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Zusammenfassung

Das Forschung an Quantenmaterialien hat eine grundsätzliche Erneuerung der Phy-
sik der kondensierten Materie eingeleitet. Diese neue Klasse von Materie—definiert
als Materialsysteme mit Elektronenwellenfunktionen mit neuartigen verschränkten
und topologischen Eigenschaften—bietet Forschern die Möglichkeit, sowohl reichhal-
tige neue Physik, als auch fortschrittliche Gerätefunktionalitäten zu verfolgen [1].
Während bestimmte konventionelle Festkörpersysteme, wie beispielsweise Halbleiter-
Heterostrukturen, ebenfalls neuartige quantenmechanische Eigenschaften aufweisen
können, leiten komplexe Quantenmaterialien ihre Eigenschaften typischerweise von
starken Elektron-Elektron-Wechselwirkungen und eingeschränkter Dimensionalität
ab. Neue Materialien und Zustände wie beispielsweise topologische Isolatoren, Gra-
phen, Hochtemperatur-Supraleitung, neuartige Ladungs- und Stromordnungen sowie
Spintexturen, die Skyrmionen genannt werden, wurden in das wissenschaftliche Lexi-
kon aufgenommen und haben eigene Forschungsteilgebiete der hervorgebracht. Star-
ke Elektronenkorrelationen und -verschränkungen implizieren auch, dass eine Viel-
zahl unterschiedlicher Eigenschaften aus ähnlichen Systemkonfigurationen hervorge-
hen können und dass durch die Feinabstimmung externer Parameter Systeme so ma-
nipuliert werden können, dass sie sehr unterschiedliche Ordnungsformen aufweisen.
Solche Verhaltensmerkmale deuten direkt darauf hin, dass Quantenmaterialien einen
Platz in der nächsten Generation technologischer Anwendungen und als Analoga zur
Erforschung von Fragestellungen in anderen Bereichen der Physik finden werden.

Die Erforschung von Quantenmaterialien begann in den späten 1980er Jahren
mit der Entdeckung der Hochtemperatur-Supraleitung in Perowskitverbindungen auf
Kupferoxidbasis durch Georg Bednorz und Alex Müller [2]. Bei dem Versuch ein
Verständnis der Eigenschaften sowohl des supraleitenden als auch des “normalen” Zu-
stands oberhalb von Tc zu erlangen, wurde erkannt, dass die Kupferoxide durch elek-
tronische Eigenschaften definiert werden, die nicht durch die Standardquantentheorie
von Festkörpern erklärt werden können; eine Theorie, die einen der größten wissen-
schaftlichen Triumphe des 20. Jahrhunderts darstellt. Neben der Hochtemperatur-
Supraleitung, deren Mechanismus nicht in die Bardeen-Cooper-Schrieffer-Theorie für
konventionelle Supraleiter passte, wurde beobachtet, dass Kupferoxide eine Vielzahl
anderer verblüffender Zustände beherbergen, wie Spindichtewellen, zwei- und dreidi-
mensionale Ladungsordnung, einen ungewöhnlichen metallischen (“Strange Metal”)-
Zustand und eine mysteriöse “Pseudogap”-Phase, die keine bekannte Symmetrieform
zu brechen scheint [3]. Alle diese Zustände sind in einem relativ kompakten Bereich
des Phasenraums vorhanden und scheinen miteinander verflochten zu sein; manch-
mal sogar miteinander konkurrierend. Starke Elektron-Elektron-Wechselwirkungen
und die quasi-zweidimensionale Kristallstruktur wurden als Schlüsselfaktoren für die
Entstehung dieser unüblichen Eigenschaften identifiziert, so dass die Kupferoxide als
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“stark korrelierte Elektronenmaterialien” bekannt wurden. Später, als viele weitere
Familien solcher Materialien entdeckt wurden und die Bedeutung unkonventioneller
Eigenschaften der Elektronenwellenfunktion allgemein anerkannt wurde, nahm die-
se Klasse von Systemen den einfacheren Namen “Quantenmaterialien” an. Jedoch
bleibt das grundlegende Wesen der Elektron-Elektron-Wechselwirkungen wenig ver-
standen; nicht nur in den Kupferoxiden. Es wurden einige theoretische Erfolge beim
Verständnis des stark korrelierten Elektronenproblems in einer Dimension (1D) und
Quasi-1D erzielt, aber diese Lösungen sind nicht vollständig auf höhere Dimensio-
nen übertragbar [4]. Es ist mittlerweile allgemein anerkannt, dass ein vollständiges
Verständnis der Hochtemperatur-Supraleitung in den Kupferoxiden ein umfassendes
Verständnis der stark korrelierten Elektronenphysik erfordert und umgekehrt. Die-
se Dissertation leistet durch präzise Messungen der optischen Eigenschaften dünner
Kuprat-Schichten einen Beitrag zu diesem Forschungsfeld.

Die Messung der Submillimeter-Mikrowellen- und Infrarot-Eigenschaften konven-
tioneller Supraleiter ist eine der Krönungen der modernen optischen Physik und Spek-
troskopie. Mitte der 1950er Jahre konnten Rolfe Glover und Michael Tinkham, die
sowohl mit Mikrowellen-Resonanz- als auch mit ferninfraroten optischen Techniken
arbeiteten, die Öffnung der optischen Energielücke bei niedrigen Frequenzen unter-
halb von Tc in dünnen supraleitenden Metallschichten beobachten [5, 6]. Die Arbeit
zeigte, dass die optische Energielücke genau 2∆ entspricht, wobei ∆ die supraleitende
Energielücke ist, und ebnete den Weg für das spätere Verständnis der mikroskopi-
schen Theorie von Bardeen, Cooper und Schrieffer im Jahr 1957. Später bestätigten
zusätzliche Messungen der Infrarotleitfähigkeit einen Reihe von Summenregeln für
die Erhaltung des spektralen Gewichts beim Übergang vom Normalzustand in den
supraleitenden Zustand [7] und lieferten direkte Messungen von Kohärenzeffekten
in der elektromagnetischen Absorption [8]. Diese Ergebnisse, zusammen mit denen
aus komplementären experimentellen Techniken, führten zu der voreiligen Annah-
me, dass Supraleitung ein weitgehend gelöstes Problem sei. Mit dem Aufkommen
von Hochtemperatur-Supraleitung und Quantenmaterialien besteht erneut die Not-
wendigkeit, die niederenergetische Elektrodynamik des supraleitenden Zustands zu
verstehen um Einblicke in den grundlegenden Mechanismus zu gewinnen. Anders als
bei konventioneller Supraleitung stellt jedoch die Reihe an verflochtener und kon-
kurrierender Ordnungszustände, die für stark korrelierte Elektronenmaterialien cha-
rakteristisch sind, eine weitere Herausforderung an die Forschung dar. Viele der in
Kupferoxiden und anderen Quantenmaterialien relevanten Energieskalen liegen im
Terahertz-Bereich des elektromagnetischen Spektrums [9], das historisch experimen-
tell schwer zu erreichen war, da es in dem Frequenzbereich liegt, in dem herkömmliche
elektronische und optische Quellen schwach sind. Darüber hinaus sorgen die starken
Elektronenwechselwirkungen und die Verschränkung dafür, dass der niederenergeti-
sche Spektralbereich intrinsisch mit hochenergetischen Anregungen verbunden ist, die
bei mehreren eV oder darüber liegen. In den letzten Jahren sind neue spektroskopische
Techniken im Terahertz-Bereich durch die Kombination von Elementen elektronischer
und optischer Quellen aufgekommen und diese haben nun den Entwicklungspunkt
erreicht, an dem eine hohe Genauigkeit und Geschwindigkeit der Messung möglich
ist [10]. Durch die Zusammenführung dieser hochmodernen Terahertz-Techniken mit
anderen etablierten spektroskopischen Werkzeugen über einen weiten Energiebereich
von sub-meV bis zu mehreren eV wird es möglich sein, die verschiedenen gekoppel-
ten Energieskalen in Quantenmaterialien zu entflechten, um die Beziehung zwischen
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Hochtemperatur-Supraleitung und anderer miteinander verknüpfter Ordnungen zu
erforschen.

Eine weitere Herausforderung für die Untersuchung stark korrelierter Elektro-
nenmaterialien war die Herstellung reiner und qualitativ hochwertige Proben. Viele
der charakteristischen Eigenschaften korrelierter Elektronen- und Quantenmateriali-
en leiten sich von einer eingeschränkten Dimensionalität ab—das heißt, die Systeme
sind dreidimensional, aber sie besitzen eine Kristallstruktur oder Probengeometrie,
die in einer oder mehreren Dimensionen beschränkt ist. Traditionell, war die Her-
stellung von niederdimensionalen Systemen schwierig, da volatiler Sauerstoff für die
kristalline Struktur von enormer Bedeutung ist und dessen Verlust dazu führt, dass
Proben leicht zerfallen und kristalline Unordnung die elektronischen Zustände drama-
tisch verändert. In letzter Zeit haben Fortschritte in der Oxid-Molekularstrahlepitaxie
(engl. “molecular beam epitaxy”, kurz MBE) das Wachstum ultradünner Schichten
mit präziser Kontrolle der Unordnung und hoher Qualität ermöglicht, die von ande-
ren Techniken, wie zum Beispiel dem Laserstrahlverdampfen oder Magnetronsputtern
nicht erzielt werden können [11]. Der Erfolg der Oxid-MBE ermöglicht nun den Zu-
gang zu neuen Materialsystemen, wie z.B. ultradünnen Schichten. Kombiniert mit
den Fortschritten der breitbandigen phasensensitiven Terahertzspektroskopie erlaubt
dies eine genaue Untersuchung der Auswirkungen reduzierter Dimensionalität auf die
stark korrelierte Elektronenphysik.

In dieser Frage wurden in der Tat bereits viele wissenschaftliche Fortschritte er-
zielt. Untersuchungen des optischen Verhaltens, der Infraroteigenschaften und der
Summenregeln in den Kupferoxiden bilden ein zentrales Thema in der Erforschung
der Hochtemperatur-Supraleitung, das bis in die späten 1980er und frühen 1990er
Jahre zurückreicht. Ferninfrarot-Leitfähigkeitsmessungen waren der Schlüssel um die
Bedeutung der quasi-zweidimensionalen Kristallstruktur für die elektronischen Ei-
genschaften festzustellen und trugen dazu bei, die teilweise Unterdrückung der für
die sog. Pseudogap-Phase charakteristischen Zustandsdichte zu identifizieren. Die
starke Kopplung in Hochtemperatur-Supraleitern lässt jedoch vermuten, dass die
herkömmlichen optischen Summenregeln in den Kupferoxiden nicht eingehalten wer-
den, da durch die hohen Energieskalen der Korrelationseffekte hoch- und niederener-
getische optische Anregungen stark verflochten sind. Dies hat zu Theorien der un-
konventionellen Supraleitung geführt, die auf der Idee einer minimalen kinetischen
Energie basieren, bei dem das spektrale Gesamtgewicht bei niedrigen Energien im
supraleitenden Zustand gegenüber dem Normalzustandswert [12, 13] ansteigt. Meh-
rere Gruppen haben Studien basierend auf optischer Breitbandspektroskopie durch-
geführt, um dieses Problem zu lösen [14–16], aber die berichteten Ergebnisse sind
abhängig von Gittereffekten, dem subtilen Zusammenspiels zwischen verschiedenen
Kopplungsparametern und dem Spektralbereich, über den die Antwortfunktionen ge-
messen wird [17]. Um diese Fragen vollständig zu beantworten, sind spektroskopische
Breitbandmessungen erforderlich, die sowohl amplituden- als auch phasenempfind-
lich sind, um Energien unter ∼1 meV und über mehreren eV zu erreichen und die
Änderungen des spektralen Gewichts der optischen Leitfähigkeit mit der Bildung des
supraleitenden Zustands ins Verhältnis zu setzten.

Spektroskopische Methoden haben auch bereits einige Ergebnisse bei der Un-
tersuchung der reduzierten Dimensionalität in den Kupferoxiden erzielt. Im ersten
Jahrzehnt nach der Entdeckung der Hochtemperatur-Supraleitung halfen Messungen
der magnetischen Eindringtiefe im Submillimeter-, Mikrowellen- und Radiobereich,
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um die Supraleitung in Volumenproben der 3D-XY -Universalitätsklasse zuzuordnen
[18, 19]. Bei Annäherung an den zweidimensionalen Grenzfall sollten Fluktuationen
der 2D-XY -Universalitätsklasse zusammen mit dem charakteristischen Berezinskii-
Kosterlitz-Thouless-Übergang auftreten, bei dem Wirbel und magnetische Flussli-
nien sich spontan lösen und vermehren, wodurch die supraleitende Elektronendichte
abrupt auf Null getrieben wird. Während mehrere Studien Anzeichen des Berezinskii-
Kosterlitz-Thouless-Übergangs in der supraleitenden Elektronendichte einiger Kup-
feroxide [20–22] gefunden haben, beschränken sich die berichteten Messungen über-
wiegend auf die stark unterdotierte Seite des Phasendiagramms, wo quantenkriti-
sche Fluktuationen in der Nähe des unterdotierten quantenkritischen Punktes die
Kosterlitz-Thouless-Physik verschleiern. Experimente mit optimal dotierten und über-
dotierten Kupferoxiden sind erforderlich, wurden jedoch aufgrund der Nichtverfüg-
barkeit qualitativ hochwertiger Dünnschichtproben noch nicht durchgeführt. Solche
Messungen würden die Möglichkeit eröffnen, die Entwicklung verschiedener Parame-
ter, die für das Lösen der Wirbel entscheidend sind, über das gesamte Phasendia-
gramm zu verfolgen und einen Bereich zwischen quasi-1D und 3D erschließen, mit
dem Modelle stark korrelierter Elektronensysteme getestet werden können.

Die in dieser Dissertation präsentierten Ergebnisse konzentrieren sich auf breitban-
dige phasensensitive spektroskopische Messungen von ultradünnen DyBa2Cu3O7–δ-
Supraleiterfilmen, die das gesamte elektromagnetische Spektrum vom submillimeter-
mikrowellen bis zum UV Bereich (0.1 meV bis 6.5 eV) abdecken. Die Analyse die-
ser Ergebnisse zielt darauf ab, sowohl die Fragen der optischen Summenregeln in
Kupferoxid-Hochtemperatur-Supraleitern als auch das Verhalten von nahezu optimal
dotierten Kupferoxiden im 2D-Limit durch das “Schließen der Terahertz-Lücke” zu
beantworten. Hierbei ist besonders die Phasensensitivität dieser Messungen hervorzu-
heben; alle hier verwendeten spektroskopischen Techniken messen sowohl den Real-
als auch den Imaginärteil der komplexen dielektrischen Funktion, wodurch sowohl
die dissipative als auch die induktive Reaktion unabhängig voneinander extrahiert
werden können, ohne dass Modellannahmen oder Kramers-Kronig-Beziehungen er-
forderlich sind. Obwohl bereits verschiedene phasenempfindliche Techniken verwen-
det wurden, um sowohl Volumen- als auch Dünnschicht-Kupferoxide über nahezu
das gesamte Spektrum zu messen, konzentrieren sich die bisherigen Ergebnisse in der
Literatur typischerweise auf stückweise Analysen oder Messungen nur in einem Teil-
bereich des optischen Spektrums. Die Stärke der hier vorgestellten Versuchstechnik
besteht darin, dass wir erstmals die Antwortfunktion lückenlos über das gesamte Spek-
trum und der gleichen Proben bestimmt haben. Wir kombinieren diese Technik mit
Dünnschichtproben von extrem hoher Qualität, die mit einem kürzlich entwickelten,
hochmodernen Oxid-MBE-System synthetisiert wurden.

In Kapitel 2 stellen wir den wissenschaftlichen Hintergrund vor, welcher der in
unseren Ergebnissen behandelten Physik zugrunde liegt. Nach einer kurzen Einführ-
ung in die strukturellen Details, physikalischen Eigenschaften und das Phasendia-
gramm der Hochtemperatur-Kupferoxid-Supraleiter wenden wir uns der Physik su-
praleitender Fluktuationen zu. Es folgt eine detaillierte Diskussion der theoretischen
Grundlagen für das 2D-XY -Modell, den Berezinskii-Kosterlitz-Thouless Flusswirbel-
Entkopplungsübergang und das 2D Coulomb-Gas. Die Ausweitung der Theorie der
Flusswirbelentkopplung auf 2D-Supraleiter unterscheidet sich von ihrer Manifestati-
on in neutralen 2D-Suprafluiden, daher widmen wir mehrere Seiten einer Diskussion
des Effekts in konventionellen Supraleitern, um einen Bezugspunkt zu bieten, bevor
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wir zu einer detaillierten Bestandsaufnahme der aktuellen Forschung zum Berezinskii-
Kosterlitz-Thouless-Übergang in Kupferoxid-Supraleitern übergehen. Schließlich be-
handeln wir kurz die wichtigsten Punkte der Ferrell-Glover-Tinkham-Summenregel
für Supraleiter und ihren Zusammenhang mit der Hochtemperatur-Supraleitung.

Kapitel 3 beschreibt die zur Datenakquirierung und -analyse eingesetzten experi-
mentellen Methoden. Drei separate experimentelle Ansätze wurden verwendet: quasi-
optische Submillimeter-Interferometrie, Terahertz-Zeitbereichsspektroskopie und spek-
troskopische Ellipsometrie vom fernen Infrarot bis UV. Für quasioptische Interferome-
triemessungen im Submillimeterbereich wurde ein Mach-Zehnder-Interferometer mit
einem Rückwärtswellenoszillator als Quelle verwendet. Die Terahertz-Zeitbereichs-
spektroskopie wurde mit einem hochauflösenden Hochgeschwindigkeitsspektrometer
von Laser Quantum GmbH durchgeführt. Dieses Spektrometer basiert auf der asyn-
chronen optischen Abtastdetektionstechnik und bietet ein Messfenster von 1 ns und
eine Zeitauflösung von 20 fs mit einer spektralen Bandbreite von 1 GHz bis 20 THz.
Spektroskopische Ellipsometrie-Messungen wurden an drei separaten Instrumenten
erhalten; die Ferninfrarotmessungen wurden an der IR-1-Beamline des KARA-Synchro-
trons am Karlsruher Institut für Technologie durchgeführt, Mittel- und Nahinfrarot
an einem nahezu identischen In-House-Setup am Max-Planck-Institut für Festkörper-
forschung in Stuttgart, und an einem kommerziellen VASE-Spektrometer (J.A. Wool-
lam Co.) für sichtbares bis UV-Licht. Dieses Kapitel enthält eine detaillierte Dis-
kussion der technischen Aspekte und der Datenanalyse sowohl der quasioptischen
Submillimeter-Interferometrie als auch der Terahertz-Zeitbereichsspektroskopie, so-
wie einen Unterabschnitt über die Auflösungsgrenzen, denen das Terahertz-Zeitbe-
reichsmessverfahren unterliegt. Ein kurzer Überblick über die spektroskopische Ellip-
sometrie ist ebenfalls enthalten.

Der Hauptteil unserer experimentellen Ergebnisse wird in Kapitel 4 präsentiert.
Die Ergebnisse werden konzeptionell in zwei verwandte Themenbereiche unterteilt.
Zuerst wird in den Abschnitten 4.1–4.3 die Gültigkeit der Ferrell-Glover-Tinkham-
Summenregel und des Zwei-Fluid-Modells in ultradünnen DyBa2Cu3O7–δ Filmen
analysiert. Dies beginnt mit einer detaillierten Untersuchung der Qualität und des
Unordnungsniveaus in einer Reihe von Filmen mit Dicken von 7 bis 60 Elementarzel-
len. Obwohl in den Filmen definitiv Unordnung vorhanden ist, stellen wir fest, dass
das Unordnungsniveau für alle Filme in der Serie moderat bleibt und deutlich unter
den stark ungeordneten Bereich fällt, bei dem quantenkritische Fluktuationen begin-
nen, die Phase des supraleitenden Ordnungsparameters zu beeinflussen. Als nächstes
wird die gemessene optische Leitfähigkeit als Funktion der Temperatur dargestellt.
Diese Daten werden dann verwendet, um eine Kramers-Kronig-Konsistenzprüfung der
unabhängig gemessenen komplexen dielektrischen Funktion durchzuführen. Die Er-
gebnisse dieses Verfahrens zeigen, dass die Ferrell-Glover-Tinkham-Summenregel und
das Zwei-Fluid-Modell im Dünnfilm DyBa2Cu3O7–δ mit einem Fehler von 0,2% erfüllt
sind. Zweitens wird in den Abschnitten 4.4–4.6 das Verhalten der Suprafluiddichte in
den Filmen bei Annäherung an die 2D-Grenze untersucht. Die Gültigkeit der Ferrell-
Glover-Tinkham-Summenregel ermöglicht es uns, die Suprafluiddichte als Funktion
der Temperatur mit sehr hoher Genauigkeit zu extrahieren, da die Summenregel das
integrierte Gesamtspektralgewicht anstelle der Spektralantwort bei einer einzelnen
Frequenz behandelt. Wir stellen fest, dass die Temperaturabhängigkeit der Suprafluid-
dichte in Proben mit einer Dicke von 10 Elementarzellen und mehr einer “universel-
len” Temperaturabhängigkeit folgt, die für das kritische 3D-XY -Verhalten charakte-
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ristisch ist. Auf der anderen Seite beobachten wir unterhalb von 10 Elementarzellen
eine erhöhte Steigung der temperaturabhängigen Suprafluiddichte bei Annäherung an
Tc von unten. Wir argumentieren, dass dieses Verhalten auf das Vorhandensein eines
Berezinskii-Kosterlitz-Thouless-Flusswirbel-Entkopplungsübergangs in nahezu opti-
mal dotierten, ultradünnen DyBa2Cu3O7–δ-Filmen hinweist. Messungen des Effekts
in Gegenwart eines transversalen externen Magnetfelds scheinen qualitativ konsistent
mit der Abbildung des 2D-XY -Modells auf das 1D-Sinus-Gordon-Problem zu sein, bei
dem sich die Wirbelkernenergie aufgrund des Vorhandenseins des Feldes verschiebt.
Schließlich berichten wir über unsere Messungen zur Skalierung des Homes-Gesetzes
in ultradünnen DyBa2Cu3O7–δ Filmen. Unsere Leitfähigkeitsmessungen legen nahe,
dass das Homes-Gesetz in dünnen Kupferoxidschichten tatsächlich eingehalten wird.
Wir stellen jedoch fest, dass die Skalierungskonstante für die Filme um den Faktor
3 kleiner ist als die Skalierungskonstante in massiven Supraleitern. Aus diesen Er-
gebnissen argumentieren wir, dass in allen Proben eine nicht-supraleitende, ∼4 Ele-
mentarzellen dicke Schicht an der Substratgrenzfläche verbleibt, welche jedoch nicht
einfach mit epitaktisch induzierten Sauerstofffehlstellenverteilungen zusammenhängt.
Die vollständige Natur dieser nicht-supraleitenden Schicht bleibt unbekannt, aber wir
geben einige Spekulationen über ihren Ursprung.

Schließlich fasst Kapitel 5 unsere Ergebnisse kurz und bündig zusammen. Die
Anhänge enthalten detailliertere Informationen zu experimentellen Details und zum
Aufbau unseres Terahertz-Zeitbereichsspektrometers.



Chapter 1

Introduction

1.1 General Overview

The emergence of quantum materials has ushered in a great revolution in modern con-
densed matter physics. This new class of matter—defined as material systems that
possess electron wavefunctions with novel entanglement and topological properties—
offers researchers the opportunity to pursue both rich new physics and advanced
device functionalities alike [1]. While certain conventional solid state systems such as
semiconductor heterojunctions and classic superconductors can also be said to harbor
novel quantum-mechanical properties, quantum materials typically derive their traits
from strong electron-electron interactions and constrained dimensionality. Further-
more, they are characterized by what Philip W. Anderson famously termed “more is
different:” the macroscopic properties of quantum materials are more than simply the
sum of their parts, meaning that a constructionist approach from elementary princi-
ples is not sufficient to properly quantify and explain their physics as a whole [23].
The fascinating array of effects that are observed in quantum materials are examples
of emergent phenomena that reflect new kinds of broken symmetry that only become
evident when many-body systems are brought together in specific ways. New objects
and states such as topological insulators, graphene, high-temperature superconduc-
tivity, novel types of charge and current ordering, and spin textures called skyrmions
have entered the scientific lexicon and spawned entire research subfields of their own.
Strong electron correlations and entanglement also imply that a wide variety of dif-
ferent properties are likely to emerge from similar system configurations, and that by
tuning external parameters by only a small amount systems can be manipulated to
exhibit vastly different forms of order. Such traits immediately suggest that quantum
materials will find a place in the next generation of technological applications and as
analogs to explore the physics of complicated systems in other branches of physics.

Research on quantum materials was kicked off in the late 1980’s with the dis-
covery of high-temperature superconductivity in copper-oxide based perovskite com-
pounds [2]. At the time, the importance of the discovery of a new type of supercon-
ductivity was immediately understood, but the more far-reaching implications of the
compounds’ electronic structure beyond superconductivity only came to be grasped by
the scientific community some time later. In the quest to catalog and understand the
properties of both the superconducting state and the “normal” state above Tc, it was
realized that the copper oxides are defined by electronic properties that cannot be ex-
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plained by the standard quantum theory of solids, a theory that represented one of the
greatest scientific triumphs of the twentieth century. In addition to high-temperature
superconductivity, whose mechanism did not fit the Bardeen-Cooper-Schrieffer the-
ory for conventional superconductors, copper oxides were observed to host a wide
variety of other perplexing states, such as spin density waves, two and three dimen-
sional charge order, a “strange metal” state, and a mysterious “pseudogap” phase
that does not appear to break any known form of symmetry [3]. Additionally, all
these states are found in a relatively compact region of phase space and appear to be
intertwined, sometimes even competing with one another. Strong electron-electron
interactions and the quasi-two-dimensional crystal structure were identified as the
key factors giving rise to the odd properties, so the copper oxides became known as
“strongly correlated electron materials.” Later, when many more families of strongly
correlated electron materials were discovered and the importance of unconventional
properties of the electron wavefunction became more widely appreciated, this class of
systems took on the simpler name “quantum materials.” However, the fundamental
nature of the electron-electron interactions remains poorly understood. Some theo-
retical successes have been achieved in understanding the strongly correlated electron
problem in 1D and quasi-1D but these solutions are not fully generalizable to higher
dimensions [4]. It has now become widely accepted that a complete understanding of
high-temperature superconductivity in the copper oxides requires a full understanding
of strongly correlated electron physics, and vice versa.

By contrast, the study of electricity, magnetism, and the optical properties of
materials is a very old science. The electric attraction of chaff to amber and the
magnetic force between lodestone and iron were known to the ancients, and through
the works of Plato, Aristotle, Euclid, Theon, and Ptolemy they were able to deduce
the rectilinear propagation of light, the law of reflection, and the existence of refraction
[24]. In fact, our modern words to describe electricity and magnetism originate from
the ancient Greek words for amber and lodestone: ἤλεκτρον, ēlektron, and μαγνῆτις
λίθος, magnêtis lithos. The study of optics can be traced back to the Islamic scholar
Ibn al-Haytham in the early eleventh century and English Franciscan Roger Bacon
in the thirteenth century [25], although it was not until the late nineteenth century
when the modern science of optics took anything close to its present form. With the
completion of the quantum theory of solids in the first part of the twentieth century,
research on optical properties of materials flourished: measurements of the response
functions of all kinds of materials across nearly the full electromagnetic spectrum
from radio to X-ray matched the theory remarkably well and enabled rapid scientific
progress in many fields, from astrophysics, to solid state physics, to biology, greatly
expanding our understanding of the fundamental mechanisms of the physical world.
Technological progress in such diverse applications as telecommunications, computing,
medicine, remote sensing, and security soon followed. It is only natural, then, to turn
the techniques of the study of optical properties to superconductivity and quantum
materials.

The measurement of the submillimeter-microwave and infrared properties of con-
ventional superconductors is one of the crowning achievements of modern optical
physics and spectroscopy. In the mid-1950’s, working with both microwave cav-
ity resonance and far-infrared optical techniques, Rolfe Glover and Michael Tinkham
were able to observe the opening of the optical gap at low frequencies below Tc in thin
superconducting metal films [5,6]. The work showed that the optical gap is equivalent
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Figure 1.1 Strongly correlated electron materials harbor an array of intertwined and com-
peting forms of order that gives rise to a number of energy scales. Many of these energy
scales are found in the terahertz portion of the electromagnetic spectrum, but it is common
to find relevant excitations as high as several eV or above. The experimental challenge in
untangling these intertwined orders involves finding simple ways to relate changes in the
spectrum at low energies to changes that occur at energies several magnitudes higher.

to exactly 2∆, where ∆ is the superconducting energy gap, and paved the way for the
subsequent understanding of the microscopic theory by Bardeen, Cooper, and Schri-
effer in 1957. Later, additional measurements of the infrared conductivity confirmed
a set of sum rules for the conservation of spectral weight upon crossing over from
the normal state to the superconducting state [7] and provided direct measurements
of coherence effects in the electromagnetic absorption [8]. These results, along with
those from complementary experimental techniques, led to the premature belief that
superconductivity was a largely solved problem. With the advent of high-temperature
superconductivity and quantum materials there is again the need to understand the
low energy electrodynamics of the superconducting state in order to gain insight into
the fundamental mechanism. But, unlike in the case of conventional superconductiv-
ity, the array of intertwined and competing orders that are characteristic of strongly
correlated electron materials presents an unfortunate roadblock. Many of the energy
scales relevant in the copper oxides and other quantum materials lie in the terahertz
portion of the electromagnetic spectrum (see Fig. 1.1) [9], which has historically been
difficult to reach experimentally because it lies in the frequency range where tra-
ditional electronic and optical sources are weak. Furthermore, the strong electron
interactions and entanglement ensures that the low energy response is intrinsically
linked to high energy excitations that lie at several eV or above. In recent years new
spectroscopic techniques have emerged in the terahertz range by combining elements
of both electronic and optical sources, and these have now reached the point of devel-
opment where high accuracy and speed of measurement are possible [10]. By merging
these state-of-the-art terahertz techniques with other established spectroscopic tools
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across a wide energy range from sub-meV to several eV it will be possible to dis-
entangle the various coupled energy scales in quantum materials in order to explore
the relationship between high-temperature superconductivity and other intertwined
orders.

Another challenge for the study of strongly correlated electron materials has been
the ability to obtain suitably clean and high quality samples. Many of the character-
istic properties of correlated electron and quantum materials derive from constrained
dimensionality—that is, the systems are three-dimensional but they possess crys-
tal structure or sample geometry that frustrate one or several of these dimensions.
Examples of such systems include layered materials, thin films, nanowires, and quan-
tum dots, where upon each reduction in dimensionality additional physical properties
emerge. The difficulties for fabricating such materials are two-fold. First, there is the
question of how to grow dimensionally confined samples while maintaining the proper
crystallographic structure. Correlated electron materials such as the copper oxides
are typically constructed from complicated unit cells that contain many substructure
components and elemental species, such as metal-oxide layers, charge reservoir slabs,
oxygen chains or tetrahedra, and rare earth ions. Successfully assembling all compo-
nents in the correct order into a structure that is only a few unit cells across must
compete against the tendency of the samples to degrade or chemically break down
as the system attempts to find its most energetically favored configuration. Second,
samples of reduced dimensionality are highly susceptible to disorder because of the
outsized influence of edge and surface effects compared to the bulk properties. This
is further compounded by the intrinsic nature of correlated electron materials; the
intertwining and competition between various forms of order and strong electron in-
teractions implies that small changes in disorder level can easily push the system from
one state into another. As a result, fabrication techniques must find a way to reduce
disorder stemming from not only extrinsic defects and chemical species, but also the
formation of structural impurities and oxides that are composed of the same species
as the desired material. On this front atomic layer-by-layer oxide molecular beam
epitaxy (ALL-MBE) has made great strides in the past decade [11]. Unlike other
growth techniques such as pulsed laser deposition or reactive magnetron sputtering,
ALL-MBE takes advantage of low deposition energies and precise layer control to rou-
tinely achieve pristine layers as thin as a single monolayer. In fact, ALL-MBE grown
La1–xSrxCuO4 films have been used to demonstrate that high-temperature supercon-
ductivity can survive in a single CuO2 plane [26]. The success of oxide MBE now
allows new material regimes to be accessed, and coupling ultrathin films grown by this
method with the advances in terahertz and wide band phase sensitive spectroscopy
opens the door to precise investigation of the effects of reduced dimensionality on
strongly correlated electron physics.

Much scientific progress has indeed already been made on these issues. Studies
of the optical response, infrared properties, and sum rules in the copper oxides con-
stitute a central theme in high-temperature superconductivity research, stretching
back to the late 1980’s and early 1990’s. Far-infrared conductivity measurements
were key to establishing the importance of the quasi-2D crystal structure for the
electronic properties and were instrumental in identifying the partial suppression of
the density of states characteristic of the pseudogap phase. In the absence of a com-
prehensive theory of high-temperature superconductivity, scaling relationships were
optically investigated between various physical quantities across the phase diagram.
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One of these, known as Homes’ law, established a linear relationship between the
density of superconducting electrons and the product of Tc with the dc conductivity:
ρs0 ∝ σdcTc [27]. Interestingly, both copper oxides and conventional superconductors
were found to obey this relationship with the same proportionality constant irrespec-
tive of their doping or disorder levels. Since the conventional superconductors are
known to obey the optical conductivity sum rules, Homes’ law seems to suggest that
the high-temperature superconductors do too. However, the density of superconduct-
ing electrons in some copper oxides is nearly four orders of magnitude smaller than
that in conventional metallic superconductors, which implies that the Tc is large in
high-temperature superconductors because their electronic dissipation approaches the
largest values allowed by quantum mechanics [28]. Furthermore, the strong coupling
nature of high-temperature superconductivity raises the prospect that the conven-
tional two-fluid model and optical sum rules are not obeyed in a simple way in the
copper oxides, because the intertwining of various energy scales allows the possibility
that optical spectral weight may redistribute between very high and very low ener-
gies. This has led to theories of unconventional superconductivity based on the idea
of a kinetic energy saving mechanism, where the total spectral weight at low energies
in the superconducting state increases compared to the normal state value [12, 13].
Several groups have performed wide band optical spectroscopy studies to settle this
issue [14–16], but the reported results are sensitive to lattice effects, the nature of
the fine interplay between coupling parameters, and the spectral range over which
the response functions are measured [17]. Far-infrared spectroscopic experiments
have also found that lattice effects and electron-phonon interactions may give rise to
low energy modes at frequencies below 100 cm−1 that complicate the analysis of the
optical data due to the accumulation of appreciable low frequency spectral weight,
despite these modes not strongly affecting either the density of superconducting elec-
trons or Tc [29]. Unfortunately, traditional far-infrared reflectivity techniques are not
well-suited to exploring these low energy electrodynamics because they require model
dependent assumptions in the limit ~ω → 0 and Kramers-Kronig transformations
in order to extract the full complex conductivity. Rather, measurements below 100
cm−1 are needed that are fully amplitude and phase sensitive in order to relate the
evolution of the spectral weight to meV or sub-meV excitations. Questions regarding
the validity of the optical sum rules, kinetic energy saving mechanism, and the nature
of the scaling laws in thin films will then be able to be accurately explored.

Spectroscopic techniques have also already borne fruit in the study of reduced
dimensionality in the copper oxides. In the first decade after the discovery of high-
temperature superconductivity, measurements of the magnetic penetration depth in
the submillimeter, microwave, and radio portions of the spectrum were vital for as-
signing the superconductivity in bulk samples to the 3D-XY universality class [18,19].
This universality class, which high-temperature superconductivity shares with other
types of materials such as certain magnetic systems, establishes that the critical
scaling behavior obeys specific material independent trends; in particular, the su-
perconducting electron density is proportional to T 2/3 near Tc. Upon approaching
the two-dimensional limit fluctuations belonging to the 2D-XY universality class
should appear along with the characteristic Berezinskii-Kosterlitz-Thouless transi-
tion, where vortices and magnetic flux lines spontaneously unbind and proliferate,
driving the superconducting electron density to zero with different scaling behavior.
Such 2D-XY fluctuations have only been observed in optimally doped copper ox-
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ide samples at thicknesses less than 100 nm in Bi2Sr2CaCu2O8+δ [20]. It has been
shown that 2D-XY fluctuations are more visible in underdoped copper oxides where
the superconducting electron density is dramatically smaller [21], but near the un-
derdoped quantum critical point where Tc → 0 quantum critical fluctuations place
the superconducting state into the (3 + 1)D-XY universality class and obscure signa-
tures of the Berezinskii-Kosterlitz-Thouless transition [20, 22]. Recently, theoretical
work mapping the 2D-XY model to the 1D sine-Gordon problem with variable vortex
core energy and Tc inhomogeneity has been performed and successfully fits experi-
mental data in both conventional superconductors and heavily underdoped copper
oxides [30–33]. However, similar application of the sine-Gordon model of 2D-XY
fluctuations to copper oxides in the optimally doped and overdoped regimes has not
yet been carried out, largely due to the inavailability of data that definitively display
signatures of 2D vortex unbinding. Quality measurements in these doping ranges have
been difficult to obtain because sample disorder and dynamical vortex pinning due
to fixed probe frequencies (such as those in mutual inductance experiments) tends to
strongly obscure signatures of 2D fluctuations, and in samples where the supercon-
ducting electron density is large the fluctuation regime is expected to exist only in a
narrow temperature range below Tc. More accurate studies of 2D superconductivity
in optimally doped and overdoped copper oxides will require pristine thin film samples
with a higher degree of control over sample disorder, as well as measurements of the
superconducting electron density carried out across a broad range of frequencies to
avoid issues related to dynamical vortex pinning. Such measurements would enable
the possibility to chart the evolution of the vortex core energy and couplings across
the full phase diagram, and offer an intermediate case between quasi-1D and 3D by
which to test models of strongly correlated electron systems.

The study of the fundamental phenomena and processes in high-temperature
superconductors and the dramatic interplay between the myriad forms of order in
strongly correlated electron materials promises to allow us to move beyond simply
understanding the physics of this class of matter to manipulating the phenomena
and engineering functional quantum materials. Studies of the effects of constrained
dimensionality and optical properties lie at the core of these future directions. The
devices of tomorrow will most likely take advantage of multiple advanced properties—
topology, dimensionality, novel phases, optical response, strain, etc.—to achieve mul-
tifaceted capabilities. The strong intertwining of different orders and the interaction
between various effects enable the possibility to exploit these traits for functionali-
ties as diverse as more efficient logic gates, versatile quantum sensors, better linkages
to optical communications, and even completely new computing paradigms such as
quantum computing.

1.2 Scope of the Thesis

The results presented in this thesis focus on wide band phase sensitive spectroscopic
measurements of ultrathin DyBa2Cu3O7–δ superconducting films that span the full
electromagnetic spectrum from the submillimeter-microwave to UV (0.1 meV to 6.5
eV). The analysis of these results seeks to address the salient issues regarding both the
optical sum rules in copper oxide high-temperature superconductors and the behavior
of the same in the 2D limit by “closing the terahertz gap” to directly relate changes
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of the low energy electodynamics between the superconducting and normal states to
shifts of the optical spectral weight at higher energies. The phase sensitive nature
of these measurements must be emphasized; all spectroscopic techniques used here
measure both the real and imaginary part of the complex dielectric function, which
allows both the dissipative and inductive response to be extracted independently
without need for model assumptions or Kramers-Kronig relations. While various
phase sensitive techniques have indeed been used before to measure both bulk and
thin film copper oxides across nearly the full spectrum, the prior results given in the
literature typically focus on piecemeal analysis or measurements in only a subset of
our spectral range. The strength of the experimental technique presented here is that,
for the first time, we are able to obtain the response functions across the full spectrum,
without gaps, of the same samples. We pair this technique with thin film samples of
ultra high quality grown by a recently developed, state-of-the-art ALL-MBE system.

In Chapter 2 we introduce the scientific background that underpins the physics
treated in our results. After a brief introduction to the structural details, physical
properties, and phase diagram of the high-temperature copper oxide superconductors,
we turn our attention to the physics of superconducting fluctuations. A detailed dis-
cussion of the theoretical basis for the 2D-XY model, Berezinskii-Kosterlitz-Thouless
vortex unbinding transition, and 2D Coulomb gas is given. The extension of the
theory of vortex unbinding to 2D superconductors differs from its manifestation in
neutral 2D superfluids, so we dedicate several pages to a discussion of the effect in
conventional superconductors to provide a point of reference before moving on to a
detailed survey of the status of current research on the Berezinskii-Kosterlitz-Thouless
transition in copper oxide superconductors. Finally, we briefly treat the key points
of the Ferrell-Glover-Tinkham sum rule for superconductors and how it relates to
high-temperature superconductivity.

Chapter 3 describes the experimental technique used to obtain and analyze the
data. Three separate experimental approaches were used: submillimeter quasioptical
interferometry, terahertz time-domain spectroscopy, and far-infrared to UV spectro-
scopic ellipsometry. Submillimeter quasioptical interferometry measurements were
obtained by means of a Mach-Zehnder interferometer with a backward wave oscilla-
tor as the source. Terahertz time-domain spectroscopy was performed with a high
resolution, high speed spectrometer purchased from Laser Quantum GmbH. This
spectrometer, based on the asynchronous optical sampling detection technique, boasts
a 1 ns measurement window and a 20 fs time resolution, with a spectral bandwidth
spanning 1 GHz to 20 THz. Spectroscopic ellipsometry measurements were obtained
on three separate instruments; the far-infrared measurements were performed at the
IR-1 beamline of the KARA synchrotron at the Karlsruhe Institute of Technology,
mid- and near-infrared on a nearly identical in-house setup at the Max Planck In-
stitute for Solid State Research in Stuttgart, and a commercial visible-to-UV VASE
purchased from J. A. Woollam, Co. This chapter contains detailed discussion of the
technical aspects and data analysis in both submillimeter quasioptical interferometry
and terahertz time-domain spectroscopy, as well as a subsection on the resolution
limits inherent in the terahertz time-domain measurement process. A brief overview
of spectroscopic ellipsometry is also included.

The main body of our experimental results are presented in Chapter 4. The results
are conceptually separated into two related themes. First, as discussed in Sections
4.1–4.3, the validity of the Ferrell-Glover-Tinkham sum rule and two-fluid model in
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ultrathin DyBa2Cu3O7–δ films are analyzed. This begins with a detailed investigation
of the quality and disorder level in a series of films with thicknesses varying from 7
to 60 unit cells. While disorder is certainly present in the films, we find that the dis-
order level for all films in the series remains moderate and falls well below the highly
disordered regime where quantum critical fluctuations begin to affect the phase of
the superconducting order parameter. Next, the measured optical conductivity as a
function of temperature is presented. This data is then used to perform a Kramers-
Kronig consistency check of the independently measured complex dielectric function.
The results of this procedure indicate that the Ferrell-Glover-Tinkham sum rule and
two-fluid model are satisfied in thin film DyBa2Cu3O7–δ to within 0.2% error. Second,
an exploration of the behavior of the superfluid density in the films upon approaching
the 2D limit is given in Sections 4.4–4.6. The validity of the Ferrell-Glover-Tinkham
sum rule allows us to extract the superfluid density to very high accuracy as a func-
tion of temperature because the sum rule treats the integrated total spectral weight
rather than the spectral response at a single frequency. We find that the temperature
dependence of the superfluid density in samples 10 unit cells thick and greater fol-
lows a “universal” temperature dependence that is characteristic of 3D-XY critical
behavior. On the other hand, below 10 unit cells we observe a steepening of the su-
perfluid density temperature dependence upon approaching Tc from below. We argue
that this behavior is indicative of the presence of a Berezinskii-Kosterlitz-Thouless
vortex unbinding transition in near optimally doped, ultrathin DyBa2Cu3O7–δ films.
Measurements of the effect in the presence of a transverse external magnetic field
appear to be qualitatively consistent with the mapping of the 2D-XY model to the
1D sine-Gordon problem, where the vortex core energy shifts due to the presence
of the field. Finally, we report our measurements relating to Homes’ law scaling in
ultrathin film DyBa2Cu3O7–δ. Our conductivity measurements suggest that Homes’
law is indeed obeyed in thin copper oxide films. However, we find that the scaling
constant for the films is smaller than the scaling constant in bulk superconductors by
a factor of 3. From these findings we argue that a non-superconducting, ∼4 unit cell
thick layer at the substrate interface remains in all samples, but which is not simply
related to epitaxially induced oxygen vacancy distributions. The full nature of this
non-superconducting layer remains unknown, but we provide some speculations as to
its origin.

Lastly, Chapter 5 succinctly summarizes and concludes our findings. The Appen-
dices are reserved for more detailed information regarding experimental details and
construction of our terahertz time-domain spectrometer.



Chapter 2

High-Temperature
Superconductivity in Cuprate Thin
Films

In the early 1980’s, spurred on by the prediction of a possible bipolaronic to super-
conducting transition in strongly coupled electron-phonon systems [34], as well as
their own experience in working with perovskite oxides, Georg Bednorz and Alex
Müller set out to find a new kind of superconductor with a Tc much higher than
that of previously known materials. They reasoned that, since in the BCS theory
Tc = 1.13θDe

−1/N(0)V , the Tc could be strongly enhanced if the density of states N(0)
and the coupling V could be increased. They succeeded in 1986 with the discovery of
La2–xBaxCuO4+y ; the new material showed a transition temperature in excess of 30
K [2]. Their report contained evidence of only a resistive transition with no Meiss-
ner data, but within just a few weeks the discovery was confirmed independently by
groups working in Tokyo and Houston. The following year C. W. Chu and M. K.
Wu discovered [35] and isolated the compound YBa2Cu3O7–δ, which was observed to
have a Tc as high as 93 K.

The discovery of high-Tc copper oxide superconductors ignited a firestorm of re-
search activity that has lasted for more than 35 years. The importance of the dis-
covery was immediately recognized and Bednorz and Müller were awarded the Nobel
Prize in Physics in 1987. At first, the existence of superconductivity in oxide systems
surprised and confounded the scientific community, because until then it had been un-
derstood that oxide materials were highly insulating and that superconductivity was
a phase that nucleated out of a metallic parent state. Copper oxides, it turned out,
are not only bad conductors, but exhibit bizarre properties and extreme complexity
that cannot be described within the standard framework of the quantum theory of
solids. Much of the activity of the past 35 years has been devoted to unraveling and
understanding the underlying physics of this class of materials.

The purpose of this chapter is to introduce the materials and concepts that form
the basis of the experimental results presented in this thesis. In Section 2.1 the gen-
eral properties and phase diagram of the copper oxide superconductors are discussed.
Section 2.2 then introduces the ideas of phase fluctuations and reduced dimension-
ality in superconductors and, based on these concepts, develops a description of the
Berezinskii-Kosterlitz-Thouless vortex unbinding transition. The nature of this tran-
sition in conventional superconductors is discussed as a point of reference before
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Figure 2.1 (a) The crystal structure of the copper oxide high-temperature superconductors
La2–xSrxCuO4 and YBa2Cu3O7–δ. (b) The structure of an individual CuO2 plane, with
the Cu 3dx2−y2 (blue) and O 2px,y (red) orbitals shown. Figure adapted from Ref. [37].

turning to the details of the Berezinskii-Kosterlitz-Thouless phenomenon in high-Tc
copper oxide superconductors. Finally, in Section 2.3, the optical conductivity sum
rules in the cuprates are introduced and the relationship between the superfluid den-
sity and the conductivity is discussed.

2.1 Copper Oxide Superconductors

Since the original discovery of La2–xBaxCuO4+y more than 200 cuprates grouped into
7 families have been discovered [36]. While specific details of the various compounds
vary considerably, all are known to share the same basic structure, which consists of
a system of conducting CuO2 planes separated by insulating charge reservoir layers.
This structure, illustrated in Fig. 2.1 for La2–xSrxCuO4 (LSCO) and YBa2Cu3O7–δ

(YBCO), is the prime defining feature of the high-Tc copper oxides and ensures that
they have a fundamentally two-dimensional (2D) character, even in bulk. For suffi-
cient charge concentration (doping) the superconductivity resides in the CuO2 planes.
In the so-called hole doped cuprates, which are the focus of this thesis, chemical sub-
stitutions in the charge reservoir layers draw electrons out of the CuO2 planes leaving
holes, or charge vacancies. In LSCO this is done by substituting several percent
of La with Sr (or Ba) around the CuO6 octahedra. In YBCO, on the other hand,
the doping takes place by oxygen inclusion (or removal) in the CuO chains, which
run along the crystallographic b-axis. This difference leads to structural variation
between LSCO and YBCO. LSCO has tetragonal symmetry at high temperatures
with a = b = 3.78 Å and c = 13.2 Å in the I4/mmm space group, although at low
temperatures distortions of the CuO6 octahedra result in a structural transition to a
low-temperature tetragonal phase. The CuO chains in YBCO break four-fold rota-
tional symmetry and the structure of that compound is instead orthorhombic, with
a = 3.828 Å, b = 3.888 Å, and c = 11.65 Å, belonging to the Pmmm space group.
Importantly, the non-stoichiometric nature of the compounds and dependence of the
superconductivity on dopant concentration imply that disorder will be very relevant
to the physical properties of the cuprates.

The two compounds also differ in their numbers of CuO2 planes per unit cell, and
this has important implications for superconductivity. The LSCO family, with its
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single CuO2 plane per unit cell, sports a maximum Tc of 36 K at ambient pressure [36],
but the aforementioned distortions of the CuO6 octahedra at low temperatures can
produce a corrugated potential that leads to the formation of stripe phases and a
suppressed Tc in certain doping ranges [4]. The YBCO family contains two CuO2

layers per unit cell with the O atoms displaced somewhat above and below the planes
formed by the Cu atoms, as depicted in Fig. 2.1(a). This bilayer structure is further
characterized by the placement of the Y3+ ion between the two CuO2 planes. It was
realized early on [38] that substitution of Y with Gd, the most magnetic of the rare
earth elements, did not suppress Tc by much more than one or two K. This led to the
understanding that the rare earth ion is electronically isolated from the CuO2 planes
and does not play a role in superconductivity, but rather serves to stabilize the crystal
structure. As a result Y can be replaced with any of the rare earth elements with
minimal change to the superconducting properties, and we denote the YBCO family
instead as RBCO (where R = Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or
Lu). The few notable exceptions are Pr and Ce, where superconductivity is rapidly
destroyed with just a few percent substitution of Y with these rare earths. It has
been speculated that Pr/Ce 4f to O 2p hybridization, carrier localization, or rare
earth substitution on the Ba site (due to the similarity of the ionic radii) destroys
superconductivity without significant lattice distortion [39,40].

As illustrated by the depiction of a single CuO2 plane in Fig. 2.1(b), the relevant
electronic states involve the Cu 3dx2−y2 and O 2px,y orbitals. By contrast, conventional
superconductors are polyelectronic, three-dimensional (3D) metals whose supercon-
ductivity is characterized by an s-wave order parameter. Inelastic neutron scattering
studies in the YBCO system reported observation of a spin resonance peak that sug-
gested magnetic scattering was intimately tied to the superconducting state and pro-
vided evidence for an unconventional pairing mechanism in the copper oxides [41–44].
Indeed, since the relevant electrons for Cooper pairing lie in a band constructed from
Cu dx2−y2 orbitals, dx2−y2 symmetry became the leading candidate for the symmetry
of the order parameter. Later experiments confirmed this hypothesis and definitively
revealed the pairing symmetry in the cuprates to be d-wave [45].

The much broader implications of the electronic structure on the physics of copper
oxides are that, in addition to the appearance of an unconventional superconducting
state, the strong electron interactions in the cuprates place them into a much larger
overarching category of highly correlated “quantum materials” that are characterized
by a complicated phase diagram with many competing and intertwined orders [3].
For the cuprates, these intertwined orders are summarized by the phase diagram in
Fig. 2.2. The undoped parent compounds of the cuprates (RBa2Cu3O6 in the case
of RBCO and La2CuO4 in the case of LSCO), located at p = 0 in the diagram, are
antiferromagnetic charge-transfer Mott insulators with the magnetic moments lying
on the Cu sites in the CuO2 planes. With a small amount of hole doping, however, the
bewildering array of intertwined orders appears. The normal state at temperatures
above the superconducting dome is nominally metallic but badly conducting. Indeed,
this “strange metal” phase contains a number of anomalies that suggest it cannot
be described by the conventional Fermi liquid theory, such as the % ∝ T dependence
of the resistivity (instead of % ∝ T 2) [46, 47]. This T -linear behavior is observed to
extend from very low temperatures (when superconductivity is suppressed in high
magnetic fields) up to very high temperatures, with no sign of saturation as is seen in
standard metals, indicating that the strange metal regime likely terminates at T = 0
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Figure 2.2 The phase diagram of the copper oxide high-temperature superconductors [3].

beneath the peak of the superconducting dome. At very high dopant concentrations,
beyond the upper limit of the superconducting dome, the metallic behavior crosses
over to that of the usual Fermi liquid description.

Specific to the copper oxide superconductors is the so-called pseudogap state that
lies on the underdoped side of the phase diagram between the antiferromagnetic and
strange metal regimes. This state is characterized by a partial reduction in the den-
sity of states below the temperature T ∗, and was first observed in measurements
of the nuclear magnetic resonance Knight shift and c-axis polarized infrared con-
ductivity [48–50]. Later, scanning tunneling spectroscopy (STS) and angle-resolved
photoemission spectroscopy (ARPES) also provided strong evidence for the existence
of the pseudogap [51,52]. In particular, for a wide range of dopings, the ARPES mea-
surements show the absence of any quasiparticle peaks along the antinodal directions
(where the superconducting gap function is the largest), while distinct quasiparticle
peaks appear on the Fermi surface in the nodal directions that trace out an arc shape
(the so-called “Fermi arcs”). This behavior reflects the opening of a partial gap be-
low T ∗ that evolves to become like the superconducting gap below Tc and at higher
dopings. The pseudogap state is especially notable in that it is not accompanied by
any known patterns of symmetry breaking, which, together with the ARPES data,
gave rise to the hypothesis that the pseudogap represents a state of incoherent, phase-
fluctuating preformed Cooper pairs where T ∗ is the initial pairing temperature and
Tc is instead the temperature where the Cooper pair phase locks, making macroscopic
superconductivity appear [53].

Evidence suggests that within the pseudogap a variety of additional intertwined
order can be found [4]. Data from resonant inelastic X-ray scattering and inelas-
tic neutron scattering experiments indicate that antiferromagnetic order is at least
partially coexistent with superconductivity at low temperatures in a wide variety of
cuprate families [3, 54–57]. Additional X-ray and neutron scattering studies point to
the presence of charge density wave (CDW), spin density wave (SDW), and electron
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nematic order at temperatures below T ∗ [3]. Charge order, in particular, has been
observed to compete with superconductivity; X-ray diffraction peaks corresponding
to an incommensurate CDW display a substantial reduction in scattering intensity
below Tc, but the X-ray signal is recovered after superconductivity is suppressed with
the application of a magnetic field [58]. Stripe order in LSCO is observed to appear
in the underdoped and pseudogap regime around the “dip” or “plateau” in the su-
perconducting dome. In LBCO the dip extends all the way down to Tc = 0 at the
doping level x = 1/8, constituting the “1/8 anomaly” in that material. Such stripy
charge ordering has also recently been found to appear in YBCO in the presence of
a magnetic field [59], after application of uniaxial strain [60], and in thin films by
epitaxial stabilization [61]. It has thus been proposed that the suppression of the
superconductivity in the underdoped regime is indicative of a competition between
superconductivity and different forms of order that crystallize out of the pseudogap
phase. Indeed, the stripe order itself may signal the existence of a “pair-density wave”
state, a potential new state of matter where CDW, SDW, and superconducting order
are all intertwined such that superconductivity is strongly spatially modulated, with
the phase of the superconducting order parameter alternating from one stripe to the
next [4].

There are also indications that the pseudogap T ∗ line in the phase diagram reaches
T = 0 near optimal doping beneath the superconducting dome. This quantum critical
point appears to be located at the same point where the strange metal phase also
extrapolates to zero temperature. It is known from the physics of phase transitions
that the existence of a quantum critical point is associated with quantum critical fluc-
tuations that are characterized by spatial and temporal scale invariance; this property
leads to the critical scaling laws of the various classes of physical systems [62]. In the
copper oxide high-Tc materials, the scaling of the superfluid density with the normal
state dissipation (known as Homes’ law) implies that the energy relaxation time is
independent of the specific material details and is instead given by ~/kBT , which is
the quantum mechanical limit of how short the dissipation timescale can physically
be [27, 28]. Thus, directly above the quantum critical point, the temperature scale
where the fluctuations are scale invariant is arbitrarily large, and a quantum critical
region opens upward in the phase diagram. It is possible, then, that the strange metal
phase of cuprates can be interpreted as a quantum critical fluctuation region of a more
fundamental order parameter [3]. However, a more well-developed understanding of
the strange metal and critical fluctuations in the optimally and overdoped region of
the phase diagram is needed to determine if this is indeed the case.

Theoretical models describing the physics of strong correlations have mostly been
solved in one dimension, but the mathematical techniques needed to elucidate the
problem in higher dimensions are largely undeveloped. While an understanding of
the pseudogap, strange metal, and superconductivity in bulk copper oxides is the
ultimate goal, an understanding of the system in 2D or quasi-2D marks a clear in-
termediate step. It is expected that in 2D the pair-density wave state, if it indeed
exists, will spawn a proliferation of topological transitions between different kinds of
CDW, superconducting, and nematic electronic states as a function of temperature
and phase stiffness of the various order parameters [4]. Recent advancements in thin
film materials synthesis have enabled precise control of the electronic structure in the
copper oxides and have opened the door to atomic-level engineering and dimension-
ally constrained studies of the correlations in these materials [26,63,64]. Importantly,
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such techniques provide the ability to tune the disorder level, which makes it possible
to also explore the complicated interplay between inhomogeneity and unconventional
order [1].

2.2 Fluctuations in High-Tc Superconductors

2.2.1 The Ginzburg-Landau Theory

The phenomenological Ginzburg-Landau (GL) theory [65] was the first serious at-
tempt to approach the problem of superconductivity from a quantum mechanical
perspective. Based on Landau’s theory of second order phase transitions [66], the GL
theory treats the superconducting transition through an expansion of the free energy
in powers of the order parameter, which is taken to be the wavefunction ψs(r) of the
superconducting state (|ψs|2 is assumed to be proportional to the density of super-
conducting electrons ρs). Specifically, the free energy expansion is taken in powers of
|ψs(r)|2 and |∇ψs(r)|2, leading to two coupled differential equations in terms of ψs(r)
and the vector potential A(r). As a result, the theory is only valid close to the phase
transition where Tc− T � Tc, but the inclusion of the spatial dependence, gradients,
and vector potential make the theory useful in situations where superconductivity is
inhomogenous or the nonlinear response to fields is strong enough to affect ρs(r). The
microscopic BCS theory, by contrast, can quickly become difficult or computation-
ally burdensome in these situations. Thus, while phenomenological, the GL theory is
advantageous for treating the macroscopic behavior of the magnetic field dependence
and superfluid density in situations where the BCS theory is of limited utility. No-
tably this also includes situations where the BCS theory has no applicability at all,
such as in the case of high-Tc and unconventional superconductors.

For an inhomogenous superconductor in a uniform external magnetic field H, the
Gibbs free energy density F is expanded as

FsH = Fn +

∫ [
α |ψs|2 +

β

2
|ψs|4 +

1

4m

∣∣∣∣(−i~∇− 2e

c
A

)
ψs

∣∣∣∣2 +
H2

8π

]
d3r

with expansion coefficients α and β, and dropping the explicit spatial dependence in
ψs(r) and A(r). Minimizing FsH with respect to ψs and A using standard variational
approaches leads to the GL equations

0 = ξ2
GL

(
i∇+

2π

Φ0

A

)2

ψs − ψs + |ψs|2 ψs (2.1)

J =
Φ0c

16π2λ2i
(ψ∗s∇ψs − ψs∇ψ∗s)−

c

4πλ2
|ψs|2 A, (2.2)

where the Ginzburg-Landau coherence length ξGL and effective London penetration
depth λ are defined as

ξGL(T ) =
~c

2
√

2eHc(T )λ(T )
(2.3)

λ2(T ) =
mc2

8πe2 |ψs(T )|2
. (2.4)
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The GL coherence length represents the characteristic length scale over which varia-
tions in ψs(r) occur while the effective London penetration depth is the characteristic
depth to which a weak external magnetic field and hence the supercurrent penetrate
into the superconductor.

The quantity Φ0 = hc/2e is the fluxoid quantum. Quantization of the fluxoid
rather than the magnetic flux Φ =

∮
C

A · d` follows from spontaneous symmetry
breaking of the wavefunction in the superconducting state and the gauge invariance
of the GL equations. Here, the term spontaneously broken symmetry refers to the
property that the Hamiltonian of a given system is invariant under a specific symmetry
transformation in the thermodynamic limit while the ground state of the Hamiltonian
is itself not invariant under this symmetry transformation [67]. However, according
to Elitzur’s theorem, spontaneous breaking of local symmetry for a symmetric gauge
theory is impossible [68]. The Hamiltonian of a superconductor is symmetric with
respect to gauge choice, so gauge symmetry is a local symmetry and hence cannot
be broken. On the other hand, the U(1) symmetry (continuous rotational symmetry
about a single axis) of the phase ϕ of the wavefunction can be spontaneously broken.
To see this, we note that the BCS ground state of a superconductor,

|ψϕ〉 =
∏
k

(
uk + vke

iϕc†k↑c
†
−k↓

)
|0〉 ,

is not invariant under the phase transformation ϕ(r)→ ϕ(r)+ϑ for ϑ independent of
spacetime, but it is gauge invariant because a proper gauge transformation requires
both [67]

c†k↑ → ei
e
~cΛc†k↑ and ϕ→ ϕ− 2e

~c
Λ.

The corresponding gauge transformations of the GL equations are then written as
A → A′ + Φ0∇ϕ/2π and ψs → ψ′se

iϕ(r), where ϕ(r) is arbitrary. The function |ψs|
is then single-valued as is required by the constraint that the observable penetration
depth λ is single-valued, and the order parameter ψs is in general complex. Rewriting
the second GL equation (Eq. 2.2) as

J =
c

4πλ2

(
Φ0

2π
∇ϕ−A

)
|ψs|2

and integrating J around an arbitrary closed contour yields

nΦ0 |ψs|2 =

∮
C

(
4πλ2

c
J + A |ψs|2

)
· d`.

The gradient of the phase ∇ϕ is multiple-valued so 2πn =
∮
C
∇ϕ · d` must equal an

integer multiple of 2π to ensure single-valuedness of |ψs|. If the contour encloses a
simply connected area that contains no holes or normal state regions, then the contour
of integration C can be shrunk down without crossing a boundary until it encloses
a single point, at which nΦ0 = 0 and zero net flux is enclosed, as expected in the
Meissner state. On the other hand, if the contour of integration encloses a cavity or
a non-superconducting region, then the presence of the boundary forces nΦ0 to take
a nonzero integer multiple value of Φ0. If C is taken to lie everywhere along its loop
further than ∼λ from the cavity walls, then the supercurrent J = 0 and nΦ0 = Φ
so that the fluxoid is indistinguishable from the total enclosed flux. Therefore, the
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opening of a small cavity or the appearance of a small non-superconducting region
allows the superconductor to admit a single quantum of flux and the phase slips by
2π. Or, equivalently, a phase fluctuation of the wavefunction by 2π is accompanied
by the appearance of a supercurrent vortex that supports a single quantum of flux
passing through the non-superconducting vortex core of cross sectional area ∼ξ2

GL.
Deep in the superconducting state at T � Tc the free energy cost to create a

vortex and admit flux is high and phase fluctuations have negligible effect on the su-
perconducting wavefunction. This is evident because the energy density of a flux line
including the kinetic energy of the circulating supercurrent is U = H2

c ln (λ/ξGL)/2π =
4(Fn−Fs) ln (λ/ξGL) [8], and for typical high-Tc superconductors λ� ξGL. However,
close to Tc, Hc(T → Tc) approaches zero and thermal fluctuations allow the system to
sample states which are within ∼kBT of the minimum free energy state, making ther-
mally activated vortices and phase slips possible. Still, the total energy required for
such a phase slip is on the order H2

c (T )ξ2
GLR for a sample size R, so for an arbitrarily

large bulk sample the superconducting state will not admit vortices in the absence
of an applied external magnetic field even very close to Tc. For thin superconducting
films, on the other hand, the energy needed to excite a vortex by thermal fluctuation
may be considerably less than kBTc.

2.2.2 The Berezinskii-Kosterlitz-Thouless Transition

In a very general sense, physical systems can be classified by how they are described in
a D-dimensional n-vector framework, termed the O(n) model, first elucidated in 1968
by Eugene Stanley [69]. The basic properties of the model are that given a classical
D-dimensional lattice, each site on the lattice is described by an n-dimensional unit
vector that is coupled to its neighbors. For example, the O(1) model describes Ising
systems, O(2) corresponds to the XY model, and O(3) represents the Heisenberg
model. The O(n) model is immensely important in physics because it serves as a
cornerstone in our contemporary understanding of phase transitions. In fact, by
studying a generalization of the D-dimensional O(n) model and searching for its
critical behavior, Kenneth G. Wilson was led to the discovery of the renormalization
group [70,71], for which he was awarded the 1982 Nobel Prize in Physics. Application
of the renormalization group to 2D systems turned out to be crucial for the later
discovery of an entirely new type of phase transition that is not defined by its pattern
of symmetry breaking.

Early work by Peierls [72] and Landau [73,74] showed, using heuristic arguments,
that 2D solids cannot host spontaneous breaking of continuous symmetry on the
grounds that the mean-square fluctuations increase logarithmically with the size of
the system. For a 2D crystal this physically corresponds to a scenario where the
thermal motion of long wavelength phonons destroys the long-range positional order
of the atoms at the lattice sites. Similarly, in 2D magnets the long-range magnetic
correlations are destroyed by long wavelength spin waves. Later, Mermin, Wagner,
and Hohenberg were able to rigorously prove by the use of Bogoliubov’s inequality,
without the simplifying assumptions of either a harmonic approximation or an order
parameter expansion, that long-range order vanishes in the thermodynamic limit
for all 2D systems [75, 76]. However, while the mean-square fluctuations scale with
the size of the system, the fluctuation instabilities are weak and positional order
persisting over mesoscopic length scales is not ruled out. Long-range directional
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order, on the other hand, is still transmitted infinitely far in a 2D crystal, so the
definition and direction of crystalline axes is preserved [77]. Furthermore, at T = 0
the ground state of the system must be ordered in the thermodynamic limit because
the fluctuation correlation function tends to a finite value [66]. As a result one would
expect the existence of some type of phase transition at a nonzero temperature that
is characterized by the destruction of long-range order over macroscopic length scales.

Inconclusive evidence for the existence of such a transition in 2D systems first
appears in the results of numerical calculations which show a phase transition between
a solid state and a fluid state in a 2D array of elastic particles [78]. Low-temperature
expansions of 2D spin models further indicate that magnetization M ∝ Hα for some
power 0 < α < 1 as T → 0, rather than the M ∝ H dependence found at high
temperatures [79,80]. Consequently, high-temperature expansions of such spin models
provide similar evidence, with a divergence in the magnetic susceptibility at low but
finite temperatures [81]. However, results simultaneously point to either an absence
or a weakening of the transition in the 2D Heisenberg model as compared to a 2D
system of planar rotators, implying that a phase transition is more favorable in the
2D-XY model [69, 82].

Vortex Unbinding

It turns out that there is a strong similarity between certain types of planar 2D mag-
nets and superfluid films. First Berezinskii [83] and then Kosterlitz and Thouless [84]
rigorously showed that superfluids and systems characterized by the XY model in 2D
do indeed exhibit long-range order at finite temperatures with a critical temperature
TBKT where the rigidity modulus drops to zero. They were able to do this by con-
sidering a straightforward argument based on the balance of free energy in a generic
2D-XY model system. In the 2D-XY model the Hamiltonian of a system described
by a simple square lattice of lattice spacing a is given by

H = −J
∑
〈ij〉

Si · Sj = −J
∑
〈ij〉

cos (ϕi − ϕj)→
1

2
J

∫
(∇ϕ(r))2 d2r, (2.5)

where J is the coupling energy, Si are the moments of the planar rotators, ϕi are
orientation angles of the rotators, and the sum is taken over nearest neighbors only
(the final element in Eq. 2.5 is the generalization of the Hamiltonian to the continuum
limit). The presence of a dislocation or defect will cause ϕi − ϕj to take nonzero
values in the vicinity of the defect location. For a superfluid ϕi − ϕj corresponds
to the relative phase difference of the wavefunction at two adjacent lattice sites. As
discussed above, to ensure single-valuedness of the complex wavefunction, the total
phase difference must be an integer value of 2π when the sum in Eq. 2.5 is taken
around any arbitrary closed loop. Thus, for a closed loop of radius r running along
2πr/a lattice sites and enclosing a single dislocation (or vortex), the relative phase
difference between any two pairs of adjacent lattice sites is ϕi − ϕj = a/r and the
Hamiltonian can be expanded to second order about the minimum energy as

H− E0 ≈
1

2
J
∑
〈ij〉

(ϕi − ϕj)2 =
πJa

r

for small angles ϕi−ϕj. The total energy U in the array is then found by integrating
H over all possible closed loops with radii extending from the size of a single unit cell
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(corresponding to the radius of a single dislocation) to the total sample size R, giving

U = πJ ln
R

a
+ E0. (2.6)

The creation of a single vortex is therefore associated with an energy that diverges
logarithmically with increasing sample size. Deep inside the interior of a sample, then,
the energy cost to create a single vortex becomes enormous and prohibitive. On the
other hand, single vortex excitations may persist in a thin region of thickness L
along the edge of the sample where kBT/πJ ∼ lnL/a. When two vortices of opposite
handedness are present in the system ϕi−ϕj is zero at distances much larger than the
inter-vortex separation distance R12 due to cancellation from the opposite circulations
and the integral over r can be cut off at ∼R12. In this case the total energy in the
system becomes

U = 2πJ ln
R12

a
+ 2E0 (2.7)

where 2E0 is the energy cost associated with the creation of two opposite vortices sep-
arated by a distance a and the force between the two vortices is −∇U = −2πJ/R12,
indicating a net attractive interaction. Thus, with a finite excitation energy, bound
vortex-antivortex pairs will form via thermal fluctuations and will persist until the
vortices pass within a minimum distance a of each other, at which point they anni-
hilate.

The behavior of the vortex-antivortex pairs is governed by the balance of the
internal energy and entropy of the vortices. Above a certain temperature the decrease
of the free energy associated with the entropy of pair breaking exceeds the free energy
gain from the creation of more vortices. Given that there are N ≈ R2/a2 total lattice
sites in the system, the number of states available to bound and unbound vortex
pairs are proportional to R2/a2 and R4/a4, respectively. The free energy difference
Funbound−Fbound = ∆U −T∆S between unbound and bound vortex-antivortex pairs
is then

Funbound −Fbound ≈ 2 (πJ − kBT ) ln
R

a
. (2.8)

At low temperatures where kBT < πJ the free energy difference ∆F → +∞ for
large sample size R and the formation of broken vortex-antivortex pairs is thermo-
dynamically excluded. On the other hand, for kBT > πJ the free energy difference
∆F → −∞ for large R and broken pairs are strongly favored. The system there-
fore experiences a vortex unbinding transition at the Berezinskii-Kosterlitz-Thouless
(BKT) critical temperature

TBKT =
πJ

kB
(2.9)

as the runaway formation of free vortices at higher temperatures produces a vortex
plasma state in order to minimize the total free energy.

The BKT transition is conceptually illustrated in Fig. 2.3. The existence of the
long-range ordered vortex-antivortex bound state at low but finite temperatures is
remarkable because the Mermin-Wagner theorem rigorously rules out any form of
long-range order on account of large-amplitude fluctuations (spin waves) that scale
with the size of the system [75]. This implies that the vortex correlations must be
insensitive to the surrounding spin fluctuations. In fact, Kosterlitz and Thouless were
able to show that in the 2D-XY model the spin fluctuations and phase fluctuations
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Figure 2.3 A conceptual illustration of the Berezinskii-Kosterlitz-Thouless vortex un-
binding transition in the 2D-XY model. At temperatures below the BKT transition,
TBKT = πJ/kB, vortices may only thermodynamically form in bound vortex-antivortex
pairs that move together through the system much like the linked hulls of a catamaran on
the ocean. On the other hand, above the BKT temperature, the vortex-antivortex pairs
spontaneously unbind and move freely through the system as independent entities. Image
credit: The Royal Swedish Academy of Sciences, Nobel Prize in Physics 2016 [85].

are indeed separable and therefore do not interact [84]. The BKT transition is enabled
in the 2D-XY model because, while the spin-spin correlations are not long-ranged,
the phase correlations are.

Analogy to the 2D Coulomb Gas Model

The logarithmic dependence of the system energy on R in Eqs. 2.6 and 2.7 implies
that the problem of vortex dynamics in the 2D-XY model draws a natural analogy
to that of a Coulomb gas in two dimensions [84], where Poisson’s equation for a point
charge, ∇2V (r) = −2πδ(r), also leads to a potential of the form V (r) ∝ ln r. In many
cases it is actually more instructive to treat the properties of vortex dynamics via the
2D Coulomb gas model because the construction of the 2D Coulomb gas model is
straightforward and provides an intuitive basis for understanding in terms of simple
charges as opposed to complicated vortex structures. The model is constructed from a
grand canonical description of a gas of n = n+ +n− positively and negatively charged
particles per unit volume, with each particle carrying a charge of equal magnitude
q and with the interaction potential renormalized by linear screening. The complete
description makes use of a set of self-consistent renormalization equations developed
by Kosterlitz [86]. However, a simpler description in terms of the Poisson-Boltzmann
equation is informative and provides an adequate picture of the critical behavior of
the charge gas near TBKT [87]. In the presence of a small test charge δq, the Poisson-
Boltzmann equation for the system is given by

δq∇2V (r) = −2πδq

ε
f(r)−

2πn+
f

ε
e−δqV/kBT +

2πn−f
ε

eδqV/kBT (2.10)
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where f(r) is the Coulomb gas single-particle charge distribution, ε is the dielectric
constant due to the polarization of bound charge pairs, and nf = n+

f +n−f is the num-
ber density of free charges. This description is in general not analytically tractable,
but if we consider the limit where the Coulomb gas is overall neutrally charged and δq
is infinitesimal, then the solution to this equation (in terms of its Fourier transform)
is

V (k) =
2π

ε

1

k2 + λ−2
s

f(k), (2.11)

where λs =
√
kBTε/2πnf is a screening length determined by the influence of the

free charges. It is important to note that the definition of λs obtained from the long-
range (k → 0) limit of Eq. 2.11 is precise and does not assume a priori the existence
of a charge unbinding transition. The screening length arises because bound pairs
that are quite extended in space are likely to have other charges located within their
spatial extent, especially when the fugacity for the free charges e−δqV/kBT ≈ 1. These
free charges polarize in the field of the pairs and act to reduce the interaction. As a
result the spatial extent of V (r) is bounded on the order ∼λs. The density of free
charges nf ' 2eµeff/kBT/ca2 is itself dependent upon the effective chemical potential
µeff and the long-range energy of the form represented by Eq. 2.6, with c a constant
and the factor of 2 arising from the fact that a free charge can take either a positive
or negative value of q. The form of λs which satisfies the Poisson-Boltzmann equation
is then found to be [87]

(
λs
a

)−2

=


(

4π
ckBTε

)1/(1−1/4kBTε)

T > TBKT

0 T < TBKT
(2.12)

Eq. 2.12 is complementary to Eq. 2.8, as both describe a system where free (un-
bound) charges are thermodynamically forbidden at temperatures below the critical
threshold TBKT , while above TBKT such free charges are favored. This is evident from
Eq. 2.12 because as T → T+

BKT the inverse screening length diverges, signalling that
the Coulomb gas charges are only correlated on very short length scales and are thus
free to screen out the interaction potential of any bound charges. As T → T−BKT the
inverse screening length is zero implying that the interaction is long ranged. This
behavior is illustrated in Fig. 2.4. Eq. 2.12 therefore contains the anticipated result
of a divergent susceptibility upon approaching TBKT from above.

An effective dielectric constant εeff can be defined from the Poisson equation
∇2V (r) = −2πf(r)/εeff and Eq. 2.11 by

2π

εeff(k, T )

f(k)

k2
=

2π

ε

f(k)

k2 + λ−2
s

. (2.13)

In the long-range (k → 0) limit, this leads to the result

1

εeff(0, T )
=

{
0 T > TBKT
1
ε

T < TBKT
(2.14)

which implies that above TBKT the effective charge density of the 2D Coulomb gas
jumps abruptly to zero from a finite value. Therefore, the vortex unbinding transition
given in Eq. 2.9 is necessarily accompanied by a jump of the rigidity modulus to zero
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Figure 2.4 The behavior of the inverse Coulomb gas screening length as a function of tem-
perature, with constant ε. As T approaches TBKT from above the inverse screening length
diverges, implying the divergence of the susceptibility due to free Coulomb gas charges
which screen the interaction potential. At T ≤ T−BKT the inverse screening length is zero
and the system is in the long-range ordered state. The dashed line marks TBKT .

[88]. In 2D superfluids this corresponds to a suppression of the superfluid density. The
physical mechanism responsible for such a jump is the divergence of the susceptibility
above TBKT which causes the polarizability of the Coulomb gas to become infinite
and thus perfectly screen out long-range interactions.

The Universal Superfluid Density Jump

It was pointed out by Nelson and Kosterlitz that in neutral superfluids the superfluid
density jump above TBKT is universal, in that the magnitude of the jump is given
only by constants and is independent of the size of the cutoff a that defines the
spatial extent of the vortex cores [89]. The argument is based on a scaling analysis
of the interaction potential treated within Kosterlitz’s renormalization group theory
approach. Since the interaction potential is screened in the 2D Coulomb gas, this
corresponds to an analysis of the scale dependence of the effective dielectric constant.

The first step in the analysis is to derive the relationship between the effective
dielectric constant of the 2D Coulomb gas model and the density of the 2D superfluid.
The Hamiltonian for the neutral 2D Coulomb gas allows the dielectric constant of
Eq. 2.14 to be defined in terms of the unscreened interaction potential, the mass
density ρ, and the density-density correlation function as

1

εeff(0, T )
= lim

k→0

(
1− 2πρ

kBT

(
~
m

)2

V (k)〈n(k)n(−k)〉

)
, (2.15)

where the Coulomb gas charge q2 → 2πρ~2/kBTm
2 [90]. By comparing this result

to a similar one obtained from the Hamiltonian of the neutral 2D superfluid the
relationship between ρs of the superfluid and εeff can be determined. The superfluid
Hamiltonian,

Hs =
1

2ρkBT

∫
~g2(~r)d2r, (2.16)
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depends upon a mass-current density operator ~g(~r) that represents a mass-carrying
velocity field. The operator ~g(~r) is defined such that it can be split into its longitudinal
and transverse components, ~g(~r) = ~g‖(~r)+~g⊥(~r), where ∇×~g‖(~r) = 0 and ∇·~g⊥(~r) =
0. This definition implies that ~g‖(~r) is the gradient of a scalar potential,

~g‖(~r) = ρ
~
m
∇φ(~r),

and that ~g⊥(~r) corresponds to a vortex vector potential,

~g⊥(~r) = ρ
~
m
∇× ẑ

∫
n(~r′)V (|~r − ~r′|)d2r′,

where ẑ is a unit vector oriented normal to the 2D plane. The potential V (|~r−~r′|) ∝
ln(|r − r′|/a) is assumed to have a hard-core cutoff at a distance a corresponding to
the spatial extent of the vortex cores, as discussed above. The mass-current density
operator is used in lieu of the velocity field itself because it is well behaved inside the
vortices and avoids singularities. Further, the boundary condition on ~g‖(~r) can be
chosen such that φ(~r) is constant at the sample edges, which allows the cross term
~g‖(~r)~g⊥(~r) to be dropped from the Hamiltonian. As a result the Hamiltonian depends
only on the mass-current density correlation functions∫

〈~g‖(~r) · ~g‖(0)〉d2r = ρkBT

∫
〈~g⊥(~r) · ~g⊥(0)〉d2r = 2π

(
ρ~
m

)2

lim
k→0

V (~k)〈n(~k)n(−~k)〉.
(2.17)

The superfluid density ρs is defined as the mass density associated with the increase
in free energy caused by a mass current J , so it is sufficient to find the free energy
of the system corresponding to Hs with an imposed infinitesimal scalar field that
induces an infinitesimal mass current ρδ~v [90]. This free energy is given by

∆F =
1

ρs

(
J 2

2Ω

)
,

where Ω is a unit 2D volume. Solving for ρs it can be found that

ρs =
1

kBT

∫ [
〈~g‖(~r) · ~g‖(0)〉 − 〈~g⊥(~r) · ~g⊥(0)〉

]
d2r, (2.18)

and, making use of the mass-current density correlation functions in Eqs. 2.17, it is
clear that this expression for ρs becomes identical to the expression for 1/εeff given in
Eq. 2.15. Thus, the superfluid density of the neutral 2D superfluid is related to the
effective dielectric constant of the 2D Coulomb gas model as

ρs
ρ

=
1

εeff

, (2.19)

putting on firm ground the assertion made above that the jump of 1/εeff to zero
at TBKT corresponds to a suppression of the superfluid density. Furthermore, the
identification of the superfluid density with the rigidity modulus raises an additional
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physical interpretation of ρs. The value of ρs quantifies a superfluid stiffness that de-
scribes the minimum energy required to twist the phase of the superfluid wavefunction
by 2π.

With the relationship between the superfluid density and effective dielectric con-
stant established, the scaling analysis of εeff proceeds by considering the solution of
the Kosterlitz renormalization group equations for the fugacity z` of the 2D Coulomb
gas in the infinite-range limit [89]. The fugacity z` = e−µ/kBT incorporates the super-
fluid Hamiltonian Hs through the chemical potential µ and represents the probability
for creating a single Coulomb gas charge (vortex) in a unit volume. When z` → 0,
then, the system is in the ordered state because the probability to spontaneousy cre-
ate an unbound vortex is zero. Following Eq. 2.6 the chemical potential is defined
as µ = πρ~2/kBTm

2 ln(λs/a) + E0; the fugacity becomes zero at TBKT because the
inverse screening length diverges (see Eq. 2.12). The renormalization group equa-
tions are obtained by expanding the effective current-current correlation function,
K−1

eff = m2/~2ρ2
∫
〈~g(~r) · ~g(0)〉d2r, as a power series in z` and then repartitioning the

energy by scaling the hard-core radius as r` = ae`. The power series,

K−1
eff =

kBTm
2

ρs~2
+ 4π3z2

`

∫ ∞
a

(
dr

a

)(
r

a

)3−2πρs~2/kBTm
2

+O
(
z4
`

)
,

contains an integral which can be broken into two parts, with a small-r part running
over the bounds a→ ae` and a large-r part running from ae` →∞ [91]. The small-r
part can be absorbed into the leading constant term (the bare coupling, which we
call K−1) while the large-r integral can be rescaled so that it once again runs over
a → ∞ by renormalizing z`. Since the solution in the z` → 0 limit will be sought
the higher order corrections can be safely discarded. This rescaling can therefore be
captured by a set of parameter renormalizations for the scale-dependent core energy
and fugacity,

(K−1)′ = K−1 + 2π3z2
` `

z′` = z` + (2− πK)z``.

By recursively iterating this rescaling with successive application of r` = ae` for small
`, the renormalization group equations are obtained [86]:

d

d`

(
ε`kBTm

2

ρ~2

)
= 4π3z2

`

dz`
d`

=

[
2− π

(
ρ~2

ε`kBTm2

)]
z`

(2.20)

The quantity of interest here is the behavior of z` as ` → ∞. Integrating Eqs. 2.20
yields the renormalization group flows that allow physically relevant quantites to be
extracted. The flows are a family of equations which relate the fugacity to the core
energy as a function of `. The specific behavior of a given flow is set by the value of the
initial condition (the constant of integration), which is determined by the temperature
and the T = 0 value of the superfluid density. Thus each flow corresponds to a single
temperature. Following these flows to their limiting behavior as ` → ∞ allows the
nature of the system to be identified and the critical behavior to be found. Several
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Figure 2.5 The universal jump in a neutral superfluid. (a) Kosterlitz renormalization
group flows calculated for several different values of T . Arrows indicate the direction of
increasing `. Blue flows correspond to T < TBKT and tend to z` = 0 with increasing
`, indicating a stable long-range ordered state at low temperatures (region I). The black
flow corresponds to T = TBKT and tends exactly to the value 2/π as ` → ∞. The red
flows correspond to T > TBKT and tend to z` → ∞ as ` → ∞, characteristic of a vortex
plasma state. This high temperature regime can be subdivided into two regions. The flows
in Region II contain a minimum in z` for some intermediate value of ` and characterize
the critical fluctuation regime in a narrow temperature band above TBKT , where 0 <
(T − TBKT )/TBKT < 8πz0. Region III corresponds to the very high temperature region,
T � TBKT , where the flows are unstable and the vortex plasma is completely uncorrelated.
Figure adapted from Ref. [92]. (b) The expected qualitative temperature dependence of the
superfluid density in a thin 4He film. The dotted line corresponds to the BKT line (Eq. 2.22)
and the dashed line denotes the T = 0 superfluid density. The universal jump and TBKT
(marked here as Tc) occur where the BKT line intersects the superfluid density [87]. (c)
Experimental measurements of the superfluid density in a variety of thin 4He films with
different coverages, obtained via measurements of the angular momentum of persistent
currents in helium condensed onto a rotating ring (coverages are indicated in units of 10−5

mol m−2). The magnitude of the superfluid density jump is proportional to TBKT [93]. (d)
Collected results for the measured universal superfluid jump from several torsion oscillator
experiments and third-sound measurements. The BKT line of Eq. 2.22 fits the data to
better than 10% [94,95].
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such flows calculated for different values of the temperature, with arrows indicating
the direction of increasing `, are shown in Fig. 2.5(a). It can be seen that at high
temperatures (corresponding to the red colored flows) the fugacity z` →∞ as `→∞.
At T � TBKT the flows are completely unstable and the system is in the normal state
(marked as Region III). Just above TBKT , in Region II, the flows contain a minimum
for some value of `, pointing to the formation of a vortex plasma state with zero
superfluid density. It is in this second region where the system is characterized by
the Kosterlitz vortex correlation length,

ξ+ ' aeπ/
√

4z0t (2.21)

(t = T/TBKT − 1 is the reduced temperature) that notably depends upon the square
root of T . At low temperatures (blue colored flows in Region I), on the other
hand, z` → 0 as ` → ∞. The highest temperature where this limiting behavior
holds is shown by the black curve and corresponds to the temperature defined by
ρ~2/ε`kBTm

2 = 2/π. As T approaches TBKT from below the Kosterlitz vortex corre-
lation length ξ− →∞. Therefore, for all temperatures kBT ≤ πρ~2/2ε`m

2 the system
is in a long-range ordered state without free vortices. As a result, from Eq. 2.19, the
magnitude of the superfluid density jump at TBKT is defined as

ρs =
2m2kBTBKT

π~2
. (2.22)

This jump is considered to be universal because it depends only on the constants 2
and π, which were obtained by repartitioning the total energy of the vortices between
the core energy and potential energy in a scale-independent way. The universality
of the jump was confirmed experimentally by measurements of the superfluid den-
sity in thin films of superfluid 4He [93–96]. The results of these measurements are
summarized in Fig. 2.5(c) and (d), which show that for a variety of 4He films with
different superfluid densities and measured via different techniques the magnitude of
the superfluid jump at TBKT is always given by the result in Eq. 2.22 to within 10%
accuracy. It must be stressed that this result presupposes a neutral superfluid; the
derivation rests upon the requirement that the interaction potential is of the form
V (|~r − ~r′|) ∝ ln(|r − r′|/a).

2.2.3 BKT Transition in Superconductors

In the most general sense, the existence of a transition that destroys long-range order
at T 6= 0 in a 2D system requires that it be possible to describe such a system as
an effective 2D Coulomb gas. This is because the interaction potential in the 2D
Coulomb gas model is logarithmic in r. Systems that can be classified in the so-called
2D-XY universality class satisfy this requirement because the 2D-XY Hamiltonian
(see Eq. 2.5) produces the necessary logarithmic potential when integrated over the
sample volume. The 2D-XY model treats a system as an array of planar rotators
whose states are specified by only a single variable, ϕ (the in-plane orientation angle
of a rotator). The restriction of the rotators to lie in the plane forces the boundary
conditions to be defined such that integration along a closed path gives a total phase
which must be an integer multiple of 2π. Furthermore, the topology of the system
implies that this integer value of the phase is a topological invariant ; because the
allowed values of the total phase are discrete and disconnected, it is not possible to
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obtain one state of the system from another simply through a smooth transformation
or deformation of the rotators. Transitions from one state to another require a discrete
tear or dislocation in the system that is associated with a large energy cost. As a result
it can be said that the long-range ordered state at low temperatures in 2D systems
is topologically protected, and the transition corresponds to a change to a state that
is defined by continuous rather than discrete phase rotations. However, as shown by
Wegner, spontaneous symmetry breaking does not occur at finite temperatures in the
2D-XY model [79]. This kind of phase transition therefore stands in contrast to usual
phase transitions, which are characterized by a definite change in the symmetry of
the system.

Various types of transitions and exotic states can be characterized as forms of
topological order in addition to the neutral 2D superfluid already discussed [97]. Of
the many kinds of topological order that are theoretically possible, quantum Hall
states [98], topological insulators [99], and Weyl and Dirac semimetals [100] in par-
ticular have been experimentally realized. Thus, the work by Berezinskii, Kosterlitz,
and Thouless on vortex unbinding transitions [83, 84] and the development of the
renormalization group theory by Kosterlitz [86] laid the ground work for the discov-
ery of new phases of matter which cannot be classified by their patterns of symmetry
breaking [85]. For this contribution Kosterlitz and Thouless were awarded the Nobel
Prize in Physics in 2016.

As pointed out by Kosterlitz and Thouless in their seminal paper, however, certain
classes of 2D models do not show long-range order or a topological phase transition
[84]. Foremost among these is the 2D Heisenberg model, where the rotators are
not completely confined to the plane but may take on out-of-plane magnetization
components. Formally this is because the Heisenberg model is described by the O(3)
n-vector model whereas the XY model is an O(2) system. In this case the orientation
of the rotators is described by two polar angles θ and ϕ such that the energy of a
single dislocation (in the continuum limit) is given by

UHeisenberg ∝
1

2

∫ ∫ [
(∇θ)2 + sin2 θ(∇ϕ)2

]
dxdy.

In this system
∫
∇ϕdx is not a topological invariant because a twist by 2π in the

variable ϕ can be smoothly undone by a transformation of θ. The energy turns out
to be finite without a logarithmic dependence and so there can be no transition. A
second system in which a topological phase transition should not occur is that of
a 2D superconductor, although for different reasons than for the Heisenberg model.
While vortices in a 2D superconductor can be described by the 2D-XY model, the
total interaction energy of a vortex-antivortex pair must include the coupling energy
of the electric current to the magnetic field of the flux lines. Following Abrikosov’s
description of the magnetic flux lines in a superconductor, it can be shown that the
interaction energy of such a vortex pair in 2D is given by

UAbrikosov =

(
Φ0

2π

)2
1

|~r − ~r′|

at large distances, where Φ0 is the flux quantum [101,102]. This result clearly differs
from that of the neutral superfluid, which does not contain an energy contribution
from the magnetic field and so has a logarithmic dependence of the interaction energy.
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Put another way, the energy associated with the diamagnetism in the Meissner state
of a superconductor interferes with the vortex dynamics in a 2D superconductor such
that the system can no longer be fully described by the neutral 2D Coulomb gas
model.

Following Kosterlitz and Thouless it was soon realized by Beasley, Mooij, and
Orlando that the universal superfluid jump observed in 4He is indeed also observable
in a 2D superconductor if the superconductivity is considered in a certain limit [103].
The limiting factor in this case isn’t the London penetration depth λ but rather the
transverse penetration depth (Pearl length) λ⊥ = λ2/d, where d is the thickness of
the thin superconducting film, because the diamagnetism in a thin superconducting
film is reduced by a factor d/λ. When λ⊥ ≈ λ the diamagnetic screening bounds the
supercurrents to tightly circle the vortex cores and the energy is dominated by the
magnetic vector potential. However, as λ increases (or as d decreases) the magnetic
vector potential has a diminishing contribution and the range of the supercurrents
extends further and further from the vortex cores. In the limit λ⊥ � λ the vortex
energy becomes dominated by the contribution from the superfluid velocity field and
the description of the superconducting vortices becomes formally similar to that of
neutral superfluid vortices in 4He [104]. When the transverse penetration depth is
significantly larger than the typical inter-vortex separation distance, λ⊥ � |~r−~r′|/2,
the interaction energy is given by [101]

UPearl ≈
(

Φ0

2π

)2
1

λ⊥

(
ln

λ

|~r − ~r′|

)
and the logarithmic dependence of the interaction on r is recovered. The criteria to
observe the universal superfluid jump in a 2D superconductor, therefore, is that the
thickness d of the film be thin enough such that λ⊥ be comparable to the lateral
dimensions of the sample.

For a thin film of thickness d, the internal energy of a single vortex is

U =

(
Φ0

4π

)2
d

λ2
ln

λ

ξGL

.

In the absence of an applied external magnetic field vortex-antivortex pairs consisting
of two vortices of opposite handedness will be spontaneously generated from thermo-
dynamic fluctuations such that the total flux passing through the film remains zero,
as in the case outlined above for the neutral superfluid. The total internal energy of
a vortex-antivortex pair is therefore given by

U = 2

(
Φ0

4π

)2
d

λ2
ln
R12

ξGL

.

As before, the cutoff of the integration of the vortex kinetic energy is at the vortex-
antivortex separation distance R12, yielding lnR12/ξGL rather than lnλ/ξGL, because
beyond ∼R12 the net supercurrent flow is zero. From this internal energy, then, the
BKT transition temperature for the 2D superconductor is

kBTBKT =
Φ0

2

32π2

d

λ2
(2.23)
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with a Nelson-Kosterlitz superfluid jump given by

ρs =
32π2kBTBKT

Φ0
2d

. (2.24)

To quantify the typical penetration depths and sample dimensions needed to observe
the vortex unbinding transition in a superconductor, it is helpful to cast Eq. 2.23 for
superconductors in the dirty limit as [103]

λ⊥ =
0.98

T
[cm].

For conventional BCS superconductors with TBKT ≈ Tc ∼ 10 K we find that λ⊥ must
be on the order of ∼1 mm or larger. To observe the universal superfluid jump in a
superconductor, therefore, it is necessary to study samples which have large London
penetration depths or very small thicknesses. Typically this involves samples with
high normal-state sheet resistances or thicknesses that approach only a single unit
cell.

In addition to the size of the superfluid density jump at TBKT , the functional form
of ρs(T ) below the vortex unbinding transition is of interest. From the solution of
the Kosterlitz renormalization equations (Eqs. 2.20) and expanding z` to first order
in the reduced temperature t = (TBKT − T )/TBKT , it is found that below TBKT

lim
`→∞

~2ρs(T )

kBTm2
=

2

π

[
1 + (2Bt)1/2

]
(2.25)

where B is a function of εc = ε`→∞(TBKT ). This “square-root cusp” behavior is the
second hallmark of the BKT transition [105]. It is well known that phase slips due to
vortex motion give rise to finite electrical resistance in superconductors and supercon-
ducting arrays below the mean-field critical temperature Tc0 [106,107]. Vortex motion
can also lead to dissipation at temperatures above the resistive transition in thin film
superconductors [108]. To describe this behavior Ambegaokar, Halperin, Nelson, and
Siggia (AHNS) developed a dynamic theory of the vortex unbinding transition by
combining Kosterlitz’s equilibrium renormalization group theory with the Ginzburg-
Landau understanding of vortex dynamics in superfluids [109–111]. An analogous
theory was developed by Shenoy for Josephson junction arrays and superconducting
wire networks [112]. Importantly, the AHNS theory predicts a nonlinear resistance
below TBKT , where V ∝ Iα(T ), with α(TBKT ) = 3. The resistance is linear at tem-
peratures T ≥ Tc0 so the vortex plasma state between TBKT and Tc0 is evidenced by
a crossover regime. In the vicinity of the transition α(T ) ≈ 3 + (8Bt)1/2; comparing
to Eq. 2.21 it is evident that α(T ) identifies with the Kosterlitz vortex correlation
length ξ+, which depends on t−1/2. This square-root temperature dependence of the
vortex correlation length is in marked contrast to the Ginzburg-Landau coherence
length and its power-law temperature dependence, ξ2

GL ' 1/(T − Tc). This raises the
possibility that the square-root cusp (and BKT transition) may be identified through
a scaling analysis of nonlinear I–V data.

Dc transport studies on a variety of conventional thin film superconductors (Hg-
Xe [113, 114], In/InOx [115], Pb [116], NbN [117, 118]) and Josephson-coupled ar-
rays [119,120] appear to agree with the AHNS scaling predictions. As seen in Fig. 2.6,
temperatures where α(T ) deviates from 1 are identified with the BCS mean-field crit-
ical temperature Tc0 and temperatures where α(T ) crosses 3 are identified as TBKT ,
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Figure 2.6 In a classic experiment, Kadin et al. [113] measured the noninear I–V behavior
from vortex fluctuations in a series of Hg-Xe alloys. (a) In a representative 150 Å film the
nonlinear exponent α(T ), V ∝ Iα(T ), reaches a value of α = 3 at TBKT = 3.3 K (labeled
here as “Tc”). The crossover behavior from α = 1 to α = 3 for isotherms above TBKT
is characteristic of the vortex plasma state. (b) A plot of the exponents α(T ) extracted
from (a) as a function of temperature, for several different samples. The temperature where
α = 1 is identified as the BCS mean-field critical temperature Tc0. Samples with increasing
sheet resistances have increasing distance between TBKT and Tc0, reflecting that larger sheet
resistances imply longer transverse penetration depths λ⊥. Figure adapted from Ref. [113].

with TBKT < Tc0. Furthermore, scaling analysis shows that the measured resistance
does indeed scale with t1/2 below TBKT , at least over the temperature ranges inves-
tigated, suggestive of the existence of the square-root cusp (see Fig. 2.7). Several
groups thus reported the observation of the BKT vortex unbinding transition in thin
film superconductors based primarily on the results of such I–V scaling analyses.
However, several factors complicate the analysis of the I–V measurements and the
correct interpretation of the data is not clear. First, reports of the vortex unbind-
ing transition based on dc transport measurements are at most an indirect probe of
BKT physics because the superfluid density must be deduced from the scaling expo-
nent. Second, the degree of homogeneity of the samples plays an important role, as
granularity and disorder introduce additional resistance and broaden the transition.
Third, the range of overlap of the critical region with the domain of applicability of
the Ginzburg-Landau theory, and hence the proper way to correct the analysis at low
temperatures, is unclear, as is the proper method of accounting for strong-coupling
effects [114]. Reports of the effective vortex dielectric constant ranging from εc = 1.2
to as high as εc = 1.9 indicate nonuniversality and strong renormalization of the
superfluid density [113, 121]. Large values of εc also imply high vortex fugacity that
calls into question the validity of the BKT theory in the analysis, because the BKT
theory in its standard form lies in the dilute z` → 0 limit. Fourth, the I–V data and
scaling analysis turn out to be sensitive to finite-size effects and the details of the
noise floor of the measurements [122–124]. Measurements that feature a lower noise
floor (a larger dynamic range) result in artificially lower extracted values of TBKT and
higher values of the vortex fugacity. The I–V curves at temperatures below the tran-
sition may also appear to collapse together in the scaling analysis, which should not
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Figure 2.7 Observation of the characteristic “square-root cusp behavior” below TBKT in a
100 Å thick In/InOx thin film with TBKT = 3.234 K. One signature of the BKT transition is
the square root temperature dependence of the superfluid density (K = ρs~2/kBTm

2) upon
approaching TBKT from below. The data are extracted from nonlinear I–V measurements.
Fits of the data to Eq. 2.25 for ` = 6 and ` = ∞ (red and black curves, respectively)
illustrate that the system is more properly described by a finite rather than infinite length
scale. Gray dashed lines mark the position of the Nelson-Kosterlitz universal jump at
K = 2/π. The lack of a sharp jump at T = TBKT is due to finite-size effects. Figure
adapted from Ref. [125].

occur because the vortex correlation length ξ− below TBKT is infinite. Thus it is clear
that more direct, smoking-gun experimental signatures are needed to establish the
existence of the vortex unbinding transition and BKT physics in 2D superconducting
systems.

These considerations leave direct measurement of the superfluid density jump as
the most natural way forward. The Nelson-Kosterlitz universal jump, first observed
for superconductors in thin Al films [126], has since been observed in InOx [125],
NbN [127, 128], and highly disordered MoGex films [129–131], although reports re-
main scarce. As depicted in Fig. 2.8(a), measurements typically show a broadening
of the jump and a characteristic frequency dependence in the temperature at which
the jump occurs. When combined with the time-dependent Ginzburg-Landau theory
the AHNS theory gives a prediction for the frequency dependence of the conductivity
that includes a smooth jump in the inductance and the appearance of a peak in the
dissipation at T ωBKT , with the apparent T ωBKT increasing with increasing probe fre-
quency [110,111]. The salient feature of the AHNS dynamical theory is the frequency
dependent vortex diffusion length lω =

√
14D/ω, where D = 2e2ξ2

GLkBT/π~2σn is the
vortex diffusion constant [132]. The vortex response at ω is dominated by vortices
separated by a distance r ∼ lω, so the peak in the dissipation and T ωBKT occur above
the dc TBKT when ξ+(T ) ∼ lω. This dynamical theory successfully fit the measure-
ments of the superfluid density jump and current dissipation in thin 4He films [95].
However, probes of vortex thermal relaxation in the vortex plasma state of thin film
superconductors have shown that the thermal relaxation times are temperature inde-
pendent and shorter than the prediction of the AHNS theory by almost two orders of
magnitude [133]. A thorough study of In/InOx films, which compared the superfluid
density jump obtained from two-coil mutual inductance techniques to dc transport
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Figure 2.8 High resolution measurements of the universal superfluid density jump in super-
conducting Al wire networks obtained from two-coil mutual inductance. Superconducting
wire networks are prototypical realizations of the 2D-XY universality class and so their be-
havior represents the ideal response. (a) The dependence of the superfluid density jump on
probe frequency, at 10 kHz, 65 kHz, and 1.0 MHz. With increasing probe frequency the tem-
perature Tω of the jump shifts higher but the broadness of the jump remains unchanged.
Figure adapted from Ref. [135]. (b) The measured superfluid density jump, Re[ε−1(ω)],
compared with the magnitude of the dissipation peak height, Im[ε−1(ω)], near TBKT for a
probe frequency of 65 kHz (solid lines). The dashed lines correspond to fits calculated from
Minnhagen’s interacting 2D Coulomb gas phenomenology. The phenomenological fits qual-
itatively describe both the real and imaginary parts of the dynamical conductivity and are
Kramers-Kronig consistent. The dotted line represents the initial parameter ε0(T ), which
is an input to the model. Figure adapted from Ref. [136].

measurements, was unable to find agreement between values of TBKT obtained from
the dynamical conductivity and I–V scaling analyses [125]. On the other hand, the
magnetoresistance and the temperature dependence of the critical fieldHc1 were found
to be in accord with a separate dynamical phenomenology based on the interacting
2D Coulomb gas model, put forward by Minnhagen [134].

High resolution studies of the superfluid density jump and dissipation peak ob-
tained by two-coil mutual inductance measurements in Al wire networks [135], shown
in Fig. 2.8, demonstrated that the discrepancies of the AHNS dynamical theory lie in
the treatment of the scaling in the Kosterlitz renormalization equations when a finite-
range cutoff is encountered [136]. The Kosterlitz-Thouless theory in its standard form
is valid as ` → ∞ so the AHNS dynamical theory is applicable in the infinite-range
limit. However, when the logarithmic interaction potential between vortices is modi-
fied by a finite-size cutoff, as in the case for superconductors, the shape of the jump is
distorted. The AHNS model contains five fit parameters and so can be made to agree
with conductivity data to a high degree of accuracy despite the fact that the con-
tributions from bound and free vortices enter the model separately (no interactions
between bound and free vortices are considered). When a finite-range cutoff `cut is
used to model finite-size effects above TBKT the resulting real and imaginary parts of
the complex conductivity σ̃(ω) = σ1(ω) + iσ2(ω) are no longer Kramers-Kronig con-
sistent, demonstrating a loss of causality. Causality can be restored by introducing a
long-range dielectric constant Re [ε(`)] = Re [ε(`cut)] for the bound vortex-antivortex
pairs at ` > `cut in a piecewise fashion, but this procedure introduces a discontinuity
in the fits of both σ1(ω) and σ2(ω). The Coulomb gas model of Minnhagen, on the
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other hand, constructs a fully Kramers-Kronig consistent description of the dynam-
ical conductivity by treating the Coulomb gas charges with the Langevin equation
and defining the dissipation as the Kramers-Kronig transform of Re [ε(ω)] [87]. A
consequence of this definition is that the ratio of the dissipation peak height to the
superfluid density (calculated at the temperature of the dissipation peak) is given by

− Im[ε−1(ω)]

Re[ε−1(ω)]
=

2

π
. (2.26)

This treatment of the dynamic vortex response, which has zero adjustable param-
eters, agrees with the temperature dependence of the superfluid density jump and
dissipation peak measured in Al wire networks [136]. The fit of Minnhagen’s model
to the measurements on Al networks is shown in Fig. 2.8(b). However, in real super-
conducting films, the temperature dependence of ρs(T ) is influenced by a variety of
other interactions and excitations, such as phase fluctuations, BCS-like quasiparticle
excitations, or interlayer Josephson coupling. The results therefore point to the need
for modified Kosterlitz renormalization group equations for superconductors which
properly take into account the finite-scale cutoff of the logarithmic vortex interaction
potential.

Extensions to the Kosterlitz-Thouless theory have been developed by numerous
groups by considering the next higher order terms of the renormalization group ex-
pansion. It turns out that the 1D Luttinger liquid problem is in the same universality
class as the 2D Coulomb gas and XY models, so the BKT problem can be mapped
into the 1D sine-Gordon model [138]. This is advantageous because in the Coulomb
gas and XY models the vortex core energy is fixed by the Pearl energy and the short-
range cutoff, while in the sine-Gordon model the vortex core energy is defined through
the fugacity and can take a range of values. Minnhagen and coworkers developed such
a phenomenology in the late 1980s which predicted that the superfluid density jump
is nonuniversal and that the BKT line terminates in an Ising-like critical end point at
high fugacities [139–142]. However, numerous Monte Carlo simulations have shown
that the Minnhagen phenomenology is not consistent with obtained results and that
its validity is questionable, because in its mapping of the Coulomb gas (which is exact
only for point charges) to the sine-Gordon field theory the short-range repulsion is
added in post facto [143, 144]. Nevertheless, there have been experimental reports of
nonuniversal superfluid density behavior in InOx thin films [121, 145], and measure-
ments of the superfluid density jump in thin NbN films show a jump that is smeared
out instead of sharp and begins at a temperature below the TBKT value expected
from the pure XY model [127].

More recently, Benfatto and coworkers have developed a sine-Gordon description
of the BKT problem in both conventional and layered superconducting thin films by
carefully considering the role of vortex core energy and disorder [30, 31]. In the pure
XY model the vortex core energy µ is related to the energy of the superfluid stiffness
J as µXY ≈ 4.9J (see Eq. 2.9). For a vortex in a 2D BCS superconductor in the
sine-Gordon treatment, on the other hand, µBCS ≈ 0.95J . By including Gaussian-
distributed homogeneous disorder it is possible to fit the experimental NbN data of
Ref. [127] with vortex core energies µ . J . Examples of these fits are depicted in
Fig. 2.9. The disorder accounts for the broadening of the superfluid density jump
while the reduction in µ from µXY accounts for the shift in TBKT ; a smaller value of
µ results in a shift of TBKT below the pure XY value, while a larger µ shifts TBKT to
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Figure 2.9 The “paradigmatic” case: BKT transition in NbN. (a) Dc transport
measurements of the nonlinear resistivity V ∝ Iα(T ) in a 3 nm thick NbN film. The slopes
of the pink lines give the values of the exponent α(T ). Figure from Ref. [118]. (b) The
exponent of the nonlinear resistivities extracted from (a) plotted as a function of tempera-
ture. The point where α(T ) crosses 3 gives TBKT ≈ 9.0 K, while the linear extrapolation
of the low temperature data to α = 1 gives Tc0 ≈ 9.9 K. These values agree with TBKT and
Tc0 obtained from more detailed sine-Gordon renormalization group procedures. Data and
figure adapted from Ref. [118]. (c) The superfluid density in several moderately disordered
NbN films as measured by two-coil mutual inductance. At low temperatures the data (black
curves) show good agreement with a BCS fit (blue dashed curves), while near Tc0 the data
deviates from the expected BCS curve. Importantly, the deviation from the BCS curve be-
gins at temperatures below the value of TBKT expected from the pure 2D-XY model (black
dashed line). The data in the full temperature range is well-described, on the other hand,
by the sine-Gordon renormalization group model taking into account Gaussian-distributed
disorder and significantly reduced vortex core energy (red dashed curve). Deviations of
the superfluid density are only found in a narrow temperature range within ∼0.1Tc0 of the
mean-field critical temperature. The dissipation peaks in the dynamical conductivity at
TBKT are shown in green. (d) The same as in (c), but for a series of highly disordered
NbN films. The highly disordered films show broader deviations from the BCS model that
begin at lower temperatures than for moderately disordered films. The width of the dis-
sipation peaks is accordingly also significantly broadened. Still, the data is well fit by the
phenomenological model of Benfatto et al. [30, 31]. Panels (c) and (d) are adapted from
Ref. [128].
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Figure 2.10 Thickness dependence measurements of the BKT transition for NbN films with
thickness 3 nm, 6 nm, 12 nm, and 18 nm. (a) Measurements of the superfluid density jump
show that with decreasing thickness Tc0 decreases and the quantity Tc0 − TBKT increases.
Also, disorder is larger and broadens the jump more with decreasing thickness. Nevertheless,
the full temperature dependence for each film can be fit accurately with the phenomenology
of Benfatto et al. [30, 31]. Black lines correspond to a BCS fit of the low-temperature
data and pink dotted lines represent the expected TBKT in the pure 2D-XY model. (b)
The phenomenological model simultaneously fits the resistivity measurements of each film
above TBKT . (c) As a function of film sheet resistance, the ratio of the vortex core energy
µ to the superfluid stiffness Js (blue squares) tracks the ratio of the BCS gap ∆ to the
superfluid stiffness (green triangles). The increase of µ with increasing disorder is caused
by the separation between the energy scales ∆ and Js. Figure from Ref. [137].

higher temperatures. Furthermore, thickness-dependence measurements on NbN thin
films reveal that the value of µ/J tracks the ratio of the gap energy to the superfluid
stiffness, ∆/J , indicating that the increase in vortex core energy with decreasing film
thickness is explained by a separation of the energy scales corresponding to pairing
and phase coherence [137]. These measurements are illustrated in Fig. 2.10. Since µ
scales with ∆ it means that the strength of the Cooper pair coupling controls the posi-
tion of TBKT . An extension of the Benfatto phenomenology to time-dependent vortex
dynamics has shown that film disorder once again plays a crucial role in the com-
plex conductivity by limiting the characteristic vortex diffusion length to the length
scale of the disorder-induced superconducting inhomogeneities, a value notably less
than the diffusion length of the normal electrons residing in the vortex cores [146].
Most recently, Monte Carlo simulations have provided evidence suggesting that while
disorder does not change the universality class, superconducting inhomogeneities as-
sociated with correlated disorder broaden the superfluid density jump around TBKT
in contrast to uncorrelated disorder, which plays a minimal role [147, 148]. This re-
sult is in agreement with Harris’s long-standing prediction [149] that small amounts
of random disorder should not change the critical behavior (the “Harris criterion”).
To further elucidate the role of correlated disorder and vortex core energy it will be
necessary to apply the model to the temperature dependence of the superfluid density
and complex conductivity in other conventional superconductors such as InOx and
MoGex , as well as the cuprate high-Tc materials. The case of the cuprates, however,
appears more challenging due to the complicated role played in those materials by
the many competing orders that exist across their phase diagram in addition to the
interlayer Josephson coupling.
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2.2.4 The BKT Transition in Cuprate Thin Films

As discussed in the previous section, vortex unbinding is dominant when superfluid
densities are low and the system is 2D-like, implying that the BKT transition should
be more visible in layered superconductors with weak interplane coupling because the
Pearl transverse penetration depth λ⊥ is large. It is thus a natural extention to look
for the BKT transition in the layered cuprate materials. Details of the transition,
such as scaling behavior and the shape of the superfluid density jump, will give insight
into the role of disorder, competing orders, and the nature of the Cooper pair coupling
because these will all modify the vortex core energy and superfluid stiffness. Ideally,
to gain the greatest insight into BKT physics in cuprates, the BKT transition should
be studied in both bulk crystalline and thin film samples as well as across the full
phase diagram.

Until this point the discussion has focused entirely on conventional thin film super-
conductors and superfluids, systems that are characterized by the 2D-XY universality
class. Bulk superconductors, on the other hand, being fully three-dimensional, may
fall within a different universality class. In conventional 3D systems, the “Ginzburg
criterion” that determines the range about Tc where fluctuations dominate over mean-
field behavior is only on the order δT/Tc ∼ (Tc/EF )4 ∼ 10−12, an inaccessibly narrow
temperature range [150]. Indeed, in Fig. 2.10(a, b) the BKT transition is no longer
present already at film thicknesses of just d & 18 nm (orange curves). In contrast to
type-I superconductors, however, type-II superconductors experience a reduction of
dimensionality from D to D − 2 in the presence of an applied magnetic field [151].
The critical behavior of a bulk 3D type-II superconductor becomes effectively one-
dimensional at fields below Hc2 because the electrons become confined to Landau
orbits that lie on cylinders centered on the flux lines [152]. In highly type-II su-
perconductors, where λ � ξGL, the magnetic screening is weak so the system is
characterized by a very small effective charge eGL = ξGL/λ. Upon approaching Tc
from below, then, there is an initial crossover from GL mean-field behavior to the
regime of a weakly charged superfluid that is described by the XY model. Such a
bulk system is therefore expected to fall within the 3D-XY universality class with
λ ∼ |T − Tc|(2−D)ν/2, where the critical exponent ν = 2/3 [153].

In the presence of a moderate applied magnetic field, Hc1 < H � Hc2, the
flux lines in a type-II superconductor form a vortex lattice with lattice spacing
av =

√
Φ0/H. As H increases the flux lattice melts into a vortex fluid when av

becomes comparable to the characteristic wavelength of the vortex fluctuations. For
a layered superconductor the out-of-plane coherence length ξc is typically smaller than
the in-plane one ξab and the layered system is described by the anisotropy parameter
η = ξc/ξab; the out-of-plane vortex lattice spacing is therefore smaller than av by the
factor η. In the presence of strong anisotropy where η � 1 the system can exhibit
2D behavior if ηav becomes less than the interlayer spacing d, since the individual
superconducting layers become uncorrelated. However, experimental measurements
of the transport properties, magnetization, heat capacity, magnetoresistance, pene-
tration depth, and thermal expansion in bulk YBa2Cu3O7–δ samples confirm that the
RBCO system remains in the 3D-XY universality class despite significant anisotropy
(η ≈ 1/6) [154, 155]. In particular, as illustrated in Fig. 2.11(a) the magnetization,
heat capacity, and magnetoresistance measured at different values of applied magnetic
field all collapse onto the same universal curves with the scaling exponent ν = 2/3 [18].
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Figure 2.11 Experimental evidence that the RBCO family of cuprates falls within the 3D-
XY universality class. Data was measured in clean, optimally doped single YBCO crystals.
(a) The magnetization curve measured at five different field strengths, ranging from 10–50
kOe. The data was scaled according to the relation M(H,T )/H1/2 = m(t/H1/2ν), with t =
(T−Tc)/Tc. The data measured at all magnetic fields collapses onto the same curve with the
critical exponent ν = 0.669. Figure adapted from Ref. [18]. (b) The magnetic penetration
depth measured by microwave cavity perturbation. It is seen that λ ∝ |t|(2−D)ν/2 = |t|−0.33,
corresponding to ν ≈ 2/3, over three orders of magnitude in t. (c) The superfluid density,

ρ
3/2
s (T ) = λ3(0)/λ3(T ), of YBa2(Cu1–xZnx )3O6.95 for three different Zn doping levels: x = 0

(squares), x = 0.0015 (triangles), and x = 0.0031 (diamonds). At all three doping levels
ρs(T ) ∝ T 2/3, indicating that RBCO remains in the 3D-XY universality class even in the
presence of disorder. Panels (b) and (c) adapted from Ref. [19].

Accurate measurements of the penetration depth in highly pure single crystals show
that λ ∝ |T − Tc|−1/3 as expected for 3D-XY scaling over a temperature range as
wide as 0.1Tc below Tc; inclusion of small amounts of Zn impurities suggest that while
Tc is reduced with disorder, the scaling behavior is unchanged in accordance with the
Harris criterion [19, 149]. This trend is depicted in Figs. 2.11(b) and (c). Accord-
ingly, detailed studies of the electrical resistance and magnetization both in the ab
plane and along the c-axis show that close to optimal doping the 2D-like properties
of single crystal RBCO appear only in a very narrow temperature range, with TBKT
occurring at most 0.2 K below Tc [156, 157]. In this very narrow temperature range
the BKT transition is associated with vortex fluctuations in uncorrelated adjacent
CuO2 bilayers, because the energy of the vortex interactions within a given layer is
on the order kBTc while the interaction energy between vortices in different layers
is a factor λ/d smaller than kBTc [158, 159]. At temperatures further than ∼0.2 K
below Tc the interlayer coupling becomes strong enough for 3D superconductivity to
dominate.

One way, then, to make the BKT transition manifest in cuprates over a larger and
more experimentally relevant temperature range is to reduce the coupling between
CuO2 planes by changing the doping level. In the underdoped regime, where RBCO is
even more highly anisotropic (η . 1/12), adjacent CuO2 bilayer units are only weakly
Josephson coupled and superconducting fluctuations are observed to persist over a
broader temperature range both above and below Tc. Thermal expansion measure-
ments indicate that as doping is decreased the fluctuation range broadens to wider
than 0.75–1.5Tc, with the upper temperature limit increasing linearly with decreasing
doping [161]. More recent microwave cavity resonance and Nernst effect measure-
ments apply a stronger bound to the temperature range, but still find that fluctua-
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Figure 2.12 (a) The phase diagram for YBCO and other hole doped cuprates depicting the
extent of superconducting fluctuations probed by the Nernst effect, microwave cavity reso-
nance, and magnetization measurements. On the underdoped side of the superconducting
dome the fluctuations extend at most ∼25 K above Tc. Figure from Ref. [160]. (b) Mea-
surements of the superfluid density by mutual inductance methods in severely underdoped
YBCO single crystals. The solid line represents the BKT line (Eq. 2.24) corresponding to
one CuO2 bilayer, while the dashed line denotes the BKT line for a single CuO2 plane. The
superfluid density passes linearly through the intersection points with these two lines, where
the TBKT would be expected, indicating the absence of the BKT transition even in strongly
underdoped single crystals. As the quantum critical point pc ≈ 0.054 is approached the
superfluid density ρs(0) ∝ (p − pc) and Tc ∝

√
ρs(0), indicating that the quantum critical

fluctuations belong to the (3 + 1)D-XY universality class. Figure from Ref. [22].

tions persist up to 20–25 K above Tc and, as shown in Fig. 2.12(a), follow the shape
of the superconducting dome on the underdoped side of the phase diagram [160,162].
Measurements of the c-axis optical conductivity by far-IR ellipsometry and reflectiv-
ity in underdoped YBCO crystals have also provided evidence that superconducting
precursor fluctuations may survive within the CuO2 bilayer units up to temperatures
as high as 180 K [163]. In such data, the anomalous shift of an IR-active phonon
near 320 cm−1 below an onset temperature T ons > Tc signals the increased concen-
tration of optical conductivity spectral weight into a low-frequency, coherent Drude
peak associated with short-lived preformed Cooper pairs within the CuO2 bilayer
units; below Tc this excess spectral weight collapses into the delta-function at ω = 0.
Nevertheless, no experimental evidence for the observation of the BKT transition in
highly anisotropic, single crystal high-Tc cuprates falling within the 3D-XY universal-
ity class has yet been reported. Direct measurements of the superfluid density instead
indicate that ρs(T ) passes linearly through the temperature range where the Nelson-
Kosterlitz universal jump is expected from Eq. 2.24 [22], as illustrated in Fig. 2.12(b).
Furthermore, the doping (p) dependences of ρs(0) and Tc suggest that highly under-
doped RBCO falls within the (3 + z)D-XY universality class upon approaching the
quantum critical point pc, where z = 1 is the dynamical critical exponent, and that
ρs(0) ∝ (p− pc). These results imply that the superconductor-to-insulator transition
in the underdoped regime is rather dominated by mean-field behavior with the 3D-
XY critical region becoming inaccessibly narrow around Tc [164]. In this case the
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characteristic 2D features of the individual superconducting layers are obscured by
the complex relationship between 2D and 3D fluctuations caused by Josephson cou-
pling between the CuO2 planes [165, 166], as well as the variety of competing orders
which are known to exist in the pseudogap region of the phase diagram [3,160].

The second route to approach the crossover from 3D to 2D superconductivity is
to increase the transverse penetration depth by reducing the film thickness to less
than ξc. This reduces the effect of the Josephson coupling between the CuO2 bilayers
and, if near optimal doping, controls for the presence of competing orders on the
underdoped side of the phase diagram. Indeed, it was shown that superconductivity
is in fact stable in RBCO films down to thicknesses of a single unit cell [167–169].
However, early reports of the BKT transition in ultrathin YBCO layers sandwiched
in YBCO/PrBCO superlattices based on dc transport measurements are controver-
sial, because the data is either unclear or contradictory [170–175]. Much of the I–V
scaling data shows a smooth rolloff from strongly nonlinear to ohmic behavior upon
reducing the current across a wide range of temperatures. Repaci et al. [176] argued
on the basis of this scaling analysis that the BKT transition is not present in ul-
trathin YBCO because the smooth rolloff reflects a crossover from vortex-antivortex
pair breaking at high currents to a response dominated by free vortices nucleated
by finite size effects and disorder at low currents, even significantly below Tc. Fur-
thermore, fits of resistivity data above TBKT to lnR ∝ (T − TBKT )−1/2 tend to be
problematic in a number of works because the fits are applied to a broad range of
temperatures, certainly outside the domain of applicability of the Kosterlitz-Thouless
and AHNS critical scaling theory [92]. Measurements of the superfluid density by
mutual inductance techniques have been made on near optimally doped films thicker
than 50 u.c. and appear to show that the BKT transition still only appears very
close to Tc, and that optimally doped films thicker than 50 u.c. firmly remain in the
3D-XY universality class [177–180]. Vortex diffusion in 1–3 u.c. thick YBCO sand-
wiched between semiconducting Pr0.6Y0.4Ba2Cu3O7–δ has been studied at microwave
frequencies (megahertz to gigahertz) and discussed in terms of the dynamical AHNS
theory [181]. However, in such samples the vortex-antivortex interactions appear to
be obscured by strong pinning by defects that introduces a strongly temperature de-
pendent vortex diffusion constant D(T ), possibly due to interaction with the PrBCO
layers or interdiffusion of Pr ions. It is not clear how the BKT transition or the
temperature dependence of ρs(T ) is affected in this case.

Studies of the superfluid density by two-coil mutual inductance in ultrathin films
of strongly underdoped Ca-intercalated YBCO have also been carried out. The results
of these studies are reproduced and summarized in Fig. 2.13. Curiously, despite the
increasing anisotropy with decreasing hole doping, films 20–40 u.c. thick remain in
the (3+1)D-XY universality class upon approaching the quantum critical point with
no indication of a superfluid jump [182], mirroring the situation in strongly under-
doped YBCO crystals. In these films, which were also sandwiched between insulating
PrBCO layers, 20–30% Ca2+ substitution was used to stabilize the YBCO due to the
absence of CuO chains in the severely underdoped regime. In similar CaYBCO films
with 2 u.c. thickness, on the other hand, the films were observed to fall within the
(2+1)D-XY universality class [21], indicating the presence of the 3D to 2D crossover
somewhere below 20 u.c. The highly underdoped 2 u.c. CaYBCO films showed un-
mistakable signatures of the Nelson-Kosterlitz superfluid jump at low temperatures
(below 30 K). Fitting this superfluid density data with the phenomenology of Ben-
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Figure 2.13 The BKT transition in heavily underdoped CaYBCO films. The
superfluid density of Ca-intercalated YBCO films, sandwiched between PrBCO layers, was
measured as a function of underdoping via a two-coil mutual inductance technique. (a) The
superfluid density response in underdoped 40 u.c. thick films does not show a BKT-like
jump at the expected TBKT calculated for a single CuO2 bilayer (d = 11.7 Å, solid straight
line). On the other hand, a small superfluid density jump may be present for d = 40×11.7 Å
(dashed line lying close to temperature axis), but the associated TBKT would lie exceedingly
close to Tc0. The peaks drawn in solid lines correspond to the dissipative response σ1. The
peak position typically marks Tc and the peak width characterizes the level of disorder, with
a broader peak denoting a higher level of disorder. Figure adapted from Ref. [182]. (b) The
superfluid density measured in similar 2 u.c. thick CaYBCO films. Unlike for the 40 u.c.
films, the 2 u.c. films display a distinct downturn of the superfluid density near the expected
TBKT , which is depicted as the dashed black line for d = 2 × 11.7 Å. (c) From the data
presented in panels (a) and (b), and similar data measured in 20 u.c. CaYBCO films, Hetel
et al. plotted Tc as a function of the zero-temperature superfluid density λ−2(0). The trend
established by the 20–40 u.c. thick CaYBCO films (green and black dots) indicate that in
samples 20 u.c. and thicker Tc ∝

√
λ−2(0). This implies that in such thick samples the

quantum critical fluctuations near the underdoped critical point belong to the (3+1)D-XY
universality class. In contrast, for 2 u.c. thick films (red dots) Tc ∝ λ−2(0). In the ultrathin
samples, then, the quantum critical fluctuations belong to the (2 + 1)D-XY universality
class, suggesting that a 3D to 2D crossover exists at thicknesses somewhere between 2 and
20 u.c. For comparison Hetel et al. included data from lower critical field measurements
(open orange squares) and microwave measurements (open blue squares) of clean YBCO
bulk crystals as well as Uemura’s muon spin relaxation results in YBCO powders (open
black circles). Panels (b) and (c) were adapted from Ref. [21].
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Figure 2.14 The superfluid density data in Fig. 2.13(b) was analyzed using a sine-Gordon
renormalization group theory approach [32]. (a) The vortex core energy µ is found to
increase proportionally with Tc on the deeply underdoped side of the RBCO phase diagram.
(b) On the other hand, the ratio µ/µXY decreases with increasing doping and Tc, and
µ/µXY is significantly larger than the BCS value of µBCS/µXY ≈ 0.2 for conventional
superconductors like NbN. (c) Theoretical fits of the data in Fig. 2.13(b). Corresponding to
the decrease of µ/µXY with increasing doping, the knee of the downturn in the superfluid
density (black lines) shifts towards the BKT line expected for a characteristic length scale
of d = 1 u.c (blue dashed line) as Tc increases. Inset: at the lowest dopings the knee of the
downturn in λ−2 is visible near the BKT line for d = 2 u.c. (red dashed line). The green
dashed-dotted line represents the theoretical fit without integrating over inhomogeneity,
demonstrating that some disorder is present in the samples. Figure adapted from Ref. [32].

fatto et al. [32] (see Fig. 2.14) reveals that for severely underdoped YBCO the vortex
core energy µ ∝ Tc ∝ ρs(0). At the same time, however, the ratio µ/µXY decreases
from ∼3.5 to ∼1.5 upon increasing doping from Tc ≈ 5 K to Tc ≈ 35 K. When µ/µXY
is large the Nelson-Kosterlitz jump is observed to occur for the total film thickness,
while for small µ/µXY the jump corresponds to a BKT transition in a single CuO2

bilayer unit, as in the case when the Josephson coupling is weak. This behavior is
puzzling because it appears opposite to the known increase of Josephson coupling
with increasing hole doping.

Similar measurements of ρs(T ) and the BKT transition have not been reported
for near optimally doped RBCO films at thicknesses less than 20–50 u.c. From the
balance of the published evidence it appears clear that only RBCO samples thinner
than ∼10 u.c. will show BKT physics. Furthermore, the previous studies performed
on films as thin as 2 u.c. focused on YBCO that was doped with Ca, patterned into
YBCO/PrBCO superlattices, or otherwise sandwiched in semiconducting PrBCO lay-
ers. It is not clear how PrBCO alters the superconductivity or electronic structure in
adjacent YBCO [168,183]. In particular, the antiferromagnetic ordering temperature
of Pr in PrBCO, at TN = 17 K, is nearly two orders of magnitude larger than what is
observed in other RBCO materials and this magnetism may reduce superconductivity
as expected in the Abrikosov-Gorkov pair-breaking model [184,185]. It has also been
proposed that the hybridization of Pr 4f electron states near the Fermi level with
the CuO2 planes contributes to pair breaking, magnetic ordering, and charge localiza-
tion [39]. Doping of Ca into PrBCO may result in Ca substitution into either the Pr
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Figure 2.15 The superfluid density λ−2(T ) of 100 nm thick underdoped Bi2Sr2CaCu2O8+δ

films. At moderate dopings with critical temperatures Tc & 50 K the Nelson-Kosterlitz uni-
versal superfluid jump is clearly visible corresponding to a BKT transition in layers with a
characteristic thickness corresponding to two CuO2 bilayers (red dashed line). However, at
very low dopings where Tc . 50 K the superfluid density becomes quite linear in tempera-
ture, similar to the underdoped YBCO single crystal data shown in Fig. 2.12(b), and the
BKT superfluid jump is no longer visible. Such behavior may indicate the increased role of
quantum critical fluctuations in BSCCO. Figure adapted from Ref. [20].

or Ba sites; while Ca substitution of Pr has little effect on the structural properties,
Pr(Ba1–xCax )2Cu3O7 undergoes an orthorhombic-to-tetragonal transition at x = 0.1,
and Ca on the Ba sites is expected to more effectively introduce CuO chain disor-
der [186]. Therefore, the interplay between PrBCO magnetism, orbital hybridization,
and disorder produced by interdiffusion of both Ca and Pr ions between CaYBCO
and PrBCO layers complicates the interpretation of previous studies. To clarify this
issue it will be necessary to carry out measurements of the superfluid density and
BKT transition across a wide range of dopings in ultrathin RBCO films that are
isolated from the influence of Ca or Pr.

The BKT transition has also been probed in other families of cuprates, includ-
ing Bi2Sr2CaCu2O8+δ (BSCCO) and La2–xSrxCuO4 (LSCO). BSCCO, being one of
the most anisotropic cuprates with ηBSCCO = ξc/ξab ≈ 1/60, provides an impor-
tant proving ground for the existence of BKT physics in high-Tc superconductors.
Early dc transport measurements in BSCCO crystals [187–189] and TlBCCO thick
films [190] provided evidence that the BKT universal superfluid jump may be ob-
served in these materials with TBKT lying ∼2 K below Tc0, corresponding to 2D phase
fluctuations and vortex unbinding in single CuO2 planes. Indeed, studies of the crit-
ical scaling of the magnetization, dynamical superfluid response, and dc fluctuation
conductivity indicate that the mean-field state in BSCCO falls within the 2D-XY
universality class with 3D-XY critical fluctuations appearing only in a narrow range
about Tc0 [191–193]. However, this narrow 3D-XY critical behavior may still ob-
scure the BKT transition in thick samples. RF mutual inductance measurements of
the superfluid density in a 1 u.c. thick MBE-grown BSCCO film sandwiched between
Bi2Sr2CuO6 layers showed that significant phase fluctuations are indeed present in in-
dividual CuO2 planes [194]. The data is very consistent with Minnhagen’s dynamical
BKT response theory with moderate vortex pinning and thermally activated vortex
diffusion. A much more recent study [20] on underdoped BSCCO films across a wide
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range of dopings found that, similar to 2 u.c. thick YBCO, BSCCO films as thick as
100 nm also fall within the (2+1)D-XY universality class upon approaching the quan-
tum critical point. As shown in Fig. 2.15, for moderate underdoping (Tc & 50 K) the
Nelson-Kosterlitz superfluid jump is clearly visible, pointing to the dominance of 2D
thermal fluctuations. Interestingly, however, for strong underdoping (Tc . 50 K) the
superfluid jump disappears and ρs(T ) becomes linear near the expected TBKT , rem-
iniscent of the behavior in strongly underdoped YBCO crystals [22]. This suggests
that near the quantum critical point the 2D quantum critical fluctuations become
very strong and obscure the 2D thermal fluctuations. Such an effect is not observed
in ultrathin YBCO films, where it may be suppressed due to the relatively low degree
of anisotropy in YBCO compared to BSCCO.

LSCO has an anisotropy parameter ηLSCO ≈ 1/15, placing it intermediately be-
tween YBCO and BSCCO. In keeping with the trend established by these two other
cuprate families, thick LSCO films (few hundred nm) fall within the 2D-XY univer-
sality class on the underdoped side of the phase diagram, but very close to optimal
doping (x = 0.16) show a crossover to 3D-XY scaling [197]. Measurements of the
magnetoresistance and dc paraconductivity in such thick films point to an absence of
the BKT transition even at strong underdoping [198], which suggests that the 3D-
XY critical region around Tc0 is significantly broader than in BSCCO and smears
out the superfluid density jump. Similar to the case of YBCO, LSCO films dis-
play signatures of the universal superfluid density jump when the film thickness is
drastically reduced. Reports of single-coil mutual inductance measurements of the
superfluid density in 1 u.c. thick LSCO/La2CuO4 heterostructures grown by MBE
show a distinct steepening of ρs(T ) in a temperature range (Tc0−T ) ∼ 0.25Tc0 below
Tc0, which is suppressed by a small c-axis applied magnetic field of 0.2 T [199]. The
experimental results, analyzed in the dynamical BKT theory, indicate that vortex
pinning is present with a pinning energy comparable to the results discussed above
on BSCCO/BSCO trilayers. The universal jump has been observed in severely un-
derdoped films as thick as 75 u.c., less than what is seen for BSCCO but certainly
thicker than for the RBCO family. In these severely underdoped LSCO films an
analysis of magnetoresistance and dc conductivity data shows that the sine-Gordon
renormalization group theory of Benfatto et al. fits the response very well with vortex
core energy µLSCO/µXY ≈ 1.4 [33]. This large vortex core energy (compared to the
BCS value of µBCS/µXY ≈ 0.2) implies that in LSCO the relevant length scale that
controls the BKT transition is on the order of a few coupled CuO2 layers; in YBCO,
on the other hand, the even larger value µYBCO/µXY ≈ 3.5 at severe underdoping [32]
points to an even larger characteristic length scale in the RBCO system. Indeed, the
LSCO family appears as an intermediate between BSCCO, where the relevant length
scale for the BKT transition is a single CuO2 plane, and RBCO, where the relevant
scale is the total film thickness.

Finally, it is necessary to discuss one of the most classic manifestations of BKT
physics in the cuprates, that of the dynamical BKT effect probed in the terahertz
range in BSCCO and LSCO, depicted in Fig. 2.16. One conjecture regarding the
nature of the pseudogap state on the underdoped side of the cuprate phase diagram
is that the observable Tc of the superconducting dome actually reflects a phase dis-
ordering temperature that limits superconductivity, and that the temperature scale
of the order parameter amplitude extends much higher, up to T ∗ ∼ 100–300 K de-
pending on doping level [53]. In this picture the pseudogap state below T ∗ is formed
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Figure 2.16 Dynamical BKT and phase coherence in BSCCO and LSCO. (a)
The superfluid stiffness, parameterized by the phase stiffness energy Tθ ≈ ρs/m∗, and BKT
transition observed in 40–65 nm thick films of underdoped BSCCO by THz time-domain
spectroscopy (Tc = 33 K, left and Tc = 74 K, right) [195]. The dashed curve corresponds to
the BKT line. Above the intersection point with the BKT line the data separates, reflecting
the frequency dependence of the dynamical BKT superfluid density jump. (b) The frequency
Ω = 1/τ characterizes the phase-fluctuation time τ of the superconducting correlations. At
ω > Ω, Tθ approaches the bare phase stiffness T 0

θ of the underlying superconductivity and
the complex conductivity σ(ω) = σ0(kBT

0
θ /~Ω)S(ω/Ω). Both Ω and S, the scaling function,

can be extracted from the real and imaginary parts of σ(ω). Since Ω ∝ Ω0nvT
0
θ /T , where

nv is the density of free vortices that are expected to be thermally activated, the scattering
rate Ω ∝ (Ω0/Θ)e−C/Θ with Θ = T/T 0

θ representing the reduced temperature. The data in
(b) show that fluctuations indeed follow this trend, indicating that the proliferation of free
vortices suppresses superconductivity above Tc. (c) τ(T ) for the Tc = 74 K sample. Phase
fluctuations only extend at most to TQ ∼ 20 K above Tc, until τ becomes indistinguishable
from the mean lifetime of free carriers in the normal state, ~/kBT (shaded area). TQ from
this plot is included in Fig. 2.12(a). (d) Similar THz time-domain spectroscopy measure-
ments of the superfluid stiffness, parameterized as ωσ2, in a 40 nm thick underdoped LSCO
film [196]. A similar analysis to the BSCCO film leads to the LSCO phase diagram shown
in (e); superconducting phase fluctuations extend at most ∼20–25 K above Tc. Yellow area,
the onset of THz fluctuation conductivity ∝ ∂2(ωσ2)/∂T 2; green squares, TQ defined from
the maximum extent of τ as in (c). The phase fluctuations probed by THz measurements
are found to lie at temperatures significantly below the onset of fluctuation diamagnetism,
shown with blue triangles. Figure adapted from Corson et al. [195] and Bilbro et al. [196].
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from phase-incoherent preformed Cooper pairs. Among many experiments carried
out to test this hypothesis, the measurements of Corson et al. on BSCCO [195] and
Bilbro et al. on LSCO [196] stand out. In those works, the dynamical BKT transition
was observed in terahertz time-domain spectroscopy measurements of the complex
conductivity and the phase correlation time was extracted. For both BSCCO and
LSCO it was found that superconducting correlations only persist has high as ∼15
K above Tc, certainly far below the pseudogap temperature T ∗. This temperature
range appears to agree with Nernst effect measurements [160] and microwave absorp-
tion at 15 GHz [162], which show that in YBCO the fluctuations persist as high as
∼23 K above Tc. Given that the RBCO family is much less two-dimensional than
either BSCCO or LSCO, it would be interesting to explore how the dynamical BKT
transition at terahertz frequencies is effected in thin film RBCO.

2.3 Optical Sum Rules in the Copper Oxides

As we have seen, the nature of the BKT transition depends upon the details of the
critical behavior of the fluctuation conductivity and the superfluid density. However,
these quantities are coupled to each other so the nature of the BKT transition in
superconductors will also depend strongly on the details of this coupling. The impor-
tant effect to consider is the relationship between the penetration depth, the density
of normal and superconducting charge carriers, and the optical conductivity. This
is because the details of the superconducting pairing mechanism and the electronic
properties of the normal state strongly influence how changes in the optical conductiv-
ity affect changes in the superfluid density, and vice versa. A proper characterization
of the BKT transition therefore requires a full understanding of this relationship.

From general considerations of the electrodynamics of solids, it can be shown [200]
that the integral of the optical conductivity over all frequencies is a constant, given
by ∫ ∞

0

σ1(ω)dω =
πne2

2m
,

where n is the total density of electrons and m is the electron mass. Notably, this
quantity is independent of temperature or the state of the material; as temperature
changes or a phase transition is encountered the optical conductivity spectral weight
is redistributed to different frequencies but the total value of the integral remains un-
changed. When applied to the superconducting transition, the above integral becomes
what is known as the Ferrell-Glover-Tinkham sum rule [8]:∫ ∞

0+

σT>Tc1 (ω)dω =

∫ ∞
0+

σT<Tc1 (ω)dω +
πnse

2

2m
(2.27)

Here, σT>Tc1 (ω) corresponds to the conductivity in the normal state above Tc, while
σT<Tc1 (ω) refers to the conductivity at finite frequencies in the superconducting state
below Tc due to the residual response of non-superconducting (or normal) electrons
that are not condensed. The second term on the right-hand side of Eq. 2.27 accounts
for the density of superconducting electrons, ns, that have condensed and are found
within the δ-function at ω = 0 below the bounds of the integral. This second term
is manually added because in a typical optical measurement the integration cannot
be taken from truly zero frequency. The FGT sum rule therefore corresponds to the



2.3 Optical Sum Rules in the Copper Oxides 45

so-called two-fluid model that relates the total density of charge carriers ρ(T ) to the
“normal fluid” density ρn(T ) and the superfluid density ρs(T ):

ρ(T ) = ρn(T ) + ρs(T ). (2.28)

Expression 2.28 is ideally valid both above and below Tc; in the BCS case ρs = 0
above Tc so that ρ(T > Tc) = ρn, with ρ(T ) always constant.

In practice, the integration in Eq. 2.27 also cannot be carried out to ω = ∞ due
to experimental limitations. Instead, the integration is typically taken up to a fre-
quency which is large compared to the bandwidth of the energy band that crosses the
Fermi level but small compared to the frequency of interband transitions. This pro-
cedure introduces additional considerations because the sum is no longer “global.” It
is possible that in this case the sum becomes both temperature and state dependent,
because spectral weight is allowed to transfer into and out of bands lying at higher
frequencies. The important questions become, then, to what degree is the FGT sum
rule satisfied, and what is the relative importance of the spectral weight transfer to
the higher-lying bands? Work has been done by various groups to address these ques-
tions but published reports remain contradictory as a result of different experimental
restrictions that lead to diverging conclusions [17]. In particular, there is a large gap
in the phase-sensitive conductivity measurements that lies in the mid- to far-infrared
spectral range, between accurate measurements at microwave and visible frequen-
cies. Based on reflectivity measurements in this gap, it was reported [14,15] that the
conductivity spectral weight increases in the superconducting state compared to the
normal state in the cuprates. This finding led to discussions of unconventional pair-
ing theories based on kinetic energy saving mechanisms [12, 13]. However, infrared
reflectivity measurements in the superconducting state can be difficult to interpret
because Kramers-Kronig analysis with predetermined assumptions are needed to ex-
tract the full complex conductivity. Spectroscopic ellipsometry measurements [16] in
the infrared range instead led to the opposite conclusion, that the spectral weight in
the superconducting state does not exceed its value in the normal state in cuprates.

Despite the contradictory literature, there are not yet any reports where the spec-
tral weight evolution is measured with the “closed” spectral gap; that is, fully phase-
sensitive measurements of the conductivity that smoothly connect the microwave to
the visible ranges. Part of the results presented in this thesis seek to address this
question of spectral weight recovery as well as the question of whether the FGT sum
rule is satisfied in copper oxide superconductors. As will be shown in later chapters,
we will present a spectroscopic method wherein quasioptical microwave interferome-
try, time-domain terahertz spectroscopy, and far-infrared spectroscopic ellipsometry
are combined to extract the full complex conductivity and dielectric function in the
range 0.1 meV < ~ω < 1 eV without need for Kramers-Kronig relations or model
assumptions. Nevertheless, the Kramers-Kronig relations are used to check the con-
sistency of the measured conductivity data. We find that the spectral weight is indeed
recovered in the cuprates to within ±0.2%, indicating that the FGT sum rule and
two-fluid model are obeyed. These results rule out the possibility of a kinetic energy
saving mechanism and are consistent with the prior results of Boris et al. [16].
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Chapter 3

Experimental Methods

3.1 Electrodynamics of Solids

By the middle of the nineteenth century electricity, magnetism, and optics were
still considered to be three separate branches of philosophy, and the key principles
within each branch were either not unified or existed in a qualitative state. The
Scottish mathematician James Clerk Maxwell set out to mathematize and unify all
three branches into a single science. In 1861 he succeeded at combining all previous
advances in both electricity and magnetism into a set of 20 interdependent equa-
tions [201]. In the following year Maxwell used these equations to show that the
electromagnetic field propagates as a transverse wave; when he calculated the speed
of this wave from constants obtained by electrical measurements he found that the
velocity was identical to the optical measurements of the speed of light carried out by
Fizeau and Foucault, and he became convinced that light waves were electromagnetic
waves [202]. Later, Oliver Heaviside simplified and condensed Maxwell’s original 20
equations to the four that are in use today.

The Maxwell equations in the form given by Heaviside are

∇ · E =
ρ

ε0
(3.1)

∇ ·B = 0 (3.2)

∇× E = −∂B

∂t
(3.3)

∇×B = µ0J + µ0ε0
∂E

∂t
(3.4)

The first equation follows from Coulomb’s force law, the second from Gauss’s law
applied to the magnetic field, the third from Faraday’s law of induction, and the fourth
from Ampère’s law of magnetic force [203]. Implicit in Maxwell’s equations is the
continuity equation; by taking the divergence of Eq. 3.4 one obtains ∇ · J = −∂ρ/∂t,
which is a statement of charge conservation. Also implicit is the wave equation, which
formed the basis for Maxwell’s conclusion that light waves are electromagnetic waves.
By taking the curl of Eq. 3.3 one obtains

∇2E =
1

c2

∂2E

∂t2
(3.5)
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in the absence of free charges or currents, where the wave speed c = 1/
√
µ0ε0. When

combined with the Lorentz force F = q(E + v × B) and Newton’s second law of
motion, the Maxwell equations give a complete description of the classical dynamics
of interacting charged particles and electromagnetic fields.

3.1.1 Fresnel Equations

Starting from Maxwell’s equations it is possible to derive Fresnel’s equations for trans-
mission and reflection at interfaces. Contained within Eqs. 3.1–3.4 are the boundary
conditions for electric and magnetic fields where two different media meet each other.
By taking into account the change in the electric and magnetic fields across the in-
terface, the laws of reflection and refraction can be determined and related to the
optical properties of each material.

The boundary conditions for field components oriented perpendicular to the in-
terface are obtained from Eqs. 3.1 and 3.2, while those for field components oriented
parallel to the interface are obtained from Eqs. 3.3 and 3.4. To begin, we assume that
a flat interface separates two semi-infinite media labeled “1” and “2”. If we take as a
surface an infinitesimally small box straddling the interface and apply the divergence
theorem to Eqs. 3.1 and 3.2, where the area of the top and bottom of the box is given
by ∆a and the total charge enclosed on the interface is σ∆a, then we obtain

ε2E2⊥ − ε1E1⊥ = σ (3.6)

B2⊥ −B1⊥ = 0 (3.7)

Similarly, if we take an infinitesimally small rectangular loop straddling the interface
and apply Stokes’ theorem to Eqs. 3.3 and 3.4, where the length of the loop elements
oriented parallel to the interface is ∆l and the current enclosed by the loop is K∆l,
then we obtain

E2‖ − E1‖ = 0 (3.8)

B2‖ −B1‖ = µ0K (3.9)

for nonmagnetic materials. As a result, electric fields oriented parallel and mag-
netic fields oriented perpendicular to the interface are continuous, while electric fields
oriented perpendicular and magnetic fields oriented parallel to the interface are dis-
continuous. The size of the discontinuities are determined by any surface charges and
currents present on the interface as well as the difference in the dielectric constant ε
across the interface.

Next, we assume an electromagnetic wave incident on the interface in the x = 0
plane approaches from medium 1 with angle of incidence θ1 and transmits into medium
2 with angle of refraction θ2, as illustrated in Fig. 3.1 [204]. There will also be a
reflected wave that propagates back through medium 1. Then, the equations for the
electric field in medium 1 and medium 2 are given by

E1(r, t) = EIe
i(kI ·r−ωI t) + ERe

i(kR·r−ωRt)

E2(r, t) = ET e
i(kT ·r−ωT t)

Here, ωI , ωR, and ωT are the frequencies of the incident, reflected, and transmitted
electromagnetic waves, respectively, while kI , kR, and kT are their wave vectors. Time
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Figure 3.1 An illustration depicting the plane of incidence for an electromagnetic wave
incident on the interface at x = 0 between medium 1 and medium 2. The p-polarized
electric field components (blue vectors) lie within the plane of incidence, in the xy plane.
The s-polarized electric field components (red vectors) lie perpendicular to the plane of
incidence, in the positive z direction.

invariance requires that ωI = ωR = ωT = ω and translation invariance on the x = 0
plane requires that kI ·r = kR ·r = kT ·r. Dependence of the reflected and transmitted
waves on the properties of medium 1 and medium 2 enter through the velocity of
the waves: k = ωñ(ω)k̂/c, where ñ(ω) = n(ω) + ik(ω) is the complex frequency-
dependent index of refraction and c/n(ω) is the speed of light in the medium. The
index of refraction is allowed to take complex values in order to account for the
possibility that the media absorb energy from the electromagnetic waves. The real-
valued parameters n(ω) and k(ω) are then termed the optical constants of the media.
In general, the incident wave can also have an arbitrary polarization about the wave
vector kI , and this polarization will affect the transmission and reflection ratios. The
total polarization is therefore written as a linear combination of components with
electric field vectors oriented parallel (“p”) and perpendicular (“s”) to the plane of
incidence.

For p-polarized light in the absence of free surface current, Eqs. 3.8 and 3.9 along
with the relation k × E = ωB give the complex Fresnel reflection and transmission
equations for an incident wave passing from medium 1 to medium 2:

r̃p,12 =

[
ER
EI

]
p,12

=
ñ2 cos θ1 − ñ1 cos θ2

ñ2 cos θ1 + ñ1 cos θ2

(3.10)

t̃p,12 =

[
ET
EI

]
p,12

=
2ñ1 cos θ1

ñ2 cos θ1 + ñ1 cos θ2

(3.11)

Similarly, for s-polarized light the boundary conditions at the interface lead to the
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Fresnel equations

r̃s,12 =

[
ER
EI

]
s,12

=
ñ1 cos θ1 − ñ2 cos θ2

ñ1 cos θ1 + ñ2 cos θ2

(3.12)

t̃s,12 =

[
ET
EI

]
s,12

=
2ñ1 cos θ1

ñ1 cos θ1 + ñ2 cos θ2

(3.13)

At first glance it appears as though r̃p and r̃s lead to contradictory results at normal
incidence, where the two polarizations produce reflections which differ by their sign
(and hence a phase shift of π). This difference lies in the sign convention of Eqs. 3.8
and 3.9. Because the wave vector k is inverted upon reflection, the sign convention for
the electric field of p-polarized incident waves also experiences a sign inversion, while
for s-polarized waves the sign convention remains unchanged. For media with n2 > n1

the value of r̃p is positive while r̃s is negative; both equations therefore produce the
same result and imply that the reflected electromagnetic wave suffers a phase shift
of π when the incident wave impinges upon a more optically dense medium. When
n1 > n2 the signs of r̃p and r̃s are reversed. Thus, reflection from a medium that
is less optically dense than the incident medium produces zero phase shift between
incident and reflected waves.

The Fresnel coefficients for the reflected and transmitted intensities, R and T ,
follow from the definitions of r̃ and t̃ by considering the average power that reflects
and transmits at the interface. For s-polarized waves in nonmagnetic media,

Rs,12 = |r̃s,12|2 =

(
ñ1 cos θ1 − ñ2 cos θ2

ñ1 cos θ1 + ñ2 cos θ2

)2

(3.14)

Ts,12 =
ñ2 cos θ2

ñ1 cos θ1

∣∣t̃s,12

∣∣2 =
4ñ1ñ2 cos θ1 cos θ2

(ñ1 cos θ1 + ñ2 cos θ2)2 (3.15)

In Eqs. 3.10–3.15 the incident and refracted angles θ1 and θ2 are related through Snell’s
law, ñ1 sin θ1 = ñ2 sin θ2, which follows from the condition of translation invariance at
the interface, kI · r = kR · r = kT · r. Together with Snell’s law the Fresnel equations
and Fresnel coefficients form a complete set which describes the full behavior of the
electromagnetic field at the boundary between two media. Since the electromagnetic
field is also linked to the properties of the media through the complex indices ñ(ω), all
that remains in order to describe the spectroscopic behavior of a medium is to develop
a proper model for ñ(ω) based on the internal mechanical and quantum mechanical
processes which occur in that medium. Alternatively, since the complex ñ(ω) consists
of a real component n(ω) and an imaginary component k(ω), measurement of both
R and T , or a measurement of both the amplitude and phase components of r̃ or
t̃, will give access to the full complex response function of a material by analytical
inversion. Tailored Fresnel equations can also be generated for more complicated or
detailed sample geometries by successive application of the basic r̃ and t̃ presented
in Eqs. 3.10-3.13 for each structural feature. As a result, the Fresnel equations form
the heart of many spectroscopic techniques.

As will be further discussed below, extraction of the full optical constants is most
accurately done in a model-independent way by measurement of the amplitude and
phase of the transmission function t̃(ω). Measurement of the full complex r̃(ω) is
generally more difficult due to challenges in measuring the amplitude and phase of
the incident electric field to high enough precision. Similarly, extraction of material
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parameters by measurement of R and T is challenging because in many instances
only one of the two measurements is available. Mathematical techniques exist to
infer either R or T from the other, such as via the Kramers-Kronig relations, but
such techniques require model-dependent assumptions to be made that may introduce
artifacts in the extracted material response.

3.1.2 The Drude-Lorentz Model

While the Maxwell equations represented a great leap forward in explaining the re-
lationship between charged matter, electric and magnetic fields, and light waves, the
fundamental mechanisms of how electromagnetic radiation interacts with materials
remained, for the most part, unknown in the decades following Maxwell’s formula-
tion [205]. In particular, it remained a mystery how solids, despite their overall neu-
tral charge, could interact with electromagnetic fields to produce such wildly different
phenomena as the spectacular color of crystals, the brilliant luster and high conduc-
tivity of metals, the transparency of glass, and the magnetization of lodestones [206].
The first breakthroughs in solving this puzzle came in 1887-1888 when the experi-
ments of Michelson and Morley ruled out the existence of the luminiferous aether and
Heinrich Hertz proved the existence of electromagnetic waves and demonstrated their
transmission through free space [24,207]. Second, William Crookes’ seminal work on
cathode ray tubes, carried out to understand the conduction of electricity in gases,
led Hertz and Philipp von Lenard to discover that cathode rays could pass through
thin metal foil. Jean Baptiste Perrin was then able to show in 1895 that the cath-
ode rays were actually jets of negatively charged particles and that their trajectories
could be deflected with the application of a magnetic field. Third, during the course
of his own studies of Crookes and Lenard tubes in late 1895, Wilhelm Conrad Rönt-
gen fortuitously discovered X-rays [208]. Publication of a ghostly image of the bones
in his wife’s hand stirred great public interest and immediately revolutionized medi-
cal science [209]. Shortly thereafter, in 1897, J. J. Thomson discovered the electron
and measured its mass-to-charge ratio m/e while working to reproduce Röntgen’s re-
sults [210]. Taken together, these advances definitively demonstrated that Maxwell’s
theory was valid, that current was due to the motion of charged particles, that the
charged particles carried discrete “quanta” of charge, and that the mass of the elec-
tron was 1000 to 2000 times less than the mass of the hydrogen atom. Röntgen,
Lenard, Thomson, and Michelson all went on to win the Nobel Prize in physics for
this work, with Röntgen becoming the very first recipient in 1901.

The final crucial step in building a first understanding of the electromagnetic
properties of solids came in 1900, when Paul Drude combined the key results from
these breakthroughs to construct his theory of electrical and thermal conduction in
metals [211, 212]. Drude treated metals as a gas of electrons that obey the laws of
the classical kinetic theory of gases and which move against a background of heavy,
immobile, positively charged ions. His model makes a series of three fundamental as-
sumptions. First, the negatively charged electrons are assumed to be completely free,
with all electron-ion interactions neglected except for when the electrons elastically
collide with the immobile, positively charged ions. In the absence of any collisions
the electrons move according to Newton’s equations of motion. In the presence of ex-
ternally applied electric or magnetic fields the electrons move according to Maxwell’s
equations. Interactions of the electrons with the edges of the sample are also ne-
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glected because the sample dimensions are taken to be quasi-infinite. Second, the
electrons are assumed to be independent, with all electron-electron interactions ig-
nored despite the strong Coulomb repulsions which obviously occur between them.
The success of the Drude model despite the neglect of electron-electron interactions
would prove to be one of the great fundamental questions left unresolved by the
theory. Later and with more sophisticated methods, others were able to show that
the independent electron assumption can indeed be taken to be true in many impor-
tant systems, particularly ones in which electronic screening and effects stemming
from the Pauli exclusion principle are dominant [206]. Third, Drude assumed that
the ensemble of electrons is described by a single constant relaxation time τ , and
that in the absence of external forces the system relaxes to thermal equilibrium at
a rate 1/τ only through the collisions of the electrons with the immobile, positively
charged ions [213]. Immediately after each collision, which is assumed to be an in-
stantaneous event, all information about the electron’s prior velocity is destroyed and
the electron acquires a new velocity which is randomly directed and given by the
local temperature at the site of the collision. In this way the momentum distribution
of electrons emerging from collisions is assumed to not depend on the distribution
just prior to collisions. In reality, however, the rate at which the ensemble relaxes is
strongly dependent upon the total electronic distribution function both before and
after collisions because the Pauli exclusion principle forbids electrons from scattering
into already occupied states. Drude’s concept of the relaxation time is therefore use-
ful if it is possible to describe many complicated, coexisting scattering processes in
terms of a single τ that is either constant or a simple function of energy [214]. For
generalized systems the relaxation time is a tensor, τij(k). In anisotropic systems
τij(k) may contain off-diagonal elements that introduce complicated dependence of τ
upon the electron momentum vector k. Strict interpretation of the relaxation time
approximation therefore requires isotropic scattering. However, scattering from im-
purities occurs preferentially in the forward direction and contributes negligibly to
the relaxation rate, giving a relaxation time that can be considerably larger than the
average time between electron collisions. As a result, the Drude model is most suc-
cessful where quantities can be derived that do not depend heavily on the details of
τ , or where τ can be understood as a generic property rather than as a representation
of specific intrinsic processes [206].

Starting from the relaxation time approximation, the probability that a given
electron in a metal experiences a collision per unit time is given by 1/τ . The equation
of motion of the electron under the influence of an electric field at point r and time
t can therefore be expressed as

d

dt
p(r, t) = −1

τ
p(r, t)− eElocal(r, t), (3.16)

where e is the charge of the electron and Elocal(r, t) is the local, microscopic electric
field acting on the electron. The electric field is taken to be oscillatory as in Sec-
tion 3.1.1, with Elocal ∼ ei(k·r−ωt). Since the current density J = −nep/m, the free
current induced by the electric field is given by

J(r, ω) =
ne2τ

m

Elocal(r, ω)

1− iωτ
.

Free electrons probe a spatial volume with dimensions on the order of the mean free
path ` in a time τ . Therefore, they do not respond simply to Elocal(r, ω) at a single
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point r but instead to some electric field averaged over a volume ∼ `3. Provided
the wavelength of the electric field λ � `, the local electric field strength will not
vary appreciably over a distance ` and the average local field 〈Elocal(r, ω)〉 = E(r, ω),
where E(r, ω) represents the macroscopic applied external electric field. The first
term on the right hand side of Eq. 3.16 is a viscous damping term so Drude inferred
that the energy absorption in a metal results from the same mechanism that gives
Joule heating, and that the current is therefore proportional to the applied electric
field [215]. Adopting the constitutive relation J(r, ω) = σ̃(ω)E(r, ω), Drude found
the frequency-dependent complex conductivity to be

σ̃(ω) =
σ0

1− iωτ
, (3.17)

which reduces to the dc value σ0 = ne2τ/m as ω → 0. With zero total charge density
or bound current, Maxwell’s equations give

−∇2E(r, ω) =
ω2

c2

(
1 +

4πiσ̃(ω)

ω

)
E(r, ω), (3.18)

and from comparison with the wave equation, Eq. 3.5, it is evident that the complex
dielectric function ε̃(ω) = ε1(ω) + iε2(ω) is related to the complex conductivity via

ε̃(ω) = 1 +
4πiσ̃(ω)

ω
. (3.19)

The real and imaginary parts of the complex conductivity σ1(ω) and σ2(ω) can then
explicitly be written as

σ1(ω) =
ω

4π
ε2(ω) [Gaussian] =

ω

59.96
ε2(ω) [Ω−1cm−1]

σ2(ω) =
ω

4π
(1− ε1(ω)) [Gaussian] =

ω

59.96
(1− ε1(ω)) [Ω−1cm−1].

(3.20)

The substitution of the prefactor 1/4π for 1/59.96 originates in the conversion from
Gaussian units to SI units with frequency ω given in cm−1 [203].

Figure 3.2 illustrates the expected Drude model frequency dependence for the
real and imaginary parts of the complex conductivity calculated from Eq. 3.17. The
response exhibits three main features [200]. First, at low frequencies where ωτ < 1
the metal falls within the classical skin effect regime. Here σ1(ω) is close to constant,
σ2(ω) ∼ ω, and k ≈ n. This regime is therefore defined by an electronic mean free path
` which is significantly less than the skin depth δ to which the electromagnetic wave
penetrates, and electrons in the skin layer suffer many collisions during one oscillation
period of the wave. As a result, the relationship between the free current and the
applied electric field is local and instantaneous, and the relation J(r, t) = σ̃E(r, t)
holds. Second, near ωτ ≈ 1 the metal enters the relaxation regime where σ1 = σ2 =
σ0/2. At this frequency the distance the electrons travel in one oscillation period,
v/ω, falls in the limit v/ω < ` < δ and the inertial effects of the electrons become
important. The constitutive relation

J(r, t) = σ̃

∫
E(r, t′)e(t−t′)/τdt′
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Figure 3.2 (a) The real (blue) and imaginary (red) parts of the complex conductivity σ̃(ω)
in the Drude model, normalized to the value σ0. (b) The correspondiing real (red) and
imaginary (blue) parts of the complex dielectric function. Region I includes the classical
skin effect regime at ωτ � 1, where ε1(ω) approaches its limiting value of 1−ω2

pτ
2 and ε2(ω)

diverges as 1/ω. Region II corresponds to the relaxation regime; screening and absorption
are approximately matched with ε1(ω) ∝ 1/ω and ε2(ω) ∝ 1/ω2. In Region III the screening
of the electromagnetic wave by free electrons dominates over the absorption so that ε1(ω) ∝
1/ω2 and ε2(ω) ∝ 1/ω3. Region IV is the region of transparency above ω > ωp.

is no longer Ohmic, instead becoming nonlocal in time, and the free current lags
the applied electric field by an increasing amount as frequency increases. With in-
creasing frequency σ2(ω) becomes increasingly greater than σ1(ω) and the phase shift
approaches π/2. Third, at high frequencies where ωτ > 1 the electrons respond to
the oscillating electric field as free electrons and the effect of collisions becomes much
less dominant. In this regime ` & δ so the electrons act to screen the applied ex-
ternal electric field and k > n. Consequently, σ1(ω) ∼ 1/ω2 and σ2(ω) ∼ 1/ω (or
equivalently, ε1(ω) ∼ −1/ω2) so the reflection is high, while the π/2 phase shift of
the response implies that absorption in the skin layer is negligible.

As ωτ is increased further the complex dielectric function passes through a point
where ε1(ω) = 0. From Eq. 3.18 it is evident that the wave equation is satisfied with
a phase velocity vph = c/

√
ε1. Therefore, at this point both vph and the wavelength

of the electromagnetic wave in the metal become infinite; the electrons all oscillate in
phase and the frequency at which this occurs is referred to as the plasma frequency
ωp. Following Eq. 3.19 with ωτ � 1 it is found that

ω2
p = 4π

ne2

m
[Gaussian] = 59.96

ne2

m
[cm−2], (3.21)

where once again the prefactor of 59.96 in the second equality originates from the
frequency being given in units of cm−1. However, there is no oscillation of the total
polarization charge density as with a true plasma. The plasma oscillation is only a
normal mode of the system if it can sustain itself in the absence of an external field,
ε̃(ω)E(ω) = 0. With ε1 = n2 − k2 = 0 the condition n = k will support a resonantly
driven plasma oscillation, but if k 6= 0 there will be dissipation and the oscillation will
not be a normal mode. Since the separation of charges in the electron gas produces
a restoring field E, the true plasma oscillation requires the complex ε̃(ω) = 0 because
then n = k = 0. Finally, at ω > ωp the metal becomes transparent and both ε1(ω)
and ε2(ω) are nonzero and positive.
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Despite the simplicity and widespread use of the Drude model by the scientific
community, more than 100 years passed after the publication of Drude’s seminal
papers before the model was finally experimentally verified. Typically, verification of
the Drude model is challenging because standard infrared spectroscopy techniques are
only sensitive in the frequency range corresponding to the Drude tail, and infrared
reflectivity measurements suffer from the need to make an extrapolation of the data
to high and low frequencies in order to apply the Kramers-Kronig transformations.
By utilizing high quality thin films of the heavy fermion metal UPd2Al3 and phase
sensitive microwave spectroscopy techniques, Martin Dressel and Marc Scheffler et
al. were able to show that the simple Drude model is indeed valid with a single
temperature dependent scattering rate to within an accuracy of better than 1% [216,
217]. They were successful due to the particular mix of electronic conditions and
disorder in the films. The strong electron correlations in the UPd2Al3 give rise to
an electronic mass enhancement of ∼1000, which in turn leads to an extremely slow
relaxation rate of just a few GHz, while the impurity level in the films lies in just
the right range to create a single Drude relaxation time that is not too large to be
observed by low frequency techniques. These results showed that, if the right material
conditions are present, the Drude scattering rate is indeed independent of frequency.

Aside from the Drude model’s success at describing the ac electrical conductivity
of metals, especially in the limit where the wavelength of the applied electric field
λ � `, the model was able to provide a reasonable explanation of the classical Hall
magnetoresistance, the magnitude of the Hall coefficient RH = −1/nec, the thermal
conductivity, and the classical Seebeck effect. Later, Arnold Sommerfeld expanded
on the Drude model to make use of Fermi statistics and take into account the fact
that the classical ideal gas laws cannot be applied to an electron gas. The resulting
Sommerfeld and Drude models describe the magnitude of the Hall coefficient and
the thermal conductivity of a metal reasonably well because these quantities do not
rely on specific details of the relaxation time. Similarly, the Drude model successfully
describes the ac electrical conductivity of metals because the identity of the scattering
mechanisms that constitute τ are unimportant for the macroscopic response and the
Pauli exclusion principle strongly limits electron-electron interactions at the Fermi
level. However, significant problems with the Drude theory lie in its three primary
assumptions: that the electrons are free and independent and can be described by
a single relaxation time. For example, the oversimplification of the relaxation time
approximation leads the Drude model to fail to properly explain the Wiedemann-
Franz law and the τ -dependence of the magnetoresistance, while the free electron
approximation leads to a failure to predict the magnetic field dependence of the
magnetoresistance or the correct sign of the Hall coefficient in some metals. Even the
greatest success of Drude’s theory, the ac electrical conductivity, suffers from a failure
to predict the detailed frequency and temperature dependence of the conductivity
due to a neglect of electron-ion interactions (and in some cases, electron-electron
interactions). In fact, relaxing the free electron approximation serves as an important
first step in improving the theoretical description of metals.

Hendrik Antoon Lorentz improved upon the Drude model in 1905 by taking into
account the binding force between electrons and the ionic cores in a solid [214]. The
so-called Drude-Lorentz or extended Drude model departs from the simple Drude
model by modifying Eq. 3.16 to take into account a Hooke’s law restoring force on
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the electrons,

m
d2r′

dt2
= −eElocal(r, t)−

m

τ

dr′

dt
−mω2

0r
′, (3.22)

where mω2
0 is the Lorentz oscillator and represents the strength of the restoring force,

r is the local position of an electron, and r′ is the displacement of the electron about
r. The solution to this new equation of motion is found by once again looking for
an oscillatory solution of the form ei(k·r−ωt). Since the dipole moment induced by
the action of the local electric field on an electron is Plocal = −er′, the local dipole
moment is given by

Plocal(r, ω) =
e2

m

Elocal(r, ω)

(ω2
0 − ω2)− iω/τ

.

Assuming a linear relationship between the applied electric field and the induced
dipole moment, Plocal(r, ω) = α̃(ω)Elocal(r, ω) where α̃(ω) is the complex electronic
polarizability. If there are n electrons per unit volume then the macroscopic polar-
ization is

P(r, ω) = nα̃(ω)〈Elocal(r, ω)〉. (3.23)

In general, 〈Elocal(r, ω)〉 6= E(r, ω) because 〈Elocal(r, ω)〉 is an average over lattice
sites, not over the region between the lattice sites. For localized electrons, Lorentz
calculated the average field acting at a point r in a polarized isotropic medium and
found that 〈Elocal〉 = E + 4πP/3 [214]. However, in a realistic material there can be
considerable overlap between electric fields produced by ions at different lattice sites
in the vicinity of r. As a result, 〈Elocal〉 actually lies between E and E + 4πP/3,
tending instead to E [218,219]. For nonlocalized or free electrons, as discussed above
in the context of the simple Drude model, the average electric field is calculated
by taking a weighted average of the microscopic electric field throughout the unit
cell, where the weighting factor is the position-dependent polarizability α̃(r). For
free electrons, however, the spatial charge distribution is uniform and the weighting
factor is constant in space, resulting in an average field which is just E. Therefore,
〈Elocal(r, ω)〉 can justifiably be replaced by E(r, ω) in Eq. 3.23, and the displacement
field ε̃(ω)E(r, ω) = E(r, ω) + 4πP(r, ω) yields the complex dielectric function

ε̃(ω) = 1 +
4πne2

m

1

(ω2
0 − ω2)− iω/τ

.

If the system contains N bound levels and therefore N Lorentz oscillators, the dis-
placement field can be generalized by adding N contributions to the polarization as
ε̃(ω)E(r, ω) = E(r, ω)+4π

∑N
j=1 Pj(r, ω) and the complex dielectric function becomes

ε̃(ω) = 1 +
4πne2

m

N∑
j=1

fj(
ω2
j − ω2

)
− iω/τj

. (3.24)

Here, fj represents the oscillator strength while ωj and 1/τj are the resonant frequency
and relaxation rate of the jth oscillator, respectively. This result contains the response
of both bound and free charges. If the simplest case is taken where ω0 = 0 then the
original Drude result is obtained. Then, the general Drude-Lorentz formalism is
expressed as

ε̃(ω) = ε̃Drude(ω) + ε̃Lorentz(ω) + ε∞, (3.25)
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Figure 3.3 The real (blue) and imaginary (red) parts of the complex dielectric function ε̃(ω)
in the Drude-Lorentz model calculated for a Drude response with two Lorentz oscillators.
The response was calculated with parameters ε∞ = 1, ω2

pτ
2 = 10, ∆εj=1 = 1, ωj=1 = 10/τ ,

∆εj=2 = 0.25, ωj=2 = 20/τ , and τ1 = τ2 = τ . For reference, the black dotted and dashed
curves represent the real and imaginary parts of ε̃Drude + ε∞, respectively. Comparison
of ε1,Drude(ω) with ε1(ω) reveals the shift of the screened plasma frequency Ωp from its
unscreened value ωp due to the presence of the Lorentz oscillators.

where

ε̃Drude(ω) = −
ω2
p

ω2 + iω/τ

ε̃Lorentz(ω) =
N∑
j=1

∆εjω
2
j(

ω2
j − ω2

)
− iω/τj

(3.26)

with ∆εjω
2
j replacing fj as the oscillator strength through ∆εj = 4πne2fj/mωj. In

this notation, the total contribution to the dc dielectric constant from the Lorentz
oscillators is ∆εLorentz =

∑
∆εj. The term ε∞ in Eq. 3.25 represents the contribution

to the dielectric function from free space as well as all absorptions at high frequencies
not captured by the Lorentz term. In the Drude-Lorentz formalism, the Drude term
represents all contributions to the dielectric function from intraband transitions while
the Lorentz term represents all interband transitions and phononic contributions. If
the sum in ε̃Lorentz(ω) includes all phonons, interband transitions, and absorptions,
then ε∞ = 1 as in vacuum. The frequency dependence of the real and imaginary parts
of the complex dielectric function ε̃(ω) in the Drude-Lorentz formalism are illustrated
in Fig. 3.3.

In addition to explaining the more complicated frequency-dependent absorption
spectrum of real solids, the Drude-Lorentz model also takes into account the impor-
tant consequences of screening due to bound currents. The primary effect of the
interband transitions lying at higher frequencies is to shift ε1 at lower frequencies
by approximately ∆εLorentz, so the screening most clearly manifests in the infrared
and optical portions of the spectrum as a shift of the plasma frequency from its bare
value in a free electron metal. This effect is illustrated in Fig. 3.3 by the shift of
the zero crossing of ε1 to lower frequencies from the black dashed curve to the blue
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curve, which represent the simple Drude and full Drude-Lorentz response, respec-
tively. If the Drude scattering rate is not negligible and the frequency is not in the
limit ωτ � 1 then the finite electronic lifetime will also contribute to a shift of the
plasma frequency. In this case, the screened plasma frequency becomes

Ω2
p =

ω2
p

ε∞ + ∆εLorentz

(
1− ε∞ + ∆εLorentz

ω2
pτ

2

)
=

4πne2

m∗
.

As indicated by the second equality, the screened plasma frequency can be expressed
as the bare plasma frequency renormalized with the effective electronic mass m∗.
Then, at sufficiently low frequencies where ε̃Lorentz(ω) is approximately given by
∆εLorentz, the complex dielectric function can be expressed as

ε̃(ω) = ε∞ −
Ω2
p

ω2 + iω/τ ∗
. (3.27)

The plasma frequency is a measure of the density of electrons and is therefore
an important quantity that is deeply connected to the fundamental properties of a
metal. In general, the fundamental symmetries of a physical system manifest them-
selves through Noether’s theorem as the invariance of the Lagrangian action S un-
der continuous transformations of the quantum mechanical basis and field configura-
tions [220]. An associated observable quantity is then globally conserved if it produces
zero change of S under such a symmetry transformation. For a non-interacting elec-
tron gas, the system is invariant under a constant phase transformation and the com-
ponents of the conserved quantity are the charge density ρ and current density J. The
conserved quantity therefore represents particle current, and for an isolated system
with a suitable choice of representation the particle (electron) number is fixed [221].
All electrons participate in the electrodynamic response of the metal; the polariz-
ability appearing in Eq. 3.24 sums up all contributions. The oscillator strength fj
then represents the probability of the jth transition taking place with character-
istic frequency ωj [200]. Quantum mechanically, this probability is represented as
fj → fkj = −2 |〈k|p̂|j〉|2 /m~ωkj, where p̂ is the momentum operator. Following com-
mutator algebra the transition obeys the Thomas-Reiche-Kuhn sum rule

∑
j fkj = 1,

also known as the f -sum rule, which serves as a normalization condition for fj [214].
With this constraint, it is seen that the frequency integral of ωε2(ω)/4π = σ1(ω) is a
conserved quantity, ∫ ∞

0

σ1(ω)dω =
ω2
p

8
=
πne2

2m
, (3.28)

where m is again the bare electron mass. In units where frequency is given in cm−1

the 8 is replaced with 38. The area under the σ1(ω) curve therefore also represents
the total density of electrons and is referred to as the optical conductivity spectral
weight.

While dispensing with the free electron picture of solids the Drude-Lorentz formal-
ism continues to assume the validity of the relaxation time and independent electron
approximations. However, as pointed out above, both of these assumptions do not al-
ways hold and considerable care must be taken in applying the Drude-Lorentz model
to real systems. The relaxation time approximation overlooks the fact that the scat-
tering time τ(k) depends in general on the nonequilibrium electronic distribution
function g(k), which varies across different experimental conditions [206]. Impurities
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and crystal defects such as missing or misplaced ions, stacking faults, grain bound-
aries, thermal deviations from perfect lattice periodicity, and other extrinsic effects
impact the details of g(k). At the same time, crystallographic symmetry and the
shape of the Fermi surface must be taken into account because anisotropy can intro-
duce significant k dependence in τ .

Electron-electron interactions also impact the form of g(k) and the entangled
quantum many-body electronic states can change the fundamental symmetries of the
system, resulting in a change of the conserved observables. In the simplest case
the electron-electron interactions can justifiably be neglected even in the presence of
strong interactions due to reasoning set forth by Landau in his theory of the Fermi
liquid. Starting from a non-interacting electron gas, the strength of electron-electron
interactions in a Fermi liquid is adiabatically increased such that the electronic en-
ergy spectrum εe(k) evolves smoothly into a quasiparticle energy spectrum εqp(k),
where there is a one-to-one correspondence between electronic and quasiparticle ex-
citations [222]. The quasiparticles simply represent collective excitations from the
many-body quantum ground state and the charge, current, and spin remain conserved
quantities because their operators continue to commute with the non-interacting
Hamiltonian of the system. The Pauli exclusion principle limits electron scatter-
ing and only electrons with energy within ε ∼ kBT of εF participate in the transport
processes. As a result, the scattering rate 1/τ ∝ T 2 and the quasiparticle system
behaves macroscopically according to the Drude picture, with the bare electron mass
m replaced by the renormalized effective mass m∗ to reflect the change to quasipar-
ticles. More specifically, the imaginary part of the single-particle self-energy vanishes
as ImΣ(kf , ε) ∝ max(ε2, T 2) near the Fermi surface, so the single-particle Green’s
function becomes identical to that of a free particle [222]. Fermi liquid theory is
valid when perturbation theory is valid; it is not valid when there is not a one-to-one
correspondence between εe(k) and εqp(k), such as in the case of a phase transition
induced by electron-electron interactions. When this occurs the simple f -sum rule
presented in Eq. 3.28 must be reevaluated as was done by Ferrell, Glover, and Tin-
kham for the normal state to superconductor transition [7, 223]. Consideration of
screened potentials also characteristically reduces the importance of electron-electron
interactions [206]. For example, in the Hartree-Fock approximation screening of the
exchange term in the Hamiltonian by the dielectric function 1/ε(k− k′) removes sin-
gularities in the electron velocities at k = kF , and the screened result approaches that
for free electrons. When the screening has time dependence e−iωt, as in the RPA or
Lindhard approximations, ε(ω) similarly reduces to the Drude result. However, be-
cause the energy spectrum εe(k) depends on g(k), nonequilibrium processes modify
εqp(k) and the nonequilibrium quasiparticle properties are affected. Thus for time-
dependent, dynamical, and nonlinear processes the electron-electron interactions have
a more complicated effect than simply modifiying the scattering rate, and the details
of the nonequilibrium distribution function must be explicitly considered.

3.1.3 Kramers-Kronig Consistency Analysis

The complex dielectric function ε̃(ω) and the complex conductivity σ̃(ω) represent
basic response functions of a material system to an applied electric field. This means
they must obey the fundamental principle of causality, which states that the physical
response of a system to an impulse must only occur in time after the impulse is applied;
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future behavior cannot influence past behavior. A very important consequence follows
from this requirement: the real and imaginary parts of a response function are related
to each other and can be derived from one another, which is significant because it
means that if only one part of the response function is experimentally available, then
the other part can be obtained through a simple mathematical analysis. For some
experimental techniques, such as reflectivity measurements, this kind of procedure is
necessary in order to obtain both ε1(ω) and ε2(ω) because only the relative intensity
is experimentally accessible.

The mathematical relations were discovered by H. A. Kramers and R. de L. Kronig
nearly a century ago and are derived by applying Cauchy’s theorem to the response
functions in the upper half-plane of the complex frequency ω + iδ [200,203]. For the
complex dielectric function ε̃(ω) the Kramers-Kronig (KK) relations are

ε1(ω)− 1 =
2

π
P
∫ ∞

0

Ωε2(Ω)

Ω2 − ω2
dΩ (3.29)

ε2(ω) = −2ω

π
P
∫ ∞

0

ε1(Ω)− 1

Ω2 − ω2
dΩ (3.30)

where P denotes the principal part. A second consequence of causality and response
functions is the existence of sum rules: the optical conductivity sum rule given by
Eq. 3.28 follows directly by combining the KK relations with the definition of the
plasma frequency ωp at energies far above the highest absorption [200]. It is important
to note that the integration bounds in Eqs. 3.29 and 3.30 run over all frequencies
from 0 to ∞. This means that the KK relations and the optical conductivity sum
rule represent a self-consistent set of expressions that describe the global response of
a material across all frequencies. Therefore, in order to properly obtain one part of
the optical response from the other it is necessary to measure across a sufficiently
wide spectral range, because the real response at any one frequency is determined by
the weighted sum total of the imaginary response at all frequencies (and vice versa).

This property enables the use of the KK relations to test for consistency of a
measured data set if both the real and imaginary parts of the response spectrum have
been measured independently. Such independent measurements can be made, for
example, by interferometric, time domain, and spectroscopic ellipsometry techniques.
The KK transform of one part of the response is calculated and the result is compared
to the experiment. In practice, however, it is not possible to carry out the integrations
in Eqs. 3.28, 3.29, and 3.30 to truly infinite frequency, as is required by Cauchy’s
theorem and causality, because the experimental equipment cannot measure infinitely
high. To accommodate this limitation in the consistency analysis, the measured ε̃(ω)
and σ̃(ω) are extrapolated to infinite frequency. Since optical experiments also cannot
measure to exactly zero frequency, the measured data is also extrapolated to ω = 0
from the lowest measured point. The KK consistency check is then performed with the
fully extrapolated data sets. Therefore, one of the key strengths of the KK consistency
analysis is that it extends the sensitivity of the experiment to beyond the measured
spectral range. While the exact frequency dependence of the extrapolations cannot
be uniquely determined by the KK procedure, the distribution of spectral weight can,
which allows for questions of spectral weight transfer at electronic transitions to be
investigated. Such questions are especially pertinent, for example, in the physics of
high-Tc superconductors, where the nature of spectral weight transfer has important
implications for different proposed pairing mechanisms [12,14,16].
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It must be mentioned that the necessity to extrapolate the measured data to prop-
erly obtain the KK transform has profound implications for reflectivity experiments
(where a KK consistency check is not possible). Errors of just a few percent in the
assumed spectral weight located in the extrapolated regions, particularly at low fre-
quencies, can dramatically alter the frequency dependence of the KK transform across
a very broad spectral range. This is especially perilous for reflectivity studies of su-
perconductors because the relative reflected intensity at low frequencies is extremely
close to 1. Small deviations of the extrapolation from the true reflectivity values in
this region can therefore cause incorrect assignment of a significant amount of spec-
tral weight even in the measured spectral range. This type of situation underscores
the need to obtain simultaneous and independent measurements of both the real and
imaginary parts of the electromagnetic response.

In some cases the integration of the sum rule in Eq. 3.28 does not have to be
taken to infinite frequency, but rather a high frequency cutoff ωcutoff may be used,
if absorptions do not extend above a certain frequency range. This high frequency
integration cutoff must be significantly higher than the highest frequency absorption
to ensure that all spectral weight is accounted for. In a material system such as a
superconductor it is expected that the relevant energy scale upon transition into the
superconducting state lies at the level of intraband transitions [16], so it is sufficient
to place ωcutoff intermediately between the intra- and interband energy scales. To
avoid unnecessary errors resulting from the neglect of the interband transitions (since
transitions to higher-lying bands are still present in the total response) the differ-
ence conductivity ∆σ1(T, ω) = σ1(T, ω) − σ1(Tc, ω) is used; as long as there is no
appreciable transfer of spectral weight at interband energies then ∆σ1(T, ω) is only
nonzero at energies comparable to twice the superconducting gap 2∆(T ). This step
is further justified because in the optical analysis of superconductors the changes in
the electrodynamic response across the transition are sought.

From Eqs. 3.28 and 3.29 the resulting KK consistency relations for a supercon-
ductor are obtained, where ∆σextr

1 (ω) is the extrapolated difference conductivity:

SW1 =

∫ ωcutoff

0+

∆σextr
1 (ω)dω (3.31)

∆εKK
1 (ω)− 1 = 38P

∫ ∞
0+

∆σextr
1 (Ω)

Ω2 − ω2
dΩ +

SW2

ω2
(3.32)

The constant 38 appears in Eq. 3.32 when ∆σextr
1 is in units of Ω−1cm−1 and fre-

quency is in units of cm−1. Here, the spectral weight shift SW1 corresponds to the
difference in the normal charge carrier density ∆ρn between the superconducting and
normal states. On the other hand, SW2 is the spectral weight that has accumulated
into a δ-function at ω = 0 and corresponds to the difference in the superconducting
charge carrier density ∆ρs. The term SW2/ω

2 necessarily appears in Eq. 3.32 as
a consequence of the FGT sum rule (see the discussion in Section 2.3). The FGT
sum rule states that the total σ1 response of a superconductor consists of a sum
response of the superconduting electrons at ω = 0 (representative of dissipationless
transport and the Meissner effect) and a residual quasiparticle response at finite fre-
quencies, σ1(ω) = SW2δ(ω) + σqp1 (ω 6= 0). Since it is impossible to directly observe
the δ-function response at ω = 0 in the measured conductivity, the response of the su-
perconducting spectral weight must be manually added in. By performing the integral
in Eq. 3.32 the mathematical KK transform ∆εKK

1 of the measured and extrapolated
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difference conductivity is obtained. To test for KK consistency of the measured data
∆εKK

1 (ω) is compared to the experimentally measured ∆ε1(ω).
By virtue of the FGT sum rule, in the simple two-fluid model of superconductivity

the total charge carrier density is given by the sum of superconducting and normal
charge carriers, ρ = ρs + ρn. The total charge carrier density remains constant at all
temperatures such that ∆ρ = 0, while ρs = 0 above Tc. If the FGT sum rule and two-
fluid model hold then it is expected that SW1 = SW2 because charge carriers that are
no longer in the normal state below Tc have condensed to form the superconducting
condensate. However, if SW1 6= SW2 then the KK consistency analysis implies that
spectral weight either shifts into or out of high energy bands that lie above ωcutoff

(depending on which of SW1 or SW2 is greater). In that case, additional components
must be introduced into the model corresponding to additional processes and energy
bands that affect superconductivity.

3.2 Submillimeter Quasioptical Interferometry

Since the 1980’s much research work has focused on closing the terahertz gap by
applying optical methods to conventional electronic sources in novel ways. From
the microwave side, developments in high-frequency circuits, diodes, multiplexers,
and vacuum electronics have enabled submillimeter sources to be scaled up into the
low terahertz range. By incorporating these sources into interferometers it has be-
come possible to perform phase-sensitive spectroscopy at wavelengths λ & 1 mm.
These so-called quasioptical techniques do not truly operate in the far-field limit but
nevertheless provide powerful tools to access the full complex dielectric response of
materials.

The ancestor of submillimeter quasioptical spectroscopy is the Fourier transform
infrared spectrometer (FTIR). Based on the Michelson interferometer, the FTIR ob-
tains the complex response of a sample via Fourier transformation of an interfero-
gram acquired by recombining radiation from a polychromatic infrared source [224].
By adjusting the length of the reference arm the interferogram is produced and then
subsequently modulated by the absorption spectrum of the sample, which is placed
outside the interferometer. The Fourier transform procedure allows the complex
sample spectrum to be extracted from the observed modulations because the total
measured signal is a convolution of the sample spectrum and the interferogram of
the empty interferometer. The bandwidth and resolution of the FTIR are therefore
related to the bandwidth of the polychromatic source radiation and the size of the
maximum displacement of the reference arm; to obtain high resolution and broad
bandwidth the reference arm is scanned over as large a distance as possible such that
all the lobes of the interferogram are captured by the scan.

In the infrared spectral range the FTIR enjoys significant advantages over frequency-
domain dispersive spectroscopy. In particular, the FTIR is characterized by the
multiplex advantage, because all frequencies are measured simultaneously, and the
throughput advantage, because the radiation is collimated by a circular aperture as
opposed to a linear grating. However, if the bandwidth of the polychromatic radia-
tion is too narrow, the interferogram is broad and, if it extends beyond the scanning
range of the interferometer, leads to the appearance of artifacts and loss of resolu-
tion. The limited availability of broadband radiation sources within the terahertz gap
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therefore requires the FTIR technique to be modified at submillimeter frequencies.
Many sources in the submillimeter frequency range have the advantage of producing
intense monocromatic or continuous wave (CW) radiation, but this comes with the
disadvantage that they are not suitable for FTIR spectroscopy. To adapt monochro-
matic sources of submillimeter radiation to phase-sensitive quasioptical spectroscopic
measurements it is necessary to utilize interferometric techniques which incorporate
the sample directly into the arms of the interferometer. In this way the material
response is directly incorporated into the measured interference pattern. To obtain
the optical constants n(ω) and k(ω) it is then necessary to measure both the magni-
tude and phase response of the interferometer, as the signal observed at the detector
can no longer be described as a convolution of the sample spectrum and interference
spectrum of the empty interferometer. With a monochromatic source this measure-
ment is performed directly in the frequency domain by tuning the frequency output
of the source. The optical constants are then extracted by inverting the Fresnel equa-
tions appropriate for the geometry and structure of the sample. While the multiplex
advantage of the FTIR is thus lost, the axial beam symmetry of the interferometer
implies that the throughput advantage is retained, giving quasioptical interferometry
an advantage in signal-to-noise ratio compared to other spectroscopic techniques.

In this work, the optical constants n(ω) and k(ω) in the submillimeter spectral
range are measured by employing a CW technique with independent measurements
of the electric field magnitude and phase. A backward-wave oscillator is chosen as the
submillimeter radiation source for its versatility, high power output, and frequency
tunability. This source is then coupled to a Mach-Zehnder interferometer, which
provides access to the complex dielectric response of a sample through tunability of
the interferometer reference arm. The independent measurement of the transmission
coefficient T (ω) and phase φ(ω) allows n(ω) and k(ω) to be calculated independently
of each other without the need for a Kramers-Kronig analysis.

3.2.1 The Backward Wave Oscillator

The backward wave oscillator (BWO) was invented independently in 1948 by Loshakov
in Russia and in 1951 by Epsztein in France and Kompfner in Great Britain [225–227].
It was developed following a series of advances in research on klystrons, cavity mag-
netrons, and traveling-wave tubes as part of broader progress in military radar tech-
nology during and immediately following World War II [205, 228, 229]. Pioneered by
the British on the eve of the war, radar was applied to devastating effect by all par-
ticipant nations and its use significantly impacted both tactical and strategic choices
as well as the war’s final outcome. In particular, the inability of aircraft to evade
radar detection was an important factor which led to the use of large bomber fleets
to overwhelm the defensive capabilities of an adversary. Later, as the battle lines of
the Cold War were drawn it became clear that a technology was needed which could
defeat the extensive radar screens employed by both sides. Such a technology needed
to provide high power, be rapidly tunable, and be portable enough to operate aboard
a wide variety of aircraft. Furthermore, it needed to operate at frequencies above
radio and microwaves in order to overwhelm and scramble the electronics of radar
detection systems [230,231].

These practical engineering requirements led to the defining characteristics of the
BWO: (1) high intensity radiation greater than 10 mW; (2) high monochromaticity
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with ∆ω/ω ≈ 10−5; (3) high degree of polarization (>99.99%); (4) frequency emission
up to 1.5 THz; and (5) rapidly electronically tunable to produce frequencies ±30%
of the central value [232]. The BWO is a type of vacuum electronic device which
reaches the terahertz frequency range by combining elements of microwave electronics
technology with infrared optical techniques. In general, vacuum electronic devices fall
within one of two types of classification [233]. The first type, which includes large
accelerator-based instruments such as free electron lasers, produces electromagnetic
radiation by bremsstrahlung, or transverse modulation of an electron beam. The
second type, to which the BWO belongs, produces microwave radiation by slow-wave
modulation of a longitudinal current via the Cerenkov effect.

BWO Operational Principles

The primary components of the BWO include a slow-wave circuit structure, electron
gun, electron beam, voltage-biased collector, focusing magnet, and radiation output
coupling, as depicted in Fig. 3.4 [233, 234]. The slow-wave structure is a micropat-
terned circuit or folded waveguide that is designed to support harmonics of a traveling
spatial wave. As the electron beam passes across the slow-wave structure the elec-
trons encounter the spatially varying field and velocity distribution produced by the
periodic shape of the structure, and the electrons in the beam become gathered into
bunches. The ∼1 T magnet improves the efficiency of the device by tightly focusing
the electron beam into a thin filament. Like any oscillating cavity, the closed BWO
tube-and-circuit system requires an amplitude and phase matching condition to al-
ways be satisfied to produce radiation emission. The fundamental n = 0 cavity mode
corresponds to a traveling wave which runs in the same direction as the electron beam
velocity. Interaction of the forward traveling electron beam with the n = −1 cavity
spatial mode, however, produces a traveling wave with a forward phase velocity and
backward group velocity. By matching the electron beam velocity with the forward
phase velocity via the synchronization condition ve = vph, the electron bunches only
encounter a decelerating field and beam kinetic energy is transferred into backward
traveling electromagnetic energy [235]. This backward electromagnetic wave further
bunches electrons and provides a cavity feedback mechanism. If the input and output
loads are matched, then there is zero flow of circuit energy in the slow wave structure
and the radiated energy comes entirely from conversion of the electron beam kinetic
energy. The feedback process produces a very stable, coherent CW wavefront which
is coupled out of the tube at 90◦ via a waveguide.

At low beam currents regenerative amplification occurs, but above a threshold
at higher currents space-charge oscillations appear and the cavity produces spuri-
ous backward waves at other frequencies [234]. In addition to the synchronization
condition for electron beam and phase velocities, the slow-wave structure must be
dispersive to allow the output frequency to be tuned by varying the electron beam
acceleration voltage [236]. Furthermore, the cavity must be fixed to operate in the
n = −1 spatial harmonic mode independent of frequency. This is possible if the
slow-wave structure is designed to provide negative dispersion such that the total
dispersion of the circuit exactly cancels. However, due to engineering limitations,
the dispersion in the slow-wave structure eventually becomes either too little or too
great to maintain this condition as the electon beam velocity and output frequency
are varied across wide ranges. The bandwidth of output frequencies the BWO can
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Figure 3.4 Cutaway schematic of the BWO device used in this work [232, 233, 236]. (1)
Sealed vacuum cavity; (2) heater coil; (3) cathode; (4) electron beam; (5) aperture; (6)
permanent focusing magnet; (7) collector and anode; (8) slow-wave structure; (9) traveling
electromagnetic wave; (10) waveguide power output; (11) output coupling to free space;
(12) external electronics control system; and (13) water coolant inlet and outlet.

produce is therefore related to the range of frequencies over which the n = −1 spatial
mode and velocity matching conditions remain fulfilled.

Advantages and Disadvantages of BWO Sources

The disadvantages of the BWO and other vacuum electronic sources of microwave and
terahertz radiation largely stem from the complex engineering requirements which
need to be fulfilled to ensure their operation [237]. Most notably, BWOs and other
traveling wave tubes suffer greatly from physical scaling problems. As power output
and emission frequency are increased the necessary electron beam current densities
also rapidly increase and become relativistic while the characteristic dimensions of the
slow-wave structures rapidly decrease. Enormous acceleration voltages are required
and space-charge buildup becomes significant, leading to formidable engineering chal-
lenges in developing circuitry, electronics control systems, and device cooling. High
frequency BWO sources also suffer from increased metallic losses and the need for
extremely high magnetic fields to focus the electron beam; at frequencies above 1.5
THz electromagnets are needed which can produce fields in excess of 1-2 T. Source
operational lifetimes are only on the order of a few thousand hours and decrease
with increasing output frequency. As such, in recent decades cheaper and more com-
pact solid state sources of microwave and terahertz radiation have nearly completely
pushed BWOs out of scientific and commercial use. With the last commercial de-
velopments coming in Russia in the late 1980’s and early 1990’s, functional BWO
sources have become difficult to obtain [232,237].

The main alternatives to the BWO include the Gunn diode, IMPATT (avalanche)
diode, far-infrared CO2 gas lasers, quantum cascade lasers, free electron lasers, and
synchrotron facilities [238, 239]. Gunn and IMPATT diodes are solid state oscillator
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devices which produce CW radiation at room temperature with a narrow linewidth of
∆ω/ω ≈ 10−6, an order of magnitude narrower than for commercially available BWO
sources. They can emit at powers >100 mW at 100 GHz but lack rapid tunability
and are limited to operating over a restricted frequency band as determined by the
physical dimensions and bandstructure of the semiconductor junctions. Furthermore,
the emitted power falls off with frequency as 1/f 3 above 100 GHz due to the transit
time of carriers and dissipation in the diodes, and frequency multipliers are needed to
reach frequencies above 200 GHz. Far-infrared CO2 gas lasers provide increased power
of 1-100 mW near 1 THz and can be designed to operate at CW in the range 0.3-5 THz,
but are also poorly tunable and require an exchange of gas and laser line in order to
change the laser frequency. Recent advances in terahertz gas lasers utilizing rotational
modes of organic molecules have attempted to resolve this tunability problem up to
an operating frequency of ∼2.5 THz but output powers in these systems remain
below 1 mW [240]. Quantum cascade lasers suffer from similar operational problems.
Despite emitting at powers up to ∼100 mW and frequencies up to ∼5 THz, they
operate at single fixed frequencies determined by device dimensions and require the
use of cryogenic cooling in order to achieve appreciable output power [241]. The final
category of alternative terahertz radiation sources to BWOs, the accelerator based
vacuum electronic sources, are primarily only available at a select few user facilities
around the world and constitute very large, expensive, and complicated instruments.
Free electron lasers, such as those at ELBE in Dresden-Rossendorf and at NovoFEL
in Novosibirsk, are capable of providing pulsed terahertz radiation spanning from ∼1
THz to the far-infrared spectral region with large average powers in excess of 500 W
and peak powers up to 1 MW [233]. Electron synchrotron facilities operating bending
magnets, such as BESSY and KARA in Germany and NSLS and Jefferson Lab in
the United States, produce coherent radiation in the mid- and far-infrared spectral
ranges down to frequencies as low as 0.3-1 THz.

Despite the impressive advances in alternative terahertz radiation sources over the
past three decades, the BWO remains the only radiation source in the submillimeter
range which simultaneously offers high output powers, rapid and broad tunability,
CW operation, and narrow linewidth with a very stable and coherent wavefront in
a relatively compact package. These advantages make the BWO an ideal radiation
source for applications where high power and phase stability are needed, such as
in terahertz spectroscopic measurements of superconductors, metals, magnetic ma-
terials, and samples with high attenuation [242]. Furthermore, some spectroscopic
techniques, such as quasioptical interferometry, are only compatible with BWO ra-
diation sources in the microwave and terahertz range due to the need for coherent
and highly collimated radiation which can be coupled into free space [232]. The next
section discusses such submillimeter quasioptical interferometry in more detail.

3.2.2 Mach-Zehnder Interferometry

The Mach-Zehnder interferometer is a modified version of the Michelson interferome-
ter. It is characterized by two arms which are separated and recombined at different
points in space, in contrast to the single central beamsplitter characteristic of the
Michelson interferometer. A basic illustration of the geometry of the Mach-Zehnder
interferometer is shown in Figure 3.5. The interferometer consists of an incoming
beam which is polarized by an adjustable polarizer and then split into two arms by a
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Figure 3.5 A schematic layout of the quasioptical Mach-Zehnder interferometer used to
carry out phase sensitive measurements in the submillimeter spectral range. The BWO
source is placed before the polarizer while the detector (bolometer or golay cell) is placed
after the analyzer position.

beamsplitter, marked BS1. Radiation transmitted through BS1 enters the measure-
ment arm of the interferometer and passes through the sample, while the radiation
reflected by BS1 travels along the reference arm. The two beams are then recombined
by a second beam splitter, marked BS2. For the case of microwave radiation the two
beamsplitters are wire-grid polarizers with their axes oriented perpendicular to each
other. BS1 is oriented horizontally while BS2 is oriented vertically, so that radia-
tion of horizontal polarization passes through the sample while radiation polarized
vertically passes through the reference arm.

Since the BWO source does not produce perfectly polarized radiation, the angle of
the initial polarizer is chosen to balance the intensity of microwave radiation in each
arm of the interferometer. The angle of the analyzer after BS2 is then chosen such
that the microwave radiation exiting the interferometer is maximally extinguished in
the zeroth-order mode of interference when an empty aperture is placed in the sample
space (BS2 ∼ 90◦ relative to BS1). That is, in the case of the “empty channel” when
the sample is removed and the optical path lengths of the measurement and reference
arms are equal, the radiation passing through the two arms will recombine at BS2
to produce maximum constructive interference with the same polarization as the
initial polarizer. If either of the optical path lengths changes slightly as compared
to the other (for example, by adding the sample), then the resulting combined wave
will possess a small degree of elliptical polarization and a detector placed after the
analyzer will detect the appearance of a small orthogonal polarization component.
This component is measured as an increase in signal power above the background
noise level when the analyzer and initial polarizer are orthogonal to each other.

A set of microwave lenses is intalled on either side of the sample space in order
to focus radiation onto the sample. An identical set of lenses is installed in the
reference arm in order to equalize the optical path lengths. Due to the relatively long
wavelengths of microwave radiation compared to typical sample film thicknesses, the
radiation cannot be assumed to focus at a single point in space. Instead, the focus
will have a finite beam waist as determined by Gaussian optics and the wavefronts
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on either side of the focus will be curved while the wavefront at the focus will be
flat. Therefore the sample should ideally be placed as close to the focus as possible
in order to minimize beam distortion.

Prior to the measurement of the phase the position of a movable mirror on the
reference arm is calibrated in order to ensure that the interferometer operates at the
zeroth-order interference minimum. The zeroth-order interference position is tech-
nically an interference maximum but the presence of the analyzer ensures that this
maximum is interpreted as a minimum by the detector. The correct zeroth-order op-
tical path length is found by adjusting the position of the movable mirror to maintain
a minimum signal at the detector while the microwave frequency is scanned. If the
mirror is located at the zeroth-order position then its position will be independent of
the frequency. However, if the mirror is initially located at a higher-order interference
minimum then the position of the mirror will depend linearly on frequency. Thus the
initial position of the movable mirror is adjusted until a frequency-independent po-
sition is found. The calibration procedure is carried out twice in order to determine
the zeroth-order position for both the empty channel and the sample.

Experimentally Obtaining T (ω)

Transmission measurements are carried out by first blocking the path of the reference
arm. The intensity of transmitted submillimeter radiation is then measured separately
with the sample in place and with the sample removed, leaving an empty reference
aperture, and the transmission coefficient T (ω) is obtained:

T (ω) =
Isample(ω)

Iref (ω)
. (3.33)

Intensity I is measured using either a 1.6 K bolometer or Golay cell. Because the
wavelength of the of the radiation (∼1 mm at 300 GHz) is significant compared to the
aperture sizes used (∼8 mm), it is imperative to ensure that variances in diffraction
effects caused by the aperture edges do not occur or the Fabry-Pérot interference
pattern of the sample could be destroyed. Samples which are highly reflective or
poorly transmissive are much more susceptible to errors of this kind. This issue is
resolved by mounting the sample on a stick which has a fixed aperture and then
sliding the sample in and out of the aperture window instead of moving the aperture
itself.

Experimentally Obtaining φ(ω)

After the transmission coefficient T (ω) is obtained the phase φ(ω) of the transmitted
electric field is measured. The experimental setup is converted into a Mach-Zehnder
interferometer by unblocking the path of the reference arm which has been split off
the main microwave beam before it passes through the sample. The two beams are
then recombined after some distance and the phase is determined by comparing the
difference in the optical path lengths of the two interferometer arms.

To measure the phase φ(ω), a calibration scan is carried out in the empty channel
configuration and the zero-signal position of the movable mirror is recorded as a
function of frequency. Afterwards, a measurement scan is carried out with the sample
in place and the zero-signal position of the mirror is recorded at the same frequencies.
The phase is then extracted from the difference in the two mirror positions.
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In the empty channel configuration the phase difference between the measurement
and reference beams is given by

∆ΦE =
ω

c
LE −

ω

c
LR1,

where LE is the optical path length of the measurement arm with the empty channel,
LR1 is the optical path length of the reference arm, and c is the speed of light in
vacuum. Without a sample in place, the wave in the sample arm travels a distance
x1 + d + x2 + y while the wave in the reference arm travel a distance y + xR1 (see
Figure 3.5), so the optical path lengths are

LE = x1 + d+ x2 + y,

LR1 = y + xR1.

Since the instrument maintains the position of the adjustable mirror at the zeroth-
order interference minimum, ∆ΦE = 0 and

x1 + x2 = xR1 − d. (3.34)

Similarly, with the sample in place the phase difference between the two arms of
the interferometer is

∆ΦS =
ω

c
LS −

ω

c
LR2,

where LS is the optical path length of the measurement arm with the sample and
LR2 is the optical path length of the reference arm, which has changed from LR1 due
to the addition of the sample. The sample has an index of refraction n(ω), so

LS = x1 + dn(ω) + x2 + y,

LR2 = y + xR2.

Again, we take ∆ΦS = 0 in zeroth-order interference which gives

x1 + dn(ω) + x2 + y = xR2 + y,

and substitution with Equation 3.34 gives

xR2 − xR1 = dn(ω)− d.

Here, xR1 and xR2 represent absolute distances between the movable mirror and beam-
splitter BS2 during the calibration and measurement scans, respectively. However,
since the above expression depends only on the difference in the reference arm length
between the two scans, the length of the arm may be measured from any arbitrary
position as long as that position remains the same for both scans. Thus, we may
substitute for xR1 and xR2 the variables C and M , respectively, which represent the
calibration and measurement position readings of a micrometer on the movable mirror
that are read out by a data acquisition unit:

M − C = d [n(ω)− 1] . (3.35)

Finally, we may define the phase φ(ω) of the sample as

φ(ω) =
ω

c
dn(ω),

which leads to the relation

φ(ω) =
ω

c
(M − C + d) (3.36)

between the experimentally measured parameters and the phase.
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Relating Measured Quantities to n(ω) and k(ω)

To properly extract the optical constants n(ω) and k(ω), the experimentally measured
values of T (ω) and φ(ω) must be analytically related to the complex transmission of
the system. Planar layered systems are categorized into three separate groups ac-
cording to their number of layers: single layer slabs, double layer film-on-substrate
systems, and multilayers with 3 or more layers. The parallel planar structure and
normal incidence of the incoming electromagnetic wave greatly simplify the analyt-
ical treatment of the complex transmission by removing the angular and thickness
dependences of the Fresnel equations. In this work the response of multilayer films
is not explored and so only the transmission and phase of single layer slabs and
film-on-substrate systems are treated here.

Single layer systems. The transmission coefficient T (ω) is given by the square of

the complex transfer function, T (ω) =
∣∣t̃(ω)

∣∣2, where

t̃(ω) ≡ t̃sample(ω)

t̃ref (ω)
=
Ẽsample(ω)

Ẽref (ω)
. (3.37)

An electromagnetic wave passing through a slab of thickness L must transmit through
both the front and back interface of the sample in addition to accumulating a phase
shift proportional to L. The electric field transmitted by the sample is therefore
expressed as

Ẽsample(ω) = t̃01P̃1F̃1t̃10Ẽ0(ω),

where t̃01 is the complex Fresnel transmission coefficient for a wave passing from
vacuum into the slab, P̃1 is the accumulated phase as the wave traverses the slab,
F̃1 is the Fabry-Pérot coefficient, and t̃10 is the complex transmission coefficient of
the wave passing from the slab back into vacuum [207]. Following Eq. 3.11 in the
discussion of the Fresnel equations in Section 3.1.1, the complex Fresnel coefficients
are frequency dependent and are given by

t̃01(ω) =
2ñ0(ω)

ñ0(ω) + ñ1(ω)
, t̃10(ω) =

2ñ1(ω)

ñ1(ω) + ñ0(ω)
(3.38)

P̃1(ω) = eiωñ1(ω)L/c. (3.39)

The Fabry-Pérot coefficient represents the infinite set of reflections and standing waves
which occur in the cavity formed by the two slab interfaces. Each reflection interferes
with the incoming wave, so the Fabry-Pérot contribution is expressed as the complex
sum

F̃1(ω) =
∞∑
j=0

[
r̃2

10(ω)e2iωñ1(ω)L/c
]j
,

where each term includes reflection from both the front and back interfaces and the
phase accumulated by round-trip transit of the wave through the slab. By comparison
with the geometric series, this sum is customarily written in closed form as

F̃1(ω) =
1

1− r̃2
10(ω)e2iωñ1(ω)L/c

(3.40)

with the complex reflection coefficient

r̃10(ω) =
ñ0(ω)− ñ1(ω)

ñ0(ω) + ñ1(ω)
.
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When the sample is removed the electromagnetic wave accumulates a relative phase
shift equivalent to passing through a volume of vacuum of thickness L. The reference
electric field is therefore given by

Ẽref (ω) = eiωñ0(ω)L/cẼ0(ω).

Combining the above equations and omitting the explicit frequency dependence of
the Fresnel coefficients, the complex transmission transfer function for a single layer
slab can be written as

t̃I(ω) = t̃01F̃1t̃10e
iω(ñ1(ω)−ñ0(ω))L/c (3.41)

and the measured transmission and phase are related to the complex optical constants
ñ1(ω) = n1(ω) + ik1(ω) of the sample by combining Equations 3.33, 3.36, and 3.41:

Isample(ω)

Iref (ω)
=
∣∣∣t̃01F̃1t̃10

∣∣∣2 (3.42)

M(ω)− C(ω) =
c

ω

[
arg
(
t̃01F̃1t̃10

)
+ 2πm

]
+ [ñ1(ω)− ñ0(ω)]L. (3.43)

Here, m is an integer and represents the numerical correction that is required if
the phase of either the measurement or calibration scans were not performed in the
zeroth-order mode. If both scans were performed in the same order mode, then m = 0.

Double layer systems. In a double layer system, an electromagnetic field first
enters a top layer of thickness d before transmitting across an interface and then out
through a second layer of thickness L. The electric fields transmitted through the
sample and reference aperture are expressed as

Ẽsample(ω) = t̃01P̃1F̃1t̃12P̃2F̃2t̃20Ẽ0(ω)

Ẽref (ω) = eiωñ0(ω)(d+L)/cẼ0(ω),

with explicit frequency dependence of the Fresnel coefficients omitted for clarity [243].
As in the single layer case, the first four coefficients of the sample correspond to the
transmission of the first layer only, with the transmission, phase, and Fabry-Pérot
coefficients

t̃01(ω) =
2ñ0(ω)

ñ0(ω) + ñ1(ω)
, t̃12(ω) =

2ñ1(ω)

ñ1(ω) + ñ2(ω)

P̃1(ω) = eiωñ1(ω)d/c, F̃1(ω) =
1

1− r̃10(ω)r̃12(ω)e2iωñ1(ω)d/c
.

The final three coefficients of the sample correspond to Fabry-Pérot oscillation and
transmission in the second layer. In contrast to the single layer case, however, F̃2

carries a reflection contribution from both interfaces of the first layer. Thus the
second Fabry-Pérot coefficient is written as

F̃2(ω) =
1

1− r̃20(ω)r̃210(ω)e2iωñ2(ω)L/c
,

where
r̃210(ω) = r̃21(ω) + r̃10(ω)t̃21(ω)P̃ 2

1 (ω)t̃12(ω)F̃1(ω)
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is the composite reflection coefficient of the first layer. From Eqs. 3.10 and 3.11, the
Fresnel reflection, transmission, and phase coefficients for the second layer are given
by

r̃10(20)(ω) =
ñ0(0)(ω)− ñ1(2)(ω)

ñ0(0)(ω) + ñ1(2)(ω)
, r̃12(21)(ω) =

ñ2(1)(ω)− ñ1(2)(ω)

ñ2(1)(ω) + ñ1(2)(ω)

t̃20(21)(ω) =
2ñ2(2)(ω)

ñ2(2)(ω) + ñ0(1)(ω)
, P̃2 = eiωñ2(ω)L/c.

With Eq. 3.37 and combining the above Fresnel coefficients, the complex transmission
transfer function for a double layer system is therefore given by

t̃II(ω) = t̃01F̃1t̃12F̃2t̃20e
iω(ñ1(ω)−ñ0(ω))d/ceiω(ñ2(ω)−ñ0(ω))L/c, (3.44)

and the measured transmission and phase are related to ñ1(ω) = n1(ω) + ik1(ω) and
ñ2(ω) = n2(ω) + ik2(ω) of the two layers through

Isample(ω)

Iref (ω)
=
∣∣∣t̃01F̃1t̃12F̃2t̃20

∣∣∣2 (3.45)

M(ω)− C(ω) =
c

ω

[
arg
(
t̃01F̃1t̃12F̃2t̃20

)
+ 2πm

]
+ [ñ1(ω)− ñ0(ω)] d+ [ñ2(ω)− ñ0(ω)]L. (3.46)

The transmission spectrum takes the form of an infinite set of equally spaced
fringes whose magnitudes approach T = 1 and which are damped by the absorption of
the material. The spacing and sharpness of the fringes are simultaneously determined
by the layer thicknesses and the magnitude of the discontinuities in the index of
refraction at the interfaces. If the layered sample is measured in either vacuum or a
low density gaseous atmosphere that does not have infrared active modes near the
measurement frequency, such as nitrogen or helium exchange gas in a bath cryostat,
then ñ0(ω) = 1. The expected transmission and phase response for a single layer
dielectric slab in such a medium is shown in Fig. 3.6(a) and (b), calculated from
Eqs. 3.42 and 3.43 for L = 1 mm of (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT), a common
substrate material. The gradual reduction in magnitude of the transmission peaks
with increasing frequency reflects the small value of k(ω). Oscillatory behavior of
the phase results from the Fabry-Pérot interference in the slab, with an offset from
zero given by Eq. 3.35. The spacing of the transmission fringes and the period of
oscillation of the phase are given by ∆f = ∆ω/2π = c/2nL, as highlighted by the
vertical dashed lines in Fig. 3.6; since the velocity of light in the material is c/n,
this quantity corresponds to the inverse of the round-trip transit time of a photon
in the slab. Therefore, the transmission fringes are due to resonant enhancement in
the cavity: transmission approaches T = 1 when the frequency of the electromagnetic
wave is equivalent to an integer multiple of the round-trip transit frequency in the
slab. When a second layer is added to the system the transmission pattern becomes
further attenuated and experiences a phase shift. If both layers have thicknesses
larger than c/2nf , then the transmission pattern of the first layer is modulated by
the Fabry-Pérot interference pattern of the second layer and the phase shifts by a
small amount due to the complex Fresnel transmission and reflection coefficients at
the shared interface. However, if the additional layer is very thin, with d � c/2nf ,
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Figure 3.6 (a, b) The transmission and phase of a single layer in a Mach-Zehnder interfer-
ometer, calculated by Eqs. 3.42 and 3.43 for L = 1 mm of LSAT. (c, d) The transmission
and phase of a double layer, calculated by Eqs. 3.45 and 3.46 using Drude model parameters
for d = 100 nm of Cu, Au, Al, and Sn on L = 1 mm of LSAT at 295 K [206, 244]. Vertical
dashed lines correspond to the fifth and sixth transmission fringes of a single LSAT layer,
with a frequency spacing of ∆f = 31.9 GHz.

then the Fabry-Pérot interference pattern of the thicker layer is not modulated but
instead attenuated by the reflectivity of the thin layer. Furthermore, the transmission
pattern undergoes an abrupt π phase shift when the complex reflection coefficient at
the shared interface, r̃210(ω), changes sign. This occurs due to a large discontinuity in
k(ω) at the interface and indicates the presence of strong screening in the thin layer.
Figure 3.6(c) and (d) depict the expected transmission and phase for a double layer
film-on-substrate system, calculated from Eqs. 3.45 and 3.46 for d = 100 nm of four
common metals (Cu, Al, Au, and Sn) on L = 1 mm of LSAT using Drude model
parameters σ0 and τ at 295 K [206,244]. The vertical dashed lines correspond to the
fifth and sixth transmission maxima of the single layer LSAT as in (a) and (b). By
comparison of the dashed lines in panels (a) and (b) to those in (c) and (d), it is clear
that the transmission patterns of the metallic thin films are shifted by half a period
compared to the transmission spectrum of the bare LSAT substrate. Thus a phase
shift of π in the Fabry-Pérot interference spectrum can be regarded as a key feature
of a thin metallic film on a substrate, and the π jump is interpreted as the onset of
diamagnetic screening.

Finally, it is apparent from Fig. 3.6(c) that 100 nm of highly reflective metal (the
noble metals Cu and Au, with σ0 ≈ 450-600 mΩ−1cm−1 and τ ≈ 2-3× 10−14 s) is
enough to attenuate the transmission signal to .1% of the intensity of the incoming
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radiation. By using filters and a 1.6 K bolometer as a detector it is possible to resolve
transmission fractions as low as 10−4 to 10−5. Therefore, despite these metals hav-
ing Drude (unscreened) plasma frequencies as high as ∼8-10 eV, the Mach-Zehnder
interferometer is capable of differentiating the Drude parameters σ0 and τ with mea-
surement frequencies in the sub-THz range. Also notable is the response of the poor
metal conventional superconductors Al and Sn, which have dc conductivities less than
those of the noble metals at 295 K. The transmissions of Al and Sn lie in the range
of 1-10%, indicating that quasioptical Mach-Zehnder interferometry is well suited to
the study of the sub-THz response of thin film superconductors.

3.3 Terahertz Time-Domain Spectroscopy

Compared to submillimeter quasioptical interferometry and Fourier transform in-
frared spectroscopy, terahertz time-domain spectroscopy (TTDS) is a complementary
technique used to measure the phase sensitive response of materials in the frequency
range 0.1–10 THz. TTDS was developed in the late 1980’s and early 1990’s following
advances in ultrafast pulsed laser technology, in particular the development of the
Ti:Sapphire femtosecond laser [10]. Since its initial development, the technique has
seen much use and success in the study of gases, condensed matter systems (notably
dielectrics, semiconductors, metals, and correlated electron materials), high-speed
electronics, atmospheric science, pharmaceuticals, biology, medicine, and defense and
security applications.

The basic operational principle of TTDS consists of four primary elements: (1)
an emitter which couples pulsed terahertz radiation into free space, (2) a sample
chamber optimized for interaction of a sample with the freely propagating terahertz
waves, (3) a detector unit for time-resolved detection of the terahertz electric field
components, and (4) a time delay mechanism between the generation and detection
elements to vary the relative arrival time of the terahertz pulse and probe pulse at the
detector [245]. Since the frequency range 0.1–10 THz generally falls above the high-
est frequencies achievable from electronic sources but below the lowest frequencies
obtainable from most optical techniques, the pulsed terahertz sources used in TTDS
usually combine key elements of both electronic and optical sources. As will be dis-
cussed further in Appendix A, such optoelectronic devices most often used to generate
and detect pulsed terahertz radiation include gated photoconductive antennas and the
electrooptic effect via second-order frequency conversion processes in a noncentrosym-
metric crystal. Photoconductive antennas take advantage of picosecond polarization
currents in patterned microstructures (commonly called Auston switches after their
inventor) to rectify a femtosecond near-IR laser pulse. Terahertz generation by the
electrooptic effect in materials such as poled polymers, LiNbO3, LiTaO3, CdTe, ZnTe,
and GaP produces terahertz pulses with bandwidths determined by the width of the
frequency envelope of the near-IR femtosecond laser pulse. The reversibility of the
second-order processes allow the same devices that are used for terahertz generation
to also be used for terahertz detection. The sample vessels most often used in TTDS
experiments are the same types of optical cryostats used in submillimeter quasiopti-
cal interferometry and infrared spectroscopy, notably liquid helium bath and compact
cold finger cryostats; however, it is also possible to perform TTDS experiments with
samples mounted in the ambient laboratory atmosphere. The time delay mechanism
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most commonly employed in a traditional TTDS setup involves a retroreflective mir-
ror mounted on a motorized linear track, but rotating mirrors and oscillating optical
elements are also used. As ultrafast laser technology continues to progress to include
new achievements in ultrahigh repetition rates and pulse stabilization, it has become
possible to construct time delay mechanisms based on asynchronous sampling of op-
tical pulses without need for physical moving delay stages. This latter type of time
delay mechanism provides a marked improvement in data acquisition rates and time
resolution, and opens the door to applying TTDS to the study of physical phenomena
in a wider range of experimental conditions.

TTDS shares many significant features with FTIR spectroscopy, but the two tech-
niques also differ in key ways. Irrespective of the details of the detection mechanism,
the signal S(t) that is obtained in TTDS is described by the convolution

S(t) ∝ Iopt(t− t′)⊗ ETHz(t),

where Iopt(t − t′) is the intensity of the near-IR detector laser pulse and t′ is the
relative time delay between the terahertz pulse and the detector pulse. If the width of
Iopt(t−t′) in the time domain is much smaller than the duration of the terahertz pulse,
then Iopt(t − t′) can be approximated as a Dirac delta function and S(t) ∝ ETHz(t).
Importantly, S(t) is sensitive to the sign of the terahertz field. The terahertz spectrum
is then found by Fourier transform of ETHz(t),

ẼTHz(ω) =
1√
2π

∫ ∞
−∞

ETHz(t)e
iωtdt (3.47)

The Fourier transform takes the real-valued function ETHz(t) and outputs a complex-
valued function ẼTHz(ω). The complex spectrum can therefore be written as

ẼTHz(ω) = A(ω)eiφ(ω)

with an amplitude component A(ω) and phase component φ(ω). TTDS thus has
access to the full complex response of the terahertz field (both amplitude and phase
information) through a single measurement of ETHz(t) compared to FTIR, which mea-
sures only the intensity |ETHz(t)|2 of the terahertz field as a function of time delay and
does not directly measure the phase. Despite this difference, both techniques possess
the so-called Fellgett, or multiplex, advantage and the Jacquinot advantage [224,246].
The Fellgett advantage describes the property of the Fourier technique where many
wavelengths contribute to the measurement simultaneously, as compared to spectro-
scopic measurements performed in the frequency domain. The Jacquinot advantage
describes the increased power throughput of a circular diaphragm characteristic of a
spectrometer with axial symmetry, as compared to a slit or grating spectrometer.

As a result of its design, the TTDS technique enjoys several advantages over
FTIR in the spectral range below ∼5 THz. First, TTDS has ∼5 orders of magnitude
higher signal-to-nose ratio than FTIR with typical dynamic ratios of 60–70 dB, and
coherent detection of terahertz pulses by the electrooptic sampling technique has ∼4
orders better noise equivalent power than a helium cooled bolometer. The reason
for this is because of the use of gated detection in TTDS; the detector is almost
always off except for when the ultrafast detector pulse is impingent, so the Johnson
noise is negligible [247]. Second, the terahertz sources used in both TTDS and FTIR
have typical average powers of ∼0.1 µW. FTIR typically uses a mercury lamp as a
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radiation source, which functions as an incoherent blackbody. In TTDS, on the other
hand, the source (either a photoconductive antenna or electrooptic generation in a
nonlinear crystal) has a duty cycle of ∼10−4, so the peak power of the individual
terahertz pulses is on the order of 1 mW [246]. Third, the Bose-Einstein occupation
factor, which measures the number of photons present in a unit coherence volume,
is proportional to 1/(e~ω/kT − 1) and is approximately equal to 1 for a blackbody at
room temperature near terahertz frequencies. In contrast, the number of photons in
a single terahertz pulse in TTDS is ∼105, so the fluctuation rate is 1/

√
N ∼ 300

times smaller for TTDS than for FTIR. However, at frequencies above ∼5–7 THz,
difficulties in TTDS pulse generation and detection emerge due to limitations on
the rate of electronic response in photoconductive antennas and the breakdown of
electrooptic efficiency in nonlinear crystals from the presence of phonon bands. These
difficulties dramatically reduce the signal-to-noise ratio of TTDS, so at frequencies
above ∼5–7 THz FTIR is typically a superior technique.

3.3.1 The TTDS Spectrometer

The TTDS setup used in this work is schematically illustrated in Fig. 3.7. The system
is based on the high speed asynchronous optical sampling technique, which replaces
the traditional time delay stage with two coupled 1 GHz repetition rate lasers with
central wavelength near 800 nm. The repetition rates of the two lasers are offset
by just 2000 Hz such that the beat frequency between the two lasers serves as the
physical mechanism of scanning in the time domain. The faster slave laser pumps the
photoconductive antenna while the slower master laser probes the transient terahertz
electric field in a 200 µm thick (110)-oriented GaP electrooptic detector crystal opti-
cally contacted onto a 3 mm thick (100)-oriented GaP substrate. The terahertz pulse
source is a LaserQuantum GmbH TeraSED interdigitated finger antenna unit, a type
of large-area antenna that is capable of producing terahertz pulses with bandwidths
of 0.1–7 THz and dynamic ratios of ∼70 dB [248]. Negative dispersion mirror pairs
are used to achieve transform limited laser pulses with the miniumum possible laser
pulse duration of 40–45 fs. A set of off-axis gold-coated parabolic mirrors are used to
focus the emitted terahertz radiation onto a sample, which is contained within a liquid
helium bath cryostat. An identical set of off-axis parabolic mirrors then focuses the
terahertz radiation onto the GaP electrooptic detector crystal. All terahertz optics
are contained within a dry nitrogen purge box in order to reduce terahertz absorp-
tion by atmospheric humidity. The details of each of these spectrometer elements are
discussed in Appendix A.

Asynchronous Optical Sampling

Conventional TTDS systems generally employ various mechanical elements to achieve
a variable time delay between the arrival of the terahertz pulse and probe pulse at
the detector [10, 245]. The most common scheme is to use a retroreflecting mir-
ror mounted on a motorized linear translation stage that is controlled electronically
by data acquisition software in tandem with a mechanical or electrooptic chopping
scheme to enable synchronous detection. With step sizes on the order of 10 µm this
allows for time resolutions of 50–100 fs. Other mechanical detection schemes include
rotating mirrors and oscillating optical elements. However, these time-delay schemes
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Figure 3.7 A schematic outline of the TTDS system used in this work. The time delay
mechanism and detection scheme are based on the asynchronous optical sampling technique,
which uses two 1 GHz repetition rate lasers with a repetition frequency offset of just 2
kHz. Terahertz radiation is generated with an interdigitated finger photoconductive antenna
patterned on GaAs. Terahertz radiation is detected electrooptically in a 200 µm thick (110)-
oriented GaP detector crystal pressed onto a 3 mm thick (100)-oriented GaP substrate.

come with the disadvantage that the moving mechanical elements introduce apprecia-
ble mechanical noise into the experiment and often have restricted ranges of motion
that limit the duration of the time delay window, resulting in reduced frequency
resolution and bandwidth. Furthermore, moving optical elements can give rise to
position-dependent beam alignment errors that introduce amplitude and phase errors
into the measurement.

The asynchronous optical sampling (ASOPS) technique is an all-optical time de-
lay scheme that provides an alternative to mechanical time delay setups. The ASOPS
method utilizes two modelocked pulsed lasers operating with their frequencies f off-
set by a few kilohertz [249]. The few-kilohertz beat frequency ∆f = fpump − fprobe

produces a repetitive time delay between the pump and probe laser pulses that pro-
gressively increases in steps of 1/fprobe− 1/fpump with each successive laser period so
that the repetition rate of the full time trace is the frequency ∆f . With each repeti-
tion of the pump laser, the probe samples a slightly later point in the decay curve of
the pump pulse such that the time axis measured in real (laboratory) time is scaled
from the time axis of the true pump response by the factor fpump/∆f . Therefore, the
defining feature of the ASOPS technique is that it enables time-resolved measurement
of ultrafast processes by dramatically expanding the time axis of the measurement
to allow such processes to be resoloved by much slower conventional electronic meth-
ods [250]. To increase the time resolution of the ASOPS detection fpump must be
large and ∆f must be small.

ASOPS used in TTDS setups enjoys a distinct advantage over conventional me-
chanical time delay stages in that full time traces spanning 1 ns can be completed
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in milliseconds [251]. Conventional mechanical time delay stages, on the other hand,
require translation distances of 15 cm to obtain a 1 ns time trace. With step sizes
of 10–100 µm, the time required to position the translation stage at each point and
average out noise can lead to acquisition times on the order of tens of minutes, in
which time long-period laboratory fluctuations can have a significant effect (such as
fluctuations of the cryostat temperature, air humidity, or beam alignment). As a
result, ASOPS is well suited to measurements that must be performed in dynamic
or unstable environments, such as in pulsed magnetic fields or with transient applied
currents.

The TTDS setup employed in this work utilizes a high speed ASOPS detection
scheme based on two coupled Ti:Sapphire lasers from LaserQuantum GmbH with a
frequency offset of ∆f = 2 kHz [252]. Terahertz transients are detected by a master
laser with repetition frequency f ≈ 1 GHz and generated with a frequency-locked slave
laser of frequency f + ∆f . The throughput electronics with 14-bit analog-to-digital
converter provide a data sampling rate of fsampling = 100 MHz. As a result, the time
resolution τres = ∆f/fpumpfsampling is just 20 fs, comparable to most conventional
TTDS setups, giving a spectral bandwidth of ∼1 GHz to ∼20 THz. The timing
trigger signal is provided by using pellicle beamsplitters to direct a small fraction
of both the master and slave laser powers onto an ultrafast photodiode, with the
trigger signal occuring when both laser pulses arrive simultaneously at the photodiode.
Timing jitter between the pump and probe lasers serves as the limiting factor on
the time resolution. To reduce the timing jitter, the ASOPS electronic control unit
(HASSP-THz, LaserQuantum GmbH) takes advantage of the 10th harmonic of the
laser repetition rates and a direct-digital-synthesis integrated circuit to to define the
repetition rate offset [253]. This novel ASOPS control scheme eliminates sidebands
in the phase-locked feedback control loop (which link the master and slave repetition
frequencies) that are separated by ∆f and higher harmonics of ∆f . These sidebands
can cause signifcant miscalibration of the measurement time axis if the bandwidth of
the phase-locked feedback loop approaches ∆f . The effective time resolution afforded
by this control scheme is ≈45 fs with scan rates up to 5 kHz. At such fast scan rates,
measurements can typically be completed before mechanical noise takes effect and
measurements can be made at the shot noise limit.

3.3.2 Experimental Measurements in TTDS

For measurements of a bulk sample, such as a substrate or thick piece of material,
an empty aperture is used as a reference. For measurements of a thin film on a thick
substrate, an identical bare substrate is used as the reference. After the sample and
reference have been mounted on the sample insert and placed inside the cryostat the
terahertz transmission through the reference is maximized by making minor x, y, and
z adjustments of the cryostat position. It is also necessary to inspect the position
of any reflections in the time-domain trace of the terahertz transient. In addition to
the series of reflections originating in the photoconductive antenna, sample substrate,
and detector crystal, as discussed above, reflections may arise from cavities formed
between the surfaces of optical elements and cryostat windows. Reflections occuring
between the inner and outer cryostat windows, as well as between the sample surface
and the inner cryostat windows, are especially problematic because the distances
between these components are only a few millimeters, so reflections may become
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embedded in the tail of the main terahertz pulse as it disperses in the sample. The
best way to remove these problematic reflections is to rotate either the sample or the
cryostat itself by up to ∼5◦ to eliminate the cavity resonance.

Sample and reference measurements are performed several times each and in al-
ternating order to reduce systematic error, with short individual scan times no longer
than a few minutes. In this way the effects of slow drift of the laser power, repetition
rates, temperature variations, air currents in the laboratory, etc. are reduced because
the sample and reference can be compared before any significant drift has occured,
and this type of systematic error can be effectively averaged out [254]. In principle,
the drift effects are most easily eliminated if the sample and reference measurements
are averaged in the time domain before the Fourier transform is calculated. However,
if the spectrometer alignment is adjusted between measurement sets, or measure-
ments performed hours or more apart need to be combined, it is necessary to perform
the averaging of the complex transmission in the frequency domain because small
changes in the absolute phase of the terahertz transient will become embedded as
interferences if the measurements are averaged in the time domain. The procedure of
calculating the complex transmission for each individual sample-reference pair elim-
inates the absolute phase shift of the signal and only considers the relative phase
difference between the sample and reference transients.

3.3.3 Data Analysis in TTDS

Analysis of raw data in TTDS proceeds similarly to data analysis in submillimeter
quasioptical interferometery. However, because data is collected in the time domain
rather than in the frequency domain, Fourier transformation of the measured ter-
ahertz transients is needed. This provides TTDS with the distinct advantage over
submillimeter quasioptical interferometry that the full complex response can be ob-
tained from a single measurement of a sample and a reference, rather than needing to
separately measure the phase. The data analysis proceeds in three key steps. First,
the time domain terahertz transient is windowed with a suitable window function to
remove reflections and increase the signal-to-noise ratio. Second, the Fourier trans-
form of the windowed time domain data is calculated to obtain the complex-valued
spectrums of the sample and reference. Third, the complex transmission transfer func-
tion is described by the Fresnel equations and the expression is numerically inverted
to obtain the values of n(ω) and k(ω) of the sample.

Window Functions

Windowing of the time domain data must be done to eliminate unnecessary reflec-
tions, which introduce oscillations in the extracted spectrum. The window function
therefore serves as a high-pass filter. Mathematically, the windowed signal calculated
prior to the Fourier transform and is given by

Ewindowed(t) = ETHz(t)W (t). (3.48)

The window function W (t) must go to zero as t → ±∞. There are many possible
choices of W (t) that satisfy this condition, with the correct choice depending on the
purpose of the measurement and whether maximum signal-to-noise ratio, maximum
spectral resolution, or minimum spectrum distortions are desired. Usually, a W (t)



80 3. Experimental Methods

that has a simple Fourier transform is chosen in order to control its effects on the
extracted spectrum ẼTHz(ω). The same window function is typically used for both the
sample and reference measurements to reduce distortions of the extracted response
functions. Some common window functions used in TTDS include [255]:

� Rectangular window. The simple rectangular window provides minimal distor-
tion of the time-domain transient and offers a straightforward method of simply
cutting unwanted reflections from the terahertz transient. However, the sharp
steps at the edges of the rectangular window can introduce appreciable artifacts
at high frequencies. Thus, while the quality of the extracted response function
increases somewhat from the case of using no window function, the rectangular
window generally provides only marginal improvement in the dynamic range
and usable bandwidth of the terahertz signal.

� Gaussian window. The Gaussian window is often a good choice in TTDS be-
cause its Fourier transform is another Gaussian. The smoothly decaying wings
of the Gaussian damp out oscillations and noise present in both the low and
high frequency portions of the spectrum. As a result, the Gaussian window pro-
vides moderate improvement in both the dynamic ratio and the usable spectral
bandwidth.

� Force-exponential window. The force-exponential window is similar to the rect-
angular window, with a step function defining the leading edge just before the
start of the terahertz transient. Instead of a second step function on the trailing
edge, however, the force window has a steep cosine taper to zero and the entire
window function is damped with a decaying exponential [256]. The cosine taper
eliminates aliasing and improves the signal-to-noise ratio by also removing the
noise in the trailing parts of the terahertz transient, which may have energy of
the same order as the main pulse. The decay rate of the exponential is typi-
cally matched to the decay rate of the main pulse in the terahertz transient and
attenuates the noise present in the main pulse. Use of the force-exponential
window can provide a large improvement in both the dynamic range and usable
spectral bandwidth, but due to the shift property of the Fourier transform the
measured absorption coefficient must be corrected by an amount equal to the
damping constant of the decaying exponential [257].

Fourier Transform

Prior to calculating the Fourier transform of the windowed time-domain data it may
be necessary to zero-pad the data, which is to append zeros at times before and after
the windowed terahertz pulse. This step increases the extracted bandwidth of the
spectrum and resoultion. However, this increased resolution is purely mathematical
and not true experimental resolution, because the actual experimental bandwidth and
resolution is limited by the width of the window function. Nevertheless, zero padding
may be necessary as a method for filling out the spectral data and interpolating
between experimental data points. The Fourier transform of a time-domain trace
containing n data points is then given by

ẼTHz(ω) =
1√
n

n∑
j=1

ETHz(tj)W (tj)e
i(ω−2π)(j−1)∆t, (3.49)
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where ∆t is the time increment between measured data points.

Extraction of n(ω) and k(ω)

After the Fourier transforms of the windowed sample and reference transients are cal-
culated, the resulting spectrums are used to obtain the complex transmission t̃(ω) =
Ẽsample(ω)/Ẽref(ω). The complex transmission must be converted from the complex-
valued form t̃(ω) = t1(ω) + it2(ω) into an amplitude and phase as t̃(ω) = A(ω)eiφ(ω).
This is because the FFT procedure returns values sitting on a circle in the complex
plane, where the phase is defined as lying in the range 0 ≤ φ(ω) < 2π. However, the
actual phase may contain integer multiples of 2π, and in this case the phase func-
tion φ(ω) will appear as a sawtooth with discontinuities of magnitude 2π where φ(ω)
wraps around the complex unit circle. The phase of the transmission function must
therefore be unwrapped by adding an integer multiple of 2π at every discontinuity
so that φ(ω) is smooth and everywhere differentiable [258]. The phase-unwrapped
complex transmission of the sample is then used to extract n(ω) and k(ω) and cal-
culate any additional quantities, such as the conductivity σ̃(ω) or dielectric function
ε̃(ω). Experimentally measured values of t̃(ω) are set equal to the appropriate Fresnel
transmission transfer function for the sample and n(ω) and k(ω) are determined by
numerical inversion.

Single layer systems. For a single layer system of thickness L such as a substrate,
the Fresnel transmission function is given by

t̃sample = t̃0sP̃st̃s0 (3.50)

with t̃jk given by Eq. 3.38 and the phase P̃j given by Eq. 3.39, while the transmission
through the empty reference aperture is described simply by the phase t̃ref = P̃0. It
is not necessary to include the Fabry-Pérot coefficient because the time duration of
the terahertz transient is less than 2nsL/c, the round-trip time for a photon in the
substrate. The complex transmission transfer function is then

t̃(ω) =
t̃sample

t̃ref

=
4ñs

(1 + ñs)2
eiω(ñs−1)L/c. (3.51)

The actual numerical inversion is done by taking the logarithm of the complex trans-
mission function to preserve the phase unwrapping. Extracted values of ñs(ω) =
ns(ω) + iks(ω) are then obtained from

ln [A(ω)] + iφ(ω) = ln

[
4ñs

(1 + ñs)2

]
+ i

ω

c
(ñs − 1)L. (3.52)

Thin film on a thick substrate. For a thin film of thickness d on a substrate of
thickness L, the Fresnel transmission function of the sample is given by

t̃sample = t̃0fP̃fF̃f t̃fsP̃st̃s0P̃
(∆L)
0 , (3.53)

where F̃f is the Fabry-Pérot coefficient of the film, and the Fresnel transmission
function of the reference is

t̃ref = P̃
(d)
0 t̃0sP̃st̃s0. (3.54)

The coefficient P̃
(d)
0 appearing in Eq. 3.54 corresponds to the phase difference acquired

by the terahertz transient in the reference because it does not pass through a thin
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film, while P̃
(∆L)
0 in Eq. 3.53 accounts for the possible difference in thickness of the

sample and reference substrates. The complex transmission transfer function is then
given by [259]

t̃(ω) =
2ñf(1 + ñs)

(1 + ñf)(ñf + ñs)
F̃fe

iω(1+ñs)∆L/ceiω(ñf−1)d/c (3.55)

and the complex index of the film ñf(ω) = nf(ω) + ikf(ω) is found by numerically
inverting the expression ln t̃(ω) = lnA(ω) + iφ(ω).

Substrate Thickness Mismatch

The substrate thickness mismatch parameter ∆L in Eqs. 3.53 and 3.55 arises because,
even if two substrates from the same manufacturing batch are used for the sample
and reference, small thickness differences on the order of a few micrometers to a few
tens of micrometers are usually present due to miscuts of the substrate crystals. This
mismatch can cause phase shifts of the measured signal comparable to that induced
by a ∼100 nm thick film. ∆L is therefore used as a free fitting parameter. To obtain
the correct values of σ1(ω) and ε1(ω) of the film, ∆L is adjusted until σ1 and ε1
match values obtained by other methods, such as dc transport measurements above
Tc. In the work presented here, TTDS measurements are compared with submil-
limeter interferometry and far-IR ellipsometry measurements obtained at the same
temperature.

3.3.4 Resolution Limits

Both upper and lower limits on the resolvable values of n and k exist in TTDS. The
lower limit follows as usual from the minimum error bar or standard deviation of
measurements, while the upper limit is a consequence of the maximum dynamic ratio
available in the reference spectrum. Since the complex transmission can be expressed
as t̃(ω) = A(ω)eiφ(ω), the maximum measurable absorption coefficent αmax for a thin
film on a thick substrate is [259]

αmax =
ωkmax

2πc
=

1

2πd
ln

(
R
t̃0f t̃fsF̃f

t̃0s

)
, (3.56)

where the maximum value of A(ω) is the dynamic ratio R. For a film of thickness
d = 80 nm this corresponds to αmax ≈ 32 µm−1. Absorption values larger than this
will be measured as exactly αmax rather than the true value. As a result, samples
with strong absorption lines may have their resonances truncated and extraction of
the correct resonance lineshapes becomes difficult. It is therefore necessary to perform
TTDS measurements with as large a dynamic ratio as possible and to use thinner
samples when the material under study is strongly absorbent.

The lower limit of resolvability of the absorption coefficient is given by [254]

∆αmin =
ω∆kmin

2πc
>

ξs

2πd

√
2

N
, (3.57)

where s is the standard deviation of the measurement, N is the number of times the
measurement is repeated, and ξ ≥ 1 is an integer corresponding to the desired confi-
dence interval of the measurement, with ξ = 3 corresponding to 99.7% confidence in



3.3 Terahertz Time-Domain Spectroscopy 83

Figure 3.8 High-speed ASOPS TTDS measurements of the absorption coefficient (solid
line) and phase shift (dashed line) of a d = 80 nm thick film of the incipient ferroelectric
BaZrO3 on an MgO substrate at 5 K. The TO2 phonon mode at 3.7 THz is just visibile
with an amplitude of α ≈ 0.3 µm−1. The TO1 phonon at 1.9 THz, which is ∼100 times
weaker than the TO2 phonon, is buried in the noise.

the detection of the thin film. To illustrate the sensitivity of the TTDS measurement,
Fig. 3.8 shows the measured absorption coefficient and phase shift of a d = 80 nm
thick film of BaZrO3, a cubic perovskite, on an MgO substrate at a temperature of
5 K. Classified as an incipient ferroelectric, BaZrO3 has two infrared active phonon
modes near 1.9 THz (TO1) and 3.7 THz (TO2) [260]. Both modes exhibit signifi-
cant softening with decreasing temperature. The mode softening is accompanied by a
concomitant increase in ε1 with a saturation plateau below 20 K, which results from
quantum fluctuations that stabilize the paraelectric phase. As shown by the solid
line in Fig. 3.8, the TO2 phonon resonance of the thin BaZrO3 film observed near
3.7 THz has an amplitude of α ≈ 0.3 µm−1. The calculated value of the minimum
resolvable absorption coefficient by TTDS is ∆αmin = 0.1–0.2 µm−1 based on the
noise present in the measurement. The extracted absorption coefficient therefore lies
only just above the minimum resolvable limit, rendering the TO1 mode, which is a
factor of ∼100 weaker than the TO2 mode, unobservable.

There is also a lower limit on the measured index of refraction, or phase shift,
that is resolvable by a TTDS spectrometer. This minimum phase shift is related to
the error bar or standard deviation of the measurement as

ω

c
∆nmind > ξs

√
2

N
+ 2

ω

c
nfd

Re (r̃f0r̃fs)

Re (r̃f0r̃fs)− 1
, (3.58)

where r̃f0 and r̃fs are the Fresnel reflection coefficients from film to vacuum and film
to substrate, respectively. For the 80 nm thick BaZrO3 film ω∆nmind/c ≈ 0.05
rad with ξ = 3; the observed feature in the frequency dependence of the phase,
depicted by the dashed line in Fig. 3.8, has a magnitude of ∼0.12 rad. Thus, the
extracted absorption coefficent and phase shift of the TO2 mode both lie just above
the minimum resolvable limits, demonstrating that the TTDS system used in this
work is capable of resolving the presence of multiferroic films as thin or thinner than
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80 nm. In comparison, the minimum resolvable thicknesses of various dielectric films
measured by conventional TTDS spectrometers have been reported to lie in the range
200–1400 nm [254]. The TTDS system based on high-speed ASOPS presented here
therefore provides remarkable sensitivity in thin film sensing without need for more
complicated mechanical techniques, such as difference-signal extraction.

3.4 Spectroscopic Ellipsometry

The final experimental technique that we make use of is spectroscopic ellipsome-
try, which is a very powerful tool for characterizing thin film systems because it
provides access to information regarding optical properties and interface layers to
sub-Angstrom resolution [261]. Like submillimeter quasioptical interferometry and
terahertz time-domain spectroscopy, spectroscopic ellipsometry is a method capable
of simultaneously obtaining both the real and imaginary parts of the complex di-
electric response, ε̃(ω) = ε1(ω) + iε2(ω), without need for Kramers-Kronig relations.
This is accomplished by measuring the full polarization state of light as a function
of frequency after it reflects from the surface of a sample. As we have seen from the
discussion of the Fresnel equations in Section 3.1.1, light encounters different com-
plex reflection and transmission coefficients at an interface depending on whether it
is polarized parallel (p) or perpendicular (s) to the optical plane of incidence. If the
incident light is polarized such that it has both p and s components, then each compo-
nent will suffer different amplitude and phase shifts at the interface and the reflected
light becomes elliptically polarized. A complete and very detailed description of the
spectroscopic ellipsometry technique is given in Ref. [261].

For the case of Fabry-Pérot reflection and transmission through a slab at normal
incidence, it is enough to define the electric field polarization in terms of the p and
s components and use the Fresnel equations to obtain ε̃(ω). In ellipsometry, on the
other hand, it is more convenient to define the polarization in terms of the angles Ψ
and ∆ by the Jones vector,

Ê =

(
sin Ψei∆

cos Ψ

)
(3.59)

Here, the angle Ψ is determined by the relative attenuation of the reflected light and
∆ is the relative phase shift of the two polarization components with respect to each
other,

tan Ψ =
|r̃p|
|r̃s|

, ∆ = δp − δs (3.60)

The full complex dielectric function can therefore be obtained by measuring Ψ and ∆.
The experimental setup is illustrated in Fig. 3.9 and consists of an initial polarizer
at angle P , a sample at angle of incidence θ, a second polarizer (the analyzer) at
angle A, and a detector. In the IR and far-IR spectral ranges a bolometer is used
to detect the intensity of the reflected light as a function of P and A. The angle of
incidence is chosen such that it lies near the Brewster angle to increase the sensitivity
of the experiment to changes in ε̃(ω); at this angle rp ≈ 0 when ε2(ω) ≈ 0, but small
changes in ε2 produce large changes in ∆. This is because ∆ changes rapidly from 0◦

to 180◦ in the vicinity of the Brewster angle, with ∆ changing more rapidly when ε2
is smaller.
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Figure 3.9 An illustration of the spectroscopic ellipsometry measurement technique. Ra-
diation enters the instrument (left side) and is polarized by an initial polarizer at angle
P . The polarized beam then reflects from the sample at angle of incidence θ and becomes
elliptically polarized according to the Fresnel equations for s and p polarized light. The
polarization state of the beam is characterized by the ellipsometric angles Ψ (relative at-
tenuation) and ∆ (relative phase shift). The elliptical beam then passes through a second
polarizer (analyzer) at angle A and reaches the detector. The full polarization state of
the measured light is obtained by measuring the intensity profile I(A)/I0 of the elliptical
beam as a function of analyzer angle. Frequency dependence is obtained by placing an
interferometer (not shown) between the radiation source and initial polarizer.

Typical measurements are performed by fixing the angle P and then rotating the
analyzer through 360◦. This procedure produces an angular intensity profile I(A)
that has a sinusoidal form,

I(A)

I0

= 1 + α sin(2A) + β cos(2A), (3.61)

which is then fit by a computer program to extract the coefficients α and β. These
two coefficients are related to the ellipsometric angles Ψ and ∆ through

tan Ψ = | tanP |
√

1 + α

1− α
, cos ∆ = sgn(P )

β√
1− α2

(3.62)

Frequency dependence is introduced by inserting a Michelson interferometer between
the radiation source and initial polarizer. This interferometer functions much in the
same way as an FTIR spectrometer; an oscillator constantly modulates the length
of a reference arm, and the detector measures an interferogram. Therefore, for each
analyzer angle A, an interferogram (and hence a spectrum) is obtained. As a result,
for each frequency ω there is a separate A-dependent sinusoid that corresponds to a
separate pair of angles Ψ(ω) and ∆(ω). This spectrum of ellipsometric angles is then
used to solve for ε1(ω) and ε2(ω) by equating the complex relative reflectivity to the
Fresnel reflection coefficients for the sample,

tan Ψ(ω) ei∆(ω) =
r̃p(ω)

r̃s(ω)
, (3.63)
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where rp(ω) and rs(ω) are given in Section 3.1.1 in terms of n and k. The alignment
of the ellipsometer and the experimental resolution is improved by repeating the
measurements at several values of ±P .

Three ellipsometer setups are used to measure across the full spectrum from far-
IR to deep UV (10 meV to 6.5 eV). First, a home-built ellipsometer attached to a
Bruker IFS 66v/s interferometer, on the IR-1 beamline of the KARA synchrotron
at the Karlsruhe Institute of Technology, is used to measure at frequencies from
80 cm−1 to approximately 700 cm−1. This setup utilizes coherent far-IR radiation
from the 110 m diameter electron storage ring, which operates at beam energies
of 0.5–2.5 GeV. Second, an identical home-built ellipsometer attached to a Bruker
Vertex 80v interferometer at our lab in the Max Planck Institute for Solid State
Research is used to reach frequencies in the range 700–10000 cm−1. Two different
radiation sources with overlapping spectral outputs are employed to cover this range.
In the mid-IR portion of the spectrum a SiC globar is used and in the near-IR a
tungsten lamp is used. Third, a visible-to-UV VASE (variable angle spectroscopic
ellipsometer) purchased from J. A. Woollam Co. covers the frequency range above
approximately 4000 cm−1. After measuring the response of a sample on all three
instruments, ε1(ω) and ε2(ω) are extracted across the full spectral range from 10 meV
to 6.5 eV by first combining the raw data for Ψ(ω) and ∆(ω) from all instruments using
custom Mathematica code developed by other members of our research group [262].
The complex dielectric function is then obtained from the composite data set using
commercial Woollam WVASE software.



Chapter 4

Approaching 2D Superconductivity
in Ultrathin DyBa2Cu3O7–δ

4.1 DyBa2Cu3O7–δ Thin Films

The understanding of the physics of cuprates in the 2D limit has progressed hand-
in-hand with technological developments in epitaxial oxide film growth techniques,
notably with the advancement of molecular beam epitaxy (MBE) [263]. A significant
challenge for the fabrication of complex oxide films has been the difficulty of repro-
ducibly obtaining pure single-phase samples. Defects such as dislocations, stacking
faults, twin boundaries, and the formation of undesired secondary impurity com-
pounds commonly occur due to the thermodynamic details of the film deposition
process and conditions of the substrate surfaces. These defects drastically impact
the electronic properties of the samples and so it is necessary to achieve minimal
defect density in order to approach the intrinsic properties of complex oxides. Recent
advances in oxide MBE [11], particularly atomic layer-by-layer MBE, have provided
a route to reliably achieve highly pure, atomically smooth copper oxide films thin-
ner than 1 nm. Atomic layer-by-layer MBE differs from conventional MBE in that,
instead of employing co-deposition of all atomic species simultaneously, vacuum shut-
ters are used to open individual elemental effusion cells in a predefined order to obtain
greater stoichiometry control [264]. Oxide MBE takes advantage of low deposition en-
ergies of the atomic species and so, compared to pulsed laser deposition and reactive
magnetron sputtering, achieves uniquely low densities of defects and high electron
mobilities.

Many prior studies of ultrathin YBCO films focused on the properties of samples
grown by pulsed laser deposition, sputtering, and reactive evaporation techniques
rather than oxide MBE. Early work found that superconductivity in YBCO can be
observed in individual CuO2 bilayers [167–169] but that a 4–6 u.c. thick interfacial
layer is necessary to epitaxially adapt the film to the underlying substrate [265–267].
The nature of this few-u.c. layer was attributed to the formation of a strain-induced
defect distribution that creates a rapidly diminishing zone of high defect density and
inhomogeneously distributed oxygen vacancies due to the lattice matching require-
ments [268]. As a result, a significant number of studies employ few-u.c. thick PrBCO
buffer layers because the orthorhombic structure of PrBCO has a maximum lattice
mismatch of only ∼1.5% with YBCO [21, 175, 269, 270]. However, as discussed in
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Figure 4.1 Illustrations of high-resolution XRD reciprocal space maps for the HK plane
centered about the (4 0 10) reflection, adapted from Ref. [273]. The X-ray results show that
for all near optimally doped films the structure is dominated by four-fold orthorhombic
twin domains, as indicated by four diffraction subpeaks observed for OP60uc, OP40uc, and
OP20uc. These subpeaks merge together with decreasing thickness until a single, distorted
diffraction spot is observed for OP10uc. By contrast, an underdoped 20 u.c. thick film
displays a single circular diffraction spot, indicative of tetragonal symmetry.

Section 2.2.4, inclusion of PrBCO in thin film heterostructures introduces additional
disorder because the Pr ion contributes to pair breaking, magnetic ordering, and
charge localization [39]. The presence of PrBCO buffer layers in RBCO thin film
structures therefore complicates the interpretation of the nature of the superconduct-
ing state and, in order to assess the intrinsic superconducting properties of RBCO,
it is necessary to investigate RBCO films grown in the absence of influence from
extrinsic compounds.

For the studies presented in this thesis, DyBCO films with thicknesses ranging
from 7 to 60 u.c. (8–70 nm) were grown on (100)-oriented (LaAlO3)0.3(Sr2AlTaO6)0.7

(LSAT) substrates of dimensions 10 × 10 mm2 by ozone-assisted atomic-layer-by-
layer oxide MBE. In this technique [271] Dy, Ba, and Cu metals were evaporated in
oxygen atmosphere one atomic layer at a time from separate evaporation sources in a
predefined manner to achieve highly pristine superconducting films with Tc as high as
90 K. DyBCO films were chosen rather than YBCO because the higher vapor pressure
of Dy as compared to Y allows for higher quality films to be achieved at typical MBE
growth temperatures [272]. A series of DyBCO films with a range of thicknesses were
selected in order to avoid effects caused by modification of the sample Fermiology
due to strain and doping differences. LSAT substrates, as opposed to LAO, LSAO,
or STO, were used because the a and b lattice parameters of LSAT (a = b = 3.87 Å)
lie between the a and b parameters of DyBCO, resulting in minimized strain effects.
The high crystal structure quality of the films was confirmed by X-ray diffraction
(XRD) and transmission electron microscopy measurements and reported elsewhere
by Putzky et al. [273]. The DyBCO films were further characterized by visible-
to-UV spectroscopic ellipsometry and mutual inductance measurements to ascertain
their doping level and transport properties prior to investigating the submillimeter,
terahertz, and infrared response of the superconducting condensate.

Due to the epitaxial contact of the films with the substrates, on approaching the
2D limit effects stemming from the film thickness, strain, doping level, and disorder
become intertwined. To disentangle and control for these effects we begin by inves-
tigating the thickness dependence of the film lattice structure and strain. Fig. 4.1
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depicts illustrations of high-resolution XRD measurements of the HK plane centered
about the (4 0 10) reflection for DyBCO films ranging from 10–60 u.c. thick grown
near optimal doping, adapted from data measured on the same films reported in
Ref. [273]. In thick near optimally doped films (right hand side of the figure) the
orthorhombic lattice structure is observed as indicated by four nearly circular diffrac-
tion subpeaks. The four subpeaks appear due to sample twinning, which results in an
effective macroscopic four-fold rotational symmetry. The circular shape of the sub-
peaks implies that the strain in the orthorhombic structure is close to fully relaxed.
As the film thickness is reduced below 60 u.c. (moving left) the diffraction subpeaks
enlongate and migrate towards the (4 0 10) point. Below a thickness of 10 u.c. the
diffraction subpeaks merge into a single distorted diffraction peak at (4 0 10). This
propeller-like diffraction pattern indicates that the thinnest films adapt to the square
structure of the underlying substrate lattice while also retaining CuO chains. In a
vacuum annealed, underdoped 20 u.c. thick control film, on the other hand, a single
circular diffraction spot at (4 0 10) is observed as a result of the tetragonal symmetry
of its epitaxial lattice. This trend implies that in near optimally doped films the lat-
tice strain relaxation decreases with decreasing film thickness and the films become
increasingly less orthorhombic below 60 u.c.

Such a dependence of the strain on decreasing film thickness suggests the pos-
sibility that thickness-induced changes in the doping level may be present, which
could alter the observed Tc of the films. This is because compressive strain along
the DyBCO b-axis has the tendency to release O atoms from the CuO chains. To
check the doping level of the films we performed spectroscopic ellipsometry measure-
ments of the ab-plane complex dielectric function in the visible spectral range. If the
films are indeed becoming increasingly underdoped with decreasing thickness then
it is expected that spectral features corresponding to optical transitions related to
the CuO chain layers that evolve with thickness will be observed. In particular, an
absorption peak in ε2 centered near 4 eV in the in-plane optical response is unique to
the RBCO family of cuprates and is attributed to Cu 3d3z2−1 to Cu 4px transitions
of the dumbbell O(IV)-Cu(I)-O(IV) units in the absence of CuO chains [274, 275].
At severe underdoping RBa2Cu3O6 is tetragonal so the a and b axes are equivalent,
and the 4 eV feature is observed in both polarizations along with an absorption gap
below 1.5 eV and an additional peak at 1.75 eV (corresponding to O 2p to Cu 3d
charge-transfer excitations). As the CuO chains are filled with increasing doping,
however, the Cu 4px,y degeneracy is broken and the optical response becomes po-
larized, with a 4.1 eV peak remaining in the b-axis and a 4.7 eV peak appearing in
the a-axis response [276]. At intermediate dopings this change is accompanied by a
transfer of optical conductivity spectral weight from high photon energies to energies
below the charge-transfer gap and a low-frequency metallic feature appears. Finally,
as the doping level approaches RBa2Cu3O7, the characteristic 4.1 and 4.7 eV features
disappear and both the a and b axis responses are dominated only by a conductivity
upturn below approximately 1 eV.

As can be seen in Fig. 4.2(a), for near optimally doped 60 u.c. thick films, which
were shown by XRD measurements to possess intact CuO chains, the response of ε2
shows a strong upturn at low photon energies along with the absence of any other
sharp spectral features. At the same time, the corresponding measured ε1 plotted in
Fig. 4.2(b) indicates a screened plasma frequency in excess of 1 eV. As the thickness
of the near optimally doped films is decreased down to 7 uc this qualitative trend
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Figure 4.2 The complex dielectric function as measured at T = 293 K by spectroscopic
ellipsometry in the visible-near-UV range for a series of DyBCO thin films. (a) The imagi-
nary part of the dielectric function. All films designated as “OP” display an upturn in the
conductivity at low photon energies and absence of a peak near 4 eV. A vacuum annealed,
underdoped 20 u.c. film, on the other hand, shows a clear 4 eV peak (dark green points)
that is attributed to dumbbell Cu 3d3z2−1 to 4px transitions and indicates the absence of
intact CuO chains [274, 276]. Additionally, the measured ε1 in (b) for the UD20uc sample
(dark green line) does not show a screened plasma frequency in the visible spectral range.
These results indicate that all “OP” films possess intact CuO chains and are indeed near
optimal doping down to a thickness of 7 u.c. (b) The real part of the dielectric function.
The screened plasma frequency for OP7uc is marked by the red arrow while ε∞ is indicated
by the red dashed line.

in ε1 and ε2 is observed to hold, with only the screened plasma frequency decreasing
with decreasing thickness. Given the twinned nature of all films the observation of
peaks near both 4.1 and 4.7 eV is expected if the films are becoming increasingly un-
derdoped, but importantly, no sharp spectral absorption features in ε2 are observed
above 4 eV even in the 7 u.c. thick optimally doped sample. In the vacuum annealed,
underdoped reference sample UD20uc, on the other hand, a clear 4 eV peak is ob-
served in ε2 along with a 1.75 eV feature and drastically reduced optical weight below
∼1.5 eV. Together, these results imply that all films 7–60 u.c. thick that were grown
as optimally doped are indeed near optimal doping. Despite the presence of unrelaxed
epitaxial strain in the thinnest films the CuO chains remain largely intact.

Disorder is also intrinsically related to film thickness because epitaxial effects and
strain from the substrate interface affect the quality of the CuO chains, grain bound-
aries, stacking faults, and other defects despite the carefully controlled atomic-layer-
by-layer growth process. Previous studies of the effect of disorder on Tc, transport
properties, and the quasiparticle scattering rate in radiation damaged YBCO [277]
have shown that at high defect densities quantum phase fluctuations become dom-
inant and have the effect of strongly reducing Tc. In this case the strong depen-
dence of Tc on defect density arises from the very small coherence lengths ξ in the
cuprates, which prevent the Cooper pairs from uniformly averaging over the disorder
and thereby making them highly susceptible to rapid variations in the local potential.
At low and moderate defect densities, on the other hand, the width of the supercon-
ducting transition is described by the Abrikosov-Gorkov pair-breaking model, where
the critical temperature and width of the transition scale linearly with small amounts
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Figure 4.3 The FWHM of the peak in the imaginary part of MI(T ), measured at 1 kHz
and drive current of 50 µA (inset), as a function of the dc resistivity %dc = 1/σdc. The
nearly linear dependence of ∆Tc vs. %dc suggests moderate disorder in our films, well below
the highly damaged regime characterized by critical scattering where Tc is considered in
Ref. [277] to be determined by quantum phase fluctuations of the order parameter.

of pair breaking. To investigate the effects of disorder and film thickness on the su-
perconducting transition in our samples we examine the normal state scattering rate
and dc transport properties extracted from visible-to-UV spectroscopic ellipsometry
and terahertz conductivity measurements. For the thinnest samples, the screened
plasma frequency (red arrow) and ε∞ (red dashed line) obtained from the ε1 data
in Fig. 4.2(b) give the unscreened ωpl = 1.27(1.37) ± 0.03 eV for OP7uc (OP10uc),
which corresponds to a quasiparticle scattering rate γ = 60(50)± 3 meV. Taking the
Fermi velocity as 2.5× 107 cm/s [278], this allows us to estimate the mean free path
` = 28(34) ± 2 Å at Tc for OP7uc (OP10uc), which is significantly larger than the
in-plane coherence length ξab = 13 Å [279]. This result implies the effect of disorder is
not dominant and that Tc inhomogeneity in the film has a larger effect than scattering
or pair breaking on the width of the transition ∆Tc.

Accordingly, we consider the relationship between the width ∆Tc of the transition
as defined by the FWHM of the peak in the imaginary part of the mutual induc-
tance and the dc resistivity %dc at Tc, extrapolated at zero frequency from terahertz
conductivity measurements, which is proportional to the disorder level. Fig. 4.3 re-
ports the observed dependence of the superconducting transition width on %dc(Tc).
It is apparent that in these near optimally doped films, upon reducing the thickness
from 60 u.c. to 7 u.c. the transition width ∆Tc increases by only ∼1.5 K, from 0.5 K
to 2.0 K. At the same time the transition temperatures of the films are more than
an order of magnitude larger than ∆Tc and range from Tc ≈ 72–90 K. Especially
notable is the difference in ∆Tc of just 0.6 K between OP10uc and OP7uc, despite
a difference in Tc of ∼13 K. Furthermore, the linear dependence of ∆Tc on %dc(Tc)
is in accordance with the presence of moderate disorder in our films that lies well
below the highly disordered regime where Tc becomes dominated by quantum phase
fluctuations of the order parameter [277]. Taken together, this behavior indicates
that factors aside from either Tc inhomogeneity or disorder are primarily responsible
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for differences in the superconducting properties between the various DyBCO films.
Despite the presence of mild Tc inhomogeneity the superconducting state in the films
remains predominantly homogeneous.

The XRD, spectroscopic ellipsometry, mutual inductance, and extrapolated dc
transport data presented in this section demonstrate that the MBE-grown DyBCO
films used in this study are indeed of high quality with reduced extrinsic disorder and
relatively uniform doping and superconductivity. While the presence of the substrate
interface ensures that some degree of disorder is inescapable, it is possible to proceed
with investigations of these films with the understanding that the disorder and doping
variations do not have dominant effects on the superconducting properties of interest
here. Figs. 4.1 and 4.2 provide evidence that the near optimally doped films retain
their doping level and CuO chains down to thicknesses of 7 u.c. while simultaneously
accommodating the epitaxial strain of the underlying LSAT substrate, but the effect
of the unrelaxed strain in the thinnest samples is not yet clear. This strain issue will
be directly addressed later in this chapter in Section 4.6, where it will be discussed
in terms of the formation of a ∼4 u.c. non-superconducting layer in contact with
the substrate interface. We will argue that the epitaxial strain fully relaxes across
this ∼4 u.c. layer and that the unit cells lying above are relaxed and retain their
superconducting properties.

4.2 Terahertz Conductivity of DyBa2Cu3O7–δ

Thin Films

As discussed extensively in Chapter 2, previous studies of the superfluid density
and BKT transition in ultrathin YBCO films have primarily focused on results ob-
tained from inductance measurements carried out at single frequencies. Gasparov
et al. [181] probed the kinetic impedance of superconducting 1–3 u.c. thick YBCO
films sandwiched between non-superconducting (Pr,Y)BCO buffer layers at frequen-
cies (megahertz to gigahertz) close to the vortex-antivortex resonance frequency
ω ∼ 14D(T )/ξ2

+(T ) and claimed that their results were in agreement with the AHNS
dynamical BKT theory with vortex-antivortex pinning. The authors reported a fre-
quency dependent critical temperature near the resonance condition in the films stud-
ied, whose doping levels were not specified but whose dc T ωBKT values were as high as
56 K, and found a temperature dependent vortex diffusion constant D(T ) that was
strongly exponential in T . However, strong pinning of vortices by defects obscures
the vortex-antivortex interaction. While the films in Gasparov et al. were reported to
have a single domain, the effects of twinning or the presence of interfacial magnetic
Pr ions, oxygen vacancies, inhomogeneity, and other defects greatly complicate the
analysis and create ambiguity around the interpretation of the experimental results.
As was shown in the previous section, the films studied in this thesis are in the mod-
erate disorder regime far below the disorder level where quantum critical fluctuations
become important. Nevertheless, to obtain the true value of the superfluid density it
is necessary to treat the full superconducting response rather than an indirect value
such as the inverse of the kinetic inductance.

Another important issue that must be addressed in order to properly treat the
suppression of the mean field transition temperature due to 2D fluctuations is to com-
pare the full temperature dependence of the superfluid density with the “universal”
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dependence that occurs in the absence of 2D fluctuations. In Gasparov et al. [181]
this suppression of Tc was estimated by comparing the extracted ρs(T ) to a mean
field dependence ρMF

s ∝ T 2. However, in the cuprates ρs(T ) does not follow a T 2

temperature dependence; in the clean limit ρs(T ) is linear as T → 0 and in the pres-
ence of moderate disorder ρs(T ) ∝ T 2 only at low temperatures [19, 280]. Instead,
the full temperature dependence of ρs(T ) is defined by a combination of defect scat-
tering, doping level, and topology of the Fermi surface [281]. To obtain the proper
“universal” temperature dependence of ρs(T ) we adopt a different experimental ap-
proach based on systematic and accurate measurements of the full superconducting
response under thickness, strain, and doping control. Specifically, we obtain the full
complex conductivity response in the frequency range 0.1 meV < ~ω < 1.1 eV using
amplitude- and phase-sensitive techniques, which allows us to simultaneously track
the complete evolution of both the superconducting state and the conductivity spec-
tral weight. From these measurements the model independent superfluid density and
penetration depth are obtained.

The measured complex conductivity in the terahertz and far-IR spectral range,
obtained from submillimeter quasioptical interferometry, TTDS, and spectroscopic
ellipsometry, is shown in Fig. 4.4 for two representative near optimally doped 60 u.c.
and 20 u.c. thick DyBCO films. As can be seen from σ1(ω, T ), below Tc (thick black
lines) a large amount of conductivity spectral weight is observed to shift from frequen-
cies below 27–28 THz in both samples. This spectral weight shift is accompanied by a
dramatic upturn in σ2(ω, T ) below Tc that is proportional to 1/ω, which is indicative
of the accumulation of spectral weight into a δ-function in σ1(ω) at ω = 0 (and the
formation of the superconducting condensate). Despite this, a significant amount of
residual spectral weight remains below the optical gap at the lowest measured tem-
peratures (T = 5 K). At frequencies far below the optical gap (ω � 27–28 THz)
the response is therefore determined by the superconducting contribution to σ2 and
the residual normal carrier contribution to σ1. At the lowest measured frequencies
(ω < 0.3 THz) σ2 is an order of magnitude greater than σ1 at T = 5 K. Since the
lowest measured frequency is two orders of magnitude smaller than the optical gap
it is expected that the behavior of σ2 will dominate the low frequency conductivity
response up to just a few K below Tc.

Below a frequency of ω ∼ 1–2 THz a strongly temperature dependent peak in σ1

is observed in Fig. 4.4(a, c) just below Tc. This peak, present in all measured samples
both optimally doped and underdoped, is more easily apparent in the plot of σ1(T ) at
ω = 280 GHz shown in Fig. 4.5(a). Here, the different widths and magnitudes of the
peaks corresponding to different films reflect the differences in growth conditions, dc
resistivities, and disorder details from one sample to the next. Each peak in σ1(T ) is
associated with the onset of σ2(T ) (Meissner screening) at Tc, as seen in Fig. 4.5(b),
in a manner that is reminiscent of the “coherence peak” observed in conventional
BCS superconductors. In BCS superconductors, Tc is much less than the Debye
temperature so in disordered samples scattering from defects dominates over phonon
effects and the scattering rate γ (or 1/τ where τ is the quasiparticle Drude lifetime)
is temperature independent below Tc. The conductivity is therefore dominated by
coherence factors that arise from temperature dependent constructive interference
between the wavefunctions of the occupied quasiparticle states [8]. A peak occurs in
the low frequency conductivity σ1(T ) just below Tc due to the combination of the
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Figure 4.4 The real and imaginary parts of the complex conductivity for two representative
near optimally doped DyBCO films, as measured by quasioptical microwave interferometry,
TTDS, and nar-IR spectroscopic ellipsometry. (a, b) The conductivity spectra for a 60
uc thick DyBCO film. The shift of significant optical conductivity spectral weight below
ω/2π ∼ 27 THz is accompanied by an upturn in σ2(ω) proportional to 1/ω, marking the
emergence of the superconducting condensate below Tc. (c, d) The conductivity spectra
measured for a 20 uc thick DyBCO film. The asterisks in (c) mark the positions of residual
LSAT substrate phonons.

type II coherence factor,

F (∆, E, E + ~ω) =
1

2

(
1 +

∆2

E(E + ~ω)

)
,

and the superconducting density of states,

Ns(E) = Nn(E) Re
|E|√

E2 −∆2
.

Ns(E) diverges as E → ∆ from above, so as the temperature is reduced below Tc
and the superconducting gap opens a peak in σ1(T ) appears for sufficiently low probe
frequencies. This conductivity peak is accompanied by the Hebel-Slichter peak in the
nuclear-spin-lattice relaxation rate 1/T1, as observed by NMR measurements, which
tracks the relaxation of the nuclear spins in the lattice due to interaction with the
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Figure 4.5 The temperature dependence of the real (a) and imaginary (b) parts of the
complex conductivity, σ̃ = σ1 + iσ2, measured at 280 GHz for all samples studied. The
arrows indicate the values of Tc. The σ1 peak observed in all samples below Tc arises due
to the sudden reduction of the quasiparticle scattering rate γ below Tc, and the sharpness
of this peak indicates sample homogeneity.

quasiparticles [282]. Like the conductivity peak, the Hebel-Slichter peak also occurs
just below Tc as a consequence of type II coherence factors.

In copper oxide high-Tc superconductors, on the other hand, the Hebel-Slichter
peak is not observed in NMR data [283], which implies that the conductivity peak
present in Figs. 4.4 and 4.5 cannot be due to coherence effects. In fact, the coher-
ence peaks in both NMR and conductivity measurements are expected to be com-
pletely suppressed in superconductors with the presence of strong coupling [284].
Several studies [285–287] have instead reported evidence that the cuprates display
a sharp temperature dependent drop in the quasiparticle scattering rate γ below Tc
as a universal feature. When the conductivity peak is analyzed at low frequencies
in the two-fluid model the temperature dependent scattering rate implies that the
conductivity peak occurs as the result of competition between a decreasing γ (or
increasing quasiparticle τ) and decreasing normal carrier density ρn as temperature
is reduced below Tc [287, 288]. This is because at low frequencies the σ1 response
is dominated by the residual normal carrier conductivity σ1 ≈ ρne

2τ/m∗, while the
response of the superconducting carriers only dominates in σ2. The presence of the
“γ-conductivity peak” in the cuprates therefore suggests that the dominant scatter-
ing mechanism is electronic rather than phononic or from defects, because the strong
reduction of the scattering channel at Tc indicates that the quasiparticles are cou-
pled to an excitation spectrum that is modified in the superconducting state. If
this is indeed the case, and the γ-conductivity peak can be properly described by
the two-fluid model at low frequencies, then the superfluid density and penetration
depth ρs(T ) = 1/λ2(T ) = limω→0 µ0ωσ2(T ) can be obtained directly from Fig. 4.5(b)
because ω is within the London limit.

In the next section we check the validity of the two-fluid model by performing a
Kramers-Kronig consistency and spectral weight analysis of the measured complex
conductivity data presented in Fig. 4.4. By ensuring that the two-fluid model holds it
is then possible to obtain the correct non-mean field ρs(T ) and universal temperature
dependence of the superfluid density in the DyBCO films.
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4.3 Optical Sum Rule and Penetration Depth

In the two-fluid model and FGT sum rule, defined by Eq. 2.27, the electrodynamic
response of a superconductor is separated into a normal charge, or quasiparticle,
component and a superconducting component. The total density of charges, ρs + ρn,
is considered to be constant at all temperatures; this assumption is a consequence of
the principle of conservation of charge. Below Tc electrons in the normal charge fluid
may bind together to form Cooper pairs and join the superconducting condensate, but,
as long as the material is isolated, total charge cannot enter or exit the system. Since
the superconducting charge density “resides” within a δ-function at ω = 0, which is
experimentally inaccessible in optical measurements, the superconducting response is
only directly detected in σ2(ω) in the form of a 1/ω dependence, as observed above
in Section 4.2. This behavior in σ2 is equivalent to ε1(ω) ∝ −1/ω2 in the dielectric
permittivity. The FGT sum rule therefore appears in the KK consistency analysis
equations (Eqs. 3.31 and 3.32) through the terms SW1 and SW2:

SW1 =

∫ 1.5 eV

0+

∆σextr
1 (ω)dω

∆εKK
1 (ω)− 1 = 38P

∫ ∞
0+

∆σextr
1 (Ω)

Ω2 − ω2
dΩ +

SW2

ω2

The loss of spectral weight SW1 below Tc in the frequency dependence of σ1(ω) is,
by itself, only an indirect probe of the superconducting state. If the FGT sum rule
holds and the sum rule integral is taken over the full range ω ∈ (0,∞) then SW1

can indeed be attributed to the formation of the superconducting condensate. In this
case SW1 = SW2 and the calculated ∆εKK

1 (ω) matches the experimentally measured
∆ε1(ω). However, in actual experiments the integration cannot be taken to infinity
due to the reasons outlined in Section 3.1.3. Instead, a high frequency cutoff is
used that is chosen to lie above the highest absorptions in the system, which are
typically related to intraband transitions. If high energy bands are involved in the
superconducting transition, on the other hand, then spectral weight may transfer to
energies above the cutoff frequency and it may appear that SW1 6= SW2. We therefore
seek to analyze the degree to which the FGT sum rule is satisfied in the cuprates
because this will allow us to accurately determine the full temperature dependence
of the superconducting condensate density.

The results presented in Fig. 4.6 illustrate the outcome of the KK consistency
analysis of the optical conductivity data shown in Fig. 4.4(a, b) for a near optimally
doped 60 u.c. thick DyBCO film with Tc = 90 K. Panels (a) and (b) of Fig. 4.6 show
the analysis at T = 7 K, deep in the superconducting state and close to the lowest
measured temperature, while panels (c) and (d) show the same analysis closer to Tc
at the intermediate temperature of T = 70 K. In both analyses the low temperature
conductivity data was compared to the conductivity at Tc by calculating ∆σ1(ω, T ) =
σ1(ω, T )− σ1(ω, Tc). By defining the difference conductivity in this way the negative
values of ∆σ1 in Fig. 4.6(a, c) represent spectral weight that has shifted out of the
measured spectral range, while the sharp positive upturn at low frequencies in (c)
represents the conductivity peak that occurs just below Tc. The KK consistency
analysis then proceeded in two steps. First, ∆σ1(ω, T ) was extrapolated to ω → 0
with Drude functions designed to match the low frequency (ω < 2 THz) data, and to
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Figure 4.6 The Kramers-Kronig consistency analysis of the 60 u.c. thick DyBCO film
below Tc at 7 K (a, b) and 70 K (c, d). In all panels the black curves correspond to the ex-
perimentally measured data. In (a, c) the red curves correspond to the extrapolated values
∆σextr

1 (ω, T ), while in (b, d) the red curves represent the calculated Kramers-Kronig trans-
formation of the extrapolated conductivity difference spectra by Eq. 3.32. At both 7 K and
70 K the calculated Kramers-Kronig values ∆εKK

1 (ω, T ) match the experimentally obtained
values ∆ε1(ω, T ), indicating that the two-fluid model and FGT sum rule remain valid at
the lowest and intermediate temperatures. The positive ∆σ1(ω, T ) at low frequencies in (c)
corresponds to the γ-conductivity peak in Fig. 4.5(a)

ω →∞ with ∆σ1 = 0 because the difference conductivity values are indistinguishable
from zero above 1 eV. The spectral weight shift SW1 at each temperature was then
calculated by integrating the resulting ∆σextr

1 (ω, T ) to a frequency cutoff of ~ω =
1.5 eV, which is significantly higher than the bandwidth of the energy band that
crosses the Fermi level but below the energy of interband transitions. Second, the
mathematical KK transform ∆εKK

1 (ω, T ) was calculated from ∆σextr
1 (ω, T ) using the

value of SW1 in place of SW2 and compared to the measured data ∆ε1(ω, T ) =
ε1(ω, T ) − ε1(ω, Tc). The resulting transforms, shown in Fig. 4.6(b, d) as red lines,
were found to agree with the measured data for SW1 = SW2 at both T = 7 K
and T = 70 K. An equivalent KK consistency analysis at T = 7 K and T = 60
K is presented in Fig. 4.7 for a near optimally doped 20 u.c. thick DyBCO film
with Tc = 82 K. The results are both qualitatively and quantitatively similar to the
near optimally doped 60 u.c. sample. Near the lowest measured temperatures ∆σ1 is
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Figure 4.7 The Kramers-Kronig consistency analysis of the 20 u.c. thick DyBCO film
below Tc at 7 K (a, b) and 60 K (c, d). (d) Like in the 60 u.c. thick film, the calculated
Kramers-Kronig values ∆εKK

1 (ω, T ) match the experimentally obtained values ∆ε1(ω, T ) at
both 7 K and 60 K, indicating that the two-fluid model and FGT sum rule remain valid at
the lowest and intermediate temperatures.

entirely negative, indicating that spectral weight has only shifted out from frequencies
below the optical gap, while a sharp positive upturn at low frequencies just below Tc
corresponds to an accumulation of quasiparticle spectral weight due to the previously
discussed conductivity peak. For both T = 7 K and T = 60 K, as in the case of the
60 u.c. thick sample, the calculated ∆εKK

1 (ω, T ) was found to match the measured
∆ε1(ω, T ) for SW1 = SW2.

To quantify the degree of agreement between SW1 and SW2 we perform a reanal-
ysis of the KK consistency check by manually unbalancing the spectral weight and
recalculating ∆εKK

1 (ω, T ). An example of this reanalysis is shown in Fig. 4.8 for the
near optimally doped 60 u.c. thick film at T = 7 K. Here, as a guide, we make use
of the experimental uncertainty of the submillimeter Mach-Zehnder interferometer of
±2% below 1 THz. Our experimental error in this spectral range is actually even
lower than 2% because the procedure by which we extract the optical constants, i.e.,
by combining submillimeter interferometry with TTDS and far-IR spectroscopic el-
lipsometry, is well controlled and the data combination procedure further bounds the
extracted values of ε1(ω). By calculating ∆εKK

1 (ω, T ) for SW1 = SW2±2% (blue dash-
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Figure 4.8 To illustrate the accuracy of the data analysis procedure and extraction of
ρs(T ), the Kramers-Kronig transformation ∆εKK

1 (ω) of the difference conductivity spectra
for sample OP60ucA at 7 K was calculated by unbalancing the integrated spectral weight
SW1 in Eq. 3.31 and superfluid density SW2 in Eq. 3.32 by +2% (lower blue curve) and
−2% (upper blue curve). The experimentally measured ∆ε1(ω) falls neatly within these
bounds, showing that the two-fluid model and FGT sum rule is satisfied to within |SW1 −
SW2|/SW (7 K) = 0.2%.

dotted curves in Fig. 4.8) we see that the calculated KK transform with SW1 = SW2

(red curve) matches the experimental data to much better than 2%. In fact, if we
quantify the actual experimental error as |SW1−SW2|/SW0 in order to compare the
uncertainty to the total spectral weight in the superconducting state (where SW0 is
the total spectral weight at 7 K, not the difference spectral weight), then we find that
|SW1 − SW2|/SW0 = 0.2%. We therefore conclude that the KK consistency analysis
is only limited by the experimental error of the spectra combination procedure and
that the total spectral weight at Tc is equivalent to the total spectral weight in the
superconducting state to within 0.2%.

It is important to note that the KK consistency analysis results are the same for
the near optimally doped 20 u.c. and 60 u.c. thick DyBCO films despite the differences
in their disorder levels and dc normal-state resistivities (see Fig. 4.3). Additionally,
it was found that the agreement between ∆εKK

1 (ω, T ) and the measured ∆ε1(ω, T )
was not affected by the shape of the conductivity extrapolation at low frequencies;
different extrapolation forms were tried (Drude, linear, and square) but only the total
spectral weight at low frequencies appreciably affects the calculation of ∆εKK

1 (ω, T ).
This analysis shows that changes in σ2(ω) are quantitatively consistent with the
opening of the superconducting gap in σ1(ω) and its spectral weight transfer into
the δ-function at ω = 0. The consistency of the measured conductivity data up to
near-IR frequencies (∼1.5 eV) implies that the FGT sum rule and two-fluid model are
obeyed in DyBCO to within 0.2% error. Our finding confirms that the conductivity
peak observed just below Tc and at frequencies below ω ∼ 1–2 THz is indeed due to
the competition between increasing quasiparticle lifetime τ(T ) and decreasing ρn(T )
as temperature is decreased, rather than BCS-like coherence effects [287, 289, 290].
As a result, our low frequency measurements of the complex conductivity give direct
access to the true superfluid density ρs(T ).
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A further consequence of our analysis is that our results agree with the findings
of Boris et al. [16] that superconductivity in the cuprates cannot be due to a kinetic
energy saving mechanism, as has been proposed for certain theories of high-Tc su-
perconductivity [12, 13], and that the interband transitions do not contribute to any
transfer of spectral weight in the superconducting state. This is because we find that
the total spectral weight shift below Tc is conserved when integrating ∆σ1 up to 1.5
eV, which lies below the interband transition energy. To see that this rules out any
kinetic energy saving mechanism we recall what kind of scenario could lead to such
a mechanism where the kinetic energy changes between the normal and supercon-
ducting states. For a simple noninteracting single band tight-binding model, with
∇2
kεk ∼ −εk, the “band sum rule” [13,291] is given by

SW =

∫ ωcutoff

0

σ1(ω)dω =
πe2

2N

∑
k

∇2
kεknk =

πe2a2

2~2Vu
〈−K〉, (4.1)

where nk is the electronic distribution function, a is the in-plane lattice constant,
Vu is the unit cell volume, and 〈−K〉 is the (negative) kinetic energy. For a nearly
full band, hopping between neighbors leads to optical transitions that lie above the
intraband energies. Considering just the nearest-neighbor interactions, the FGT sum
rule in this case becomes∫ ∞

0

∆σ1(ω)dω =

∫ ωcutoff

0

∆σintraband
1 (ω)dω +

πe2a2

2~2Vu
∆〈K〉. (4.2)

If the intraband spectral weight decreases in the superconducting state, as it does in
BCS superconductors, then this simple model would imply that the kinetic energy
can increase and superconductivity must be related to a reduction of the potential
energy. On the other hand, if the intraband spectral weight increases, then the
superconductivity must be due to a kinetic energy saving mechanism. This latter
possibility could arise from the situation where fermions become more mobile in the
superconducting state as a result of smaller self-energy, which can occur for strong
coupling [17]. However, in our analysis we observe that the full spectral weight in the
superconducting δ-function is completely accounted for by the change in the intra-
band spectral weight, which is inconsistent with pictures wherein superconductivity
is driven by mechanisms based on the decrease of kinetic energy.

For T > Tc, on the other hand, different behavior of the spectral weight shift may
be observed. The spectral weight included in the band sum rule in Eq. 4.1 is tempera-
ture dependent because the electronic distribution function nk is temperature depen-
dent. Over a broad temperature range the total intraband spectral weight changes
due to the smearing of the Fermi occupation function with increasing temperature.
This change can be analyzed by using the Sommerfeld expansion to approximate the
temperature dependence of nk. Carrying the expansion to first order for a flat density
of states gives

SW (T ) = SW (0)−BT 2 (4.3)

where the coefficient B = π2/12D andD is the half-bandwidth (related to the hopping
t in the tight-binding model as D = 4t). The total intraband spectral weight is
therefore expected to increase with decreasing temperature as the smearing of the
Fermi function decreases and less of its tail lies at high energies corresponding to
interband transitions. Indeed, for several families of underdoped, optimally doped,
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and overdoped LSCO and BSCCO a total increase of the intraband spectral weight of
∆SW/SW0 = [SW (7 K)− SW (300 K)]/SW (7 K) ≈ 3–5 % has been observed when
the integral in Eq. 4.1 is taken up to ωcutoff ≈ ωp ≈ 1 eV [292]. However, this change
of intraband spectral weight is quite large compared to that seen in conventional
metals such as gold, and calculations based on noninteracting nearest-neighbor tight-
binding and flat band models produce values of ∆SW/SW0 that are much too small
to reconcile with cuprate experimental data. Furthermore, the values of SW0 and
B extracted from the temperature dependence of the spectral weight in LSCO and
BSCCO lead to different values of t, with t extracted from SW0 being one order
of magnitude larger than t extracted from B, which points to the presence of two
different energy scales and the importance of strong correlations. Dynamical mean-
field theory calculations taking into account strong correlation effects by including the
Hubbard on-site repulsion U in the tight-binding model have reconciled the difference
between theory and experiment and shown that the presence of strong correlations
leads to the large temperature dependence of ∆SW/SW0 (i.e., the large value of B)
in the cuprates [293].

To analyze the behavior of the spectral weight transfer above Tc in the DyBCO
films, we have performed a KK consistency analysis on the 60 u.c. thick and 20 u.c.
thick near optimally doped samples for difference spectra ∆σ1(ω, T ) and ∆ε1(ω, T )
between Tc and 200 K. The results of this analysis are summarized in Fig. 4.9. For
the 60 u.c. thick sample we find that the value of the integrated difference spectral
weight ∆SW =

∫
[σ1(ω, 90 K) − σ1(ω, 200 K)]dω is positive and the KK transform

matches the experimentally measured ∆ε1, as shown in panels (a) and (b). We
find the value of SW0 by integrating the total spectral weight at 90 K, SW0 =∫
σ1(ω, 90 K)dω, up to ωcutoff = 1.5 eV, which leads to a relative spectral weight shift

above Tc of ∆SW/SW0 = 1.9%. Similarly, for the 20 u.c. thick sample we find that the
integrated difference spectral weight above Tc is also positive with ∆SW/SW0 = 2.2%,
as shown in panels (c) and (d). For comparison, the values of ∆SW/SW0 for crystals
of several different cuprate families, including LSCO, BSCCO, and YBCO, are shown
in Fig. 4.10 as a function of hole doping level p. Our results for the near optimally
doped DyBCO films are in agreement with these prior reported results. In particular,
the values of ∆SW/SW0 for the DyBCO films (red and blue stars) agree very well with
values obtained for YBCO and BSCCO single crystals measured between 100 K and
200 K (green diamond and octagon). These four data points lie somewhat below other
values for LSCO, BSCCO, and dynamical mean-field theory calculations, because the
latter values were obtained by comparing the spectral weight at the lowest measured
temperatures to the spectral weight at 300 K rather than 200 K. These results imply
that the intraband spectral weight in the DyBCO thin films indeed increases with
decreasing temperature above Tc, but that once the superconducting state is entered
below Tc the total spectral weight remains constant, with any changes in the intraband
spectral weight compensated by the appearance of the superconducting δ-function.

The change in the kinetic energy above Tc is therefore unrelated to the FGT sum
rule, as any changes in 〈K〉 are due to the smearing of the Fermi occupation func-
tion around the Fermi level with temperature rather than a redistribution of spectral
weight. Below Tc the opening of the superconducting gap on the Fermi surface causes
the total spectral weight to remain constant in the superconducting state and the
FGT sum rule is governed only by changes of the intraband (Drude) spectral weight,
ruling out any kinetic energy saving mechanism in the cuprates. This means that
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Figure 4.9 The Kramers-Kronig consistency analysis above Tc for the near optimally doped
60 u.c. thick (a, b) and 20 u.c. thick (c, d) DyBCO films, where ∆σ1(ω) = σ1(ω, Tc) −
σ1(ω, 200 K). For both films the integrated difference spectral weight ∆SW =

∫
∆σ1(ω)dω

is positive, implying that the intraband spectral weight increases as temperature decreases
from 200 K to Tc. Based on the values of the total spectral weight SW0 at Tc it is found
that ∆SW/SW0 = 1.9% for OP60ucA and ∆SW/SW0 = 2.2% for OP20uc.

high energy interband excitations are not involved in the opening of the supercon-
ducting optical gap; spectral weight may be rearranged at high energies but does
not become redistributed to low energies with the opening of ∆. However, while the
total spectral weight of the superconducting state remains constant at T < Tc, the
intraband spectral weight of the normal state continues to increase below Tc because
of the T 2 dependence of SW (T ) in Eq. 4.3. By extrapolating the measured SW (T )
from above Tc to T = 0 using Eq. 4.3 it is possible to determine the expected nor-
mal state spectral weight, SWn(T ), that would be found below Tc in the absence
of a transition. We find that the relative change of the intraband spectral weight
between superconducting and normal states at the lowest measured temperature is
[SWs(7 K) − SWn(7 K)]/SWn(7 K) ≈ −0.5% for both the near optimally doped
20 u.c. and 60 u.c. thick DyBCO films. This result confirms that the superconduct-
ing state in the cuprates is related to a slight reduction of the intraband spectral
weight (or slight increase in 〈K〉) compared to the normal state at the same tem-
perature. The result is consistent with collective boson models of superconductivity
where fermions interact with collective spin fluctuations [16, 17]. In such models the
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Figure 4.10 The measured values of ∆SW/SW0 for the near optimally doped 60 and
20 u.c. thick DyBCO films (red and blue stars, respectively) are compared to values for
LSCO, BSCCO, and YBCO single crystals as well as single-site and cluster dynamical
mean-field theory calculations as a function of hole doping p [293,294]. The data points for
the DyBCO films and the optimally doped YBCO and BSCCO crystals measured by Boris
et al. lie at roughly half the value of the other data points because for these four samples
∆SW = SW (Tc)− SW (200 K). For all other data points the change in intraband spectral
weight is defined as ∆SW = SW (0) − SW (300 K), a temperature range that is twice as
large above Tc. The behavior of the intraband spectral weight shift above Tc in the DyBCO
films is therefore consistent with the behavior observed in the other cuprate families.

continuum of collective excitations becomes gapped in the superconducting state,
causing a reduction of fermionic damping and a decrease in fermion self-energy, but
the fixing of the intraband spectral weight due to the opening of the superconducting
gap overcompensates and gives rise to the negative value of SWs(0)−SWn(0). In this
picture the nearest-neighbor-only, single band tight-binding description contained in
Eqs. 4.1 and 4.2 becomes inadequate, and spectral weight transfer between higher
lying Hubbard bands must be considered.

The sum rule and spectral weight analysis we have presented here also allows us to
avoid the issues related to measurement of the superfluid density at single frequencies,
as are present in studies of the penetration depth by mutual inductance methods in
the megahertz to gigahertz spectral range. Measurements of the kinetic inductance
are highly susceptible to the details of disorder and vortex pinning. In particular,
the vortex-antivortex interactions are dependent upon the vortex diffusion length
`ω =

√
14D/ω, so that the response at ω is dominated by vortex-antivortex pairs

that have separation r ∼ `ω. In the clean limit or where disorder is not significant,
`ω is equivalent to the vortex coherence length ξ+ and measurement at ω in effect
probes the temperature dependence of this parameter. Taking the Bardeen-Stephen
expression for the diffusion constant of free vortices [111], D = 2e2ξGLkBT/π~2σndc
(where σndc is the normal state dc conductivity), we find that for frequencies in the
range 10 MHz to 10 GHz the vortex diffusion length is approximately 30 nm < `ω <
1 µm. This length scale and dependence on σndc suggests that defect-induced disorder
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(vacancies, stacking faults, impurity compounds, twin boundaries, domain walls, etc.)
will dramatically affect `ω. Indeed, at strong vortex pinning, D can acquire exponen-
tial dependence on temperature with a large pinning energy that obscures the true
temperature dependence of the vortex-antivortex interactions [181]. By measuring
the full spectral weight evolution across a very broad range of frequencies we in-
stead probe the global superfluid response in our samples independently of the vortex
diffusion dynamics.

4.4 Superfluid Density and BKT Transition in

DyBa2Cu3O7–δ

Having carefully investigated and controlled for disorder, strain, and spectral weight
transfer in our DyBCO films, we now turn to the details of the evolution of the
superfluid density ρs with temperature and sample thickness. In Section 4.3 we
established the KK consistency of the measured σ1(ω) and σ2(ω) along with the
validity of the FGT sum rule in DyBCO. We are therefore able to obtain the true
temperature dependence of the penetration depth from λ−2(T ) = limω→0 µ0ωσ2(ω, T ),
because the fact that our lowest measured frequencies (ω < 0.3 THz) lie in the London
limit, where σ2 ∝ ω−1, means that σ2 provides a very close estimate of the superfluid
response. Following Section 4.3, we accurately extract the in-plane superfluid density
ρs(T ) by fitting the complex conductivity spectra with the two-fluid model,

σ̃(ω, T ) =
iρn(T )

ω + i/τ
+
iρs(T )

ω
,

with ρn + ρs remaining constant.
The evolution of ρs(T ) with temperature for near optimally doped DyBCO films

with thicknesses ranging from 10 u.c. to 60 u.c. are shown in Fig. 4.11(a). To facilitate
comparison between samples we plot the normalized superfluid density, ρs(T )/ρs0,
where ρs0 is the superfluid density at T = 0. The first striking feature we find
is that ρs(T )/ρs0 is identical for all samples, regardless of film thickness, impurity
details, strain, or normal state dc resistivity. This result implies that our observed
ρs(T )/ρs0 is the universal superfluid density temperature dependence for the DyBCO
thin films. Such an effect is initially surprising because one would expect that the
different details of disorder and strain relaxation will lead to different pair breaking
behavior and, as a result, different curvature of the various data sets. Instead, the
fact that the superfluid density evolution is the same for all samples is a testament to
the high quality of our MBE-grown films and an additional indication that disorder
effects are not dominant. The lack of dependence of ρs(T )/ρs0 on strain relaxation
is also notable because our previously discussed XRD measurements (see Fig. 4.1)
imply that the structure of the near optimally doped films smoothly evolves from
completely orthorhombic at 60 u.c. thickness to almost fully tetragonal at 10 u.c.
This may suggest that the shape of ρs(T )/ρs0 is more related to the presence of CuO
chains than the orthorhombicity of the unit cell.

The universality of ρs(T )/ρs0 further implies that the limiting behavior and func-
tional form of the temperature dependence are related to intrinsic details of the
superconducting state. Also shown in Fig. 4.11(a) is ρs(T )/ρs0 for an ultraclean,
detwinned single crystal of near optimally doped YBCO averaged over the a and b
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Figure 4.11 (a) The temperature dependence of the normalized superfluid density for
five near optimally doped DyBCO films with thicknesses 10–60 u.c. The solid gray line
shows ρs(T )/ρs0 averaged over a and b crystallographic directions for pure YBa2Cu3O6.99

single crystals [280]. Agreement between the single crystal curve and the experimental data
implies that the films share 3D-XY critical behavior near Tc. (b) The normalized superfluid
density for an annealed underdoped 20 u.c. DyBCO film (red open circles) compared with
a near optimally doped 20 u.c. film (blue dots). ρs(T )/ρs0 for the underdoped film agrees
well with calculations for a dirty d-wave superconductor with a circular Fermi surface [281]
(black dotted line), but is significantly different than the temperature dependence for the
near optimally doped film.

crystallographic directions [280]. Close to Tc our data for each of the near optimally
doped DyBCO films is consistent with the temperature dependence for the YBCO
single crystal, with all curves displaying the same critical behavior. This constitutes
evidence that the DyBCO films 10 u.c. and thicker belong to the 3D-XY universality
class over a broad temperature range down to T ∼ 0.8Tc [19]. As such, our results
agree with prior work [182] that indicates the superconducting state in RBCO re-
mains three-dimensional down to thicknesses even less than 20 u.c. Below T ∼ 0.8Tc
our data deviate from that of the single crystal. Linear dependence of ρs(T ) as T → 0
is a key piece of evidence for nodes in the energy gap in high-Tc superconductors [295]
because the normal charge carrier density reduces to ρn ∝ kBT/∆max for all singlet
pairing states other than s-wave when the Fermi surface is cylindrical. While such
linear dependence of ρs(T ) is clearly observed in the intrinsic single crystal YBCO
data, ρs(T ) for the DyBCO films instead displays a characteristic T 2 dependence at
low temperatures. It is well known that nodal pair breaking by strong scattering from
unitarity-limit impurities, which include defects residing within the CuO2 planes, can
rapidly induce a crossover to T 2 behavior in ρs(T ) as T → 0, with accompanying
suppression of superfluid density [281,296]. On the other hand, the lack of significant
reduction of Tc in our 60 u.c. thick films (Tc = 90 K) implies that the concentration of
strong scatterers must be small. The observation of ρs(T ) ∝ T 2 at low temperatures
in our DyBCO films, independent of thickness, is therefore in agreement with our
assignment that the films are within the moderate disorder regime.

To draw a comparison to the effects of underdoping, we plot ρs(T )/ρs0 for both
a near optimally doped 20 u.c. thick film and an underdoped (annealed) 20 u.c.
thick film in Fig. 4.11(b). It is apparent that the temperature dependence for the
underdoped film is much more linear than our universal temperature dependence,
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which is represented by the data for the near optimally doped sample, especially
near Tc. To quantify this difference we use a phenomenological fit to the data,
ρs(T )/ρs0 = 1− (T/Tc)

α, and find that the scaling factor α decreases from α = 2.65
to α = 1.75 upon crossing over from near optimal doping to underdoping. This trend
is consistent with previous observations for highly underdoped YBCO [22], where
ρs(T ) follows a distinct linear T dependence over a broad temperature range up to
very close to Tc (see panel (b) in Fig. 2.12). The clear deviation from 3D-XY critical
behavior in such strongly underdoped samples was found to be due to quantum crit-
ical fluctuations that place the system into the (3 + 1)D-XY universality class upon
approaching the quantum critical point at p = pc [182]. These fluctuations reduce the
3D-XY critical region to an inaccessibly narrow range around Tc so that the critical
behavior crosses over from a ρs ∝ T 2/3 to ρs ∝ T dependence. Since the superfluid
density scales with Tc as ρs ∝ Tc on the underdoped side of the phase diagram,
this implies that changes in the critical behavior due to quantum critical fluctuations
must change the slope of the full temperature dependence of ρs(T ). Therefore, from
considering the behavior of ρs(T ) just below Tc, we find that one effect of deliber-
ate underdoping is to necessarily reduce the steepness with which ρs(T )/ρs0 drops to
zero. As a result, we find that underdoping in the cuprates has the opposite effect
on ρs(T )/ρs0 than what one expects to observe for the Nelson-Kosterlitz superfluid
jump at a BKT transition.

The temperature dependence of ρs(T )/ρs0 for the underdoped 20 u.c. thick Dy-
BCO film also bears striking resemblance to the results of recent calculations of the
superfluid density in a dirty d-wave superconductor of tetragonal symmetry with
cylindrical Fermi surface [281]. These calculations, based on a realistic model of the
Fermi surface of LSCO obtained from ARPES spectra, determined the changes to
ρs(T )/ρs0 due to the inclusion of both strong- and weak-limit scattering impurities.
While both types of scatterers reduce ρs(0) and Tc, only scattering in the strong (uni-
tarity) limit gives rise to a crossover to T 2 dependence in ρs(T ) at low temperatures;
weak (Born limit) scattering instead preserves the ρs(T ) ∝ T dependence as T → 0.
Furthermore, the details of the topology of the Fermi surface determine the exact
shape of the full temperature dependence of ρs(T )/ρs0. Examples of these calcula-
tions performed in the clean and dirty limits are plotted together with the DyBCO
experimental data in Fig. 4.11(b) as solid and dotted lines, respectively. The clean
limit calculation, which includes zero scattering by definition, represents the temper-
ature evolution of the superfluid density under the influence of only the Fermi surface
topology. On the other hand, the dirty limit calculation, with the unitarity-limit
scattering rate ΓN = 0.1Tc0, agrees particularly well with the measured data for the
underdoped 20 u.c. thick film. There, the disorder causes the clear crossover to T 2

behavior at low temperatures, whereas the particular choice of the Fermi surface de-
termines the critical behavior as T approaches Tc. The agreement between our data
and the calculations is also consistent with a change of the Fermi surface topology
from orthorhombic to tetragonal symmetry upon crossing over from near optimal
doping to underdoping. This change is not completely surprising because our XRD
measurements show that there is indeed a structural change to tetragonal symmetry
with underdoping. However, as we recall from our discussion above of Fig. 4.11(a),
the change of the unit cell shape from rectangular to square is not sufficient by itself
to produce a change in the temperature dependence of ρs(T )/ρs0, as the data for
the near optimally doped 10 u.c. film follows the universal dependence despite the
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unit cell being predominantly tetragonal. Rather, the role of the CuO chains is key,
as their presence will cause a change in the topology of the Fermi surface even for
a square lattice. Comparison of calculations to the entire temperature dependence
of ρs(T )/ρs0 for the near optimally doped films remains difficult because the details
of such Fermi surface distortions are not yet fully quantified. Further calculations
based on the realistic Fermi surface of near optimally doped DyBCO are required to
explain the temperature dependence of our universal behavior in Fig. 4.11(a). Very
recent reports of in situ ARPES measurements of similar MBE-grown DyBCO films
indicate that these calculations may be possible [297]. Nevertheless, we find that in
addition to the rise of quantum critical fluctuations on the underdoped side of the
phase diagram, the change of the Fermi surface topology is also an important factor
that can act to obscure 3D-XY critical behavior near Tc.

When the thickness of the DyBCO film is further reduced below 10 u.c. a very
different result is obtained than for underdoping. The temperature dependence of the
superfluid density ρs(T ) = λ−2(T ) for the near optimally doped 10 u.c. thick film is
compared with that for a near optimally doped 7 u.c. thick film in Fig. 4.12(a). The
striking result we find is that ρs(T ) for the 7 u.c. thick sample is much steeper as
T → Tc than the universal temperature dependence observed for all other optimally
doped samples, as indicated by the difference between the red squares and the black
dotted curve in the figure. When ρs(T ) for the 7 u.c. thick sample is compared with
the (scaled) superfluid density of the 10 u.c. thick film it becomes evident that the
two follow the same temperature dependence below T ≈ 50 K. Remarkably, however,
above 50 K the superfluid density temperature dependence of the two films deviates,
with the data for the 7 u.c. thick film falling rapidly to zero and showing a suppression
of Tc from the 10 u.c. value by approximately 13 K. This change is accompanied
by only a minor broadening of the Tc, from ∆Tc = 1.4 K at 10 u.c. thickness to
∆Tc = 2 K for 7 u.c. The fact that ∆Tc remains small compared to the ∼13 K Tc
suppression, and that the absolute Tc remains high (72 K for OP7uc), is evidence that
this behavior is not due to significantly increased disorder effects in the 7 u.c. thick
film compared to the 10 u.c. sample (that is, the superconducting transition remains
sharp). This kind of Tc reduction is expected as a consequence of enhanced 2D thermal
fluctuations, as opposed to increased quantum critical fluctuations. Whereas quantum
critical fluctuations cause a reduction of the slope in ρs(T ), thermal fluctuations in 2D
systems belonging to the 2D-XY universality class lead instead to a BKT transition
at a temperature TBKT < Tc that is characterized by the Nelson-Kosterlitz superfluid
jump. The magnitude of this jump is given by ρs(TBKT ) = 8πµ0kBTBKT/LΦ2

0, where
L is the thickness of the ultrathin film, so the temperature at which the jump occurs
can be estimated by finding where ρs(T ) intersects the line ρs(TBKT ).

Figure 4.12(a) compares the measured data for the two thinnest DyBCO films to
two such BKT lines, shown as the black (L = 10 u.c.) and red (L = 7 u.c.) solid lines.
For a 10 u.c. thick superconducting layer the predicted TBKT is expected to occur
very close to Tc. Accordingly, no superfluid density jump is evident in the measured
ρs(T ) data for the near optimally doped 10 u.c. thick DyBCO film, in keeping with
this sample displaying critical behavior belonging to the 3D-XY universality class
as discussed previously. On the other hand, the BKT transition for an L = 7 u.c.
thick film is predicted to occur at a significantly lower temperature that is consistent
with the temperature range in which ρs(T ) for our 7 u.c. sample exhibits a steeper
drop. However, instead of a distinct jump (i.e., a near-discontinuity) in ρs(T ) at TBKT ,
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Figure 4.12 Superfluid density jump in DyBCO. (a) The superfluid density for near
optimally doped 10 u.c. (black diamonds) and 7 u.c. (red squares) DyBCO films, with
ρs(T ) for the 10 u.c. film scaled by 0.345. The linear dashed red, solid red, and solid
black lines correspond to the expected BKT superfluid density for a 3, 7, and 10 u.c.
thick superconducting layer, respectively. The black dotted curve represents the universal
temperature dependence observed in Fig. 4.11(a). A superfluid jump is not observed in the
OP10uc data near the intersection with the 10 u.c. BKT line, which occurs very close to Tc.
On the other hand, the data for OP7uc deviates from that of OP10uc above T ≈ 50 K, near
the expected TBKT for a 3 u.c. thick layer, consistent with behavior expected for enhanced
thermal fluctuations in 2D. However, instead of a sharp jump, the drop of ρs(T → Tc)
is smeared out about the intersection point with the BKT line for a 7 u.c. thick layer.
This smearing behavior implies the existence of a moderate amount of Tc inhomogeneity
in the film. (b) Theoretical calculations [32, 128] incorporating the effects of disorder have
found that Tc inhomogeneity does indeed broaden the BKT jump near the expected average
TBKT , in very good agreement with our results for 7 u.c. thick DyBCO. Here, the measured
superfluid density of a 2 nm thick NbN film (black line) deviates from the expected BCS
response (red dashes) near Tc. A sample with a uniform superfluid stiffness energy J0 (blue
dashed-dotted line) would indeed be expected to produce a sharp jump at TBKT (dotted
black line). If Tc inhomogeneity is included such that the local superfluid stiffnesses Ji vary
according to a Gaussian distribution about the median value J0, then the BKT jump is
smeared out above the mean TBKT (indicated by the green dotted fit, which coincides with
the experimental data). The superfluid density deviates from the expected BCS curve below
TBKT due to the vortex core energy µ (with µ/µXY ≈ 0.35), as discussed in Chapter 2.
Panel (b) adapted from Ref. [128].
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Film ID L Tc σdc ρs0
(u.c./nm) (K) (mΩ−1cm−1) (µm−2)

OP60ucA 60/69.6 90 10.7 19.1
OP60ucB 60/69.6 84 9.7 15.6
OP40uc 40/46.4 90 10.0 16.0
OP20uc 20/23.3 82 16.4 19.9
OP10uc 10/11.7 85 5.1 7.67
OP7uc 7/8.3 72 3.6 2.65
UD20uc 20/23.6 52 1.7 1.33

Table 4.1 Nominal thicknesses L and values of Tc, zero-frequency limit of the real part
of the optical conductivity at Tc, σdc = σ1(ω → 0, Tc), and zero-temperature superfluid
density ρs0 ≡ 1/λ2 obtained from the data in Fig. 4.5.

the decrease in superfluid density is rounded or smeared around the intersection point
with the BKT line. This feature also cannot be due to strong disorder effects; we recall
that our visible-to-UV spectroscopic ellipsometry measurements and disorder analysis
imply that the electronic mean free path significantly exceeds the in-plane coherence
length, `/ξab > 1 (see the discussion around Fig. 4.3 in Section 4.1). The distribution
of Tc values has a more dominant effect on the width of the superconducting transition
than the distribution of defects and impurities.

Smearing or broadening of the superfluid density jump around TBKT due to
Tc inhomogeneity is consistent with recent theoretical calculations of Benfatto et
al. [32,128]. These calculations treat vortex unbinding in both conventional and high-
Tc superconducting thin films by mapping the BKT problem into the quantum 1D
sine-Gordon model, where the vortex core energy µ is an adjustable parameter. It is
found that the broadening of the superfluid density jump around TBKT is determined
by the width of a Gaussian distribution of Tc values that is uniformly distributed in
the sample (every point in the sample is described by the same Gaussian Tc distribu-
tion). Distribution widths of just ∆Tc/Tc ≈ 2–8% are sufficient to fit the measured
ρs(T ) data for both NbN and severely underdoped CaYBCO thin films. At the same
time, the temperature at which the BKT jump occurs is determined in the theoretical
model by the relative value of the vortex core energy compared to its value in the
pure 2D-XY model, µ/µXY . As µ/µXY decreases the BKT transition shifts to lower
temperatures than what is expected for the pure 2D-XY value of TBKT . To facilitate
comparison of the model with our DyBCO data we show the measured ρs(T ) for a
2 nm thick NbN film along with its theoretical fits in Fig. 4.12(b). It is apparent
that the superfluid density drop in the NbN film is broadened about the intersection
point of ρs(T ) with the BKT line to a very similar degree as is observed for our 7
u.c. thick DyBCO film. The data can be fit very accurately by including a small Tc
distribution of just ∆Tc/Tc ≈ 4%, as indicated by the coincidence of the solid black
and dotted green curves. In comparison, the observed width of the superconducting
transition in our near optimally doped 7 u.c. thick DyBCO film from mutual induc-
tance measurements is ∆Tc/Tc ≈ 3%. The fit of the NbN data also incorporates a
vortex core energy of µ/µXY ≈ 0.35, which explains the observation of the broadened
superfluid density jump at a lower temperature than the intersection point of the
BKT line with the usual BCS temperature dependence of ρs(T ) (red dashed curve).
Similar fits of ρs(T ) in severely underdoped 2 u.c. thick CaYBCO films imply that
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µ/µXY ∼ 2–3 is significantly larger in the cuprates than in BCS superconductors,
which indicates that the superfluid density jump should appear at a higher temper-
ature than TBKT expected from the 2D-XY model [32]. However, µ/µXY decreases
rapidly with increasing hole doping, as shown in Fig. 2.14(b), so it is possible that
near optimal doping µ/µXY < 1 in RBCO, consistent with our observation that the
superfluid jump in 7 u.c. thick DyBCO is at a lower temperature than where the red
BKT line intersects the black 10 u.c. data in Fig. 4.12(a). To obtain a more quanti-
tative understanding of the role of the Tc distribution and vortex core energy in near
optimally doped DyBCO it will be necessary to carry out a more detailed analysis of
our data of the kind that appears in Benfatto et al.

4.5 BKT Transition in a Transverse Applied

Magnetic Field

An important test of the presence of BKT physics in a quasi-2D system is to inves-
tigate the vortex unbinding behavior under the influence of generic perturbations in
addition to temperature, such as different interlayer coupling or an applied magnetic
field. These perturbations play the role of changing the effective dimensionality of
the system; reducing interlayer coupling isolates individual layers while an externally
applied magnetic field confines charge carriers to motion in planar orbits, thereby
rendering the system more 2D-like. Since the DyBCO films investigated in this work
are already in the ultrathin limit where only a few superconducting CuO2 planes are
present, we probe the effect of a magnetic field applied parallel to the c-axis on the
temperature dependence of the superfluid density in the thinnest samples.

As in the case of the field-free BKT transition discussed in Chapter 2, the simple
2D-XY model can be taken as a starting point to understand the expected magnetic
field dependence of vortex unbinding. The Hamiltonian of the 2D-XY model (Eq. 2.5)
is easily modified to take into account the interaction between vortex excitations in
the system and a transverse external magnetic field by incorporating a magnetic
frustration term Fij,

H = −J
∑
〈ij〉

cos (ϕi − ϕj − Fij). (4.4)

We recall from the discussion in Section 2.2.2 that the total phase difference must
be an integer multiple of 2π when the sum in Eq. 4.4 is taken over an arbitrary
closed loop containing any number of lattice sites 〈ij〉. As a result, the magnetic
frustration term can be defined by a sum over a single plaquette of lattice sites
(the smallest possible closed loop) such that for a square lattice Fij + Fjk + Fkl +
Fli = 2πHa2/Φ0, where H is the externally applied magnetic field and a is the
lattice dimension of the system. Monte Carlo simulations have indicated that the
stiffness modulus ρ of this system becomes suppressed as Ha2/Φ0 → 1/2 with an
accompanying decrease of TBKT [298]. Furthermore, the value of the Nelson-Kosterlitz
jump becomes nonuniversal, ρ/kBTBKT > 2m2/π~2, with increasing H. At a field
strength of Ha2/Φ0 = 1/2 it is evident that the problem of the 2D-XY model in a
transverse magnetic field is formally equivalent to the problem of the long-range Ising
antiferromagnet. The shift of the superfluid density jump can then be considered to
be due to Ising-like excitations of the vortices in the magnetic field. However, the
periodicity of the total phase and the discrete nature of the system implies that the
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degeneracy of the ground state changes discontinuously with continuous variation of
Fij, leading to a situation where TBKT is nonmonotonic with increasing H. Signatures
of the periodic dependence of the vortex unbinding transition on H have indeed
been observed in patterned arrays of Nb Josephson junctions, with a periodicity in
H equivalent to Φ0/a

2 [299]. In such micropatterned superconducting arrays the
nonmonotonic behavior with H is observable because for an array with characteristic
dimension a = 1 µm the periodicity is on the order Φ0/a

2 ≈ 20 Gauss. For a cuprate
thin film, on the other hand, the characteristic dimension is on the order of the
in-plane lattice parameters, leading to a periodicity in H at inaccessibly high fields
of Φ0/ab ≈ 14000 T. This simple analysis suggests that, contrary to what is seen
in patterned superconducting arrays, the magnetic field dependence in cuprate thin
films should remain monotonic and proportional to H at experimentally accessible
fields.

In the 2D Coulomb gas description of the BKT transition the population of free
vortices is described by the Poisson-Boltzmann equation (Eq. 2.10), which takes into
account the densities of vortices with right and left handed helicity, n+

f and n−f ,
respectively. When H = 0 the two densities are the same and the system is overall
neutral, so n+

f = n−f = nf/2 and the model is simplified to produce the results
discussed in Section 2.2.2. In the presence of an externally applied magnetic field,
on the other hand, n+

f 6= n−f and the 2D Coulomb gas carries an effective “charge.”
The magnetic field dependence of the vortex interactions is therefore determined by
performing a statistical analysis of the populations n+

f and n−f as a function of H.
This procedure leads to the result [134]

ρs(B, T )

ρs(0, T )
=

(
1 +

14c

εeffω0

1

Φ0κσndc

T 0
c − T
T 0
c

B

)−1

(4.5)

just below Tc, where εeff is the 2D Coulomb gas effective dielectric constant, ω0 is
the frequency of the probing electromagnetic field, T 0

c is the GL mean-field transition
temperature, Φ0 = h/2e is the flux quantum, and κ = λ/ξGL is the GL parameter at
T = 0. Here, the superfluid density ρs(B, T ) is given in terms of the flux density B
rather than the field H because the vortices interact with the flux that penetrates into
the sample rather than the external magnetic field. In principle this would allow the
critical magnetic fields of the sample to be determined but in practice the variations
in sample details and disorder make the true flux penetration difficult to estimate.
Nevertheless, for type-II superconductors that have a very large GL parameter κ,
such as the high-Tc cuprates, the average magnetization induced in the sample by the
external field is very small even for films that are only a few unit cells thick [300] and
to a first approximation it is possible to take B ≈ µ0H.

In Fig. 4.13 we compare the predicted magnetic field dependence of the superfluid
density in the 2D Coulomb gas model with measured values for both the near op-
timally doped 7 u.c. thick and 10 u.c. thick DyBCO films at two temperatures just
below Tc. The solid blue line in Fig. 4.13 corresponds to Eq. 4.5 at T = 67 K with
an effective dielectric constant εeff = 20 estimated from the data in Fig. 4.12(a). We
find that in the 10 u.c. thick sample (Tc = 85 K), which does not show signatures of
the BKT transition, ρs(H)/ρs(0) gradually decays with increasing field at T = 78 K
but is not completely suppressed to zero at a field strength of 7 T, as shown by the
open black diamonds in panel (a). At the lower temperature of 67 K, where ρs(0) is
approximately a factor of 3 larger than at 78 K, ρs(H)/ρs(0) displays a similar form
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Figure 4.13 A plot of the magnetic field dependence of the superfluid density, measured at
two temperatures in the vicinity of Tc for a near optimally doped 7 u.c. thick DyBCO film
(red points) and 10 u.c. thick DyBCO film (black points). Panel (a) shows ρs(H)/ρs(0) as
a function of magnetic field applied parallel to the c-axis with ρs(H) normalized to its zero-
field value. The solid blue line corresponds to the theoretical magnetic field dependence in
the 2D Coulomb gas model, Eq. 4.5, with the effective dielectric constant εeff = 20 estimated
from the data in Fig. 4.12(a). Panel (b) depicts the same data presented in panel (a), but
plotted as a function of the scaled magnetic field µ0H(T 0

c − T )/T 0
c in order to compare the

magnetic field dependence of the two samples measured immediately below their respective
Tc values.

of decay that persists to higher applied fields (filled black diamonds). In the near
optimally doped 7 u.c. thick film (Tc = 72 K), on the other hand, ρs(H)/ρs(0) de-
cays more quickly with increasing field and is completely suppressed above H = 5 T.
Still, the decay of ρs(H)/ρs(0) occurs more weakly with increasing H than expected
from the 2D Coulomb gas model despite the 7 u.c. thick film showing signatures of
a smeared superfluid density jump below Tc. At T = 67 K the pure 2D Coulomb
gas model predicts a steep drop of ρs(H)/ρs(0) below ∼0.5 T, whereas the measured
data shows a comparable decrease over the much larger range of ∼2.5 T.

To better compare the magnetic field dependence of the superfluid density in the
7 u.c. and 10 u.c. thick films just below their respective Tc values, we plot ρs(H)/ρs(0)
as a function of the scaled magnetic field, H(T 0

c −T )/T 0
c , in Fig. 4.13(b). It is evident

that the 7 u.c. sample at 67 K and the 10 u.c. sample at 78 K have the same field
dependence in this case. Since at these temperatures the two samples both have
an effective vortex dielectric constant of εeff ≈ 20, this implies that the quantity
Φ0κσ

n
dc is the same for both films, despite the large difference in their normal state

dc conductivities (see Table 4.1). In contrast, the dependence of ρs(H)/ρs(0) on the
scaled field is much less steep for the 10 u.c. thick film at 67 K and is indicative of
mean field behavior in the 10 u.c. sample at temperatures far below Tc. The analysis
of the sample quality presented in Section 4.1 has shown that the disorder in the
DyBCO films lies well below the highly disordered regime where phase fluctuations of
the superconducting order parameter and vortex pinning effects are dominant. As a
result, the agreement between ρs(H)/ρs(0) in the 7 u.c. thick film at 67 K and the 10
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u.c. thick film at 78 K suggests that the magnetic field dependence of the superfluid
density just below Tc is dominated by the response of the Abrikosov vortex lattice in
the mixed state, which obscures any signatures of vortex-antivortex pair unbinding.
If any magnetic field signatures of the BKT transition are indeed present in ultrathin
DyBCO films they are likely to lie at temperatures much further below T 0

c where the
GL phenomenology is of questionable validity.

Upon further inspection additional issues come to light regarding the comparison
of the experimental data in Fig. 4.13 to the conventional 2D Coulomb gas model.
First, as mentioned above, the 2D Coulomb gas model gives ρs(B)/ρs(0) in Eq. 4.5
in terms of the magnetic induction B rather than the field H. This is not convenient
because the Meissner screening as well as details of the sample make B difficult to
determine. In fact, by computing the magnetization from the functional derivative
of the free energy it is found [301] that the magnetization more properly depends
upon both the vortex core energy µ and the superfluid density ρs(T ), resulting in a
relationship between H and ρs(H) that is not straightforward. Second, smearing of
the BKT transition due to Tc inhomogeneity is not treated in the usual 2D Coulomb
gas model, as has been discussed at length in Section 2.2. It is not clear a priori how
the broadening of the BKT superfluid density jump will affect ρs(H)/ρs(0). The sine-
Gordon approach to extend the 2D-XY model, on the other hand, allows the effects
of vortex core energy, Tc inhomogeneity, and coupling to external perturbations to be
incorporated into the BKT physics in a clear way [138]. In the mapping of the 2D-XY
model onto the 1D sine-Gordon problem, the interaction with the magnetic field is
introduced into the Hamiltonian (Eq. 4.4) via the minimal coupling prescription

Fij =
2π

Φ0

∫ j

i

A · d` ≈ 2πa

Φ0

A(x̂,ŷ)(r). (4.6)

The partition function of the vortices is defined by the functional integral over a scalar
field φ as

Z =

∫
Dφe−S, (4.7)

where φ depends on r only and the action S is given by [301]

S =

∫
d2k

(2π)2

k2 + 2kλ2/L

2πK
|φ(k)|2 − g

πa2

∫
dr cos(2φ)

+
2i

Φ0

∫
drφẑ ·H−

∫
drdz

H2

8πkBT
. (4.8)

Here, the Nelson-Kosterlitz jump is represented by the superfluid density K−1 =
16π2kBT/LΦ2

0 and the vortex fugacity is g = 2πe−µ/kBT . When the action is expressed
in this way we see that the effect of the transverse applied magnetic field is to shift the
superfluid density and vortex core energy to “effective” values. It is expected, then,
that the effect of the magnetic field on the BKT transition should be more readily
visible by investigating the shape of the superfluid density jump as a function of
temperature in constant field. Not only will ρs0 and TBKT decrease with increasing H,
but the magnitude of the superfluid density jump at TBKT will become nonuniversal.

The measured temperature dependence of the superfluid density for the near op-
timally doped 10 u.c. and 7 u.c. thick films are shown for µ0H = 0 T and 5 T in
Fig. 4.14. Panels (a) and (b) depict the absolute superfluid density measured for
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Figure 4.14 The temperature dependence of the superfluid density for the near optimally
doped 10 u.c. thick DyBCO film (a, c) and 7 u.c. thick DyBCO film (b, d) with µ0H = 0
T (blue squares) and µ0H = 5 T (red dots). Panels (a) and (b) depict the absolute values
of the measured superfluid density for both samples compared to the theoretical BKT lines
for (a) 10 u.c., (b) 7 u.c., and 3 u.c. thick superconducting layers, represented by the gray
solid and dashed lines. Panels (c) and (d) contain the same data as shown in panels (a)
and (b), plotted as the normalized superfluid density ρs(T )/ρs0.

the two samples, respectively, and compare the measured data with the theoretical
BKT lines for 10, 7, and 3 u.c. thick superconducting layers (shown in gray). Un-
der the influence of the 5 T external transverse magnetic field the value of ρs(0) is
reduced by a similar fraction for both films compared to the 0 T value. For the 10
u.c. thick DyBCO film the BKT line crosses ρs(T ) very close to Tc, so if a BKT
vortex unbinding transition exists in this sample TBKT would be very near Tc and
the superfluid response would be dominated by mean field behavior. Accordingly,
the value of Tc is only observed to reduce by ∼2–3 K with the application of a 5 T
magnetic field. In the 7 u.c. thick DyBCO film, on the other hand, the BKT lines for
a 7 u.c. thick and 3 u.c. thick superconducting layer cross ρs(T ) significantly further
below Tc, and Tc is observed to reduce by ∼12 K at µ0H = 5 T. The changes in ρs(T )
with increasing H are more effectively visible by comparing the normalized superfluid
density, ρs(T )/ρs0, at different magnetic field strengths as shown in panels (c) and
(d). Whereas the changes in ρs(T )/ρs0 for the 10 u.c. film are minimal with the shape
of the temperature dependence remaining largely unchanged, ρs(T )/ρs0 for the 7 u.c.
thick film experiences a dramatic shift to lower temperatures when the transverse
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magnetic field is applied. At µ0H = 5 T the cusp of the superfluid density jump in
the 7 u.c. thick film appears to occur at temperatures below 20 K.

The behavior of ρs(T )/ρs0 in the 7 u.c. thick DyBCO film is consistent with the
BKT vortex unbinding transition shifting to lower temperatures as a result of a shift
of the relative vortex core energy µ/µXY with increasing H. Work by Benfatto and
coworkers [30–32,137] has shown that while the width of the BKT superfluid density
jump is determined by the amount of Tc inhomogeneity in a film, the temperature
at which the jump occurs is set by the value of µ/µXY . A shift of the superfluid
density jump to lower temperatures accompanies a reduction of the relative vortex
core energy. Furthermore, in BCS superconductors the value of µ scales with the
value of the energy gap ∆ [137], suggesting that the strength of Cooper pair coupling
governs the position of TBKT . The data presented in Fig. 4.14(c, d) is in agreement
with a picture based on this analysis; the transverse applied magnetic field acts to
break Cooper pairs and reduce ∆, leading to a reduction of µ/µXY and downward shift
of TBKT with increasing H. The strong shift of ρs(T )/ρs0 in the 7 u.c. thick film, but
not the 10 u.c. thick film, provides additional evidence that the BKT vortex unbinding
transition is indeed present in 7 u.c. thick DyBCO. As in the case of the field-free
BKT transition discussed in Section 4.4, a theoretical analysis and treatment of our
data with the model of Benfatto et al. is necessary to determine the quantitative value
of µ/µXY . Additionally, future work is needed to obtain ρs(T )/ρs0 at other magnetic
field strengths in order to obtain the full magnetic field dependence of the vortex core
energy. Such measurements would help to further validate the sine-Gordon extension
of the 2D-XY model and shed additional light on the nature of Cooper pair coupling
in the cuprates.

4.6 Role of the Substrate Interface Layer

From our analysis of the complex conductivity and superfluid density in the Dy-
BCO films we have obtained very accurate measurements of the dc conductivity,
σdc = σ1(ω → 0, Tc), and zero-temperature superfluid density, ρs0, in the full set of
both near optimally doped and underdoped (annealed) samples. The results of these
measurements are summarized in Table 4.1 along with the nominal DyBCO layer
thickness L and critical temperature Tc. With these values in hand, it is possible to
explore different scaling laws or correlations between the physical quantities. One of
these scaling relations, ρs0 ∝ σdcTc, points to the presence of a non-superconducting
4 u.c. thick layer that persists at the interface of the film with the substrate.

Early after the discovery of high-temperature superconductivity in the cuprates,
it was found from muon spin relaxation experiments that in underdoped cuprates
the muon spin relaxation rate, which is proportional to the superfluid density ns/m

∗,
was proportional to Tc [302]. It is now well known that this scaling law, ρs0 ∝ Tc, is
not valid at all near optimal doping or in overdoped cuprates even though it works
well on the underdoped side of the phase diagram. On the other hand, Homes et al.
showed [27] from measurements of the infrared reflectivity that the scaling relation
ρs0 ∝ σdcTc is obeyed in all cuprate families, including underdoped, overdoped, highly
disordered, and electron doped samples, across more than four orders of magnitude
in both ρs0 and σdcTc. This empirical relationship makes intuitive sense in optical
experiments because the spectral weight shift that participates in the formation of the
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Figure 4.15 A log-log plot of Homes’ scaling law, ρs0 ∝ σdcTc, for several YBCO single
crystals from Homes et al. [27] (red squares) and the DyBCO thin films studied in this thesis
(blue circles). All data points shown correspond to measurements in the ab crystallographic
plane. The YBCO single crystal data (which includes underdoped, optimally doped, and
overdoped samples in addition to (Pr,Y)BCO crystals and radiation damaged crystals) falls
on the line ω2

ps = (120 ± 25)σdcTc (red solid and dashed lines). The DyBCO thin films
are also observed to obey a Homes scaling law but fall on the line ω2

ps = (40 ± 10)σdcTc,
significantly below the single crystal data. The superfluid density is plotted as ω2

ps = ρs0/4π
2

since ρs0 ≡ λ−2.

superconducting state comes mostly from frequencies below 2∆, and ∆ ∝ Tc. In this
way ρs0 ∝ σdcTc is a consequence of the statement that the FGT sum rule is obeyed.
However, Homes’ scaling law has interesting implications. From simple dimensional
analysis considerations [28] the law implies that the Tc in cuprates is high because the
normal state just above Tc is characterized by large “Planckian” dissipation, where
the scattering rate approaches 1/τ(Tc) ∼ kBTc/~. Furthermore, the original report
of Homes’ law [27] only contained information about the scaling behavior in single
crystal samples. It is not yet clear if the scaling relation should hold in thin film
samples due to effects such as interfacial scattering or reduced dimensionality.

Figure 4.15 shows a log-log plot of the square of the superconducting plasma
frequency, ω2

ps = ρs0/4π
2, versus σdcTc for all DyBCO films studied in this thesis

in addition to data for several YBCO crystals taken from Homes et al. [27]. The
YBCO samples include pristine optimally doped crystals, underdoped and overdoped
crystals, radiation damaged crystals, and (Pr,Y)BCO crystals. Each of the YBCO
data points (red squares) are observed to lie along the line ω2

ps = (120±25)σdcTc. The
constant 120± 25 Ω cm−1K−1 is considered to be universal for single crystals; c-axis
superfluid density, iron pnictide superconductors, and the BCS superconductors Nb
and Pb also lie on this line [9] (not shown). Our data for the DyBCO thin films,
including both near optimally doped and underdoped samples, are likewise observed
to obey Homes scaling ρs0 ∝ σdcTc, a result that is expected because we have shown
in Section 4.3 that the FGT sum rule is satisfied in our samples to within ±0.2%.
However, the DyBCO thin films lie along the line ω2

ps = (40± 10)σdcTc, significantly
below the data for the single crystals. The “universal” scaling constant is a factor of
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Figure 4.16 The thickness dependence of Tc of the DyBCO films (solid black circles, left
axis) as determined by MI measurements [273]. Samples thinner than 5 u.c. were unstable
and displayed a broad Im MI(T ) peak close to T = 0. The open gray circles represent the
Tc of YBCO layers of thickness L sandwiched between a 1000 Å buffer layer and 200 Å
capping layer of PrBCO on yttria stabilized zirconia and MgO substrates from Chan et
al. [270]. The trend line of the PrBCO/YBCO/PrBCO data (solid gray curve) drops to
Tc = 0 at L = 1 u.c. Also plotted as a function of thickness is the quantity ρs0L/σdcTc,
which represents a measure of the effective superconducting layer thickness (blue squares,
right axis). This trend of this quantity intersects 0 at L ≈ 4 u.c.

3 smaller than what is observed in single crystals, which implies that the fraction of
electrons that condense into the superconducting state in the films is fully one third
less than the fraction that condense in crystals.

It remains plausible that our DyBCO films are not uniformly superconducting
throughout their entire thickness and that up to two thirds of the total sample vol-
ume remains in the normal state far below Tc. To investigate this possibility we
examine the dependence of the critical temperature on thickness L of the films, as
illustrated in Fig. 4.16, and find that Tc drops rapidly to zero near L = 4 u.c. (solid
black circles) [273]. We also plot the quantity ρs0L/σdcTc versus L because the vari-
ation in interfacial and impurity scattering exhibited by the films (demonstrated by
the variety of conductivity peak widths and amplitudes in Fig. 4.5(a)) means that we
cannot directly draw a comparison between ρs0 and L. Here, ρs0L/σdcTc is a measure
of the effective superconducting layer thickness (a universal Homes constant doesn’t
appear in the ratio so it is proportional to the effective layer thickness). As can be
seen from the blue squares in Fig. 4.16, the effective superconducting layer thickness
extrapolates to zero at L ≈ 4 u.c., in agreement with the film thickness where Tc drops
precipitously to zero. This behavior suggests that a 4 u.c. thick non-superconducting
layer persists at the film-to-substrate interface in all our DyBCO samples. In the
near optimally doped 7 u.c. thick film a 3 u.c. superconducting layer remains, which
approaches the threshold for 2D superconducting fluctuations to emerge. Accord-
ingly, we plot a BKT line corresponding to a 3 u.c. thick layer (red dashed line) in
Fig. 4.12(a). Assuming that ρs0 also needs to be renormalized to take into account the
effective thickness of the superconducting layer, this BKT line serves as a lower bound
on the value of TBKT for the vortex unbinding transition in 7 u.c. thick DyBCO.
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The 4 u.c. thick non-superconducting interfacial layer plays the role of the semi-
conducting (Pr,Y)BCO buffer layers used in previous studies of ultrathin supercon-
ducting YBCO films to adapt the orthorhombic film structure to the square lattice of
the underlying substrate [21, 175, 176, 181, 270, 303]. A minimum (Pr,Y)BCO buffer
layer thickness of 4–5 u.c. has been observed to be required to relax the epitaxial
strain that is caused by the substrate in order to observe superconductivity in a 1
u.c. thick YBCO layer that lies on top [169, 265, 303]. Fig. 4.16 illustrates that the
DyBCO interfacial layer plays this role by comparing Tc(L) for our films with Tc(L)
for YBCO films grown epitaxially on top of 1000 Å thick PrBCO buffer layers (open
gray circles) [270]. Due to the presence of the thick PrBCO buffer the YBCO films
are fully relaxed and their Tc drops to zero only below L = 1 u.c. The functional
dependence of the two data sets match, but Tc(L) for the DyBCO films is shifted to
higher thicknesses from the YBCO data by L ≈ 4 u.c. The XRD data summarized in
Fig. 4.1 likewise shows that the structure of the DyBCO films smoothly becomes less
orthorhombic as thickness is reduced but that an appreciable tetragonal component
only appears below ∼10 u.c. As a result, we find that it is possible to achieve strain
relaxation in an ultrathin DyBCO film while leaving the layers above superconduct-
ing with CuO chains intact and a high Tc without the need for PrBCO buffers. This
is advantageous because it allows extraneous impurities such as magnetic Pr ions to
be eliminated from the system.

Previous studies characterizing the MBE growth of ultrathin DyBCO films [273]
reported that the interfacial layer is non-superconducting because the substrate-
induced strain effects lead to CuO chain disorder and an oxygen vacancy distribution
that relaxes to the bulk properties within ∼5–7 u.c. However, in all our near opti-
mally doped samples independent of thickness, including the 7 u.c. thick film, the
4 eV absorption peak associated with CuO chain vacancies is entirely absent from
the visible-to-UV spectroscopic ellipsometry data (see Fig. 4.2(a)). This suggests
that the films are uniformly oxygenated. While it is possible that macroscopically
tetragonal films accommodate excess oxygen in chain segments comprising only a few
atomic sites, a nonuniform oxygen vacancy distribution would instead give rise to a
partially developed 4 eV peak in the effective medium response, which is not seen.
The large values of Tc and small values of ∆Tc further indicate that Tc is relatively
uniform because a thickness dependent oxygen vacancy distribution would lead to
a broad range of Tc values extending to very low temperatures and a large value of
∆Tc. This result therefore implies that an epitaxially induced oxygen vacancy dis-
tribution cannot be primarily responsible for the origin of the non-superconducting
layer. Instead, the spectroscopic ellipsometry data and small ∆Tc values imply that
the non-superconducting interfacial layer shares a sharp boundary with the supercon-
ducting portion of the films, which points to a scenario of phase separation and an
alternate origin for the lack of superconductivity in the 4 u.c. thick layer.

One possibility is that epitaxially stabilized competing order, such as charge den-
sity wave correlations (which universally exist in cuprate high-temperature supercon-
ductors [3]), may be present and suppress superconductivity. Recent resonant X-ray
scattering measurements on underdoped YBCO films grown epitaxially on SrTiO3

substrates indicate that epitaxial strain can stabilize 3D charge order, with the Cu
sites in the CuO chain layers participating in the charge ordered state [61]. In that
work, the apparent lack of competition between 3D charge order and superconduc-
tivity was interpreted as possible evidence of mesoscopic phase separation between
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regions hosting the charge ordered and superconducting states. It is therefore pos-
sible that the 4 u.c. thick interfacial layer in DyBCO films represents an intrinsic
charge ordered but non-superconducting region. However, the YBCO films in which
the 3D charge order was observed were in the more moderately underdoped regime
with Tc ∼ 50 K, whereas our DyBCO films are closer to optimal doping (the 7 u.c.
film shows Tc = 72 K). Charge ordering in the cuprates is also typically associated
with insulating rather than metallic behavior.

The presence of the 4 u.c. thick non-superconducting interfacial layer is consistent
with the discrepancy of the 7 u.c. thick DyBCO film from the universal Homes scaling
shown by the solid red line in Fig. 4.15, where the density of superconducting electrons
in the DyBCO films appears to be one-third of its value in cuprate single crystals. By
rescaling the superfluid density to take into account the reduction in superconducting
volume of the film, the data point for the 7 u.c. thick sample can be made to roughly
agree with the red universal Homes scaling line. However, for thicker DyBCO films
this procedure does not completely hold. In the near optimally doped 60 u.c. thick
films, for example, the 4 u.c. thick interfacial layer comprises only ∼7% of the total
sample volume, implying that the superfluid density would need to correspond to a
London penetration depth of λ ∼ 130 nm to agree with the red line. Such a low value
of λ is comparable to the smallest values reported for ultraclean YBCO single crystals
from muon spin rotation and infrared techniques [304,305], and therefore, given that
all our films lie in the moderate disorder regime, is not likely to be the true value.
Instead, for the DyBCO thin film data to agree with the universal Homes scaling,
the blue DyBCO data points need to shift left to lower values of σdcTc, which implies
that the non-superconducting portion of the films is metallic rather than insulating.
As a result, our findings may be related to recent reports of an anomalous bosonic
metal state in 10 u.c. thick superconducting YBCO films [306]. In this exotic state
Cooper pairs are observed to exhibit 2D metallic behavior in a narrow range at the
transition between superconducting and insulating states due to fluctuations near a
disorder-induced quantum critical point. While the disorder level in our films is far
from the regime where strong disorder-induced fluctuations become dominant (see
the discussion in Section 4.1), it may be the case that epitaxially induced disorder
is enough to place only the first 4 u.c. of DyBCO into the quantum critical regime,
leaving the rest of the unit cells lying above at moderate disorder levels. In any case,
the discrepancy of the observed Homes scaling between the DyBCO films and cuprate
single crystals by a factor of 3 is puzzling, especially because films 10 u.c. and thicker
have been shown to lie in the 3D-XY universality class. Further studies of epitaxial
RBCO thin films are needed to clarify whether the different Homes scaling is indeed
a general feature of thin film cuprates, as well as to elucidate the full nature of the
non-superconducting interfacial layer.
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Chapter 5

Summary and Conclusion

Our contemporary understanding of high-temperature superconductivity paints a re-
markably detailed and colorful picture of the physics of copper oxides. The scientific
progress of the past 35 years has made it clear that a complete elucidation of high-Tc
superconductivity must extend far beyond a description of the superconducting state
itself to include a firm understanding of strongly correlated electron materials as a
whole. It is now widely accepted that superconductivity in the copper oxides is only
one of many forms of intertwined order, with crystal structure, dimensionality, and
various electron interactions conspiring to produce a rich phase diagram [3]. Nev-
ertheless, despite the existence of a vast body of published literature, there is not
yet any generally agreed-upon microscopic explanation of the mechanism of high-Tc
superconductivity that is on par with the BCS theory for conventional superconduc-
tors. The scientific literature instead presents a multitude of clues that point in often
contradictory directions.

The study of empirical scaling laws between various observable parameters of-
fers an intuitive route toward mapping out the interplay of the many interactions
in strongly correlated electron materials. One such scaling law for superconductors,
known as Homes’ law, states that the density of superconducting electrons is propor-
tional to the product of a material’s normal-state dc conductivity and its Tc [27]. By
simple dimensional analysis considerations this implies that the critical temperature
is high in the cuprates as a consequence of “Planckian” dissipation, where the quasi-
particle damping is of the order kBT/~ [28]. Furthermore, the validity of Homes’ law
for a wide variety of superconducting materials, including both conventional and un-
conventional superconductors, points to the importance of optical conductivity sum
rules, and in particular implies that the Ferrell-Glover-Tinkham sum rule is obeyed
in the cuprates. However, optical data and spectral weight analyses from various
groups based on infrared reflectivity and spectroscopic ellipsometry measurements
allow conflicting conclusions to be drawn, which leaves open the possibility that the
FGT sum rule and two-fluid model are instead violated [14, 16]. A gap in phase
resolved conductivity data in the terahertz portion of the spectrum has contributed
to this experimental uncertainty by leading to ambiguity in the interpretation of the
low frequency optical data, where a significant fraction of the spectral weight is un-
derstood to shift in the superconducting transition. This uncertainty has led to an
influential class of theories of high-Tc superconductivity based on a kinetic energy
saving pairing mechanism [12, 13]. In this thesis, we address the question of the va-
lidity of the FGT sum rule in the cuprates by combining several fully phase-resolved
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spectroscopy techniques in order to precisely follow the evolution of the intraband
spectral weight across the superconducting transition. The results presented here
avoid the ambiguities contained in previously reported studies by accessing the full
spectrum from submillimeter to visible without need for Kramers-Kronig relations or
model-dependent assumptions.

As a first step, we present a detailed analysis of the film quality and disorder in
a series of near optimally doped and underdoped DyBa2Cu3O7–δ thin films, which
were grown with varying thicknesses by atomic layer-by-layer oxide MBE. Many prior
studies of cuprate thin films in the RBCO family utilized (Pr,Y)BCO buffer layers to
stabilize and adapt the crystal structure of the thin films to the underlying substrate
lattice. However, the Pr ion contributes to pair breaking, magnetic ordering, and
charge localization [39], and so complicates the interpretation of the nature of the
superconducting state. By contrast, the DyBCO films studied in this work were
grown epitaxially on LSAT without any kind of Pr buffer layer. High resolution
XRD measurements show that near optimal doping the films become increasingly
tetragonal in structure as a function of decreasing thickness below 60 u.c. to adapt
to the square lattice of the LSAT. At a thickness ∼10 u.c. and below the structure of
the optimally doped films is nearly fully tetragonal and comparable to the structure
of an annealed (underdoped) 20 u.c. thick film. Despite this similarity, spectroscopic
ellipsometry measurements in the visible-to-UV range for the full series of films reveal
that the 4 eV peak in ε2(ω), which is observed in the underdoped 20 u.c. film and
corresponds to empty CuO chains, is entirely absent in near optimally doped DyBCO
films even in the thinnest samples studied. This result indicates that near optimal
doping films as thin as 7 u.c. retain their CuO chains, and rules out a scenario
where the epitaxially induced strain produces an oxygen vacancy distribution along
the c-axis that strongly reduces Tc. Furthermore, the mean free path ` ≈ 30 Å in
the thinnest films is significantly larger than the in-plane coherence length ξab ≈ 13
Å, implying that the effect of disorder and scattering is not dominant and that Tc
inhomogeneity has a larger effect on the superconducting properties. Our analysis of
∆Tc and the dc resistivity in the films finds that the Tc inhomogeneity remains in
the linear regime where ∆Tc ∝ %dc. On this basis we conclude that the DyBCO thin
films studied in this work remain only moderately disordered, well below the strong
disorder regime where Tc becomes dominated by quantum phase fluctuations of the
superconducting order parameter.

Second, we turn to phase sensitive measurements of the complex conductivity to
address the issue of spectral weight transfer in the cuprates. Specifically, we combine
measurements from submillimeter quasioptical interferometry, time-domain terahertz
spectroscopy, and spectroscopic ellipsometry to obtain the full complex response of the
DyBCO films in the spectral range 0.1 meV < ~ω < 1 eV without need for Kramers-
Kronig transforms. Still, a Kramers-Kronig consistency analysis of the independently
extracted data is employed in order to precisely follow the spectral weight shift across
the superconducting transition. With this technique we show that both the FGT sum
rule and two-fluid model are obeyed in the cuprates to within ±0.2% error. This result
implies that the peak in σ1(ω) that occurs just below Tc and at frequencies below 1–2
THz cannot be due to coherence effects, as is the case in conventional BCS supercon-
ductors. Instead, the conductivity peak arises from competition between a decreasing
normal charge carrier density and increasing quasiparticle lifetime below Tc. Our ob-
servation of this so-called “γ-conductivity” peak is further evidence that the dominant
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scattering mechanism in the DyBCO films at low temperatures is electronic rather
than phononic or from disorder effects, and implies that the quasiparticles are coupled
to an excitation spectrum that is modified in the superconducting state.

Our study of the spectral weight shift both above and below Tc indicates that
superconductivity in the copper oxides cannot be due to a kinetic energy saving
mechanism. At T < Tc we find that the total intraband spectral weight is constant
as a function of temperature, with any changes in the normal state (Drude) spectral
weight precisely compensated by changes in the superconducting δ-function at ω = 0.
This means that interband transitions lying at ~ω > 1.5 eV do not contribute to any
transfer of spectral weight in the superconducting state; the FGT sum rule and two-
fluid model are governed by changes in the intraband spectral weight only. Above Tc,
on the other hand, the Kramers-Kronig consistency analysis shows that the spectral
weight below 1.5 eV increases by ∼2% between 200 K and Tc. Since any changes in
spectral weight above Tc are due to smearing of the Fermi occupation function around
the Fermi level with temperature, the constant intraband spectral weight below Tc
implies that there is a slight reduction in spectral weight of the superconducting
state compared to the T = 0 spectral weight of the normal state. As a result, we
conclude that scenarios of high-Tc superconductivity based on the reduction of kinetic
energy are untenable, in agreement with the prior reported results of Boris et al. [16].
Our findings are instead consistent with collective boson models of superconductivity
where fermions interact with collective spin fluctuations [17].

The remainder of the results reported in this thesis focus on an expanded view
of high-Tc superconductivity in the cuprates to include some more general aspects of
the physics of strong correlations. Various models of strong correlations in 1D and
quasi-1D have largely been solved, but so far solutions in higher dimensions have not
been found. Nevertheless, the solutions of the quasi-1D strong correlation problem
are well understood where an array of intertwined ordered phases emerges from non-
Fermi liquids [4]. Results of these models in 1D can give insight into the behavior
of 2D and 3D strongly correlated electron systems. There is evidence that the vari-
ety of intertwined orders emerge as “daughter” phases of a more fundamental parent
phase in the cuprates, which spontaneously breaks a large number of symmetries.
Such evidence, however, is not yet definitive and still widely debated. It is expected
that a larger variety of intertwined orders will exist in 2D rather than 3D because
topological effects allow a multitude of phases to emerge that would otherwise be
energetically prohibited in higher dimensions. Developing a more complete experi-
mental description of the cuprates in 2D, therefore, is key to a better understanding
of this interplay. In particular, knowledge of the Berezinskii-Kosterlitz-Thouless tran-
sition and phase excitations across the full superconducting dome is needed in order
to understand how superconductivity interacts with the various types of fluctuations
that occur throughout the phase diagram. Until recently, experimental studies of the
superconducting BKT transition in cuprates primarily focused on the underdoped
side of the phase diagram where the pseudogap and quantum critical fluctuations
approaching the underdoped quantum critical point (pmin) play a dominant role.

In this thesis we report studies of the BKT vortex unbinding transition near
optimal doping in ultrathin DyBCO films upon approaching the 2D limit. Because we
have shown that the FGT sum rule and two-fluid model are obeyed in the cuprates,
we take advantage of our wide band spectroscopy data to obtain highly accurate
measurements of the superfluid density as a function of temperature and magnetic
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field. This approach allows us to avoid the vortex pinning effects that are a general
feature of mutual inductance experiments and which obscure the underlying vortex-
antivortex unbinding behavior. We find that near optimal doping, DyBCO films
10 u.c. and thicker display a “universal” temperature dependence of the superfluid
density that is consistent with 3D-XY scaling behavior across a wide temperature
range down to ∼0.8Tc. As T → 0 the superfluid density rolls over to a characteristic
T 2 dependence that is consistent with the presence of only moderate disorder in the
films. In underdoped (annealed) samples, the superfluid density is instead linear
with temperature just below Tc, which is in agreement with a crossover from 3D-XY
to (3 + 1)D-XY critical behavior as the critical doping pmin is approached on the
underdoped side of the phase diagram.

The exact shape of the superfluid density temperature dependence depends on the
specifics of the Fermi surface topology in addition to the details of the disorder. The
data for an underdoped 20 u.c. thick film agrees well with calculations based on the
realistic tetragonal Fermi surface of LSCO obtained from ARPES measurements [281].
The superfluid density of the near optimally doped 10 u.c. thick film, on the other
hand, follows the temperature dependence of the orthorhombic Fermi surface shape
despite XRD measurements which indicate that the structure of the 10 u.c. film has
adapted to the tetragonal structure of the LSAT substrate. This is further evidence
for the presence of intact CuO chains in the thinnest near optimally doped samples.
Theoretical calculations based on the realistic Fermi surface of DyBCO are needed to
quantify this difference.

Below a thickness of 10 u.c. we observe signatures of the BKT superfluid den-
sity jump in the data for the near optimally doped films. Specifically, we observe
a steepening of the normalized superfluid density ρs(T )/ρs0 above ∼50 K as T ap-
proaches Tc in a 7 u.c. thick film. This steepening is consistent with a broadened
superfluid density jump due to the presence of Tc inhomogeneity. Furthermore, the
cusp of the superfluid density jump near 50 K occurs at temperatures well below
the crossing point of ρs(T ) and the BKT line for a 7 u.c. thick layer, which sug-
gests that the relative vortex core energy µ/µXY . 1 in optimally doped DyBCO.
For comparison, the value of the relative vortex core energy is ∼3 on the strongly
underdoped side of the phase diagram in (Ca,Y)BCO [32]. The presence of a BKT
vortex pair unbinding transition in the thinnest sample was further probed in a c-axis
(transverse) magnetic field. Our data for the magnetic field dependence of the su-
perfluid density ρs(H)/ρs(0) suggests that the conventional 2D Coulomb gas model
is insufficient to properly capture the full BKT physics in the cuprates because it
does not provide a straightforward way to treat the flux penetration of the externally
applied magnetic field or the effects of Tc inhomogeneity. Instead, the temperature
dependences ρs(T )/ρs0 of the two thinnest films (10 u.c. and 7 u.c.) in a constant
applied transverse magnetic field are qualitatively consistent with the mapping of the
2D-XY model to the 1D sine-Gordon problem by Benfatto et al. [30, 31, 301], where
the applied magnetic field modifies the relative vortex core energy. Further magnetic
field measurements and model calculations are needed to provide a more quantitative
analysis.

With the values of Tc, σdc(Tc), ρs0, and thickness L in hand from our various
analyses, we finally circle back and once again address the empirical scaling laws in
ultrathin DyBCO films. While the universal Homes’ scaling ρs0 ∝ σdcTc is well known
for single crystals, it remains largely unexplored in copper oxide thin films. We report
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here that ultrathin DyBCO films also obey a Homes’ scaling relationship, which is
expected because our Kramers-Kronig consistency analysis shows that the FGT sum
rule is valid, but that the scaling constant is smaller by a factor of 3 compared to
single crystals. By following the thickness dependence of both Tc and a measure of the
effective superconducting fraction, we find that both quantities reach zero together at
L ∼ 4 u.c. Our results suggest that there is a ∼4 u.c. thick non-superconducting layer
at the interface between film and substrate. This interface layer plays the role of the
(Pr,Y)BCO buffer layers used in previous studies to adapt the RBCO structure to
the underlying substrate. We therefore find that it is possible to achieve strain relax-
ation in ultrathin RBCO without need for PrBCO layers. However, as we pointed out
above, an epitaxial strain-induced oxygen vacancy distribution cannot be the cause of
the non-superconducting layer, because visible-to-UV spectroscopic ellipsometry data
indicates the presence of intact CuO chains in film thicknesses down to 7 u.c. with no
detectable admixture of empty chain structures. Instead, the ellipsometry results and
small ∆Tc values point to the existence of a sharp interface between superconduct-
ing and non-superconducting regions of the films and a scenario of electronic phase
separation. The nature of this non-superconducting layer remains unidentified, but
we propose that it may be consistent with a picture in which moderate epitaxially
induced disorder places only the first few unit cells of a film into a disorder-induced
quantum critical regime, where Cooper pairs exhibit 2D metallic (“bosonic metal”)
behavior at the transition between superconducting and insulating states.
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Appendix A

Terahertz Time-Domain
Spectrometer Components

This Appendix contains detailed discussion of the main components of the TTDS
spectrometer apparatus utilized in this work. Sections are included that focus on the
principles of terahertz generation by photoconductive antennas, spherical antenna
lenses, the fundamentals of the electrooptic effect, negative dispersion mirror pairs
used for laser pulse compression, dry nitrogen purgebox, and the liquid helium bath
cryostat for low temperature measurements.

A.1 Photoconductive Antennas

Photoconductive antennas consist of metallic dipole structures micropatterned onto
a doped semiconducting wafer that has a band gap chosen to match the energy ~ω
of the near-IR femtosecond excitation laser [307]. They generate terahertz pulses
by taking advantage of second-order nonlinear processes to rectify the femtosecond
optical pulse train. The most common wafer type is low-temperature grown GaAs
because its optical band gap of Eg ≈ 1.42 eV lies just below ~ω ≈ 1.55 eV of 800
nm laser light, and its index of refraction in the far-IR makes it mosly transparent to
terahertz radiation [308,309]. Additionally, it has a lower carrier relaxation time and
higher carrier mobility than other common wafer types, such as radiation-damaged
silicon on sapphire [245, 310]. The metallic microstructure is usually patterned from
gold with a small gap of d = 5–20 µm separating the positive and negative bias
terminals. The near-IR femtosecond laser is focused into a small spot of diameter
∼5 µm at the center of the gap; when the near-IR laser pulses impinge upon the
dipole structure they excite charge carriers across the semiconductor band gap and
the electrical circuit formed by the antenna and an external power source is closed.
The power source is set to supply a dc bias of 10–20 V so the creation of the charge
carriers creates a sudden burst of current that persists for timescales on the order
of tens of picoseconds. Since the electric field radiated by the dipole is proportional
to the time derivative of the current burst, the emitted terahertz pulse persists for
just 100 fs to a few picoseconds, often including only a single or sometimes even half
an oscillation period. The shape of the dipole and bias terminal leads also affects
the shape of the emitted terahertz pulse. For this reason the shape of the patterned
antenna is calculated in order to minimize spatial or frequency distortions or even
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amplify the emission in certain portions of the spectrum. The most common antenna
shapes include H-shaped, bowtie, or spiral leads, but large area patterns such as
interdigitated finger antennas and micro-dipole arrays are also utilized in order to
make more complete use of the full semiconducting wafer surface to obtain higher
output powers.

The output spectrum of a simple dipole antenna can be modeled with Maxwell’s
equations and a simple description of the photoexcited carriers in the semiconductor
using the Drude model. The electric field radiated by an oscillating dipole with
dimensions d� λ is given by [203]

Erad(ω) =

[
ω2

c2
(r̂ × p)× r̂ e

iωr/c

r
+ (3r̂[r̂ · p]− p)

(
1

r3
− iω

cr2

)
eiωr/c

]
, (A.1)

where r̂ is the unit vector in the direction of observation, p is the electric dipole
moment vector, and r is the distance from the dipole. If we take the electric field to
be a purely transverse wave and utilize the property that the field can be written as
a sum of its Fourier components, then the vector component of Erad perpendicular
to the direction of propagation r̂ in the time domain is

Ẽrad(r, θ, t) =

(
1

r3
+

1

cr2

d

dt
+

1

c2r

d2

dt2

)
p̃(tr) sin θ, (A.2)

where θ is the angle between p and r̂, and tr = t− r/c is the retarded time. Since the
dipole dimensions are in the far-field limit, where d � λ � r, the radiated electric
field reduces to

Ẽrad(r, θ, t) =
1

c2r

d2

dt2
p̃(tr) sin θ. (A.3)

The dipole moment is p =
∫
ρ(r)rd3r, where ρ(r) is the charge density, so by com-

parison with the continuity equation the radiated electric field is proportional to the
first time derivative of the free current density J(t). The free current in the dipole is
itself given by [311]

J(t) = qn(t)v(t) (A.4)

where q is the charge of the carriers, n(t) is the density of free carriers, and v(t) is
their velocity. The number of free carriers is determined by the generation rate G(t) of
carriers excited across the semiconductor band gap by the femtosecond near-IR laser
pulse, and the trapping time τT of carriers becoming trapped by mid-gap impurity
states,

d

dt
n(t) = −n(t)

τT
+G(t). (A.5)

The generation rate is proportional to the intensity of the femtosecond laser pulse
envelope, which can be approximated by a transform-limited Gaussian as

G(t) ∝ I0e
−4 ln 2(t/τL)2

, (A.6)

where τL is the full-width at half-maximum and I0 is the peak intensity of the laser
pulse. As discussed above in Section 3.1.2, in the Drude model the velocity of the
free charge carriers is determined by the scattering time τS and the value of the local
electric field in the antenna,

d

dt
v(t) = −v(t)

τS
+
qElocal(t)

m∗
. (A.7)
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Figure A.1 The calculated emission spectrum of a biased photoconductive dipole antenna
for a variety of values of (a) the Drude scattering time τS , (b) the trapping time τT of
photoexcited carriers in mid-gap states, (c) the near-IR excitation laser pulse duration τL,
(d) the carrier recombination time τR, (e) the antenna bias voltage Vbias, and (f) the near-IR
excitation laser intensity in units of carriers excited per unit volume. The dispersion of the
GaAs substrate in the terahertz regime was not included in the calculation.

The local field in the antenna is different from the applied bias field Ebias = −Vbias/d,
which is screened by the buildup of screening polarization psc. This screening of the
applied bias field is given by

Elocal(t) = Ebias(t)−
psc(t)

ηε
, (A.8)

where ηε is a screening factor determined by the relative permittivity of the semi-
conductor. Thus, a rapid buildup of screening polarization extinguishes the local
accelerating field and produces faster current transients, which in turn give higher
frequency terahertz radiation. The dynamics of the polarization screening are deter-
mined by

d

dt
psc(t) = −psc(t)

τR
+ J(t). (A.9)

Here τR is the recombination time for electron-hole pairs. The emitted terahertz
electric field is then determined by solving this system of differential equations for
ETHz(t) ∝ dJ(t)/dt.

Figure A.1 illustrates the calculated emitted power spectrum of a simple dipole
antenna for a series of values of τS, τT , τL, τR, Vbias, and I0. The calculation was
done assuming the charge carriers are primarily electrons excited into the bottom of
the conduction band in GaAs with m∗ = 0.067me and ηε ≈ 1, with a dipole length
of d = 5 µm. From the calculation several properties of photoconductive antennas
are evident. First, as the scattering time τS increases the emitted spectrum shifts
to lower frequencies with only a small decrease in bandwidth. This implies that a
higher transient photoconductivity produces lower frequency emission because the
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photoexcited current is decelerated over a longer period of time. Second, as the trap-
ping time τT decreases the spectrum shifts to higher frequencies, ultimately giving
rise to peaked emission at high frequencies. This effect can be understood in terms
of the increase in the transition rate with decreasing capture time for electrons ex-
cited between the conduction band and deep lying trapping states. The increase in
the transition rate reflects a larger energy difference between the conduction band
and the trapping state, and the peak in the terahertz spectrum near the resonance
frequency arises from stimulated emission between these energy levels. Third, as the
excitation laser pulse duration τL decreases the bandwidth of the spectrum increases
as ∼ 1/τL. Thus to achieve as broad of a bandwidth as possible it is important to
use as narrow of a femtosecond pulse as possible. Since the spectral bandwidth of
a pulse is related to its temporal width, the condition of the shortest possible pulse
is achieved when the pulse is transform limited, that is, when the time-bandwidth
product τL∆ω is equal to its minimum possible value. For this reason, optical beam
compressors utilizing negative dispersion mirrors or optics are usually placed in the
beam path just before the generation and detection apparatus. Fourth, the spec-
trum is roughly independent of the electron-hole recombination time τR, because τR
merely sets the length of the decay tail of the current transient. Since the ampli-
tude of the emitted terahertz electric field is determined by the first time derivative
of the transient current, dJ(t)/dt, the terahertz pulse is primarily generated by the
initial steep onset of current following excitation by the femtosecond laser. A long
decay tail of J(t) is instead characterized by a slow rate of decay and so contributes
negiligibly to the terahertz pulse shape. However, for recombination times signifi-
cantly less than 1 ps terahertz emission at high frequencies can be obtained due to
rapid extinguishing of the transient current [312]. Fifth, the intensity of the emitted
terahertz spectrum is proportional to the square of the applied bias voltage and so
it is advantageous to operate the photoconductive antennas at the highest voltage
possible. The maximum voltage and thus the maximum obtainable radiation power,
however, is limited by dielectric breakdown in the semiconductor material [313]. As
a result, most photoconductive antennas operate with applied voltages up to ±30
V. Lastly, the total power emitted can depend on the fourth power of the excitation
laser intensity (I0

4) because J(t) is quadratic in I0. This behavior arises because both
the screening polarization and the density of photoexcited carriers are dependent on
I0. Therefore, terahertz generation in a photoconductive antenna is a second-order
nonlinear process and the polarization current in the antenna effectively rectifies the
excitation laser pulse.

Terahertz transients can be detected by optical gating of a second photoconductive
antenna identical to that used to generate the terahertz pulses [314]. In this case the
terahertz electric field itself provides the accelerating force for free carriers in the
dipole structure and the transient electric current is detected. The current in the
detection antenna at a time delay t′ is given by [315]

J(t′) =
q2τeff

m∗

∫ ∞
−∞

n(t− t′)ETHz(t)dt,

where τeff is the effective carrier lifetime. If the transient photoexcited charge qn(t)
and the duration of the near-IR femtosecond laser pulse are much faster than ETHz(t)
such that the response approximates a Dirac delta function, then J(ω) ∝ ETHz(ω). In
practice, however, the near-IR femtosecond probe pulse and response of the detector
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have a finite time duration compared to the terahertz pulse and so the transient
photocurrent response in the detector is given by

J(ω) ∝ [I(ω)R(ω)]ETHz(ω), (A.10)

where I(ω) and R(ω) are the Fourier transforms of the mid-IR femtosecond laser pulse
and the time-dependent response function of the photoexcited carriers, respectively.
The product I(ω)R(ω) corresponds to the spectral sensitivity of the photoconduc-
tive detector antenna and the transient response of the free carriers in the detector
functions as a low-pass filter that is dependent upon the effective carrier lifetime τeff .
Therefore, in contrast to the case of the photoconductive antenna used as a terahertz
source, the performance and bandwidth of the photoconductive detector antenna can
be dramatically improved by decreasing the scattering time τS, trapping time τT ,
recombination time τR, and the near-IR femtosecond laser pulse duration τL. Indeed,
terahertz pulse detection in photoconductive antennas at frequencies up to several
tens of THz have been reported, but these devices tend to suffer from low signal-
to-noise ratios at high frequencies due to the practical limitations on the minimum
achievable values of τS, τT , and τR in semiconducting materials [316–318]. As a result,
electrooptic detection in thin nonlinear crystals provides a more practical alternative
for ultrabroadband terahertz pulse detection.

A.2 Spherical Antenna Lenses

Since a dipole antenna radiates electromagnetic waves in all directions (see Eq. A.3),
collimating optics are necessary in order to utilize the full efficiency of the terahertz
emitter. Furthermore, the series of Fabry-Pérot reflections of the terahertz pulse
within the GaAs antenna substrate can limit the usable time-domain window and in-
terfere with the tail of the main pulse, introducing artifacts in the frequency spectrum
particularly for samples with significant dispersion. However, it is possible to obtain
diffraction limited terahertz beams by locating the dipole source at the focal point
of a truncated spherical collimating lens, provided the dipole size is much smaller
than the terahertz wavelength [319]. The emitted terahertz pulses can then be well
described by a Gaussian beam with a waist defined by the lens diameter [320]. Such
lenses are several millimeters in radius and are most commonly fabricated from high
resistivity silicon that is index matched to the GaAs substrate. The increased opti-
cal thickness of the lens-coupled antenna therefore also has the effect of temporally
separating the Fabry-Pérot reflections of the antenna substrate.

There are generally two types of truncated spherical antenna lenses [321]. The
first kind, collimating lenses, are defined by the condition

dcollimating = R

(
n

n− 1

)
,

where dcollimating is the distance from the dipole to the tip of the lens, R is the radius of
the lens, and n is the index of refraction of the lens. This distance is derived following
the requirement that the dipole structure is located at the focus of the spherical lens.
The second kind, hyperhemispherical lenses, are defined by the condition

dhyper = R

(
n+ 1

n

)
,
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derived by the requirement that the dipole is located such that the amount of radia-
tion lost to total internal reflection is minimized. For both types of lenses the beam
divergence is frequency dependent with the lower frequencies having larger divergence
angles, while the high frequencies are concentrated toward the beam propagation axis.
However, the two lens types have different advantages and disadvantages. Collimating
lenses typically have abberations due to rays propagating close to the critical angle
for total internal reflection, but the intensity of high frequency components propa-
gating along the beam propagation axis is higher than for hyperhemispherical lenses.
Hyperhemispherical lenses, on the other hand, are free from spherical abberations
and coma and the total radiated power integrated over all divergence angles is ∼80%
higher than for collimating lenses due to the fact that some of the generated terahertz
rays are trapped within the collimating lens by total internal reflection. This higher
efficiency comes at the cost of a large divergence cone angle of ∼30◦, which requires
the use of low f -number optics that are more difficult to align. Furthermore, the
collimating lens places no limitations on the bandwidth of the lens-coupled antenna.
In contrast, the hyperhemispherical lens introduces interference fringes even along
the beam propagation axis, with the effect that the hyperhemispherical lens limits
the measurable bandwidth of the emitter. Hyperhemispherical lenses typically have
better Gaussian coupling efficiency while collimating lenses have better directivity.
At high frequencies collimating lenses can have 2–3 orders of magnitude higher beam
intensity along the axis of propagation. As a result, the choice of lens is typically made
depending on the needs of the application, such as whether higher emitter intensity
or a higher degree of collimation is more important.

A.3 The Electrooptic Effect

In addition to terahertz generation and detection by rectification of near-IR laser
pulses by ultrafast currents in photoconductive antennas, it is possible to generate and
detect terahertz pulses by the electrooptic effect in a noncentrosymmetric crystal. The
electrooptic effect is a second-order nonlinear optical process that generates terahertz
pulses through optical rectification by difference-frequency mixing of all the frequency
components in an ultrafast laser pulse [322]. The resultant transient terahertz electric
field has a shape similar to the envelope of the pump laser pulse. The two primary
factors that influence the bandwidth and temporal shape of the terahertz pulse are
therefore the bandwidth of the excitation laser pulse and the quality of the phase
matching between the near-IR pump laser and the generated terahertz electric field.

Since the electrooptic effect is a second-order nonlinear optical effect, it requires a
medium that has noncentrosymmetric symmetry in order to allow for matrix elements
of the dielectric susceptibility that are quadratic in the field strength. Terahertz gen-
eration in such materials was first demonstrated in LiNbO3, LiTaO3, and the (110)-
oriented zincblende crystals GaAs, CdTe, and InP [323, 324]. Coherent electrooptic
detection of terahertz transients was demonstrated later in a 500 µm thick LiTaO3

crystal [325]. However, (110)-oriented ZnTe and GaP have become the most common
crystals for both generation and detection of terahertz pulses by electrooptic sam-
pling because they have the best phase matching between the terahertz and near-IR
electric fields, expecially for laser wavelengths near 800 nm [326, 327]. ZnTe is the
optimum material for generation and detection of terahertz pulses with frequencies
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below ∼4 THz due to its higher conversion efficiency. Unfortunately, the bandwidth
of ZnTe is limited due to its strong optical phonon at 5.3 THz, which destroys the
phase matching and absorbs terahertz radiation. GaP, on the other hand, has its
optical phonon close to 11 THz [328], enabling it to have a wider usable bandwidth
that extends to 7–8 THz at the cost of a slightly reduced conversion efficiency. To
generate and detect high frequencies the thickness of the nonlinear electrooptic crys-
tal must be quite thin in order to maintain the phase matching condition over as
large a bandwidth as possible. Generally, the crystal thicknesses used are 0.5 mm or
thinner. The resulting small interaction distance between the nonlinear medium and
the near-IR laser pulse comes with the expense of a reduced signal intensity because
the electrooptic signal is proportional to the crystal thickness. Furthermore, compli-
cations due to multiple reflections of the terahertz pulse in the electrooptic crystal
can lead to artifacts in the extracted signal due to interference. These reflections can
be avoided by the use of an additional index-matched medium attached to the back
of the electrooptic crystal that temporally separates out the reflections. In zincblende
crystals, there is no second-order dielectric response with the crystal oriented along
the (100) axis, so by optically contacting a sub-0.5 mm thick (110)-oriented slice to
a (100)-oriented plate with a thickness of several millimeters, it is possible to obtain
a broad reflection-free time window [327].

As mentioned above, the second-order nonlinear process responsible for electroop-
tic generation of terahertz pulses is the difference-frequency generation effect. Since
the frequency of the terahertz electric field Ω is several orders of magnitude less than
the frequency ω of the near-IR pump pulse, the interaction of the terahertz and
near-IR photons are in the slowly varying amplitude limit, where ∂Ẽ(ω, z)/∂z �
kẼ(ω, z) assuming wave propagation in the z direction. Here, k denotes the phase
k(ω) = ωn(ω)/c. The ultrafast near-IR pump pulse can also be assumed to satisfy
the group velocity approximation, where the bandwith of the near-IR pulse ∆ω is
much smaller than the central frequency ω0. Solving the nonlinear wave equation for
difference-frequency generation in these limits gives the generated terahertz electric
field [329],

ẼTHz(Ω, z) =
Ω2eik(ω)z

k(Ω)c2
χ

(2)
eff

ei∆k(ω,Ω)z − 1

∆k(ω,Ω)

∫ ∞
−∞

E∗IR(ω + Ω)EIR(ω)dω, (A.11)

where χ
(2)
eff is the effective second-order susceptibility and ∆k(ω,Ω) is the total phase

mismatch between Ω, ω, and ω + Ω. The phase mismatch in the group velocity
approximation is given by

∆k(ω,Ω) =
1

c
[n(ω + Ω)(ω + Ω)− n(ω)ω − n(Ω)Ω] ≈ Ω

c
[ng(ω0)− n(Ω)] ,

where ng and n are the group and phase indices of refraction, respectively. Thus, the
amplitude of the generated terahertz electric field is determined by the autocorrela-
tion of the near-IR pump electric field and a correction factor that depends on the
phase mismatch. For a noncentrosymmetric crystal of length L, the intensity of the
generated terahertz pulse is then

ITHz(Ω, L) =
∣∣∣ẼTHz(Ω, L)

∣∣∣2 ∝ L2 sinc2

(
∆k(ω0,Ω)L

2

)
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Approaching ∆kL/2 ≈ π the intensity of the generated radiation thus falls rapidly to
zero as the output wave becomes out of phase with the driving polarization. Beyond
∆kL/2 ≈ π, the rate ∂ẼTHz(Ω, z)/∂z can become negative as energy is converted
from ẼTHz(Ω, z) back into ẼIR(ω, z) and ẼIR(ω+Ω, z) in the reverse of the difference-
frequency generation process. As a result, there is a coherence length

Lc =
2

∆k(ω0,Ω)
≈ 2c

Ω(ng − n)
(A.12)

for the maximum length of the coherent difference-frequency generation process. For
GaP, which has an index of ng = 3.19 near 800 nm and n = 3.34 at 1 THz, this cor-
responds to a coherence length of Lc = 0.6 mm [330,331]. The presence of dispersion
near 800 nm, however, can have the effect of significantly modifying the coherence
length and introducing strong frequency dependence in the terahertz range [332].

In contrast to the difference-frequency process that is responsible for terahertz
generation, terahertz pulse detection by the electrooptic effect is a second-order non-
linear process caused by sum-frequency mixing of terahertz and near-IR photons. In
essence, the sum-frequency process is the difference-frequency generation process run
in reverse; the electrooptic effect leads to phase retardation between the two polariza-
tion components of a near-IR probe beam by an amount proportional to the incident
terahertz electric field. For zincblende crystals, the phase retardation between or-
thognally polarized near-IR electric field components is given by [329]

∆φ =
ωn0

3reffL

c
ETHz, (A.13)

where n0 is the static index of refraction of the noncentrosymmetric crystal at the
near-IR probe wavelength ω and reff is the effective electrooptic coefficient. There-
fore, an optical setup that is able to detect the phase retardation between the two
polarization components of the near-IR probe pulse can be used for detection of the
field strength of the terahertz beam. The electrooptic signal detected in a noncen-
trosymmetric crystal is given by [322]

S(τ) ∝ 1

c

∫ ∞
−∞

ẼTHz(Ω)f(Ω)e−iΩτdΩ (A.14)

for a time delay τ between the terahertz field and the near-IR probe pulse. This
is simply the inverse Fourier transform of the terahertz electric field and the filter
function f(Ω). If f(Ω) is frequency independent then S(τ) is given exactly by the
terahertz field entering the crystal. In general, the filter function is given by [10]

f(Ω) =

∫ ∞
−∞

ω2

|ωn(ω)/c|
e−2ωκ(ω)z/cχ

(2)
eff (ω)

ei∆k(ω,Ω)z − 1

i∆k(ω,Ω)
E∗IR(ω)EIR(ω − Ω)dω

where in this case κ(ω) denotes the imaginary part of the complex index of refraction
in order to differentiate it from the phase (or wavenumber) k(ω).

From this filter function it is evident that several factors impact the fidelity of
the measured pulse ẼTHz(Ω). First, the frequency dependent coherence length Lc(ω),
given by the term dependent upon ∆k, can strongly limit the efficiency of tera-
hertz detection. Second, if the near-IR probe laser pulse is too broad in the time
domain then the probe spectrum EIR(ω) will be narrow and the autocorrelation
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∫
E∗IR(ω)EIR(ω − Ω)dω will be strongly frequency dependent. Third, the signal S(τ)

can be distorted by the frequency dependent nonlinearity χ
(2)
eff (ω) and strong tera-

hertz absorption in the crystal, which is especially strong near resonance frequencies
of the noncentrosymmetric crystal in the terahertz region. Since the slowly varying
envelope approximation ∆ω � ω0 is valid, S(τ) simplifies to

S(τ) ∝ 1

c

∫ ∞
−∞

ẼTHz(Ω)P (Ω, ω0)C(Ω)e−iΩτdΩ, (A.15)

where C(Ω) =
∫
E∗IR(ω)EIR(ω − Ω)dω is the autocorrelation of the near-IR probe

pulse and P (Ω, ω0) is a phase mismatch function. In the limit Ω � ∆ω the auto-
correlation C(Ω) has little effect and P (Ω, ω0) contains all experimental sources of
phase mismatch and distortions. Thus, in order to optimize the filter function, a
noncentrosymmetric crystal with dimensions close to Lc, as short of a near-IR pulse
as possible, and a crystal with optical phonons at as high as frequency as possible are
necessary.

The frequency spectrum ẼTHz(Ω) appearing in the function S(τ) is the terahertz
field incident on the crystal and is affected by the Fresnel transmission coefficient at
the front interface of the crystal,

ẼTHz(Ω) = t̃12Ẽ0,THz(Ω).

The effect of the Fresnel coefficients of the crystal are eliminated by considering the
transfer function t̃(Ω) between a sample and reference measurement,

t̃(Ω) =
t̃12Ẽ

sample
0,THz (Ω)

t̃12Ẽ
ref
0,THz(Ω)

=
Ẽsample

THz (Ω)

Ẽref
THz(Ω)

(A.16)

A photodiode converts the optical signal S(τ) into an electronic signal that is
read out by a data acquisition unit. Since the electrooptic effect results in the phase
retardation given by Eq. A.13 between orthogonal polarization components of the
near-IR probe beam, a linearly polarized probe pulse becomes elliptically polarized
by an amount proportional to the amplitude of the terahertz electric field. As depicted
by the experimental schematic shown in Fig. 3.7, after the electrooptic crystal the
probe pulse passes through a λ/4 wave plate and a polarizing beam splitter before
illuminating the photodiode. The λ/4 wave plate rotates the polarization of the
probe beam such that it is nearly circularly polarized; in the absence of a terahertz
electric field in the electrooptic crystal the probe pulse illuminating the photodiode
is exactly circularly polarized, while the presence of a terahertz electric field results
in a small perturbation from circular polarization whose sign is given by the sign of
the terahertz field. Thus, the signal is read out electronically as the intensity change
of the orthogonal polarization component of the probe laser on the photodiode.

Equation A.15 for electrooptic detection of terahertz pulses in noncentrosymmetric
crystals corresponds to Eq. A.10 for terahertz detection in photoconductive antennas.
Ultimately, the more optimum detection scheme depends on the relative difference be-
tween the efficiency of the phase mismatch P (Ω, ω0) for electrooptic detection and the
spectral sensitivity I(Ω)R(Ω) for photoconductive antennas. Given the advantages of
second-order nonlinear effects in GaP (ie, good phase matching in the terahertz regime
and the lowest optical phonon at 11 THz), electrooptic detection is usually a better
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option for terahertz detection at frequencies below ∼7-8 THz than photoconductive
antennas. Indeed, most TTDS setups utilize electrooptic detection irrespective of the
chosen generation scheme.

A.4 Negative Dispersion Mirror Pairs

As illustrated in Fig. A.1, one of the most effective methods to increase the terahertz
spectral bandwidth and power output of a photoconductive antenna is to reduce the
full-width at half-maximum τL of the pump laser pulse. A short τL also gives a
probe pulse that better approximates a Dirac delta function in electrooptic detection,
which results in an electrooptic signal S(τ) with a finer time resolution. The TTDS
spectrometer therefore operates at optimum efficiency when τL is at its minimum
possible value and the pump and probe laser pulses are transform limited. When
this occurs the time-bandwidth product τL∆ω is also at its minumum value. This
condition in turn requires a frequency-independent spectral phase—meaning that
there is no dispersion of the laser pulses and all frequency components in the pulse
trains travel together and arrive at the same time. Unfortunately, dispersion present
in the optical elements, atmosphere, and laser cavity itself gives rise to time-dependent
spectral phase that creates complicated temporal structure in the pulse electric field
profiles. The details of the femtosecond laser pulse propagation in the spectrometer
therefore must be taken into consideration and accounted for in the spectrometer
design.

The electric field of a femtosecond laser pulse is a complex quantity and so can
be expressed as [333]

Ẽ(t) = E(t)eiφ(t)eiωlt, (A.17)

where ωl is the carrier frequency (central laser frequency) and E(t)eiφ(t) is a com-
plex envelope function with a time-dependent phase φ(t). At any given time, the
instantaneous carrier frequency is then

ω′l(t) = ωl +
d

dt
φ(t). (A.18)

For constant dφ/dt the carrier frequency is simply shifted by a constant value, but
for dφ/dt = f(t) the carrier frequency is time dependent and the pulse is said to be
chirped. The simplest case of chirp, then, is for constant d2φ/dt2. When d2φ/dt2 < 0
the carrier frequency decreases along the pulse and the pulse is “down chirped.”
Similarly, d2φ/dt2 > 0 implies that the carrier frequency increases along the pulse
and the pulse is “up chirped.”

According to Huygens’ principle, every point on a wavefront is itself a source of
spherical wavelets and the propagation of a light beam can be described by considering
the constructive and destructive interference of all wavelets. A spherical wavefront is
approximated by a quadratic phase φ(x) ∝ x2, where x is the direction orthogonal
to any arbitrary propagation axis. A quadratic phase modulation therefore implies
focusing or defocusing of the light ray and vice versa. The analog in the temporal
coordinate is also true: φ(t) ∝ t2, and imparting a quadratic phase modulation in
time leads to either pulse compression or broadening in time. Thus, pulse propagation
through a dispersive medium inherently leads to pulse broadening. The wavevector



A.4 Negative Dispersion Mirror Pairs 139

of the pulse in such a medium can be approximated by

k(ω) =
ω

c
n(ω) ≈ k(ωl) + (ω − ωl)

dk

dω

∣∣∣∣
ωl

+
1

2
(ω − ωl)2 d

2k

dω2

∣∣∣∣
ωl

, (A.19)

where k(ωl) is the wavevector of the carrier frequency. The term proportional to the
first frequency derivative of k gives the group velocity vg, defined as

vg =

(
dk

dω

∣∣∣∣
ωl

)−1

, (A.20)

and corresponds to the propagation velocity of the wave packet. The third term on
the right-hand side of Eq. A.19 is the correction to the wavevector caused by the group
velocity dispersion (GVD). GVD is defined simply as d2k/dω2|ωl

and characterizes
the amount of chirp present in the pulse, usually given in units of with units fs2/m.
A second convenient way to express GVD is in terms of the group velocity and
wavelength λ as

dvg
dλ

=
ω2vg

2

2πc

d2k

dω2
. (A.21)

In this form it is evident that positive GVD gives rise to up chirp while negative GVD
gives down chirp.

A closely related quantity to GVD is the group delay dispersion (GDD). Following
from the Fourier transform of Eq. A.17, the spectral phase of the wave packet can be
expressed as

φ(ω) ≈ φ(ωl) + (ω − ωl)
dφ

dω

∣∣∣∣
ωl

+
1

2
(ω − ωl)2 d

2φ

dω2

∣∣∣∣
ωl

. (A.22)

Here, dφ/dω|ωl
is the group delay, which describes how phases of different frequencies

are delayed differently in time. The GDD is given by d2φ/dω2|ωl
and is equivalent to

the GVD of the pulse after propagation over a distance L. Since the units of GDD
are fs2, GVD is the GDD per unit length.

Most common materials have positive GVD at optical wavelengths so femtosecond
laser pulses naturally tend to broaden and chirp as they propagate through a spec-
trometer aparatus. The GVD of air at 1 bar of pressure, for example, is 20 fs2/m [334].
As a result, compensators or pulse compressors that introduce negative GDD are re-
quired to maintain transform limited pulse shapes. The most convenient way to do
this is by using chirped mirrors: positive GDD acquired in the spectrometer elements
is compensated by bouncing the laser pulses on multilayer mirrors that have been
designed with predefined reflection and phase behavior, r̃(ω) = R(ω)eiψ(ω). This is
accomplished by optimizing the thicknesses and orders of various layers with different
indices of refraction. Typically, stacks of alternating high and low index quarter-wave
layers are used and reflect a very narrow band of frequencies with a very high re-
flectivity; a series of stacks corresponding to a series of narrow frequency bands are
used together to obtain high reflectivity over a broader frequency range. Stacks are
placed at different depths underneath the surface of the mirror to allow different fre-
quencies to reflect with different phase accumulations. To achieve negative GDD, the
different stacks are ordered such that layers corresponding to lower frequencies are
located deeper underneath the mirror surface, while thinner layers that reflect higher
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frequencies are located at shallower depths. Subresonances between the various layers
and the air-film interface produce modulations of the GDD as a function of frequency.
Smoother dispersion curves are therefore obtained by employing chirped mirror pairs,
with the GDD of each mirror designed to modulate in antiphase to the other.

Diagnostics are performed using pulse analyzers in order to optimize the GDD of
the pulse compressor and monitor the spatial, temporal, spectral, and phase distri-
butions of the resulting femtosecond laser pulses. Autocorrelators are often used for
this purpose. However, autocorrelators are generally not frequency or phase resolved
and the autocorrelation procedure averages out fine structure in the pulse—the time
resolution is comparable to the laser pulse duration τL. As a result, the extracted
temporal and spectral widths may be significantly different from their true values and
even sometimes smaller than allowed by the minimum value of the time-bandwidth
product. A more robust method of femtosecond pulse analysis is provided by the fre-
quency resolved optical gating (FROG) technique, which is simultaneously spectrally,
temporally, spatially, and phase resolved [335]. A very simple modern implementa-
tion of the FROG technique with only four fixed optical elements is known as the
GRENOUILLE; it uses a cylindrical lens and a Fresnel biprism (a triangluar prism
with apex angle ∼180◦) to first focus the femtosecond laser pulse into a horizontal
line, and then optically gate the pulse with itself by crossing the left and right halves
onto each other. The Fresnel biprism crosses the two halves of the pulse in a nonlinear
second-harmonic generation crystal. The relative arrival times of the left and right
halves of the pulse depend on the transverse horizontal position in the crystal, so after
imaging the second harmonic signal onto a camera the horizontal axis corresponds
to the temporally resolved measurement of the laser pulse. Since the cylindrical lens
focuses the laser beam in the transverse vertical direction with a large focusing angle
(low f -number) and the second-harmonic generation crystal is thick, the second har-
monic signal is emitted in a vertical fan with the frequency of the second harmonic
being a near-linear function of emission angle. Thus, the vertical dimension of the
image on the camera corresponds to the spectrally resolved measurement of the pulse.
The strength of the GRENOUILLE is that the Fresnel biprism allows each laser pulse
to measure itself with a temporal and spectral resolution much higher than is possi-
ble in an autocorrelator, and it can be set up in a single-shot configuration to obtain
time and frequency resolved traces of individual pulses. Furthermore, the simulta-
neous measurement of the time and frequency dependence allows the temporal and
spectral phase to be extracted and the spatial profile of the pulses to be retrieved.

The negative dispersion chirped mirror pairs used in the TTDS setup employed
in this work were Laser Quantum DCM11 mirrors with reflectivity R ≈ 99.8% and
dimensions 35× 20× 10 mm, designed to provide −150 fs2 GDD per pair of bounces
at λ = 796 nm with an angle of incidence of ∼7◦. It was found that 9 bounce
pairs were necessary for both the pump (slave) and probe (master) lasers to achieve
optimum terahertz pulse generation and electrooptic detection. Figure A.2 displays
typical time, frequency, and position resolved traces of the laser pulses both with
and without use of the negative GDD mirror pairs, obtained from pulse diagnostics
performed with a Swamp Optics GRENOUILLE pulse analyzer. Due to the symmetry
of the pulse analyzer the time axes of the traces run such that positive time values
coorrespond to earlier arrival times while negative values correspond to later arrival
times. It is evident that without the negative GDD mirror pairs the laser pulse is
broad (τL = 157 fs) and significantly chirped, with longer wavelengths arriving earlier
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Figure A.2 Time and position resolved FROG intensity traces of a femtosecond laser
pulse (a) without pulse compression and (b) with pulse compression after 9 round trips in a
negative dispersion mirror pair with −150 fs2 GDD per round trip. The color coding corre-
sponds to the time-dependent wavelength of the femtosecond pulse, with red corresponding
to short wavelengths and blue corresponding to long wavelengths. The central wavelength
of the laser pulse is 796 nm with ∆λ = 24 nm. It is evident that without pulse compression
the laser pulse exhibits a broad temporal profile (τL = 157 fs), significant time-dependent
structure, and chirping, with high frequences appearing at earlier times and low frequences
at later times. After pulse compression τL = 43 fs with all wavelengths in phase.

and shorter wavelengths arriving later, as in Fig. A.2(a). Furthermore, the pulse
displays complicated temporal structure and modulations of intensity. Such a laser
pulse is generally too broad with too low peak intensity to excite usable terahertz
transients in the TeraSED photoconductive antenna. With the negative GDD mirror
pairs, on the other hand, a nearly transform limited pulse is obtained with τL = 43
fs and all spectral components in phase, as illustrated in Fig. A.2(b). In both traces
the spectral bandwidth was measured to be ∆λ = 24 nm. The above values of τL
can be contrasted with the pulse durations τAC obtained by autocorrelation of the
same pulses. The pulse in Fig. A.2(a) has an autocorrelation width τAC = 196 fs and
the pulse in Fig. A.2(b) has τAC = 73 fs, illustrating the large degree of uncertainty
present in autocorrelator measurements of femtosecond laser pulses.

A.5 Off-Axis Parabolic Mirrors

Special terahertz optics are used to focus the terahertz transients onto the sample
and detector element. Focusing mirrors are used rather than dispersive optics such
as lenses because mirrors are free from chromatic abberation and pulse broadening
(chirp), and they can be designed to have high reflectivity across a very wide spectral
bandwidth. It is therefore possible to align mirrors with a different wavelength of
light than is used for measurements—a distinct advantage when working in spectral
ranges far outside the visible range. Parabolic mirrors are the most common mirror
type employed in TTDS setups in order to avoid errors caused by sperical abberations.
When collimated light is incident on a parabolic mirror the parabolic surface focuses
the light into a single point without phase distortion of the spatial components. The
converse is also true. Light reflected from a point source located at the focal point of
a parabolic mirror is collimated into a beam with flat wavefronts.

An off-axis parabolic mirror is a segment of a parent parabola that shares the
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main optical axis with the parent, but which is offset from the axis by a distance
such that the collimated light is focused along a predefined angle with respect to the
main optical axis. Since the off-axis parabola does not form a full surface of revolution
about the main optical axis, the reflected wavefront is not symmetric. The asymmetry
is compensated by utilizing pairs of identical off-axis parabolic mirrors arranged in
a symmetric geometry. As depicted in Fig. 3.7, four 90◦ off-axis parabolic mirrors
were used in the TTDS setup employed in this work, with the first and last mirrors
having an effective focal length of 50.8 mm and the two middle mirrors (which focus
the terahertz beam onto the sample) having a longer effective focal length of 101.6
mm to accommodate the dimensions of the optical cryostat. All four mirrors had a
circular cross-section perpendicular to the main optical axis with a diameter of 2 in.

The propagation of terahertz waves in the spectrometer is described in the paraxial
approximation by Gaussian beam dynamics, where the transverse width w(z) of a
beam propagating in the z direction is given by [333]

w(z) = w0

√
1 +

(
λz

nπw0
2

)2

. (A.23)

Here, w0 is the transverse radius of the beam at the focus, n is the index of refraction
of the medium, and 2nπw0

2/λ is the confocal parameter (or depth of focus). As a
result of Eq. A.23, the Gaussian terahertz beam spreads hyperbolically in the trans-
verse direction with increasing propagation distance z with the cone opening angle
asymptotically approaching θ = 4λ/2πw0. The cone can be re-collimated with a fo-
cusing element of f -number f/D, where f is the focal length and D is the diameter of
the element. For such an optical element the full focusing angle is given by θ = D/f ,
so the diameter of the beam waist is

2w0 =
4λ

nπ

f

D
(A.24)

with depth of focus

DOF =
8λ

nπ

(
f

D

)2

. (A.25)

This gives a beam diameter of ∼0.8 mm at the focal point with a depth of focus of
∼3 mm at 1 THz for a beam propagating in air, focused by optics with an f -number
of 2. For 0.3 THz, the beam diameter is ∼2.5 mm at the focus with a depth of focus
of ∼10 mm. The f -number of the focusing optics and the diameter of the aperture
used to mount the sample therefore act to limit the lower bound on the spectral
bandwidth of the TTDS system. If the f -number of the focusing optics is not low
enough or the diameter of the aperture not large enough then significant distortions
in both the time-domain and frequency-domain signals can occur due to diffraction at
the aperture edges. Furthermore, the tendency of a Gaussian beam to spread in the
transverse direction as it propagates implies that an “8f” optical geometry is needed
to achieve a frequency independent focal spot [336]. The 8f geometry is constructed
so that the distance between the antenna and first off-axis parabolic mirror is f , the
distance between the first and second mirrors is 2f , the distance between the second
mirror and the sample is f , and the geometry is exactly inverted after the sample as
illustrated in Fig. 3.7. The 2f spacing in the portions of the spectrometer where the
terahertz beam is collimated is particularly important, as it exactly compensates for
the spatial Gaussian beam distortion that is acquired during propagation.
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The wide emission angle of the photoconductive antenna and the need for a small
focal spot require the f -number of the spectrometer to be minimized to the lowest
possible value. For TTDS systems that incorporate optical cryostats this can pose
a challenge, especially for systems that are built around magneto-optical cryostats,
because the dimensions of the optical windows and magnets can strongly limit the
maximum focusing cone angle θ. For a full description of the alignment procedure of
off-axis parabolic mirrors, see Appendix B.

A.6 Dry Nitrogen Purge Box

An additional consideration related to the detection of terahertz pulses is the absorp-
tion of terahertz radiation by water vapor in the atmosphere. There are 9 distinct
absorption lines of water below 1.5 THz with a very strong absorption line at 1.7
THz [337]. Furthermore, water vapor in the atmosphere can reduce transmission by
30–50% in the spectral range 0.1–3 THz, with transmission decreasing more sharply
above 1 THz [338]. Considerable absorption begins to appear at relative humidity
values of just 10% and beam path lengths of 2 meters.

To compensate for these atmospheric effects it is necessary to perform terahertz
generation, measurement, and detection in a closed box that is purged of water vapor
by the use of an inert gas. Dry nitrogen is often the best choice because its use
does not significantly alter the index of refraction of the measurement environment
while also being easily available from either a laboratory pressurized gas network or
as boil-off from liquid nitrogen dewars. The most common setup is a plexiglas box
of horizontal dimensions ∼1 × 1 m2 with walls and a top that clip into place or are
otherwise easily removable to allow for unrestricted access to the optical components
inside. Dry nitrogen gas is then fed into the box through a hose and a humidity
sensor is placed inside to monitor the water vapor levels. Small holes are drilled into
the walls of the plexiglas box to allow the pump and detection laser beams to pass
through. Small glass windows with antireflection coatings may be used to seal the
laser holes, but if the nitrogen pressure inside the box is kept slightly higher than the
ambient laboratory pressure then this is usually not necessary.

A.7 Liquid Helium Bath Cryostat and Sample

Insert

A CryoVac Konti Type Spektro 4 liquid helium bath optical cryostat is used for
low temperature measurements. The cryostat is capable of reaching temperatures
of 4.2 K without and 2.6 K with vacuum pumping on the sample chamber. Optical
measurements along two perpendicular axes are possible via a set of four windows at
the sample chamber; one pair of these windows on the outer cryostat wall was replaced
with 125 µm thick Mylar to optimize terahertz transmission and minimize internal
reflections within the window material. All four windows on the inner cryostat wall
were similarly replaced with 100 µm thick polypropylene (PP) foil. The cryostat
itself was mounted on a traveling nonmagnetic scaffold on the optical table to allow
translation in the xy plane. Motion in the z (vertical) direction was enabled by a
manual mechanical corkscrew elevator. Rotation about the z axis was also possible
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Figure A.3 A schematic of the custom-built cryostat insert used in this work. (a) An
overview of the full sample stick. A spring at the top of the stick is used to ensure contact
between the bottom of the stick and bottom of the cryostat sample chamber at all temper-
atures. (b) A view of the sample housing. The housing was machined from large pieces of
copper in order to provide temperature stability. A temperature sensor was mounted in a
small grove on this housing beneath the brass sample frame. (c) A cutaway schematic of the
movement mechanism for the brass sample holder. (d) The brass frame and interchangeable
brass aperture.

by mounting the cryostat on a large ring bearing.
The sample insert was custom-built in house based on previous designs used for

submillimeter quasioptical interferometry. We discovered that the previously used
sample stick setup, which employed three separate aperatures to which samples could
be mounted, was highly susceptible to systematic errors in the TTDS data. The old
sample stick was operated by changing the vertical position of the entire stick between
sample and reference measurements, but this procedure led to interference problems
due to inequivalent diffraction patterns of the individual apertures caused by small
differences in their shapes. We resolved this problem by designing the sample insert
depicted in Fig. A.3. This sample insert features a single fixed aperture with a movable
frame to which the samples are mounted. A spring located at the top of the insert
stick ensures that the bottom of the stick remains firmly in contact with the bottom
of the cryostat sample chamber at all temperatures to avoid inadvertent motion of the
aperture position as the length of the insert expands and contracts. The samples are
mounted onto a thin sheet of Mylar with GE varnish, which is held tightly in place
by the brass frame. This frame can be moved vertically with a narrow adjustment
rod in order to alternate between sample and reference measurements. The aperture
is machined into an interchangeable piece of copper and is designed to make contact
with the back side of the Mylar sheet. Several apertures with diameters ranging from
1–10 mm mere made.
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How to Align Off-Axis Parabolic
Mirrors

Proper alignment of the off-axis parabolic mirrors (OAPs) is essential to obtaining a
high signal-to-noise ratio of the terahertz signal with minimal distortions and abber-
ations. The alignment can be performed in two different ways, using either the pump
and probe laser beams or an additional HeNe guide laser that is co-aligned with the
pump and probe beam paths. Regardless of alignment method, the initial step is to
roughly mark the correct positions of the mirrors on the optical table based on their
effective focal lengths and the desired location of the sample position. Optical com-
ponent mounting tracks should then be placed on the optical table over the planned
mirror positions to allow for gross adjustment of the mirror locations as well as easier
placement of components such as focusing lenses, antennas, and wave plates. Align-
ment is often much easier if the mounting tracks are laid parallel to the pump and
probe laser beams and the OAP-sample-OAP axis. Every OAP should be mounted
on compact x-y translation stages as well as a clamp to allow easy attachment to the
mounting rails.

To align the off-axis parabolic mirrors using the pump and probe lasers:

1. Begin by carefully aligning both the probe and laser beams to enter the purge
box at the proper beam height and along the desired propagation axes. This is
done by placing two identical irises for each beam near where the beams enter
the purge box and close to the far wall of the purge box. The beams are aligned
when they propagate through the centers of both irises. Adjust the alignment
of each beam using two steering mirrors placed prior to the first iris. Often
times, incorrect initial alignment of the incoming pump and probe laser beams
is the largest contributing factor to OAP misalignment and distortions in the
measured terahertz transients.

2. Starting from the generation end of the terahertz beam path, place the first OAP
in the marked position. Carefully adjust its vertical position so that the height
of the center of the mirror is exactly at the intended beam height. Likewise,
adjust the rotation of the mirror about its axis so that the plane formed by the
axial direction and the focal direction is parallel to the surface of the optical
table. This step should be repeated for each additional mirror after it has been
placed on the optical table.
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3. Use the pump laser beam to align the correct orientation of the first OAP. Use a
beam alignment “template” that has a circle of the same diameter as the OAP
centered about a crosshair drawn on a card or solid plate. Place this template
near the far edge of the optical table (as far from the OAP as possible) such
that the crosshair is located at the correct beam height and horizontal postion.
Next, place an iris at the intended position of the second OAP. Adjust the x-y
position and tilt degrees of freedom of the first OAP until the pump laser beam
passes through the center of the iris and the crosshair on the template.

4. Place a thin paper card at the focus of the first OAP, in the location of the
antenna. When the pump laser is focused onto this card, it will diffuse the laser
light in the fashion of a point source and can be used to align the focal position
of the OAPs. Remove the iris at the intended location of the second OAP and
adjust the x-y position and tilt degrees of freedom of the first OAP until the
image of the diffused laser beam appears exactly within the drawn circle on
the template, without ellipsoidal distortions. The position of the card along
the pump laser propagation axis can also be used as an adjustment degree of
freedom.

5. Remove the paper card and replace the iris at the intended position of the second
OAP. Repeat alignment of the OAP orientation direction by aligning the pump
laser to once again pass through the center of the iris and the crosshair on the
template. After the beam is realigned, repeat the sequence of aligning the point
source image with the paper card in place and aligning the beam without the
paper card several times. The OAP is properly aligned when both the laser
beam on the crosshair and focal image within the circle are simultaneously
aligned without any additional adjustment needed.

6. Place the second OAP, and place one iris at the location of its focus (the sample
location) and another iris at least 40–50 cm beyond the location of the focus.
Use these two irises to adjust the correct orientation of the second OAP by
ensuring the laser beam passes through both when the paper card is removed.
Use only the x-y position and tilt degrees of freedom of the second OAP for these
adjustments. Next, place the paper card back and make further adjustments
of the second OAP to make sure the image of the diffused laser beam forms
a circular spot of the same diameter as the mirror at the intended location of
the third OAP. The diffused laser beam should also be able to pass through
a small iris aperture of diameter no more than 1–2 mm at the focus position
without beam clipping. The diffused beam should also be circular in shape with
minimal elliptical distortions on either side of the focus (this can be checked by
holding a white paper card in the beam path). As with the first OAP, alternate
adjustments with and without the card in place until both the collimated laser
beam and the diffused laser image are both aligned.

7. Place the third OAP and one iris at the intended position of the fourth OAP
with the alignment template behind. Again, adjust the x-y position and tilt
degrees of freedom of only the third OAP until the collimated laser beam passes
through the iris and the center of the crosshair without the paper card in place.
Put the paper card back in place and make further adjustments of the fourth
OAP until the diffused laser spot is circular and fills the template without any
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elliptical distortions. At this point, because only three mirrors have been placed
and the optical beam path is so far asymmetric, one side of the diffused laser
spot may be brighter than the other side. This is not a problem provided the
spot is symmetrically shaped.

8. Put the fourth OAP in place. This OAP will have a hole drilled through its
center to allow the probe laser beam to pass through. First, adjust the x-y
position of the OAP until the probe beam can freely pass without clipping (the
z position should already have been fixed to match the beam height). Second,
place an iris at the focal position, at the intended location of the detector, and
a second iris further along the beam path. As with the other OAPs, align the
mirror orientation by ensuring the collimated laser beam passes through both
irises without the paper card in place. Place the card back and use the x-y
position and tilt degrees of freedom to align the diffused laser spot so that it
focuses onto the center of the iris. Check that the beam spot is circular both in
front and behind the iris.

9. Ensure that the probe laser beam focuses onto the same spot as the fourth OAP.
The focusing lens may have to be adjusted by a minor amount.

10. Remove the paper card from in front of the first OAP and place the photocon-
ductive antenna. The antenna should be mounted on an x-y translation stage.
Adjust the position of the antenna so that it is located at the focus of the OAP;
keep in mind that due to refraction at the semiconductor substrate-to-air inter-
face the apparent location of the terahertz point source will be located slightly
in front of the dipole, so the antenna will have to be moved slightly closer to
the first OAP.

11. Place the GaP detector crystal at the focus after the fourth OAP. The crystal
should be mounted on an x-y translation stage. The angle of the crystal surface
with respect to the incident pump beam is highly sensitive. Orient the crystal
such that it is ∼1–2◦ off from perfect normal incidence. The crystal should
not be exactly at 90◦ incidence or the pump laser will be reflected backwards
through the system and re-enter the laser cavity.

12. Perform final adjustments of the terahertz signal. The goal is to increase the
measured terahertz signal intensity to its maximum possible value while simul-
taneously increasing the bandwidth of the measured spectrum. First, begin by
adjusting the x-y translation stage of the GaP detector crystal until the max-
imum signal intensity is found. Second, adjust the tilt degrees of freedom of
the final OAP to improve the overlap of the terahertz focus and the probe laser
focus on the detector crystal. Third, adjust the x-y translation stage of the
photoconductive antenna. Repeat this sequence of adjustments until the maxi-
mum terahertz signal is achieved. It is important at this stage to not adjust the
first three OAPs or the terahertz beam focused on the sample and the detector
crystal will contain significant distortions.

Alignment of the OAPs using a HeNe guide laser follows many of the same steps as the
previous method. However, instead of using the pump and probe lasers themselves,
a continuous wave HeNe pointer has to be aligned such that its beam co-propagates
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with the pump and probe lasers. Performing the initial alignment of the HeNe laser
is nontrivial and a large source of error, but the technique offers the advantage of pro-
viding phase information via shear-plate interferometery, which allows flat terahertz
wave fronts to be obtained with greater precision and control. To align the off-axis
parabolic mirrors using HeNe guide lasers and shear-plate interferometer:

1. Carefully align the HeNe guide laser to accurately co-propagate with the pump
and probe lasers.

2. Place the OAPs as described above. Instead of using a paper card at the
intended location of the antenna, however, use a small pinhole. In this way
coherent radiation can be obtained from the effective point source, which is not
possible with a paper diffuser card. Align the OAPs as described above.

3. After placing and aligning each OAP, check the alignment with the shear-plate
interferometer. The mirrors are correctly aligned with flat wave fronts when
the interference fringes appearing in the viewing window of the shear-plate
interferometer are straight and parallel to the reference line.

4. Place the photoconductive antenna and detector crystal and adjust their align-
ment as described above.



Bibliography

[1] B. Keimer and J. E. Moore, “The physics of quantum materials,” Nature
Physics, vol. 13, no. 11, pp. 1045–1055, 2017.

[2] J. G. Bednorz and K. A. Müller, “Possible High Tc Superconductivity in the
Ba-La-Cu-O System,” Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2,
pp. 189–193, 1986.

[3] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, “From
quantum matter to high-temperature superconductivity in copper oxides,” Na-
ture, vol. 518, pp. 179–186, 2015.

[4] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, “Colloquium: Theory of
intertwined orders in high temperature superconductors,” Reviews of Modern
Physics, vol. 87, no. 2, pp. 457–482, 2015.

[5] R. E. Glover III and M. Tinkham, “Transmission of Superconducting Films at
Millimeter-Microwave and Far Infrared Frequencies,” Physical Review, vol. 104,
no. 3, p. 844, 1956.

[6] R. E. Glover III and M. Tinkham, “Conductivity of Superconducting Films for
Photon Energies between 0.3 and 40kTc,” Physical Review, vol. 108, no. 2, p.
243, 1957.

[7] M. Tinkham and R. A. Ferrell, “Determination of the superconducting skin
depth from the energy gap and sum rule,” Physical Review Letters, vol. 2, pp.
331–333, 1959.

[8] M. Tinkham, Introduction to Superconductivity, 2nd ed. Mineola, NY: Dover
Publications, Inc., 2004.

[9] D. N. Basov, R. D. Averitt, D. Van Der Marel, M. Dressel, and K. Haule,
“Electrodynamics of correlated electron materials,” Reviews of Modern Physics,
vol. 83, no. 2, pp. 471–541, 2011.

[10] P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging
– Modern techniques and applications,” Laser Photonics Reviews, vol. 5, no. 1,
pp. 124–166, 2011.

[11] D. G. Schlom, “Perspective: Oxide molecular-beam epitaxy rocks!” APL Ma-
terials, vol. 3, no. 6, p. 062403, 2015.



150 BIBLIOGRAPHY

[12] J. E. Hirsch, “Apparent violation of the conductivity sum rule in certain su-
perconductors,” Physica C: Superconductivity, vol. 199, no. 3-4, pp. 305–310,
1992.

[13] J. E. Hirsch and F. Marsiglio, “Optical sum rule violation, superfluid weight,
and condensation energy in the cuprates,” Physical Review B, vol. 62, no. 22,
pp. 15 131–15 150, 2000.

[14] H. J. A. Molegraaf, C. Presura, D. Van Der Marel, P. H. Kes, and
M. Li, “Superconductivity-Induced Transfer of In-Plane Spectral Weight in
Bi2Sr2CaCu2O8+δ,” Science, vol. 295, no. 5563, pp. 2239–2241, 2002.

[15] A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, Z. Konstantinovic,
Z. Z. Li, and H. Raffy, “Pairing in cuprates from high-energy electronic states,”
Europhysics Letters, vol. 62, no. 4, p. 568, 2003.

[16] A. V. Boris, N. N. Kovaleva, O. V. Dolgov, T. Holden, C. T. Lin, B. Keimer,
and C. Bernhard, “In-Plane Spectral Weight Shift of Charge Carriers in
YBa2Cu3O6.9,” Science, vol. 304, no. 5671, pp. 708–710, 2004.

[17] S. Maiti and A. V. Chubukov, “Optical integral and sum-rule violation in high-
Tc superconductors,” Physical Review B, vol. 81, no. 24, p. 245111, 2010.

[18] M. B. Salamon, J. Shi, N. Overend, and M. A. Howson, “XY -like critical behav-
ior of the thermodynamic and transport properties of YBa2Cu3O7–x in magnetic
fields near Tc,” Physical Review B, vol. 47, no. 9, pp. 5520–5523, 1993.

[19] S. Kamal, D. A. Bonn, N. Goldenfeld, P. J. Hirschfeld, R. Liang, and W. N.
Hardy, “Penetration Depth Measurements of 3D XY Critical Behavior in
YBa2Cu3O6.95 Crystals,” Physical Review Letters, vol. 73, pp. 1845–1848, 1994.

[20] J. Yong, M. J. Hinton, A. McCray, M. Randeria, M. Naamneh, A. Kanigel,
and T. R. Lemberger, “Evidence of two-dimensional quantum critical behavior
in the superfluid density of extremely underdoped Bi2Sr2CaCu2O8+δ,” Physical
Review B, vol. 85, no. 18, p. 180507, 2012.

[21] I. Hetel, T. Lemberger, and M. Randeria, “Quantum critical behaviour in the
superfluid density of strongly underdoped ultrathin copper oxide films,” Nature
Physics, vol. 3, pp. 700–702, 2007.

[22] D. M. Broun, W. A. Huttema, P. J. Turner, S. Özcan, B. Morgan, R. Liang,
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[179] J. Kötzler, D. Görlitz, S. Skwirblies, and A. Wriedt, “Loss of Superconducting
Phase Coherence in YBa2Cu3O7 Films: Vortex-Loop Unbinding and Kosterlitz-
Thouless Phenomena,” Physical Review Letters, vol. 87, no. 12, p. 127005, 2001.



BIBLIOGRAPHY 163
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Springer-Verlag, 1998, ch. 5, pp. 169–220.

[225] Y. N. Pchelnikov, “Old Know-How in Helix TWT Development in the USSR,”
AIP Conference Proceedings, vol. 691, pp. 112–122, 2003.
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Zimmermann for helping me with the German language version of the abstract.

There are also a number of people within the Institute but external to the De-
partment of Solid State Spectroscopy who have helped to make my time in Stuttgart
both possible and enjoyable. Many thanks to Dirk Manske, Peter Specht, Birgit
King, Frank Gottschalk, Michael Eppard, Florian Pasler, Dominik Böttcher, and
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