


Erklärung (Statement of Authorship)
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Abstract English

Models of word sense clustering have mainly been explored on synchronous,

modern data. In contrast to these synchronous data sets, various historical

word sense clustering data sets have been developed. This enables the eval-

uation of word sense disambiguation models on historical corpora and the

exploration of their potential to detect changes in clusters over time (lexical

semantic change). The aim of this thesis is to assess multiple context-based

approaches to word sense disambiguation and lexical semantic change de-

tection by relying on deep contextualized word embeddings and powerful

token-based vector space models.

Abstract German

Modelle zum clustern von Wortbedeutungen wurden bislang hauptsächlich

auf synchrone, moderne Daten angewandt. Mittlerweile stehen der Forschung

auch verschiedene historische Datensätze zur Verfügung. Dies ermöglicht die

Evaluierung verschiedener Modelle zur Disambiguierung von Wortbedeutun-

gen und die Erforschung ihres Potenzials, diachrone Veränderungen in den

Clustern zu erkennen (lexikalische semantische Veränderungen). Ziel dieser

Arbeit ist es, kontextbasierte Ansätze zur Disambiguierung von Wortbedeu-

tungen zu vergleichen und ihr Potenzial zur Erkennung lexikalischer, seman-

tischer Veränderungen zu bewerten. Die Evaluierung erfolgt unter der Ver-

wendung von stark kontextualisierten Worteinbettungen und tokenbasierten

Verktorraummodellen.
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1 Introduction

Not all words have exactly one meaning. Ambiguous words are words with

multiple meanings depending on the context. A task in computational lin-

guistics is to automatically analyse and partition occurrences of ambiguous

words, according to their context-specific meaning. For example, the auto-

matic division of all uses of the word bank into those, where the institution

bank is meant and those, where the riverbank is meant.

A popular and common solution of this task is using clustering algorithms.

In machine learning, clustering is an unsupervised learning method, where

data points are automatically divided into partitions. Using occurrences of

an ambiguous word as the data points and letting the number of partitions

be the number of different meanings of the ambiguous word, one obtains

the task of word-sense clustering. The clustering task is applied on different
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vector representations, different clustering algorithms and different test sets,

in order to compare their fitness to the task.

The second perspective of this thesis deals with the challenge of lexical se-

mantic change (LSC) detection, as the identification of words whose usage

has changed over time. Language is not constant but changes over time. Due

to various influencing factors such as change in technology, cultural change

or the adaption of words from foreign languages (Tahmasebi et al., 2018), the

meaning and usage of words changes too. Some words gain a new meaning

over time, such as the word application through the invention of the com-

puter. Or the opposite, words can also loose a specific meaning over time. In

the recent years the task of LSC detection gained more attention, for example

through the shared task of Schlechtweg et al. (2020).

A common way to represent words or occurrences of words mathematically

is using vectors encoding semantic properties of words. Most existing power-

ful approaches for LSC detection are type-based. This means that not every

word occurrence is considered individually (token-based) but a general vec-

tor representation that summarizes every occurrence of an ambiguous word

is created. The results of the shared task (Schlechtweg et al., 2020) also

showed that type-based approaches achieved better results than token-based

approaches. This is somewhat surprising since in the last years contextual-

ized token-based approaches have achieved significant improvements over the

static type-based approaches in several Natural-Language-Processing (NLP)

tasks (Ethayarajh, 2019).

Therefore, the aim of this thesis is to show that token-based approaches can

keep up with type-based approaches in the LSC detection task, and that

their potential has not yet been fully exploited. We create several different

token vector representations for the occurrences of ambiguous words and

compare several measures for their potential to detect semantic change over

time. We achieve state-of-the-art results and provide an analysis of various

factors influencing the results of the LSC detection when using token-based

approaches.
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In Chapter 2 the LSC basics necessary to understand this work are intro-

duced. This means that NLP backgrounds are presented and illustrated by

some examples. In Chapter 3 the mathematical basics necessary to under-

stand this work are introduced. In Chapter 4 all textual corpora and all

other test data used in this work are presented. Chapter 5 explains in detail

which experiments were performed in this thesis. This includes the four exe-

cuted tasks and the three used candidate vector representations. In Chapter

6 all results obtained by the different vectors in the different tasks will be

presented and visualized. Furthermore, detailed analyses are performed to

justify the achieved results. Finally, Chapter 7 summarizes what has been

done and what insights have been gained.
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2 Background on Lexical Semantic Change

Detection

In the following chapter all NLP backgrounds necessary to understand this

work are explained. This includes an introduction to the task of lexical seman-

tic change detection and detailed explanations how to obtain token vectors

for the occurrences of ambiguous words.

2.1 Diachronic Lexical Semantic Change Detection

Diverse factors have impact on the use of human languages such as change in

technology, cultural change, or the adaption of words from foreign languages

(Tahmasebi et al., 2018). As the mentioned factors are in constant change,

the language changes too. Every word has at each time one or multiple senses.

Words with multiple senses are called ambiguous. Consider the word maga-

zine. It can either be a printed publication or an ammunition container. The

meaning of the word depends on its context.

Note that the meaning of words is not constant in time but is continuously

changing. Diachronic lexical semantic change (LSC) is the change of word

senses over time. Its automatic detection is a big task in the field of NLP

(Schlechtweg et al., 2019) and as well in this thesis.

Usually a set of words is given and the task is to automatically find those

words whose semantics has somehow changed over time. But first a suitable

representation of the words must be chosen.

2.2 Vector Space Models of Semantics

Computers are limited in their understanding of the semantics of human lan-

guage. To address this limitation, vector space models of semantics (VSMs)

have been introduced. The following explanations of VSMs are based on Tur-

ney and Pantel (2010).
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The idea of VSMs is to represent documents or words as points in vector

spaces to enable comparisons between them. Points that are close to each

other in this space are more likely to have a similar meaning than points that

are far. So the comparison of documents or words can be applied by using

existing distance measures. For example in search engines users usually search

relevant documents for a textual query. The search engine can interpret the

query as a document, transfers it into a point in space, and checks which

points are the closest, in order to return the corresponding documents.

According to Turney and Pantel (2010) there are different types of VSMs. In

the above given example of the search engine, the Term-Document Matrix

has been introduced, to measure the similarity of documents. However, the

focus of this work is on the Word-Context Matrix, to measure the similarity of

words. Word-Context Matrices contain one vector for each word of a corpus.

VSMs have a wide range of application and can not only be used in search

engines. In the area of machine learning, data scientists often want to cluster

or classify vectors. VSMs offer one way to generate vectors out of text and

thus open many possibilities for the automatic analysis of the semantics of

human language.

There are different approaches to create vectors for words. Two of them are

either by counting or by predicting, as described in Schlechtweg et al. (2019).

Both of those approaches will be presented in this work. Furthermore, both

approaches can be sub-divided in type-based and token-based, whereby in

the type-based approaches vectors represent words, and in the token-based

approaches vectors represent uses of words.

2.3 Tokens, Types and Lemmas

According to Turney and Pantel (2010) can a token be seen as a character

string, whereby types are classes of tokens. To get a better understanding

about types and tokens, consider a fictional corpus consisting of the following

sentences.
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Corpus 1:

1. He likes the USA and his ex-girlfriend

2. I don’t like the usa and New York

Tokens:

He, likes, the, USA, and, his, ex-girlfriend, I, don’t, like, the, usa, and, New,

York

Types:

He, likes, the, USA, and, his, ex-girlfriend, I, don’t, like, usa, New, York

Furthermore, lemmatization is the process of mapping words to their lemma

form. (Manning et al., 2008). This includes the removal of the ending of a

word and the return of its base form. In the example sentences introduced

above, lemmatization would ensure that the types likes and like result as the

same lemma (like).

2.4 Count-based Vectors

One way to find vectors representing types or tokens is using its co-occurrence

statistics. How to build count-based vectors for types and for individual oc-

currences of types, will be presented in this section.

2.4.1 Count-based Type Vectors

When creating a Word-Context Matrix or count-based type vectors (2.4),

there must always be one or more textual corpora on which to build the

matrix on. Word-Context Matrices consist of vectors for each type of a corpus.

In linguistics the distributional hypothesis says that words that occur in
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similar contexts tend to have similar meanings (Turney and Pantel, 2010).

This is why here the vector for a type is derived from the context of each

occurrence of the type. That means that for each occurrence of a type we

check which words co-occur with this type and let those co-occurring words

define the type.

VSMs use words or types as dimensions and entries in this dimensions are the

number of times that the word occurs in the context of this dimensional word.

The words that serve as dimensional words can either be selected explicitly

or can be every type from the corpus. To get a better understanding, consider

the following fictional corpus and the dimensional words party and game:

Corpus 2:

1. dance club party

2. dance party

3. play football game

4. football game

In the rows of Table 1 we see four words and their corresponding word vectors.

For instance the type dance occurs twice in the context of the dimensional

word party, and therefore has on the corresponding column the value 2. In

Figure 1 we see the four vectors represented as points in space.

party game

dance 2 0

club 1 0

play 0 1

football 0 2

Table 1: Word-Context Matrix for Corpus 2
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Figure 1: Word-Context Matrix for Corpus 2

The vectors show that the type dance is more semantically similar to the

type club than to the type football, as they are closer.

For all occurrences of each type, the model counts how often it occurs in the

context of each dimensional word, and the result is a vector that represents

the type. What the context of a word is depends on the application. It can

be either every word of the same sentence or every word in a window of

specific size. Creating the count-based word vectors for each type, we obtain

the Word-Context Matrix.

When comparing those vectors using distance measures like the euclidean

distance measure (3.2.1), one should consider a length normalization. Other-

wise, vectors like dance and club would have a distance of 1.0, although they

occur in almost identical contexts and both have 100% of their weight on the

party axis. Using the cosine similarity (3.2.2), no normalization is necessary.

2.4.2 Count-based Token Vectors

Ambiguous words have multiple senses. In order to understand the distribu-

tion of those senses, every occurrence of an ambiguous word must be consid-

ered individually. In 2.4.1 was explained how to get vectors for every type
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of a corpus. Considering every occurrence of a type individually, this is no

longer sufficient.

In 1998 Schütze presented an approach how to create vectors for each occur-

rence of a type, using the already mentioned co-occurrence statistics. In the

following this approach will be explained in more detail. Schütze (1998) pro-

posed context-group discrimination, an algorithm that groups occurrences

of an ambiguous word into different clusters, where each cluster consists of

contextually similar occurrences. Vectors representing one occurrence of an

ambiguous word will in the following be called token vectors or context vec-

tors.

The most intuitive approach to get a count-based token vector would be

by considering only the words that directly co-occur with the target word,

resulting in so called first-order co-occurrence vectors. However the context-

group discrimination algorithm, proposed by Schütze (1998), uses second-

order co-occurrence vectors, where the directly co-occurring words are not

considered, but the words that co-occur with the directly co-occurring words.

Schütze argued that the second-order co-occurrence vectors are less sparse

and therefore more robust than first-order vectors.

With the aim of obtaining the second-order vector for an occurrence of an

ambiguous word, the first step is the creation of the Word-Context Matrix,

as in 2.4.1. The following example with already given word vectors for a small

corpus shall explain the creation of the second-order vectors.

Corpus 3:

1. dance club party

2. drink club dance

3. play game
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party game

dance 1 0

club 1 0

party 1 0

drink 0 0

play 0 1

game 0 1

Table 2: Word-Context Matrix for Corpus 3

If you take a closer look at the sentences you will see that the word drink,

although it has no entries on any axis, is nevertheless semantically much

more related to party than to game. Due to the fact that the first and only

occurrence of the word drink does not co-occur with the word party, the

first-order token vector would have the value zero on the corresponding axis.

CV 1 (”drink”) =
(

0 0
)

But the word drink co-occurs with the words club and dance, which in turn

directly co-occur with the word party. And this basically is the justification,

why second-order co-occurrence vectors promise to be more robust than first-

order vectors, because they take more information into account. Let WV

denote the word vector of a word:

CV 2 (”drink”) = WV (”club”) +WV (”dance”)

=
(

1 0
)

+
(

1 0
)

=
(

2 0
)

In summary this means, creating one vector for each token of a corpus, all

type vectors for each word that co-occurs with the token, must be summed

up.
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2.5 Predictive Type Vectors with Word2Vec

Count-based vectors are created by counting. This means that only the words

that occur together with a word are considered. This is different with pre-

dictive models. Predictive models do not check which words are next to a

target word in a sentence, but try to predict exactly these words, based on

experience.

Pre-trained type vectors, trained on the Google News data set, have been

made publicly available. It consists of 300-dimensional type vectors for 3

million different types (McCormick, 2016a). The Word2Vec model is based

on a skip gram neural network architecture and creates type vectors as follows

(McCormick, 2016b):

By feeding the model with a sentence, a specific target word and a random

word in the sentence are selected. The model checks for each word in the vo-

cabulary the probability that this word is the randomly selected word. Those

probabilities are calculated using a neural network architecture. For every

word in the vocabulary a 300-dimensional vector representation is created,

based on the 300 features of the neural network. Those features get better,

the more sentences are fed into the model.

2.6 Predictive Token Vectors with BERT

In 2018 Google has released a pre-trained model, that ran over Wikipedia and

books of different genres, to learn as much as possible about text (Devlin et al.

(2018)). BERT (Bidirectional Encoder Representations from Transformer) is

a language representation model, designed to find representations for text,

by analysing its left and right context (Devlin et al., 2018).

Language representation models (LM) are one of the core components of

NLP, where based on pre-trained knowledge, word sequences get assigned

the likelihood that they occur in this sequence (Jing and Xu, 2019), and can

therefore also be used to discover contextually similar words. Most of the
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LMs are unidirectional, that means it analyses the already inputted words of

a sentence and then tries to predict the rest of the words. However, BERT is

bidirectional, that means it processes the input data in both directions.

According to Peters et al. (2018) have contextual word representations, de-

rived from pre-trained bidirectional language models, shown significant im-

provements to the state-of-the-art for a wide range of NLP tasks. BERT can

be used to analyse the semantics of individual words, by creating contextual-

ized word representations, vectors that are sensitive to the context in which

they appear (Ethayarajh, 2019). In the following I will explain in a simpli-

fied way how to create token vectors using BERT after the guidance from

Chris McCormick (2019).

BERT provides a set of pre-trained models for different languages. I will only

consider the bert-base-uncased model, which is trained on lower-cased En-

glish text. If you give BERT a sentence as input, it automatically tokenizes

the sentence in a specific way:

text = The girl is playing football

tokenized = [”the”, ”girl”, ”is”, ”play”, ”##ing”, ”football”]

Note that the word playing was splitted into the words play and ##ing.

The bert-base-uncased model has a vocabulary of length 30 000, and does

only contain the most common English words and sub-words. So BERT first

checks if the complete word is in the vocabulary and if not, it tries to break

the word in largest possible sub words.

Applying the BERT model on an example text it will return the following

information.

1) The number of layers: 13 (The first layer contains the input embeddings)

2) The numer of sentences: 1 Sentence

3) The number of tokens: 22 Tokens

4) The number of features: 768 features
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The number of features corresponds to the number of dimensions of each

contextualized token vector. In summary, BERT generates 12 different to-

ken vectors (one per layer) for each token of the sentence, where each layer

captures different information about the token. According to Jawahar et al.

(2019) the lower layers capture surface features, the middle layers capture

syntactic features and the higher layers capture semantic features of the text.

Either each layer can serve for itself as representation for the corresponding

token, or also a combination of multiple layers.

For all the experiments of this thesis, token vectors for occurrences of ambigu-

ous words are necessary. In this chapter we have seen different ways to create

token vectors. By summing up self-trained type vectors, by summing up pre-

trained type vectors from Word2Vec, and using BERT. All of this different

token vector representations will be used to apply word-sense clustering and

LSC detection.
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3 Mathematical Background

In this chapter all mathematical basics necessary to understand this work are

presented. This includes matrix processing methods, clustering algorithms

and different evaluation measures.

3.1 Matrix Processing Methods

In this thesis we mainly worked with different variants of vectors and matri-

ces. Therefore, it is worth spending time in finding the ideal vector represen-

tations that fit best to our tasks. Various matrix processing methods already

exist, aiming to improve the fitness of matrices for specific tasks. Here, two

different matrix processing methods are used, which are presented in this

section.

3.1.1 Positive Pointwise Mutual Information

For two events x and y the Pointwise Mutual Information (PMI) value is

defined as:

PMI (x, y) = log
P (x, y)

P (x)P (y)
(1)

The PMI value measures the probability that x and y occur together, in

relation to the probability that x and y occur independently. Applied to the

Word-Context Matrix (2.4), the PMI value for a word w and a context

word c would be the logarithm of the number of times the two words co-

occur, compared to the number of times the words occur independently.

Naming #(w) the number of times, that the word w occurs, we get (Levy

and Goldberg, 2014):

PMI (w, c) = log
#(w, c) ∗ |D|α

#(w)#(c)α
(2)
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Whereby D is the set of all observed word-context pairs and α a smoothing

parameter that reduces PMI’s bias towards rare words (Schlechtweg et al.,

2019).

In the case where either x or y does not occur at all, the PMI value would

be undefined. To prevent this, the Positive Pointwise Mutual Information

(PPMI) was introduced (Levy and Goldberg, 2014):

PPMI (w, c) = max(PMI(w, c), 0)(3)

3.1.2 Singular Value Decomposition

When working with high dimensional and sparse matrices (most entries equal

to zero), for instance in the case of the Word-Context Matrix (2.4), calcula-

tions can be time expensive. In order to reduce the time complexity and to

improve the computational efficiency of the vectors, dimensional reduction

can be applied on the matrices (Levy et al., 2015). Truncated Singular Value

Decomposition (SVD) is one method to create low dimensional, dense vectors

(most entries unequal to zero).

Given a matrix M ∈ Rmxn, then there exist orthogonal, unitary matrices

U ∈ Rmxm and V ∈ Rnxn such that (Klema and Laub (1980) and Brunton

and Kutz (2019)):

M = UΣV T(4)

With

Σ =

(
S 0

0 0

)
(5)

where S is a diagonal matrix: S = diag(o1, ..., or) with o1 = ... = or > 0.

The matrix M can be expressed as the following sum:

M = o1u1v
T
1 + ...+ orurv

T
r(6)
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The columns of the matrix U can be seen as the basis for the column vectors

in M , and the matrix V as the vectors, that give the coefficients, how to

sum up the basis vectors to obtain the vectors of M . The basis vectors in U

are sorted according to their information value. Every of the above addends

can individually be seen as an approximation for M , that only uses one

basis vector to represent the elements. The approximation gets better, the

more addends (basis vectors) one uses for building the vectors. Using all the

addends, the result is identical to M .

However, based on the fact that the basis vectors in U are sorted in decreasing

order according to their information value, one can simply choose the first d

elements of the equation, and obtains the best possible d-dimensional matrix

approximation of M .

M̃ = UdΣdV
T
d(7)

3.2 Distance Measures

The comparison of vectors is crucial in this work. Therefore the best fitting

comparison measures are introduced in this section.

3.2.1 Euclidean Distance

The widely-used euclidean distance measure, for measuring the distance of

two vectors (Merziger et al., 2010):

d (p, q) =

√√√√ n∑
i=1

(qi − pi)2(8)
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3.2.2 Cosine Distance

The cosine distance, for measuring the angle of two vectors (Merziger et al.,

2010):

cos (p, q) =

∑n
i=1 qipi√∑n

i=1 p
2
i ∗
√∑n

i=1 q
2
i

(9)

3.3 Clustering

In machine learning, clustering is an unsupervised learning method, where

data points are automatically divided into a pre-defined number of partitions.

All parts of the used clustering algorithms, are introduced in this section.

3.3.1 Silhouette Method

The idea of the silhouette method is to execute a clustering algorithm for all

candidate numbers of clusters, and then calculate for each number of clusters

the silhouette index. The number of clusters with the highest silhouette index

will be used for the real, final clustering, since it seems to fit best to the

data (Rousseeuw, 1987). The formula of the silhouette index for the number

of vectors n and number of cluster k is (Rousseeuw (1987) and Patil and

Baidari (2019)):

silhouette (k) =

∑n
i=1 S(i)

n
(10)

where S(i) is the silhouette score for one of the given vectors (Rousseeuw,

1987):

S(i) =
b(i)− a(i)

max{a(i), b(i)}
(11)

a(i) is the average dissimilarity of vector i to all other vectors in the same

cluster A.

23



b(i) is the minimum dissimilarity of vector i to any other vector that is not

in cluster A.

Using the euclidean distance this means that the mean distance from vector

vi to all vectors of the same cluster A is compared to the distance from vector

vi to the closest vector that is not in cluster A.

For every candidate number of clusters the calculation of b(i) always requires

at least two different clusters. Because of that, the silhouette index can only

be computed for the number of clusters two or higher.

This can be used as a measure of how good vector vi is clustered. If S(i) is

close to one, then a(i) is much smaller than b(i). This means that vector vi

is clustered ”correctly”. If S(i) is close to zero, then a(i) is much bigger than

b(i). This means that vector vi is probably clustered wrongly (Rousseeuw

(1987)).

3.3.2 Group-Average Agglomerative Clustering

Agglomerative clusterings are hierarchical and start with each element in an

individual cluster. Then it always merges the two clusters that maximize a

certain criterion. Group-Average Agglomerative Clustering (GAAC) always

merges the two clusters that give rise to the cluster T with the largest average

in-cluster cosine similarity C(T) (Cutting et al. and Schütze (1998)):

C(T ) =
1

2

1

|T |(|T | − 1)

∑
−→v ∈T

∑
−→w∈T

cos(−→v ,−→w )(12)

GAAC stops the algorithm if the number of clusters is equal to 1, or if a

predefined number of cluster is reached. GAAC provides good results, since

it iteratively merges the two most similar clusters.
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3.3.3 Ward Agglomerative Clustering

As already explained in 3.3.2 agglomerative clusterings always start with

each element in an individual cluster and then always merge the two clusters,

that maximize a certain criterion. When using wards method, the algorithm

always merges the two clusters Ci and Cj with the lowest loss of information,

defined as (Ward Jr (1963) and Schulte Im Walde (2006)):

dward(Ci, Cj) =
∑

x∈Ci∪Cj

d(x, centroidi,j)− (
∑
x∈Ci

d(x, centroidi) +
∑
x∈Cj

d(x, centroidj))

(13)

Whereby centroidi denotes the centroid or center of cluster Ci and d(x, centroid)

denotes the distance from a vector to its centroid.

3.3.4 K-means Clustering

K-means either needs as input the desired number of clusters, or a list of

initial centroids. In the following, I only consider the version with the initial

centroids. Here is what K-means does as pseudo code (Duda et al., 1973):

Algorithm 1 K-means algorithm

1: procedure Kmeans(initialCentroids)

2: repeat

3: Assign each vector to its closest centroid

4: Recompute centroids

5: until No changes in centroids

6: end procedure

Every vector gets assigned to its closest centroid. After that the centroids

get recomputed, as the mean of all vectors that are assigned to it. Here is an

example how the algorithm successfully terminates.
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Figure 2: K-means terminating example

K-means only finds locally optimal results. This means that if the inital

centroids are not placed optimally, the results can be ambiguous. See the

following example.
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Figure 3: K-means Problematic example

In order to make the results of K-means more stable, it is worth spending

time to find a good initialization of the centroids.

3.4 Clustering Performance Measures

Since one of the central tasks of this thesis is clustering, it is important to

quantify the correctness of a clustering. In this section I will present all the

measures we have used to evaluate the clustering performance.

For the evaluation of a clustering result it is necessary to know the expected

clustering, in order to compare the expected clustering with the actual clus-

tering. The gold clustering, as well as the actual clustering, can be presented

as a list of labels, where label li is the ID of the cluster to which vector vi be-

longs. The evaluation of the clustering can then be reduced to the comparison

of the expected labels and the actual labels.
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3.4.1 Rand Index

The rand index checks the pairwise relationships between an element of the

actual labels and an element of the expected labels. Four different types of

relationships are possible. It can either be a True Positive (TN), a True Neg-

ative (TN), a False Positive (FP), or a False Negative (FN). The explanation

is given below.

The rand index has a value range from 0 to 1, where the value 1 is the best

possible result (if the expected labeling is identical to the actual labeling).

The formula of the rand index is (Rand, 1971):

RI =
TP + TN

TP + TN + FP + FN
=
TP + TN(

n
2

)(14)

TP : Number of element pairs, that were placed together in both partitions.

TN : Number of element pairs, that were placed different in both partitions.

FP : Number of element pairs, that were not placed together in the gold

partition but were in the actual partition.

FN : Number of element pairs, that were placed together in the gold partition

but were not in the actual partition.

n: The number of clustered elements.

To get an idea of the rand index, consider the following example labels:

gold = [0,0,1,1,1,1]

actual = [0,0,0,0,1,1]

Just by looking one can see that the first two and the last two elements were

clustered correctly, and the middle two are not. For the given example this

would be:

RI =
3 + 4

3 + 4 + 4 + 4
= 0.467
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The problem of the rand index is that for random labels the rand index does

not return (as expected) zero, or anything near to zero, since it does not

take into account the agreement by chance (Yeung and Ruzzo, 2001). This

problem gets fixed, using the adjusted rand index (ARI), that enables to

overcome such drawbacks (Robert et al. (2017) and Vinh et al. (2010)).

The adjusted rand index has a value range from -1 to 1, random labels would

result with a value near to 0:

ARI =
RI − Expected(RI)

1− Expected(RI)

=
2(TP ∗ TN − FP ∗ FN)

(TP + FP )(FP + TN) + (TP + FN)(FN + TN)

(15)

For the above example this would be:

ARI =
2(12− 16)

(7)(8) + (7)(8)
= −0.07

3.4.2 Cluster Accuracy

An alternative measure for the performance of a clustering, is the cluster

accuracy score (ACC) (Morbieu, 2019):

accuracy(gold, actual) = max
perm∈P

1

n

n−1∑
i=0

1(perm(actual[i]) = gold[i])(16)

Basically the algorithm checks for which mapping of the actual clustering

labels to the gold labels, the match is maximal, and then counts how many

elements have been put in the correct cluster. Using the same example as

before, we get:
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gold = [0, 0, 1, 1, 1, 1]

actual = [0, 0, 0, 0, 1, 1]

perm1 = [0, 0, 0, 0, 1, 1]

perm2 = [1, 1, 1, 1, 0, 0]

accuracy(gold, actual) = max
1

n

n−1∑
i=0

1(perm1[i]) = gold[i]),

1

n

n−1∑
i=0

1(perm2[i]) = gold[i]) =
2

3

The result of 2
3

is more intuitive for the above given example, since 4 out of

6 labels match.

3.5 Semantic Change Measures

In order to detect semantic change for a targeted word, some measures have

to be introduced. To apply the following measures, token vectors from two

different points of time have to be available.

3.5.1 Average Pairwise Distance

Given two sets of token vectors from two times, the idea of the Average

Pairwise Distance (APD) is to measure the pairwise distance of all vectors

from the two lists. The LSC score of the word is the mean average distance

of all comparisons. The higher the number of compared vectors, the more

accurate is the result. Here is the formula, as in Giulianelli et al. (2020):

APD(V,W ) =
1

nV ∗ nW

∑
v∈V,w∈W

d(v, w)(17)
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Where V and W are the lists of vectors from the two times, nV and nW de-

note the number of vectors to be compared, and d(v,w) stands for a distance

measure (we have used the cosine distance).

Similar approaches have been defined before in Schlechtweg et al. (2018) and

in Sagi et al. (2009).

3.5.2 Cosine Similarity

Given two sets of token vectors from two times, the idea of the cosine sim-

ilarity based LSC measure (COS) is to average all vectors from both time

periods and then measure the distance between the two averaged vectors.

Here is the formula (Kutuzov and Giulianelli (2020)):

COS(V,W ) =
1

cosine(
∑

v∈V v

nV
,
∑

w∈W w

nW
)

(18)

Where V and W are the lists of vectors from the two times, nV and nW

denote the number of vectors to be compared.

3.5.3 Jensen-Shannon Distance

Given two clustering labels, the Jensen-Shannon Distance (JSD) compares

the usage distribution of two clusters (Giulianelli et al. (2020)). If the usage

distributions (labels) are very similar, the JSD returns a low value. If the

distributions are different, the JSD returns a high value (Lin (1991) and

Donoso and Sanchez (2017)):

JSD(P,Q) =

√
DKL(P,M) +DKL(Q,M)

2
(19)

Where M = P+Q
2

and DKL the Kullback-Leiber divergence:
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DKL(P,Q) =
∑
i

P (i)log
P (i)

Q(i)
(20)

3.6 Correlation and Agreement Measures

For the comparison of two value sequences, several measures can be applied

to measure the agreement. In this section two measures will be introduced.

3.6.1 F1 Score

Given two lists of binary labels (all entries are either 0 or 1), the F1 score

measures the compliance of the two list of labels (Chicco and Jurman (2020)).

Using the same terminology as in 3.4.1 we have:

TP : Number of element pairs, that were placed together in both partitions.

TN : Number of element pairs, that were placed different in both partitions.

FP : Number of element pairs, that were not placed together in the gold par-

tition but were in the actual partition.

FN : Number of element pairs, that were placed together in the gold partition

but were not in the actual partition.

The formula of the F1 score is (Sasaki et al., 2007):

F1 =
TP

TP + 0.5(FP + FN)
(21)

The F1 score compares the number of correctly as 1 labeled elements with

the number of wrongly labeled elements. Its maximum (1.0) is reached, if

the two list of labels are identical and its minimum (0.0), if the number of

correctly as 1 labeled elements is equal to zero. Note that the number of

correctly as 0 labeled elements is ignored here.
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3.6.2 Spearman Correlation

The Spearman Correlation Coefficient measures the strength and the direc-

tion of the linear relationship between two variables (Bolboaca and Jäntschi,

2006). In contrast to other correlation measures the spearman correlation

only measures the rank order correlation of two variables. Its value range is

from -1 to 1, whereas 1 denotes a perfect, positive linear relationship between

the two variables, -1 a perfect, negative linear relationship. 0 means that the

variables are not linearly related.

For two variables X and Y , its mean values X̄ and Ȳ and the number of

compared values n, the formula of the Spearman Correlation Coefficient is

(Bolboaca and Jäntschi, 2006):

RX,Y =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(22)

The numerator sums up the products of the distances from the variables

to their means. If one of those products is greater than zero, it means that

the two corresponding values are both greater or both smaller than their

means, what basically says that those values ”agree”. But if the product is

smaller than zero, it means that exactly one of the values is smaller than its

mean and one is greater that its mean, then the both values ”disagree”. The

higher the numerator, the higher is the correlation between the two variables.

The denominator simply divides the sum by the product of the summed up

deviations, to map it between -1 and 1.
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4 Corpora and Test Data

In this chapter all corpora and test data used in this work will be intro-

duced. This includes the ukwac corpus and the CCOHA corpus, as well as

the SemEval target words and the pseudowords.

4.1 ukwac

The Web as Corpus kool ynitiative corpora (WaCky), is a huge collection of

English, German and Italian text, built by crawling the web between 2005

and 2007. The English part of the WaCky collection (ukWaC) is Part-Of-

Speech-tagged, which means that for each word it is specified what kind of

word it is (verb, noun...). Furthermore, the text is lemmatized and contains

about 2 billion tokens and 3.8 million types. Due to the enormous size of

the corpus it is a good basis to learn as much as possible about words and

sentences of the English language at one period of time (2005-2007) (Baroni

et al., 2009).

4.2 CCOHA

The Corpus of Historical American English (COHA) (Davies, 2012) was de-

veloped by the Brigham Young University as a collection of English texts

from newspapers, magazines, fiction and non fiction books, published be-

tween 1810 and 2009 (Alatrash et al., 2020). It contains about 406 million

words and is publicly available.

Alatrash et al. (2020) describes some limitations of COHA, for instance be-

cause of copyright reasons after each 200 tokens, ten consecutive tokens have

been replaced by @. As consequence roughly 5% of the corpus consists of the

token @, what decreases the quality of the data. Another example is, that

the corpora consists of several malformed tokens, since tokens were mistak-

enly tokenized along with special chars, or two tokens were tokenized and
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interpreted as one token.

To minimize the effects of the problems of COHA, Alatrash et al. (2020)

introduced the Clean Corpus of Historical American English (CCOHA). As

described in Schlechtweg et al. (2020), for CCOHA two time-specific sub

corpora, CCOHA1 and CCOHA2, have been extracted. Whereas CCOHA1

contains sentences from 1810 - 1860 and CCOHA2 contains sentences from

1960 - 2010. CCOHA1 consists of roughly 6.5 million tokens and about 87

thousand different types. CCOHA2 consists of roughly 6.7 million tokens

and about 150 thousand different types. Furthermore, punctuation and all

sentences containing less than ten words were removed from the two corpora.

Both of the corpora are available in a lemmatized and a non-lemmatized

version.

4.3 SemEval Target Words

In 2020 the shared task Unsupervised Lexical Semantic Change Detection

(Schlechtweg et al., 2020) was executed, in order to compare different ap-

proaches for detecting LSC. The underlying data of the shared task was also

used in this thesis, but only the English subset.

As described in Schlechtweg et al. (2020), by scanning etymological and his-

torical dictionaries, a list of 100-200 candidate words was selected. This list

was reduced by human annotators who checked if there were differences in the

meaning of the words, in a sample of 50 uses from the two Corpora CCOHA1

and CCOHA2. Resulting in a list of roughly 40 words, where each word is

either stable (no changes in meaning) or not. The target words are balanced

in the frequency in which they occur, and their POS (Part-Of-Speech).

For each of the target words and for each of the two corpora, 100 uses have

been manually divided into its meanings (senses), resulting in the gold la-

beling for each word and time. In the shared task, the participants did not

have access to the uses of the words, they only knew the target words. In this

work I was allowed to use the extracted sentences for each word and time.
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4.4 Pseudowords

Schütze (1998) describes pseudowords as a good instrument for testing dis-

ambiguation algorithms. In reality it is very expensive and time consuming to

label all occurrences of a set of ambiguous words according to their meanings,

but sufficient to test the performance of disambiguation algorithms.

A pseudoword is a fictional word, created from two (or more) words w1

and w2, by replacing each occurrence of the word w2 with the word w1. An

artificial ambiguous word with two meanings is created. The great advantage

of pseudowords is that no human annotation of the uses according to their

meaning is necessary.

For each occurrence of the pseudoword we create token vectors and cluster

them. Hopefully, a clean separation of the clusters is visible, namely those of

the two original words. For instance by interpreting the words politician and

professor as the same, we expect one cluster for all of the professor uses and

one cluster for all of the politician uses.

137 pseudowords have been extracted from the CCHOA corpora. Between the

individual word pairs, the POS is always the same. For each word between 100

and 1000 sentences have been extracted from the CCOHA corpora, resulting

in the pseudoword test set (Table 8).
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5 Experiments

In this thesis the task of word sense clustering and the task of LSC detection

are applied using three token vector representations for the occurrences of

ambiguous words. The two tasks and the candidate vector representations

are explained in this section.

5.1 Tasks

As already mentioned, this thesis aims to show that token-based approaches

can keep up with static type-based approaches in the task of LSC detection.

Four tasks are executed, in order to quantify the performance of our token-

based approaches. In this chapter those tasks are introduced.

5.1.1 Pseudoword Clustering

For each occurrence of a targeted pseudoword, a vector representation must

be created. Once these vectors have been created, a clustering algorithm

(5.1.3) is applied, in order to detect semantically similar occurrences. For

example if a pseudoword is generated by interpreting the words politician

and professor as the same, the desired result of the clustering would be one

cluster with all the professor uses and one for all the politician uses.

The performance of the clustering will be measured by applying the ARI

(3.4.1) and the ACC (3.4.2) on the labels of the actual clustering result and

the expected labels. Where label li of a clustering represents the cluster in

which the i-th vector was placed. The two measures are used because they

consider different things. The ARI measures how many vectors were correctly

clustered together and the ACC checks which interpretation of the clusters

would result in the highest agreement and then simply counts how many

elements were placed in the correct cluster.
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5.1.2 SemEval Clustering

Since pseudowords are not real words with multiple senses, it would be

helpfull to alternatively evaluate the clustering using real ambiguous words.

Therefore, alternatively the SemEval words are used. The SemEval cluster-

ing task, similar to the pseudoword clustering task (5.1.1), is to cluster all

occurrences of each SemEval word from both times and to check how well

the result shows the separation of the meanings, according to the human

annotation.

The performance of the result is also measured using the ARI (3.4.1) and the

ACC (3.4.2), for the same reasons as in 5.1.1.

5.1.3 Clustering Algorithm

In 2.4.2 I have already introduced the context-group discrimination algo-

rithm, used in Schütze (1998) to group occurrences of an ambiguous word

into clusters, where each cluster consists of contextually similar occurrences.

In this work I have basically used the same clustering algorithm as in the

context-group discrimination algorithm.

It uses the K-means algorithm (3.3.4) to cluster the token vectors into clusters

of similar contexts. Due to the fact that K-means only finds locally optimal

solutions, Schütze applies GAAC (3.3.2) on a small subset of the vectors to

find a good initialization for K-means. Here I will do the same.

The K-means algorithm needs as input a number of clusters, which does

not fit into most of our tasks. Therefore, it is necessary to pre-calculate the

optimal number of clusters. This will be done by using the silhouette method

(3.3.1) as already in Giulianelli et al. (2020).

5.1.4 Graded LSC Detection

Both LSC detection tasks correspond to those from the shared task, described

in Schlechtweg et al. (2020). One of the two tasks is the graded LSC detection,
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also denoted as subtask 2. Given a set of words from two periods of time,

the task is to quantify the semantic change of each word, by assigning every

word a graded change value between 0 and 1, where 1 is the maximum and

0 the minimum.

In order to compare how well the computed LSC values correspond to the

real LSC values, the spearman correlation (3.6.2) is applied on the values

sequences. As in the shared task, the SemEval words (4.3) have been used for

the evaluation. Three different measures were used to quantify the semantic

change of the words. To apply the three measures on one of the words, we

need one vector for all of the occurrences of the word from both periods of

time.

The first measure for graded LSC detection is the APD (3.5.1), the second

measure is the COS (3.5.2) and the third measure is the JSD (3.5.3).

5.1.5 Binary LSC Detection

For the Binary LSC Detection task, each word is assigned either the value 0,

if there was no change in the usage, or the value 1, if there was a change. In

the shared task (Schlechtweg et al., 2020), this is called subtask 1.

One way to solve this task is by choosing a threshold for the APD and the

COS from when a word is assigned the value 1. The selection of this threshold

is not trivial and must be set thoughtfully. One possibility is applying APD

and COS on a large sample of random words from the two corpora, in order

to get the average change value of ”normal” words. For the subtask 1 those

average values or average values plus standard deviations can be used as the

thresholds. In other words, you check which APD or COS values are greater

than the average and assign those words the value 1. I will set the threshold

as the average value plus zero or multiple times the standard deviation,

depending on the vector representation.

In order to find the right threshold, a sample of roughly 300 words has been

randomly selected from the corpus. For each of the words the COS and the
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APD values were calculated. In Figure 4 we see the probability distribution

over all APD scores from the random words, in comparison to those from

the selected target words, both created using BERT with non-lemmatized

sentences. All target words with an APD score greater or equal than the mean

APD score of the random words plus three times the standard deviation, get

assigned the value 1.

Figure 4: Evaluation of the APD threshold for subtask 1

The Binary LSC can also be detected by analysing the clustering. This will

be done according to the definition of the shared task (Schlechtweg et al.,

2020), where a word is assigned the value 1, if at least one cluster exists that

has less than l elements at one time, and more than k elements at the other

time. I have used l=2 and k=10 since it performed best. In other words, a

word is assigned the value 1, if a sense is gained or lost over time.

5.2 Experimental Setup

In 5.1 the top-level tasks have been introduced. All of this tasks require a

vector representation of individual word uses (token vectors). The following
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section will describe the three considered vector representations.

5.2.1 PPMI + SVD

Given a textual corpus and a test sentence, section 2.4.2 has already presented

how to get a count-based vector representation for an individual token, by

summing up the type vectors of all second-order co-occurring words, using

their inverse document frequency (IDF) as weight. The IDF value of a word

is basically its ”importance” in the corpus. It is calculated by taking the

logarithm of the relation between total number of documents and number

of documents in which the word occurs in. The more documents contain the

word, the less important is the word. Since the corpora used here (4.2 and 4.1)

do not contain any documents, a sentence was interpreted as a document.

The crucial part is the representation of the word/type vectors that get

summed up. Here count-based type vectors will be extracted from the ukwac

corpus, as explained in 2.4.1. In order to increase the quality of the vectors

each vector gets transformed in its PPMI representation (3.1.1). Because

those vectors are large and sparse, they get SVD-reduced (3.1.2) into 100-

dimensional vectors to decrease the time and space complexity.

The raw count-based type vectors and the PPMI-transformed vectors can

also serve as the basis to create the token vectors. I did not consider those

options, because in contrast to the SVD-reduced vectors, are those vectors

very large and sparse and therefore calculations are very time consuming.

The PPMI vectors had approximately the same results on the pseudoword

clustering task as the SVD-reduced vectors, and the count based type vectors

had worse results. As the ukwac corpus (4.1) is only available lemmatized,

the count-based token vectors can only be created on lemmatized sentences.

5.2.2 Word2vec

As in 5.2.1 token vectors are created by summing up the type vectors of all

second-order co-occurring words. But here the word/type vectors are pre-
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calculated using googles word2vec (2.5) (Mikolov et al., 2013), consisting

of 3 Million, 300-dimensional word vectors. So the method to receive token

vectors is the same, but the underlying type vectors are different. As the

SemEval test sentences are available both, lemmatized and non-lemmatized,

two different vector representations are obtained using Word2Vec.

5.2.3 BERT

The third token vector representation is retrieved by using BERT token em-

beddings (2.6). The pre-trained language model BERT gets as input a sen-

tence and can automatically produces 12 different 768-dimensional vector

representations for each token in the sentence. One token vector in each of

BERTs 12 layers. Here we will use the average of the first layer and the last

layer, since it performed best on our data. As the SemEval test sentences are

available both, lemmatized and non-lemmatized, two different vector repre-

sentations are obtained using BERT.
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6 Results and Analyses

For each of the described token vector representations (5.2), each of the

introduced experiments (5.1) was executed. All results, their explanation

approaches and conclusions are presented in the following chapter.

6.1 Pseudoword Clustering

The first task is the clustering of the pseudoword test sentences, as described

in 5.1.1. In this task the K-means algorithm (3.3.4) gets the correct number

of clusters as input, in order to analyze the pure performance, without the

influence of a wrong number of clusters.

Due to the fact that here the initialization of K-means is calculated with

GAAC (3.3.2) on a sample of vectors, the initialization varies and therefore

the result of the clustering is not deterministic. Because of that the clus-

tering was performed ten times on each word, and for each word not only

performance results, but also the standard deviations were calculated and

saved.

The stadard deviation of a random variable X is defined as
√
V [X], whereby

V [X] = E[X2] − (E[X])2 is the variance of the variable X (Merziger et al.

(2010)). The standard deviation basically measures the degree of scattering

around the mean value of X.

Table 3 contains the Mean Adjusted Rand Index (MARI) (3.4.1), the Mean

Cluster Accuracy (MACC) (3.4.2) and the corresponding mean standard de-

viations (MARI DEV, MACC DEV) for all the words. The pseudoword test

sentences were only used in their lemmatized form, so there is just one result

per model.
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BERT W2V PPMI+SVD

MARI 0.44 0.27 0.24

MARI DEV 0.13 0.04 0.06

MACC 0.80 0.74 0.72

MACC DEV 0.08 0.03 0.04

Table 3: Overall clustering performance results on the 135 artificial pseu-

dowords.

To get a better overview of the results of the individual vector representations

from Table 3, a comparison of the performance results for the different models

in the form of bar diagrams is given below.

Figure 5: MARI results of the different models on the pseudowords

In Figure 5 we see for the three different token vector representations the

MARI values, obtained with the lemmatized sentences.
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Figure 6: MACC results of the different models on the pseudowords

In Figure 6 we see for the three different token vector representations the

MACC values, obtained with the lemmatized sentences.

Both measures, the MARI (3.4.1) and the MACC (3.4.2) agree that BERT

performs better than Word2Vec, which in turn performs slightly better than

PPMI+SVD. Especially the MARI result from BERT is significantly better

than for the other vector representations.

In the following chapters you will find multiple visualizations of vectors.

These visualizations are created with multidimensional scaling (Buja et al.

(2008)), where high-dimensional vectors are represented in two dimensions,

so that the distances between the vectors are well represented.

To get a better understanding about the scores, Figure 7 shows the vectors

and the clustering of the pseudoword monetary/gothic, created using the

Word2Vec model. The clustering resulted in an ARI of 0.67 and a ACC of

0.91.
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Figure 7: Clustering example of the pseudoword monetary/gothic

Every point represents one use of the target word, and the colors represent

the clusters. The expected labeling always shows how the ideal separation of

the uses would look like, according to the human annotator. In the case of

pseudowords, this refers to the original words (monetary and gothic). The

actual labeling always shows how the model actually clustered the vectors.

If the expected labeling shows a good separation of the vectors, this usually

means that the vectors are well ”clusterable”.

With roughly 91% of correctly clustered uses the actual clustering in Figure

7 is very similar to the expected clustering.

The word monetary mostly occurs with other financial words. Consider the

following sentence in (23) from the used test data.
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(23) without emergency assistance from the intotnational monetary fund

to finance its balance

Here the word monetary co-occurs with the words fund and finance, that

clearly indicate the financial context of the word.

And in (24) a test sentence of the word gothic (the word gothic was replaced

by the word monetary).

(24) monetary cathedral on our window just as the devil build the

cathedral of cologne

Here the word monetary co-occurs two times with the word cathedral and

with the word build, which indicates the relation to the architectural epoch

gothic.

Not all pseudowords are easy to cluster, the pair prodigious/mystic had an

ARI of 0.009 and a ACC of 0.59. In Figure 8 the clustering of the pseudoword

prodigious/mystic.
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Figure 8: Clustering example of the pseudoword prodigious/mystic

The expected labeling does not show a good separation of the uses, indicating

that it is hard for the clustering algorithm to find the right separation of the

uses. The actual labeling confirms this assumption, as it does not really

corresponds with the expected one. Both words are adjectives, which are not

bound to a fixed context. They can co-occur with almost all other words,

what makes it very hard to distinguish them. Consider the following two

sentences:

(25) they must either have very large wing and prodigious strength to

use them so
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(26) i love ye flower ye have a prodigious voice to speak unto my inmost

soul and make my heart rejoice

It is not easy to see which use of the word prodigious actually represents the

word prodigious and which stands for the word mystic. And if it is difficult

for humans to see the difference, it will also not be easy for machines.

BERT - Word Position

As already explained, BERT processes text in 12 different layers, where each

layer can provide a vector representation for each word of the input sentence.

Consider the following clustering result of the pseudoword duel/panther, us-

ing the sum of the token vectors from the last four layers of BERT, as sug-

gested in Chris McCormick (2019).
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Figure 9: Clustering example of the pseudoword duel/panther, using the last

four layers of BERT

The clustering resulted in an ARI of 0.004 and a ACC of 0.54. The plot shows

a separation of the vectors on the left side, which the clustering algorithm

finds. This separation is not reflected in the expected clustering and on closer

inspection of the vectors it becomes clear why. For the vectors on the left

side, the target word is located at the end of the sentence, for all others not.

We assume BERT attaches great importance to the position of the target

word in the sentence, which the other represented models do not, since they

only sum up the vectors of all co-occurring words.

To make the aspect of the word position less important, we tried different
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combinations of layers to find one that puts less weight on the position. In

the following we see in contrast the same pseudoword vectors as above, but

using the sum of the first and last layer of BERT.

Figure 10: Clustering example of the pseudoword duel/panther using the first

and the last layer of BERT

In Figure 10 we see that the result of the clustering is now more similar to

the expected result, as when using the sum of the last four layers. This is

also shown by an ARI of 0.28 and a ACC of 0.76. We tried several different

combinations of layers and the combination of the first and last layers of

BERT was the one that achieved the best performance results on a small test

set of 15 random pesudowords. Therefore, we continued to work exclusively
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with the combination of these two layers.

6.2 SemEval Words Clustering

The second task is the clustering of the SemEval target words, as described

in 5.1.2. In contrast to the pseudowords, the SemEval target words have a

varying number of desired clusters, therefore the number of clusters is pre-

calculated by the silhouette method (3.3.1). Furthermore, the SemEval test

sentences are available both, lemmatized and non-lemmatized, therefore two

different BERT and Word2Vec results are obtained.

The following Table 4 contains the MARI (3.4.1) and the MACC (3.4.2) for

all the considered SemEval test sentences. We also wanted to check how other

clustering algorithms than K-means perform in this task, so we have tried

agglomerative clustering (AGL) (3.3.3) as an alternative. Again, the number

of clusters was calculated using the silhouette method.

BERT Token BERT W2V Token W2V PPMI+SVD

MARI Kmeans 0.06 0.07 0.03 0.04 0.03

MACC Kmeans 0.65 0.61 0.61 0.64 0.52

MARI AGL 0.08 0.15 0.12 0.13 0.09

MACC AGL 0.64 0.83 0.72 0.78 0.67

Table 4: Overall clustering performance results on the 80 SemEval words

To get a better overview of the results of the individual vector representations

from Table 4, a comparison of the performance results for the different models

in the form of bar diagrams is given below.
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Figure 11: Overview of the MARI result of the different models on the Se-

mEval target words

In Figure 11 we see for the four different token vector representations the

final MARI scores for both clustering algorithms (K-means and AGL).
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Figure 12: Overview of the mean cluster accuracy result of the different mod-

els on the SemEval target words

In Figure 12 we see for the four different token vector representations the

final MACC scores for both clustering algorithms (K-means and AGL).

Clustering Algorithm

The results clearly show that the AGL clustering seems to fit better to the

described task and data than the K-means algorithm. AGL is a bottom up

approach, where iteratively the most similar clusters are combined. One pos-

sible reason why AGL seems to work better is the uneven distribution of the

expected clusters. As we will see in Figure 13, the average expected clus-

tering is very unevenly distributed. Mostly, one very large cluster and many

small clusters are expected, where most of the small clusters contain only

one element.
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Here the main challenge of the clustering algorithm is to discover the few

points that stand out from the others. In general, it was quite difficult to find

these outliers, because the vectors differ only very slightly from each other.

To find these fine distinctions, a hierarchical clustering is more appropriate,

since the bottop-up approach always only melts the two most similar clusters.

K-means struggled to find these fine-grained distinctions and tended to create

few, large and evenly distributed clusters.

Number of Clusters

One reason why the performance is worse than on the pseudowords is that the

gold number of clusters is no longer used for initializing the cluster algorithm.

Instead the silhouette method (3.3.1) is used to calculate the number of

clusters which fits best to the data. But just because a a certain number of

clusters fits best to the data, does not mean it matches the human annotation.

So one reason why the results are worse than on the pseudowords (5.1.1) is

the loss by not knowing the perfect number of clusters.

Real and Dirty Data

Another reason is the data itself. Pseudowords are not real ambiguous words

and they do not reflect a real, realistic distribution of word senses. Consider

the following statistics about the SemEval target words:

• The average clustering and cluster sizes: [1,1,1,2,6,66]

• The overall number of clusters: 446

• The overall number of clusters that only contain one element: 207
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Figure 13: Count of the expected number of cluster for the SemEval words

The average clustering was calculated by taking each clusterings cluster sizes

(e.g. [12,3,30]) and sort them in increasing order (e.g. [3,12,30]). Then by

using all of those sorted clusterings from each of the 80 SemEval test sets,

the average size of the largest cluster, the average size of the second largest

cluster, and so on, was calculated. So the average word was divided by the

annotator into 6 senses. Three clusters only contain one element, one clus-

ter contains two elements, one cluster contains six elements and one cluster

contains 66 elements.

This means that on average almost 86% of all uses belong to one cluster,

and the remaining 14% of all uses are distributed over 5 different clusters. In

contrast to the pseudowords, where the uses are evenly distributed on two

clusters. This fits to the statements of Kilgarriff (2004), who explains the

domination of the most common sense of a word.

The problem with many small clusters is (especially if they only contain

one element), that they are only recognized if the points have a significant

distance to all other points. If this is not the case, the silhouette method

56



will not recognize these small clusters and will return an incorrect number

of clusters.

The silhouette method checks if including a point in a cluster does not really

worsen the average in-cluster-distance of all clusters, since then it can be in-

cluded. But if including the point to a cluster worsens the average-in-cluster-

distance more than the inclusion increases the average distance between all

clusters, it is not worth including it. Consider the following example

Figure 14: Example vectors for the demonstration of the silhouette method

For the above vectors the silhouette method returns the following scores:

• 2 clusters: 0.611

• 3 clusters: 0.394

• 4 clusters: 0.273

• 5 clusters: 0.153
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So according to the silhouette method, using two clusters fits the data best.

Despite the noticeable difference of the middle point, the distance to the other

clusters is not significant enough to put the point in its own cluster, since

the creation of a new cluster would decrease the average distance between

all clusters too much.

In the already mentioned average clustering, nearly 11 points are distributed

over 5 small clusters. Three of them contain only one element. Consequently,

the points in these 5 small clusters must not only differ significantly from all

66 points of the large cluster, but also from each other, to be recognized as

separate clusters. This is basically the justification why it is easier to find

evenly distributed clusters, than uneven ones, since the bigger a cluster gets

the higher the probability, that outliers will join the big cluster, than to be

put into a new, small cluster.

The higher the number of clusters, the harder it is to find the correct cluster-

ing. This can be explained quiet easily. For the number of elements to cluster

k and the number of desired clusters n, the number of possible combinations

of clusters is kn. Obviously this value gets exponentially bigger, the higher

the number of desired clusters. So as conclusion, the probability to find the

correct clustering decreases with an increasing number of desired clusters.

Figure 13 shows for all of the 80 SemEval words, how often what number

of clusters is expected. 14 times the expected number of clusters is ten or

higher, so the target word was divided into more than nine senses. Once the

expected number of clusters is 42 (for roughly 50 vectors). Because of the

explained reasons, in this cases it is hard for the clustering algorithm to find

the correct clustering.

12 times the expected number of clusters is one. So in 15% of all cases there

is only one sense according to the human annotators. When calculating the

expected number of clusters with the silhouette method (3.3.1), this is not

recognized. A number greater or equal two is chosen and the clustering al-

gorithm will search and find a subdivision of the uses, which leads to a bad
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performance (for example a subdivision according to the position of the tar-

get word in the sentence). To get a better understanding of how difficult the

clustering is, here are two examples, clustered by the Word2Vec model:

Figure 15: Clustering of the word bag using word2vec

In Figure 15 we see how the clustering algorithm performs if the expected

number of clusters is one. As already mentioned, this applies in roughly 15%

of all cases. The silhouette method returns two as the number of clusters to

use, since it fits best to the vectors distribution. The clustering algorithm

erroneously divides the vectors into two large clusters, leading to a bad per-

formance.
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Figure 16: Clustering of the word plane using word2vec

In Figure 16 we see, how the clustering algorithm performs, if the expected

clustering looks similar to the above mentioned average. Expected is one large

cluster and several small clusters. On the left side of the actual labeling, where

most of the exceptions are, one big cluster is erroneously created.

Bert - Influence of word form

The pseudowords showed that BERT performs significantly better than all

other vector representations. Now the question, why does BERT with non-

lemmatized sentences perform much worse on the SemEval words than with

lemmatized sentences, using AGL. Consider the following clustering of vec-

tors created by BERT, using non-lemmatized sentences.
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Figure 17: Clustering of the word record using BERT with non-lemmatized

sentences

A very strong separation of the vectors is visible that was not captured by

the annotators. The clustering algorithm finds this obvious separation. When

looking more closely at the sentences, one sees that for all of the blue vectors

in the actual clustering the target word occurred in its plural form. Logically,

an annotator would not make this subdivision, since normally a word still

has the same meaning in its plural form. It is not only the plural form. When

the target word is different from sentence to sentence, such as a verb in

a conjugated form and in its stem form, verbs in varying tenses or inflected

adjectives, the resulting vectors are strongly influenced. When feeding BERT
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with non-lemmatized sentences, the vectors differ very much, depending on

the target word form. This worsens the performance significantly.

6.3 LSC Detection

This section shows the results of the different vector representations in the

subtask 1 and subtask 2 of the shared task (Schlechtweg et al., 2020). The

correlation with the gold LSC values for subtask 1 (5.1.5) was measured

with the F1 score (3.6.1) and the correlation for subtask 2 (5.1.4) was mea-

sured using the spearman correlation coefficient (3.6.2). In Table 5 we find an

overview of all spearman correlation scores for each of the examined models

and LSC measures, according to subtask 2.

BERT Token BERT W2V Token W2V PPMI+SVD

APD 0.653 0.342 0.364 0.408 0.471

COS 0.342 0.159 0.342 0.176 0.183

JSD Kmeans 0.116 0.112 0.010 0.010 0.007

JSD AGL 0.268 0.197 0.002 0.069 0.075

Table 5: Overview spearman correlation coefficients for subtask 2

To get a better overview of the results from Table 5, a comparison of the

performance results for the different models and different measures in the

form of a bar diagram is given below.
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Figure 18: Overview spearman correlation coefficients for subtask 2

In the following Table 6 we find an overview of all F1 scores for each of the

examined models and measures, as the results for subtask 1.

BERT Token BERT W2V Token W2V PPMI+SVD

APD 0.750 0.435 0.564 0.629 0.563

COS 0.667 0.385 0.556 0.600 0.605

JSD Kmeans 0.417 0.348 0.308 0.348 0.563

JSD AGL 0.556 0.480 0.174 0.296 0.457

Table 6: Overview F1 scores for subtask 1

To get a better overview of the results from Table 6, a comparison of the

performance results for the different models and different measures in the
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form of a bar diagram is given below.

Figure 19: Overview F1 scores for subtask1 as bar chart

Both tables and figures show that BERT with non-lemmatized sentences cre-

ates the token vectors that correlate the most with the actual LSC scores.

Furthermore, both models agree that APD is the measure that creates the

LSC scores, that correlate the most with the actual LSC scores. In the fol-

lowing, a comparison of the results from Table 6 and Table 5 with those from

the shared task (Schlechtweg et al., 2020).

In the result section of Schlechtweg et al. (2020) one can see that the best

spearman correlation coefficient for subtask 2 on the English test set was

0.436, and in the appendix one can see the best F1 score for subtask 1 on
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the English test set was 0.706. Here, applying the APD on Bert with non-

lemmatized sentences, gives the best results in both subtasks. Both results

from Schlechtweg et al. (2020) have been outperformed.

It must be mentioned that I only evaluated on the English test set and

there is no guarantee that these results will be achieved on other test sets,

since among other things, a completely different pre-trained BERT model

needs to be used for different languages. Another factor is that, unlike the

participants in the shared task, I had access to the already extracted training

sentences. This means that the sentences I used to create my token vectors

corresponded 100% to those used for the gold evaluation. The participants

did not have this advantage. Furthermore, it must be mentioned that my

best results were achieved with non-lemmatized sentences, which could not

be used in the shared task.

Why is Bert with non-lemmatized sentences the best?

As already explained, Bert with non-lemmatized sentences is extremely de-

pendent on the target word itself. For instance, if it is conjugated or not.

This has enormous effects, since almost all words occur in different forms.

But interestingly, BERT with non-lemmatized sentences scores best in the

LSC tasks and this can be intuitively explained.

The vectors are strongly subdivided according to the shape of the target

word, which makes it almost impossible to match the expected clustering,

according to the semantic. But in the diachronic clustering task, this problem

loses weight, because the target word appears in both corpora in the different

forms. For example, the word chair sometimes appears as chair and some-

times as chairs. But this division is probably found in both corpora and thus,

when comparing the vectors of the two corpora, this effect loses weight and

neutralizes itself.

However, this creates a new factor for the selection of appropriate test sen-

tences, as it is important that the form in which the target words occurs in

the test sets of both corpora, must be evenly distributed. If this is not the
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case, a change in the meaning could be detected incorrectly.

Loss due to lematization

As already said, BERT performs best in the diachronic tasks with non-

lemmatized sentences. Non-lemmatized sentences are real and uncluttered

sentences, while lemmatized sentences may mask the meaning of a sentence.

A simple example would be the sentence He recorded worldwide. The lem-

matized version would be He record worldwide. The meaning of the sentence

has changed. The lemmatized sentence is now erroneously connected with

breaking world records.

In the shared task (Schlechtweg et al., 2020) type-based models performed

clearly better than token-based models. But as I mentioned before, the results

in this thesis have shown that token based approaches can keep up with type

based approaches, but possibly only when using non-lemmatized sentences.

Why is average-based better than cluster-based?

As already found out in Kutuzov and Giulianelli (2020), the average based

methods perform better than the cluster-based methods. The average-based

measures (COS, APD) compare the vectors of all uses of an ambiguous word

from two times, in order to detect changes in the distribution of the vectors.

When working with clusters we do not only try to find out if the overall

distribution of the vectors has changed, we try to find out how the vector

distribution has changed and in which direction.

The subdivision of the vectors into clusters is done exclusively by considering

the distances of the vectors to each other. These distances vary from word

to word. For some words the context of the uses are very different and the

distances between the vectors and clusters are accordingly high. For other

words, the uses are very similar and the distances between the vectors and

clusters are accordingly low. This makes it hard for the silhouette method

to find the correct number of clusters to use, and of course, its hard for the

clustering algorithm to decide to which cluster a vector should belong.

With the average based measures the dispersion of the word uses, the absolute
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distances between the vectors, do not get lost as they do in the clustering

based measures. The average based measures have the advantage that in the

diachronic comparison the absolute distances of the vectors are measured.

Thus, changes in meaning can be detected in a very finely granulated way,

which is not that easy, using the cluster-based approaches.

Furthermore, it is clear that the clustering based LSC measure can only

achieve good results, if the underlying clustering works well. For reasons

already explained, the clustering of the SemEval test sentences does not work

very well, and consequently the results of the cluster-based method for the

detection of LSC did not work very good either.

6.4 Quantification of Clustering Influences

Some points have already been mentioned that possibly have a strong in-

fluence on the clustering result. To check the influence of those (and more)

points, I have tried to quantify the reflection of the different points in the

clustering of the 80 SemEval words, by assigning each of the influence can-

didates a value between 0 and 1. Whereby 1 means the sub-division into

clusters was made 100% according to the influence factor, and 0 means the

sub-division into clusters was made 0% according to the influence factor.

The influence was always measured, using the ACC score (3.4.2) in an al-

ternative way. As a reminder, the ACC basically checks for which mapping

of the actual clustering labels to the gold labels, the match is maximal, and

then counts how many elements were put into the ”correct” cluster.

BERT - Word Position

The reflection strength of the clusters according to the position of the target

word is measured by: accuracy(positions, labels)

Whereby positions contains for each test sentence a 0, if the target word is

the first word of the sentence, 2, if the target word is the last word of the

sentence, else 1. In other words, we interpret the positions of the target word
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as clusters and compare how similar the actual clustering is, according to the

”positional clustering”. If the ACC is equal to 1, then each cluster contains

only sentences, where the target word is at the same position.

Due to the fact that only the two BERT based models pay attention to the

position of the word (the others are all bag-of-words models), the result is the

average of the two BERT models, in combination with the two introduced

clustering algorithms.

BERT - Word Form

The reflection strength of the clusters according to the form of the target

word is measured by: accuracy(forms, labels)

Whereby forms contains for each test sentence its target word. In other words,

we interpret the different forms of the target word as clusters and compare

how similar the actual clustering is, according to the ”form-based clustering”.

If the ACC is equal to 1, then each cluster contains only sentences, where the

target word has the same form (for instance division into plural and singular).

The influence of the word form is only relevant when using non-lemmatized

sentences. We did that once using BERT and once using Word2Vec. In

the case of Word2Vec the target word itself is not considered (only its co-

occurring words), so the only model where we can measure the influence

of the word form is BERT with non-lemmatized sentences (for both of the

introduced clustering algorithms).

Number of proper names

The reflection strength of the clusters according to the number of proper

names in the sentences is measured by: accuracy(names, labels)

Whereby names contains for each test sentence a 0, if no proper names are

in the sentence, 1, if one proper name occurs in the sentence, else 2. In other

words, we interpret the count of proper names in the sentences as clusters

and compare how similar the actual clustering is, according to the ”name-

based clustering”. If the ACC is equal to 1, then each cluster contains only
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sentences, where the count of proper names is similar. The influence of the

proper names was measured for all different models and clustering algorithms

and taking the average result.

Reflection of the Corpora

The reflection strength of the clusters according to the original corpora is

measured by: accuracy(corpora, labels)

Whereby corpora contains for each test sentence a 0, if the sentence is from

corpora 0, else 1. In other words, we interpret the origin of the sentences

as clusters and compare how similar the actual clustering is, according to

the ”corpora-based clustering”. If the ACC is equal to 1, then each cluster

contains only sentences from the same corpora. The reflection of the corpora

was measured for all different models and clustering algorithms and taking

the average result.

And finally, the results of the just mentioned influences:

Influence Actual Random

Word Position (BERT) 0.721 0.685 0.506

Word Form (BERT) 0.871 0.650 0.440

Proper Names 0.547 0.667 0.446

Corpora Reflection 0.561 0.667 0.552

Table 7: Overview clustering influences

To get a better overview of the different influences from Table 7, a comparison

of the ACC scores for the different influences in the form of bar diagrams is

given below.

69



Figure 20: Overview ACC scores for the different cluster influences

In Table 7, there are three columns for each of the various influencing factors.

In the first column we see the MACC for the influencing factor. In the second

column we see the average MACC value that was achieved for the different

models. And in the third column we see how high the MACC would be for

the influence factors, using random cluster labels.

If the Influence ACC score is higher than the Actual ACC score and the

random ACC score, it can be assumed that the influencing factor is definitely

real. This is mainly the case for word form and word position. The clustering

seems to reflect the sub-division according to the word form and word position

more than according to the semantics of the words. No clear statement can

be made for the proper names and corpora reflection, it rather looks as if the

influence is not significantly reflected in the actual clustering.
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7 Summary

In this thesis three different methods for creating contextualized token vectors

were presented. One by summing up self-trained, count-based type vectors,

one by summing up pre-trained, predictive type vectors from Word2Vec, and

one by creating token vectors using a pre-trained BERT model. The three

different token vectors were tested for their suitability in two different tasks.

Word sense clustering and lexical semantic change detection. The word sense

clustering task was applied once by using artificial pseudowords and once by

using real ambiguous words.

One finding was that clustering worked much better on the pseudowords than

on the real ambiguous words. Mainly due to the fact that the pseudowords

did not reflect a realistic separation and distribution of word uses. Another

finding was that K-means did not work as well on the given data as a hier-

archical approach. Again, the justification was the distribution of the word

uses. The ambiguous words were frequently divided into a strongly vary-

ing number of very uneven distributed clusters. The hierarchical clustering

approach seemed to fit better to this task.

As targeted, the thesis showed that token-based approaches in LSC detec-

tion can definitely keep up with type-based approaches, since the token-based

BERT model achieved state-of-the-art results. In this thesis, the best results

were achieved using non-lemmatized sentences. This could be the reason

why in the shared task (Schlechtweg et al. (2020)), token-based approaches

performed worse than type-based approaches, since only lemmatized sen-

tences were used. Future work in the field of LSC detection could again rely

more on token-based approaches and ensure that work is also done with non-

lemmatized sentences. Furthermore, the token vectors presented in this thesis

could be used and compared in other application areas.
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8 Appendix

Pseudowords

The following table contains all used pseudowords. Each row consists of the

two original words and their corresponding POS. NN stands for noun, JJ

stands for adjective, RB stands for adverb and VB stands for verb.

Word 1 Word 2 POS

accomodation comedy NN

agricultural unwilling JJ

alive weak JJ

anguish propriety NN

annual famous JJ

apple loan NN

assessment galaxy NN

attraction aunt NN

aunt root NN

baker chapel NN

baptism glue NN

basis nurse NN

beef cavalier NN

belief chamber NN

blanket plot NN

block sin NN

boss wrist NN

builder dungeon NN

buyer worm NN

castle jacket NN

cheese salary NN

chicken organ NN

coat senate NN
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coin tent NN

commander combination NN

comrade delivery NN

confusion vehicle NN

conscious responsible JJ

consolation vacation NN

constantly gradually RB

consumer obligation NN

contest thunder NN

continent tail NN

continuous delicious JJ

cousin bridge NN

customer excuse NN

demon promotion NN

departure harm NN

devotion mill NN

disgust roast NN

domestic democratic JJ

duel panther NN

dwarf anecdote NN

effectual oriental JJ

elsewhere lonely RB

eventually accordingly RB

expert murmur NN

extremely freely RB

focus crew NN

fool lesson NN

forehead meat NN

frown conception NN

funding irony NN
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generation sword NN

gigantic racial JJ

gospel vine NN

gracious exotic JJ

grain lecture NN

grief fort NN

harmony curve NN

honesty mathematics NN

humanity carriage NN

hunter employment NN

hurricane planter NN

hush assent NN

incredible imperial JJ

initial missionary JJ

injury treasure NN

inquiry painting NN

invisible ambitious JJ

laborer courtesy NN

legislature venture NN

lightly originally RB

lover coffee NN

magazine application NN

majority doctrine NN

manuscript pie NN

melancholy client NN

messenger needle NN

momentum supervision NN

monetary gothic JJ

noise manager NN

oath accent NN

74



observation fate NN

obviously strongly RB

origin actor NN

originally lightly RB

otherwise ahead RB

palm offense NN

payment explanation NN

planet document NN

policeman denver NN

prescribe lash VB

priest addition NN

procedure warmth NN

prodigious mystic JJ

raction fountain NN

remarkable practical JJ

resemblance thumb NN

revenge deer NN

reverence category NN

rig calender NN

roof performance NN

satin tutor NN

satisfaction shelter NN

senator professor NN

separation flour NN

shell bomb NN

slice saddle NN

solid rapid JJ

staff colony NN

strategic expressive JJ

suicide gush NN
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summit apprehension NN

surprisingly accurately RB

suspect tongue NN

teenager disdain NN

telescope efficiency NN

terrible previous JJ

terror egg NN

testimony lamp NN

threat angle NN

timber motor NN

tin escort NN

tomb jet NN

tongue proof NN

traveler orange NN

tube potato NN

twist emergency NN

universally wisely RB

upper tiny JJ

user cock NN

vanity autumn NN

vision proportion NN

weary nucleary JJ

Table 8: Table of all used pseudowords and their POS
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