the expansions above into (2.38), we infer

𝜌(0)𝜕𝑡𝑣(0) + 𝜌(0)(𝑣(0) ⋅ ∇)𝑣(0) + 1
𝜀2∇𝑝

(0) + 1
𝜀 ∇𝑝

(1) + ∇𝑝(2)

= div(𝑆(0)) − div(𝜌(0)∇𝜑(0) ⊗ ∇𝜑(0)) + 𝑂(𝜀). (2.46)

Comparing the powers of 𝜀 we obtain immediately

∇𝑝(0) = 0 ⇒ 𝑝(0) = 𝑝(0)(𝑡), (2.47)
∇𝑝(1) = 0 ⇒ 𝑝(1) = 𝑝(1)(𝑡), (2.48)

𝜌(0)𝜕𝑡𝑣(0) + 𝜌(0)(𝑣(0) ⋅ ∇)𝑣(0) + ∇𝑝(2) = div(𝑆(0)) − div(𝜌(0)∇𝜑(0) ⊗ ∇𝜑(0)).

The last equation yields themomentum equation (2.42) of the LT system for 𝜌(0), 𝑣(0)
and 𝑝(2).
Hence, we have with (2.44), (2.47), and (2.48) for the zeroth-order in (2.45)

𝑔(0)𝑝𝑝

𝑔(0)𝑝
𝜕𝑡𝑝(0) = div(𝑣(0)) +

1
𝜌(0)

𝜕𝜌(0)
𝜕𝜑(0) (𝜕𝑡𝜑(0) + 𝑣(0) ⋅ ∇𝜑(0)).

With (2.39) we infer

𝑔(0)𝑝𝑝

𝑔(0)𝑝
𝜕𝑡𝑝(0) = div(𝑣(0)) +

1
𝜌(0)

𝜕𝜌(0)
𝜕𝜑(0)

1
𝜌(0)Δ𝜇

(2)

= div(𝑣(0)) + (𝑔(0)𝑝 )2 𝜕𝜌
(0)

𝜕𝜑(0)Δ𝜇(2)

= div(𝑣(0)) − 𝑔(0)𝑝𝜑 (𝑡)Δ𝜇(2). (2.49)

Note that due to (2.44), (2.40), and (2.47) we have 𝑔(0)𝑝𝜑 = 𝑔(0)𝑝𝜑 (𝑡).
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Thus,

𝜕𝑡𝑝(0) ∫
Ω

𝑔(0)𝑝𝑝

𝑔(0)𝑝
d𝑥 = ∫

Ω
div(𝑣(0)) d𝑥 − 𝑔(0)𝑝𝜑 ∫

Ω
Δ𝜇(2) d𝑥

= ∫
𝜕Ω

𝑣(0) ⋅ 𝑛 d𝑠 − 𝑔(0)𝑝𝜑 ∫
𝜕Ω

∇𝜇(2) ⋅ 𝑛 d𝑠
= 0.

In the last step we used the boundary conditions (2.16)–(2.18).
Therefore,

𝜕𝑡𝑝(0) = 0 ⟹ 𝑝(0) = const. ≕ 𝜌V. (2.50)

Then, with (2.49) we obtain

div(𝑣(0)) = − 1
𝜌(0)

𝜕𝜌(0)
𝜕𝜑(0) (𝜕𝑡𝜑(0) + 𝑣(0) ⋅ ∇𝜑(0)),

which is the first equation (2.41) of the LT system for 𝑣(0), 𝜌(0), 𝜑(0) and 𝑝(0).
With (2.50) we have

1
𝜌 = 𝜑(0)

𝜌L
+ 1 − 𝜑(0)

𝑝(0) + 𝑂(𝜀).

Before we take a look at the phase-field equation (2.39), exploiting Taylor expan-
sions, we note the following identities:

ln(𝑝) = ln(𝑝(0) + 𝜀𝑝(1) + 𝜀2𝑝(2)) + 𝑂(𝜀3)
= ln(𝑝(0) + 𝜀𝑝(1)) + 1

𝑝(0) + 𝜀𝑝(1) 𝜀
2𝑝(2) + 𝑂(𝜀3)

= ln(𝑝(0)) + 1
𝑝(0) 𝜀𝑝

(1) + ( 1
𝑝(0) −

1
(𝑝(0))2 𝜀𝑝

(1) + 𝑂(𝜀2)) 𝜀2𝑝(2) + 𝑂(𝜀3)

= ln(𝑝(0)) + 1
𝑝(0) 𝜀𝑝

(1) + ( 1
𝑝(0) −

1
(𝑝(0))2 𝜀𝑝

(1)) 𝜀2𝑝(2) + 𝑂(𝜀3).

We are interested in the 𝑂(1)-part of equation (2.39) given by

𝜌(0)𝜕𝑡𝜑(0) + 𝜌(0)𝑣(0) ⋅ ∇𝜑(0) + 𝑂(𝜀) = 1
𝜀2Δ𝜇,
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with

𝜇 = 𝜀2𝑊 ′(𝜑0) + 𝑝(0)
𝜌L

+ 𝜀 𝑝
(1)

𝜌L
+ 𝜀2 𝑝

(2)

𝜌L
− ln(𝑝(0)) − 1

𝑝(0) 𝜀𝑝
(1)

− ( 1
𝑝(0) ) 𝜀

2𝑝(2) − 𝜀2
𝜌 div(𝜌(0)∇𝜑(0)) + 𝑂(𝜀3).

Next, we look at the 𝑂(𝜀2)-part of 𝜇:

𝜇(2) = 𝑊 ′(𝜑0) + 𝑝(2)
𝜌L

− 𝑝(2)
𝑝(0) −

1
𝜌(0) div(𝜌

(0)∇𝜑(0)).

Since 𝑝(0) = 𝑝V, we have

𝜇(2) = 𝑊 ′(𝜑0) + 𝑝(2) ( 1
𝜌L

− 1
𝜌V

) − 1
𝜌(0) div(𝜌

(0)∇𝜑(0))

= 𝑊 ′(𝜑0) + 𝑝(2) ( 1
(𝜌(0))2

𝜕𝜌(0)
𝜕𝜑(0) ) − 1

𝜌(0) div(𝜌
(0)∇𝜑(0)).

The Laplacian of 𝜇(0) and 𝜇(1) vanish since 𝑝(0) and 𝑝(1) do not depend on 𝑥 .
With this result we obtain the last remaining equation (2.43).
In summary, we showed formally the convergence of solutions 𝑝(2), 𝑣(0), 𝜑(0) to
the ICNSCH system (2.37)–(2.39) in the regime (2.46) to solutions to the quasi-
incompressible LT system (2.41)–(2.43).





Towards a DG
Discretization for

the ICNSCH System 3
Apopular class of solvers for phase-field systems are energy-consistent dG schemes
[51, 69, 86, 96]. They are based on the idea that the energy inequality (2.20) of the
phase-field system should be recovered on the discrete level without introducing
numerical dissipation. This prevents parasitic currents in a near equilibrium situ-
ation [61]. In [96] such a solver was proposed for the ICNSCH system (2.12)–(2.14)
but not implemented by the authors.
As main drawback, these schemes show restrictions with respect to the step-size
of the time integration. Indeed, at best a second order convergence in time can
be achieved. Additionally, the solver is sensitive with respect to larger variations
in energy. Because of the above-mentioned drawbacks and our interest in simula-
tions away from equilibrium, where parasitic currents are negligible, we want to
design a novel solver which can achieve higher order in time and circumvent the
time step restriction by means of implicit discretizations.
The idea is to develop a fully-implicit dG scheme based on Godunov fluxes. The
idea of Godunov fluxes is to obtain the numerical inter-element fluxes 𝑓𝑖+1/2 through
the solution of Riemann problems at the inter-element boundaries. The Godunov
fluxes are hence expressed as

𝑓 god
𝑖+1/2 (𝑢𝑛𝑖 , 𝑢𝑛𝑖+1) = 𝑓 (𝑢𝑖+1/2(0)),

where 𝑓 is the flux function of the underlying PDE and 𝑢𝑖+1/2(0) denotes the ex-
act solution 𝑢𝑖+1/2(𝑥/𝑡) to the corresponding Riemann problem with initial values
(𝑢𝑛𝑖 , 𝑢𝑛𝑖+1), evaluated at 𝑥/𝑡 = 0.
In order to compute the numerical fluxes, we exploit the exact solution of local Rie-
mann problems at inter-element boundaries. However, due to the incompressible
nature of the liquid phase, the time derivative of the continuity equation vanishes.
Hence, it is impossible to find a Riemann problem solution. In order to overcome
this issue we adopt an artificial compressibility approach. Following the work of
[11] an artificial compressibility is added for the liquid phase only at the inter-
element level thus ensuring the hyperbolic nature of local problems.
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A natural approach is to add artificial compressibility with parameter 𝑎0 > 0, only
for the incompressible phase. This will be described in detail in the next section.
However, then the speed of sound is

𝑐2 ≔ d 𝑝
d 𝜌 = 𝑣2 + �̂�2 (1 − 1 − 𝜑

𝑝2 𝛼(𝜌𝑣)2) .

Hence, this approach cannot be applied since hyperbolicity is not guaranteed and
the sound speed depends both on the velocity and pressure.This results in the fact
that we cannot explicitly compute a Riemann solution.Therefore, we introduce an
artificial equation of state, namely

1
𝜌 = 𝜑 𝑎20

𝑝 − 𝑝0 + 𝜌L𝑎20
+ (1 − 𝜑)𝛼𝑝 . (3.1)

With (3.1) the speed of sound is

𝑐2 = (𝜑𝑝𝑎20 + (1 − 𝜑)(𝑝 − 𝑝0 + 𝜌L𝑎20)𝛼)2
𝜑𝑝2𝑎20 + (1 − 𝜑)(𝑝 − 𝑝0 + 𝜌L𝑎20)2𝛼

> 0

and the corresponding system hyperbolic. Note that for 𝜑 = 0 we obtain 𝑐2 = 𝛼
and for 𝜑 = 1 we obtain 𝑐2 = 𝑎20 .
This approach is described in detail in the following Sections 3.1–3.3.
In the next Chapter 4 we apply this novel approach to the simpler case of a single-
phase incompressible Navier–Stokes system with the artificial equation of state

𝜌 = 𝑝 − 𝑝0
𝑎20

+ 𝜌L.

We implement the artificial EOS-based Riemann solver in a dG framework and
conduct numerical experiments in Section 4.3.

3.1 The ICNSCH System at Inter-Element
Boundaries

In order to derive a dG scheme based on Godunov fluxes, one major task is the
solution of local Riemann problems at inter-element boundaries. These problems
are formulated for the following first-order part of the monodimensional ICNSCH
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system

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑣) = 0, (3.2)
𝜕𝑡(𝜌𝑣) + 𝜕𝑥(𝜌𝑣2 + 𝑝) = 0, (3.3)

𝜕𝑡(𝜌𝜑) + 𝜕𝑥(𝜌𝜑𝑣) = 0, (3.4)

with the EOS 1
𝜌 = 𝜑

𝜌𝑙
+ (1 − 𝜑) 𝛼𝑝 .

We seek the solution to the 1D Riemann problem

𝑈(𝑥, 𝑡0) = (
𝑝
𝑣
𝜑
) (𝑥, 𝑡0) = {𝑈 𝐿 = (𝑝𝐿, 𝑣𝑛𝐿, 𝜑𝐿)⊤ 𝑥 < 𝑥0,

𝑈 𝑅 = (𝑝𝑅 , 𝑣𝑛𝑅 , 𝜑𝑅)⊤ 𝑥 > 𝑥0,

for (3.2)–(3.4). Here, 𝑥0 is the position of the jump at initial time 𝑡0 and 𝐿 and 𝑅
the subscripts denoting the initial states on the left and on the right of the discon-
tinuity, respectively.
For 𝜑 = 1, the time derivative of the first equation (3.2) vanishes. In this case it is
not possible to find a solution to the corresponding Riemann problem.
Hence, we modify the system of equation to find a solution to the modified system.
This can be done in two ways. Either, we take the full system and make modifica-
tions or we reduce it first due to the following observation and modify afterwards.
From the first and third equation of (3.2)–(3.4) it follows that the phase-field vari-
able 𝜑 is purely advected. Hence, the 𝜑 can only change across the contact discon-
tinuity, i.e.

𝜑⋆𝐿 = 𝜑𝐿 and 𝜑⋆𝑅 = 𝜑𝑅 .
Consequently, the star region solution for pressure and velocity are decoupled
from the phase-field. Thus, we can modify the first two equations only, and use
the solution of 𝜑 from the original system.
However, in order to test the applicability of different modifications of the origi-
nal system, the corresponding Riemann solvers have to be implemented in a dG
framework and approved by numerical experiments.
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3.2 Artificial Compressibility Modification
In the single-phase incompressible case, the artificial compressibility modification
is used by adding the time derivative 1

𝑎20
𝜕𝑡𝑝 for the first equation 𝜕𝑥𝑣 = 0. In the

following we discuss why this idea cannot be straightforwardly applied to the
phase-field situation.
We modify (3.2) and (3.3) in the following way using pressure and momentum as
unknowns

𝜕𝑡𝑝 + 𝜕𝑥(𝜌�̂�2𝑣) = 0,
𝜕𝑡(𝜌𝑣) + 𝜕𝑥(𝜌𝑣2 + 𝑝) = 0, (3.5)

with

1
𝜌 = �̂�

𝜌𝑙
+ (1 − �̂�) 𝛼𝑝 ,

�̂�2 = �̂�𝑎20 + (1 − �̂�) 𝛼.
(3.6)

Here, �̂� is the phase field variable value given by the initial conditions, i.e. �̂� takes
the left/right initial value 𝜑𝐿/𝑅 on the left/right of the contact discontinuity. Further,
𝑎0 the artificial speed of sound needed to recover the hyperbolic nature of the
problem when dealing with incompressible fluids (�̂� = 1). Notice that for �̂� = 0
(perfect gas) we have 𝑝 = 𝜌𝛼 and the correct continuity equation is regained.
However, for values 0 < �̂� < 1 we obtain a different speed of sound than in the
original system. Note that (3.6) is inconsistent in the sense that with the second
equation and the definition �̂�2 = d 𝑝

d 𝜌 the first equation contradicts for 𝜑 ∈ (0, 1).
Hence, the introduction of artificial compressibility might be infeasible. However,
in the following we show that even the choice (3.6) does not suffice to ensure
hyperbolicity of the corresponding system.
The system (3.5) can be written in the matrix form

𝜕𝑡𝑤 + 𝜕𝑥(𝐹 (𝑤)) = 0,
with

𝑤 = ( 𝑝
𝜌𝑣) , 𝐹 (𝑤) = ( 𝜌�̂�2𝑣

𝜌𝑣2 + 𝑝) .

The flux Jacobian matrix is given by

𝐴 = 𝜕𝐹 (𝑤)
𝜕𝑤 = (

0 �̂�2

1 − 1 − �̂�
𝑝2 𝛼 (𝜌𝑣)2 2𝑣) ,
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while the eigenvalues 𝜆 = (𝜆−, 𝜆+)⊤ and left eigenvector matrix 𝐿 are

𝜆 = (𝜆−𝜆+) = (𝑣 − 𝑐
𝑣 + 𝑐) ,

𝐿 =
⎛
⎜
⎜
⎝

1 − �̂�
2

𝜆+
−1 �̂�2

𝜆−

⎞
⎟
⎟
⎠
,

respectively, where

𝑐2 = 𝑣2 + �̂�2 (1 − 1 − �̂�
𝑝2 𝛼 (𝜌𝑣)2) .

It cannot be guaranteed that 𝑐2 ≥ 0. It can attain negative values if
1 − �̂�
𝑝2 𝛼 (𝜌𝑣)2

dominates, e.g. for large 𝛼 .

3.3 Artificial EOS Modification
To overcome the problem of possibly non-positive speed of sound, we modify the
system (3.2)–(3.4) by means of the artificial EOS, i.e. we consider

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑣) = 0,
𝜕𝑡(𝜌𝑣) + 𝜕𝑥(𝜌𝑣2 + 𝑝) = 0,

𝜕𝑡(𝜌𝜑) + 𝜕𝑥(𝜌𝜑𝑣) = 0,
with

1
𝜌 = 𝜑 𝑎20

𝑝 − 𝑝0 + 𝜌L𝑎20
+ (1 − 𝜑)𝛼𝑝 . (3.7)

Again, by combining the first and last equation it is clear that

𝜑⋆𝐿 = 𝜑𝐿 and 𝜑⋆𝑅 = 𝜑𝑅 ,
so in the following we consider the first two equations only and replace 𝜑 by
�̂�, which is equal to 𝜑𝐿/𝑅 on the left and right side of the contact discontinuity,
respectively. The corresponding reduced system can be written in the matrix form

𝜕𝑡𝑤 + 𝜕𝑥(𝐹 (𝑤)) = 0,
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with
𝑤 = ( 𝜌

𝜌𝑣) , 𝐹 (𝑤) = ( 𝜌𝑣
𝜌𝑣2 + 𝑝) .

Then, the flux Jacobian matrix is

𝐴 = 𝜕𝐹 (𝑤)
𝜕𝑤 = (

0 1
−𝑣2 + 𝜕𝑝

𝜕𝜌 2𝑣) .

In this case the eigenvalues 𝜆 = (𝜆−, 𝜆+)⊤ and left eigenvector matrix 𝐿 are given
by

𝜆 = (𝜆−𝜆+) = (𝑣 − 𝑐
𝑣 + 𝑐) ,

𝐿 = (𝜆
+ −1

𝜆− −1) ,

where now
𝑐2 = (�̂�𝑝𝑎20 + (1 − �̂�)(𝑝 − 𝑝0 + 𝜌L𝑎20)𝛼)2

�̂�𝑝2𝑎20 + (1 − �̂�)(𝑝 − 𝑝0 + 𝜌L𝑎20)2𝛼
.

It is clear that 𝑐2 ≥ 0 and thus 𝜆− < 0, 𝜆+ > 0, 𝜆− < 𝑣 < 𝜆+.
Hence, the modification of (3.5) by means of the artificial EOS (3.7) is more promis-
ing than the modification with the artificial compressibility (3.6). In order to test
the applicability of the artificial EOS approach for dG schemes, we apply it in the
following chapter for the simpler incompressible single-phase situation.
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Incompressible

Flows 4
In this chapter we study the applicability of the artificial EOS approach in a sim-
pler setting. Namely, we consider inviscid incompressible single-phase flow. A
crucial point for all dG schemes based on Godunov fluxes is the solution of Rie-
mann problems at the inter-element boundaries. Hence, in the following section
we introduce the corresponding Riemann problem and the artificial EOS approach.
In Section 4.3 we conduct numerical test, where we implemented the artificial EOS
Riemann solver in a dG framework, which we briefly describe in Section 4.2.

4.1 The Riemann Problem
Let us consider the 𝑑-dimensional incompressible Euler equations split in the 𝑛-
direction: 𝜕𝑞𝑛

𝜕𝑥𝑛
= 0,

𝜕𝑞𝑛
𝜕𝑡 + 𝜕(𝑞2𝑛 + 𝑝/𝜌0)

𝜕𝑥𝑛
= 0,

𝜕𝜃
𝜕𝑡 + 𝜕(𝜃𝑞𝑛)

𝜕𝑥𝑛
= 0.

(4.1)

This corresponds to the first-order part for the case 𝜑 = 1 in the ICNSCH system.
The primary unknowns are the pressure 𝑝 ∈ ℝ, the normal velocity 𝑞𝑛 ∈ ℝ, and the
tangential velocity 𝜃 ∈ ℝ𝑑 .The constant reference density is denoted by 𝜌0 ∈ (0,∞).
The normal unitary vector 𝑛 has to be understood as the direction normal to the
mesh element boundary and it gives the direction of splitting, i.e., 𝑞𝑛 = 𝑣 ⋅ 𝑛, 𝑥𝑛 =
𝑥 ⋅ 𝑛, with 𝑣 and 𝑥 the velocity and the position vectors, respectively. The quantity
𝜃 ∈ ℝ𝑑 is the velocity component tangential to 𝑛. Accordingly, the velocity vector
can be written as 𝑣 = 𝑞𝑛𝑛 + 𝜃 .
The system (4.1) does not fit into the framework of hyperbolic PDE. Moreover, it
lacks of a velocity-pressure coupling. As a consequence, a solution to the Riemann
problem bymeans of hyperbolic wave patterns cannot be found. By Riemann prob-
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lem we mean the initial value problem with the piece-wise constant data

𝑈(𝑥𝑛, 𝑡0) = (
𝑝
𝑞𝑛
𝜃
) (𝑥𝑛, 𝑡0) = {𝑈 𝐿 = (𝑝𝐿, 𝑞𝑛𝐿, 𝜃𝐿)⊤ 𝑥𝑛 < 𝑥𝑛0,

𝑈 𝑅 = (𝑝𝑅 , 𝑞𝑛𝑅 , 𝜃𝑅)⊤ 𝑥𝑛 > 𝑥𝑛0.
(4.2)

Here, 𝑥𝑛0 is the position of the jump at initial time 𝑡0 and 𝐿 and 𝑅 the subscripts
denoting the initial states on the left and on the right of the discontinuity, re-
spectively. Solving Riemann problems like (4.1)–(4.2) is an important issue for all
numerical methods which rely on Godunov fluxes.

4.1.1 The Artificial Compressibility Approach

In order to find a solution to the Riemann problem (4.1)–(4.2), Elsworth and Toro
[42] proposed to use the artificial compressibility approach devised by Chorin
[29]. The approach uses an approximation for the split set of incompressible Euler
equations given by

𝜕𝑝
𝜕𝑡 + 𝜕(𝜌0𝑎20𝑞𝑛)

𝜕𝑥𝑛
= 0,

𝜕𝑞𝑛
𝜕𝑡 + 𝜕(𝑞2𝑛 + 𝑝/𝜌0)

𝜕𝑥𝑛
= 0,

𝜕𝜃
𝜕𝑡 + 𝜕(𝜃𝑞𝑛)

𝜕𝑥𝑛
= 0.

(4.3)

Here, the primary variables are 𝑝, 𝑞𝑛, and 𝜃 . Further, the parameter 𝑎0 ∈ (0,∞) is
the constant artificial compressibility coefficient. Formally, (4.1) is recovered for
𝑎0 → ∞.
Note, that (4.3) is strictly hyperbolic with eigenvalues

𝜆1 = 𝑞𝑛 − √𝑎20 + 𝑞2𝑛, 𝜆2 = 𝑞𝑛, 𝜆3 = 𝑞𝑛 + √𝑎20 + 𝑞2𝑛.
The solution to (4.3) with initial data (4.2) consists of four states separated by two
external acoustic waves and a central contact discontinuity, see Figure 4.1.
The acoustic waves can be either rarefactions or shocks, depending on the choice
of 𝑈 𝐿/𝑅 . Across these waves all the properties can change.The star region between
them is divided into the left (⋆𝐿) and the right (⋆𝑅) part by the contact discontinu-
ity. Across the contact discontinuity only 𝜃 can vary. The complete derivation of
the solution to the Riemann problem for the system (4.3) can be found in [11, 42].
However, the wave pattern described above can be violated for certain combina-
tion of initial values and artificial compressibility parameters. As pointed out in
[13], depending on the Riemann problem left and right states, there could exist a
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acoustic wave

acoustic wave

contact discontinuity

𝑥

𝑡

𝑈𝐿 𝑈𝑅

𝑈⋆𝐿 𝑈⋆𝑅

Figure 4.1: The structure of the solution to the Riemann problem (4.2) for the split
multi-dimensional case.

critical value of the artificial compressibility 𝑎0 for which the contact discontinu-
ity is as fast as the left or the right shock. In this case, for 𝑎0 < 𝑎0 the Riemann
solver predicts a contact wave overtaking the shock (see Appendix A).
A way to avoid this unphysical behavior is to choose 𝑎0 higher than the critical
value 𝑎0. However, since 𝑎0 depends upon the initial data, there is noway to ensure
a priori that the chosen 𝑎0 will prevent the issue.

4.1.2 The Artificial EOS Approach

With the aim to find the solution to the Riemann problem avoiding the wave pat-
tern violation, we propose a new approximation to the incompressible Euler equa-
tions based on the definition of an artificial equation of state. In particular, as a
modification of the original incompressible system, we consider the set of 𝑛-split
isothermal compressible Euler equations

𝜕𝜌
𝜕𝑡 + 𝜕(𝜌𝑞𝑛)

𝜕𝑥𝑛
= 0

𝜕(𝜌𝑞𝑛)
𝜕𝑡 + 𝜕(𝜌𝑞2𝑛 + 𝑝)

𝜕𝑥𝑛
= 0

𝜕(𝜌𝜃)
𝜕𝑡 + 𝜕(𝜌𝜃𝑞𝑛)

𝜕𝑥𝑛
= 0,

(4.4)

with primary variables 𝜌, (𝜌𝑞𝑛), and (𝜌𝜃).
In order to derive the artificial EOS, we exploit the generic definition of the sound
speed with isothermal conditions

𝑎20 =
d 𝑝
d 𝜌 , (4.5)
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where now 𝑎0 has to be considered as the artificial speed of sound. We keep 𝑎0
constant and integrate (4.5) to derive the artificial EOS

𝜌(𝑝) = 𝑝 − 𝑝0
𝑎20

+ 𝜌0 ⟺ 𝑝(𝜌) = 𝑎20(𝜌 − 𝜌0) + 𝑝0. (4.6)

Here, 𝑝0 ∈ ℝ is the reference pressure, whose value must be carefully defined
to avoid negative densities, and 𝜌0 ∈ (0,∞) is the constant density of the incom-
pressible regime. Notice that with this artificial EOS (4.6) for (4.4) the set of the
incompressible Euler equations (4.1) is formally recovered in the limit 𝑎0 → ∞.
The solution to the system of isothermal compressible Euler equations with initial
value (4.2) is well known in the literature, e.g. [72]. It consists again of four states
separated by two external acoustic waves and a central contact discontinuity, see
Figure 4.1. However, to the authors knowledge, this is the first time that an exact
Riemann solver for (4.4)–(4.6) is presented.
As a first remark, it must be pointed out that the artificial EOS does not destroy
the strictly hyperbolic nature of the system (4.4). In fact, we have three distinct
real eigenvalues

𝜆1 = 𝑞𝑛 − 𝑎0, 𝜆2 = 𝑞𝑛, 𝜆3 = 𝑞𝑛 + 𝑎0.
As a second remark, from the analysis of (4.4) it is interesting to note that, com-
bining the first and the last equation, the following advection equation is obtained

𝜕𝜃
𝜕𝑡 + 𝑞𝑛

𝜕𝜃
𝜕𝑥𝑛

= 0. (4.7)

Accordingly, the last equation of (4.4) describes the evolution of the 𝜃 variable
only and the pressure-velocity solution is decoupled from 𝜃 .
Taking inspiration from [72] for isothermal compressible flows, we derive the ex-
act Riemann solver for (4.2),(4.4),(4.6).
For the sake of comprehension, the solutions for pressure and velocity are reported
inAppendix B.There, in additionwe show that the choice of the reference pressure

𝑝0 = min(𝑝𝐿, 𝑝𝑅) (4.8)

is effective in ensuring the positivity of the density.
As next step, we simply note from (4.7) that 𝜃 is purely advected and thus it cannot
change across acoustic waves. Accordingly, the Riemann problem solution for 𝜃
simply reads as

𝜃⋆𝐿 = 𝜃𝐿 and 𝜃⋆𝑅 = 𝜃𝑅 , (4.9)

cf. Figure 4.1.
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As stated before, the 𝑛-split multi-dimensional Riemann problem solution entails
the presence of the contact discontinuity. The peculiar feature of this type of wave
is that the mass flow vanishes across the interface. Therefore, the contact wave
speed is equal to the star region velocity 𝑞𝑛⋆. However, from the Riemann solution
derivation in Appendix B it is known that the shock wave speed is

𝑠± = 𝑞𝑛1 ± 𝑎0√
𝜌2
𝜌1

= 𝑞𝑛2 ± 𝑎0√
𝜌1
𝜌2
, (4.10)

where the negative sign (−) is for a left shock while the positive sign (+) is for a
right shock. The subscripts 1 and 2 denote the two states which are on either side
of the shock. From (4.10) it is clear that

𝑠− < 𝑞𝑛𝑖 and 𝑠+ > 𝑞𝑛𝑖 𝑖 = 1, 2.
Since one of 𝑞𝑛1 and 𝑞𝑛2 is necessarily the star region velocity 𝑞𝑛⋆ (see Appendix
B.3), it follows that the contact wave cannot be as fast as a shock wave. As a
consequence, in contrast to the Chorin’s approach of the artificial compressibility,
the artificial EOS approach is not affected by the wave pattern violation issue.

4.2 The DG Scheme
In this section we introduce the basic concept of the dG scheme, which is used in
the next section to illustrate our EOS-based Riemann solver. Details can be found
in [10]. We repeat the essentials of [10] in the following.

4.2.1 The Governing Equations

We consider as governing equations the isothermal incompressible Navier–Stokes
equations, namely

div(𝑣) = 0,
𝜕𝑡𝑣 + div(𝑣 ⊗ 𝑣 + 𝑝/𝜌0𝐼 ) =

1
𝜌0

div(𝑆), (4.11)

with 𝑆 = 2𝜇 (∇𝑣 + ∇𝑣⊤) − 1
3 div(𝑣)𝐼 ) , constant viscosity 𝜇, and the constant den-

sity 𝜌0 > 0.

4.2.2 The DG Setting

We recall some notation of Chapter 3 from Part II.



158 4 An Artificial EOS Riemann Solver Incompressible Flows

Let T = {𝑇 } denote a mesh of the domain Ω ⊂ ℝ𝑑 , 𝑑 ∈ {1, 2, 3}, consisting of
disjoint polyhedra 𝑇 with

Ω̄ = ⋃
𝑇∈T

̄𝑇 .

Following [12], we consider the broken polynomial space

ℙ𝑘
𝑑 ≔ {𝑢ℎ ∈ 𝐿2(Ω)|𝑢ℎ|𝑇 ∈ ℙ𝑘

𝑑(𝑇 ), ∀𝑇 ∈ T } . (4.12)

Here, 𝑘 > 0 and ℙ𝑘
𝑑(𝑇 ) denotes the restriction to 𝑇 of polynomials in ℙ𝑘

𝑑 .
The basis for the space (4.12) is built with a modified Gram–Schmidt algorithm
according to [21]. This leads to orthonormal hierarchical basis functions.
Further, we introduce the set of mesh faces Fℎ ≔ F 𝑖

ℎ ∪F𝑏
ℎ , where F

𝑏
ℎ contains the

boundary faces and F 𝑖
ℎ the (inner) interfaces, see Definition 3.1 in Part II. For all

boundary faces 𝐹 ∈ F𝑏
ℎ , we denote by 𝑛𝐹 the unit outer normal to Ω. On the other

hand, for interfaces 𝐹 ∈ F 𝑖
ℎ with 𝐹 = 𝑇 + ∩ 𝑇 −, we denote by 𝑛+𝐹 and 𝑛−𝐹 the unit

normals pointing to 𝑇 + and 𝑇 −, respectively.
We define the jump and average operators for 𝑢ℎ ∈ ℙ𝑘

𝑑(T ) by

[[𝑢ℎ]] ≔ 𝑢ℎ|𝑇 +𝑛+𝐹 + 𝑢ℎ|𝑇 −𝑛−𝐹 , {{𝑢ℎ}} ≔
1
2(𝑢ℎ|𝑇 + + 𝑢ℎ|𝑇 −).

The second-order viscous terms are discretized using the lifting operators 𝑟𝐹 and
𝑟 . For any 𝐹 ∈ Fℎ, we define the local lifting operator 𝑟𝐹 ∶ (𝐿2(𝐹 ))𝑑 → (ℙ𝑘

𝑑(T ))𝑑
such that for all 𝑢 ∈ (𝐿2(𝐹 ))𝑑

∫
Ω
𝑟𝐹 (𝑢) ⋅ 𝜏ℎ d𝑥 = −∫

𝐹
{{𝜏ℎ}} ⋅ 𝑢 d𝐹 ∀𝜏ℎ ∈ (ℙ𝑘

𝑑(T ))𝑑 .

Then, the global lifting operator 𝑟 is defined as

𝑟(𝑢) ≔ ∑
𝐹∈Fℎ

𝑟𝐹 (𝑢).

4.2.3 DG Discretization of the Navier–Stokes Equations

We can write the incompressible Navier–Stokes equations (4.11) in the following
compact form

𝑃(𝑤)𝜕𝑤𝜕𝑡 + div(𝐹 𝑐(𝑤)) + div(𝐹 𝑣(𝑤, ∇𝑤)) = 0, (4.13)



4.2 The DG Scheme 159

where 𝑤 ∈ ℝ𝑚 is the vector of unknowns, 𝐹 𝑐 , 𝐹 𝑣 ∈ ℝ𝑚×𝑑 are the convective and
viscous flux functions, and 𝑃(𝑤) ∈ ℝ𝑚×𝑚 is a transformation matrix.
We have the primitive variables 𝑤 = (𝑝, 𝑣⊤)⊤, which lead to 𝑃 = 𝐼 − 𝑒⊤1 𝑒1, with the
first unit vector 𝑒1 ∈ ℝ𝑚 .
Multiplying (4.13) with a smooth test function 𝑢 and integration by parts leads to
the weak formulation

∫
Ω
𝑢 ⋅ (𝑃(𝑤)𝜕𝑤𝜕𝑡 ) d𝑥 − ∫

Ω
∇𝑢 ∶ 𝐹(𝑤, ∇𝑤) d𝑥 + ∫

𝜕Ω
𝑢 ⊗ 𝑛 ∶ 𝐹(𝑤, ∇𝑤) d𝑠 = 0,

(4.14)

where 𝐹 = 𝐹 𝑐 + 𝐹 𝑣 and 𝑛 is the unit outer normal vector to 𝜕Ω.
In order to discretize (4.14), we replace the solution 𝑤 and the test function 𝑢 by
a finite element approximation 𝑤ℎ and a discrete test function 𝑢ℎ, respectively.
Here, 𝑤ℎ, 𝑢ℎ ∈ 𝑉 ℎ, with 𝑉 ℎ ≔ (ℙ𝑘

𝑑(T ))𝑚 .
For each of the𝑚 equations in (4.14), we choose the set of test and shape functions
in any element 𝑇 as the set {𝜙} of 𝑁 𝐾

dof orthogonal and hierarchical basis functions
in that element. With this choice each component of 𝑤ℎ ∈ 𝑉 ℎ can be expressed
in terms of the elements of the global vector 𝑊 of unknown degrees of freedom
(DOF) , i.e. 𝑤ℎ,𝑗 = 𝜙𝑙𝑊𝑗,𝑙 , 𝑙 = 1, … , 𝑁 𝐾

dof ∀𝑇 ∈ T .
Then, the dG discretization of the Navier–Stokes equations means finding the ele-
ments of 𝑊 such that for 𝑗 = 1, … ,𝑚

∑
𝑇∈T

∫
𝑇
𝜙𝑖𝑃𝑗,𝑘(𝑤ℎ)𝜙𝑙

d𝑊𝑘,𝑙
d 𝑡 d𝑥 − ∑

𝑇∈T
∫
𝑇

𝜕𝜙𝑖
𝜕𝑥𝑛

𝐹𝑗,𝑛(𝑤ℎ, ∇ℎ𝑤ℎ + 𝑟([[𝑤ℎ]])) d𝑥

+ ∑
𝐹∈Fℎ

∫
𝐹
[[𝜙𝑖]]𝑛 ̂𝐹𝑗,𝑛(𝑤±, (∇ℎ𝑤ℎ + 𝜂𝐹 𝑟𝐹 ([[𝑤ℎ]])±) d𝑠, (4.15)

for all 𝑖 = 1, … , 𝑁 𝐾
dof.

Note that we used the Einstein summation convention in (4.15), i.e. repeated in-
dices imply summation over 𝑘 = 1, … ,𝑚, 𝑙 = 1, … , 𝑁 𝐾

dof, and 𝑛 = 1, … , 𝑑.
In order to discretize the viscous fluxes, we use the BR2 scheme [14]. Subsequently,
the viscous numerical flux is given by

�̂� 𝑣(𝑤±
ℎ, (∇ℎ𝑤ℎ + 𝜂𝐹 𝑟𝐹 ([[𝑤ℎ]]))±) ≔ {{𝐹 𝑣(𝑤ℎ, ∇ℎ𝑤ℎ + 𝜂𝐹 𝑟𝐹 ([[𝑤ℎ]]))}},

where the stability parameter 𝜂𝐹 is chosen as described in [6].
The convective numerical flux is computed with the solution of local Riemann
problems in the normal direction at each integration point on element faces. We
employ the artificial EOS approach for the Riemann problems as described in the
previous Section 4.1.2. The solution of these problems is specified in Appendix B.
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Boundary conditions are weakly enforced by defining at each integration point on
boundaries the state𝑤𝑏 and its gradient ∇𝑤𝑏 .These are used to compute numerical
convective and viscous fluxes and the lifting operators for all 𝐹 ∈ F𝑏

ℎ .

4.2.4 Time Integration

The numerical integration of (4.15) with suitable Gauss quadrature rules leads to
a system of differential-algebraic equations. These can be written as

𝑀𝑃 (𝑊 )d𝑊
d 𝑡 + 𝑅(𝑊) = 0, (4.16)

where 𝑅(𝑊) is the vector of residuals and𝑀𝑃 (𝑊 ) is a global block diagonal matrix
arising from the discretization of the first term in (4.15). Since we use orthonormal
basis functions, the matrix𝑀𝑃 reduces to a modified identity matrix with zeros in
the diagonal positions which correspond to the degrees of freedom of the pressure.
For the solution of (4.16) we employ different time integration schemes, which are
specified for each test case in Section 4.3.

4.3 Numerical Tests
In this section the proposed artificial EOS-based Riemann solver is at first assessed
on two Riemann problems in Section 4.3.1. The goal is to evaluate the behavior of
the artificial EOS Riemann solver when implemented in a first order discontinu-
ous Galerkin (dG ℙ0) method for the numerical solution of the system (4.4), (4.6),
(4.8). Besides, a comparison of two strategies in defining the reference pressure 𝑝0
employed within the local Riemann problem arising at each mesh element face is
given.
Then, the space (Section 4.3.2) and time (Section 4.3.3) convergence analysis of a
high-order dG solver for the incompressible Navier–Stokes (INS) system is per-
formed for two 2D test cases with known analytical solution. In particular, the dG
solver employs the artificial EOS-based Riemann solver to compute the convec-
tive numerical fluxes responsible for the velocity-pressure coupling at the inter-
element boundaries. We remark that the INS solver does not couple the artificial
EOS with the discretized governing equations and, thus, does not consider any
time derivative in the divergence constraint.
Finally in Section 4.3.4, the above-mentioned dG solver is used to perform the im-
plicit large eddy simulation (ILES) of the incompressible turbulent flow over peri-
odic hills. The Reynolds number Reℎ = 10595 in this test case is based on the hill
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height ℎ. Numerical solutions obtained with second and fourth polynomial degree
approximations are compared with numerical and experimental results available
in the literature.

4.3.1 Riemann Problems

The piece-wise constant initial data for the test Riemann problems are listed in Ta-
ble 4.1. The first test case (T1) has a jump in pressure while the velocity is constant

Test 𝑝𝐿 𝑞𝑛𝐿 𝑝𝑅 𝑞𝑛𝑅
T1 1 0 0.1 0
T2 0.4 −2 0.4 2

Table 4.1: Riemann data for the two test problems T1, T2.

and the second test case (T2) has a jump in velocity with constant pressure. The
variable 𝜃 is not considered in this analysis since its solution is trivial (4.9).
The exact self-similar solutions of (4.4), (4.6), (4.8) with initial values given by T1
and T2 are computed by means of the artificial EOS Riemann solver developed in
this work and reported in Appendix B.The T1-solution consists of a left rarefaction
wave and a right shock wave, while the T2-solution consists of two rarefaction
waves. The exact solutions are compared with the numerical solutions computed
with a first order discontinuous Galerkin (dG ℙ0) method applied again to (4.4),
(4.6), (4.8). Being a Riemann problem-based numerical scheme, the dG method re-
quires to define the Godunov fluxes at the inter-element boundaries, where local
Riemann problems arise from the discontinuous nature of the numerical solution.
These numerical fluxes are here computed exploiting the artificial EOS Riemann
solver. In addition, for each local Riemann problem two strategies for the choice of
𝑝𝐿 and 𝑝𝑅 within the reference pressure relation (4.8) are investigated.The first one,
named fixed 𝑝0, considers the initial pressure values defined in the global Riemann
problem, i.e., the ones used for the global system of equations. This means that all
the inter-element boundaries share the same reference pressure. The second one,
denoted as adaptive 𝑝0, takes instead the local Riemann problem left and right pres-
sures. Accordingly, each inter-element boundary has its own reference pressure
which differs from the global one and can change in time. Although the fixed 𝑝0
strategy is the most consistent with respect to the discretized global system, the
adaptive 𝑝0 strategy has the advantage of not requiring any a priori knowledge
of the minimum pressure value within the domain during the whole simulation.
Thus it is more general than the fixed 𝑝0 approach.
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The first numerical computations use a fixed mesh with 100 grid cells on the unit
interval Ω = [0, 1]. The initial discontinuity is placed at 𝑥0 = 0.5. For the time
discretization the BDF2 temporal scheme [31] is employed. Table 4.2 reports the
choice made for the artificial compressibility coefficient 𝑎0, the time step size Δ𝑡 ,
and the simulation end time 𝑇 together with the exact pressure 𝑝⋆ and velocity
𝑞𝑛⋆ solutions within the star region.

Test 𝑎0 Δ𝑡 𝑇 𝑝⋆ 𝑞𝑛⋆
T1 1 1.0E − 06 0.2 4.7746086E − 01 3.2161203E − 01
T2 3 1.0E − 06 0.0333 −3.9792459E + 00 0.0000000E + 00

Table 4.2: Artificial sound speed 𝑎0, time step width Δ𝑡 , simulation end time 𝑇 , ex-
act star region pressure 𝑝⋆ and exact star region velocity 𝑞𝑛⋆ for the test
Riemann problems from Table 4.1.

Figure 4.2 shows the numerical solutions to the two Riemann problems for the
fixed 𝑝0 and the adaptive 𝑝0 strategies as well as the exact solution. The difference
between the numerical solutions obtained with the two strategies is negligible.
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Figure 4.2: Test Riemann problems — Pressure and velocity solutions (left and right)
for T1 and T2 Riemann problems (top and bottom).
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In additional numerical computations we investigate the qualitative behavior re-
garding the grid convergence to the exact solution. For this purpose Figure 4.3
depicts the exact solution and the numerical solution obtained on three different
grids: grid A with 100 cells, grid B with 1000 cells and grid C with 10000 cells. All
results have been obtainedwith the adaptive 𝑝0 strategy. As expected, the accuracy
of the exact solution approximation increases with finer grids.
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Figure 4.3: Test Riemann problems — Comparison between numerical and exact solu-
tions for three grids with 100 (grid A), 1000 (grid B), and 10000 (grid C)
elements.

4.3.2 Kovasznay Test Case

The convergence properties study and the artificial sound speed 𝑎0 sensitivity of
our dG solver are performed on the two-dimensional Kovasznay steady flow prob-
lem [68]. This test case is an exact solution of the incompressible Navier–Stokes
equations and describes the motion behind a grid, consisting of equally-spaced
parallel rods or strips. The governing set of equations is thus

div(𝑣) = 0,
𝜕𝑡𝑣 + div(𝑣 ⊗ 𝑣 + 𝑝/𝜌0𝐼 ) = div(𝑆), (4.17)
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where
𝑆 = 2𝜈 [12 (∇𝑣 + ∇𝑣⊤) − 1

3 div(𝑣)𝐼 ]
is the stress tensor and 𝜈 the kinematic viscosity. The numerical convective and
diffusive fluxes arising from the dG discretization of (4.17) are computed with the
exact solution of the proposed artificial EOS-based Riemann solver and the BR2
method of [14], respectively. However, since the minimum pressure value within
the domain during the whole simulation is unknown a priori, the fixed 𝑝0 strategy
cannot be applied.
Numerical solutions have been obtained for Re = 40 and compared with the exact
solution

𝑣1(𝑥1, 𝑥2) = 1 − e𝜅𝑥1 cos (2𝜋𝑥2),

𝑣2(𝑥1, 𝑥2) =
𝜅e𝜅𝑥1
2𝜋 sin (2𝜋𝑥2),

𝑝(𝑥1, 𝑥2) = 𝐶 − 1
2e

2𝜅𝑥1 ,
where 𝐶 ∈ ℝ is an arbitrary constant and the parameter 𝜅 is Reynolds number
dependent

𝜅 = Re
2 − √

Re2

4 + 4𝜋2.

The square computational domain is Ω = [−0.5, 1.5]×[0, 2] with Dirichlet bound-
ary conditions.The dG space discretization is applied up the the fourth polynomial
degree on a sequence of ℎ-refined grids made of 22𝑖 , 𝑖 = 3, … , 8, quadrilateral ele-
ments.
Table 4.3 lists the errors computed in 𝐿2-norm and the order of convergence for
the pressure, the velocity components and the divergence constraint.
Except for the dG polynomial degree 𝑘 = 1, where the same order of convergence
is shared by all the analyzed quantities, the numerical results show a convergence
rate of 𝑘 for the pressure error and 𝑘+1 for the velocity components error. Besides,
it is interesting to note that the divergence constraint is not verified up to the
machine error limit, but converges with a rate of 𝑘. The same behavior occurs if
the numerical convective fluxes are computed with the artificial compressibility
based Riemann solver (see [11]).
All the results reported in Table 4.3 have been obtained setting 𝑎0 = 1. An analysis
of the influence of 𝑎0 ∈ [10−3, 103] is reported in Figure 4.4 for a grid made of
32 × 32 quadrilateral elements.
The velocity and the divergence constraint errors are in general independent from
the choice of 𝑎0. An exception is the dG ℙ1 solution where for high values of the
artificial sound speed the divergence constraint error decreases, while the velocity
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Table 4.3: Kovasznay test case — Errors and orders of convergence for pressure, ve-
locity components and divergence constraint. Errors are computed in the
𝐿2-norm on a set of grids of 22𝑖 quadrilateral elements.

𝑖 ‖𝑒𝑟𝑟𝑝‖𝐿2 order ‖𝑒𝑟𝑟𝑣1 ‖𝐿2 order ‖𝑒𝑟𝑟𝑣2 ‖𝐿2 order ‖div 𝑣‖𝐿2 order

dG
ℙ1

3 3.35E−2 − 7.86E−2 − 1.09E−2 − 7.42E−2 −
4 7.34E−3 2.19 1.79E−2 2.14 3.13E−3 1.80 2.62E−2 1.50
5 1.90E−3 1.95 4.23E−3 2.08 8.55E−4 1.87 8.10E−3 1.69
6 5.31E−4 1.84 1.03E−3 2.04 2.30E−4 1.89 2.30E−3 1.82
7 1.50E−4 1.83 2.53E−4 2.02 6.15E−5 1.90 6.18E−4 1.89
8 4.18E−5 1.84 6.31E−5 2.00 1.62E−5 1.92 1.62E−4 1.93

dG
ℙ2

3 3.07E−3 − 1.06E−2 − 1.55E−3 − 3.12E−2 −
4 1.02E−3 1.59 1.38E−3 2.95 1.95E−4 2.99 9.66E−3 1.69
5 3.48E−4 1.56 1.74E−4 2.98 2.72E−5 2.84 2.36E−3 2.03
6 1.01E−4 1.79 2.20E−5 2.99 3.92E−6 2.80 5.28E−4 2.16
7 2.67E−5 1.91 2.76E−6 2.99 5.42E−7 2.86 1.21E−4 2.13
8 6.87E−6 1.96 3.46E−7 3.00 7.17E−8 2.92 2.89E−5 2.06

dG
ℙ3

3 5.84E−4 − 1.21E−3 − 1.87E−4 − 8.61E−3 −
4 4.82E−5 3.60 8.08E−5 3.91 1.15E−5 4.02 1.22E−3 2.82
5 4.41E−6 3.45 5.18E−6 3.96 6.37E−7 4.17 1.52E−4 3.01
6 4.65E−7 3.25 3.27E−7 3.98 3.57E−8 4.16 1.89E−5 3.00
7 5.45E−8 3.09 2.06E−8 3.99 2.09E−9 4.09 2.38E−6 2.99
8 6.69E−9 3.03 1.29E−9 4.00 1.25E−10 4.07 2.99E−7 2.99

dG
ℙ4

3 6.35E−5 − 1.00E−4 − 2.21E−5 − 1.05E−3 −
4 6.70E−6 3.24 3.09E−6 5.02 6.63E−7 5.06 7.02E−5 3.90
5 5.92E−7 3.50 9.65E−8 5.00 2.32E−8 4.84 4.35E−6 4.01
6 4.27E−8 3.79 3.03E−9 4.99 7.81E−10 4.89 2.62E−7 4.05
7 2.83E−9 3.92 9.48E−11 5.00 2.46E−11 4.99 1.61E−8 4.02
8 1.82E−10 3.96 2.93E−12 5.02 6.21E−13 5.31 1.01E−9 4.00

error increases. The pressure error, instead, always increases linearly for 𝑎0 ≫ 1.
However, it can be seen that such pressure error increase moves towards higher
values of 𝑎0 for higher dG polynomial degrees. As a final remark, the numerical
results show that it is safe to choose 𝑎0 close to 1 if smooth solutions are expected.

4.3.3 Time Accuracy

In this section an incompressible damped travelling waves test case is used to as-
sess the time integration accuracy of the dG solver used for the previous test case.
The time integration schemes considered are the classic implicit second order one
stage two steps BDF scheme (BDF2 [31]), the implicit fifth-order eight stages sin-
gle step ESDIRK scheme (ESDIRK-5(8) [66]), the linearly implicit fifth-order eight
stages single step Rosenbrock scheme (ROD5_1 [36, 97]) and the linearly implicit
sixth-order six stages two steps Peer scheme (Peer6 [91]). Implementation details
of these high order implicit temporal schemes within the current dG framework
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Figure 4.4: Kovasznay test case — Numerical errors on pressure (𝑝), velocity compo-
nents (𝑣1, 𝑣2) and divergence constraint (div 𝑣) with dG ℙ1→4 solutions on
the 32 × 32 mesh for different artificial speed of sound (𝑎0) values.

can be found in [10, 79]. The exact solution of traveling damped waves to the in-
compressible Navier–Stokes equations on the square Ω = [0.25, 1.25] × [0.5, 1.5]
with periodic boundary reads as:

𝑣1(𝑥1, 𝑥2, 𝑡) = 1 + 2 cos(2𝜋(𝑥1 − 𝑡)) sin(2𝜋(𝑥2 − 𝑡))𝑒−8𝜋2𝜈𝑡 ,
𝑣2(𝑥1, 𝑥2, 𝑡) = 1 − 2 sin(2𝜋(𝑥1 − 𝑡)) cos(2𝜋(𝑥2 − 𝑡))𝑒−8𝜋2𝜈𝑡 ,
𝑝(𝑥1, 𝑥2, 𝑡) = 3 − (cos(4𝜋(𝑥1 − 𝑡)) + cos(4𝜋(𝑥2 − 𝑡)))𝑒−16𝜋2𝜈𝑡 ,

with 𝜈 = Re−1 = 1e − 2. The initial velocity magnitude and pressure distribution
are shown in Figure 4.5.
We compute the solution on the time interval 𝑡 ∈ [0, 1] with a fixed time step
width Δ𝑡 .
For the spatial discretization we use a dG ℙ13 approximation on a cartesian mesh
with (4 × 4) square elements. This combination of polynomial degree and mesh
might appear unusual. However, we found that this combination for the spatial
discretization is the most efficient in order to keep the space discretization error
near the double precision machine error, i.e., below the time integration error.
The results are shown in Table 4.4 and illustrated in Figure 4.6. For all consid-
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Figure 4.5: Damped travelling waves test case — Initial velocity magnitude (left) and
pressure (right) distributions.
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Figure 4.6: Damped travelling waves test case — dG ℙ13 solutions with different time
integration schemes. L2 norm of the error in pressure and velocity compo-
nents with respect to the exact solution over time steps.

ered time step sizes, the ROD5_1 scheme shows the best accuracy. Moreover, the
expected formal order of convergence for all schemes is verified. Hence, the ar-
tificial EOS-based Riemann solver has no effect on the convergence rates for all
tested time integration schemes.

4.3.4 The Periodic Hill Test Case

In this section the dG scheme is used to perform an implicit large eddy simulation
of the incompressible flow over smoothly constrictions in a plane channel with
streamwise periodic boundary conditions. We call this test case therefore the pe-
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riodic hills test case. Because it is an implicit LES, it does not require any subgrid-
scale model [92]. For this class of simulations, the natural dissipation of the space
discretization method acts like a subgrid viscosity.
The test case is characterized by the formation of a large re-circulation area be-
hind the hill crest followed by a post-reattachment-recovery region. In the litera-
ture many flow studies at different Reynolds numbers and for both compressible
and incompressible flow models have been performed, see for example [24, 49,
52, 62, 81]. A full description of the test case, both from the experimental and the
numerical point of view, is available on the ERCOFTAC database web page [43].
For hill height ℎ > 0, we compute the flow using the ℎ-based Reynolds number
Reℎ = 10595. The (streamwise) channel length and height are 𝐿1 = 9ℎ and 𝐿2 =
3.035ℎ, while and the spanwise extent is 𝐿3 = 4.5ℎ. The mesh is made of 64×32×32
hexahedral elements with quadratic edges (see Figure 4.7). The computations are
performed with dG ℙ2 and ℙ4 polynomial approximations, resulting in 655 360
and 2 293 760 DOF per equation.

Figure 4.7: Periodic hill — Mesh section.

The domain is periodic both in streamwise and spanwise directions. At the solid
upper and lowerwalls the no-slip boundary condition is imposed.Thenon-periodic
behavior of the pressure distribution is handled by adding the mean pressure gra-
dient as a source term 𝑓 , imposed uniformly over the whole domain, to the mo-
mentum equation in streamwise direction.
The time integration is performed with the most accurate temporal scheme used
for the travelling wave test case in Section 4.3.3, i.e., the Rosenbrock scheme
Rod5_1. A global adaptive time step strategy is employed in order to increase the
code robustness as shown in [85]. By global strategy we mean that every compu-
tational cell is advanced with the same time step width, which can vary over time.
The resulting average time step width over the whole simulation is 1/202 𝐶𝑇𝑈 ,
where 𝐶𝑇𝑈 = 𝐿1/𝑣𝑏 is the convective time unit. Here, 𝑣𝑏 denotes the streamwise
bulk velocity. The time averages are taken over a time window of 40 𝐶𝑇𝑈 .
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During each time step Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛, the constant forcing term 𝑓 𝑛+ 1
2 is imposed.

To derive this forcing term, we modified the approach of [16] to allow for varying
time step sizes. The forcing term reads as

𝑓 𝑛+1/2 = 𝑓 𝑛−1/2 + 𝜁
𝜎𝑛

⟨ •𝑚⟩𝑛+1𝐿1 − (1 + 𝜎𝑛) ⟨ •𝑚⟩𝑛𝐿1 + 𝜎𝑛⟨ •𝑚⟩𝑛−1𝐿1
Δ𝑡𝑛−1⟨𝐴⟩𝐿1

, (4.18)

where 𝜁 = 0.1 is an user-defined damping factor, 𝜎𝑛 = Δ𝑡𝑛/Δ𝑡𝑛−1 the time step ratio,
•𝑚 and 𝐴 are the streamwise mass flow rate and the streamwise channel section,
and ⟨•⟩Ψ denotes the integral average operator over the generic set Ψ. Notice that
the streamwise averaged mass flow rate at the next step is set according to the
prescribed Reynolds number

⟨ •𝑚⟩𝑛+1𝐿1 = 𝜌0𝑣𝑏𝐴ℎ =
𝜌0𝜈𝐴ℎ
ℎ Reℎ,

where𝐴ℎ is the streamwise channel section defined at the hill crest.The derivation
of (4.18) is stated in detail in the Appendix C.
The results of the simulations are shown in Figure 4.8, where the distribution of
the skin friction coefficient

Cf = 𝑆𝑤 /(0.5𝜌0𝑣2𝑏 )
on the bottom wall is plotted. Here 𝑆𝑤 denotes the wall stress. This quantity is
usefull to describe turbulent flows, see discussion below and [92, 103].
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Figure 4.8: Periodic hill — Left: Skin friction coefficient at the bottom wall (a). Top
right: Details at the hill crest (b). Bottom right: Details at the base of the
second hill (c).
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The existence of negative values clearly denotes the presence of a re-circulation
bubble after the hill crest. In particular, the positions of the separation and reat-
tachment points are reported in Table 4.5 together with references available in the
literature [24, 49, 52].
Our results predict a reattachment point slightly shifted upstream if compared to
the reference numerical results. Nevertheless, if compared with the experimental
result, the dG ℙ4 solution provides the lowest gap.The separation point position is
in good agreement with all numerical references except for [52], the only case for
which the separation occurs at the beginning of the hill crest. However, looking in
greater detail right in front of the separation point, a tiny region of negative values
of the shear stress is visible both from the dG ℙ2 and ℙ4 solution, see Figure 4.8
(b). This result suggests the presence of a precursory separation bubble which
has also been found in [49] and [24]. In [52] similar oscillations were observed
but with no positive values of the shear stress such that the mean flow remains
separated. This behavior explains the upstream position of the separation point.
This peculiarity has been attributed to compressibility effects. At the base of the
second hill, for 𝑥/ℎ ∈ [7.03−7.26], the dG ℙ4 solution detects a small re-circulation
region, see Figure 4.8 (c).This has been found by all the numerical references. After
that point the flow is strongly accelerated, leading to a remarkable increase of the
shear stress and a peak of the skin friction coefficient 𝐶𝑓 = 1.93 ⋅ 10−2 for dG ℙ2

and 𝐶𝑓 = 2.95 ⋅ 10−2 ℙ4, at 𝑥/ℎ ≈ 8.60, right before the hill crest. Eventually, at
the hill crest, due to the change of the pressure gradient, the shear stress rapidly
drops.
Figure 4.9 and Figure 4.10 show the mean velocity ⟨𝑣1⟩/𝑣𝑏 , ⟨𝑣2⟩/𝑣𝑏 , the Reynolds
stresses ⟨𝑣′1𝑣′1⟩/𝑣2𝑏 , ⟨𝑣′2𝑣′2⟩/𝑣2𝑏 , ⟨𝑣′1𝑣′2⟩/𝑣2𝑏 , and the turbulent kinetic energy 𝑘/𝑣2𝑏 pro-
files obtained with dG ℙ2 and ℙ4 at streamwise locations 𝑥1 = 0.05ℎ and 𝑥1 = 5ℎ,
respectively.
These locations are just in front of the separation point and right after the reat-
tachment point of the re-circulation bubble. For these profiles the average operator
is applied both in time and in spanwise direction. Data comparison is performed
with experimental results obtained in [95] and numerical results reported in [24],
which are available on the ERCOFTAC database [43]. Despite the coarse mesh
and the low number of DOF, a good agreement is achieved with respect to the
reference data. Notice that the vertical velocity, the Reynolds stresses and the tur-
bulent kinetic energy profiles are about one order of magnitude smaller than the
streamwise velocity. Thus, they are amplified when shown in figures for the sake
of comprehension. As a consequence, also the discrepancies with respect to refer-
ence data are amplified.
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Figure 4.9: Periodic hill — Profiles at position 𝑥/ℎ = 0.05.

Finally, Figure 4.11 displays the instantaneous Q-criterion both for dG ℙ2 and dG
ℙ4 solutions. Here,

𝑄 ≔ 1
2 (‖‖‖

∇𝑣 − ∇𝑣⊤
2

‖‖‖
2
− ‖‖‖
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Figure 4.10: Periodic hill — Profiles at position 𝑥/ℎ = 5.

where ∇𝑣−∇𝑣⊤
2 is the vorticity tensor. Vortices are located where 𝑄 > 0, i.e. vortices

are areas where the vorticity magnitude is greater than the magnitude of the rate
of strain. In Figure 4.11 we color the isolines 𝑄 = 30 with the nondimensional
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vorticity magnitude 𝐿1
𝑣𝑏
‖∇ × 𝑣‖. The vorticity is a measure for the local spinning

motion. It is easy to see that the higher order approximation dramatically improves
the resolution of the vortical structures above the hill crest.

Figure 4.11: Periodic hill — Isosurface of the instantaneous nondimensional 𝑄-
criterion (𝑄 ⋅ ℎ2/𝑣2𝑏 = 30) for the dG ℙ2 (top) and the dG ℙ4 (bottom)
solutions colored with nondimensional vorticity magnitude.
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Table 4.4: Travelling waves test case, ℙ13 solutions with different time integration
schemes — 𝐿2 norm of the error with respect to the exact solution for pres-
sure and 𝑥1-,𝑥2-component of velocity

Scheme Δ𝑡 ‖𝑝 − 𝑝ℎ‖𝐿2 order𝑝 ‖𝑣1,2 − 𝑣1,2ℎ ‖𝐿2 order𝑣1,2

BD
F2

T/20 2.027e-01 - 3.157e-01 -
T/25 1.565e-01 1.160 2.437e-01 1.160
T/32 1.098e-01 1.437 1.709e-01 1.437
T/40 7.610e-02 1.641 1.185e-01 1.641
T/50 5.122e-02 1.774 7.977e-02 1.774
T/64 3.232e-02 1.865 5.034e-02 1.865
T/80 2.105e-02 1.921 3.279e-02 1.921
T/100 1.361e-02 1.954 2.120e-02 1.954
T/125 8.766e-03 1.973 1.365e-02 1.973
T/160 5.370e-03 1.985 8.363e-03 1.985
T/200 3.443e-03 1.992 5.362e-03 1.992

ES
D
IR
K-
5(
8)

T/20 2.803e-05 - 4.365e-05 -
T/25 9.337e-06 4.927 1.454e-05 4.927
T/32 2.750e-06 4.951 4.283e-06 4.951
T/40 9.078e-07 4.967 1.414e-06 4.967
T/50 2.989e-07 4.978 4.656e-07 4.978
T/64 8.733e-08 4.985 1.360e-07 4.985
T/80 2.868e-08 4.989 4.467e-08 4.989
T/100 9.415e-09 4.993 1.466e-08 4.992
T/125 3.089e-09 4.994 4.811e-09 4.995
T/160 8.996e-10 4.998 1.401e-09 4.996
T/200 2.951e-10 4.995 4.595e-10 4.997

RO
D
5_
1

T/20 1.265e-05 - 1.949e-05 -
T/25 4.174e-06 4.970 6.453e-06 4.954
T/32 1.221e-06 4.978 1.893e-06 4.968
T/40 4.016e-07 4.984 6.234e-07 4.977
T/50 1.320e-07 4.988 2.050e-07 4.983
T/64 3.849e-08 4.991 5.985e-08 4.988
T/80 1.263e-08 4.993 1.965e-08 4.991
T/100 4.144e-09 4.995 6.448e-09 4.993
T/125 1.359e-09 4.996 2.115e-09 4.995
T/160 3.958e-10 4.997 6.162e-10 4.996
T/200 1.298e-10 4.995 2.021e-10 4.997

PE
ER

6A

T/20 4.319e-04 - 6.905e-04 -
T/25 1.196e-04 5.753 1.904e-04 5.773
T/32 2.814e-05 5.863 4.459e-05 5.880
T/40 7.497e-06 5.927 1.184e-05 5.941
T/50 1.982e-06 5.962 3.123e-06 5.974
T/64 4.525e-07 5.983 7.113e-07 5.993
T/80 1.187e-07 5.995 1.864e-07 6.003
T/100 3.112e-08 6.001 4.878e-08 6.007
T/125 8.153e-09 6.003 1.276e-08 6.009
T/160 1.851e-09 6.006 2.894e-09 6.011
T/200 4.855e-10 5.997 7.593e-10 5.995



4.3 Numerical Tests 175

source grid elements model method 𝑥𝑠/ℎ 𝑥𝑟 /ℎ
MIGALE 64 × 32 × 32 I dG ℙ2 ILES 0.12 3.57
MIGALE 64 × 32 × 32 I dG ℙ4 ILES 0.18 4.13
LESOCC [24] 12.4 ⋅ 106 I FV-CD LES+DSM 0.19 4.69
LESOCC [49] 196 × 128 × 186 I FV-CD LES+DSM 0.20 4.56
STREAMLES [49] 196 × 128 × 186 I FV-CD LES+WALE 0.22 4.72
numerical [52] 512 × 256 × 256 C DRP11 LES -0.12 4.305
experimental [95] – – LDA-PIV n/a 4.21

Table 4.5: Periodic hill - Comparison between current results and different studies
available in the literature in terms of the nondimensional position of the
separation (𝑥𝑠) and reattachment (𝑥𝑟 ) points of the re-circulation bubble.
Reference numerical solutions have been obtained for both incompressible
(I) and compressible low Mach number (C) flow models. The implemented
methods are Finite Volumes (FV) applied with second order central dif-
ferences (CD) and Finite Differences coupled with a Dispersion-Relation-
Preserving optimization procedure (DRP). Subgrid-scale models adopted
are the Dynamic Smagorinsky Model (DSM) and the Wall-Adapted Local
Eddy-viscosity model (WALE). Experimental studies have been performed
with the Laser Doppler Anemometer (LDA) and the Particle Image Ve-
locimetry (PIV) methods. Further details can be found in the respective ref-
erence.
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and Outlook 5

In this third part we studied a phase-field model for the description of liquid–va-
por flows with one compressible and one incompressible phase. We introduced
the ICNSCH system from [96] and proved an energy inequality for the same. In
this way we ensured that the system is thermodynamically consistent. Further, we
investigated the effective surface tension in the system, which lead to a new com-
putable expression. In particular, parameters can be tuned to fit surface tension
values given by the underlying physics of the simulation.
Moreover, we considered the low Mach limit of the system. We formally showed
the convergence to a (quasi-)incompressible model, where both phases are incom-
pressible with different constant densities. For further studies it would be inter-
esting to examine the sharp-interface limit as well. The discretization of an incom-
pressible–compressible SI model is cumbersome, as seen in [84], where coupling
strategies in the case of inviscid fluids are derived. The use of a phase-field model
could overcome this issues, provided that it has a meaningful SI limit. If such a
result was established, one could also investigate the low Mach limit for the cor-
responding SI limit system. Ideally, this should yield the SI limit system of the LT
model.
Additionally, as the main numerical contribution, we presented an idea for a dG
discretization of the ICNSCH system based on Godunov fluxes. We introduced
the concept of artificial EOS modification in order to derive a Riemann problem
solution to define the Godunov fluxes. The approach was then implemented in
a simpler setting, namely for single-phase incompressible flow. We showed that
the artificial EOS modification preserves the convergence properties of the dG
scheme, both in space and time. Furthermore, the approach is also suited for com-
plex simulations, as we demonstrated in the 3D ILES periodic hill test case, where
the obtained results showed good agreement with experimental results and other
numerical results from the literature. However, this is merely a first step towards
the dG discretization of the ICNSCH system. For future studies, it should be con-
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sidered how to deal with the higher-order terms of the ICNSCH system in order to
obtain the dG discretization. In particular the discretization of the capillary tensor
is not straightforward.



Appendix

A The Wave Pattern Violation
TheRiemann problem solution based on the split multi-dimensional artificial com-
pressibility set of equations (4.3) predicts a shock wave speed equal to

𝑠± = 𝑞𝑛𝑋 + 𝑞𝑛⋆
2 ± √(𝑞𝑛𝑋 + 𝑞𝑛⋆

2 )
2
+ 𝑎20 ,

where the negative sign (−) is for a left shock (𝑋 = 𝐿) while the positive sign (+) is
for a right shock (𝑋 = 𝑅), see Appendix B below.The contact discontinuity speed is
instead equal to the star region velocity 𝑞𝑛⋆. If the two speeds are equated, a critical
value of the artificial compressibility can be found and reads for both shocks 𝑠± as

𝑎0𝑋 = √−𝑞𝑛⋆𝑞𝑛𝑋 .
It is clear that, when 𝑞𝑛⋆ and 𝑞𝑛𝑋 have the same sign, the critical value is imaginary
and the occurrence of a contact wave as fast as the shock is impossible. However,
except for the requirements of an entropy satisfying shock, i.e.

{𝑞𝑛⋆ < 𝑞𝑛𝐿 for a left shock
𝑞𝑛⋆ > 𝑞𝑛𝑅 for a right shock

,

no a-priori restrictions are imposed on the velocity signs. As a consequence, when
the two velocities have opposite sign the critical artificial compressibility becomes
real. If this is the case for the left or right shock, setting an artificial compressibil-
ity smaller than this critical 𝑎0𝑋 , leads the Riemann solver to predict a contact
wave which overtakes the shock, i.e., |𝑞𝑛⋆| ≥ |𝑠±|. Thus, it violates the wave pattern
postulated in Figure 4.1 on which the Riemann solver itself is derived. In order to
regain the correct wave pattern, the value of 𝑎0 must be increased such that in
presence of the shock it holds

𝑎0 > 𝑎0𝑋 .
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Interestingly, increasing the artificial compressibility reduces the perturbation on
the set of equations thus approaching the incompressible regime.
A simple example in which the wave pattern violation occurs is given in Table 5.1.

𝑖 𝑝𝐿 𝑎0𝑅
−2 1.01 -
−1 1.1 1.4350004E−01
0 2 2.9676758E−01
1 11 5.5068316E−01
2 101 9.9289835E−01
3 1001 1.7739369E+00

Table 5.1: Wave pattern violation - Critical artificial compressibility for different left
pressure values (𝑝𝐿 = 𝑝𝑅 + 10𝑖 , 𝑖 = −2, −1, … , 3) with given right pressure
(𝑝𝑅 = 1) and velocities (𝑣𝐿 = 𝑣𝑅 = −0.1).

Here, the initial velocities and the initial right pressure are set as follows: 𝑞𝑛𝐿 =
𝑞𝑛𝑅 = −1, 𝑝𝑅 = 1. The initial left pressure is then modified according to the relation
𝑝𝐿 = 𝑝𝑅 + 10𝑖 , with 𝑖 = −2, −1, … , 3. The wave pattern arising from these Rie-
mann problems predicts as external acoustic waves a left rarefaction and a right
shock. Looking at the right shock, a simple numerical investigation by means of
the artificial compressibility based Riemann solver (see [11, 42]) reveals that for
the minimum left pressure considered (𝑖 = −2) no critical artificial compressibility
is found while for the remaining 𝑝𝐿 values the critical condition exists. Besides,
for higher pressure jumps the 𝑎0𝑅 value grows, thus making the condition more
severe.

B The Artificial EOS-Based Riemann Solver
In order to derive the exact solution to (4.4)–(4.6) with initial values (4.2) we start
from the work of LeVeque [72] for the isothermal compressible flows.
As pointed out in Section 4.1.2 the pressure-velocity solutionwithin the star region
can be found independently from the variable 𝜃 . Accordingly, the reduced set of
equation is

𝜕𝑈
𝜕𝑡 + 𝜕𝐹(𝑈 )

𝜕𝑥 = 0,
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with the vector of unknowns 𝑈 and the flux 𝐹

𝑈 = ( 𝜌
𝜌𝑞𝑛) , 𝐹 (𝑈 ) = ( 𝜌𝑞𝑛

𝜌𝑞2𝑛 + 𝑝) . (5.1)

Recalling the artificial EOS (4.6), the flux Jacobian matrix is given by

𝐴 = d 𝐹(𝑈 )
d𝑈 = ( 0 1

𝑎20 − 𝑞2𝑛 2𝑞𝑛) ,

with eigenvalues

𝜆 = (𝜆
−

𝜆+) = (𝑞𝑛 − 𝑎0
𝑞𝑛 + 𝑎0) .

The resulting left and right eigenvector matrices 𝐿, 𝑅 read as

𝐿 = (𝜆
+ −1

𝜆− −1) , 𝑅 = 1
2𝑎0

( 1 −1
𝜆− −𝜆+) .

Since 𝑎0 > 0 there are two distinct eigenvalues 𝜆− < 𝜆+ and the corresponding sys-
tem is hyperbolic.Thewave pattern predicts twowaveswhich can be either shocks
or rarefactions. Solution variations across these waves are computed by means of
the Rankine–Hugoniot jump conditions and Riemann invariants, respectively.

B.1 Rarefaction Waves and Riemann Invariants

The solution variation across a rarefaction wave can be obtained with help of Rie-
mann invariants

Γ = Γ(𝑈 ) = (Γ
−(𝑈 )
Γ+(𝑈 )) .

These quantities are related to the left eigenvector matrix by the following defini-
tion

d Γ
d𝑈 = 𝐿.

Thus,
d Γ = d (Γ

−

Γ+) = (𝜆
+ d 𝜌 − d(𝜌𝑞𝑛)

𝜆− d 𝜌 − d(𝜌𝑞𝑛)) = ( 𝑎0 d 𝜌 − 𝜌 d 𝑞𝑛
−𝑎0 d 𝜌 − 𝜌 d 𝑞𝑛) .

As a peculiar feature, the Riemann invariants Γ− and Γ+ assume constant values
along the characteristic curves

𝐶− (𝑥, 𝑡) = 𝑥 + 𝜆−𝑡,
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𝐶+ (𝑥, 𝑡) = 𝑥 + 𝜆+𝑡.
Accordingly, it follows

d Γ− = 𝑎0 d 𝜌 − 𝜌 d 𝑞𝑛 = 0 on 𝐶−,
d Γ+ = −𝑎0 d 𝜌 − 𝜌 d 𝑞𝑛 = 0 on 𝐶+.

By integration the Riemann invariants are

Γ− = 𝜌e−
𝑞𝑛
𝑎0 = const. on 𝐶−,

Γ+ = 𝜌e
𝑞𝑛
𝑎0 = const. on 𝐶+.

Applying the artificial EOS (4.6) we obtain

Γ− = (𝑝 − 𝑝0 + 𝜌0𝑎20) e−
𝑞𝑛
𝑎0 = const. on 𝐶−, (5.2)

Γ+ = (𝑝 − 𝑝0 + 𝜌0𝑎20) e
𝑞𝑛
𝑎0 = const. on 𝐶+. (5.3)

We point out that a left rarefaction wave is crossed by the 𝐶+ characteristic, while
a right rarefaction wave by 𝐶− characteristic.

B.2 Shock Waves and Rankine–Hugoniot Jump Conditions

Riemann invariants cannot be used to find the solution variation across a shock,
since they are not constant when characteristic curves cross this type of wave.
Instead, we use the Rankine–Hugoniot conditions.
We denote the jump of the conservative variables and the flux jump across a shock
as Δ𝑈 = 𝑈 2 −𝑈 1 and Δ𝐹 = 𝐹(𝑈 2) − 𝐹(𝑈 1), respectively. Here, the subscripts 1 and
2 denote the states at the left and right of the shock. Then, the Rankine–Hugoniot
conditions state that

Δ𝐹 = 𝑠Δ𝑈 , (5.4)

where 𝑠 is the shock speed. Applying (5.4) to (5.1) yields

Δ (𝜌𝑞𝑛) = 𝑠Δ𝜌, (5.5)
Δ (𝜌𝑞2𝑛) + Δ𝑝 = 𝑠Δ (𝜌𝑞𝑛) . (5.6)

In addition, the Lax entropy condition requires

𝜆1(𝑈 1) = 𝑞𝑛1 − 𝑎0 > 𝑠− > 𝑞𝑛2 − 𝑎0 = 𝜆1(𝑈 2),
𝜆3(𝑈 1) = 𝑞𝑛1 + 𝑎0 > 𝑠+ > 𝑞𝑛2 + 𝑎0 = 𝜆3(𝑈 2).

(5.7)
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This assures that for a shock the characteristic lines are always convergent and
there is only compression.
From (5.7) it follows

Δ𝑞𝑛 < 0. (5.8)

From the artificial EOS (4.6) we have Δ𝑝 = 𝑎20Δ𝜌. Now, with (5.5) an expression for
the shock speed 𝑠 is obtained. By substituting it in (5.6) it follows that

Δ𝑞𝑛
Δ𝜌 = ± 𝑎0

√𝜌1𝜌2
. (5.9)

The shock speed is then computed from (5.5) and (5.9) as

𝑠± = 𝑞𝑛1 + 𝜌2
Δ𝑞𝑛
Δ𝜌 = 𝑞𝑛1 ± 𝑎0√

𝜌2
𝜌1
, (5.10)

or alternatively as

𝑠± = 𝑞𝑛2 + 𝜌1
Δ𝑞𝑛
Δ𝜌 = 𝑞𝑛2 ± 𝑎0√

𝜌1
𝜌2
. (5.11)

Here, due to the Lax condition (5.7), the negative sign (−) is for the left shock, while
the positive sign (+) is for the right shock. Notice that 𝑠− < 𝑞𝑛𝑖 and 𝑠+ > 𝑞𝑛𝑖 for
𝑖 = 1, 2. By substituting (5.10) and (5.11) in the entropy condition (5.7) we obtain

⎧
⎨
⎩

𝑞𝑛1 − 𝑎0 > 𝑞𝑛1 − 𝑎0√
𝜌2
𝜌1

= 𝑞𝑛2 − 𝑎0√
𝜌1
𝜌2

> 𝑞𝑛2 − 𝑎0 for a left shock,

𝑞𝑛1 + 𝑎0 > 𝑞𝑛2 + 𝑎0√
𝜌1
𝜌2

= 𝑞𝑛1 + 𝑎0√
𝜌2
𝜌1

> 𝑞𝑛2 − 𝑎0 for a right shock .

This is true iff

{Δ𝜌 > 0 for a left shock
Δ𝜌 < 0 for a right shock.

We perform a change of variable by 𝑧 = √𝜌2/𝜌1. This transforms (5.9) to the
quadratic equation

±𝑧2 − Δ𝑞𝑛
𝑎0

𝑧 ± (−1) = 0. (5.12)
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By construction, both solutions of (5.12) for each shock are real, but only one of
them is positive, i.e.

√
𝜌2
𝜌1

= 𝑧 = ±Δ𝑞𝑛2𝑎0
+
√
(Δ𝑞𝑛2𝑎0

)
2
+ 1.

With help of (5.10) the shock speed is computed as

𝑠± = 𝑞𝑛2 + 𝑞𝑛1
2 ± √(𝑞𝑛2 − 𝑞𝑛1

2 )
2
+ 𝑎20 . (5.13)

The same relation can be found defining 𝑧 = √𝜌1/𝜌2 within (5.9) and using (5.11).
Notice that the subscripts 1 and 2 can be switched without modifying the relation.
Eventually, thanks to the artificial EOS (4.6) the pressure relation can be obtained
from (5.10)

𝑝2 = 𝑝0 − 𝜌0𝑎20 + (𝑝1 − 𝑝0 + 𝜌0𝑎20) (
𝑠± − 𝑞𝑛1

𝑎0
)
2
, (5.14)

or alternatively from (5.11)

𝑝1 = 𝑝0 − 𝜌0𝑎20 + (𝑝2 − 𝑝0 + 𝜌0𝑎20) (
𝑠± − 𝑞𝑛2

𝑎0
)
2
. (5.15)

Recall that (−) and (+) of the symbol (±) are referred to a left and a right shock
wave, respectively. Notice that (5.14) and (5.15) are the same relation with switched
subscripts.

B.3 The Star Region Solution

Finding the solution of the Riemann problem means computing the star region
pressure 𝑝⋆ and velocity 𝑞𝑛⋆. Starting from the initial state given by the Riemann
problem, the initial density values (𝜌𝐿,𝜌𝑅) are defined by the artificial EOS (4.6).
Then the star region solution is found by exploiting the Riemann invariants and
the Rankine–Hugoniot conditions across rarefaction (superscript 𝑅) and shock (su-
perscript 𝑆) waves, respectively.
• If the left wave is a rarefaction, then the Γ+ Riemann invariant (5.3) is pre-
served and thus

𝑝⋆ = 𝑝0 − 𝜌0𝑎20 + 𝜌𝐿𝑎20𝑓 𝑅𝐿 , (5.16)

with
𝑓 𝑅𝐿 (𝑞𝑛𝐿, 𝑞𝑛⋆) ≔ 𝑒

𝑞𝑛𝐿−𝑞𝑛⋆
𝑎0 .
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• If the left wave is a shock, then from (5.14) we have

𝑝⋆ = 𝑝0 − 𝜌0𝑎20 + 𝜌𝐿𝑎20𝑓 𝑆𝐿 , (5.17)

with

𝑓 𝑆𝐿 (𝑞𝑛𝐿, 𝑞𝑛⋆) ≔ (𝑞𝑛𝐿 − 𝑠−𝐿
𝑎0

)
2
,

and

𝑠−𝐿 = 𝑞𝑛𝐿 + 𝑞𝑛⋆
2 − √(𝑞𝑛𝐿 − 𝑞𝑛⋆

2 )
2
+ 𝑎20 .

• If the right wave is a rarefaction, then the Γ− Riemann invariant (5.2) is con-
served, which leads to

𝑝⋆ = 𝑝0 − 𝜌0𝑎20 + 𝜌𝑅𝑎20𝑓 𝑅𝑅 , (5.18)

with
𝑓 𝑅𝑅 (𝑞𝑛𝑅 , 𝑞𝑛⋆) ≔ 𝑒

𝑞𝑛⋆−𝑞𝑛𝑅
𝑎0 .

• If the right wave is a shock, then (5.14) yields

𝑝⋆ = 𝑝0 − 𝜌0𝑎20 + 𝜌𝑅𝑎20𝑓 𝑆𝑅 , (5.19)

with

𝑓 𝑆𝑅 (𝑞𝑛𝑅 , 𝑞𝑛⋆) ≔ (𝑠
+𝑅 − 𝑞𝑛𝑅
𝑎0

)
2
,

and

𝑠+𝑅 = 𝑞𝑛⋆ + 𝑞𝑛𝑅
2 + √(𝑞𝑛⋆ − 𝑞𝑛𝑅

2 )
2
+ 𝑎20 .

The cases (5.16), (5.17), (5.18) and (5.19) can be written in the compact form

𝐹(𝑝𝐿, 𝑞𝑛𝐿, 𝑝𝑅 , 𝑞𝑛𝑅 , 𝑞𝑛⋆) = 𝜌𝑅𝑎20𝑓𝑅 − 𝜌𝐿𝑎20𝑓𝐿 = 0, (5.20)

where 𝑓𝑅 and 𝑓𝐿 are set according to the type of the acoustic waves

𝑓𝑅(𝑞𝑛𝑅 , 𝑞𝑛⋆) ≔ {𝑓
𝑆𝑅 (𝑞𝑛𝑅 , 𝑞𝑛⋆) 𝑞𝑛𝑅 < 𝑞𝑛⋆

𝑓 𝑅𝑅 (𝑞𝑛𝑅 , 𝑞𝑛⋆) otherwise,

𝑓𝐿(𝑞𝑛𝐿, 𝑞𝑛⋆) ≔ {𝑓
𝑆𝐿 (𝑞𝑛𝐿, 𝑞𝑛⋆) 𝑞𝑛⋆ < 𝑞𝑛𝐿

𝑓 𝑅𝐿 (𝑞𝑛𝐿, 𝑞𝑛⋆) otherwise.

(5.21)
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Here, the 𝑞𝑛𝑅 < 𝑞𝑛⋆ and 𝑞𝑛⋆ < 𝑞𝑛𝐿 inequalities satisfy the entropy condition (5.8)
for the right and left shock, respectively.
The only unknown in the nonlinear equation (5.20) is the star region velocity 𝑞𝑛⋆.
Its value can be found using an iterative method such as Newton’s method. At
each solution iteration the function 𝐹 of (5.20) is the one appropriate for the wave
pattern defined by (5.21). As initial guess of the iterative process we suggest to
use the average velocity between the initial left and right values. Interestingly,
this choice is effective in presence of strong rarefactions, where it is known the
iterative process may fail [101]. In particular, in case of rarefaction waves of the
same strength, this initial guess corresponds to using the two-rarefaction solution.
Knowing 𝑞𝑛⋆, the star region pressure can be computed as

𝑝⋆ = 𝑝0 − 𝜌0𝑎20 +
𝜌𝑅𝑓𝑅 + 𝜌𝐿𝑓𝐿

2 𝑎20 .

B.3.1 Reference pressure

The only unknown parameter in the solution derivation is the reference pressure
𝑝0. As pointed out in Section 4.1.2 its value must be defined carefully, otherwise
negative values of the density may show up during the solution of the Riemann
problem. Fortunately, the simple following choice proves to ensure the density
positivity

𝑝0 = min(𝑝𝐿, 𝑝𝑅).
In fact, with this choice it is easy to see from the artificial EOS (4.6) that both 𝜌𝐿
and 𝜌𝑅 are positive. Besides, since the star region density is defined as

𝜌⋆ = 𝜌𝐿𝑓𝐿 = 𝜌𝑅𝑓𝑅 ,
and since 𝑓𝐿 and 𝑓𝑅 are positive functions, then it follows that the star region
density is also positive.

B.3.2 Wave speeds

As last step to define the Riemann solution completely, the wave speeds 𝑆 must
be determined.

• For a rarefaction wave there are two important wave speeds, namely the ones
of the head and the tail of the fan. These speed values are given by the eigen-
values at the states on either side of the rarefaction, that is

𝑆head𝐿 = 𝜆−𝐿 , 𝑆tail𝐿 = 𝜆−⋆,
𝑆head𝑅 = 𝜆+𝑅 , 𝑆tail𝑅 = 𝜆+⋆.
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The speed inside the expansion fan changes linearly between the head and
the tail values. Knowing this speed, the solution inside the fan is obtained by
the Riemann invariants associated with the crossing characteristic curves 𝐶 .

• For a shock wave the wave speed is given by (5.13), i.e.

𝑆𝐿 = 𝑠−𝐿 , 𝑆𝑅 = 𝑠+𝑅 .

C The Forcing Term
The periodic hill test case has only no-slip wall and periodic boundary conditions.
In order to sustain the flow through the channel, an uniform forcing term 𝑓 in the
stream direction 𝑥1 as an additional boundary condition is introduced. This forc-
ing term mimics the pressure gradient between consecutive hills. The streamwise
momentum equation in the integral form for the whole volume 𝑉 reads

∫
𝑉

𝜕(𝜌𝑣1)
𝜕𝑡 d𝑥 = ∫

𝑆𝑤
𝑆𝑥1 d𝑥 + ∫

𝑉
𝑓 d𝑥,

with the component 𝑆𝑥1 in the stream direction 𝑥1 of the stress on the wall surfaces
𝑆𝑤 . The convective flux contribution vanishes because of the periodicity condition
of all no-wall boundaries. Since 𝑉 is fixed, the partial time derivative can bemoved
outside the integral and become a total derivative.Moreover, we define the integral
average operator ⟨⋅⟩Ψ over the generic set Ψ. Then,

d⟨𝜌𝑣1⟩𝑉
d 𝑡 = 𝑆𝑤

𝑉 ⟨𝑆𝑥1⟩𝑆𝑤 + 𝑓 . (5.22)

Due to the uniform nature of the forcing term it is clear that 𝑓 = ⟨𝑓 ⟩𝑉 .
One way to define the forcing term is to exploit the fact that the flow problem is
statistically stationary [92]. Indeed, by applying the time integral average over a
sufficiently long time period 𝑇 on (5.22) it follows

⟨𝑓 ⟩𝑇 = −𝑆𝑤𝑉 ⟨𝑆𝑥1⟩𝑆𝑤×𝑇 .

This relation is commonly used for the channel flow test case, where 𝑆𝑤/𝑉 = 1/𝛿 ,
with the channel semi-height 𝛿 . However, it has two main drawbacks:

1. It cannot be applied to test cases where the target-averaged streamwise wall
stress ⟨𝑆𝑥1⟩𝑆𝑤×𝑇 is not known a-priori.
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2. It can lead to inaccuracies in the averaged velocity profiles prediction when
modeling errors or numerical errors occur in the calculation of the near-wall
viscous stress [16].

Another way to obtain 𝑓 consists of deriving (5.22) with respect to time and ne-
glecting the stress contribute such that

1
⟨𝐴⟩𝐿1

d2⟨ •𝑚⟩𝐿1
d 𝑡2 = d 𝑓

d 𝑡 , (5.23)

where
⟨𝜌𝑣1⟩𝑉 = 1

𝑉 ∫
𝐿1
∫
𝐴(𝑥1)

𝜌𝑣1 d𝐴′ d𝑥1 =
1

⟨𝐴⟩𝐿1
⟨ •𝑚⟩𝐿1 ,

with the streamwise average ⟨ •𝑚⟩𝐿1 of the mass flow rate and of the channel section
⟨𝐴⟩𝐿1 = 𝑉 /𝐿1. Here, 𝐿1 is the streamwise channel length. Using finite differences
of second order in the neighborhood of the current time 𝑡𝑛 leads to

𝑓 𝑛+1/2 = 𝑓 𝑛−1/2 + 𝜁 ⟨
•𝑚⟩𝑛+1𝐿1 − 2⟨ •𝑚⟩𝑛𝐿1 + ⟨ •𝑚⟩𝑛−1𝐿1

Δ𝑡⟨𝐴⟩𝐿1
. (5.24)

This formula has been first proposed by Benocci and Pinelli [16]. Knowing the
average mass flow rates ⟨ •𝑚⟩𝑛𝐿1 , ⟨

•𝑚⟩𝑛−1𝐿1 at previous times and the forcing term 𝑓 𝑛−1/2

imposed during the last step Δ𝑡 = 𝑡𝑛 − 𝑡𝑛−1, the resulting forcing term 𝑓 𝑛+1/2, kept
constant during the current time step Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, is function of the averaged
mass flow rate at the next time ⟨ •𝑚⟩𝑛+1𝐿1 . This rate is set according to the prescribed
Reynolds number Re. In (5.24), the user-defined damping factor 𝜁 ∈ [0.1, 1] has
been added. It is useful to control the temporal oscillation of the forcing term
when dealing with very large time steps.
The advantage of the relation of Benocci and Pinelli is that it does not require any
prior knowledge of the stress. Moreover, the forcing term is no more constant in
time and can adapt to ensure the desired flow properties. However, this relation
cannot be used when the time integration is coupled with an adaptive time step
strategy, as it has been considered in the current work. In such a case Taylor ex-
pansions allow to write the second order derivative of the averaged mass flow rate
as

d2⟨ •𝑚⟩𝐿1
d 𝑡2

||||

𝑛

= 2⟨
•𝑚⟩𝑛+1𝐿1 − ⟨ •𝑚⟩𝑛𝐿1
(Δ𝑡𝑛)2 − 2

Δ𝑡𝑛
d⟨ •𝑚⟩𝐿1
d 𝑡

||||

𝑛

+ 𝑂(Δ𝑡𝑛),
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where the first order time derivative can be expressed with backward differences

d⟨ •𝑚⟩𝐿1
d 𝑡

||||

𝑛

= ⟨ •𝑚⟩𝑛𝐿1 − ⟨ •𝑚⟩𝑛−1𝐿1
Δ𝑡𝑛−1 + Δ𝑡𝑛−1

2
d2⟨ •𝑚⟩𝐿1
d 𝑡2

||||

𝑛

+ 𝑂(Δ𝑡𝑛−12),

such that

d2⟨ •𝑚⟩𝐿1
d 𝑡2

||||

𝑛

= 2⟨
•𝑚⟩𝑛+1𝐿1 − (1 + 𝜎𝑛)⟨ •𝑚⟩𝑛𝐿1 + 𝜎𝑛⟨ •𝑚⟩𝑛−1𝐿1

𝜎𝑛(1 + 𝜎𝑛)(Δ𝑡𝑛−1)2 + 𝑂(Δ𝑡𝑛). (5.25)

Here, Δ𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛 is the time step width and 𝜎𝑛 = Δ𝑡𝑛/Δ𝑡𝑛−1 the time step ratio
at time 𝑡𝑛. The first order time derivative of the forcing term is written as

d 𝑓
d 𝑡

|||
𝑛
= 𝑓 𝑛+1/2 − 𝑓 𝑛−1/2

Δ𝑡 ∗ + 𝑂(Δ𝑡 ∗). (5.26)

Substituting (5.25) and (5.26) in (5.23) and neglecting terms greater than first order,
the forcing term relation for an adaptive time step is

𝑓 𝑛+1/2 = 𝑓 𝑛−1/2 + 𝑔(𝜎𝑛) ⟨
•𝑚⟩𝑛+1𝐿1 − (1 + 𝜎𝑛)⟨ •𝑚⟩𝑛𝐿1 + 𝜎𝑛⟨ •𝑚⟩𝑛−1𝐿1

Δ𝑡𝑛−1⟨𝐴⟩𝐿1
,

where the function 𝑔 depends on the choice of Δ𝑡 ∗ in (5.26)

𝑔(𝜎𝑛) =
⎧⎪⎪
⎨⎪⎪
⎩

2𝜁
𝜎𝑛(1 + 𝜎𝑛) , if Δ𝑡 ∗ = Δ𝑡𝑛−1,
2𝜁

1 + 𝜎𝑛 , if Δ𝑡 ∗ = Δ𝑡𝑛,
𝜁
𝜎𝑛 , if Δ𝑡 ∗ = Δ𝑡𝑛 + Δ𝑡𝑛−1

2 .

(5.27)

Each choice of Δ𝑡 ∗ is consistent with respect to the constant time step case, i.e., 𝑔 =
𝜁 for 𝜎𝑛 = 1 such that (5.24) is recovered. The main differences appear when limit
values of the time step ratio 𝜎𝑛 ∈ (0,∞) are considered. However, the adaptive
algorithm can be designed to avoid excessive variations of the time step (see [85])
such that the forcing terms resulting from the three choices are comparable. In
this work the third definition of 𝑔 in (5.27) has been implemented, since it has an
intermediate behavior compared to the other two.
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Abstract

This thesis consists of three parts. In the first part we consider multi-
component flows through porous media. We introduce a hyperbolic
system of partial differential equations which describes such flows,
prove the existence of solutions, the convergence in a long-time-large-
friction regime to a parabolic limit system, and finally present a new
numerical scheme to efficiently simulate flows in this regime.
In the second part we study two-phase flows where both phases
are considered compressible. We introduce a Navier–Stokes–Allen–
Cahn phase-field model and derive an energy-consistent discontin-
uous Galerkin scheme for this system. This scheme is used for the
simulation of two complex examples, namely drop–wall interactions
and multi-scale simulations of coupled porous-medium/free-flow sce-
narios including drop formation at the interface between the two do-
mains.
In the third part we investigate two-phase flows where one phase is
considered incompressible, while the other phase is assumed to be
compressible. We introduce an incompressible–compressible Navier–
Stokes–Cahn–Hilliard model to describe such flows. Further, we
present some analytical results for this system, namely a computable
expression for the effective surface tension in the system and a formal
proof of the convergence to a (quasi-)incompressible system in the
low Mach regime. As a first step towards a discontinuous Galerkin
discretization of the system, which is based on Godunov fluxes, we
introduce the concept of an artificial equation of state modification,
which is examined for a basic single-phase incompressible setting.

Compressible Multi-Component
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Interfaces and Asymptotic Regimes
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