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Kurzfassung

Die Plasmaerzeugung und -heizung durch Mikrowellen ist ein wichtiges Forschungsthema
im Bereich der kontrollierten Kernfusion. Alle modernen Fusionsexperimente, wie Wen-
delstein 7-X verwenden Mikrowellenheizung. Diese erfolgt hauptsächlich an den Res-
onanzen, wo die Mikrowellen effizient absorbiert werden. Das Heizverfahren muss so
ausgelegt sein, dass die Mikrowellen die Resonanz erreichen können. Wenn das Plasma
jedoch die Cutoff-Dichte überschreitet, werden die Mikrowellen reflektiert, und die Reso-
nanz wird unzugänglich. Es ist allerdings möglich, die Heizung mit Elektron-Bernstein-
Wellen (EBW) durchzuführen, da diese elektrostatischen Wellen im Gegensatz zu den
elektromagnetischen Plasmawellen auch bei Plasmadichten oberhalb der Cutoff-Dichte
propagieren. EBW können nicht im Vakuum propagieren und müssen deshalb durch
einen Kopplungsprozess erzeugt werden. Sowohl die O- als auch die X-Mode können an
die EBW gekoppelt werden.
Diese Arbeit untersucht die Kopplung von O- und X-Mode an die EBW und die Prop-
agation der EBW mit verschiedenen numerischen Methoden. Die Anwendung nur einer
numerischen Methode ist nicht ausreichend, da die Kopplung sehr unterschiedliche Wellen-
längenskalen beinhaltet. Das optimale Kopplungsschema für die erwarteten Plasmapa-
rameter wurde mit einem FDTD-Code (Finite-Difference-Time-Domain) bestimmt. Da
die EBW selber nicht in diesem Code enthalten sind, wurde ein BVP-Code (Boundary-
Value Problem) entwickelt. Mit diesem wurde der Effekt von Teilchenstößen auf die EBW
untersucht. Die Feldverstärkung an der oberen Hybridresonanz (UHR), wo die EBW an
die elektromagnetischen Wellen koppeln, und die Wirkung des Magnetfelds auf die EBW
konnten direkt untersucht werden. Die Ausbreitung der EBW wurde mit dem neu entwick-
elten Ray-Tracing-Code RiP untersucht. Die Simulationen lieferten ein klares Bild der
wesentlichen Merkmale der Wellenpropagation. Erstmals wurde die Methode der Wigner-
Funktion angewendet, um die Intensitätsverteilung der EBW zu berechnen. Sowohl Ray-
Tracing-Rechnungen als auch Simulationen mit der Wigner-Funktion zeigten, dass das
inhomogene Magnetfeld zur Fokussierung der EBW führen kann. Der Fokussierungsef-
fekt kann in Experimenten gezielt für die lokale Heizung des Plasmas eingesetzt werden.
Zusätzlich kann die Feldverstärkung in den Fokii zum parametrischen Zerfall führen.
Diese Arbeit widmete sich der Untersuchung der Wellenausbreitung. Der Schwerpunkt lag
dabei auf der Simulation der Plasmawellen in der Geometrie der linearen Plasmaanlage
FLiPS an der Universität Stuttgart. Messungen wurden durchgeführt, um die vorherge-
sagte Fokussierung der EBW an FLiPS zu untersuchen. Die erwartete Verstärkung des
Signals an der UHR wurde nicht festgestellt, was entweder auf die vollständige Kollision-
sabsorption der X-Mode an der UHR hinweist, oder auf die turbulenten Plasmadicht-
eschwingungen, die die Kopplungseffizienz zu den EBW verringern.
Mit den im Rahmen dieser Arbeit entwickelten Codes steht nun eine vollständige Tool-
box zur Verfügung, die die Untersuchung des gesamten Kopplungsprozesses zwischen den
elektromagnetischen Wellen und den elektrostatischen Elektron-Bernstein-Wellen in einer
beliebigen Plasmageometrie ermöglicht.
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Abstract

The plasma generation and heating by microwaves is an important research topic in the
field of controlled nuclear fusion. All modern fusion plasma devices such as Wendelstein
7-X use microwave heating. The microwave plasma-heating primarily occurs at the res-
onances, where the microwaves are efficiently absorbed. The heating scenario must be
designed such that the microwaves can reach the resonance. When the plasma exceeds the
cutoff density, the microwaves will be reflected, and the resonance becomes inaccessible.
However, it is possible to perform heating by Electron Bernstein Waves (EBWs), since
these electrostatic waves propagate even in overdense plasmas, unlike the electromagnetic
plasma waves. EBWs cannot propagate in the vacuum and must be created through a
coupling process. Both O- and X-mode can couple to EBWs.
The thesis investigates the coupling of the O- and X-mode to EBWs as well as the EBW-
propagation with various numerical methods. The application of only one numerical
method is not sufficient as the coupling involves very different wavelength scales. The
optimal coupling scheme for the expected plasma parameters was determined using a
Finite-Difference Time-Domain (FDTD) code. Since EBWs are not included in the code,
a Boundary-Value Problem (BVP) code was developed. Using the BVP code, the effect
of the collisions on EBWs was studied. The field amplification at the upper-hybrid res-
onance (UHR), where EBWs couple to the electromagnetic waves, and the effect of the
magnetic field on EBWs could be directly visualized.
The propagation of the EBW was investigated using the novel ray-tracing code RiP.
The ray-tracing simulations provided a clear picture of the essential features of the wave
propagation. For the O- and X-mode coupling, the importance of the axial plasma inho-
mogeneity was shown. For the first time, the method of the Wigner function was applied
to calculate the intensity distribution of EBWs. Both, ray-tracing and the Wigner func-
tion simulations showed that the inhomogeneous magnetic can cause focusing of EBWs.
The focusing effect can have practical applications e.g. for controlled local heating of the
plasma. Additionally, the focusing effect can cause a parametric decay due to the field
enhancement in the focal regions.
In this thesis, the simulations were focused on excitation and propagation of EBWs in
the geometry of the linear plasma device FLiPS located at the University of Stuttgart.
Measurements were carried out to study the predicted focusing of the EBWs in the FLiPS
plasma with monopole antennas. The measurements provided the density profile used in
the simulations. The expected amplification of the signal at the UHR was not detected,
indicating either the complete collisional absorption of the X-mode at the upper-hybrid
resonance, or the turbulent plasma density oscillations that reduce the coupling efficiency
to EBWs. These effects can be studied further using the developed tools since they provide
a complete toolbox to study the full coupling process to EBWs in an actual experimental
geometry.
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Chapter 1

Introduction

When an ionised gas exhibits collective behaviour and has a small total charge, the ionised
gas is called a plasma [1]. The sun, lightings are examples of the plasma occurrence in
nature. The importance of plasma research is difficult to overstate, as many technological
processes employ plasmas to modify surfaces, deposit films, and to sterilise food to name
a few. But perhaps, the most important plasma application is the controlled nuclear fu-
sion. When temperatures are extremely high, atoms are completely stripped off of their
electrons. When these fully ionised atoms collide, they may fuse releasing energy as it
occurs in the sun [1]. To create this reaction in a controlled manner in a fusion reactor,
the plasma has to be held away from the reactor walls, since the plasma would damage
the walls and cool down upon touching them. Inserting a plasma in a magnetic field will
confine it as the particle diffusion across the magnetic field is mitigated. These plasmas
are called magnetised plasmas, and they are the main subject of the research in the field
of magnetic confinement fusion.
A plasma produces electromagnetic radiation, which causes the plasma to lose its energy.
Thus, an energy influx is required to compensate for the energy loss and to maintain the
plasma. Often the energy can be delivered in the form of an electromagnetic wave, since
at certain positions in magnetised plasmas the incoming electromagnetic wave resonates
with the plasma particles, leading to the absorption of the wave [2]. The absorbed energy
is distributed between the particles causing an increase in the temperature and, possibly,
the density.
The position where a wave is efficiently absorbed is called a resonance. When the plasma
density reaches a critical density, the microwave radiation shone upon the plasma, instead
of reaching the resonance, will be reflected. This phenomenon is known as a cutoff, and
a plasma with this critical density called an overdense-plasma. Thus, reaching densities
above the critical, requires either utilisation of even higher frequency microwaves, which
is costly and limited by the technological progress, or coupling to the so-called Electron
Bernstein Waves (EBWs). Two properties make EBWs extremely useful for the plasma
heating, namely, EBWs do not have a density cutoff unlike other plasma waves, and they
are strongly absorbed at the harmonics of the electron cyclotron frequency [3]. The main
disadvantage of this method is that to achieve a high coupling efficiency to EBWs, the
launching antenna must be carefully designed, based on the expected plasma properties.
Apart from the heating, measuring EBW thermal radiation yields information about the
plasma temperature [4, 5].
The EBW research has spanned many decades and the theoretically predicted EBW
properties were well-established experimentally. At present, the main research interest

1



is concentrated around the application of EBWs for plasma heating and diagnostics [6].
The application of EBW heating is not only limited to fusion plasma physics. Another
example is Electron Cyclotron Resonance Ion Sources (ECRIS), where high plasma den-
sities and temperatures are desired to produce highly charged ions [7].
The goal of the thesis is to apply different numerical methods to fully characterise EBW
propagation in the linear plasma device FLiPS, which will be presented in Ch. 3. Ap-
plication of only one numerical method would not be sufficient to describe all existing
plasma-wave phenomena, due to possible numerical difficulties, nature of the used ap-
proximations, or dimensionality of the considered problem. The methods that were ap-
plied to study the plasma-wave phenomena in the FLIPS plasma are the Finite-Difference
Time-Domain method (FDTD) [8], the boundary value problem (BVP) [9, 10], the eikonal
method [11, 12] and the Wigner function method [11, 13, 14, 12].
Before starting the numerical investigation, plasma diagnostics were installed at FLiPS
to measure the electron density ne and the temperature Te. General experimental stud-
ies of the FLiPS plasma were carried out for different magnetic field configurations and
neutral gas pressures. Using the experimentally measured plasma parameters, the wave
propagation was numerically investigated. The simulations of the wave propagation in
the FLiPS plasma is a complicated task, since a magnetised plasma is an anisotropic
medium, which means that the plasma effect on the waves depends on the direction of
the propagation. Additionally, one of the main objectives of this study was determination
of the optimal coupling process of the electromagnetic waves to the EBWs. The coupling
process involves very different wavelength scales. Thus, a fine numerical grid is required
to resolve simultaneously all the scales. Furthermore, the presence of the resonance in
the plasma complicates the simulations even further, since the wavelength becomes very
short in its vicinity.
Since the FDTD is based on the cold plasma theory, and EBWs exist only in warm plas-
mas, a code based on the boundary-value problem in the frequency domain was developed
to simulate EBWs. The main purpose of these simulations was to investigate the effect of
the collisional damping on the EBWs, and whether the EBWs can be detected experimen-
tally in the FLiPS plasma. The presented EBW full-wave simulations are valid, strictly
speaking, only close to the so-called Upper Hybrid Resonance (UHR). To study EBW
propagation farther from the UHR, the ray-tracing method was applied. The ray-tracing
allowed to calculate the direction of the wave energy flux. The method was implemented
in two codes. The first more sophisticated code is based on the full hot dielectric tensor
εh(ω, k), which includes all possible plasma waves. To verify the obtained results, a second
ray-tracing code that can simulate only EBWs, was developed.
The ray-tracing approach is not able to describe wave effects such as diffraction and in-
terference. But applying the so-called Wigner function technique and the kinetic wave
equation formalism, it is possible to calculate the EBW intensity in the paraxial approx-
imation (Sec. 6.4).
The ray-tracing simulations, as well as the Wigner function simulations, showed that
EBWs are focused by the inhomogeneous axial magnetic field in the FLiPS plasma
(Sec. 6.5). The effect was observed in simulations for different magnetic fields and density
profiles. Based on these predictions an experiment was set up to study this effect. The
measurements did not reveal a clear field amplification at the expected focal positions,
which can be explained by the strong collisional damping at the UHR. Indeed, the UHR
is situated at the plasm edge, where the electron temperature is low, which favours the
collisional damping. Another explanation for the lack of the EBW signal is the presence
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of turbulence. Turbulence causes density fluctuations that scatter the EBWs, which leads
to the blurring of the regions with the amplified field. Fluctuations can be included in
the simulations using the Wigner function as described in [15] in future investigations.
The structure of the thesis is shown in Fig 1.1 as a flowchart. Chapter 2 introduces the
main concepts that will be used to analyse the results of the numerical simulations. The
plasma parameters presented in Ch. 3 will be used in the numerical simulations carried
out in chapters 4, 5, 6. In the flowchart, the chapters dedicated to the simulations are
depicted as a Venn diagram to signify that only a combination of all three methods yields
the complete theoretical descriptions of the wave propagation in the FLiPS plasma.
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parameters were used for the numerical simulations. The used methods are complimentary to each other allowing a full
theoretical description of the plasma waves in FLiPS. The results of the simulations guided the experiment design to study
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Chapter 2

Waves in plasmas

The purpose of this chapter is to introduce the reader to the key concepts of the electro-
dynamics of plasmas and notations that will be used throughout the thesis. Starting from
general concepts, the cold plasma model will be presented. Then the quasi-electrostatic
approximation will be introduced. Using the quasi-electrostatic approximation, the Elec-
tron Bernstein Waves (EBWs) will be introduced. The possible coupling schemes to EBWs
will be discussed. At the end of the chapter, the finite Larmor radius approximation will
be described, which can be used to perform full-wave simulations of EBWs.

2.1 Electrodynamics of plasmas
The fundamental equations of electrodynamics are Maxwell’s equations [16]

∇× ~B = µ0
~j +

1

c2
∂ ~E

∂t
, Ampere’s law

∇× ~E = −∂ ~B

∂t
, Faraday’s law

∇ · ~E = ρ/ε0, Gauss’ law
∇ · ~B = 0, absence of magnetic monopoles

(2.1)

where ~B, ~E are magnetic and electric fields, and ~j is a current density. Obviously, in
vacuum ~j = 0, but in a medium such as a plasma, the fields may accelerate charges,
creating an electric current. The generated current will produce its own field, modifying
the original field. If this feed-back loop is considered, when solving the equations, the
problem is said to be solved self-consistently.
The relation between the current and the electric field are not given by Maxwell’s equa-
tions. Instead, this relation has to be derived by considering the microscopic dynamic of
the system [17]. In general, this relation can be written in an integral form as follows [3]

~j(~r, t) =

∫
V

∫ t

−∞
¯̄σ(~r, ~r′, t, t′) ~E(~r′, t′)dt′ ~dr′, (2.2)

where the kernel ¯̄σ(~r, ~r′, t, t′) is the conductivity tensor. The form of ¯̄σ(~r, ~r′, t, t′) is known
only in the frequency domain [18, 19]. Equation (2.2) implies that the value of the response
~j(~r, t) depends non-locally on the applied field ~E. The non-local behaviour in time is due
to inertia of the particles and causes the frequency dispersion. The non-locality in space
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is due to the thermal motion of the particles. This effect is referred to as the kinetic effect.
Alternatively, the medium response can be described with the help of a dielectric tensor
as usually done in the standard treatment of dielectrics. In the following, this formalism is
briefly introduced. In a dielectric medium there are two types of charge carriers: bounded
and free charges. Thus, the charge density in Gauss’ law can be split in two parts,
ρ = ρfree + ρbounded. The function ~D is called the electric displacement and defined
such that ∇ · ~D = ρfree. This approach seems to be counterproductive, as one more
unknown variable ~D has been introduced. This approach is useful, because often the field
is sufficiently weak, and ~D can be assumed to be linearly proportional to ~E, or ~D = ¯̄ε · ~E.
Therefore, one more relation, the so-called constitutive relation can be introduced. Now
Ampere’s law can be written in the following form

∇× ~B = µ0
∂ ~D

∂t
(2.3)

In a plasma all the charge carriers are considered to be bounded [1], therefore ∇ · ~D = 0.
And, in general, ¯̄ε is an integral operator due to the possible non-locality of the response

~D(~r, t) = ε0

∫
V

∫ t

−∞
¯̄ε(~r, ~r′, t, t′) ~E(~r′, t′)dt′~r′ (2.4)

This equation is useful for describing the electrostatic waves (Sec. 2.2).
Applying the curl operator to the left hand side of Faraday’s law and using Ampere’s law,
the following wave equation is obtained

∇×∇× ~E = −µ0
∂2 ~D

∂t2
(2.5)

For a stationary and homogeneous plasma, Eq. (2.5) can be Fourier transformed

~k × ~k × ~E − ω2

c2
¯̄ε(ω,~k) · ~E = 0 (2.6)

The dielectric tensor is related to the conductivity tensor as follows

¯̄ε(ω,~k) = I + i
¯̄σ(ω,~k)

ε0ω
, (2.7)

where I is a unit matrix.
Now the concept of a dispersion relation is introduced. This concept will be used through-
out this thesis, because of its importance for the understanding of wave propagation phe-
nomena. A dispersion relation relates the frequency of a wave to its wavelength in a
homogeneous and stationary medium. It determines, where the wave energy can be effi-
ciently absorbed, where different types of waves can transform into each other, and what
kind of waves are allowed to propagate. Equation (2.6) can be written in the following
compact matrix form

¯̄M(ω,~k) · ~E = 0 (2.8)

This matrix equation has a non-trivial solution ( ~E 6= 0) only if the determinant of the
matrix ¯̄M is zero. That is, the dispersion relation is a condition for the existence of
non-trivial solutions of the matrix equation

det ¯̄M(ω,~k) = 0 (2.9)
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The determinant will depend on the choice of the model of the plasma response, which
has not been specified yet. The cold plasma approximation is a model that describes
both electrostatic and electromagnetic plasma waves. In this approximation, the thermal
motion of the particles is completely neglected, and the plasma is characterised by only
two parameters: plasma density ne and the ambient magnetic field ~B. In this thesis, the
ion dynamic is also neglected. This simplification is justified by the fact that the ions
have much higher inertia than the electrons. The electron plasma and electron cyclotron
frequencies are given by

ωpe =

√
nee2

ε0me

, (2.10)

ωce =
eB

me

(2.11)

The plasma frequency ωpe characterises how fast the electrons can react to the applied
electric field. The cyclotron frequency ωce is the gyration frequency of an electron in a
magnetic field. When the coordinate system is chosen such that ~B ‖ z and the wavevector
~k lies in xz − plane, the cold plasma dielectric tensor using the Stix’ notation is given
by [20]

¯̄εc =

 S −iD 0
iD S 0
0 0 P

 , (2.12)

where the quantities S, D and P are defined as follows

S =
1

2
(R + L)

D =
1

2
(R− L)

R = 1− X

1− Y

L = 1− X

1 + Y

P = 1−X,

(2.13)

where X and Y are defined as

X =
ω2
pe

ω2
(2.14)

Y =
ωce

ω
, (2.15)

which will be used throughout the thesis. In the case of the cold plasma, the determinant
of the matrix ¯̄M is given by the following polynomial of the 4th degree

An4 −Bn2 + C = 0 (2.16)
A = S sin2 θ + P cos2 θ

B = RL sin2 θ + PS(1 + cos2 θ)

C = RPL
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Note that the cold dielectric tensor does not depend on the wavevector as the thermal
motion of the particles is neglected.
Equation (2.16) has four different solutions. But in total, there are two different modes,
as the waves can propagate backwards and forwards. These two modes are called an
Ordinary mode (O-mode) and an Extraordinary mode (X-mode). For certain plasma
parameters the refractive index becomes infinite or zero. The positions where N → ∞
are resonances and N = 0 are cuttoffs. Analysis of Eq. (2.16) shows that in a magnetised
plasma there exists a cutoff whenever C = 0. Thus, cutoffs occur at P = 0, R = 0
and L = 0. A resonance occurs when A = 0, which is called the generalised resonance
condition [20]. For the perpendicular propagation a resonance occurs for S = 0, which is
called the Upper Hybrid Resonance (UHR).
The cold dispersion relation (2.16) can be re-written in another useful form given by the
Altar-Appleton-Hartree (AAH) dispersion relation

N2 = 1− 2X(1−X)

2(1−X)− Y 2 sin2 θ ± Y
√
Y 2 sin4 θ + 4(1−X)2 cos2 θ

(2.17)

In this form, the dispersion relation explicitly relates the magnitude of the refractive index
vector to its direction. The + and − signs correspond to O- and X-modes. An example
of the refractive surfaces is shown in Fig. 2.1.
Note that the O-mode propagates only for X < 1. For the X-mode, there is a forbidden
zone, where the wave is always evanescent. For the perpendicular propagation, this zone
lies between R-cutoff and UHR. The solution that propagates until the R-cutoff is called
the Fast X-mode (FX-mode) and the solution after the UHR is the Slow X-mode (SX-
mode). This terminology reflects the fact that the phase velocity of the SX-mode is smaller
the speed of light in vacuum. For the parallel propagation another terminology is often
used. As shown in Fig. 2.1, for the parallel propagation the O-mode is connected to the
X-mode at X = 1, forming a continuous refractive surface. This new surface represents
the L-mode, and the mode that propagates until the R-cutoff is the R-mode. If the
thermal motion cannot be neglected, the dielectric tensor becomes extremely complicated,
and some approximation is usually necessary. One of them is the quasi-electrostatic
approximation, which is covered in the next section.

2.2 Quasi-electrostatic waves
In the quasi-electrostatic approximation, the electric field is assumed to be the gradient
of a scalar function φ

~E = ~∇φ (2.18)

Doing that simplifies the vector problem to a scalar one. Replacing the electric field in
Gauss’ law and assuming a homogeneous plasma, the following equation is obtained

∇ · ¯̄ε(ω, k)~∇φ = 0,

(~k · ¯̄ε · ~k)φ = 0

And the quasi-electrostatic dispersion relation for the plasma waves is given by:

k2
xεxx + 2kxkzεxz + k2

zεzz = 0 (2.19)
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Figure 2.1: Refractive indices of O- and X-mode for perpendicular (θ = 90◦), oblique (θ = 45◦) and parallel propagation
(θ = 0◦) with respect to the background magnetic field. The blue and green lines correspond to the O- and X-mode,
respectively.

In the case of a cold plasma, ¯̄ε is given by Eq. (2.12), and the following dispersion is
obtained

Sk2
x + Pk2

z = 0 (2.20)

Thus, the electrostatic waves propagate in a magnetised plasma at the angle θres given by

tan2 θres = −
P

S
, (2.21)

where P and S are given by Eqs. (2.13). It can be shown [20] that in a cold magnetised
plasma the antenna will radiate the waves in the directions given by θres, forming the
so-called resonance cone as shown in Fig. 2.2.
Figure 2.3 shows the refractive index surfaces for P > 0 and S < 0 obtained from the
AAH dispersion relation given by Eq. (2.17). The closed round surface belongs to the
O-mode. The open surface describes the SX-mode. As the wave vector on the SX-mode
surface approaches the resonant angle θres the refractive index magnitude becomes infi-
nite, indicating the resonance. It should be kept in mind that this dispersion relation
does not describe a new type of waves. Indeed, Eq. (2.20) is nothing else but the angular
resonance condition that can be obtained from the Altar-Appleton-Hartree dispersion re-
lation. It implies that the quasi-electrostatic approximation is applicable in the case of a
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Figure 2.2: A small antenna inserted in a magnetised plasma radiates predominantly along the surface of a cone with the
opening angle θres given by (2.21). Thus, the plasma can significantly change the radiation pattern of an antenna. The
waves that propagate along the surface are electrostatic, similarly to EBWs.
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Figure 2.3: The cold plasma refractive index surfaces for the O- and X-modes for P > 0 and S < 0. The O-mode refractive
index has a closed oval surface and the X-mode refractive index surface is open. The wings of the surface is the resonance
cone with the opening angle θres.

large refractive index N .
Having introduced the quasi-electrostatic approximation and the necessary concepts, Elec-
tron Bernstein Waves will be introduced in the next section.

2.3 Electron Bernstein Waves
The Electron Bernstein Waves are quasi-electrostatic waves and exist only in magnetised
plasmas. An intuitive explanation is depicted in Fig. 2.4. Their existence was first pre-

E E

B0 B0 

k

Figure 2.4: Illustration of how the EBWs are formed. As the electrons collectively gyrate in the ambient magnetic field,
the electric field is periodically perturbed, forming the wave field. The wavelength of EBWs is of the order of the Larmor
radius, and it is a longitudinal wave.

dicted theoretically by Ira B. Bernstein in his famous article of 1958 [21], and then was
confirmed experimentally [22, 23]. These waves do not have a high-density cutoff, are not
Landau damped for the exact perpendicular propagation, and resonate at the harmonics
of the electron cyclotron resonance. These properties make them a good candidate for
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plasma heating [24, 6].
In the case of perpendicular propagation, the diagonal component of the plasma dielectric
tensor εxx = 0 as follows from Eq. (2.19), where εxx is given by [20]

εxx = 1−Xq2
N=∞∑
n=1

2e−λIn(λ)

λ

n2

q2 − n2
, (2.22)

where λ = 1
2
(N⊥γq)

2, q = ω
ωce

, γ = vth
c

and In are the modified Bessel functions of the
first order [25].
The EBW dispersion relation is shown in Fig. 2.5. The solutions of the dispersion rela-

0 1 2 3 4 5

k⊥ρL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q
=

ω

ω
c
e

ω
2

pe

ω
2
ce

= 1

= 3

= 5

= 10

Figure 2.5: The EBW dispersion relation for the almost perpendicular propagation for bands 1 < q < 2 and 2 < q < 3
for different values of the parameter ω2

pe/ω
2
ce. The bands correspond to the fundamental and the first EBW harmonics,

respectively.

tion were obtained using the ray-tracing method described in Ch. 6. To be able to use
Eq. (2.22) in calculations, the sum was truncated at N = 10. It should be noted that the
solutions shown in Fig. 2.5 were obtained in the quasi-electrostatic approximation, which
can be violated at the UHR, where the EBWs can transform into the usual electromag-
netic plasma waves. The solutions lie in the frequency bands formed by the harmonics
of the cyclotron resonance. There are propagating solutions in each frequency band with
the exception of 0 < q < 1. The solutions are plotted for fixed values of the parameter
α = Xq2 = (ωpe

ωce
)2. To understand better how the solutions behave, consider the band

1 < q < 2. In this band, the UHR exists for 0 < α < 3. If α = 3 the upper hybrid
resonance coincides with the second harmonic resonance q = 2 and all the other solutions
in this band will originate from this point. In the next band 2 < q < 3 for 1 < α < 3 the
solution will originate at the second harmonic resonance. For α > 3 in this band, there
is UHR until α = 8, which coincides with the third harmonic of the cyclotron resonance.
The EBWs can be excited through the coupling schemes, which will be presented in the
following.
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2.3.1 The first scheme — O-X conversion
One of the schemes to excite EBWs in a magnetised plasma is a three-step process,
where the incoming O-mode launched from the vacuum side converts into the SX-mode
upon the reflection at the O-cutoff [26]. This process received attention not only due
to the problem of heating of the fusion plasmas, but also due to the importance for the
ionospheric research. The O-X conversion explains the signal tripling that occurs when
an O-mode is reflected from the dense ionospheric plasma [27, 28].
The coupled SX-mode propagates outwards, towards the UHR, where in the cold plasma
approximation the SX-mode has a resonance. If the thermal effects are included the SX-
mode cannot reach the UHR and instead will be reflected as the EBW. In general, the
efficiency of the coupling is defined as

Ceff =
Pin − Pout

Pin

, (2.23)

where Pin and Pout are the incoming and outgoing energy fluxes. In the case of the O-X
conversion, these fluxes are carried by the O-mode. The coupling to the EBWs is mostly
determined by the coupling of the incoming O-mode to the SX-mode at the O-cutoff.
The conversion is efficient, when energy from one mode can flow into the other, which
happens when the refractive indices of the two waves have close values at the same point
in space. The AAH dispersion relation (2.17) shows that the X- and O-modes have the
same refractive indices whenever the square root in the denominator vanishes. It occurs
only if both X = 1 and θ = 0. Thus, setting θ = 0 the AAH dispersion relation simplifies
to the following form

N2 = 1− 2X(1−X)

2(1−X)± 2Y |1−X|
(2.24)

For the O-mode approaching the limit from the low-density side leads to

lim
X→1−

N2 =
Y

1 + Y
.

For the X-mode approaching the limit from the high-density side leads to

lim
X→1+

N2 =
Y

1 + Y
.

Assuming a homogeneous plasma in the z-direction, the optimal injection angle at which
the maximum conversion efficiency is expected, is given by

cos2 θopt = N2
z,opt =

Y

1 + Y
. (2.25)

Figure 2.6 demonstrates the ideas presented above. For the optimal injection angle the
O-mode is directly connected to the SX-wave. For θ < θopt the O-mode reflects before
reaching the X = 1. If the the injection angle is larger than the optimal value, the SX-
mode starting point is shifted towards the higher density. In the following, examples of
the O-X conversion in the 2D plasma geometry will presented.
The simulations were performed with the FD3D full-wave code (see Sec. 4.3 for details).
The incoming O-mode at 2.45 GHz was initiated as a Gaussian beam. As a reference, the
Gaussian beam propagation in vacuum is shown in Fig. 2.7. Along the r-axis the beam
shape is given by the Gaussian function, and the beam width at the waist is characterised
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labelling is discussed.
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Figure 2.7: Left: demonstration of the Gaussian beam propagation at 2.45 GHz in vacuum. The beam is initiated at
z = 0 with the initial beam waist w0 = 0.12 m. The contours show the levels of the electric field E > 0. The beam radius
is shown by the black thick curve. Right: the beam cross-section at z = 0

by the beam waist radius w0. At the distance r = w0, the field strength is 1/e of the field
at the center of the focus (r = 0). Generally, the plasma waves are elliptically polarised.
To excite the O-mode, the magnetic By and the electric Ey components are simultaneously
excited at the antenna plane, such that their ratio is given by

Ey

By

= −Y sin θ − Γ

2 cos θ
exp i

π

2
, (2.26)

where
Γ =

√
Y 2 sin4 θ + 4 cos2 θ.

This relation can be derived with a little algebra by combining Eq. (2.6) and Eq. (2.17).
The fields involved in the O-X conversion can be also found analytically in 1D geometry
for shallow density profiles [29].
Figures 2.8 and 2.9 show simulations of the O-mode propagation for the injection angles
θopt and θ > θopt, respectively. The simulations were performed in a magnetised plasma
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Figure 2.8: (a): Propagation of the O-mode launched at θopt in an inhomogeneous magnetised plasma with ∇ne ‖ x and
Y = 0.8. The initial beam waist radius ω0 = 2λ. (b): Poynting flux at the antenna plane x = 0. Positive values correspond
to the incoming flux and the negative to the outgoing flux.

with a linearly increasing plasma density along the x-axis. As expected, the O-mode is not
affected by the R-cutoff and the UHR. The wave propagates through the plasma until the
O-cutoff, where the coupling to the SX-mode occurs. The excited SX-mode propagates
towards the UHR, where it is dissipated by collisional damping. Collisional damping is
included in the FDTD simulations as shown in Eq. (4.4). For the non-optimal angle the
value of Ceff = 13% is lower than in the case of the injection at θopt.
As pointed out in [30], the conversion efficiency of the O-X scheme depends on the beam
divergence and thus on the beam waist w0 of the injected O-mode beam. Only the central
part of the beam propagates at the optimal angle, because of the finite beam width. The
effect of the beam size on the conversion can be clearly seen in Fig. 2.8 (b). The figure
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Figure 2.9: Same as Fig. 2.8, but for θ > θopt.

shows the Poynting flux of the incoming O-mode at the optimal angle and the outgoing
unconverted O-mode. The outgoing power flux demonstrates that only the central part
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of the O-mode beam angular pattern was perfectly converted into the SX-mode.
Analytically, the conversion efficiency Ceff of the O-X conversion is given by the Mjølhus
formula [31]

Ceff = exp(−πk0L
(
Y

2

)2

(2(Nz −Nz,opt)
2(1 + Y ) +N2

y )), (2.27)

where L is the density-gradient length at the O-cutoff. In general, L provides a typical
scale of the inhomogeneity and is given by

L =

(
dX

dr

)−1

X (2.28)

Figure 2.10 (left) illustrates Ceff as a function of L for fixed values of Nz.

Figure 2.10: The conversion efficiency of an O-mode into the SX-mode according to the Mjølhus formula 2.27. Left: Ceff

for different Nz as a function of the normalised density-gradient length k0L. Right: Ceff for fixed k0L as a function of Nz .
For the smaller values of k0L there exists a wider range of injection angles with high conversion efficiency. However as k0L
becomes smaller the approximation that was used to derive the Mjølhus formula may not be applicable and tunnelling of
the SX-mode through the UHR towards the lower plasma density will significantly decrease Ceff .

The Mjølhus formula implies that for Nz = Nz,opt, the conversion efficiency does not
depend on k0L, and Ceff = 1 for k0L = 0. On the right-hand side of Fig. 2.10, Ceff

is plotted as a function of Nz for fixed values of k0L. For the smaller values of k0L the
conversion efficiency is higher over a broader range of Nz. From the Mjølhus formula, it
can be concluded that small k0L is beneficial for the conversion. However, the Mjølhus
formula was derived assuming a shallow density gradient L at the O-cutoff. For small
values of k0L, Ceff will be smaller than predicted by the Mjølhus formula due to the
SX-mode back tunnelling as described in Sec. 5.1.2. Generally, the exact value of Ceff

has to be found using numerical methods such as the boundary value problem method or
the Finite-Difference Time-Domain method. Calculations of Ceff in the FLiPS plasma
using the FDTD method are presented in Ch. 4. For the case of the linear steep density
profile, Ceff is calculated in Ch. 5.

2.3.2 The second scheme — direct FX-SX coupling
The second scheme is the direct FX-SX coupling scheme. The FX-SX coupling is a
tunnelling process that was studied by Budden [27]. He considered the problem of the
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wave propagation in a medium with the refractive index given by

N2 =
β

x
+

β2

η2
, (2.29)

where β and η are constants that determine the position of the cutoff, where N = 0. This
expression approximately describes the refractive index of an X-mode [32]. The main
feature of this refractive index model is that a wave propagating from left to right will
encounter a cutoff at x = −η2

β
, and then a resonance at x = 0 as shown in Fig. 2.11.

For an X-mode, the cutoff corresponds to the R-cutoff and the resonance to UHR. The

cutoff

x = −

η

β2

resonance

x = 0
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2
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Figure 2.11: Refractive index N2 used in the Budden analysis. A wave propagating in a medium with such a refractive
index will encounter a cutoff and a resonance.

absorption AB due to the resonance is given by

AB = e−πs0(1− e−πs0), (2.30)

where s0 = k0x is the normalised distance between the cutoff and the resonance. The
direct FX-XS coupling belongs to a class of tunnelling problems, often encountered in
plasma physics. The term tunnelling refers to the fact that two branches of the same
mode are coupled, unlike in the mode conversion case, where two different modes are
coupled [11].
The Budden analysis assumes that only one cutoff is present. However, an X-mode has
additionally the L-cutoff, when the plasma density is high enough. The presence of the L-
cutoff significantly modifies the tunnelling efficiency predicted by the Budden theory [32].
Consider the density profile shown in Fig. 2.12. The incoming FX-mode, propagating
towards higher density, encounters the R-cutoff, where it splits into a transmitted and a
reflected wave. The transmitted part tunnels through the evanescent region between the
R-cutoff and the UHR, coupling to the SX-mode. The SX-mode reflects at the L-cutoff
and propagates towards the lower density. Then part of it will be absorbed at the UHR,
and some energy will leave the plasma in the form of the FX-mode. One can expect perfect
coupling efficiency, when the reflected FX-mode and back tunnelled FX-mode interfere
destructively. The coupling efficiency CFX−SX is given by

CFX−SX = 4e−πηB(1− e−πηB)cos2(φ
2
+ θ), (2.31)
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Figure 2.12: Sketch of the direct FX-SX coupling process and the RL-resonator. The incoming FX-mode partially reflects
at the R-cutoff. The transmitted part is a SX-mode. The wave reflects at the L-cutoff and is partially absorbed at the UHR
and partially transmitted as a FX-mode.

where in the case of LB � L, where LB and L are the magnetic field and the density
characteristic lengths, the Budden parameter ηB is given by

ηB =
Y k0Ln

α
(
√
1− α2 − 1)

1
2 , (2.32)

where α =
√
1−Y 2

Y
. The phase factor cos2(φ

2
+ θ) in Eq. (2.31) can significantly modulate

the conversion efficiency as shown in Sec. 5.1. If the density is not high enough and the
L-cutoff is not present inside the plasma, the maximum conversion efficiency according to
the Budden analysis is 25 %.

2.3.3 Plasma dispersion relation in the case of finite electron
temperature

Up to now, only the cold plasma approximation has been considered. Here, the behaviour
of the refractive index of the SX-mode is discussed when the thermal effects are included
in the plasma model. The SX-mode refractive index will be calculated with three different
approaches. Using the obtained results, the applicability range of the approximations will
be discussed.
The most general and complicated approach is based upon the full hot dielectric tensor ¯̄εh.
No approximations are made, which results in extreme complexity of ¯̄εh. Its expression
can be found in [20], or in any other advanced plasma physics book. Within this approach
the SX-mode and the EBWs are described by the same refractive index surface. When
the electromagnetic effects are not important, the quasi-electrostatic approximation can
be used. This approximation is limited to only short wavelength waves with vanishing
magnetic field component. Its clarity makes the study of the EBWs a more tractable task.
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But the SX-mode cannot be, in general, described within this approach.
Another approach can be used when Te is small. In this case, kinetic effects can be
treated as a small correction to the cold plasma dielectric tensor. This approach is useful
for the full-wave simulation of the EBWs and is discussed in detail in Sec. 5.3. Figure 2.13
shows the refractive indices of the SX-mode and the EBWs obtained using the methods
described above for two different background magnetic field strengths. The thermal cor-
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Figure 2.13: Perpendicular refractive index calculated for three different approximations as a function of X =
ω2
pe

ω2 . N⊥
based on the hot dielectric tensor was calculated using a ray-tracing code described in Sec. 6.3.1. This approach can be
used to find N⊥ for any density and electron temperature. The large values of N⊥ can be also found from the electrostatic
approximation. The thermal correction approximation matches the exact values only in the UHR vicinity.

rection approach is in good agreement with the dispersion relation based on the full hot
dielectric tensor only in the UHR vicinity. As the density increases the thermal correction
approximation will underestimate the refractive index. An excellent agreement can be
seen between the full hot dielectric tensor and the quasi-electrostatic approximation for
large values of the refractive index.
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Chapter 3

The linear experiment FLiPS

3.1 Introduction
This chapter introduces the linear flexible plasma device FLiPS, where EBW experiments
were carried out. FLiPS can be operated as a magnetic mirror plasma device with arbi-
trary mirror ratios 1 < Bmax/Bmin < 3.9. In magnetic mirror devices, at the vessel ends
the background magnetic field reaches its maximum Bmax. The inhomogeneous magnetic
field creates a force exerting on the charged particles in the direction of the lower magnetic
field. This force repels the particles from the ends of the vessel, back into the confined
plasma region within the low magnetic field Bmin. Plasma dynamics in such devices was
previously studied in depth in relation to the controlled fusion [33]. Heating scenarios in
a device similar to FLiPS were reported in [34].
In this chapter, the base plasma heating system will be described as well as the plasma
diagnostics that were used to measure the plasma density ne and the electron temperature
Te. This chapter does not deal with the EBW measurements, but only with the general
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Figure 3.1: A schematic of the experimental set up. The presented calculated magnetic field configuration is created by
the current of 500 Amps and 320 Amps in the outer and inner coils respectively. Towards the end of the vessel the magnetic
field is stronger, which is beneficial for the axial plasma confinement.

experimental investigation of the base plasma, where later the EBW experiments were
carried out. The optimal neutral gas pressure and the magnetic field configurations that
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produce a stable and dense plasma will be described. For some magnetic field configura-
tions and neutral gas pressures, the plasma produced hazardous levels of X-ray emission.
The X-ray emission risk could not be completely mitigated and, in general, safety mea-
sures are always required when working with magnetic mirror devices [7]. In this thesis,
plasma configurations that produced strong X-ray emission were avoided.
The plasma produced by the main heating system served as the base plasma, in which the
wave propagation could be studied. An additional plasma heating system was also used,
and will be referred to as the auxiliary heating. The waves launched into the base plasma
by this auxiliary heating system will be the main objective of the numerical as well as
experimental investigations in the next chapters. For the measured plasma parameters,
the Mjølhus and the Budden analytical models (see Eqs. (2.27) and (2.31)) were applied
to predict, which auxiliary heating configuration is preferable to couple to the EBWs.
Using these parameters, the effect of the collisional and Landau damping on the EBW
propagation was calculated. In the chapters dedicated to the EBW simulations, these
parameters will be used to perform the numerical analyses.

3.2 Magnetic field configuration and heating system
Figure 3.1 depicts the FLiPS vessel with an overlaid example of the magnetic field config-
uration. The vessel length was 1.16 m and the diameter DFLiPS = 0.52 m. The magnetic
field was created by the magnetic field coils constructed for FLiPS with the diameter
0.66 m. The two outer coils had twice more windings than the inner four coils. Each
outer coil had its own power supply that produced the current up to 500 Amp. The
inner coils were connected in series to a high-current system. The high-current system
can produce current outputs much higher than the power supplies. In practice, the inner
coils current was never set to more than 500 Amp, since it would lead to the loss of the
axial plasma confinement.
Since the outer coils were controlled independently from each other and from the inner
coils, a variety of the magnetic configurations with different magnetic field ratios as well
as asymmetric configurations could be produced. All the coils were water-cooled, which
allowed a continuous operation. The routinely used magnetic field configuration was cre-
ated by 500 Amp in the outer coils and 320 Amp in inner coils. This magnetic field
configuration is shown in Fig. 3.1.
The main microwave heating system that was used to produce the base plasma is shown
in Fig. 3.2 (Left). The microwave was produced by an adjustable power 0 < P 6 6kW,
2.45 GHz magnetron. A three-stub tuner (a) was used to match the impedance of the
heating system and the plasma. The tuner is followed by a rectangular-to-circular tran-
sition (b). According to the cold plasma wave theory discussed in Ch. 2, only a right-
hand circularly polarised wave (R-wave) is efficiently absorbed at the cyclotron resonance.
Therefore, a polariser (c) was developed to convert the linear polarised wave produced by
the magnetron into the R-wave. The polariser [35] was a piece of a circular waveguide
with two parallel metal bars attached to the inner side. The dimensions of the metal bars
had been optimised with CST microwave simulations to obtain circular output polarisa-
tion. The polarisation of the output wave could be controlled by rotating the polariser
around its axis.
Due to possible hazardous X-ray emission from the plasma, the vessel was covered with
lead plates, as shown in Fig. 3.2 (Right). The figure also shows the port that was used for
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the auxiliary plasma heating at 2.45 GHz with the 6 2kW power. For more information
on the auxiliary heating see Ch. 7.

(a) (b) (c)
(d)

Figure 3.2: Left: the main plasma heating system. (a)-three stub tuner, (b)-rectangular-to-circular transition, (c)-
polariser, (d)-taper. Right: the port in the middle was reserved for the O- or X-wave injection across the background
magnetic field. The lead plates were installed to reduce the X-ray emission

3.3 Diagnostics
In the course of the work, FLiPS was equipped with an interferometer and a Langmuir
probe. An interferometer is a non-invasive diagnostic that measures the average plasma
density along the line-of-sight

n̄e =
1

l

∫ l

0

ne(r)dr, (3.1)

where n̄e is the average density and l is the length of the line-of-sight, which in the case of
FLiPS equals to DFLiPS. The principle of the diagnostic is based on comparing the phase
difference between two microwave beams, one of which propagates through the plasma
(plasma channel) and the other is the reference as described in [36, 37]. A well-collimated
Gaussian beam was launched into the plasma by a lens horn and received by a smaller
corrugated horn antenna. This helped to reduce the standing wave between the horns,
which could affect the interferometric measurements.
A schematic of the interferometer at FLiPS is shown in Fig. 3.3. A directional coupler (b)
splits the incoming 70 GHz microwave generated by a Gunn oscillator. One part of the
signal goes through the plasma and the other through the reference channel. Afterwards,
both are combined by the directional coupler (d). The whole system was fixed to a rigid
metal frame around the vessel to avoid effects caused by vibrations. The length of the
plasma and reference channels were balanced to avoid measurement errors due to possible
frequency variations of the Gunn oscillator.
The total time-averaged intensity was measured by the diode detector (e) and depends
on the phase shift between the signals in the plasma and reference channels, as shown
in Fig. 3.3. The phase difference and the line-averaged plasma density are related as
follows [36]

∆φ

2π
≈ DFLiPS

2λnc

n̄e, (3.2)

where λ is the wavelength of the probing signal and nc is the corresponding plasma cutoff
density. The simple and robust setup of the interferometer could unambiguously measure
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Figure 3.3: A schematic of the homodyne interferometer diagnostic at FLiPS. (a)-70 GHz microwave source, (b), (d)-
directional couplers,(c)-phase shifter, (e)-diode detector.

∆φ < π, which was sufficient for the FLiPS experimental conditions. A typical example
of an interferometric signal measured in FLiPS is shown in Fig. 3.4. After the initial
density rise, the plasma density stays relatively constant for t > 1 s until the end of the
discharge at t = 5 s. The signal shows density fluctuations with the standard deviation
σ = 0.11. Since the measurements were line-averaged, the local density fluctuation level
could be much higher.
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Figure 3.4: A typical interferometric signal measured at FLiPS plotted as ωpe normalised to the frequency of the main
heating system ω. The discharge duration was 5 s. The magnetron was turned on at t = 0. The MW power was set to
4.8 kW. After the discharge there was a low density plasma in the vessel, since the magnetron still radiates power even
when the modulation is not active, which is enough to maintain this afterglow plasma.

The local plasma parameters were measured using the Langmuir probe (LP) diagnos-
tic [37]. A LP is a small metal tungsten wire inserted into a plasma. Biasing the tip
and measuring the current draw, one obtains the current-voltage (IV) characteristic, from
which the local plasma parameters such as ne and Te can be deduced. An idealised IV-
characteristic of a probe in an unmagnetized, collisionless plasma is shown in Fig. 3.5.
The potential Vfl is called the floating potential at which I(Vfl) = 0. At the floating po-
tential Vfl there is no current draw, since the ion and electron currents balance out each
other. The IV-characteristic can be divided into three regions. In the regions (A) and
(C) the probe current is the ion saturation Ii,sat and the electron saturation Ie,sat current,
respectively. The characteristic shown in Fig. 3.5 is said to be idealized [1] because in
reality the Ie,sat does not reach the plateau and keeps increasing with the applied voltage.
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An example of the experimentally measured IV-characteristic is shown in Fig. 3.6.

Figure 3.5: The idealized IV-characteristic of a Langmuir probe. Three distinctive regions A, B, C can be identified. A,
C are the ion/electron saturation regimes and B is the exponential part.

The ion saturation current is given by

Ii,sat = 0.61eneAs

√
Te

mi

, (3.3)

where As is the probe surface and mi is the ion mass. From the ion saturation measure-
ments only, it is impossible to calculate separately Te or ne. However, coupled with the
interferometric measurements, it can serve as an indication for the appearance of hot elec-
trons. The X-ray emission was sometimes detected for neutral gas pressures < 10−2 Pa.
At these pressures, the electrons do not collide often enough with the other particles to
become thermalised. It explains why the X-ray emission was detected at low plasma den-
sities. As the electrons pass through the electron cyclotron region, they gain energy from
the R-wave. Eventually, the confinement of these electrons is lost and they collide with
the vessel walls, which causes the X-ray emission, due to the bremsstrahlung [7, 37].
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Figure 3.6: An example of the IV-characteristic measured in FLiPS. The obtained plasma parameters are Te = 14 eV and
ne = 6× 1017 m−3. It is sufficient to measure the IV-characteristic only around the floating potential

The main drawback of the LP measurements is the complicated theory in the case of
magnetised plasmas, since the effective collective area of the probe is modified by the
magnetic field, leading to a large error in ne. To obtain the correct local plasma density,
the data from the interferometric measurements was used as follows

C

DFLiPS

∫ RFLiPS

−RFLiPS

n′
e(r)dr = n̄e, (3.4)

where n′
e(r) are the LP measurements, n̄e is the average radial density from the interfero-

metric measurements and C is a normalisation constant. Thus, when the density profile is
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measured with a LP, the constant C can be found and the correct local density obtained
as n(r) = Cn′

e(r).

3.4 Heating by EBWs
Using the measured density profile, the expected efficiency of the two coupling schemes
to the EBWs for the FLiPS plasma will be calculated. Then, the possible damping
mechanisms that can affect coupling to the EBWs will be discussed.

3.4.1 Coupling scheme
The most important parameter that determines which conversion scheme is preferable,
is the density gradient length L given by Eq. (2.28). The value of L can be calculated
at any point at the profile and characterises how fast the density changes. For the O-X
conversion and the direct FX-SX scheme, the required density-gradients are LO at the O-
cutoff and LUHR at the UHR, respectively. From Fig. 3.7, the density gradient length for
both cases can be calculated to determine which of the two coupling scheme is preferable
for the FLiPS plasma. In the case of the O-X conversion LO is given by

LO =

(
dX

dr

∣∣∣
O

)−1

XO, (3.5)

where the derivative is calculated at the O-cutoff and XO = 1. Thus, LO is determined
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Figure 3.7: Langmuir Probe measurements of the FLiPS plasma parameters. The absolute value of ne was obtained
using the interferometric data. The measurements show that the plasma density has a steep rise at the edge and remains
approximately constant in the plasma bulk. The density profile was fitted using Eq. (4.3).

only by the plasma density profile. For the measured profile the density gradient nor-
malised to the wave vector is k0LO < 3. For such LO, Mjølhus’ formula given by Eq. (2.27)
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might be not applicable due to the smallness of the density-gradient length, since the for-
mula assumes total absorption of the SX-wave at the UHR. For small density-gradient
lengths, the SX-mode leaks through the UHR and leaves the plasma as a FX-mode. The
estimation of the conversion efficiency in this case requires numerical simulations. The
corresponding numerical simulations will be presented in detail in Ch. 5. The simulations
show that even for the optimal injection angle Ceff < 0.4.
In the case of FX-SX coupling, LUHR is

LUHR =

(
dX

dr

∣∣∣
UHR

)−1

XUHR, (3.6)

where XUHR = 1− Y is the density of the plasma at the UHR. Thus, LUHR depends on
the background magnetic field. Figure 3.8 gives CFX−SX as a function of the background
magnetic field, assuming the density profile in Fig. 3.7. From Fig. 3.8 it can be conclude
that the maximum of CFX−SX is achieved around Y = 0.6. However, this plot has to
be treated with caution, because even small density fluctuations can lead to a significant
modification of CFX−SX .
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Figure 3.8: The efficiency of the FS-FX tunnelling for the density profile shown in Fig. 3.7 as a function of the background
magnetic field calculated using Eq. (2.31). The CFX−SX was calculated assuming presence of the L-cutoff given by
X = 1 + Y .

Another important aspect that must be discussed is the presence of the L-cutoff in the
plasma. The FX-SX coupling scheme can be very efficient, when the L-cutoff lies inside
the plasma, as discussed in Sec. 2.3.2. From Fig. 3.7, the peak density ne = 0.8×1017 m−3,
which corresponds to X =

ω2
pe

ω2 = 1.1. The L-cutoff is inside the plasma when the X >
1 + Y . In the experiments that were performed in course of the study, Y > 0.7, therefore
the density must fulfil X > 1.8. Thus, for the measured profile shown in Fig. 3.7, the
L-cutoff is not inside the plasma.

3.4.2 Collisional damping and parametric decay

The collisional damping of the SX-mode at the UHR can reduce coupling to the EBW [6].
The effect of collisions on the EBWs has been discussed in [38, 39], where the authors
estimated that the EBW propagation is not strongly affected by the collisions when
νcoll/ω < 10−4, where νcoll is the collisional frequency. In FLiPS, the electrons collide
mainly with ions and with neutrals. Thus, νcoll = νei+νen, where νei and νen are electron-
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ion and electron-neutral collisional frequencies given by [7]

νen = σvthn0 (3.7)

νei = 2× 10−6ne
ln[ΛD/b]

T 1.5
e

, (3.8)

where σ is the total cross-section, which characterises the likelihood of the electron-neutral
interaction, and n0 is the neutral gas density. For Ar, the total cross-section can be
estimated as σ ≤ 25×10−20 m2, based on [7]. The term ln[ΛD/b] is the so-called Coulomb
logarithm [1] defined as a logarithm of the ratio of the Debye radius ΛD to the impact
parameter b. The value of νei mainly depends on Te. The lower Te corresponds to the
higher collisional frequency. This dependency is explained by the fact that the interaction
time of the faster electrons with the ions is shorter than for the slow electrons. In very
cold plasmas which occurs at the plasma edge, νei can become large enough to effectively
damp the EBWs [40].
Figure 3.9 shows νcoll/ω, calculated according to Eqs. (3.7, 3.8). The range of parameters
found in the FLiPS plasma is labelled with a white cross. Thus, even though Te is small
at the plasma edge, thanks to low ne the collisional frequency is small enough to allow
EBW propagation. However, it should be noted that in [40], wave propagation in a
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Figure 3.9: Normalised collisional frequency νcoll/ω as a function of Te and X. Lower density and higher Te correspond
to the low collisional frequency. The white cross shows the range of expected plasma parameters at the plasma edge in
FLiPS.

magnetised plasma with parameters similar to FLiPS plasma was investigated, and the
authors came to the conclusion that the SX-mode in their experiment was completely
collisionally damped before turning into the EBW at the UHR.
An additional loss channel that can reduce coupling to EBWs is the parametric decay [6,
41]. The parametric decay is a non-linear process, where an incoming pump wave decays
into daughter waves. The parametric decay occurs, when the amplitude of the electric field
exceeds a parametric decay threshold [6], which can occur at the UHR. The parametric
decay was, for example, detected in MAST for intense injected microwave powers > 1 MW
as reported in [42].
The parametric instability threshold power is given by [43]

P ∗
UHR

πρ2
= 2× 10−3

(
W

cm2/3T1/3GHz1/3eV13/6

)
× f 1/3T

13/6
e B1/3

L4/3
, (3.9)

where all plasma parameters are taken at the UHR, and ρ is the beam radius. Taking
Te ≈ 10 eV, k0L ≈ 0.5 and ρ ≈ 5 cm, the threshold power P ∗

UHR = 6 kW, which
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significantly exceeds the power of the auxiliary heating. Therefore, it is unlikely that
the parametric decay can be a significant loss channel. However, it should be noted
that in [44] the parametric decay was observed experimentally in a plasma similar to the
FLiPS plasma, and the authors concluded that the parametric decay at the UHR did not
significantly affect the plasma heating.

3.4.3 Plasma fluctuations
In previous experimental studies of EBW [23, 45], the plasma waves were studied in the
so-called glow discharges to avoid plasma fluctuations. The plasma of a glowing discharge
is more quiescent than a plasma produced by microwave heating such as the R-wave
heating used at FLiPS. The plasma fluctuations include not only density fluctuations, but
also temperature fluctuations (δTe) and plasma potential fluctuations (δVpl). Measuring
local plasma fluctuations can be performed with a single or with the so-called emissive
Langmuir probes [46]. The measurement of plasma fluctuations is an active research
topic in plasma physics. In this study, only the density fluctuations δne were measured.
The measurements of the plasma fluctuations in FLiPS is important, since in the FLiPS
plasma ωpe > ωce. According to [7], plasmas with ωpe > ωce become unstable. Thus, it
is expected that the FLiPS plasma has density fluctuations that can strongly affect the
coupling to EBWs and their propagation.
According to the interferometric measurement shown in Fig. 3.4, the density fluctuations
δn̄e/n̄e ≈ 0.11, where n̄e is the line-averaged density defined by Eq. (3.1).
The local density fluctuations were measured at two positions with a single Langmuir
probe using the ion saturation part of the IV-characteristic. According to [47, 48], δTe

do not strongly affect the Langmuir probe measurements, which allows a straightforward
calculation of δne from the following relation

δIi,sat
Ii,sat

=
δne

ne

. (3.10)

At the central position the local density fluctuations are δne/ne ≈ 0.11, which matches
the value obtained with the interferometric measurements. At the edge position the local
density fluctuations δne/ne ≈ 0.13, which shows that both central and edge plasma are
affected by the fluctuations. The measured value of the density fluctuations will be used
in Ch. 4 to investigate their effect on the coupling efficiency to the EBWs.

3.4.4 Landau damping
When EBWs propagate at an angle to the background magnetic field, even without the
collisions, the so-called Landau damping will occur [20, 3]. The Landau damping is
significant when the phase velocity of the wave is comparable to the thermal velocity of
the electrons. In this case, the wave strongly interacts with the particles and the wave
energy is transferred from the wave to the electrons. Thus, a wave is not Landau damped,
when the following criterion is satisfied [49]

ω

k‖
�

√
2eTe,‖

me

(3.11)

According to this criterion, for Te,‖ = 10 eV, the waves are not affected by the Landau
damping, when the parallel refractive index N‖ < 156. At FLiPS, the expected values are
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N‖ < 10, as seen in Fig. 6.11. Thus, it can be concluded that the EBWs in the FLiPS
plasma are not unaffected by the Landau damping.

3.5 Summary
In this chapter, the linear plasma device FLiPS was described. The heating system, based
on the R-wave absorption at the cyclotron resonance, provided a reliable plasma heating.
Results of the interferometric and the Langmuir probe measurements showed that the
plasma is moderately overdense and the density-gradient length is small compared to the
vacuum wavelength 0.12 m of 2.45 GHz. Thus, for the O-mode launch, a reasonable,
but by far not perfect coupling to EBWs over a broad range of angles (see Fig. 2.10)
is expected. In the case of the X-mode auxiliary heating, a better coupling is expected
because the small distance between the R-cutoff and the UHR favours the coupling to the
EBWs.
The FLiPS plasma density was found to be small enough so that the collisional damping
should not be significant [38]. On the other hand, the low Te is beneficial, since the
Landau damping is not expected to play a significant role in the experiment. Therefore,
FLiPS provides a good test bed for the EBW investigation in the fusion relevant plasmas.
However, processes such as fluctuations and collisions still can prevent efficient coupling
to the EBWs. Indeed, the UHR, where coupling to EBWs occurs, is located close to the
plasma edge, where the plasma was found to be fluctuating, and precise measurement of
Te is difficult.
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Chapter 4

The Finite-Difference Time-Domain
Method

4.1 Introduction

The previous chapter dealt with the measurements of the base plasma parameters. The
base plasma provided a controlled environment to study the efficiency of the additional
heating, which will be referred to as the auxiliary heating. The measurements showed that
the typical plasma gradient lengths of the FLiPS plasma are smaller than the expected
wavelengths of the O- and X-modes in FLiPS. Therefore, the geometrical optics approxi-
mation cannot be applied to describe their propagation in the FLiPS plasma, and the full
set of the differential equations describing the wave propagation must be solved [50].
In this chapter, the auxiliary heating will be investigated using the so-called Finite-
Difference Time-Domain (FDTD) method, which is comprehensively described in [8].
The FDTD method had already been successfully applied to investigate the coupling of
the FX-mode to the SX-mode in magnetised plasmas bounded by vessel wall [40, 51].
One of the advantages of the FDTD method is that it is possible to include- arbitrarily
shaped structures such as the vessel wall in the simulations. The main objective of the
simulations in this chapter is to estimate the efficiency of the FX-mode coupling to the
EBWs, when factors such as reflections from the vessel wall, finite beam width, and the
shape of the UHR and R-cutoff layers are all taken into account.
Apart from a few exceptions, the power of the auxiliary heating in the experiments was
small compared to the main heating system. Therefore, it can be assumed that the base
plasma is unaffected by the auxiliary heating. In further discussions, the wave propaga-
tion will be described by the cold plasma dispersion relation given by the Altar-Appleton-
Hartee dispersion relation (2.17). It means that in this chapter, the EBWs will not be
considered explicitly, since the plasma is assumed to be cold. In the following FDTD
simulations, SX-mode will be completely damped collisionally at the UHR. However, as
pointed in [30], the collisional absorption of the SX-mode at the UHR is equivalent to the
coupling efficiency of the SX-mode to the EBWs. Thus, despite using the cold plasma
model, the correct coupling efficiency still can be obtained. The full-wave simulations of
EBWs will be carried out in Ch. 5.
Only 2D FDTD simulations will performed. It means that the plasma properties may
vary arbitrarily in the 2D plane, where the waves propagate. But along the third dimen-
sion, which is perpendicular to this plane, the plasma remains homogeneous. Treating
the wave phenomena in 2D allows investigation of the effect of the vessel wall and the
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axial plasma inhomogeneity, which are missing in the 1D simulations. In contrast, the
3D simulations would be very computationally demanding, and the benchmarking of the
obtained results will be complicated. Thus, the expected problems outweigh the benefits
of the plasma investigation in the 3D geometry.

4.2 Introduction to FDTD

The FDTD method solves Maxwell’s equations on a discrete numerical grid with the time
and space derivatives replaced with the corresponding central differences. The method
is in the time domain, which means that one can visualise field propagation in time and
obtain transient solutions as well as steady-state solutions, when the simulation time is
long enough.
In FDTD simulations even a monochromatic source will initially produce a band of fre-
quencies as it starts to run. As time progresses, these frequencies will decay, and only
the central frequency will remain. In this state, called a steady state, the fields and the
currents will oscillate at the frequency of the source.
The FDTD method is based on the so-called Yee grid, first introduced in [52], which is a
particular way to arrange electromagnetic fields on the discrete numerical grid in time and
space. To understand how the method works consider a simple 1D case with a plane wave
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Figure 4.1: Illustration of 1D Yee grid. The magnetic and electric fields are shifted with respect to each by 1
2

in time and
space. The fields propagate in time according to Eq. (4.3) which requires fields in the adjacent nodes.

propagating along the z-direction in a medium. The corresponding 1D Yee grid shown in
Fig. 4.1 demonstrates how the fields progress in time and space. Then the corresponding
Maxwell’s equations are 

∂B

∂z
=

1

c2
∂E

∂t
+ µ0j

∂E

∂z
= −∂B

∂t

(4.1)

The medium properties enter into the equations through the induced current density j.
Replacing the derivatives with the central differences, the equations transform into the
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following form 
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where the lower and upper indices correspond to the spatial coordinate and to the time,
respectively. The time and spatial steps lengths are ∆t, ∆z, respectively. After a straight
forward algebra the update equations for the fields are
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(4.3)

In a cold magnetised plasma the term ~j is given by

d~j

dt
= ε0ω

2
pe
~E +~j × ω̂ce − ν~j, (4.4)

where ω̂ce = e ~B0/me. The term ν is the collisional frequency that describes a damping
mechanism. Replacing the time derivative with the central difference leads to the following
relation

~jt+
1
2 −~jt−

1
2

∆t
= ε0ω

2
pe
~Et +~jt × ω̂ce − ν~jt, (4.5)

where ~j and ~E are assumed to be placed at the same nodes of the Yee grid. Thus, in a
magnetised plasma to advance the current in time, one needs the value ~jt, which has not
been found yet. To overcome this problem, its value can be interpolated as follows [53]

~jt =
~jt+

1
2 +~jt−

1
2

2
(4.6)

Other methods to interpolate ~jt also exist. The choice of the method may affect numerical
stability as reported in [53].
The temporal and spatial steps cannot be chosen independently. Stability analysis of the
method in the case of propagation in vacuum gives the following general bound for ∆t for
which the method is stable

c∆t ≤
(

1

∆x2
+

1

∆y2
+

1

∆z2

)− 1
2

, (4.7)

where c is the speed of light. In the plasma case, the condition above is not sufficient,
and the upper bound of ∆t must be determined empirically [54, 55].
The number of the nodes on the grids is finite, thus the grid must be terminated with
proper boundary conditions. Setting the fields to zero at the boundary nodes will cause
reflections since in this case the boundary behaves like a perfect conductor. The reflections
can be reduced by introducing a medium before the boundary with a slowly increasing
damping rate towards the boundaries. The layer has to be thick enough to sufficiently
damp the wave before the reflection occurs. The thickness of the absorbing layer is usually
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one or two vacuum wavelength [56]. The main disadvantage of this approach is enlarge-
ment of the numerical grid due to the additional layer.
The most advanced approach is to truncate the grid with the so-called perfectly matched
layer (PML) [8]. The PML needs much less grid point than the absorbing medium around
the boundaries. The simulations performed in the thesis had the PML layer thickness set
to 20∆x, which was sufficient to avoid reflections from the boundaries. Therefore, the use
of the PML made the computational domain smaller, which resulted in the reduction of
computational time.

4.3 2D plasma wave simulations with IPF-FD3D
The simulations were carried out with the IPF-FD3D code, developed by C. Lechte for
the Doppler reflectometry simulations [57]. The code is based on the cold plasma model,
written in C and fully parallelised. The numerical stability was assured by relating the
time and spatial steps as ∆x = 2c∆t, which is consistent with the criteria given by
Eq. (4.7). The time steps that were normally used in the simulations, were ∆T = T/256
and ∆T = T/512, where T is the wave period. It means that there were 128 or 256 Yee
cells per vacuum wavelength. The numerical grid was terminated with the PML. The
wave was excited by an antenna placed right after the PML. It was possible to excite
either the magnetic or electric field components of the wave. The field amplitudes at the
antenna plane were ramped up slowly to minimize creation of spurious frequencies. The
code provides a number of different methods to calculate the ~jt term. In this chapter, the
interpolation scheme given by Eq. (4.6) was always used. A detailed description of the
code and its different current solvers can be found in [53].
Reflecting structures can be implemented in the FDTD method by setting the tangential
electric field to zero at the surface. A more consistent way, which was used in this
investigation is to use a highly overdense unmagnetised plasma as the vessel wall. The
density of the plasma that was used to model the vessel wall was taken as the maximal
plasma density that can be resolved in the FDTD simulations. The maximal frequency
that can be resolved in the FDTD simulations is given by ωmax = 1/∆t. Thus, the
maximal plasma frequency that can be used in the simulations is ωpe = ωmax. From that
the maximal plasma density that can be used in the simulations found as ne = ε0me/e

2∆t2.
Within this well established approach, effects of the ohmic losses in the walls due to the
finite conductivity can be included [58, 59].
The wave propagation was simulated in the plasma with the density profile given by

X = X0 + (X1 −X0)

(
1−

(
x

xb

)p1)p2

(4.8)

where p1 = 2, p2 = 3. The parameter xb characterises the width of the plasma edge
and determines the density gradient. This function describes closely the experimentally
measured density profile shown in Fig. 3.7 with xb = 0.02 m.
The magnetic field in all simulations corresponds to 500 A in the outer coils and 320 A in
the inner coils. This magnetic field configuration was normally used in the experiments
as it could support a stable plasma without X-ray emission.
Since the simulations were in the 2D geometry, the simulations were performed in the two
main characteristic planes, which are the central poloidal plane (x − y, z = 0) and the

31



central axial plane (x − z, y = 0), as depicted in Fig. 4.2. For each plane, the O- and
X-mode heating scenarios were investigated .

Figure 4.2: 3D geometry of the FLiPS magnetic field. The radii of the surface at the openings are 0.1 m, 0.8 m and
0.6 m. The lines on the surface along the z-axis are the magnetic field lines. The openings become more narrow towards the
ends since the magnetic field is stronger there. Two characteristic planes were defined where 2D FDTD simulations were
performed: axial plane at y = 0 and the poloidal plane at z = 0.

4.4 X-mode absorption
The analysis of the results of the FDTD simulations requires the usage of the Budden
problem, described in Sec. 2.3.2. By comparing the theoretical predictions with the simu-
lations it is possible to establish the optimal duration of the simulations and the optimal
resolution of the numerical grid. Duration of the FDTD simulations must be long enough
that the steady state is achieved. Otherwise, the numerically obtained conversion effi-
ciency does not match the analytical theories which were derived under the assumption
that the system is in the steady state. On the other hand, simulations cannot be too long
since the round-off errors become significant and may cause numerical instability.
The Budden formula determines the absorption of the FX-mode due to the UHR, and is
given by [20, 60]

AB = e−πs(1− e−πs), (4.9)

where s = k0∆x, ∆x = xUHR − xR is the distance between the UHR and R-cutoff.
The Budden formula is derived for a medium with the refractive index shown in Fig. 2.11.
The incoming FX-mode encounters the resonance only once, and afterwards is assumed to
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propagate indefinitely. However, in the FLiPS plasma due to the radial density gradient,
the SX-mode will pass through the resonance twice as demonstrated in Fig. 4.3. The
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Figure 4.3: The refractive index of the X-mode has two resonances (N2 → ∞) and two cutoffs (N2 < 0) due to the radial
density gradient unlike in the original Budden problem as shown in Fig. 2.11.

range of applicability of the Budden formula can be extended to account for the second
absorption as follows

Atot = AB + e−πs(1− eπs) (4.10)

The total absorption Atot can be calculated, using the Poynting flux through the surface,
enclosing the whole plasma, as shown in Fig. 4.4 (a). Since the incoming energy flux is
known, the absorption of the wave energy can be found.

Figure 4.4: A schematic of the FLiPS poloidal cross section to explain the calculation the absorption. The dashed
enclosure is the boundary through which the Poynting flux of the FX-mode was calculated. (a): the whole plasma is within
the enclosure and the total absorption of the incoming FX-mode can be found. (b): the enclosure is chosen around the
UHR which allows to find the absorption coefficient locally and compare it with the Budden theory.

4.5 Density fluctuations
As discussed in Sec. 3.4.3, the FLiPS plasma has density fluctuations that affect the cou-
pling to EBWs. The fluctuations and instabilities make the plasma turbulent. Numerical
simulations for the wave propagation in turbulent plasmas require a vast amount of com-
putational power as one has to use many turbulence realisations as described in [61], and
for each of the realisations a FDTD simulation must be carried out.
To avoid performing demanding simulations and still be able to include effects of the
plasma fluctuations on the wave propagation a simplified model will be used. In this
model only the cumulative effect of the local density fluctuations on the peak density is
considered. This cumulative effect can be estimated from the interferometric measure-
ments.
The interferometric measurements shown in Fig. 3.4 are line-averaged measurements
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meaning that the fluctuations are averaged along the line-of-sight of the interferometer.
From the standard deviation of the interferometric signal, the cumulative effect of the
fluctuations changes the density by about ±10% with respect to the mean density. Thus,
the effect of the density fluctuations on the wave propagation can be approximately in-
cluded in the density profile by modifying the peak density of the density profile as shown
in Fig. 4.5. This changes the distance ∆x between the R-cutoff and the UHR which affects
the coupling to SX-mode.
Since in the FDTD simulations, the cold plasma model is used, the temperature fluctu-
ations are not included. But as Te is low, the O- and X-modes are almost unaffected by
Te, and the effects due to temperature fluctuations on these modes can be neglected.
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Figure 4.5: Fitting of the experimentally measured density profile with the function (4.3) and its variations due to the
density fluctuations. The profiles are characterised by a steep edge and a flat central part with a constant density. The
density fluctuations change the level of the central density altering the edge density gradient. In the figure, density profiles
with δX/X = ±10% of the experimentally measured density profile are presented.

4.6 Results and discussions

4.6.1 Simulations in the poloidal plane
Here, the FDTD simulations will be presented in the poloidal plane. This plane is defined
as the z = 0 plane, and is shown in Fig. 4.2. In this plane, the propagation of the O-
and X-modes was simulated. The O-mode was excited by the Ez component, which is
parallel to the background magnetic field and perpendicular to the simulation plane. The
X-mode was excited by the Bz component with the corresponding electric field (Ex, Ey)
lying in the z = 0 plane.
In these simulations, the O- and X-mode propagate perpendicular to the background mag-
netic field. In this geometry, the coupling between the modes is completely absent [20],
thus the evaluation of the O-X conversion efficiency is impossible, and only the FX-SX
coupling efficiency can be found.
Figure 4.6 (left) shows the time-averaged field of the O-mode. The field is not affected
by the magnetic field and thus by the UHR, and therefore the field pattern is symmetric
with respect to x = 0.25 m plane. As expected, the O-mode field decreases beyond the
O-cutoff, where the wave is evanescent. For a plane, which is shifted from the central
plane (z = 0), the antenna would radiate a mixture of the modes. As shown in Sec. 2.3.1,
an obliquely propagating O-mode can couple to the X-mode at O-cutoff. Therefore, in
the shifted plane the symmetric pattern of the O-mode would be disturbed and the field
would be increased around the UHR. The field distribution of the X-mode is asymmet-
ric, due to the density gradient. This effect had been predicted theoretically in [60] and
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further discussed in [62]. It can be seen that the field is amplified at the UHR, where
the SX-mode becomes predominantly electrostatic. Since the UHR is located close to the
edge, where the electron temperature is low, one may expect strong collisional damping
of the EBWs.

O-cuto

UHR

R-cuto

O-cuto

UHR

R-cuto

Figure 4.6: FDTD simulations of O-mode (left) and X-mode (right) propagation in FLiPS in the central poloidal plane
without the vessel wall.

The absorption obtained from the simulations is compared to the analytical Budden the-
ory in Fig. 4.7. According to Budden formula (4.9), the tunnelling reaches the maximum
of 25% while the simulations show the maximum of around 40%. Since the SX-mode
passes a second time through the UHR the extended Budden formula (4.10) should be
used. Indeed, in this case, the calculations match the simulations more closely. The sim-
ulated values lie slightly lower because of the beam divergence, which is neglected in the
Budden theory, as well as the X-mode oblique propagation with respect to the density
gradient. This confirms that the grid resolution was chosen properly and that the simu-
lations were long enough for the steady state to be achieved.
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Figure 4.7: Absorption efficiency A of the X-mode by the plasma in the poloidal plane. ∆x is the distance between the
UHR and R-cutoff. The absorption obtained from the FDTD simulations shows a reasonable match with the extended
Budden formula (4.10).
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Now the same problem will be considered, but with the vessel wall included as shown in
Fig. 4.8. In this case, the O-mode (Fig. 4.8 (left)) is guided between the wall and the
O-cutoff, with no propagation inside the overdense plasma. The resulting standing wave
pattern is reminiscent of the whispering-gallery mode as well as of the TM10,1 mode [63]
in a circular waveguide.
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Figure 4.8: FDTD simulations of the wave propagation in FLiPS in the central poloidal plane with the vessel wall. Left:
O-mode, right: X-mode.

Now, the X-mode propagation in the plasma bounded by the vessel wall will be discussed.
The corresponding field is shown in Fig. 4.8 (right). The field pattern is asymmetric
unlike in the case of the O-mode injection, and there is a strong amplification of the field
around the UHR layer. There are two wavelength scales inside the plasma enclosed by
the UHR layer. The standing wave pattern with the larger wavelength is caused by the
SX-mode. The other oscillations have a smaller wavelength, and also present in the sim-
ulation without the vessel wall as shown in Fig. 4.6. In the simulations, these osculations
propagate towards the dense plasma from the UHR. According to the Budden theory, the
SX-mode passing through the UHR is partially absorbed and partially transmitted as the
FX-mode without reflection. Thus, these oscillations could be caused by the FX-mode
reflected from the walls. However, these small oscillations are also present in the simula-
tions without the vessel wall. Since the simulations were performed for the cold plasma
model, there were no EBWs that have a small wavelength compared to the cold plasma
waves. Therefore, it is unlikely that these oscillations can be attributed to the plasma
waves. It was also observed that the simulations would become unstable after these small
scale oscillations spread through the plasma. Thus, these oscillations are likely to be a
numerical artefact caused by the FDTD scheme.
The vessel wall strongly affects the conversion efficiency, as was first shown in [56]. Indeed,
as depicted in Fig. 4.9, Atot is an oscillating function of the parameter s = k0∆x. A similar
phenomenon is discussed in Ch. 5, where the resonance effect arises due to the L-cutoff
presence in the plasma. Here, it was shown that even in the absence of the L-cutoff, there
is still a resonator effect, due to the wall reflections. Thus, the coupling to the EBWs will
be sensitive to the density fluctuations that can be caused by the turbulence. In the case
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of the X-mode propagation with the walls included, Atot ≈ 0.5, which is higher than the
value of Atot without the vessel wall.
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Figure 4.9: Atot of the FX-mode in the FLiPS plasma bounded by the vessel wall as obtained from the FDTD simulations
in the poloidal plane. The FLiPS label denotes Atot for FLiPS density gradients. The horizontal error bar shows spread of
the value of s due to the central density fluctuations.

4.6.2 Simulations in the axial plane
Fig. 4.10 shows FDTD simulations for the wave propagation in the axial plane of the
FLiPS plasma.
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Figure 4.10: rms values of the electric field of the waves propagating in the FLiPS plasma in the axial plane. Top: O-mode
injection, Bottom: X-mode injection.
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The radial plasma distribution is the same as in Fig. 4.8. There are a few substantial
differences compared to the previous simulations in the z = 0 plane. In the z = 0 plane,
the injected waves can propagate in the space between the vessel and the plasma column,
as shown in Fig. 4.8. In the axial plane simulations, the plasma is slab-like and the waves
can reach the side opposite to the antenna only by passing through the plasma.
In the previous simulations, the antenna could radiate the pure modes and there was no
coupling between them. In the axial simulations, the antenna always radiates a mixture
of the modes since the waves propagate obliquely to the background magnetic field owing
to the broad angular spectrum of the antenna. Thus, saying that the antenna radiates a
particular mode, should be understood as that the antenna radiates predominantly this
mode.
Since the modes propagate at oblique angles with respect to the magnetic field, there is a
coupling between the modes at the O-cutoff. This explains the observed field amplifica-
tion around the UHR for the O-mode launch. Since in the axial direction there is also a
density gradient, the component ~Ez ‖ ~B0 will lead to the charge separation [17] and the
field amplification around the O-cutoff and to a weak absorption by collisions [60, 17].
This absorption of the wave at the O-cutoff can lead to plasma heating and sometimes is
referred to as non-resonant heating [64, 65].
Now, the wave propagation will be investigated in the case without the vessel wall to
compare the results of the simulations against the analytical theory. It allows finding the
proper grid resolution to resolve the different wave scales, and the optimal durations of
the simulations.
To perform the comparison the transmission and reflection coefficients are calculated
by considering a small enclosure around the UHR, similar to the poloidal case shown
in Fig. 4.4 (b). The reflection coefficient R obtained from the simulations is shown in
Fig. 4.11 (left). As expected R decreases for small s. The numerically found transmission
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Figure 4.11: Reflection and transmission coefficients of the X-mode propagation in the axial plane without the vessel
wall. The largest discrepancy between the theoretical and simulated values is found for the small distance between the
UHR and R-cutoff, since in this case the grid resolution is insufficient. Other processes such as the spurious reflection from
the boundaries, beam divergence and linear resonance further contribute to the discrepancy. In this simulation the total
running time was 290 cycles and nppc = 512, which means that the grid was 2539 by 1076 points. It appears to be that the
numerically found transmission coefficient matches the theory more closely than for the reflection.

coefficient T characterises the portion of the wave energy that entered the plasma without
being reflected, and is shown in Fig. 4.11 (right). As expected the incoming FX-mode
energy is effectively transmitted through the R-cutoff, when s is small. Both R and T
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are compared to the theoretical values from [60, 20] to establish that the simulation pa-
rameters (grid resolution and the duration) were chosen properly. It can be observed that
the value of R diverges from the theoretical values for the steep density gradients, which
correspond to the small distances between the R-cutoff and the UHR. For the experimen-
tally measured profile shown in Fig. 3.7 the difference is less than 1 dB.
A comparison of the absorption coefficient for the O-mode and X-mode is shown in
Fig. 4.12. The X-mode absorption obtained from the simulations closely matches the
prediction by Eq. (4.10), and as expected is much higher than the O-mode absorption.
The negative values of the O-mode absorption coefficient are explained by the duration
of the simulations, which were not long enough to fully reach the steady state. However,
the negative values are small, which shows that steady state was practically achieved.
The O-mode absorption also shows a wave matching effect as Atot shows a periodic de-
pendency on s. Thus, the grid resolution was sufficient and the simulation duration was
long enough for the steady state to be reached, and the simulations with the vessel wall
included can be performed.
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Figure 4.12: The left and right figures show the absorption of the O-mode and X-mode by the plasma without the vessel
wall, respectively. As expected in the X-mode case the absorption is much higher than for the O-mode. The O-mode
absorption is explained by the coupling between the modes.

When the vessel wall is included Atot is shown in Fig. 4.13. Both modes suffer much
higher absorption than in the previous case without the vessel wall. The value of Atot of
both modes are similar to each other. This means that in the experiments a noticeable
difference between the O- and X-mode is not expected.
For shallow density gradients the O-mode heating can be even more efficient than the
heating by the X-mode. The reason is that the R-cutoff is closer to the edge than the
O-mode. Thus, the incoming FX-mode will be efficiently reflected back into the waveg-
uide. The O-mode is able to penetrate further into the plasma. And after the multiple
reflections and polarisation scrambling, it will be finally absorbed at the UHR. Thus, the
difference between the O- and X-mode antenna orientation is not very large due the mul-
tiple reflections and the polarisation scrambling. In these simulations, the vessel ports
were not taken into account, which could further amplify the polarisation scrambling.
Inclusion of the ports requires 3D simulations, which would significantly complicate the
simple cylindrical model of the vessel.
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Figure 4.13: Absorption of X- and O-modes in the FLiPS plasma with the vessel wall included in the axial plane obtained
from the full-wave simulations as a function of the distance between the R-cutoff and the UHR k0∆x.

4.7 Summary
The auxiliary heating in FLiPS was investigated using the full-wave method FDTD. De-
spite the fact that the code uses the cold plasma approximation, the coupling efficiency
to the EBWs can be obtained from the value of Atot of the SX-mode at the UHR.
The simulations were performed in the z = 0 and the axial planes. The absorption at the
UHR was found to be in the agreement with the Budden theory, showing that the FDTD
method allows simulation of the tunnelling process.
For the first time, the FX-mode absorption by a bounded magnetised plasma was investi-
gated as a function of the plasma density gradient. It allowed a quantitative investigation
of the accuracy of the method. The investigation showed that the method can become
inaccurate for steep density gradients. However, for the experimentally measured profile,
the discrepancy is less than 1 dB. To increase accuracy one could increase the grid reso-
lution even further at the cost of the computational time or implement a local refinement
of the grid [66].
It was shown that even in the absence of the L-cutoff the resonator effect still significantly
modifies Atot as shown in Fig. 4.9. Thus, the edge density fluctuations may strongly affect
the coupling to the EBWs even in the absence of the intrinsic RL-resonator.
The simulations showed that in the z = 0 plane the coupling efficiency of the FX-mode to
the EBWs is more than 50%. In the axial plane, the existence of the resonant absorption
due to the axial density gradient was found. The O-mode and X-mode heating in the
axial plane are practically indistinguishable, due to the multiple wall reflections and the
polarisation scrambling, with a resulting value of Atot ≈ 0.7.
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Chapter 5

Boundary Value Problem for wave
propagation

In the last chapter, the problem of coupling to the EBWs was investigated using the
FDTD method. The coupling efficiency to the EBWs was calculated for the O- and
X-mode heating scenarios. However, the EBWs were not explicitly included in the previ-
ous simulations, and also some disagreement between the theoretical predictions and the
FDTD simulations was found. It motivated an application of another numerical scheme
to investigate the coupling to the EBWs and the effect of the collisions on them.
In this chapter, the EBW propagation will be investigated, using another full-wave method
in the frequency domain. In the frequency domain, all variables oscillate harmonically at
the same frequency. A system in this state is said to be in a steady state. When using the
FDTD method, as noted in the previous chapter, the simulations must run long enough
to ensure that the steady state is achieved and the obtained Ceff does not change any
further.
In the frequency domain, the EBWs can be included in the simulations using the finite
Larmor radius approximation as described in Sec. 2.3.3. The EBW propagation and FX-
SX coupling was investigated in the frequency domain in [67, 68, 69]. Inclusion of the
EBWs in the FDTD simulation is also possible, but strictly speaking, requires the use
of the recursive convolution method to obtain the correct plasma response. However, by
mixing the Fourier transformed terms with the terms in the time domain, one still can
perform FDTD simulations of EBWs [70].
In this chapter, the O-X and FX-SX coupling will be first investigated in the cold plasma
approximation. As in the FDTD simulations, the SX-mode will be damped by collisions
at the UHR. The calculations of the conversion efficiency as a function of both launch
angle and density-gradient length will be presented. Finally, a system of ordinary differ-
ential equations will be developed to describe the EBWs propagation in the UHR vicinity.
It will allow investigation of the effect of collisional damping on the EBWs.
A few complications arise, when one works in the frequency domain. First, all resonances
must be resolved by including some dissipation process, otherwise there are no steady
state solutions. And secondly, in the frequency domain some solutions may be unphys-
ical. To elaborate more on the existence of the unphysical solutions, consider the wave
equation in the frequency domain, i.e. the Helmholtz equation

dφ2

dx2
+ k2

0ε(x)φ = 0, (5.1)
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which is a second order ordinary differential equation. Thus, its general solution can be
constructed as a sum of two linearly independent solutions

φ(x) = c1φ1(x) + c2φ2(x), (5.2)

where the constants c1 and c2 are yet to be determined. As there are two unknown con-
stants, two additional conditions are needed to specify them. If φ(0) = φ0 and φ′(0) = φ′

0

are given, the problem is said to be formulated as the initial value problem (IVP). Al-
ternatively, boundary values can be specified φ(a) = φa and φ(b) = φb, hence the name
boundary value problem (BVP).
Solving a problem numerically as the initial value problem is usually simpler than as
the boundary value problem. But the main disadvantage of the IVP is that one of the
linearly independent solutions exhibits non-physical exponentially growing behaviour in
the evanescent region, obscuring the physical solution. But posing the problem as a BVP
avoids this problem through enforcing proper boundary conditions.
First, the boundary conditions will be derived in order to formulate the BVP for the wave
propagation in a cold plasma . Then the coupling efficiency of O-X and FX-SX processes
as a function of the launch angle and the density-gradient will be investigated. Comparing
the simulations with the analytical model, allows identification of a set of parameters at
which the Mjølhus formula breaks down. The FX-SX simulations illustrate how small
density fluctuations can significantly affect the conversion efficiency. This effect is espe-
cially pronounced for the high magnetic fields.
As the next step, the thermal correction are included, as described in Sec. 2.3.3. The
proper boundary conditions are derived and simulations for the whole FX-SX-EBW pro-
cess will be performed for the case of the exactly perpendicular propagation with respect
to the background magnetic field. These simulations show that EBW propagation in low
temperature plasmas can be strongly affected by collisions.
The method was implemented in Python with the help of the free numerical packages
numpy and scipy [71]. The solutions were obtained using a boundary value problem
solver also implemented in Python based on the FORTRAN code COLSYS [72].

5.1 Boundary Value Problem for a cold plasma
In this section, the BVP formulation for simulation of O-X and direct FX-SX conversion
schemes is derived based on [10]. The plasma is assumed to be stationary in a constant
magnetic field and with the density gradient in the x−direction. A density profile shown
in Fig. 5.1 was used in the simulation for the O-X and FX-SX coupling and is given by
Eq. (4.3) with x-coordinate replaced by ξ = k0x, where k0 = ω/c. The plasma slab lies
in the region 0 < ξ < ξb. Outside of this region the plasma is homogeneous with the
normalised densities X1 and X0, respectively.
There are two principally different ways to position the antenna in the simulation domain.
If the density at the left boundary X(ξUHR) < X(ξa), where ξa is the antenna position, the
UHR singularity is excluded from the simulation. It significantly speeds up the simulations
and the collisionless plasma can be used. If X(ξUHR) > X(ξa), the UHR singularity must
be resolved by using a non-zero normalised collision frequency Z = ν

ω
. In this case, the

values of Z were typically in the range of 10−4 < Z < 10−3. Using the fact that the
plasma is stationary and that the fields depend only on the x−coordinate, Ampere’s and
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Faraday’s laws can be Fourier transformed leading to the following equations

NyEz −NzEy − cBx = 0

dEz

dξ
−NzEx + icBy = 0

dEy

dξ
−NyEx − icBz = 0

NycBz −NzcBy + (εxxEx + εxyEy) = 0

d

dξ
cBz − iNzcBx − (−εxyEx + εxxEy) = 0

d

dξ
cBy − iNycBx + iεzzEz = 0

(5.3)

Solving this system of equations for the derivatives, the system can be written in a compact
matrix form

d~F

dξ
= i ¯̄A~F , (5.4)

where

¯̄A =


−Nyεxy/εxx 0 NyNz/εxx 1−N2

y /εxx
−Nzεxy/εxx 0 N2

z /εxx − 1 −NyNz/εxx
−NyNz N2

y − εzz 0 0
εxx + ε2xy/εxx −N2

z NyNz −Nzεxy/εxx Nyεxy/εxx

 (5.5)

and

~F =


Ey

Ez

cBy

cBz

 (5.6)

Equation (5.4) is the full-wave differential equation to be solved subjected to the proper
boundary conditions which will be derived in the following. The idea is to place the plasma
slab with varying density gradient between the regions where the plasma is homogeneous.
If the plasma is also homogeneous in the x−direction, Eq. (5.4) can be Fourier transformed
leading to a system of equations written in the following form

( ¯̄A−NxI)~F = 0, (5.7)

where I is a unit matrix. To have a solution for matrix equation (5.7), the determinant
det( ¯̄A−NxI) has to vanish. This condition leads to the quadratic equation for N2

x

εxxN
4
x +BN2

x + C = 0, (5.8)

where

B = 2N2
y εxx +N2

z (εxx + εzz)− ε2xx − εzzεxx − ε2xy,

C = N4
y εxx +N2

yN
2
z εxx +N2

y εzzN
2
z −N2

y ε
2
xx −N2

y εzzεxx −N2
y ε

2
xy

+N4
z εzz − 2N2

z εzzεxx + ε2xxεzz + ε2xyεzz,

where two solutions are given by

N2
x =
−B ±

√
B2 − 4AC

2εxx
(5.9)
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In Eq. (5.9) the ”±” sign corresponds to two possible eigenmodes, thus in total there
are four eigenvalues which is consistent with the Appleton-Hartree dispersion relation
ginen by Eq. (2.17). To simplify the following algebra it is convenient to introduce the
polarisation vectors

~Pi =
~Fi

Ey

=


1

Ez/Ey

cBy/Ey

cBz/Ey

 =


1
αi

βi

γi

 (5.10)

As the eigenvectors are linearly independent, any plasma wave can be presented as follows

~F =
4∑

i=0

ci ~Pi (5.11)

where ci are complex numbers. The coefficients c1,3 and c2,4 correspond to the + and −
eigenmodes propagating to the right and left respectively.
Having found N2

x , the boundary conditions can be specified by arguing that at the bound-
ary points the solution of Eq. (5.4) must be continuous. That is, the solutions in the region
of the varying density are smoothly connected to the solutions in the regions of the con-
stant density (Fig. 5.1). Having found the vector ~F , the remaining components Ex and
cBx can be calculated using Ampere’s and Faraday’s laws. From Ampere’s law the Ex

component is
Ex = −εxy

εxx
Ey (5.12)
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Figure 5.1: The density profile in which the coupling schemes were investigated using the BVP method. The plasma slab
with the increasing density lies in the region B (ξa < ξ < xb). The plasma in the regions A and C is homogeneous with
densities X1 and X0, respectively. The density- gradient length LO can be varied by changing position ξb. For larger values
of ξb the density-gradient length is larger as well.

5.1.1 O-SX conversion scheme

Using the polarisation vectors ~Pi derived above, the BVP for the case of O-mode launching
can be formulated. The left boundary is given by the following equation

c1


1
α1

β1

γ1

+ c2


1
α2

β2

γ2

+ c3


1
α3

β3

γ3

+ c4


1
α4

β4

γ4

 =


Ey

Ez

cBy

cBz

 , (5.13)
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where c1 = 1, c2 = 0 and c3,c4 are to be determined. Physically, it means that at the left
boundary there are an incoming O-mode and reflected O- and X- modes propagating to
the left. Eliminating c3 and c4 leads to the following equations which determine the left
boundary condition

(α4β3 − α3β4)Ey+(β4 − β3)Ez + (α3 − α4)cBy+

β1(α4 − α3) + β3(α1 − α4) + β4(α3 − α1) = 0

(α4γ3 − α3γ4)Ey+(γ4 − γ3)Ez + (α3 − α4)cBz+

γ1(α4 − α3) + γ3(α1 − α4) + γ4(α3 − α1) = 0

(5.14)

At the right boundary there are no incoming waves, only outgoing possibly evanescent X-
and O-modes. Thus, the right boundary conditions are given by{

(α2β1 − α1β2)Ey + (β2 − β1)Ez + (α1 − α2)cBy = 0

(α2γ1 − α1γ2)Ey + (γ2 − γ1)Ez + (α1 − α2)cBz = 0
(5.15)

With these equations the formulation of the BVP for the O-SX conversion scheme is
complete.

5.1.2 Results: O-SX conversion
Figure 5.2 shows the O-X conversion obtained from the simulations and, for comparison,
the analytical prediction by the Mjølhus formula (2.27). The simulations were performed
for the case of a collisionless (Z=0) and collisional Z = 10−3 plasma. The Z = 0 simu-
lations show that the code functions properly since it reproduces Mjølhus formula. The
Z = 10−3 simulations also agree well with Mjølhus formula. In the latter case, the general
trend of Ceff is preserved and Nz,opt position is unaffected. The details on the calculation
of the conversion efficiency are described in Appendix A.
The most significant difference is for Nz � Nz,opt. In this case, according to Mjølhus
formula Ceff ≈ 0. The collisions elevate the level of Ceff obtained from the Z = 10−3

simulations to about 5%. This increase is caused by the O-mode collisional absorption.
For the Nz < Nz,opz the O-mode reaches a denser plasma than for more grazing launch
angles corresponding to Nz > Nz,opz. In the latter case, as shown in Sec. 6.3 the O-mode
gets reflected earlier, thus being less affected by the collisions. Figure 5.3 depicts the
behaviour of the electric field components in the case of the optimal incidence angle. The
longitudinal component Ex increases at the UHR as expected. According to the cold
plasma theory, Nx −→ ∞, thus the wave becomes quasi-longitudinal at the UHR. The
components Ey and Ez are less affected by the UHR, although the effect of the UHR
on these fields is clearly visible. For the densities below the UHR, the fields are created
only by the incoming O-mode. Indeed, the O-mode propagates at the optimal angle, thus
there are no reflected waves such as the FX-mode or the O-mode. In the region between
the UHR and the O-cutoff, the fields are created by the superposition of the incoming
O-mode and the SX-mode.
The bottom part of Fig. 5.3 shows the energy flux normalized to the energy flux of the
incoming O-mode. For ξ > ξUHR there is almost no energy flux because all the energy
that flows to the right is reflected back. For ξ < ξUHR the Poynting flux remains con-
stant because the outgoing SX-mode is damped at the UHR. Indeed, Px/Pin = 1, which
corresponds to Ceff = 1, means that there is no outgoing Poynting flux, since the total
Poynting flux Px is equal to the incoming Poynting flux Pin.
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Figure 5.2: Conversion efficiency of the O-X process obtained from the BVP simulations and the analytical prediction by
the Mjølhus formula. The calculations were performed for the linear density profile shown in Fig. 5.1 and the background
magnetic field Y = 0.8. The O-mode propagates exactly perpendicular the magnetic field for Nz = 0 and parallel to it
for Nz = 1. According to the Mjølhus formula, the conversion efficiency Ceff depends on the normalised density-gradient
length k0L and the launch angle θ of the O-mode as discussed in Sec. 2.3.1. At Nz = Nz,opt all O-mode energy is transferred
into the SX-mode, which corresponds to Ceff = 1. In the case of Z = 0 the antenna was placed at the position ξa > ξUHR

to exclude the UHR from the numerical domain.

Figure 5.4 shows that the Mjølhus formula does not exactly reproduce the results of the
full-wave simulation for a short LO since Ceff is not 100% for Nz,opt. It is explained by
the fact that in the Mjølhus theory the ”leakage” of the SX-mode through the UHR is not
taken into account. The shorter LO, the smaller the distance between the R-cutoff and
the UHR that the SX-mode has to traverse to couple to the FX-mode. Indeed, Fig. 5.5
shows separate energy fluxes carried by the O-mode (left) and the X-mode (right). Thus,
a perfect O-SX conversion does not always imply good coupling to the EBWs since a large
portion of the energy can be carried away by the FX-mode propagating back.

5.1.3 FX-SX coupling
Similarly to the O-SX conversion scheme, the BVP is formulated to investigate the direct
FX-SX coupling scheme.
At the left boundary there are an incoming FX-mode and reflected O- and X-modes, thus
the left boundary conditions are

(α3β4 − α4β3)Ey+(β3 − β4)Ez + (α4 − α3)cBy

+ α3(β2 − β4) + α4(β3 − β2) + α2(β4 − β3) = 0

(α3γ4 − α4γ3)Ey+(γ3 − γ4)Ey + (α4 − α3)cBz

+ α3(γ2 − γ4) + α4(γ3 − γ2) + α2(γ4 − γ3) = 0

(5.16)

Assuming that there is no incoming energy from the right, the right boundary conditions
are identical to the O-SX conversion case.

5.1.4 Results: FX-SX coupling
Figure 5.6 shows the FX-SX coupling efficiency CFX−SX for the almost perpendicular
injection angle obtained by solving the BVP formulated above.
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Figure 5.3: The BVP simulation of the O-X conversion process for the optimal injection. The electric field component
most affected by the UHR is the longitudinal Ex component which is strongly amplified at the UHR. Between the UHR
and the O-cutoff, Ey and Ez components show the presence of a short wavelength wave. This wave is the SX-mode into
which the incoming O-mode was converted at the O-cutoff.
The bottom figure shows the total Poynting flux Px normalised to the incoming Poynting flux Pin. Since the incoming
O-mode was launched at θopt, its energy is completely transformed into the SX-mode which is then absorbed at the UHR.
Thus, there is no outgoing Poynting flux between the left plasma boundary and the UHR. In this case, the UHR acts as a
local ”black body” [73]. For the densities above the UHR, the total Poynting flux vanishes since the Poynting flux carried
by the O-mode to the right is compensated by the equal Poynting flux of the SX-mode propagating to the left.
For the densities above the L-cutoff all the electric field components are evanescent in agreement with the cold plasma
theory.

The results of the simulations are compared to the theoretical prediction given by Eq. (2.31)
without the phase factor cos (φ

2
+ θ). Without the phase factor, Eq. (2.31) describes the

envelope that gives the maximal coupling efficiency. The results show that at low magnetic
fields the modulation is smaller. The modulation becomes a problem in turbulent plas-
mas, where the density fluctuations can significantly modify the plasma density-gradient
length LUHR leading to an undesired deterioration of the CFX−SX or difficulties in the
interpretation of the experimental results.
The fields and the corresponding Poynting flux for the case of the 100% coupling efficiency
are depicted in Fig. 5.7. As in the case of the O-X conversion, Ex is significantly amplified
at the UHR. It implies that at the UHR vicinity, the waves become quasi-longitudinal
and quasi-electrostatic. The Ey field shows that the field changes significantly over the
distance comparable with the wavelength, unlike in the O-X conversion scheme, where
the waves change slowly over many wavelengths. The hatched area shows the resonator
formed by the R-cutoff and L-cutoff for the SX-mode. The energy flux is normalised to
the incoming energy and shows total absence of the reflected wave indicating a perfect
conversion. Indeed, for the densities below the UHR, the total Poynting flux Px = Pin. It
shows a complete absence of the reflected waves.
The incoming FX-mode must be able to traverse the evanescent region between the R-
cutoff and the UHR in order to couple to the SX-mode. For oblique injection angles the
effective distance between the R-cutoff and the UHR that the FX-mode has to tunnel

47



0 5 10 15

k0LO

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
z

0.1

0
.1 0.5

0.5

0.9

0 5 10 15

k0LO

0
.1

0.5

0.5

0.9

0.0

0.2

0.4

0.6

0.8

1.0

C
e
ff

Figure 5.4: Contour plots of the O-X conversion efficiency as a function of the parallel refractive index Nz and the
density-gradient length LO for magnetic fields Y = 0.6 (left) and Y = 0.9 (right).
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Figure 5.5: Left: normalised reflected energy flux carried by the O-mode. Far from θopt the O-mode does not couple
to the X-mode and is reflected as an O-mode. Right: normalised reflected energy flux carried by the X-mode. For steep
density-gradients the O-mode is reflected back as an X-mode due to the leakage of the SX-wave through the UHR.

through increases which decreases the coupling efficiency. The distance between the R-
cutoff and the UHR depends on the density-gradient length. For steep density gradients,
the distance is smaller compared to the case with shallow density gradients, which leads
to an efficient tunnelling of the FX-mode through the region between the R-cutoff and
the UHR.
To study CFX−SX as a function of both injection angle given by Nz and the density-
gradient length LUHR, multiple simulations were performed for different values of Nz and
fixed values of LUHR. The result is a 2D plot of the coupling efficiency shown in Fig. 5.8.
As expected CFX−SX in general decreases for larger Nz. The modulation of CFX−SX

caused by varying Nz is much smaller than due to varying LUHR. In the case of Y = 0.9
the increase of Nz can lead to a slight improvement of CFX−SX .
A significant coupling of the SX-mode to the O-mode can occur in the case of FX-mode
injection when the density gradient is very steep. Decomposing the field at the antenna
plane into the O- and X-mode, the result shown in Fig. 5.9 is obtained. The SX-O cou-
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Figure 5.6: The coupling efficiency CFX−SX of the FX-SX coupling for two magnetic fields. Plasma parameters are:
(left) Y = 0.6, Z = 10−4, (right) Y = 0.9, Z = 10−4. Notice a strong modulation of CFX−SX efficiency for Y = 0.9. The
theoretical prediction is given by Eq. (2.31) without the phase factor.

pling for steep density gradients has the maximum at Nz ≈ 0.69, which is the optimal Nz

for the O-SX conversion scheme for the given magnetic field. When the density-gradient
length increases, the SX-O coupling drops sharply. The SX-O coupling efficiency is higher
for the steep density gradients due to the smaller spacing between the O- and L- cutoff.
Indeed, as was shown in Sec. 2.3.1, the O- and X-mode refractive indices coincide when-
ever Nz = Nz,opt and Nx = 0. Thus, when the SX-mode reflects close to the O-cutoff, an
efficient coupling between the two modes occurs.

5.2 Comparison of O-SX and FX-SX schemes

In the previous discussion, the FX-SX coupling was investigated as a function of the
density-gradient length at the UHR. To be able to compare the O-FX and FX-SX schemes,
the efficiency of both schemes was plotted as a function of the density-gradient length at
the O-cutoff in Fig. 5.10. Here, a brief summary of the main differences between the
schemes is given. FX-SX scheme is more sensitive to gradient length changes than the O-
X coupling scheme. The magnetic field strength also affects the coupling efficiency of the
FX-SX scheme. The only significant effect of the magnetic field on the O-FX conversion
scheme is the change of the optimal injection angle θopt. Both schemes are ineffective for
very short density-gradient length k0LO < 1, due to the SX-wave ”leakage” through the
UHR.
The FX-SX scheme is efficient for a perpendicular injection (Nz = 0). An antenna that
launches the FX-mode is easier to implement technically than an antenna for the O-
X heating since a simple open waveguide can be used as an antenna for the FX-mode
injection which is a typical set-up in some FX-SX experiments [74, 75].
For the FLiPS density-gradient lengths, which were estimated to be k0LO . 3, the O-SX
conversion occurs over a broad range of Nz. Thus, both schemes are likely to heat the
FLiPS plasma equally well. This conclusion is further supported by the FDTD simulations
in the previous chapter.
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5.3 Boundary Value Problem with the spatial disper-
sion included

In this section, the full-wave simulations of the EBWs will be carried out. To do it
exactly, one would have to replace the cold dielectric tensor by the integral operator to
take into account the non-locality of the response (see Eq. (2.4)). Within this approach,
one calculates the plasma response, which is a rather mathematically involved task [76].
Another approach to simulate EBWs is the particle-in-cell method, where particles and
interactions between them are treated explicitly [77]. This approach has received much
attention recently [78, 79], since it allows a consistent inclusion of all physical processes
occurring in the plasma at the cost of very demanding numerical simulations.
In this study, the EBWs will be treated approximately using a BVP formulation. The
EBWs can be included into the simulations as briefly described in the following. Firstly,
decomposing εxx given by Eq. (2.22) in ascending powers of λ = 1

2
(Nxγq)

2 and taking the
first two terms, the εxx term of the hot dielectric tensor becomes

εxx = εcoldxx + χN2
x , (5.17)

where
χ = − 3X

(1− Y 2)(1− 4Y 2)
γ2 (5.18)

The modified component of the plasma dielectric tensor εxx depends now on Nx, which
is a consequence of the spatial dispersion or non-locality [20, 3]. As was first discussed in
[32], a full-wave equation that also includes the EBWs can be obtained using the following
correspondence

N2
x ←→ −

1

k2
0

∂2

∂x2
(5.19)
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Figure 5.10: The efficiency of FX-SX and O-X schemes. The top and bottom rows show the simulations for Y = 0.6 and
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As will be shown later, this increases the order of Maxwell’s equations, and an addi-
tional component must be added to the field vector ~F . This approach has already been
used [32, 67, 68] to perform full-wave simulations of EBWs and allows description of the
fundamental EBWs at the UHR vicinity. Indeed, as the EBWs propagate away from the
UHR the refractive index keeps increasing and at some point the next term in the λ se-
ries must be included to correctly describe the wave. In this approximation the Landau
damping and the cyclotron absorption are not included.
As shown in Fig. 2.13 from Ch. 2, the refractive index obtained within this model will be
in general smaller than predicted by the exact hot dispersion relation. The higher EBW
harmonics can be included in the simulations in the similar fashion by including the next
terms of λ series, which will increase the order of Maxwell’s equations further. In this
thesis, only the fundamental EBWs will be simulated.
The case that will be investigated is the FX-mode propagating perpendicularly to the
background magnetic field. In this case, the derivation of the boundary conditions is sim-
plified. Indeed, when a FX-mode launched perpendicularly to the magnetic field, it will
be decoupled from the O-mode, and when the EBWs are included as described above, the
total number of separated modes will be two, simplifying the derivation of the boundary
conditions and speeding up the calculations.
When the EBWs are included their collisional absorption can be investigated. The main
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interest is the collisional absorption, since FLiPS plasma is relatively cold with Te ≈ 10 eV.
Therefore, the EBWs are not strongly absorbed due to the Landau damping, and the col-
lisions are the main damping mechanism. Collisional absorption can be included as the
collisional frequency ν, in the same way as done in the previous sections to remove the
singularity at the UHR.
Since the EBWs have a small wavelength compared to the cold plasma waves, the solver
must use a very fine numerical grid to resolve the waves which makes simulations run
slowly. In the worst case, the solver will not be able to find a suitable grid, when the
machine precision is exceeded [80].

5.3.1 Derivation
The derivation is similar to the procedure from the previous sections, where the BVP was
formulated to describe the O-SX conversion and the FX-SX tunnelling. First, a system of
differential equations that describe the X-mode and EBW propagation is derived. Using
Stix’ notation the system of equations describing only the X-mode and EBW propagation
is obtained by setting Ny and Nz to zero in Eq. (5.3)

dEy

dξ
= icBz

d2Ex

dξ2
=

1

χ
(SEx −

dχ

dξ

dEx

dξ
− iDEy)

d

dξ
cBz = iDEx + SEy

(5.20)

Compared to the cold plasma case, now there is an additional term d2Ex

dξ2
due to the spatial

dispersion. The system is transformed into a system of differential equations of the first
order by introducing the variable e such that e = dEx

dξ
. Its sole purpose is to re-cast the

system of equations (5.20) into the system of the first order differential equations that
can be solved by the same method that was applied to investigate the cold plasma case.
It is convenient to re-write the system in the matrix form as follows

d

dξ


Ey

cBz

Ex

e

 =


0 i 0 0
iS 0 −D 0
0 0 0 1

−iD/χ 0 S/χ − 1
χ
dχ
dξ



Ey

cBz

Ex

e

 (5.21)

where
χ =

−3X
(1− Y 2)(1− 4Y 2)

γ2,

γ =
vth
c
,

where c is the speed of light and vth is the electron thermal velocity. This system of
differential equations has in total four eigenvalues. After doing some algebra, it can be
shown that the eigenvalues of this matrix equation correspond to the EBW and X-mode.
Having the full-wave equation, the boundary conditions can be derived. The polarisation
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vector is defined now as follows

~Pi =
~Fi

Ey

=


1

Ez/Ey

cBz/Ey

Ex

e

 =


1
αi

βi

γ̃i

 , (5.22)

where

α = Nx, (5.23)

β = i
S −N2

x

D
, (5.24)

γ̃ = iNxβ (5.25)

At the left boundary there are an incoming and an outgoing X-mode and an evanescent
EBW. Skipping the algebra, the boundary conditions at the left are given by{

Ex − (β1 + c4β4 + c2β2) = 0

e− (γ̃1 + c4γ̃4 + c2γ̃2) = 0,
(5.26)

where

c4 =
cBz − α1 − α2(Ey − 1)

α4 − α2

, (5.27)

c2 = Ey − 1− c4 (5.28)

At the right boundary there are an evanescent X-mode and a propagating EBW. Thus,
the right boundary is {

c1βEBW + c3βX − Ex = 0

c1γ̃EBW + c3γ̃X − e = 0,
(5.29)

where

c3 =
EyαEBW − cBz

αEBW − αX

, (5.30)

c1 = Ey − c3 (5.31)

The BVP has been formulated and full-wave equation (5.20) can be solved numerically.

5.3.2 Results
Figure 5.11 shows the efficiency CFX−B of the complete FX-SX-EBW process obtained
from the BVP simulations.
Comparing with the result obtained in Sec. 5.1.3, where only the FX-SX coupling was
considered, it can be concluded that the thermal effects do not strongly modify CFX−SX

even for large values of γ. There exists a temperature-dependent effect which is clearly
seen in the enlarged areas of Fig. 5.11. However, since the difference is marginal, Budden
formula (2.31) can be used to calculate coupling efficiency to the EBWs. Now, the EBW
fields in the UHR vicinity will be discussed to investigate the effects of the collisions. The

54



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5
C

F
X
−

B

Z = 0

Z = 10
−4

Z = 10−3

0.0 0.5 1.0 1.5 2.0 2.5

k0LUHR

0.0

0.5

1.0

1.5

C
F

X
−

B

Figure 5.11: The efficiency of the complete FX-SX-EBW conversion for Y = 0.7 (top) and Y = 0.9 (bottom). The solid
and dashed lines correspond to γ = 0.006 and γ = 0.06 respectively. The same color corresponds to the same normalised
collisional frequency Z.

simulations were performed for plasmas with different Y , electron temperatures charac-
terised by the parameter γ = vth

c
, and normalised collisional frequencies Z. Figures 5.12

and 5.13 show the fields that propagate in the plasmas with Y = 0.7 and Y = 0.9. The
density gradients were chosen such that CFX−B attains its maximum.
The effect of EBWs reveals itself most clearly in the Ex component, which is perpendic-
ular to the background magnetic field and is the dominant component of EBWs. The
other components of the field tend to decrease because the SX-wave becomes evanescent,
whereas the amplitude of Ex remains almost constant well beyond the L-cutoff, as the
wave propagates towards the higher density. It agrees with the fact that EBWs have
no high-density cutoff as described in Sec. 2.3. The position of the maximum of the
Ex component can be identified as the turning point of the SX-wave close to the UHR,
where the SX-wave turns into the EBW. For the higher temperatures, the turning point is
shifted further towards the higher density in agreement with the ray-tracing simulations
(see Ch. 6).
In the region between the UHR and the L-cutoff there exists a fast modulation of the field
for cBz and Ex components. This modulation is created by the interference between the
SX-wave and the EBW. Indeed, the typical length of the oscillations in the pattern can
be estimated as follows

|FS exp (ikSx) + FE exp (ikEx)|2 ≈ F 2
S + F 2

E + 2FEFS cos (kEx), (5.32)

where terms FS and FE are the amplitudes of the SX-wave and EBW, respectively. It
was assumed that the EBW wavevector kE is much larger than the wavevector kS of
the SX-wave. Since both FE and FS change slowly over the EBW wavelength, it can
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be concluded that the oscillation period is determined mostly by cos (kEx). Thus, the
typical oscillation length in the interference pattern equals to the EBW wavelength. As
the magnetic field increases, the EBW wavelength decreases, which can be seen in Fig. 5.12
from the interference pattern between the EBWs and the SX-wave. The decrease of the
EBW wavelength is consistent with the EBW dispersion relation since Y = 0.9 is closer
to the magnetic field of the fundamental harmonic of the cyclotron resonance. When the
spatial dispersion is included, the UHR will not be a singularity even in a collisionless
plasma since the energy is effectively carried away from the UHR by the EBWs. This can
be important for the consideration of the non-linear effects that arise when the electric
field exceeds a particular threshold [42]. The inclusion of EBWs reduces the amplitude of
the electric field at the UHR which can prevent possible non-linear effects.
In the case of the low electron temperatures, collisions appear to play a significant role
only close to the UHR. The EBW group velocity is very small at the UHR, thus it is
understandable that collisions may dissipate a significant part of the wave energy. For
the higher temperatures, the wave appears to be insensitive to the collisions even at the
UHR. For higher temperatures the wave propagates faster, thus, being less affected by
the collisions. Hence, for the low temperatures, the dissipation processes at the UHR can
significantly alter the EBW propagation.
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Chapter 6

Phase-Space methods

6.1 Introduction

In the previous chapter, the full-wave simulations of EBWs were carried out only at the
UHR vicinity. The main goal of this chapter is to investigate the EBW propagation fur-
ther away from the UHR in the FLiPS plasma using the so-called phase-space methods.
Applying these methods it is possible to investigate the EBW field in the bulk plasma,
thus obtaining a complete theoretical description of the EBW propagation in the FLiPS
plasma. The application of the phase-space methods will also help to understand further
the plasma wave propagation.
Within the phase-space approach, waves are simultaneously described as a function of
both coordinate ~r and wavevector ~k [12]. In general, such a description is not possible
due to the uncertainty principle [81]. For instance, each point of a plane wave is charac-
terized by ~k. But a plane wave is infinitely extended in space, thus having no well-defined
location.
The phase-space methods are a family of methods with the eikonal approximation de-
scribed in Sec. 6.2 being the most widely used. The eikonal approximation or the geo-
metrical optics (GO) approximation is valid, when the wavelength is small compared to
the characteristic scales of the medium [11]. In this case, it is possible to approximately
describe the wave simultaneously in terms of ~r and ~k.
To understand the idea behind the eikonal method consider again a plane wave. A plane
wave can exist only in a homogeneous medium. Indeed, a plane wave by definition has
the same wavelength everywhere in space. However, when there is an inhomogeneity, the
wavelength will vary depending on the medium properties. However, when the inhomo-
geneity is moderate, ~k will not change significantly over the length of many wavelengths.
Thus, it is still approximately valid to assign to each point in space a wavevector ~k, whose
value can be found from the corresponding dispersion relation.
When ~k is known, it becomes possible to construct an approximate solution [11]. This
approximation allows investigation of wave propagation when the full-wave methods are
numerically too demanding. Solving the exact wave equation numerically in the case of a
very small wavelength would be almost impossible as it requires either an extremely fine
numerical grid to resolve the wavelength scale or a large numerical domain. Additionally,
if such a simulation had been carried out, the wave effects such as the diffraction would
have likely be negligible. In the eikonal approximation, the wave effects are neglected
altogether and the primary goal is to find where and how fast the wave energy flows.
The rate at which the energy propagates is called the group velocity and defined as fol-
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lows [20]
~vgW = ~P , (6.1)

where W is the energy density of the wave and ~P is the Poynting vector defined by
Eq. (A.1). Note that this definition is analogous to the definition of particle flux. Here ~P
corresponds to the particle flux, W to the local particle density and ~vg to their velocity.
This similarity is not a coincidence and is due to the connection between the GO and
classical mechanics [11]. Indeed, Hamilton established Eq. (6.6) that govern the ray prop-
agation and showed that their dynamics is exactly the same as that of a particle with the
momentum ~p in a force field.
The process of obtaining a ray-trajectory using the eikonal approximation is called ray-
tracing. Ray-tracing is widely used in fusion plasma physics [82, 83], in space plasma
physics [27], as well as in computer graphics to create highly realistic images [84]. In this
thesis, the application of the ray-tracing is confined to the investigation of the SX-mode
and EBWs since their expected wavelength fulfils the eikonal approximation in FLiPS
plasma. Ray-tracing can be coupled with full-wave simulations to describe systems where
the waves with very different scales and behaviours co-exist [85, 86].
After investigating the plasma waves using the standard ray-tracing approach, another
phase-space method based on the so-called Wigner function [11] will be applied. This
approach can be seen as an extension of the standard eikonal approximation and allows
capturing wave effects such as the beam broadening due to the diffraction [61]. The
method is based on the eikonal method, but instead of tracing only a single ray, a fam-
ily of rays is traced. Each of the rays has a ”weight” given by the Wigner function. A
single ray propagation can be pictured as a point moving in the coordinate-wave vector
6D space, called the phase-space. Tracing a family of rays results in a cloud of points,
similarly to an ensemble of particles that evolves as the rays propagate. One then can
introduce the Wigner function [12] on the phase-space that represents the cloud density.
Using the Wigner function, it then becomes possible to capture wave effects using the
ray-tracing. The Wigner function can be applied to study wave propagation in turbulent
plasmas of large fusion devices such as ITER [61, 87, 88, 89], where the full-wave methods
are numerically too demanding.
Other methods to describe the full-wave effects also exist such as the beam-tracing
method. The method can capture diffraction effects using the paraxial Wentzel-Kramers-
Brillouin method [90]. Beam-tracing was, for example, implemented in the widely used
code TORBEAM [91].

6.2 Standard Eikonal approximation
The main assumption of the eikonal approximation is that for a medium with slowly
varying properties the solution locally looks like a plane wave. This fact is reflected in
the ansatz solution φ(x) = A(x)eiθ(x)/ε, where ε is a small parameter. Then the amplitude
and the phase are expanded into power series in ε

A(x) =
M∑
n=0

Anε
n (6.2)

θ(x) =
M∑
n=0

θnε
n (6.3)
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These power series are asymptotic, which means that the series are non-convergent for
any non-zero ε and M → ∞. However, an asymptotic series is a good approximation,
when the series are truncated at some M [25]. Collecting the powers of ε will lead to the
eikonal equation and the amplitude transfer equation [11, 50].
In order to illustrate the ideas of the eikonal method and problems that arise within its
framework consider the 1D Helmholtz equation. Substituting this ansatz and collecting
the powers of ε, the eikonal equation for the phase is obtained

dθ

dx
= k0N(x) (6.4)

where N(x) is the index of refraction. This equation belongs to the class of non-linear,
partial differential equations. If the local wavevector is introduced as k(x) = dθ

dx
then

k(x) − k0N(x) = 0 can be interpreted as a local dispersion relation. It reflects the
fact that the eikonal ansatz locally represents a plane wave. Introducing the function
D(x, k) = k − k0N(x) on the phase space, the solution of the eikonal equation are the
points where D(x, k) = 0. Note that k is assumed to be independent of x. Hence, a ray
is defined as a trajectory where D(x, k) = 0. If a ray is parametrized with the variable τ
then the total derivative of D(x, k) must be zero

dD

dτ
=

∂D

∂k

dk

dτ
+

∂D

∂x

dx

dτ
= 0 (6.5)

It is easy to see that the total derivative vanishes when
dx

dτ
=

∂D

∂k
dk

dτ
= −∂D

∂x

(6.6)

Thus, the non-linear, partial differential equation can be replaced by an equivalent non-
linear system of ordinary differential equations which is easier to solve. Equations (6.6)
are the famous Hamilton’s equations which are also found in the Hamiltonian formulation
of classical mechanics.
Often the function D(x, k) is referred to as the Hamiltonian. However, in the wave context
it does not have the meaning of energy as in the mechanical context.
Considering the next order in the small parameter ε leads to:

∂J(x)

∂t
+∇ · J(x)vg = 0, (6.7)

where vg is the group velocity, t is time, and J = A2 ∂D
∂ω

. Equation (6.7) is the transport
equation for the quantity J . Thus, first vg is found from Hamilton’s equations for a family
of rays satisfying particular initial conditions and then the quantity J is found from the
transport equation from which the amplitude can be calculated [11].
When ∂J

∂t
= 0, the product Jvg will remain constant. Thus, when vg = 0 the amplitude

A(x) becomes infinite, assuming that ∂D
∂ω
6= 0. Points where the amplitude blows up

are called caustics and at these points the eikonal approximation breaks down. The
theory of caustics is a rich topic that has received a lot of attention [92] and a detailed
discussion is well-beyond the scope of this study. However, some general remarks that
aid understanding of the eikonal methods can be made. Recall Liouville’s theorem which
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states that the phase-space density remains constant along the trajectories of the system.
That is, there is a quantity ρ(~r,~k; t) which satisfies the following continuity equation

dρ

dt
=

∂ρ

∂t
+∇~r ·

d~r

dt
ρ+∇~k ·

d~k

dt
ρ = 0 (6.8)

Equation (6.8) shows that whenever there is focusing in the x−space there is de-focusing
in the the k−space such that the phase-density remains constant. Thus, Eq. (6.7) may
have infinite solutions because of the absence of a dependency on ~k.
Thus, if the wave equation is first cast from the configuration space into the phase-space
representation, then well-behaved solutions on the phase-space can be found using the
eikonal method. Then solutions can be projected back onto the configuration space, with
the projected solution being also well-behaved due to Liouville’s theorem. In order to
proceed with this approach, the concept of a distribution and the Wigner function will
be introduced in Sec. 6.4.

6.3 Ray-Tracing in Plasmas
To gain understanding of plasma wave phenomena it is useful to start with the most basic
non-trivial plasma model, namely a 2D plasma slab where the constant magnetic field is
along the z−axis and the density gradient ∇ne ‖ x. The corresponding coordinate system
is depicted in Fig. 6.1.

z II B0

y

N0 

X

Figure 6.1: The geometry of the plasma slab model. The gradient of the normalised plasma density ∇X is along x-
direction. In 2D ray-tracing simulations, the refractive index ~N is assumed to lie in the x− z plane.

As the plasma properties do not vary in the z-direction the refractive index Nz will remain
constant as seen from Hamilton’s equations

dNz

dt
= c

∂D

∂z
/ω

∂D

∂ω
= 0 (6.9)

Thus, the value of Nz is fixed by the antenna’s structure. For the purpose of explanation
of some features of the ray propagation, the cold plasma dispersion relation can be written
in the following form:

A(X,Y )N4
x +B(Nz, X, Y )N2

x + C(Nz, X, Y ) = 0, (6.10)
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where

A = S(X,Y ), (6.11)
B = (PS +RL) + (P + S)N2

z , (6.12)
C = PN4

z + PRL− (2PS)N2
z (6.13)

with S, R, L and P given by Eqs. (2.13). The perpendicular refractive index can be found
as follows

N2
x =
−B ±

√
B2 − 4AC

2A
(6.14)

The solutions N2
x,+ and N2

x,− correspond to the plus-minus sign in Eq. (6.14), and are
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Figure 6.2: The solid and dashed lines correspond to N2
+,x, N2

−,x modes (eigenvalues), respectively. The magnetic field
is Y = 0.8, and the parallel refractive index is Nz = 0.8. In the hatched area, there are no propagating solutions, since N2

x

has an imaginary part. Thus, in the hatched area, both eigenvalues are complex conjugated, and their real parts are equal.
The arrow indicates the point, where both eigenvalues start to coincide.

plotted in Fig. 6.2 for an oblique angle with respect to the background magnetic field.
The propagating plasma waves exist only for N2

x > 0. When B2 − 4AC 6 0, Re(N2
+,x) =

Re(N2
−,x) and Im(N2

+,x) = −Im(N2
−,x).

Figure 6.3 shows results of ray-tracing in the cold plasma slab immersed in the magnetic
field with Y = 0.8. The arrows show ~k/|~k|, and as a consequence of the anisotropy are
not in general parallel to the group velocity. The distance between the arrows along the
ray is given by ~vg∆t, where ∆t is a constant time interval. In the vicinity of the UHR,
the distance between the arrows is small because ~vg decreases, which is one of the main
characteristic of a resonance.
An interesting feature of the O-mode propagation is a cusp at the O-cutoff. The cusp can
be explained based on Eq. (6.14). At the O-cutoff vicinity C is small thus the square root
in Eq. (6.14) can be expanded, resulting in the following expression

N2
+,x ≈

−B +B(1− 2AC
B2 )

2A
= −C

B
(6.15)

The ratio of the components of the group velocity at the O-cutoff vicinity can be written
as

vg,z
vg,x

=
∂D/∂Nz

∂D/∂Nx

∣∣∣
D=0

=
1

2N+,x

∂N2
+,x

∂N+,z

(6.16)

62



0.025

0.050

0.075

0.100

0.125

0.150

0.175

x
[m

]

Nz = Nz,opt

Nz > Nz,opt

Nz < Nz,opt

UHR

O-cutoff

√

B2
− 4AC = 0

C = 0

(a)

0.00 0.05 0.10 0.15 0.20 0.25

z [m]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

x
[m

]

Nz < Nz,opt

Nz > Nz,opt

Nz = Nz,opt

UHR

O-cutoffO-cutoff

R-cutoff

(b)

Figure 6.3: Ray-tracing of O- and X-modes in a cold plasma slab. (a) shows the ray-tracing of X-mode and (b) shows the
ray-tracing of O-mode. With the increasing angle of incidence, the O-mode reflects before the O-cutoff. The O-mode passes
through the UHR and R-cutoff without being affected. As the SX-mode approaches the UHR, ~vg becomes predominantly
parallel to ~B0 due to the presence of the UHR. For Nz < Nz,opt the SX-mode is guided along the z-direction in the narrow
region close to the O-cutoff. The guiding becomes significant in the case of the suffciently large angle between ~B0 and
∇ne [93].

Substituting N2
+,x from Eq.(6.15) into the previous equation and treating P as a small

parameter
vg,z
vg,x
∼ 1−X√

1−X
→ 0, (6.17)

which explains the cusp.
Another interesting aspect is guiding of the SX-mode along the ~B0, which is seen in
Fig. 6.3. The wave suffers three consecutive reflections before starting to propagate to-
wards the UHR. The behaviour can be explained based on Fig. 6.2. As shown in Fig. 6.2,
the ray has two turning points. One of them corresponds to the point where N2

+,x and
N2

−,x coincide which is marked with an arrow. Interestingly, at this turning point Nx 6= 0.
The second turning point is where C = 0. The ray behaviour in cold magnetised stratified
plasmas is discussed, in detail, in [94].
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6.3.1 Hot Plasma Ray-Tracing

Up to now, the waves were investigated in a cold plasma. In the following, the SX-
mode and EBW propagation will studied in a hot non-relativistic magnetised plasma.
One of the implemented ray-tracing codes within the course of the thesis is named RiP
(Rays in Plasma). The code is based on the full hot non-relativistic plasma dielectric
tensor [20, 95]. It is possible to include the relativistic effects by using the relativistic
dispersion relation for the EBWs [96]. However, the relativistic effects are estimated to
play a significant role only for Te > 1 keV [97, 98]. The RiP code is capable of tracing all
possible high frequency1 plasma modes for arbitrary electron temperatures, magnetic and
density profiles. The code is based on [99], where the EBW propagation was investigated
in a tokamak plasma. The dispersion relation that is used for the ray-tracing is defined
in the system of coordinates where z ‖ ~B0 and the wavevector ~k lies in the x-z plane,
whereas the magnetic field and density profiles are defined in the laboratory system of
coordinates. All the following results of the ray-tracing are depicted in the laboratory
system of coordinates. Thus, the code must perform transformation between these two
system of coordinates as described in Appendix B.1.
As a basic test of the code validity, the ray-tracing of O- and FX-mode was performed
with the RiP code and the results were compared with the predictions obtained within
the cold plasma approximation. As expected, their propagation was practically unaffected
by Te in FLiPS plasma, where Te ≈ 10 eV. The Te is expected to play a significant role
only when the phase velocity of a wave is comparable to the thermal motion of the elec-
trons [20]. This occurs for the slow branch of the X-mode (SX-mode) near the UHR. As
discussed in the previous chapters, the UHR is not a ”true” resonance, as predicted by
the cold plasma theory, but the point, where the SX-mode becomes quasi-electrostatic
and turns into the EBW.
In the following section, the trajectories of the SX-mode are investigated with the RiP
code for different plasma and magnetic field geometries in the slab model, with the aim
to identify the most important plasma parameters that influence the EBW propagation.
For the slab model, the ray-tracing simulations are performed for two distinct magnetic
field ranges, which correspond to the fundamental and the first cyclotron harmonics 2.
Then, the ray-tracing simulations for the FLiPS relevant plasma geometry is presented.
To increase the numerical precision of the calculations, a simplified geometry of the back-
ground magnetic field is used. Only the Bz component is included, whereas the radial
magnetic field component Br is neglected since Bz � Br. Indeed, for the experimen-
tally relevant magnetic field configurations, the magnetic field lines are almost parallel to
FLiPS axis. To further simplify the magnetic field model, the dependency of B(z, r) on
the radial coordinate r is also neglected. Within this approximation, the magnetic field
is given by a simple function, whose derivatives can be found analytically. Note that this
magnetic field is not divergence-free, which is not physical. However, the magnetic field
enters into the simulations only as a background plasma parameter, and is not required
to be divergence-free.

1High frequency means that the ion motion can be neglected
2A harmonic number is an integer that characterises the magnetic field strength. The n−harmonic

is defined as 1
n+2 < Y < 1

n+1 . The harmonic with n = 0 is usually called the fundamental harmonic
and EBWs are strongly damped at the values of Y = 1

n . EBWs cannot propagate to a region with
a different harmonic number without being absorbed since the wave would have to pass through the
cyclotron resonance.
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6.3.2 Ray-Tracing in a Hot Plasma Slab
In the following, the propagation of the SX-mode and its transformation into the EBWs
will be investigated with the RiP code. The SX-mode is created by the incoming elec-
tromagnetic radiation through the conversion (O-SX) or tunnelling (FX-SX). When the
ray-tracing of the SX-mode is shown, the SX-mode is assumed to be created by either
incoming O- or FX-mode. The ray-tracing of the waves involved in the O-SX conversion
can be directly compared to the full-wave simulations since the involved waves fulfil the
eikonal approximation with the exception of the conversion region. Within the ray-tracing
approach, it is impossible to investigate the conversion processes self-consistently, how-
ever, outside of the conversion region each of the waves involved in the process can be
well described by the ray-tracing.
An example of O-X-B conversion simulated with the ray-tracing is demonstrated in
Fig. 6.4 shown together with the corresponding cold plasma full-wave simulation. In
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Figure 6.4: A comparison of the ray-tracing calculations with the corresponding FDTD simulation of the O-X-B conver-
sion for the optimal launching angle. The comparison shows that the ray-tracing is a simplified description of the wave
propagation. In the ray-tracing waves are replaced by the ray-trajectories which are the trajectories along which the wave
energy propagates. Each point of the trajectories is characterised by the group velocity ~vg and the refractive index ~N . In
the figure the magnitude of ~vg is represented by the line thickness of the trajectories and the magnitude of ~N is shown by
the colorbars. The SX-mode ~vg decreases as the wave approaches the UHR and the ~N increases.
The coupling of the O-mode with the SX-mode cannot be simulated within the eikonal approach. Therefore, the outgoing
O-mode in the ray-tracing simulations is unaffected by the plasma. Whereas, the FDTD simulation shows that the intensity
of the outgoing O-mode at the beam center is reduced due to the strong O-SX coupling. See Fig. 2.8 for the comments
on the effects of the beam divergence on the conversion efficiency. The SX-mode ray was initialised close to the O-cutoff,
where the strongest coupling between the O-cutoff and the SX-mode is expected based on the full-wave analysis. Since the
FDTD simulations were performed in a cold plasma, the SX-mode is completely absorbed by the collisional damping at the
UHR. In the presented ray-tracing simulation, the SX-mode ray turns into an EBW ray, which then propagates towards
the higher plasma density.

the full-wave simulation, the direction of the incoming O-wave corresponds to that ob-
tained with the ray-tracing. When the coupling between the O- and SX-mode is strong,
which happens around the optimal injection angle, a significant part of the O-mode is
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transformed into the SX-mode. Thus, in the full-wave simulation, the central part of the
outgoing O-mode beam is strongly reduced unlike in the ray-tracing simulations, where
the reflected O-mode seems to be unaffected by the plasma. As seen from the full-wave
simulations, the outgoing O-mode beam has pronounced side lobes which appear due to
the finite k-spectrum of the O-beam as described in Sec. 2.3.1.
Unlike the O-X-B conversion, the FX-SX tunnelling cannot be calculated using the ray-
tracing method since the incoming FX-mode wavelength is much larger than the typical
density inhomogeneity scale. But the SX-mode and the EBW propagation can be studied
with the ray-tracing since their wavelengths fulfil the eikonal approximation.
In the following ray-tracing simulations, only the SX-mode will be shown and the O-mode
and FX-mode will be omitted for clarity. As noted before, the initial Nz is fixed by the
antenna. Thus, the initial Nx must be chosen such that the hot dispersion relation is
satisfied, namely D(x, z,Nx, Nz) = 0 at the starting point (see Sec. 6.2). This condition
can be seen as an equation for Nx, since Nz and the plasma parameters are fixed at the
starting position. The equation can be solved only numerically due to the complexity of
D. A root searching routine from the scipy open source package was used, with the initial
guess for Nx found from the cold dispersion relation. With these measures, the residue of
the hot dispersion relation D was less than 10−12 at the starting point.
Ideally, a dispersion relation D should be zero along the rays. The accumulation of the
numerical and round-off errors unavoidably causes a gradual increase of D, and eventually,
the simulations become unphysical, which results, for instance, in vg > c. The situation
is analogous to the energy drift over time in the simulations of mechanical systems. The
energy drift becomes especially pronounced for the EBWs when values of the refractive
index N � 1. As described in Appendix B.2, by modifying the hot dispersion relation
it is possible to reduce the dispersion relation drift and avoid possibly unphysical results.
The unphysical results can be also caused by floating-point arithmetic. For instance, for
small Nz, the derivatives of the plasma dispersion function require a careful treatment as
described in Appendix B.3.
Figure 6.5 shows the rays of the SX-mode initiated close to the O-cutoff for different
magnetic field strengths that correspond to the fundamental harmonic.
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Figure 6.5: Ray-tracing of the SX-mode at the fundamental harmonic. Each ray is traced in the constant magnetic field
Y , shown by the colorbar. The initial Nz = Nz,opt corresponds to the O-X conversion. The subsequent EBW rays change
its direction depending on Y . The angle θ is the angle between EBWs ~vg and the background magnetic field.

These rays are assumed to be created by the incoming O-wave at the optimal injection
angle. Each ray was traced in the plasma with a different constant background magnetic
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field in order to investigate the effects of the magnetic field of the SX-mode rays. At each
magnetic field the rays have two turning points. The upper turning point is caused by the
reflection from the dense plasma and is also present in the ray-tracing in the cold plasma
(see Fig. 6.3). The lower turning point is in the UHR vicinity and its position depends
on Y . In accordance with XUHR = 1− Y 2, the UHR is at the higher plasma density for
the lower magnetic fields. As the EBW rays keep propagating into the overdense plasma,
their direction of propagation does not change significantly. It allows introduction of the
angle θ defined as the angle between the EBW ~vg and ~B0. This angle spans the whole
range from 180◦ to 0◦, as the magnetic field changes from Y = 0.5 to Y = 1. At the ends
of the Y range, ~vg of the EBWs is predominantly along the magnetic field. Figure 6.6
shows how the EBW propagation direction depends on the magnetic field for different
Nz. The negative angles correspond to the rays with vg,‖ < 0, which means that the rays
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Figure 6.6: Dependency of angle θ on the magnetic field strength Y . The simulations were performed for 50 magnetic
field values within the rage 0.51 < Y < 0.99 and plasma with Te = 10 eV. For each magnetic field from the range, 10 rays
were initiated with different Nz , around the optimal Nz,opt ± 0.1. The figure shows that the EBW rays are only weakly
affected by the initial choice of Nz . The function θ(Y ) has a discontinuity at Y ≈ 0.6. At this magnetic field the EBW rays
propagate exactly across the magnetic field.

propagate in the opposite direction to the magnetic field. At Y = 0.6, the EBW rays
propagate exactly across the background magnetic field. The figure shows that θ is a
weak function of Nz. It can be concluded that the EBW propagation in the overdense
plasma is mostly determined by the background magnetic field.
An example of SX-mode rays that would be created in the FX-SX tunnelling is shown in
Fig. 6.7. The rays were initiated with a small Nz < 0.1, which means that the SX-mode
propagates predominantly perpendicular to the magnetic field. Such SX-mode rays would
be created in the direct tunnelling by an incoming FX-mode. The SX-mode penetrates
further inside the plasma before being reflected at the L-cutoff. But the subsequent EBW
rays behave similarly to the case described above, where the SX-mode rays were initiated
with Nz,opt at the O-cutoff vicinity. This further confirms that the initial choice of the
refractive index or of the coupling scheme has a weak effect on the EBW propagation in
low temperature plasmas.
Figure 6.8 shows the rays for the magnetic fields in the range 1

3
< Y < 1

2
, which corre-

sponds to the first harmonic. The EBW parallel group velocity again changes its direction
as a function of Y . The main difference between the first harmonic and the fundamental
harmonic EBW is that the wave propagates further towards the low-density plasma before
turning back. The turning point can be found from the analysis of the EBW dispersion
relation as presented in [20] and is explained by the bell like shapes of the EBW dispersion
curves at higher harmonics as shown in Fig. 2.5. Thus, the higher harmonics EBW are
more susceptible to the edge plasma turbulence and can be collisionally damped in the
edge region. Indeed, the FLiPS edge plasma is turbulent as was shown in Sec. 3, and has
low Te, which causes a significant collisional damping. Thus, the fundamental harmonic
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Figure 6.7: The same as Fig. 6.5, but with the SX-mode rays initiated with small Nz . This initial Nz corresponds to the
direct FX-SX-EBW coupling since the FX-SX coupling is the most efficient for near perpendicular injection as shown in
Fig. 5.8.

EBWs are of a greater practical interest in the FLiPS experiments, because the EBWs do
not propagate as far to the plasma edge as in the case of the higher cyclotron harmonics.
From the discussion above it can be conclude that the magnetic field has the strongest
influence on the EBW propagation. The ray-tracing can be extended to arbitrary geome-
tries that satisfy the eikonal approximation. Therefore, as the next step the SX-mode
and EBW propagation will be investigated in the FLiPS relevant geometry.

6.3.3 Ray-Tracing in FLiPS Plasma Geometry
The ray-tracing of SX-mode will be carried out in the FLiPS mid-horizontal plane. In the
mid-horizontal plane there is an inhomogeneity in the radial direction caused by the den-
sity gradient ∇ne, and in the axial z-direction caused by the axial magnetic field gradient
∇Bz. The axial density gradient was not measured experimentally as it would require a
long supporting structure for the Langmuir probe inside the plasma that would disturb
the plasma. However, it is expected that the plasma density stays relatively constant
along the magnetic field lines due to the high mobility of the charged particles along the
field lines. Such a density model was also used in [94], where the ray-tracing of plasma
waves was performed in a magnetic mirror configuration. As it will be shown, taking into
account the axial density gradient in weakly overdense plasmas is important for correct
simulations of the O-X-EBW coupling scheme. Here, the weakly overdense plasmas are
understood as plasmas with the densities significantly below the L-cutoff. In this case, as
it is well known [27, 32], the X-EBW coupling efficiency is max. 25% since the intrinsic RL-
resonator is absent (see discussion in Sec. 4.4). When the plasma is weakly overdense, the
O-X-EBW conversion will be also affected since the SX-mode rays must have a sufficiently
large parallel refractive index N‖ to reflect towards the UHR where they turn into EBWs.
Indeed, the position of the SX-mode cutoff depends on N‖, and for the larger N‖ the
SX-mode reflects at the lower plasma densities. Previously, the O-X conversion in weakly
overdense plasmas has not been discussed in the literature on the O-X-B conversion. To
investigate the effect of the density profile on the waves, the ray-tracing simulations were
performed for two profiles. One of the profiles is the experimentally measured density
profile shown in Fig. 3.7 with the steep edge density gradient. This profile is difficult
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Figure 6.8: The ray-tracing of the first harmonic EBW for different magnetic fields in the range 0.333 < Y < 0.5. At
the UHR the SX-mode becomes the EBW as in the case of the fundamental harmonic. Unlike the fundamental harmonic
(Fig. 6.7), the UHR is not a turning point in this case. After passing the UHR resonance, the wave propagates further
towards the plasma edge. This behaviour can be understood from dispersion curves in Fig. 2.5 and their bell-like shape.
The ~vg,‖ depends on the magnetic field similarly to the fundamental harmonic. As Y → 0.5 the EBW rays propagate
predominantly along the magnetic field.

to use in the ray-tracing simulations due to its steep density gradient at the edge where
the eikonal approximation can be violated, which also leads to the numerical problems.
To study the EBW rays in the case of the measured density profile, the EBW rays can
be initiated directly at the UHR vicinity. This approach will be used in Sec. 6.4 where
EBW rays are traced with an electrostatic code. The other ne profile having a bell curve
was used to investigate SX-mode propagation is sufficiently overdense that the L-cutoff is
inside the plasma. Thus, the injected SX-mode rays will eventually reflect at the L-cutoff
and turn into EBW at the UHR.
The ray-tracing in a plasma with the L-cutoff is shown Fig. 6.9. The EBW ray trajectories
are not straight as in the plasma slab (Fig. 6.5) since now there is the axial magnetic field
gradient, which creates the axial inhomogeneity that affects the rays. The EBW rays do
not propagate indefinitely in the z-direction, instead, they are bouncing back-and-forth,
which leads to the foci formation. Thus, the plasma acts as a waveguide or a wavechan-
nel on the EBWs, restricting the wave propagation in the z-direction. The wavechannel
phenomenon arises for different types of waves, not only in plasmas but also in the field
of acoustics [100] where the properties of the underwater wavechannel were investigated
using the ray-tracing as well. The intensity of a wave, propagating in a wavechannel
decreases much less than in the case of free-space propagation since the beam divergence
is limited by the wavechannel. Thus, the waves that propagate in a waveguide are easier
to measure experimentally.
To further examine the EBW trajectories inside the wavechannel, another code was devel-
oped, based on the electrostatic dispersion relation. A similar approach was used in [101],
where EBW trajectories in a plasma within inhomogeneous magnetic field were also stud-
ied using a ray-tracing code based on the electrostatic EBW dispersion relation. The main
advantage of this approach is the speed-up of the simulation and increase of the numerical
precision. The disadvantage is that the SX-mode is not included in the simulations. The
second code will be applied in Sec. 6.5 to investigate the EBW focusing in the FLiPS
plasma.
The SX-mode created in the O-X-B conversion can be investigated, using the ray-tracing
method. Figure 6.10 shows a bundle of SX-mode rays initiated close to the O-cutoff. The
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Figure 6.9: a): Ray-tracing simulations of the SX-mode in the FLiPS magnetic field geometry. The L-cutoff is in the
plasma since the plasma density was chosen to be sufficiently high. The SX-mode antenna plane is placed slightly above the
UHR. The antenna radiates SX-mode and is aligned with ~B0. This corresponds to the direct SX-EBW coupling scheme.
At each point on the antenna, two SX-mode rays propagating predominantly in the radial direction were initiated with
N‖ = ±0.03. b) shows the detailed view of the rays. In the region −0.2 < x < −0.05 the SX-mode co-exists with the
EBWs, which causes the interference pattern in the full-wave simulations shown in Fig. 5.12. The SX-mode rays propagate
toward the L-cutoff, where they are reflected towards the UHR. The subsequent EBW rays clearly form two foci F1 and
F2. In these foci a higher EBW intensity is expected.

bundle approximately describes SX-mode into which the incoming O-mode is converted at
the O-cutoff. The initial parallel refractive index is N‖ = N‖,opt at each initial z-position,
thus the incoming O-mode would be completely converted to the SX-mode in the corre-
sponding full-wave simulations. As in the previous case of the propagation perpendicular
to the magnetic field, the EBW trajectory has the characteristic bouncing back-and-forth
along the z-direction. It is also in agreement with the results from previous section, where
it was shown that also in the slab model, the initial choice of the refractive index does
not significantly affect the subsequent EBW trajectories. The behaviour of the refractive
indices of the rays in Fig. 6.10 is shown in Fig. 6.11. The initial SX-mode refractive index
increases at the UHR, where the SX-mode becomes the EBW. The EBW perpendicular
refractive index N⊥ reaches its maximum at the plasma center, where the density has its
maximum.
The parallel refractive index N‖ changes its sign periodically, which is in agreement with
Fig. 6.10, where EBW ~vg,‖ changes periodically its direction. Such a periodic change of
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Figure 6.10: a): A bundle of SX-mode rays initiated at the O-cutoff at θopt in the FLiPS plasma with Te = 10 eV. b)
is the detailed view of the rays. The rays were launched at the optimal angle in the magnetic field with the axial gradient
along z-axis. The gradient creates a plasma wavechannel within which the EBW rays are guided.

N‖ was also reported for Ion Bernstein Waves3 in [102, 103] in toroidal plasmas, where
rapid oscillations of N‖ were studied. This effect is important for understanding the effect
of Landau damping on the EBWs and IBWs. Indeed, when N‖ is large, the waves can be
strongly Landau damped. However, the Landau damping should not be significant in the
FLiPS plasma due to low Te as discussed in Ch. 3.
As the EBWs reach the UHR on the opposite side (r ≈ 0.2 m) the wave turns back into
the SX-mode and N⊥ decreases. There the wave will be partially damped by collisions or
decayed through the parametric decay. The remaining energy of the SX-mode can tunnel
outside as the FX-mode. It can be concluded that both O-X-B and direct X-B coupling
scheme produce EBWs, which can be trapped in the plasma wavechannel.
Now the propagation of SX-mode will be investigated in the FLiPS experimentally mea-
sured profile shown in Fig. 3.7. The FLiPS plasma was normally not strongly overdense

3IBW physics is almost identical to the EBW physics. Thus, many results of IBWs can be directly
applied to EBWs.
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UHR at x0 ≈ 0.2m the refractive indices decrease again, meaning that the wave turns back into SX-mode. In reality, the
collisional damping, parametric decay and coupling to the FX-wave will be also significant.

with the peak density X = 1.1 at the plasma center, which means that the L-cutoff was
not present in the plasma. The SX-mode will traverse the plasma in the radial direction
and then be absorbed at the UHR on the opposite side, as discussed in Ch. 4.
In the case of the O-X coupling, the SX-mode propagates at a sufficiently large angle to the
magnetic field which means that even without the L-cutoff the SX-mode can be reflected
from the dense plasma. In this case, the ray behaviour is somewhat more complicated
and will be analysed in the following. The main idea is that the turning point, which is
the confluence point of the eigenvalues N+,⊥ and N−,⊥ that describe the SX-mode, can
be absent from the plasma at the FLiPS densities for some values of N‖. Because of that
the SX-mode will not ”turn” towards the UHR, where the EBWs are formed. Thus, it
can result in the decreased coupling to the EBWs.
Assume a constant magnetic field in the z-direction and the density gradient ∇ne. Only
the SX-mode can propagate in an overdense plasma and its perpendicular refractive index
is described by two eigenvalues N⊥,±. These two eigenvalues are smoothly connected at
the turning point as discussed in Sec. 6.3 and shown in Fig. 6.12.
In the O-X coupling, the created SX-mode is initially described by the N⊥,+ eigenvalue.
After it reaches the turning point, it is described by the N⊥,− eigenvalue. This eigenvalue
has a singularity at the UHR. Thus, the created SX-mode will reach the UHR resonance
only if the density is high enough that the turning point is in the plasma. Figure 6.12 (a)
demonstrates the case when the turning point is not in the plasma. In this case, the
SX-mode will never reach the UHR in the ray-tracing simulations, when the plasma is
homogeneous along the magnetic field lines. In reality, the eigenmodes can interact with
each other. The energy can be coupled from one mode into the other. This coupling
process should be analysed using full-wave methods such as FDTD and BVP. Figure 6.12
can be considered as a trivial example of ray-tracing in a plasma with the inhomogene-
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which is a turning point for the SX-mode. In this case, the SX-mode can access the UHR.

ity only in the radial direction. The ray-tracing simulations in the presence of the axial
density and magnetic gradient are shown in Fig. 6.13. These simulations were performed
using the cold plasma model. Therefore, the SX-mode rays that reached the UHR do
not turn into the EBW. The lowest value of N‖ indicated by the colorbar corresponds to
N‖,opt. The rays were initiated as + eigenmode. The rays that start propagating with N‖
close to N‖,opt propagate further inside the plasma. The axial density gradient changes
the SX-mode N‖. At some point the initial ” + ”-mode turns into the ” − ”-mode and
starts propagating towards the UHR, where it will resonate in the cold plasma approxi-
mation and turn into the EBWs, when the thermal effects are included. When the initial
N‖ increases, eventually the turning point appears and the SX-mode rays turn towards
the UHR. Thus, the axial density gradient can play a significant role in the O-X-EBW
conversion.
To see how the EBW rays will be affected by the position of the turning point, the ray-
tracing simulations were performed as in Fig. 6.13, but with Te ≈ 10 eV. Figure 6.14
shows results of the ray-tracing simulations for two SX-mode rays (I, II). The rays I, II
were initiated with N‖ = 0.7 and N‖ = 0.68, respectively. The ray I has a larger N‖, thus
for this ray there is the turning point immediately near the O-cutoff. The ray II having
a smaller N‖ propagates further into the plasma, but eventually turns towards the UHR.
Despite very different trajectories of the SX-mode rays, the subsequently formed EBW
rays have similar trajectories. Both EBW rays are confined close to the FLiPS mid-plane.
The only difference is that the ray II has a larger amplitude of the oscillations in the
z-direction. It shows that even in the weakly overdense plasma the EBWs propagate in
a guided fashion. Thus, it can be concluded that the trapping of the EBWs in the linear
mirror magnetic field occurs for both O-X and direct X-EBW coupling schemes.
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6.3.4 Summary
In this section, the ray-tracing code RiP was applied to investigate the SX-mode prop-
agation using the classical eikonal approximation. Since the code is based on the hot
dispersion relation, the SX-mode turns into an EBW at the UHR. It was shown that the
EBW ray propagation direction is mostly affected by the magnetic field in the slab model,
for both O-X-B and FX-SX conversion schemes and the EBW ray trajectories only weakly
depend on Nz.
The modelling of the SX-mode propagation in the FLiPS relevant geometry revealed that
the subsequent EBW rays are guided in a wavechannel formed by the inhomogeneous
axial magnetic field forming foci. The ray-tracing investigation of the O-X-B conversion
showed the importance of the axial density gradient in the weakly overdense plasmas since
in this case some SX-mode rays need the axial density gradient to reach the UHR.
To investigate further the EBW trajectories in the wave channel and to find the corre-
sponding EBW field inside the channel, another ray-tracing code was developed based
on the quasi-electrostatic approximation. To obtain the field in the channel, the Wigner
function technique will be used. The brief introduction of the method is given in the next
section.
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6.4 Wigner Function

6.4.1 Distribution
In classical mechanics the velocity and the position of a particle can be both measured
simultaneously with arbitrary precision. In quantum mechanics, there is a fundamental
limitation due to the ”uncertainty principle” ∆p ·∆x > ~. When the position is known
exactly, then ∆x = 0, and in this case, the information about the momentum is com-
pletely lost, namely ∆p → ∞. Similarly, in the eikonal approximation position and the
wavevector are known simultaneously along the rays, whereas in the physical optics know-
ing one of the Fourier-conjugated variables leads to the loss of the information about the
other. However, it more intuitive to describe fields or signals simultaneously in terms of
its Fourier-conjugated variables. Consider, for instance, a music score. The score specifies
occurrence of a tune at a particular time interval, which is perceived as a melody.
A bit more sophisticated example is a spectrogram. Assume that there is a time series
of some signal V (t) as shown in Fig. 6.15 (a). In order to the frequency spectrum at
each time, a window function can be used. The window function slides along the signal
picking only a particular time interval. At each interval the selected piece of the signal is
Fourier transformed and the result is shown in Fig. 6.15 (b). The window function’s role
is to select a particular time-slice of the signal by taking the product of the signal and
the window function V (t′)g(t − t′). Then this product is Fourier transformed to obtain
the frequency spectrum around t

s(t, ω) =

∫ +∞

−∞
V (t′)g(t− t′)e−iωt′dt′ (6.18)

Obviously, the result will depend on the choice of the window function. To get a better
time resolution the window must be more narrow. However, the cost is the decreased
frequency resolution.
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Figure 6.15: (a): An example of a noisy time-dependent signal, (b): corresponding spectrogram shows the dominant
frequency at each time. The spectrogram was created with using the Tukey window function [104].
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As a motivation to introduce the Wigner function consider again the spectrogram trans-
formation given by Eq. (6.18). Introducing the new variable q = t − t′ leads to the
integral

s ∼
∫ +∞

−∞
V (t− q)g(q)e−iωqdq (6.19)

It can be seen that V (t− q) looks like a window function. It implies that the roles of the
signal and the window function are equivalent. Naturally, it leads to the idea to use the
signal itself as the window function. This idea is reflected in the definition of the Wigner
function [11]

W (q, p) =

∫ +∞

−∞
f̂(q − q′/2)f(q + q′/2)e−ipq′dq′ (6.20)

where f̂ is the complex conjugate of f . Therefore, the Fourier transform in Eq. (6.20) is
”symmetrized” as compared to Eq. (6.18). The variables q, p were used instead of t and
ω to emphasize that this method is general and can be applied to any types of signals.

6.4.2 Properties of the Wigner function

As seen from Eq. (6.20) the Wigner function is always real and can be negative. The
square modulus of the signal can be recovered from the corresponding Wigner function
as follows

|f(q)| =
∫

W (q, p)dpN

|f̂(p)| =
∫

W (q, p)dqN
(6.21)

It is tempting to interpret the Wigner function as a density on the phase-space. But due
to its possible negativity the Wigner function is referred to as a quasi-distribution.
Another important property that makes it useful is conservation along the Hamiltonian
trajectories. Thus, a procedure can be devised to calculate the field intensity as follows,
when the initial field is given at the antenna plane. This initial field is transformed
into the Wigner function. For the numerical calculations, the Wigner function can be
sampled over the antenna plane. Each sample provides an initial condition for Hamilton’s
equation. Along each ray the value of the Wigner function will stay constant. Tracing the
corresponding rays, the evolved Wigner function can be obtained at the other positions.
Using marginal properties given by Eq. (6.21), the corresponding field intensity can be
found. The application of this procedure will be demonstrated by the following examples.

6.4.3 Examples

Here, examples of the application of the method of the Wigner function are shown to
calculate the field intensity for some simple cases. The first example is the propagation
of a plane wave limited by an infinite obstacle with a slit of width 2a. The field F (x) at
the slit is given by

F (x) =

{
Ae−ik0x, −a < x < a

0, otherwise
(6.22)
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Figure 6.16: The initial Wigner function at the slit with the width k0x = 40 shows an oscillatory behaviour. Note that
the Wigner function can be negative, showing that it is not a proper distribution in a strict sense. As expected, outside the
slit the function is exactly zero since these points do not contribute to the field intensity.

The initial Wigner function at the slit can be easily found according to Eq. (6.20) and is
given by

W (x, kx) =


2/kx sin(2kx(x− a)), −a < x < 0

2/kx sin(2kx(a+ x)), 0 < x < a

0, otherwise
(6.23)

Figure 6.16 shows the initial Wigner function on the phase-space. As demonstrated by
the figure, the Wigner function is oscillating and is non-positive. Note that the Wigner
function is most significant around Nx = 0. In the plane of the obstacle, the Wigner
function outside the slit is exactly zero. Tracing the rays and using the marginal rela-
tions (6.21), the field intensity is found as shown in Fig. 6.17. Despite the loss of the
phase information, the resulting field intensity captured the wave effects. For instance,
one can see the dark Arago spot [105].

Figure 6.17: The field intensity of the plane wave after passing through the slit located at k0z = 0, obtained using the
Wigner function method.

The second example demonstrates the Gaussian beam propagation in a lense-like medium.
A lens-like medium is characterised by a parabolic refractive index dependency. As illus-
trated in Fig. 6.18 the rays do not diverge indefinitely, but are confined near the direction
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of propagation as the divergence due to the diffraction effects is balanced out by the focus-
ing effects. Figure 6.18 shows the strip of the region where the intensity was calculated
using the Wigner function method. The figure also shows the superimposed gray rays
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Figure 6.18: The field intensity of a wave propagating in the medium with n(x) = 1− αx2. Due to the periodic focusing
caused by the medium, the medium is often referred to as a lens-like medium. The superimposed rays were used to propagate
the Wigner function (only some rays are shown).

that were used to calculate the Wigner function. To compare the ray-tracing with the
results obtained with the method of the Wigner function, the rays (shown in blue) were
traced with the origin in the left focus. As expected, the rays trajectories diverge, and
then focus again at the right focus.
The solutions of the presented examples can be also found analytically [15]. The results
of the analytical predictions agree with the numerical solutions obtained with the im-
plemented method of the Wigner function confirming the validity of the code. In the
following, the Wigner function method will be applied to the EBW propagation in the
FLiPS plasma.

6.5 Results
The results of the ray-tracing calculations in the FLiPS plasma showed that the EBW
rays are guided in a wavechannel formed by the inhomogeneous magnetic mirror field as
described in Sec. 6.3. Since the guiding effect limits the spread of the wave, it leads to
the EBW focusing. To determine the shape of the foci, their size and dependency on the
plasma parameters, the ray-tracing alone is not sufficient, and the EBW field intensity
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is required. In general, it is not possible to obtain the field intensity from ray-tracing
calculations due to caustics such as foci as described in Sec. 6.2, since the ray-tracing
calculations predict that in focal regions the field intensity is infinite. This difficulty can
be overcome by applying the theory of the Wigner function described in the previous
section to the EBW propagation in the FLiPS plasma.
The Wigner function requires tracing of multiple EBW rays. In the following simulations,
up to 10000 rays were traced. Since the rays are independent of each other, the simula-
tions can be easily parallelized. The simulations were carried on a computational server
with 40 cores. However, even when the simulations are parallelized, using the full-hot
dispersion relation to trace the rays leads to very long simulation runs which is imprac-
tical. Also, the high complexity of the full-hot dispersion relation can cause unforeseen
numerical problems. This motivated the implementation of another code that is based on
the electrostatic approximation to trace EBW rays.
The use of the electrostatic approximation brings two limitations. First, only the EBW
rays can be traced and secondly, close to the UHR the electrostatic approximation breaks
down since the EBWs turn back into the SX-mode which is not included in the electro-
static dispersion relation. However, tracing only EBW rays was sufficient to study the
focusing properties of the wavechannel.
The investigation of the EBW propagation was carried out for two magnetic field config-
urations to study how the foci are affected by the magnetic field. The first magnetic field
configuration is the one that was normally used in the experiments as described in Ch. 3.
The second magnetic configuration has a larger mirror ratio β = Bmax/Bmin = 3.9 which
is created by the currents Iout = 1800 A and Iin = 10 A in the outer and inner coils,
respectively. Both configurations correspond to the fundamental EBW harmonic.
In the simulations, it was assumed that the initial EBW beam had a Gaussian shape sim-
ilarly to the example shown in Fig. 6.18. It is convenient to use the Gaussian distribution
for the initial EBW field since in this case, the initial Wigner function can be easily found
analytically [12]. This choice of the initial form of the EBW beam is further justified
by the argument that the FX-SX tunnelling is the most efficient for the perpendicular
(N‖ = 0) FX-mode injection. Since the axial inhomogeneity in the FLiPS plasma is mild,
the parallel refractive index of the EBWs will be also small with N‖ ≈ 0, and the EBWs
will propagate predominantly perpendicular to the magnetic field. Thus, the initial EBW
distribution should have its maximum in the center (z = 0) and gradually decrease as |z|
increases, which can be conveniently modelled by the Gaussian distribution.
However, the initial field of the EBWs could be calculated using the boundary value
problem or the FDTD method. This would allow a consistent coupling of the full-wave
simulations of the electromagnetic waves such as X- and O-mode with the simulations
of the EBWs performed with the Wigner function method. Such an approach was used,
for example, in [85] to couple the full-wave and the ray-tracing simulations to investigate
waves with very different wavelength scales.
For the magnetic field used in the experiments the calculated intensity of the EBWs is
shown in Fig. 6.19.
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Figure 6.19: Field intensity of the EBWs in the wave channel calculated using the Wigner function approach. The used
density profile was measured experimentally and shown in Fig. 3.7. The magnetic field was created by 500A in the outer
coils and 320A in the inner coils. This magnetic field configuration was normally used during the experiments.
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Figure 6.20: Field intensity of EBWs in a magnetised plasma with the magnetic field ratio β = 3.9. Three focal regions
can be identified. Note, this configuration was not experimentally possible.

As expected from the ray-tracing simulations, there are two regions of amplified intensity.
The field intensity is similar to the field intensity distribution shown in Fig. 6.18. It shows
that for this magnetic field, the plasma acts as a lens-like medium on the EBWs.
The implemented method was used to investigate the EBW propagation in a magnetic
field with a stronger axial inhomogeneity as shown in Fig. 6.20. The EBWs were launched
as a Gaussian beam at x = −0.15 m at UHR vicinity. In this case, the EBWs form
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three foci with amplified intensity. For the presented magnetic field configuration, one
of the foci occurs at the UHR at x = 0.15 m. In the case of the larger magnetic field
ratio the EBW field intensity distribution is not completely identical to the field intensity
distribution found in a lens-like medium with the foci having four-pointed star-like shapes.
It shows that the plasma properties deviate from a lens-like medium for the magnetic field
configurations with higher magnetic field ratios.
Using the Wigner function method, it is possible to calculate the EBW field intensity in
the foci of the wavechannel, where according to the standard ray-tracing approach the
field is infinite. The calculations with the Wigner function confirm that there are two foci
in the wavechannel for the magnetic field used in the experiments.
The number of foci was shown to dependent on the axial magnetic field. For stronger
magnetic field gradients there are more foci. This can be attributed to the fact that the
width of the formed wavechannel is smaller in the case of the strong axial magnetic field
gradient. The existence of the different EBW foci locations and as a consequence the
strong variation of the EBW intensity should allow the experimental verification of the
focusing of the EBWs in the wavechannel. The EBWs in the focal regions can be measured
experimentally with a movable monopole antenna [106]. The dedicated experimental set-
up and the results will be discussed in the next chapter.
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Chapter 7

EBW experiments

7.1 Introduction

The previous chapters were dealing with the simulations of the wave propagation in the
FLiPS plasma for the experimentally measured plasma parameters presented in Ch. 3.
Using the ray-tracing method, it was shown that it should be possible to measure experi-
mentally the effect of inhomogeneity of the axial magnetic field on the EBW propagation.
Extending the ray-tracing results using the Wigner function method, the EBW field in-
tensity was obtained. The spatial regions of the amplified EBW intensity due to the axial
inhomogeneity of the magnetic field were identified. This effect can be thought of as a fo-
cusing of the EBWs by the plasma. This chapter deals with the results of the experiment
that was devised to investigate the possible focusing of EBWs in the central mid-plane of
FLiPS.

7.2 Monopole antennas

The microwave field in FLiPS was investigated using the so-called monopole anten-
nas [107, 108]. Monopole antennas were used to detect EBWs indirectly measuring the
signal of daughter waves created in the parametric decay [109]. There are also reports,
where monopole antennas were used to directly detect EBWs in toroidal plasmas [110]
and in stellarators [111]. In [112] the antennas were used to detect the parametric decay
in a magnetic mirror plasma, which is a FLiPS relevant case. The authors reported on
their unsuccessful attempts to carry out the phase measurements using two monopole
antennas. The phase measurements allow calculation of the wavevector of the plasma
waves. Since the frequency of the signal is known (given by the signal generator), it
becomes possible to identify the type of plasma waves based on the dispersion relation.
The authors proposed that the turbulence significantly decreased the coherence length of
the waves, which made the phase measurements impossible. For such measurements to
be performed successfully, a quiescent plasma is required that can be produced by the
so-called Q-machines [113].
In this study, an antenna that is similar to the one described in [56] was used. The an-
tenna is made of a semi-rigid coaxial cable (SUCOFORM_47_CU). At the end the shield
and the insulator are both removed over a length of 1 mm, allowing the exposed inner
conductor to pick up the microwave signal. The cable is inserted into a ceramic tube
with the end closed to avoid the tip damage and to electrically isolate it from the plasma.
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Otherwise, the antenna measures not only the electric field but also the plasma density
fluctuations, similarly to a Langmuir probe.
Figure 7.1 depicts a schematic of the experimental set-up to investigate the EBW propa-
gation in FLiPS. The probing signal frequency was 2.31 GHz to avoid interference with the
2.45 GHz main heating frequency. The 2.31 GHz X-mode or O-mode could be launched
through the open waveguide antenna. The output of the signal generator was amplified
resulting in a 20 W output signal. Opposite to the launcher a monopole antenna was
installed as a receiver. The DC break capacitor (C) was installed as a high-pass filter.
The 2.45 GHz notch filter (NF) was introduced before the amplifier (A) to protect the
signal analyser from the stray power of the main heating source. Finally, the received
signal was measured by the spectrum analyser (SA).

Figure 7.1: Experimental set-up to detect EBWs in FLiPS. The transmitter circuit contained the signal generator (SG)
and a power amplifier. The amplified signal was fed into the open waveguide antenna. The monopole receiving antenna was
installed opposite to the transmitter. The capacitor (C) served as a high-pass filter and was placed to insulate the spectrum
analyser from the plasma. The 2.45 GHz notch filter (NF) was placed before the amplifier (A) to protect the the spectrum
analyser from the power of the main plasma heating system. The received signals was then amplified by the amplifier (A)
and measured by the spectrum analyser (SA). The monopole antenna scanning range in the radial direction was from the
edge r = 0.25 m to the plasma center r = 0 m.

The antenna tip length L was . 1 mm and the diameter was d = 0.31 mm. Thus, the
antenna did not have good polarisation selectivity. According to [114], the possible wave
vector spectrum produced by such an antenna has kmax ≈ 2π

L
. The wave refractive index

surfaces [115], shown in Fig. 7.2, determine the possible directions of the wavevector and
its magnitude in the FLiPS plasma. The open parabolic refractive index surface with the
large refractive index corresponds to EBWs. The surface in the enlarged area belongs to
the SX-wave. Note a significant difference between the EBW and SX-refractive indices
due to the small Te. Indeed, as discussed in Ch. 5, the EBW wavelength decreases with
Te. The gray area has a radius of Nmax = ckmax

ω
. All the waves with the refractive in-

dices inside the circle could couple to the antenna. Therefore, the constructed monopole
antenna could be used to detect the EBWs in FLiPS.

7.3 Results
To ensure that the diagnostic system works properly, first measurements were performed
without the plasma. A radial scan of microwave field of the auxiliary signal without the
plasma is shown in Fig. 7.3. The expected standing wave pattern with the half-wavelength
separation between the maxima can be seen as expected.
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Figure 7.2: The refractive index surfaces of the waves in the FLiPS plasma. A refractive index surface gives the magnitude
of the components of the vector ~N = c~k/ω. Due to low Te the EBW refractive index is much larger than the refractive
index of the SX-mode. The waves with the refractive indices inside the gray area can be detected by the monopole antenna.
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Figure 7.3: The measured 2.31 GHz microwave signal without the plasma. The standing wave pattern is clearly visible.

Figure 7.4 shows the radial scan with the monopole antenna when plasma is present for
two shots. In both shots, the plasma was under the same conditions. The signals are
shown together with the assumed density profile presented in Ch. 3. The corresponding
R-cutoff and the UHR are also shown. The amplitude of both signals is significantly
decreased compared to the case without the plasma. However, at the UHR there is no
expected amplification of the electric field.

7.4 Discussion

When an antenna is immersed into a plasma, the antenna radiation pattern will be
strongly affected [20] compared to the radiation pattern in vacuum. A magnetised plasma
can limit the antenna radiation to only the so-called resonance cones as discussed in
Sec. 2.2. The reciprocity theorem states that when an antenna is used as a receiver, the
antenna will pick up the signal from the directions given by its radiation pattern. Thus,
in a magnetised plasma a monopole antenna can in general pick up signals from the di-
rections given by the resonance cone. However, in the overdense region of the FLiPS
plasma, the resonance cones cease to exist. Indeed, the resonance cones exist only, when
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both P and S have different signs as seen from Eq. (2.21). The FLiPS plasma has a
large overdense region where P < 0. Additionally, at the monopole antenna position the
inequality ωce < ω was fulfilled, from which follows that S < 0. Thus, the only type of
electrostatic waves that can be measured by the monopole antenna in the plasma bulk
are the EBWs.
The FDTD simulations showed the strongest field amplification right on the front of the
antenna as can be seen in Fig. 4.10. One of the possible explanations of the lack of the
expected field amplification at the UHR in the experimentally measured signals in Fig. 7.4
is that the monopole antenna was placed on front of the open waveguide transmitter as
shown in Fig. 7.1. Thus, the incoming 2.31 GHz signal traversing the plasma in the ra-
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Figure 7.4: Intensity of 2.31 GHz signal measured with the monopole antenna along the radius for two different shots.
Both shots were performed for the same parameters: the neutral gas pressure 10−2 Pa and the optimal magnetic field
configuration described in Ch. 3. The positions of the R-cutoff and the UHR are indicated with the vertical lines. For
both shots there is a clear indication of the effect of the R-cutoff, since at the plasma edge the signal is several orders of
magnitude stronger than after the R-cutoff. The expected field amplification at the UHR is not observed.

dial direction was effectively scattered by the plasma as shown in Ch. 4. Therefore, the
scattering could significantly decrease the amount of energy that reaches the UHR, where
the monopole antenna was placed. Another possible explanation is that the collisions
effectively dissipated the energy at the UHR, which is situated at the plasma edge where
Te < 10 eV.
Simulations in Ch. 6 show that EBWs are confined by the axial magnetic field inhomo-
geneity compensating the divergence of the EBW beam in the axial direction. Thus,
it is expected that the EBW intensity decreases more slowly than that of the SX-wave.
Additionally, as a result of the low Te, the Landau damping of the EBWs is practically
negligible for a wide range of N‖ as discussed in Sec. 3.4.4. Furthermore, the full-wave
simulations with the BVP method described in Sec. 5.3 showed that for the relevant colli-
sional frequency in FLiPS the collisional damping should not significantly affect the EBW
propagation. All these considerations lead to the conclusion that the EBW should have
been detectable in FLiPS.
As shown in Fig. 7.4 beyond the R-cutoff there is no obvious EBW signal. The possible
explanation for the lack of the signal is the plasma turbulence. Indeed, as pointed in [7]
the plasma in a simple magnetic mirror configuration is turbulent whenever ωpe > ωce.
The focusing effect was modelled in Sec. 6.4, where the EBWs were launched as a Gaus-
sian beam and the turbulence was not included. Due to the turbulence the positions of
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the R-cutoff and the UHR are both fluctuating, therefore, the incoming FX-wave can un-
dergo an abrupt R-cutoff, or the position of the SX-wave formation will be changing. Such
processes lead to degradation of the foci in the wavechannel. The plasma fluctuations can
also create high-density plasma blobs which trap the EBW [116], which can significantly
alter the expected EBW ray trajectories. The interferometric measurements provide the
density averaged along the probing microwave beam. Because of that the fluctuation
level obtained with the interferometer is underestimated. Thus, to monitor the density
fluctuation at the edge position a Langmuir probe was used at a large negative voltage to
measure the ion saturation current given by Eq. (3.3). Assuming that

√
Te fluctuations

do not affect much Ii,sat, it becomes possible to estimate the local ne fluctuations. Ii,sat
measurements at the plasma edge are shown in Fig. 7.5. From the standard deviation σ
and the mean value µ, the local level of the density fluctuations δne can be estimated as
follows

δne

n̄e

≈ 0.25 (7.1)

It clearly shows that the fluctuations δne are significant and can cause the EBW scattering,
which makes their detection much more complicated than it was originally anticipated.
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Figure 7.5: The ion saturation current Ii,sat measured at the plasma edge shows strong local density fluctuations. σ and
µ are the standard deviation and the signal mean respectively.

7.5 Summary
This chapter dealt with the experimental studies of the EBW propagation in FLiPS
plasma. The main objective of the presented experimental study was detection of the
EBW foci that are caused by the mirror magnetic field. The simulations in the previous
chapters demonstrated that the focusing effect exists for different magnetic fields and
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density profiles.
The measurements were performed with a simple monopole antenna. The EBWs were
created through the direct FX-SX-EBW coupling. No clear EBW signal was detected.
The simulation results in the previous chapters showed that when turbulence is not in-
cluded the EBWs should be able to propagate in the FLiPS plasma. Moreover, the
monopole antenna signal showed an excellent agreement between the theoretically pre-
dicted positions of the R-cutoff and the measurements. It confirms that the experimentally
measured density profile described in Ch. 3 and used in the simulations is indeed the cor-
rect profile. Therefore, the plasma turbulence was identified as a likely candidate for the
negative result.
Nevertheless, it is not possible to completely exclude the role of the collisions at the UHR,
since the UHR is situated at the plasma edge, where the plasma can be colder than ex-
pected. Furthermore, in [40] was explicitly stated that in a plasma similar to the FLiPS
plasma the SX-mode is completely collisionally damped before reaching the UHR. Thus,
to answer the question why the EBWs were not detected in this experiment, more pre-
cise measurements of the plasma edge are required as well as more advanced simulations
methods such as particle-in-cell simulations.
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Chapter 8

Summary and Outlook

8.1 Summary

This thesis was concerned with the application and implementation of different numerical
methods to investigate the wave propagation in the Flexible Linear Plasma device FLiPS.
The FLiPS plasma is produced in a 1.16 m long, 0.5 m diameter vessel, by injection of
the R-wave at 2.45 GHz. The axial magnetic field with an adjustable magnetic mirror
at the ends allowed to optimize the confinement, and to study the wave propagation
in magnetised plasmas. The applied methods were the Finite-Difference Time-Domain
method (FDTD), Boundary Value Problem (BVP), and the phase-space methods such as
the ray-tracing and the Wigner function method. Every method has its pros and cons,
related to the numerical cost and the nature of the approximations used. Thus, each
method is suited well for different physical regimes. Indeed, the FDTD method is very
powerful, but also can become unstable or produce non-physical waves, when the upper
hybrid resonance is included. But it is very useful for the analysis of systems with com-
plex geometries or when the characteristic sizes of a system are of the same order as the
wavelength.
The BVP approach, being much less general than the FDTD method, allowed the in-
clusion of the Electron Bernstein Waves (EBWs) in the simulations. Another advantage
of the BVP method over the FDTD method is that the BVP method is unconditionally
stable and does not produce non-physical modes.
When the wavelength becomes much smaller than the characteristic length of the plasma,
it becomes impractical to apply full-wave methods such as the FDTD and the BVP
codes, since both of them must utilise a very fine numerical grid to resolve the wavelength
scale. In this case, the geometrical optics approximation is valid and one can use the ray-
tracing instead, which is computationally fast. In this approximation, wave effects such
as diffraction are completely neglected. However, applying the so-called Wigner function,
it is possible to recover the wave effects such as beam spreading, based purely on the
ray-tracing simulations.
First, the FDTD method was applied to visualise the wave propagation in the FLiPS
plasma. The importance of the wall reflections was clearly demonstrated as the reflec-
tions strongly affect the coupling efficiency to the EBWs. These simulations helped to
understand the lack of the difference between the O- and X-mode auxiliary heating ob-
served in FLiPS.
To simulate the EBW propagation, a BVP code was developed in the frequency domain.
The EBWs were included in the simulations by treating the thermal effects as a small per-
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turbation added to the cold plasma dielectric tensor. This method allowed simulations of
EBWs in the UHR vicinity. Using this approach, the entire FX-SX-EBW coupling scheme
was simulated, since it is the most promising coupling scenario to generate EBWs in the
FLiPS plasma. The effect of the normalised collision frequency νcoll/ω on the EBWs was
investigated for FLiPS relevant magnetic field configurations. The simulations showed
that EBW propagation is almost unaffected by collisions for νcoll/ω < 10−4, which is
consistent with [38].
The ray-tracing and the Wigner function method were used to simulate the EBWs farther
away from the UHR. The application of the methods is justified since the EBW-wavelength
is very short compared to the typical plasma gradient lengths of the FLiPS plasma. Ray-
tracing showed that the EBW propagation is strongly affected by the axial magnetic field
in FLiPS. Thus, it is possible to control the direction of the EBW propagation by adjust-
ing the magnetic field gradient. This effect can be used for the non-mechanical steering of
the EBWs for controlled local heating. When EBWs are launched in the radial direction
of the FLiPS’ mid-plane, the EBW beam is predicted to undergo periodic focusing and
de-focusing induced by the axial magnetic field gradient, implying that the plasma acts
on the EBWs as a lens-like medium.
The numerical investigations were accompanied by dedicated experiments. The plasma
was created by 2.45 GHz R-wave heating. The plasma was moderately overdense with
Te ≈ 10 eV. The measured density profile had a steep edge, which favoured the direct
FX-SX coupling. The experimentally used magnetic field was such that the fundamental
electron cyclotron resonance was lying inside the plasma to ensure efficient absorption of
the incoming R-wave. The magnetic mirror ratio was chosen such that there were no high
energy electrons that produce the X-ray radiation, whilst the plasma had a good axial
plasma confinement. The EBWs were created by the FX-SX coupling at 2.31 GHz. This
frequency was chosen to avoid interference with the main 2.45 GHz heating frequency.
As a receiver for the EBW signal, a radially movable monopole antenna was used. The
measured parameters of the experiments indicated that both plasma turbulence and col-
lisional damping can significantly affect EBW and SX-mode propagation in the FLiPS
plasma.
The goal of the experiments was to experimentally demonstrate the numerically predicted
focusing of the EBWs. The main obstacle to measure the focusing effects is assumed to
come from turbulent plasma density fluctuations, since the FX-SX-EBW coupling strongly
depends on the density-gradient length at the UHR. Another possible candidate for the
lack of detected EBW signals is the location of the UHR close to the plasma edge, where
the electron temperature is low. In this case, the EBW wavelength is very short and
collisional damping can become dominant.
The predicted focusing of the EBWs is not limited only to magnetic mirror devices such
as FLiPS. The described focusing effect can be found in other plasma devices where EBW
propagation occurs. The practical application of the predicted focusing effect can be local
plasma heating for the current drive. Also non-linear processes can be caused by the EBW
focusing, since the field strength in the focal regions can exceed the parametric instability
threshold. Thus, the consideration of the focusing effect is important for the analysis of
experimental results. The numerical tools developed in the course of the thesis that were
used to simulate the focusing effect can be applied to other magnetic field and plasma
geometries.
Summarising, the EBW propagation in the FLiPS plasma was investigated with different
numerical methods. Combination of the methods provided a complete theoretical picture
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of the EBW propagation in FLiPS that would be unattainable applying only one numer-
ical scheme. As a result, focusing of EBWs was predicted in the FLiPS plasma, and the
dedicated experiments were carried out to verify the effect experimentally.

8.2 Outlook
In this thesis, various numerical methods were used to investigate EBW propagation in
the FLiPS plasma. In this section, future plans for further work concerning the simula-
tions and experiments are summarised.
All the simulations were either in the 1D or 2D geometry. In future studies, this simpli-
fication could be removed, and the simulations could be performed in the 3D geometry.
Furthermore, additional vacuum vessel details such as ports can be included in the numer-
ical model. The existing FDTD code used in the thesis, can simulate wave propagation
in the 3D geometry. Thus, future work on the wave propagation in the 3D geometry
would be concerned with the model creation and validation of the obtained results. In
this thesis, the FDTD simulations were carried out on a regular rectangular grid. The
code can be extended to use an adaptive grid. Using a grid with a higher resolution only
in the UHR vicinity would significantly speed up the calculations.
The study of the influence of turbulent density fluctuations on the wave propagation using
FDTD simulations would also be helpful. In this thesis, the plasma density fluctuations
were included in the FDTD approximately by modifying the peak plasma density. In the
future, local density perturbations due to turbulence should be included in the model.
The BVP simulations were performed in the 1D geometry. The model was used to de-
scribe the wave propagation in the FLiPS plasma in radial direction. Performing 2D
simulations would allow to include effects of the axial plasma density and the magnetic
field inhomogeneity on the wave propagation. These simulations would allow the investi-
gation of the focusing of the EBWs by the inhomogeneous axial magnetic field.
The BVP simulations of the EBW propagation are valid only in the UHR vicinity. For the
full-wave simulations of EBWs in the whole plasma other methods such as particle-in-cell
should be applied. The work in this direction would be a development of a particle-in-cell
code or adoption of an existing code for the FLiPS geometry.
Concerning the ray-tracing studies, the existing code could be extended to the 3D ge-
ometry. The wave absorption due to the collisional and Landau damping, as well as the
cyclotron absorption can be studied with the present code.
The experimental set-up should be further improved. The thickness of the current lead
shielding must be increased to avoid exposure to the X-rays in compliance with the safety
requirements. The lead shield will also allow to use a wider range of accessible plasma pa-
rameters. For example, the magnetic field configuration that was used in the experiments
was chosen such as to avoid strong X-ray radiation. In this configuration, the plasma
was in direct contact with the vacuum window of the main heating system causing dete-
rioration of the window surface. Using other magnetic field configurations, in which the
plasma produces stronger X-ray radiation will avoid this issue. The configurations with
the higher magnetic field ratios will also produce a more stable and denser plasma.
Together with the higher heating power and an optimised antenna, the accessible plasma
parameters would allow experiments with negligible influence of collisions, and thus prove
the predicted focusing and steering effect of EBWs.

91



Appendix A

Conversion efficiency calculations

According to [20] the average flux of electromagnetic energy in a medium is

~P =
c

16π
( ~E∗ × ~B + ~E × ~B∗) (A.1)

This energy flux in a magnetised plasma in general is made up of four components corre-
sponding to forward (transmitted) and backward (reflected) propagating O- and X-modes.
When the total energy flux is measured to the left from the UHR, finding the conversion
efficiency requires the energy flux carried by the reflected O-mode. Solving (5.11) for the
coefficient c3 that corresponds to the back-propagating O-mode

c3 =
−Eyα4 + Ez − α1 + α4

α3 − α4

(A.2)

Thus the energy flux of the reflected O-mode is

PO
out =

1

2
ε0c|c3|2Re(γ3 − α3β3) (A.3)

To speed up the calculations, in some simulations, the wave propagation was considered
only to the right from the UHR. In this case, the singularity at the UHR is excluded from
the simulation domain, allowing to set the collisional frequency to zero. The energy flux
carried by the SX-mode can be found using the c4 coefficient

c4 =
−Ez + α1 + α3(Ey − 1)

α3 − α4

(A.4)

And the energy flux is
PX
out =

1

2
ε0c|c4|2Re(γ4 − α4β4) (A.5)

92



Appendix B

Ray-Tracing

B.1 Coordinate transformation
The plasma dispersion relation is derived in the coordinate system defined with respect
to the background magnetic field. That is, the z-axis is chosen to point in the direction
of the magnetic field ~B0. To define uniquely the system of coordinates the wave vector
~k is required to lie in the xz-plane. This system of coordinates is referred to as local
system of coordinates. However, the plasma parameters variation and the background
magnetic field are most easily defined in the global system of coordinates which is
decoupled from the magnetic field definition.
Thus, to be able to use Hamilton’s equations the transformation from the local to global
system coordinates must be calculated. More specifically, there is a function D(X,Y, nx, nz)
in the local system of coordinates whose arguments are the function of the global coordi-
nates. That is, 

X = X(~r)

Y = Y (~r)

~n = ~n( ~N)

(B.1)

where ~r and ~N are the coordinates and the refractive index in the global coordinates.
For clarity in the following notation ~Y is the magnetic field in the global coordinates.
Hamilton’s equations require the following derivatives

∂D

∂ ~N
=

∂D

∂nx

∂nx

∂ ~N
+

∂D

nz

∂nz

∂ ~N
∂D

∂~r
=

∂D

∂X

∂X

∂~r
+

∂D

∂Y

∂Y

∂~r
+

∂D

∂nx

∂nx

∂~r
+

∂D

∂nz

∂nz

∂~r

(B.2)

Thus, in order to find ∂D

∂ ~N
and ∂D

∂~r
, first one calculates ∂nx

∂ ~N
, ∂nz

∂ ~N
, ∂Y

∂~r
, ∂nx

∂~r
and ∂nz

∂~r
. Expressing

nz and nx explicitly as the functions of ~N and ~Y , the following equations are obtained
nz = ~N ·

~Y

Y

nx =

√
N2 − ( ~N ·

~Y

Y
)2

(B.3)

The first equation follows from the definition of the local system of coordinates and the
second follows from the Pythagorean theorem. Now, the following derivatives can be
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found with respect to ~N 
∂nz

∂ ~N
=

~Y

Y

∂nx

∂ ~N
=

~N − ~Y · ~N
Y

~Y

nx

(B.4)

The next step is to find derivatives with respect to ~r

∂Y

∂~r
=

~Y

Y
∇~Y

∂nz

∂~r
=

nx

Y

∂nx

∂ ~N
∇~Y

∂nx

∂~r
= −nz

nx

∂nz

∂~r

(B.5)

This concludes the derivation of the coordinate transformation that is used in the RiP
code.

B.2 Ray-Tracing solver
The ray-tracing uses Hamilton’s equation to find the ray trajectories. In the ray-tracing
context, the Hamiltonian is a dispersion function D(~r, ~N) and the dispersion relation is the
surface defined as D(~r, ~n) = 0. Since the trajectories are found numerically, the numerical
error leads to growth of the dispersion relation with time. It is especially pronounced for
slow waves such as EBWs.
However, using the fact that a Hamiltonian can be multiplied by some non-vanishing
function and still produce the same trajectories [11]. Thus, to trace the EBW and reduce
the numerical drift, the dispersion function D′ = D/n4

x was used. Since for EBWs nx � 1,
this modification helped to reduce the numerical drift when calculating EBW trajectories.

B.3 Derivatives of Plasma Dispersion function
The hot plasma dielectric tensor elements cannot be expressed in terms of the elementary
functions. Instead one has to rely on special functions which can be represented as an
integral of elementary functions or as a solution of a differential equation. Examples of
special functions are the Bessel functions and the Plasma Dispersion Function [20]:

Z(ζ) = i

∫ ∞

0

dz(iζz − z2

4
) = i

√
πω(ζ) (B.6)

where ω(ζ) is the complex error function and ζ is

ζ =
q − n

γqN‖
(B.7)

The RiP code requires the Plasma Dispersion Function and its first two derivatives which
are given by

Z
′
= −2− 2ζZ (B.8)

Z
′′
= −2(Z + ζZ

′
) (B.9)
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Although the information on the Plasma Dispersion function can be found in many text-
books [25], the details on the calculation of the second derivative Z ′′ will be presented here
because the numerical calculations of its second derivative requires a careful treatment
for large ζ. If Z ′′ is not treated properly, its imaginary part will be wrong due to floating-
point arithmetic. The problem with the imaginary part of the Z

′′ can be understood
using the following formula

Im Z
′′
(ζ) = −4/

√
π(ζ − 2ζ2D(ζ))− 4/

√
πD(ζ) (B.10)

where D(ζ) is Dawson’s function [25]. In the case of large ζ, the asymptotic expansion of
D(ζ) ∼ 1

2ζ
, therefore, the leading terms of the expression −4/

√
(π)(ζ − 2ζ2D(ζ)) cancel

out, and the value of the expression is given by the small corrections of the higher orders.
Thus, when N‖ is small, the machine numerical precision can be exceeded.
In the RiP code, for small values of ζ, D(ζ) function was used to calculate Z

′′ , but for
large ζ, Z

′′ was calculated using the asymptotic series for D(ζ). The values of Z
′′ for

the intermediate values of ζ were smoothly connected using the Lagrange polynomial
interpolation [25]. This allowed performing the correct ray-tracing for the whole range of
the refractive indices.
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