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1 Introduction

In solid state physics the energy dispersion of the electrons is described by the band
structure of the solid. When an electron is excited from a valence band into a conduction
band it creates an unoccupied state in the valence band which is commonly known as a
hole and can be treated as a positively charged quasi particle. Instead of considering
all the interactions of the excited electron with the electrons remaining in the valence
bands one can equivalently consider only the interaction between the excited electron
and the hole. With the Coulomb attraction between those two they can form bound
states which are called excitons. This suggests a simple description in analogy to the
hydrogen atom which is a good approximation under certain conditions, for example a
sufficiently large extension of the exciton such that the crystal background can be treated
as a continuum.

In this thesis we consider excitons in cuprous oxide (Cu2O) which can be described as
a hydrogen-like system in a first approximation. Depending on the valence bands and
conduction bands involved one can distinguish between different exciton series which are
named after the corresponding color of light needed for their excitation. The two series
with the lowest excitation energies are therefore called yellow and green series. The yellow
series with lowest excitation energy has been investigated intensely in experiments and a
hydrogen-like exciton spectrum could be observed [1–3]. However also deviations from
the hydrogen-like behavior have been found which are visible as a fine-structure splitting
in the spectrum [3]. Theoretical investigations could attribute those deviations mainly
to the complex band structure of cuprous oxide [4–6]. For a more complete theoretical
description of the yellow excitons a present coupling of the yellow and green series has to
be taken into account [7]. Therefore the valence bands involved in the green series have
to be included. This can be achieved by the introduction of a quasi-spin which couples
with the hole spin. The coupling strength of the two series is controlled by the spin-orbit
coupling constant ∆. Its value is given by the separation between the valence bands
involved in the two series at the Γ point.

In 2014 highly excited yellow exciton states with a principal quantum number of up
to n = 25 could be observe by T. Kazimierczuk et al. in experiments [2]. For those
large quantum numbers the correspondence principle becomes applicable and a classical
or semiclassical treatment should be possible. In this thesis we want to investigate
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1 Introduction

connections between the quantum mechanical spectrum and the associated classical
dynamics of the yellow excitons. We include the complex valence band structure involved
in the yellow and green series and therefore account for the deviations from a hydrogen-like
behavior. Numerical calculation of the quantum mechanical exciton spectrum requires
the diagonalization of a Hamiltonian using a large but truncated basis set. Although
the agreement to experiments is very good [7], those calculations do not provide direct
information about the associated classical exciton dynamics. For hydrogen-like systems
classical orbits forming Kepler ellipses are connected to the Rydberg spectrum by the
Bohr-Sommerfeld model. The classical phase space structure is not changing with energy
as all bound states can be connected to classical elliptic Kepler orbits. This is not the
case for excitons in Cu2O. The associated classical dynamics is different for every state in
the spectrum as the ratio between the corresponding energy and the spin-orbit coupling
constant ∆ varies. It is possible to avoid this energy dependence by scaling the coupling
constant ∆ with the energy such that the ratio between energy and the resulting scaled
coupling constant ∆̃ remains constant over the whole spectrum. This leads to a scaled
quantum spectrum. For every bound classical dynamics characterized by a given energy
there exists a corresponding scaled quantum spectrum.

A connection between the scaled quantum mechanical exciton spectra and classical exciton
dynamics is established by semiclassical trace formulas [8, 9]. They relate fluctuations
of the quantum density of states to a superposition of oscillations with frequencies
determined by the period or action of classical periodic orbits. Their amplitudes are
related to stability properties of the orbits. We therefore apply a Fourier transform and
a technique for high-resolution spectral analysis called harmonic inversion [10, 11] to
numerically calculated scaled quantum exciton spectra. The resulting quantum recurrence
spectra exhibit peaks at positions given by the action of classical periodic orbits of the
associated classical dynamics. Their contribution to the quantum spectra is given by the
amplitudes of the peaks.

By appropriately including the band structure of Cu2O it is possible to treat the excitons
classically [12–14]. With the application of semiclassical theories a semiclassical recurrence
spectrum can be obtained from parameters of numerically integrated classical periodic
orbits [14]. A comparison of the quantum and semiclassical recurrence spectra shows
very good agreement. This allows us to obtain information about the periodic orbits
(e.g. shape, action, stability, etc.) contributing to the scaled quantum spectra. This
thesis thus provides a deeper insight into the classical exciton dynamics in Cu2O and
the relation between the fine-structure splitting present in quantum spectra and the
associated classical dynamics.
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1.1 Structure of the Thesis

1.1 Structure of the Thesis

This thesis is organized as follows. In chapter 2 we discuss the theoretical foundations
and methods for a semiclassical interpretation of quantum spectra of excitons in cuprous
oxide. In section 2.1 we first give an overview of the semiconductor cuprous oxide. We
discuss its crystal structure, the resulting band structure and the quantum mechanical
and classical treatment of excitons in Cu2O. In section 2.2 we give an overview about
semiclassical theories and how they can be applied to excitons in cuprous oxide. In
section 2.3 we discuss the methods used to obtain the quantum mechanical spectra and
the corresponding recurrence spectra.

In chapter 3 we present our results. In section 3.1 we show and discuss the resulting
quantum spectra and corresponding recurrence spectra. In section 3.3 we give a brief
overview of the results for the classical dynamics. In section 3.3 we then discuss the
similar structures between the quantum and the semiclassical recurrence spectra.
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2 Theory and methodology

2.1 Excitons in cuprous oxide

Excitons are created by exciting an electron from the valence band into the conduction
band of a semiconductor. The missing electron can be treated as a positively charged
particle called hole. Due to the Coulomb attraction between the electron in the conduction
band and the hole in the valence band they can form a bound pair called an exciton. Its
energy lies below the gap energy. Depending on the strength of the Coulomb attraction
there are two limiting cases of strongly and weakly bound excitons. In the first case the
exciton is strongly localized at a lattice point and is called a Frenkel exciton [15, 16]. They
can be observed for example in ion crystals [17]. In the second case the extension of the
exciton is large compared to the lattice constant and is called a Wannier or Mott-Wannier
exciton [18]. The latter can be described as hydrogen-like states with a corresponding
Rydberg spectrum. This type of excitons can be observed in semiconducturs [17] such
as cuprous oxide (Cu2O). Excitons in Cu2O will be considered in this thesis and we
therefore will give a short introduction to this crystal.

Cuprous oxide is a red-colored crystal of high historical importance as the first observations
of excitons have been made in it in the 1950s [1]. The comparatively large Rydberg
energy of around 100 meV [2] results in a splitting of the energy levels which is in turn
comparatively easy to resolve in experiments. Thus even in the earliest experiments
excitons with a principal quantum number of up to n = 9 could be observed [1]. Advances
in experimental methods and tools made it possible to observe excitons up to a principal
quantum number of n = 25 with a corresponding spacial extension of the wave function
of around 2µm in 2014 [2]. For the observation of excitons crystals of high purity are
needed [19]. As of now those are only available from natural deposits and artificial
fabrication is a current field of research [20].
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2 Theory and methodology

Figure 2.1: Two possible choices of the unit cell of cuprous oxide. The oxygen atoms
(blue spheres) are arranged in a bcc lattice (left) and the copper atoms (red spheres) in
an fcc lattice (right) which are shifted against each other by 1/4 of the space diagonal.
The bonds are depicted as green lines.

2.1.1 Crystal structure

Cuprous oxide forms a primitive cubic Bravais lattice with lattice constant 0.427 nm [22].
The crystal structure is shown in fig. 2.1 and is created by two cubic lattices, an fcc
lattice of copper atoms and a bcc lattice of oxygen atoms, which are shifted against each
other by an amount of 1/4 of the space diagonal along the same one [2, 23]. Thus the
symmetries are captured by the space group O4

h in Schoenflies notation or P 42/n 3̄ 2/m
in Hermann–Mauguin notation with corresponding point group Oh. It consists of the
following symmetry operations and their equivalents:

• 42/n: rotation by 90◦ around the [001] axis, shift by 1/2 of the lattice vector and
glide translation along half a face diagonal

• 3̄: rotation by 120◦ around the [111] axis followed by a space inversion

• 2/m: rotation by 180◦ around the [011] axis followed by a reflection on the plane
perpendicular to the axis

The basis consists of two oxygen and four copper atoms. The symmetry operations of
the point group Oh which is the symmetry group of a cube are given in tab. 2.1.
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2.1 Excitons in cuprous oxide

Table 2.1: Symmetry operations of point group Oh. The prepended numbers count the
number of equivalent axes or planes [12, 21].

Symmetry operation Description
E Identity
8C3 three-fold rotations about the [111] axis and equivalents
3C2 two-fold rotations about the [001] axis and equivalents
6C4 four-fold rotations about the [001] axis and equivalents
6C2 two-fold rotations about the [011] axis and equivalents
I Inversion
8S6 Improper rotations about the [111] axis and equivalents
3σh Reflection in plane normal to the [001] axis and equivalents
6S4 Improper rotations about the [001] axis and equivalents
6σd Reflection in plane normal to the [011] axis and equivalents

2.1.2 Band structure

Cuprous oxide is a direct semiconductor with a band structure schematically shown in fig.
2.2. There are two excitations considered in this thesis called yellow and green series after
the corresponding colors of the light needed for their excitations [2]. The yellow series
corresponds to an excitation from the uppermost valence band to the lowest conduction
band. The green series corresponds to an excitation to the lowest conduction band from
one of the two valence bands which lie by an amount of ∆ lower than the uppermost
valence band. They coincide at k = 0, have different curvature and are therefore often
referred to as heavy hole and light hole band corresponding to the one with lower and
higher curvature, respectively. The one valence band and the two valence bands involved
in the yellow and green series, respectively, are each two-fold degenerate [5].

If the exciton wave function of a direct semiconductor extends over a large number of
unit cells the effective-mass approximation can be used as a first approximation if we
assume non-degenerate isotropic parabolic bands. The corresponding excitons are called
Wannier excitons [18]. The large extension of the wave function compared to the lattice
constant justifies the use of a static effective dielectric constant ε. The resulting effective
Hamiltonian for a series reads [24, 25]

H = Eg +
p2

e

2me

+
p2

h

2mh

+ V (|re − rh|) , (2.1)

with pe and ph the momenta operators of the electron and hole, their effective masses me

and mh and Eg the energy gap. V (|re − rh|) is the Coulomb potential which is screened
by the effective relative dielectric constant ε resulting from the remaining electrons in
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2 Theory and methodology
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Figure 2.2: Schematic representation
of the band structure of cuprous oxide
around the center of the Brillouin zone.
The lowest conduction band (CB) is sepa-
rated from the highest valence band (VB)
by the energy gap Eg. The uppermost
VB is separated to the two lower lying
ones by the spin-orbit coupling constant
∆. The two series shown are named after
the corresponding light needed for their
excitation.

the valence bands
V (|re − rh|) =

e2

4πε0ε|re − rh|
, (2.2)

with e the unit charge and ε0 the vacuum permittivity. If we introduce relative and
center of mass momenta and coordinates

r = re − rh , R = (mere +mhrh)/(me +mh) ,

p = (mhpe −meph)/(me +mh) , P = pe + ph , (2.3)

eq. (2.1) transforms to

H = Eg +
p2

2µ
+
P 2

2M
+

e2

4πε0ε|r|
, (2.4)

with the total mass M = me + mh and reduced mass µ = memh/M . Neglecting the
motion of center of mass P the excitation energy becomes a hydrogen-like Rydberg
series

E(n) = Eg −
Ryexc

n2
, (2.5)

with Ryexc the exciton Rydberg constant

Ryexc = Ry
µ

m0ε2
=

µe4

2(4πε0ε)2~2
=

~2

2a2
excµ

, (2.6)

where m0 is the free electron mass and aexc is the exciton Bohr radius

aexc = a0
εm0

µ
=

4πε0ε~2

µe2
, (2.7)
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2.1 Excitons in cuprous oxide

with a0 the Bohr radius.

The hydrogen-like system of eq. (2.4) exhibits a classical scaling property as the associated
classical dynamics does not depend on the energy. Using Bohr’s correspondence principle
and replacing the coordinate and momentum operators, this can be seen by introducing
scaled momenta p̃ = np and coordinates r̃ = r/n2 with

n =

√
− Ryexc

E − Eg

. (2.8)

This leads to the classical Hamilton equation

p̃2

2µ
+

e2

4πε0ε|r̃|
= −Ryexc , (2.9)

with center of mass momentum P set to zero. This means that the resulting classical
Kepler ellipses only change in size but not their shape when varying the energy. Therefore
the classical phase space structure is not changing over the whole Rydberg spectrum
which is connected to the classical Kepler ellipses by the Bohr-Sommerfeld model. As we
will discuss below, excitons in cuprous oxide deviate from the hydrogen-like case. We
will discuss how such a classical scaling property can be recovered in section 2.2.3.

For cuprous oxide eq. (2.4) does not capture the physics well enough as clear systematic
deviations from the simple Rydberg series are visible in experiments [3, 26]. Those
deviations are the following. Firstly the binding energy of the ground state excitons
is much larger than the expected one using the Rydberg energy Ryexc obtained by the
n > 1 states [22] which can be explained by their small radii resulting in an intermediate
exciton between Frenkel and Wannier. Those deviations can be treated with the so called
central-cell corrections affecting all S states [25]. Also a splitting of 1S excitons in para-
and ortho-excitons has been observed in experiments [27, 28] and can be described by an
exchange interaction of hole and electron spin [25]. We want to neglect those to make
use of a scaling property (see section 2.2.3) and to compare the results to semiclassical
calculations. Secondly there is a splitting between states of different angular momentum
quantum numbers and a threefold splitting of the F excitons visible in the experimentally
obtained absorption spectrum of ref. [3]. This indicates that the Runge-Lenz vector and
the angular momentum are only approximately conserved quantities and the system has
only approximately an SO(4) symmetry.

A more complete model includes the complex valence band structure with cubic symmetry
and thereby also accounts for a mixing between yellow and green series present in Cu2O
[6, 25, 29]. For the model used in this thesis the kinetic term for the hole in eq. (2.1) is

13



2 Theory and methodology

replaced by

Hh(ph, I,Sh) =
1

2~2m0

{
~2 (γ1 + 4γ2)p2

h + 2 (η1 + 2η2)p2
h (I · Sh)− 6γ2

[
p2

h1I
2
1 + c.p.

]
− 12η2

[
p2

h1I1Sh1 + c.p.
]
− 12γ3 [{ph1, ph2}{I1, I2}+ c.p.]

−12η3 [{ph1, ph2} (I1Sh2 + I2Sh1) + c.p.]}+Hso , (2.10)

with {a, b} = 1
2
(ab+ ba), c.p. denoting cyclic permutation of the components of ph, I

and Sh. The components of I and Sh are given by the corresponding spin matrices with
I = 1 and Sh = 1

2
, respectively. Eq. (2.10) includes the valence band structure in the

vicinity of the Γ-point by k · p-perturbation theory and symmetry considerations [25].
This approximation is justified by the large extension of the exciton wave function in
position space and a corresponding small extension in momentum space [30]. The quasi
spin I = 1 accounts for the three different valence bands involved in the yellow and green
series. γi and ηi are the Luttinger parameters [5, 29] and their values (see Appendix A)
are obtained by fitting eq. (2.10) to the results of density functional theory calculations
[5, 31]. γ1 and η1 determine the average effective mass of the hole in the different bands
and the other ones the splitting and warping, i.e. the dependence of the dispersion on
the direction of k, of the bands [25, 32]. The last term in eq. (2.10) is the spin-orbit
interaction

Hso =
2

3
∆

(
1 +

1

~2
I · Sh

)
, (2.11)

with the spin-orbit coupling constant ∆ which is the separation of the yellow and green
series at k = 0. Hso leads to a coupling between quasi spin I and hole spin Sh to the
effective hole spin J = I + Sh. The possible values J = {1/2, 3/2} distinguish between
the yellow J = 1/2 and green J = 3/2 series. The lowest conduction band involved in
the two series considered can be well described by a parabola with isotropic curvature
in all directions [5]. Thus the kinetic term for the electron stays in the effective-mass
approximation. By expressing ph/e =

mh/e

M
P ∓p and neglecting polariton effects by setting

the center of mass momentum P to zero [25], the whole Hamiltonian with the correction
eq. (2.10) in center of mass and relative coordinates and momenta reads

H = Eg + V (r) +Hkin(p, I,Sh) +Hso(I,Sh) , (2.12)

14



2.1 Excitons in cuprous oxide

where Hkin contains all kinetic terms

Hkin(p, I,Sh) =
γ′1

2m0

p2 + H̃kin(p, I,Sh)

=
1

2~2m0

{
~2 (γ′1 + 4γ2)p2 + 2 (η1 + 2η2)p2 (I · Sh)− 6γ2

[
p2

1I
2
1 + c.p.

]
− 12η2

[
p2

1I1Sh1 + c.p.
]
− 12γ3 [{p1, p2}{I1, I2}+ c.p.]

−12η3 [{p1, p2} (I1Sh2 + I2Sh1) + c.p.]} , (2.13)

with
γ′1 = γ1 +

m0

me

. (2.14)

H̃kin(p, I,Sh) contains all kinetic terms of the valence band structure differing from the
effective-mass approximation. The symmetry of the Hamiltonian (2.12) is reduced by eq.
(2.13) to cubic symmetry (point group Oh). This can be seen if one writes eq. (2.13) in
terms of irreducible tensors [25, 33]. Thus it describes the correct symmetry of the band
structure of Cu2O. In the following we set Eg = 0 as it only describes an energy shift.
The material parameters used in this thesis are given in Appendix A.

To describe the deviations from the Rydberg series caused by the band structure the so
called quantum defect δn,l, which depends on the principal quantum number n and the
angular momentum quantum number l, is introduced via [4, 34]

En = − Ryexc

(n− δn,l)2
= −Ry

exc

n2
eff

, (2.15)

and thereby another quantity neff called effective quantum number is introduced which
will become the scaling parameter of the scaled system as will be introduced in section
2.2.3. Eq. (2.15) together with eq. (2.7) motivates the introduction of exciton Hartree
units (see Appendix B) by setting ~ = e = 1, µ = m0

γ′1
= 1 and aexc = a0εγ

′
1 = 11 in

analogy to the Hartree atomic units.2

2.1.3 Classical treatment

Here we give a short overview of how J. Ertl [12, 13] and M. Marquardt [14] treat the
Hamiltonian (2.12) classically to calculate corresponding classical exciton orbits. To treat

1Setting aexc = 1 is equal to setting 4πε0ε = 1.
2Using γ′1 for defining the unit of mass does not couple the unit system to a specific series as both

γ1 and η1 determine the average effective mass of a valence band. For example a unit system coupled to
the yellow series would have µ = m0/(γ

′
1 − 2η1) = 1.
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2 Theory and methodology

the spin degrees of freedom appropriately it is assumed that the spin dynamics is much
faster than the motion of the relative coordinates. Then an adiabatic approach [12, 13]
is used with the following separation ansatz for the wave function

Ψ = Φ(p)X(p; I,Sh) , (2.16)

where Φ(p) only depends on the relative coordinates p and X(p; I,Sh) depends on the
quasi-spin I and hole spin Sh with p entering as a parameter. Using the ansatz

X(p; I,Sh) =
∑

mI ,mSh

cmI ,mSh
(p) |mI ,mSh

〉 , (2.17)

and collecting all spin-dependent terms of the Hamiltonian (2.12)

Hb(p, I,Sh) = H̃kin(p, I,Sh) +Hso(I,Sh) , (2.18)

one has to solve the Schrödinger equation

Hb(p, I,Sh)X(p; I,Sh) = Wn(p)X(p; I,Sh) , (2.19)

which is done numerically by solving the corresponding six-dimensional eigenvalue problem.
The spectrum with cardinality six consists of three two-fold degenerate eigenvalues Wn(p)

due to the degeneracy of the bands. They represent energy surfaces in momentum space.
Using the ansatz (2.16) the Schrödinger equation with the full Hamiltonian reads in
exciton Hartree units

HΦX = X

[
1

2
p2 − 1

r

]
Φ + ΦHbX −

1

r
(ΦX) +X

1

r
Φ , (2.20)

where the last two terms, occurring because of the p-dependence of X, would couple the
different energy surfaces Wn and is neglected in the adiabatic approximation by assuming
that the spin dynamics reacts instantaneously to changes due to the movement of the
relative coordinates. Thus the Hamiltonian for the relative coordinates reads

H̃ =
1

2
p2 − 1

r
+Wn(p) , (2.21)

where the lowest energy surface Wn(p) can be assigned to the yellow series. Using Bohr’s
correspondence principle one can replace the coordinate and momentum operators with
the corresponding classical variables. Classical orbits are then calculated by integrating
the corresponding Hamilton’s equation of motion numerically. By variation of the initial
coordinates and momenta periodic orbits are then searched. The additional integration
of the action allows for determining the action-angle coordinates. Further details can be
found in refs. [12] and [14].
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2.2 Semiclassical theories and their application to excitons in cuprous oxide

2.2 Semiclassical theories and their application to
excitons in cuprous oxide

Semiclassical trace formulas connect the quantum mechanical density of states with
classical orbits of the corresponding classical system. In section 2.2.1 we first outline
the derivation of the EBK quantization condition and then introduce and discuss the
Berry-Tabor formula for integrable systems and Gutzwiller’s trace formula for chaotic
systems. We then discuss the application of those formulas for excitons in cuprous
oxide. In section 2.2.2 we discuss why it is advantageous for a system to posses a scaling
property if we want to interpret the quantum mechanical spectrum semiclassically. The
Hamiltonian (2.12) for excitons in cuprous oxide introduced in section 2.1.2 lacks a
scaling property. We describe how it can be modified to posses a scaling property in
section 2.2.3.

2.2.1 Semiclassical trace formulas and their application for
excitons in cuprous oxide

In the following we follow J. E. Bayfield [35] and S. Wimberger [36]. We assume an
integrable system (number of degrees of freedom equals the number of constants of
motion) and start with the stationary Schrödinger equation(

− ~2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r) . (2.22)

Inserting the ansatz
φ(r) = A(r)e

i
~S(r) , (2.23)

with real-valued functions A and S into (2.22) the real-valued part reads[∇S(r)

2m
+ V (r)

]
= E +

~2

2m

∇2A(r)

A(r)
, (2.24)

and the imaginary part
∇
(
A2(r)∇S(r)

)
= 0 . (2.25)

Neglecting the terms of order O(~2) the real part (2.24) is the Hamilton-Jacobi equation
with S being Hamilton’s characteristic function. Since we assumed an integrable system
we can transform to action-angle variables (I,θ) such that

S(r, I) =

∫ r

r0

p(r′, I) dr′ , (2.26)
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2 Theory and methodology

which is the classical action and as an F2-type generating function of the transformation
it follows that

θ = ∇IS(r, I) , p = ∇rS(r, I) . (2.27)

From the imaginary part (2.25) one can derive for the amplitude

A2 ∝
∣∣∣∣det

(
∂θ

∂r

)∣∣∣∣ =

∣∣∣∣det

(
∂2S

∂r∂I

)∣∣∣∣ . (2.28)

Thus the wave function of the ansatz (2.23) reads

φ(r) = const.

∣∣∣∣det

(
∂2S

∂r∂I

)∣∣∣∣ 1
2

ei
S(r,I)

~ +iπ
2
µ , (2.29)

with a constant phase factor π
2
µ which will be discussed shortly. Defining the actions Ii

on an N -dimensional torus in phase space by

Ii =
1

2π

∮
Ci

pdr , (2.30)

where Ci are the elementary loops which build up the basis of a N -torus, leading to the
formation of overlapping pieces, called layers or leaves when projecting into coordinate
space. Thus φ(r) is a multivalued function of r with different branches j. The general
wave function is therefore the sum over all possible branches

φ(r) = const.
∑
j

∣∣∣∣det

(
∂2Sj
∂r∂I

)∣∣∣∣ 1
2

ei
Sj(r,I)

~ +iπ
2
µj . (2.31)

As
A2 ∝

∣∣∣∣det

(
∂2S

∂r∂I

)∣∣∣∣ =

∣∣∣∣det

(
∂θ

∂p

)
det

(
∂p

∂r

)∣∣∣∣ , (2.32)

singularities of φ(r) occur at caustics, which are the generalizations of turning points in
one-dimensional systems and thus also called turning surfaces, where the last determinant
in eq. (2.32) becomes infinite. To overcome those singularities one can switch to
momentum space if a caustic is approached and back to position space if a caustic in
momentum space is approached. The wave functions are then “stitched” together to form
the global semiclassical wave function. The total accumulated phase along the loop Ci is
then

∆φi
~

=
1

~

∮
Ci

pdr − π

2
µi =

2π

~
Ii −

π

2
µi , (2.33)

which has to be a multiple of 2π for the wave functions to be unique. This leads to the
EBK quantization condition

I = ~
(
n+

µ

4

)
, (2.34)
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2.2 Semiclassical theories and their application to excitons in cuprous oxide

with the vector of integer quantum numbers n and µ the vector of the so called Maslov
indices, which counts the number of reflections or more generally focus points or caustics
within each loop Ci in phase space, i.e. where bundles of trajectories meet in coordinate
space by projection of Ci onto the latter. It therefore accounts for the accumulated phase
changes because of all caustics passed during a loop. For example it follows that for
rotations µi = 0 and vibrations/librations µi = 2. With E = H(I) it follows for the EKB
semiclassical energy levels that

En = H
(
~
(
n+

µ

4

))
. (2.35)

As the energy is constant on a torus it follows that only specific tori are semiclassically
allowed. One has to note that the paths Ci are not the periodic orbits. As the frequency
on the path Ci is

ωi =
∂H

∂Ii
, (2.36)

only if all frequency ratios are given by rational numbers the orbits are periodic and one
speaks of resonant tori. In this case winding numbers Mi can be used to characterize
the orbits. Those are the number of cycles around the paths Ci needed for a full period
of the orbit. Using the quantization condition (2.34) Berry and Tabor connected the
density of states to classical periodic orbits [8, 37]. For N = 2 dimensions it reads [38]

ρ(E) = ρ̃(E) +
∑
M 6=0

dSM/dE

π
√

~3M3
2 |g′′E|

cos

(
SM

~
− π

2
σM −

π

4

)
, (2.37)

where ρ̃(E) denotes the average density of states and is called the Thomas-Fermi or
Weyl term. To the second oscillating term only periodic orbits with winding numbers
M = (M1,M2) contribute, where Mi are positive integer numbers [37]. Furthermore SM

denotes the action and σM the Maslov index of the periodic orbit. dSM/dE gives the
period of the orbit TM but we have written it in a more general form which is needed
later. The function gE(I1) = I2 is defined by H(I1, I2 = gE(I1)) = E = const. and thus
describes the curves of constant energy in action space. It can be calculated numerically
with the use of the relation

SM = 2πM1J1 + 2πM2J2 . (2.38)

By fixing M2 and varying M1 one can determine J1 by numerical differentiation with
respect to M1. Having the value of J1 eq. (2.38) can be used to determine J2.

The sum in eq. (2.37) can be decomposed into a sum over all primitive periodic orbits
with winding numbers M̃ and their repetitions l ∈ N

ρfl(E) =
∑
M̃ 6=0

∞∑
l=1

ldSM̃/dE

π
√

~3(lM̃2)3|g′′E|
cos

(
lSM̃

~
− π

2
lσM̃ −

π

4

)
. (2.39)
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When adding a non-integrable perturbation to the integrable system the Poincaré-Birkhoff
theorem states that the resonant tori break up leaving pairs of isolated stable and unstable
periodic orbits behind. For isolated and unstable periodic orbits Gutzwiller derived a
semiclassical formula for the density of states. As the starting point he used the relation of
the latter to the trace of the quantum mechanical Green’s operator and replaced it with a
semiclassical approximation. For this he applied a stationary phase approximation to the
Feynman path integral leading to the Van-Vleck propagator. Applying another stationary
phase approximation to the time integral leads to the semiclassical Greens function
which only accounts for classical trajectories at fixed energy. Using another stationary
phase approximation and a transformation into coordinates parallel and perpendicular
to classical orbits he finally arrived at his trace formula [9, 36]

ρ(E) = ρ̃(E) + ρfl(E) = ρ̃(E) +
1

π~
∑
PO

dSPPO/dE√
| det(MPO − 1)|

cos

(
SPO

~
− π

2
σPO

)
, (2.40)

where the subscript PPO denotes the primitive periodic orbit, i.e. one cycle of the orbit,
and the subscript PO the periodic orbit, i.e. with possible repetitions of the primitive
periodic orbit. SPO denotes the action and σPO the Maslov index of the periodic orbit.
The symplectic monodromy matrix or stability matrix MPO describes the linear response
of a periodic orbit to a small perturbation perpendicular to the orbit. It is therefore a
(2N − 2) × (2N − 2) matrix if N denotes the degrees of freedom. As in the Berry-Tabor
formula eq. (2.37) ρ̃(E) denotes the Thomas-Fermi term. The sum in the fluctuating
part of eq. (2.40) runs over all periodic orbits and can thus be decomposed formally into
all primitive periodic orbits and their repetitions l ∈ N

ρfl(E) =
1

π~
∑
PPO

∞∑
l=1

dSPPO/dE√
| det

(
M l

PPO − 1
)
|

cos

(
l
SPPO

~
− lπ

2
σPPO

)
. (2.41)

The dynamics for excitons in cuprous oxide turns out to be regular in most parts of the
phase space exhibiting one- to three-dimensional tori and thus can be characterized by
integer winding numbers Mi [13, 14]. For these orbits only one pair of eigenvalues of the
stability matrix MPO in Gutzwiller’s trace formula differs from a value of one, and thus
only one unstable direction exists. This would result in singularities in Gutzwiller’s trace
formula. Therefore for the calculation of the amplitude a mixed approach is used, where
the regular two-dimensional subsystem in Gutzwiller’s trace formula is replaced by a
Berry-Tabor contribution, resulting in the mixed amplitude [14]

APO =
1

π

1√
|λ⊥ + 1/λ⊥ − 2|

dSPO/dE√
~3M3

2 |g′′E|
, (2.42)

where here the winding numbers M = (M1,M2) count the number of Kepler ellipses
and the cycles of secular motion. Secular motion refers to the motion of the Kepler
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2.2 Semiclassical theories and their application to excitons in cuprous oxide

ellipses along angular coordinates in a spherical coordinate system, i.e. a rotation along
the azimuthal angle and an oscillation along the polar angle. For planar orbits, e.g.
the orbits in the nine symmetry planes of the Oh-group (see tab. 2.1), there is only a
rotation around the origin present. Fully three-dimensional orbits can be seen as having
an additional oscillation out of the plane. The secular motion can further be decomposed
into the motion along azimuthal and polar angle thereby replacing one winding number
with two counting the cycles along each angle. Thus a three-dimensional orbit can be
characterized in more detail with the use of three winding numbers. There are also
isolated nearly-circular orbits present for which Gutzwiller’s trace formula can be used
without modification.

2.2.2 Application of a scaling property to the recurrence spectrum

Both Berry-Tabor and Gutzwiller’s trace formula can be written in the form

ρ(E) = ρ̃(E) + Re
∑
PPO

∞∑
l=1

APPO,l(E)e
ilSPPO(E)

~ , (2.43)

thereby absorbing constants and constant phase factors into the amplitude APPO,l(E).
Approximating the action SPPO(E) up to first order gives in the neighborhood of E = E0

S(E) = S(E0) +
dS

dE

∣∣∣∣
E0

∆E +O(∆E2) = S(E0) + T0∆E +O(∆E2) , (2.44)

with the energy E0, the time period T0 of the orbit, and ∆E = E − E0. Thus the
density of states (2.43) is locally given as a superposition of sinusoidal oscillations. This
suggests that a Fourier transform from the energy to the time domain could be used
to identify the amplitudes APPO,r and time periods TPO in the quantum spectrum. As
δ-peaks at the recurrence time t = T0 would appear the Fourier transformed spectrum is
often called recurrence spectrum. In general the actions and amplitudes are non-trivial
functions of the energy. Because of the former the linearization of eq. (2.44) is in general
only valid locally and the periods T0 change within the spectrum. Thus in general the
Fourier transform can only be used for identifying local periodic orbit contributions to the
quantum spectrum. For systems with a classical scaling property one can overcome this
problem with the use of scaling techniques [10]. In such systems the classical dynamics do
not depend on an external scaling parameter w. An example are hydrogen-like systems
where the classical dynamics and thus the phase space structure stays the same for
every state in the connected Rydberg spectrum (see discussion in section 2.1.2). Using
appropriately scaled coordinates r̃ and momenta p̃ the action can be expressed as

SPPO =

∮
PPO

p dr = w

∮
PPO

p̃ dr̃ = wS̃PPO , (2.45)
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2 Theory and methodology

with the scaled action S̃PPO which is independent of w and thus the action scales linearly
with the scaling parameter. For a quantum system application of the scaling technique
results in a quantization of the scaling parameter w. The spectrum of the latter in the
semiclassical approximation is given by

ρ(w) = ρ̃(w) + Re
∑
PPO

∞∑
l=1

APPO,le
ilS̃PPOw

~ , (2.46)

with an amplitude APPO,l which is independent of w, i.e.

APPO,l ∝
dSPPO(w)

dw
= S̃PPO . (2.47)

As can be seen in eq. (2.46) the scaling parameter can be interpreted as an effective
Planck constant ~eff = ~/w. This means that the semiclassical limit is approached for
increasing values of the quantized scaling parameter of the scaled quantum system. The
classical dynamics does not depend on ~eff and thus stays the same for all states in the
spectrum. Fourier transform of the fluctuating part of eq. (2.45), with ~ = 1, results in

ρ̂(S̃) =
1

2π

∑
PPO

∞∑
l=1

∫ +∞

−∞

1

2

(
APPO,le

ilS̃PPOw + A∗PPO,le
−ilS̃PPOw

)
e−iS̃w dw

=
1

2

∑
PPO

∞∑
l=1

(
APPO,lδ(S̃ − lS̃PPO) + A∗PPO,lδ(S̃ + lS̃PPO)

)
. (2.48)

This enables one to directly identify periodic orbits by their scaled action S̃PO = lS̃PPO

as δ-peaks appearing in the recurrence spectrum ρ̂(S̃) at positions S̃ = ±S̃PO. Their
strengths are given by the amplitudes APPO,l.

2.2.3 Applying scaling techniques to excitons in cuprous oxide

As described in the previous section 2.2.2 we need a scaling property of the Hamiltonian
to be able to directly identify contributions of classical periodic orbits to the quantum
mechanical density of states. The Hamiltonian (2.12) possesses a scaling property if
the spin-orbit term HSO is excluded. To see this we first notice that in the kinetic part
(2.13) of the Hamiltonian (2.12) the momentum operator only occurs in quadratic order.
Secondly, we can express the energy with the use of eq. (2.15). In exciton Hartree units
the Schrödinger equation of our system without the spin-orbit term reads

H |Ψ〉 =

[
1

2
p2 + pLp− 1

r

]
|Ψ〉 = − 1

2neff2

|Ψ〉 , (2.49)
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2.2 Semiclassical theories and their application to excitons in cuprous oxide

where we expressed H̃kin(p, I,Sh) introduced in eq. (2.13) with the use of a Hermitian
linear operator L which depends on the quasi spin and hole spin. We can multiply eq.
(2.49) formally with n2

eff which yields[
1

2
(neffp)2 + neffpLneffp−

n2
eff

r

]
|Ψ〉 = −1

2
|Ψ〉 . (2.50)

With the adiabatic approach we can replace neffpLneffp by an energy surface W̄ (neffp).
Thus the classical Hamiltonian reads

1

2
(neffp)2 + W̄ (neffp)− n2

eff

r
= −1

2
. (2.51)

By introducing scaled momenta p̃ = neffp and coordinates r̃ = r/n2
eff the Hamiltonian

becomes independent of neff and also the classical dynamics

1

2
p̃2 + W̄ (p̃)− 1

r̃
= −1

2
. (2.52)

neff plays the role of a scaling parameter. Adding the spin-orbit term destroys the
scaling property as we thereby introduce a term independent of the momentum and
coordinate operators. Therefore the introduction of scaled variables does not result in
the corresponding classical Hamiltonian to be independent of the scaling parameter neff .
We can recover the scaling property by replacing the coupling constant ∆ in eq. (2.11)
with an energy-dependent coupling parameter

∆→ ∆̃ =
n2

0

n2
eff

∆ , (2.53)

with a constant parameter n0 controlling the strength of the scaled spin-orbit coupling.
With the use of eq. (2.53) the Schrödinger equation multiplied by n2

eff reads[
1

2
(neffp)2 − n2

eff

r
+ neffpLneffp+

2

3
n2

0∆ (1 + I · Sh)

]
|Ψ〉 = −1

2
|Ψ〉 . (2.54)

Applying the adiabatic approach now including the new spin-orbit term and using the
same scaled variables the classical Hamiltonian is

1

2
p̃2 +Wn0(p̃)− 1

r̃
= −1

2
, (2.55)

where now the energy surface Wn0(p̃) depends on the parameter n0 and thus also the
classical dynamics. To circumvent the calculation of Wn0(p̃) for each choice of n0 we
take advantage of the fact that an arbitrary reference system can be chosen to calculate
the classical orbits. We only have to scale the resulting quantities accordingly afterwards.
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2 Theory and methodology

Using neff = n0 recovers the original coupling constant ∆̃ = ∆ and thus is an appropriate
choice. We can now calculate the orbits in the usual variables p and r using the
Hamiltonian (2.21). The scaled versions of them then satisfy eq. (2.55). This means
that the value of n0 specifies the classical exciton dynamics to the one of the unscaled
system at fixed energy E = −1/2n2

0.

When introducing scaled variables for the quantum mechanical case they have to satisfy
the canonical commutation relations. Therefore as we choose for the coordinate operator
r̃ = r/n2

eff the scaled momentum operator has to be p̃ = n2
effp. With the use of those

variables we can transform eq. (2.54) into the generalized eigenvalue problem

H̃ |Ψ〉 = λkHkin(p̃, I,Sh) |Ψ〉 , (2.56)

with

H̃ =
1

r̃
− n2

0HSO(I,Sh)− 1

2
, (2.57)

where the eigenvalues are λk = 1/n2
eff,k and thus the scaling parameter w = neff is

quantized as mentioned in the previous section 2.2.2. As n0 is a constant parameter
the classical dynamics is the same for all states in the spectrum of the scaled quantum
system. This allows for a comparison between the classical dynamics at given energy
and the corresponding quantum mechanics. With the use of eq. (2.48) Fourier transform
in the variable neff of the quantum mechanical density of states

ρ(neff) =
∑
k

δ(neff − neff,k) , (2.58)

into the scaled action domain S̃ should result in δ-peaks at the scaled actions S̃PO of the
periodic orbits of the underlying classical exciton dynamics. Their amplitudes should
correspond to the semiclassical amplitudes APPO,l. For the isolated central orbit the
amplitude reads (in exciton Hartree units)

Acentral
PPO,l =

1

π

S̃PPO√
| det

(
M l

PPO − 1
)
|
e−il

π
2
σPPO , (2.59)

and for the mixed amplitude (2.42)

Amixed
PPO,l =

1

π

1√
|λl⊥ + 1/λl⊥ − 2|

lS̃PPO√
(lM2)3|g′′n0

|
e−i(l

π
2
σM+π

4 ) , (2.60)

where gn0 now depends on the parameter n0 instead of the energy E.
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2.3 Methods

In the following we first discuss in section 2.3.1 the basis set used for numerical calculation
of the quantum spectra and the structure of the resulting matrix equation. We further
discuss the behavior of the eigenvalues when using a finite basis set. We then give
in section 2.3.2 a short discussion about what needs to be considered when using the
conventional Fourier transform of the quantum mechanical density of states for obtaining
the corresponding recurrence spectrum and its limitations. We then discuss in section 2.3.3
the technique of harmonic inversion which can be used to circumvent those limitations.

2.3.1 Numerical calculation of the quantum spectra

The basis set used in this thesis to solve the Schrödinger equation with the Hamiltonian
(2.12) and the generalized eigenvalue problem (2.56) is the following

|Π〉 = |N,L, J, F,MF 〉 , (2.61)

with N the radial quantum number which is connected to the principal quantum number
n via N = n− L− 1 and L the angular momentum quantum number. As already stated
in section 2.1.2 I and Sh are coupled via the spin-orbit coupling term Hso to the effective
hole spin J . In the spherical approximation of eq. (2.13), which neglects all cubic terms,
the total angular momentum F = J + L and its z-component MF are good quantum
numbers [25, 39] and are thus used in the basis to be close to an eigenbasis. As the
central-cell corrections and the exchange interaction are not included in our model, the
electron spin Se and its z-component MSe are good quantum numbers. They only result
in a degeneracy of the eigenstates and thus are not included in our basis. The possible
values of the quantum numbers for a given n are

L = 0, . . . , n− 1 ,

J = 1/2, 3/2 ,

F = |L− J |, . . . , L+ J ,

MF = −F, . . . ,+F . (2.62)

As the Hamiltonian (2.12) is hydrogen-like without the valence band structure terms,
an expansion basis in terms of the hydrogen-like eigenfunctions seems appropriate. But
without the difficult inclusion of the continuum functions they do not form a complete set
of basis functions. Therefore the closely related Coulomb-Sturmian functions are used.
The basis functions are called Coulomb-Sturmian functions as they are the solutions to a
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Sturm-Liouville eigenproblem with the Coulomb potential as the weighting function [40].
The radial part reads [25]

UNL(r) = NNL (2ρ)Le−ρL2L+1
N (2ρ) , (2.63)

with the associated Laguerre polynomials L2L+1
N (x), ρ = r/α and α an arbitrary positive

real scaling parameter. The normalization factor NNL reads

NNL =
2√
α3

[
N !

(N + 2L+ 1)!(N + L+ 1)!

] 1
2

. (2.64)

For the angular parts we use the normal spherical harmonics. The Coulomb-Sturmians
form a discrete and complete set in L2(R3) independent of the scaling parameter α > 0

[40–43]. The hydrogen-like eigenfunctions can be recovered by replacing α→ aexcn and
thus the optimal value for α for a given state with neff should scale roughly with neff .
For the scaled system given in eq. (2.56) the convergence parameter α changes to the
scaled convergence parameter

α̃ =
α

n2
eff

, (2.65)

chosen such that the dimensionless coordinate ρ in the radial part of the Coulomb-
Sturmian functions (2.63) is not changing when transforming to scaled coordinates

ρ̃ =
r̃

α̃
=

r

n2
eff

n2
eff

α
= ρ . (2.66)

Since the optimal value of αopt scales roughly with neff it follows for the scaled convergence
parameter that

α̃opt =
αopt

n2
eff

∝ 1

neff

, (2.67)

and thus the optimal value is now smaller than one for the majority of the spectrum
and decreases when states of increasing neff are considered. In the following we will
denote the convergence parameter as α for the unscaled and scaled system for reasons of
simplicity.

We now use the ansatz
|Ψ〉 =

∑
N,L,J,F,MF

cN,L,J,F,MF
|Π〉 , (2.68)

with coefficients c. The functions (2.63) do not obey the orthogonality relations in L2(R3)

[25]. With the overlap matrix
MΠ′Π′′ = 〈Π′|Π′′〉 , (2.69)
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which is positive definite and symmetric3 by definition, the completeness relation reads

1 =
∑
Π′Π′′

|Π′〉 (M−1)Π′Π′′ 〈Π′′| . (2.70)

Using the ansatz (2.68) we can write a generalized eigenvalue problem A |Ψ〉 = λB |Ψ〉
in matrix form by multiplying a basis state 〈Π̃| from the left as

〈Π̃|H |Ψ〉 = λ 〈Π̃|B |Ψ〉 ,∑
Π

〈Π̃|A |Π〉 cΠ = λ
∑

Π

〈Π̃|B |Ψ〉 cΠ ,∑
Π

AΠ̃ΠcΠ = λ
∑

Π

BΠ̃ΠcΠ .

For the Schrödinger equation H |Ψ〉 = λ |Ψ〉 of the unscaled system with λ = E the
matrix elements AΠ̃Π and BΠ̃Π read

AΠ̃Π′ = 〈Π̃|H |Π′〉 , BΠ̃Π = MΠ′Π′′ . (2.71)

For the generalized eigenvalue problem (2.56) of the scaled system with λ = 1/n2
eff the

corresponding matrix elements read

AΠ̃Π = 〈Π̃| H̃ |Π〉 , BΠ̃Π = DΠ̃Π ≡ 〈Π̃|Hkin |Π〉 . (2.72)

Thus in both cases we have to solve a generalized eigenvalue problem

Ac = λBc , (2.73)

with symmetric matrices [25] A and B and the latter being additionally positive definite
as it is the overlap matrix (2.69) for the unscaled system and the matrix with elements
DΠ̃Π of the kinetic part (2.13) of the Hamiltonian (2.12) for the scaled one4. Further
information about the matrix elements are given in [25] which have been converted to
the matrix elements of the basis set (2.61) using Clebsch-Gordan coefficients.

As parity is a good quantum number [6], the generalized eigenvalue problem decomposes
into two blocks with even and odd parity which corresponds to even and odd angular
momentum L. Those blocks further decompose into four blocks because of the cubic
symmetry of the kinetic part of the Hamiltonian Hkin and the quantization axis chosen

3It is Hermitian and with the overlap 〈Π′|Π′′〉 being real [25] it is symmetric.
4Intuitively the eigenvalues of the kinetic energy operator are always greater than zero due to

the uncertainty principle which restricts the eigenfunctions to a finite extension in momentum space.
Numerically this is confirmed by the algorithm used for solving the generalized eigenvalue problem where
a positive definite matrix is needed.
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parallel to one of the principal axis of the crystal [25]. More precisely, as a rotation of
90◦ about a four-fold symmetry axis of the group Oh does not change the Hamiltonian
and one of those axis coincides with the quantization axis it follows

〈Π′| e iFzπ/2~ Hkine
−iFzπ/2

~ |Π〉 = 〈Π′| e
iM′F π/2

~ Hkine
−iMF π/2

~ |Π〉

= e
i(M′F−MF )π/2

~ 〈Π′|Hkin |Π〉 = 〈Π′|Hkin |Π〉 , (2.74)

where the last equation is only fulfilled if M ′
F −MF = 4n with n ∈ Z. Thus only states

with MF = M ′
F mod 4 couple. The four blocks correspond to the four equivalence

classes of MF mod 4

[1/2] = {. . . ,−15/2,−7/2, 1/2, 9/2, 17/2, . . . } , (2.75)
[3/2] = {. . . ,−13/2,−5/2, 3/2, 11/2, 19/2, . . . } , (2.76)
[5/2] = {. . . ,−11/2,−3/2, 5/2, 13/2, 21/2, . . . } , (2.77)
[7/2] = {. . . ,−9/2,−1/2, 7/2, 15/2, 23/2, . . . } . (2.78)

With the symmetry plane orthogonal to the four-fould axis along the z-direction it follows
that

〈N ′, L′, J ′, F ′,M ′
F |Hkin |N,L, J, F,MF 〉 = 〈N ′, L′, J ′, F ′,−M ′

F |Hkin |N,L, J, F,−MF 〉 ,
(2.79)

and thus for the matrices D defined in eq. (2.72)

DMF∈[1/2] ∼DMF∈[7/2] , (2.80)
DMF∈[3/2] ∼DMF∈[5/2] , (2.81)

where ∼ denotes similar matrices and thus their spectra are equal. They are similar
because they can be transformed into each other by a basis transformation as only the
arrangement of the basis vectors has to be changed. Thus the generalized eigenvalue
problem (2.73) decomposes in both cases, the unscaled and scaled one, into four indepen-
dent and different blocks, two for even and odd parity, respectively. This block structure
is exploited to accelerate the diagonalization.

The symmetry of a state can be specified by the irreducible representations Γi of the cubic
Oh group which determine the transformation behaviour under symmetry operations of
the group. When comparing the occurring eigenvalues in a given block with the assigned
symmetries in ref. [7] the following structure is revealed. The blocks withMF ∈ [1/2] and
MF ∈ [7/2] contain only eigenvalues corresponding to states with Γ7 and Γ8 symmetry.
Likewise the blocks with MF ∈ [3/2] and MF ∈ [5/2] only contain Γ6 and Γ8 states.
States with Γ6 and Γ7 symmetry are two-fold degenerate with one of the degenerate
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states in each block they occur in. The Γ8 states are four-fold degenerate and each of the
four blocks contains one of the degenerate states. The block structure together with the
degeneracies can thus be used to assign the symmetry of the exciton states corresponding
to a given eigenvalue. We propose the following approach:

1. Label the eigenvalues by the block they occur in.

2. Merge the eigenvalues of two blocks with different spectra (e.g. the blocks with
MF ∈ [1/2] and MF ∈ [3/2]) and sort them in ascending order.

3. If two consecutive states are degenerate assign a Γ8 symmetry.

4. Assign a Γ6 or Γ7 symmetry to the remaining states according to the block they
belong to.

We numerically solve the generalized eigenvalue problem (2.73) with the LAPACK routine
DSYGVX [44]. Thus one has to set bounds to the quantum numbers to get a finite
basis set. In principle any set of |N,L, J, F,MF 〉 can be used to form a basis. As we use
a hydrogen-like basis set and the Hamiltonian is also hydrogen-like perturbed by the
valence band structure, we set an upper bound nmax to the principal quantum number n
to calculate spectra up to a certain ncal < nmax. By intuition the contribution of states
with angular momentum L & ncal − 1 to the eigenfunctions with n ≤ ncal should be
small. This is indeed the case and thus we also set an upper bound Lmax of the angular
momentum L to improve convergence by only accounting for the important contributions.
As the convergence parameter α is the same for all basis functions our truncated basis set
is uniquely defined by the triple (α, nmax, Lmax). As already mentioned above, our basis
set is independent of the choice of the convergence parameter α. However, for finite basis
sets the approximation of a given eigenstate depends on the convergence parameter α and
therefore it can be used to improve the approximation by an appropriate choice. This
dependence decreases with an increasing basis size since more and more basis functions
can correct for the errors of a given α.

As we use a the finite basis set (α, nmax, Lmax) it is important to know how the eigenvalues
relate to those of the infinite Hamilton matrix. The well-known variational principle

〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 ≥ E0 , (2.82)

gives a lower bound, namely the ground state energy E0, to the eigenvalue of a trial
function |Ψ〉. Arranging the eigenvalues in ascending order E0 ≤ E1 ≤ · · · and using a
trial function |Ψ⊥〉 which is orthogonal to the first n eigenstates φi we get the generalized
variational principle

〈Ψ⊥|H |Ψ⊥〉
〈Ψ⊥|Ψ⊥〉

≥ En if 〈φi|Ψ⊥〉 = 0 for i = 0, 1, . . . , n− 1 . (2.83)
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Unfortunately eq. (2.83) is often not applicable as we would have to know the first n
exact eigenfunctions |ψi〉. There are exceptions, e.g. if we are interested in the lowest
state of a representation of a known symmetry of the Hamiltonian, as then we can choose
a trial function |Ψ〉 with the corresponding symmetry properties assuring orthogonality.

Fortunately there exists the following theorem which is of far more practical use [45]

Theorem. Let |ψ1〉 , |ψ2〉 , . . . , |ψN〉 be a set of orthonormal functions, and

Hnm = 〈ψn|H |ψm〉 , (2.84)

the resulting matrix elements of the Hamiltonian. Let Ẽs be the eigenvalues of the N×N

matrix thus defined, ordered in ascending order

Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼN−1 . (2.85)

Then each Ẽs is an upper bound to the sth eigenvalue of the full Hamiltonian

E0 ≤ Ẽ0, E1 ≤ Ẽ1, . . . , EN−1 ≤ ẼN−1 . (2.86)

To prove this one can go the route over the Ritz-Galerkin projection and the Courant-
Fischer min-max theorem as done in [46] or follow Peierls who found a simple and more
transparent derivation [45]. Since a non-orthogonal basis set can be orthogonalized by a
basis transformation (e.g. with the Löwdin orthogonalization) which does not change the
eignevalues, the theorem also holds true for the generalized eigenvalue problem (2.73)
for the unscaled system. Alternatively as the matrix B on the r.h.s. of the generalized
eigenvalue problem (2.73) is symmetric and positive definite the generalized eigenvalue
problem can be transformed to a standard eigenvalue problem with the same eigenvalues
[47]. From this it follows that also for the scaled system the theorem can be applied. To
approximate the eigenvalues of the full system we thus have to systematically increase
the basis size until they are converged, i.e. until the change of the former is below the
desired precision. However this does not state in general which basis functions have
the largest contributions to a given eigenfunction and thus the difficulty lies in finding
an appropriate basis set that minimizes the dimension needed for convergence of the
eigenvalues. It should also be noted that if one uses a basis set which excludes important
basis functions independently of the basis size the eigenvalues will converge to a value
above the true one. Thus it is essential on the one hand to choose basis functions from a
complete basis to assure that the exact solution can be approximated arbitrarily close
and on the other hand to not artificially exclude important basis functions, e.g. by
choosing a too small Lmax in our basis set (α, nmax, Lmax). Furthermore there are different
optimal values for α for different eigenstates. Thus to get the best approximation to
the real spectrum one has to perform calculations for a range of α-values and merge the
resulting spectra such that for each state the numerically smallest eigenvalue is taken.
The convergence behavior of the eigenvalues is discussed in Appendix C.
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2.3.2 Fourier transform of the density of states

As stated in section 2.2.2, Fourier transform (FT) of the scaled quantum density of states
of eq. (2.56) should result in δ-peaks at the scaled actions S̃PO and their repetitions.
This is only valid for an infinite spectrum. For the finite one, resulting from the
diagonalization of the truncated generalized eigenvalue problem of eq. (2.56), the δ-peaks
are broadened and side peaks occur. This can be seen as follows. The FT of the finite
spectrum corresponds to the FT of the infinite one multiplied by a rectangular window
function. With the convolution theorem this is equivalent to a convolution of the Fourier
transformed infinite spectrum with

sin
(

∆neff S̃po/2
)

πS̃po

e−in
0
eff S̃po ,

where ∆neff is the size of the window, i.e. the length of the finite spectrum, and n0
eff the

center of the spectrum. To suppress the artificial side peaks a Gaussian window function
w(neff) is introduced

w(neff) ≡ exp

(
−(neff − n0

eff)2

2σ2

)
,

with σ = ∆neff/6. Unfortunately this further broadens the main peaks. As the quantum
spectrum is a sum of delta distributions the FT can be carried out analytically

ρ̂(S) =
1

2π

kmax∑
k=1

∫
R
w(neff)δ(neff − neff,k)e

−ineffS dneff

=
1

2π

kmax∑
k=1

w(neff,k) [cos(neff,kS)− i sin(neff,kS)] , (2.87)

where k numerates the eigenvalues neff,k from the first to the last kmax of the finite
spectrum.

When using the Fourier transform to extract the amplitudes and actions of periodic
orbits using eq. (2.48) from a finite quantum spectrum of length ∆neff the resolution ∆S

of the corresponding recurrence spectrum is proportional to the inverse of ∆neff . This
property is often referred to as the uncertainty principle of the Fourier transform. It is
thus impossible to resolve periodic orbits with separation of the actions smaller than ∆S

as then the recurrence peaks overlap. With the occurrence of artificial side peaks, which
have to be suppressed, a precise determination of the amplitudes is also not possible
especially for overlapping peaks. To circumvent those problems the method of harmonic
inversion [10, 11] can be applied which will be discussed in the next section. In this
method the frequency space is not discretised on a grid with equally spaced points as for
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2 Theory and methodology

example in the discrete Fourier transform. The grid points are them self free parameters
leading to a non-linear problem.

2.3.3 High-resolution spectral analysis using the method of
harmonic inversion

When the scaling technique of section 2.2.3 is applied the fluctuating part of the semi-
classical trace formula can be written as (compare eq. (2.48))

ρsc(neff) =
∑
PO

1

2

(
APOe

iS̃POneff + A∗POe
−iS̃POneff

)
. (2.88)

The key idea is now to adjust the quantum mechanical density of states eq. (2.58) to
the functional form of eq. (2.88) with the amplitude and action forming a set of free
in general complex adjusting parameters {APO, S̃PO}. The procedure of extracting the
parameters of the “harmonics” is why the method is referred to as harmonic inversion.
For a numerical treatment we normally need to regularize the delta functions in (2.58) as
the signal is needed on an equidistant grid. This could be done in principle by convolution
with, e.g., a Gaussian function. In this thesis we will use a different approach introduced
in [11] which consists of two steps: firstly only a window of actions is selected resulting
naturally in a smooth signal and secondly the numerical extraction of the amplitudes
and actions.

We follow ref. [11] but adjust the discussion to our problem of obtaining the recurrence
spectrum. For the first step we Fourier transform the quantum mechanical density of
states

ρ̂qm(S̃) =
1

2π

∑
k

e−iS̃neff,k , (2.89)

and then apply a rectangular filter

f(S̃) =

{
1 if S̃ ∈ [S̃0 −∆S̃, S̃0 + ∆S̃] ,

0 else ,
(2.90)

thereby restricting the recurrence spectrum to only contributions within the window
resulting in a band-limited signal. After applying the inverse Fourier transform we get
the band-limited density of states

ρqm
bl (neff) =

1

2π

∑
k

∫ S̃0+∆S̃

S̃0−∆S̃

e−iS̃kneffeineff(S̃−S̃0) dS̃

=
∑
k

sin
(

∆S̃(neff − kneff)
)

π(neff − kneff)
e−iS̃0kneff , (2.91)
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thereby introducing a shift in the action domain by −S̃0 which will be discussed below.
The same procedure is applied to the semiclassical density of states eq. (2.88). The
Fourier transform of eq. (2.88) reads

ρ̂sc(S̃) =
1

2

∑
PO

(
APOδ(S̃ − S̃PO) + A∗POδ(S̃ + S̃PO)

)
. (2.92)

Applying the rectangular filter (2.90) and restricting ourselves to the case where the
window lies in the positive half space of the recurrence spectrum we get

ρsc
bl(neff) =

1

2

∑
PO

∫ S̃0+∆S̃

S̃0−∆S̃

(
APOδ(S̃ − S̃PO) + A∗POδ(S̃ + S̃PO)

)
eineff(S̃−S̃0) dS̃

=
1

2

∑
PO

APOe
ineff(S̃PO−S̃0) with |S̃PO − S̃0| < ∆S̃ . (2.93)

We now assume that the band-limited semiclassical density of states eq. (2.93) only
consists of a finite number K of actions, i.e. only a finite number of periodic orbits
contribute to the signal. Adjusting the band-limited quantum signal (2.91) to the form
of eq. (2.93) can then be written as a set of 2K non-linear equations

ρqm
bl (mτ) ≡ cm =

K∑
k=1

Ake
iS̃
′
kmτ =

K∑
k=1

Akz
m
k , m = 0, 1, . . . , 2K − 1 , (2.94)

for the 2K unknown parameters which are the shifted actions S̃ ′k = S̃PO − S̃0 or the
introduced parameter zk = exp

(
iS̃
′
kmτ

)
and the amplitudes Ak. Note that we absorbed

the factor 1/2 into the amplitude, such that Ak is half the amplitude of the corresponding
periodic orbit defined in eq. (2.59) and (2.60), for the central and mixed regular chaotic
orbits, respectively. The quantum signal eq. (2.91) is thus evaluated on an equidistant
grid neff = mτ with step size τ ≡ π/∆S̃, which will be justified below. Assuming a
relatively small number of periodic orbits in the signal (K ∼ 50− 200) and thus small
number of equations, we can resort to the otherwise numerically unstable numerical
technique of linear predictor to solve the system of non-linear equations [11]. Writing eq.
(2.94) in matrix form formally for the signal points cm+i with i = 1, . . . , K reads

cm =

 cm+1
...

cm+K

 =

 zm+1
1 · · · zm+1

K
... · · ·

zm+K
1 · · · zm+K

K


A1

...
AK

 = Zmd . (2.95)

When multiplying from the left with the inverse matrix Z−1
m we get the representation of

the column vector d = Z−1
m cm. Multiplying with the row vector ztm = (zm1 · · · zmK ) from
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the left we get

cm = ztmd = ztmZ
−1
m cm = bmcm =

K∑
k=1

bkcm+k , (2.96)

thus the signal points cm can be “predicted” by a linear combination of the following K
points where the coefficients bk are fixed. Those can be obtained as the solution of the
resulting matrix equation when writing eq. (2.96) into matrix form form = 0, . . . , K−1 c0

...
cK−1

 =

 c1 · · · cK
...

...
cK · · · c2K−1


 b1

...
bK

 . (2.97)

Having those at hand we can rewrite eq. (2.96) with the use of eq. (2.94) into

cm =
K∑
k=1

bkcm+k =
K∑
k=1

K∑
l=1

bkAlz
m+k
l . (2.98)

Subtracting eq. (2.94) we thus get

K∑
l=1

[
K∑
k=1

bkz
m+k
l − zml

]
Al = 0 , (2.99)

which is fulfilled for arbitrary amplitudes Al if zl is a zero of the polynomial

K∑
k=1

bkz
k
l − 1 . (2.100)

Having found the roots zk the amplitudes Ak are obtained from the linear set of equa-
tions

cm =
K∑
k=1

Akz
m
k , n = 0, . . . , K − 1 . (2.101)

The actions can be extracted by applying the complex logarithm

S̃
′
k = − i

τ
log(zk) . (2.102)

To circumvent the non-uniqueness of the complex logarithm we have introduced above
the shift in the action domain by −S̃0 such that S̃ ′ ∈ [−∆S̃,+∆S̃]. For the argument
of zk = exp

(
iS̃
′
kτ
)
to be an element of [−π,+π] the range of the filter eq. (2.90) has to

satisfy
∆S̃ =

π

τ
. (2.103)
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This makes (2.102) unique and the actions S̃k = S̃0 + S̃
′
k can be extracted. When choosing

a quantum spectrum of length nmax
eff

5 and thus a step width of

τ =
nmax

eff

2K
, (2.104)

the action window has to fulfil eq. (2.103) such that

∆S̃ =
2πK

nmax
eff

. (2.105)

Thus the quantum spectrum has to be long enough such that the number of periodic
orbits in the range [S̃0 − ∆S̃, S̃0 + ∆S̃] is less than K and the set of amplitudes and
actions {Ak, S̃k} converges. If this is the case not only the real periodic orbits but also
spurious resonances are provided by harmonic inversion with low or near-zero amplitudes.
They can be detected by a shift of the decimated signal. The spurious actions show large
deviations with respect to the unshifted signal whereas the true actions usually coincide
up to very high precision [11].

For solving the linear sets of equations (2.97) and (2.101) we resort to LU decomposition.
As the polynomial (2.100) can be rewritten into the characteristic polynomial of the so
called Hessenberg matrix the roots are obtained by diagonalization of the latter [48]. We
resort to this method as it is numerically more stable for polynomials of high order than
other methods of root search [11].

5Also a window [nmin
eff , nmax

eff ] of the quantum spectrum can be chosen, but then the latter has to be
shifted by nmin

eff such that the signal points cm and the position neff = mτ in eqs. (2.94) and (2.101)
coincide. This introduces a phase factor of exp

(
inmin

eff S̃
′

k

)
which can be absorbed into the amplitude Ak

but of course has to be accounted for at the end of the calculation to obtain the true amplitude.
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3 Results

In this chapter we present our results. In section 3.1 we first briefly discuss the quantum
spectrum resulting for the unscaled Hamiltonian for comparison. We then discuss the
quantum spectra of the scaled system for different values of n0 and give a semiclassical
interpretation of the corresponding recurrence spectra obtained by Fourier transform. In
section 3.2 we then give a brief overview of the classical dynamics for excitons in cuprous
oxide. For n0 = 5, 10, and 15 we compare the quantum recurrence spectra obtained by
Fourier transform to the semiclassical recurrence spectra in section 3.3. At last we do the
same for the quantum recurrence spectrum obtained by harmonic inversion for n0 = 5

and discuss the advantages and limitations of this method.

3.1 Quantum mechanical results

In fig. 3.1 a section of the spectrum of the unscaled Hamiltonian eq. (2.12) is shown,
i.e. without applying the scaling technique to the system. Due to the band structure
and the resulting mixing of the green and yellow series as well as the reduction to Oh

symmetry a clear fine-structure splitting is visible. Without the band structure those
would be degenerate hydrogen-like states. The states are shifted to lower neff resulting
in a positive quantum defect δ introduced in eq. (2.15). This is also visible in fig. 3.2
where the quantum defects are plotted against the principal quantum number n. They
converge to constant values for large n which is the same behavior as stated in ref.
[4]. Note that we used an exciton Rydberg constant (see eq. (2.6)) with effective mass

1 2 3 4 5 6 7 8 9 10

neff

Figure 3.1: Spectrum of the unscaled Hamiltonian (2.12) over neff . A clear splitting of
the states around integer values of neff is visible.
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0.0
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δ

Figure 3.2: Quantum defects δ of the unscaled Hamiltonian (2.12) over the principal
quantum number n.

µ = m0/(γ
′
1 − 2η1) adjusted to the yellow series when determining the eigenvalues neff of

the unscaled spectrum. For all other spectra we used an effective mass µ = m0/γ
′
1. It

should also be noted that the even parity states do not correspond to the physical ones
of Cu2O as the central-cell corrections are not included (see section 2.1.2).

If we now introduce the energy-dependent spin-orbit coupling constant ∆̃ =
n2

0

n2
eff

∆ (see
section 2.2.3) and thereby a classical scaling property to our system the spectrum gets
dependent on the parameter n0. As ∆̃ determines the energy shift between the yellow and
green series the two series get closer for increasing neff and fixed n0. n0 determines the
gradient with respect to neff , i.e. how fast the shift converges to zero for increasing neff .
The influence of this parameter on the spectrum can be seen in fig. 3.3 where spectra for
different values of n0 are shown. The ratio of the scaled spin-orbit coupling constant ∆̃

to the physical value ∆ is given in the upper axis for each spectrum, respectively. In the
vicinity of neff = n0, i.e. ∆̃/∆ = 1, the physical and the scaled spectrum coincide locally.
One can see an increasing influence of the green series to the spectrum for increasing neff

and fixed n0 resulting in a more pronounced splitting of the states as well as a shift of
the latter to lower values of neff . The same holds true if we follow the behavior of the
states around integer values of neff and decrease n0.

38



3.1 Quantum mechanical results

9 1 0.36 0.184 0.111 0.074 0.053 0.04 0.031
∆̃/∆

n0 = 3

25 2.778 1 0.51 0.309 0.207 0.148 0.111 0.087

n0 = 5

100 11.111 4 2.041 1.235 0.826 0.592 0.444 0.3461

n0 = 10

225 25 9 4.592 2.778 1.86 1.331 1 0.779

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

neff

n0 = 15

Figure 3.3: Spectra of the scaled system for different values of the parameter n0. Already
without the inclusion of the green series there exists a fine-structure splitting due to the
cubic Oh symmetry of the crystal. The influence of the green series is visible as a more
pronounced fine-structure splitting which increases with increasing neff for which the
separation between the two series becomes smaller.

We Fourier transform quantum spectra up to nmax
eff = 30 with a Gaussian window function

of width σ = nmax
eff /6 centered around nmax

eff /2 to suppress occurring side peaks (see section
2.3.2). In fig. 3.4 the absolute values of the resulting Fourier transformed spectra are
plotted over S̃/2π for different values of n0. In figure 3.5 enlarged sections are shown. As
discussed in section 2.2 the Fourier transformed spectrum can be interpreted semiclassical
as the recurrence spectrum of periodic orbits of the associated classical mechanics. To
emphasize the similarities and differences to the hydrogen-like case, where semiclassical
peaks occur at multiples of 2π [49], we divide the scaled action S̃ by 2π. One can see that
it consists in general of sharp peaks with increasing density. Upon closer examination (see
fig. 3.5) the following structures are visible. One can see how periodically occurring main
peaks dominate the initial part. The latter increases for increasing values of n0 (S̃/2π . 4

for n0 = 3, S̃/2π . 12 for n0 = 5, S̃/2π . 50 for n0 = 10 and S̃/2π . 113 for n0 = 15).
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Also the amplitude of the main peaks increases with increasing n0. The periodicity of the
main peaks suggests that this part of the recurrence spectrum is dominated by one or a
number of primitive periodic orbits with very similar action and their repetitions.

Going to higher values of S̃ the amplitude of those main peaks decreases more and more
and simultaneously side peaks in between emerge which increase in their amplitude.
Eventually the magnitude of the amplitudes of both the main and side peaks coincide.
These transition regions are shown in fig. 3.5 for the different n0 which span over an
increasing action range for increasing n0, note the broken action axes for n0 = 10 and
n0 = 15.

The emergence of side peaks can be interpreted semiclassically as the occurrence of new
periodic orbits with initially increasing contribution to the quantum density of states
until it is comparable to the one of the periodic orbits forming the main peaks. For
increasing action more and more side peaks emerge. As each new side peak corresponds
semiclassically to a new primitive periodic orbit also peaks at multiples of their actions
occur, i.e. multiple repetitions of the orbit, and the recurrence spectrum becomes more
and more complex. This is particularly well visible for n0 = 3 already at S̃/2π & 15 in
fig. 3.5.

3.2 Classical exciton dynamics

In this section we provide an overview of the classical exciton dynamics in Cu2O [50].
The periodic orbits of this dynamics will become important in the next section 3.3 where
we use their contributions to the quantum spectra for a semiclassical interpretation of
the latter.

The inclusion of the band structure with the use of energy surfaces Wn (see section 2.1.3)
leads to the reduction of the spherical symmetry SO(4) of the hydrogen-like model to
the cubic symmetry Oh. The latter possesses nine symmetry planes of two kinds. Three
planes perpendicular to the [001] axis and its equivalents and six planes perpendicular
to the [011] axis and its equivalents. Those allow for a two-dimensional motion in the
system, i.e. orbits in these symmetry planes. In contrast to the hydrogen-like case where
only two-dimensional orbits are possible, also three-dimensional orbits exists. Examples
of two- and fully three-dimensional orbits are shown in fig. 3.6. This leads to a rather
complex phase space structure.

The six-dimensional phase space cannot be visualized directly. However the four-
dimensional phase space of the two-dimensional orbits in the symmetry planes can
be analyzed using a Poincaré surface of section (PSOS). For this a (n− 1)-dimensional

40



3.2 Classical exciton dynamics

0

25

50

75

100

125

|A
|

n0 = 3

0

50

100

150

|A
|

n0 = 5

0

50

100

150

|A
|

n0 = 10

0 20 40 60 80 100 120 140

S̃/2π

0

50

100

150

200

|A
|

n0 = 15

Figure 3.4: Absolute value of the Fourier transformed spectra for different n0 which
represents the quantum recurrence spectrum. Quantum spectra up to neff = 30 have been
used and occurring side peaks have been suppressed by the use of a Gaussian window
function.
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Figure 3.5: Enlarged sections of fig. 3.4 which show transition regions where the
structure is changing. The initial part is dominated by equidistant main peaks. The
structure changes when the amplitude of side peaks become comparable to the one of
the main peaks. This happens at increasing values of S̃/2π for increasing n0. Therefore
for n0 = 10 and n0 = 15 only the region of the onset of larger side peaks and the region
where the order of magnitude of the amplitudes of the main and side peaks is similar are
shown. The two regions are separated by a broken action axis.
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Figure 3.6: Examples of different types of orbits for n0 = 5. (a) Nearly circular orbits
with winding numberM1 = 1 and (b) planar orbits with winding numbersM1:M2 = 7:1 in
the two different symmetry planes. (c) and (d): Two examples of fully three-dimensional
orbits. The corresponding winding numbers are given in the top right. For the two- and
three-dimensional orbits they are given as M1:M2 and M1:M2:M3, respectively [50, 51].

hyperplane in the n-dimensional coordinate space is chosen. At intersection points with a
trajectory the coordinates in the hyperplane are recorded and additionally the projection
of the corresponding momenta onto it. The PSOS then consists of points at the recorded
coordinates and momenta.

As all orbits in the symmetry planes orthogonal to the [001] and [101] axis pass through
the y axis we choose this axis as our one-dimensional hyperplane. It follows that the
x and z coordinates are fixed to zero at the intersection points. Due to conservation
of energy and the knowledge of y and py the momenta in x and z direction are also
fixed as we know the orientation of the two-dimensional orbits in space. This leads to
a two-dimensional PSOS with coordinates (y, py). The other symmetry planes can be
treated analogously. Periodic orbits lie in general on D-dimensional torus structures in
phase space. The fixed points in the PSOS which correspond to periodic orbits also show
these structures. Chaotic dynamics is visible as regions with a stochastic distribution of
points. In fig. 3.7 such Poincaré surfaces of section for the plane perpendicular to the
[001] axis are shown for different values of n0. The coordinates x̃i = xi/n

2
0 and momenta

p̃xi = pxin0 are scaled with n0 (see discussion in section 2.2.3). The Poincaré surfaces of
section show a change of the phase space structure when the energy corresponding to
n0 = neff is varied. This is due to the fact that the system described by the Hamiltonian
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Figure 3.7: Poincaré surfaces of section for the orbits in the symmetry plane normal
to [001] for increasing values of n0 = neff from left to right and top to bottom. Selected
periodic orbits are shown in inserts and marked in the PSOS by corresponding symbols
[50]. It is visible that the phase space structure is changing for different values of neff

corresponding to different energies.
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3.3 Semiclassical interpretation of the quantum spectra

(2.12) does not posses a classical scaling property as discussed in section 2.2.3.

The Poincaré surfaces of section consist of a central fixed point marked as a blue dot
in fig. 3.7 which corresponds to a nearly circular orbit with the winding number M1

counting its repetitions. This central fixed point is surrounded by regular tori. Also a
small chaotic region is visible which shrinks for increasing n0. The orbits corresponding
to the regular tori are created by two fundamental motions, a motion along Kepler
ellipses and a rotation of those around the origin, i.e. a secular motion. Thus they
lie on two-dimensional tori and can be characterized by two winding numbers Mi. M1

counts the number of Kepler ellipses and M2 the number of cycles of the secular motion
needed for a full cycle of the orbit. Starting from the outermost part of the PSOS and
moving towards the central fixed point the ratio M1:M2 increases up to a maximum value
(M1:M2)max before the orbits are converged to the nearly circular orbit. The secular
motion shows the influence of the symmetry reduction as the Runge-Lenz vector is not
a conserved quantity anymore making such a motion possible. For increasing n0 the
maximum ratio (M1:M2)max is also increasing which leads to a shift of the orbits with
the same winding numbers towards the outermost part of the PSOS visible in fig. 3.7
and a deformation of the Kepler ellipses towards a line shape. An increasing value of
(M1:M2)max implies that the secular motion in the neighborhood of the central fixed
points is slowing down resulting in a more hydrogen-like behavior in this region. For the
symmetry plane perpendicular to [011] and equivalents (M1:M2)max is larger than for the
plane normal to [001] and equivalents. Therefore the former symmetry plane shows a
more hydrogen-like behavior in the above mentioned region than the latter.

The three-dimensional orbits exhibit an additional secular motion out of the symmetry
planes which can be characterized by a third winding number M3. For n0 = 5 two
examples of such orbits can be seen in fig. 3.6.

3.3 Semiclassical interpretation of the quantum
spectra

We now want to compare the quantum mechanical recurrence spectra with parameters
n0 = 5, 10, and 15 to the corresponding semiclassical ones. This corresponds to a
comparison of the quantum mechanics with the classical exciton dynamics at fixed
energies E = −1/2n2

0 corresponding to n0 = 5, 10, and 15. This is only reasonable for the
scaled system where the classical dynamics is not changing over the spectrum. For the
semiclassical recurrence spectrum J. Ertl [13] and M. Marquardt [14] extracted the scaled
action S̃ and the orbit parameters needed to calculate the corresponding semiclassical
amplitudes with eqs. (2.59) and (2.60), thus obtaining the position and amplitude in the
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3 Results

semiclassical recurrence spectrum. In figs. 3.8, 3.9, and 3.10 the quantum mechanical
recurrence spectra for n0 = 5, 10, and 15 are shown as a black solid line and the found
semiclassical peaks as colored peaks with crosses at their end. The latter are also labeled
by one to three winding numbers Mi corresponding to the dimension of the tori the
classical periodic orbits lie on in phase space (see section 3.2). Note that for n0 = 10

and n0 = 15 fully three-dimensional orbits are not shown1. As can be seen the quantum
recurrence spectra resemble the semiclassical ones very well in the shown parts. The
main peaks can be assigned to the contributions of planar nearly circular orbits in both
symmetry planes and their repetitions with a corresponding single winding number M1.
For those nearly circular orbits the semiclassical amplitudes are larger for the orbits in
the symmetry plane perpendicular to the [011] axis which shows a more hydrogen-like
behavior (see section 3.2). The semiclassical peaks with the same winding number M1

show an increasing amplitude and a small shift of their position towards smaller values of
S̃/2π when n0 is increased. This coincides with the behavior of the quantum recurrence
spectra. For n0 = 5 they dominate the spectrum up to S̃/2π ≈ 12 and for n0 = 10

and n0 = 15 the whole shown part. For the last two values of n0 the main and side
peaks have the same order of magnitude only at very high values of S̃/2π as discussed in
section 3.1. For n0 = 5 the first side peak with a counterpart in the shown semiclassical
recurrence spectrum appears at S̃/2π ≈ 5.6 which can be assigned to the 5:1 planar
orbit in the symmetry plane perpendicular to the [001] axis. Similarly for n0 = 10

the first side peak can be assigned to the 7:1 and for n0 = 15 to the 9:1 planar orbit
in the same plane. Going to higher actions the appearing side peaks can be assigned
to other two-dimensional planar orbits and fully three-dimensional orbits (only shown
for n0 = 5) with new winding number ratios M1:M2 and their repetitions, making the
spectra more and more complex. For increasing values of n0 the contribution of the two-
and three-dimensional orbits decreases relative to the contribution of the nearly circular
orbits at low actions S̃/2π. As they can be assigned to the side peaks this coincides with
the behavior in the quantum recurrence spectrum. Orbits with small winding number
ratio M1:M2 represent clear deviations to the hydrogen-like case as they exhibit a fast
secular motion (see figs. 3.7 and 3.6) resulting from the perturbation of the hydrogen-like
system by the band structure terms and the corresponding reduction to Oh symmetry.

Furthermore we can see for n0 = 5 in fig. 3.8 that several semiclassical peaks with the
same winding numbers M1 and M2 occur in clusters with very similar actions. In those
clusters the peaks with the largest amplitude and action corresponds to planar orbits
in the symmetry plane perpendicular to the [001] axis. Peaks which belong to fully
three-dimensional orbits can be found at slightly smaller actions having also a smaller
amplitude. Peaks corresponding to planar orbits in the symmetry plane perpendicular

1The calculation of those is much more complex and still a work in progress at the time of writing
this thesis [50].
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3.3 Semiclassical interpretation of the quantum spectra

to the [011] axis are located at the lowest action within the cluster and also have the
smallest amplitude. The same cluster structures are also visible for n0 = 10 in fig. 3.9
and for n0 = 15 in fig. 3.10 for the planar orbits in both symmetry planes. For increasing
winding number ratios M1:M2 the clusters appear closer to the nearest main peaks with
larger S̃/2π values relative to the cluster. This is well visible in fig. 3.8 for n0 = 5 but
also for n0 = 10 and n0 = 15 in figs. 3.9 and 3.9, respectively. Furthermore it is visible
that the clusters with the same winding number ratio M1:M2 are shifted to smaller
actions S̃/2π when n0 is increased. With the finite resolution of the quantum recurrence
spectrum the single peaks in clusters can not be resolved and appear as one common
peak. This is well visible for the main peaks which consists of two central orbits, one in
each symmetry plane. But also many single side peaks can be assigned to a number of
semiclassical ones, for example to clusters with the same M1 and M2 winding numbers
mentioned above.

To circumvent the finite resolution of the Fourier transform and also extract precise
values for the semiclassical amplitudes we applied the method of harmonic inversion
to the quantum spectrum with n0 = 5 for which the most periodic orbits have been
found so far. This method has been successfully applied in the past, for example to the
hydrogen atom in an uniform magnetic field in ref. [10]. In fig. 3.11 the semiclassical
recurrence spectrum together with the quantum one obtained by Fourier transform are
shown again as in fig. 3.8 but now additionally with the peaks obtained using the
harmonic inversion technique. We applied the method to the quantum spectrum up to
neff = 30 and compared the resulting peaks with the ones obtained when the spectrum is
shortened to neff = 29 to get an estimation of the convergence of the harmonic inversion.
To only consider peaks which are converged comparably well we filtered those peaks with
deviations in action smaller than ∆S̃/2π < 1× 10−2 and in amplitude ∆A smaller than
0.3 times the maximal amplitude of the two peaks compared. We also only show those
which can be assigned to semiclassical ones for better visibility.

As can be seen in fig. 3.11 the overall agreement with the semiclassical peaks is good but
not perfect. Especially the precise resolution of both the action and amplitude of all the
single peaks in clusters is not possible as often only one peak has been found which can
be assigned to one of the semiclassical peaks (see e.g. peak at S̃/2π ≈ 7) or does not
match in amplitude with any of the peaks (see e.g. peak at S̃/2π ≈ 15). For the main
peaks at S̃/2π ≈ 6 and S̃/2π ≈ 10 consisting of the two central orbits also two peaks
had been found by harmonic inversion but only one peak has an amplitude comparable
to one of the semiclassical peaks, respectively. Even for the semiclassical peaks which
are well separated in action from the other ones there are deviations to the harmonic
inversion peaks (see e.g. peak at S̃/2π ≈ 5.6). Also not for all peaks appearing in the
Fourier transform of the quantum spectrum which can be assigned to semiclassical peaks
or cluster of peaks the harmonic inversion found corresponding converged ones. But
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Figure 3.8: Quantum mechanical recurrence spectrum obtained by Fourier transform
(FT) of the density of states (black solid line, with zero line shifted for better visibility)
and the semiclassical recurrence spectrum (colored bars with cross at their end) resulting
from periodic orbit parameters [14, 50] for n0 = 5. The peaks are labeled with the
corresponding winding numbers of the orbits. The nearly circular orbits with one winding
numberM1, the planar orbits with twoM1:M2 and the fully three-dimensional orbits with
three M1:M2:M3. Despite the restricted resolution of the quantum recurrence spectrum
the observed structures agree very well with the semiclassical results.
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Figure 3.9: Same as fig. 3.8 but for n0 = 10. Compared to the recurrence spectrum for
n0 = 5 in fig. 3.8 the peaks of the two-dimensional planar orbits with the same winding
number ratio M1:M2 appear at smaller values of the action S̃/2π. Their amplitudes are
also smaller relative to the ones of the nearly circular orbits. Furthermore the amplitudes
of the peaks of the nearly circular orbits with the same winding number M1 are larger
and their positions are slightly shifted to smaller values of S̃/2π. This shift is better
visible for larger M1.
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Figure 3.10: Same as fig. 3.8 but for n0 = 15. Compared to the recurrence spectra for
n0 = 5 in fig. 3.8 and n0 = 10 in fig. 3.9 the peaks of the two-dimensional planar orbits
with the same winding number ratio M1:M2 appear at even smaller values of the action
S̃/2π. Also their amplitudes are even smaller relative to the ones of the nearly circular
orbits. Furthermore the amplitudes of the peaks of the nearly circular orbits with the
same winding number M1 are even larger and their positions are further slightly shifted
to smaller values of S̃/2π. This shift is better visible for larger M1.
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Figure 3.11: The quantum mechanical recurrence spectrum obtained via Fourier trans-
form (FT) and the semiclassical peaks as in fig. 3.8 for n0 = 5. Additionally peaks
obtained by harmonic inversion are shown as black bars with open squares at their end.
Only those which can be assigned to semiclassical ones are shown for better visibility.
The error bars indicate the deviation when using a shorter quantum spectrum.
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Figure 3.12: Enlarged region around S̃/2π ≈ 14 of fig. 3.11.

there are cases where the agreement is relatively good. For example for the amplitude
of the peak at S̃/2π ≈ 7.7 or for both amplitudes and actions of the two peaks around
S̃/2π ≈ 14 as can be seen in fig. 3.12 where the environment of those is shown enlarged.
Also the deviations ∆A and ∆S̃ are rather small for those peaks resulting in the error
bars being within the size of the open squares. Furthermore at least the magnitudes of
most of the harmonic inversion and semiclassical peaks coincide. The deviations ∆A

are also very different indicating a not uniform convergence. We give in table 3.1 the
parameters for peaks with comparably good agreement. The relatively large imaginary
parts of the actions of the harmonic inversion peaks, which should be purely real, are
another indication for the harmonic inversion not being sufficiently converged.

The discussion above suggests that we would need a much larger quantum spectrum to
achieve convergence of the harmonic inversion in more sections of the recurrence spectrum
and thus be able to precisely determine the parameters of recurrence peaks for more than
a few. Especially the clusters of semiclassical peaks where the actions are very similar
result in beat-like structures in the density of states which are only resolvable if the latter
is sufficiently large. Furthermore as the quantum spectrum consists of both the yellow
and green series, and we only compare to classical periodic orbits of the yellow series, the
green states can be regarded as noise which could also lead to a negative impact. Also
the adiabatic approximation used in the classical calculation of the orbits could be an
explanation for deviations between the quantum and semiclassical recurrence spectrum.
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3.3 Semiclassical interpretation of the quantum spectra

Table 3.1: Comparison between semiclassical peaks and peaks obtained by harmonic
inversion for n0 = 5. Here S̃cl and |Acl| denote the classical action and absolute amplitude,
S̃qm and |Aqm| the action and absolute amplitude obtained by harmonic inversion. In
the first column, denoted as type, the axis normal to the symmetry plane of the classical
orbit is given or whether it is fully three-dimensional. In the second column the winding
numbers of the orbit is given in the sequenceM1:M2:M3. For the central orbits one winding
number is given, for the two-dimensional orbits two, and for fully three-dimensional
orbits three.

Type M1:M2:M3 S̃cl/2π Re(S̃qm/2π) Im(S̃qm/2π) |Acl| |Aqm|
001 7:1 7.66318 7.68899 0.00886 3.48338 3.48060
011 13 12.95477 12.95324 0.00808 12.55954 14.40922
3D 13:1:2 13.77886 13.77921 0.02033 1.94825 1.88011
011 14 13.95129 13.95459 0.00858 10.88491 11.09087
001 20:2 21.47462 21.53141 0.00095 5.87543 5.93607
001 22:3 24.01863 24.03714 0.01247 2.22511 1.63889
001 25:1 25.90233 25.89540 0.00496 25.81694 27.98979
001 24:4 26.52386 26.49738 0.00715 2.20162 1.96693
001 27:1 27.91121 27.90184 0.00933 20.23884 20.26489
001 32:4 34.76402 34.76036 0.01104 7.92119 8.59425
001 45:2 46.77631 46.76831 0.01270 6.04839 5.89007
001 46:2 47.78257 47.77200 0.00224 7.63200 11.61153
001 52:5 55.72697 55.74803 0.01347 5.10610 6.55482
001 57 56.90422 56.91011 0.00983 3.78123 4.06931
001 74:5 78.08051 78.08168 0.02037 1.64425 1.16820
001 75:4 78.43711 78.42513 0.01336 2.44305 1.60926
001 75:5 79.09337 79.09332 0.00568 1.68636 2.94249
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4 Conclusion and outlook

We calculated quantum spectra of excitons in cuprous oxide including the complex band
structure. To be able to directly identify contributions of periodic orbits of the associated
classical dynamics at fixed energy, we applied a scaling technique to the quantum system.
Those contributions could then be revealed by Fourier transform of the scaled quantum
spectra to the corresponding recurrence spectra which exhibit peaks at the positions of
the action of classical periodic orbits. This connection is established by semiclassical
theories.

For the scaling of the system we appropriately replaced the spin-orbit coupling constant
∆ determining the separation of yellow and green series by a scaled version ∆̃ = ∆n2

0/n
2
eff

depending on a parameter n0, determining the energy of the associated classical dynamics.
This results in a decreasing separation of the series for higher levels in the neff spectrum
and the associated classical dynamics stay the same over the whole quantum spectrum.
As a consequence the corresponding spectra show an increasing fine-structure splitting
when going to higher neff levels. The strength of the splitting is also dependent on the
choice of the parameter n0.

The corresponding recurrence spectra exhibit peaks with increasing density as a function
of the action. The structure can be described as follows. For small values of the action
equidistant main peaks dominate the spectrum. Their amplitude decreases for increasing
action and new peaks of increasing amplitude appear between those until their amplitude
is comparable to the one of the main peaks. The size of the action range dominated
by the main peaks depends on the parameter n0 and is larger for a less pronounced
fine-structure splitting in the quantum spectrum.

A comparison of the quantum and semiclassical recurrence spectra for n0 = 5, n0 = 10,
and n0 = 15 revealed the contributing classical periodic orbits. The main peaks could
be assigned to two-dimensional nearly circular orbits in the symmetry planes of the
crystal and the side peaks to more complex orbits with secular motion including two-
and also fully three-dimensional orbits. This provides a deeper insight in the associated
classical dynamics connected to the fine-structure splitting in Cu2O. Because of the finite
resolution of the Fourier transform and semiclassical peaks occurring in clusters with
very similar actions there exist many peaks in the quantum recurrence spectrum to which
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4 Conclusion and outlook

more than one periodic orbit can be assigned. To circumvent the finite resolution of
the Fourier transformation and precisely determine the position and the amplitude of
the semiclassical peaks we applied the method of harmonic inversion to the quantum
spectrum. The attempt was successful for several peaks, however, the short quantum
spectra in general do not allow us to fully resolve the clusters of peaks in the semiclassical
recurrence spectrum.

Future work should concentrate on the calculation of scaled quantum spectra up to
much higher energy levels. To reduce the numerical effort needed one could use a
symmetry-adapted basis set to exploit the block structure of the Hamiltonian generated
by the irreducible representations of the point group Oh. This would further reduce
the dimension of the generalized eigenvalue problems we have to solve. Using a larger
spectrum it should be possible to successfully apply the method of harmonic inversion and
resolve the clusters of peaks present in the semiclassical recurrence spectra. This would
enable one to precisely determine the action and amplitude of periodic orbit contributions
to the quantum spectrum. If this is achieved one could extend the semiclassical analysis
to more values of n0 and thus consider the classical dynamics at different energies.
Comparison of the corresponding recurrence spectra could then be used to determine the
energy range for which the classical description is a good approximation. Where this is
the case, we can gain a more complete insight into the associated classical physics. It
will also be interesting to apply the semiclassical analysis of quantum spectra to other
systems like magnetoexcitons in curpous oxide or even other materials.
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A Material parameters of cuprous
oxide

The material parameters used in this thesis are listed in table A.1. The Luttinger
parameters γi and ηi are obtained from the parameters Ai and Bi as [25]

γ1 = −A1 , γ2 =
A2

6
, γ3 =

A3

6
,

η1 = −B1 , η2 =
B2

6
, η3 =

B3

6
.

Table A.1: Material parameters of cuprous oxide used in this thesis.

band gap energy Eg 2.17208 eV [2]
electron mass me 0.99m0 [52]

dielectric constant ε 7.5 [53]
spin-orbit coupling ∆ 0.131 eV [5]

valence band parameters A1 -1.76 [5]
A2 4.519 [5]
A3 -2.201 [5]
B1 0.02 [5]
B2 -0.022 [5]
B3 -0.202 [5]
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B Exciton Hartree units

Units often used in atomic physics are the Hartree atomic units obtained by setting the
unit charge e, free electron mass m0, reduced Planck constant ~, and the Bohr radius a0

to one. In analogy we use exciton Hartree units [25] by setting

~ = e =
m0

γ′1
= 4πε0ε = 1 . (B.1)

The unit length corresponds to the exciton Bohr radius

aexc = a0εγ
′
1 =

4πε0ε~2γ′1
m0e2

, (B.2)

and the energy unit is connected to the exciton Ryexc and Rydberg constant Ry of the
hydrogen atom

Eexc = 2Ryexc = 2
Ry

γ′1ε
2

=
~2γ′1
a2

excm0

. (B.3)

In table B.1 conversions to SI units are given for the parameters γ′1 = 2.77 and ε = 7.5.

Table B.1: Conversion factors from exciton Hartree to SI units.

quantity symbol exc. Hartree unit SI
charge q e 1.602× 10−19 C
mass m m0/γ

′
1 3.288× 10−31 kg

action S ~ 1.055× 10−34 Js
length r aexc 1.099× 10−9 m
momentum p ~/aexc 9.593× 10−26 kg m s−1

energy E Eexc 1.399× 10−20 J
time t ~/Eexc 3.769× 10−15 s

59





C Convergence behavior of the
eigenvalues

Here we discuss the behavior of the eigenvalues for different choices of basis sets. If not
otherwise stated we will refer to the scaled system (see section 2.2.3) with n0 = 5. For
other values of n0 the behavior is similar. As mentioned in section 2.3.1 for a finite basis
set the eigenfunctions become dependent on the convergence parameter α and thus also
the eigenvalues. The typical behavior of the deviations ε to the optimal eigenvalues for
a range of different values of the convergence parameter can be seen in fig. C.1. It is
visible that ε is more sensitive to a change to larger values of 1/α̃ than to lower ones. A
similar behavior for different atoms has been found in ref. [46].

In fig. C.2 the deviations ε for different values of 1/α̃ are plotted as a color map for the
first 600 states of basis set (α̃, 76, 30). One can see bands of states which are numerically
converged (values smaller than 10−8) for a whole range of values of α̃. Between those
bands there are also bands of states which are more sensitive to a change of α̃. This shows
a non-uniform convergence of the spectrum not only up to higher states but also with
convergence “gaps” corresponding to states which are worse approximated by the chosen
basis set than states below and above them. Also it is visible that the optimal value
for α̃ is increasing for higher states. Thus for each state a corresponding optimal value
for the convergence parameter has to be chosen. This has been done for the following
comparison between different sizes of basis sets.

In fig. C.3 the deviations ε are shown as a color map for different values of 1/α̃ and
different states again for basis set (α̃, 76, 30). Additionally the deviation ε for the same
states is also shown for basis sets (α̃, Nmax, 30) with different Nmax. It is visible that the
states in the bands which are numerically converged over a large interval of α̃ values
correspond to states which are also numerically converged already for smaller values of
Nmax.

For the unscaled system of eq. (2.12) the quantum defects δ are plotted in fig. C.4 over
the principal quantum number n for basis sets (α,Nmax, 30) with different Nmax. Only
the five states with larges δ have been plotted for better visibility. One can see that the
physically correct behavior [4], a convergence to finite δ, is only captured for sufficiently

61



C Convergence behavior of the eigenvalues
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Figure C.1: Typical behavior of the deviations ε to the optimal eigenvalue for different
values of the convergence parameter α̃ exemplary for one state.

Figure C.2: Distance ε to best neff eigenvalue for different values of α̃ and states
exemplary for the basis set (α̃, 76, 30) of one block with odd parity. For the other block
and states of even parity the results are similar.
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Figure C.3: Distance ε to best neff eigenvalue for different states and different Nmax

(left panel) or different values of 1/α̃ (right panel) exemplary for Nmax = 76. On can see
that the eigenvalues are less sensitive to the choice of α̃ values in a broader range when
the convergence of the former is better already at lower Nmax values. For all basis sets
Lmax = 30 was used and the states are in one block of odd parity. For the other block
and states of even parity the results are similar.

high values of Nmax. States with larger quantum defect have a stronger dependence
on the basis size. Here they should be assignable to the states with smaller angular
momentum quantum number L according to their principal quantum number n they first
occur at. Note that this is only an approximate assignment as L is not a good quantum
number. For the unscaled system this gives a possibility to determine an appropriate
basis size to achieve convergence up to a desired energy level with corresponding neff . The
obtained value can then be used as a first estimation for the basis size needed for a scaled
system to achieve convergence to the same neff value. In fig. C.5 the typical convergence
behavior for basis sets with increasing Nmax is plotted. One can see that the gradient
of the deviation to the best eigenvalue with respect to Nmax is decreasing for increasing
Nmax. In figs. C.6 and C.7 histograms over the change of the eigenvalues are shown for
one block of odd parity if the basis set is change from (α, 82, 30) to (α, 84, 30). Only
states with neff < 30 have been considered. It is visible that the majority of the states is
already numerically converged as a large peak is visible in fig. C.6 for ε < 1× 10−8. But
there are still a few states with a comparable large change of ε > 1× 10−4. The same
overall behavior is also visible for the states of even parity as can be seen in figs. C.8
and C.9.
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Figure C.4: Quantum defects δ for states in one block of odd parity for the unscaled
system over principal quantum number n for basis sets with different Nmax and Lmax = 30.
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Figure C.5: Deviations ε to best eigenvalue versus Nmax with fixed Lmax = 30 exemplary
for one state of odd parity.
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Figure C.6: Histogram over the change of the neff eigenvalues between (α̃, 82, 30) and
(α̃, 84, 30) for one block of odd parity.
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Figure C.7: Enlarged section of fig. C.6.
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Figure C.8: Histogram over the change of the neff eigenvalues between (α̃, 78, 30) and
(α̃, 80, 30) for one block of even parity.
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Figure C.9: Enlarged section of fig. C.8.
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Zusammenfassung in deutscher
Sprache

Die Energiedispersion in einem Festkörper ist gegeben durch dessen Bandstruktur. Wird
ein Elektron aus einem Valenzband in das Leitungsband angeregt, entsteht ein unbesetzter
Zustand im ersteren. Dieser kann durch ein positiv geladenes Quasiteilchen beschrieben
werden, welches Loch genannt wird. Durch die Coulombanziehung zwischen Loch
und Elektron existieren gebundene Zustände welche als Exzitonen bezeichnet werden.
Dies legt eine Beschreibung in Analogie zum Wasserstoffatom nahe. Tatsächlich ist
diese Näherung gültig wenn bestimmte Voraussetzungen erfüllt sind. So müssen die
Exzitonen zum Beispiel eine genügend große Ausdehnung im Ortsraum aufweisen, damit
der Kristallhintergrund als Kontinuum beschrieben werden kann.

Für die in dieser Arbeit untersuchten Exzitonen in Kupferoxydul (Cu2O) ist eine solche
wasserstoffähnliche Beschreibung eine gute erste Näherung. Je nachdem welche Valenz-
und Leitungsbänder bei der Anregung beteiligt sind unterscheidet man zwischen ver-
schiedenen Exzitonserien. Diese werden nach der Farbe des Lichts benannt welches für
deren Anregung benötigt wird. Die beiden Serien mit den niedrigsten Anregungsenergien
heißen dementsprechend gelbe und die grüne Serie. Die gelbe Serie mit der niedrigsten
Anregungsenergie war Gegenstand intensiver experimenteller Untersuchungen [1–3] und
ein wasserstoffähnliches Exzitonspektrum konnte beobachtet werden. Es wurden jedoch
auch Abweichungen vom wasserstoffähnlichen Verhalten festgestellt welche als Feinstruk-
turaufspaltung im Spektrum sichtbar sind [3]. Theoretische Untersuchungen konnten
diese hauptsächlich der komplexen Bandstruktur zuordnen [4–6]. Für eine genauere
theoretische Beschreibung der gelben Exzitonen muss eine vorhandene Kopplung zur
grünen Serie berücksichtigt werden [7], was eine Miteinbeziehung der an dieser Serie
beteiligten Valenzbänder erfordert. Dies kann durch die Einführung eines Quasispins
erreicht werden, der mit dem Lochspin koppelt. Die Stärke der Kopplung der beiden
Serien wird durch die Spin-Orbit Kopplungskonstante ∆ bestimmt, deren Wert durch
den Abstand zwischen den an den beiden Serien beteiligten Valenzbändern am Γ-Punkt
gegeben ist.

Im Jahre 2014 konnten hoch angeregte gelbe Exzitonzustände mit einer Hauptquantenzahl
von bis zu n = 25 von T. Kazimierczuk et al. [2] experimentell nachgewiesen werden.
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Zusammenfassung in deutscher Sprache

Für diese großen Quantenzahlen kann das Korrespondenzprinzip angewandt werden und
eine klassische beziehungsweise semiklassische Beschreibung wird möglich. In dieser
Arbeit wollen wir Verbindungen zwischen dem quantenmechanischen Spektrum und der
zugeordneten klassischen Dynamik für die Exzitonen der gelben Serie untersuchen. Wir
berücksichtigen dabei die komplexe Valenzbandstruktur die an der gelben und grünen
Serie beteiligt ist und damit die Abweichungen vom wasserstoffähnlichen Fall. Numerische
quantenmechanische Rechnungen erfordern die Diagonalisierung eines Hamiltonian in
einer großen, abgeschnittenen Basis. Obwohl die Ergebnisse sehr gut mit Experimenten
übereinstimmen [7] bieten diese keine direkten Informationen über die zugeordnete
klassische Dynamik. Für wasserstoffähnliche Systeme sind klassische Keplerellipsen mit
dem Rydbergspektrum über das Bohr-Sommerfeld-Modell verknüpft. Die klassische
Phasenraumstruktur ändert sich nicht mit der Energie, da sich alle gebundenen Zustände
mit klassischen elliptischen Keplerbahnen verknüpfen lassen. Für Exzitonen in Cu2O ist
dies nicht der Fall. Die zugeordnete klassische Dynamik ändert sich für jeden Zustand im
Spektrum, da sich das Verhältnis zwischen der entsprechenden Energie und der Spin-Orbit
Kopplungskonstante ∆ ändert. Es ist möglich diese Energieabhängigkeit zu umgehen,
indem die Kopplungskonstante ∆ so mit der Energie skaliert wird, dass das Verhältnis
zwischen Energie und resultierender skalierter Kopplungskonstante ∆̃ über das gesamte
Spektrum konstant bleibt. Dies führt zu einem skalierten Quantenspektrum. Für jede
gebundene klassische Dynamik, gekennzeichnet durch eine gegebene Energie, existiert
ein entsprechendes skaliertes Quantenspektrum.

Eine Verbindung zwischen den quantenmechanischen Exzitonspektren und der klassis-
chen Exzitondynamik wird durch semiklassische Spurformeln hergestellt [8, 9]. Diese
verknüpfen Fluktuationen in der quantenmechanischen Zustandsdichte mit einer Über-
lagerung von Oszillationen mit Frequenzen bestimmt durch die Periode oder Wirkung
von klassischen periodischen Orbits. Deren Amplituden sind verknüpft mit den Sta-
bilitätseigenschaften der Orbits. Wir wenden daher eine Fouriertransformation und
eine Technik für hochauflösende Spektralanalyse, genannt harmonische Inversion, auf
die numerisch berechneten skalierten quantenmechanischen Exzitonspektren an. Die
sich ergebenden Wiederkehrspektren zeigen Maxima an Positionen gegeben durch die
Wirkung von klassischen periodischen Bahnen der zugeordneten klassischen Dynamik.
Deren Anteil am Quantenspektrum ist gegeben durch die Amplitude der Maxima.

Durch geeignete Miteinbeziehung der Bandstruktur von Cu2O ist eine klassische Behand-
lung der Exzitonen möglich [12–14]. Durch die Anwendung von semiklassischen Theorien
kann ein semiklassisches Wiederkehrspektrum mit den Parametern von numerisch inte-
grierten klassischen periodischen Bahnen erstellt werden [14]. Ein Vergleich zwischen
quantenmechanischen und semiklassischen Wiederkehrspektren zeigt eine gute Überein-
stimmung. Dies erlaubt es Informationen über die periodischen Bahnen zu erhalten (zum
Beispiel Form, Wirkung, Stabilität, etc.) die zum skalierten Quantenspektrum beitragen.
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Diese Arbeit liefert damit einen tieferen Einblick in die klassische Exzitondynamik in
Cu2O und die Beziehung zwischen der Feinstrukturaufspaltung im Quantenspektrum
und der zugeordneten klassischen Dynamik.
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