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Abstract

In algebraic geometry, a resolution of singularities is, roughly speaking, a replacement of a local commutative
Noetherian ring of infinite global dimension by a local commutative Noetherian ring of finite global dimension.
In representation theory, an analogous problem is asking to resolve algebras of infinite global dimension by
algebras of finite global dimension. In addition, such resolutions should have nicer properties to help us study
the representation theory of algebras of infinite global dimension. This motivates us to take split quasi-hereditary
covers as these algebraic analogues of resolutions of singularities and measure their quality using generalisations
of dominant dimension and deformation results based on change of rings techniques.

The Schur algebra, SR(n,d) with n ≥ d, together with the Schur functor is a classical example of a split
quasi-hereditary cover of the group algebra of the symmetric group, RSd , for every commutative Noetherian
ring R. The block algebras of the classical category O , together with their projective-injective module, are split
quasi-hereditary covers of subalgebras of coinvariant algebras.

In this thesis, we study split quasi-hereditary covers, and their quality, of some cellular algebras over commu-
tative Noetherian rings. The quality of a split quasi-hereditary cover can be measured by the fully faithfulness of
the Schur functor on standard modules and on m-fold extensions of standard modules. Over fields, the dominant
dimension controls the quality of the split quasi-hereditary cover of KSd formed by the Schur algebra SK(n,d)

and the Schur functor. In particular, this quality improves by increasing the characteristic of the ground field. To
understand the integral cases, the classical concept of dominant dimension is not useful since in most cases there
are no projective-injective modules.

Using relative homological algebra, we develop and study a new concept of dominant dimension, which we
call relative dominant dimension, for Noetherian algebras which are projective over the ground ring making this
concept suitable for the integral setup. For simplicity, we call Noetherian algebras which are projective over the
ground ring just projective Noetherian algebras. While developing the theory of relative dominant dimension,
we generalize the Morita-Tachikawa correspondence for projective Noetherian algebras and we prove that com-
putations of relative dominant dimension over projective Noetherian algebras can be reduced to computations of
dominant dimension over finite-dimensional algebras over algebraically closed fields. Using relative dominant
dimension, concepts like Morita algebras and gendo-symmetric algebras can be defined for Noetherian algebras.

We compute the relative dominant dimension of Schur algebras SR(n,d) for every commutative Noetherian
ring R. Using such computations together with deformation results that involve the spectrum of the ground ring R

we determine the quality of the split quasi-hereditary covers of RSd , (SR(n,d),V⊗d) formed by the Schur algebra
SR(n,d) and the Schur functor HomSR(n,d)(V

⊗d ,−) : SR(n,d)-mod→ RSd-mod for all regular Noetherian rings.
Over local commutative regular rings R, the quality of (SR(n,d),V⊗d) depends only on the relative dominant
dimension and on R containing a field or not. For this cover, the quality improves compared with the finite-
dimensional case whenever the local commutative Noetherian ring does not contain a field. This theory is also
applied to q-Schur algebras and Iwahori-Hecke algebras of the symmetric group.
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In full generality, we prove that the quality of a split quasi-hereditary cover of a finite-dimensional algebra B

is bounded above by the number of non-isomorphic simple B-modules.
Other split quasi-hereditary algebras that we study in this thesis are deformations of block algebras of the

Bernstein-Gelfand-Gelfand category O of a semi-simple Lie algebra. These deformations provide split quasi-
hereditary covers of deformations of subalgebras of coinvariant algebras. We compute the relative dominant
dimensions of these block algebras and we determine the quality of these covers. In these deformations, the
quality dramatically improves compared with the finite-dimensional case.

Using approximation theory to generalize once more the concept of dominant dimension to relative dominant
dimension with respect to direct summands of the characteristic tilting module, we find new split quasi-hereditary
covers. In particular, the relative dominant dimension of a characteristic tilting module of SR(n,d) with respect
to V⊗d is a lower bound of the quality of a split quasi-hereditary cover of the cellular algebra EndSR(n,d)(V

⊗d)op,
independent of the natural numbers n and d. This split quasi-hereditary cover involves the Ringel dual of the
Schur algebra SR(n,d).

Using this technology for deformations of block algebras of the classical BGG category O of a semi-simple
Lie algebra, we obtain a new proof for Ringel self-duality of the blocks of the classical BGG category O of
a complex semi-simple Lie algebra. Here, the uniqueness of split quasi-hereditary covers of deformations of
subalgebras of coinvariant algebras with higher quality is the crucial factor to deduce Ringel self-duality.
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Zusammenfassung

Eine Singularität aufzulösen bedeutet in der algebraischen Geometrie, sehr vereinfacht gesagt, einen lokalen
kommutativen noetherschen Ring unendlicher globaler Dimension durch einen lokalen kommutativen noether-
schen Ring endlicher globaler Dimension zu ersetzen. Ein analoges Problem in der Darstellungstheorie fragt
nach Auflösungen von Algebren unendlicher globaler Dimension durch Algebren endlicher globaler Dimension.
Zusätzlich soll eine solche Auflösung gute Eigenschaften besitzen, die helfen die Darstellungstheorie der gegebe-
nen Algebren unendlicher globaler Dimension zu untersuchen. Dies motiviert die Wahl (split) quasi-erblicher
Decken als algebraische Entsprechungen von Auflösungen von Singularitäten, wobei die Qualität einer Decke
mit Hilfe von (verallgemeinerter) dominanter Dimension und durch Deformationen in Verbindung mit change of

rings Methoden bestimmt werden soll.
Ein klassisches Beispiel einer solchen ”Auflösung“ ist die Schuralgebra SR(n,d) mit n ≥ d, über einem

kommutativen noetherschen Ring R, als ”Auflösung“ der Gruppenalgebra RSd der symmetrischen Gruppe Sd ,
wobei der Tensorraum und der Schurfunktor die Darstellungstheorien der beiden Algebren verbinden. Ein an-
deres Beispiel sind die Algebren zu den Blöcken der klassischen Bernstein-Gelfand-Gelfand Kategorie O hal-
beinfacher komplexer Lie-Algebren, die durch die projektiv-injektiven Moduln split quasi-erbliche Decken von
Koinvariantenalgebren sind.

Allgemeiner werden in dieser Dissertation split quasi-erbliche Decken, und deren Qualität, von Klassen
zellulärer Algebren über kommutativen noetherschen Ringen untersucht. Die Qualität kann gemessen werden
durch die Volltreue des Schurfunktors auf Standardmoduln und auf deren m-fachen Erweiterungen in einem
möglichst großen Intervall von Graden. Über Körpern kontrolliert die dominante Dimension diese Qualität und
die Qualität verbessert sich mit wachsender Charakteristik des Grundkörpers. Um ganzzahlige Situationen zu
verstehen ist die klassische dominante Dimension aber nicht geeignet, da meistens projektiv-injektive Moduln
fehlen.

Deshalb wird relative homologische Algebra eingesetzt, um ein neues und allgemeineres Konzept – rel-
ative dominante Dimension – zu entwickeln, über projektiv-noetherschen Algebren, das heisst, noetherschen
Algebren, die projektiv über dem Grundring sind. Damit werden ganzzahlige Situationen erfasst. Während
wir diese Theorie entwickeln erweitern wir die Morita-Tachikawa Korrespondenz entsprechend und zeigen, wie
die Berechnung der relativen dominanten Dimension zurückgeführt werden kann auf die Berechnung der dom-
inanten Dimension endlich-dimensionaler Algebren über algebraisch abgeschlossenen Grundkörpern. Über die
relative dominante Dimension können auch Konzepte wie Morita-Algebren und gendo-symmetrische Algebren
für projektiv-noethersche Algebren definiert werden.

Die relative dominante Dimension der Schuralgebren SR(n,d) wird über allen kommutativen noetherschen
Ringen R berechnet. Die Verbindung solcher Berechnungen mit Deformationsergebnissen bezüglich des Spek-
trums des Grundrings R erlaubt für alle regulären noetherschen Ringe R die Bestimmung der Qualität der
Auflösung der Gruppenalgebra RSd durch die Schuralgebra SR(n,d) und den Tensorraum. Über lokalen kom-
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mutativen regulären Ringen R hängt diese Qualität nur von der relativen dominanten Dimension ab und davon,
ob R einen Körper enthält oder nicht. Wenn R keinen Körper enthält, ist die Qualität der Auflösung besser als
im endlich-dimensionalen Fall. Wir wenden die Theorie auch auf q-Schuralgebren und Iwahori-Hecke-Algebren
der symmetrischen Gruppen an.

Ganz allgemein wird für endlich-dimensionale Algebren B gezeigt, dass die Qualität jeder split quasi-erblichen
Decke von B durch die Anzahl der nichtisomorphen einfachen B-Moduln nach oben beschränkt ist. Andere
hier betrachtete split quasi-erbliche Algebren sind Deformationen von Block-Algebren der BGG-Kategorie O

von halbeinfachen komplexen Lie-Algebren. Diese liefern split quasi-erbliche Decken von Deformationen von
(Teilalgebren von) Koinvariantenalgebren. Die relative dominante Dimension wird berechnet und die Qualität
der Auflösungen bestimmt. Dabei zeigt sich, dass die Qualität im Vergleich zum endlich-dimensionalen Fall
dramatisch verbessert wird.

Mit Approximationstheorie kann die dominante Dimension noch ein weiteres Mal verallgemeinert werden
zu einer relativen dominanten Dimension bezüglich direkter Summanden des charakteristischen Kippmoduls.
Dadurch finden wir neue split quasi-erbliche Decken. Insbesondere ist die relative dominante Dimension des
charakteristischen Kippmoduls bezüglich dem Tensorraum eine untere Schranke für die Qualität einer Auflösung
des Endomorphismenrings des Tensorraums – unabhängig von n und d. Dabei ist die zur Schuralgebra Ringel-
duale Algebra involviert.

Durch eine Anwendung dieser Methoden auf die Deformationen der Block-Algebren der klassischen BGG-
Kategorie O erhalten wir einen neuen Beweis von Soergels Satz, dass diese Blöcke Ringel selbst-dual sind. Hi-
erfür ist die durch den Übergang zur Deformation verbesserte Qualität der Auflösung entscheidend, um Ringelselb-
stdualität aus der dann vorliegenden Eindeutigkeit einer Auflösung hinreichend hoher Qualität schließen zu
können.
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Introduction

Algebraic analogues of resolutions of singularities

An important theme in representation theory of algebras is to transfer properties and information between al-
gebras. Of general interest is Auslander’s correspondence [Aus71] connecting finite representation type with
homological properties. This correspondence is a particular case of a more general correspondence called Morita-
Tachikawa correspondence [Mue68, Theorem 2]. In both of these correspondences, there are projective modules
having double centralizer properties and so these correspondences can be formulated using Rouquier’s cover
theory [Rou08]. Covers were introduced to compare cohomology over split quasi-hereditary algebras with co-
homology over endomorphism algebras of projective modules having a double centralizer property via Schur
functors. In particular, they provide an abstract framework to formulate Hemmer and Nakano’s work [HN04,
Corollary 3.9.2] which is the modular representation theory analogue of Schur’s results [Sch01] connecting the
complex representation theory of the symmetric group with the complex representation theory of a Schur alge-
bra. Some Schur algebras together with their faithful projective-injective module and regular blocks of the BGG
category O of a complex semi-simple Lie algebra with their projective-injective module are classical examples
of covers of the group algebra of the symmetric group and the coinvariant algebra, respectively. The prior is a
consequence of Schur–Weyl duality [CL74, Gre07, Sch01, Sch27] while the latter is a consequence of [Soe90,
Struktursatz 9]. Here, by a projective-injective module we mean a module that is both projective and injective.
In both of these examples, dominant dimension controls the quality of these covers [FK11b, Fan08].

Both the group algebra of the symmetric group (over a field) and the coinvariant algebra are symmetric
algebras. Therefore, they have infinite global dimension unless they are semi-simple. A local commutative
Noetherian ring is regular if and only if it has finite global dimension. Hence, resolving a singularity in commu-
tative algebra translates to the study of an algebra of infinite global dimension through the study of an algebra
with finite global dimension. Hence, some Schur algebras and the principal block are algebraic analogues of
resolutions of singularities of the symmetric group and the coinvariant algebra, respectively. Several construc-
tions like Dlab-Ringel standardization [DR92], Auslander’s construction on the endomorphism algebra of the
sum of quotients of the regular module by powers of the Jacobson radical [DR89a, Aus71] and Iyama’s construc-
tion to prove the finiteness of representation dimension [Iya04, 3.4.1] can be regarded as algebraic analogues of
resolution of singularities. Moreover, these can be formulated using Rouquier’s cover theory.

Other types of analogues of resolutions of singularities have been attracting attention, for example non-
commutative resolutions [DITV15]. Although in most cases, their concept is not a cover, their non-commutative
resolutions of commutative self-injective rings coincides with covers of commutative self-injective rings. For
orders, the resolution constructed in [Kön91] can also be formulated using covers.

Except for these last two constructions, all the results we have mentioned so far are for finite-dimensional
algebras and Artinian algebras. There is much evidence for example in [Rou08, Proposition 4.42] and in [CPS96]
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that going integrally can improve quality of covers. Going integrally means studying Noetherian versions of the
previous covers. The notion of quality will be made precise later on. We aim to study quality of covers, namely
split quasi-hereditary covers, by strengthening known connections studying integral versions of such connections
and integral analogues of dominant dimension. This approach will help us to obtain further insights in modular
representation theory using integral representation theory. A second goal, which is motivated by [KSX01], is
to explain Schur–Weyl duality between Schur algebras and symmetric groups without restrictions on parameters
using cover theory after going relative and integrally on the concept of dominant dimension. For such aim, going
to the integral setup and going relative are crucial techniques. Going relative means using tilting modules instead
of projective-injective modules and working with specific classes of exact sequences.

Schur algebras and symmetric groups

In the early years of representation theory, Issai Schur, in his PhD dissertation [Sch01], gave a complete classifi-
cation of rational representations of the general linear group over the complex numbers using the representation
theory of the symmetric groups (over the complex numbers) studied in [Fro00] by his supervisor Frobenius.
The crucial step in this classification was the construction of an equivalence of categories from the polynomial
representation theory of the complex general linear group of a fixed degree to the representation theory of the
complex symmetric group, known today as Schur functor. Here, by polynomial representation we mean a repre-
sentation that sends each element g ∈ GLn(C) to a matrix whose entries are polynomial functions in the entries
of g. In 1927, Schur published a paper [Sch27] where he explored the actions of the general linear group GLn(C)
and the symmetric group Sd on the d-th tensor space and reobtained all the results of his PhD dissertation in
a very elegant way. Moreover, he proved that these two actions centralize each other. Then Weyl, in the book
Classical Groups [Wey46], popularized this new approach by his extensive use of double centralizer properties.
The double centralizer property involving the subalgebras of the endomorphism algebra of the d-th tensor space
generated by the actions of the general linear group GLn(C) and the symmetric group Sd on the d-th tensor space
is called Schur–Weyl duality. These developments were the first step in the study of Schur–Weyl duality and
double centralizer properties.

Schur’s PhD dissertation came back into focus with Green’s monograph [Gre07] where Green extends Schur’s
ideas to the polynomial representation theory of the general linear group GLn(K) for K an infinite field. Over
infinite fields, Green established that the polynomial representation theory of the general linear group GLn(K)

can be reduced to the study of the module categories of Schur algebras.
The Schur algebras can be defined over an arbitrary commutative ring R. Let n,d be natural numbers. The

symmetric group Sd acts on the tensor power V⊗d := (Rn)⊗d by place permutation:

(v1⊗·· ·⊗ vd)σ = vσ(1)⊗·· ·⊗ vσ(d), σ ∈ Sd , v1⊗·· ·⊗ vd ∈V⊗d .

The Schur algebra SR(n,d) is the endomorphism R-algebra EndRSd

(
V⊗d

)
of R-linear endomorphisms of V⊗d

that commute with endomorphisms given by the action of elements σ ∈ Sd in V⊗d . Here, RSd denotes the group
algebra of the symmetric group Sd over the commutative ring R.

Over infinite fields of prime characteristic K, there is no longer, in general, an equivalence between the mod-
ule category of a Schur algebra and the representation theory of the symmetric group. However, their connection
does not disappear and there exists a version of Schur–Weyl duality on (Kn)⊗d between the Schur algebra and
the symmetric group (see [Gre07, (2.6c)] and [dCP76]). Further, under the assumption n≥ d, the Schur functor
HomSK(n,d)((K

n)⊗d ,−) from the module category of the Schur algebra SK(n,d) to the representation theory of
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the symmetric group Sd is well defined and it is just the multiplication by a certain idempotent of SK(n,d) (see
[Gre07, 6.1]). This functor has nice properties like sending the simple modules of the Schur algebra to either
zero or to a simple module of the symmetric group and it is an exact functor. It became clear with Green’s work
that this context belongs to a more general setup. Further, the direction of study was shifted. Nowadays, the
usual direction, in this context, is to study first properties of the Schur algebra and then use this knowledge to
deduce properties of the symmetric group using a Schur functor. A reason for this comes from the fact that Schur
algebras are split quasi-hereditary algebras [Don87, Par89] and also cellular algebras while the group algebras of
symmetric groups are only cellular algebras [GL96, 1.2] unless they are semi-simple.

Roughly speaking, split quasi-hereditary algebras over a field form a class of finite-dimensional algebras of
finite global dimension for which the regular module has a finite filtration by a collection of modules indexed
by a partial order on the set of isomorphism classes of simple modules, called standard modules, whose endo-
morphism algebras have dimension one over the ground field. Once the partial order is fixed, each standard
module ∆(λ ) is the largest quotient of its projective cover without simple composition factors indexed by ele-
ments greater than λ . Over algebraically closed fields, all quasi-hereditary algebras are split quasi-hereditary
algebras and all finite-dimensional algebras over algebraically closed fields with global dimension at most two
are split quasi-hereditary. Split quasi-hereditary algebras are quite abundant and they appear frequently in the
representation theory of algebraic groups and semi-simple Lie algebras.

Cellular algebras are finite-dimensional algebras characterized by the existence of a basis, called cellular
basis, with similar properties as the Kazhdan-Lusztig basis of the group algebra of the symmetric group. Knowing
a cellular basis reduces problems like knowing the number of simple modules of the algebra to problems of linear
algebra. Further, the cellular basis implies the existence of a filtration of the regular module by a collection of
modules, called cell modules. Over cellular algebras, each simple module occurs at the top of some cell module.
Many problems like finding the decomposition numbers of cellular algebras can be reduced to problems on split
quasi-hereditary algebras via Schur functors. Koenig and Xi proved in [KX99b] that cellular algebras over fields
are split quasi-hereditary if and only if they have finite global dimension. So, for cellular algebras which are not
split quasi-hereditary, Schur functors connect the study of the module category of an infinite global dimension
algebra with the study of the module category of an algebra having finite global dimension, if it exists. In
particular, this problem can be seen as an algebraic analogue of resolution of singularities which are studied in
algebraic geometry. In fact, the local ring of a variety (over an algebraically closed field) at a singular point, that
is, a certain localization of the coordinate ring of a variety, has infinite global dimension whereas the local ring
of a smooth variety at any point has finite global dimension (see [Rot09, Example 8.57]).

Main Problems

We will now discuss the abstract framework for our main problems. All rings mentioned in this thesis are rings
with identity. As we said, both Schur algebras and group algebras of the symmetric group can be defined over
any commutative ring with identity. Not only them but also the concepts of split quasi-hereditary algebras and
cellular algebras can be studied over commutative Noetherian rings ([CPS90, GL96]).

Let R be a commutative Noetherian ring and let A be a projective Noetherian R-algebra, that is, an R-
algebra that is finitely generated and projective as R-module. A pair (A,P) is called a cover of B if P is
a projective (left) A-module, B is the endomorphism algebra EndA(P)op, and the restriction of the functor
HomA(P,−) : A-mod→ B-mod to the full subcategory of finitely generated A-modules which are projective over
A is fully faithful. The functor HomA(P,−) is called a Schur functor. The fully faithfulness of the Schur functor

3



Introduction

on projective A-modules is equivalent to the double centralizer property on the right A-module HomA(P,A) (see
[Rou08, Proposition 4.33]). We say that a (left) A-module M has the double centralizer property if the canoni-
cal map A→ EndB(M) is an isomorphism of algebras where B denotes the endomorphism algebra EndA(M)op.
By Schur–Weyl duality, (SR(n,d),V⊗d) is a cover of RSd for every commutative Noetherian ring assuming that
n≥ d.

Using the terminology of covers, finding a resolution for a cellular algebra can be formulated in the following
way:

• Given a cellular algebra B over a commutative Noetherian ring R, find (if it exists) and study a split quasi-
hereditary cover (A,P) of B.

Here, split quasi-hereditary cover means a cover (A,P) so that A is a split quasi-hereditary R-algebra. Split quasi-
hereditary algebras over commutative Noetherian rings with finite global dimension have finite global dimension
(see [CPS90, 3.6]). Local commutative Noetherian rings with finite global dimension are known as regular rings.
Hence, we may ask the following:

(Q1) Are cellular algebras (over commutative Noetherian rings) with finite global dimension
split quasi-hereditary?

Due to [DR89a] and [Iya03, Iya04] every finite-dimensional algebra admits a quasi-hereditary cover. In particu-
lar, every finite-dimensional algebra over an algebraically closed field admits a split quasi-hereditary cover. Is it
possible to say the same in the integral setup? That is,

(Q2) Do all projective Noetherian algebras over a commutative Noetherian ring admit a split quasi-hereditary
cover?

The next natural question to pose is how to choose the ”best” (if it exists) split quasi-hereditary cover of
a given algebra. For this, we use the notion of i-faithfulness of a split quasi-hereditary cover introduced by
Rouquier in [Rou08, 4.37].

Let i ≥ 0. A cover (A,P) is an i-faithful split quasi-hereditary cover of B if A is a split quasi-hereditary
algebra and the Schur functor F = HomA(P,−) induces isomorphisms

Ext j
A(M,N)→ Ext j

B(FM,FN), ∀M,N ∈F (∆̃), 0≤ j ≤ i.

A cover (A,P) is a (−1)-faithful split quasi-hereditary cover of B if A is a split quasi-hereditary algebra
and the restriction of the Schur functor to F (∆̃) is faithful. Here, F (∆̃) denotes the full subcategory of (left)
A-modules which admit a filtration by standard modules tensored with projective R-modules.

In this sense, the quality of a split quasi-hereditary cover is measured by how exact the right adjoint of the
Schur functor is on the syzygies of the image of standard modules under the Schur functor. In Section 3.1,
we generalize this measure for resolving subcategories of the module category of A (not being necessarily split
quasi-hereditary). In this formulation, the main problem consists of the following:

Main Problem. Given a cellular algebra B over a commutative Noetherian ring R, determine (if it exists)
the highest i ∈ N∪{−1,0,+∞} possible such that (A,P) is an i-faithful split quasi-hereditary cover of B.

Using this terminology, for K an algebraically closed field with characteristic p> 3, Hemmer and Nakano [HN04,
Corollary 3.9.2], based on the work of Kleshchev and Nakano [KN01], found that (SK(n,d),V⊗d) is a p− 3-
faithful split quasi-hereditary cover of KSd for n ≥ d. In particular, if p > 3, this means that there exists an
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exact equivalence between the full subcategory of SK(n,d)-modules admitting a finite filtration by standard
modules and the full subcategory of KSd-modules admitting a finite filtration by cell modules. The value p−3
is actually the optimal value. This value is known in the literature as the Hemmer-Nakano dimension of F (∆̃)

(with respect to the Schur functor). Given a split quasi-hereditary cover (A,P) we say that the Hemmer-Nakano
dimension of F (∆̃) (with respect to the Schur functor HomA(P,A)) is n if (A,P) is an n-faithful split quasi-
hereditary cover of B but it is not an (n+ 1)-faithful split quasi-hereditary cover of B. Later, Fang and Koenig
reproved this result for p> 3 and extended the result to the cases with characteristic two and three using dominant
dimension of the algebra and the dominant dimension of the characteristic tilting module of the Schur algebra
(see [FK11b]). For this, Mueller’s characterization of dominant dimension is crucial in translating the problem
from dominant dimension to the Hemmer-Nakano dimension. Unfortunately, for these lower cases p ∈ {2,3}
there is no equivalence between the full subcategory of SK(n,d)-modules admitting a finite filtration by standard
modules and the full subcategory of KSd-modules admitting a finite filtration by cell modules.

We say that a module M has dominant dimension at least n if there exists an exact sequence 0→ M →
I1 → ··· → In with all Ii being projective and injective A-modules. The dominant dimension of the algebra
is exactly the dominant dimension of the regular module. Furthermore, split quasi-hereditary algebras with
dominant dimension at least two provide an extensive source of split quasi-hereditary covers. With this in mind,
an invariant called rigidity dimension was introduced in [CFK+21] to measure, for a given finite-dimensional
algebra B, the upper bound of the Hemmer-Nakano dimension of the subcategory of the module category whose
modules are projective, running through all the possible covers (formed by a projective-injective module) with
finite global dimension of B. In particular, the definition of this invariant is based on the concept of dominant
dimension. Further, problems like the finiteness of the rigidity dimension are still unknown in many cases. Here,
we are mainly interested in split quasi-hereditary covers, and so, the following question arises:

(Q3) Given an algebra B, is there an upper bound depending only on B, say i, so that for every split quasi-
hereditary cover (A,P) of B, the Hemmer-Nakano dimension of F (∆̃) is smaller than i?

In the case of the symmetric group, the cell modules are exactly the image of the standard modules of SR(d,d)

under the Schur functor HomSR(d,d)(V
⊗d ,−) : SR(d,d)-mod→ RSd-mod.

(Q4) Do all cellular algebras admit a split quasi-hereditary cover with this extra property?

Rouquier observed that covers with this extra property which are also 1-faithful split quasi-hereditary covers
are unique, also in the integral setup (see [Rou08, Corollary 4.46]). Further, (finite-dimensional) 1-faithful
split quasi-hereditary covers are exactly the split quasi-hereditary algebras constructed using the Dlab-Ringel
standardization [DR92] for a (split) standardizable set.

Going back to Schur algebras and symmetric groups, the results on the Hemmer-Nakano dimension until
now discussed are only for the finite-dimensional case. In [CPS96, 4.1.5, 5.2.1], using different terminology,
they prove that (SZ(n,d),V⊗d) is a zero-faithful split quasi-hereditary cover of ZSd . We may wonder what is
the quality of this cover in the remaining cases, considering other commutative Noetherian rings as the ground
ring. Proposition 4.42 of [Rou08] states that a zero-faithful split quasi-hereditary cover (A,P) of a projective
Noetherian algebra B over a regular commutative Noetherian ring so that A becomes semi-simple under K⊗R−,
for some field K, is a 1-faithful split quasi-hereditary cover of B. Hence, this result motivates us to understand
the Hemmer-Nakano dimension in the integral setup, since it appears that integral version of covers might have
better properties than their counterparts in the finite-dimensional realm.

(Q5) In particular, do split quasi-hereditary covers over regular rings with higher values of Krull dimension have
higher values of faithfulness?
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(Q6) What is the Hemmer-Nakano dimension of F (∆̃) with respect to the Schur functor HomSR(n,d)(V
⊗d ,−)

(assuming n≥ d) for an arbitrary commutative Noetherian regular ring R?

In [FM19, Theorem 3.13], Fang and Miyachi computed the dominant dimension of quantized Schur algebras.
Analogues of Hemmer-Nakano results for q-Schur algebras can also be found in [PS05]. The quantized Schur
algebras SR,q(n,d) replace the role of Schur algebras where Iwahori-Hecke algebras of the symmetric replace the
role of the group algebra of the symmetric group. So, we can pose the same question:

(Q7) What is the Hemmer-Nakano dimension of F (∆̃) with respect to the Schur functor HomSR,q(n,d)(V
⊗d ,−)

(assuming n≥ d) for an arbitrary commutative Noetherian regular ring R?

Another object of interest with respect to the main problem is the BGG category O . The regular blocks of
the BGG category O of a semi-simple Lie algebra together with the projective-injective module form a split
quasi-hereditary cover of the coinvariant algebra which is a cellular algebra (see [Soe90, Struktursatz 9]). The
dominant dimension of the blocks of the category O was computed in [KSX01, 3.1] and [Fan08, Proposition
4.5]. In 1981, Gabber and Joseph [GJ81] defined and studied integral versions of the BGG category O over a
commutative ring in the context of the Kazhdan-Lusztig conjecture.

(Q8) Does the BGG category O over a semi-simple Lie algebra over a commutative ring give rise to faithful
split quasi-hereditary covers over commutative Noetherian rings?

To discuss the example of Schur algebras and to define the Schur functor we have to impose n≥ d. However,
Schur–Weyl duality holds between SR(n,d) and RSd , independent of the parameters n and d. More precisely,
the canonical map RSd → EndSR(n,d)(V

⊗d
)op is surjective. This is equivalent to saying that V⊗

d
has the double

centralizer property over SR(n,d). Although, V⊗d might not be projective and injective, Koenig, Slungård and Xi
exploited in [KSX01] the fact that V⊗d is a partial tilting module in the case n < d to deduce Schur–Weyl duality
between SK(n,d) and KSd , where K denotes a field. This leads us to the following question:

(Q9) For n < d, can Schur–Weyl duality between SR(n,d) and RSd be explained using cover theory?

To summarize, the focus of this thesis is to evaluate the quality of known covers and their properties, mainly
now in the integral setup, and to study how to construct new covers from known covers. Now, we shall discuss
some contributions that this thesis makes to these questions and problems.

Contributions

As we discussed, the main source of examples are algebras that belong to the class of split quasi-hereditary alge-
bras over a commutative Noetherian ring (see Section 1.5) and cellular algebras over a commutative Noetherian
ring (see Section 1.6). For split quasi-hereditary algebras, we collect the classical properties in the integral setup
clarifying at the same time some confusions present in the literature. For example, we suggest an alternative
proof for the fact that opposite algebras of split quasi-hereditary algebras are split quasi-hereditary (see Theorem
1.5.69). We show in Proposition 1.5.80 that two module categories of split quasi-hereditary algebras with an ex-
act equivalence between their subcategories of modules having standard filtrations are equivalent as split highest
weight categories. This allows us to give alternative proofs of the results of uniqueness of covers (see Corollary
3.6.6) observed in [Rou08]. We make it precise in Theorem 1.5.58 that deciding whether a Noetherian algebra
is split quasi-hereditary can be reduced to deciding whether a finite-dimensional algebra is split quasi-hereditary
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over algebraically closed fields. In particular, we can regard split quasi-hereditary algebras over a commutative
Noetherian ring as deformations of quasi-hereditary algebras over algebraically closed fields. We establish in
Theorem 1.5.84 that these split quasi-hereditary algebras are locally semi-perfect.

We apply this fact in Corollary 3.7.3 to obtain a negative answer to (Q2).

Corollary (Corollary 3.7.3). Let C3 be the abelian group of order 3. The group algebra ZC3 over Z does not

have a split quasi-hereditary cover.

We give detailed proofs of characterizations of the subcategory of modules having filtrations by costandard
modules and on the Ringel dual of a split quasi-hereditary algebra over a commutative Noetherian ring com-
plementing and fixing some inaccuracies on the results appearing in [Rou08] (see Theorem 1.5.104). Many
results about change of ground ring on homomorphisms between standard modules and costandard modules are
improved as well as results on filtrations of these modules (Proposition 1.5.117 and Proposition 1.5.133).

In Theorem 1.6.16 and Theorem 1.6.18, we give a positive answer to (Q1). Furthermore, we prove in The-
orem 1.6.19 that cellular algebras with finite global dimension admit a unique split quasi-hereditary structure
extending Theorem 2.1.1 of [Cou20] to the integral setup.

In Example 4.6.14, we see that (Q4) has a negative answer. In fact:

Example (Example 4.6.14). The bound quiver algebra over an algebraically closed field with characteristic zero

1 2 3
α

δ

β

ε

γ

, βα = δγ = εα = βε = εγ = δε = 0, αδ = ε
2 = γβ ,

is a cellular algebra but its cellular structure is not given by a split quasi-hereditary cover. 4

For projective Noetherian algebras B over local regular commutative Noetherian rings with Krull dimension
at most one, B has a 1-faithful quasi-hereditary cover using a generalization of Dlab-Ringel standardization
(Theorem 1.5.83) if it admits a split standardizable set (see Definition 1.5.82) and a certain filtration for the
regular module. Hence, the cellular algebras with the cell modules forming a split standardizable set admit split
quasi-hereditary covers as asked in (Q4). Also, any split quasi-hereditary cover appearing in the setup of the
class A of [FK11b] gives examples with the extra property in (Q4).

Not all split quasi-hereditary covers are i-faithful split quasi-hereditary covers for some i ∈ N∪{−1,0}.

Example (Example 4.6.2 and 4.6.9). Let K be an algebraically closed field. Let A be the following bound
quiver K-algebra

1 2 3,
α1 α2

α2α1 = 0.

Let B be the following bound quiver K-algebra

2 3α
.

Denote by ei the idempotent of A associated with the vertex i, i = 1,2,3. Then, (A,Ae2⊕Ae3) is a split quasi-
hereditary cover of B but (A,Ae2⊕Ae3) is not a (−1)-faithful split quasi-hereditary cover of B. 4

Concerning (Q3), the global dimension of the algebra A is always an upper bound independently of A being
split quasi-hereditary (see Theorem 3.2.3). In Theorem 3.2.1, we give an upper bound for the level of faithfulness
of a split quasi-hereditary cover of B. This value is independent of the cover and it is bounded above by the
number of simple B-modules.
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The concept of dominant dimension is not suitable to help us in the remaining questions when the ground ring
is just Noetherian. For example, the dominant dimension of the integers is zero. Further, the module (Rn)⊗d is
not injective over SR(n,d) if n≥ d and R is a regular Noetherian commutative ring with positive Krull dimension.
This motivates us to use relative homological algebra to modify the definition of dominant dimension. In Chapter
2, we do that by replacing exact sequences with exact sequences of A-modules which split over the ground ring
and by replacing injective modules with relative injective modules. In doing so, we dramatically increase the
scope of classical theory of dominant dimension to integral representation theory. These new results have interest
in their own right, so we will briefly mention some of them. In the relative Morita-Tachikawa correspondence a
new condition appears:

Theorem (Theorem 2.4.10 and Corollary 2.5.6). Let R be a commutative Noetherian ring. There is a bijection:
(B,M) :

B a projective

Noetherian R-algebra,

M a B-generator (B,R)-cogenerator,

M ∈ R-proj,
DM⊗B M ∈ R-proj


/
∼1←→

A :
A a projective Noetherian

R-algebra with

domdim(A,R)≥ 2,


/
∼2

In this notation, A∼2 A′ if and only if A and A′ are isomorphic, whereas, (B,M)∼1 (B′,M′) if and only if there

is an equivalence of categories F : B-mod→ B′-mod such that M′ = FM.

(B,M) 7→ A = EndB(M)op

(EndA(N),N)←[ A

where N is a projective (A,R)-injective-strongly faithful right A-module.

Here, generator (B,R)-cogenerator means a module whose additive closure contains the regular module and
the dual of the regular module DB, where D is the standard duality functor HomR(−,R) with respect to R.

The extra condition DM⊗B M ∈ R-proj in the relative Morita-Tachikawa correspondence states that only
endomorphism algebra of generators relative cogenerators with a base change property are allowed (Proposition
2.5.14). This fact explains the usefulness of relative dominant dimension as a tool to establish characteristic-free
proofs of double centralizer properties on projective modules.

Mueller’s characterization of dominant dimension becomes, in the integral setup, a characterization of relative
dominant dimension in terms of homology over A in terms of homology over the endomorphism algebra of a
projective relative injective module.

Theorem (Theorem 2.4.15). Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-

algebra with positive relative dominant dimension and V a certain projective right A-module satisfying additional

conditions stated in Theorem 2.4.15. Fix C = EndA(V ). For any M ∈ A-mod∩R-proj, the following assertions

are equivalent.

(i) domdim(A,R) M ≥ n≥ 2;

(ii) φM : HomA(V,DM)⊗C V → DM is an isomorphism and TorC
i (HomA(V,DM),V ) = 0, 1≤ i≤ n−2.

A particular case of this characterization of relative dominant dimension combined with some considerations
on the Krull dimension of the ground ring R is the following:

Theorem (Theorem 3.5.6 for F (∆̃) and Theorem 2.11.1). Let R be a commutative regular Noetherian ring. Let

A be a split quasi-hereditary R-algebra with relative dominant dimension at least two and V a certain projective

8
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right A-module satisfying additional conditions stated in Theorem 2.4.15. Fix n = domdim(A,R) T, where T is

a characteristic tilting module of A. Then, (A,HomA(V,A)) is an (n−2)-faithful split quasi-hereditary cover of

EndA(V ). Moreover, n−2≤ HNdimHomA(HomA(V,A),−)F (∆̃)≤ n+dimR−2.

Computations of relative dominant dimension can be reduced to computation of dominant dimension of
modules over algebraically closed fields due to the following:

Theorem (Theorem 2.5.13). Let R be a commutative Noetherian ring. Let A be a projective Noetherian

R-algebra with positive relative dominant dimension. Let M ∈ A-mod∩R-proj. Then,

domdim(A,R) M = inf{domdimA(m) M(m) : m maximal ideal in R}.

Using relative dominant dimension opens doors to study more concepts over commutative Noetherian rings
like Morita and gendo-symmetric algebras (see Theorem 2.9.1 and Theorem 2.10.2).

Using this machinery, we can show that Schur algebras are relative gendo-symmetric and we can compute
the relative dominant dimension of Schur algebras:

Theorem (Theorem 4.1.7). Let R be a commutative Noetherian ring. If n≥ d are natural numbers, then

domdim(SR(n,d),R) = inf{2k ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 2.

Here, U(R) denotes the set of invertible elements of the commutative ring R.
To answer (Q6), we use the deformation results Theorem 3.3.13 and Corollary 3.3.10 together with a com-

putation of the relative dominant dimension of the Schur algebra. Interestingly, the computation of the Hemmer-
Nakano dimension for Schur algebras over local commutative regular Noetherian rings depends on the ground
ring containing a field or not.

Theorem (see Subsection 4.1.2). Let R be a local regular commutative Noetherian ring. Assume that n ≥ d.

Then,

HNdimHomSR(n,d)((Rn)⊗d ,−)F (∆̃) =


domdim(SR(n,d),R)

2
−2, if R contains a field as a subring

domdim(SR(n,d),R)
2

−1, otherwise

.

The full answer can be found in Subsection 4.1.2. So, the situation improves for Schur algebras when the
ground ring does not contain a field, in comparison to the Schur algebra over the residue field. In particular, we
see that (SF2(n,d)),((F2)

n)⊗d) is a (-1)-faithful split quasi-hereditary cover of F2Sd while (SZ2(n,d)),((Z2)
n)⊗d)

is a 0-faithful split quasi-hereditary cover of Z2Sd for n ≥ d. Here, Z2 denotes the localization of Z at 2Z. It
follows that the connection between the module category over the Schur algebra and the representation the-
ory of the symmetric group does not improve if we consider a polynomial ring as a ground ring. In Theorem
4.1.16, we prove that the integral symmetric group does not admit a better split quasi-hereditary cover map-
ping the standard modules to the cell modules via a Schur functor than the integral cover formed by the integral
Schur algebra. Here, both the level of faithfulness of the cover and the standard modules being mapped to
the cell modules play an important role. For example, F2S4 has two distinct (-1)-faithful split quasi-hereditary
covers: the one coming from the Schur algebra (SF2

(4,4),V⊗4) and (E,HomE(M,E)) where E = EndF2
(M)op

and M =
⊕3

i=0F2S4/ radiF2S4. However, the latter is ”worse” than the Schur algebra since the Schur functor
HomE(HomE(M,E),−) sends all standard modules to the simple modules of F2S4 (see Example 4.6.8). On the
other hand, requiring only the cell modules to be in the image of standard modules of a split quasi-hereditary

9
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algebra via a Schur functor is not a strong enough condition to imply uniqueness of covers. For example, the
split quasi-hereditary cover constructed using the Auslander algebra of F3S3 satisfies this condition, however, it
is only a (−1)-faithful split quasi-hereditary cover of F3S3 in contrast with (SF3(3,3),V

⊗3) (see Example 4.6.7).
Similarly to Schur algebras, we prove that q-Schur algebras are relative gendo-symmetric algebras and the

analogous results for q-Schur algebras are developed in Theorems 4.2.8, 4.2.11, 4.2.12 where quantum divisible
rings take the place of local rings containing a field. In particular, this solves (Q7).

Let g be a finite-dimensional semi-simple complex Lie algebra with Cartan subalgebra h. We can construct
a semi-simple Lie algebra over the integers, gZ, so that C⊗Z gZ ' g. Then, we can define a Lie algebra, over
any commutative Noetherian ring R, gR := R⊗Z gZ. Gabber and Joseph in [GJ81] constructed a category O ,
based on the work [BGG76], for gR with Cartan subalgebra hR. If R is a local commutative ring, this category
O can also be decomposed into blocks similar to the classical case. To each of these blocks, we can associate
a module category of a projective Noetherian R-algebra AD . The details about this algebra given in Subsection
4.4 are self-contained as much as possible. The algebra AD is split quasi-hereditary (see Theorem 4.4.43) and
(AD ,P(ω)) is a relative gendo-symmetric R-algebra, where ω is an antidominant weight (see Theorem 4.4.48).
We establish an integral version of Soergel’s Struktursatz, that is, (AD ,PA(ω)) is a split quasi-hereditary cover
of a commutative deformation of the coinvariant algebra (see Theorem 4.4.49). Over the complex numbers, the
Soergel’s combinatorial functor from a given block C is not fully faithful on standard modules unless the block
is semi-simple. However, we can choose blocks of the BGG category of gR, for a suitable commutative local ring
R, so that the Schur functor VD = HomAD

(PA(ω),−) is fully faithful on standard modules and AD (m)-mod is
equivalent to the block C , where m is the unique maximal ideal of R. This fact is a consequence of the following:

Theorem (Theorem 4.4.50). Fix t a natural number. Let R be the localization of the polynomial ringC[X1, . . . ,Xt ]

at the maximal ideal (X1, . . . ,Xt). For each 1 ≤ s ≤ rankR h
∗
R and s ≤ t there exists a projective Noetherian R-

algebra AD with AD (X1, · · · ,Xt)-mod equivalent to a block of the BGG category O so that

HNdimVD
F (∆A) = s−1.

Concerning (Q5), we saw that this deformation of blocks of the BGG category O , based on the work of
Gabber and Joseph, provides split quasi-hereditary covers whose level of faithfulness can improve as much as
the Cartan subalgebra allows it compared to the classical category O . Schur algebras and q-Schur algebras, on
the other hand, are more static and the quality of the integral covers they provide can be improved in at most
one degree, in comparison, with the finite-dimensional case. So, in both cases, we benefit by going integrally.
However, there are cases like the integral Auslander algebra of R[X ]/(Xn) with no benefit coming, from this
perspective, from going integrally. All these three examples fit in our main problem.

The solution to (Q9) involves Ringel duality and once again a generalization of dominant dimension. As
double centralizer properties on certain projective modules are related to covers, the natural approach is to dualize
the concept of cover to obtain an abstract framework to double centralizer properties on arbitrary modules. We
call this concept a cocover. More precisely, for a left A-module projective R-module Q, we say that (A,Q) is a
cocover if the functor HomA(Q,−) is full and faithful on relative injective modules and DQ⊗A Q is a projective
R-module. This motivates to measure double centralizer properties using now relative coresolving subcategories
and by how far the left adjoint of HomA(Q,−) is from being exact. For this, instead of using dominant dimension
we use relative dominant dimension relative to a module (see Definition 2.3.5). This concept generalizes also
the faithful dimension defined in [BS98]. In particular, it uses approximation theory. More precisely, we say
that a left A-module projective R-module M has relative codominant dimension with respect to Q at least n if
there exists an (A,R)-exact sequence Qn → ··· → Q1 → M→ 0 which remains exact under HomA(Q,−) with
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all Qi belonging to the additive closure of Q. The computation of relative codominant dimension of a module
T relative to a module Q can also be reduced to computations of relative codominant dimension of a module
relative to another module over finite-dimensional algebras over algebraically closed fields (see Theorem 5.3.5
and Lemma 5.3.3).

This invariant behaves like a dominant dimension in the sense that it controls the connection between two
module categories. In particular, by taking Q to be a direct summand of a characteristic tilting module of a split
quasi-hereditary algebra we obtain the following:

Theorem (Theorem 5.5.1). Let R be a commutative Noetherian ring. Let (A,{∆(λ )λ∈Λ}) be a split quasi-

hereditary R-algebra with a characteristic tilting module T . Denote by RA the Ringel dual of A, that is RA =

EndA(T )op. Assume that Q ∈ addT is a partial tilting module of A and Q− codomdim(A,R) T ≥ n ≥ 2. Then,

(RA,HomA(T,Q)) is an (n−2)-faithful split quasi-hereditary cover of EndA(Q)op.

Furthermore, the relative dominant dimension of the regular module over a split quasi-hereditary algebra
with respect to a partial tilting module Q (which coincides with the faithful dimension over finite-dimensional
algebras) measures how far the partial tilting module Q is from being a characteristic tilting module (see Section
5.8).

Using deformation results and by truncating covers (see Theorem 3.4.1) we obtain the following construction
using Schur algebras:

Theorem (Theorem 6.1.4 and Theorem 6.1.3). Let R be a commutative Noetherian ring. Denote by R(SR(n,d))

the Ringel dual of the Schur algebra SR(n,d) (there are no restrictions on the natural numbers n and d). Let T

be a characteristic tilting module of SR(n,d). Then, the following assertions hold.

(i) EndSR(n,d)(V
⊗d)op is a cellular algebra.

(ii) V⊗d−domdim(SR(n,d),R) T ≥ inf{k ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 1.

(iii) Then, (R(SR(n,d)),HomSR(n,d)(T,V
⊗d)) is a (V⊗d−domdim(SR(n,d),R) T−2)-faithful split quasi-hereditary

cover of EndSR(n,d)(V
⊗d)op.

The strategy behind the computation of (ii) is as follows: For higher levels (i ≥ 3), the Hemmer-Nakano
dimension does not drop by truncating the cover (SR(d,d),V⊗d) (see Theorem 3.4.1). For lower levels, we use
the relative Mueller’s characterization for the relative dominant dimension relative to a module (Theorem 5.2.2)
and Theorem 5.6.1. For (iii), in the case (−1), we need to go through the integers (see Corollary 5.5.6) and then
go back to the fields of characteristic two which decreases the level of faithfulness to (−1) again. Now, using
that the result holds for all the residue fields of R, it must also hold for R (see Proposition 3.3.6).

The existence of this split quasi-hereditary cover explains why using tilting theory was a successful approach
to prove Schur–Weyl duality in [KSX01]. It also gives further insight why making use of the Ringel dual of
the Schur algebra helps in the study of the decomposition numbers of the symmetric group [Erd94]. We re-
call that Ringel duals of Schur algebras are generalized Schur algebras in the sense of Donkin [Don93, 3.11].
Moreover, the Schur algebra SR(n,d) is Ringel self-dual (see [Don93]) if n ≥ d and the split quasi-hereditary
cover (R(SR(n,d)),HomSR(n,d)(T,V

⊗d)) is equivalent to the cover (SR(n,d),V⊗d) in case n≥ d. In such a case,
HomSR(n,d)(T,V

⊗d) is a projective relative injective and strongly faithful module over R(SR(n,d)). So, the study
of the cover (SR(n,d),V⊗d) together with the approach that we consider in this thesis culminates in the study of
the cover (R(SR(n,d)),HomSR(n,d)(T,V

⊗d)).
The value in (iii) is optimal when R is a field. The inequality in (ii) is sharp, in general, since by taking n = d

we obtain equality. By fixing n = 2, we obtain that the Ringel dual of the Schur algebra provides a split quasi-
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hereditary cover of a Temperley-Lieb algebra (see Subsection 6.3). The same strategy can be used to obtain an
analogue of Theorems 6.1.4 and 6.1.3 for q-Schur algebras.

We remark that a split quasi-hereditary algebra has infinite relative dominant dimension with respect to a
partial tilting module Q if and only if Q is a characteristic tilting module (see Subsection 5.8).

As application of our machinery of relative dominant dimension and by making use of quality of covers we
reprove a famous result of Soergel. More precisely, using these techniques on the deformation algebra AD , we
reprove in Theorem 6.4.1 Ringel self-duality of the BGG category O without using the semi-regular bimodule
(see [Soe97, Corollary 2.3]). The original proof of Soergel exhibits the functor giving Ringel self-duality using
properties of a semi-infinite character but it does not make clear which structural properties of the category
O are forcing the blocks of the category O to be Ringel self-dual. Later, Futorny, König and Mazorchuk in
[FKM00, Proposition 4] reproved Ringel self-duality using the Enright completion functor and by studying a full
subcategory of an integral block of the category O whose modules have dominant dimension at least two (see
also [KM02]). Our proof illustrates Ringel self-duality of the blocks of the BGG category O as an instance of
uniqueness of covers of deformations of subalgebras of coinvariant algebras.

Methods/Techniques

There are several reasons for us to choose to resolve Noetherian algebras with split quasi-hereditary algebras.
For one, the endomorphism algebras of simple modules over cellular algebras over a field k are isomorphic to
k. All Noetherian R-algebras discussed here that appear in a cover are constructed using some form of relative
dominant dimension, including relative dominant dimension with respect to a (partial) tilting module. Therefore,
they are all equipped with a base change property. Hence, these covers should remain covers under change of
ground ring to a residue field. In particular, if A has finite global dimension we want that A(m) to have finite
global dimension, as well. This requirement already excludes some choices (for example [Kön91]). At first sight,
both the concepts of quasi-hereditary algebras and split quasi-hereditary algebras seem suitable choices to resolve
non-cellular algebras. But, the fundamental difference comes from quasi-hereditary algebras being constructed
by glueing semi-simple algebras inductively and split quasi-hereditary algebras are constructed by glueing matrix
rings over the ground ring inductively. In view of change of ground rings, the second is more appropriate and
easier to handle. Moreover, if A is quasi-hereditary algebra then changing the ground ring through localization,
truncation to the residue field and finishing with an extension of scalars to its algebraic closure we obtain a split
quasi-hereditary algebra R(m)⊗R A is a split quasi-hereditary over an algebraically closed field. If the standard
modules of R(m)⊗R A are defined integrally, that is, there exists a collection of modules ∆ so that R(m)⊗R ∆ are
standard modules of R(m)⊗R A for every maximal ideal m of R, then A must be a split quasi-hereditary algebra
(see Subsection 1.5.5).

All the covers that we study here arise from relative dominant dimension with respect to a projective relative
injective module and from relative dominant dimension with respect to a (partial) tilting module. Relative injec-
tive modules also called (A,R)-injective are the injective objects, which are projective over the ground ring R,
with respect (A,R)-exact sequences. In turn, (A,R)-exact sequences were chosen to extend several concepts from
finite-dimensional algebras to Noetherian algebras. These are the exact sequences of A-modules which split as a
sequence of R-modules. Given the nature of the generalization of dominant dimension to the relative dominant
dimension using (A,R)-exact sequences and projective (A,R)-injective modules the computations can be reduced
to finite-dimensional algebras over algebraically closed fields. Further, in our cases, this is reduced to already
known cases. On the other hand, relative dominant dimension with respect to a (partial) tilting module is in the
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majority of cases unknown. However, such a computation can also be reduced to finite-dimensional algebras
over algebraically closed fields (see Section 5.3). Further, by using an application of Grothendieck’s spectral
sequence and the relative analogue of Mueller’s characterization of relative dominant dimension with respect to
a (partial) tilting module (see Theorem 5.2.5) we obtain the following:

Theorem (Theorem 5.5.1 for finite-dimensional algebras). Let K be a field. Let (A,{∆(λ )λ∈Λ}) be a split

quasi-hereditary K-algebra with a characteristic tilting module T . Denote by RA the Ringel dual of A. Assume

that Q ∈ addT is a (partial) tilting module of A. Then, DQ−domdim(A,R) DT = Q−codomdim(A,R) T ≥ n≥ 2 if

and only if (RA,HomA(T,Q)) is an (n−2)-faithful split quasi-hereditary cover of EndA(Q)op.

Since the Ringel dual of the Ringel dual of A is Morita equivalent to A all split quasi-hereditary covers of
finite-dimensional algebras can be written in the form of the previous theorem. Therefore, the quality of faithful
split quasi-hereditary covers of finite-dimensional algebras are controlled by the relative codominant dimension
dimension of characteristic tilting modules with respect to a direct summand of characteristic tilting modules.

We then use this Theorem together with the following result about truncation of split quasi-hereditary covers
to show that the dominant dimension of the characteristic tilting module of SK(n,d) with respect to (Kn)⊗d (with
n < d) is greater than or equal to the dominant dimension of the characteristic tilting module of SK(d,d):

Theorem (Theorem 3.4.1). Let A be a split quasi-hereditary Noetherian R-algebra. Assume that (A,P) is an

i-faithful split quasi-hereditary cover of EndA(P)op for some integer i ≥ 0. Let J be a split heredity ideal of A.

Then, (A/J,P/JP) is an i-faithful split quasi-hereditary cover of EndA/J(P/JP)op.

This result deals with all cases except the characteristic two case which must be treated separately by going
integrally. Theorem 3.4.1 gives us that a 0-faithful split quasi-hereditary cover is equipped with double centralizer
properties involving each factor of the split heredity chain. However, not all types of truncations have this
behaviour. In fact, it is enough to see the influence of the spectrum of the ground ring on the quality of a cover.

Corollary (Corollary 3.3.10 for F (∆̃)). Let R be a commutative Noetherian regular local ring. Let (A,P) be an

i-faithful split quasi-hereditary cover of B for some integer i ≥ 0. Then, (R/p⊗R A,R/p⊗R P) is an (i−ht(p))-
faithful split quasi-hereditary cover of R/p⊗R B for every prime ideal p of R with ht(p)≤ i+1.

Knowing the values of dominant dimensions (with respect to a projective and injective or more generally with
respect to a (partial) tilting module), the Hemmer-Nakano dimension of F (∆̃) can be determined by combining
such values with Corollary 3.3.10 and with the following result:

Theorem (Theorem 3.3.13 for F (∆̃)). Let R be a local commutative regular Noetherian ring with quotient

field K. Suppose that (A,P) is a 0-faithful split quasi-hereditary cover of B. Let i ≥ 0. Assume the following

conditions:

(i) (K⊗R A,K⊗R P) is an i+1-faithful split quasi-hereditary cover of K⊗R B;

(ii) For each prime ideal p of height one, (R/p⊗R A,R/p⊗R P) is an i-faithful split quasi-hereditary cover of

R/p⊗R B.

Then, (A,P) is an i+1-faithful split quasi-hereditary cover of B.

This procedure can also be applied to compute the Hemmer-Nakano dimension of other resolving subcate-
gories, as well. Having described the general procedure to determine the quality of covers using relative dominant
dimensions and deformation techniques, we shall now illustrate the benefits of going integrally. For the construc-
tion of the split quasi-hereditary cover of the cellular algebra EndSK(n,d)(V

⊗d)op, by our earlier discussions, we
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see that the characteristic two case is dealt by passing through the integral case. Aside from the characteris-
tic two case, these techniques also help us to understand more about the characteristic three case. In fact, the
integral Schur algebra SZ[ 1

2 ]
(n,d) away from two, with n ≥ d, is the unique split quasi-hereditary cover of the

integral group algebra of the symmetric group away from two with standard modules being mapped to Specht
modules by a Schur functor (see Subsection 4.1.3). Recall that uniqueness cannot be drawn directly over fields
of characteristic three or two because the in these cases the subcategories F (∆) and F (F∆) are not equivalent
with F denoting the Schur functor. For the BGG category O , there are major benefits of going integrally. By
studying some deformations of the blocks of the BGG category O of a semi-simple Lie algebra whose resolving
subcategories have larger values of Hemmer-Nakano dimension, we obtain that each block of the BGG category
O is Ringel self-dual. This application captures quite well how these techniques of this thesis are combined to
draw more results and explain situations which were inaccessible before without these techniques. We will just
briefly describe the idea of the proof of this result. For a non semi-simple block algebra of the BGG category O

of a complex semi-simple Lie algebra g, say A, whose simple modules are parametrized by a set of weights C ,
the dominant dimension of the characteristic tilting module of A is just one. So, the quality of the cover (A,P(ω))

is actually negative. Assume that g is not sl2 whose situation is easier to check directly. So, we can pass over to
a deformation (AD ,P(ω)) so that R(m)⊗R D = C over a suitable ring R (with unique maximal ideal m) making
the Hemmer-Nakano dimension of F (∆̃) with respect to (AD ,P(ω)) be at least one. This step already requires
Theorem 4.4.50 and all the machinery used to prove that result including results involving relative dominant
dimension. Then, to obtain a split quasi-hereditary cover involving the Ringel dual of AD we pass over to finite-
dimensional algebras over quotient fields of factors of R by prime ideals (Q(R/p)⊗R AD ). These algebras have
larger values of dominant dimension forcing the existence of the desired 0-faithful split quasi-hereditary cover
involving the Ringel dual of AD . Now observing that standard modules and costandard modules have the same
image by the Schur functor (in this context known as Soergel’s combinatorial functor) the results of Rouquier for
uniqueness of covers yields that these two previous covers are equivalent. Now, the argument ends by returning
to the block algebra we started with through the functor R(m)⊗R−, where m is the unique maximal ideal of R.

The same reasoning can be applied to obtain Ringel self-duality of Schur algebras SK(d,d) over fields of
characteristic different from two.

Outline of the thesis

Chapter 1 collects concepts and technical results required to understand the concept of a split quasi-hereditary
cover of a cellular algebra over any commutative Noetherian ring. Section 1.1 focus on the ground ring of
a Noetherian algebra and change of ground rings techniques. In Section 1.2, we collect results on relative
homological algebra following closely the work of [Hat63] and [Hoc56]. In Section 1.3, we gather results on
spectral sequences to be used later on. In section 1.4, we discuss the concept of a cover. In Sections 1.5 and
1.6 we collect results and give detailed expositions about split quasi-hereditary algebras and cellular algebras
over commutative Noetherian rings. In doing so, we aim to strengthen our knowledge in integral representation
theory, by providing more results from representation theory and clarifying, sometimes with different arguments,
the existing ones in integral representation theory. Moreover, we establish that cellular algebras with finite
global dimension are split quasi-hereditary over commutative Noetherian rings. For the material on split quasi-
hereditary algebras, we follow closely the work of [Rou08]. We deviate from his work to establish, for example,
that split quasi-hereditary algebras are locally semi-perfect. We clarify that split quasi-hereditary algebras are
completely determined by F (∆̃), as in the classical case. Here, the partial tilting modules are not unique (much
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less indecomposable if the ground ring is not connected) but the Ringel dual can be defined and we give details
on its construction in this integral setup. In Section 1.7, we conclude the chapter by collecting some results that
justify the usefulness of Schur functors.

As we mentioned, in the latter sections of Chapter 1, there are new results for integral representation theory
generalized from the finite-dimensional realm. However, in principle, the reader comfortable with the concepts
of split quasi-hereditary algebras, cellular algebras and covers may go directly to Chapter 2 using Chapter 1 as a
reference for the subsequent chapters of this thesis.

Chapter 2 introduces both the concepts of relative dominant dimension over (projective) Noetherian algebras
and of relative dominant dimension with respect to a module. The first case coincides with relative dominant
dimension with respect to a projective relative injective and relative strongly faithful module. The latter concept
is introduced here to replace the role of faithful modules in classical dominant dimension theory. For this ho-
mological invariant, we establish a relative version of Morita-Tachikawa correspondence and relative Mueller’s
characterization of relative dominant dimension over a (projective) Noetherian algebras in terms of homology
over the endomorphism algebra of a projective relative injective module. The key result for applications is the
reduction of the computation of relative dominant dimension over (projective) Noetherian algebras to computa-
tions of dominant dimension over finite-dimensional algebras over algebraically closed fields. Several concepts
like Morita and gendo-symmetric algebras are brought to the Noetherian realm.

Chapter 3 extends the concept of faithful split quasi-hereditary cover to A -covers by replacing the resolving
subcategory F (∆̃) with a resolving subcategory A of A-mod. To use change of ground rings on these covers, we
restrict ourselves to A -covers, where A is what we call a well behaved resolving subcategory of A-mod. This
allows us to study F (∆̃)-covers and A-proj-covers, simultaneously. Further, we see how to use change of ground
rings on covers to compute the quality of a cover. Such quality is made precise with the study of Hemmer-Nakano
dimension of a resolving subcategory (with respect to the Schur functor associated with the cover). Here, we
discuss how relative dominant dimension can be used to compute the Hemmer-Nakano dimension over certain
covers. Hence, this chapter establishes the framework and technical details to measure quality of covers. We
discuss the problem of existence of faithful covers, in particular, giving an example of a group algebra without
a faithful cover and the problem of uniqueness of faithful covers clarifying some imprecisions present in the
literature.

Chapter 4 contains the study of Schur algebras, q-Schur algebras with parameters n ≥ d over any commu-
tative ring and their connection with group algebras of the symmetric group and Iwahori-Hecke algebras of the
symmetric group, respectively. We also study deformations of blocks of the BGG category O of a semisimple
Lie algebra following closely the work of [GJ81]. We see that the connection between these deformations of
the BGG category O and deformations of the module category of the coinvariant algebra are stronger than the
connection between the BGG category O and the coinvariant algebra. The last part of chapter 4 contains several
examples to illustrate that some assumptions made along the previous chapters cannot be weakened.

Chapter 5 concerns the abstract framework to understanding the study of Schur algebras SR(n,d) with n < d

and the double centralizer property on V⊗d using cover theory. For this, we study relative codominant dimension
with respect to a module. This homological invariant admits an analogue of Mueller’s characterization of dom-
inant dimension and it can also be reduced to computations over finite-dimensional algebras over algebraically
closed fields. Furthermore, this invariant with respect to partial tilting modules of a quasi-hereditary algebra is
deeply connected with quasi-hereditary covers involving the Ringel dual. In this chapter, we obtain lower bounds
of relative dominant dimension with respect to a partial tilting module which is the image of a projective and
injective over a split quasi-hereditary under a Schur functor.
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Introduction

In Chapter 6, we obtain for the cellular algebra EndSR(n,d)(V
⊗d) (without restrictions on n and d) a faith-

ful split quasi-hereditary cover formed by the Ringel dual of the Schur algebra SR(n,d) and a projective (not
necessarily relative injective) module. This chapter is devoted to understanding this connection. In particular,
the quality of this connection does not drop by decreasing the parameter n. We finish using the technology of
Chapter 5 to reprove the Ringel self-duality of the BGG category O of a complex semisimple Lie algebra using
only integral representation theory.
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cokerφ The cokernel of a homomorphism φ

dimR The Krull dimension of a commutative ring R

dimK M The vector space dimension of M over a field K

domdim(A,R) M The relative dominant dimension of M over an R-algebra A

domdim(A,R) The relative dominant dimension of the regular module of the R-algebra A

EndA(M) The endomorphism algebra of an A-module M with multiplication given by composition of maps

ExtnA(M,N) The Ext group Rn HomA(M,−)(N)

Extn(A,R)(M,N) The relative Ext group Hn(HomR(PM,N)), where PM is an (A,R)-projective resolution for M
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List of Symbols

Further notation

We write ⊗R to denote the tensor product over R. We will write just ⊗ instead of ⊗R or ⊗A when no confusion
will arise. We write M ' N whenever M and N are isomorphic modules. For two categories C1 and C2, we write
C1 ' C2 whenever the two categories C1 and C2 are equivalent. For two rings (resp. two R-algebras) A and B,
we write A' B if they are isomorphic as rings (resp. as R-algebras). For two R-algebras A and B, we write A Mor∼ B

if A and B are Morita equivalent, that is, if the module categories A-Mod and B-Mod are equivalent. We write
F ' G in case the functors F and G are isomorphic, that is, if there exists a natural isomorphism between F and
G. Unless stated otherwise, we read arrows in a path algebra like composition of morphisms, that is, from the
right to the left.
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Chapter 1

Background

We assume the reader to be familiar with basic concepts in homological algebra such as projective resolutions,
Ext and Tor functors, homological dimensions (see for example [Rot09]), and elementary categorical concepts
in module theory such as monomorphisms, direct sums, kernels, pullbacks of modules and their duals (see for
example [Mac71]) and with representation theory of finite-dimensional algebras (see for example [ASS06] and
[ASS06]).

1.1 Basic results on algebras over commutative Noetherian rings

Most of the results contained in this section involve basic notions and facts for Noetherian commutative rings and
algebras over commutative Noetherian rings, available in the literature (see for example [Lan02] and [Rot09]).
Nevertheless, we will briefly review these subjects either by providing quick proofs or by just pointing out refer-
ences. This includes the concepts of generators/cogenerators, localization, completion functors, Krull dimension,
regular rings, and general techniques for change of ground ring. A reader familiar with these terms and notions
can skip this section.

In the following, unless stated otherwise, R is a commutative Noetherian ring. We assume that all rings
considered here have an identity. An R-algebra A is known as Noetherian R-algebra if R is a Noetherian
commutative ring and A is finitely generated as R-module. We assume throughout this thesis that all rings have
identity. An R-algebra A is called projective R-algebra if A is projective as R-module. An R-algebra A is called
projective Noetherian R-algebra if it is both a Noetherian R-algebra and a projective R-algebra.

An important fact for Noetherian rings is that we can still decompose a module into indecomposable modules,
however this decomposition may not be unique.

Lemma 1.1.1. Let R be a commutative Noetherian ring. Let A be a Noetherian R-algebra. Then, any M ∈ A-mod
is a finite direct sum of indecomposable A-modules.

Proof. Let M ∈ A-mod. Then, M is a Noetherian module. We proceed by contradiction. Assume that M cannot
be written as a finite direct sum of indecomposable A-modules. In particular, M is not indecomposable. So
M 'M0

⊕
K and K cannot be written as a finite sum of indecomposable modules. If both were a finite sum of

indecomposable modules, then M could be written as a finite direct sum of indecomposable modules. Hence
applying the same argument for K n times, we obtain

M 'M0
⊕
· · ·
⊕

Mn
⊕

K(n), (1.1.0.1)
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1.1. Basic results on algebras over commutative Noetherian rings

where K(n) cannot be written as a direct sum of indecomposable modules. Consider the chain

0(M0 (M0
⊕

M1 (M0
⊕

M1
⊕

M2 ( · · ·(M0
⊕
· · ·
⊕

Mn ( · · · . (1.1.0.2)

This chain does not stabilize. This contradicts the fact that M is a Noetherian module.

The following lemma gives a characterization of projective modules in terms of its dual.

Lemma 1.1.2 (Dual basis Lemma). Let A be an R-algebra. An A-module P is projective if and only if there exists

a generator set {ai : i ∈ I} for P and { fi : i ∈ I} ⊂ HomA(P,A) such that for any p ∈ P, fi(p) = 0 for almost all

i ∈ I and p = ∑i∈I fi(p)ai.

Proof. See [Lam99, §2B 2.9 Dual basis Lemma].

One application of this lemma is in the computation of all projective generators over commutative rings (see
Proposition 1.4.22).

For Noetherian rings, the category of all injective modules (over a Noetherian ring) has all colimits. The
existence of cokernels is immediate from the definition of injective module. The existence of arbitrary coproducts
is due to the following result.

Theorem 1.1.3. Let A be a Noetherian ring. Then, any direct sum of injective modules is injective.

Proof. See [Rot09, Chapter 3, Proposition 3.31].

In fact, this property, characterizes Noetherian rings (see [Rot09, Chapter 3, Theorem 3.39]).

Lemma 1.1.4. Let A be an algebra over Z. Any A-module M admits an injective hull.

Proof. See [Rot09, Theorem 3.45].

A common philosophy in this work is to deduce properties of algebras going through algebras over commu-
tative Noetherian rings. The justification behind Theorem 1.1.4 follows in line with this idea. In fact, every Z-
module can be embedded into some direct sum (possibly infinite) of copies of Q/Z which is Z-injective. Denote
this injective module by I. Now, every module M over an arbitrary Z-algebra A can be embedded in HomZ(A, I).
It turns out that HomZ(A, I) is injective over A. Finally, constructing the maximal essential extension of M in
HomZ(A, I) gives the injective hull of M.

Lemma 1.1.5. Let A be a Noetherian R-algebra Let M,N ∈ A-mod. Then, HomA(M,N) is finitely generated as

R-module.

Proof. It follows that M and N are finitely generated as R-modules. There is a surjective map Rn � M→ 0 for
some n ∈ N. Applying HomR(−,N) yields 0→ HomR(M,N)→ HomR(Rn,N) ' Nn exact. As R is Noetherian
and Nn is finitely generated, it follows that Nn is Noetherian. Since HomA(M,N)⊂HomR(M,N)⊂Nn, it follows
that HomA(M,N) is finitely generated.

1.1.1 Generators and Cogenerators

Generators in a category play a very important role as they distinguish morphisms. A generator in a module
category of an algebra encodes a lot of information about the module category of an algebra.
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Chapter 1. Background

Definition 1.1.6. Let A be an abelian category. An object P is a generator of A if the functor
HomA (P,−) : A → Set is faithful.

Theorem 1.1.7. Let A be an R-algebra and P ∈ A-Mod. The following assertions are equivalent.

(a) P is a generator of A-Mod.

(b) For any module M ∈ A-Mod, there exists an epimorphism
⊕

I P→M for some set I (possibly infinite).

(c) A ∈AddP.

Proof. See [Lam99, Theorem 18.8].

Using the analogous argument of [Lam99, Theorem 18.8] to A-mod we obtain

Theorem 1.1.8. Let A be an R-algebra and P ∈ A-mod. The following assertions are equivalent.

(a) P is a generator of A-mod.

(b) For any M ∈ A-mod, there exists an epimorphism Pt →M for some t > 0.

(c) A ∈ addP.

Proof. Assume that (c) holds. Let M ∈ A-mod. By definition, there exists a surjective A-homomorphism As→M

for some s > 0. By assumption, there exists a surjective A-homomorphism Pt → A. Hence, the composition
Pts→M is surjective. So (b) holds.

Assume that (b) holds. Let M,N ∈ A-mod. By assumption, there exists a surjective A-homomorphism
g ∈ HomA(Pt ,M). Let k j and π j be the canonical homomorphisms arising from the direct sum Pt such that
idPt = ∑ j k j ◦π j. Let 0 6= f ∈ HomA(M,N). Then, ∑ j f ◦ g ◦ k j ◦π j 6= 0. In particular, there exists j such that
f ◦g◦ k j 6= 0. Moreover, HomA(P,N) is an abelian group, therefore this shows that P is a generator of A-mod.

Assume now that (a) holds. Let H ∈ HomA(⊕g∈HomA(P,A)P,A) such that H(pg) = g(p), p ∈ P. Let (X , f ) be
the cokernel of H. In particular, X ∈ A-mod. If f 6= 0, then there exists g ∈ HomA(P,A) such that f g 6= 0 by the
faithfulness of HomA(P,−). This implies that there exists p ∈ P such that f H(pg) = f g(p) 6= 0. This contradicts
our assumption that f is the cokernel of H. So, f = 0, and therefore H is surjective. By considering the preimage
of the identity element in A we can choose a finite set I such that the restriction of H to ⊕IP is surjective. It
follows that A ∈ addP.

Proposition 1.1.9. Let A be an R-algebra. If P∈A-mod is a generator of A-mod, then it is a generator of A-Mod.

Proof. If P ∈ A-mod is a generator of A-mod, then we see by Theorem 1.1.8 that A ∈ addP. By Theorem 1.1.7,
P is a generator of A-Mod.

Being a generator is a categorical property.

Proposition 1.1.10. Let A and B be two categories and X be a generator of A . If F : A →B is an equivalence,

then FX is a generator of B.

Proof. Applying F gives a bijection HomA (X ,−) '−→ HomB(FX ,F−). F is essentially surjective, and conse-
quently HomB(FX ,−) is faithful.

Dually, we can define cogenerators.
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Definition 1.1.11. Let A be an abelian category. An object Q is a cogenerator of A if the functor
HomA (−,Q) : A → Set is faithful.

Theorem 1.1.12. Let A be an R-algebra and Q ∈ A-mod. Q is a cogenerator of A-Mod if and only if for any

N ∈ A-Mod and 0 6= x ∈ N, there exists g ∈HomA(N,Q) such that g(x) 6= 0 if and only if any N ∈ A-Mod can be

imbedded into a direct product (possibly infinite) of copies of Q.

Proof. See [Lam99, Proposition 19.6]

Theorem 1.1.13. Let {Si : i ∈ I} a complete set of simple A-modules. Then, U =
⊕

i∈I E(Si) is a cogenerator for

R-Mod, where E(Si) denotes the injective hull of Si, i ∈ I.

If A is a Noetherian ring, then U is an injective cogenerator.

Proof. See [Lam99, Theorem 19.10]. Each E(Si) is an injective module, and therefore
⊕

i∈I E(Si) is injective if
A is Noetherian.

Projective generators play an important role in Morita theory (see Section 1.4.4). Injective cogenerators are
very important to duality theory. More precisely, given an injective cogenerator Q the functor HomA(−,Q) pre-
serves and reflects exact sequences (see [Lam99, Proposition 4.8] replacing Q/Z by any injective cogenerator).
In 1.2.4 we will see an application of the existence of injective cogenerators.

1.1.2 Localization, Completion, Residue fields and change of rings

An important tool in commutative algebra is localization of a ring. This technique allows us to reduce prob-
lems in module theory of an algebra over a commutative ring to problems in module theories of algebras over
commutative local rings.

Definition 1.1.14. Let R be a commutative ring with identity and P a prime ideal of R. Fix S = R\P. We define
the equivalence relation on R×S, (a,s)∼ (a′,s′) : ⇔∃u ∈ S : u(as′−a′s) = 0. We denote the equivalence class
of (a,s) by a

s . Then, the localization of R at P is the set of all equivalence classes

RP = S−1R = {a
s

: a ∈ R,s ∈ S}.

RP is a ring with operations a
s +

a′
s′ =

as′+a′s
ss′ , a

s
a′
s′ =

aa′
ss′ .

The ideals in a localization are characterized in the following way.

Proposition 1.1.15. Let S be a multiplicative closed subset of a ring R. We have the ring homomorphism

φ : R→ S−1R, given by φ(r) = r
1 .

1. For any ideal I of R, Ie := { a
s : a ∈ I, s ∈ S} is the ideal of S−1R generated by the image φ(I).

2. For any ideal J of S−1R we have Jc := φ−1(J) = {a ∈ R : a
1 ∈ J} and (Jc)e = J.

3. φ induces a one to one correspondence
{

prime ideals in S−1R
}
←→{prime ideals I in R with I∩S = /0}.

Proof. See [Coh77, Proposition 2, p.396].

Corollary 1.1.16. [Coh77, p.397] Let R be a commutative ring with identity and P a prime ideal of R. There is

a one to one correspondence{
prime ideals in RP

}
←→{prime ideals I in R with I ⊂P} .
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Definition 1.1.17. Let S be a multiplicative set of a commutative ring R, and let M be an R-module. We define
the equivalence relation on M×S

(m,s)∼ (m′,s′)⇔∃u ∈ S : u(s′m− sm′) = 0.

We define the localization of M at S, S−1M = {m
s = (m,s) : m ∈ M,s ∈ S} with the usual operations. The

localization of M at a prime ideal P in R is S−1M with S = R\P.

Proposition 1.1.18. Let R be a commutative ring. Let S be a multiplicative set in a commutative ring R and let

M be an R-module. Then, S−1M ' S−1R⊗R M as S−1R-modules.

Proof. Consider the S−1R-homomorphism φ : S−1M→ S−1R⊗R M, given by φ(
m
s
) = 1

s ⊗m,
m
s
∈ S−1M, and

the S−1R-homomorphism ψ : S−1R⊗R M→ S−1M, given by ψ(
r
s
⊗m) =

rm
s
,

r
s
⊗m ∈ S−1R⊗R M. The homo-

morphisms ψ and φ are inverse to each other.

Proposition 1.1.19. Let S be a multiplicative set of a commutative ring R. Let A be an R-algebra. We have the

localization functor S−1R⊗R− : A-Mod→ S−1R⊗R A-Mod. For a prime ideal P of R, we denote the image of

an homomorphism φ by this functor φP.

The following result says that localization is exact (see for example [Coh77, Proposition 3, p.397]).

Proposition 1.1.20. Let S be a multiplicative set of a commutative ring R. Let 0→M1→M2→M3→ 0 be a

short exact sequence of R-modules. Then, the localized sequence 0→ S−1M1→ S−1M2→ S−1M3→ 0 is exact.

Proof. Since the localization can be written as the S−1R⊗R−, it is enough to see that localization preserves
monomorphisms. Let Φ ∈ HomR(M1,M2) be a monomorphism. Let

m
s
∈ kerS−1Φ. Then, there exists u ∈ S

such that u(1Φ(m)− s ·0) = 0 which implies Φ(um) = 0. So,
m
s
=

0
s
= 0. Every element of S−1R can be written

in the form
m
s

. Therefore, S−1Φ is a monomorphism.

As a corollary, localization at a multiplicative set preserves kernels, quotients, images and naturally direct
sums.

Lemma 1.1.21. Let S be a multiplicative set of a commutative ring R. Every submodule of S−1M is of the form

S−1N for some submodule N of M.

Proof. Let K be a submodule of S−1M. Consider x ∈ K. Hence, we can write x =
m
s
= 1

s
m
1 for some m ∈ M

and s ∈ S. Thus, K is generated by some set {mi
1 : i ∈ I,mi ∈ M}. Let N be the submodule of M generated by

{mi : i ∈ I}. Therefore, S−1N has the same generator set as K. So, S−1N = K.

Proposition 1.1.22. Let R be a commutative Noetherian ring. Let S be a multiplicative set of R. Then, S−1R is a

commutative Noetherian ring.

Proof. Every chain of modules of S−1R induces a chain of submodules of R. Since R is Noetherian, the chain of
modules of S−1R must stabilize.

As a consequence of Lemma 1.1.21, we can deduce that localization is a dense functor (see for example
Corollary 4.79 of [Rot09]).

Proposition 1.1.23. Let S be a multiplicative set of a commutative Noetherian ring R. Let A be a Noetherian

R-algebra. If M ∈ S−1R⊗R A-mod, then there exists N ∈ A-mod such that S−1R⊗R N 'M as S−1A-modules.
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Proof. We can consider a free S−1R⊗R A-free presentation 0→ X → S−1R⊗R At →M→ 0, where X is finitely
generated. By Lemma 1.1.21, X ' S−1R⊗R X0, X0 ∈ A-mod. Let N be the cokernel of X0 → At . In particular,
N ∈ A-mod. Since S−1R⊗R− is exact, S−1R⊗R N 'M.

For our purposes the following reformulation of [Coh77, Proposition 4, p.398] is more convenient. See also
Proposition 4.90 of [Rot09].

Proposition 1.1.24. Let R be a commutative ring. Let M be an R-module. The following assertions are equiva-

lent.

(i) MP = 0 for all P prime ideals in R;

(ii) Mm = 0 for all maximal ideals m in R;

(iii) M = 0.

Proof. The implications (iii) =⇒ (i) =⇒ (ii) are clear. Assume that M 6= 0 and that Mm = 0 for all maximal
ideals m in R. Let 0 6= x ∈M. The ideal

Ann(x) = {a ∈ R : ax = 0} (1.1.2.1)

is a proper ideal of R since 1 /∈ Ann(x). Hence, Ann(x) is contained in some maximal ideal m. By (ii), Mm = 0.
In particular, 1 ∈ S = R\m. Therefore, x

1 is zero in Mm. So, there exists u ∈ S such that 0 = ux. But this would
imply that u belongs to Ann(x)⊂m. This contradicts the existence of u ∈ S. Therefore, M = 0.

In the same direction, there is the following relation between the annihilator of an element of a module and
the prime ideals in the ring. It follows directly by applying the definitions of localization and annihilator.

Lemma 1.1.25. Let R be a commutative ring. Let M be an R-module and x ∈M.

(a) If Ann(x)⊂ p, where p is a prime ideal in R, then the localization element xp 6= 0 in Mp.

(b) If AnnM ⊂ p and M ∈ R-mod, where p is a prime ideal in R, then p ∈ Supp(M).

Proof. Assume, by contradiction, that xp = 0. Then, there exists s ∈ R\p such that sx = 0. This would imply that
s ∈ Ann(x)⊂ p. Hence, xp 6= 0.

Let p be a prime ideal in R such that AnnM ⊂ p. Recall that Supp(M) is the set of all prime ideals in R

satisfying Mp 6= 0. Assume, by contradiction, that Mp = 0. Then, for every x ∈M, there exists s ∈ R\p such that
sx = 0. Let {m1, . . . ,mt} be an R-generator set of M. Then, there exists, si ∈ R\p such that simi = 0. In particular,
s1 · · ·stmi = 0 for all i = 1, . . . , t. Hence, s1 · · ·stm = 0 for all m ∈M. Thus, s1 · · ·st ∈ AnnM ⊂ p. Thus, some si

should belong to p. This is a contradiction with the definition of si. Therefore, Mp 6= 0.

An application of this lemma is that we can characterize the exact sequences which split over R using local-
ization.

Lemma 1.1.26. Let R be a commutative ring. Let

δ : 0→ Y →M→ X → 0 (1.1.2.2)

be an R-exact such that the localization at each maximal ideal in R of δ is split. Then, δ splits over R.
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Proof. Ext1R(X ,Y ) is an R-module. If δ does not split, then δ 6= 0 in Ext1R(X ,Y ). In particular, 1R 6= Ann(δ ).
So Ann(δ ) is contained in some maximal ideal m in R. So, δm 6= 0. This contradicts our assumption on δ , and
therefore δ splits over R.

Properties that can be reduced to their study over local rings are knows as local properties.

Proposition 1.1.27. (see for example [Bou98, Theorem 1,p.88]) Let R be a commutative ring. Consider a

sequence of R-modules

0→M1→M2→M3→ 0. (1.1.2.3)

If the localised sequence of Rm-modules 0→ (M1)m→ (M2)m→ (M3)m→ 0 is exact for all maximal ideals m in

R, then the exact sequence (1.1.2.3) is exact.

Proof. It suffices to show a sequence L
φ−→M

ψ−→M is exact if all localizations Lm
φm−→Mm

ψm−−→Mm are exact at
every maximal ideal m in R.

Note that (imψ ◦ φ)mim(ψm ◦ φm) = 0 for every maximal ideal m in R. Hence, ψ ◦ φ = 0. Thus, we can
construct the quotient module kerψ/imφ . Further, (kerψ/imφ)m = (kerψ)m/(imφ)m = kerψm/imφm = 0,
for every maximal ideal m in R. Hence, kerψ/imφ = 0.

Corollary 1.1.28. Let R be a commutative ring. For any R-homomorphism φ : M→ N, the following assertions

are equivalent:

(i) φ is injective (surjective);

(ii) φp is injective (surjective for all prime ideals p in R;

(iii) φm is injective (surjective) for all maximal ideals m in R.

Furthermore, φ : M→ N is an isomorphism if and only if φm : Mm→ Nm is isomorphism for all maximal ideals

m in R.

All properties that can be expressed in terms of exact sequences are local as well.
Here, it is important that the isomorphism in the localizations arises as the localization of a map defined

globally between M and P. In fact, Mm ' Nm for all maximal ideals m of R does not imply M ' N, in general.
Moreover, two modules which are isomorphic at every localization at a prime ideal are said to be in the same
genus [CR06, §81]. However, this reasoning is valid if there exists a module which contains both N and M.

Lemma 1.1.29. Let R be a commutative ring. Let M,N,P be R-modules. Suppose that N,M ⊂ P. Then, N = M

if and only if Nm = Mm for all maximal ideals m of R.

Proof. Let π : P→ P/M be the canonical surjection. For every maximal ideal m in R,

π(N)m = πm(Nm) = πm(Mm) = 0. (1.1.2.4)

Thus, π(N) = 0. Therefore, N ⊂M. Symmetrically, we deduce that M ⊂ N. Hence, M = N.

We shall now see how the tensor product of two modules and the abelian group of homomorphisms between
two modules behave under change of ring (see for example Proposition 4.84 of [Rot09] for the particular case of
localization).
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Proposition 1.1.30. Let S be a commutative R-algebra and A be an R-algebra. Let M ∈ mod-A, N ∈ A-mod.

Then, S⊗R (M⊗A N)' S⊗R M⊗S⊗RA S⊗R N as S-modules.

Proof. Consider the map ψ : S× (M⊗A N)→ S⊗R M⊗S⊗RA S⊗R N, given by ψ(s,m⊗ n) = (s⊗m⊗ 1S⊗ n),

s ∈ S,m⊗n ∈M⊗A N. ψ is linear in each term. Further, for every r ∈ R,

ψ(rs,m⊗n) = rs⊗m⊗1S⊗n = s⊗ rm⊗1S⊗n = ψ(s,rm⊗n).

So ψ induces uniquely a map ψ ′ ∈Hom(S⊗R M⊗A N,S⊗R M⊗S⊗RA S⊗R N) which maps s⊗m⊗n to s⊗m⊗1S⊗n.
Such a map is an S-homomorphism since

ψ(ls⊗ (m⊗n)) = ls⊗m⊗1S⊗n = sl⊗m⊗1S⊗n = s⊗m · (l⊗1A)⊗1S⊗n

= s⊗m⊗ (l⊗1A) ·1S⊗n = s⊗m⊗ l⊗n = lψ(s⊗m⊗n),s, l ∈ S,m ∈M,n ∈ N.

Now, consider the map δ : S⊗R M×S⊗R N→ S⊗R M⊗A N, given by δ (s⊗m,s′⊗n) = ss′⊗ (m⊗n), m ∈M,

s,s′ ∈ S,n ∈ N. It is clear that this map is bilinear. Let l⊗a ∈ S⊗R A. Then,

δ (s⊗m · l⊗a,s′⊗n) = δ (sl⊗ma,s′⊗n) = (sl)s′⊗ (ma⊗n) = s(ls′)⊗ (m⊗an) = δ (s⊗m, ls′⊗an)

= δ (s⊗m,(l⊗a) · (s′⊗n)).

So, δ induces uniquely a map δ ′ ∈ HomS(S⊗R M⊗S⊗RA S⊗R N,S⊗R M⊗A N). The S-homomorphisms δ ′ and
ψ ′ are inverse to each other, and thus the result follows.

Proposition 1.1.31. Let S be a commutative R-algebra. Let A be an R-algebra. Let M ∈ A-proj and N ∈ A-mod.

Then, S⊗R HomA(M,N)' HomS⊗RA(S⊗R M,S⊗R N).

Proof. For each M ∈A-mod, consider the S-homomorphism ψM : S⊗R HomA(M,N)→ HomS⊗RA(S⊗R M,S⊗R N),
given by ψM(s⊗ f )(s′⊗m) = ss′⊗ f (m), s,s′ ∈ S, m∈M, f ∈HomA(M,N). The homomorphism ψM is compati-
ble with direct sums. This means that if M admits a decomposition M =M1⊕M2, then there exists a commutative
diagram

S⊗R HomA(M1⊕M2,N) HomS⊗RA(S⊗R (M1⊕M2),S⊗R N)

S⊗R HomA(X ,N)⊕S⊗R HomA(Y,N) HomS⊗RA(S⊗R X ,S⊗R N)⊕HomS⊗RA(S⊗R Y,S⊗R N)

ψM1⊕M2

' '
ψM1⊕ψM2

.

Let M = A. Then, there exists a commutative diagram

S⊗R HomA(A,N) HomS⊗RA(S⊗R A,S⊗R N)

S⊗R N S⊗R N

ψA

ψ1' ψ2' .

In fact, ψ2 ◦ψM(s⊗ f ) = ψ2(s⊗ f )(1S⊗1A) = s1S⊗ f (1A) = ψ1(s⊗ f ). Therefore, ψA is bijective. Since ψM is
compatible with direct sums it follows that ψM is an S-isomorphism whenever M ∈ A-proj.

Lemma 1.1.32. Let f : R→ S be a surjective R-algebra homomorphism. Let A be an R-algebra. If M and N are

A-modules, then HomS⊗RA(S⊗R M,S⊗R N)' HomA(S⊗R M,S⊗R N)' HomA(M,S⊗R N).

Proof. Let φ ∈ HomS⊗RA(S⊗R M,S⊗R N). Then, for any a ∈ A,s⊗R m ∈ S⊗R M,

φ(a(s⊗m)) = φ(s⊗am) = φ((1S⊗a)(s⊗m)) = (1S⊗a)φ(s⊗m) = aφ(s⊗a). (1.1.2.5)
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Thus, φ ∈ HomA(S⊗R M,S⊗R N). Now consider φ ∈ HomA(S⊗R M,S⊗R N). For any a ∈ A, m ∈M, s′,s ∈ S

we have

φ(s′⊗as⊗m) = φ(s′s⊗am) = φ(a(s′s⊗m)) = aφ( f (r′)s⊗m) = aφ(r′ f (1R)s⊗m) (1.1.2.6)

= r′aφ(1Ss⊗m) = (1S⊗ r′a)φ(s⊗m) = ( f (1Rr′)⊗a)φ(s⊗m) = s′⊗aφ(s⊗m), (1.1.2.7)

for some r′ ∈ R. Hence, φ ∈ HomS⊗RA(S⊗R M,S⊗R N). Therefore, the first isomorphism is established. Let
φ ∈HomA(M,S⊗R N). We extend φ to a map φ ′ ∈HomA(S⊗R M,S⊗R N) by imposing φ ′(s⊗m) = sφ(m). Let
φ ∈ HomA(S⊗R M,S⊗R N), we restrict it to φ| ∈ HomA(M,S⊗R N) by definining φ|(m) = φ(1S⊗m), m ∈M.
Using these two correspondences, we obtain the second isomorphism.

Lemma 1.1.33. Let M ∈ A-proj. Then, the R-homomorphism ςM,N,U : HomA(M,N)⊗R U → HomA(M,N⊗R U),

given by g⊗u 7→ g(−)⊗u is an R-isomorphism.

Proof. Consider M = A. The following diagram is commutative.

HomA(A,N)⊗R U HomA(M,N⊗R U)

N⊗R U N⊗R U

ςA,N,U

Both columns are isomorphisms, thus ςA,N,U is an isomorphism. Since this map is compatible with direct sums,
it follows that ςM,N,U is an isomorphism for every M ∈ A-proj and any N ∈ A-Mod, U ∈ R-Mod.

By considering the module U to be projective over the ground ring in Lemma 1.1.33, we can drop M being
projective over the algebra.

Lemma 1.1.34. Let M,N ∈ A-mod and U ∈ R-proj. Then, the R-homomorphism

ςM,N,U : HomA(M,N)⊗R U → HomA(M,N⊗R U), given by g⊗u 7→ g(−)⊗u is an R-isomorphism.

Proof. Since for all modules U1,U2 ∈ R-mod there are commutative diagrams

HomA(M,N)⊗R U1⊕HomA(M,N)⊗R U2 HomA(M,N⊗R U1)⊕HomA(M,N⊗R U2)

HomA(M,N)⊗R (U1⊕U2) HomA(M,N⊗R (U1⊕U2))

ςM,N,U1⊕ςM,N,U2
' '

ςM,N,U1⊕U2

, (1.1.2.8)

it is enough to show that ςM,N,R is an R-isomorphism. But, this isomorphism is obtained by regarding ςM,N,R in
the following commutative diagram

HomA(M,N)⊗R R HomA(M,N⊗R R)

HomA(M,N) HomA(M,N)

ςM,N,R

µHomA(M,N) HomA(M,µN) , (1.1.2.9)

where µX denotes the multiplication map for any R-module X . In fact, for all f ∈ HomA(M,N),

HomA(M,µN)◦ ςM,N,R( f ⊗1R)(m) = µN ◦ ςM,N,R( f ⊗1R)(m) = µN( f (m)⊗R 1R) = f (m), m ∈M.

Hence, ςM,N,R is an R-isomorphism.
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Proposition 1.1.35. (see for example Lemma 3.3.8 of [Rot09]) Let R be a commutative Noetherian ring. Let

A be a Noetherian R-algebra and let S be a commutative flat R-algebra. If M ∈ A-mod and N ∈ A-Mod, then

HomS⊗RA(S⊗R M,S⊗R N)' S⊗R HomA(M,N).

Proof. Since M ∈ A-mod we can write a projective presentation

P1→ P0→M→ 0, (1.1.2.10)

where P1,P0 are finitely generated projective A-modules. The functor S⊗R − is exact and consequently the
functors S⊗R HomA(−,N) and HomS⊗RA(−,S⊗R N) ◦ S⊗R− are contravariant left exact. So there exists the
commutative diagram with exact rows

0 S⊗R HomA(M,N) S⊗R HomA(P0,N) S⊗R HomA(P1,N)

0 HomS⊗RA(S⊗R M,S⊗R N) HomS⊗RA(S⊗R P0,S⊗R N) HomS⊗RA(S⊗R P1,S⊗R N)

ψM ψP0 ψP1 ,

where the homomorphisms ψM are given by Proposition 1.1.31. Using diagram chasing and Proposition 1.1.31
it follows that ψM is an isomorphism.

As application of Proposition 1.1.35, we see that Hom commutes with localizations over commutative
Noetherian rings.

The functors Ext and Tor also behave well under flat extensions of the ground ring.

Lemma 1.1.36. (see for example [Rot09, Proposition 3.3.10]) Let R be a commutative Noetherian ring with

identity. Let S be a flat commutative R-algebra. Let A be a projective Noetherian R-algebra. Then, the following

holds.

1. Let M,N ∈ A-mod. Then, S⊗R ExtiA(M,N)' ExtiS⊗RA(S⊗R M,S⊗R N) for every i≥ 0.

2. Let M ∈ A-mod and X ∈mod-A. Then, S⊗R Tori
A(X ,M)' Tori

S⊗RA(S⊗R X ,S⊗R M) for every i≥ 0.

Proof. Let i≥ 0. Let

P• : · · · → P1→ P0→M→ 0 (1.1.2.11)

be a projective A-resolution of M. Observe that each S⊗R Pi is an S⊗R A-summand of S⊗R Ati ' (S⊗R A)ti .
Hence, applying S⊗R− on (1.1.2.11) yields a projective S⊗R A-resolution of S⊗R M. Hence,

Tori
S⊗RA(S⊗R X ,S⊗R M) = Hi(S⊗R X⊗S⊗RA S⊗R P•)' Hi(S⊗R X⊗A P•)' S⊗R Hi(X⊗A P•) (1.1.2.12)

' S⊗R Tori
A(X ,M). (1.1.2.13)

Analogously, we have

S⊗R ExtiA(M,N)' S⊗R H i(HomA(P•,N))' H i(S⊗R HomA(P•,N)) (1.1.2.14)

' H i(HomS⊗RA(S⊗R P•,S⊗R N))' ExtiS⊗RA(S⊗R M,S⊗R N).

In order to deduce results from finite-dimensional algebras over fields to algebras over arbitrary commutative
rings, the residue field plays a crucial role.

For local rings, there is only one maximal ideal m. By the residue field associated with R (or just the
residue field when there is no risk of confusion) we mean the field R(m) = R/m. For arbitrary commutative
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rings, this notion is defined through localization. For every prime ideal p of R, we call R(p) = Rp/pp the residue
field associated with the ideal p. For any M ∈ R-mod we will denote by M(p) the module R(p)⊗R M for
any prime ideal p in R. For any Noetherian R-algebra A and any M ∈ A-mod, M(p) ∈ A(p)-mod. For a given
A-homomorphism φ we will denote by φ(p) the image of φ under the functor R(p)⊗R−.

Proposition 1.1.37. Let R be a commutative ring. If m is maximal ideal in R, then R(m) ' R/m as R-modules

and rings.

Proof. Let m be a maximal ideal in R. Let θ be the composition of canonical R-homomorphisms

R→ Rm→ Rm/mm. (1.1.2.15)

Let x ∈ m. Then, θ(x) = x
1 + mm = 0 + mm because x

1 ∈ mm. So θ induces an R-homomorphism
Θ : R/m→ Rm/mm. Let r +m such that r

1 ∈ mm. Hence, there exists t ∈ m, s ∈ R\m such that r
1 = t

s . So
there exists u ∈ R\m satisfying u(rs− t) = 0. This implies that urs ∈m. Consequently, r ∈m. So Θ is injective.
R/m is a field, so for every s ∈ R\m, s+m has an inverse t +m for some t ∈ R. In particular, st−1 ∈m. There-

fore,
t
1
− 1

s
=

st−1
s
∈mm. So every element

r
s
+mm is equal to

rt
1
+mm for some t ∈ R. This shows that Θ is

also surjective.

The following form of the Nakayama’s Lemma will be extensively used throughout this thesis.

Lemma 1.1.38 (Nakayama’s Lemma). Let R be a commutative ring.

(a) Denote by J the Jacobson radical of R. Let M ∈ R-mod. If JM = M, then M = 0.

(b) Let M,N ∈ R-mod. If φ : M→N is an R-homomorphism such that the quotient φ(m) is surjective for every

maximal ideal m in R, then φ is surjective.

(c) Let A be an R-algebra. If φ : M→ N is a surjective A-homomorphism and M ' N as R-modules, then φ is

an isomorphism.

Proof. For the statement (a) see [Lan02, Lemma 4.1].
(b). φ is surjective if and only if φm is surjective for every maximal ideal m in R. Hence, we can assume

without loss of generality that R is a local commutative ring. Let m be the unique maximal ideal in R. Observe
that M(m)' R/m⊗R M 'M/mM. So,

0 = (N/mN)/(imφ/mimφ) = (N/mN)/(imφ/imφ ∩mN) (1.1.2.16)

= (N/mN)/(imφ +mN/mN)' N/imφ +mN =⇒ N = imφ +mN. (1.1.2.17)

Further,

N/imφ = imφ +mN/imφ 'mN/imφ ∩mN 'mN/mimφ 'm(N/imφ). (1.1.2.18)

By Nakayama’s Lemma (a), N = imφ . So φ is surjective. Let f ∈ HomR(M,N) be an isomorphism. M can be
regarded as an R[x]-module by imposing x ·m = f ◦ φ(m), m ∈ M. Since f ◦ φ is surjective, R[x]xM = M. By
Nakayama’s Lemma, there exists y ∈ R[x] such that (1+ xy)M = 0. Let u ∈ kerφ . We have, 0 = (1+ xy)(u) =

u+ y f ◦φ(u) = u. So, φ is also injective.

Lemma 1.1.39. Let R be a commutative ring. Let N ∈ R-proj. Let ψ ∈ HomR(M,N) such that ψ(m) is an

isomorphism for every maximal ideal m in R. Then, ψ is an isomorphism.
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Proof. By Nakayama’s Lemma 1.1.38, ψ is surjective. Since N ∈ R-proj there exists an R-homomorphism
δ : N→M such that ψ ◦δ = idN . In particular, δ is injective. Applying R(m)⊗R−, we get ψ(m)◦δ (m)= idN(m).
Thus, δ (m) is an isomorphism for every maximal ideal m in R. By Nakayama’s Lemma, δ is surjective. Thus, δ

is an isomorphism, and ψ is an isomorphism as well.

Lemma 1.1.40. Let R be a commutative ring. Let m,Q be maximal distinct ideals in R. Then, the following

holds.

1. The localizations mQ = RQ coincide and (R/m)Q = 0.

2. (Rm)Q ' (RQ)m.

3. (R/m)m ' Rm/mm and Rm⊗R Rm as Rm-modules.

4. For any M ∈ R-mod, Mm ' (Mm)m as Rm-modules.

Proof. Since m,Q are maximal distinct ideals, there exists x ∈ m such that x ∈ R\Q. Hence, for every r, t ∈ R,
s ∈ R\Q

(r+m)⊗ t
s
= (r+m)⊗ xt

xs
= (xr+m)⊗ t

xs
= 0. (1.1.2.19)

Thus, (R/m)Q = 0. The localization at Q is exact, hence mQ = RQ.
Consider the exact sequence 0→ m→ R→ R/m→ 0. By localizing at m we obtain the exact sequence

0 → mm → Rm → (R/m)m → 0. By uniqueness of cokernel, (R/m)m ' Rm/mm. Statement 2 is due the
following fact (Rm)Q ' Rm⊗R RQ ' (RQ)m.

Consider the homomorphisms f : Rm → Rm⊗R Rm, given by f (
t
s
) = 1Rm ⊗

t
s

, and g : Rm⊗R Rm→ Rm,

given by g(
t
s
⊗ p

q
) =

t p
sq

. These homomorphisms are inverse to each other because

f g(
t
s
⊗ p

q
) =

1
1
⊗ t p

sq
=

ts
s
⊗ p

sq
=

t
s
⊗ ps

sq
=

t
s
⊗ p

q
∈ Rm⊗R Rm. (1.1.2.20)

It follows also that (Mm)m ' Rm⊗R Mm ' Rm⊗R Rm⊗R M ' Rm⊗R M = Mm.

Proposition 1.1.41. Let R be a commutative Noetherian ring. Let A be an R-algebra.

(a) Let N ∈ A-mod. If N(m) = 0 for any maximal ideal m in R, then N = 0.

(b) Let m be a maximal ideal ideal in R. Then, for any M ∈ A(m)-mod, M(m)'M as A(m)-modules.

(c) For any maximal ideal Q 6=m, M(m)Q = 0.

(d) If R(m) is flat over R for some maximal ideal m in R, then R is a field.

Proof. Let N ∈ A-mod such that N(m) = 0 for every maximal ideal m in R. N(m) is isomorphic to Nm/mNm.
By Nakayama’s Lemma, Nm = 0 for every maximal ideal m in R. It follows that N = 0 and consequently (a)

holds.
Let M ∈ A(m)-mod. We can regard M as A-module by restriction of scalars. Then, M(m) ' R/m⊗R M '

M/mM. But M is an A/mA-module, and so mM = 0. So (b) holds.
(c) holds since

M(m)Q = M(m)⊗R RQ 'M⊗R (R/m)Q = 0. (1.1.2.21)
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Assume that R(m) is flat over R for some maximal ideal m. Then, R(m)m = Rm/mm = R/m is flat over Rm.
So we can assume without loss of generality that R is a local ring. Consider the exact sequence

0→m→ R→ R/m→ 0. (1.1.2.22)

Applying R(m)⊗R− yields by assumption the exact sequence

0→ R/m⊗R m→ R/m→ R/m⊗R R/m→ 0. (1.1.2.23)

Now since R/m → R/m⊗R R/m is the inverse R-homomorphism of the multiplication map it follows that
m/m2 = R/m⊗R m= 0. By Nakayama’s Lemma, m= 0. So R = R(m) is a field.

Here, notice that N being finitely generated is fundamental. For example, we can consider Q as Z-module
and Q(Zp) =Q⊗ZZ/Zp = 0 for every prime element of Z, however Q 6= 0.

Using the following results, we see that projective modules are the objects which are locally free. Moreover,
in homological algebra the Nakayama’s Lemma may take the following forms.

Proposition 1.1.42. A finitely generated projective module M over a local commutative ring is free.

Proof. See, for example, [Wei03, Proposition 4.3.11].

Lemma 1.1.43. Let R be local commutative Noetherian ring with maximal ideal m. Let M ∈ R-mod. Then,

pdim(M)≤ n if and only if Torn+1
R (M,R/m) = 0.

Proof. See [Rot09, Lemma 8.53].

Theorem 1.1.44. Let R be a commutative Noetherian ring. Let M be a finitely generated R-module. The following

assertions are equivalent.

(i) M is a projective R-module;

(ii) Mp is projective Rp-module for every prime ideal p in R;

(iii) Mm is free Mm-module for every maximal ideal m in R;

(iv) TorRm
1 (Mm,Rm/mm) = 0 for every maximal ideal m in R;

(v) TorR
1 (M,R/m) = 0 for every maximal ideal m in R.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are clear. Assume that (iii) holds. Rm is a local commutative
Noetherian ring, and therefore taking n = 0 in Lemma 1.1.43 implies that (iv) is satisfied.

Assume that (iv) holds. Let m,Q be maximal ideals in R. Then,

TorR
1 (M,R/m)Q ' TorRQ

1 (MQ,(R/m)Q) = TorRQ
1 (MQ,0) = 0, (1.1.2.24)

unless Q is equal to m. In such a case, TorRQ
1 (MQ,(R/m)Q) = TorRm

1 (Mm,Rm/mm) = 0 by (iv). Hence, (v)
holds.

Using Lemma 1.1.43, the implications (v) =⇒ (iv) =⇒ (iii) are clear. Assume that (iii) holds. Let
f ∈ HomR(X ,Y ) be a surjective map. Then, fm is surjective for every maximal ideal m in R. By assumption,
the map HomRm(Mm, fm) = HomR(M, f )m is surjective for every maximal ideal m in R. Hence, HomR(M, f ) is
surjective. So HomR(M,−) is exact, and therefore M is projective.

Similarly, the following is the version of Theorem 1.1.44 for projective R-algebras.
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Theorem 1.1.45. Let R be a commutative Noetherian ring. Let A be a projective R-algebra. The following

assertions are equivalent.

(i) M is a projective A-module;

(ii) The localization Mm is a projective Am-module for every maximal ideal m of R;

(iii) M is a projective R-module and Ext1A(M,N) = 0 for all N ∈ R-proj∩A-mod.

Proof. Assume that (i) holds. Fix m a maximal ideal in R. Mm = Rm⊗R M is projective over Rm⊗R A = Am.
So, (ii) holds.

Assume that (ii) is satisfied. By assumption, A is projective over R and consequently Am is projective over
Rm for every maximal ideal m in R. So, for each maximal ideal m in R Mm is projective over Rm. In particular,
M is projective over R. Let N ∈ A-mod∩R-proj. Then,

Ext1A(M,N)m ' Ext1Am
(Mm,Nm) = 0,∀m maximal ideal =⇒ Ext1A(M,N) = 0. (1.1.2.25)

Hence, (iii) holds.
Assume that (iii) holds. Let δ : 0→ X → P→ M → 0 be a projective A-presentation of M. Since R is

Noetherian, X can be chosen to be finitely generated over A. As M is projective over R, δ splits over R. Therefore,
X ∈ A-mod∩R-proj. By assumption, δ splits over A. Thus, (i) follows.

Corollary 1.1.46. Let R be a local commutative Noetherian ring with maximal ideal m. Then, gldimR ≤ n if

and only if Torn+1
R (R/m,R/m) = 0. In particular, gldimR = pdimR(R/m).

Proof. See [Rot09, Theorem 8.55].

Theorem 1.1.47. If R is a commutative Noetherian ring, then

gldim(R) = sup{gldim(Rm) : m maximal ideal in R}.

Proof. See [Rot09, Proposition 8.52].

Another useful tool for commutative rings is completion with respect to ideals. In mathematics, completions
of rings are very common. For example, the ring of real numbers is the completion of the ring of rational numbers
with respect to the usual norm. For our purposes, it is enough to consider completion of Noetherian rings with
respect to maximal ideals. This completion is known as the m-adic completion. For a detailed exposition of this
topic we refer to [GS71].

Let R be a commutative Noetherian ring and m be a maximal ideal in R. There is a (possibly infinite) chain

m⊃m2 ⊃ ·· · ⊃mn ⊃ ·· · . (1.1.2.26)

A sequence (xn)n∈N of elements of R is called a Cauchy sequence if for every natural number r, there exists a
natural number N such that xn−xs ∈mr for every n,s≥N. In a complete ring, every Cauchy sequence converges
for an element in R. Hence, this motivates the following construction:

For every n ∈ N, mn+1 is contained in the kernel of the canonical homomorphism R→ R/mn. Hence, there
exists a map πn ∈ HomR(R/mn+1,R/mn) which maps z+mn+1 to z+mn. The completion of the ring R (with
respect to m) is the inverse limit lim

←
R/mn of the sequence of homomorphisms

· · · π2−→ R/m2 π1−→ R/m. (1.1.2.27)
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We will denote a completion of the ring R (with respect to m) by R̂. So,

R̂ = lim
←

R/mn = {(an +mn)n∈N ∈ΠnR/mn|πn(an+1 +mn+1) = an +mn, ∀n}. (1.1.2.28)

So the elements of R̂ are sequences (an +mn)n∈N such that an+1−an ∈mn for all n. Hence, R̂ can be regarded as
an R-module. We can also see that R̂ is a commutative subring of the direct product of commutative rings R/mn

over all n ∈ N.
Analogously, for each M ∈ R-mod, using the chain mN ⊃ m2M ⊃ ·· · we can define the completion of the

module M (with respect to m). This module is denoted by M̂. Here are some properties of completion.

Proposition 1.1.48. Let R be a commutative Noetherian ring. Then, the following holds.

(i) For any M ∈ R-mod, M̂ = R̂⊗R M.

(ii) R̂ is a flat commutative Noetherian R-algebra;

(iii) If R is local, then R̂ is faithfully flat local commutative Noetherian R-algebra.

(iv) For any M ∈ R-mod and any maximal ideal m in R, M̂m(m̂m) = M̂(m).

Proof. For (i) see [GS71, Theorem 4.6].
By Theorem 5.1 of [GS71], R̂ is a Noetherian R-algebra. By Theorem 4.9 of [GS71], (ii) follows.
If R is a local ring, then Proposition 1.6 of [GS71] implies that R is a Zariski ring. By Theorem 4.9 and

Corollary 2.20 of [GS71] (iii) holds.
Let M ∈ R-mod. Then,

M̂m(m̂m) = Mm⊗Rm R̂m(m̂m)'Mm⊗Rm R̂m⊗R̂m
R̂m/m̂m 'M⊗R Rm⊗Rm R̂m/m̂m (1.1.2.29)

'M⊗R R̂m/m̂m 'M⊗R R̂m/mm 'M⊗R Rm/mm⊗R R̂'M(m)⊗R R̂' M̂(m).

For us, the main reason to be interested in algebras over local complete rings is the existence of projective
covers and over such algebras decompositions into indecomposable modules are essentially unique.

Theorem 1.1.49. Let R be a local complete commutative Noetherian ring. Let A be a Noetherian R-algebra.

Then, A-mod is a Krull-Schmidt category.

Proof. See [Rei03, pages 88, 89].

This fact allows us to characterize properties of A-mod through the module categories A(m)-mod where m is
a maximal ideal in R.

Lemma 1.1.50. Let R be a commutative Noetherian ring. Let A projective Noetherian R-algebra. Then, M is

projective A-module if and only if M̂m is projective over Âm for every maximal ideal m in R. In particular, if

M(m) is projective over A(m) for every maximal ideal m in R, then M̂m(m̂m) is projective over Âm(m̂m) for

every maximal ideal m of R.

Proof. Assume that M is a projective A-module. Then, M̂m = Mm⊗R R̂ is a projective Am⊗R R̂ = Âm-module
for every maximal ideal m in R. Assume that M̂m is projective over Âm for every maximal ideal m in R. Let
N ∈ Am-mod. Then,

̂Ext1Am
(Mm,N)' Ext1

Âm
(M̂m, N̂) = 0 (1.1.2.30)
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As completion over a local ring is faithfully flat, then Ext1Am
(Mm,N) = 0. Consequently, Mm is projective over

Am for every maximal ideal m in R. Thus, M is projective over A. Let m be a maximal ideal in R. Assume that
M(m) is projective over A(m). Then, M̂m(m̂m)'M(m)⊗R R̂ is projective over A(m)⊗R R̂' Âm(m̂m).

The following result is [CPS90, Lemma 3.3.2].

Theorem 1.1.51. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Let

M ∈ A-mod. Then, M is projective if and only if M ∈ R-proj and M(m) is projective over A(m) for every maximal

ideal m in R.

Proof. Assume that M is projective over A. Then, M is A-summand of At for some t > 0. In particular, M is
an R-summand of At . Since A is projective over R, it follows that M is projective over R. On other hand, tensor
product commutes with direct sum, hence A(m)t ' At ⊗R R(m)'M⊗R R(m)⊕K for every maximal ideal m in
R. Thus, M(m) is a projective over A(m) for every maximal ideal m in R.

Conversely, assume that M ∈ R-proj and M(m) is projective over A(m) for every maximal ideal m in R. In
view of Theorem 1.1.45 and Lemma 1.1.50, we can assume without loss of generality that R is a local complete
Noetherian ring. So, A is semi-perfect ring. Hence, the endomorphism ring of each projective indecompos-
able module of A-mod is a local ring. Let P be an indecomposable projective A-module. Then, by Proposi-
tion 1.1.31 and Lemma 1.4.32, EndA(m)(P(m))' EndA(P)(m)' EndA(P)/mEndA(P). Because EndA(P) has a
unique maximal ideal, EndA(m)(P(m)) has a unique maximal ideal by the ideal correspondence. In particular,
EndA(m)(P(m)) is local, and therefore P(m) is a projective indecomposable A(m)-module.

Let (P, p) be a projective cover of M over A. Applying R(m)⊗R−, it follows that p(m) is surjective. Since
M(m) is projective over A(m), p(m) splits over A(m). By Krull-Remak-Schmidt theorem, we can write M(m)

into indecomposable projective A(m)-modules. Since the projective indecomposable modules of A(m)-mod are
written in the form Pi(m) for some projective indecomposable module Pi ∈ A-proj, it follows that there exists
k : Q ↪→ P such that p(m) ◦ k(m) is an isomorphism for some summand Q of P. By Nakayama’s Lemma, p ◦ k

is surjective. Since P is the projective cover of M, we must have Q = P. Hence, p(m) is an isomorphism. Since
M ∈ R-proj, p is an isomorphism by Lemma 1.1.39. Thus, M ∈ A-proj.

Theorem 1.1.52. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Let

M ∈ A-mod∩R-proj and i ≥ 0. Then, pdimA M ≤ i if and only if pdimA(m) M(m) ≤ i for every maximal ideal m

in R.

Proof. Assume that pdimA M ≤ i. Then, there exists a projective A-resolution of length i. As M ∈ R-proj, this
resolution is split over R. Therefore, it remains exact under the functor R(m)⊗R− for every maximal ideal m in
R. Hence, pdimA(m) M(m)≤ i for every maximal ideal m in R.

Conversely, assume that pdimA(m) M(m) ≤ i for every maximal ideal m in R. We will proceed by induction
on i to show that pdimA M ≤ i. The case i = 0 is Theorem 1.1.51. Assume that the result holds for a certain t > 0
and assume that pdimA(m) M(m)≤ t +1 for every maximal ideal m in R. Consider the A-exact sequence

0→ Kt → Pt → ··· → P1→ P0→M→ 0, (1.1.2.31)

where each Pk ∈ A-proj, 0 ≤ k ≤ t. Again, (1.1.2.31) is split over R and it remains exact under R(m)⊗R− for
every maximal ideal m in R. In particular, Kt ∈ R-proj. Because of pdimA(m) M(m) ≤ t + 1 and Pk(m) being
projective over A(m), Kt(m) ∈ A(m)-proj for every maximal ideal m in R. By Theorem 1.1.51, Kt ∈ A-proj.
Now, the exact sequence (1.1.2.31) gives that pdimA M ≤ t +1.
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1.1.3 Krull dimension and regular rings

The Krull dimension of a commutative ring R is the supremum of the lengths of chains of distinct prime ideals in
R. We denote by dimR the Krull dimension of R. This definition was introduced to provide a notion of dimension
of an affine algebraic variety. In fact, the dimension of an affine algebraic variety can be defined as the Krull
dimension of its coordinate ring. We refer to [Eis95] for more details.

Lemma 1.1.53. Let R be a commutative ring. The following assertions are equivalent.

1. R is an Artinian ring;

2. R is a Noetherian ring with dimR = 0;

3. R is a Noetherian ring and any prime ideal in R is maximal.

Proof. See Theorem 2.14 of [Eis95].

It follows that the Krull dimension of a Noetherian ring measures how far the ring is from being Artinian. It
is commonly known that the Krull dimension can be computed locally.

Proposition 1.1.54. If R is a commutative Noetherian ring, then

dim(R) = sup{dim(Rm) : m maximal ideal in R}.

Proof. This is consequence of Proposition 1.1.16. In fact, every chain of prime ideals in Rm is induced by a
chain of prime ideals in R which are contained in R. So, dimR≥ dimRm for every maximal ideal m in R. On the
other hand, every chain of prime ideals in R ends with a maximal ideal, say m. Localizing at m gives a chain of
prime ideals with the same length in Rm. Thus, the result follows.

Lemma 1.1.55. Let R be a local commutative Noetherian ring with maximal ideal m. Fix R(m) = R/m. Then,

the following assertions hold.

(a) The number dimR(m)m/m2 is the minimum number of generators for the ideal m;

(b) dimR(m)≤ dimR(m)m/m2 < ∞.

Proof. For (a) see Proposition 11.165 of [Rot10]. For statement (b) see Corollary 11.166 of [Rot10].

The value dimR(m)m/m2 denoted by V (R) is called the embedding dimension of the ring R. The embedding
dimension of a local ring R arises as the dimension of a tangent of a point of an algebraic variety (see [Rot09,
Example 8.57]).

We say that a local commutative Noetherian ring is regular if dimR =V (R). Geometrically, this means that
the dimension of the tangent space at each point is exactly the dimension of the affine variety. In such case, the
affine variety is called smooth. A commutative Noetherian ring is regular if each localization Rm is a regular
ring for every maximal ideal m in R.

Proposition 1.1.56. Let R be a local commutative Noetherian ring with maximal ideal m. Let x ∈m/m2. Then,

V (R/Rx) =V (R)−1.

Proof. See [Rot09, Proposition 8.56].

Lemma 1.1.57. Let R be a local regular ring. Then, the following hold.
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(a) Let x ∈m/m2. Then, R/Rx is regular Noetherian.

(b) If dimR = 0, then R is a field.

(c) R is an integral domain.

Proof. If dimR = 0 = dimR(m)m/m2, then m/m2 = 0. By Nakayama’s Lemma m = 0. Thus, R is a field. For
the remaining see, for example, [Wei03, Proposition 4.4.5].

Note however that not every regular ring is an integral domain. For example, Z/6Z is a regular ring but it is
not an integral domain.

Lemma 1.1.58. Let R be a local commutative Noetherian ring. If x ∈ m/m2 is a non-zero divisor and R/Rx is

regular, then R is regular.

Proof. It follows from the proof of Theorem 8.62 of [Rot09].

Theorem 1.1.59. A local commutative Noetherian ring is regular if and only if gldim(R)< ∞. Moreover, in this

case, gldim(R) = dimR =V (R) = pdimR(R/m).

Proof. See [Rot09, Theorem 8.62, Proposition 8.60].

Theorem 1.1.60. If R is a regular local ring and p is a prime ideal in R, then Rp is a regular local ring.

Proof. See [Rot09, Corollary 8.63].

In particular, if a commutative Noetherian ring R has finite global dimension, then for every maximal ideal
m in R the localization Rm is a regular local ring.

Proposition 1.1.61. Let R be a commutative regular ring. Then, dimR[X1, . . . ,Xn] = n+dimR.

Proof. See for example Theorem A of [Eis95] for R a field. See, for example, Theorem 8.37 of [Rot09] for the
general case.

This gives explicitly that the dimension of an affine space of dimension n has indeed dimension n.
Complete local regular rings are completely described by Cohen’s structure theorem [Coh46] (see also [Ive14,

Corollary 10.32, Corollary 10.33]). Using this characterization we can state that these rings are faithfully flat
over some complete discrete valuation ring or over some field.

Theorem 1.1.62. Let R be a complete local regular ring. Then, there exists a complete discrete valuation ring

or a field k making R a faithfully flat k-algebra.

Proof. There are two cases. Either R is equicharacteristic, that is, the characteristic of R equals to the character-
istici of R/m, m maximal ideal of R, or R is not equicharacteristic.

Assume that R is equicharacteristic. By Corollary 10.32 of [Ive14], there exists a field k such that R '
k[|X1, . . . ,Xn|], where n is the Krull dimension of R. It is clear that R is faithfully flat over k.

Assume now that R is not equicharacteristic. By Corollary 10.33 of [Ive14], there exists a discrete valuation
ring k with maximal ideal kπ such that R ' k[|X1, . . . Xn|]/(a), where n is the Krull dimension of R and a is a
power series belonging to (X1, . . . ,Xn,π)\(X1, . . . ,Xn,π)

2.
We will start by showing the flatness of R over k. By Theorem 1.1.44, we want to show that Tork

1(R,k/kπ)= 0.
In other words, we want to show that k[|X1, . . . Xn|]/(a) has no π-torsion. Let g∈ k[|X1, . . . Xn|] such that πg∈ (a).
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Since R is an integral domain, (a) is a prime ideal. So, we must have g ∈ (a) or π ∈ (a). But if the second case
holds, then the characteristic of R should be positive which contradicts the fact that R is not equicharacteristic. So,
g belongs to (a). This shows that R is flat over k. Now, to show that R is faithfully flat over k, it is enough to show
that πk[|X1, . . . Xn|]/(a) 6= k[|X1, . . . Xn|]/(a) (see [GS71]). Assume that πk[|X1, . . . Xn|]/(a) = k[|X1, . . . Xn|]/(a).
Then, there exists f ∈ k[|X1, . . . Xn|] such that 1− π f ∈ (a). Consequently, there exists l ∈ k[|X1, . . . Xn|] such
that 1 = π f + ka ∈ (X1, . . . ,Xn,π). This cannot happen since (X1, . . . ,Xn,π) is a maximal ideal. Therefore, R is
faithfully flat over k.

1.1.4 Standard duality on Hom and ⊗

A commonly known fact which will be extensively used in this and the following chapters is the Tensor-Hom
adjunction.

Lemma 1.1.63 (Tensor-Hom adjunction). Let R,S be two rings. Let N be a left S-module, U an (R,S)-bimodule

and W a left R-module. Then, the canonical maps

σ : HomR(U⊗S N,W )→ HomS(N,HomR(U,W )) and ρ : HomS(N,HomR(U,W ))→ HomR(U⊗S N,W )

given by

σ( f )(n)(u) = f (u⊗n), f ∈ HomR(U⊗S N,W ), n ∈ N, u ∈U (1.1.4.1)

ρ( f )(u⊗n) = f (n)(u), f ∈ HomS(N,HomR(U,W )), u⊗n ∈U⊗S N, (1.1.4.2)

are inverses of each other.

Proof. See Lemma 1.7.9 of [Zim14].

The following results are commonly known for finite-dimensional algebras. The usual arguments carry over
to this setting if we restrict to the A-modules which are projective over the ground ring.

Proposition 1.1.64. Let A be a Noetherian R-algebra. Assume M,N ∈ A-mod∩R-proj then the map

ψM,N : HomA(M,N)→ HomAop(DN,DM), given by, ψM,N(g)(h) = h ◦ g, g ∈ HomA(M,N), h ∈ DN, is a

(EndA(M)op,EndA(N)op)-bimodule isomorphism, where D is the standard duality.

Proof. Consider the map eM : M → DDM, given by eM(m)(g) = g(m). This is an (A,EndA(M)op)-bimodule
homomorphism. Consider M = Rn. Then, we have an R-basis for DM {e∗i , 1 ≤ i ≤ n}. We claim that eM is
injective. In fact, let m = ∑i αiei ∈M such that eM(m) = 0. Then,

0 = eM

(
∑

i
αiei

)
(e∗j) = α j, ∀1≤ j ≤ n ⇒ m = 0.

Now consider h ∈ DDM. Thus, h = ∑i αi(e∗i )
∗. Let m = ∑i αiei. Then, eM(m)(e∗j) = α j = h(e∗j). Thus, eM is

an (A,EndA(M)op)-bimodule isomorphism. Now assume M is finitely generated projective over R. There exists
n ∈ N such that Rn 'M

⊕
K. Hence, DDRn ' DDM

⊕
DDK and we have that the map eM is compatible with

direct sums. So, eM is (A,EndA(M)op)-bimodule isomorphism.
Define the map δ : HomA(DDM,DDN)→HomA(M,N), given by δ (h)= e−1

N ◦h◦eM , h∈HomA(DDM,DDN).
This map is bijective since eM and e−1

N are. Moreover, δ (h) is given by the commutative diagram
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M N

DDM DDN

δ (h)

eM eN

h

.

Now consider g ∈ HomA(M,N), m ∈M and f ∈ DN. We deduce that

eN ◦δ ◦ψDN,DM ◦ψM,N(g)(m)( f ) = eN ◦δ (ψDN,DM(ψM,N(g)))(m)( f ) = ψDN,DM(ψM,N(g))◦ eM(m)( f ) =

= eM(m)◦ψM,N(g)( f ) = eM(m)( f ◦g) = f ◦g(m). (1.1.4.3)

On the other hand, eN ◦ idHomA(M,N)(g)(m)( f ) = eN ◦g(m)( f ) = eN(g(m))( f ) = f ◦g(m).

Therefore, eN ◦ idHomA(M,N) = eN ◦ δ ◦ψDN,DM ◦ψM,N . Hence, δ ◦ψDN,DM ◦ψM,N = idHomA(M,N). As δ is
bijective, ψDN,DM is surjective. By a symmetric argument, we obtain δ ′ ◦ψDDN,DDM ◦ψDM,DN = idHomA(DM,DN).
Hence, ψDM,DN is also an injective map. It follows that ψM,N is a bijective map. It remains to see that ψM,N is an
(EndA(M)op,EndA(N)op)-bimodule homomorphism.

For every g ∈ HomA(M,N), h ∈ DN, m ∈M and b ∈ B we have

ψM,N(b ·g)(h)(m) = h◦ (b ·g)(m) = h(g(m ·b)) = (b · (h◦g))(m) = (b · (ψM,N(g)(h)))(m)

= (b ·ψ(g))(h)(m).

The argument for ψM,N being a right EndA(N)op-module homomorphism is analogous.

Proposition 1.1.65. Let A be a Noetherian R-algebra. Assume M,N ∈ A-mod∩R-proj. Then, the map

κM,N : HomA(M,N)→ D(DN⊗A M),given by κ(g)( f ⊗m) = f (g(m)), g ∈ HomA(M,N), f ∈ DN, m ∈M

is an (EndA(M)op,EndA(N)op)-bimodule isomorphism.

Moreover if DN⊗A M ∈ R-proj the map

ιM,N : DN⊗A M→ DHomA(M,N),given by ι( f ⊗m)(g) = f (g(m)), f ⊗m ∈ DN⊗A M, g ∈ HomA(M,N)

is an (EndA(N)op,EndA(M)op)-bimodule isomorphism.

Proof. The map HomA(M,eN) : HomA(M,N)→HomA(M,DDN) is an (EndA(M)op,EndA(N)op)-bimodule iso-
morphism where eN : N → DDN is the canonical (A,EndA(N)op)-bimodule isomorphism. Consider
ρ : HomA(M,DDM)→ D(DN⊗A M) the (EndA(M)op,EndA(N)op)−bimodule isomorphism given by tensor-
hom adjunction. Then, the composition κ = ρ ◦ HomA(M,eN) : HomA(M,N) → D(DN ⊗A M) is an
(EndA(M)op,EndA(N)op)-bimodule isomorphism. Note that

k(g)( f ⊗m) = HomA(M,eN)(g)(m)( f ) = eN ◦g(m)( f ) = f (g(m)), g ∈ HomA(M,N), f ⊗m ∈ DN⊗A M.

Now assume that DN ⊗A M ∈ R-proj, the map eDN⊗AM is an isomorphism. So, the composition
ι = Dκ ◦ eDN⊗AM is an (EndA(N)op,EndA(M)op)-bimodule isomorphism and

ι( f ⊗m)(g) = Dκ ◦ eDN⊗AM( f ⊗m)(g) = eDN⊗AM( f ⊗m)◦κ(g) = κ(g)( f ⊗m)

= f (g(m)), f ⊗m ∈ DN⊗A M, g ∈ HomA(M,N).
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1.2 Relative homological algebra

Every exact sequence of modules over a finite-dimensional algebra over a field K splits as an exact sequence
of modules over K. But, this is no longer the case if we replace the field K by a Noetherian commutative ring
(which is not a field). This motivates us to focus only on exact sequences of an algebra over a commutative ring
R that split as an exact sequence of modules over R and ignore the other exact sequences. This idea is due to
[Hoc56]. This concept did not gain as much attention as it should in the context of Noetherian algebras. In this
section, we present a detailed exposition of this concept based on the treatment of [Hoc56] and [Hat63]. In this
section, unless stated otherwise, R is a commutative ring (not necessarily Noetherian) and A is an R-algebra.

1.2.1 (A,R)-exact sequences

In this subsection, assume only that R is a commutative ring (not necessarily Noetherian) and A an R-algebra.

Definition 1.2.1. Let R be a commutative ring. Let A be an R-algebra. An exact sequence between A-modules

· · · →Mi+1
ti+1−−→Mi

ti−→Mi−1→ ·· ·

is called (A,R)-exact if, for each i, there exists a map hi ∈ HomR(Mi,Mi+1) such that hi−1 ◦ ti + ti+1 ◦hi = idMi .

That is, we are interested in the exact sequences over A that vanish in the homotopy category of chain
complexes K(R).

Proposition 1.2.2. Let R be a commutative ring. Let A be an R-algebra. An exact sequence between A-modules

· · · →Mi+1
ti+1−−→Mi

ti−→Mi−1→ ·· ·

is (A,R)-exact if and only if for each i, ker ti = im ti+1 is a summand of Mi as R-module.

Proof. Let · · · →Mi+1
ti+1−−→Mi

ti−→Mi−1→ ··· be an (A,R)-exact sequence. Then, for each i,

ti = ti ◦hi−1 ◦ ti + ti ◦ ti+1 ◦hi = ti ◦hi−1 ◦ ti. (1.2.1.1)

Therefore, ti ◦ hi−1 is an idempotent in EndR(Mi−1). Hence, Mi−1 ' ti ◦ hi−1(Mi−1)⊕ (idMi−1−ti ◦ hi−1)(Mi−1).
Since ti−1 ◦ ti = 0, ti ◦ hi−1(Mi−1) ⊂ ker ti−1. On the other hand, ker ti−1 = im ti = im ti ◦ hi−1 ◦ ti ⊂ im ti ◦ hi−1.
Thus, ker ti is an R-summand of Mi.

Conversely, assume that, for each i, ker ti = im ti+1 is a summand of Mi as R-module. Thus, the exact se-
quences 0→ ker ti

νi−→Mi
σi−→ ker ti−1→ 0 satisfying, ti = νi−1 ◦σi for all i, split over R. Fix πi : Mi→ ker ti and

γi : ker ti−1→Mi the split R-homomorphism of πi. Define hi := γi+1 ◦πi. Then,

hi−1 ◦ ti + ti+1 ◦hi = γi ◦πi−1 ◦ ti + ti+1 ◦ γi+1 ◦πi = γi pii−1νiσi +νiσi+1γi+1πi = γiσi +νiπi = idMi .

In this formulation, we can see that the (A,R)-short exact sequences are exactly the exact sequences of
A-modules which are split as a sequence of R-modules. A homomorphism φ is called an (A,R)-monomorphism
if 0→M

φ−→ N is (A,R)-exact. An homomorphism φ is called an (A,R)-epimorphism if M
φ−→ N→ 0 is (A,R)-

exact.

Lemma 1.2.3. Let A be an algebra over a commutative ring R. By D we denote the standard duality functor

D = HomR(−,R) : A-mod→ Aop-mod (with respect to R). Let · · · →Mi+1
ti+1−−→Mi

ti−→Mi−1→ ··· be an (A,R)-
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exact sequence. If the complex

· · · → DMi−1
Dti−→ DMi

Dti+1−−−→ DMi+1→ ···

is exact over Aop, then it is (Aop,R)-exact. In particular, every (A,R)-exact sequence Y1→ Y0→ X → 0 is sent

to an (Aop,R)-exact sequence 0→ DX → DY0→ DY1.

Proof. Since · · · → Mi+1
ti+1−−→ Mi

ti−→ Mi−1 → ··· is (A,R)-exact there exists R-homomorphisms
hi ∈ HomR(Mi,Mi+1) such that hi−1 ◦ ti + ti+1 ◦hi = idMi . Thus, Dhi ∈ HomR(DMi+1,DMi) and

idDMi = D(idMi) = D(hi−1 ◦ ti + ti+1 ◦hi) = D(hi−1 ◦ ti)+D(ti+1 ◦hi) = Dti ◦Dhi−1 +Dhi ◦Dti+1. (1.2.1.2)

If the complex · · ·→DMi−1
Dti−→DMi

Dti+1−−−→DMi+1→··· is exact over Aop, then it is (Aop,R)-exact by Definition
1.2.1. Since the functor D = HomR(−,R) is contravariant left exact and it preserves the homotopy maps hi, the
second claim follows.

Remark 1.2.4. The functor standard duality D = HomR(−,R) preserves (A,R)-exact sequences of the form

0→ X → Y → Z→ 0, Z ∈ R-proj . 4

The class of (A,R)-exact sequences is Morita invariant. Furthermore, every Schur functor sends (A,R)-exact
sequences to (B,R)-exact sequences.

Proposition 1.2.5. Let M be a finitely generated projective left A-module. Fix B = EndA(M)op. Then, the functor

F = HomA(M,−) sends (A,R)-exact sequences to (B,R)-exact sequences.

Proof. Since M ∈ A-proj, the functor F is exact. Thus, F preserves all A-exact sequences. Let

· · · → Xi+1
ti+1−−→ Xi

ti−→ Xi−1→ ··· (1.2.1.3)

be an (A,R)-exact sequence. In particular,

0→ ker ti
νi−→ Xi

σi−→ ker ti−1→ 0 (1.2.1.4)

is (A,R)-exact satisfying ti = νi−1 ◦σi for all i. Applying F yields the B-exact sequence

0→ kerFti
Fνi−−→ FXi

Fσi−−→ kerFti−1→ 0, (1.2.1.5)

satisfying Fti = Fνi−1 ◦Fσi. So, it is enough to show that kerFti is an R-summand of FXi with split mononomor-
phism Fνi. So, it is enough to check that F sends (A,R)-monomorphisms to (B,R)-monomorphisms.

Let 0→ Y ι−→ X be an (A,R)-monomorphism. In particular, there exists a homomorphism π ∈ HomR(X ,Y )

satisfying π ◦ ι = idY . Since M ∈ A-proj, there exists n ∈ N and a module K such that An ' M ⊕K. Fix
πM : An → M and kM : M → An the canonical projection and inclusion, respectively. Let πi : An → A and
ki : A→ An be the canonical projections and inclusions i = 1, . . . ,n. Denote by ψX and ψ

−1
Y the usual iso-

morphisms ψX : HomA(An,X)→ Xn and ψ
−1
Y : Y n→ HomA(An,Y ), respectively.

Consider ψ := HomA(kM,Y )◦ψ
−1
Y ◦(π, · · · ,π)◦ψX ◦HomA(πM,X)∈HomR(FX ,FY ). Let g∈HomA(M,Y )

and m ∈M. Then,

ψ ◦HomA(M, ι)(g)(m) = ψ(ι ◦g)(m) = HomA(kM,Y )◦ψ
−1
Y ◦ (π, · · · ,π)◦ψX ◦HomA(πM,X)(ι ◦g)(m)

= ψ
−1
Y ((π, · · · ,π)(ψX (ι ◦g◦πM)))(kM(m))
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= ψ
−1
Y ((π, · · · ,π)(ι ◦g◦πM ◦ k1(1A), · · · , ι ◦g◦πM ◦ kn(1A))(kM(m))

= ψ
−1
Y (g◦πM ◦ k1(1A), · · · ,g◦πM ◦ kn(1A))(kM(m))

=
n

∑
i=1

πi(kM(m))g◦πM ◦ ki(1A) =
n

∑
i=1

g◦πM ◦ ki(πi(kM(m)))

= g◦πM ◦ kM(m) = g(m).

Therefore, ψ ◦HomA(M, ι) = idFY . This concludes the proof.

Proposition 1.2.6. Let V be a finitely generated projective right A-module. Fix B = EndA(V ). Then, the functor

V ⊗A− : A-Mod→ B-Mod sends (A,R)-exact sequences to (B,R)-exact sequences.

Proof. By Lemma 1.4.11, the functors V ⊗A − ' HomA(HomA(V,A),A)⊗A − ' HomA(HomA(V,A),−) are
equivalent. Since HomA(V,A)∈ A-proj, it follows by Proposition 1.2.5, that V⊗A− sends (A,R)-exact sequences
to (B,R)-exact sequences.

Both Proposition 1.2.5 and Proposition 1.2.6 work also for right modules, using the same arguments.

Corollary 1.2.7. Let F : A-mod→B-mod be an equivalence of categories. Then, F sends (A,R)-exact sequences

to (B,R)-exact sequences.

Proof. By Morita theory (see for example Theorem 1.4.17), there is some projective generator P ∈ A-mod such
that F = HomA(P,−) and B' EndA(P)op. By Proposition 1.2.5, the claim follows.

Definition 1.2.8. Let R be a commutative ring. Let A be an R-algebra. An A-module Q is (A,R)-projective if
every (A,R)-exact sequence 0→M→ N→ Q→ 0 splits as a sequence of A-modules.

An A-module Q is (A,R)-injective if every (A,R)-exact sequence 0→Q→ N→M→ 0 splits as a sequence
of A-modules.

In order to relate the concepts of (A,R)-injective and (A,R)-projective modules to the functor Hom we need
the following lemmas.

Lemma 1.2.9. [Hoc56, Lemma 1, Lemma 2] For every R-module M, consider the left A-module HomR(A,M)

and the left A-modules A⊗R M. Then, the following holds.

(a) The functor HomA(−,HomR(A,M)) is exact on (A,R)-exact sequences.

(b) The functor HomA(A⊗R M,−) is exact on (A,R)-exact sequences.

(c) For any X ∈ add(HomR(A,M)), the functor HomA(−,X) is exact on (A,R)-exact sequences.

(d) For any X ∈ add(A⊗R M), the functor HomA(X ,−) is exact on (A,R)-exact sequences.

(e) Let

0→ X → Y → Z→ 0 (1.2.1.6)

be an A-exact sequence. Assume that (1.2.1.6) remains exact under HomA(A⊗R M,−) for every M ∈
R-mod, then (1.2.1.6) is (A,R)-exact.

Proof. Let

0→U
p−→V

q−→W → 0 (1.2.1.7)

43



1.2. Relative homological algebra

be an (A,R)-exact sequence. In particular, there exists an R-homomorphism π : HomR(V,U) satisfying π ◦ p = idU

and an R-homomorphism γ ∈ HomR(W,V ) satisfying q ◦ γ = idW . Thus, HomR(p,M)( f ◦ π) = f for any
f ∈ HomR(U,M). Consequently, HomR(p,M) is surjective. By the commutativity of the following diagram,

HomA(V,HomR(A,M)) HomA(U,HomR(A,M))

HomR(V,M) HomR(U,M)

HomA(p,HomR(A,M))

' '
HomR(p,M)

,

HomA(p,HomR(A,M)) is surjective. Since HomA(−,HomR(A,M)) is left exact, it follows that

0 HomA(W,HomR(A,M)) HomA(V,HomR(A,M))

HomA(U,HomR(A,M)) 0

HomA(q,HomR(A,M))

HomA(p,HomR(A,M))
,

is exact. Hence, (a) follows.
For any f ∈ HomR(M,W ), HomR(M,q)(γ ◦ f ) = q ◦ γ ◦ f = f . Hence, HomR(M,q) is surjective. By the

diagram

HomR(M,V ) HomR(M,W )

HomA(A⊗R M,V ) HomA(A⊗R M,W )

HomR(M,q)

' '
HomA(A⊗RM,q)

,

HomA(A⊗R M,q) is surjective. Since HomA(A⊗R M,−) is left exact, HomA(A⊗R M,−) is exact on (1.2.1.7).
So, (b) holds. Let X ∈ addA⊗R M, then (A⊗R M)t ' X⊕Y for some t > 0. Hence, the functor

HomA(X⊕Y,−)' HomA(A⊗R M)t ,−)' HomA(A⊗R (Mt),−) (1.2.1.8)

is exact on (A,R)-exact sequences. Thus, HomA(X⊕Y,q) is surjective. Using the commutative diagram

HomA(X⊕Y,V ) HomA(X⊕Y,W )

HomA(X ,V )⊕HomA(Y,V ) HomA(X ,W )⊕HomA(Y,W )

HomA(X ,V ) HomA(X ,W )

HomA(X⊕Y ,q)

' '
HomA(X ,q)⊕HomA(Y ,q)

HomA(X ,q)

,

it follows that HomA(X ,q) is surjective. Consequently, HomA(X ,−) is exact on (A,R)-exact sequences. So, (d)
follows. Dually, using contravariant functors (c) follows.

Let

0→ X → Y h−→ Z→ 0 (1.2.1.9)

be an A-exact sequence. Assume that (1.2.1.9) remains exact under HomA(A⊗R M,−) for every M ∈ R-Mod. In
particular, it remains exact under HomA(A⊗R Z,−). This gives that the following sequence is exact

0→ HomA(A⊗R Z,X)→ HomA(A⊗R Z,Y )→ HomA(A⊗R Z,Z)→ 0. (1.2.1.10)
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This exact sequence is equivalent to

0→ HomR(Z,X)→ HomR(Z,Y )
HomR(Z,h)−−−−−−→ HomR(Z,Z)→ 0. (1.2.1.11)

Hence, there exists g ∈ HomR(Z,Y ) such that idZ = h◦g. Hence, (1.2.1.9) splits over R.

Proposition 1.2.10. [Hoc56, 1.] Let A be an R-algebra. The following assertions are equivalent.

(a) M is (A,R)-injective, that is, every (A,R)-exact sequence

0→M→V →W → 0

is split over A;

(b) The natural homomorphism of A-modules ε : M '−→ HomA(A,M) → HomR(A,M), ε(m)(a) = am,

∀a ∈ A, m ∈M, splits over A;

(c) The functor HomA(−,M) is exact on (A,R)-exact sequences;

(d) For every (A,R)-exact sequence 0→U
p−→ V

q−→W → 0 and every A-homomorphism U →M there exists

an A-homomorphism V →M making the following diagram commutative

0 U V W 0

M

p

∀

q

∃
.

Proof. (a) =⇒ (b). Notice that ε ′ : HomR(A,M) → M, given by ε ′( f ) = f (1A), f ∈ HomR(A,M), is an
R-homomorphism since

ε
′(r f ) = r f (1A) = f (1Ar) = r( f (1A)) = rε

′( f ), ∀r ∈ R, f ∈ HomR(A,M). (1.2.1.12)

Moreover, ε ′ ◦ ε = idM . So, the exact sequence

0→M ε−→ HomR(A,M)→ cokerε → 0 (1.2.1.13)

is (A,R)-exact. By assumption, it splits over A. In particular, there exists f ∈ HomA(HomR(A,M),M) satisfying
f ◦ ε = idM . So, (b) follows.

(b) =⇒ (c). By assumption, there exists f ∈ HomA(HomR(A,M),M) such that f ◦ ε = idM . Hence, ε ◦ f is
an idempotent in EndA(HomR(A,M)). So, M is an A-summand of HomR(A,M). By Lemma 1.2.9, HomA(−,M)

is exact on (A,R)-exact sequences.
(c) =⇒ (d). Let

0→U
p−→V

q−→W → 0 (1.2.1.14)

be an (A,R)-exact sequence. Applying HomA(−,M) to (1.2.1.14) we obtain the exact sequence

0→ HomA(W,M)→ HomA(V,M)→ HomA(U,M)→ 0. (1.2.1.15)

So, for every h ∈ HomA(U,M), there exists h′ ∈ HomA(V,M) such that h′ ◦ p = h.
(d) =⇒ (a) Let

0→M
p−→V

q−→W → 0 (1.2.1.16)
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be an (A,R)-exact sequence. For idM ∈ HomA(M,M) there exists h ∈ HomA(V,M) such that h◦ p = idM .

Corollary 1.2.11. (A,R)-injective modules are preserved under Morita equivalence.

Proof. Let F : A-Mod→ B-Mod be an equivalence of categories. Let G be the quasi-inverse of F . Let M be an
(A,R)-injective module. Let

0→ FM→V →W → 0 (1.2.1.17)

be a (B,R)-exact sequence. By Corollary 1.2.7, the sequence 0→ GFM→ GV → GW → 0 is (A,R)-exact. By
Proposition 1.2.10, this sequence splits over B since GFM 'M. Applying F yields the B-split exact sequence

0→ FGFM→ FGV → FGW → 0. (1.2.1.18)

(1.2.1.17) is equivalent to (1.2.1.18). So, it follows that FM is (B,R)-injective.

Proposition 1.2.12. [Hoc56, 1.] Let A be an R-algebra. Let M ∈ A-Mod. The following assertions are equiva-

lent.

(a) M is (A,R)-projective, that is, every (A,R)-exact sequence

0→U →V →M→ 0

is split over A;

(b) The natural epimorphism µ : A⊗R M→M, µ(a⊗m) = am, ∀a ∈ A, m ∈M, splits over A;

(c) The functor HomA(M,−) is exact on (A,R)-exact sequences;

(d) For every (A,R)-exact sequence 0→U
p−→ V

q−→W → 0 and every A-homomorphism M→W there exists

an A-homomorphism M→V making the following diagram commutative

0 U V W 0

M

p q

∀
∃

.

Proof. (a) =⇒ (b) Notice that µ ′ : M → A⊗R M, given by µ ′(m) = 1A⊗R m, m ∈ M, is an R-homomorphism
since µ ′(sm) = 1A⊗ (sm) = s1A⊗m = sµ ′(m), ∀m ∈M, s ∈ R. Moreover, µ ◦µ ′ = idM . So, the exact sequence

0→ ker µ → A⊗R M
µ−→M→ 0 (1.2.1.19)

is (A,R)-exact. By assumption, it splits over A. In particular, there exists f ∈ HomA(M,A⊗R M) satisfying
µ ◦ f = idM . So, (b) follows.

(b) =⇒ (c). By assumption, there exists f ∈ HomA(M,A⊗R M) such that µ ◦ f = idM . Hence, f ◦ µ is an
idempotent in EndA(A⊗R M). So, M is an A-summand of A⊗R M. By Lemma 1.2.9, HomA(M,−) is exact on
(A,R)-exact sequences.

(c) =⇒ (d). Let 0→U
p−→ V

q−→W → 0 be an (A,R)-exact sequence. Applying HomA(M,−) to (1.2.1) we
obtain the exact sequence

0→ HomA(M,U)→ HomA(M,V )→ HomA(M,W )→ 0. (1.2.1.20)
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So, for every h ∈ HomA(M,W ), there exists h′ ∈ HomA(M,V ) such that q◦h′ = h.
(d) =⇒ (a). Let 0→U

p−→ V
q−→ M→ 0 be an (A,R)-exact sequence. For idM ∈ HomA(M,M) there exists

h ∈ HomA(M,V ) such that q◦h = idM .

Remark 1.2.13. In relative homological algebra A⊗R M replaces the role of free A-modules. In fact, when R is a
field A⊗R M ' An since M is finite-dimensional. 4

Corollary 1.2.14. Let M be an A-module. Let X ∈ add(M).

1. If M is (A,R)-projective, then X is (A,R)-projective.

2. If M is (A,R)-injective, then X is (A,R)-injective.

Proof. Let M be an (A,R)-projective module. Let X ∈ addM. By Proposition 1.2.12, M ∈ addA⊗R M. Therefore,
X ∈ addA⊗R M. By Lemma 1.2.9, HomA(X ,−) is exact on (A,R)-exact sequences. Hence, X is (A,R)-projective
by Proposition 1.2.12. So, (a) follows. The proof of (b) is analogous.

The following fact is straightforward and it it is useful to relate relative projective with absolute projective
modules.

Lemma 1.2.15. Let V be a projective R-module. If V is (A,R)-projective, then V is a projective A-module.

Proof. Since V is (A,R)-projective then V is an A-summand of A⊗R V . On the other hand, V is an R-summand
of Rm for some m > 0. Thus, A⊗R V is an A-summand of A⊗R Rm ' Am. It follows that V is projective over
A.

It is also an easy fact that we can relate for every ideal of R, I, the (A,R)-projective modules with (A/IA,R/I)-
projective modules.

Lemma 1.2.16. Let R be a commutative ring and let I be an ideal of R. Assume that A is an R-algebra. Then,

the following assertions hold.

(a) If M is an (A/IA,R/I)-projective module, then M is an (A,R)-projective module.

(b) If M is an (A,R)-projective module, then M/IM is an (A/IA,R/I)-projective module.

Proof. Assume that (a) holds. Thus, M ∈ addA/IA A/IA⊗R/I M. Since A/IA-mod is a full subcategory of A-mod,
M ∈ addA A/IA⊗R/I M. Now observe that A/IA⊗R/I M' A⊗R R/I⊗R/I M' A⊗R M. So, M is (A,R)-projective.

If M is an (A,R)-projective module, then the canonical epimorphism A⊗R M→M splits over A. Applying
the functor R/I⊗R− yields that the canonical epimorphism R/I⊗R A⊗R M ' A/IA⊗R/I M/IM → M/IM '
R/I⊗R M splits over A/IA.

By a projective (left) A-resolution of M ∈ A-Mod we mean an exact sequence of left A-modules · · · → Pn→
Pn−1 → ·· · → P0 → M → 0, where all the modules Pi are projective A-modules. By a (left) (A,R)-projective
resolution of M ∈ A-Mod we mean an (A,R)-exact sequence of left A-modules · · · → Pn→ Pn−1→ ··· → P0→
M→ 0, where all the modules Pi are (A,R)-projective modules. By a (left) (A,R)-injective resolution of M ∈
A-Mod we mean an (A,R)-exact sequence of left A-modules 0→M→ I0→ I1→ ··· , where all the modules Ii

are (A,R)-injective modules.

Corollary 1.2.17.

1. Every A-module has an (A,R)-projective resolution.
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2. Every A-module has an (A,R)-injective resolution.

Proof. By Proposition 1.2.12 and Lemma 1.2.9, A⊗R M is (A,R)-projective for every M ∈ R-Mod. Therefore,

0 0

K1

· · · A⊗R K1 A⊗R K0 A⊗R M M 0

K0

0 0

µK1

µK0

µM (1.2.1.21)

is an (A,R)-projective resolution. Dually,

0

C1

0 M HomR(A,M) HomR(A,C0) HomR(A,C1) · · ·

C0

0 0

εC1

εM

εC0

(1.2.1.22)
is an (A,R)-injective resolution.

The resolutions constructed in Corollary 1.2.17 are called standard.
When A is projective as R-module, we may define this notion in terms of the canonical Ext.

Lemma 1.2.18. [Zim14, Lemma 2.1.2, Proposition 2.1.5] Let R be a commutative ring. Let A be a projective

R-algebra. Then, an A-module M is (A,R)-projective if and only if the natural mapping

Ext1A(M,N)→ Ext1R(M,N)

is injective for all A-modules N.

Proof. Assume that M is (A,R)-projective. Then, the homomorphism εM : A⊗R M → M splits over A. Let
N ∈ A-Mod. Notice that HomR(−,N)'HomR(−,HomA(A,N))'HomA(A⊗R−,N). Denote this natural trans-
formation by σ . Since for any projective resolution P• over R of M, A⊗R P• is a projective resolution over
A⊗R R' A of A⊗R M there is a canonical isomorphism Exti≥0

R (M,N)' Exti≥0
A (A⊗R M,N). Denote this isomor-

phism by σ∗. Since M is an A-summand of A⊗R M, it follows that

Ext1A(A⊗R M,N)' Ext1A(M⊕ker µ,N)' Ext1A(M,N)⊕Ext1A(ker µ,N). (1.2.1.23)
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Denote the monomorphism Ext1A(M,N)→ Ext1A(A⊗R M,N) by µ∗. It is enough to show that the following
diagram is commutative since σ∗ ◦µ∗ is a monomorphism:

Ext1A(M,N) Ext1R(M,N)

Ext1A(A⊗R M,N) Ext1R(M,N)

µ∗

σ∗

. (1.2.1.24)

By assumption, A is projective over R, so every projective A-resolution of M is a projective R-resolution. Let P•

be a projective A-resolution of M. Hence, µ induces a chain map between the A-resolutions

· · · P1 P0 M 0

· · · A⊗R P1 A⊗R P0 A⊗R M 0

α0

µP1
A⊗Rα0

µP0 µM . (1.2.1.25)

It follows that each Pi is an A-summand of A⊗R M with canonical epimorphism µPi . Thus, applying HomA(−,N)

to the diagram (1.2.1.25), we obtain the map

µ
∗ : Ext1A(M,N) = H1(HomA(P•,N))→ H1(HomA(A⊗R P•,N)) = Ext1A(A⊗R M,N). (1.2.1.26)

Furthermore, composing σPi with the maps HomA(µPi ,N) induces a cochain complex map between HomA(P•,N)

and HomR(P•,N). This cochain map induces the map on cohomology σ∗ ◦ µ∗. Now note that for any
g ∈ HomA(Pi,N) and p ∈ Pi,

σPi ◦HomA(µPi ,N)(g)(p) = σPi(g◦µPi)(p) = g◦µPi(1A⊗ p) = g(p). (1.2.1.27)

Thus, σPi ◦HomA(µPi ,N) is the restriction map. It follows that σ∗ ◦µ∗ is the restriction map on Ext1.
Conversely, assume that Ext1A(M,N)→ Ext1R(M,N) is injective for all A-modules N. Consider the A-exact se-

quence 0→ ker µ→ A⊗R M
µ−→M→ 0. This sequence splits over R. By hypothesis, as an element in Ext1A(M,N)

must be zero. Thus, M is (A,R)-projective by Proposition 1.2.12.

The assumption on A being projective over R is used to guarantee that the natural function
Ext1A(M,N)→ Ext1R(M,N) is an R-linear map since this assumption plays an important role in establishing that
(1.2.1.24) is commutative. The author wonders if there might be an example where this fails if we drop the
projectivity of A.

Proposition 1.2.19. Let R be a commutative ring. Let A and B be Morita equivalent R-algebras. Denote by F the

equivalence of categories A-Mod→ B-Mod. Then, X is (A,R)-projective if and only if FX is (B,R)-projective.

Proof. Assume that M is an A-progenerator such that F = N⊗A− and N = HomA(M,A) the B-progenerator.
Assume X is (A,R)-projective. Then, X is an A-summand of A⊗R X . Thus, FX is a B-summand of

N⊗A (A⊗R X)' N⊗A A⊗R X ' N⊗R X .

Now, since N is projective over B, N⊗R X is a B-summand of Bt⊗R X ' (B⊗X)t which is (B,R)-projective. So,
it follows that FM is (B,R)-projective.

Lemma 1.2.20. Let N ∈ R-mod.

(a) The functor −⊗R N is exact on R-split exact sequences.
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(b) The functor HomR(−,N) is exact on R-split exact sequences.

(c) The functor HomR(N,−) is exact on R-split exact sequences.

Proof. Let · · · → P2→ P1
α1−→ P0

α0−→M→ 0 be an exact sequence which is R-split. Considering the R-split exact
sequences

0 imαi+1 Pi imαi 0
gi αi

li hi

for all i≥ 0. (1.2.1.28)

Apply −⊗R N to (1.2.1.28). We obtain the exact sequence

imαi+1⊗R N
gi⊗RN−−−−→ Pi⊗R N

αi⊗RN−−−−→ imαi⊗R N→ 0. (1.2.1.29)

and note that l ⊗R N ◦ g⊗R N = l ◦ g⊗R N = idimαi+1⊗RN = idimαi+1⊗RN . Hence, gi ⊗R N is, in addition, a
monomorphism. By exactness, we have im(αi+1⊗R idN) = imαi+1⊗R N = ker(αi⊗R idN) for all i.

Therefore, · · · → P2⊗R N→ P1⊗R N
α1⊗RN−−−−→ P0⊗R N

α0⊗RN−−−−→M⊗R N→ 0 is exact.
Applying HomR(−,N) to (1.2.1.28) yields the exact sequence

0→ HomR(imαi,N)
HomR(αi,N)−−−−−−−→ HomR(Pi,N)

HomR(gi,N)−−−−−−−→ HomR(imαi+1,N). (1.2.1.30)

Note that HomR(gi,N)◦homR(li,N)=HomR(li◦gi,N)=HomR(idimαi+1 ,N)= idHomR(imαi+1,N). So, HomR(gi,N)

is also a surjective map. Therefore, kerHomR(αi+1,N) = kerHomR(gi,N) = imHomR(αi,N). Thus, (b) follows.
Symmetrically, (c) follows.

Note that every (A,R)-exact sequence is R-split. Hence we have,

Corollary 1.2.21. Let N ∈ R-mod.

(a) The functor −⊗R N is exact on (A,R)-exact sequences.

(b) The functor HomR(−,N) is exact on (A,R)-exact sequences.

(c) The functor HomR(N,−) is exact on (A,R)-exact sequences.

The exact sequences of projective R-modules are R-split. In fact, Let · · · → P2→ P1
α1−→ P0

α0−→M→ 0 be an
exact sequence with Pi,M ∈ R-proj for all i. Consider the exact sequence 0→ imα1→ P0→M→ 0. Since M is
projective over R, then it splits and hence imα1 is projective over R. Considering the exact sequences

0→ imαi+1→ Pi→ imαi→ 0, (1.2.1.31)

it follows, by induction on i, that imαi is projective over R for all i.
In particular, the exact sequences of modules belonging to A-mod∩R-proj are (A,R)-exact.

1.2.2 Forgetful functors

We say that we have a relative homological algebra if we choose an abelian category together with a class of
exact sequences. A relative abelian category in the sense of Mac Lane [Mac95] consists of the following data: a
pair of abelian categories (A ,B) together with a covariant additive, exact and faithful functor F : A →B.

Consider the forgetful functor F : A-Mod → R-Mod. Since it is a forgetful functor, it is faithful. This
functor preserves biproducts, hence it is additive. Consider the functors G,H : R-Mod → A-Mod, given by
GM = HomR(A,M), HM = A⊗R M, and G f = HomR(A, f ), H f = A⊗R f . It follows by Tensor-Hom adjunction
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that the functor G is a right adjoint of F and H is a left adjoint of F . The existence of left and right adjoint
functors imply that F preserves all finite limits and all finite colimits. In particular, kernels and cokernels. Hence
F is exact. In view of [Mac95, Chapter 9, 4], a short exact sequence of A-modules

0→ X → Y → Z→ 0 (1.2.2.1)

is said to be F-allowable if the exact sequence

0→ FX → FY → FZ→ 0 (1.2.2.2)

splits over R. These are exactly the (A,R)-exact sequences. In Lemma 1.2.9 and Proposition 1.2.12 we saw that
the objects for which HomA(P,−) is exact on (A,R)-exact sequences are the modules A⊗R X , X ∈R-Mod. Recip-
rocally, we saw in Lemma 1.2.9 that the class of exact sequences which remains exact under HomA(A⊗R X ,−)
are the (A,R)-exact sequences.

Nowadays, the most common approach to relative homological algebra is to first consider a class of objects
P of an abelian category A . Then, we can compute the class of exact sequences for which the class of objects
P remain exact under HomA (P,−) for every P ∈P . The class of (A,R)-exact sequences is closed in the sense
of [EM65]. That is, these two approaches are equivalent for (A,R)-exact sequences.

1.2.3 Relative Ext and Relative Tor

We shall next introduce the relative Ext and relative Tor and relative homological dimensions. For the conve-
nience of the reader, we give here some statements and a brief sketch about these topics. Much of these results
to be explained, in this subsection, can be obtained from the literature of relative homological algebra taking
as the admissible class of sequences the (A,R)-exact sequences, as previously discussed, making the necessary
adjustments over the arguments for Artinian algebras to arbitrary algebras.

In order to introduce the relative Ext and relative Tor functor, the following lemmas are essential.

Lemma 1.2.22. [Hoc56, Proposition 1] Let M be an (A,R)-injective module. Suppose that U
φ−→ V is a homo-

morphism of A-modules such that HomR(φ ,M) is epimorphism. Then, the map HomA(φ ,M) is an epimorphism.

Proof. Since M is (A,R)-injective, M is an A-summand of HomR(A,M). Denote by π : HomR(A,M)→M the
surjective induced by the direct sum structure. For any B ∈ A-Mod, as π is A-split applying HomA(B,−), we get
the surjective map HomA(B,π) : HomA(B,HomR(A,M))→ HomA(B,M). By Tensor-Hom adjunction, we have
the surjective map HomR(B,M)'HomA(B,HomR(A,M))→HomA(B,M) for any B ∈ A-Mod. In particular, we
have the commutative diagram

HomR(U,M) HomA(U,M)

HomR(V,M) HomA(V,M)

HomR(φ ,M) HomA(φ ,M) .

It follows that if HomR(φ ,M) is surjective, then HomA(φ ,M) is surjective.

Lemma 1.2.23. [Hoc56, Proposition 2] Let M be an (A,R)-projective module. Suppose that V
φ−→W is homo-

morphism of A-modules such that HomR(M,φ) is an epimorphism. Then, HomA(M,φ) is an epimorphism.

Proof. Since M is (A,R)-projective, there is an A-split monomorphism M i−→ A⊗R M. So, for every B ∈ A-Mod,

applying HomA(−,B) we get the surjective homomorphism HomA(A⊗R M,B)
HomA(i,B)−−−−−−→ HomA(M,B). By
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Tensor-Hom adjunction, HomA(A⊗R M,B)' HomR(M,B). Therefore, there is a commutative diagram

HomR(M,V ) HomA(M,V )

HomR(M,W ) HomA(M,W )

HomR(M,φ) HomA(M,φ) .

It follows that if HomR(M,φ) is surjective, then HomA(M,φ) is surjective.

Lemma 1.2.24. [Hoc56, Proposition 3] Let M be an (A,R)-projective module. Suppose that φ : U → V is a

homomorphism of right A-modules such that the induced map φ ⊗R M : U⊗R M→V ⊗R M is a monomorphism.

Then, the map φ ⊗A M : U⊗A M→V ⊗A M is a monomorphism.

Proof. Since M is (A,R)-projective, there is an A-split homomorphism M i−→ A⊗R M. So, for every right A-
module B, applying B⊗A− yields the injective map B⊗A M ↪→ B⊗A A⊗R M ' B⊗R M. Using the commutative
diagram

U⊗A M U⊗R M

V ⊗A M V ⊗R M

φ⊗AM φ⊗RM ,

it follows that if φ ⊗R M is injective, then φ ⊗A M is injective.

The following is based on Section 2 of [Hoc56].

Theorem 1.2.25 (Comparison Theorem for (A,R)-exacts). [Hoc56, p.250, 251] Given two (A,R)-projective

resolutions of M and N, and a map f ∈HomA(M,N), we can find a chain map between them. This map is unique

up to chain homotopy.

· · · X2 X1 X0 M 0

· · · Y2 Y1 Y0 N 0

h2

∃

h1

∃

h0

∃ ∀ f

g2 g1 g0

Proof. First, we show the existence of a chain map from X to Y , that is, the existence of a collection of maps
fi : Xi→ Yi satisfying gi ◦ fi = fi−1 ◦hi. We will proceed by induction on i. Define Ki = kergi and denote by ki

the inclusion map Ki→ Yi. Since Y is an (A,R)-exact sequence then the following exact sequences

0→ K0→ Y0
g0−→ N→ 0 (1.2.3.1)

0→ Ki
ki−→ Yi

πi−→ Ki−1→ 0, i > 1 (1.2.3.2)

are (A,R)-exact with ki−1◦πi = gi. Since X0 is (A,R)-projective, the map f ◦h0 can be lifted to f0 ∈HomA(X0,Y0)

satisfying f ◦h0 = g0 ◦ f0. Note that g0 ◦ f0 ◦h1 = f ◦h0 ◦h1 = 0. Hence, there exists a map x1 : X1→ K0 such
that k0 ◦x1 = f0 ◦h1. Using the fact that X1 is (A,R)-projective, we can lift x1 to a map f1 ∈HomA(X1,Y1). Hence
π ◦ f1 = x1. Thus,

f0 ◦h1 = k0 ◦ x1 = k0 ◦π1 ◦ f1 = g1 ◦ f1. (1.2.3.3)

We can repeat this procedure for each i > 1 and we obtain maps fi ∈ HomA(Xi,Yi) such that gi ◦ fi = fi−1 ◦hi.
Now we shall prove that this chain is unique up to chain homotopy equivalence. Assume that there exists maps

si, ti ∈HomA(Xi,Yi) such that gi ◦ ti = ti−1 ◦hi and gi ◦ si = si−1 ◦hi for every i≥ 0. Set ri = si− ti for every i≥ 0.
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Thus, gi ◦ ri = gi ◦ si−gi ◦ ti = si−1 ◦hi− ti−1 ◦hi = ri−1 ◦hi. It is enough to construct maps li ∈ HomA(Xi,Yi+1)

satisfying ri = gi+1 ◦ li + li−1 ◦hi, i≥ 0 and l−1 = 0.
Since

g0 ◦ r0 = g0 ◦ s0−g0 ◦ t0 = f ◦h0− f ◦h0 = 0 (1.2.3.4)

there exists x0 ∈ HomA(X0,K0) satisfying k0 ◦ x0 = r0. As 0→ K1 → Y1 → K0 → 0 is (A,R)-exact and X0 is
(A,R)-projective, there exists l0 ∈ HomA(X0,Y1) such that g1 ◦ l0 = r0.

Assume that the maps l are defined until level i−1. Therefore,

gi ◦ (ri− li−1 ◦hi) = gi ◦ ri−gi ◦ li−1 ◦hi = gi ◦ ri− (ri−1− li−2 ◦hi−1)◦hi (1.2.3.5)

= gi ◦ ri− ri−1 ◦hi + li−2 ◦hi−1 ◦hi = gi ◦ ri−gi ◦ ri = 0. (1.2.3.6)

Thus, ki−1 ◦ πi ◦ (ri − li−1hi) = 0. As ki−1 is injective, πi(ri − li−1hi) = 0. Hence, there exists a map xi ∈
HomA(Xi,Ki) such that ki ◦ xi = ri− li−1 ◦ hi. Using the (A,R)-exact sequence 0→ Ki+1→ Yi+1→ Ki→ 0 and
the fact that Xi is (A,R)-projective there exists li ∈ HomA(Xi,Yi+1) satisfying πi+1 ◦ li = xi. In particular,

gi+1 ◦ li = ki ◦πi+1 ◦ li = ri− li−1 ◦hi.

Theorem 1.2.26 (Dual of Comparison Theorem for (A,R)-exacts). [Hoc56, p.250, 251] Given two (A,R)-

injective resolutions of M and N, and a map f ∈ HomA(M,N), we can find a cochain map between them. This

map is unique up to chain homotopy.

0 M E0 E1 · · ·

0 N I0 I1 · · ·

∀ f ∃ ∃

Proof. It is the dual claim of Theorem 1.2.25.

Definition 1.2.27. We define Extn(A,R)(M,N) = Hn(HomR(PM,N)), where PM is an (A,R)-projective resolution
for M. We define Torn

(A,R)(M,N) = Hn(PM⊗A N), where PM is an (A,R)-projective resolution for M.

Here we can choose any relative projective resolution.

Proposition 1.2.28. The functors Extn(A,R)(M,N) and Tor(A,R)n (L,M) are independent of the choice of (A,R)-

projective resolution for M.

Proof. Since the comparison theorem holds for (A,R)-projective resolutions the result follows using the same
argument as it was used for proving that ExtnA(M,N) and TorA

n (L,M) are independent (see [Wei03, Lemma 2.4.1])
of the choice of the projective A- resolution for M.

By the same reasoning, we obtain:

Proposition 1.2.29. For each map f ∈ HomA(M,M′) and each natural number n, there are unique maps

Tor(A,R)n (M,N)→ Tor(A,R)n (M′,N) and Extn(A,R)(M,N)→ Extn(A,R)(M
′,N).

We can also define Tor and Ext in the second component using relative projective and injective resolutions,
respectively. Write these two cases as tor and ext, respectively.

By definition, as in the classical case,

Tor(A,R)0 (−,N)'−⊗A N, tor(A,R)0 (M,−)'M⊗A−,
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Ext0(A,R)(−,N)' HomA(−,N), Ext0(A,R)(M,−)' HomA(M,−).

Lemma 1.2.30. Let M be a left (A,R)-projective, K be a right (A,R)-projective, L be a left (A,R)-injective

module. Let · · · → N1→ N0→ N→ 0 be an (A,R)-exact sequence of right modules. Let · · · → P1→ P0→ P→ 0
be an (A,R)-exact sequence of left modules. Then, the following assertions hold.

(a) · · · → N1⊗A M→ N0⊗A M→ N⊗A M→ 0 is exact;

(b) · · · → K⊗A P1→ K⊗A P0→ K⊗A P→ 0 is exact;

(c) · · · → HomA(M,P1)→ HomA(M,P0)→ HomA(M,P)→ 0 is exact;

(d) 0→ HomA(P,L)→ HomA(P0,L)→ HomA(P1,L)→ ·· · is exact.

Proof. Let · · · → N1
α1−→ N0

α0−→ N→ 0 be an (A,R)-exact sequence of right modules. In particular, consider the
(A,R)-exact sequences

0→ imαi+1
ki−→ Ni

αi−→ imαi→ 0, i≥ 0. (1.2.3.7)

By Corollary 1.2.21,

0→ imαi+1⊗R M
ki⊗RM−−−−→ Ni⊗R M

αi⊗RM−−−−→ imαi⊗R M→ 0, i≥ 0. (1.2.3.8)

is exact. By Lemma 1.2.24, ki⊗A M is a monomorphism. Therefore,

0→ imαi+1⊗A M
ki⊗AM−−−−→ Ni⊗R M

αi⊗AM−−−−→ imαi⊗A M→ 0, i≥ 0. (1.2.3.9)

is exact. In particular, im(αi+1⊗A M) = imαi+1⊗A M = ker(αi⊗A M). Thus, (a) follows. The argument for (b)
is analogous to (a).

Combining Corollary 1.2.21 and Lemma 1.2.23 (c) follows. Combining Corollary 1.2.21 and Lemma 1.2.22
(d) follows.

Corollary 1.2.31. Let M be an (A,R)-projective module and let N be an (A,R)-injective module. For any A-

module X, the following holds.

(a) Extn(A,R)(M,X) = 0 = extn(A,R)(M,X) for any n > 0.

(b) Tor(A,R)n (M,X) = 0 = tor(A,R)n (M,X) for any n > 0.

(c) Extn(A,R)(X ,N) = 0 = extn(A,R)(X ,N) for any n > 0.

Proof. Let M be an (A,R)-projective module. Using the exact sequence 0→ M → M → 0 we conclude that
Extn(A,R)(M,X) = 0 for every n > 0. Let I denote the standard (A,R)-injective resolution of X . Then, by Lemma
1.2.30, the chain complex HomA(M, I) is exact. Thus, extn(A,R)(M,X) = 0. Analogously, (b) and (c) follows.

Since Hom is left exact bifunctor and its right derived functors vanish in (A,R)-projectives and (A,R)-
injectives in the first and second component respectively, it follows in the same fashion as in the classical case
that Ext = ext and Tor = tor. Hence, we can use resolutions in both entries.

Lemma 1.2.32 (Horseshoe Lemma for (A,R)-exact). Consider the diagram
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...
...

P′1 P′′1

P′0 P′′0

0 M′ M M′′ 0

0 0

ε ′0 ε ′′0

i p

where the columns are (A,R)-projective resolutions and the row is (A,R)-exact. Then, there exists an (A,R)-

projective resolution of M and chain maps so that the column form an exact sequence of complexes.

Proof. Let K′0 = kerε ′0 = imε ′1 and K′′0 = kerε ′′0 = imε ′′1 and denote by i′ and i′′ the canonical inclusions K′0 ↪→ P′0
and K′′0 ↪→ P′′0 , respectively. By induction it suffices to complete the 3x3 diagram

0 0

K′0 K′′0

P′0 P′′0

0 M′ M M′′ 0

0 0

i′ i′′

ε ′0 ε ′′0

k p

.

Consider P0 = P′0⊕P′′0 . So, P0 is (A,R)-projective. Consider k′ : P′0 → P0 and k′′ : P′′0 → P0 the canonical
injections and p′ : P0→ P′0 and p′′ : P0→ P′′0 the canonical surjections. Since

0→M′ k−→M
p−→M′′→ 0 (1.2.3.10)

is (A,R)-exact and P′′0 is (A,R)-projective there exists σ ∈ HomA(P′′0 ,M) such that p ◦ σ = ε ′′0 . Define
ε0 ∈ HomA(P0,M) satisfying ε0(x′,x′′) = k ◦ ε ′0(x

′)+σ(x′′), for (x′,x′′) ∈ P0. In particular,

ε0 ◦ k′(x′) = ε0(x′,0) = k ◦ ε
′
0(x
′), x′ ∈ P′0 (1.2.3.11)

p◦ ε0(x′,x′′) = p◦ k ◦ ε
′
0(x
′)+ pσ(x′′) = ε

′′
0 (x
′′) = ε

′′
0 ◦ p′′(x′,x′′),(x′,x′′) ∈ P0. (1.2.3.12)

Therefore, the diagram

0 P′0 P0 P′′0 0

0 M′ M M′′ 0

k′

ε ′0 ε0

p′′

ε ′′0

k p

(1.2.3.13)

is commutative. By Snake Lemma, ε0 is surjective and there exists an exact sequence

0→ K′0
k′0−→ K0

p′′0−→ K′′0 → 0, (1.2.3.14)
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satisfying k′i′ = ik′0, p′′i = i′′p′′0 where the pair (K0, i) is the kernel of ε0. It remains to show that (1.2.3.14) is
(A,R)-exact. Let s be the R-split homomorphism satisfying ε ′0 ◦ s = idM′ and r be the R-split homomorphism
satisfying ε ′′0 ◦ r = idM′′ . Then,

p◦ (σ ◦ r) = ε
′′
0 ◦ r = idM′′ . (1.2.3.15)

Thus, there exists t ∈ HomR(M,M′) such that σ ◦ r ◦ p+ k ◦ t = idM .
Let l = k′′ ◦ r ◦ p+ k′ ◦ s◦ t ∈ HomR(M,P0). Then,

ε0 ◦ l = ε0k′′rp+ ε0k′st = σrp+ kε
′
0st = σrp+ kt = idM . (1.2.3.16)

Therefore, 0→ K0
i−→ P0

ε0−→M→ 0 is (A,R)-exact. Thus, there exists l′ ∈HomR(P0,K0) such that i◦ l′+ l ◦ε0 =

idP0 . Moreover,

i′′ ◦ p′′0 ◦ l′ ◦ k′′ ◦ i′′ = p′′ ◦ i◦ l′ ◦ k′′ ◦ i′′ = p′′ ◦ k′′ ◦ i′′− p′′ ◦ l ◦ ε0 ◦ k′′ ◦ i′′ = i′′− p′′ ◦ l ◦σ ◦ i′′ (1.2.3.17)

= i′′ =⇒ p′′0 ◦ l′ ◦ k′′ ◦ i′′ = idK′′0
, (1.2.3.18)

where l′ ◦ k′′ ◦ i′′ ∈ HomR(K′′0 ,K0). This shows that (1.2.3.14) is (A,R)-exact.

Proposition 1.2.33. Let 0→M′→M→M′′→ 0 be an (A,R)-exact sequence. Then, for any X ∈ A-mod and

Y ∈mod-A, there are long exact sequences

1. 0→ HomA(X ,M′)→ HomA(X ,M)→ HomA(X ,M′′)→ Ext1(A,R)(X ,M′)→ Ext1(A,R)(X ,M)→ ···

2. 0→ HomA(M′,X)→ HomA(M,X)→ HomA(M′′,X)→ Ext1(A,R)(M
′,X)→ Ext1(A,R)(M,X)→ ···

3. · · · → Tor(A,R)1 (Y,M)→ Tor(A,R)1 (Y,M′′)→ Y ⊗A M′→ Y ⊗A M→ Y ⊗A M′′→ 0.

Proof. Choose (A,R)-projective resolutions for M′, M′′. By the Horseshoe Lemma, we obtain exactness of the
sequence of deleted complexes

0→ PM′ → PM → PM′′ → 0, (1.2.3.19)

where PM is an (A,R)-projective resolution of M. Since in each row the modules are (A,R)-projective and the
sequences are (A,R)-exact then they split over A. In particular,

0→ HomA(PM′′ ,X)→ HomA(PM,X)→ HomA(PM′ ,X)→ 0 (1.2.3.20)

0→ Y ⊗A PM′ → Y ⊗A PM → Y ⊗A PM′′ → 0 (1.2.3.21)

are still exact complexes. The long exact sequences induced by these exact complexes are exactly the ones in
2 and 3. Dualizing the Horseshoe Lemma and applying the same reasoning with (A,R)-injective resolutions 1
follows.

Corollary 1.2.34. M is (left) (A,R)-projective if and only if Ext1(A,R)(M,X) = 0 for all X ∈ A-Mod. N is (left)

(A,R)-injective if and only if Ext1(A,R)(X ,N) = 0 for all X ∈ A-Mod.

Proof. Assume that Ext1(A,R)(M,X) = 0 for all X ∈A-Mod. Let 0→X→Y → Z→ 0 be an (A,R)-exact sequence.
By Proposition 1.2.33, applying HomA(M,−) yields the exact sequence

0→ HomA(M,X)→ HomA(M,Y )→ HomA(M,Z)→ Ext1(A,R)(M,X) = 0. (1.2.3.22)
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Hence, by Proposition 1.2.12, M is (A,R)-projective. The converse statement is given in Corollary 1.2.31. Simi-
larly, we get the result for (A,R)-injective modules.

Corollary 1.2.35. Let A be a projective Noetherian R-algebra. Let M ∈ A-mod∩R-proj. Then, M is (A,R)-

injective if and only if Ext1A(X ,M) = 0 for every X ∈ A-mod∩R-proj.

Proof. Assume that M is (A,R)-injective. Let X ∈ A-mod∩R-proj. Then, Ext(A,R)(X ,M) = Ext1A(X ,M) since
every (A,R)-projective resolution for X is an projective A-resolution for X . Hence, by assumption, Ext1A(X ,M) =

0.
Reciprocally, assume Ext1A(X ,M) = 0 for every X ∈ A-mod∩R-proj. Consider the (A,R)-exact sequence

0→M
εM−→ HomR(A,M)→ X → 0. (1.2.3.23)

Since M ∈ R-proj, HomR(A,M) ∈ R-proj. Hence, X ∈ R-proj. By assumption, this exact sequence splits over A.
Thus, by Proposition 1.2.10, M is (A,R)-injective.

Proposition 1.2.36. Let R be a commutative ring. If gldimR = 0, then Extn(A,R)(M,N) = ExtnA(M,N).

Proof. By assumption, every M ∈ R-Mod is projective over R. Hence, every (A,R)-projective module A⊗R M is
projective over A. Hence, the (A,R)-projective resolutions are exactly the projective A-resolutions.

The meaning of Ext1 follows from the following theorem.

Theorem 1.2.37. [Hoc56] We have a one to one correspondence between

Ext1(A,R)(M,N)←→

{
Classes of equivalence of (A,R)− exact sequences of the form

0→ N→ X →M→ 0

}
.

Proof. Consider the (A,R)-exact sequence

0→ KM
i−→ A⊗R M

µ−→M→ 0. (1.2.3.24)

By Proposition 1.2.33, this exact sequence induces the long exact sequence

HomA(A⊗R M,N)
HomA(i,N)−−−−−−→ HomA(KM,N)

∂−→ Ext1(A,R)(M,N)→ 0. (1.2.3.25)

Hence, Ext1(A,R)(M,N)' im∂ ' HomA(KM,N)/ker∂ ' HomA(KM,N)/imHomA(i,N).
Let δ : 0→ N→ X →M→ 0 be an (A,R)-exact sequence. There is the commutative diagram

0 KM A⊗R M M 0

0 N X M 0

i

α

µ

f , (1.2.3.26)

where the existence of f is due to A⊗R M being (A,R)-projective and the existence of α is given by the universal
property of the kernel of X →M.

We assign δ to α +imHomA(i,N). This assignment is well defined and we will denote it by ψ .
Conversely, let δ ∈ Ext1(A,R)(M,N). There exists fδ ∈ HomA(KM,N) such that ∂ ( fδ ) = δ .
Let (X , p,k) be the pushout of the maps ( fδ , i). Explicitly, X = (N

⊕
A⊗R M)/S with

S = {( fδ (x),−i(x)) ∈ N
⊕

A⊗R M : x ∈ KM}.
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Then, there is a pushout diagram

0 KM A⊗R M M 0

0 N X M 0

i

fδ

µ

p

k θ

. (1.2.3.27)

Since the first row is (A,R) is exact, there exists t ∈ HomR(M,A⊗R M) such that µ ◦ t = idM . Hence,

θ ◦ p◦ t = µ ◦ t = idM . (1.2.3.28)

This shows that the second row in 1.2.3.27 is (A,R)-exact and we can denote ψ∗ the assignment δ to this (A,R)-
exact sequence.

Now it is clear that the proof that these functions ψ and ψ∗ are bijective follows in the same way as in the
usual bijection for Ext1A(M,N).

Lemma 1.2.38. Let A be a projective R-algebra. Let M,N ∈ Aop-mod∩R-proj. Then, for any i ≥ 0,

ExtiAop(M,N)' ExtiA(DN,DM).

Proof. Let M• be a projective left Aop-resolution · · · → M1
α1−→ M0

α0−→ M→ 0. Since M ∈ R-proj, all modules
imαi are projective over R. Hence, M• is an (Aop,R)-projective resolution. Moreover, applying D to M• yields
the exact sequence 0→ DM

Dα0−−→ DM0→ DM1→ ··· , since ExtiR(M,R) = 0 for all i > 0. Each DMi is (A,R)-
injective. Thus, DM• is an (A,R)-injective resolution of DM. The following diagram is commutative

0 HomAop(M0,N) HomAop(M1,N) · · ·

0 HomA(DN,DM0) HomA(DN,DM1) · · ·

HomAop (α1, N)

ψM0 ,N ψM1 ,N
HomA(DN,Dα1)

.

In fact, for g ∈ HomAop(M0,N),s ∈ DN, m ∈M,

ψM,N ◦HomAop(α1,N)(g)(s)(m) = ψM,N(g◦α1)(s)(m) = s(g◦α1(m)) (1.2.3.29)

HomA(DN,Dα1)◦ψM0,N(g)(s)(m) = Dα1 ◦ψM0,N(g)(s)(m) = Dα1(s(g))(m) = s◦g(α1(m)). (1.2.3.30)

Hence,

ExtiAop(M,N) = H i(HomAop(M•,N)) = H i(HomA(DN,DM•)) = Exti(A,R)(DN,DM). (1.2.3.31)

But since every projective A-resolution for DN ∈ R-proj is (A,R)-exact, Exti(A,R)(DN,DM) = ExtiA(DN,DM) for
every i≥ 0.

1.2.4 Relative dimensions

In relative homological algebra, there are not, in general, minimal resolutions. However, we can use the relative
Ext and relative Tor to define the relative versions of projective and injective dimension. Most of the results of
this section can be found in section 1 of [Hat63].

1. We say that a module M has relative projective dimension pdim(A,R) M less or equal to n if and only if
Extn+1

(A,R)(M,N) = 0 for all N ∈ A-Mod.
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2. We say that a module N has relative injective dimension idim(A,R) N less or equal to n if and only if
Extn+1

(A,R)(M,N) = 0 for all M ∈ A-Mod.

3. We say that a left module M has relative flat dimension flatdim(A,R)(M) less or equal to n if and only if
Tor(A,R)n+1 (L,M) = 0 for all L ∈Mod-A.

4. We say that a right module L has relative flat dimension flatdim(A,R)(L) less or equal to n if and only if
Tor(A,R)n+1 (L,M) = 0 for all M ∈ A-Mod.

5. We define the left relative global dimension as l.gldim(A,R) = sup{pdim(A,R)(M) : M ∈ A-Mod}. The
right left relative global dimension is defined in the same fashion.

6. We define the left relative global dimension of A-mod as

l.gldim f (A,R) = sup{pdim(A,R)(M) : M ∈ A-mod}.

The right left relative global dimension is defined in the same fashion.

Lemma 1.2.39. Let 0→ N
α0−→ I0

α1−→ I1
α2−→ ·· · be an (A,R)-exact sequence. Assume M ∈ A-Mod such that

Extl(A,R)(M, Ii) = 0 for all l > 0 and i≤ s. Then, Extk(A,R)(M,N)' Ext1(A,R)(M,imαk−1), 2+ s≥ k ≥ 1.

Let · · · α2−→P1
α1−→P0

α0−→M→ 0 be an (A,R)-exact sequence. Assume N ∈A-Mod such that Extl(A,R)(Pi,N) = 0
for all l > 0 and i≤ s. Then, Extk(A,R)(M,N)' Ext1(A,R)(imαk−1,N), 2+ s≥ k ≥ 1.

Proof. For any j there are (A,R)-exact sequences 0→ imα j → I j → imα j+1→ 0, where imα0 = N. Applying
the functor HomA(M,−) we get the long exact sequence

· · · → Extl(A,R)(M,imα j)→ Extl(A,R)(M, I j)→ Extl(A,R)(M,imα j+1)→ ··· . (1.2.4.1)

Since Extl(A,R)(M, Ii) = 0, i≤ s the following are isomorphic

Extl+1
(A,R)(M,imα j)' Extl(A,R)(M,imα j+1), j ≤ s, l ≥ 1. (1.2.4.2)

So,

Extk(A,R)(M,N) = Extk(A,R)(M,imα0)' Extk−1
(A,R)(M,imα1)' Ext1(A,R)(M,imαk−1),0≤ k−1≤ s+1. (1.2.4.3)

The other claim follows using the dual argument applying the functor HomA(−,N).

Proposition 1.2.40. Let R be a commutative Noetherian ring. Let A be a Noetherian R-algebra. Then, the

following assertions hold.

1. M ∈ A-mod is (A,R)-projective if and only if Ext1(A,R)(M,N) = 0 for all N ∈ A-mod.

2. N ∈ A-mod is (A,R)-injective if and only if Ext1(A,R)(M,N) = 0 for all M ∈ A-mod.

Proof. Assume that Ext1(A,R)(M,N) = 0 for all N ∈ A-mod. Consider the exact sequence

0→ K→ A⊗R M→M→ 0. (1.2.4.4)

By assumption, both A⊗R M,M ∈ A-mod. Since R is Noetherian, K ∈ A-mod. By assumption, this sequence
must split over A. The other implication is clear. The argument for (ii) is analogous.

Proposition 1.2.41. Let M ∈ A-Mod . The following assertions are equivalent.
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(i) Exti(A,R)(M,N) = 0 for all i > n and all left A-modules N;

(ii) pdim(A,R)(M)≤ n, that is, Extn+1
(A,R)(M,N) = 0 for all left A-modules N;

(iii) If 0→ Kn−1→ Xn−1→ ·· · → X0→M→ 0 is an (A,R)-exact sequence with all Xi being (A,R)-projective,

then Kn−1 is (A,R)-projective.

Proof. (i) =⇒ (ii) is clear. Assume that (ii) holds. Let

0→ Kn−1
αn−→ Xn−1

αn−1−−−→ ·· · → X0
α0−→M→ 0 (1.2.4.5)

be an (A,R)-exact sequence where all Xi are (A,R)-projective. Since Extl>0
(A,R)(Xi,N) = 0, for all N ∈ A-Mod, it

follows

0 = Extn+1
(A,R)(M,N)' Ext1(A,R)(imαn,N) = Ext1(A,R)(Kn−1,N). (1.2.4.6)

By Proposition 1.2.40, Kn−1 is (A,R)-projective. Hence, (iii) follows.
Assume that (iii) holds. Let

X• : · · · → Xn−1→ ···
α1−→ X0

α0−→M→ 0 (1.2.4.7)

be the standard (A,R)-projective resolution of M. If, for some j < n, X j is zero, then the cohomology of the
associated deleted complex of Hom(X•,N) vanishes for degree greater than n. If there is no such j, then we can
consider the (A,R)-exact sequence

0→ kerαn−1→ Xn−1→ ···
α1−→ X0

α0−→M→ 0. (1.2.4.8)

By assumption, kerαn−1 is (A,R)-projective. Now using this (A,R)-projective resolution to compute Exti>0(M,N),
(i) follows.

Proposition 1.2.42. Let R be a commutative Noetherian ring. Let A be a Noetherian R-algebra. For M ∈ A-mod,

the following are equivalent:

(i) Extn+1
(A,R)(M,N) = 0 for all N ∈ A-mod;

(ii) Extn+1
(A,R)(M,N) = 0 for all N ∈ A-Mod.

Proof. (ii) =⇒ (i) is clear. Assume that (i) holds. Since M is finitely generated over the Noetherian ring R and
A⊗R M is finitely generated over A all the modules in the standard (A,R)-projective resolution of M are finitely
generated over A. In particular, Kn−1 ∈ A-mod according to the notation of Proposition 1.2.41. Using the same
argument,

0 = Extn+1
(A,R)(M,N)' Ext1(A,R)(imαn,N) = Ext1(A,R)(Kn−1,N), (1.2.4.9)

for all N ∈ A-mod. By Proposition 1.2.40, Kn−1 is (A,R)-projective. Using the (A,R)-projective resolution
0→ Kn−1→ Xn−1→ X0→M→ 0 to compute Ext we conclude (ii).

Proposition 1.2.43. Let N ∈ A-Mod. The following assertions are equivalent.

1. Exti(A,R)(M,N) = 0 for all i > n and all A-modules M;

2. idim(A,R)(N)≤ n;
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3. If 0→ N→ Q0→ Q1→ ·· · → Qn−1→ N′→ 0 is (A,R)-exact with all Qi being (A,R)-injective, then N′

is (A,R)-injective.

Proof. Analogous to Proposition 1.2.41.

Proposition 1.2.44. Let R be a commutative Noetherian ring. Let A be a Noetherian R-algebra. For N ∈ A-mod,

the following are equivalent:

(i) Extn+1
(A,R)(M,N) = 0 for all M ∈ A-mod;

(ii) idim(A,R)(N)≤ n.

Proof. Analogous to Proposition 1.2.42.

Corollary 1.2.45. Let R be a commutative Noetherian ring. Let A be a Noetherian R-algebra. Let M ∈
A-mod∩R-proj. Then, idim(A,R) M ≤ n if and only if Extn+1

A (X ,M) = 0 for all X ∈ A-mod∩R-proj.

Proof. Assume Extn+1
A (X ,M) = 0 for all X ∈ A-mod∩R-proj. Consider an (A,R)-injective resolution

0→M
α0−→ I0

α1−→ I1→ ··· → In−1
αn−→ In→ ··· (1.2.4.10)

By Lemma 1.2.39,

0 = Extn+1
A (X ,M)' Extn+1

(A,R)(X ,M)' Ext1(A,R)(X ,imαn). (1.2.4.11)

Since M ∈ R-proj, imαn ∈ R-proj. By Corollary 1.2.35, imαn is (A,R)-injective. Hence, idim(A,R) M ≤ n.
The other implication is clear since (A,R)-projective resolutions of X are projective A-resolutions.

Proposition 1.2.46. For any R-algebra A, we have

l.gldim(A,R) = sup{pdim(A,R)(M) : M ∈ A-Mod}= sup{idim(A,R)(N) : N ∈ A-Mod}

= sup{n : Extn(A,R)(M,N) 6= 0, ∀M,N ∈ A-Mod}.

Proof. Let

n = l.gldim(A,R), k = sup{idim(A,R)(N) : N ∈ A-Mod}, s = sup{n : Extn(A,R)(M,N) 6= 0, ∀M,N ∈ A-Mod}.

By definition, n ≥ pdim(A,R) M for every M ∈ A-Mod. By Proposition 1.2.41, for each M ∈ A-Mod,
Exti>n

(A,R)(M,N) = 0 for every N ∈ A-Mod. Thus, n≥ s. By Proposition 1.2.43, it follows k ≥ s. Let M ∈ A-Mod.
Then, Exti>s

(A,R)(M,N) = 0 for every N ∈ A-Mod. If s =+∞, then we are done. Assume s < ∞.
Let M ∈ A-Mod. Then, Exts+1

(A,R)(M,N) = 0 for every N ∈ A-Mod. Thus, pdim(A,R) M ≤ s. Since the choice of
M is arbitrary n≤ s. In the same way, k ≤ s. Therefore, n = s = k.

Proposition 1.2.47. [Hat63, Proposition 1.1] For any R-algebra A, the left relative weak global dimension and

right relative weak global dimension coincide. Furthermore,

l.wgldim(A,R) = sup{flatdim(A,R)(M) : M ∈ A-Mod}

= sup{n : Tor(A,R)n (L,M) 6= 0, M ∈ A-Mod, L ∈Mod-A}

= sup{flatdim(A,R)(L) : L ∈Mod-A}= r.wgldim(A,R).

Proof. The proof is similar to Proposition 1.2.46.

61



1.2. Relative homological algebra

Proposition 1.2.48. [Hat63, Proposition 1.1] For any R-algebra we have,

l.wgldim f (A,R) = sup{flatdim(A,R)(M) : M ∈ A-mod}= sup{flatdim(A,R)(N) : N ∈mod-A}.

Proof. Both terms are equal to sup{n : Tor(A,R)n (L,M) 6= 0, M ∈ A-mod, L ∈mod-A}.

Proposition 1.2.49. [Hat63, Section 1.2] Let R be a commutative Noetherian ring. Let A be a Noetherian

R-algebra. Then, sup{pdim(A,R)(M) : M ∈ A-mod}= sup{idim(A,R)(N) : N ∈ A-mod}.

Proof. Let sup{pdim(A,R)(M) : M ∈ A-mod} ≤ n. Consider any N ∈ A-mod. Consider the standard (A,R)-

injective resolution 0→N
α0−→Q0

α1−→ ·· ·→Qn−1→imαn→ 0. As R is Noetherian, each Qi is finitely generated,
and thus imαn is finitely generated. So,

0 = Extn+1
(A,R)(M,N)' Ext1(A,R)(M,imαn), (1.2.4.12)

for every M ∈ A-mod. Therefore, imαn is (A,R)-injective. By Proposition 1.2.43, idim(A,R) N ≤ n. Thus,
sup{idim(A,R)(N) : N ∈ A-mod} ≤ n. By a symmetrical argument, we get the other inequality.

Proposition 1.2.50. Let R be a commutative Noetherian ring with identity. Let S be a flat R-algebra and let A be

a Noetherian R-algebra. Let M,N ∈ A-mod and n≥ 0. Then,

S⊗R Extn(A,R)(M,N)' Extn(S⊗RA,S)(S⊗R M,S⊗R N).

Proof. Since S is flat R-algebra, the functor S⊗R− : A-mod→ S⊗R A-mod is exact. Consider an (A,R)-exact
sequence 0→M

f−→ N
g−→ Q→ 0. By the exactness of S⊗R−, S⊗R kerg ' ker(S⊗R g). Hence, S⊗R kerg is an

S-summand of S⊗R N. Thus, the functor S⊗R− sends (A,R)-exact sequences to (S⊗R A,S)-exact sequences.
Moreover,

S⊗R HomR(A,M)' HomS⊗RR(S⊗R A,S⊗R M) (1.2.4.13)

is an (S⊗R A,S)-injective module. So, S⊗R− sends (A,R)-injective resolutions to (S⊗R A,S)-injective resolu-
tions. Let I• : · · · → I1→ I0→ 0 be a deleted resolution of the standard (A,R)-injective resolution of N. Then,

S⊗R Extn(A,R)(M,N)' S⊗R Hn(HomA(M, I•))' Hn(S⊗R HomA(M, I•)) (1.2.4.14)

' Hn(HomS⊗RA(S⊗R M,S⊗R I•))' Extn(S⊗RA,S)(S⊗R M,S⊗R N).

Corollary 1.2.51. [Hat63, section 1.4] Let p be a prime ideal of R and n ≥ 0. Then, Extn(A,R)(M,N)p '
Extn(Ap,Rp)

(Mp,Np).

Proof. It follows from Proposition 1.2.50 by considering S = Rp.

Lemma 1.2.52. [Hat63, section 1.3] Let A and B be Noetherian R-algebras. Let M be a left A-module, N be

an (A,B)-bimodule, Q is a right B-injective. Consider σN,Q,M : HomB(N,Q)⊗A M→ HomB(HomA(M,N),Q),

given by σ(g⊗m)( f ) = g( f (m)). If M ∈ A-mod, then σN,Q,M is an R-isomorphism.

Proof. Let N be an (A,B)-bimodule and Q a right B-injective module. First we will show that σN,Q,M is functorial
on M.

Let X ,Y ∈A-mod. Denote by θ A
X ,Y,N the canonical isomorphism HomA(X ,N)

⊕
HomA(Y,N)→HomA(X

⊕
Y,N)

and denote by θ B
B1,B2,Q the canonical isomorphism HomB(B1,Q)

⊕
HomB(B2,Q)→HomB(B1

⊕
B2,Q) for B1,B2 ∈
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B-mod. Put θ2 = θ B
HomA(X ,N),HomA(Y,N),Q The following diagram is commutative

HomB(N,Q)⊗A (X
⊕

Y ) HomB(HomA(X
⊕

Y,N),Q)

HomB(HomA(X ,N)
⊕

HomA(Y,N),Q)

HomB(N,Q)⊗A X
⊕

HomB(N,Q)⊗A Y HomB(HomA(X ,N),Q)
⊕

HomB(HomA(Y,N),Q)

σN,Q,X
⊕

Y

ψ

HomA(θ1,Q)

σN,Q,X⊕σN,Q,Y

θ2

,

(1.2.4.15)
where ψ is the natural isomorphism.

In fact, for g⊗ (x,y) ∈ HomB(N,Q)⊗A (X
⊕

Y ), ( f ,h) ∈ HomA(X ,N)
⊕

HomA(Y,N)

HomA(θ1,Q)◦σN,Q,X⊕Y (g⊗ (x,y))( f ,h) = σN,Q,X⊕Y (g⊗ (x,y))◦θ1( f ,h) = g(θ1( f ,h)(x,y)

= g◦ f (x)+g◦h(y)

θ2 ◦σN,Q,X ⊕σN,Q,Y ◦ψ(g⊗ (x,y))( f ,h) = θ2(σN,Q,X ⊕σN,Q,Y (g⊗ x,g⊗ y))( f ,h)

= σN,Q,X (g⊗ x)( f )+σN,Q,Y (g⊗ y)(h) = g◦ f (x)+g◦h(y).

Define the map π : HomA(A,N) → N, given by π( f ) = f (1A) and denote by µ the multiplication map
µ : HomB(N,Q)⊗A A→ HomB(N,Q) . Hence, σN,Q,A = HomB(π,Q) ◦ µ is an isomorphism. Using the dia-
gram (1.2.4.15) we obtain that σN,Q,M is an isomorphism for every M ∈ A-proj.

Let M ∈ A-mod. Then, there is an A-presentation As → At → M → 0. As Q is B-injective, HomB(−,Q)

is contravariant exact. On the other hand, HomA(−,N) is contravariant left exact, so the composition functor
HomB(−,Q) ◦HomA(−,N) is covariant right exact. The functor HomB(N,Q)⊗A − is covariant right exact.
Therefore, applying the functors HomB(−,Q) ◦HomA(−,N) and HomB(N,Q)⊗A− we obtain the following
commutative diagram with exact rows.

HomB(N,Q)⊗As HomB(N,Q)⊗At HomB(N,Q)⊗M

HomB(HomA(As,N),Q) HomB(HomA(At ,N),Q) HomB(HomA(M,N),Q)

σN,Q,As σN,Q,At σN,Q,M . (1.2.4.16)

By diagram chasing, it follows that σN,Q,M is an isomorphism.

Lemma 1.2.53. Let R be a commutative Noetherian ring. Let A be a Noetherian R-algebra. Let M,N ∈ A-mod
and Q an R-injective module. Then,

Tor(A,R)n (HomR(N,Q),M)' HomR(Extn(A,R)(M,N),Q).

Proof. Let P• be the standard (A,R)-projective resolution of M. Since R is Noetherian ring and M is finitely
generated, every module in P• belongs to A-mod. Hence,

Tor(A,R)n (HomR(N,Q),M) = Hn(HomR(N,Q)⊗A P•)' Hn(HomR(HomA(P•,N),Q)) (1.2.4.17)

' HomR(Hn(HomA(P•,N)),Q) = HomR(Extn(A,R)(M,N),Q).

Proposition 1.2.54. [Hat63, Proposition 1.3] Let R be a commutative Noetherian ring and A a Noetherian

R-algebra. Then, l.gldim f (A,R) = wgldim f (A,R) = r.gldim f (A,R).
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Proof. Let n ∈ N and M,N ∈ A-mod such that Extn(A,R)(M,N) 6= 0. Let Q be an injective cogenerator of R-mod.
Then, by Lemma 1.2.53,

Tor(A,R)n (HomR(N,Q),M)' HomR(Extn(A,R)(M,N),Q) 6= 0. (1.2.4.18)

In particular, wgldim f (A,R)≥ l.gldim f (A,R). If l.gldim f (A,R) = ∞, then we are done.
Assume that l.gldim f (A,R) ≤ n for some natural number n. Let M ∈ A-mod. Then, pdim(A,R) M ≥ n. So,

we can find an (A,R)-projective resolution of length n. So, using such projective resolution to compute Tor
we obtain Tor(A,R)n+1 (L,M) = 0 for every L right A-module. Therefore, wgldim f (A,R) ≤ n. So, we conclude
l.gldim f (A,R) = wgldim f (A,R). Symmetrically, we obtain wgldim f (A,R) = r.gldim f (A,R).

For Noetherian R-algebras, we write gldim f (A,R) to denote the value l.gldim f (A,R) = r.gldim f (A,R).

Lemma 1.2.55. Let A be a projective Noetherian R-algebra. Let I be an (A,R)-injective module and

M ∈ R-proj∩A-mod. Then, ExtiA(M, I) = 0 for all i > 0.

Proof. Let i = 1. We notice that any A-exact sequence 0→ I → X → M→ 0 splits over R. Since I is (A,R)-
injective, it splits over A. Thus, Ext1A(M, I) = 0. Consider an projective A-resolution for M, · · · → P2

α2−→ P1
α1−→

P0
α0−→M→ 0. In particular, there are exact sequences

0→ imα j→ Pj−1→ imα j−1→ 0. (1.2.4.19)

Since M ∈ R-proj, (1.2.4.19) is (A,R)-exact. Thus, for every j ≥ 0, imα j ∈ R-proj. Let i > 1. So,

ExtiA(M, I)' Ext1A(imαi−1, I) = 0.

Lemma 1.2.56. Let A be a projective Noetherian R-algebra. Let M ∈ A-mod∩R-proj. Assume that M is an

(A,R)-injective. Then, DM is projective over Aop. If P ∈ A-proj, then DP is an (Aop,R)-injective module.

Proof. Let P be a projective A-module. Then, DP is an A-summand of HomR(At ,R)'HomR(A,R)t . Hence, DP

is (Aop,R)-injective.
Let M be an (A,R)-injective module and projective module as R-module. Then, M is an A-summand of

HomR(A,M). Note that

DHomR(A,M)' HomR(HomR(A,M),R)' HomR(HomR(A,R)⊗R M,R) (1.2.4.20)

' HomR(M,HomR(HomR(A,R),R))' HomR(M,A)' HomR(M,R)⊗R A (1.2.4.21)

= A⊗R DM. (1.2.4.22)

Hence, DHomR(A,M) is (Aop,R)-projective. As M ∈ R-proj, DHomR(A,M) is projective over R. Therefore,
DHomR(A,M) ∈ Aop-proj. It follows that DM ∈ Aop-proj. Thus, M ' DDM is (A,R)-injective.

Using this Lemma, we can formulate the dual version of Theorem 1.1.51.

Theorem 1.2.57. Let A be a projective Noetherian R-algebra. Let P∈A-mod∩R-proj. Then, P is (A,R)-injective

if and only if P(m) is A(m)-injective for every maximal ideal m in R.

Proof. Assume that P is (A,R)-injective. Then, DP is (Aop,R)-injective. Since P ∈ R-proj, DP ∈ Aop-proj. Let
m be a maximal ideal in R. Then, DP(m) = HomR(P,R)(m) ' HomR(m)(P(m),R(m)) is projective as right
A(m)-module. Thus, P(m)' HomR(m)(HomR(m)(P(m),R(m)),R(m)) is A(m)-injective.
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Conversely, assume that P(m) is A(m)-injective for every maximal ideal m in R. Then,

HomR(m)(P(m),R(m))' HomR(P,R)(m)

is projective as right module over A(m) for every maximal ideal m in R. Thus, DP = HomR(P,R) is projective
over Aop since DP ∈ R-proj. Hence, P' DDP is (A,R)-injective.

In this sense, relative injective modules can be viewed as a natural generalization of injective modules of
finite dimensional algebras. For projective Noetherian R-algebras we have one more alternative characterization
of (A,R)-injective modules which are projective as R-modules.

Proposition 1.2.58. Let A be a projective Noetherian R-algebra. Let I ∈ A-mod∩R-proj. I is (A,R)-injective if

and only if Ext1A(M, I) = 0 for all M ∈ A-mod∩R-proj.

Proof. Assume that Ext1A(M, I) = 0 for all M ∈ A-mod∩R-proj. Let

δ : 0→ I→ HomR(A, I)→ X → 0 (1.2.4.23)

be the standard (A,R)-injective copresentation of I. In particular, HomR(A, I) is projective over R. Since δ is
R-split exact, X is also a projective R-module. Thus, δ ∈ Ext1A(X , I) with X ∈ A-mod∩R-proj. By assumption, δ

is split over A. Thus, I is (A,R)-injective. By Lemma 1.2.55, the converse statement is clear.

In [Rou08], the modules I ∈A-mod∩R-proj satisfying the property Ext1A(M, I) = 0 for all M ∈A-mod∩R-proj
are called relatively R-injective. Therefore, the relatively R-injective modules are exactly the (A,R)-injective
modules which are projective over R. Furthermore, this characterization says that the (A,R)-injective modules
which are projective over R are exactly the objects X of A = A-mod∩R-proj which make HomA (−,X) exact on
A .

1.2.5 Further relative notions

One more evidence that (A,R)-monomorphisms behave like the inclusions between modules over finite dimen-
sional algebras is the following version of Nakayama’s Lemma for (A,R)-monomorphisms, dual to Lemma
1.1.38 (c).

Lemma 1.2.59. Suppose R is a commutative ring. Let A be an R-algebra. If φ : M→N is (A,R)-monomorphism

and M ' N as finitely generated R-modules, then φ is an isomorphism.

Proof. Since φ is (A,R)-mono, there exists ε : N → M such that ε ◦ φ = idM . Thus, ε is surjective. By
Nakayama’s Lemma (c), ε is an R-isomorphism. Therefore, φ = ε−1 ◦ ε ◦φ = ε−1 is bijective.

Assume that Q is a cogenerator. Since every finitely generated injective module can be embedded into a finite
direct sum of copies of Q (see Theorem 1.1.12), then every injective module belongs to the additive closure of
Q. In particular, for Artinian rings, a module is a cogenerator if and only if contains all injective indecomposable
modules. However, we are only interested in the relative injective modules which are projective over the ground
ring. Thus, for our purposes, the cogenerators can be replaced by modules which additive closure contain all
relative injective modules which are projective over the ground ring. This motivates the following definition.

Definition 1.2.60. A module Q is called (A,R)-cogenerator if and only if the left A-module DAA = HomR(A,R)

belongs to the additive closure addQ.
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Definition 1.2.61. Let R be a commutative ring. An R-algebra A is called semi-simple relative to R if every
finitely generated left A-module is (A,R)-projective.

If the ground ring is semi-simple in the classical sense, relative projectivity coincides with the absolute
projectivity. Hence, an algebra semi-simple relative to a semi-simple ring is semi-simple in the classical sense.
In particular, if R is a field, relative semi-simple coincides with the classical notion of semi-simplicity. It is also
clear that every semi-simple algebra is semi-simple relative to the ground ring. For more details on this concept
we refer to [Hat63].

1.3 Spectral sequences

The computation of Ext and Tor groups is not always done directly by the definition using projective and in-
jective resolutions. Instead, spectral sequences provide useful ways to compute homology and cohomology of
complexes. For a more detailed approach, we refer to ([Wei03], [Rot09]).

Definition 1.3.1. A (homology) spectral sequence (starting with Ea) in an abelian category A consists of the
following data:

• For r ≥ a, the r-page is a collection of objects of A {Er
i, j}, i, j ∈ Z.

• Maps dr
i, j : Er

i, j→ Er
i−r, j+r−1 satisfying dr

i, j ◦dr
i+r, j−r+1 = 0 and Er+1

i, j = kerdr
i, j/imdr

i+r, j−r+1.

If Er
i, j = 0 unless i≥ 0 and j ≥ 0, then we say that {Er

i, j} is a first quadrant homology spectral sequence.
Hence, the (r+ 1)-page consists of the homology of the differential of the r-page. If the value at (i, j)-spot

stabilizes from some page on, then we denote this value by E∞
i, j.

Dually, we can define (cohomology) spectral sequences.

Definition 1.3.2. A (cohomology) spectral sequence (starting with Ea) in an abelian category A consists of the
following data:

• For r ≥ a, the r-page is a collection of objects of A {E i, j
r }, i, j ∈ Z.

• Maps di, j
r : E i, j

r → E i+r, j−r+1
r satisfying di, j

r ◦di−r, j+r−1
r = 0 and E i, j

r+1 = kerdi, j
r /imdi−r, j+r−1

r .

If E i, j
r = 0 unless i≥ 0 and j≥ 0, then we say that {E i, j

r } is a first quadrant cohomology spectral sequence.
If the value at (i, j)-spot stabilizes from some page on, then we denote this value by E i, j

∞ .
We can also see the cohomology spectral sequence as a homology spectral sequence reindexing the (i, j)-

spots: E i, j
r = Er

−i,− j.

Definition 1.3.3. We say that a (homology) spectral sequence converges to H∗, written as

Ea
i, j =⇒ Hi+ j

if we are given a collection of objects Hn of A , each having a finite filtration

0 = Hs
n ⊂ ·· · ⊂ H p−1

n ⊂ H p
n · · · ⊂ Ht

n = Hn

such that E∞
p,q ' H p

p+q/H p−1
p+q .
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Definition 1.3.4. We say that a (cohomology) spectral sequence converges to H∗, written as

E i, j
a =⇒ H i+ j

if we are given a collection of objects Hn of A , each having a finite filtration

0 = Hn
t ⊂ ·· · ⊂ Hn

p+1 ⊂ Hn
p ⊂ ·· · ⊂ Hn

s = Hn

such that E p,q
∞ ' H p+q

p /H p+q
p+1 .

The notion of convergence for first quadrant spectral sequence can be stated in a simple way. The major-
ity of spectral sequences here treated are first quadrant homology/cohomology spectral sequences, hence it is
worthwhile to restate convergence of first quadrant spectral sequences.

Definition 1.3.5. We say that a first quadrant (homology) spectral sequence converges to H∗, written as

Ea
i, j =⇒ Hi+ j

if we are given a collection of objects Hn of A , each having a finite filtration

0 = H−1
n ⊂ H0

n ⊂ H1
n ⊂ ·· · ⊂ Hn

n = Hn

such that E∞
i,n−i ' H i

n/H i−1
n for 0≤ i≤ n.

Definition 1.3.6. We say that a first quadrant (cohomology) spectral sequence converges to H∗, written as

E i, j
a =⇒ H i+ j

if we are given a collection of objects Hn of A , each having a finite filtration

0 = Hn
n+1 ⊂ Hn

n ⊂ Hn
n−1 ⊂ ·· · ⊂ Hn

1 ⊂ Hn
0 = Hn

such that E i,n−i
∞ ' Hn

i /Hn
i+1 for 0≤ i≤ n.

Lemma 1.3.7. Assume that E2
i, j =⇒ Hi+ j is a first quadrant spectral sequence. Then, there is an exact sequence

H2→ E2
2,0→ E2

0,1→ H1→ E2
1,0→ 0. (1.3.0.1)

Proof. By convergence, we have the filtration

0 = H−1
1 ⊂ H0

1 ⊂ H1
1 = H1. (1.3.0.2)

with E∞
1,0 ' H1

1/H0
1 and E∞

0,1 ' H0
1/H−1

1 = H0
1 . In particular, there is an exact sequence

0→ E∞
0,1→ H1→ E∞

1,0→ 0. (1.3.0.3)

Let n≥ 2. Then,

En+1
1,0 = ker

(
dn

1,0 : En
1,0→ En

1−n,n−1
)
/im

(
dn

1+n,1−n : En
1+n,−n+1→ En

1,0
)

(1.3.0.4)

= En
1,0. (1.3.0.5)
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By induction, En
1,0 = E2

1,0 for n≥ 2. By definition, E∞
1,0 = E2

1,0. We will now compute E∞
0,1. For n≥ 3,

En+1
0,1 = kerdn

0,1/imdn
n,2−n = kerdn

0,1 = ker(En
0,1→ En

−n,n) = En
0,1. (1.3.0.6)

By induction, it follows that

E∞
0,1 = E3

0,1 = kerd2
0,1/imd2

2,0 = E2
0,1/im(E2

2,0→ E2
0,1) = coker(E2

2,0→ E2
0,1). (1.3.0.7)

Now, E∞
2,0 = H2

2/H1
2 = H2/H1

2 . For n≥ 2,

En+1
2,0 = kerdn

2,0/imdn
2+n,1−n = ker(En

2,0→ En
2−n,n−1). (1.3.0.8)

Therefore, E∞
2,0 = ker(E2

2,0→ E2
0,1). We constructed an exact sequence

H2 E2
2,0 E2

0,1 H1 E2
1,0 0

E∞
2,0 E∞

0,1

.

Lemma 1.3.8. Assume that E i, j
2 =⇒ H i+ j is a first quadrant spectral sequence. Then, there is an exact sequence

0→ E1,0
2 → H1→ E0,1

2 → E2,0
2 → H2. (1.3.0.9)

Proof. By convergence, we have the filtration

0 = H1
2 ⊂ H1

1 ⊂ H1
0 = H1. (1.3.0.10)

with E1,0
∞ ' H1

1/H1
2 = H1

1 and E0,1
∞ = H1/H1

1 . In particular, there is an exact sequence

0→ E1,0
∞ → H1→ E0,1

∞ → 0. (1.3.0.11)

Let n≥ 2. Then,

E1,0
n+1 = ker

(
d1,0

n : E1,0
n → E1+n,1−n

n
)
/im

(
d1−n,n−1

n : E1−n,n−1
n → E1,0

n
)

(1.3.0.12)

= E1,0
n . (1.3.0.13)

By induction, E1,0
n = E1,0

2 for n≥ 2. By definition, E1,0
∞ = E1,0

2 . We shall compute E0,1
∞ . For n≥ 2,

E0,1
n+1 = kerd0,1

n /imd−n,n
n = kerd0,1

n = ker(E0,1
n → En,2−n

n ). (1.3.0.14)

Hence, by induction, E0,1
n = E0,1

3 . Thus, E0,1
∞ = ker(E0,1

2 → E2,0
2 ). Again, by convergence,

E2,0
∞ = H2

2/H2
3 = H2

2 ⊂ H2. (1.3.0.15)

For n≥ 3,

E2,0
n+1 = kerd2,0

n /imd2−n,n−1
n = ker(E2,0

n → E2+n,1−n
n ) = E2,0

n . (1.3.0.16)

Hence,

E2,0
∞ = E2,0

3 = E2,0
2 /im(E0,1

2 → E2,0
2 ) = coker(E0,1

2 → E2,0
2 ). (1.3.0.17)
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Thus, we constructed the exact sequence

0 E1,0
2 H1 E0,1

2 E2,0
2 H2

E0,1
∞ E2,0

∞

.

Lemma 1.3.9. Assume that E i, j
2 =⇒ H i+ j is a first quadrant spectral sequence and E i, j

2 = 0 for i > 0. Then,

E0, j
2 ' H j for every j ≥ 0.

Proof. We claim that E i, j
s = 0 for i > 0, s ≥ 2, j ≥ 0. We shall proceed by induction on s. If s = 2, the case

follows by assumption. Let s≥ 2. Then, for any i > 0, j ≥ 0

E i, j
s+1 = ker

di, j
s : E i, j

s︸︷︷︸
=0, by induction

→ E i+s, j−s+1
s

/im

di−s, j+s−1
s : E i−s, j+s−1

s → E i, j
s

=

0

= 0. (1.3.0.18)

In particular, E i, j
∞ = 0 for any i > 0, j ≥ 0.

We now claim that E0, j
s = E0, j

2 for any s ≥ 2, j ≥ 0. We will proceed by induction. The case s = 2 is clear.
For s > 2, j ≥ 0,

E0, j
s = ker

(
d0, j

s−1 : E0, j
s−1→ Es−1, j−s

s−1

)
/im

(
d−s+1, j+s−2

s−1

)
= ker

(
d0, j

s−1 : E0, j
s−1→ Es−1, j−s

s−1

)
, (1.3.0.19)

since 1− s < 0, and thus d−s+1, j+s−2
s−1 = 0. By the first claim, Es−1, j−s

s−1 = 0. Hence, E0, j
s = E0, j

s−1 = E0, j
2 for any

s≥ 2, j ≥ 0. In particular, E0, j
∞ = E0, j

2 for any j ≥ 0.
Let j ≥ 0. By convergence, we have a filtration for H j with E0, j

∞ ' H j
0/H j

1 = H j/H j
1 for every j ≥ 0.

Furthermore, 0 = E i, j−i
∞ ' H j

i /H j
i+1, 0 < i≤ j. Thus, H j

i = H j
i+1, 0 < i≤ j. Consequently, H j

1 = H j
j+1 = 0. We

conclude, E0, j
2 = E0, j

∞ ' H j.

Lemma 1.3.10. Let q ≥ 1. Assume that E i, j
2 =⇒ H i+ j is a first quadrant spectral sequence and E i, j

2 = 0 for

1≤ j ≤ q. Then, E i,0
2 ' H i, 1≤ i≤ q and there is an exact sequence

0→ Eq+1,0
2 → Hq+1→ E0,q+1

2 → Eq+2,0
2 → Hq+2 (1.3.0.20)

Proof. We will start by showing by induction that E i, j
s = 0 for every s ≥ 2, 1 ≤ j ≤ q and every i ≥ 0. Let

1≤ j≤ q and i≥ 0. The case s = 2 follows by assumption. Assume that E i, j
l = 0 for some s≥ 2 and l ≤ s. Then,

E i, j
s+1 = kerdi, j

s /imdi−s, j+s−1
s = 0, (1.3.0.21)

since by induction kerdi, j
s ⊂ E i, j

s = 0, and thus kerdi, j
s = 0. Therefore, E i, j

s = 0 for every s ≥ 2, 1 ≤ j ≤ q and
every i≥ 0. In particular,

E i, j
∞ = 0, 1≤ j ≤ q, i≥ 0. (1.3.0.22)

Let s ≥ 2 and i ≥ 0. Since 1− s is a negative value, E i+s,1−s
s = 0, and thus kerdi,0

s = E i,0
s . If s ≤ q+ 1 or

i+1≤ s, then E i−s,s−1
s = 0, and therefore, imdi−s,s−1

s = 0. For s≤ q+1 or i+1≤ s, we have

E i,0
s+1 = kerdi,0

s /imdi−s,s−1
s = E i,0

s . (1.3.0.23)
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In particular, by an induction argument

Eq+2,0
q+2 = Eq+2,0

q+1 = Eq+2,0
2 (1.3.0.24)

E i,0
s+1 = E i,0

s = E i,0
2 ,∀s≥ 2, 1≤ i≤ q+1. (1.3.0.25)

Thus,

E i,0
∞ = E i,0

2 , 1≤ i≤ q+1. (1.3.0.26)

For s≥ q+3, we have Eq+2−s,s−1
s = 0, and thus imdq+2−s,s−1

s = 0. Therefore, we have

Eq+2,0
s+1 = kerdq+2,0

s /imdq+2−s,s−1
s = Eq+2,0

s ,s≥ q+3 and (1.3.0.27)

Eq+2,0
∞ = Eq+2,0

q+3 = kerdq+2,0
q+2 /imdq+2−(q+2),(q+2)−1

q+2 = Eq+2,0
q+2 /im

(
d0,q+1

q+2 : E0,q+1
q+2 → Eq+2,0

q+2

)
(1.3.0.28)

= Eq+2,0
2 /im

(
d0,q+1

q+2 : E0,q+1
q+2 → Eq+2,0

q+2

)
. (1.3.0.29)

Now we are ready to establish En,0
2 ' Hn, 1≤ n≤ q.

Let 1≤ n≤ q and 1≤ i≤ n−1. Then, 1≤ n− i≤ q. Hence, by convergence and (1.3.0.22)

0 = E i,n−i
∞ ' Hn

i /Hn
i+1, and (1.3.0.30)

Hn = Hn
0 = Hn

(n−1)+1 = En,0
∞ =

(1.3.0.26)
En,0

2 . (1.3.0.31)

Now we shall proceed to construct the desired exact sequence. By the filtration given by convergence, we
have for any n≥ 0, En,0

∞ ' Hn
n ⊂ Hn.

Since E0,q+1
∞ = Hq+1/Hq+1

1 we have the canonical epimorphism Hq+1 � E0,q+1
∞ with kernel Hq+1

1 . For
1≤ i≤ q we have 1≤ q+1− i≤ q, and thus by (1.3.0.22) Hq+1

i+1 = Hq+1
i . Hence,

Eq+1,0
2 =

(1.3.0.26)
Eq+1,0

∞ = Eq+1,(q+1)−(q+1)
∞ ' Hq+1

q+1/Hq+1
q+2 = Hq+1

q = Hq+1
1 (1.3.0.32)

So, we have an exact sequence

0→ Eq+1,0
2 → Hq+1→ E0,q+1

∞ → 0. (1.3.0.33)

We have that imd−s,q+1+s−1
s = 0, hence

E0,q+1
s+1 = ker

(
d0,q+1

s : E0,q+1
s → Es,q+2−s

s
)
= E0,q+1

s , s≥ q+3 (1.3.0.34)

Therefore,

E0,q+1
∞ = E0,q+1

q+3 = ker
(

d0,q+1
q+2 : E0,q+1

q+2 → Eq+2,0
q+2

)
'

(1.3.0.24)
ker
(

E0,q+1
q+2 → Eq+2,0

2

)
(1.3.0.35)

Moreover, for 2≤ s≤ q+1,

E0,q+1
s+1 = ker

(
d0,q+1

s : E0,q+1
s → Es,q+2−s

s
)
' ker

(
E0,q+1

s → 0
)
= E0,q+1

s . (1.3.0.36)

It follows that E0,q+1
q+2 = E0,q+1

2 . By (1.3.0.28),

coker
(

E0,q+1
q+2 → Eq+2,0

2

)
= Eq+2,0

∞ . (1.3.0.37)
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Thus, we have the exact sequence

0 Eq+1,0
2 Hq+1 E0,q+1

2 Eq+2,0
2 Hq+2

E0,q+1
∞ Eq+2,0

∞

.

Lemma 1.3.11. Let q ≥ 1. Assume that E2
i, j =⇒ Hi+ j is a first quadrant spectral sequence and E2

i, j = 0 for

1≤ j ≤ q. Then, E2
i,0 ' Hi, 1≤ i≤ q and there is an exact sequence

Hq+2→ E2
q+2,0→ E2

0,q+1→ Hq+1→ E2
q+1,0→ 0. (1.3.0.38)

Proof. This proof is essentially the dual argument for Lemma 1.3.10.
We will start by showing by induction that Es

i, j = 0 for every s≥ 2, 1≤ j ≤ q and every i≥ 0. Let 1≤ j ≤ q

and i≥ 0. The case s = 2 follows by assumption. Assume that E i, j
l = 0 for some s≥ 2 and l ≤ s. Then,

Es+1
i, j = kerds

i, j/imds
i+s, j−s+1 = 0, (1.3.0.39)

since by induction kerds
i, j ⊂ Es

i, j = 0, and thus kerds
i, j = 0.

Therefore, Es
i, j = 0 for every s≥ 2, 1≤ j ≤ q and every i≥ 0. In particular,

E∞
i, j = 0, 1≤ j ≤ q, i≥ 0. (1.3.0.40)

Since 1−s is a negative value, Es
i+s,1−s = 0, and thus imds

i+s,−s+1 = 0. If s≤ q+1 or i+1≤ s, then E i−s,s−1
s = 0.

For s≤ q+1 or i+1≤ s, we have

Es+1
i,0 = ker

(
ds

i,0 : Es
i,0→ Es

i−s,s−1
)
/imds

i+s,−s+1 = Es
i,0. (1.3.0.41)

In particular, by an induction argument

Eq+2
q+2,0 = Eq+1

q+2,0 = E2
q+2,0 (1.3.0.42)

Es+1
i,0 = Es

i,0 = E2
i,0,∀s≥ 2, 1≤ i≤ q+1. (1.3.0.43)

Thus,

E∞
i,0 = E2

i,0, 1≤ i≤ q+1. (1.3.0.44)

For s≥ q+3, we have Eq+2−s,s−1
s = 0, and thus kerds

q+2,0 = Es
q+2,0.

Therefore, we have

Es+1
q+2,0 = kerds

q+2,0/imds
q+2+s,−s+1 = Es

q+2,0,s≥ q+3 and (1.3.0.45)

E∞
q+2,0 = Eq+3

q+2,0 = kerdq+2
q+2,0/imdq+2

q+2+(q+2),−(q+2)+1 = ker
(

dq+2
q+2,0 : Eq+2

q+2,0→ Eq+2
0,q+1

)
(1.3.0.46)

=
(1.3.0.42)

ker
(

E2
q+2,0→ Eq+2

0,q+1

)
. (1.3.0.47)

Now we are ready to establish E2
n,0 ' Hn, 1≤ n≤ q.

Let 1≤ n≤ q and 1≤ i≤ n−1. Then, 1≤ n− i≤ q. Hence, by convergence and (1.3.0.40)

0 = E∞
i,n−i ' H i

n/H i−1
n , and (1.3.0.48)
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Hn−1
n = Hn−2

n = H0
n ' E∞

0,n =
(1.3.0.40)

0 (1.3.0.49)

Hn = Hn
n = Hn

n Hn−1
n ' E∞

n,0 =
(1.3.0.44)

E2
n,0. (1.3.0.50)

Now we shall proceed to construct the desired exact sequence. By the filtration given by convergence, we have
for any n ≥ 0, E∞

n,0 ' Hn
n/Hn−1

n = Hn/Hn−1
n . Thus, we have a canonical epimorphism Hn � E∞

n,0 with kernel
Hn−1

n for any n≥ 0. In particular, we have the exact sequence and the epimorphism

0→ Hq
q+1→ Hq+1→ E∞

q+1,0 =
(1.3.0.44)

E2
q+1,0→ 0, Hq+2 � E∞

q+2,0 (1.3.0.51)

For 2 ≤ s ≤ q+1, 1 ≤ q+2− s ≤ q. Hence, Es
s,q+2−s = 0 for 2 ≤ s ≤ q+1. Consequently, imds

s,q+2−s = 0
for 2≤ s≤ q+1. Therefore, for 2≤ s≤ q+1,

Es+1
0,q+1 = ker

(
Es

0,q+1→ Es
−s,q+2−s

)
= Es

0,q+1. (1.3.0.52)

We conclude that

Eq+2
0,q+1 = Eq+1

0,q+1 = E2
0,q+1. (1.3.0.53)

In view of (1.3.0.47),

E∞
q+2,0 = ker

(
E2

q+2,0→ E2
0,q+1

)
(1.3.0.54)

For s≥ q+3, imds
s,q+2−s = 0, and thus

Es+1
0,q+1 = kerds

0,q+1/imds
s,q+2−s = ker

(
ds

0,q+1 : Es
0,q+1→ Es

−s,q+s
)
= Es

0,q+1. (1.3.0.55)

Therefore, E∞
0,q+1 = Eq+3

0,q+1.
By (1.3.0.40) and using the filtration given by convergence for 1≤ i≤ q,

0 = E∞
i,q+1−i = H i

q+1/H i−1
q+1. (1.3.0.56)

This gives us

Hq
q+1 = Hq−1

q+1 = H0
q+1 = E∞

0,q+1 = Eq+3
0,q+1 = kerdq+2

0,q+1/imdq+2
q+2,0 (1.3.0.57)

= Eq+2
0,q+1/im

(
Eq+2

q+2,0→ Eq+2
0,q+1

)
=

(1.3.0.53,1.3.0.42)
E2

0,q+1/im
(
E2

q+2,0→ E2
0,q+1

)
. (1.3.0.58)

Combinining (1.3.0.58), (1.3.0.51) and (1.3.0.54) we obtain the exact sequence

Hq+2 E2
q+2,0 E2

0,q+1 Hq+1 E2
q+1,0 0

E∞
q+2,0 Hq

q+1

.

Lemma 1.3.12. Assume that E2
i, j =⇒ Hi+ j is a first quadrant spectral sequence, E2

i, j = 0 for 1 ≤ i ≤ q, j ≥ 0
for some q ∈ N, and E2

0, j = 0 for j > 0. Then, there exists an epimorphism Hq+1 � E2
q+1,0.

Proof. As we have seen before, by convergence there exists a canonical epimorphism Hn � E∞
n,0 for every n≥ 1.

We will start by showing by induction that Es
i, j = 0 for every s≥ 2, 0≤ i≤ q and every j ≥ 0. Let 0≤ i≤ q
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and j ≥ 0. The case s = 2 follows by assumption. Assume that E i, j
l = 0 for some s≥ 2 and l ≤ s. Then,

Es+1
i, j = kerds

i, j/imds
i+s, j−s+1 = 0, (1.3.0.59)

since by induction kerds
i, j ⊂ Es

i, j = 0, and thus kerds
i, j = 0.

Therefore, Es
i, j = 0 for every s≥ 2, 0≤ i≤ q and every j ≥ 0. In particular, Es

q−s+1,s−1 = 0 since q− s+1≤
q−1 for every s≥ 2.

We have, Es+1
q+1,0 = kerds

q+1,0/imds
q+1+s,−s+1 = ker(ds

q+1,0 : Es
q+1,0 → Es

q−s+1,s−1) = Es
q+1,0. It follows that

Es
q+1,0 = E2

q+1,0 for every s≥ 2. Moreover E∞
q+1,0 = E2

q+1,0.

Lemma 1.3.13. Assume that E i, j
2 =⇒ H i+ j is a first quadrant spectral sequence, E i, j

2 = 0 for 1 ≤ i ≤ q, j ≥ 0
for some q ∈ N and E0, j

2 = 0 for j > 0. Then, there exists a monomorphism Eq+1,0
2 ↪→ Hq+1.

Proof. As we have seen before, by convergence there exists a canonical monomorphism En,0
∞ ↪→ Hn for every

n≥ 1.
We will start by showing by induction that E i, j

s = 0 for every s≥ 2, 0≤ i≤ q and every j ≥ 0. Let 0≤ i≤ q

and j ≥ 0. The case s = 2 follows by assumption. Assume that E l
i, j = 0 for some s≥ 2 and l ≤ s. Then,

E i, j
s+1 = kerdi, j

s /imdi−s, j+s−1
s = 0, (1.3.0.60)

since by induction kerdi, j
s ⊂ E i, j

s = 0, and thus kerdi, j
s = 0.

Therefore, E i, j
s = 0 for every s≥ 2, 0≤ i≤ q and every j ≥ 0. In particular, Eq−s+1,s−1

s = 0 for every s≥ 2
since q− s+1≤ q−1 for every s≥ 2. Thus,

Eq+1,0
s+1 = kerdq+1,0

s /imdq+1−s,s−1
s = kerds

q+1,0 = Es
q+1,0. (1.3.0.61)

It follows that Eq+1,0
s = Eq+1,0

2 for every s≥ 2. Moreover Eq+1,0
∞ = Eq+1,0

2 .

Lemma 1.3.14. (Künneth theorem for cochain complexes)

Let I be a cochain complex of flat R-modules such that each submodule imdn ⊂ In is also R-flat. Then, for

every R-module M and every n ∈ N, there is an exact sequence

0→ Hn−1(I)⊗R M→ Hn−1(I⊗R M)→ TorR
1 (H

n(I),M)→ 0.

Proof. Consider the exact sequence 0→ kerdn+1→ In→ imdn+1→ 0 for every n≥ 0. Applying−⊗R M yields

0 = TorR
1 (imdn+1,M)→ kerdn+1⊗R M→ In⊗R M→ imdn+1⊗R M→ 0, ∀n. (1.3.0.62)

Furthermore, by this argument TorR
1 (kerdn+1,N) = 0 for every N ∈ R-mod. Hence, kerdn+1 is also R-flat. By

the exactness of (1.3.0.62), we have an exact chain of complexes

0→ kerd⊗R M→ I⊗R M→ d(I)⊗R M→ 0. (1.3.0.63)

This yields a long exact sequence

· · · → Hn−1(d(I)⊗R M)
∂ n
−→ Hn(kerd⊗R M)→ Hn(I⊗R M)→ Hn(d(I)⊗R M)

∂ n+1
−−−→ Hn+1(kerd⊗R M)→ ·· ·

(1.3.0.64)

Note that the differentials in kerd are zero. In fact, they are the restriction of di to kerdi. The differentials in d(I)
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are also zero, since the n-th differential maps are the restrictions imdn ⊂ kerdn+1→ imdn+1. In particular,

Hn−1(d(I)⊗R M) = ker(0⊗M : dn(I)⊗M→ dn+1⊗M) = dn(I)⊗R M (1.3.0.65)

Hn−1(kerd⊗R M) = ker(0⊗R idM : kerdn⊗R M→ kerdn+1⊗R M) = kerdn⊗R M (1.3.0.66)

and ∂ n is defined by applying the Snake Lemma on the following diagram

kerdn⊗R M In−1⊗R M/(imdn−1⊗R id) dn(I)⊗R M 0

0 kerdn+1⊗R M ker(dn+1⊗R idM) dn+1(I)⊗R M

0 dn⊗Rid 0

It follows that ∂ n = in⊗R id where in is the inclusion map dn(I)→ kerdn+1.
On the other hand, for each natural number n,

0→ dn(I) in−→ kerdn+1→ Hn(I)→ 0 (1.3.0.67)

is exact. Applying −⊗R M yields the exact sequence

0 = TorR
1 (kerdn+1,M)→ TorR

1 (H
n(I),M)→ dn(I)⊗R M

in⊗RidM−−−−−→ kerdn+1⊗R M � Hn(I)⊗R M (1.3.0.68)

Hence,

TorR
1 (H

n(I),M) = ker(in⊗R idM) =
(1.3.0.64)

im(Hn−1(I⊗R M)→ Hn−1(d(I)⊗R M)). (1.3.0.69)

So, we have a canonical surjective map Hn−1(I⊗R M)� TorR
1 (H

n(I),M). Moreover,

ker
(
Hn−1(I⊗R M)� TorR

1 (H
n(I),M)

)
= ker

(
Hn−1(I⊗R M)→ Hn−1(d(I)⊗R M)

)
=

(1.3.0.64)
im
(
Hn−1(kerd⊗R M)→ Hn−1(I⊗R M)

)
'Hn−1(kerd⊗R M)/ker

(
Hn−1(kerd⊗R M)→ Hn−1(I⊗R M)

)
=

(1.3.0.64)
Hn−1(kerd⊗R M)/im∂

n−1

= kerdn⊗R M/im(in−1⊗R id)

= coker in−1⊗R id =
(1.3.0.68)

Hn−1(I)⊗R M

Lemma 1.3.15. (Künneth spectral sequence for cochain complexes)

Let P• be a flat cochain complex of R-modules 0→ P0 → P1 → ·· · . Let M be an R-module with finite flat

R-dimension. Then,

E i, j
2 = TorR

−i(H
j(P),M) =⇒ H i+ j(P⊗R M), i, j ∈ Z.

Proof. Let Q• be a complex chain 0→ Q0→ Q1→ ··· → Qn→ 0 so that

0→ Q0→ Q1→ ·· · → Qn→M→ 0 (1.3.0.70)

is a flat R-resolution of M. In particular, Hn(Q•) = M and H j(Q•) = 0 if j 6= n. Consider the double complex
P•⊗R Q•. Notice that the R-modules Pp⊗R Qq are zero unless p ≥ 0 and q ≥ 0. Hence, this is a first quadrant
double complex. So, two possible filtrations are possible. One vertically and one horizontally with respect to the
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double complex P•⊗R Q•.
The spectral sequence associated with the vertical truncation of the total complex Tot(P•⊗R Q•) is

′E p,q
2 = H p(Hq(P•⊗R Q•,d′′),d′) = H p(Hq(Pp⊗R Qq,d′′),d′) (1.3.0.71)

d′ corresponds to the horizontal morphisms dP⊗ id and d′′ to the vertical morphisms id⊗dQ.
Pp is R-flat, so Pp⊗R− commutes with cohomology, therefore

′E p,q
2 = H p(Pp⊗R Hq(Qq,d′′),d′) = H p(P⊗R Hq(Q•),d′) (1.3.0.72)

=

H p(P•⊗R M) if q = n

0, otherwise
. (1.3.0.73)

On the other hand,

′′E p,q
2 = H p(Hq(P•⊗R Q•,d′),d′′) = H p(Hq(Pq,d′)⊗R Qp,d′′) = H p(Hq(P•)⊗R Q•) (1.3.0.74)

since Qq is R-flat. Furthermore,

′′E p,q
2 = H p(Hq(P•)⊗R Q•) = H−p(Hq(P•)⊗R Q′•) = TorR

n−p(H
q(P•),M) (1.3.0.75)

where Q′• corresponds to the chain complex obtained from Q• by reindexing the subscripts (Q′i := Q−i).
By the classical Convergence Theorem (see [Wei03, Classical Convergence Theorem 5.5.1], both of these

two spectral sequences converge to the same object.
We claim that

′E p,q
s =

H i(P•⊗R M), if q = n

0,otherwise.
(1.3.0.76)

for every s≥ 2. We shall prove it by induction on s. The case s = 2 follows from (1.3.0.73).
If q 6= n, then by induction ′E p,q

s = 0. Thus, kerdp,q
s = 0, which implies ′E p,q

s+1 = 0. Assume that q = n. For
any s≥ 2, ′E p−s,n+s−1

s+1 =′ E p+s,n−s+1
s = 0. Thus, ′E p,n

s+1 =
′ E p,n

s = E p,n
2 , by induction.

It follows that

′E p,q
∞ =

H p(P•⊗R M), if q = n

0,otherwise.
(1.3.0.77)

Thus, for every p ∈ Z, H p+q
p = H p+q

p+1 as long as q 6= n. Let l ∈ N. For s� 0, H l = H l
s = H l

s+1 = H l
l−n. On

the other hand, 0 = H l
t = H l

l−n+1, 0� t. Thus,

H l = H l
l−n = H l

l−n/H l
l−n+1 =

′ E l−n,n
∞ = H l−n(P•⊗R M). (1.3.0.78)

So,

TorR
n−p(H

q(P•),M) =⇒ H p+q−n(P•⊗R M). (1.3.0.79)

The result follows by setting i = p−n, and j = q.

We can now state a stronger version of the Künneth theorem for cochain complexes using the Künneth
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spectral sequence for cochain complexes. This idea goes back to Hashimoto [Has00, Lemma 2.1.2 (Universal
coefficient theorem)].

Corollary 1.3.16. Let P• be a flat cochain complex of R-modules 0→ P0 → P1 → ··· . Let M be an R-module

with flat R-dimension at most one. Then, for each integer n≥ 0, there exists an exact sequence

0→ Hn(P•)⊗R M→ Hn(P•⊗R M)→ TorR
1 (H

n+1(P•),M)→ 0. (1.3.0.80)

Proof. By Lemma 1.3.15, there exists a converging spectral sequence

E i, j
2 = TorR

−i(H
j(P•),M) =⇒ H i+ j(P•⊗R M), i, j ∈ Z.

Since M has flat dimension at most one, E i, j
2 = 0 for all i ≤ −2 and j ∈ Z. We claim that E i, j

∞ = E i, j
2 for all

i, j ∈ Z. Let l ≥ 2. Recall that E i, j
l+1 is a quotient of kerdi, j

l ⊂ E i, j
l . By induction on l, this last is zero if i≤−2 or

i≥ 1. Hence, E i, j
∞ = 0, if i≤−2 or i≥ 1. It remains to check the cases i = 0 and i =−1.

E0, j
l+1 = ker(E0, j

l → E l, j−l+1
l ) = E0, j

l , (1.3.0.81)

since E l, j−l+1
l = 0 for l≥ 2. By induction,E0, j

l+1 =E0, j
2 , and consequently, E0, j

∞ =E0, j
2 for any j. As E−1+l, j−l+1

l =

E−1−l, j+l−1
l = 0 whenever l ≥ 2 it follows, by induction, the claim for i =−1.

Now, using the fact that E i, j
∞ vanishes when i≤−2 or i≥ 1 we deduce that H i+ j

i = H i+ j
i+1 , for i≤−2 or i≥ 1.

Fix n≥ 0. Then, Hn
1 = Hn

2 = Hn
l = 0, l� 0. Thus, E0,n

2 = E0,n
∞ = Hn

0 . On the other hand,

Hn
−1 = Hn

−2 = Hn
l = Hn, l� 0. (1.3.0.82)

Hence, E−1,n+1
2 = E−1,n+1

∞ = Hn
1/Hn

0 . We have constructed an exact sequence

0→ E0,n
2 → Hn→ E−1,n+1

2 → 0.

Lemma 1.3.17. (Künneth spectral sequence for chain complexes) Let P be a flat chain complex of R-modules

· · · → P1→ P0→ 0. Let M be an R-module. Then,

E2
i, j = TorR

i (H j(P),M) =⇒ Hi+ j(P⊗R M), i, j ≥ 0.

Proof. Similar to Lemma 1.3.15. See for example [Wei03, Theorem 5.6.4].

1.4 Double centralizer properties and covers

1.4.1 Double centralizer properties

Let A and B be algebras over a commutative ring R. Let M be an (A,B)-bimodule. There are canonical R-algebra
homomorphisms

ρ : A→ EndB(M), ρ(a)(m) = am, a ∈ A,m ∈M

ψ : B→ EndA(M)op, ψ(b)(m) = mb, b ∈ B,m ∈M.

Definition 1.4.1. When the maps ρ and ψ are isomorphisms, we say that there is a double centralizer property
on M between A and B.
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Proposition 1.4.2. If it holds a double centralizer property on M between A and B, then M is a faithful (A,B)-

bimodule.

In the study of Schur algebras, there are two double centralizer properties to keep in mind. Let R be a
commutative ring and let n,d be some positive integers. Denote by M the module (Rn)⊗d . Any element g ∈
GLn(R) can be viewed as an element in EndR(M) by the diagonal action:

g(v1⊗·· ·vd) = gv1⊗·· ·⊗gvd ,

v1⊗ ·· ·⊗ vd ∈ M. Here, gv is given by the usual action of GLn(R) on Rn. On the other hand, every element
σ ∈ Sd can be viewed as element in EndR(M) by the place permutation action:

(v1⊗·· ·⊗ vd)σ = vσ(1)⊗·· ·⊗ vσ(d),

v1⊗ ·· ·⊗ vd ∈ M. Let A be the subalgebra of EndR(M) generated by the elements g ∈ GLn(R). Let B be the
subalgebra of EndR(M) generated by the elements σ ∈ Sd . We say that Schur–Weyl duality holds if there is a
double centralizer property on M between A and B.

Let SR(n,d) be the Schur algebra with n≥ d. Then, there exists a double centralizer property on M between
SR(n,d) and RSd ([Cru19, Theorem 3.4], [BD09] and fixing q = 1 on [DPS98b, 6]).

From now on we will assume B = EndA(M)op, that is we are assuming that ψ is an isomorphism. So, we
will say that (A,M) has the double centralizer property if it holds the double centralizer property on M between
A and EndA(M)op. When there is no confusion about the algebra A, we will just say that M satisfies the double
centralizer property.

Proposition 1.4.3. [CR06, 26.5] If M = A, then the double centralizer property on M holds.

Lemma 1.4.4. [CR06, 26.6] Let V = Mk be the direct sum of k copies of a left A-module, k > 0. If (A,V ) has

the double centralizer property, then (A,M) has the double centralizer property.

Lemma 1.4.5. [CR06, 59.4] Let A be any ring with identity. Let N be a left A-module and consider the left

A-module given by M = A⊕N. Then, (A,M) has the double centralizer property.

Proposition 1.4.6. Let G ∈ A-mod. Then, the following assertions hold.

(i) If A ∈ addG, then (A,G) has the double centralizer property.

(ii) If DA ∈ addG, then it holds a double centralizer property on G between EndA(G) and A.

Proof. Since A ∈ addG, there exists t > 0 such that Gt ' A⊕K for some K ∈ A-mod. By Lemma 1.4.5, (A,Gt)

has the double centralizer property. By Lemma 1.4.4, (A,G) has the double centralizer property. Hence, i)

follows. If DA∈ addG, then DG is in the situation i. Thus, (A,DG) has the double centralizer property. Note that
B = EndA(DG)op = EndA(G) and EndB(DG)'EndB(G) as R-algebras. Therefore, it holds the double centralizer
property on G between B and A.

Therefore, any generator or any relative cogenerator satisfies the double centralizer property.

Proposition 1.4.7. [Tac73, 10.1] Let F : A-mod → B-mod be an equivalence of categories. Suppose that

M ∈ A-mod satisfies the double centralizer property. Then, (B,FM) satisfies the double centralizer property.

For faithful modules and finite-dimensional K-algebras over a field, we can verify if the double centralizer
property holds using other maps than ρ .
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Lemma 1.4.8. [KY14] Let K be a field and A be a finite-dimensional K-algebra. Let M be a faithful A-module.

Then, the following assertions are equivalent.

(i) (A,M) satisfies the double centralizer property;

(ii) For B = EndA(M)op, A' EndB(M) as K-vector spaces;

(iii) For B = EndA(M)op, A' EndB(M) as K-algebras;

Proof. The implications i)⇒ iii)⇒ ii) are clear. We shall prove ii)⇒ i). Consider δ : EndB(M)→ A the K-
vector space isomorphism. Since M is A-faithful, then ρ is a monomorphism. Hence, δ ◦ρ : A→ A is a K-vector
space monomorphism. Since A is finite-dimensional δ ◦ρ is an isomorphism. In particular, ρ = δ−1 ◦ δ ◦ρ is
bijective. So, i) follows.

We will now turn our attention to study Hom functors.

1.4.2 Projectivization

Assume fron now that A is a Noetherian R-algebra over a commutative Noetherian ring R unless stated otherwise.
Let V ∈ A-mod and B = EndA(V )op. V is viewed as right B-module with the action v · b = b(v), v ∈ V, b ∈ B.
V is an (A,B)-bimodule. For any X ∈ A-Mod, HomA(V,X) is a left B-module with the action b · h = h ◦ b. So,
we have a functor F = HomA(V,−) : A-Mod→ B-Mod. On the other hand, for any X ∈ A-Mod, HomA(X ,V ) is
a right B-module with action f ·b = b◦ f .

Lemma 1.4.9. Let M1,M2,V ∈ A-Mod. Then, the following holds.

1. The map γ : HomA(V,M1)
⊕

HomA(V,M2)→ HomA(V,M1
⊕

M2), given by

γ( f ,g)(v) = ( f (v),g(v)), v ∈V,

is a B-isomorphism.

2. The map ε : HomA(M1,V )
⊕

HomA(M2,V )→ HomA(M1
⊕

M2,V ), given by

ε( f1, f2)(m1,m2) = f1(m1)+ f2(m2), mi ∈Mi, fi ∈ HomA(Mi,V ), i = 1,2,

is a B-isomorphism.

Proof. Let ki ∈ HomA(Mi,M1 ⊕M2) and πi ∈ HomA(M1 ⊕M2,Mi), i = 1,2, be the canonical injections and
projections given by the direct sum M1⊕M2.

Consider the B-homomorphism γ ′ : HomA(V,M1
⊕

M2) → HomA(V,M1)
⊕

HomA(V,M2), given by
γ ′( f ) = (π1 ◦ f ,π2 ◦ f ), f ∈ HomA(V,M1

⊕
M2). Then,

γ ◦ γ
′( f ) = γ(π1 ◦ f ,π2 ◦ f ) = k1 ◦π1 ◦ f + k2 ◦π2 ◦ f = f ∈ HomA(V,M1

⊕
M2), (1.4.2.1)

γ
′ ◦ γ(h,g) = γ

′(k1 ◦h+ k2 ◦g) = (π1 ◦ k1 ◦h,π2 ◦ k2 ◦g) = (h,g) ∈ HomA(V,M1)
⊕

HomA(V,M2). (1.4.2.2)

So, (a) follows.
Consider the B-homomorphism ε ′ : HomA(M1

⊕
M2,V ) → HomA(M1,V )

⊕
HomA(M2,V ), given by

ε ′( f ) = ( f ◦ k1, f ◦ k2), f ∈ HomA(M1
⊕

M2,V ). Then,

ε ◦ ε
′( f ) = ε( f ◦ k1, f ◦ k2) = f ◦ k1 ◦π1 + f ◦ k2 ◦π2 = f ∈ HomA(M1

⊕
M2,V ), (1.4.2.3)
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ε
′ ◦ ε( f1, f2) = ε

′( f1 ◦π1 + f2 ◦π2) = (( f1 ◦π1 + f2 ◦π2)◦ k1,( f1 ◦π1 + f2 ◦π2)◦ k2) (1.4.2.4)

= ( f1, f2) ∈ HomA(M1,V )
⊕

HomA(M2,V ). (1.4.2.5)

Therefore, (b) follows.

Theorem 1.4.10. Let A be a Noetherian algebra over a commutative Noetherian ring R. Consider the functor

F = HomA(V,−). Then, the following holds.

1. For any X ∈ A-Mod, Z ∈ A-Mod, the functor F induces the R-homomorphism

FZ,X : HomA(Z,X)→ HomB(FZ,FX), given by FZ,X ( f )(g) = f ◦ g, f ∈ HomA(V,Z), g ∈ HomA(V,V ).

FZ,X is an R-isomorphism for all Z ∈ addV and X ∈ A-Mod.

2. If X ∈ addV , then FX is a projective B-module.

3. The restriction of F to addV F|addV
: addV → B-proj is an equivalence of categories.

Proof. In Proposition 2.1 of [ARS95] this Theorem is proved for Artinian algebras. However, their argument
does not use any fact only valid for Artinian algebras. Thus, their argument remains true for Noetherian algebras
over commutative Noetherian rings.

Passing from A to B = EndA(V )op through this functor HomA(V,−) provides a technique for reducing ques-
tions about the module V to questions about projective modules.

1.4.3 Schur functor

The Schur functors come from a special class of Hom functors. Let R be a commutative Noetherian ring. Let A be
a projective Noetherian R-algebra. Let P ∈ A-proj and B = EndA(P)op. Consider the functor
F = HomA(P,−) : A-Mod→ B-Mod. This functor is called Schur functor.

Since P is finitely generated projective, it follows that the Schur functor is an exact functor and preserves
arbitrary coproducts.

Lemma 1.4.11. For any P ∈ A-proj the map ψV : HomA(P,A) ⊗A V → HomA(P,V ), given by

ψV ( f ⊗ v)(m) = f (m)v, f ⊗ v ∈ HomA(P,A)⊗A V, m ∈ P is a left EndA(P)op-isomorphism. Moreover, the func-

tors HomA(P,A)⊗A− and HomA(P,−) are naturally isomorphic. The map ψP is an (EndA(P)op,EndA(P)op)-

bimodule isomorphism.

Proof. For the two first statements, we refer to Lemma 4.2.5 of [Zim14]. It remains to check that ψP is an
(EndA(P)op,EndA(P)op)-bimodule homomorphism. Let f ⊗v ∈HomA(P,A)⊗A P, m ∈ P, b ∈ EndA(P)op. Then,

ψP( f ⊗ v ·b)(m) = ψM( f ⊗b(v))(m) = f (m)b(v) = b( f (m)v) = f (m)v ·b = ψP( f ⊗ v)b. (1.4.3.1)

So, ψP is an (EndA(P)op,EndA(P)op)-bimodule homomorphism. By Lemma 4.2.5 of [Zim14], ψP is a left
(EndA(P))op-isomorphism, so the claim follows.

Proposition 1.4.12. Let M ∈Mod-A and B = EndA(M). The functor M⊗A− : A-Mod→ B-Mod is left adjoint

to HomB(M,−) : B-Mod→ A-Mod.

Proof. In view of Lemma 1.1.63, it is enough to show that σ is a natural transformation between the bifunctors
HomB(M⊗A−,−) and HomA(−,HomB(M,−)). Indeed, for f ∈ HomA(X ,X ′), g ∈ HomA(Y ′,Y ), the following
diagram is commutative
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HomB(M⊗A Y,X) HomA(Y,HomB(M,X))

HomB(M⊗A Y ′,X ′) HomA(Y ′,HomB(M,X ′))

σY ,X

HomB(M⊗Ag, f ) HomA(g,HomB(M, f ))
σY ′,X ′

.

In fact, for every m ∈M,y ∈ Y ′,h ∈ HomB(M⊗A Y,X),

σY ′,X ′ ◦HomB(M⊗A g, f )(h)(y)(m) = σY ′,X ′( f ◦h◦M⊗A g)(m⊗ y) = f h(m⊗g(y)) (1.4.3.2)

HomA(g,HomB(M, f ))◦σY,X (h)(y)(m) = HomB(M, f )(σY,X (h)◦g)(y)(m) (1.4.3.3)

= f ◦σY,X (h)◦g(y)(m) = f (h(m⊗g(y))).

Proposition 1.4.13. The Schur functor HomA(P,−) : A-Mod → B-Mod is left adjoint to the functor

G = HomB(FA,−) : B-Mod→ A-Mod.

Proof. By Lemma 1.4.11, HomA(P,−) ' HomA(P,A)⊗A−. By Proposition 1.4.12, the functor HomA(P,−) '
HomA(P,A)⊗A− is left adjoint to the functor HomB(FA,−).

We note also the following lemma involving the Schur functor which will be essential to relative dominant
dimension. The reader can observe this is a version of the canonical isomorphisms in [Tac73, p.52] without using
idempotents.

Lemma 1.4.14. Let V ∈ Aop-proj. Let C = EndA(V ) and the functors F = V ⊗A − : A-mod → C-mod
G = HomC(V,−) : C-mod→ A-mod. The composition of functors F ◦G : C-mod→ C-mod is an equivalence

of categories. Moreover ξM : V ⊗A HomC(V,M)→M, given by ξM(v⊗φ) = φ(v),v ∈ V,φ ∈ HomC(V,M) is a

natural isomorphism.

Proof. Fix f ∈ HomC(M,N). We have the commutative diagram,

V ⊗A HomC(V,M) M

V ⊗A HomC(V,N) N

ξM

V⊗AHomC(V , f ) f

ξN

.

In fact, ξN ◦V ⊗A HomC(V, f )(v⊗ φ) = ξN(v⊗ f ◦ φ) = f ◦ φ(v), whereas f ◦ ξM(v⊗ φ) = f (φ(v)) for every
v⊗φ ∈V ⊗A HomC(V,M).

Consider the diagram

V ⊗A HomC(V,M) HomA(HomA(V,A),A)⊗A HomC(V,M)

M HomA(HomA(V,A),HomC(V,M))

HomC(C,M) HomC(V ⊗A HomA(V,A),M)

w⊗AidHomC(V ,M)
ηM ψHomC(V ,M)

π−1 ρ

HomC(ψV ,M)

.

Here some remarks about these maps are in order. The map ψHomC(V ,M) is an isomorphism by Lemma 1.4.11
since HomA(V,A) ∈ A-proj. The map ρ is the map given by Tensor-hom adjunction 1.1.63, and hence it is
an isomorphism. The map ψV is given by Lemma 1.4.11 considering right modules, thus HomC(ψV ,M) is an
isomorphism. The map π is the canonical map, so an isomorphism as well. The map w is the evaluation map.
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Since V is projective, then w is an isomorphism. We claim that this is a commutative diagram. In fact, for
v⊗g ∈V ⊗A HomC(V,M),v′⊗g′ ∈V ⊗A HomA(V,A), we have

HomC(ψV ,M)◦π
−1 ◦ηM(v⊗g)(v′⊗g′) = π

−1 ◦ηM(v⊗g)◦ψV (v′⊗g′)

= π
−1 ◦ηM(v⊗g)(v′g′(−)) = π

−1(g(v))(v′g′(−))

= v′g′(−) ·g(v) = g(v′g′(−) · v) = g(v′g′(v)).

ρ ◦ψHomC(V,M) ◦w⊗ idHomC(V,M)(v⊗g)(v′⊗g′) = ρ ◦ψHomC(V,M)(w(v)⊗g)(v′⊗g′)

= ρ(w(v)(−)g)(v′⊗g′) = w(v)() ·g(g′)(v′)

= (w(v)(g′) ·g)(v′) = g′(v) ·g(v′) = g(v′g′(v)).

Now by the commutativity of this diagram, it follows that ηM is an isomorphism.

1.4.4 Morita theory

By projectivization, the Schur functor induces an equivalence between addP and B-proj. Morita completely
described when the Schur functor induces an equivalence between the categories A-Mod and B-Mod in terms of
progenerators. Furthermore, every equivalence of categories between two module categories arises from a Schur
functor of a progenerator. We will present these results since they will be very useful during this exposition,
especially in Section 1.5.

We recall that a functor between two categories is said to be an equivalence of categories if it is full, faithful
and essentially surjective. Properties of modules that can be described using diagrams and in the language of
category theory are preserved under equivalence of module categories. For example, it is a short exercise to see
that projective modules, monomorphisms or epimorphisms are preserved under equivalence of categories. Also,
we already saw in this exposition, some properties which are invariant under equivalence of categories. We call
two rings, A and B, Morita equivalent if their representation theories are equivalent, in the sense that there is
an equivalence of categories F : A-Mod→ B-Mod. The properties preserved under an equivalence of categories
between two rings are called Morita invariant. Therefore, Morita invariant properties are properties which are
completely determined by the representation theory of an algebra.

For example, equivalence of categories preserves finitely generated modules.

Proposition 1.4.15. Let A be a ring. Let F : A-Mod→B-Mod be an equivalence of categories. Then, F preserves

finitely generated A-modules. Moreover, F restricts to an equivalence F|A-mod : A-mod→ B-mod.

Proof. Let G be the quasi-inverse functor of F . Let M ∈ A-mod. Consider the canonical surjective B-homo-
morphism g :

⊕
y∈FM B→ FM. Applying G yields the surjective A-homomorphism Gg :

⊕
y∈FM GB→ GFM.

Note that GFM ' M ∈ A-mod. Hence, there exists a surjective A-homomorphism f ∈ HomA(At ,GFM) for
some t > 0. Denote by k j(1A) the element (0, · · · ,0,1A,0, · · · ,0) where 1A appears in the j-th component,
1 ≤ j ≤ t. Since At is projective over A, there exists an A-homomorphism h ∈ HomA(At ,

⊕
y∈FM GB) such that

Gg ◦ h = f . For each 1 ≤ j ≤ t, hk j(1A) ∈
⊕

y∈FM GB. Furthermore, for each 1 ≤ j ≤ t, there exists a finite
set I j ⊂ FM such that h(k j(1A)) ∈

⊕
y∈I j

GB. Thus, h factors through
⊕

y∈I1∪···∪It GB. Denote by i the inclusion
of
⊕

y∈I1∪···∪It GB into
⊕

y∈FM GB. Then, Gg ◦ i ◦ ν = Gg ◦ h = f , for some map ν . So, Gg ◦ i is surjective.
Applying F yields a surjective B-homomorphism

⊕
y∈I1∪···∪It B→ FM. So, FM ∈ B-mod. This shows that the

functor F|A-mod : A-mod→ B-mod is well defined. The functor F is full and faithful. In particular, F|A-mod is full
and faithful. Since G is also an equivalence of categories, it preserves finitely generated modules. Consequently,
F|A-mod is also essentially surjective.
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Definition 1.4.16. We call a module M an A-progenerator if it is a finitely generated projective A-module and
a generator of A-Mod.

By Propositions 1.4.15 and 1.1.10 and our previous discussion, a module being progenerator is a Morita
invariant property.

Theorem 1.4.17 (Morita ([Mor58])). Let A be an R-algebra. Then, the following holds.

1. Let P be an A-progenerator and B=EndA(P)op. Then, the Schur functor F = HomA(P,−) : A-Mod→ B-Mod
is an equivalence of categories.

2. Let B be an R-algebra such that A-Mod is equivalent to B-Mod then there is a Schur functor A-Mod→ B-Mod
which is an equivalence of categories.

3. A-mod' B-mod if and only if A-Mod' B-Mod.

4. A-proj' B-proj if and only if A-Mod' B-Mod.

Proof. For statement 1 see Proposition 4.2.4 of [Zim14]. For statement 2 see Theorem 4.2.8 of [Zim14].
The implication A-Mod' B-Mod =⇒ A-mod' B-mod is Proposition 1.4.15. Assume that A-mod' B-mod.

Consider G : B-mod→ A-mod the equivalence of categories. By Proposition 1.1.10, GB is a generator of A-mod.
Using Theorem 1.1.7, we see that GB is a generator of A-Mod. As discussed previously, any equivalence of
functors preserves the projective objects. Therefore, GB ∈ A-mod is projective. In other words, GB is finitely
generated projective A-module. Thus, GB is a progenerator of A-Mod. On the other hand, G is fully faithful. So,
we can identify as R-algebras,

EndA(GB)op ' EndB(B)op ' (Bop)op ' B. (1.4.4.1)

Now statement 1 implies that A-Mod' B-Mod.
Let H : B-proj → A-proj be the equivalence of categories and F : A-proj → B-proj its quasi-inverse. By

assumption, HB ∈ A-proj. It remains to show that HB is a generator of A-Mod. Analogously, FA belongs to
B-proj. Thus, there exists K ∈ B-proj such that FA⊕K ' Bt for some t > 0. Applying H yields

A⊕HK ' HFA⊕HK ' HBt ' (HB)t . (1.4.4.2)

So, HB is a progenerator of A-Mod. By the same argument EndA(GB)op ' B. Hence, A-Mod ' B-Mod. Con-
versely, in view of Proposition 1.4.15 and any equivalence of categories preserving projective objects, the fully
faithful functor A-Mod→ B-Mod restricts to the fully faithful functor A-proj→ B-proj. In the same way, the
fully faithful functor B-Mod→ A-Mod restricts to the fully faithful functor B-proj→ A-proj. Thus, statement 4
follows.

Remark 1.4.18. Recall that every ring can be regarded as an algebra over Z. Let R be a commutative ring.
Because of Theorem 1.4.17, given an R-algebra A, every ring B Morita equivalent to A is isomorphic to an
endomorphism algebra of an A-module. This endomorphism algebra inherits the R-algebra structure from A. In
this way, B becomes an R-algebra. Furthermore, if A is a projective Noetherian R-algebra, then B = EndA(P) ∈
addR P. So, B is a projective Noetherian R-algebra. 4

We also note that being Morita equivalent is an equivalence relation.
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Proposition 1.4.19. [Fai73, Chapter 12, pages 447-453] Assume A and B are Noetherian rings. Suppose there

is an (A,B)-bimodule M and (B,A)-bimodule N such that there are isomorphisms

M⊗B N α−→ A as (A,A)-bimodules

N⊗A M
β−→ B as (B,B)-bimodules.

Then, M is a progenerator as an A-module, B'EndA(M)op, N is a progenerator as a B-module and A' EndB(N)op,

M is a progenerator as a right B-module, A' EndB(M), N is a progenerator as a right A-module, B' EndA(N).

Moreover,

HomA(M,A)' N ' HomB(M,B) as B-modules

HomA(N,A)'M ' HomB(N,B) as A-modules.

Corollary 1.4.20. [Fai73, Chapter 12, pages 447-453] Assume A-Mod' B-Mod then Aop-Mod' Bop-Mod.

Corollary 1.4.21. [Fai73, Chapter 12, pages 447-453] Assume A and B are Noetherian rings. Suppose there is

an A-progenerator M so that B = EndA(M)op. Then, there exists N ∈ B-Mod so that

HomA(M,A)' N ' HomB(M,B) as (B,A)-bimodules

HomA(N,A)'M ' HomB(N,B) as (A,B)-bimodules.

The progenerators over commutative rings are exactly the faithful modules.

Proposition 1.4.22. Let S be a commutative ring. Suppose P is finitely generated projective S-module. Then, P

is S-faithful if and only if P is an S-progenerator.

Proof. See [Fai73, Proposition 12.2].

Note that Rn is an R-progenerator for every n, and thus, Mn(R)' EndR(Rn)op is Morita equivalent to R.
Observe that free modules are not Morita invariant. This fact can be checked, for example, by comparing

the free R-modules and the free M2(R)-modules. This is why we deal with finitely generated projective modules
over commutative rings (non-fields) instead of free modules.

Corollary 1.4.23. [KY13, Proposition 1.3] Let A be an R-algebra. Let M ∈ A-mod and N ∈ A-mod such that

addM = addN. Then, EndA(M)op is Morita equivalent to EndA(N)op.

Proof. By projectivization, EndA(M)op-proj ' add(M) = add(N) ' EndA(N)op-proj. By Theorem 1.4.17,
EndA(M)op is Morita equivalent to EndA(N)op.

1.4.5 Covers

We saw that when P is both a projective finitely generated A-module and generator then the module categories
A-Mod and EndA(P)op-Mod are identical. Hence, the next step is to see what happens to these module categories
when we drop one of these conditions on P. In general, when P is just a projective finitely generated A-module
the categories A-Mod and EndA(P)op-Mod may be quite different and not being connected at all. Hence, we will
proceed by studying the unit and counit of the adjunction pair (HomA(P,−),HomB(FA,−)) given by Proposition
1.4.13 to see what properties should P satisfy, in addition, so that we can relate the module categories of A and
EndA(P)op.
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For our purposes and from now on, we will assume A to be a projective Noetherian R-algebra. Hence, A is a
Noetherian ring. Let P ∈ A-proj. Notice also that B := EndA(P)op is an R-summand of Pt for some t > 0. Since
P is a finitely generated projective R-module, we deduce that B is finitely generated projective over R. Thus, B is
a Noetherian ring as well.

Hence, the categories A-mod and B-mod are abelian and every module belonging either in A-mod or B-mod
is finitely presented. Denote by G the right adjoint of the Schur functor F = HomA(P,−).

Proposition 1.4.24. The Schur functor HomA(P,−) : A-mod → B-mod, denoted by F, and its right adjoint

HomB(FA,−) : B-mod→ A-mod, denoted by G, are well defined.

Proof. Let X ∈ A-mod. By Lemma 1.1.5, HomA(P,X) is finitely generated as R-module. Let { f1, . . . fd} be a
finite R-generator set. Then, for any g ∈ HomA(P,X), there are ri ∈ R such that

g = ∑
i

ri fi = ∑
i

ri(1B fi) = ∑
i
(ri1B)︸ ︷︷ ︸
∈B

fi.

Thus, { f1, . . . fd} is a finite B-generator set for HomA(P,X), that is, HomA(P,X) ∈ B-mod. With the same rea-
soning, we conclude that HomB(FA,Y ) ∈ A-mod for every Y ∈ B-mod. Hence, both functors are well defined.
Since A-mod and B-mod are full subcategories of A-Mod and B-Mod, respectively, the restriction functors F and
G form also an adjoint pair.

The unit of the adjunction F a G is the natural transformation η : idA-mod→ G◦F such that for any module
N ∈ A-mod, the A-homomorphism

ηN : N→ HomB(FA,HomA(P,N)) is given by η(n)( f )(p) = f (p)n, n ∈ N, f ∈ FA, p ∈ P.

The counit of the adjunction F aG is the natural transformation ε : F ◦G→ idB-mod such that for any module
M ∈ B-mod, the B-homomorphism is given by the following commutative diagram

FA⊗A HomB(FA,M) M

HomA(P,HomB(FA,M)) M

ε ′M

'
εM

where ε ′M : FA⊗A HomB(FA,M)→M is given by

ε ′M( f ⊗g) = g( f ), f ⊗g ∈ FA⊗A HomB(FA,M).

From category theory, we know that for each M ∈ B-mod and N ∈ A-mod, the following holds (see [Mac71,
Theorem 2, p.81])

idFN = εFN ◦FηN (1.4.5.1)

idGM = GεM ◦ηGM. (1.4.5.2)

Proposition 1.4.25. G is fully faithful and εM is a B-isomorphism for any M ∈ B-mod.

Proof. First we will check that εM is a B-isomorphism for any M ∈ B-mod. Let M ∈ B-mod and b ∈ B. We have

bε
′
M(g⊗h) = bh(g) = h(bg) = ε

′
M(bg⊗h) = ε

′
M(b(g⊗h)), g⊗h ∈ FA⊗A HomB(FA,M). (1.4.5.3)

Now for any g ∈ HomA(P,HomB(FA,M)), we have

εM(bg) = εM(bψHomB(FA,M)(g
′)) = εM(ψHomB(FA,M)(g

′)) (1.4.5.4)
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= ε
′
M(bg′) = bε

′
M(g′) = bεM(ψHomB(FA,M)(g

′)) = bεM(g). (1.4.5.5)

Here, ψHomB(FA,M) is the B-isomorphism provided by Lemma 1.4.11. Therefore, εM is a B-homomorphism.
We will start by proving that ε ′M is a bijective map. Since P ∈ A-proj, there are canonical projections and

injections arising from the respective direct sums (as A-summands):

P At A
kP

π j

πP
k j

, 1≤ j ≤ t.

We shall need some notation. Denote πi ◦kP by θi, i = 1, . . . , t. For any f ∈HomA(P,A), denote πP ◦ ki ◦ f by
b f

i ∈ B, i= 1, . . . , t. For any m∈M, define hm ∈HomB(B,M) given by hm(1B)=m. Now define gm,i ∈ HomB(FA,M)

satisfying gm,i( f ) = hm(b
f
i ), f ∈ FA. This is well defined since, for any y ∈ B,

gm,i(y · f ) = gm,i( f ◦ y) = hm(πP ◦ ki ◦ f ◦ y) = hm(y ·πP ◦ ki ◦ f ) = y ·hm(b
f
i ) = y ·gm,i( f ), f ∈ FA. (1.4.5.6)

Now define the map Θ : M→ FA⊗A HomB(FA,M), given by Θ(m) = ∑l θl⊗gm,l , m ∈M.
Observe that, for any m ∈M,

∑
i

gm,i(θi) = ∑
i

hm(b
θi
i ) = m ·∑

i
bθi

i = m ·∑
i

πP ◦ ki ◦πi ◦ kP = m · idP = m. (1.4.5.7)

Therefore, for any m ∈M,

ε
′
MΘ(m) = ε

′
M(∑

l
θl⊗gm,l) = ∑

l
gm,l(θl) = m. (1.4.5.8)

Hence, ε ′M is surjective. In order to prove that ε ′M is injective we need the following two observations. Let
w ∈ FA = HomA(P,A) and χ ∈ HomB(FA,M). Then,

w = w◦ idP = w◦∑
i

πP ◦ ki ◦πi ◦ kP = ∑
i

wπPkiπikP = ∑
i

wπPkiθi = ∑
i

θi · (wπPki(1A)), (1.4.5.9)

where the last equality is due to wπPki ∈ HomA(A,A) and θi(p) ∈ A for any p ∈ P. For any f ∈ FA,

gχ(w),i( f ) = hχ(w)(b
f
i ) = b f

i ·χ(w) = χ(b f
i ·w) = χ(w◦b f

i ) = χ(w◦πP ◦ ki ◦ f ) (1.4.5.10)

= χ( f · (wπPki(1A))) = ((wπPki(1A)) ·χ)( f ). (1.4.5.11)

Thus,

Θε
′
M(w⊗χ) = Θ(χ(w)) = ∑

i
θi⊗gχ(w),i = ∑

i
θi⊗ (wπPki(1A)) ·χ = ∑

i
θi · (wπPki(1A))⊗χ = w⊗χ.

So, ε ′M is also injective, and thus it is an B-isomorphism. In particular, εM is an B-isomorphism.
By a general result of Category theory, the counit εM is an isomorphism for every M ∈ B-mod if and only if

the functor G is full and faithful. For the sake of completeness, we show that G is full and faithful.
Let f ∈ HomB(M,M′) satisfying G f = 0. Then, f ◦ εM = εM′ ◦FG f = 0. Thus, f = 0. So, G is faithful. Let

h ∈ HomA(GM,GM′). We define f = εM′ ◦Fh◦ ε
−1
M . Notice that

Gε
−1
M ◦ idGM = Gε

−1
M ◦GεM ◦ηGM = ηGM. (1.4.5.12)
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Then,

G f = GεM′ ◦GFh◦Gε
−1
M = GεM′ ◦GFh◦ηGM = GεM′ ◦ηGM′ ◦h = idGM′ ◦h = h. (1.4.5.13)

So, G is full and faithful.

Lemma 1.4.26. The unit is compatible with direct sums. In particular, ηN1
⊕

N2 is mono (surjective) if and only

if ηN1 and ηN2 are mono (surjective) for any N1,N2 ∈ A-mod.

Proof. We have a commutative diagram

N1
⊕

N2 HomB(FA,F(N1
⊕

N2))

N1
⊕

N2 HomB(FA,FN1)
⊕

HomB(FA,FN2)

ηN1
⊕

N2

ηN1
⊕

ηN2

HomB(FA,δP,N1,N2 )◦δFA,FN1 ,FN2
, where δ are the maps given by Lemma 1.4.9.

Since both columns are isomorphisms, the result follows.

Lemma 1.4.27. [Rou08, Lemma 4.32] Let M ∈ A-mod. The following assertions are equivalent.

(a) The unit ηM : M→ GFM is an isomorphism;

(b) F induces a bijection of abelian groups HomA(N,M)→ HomB(FN,FM), f 7→ F f for every N ∈ A-mod.

(c) F induces an isomorphism of A-modules HomA(A,M)→ HomB(FA,FM), f 7→ F f .

(d) M is a direct summand of a module in the image of G.

Proof. First notice that the map HomA(A,M)→ HomB(FA,FM) is an A-homomorphism. Let f ∈ HomA(A,M),
g ∈ FA, a ∈ A and p ∈ P. Then,

F(a · f )(g)(p) = HomA(P,a · f )(g)(p) = a · f ◦g(p) = f (g(p)a) (1.4.5.14)

= f ((ga)(p)) = HomA(P, f )(ga)(p) = (a ·HomA(P, f )(g))(p) = aF f (g)(p). (1.4.5.15)

a) =⇒ b). Assume that ηM is an isomorphism. Let f ∈ HomA(N,M) satisfying F f = 0. Then,

ηM ◦ f = GF f ◦ηN = 0 =⇒ f = 0. (1.4.5.16)

Let g ∈ HomB(FN,FM). Define f = η
−1
M ◦Gg◦ηN . Observe that

Fη
−1
M = idFM Fη

−1
M = εFMFηMFη

−1
M = εFM. (1.4.5.17)

Hence, F f = εFM ◦FGg◦FηA = g◦ εFA ◦FηA = g◦ idFA = g. So, b) holds.
b) =⇒ c). By b), HomA(A,M)→HomB(FA,FM) is a bijection. We saw that HomA(A,M)→HomB(FA,FM)

is an A-homomorphism, therefore c) is clear.
c) =⇒ d). M ' HomA(A,M)' HomB(FA,FM) = GFM as A-modules. So, M is the image of a module in

the image G. In particular c) holds.
d) =⇒ a). Assume GD'M

⊕
K. Then, idGD = GεD ◦ηGD. By Proposition 1.4.25, εD is an isomorphism.

Therefore, ηGD = ηM
⊕

ηK is an isomorphism. By Lemma 1.4.26, ηM is an isomorphism.

Lemma 1.4.28. [Rou08, Proposition 4.33] The following assertions are equivalent.
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(i) The canonical map of algebras A→ EndB(FA)op, given by a 7→ ( f 7→ f (−)a), a ∈ A, f ∈ FA, is an iso-

morphism of R-algebras.

(ii) For all M ∈ A-proj, the unit ηM : M→ GFM is an isomorphism of A-modules.

(iii) The restriction of F to A-proj is full and faithful.

Proof. (i) =⇒ (ii). Let M ∈ A-proj. Then, there exists K ∈ A-mod and t > 0 such that At 'M
⊕

K. By i), ηA is
an isomorphism. So, M is an A-summand of At ' (GFA)t ' G(FAt). By Lemma 1.4.27, ηM is an isomorphism.

(ii) =⇒ (iii). By Lemma 1.4.27, for every M ∈ A-proj, F induces a bijection of abelian groups
HomA(M,N)→ HomB(FN,FM) for every N ∈ A-mod. In particular, the restriction of F to A-proj is full and
faithful.

(iii) =⇒ (i). Clearly, A ∈ A-proj. By assumption, F induces an isomorphism of A-modules
HomA(A,A)→ HomB(FA,FA), f 7→ F f . The composition of the canonical bijection A→ EndA(A)op, and the
isomorphism f 7→ F f yields the bijection R-homomorphism A→ EndB(FA)op given by a 7→ ( f 7→ f ·a). We will
denote this map by ηA. This maps clearly preserves the identity of A and it preserves the ring multiplication. In
fact, for any a,b ∈ A, f ∈ FA,

ηA(a) ·ηA(b)( f ) = ηA(b)◦ηA(a)( f ) = (ηA(a)( f )) ·b = ( f ·a) ·b = f · (ab) = ηA(ab)( f ). (1.4.5.18)

Thus, (i) holds.

Definition 1.4.29. Let A be a projective Noetherian R-algebra and P ∈ A-proj. We say that (A,P) is a cover of B

if the restriction of F = HomA(P,−) : A-mod→ B-mod to A-proj is full and faithful. We also say that (A-mod,F)

is a cover of B-mod.

Notice that since P ∈ A-proj, B = EndA(P)op ' EndA(DAP) = EndA(HomA(P,A)) = EndA(FA). Hence, by
Lemma 1.4.28, (A,P) is a cover of B if and only if it holds a double centralizer property on HomA(P,A) between
B and A. So, covers provide a good setup to extend and study double centralizer properties in a more abstract
way. On the other hand, by projectivization the functor HomA(P,−) : A-proj→ B-proj is essentially surjective.
So, in a cover situation if the functor HomA(P,−) : A-proj→ B-proj becomes well defined, then it must be an
equivalence of categories. By the Morita theorem, this means that A-mod and B-mod are equivalent categories.
Therefore, we can see covers as a good starting point to relate the categories A-mod with B-mod.

It is important to remark that since P ∈ A-proj, FA = HomA(P,A) is a left B-generator. So, if (A,P) is a cover
of B, Proposition 1.4.25 is known as the Gabriel-Popescu theorem [Mit81, PG64] for the category B-mod.

Here are some properties of covers under change of ground ring.

Lemma 1.4.30. The following assertions are equivalent:

1. (A,P) is a cover of B;

2. (S⊗R A,S⊗R P) is a cover of S⊗R B for every flat commutative R-algebra S;

3. (Ap,Pp) is a cover of Bp for every prime ideal p of R;

4. (Am,Pm) is a cover of Bm for every maximal ideal m of R;

Proof. (i)⇒ (ii) Assume that (A,P) is a cover of B. Then, ηA is an isomorphism. By Lemma 1.1.36, S⊗R B =

S⊗R HomA(P,P)' HomS⊗RA(S⊗R P,S⊗R P)op. Consider the following diagram
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S⊗R A S⊗R EndB(HomA(P,A))

EndS⊗RB(S⊗R HomA(P,A))

S⊗R A EndS⊗RB(HomS⊗RA(S⊗R P,S⊗R A))

S⊗RηA

ωHomA(P,A)

ηS⊗RA

ω
−1
P ◦(−)◦ωP

.

The maps ω are the canonical maps given by Lemma 1.1.36, hence they are isomorphisms. This is a commutative
diagram. In fact, for every s,s′,s′′ ∈ S, a ∈ A, g ∈ HomA(P,A), p ∈ P, we have

ωP ◦ω
−1
P ◦ (−)◦ωP ◦ηS⊗RA(s⊗a)(s′⊗g)(s′′⊗ p) = ηS⊗RA(s⊗a)ωP(s′⊗g)(s′′⊗ p)

= ωP(s′⊗g)(s′′⊗ p)s⊗a = ss′s′′⊗g(p)a

ωP ◦ωHomA(P,A) ◦S⊗R ηA(s⊗a)(s′⊗g)(s′′⊗ p) = ωPωHomA(P,A)(s⊗ηA(a))(s′⊗g)(s′′⊗ p)

= ωP(ss′⊗ηA(a)(g))(s′′⊗ p) = ss′s′′⊗g(p)a.

It follows by Lemma 1.4.28 that (S⊗R A,S⊗R P) is a cover of S⊗R B. ii)⇒ iii) For every prime ideal p in
R, Rp is a flat commutative R-algebra. iii)⇒ iv) Every maximal ideal is prime. iv⇒ i) By assumption, the
map Am→ EndBm(HomAm(Pm,Am)) ' EndB(HomA(P,A))m is an isomorphism for all maximal ideals m in R.
Therefore, A→ EndB(HomA(P,A)) is an isomorphism. By Lemma 1.4.28, i) follows.

Lemma 1.4.31. Let M ∈ A-mod∩R-proj. If the unit ηM(m) is a monomorphism for every maximal ideal m

in R, then the unit ηM is (A,R)-monomorphism. If, in addition, DM⊗A P⊗B HomA(P,A) ∈ R-proj and ηM is

(A,R)-monomorphism, then ηM(m) is a monomorphism for every maximal ideal m in R.

Proof. Let λM : DM ⊗A P ⊗B HomA(P,A) → DM, given by λM( f ⊗ p ⊗ g) = f g(p) for
f ⊗ p⊗g ∈ DM⊗A P⊗B HomA(P,A). There is a commutative diagram

DDM D(DM⊗A P⊗B HomA(P,A))

D(DHomA(P,M)⊗B HomA(P,A))

M HomB(HomA(P,A),HomA(P,M))

DλM

D(ι⊗HomA(P,A))

ηM

wM

κ

(1.4.5.19)

where the isomorphism maps κ and ι are according to Proposition 1.1.65. In fact, for m ∈ M,

f ⊗ p⊗g ∈ DM⊗A P⊗B HomA(P,A),

D(ι⊗HomA(P,A))◦κ ◦ηM(m)( f ⊗ p⊗g) = κ(ηM(m))(ι⊗HomA(P,A))( f ⊗ p⊗g)

= κ(ηM(m))(ι( f ⊗ p)⊗g) = ι( f ⊗ p)(ηM(m)(g))

= f (ηM(m)(g)(p)) = f (g(p)m)

DλM ◦wM(m)( f ⊗ p⊗g) = wM(m)(λM(m)( f ⊗ p⊗g)) = wM(m)( f ·g(p))

= ( f ·g(p))(m) = f (g(p)m).

By assumption, ηM(m)
is a monomorphism for every maximal ideal m in R. According to the commutative

diagram (1.4.5.19), D(m)λM(m) = HomR(m)(λM(m),R(m)) is a monomorphism for every maximal ideal m in R.
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Hence, λM(m) is surjective for every maximal ideal in R. In view of the commutative diagram

DM⊗A P⊗B HomA(P,A)(m) DM(m)

DM(m)⊗A(m) P(m)⊗B(m) HomA(P,A)(m)

D(m)M(m)⊗A(m) P(m)⊗B(m) HomA(m)(P(m),A(m)) D(m)M(m)

λM(m)

'

'

'
λM(m)

, (1.4.5.20)

λM(m) is surjective for every maximal ideal in R. By Nakayama’s Lemma, λM is surjective. As DM ∈ R-proj,
λM splits over R, so there is an R-homomorphism t such that t ◦DλM = idM . Thus,

w−1
M ◦ t ◦D(ι⊗HomA(P,A))◦κ ◦ηM = w−1

M ◦ t ◦DλM ◦wM = w−1
M ◦wM = idM .

Hence, ηM is (A,R)-mono.
Conversely, assume that ηM is (A,R)-mono and DM⊗A P⊗B HomA(P,A) ∈ R-proj. In view of diagram

(1.4.5.19), DλM is (A,R)-mono. Then, DDλM is surjective. As DM⊗A P⊗B HomA(P,A) ∈ R-proj, the map
wDM⊗AP⊗BHomA(P,A) is an isomorphism and consequently, λM is surjective. Applying the right exact functor
R(m)⊗R−, we obtain by diagram (1.4.5.20) that λM(m) is surjective for every maximal ideal m in R. By the first
diagram, it follows that ηM(m) is a monomorphism for every maximal ideal m in R.

Lemma 1.4.32. Let I be an ideal of R. Let M ∈ R-mod. Then, R/I⊗R M 'M/IM.

Proof. Consider the R-homomorphisms R/I⊗R M→M/IM, given by (r+I)⊗R m 7→ rm+IM, r ∈R,m∈M, and
M/IM→ R/I⊗R M, given by m+ IM 7→ (1R + I)⊗m. These homomorphisms are well defined and are inverse
to each other.

Lemma 1.4.33. Let x be a non-zero divisor of R. The following assertions hold.

(i) Let M ∈ R-proj. Then, the R-homomorphism δ : M→M, m 7→ xm is a monomorphism.

(ii) Let B be a projective Noetherian R-algebra and M ∈ B-mod∩R-proj. The map

EndB(M)⊗R R/Rx→HomB(M,R/Rx⊗R M), given by f ⊗r+Rx 7→ (m 7→ r+Rx⊗R f (m)), is a monomor-

phism.

Proof. Let m∈M such that xm = 0. Since M is projective over R, there exists a natural number n and K ∈ R-mod
such that Rn 'M

⊕
K. So, there exists αi ∈ R satisfying m = ∑i αiei, where {ei : i = 1, . . . ,n} is an R-basis for

Rn. Therefore, xαi = 0 for all i = 1, . . . ,n. Since x is a non-zero divisor, αi = 0 for all i. Hence, m = 0. Thus, i)

follows.
Assume that 0 = δ (∑

i
fi⊗R ri +Rx) = δ (∑

i
ri fi⊗R 1+Rx) = δ ( f ⊗R 1+Rx),for some f ∈ EndB(M). In

particular, 1+Rx⊗R f (m) = 0 for all m ∈M. By Lemma 1.4.32, f (m) ∈ RxM = xM for all m ∈M. We claim
that f = xg for some g ∈ EndB(M). By assumption, there is for every m ∈ M ym ∈ M satisfying f (m) = xym.
Note that, any b ∈ B and m,m1,m2 ∈M

xybm = f (bm) = b f (m) = b(xym) =⇒ x(ybm−bym) = 0 and (1.4.5.21)

xym1+m2 = f (m1 +m2) = f (m1)+ f (m2) = xym1 + xym2 . (1.4.5.22)
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By i), ybm−bym = 0 and ym1+m2 = ym1 + ym2 . Thus, g : M→M, given by g(m) := ym for every m ∈M is a well
defined element of EndB(M) satisfying f = xg.

Hence, f ⊗R (1+Rx) = xg⊗1+Rx = g⊗ x+Rx = 0. So, δ is a monomorphism.

Proposition 1.4.34. [Rou08, Proposition 4.36] Assume R is a commutative Noetherian regular ring. Let A be a

projective Noetherian R-algebra. Let P ∈ A-mod∩R-proj. If (A(m),P(m)) is a cover of B(m) for every maximal

ideal m of R, then (A,P) is a cover of B.

Proof. As P∈R-proj and P(m) is projective over A(m) for every maximal ideal m in R, it follows that P∈A-proj.
In view of Lemma 1.4.30, we can assume that R is a local commutative Noetherian regular ring. We shall

proceed by induction on the Krull dimension of R. Assume that dimR = 0. According to 1.1.57, a local commu-
tative Noetherian regular ring with Krull dimension zero is a field. As (A,P) = (A(0),P(0)), there is nothing to
prove for dimR = 0.

Assume the result known for rings with Krull dimension less than t. Let R be with dimR = t. Let x ∈m/m2.
By the theory of regular rings, a local Noetherian regular commutative ring is an integral domain. Thus, x is a
non-zero divisor. Fix Q = R/Rx. The ring Q has a unique maximal ideal m/Rx, by Correspondence theorem for
rings. In particular, Q is a local regular Noetherian ring. Moreover, dimQ = dimR/Rx = dimR−1 < t and

Q(m/Rx) = Q/(m/Rx)' R/Rx/m/Rx' R/m= R(m). (1.4.5.23)

By assumption, (A⊗R Q(m/Rx),P⊗R Q(m/Rx)) is a cover of B⊗R Q(m/Rx). By induction, (A⊗R Q,P⊗R Q) is
a cover of B⊗R Q. By Lemma 1.4.28, Lemma 1.1.32 and Proposition 1.1.31, the composition map

A⊗R Q HomB(HomA(P,A),HomA(P,A)⊗R Q)

EndB⊗RQ(HomA⊗RQ(P⊗R Q,A⊗R Q)) EndB⊗RQ(HomA(P,A)⊗R Q)

is an isomorphism. We will denote this map by µQ. Explicitly, we have µQ(a⊗q)= ( f 7→ f ·a⊗q), a⊗q ∈ A⊗R Q.
We have a commutative triangle

A⊗R Q HomB(HomA(P,A),HomA(P,A)⊗R Q)

EndB(HomA(P,A))⊗R Q

µQ

ηA⊗RQ
δ

with a monomorphism given by Lemma 1.4.33. Since µQ is an isomorphism, the monomomorphism δ is also
surjective. Thus, ηA⊗R Q is an isomorphism. Denote the canonical surjective map Q→ Q/m/Rx = R(m) by π .
There exists a commutative diagram

A⊗R Q EndB(HomA(P,A))⊗R Q

A⊗R R(m) EndB(HomA(P,A))⊗R R(m)

ηA⊗RQ

A⊗Rπ EndB(HomA(P,A))⊗Rπ

ηA(m)

.

In fact, for every a ∈ A,

ηA(m)◦A⊗R π(a⊗R 1R +Rx) = ηA(m)(a⊗R 1R +m) = ηA(a)⊗R 1R +m

EndB(HomA(P,A))⊗R π ◦ηA⊗R Q(a⊗R 1R +Rx) = EndB(HomA(P,A))⊗R π(ηA(a)⊗R 1R +Rx)

= ηA(a)⊗R 1R +m.
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It follows that ηA(m) ◦A⊗R π is surjective. In particular ηA(m) is surjective. By Nakayama’s Lemma, ηA is
surjective. By Lemma 1.4.31, ηA is a monomorphism. By Lemma 1.4.28, the result follows.

The converse is not necessarily true. In general,

EndB(m)(HomA(m)(P(m),A(m))' HomB(m)(HomA(P,A)(m)) 6' HomB(HomA(P,A))(m),

unless HomA(P,A) ∈ B-proj. But this happens exactly when the Schur functor preserves projectives, hence as it
is full and faithful it becomes an equivalence.

It may be tempting to think that ηM(m) being an isomorphism is a sufficient condition in view of Nakayama’s
Lemma to ηM being an isomorphism. However, the argument does not work since R(m)⊗R− is only right exact
when R is a local ring. As a consequence, kerηM(m) cannot be viewed as a submodule of kerηM(m). An example
of this failure is actually the canonical projection π : R→ R(m). This is not an isomorphism over local rings with
Krull dimension higher than zero. However, π(m) is an isomorphism. This justifies the need of Lemma 1.4.31
to conclude the previous Proposition.

As a curiosity, Auslander and Smalø introduced in [AS80] a concept of cover of a subcategory of a module
category. If (A,P) is a cover of B (in the sense of Definition 1.4.29), then the full subcategory of B-mod whose
objects are the indecomposable summands of HomA(P,A) is a cover of B-mod, in the sense of Auslander and
Smalø.

1.4.6 Blocks and covers

Our next goal is to decompose a cover into smaller covers. We recall that a block of an algebra is a principal
ideal generated by a centrally primitive idempotent. So, each block is an indecomposable ring. First, we will see
that the existence of a double centralizer property on an (A,B)-bimodule implies that the number of blocks of A

is equal to the number of blocks of B. This proof is based on Corollary 5.38 of [Mat99].

Proposition 1.4.35. Let A and B be two projective Noetherian R-algebras. Let M be an (A,B)-bimodule. Suppose

that there is a double centralizer property on M between A and B. Then, the number of blocks of A is equal to

the number of blocks of B.

Proof. Assume that B = ∏
k
i=1 Bi is a decomposition of B into block ideals. This gives a decomposition of the

identity 1B into central idempotents such that Bi =Bei and eie j = 0 if i 6= j, i= 1, . . . ,k. Since Mei∩∑ j 6=i Me j = 0,
i = 1, . . . ,k, we can write M '

⊕k
i=1 Mei as B-modules. By assumption, B' EndA(M)op as rings. In particular,

M is faithful over B. Thus, Mei 6= 0 for all i = 1, . . .k. On the other hand, HomB(Mei,Me j) = 0 if i 6= j. Hence,

A' EndB(M)' EndB(Me1
⊕
· · ·
⊕

Mek)'
k

∏
i=1

EndBi(Mei). (1.4.6.1)

Each ideal of A, EndBi(Mei) is non-zero since Mei 6= 0. So, A can be decomposed as a direct product in at least
k ideals. Symmetrically, using the fact that M is faithful over A and B = EndA(M)op we obtain that the B can be
decomposed as a direct product in at least the number of blocks of A. Therefore, the number of blocks of A and
B coincide.

Corollary 1.4.36. Let (A,P) be a cover of B. Then, the number of blocks of A is equal to the number of blocks

of B.

Proof. By assumption, there is a double centralizer property on HomA(P,A) between B and A. The result now
follows by Proposition 1.4.35.
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Proposition 1.4.37. Let A and B be two projective Noetherian R-algebras such that B = EndA(P)op, for some

P ∈ A-proj. Suppose that A admits a decomposition A = ∏
k
i=1 Ai. Then,

(i) B admits a decomposition B = ∏
k
i=1 EndAi(Pi), where Pi = AiP, i = 1, . . . ,k.

(ii) (A,P) is a cover of B if and only if (Ai,Pi) is a cover of Bi, i = 1, . . . ,k.

Proof. (i) follows from Proposition 1.4.35. In particular, 1B = ∑i bi where each bi is the idempotent P � Pi ↪→ P.
We can write

EndB(HomA(P,A))' EndB(HomA(
⊕

i

Pi,A))' EndB(
⊕
i, j

HomA(Pi,A j)) (1.4.6.2)

' EndB(
⊕

i

HomA(Pi,Ai))' EndB(
⊕

i

HomAi(Pi,Ai)) (1.4.6.3)

' HomB(
⊕

i

HomAi(Pi,Ai),
⊕

j

HomA j(Pj,A j))' HomB(
⊕

i

HomAi(Pi,Ai),HomAi(Pi,Ai))

'∏
i

EndB(HomAi(Pi,Ai))'∏
i

EndBi(HomAi(Pi,Ai)). (1.4.6.4)

Assume that (Ai,Pi) is a cover of Bi for every i. Then,

EndB(HomA(P,A))'∏
i

EndBi(HomAi(Pi,Ai))'∏
i

Ai ' A. (1.4.6.5)

Hence, (A,P) is a cover of B.
Conversely, assume that (A,P) is a cover of B. Then,

∏
i

Ai ' A' EndB(HomA(P,A))'∏
i

EndBi(HomAi(Pi,Ai)). (1.4.6.6)

By assumption, HomA(P,A) is faithful as right A-module. Observe that HomA(P,A) '
⊕

j HomA j(Pj,A j). We
note that HomAi(Pi,Ai) is faithful as Ai-module. In fact, since for each a ∈ A j and each ai ∈ Ai, j 6= i, aia = 0, it
follows that φ · a = 0 for every φ ∈ HomAi(Pi,Ai). In particular, the canonical map Ai→ EndBi(HomAi(Pi,Ai))

is injective. Denote by fi this map. By (1.4.6.6), ∏ fi is an isomorphism. As fi is also an R-map, it is enough
to check that fi is an R-epimorphism. Let ψ ∈ HomR(EndBi(HomAi(Pi,Ai)),X) such that ψ fi = 0 for some
X ∈ R-mod. We can extend ψ to a map ψ ′ ∈ HomR(∏i EndBi(HomAi(Pi,Ai)),X) such that ψ ′ f j = 0, j 6= i and
ψ ′ fi = ψ fi = 0. So,

ψ ◦∏
j

f j = ψ fi = 0 =⇒ ψ
′ = 0. (1.4.6.7)

Hence, ψ = 0. Thus, fi is also surjective, and therefore (Ai,Pi) is a cover of Bi.

1.5 Split quasi-hereditary algebras

Quasi-hereditary algebras, introduced in [CPS88], play an important role in the representation theory of Lie
algebras and algebraic groups. Quasi-hereditary algebras have very nice properties, in particular, homological
properties like the finiteness of global dimension. An important class of modules for representation theory of
algebraic groups is the additive closure of the characteristic tilting module which arise in the context of quasi-
hereditary algebras. Using cover theory, properties of quasi-hereditary algebras can provide ways to study many
interesting algebras. Here, we are interested in the abstract setting of algebras over commutative Noetherian rings,
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and therefore we would like to study the concept of quasi-hereditary algebra over a commutative Noetherian ring.
During the last 30 years, many approaches have been suggested [DR98, Rou08, CPS90, Du03] to this subject.
In this chapter, we will follow Rouquier’s approach. We aim to explain some known results in the theory of split
quasi-hereditary algebras over fields that can be generalized to arbitrary Noetherian rings including, naturally,
the results of Rouquier and Cline, Parshall and Scott.

More precisely, our strategy can be described as follows:
Section 1.5.1 contains the relevant definitions of (resp. split) quasi-hereditary algebras and (resp. split)

heredity ideals over commutative Noetherian rings and their differences relative to the field case. We gather here
some properties presented in [CPS90] of (resp. split) quasi-hereditary algebras.

In Section 1.5.2, we explore the class of R-split modules for a given algebra A, introduced by Rouquier. This
plays a crucial role in the theory of split highest weight categories over commutative Noetherian rings since
they generalize the idea behind a standard module with maximal index. We describe how these objects behave
under ground ring change and how we can associate to each split R-module a split heredity ideal. The converse
statement requires knowledge of Picard groups. In fact, this construction is valid for any commutative Noetherian
ring, so we cannot expect a one to one correspondence. However, a one to one correspondence can be deduced
using equivalences classes of R-split modules with respect to the Picard group. Hence, elementary properties
of the Picard group are also presented. Using such bijection, we prove that the module category of the quotient
algebra A/J, with J a split heredity ideal in A, is a Serre subcategory of the module category of A.

In Section 1.5.3, the main goal is to discuss the formal definition of split highest weight category over com-
mutative Noetherian rings and some immediate alternative definitions.

In Section 1.5.4, we start by showing the relation between A-proj and A/J-proj with J a split heredity ideal
in A. This relation is crucial to establish that the category A-mod is split highest weight category with n standard
modules if and only if there exists a split heredity ideal J in A such that A/J-mod is split highest weight category
with n− 1 standard modules. This result is fundamental for this theory since it allows us to prove several
statements and constructions using induction. In contrast with the field case, the category F (∆) does not contain
all projective A-modules. It is necessary to consider a larger subcategory denoted by F (∆̃). The latter contains
all modules with filtrations by ∆⊗R U-modules where U ∈ R-proj.

In Section 1.5.5, we collect criteria to establish that a given module category is a split highest weight category
using change of ground rings.

Over finite-dimensional algebras, the standard modules are completely determined, up to isomorphism, once
the partial order whose elements index a complete set of projective indecomposable modules is fixed. In Section
1.5.6, we address the analogue problem replacing projective indecomposable modules by projective modules that
become indecomposable after tensoring with every residue field.

In Section 1.5.7, we prove that the notion of split highest weight category over a commutative Noetherian
ring (in the sense of Rouquier) is equivalent to the notion of split quasi-hereditary algebra (in sense of Cline,
Parshall and Scott). Consequently, we show that an algebra is split quasi-hereditary if and only if its opposite
algebra is split quasi-hereditary.

In Section 1.5.8, we give an alternative approach to the computation of global dimension of (resp. split)
quasi-hereditary algebras over commutative Noetherian regular rings.

In Section 1.5.9, we can reduce the problem of determining whether two split highest weight categories are
equivalent to determining if the respective full subcategories whose objects admit a filtration by standard modules
are equivalent. We generalize the Dlab-Ringel standardization theorem to Noetherian algebras over regular rings
with Krull dimension one. Therefore, our result can be applied to every abelian category with enough projectives
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and with a certain split standardizable set of objects. Moreover, these categories can be studied using integral
split quasi-hereditary algebras.

In Section 1.5.10, we show that every split quasi-hereditary algebra over a local ring is semi-perfect. In
particular, the projective modules associated with the standard modules are its projective covers. This situation
gives further insight into the reason why the local case of split quasi-hereditary algebras can be approached in
several ways. In [DR98], Du and Rui work with standardly full-based algebras. In the local case, they show that
standardly full-based algebras over a local commutative Noetherian ring are exactly the split quasi-hereditary
algebras over a local ring.

In Section 1.5.13, we construct the dual objects of standard modules called costandard modules. As expected
this provides a new characterization of split quasi-hereditary algebras over commutative Noetherian rings in
terms of costandard modules. Here, (A,R)-injective modules and relative (A,R)-cogenerators take the place of
projective modules and generators, respectively. Rouquier established for the Noetherian case that the standard
modules are the Ext-projetive objects of the costandard modules in A-mod∩R-proj and the projective A-modules
are the Ext-projective objects of standard modules in F (∆̃). We present detailed proofs of these facts and their
dual statements. This characterization allows us to state that F (∆̃) is a resolving subcategory of A-mod∩R-proj.

In Section 1.5.14, we study partial tilting modules. In general, we cannot construct canonical indecomposable
(partial) tilting modules but we can still find exact sequences for each λ ∈ Λ that relate them with the standards
∆(λ ) and the costandards ∆(λ ). Furthermore, these exact sequences are (resp. F (∆̃)) F (∇̃)-approximations
of (resp. ∇(λ )) ∆(λ ). However, these partial tilting modules are indecomposable if R is a connected ring. We
will describe the modules in F (∆̃) as the modules with a finite coresolution by partial tilting modules and its
dual statement. These statements are crucial to the study of the Ringel dual. In this section, we also find some
additional properties to HomA(M,N) with M ∈F (∆̃), N ∈F (∇̃). In particular, homomorphisms between partial
tilting modules.

In Section 1.5.15, we define the Ringel dual of a split quasi-hereditary algebra and we deduce its uniqueness.
Characteristic tilting modules are not unique, however, their endomorphism algebras are Morita equivalent. This
is done in several steps. First, we show that the functor HomA(T,−), where T is a characteristic tilting module,
induces an exact equivalence between F (∇) and F (HomA(T,∇)). Then, we prove that EndA(T ) has a split
quasi-hereditary structure and HomA(T,−) sends costandard modules to standard modules. Afterwards, we
establish that the partial tilting modules are exactly the additive closure of a characteristic tilting module. We
describe how partial tilting modules behave under change of ring. This allows us to generalize the statement
that the Ringel dual of an algebra A is Morita equivalent as quasi-hereditary algebra to A for Noetherian rings.
Moreover, we can say that two algebras are Ringel dual to each other if there exists an exact equivalence between
F (A∆̃) and F (B∇̃).

In Section 1.5.16, we show that F (∆̃) behave similarly to A-proj in the sense of being a well behaved
resolving subcategory, which we will describe later on Definition 3.3.1. This is a known result by Rouquier,
however here we present a different approach. We give a criterion for Ringel self-duality for split quasi-hereditary
algebras over local commutative Noetherian rings. We also describe when F (∆̃) can be closed under (A,R)-
monomorphisms.

1.5.1 Quasi-hereditary algebras and split quasi-hereditary algebras

For the study of quasi-hereditary algebras over fields, we refer to [CPS88], [PS88], [DR89b], [Rin91], [DK94,
A], [DR92], [DR89a].

Assume, throughout this section, that R is a commutative Noetherian ring and A is a projective Noetherian
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R-algebra.

Definition 1.5.1. Let R be a commutative Noetherian ring. An ideal J in a projective Noetherian R-algebra A is
called a heredity ideal if

(i) A/J is projective over R;

(ii) J is projective as left ideal over A;

(iii) J2 = J (idempotent ideal);

(iv) The R-algebra EndA(AJ)op is semi-simple relative to R.

This definition is due to [CPS90]. For our purposes, we are interested in a stronger notion of heredity ideal
also used by Rouquier [Rou08].

Definition 1.5.2. Let R be a commutative Noetherian ring and let A be a projective Noetherian R-algebra. Let J

be an ideal of A. We call J a split heredity ideal of A if

(i) A/J is projective over R;

(ii) J is projective as left ideal over A;

(iii) J2 = J;

(iv) The R-algebra EndA(AJ)op is Morita equivalent to R.

Since semi-simple relative is a Morita invariant property and R is, of course, semi-simple relative to R, it
follows that any R-algebra Morita equivalent to R is semi-simple relative to R. In particular, a split heredity ideal
is heredity.

Definition 1.5.3. A projective Noetherian R-algebra A is called quasi-hereditary if there exists a finite heredity
chain of ideals 0 = Jt+1 ⊂ Jt ⊂ ·· · ⊂ J1 = A such that Ji/Ji+1 is a heredity ideal in A/Ji+1 for 1 ≤ i ≤ t. It is
called split quasi-hereditary provided that Ji/Ji+1 is split heredity in A/Ji+1.

It follows that a split quasi-hereditary algebra is quasi-hereditary since a split heredity ideal is heredity.
Further, for each split quasi-hereditary algebra the regular module A is a faithful module as R-module.

Proposition 1.5.4. Let R be a field. Then, quasi-hereditary corresponds to the classical concept of quasi-

hereditary.

Proof. Assume that J is an heredity ideal. Since R is a field, 1.5.1(i) is trivially checked. 1.5.1(ii) and (iii)

are conditions on the usual concept of heredity ideal. Since R is a field, there is an idempotent e of A such that
J = AeA. Since AeA is projective over A, we get EndA(AeA)op is Morita equivalent to EndA(Ae)op ' eAe. Hence,
by 1.5.1(iv) eAe is semi-simple. This is equivalent to 0 = rad(eAe) = e rad(A)e.

Proposition 1.5.5. Let R be a field splitting for A. Then, split quasi-hereditary corresponds to the classical

concept of quasi-hereditary.

Proof. It is now enough to notice that R Mor∼ EndA(J)op ' EndA(AeA)op Mor∼ EndA(Ae)op ' eAe. On the other direc-
tion, we can assume J = AeA for some primitive idempotent e. Hence, eAe is local algebra, thus eAe/ rad(eAe)'
R, which follows from the fact that R is a field splitting for A (see for example [ASS06, Lemma 4.6]). Now using
the fact that eAe is semi-simple we deduce that EndA(J)op Mor∼ eAe' R.
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Proposition 1.5.6. Let A be quasi-hereditary. Then, A/J is quasi-hereditary for J an heredity ideal of A.

Proof. Assume that A has a heredity chain 0 = Jt+1 ⊂ Jt ⊂ ·· ·J1 = A. Consider J = Jt . The chain of ideals
0 = Jt/J ⊂ Jt−1/J ⊂ J1/J = A/J in A/J is heredity. In fact, Ji/J/Ji+1/J ' Ji/Ji+1 in A/J/Ji+1/J ' A/Ji+1. As
Ji/Ji+1 is heredity in A/Ji+1 and EndA/J/Ji+1/J(Ji/J/Ji+1/J)' EndA/Ji+1(Ji/Ji+1) the claim follows.

Proposition 1.5.7. Let A be split quasi-hereditary. Then, A/J is split quasi-hereditary for J a split heredity ideal

of A.

Proof. The result follows by the same reasoning of Proposition 1.5.6.

Proposition 1.5.8. Let A be an R-algebra with J a (resp. split) heredity ideal of A. Assume that A/J is (resp.

split) quasi-hereditary. Then, A is (resp. split) quasi-hereditary.

Proof. By assumption, 0 = It ⊂ It−1 ⊂ ·· · ⊂ I1 = A/J is a (resp. split) heredity chain. Now each ideal in
A/J can be written as Ji/J = Ii, t ≤ i ≤ 1 by the correspondence theorem for quotient rings. Here, Ji/Ji+1 '
Ji/J/Ji+1/J ' Ii/Ii+1 as A-modules and EndA/J/Ji+1/J(Ji/J/Ji+1/J) ' EndA/Ji+1(Ji/Ji+1). Therefore, Ji/Ji+1 is
(resp. split) heredity in A/Ji+1. So, 0⊂ J ⊂ Jt−1 ⊂ ·· · ⊂ J1 = A is a (resp. split) heredity chain.

Cline, Parshall and Scott stated that an idempotent chain of ideals is a heredity chain if it is over every residue
field of prime ideals.

Theorem 1.5.9. [CPS90, Theorem 3.3]Let R be a Noetherian commutative ring. Let A be a projective Noetherian

R-algebra. Assume that A admits a chain of idempotent ideals 0 = Jt+1 ⊂ Jt ⊂ ·· · ⊂ J1 = A. The algebra A is

quasi-hereditary with heredity chain 0 = Jt+1 ⊂ Jt ⊂ ·· · ⊂ J1 = A if and only if for each prime ideal p of R, A(p)

is quasi-hereditary R(p)-algebra with heredity chain 0 = Jt+1(p)⊂ Jt(p)⊂ ·· · ⊂ J1(p) = A(p).

As we said, our interest lies in split quasi-hereditary algebras, and therefore we will not use this result in
future references. Notice that we cannot deduce for now the same for split quasi-hereditary because of condition
1.5.2(iv). Notice that even if two objects are isomorphic at every localization they are not in general isomorphic.
It is needed that they are isomorphic at each localization via a global map.

As a consequence of the previous theorem, we can deduce a known result for classical quasi-hereditary
algebras. If an algebra is quasi-hereditary, then its opposite algebra is again quasi-hereditary.

Corollary 1.5.10. [CPS90, Proposition 3.5] A projective Noetherian R-algebra is quasi-hereditary if and only

if Aop is quasi-hereditary.

Proof. Assume A quasi-hereditary. By 1.5.9, A(p) is quasi-hereditary for every prime ideal p of R. Since R(p) is
a field, A(p)op ' Aop(p) is quasi-hereditary for every prime ideal p of R [PS88, Theorem 4.3 b)]. Again by 1.5.9,
Aop is quasi-hereditary.

Later, we will see that the same result holds for the split case, however, some adjustments are necessary (see
Theorem 1.5.69).

The following result established a criterion to verify when a quasi-hereditary algebra is a split quasi-hereditary
algebra.

Corollary 1.5.11. [CPS90, Proposition 3.5] Let R be a regular Noetherian integral domain with quotient field

K. Let A be a quasi-hereditary algebra. Then, A is split quasi-hereditary algebra if and only if K⊗R A is a split

quasi-hereditary algebra.
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The proof of Corollary 1.5.11 uses the theory of maximal orders over Krull Noetherian domains (see [AG60]).
Hence, it also follows as an application of Theorem 4.6 of [Hat63]. In particular, this result can be established
independently of [CPS90, Theorem (2.1)].

The examples of quasi-hereditary algebras, that we are interested in, are, in fact, split quasi-hereditary. Also,
over an algebraically closed field, every quasi-hereditary algebra is split quasi-hereditary. Hence, from now on
we will focus only on the study of split quasi-hereditary algebras.

1.5.2 Projective R-split A-modules

In the Artinian case, the notions of quasi-hereditary algebras and highest weight categories are equivalent. More-
over, all heredity ideals can be written in the form of AeA. And without loss of generality, we can deal only with
the cases where the idempotent e is primitive. Hence, there is a natural choice for the respective standard mod-
ule. In such a case, we choose Ae. By [DR89b, Statement 7], if AeA is heredity there is a more precise relation
between Ae and AeA. In fact, in such a case, the multiplication map Ae⊗eAe eA→ AeA is an isomorphism of
R-modules with R a field.

In the Noetherian case, this is our starting point for the equivalence of these two notions as well. The first
problem we encounter is that projective modules cannot be decomposed into projective modules defined by
idempotents. And therefore, the definition of heredity ideals in the form AeA is no longer suitable, and so neither
the choice of standard Ae. Observe that in the case that A is a split finite-dimensional algebra over a field K and
AeA is heredity then eAe ' K for some primitive idempotent e ∈ A. Another important thing to observe is that
we want to have A/AeA to be a projective Noetherian R-algebra. This is the same to require that the canonical
exact sequence

0→ AeA→ A→ A/AeA→ 0 (1.5.2.1)

splits over R. Combining this data with the multiplication map we obtain that the canonical morphism

Ae⊗R eA→ AeA→ A (1.5.2.2)

splits over R with image AeA. This motivates the following definition.

Definition 1.5.12. Let R be a commutative Noetherian ring and let A be a projective Noetherian R-algebra. Let
L be a finitely generated projective A-module and faithful over R. L is called projective R-split A-module if the
canonical R-morphism

τL,P : L⊗R HomA(L,P)→ P, l⊗ f 7→ f (l) (1.5.2.3)

is a split R-monomorphism for all projective A-modules.
We denote M (A) the set of isomorphism classes of projective R-split A-modules.

For P = A we can consider the map τL : L⊗EndA(L)op HomA(L,P)→ P, l⊗ f 7→ f (l)

We will see in the coming sections that the modules (not necessarily indecomposable) in M (A) are exactly
the standard modules with maximal index when A is split quasi-hereditary. Whereas the image of the map τL,A

is a split heredity ideal for L ∈M (A). For rings R with non-trivial idempotents, we will be able to say that the
modules in M (A) are projective indecomposable.

Lemma 1.5.13. [Rou08, Lemma 4.3] Let L be a finitely generated projective A-module. Then, τL is an (A,A)-

bimodule morphism. J = imτL is an ideal of A and J2 = J.
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Proof. Notice that HomA(L,A) is a right A-module with action ( f ·a)(l) = f (l)a, f ∈ HomA(L,A),a ∈ A, l ∈ L.
So,

τL(a · l⊗ f ) = τL((al)⊗ f ) = f (al) = a f (l) = aτL(l⊗ f )

τL(l⊗ f a) = ( f a)(l) = f (l)a = τL(l⊗ f )a.

Thus, the first claim follows. Moreover aτL(x) = τL(ax)∈imτL and τL(x)a∈imτL, thus J =imτL is an ideal. Fix
L∗ = HomA(L,A) and E = EndA(L)op. The map ψ : L∗⊗A L→ E, f ⊗ l′ 7→ (l 7→ f (l)l′) is an (E,E)-bimodule
morphism. In fact, for any h ∈ E, f ∈ L∗, l′, l ∈ L,

ψ(h( f ⊗ l′))(l) = ψ(h f ⊗ l′)(l) = (h f )(l)l′ = f (h(l))l′ = ψ( f ⊗ l′)(h(l)) = hψ( f ⊗ l′)(l)

ψ( f ⊗ l′h)(l) = ψ( f ⊗ (l′h)) = ψ( f ⊗h(l′))(l) = f (l)h(l′) = h( f (l)l′) = ( f (l)l′)h = (ψ( f ⊗ l′)h)(l).

Since L is projective over A, ψ is an isomorphism. Define the map δ : L ⊗E E ⊗E L∗ → A,

L⊗E E⊗E L∗ 3 l⊗φ ⊗ f ′ 7→ f ′(φ(l)). The image of δ is exactly J. In fact,

δ (l⊗ idL⊗ f ′) = f ′(idL(l)) = τL(l⊗ f ′), ∀l ∈ L, f ′ ∈ L∗. (1.5.2.4)

Hence, J ⊂ imδ . As for any φ ∈ E, δ (l⊗φ ⊗ f ′) = δ (φ(l)⊗ idL⊗ f ′),∀l ∈ L, f ′ ∈ L∗, J ⊃ imδ .
Consider the diagram

L⊗E L∗⊗A L⊗E L∗ L⊗E E⊗E L∗

A⊗A A A

idL⊗ψ⊗idL∗

τL⊗τL δ

µ

.

This diagram is commutative. In fact, for l⊗ f ⊗ l′⊗ f ′ ∈ L⊗E L∗⊗A L⊗E L∗,

δ ◦ idL⊗ψ⊗ idL∗(l⊗ f ⊗ l′⊗ f ′) = δ (l⊗ψ( f ⊗ l′)⊗ f ′) = f ′(ψ( f ⊗ l′)(l)) = f ′( f (l)l′) = f (l) f (l′)

µ ◦ τL⊗ τL(l⊗ f ⊗ l′⊗ f ′) = µ( f (l)⊗ f ′(l′)) = f (l) f ′(l′).

Since ψ is iso as (E,E)-morphism, µ and idL⊗ψ⊗ idL∗ are isomorphisms. Hence, it follows by the commu-
tativity of the diagram that J = J2.

Lemma 1.5.14. [Rou08, Lemma 4.3] Let J be an ideal of A. Assume that J2 = J. Let M be an A-module. Then

HomA(J,M) = 0 if and only if JM = 0 if and only if M ∈ A/J-mod.

Proof. Assume that HomA(J,M) = 0. Consider m ∈ M. We can define the A-homomorphism f : J → M, with
f ( j) = jm, j ∈ J. By assumption f = 0, hence JM = 0.

Reciprocally, assume JM = 0. Let g ∈ HomA(J,M). For any j ∈ J, there exists j1, j2 such that j = j1 j2,
hence g( j) = g( j1 j2) = j1g( j2) ∈ JM = 0. Hence, g = 0.

Note that the condition J = J2 is fundamental. In fact, assume that if JM = 0, then HomA(J,M) = 0. Then,
consider M := J/J2. We have HomA(J,J/J2) = 0. In particular, the canonical epimorphism J � J/J2 is zero.
Hence, J = J2.

Proposition 1.5.15. [Rou08, Lemma 4.5] Let L be a finitely generated projective A-module which is a faithful

R-module. The following are equivalent:

(i) τL,P : L⊗R HomA(L,P)→ P is an (A,R)-monomorphism for all P ∈ A-proj.
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(ii) τL,A : L⊗R HomA(L,A)→ A is an (A,R)-monomorphism.

(iii) R' EndA(L) and given P ∈ A-proj, there is a submodule P0 of P such that

• P/P0 ∈ R-proj,

• HomA(L,P/P0) = 0,

• P0 ' L⊗R U for some R-progenerator U.

Proof. i) =⇒ ii). Clear since A ∈ A-proj.
ii) =⇒ i). Notice that for P = P1⊕P2,

L⊗R HomA(L,P)' L⊗R (HomA(L,P1)⊕HomA(L,P2))' (L⊗R HomA(L,P1))⊕L⊗R HomA(L,P2),

hence τL,P1⊕P2 is equivalent to τL,P1⊕τL,P2 . So, it follows that τL,P is an (A,R)-monomorphism for any P∈A-proj.
i) =⇒ iii). By i),τL,L is an (A,R)-monomorphism. Putting f = idL, we see that τL,L(l⊗ f ) = l, l ∈ L. Hence,

it is an R-isomorphism. Since L ∈ A-proj, it follows that L ∈ R-proj. As R is commutative and L is faithful, L

is an R-progenerator [Fai73, Proposition 12.2]. Define B = EndR(L)op. Then, F = L⊗R− : R-mod→ B-mod
is an equivalence of categories with adjoint G = HomB(L,−) : B-mod → R-mod. Notice that F EndA(L) =

L⊗R EndA(L) ' L. Furthermore, EndA(L) ' GF EndA(L) ' GL = EndB(L) ' R, since the double centralizer
property holds on generators.

Let P be a finitely generated projective A-module. Define P0 = imτL,P. As τL,P is an (A,R)-monomorphism
we obtain that P0 is an R-summand of P. Moreover P/P0 is an R-summand of P, hence it is projective over R.
Since L ∈ A-proj, we have the exact sequence

0→ HomA(L,P0)→ HomA(L,P)→ HomA(L,P/P0)→ 0. (1.5.2.5)

However the canonical map HomA(L,P0)→ HomA(L,P) is surjective: In fact, for each h ∈ HomA(L,P), de-
fine g ∈ HomA(L,P0) such that g(l) = l ⊗ h. Hence, τL,P ◦ g = h. Therefore, by the exactness of (1.5.2.5),
HomA(L,P/P0) = 0. Since L is faithful over R, it follows that U = HomA(L,P) is faithful over R, and P0 ' L⊗U .

iii) =⇒ i) Let P ∈ A-proj. Consider the exact sequence 0→ P0 → P→ P/P0. Applying HomA(L,−) we
obtain the exact sequence 0→ HomA(L,P0)→ HomA(L,P)→ HomA(L,P/P0) = 0→ 0. Therefore, the map
HomA(L,P0)→ HomA(L,P) is an isomorphism.

We the following diagram

HomA(L,P0) HomA(L,L⊗R U) HomA(L,L)⊗R U

R⊗R U

HomA(L,P) U

w z

'

'

' .

Here, w is an isomorphism since P0 ' L ⊗R U by assumption, and z is an isomorphism since the map
HomA(Q,L)⊗R U → HomA(Q,L⊗U) is an isomorphism for any Q ∈ A-proj.

Therefore,

L⊗R HomA(L,P) P

L⊗R U P0

τL,P

'

'

.
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Now since P0 is a summand of P, we get that τL,P is an (A,R)-monomorphism.

Remark 1.5.16. Notice that for any L ∈M (A), R ' EndA(L). Hence, τL,A = τL. Furthermore, EndR(L) '
HomA(imτL,A). 4

In fact,

HomAop(imτL,A)' HomAop(L⊗R HomA(L,A),A)

' HomR(L,HomAop(HomA(L,A),A))' EndR(L).

We can also use the relative projective modules to determine if a given projective module is R-split.

Lemma 1.5.17. Let L ∈ A-proj which is a faithful R-module. The following are equivalent:

(i) τL,A : L⊗R HomA(L,A)→ A is an (A,R)-monomorphism.

(ii) τL,M : L⊗R HomA(L,M)→M is an (A,R)-monomorphism for every (A,R)-projective module M.

Proof. The implication (ii) =⇒ (i) is clear since A is (A,R)-projective. Assume that (i) holds. Let M be an
(A,R)-projective module. Since τL,X1⊕X2 is equivalent to τL,X1 ⊕ τL,X2 for every X1,X2 ∈ A-mod we can assume
that M = A⊗R X for some X ∈ R-mod. There is a commutative diagram

L⊗R HomA(L,A)⊗R X A⊗R X

L⊗R HomA(L,A⊗R X) A⊗R X

L⊗RςL,A,X

τL,A⊗RX

τL,A⊗RX

. (1.5.2.6)

In fact, following the notation of Proposition 1.1.33, for every l ∈ L, g ∈ HomA(L,A), x ∈ X ,

τL,A⊗RX ◦L⊗R ςL,A,X (l⊗g⊗ x) = τL,A⊗RX (l⊗g(−)⊗ x) = g(l)⊗ x = τA⊗R X(l⊗g⊗ x). (1.5.2.7)

By assumption, there exists an R-map t : A→ L⊗R HomA(L,A) satisfying t ◦ τL,A = idL⊗RHomA(L,A). It follows
that L⊗R ςL,A,X ◦ t⊗R X ◦ τL,A⊗RX = idL⊗RHomA(L,A⊗RX).

We can observe that the projective R-split left A-modules determine the projective R-split right A-modules.

Lemma 1.5.18. If L ∈M (A), then HomA(L,A) ∈M (Aop).

Proof. Since L ∈ A-proj, HomA(L,A) is projective as right A-module and EndA(HomA(L,A)) ' EndA(L) ' R.
Further, HomA(HomA(L,A),A)' L as A-modules and the following diagram is commutative:

HomA(HomA(L,A),A)⊗R HomA(L,A) A

L⊗R HomA(L,A) A

τHomA(L,A),A

'
τL,A

.

In the following proposition, we determine when a projective R-split A-module is indecomposable.

Proposition 1.5.19. Assume that R has no non-trivial idempotents. Then, all modules in M (A) are projective

indecomposable A-modules.

Proof. Let L∈M (A). By definition, L is projective over A. Assume that L is decomposable, L' X1
⊕

X2. Then,
we have a non-trivial idempotent L � X1 ↪→ L in EndA(L)' R. So, L must be indecomposable as A-module.
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The following lemma shows that M (A) behaves well with respect to ground ring change.

Lemma 1.5.20. [Rou08, Proof of Lemma 4.10] Let L be a finitely generated A-module. Let S be a commutative

Noetherian R-algebra. If L ∈M (A), then S⊗R L ∈M (S⊗R A). Moreover, the following are equivalent:

(i) L ∈M (A);

(ii) The localization Lm = Rm⊗R L ∈M (Am) for every maximal ideal m of R;

(iii) L is projective over R and L(m) ∈M (A(m)) for every maximal ideal m of R.

Proof. Since L ∈M (A), L is a projective A-module and an R-progenerator. This gives that S⊗R L is projective
over S⊗R A and R is a summand of a finite direct sum of copies of L. Thus, (S⊗R L)t ' S⊗R Lt ' S⊗R R⊕K '
S⊕S⊗K, for some K. Hence, S⊗R L is an S-progenerator.

Note that

S⊗R (L⊗R HomA(L,A))' S⊗S S⊗R (L⊗R HomA(L,A))' S⊗R L⊗S S⊗R HomA(L,A)

' S⊗R L⊗S HomS⊗RA(S⊗R L,S⊗R A).

Denote this isomorphism by α and its inverse by β . The following diagram is commutative:

S⊗R L⊗S HomS⊗RA(S⊗R L,S⊗R A) S⊗R A

S⊗R (L⊗R HomA(L,A))

τS⊗RL,S⊗RA

βα S⊗RτL,A
.

In fact,

τS⊗RL,S⊗RA ◦α(s⊗ l⊗g) = τS⊗RL,S⊗RA(s⊗ l⊗1S⊗g) = (1S⊗g)(s⊗ l) = s⊗g(l) = idS⊗RτL,A(s⊗ l⊗g).

Thus, τS⊗RL,S⊗RA is a composition of a split S-mono with an isomorphism, and so it is a split S-mono. By 1.5.15,
S⊗R L ∈M (S⊗R A).

Now assume i. ii follows putting S = Rm for each maximal ideal m of R. iii follows putting S = R(m) for
each maximal ideal m of R. Clearly, in this case, L is projective over R.

Now assume ii. Lm is faithful for any m maximal ideal of R. Hence, AnnLm = 0. Take r ∈ AnnL, then
s⊗ rs′⊗ l = ss′⊗ rl = ss′⊗0 = 0 for any s,s′ ∈ Rm, l ∈ L. This means that s⊗ r ∈AnnLm = 0. So, any element
in (AnnL)m = Rm⊗AnnL is zero. Thus, AnnL = 0, that is, L is faithful over R. As Lm is projective over Am for
any maximal ideal m of R, it follows that L is projective over A. Now, τLm,Am = (τL,A)m is Rm-mono, so τL,A is
R-mono. Rm is a flat R-module, hence (cokerτL,A)m = cokerτLm,Am which is projective over Rm. So, cokerτL,A

is projective over R. Therefore, τL,A is (A,R)-mono and i follows.
Finally, assume iii. Since L is projective over R and L(m) is projective over A(m), it follows that L is

projective over A. Consider the canonical map R→ EndA(L), given by r 7→ (l 7→ rl). Denote this map by
φ . Since L ∈ A-proj, we have EndA(L) is a projective R-module. By assumption, L(m) ∈M (A(m)) and by
Proposition 1.5.15, φ(m) is an isomorphism for every maximal ideal m in R. According to Lemma 1.1.39, φ is
R-isomorphism. In particular, L is faithful over R. Let D be the standard duality. According to Proposition 1.1.65,
we have isomorphisms k1 : HomR(L,DA⊗A L)→ D(D(DA⊗A L)⊗R L) and k2 : HomA(L,A)→ D(DA⊗A L).

Consider the right A-homomorphism ϑL : DA→HomR(L,DA⊗A L), given by, ϑ( f )(l) = f ⊗ l, f ∈DA, l ∈ L.
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There is a commutative diagram

DA HomR(L,DA⊗A L)

DA D(L⊗R HomA(L,A))

ϑL

D(Dk2⊗RL)◦k1

DτL,A

. (1.5.2.8)

In fact, for f ∈ DA,λ ∈ L and g ∈ HomA(L,A)

D(k2⊗R L)◦ k1 ◦ϑL( f )(l⊗g) = k1(ϑL(l))◦ k2⊗R L(l⊗g) = k1(ϑL( f ))(k2(g)⊗ l) = (1.5.2.9)

k2(g)(ϑL( f )(l)) = k2(g)( f ⊗ l) = f (g(l)) = f ◦ τL,A(l⊗g) = DτL,A( f )(l⊗g). (1.5.2.10)

By assumption, τL(m),A(m) is a monomorphism for every maximal ideal m in R. Denote by D(m) the standard
duality in R(m). Then, D(m)τL(m),A(m) is surjective for every maximal ideal in R. By the diagram (1.5.2.8), it
follows that ϑL(m) is surjective for every maximal ideal m in R. Using the following commutative diagram

DA(m) HomR(L,DA⊗A L)(m)

D(m)A(m) HomR(m)(L(m),D(m)A(m)⊗A(m) L(m))

ϑL(m)

' '
ϑL(m)

(1.5.2.11)

we deduce that ϑL(m) is surjective for every maximal ideal m in R. By Nakayama’s Lemma, ϑL is surjective.
By the commutativity of diagram (1.5.2.8), DτL,A is surjective. As L ∈ A-proj, D(L⊗R HomA(L,A)) ∈ R-proj.
Consequently, DτL,A is an (A,R)-epimorphism. Hence, DDτL,A is an (A,R)-monomorphism. Taking into account
that L⊗R HomA(L,A) and DA ∈ R-proj we conclude that τL,A is an (A,R)-monomorphism.

The following result completes Lemma 1.5.20 and it reduces the study of projective R-split A-modules to the
study of maximal standard modules over finite-dimensional algebras over algebraically closed fields.

Lemma 1.5.21. Let k be a field and let A be a finite-dimensional k-algebra. Assume that k is the algebraic

closure of k. Given L ∈ A-mod, if k⊗k L ∈M (k⊗k A) then L ∈M (A).

Proof. It is immediate that L is faithful over k. We will proceed to show that L is projective over A. To see this
observe that k is faithfully flat over k and

k⊗k Ext1A(L,N) = Ext1k⊗kA(k⊗k L,k⊗k N) = 0, ∀N ∈ A-mod . (1.5.2.12)

It remains to check that the map τL,A is injective. By assumption, τk⊗kL,k⊗kA is injective. Since k is faithfully flat
over k this implies that k⊗k τL,A is injective and consequently τL,A is injective. Therefore, L ∈M (A).

Proposition 1.5.22. [Rou08, Proposition 4.7] There is a bijection from M (A) to the set of isomorphism classes

of pairs (J,P) where J is a split heredity ideal of A and P is a progenerator for B := EndA(J)op such that

R ' EndEndA(J)op(P). Here the equivalence is given in the following way: (J,P) ∼ (J′,P′) if and only if J = J′

and P' P′ as B-modules. Explicitly,

α : M (A)−→ {isomorphism classes of pairs (J,P)}/∼ : L 7→ (imτL,HomR(HomA(L,A),R))

β : {isomorphism classes of pairs (J,P)}/∼ −→M (A) : (J,P) 7→ J⊗B P.

Proof. Let L ∈M (A). Let J = imτL and B = EndA(J)op. By assumption, τL is (A,R)-monomorphism, so J is
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an R-summand of A. Hence, A/J is an R-summand of A. Since L is projective A-module, by Lemma 1.5.13,
J2 = J. Notice that L⊗R HomA(L,A) ' imτL = J as left A-modules. Since L is faithful over R, it follows that
HomA(L,A) is faithful over R. Since L is an R-progenerator, R is a summand of Ls for some s > 0. Hence,
HomA(L,A)' R⊗R HomA(L,A) is an R-summand of Ls⊗R HomA(L,A)' Js. Hence, HomA(L,A) is projective
over R. As R is commutative, HomA(L,A) is a progenerator for R-mod. Now J ' L⊗R HomA(L,A) is projective
over A⊗R R' A. It remains to show that B is Morita equivalent to R.

By Tensor-Hom adjunction,

EndR(HomA(L,A))' HomR(HomA(L,A),HomA(L,A))' HomA(L⊗R HomA(L,A),A)' HomA(J,A).

Consider the exact sequence

0→ J→ A→ A/J→ 0. (1.5.2.13)

Applying HomA(J,−) to (1.5.2.13) yields

0→ EndA(J)→ HomA(J,A)→ HomA(J,A/J)→ 0.

Now since J(A/J) = 0 and J = J2, we get HomA(J,A/J) = 0 by Lemma 1.5.14. It follows that
Bop ' HomA(J,A) ' EndR(HomA(L,A)). On the other hand, HomA(L,A) is a progenerator of R-mod, so
the functor HomR(HomA(L,A),−) : R-mod → B-mod is an equivalence of categories. By Morita theorem,
P := HomR(HomA(L,A),R) is a progenerator for B-mod and R' EndB(P). Hence, α is well defined.

We claim now that L' imτL⊗B HomR(HomA(L,A),R) as A-modules.
By the Morita theorem for progenerators (see e.g. [Fai73, Proposition 12.10]), HomR(HomA(L,A),R) '

HomB(HomA(L,A),B) as (B,R)-bimodules. Note the action of A in imτL⊗B HomR(HomA(L,A),R) is the one
induced by A in L. Hence, as left A-modules,

imτL⊗B HomR(HomA(L,A),R)' L⊗R HomA(L,A)⊗B HomB(HomA(L,A),B)

' L⊗R HomB(HomA(L,A),HomA(L,A)), since HomA(L,A) ∈proj-B

' L⊗R R,since the double centralizer property holds on generators

' L.

Reciprocally, consider a pair (J,P) such that R ' EndB(P)op, where B = EndA(J)op. Let L = J⊗B P. J

is projective over A and P is projective over B, hence L is a projective A⊗B B ' A-module. Notice that for
M ∈ A-proj and M′ ∈C-proj there exists a canonical isomorphism

HomA(M,N)⊗R HomC(M′,N′)→ HomA⊗RC(M⊗R M′,N⊗R N′).

So,

EndA(L)' EndA⊗BB(J⊗B P)' EndA(J)⊗B EndB(P)' B⊗B EndB(P)' EndB(P)' R. (1.5.2.14)

Consequently, L is faithful over R.
Let i : J → A be the inclusion A-homomorphism. We can consider f ∈ HomB(B,HomA(J,A)) such that

f (1B) = i. Since P is a progenerator of B-mod, B is a summand of some direct sum of copies of P. So, we
can extend the map f to f ∈ HomB(Pt ,HomA(J,A)) such that there exists x ∈ Pt with f (x) = i. Consider the
canonical inclusions and projections k j : P→ Pt , π j : Pt → P. Define f j = f ◦ k j ∈ HomB(P,HomA(J,A)). We
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have i = f (x) = ∑ j f ◦ k j ◦π j(x) = ∑ j f ◦ k j(x j) = ∑ j f j(x j) for some x j ∈ P.
Consider the adjoint map HomB(P,HomA(J,A))→HomA(J⊗B P,A), which sends f ∈HomB(P,HomA(J,A))

to the map ((y⊗ x) 7→ f (x)(y)), and let g j be the image of f j in HomA(J⊗B P,A). Then, for any y ∈ J,

τL=J⊗BP(∑
j

y⊗ x j⊗g j) = ∑
j

τL(y⊗ x j⊗g j) = ∑
j

g j(y⊗ x j) = ∑
j

f j(x j)(y) = i(y) = y.

Therefore, J ⊂ imτL. Note that HomA(L,A/J) ' HomB(P,HomA(J,A/J)) = 0, by Tensor-Hom adjunction and
by Lemma 1.5.13. The functor HomA(L,−) yields the exact sequence 0 → HomA(L,J) → HomA(L,A) →
HomA(L,A/J) = 0. Thus, we get τL(L⊗R HomA(L,A)) = τL(L⊗R HomA(L,J))⊂ J. We conclude that imτL = J.
Since P is a left B-progenerator and EndB(P) ' R then HomB(P,B) ' HomR(P,R) as (R,B)-bimodules (see for
example Corollary 1.4.21). Now the functor HomA(J,−) yields the exact sequence

0→ B = HomA(J,J)→ HomA(J,A)→ HomA(J,A/J) = 0.

Hence, B' HomA(J,A) as left B-modules. Thus, as R-modules,

HomA(L,A)' HomB(P,HomA(J,A))' HomB(P,B)' HomR(P,R). (1.5.2.15)

Finally as A-modules,

J ' J⊗B B' J⊗B EndR(P)' J⊗B P⊗R HomR(P,R)' J⊗B P⊗R HomA(L,A)' L⊗R HomA(L,A).

We conclude that the map τL : L⊗R HomA(L,A)→ J is surjective between two isomorphic finitely generated A-
modules. By Nakayama’s Lemma, τL : L ⊗R HomA(L,A) → J is an isomorphism. In particular,
τL : L⊗R HomA(L,A)→ A is injective. Now since A/J is projective over R, the exact sequence 0→ J→ A→
A/J→ 0 splits over R. Hence, τL is an (A,R)-monomorphism, so L ∈M (A). Thus, β is well defined.

We claim that α ◦β (J,P) = (J,P).
In fact, α ◦β (J,P) = α(J⊗B P) = (imτJ⊗BP,HomR(HomA(J⊗B P,A),R)) = (J,HomR(HomA(J⊗B P,A),R)).

Since L = J⊗B P ∈M (A) by the first direction we can regard HomA(L,A) as a right B-module. Recall that the
functors HomB(P,−) and HomR(HomB(P,B),−) form an equivalence. Hence, we obtain as left B-modules,

HomR(HomA(L,A),R)' HomR(HomR(P,R),R)' HomR(HomB(P,B),HomB(P,P)) (1.5.2.16)

' HomR(HomB(P,B),HomB(P,−))P' P. (1.5.2.17)

So, the claim follows.
We have shown also that for any L ∈M (A),

β ◦α(L) = β (imτL,HomR(HomA(L,A),R)) = imτL⊗EndA(imτL)op HomR(HomA(L,A),R)' L

as A-modules. Hence, β ◦α = id. Thus, α and β are bijections.

Corollary 1.5.23. [Rou08, Lemma 4.10] For any L ∈M (A), the canonical functor A/imτL-mod→ A-mod in-

duces an equivalence between A/imτL-mod and the full subcategory of A-mod whose objects M satisfy

HomA(L,A) = 0.

Proof. For any L ∈M (A), let J = imτL. J is ideal and J = J2. Hence, by Lemma 1.5.13, for M ∈ A-mod,
M ∈ A/J-mod if and only if HomA(J,M) = 0.

But L' J⊗B P for some progenerator P of B by Proposition 1.5.22. By Tensor-Hom adjunction, HomA(L,M)'
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HomB(P,HomA(J,M)).
We claim that HomA(L,M)' HomB(P,HomA(J,M)) = 0 if and only if HomA(J,M) = 0
Assume that HomA(J,M) = 0, then it is clear that HomA(L,M)' HomB(P,HomA(J,M)) = 0. Reciprocally,

assume that HomA(L,M) ' HomB(P,HomA(J,M)) = 0. If HomA(J,M) 6= 0, then there exists a non-zero B-
epimorphism Pt → HomA(J,M). This would imply that HomB(P,HomA(J,M)) 6= 0. The result follows.

Definition 1.5.24. A full subcategory A of an abelian category B is called Serre subcategory if for any exact
sequence in B

0→ X →M→ Y → 0

M ∈A if and only if X ,Y ∈A .

Hence, a Serre subcategory is a subcategory closed under extensions, submodules and quotients.

Corollary 1.5.25. For any L ∈M (A), let J = imτL. Then, A/J-mod is a Serre subcategory of A-mod.

Proof. Let 0→ X →M→ Y → 0 be an exact sequence of A-modules. Applying the functor HomA(L,−) yields

0→ HomA(L,X)→ HomA(L,M)→ HomA(L,Y )→ 0.

Thus, HomA(L,M)= 0 if and only if HomA(L,X)=HomA(L,Y )= 0. By Corollary 1.5.23, the result follows.

1.5.2.1 Picard Group and invertible modules

To write this bijection in terms of split heredity ideals instead of pairs (J,P) we need the notion of invertible
module. The theory of invertible modules can be studied with more detail, for example, in [Fai73].

Definition 1.5.26. Let R be a commutative ring.
A module M is called invertible if the functor M⊗R− : R-mod→ R-mod is an equivalence of categories.

Proposition 1.5.27. Let R be a commutative Noetherian ring. Let M be a finitely generated R-module. The

following assertions are equivalent.

(a) M is invertible;

(b) There exists an R-module N such that M⊗R N ' R;

(c) Mp ' Rp for all prime ideals p of R;

(d) Mm ' Rm for all maximal ideals m of R.

Proof. Assume that (a) holds. Since M⊗R− is an equivalence of categories its adjoint HomR(M,−) is also an
equivalence of categories. Moreover, R'M⊗R HomR(M,−)R = M⊗R HomR(M,R). Define N := HomR(M,R).
So, (b) follows. Since M⊗R− is an equivalence of categories it preserves projective modules. In particular, R is
projective, so M 'M⊗R R is projective over R. In the same way, N is projective. So, for every prime ideal p of
R, Mp and Np are free over Rp, since Rp is local. Assume Mp ' Rn

p and Np ' Rs
p. So,

Rp ' (M⊗R N)p 'Mp⊗Rp Np ' Rn
p⊗Rp Rs

p ' Rns
p (1.5.2.18)
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So, we must have ns = 1, that is n = s = 1. Hence, Mp ' Rp for every prime ideal p of R. Thus, c) follows.
c) =⇒ d) is clear. Assume d). Consider the map σ : M⊗R HomR(M,R)→ R, m⊗ f 7→ f (m). Note that Mm is
projective over Rm for all maximal ideals m, hence M is projective. We have

(M⊗R HomR(M,R))m 'Mm⊗Rm HomRm(Mm,Rm)' Rm⊗Rm HomRm(Rm,Rm)' Rm. (1.5.2.19)

Hence, σm is an isomorphism for all maximal ideals m of R. So, σ is an isomorphism. So b) follows. Now
assume that (b) holds. Suppose that M⊗R N ' R. Then, the functors F = −⊗R M and G = N⊗R− are quasi-
inverse. In fact,

FGX = (X⊗R N)' X⊗R R' X

GFX = N⊗R (X⊗R M)' X⊗R R' X .

So, a) follows.

Note that for L,L′ invertible R-modules, exists N,N′ such that L⊗R N ' R and L′⊗R N′ ' R. So,

L⊗R L′⊗N⊗N′ ' L⊗R N⊗R L′⊗R N′ ' R⊗R R' R.

Hence, L⊗R L′ is invertible. The isomorphism classes of invertible R-modules together with the tensor product
form a group. This group is called the Picard group of the ring R. We denote it by Pic(R). The unit is the
equivalence class of the regular module R and the inverse of M is HomR(M,R).

Example 1.5.28. The Picard group of a field is trivial.
Since R is a field, 0 is the only maximal ideal of R. But R0 = (R\0)R = R. Let M ∈ Pic(R). It follows that

M 'M0 ' R0 ' R. 4

Example 1.5.29. The Picard group of a local ring is trivial.
Let M ∈ Pic(R). Then, Mm ' Rm for the maximal ideal m of R, hence M is projective. Since R is local, M is

free, hence M ' Rn for some n. On the other hand, Mm ' Rn
m for the maximal ideal m. Therefore, we must have

n = 1, so M is isomorphic to R. 4

Now we can see that the Picard group Pic(R) acts on M (A).

Lemma 1.5.30. Let F ∈ Pic(R), L ∈M (A). Then, L⊗R F ∈M (A). Moreover, this gives an action of Pic(R)

on M (A).

Proof. Let F ∈ Pic(R), L ∈M (A). By Lemma 1.5.20, Lm ∈M (Am) for each maximal ideal m of R. Note that
for each maximal ideal m of R

(L⊗R F)m ' Lm⊗Rm Fm ' Lm⊗Rm Rm ' Lm ∈M (Am).

Again, by Lemma 1.5.20, L⊗R F ∈M (A). Since R⊗R L' L and (F1⊗R F2)⊗R L' F1⊗R (F2⊗R L), the second
claim follows.

Note that two elements in L,L′ ∈M (A) are in the same orbit if and only if there exists F ∈ Pic(R) such that
L′ ' L⊗R F as A-modules. We denote by M (A)/Pic(R) the set of orbits of M (A) under the action of Pic(R).
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Proposition 1.5.31. There is a bijection from M (A)/Pic(R) to the set of split heredity ideals of A. More pre-

cisely,

δ : M (A)/Pic(R)→{split heredity ideals of A}, L 7→ imτL

ϑ : {split heredity ideals of A}→M (A)/Pic(R), J 7→ J⊗B P

where B = EndA(J)op and P an arbitrary B-progenerator that satisfies EndB(P)op ' R.

Proof. Consider L and L⊗R F , F ∈ Pic(R). For every maximal ideal m of R,

(L⊗R F⊗R HomA(L⊗R F,A))m ' Lm⊗Rm Fm⊗Rm HomAm(Lm⊗Rm Fm,Am)

' Lm⊗Rm Rm⊗Rm HomAm(Lm⊗Rm Rm,Am)' Lm⊗Rm HomAm(Lm,Am)' (L⊗R HomA(L,A))m

Hence, τL⊗RFm = τLm for every maximal ideal m of R. Therefore, (imτL⊗RF)m ' (imτL)m for every maximal
ideal m of R. Since (imτL⊗RF),imτL ⊂ A it follows that imτL⊗RF = imτL. So, δ is well defined.

Now we have to see that the image of ϑ is independent of the choice of P. Consider P and Q are B-
progenerators such that EndB(P)op ' R and EndB(Q)op ' R. Then,

P⊗B HomB(P,B)' R as R-modules and (1.5.2.20)

Q⊗B HomB(Q,B)' R as R-modules. (1.5.2.21)

Fix P′ = HomB(P,B) and Q′ = HomB(Q,B). By double centralizer property on generators, Q′⊗R Q ' B and
P′⊗R P' B as (B,B)-bimodules. It follows as left A-modules,

J⊗B P' J⊗B (B⊗B P)' J⊗B (Q′⊗R Q)⊗B P' (J⊗B Q)⊗R (Q′⊗B P) (1.5.2.22)

Now Q′⊗B P ∈ Pic(R). In fact,

(Q′⊗B P)⊗R (P′⊗B Q)' Q′⊗B (P⊗R P′)⊗B Q' Q′⊗B B⊗B Q' Q′⊗B Q' R.

Hence, J⊗B P = J⊗B Q in M (A). Therefore, ϑ is well defined. Recall the maps α and β from Proposition
1.5.22. Notice that δ is the projection onto the first coordinate of the map α . Denote this projection by π . On the
other hand, ϑ(J) = β (J,P) for some B-progenerator P.

Therefore, ϑ ◦δ (L) =ϑ(imτL) = β (imτL,HomR(HomA(L,A),R)) = β ◦α(L) = L for any L∈M (A)/Pic(R)

and δ ◦ϑ(J) = δ ◦ β (J,P) = π ◦α ◦ β (J,P) = π(J,P) = J for any split heredity J. Thus, both ϑ and δ are
bijections.

1.5.3 Split highest weight category over a commutative Noetherian ring

Definition 1.5.32. Let R be a Noetherian commutative ring. Let A be a projective Noetherian R-algebra. Let
Λ be a finite preordered set. We say that (A-mod,Λ) is a highest weight category in weak sense if there exist
finitely generated modules {∆(λ ) : λ ∈ Λ} such that

(i) ∆(λ ) is a projective R-module;

(ii) If HomA(∆(λ
′),∆(λ ′′)) 6= 0, then λ ′ ≤ λ ′′.

(iii) If N ∈ A-mod is such that HomA(∆(λ ),N) = 0 for all λ ∈ Λ, then N = 0.
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(iv) For each λ ∈ Λ, there exists a projective A-module P(λ ) such that there is an exact sequence

0→C(λ )→ P(λ )
πλ−→ ∆(λ )→ 0,

where C(λ ) has a finite filtration by modules of the form ∆(µ)⊗R Uµ with Uµ ∈ R-proj and µ > λ .

A highest weight category in weak sense (A-mod,Λ) is split if it also satisfies

(v) EndA(∆(λ ))' R for all λ ∈ Λ.

We say also that (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category. For simplicity, occasionally we just
write ∆ to mean the set {∆(λ ) : λ ∈ Λ}.

It is important to remark that the set of pairs {(P(λ ),∆(λ ) : λ ∈ Λ} satisfying conditions 1.5.32(i)− (iv) do
not form a standard system in the usual sense. Moreover, there exist highest weight categories in weak sense
whose standard modules are not Schurian (see example 1.5.89). In the classical sense, a prerequisite for a pair
(A-mod,Λ) to be a highest weight category is the objects ∆ being Schurian. Hence, this motivates to not call
A-mod together with conditions 1.5.32(i)− (iv) a highest weight category. In addition, even if R is a field,
conditions 1.5.32(i)− (iv) do not impose that P(λ ) are projective indecomposable. On the other hand, this
justification could lead us to think that perhaps conditions 1.5.32(i)− (iv) are related to a standardly stratified
structure. However, this is again not the case, since we could consider the modules in Example 1.5.89 over the
ring Z and define a new structure with ∆′(1) = ∆(1)⊕∆(1)⊕∆(1) and ∆′(2) = ∆(2)⊕∆(2)⊕∆(2). This new
structure on A implies that the regular module does not have a filtration by standard modules ∆(i), i = 1,2. (If
A had a filtration by standard modules, we could consider a surjective map of A to one of ∆′. As they have the
same rank over Z, such a map should be an isomorphism.). However, it satisfies conditions 1.5.32(i)− (iv).

First, we would like to see how in this definition the multiplicities of the standard modules relate to the
respective projective modules.

Proposition 1.5.33. Let (A-mod,{∆(λ )λ∈Λ}) be a highest weight category in weak sense. Then, for any λ ∈ Λ,

HomA(P(λ ),∆(λ ))' EndA(∆(λ )).

Proof. Consider h ∈ EndA(∆(λ )). By 1.5.32(iv), we have a surjective map P(λ )
πλ−→ ∆(λ ), hence we have a map

P(λ )
πλ−→ ∆(λ )

h−→ ∆(λ ) ∈ HomA(P(λ ),∆(λ )). Take a map g ∈ HomA(P(λ ),∆(λ )).
Consider the following commutative diagram,

0 C(λ ) P(λ ) ∆(λ ) 0

∆(λ )

i

g◦i

πλ

g .

Assume g◦ i 6= 0. Since C(λ ) has a finite filtration into modules of the form ∆⊗R X , X ∈ R-proj, there exists ∆(µ)

with µ > λ such that
HomA(∆(µ),∆(λ )) 6= 0. By 1.5.32(ii) we get that µ ≤ λ , which contradicts µ > λ . Hence, g◦ i= 0. So, g induces
uniquely a map g′ ∈ EndA(∆(λ )) such that g′ ◦πλ = g. Notice that (h◦πλ )

′ satisfies (h◦πλ )
′ ◦πλ = h◦πλ . Since

πλ is an epimorphism, we get (h◦πλ )
′ = h. It follows that HomA(P(λ ),∆(λ ))' EndA(∆(λ )) as R-modules.

Proposition 1.5.34. Let (A-mod,{∆(λ )λ∈Λ}) be a highest weight category in weak sense. If P(µ) is an A-

summand of P(λ ), then λ ≤ µ .

Proof. Consider the following commutative diagram
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0 C(λ ) P(λ ) ∆(λ ) 0

P(µ)

∆(µ)

πλ

πµ

.

If the map C(λ )→ ∆(µ) is non-zero, then exists some module ∆(l) factor of C(λ ), hence l > λ such that
HomA(∆(l),∆(µ)) 6= 0. By 1.5.32(ii), we get l ≤ µ , which implies λ < l ≤ µ .

If the map C(λ )→ ∆(µ) is zero, then there exists a non-zero A-homomorphism h : ∆(λ )→ ∆(µ) which
makes the diagram commutative. By 1.5.32(ii), λ ≤ µ .

Lemma 1.5.35. Let (A-mod,{∆(λ )λ∈Λ}) be a highest weight category in weak sense. If HomA(P(µ),∆(λ )) 6= 0,

then µ ≤ λ .

Proof. Let 0 6= φ ∈ HomA(P(µ),∆(λ )). Denote by i the inclusion C(µ) ↪→ P(µ). If φ ◦ i = 0, then φ induces a
non-zero map in HomA(∆(µ),∆(λ )). By 1.5.32(ii), µ ≤ λ . If φ ◦ i 6= 0 then exists by 1.5.32(iv) l > µ such that
HomA(∆(l),∆(λ )) 6= 0. By 1.5.32(ii), l ≤ λ . So, the result follows.

Our goal now is to show that when R is a field and R is a splitting field for A then split highest weight category
is the classical notion of highest weight category.

Remark 1.5.36. Let R be a field. Condition 1.5.32(iii) ensures that each simple module appears as a top of
a standard module. Denote by radA the Jacobson radical of A and S a simple A-module. Since S is simple,
either radAS = 0 or radAS = S. By Nakayama’s Lemma, if radAS = S, then S = 0. Thus, radAS = 0 and hence
topS = S. If HomA(∆(λ ),S) 6= 0, then top∆(λ )→ topS = S is surjective. In other words, S would appear as a
summand of top∆(λ ). Therefore, if S never occurs as a summand of top∆(λ ) for some λ , it would follow that
HomA(∆(λ ),S) = 0 for every λ . So, 1.5.32(iii) would have implied S = 0. 4

Lemma 1.5.37. Let R be a field. Let (A-mod,{∆(λ )λ∈Λ}) be a highest weight category in weak sense over R. If

HomA(P(µ), rad∆(λ )) 6= 0, then µ ≤ λ . Furthermore, if additionally dimR HomA(P(λ ),∆(λ )) = 1, then µ < λ .

Proof. Let h ∈ HomA(P(µ), rad∆(λ )). Denote by i the inclusion rad∆(λ ) ↪→ ∆(λ ). Applying Lemma 1.5.35
with i ◦ h 6= 0 it follows that µ ≤ λ . Now consider additionally that dimR HomA(P(λ ),∆(λ )) = 1. If µ = λ ,
then i ◦ h = απλ for some α ∈ R. Thus, i ◦ h is surjective. Consequently, i is an isomorphism. By Nakayama’s
Lemma, we get a contradiction. Hence, the result follows.

Lemma 1.5.38. Let R be a field. Let (A-mod,{∆(λ )λ∈Λ}) be a highest weight category in weak sense over R.

Let λ ∈ Λ. If dimR HomA(P(λ ),∆(λ )) = 1, then top∆(λ ) is simple. Moreover, ∆(λ ) is indecomposable.

Proof. If topP(λ ) is simple, then there is nothing to prove. Assume that topP(λ ) is not simple. Choose S a
simple module summand of top∆(λ ) which is a summand of topP(λ ). Denote by P the projective cover of S.
Hence, P is an indecomposable summand of P(λ ). And so, the canonical map P→ topP(λ ) factoring through S

is non-zero. We have a commutative diagram

S = topP topP(λ ) top∆(λ )

P ∆(λ )
∃ f 6=0
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Note that the existence of such non-zero map f is due to P being projective and the upper row being a monomor-
phism. Since dimR HomA(P(λ ),∆(λ )) = 1, there exists α ∈ R such that f ◦ π = απλ , where π denotes the
projection P(λ )� P and i denotes the inclusion P ↪→ P(λ ). If α = 0, then f = f ◦π ◦ i would be zero. Since
R is a field, α id∆(λ ) is an isomorphism. Hence, f is surjective. By the commutativity of the diagram, the map
S ↪→ topP(λ )→ top∆(λ ) is surjective. Since S is simple, it is an isomorphism. Therefore, P is the projective
cover of ∆(λ ) and ∆(λ ) is indecomposable.

We see immediately that even for split quasi-hereditary algebras over fields the conditions in Definition 1.5.32
are not enough to enforce the projectives P(λ ) to be indecomposable. For example, we can consider a semi-
simple algebra with two simple modules say S1 and S2 over an algebraically closed field. Fixing P(1) = S1⊕S2

and P(2) = S2 with ∆(1) = S1 together with the usual order we see that all conditions of Definition 1.5.32 are
satisfied. However, P(1) is not indecomposable. As we will see next, for split quasi-hereditary algebras over
fields we can replace the projectives P(λ ) with the projective covers of the standard modules.

Proposition 1.5.39. (See also [Ari08, Lemma 4.31]). Let R be a splitting field for A. Then, (A-mod,{∆(λ )λ∈Λ})
is a split highest weight category according to Definition 1.5.32 if and only if there is a correspondence between

the poset Λ and the isomorphism classes of simple A-modules which we denote by S(λ ) = top∆(λ ), and for all

λ ∈ Λ, ∆(λ ) satisfies

(I) There is an exact sequence 0→ K(λ )→ ∆(λ )→ S(λ )→ 0 and the composition factors of K(λ ), S(µ),

satisfy µ < λ .

(II) There is an exact sequence 0→ C(λ )→ Pc(λ )→ ∆(λ )→ 0 and C(λ ) is filtered by modules ∆(µ) with

µ > λ ,

where Pc(λ ) denotes the projective cover of ∆(λ ).

Proof. Let (A-mod,{∆(λ )λ∈Λ}) be a highest weight category in the classical sense, that is, satisfying (I) and
(II). Let Λ be the set of isomorphism classes of simple A-modules. (i) is trivially checked since R is a field. By
(I) and Lemma 1.5.33, condition 1.5.32(v) holds. Condition 1.5.32(ii) is also satisfied since every non-zero map
between standard modules ∆(µ) and ∆(λ ) can be extended to a non-zero map between the projective cover of
∆(µ) and ∆(λ ). Consequently, such a case would lead to the multiplicity of S(µ) in ∆(λ ) being positive. By
(I), this occurs only if µ ≤ λ . Define Pc(λ ) to be the projective cover of S(λ ). By axiom (II) of highest weight
categories it follows that 1.5.32(iv) is satisfied. Assume that N ∈ A-mod such that HomA(∆(λ ),N) = 0 for all
λ ∈ Λ. If N 6= 0, then socN 6= 0. Let S(λ )⊂ socN. By axiom (I), there exists an exact sequence

0 K(λ ) ∆(λ ) S(λ ) 0

N

6=0

This contradicts our assumption that HomA(∆(λ ),N) = 0. So, N = 0 and 1.5.32(iii) holds. So, (A,{∆(λ )λ∈Λ})
is a split highest weight category.

Conversely, assume that (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category. Since

dimR HomA(P(λ ),∆(λ )) = dimR EndA(∆(λ )) = 1

all standard modules have a simple top. It can be seen that the category of objects admitting a filtration by
standard modules is closed under direct summands for example by using trace filtrations (see [DK94, A.2]).
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Hence, Pc(λ ) satisfies (II). Alternatively, one can also apply Proposition 1.5.48 to see that Pc(λ ) satisfies (II).
By Remark 1.5.36, |Λ| is greater than or equal to the number of classes of non-isomorphic simple A-modules.
Assume that there exist λ and µ such that ∆(λ ) and ∆(µ) have the same projective cover. By Proposition 1.5.34
now using Pc instead of P we deduce that λ = µ . Hence, |Λ| is equal to the number of non-isomorphic simple
A-modules. Now [∆(λ ) : S(λ )] = dimR HomA(Pc(λ ),∆(λ )) = 1. By Lemma 1.5.37, if [rad∆(λ ) : S(µ)] 6= 0,
then µ < λ . So, axiom (I) holds.

In addition to the last result, we can observe the following.

Lemma 1.5.40. Let R be a field and let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category over R. Denote

by P(λ ) the projective cover of ∆(λ ), λ ∈ Λ. Then, EndA(topP(λ ))' R.

Proof. Fix S(λ ) = topP(λ ). Let g ∈ EndA(S(λ )). Denote by πλ and γλ the surjective maps P(λ )→ ∆(λ ) ,
∆(λ )→ S(λ ), respectively. Since P(λ ) is projective, there is a map sg ∈ HomA(P(λ ),S(λ )) satisfying γλ ◦ sg =

g◦ γλ ◦πλ . According to Proposition 1.5.33, there is a map hg ∈ EndA(∆(λ )) such that hg ◦πλ = sg. Hence, we
have the following diagram

P(λ ) ∆(λ ) S(λ )

∆(λ ) S(λ )

πλ

sg

γλ

hg g

γλ

Note that γλ ◦hg ◦πλ = γλ ◦ sg = g◦ γλ ◦πλ . Here, πλ is an epimorphism. Consequently, the diagram is commu-
tative. Because of EndA(∆(λ ))' R, we have hg = rg id∆(λ ) for some rg ∈ R. Thus, rg idS(λ ) γλ = γλ ◦ rg id∆(λ ) =

g◦ γλ . As γλ is an epimorphism, it follows that g = rg idS(λ ).

We shall go back to the general case. Condition (iii) in the definition of split highest weight category 1.5.32
can be stated in terms of the projective modules P(λ ). In fact, as we will see next, 1.5.32(iii) occurs if and only
if the direct sum of all P(λ ) constructed in condition 1.5.32(iv) is a progenerator of A-mod.

Proposition 1.5.41. Let A be a projective Noetherian R-algebra and Λ a poset. Assume that, for each λ ∈ Λ,

there are finitely generated A-modules ∆(λ ) and projective A-modules P(λ ) together with an exact sequence

0→C(λ )→ P(λ )→ ∆(λ )→ 0 (1.5.3.1)

where C(λ ) has a finite filtration by modules of the form ∆(µ)⊗R Uµ , Uµ ∈ R-proj, satisfying µ > λ . Suppose

that P =
⊕

λ∈Λ

P(λ ) is a progenerator of A-mod.

If HomA(∆(λ ),N) = 0 for all λ ∈ Λ, then N = 0.

Proof. First, notice that if n 6= 0, then exists an epimorphism Pt � N for some t > 0. In particular, HomA(P,N) 6=
0 for N 6= 0. Assume HomA(∆(λ ),N) = 0, ∀λ ∈ Λ. Consider 0 6= g ∈ HomA(P,N). Fix C =

⊕
λ∈Λ

C(λ ). C has a

finite filtration by modules of the form ∆(µ)⊗R Uµ , µ ∈ Λ. Fix ∆ =
⊕

λ∈Λ

∆(λ ). We have a commutative diagram,

0 C P ∆ 0

N

k

g◦k

π

g

If g◦ k = 0, then g induces a non-zero map ∆ ' P/C→ N, which is a contradiction. Therefore, g◦ k 6= 0. Using
induction on the filtration of C, by the same reasoning we will obtain eventually a non-zero map ∆(λ )→ N,
which is a contradiction. Hence, HomA(P,N) = 0 and thus, N = 0.

111



1.5. Split quasi-hereditary algebras

Proposition 1.5.42. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category over R. Let P =
⊕

λ∈Λ

P(λ ). Then,

P is a progenerator for A-mod.

Proof. It is enough to show that there exists an epimorphism Pt → A for some t > 0. First notice that, for any
λ ∈ Λ, HomA(P(λ ),A) is finitely generated over R because R is Noetherian (see Lemma 1.1.5).

Choose a set of generators { f λ
1 , · · · , f λ

tλ } for HomA(P(λ ),A). Then, consider the map

h =
⊕
λ∈Λ

tλ⊕
j=1

f λ
j :

⊕
λ∈Λ

tλ⊕
j=1

f λ
j P(λ )→ A.

Consider X = cokerh, with A π−→ X . Hence, π ◦ h = 0. In particular, π ◦ f λ
j = 0, ∀λ ∈ Λ, ∀ j = 1, . . . , tλ . Now

if X 6= 0, then by 1.5.32(iii) we get that exists some non-zero map in HomA(∆(λ ),X), λ ∈ Λ. Hence, there is a
non-zero map in HomA(P(λ ),X),λ ∈ Λ, say g. We have a commutative diagram,⊕

λ∈Λ

⊕tλ
j=1 f λ

j P(λ ) A X 0

P(λ )

h π

∃s
g

The existence of the map s is due to P(λ ) being projective. Thus, π ◦ s = g 6= 0. Since s ∈ HomA(P(λ ),A) we
can write

s =
tλ

∑
j=1

α j f λ
j for some α j ∈ R.

But,

π ◦ s = π ◦

(
tλ

∑
j=1

α j f λ
j

)
=

tλ

∑
j=1

α j π ◦ f λ
j︸ ︷︷ ︸

=0

= 0.

So, we obtained a contradiction. Therefore, X = 0, and thus h is an epimorphism. We can extend h canonically
to a direct sum of copies of P, hence the result follows.

Combining Propositions 1.5.42 and 1.5.41 we obtain the following.

Corollary 1.5.43. (A-mod,{∆(λ )λ∈Λ}) is split highest weight category if and only if the following conditions

are satisfied:

(a) The modules ∆(λ ) ∈ A-mod are projective over R.

(b) Given λ ,µ ∈ Λ, if HomA(∆(λ ),∆(µ)) 6= 0, then λ ≤ µ .

(c) EndA(∆(λ ))' R, ∀λ ∈ Λ.

(d) Given λ ∈ Λ, there is P(λ ) ∈ A-proj and an exact sequence 0→ C(λ )→ P(λ )→ ∆(λ )→ 0 such that

C(λ ) has a finite filtration by modules of the form ∆(µ)⊗R Uµ with Uµ ∈ R-proj and µ > λ .

(e) P =
⊕

λ∈Λ

P(λ ) is a progenerator for A-mod.

1.5.4 Filtrations in split highest weight categories

The following lemmas are very useful to construct filtrations, as we will see later.
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Lemma 1.5.44. Let F be a free R-module of finite rank and let L,Q ∈ A-mod with EndA(L) ' R. Let f : F →
Ext1A(Q,L) be surjective. There is an isomorphism HomR(F,Ext1A(Q,L))→ Ext1A(Q,L⊗R DF). Then, the image

of f in Ext1A(Q,L⊗R DF)

0→ L⊗R DF → X → Q→ 0

satisfies Ext1A(X ,L) = 0.

Proof. Note first that there is such isomorphism. Let Q• be a projective A-resolution for Q. Then,

HomR(F,Ext1A(Q,L)) = HomR(F,H1(HomA(Q•,L)))

' H1(HomR(F,HomA(Q•,L))), since HomR(F,−) is exact

' H1(HomR(F,R)⊗R HomA(Q•,L)), since F ∈ R-proj

' H1(HomA(Q•,L⊗R DF)) = Ext1A(Q,L⊗R DF),since Q•is a projective chain.

Now we need to know how to obtain explicitly the image of f . Consider F =Rn, and {ei,1≤ i≤ n} a basis. Then,
{ f (ei) : 0→ L→ Xi→ Q→ 0 | 1≤ i≤ n} is an R-generator set for Ext1A(Q,L). Note that the previous
isomorphism can be viewed as

HomR(F,Ext1A(Q,L))→ Ext1A(Q,L)n→ Ext1A(Q,Ln)→ Ext1A(Q,HomR(F,L)).

Consider a projective presentation for Q, 0→N k−→M π−→Q→ 0. Apply the functors HomA(−,L) and HomA(−,Ln).
We obtain a commutative diagram

HomA(N,L)n Ext1A(Q,L)n 0

HomA(N,Ln) Ext1A(Q,Ln) 0

∂ n

' '

∂n

.

For every i, since ∂ is surjective there exists a map si ∈ HomA(N,L) such that ∂ (si) = f (ei). This map relates
with f (ei) by the following pushout diagram:

0 N M Q 0

0 L Xi Q 0

pushout(si,k)

k

si

π

pi
.

This description of the map ∂ can be found with more detail in any book of homological algebra (see e.g [HS97,
Theorem 2.4]).

Now the image of f in Ext1A(Q,Ln) is just ∂n(s1, . . . ,sn). Hence, it is given by the following diagram

0 N M Q 0

0 Ln X Q 0

pushout((s1,...,sn),k)

k

(s1,...,sn)

π

p

g . (1.5.4.1)
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Now applying HomA(−,L) to the bottom row of (1.5.4.1) yields

HomA(Ln,L) ∂ ′−→ Ext1A(Q,L)→ Ext1A(X ,L) (1.5.4.2)

Note that HomA(Ln,L)' HomA(L,L)n ' Rn = F . Denote this isomorphism by h : F → HomA(Ln,L). We claim
that f = ∂ ′ ◦h.

Consider π j : Ln→ L the canonical epimorphism. ∂ ′(π j) is given by

0 Ln X Q 0

0 L Yj Q 0

pushout(π j ,g)

g

π j

.

Now consider the diagram

0 N M Q 0

0 Ln X Q 0

0 L Yj Q 0

k

(s1,...,sn)

s j

π

p
g

π j

.

So, the external diagram is a pushout as well. In fact, Yj is the pushout of (s j,k). By the universal property
of pushouts, it follows that the exact sequences 0→ L→ Yi→ Q→ 0 and 0→ L→ Xi→ Q→ 0 are equivalent.
Therefore, ∂ ′(π j) = f (e j). So, the claim follows, and hence, ∂ ′ is surjective. By the exactness of (1.5.4.2), it
follows that Ext1A(X ,L) = 0.

Lemma 1.5.45. Let F be a free R-module and let L,T ∈ A-mod with EndA(L) ' R. Let g : F → Ext1A(L,T )
be surjective. There is an isomorphism HomR(F,Ext1A(L,T )) → Ext1A(L⊗R F,T ). Then, the image of f in

Ext1A(L⊗R F,T )

0→ T → Y → L⊗R F → 0

satisfies Ext1A(L,Y ) = 0.

Proof. The proof is the dual version of the previous one. For the sake of completeness, we will write a proof.
The isomorphism exists: Let T • be an injective resolution for T .

HomR(F,Ext1A(L,T )) = HomR(F,H1(HomA(L,T •)))' H1(HomR(F,HomA(L,T •)))

' H1(HomA(F⊗R L,T •)), by Tensor-Hom adjunction

' Ext1A(F⊗R L,T ).

Consider F = Rn, and let {ei,1≤ i≤ n} be a basis. Then,

{0→ T → Yi→ L→ 0|1≤ i≤ n} .
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is an R-generator set for Ext1A(L,T ). Consider an injective presentation for T

0→ T k−→M π−→ Q→ 0. (1.5.4.3)

Applying HomA(L,−)n and HomA(Ln,−) yields the commutative diagram

HomA(L,Q)n Ext1A(L,T )
n 0

HomA(Ln,Q) Ext1A(L
n,T ) 0

∂ n

' '

∂n

.

For every i, since ∂ is surjective there exists a map si ∈ HomA(L,Q) such that ∂ (si) = g(ei),

0 T M Q 0

0 T Yi L 0

pullback(si,π)

k π

si
.

Now the image of g in Ext1A(L
n,T ) is just ∂n(s1, . . . ,sn). Hence, it is given by the following diagram

0 T M Q 0

0 T Y Ln 0

pullback((s1,...,sn),π)

k π

h

(s1,...,sn) .

Now applying HomA(L,−) to the image of g yields

HomA(L,Ln)
∂ ′−→ Ext1A(L,T )→ Ext1A(L,Y ). (1.5.4.4)

Let w denote the canonical isomorphism w : F → HomA(L,Ln). Now computing ∂ ′(k j) for the canonical
monomorphisms k j : L→ Ln and comparing with the pullback diagram that gives the image g, it follows again
that the induced external diagram is again a pullback. By the universal property of pullbacks, it follows that
g = ∂ ′ ◦w. So, we conclude by the exactness of (1.5.4.4) that Ext1A(L,Y ) = 0.

Our arguments used here in these two lemmas are valid in general abelian R-categories with enough pro-
jectives/injectives, respectively. Therefore, the results also hold for general abelian R-categories with enough
projectives/injectives respectively. This remark will be useful in the construction of Dlab-Ringel standardization
(see Subsection 1.5.9).

Let L ∈M (A). Now we are ready to relate A-proj with A/J-proj for J = imτL.

Lemma 1.5.46. [Rou08, Lemma 4.9] Let L ∈M (A) and let J = imτL.

(a) Given P ∈ A-proj, then imτL,P = JP and P/JP ∈ A/J-proj.

(b) Let Q ∈ A/J-proj. Let F be a free R-module and f : F → Ext1A(Q,L) surjective.

Let 0→ L⊗R DF
g−→ P h−→Q→ 0 be the extension in Ext1A(Q,L⊗R DF) corresponding to f via the isomor-

phism HomR(F,Ext1A(Q,L))→ Ext1A(Q,L⊗R DF). Then, P ∈ A-proj.
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Proof. Consider P = A. Then, imτL,A = imτL = J = JA and P/JP = A/JA = A/J which is clearly in A/J-proj.
Put P = As,s > 0. Then, imτL,P = (imτL)

⊕s = J⊕s = JP. Now P/JP = A⊕s/J⊕s ' (A/J)⊕s ∈ A/J-proj.
Finally, assume P a summand of As, say As ' P⊕K. Then, JP⊕ JK = JAs = imτL,As = imτL,P⊕imτL,K , for

some K. Since imτL,P ⊂ P, it follows imτL,P = JP. Moreover, (P⊕K)/(JP⊕JK)' P/JP⊕K/JK, hence P/JP

is a summand of As/JAs ∈ A/J-proj, thus a) follows.
Assume Q= (A/J)n for some n. Consider the canonical epimorphism π : An→Q. Since An is projective over

A, π factors through h, that is, there exists φ : An→ P such that π = h◦φ . Let ψ = φ +g : An⊕L⊗R DF → P.
Define N = kerψ .

Claim 1. ψ is surjective.
Let p ∈ P. Then, h(p) ∈ Q. Since π is surjective, there exists x ∈ An such that π(x) = h(p). Note that

h◦φ(x) = π(x) = h(p). Thus, p−φ(x) ∈ kerh = img = L⊗R DF . So, the claim follows.
Claim 2. N ⊂ J⊕n⊕L⊗R DF .
Notice that (x,y) ∈ N if and only if 0 = ψ(x,y) = ψ(x)+ g(y) if and only if ψ(x) = g(−y). In particular,

π(x) = h◦φ(x) = 0, hence x ∈ J⊕n. So, the claim follows.
Now note that for any x ∈ J⊕n, h ◦ φ(x) = 0. So, φ(x) ∈ kerh = img. Since g is a monomorphism

img' L⊗R DF ∈ A-proj. Therefore, the following sequence is A-split exact

0→ N z−→ J⊕n⊕L⊗R DF w−→ img→ 0

where z(x,y) = (x,y) and w(x,y) = φ(x) + g(y). Since J⊕n ⊕ L⊗R DF is projective over A, we obtain that
N⊕img' J⊕n⊕L⊗R DF . Furthermore, J⊕n ' (L⊗R HomA(L,A))n ' L⊗R V , V ∈ R-proj. Hence,

L⊗R (V ⊕DF)' L⊗R V ⊕L⊗R DF ' N⊕img.

By Lemma 1.5.44, Ext1A(P,L) = 0. Hence, Ext1A(P,L⊗R (V ⊕DF)) = 0 as V ⊕DF ∈ R-proj. In particular,
Ext1A(P,N) = 0. Thus, the exact sequence

0→ N
ψ−→ An⊕L⊗R DF → P→ 0

splits over A. Thus, it follows that P is projective.
Now assume that exists n such that Q0 = (A/J)n ' Q ⊕ Q1. Consider a free R-presentation for

Ext1A(Q1,L),g : Rs → Ext1A(Q1,L). Therefore, f ⊕ g : F ⊕Rs → Ext1A(Q0,L) is surjective. The image of g in
Ext1A(Q1,L⊗R D(Rs)) is

0→ L⊗R D(Rs)→ P1→ Q1→ 0. (1.5.4.5)

So, the image of f ⊕g in Ext1A(Q0,L⊗R D(F⊕Rs)) is

0→ L⊗R D(F⊕Rs)→ P⊕P1→ Q0→ 0. (1.5.4.6)

By the previous case, P⊕P1 ∈ A-proj. So, we conclude that P ∈ A-proj, so b) follows.

Lemma 1.5.47. [Rou08, Lemma 4.12] Let A be a projective Noetherian R-algebra. Let {∆(λ ) : λ ∈ Λ} be a

finite set of modules in A-mod together with a poset structure on Λ. Let α be a maximal element in Λ. Then,

(A-mod,{∆(λ )λ∈Λ}) is a split highest weight category if and only if ∆(α)∈M (A) and (A/J-mod,{∆(λ )λ∈Λ\{α}})
is a split highest weight category, where J = imτ∆(α).

Proof. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category. Let α be a maximal element in Λ. By (iv)
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of Definition 1.5.32, kerπα = 0, so ∆(α)' P(α) ∈ A-proj. By 1.5.32(v), EndA(∆(α))' R. As ∆(α) is faithful
over EndA(∆(α))op, it follows that ∆(α) is faithful over R. Let λ ∈ Λ\{α}. By iv) of Definition 1.5.32, C(λ )

has a finite filtration by modules of the form ∆(µ)⊗R Uµ with Uµ ∈ R-proj and µ > λ . In particular, ∆(α) can
appear. Note that ∆(α) is projective over A, so we can rearrange the filtration so that all modules of the form
∆(α)⊗R Uα , Uα ∈ R-proj, appear at the bottom of the filtration. In fact, consider the filtration

0⊂ X1 ⊂ ·· · ⊂ Xi ⊂ ·· · ⊂ Xn =C(λ ).

Assume that Xi/Xi−1 ' ∆(α)⊗R Uα ∈ A-proj for some Uα ∈ R-proj. Thus, Xi ' ∆(α)⊗R Uα

⊕
Xi−1. So,

Xi/(∆(α)⊗R Uα)' Xi−1, and hence the filtration until Xi−1 can be written in the form

0⊂ X̃1/(∆(α)⊗R Uα)⊂ ·· · ⊂ X̃i−1/(∆(α)⊗R Uα) = Xi−1.

Notice that X̃ j/X̃ j−1 ' X̃ j/(∆(λ )⊗R Uα)/X̃ j−1/(∆(λ )⊗R Uα)' X j/X j−1. Thus, we obtain a filtration

0⊂ ∆(α)⊗R Uα ⊂ X̃1 ⊂ ·· · ⊂ X̃i−1 = Xi ⊂ Xi+1 ⊂ ·· · ⊂C(λ ). (1.5.4.7)

Hence, we have an exact sequence

0→ ∆(α)⊗R Uλ →C(λ )→ X(λ )→ 0, (1.5.4.8)

where the projective R-module Uλ encodes all the occurrences of ∆(α) in the filtration of C(λ ), and consequently
in the filtration of P(λ ). X(λ ) has a filtration by modules of the form ∆(µ)⊗R Uµ with µ > λ , µ 6= α . Applying
HomA(∆(α),−) to the filtration of P(λ ), we get the exact sequence

0→ HomA(∆(α),C(λ ))→ HomA(∆(α),P(λ ))→ HomA(∆(α),∆(λ ))→ 0. (1.5.4.9)

By condition (ii) of split highest weight category, we have HomA(∆(α),∆(λ )) = 0, since α is maximal. Hence,

HomA(∆(α),C(λ ))' HomA(∆(α),P(λ )).

Applying HomA(∆(α),−) to (1.5.4.8), we get the exact sequence

0→ HomA(∆(α),∆(α)⊗R Uλ )→ HomA(∆(α),C(λ ))→ HomA(∆(α),X(λ ))→ 0. (1.5.4.10)

We have HomA(∆(α),X(λ )) = 0. In fact, if HomA(∆(α),X(λ )) 6= 0, then by induction on the size of the
filtration of X(λ ) it would exist ∆(µ) with µ 6= α such that HomA(∆(α),∆(µ)) 6= 0. Since α is maximal, this
cannot happen.

So, Uλ ' HomA(∆(α),P(λ )).

By Proposition 1.5.42, P =
⊕

λ∈Λ

P(λ ) is a progenerator for A-mod. Put P0 := ∆(α)⊗R
⊕

λ∈Λ

Uλ =imτ∆(α),P ⊂ P.

Thus, P/P0 is an extension of ∆(λ ) by
⊕

λ∈Λ

X(λ ) with Uα = R and X(α) = 0. So, HomA(∆(α),P/P0) = 0. Since

all standard modules are projective over R, we have that P/P0 is projective over R. By Proposition 1.5.15, it
follows that τ∆(α),P is split R-mono. Since P is a progenerator, it follows by the proof of Proposition 1.5.15, that
τ∆(α),A split R-mono, thus ∆(α) ∈M (A).

Fix J = imτ∆(α). Since HomA(∆(α),∆(λ )) = 0 for λ 6= α it follows that ∆(λ ) ∈ A/J-mod by Corollary
1.5.23. Now we will show that (A/J-mod,{∆(λ )λ∈Λ\{α}}) is a split highest weight category. Condition 1.5.32(i)
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is clear. Since A/J-mod is a full subcategory of A-mod, it follows that

0 6= HomA/J(∆(λ
′),∆(λ ′′)) = HomA(∆(λ

′),∆(λ ′′)). (1.5.4.11)

By 1.5.32, we get λ ′ ≤ λ ′′. So, condition 1.5.32(ii) for A/J holds. In the same way,

EndA/J(∆(λ )) = EndA(∆(λ ))' R. (1.5.4.12)

Let N ∈ A/J-mod satisfying HomA/J(∆(λ ),N) = 0 for all λ ∈ Λ\{α}. Then,

HomA(∆(λ ),N) = HomA/J(∆(λ ),N) = 0. (1.5.4.13)

By Corollary 1.5.23, HomA(∆(α),N) = 0 since N ∈ A/J-mod. Since (A-mod,{∆(λ )λ∈Λ}) is split highest weight
category N = 0, and thus condition 1.5.32(iii) holds.

For any λ 6= α , define Q(λ ) = ∆(α)⊗R Uλ . We have that,

imτ∆(α),P(λ ) ' ∆(α)⊗R HomA(∆(α),P(λ ))' ∆(α)⊗R Uλ = Q(λ ).

By Lemma 1.5.46 (a), P(λ )/Q(λ ) ∈ A/J-proj. Since Q(λ )⊂C(λ ), it follows that the following exact sequence
yields condition 1.5.32(iv)

0→ X(λ ) =C(λ )/Q(λ )→ P(λ )/Q(λ )→ ∆(λ )→ 0. (1.5.4.14)

Conversely, assume now that ∆(α) ∈M (A) and (A/J-mod,{∆(λ )λ∈Λ\{α}}) is a split highest weight cate-
gory.

By Remark 1.5.16, EndA(∆(α))'R. Now by condition 1.5.32(v) of (A/J-mod,{∆(λ )λ∈Λ\{α}}) being a split
highest weight category, R' EndA/J(∆(λ )) = EndA(∆(λ )) for λ 6= α . Thus, condition 1.5.32(v)holds for A. By
condition 1.5.32(i) of (A/J-mod,{∆(λ )λ∈Λ\{α}}) being split highest weight category, each ∆(λ ) is projective
over R. By definition of ∆(α) ∈M (A), ∆(α) ∈ R-proj. Thus, condition 1.5.32(i) for A holds. Now by Corollary
1.5.23 and the fact that A/J-mod is full subcategory of A-mod, it follows condition 1.5.32(ii) and (iii) for A.

Since ∆(α) is projective over A, we define P(α) = ∆(α). Now consider for λ 6= α the exact sequences
provided by condition 1.5.32(iv) of A/J being a split highest weight category

0→C′(λ )
iA/J
λ−−→ PA/J(λ )

π
A/J
λ−−→ ∆(λ )→ 0. (1.5.4.15)

Consider an R-free presentation for Ext1A(PA/J(λ ),∆(α)), say fλ : Fλ � Ext1A(PA/J(λ ),∆(α)).
By Lemma 1.5.46 (b), we have an exact sequence

0→ ∆(λ )⊗R DFλ

kλ−→ P(λ )
hλ−→ PA/J(λ )→ 0, (1.5.4.16)

where P(λ ) ∈ A-proj. So, we have an exact sequence

0→C(λ )
iλ−→ P(λ )

π
A/J
λ
◦hλ−−−−−→ ∆(λ )→ 0. (1.5.4.17)

We define πλ = π
A/J
λ
◦hλ . We have the following commutative diagram
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0 C′′(λ ) C(λ ) C′(λ ) 0

0 ∆(λ )⊗R DFλ P(λ ) PA/J(λ ) 0

∆(λ ) ∆(λ )

lλ

∃w

∃g

iλ iA/J
λ

kλ

πλ

hλ

π
A/J
λ

.

Here some observations are in order. The existence of g comes from the fact π
A/J
λ
◦ hλ ◦ iλ = πλ ◦ iλ = 0. So,

C′′(λ ) = kerg. The existence of w comes from the fact hλ ◦ iλ ◦ lλ = iA/J
λ
◦ g ◦ lλ = 0. By Snake Lemma, w

is injective. On the other hand, πλ ◦ kλ = π
A/J
λ
◦ hλ ◦ kλ = 0, so there exists qλ : ∆(λ )⊗R DFλ → C(λ ) such

that iλ ◦ qλ = kλ . Now note that iA/J
λ
◦ g ◦ qλ = hλ ◦ iλ ◦ qλ = hλ ◦ kλ = 0. Since iA/J

λ
is injective, g ◦ qλ = 0.

Thus, for every x ∈ ∆(λ )⊗R DFλ , kλ (x) = iλ ◦qλ (x) = iλ ◦ lλ (y) = kλ (w(y)) for some y ∈C′′(λ ). Thus, w is an
isomorphism. So, C(λ ) has a filtration by standard modules given by the one of ∆(λ )⊗R DFλ on the bottom
and the filtration of C′(λ ) on the top. So, it follows that C(λ ) has a filtration by standard modules where only
∆(µ)⊗R X , with µ > λ and X ∈ R-proj can appear. So, we conclude that (A-mod,{∆(λ )λ∈Λ}) is a split highest
weight category.

Proposition 1.5.48. [Rou08, Proposition 4.13] Suppose (A-mod,{∆(λ )λ∈Λ}) is split highest weight category

over a commutative Noetherian ring R. Let P ∈ A-proj. Let ∆→ {1, . . . ,n}, ∆i 7→ i be an increasing bijection.

Then, there is a filtration

0 = Pn+1 ⊂ Pn ⊂ ·· · ⊂ P1 = P with Pi/Pi+1 ' ∆i⊗R Ui, for some Ui ∈ R-proj .

Proof. We shall proceed by induction on |Λ| = n. Assume n = 1. Consider ∆1 ∈M (A). Let P ∈ A-proj. By
Proposition 1.5.15, there exists P0 = imτ∆1,P = ∆1⊗R U1 ⊂ P, U1 ∈ R-proj and HomA(∆1,P/P0) = 0. Thus,
P/P0 = 0. Hence, 0⊂ ∆1⊗R U1 = P is a filtration with the desired properties.

Assume now the result known for |Λ| = n− 1. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category
with |Λ| = n. By Lemma 1.5.47, ∆n ∈M (A) and (A/J-mod,{∆ j j=1,...,n−1}) is a split highest weight category
where J = imτ∆n .

Let P ∈ A-proj. By Proposition 1.5.15, there exists Un ∈ R-proj such that imτL,P = ∆n⊗R Un. By Lemma
1.5.46 (a), JP = imτL,P = ∆n⊗R Un and P/JP ∈ A/J-proj. By induction, there is a filtration for P/JP:

0 = P′n ⊂ P′n−1 ⊂ ·· · ⊂ P′1 = P/JP, with Pi/Pi+1 ' ∆i⊗R Ui, i = 1, . . . ,n−1.

As the submodules of P/JP are exactly the submodules of P which contain JP, we get a filtration

0 = Pn+1 ⊂ Pn ⊂ Pn−1 ⊂ ·· · ⊂ P1 = P,

where P′i ' Pi/JP and Pn = JP. Note that Pi/Pi+1 ' (P′i /JP)/(P′i+1/JP) for i = 1, . . .n. Thus, the claim follows.

Notation 1.5.49. Denote by F (∆) the full subcategory of A-mod whose objects have filtration by objects in ∆.
Denote ∆̃(λ ) = ∆(λ )⊗R U , U ∈ R-proj, λ ∈ Λ. Denote by F (∆̃) the full subcategory of A-mod whose objects
have filtrations of the form given in Proposition 1.5.48, that is, filtrations by objects of the form ∆(λ )⊗R U ,
U ∈ R-proj, λ ∈ Λ. Here, we are abusing the notation by writing F (∆̃) instead of F (∆̃λ∈Λ). Sometimes, we
will write FA(∆̃) instead of just F (∆̃) to recall that F (∆̃) is a full subcategory of A-mod. 4
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Proposition 1.5.50. [Rou08, Proposition 4.13] Suppose (A-mod,{∆(λ )λ∈Λ}) is a split highest weight cate-

gories. Then,

(a) If Ext1A(∆(λ ),∆(µ)) 6= 0, then λ < µ .

(b) If ExtiA(∆(λ ),∆(µ) 6= 0 for some i > 0, then λ < µ . In particular, ExtiA(∆(λ ),∆(λ )) = 0, i > 0.

Proof. Consider the exact sequence δ : 0→C(λ )→ P(λ )→ ∆(λ )→ 0. Applying HomA(−,∆(µ)) we obtain
the exact sequence

HomA(C(λ ),∆(µ))→ Ext1A(∆(λ ),∆(µ))
/
0

→ Ext1A(P(λ ),∆(µ))
q
0

.

We deduce that HomA(C(λ ),∆(µ)) 6= 0. So, there is a factor of C(λ ), say ∆(α)⊗RUα such that HomA(∆(α),∆(µ)) 6=
0. Thus, α ≤ µ . Since ∆(α)⊗R Uα is a factor of C(λ ) we get that α > λ . Thus, µ ≥ α > λ . So, a) follows.

Now assume ExtiA(∆(λ ),∆(µ)) 6= 0 for some i > 0. Applying HomA(−,∆(µ)) to δ we deduce that
0 6= ExtiA(∆(λ ),∆(µ))' Exti−1

A (C(λ ),∆(µ)). Now consider the following filtration of C(λ )

0→C1(λ )→C(λ )→ ∆(α)⊗R Uα → 0. (1.5.4.18)

Recall that its factors are of the form ∆(α)⊗R Uα with α > λ and Uα ∈ R-proj. Applying again HomA(−,∆(µ))
it yields the exact sequence

Exti−1
A (C1(λ ),∆(µ))→ Exti−1

A (C(λ ),∆(µ))→ Exti−1
A (∆(α)⊗R Uα ,∆(µ)). (1.5.4.19)

We can assume that λ is the maximal term that satisfies ExtiA(∆(λ ),∆(µ)) 6= 0 for some i > 0. Otherwise, we can
consider Exti−1

A (∆(α),∆(µ)) 6= 0 and repeat the process until either ∆(α) is chosen to be projective or i−1 = 1.
Then, we are in situation a) and we are done since µ > α > λ . Thus, now assume Exti−1

A (∆(α),∆(µ)) = 0.
Hence, ExtiA(C1(λ ),∆(µ)) 6= 0, we can continue the procedure using the factors of C1(λ ) until either we get
ExtlA(∆(α),∆(µ)) 6= 0 and α > λ which by previous discussion leads to µ > α > λ . In case,
HomA(C1(λ ),∆(µ)) 6= 0 we will get HomA(∆(α),∆(µ)) 6= 0 for some ∆(α) factor of C1(λ ). Thus, λ < α ≤ µ .
In particular, if ExtiA(∆(λ ),∆(λ )) 6= 0 for some i > 0 , then by b) λ < λ which is an absurd.

Proposition 1.5.51. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category. If M ∈F (∆), then M ∈F (∆̃).

Proof. Without loss of generality, we can assume that the factors in the filtration of M appear in non-increasing
order. Assume

0 = Mt+1 ⊂Mt ⊂Mt−1 ⊂ ·· · ⊂M1 = M where M j/M j+1 ' ∆k j . (1.5.4.20)

Choose λ ∈ Λ maximal. So, there is a maximal index i (possibly t +1) such that

0⊂Mt ⊂Mt−1 ⊂ ·· · ⊂Mi with M j/M j+1 ' ∆(λ ), t ≥ j ≥ i. (1.5.4.21)

Using the fact that ∆(λ ) is projective over A, the exact sequences

0→M j+1→M j→ ∆(λ )→ 0, i≤ j ≤ t,

split. So, we deduce that Mi ' ∆(λ )t+1−i and this corresponds to the multiplicity of ∆(λ ) in the filtration of M.
We shall prove the claim by induction on n = |Λ|. Assume that n = 1. Then, ∆(1) is maximal, and by

the previous discussion, the claim follows. Assume now that the result holds for split quasi-hereditary algebras

120



Chapter 1. Background

with |Λ| = n− 1. Let A be a split quasi-hereditary algebra with |Λ| = n. Let λ ∈ Λ maximal. By the previous
discussion, Mi ' ∆(λ )t+1−i. Then, the module M/Mi has a filtration

0⊂Mi−1/Mi ⊂Mi−2/Mi ⊂ ·· · ⊂M/Mi. (1.5.4.22)

In particular, M/Mi does not have ∆(λ ) in its filtration. It follows that HomA(∆(λ ),M/Mi) = 0. By Corollary
1.5.23, M/Mi ∈ A/Jλ -mod. (A/Jλ -mod,∆(µ)µ 6=λ ) is split highest weight category with |Λ\{λ}| = n− 1. By
induction, M/Mi has a filtration

0 = Fn ⊂ ·· · ⊂ F1 = M/Mi with Fj/Fj+1 ' ∆ j⊗R U j. (1.5.4.23)

Here U j is a free R-module and Λ\{λ} → {1, . . . ,n−1} an increasing bijection. Put λ ←→ n. So, the induced
map Λ→{1, . . . ,n} is an increasing bijection. Note that each Fj is written on the form F ′j/Mi. Therefore,

0⊂ F ′n = Mi ⊂ F ′n−1 ⊂ ·· · ⊂ F ′1 = M (1.5.4.24)

is a filtration of M such that F ′n ' ∆n⊗R Rt+1−i and F ′j/F ′j+1 ' Fj/Mi/Fj+1/Mi ' Fj/Fj+1 ' ∆ j ⊗R U j. This
means that M ∈F (∆̃).

Remark 1.5.52. Notice that the modules of F (∆̃) which the U j are free R-modules are exactly the modules in
F (∆̃). 4

Remark 1.5.53. Assume that R is a field. Then, clearly F (∆) = F (∆̃). 4

Proposition 1.5.54. Let F : A-mod→ B-mod be an equivalence of categories. Assume (A-mod,{∆(λ )λ∈Λ}) is

split highest weight category then (B-mod,{F∆(λ )λ∈Λ}) is a split highest weight category.

Proof. For every λ ∈ Λ, EndB(F∆(λ )) ' EndA(∆(λ )) ' R, since F is full and faithful. Assume that
0 6=HomB(F∆(λ ′),F∆(λ ′′))'HomA(∆(λ

′),∆(λ ′′). Thus, λ ′≤ λ ′′. If N ∈B-mod such that HomB(F∆(λ ),N)=

0 for all λ ∈ Λ, then FM = N for some M ∈ A-mod since F is essentially surjective. Therefore,

HomA(∆(λ ),M)' HomB(F∆(λ ),FM) = 0, ∀λ ∈ Λ. (1.5.4.25)

Hence, M = 0, and in particular N = FM = 0.
Consider the exact sequence 0 → C(λ ) → P(λ ) → ∆(λ ) → 0. Applying F we get the exact sequence

0 → FC(λ ) → FP(λ ) → F∆(λ ) → 0. Since F is an equivalence of categories it preserves inclusions and
quotients, so a filtration by standard modules is sent to a filtration by modules in F∆̃. Since F is an equiva-
lence of categories, there is a progenerator P such that F = HomA(P,−). Therefore, F sends A-mod∩R-proj to
B-mod∩R-proj. Therefore, the axioms of split highest weight category are verified.

1.5.5 Split highest weight categories under change of rings

Proposition 1.5.55. [Rou08, Proposition 4.14] Let S be a commutative Noetherian R-algebra. Let

(A-mod,{∆(λ )λ∈Λ}) be a split highest weight category. Then, (S⊗R A-mod,{S⊗R ∆(λ )λ∈Λ}) is a split highest

weight category. Moreover, S⊗R (A/J)-mod' S⊗R A/S⊗R J-mod, where J is a split heredity ideal of A.

Proof. We shall proceed by induction on t = |Λ|. Assume t = 1. Hence, ∆(λ ) ∈M (A). By Lemma 1.5.20,
S⊗R ∆(λ ) ∈M (S⊗R A). Fix J = imτ∆(λ ). By condition 1.5.32(iii) of split highest weight category A/J-mod =

0 and S⊗R J = S⊗R imτ∆(λ ) = im(S⊗R τ∆(λ ) = JS submodule of S⊗R A since S⊗R τ∆(λ ) is an (S⊗R A,S)-
monomorphism.
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By Proposition 1.5.15, it follows that A/J is projective over R, thus TorR
1 (S,A/J) = 0. Thus, the sequence

0→ J→ A→ A/J→ 0 remains exact under the functor S⊗R−. Hence, the sequence

0→ JS→ S⊗R A→ S⊗R A/S⊗R J→ 0 (1.5.5.1)

is exact. Thus, S⊗R A/J ' S⊗R A/S⊗R J as S-algebras. Now assume the result is known for t − 1. Let
α ∈ Λ be a maximal element. Then, ∆(α) ∈M (A) and (A/J-mod,Λ\{λ}) is a split highest weight cate-
gory with J = imτ∆(α). Analogous to the case t = 1, S⊗R ∆(λ ) ∈M (S⊗R A) and S⊗R A/S⊗R J = S⊗R A/J

as S-algebras. By induction, (S⊗R A/J-mod,Λ\{α}) is split highest weight category with standard modules
{S⊗R ∆(λ ) : λ ∈ Λ\{α}}. By Lemma 1.5.47, (S⊗R A-mod,Λ) is a split highest weight category.

Theorem 1.5.56. [Rou08, Theorem 4.15]Let A be a projective Noetherian R-algebra and let {∆(λ )λ∈Λ} be a

set of finitely generated A-modules indexed by a poset. (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category

if and only if ∆(λ ) are projective R-modules, λ ∈ Λ and (A(m)-mod,{∆(λ )(m)λ∈Λ}) is a split highest weight

category for every maximal ideal m of R.

Proof. For every maximal ideal m in R, the residue field R(m) is a Noetherian commutative algebra over R, so by
Proposition 1.5.55 (A(m)-mod,Λ) is split highest weight category with standards ∆(λ )(m). The modules ∆(λ )

are projective over R by definition of A-mod being a split highest weight category.
Conversely, we shall proceed by induction on t = |Λ|. Let m be a maximal ideal of R. Assume t =

1. By assumption ∆(λ )(m) ∈M (A(m)). By Lemma 1.5.20, ∆(λ ) ∈M (A). Let M ∈ A-mod be such that
HomA(∆(λ ),M) = 0. Then,

HomA(m)(∆(λ )(m),M(m)) = 0.

Since A(m)-mod is a split highest weight category M(m) = 0 for every maximal ideal m in R. Thus, M = 0.
Therefore, (A-mod,Λ) is a split highest weight category.

Now assume the result known for t− 1. Let α be a maximal element in Λ. By assumption, (A(m)-mod,Λ)
is a split highest weight category for every maximal ideal m in R. By Lemma 1.5.47, ∆(α)(m) ∈M (A(m))

and (A(m)/J(m)-mod,Λ\{α}) is split highest weight category for every maximal ideal m in R. Since ∆(α) is
projective over R, it follows, by Lemma 1.5.20, that ∆(α) ∈M (A). Here,

J(m) = imτR(m)⊗R∆(α) = R(m)⊗Rimτ∆(α) = R(m)⊗R J.

As ∆(α) ∈M (A), A/imτ∆(α) = A/J is a projective R-module. So, TorR
1 (R(m),A/J) = 0. We deduce that

A/J(m) = R(m)⊗R A/J ' R(m)⊗R A/R(m)⊗R J = A(m)/J(m). (1.5.5.2)

Thus, (A/J(m)-mod,Λ\{α}) is split highest weight category for every maximal ideal m in R. By induction,
(A/J-mod,Λ\{α}) is a split highest weight category. Finally, by Lemma 1.5.47, the result follows.

Theorem 1.5.57. Let A be a projective Noetherian R-algebra and let {∆(λ )λ∈Λ}) be a set of finitely gen-

erated A-modules indexed by a poset. (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category if and only if

(Am-mod,{(∆(λ )m)λ∈Λ}) is a split highest weight category for every maximal ideal m of R.

Proof. The proof is analogous to Theorem 1.5.56. For every maximal ideal m in R, Rm is a Noetherian commuta-
tive ring which is an R-algebra. By Proposition 1.5.55, if (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category
then (Am-mod,{(∆(λ )m)λ∈Λ}) is a split highest weight category for every maximal ideal m in R.
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Conversely, we shall proceed by induction on t = |Λ|. By assumption ∆(λ )m ∈M (Am) for every maximal
ideal m in R. By Lemma 1.5.20, ∆(λ ) ∈M (A). Let M ∈ A-mod be such that HomA(∆(λ ),M) = 0. Then,
HomAm(∆(λ )m,Mm) = 0 which implies that Mm = 0. Hence, M = 0. Therefore, the result holds for t = 1.

Assume the result known for t−1. Let α be a maximal element in Λ. By Lemma 1.5.47, ∆(α)m ∈M (Am)

and (Am/Jm-mod,Λ\{α}) is a split highest weight category for every maximal ideal m in R. By Lemma 1.5.20,
∆(α) ∈M (A). Since Rm is flat over R, we deduce that (A/imτ∆(α))m = (A/J)m ' Am/Jm. By induction,
(A/J-mod,Λ\{α}) is a split highest weight category. By Lemma 1.5.47, the result follows.

Parallelly to Lemma 1.5.21, we can say that an algebra is split quasi-hereditary over some field if this algebra
is the restriction of some quasi-hereditary algebra over an algebraically closed field.

Theorem 1.5.58. Let A be a finite-dimensional k-algebra for some field k and let {∆(λ )λ∈Λ}) be a set of finitely

generated A-modules indexed by a poset. If k is the algebraic closure of k, then (A-mod,{∆(λ )λ∈Λ}) is a split

highest weight category if and only if (k⊗k A-mod,{k⊗k ∆(λ )λ∈Λ}) is a split highest weight category.

Proof. The result follows by Proposition 1.5.55, Lemma 1.5.47 and 1.5.21.

Given the formulations of Theorems 1.5.56 to 1.5.58, we can ask whether there is a version involving the
quotient field of an integral domain. The following tries to address this question and it aims to generalize Lemma
1.6 of [DPS98a].

Lemma 1.5.59. Let R be a regular domain with quotient field K. Let A be a projective Noetherian R-algebra.

Assume that {∆(λ )λ∈Λ}) is a set of finitely generated A-modules indexed by a poset and the following conditions

hold:

(i) For λ ∈ Λ, ∆(λ ) ∈ R-proj;

(ii) For each λ ∈ Λ, there exists a projective A-module P(λ ) so that there is an exact sequence

0→C(λ )→ P(λ )→ ∆(λ )→ 0, (1.5.5.3)

where C(λ ) ∈F (∆̃(µ)µ>λ );

(iii)
⊕
λ∈Λ

P(λ ) is a projective generator for A-mod.

Then, (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category if and only if (K⊗R A-mod,K⊗R ∆(λ )λ∈Λ}) is a

split highest weight category.

Proof. By Proposition 1.5.55, one of the implications is clear.
Conversely, assume that (K⊗R A-mod,K⊗R ∆(λ )λ∈Λ}) is a split highest weight category. In view of Corol-

lary 1.5.43, it is enough to show that EndA(∆(λ )) ' R and the condition of non-zero homomorphisms between
standard modules. Suppose that HomA(∆(λ ),∆(µ)) 6= 0. Then,

0 6= K⊗R HomA(∆(λ ),∆(µ))' HomK⊗RA(K⊗R ∆(λ ),K⊗R ∆(µ)). (1.5.5.4)

Hence, λ ≤ µ . Let p be a prime ideal of R with height one. K is the quotient field of Rp and dimRp = 1. In
particular,

K⊗Rp EndAp(∆(λ )p)' EndK⊗RpAp(K⊗Rp ∆(λ )p)' EndK⊗RA(K⊗R ∆(λ ))' K. (1.5.5.5)
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On the other hand, using the monomorphism EndAp(∆p(λ ))→HomAp(P(λ )p,∆(λ )p) we obtain that EndAp(∆p(λ ))∈
Rp-proj. Thus, (1.5.5.5) implies that EndAp(∆p(λ )) ' Rp. This shows that EndAp(∆p) is a maximal order in K.
By Theorem 1.5 of [AG60], EndA(∆(λ )) is a maximal order in K. By Theorem 4.3 of [AG60], we conclude that
EndA(∆(λ ))' R.

Remark 1.5.60. If, in addition to knowing 1.5.59(i) we know that ∆(λ ) is R-faithful, then we can consider
another approach without using maximal orders. In fact, EndA(∆(λ )) is torsion free over R and there exists an
exact sequence 0→ R→ EndA(∆(λ ))→ X → 0. By Proposition 3.4 of [AB59], if X 6= 0, then Xp 6= 0 for some
prime ideal of R with height one. But, as we showed this cannot happen. 4

1.5.6 Uniqueness of standard modules with respect to the poset Λ

We are now ready to address some questions concerning the uniqueness of standard modules and the projective
modules P(λ ). Given the existence of ∆(λ ) we saw that the projective modules P(λ ) given by the condition
1.5.32(iv) of split highest weight category are not unique up to isomorphism. However, we saw that for split
quasi-hereditary algebras over fields we could replace the projective modules in 1.5.32(iv) with indecompos-
able projective modules. In the following, we will see a sort of generalization of this phenomenon to general
commutative rings.

Proposition 1.5.61. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category so that the projective modules

P(λ ) in 1.5.32(iv) become indecomposable under R(m)⊗R− for every maximal ideal m of R. Assume that there

exists Q(λ ) ∈ A-proj which becomes indecomposable under R(m)⊗R− together with an exact sequence

0→ S(λ )→ Q(λ )
pλ−→ ∆(λ )→ 0, such that S(λ ) ∈F (∆̃µ>λ ).

Then, there is an isomorphism g : Q(λ )→ P(λ ) making the following diagram commutative

Q(λ ) ∆(λ )

P(λ )

pλ

g πλ

.

Proof. Since P(λ ) and Q(λ ) are projective A-modules, there are A-homomorphisms f and g making the follow-
ing diagram commutative:

P(λ ) ∆(λ ) 0

Q(λ ) ∆(λ ) 0

P(λ ) ∆(λ ) 0

πλ

f

pλ

g

πλ

. (1.5.6.1)

Applying the right exact functor R(m)⊗R− for every maximal ideal m of R we obtain the commutative diagram

P(λ )(m) ∆(λ )(m) 0

Q(λ )(m) ∆(λ )(m) 0

P(λ )(m) ∆(λ )(m) 0

πλ (m)

f (m)

pλ (m)

g(m)

πλ (m)

. (1.5.6.2)
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Note that g(m) ◦ f (m) = g⊗ idR(m) ◦ f ⊗ idR(m) = g ◦ f ⊗ idR(m) = g ◦ f (m). For any maximal ideal m of R,
(A(m),{∆(λ )(m)λ∈Λ}) is a split highest weight category with projectives P(λ )(m) and Q(λ )(m). Further,
(Q(λ )(m),πλ (m)) and (P(λ )(m), pλ (m)) are projective covers of ∆(λ )(m). It follows by diagram (1.5.6.2)
that P(λ ) ⊂ img ◦ f (m)+ ker piλ (m). Since kerπλ (m) is a superfluous module, it follows that g ◦ f (m) is sur-
jective for every maximal ideal m of R. By Nakayama’s lemma, g ◦ f is surjective. Since g ◦ f ∈ EndA(P(λ )),
this surjective must be an isomorphism by Nakayama’s Lemma for endomorphisms. Since (Q(λ )(m),πλ (m)) is
a projective cover of ∆(λ )(m), it follows, by symmetry, that f ◦ g is an isomorphism. Hence, both f and g are
isomorphisms. So, the claim follows.

Before we proceed any further we should pay attention to the following fact.

Observation 1.5.62. Assume that R is a local commutative Noetherian ring with unique maximal ideal m and
A-mod is a split highest weight category with standard modules ∆(µ), µ ∈ Λ. Then, we can pick the projective
modules in 1.5.32(iv) so that they become indecomposable under R(m)⊗R−. Such construction can be made
by reverse induction. If λ ∈ Λ is maximal, then define P(λ ) := ∆(λ ). For the induction step, assume that µ is
maximal in Λ\{λ} and λ is maximal in Λ. The Picard group of R is trivial and the multiplicity of ∆(λ ) in the
projective associated with ∆(µ) is controlled by Ext1A(∆(µ),∆(λ )) ∈ R-mod in view of Lemma 1.5.46. Since all
extensions between ∆(µ) and ∆(λ ) are (A,R)-exact sequences we can pick by Nakayama’s Lemma a minimal
set of generators for Ext1A(∆(µ),∆(λ )) of size dimR(m) Ext1A(m)(∆(µ)(m),∆(λ )(m)). Using Lemma 1.5.46, this
means that we can construct P(µ) so that the multiplicities of ∆(λ ) in P(µ) and of ∆(λ )(m) in the projective
cover of ∆(µ)(m) over A coincide. Hence, P(µ) can be constructed so that P(µ)(m) is the projective cover of
∆(µ)(m).

In the field case, given an order on Λ, the standard modules when defined are unique (see for example [DK94,
A]). This result can be extended to local commutative Noetherian rings in the following way.

Proposition 1.5.63. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category over a local commutative

Noetherian ring. Let ∆→ {1, . . . , t}, ∆i 7→ i be an increasing bijection. Choose Pi ∈ A-proj so that Pi(m) is

the projective cover of ∆i(m) for all i ∈ {1, . . . , t}. Define

Ui = ∑
j>i

∑
f∈HomA(Pj ,Pi)

im f .

Then, ∆i ' Pi/Ui.

Proof. Let m be the unique maximal ideal of R. By Theorem 1.5.56, (A(m),{∆(λ )(m)λ∈Λ}) is split highest
weight category. Since R(m) is a field, ∆i(m)' Pi(m)/Ci(m). We have,

Ci(m)'∑
j>i

∑
f∈HomA(m)(Pj(m),Pi(m))

im f '∑
j>i

∑
f∈HomA(Pj ,Pi)(m)

im f

'∑
j>i

∑
f∈HomA(Pj ,Pi)

im( f ⊗R idR(m))'

∑
j>i

∑
f∈HomA(Pj ,Pi)

im f

(m) =Ui(m)

Claim. HomA(M,Pi/Ui) = 0 for M ∈F (∆ j>i). We shall proceed by induction on the size of the filtration of
M. Assume t = 1. Then, M ' ∆ j for some j > i. Let g ∈HomA(∆ j,Pi/Ui). Since Pj is projective over A we have
a commutative diagram
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Pj ∆ j Pi/Ui

Pi

π j

∃ f

g

π .

By definition of π and Ui, 0 = π ◦ f = g◦π j. Then, g = 0, since π j is surjective. Now consider the result known
for filtrations of size less than t. Assume that M has a filtration with size t. Let g∈HomA(∆ j,Pi/Ui). Consider the
exact sequence 0→Mt−1

i−→M k−→ ∆ j→ 0, j > i. By induction, HomA(Mt−1,Pi/Ui) = 0. In particular, g◦ i = 0.
So, g induces a map g′ ∈ HomA(∆ j,Pi/Ui) such that g′ ◦ k = g. By t = 1, g′ = 0. Therefore, g = 0 and the claim
follows.

Consider the following diagram

0 Ci Pi ∆i 0

0 Ui Pi Pi/Ui 0

ki πi

k π

.

Since Ci ∈F (∆ j>i) we get that HomA(Ci,Pi/Ui) = 0. In particular, π ◦ ki = 0. So, the image of ki is contained
in kerπ = imk, and thus there exists an A-homomorphism f : Ci→Ui which makes the previous diagram com-
mutative. On the other hand, since π ◦ ki = 0 there exists a map π̃ ∈ HomA(∆i,Pi/Ui) such that π̃ ◦πi = π . By
Snake Lemma, f is injective and π̃ is surjective. For every maximal ideal m of R, applying the right exact functor
R(m)⊗R− yields the commutative diagram with exact rows:

0 Ci(m) Pi(m) ∆i(m) 0

Ui(m) Pi(m) Pi/Ui(m) 0

ki(m)

f (m)

πi(m)

π̃(m)

k(m) π(m)

.

The first row is exact since ∆i is projective over R. By the commutativity of the diagram, k(m) ◦ f (m) = ki(m)

is injective, which implies that f (m) is a monomorphism. Since Ci(m) ' Ui(m), we have dimR(m)Ci(m) =

dimR(m)Ui(m), thus f (m) is an R(m)-isomorphism for every maximal ideal m of R. Thus, f (m) is an A(m)-
isomorphism. By Nakayama’s Lemma, f is surjective. Hence, f is an isomorphism. By Snake Lemma, π̃ is an
isomorphism and it follows that ∆i ' Pi/Ui.

Note that this not guarantees uniqueness of standard modules as in the field case, since in Noetherian rings
we can have many choices for the projective modules P(λ ) even when they are indecomposable.

A natural question that arises is whether or not the projective modules P(λ ) are indecomposable. In the
following proposition, we find a positive answer for local rings.

Proposition 1.5.64. Let (A-mod,{∆(λ )λ∈Λ}) be a split highest weight category. If R has no non-trivial idempo-

tents, then all ∆(λ ) are indecomposable. Furthermore, if R is local, then there exists a choice of P(λ ) satisfying

1.5.32(iv) so that EndA(P(λ )) is a local ring.

Proof. Assume by contradiction that ∆(λ ) = X1⊕X2 then ∆(λ ) � X1 ↪→ ∆(λ ) is a non-trivial idempotent in
EndA(∆(λ ))

op. Thus, we have a non-trivial idempotent in R.
Assume that R is local. Let f ∈ EndA(P(λ )). Let m be the unique maximal ideal in R. Then, f (m) ∈

EndA(m)(P(λ )(m)), since P(λ ) ∈ A-proj. By Observation 1.5.62, we can consider projective modules P(λ )

so that P(λ )(m) is indecomposable. In view of Proposition 1.5.39, EndA(m)(S) ' R(m) for all simple A(m)-
modules. Thus, the endomorphism ring of a finite-dimensional indecomposable A(m)-module is a local ring.
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In particular, EndA(m)(P(λ )(m)) is a local ring. Hence, if f (m) is not an isomorphism, then idP(m)− f (m)

is an isomorphism. Note that idP(m)− f (m) = (idP− f )(m). Applying Nakayama Lemma’s 1.1.39, it follows
that idP− f is an isomorphism or f is an isomorphism or both. Thus, EndA(P(λ )) is a local ring and P(λ ) is
indecomposable.

1.5.7 Relation between heredity chains and standard modules

The following result is Theorem 4.16 of [Rou08].

Theorem 1.5.65. Let A be a projective Noetherian R-algebra. (A-mod,{∆(λ )λ∈Λ}) is a split highest weight

category if and only if A is a split quasi-hereditary. Let ∆→ {1, . . . , t}, ∆i 7→ i be an increasing bijection. Here

the standard modules and the split heredity chain are related in the following way:

imτ∆i = Ji/Ji+1, Jt+1 = 0⊂ Jt ⊂ Jt−1 ⊂ ·· · ⊂ J1 = A is a split heredity chain.

Proof. Let A be split quasi-hereditary with split heredity chain: Jt+1 = 0 ⊂ Jt ⊂ Jt−1 ⊂ ·· · ⊂ J1 = A. We shall
proceed by induction on the size of the split heredity chain of A to show that A-mod can have a split highest
weight category structure.

Assume t = 1. Then, 0 ⊂ A is a split heredity chain. So, A is split heredity in A. By Proposition 1.5.31,
there is L ∈M (A) such that imτL = A. Put ∆(1) = L and since A/imτL = 0, it follows by Lemma 1.5.47 that
(A-mod,{∆(1)}) is a split highest weight category.

Assume now that the result holds for t − 1. Fix J = Jt . A/J is split quasi-hereditary with split heredity
chain 0 ⊂ Jt−1/J ⊂ ·· · ⊂ J1/J = A/J. By induction, A/J-mod is a split highest weight category with standards
∆(i), 1≤ i≤ t−1, satisfying imτ∆(i) = (Ji/J)/(Ji+1/J) ' Ji/Ji+1, 1 ≤ i ≤ t− 1. By Proposition 1.5.31, there
is L ∈M (A) such that imτL = J. Put ∆(t) = L. Since each ∆(i) ∈ A/J-mod, we get that HomA(∆(t),∆(i)) =

0, 1≤ i≤ t−1, by Corollary 1.5.23. So, we can consider the usual order t ≥ i, 1≤ i≤ t−1. By Lemma 1.5.47,
(A-mod,{∆(i)i∈{1,...,t}}) is a split highest weight category.

Now assume that (A-mod,{∆(λ )λ∈Λ}) is a split highest weight category. Let Λ→ {1, . . . , t}, λ 7→ iλ be an
increasing bijection. We shall proceed by induction on t. If t = |Λ|= 1, then L = ∆(1) ∈M (A). By Proposition
1.5.31, there exists J split heredity such that J =imτL. By Corollary 1.5.23, A/J-mod= 0. In particular, A/J = 0,
so J = A. Thus, 0⊂ J = A is a split heredity chain.

Now assume the result known for t− 1. Consider a maximal element α ∈ Λ satisfying iα = t. By Lemma
1.5.47, ∆(t) ∈M (A) and (A/J-mod,{∆(i)1≤i≤t−1}) is a split highest weight category, where J = imτ∆(t). By
induction, there exists a split heredity chain

0⊂ It−1 ⊂ ·· · ⊂ I1 = A/J such that imτ∆(i) = Ii/Ii+1.

Fix Jt = J. By the correspondence theorem, there are ideals Ji of A such that Ii = Ji/J. It follows that Ji/Ji+1 '
Ji/J/Ji+1/J = Ii/Ii+1 = imτ∆(i) split heredity in A/J/Ji+1/J ' A/Ji+1 for i = 1, . . . , t− 1. Now since Jt is split
heredity in A, it follows by the discussed argument above that 0 = Jt+1 ⊂ Jt ⊂ Jt−1 ⊂ ·· · ⊂ J1 = A is a split
heredity chain of A satisfying imτ∆(i) = Ji/Ji+1.

Due to Theorem 1.5.65, we can say that (A,{∆(λ )λ∈Λ}) is a split quasi-hereditary algebra when
(A-mod,{∆(λ )λ∈Λ}) is a split highest weight category without mentioning the split heredity chain.

Note that, by the bijection given in Proposition 1.5.31, the standard modules are not unique in this construc-
tion unless the Picard group is trivial.
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As we have noted, while constructing the standard modules, in general, we have many choices that can be
given by the same heredity chain. Hence, we would like to identify the split highest weight categories that came
from the same heredity chain. This motivates the next notion introduced by Rouquier.

Definition 1.5.66. Let (A-mod,{∆(λ )λ∈Λ}) and (B-mod,{Ω(χ)χ∈X}) be two split highest weight categories. A
functor F : A-mod→ B-mod is an equivalence of split highest weight categories if

• it is an equivalence of categories;

• there is a bijection φ : Λ→ X and invertible R-modules Uλ such that F(∆(λ ))'Ω(φ(λ ))⊗R Uλ , λ ∈ Λ.

If Pic(R) is trivial, then F is an equivalence if and only if {Ω(χ)χ∈X}= {F∆(λ )λ∈Λ}. In particular, if R is a
field, the notions of Morita equivalence and split highest weight category equivalence coincide.

Remark 1.5.67. Note that when passing from A to A(m), there is no confusion if we take equivalent standard
modules. That is, ∆′i(m) = ∆i(m). 4

In fact, consider ∆′i = ∆i⊗R F, F ∈ Pic(R). Then, there exists G such that G⊗R F ' R. Moreover,

F(m)⊗R(m) G(m)' F⊗R R(m)⊗R G' F⊗R G⊗R R(m)' R⊗R R(m)' R(m).

Hence, F(m) ∈ Pic(R(m)) = {R(m)} since R(m) is a field. Therefore,

∆
′
i(m) = ∆i⊗R F(m)' ∆i(m)⊗R(m) F(m)' ∆i(m).

Now we must observe that Remark 4.18 in [Rou08] is not accurate. Theorem 3.3 in CPS90 does not involve
split quasi-hereditary algebras, but instead, it involves (non-split) quasi-hereditary algebras. On the other hand,
in general, we cannot construct standard modules ∆ just knowing the modules over the residue field. Here the
difficulty lies that a priori there is not an R-homomorphism that its image under the functor −⊗R R(m) is the
isomorphism. This problem also occurs when dealing with localizations.

So to conclude the split version of Corollary 1.5.10, a direct approach like in its proof might not work in this
case. We suggest the following:

Proposition 1.5.68. Let R be a Noetherian commutative ring and A a projective Noetherian R-algebra. J is a

split heredity ideal in A if and only if J is split heredity ideal in Aop.

Proof. For fields R, J = AeA for some idempotent e of A. The result holds for heredity ideals (see [PS88,
Theorem 4.3 (b)]). Now assume that EndA(AeA)op Mor∼ R. We have that

EndA(AAeA)op Mor∼ EndA(Ae)op ' eAe

EndA(AeAA)
Mor∼ EndA(eA)' eAe.

Therefore, EndA(AAeA)op Mor∼ EndA(AeAA). Hence, EndA(AeAA)
Mor∼ R, and the result follows for fields.

Now assume R to be a Noetherian commutative ring and J split heredity ideal in A. Conditions (i) and (ii) of
Definition 1.5.2 for Jop in Aop are clear. Moreover, for any maximal ideal m of R, A/J(m)' A(m)/J(m), since
A/J is projective over R, and thus TorR

1 (A/J,R(m)) = 0. We have J(m)2 = J⊗R R(m)J⊗R R(m) = J2⊗R R(m) =

J(m), and clearly J(m) is projective as left A(m)-module.
Since EndA(AJ)op Mor∼ R, there exists an R-progenerator P such that EndA(AJ)op ' EndR(P)op. Therefore,

EndA(m)(J(m))op ' R(m)⊗R EndA(J)op, since J ∈ A-proj
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' R(m)⊗R EndR(P)op ' EndR(m)(P(m))op, since P ∈ R-proj .

Since the functor R(m)⊗R− preserves finite direct sums, it preserves the progenerators, hence P(m) is an R(m)-
progenerator and EndA(m)(J(m))op Mor∼ R(m). So, J(m) is split heredity in A(m). Since R(m) is a field, J(m)op is
split heredity in A(m)op. In particular, J(m) is projective as right A(m)-module for every maximal ideal m of R.
By Theorem 1.1.51, J is projective as right A-module.

Consider L ∈M (A) such that imτL = J. By Proposition 1.5.22, EndR(HomA(L,A)) ' HomA(J,A). By
Remark 1.5.16, EndR(L) ' HomAop(Jop,A). Since both HomA(L,A) and L are R-progenerators, it follows that
addR HomA(L,A) = addR L, thus EndR(HomA(L,A))op Mor∼ EndR(L)op.

Now applying HomA(J,−) and HomAop(Jop,−) to the exact sequence 0→ J → A→ A/J → 0 yields the
following exact sequences

0→ HomA(J,J)→ HomA(J,A)→ HomA(J,A/J)→ 0

0→ HomAop(Jop,Jop)→ HomAop(Jop,Aop)→ HomAop(Jop,Aop/Jop)→ 0.

By Lemma 1.5.14, HomAop(Jop,Aop/Jop) = HomA(J,A/J) = 0. So, we conclude that

HomA(J,J)' EndR(HomA(L,A)) and HomAop(Jop,Jop)' EndR(L).

Therefore, R Mor∼ EndA(J)op ' EndR(HomA(L,A))op Mor∼ EndR(L) ' EndAop(Jop)op. So, Jop is split heredity in
Aop.

Theorem 1.5.69. A is split quasi-hereditary with split heredity chain 0⊂ Jt ⊂ ·· · ⊂ J1 = A if and only if Aop is

split quasi-hereditary with split heredity chain 0⊂ Jop
t ⊂ ·· · ⊂ Jop

1 = Aop.

Proof. By Proposition 1.5.68, Ji/Ji+1 is split heredity in A/Ji+1 if and only if (Ji/Ji+1)
op = Jop

i /Jop
i+1 is split

heredity in (A/Ji+1)
op = Aop/Jop

i+1 for all 1≤ i≤ t.

In the following, we want to obtain further insight into what information about split heredity chains can we
gain from applying change of rings techniques on split heredity chains.

Lemma 1.5.70. Let R be a commutative Noetherian ring and let A be a projective Noetherian R-algebra. Assume

that A has two split heredity chains

0⊂ Jt ⊂ Jt−1 ⊂ ·· · ⊂ J1 = A (1.5.7.1)

0⊂ It ⊂ It−1 ⊂ ·· · ⊂ I1 = A. (1.5.7.2)

If J j(m) = I j(m) for every maximal ideal m of R, then J j = I j for all j.

Proof. Let J and I be split heredity ideals of A satisfying I(m) = J(m) for every maximal ideal m of R. Let ∆ and
L be the modules in M (A) associated with J and I, respectively. Let m be a maximal ideal of R. By Proposition
1.5.31, ∆(m) ' L(m). Therefore, we have surjective A-maps π∆ : ∆→ ∆(m), πL : L→ ∆(m). In particular,
π∆(m) and πL(m) are A(m)-isomorphisms. Since L ∈ A-proj there exists an A-homomorphism f ∈ HomA(L,∆)

satisfying π∆◦ f = πL. Therefore, f (m) is an isomorphism. It follows by Lemma 1.1.39, ∆m' Lm. The following
commutative diagram

∆m⊗Rm HomAm(∆m,Am) Am

Lm⊗Rm HomAm(Lm,Am) Am

τ∆m

fm⊗HomAm ( f−1
m ,Am)

τLm

(1.5.7.3)
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yields that Im = imτLm = imτ∆m = Jm. The choice of m is arbitrary, thus this equality holds for every maximal
ideal m of R. By Lemma 1.1.29, I = J. As Jt−1/Jt ∈ R-proj we can write

Jt−1/Jt(m)' Jt−1(m)/Jt(m)' It−1(m)/It(m)' It−1/It(m), (1.5.7.4)

for every maximal ideal m of R. we obtain Jt−1/Jt = It−1/Jt . It follows that Jt−1 = It−1. Continuing this
argument, by induction on t, we conclude the result.

Another interpretation of Observation 1.5.62 is the following statement.

Lemma 1.5.71. Let R be a commutative Noetherian ring. Let A be a split quasi-hereditary R-algebra and J be

a split heredity ideal in A. Then, for each maximal ideal m of R, the canonical map

Ext1A(A/J,J)(m)→ Ext1A(m)(A(m)/J(m),J(m)) (1.5.7.5)

is an isomorphism.

Proof. Consider the (A,R)-exact sequence 0→ J→ A→ A/J→ 0. Applying HomA(−,J) and the tensor product
R(m)⊗R− we obtain the commutative diagram with exact rows

J(m) EndA(J)(m) Ext1A(A/J,J)(m) 0

J(m) EndA(m)(J(m)) Ext1A(m)(A(m)/J(m),J(m)) 0

' . (1.5.7.6)

By diagram chasing, we obtain the result.

Hence, the extensions between the projective A/J-modules and the projective standard module of A commute
with functor R(m)⊗R−.

We would like know to deduce a parallel result to Theorem 1.5.56 now using split heredity chains. But, first,
we require the following lemma.

Lemma 1.5.72. Let K be a field and A a finite-dimensional K-algebra. If AeA is a split heredity ideal of A for

some primitive idempotent e ∈ A, then Ae ∈M (A).

Proof. Since AeA is projective as left ideal of A we obtain that the multiplication map Ae⊗eAe eA→ AeA is an
isomorphism (see Statement 7 [DR89b]). Since HomA(Ae,A) ' eA it remains to show that eAe = K. Again, as
AeA is projective, AeA ∈ addA Ae. By projectivization,

eA = eAeA = HomA(Ae,AeA) ∈ EndA(Ae)-proj = eAe-proj . (1.5.7.7)

The identification eA = eAeA is obtained by applying the tensor product eA⊗A − to the multiplication map
Ae⊗eAe eA→ AeA. On the other hand, we can write eA = eAe⊕ eA(1− e) as left eAe-modules. Thus, eA is an
eAe-progenerator. By Tensor-Hom adjunction,

EndA(AeA)' HomeAe(eA,HomA(Ae,Ae⊗eAe eA))' EndeAe(eA). (1.5.7.8)

Therefore, eAe is Morita equivalent to EndA(AeA). By assumption, EndA(AeA) is Morita equivalent to K. So,
eAe is Morita equivalent to K. Since e is primitive, Ae is indecomposable. Thus, eAe is local. So, we must have
eAe = K.
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Theorem 1.5.73. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. As-

sume that A admits a set of orthogonal idempotents {e1, . . . ,et} such that for each maximal ideal m of R

{e1(m), . . . ,et(m)} becomes a complete set of primitive orthogonal idempotents of A(m). Then, A is split quasi-

hereditary with split heredity chain

0⊂ AetA⊂ ·· · ⊂ A(e1 + · · ·+ et)A = A (1.5.7.9)

if and only if for each maximal ideal m of R, A(m) is split quasi-hereditary with split heredity chain

0⊂ A(m)et(m)A(m)⊂ ·· · ⊂ A(m)(e1(m)+ · · ·+ et(m))A(m) = A(m). (1.5.7.10)

Proof. Assume that A is split quasi-hereditary. Let m be a maximal ideal of R. As A/AetA∈ R-proj, we can write
AetA(m) ' A(m)et(m)A(m) ∈ A(m)-proj and A/AetA(m) ' A(m)/A(m)et(m)A(m). Also, for an EndA(AetA)-
progenerator P we can write R(m) ' EndEndA(Aet A)(P)(m) ' EndEndA(m)(A(m)et (m)A(m))(P(m)). Hence,
A(m)et(m)A(m) is a split heredity ideal of A(m). By going through the split heredity chain of A we obtain
that A(m) is split quasi-hereditary a with split heredity chain (1.5.7.10).

Conversely, assume that A(m) is split quasi-hereditary for every maximal ideal m of R with split heredity
chain 1.5.7.10. By Lemma 1.5.72, A(m)et(m) ∈M (A(m)) for every maximal ideal m of R. Since Aet is an
A-summand of A, the inclusion Aet → A remains exact under the functor R(m)⊗R−. So, Aet(m) = A(m)et(m)∈
M (A(m)). By Lemma 1.5.20, Aet ∈M (A). Hence, AeA = imτAe is a split heredity ideal of A. In particular,
A/AetA(m) ' A(m)/A(m)et(m)A(m). Continuing the same argument with A/AetA we obtain that A is split
quasi-hereditary with split hereditary chain (1.5.7.9).

1.5.8 Global dimension of split quasi-hereditary algebras

We will now show that split quasi-hereditary algebras over a commutative Noetherian ring have finite global
dimension. This approach also works with the non-split case.

Lemma 1.5.74. Let · · · → P2→ P1
α1−→ P0

α0−→M→ 0 be a projective A-resolution. Define N = kerαk−1. Then,

pdimA M ≤ k+pdimA N.

Proof. First notice that ExtlA(M,L)' Extl−k
A (imαk,L) = Extl−k

A (N,L) for any l ≥ 0 and L ∈ A-mod.
If pdimA N < ∞, then there is nothing to show. Assume pdimA N = s < ∞. Then,

Exts+k+1
A (M,L)' Exts+1

A (imαk,L) = Exts+1
A (N,L) = 0, ∀L ∈ A-mod .

Hence, pdimA M ≤ s+ k = pdimA N + k.

Theorem 1.5.75. Let A be a quasi-hereditary algebra over a Noetherian commutative ring R with heredity chain

0 = Jt+1 ⊂ Jt ⊂ ·· · ⊂ J1 = A. Then, gldimA≤ 2(t−1)+gldimR.

Proof. Consider M ∈ A-mod∩R-proj. By Theorem 1.5.9, A(m) is quasi-hereditary with heredity chain of size
t for any maximal ideal m of R. By [DR89b, Statement 9], it follows that gldimA(m) ≤ 2(t− 1). Consider a
projective A-resolution for M, · · · → P2 → P1

α1−→ P0
α0−→ M→ 0. Let N = kerα2(t−1)−1. Since M is projective

over R and Pi is projective over A we obtain imαi ∈ R-proj. In particular N ∈ R-proj. Applying −⊗R R(m) we
obtain by Lemma 1.2.21 the exact sequence

0→ N(m)→ P2(t−1)−1(m)→ ··· → P1(m)→ P0(m)→M(m)→ 0. (1.5.8.1)
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Since pdimA(m) M(m)≤ 2(t−1), N(m) is projective over A(m) for every maximal ideal m of R. Therefore, N is
projective A-module. Hence, pdimM ≤ 2(t−1).

Now consider M an arbitrary module in A-mod. Consider a projective A-resolution for M, · · · → P2 →
P1

α1−→ P0
α0−→ M → 0. Define K = kerαr−1, r = gldimR. Then, we must have that K is projective over R as

pdimR M ≤ r and all Pi are projective over R. As we have seen pdimA K ≤ 2(t−1). By Lemma 1.5.74, it follows
that pdimA M ≤ 2(t−1)+ r. Therefore, gldimA≤ 2(t−1)+gldimR.

Corollary 1.5.76. Let A be a split quasi-hereditary algebra over a commutative Noetherian ring R with split

heredity chain 0 = Jt+1 ⊂ Jt ⊂ ·· · ⊂ J1 = A. Then, gldimA≤ 2(t−1)+gldimR.

It follows that if R is a regular ring with finite Krull dimension, then a split quasi-hereditary algebra over
R has finite global dimension. Of course, this can fail if R has infinite global dimension. In such a case, we
just need to consider A = R. For rings R with finite global dimension, we can give a precise value of the global
dimension of a split quasi-hereditary algebra in terms of the global dimension of the finite-dimensional algebras
A(m).

Theorem 1.5.77. Let R be a commutative Noetherian ring with finite global dimension. Let A be a split quasi-

hereditary R-algebra. Then,

gldimA = dimR+ sup{gldimA(m) : m ∈MaxSpecR}.

Proof. We can assume that R is a local commutative Noetherian ring with unique maximal ideal m. By the proof
of Theorem 1.5.75, we obtain gldimA ≤ dimR+ sup{gldimA(m) : m ∈ MaxSpecR}. Consider the surjective
map A→ A(m). Let M ∈ A-mod. By Theorem 10.75 of [Rot09], we can consider the spectral sequence

E i, j
2 = ExtiA(m)(M,Ext j

A(A(m),A))⇒ Exti+ j
A (M,A). (1.5.8.2)

As A ∈ R-proj, we can write

Ext j
A(A(m),A)' Ext j

A⊗RR(R(m)⊗R A,A⊗R R)' A⊗R Ext j
R(R(m),R), ∀ j ≥ 0. (1.5.8.3)

By Theorem 1.1.59, ExtdimR
R (R(m),R) 6= 0. Since A is faithful as R-module we obtain that ExtdimR

A (A(m),A) 6=
0. Pick M = DA(m) regarded as A-module. Then, gldimA(m) = pdimA(m) DA(m) and denote by n the value
gldimA(m). We claim that En,dimR

2 6= 0. In fact, we can see by induction that En,dimR
k = En,dimR

2 for all k ≥ 2.
Since ExtdimR

R (R(m),R) ∈ R(m)-Mod we obtain that ExtdimR
A (A(m),A) ∈ A(m)-Proj. Therefore,

En,dimR
2 = ExtnA(m)(DA(m),ExtdimR

A (A(m),A)) 6= 0. (1.5.8.4)

Hence, En,dimR
∞ 6= 0. So, Extn+dimR

A (DA(m),A) 6= 0.

Using the next Lemma, we can show that a split quasi-hereditary algebra has finite global dimension if and
only if the ground ring has finite global dimension.

Lemma 1.5.78. Let A be projective Noetherian R-algebra and let J be a split heredity ideal in A. Then,

ExtiA(M,N)' ExtiA/J(M,N) for all M,N ∈ A/J-mod and i≥ 0.

Proof. For i = 0, the result is clear since A/J-mod is a full subcategory of A-mod. Consider the exact sequence

0→ J→ A→ A/J→ 0. (1.5.8.5)
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For any A/J-module N, we deduce Exti−1
A (J,N) ' ExtiA(A/J,N), i ≥ 2 by applying the functor HomA(−,N)

on (1.5.8.5). J is projective over A, thus ExtiA(A/J,N) = 0, i ≥ 2. Furthermore, by the same argument, the
induced map HomA(J,N)→ Ext1A(A/J,N) is surjective. By Lemma 1.5.14, HomA(J,N) = 0. This implies that
Ext1A(A/J,N) also vanishes. So, we conclude that free A/J-modules are acyclic for the functor HomA(−,N),
for every N ∈ A/J-mod. Thus, we can use A/J-free resolutions of M ∈ A/J-mod to compute Exti≥0

A (M,N).
Moreover, let M• be an A/J-free resolution of M then using the fact that A/J is a full subcategory of A-mod we
conclude ExtiA(M,N) = H i(HomA(M•,N)) = H i(HomA/J(M•,N)) = ExtiA/J(M,N), i≥ 0.

Proposition 1.5.79. Let A be a split quasi-hereditary algebra over a commutative Noetherian ring R with split

heredity chain 0 = Jt+1 ⊂ Jt ⊂ ·· · ⊂ J1 = A. If gldimA <+∞, then gldimR <+∞. Moreover, R is a regular ring

with finite Krull dimension.

Proof. By definition, A/J2 = J1/J2 is a split heredity ideal of A/J2. Therefore, EndA/J2(A/J2)
op ' A/J2 is

Morita equivalent to R. By induction on the split heredity chain together with Lemma 1.5.78 it follows that
gldimA/J2 ≤ gldimA. Thus, the result follows for R.

1.5.9 Dlab and Ringel standardization

The full subcategory of A-mod F (∆̃) completely characterizes the split quasi-hereditary algebra A. In fact, we
have the following.

Proposition 1.5.80. Let (A-mod,{∆(λ )λ∈Λ}) and (B-mod,{Ω(χ)χ∈X}) be two split highest weight categories.

If there is an exact equivalence between F (∆̃) and F (Ω̃), then A-mod and B-mod are equivalent as split highest

weight categories.

Proof. Let H : F (∆̃)→F (Ω̃) and G : F (Ω̃)→F (∆̃) be exact equivalences. We claim that there is a bijection
φ : Λ→ X such that H∆(λ )'Ω(φ(λ ))⊗R Uλ where Uλ ∈ Pic(R) and HP(λ ) is a projective B-module. We will
proceed by induction on |Λ|. Let λ ∈ Λ be a maximal element. By assumption, H∆(λ ) has an Ω-filtration

0 = Mt+1 ⊂Mt ⊂ ·· · ⊂M1 = H∆(λ ), where Mi/Mi+1 'Ωi⊗R Fi, Fi ∈ R-proj . (1.5.9.1)

Consider the exact sequence

0→Mt → H∆(λ )→M1/Mt → 0. (1.5.9.2)

Applying the functor G we obtain the exact sequence (since all elements belong to F (Ω̃))

0→ GMt → ∆(λ )
π−→ G(M1/Mt)→ 0. (1.5.9.3)

There are two cases. Either π = 0 or π 6= 0. If π = 0, then GMt ' ∆(λ ) and G(M1/Mt) = 0. Thus, M1/Mt '
HG(M1/Mt) = 0 and the filtration (1.5.9.1) collapses to

Ωt ⊗R Ft 'Mt = · · ·= M1 = H∆(λ ). (1.5.9.4)

Now assume that π 6= 0.
Consider the ∆-filtration of G(M1/Mt)

0⊂ Nλ ⊂ ·· · ⊂ Nµ = G(M1/Mt),where µ is minimal (1.5.9.5)

and Nλ = ∆(λ )⊗R Uλ , Uλ ∈ R-proj. We have a diagram
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0 ∆(λ )⊗R Uλ G(M1/Mt) G(M1/Mt)/Nλ 0

∆(λ )

f s

π

As λ is maximal HomA(∆(λ ),G(M1/Mt)/Nλ ) = 0. Moreover if s 6= 0, then s ◦ π 6= 0. This means that
G(M1/Mt)/Nλ = 0. Thus, f is an isomorphism. Let m be a maximal ideal in R. Applying R(m)⊗R− we
obtain that π(m) : ∆(λ )(m)→ ∆(λ )(m)⊗R(m) Uλ (m) is surjective. By comparing dimensions, we deduce that
Uλ (m)' R(m) for every maximal ideal in R and π(m) is an isomorphism for every maximal ideal m in R.

As G(M1/Mt) ∈ R-proj, (1.5.9.3) is (A,R)-exact. Thus, the functor R(m)⊗R− is exact on (1.5.9.3). There-
fore, GMt(m) = 0 for every maximal ideal m in R. Hence, GMt = 0. Finally applying H, we obtain Mt = 0. By
going through all modules Mi in the filtration of H∆(λ ) we deduce that H∆(λ ) = Ωx⊗R Fλ .

Consider a short exact sequence (given by definition of the standard module Ωx)

0→Cx→ Qx→Ωx→ 0. (1.5.9.6)

Applying the exact functor −⊗R Fλ and then G yields the exact sequence

0→ G(Cx⊗R Fλ )→ G(Qx⊗R Fλ )→ GH∆(λ )→ 0. (1.5.9.7)

Since GH∆(λ ) ' ∆(λ ) ∈ A-proj, this sequence splits over A. Therefore, by applying H we obtain the B-split
exact sequence

0→ HG(Cx⊗R Fλ )→ HG(Qx⊗R Fλ )→ HGH∆(λ )→ 0 (1.5.9.8)

which is equivalent to

0→Cx⊗R Fλ → Qx⊗R Fλ → H∆(λ )→ 0, (1.5.9.9)

and hence it is B-split. In particular, H∆(λ ) is projective over B. Thus, for every maximal ideal m in R, Ωx(m) is
a B(m)-summand of Ω(m)⊗R(m) Fλ (m)' Ω⊗R Fλ (m) which is projective over B(m). By Theorem 1.1.51, Ωx

is projective over B since Ωx ∈ R-proj. In view of Proposition 1.5.61 and the short exact sequence (1.5.9.6), the
module Qx could have been chosen to be Ωx and thus x ∈ X is maximal. Reversing the roles of ∆(λ ) and Ωx and
applying the same argument we obtain GΩx = ∆(µ)⊗R Ux, Ux ∈ R-proj. We have

H∆(λ )'Ωx⊗R Fλ ' HGΩx⊗R Fλ ' H(∆(µ)⊗R Ux)⊗R Fλ ' H(∆(µ)⊗R Ux⊗R Fλ ). (1.5.9.10)

Therefore, ∆(λ ) ' ∆(µ)⊗R Ux⊗R Fλ . It follows that µ = λ and Ux⊗R Fλ ' R. Notice that if n = 1 there was
nothing more to show. Assume that n > 1. There is an exact equivalence between F (∆̃µ 6=λ ) and F (Ω̃y6=x).
Assume by contradiction that Ωx appears in the filtration of HM for some M ∈F (∆̃µ 6=λ ). Then, there is an exact
sequence with 0 6= Sx ∈ R-proj

0→Ωx⊗R Sx→ HM→ HM/Ωx⊗R Sx→ 0. (1.5.9.11)

Applying G yields the exact sequence

0→ ∆(λ )⊗R Ux⊗R Sx→M→ G(HM/Ωx⊗R Sx)→ 0. (1.5.9.12)

By assumption, we must have Ux⊗R Sx = 0, and thus Sx = 0 since ∆(λ ) is not a factor of M. By induction, there
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is a bijective map φ : Λ\{λ} → X\{x} satisfying H∆(µ) ' Ω(φ(µ))⊗R Uµ where Uµ ∈ Pic(R) and HPA/J(µ)

is a projective B-module. We can extend φ to the bijective map Λ→ X given by

φ(µ) =

φ(µ) if µ 6= λ

x if µ = λ .
(1.5.9.13)

It remains to show that HP(µ) is projective over B. According to Lemma 1.5.46, we have the short exact
sequence

0→ ∆(λ )⊗R DSµ → P(µ)→ PA/J(µ)→ 0. (1.5.9.14)

Applying H yields the exact sequence

0→Ωx⊗R Uλ ⊗R DSµ → HP(µ)→ HPA/J(µ)→ 0. (1.5.9.15)

For each maximal ideal m in R, we have the exact sequence

0→ (Ωx)m⊗Rm DSµm→ HP(µ)m→ HPA/J(µ)m→ 0. (1.5.9.16)

Note that this short exact sequence corresponds to the image of the surjective map

Sµm � Ext1A(PA/J(µ),∆(λ ))m ' Ext1B(HPA/J(µ),Ωx⊗R Uλ )m ' Ext1Bm
(HPA/J(µ)m,Ωxm). (1.5.9.17)

through the isomorphism

HomRm(Sµm,Ext1Bm
(HPA/J(µ)m,Ωxm))' HomR(Sµ ,Ext1B(HPA/J(µ),Ωx⊗R Uλ ))m

' HomR(Sµ ,Ext1A(PA/J(µ),∆(λ ))m→ Ext1A(PA/J(µ),∆(λ )⊗R DSµ)m ' Ext1Bm
(HPA/J(µ)m,Ωxm⊗Rm DSµm).

By Lemma 1.5.46, HP(µ)m ∈ Bm-proj for every maximal ideal m in R. Consequently, HP(µ) ∈ B-proj.
We conclude that H

⊕
λ∈Λ

P(λ ) is projective over B. Since
⊕

λ∈Λ

P(λ ) is an A-progenerator, there exists K ∈

A-mod and t > 0 such that
(⊕

λ∈Λ

P(λ )
)t

' A
⊕

K. Hence, H
(⊕

λ∈Λ

P(λ )
)t

' HA
⊕

HK. Thus, HA is projective

over B. In the same way, G preserves projectives. In particular, GB is projective over A. Therefore, GB
⊕

K′ ' As

for some s > 0. Applying H yields B
⊕

HK′ ' HAs. Therefore, HA is a B-progenerator.
So, the functor HomB(HA,−) : B-mod→ A-mod is an equivalence of categories. Moreover, for any x ∈ X ,

Ωx = H∆(φ−1(x))⊗R Ux. Then,

HomB(HA,Ωx)' HomB(HA,H∆(φ−1(x))⊗R Ux)' HomB(HA,H∆(φ−1(x)))⊗R Ux (1.5.9.18)

' HomA(A,∆(φ−1(x)))⊗R Ux ' ∆(φ−1(x))⊗R Ux. (1.5.9.19)

Thus, the functor HomB(HA,−) is an equivalence of split highest weight categories.

Remark 1.5.81. The same idea can be used to deduce that if there is an exact equivalence between F (∆) and
F (Ω), then A and B are equivalent as split highest weight categories. 4

Denote by H the exact equivalence F (∆)→F (Ω). By Proposition 1.5.51, there is a filtration (1.5.9.1) with
Fi free R-module of finite rank. Using the same argument, we obtain H∆(λ )'Ωx⊗R Fx with Fx(m)' R(m) for
every maximal ideal m in R, and thus FX ' R. Another difference in the proof of this statement is the choice of
Sx. Here Sx is a free R-module of finite rank. In this case, the functor HomB(HA,−) : B-mod→ A-mod sends Ωx
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to ∆(φ−1(x)).
Dlab and Ringel showed how to assign a quasi-hereditary algebra to an abelian K-category for some field

K (see [DR92]). Here we extend their approach to any abelian R-category, where R can be any commutative
Noetherian regular ring with Krull dimension at most one, using the same ideas as in [DR92]. In particular, this
applies to all abelian categories that admit a certain collection of objects. This is because we can view every
abelian category as an abelian Z-category.

Definition 1.5.82. Let C be an abelian R-category and Θ = {θ(i) : 1 ≤ i ≤ n} a finite set of objects of C . The
set Θ is said to be split standardizable provided the following conditions are satisfied:

(i) HomC (θ(i),θ( j)) = 0 for 1≤ j < i≤ n;

(ii) HomC (θ(i),θ( j)) ∈ R-proj for 1≤ i≤ j ≤ n;

(iii) Ext1C (θ(i),θ( j)) = 0 for 1≤ j ≤ i≤ n; Ext1C (θ(i),θ( j)) ∈ R-mod for 1≤ i, j ≤ n;

(iv) EndC (θ(i)) = R for 1≤ i≤ n.

Note that for subcategories C of B-mod for a finite-dimensional K-algebra B over a splitting field K this
definition of split standardizable coincides with the usual one of Dlab and Ringel.

We denote F (Θ) the full subcategory of C whose objects have a filtration by objects in Θ.

Theorem 1.5.83. Let R be a regular ring with Krull dimension at most one. Let Θ be a split standardizable set of

objects of an abelian R-category C with enough projectives. Then, there exists a split quasi-hereditary algebra

A, unique up to split highest weight category equivalence, such that the subcategory F (Θ) of C and the category

F (∆) are equivalent.

Proof. The idea used here is essentially the same as in the proof of Dlab-Ringel for the field case ([DR92,
Theorem 3]), having, of course, differences regarding the arguments based on the ground ring R. First we
construct Ext-projective objects for F (Θ), Pθ (i), together with an exact sequence

0→ K(i)→ Pθ (i)→ θ(i)→ 0 (1.5.9.20)

and K(i) ∈F (θ(i+1), · · · ,θ(n)) satisfying Ext1C (Pθ (i),θ( j)) = 0, 1≤ j ≤ n and HomC (Pθ (i),θ( j)) ∈ R-proj.
More precisely, we will construct for each 1≤ i≤ n, by induction on m≥ i, objects P(i,m), i≤m≤ n, such that
there is an exact sequence

0→ K(i,m)→ P(i,m)→ θ(i)→ 0 (1.5.9.21)

with K(i,m)∈F (θ(i+1), · · · ,θ(m)) and Ext1C (P(i,m),θ( j))= 0,1≤ j≤m and HomC (P(i,m),θ( j))∈R-proj,
1≤ j ≤ n.

Assume m = i. Let P(i, i) = θ(i), K(i, i) = 0. We have Ext1C (θ(i),θ( j)) = 0, j ≤ i by condition (iii) of split
standardizable set. By condition 1.5.82(ii), we have HomC (P(i, i),θ( j)) ∈ R-proj for 1 ≤ j ≤ n. Now assume
m> i and that P(i,m−1) and K(i,m−1) are already defined. Note that by condition 1.5.82(iv), EndC (θ(i))' R.

We need the following observation: Ext1C (X ,θ(i)) ∈ R-mod for every X ∈F (Θ). In fact, we can show it by
induction on the size of a filtration of X . If s = 1, then it follows by condition 1.5.82(iii). Consider the exact
sequence

0→ X ′→ X → θ( j)→ 0. (1.5.9.22)
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Applying HomC (−,θ(i)) yields the exact sequence

Ext1C (θ( j),θ(i))→ Ext1C (X ,θ(i))→ Ext1C (X
′,θ(i)). (1.5.9.23)

This yields an exact sequence

0→ N→ Ext1C (X ,θ(i))→M→ 0 (1.5.9.24)

where N denotes the image of Ext1C (θ( j),θ(i)) → Ext1C (X ,θ(i)) and M denotes the image of
Ext1C (X ,θ(i))→ Ext1C (X

′,θ(i)). As Ext1C (θ( j),θ(i)) ∈ R-mod by exactness there is a surjective map

Ext1C (θ( j),θ(i))� N (1.5.9.25)

and consequently N ∈ R-mod. By induction, Ext1C (X
′,θ(i)) ∈ R-mod. As R is Noetherian, and since there is a

mono M ↪→ Ext1C (X
′,θ(i)), it follows that M ∈ R-mod. Therefore, Ext1C (X ,θ(i)) ∈ R-mod. So, we can consider

a free R-module of finite rank F = Rn such that there exists a surjective map F � Ext1C (P(i,m),θ(i)).
By Lemma 1.5.44, there is an exact sequence

0→ θ(m)n k−→ P(i,m)
π−→ P(i,m−1)→ 0 (1.5.9.26)

and Ext1C (P(i,m),θ(m)) = 0. Let 1≤ j < m. Applying HomC (−,θ( j)) we obtain the exact sequence

0 = HomC (θ(m)n,θ( j))→ Ext1C (P(i,m−1),θ( j))→ Ext1C (P(i,m),θ( j))→ 0. (1.5.9.27)

By induction, Ext1C (P(i,m − 1),θ( j)) = 0. Consequently, Ext1C (P(i,m),θ( j)) = 0. Therefore,
Ext1C (P(i,m),θ( j)) = 0 for every 1 ≤ j ≤ m. By induction, HomC (P(i,m−1),θ( j)) ∈ R-proj for every j. For
each j, applying the functor HomC (−,θ( j)) yields the exact sequence

0→ HomC (P(i,m−1),θ( j))→ HomC (P(i,m),θ( j))→ N j→ 0 (1.5.9.28)

where N j is a submodule of HomC (θ(m)n,θ( j)) ∈ R-proj. Because of dimR ≤ 1, N j ∈ R-proj. It follows that
HomC (P(i,m),θ( j)) ∈ R-proj. Consider the exact sequence

0→ K(i,m−1)
ik−→ P(i,m−1)

πm−1−−−→ θ(i)→ 0, (1.5.9.29)

with K(i,m− 1) ∈ F (θ(i + 1), . . . ,θ(m− 1)). Let (K(i,m),υ) be the kernel of (πm−1 ◦ π). Now since
πm−1 ◦π ◦υ = 0, there exists by the uniqueness of kernel of πm−1 a unique map t ∈ HomC (K(i,m),K(i,m−1))
such that π ◦υ = ik ◦ t. Hence, we have a commutative diagram

0 K(i,m) P(i,m) θ(i) 0

0 K(i,m−1) P(i,m−1) θ(i) 0

υ

t

π

πm−1◦π

ik πm−1

.

By Snake Lemma, there exists an exact sequence

0→ kerπ → ker t→ coker id = 0→ coker t→ 0. (1.5.9.30)

In particular, we have the exact sequence

0→ θ(m)n→ K(i,m)
t−→ K(i,m−1)→ 0. (1.5.9.31)
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It follows that K(i,m) ∈F (θ(i+1), . . . ,θ(m)). This finishes the construction of P(i,m). Define Pθ (i) = P(i,n).
Fix Q =

⊕n
i=1 Pθ (i).

We claim that, for any X ∈F (Θ), there exists an exact sequence

0→ X ′→ Q0→ X → 0, Q0 ∈ addQ, X ′ ∈F (Θ). (1.5.9.32)

We shall proceed by induction on the size of filtration of X ∈ F (Θ). If s = 1, then X = θ(i) for some
1≤ i≤ n. Then, choose Q0 = Pθ (i). Assume s > 1 and that the result holds for objects with filtration with a size
less than s. Let X be an object which admits a filtration of size s by objects in Θ. Consider the exact sequence

0→ X ′ ι−→ X π−→ θ(i)→ 0. (1.5.9.33)

By induction, there is an exact sequence

0→C→ Q0
p−→ X ′→ 0. (1.5.9.34)

The reasoning is exactly the same argument as in the Horseshoe’s Lemma. By construction of Pθ (i),
Ext1C (Pθ (i),X ′) = 0 since X ′ ∈F (Θ). Applying HomC (Pθ (i),−) yields the surjective map

HomC (Pθ (i),X)→ HomC (Pθ (i),θ(i))→ ExtC (Pθ (i),X ′) = 0. (1.5.9.35)

Then, there exists ρ ∈ HomC (Pθ (i),X) such that π ◦ ρ = πi, where π denotes the map Pθ (i)→ θ(i). By the
biproduct definition there is a unique map ϖ ∈HomC (Q0⊕Pθ (i),X) making the following diagram commutative

Q0 X Pθ (i)

Q0⊕Pθ (i)

ι◦p

iQ0

ρ

iPθ

ϖ .

In particular,

π ◦ϖ = π ◦ϖ ◦ iPθ
◦πPθ

+π ◦ϖ ◦ iQ0 ◦πQ0 = π ◦ρ ◦πPθ
+π ◦ ι ◦ p◦πQ0 = πi ◦πPθ

. (1.5.9.36)

Hence, we have the following commutative diagram

0 X ′ X θ(i) 0

0 Q0 Q0⊕Pθ (i) Pθ (i) 0

ι π

p

iQ0

ϖ

πPθ

πi .

By Snake Lemma, there exists an exact sequence

0→ ker p→ kerϖ → kerπi→ 0→ cokerϖ → 0. (1.5.9.37)

As K(i)' kerπi, and ker p =C ∈F (Θ) we obtain kerϖ ∈F (Θ). This completes the proof of our claim.
Let A = EndC (Q). By construction HomC (Pθ (i),θ( j)) ∈ R-proj. Thus, HomC (Q,θ( j)) ∈ R-proj for ev-

ery j. Consequently, HomC (Q,X) ∈ R-proj for every X ∈ F (Θ). Since Q ∈ F (Θ), A is projective Noethe-
rian R-algebra. Define the functor G = HomC (Q,−) : C → A-Mod. By this discussion GX ∈ R-proj for every
X ∈F (Θ). Again, by the construction of Q,

Ext1C (Pθ (i),θ( j)) = 0,∀ j =⇒ Ext1C (Q,θ( j))'⊕Ext1C (Pθ (i),θ( j)) = 0. (1.5.9.38)
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By induction on the size of filtration of X ∈ F (Θ) and applying HomC (Q,−) to the exact sequences arising
from such filtration, we deduce that Ext1C (Q,X) = 0 for all X ∈F (Θ). Therefore, the functor G : C → A-Mod
is exact on the exact sequences 0→ X → Y → Z→ 0 in C with X ∈F (Θ).

Define PA(i) = GPθ (i) and ∆(i) = Gθ(i). In particular, PA(i),∆(i) ∈ R-proj. Since G is exact on F (Θ), it
takes objects in F (Θ) to modules in F (∆). We shall now prove that the restriction functor G : F (Θ)→F (∆)

is faithful.
Let ψ ∈ HomF (Θ)(X ,Y ) such that Gψ = 0. There exists an exact sequence by (1.5.9.32),

Q1(X) Q0(X) X 0

K0(X)

π ′X

qx

πX

υx , (1.5.9.39)

with K0(X) ∈F (Θ),Q0(X),Q1(X) ∈ addQ. By the same reason we obtain a similar diagram for Y . By pro-
jectivization, G|addQ

: addQ→ A-proj is an equivalence. Because Ext1C (Q0(X),K0(Y )) = 0, the homomorphism
HomC (Q0(X),Q0(Y ))→ HomC (Q0(X),Y ) is surjective. So, there exists ψ0 ∈ HomC (Q0(X),Q0(Y )) such that
πY ◦ψ0 = ψ ◦πX . So, we obtain a commutative diagram

Q1(X) Q0(X) X 0

K0(X)

K0(Y )

Q1(Y ) Q0(Y ) Y 0

qX

πX

ψ0 ψ

υX

υYqY

πY

.

Applying G we obtain

0 = Gψ ◦GπX = G(ψ ◦πX ) = G(πY ◦ψ0) = GπY ◦Gψ0. (1.5.9.40)

Since the sequence

0→ GK0(Y )
GυY−−→ GQ0(Y )

GπY−−→ GY → 0 (1.5.9.41)

is exact, then GυY is kernel of GπY . Hence, by the universal property of the kernel, there exists an A-homomorphism
l ∈ HomA(GQ0(X),GK0(Y )) such that GυY ◦ l = Gψ0. By projectivization, GQ0(X) ∈ A-proj. Therefore, there
exists a map ς ∈HomA(GQ0(X),GQ1(Y )) such that GqY ◦ς = l. Since G is full and faithful on addQ there exists
a unique map ς ′ ∈ HomC (Q0(X),Q1(Y )) such that Gς ′ = ς . Thus,

G(υY ◦qY ◦ ς
′) = G(υY ◦qY )◦Gς

′ = GυY ◦ l = Gψ0. (1.5.9.42)

Since G is full and faithful on addQ we get

υY ◦qY ◦ ς
′ = ψ0 =⇒ ψ ◦πX = πY ◦ψ0 = πY ◦υY ◦qY ◦ ς

′ = 0 =⇒ ψ = 0, (1.5.9.43)

since πX is an epimorphism. Thus, G|F (Θ)
is faithful.

We now shall prove that G : F (Θ)→F (∆) is full. Let X ,Y ∈F (Θ) and f ′ ∈HomA(GX ,GY ). Applying G
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to the exact sequence (1.5.9.39) and the one for Y , we obtain projective presentations for GX and GY , respectively.
As GQ0(X) ∈ A-proj, there exists a map g′ ∈ HomA(Q0(X),Q0(Y )) such that GπY ◦g′ = f ′ ◦GπX . In particular,

GπY ◦g′ ◦GυX = 0. (1.5.9.44)

So, there exists a unique map, by the uniqueness of kernel of GπY , τ ∈ HomA(GK0(X),GK0(Y )) such that
g′ ◦GυX = GυY ◦ τ . Since GQ1(X) ∈ A-proj, there exists a map h′ ∈ HomA(GQ1(X),GQ1(Y )) such that
GqY ◦h′ = τ ◦GqX . Moreover,

g′ ◦G(υX ◦qX ) = GυY ◦ τ ◦GqX = GυY ◦GqY ◦h′. (1.5.9.45)

This means that we have constructed the following commutative diagram

GQ1(X) GQ0(X) GX 0

GQ1(Y ) GQO(Y ) GY 0

G(υX◦qX )

h′

GπX

g′ f ′

G(υY ◦qY ) GπY

.

Since G is full and faithful on addQ there exists g ∈ HomC (Q0(X),Q0(Y )) and h ∈ HomC (Q1(X),Q1(Y )) such
that Gg = g′ and Gh = h′. Therefore, the following diagram is commutative:

Q1(X) Q0(X) X 0

Q1(Y ) QO(Y ) Y 0

υX◦qX

h

πX

g

υY ◦qY πY

.

In particular,

πY ◦g◦υX ◦qX = πY ◦υY ◦h = 0 =⇒ πY ◦g◦υX = 0. (1.5.9.46)

As πX is the cokernel of υX , there exists a unique map f ∈ HomC (X ,Y ) such that f ◦πX = πY ◦g. Thus,

G f ◦GπX = GπY ◦Gg = GπY ◦g′ = f ′ ◦GπX =⇒ G f = f ′. (1.5.9.47)

Hence, GF (Θ) is full.
The next step will be to show that (A-mod,∆) is a split highest weight category. As we discussed earlier

∆(i) = Gθ(i) ∈ R-proj. If HomA(∆(i),∆( j)) 6= 0, then

0 6= HomA(∆(i),∆( j)) = HomA(Gθ(i),Gθ( j))' HomC (θ(i),θ( j)). (1.5.9.48)

So, i≤ j by definition of split standardizable set. Moreover,

EndA(∆(i))' EndA(Gθ(i))' EndC (θ(i))' R. (1.5.9.49)

Consider the exact sequence

0→ K(i)→ Pθ (i)→ θ(i)→ 0 (1.5.9.50)

and K(i) ∈F (θ(i+1), . . . ,θ(n)). Applying G we get the exact sequence

0→ GK(i)→ PA(i)→ ∆(i)→ 0 (1.5.9.51)
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with GK(i) ∈F (∆(i+ 1), . . . ,∆(i)) and PA(i) ∈ A-proj. Note that ⊕n
i=1PA(i) = ⊕n

i=1GPθ (i) = GQ. By projec-
tivization, every projective A-module is given in the form HX , X ∈ addQ. Therefore, HQ is an A-progenerator.
By Corollary 1.5.43, (A-mod,∆) is split highest weight category.

It remains to show that G : F (Θ)→ F (∆) is essentially surjective. Let 0 6= M ∈ F (∆). Then, M has a
∆-filtration of size s. We shall prove by induction on the size of ∆-filtration of a module that M ' GX for some
X ∈F (Θ). Assume s = 1. Then, M ' ∆( j)' Gθ( j). Assume that the claim holds for modules with filtrations
of size s−1, s > 1. Let M have a filtration of size s. Then, there exists an exact sequence

0→ ∆( j) υ−→M π−→M′→ 0 (1.5.9.52)

and M′ has a filtration of size s− 1. By induction, there exists X ′ ∈ F (Θ) such that GX ′ ' M′. Consider a
projective presentation of GX ′ over A

0→ GK0(X ′)
Gk−→ GQ0(X ′)

Gp−→ GX ′→ 0, Q0(X ′) ∈ addQ, K0(X ′) ∈F (Θ), (1.5.9.53)

p ∈ HomC (Q0(X ′),X ′) and k ∈ HomC (K0(X ′),Q0(X ′)). Since GQ0(X ′) ∈ A-proj there exists
z ∈ HomA(GQ0(X ′),M) such that π ◦ z = Gp. Consider the A-homomorphism o : ∆( j)

⊕
GQ0(X ′)→M, given

by (x,y) 7→ υ(x)+ z(y). Note that

π ◦o(x,y) = π ◦υ(x)+π ◦ z(y) = Gp(y) = Gp◦πGQ0(x,y), (x,y) ∈ ∆( j)⊕GQ0(X ′). (1.5.9.54)

Moreover,

π ◦o◦ i∆ = Gp◦πGQ0 ◦ i∆ = 0 (1.5.9.55)

By the uniqueness of kernel of π , there exists a unique map l ∈HomC (∆( j),∆( j)) such that o◦ i∆ = υ ◦ l. Hence
we have a commutative diagram

0 ∆( j) M GX ′ 0

0 ∆( j) ∆( j)
⊕

GQ0(X ′) GQ0(X ′) 0

υ π

l

i∆

o

πGQ0

Gp .

Since υ ◦ l = o ◦ i∆ = υ and GX ′ ∈F (∆) ⊂ R-proj, it follows that υ is (A,R)-monomorphism. Hence, there is
a ∈ HomR(M,∆( j)) such that

a◦υ = id∆( j) =⇒ a◦υ ◦ l = a◦υ = id∆( j) . (1.5.9.56)

Therefore, l is (A,R)-mono. As ∆( j) ∈ R-proj, it follows by Nakayama’s Lemma that l is an isomorphism. By
Snake Lemma, there exists an exact sequence

0→ kero→ kerGp→ 0→ cokero→ cokerGp = 0. (1.5.9.57)

Hence, o is surjective and kero' GK0(X ′). In particular, (as GF (Θ) is full and faithful) there exists a monomor-
phism γ ∈ HomC (K0(X ′),θ( j)

⊕
Q0(X ′)) such that the following sequence is exact:

0→ GK0(X ′)
Gγ−→ ∆( j)

⊕
GQ0(X ′)

o−→M→ 0. (1.5.9.58)

Furthermore, since the isomorphism GK0(X ′) ' kerGp ' kero arises from the Snake Lemma, we have the
following condition πGQ0 ◦Gγ = Gk ◦α where α ∈ HomA(GK0(X ′),GK0(X ′)) is an isomorphism.
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Let (X ,w) be the cokernel of γ . Applying G, (GX , Gw) is the cokernel of Gγ . By the uniqueness of cokernel
of Gγ , it follows that GX 'M. Since G is full and faithful on F (Θ) we obtain πQ0 ◦ γ = k ◦α ′ with Gα ′ = α .
By the uniqueness of cokernel of γ there exists a unique map β ∈ HomC (X ,X ′) such that β ◦w = p◦πQ0 . This
means that we have a commutative diagram

0 K0(X ′) θ( j)
⊕

Q0(X ′) X 0

0 K0(X ′) Q0(X ′) X ′ 0

γ

α ′

w

πQ0 β

k p

.

By Snake Lemma there exists an exact sequence

0→ kerπQ0 → kerβ → cokerα
′ = 0→ cokerβ → 0. (1.5.9.59)

Thus, β is an epimorphism and kerβ ' kerπQ0 = θ( j). So, we have an exact sequence

0→ θ( j)→ X
β−→ X ′→ 0. (1.5.9.60)

As X ′,θ( j) ∈F (Θ), X belongs in F (Θ). This concludes our claim that GF (Θ) is essentially surjective. We
conclude that G : F (Θ)→ (∆) is an equivalence of categories.

If there exists another split quasi-hereditary algebra A′ such that there is an exact equivalence of categories
F (Θ)→F (∆A′), then there is an exact equivalence F (∆)→F (∆A′). By Remark 1.5.81, A and A′ are equiva-
lent as split highest weight categories.

1.5.10 Split quasi-hereditary algebras and the existence of projective covers

Recall that a ring A is called semi-perfect if every finitely generated left A-module has a projective cover.

Theorem 1.5.84. Every split quasi-hereditary algebra over a local commutative Noetherian ring is semi-perfect.

Proof. According to Proposition 1.5.64, we can choose P(λ ) in 1.5.32(iv) so that EndA(P(λ )) is local. Hence,⊕
λ∈Λ

P(λ ) is a direct sum of modules with local endomorphism rings. Let AA'Q0
⊕
· · ·
⊕

Qt be a decomposition

into indecomposable A-modules of regular module A. By Corollary 1.5.43,
⊕

λ∈Λ

P(λ ) is an A-progenerator. Thus,

there is K ∈ A-mod such that (⊕
λ∈Λ

P(λ )

)t

' A
⊕

K. (1.5.10.1)

By Krull-Schmidt-Remak-Azumaya Theorem [Fac98, Theorem 2.12] any two direct sum decompositions into

indecomposable modules of
(⊕

λ∈Λ

P(λ )
)t

are isomorphic. Hence, every Qi is isomorphic to a projective inde-

composable module P(λi). Hence, AA is a finite direct sum of A-modules with local endomorphism rings. By
Theorem 1.5.69, Aop is split quasi-hereditary over R, thus by this discussion AA is a finite direct sum of A-modules
with local endomorphism rings. By [Fac98, Proposition 3.14], A' EndA(AA) is a semi-perfect ring.

We observe that as a consequence of Theorem 1.5.84, for any λ ∈ Λ, we can choose P(λ ) so that P(λ ) is the
projective cover of ∆(λ ), when R is a local Noetherian commutative ring.

In fact, assume that R is a local commutative Noetherian ring. By Theorem 1.5.84, there exists a projective
cover Q of ∆(λ ). Using the surjective homomorphism πλ : P(λ )→ ∆(λ ) given by 1.5.32(iv) with P(λ ) having
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a local endomorphism ring, it follows that Q is an A-summand of P(λ ). As P(λ ) is indecomposable P(λ )' Q.
By Nakayama’s Lemma, we deduce that (P(λ ),πλ ) is the projective cover of ∆(λ ).

1.5.11 Decomposition of split quasi-hereditary algebras into blocks

This result is widely known, however, we decided to include it here for sake of completeness.

Proposition 1.5.85. Let R be a local commutative Noetherian ring. Suppose that A = ∏
n
i=1 Ai is a direct product

decomposition of A. The following assertions are equivalent.

(a) (A,{∆(λ )λ∈Λ}) is a split quasi-hereditary algebra.

(b) (i) We can decompose Λ as the disjoint union of preordered sets Λ =
⋃̇n

i=1Λi;

(ii) (Ai,{∆(λ )λ∈Λi}) is a split quasi-hereditary algebra for every i = 1, . . . ,n.

Proof. Using induction, if necessary, we can assume without loss of generality that n = 2.
Assume that (a) holds. Then, P(λ ) and ∆(λ ) are indecomposable A-modules by Proposition 1.5.64. There

are central idempotents e1,e2 such that A1 =Ae1A and A2 =Ae2A. So, we can decompose P(λ )= e1P(λ )
⊕

e2P(λ )

as A-modules for every λ ∈ Λ. So, either e1P(λ ) = 0 or e2P(λ ) = 0. Moreover, either P(λ ) ∈ A1-mod or
P(λ )∈ A2-mod. Since e1A⊗A− and e2A⊗A− are exact functors, there exists a surjective map eiP(λ )→ ei∆(λ ),
for every λ ∈ Λ, i = 1,2. Hence, ∆(λ ) ∈ Ai-mod if P(λ ) ∈ Ai-mod, λ ∈ Λ, and i ∈ 1,2. Define

Λ1 = {λ ∈ Λ : e2P(λ ) = 0} (1.5.11.1)

Λ2 = {λ ∈ Λ : e1P(λ ) = 0}. (1.5.11.2)

In particular, Λ = Λ1
⋃̇

Λ2. And, so Λi is a preordered set, i = 1,2.
Let λ ∈ Λ1. Consider the exact sequence 0→ X(λ )→ P(λ )→ ∆(λ )→ 0, where X(λ ) ∈F (∆µ>λ ). Ap-

plying e2A⊗A− yields that e2X(λ ) = 0. Thus, every standard module ∆(µ), µ > λ that appears in the filtra-
tion of X(λ ) belongs to A1-mod. Since A1-mod is a full subcategory of A-mod (i),(ii),(iv),(v) of Definition
1.5.32 are trivially satisfied. Now assume that there exists N ∈ A1-mod such that HomA1(∆(µ),N) = 0 for all
µ ∈ Λ1. Thus, we can regard N as A-module and HomA(∆(µ),N) = 0 for all µ ∈ Λ1. Using the general fact that
HomA(M,N) = 0 if M ∈ A2-mod, we obtain HomA(∆(λ ),N) = 0 for every λ ∈ Λ. So, N = 0. This completes
(b).

Conversely, assume that (b) holds. Since Ai-mod is a full subcategory of A-mod and HomA(M,N) = 0
if M ∈ Ai-mod and N ∈ A j-mod with i 6= j, 1.5.32 (i),(ii) and (v) are satisfied. Let N ∈ A-mod such that
HomA(∆(λ ),N) = 0 for all λ ∈ Λ. Then, the decomposition A = A1×A2 induces a decomposition N ' N1⊕N2

with Ni ∈ Ai-mod. In particular, HomA(∆(λ ),Ni) = 0 for every λ ∈ Λ and i = 1,2. So, each Ni is zero, and thus
N = 0. It is enough to observe that the projective Ai-modules are projective A-modules to obtain 1.5.32(iv). This
is the case, since as left A-modules, A' A1⊕A2. This completes the proof of (a).

This result shows that an algebra is split quasi-hereditary over a local commutative Noetherian ring if and
only if each block of the algebra is.

1.5.12 Examples of split quasi-hereditary algebras

A classic example of a split quasi-hereditary algebra is the classical Schur algebra. The quantised Schur algebra
is also an example of a split quasi-hereditary algebra (see [CPS90, Theorem 3.7.2]).
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Proposition 1.5.86. Every split relative semi-simple algebra over a commutative Noetherian ring is split quasi-

hereditary.

Proof. By assumption, A'Mn1(R)×·· ·×Mnt (R). Define Ji : = Mnt (R)×·· ·×Mni(R), i = 1, . . . , t +1. Then,

Ji/Ji+1 'Mnt (R)×·· ·Mni+1(R)×Mni(R)/Mnt (R)×·· ·×Mni+1(R)'Mni(R) (1.5.12.1)

A/Ji+1 'Mn1(R)×·· ·×Mnt/Mnt (R)×·· ·×Mi+1(R)'Mn1(R)×·· ·×Mni(R). (1.5.12.2)

Note that A is a projective Noetherian R-algebra. Clearly for each i, (A/Ji+1)/(Ji/Ji+1)'Mn1 ×·· ·×Mni−1

is projective over R and for the idempotent ei = (0, · · · ,0, Ini) Ji/Ji+1 ' (A/Ji+1)ei ∈ A/Ji+1-proj . Note also that

EndMn1 (R)×···×Mni (R)
(Mni(R))

op ' EndMni (R)
(Mni(R))

op ' ((Mni(R))
op)op (1.5.12.3)

is Morita equivalent to R.

The following example shows that relative hereditary semi-perfect algebras over suitable local commutative
Noetherian rings are split quasi-hereditary algebras.

Proposition 1.5.87. Let A be a projective Noetherian R-algebra over a local commutative Noetherian ring R.

Suppose that the following conditions hold.

(a) A is semi-perfect;

(b) The residue field of R, R(m), is a splitting field for A(m);

(c) gldim f (A,R)≤ 1.

Then, A is a split quasi-hereditary algebra.

Proof. Let
⊕

I Pni
i be a decomposition of A into indecomposable modules for some finite set I. By (a), the

modules Pi, i ∈ I, have local endomorphism rings. Let m be the unique maximal ideal of R. Let i ∈ I. Observe
that

EndÂ(P̂i)' ̂EndA(Pi) = lim
n

EndA(Pi)/m
n EndA(Pi) = lim

n
EndA(Pi)/(mEndA(Pi))

n. (1.5.12.4)

Now, limn EndA(Pi)/(mEndA(Pi))
n is the localization of EndA(Pi) at the ideal mEndA(Pi). Since EndA(Pi) is

local, mEndA(Pi) is contained in radEndA(Pi). Therefore, limn EndA(Pi)/(mEndA(Pi))
n is a local ring. By

(1.5.12.4), EndÂ(P̂i) is local. Thus, P̂i is an indecomposable projective Â-module. By Theorem [CR90, (6.7,
6.8)], Pi(m)' P̂i(m̂) is an indecomposable projective A(m)-module. Recall that all (A,R)-projective modules are
summands of A⊗R M for some M ∈ R-mod. Hence, A⊗R M(m) ' A(m)⊗R(m) M(m) ∈ addA(m). So, (A,R)-
projective resolutions are sent to projective A(m)-resolutions under R(m)⊗R−. Using this observation with (c) it
follows that gldimA(m)≤ 1. Thus, A(m) is an hereditary algebra. Since (b) holds A(m) is a split quasi-hereditary
algebra with poset (I,<). For each i ∈ I, define

Ui = ∑
i, j∈I
j>i

∑
f∈HomA(P( j),P(i))

im f . (1.5.12.5)

Let ∆(i) =Pi/Ui, i∈ I. By Proposition 1.5.63 and construction of I, ∆(i)'Pi(m)/Ui(m) for all i∈ I. In particular,
the monomorphism Ui→ Pi remains injective under R(m)⊗R−. So, TorR

1 (R(m),∆(i)) = 0 for every i ∈ I. Thus,
∆(i) ∈ R-proj for all i ∈ I. By Theorem 1.5.56, (A,∆(i)i∈I) is a split quasi-hereditary algebra.
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Proposition 1.5.88. Let A be a projective Noetherian R-algebra over a local commutative Noetherian ring R.

Suppose that the following conditions hold.

(a) A is semi-perfect;

(b) The residue field of R, R(m), is a splitting field for A(m);

(c) gldim f (A,R)≤ 2.

Then, A is a split quasi-hereditary algebra.

Proof. Let m be the unique maximal ideal of R. Using the same arguments as in the proof of Proposition 1.5.87, it
follows that gldimA(m)≤ 2 and a decomposition of A into indecomposable modules remains, under R(m)⊗R−,
an indecomposable decomposition of A(m) . Since (b) holds and by Theorem [DR89b, Theorem 2], A(m) is a
split quasi-hereditary algebra with poset (I,<). Defining ∆(i), i ∈ I, in the same way as in Proposition 1.5.87
yields that (A,∆(i)i∈I) is a split quasi-hereditary algebra.

Example 1.5.89. Let R be a principal ideal domain. Let m= Rπ be a maximal ideal in R. Consider the R-algebra

A =


a 0 0

b c 0
d e a′

 : a,b,c,d,e,a′ ∈ R, a−a′ ∈m


with the matrix multiplication and the usual action as R-module. Define ∆(1) = {(x,w) ∈ R2 : x−w ∈ m} with
action a 0 0

b c 0
d e a′

 · (x,w) = (ax,a′w)

and ∆(2) = R2 with action a 0 0
b c 0
d e a′

 · (y,z) = (cy,ey+a′z).

Then, (A-mod,{∆(1),∆(2)}) (with 1 < 2) is a highest weight category in weak sense. Furthermore, EndA(∆(1))
is the commutative R-algebra with R-basis {id,ψ} satisfying ψ2 = πψ . 4

Proof. Let A1 =

a1 0 0
b1 c1 0
d1 e1 a′1

 , A2 =

a2 0 0
b2 c2 0
d2 e2 a′2

 ∈ A. In particular, a1−a′1 = r1π, a2−a′2 = r2π . Then,

a1 0 0
b1 c1 0
d1 e1 a′1

 ·
a2 0 0

b2 c2 0
d2 e2 a′2

=

 a1a2 0 0
b1a2 + c1b2 c1c2 0

d1a2 + e1b2 +a′1d2 e1c2 +a′1e2 a′1a′2

 (1.5.12.6)

Since

a1a2−a′1a′2 = a1a2−a′1a2 +a′1a2−a′1a′2 = r1a2π +a′1r2π ∈ Rπ, (1.5.12.7)

the multiplication in A is well defined.
Let (y,z) ∈ ∆(2). Then, A1A2(y,z) = (c1c2y,e1c2y + a′1e2y + a′1a′2z) = A1(A2(y,z)). Checking the other

computations on the definition of module, it follows that ∆(2) is an A-module. Similarly ∆(1) is an A-module.
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Consider P(1) = {(x,y,z,w) ∈ R4 : x−w ∈ Rπ}. This is an A-module with action

A1 · (x,y,z,w) = (a1x,b1x+ c1y,d1x+ e1y+a′1z,a′1w), (x,y,z,w) ∈ P(1). (1.5.12.8)

There are A-isomorphisms P(1)→ A

1 0 0
0 0 0
0 0 1

, given by P(1) 3 (x,y,z,w) 7→

x 0 0
y 0 0
z 0 w

, and

∆(2)→ A

0 0 0
0 1 0
0 0 0

, given by ∆(2) 3 (x,w) 7→

0 0 0
0 x 0
0 w 0

.

This implies that P(1),∆(2) ∈ A-proj and P(1)
⊕

∆(2)' A as left A-modules. There is an A-exact sequence

0→ ∆(2) k−→ P(1) Π−→ ∆(1)→ 0, (1.5.12.9)

where k : ∆(2)→P(1) is given by k(x,y)= (0,x,y,0), (x,y)∈∆(2), and Π : P(1)→∆(1) is given by Π(x,y,z,w)=

(x,w). Let ψ ∈ HomA(∆(2),∆(1)). Then, there exists x1,x2,w1,w2 ∈ R with xi−wi ∈ Rπ , i = 1,2 such that

ψ(1,0) = (x1,w1) and ψ(0,1) = (x2,w2). Fix e1 =

1 0 0
0 0 0
0 0 1

 and f =

0 0 0
0 0 0
0 1 0

 . Then,

(x1,w1) = e1(x1,w1) = e1ψ(1,0) = ψ(e1(,0)) = ψ(0,0) = (0,0) (1.5.12.10)

(x2,w2) = ψ(0,1) = ψ( f (1,0)) = f ψ(1,0) = f (0,0) = (0,0). (1.5.12.11)

We conclude that HomA(∆(2),∆(1)) = 0.
Now, let N ∈ A-mod such that HomA(∆(i),N) = 0, i = 1,2. Applying HomA(−,N) to (1.5.12.9) it follows

that HomA(P(1),N) = 0. It follows that N ' HomA(A,N) ' HomA(P(1)⊕ ∆(2),N) = 0. Therefore, A is a
highest weight category in weak sense. It remains to compute EndA(∆(1)). Let ψ ∈ EndA(∆(1)). The module
∆(1) has an R-basis {(1,1);(0,π)}. Hence, there are elements xi,wi ∈ R, i = 1,2 with xi−wi ∈ Rπ such that

ψ(1,1) = (x1,w1) and ψ(0,π) = (x2,w2). Fix h =

0 0 0
0 0 0
0 0 π

. Then,

(x2,w2) = ψ(0,π) = ψ(h(1,1)) = hψ(1,1) = h(x1,w1) = (0,πw1). (1.5.12.12)

Therefore, we can check that every ψ ∈ EndA(∆(1)) is of the form ψa,r ∈ EndA(∆(1)) with ψa,r(x,x+ sπ) =

(xa,xa+ xrπ + sπa+ srπ2) for every (x,x+ sπ) ∈ ∆(1). Here ψ1,0 = id∆(1) and ψ0,1 ·ψ0,1 = πψ0,1. As ψa,r =

aψ1,0 + rψ0,1, the claim follows.

1.5.13 Existence and properties of costandard modules

Proposition 1.5.90. [Rou08, Proposition 4.19] Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Then,

there is a set {∇(λ )}λ∈Λ of A-modules, unique up to isomorphism, with the following properties:

• (Aop-mod,{D∇(λ )λ∈Λ}) is a split highest weight category;

• Given λ ,β ∈ Λ, then ExtiA(∆(λ ),∇(β ) =

R if i = 0 and λ = β

0 otherwise
.
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Proof. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra and let Λ→ {1, . . . , t}, λ 7→ i be an increasing
bijection. By Theorem 1.5.65, A is split quasi-hereditary with some heredity chain 0 ⊂ Jt ⊂ ·· · ⊂ J1 = A. By
Theorem 1.5.69, Aop is split quasi-hereditary with split heredity chain 0 ⊂ Jop

t ⊂ ·· · ⊂ Jop
1 = Aop. Again by

Theorem 1.5.65, (Aop-mod,{∆∗(λ )λ∈Λ}) is a split highest weight category.
First, we will see how to construct the costandard modules using ∆∗(λ ). Assume β 6> λ . Thus, by Definition

of split highest weight category 1.5.32 ii), we have HomA(∆
∗(λ ),∆∗(β )) = 0. As ∆∗(λ ) ∈M (Aop/Jop

iλ+1),
we obtain that by Corollary 1.5.23 that ∆∗(β ) ∈ Aop/Jop

iλ+1/Jop
iλ
/Jop

iλ+1-mod ' Aop/Jop
iλ

-mod. Thus D∆∗(β ) ∈
A/Jiλ -mod.

Therefore,

HomA(∆(λ ),D∆
∗(β )) = HomA/Ji

λ
+1(∆(λ ),D∆

∗(β )), since ∆(λ ),D∆
∗(β ) ∈ A/Jiλ+1-mod

= 0, since D∆
∗(β ) ∈ A/Jiλ -mod .

Assume λ 6> β . By symmetry, we have HomAop(∆(λ ),D∆∗(β )) = 0. Since ∆∗(β ) and ∆(λ ) are projective over
R, we obtain

HomA(∆(λ ),D∆
∗(β )) = HomAop(DD∆

∗(β ),D∆(λ )) = HomAop(∆∗(β ),D∆(λ )) = 0, if λ 6= β .

Now assume λ = β . Suppose that λ is maximal in Λ. Define Uλ = HomA(∆(λ ),D∆∗(λ )). Since A(m) is quasi-
hereditary over a field R(m) for every maximal ideal m of R with costandards D∆∗(λ )(m) and ∆(λ ) is projective
over A, we have

Uλ (m) = HomA(∆(λ )(m),D∆
∗(λ )(m))' R(m). (1.5.13.1)

On the other hand, since ∆(λ ) is projective over A, Uλ is an R-summand of HomA(An,D∆∗(λ )) ' D∆∗(λ )n ∈
R-proj. Hence, Uλ ∈ R-proj. So, for each maximal ideal m of R, there exists nm ≥ 0 such that (Uλ )m ' Rnm

m .
Thus,

R(m)'Uλ (m)' (Uλ )m⊗RmRm/mm ' (Uλ )m/mmUλ ' Rnm
m /mmRnm

m ' Rnm
m /mnm

m ' R(m)nm .

Thus, nm = 1 for all maximal ideals m of R. By Proposition 1.5.2.1, Uλ ∈ Pic(R).
Now consider ∇(λ ) = DUλ ⊗R D∆∗(λ ). We claim that HomA(∆(λ ),∇(λ ))' R. By Tensor-Hom adjunction,

Uλ ' D(∆∗(λ )⊗A ∆(λ )). Thus,

HomA(∆(λ ),∇(λ ))' HomA(∆(λ ),∆
∗(λ )⊗A ∆(λ )⊗R D∆

∗(λ ))

' HomA(∆(λ ),HomR(∆
∗(λ ),R)⊗R ∆

∗(λ )⊗A ∆(λ ))

' HomA(∆(λ ),HomR(∆
∗(λ ),∆∗(λ ))⊗A ∆(λ )), since ∆

∗(λ ) ∈ R-proj

' HomA(∆(λ ),HomA(Jiλ ,A)⊗A ∆(λ )), by Remark 1.5.16

' HomA(∆(λ ),HomA(Jiλ ,∆(λ )))' HomA(Jiλ ⊗A ∆(λ ),∆(λ ))

' HomA(∆(λ )⊗R HomA(∆(λ ),A)⊗A ∆(λ ),∆(λ ))

' HomA(∆(λ )⊗R HomA(∆(λ ),∆(λ )),∆(λ ))' EndA(∆(λ ))' R.

Suppose that β is a non-maximal element in Λ. Then, HomA(∆(β ),∇(β ))'HomA/Ji
β
+1(∆(β ),∇(β ))'R, since

β is maximal in the poset indexing the standards of A/Jiβ+1. The first isomorphism follows from the fact that
A/Jiβ+1-mod is a full subcategory of A-mod.
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Now, assume that λ 6= β . We obtain, for each maximal ideal m of R,

HomA(∆(λ ),∇(β ))m ' HomAm(∆(λ )m,(DUβ )m⊗Rm D∆
∗(β )m)

' HomAm(∆(λ )m,D∆
∗(β )m)' HomA(∆(λ ),D∆

∗(β ))m = 0.

Thus, HomA(∆(λ ),∇(β )) = 0.
Now we shall prove that (Aop-mod,{D∇(λ )λ∈Λ}) is a split highest weight category. We shall proceed by

induction on t = |Λ|. Assume that t = 1. By Lemma 1.5.47 and t = 1, ∆∗(λ ) ∈M (Aop) and Aop = Jop
1 . For each

maximal ideal m of R, D∆(λ )m = HomRm((DUλ )m,∆
∗(λ )m) ' ∆∗(λ )m ∈M (Aop

m ), by Lemma 1.5.20. Again
by Lemma 1.5.20, D∆(λ ) ∈M (Aop). By Lemma 1.5.47, we conclude the claim for t = 1.

Now assume that the result holds for |Λ| < t for some t > 1. Assume that |Λ| = t. Choose λ ∈ Λ maximal.
As before we have D∇(λ )m ' ∆∗(λ )m ∈M (Aop

m ) for every maximal ideal m of R. Thus, D∇(λ ) ∈M (Aop), by
Lemma 1.5.20. By Tensor-Hom adjunction,

D∇(λ )' HomR(DUλ ⊗R D∆
∗(λ ),R)' HomR(D∆

∗(λ ),DDUλ )' HomR(D∆
∗(λ ),R)⊗R DDUλ

' ∆
∗(λ )⊗R Uλ .

Hence, D∇(λ ) = ∆∗(λ ) in M (Aop)/Pic(R). In particular, imτD∇(λ ) = imτ∆∗(λ ) = Jop.
By hypothesis, (Aop/Jop-mod,{∆∗(µ)µ∈Λ\{λ}}) is a split highest weight category. By induction,

(Aop/Jop-mod,{D∇(µ)µ∈Λ\{λ}}) is a split highest weight category.
By Lemma 1.5.47, we conclude that (Aop-mod,{D∇(λ )λ∈Λ}) is a split highest weight category.
Now we shall prove that Ext1A(∆(λ ),∇(β )) = 0, ∀λ ,β ∈ Λ. Consider the exact sequence

0→C(λ )→ P(λ )→ ∆(λ )→ 0. Applying HomA(−,∇(β )) we obtain the long exact sequence

HomA(P(λ ),∇(β ))→ HomA(C(λ ),∇(β ))→ Ext1A(∆(λ ),∇(β ))→ Ext1A(P(λ ),∇(β )) = 0. (1.5.13.2)

Assume that HomA(C(λ ),∇(β )) 6= 0. Then, there exists α < λ such that HomA(∆(α),∇(β )) 6= 0. As we have
seen, we must have α = β . Therefore, if β 6< λ , we get Ext1A(∆(λ ),∇(β )) = 0. We will prove it for all cases
by induction on |Λ|. If |Λ| = 1, it is clear since 1 6< 1. Assume that it holds for |Λ| < t. Let |Λ| = t. Choose α

maximal in Λ. Then, ∆(α) is projective over A thus,

Ext1A(∆(α),∇(β )) = Ext1A(∆(β ),∇(α) = 0, ∀β ∈ Λ. (1.5.13.3)

For J = Jt we have that (A/J-mod,{∆(λ )λ∈Λ\{α}}) is a split highest weight category. By induction,
Ext1A/J(∆(β ),∇(λ )) = 0 for all β ,λ ∈ Λ\{α}. By Lemma 1.5.78, we have

Ext1A(∆(β ),∇(λ )) = Ext1A/J(∆(β ),∇(λ )) = 0, ∀β ,λ ∈ Λ\{α}. (1.5.13.4)

By (1.5.13.3) and (1.5.13.4), it follows the claim.
Now we shall proceed on induction on n > 0 to show that ExtnA(∆(β ),∆(λ )) = 0. The case n = 1 is already

proved. Assume the result known for n− 1. Consider the exact sequence 0→ C(β )→ P(β )→ ∆(β )→ 0.
Applying HomA(−,∇(λ )), it yields the exact sequence

0 = Extn−1
A (P(β ),∇(λ ))→ Extn−1

A (C(β ),∇(λ ))→ ExtnA(∆(β ),∇(λ ))→ ExtnA(P(β ),∇(λ )) = 0.

Therefore, ExtnA(∆(β ),∇(λ )) ' Extn−1
A (C(β ),∇(λ )). By induction, Extn−1

A (∆(β ),∇(λ )) = 0, ∀β ,λ ∈ Λ. By
induction on the size of the ∆-filtration of C(β ), we get that Extn−1

A (C(β ),∇(λ )) = 0, ∀β ,λ ∈ Λ, and the result
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follows.
It remains to prove the uniqueness part. Assume that (Aop-mod,{D∇(λ )λ∈Λ}) and (Aop-mod,{D∇′(λ )λ∈Λ})

are split highest weight categories and the modules ∇ and ∇′ satisfy the given properties. Once again we proceed
by induction on |Λ| to show that ∇′(λ )' ∇(λ ) for any λ ∈ Λ.

Assume |Λ| = 1 with Λ = {β}. Then, D∇(β ) and D∇′(β ) are projective over Aop. By Proposition 1.5.48,
we can write D∇′(β )' D∇(β )⊗R Uβ for some Uβ ∈ R-proj. By assumption,

R' HomA(∆(β ),∇
′(β ))' HomAop(D∇

′(β ),D∆(β ))' HomAop(D∇(β )⊗R Uβ ,D∆(β ))

HomR(Uβ ,HomAop(D∇(β ),D∆(β )))' HomR(Uβ ,HomAop(∆(β ),∇(β )))' HomR(Uβ ,R) = DUβ .

So, since ∇(β ) ∈ R-proj

∇
′(β ) = HomR(D∇(β )⊗R Uβ ,R)' HomR(D∇(β ),HomR(Uβ ,R))' HomR(D∇(β ),R)' ∇(β ).

Now assume that for |Λ|= t−1, the result holds. Consider α maximal in Λ. We want to show that ∇′(α)'∇(α).
By Proposition 1.5.48, there is a filtration

0 = Pt+1 ⊂ Pt ⊂ ·· · ⊂ P1 = D∇
′(α)

with Pi/Pi+1 ' D∇i⊗R Ui. Since D∇i is standard in Aop, it is projective over R. Thus, D∇i⊗R Ui is projective
over R. Consider the exact sequence 0→ Pi+1→ Pi→D∇i⊗R Ui→ 0. Applying D we obtain the exact sequence

0→ D(D∇i⊗R Ui)→ DPi→ DPi+1→ Ext1R(D∇i⊗R Ui,R) = 0. (1.5.13.5)

Notice that D∇i⊗R Ui is an Aop-summand of D∇i⊗R Rs ' D∇s
i , and therefore D(D∇i⊗R Ui) is an A-summand

of ∇s
i . Let β ∈Λ be an arbitrary index. Hence, Ext1A(∆(β ),D(D∇i⊗R Ui)) is a summand of Ext1A(∆(β ),∇i)

s = 0.

Moreover, HomA(∆(β ),D(D∇i⊗R Ui)) is a summand of HomA(∆(β ),∇
s
i )'

Rs, if i = iβ

0, otherwise.
Applying HomA(∆(β ),−) to (1.5.13.5) yields

HomA(∆(β ),DPj)' HomA(∆(β ),DPj+1), j 6= iβ , (1.5.13.6)

and therefore HomA(∆(β ),DPiβ )' HomA(∆(β ),D(D∇iβ ⊗R Uiβ )). Hence, putting β = α ,

R' HomA(∆(α),∇′(α)) = HomA(∆(α),DP1)' HomA(∆(α),DPiα−1+1) (1.5.13.7)

' HomA(∆(α),D(D∇iα ⊗R Uiα ))' HomAop(D∇iα ⊗R Uiα ,D∆(α)) (1.5.13.8)

' HomR(Uiα ,HomAop(D∇iα ,D∆(α)))' HomR(Uiα ,R) = DUiα . (1.5.13.9)

Therefore, D(D∇iα ⊗R Uiα )' HomR(D∇iα ,HomR(Uiα ,R))' ∇iα = ∇(α).

Using the same idea, for β 6= α ,

0 = HomA(∆(β ),∇
′(α))' HomA(∆(β ),DPiβ )' HomA(∆(β ),D(D∇iβ ⊗R Uiβ ))' DUiβ . (1.5.13.10)

Therefore, Uiβ = 0 for β 6= α . Thus, DPj ' DPj+1 for j 6= iα = t. In particular,

∇
′(α)' DP1 ' DPt ' D(D∇t ⊗R Ut)' ∇(α). (1.5.13.11)

Since J = imτD∇(α) = imτD∇′(α) we have that (Aop/J,{D∇(λ )λ∈Λ\{α}}) and (Aop/J,{D∇′(λ )λ∈Λ\{α}}) are
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split quasi-hereditary algebras. So, by induction, the uniqueness for all costandards follows.

Remark 1.5.91. For ∆′ = {∆(λ )⊗R F(λ ) : λ ∈ Λ, F(λ ) ∈ Pic(R)} we have F (∆̃′) = F (∆̃). 4

In fact, by definition of the Picard group there exists G(λ ) such that F(λ ) ⊗R G(λ ) ' R. Thus,
Mi/Mi+1 ' ∆i⊗R Ui ' ∆′i⊗R Gi⊗R Ui. Since every element of the Picard group is a projective R-module
Gi⊗R Ui ∈ R-proj. Hence, F (∆̃′) = F (∆̃).

Proposition 1.5.92. With the above notation, if ∆′i ' ∆i⊗R Fi, Fi ∈ Pic(R), then ∇′i ' ∇i⊗R Fi.

Proof. We will use the same notation as in the proof of Proposition 1.5.90. Denote by ∆∗
′

i the standard modules
in Aop induced by A being split quasi-hereditary with standard modules ∆′i. In order to define ∇′i, we can observe
that ∆∗i and ∆∗

′
i are in the same orbit relative to the action of Picard group in M (A) since ∆i and ∆′i induce the

same split heredity chain. So, put ∆∗
′

i = ∆∗i ⊗R Gi, Gi ∈ Pic(R) for every i = 1 . . .n. Therefore,

∇
′
i ' DHomA(∆

′
i,D(∆∗i ⊗R Gi))⊗R D(∆∗i ⊗R Gi). (1.5.13.12)

Note that by Tensor-Hom adjunction and since Gi ∈ R-proj,

D(∆∗i ⊗R Gi)' HomR(Gi,D∆
∗
i )' HomR(Gi,R)⊗R D∆

∗
i . (1.5.13.13)

Moreover,

HomA(∆
′
i,D(∆∗i ⊗R Gi)) = HomA(∆i⊗R Fi,DGi⊗R D∆

∗
i )' HomR(Fi,HomA(∆i,DGi⊗R D∆

∗
i )) (1.5.13.14)

' HomR(Fi,HomA/Ji+1(∆i,DGi⊗R D∆
∗
i ))

' HomR(Fi,HomA/Ji+1(∆i,D∆
∗
i )⊗R DGi)

' HomR(Fi,HomA(∆i,D∆
∗
i )⊗R DGi)' HomR(Fi,DGi)⊗R HomA(∆i,D∆

∗
i ).

So,

DHomA(∆
′
i,D∆

∗
i ⊗R Gi)' D(HomR(Fi,DGi)⊗R HomA(∆i,D∆

∗
i ) (1.5.13.15)

' DHomR(Fi,DGi)⊗R DHomA(∆i,D∆
∗
i )' DDFi⊗R Gi⊗R DHomA(∆i,D∆

∗
i ).

So, we conclude,

∆
′
i ' DHomA(∆i,D∆

∗
i )⊗R Fi⊗R Gi⊗R DGi⊗R D∆

∗
i ' DHomA(∆i,D∆

∗
i )⊗R D∆

∗
i ⊗R Fi ' ∇i⊗R Fi.

Corollary 1.5.93. With the above notation, F (∇̃′) = F (∇̃).

Corollary 1.5.94. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Then, {D∆(λ ) : λ ∈ Λ} are costan-

dard modules in Aop.

Proof. Note that ((Aop)op-mod,{DD∆(λ )λ∈Λ}) = (A,{∆(λ )λ∈Λ}) is split highest weight category. In addition,
for λ ,β ∈ Λ, by Lemma 1.2.38

ExtiAop(D∇(λ ),D∆(β ))' ExtA(∆(β ),∇(λ )) =

R if λ = β , i = 0

0 otherwise.
(1.5.13.16)

By the uniqueness of costandard modules in Proposition 1.5.90, the result follows.
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Proposition 1.5.95. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ A-mod such that M is

(A,R)-injective and projective over R. Let Λ→{1, . . . ,n} be an increasing bijection. Then, there is a filtration

0⊂ I1 ⊂ ·· · ⊂ In = M, with Ii/Ii−1 'Ui⊗R ∇i, for some Ui ∈ R-proj .

Proof. By Lemma 1.2.56, DM is a projective Aop-module. Recall that (Aop,D∇(λ )) is split highest weight
category. By Proposition 1.5.48, there is a filtration 0 = Pn+1 ⊂ Pn ⊂ ·· · ⊂ P1 = DM with Pi/Pi+1 ' D∇i⊗R Ui,

1≤ i≤ n. Applying D yields the exact sequence

0→ D(D∇i⊗R Ui)→ DPi→ DPi+1→ 0. (1.5.13.17)

Note that D(D∇i ⊗R Ui) ' HomR(Ui,HomR(D∇i,R)) ' HomR(Ui,∇i) ' DUi ⊗R ∇i. In particular,
DPn ' DUn⊗R ∇n and DP1 ' M. Now by induction using at each step the filtration of DPi+1 and the exact
sequence (1.5.13.17) we can construct a ∇-filtration to DPi

0⊂ Ii ⊂ Ii+1 ⊂ ·· · ⊂ In = DPi, (1.5.13.18)

satisfying I j/I j−1 ' DU j⊗R ∇ j. Hence, the result follows.

Notation 1.5.96. Denote by F (∇) the subcategory of A-mod whose modules have filtrations

0⊂M0 ⊂M1 ⊂ ·· · ⊂Mm = M, such that Mk/Mk−1 ' ∇(λk).

Let Λ→{1, . . . ,n} be an increasing bijection. Denote by F (∇̃) the subcategory of A-mod whose modules have
filtrations 0⊂ I1 ⊂ I2 ⊂ ·· · ⊂ In = M, such that Ii/Ii−1 'Ui⊗R ∇i for some Ui ∈ R-proj . 4

Proposition 1.5.97. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra over a commutative Noetherian ring

R. Then, the costandard modules satisfy the following properties:

(i) ∇(λ ) ∈ A-mod are projective over R;

(ii) If HomA(∇(α),∇(β )) 6= 0, then α ≥ β ;

(iii) If N ∈ R-proj∩A-mod is such that HomA(N,∇(λ )) = 0, ∀λ ∈ Λ, then N = 0. Furthermore, for any

N ∈ A-mod, if HomA(N,∇(λ )) = 0, then DN = 0.

(iv) EndA(∇(λ ))' R;

(v) For each λ ∈ Λ there exists an (A,R)-injective module and projective over R I(λ ) together with an exact

sequence 0→ ∇(λ )→ I(λ )→ K(λ )→ 0 and K(λ ) has a finite filtration by modules ∇(µ)⊗R Uµ with

µ > λ and Uµ ∈ R-proj.

Proof. i) ∇(λ ) = DUλ ⊗R D∆∗(λ ) ∈ R-proj.
ii) Let λ ,β ∈ Λ satisfying HomA(∇(λ ),∇(β )) 6= 0. As both modules are projective over R

HomAop(D∇(β ),D∇(λ )) 6= 0. Since D∇(β ) and D∇(λ ) are standard modules in Aop with poset Λ it follows
that β ≤ λ .

iii) Assume N ∈ R-proj∩A-mod such that 0 = HomA(N,∇(λ )) ' HomAop(D∇(λ ),DN) for every λ ∈ Λ.
Then, DN = 0. Since N ∈ R-proj we obtain N = 0.

iv) EndA(∇(λ ))' EndAop(D∇(λ ))' R for every λ ∈ Λ.
v) Let λ ∈ Λ. D∇(λ ) is a standard module, therefore there exists an exact sequence in Aop

0→Cop(λ )→ Pop(λ )→ D∇(λ )→ 0. (1.5.13.19)
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Hence, Pop(λ ) is a projective right A-module and Cop ∈F (D∇̃(µ)µ>λ ). Applying D to this exact sequence it
yields the exact sequence 0→ ∇(λ )→ DPop(λ )→ DCop(λ )→ 0, since ∇(λ ) is projective over R. By Lemma
1.2.56, DPop(λ ) is an (A,R)-injective left module and it is a projective R-module. By the proof of Proposition
1.5.95, we obtain DCop(λ ) ∈F (∇̃µ>λ ).

Remark 1.5.98. If λ ∈Λ is maximal, then DHomA(P(λ ),A)' I(λ )'∇(λ ). In fact, HomA(P(λ ),A)∈M (Aop)

by Lemma 1.5.18 and

HomA(P(λ ),DHomA(P(λ ),A))' HomA(HomA(P(λ ),A),DP(λ ))' DP(λ )⊗A P(λ )' R. 4

Proposition 1.5.99. Suppose (A,{∆(λ )λ∈Λ}) is a split quasi-hereditary algebra. Then, the following holds.

(a) If Ext1A(∇(α),∇(β )) 6= 0, then α > β .

(b) If ExtiA(∇(α),∇(β )) 6= 0 for some i > 0, then α > β . In particular, ExtiA(∇(α),∇(α)) = 0, i > 0.

Proof. Consider the exact sequence

0→ ∇(β )→ Iβ → Kβ → 0, (1.5.13.20)

where kβ has a filtration by ∇(µ)⊗R Uµ , Uµ ∈ R-proj so that µ > β . Apply HomA(∇(α),−) to (1.5.13.20).
Hence, the following sequence is exact

HomA(∇(α),Kβ )→ Ext1A(∇(α),∇(β ))→ Ext1A(∇(α), Iβ ). (1.5.13.21)

By Lemma 1.2.55, Ext1A(∇(α), Iβ ) = 0. If Ext1A(∇(α),∇(β )) 6= 0, then HomA(∇(α),Kβ ) 6= 0. As Kβ has a
∇-filtration, then HomA(∇(α),∇(µ) 6= 0 for µ > β . This implies that α ≥ µ > β . So, a) follows.

Assume ExtiA(∇(α),∇(β )) 6= 0 for some i > 0. Choose β being maximal satisfying
ExtiA(∇(α),∇(β )) 6= 0 for some i > 0. By Lemma 1.2.55, applying HomA(∇(α),−) to (1.5.13.20), yields

0 6= ExtiA(∇(α),∇(β ))' Exti−1
A (∇(α),Kβ ). (1.5.13.22)

Consider the exact sequence 0→ K′
β
→ Kβ → ∇(µ)→ 0, µ > β . Applying HomA(∇(α),−) we get

Exti−1
A (∇(α),Kβ )→ Exti−1

A (∇(α),Kβ )→ Exti−1
A (∇(α),∇(µ)).

Hence, either Exti−1
A (∇(α),K′

β
) 6= 0 or Exti−1

A (∇(α),∇(µ)) 6= 0. By the maximality of β , Exti−1
A (∇(α),K′

β
) 6= 0.

Applying the same reasoning several times, this leads to Ext1A(∇(α),∇(µ)) 6= 0 for some µ > β . By a) we obtain
that α > µ . Thus, b) follows.

Lemma 1.5.100. [Rou08, Lemma 4.21]Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M,N ∈
A-mod. The following holds.

(a) If M ∈F (∆̃), then ExtiA(M,∇(λ )) = 0, i > 0.

(b) If N ∈F (∇̃), then ExtiA(∆(λ ),N) = 0, i > 0.

(c) If M ∈F (∆̃) and N ∈F (∇̃), then ExtiA(M,N) = 0, i > 0.

Proof. Observe that for i > 0 and every β ,λ ∈ Λ, U ∈ R-proj ExtiA(∆(β )⊗R U,∇(λ )) is an R-summand of
ExtiA(∆(β )

t ,∇(λ ))' ExtiA(∆(β ),∇(λ ))t = 0 by Proposition 1.5.90. Hence, ExtiA(∆(β )⊗R U,∇(λ )) = 0.
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Let M ∈F (∆̃). There is a filtration

0 = Pn+1 ⊂ Pn ⊂ ·· · ⊂ P1 = M, with Pi/Pi+1 ' ∆i⊗R Ui. (1.5.13.23)

Let λ ∈ Λ. Applying HomA(−,∇(λ )) to the exact sequence of Pi yields the exact sequence

0 = Ext j
A(∆i⊗R Ui)→ Ext j

A(Pi,∇(λ ))→ Ext j
A(Pi+1,∇(λ ))→ Ext j+1

A (∆i⊗R Ui,∇(λ )) = 0, ∀ j > 1.

We conclude, for j > 1,Ext j
A(Pi,∇(λ ))' Ext j

A(Pi+1,∇(λ ))' Ext j
A(Pn,∇(λ )) = Ext j

A(∆n,∇(λ )) = 0.
The proof of b) is analogous now applying the functor HomA(∆(λ ),−) to the exact sequences given by the

filtration of N.
Let N ∈F (∇̃). Applying HomA(−,N) to the exact sequences of the filtration (1.5.13.23) we get the long

exact sequence 0 = Ext j
A(∆i⊗R Ui,N)→ ExtiA(Pi,N)→ Ext j

A(Pi+1,N)→ Ext j
A(∆i⊗R Ui,N) = 0.

Therefore, 0 = Ext j
A(∆⊗R Un,N) = Ext j

A(Pn,N)' Ext j
A(P1,N) = Ext j

A(M,N).

Lemma 1.5.101. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ A-mod. If M ∈ F (∆̃) or

M ∈F (∇̃), then M ∈ R-proj.

Proof. Assume M ∈ F (∆̃). Then, there are exact sequences 0→ Pi+1 → Pi → ∆i⊗R Ui → 0. Since ∆i⊗R Ui

is projective over R all these sequences are split over R. Thus, every Pi is projective over R. In particular,
M ∈ R-proj. The argument is analogous for M ∈F (∇̃).

Proposition 1.5.102. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. If N ∈F (∇), the factors of N can

always be chosen in increasing order, meaning that the costandard modules with the lowest index appear at the

bottom of the filtration.

Furthermore, if N ∈F (∇), then N ∈F (∇̃).

Proof. Consider a filtration

0⊂M0 ⊂M1 ⊂ ·· · ⊂Mm = M. (1.5.13.24)

Consider k such that Mk/Mk−1 ' ∇i, Mk+1/Mk ' ∇ j and i > j. By Proposition 1.5.99, Ext1A(∇ j,∇i) = 0. Since
Mk−1 ⊂Mk ⊂Mk+1, there is a canonical monomorphism ∇i 'Mk/Mk−1 ↪→Mk+1/Mk−1. As

(Mk+1/Mk−1)/(Mk/Mk−1)'Mk+1/Mk ' ∇ j, (1.5.13.25)

we have a short exact sequence 0→ ∇i→Mk+1/Mk−1→ ∇ j → 0. Since Ext1A(∇ j,∇i) = 0, this sequence splits
over A. Hence, we have a canonical epimorphism h : Mk+1 � Mk+1/Mk−1 ' ∇i

⊕
∇ j � ∇i. Define Mk :=

ker(h). Thus, Mk+1/Mk ' imh' ∇i and observe that Mk/Mk−1 ' ∇ j. In fact, the latter follows applying the
Snake Lemma to the commutative diagram

0 Mk−1 Mk+1 ∇i
⊕

∇ j 0

0 Mk Mk+1 ∇i 0

.

Therefore, we have a filtration by costandard modules

0⊂M0 ⊂M1 ⊂ ·· ·Mk−1 ⊂Mk ⊂Mk+1 ⊂ ·· · ⊂M. (1.5.13.26)
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Hence, we order the filtration in such a way that the indexes appear in increasing order. Moreover, we can
rearrange every filtration to a filtration 0 = P0 ⊂ P1 ⊂ ·· · ⊂ Pn = M where Pi/Pi−1 ' ∇i⊗R Ui and Ui is a free
R-module.

Theorem 1.5.103. Let A be a projective Noetherian R-algebra and let Λ be a poset. Then, A is split quasi-

hereditary if and only if there exist modules {∇(λ ) : λ ∈ Λ} satisfying the following properties:

(i) The modules ∇(λ ) ∈ A-mod are projective over R for every λ ∈ Λ;

(ii) Given α,β ∈ Λ, if HomA(∇(α),∇(β )) 6= 0, then α ≥ β ;

(iii) EndA(∇(λ ))' R, λ ∈ Λ;

(iv) For each λ ∈Λ, there exists an (A,R)-injective module which is projective as R-module I(λ ) together with

an exact sequence 0→ ∇(λ )→ I(λ )→ K(λ )→ 0, K(λ ) ∈F (∇̃µ>λ ).

(v) DAA ∈ add
(⊕

λ∈Λ

I(λ )
)

.

Proof. Assume that A is split quasi-hereditary. By Theorem 1.5.65, there are standard modules ∆(λ ), λ ∈ Λ for
some poset Λ such that (A-mod,{∆(λ )}λ∈Λ) is split highest weight category. By Proposition 1.5.97, i, ii, iii, iv)

are satisfied. By Proposition 1.5.90 and by Corollary 1.5.43,
⊕

λ∈Λ

DIλ = D
⊕

λ∈Λ

Iλ is a progenerator in Aop-mod.

Thus, AA ∈ addD
⊕

λ∈Λ

Iλ . This implies v).

Conversely assume there are modules {∇(λ ) : λ ∈ Λ} satisfying the properties above. Then, it is clear at this
point that D∆(λ ) satisfy properties a),b),c) of Corollary 1.5.43. Since Iλ is (A,R)-injective and projective as R-
module, it follows that DIλ is projective over Aop. Hence, d) is also satisfied. By v) Aop =DDAop ∈ addD

⊕
λ∈Λ

DIλ .

By Corollary 1.5.43, (Aop-mod,{D∇(λ )}λ∈Λ) is split highest weight category. By Theorem 1.5.65, Aop is split
quasi-hereditary. By Theorem 1.5.69, A is split quasi-hereditary.

The following result is Lemma 4.21 of [Rou08]. For quasi-hereditary algebras over fields, there are many
proofs of this result in the literature. However, for quasi-hereditary algebras over commutative Noetherian rings
as far as the author knows this result can only be found in [Rou08] . We present a different approach than the
one used by Rouquier. Here, we use a different approach also because it is not clear for the author why M/M0 is
projective over R using Rouquier’s approach.

Theorem 1.5.104. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ R-proj∩A-mod.

1. If Ext1A(M,∇(λ )) = 0, ∀λ ∈ Λ, then M ∈F (∆̃).

2. If Ext1A(∆(λ ),M) = 0, ∀λ ∈ Λ, then M ∈F (∇̃).

Proof. Assume that Ext1A(M,∇(λ )) = 0 for some M ∈ R-proj∩A-mod. By induction on the size of filtrations
of modules in F (∇̃) we deduce that Ext1A(M,N) = 0 for every N ∈ F (∇̃). Let λ ∈ Λ be maximal. Thus,
∆(λ ) is an R-split A-module. Recall that τ∆(λ ),A is a left and right (A,R)-monomorphism by Proposition 1.5.15.
Analogously, we can consider the left A-homomorphism τ∆(λ ),M : ∆(λ )⊗R HomA(∆(λ ),M)→M. If M admits
a filtration by standard modules, then it is possible to construct a filtration with ∆(λ )⊗R Uλ appearing at the
bottom, where Uλ is a projective R-module (possibly the zero module). Therefore, we want to show that τ∆(λ ),M

is an (A,R)-monomorphism. If we show in addition that its cokernel belongs to F (∆(λ )), then we are done.
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Claim A. We can relate τ∆(λ ),A⊗A M and τ∆(λ ),M through the following commutative diagram:

∆(λ )⊗R HomA(∆(λ ),A)⊗A M A⊗A M

∆(λ )⊗R HomA(∆(λ ),M) M

τ∆(λ ),A⊗AM

∆(λ )⊗Rψ' µM'
τ∆(λ ),M

, (1.5.13.27)

where µM is the multiplication map and ψ is given by Lemma 1.4.11.
In fact,

τ∆(λ ),M∆(λ )⊗R ψ(l⊗ f ⊗m) = τ∆(λ ),M(l⊗ψ( f ⊗m)) = ψ( f ⊗m)(l) = f (l)m (1.5.13.28)

µM ◦ τ∆(λ ),A⊗A M(l⊗ f ⊗m) = µM( f (l)⊗m) = f (l)m, l ∈ ∆(λ ), f ∈ HomA(∆(λ ),A),m ∈M. (1.5.13.29)

Claim B. There are isomorphisms δ and θ making the following diagram commutative

∆(λ )⊗R HomA(∆(λ ),A)⊗A M A⊗A M

DHomA(M,D(∆(λ )⊗R HomA(∆(λ ),A)) DHomA(M,DA)

τ∆(λ ),A⊗AM

δ' θ'
DHomA(M,Dτ∆(λ ),A)

. (1.5.13.30)

Note that by Tensor-Hom adjunction DHomA(M,DA) ' DDM. Hence, the map
θ ∈ HomA(A⊗A M,DHomA(M,DA)) given by θ(a⊗m)(g) = g(am)(1A) is an isomorphism. Further, as left
A-modules,

DHomA(M,D(∆(λ )⊗R HomA(∆(λ ),A))' DD(∆(λ )⊗R HomA(∆(λ ),A)⊗A M)

' ∆(λ )⊗R HomA(∆(λ ),A)⊗A M.

Denote by δ ∈ HomA(∆(λ )⊗R HomA(∆(λ ),A)⊗A M,DHomA(M,D(∆(λ )⊗R HomA(∆(λ ),A))) this isomor-
phism. Explicitly, for every l ∈ ∆(λ ), f ∈ HomA(∆(λ ),A), m ∈M,

δ (l⊗ f ⊗m)(g) = g(m)(l⊗ f ), g ∈ HomA(M,D(∆(λ )⊗R HomA(∆(λ ),A)).

Let l⊗ f ⊗m ∈ ∆(λ )⊗R HomA(∆(λ ),A)⊗A M, g ∈ HomA(M,DA). Then,

DHomA(M,Dτ∆(λ ),A)◦δ (l⊗ f ⊗m)(g) = δ (l⊗ f ⊗m)HomA(M,Dτ∆(λ ),A)(g) = δ (l⊗ f ⊗m)(Dτ∆(λ ),A ◦g)

= Dτ∆(λ ),Ag(m)(l⊗ f ) = g(m)◦ τ∆(λ ),A(l⊗ f ) = g(m)( f (l)).

On the other hand,

θτ∆(λ ),A⊗A M(l⊗ f ⊗m)(g) = θ(τ∆(λ ),A(l⊗ f )⊗m)(g) = θ( f (l)⊗m)(g)

= g( f (l)m)(1A) = ( f (l) ·g(m))(1A) = g(m)(1A f (l)) = g(m)( f (l)).

This shows that the diagram (1.5.13.30) is commutative and Claim B follows.
Claim C. The map DHomA(M,Dτ∆(λ ),A) is a left (A,R)-monomorphism.
The cokernel of the right (A,R)-monomorphism τ∆(λ ),A is A/J ∈ R-proj where J is the image of τ∆(λ ),A, and

therefore J is a split heredity ideal. Hence, A/J belongs to F (∆̃op). Thus, D(A/J) belongs to F (∇̃). So,
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D = HomR(−,R) induces left (A,R)-exact sequence

0→ D(A/J)→ DA
Dτ∆(λ ),A−−−−−→ D(∆(λ )⊗R HomA(∆(λ ),A))→ 0. (1.5.13.31)

Applying HomA(M,−) yields the exact sequence

0→ HomA(M,D(A/J))→ HomA(M,DA)
HomA(M,Dτ∆(λ ),A)−−−−−−−−−−−→ HomA(M,D(L⊗R HomA(L,A))→ 0, (1.5.13.32)

because Ext1A(M,D(A/J)) = 0. Due to ∆(λ ) ∈ A-proj, by Tensor-Hom adjunction, we have

HomA(M,D(∆(λ )⊗R HomA(∆(λ ),A))' HomR(∆(λ )⊗R HomA(∆(λ ),A)⊗A M,R)

' HomR(∆(λ )⊗R HomA(∆(λ ),M),R) ∈ R-proj .

This shows that the right A-homomorphism HomA(M,Dτ∆(λ ),A) is an (A,R)-epimorphism. Therefore,
DHomA(M,Dτ∆(λ ),A) is a left (A,R)-monomorphism.

Combining Claims A, B and C, we obtain that τ∆(λ ),M is a left (A,R)-monomorphism.
Let X be the cokernel of τ∆(λ ),M . In particular, X ∈ R-proj and the exact sequence

0→ ∆(λ )⊗R HomA(∆(λ ),M)
τ∆(λ ),M−−−−→M→ X → 0 (1.5.13.33)

is (A,R)-exact. Recall that Uλ := HomA(∆(λ ),M) ∈ R-proj. It remains to show that X ∈F (∆̃). The exactness
of HomA(∆(λ ),−) implies that the map HomA(∆(λ ),τ∆(λ ),M) is injective. We claim that it is also surjective. Let
h ∈ HomA(∆(λ ),M). Then, for any x ∈ ∆(λ ),

h(x) = τ∆(λ ),M(x⊗h) = τ∆(λ ),M ◦ (−⊗h)(x), (1.5.13.34)

where−⊗h∈HomA(∆(λ ),∆(λ )⊗R HomA(∆(λ ),M)). Consequently, HomA(∆(λ ),X)= 0. By Corollary 1.5.23,
X ∈ A/J-mod∩R-proj.

We will proceed by induction on |Λ| to show that every Y ∈ A-mod∩R-proj satisfying Ext1A(Y,∇(λ )) = 0 for
every λ ∈ Λ belongs to F (∆̃).

If |Λ| = 1, then A/J-mod is the zero category, and thus X = 0. By (1.5.13.33) M ∈F (∆̃). Assume that the
result holds for split quasi-hereditary algebras with |Λ|< n for some n > 1. Assume that |Λ|= n. By Proposition
1.5.90, HomA(∆(λ )⊗R Uλ ,∇(α)) ' HomR(Uλ ,HomA(∆(λ ),∇(α)) = 0, α 6= λ . Let α ∈ Λ distinct of λ . The
functor HomA(−,∇(α)) induces the long exact sequence

0 = HomA(∆(λ )⊗R Uλ ,∇(α))→ Ext1A(X ,∇(α))→ Ext1A(M,∇(α)) = 0. (1.5.13.35)

By induction, X ∈F (∆̃α 6=λ ). By (1.5.13.33) M ∈F (∆̃). Now assume that Ext1A(∆(µ),M) = 0 for every µ ∈ Λ

and M ∈ A-mod∩R-proj. Since ∆(µ),M ∈ R-proj

Ext1Aop(DM,D∆(µ)) = Ext1A(∆(µ),M) = 0, µ ∈ Λ. (1.5.13.36)

As {D∆(µ)} are costandard modules of Aop, we obtain by statement 1. that DM ∈ FAop(D∇̃). Therefore,
M ∈F (∇̃).

By Lemma 1.5.101, we see that the condition of M ∈ R-proj cannot be dropped in Theorem 1.5.104. A trivial
example to check this situation is the split quasi-hereditary algebra R for some commutative Noetherian ring
with positive global dimension and trivial Picard group. Then, ∇ = ∆ = R, and therefore F (∆̃) = R-proj while
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{K ∈ R-mod: Ext1R(R,K) = 0}= R-mod.
So, it follows that F (∆̃) is a resolving subcategory of A-mod∩R-proj, as in the classical case.

Definition 1.5.105. A category χ is said to be resolving of a category A if

• χ contains all projective objects of A ;

• χ is closed under direct summands;

• χ is closed under extensions;

• χ is closed under kernels of epimorphisms;

In general, F (∇̃) may not be a coresolving subcategory of A-mod∩R-proj. However, we can introduce a
notion of (A,R)-coresolving subcategory such that F (∇̃) is an (A,R)-coresolving subcategory of A-mod∩R-proj.

Definition 1.5.106. A category χ is said to be (A,R)-coresolving of a category A-mod∩R-proj if

• χ contains all (A,R)-injective modules of A-mod∩R-proj;

• χ is closed under direct summands;

• χ is closed under extensions;

• χ is closed under cokernels of (A,R)-monomorphisms;

Lemma 1.5.107. [Rou08, Lemma 4.22] Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let ∆ =⊕
λ∈Λ

∆(λ ) and let ∇ =
⊕

λ∈Λ

∇(λ ).

1. Let M ∈F (∆̃). If Ext1A(M,∆) = 0, then M is projective over A.

2. Let N ∈F (∇̃). If Ext1A(∇,N) = 0, then N is (A,R)-injective.

Proof. Let 0→ K→ P→M→ 0 be a projective presentation for M. Let ∇ =
⊕

λ∈Λ

∇(λ ). Applying HomA(−,∇)

yields 0 = Ext1A(P,∇)→ Ext1A(K,∇)→ Ext2A(M,∇) = 0. Hence, Ext1A(K,∇) = 0. By Theorem 1.5.104, K ∈
F (∆̃). In particular, Ext1A(M,K) = 0. So, the projective presentation considered splits, therefore M is projective
over A.

Consider an (A,R)-injective presentation 0→N→ I→X→ 0. Applying HomA(∆,−) yields Ext1A(∆,X) = 0.
By Theorem 1.5.104, X ∈F (∇̃). Thus, Ext1A(X ,M) = 0. Hence, N is an A-summand of I and consequently, it is
(A,R)-injective.

This lemma says that the Ext-projective objects for F (∆̃) belonging to F (∆̃) are exactly the projective A-
modules. Recall that in Dlab-Ringel standardization theorem for dimR ≤ 1, we constructed projective objects
in F (Θ) to construct the split quasi-hereditary algebra A. Therefore, the main difference between an algebra
having a split standardizable set and an algebra being split quasi-hereditary lies here.

1.5.14 Tilting modules

Characteristic tilting modules of finite-dimensional quasi-hereditary algebras, and their summands known as
(partial) tilting modules, are a fundamental tool in order to obtain information about simple modules, and there-
fore about the structure of A-mod. Here, for the Noetherian case, the (partial) tilting modules behave very

157



1.5. Split quasi-hereditary algebras

similarly to the classical case. Previous uses of partial tilting modules for split quasi-hereditary algebras over
commutative Noetherian rings can be found in [Rou08], [Has00, III. 4], [Kra17]. Partial tilting modules for
SZ(n,d), n≥ d were studied in [Don93, section 3].

We shall begin by defining (partial) tilting modules and provide a way to construct them.

Definition 1.5.108. A module T ∈ A-mod is called (partial) tilting if T ∈F (∆̃)∩F (∇̃).

Proposition 1.5.109. [Rou08, Proposition 4.26] (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈
F (∆̃). There is a partial tilting module T and a monomorphism i : M→ T such that coker i ∈F (∆̃). Let λ ∈ Λ.

There are exact sequences and a partial tilting module T (λ )

0→ ∆(λ )→ T (λ )→ X(λ )→ 0 (1.5.14.1)

0→ Y (λ )→ T (λ )→ ∇(λ )→ 0, (1.5.14.2)

where X(λ ) ∈F (∆µ<λ ), Y (λ ) ∈F (∇µ<λ ).

Proof. Let M ∈F (∆̃). Fix an increasing bijection Λ→ {1, . . . ,n}. We construct by induction an object T with
a filtration

0 = Tn+1 ⊂M = Tn ⊂ ·· · ⊂ T0 = T, Ti−1/Ti ' ∆i⊗R Ui, Ui ∈ R-proj . (1.5.14.3)

For n = 1, there is nothing to show since Ext1A(∆1,∆1) = 0. Assume n > 1. Assume Ti is defined for some i,
2 ≤ i ≤ n. We shall construct Ti−1. Let Ui be a free R-module defined by the following map Ui

π−→ Ext1A(∆i,Ti)

being surjective. Consider the extension

0→ Ti→ X → ∆i⊗R Ui→ 0 (1.5.14.4)

corresponding to π via the isomorphism HomR(Ui,Ext1A(∆i,Ti)) → Ext1A(∆i ⊗R Ui,Ti). By Lemma 1.5.45,
Ext1A(∆i,X) = 0. Define Ti−1 = X . Since Ti ∈ F (∆ j>i) we obtain that Ti−1 ∈ F (∆ j≥i). On the other hand,
for j > i, applying HomA(∆ j,−) to (1.5.14.4) yields

HomA(∆ j,∆i⊗R Ui)→ Ext1A(∆ j,Ti)→ Ext1A(∆ j,X)→ Ext1A(∆ j,∆i⊗R Ui) = 0. (1.5.14.5)

We can assume by induction that Ext1A(∆ j,Ti) = 0 for j > i. Hence, Ext1A(∆ j,Ti−1) = 0 for j > i. Hence,
Ext1A(∆ j,Ti−1) = 0 for all j ≥ i. Hence, by induction, we obtain a module T ∈F (∆) with Ext1A(∆ j,T ) = 0 for
all j. By Theorem 1.5.104, T is partial tilting.

Now consider M = ∆(λ ) = ∆i = Ti. Notice that we can start the construction of T at i since for j > i we have
Ext1A(∆ j,∆i) = 0. Applying the previous construction we have a filtration

0⊂ ∆i = Ti ⊂ Ti−1 ⊂ ·· · ⊂ T0 = T (i) (1.5.14.6)

with Tj−1/Tj ' ∆ j⊗R Fj, Fj an R-free module and T (i) a partial tilting module.
Since T (i) ∈ F (∇̃) there exists a filtration 0 ⊂ I1 ⊂ ·· · ⊂ In = T (i) with I j/I j−1 ' ∇ j ⊗R U j, 1 ≤ j ≤ n.

Consider the exact sequences

0→ I j−1→ I j→ ∇ j⊗R U j→ 0. (1.5.14.7)

Let 1≤ k ≤ n. Applying the functor HomA(∆k,−) we obtain the exact sequences

0→ HomA(∆k, I j−1)→ HomA(∆k, I j)→ HomA(∆k,∇ j⊗R U j)→ Ext1A(∆k, I j−1) = 0. (1.5.14.8)
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Hence, for k 6= j we obtain

HomA(∆k, I j−1)' HomA(∆k, I j). (1.5.14.9)

For k = j, the following is exact

0→ HomA(∆ j, I j−1)→ HomA(∆ j, I j)→U j→ 0. (1.5.14.10)

Combining (1.5.14.9) with (1.5.14.10) we obtain the exact sequence

0→ HomA(∆k,∇1⊗R U1)→ HomA(∆k,T (i))→Uk→ 0. (1.5.14.11)

If i = 1, it follows by (1.5.14.7)

U1 ' HomA(∆1, I1)' HomA(∆1, In) = HomA(∆1,T (1)) = HomA(∆1,∆1)' R. (1.5.14.12)

By (1.5.14.11), U j = 0 for j > 1. So, the claim follows for i = 1. Assume i > 1. Note that HomA(∆i,T (i)) = R.
In fact, using the exact sequence constructed 0→ ∆(i)→ T (i)→ X(i)→ 0, every morphism in HomA(∆i,T (i))

factors through ∆i since X(i) ∈F (∆ j<i). By (1.5.14.11), Ui = R. By the same reason, HomA(∆ j,T (i)) = 0 for
j > i. Thus, U j = 0, j > i and the result follows.

We say that T =
⊕

λ∈Λ

T (λ ) is a characteristic tilting module, where each T (λ ) is a partial tilting with exact

sequences as in Theorem 1.5.109, where we can relax the conditions on X(λ ) and Y (λ ) to X(λ )∈F (∆̃µ<λ ) and
Y (λ ) ∈F (∇̃µ<λ ). As we will see, a characteristic tilting module is a full tilting module justifying the modules
T (λ ) being called (partial) tilting.

Proposition 1.5.110. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. If R has no non-trivial idempo-

tents, then we can construct the partial tilting modules T (λ ) to be indecomposable modules.

Proof. We will use the same notation as in the proof of Proposition 1.5.109. At each step of the filtration of T we
can choose Ui = Rni to be a free R-module with minimal rank ni such that π is a surjection. Let {e j, j = 1, . . . ,ni}
be an R-basis for Ui. Consider the extension

0→ Ti
i−→ X h−→ ∆i⊗R Ui→ 0 (1.5.14.13)

corresponding to π . Assume that there exists α : ∆i⊗RUi→X such that h◦α is an idempotent in EndA(∆i⊗RUi).
Denote by πr the canonical projections ∆i⊗RUi→ ∆i⊗R R' ∆i and by ir the canonical injections ∆i ' ∆i⊗R R→
∆i⊗R Ui, r = 1, . . . ,ni. Then, since h◦α is an idempotent ∑r πrh◦α ◦ ir is an idempotent in EndA(∆i) ' R. So,
either ∑r πrh◦α ◦ ir is zero or ∑r πrh◦α ◦ ir = id∆i . If h◦α is a non-zero idempotent, then ∑r πrh◦α ◦ ir = id∆i .
Applying ir in both members, it follows that h◦α ◦ ir = ir. Now observe that for an injective presentation Ti

k−→ I,
X in (1.5.14.13) is the pullback of ((s1, . . . ,sni),cokerk) where (s1, . . . ,sni) ∈HomA(∆i⊗R Ui,cokerk). It follows
by h◦α ◦ ir = ir that the exact sequence given by the pullback of (sr,cokerk) which coincides with the pullback
of (h, ir) splits over A. This exact sequence is the element π(er) = 0. So, we can lower the rank of Ui which
contradicts the minimality of Ui. Thus, we conclude that h◦α = 0.

Let 1≤ i≤ n. We shall proceed by induction on the filtration to show that each Tj, j ≤ i, is indecomposable.
For j = i, Ti = ∆i and EndA(∆i) ' R which has no non-trivial idempotents, so ∆i cannot be decomposable.
Assume that for some k < i every Tk is indecomposable. Take e : Tk−1→ Tk−1 idempotent. Now, Tk ∈F (∆l<k),
thus HomA(Tk,∆k⊗R Uk) = 0. Hence, e|Tj has image in Tj. Moreover, e|Tj is an idempotent in EndA(Tj). By
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induction, Tj is indecomposable, so either e|Tj = 0 or e|Tj = idTj . Assume that e|Tj = 0. Then, e ◦ i = 0. So, it
induces a map f ∈ HomA(∆ j⊗R U j,Tj−1) such that f ◦h = e. Since e2 = e and h is surjective

f ◦h◦ f ◦h = f ◦h =⇒ f ◦h◦ f = f (1.5.14.14)

=⇒ h◦ f ◦h◦ f = h◦ f . (1.5.14.15)

By our initial discussion, h◦ f ∈ EndA(∆ j⊗R U j) idempotent must be zero. Hence, f = f ◦h◦ f = 0. Thus, e = 0.
If eTj = idTj , then the idempotent (idTi−1−e)|Tj = 0. Hence, e = idTi−1 . So, there are no non-trivial idempotents
in EndA(Tj−1), and thus Tj−1 is indecomposable.

Remark 1.5.111. If R is a field, the partial tilting modules constructed in such a way are unique up to isomor-
phism. Furthermore, in such a case, each Ti constructed has local endomorphism ring. If R is a commutative
Noetherian ring, the uniqueness might fail. For example, the rank of (Ui) at each localization m (m a maximal
ideal of R) might not be constant for some i. 4

In practice, the short exact sequences (1.5.109) provide a way for determining the (partial) tilting modules.
But, as we will see next, these short exact sequences also give approximations of ∆ by ∇ and vice-versa.

Proposition 1.5.112. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let λ ∈ Λ.

The homomorphism ∆(λ ) ↪→T (λ ) constructed in Proposition 1.5.109 is an injective left F (∇̃)-approximation

of ∆(λ ). The homomorphism T (λ )→ ∇(λ ) constructed in Proposition 1.5.109 is a surjective right F (∆̃)-

approximation of ∇(λ ).

Proof. Let X ∈F (∇̃). Applying HomA(−,X) to (1.5.14.1) yields the exact sequence

0→ HomA(X(λ ),X)→ HomA(T (λ ),X)→ HomA(∆(λ ),X)→ Ext1A(X(λ ),X). (1.5.14.16)

By Lemma 1.5.100, Ext1A(X(λ ),X) = 0 since X(λ )∈F (∆̃). Thus, HomA(T (λ ),X)→HomA(∆(λ ),X) is surjec-
tive. Let Y ∈F (∆̃). Applying HomA(Y,−) to (1.5.14.2) yields that the map HomA(Y,T (λ ))→ HomA(Y,∇(λ ))

is surjective.

There is naturally a version of Corollary 1.5.94 and Proposition 1.5.90 for partial tilting modules.

Lemma 1.5.113. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra and let T be a partial tilting module.

Then, DT is a partial tilting module in the split highest weight category (Aop,{D∇(λ )
λ∈Λ
}). Moreover, if T is a

characteristic tilting module in A, then DT is a characteristic tilting module in Aop.

Proof. By Theorem 1.5.104, DT ∈ F (D∆̃)∩F (D∇̃). Assume that T is a characteristic tilting module. The
exact sequences (1.5.14.1) and (1.5.14.2) are (A,R)-exact since X(λ ),∇(λ )∈ R-proj. Applying D, it follows that
DT is a characteristic tilting module in Aop.

Lemma 1.5.114. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra and let X ∈ A-mod. Let T be a char-

acteristic tilting module. Then, X ∈F (∇) if and only if X has a finite resolution 0→ Xr→ ··· → X0→ X → 0,

with Xi ∈ addT .

Proof. Assume that X has a resolution by partial tilting modules in addT . Since each partial tilting is in F (∇̃)

every Xi ∈F (∇̃). As F (∇̃) is (A,R)-coresolving in A-mod∩R-proj then, in particular, it is closed under quotients
of (A,R)-monomorphisms, so it follows that X ∈F (∇̃).

Conversely, we will start by showing by the following lemma:
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Lemma 1.5.115. Let X ,Z be modules with a resolution by partial tilting modules in addT . Assume there is an

exact sequence

0→ X k−→ Y π−→ Z→ 0. (1.5.14.17)

Then, Y has a resolution by partial tilting modules in addT .

Proof. Consider the following diagram with exact rows and columns

0 X Y Z 0

0 T ′0 T ′0
⊕

T ′′0 T ′′0 0

K′0 K′′0

0 0

k π

p′0
k0 π0

p′′0

with T ′0 ,T
′′

0 ∈F (∆̃)∩F (∇̃). Applying HomA(T ′′0 ,−) to the top row yields

0→ HomA(T ′′0 ,X)→ HomA(T ′′0 ,Y )→ HomA(T ′′0 ,Z)→ Ext1A(T
′′

0 ,X) = 0. (1.5.14.18)

This is an immediate consequence of T ′′0 ∈F (∆̃) and X ∈F (∇̃). Hence, the map p′′0 lifts to f ∈ HomA(T ′′0 ,Y )

such that p′′0 = π ◦ f . Now consider g : T ′0
⊕

T ′′0 →Y , given by g(x,y) = k◦ p′0(x)+ f (y), (x,y) ∈ T ′0
⊕

T ′′0 . Then,
for (x,y) ∈ T ′0

⊕
T ′′0 ,

g◦ k0(x) = g(x,0) = k ◦ p′0(x) (1.5.14.19)

π ◦g(x,y) = π(k ◦ p′0(x)+ f (y)) = π ◦ f (y) = p′′0(y) = p′′0 ◦π0(x,y). (1.5.14.20)

Hence, g makes the previous diagram commutative. By Snake Lemma, g is surjective. Define K0 = kerg.
k0|K′0 : K′0→ K0 is well defined and it is clearly a monomorphism since

g◦ k0(x) = g(x,0) = k ◦ p′0(x) = k(0) = 0, x ∈ K0. (1.5.14.21)

Now π0| : K0→ K′′0 is well defined since p′′0 ◦π0|K0(x,y) = p′′0 ◦π0(x,y) = π ◦g(x,y) = 0, (x,y) ∈ K0. Therefore,
we have the commutative diagram with exact columns and the two top rows exact,

0 X Y Z 0

0 T ′0 T ′0
⊕

T ′′0 T ′′0 0

0 K′0 K0 K′′0 0

0 0 0

k π

p′0
k0

g

π0

p′′0

k0|K′0 π0|K0

.

Let y ∈ K′′0 . Then,

π ◦g(0,y) = π ◦ f (y) = p′′0(y) = 0. (1.5.14.22)
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Thus, g(0,y) = k(p′0(t)) = g◦k0(t) for some t ∈ T ′0 . Hence, (0,y)−k0(t) ∈ K0 and its image under π0 is y. Thus,
π0|K0 is surjective. Let (x,y) ∈ kerπ|K0 . Then, (x,y) ∈ K0∩imk0, so there exists z ∈ T ′0 such that k0(z) = (x,y).
Thus,

k ◦ p′0(z) = g◦ k0(z) = 0 =⇒ p′0(z) = 0. (1.5.14.23)

Thus, z ∈ K′0. So, the bottom row is also exact.
Now continue with the construction with the bottom row. Note that both K′0,K

′′
0 have partial tilting resolutions

by our choice in them. After a finite number of steps either we must proceed with an exact sequence

0→ K′t → Kt → K′′t → 0, (1.5.14.24)

with K′t ∈F (∆̃)∩F (∇̃),K′′t ∈F (∇̃) or T ′′t+1 = K′′t ∈F (∆̃)∩F (∇̃),K′t ∈F (∇̃). In the first case, proceed one
more step and we end up with Kt+1 ' K′′t+1. So,

0→ T ′′r → ··· → T ′′t+2→ T ′t+1

⊕
T ′′t+1→ ··· → T ′0

⊕
T ′′0 → Y → 0 (1.5.14.25)

is a partial tilting resolution for Y . In the second case, Ext1A(K
′′
t ,K

′
t ) = 0, so it splits, that is Kt ' K′′t

⊕
K′t . Hence

0→ T ′r → ··· → T ′t+2→ T ′t+1

⊕
T ′′t+1→ ·· · → T ′0

⊕
T ′′0 → Y → 0 (1.5.14.26)

is a partial tilting resolution for Y .

Now we will show that each costandard module ∇(µ) has a partial tilting resolution. If λ is minimal, then
∆(λ ) = T (λ ) = ∇(λ ). So, it is clear. Assume by induction that each ∇(µ) with µ < λ has a resolution by partial
tilting modules. By Lemma 1.5.115, every module in F (∇µ<λ ) has a finite partial tilting resolution. Hence
Y (λ ), as in Proposition 1.5.109, has a finite partial tilting resolution. Now using the exact sequence

0→ Y (λ )→ T (λ )→ ∇(λ )→ 0 (1.5.14.27)

and the partial tilting resolution for Y (λ ), it follows that ∇(λ ) has a finite partial tilting resolution. Applying
Lemma 1.5.115, it follows that any module in F (∇̃) has a partial tilting resolution.

We can deduce the dual result for F (∆̃).

Lemma 1.5.116. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra and let M ∈ A-mod. Let T be a charac-

teristic tilting module. Then, X ∈F (∆̃) if and only if M has a finite coresolution 0→M→ T0→ ··· → Tr→ 0,

with Ti ∈ addT .

Proof. Assume that M admits such finite coresolution. Since Ti ∈ addT , Ti ∈ F (∆̃). F (∆̃) is resolving in
A-mod∩R-proj, then, in particular, it is closed under kernels of epimorphisms. Hence, by induction on r it
follows that M ∈F (∆̃).

Conversely, assume that M ∈F (∆̃). We will show that each ∆(λ ) has a partial tilting coresolution belonging
to addT . First, observe the following.

Let 0→ X → Y → Z → 0 be an exact sequence where X ,Z have a coresolution by partial tilting modules
belonging to addT . In particular, Z ∈F (∆̃), and thus Z ∈ R-proj. Hence, applying D yields the exact sequence

0→ DZ→ DY → DX → 0. (1.5.14.28)
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By Lemma 1.5.113, every coresolution by partial tilting modules belonging to addT in A-mod is sent to a reso-
lution by partial tilting modules belonging to addDT in Aop-mod. By Lemma 1.5.115, DY has a resolution by
partial tilting modules belonging to addDT in Aop-mod. Since Y ∈ R-proj and DDT ' T Y has a coresolution by
partial tilting modules belonging to addT in A.

If λ is minimal, then ∆(λ ) is partial tilting. Assume by induction that each ∆(µ) with µ < λ has a coresolu-
tion by partial tilting modules. Hence, X(λ ) given by exact sequence (1.5.14.1) admits a coresolution by partial
tilting modules belonging to addT . Using the exact sequence (1.5.14.1), it follows that ∆(λ ) has a coresolution
by partial tilting modules belonging to addT . Now for every F ∈ R-proj, F⊗R− is exact, thus ∆(λ )⊗R F has a
coresolution by partial tilting modules belonging to addF⊗R T . But F⊗R T is an A-summand of Rs⊗R T ' T s.
Hence, every ∆(λ )⊗R F has a coresolution by partial tilting modules belonging to addT . It follows that M has a
partial tilting coresolutin belonging to addT .

Now applying the same idea used in [KSX01] to construct a filtration to EndA(T ), for T a partial tilting we
have the following result.

Proposition 1.5.117. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈F (∆̃), L ∈F (∇̃). Let

∆→{1, . . . ,n}, ∆i 7→ i be an increasing bijection. So, there exists Ui,Si ∈ R-proj such that

0 = Mn+1 ⊂Mn ⊂ ·· · ⊂M1 = M with Mi/Mi+1 ' ∆i⊗R Ui

0 = Ln+1 ⊂ Ln ⊂ ·· · ⊂ L1 = L with Li/Li+1 ' ∇n−i+1⊗R Sn−i+1, i = 1, . . . ,n.

Then, HomA(M,L) has a filtration

0 = Xn+1 ⊂ Xn ⊂ Xn−1 ⊂ ·· · ⊂ X1 = X = HomA(M,N),

Xi = HomA(M/Mn−i+2,Li) = HomA/Jn−i+2(M/Mn−i+2,Li), Xi/Xi+1 ' HomR(Un−i+1,Sn−i+1).

Proof. We will proceed by induction on n = |Λ|. Assume n = 1. Then, M ' ∆1⊗R U1 and L' ∇1⊗R S1. Then,

HomA(M,N) = HomA(∆1⊗R U1,∇1⊗R S1)' HomR(U1,HomA(∆1,∇1⊗R S1)) (1.5.14.29)

' HomR(U1,HomA(∆1,∇1)⊗R S1)' HomR(U1,S1). (1.5.14.30)

So, the filtration 0⊂HomR(U1,S1) = X1 is the desired one. Assume the result holds for n−1. Consider the short
exact sequences

0→ ∆n⊗R Un
kM−→M

πM−−→M/Mn→ 0 (1.5.14.31)

0→ L2
kL−→ L

πL−→ ∇n⊗R Sn→ 0. (1.5.14.32)

Applying the functor HomA(M,−) to (1.5.14.32) gives

0→ HomA(M,L2)
HomA(M,kL)−−−−−−−→ HomA(M,L)

HomA(M,πL)−−−−−−−→ HomA(M,∇n⊗R Sn)→ Ext1A(M,L2) = 0. (1.5.14.33)

Applying HomA(−,L) to (1.5.14.31) gives

0→ HomA(M/Mn,L)
HomA(πM ,L)−−−−−−−→ HomA(M,L)

HomA(kM ,L)−−−−−−−→ HomA(∆n⊗R Un,L)→ Ext1A(M/Mn,L) = 0.
(1.5.14.34)
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Applying the functor HomA(−,L2) to (1.5.14.31) we get

0 HomA(M/Mn,L2) HomA(M,L2) HomA(∆n⊗R Un,L2) 0 = Ext1A(M/Mn,L2).
HomA(πM ,L2) HomA(kM ,L2)

(1.5.14.35)
Since L2 ∈ F (∇i<n) we obtain HomA(∆n⊗R Un,L2) = 0. By (1.5.14.35), HomA(πM,L2) is an isomorphism.
Applying the functor HomA(−,∇n⊗R Sn) to (1.5.14.31) yields

0 HomA(M/Mn,∆n⊗R Sn) HomA(M,∆n⊗R Un) HomA(∆n⊗R Un,∇n⊗R Sn)

Ext1A(M/Mn,∆n⊗R Un) = 0 · · ·

HomA(kM ,∆n⊗RUn)

.

Since M/Mn ∈F (∆̃i<n) we obtain HomA(M/Mn,∇n⊗R Sn)= 0. Hence, HomA(kM,∆n⊗RUn) is an isomorphism.
Therefore, we have an exact sequence

HomA(M/Mn,L2) HomA(M,L) HomA(∆n⊗R Un,∇n⊗R Sn).
HomA(M,kL)◦HomA(πM ,L2) HomA(kM ,∆n⊗RUn)◦HomA(M,πL)

We have that

HomA(∆n⊗R Un,∇n⊗R Sn)' HomR(Un,HomA(∆n,∇n⊗R Sn))' HomR(Un,HomA(∆n,∇n)⊗R Sn)

' HomR(Un,Sn). (1.5.14.36)

Fix Jn = imτ∆n . Since M/Mn ∈F (∆i<n) and L2 ∈F (∇i<n), we have HomA(M/Mn,L2) = HomA/Jn(M/Mn,L2).
Therefore, X/HomA/Jn(M/Mn,L2)' HomR(Un,Sn). By induction, HomA/Jn(M/Mn,L2) admits a filtration

0⊂ Xn ⊂ Xn−1 ⊂ ·· · ⊂ X2 = HomA(M/Mn,L2), (1.5.14.37)

with Xi ' HomA/Jn/Jn−i+2/Jn(M/Mn−i+2,Li) ' HomA/Jn−i+2(M/Mn−i+2,Li), i = 2, . . .n. Thus,
0⊂ Xn ⊂ Xn−1 ⊂ ·· · ⊂ X2 ⊂ X is the desired filtration.

The following result has been observed in the literature several times in particular cases (see for example
Lemma 4.2 of [DPS98b]).

Corollary 1.5.118. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈F (∆̃) and let N ∈F (∇̃).

Let Q be a commutative Noetherian R-algebra. Then, Q⊗R HomA(M,N) ' HomQ⊗RA(Q⊗R M,Q⊗R N). In

particular, HomA(M,N)(m)' HomA(m)(M(m),N(m)) for every maximal ideal m in R.

Proof. We shall proceed by induction on n = |Λ|. Assume n = 1. Then, HomA(M,N)' HomR(U1,S1). So,

Q⊗R HomA(M,N)' Q⊗R HomR(U1,S1)' HomQ⊗RR(Q⊗R U1,Q⊗R S1) (1.5.14.38)

' HomQ⊗RA(Q⊗R ∆1⊗Q⊗RR Q⊗R U1,Q⊗R ∇1⊗Q⊗RR Q⊗R S1) (1.5.14.39)

' HomQ⊗RA(Q⊗R M,Q⊗R N). (1.5.14.40)

Assume that the result holds for n− 1. Consider A with |Λ| = n. Consider the exact sequence given by the
filtration of HomA(M,N):

0→ HomA/J(M/Mn,L2)→ HomA(M,L)→ HomR(Un,Sn)→ 0. (1.5.14.41)

Since HomR(Un,Sn) ∈ R-proj, (1.5.14.41) is (A,R)-exact. We will denote by X(Q) the tensor product Q⊗R X .
Applying Q⊗R− we get the following commutative diagram with exact rows

164



Chapter 1. Background

Q⊗R HomA/J(M/Mn,L2) Q⊗R HomA(M,L) Q⊗R HomA(∆n⊗R Un,∇n⊗R Sn)

HomA/J(Q)(M/Mn(Q),L2(Q)) HomA(Q)(M(Q),L2(Q)) HomA(Q)(∆n(Q)⊗Q Un(Q),∇n(Q)⊗Q Sn(Q))

α1 α α2 .

Note that the bottom row is exact since we use the same exact sequences given by filtrations of M(Q) ∈F (∆(Q))

and L(Q) ∈F (∇(Q)) in view of Proposition 1.5.55. This is admissible because all the modules involved in the
filtrations are projective over R. So, the functor Q⊗R− preserves the given filtrations. By induction, α1 is an
isomorphism. Since ∆n⊗R Un ∈ A-proj, α2 is an isomorphism. By Snake Lemma, α is an isomorphism.

Let m be a maximal ideal in R. Fixing Q = R(m), the rest of the claim follows.

Since HomA(M,N) admits a filtration by projective R-modules then it is also projective over R.

Corollary 1.5.119. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈F (∆̃) and let N ∈F (∇̃).

Then, HomA(M,N) ∈ R-proj.

We should remark that the name tilting module here described in the context of split quasi-hereditary algebras
should not be confused with its counterpart tilting module in representation theory. Many representation theorists
know tilting modules in the following way:

Definition 1.5.120. Let A be a projective Noetherian R-algebra. A module T ∈ A-mod is (full generalized)
tilting provided that

(i) T has finite projective dimension over A;

(ii) Exti>0
A (T,T ) = 0;

(iii) There is an exact sequence 0→ A→ T0→ ··· → Tr→ 0 where Ti ∈ addT for all 0≤ i≤ r for some r ∈N.

Although this is not the same concept as partial tilting modules in F (∆̃)∩F (∇̃), a characteristic tilting
module is a generalized tilting module. In fact, condition 1.5.120(i) is clear since A has finite global dimension
if R has finite global dimension. Condition 1.5.120(ii) follows from Lemma 1.5.100. Condition 1.5.120(iii)
follows from Lemma 1.5.116 since A ∈F (∆̃).

1.5.15 Ringel dual and uniqueness of characteristic tilting modules

Lemma 1.5.121. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Assume that T =
⊕

λ∈Λ

T (λ ) is a char-

acteristic tilting module. Fix B = EndA(T )op. Then, the functor G = HomA(T,−) : A-Mod→ B-Mod restricts to

an exact equivalence between F (∇̃) and F (∆̃B) with ∆B(λ ) = G∇(λ ), λ ∈ Λ. Let ∆→{1, . . . ,n}, ∆i 7→ i be an

increasing bijection. Here F (∆̃B) denotes the subcategory of B-mod whose modules M have a finite filtration

0 = Pn+1 ⊂ Pn ⊂ ·· · ⊂ P1 = M with Pi/Pi+1 ' ∆B(i)⊗R Ui, Ui ∈ R-proj .

Proof. The functor HomA(T,−) is exact on F (∇̃). In fact, this follows from Ext1A(T,M)= 0 for every M ∈F (∇̃)

since T ∈F (∆̃). Notice that for any M ∈F (∆̃), we have HomA(M,∇ j⊗R S j) ' HomA(M,∇ j)⊗R S j. In fact,
HomA(M,∇ j⊗R S j) has a filtration X• with Xn− j+1/Xn− j+2 ' HomR(U j,S j) and Xn− j+2 = 0. So,

HomA(M,∇ j⊗R S j)' HomR(U j,S j)' HomR(U j,R)⊗R S j ' HomA(M,∇ j)⊗R S j. (1.5.15.1)
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Let N ∈F (∇̃). Hence, we have a filtration

0⊂ I1 ⊂ ·· · ⊂ In = N, Ii/Ii−1 ' Ii⊗R Ui, i = 1, . . . ,n. (1.5.15.2)

Applying HomA(T,−) yields the exact sequence

0→ HomA(T, Ii−1)→ HomA(T, Ii)→ HomA(T,∇i)⊗R Ui→ 0. (1.5.15.3)

So, HomA(T,−) sends a module N ∈FA(∇̃) to HomA(T,N) ∈FB( ˜HomA(T,∇)). Fix ∆B(i) = G∇i. We shall
now prove that G is full and faithful on F (∇̃). Let Y ∈ A-mod. Then,

HomA(T,Y )' G(Y ) = HomB(B,GY )' HomB(HomA(T,T ),GY )' HomB(GT,GY ). (1.5.15.4)

Hence, for any X ∈ addT , we have HomA(X ,Y ) ' HomB(GX ,GY ) for all Y ∈ A-mod . Let X ∈ FA(∇̃). By
Lemma 1.5.115, there is an addT -presentation T1→ T0→ X → 0. Applying HomA(−,Y ) and HomB(G−,GY )

we obtain the following commutative diagram with exact rows

0 HomA(X ,Y ) HomA(T0,Y ) HomA(T1,Y )

0 HomB(GX ,GY ) HomB(GT0,GY ) HomB(GT1,GY )

' ' .

By diagram chasing, HomA(X ,Y )' HomB(GX ,GY ) for all X ,Y ∈FA(∇̃).
Now we claim that Ext1A(Ui⊗R ∇i,N)' Ext1B(G(Ui⊗R ∇i),GN) for all N ∈FA(∇̃) and Ui ∈ R-proj.
Consider the exact sequence 0→ Yi→ Ti→ ∇i→ 0. Applying Ui⊗R− we get the exact sequence

0→Ui⊗R Yi→Ui⊗R Ti→Ui⊗R ∇i→ 0. (1.5.15.5)

Let N ∈FA(∇̃). Applying HomA(−,N) we get

0→ HomA(∇i⊗R Ui,N)→ HomA(Ui⊗R Ti,N)→ HomA(Ui⊗R Yi,N)→ Ext1A(Ui⊗R ∇i,N)→ 0. (1.5.15.6)

Since G is exact on F (∇̃),

0→ HomB(G(Ui⊗R ∇i),GN)→ HomB(GTi⊗R ∇i,GN)→ HomB(G(Ui⊗R Yi),GN)→ Ext1B(G(Ui⊗R Ui),GN)→ 0

is an exact sequence. Here Ext1B(G(Ti⊗R Ui),GN) = 0 since G(Ti⊗R Ui) is a B-summand of GT s
i ∈ B-proj.

Therefore, there is a commutative diagram with exact rows

HomA(Ti⊗R Ui,N) HomA(Yi⊗R Ui,N) Ext1A(∇i⊗R Ui,N) 0

HomB(G(Ti⊗R Ui),GN) HomB(GYi⊗R Ui,GN) Ext1B(G∇i⊗R Ui,GN) 0

' ' .

It follows by diagram chasing that Ext1B(G(∇i⊗R Ui),GN)' Ext1A(∇i⊗R Ui,N).
Now consider X ∈FB(∆̃B). Then, there is a filtration

0⊂ X1 ⊂ ·· · ⊂ Xn = X , Xi/Xi−1 ' ∆B(i)⊗R Ui, Ui ∈ R-proj . (1.5.15.7)
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We claim that there exists N ∈FA(∇̃) such that GN = X . We will prove it by induction on n = |Λ|. If n = 1, then

X = ∆B(1)⊗R U1 ' G∇1⊗R U1 ' G(∇1⊗R U1). (1.5.15.8)

Assume that the result holds for n−1. Consider the exact sequence

0→ Xn−1→ X → ∆B(n)⊗R Un→ 0. (1.5.15.9)

Here, ∆B(n)⊗R Un 'G(∇n⊗R Un). By induction, Xn−1 'GNn−1 for some Nn−1 ∈F (∇̃). So, the exact sequence
in (1.5.15.9) belongs to Ext1B(G(∇n⊗R Un),GNn−1). Hence, there exists an exact sequence

0→ Nn−1→ Nn→ ∇n⊗R Un→ 0 (1.5.15.10)

and its image by G is isomorphic to (1.5.15.9). In particular, GNn ' X .

Theorem 1.5.122. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let T be a characteristic tilting

module of (A,{∆(λ )λ∈Λ}). Let B = EndA(T )op. Then, B is split highest weight category with standard modules

∆B(λ ) = HomA(T,∇(λ )), where Λ is ordered in the following way: λ ≤B µ if and only if λ ≥ µ .

Proof. Denote by G the functor HomA(T,−). Since T ∈F (∆̃), by Proposition 1.5.117, HomA(T,∇(λ )) has a
filtration

0 = Xn+1 ⊂ Xn ⊂ Xn−1 ⊂ ·· · ⊂ X2 ⊂ X1 = HomA(T,∇(λ )), Xi/Xi+1 ' HomR(Un−i+1,Sn−i+1) ∈ R-proj .

Therefore, ∆B(λ ) ∈ R-proj.
Assume that HomB(∆B(λ

′),∆B(λ
′′)) 6= 0. Then, 0 6= HomB(G∇(λ ′),G∇(λ ′′)) ' HomA(∇(λ ′),∇(λ ′′)). By

Proposition 1.5.97, λ ′ ≥ λ ′′. Thus, λ ′ ≤R λ ′′.
Assume N ∈ B-mod such that HomB(∆B(λ ),N) = 0 for all λ ∈ Λ. Consider the exact sequence

0→ Y (λ )→ T (λ )→ ∇(λ )→ 0. (1.5.15.11)

Applying HomB(G−,N) (left exact functor on F (∇̃)) yields the exact sequence

0→ HomB(∆B(λ ),N)→ HomB(GT (λ ),N)→ HomB(GY (λ ),N). (1.5.15.12)

Since GY (λ ) ∈F (∆̃B) it holds HomB(GY (λ ),N) = 0. Hence, HomB(GT (λ ),N) = 0 for all λ ∈ Λ. Therefore,

0 = HomB(G(
⊕
λ∈Λ

T (λ )),N) = HomB(HomA(T,T ),N) = HomB(B,N) = N. (1.5.15.13)

Since Y (λ ) ∈F (∇̃µ<λ ), it follows that GY (λ ) ∈F (∆̃Bµ<λ
) =F (∆̃Bµ>Bλ

). As T (λ ) ∈ addT , it follows that
GT (λ ) ∈ B-proj. So, the exact sequence

0→ GY (λ )→ GT (λ )→ ∆B(λ )→ 0 (1.5.15.14)

satisfies iv) of Definition 1.5.32. Since G is full and faithful on F (∇̃), the following holds

EndB(∆B(λ ))' EndB(G∇(λ ))' EndA(∇(λ ))' R. (1.5.15.15)

Thus, (B-mod,{∆B(λ )λ∈Λ}) is a split highest weight category.
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Corollary 1.5.123. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra with T a characteristic tilting mod-

ule. Then, addT = F (∆̃)∩F (∇̃).

Proof. The inclusion addT ⊂F (∆̃)∩F (∇̃) is clear. Fix B = EndA(T )op. Consider X ∈F (∆̃)∩F (∇̃). Then,
GX = HomA(T,X) ∈F (∆̃B). Since HomA(T,−) is an exact equivalence from F (∇̃) onto F (∆̃B) we obtain

Ext1B(GX ,∆B(λ )) = Ext1B(GX ,G∇(λ ))' Ext1A(X ,∇(λ )) = 0, ∀λ ∈ Λ. (1.5.15.16)

By Lemma 1.5.107 and Proposition 1.5.122, GX ∈ B-proj. By projectivization, there exists T ′ ∈ addT such that
GX = HomA(T,X)' HomA(T,T ′) = GT ′. Since G is an equivalence it follows that X ' T ′ ∈ addT .

Theorem 1.5.124. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Assume there are modules T (λ ) and

Q(λ ),λ ∈ Λ with exact sequences

0→ ∆(λ )→ T (λ )→ X(λ )→ 0

0→ Y (λ )→ T (λ )→ ∇(λ )→ 0

0→ ∆(λ )→ Q(λ )→ X ′(λ )→ 0

0→ Y ′(λ )→ Q(λ )→ ∇(λ )→ 0

where X(λ ),X ′(λ )∈F (∆̃µ<λ ) and Y (λ ),Y ′(λ )∈F (∇̃µ<λ ). Let T =
⊕

λ∈Λ

T (λ ), Q=
⊕

λ∈Λ

Q(λ ), B=EndA(T )op,

C = EndA(Q)op. Then, B and C are Morita equivalent as split quasi-hereditary algebras.

Proof. By Lemma 1.5.121, the functors HomA(T,−) : A-Mod→B-Mod and HomA(Q,−) : A-Mod→C-Mod re-
strict to exact equivalences F (∇̃A)→F (∆̃B) and F (∇̃A)→F (∆̃C), respectively. Moreover, by projectivization
HomA(T,−) restricts to an exact equivalence addT → B-proj and HomA(Q,−) restricts to an exact equivalence
addQ→C-proj. By Corollary 1.5.123,

addT = F (∆̃A)∩F (∇̃A) = addQ. (1.5.15.17)

So, B-proj ' C-proj. Therefore, B and C are Morita equivalent. More precisely, the adjoint is given by
T ⊗B− : B-proj : → addT = addQ. So, the functor HomA(Q,−)◦T⊗B− : B-proj→C-proj is an equivalence of
categories. Moreover, HomA(Q,T ) ' HomA(Q,T ⊗B B) is a C-progenerator. Therefore, the functor
HomC(HomA(Q,T ),−) : C-mod→ B-mod is an equivalence of categories.

Now notice that for any λ ∈ Λ,

HomC(HomA(Q,T ),∆C(λ )) = HomC(HomA(Q,T ),HomA(Q,∇(λ )))' HomA(T,∇(λ )) = ∆B(λ ).

Therefore, applying φ = idΛ in Definition 1.5.66, the result follows.

As a consequence of this theorem, the Ringel dual is well defined over commutative Noetherian rings. We
will denote by R(A) the Ringel dual of A. We will see afterwards that the Ringel dual of A relates with A in the
same way as in the field case.

As in the classical case, the characteristic tilting module characterizes the standard and costandard modules.

Corollary 1.5.125. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Then,

(a) F (∆̃) = {M ∈ A-mod: Exti>0
A (M,T ) = 0};

(b) F (∇̃) = {N ∈ A-mod: Exti>0
A (T,N) = 0}.
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Proof. Let M ∈F (∆̃). As T ∈F (∇̃) then Exti>0
A (M,T ) = 0 by Lemma 1.5.100.

Conversely, assume that Exti>0
A (M,T ) = 0. Then, ∏λ∈Λ Exti>0

A (M,T (λ )) = 0 and by consequence for each
λ ∈ Λ, Exti>0

A (M,T (λ )) = 0. We claim that Exti>0
A (M,∇(λ )) = 0 for every λ ∈ Λ. If λ is minimal, then T (λ ) =

∇(λ ), so there is nothing to show. Assume that for all µ < λ ExtiA(M,∇(µ)) = 0, i > 0. Then, ExtiA(M,X) = 0
for every X ∈F (∇̃µ<λ ), i > 0. Consider the exact sequence

0→ Y (λ )→ T (λ )→ ∇(λ )→ 0. (1.5.15.18)

In particular, Ext2A(M,Y (λ )) = 0 since Y (λ ) ∈ F (∇̃µ<λ ). Thus, we deduce by applying HomA(M,−) to
(1.5.15.18) that Ext1A(M,∇(λ )) ' Ext2A(M,Y (λ )) = 0. By induction, Ext1A(M,∇(λ )) = 0 for all λ ∈ Λ. By
Proposition 1.5.104, M ∈F (∆̃).

By a symmetric argument we obtain statement b).

We will see now that costandard modules and partial tilting modules behave well under ground ring change.

Proposition 1.5.126. Let S be a commutative Noetherian R-algebra. Let (A,{∆(λ )λ∈Λ}) be a split quasi-

hereditary algebra. Then, the following assertions hold.

(a) (S⊗R A,{S⊗R ∆(λ )λ∈Λ}) has costandard modules S⊗R ∇(λ )⊗RU(λ ) for some U(λ )∈Pic(S). Moreover,

if S is flat over R, then the costandard modules can be written in form S⊗R ∇(λ ).

(b) Assume that S is flat over R or that S has a trivial Picard group then S⊗R T (λ ) is a partial tilting module

(it satisfies (1.5.14.1) and (1.5.14.2)) for S⊗R A and S⊗R T is a characteristic tilting module.

Proof. By Proposition 1.5.90, (Aop,{D∇(λ )λ∈Λ}) is a split highest weight category. By Proposition 1.5.55,
(S⊗R Aop,{S⊗R D∇(λ )λ∈Λ}) is split highest weight category. Now note that (S⊗R A)op = S⊗R Aop, since S is
a commutative ring. Moreover,

S⊗R D∇(λ ) = S⊗R HomR(∇(λ ),R)' HomS⊗RR(S⊗R ∇(λ ),S⊗R R) = DS(S⊗R ∇(λ )). (1.5.15.19)

So, S⊗R ∇(λ )⊗S Uλ , Uλ ∈ Pic(S), is a costandard module of S⊗R A by Proposition 1.5.90. Now assume that S

is a flat R-algebra. Then,

Ext j
S⊗RA(S⊗R ∆(λ ),S⊗R ∇(β ))' S⊗R Ext j

A(∆(λ ),∇(β ))'

S⊗R R if λ = β , i = 0

0 otherwise
. (1.5.15.20)

By the uniqueness, S⊗R ∇(λ ) are costandard modules of S⊗R A.
Assume that either S is an R-flat or S has trivial Picard group. Then, by (b) the costandard modules of S⊗R A

are of the form S⊗R ∇(λ ). Since the exact sequences given by filtrations are all (A,R)-exact, the functor S⊗R−
is exact on the exact sequences of Proposition 1.5.109. Therefore, S⊗R T is a characteristic tilting module for
S⊗R A.

Remark 1.5.127. In view of Remark 1.5.111, we cannot expect that the isomorphism T (λ )(m)' T(m)(λ ) holds
in this generality, where T(m)(λ ) is a partial tilting indecomposable module of A(m) for m a maximal ideal of
R. 4

Proposition 1.5.128. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let R(A) be a Ringel dual of A.

Then, R(R(A)) is Morita equivalent to A.
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Proof. Define I =
⊕

λ∈Λ

I(λ ), where I(λ ) is the (A,R)-injective module given by Theorem 1.5.103. In particular,

each I(λ ) ∈F (∇̃). We will denote by G and B the functor HomA(T,−) and the Ringel dual R(A), respectively.
By Theorem 1.5.122, GI ∈ F (∆̃B). By Lemma 1.5.121, Ext1B(G∇(λ ),GN) ' Ext1A(∇(λ ),N) for every N ∈
F (∇̃B), for every λ ∈ Λ. In particular, for N = I, and for every λ ∈ Λ,

Ext1B(∆B(λ ),GI)' Ext1A(∇(λ ), I)' Ext1(A,R)(∇(λ ), I) = 0. (1.5.15.21)

By Theorem 1.5.104, GI ∈F (∇̃B). Hence, GI is a partial tilting module. Applying G to the exact sequence

0→ ∇(λ )→ I(λ )→C(λ )→ 0 (1.5.15.22)

we obtain the exact sequence 0→ ∆B(λ )→ GI(λ )→ GC(λ )→ 0 with GC(λ ) ∈F (∇̃Bµ>λ ) = F (∇̃Bµ<Bλ ).
Therefore, GI is a characteristic tilting module.

R(B) = EndB(GI)op ' EndA(I)op ' EndA(DI) Mor∼ EndA(A)' A. (1.5.15.23)

The second identification is due to G being full and faithful on F (∇̃A) whereas the fourth identification is due to
DI being a right A-progenerator. In particular, addDI = addAA.

Note that R(R(A)) is isomorphic to EndA(DI) ' EndA(Pop) as R-algebras, where Pop is the progenerator⊕
λ∈Λ Pop(λ ) making (Aop,D∇(λ )) a split quasi-hereditary algebra. So, the equivalence of categories is given

by the functor HomA(HomA(Pop,A),−) : A-mod→ R(R(A))-mod. Denote this functor by H. A natural question
that arises is whether this equivalence of categories is also an equivalence as split highest weight categories.

Of course, this is true for split quasi-hereditary algebras over fields. Those can be studied in terms of its
simple modules and Λ indexes the set of non-isomorphic classes of simple A-modules (see Proposition 1.5.39).
Assume that R is a field. Then, SA(λ ) is the top of the projective indecomposable PA(λ ) and the socle of the
injective indecomposable module IA(λ ). By Lemma 1.5.38 and since G is full and faithful

SR(R(A))(λ ) = topHomR(A)(GI,GI(λ ))' topHomA(I, I(λ ))' topHomA(I,DHomA(PA(λ ),A)) (1.5.15.24)

' topHomA(HomA(PA(λ ),A),Pop)' topHPA(λ ) = HSA(λ ). (1.5.15.25)

In particular, H sends PA(λ ) to PR(R(A))(λ ) and ∆A(λ ) to ∆R(R(A))(λ ). Therefore, R(R(A)) and A are Morita
equivalent as split quasi-hereditary algebras over fields. The general case requires a bit more work. The difficulty
lies in the fact that we do not know, in general, if DHomA(P(λ ),A) ' I(λ ) holds nor if the projectives P(λ )

become indecomposable objects under the functors R(m)⊗R− for m a maximal ideal of R.

Proposition 1.5.129. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra over a commutative Noetherian

ring. Let R(A) be a Ringel dual of A. Then, R(R(A)) is Morita equivalent to A as split quasi-hereditary algebras.

Proof. According to Proposition 1.5.128, it is enough to prove that HomA(HomA(Pop,A),∆(λ )) ' ∆R(R(A))(λ ),
for every λ ∈Λ. To do that, we will use induction on |Λ|. Denote by H the functor HomA(HomA(Pop,A),−). By
Remark 1.5.98, if λ ∈ Λ is maximal, then DHomA(∆(λ ),A)' I(λ ). Thus,

H∆(λ )' HomA(HomA(∆(λ ),A),Pop)' HomA(I,DHomA(∆(λ ),A))' HomA(I, I(λ )) (1.5.15.26)

' HomR(A)(GI,GI(λ ))' ∆R(R(A))(λ ). (1.5.15.27)
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Assume that |Λ|> 1. Let J be the split heredity ideal associated with ∆(λ ). Denote by HJ the functor

HomA(HomA(
⊕

µ∈Λ\{λ}
P(µ)/JP(µ),A/J),−).

By induction, HJ∆(µ)' ∆R(R(A/J))(µ) = ∆R(R(A))(µ) for every µ 6= λ , µ ∈ Λ. Hence, it is enough to check that
HJX ' HX for all X ∈ A/J-mod. Since J = J2 HomA(P(µ)/JP(µ),A/J) ' HomA(P(µ),A/J) for every µ ∈ Λ

and HomA(P(λ ),A/J) = 0 by Corollary 1.5.23. Therefore,

HomA(
⊕

µ∈Λ\{λ}
P(µ)/JP(µ),A/J)' HomA(Pop,A/J).

Moreover, HomA(HomA(Pop,J),X) = 0 for all X ∈ A/J-mod. Thus, HX 'HJX for every X ∈ A/J-mod. Hence,
H sends ∆(µ) to ∆R(R(A))(µ) for all µ ∈ Λ.

Corollary 1.5.130. Let (A-mod,{∆(λ )λ∈Λ}) and (B-mod,{Ω(χ)χ∈X}) be two split highest weight categories.

B is a Ringel dual of A if and only if there is an exact equivalence between the categories F (∆̃) and F (f̃B),

where f denotes the set of costandard modules of B.

Proof. Let B = R(A) be a Ringel dual of A. By Lemma 1.5.121, there is an exact equivalence
F (∇̃R(A))'F (∆̃R(R(A))). By Proposition 1.5.129, there is an exact equivalence F (∆̃R(R(A)))'F (∆̃A).

Conversely, assume that there is exact equivalence between the categories F (∆̃A) and F (f̃B). By Lemma
1.5.121, there is an exact equivalence F (∆̃A) 'F (f̃B) 'F (Ω̃R(B)). In view of Proposition 1.5.80, R(B) and
A are equivalent as split highest weight categories. By Proposition 1.5.129, we conclude that B and R(A) are
equivalent as split highest weight categories.

1.5.16 Additional structure on the resolving subcategory F (∆̃) and its dual

Proposition 1.5.131. [Rou08, Proposition 4.30] Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let

M ∈ A-mod. Then, the following assertions hold.

(a) M ∈F (∆̃) if and only if M(m) ∈F (∆(m)) for all maximal ideals m of R and M is projective over R.

(b) M ∈F (∇̃) if and only if M(m) ∈F (∇(m)) for all maximal ideals m of R and M is projective over R.

(c) Let T be a characteristic tilting module. M ∈ addT if and only if M(m) ∈ addT (m) for all maximal ideals

m of R and M is projective R.

Proof. Assume that M ∈F (∆̃). There is a filtration

0 = Mn+1 ⊂Mn ⊂ ·· · ⊂M1 = M, Mi/Mi+1 ' ∆i⊗R Ui. (1.5.16.1)

All these modules are projective over R, so

0 = Mn+1(m)⊂Mn(m)⊂ ·· · ⊂M1(m) = M(m) (1.5.16.2)

is a filtration in F (∆(m)). Hence, M(m) ∈F (∆(m)).
Reciprocally, let M ∈ A-mod∩R-proj such that M(m) ∈F (∆(m)) for every maximal m in R. We have that

pdimA M is finite. We shall proceed by induction on pdimA M.
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Assume pdimA M = 0. Then, M is projective over A, so there is nothing to show. Assume pdimA M > 0.
Consider the projective presentation

0→ L→ P→M→ 0. (1.5.16.3)

Then, pdimA L ≤ pdimA M− 1. Let m be a maximal ideal in R. Applying R(m)⊗R −, we obtain the exact
sequence

0 = TorR
1 (R(m),M)→ L(m)→ P(m)→M(m)→ 0. (1.5.16.4)

By hypothesis, ExtiA(m)(M(m),∇(λ )(m)) = 0 for i> 0 and λ ∈Λ. Thus, ExtiA(m)(L(m),∇(λ )(m)) = 0 and hence
L(m) ∈F (∆(m)). By induction, L ∈F (∆̃). Let N ∈F (∇̃). Applying the functors R(m)⊗R HomA(−,N) and
HomA(m)(−,N(m)) we obtain the following commutative diagram with exact rows

HomA(P,N)(m) HomA(L,N)(m) Ext1A(M,N)(m) 0

HomA(m)(P(m),N(m)) HomA(m)(L(m),N(m)) Ext1A(m)(M(m),N(m)) 0

' ' .

By Proposition 1.5.118 the two columns on the left are isomorphic maps. By diagram chasing, it follows that
Ext1A(M,N)(m) = ExtA(m)(M(m),N(m)) = 0, since M(m) ∈F (∆(m)) and N(m) ∈F (∇(m)). As m is an arbi-
trary maximal ideal in R we deduce Ext1A(M,N) = 0. By Proposition 1.5.104, M ∈F (∆̃). Hence, a) follows.

Let N ∈F (∇̃). Then, DN ∈F (∆̃Aop) and N ∈R-proj. By a), DN(m)'HomR(m)(N(m),R(m))∈F (∆Aop(m)).
Thus, N(m) ∈F (∇(m)). Conversely, assume that N ∈ R-proj and N(m) ∈F (∇(m)) for every maximal ideal
m in R. Then, DN(m)' HomR(m)(N(m),R(m)) ∈F (∆Aop(m)). By a) DN ∈F (∆̃Aop) hence N ∈F (∇̃). As a
consequence, b) follows.

Applying a) and b) to Corollary 1.5.123, c) follows.

Proposition 1.5.132. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ A-mod. Then, the follow-

ing assertions hold.

1. If M ∈F (∆̃) and M(m)' ∆(λ )(m) for some λ ∈ Λ for every maximal ideal m of R, then M ' ∆(λ )⊗F

for some F ∈ Pic(R).

2. If M ∈F (∇̃) and M(m)' ∇(λ )(m) for some λ ∈ Λ for every maximal ideal m of R, then M ' ∇(λ )⊗F

for some F ∈ Pic(R).

Proof. Since M ∈F (∆̃) there is a filtration

0 = Mn+1 ⊂Mn ⊂ ·· · ⊂M1 = M, Mi/Mi+1 ' ∆i⊗R Ui, Ui ∈ R-proj . (1.5.16.5)

By Proposition 1.5.117,

HomA(M,∇i)' HomA(M/Mi+1,∇i)' HomR(Ui,R) = DUi. (1.5.16.6)

Let λ ∈ Λ be the weight that corresponds to i. Thus, for µ 6= λ ,

HomA(M,∇µ)(m)' HomA(m)(M(m),∇µ(m))' HomA(m)(∆(λ )(m),∇(µ)(m)) = 0, (1.5.16.7)
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for every maximal ideal m in R. So, DU(µ) ' HomA(M,∇(µ)) = 0. Thus, U(µ) = 0, since U(µ) ∈ R-proj.
Thus, M ' ∆(λ )⊗R U(λ ). We have

HomA(M,∇(λ ))(m)' HomA(m)(M(m),∇(λ )(m))' HomA(m)(∆(λ )(m),∇(λ )(m))' R(m). (1.5.16.8)

On the other hand,

HomA(M,∇(λ ))' HomA(∆(λ )⊗R U(λ ),∇(λ )) (1.5.16.9)

' HomR(U(λ ),HomA(∆(λ ),∇(λ )))' DU(λ ) ∈ R-proj . (1.5.16.10)

Thus, DU(λ )m ' Rnm
m for some nm ≥ 0. We finally deduce that

R(m)' DU(λ )(m)' DU(λ )m⊗Rm Rm/mm ' Rnm
m ⊗Rm R(m)' R(m)nm =⇒ nm = 1, (1.5.16.11)

for every maximal ideal m in R. Thus, DU(λ ) ∈ Pic(R). We conclude that U(λ ) ∈ Pic(R).

As a consequence of Proposition 1.5.131, we can provide an alternative proof for Corollary 1.5.119. More
precisely, this new approach will give us a stronger result than Corollary 1.5.119.

Proposition 1.5.133. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Suppose that M ∈ F (∆̃) and

N ∈F (∇̃). Denote by D the standard duality. Then, the following assertions hold.

(a) The functor −⊗A M : F (D∇̃)→ R-proj is a well-defined exact functor.

(b) The functor DN⊗A− : F (∆̃)→ R-proj is a well-defined exact functor.

Proof. It is enough to show that DN⊗A M ∈ R-proj and TorA
i>0(DN,M) = 0. For each maximal ideal m in R,

denote by D(m) the standard duality HomR(m)(−,R(m)). In particular, D(m) is an exact functor. Let M• be a
deleted projective (left) A-resolution of M. Since M ∈ R-proj, M•(m) is a deleted projective A(m)-resolution
of M(m) for every maximal ideal m in R. Further, each module in the complex DN⊗A M• belong to addR DN.
So, the complex DN⊗A M• is a flat chain complex. Using this flat chain complex and the residue field R(m) on
Lemma 1.3.17 we obtain the Künneth spectral sequence

E2
p,q = TorR

p(TorA
q (DN,M),R(m)) =⇒ Hp+q(DN⊗A M•⊗R R(m)) = TorA(m)

p+q (DN(m),M(m)). (1.5.16.12)

Observe that

TorA(m)
i>0 (DN(m),M(m)) = TorA(m)

i>0 (D(m)N(m),M(m)) = Hi>0(D(m)N(m)⊗A(m) M•(m)) (1.5.16.13)

' Hi>0(D(m) HomA(m)(M
•(m),N(m)))' D(m)H

i>0(HomA(m)(M
•(m),N(m)))

' D(m) Exti>0
A(m)(M(m),N(m)) = 0. (1.5.16.14)

The last equality follows from Proposition 1.5.131 and Lemma 1.5.100.
By Lemma 1.3.7, for each maximal ideal m in R, we obtain that

0 = E2
1,0 = TorR

1 (DN⊗A M,R(m)). (1.5.16.15)

Therefore, DN⊗A M ∈ R-proj. Moreover, E2
i,0 = 0 for all i > 0. Again, by Lemma 1.3.7, it follows that

TorA
1 (DN,M)(m) = E2

0,1 ' E2
2,0 = 0. (1.5.16.16)
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Thus, TorA
1 (DN,M) = 0 and consequently E2

i,1 = 0 for all i≥ 0. We can proceed by induction on q to show that
E2

i, j = 0 for all i ≥ 0, 1 ≤ j ≤ q. In fact, assume that E2
i, j = 0 for all i ≥ 0, 1 ≤ j ≤ q for a given q. By Lemma

1.3.11, there exists an exact sequence

0 = E2
q+2,0→ E2

0,q+1→ Hq+1 = 0. (1.5.16.17)

So, Torq+1(DN,M)(m) = 0. Hence, Torq+1(DN,M) = 0. Therefore, E2
i,q+1 = 0 for all i ≥ 0. We showed that

E2
i, j = 0 for all i≥ 0 and j ≥ 1. This means that Torq>0(DN,M) = 0.

Using the previous technical results we can give a criterion to deduce Ringel self-duality for split quasi-
hereditary algebras over local commutative Noetherian rings.

Lemma 1.5.134. Let R be a local commutative Noetherian ring. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary

R-algebra. Then, A is Morita equivalent to its Ringel dual as split quasi-hereditary algebra if and only if A(m) is

Morita equivalent to its Ringel dual as split quasi-hereditary algebra, where m is the unique maximal ideal of R.

Proof. Assume that A is Morita equivalent to its Ringel dual as split quasi-hereditary algebras. That is, there
exists a progenerator P of A-mod so that the Ringel dual of A, which we will denote by R(A), is the endomorphism
algebra EndA(P)op and HomA(P,−) : A-mod→ R(A)-mod satisfies the conditions on Definition 1.5.66, where
R(A) takes the place of B. Hence, P(m) is a progenerator of A(m) and

EndA(m)(P(m))op ' EndA(P)op⊗R R(m)' EndA(T )op⊗R R(m)' EndA(m)(T (m))op. (1.5.16.18)

Moreover, there exists a bijection φ : Λ→ Λop such that,

HomA(m)(P(m),∆(λ )(m))' ∆R(A)(φ(λ ))⊗R Uλ (m)' ∆R(A)(φ(λ ))(m).

Here, Λop is the poset Λ with the reversed order. Hence, A(m) is Ringel self-dual.
Conversely, assume that A(m) is Morita equivalent to its Ringel dual as split quasi-hereditary algebras. Since

A is semi-perfect we can assume that the projective modules P(λ ) are the projective covers of ∆(λ ). Hence, if
P(m) is the progenerator giving the Morita equivalence between A and its Ringel dual, we can choose P ∈ A-mod
so that P(m)' P(m). In particular, P is a progenerator of A and for every λ ∈ Λ,

HomA(P,∆(λ ))(m)' HomA(m)(P(m),∆(λ )(m))' ∆R(A)(φ(λ ))(m). (1.5.16.19)

By Proposition 1.5.131, HomA(P,∆(λ )) ∈ F (∆̃R(A)). By Proposition 1.5.132, HomA(P,∆(λ )) ' ∆R(A)(φ(λ ))

since the Picard group of R is trivial. Analogously, the adjoint functor of HomA(P,−) also sends ∆R(A)(φ(λ )) to
∆(λ ). Therefore, there exists an exact equivalence between F (∆̃) and F (∆̃R(A)). The result now follows from
Corollary 1.5.130.

We will now see when F (∆̃) is closed under (A,R)-monomorphisms. For this, we require a notion of relative
torsionless. We call a module X strongly (A,R)-torsionless if there is an (A,R)-monomorphism X ↪→ P with
P ∈ A-proj.

Proposition 1.5.135. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Then, the following assertions are

equivalent.

(i) The relative injective dimension of any costandard module is at most one, that is, idim(A,R) ∇(λ ) ≤ 1 for

any λ ∈ Λ.
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(ii) The relative injective dimension of the characteristic tilting module is at most one, that is, idim(A,R) T ≤ 1.

(iii) The subcategory F (∆̃) is closed under (A,R)-monomorphism, that is, if there is an (A,R)-monomorphism

X ↪→M with M ∈F (∆̃), then X ∈F (∆̃).

(iv) All strongly (A,R)-torsionless modules belong to F (∆̃).

Proof. i =⇒ ii). Let N ∈ A-mod∩R-proj. Consider the exact sequence

0→ Y (λ )→ T (λ )→ ∇(λ )→ 0. (1.5.16.20)

This exact sequence is (A,R)-exact since ∇(λ ) ∈ R-proj. Every exact sequence of the filtration of Y (λ ) is also
(A,R)-exact. Thus, idim(A,R)Y (λ )≤ 1. In particular, Ext2(A,R)(N,Y (λ )) = 0. Applying the functor HomA(N,−)
we deduce Ext2(A,R)(N,T (λ )) = 0. Thus, Ext2(A,R)(N,T ) = 0. By Corollary 1.2.45, idim(A,R) T ≤ 1.

ii) =⇒ iii). Let M ∈F (∆̃). Let N ↪→M be an (A,R)-monomorphism. Then, the exact sequence

0→ N→M→M/N→ 0 (1.5.16.21)

is (A,R)-exact. Since M ∈ R-proj, M/N ∈ R-proj. Applying HomA(−,T ) yields

Exti(A,R)(M,T )→ Exti(A,R)(N,T )→ Exti+1
(A,R)(M/N,T ) (1.5.16.22)

for every i > 0. As idim(A,R) T ≤ 1, then Exti+1
(A,R)(M/N,T ) = 0 for all i > 0. As M ∈F (∆̃), Exti(A,R)(M,T ) = 0,

for all i > 0. Thus, Exti(A,R)(N,T ) = 0 for all i > 0. By Corollary 1.5.125, N ∈F (∆̃).
iii) =⇒ iv). All projective A-modules belong to F (∆̃). As an (A,R)-strongly torsionless module is an

R-summand of a projective A-module, then by iii) every (A,R)-strongly torsionless module belongs to F (∆̃).
iv) =⇒ i). Let Y ∈ A-mod∩R-proj. Consider a projective presentation over A for Y

0→ kerπ → P π−→ Y → 0. (1.5.16.23)

As Y ∈ R-proj, this exact sequence is (A,R)-exact. As kerπ is strongly (A,R)-torsionless module kerπ ∈F (∆̃).
For each λ ∈ Λ, applying HomA(−,∇(λ )) to (1.5.16.23) we obtain

0 = Ext1(A,R)(kerπ,∇(λ ))→ Ext2(A,R)(Y,∇(λ ))→ Ext2(A,R)(P,∇(λ )) = 0 (1.5.16.24)

Thus, Ext2(A,R)(Y,∇(λ )) = 0. So, i) follows.

Afterwards in Proposition 2.8.2, we will see characterized in terms of relative dominant dimension when the
strongly (A,R)-torsionless modules are exactly the modules with a ∆-filtration.

1.6 Cellular algebras

Cellular algebras B are certain algebras characterized by the existence of an involution i with i2 = idB and a
certain chain of ideals that provide a filtration of the regular module B. They were introduced by Graham and
Lehrer [GL96], to solve such problems as how to obtain the number of non-isomorphic classes of simple modules
of Hecke algebras and algebras used in knot theory. In a cellular algebra framework, these problems are reduced
to problems in linear algebra. A classical example of a cellular algebra is the group algebra of the symmetric
group.
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Graham and Lehrer introduced the definition of cellular algebras over commutative rings. However, in appli-
cations cellular algebras are considered over a field. Some of the properties we are interested in can be found in
[GL96], [KX98], [KX99a], [KX99b], [KX00]. Our aim here is to show that some properties of finite-dimensional
cellular algebras remain valid for cellular algebras over commutative Noetherian rings.

Explicitly, the common definition of cellular algebras used for practical purposes is the following:

Definition 1.6.1. Let R be a commutative Noetherian ring. Let A be a free Noetherian R-algebra, that is, A is
free as R-module. A is called cellular with cell datum (Λ,M,C, ι) if the following holds:

(C1) The finite set Λ is partially ordered. Associated with each λ ∈ Λ there is a finite set M(λ ). The algebra A

has an R-basis

{Cλ
S,T | S,T ∈M(λ ), λ ∈ Λ}. (1.6.0.1)

(C2) The map ι : A→ A is an R-linear anti-isomorphism with i2 = idA which sends Cλ
S,T to Cλ

T,S, S,T ∈M(λ ),
λ ∈ Λ.

(C3) For each λ ∈ Λ and S,T ∈M(λ ) and each a ∈ A we can write

aCλ
S,T = ∑

U∈M(λ )

ra(U,S)Cλ
U,T + r′, (1.6.0.2)

where r′ is a linear combination of basis elements with upper index µ strictly smaller than λ , and where
the coefficients ra(U,S) ∈ R do not depend on T .

Lemma 1.6.2. Consider the following condition.

(C3’) For each λ ∈ Λ and S,T ∈M(λ ) and each a ∈ A we can write

Cλ
S,T a = ∑

U∈M(λ )

ra(U,T )Cλ
S,U + r′, (1.6.0.3)

where r′ is a linear combination of basis elements with upper index µ strictly smaller than λ , and where

the coefficients ra(U,T ) ∈ R do not depend on S.

Under conditions (C2) and (C1), condition (C3) is equivalent to (C3’).

Proof. Assume that (C3) holds. We can write, for a = i(x) ∈ A, x ∈ A,

Cλ
S,T a

(C2)
= ι(Cλ

T,S)ι(x) = ι(xCλ
T,S)

(C3)
= ι

(
∑

U∈M(λ )

rx(U,T )Cλ
U,S + r′

)
= ∑

U∈M(λ )

rx(U,T )ι(Cλ
U,S)+ ι(r′) (1.6.0.4)

= ∑
U∈M(λ )

rx(U,T )Cλ
S,U + ι(r′). (1.6.0.5)

Since ι only changes the lower indexes, and therefore the upper indexes of the basis elements in the linear
combination of ι(r′) are strictly smaller than λ . Putting ra(U,T ) equal to rι(a)(U,T ), condition (C3’) follows.
The converse implication is analogous.

The map ι : A→ A is called an involution of A.

Corollary 1.6.3. A is a cellular R-algebra with cell datum (Λ,M,C, ι) if and only if the opposite algebra Aop is

a cellular R-algebra with cell datum (Λ,M, ι(C), ι).
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Chapter 1. Background

Iwahori-Hecke algebras are a classical example of cellular algebras (see [GL96, Example 1.2], see also
Section 4.1 ). The cell basis is the Kazhdan-Lusztig basis. In fact, the axioms of cellular basis presented in
Definition 1.6.1 are based on the Kazhdan-Lusztig basis of Hecke algebras.

There is a more abstract definition of cellular algebras due to Koenig and Xi [KX98] which illustrates better
its structural properties.

Definition 1.6.4. Let R be a commutative Noetherian ring and let A be a projective Noetherian R-algebra. Assume
that there is an R-linear anti-isomorphism ι on A with ι2 = idA.

• A two-sided ideal J of A is called a cell ideal (with respect to ι) if

(i) ι(J) = J;

(ii) There exists a left ideal θ ∈ A-mod, free as R-module, such that θ ⊂ J;

(iii) There is an isomorphism of A-bimodules α : J→ θ ⊗R ι(θ) making the following diagram commu-
tative:

J θ ⊗R ι(θ)

J θ ⊗R ι(θ)

α

ι x⊗y7→ι(y)⊗ι(x)

α

.

• The algebra A (with involution ι) is called cellular if

(i) There is an R-module decomposition A = J′1
⊕
· · ·
⊕

J′n (for some n) with ι(J′j) = J′j for each j;

(ii) Setting J j =
⊕ j

l=1 J′l gives a chain of two-sided ideals of A, called cell chain: 0⊂ J1 ⊂ ·· · ⊂ Jn = A

(each of them fixed by ι);

(iii) For each j ( j = 1, . . . ,n) the quotient J′j = J j/J j−1 is a cell ideal (with respect to the involution induced
by ι on the quotient) of A/J j−1.

In particular, this definition requires that every cell ideal is a free R-module. The modules θ( j) associated
with each cell ideal J′j are called cell modules.

We note that the original Definition in [KX98] requires R to be an integral domain but the arguments easily
pass to the general case. For sake of completeness, we will write the proof of equivalence of both notions.

Proposition 1.6.5. The two definitions of cellular algebras are equivalent.

Proof. Assume that A is cellular in the sense of Definition 1.6.1. Let λ be a minimal index in Λ. Let J(λ ) be the
R-module with R-basis {Cλ

S,T : S,T ∈M(λ )}. By condition (C2), ι(J) = J. By conditions (C3) and (C3’), J is an
ideal of A. Fix T ∈M(λ ). Let θ be the free R-module with R-basis {Cλ

S,T : S ∈M(λ )}. By condition (C3), θ is a
finitely generated A-module and clearly θ ⊂ J. Define α : J→ θ ⊗R ι(θ) by mapping Cλ

U,V to Cλ
U,T ⊗R ι(Cλ

V,T ).
This map is compatible with the involution. In fact,

αι(Cλ
U,V ) = α(Cλ

V,U ) =Cλ
V,T ⊗R ι(Cλ

U,T ) = ιι(Cλ
V,T )⊗R ι(Cλ

U,T ) (1.6.0.6)

α(Cλ
U,V ) =Cλ

U,T ⊗R ι(Cλ
V,T ). (1.6.0.7)

Thus, J(λ ) is a cell ideal according to Definition 1.6.4. Put J′1 = J(λ ). A/J(λ ) has an R-basis

{Cµ

S,T + J(λ ) : λ 6= µ ∈ Λ, S,T ∈M(µ)}
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1.6. Cellular algebras

and it satisfies condition (C3). So, A/J(λ ) is again cellular in the sense of Definition 1.6.1. By induction, A is
cellular in the sense of Definition 1.6.4.

Conversely, assume that A is cellular according to Definition 1.6.4. Then, there exists a cell chain 0 ⊂ J1 ⊂
·· · ⊂ Jn = A. Let {CS : S ∈ I1} be an R-basis of θ for some finite set I1. Define CS,T ∈ J1 to be the inverse image
by α of CS⊗ ι(CT ). Denote by ω the twist map on θ ⊗R ι(θ). By the compatibility of α and ι , we can write

α ◦ ι(CS,T ) = ω ◦α(CS,T ) = ω(CS⊗ ι(CT )) = ιι(CT )⊗ ι(CS) =CT ⊗ ι(CS). (1.6.0.8)

Thus, ι(CS,T ) = α−1(CT ⊗ ι(CS)) = CT,S. So, condition (C2) holds for the index 1. Put M(1) = I1. Let a ∈ A.
Since aCS ∈ θ , there are coefficients ra(U,S) ∈ R such that aCS = ∑U∈M(1) ra(U,S)CU .For S,T ∈M(1),

α(aCS,T ) = aα(CS,T ) = aCS⊗ ι(CT ) = ∑
U∈M(1)

ra(U,S)CU ⊗ ι(CT ) = ∑
U∈M(1)

ra(U,S)α(CU,T ) (1.6.0.9)

= α

(
∑

U∈M(1)
ra(U,S)CU,T

)
. (1.6.0.10)

Therefore, aCS,T = ∑U∈M(1) ra(U,S)CU,T . By induction, A/J has a cellular basis. Choosing pre-images in A of
the elements basis of A/J together with the basis of J gives a cellular basis for A, since A is a direct sum as
R-modules of J′t , t = 1, . . . ,n.

From the proof of Proposition 1.6.5, we can deduce the following result.

Corollary 1.6.6. Let A be a cellular R-algebra with cell datum (Λ,M,C, ι). Let A(< λ ), λ ∈ Λ, be the free

R-module with R-basis

{Cµ

S,T : µ < λ , S,T ∈M(µ)}. (1.6.0.11)

The (left) cell modules are the A-modules which are free over R with R-basis

θl(λ ) = {Cλ
S,T0

+A(< λ ) : S ∈M(λ )}, for some T0 ∈M(λ ), λ ∈ Λ. (1.6.0.12)

The (right) cell modules are the right A-modules which are free over R with basis

θr(λ ) = {Cλ
S0,T +A(< λ ) : T ∈M(λ )}, for some S0 ∈M(λ ), λ ∈ Λ. (1.6.0.13)

The statement for right modules follows using condition (C3’) instead of (C3).

Proposition 1.6.7. Let A be a cellular R-algebra with cell datum (Λ,M,C, ι). Let M ∈ A-mod. Then, M becomes

a right A-module by making x ·ι a = ι(a)x. Similarly, any N ∈ mod-A becomes a left A-module by making

a ·ι x = xι(a). Denote by Mι the twisted module of M. Moreover,

(i) θl(λ )
ι ' θr(λ ) as right A-modules, λ ∈ Λ;

(ii) ι θr(λ )' θl(λ ) as left A-modules, λ ∈ Λ.

Proof. Consider the map ψ : θl(λ )
ι → θr(λ ) that sends Cλ

S,T0
+A(< λ ) to Cλ

S0,S
+A(< λ ). Thus, ψ is bijective.

We want to show that ψ is an A-isomorphism. To obtain that we can observe that

ψ((Cλ
S,T0

+A(< λ )) ·ι ι(a)) = ψ(ι2(a) · (Cλ
S,T0

+A(< λ ))) = ψ(a · (Cλ
S,T0

+A(< λ ))) (1.6.0.14)

= ψ

(
∑

U∈M(λ )

ra(U,S)Cλ
U,T0

+A(< λ )

)
= ∑

U∈M(λ )

ra(U,S)ψ(Cλ
U,T0

+A(< λ ))
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= ∑
U∈M(λ )

ra(U,S)(Cλ
S0,U +A(< λ )). (1.6.0.15)

On the other hand,

ψ(Cλ
S,T0

+A(< λ )) · ι(a) = (Cλ
S0,S +A(< λ ))ι(a) = ι(Cλ

S,S0
+A(< λ ))ι(a) = ι(a ·Cλ

S,S0
+A(< λ )) (1.6.0.16)

= ι( ∑
U∈M(λ )

ra(U,S)(Cλ
U,S0

+A(< λ ))) = ∑
U∈M(λ )

ra(U,S)(Cλ
S0,U +A(< λ )).

Therefore, ψ is a right A-isomorphism. Using the map ι θr(λ ) → θl(λ ), mapping Cλ
S0,T

+ A(< λ ) to
Cλ

T,T0
+A(< λ ), (ii) follows.

We can define a duality functor \(−) : A-mod → A-mod which sends M to DMι and a duality functor
(−)\ : mod-A→mod-A which sends N to Dι N. The following corollary is an immediate consequence of Propo-
sition 1.6.7.

Corollary 1.6.8. Let A be a cellular R-algebra with cell datum (Λ,M,C, ι). Let λ ∈ Λ. Then,

(i) \θl(λ )' Dθr(λ ) as left A-modules;

(ii) θr(λ )
\ ' Dθl(λ ) as right A-modules.

Proposition 1.6.9. Let A be a cellular R-algebra with cell datum (Λ,M,C, ι). Then, A ∈F (θλ∈Λ).

Proof. We can consider an increasing bijection between the posets Λ and {1, . . . ,n}. We want to show that there
exists a filtration

0 = P0 ⊂ P1 ⊂ ·· · ⊂ Pn = A (1.6.0.17)

with Pi/Pi−1 ' θi⊗R Ui for some free R-module Ui where the cell module θi is associated with the cell ideal
J′i . We shall proceed by induction on n. Assume n = 1. Then, A is a cell ideal of A. Thus, there exists θ1 ⊂ A

such that A ' θ1⊗R ι(θ1) and ι(θ1) is R-free. So, A ∈ F (θ1). Assume now that the result holds for n− 1.
The modules θ j, j > 1, are cell modules of A/J1. By induction, A/J ∈F (θ j>1). So, there exists a filtration
0 = P′1 ⊂ ·· · ⊂ P′n = A/J, P′i /P′i−1 = θi⊗R Ui, where Ui is a free R-module. Thus, there exists a chain

J = P1 ⊂ ·· · ⊂ Pn = A, Pi/Pi−1 ' Pi/J/Pi−1/J ' P′i /P′i−1. (1.6.0.18)

Since J is a cell ideal, J ' θ1⊗R ι(θ1). Putting U1 = ι(θ1), the result follows.

Cellular algebras have a base change property.

Proposition 1.6.10. Let S be a commutative Noetherian R-algebra. Let A be a cellular R-algebra with cell datum

(Λ,M,C, ι) then S⊗R A is cellular with cell datum (Λ,M,1S⊗R C, idS⊗Rι).

Proof. The algebra S⊗R A has an S-basis {S⊗R Cλ
U,T |U,T ∈M(λ ),λ ∈Λ}. Hence, condition (C1) holds. Since

ι is an anti-isomorphism over R, so it is S⊗R ι over S. Moreover, (idS⊗Rι)2 = idS⊗Rι2 = idS⊗R idA = idS⊗RA

and idS⊗Rι(1S⊗R Cλ
U,T ) = 1S⊗R ι(Cλ

U,T ) = 1S⊗R Cλ
T,U for U,T ∈ M(λ ), λ ∈ Λ. So, condition (C2) holds. It

remains to check condition (C3). For s⊗R a ∈ S⊗R A,

(s⊗R a)(1S⊗Cλ
V,T ) = s⊗aCλ

V,T = s⊗

(
∑

U∈M(λ )

ra(U,V )Cλ
U,T + r′

)
= ∑

U∈M(λ )

s⊗ ra(U,V )Cλ
U,T + s⊗ r′

(1.6.0.19)
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= ∑
U∈M(λ )

sra(U,V )(1S⊗R Cλ
U,T )+ s⊗ r′, (1.6.0.20)

where s⊗ r′ is a linear combination of basis elements 1S⊗R Cµ

l,t with upper index µ strictly smaller than λ and
λ ∈ Λ, l, t ∈M(µ), V,T ∈M(λ ).

The following result due to [KX98, Proposition 4.3] is fundamental to understand under what conditions an
endomorphism algebra of a projective module over a cellular algebra remains cellular. However, we need further
assumptions on the ground ring. By a commutative projective-free ring R we mean a commutative ring R with
every finitely generated projective R-module being free. Properties about these rings can be found in [Lam06].

Proposition 1.6.11. Let R be a commutative Noetherian projective-free ring. Let A be a cellular R-algebra with

involution ι and with cell chain

0⊂ J1 ⊂ ·· · ⊂ Jn = A. (1.6.0.21)

Let e be an idempotent of A which is fixed by ι . Then, eAe is a cellular R-algebra with involution ι|eAe and with

cell chain

0⊂ eJ1e⊂ ·· · ⊂ eJne = eAe. (1.6.0.22)

Proof. Since ι fixes the idempotent e, the restriction of ι : A→ A to eAe has image in eAe. Thus, ι|eAe is an
involution of eAe. Let J be a cell ideal of A. We claim that eJe is a cell ideal of eAe. Let j ∈ J. By assumption,
there exists j′ such that ι( j′) = j. Hence, ι(e j′e) = ι(e)ι(e j′) = ι(e)ι( j′)ι(e) = e je. This shows that ι|eAe(eJe) =

eJe. Let θ be the left ideal associated with J. Then, eθ = eA⊗A θ ∈ addR θ . Hence, eθ ∈ R-proj. Since R is
projective-free eθ is R-free and ι(eθ) = ι(θ)e. Applying the functors eA⊗A− and −⊗A Ae to α we obtain
an isomorphism eαe compatible with the desired commutative diagram. So, eJe is a cell ideal. Proceeding by
induction, multiplication by e on both sides on a cell chain of A yields a cell chain for eAe.

Of course, Z is a principal ideal domain, and thus it is a projective-free ring. Due to [Swa78], the Laurent
polynomial ring Z[X ,X−1] is projective-free. These observations are important to give proofs of Hecke algebras
being cellular using the cellularity of q-Schur algebras using Proposition 1.6.11.

In [KX99a], it is shown that in characteristic two not every projective module can be given by an idempotent
fixed by the involution. Hence, cellular algebras are not categorical concepts. The situation becomes even worse
for cellular algebras over commutative rings which are not projective-free. Still in [KX99a], they show that
cellular algebras over fields of characteristic different from two are preserved under Morita equivalence. This is
another evidence that cellular algebras have nicer properties over Z[ 1

2 ] and over Laurent polynomial rings over
Z[ 1

2 ].
The following proposition gives a criterion to the problem of finding which split quasi-hereditary algebras

are cellular. This is a generalization of Corollary 4.2 of [KX98] to commutative Noetherian rings.

Proposition 1.6.12. Let R be a commutative Noetherian ring. Let A be a free Noetherian R-algebra. Assume that

A admits a set of orthogonal idempotents {e1, . . . ,et} such that for each maximal ideal m of R {e1(m), . . . ,et(m)}
becomes a complete set of primitive orthogonal idempotents of A(m). Suppose that there exists an involution

ι : A→ A that fixes the set of orthogonal idempotents {e1, . . . ,et}. If A is a split quasi-hereditary with split

heredity chain

0⊂ AetA⊂ ·· · ⊂ A(e1 + · · ·+ et)A = A, (1.6.0.23)
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then A is a cellular algebra (with respect to ι) and with cell chain (1.6.0.23).

Proof. Put e = et . Thus, ι(AeA) = Aι(e)A = AeA. By Theorem 1.5.73, Ae ∈M (A). Moreover, HomA(Ae,A) =

eA = ι(e)A = ι(Ae). So, the map τAe : Ae⊗R ι(Ae)→ AeA is an isomorphism. We can consider the diagram

AeA Ae⊗R ι(Ae) AeA

AeA Ae⊗R ι(Ae) AeA

τ
−1
Ae

ι

τAe

ω ι

τ
−1
Ae τAe

, (1.6.0.24)

where ω is the usual twist map. We claim that the diagram is commutative. To show that, note that

ιτAe(ae⊗ eb) = ι(aeb) = ι(b)eι(a) (1.6.0.25)

τAeω(ae⊗ eb) = τAe(ι(eb)⊗ ι(ae)) = τAe(ι(b)e⊗ eι(a)) = ι(b)eι(a). (1.6.0.26)

It follows that

τAeωτ
−1
Ae = ιτAeτ

−1
Ae = ι . (1.6.0.27)

Thus, all interior squares of the diagram are commutative. In particular, AeA is a cell ideal. Proceeding by
induction on the heredity chain, we get that (1.6.0.23) is a cell chain.

We note that if A is split quasi-hereditary with a poset Λ, Λ indexes the cell basis of A but with the reversed
order.

Proposition 1.6.12 motivates the following definition of duality for Noetherian algebras.

Definition 1.6.13. Let R be a commutative Noetherian ring. Let A be a free Noetherian R-algebra. Assume that A

admits a set of orthogonal idempotents e := {e1, . . . ,et} such that for each maximal ideal m of R {e1(m), . . . ,et(m)}
becomes a complete set of primitive orthogonal idempotents of A(m). We say that A has a duality ι : A→ A

(with respect to e) if ι is an anti-isomorphism with ι2 = idA fixing the set of orthogonal idempotents {e1, . . . ,et}.

Properties for cellular algebras, when studied over arbitrary commutative rings, are not well understood as
compared to finite-dimensional cellular algebras. If one is especially interested in homological properties of
cellular algebras, then passing to split quasi-hereditary algebras seems to be the right choice. In fact, if A is
cellular, then A(m) is cellular for every maximal ideal m of R and R(m) is a splitting field for A(m) (see [GL96,
(3.4), (2.6)’]). Covers of R(m)⊗R A can be chosen to be split quasi-hereditary (see Section 3.7), so two questions
immediately arise.

Question A Can all cellular algebras over a commutative Noetherian ring R be realised as endomorphism alge-
bras of projective modules over split quasi-hereditary R-algebras?

Question B Are cellular algebras with finite global dimension over commutative Noetherian rings split quasi-
hereditary algebras?

For finite-dimensional cellular algebras, Question B was answered positively in [KX99b]. As we mentioned,
Question A is true for finite-dimensional algebras over algebraically closed fields, but, at the moment of writing,
the question remains unsolved in the general case. Concerning Question A, we cannot demand, in addition, for
the cellular modules to be exactly the image of standard modules through the Schur functor (with the reversed
order), that is, F∆(λ ) = θλ , ∀λ ∈ Λ. In fact, such a question has a negative answer even for finite-dimensional

181



1.6. Cellular algebras

algebras (see Example 4.6.14). We recall that the group algebra of the symmetric group have a positive answer
for this last scenario with the Schur algebra taking the role of the cover. One of the reasons to be interested in
such a condition is Corollary 3.6.6. Such a result says that, under these requirement of the standard modules of
the cover being sent to cell modules, the cellular algebra can only admit one split quasi-hereditary cover provided
the ”quality” of the cover is high enough.

Our next goal is to show a positive answer to Question B. The main idea is to show that for a cellular algebra
A the simple A(m)-modules arise from a finitely generated B-module which is projective over the ground ring.

To facilitate our life, we will require further notation first. Let A be a cellular algebra over a commutative
Noetherian ring R. Denote by A(≤ λ ) the A-submodule of A with R-basis {Cµ

S,T : µ ≤ λ , S,T ∈ M(µ)} for
λ ∈ Λ. Denote by A(< λ ) the A-module with R-basis {Cµ

S,T : µ < λ , S,T ∈M(µ)}. In this notation, A/A(< λ )

is cellular and A(≤ λ )/A(< λ ) is a cell ideal of A/A(< λ ).
Using Lemma 1.7 of [GL96], we can define a bilinear form φλ : θ(λ )× θ(λ )→ R by φλ (Cλ

U,T0
,Cλ

T,T0
) =

φ1A(U,T ) where

Cλ
U1,T1

aCλ
U2,T2
−φa(T1,U2)Cλ

U1,T2
∈ A(< λ ), U1,T1,U2,T2 ∈M(λ ). (1.6.0.28)

Let S be a commutative Noetherian R-algebra. S⊗R A is cellular S-algebra. So, associated with S⊗R θ(λ ) there
is a bilinear form φ S

λ
. We shall relate the bilinear form φ S

λ
with φλ .

By considering the maps that carry the basis of (S⊗R A)(< λ ) (resp. (S⊗R A)(≤ λ ) ) to S⊗R (A(< λ )) (resp.
S⊗R (A(≤ λ )) ) we obtain S⊗R A-isomorphjsms

(S⊗R A)(< λ )' S⊗R (A(< λ )), (S⊗R A)(≤ λ )' S⊗R (A(≤ λ )). (1.6.0.29)

Now observe that,

Cλ
U1,T1

aCλ
U2,T2
−φa(T1,U2)Cλ

U1,T2
∈ A(< λ ), U1,T1,U2,T2 ∈M(λ ). (1.6.0.30)

So, for every s ∈ S,

s⊗ (Cλ
U1,T1

aCλ
U2,T2
−φa(T1,U2)Cλ

U1,T2
) ∈ S⊗R A(< λ ), U1,T1,U2,T2 ∈M(λ ). (1.6.0.31)

Under the isomorphism (1.6.0.29), we obtain that

(1S⊗Cλ
U1,T1

)(s⊗a)(1S⊗Cλ
U2,T2

)−φa(T1,U2)s(1S⊗Cλ
U1,T2

) ∈ (S⊗R A)(< λ ), U1,T1,U2,T2 ∈M(λ ).

(1.6.0.32)

On the other hand, applying (1.6.0.28) to S and s⊗a we obtain that

(1S⊗Cλ
U1,T1

)(s⊗a)(1S⊗Cλ
U2,T2

)−φ
S
s⊗a(T1,U2)s(1S⊗Cλ

U1,T2
) ∈ (S⊗R A)(< λ ), U1,T1,U2,T2 ∈M(λ ).

(1.6.0.33)

Thus, by comparing basis, φa(T1,U2)s= φ S
s⊗a(T1,U2), T1,U2 ∈M(λ ). In particular, φ1A(T1,U2)1S = φ S

1S⊗RA
(T1,U2).

We have shown that

Lemma 1.6.14. For φλ and φ S
λ

the bilinear forms associated with θ(λ ) and S⊗R θ(λ ), respectively, we can

write

φ
S
λ
(1S⊗Cλ

U,T0
,1S⊗Cλ

T,T0
) = φλ (C

λ
U,T0

,Cλ
T,T0

)1S, U,T ∈M(λ ). (1.6.0.34)
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Chapter 1. Background

We can now construct modules in A-mod∩R-proj that over the finite-dimensional A(m) become simple mod-
ules as long as φ

R(m)
λ

6= 0.

Lemma 1.6.15. Let R be a local commutative Noetherian ring with maximal ideal m. Let A be a cellular

R-algebra with cell datum (Λ,M,C, ι). For each λ ∈ Λ, define

rad(φλ ) = {x ∈ θ(λ ) | φλ (x,y) ∈m, ∀y ∈ θ(λ )}. (1.6.0.35)

Then, for each λ ∈ Λ, there exists an (A,R)-exact sequence

0→ rad(φλ )→ θ(λ )→ Xλ → 0. (1.6.0.36)

Proof. Let λ ∈ Λ. We start by observing that rad(φλ ) is an A-module. Since φλ is a bilinear form, it follows that
rad(φλ ) is an R-submodule of θ . Let a ∈ A, x ∈ rad(φλ ). By Proposition 2.4 of [GL96],

φλ (ax,y) = φy(x, ι(a)y) ∈m, ∀y ∈ θ(λ ). (1.6.0.37)

Hence, ax ∈ rad(φλ ). We claim now that rad(φ R(m)
λ

) = rad(φλ )(m). Suppose, again that x ∈ rad(φλ ). We can
write x = ∑V∈M(λ ) xVCλ

V,T0
. By definition,

∑
V∈M(λ )

xV φλ (C
λ
V,T0

,Cλ
T,T0

) = φλ (x,C
λ
T,T0

) ∈m, ∀T ∈M(λ ). (1.6.0.38)

Therefore,

0 = ∑
V∈M(λ )

xV φλ (C
λ
V,T0

,Cλ
T,T0

)1R(m) = ∑
V∈M(λ )

xV φ
R(m)
λ

(1R(m)⊗Cλ
V,T0

,1R(m)⊗Cλ
T,T0

) (1.6.0.39)

= φ
R(m)
λ

(1R(m)⊗ x,1R(m)⊗Cλ
T,T0

),∀T ∈M(λ ). (1.6.0.40)

Hence, 1R(m)⊗ x ∈ rad(φ R(m)
λ

). So, rad(φλ )(m) ⊂ rad(φ R(m)
λ

). Now consider y ∈ rad(φ R(m)
λ

) ⊂ θ(λ )(m). So,
we can write y = ∑U∈M(λ ) yU 1R(m)⊗Cλ

U,T0
, with yU ∈ R(m). Further, we can assume that yU = rU 1R(m) for some

rU ∈ R. For every T ∈M(λ ),

0 = φ
R(m)
λ

(y,1R(m)⊗Cλ
T,T0

) = ∑
U∈M(λ )

rU φ
R(m)
λ

(1R(m)⊗Cλ
U,T0

,1R(m)⊗Cλ
T,T0

) (1.6.0.41)

= ∑
U∈M(λ )

rU φλ (C
λ
U,T0

,Cλ
T,T0

)1R(m). (1.6.0.42)

Thus,

φλ ( ∑
U∈M(λ )

rUCλ
U,T0

,Cλ
T,T0

) ∈m,∀T ∈M(λ ). (1.6.0.43)

It follows that ∑U∈M(λ ) rUCλ
U,T0
∈ rad(φλ ). Hence, y = 1R(m)⊗R ∑U∈M(λ ) rUCλ

U,T0
∈ rad(φλ )(m). This completes

our claim.
Let Xλ be cokernel of rad(φλ )→ θ(λ ). Applying the functor R(m)⊗R− yields the long exact sequence

0 = TorR
1 (θ(λ ),R(m))→ TorR

1 (Xλ ,R(m))→ rad(φλ )(m)→ θ(λ )(m)→ Xλ → 0. (1.6.0.44)
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1.6. Cellular algebras

Since rad(φλ )(m) = rad(φ R(m)
λ

)⊂ θ(λ )(m), TorR
1 (Xλ ,R(m)) = 0. So, Xλ ∈ R-proj. So, the exact sequence

0→ rad(φλ )→ θ(λ )→ Xλ → 0 (1.6.0.45)

is (A,R)-exact.

Theorem 1.6.16. Let R be a commutative Noetherian regular ring with finite Krull dimension. Let A be a cellular

R-algebra with cell datum (Λ,M,C, ι). Then, (A,θλ∈Λop), with Λop being the poset Λ with reversed order, is a

split quasi-hereditary algebra if and only if A has finite global dimension.

Proof. By Theorem 1.5.75, if (A,{θλ∈Λ}) is split quasi-hereditary, then A has finite global dimension. Con-
versely, assume that A has finite global dimension. Let m be a maximal ideal of R. By Proposition 1.1.23, every
module in Am can be written in the form Mm for some M ∈ A-mod. Thus,

ExtgldimA+1
Am

(Xm,Ym) = ExtgldimA+1
A (X ,Y )m = 0. (1.6.0.46)

Thus, gldimAm ≤ gldimA. In view of Theorem 1.5.57, we can assume that R is a local regular commutative
Noetherian ring. Let L be a simple A(m)-module. By Propositions 3.2 and 3.4 of [GL96], there exists λ ∈Λ such
that φ

R(m)
λ

6= 0 and θ(λ )(m)/ rad(φ R(m)
λ

)' L. By Lemma 1.6.15, Xλ (m)' L. By assumption, pdimA Xλ is finite.
Since Xλ ∈ R-proj, any projective A-resolution of Xλ remains exact under R(m)⊗R−. In particular, pdimA(m) L

is finite. It follows that A(m) has finite global dimension. By Theorem 1.1 of [KX99b], (A(m),θ(m)λ∈Λ) is split
quasi-hereditary. By Theorem 1.5.56, (A,θλ∈Λ) is a split quasi-hereditary algebra.

Remark 1.6.17. Every commutative algebra with finite global dimension over an algebraically closed field is a
split quasi-hereditary algebra (see Proposition 3.5 of [KX98]). 4

We wish to proceed further and give a complete characterization for cellular Noetherian algebras in the similar
form as in [KX99b].

Theorem 1.6.18. Let R be a regular commutative Noetherian ring with finite Krull dimension. Let A be a cellular

R-algebra with cell datum (Λ,M,C, ι). The following assertions are equivalent.

(i) Some cell chain of A is a split heredity chain as well, that is, A is split quasi-hereditary.

(ii) There is a cell chain (with respect to some involution possibly distinct from ι) whose length |Λ| equals the

number of simple A(p)-modules for every prime ideal p of R.

(iii) Any cell chain of A is a split heredity chain of length |Λ|.

(iv) The algebra A has finite global dimension.

(v) A is locally semi-perfect and the function Cartan : SpecR→ Z, given by

Cartan(p) = det[rankR HomAp(Pi,Pj)], p ∈ SpecR,

is the constant function 1, where Pi, i = 1, . . . ,r for some natural number r, are the projective indecompos-

able modules of Ap.

Proof. By Proposition 4.1 of [KX98], if J2 6= 0, then J = AeA and Ae = θ . Hence, θλ are the standard modules
of A if A split is quasi-hereditary. In particular, for split quasi-hereditary algebras all split heredity chains have
the same size. Together with Theorem 1.6.16, this shows that (iii)⇔ (iv)⇔ (i). Assume that (iv) holds. Let p
be a prime ideal of R. Then, A(p) is a cellular algebra with cell datum (Λ,M,C, ι). In particular, A(p) has a cell
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Chapter 1. Background

chain (given by the cell datum) of length Λ and A(p) is split quasi-hereditary by Theorem 1.6.16. Therefore, |Λ|
is equal to the number of standard modules of A(p) which is equal to the number of simple A(p)-modules. So,
(ii) holds.

Assume that (ii) holds. For every prime ideal, A(p) has a cell chain whose length equals the number of
simple A(p)-modules. Thus, A(p) is split quasi-hereditary with standard modules θλ (p), λ ∈ Λ by Theorem 1.1
of [KX99b]. Therefore, (A,θλ∈Λop) is split quasi-hereditary. So, (i) holds. Assume that (i) holds. By Theorem
1.5.84, Ap is semi-perfect for every prime ideal p of R. Thus, A is locally semi-perfect. So, we can write Ap as
a direct sum of unique indecomposable projective module. Moreover, HomAp(Pi,Pj) is free over Rp. Further,
R(p)⊗Rp HomAp(Pi,Pj)' HomA(p)(Pi(p),Pj(p)) and Pi(p) are the indecomposable projective modules of A(p).
By Theorem 1.1 of [KX99b],

1 = det[dimR(p) HomA(p)(Pi(p),Pj(p))] = det[dimR(p) R(p)⊗Rp HomAp(Pi,Pj)] = det[rankHomAp(Pi,Pj)].

So, (v) holds. Finally, assume that (v) holds. Let p be a prime ideal of R. Applying R(p)⊗R− we obtain A(p) is
a direct sum of the projective modules Pi(p) with i = 1, . . . ,r, and

1 = det[rankR HomAp(Pi,Pj)] = det[dimR(p) HomA(p)(Pi(p),Pj(p))]. (1.6.0.47)

Moreover, every map between Pi(p) and Pj(p) can be lifted to a map between Pi and Pj. Since each Pj ∈ R-proj
and by Lemma 1.1.39, Pi(p) ' Pj(p) if and only if Pi ' Pj if and only if i = j. We claim now that each Pi(p) is
indecomposable over A(p). Since Ap is semi-perfect, EndAp(Pi) is a local ring. Furthermore, pp EndAp(Pi) is an
ideal of EndAp(Pi) and

EndÂp
(P̂i)' ̂EndAp(Pi) = lim

n
EndAp(Pi)/p

n
p EndAp(Pi) = lim

n
EndAp(Pi)/(pp EndA(Pi))

n . (1.6.0.48)

This last ring is the completion of EndAp(Pi) at the ideal pp EndAp(Pi), so it is a local ring. Therefore, P̂i is
indecomposable. By [CR90, (6.5), (6.7)], P̂i(p̂p)' Pi(p) is indecomposable. By (1.6.0.47), the Cartan matrix of
A(p) has determinant 1. Note that A(p) is cellular. By Theorem 1.1 of [KX99b], A(p) is split quasi-hereditary
with standard modules θλ (p). Therefore, r = |Λ| and since p is arbitrary (A,θλ∈Λop) is split quasi-hereditary.

Cellular algebras over fields which are quasi-hereditary admit, up to equivalence, only one quasi-hereditary
structure. This result is due to Coulembier [Cou20, Theorem 2.1.1]. Our focus is now to extend this result to
cellular Noetherian algebras. To this end, we need to recall some facts about the ordering of the standard modules
in a quasi-hereditary algebra. For finite-dimensional algebras, the order of the split quasi-hereditary algebra is
determined by the occurrences of simples topP(µ) on ∆(λ ) and ∆(λ ) on P(µ) (see for example Proposition
1.5.39). If A has a simple preserving duality (−)\, then ∆(µ)\'∇(µ), µ ∈Λ. Further, the number of occurrences
of ∆(µ) in P(λ ) is equal to the multiplicity of topP(λ ) in ∆(µ) (see for example Lemma 2.5 of [DR92]). So,
this information can be recovered to some extent by the Grothendieck group of A. The Grothendieck group of
A, here denoted by GR

0 (A), is the abelian group generated by the symbols [M], M ∈ A-mod∩R-proj with relations
[M] = [M′] + [M′′] whenever there exists an (A,R)-exact sequence 0→ M′ → M→ M′′ → 0. Therefore, if we
have two set of standard modules for a finite-dimensional algebra A with the same image in the Grothendieck
group, then we can choose the order so that both sets give the same order in Proposition 1.5.39. By Proposition
1.5.63, these set of standard modules must coincide. Given the existence of a simple preserving duality, Theorem
2.1.1 of [Cou20] implies that every set of standard modules have the same image in the Grothendieck group for
finite-dimensional algebras. In particular, if a cellular algebra is split quasi-hereditary, then there is a bijection
φ : Λ→Λ such that ∆(λ )' θφλ

if A is also split quasi-hereditary with standard modules ∆(λ ). Moreover, in view
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1.7. From A-mod to B-mod

of Theorem 1.5.65, there is a unique split heredity chain of length |Λ| for finite-dimensional cellular algebras.
Therefore, we can establish the following.

Theorem 1.6.19. Let R be a commutative regular Noetherian ring. Let A be a cellular R-algebra with cell datum

(Λ,M,C, ι). Assume that A has finite global dimension and (A,{∆(ω)ω∈Ω}) is split quasi-hereditary. Then, there

exists an equivalence of categories F : A-mod→ A-mod and a bijective map between posets φ : Λop→ Ω such

that Fθλ ' ∆(φ(λ ))⊗R Uλ , λ ∈ Λ, Uλ ∈ Pic(R).

Proof. Since A is a cellular R-algebra, A(m) is cellular with cell modules θλ (m) for every maximal ideal m of
R (see Proposition 1.6.10 and Corollary 1.6.6). By Theorem 1.6.16, (A,θλ∈Λop) is split quasi-hereditary. Also
(A(m),{∆(m)(ω)ω∈Ω}) is split quasi-hereditary. By the discussion above and Theorem 2.1.1 of [Cou20], these
two structures have the same split heredity chain. By Lemma 1.5.70, these two split heredity chains of A must
coincide. By Theorem 1.5.65 and Proposition 1.5.31, the result follows.

1.6.1 Further topics

The following result indicates that endomorphism algebras of partial tilting modules over a split quasi-hereditary
algebra with a duality are cellular algebras. The classical case can be found in [AST18] and [BT17, Theorem
1.1].

Theorem 1.6.20. Let R be a Noetherian commutative ring and A a projective Noetherian R-algebra. Assume

that A has a duality ι and that A is split quasi-hereditary with split heredity chain

0⊂ AetA⊂ ·· · ⊂ A(e1 + · · ·+ et)A = A. (1.6.1.1)

Let T be a characteristic tilting module of A and let M = ⊕i∈IT (i) (for some subset I of {1, . . . , t}) be a partial

tilting module. Then, EndA(M)op is a cellular algebra.

Proof. The duality ι induces a functor ι(−) : A-mod→ Aop-mod. In particular, ι P(i) = ι(Aei) = eiA. Consider
the contravariant functor \(−) : A-mod→ A-mod given by D ◦ ι(−). So, \(−) is a simple preserving duality
and as in Lemma 3.2 of [FK11b] \T (i) ' T (i). Let s : T → \T be an isomorphism of A-modules. Denote by
α : EndA(T )→ EndA(

\T ) the isomorphism of R-algebras, given by α( f ) = s◦ f ◦ s−1, f ∈ EndA(T ) and denote
by β : EndA(T )→ EndA(

\T ) the anti-isomorphism of R-algebras, given by β ( f )(h)(t) = h( f (t)), h ∈DT , t ∈ T .
Put τ = β−1 ◦α . By Proposition 2.4 of [FK11b], τ is a duality of the Ringel dual RA := EndA(T )op. That is, τ

fixes all maps T � T (i) ↪→ T for every i, and τ2 = idRA . In particular, τ fixes the idempotent f of RA such that
HomA(T,M) ' RA f . Observe that RA is split quasi-hereditary with standard modules HomA(T,∇(i)) with the
reversed order on {1, . . . , t}. Thus, if we denote by fi the idempotents T � T (i) ↪→ T , RA has the split heredity
chain

0⊂ RA f1RA ⊂ ·· · ⊂ RA( f1 + . . .+ ft)RA = RA. (1.6.1.2)

By Proposition 1.6.12, RA is a cellular algebra. By Proposition 1.6.11, EndA(M)op ' EndRA(HomA(T,M))op is
a cellular algebra.

1.7 From A-mod to B-mod

In Corollary 1.4.36, we saw that if (A,P) is a cover of B, then both algebras have the same number of blocks.
In this section, we seek to explore and collect more relations between A-mod and B-mod where B is the en-
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domorphism algebra of a finitely generated projective A-module. Again, A will denote a projective Noetherian
R-algebra. It is not surprising that for finite-dimensional algebras over a field, we can obtain more properties
that are preserved under Schur functors. Hence, in this section, R will be a field unless otherwise stated. For
finite-dimensional algebras over a field, the results on covers arising from an idempotent carry over unchanged
to the more general situation of covers using projective modules. In fact, we can state the following, which can
also be found in [Cru21, Proposition 9].

Proposition 1.7.1. [Cru21, Proposition 9] Let R be a field. If (A,P) is a cover of B, then there exists an

idempotent e ∈ A such that (A,Ae) is a cover of eAe and eAe is Morita equivalent to B.

Proof. We can decompose P into a direct sum of projective indecomposable modules P1⊕ ·· ·⊕Pn. By Krull-
Remak-Schmidt Theorem, there is a subset I of {1, . . . ,n} so that Q :=⊕i∈IPi is an A-summand of A and addQ =

addP, where the modules Pi, i ∈ I, are pairwise non-isomorphic. Moreover, there exists an idempotent e ∈ A

such that Ae ' Q. Hence, the algebras B and eAe are Morita equivalent. By Theorem 1.4.17, the functor
HomB(HomA(P,Ae),−) : B-mod→ eAe-mod is an equivalence of categories. On the other hand, the canonical
map HomA(Ae,A)→ HomB(F(Ae),FA) is bijective. Moreover, it is an eAe-isomorphism. Therefore,

A' EndB(HomA(P,A))op ' EndeAe(HomB(HomA(P,Ae),HomA(P,A)))op (1.7.0.1)

= EndeAe(HomB(F(Ae),FA))op ' EndeAe(HomA(Ae,A))op.

It goes back to the work of Green [Gre07, Theorem 6.2g] and his PhD student T. Martins the classification of
simple eAe-modules in terms of Schur functors for a given finite-dimensional algebra A over a field.

Theorem 1.7.2. Let A be a finite-dimensional R-algebra. Suppose {Vλ : λ ∈ Λ} is a full set of simple modules

in A-mod, indexed by a set Λ. Let Λ′ = {λ ∈ Λ : eVλ 6= 0}. Then, {eVλ : λ ∈ Λ′} is a full set of simple modules

in eAe-mod. The simple A/AeA-modules are exactly the simple A-modules, S, with eS = 0.

As we have seen, this determines, in particular, the complete set of simple EndA(P)op-modules whenever
(A,P) is a cover of EndA(P)op. The following results are very well known and quite elementary, however, we
present a proof for convenience of the reader.

Proposition 1.7.3. Let (A,Ae) be a cover of eAe for some idempotent e ∈ A. Suppose that S ∈ A-mod is a simple

module with projective cover P satisfying eS 6= 0. Then, eP is the projective cover of eS. Dually, the Schur functor

preserves the injective hull of S.

Proof. Let f be a primitive idempotent of B := eAe so that B f is the projective cover of eS. e is the identity of
eAe. Thus, f e = e f = f ∈ A. Moreover, f A f = f eAe f is a local ring. Therefore, f is a primitive idempotent in
A. We claim that A f is the projective cover of S. To see this, observe that the following modules are isomorphic
as R-modules,

HomA(A f ,S)' f S = f eS' HomeAe(eAe f ,eS) 6= 0. (1.7.0.2)

This implies that there exists a surjective map A f → S. Consequently, topA f = S. This proves that A f is the
projective cover of S and eA f = eAe f is the projective cover of eS.

Proposition 1.7.4. Let M ∈ A-mod and S a simple A-module. If eS 6= 0, then [M : S] = [eM : eS].

Proof. Let 0 = M0 ⊂ M1 ⊂ ·· · ⊂ Ms = M be a composition series of M. Applying the exact functor eA⊗A−
yields the filtration 0 = eM0 ⊂ eM1 ⊂ ·· · ⊂ eMs = eM. In particular, eMi+1/eMi ' e(Mi+1/Mi) is either simple
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or zero, 0≤ i≤ s−1. By deleting the redundant modules, we obtain a composition series of eM. Now, the result
follows using the composition series of eM and the fact that S is the unique simple module (up to isomorphism)
that maps to eS via the Schur functor.

The following two results can be found with more details in the Appendix of [Don98].

Theorem 1.7.5. Let A be a split quasi-hereditary algebra over a field. Let {S(λ ) : λ ∈ Λ} be a complete set of

simple A-modules. Let e be an idempotent of A and B = eAe. Assume that the idempotent e satisfies the following

eS(λ ) = 0⇐⇒ λ ≤ µ for some µ ∈ Γ, for some fixed subset Γ⊂ Λ. (1.7.0.3)

Fix Λ∗ := {λ ∈ Λ : eS(λ ) 6= 0} Then, B is split quasi-hereditary with standard modules {e∆(λ ) : λ ∈ Λ∗} and

costandard modules {e∇ : λ ∈ Λ∗}. Moreover, e∆(λ ) = e∇(λ ) = 0 for λ ∈ Λ\Λ∗.

Proof. See Proposition A3.11 of [Don98]. The idea of the proof is to use the characterization of quasi-hereditary
algebras discussed in Proposition 1.5.39. By applying the Schur functor HomA(Ae,−) on the exact sequences
given by Proposition 1.5.39 and by using Propositions 1.7.3, 1.7.4 and Theorem 1.7.2, the result follows.

Idempotents satisfying (1.7.0.3) do exist. For example, the functor SR(d,d)-mod→ SR(n,d), defined in
[Gre07, 6.5], for d ≥ n, and R an infinite field, is given by such an idempotent. For future reference, note that this
functor is also well defined if we drop the condition that R is an infinite field. Theorem 1.7.5 plays an important
role in and it allows us to understand the quasi-hereditary structure of a Schur algebra in cases n < d using bigger
Schur algebras. This theorem also gives a sufficient condition for a Schur functor to preserve the quasi-hereditary
structure of A.

The subset of Λ whose elements (also called dominant weights) satisfy the statement on the right of (1.7.0.3)
is called a saturated set of Λ by Donkin. The set Λ∗ is called a cosaturated set of Λ.

Remark 1.7.6. An idempotent in the conditions of Theorem 1.7.5 does not come, in general, from a cover. For
example, for d > n (SR(d,d),SR(d,d)-mod→ SR(n,d)) is not a cover of SR(n,d). If it was, then it would be true
that

RSd ' EndSR(d,d)((R
d)⊗d)' EndSR(n,d)((R

n)⊗d). (1.7.0.4)

Consequently, ((Rn)⊗d) would become a faithful RSd-module. This is not true since n < d. 4

Proposition 1.7.7. Let A be a split quasi-hereditary algebra over a field. Let e be in the above conditions. Then,

the following assertions hold.

(a) The Schur functor HomA(Ae,−) preserves (partial) tilting modules.

(b) Let M ∈F (∆) and N ∈F (∇) then the map HomA(M,N)→ HomeAe(eM,eN) is surjective.

(c) The partial tilting indecomposable modules of eAe are exactly {eT (λ ) : λ ∈ Λ∗}. Moreover, eT (µ) = 0
for µ ∈ Λ\Λ∗.

Proof. For (b) see Lemma A3.12 of [Don98] or [Erd94, 1.7]. One idea is to observe that the map

R' HomA(∆(λ ),∇(λ ))→ HomeAe(e∆(λ ),e∇(λ ))' R (1.7.0.5)

is non-zero for λ ∈ Λ∗. In particular, the image under this map of ∆(λ )→ T (λ )→ ∇(λ ) is non-zero. Then,
using the filtrations given by Proposition 1.5.117 (b) follows.
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For (a) and (c) see Lemma A4.5 of [Don98]. (a) follows directly by observing that HomA(Ae,−) preserves
filtrations of standard (resp. costandard) modules due to Theorem 1.7.5. Now, applying (b) to T (λ ) yields
that EndeAe(eT (λ )) is a local ring if λ ∈ Λ∗. Hence, it is indecomposable. Using (a) and the uniqueness of
indecomposable tilting modules the first part of (c) holds. The second part of (c) follows by the exactness of
HomA(Ae,−) and Theorem 1.7.5.

It is essential that the idempotent e satisfies (1.7.0.3), or in other words, that Λ∗ is cosaturated in Λ. If we
drop such a condition, Proposition 1.7.7(c) can fail.

Example 1.7.8. Let A be the following bound quiver algebra over an algebraically closed field

2

1 4

3

αβ

γ w

, αβ = ωγ. (1.7.0.6)

A is quasi-hereditary with 1 < 2 < 3 < 4. The projective modules are

P(1) =
1

2 3
4

P(2) = 2
4 P(3) = 3

4 P(4) = 4 .

The injective modules are

I(1) = 1 I(2) = 1
2 I(3) = 1

3 I(4) = P(1). (1.7.0.7)

Here, ∆(i) = S(i) and ∇(i) = I(i) for all i = 1, . . . ,4. Hence, the (partial) tilting modules are T (1) = ∆(1),
T (2) = I(2), T (3) = I(3) and T (4) = P(1). Choose e = e2 + e3. Then, eAe is semi-simple, so every simple
module is (partial) tilting indecomposable. However, eT (4) = 2

⊕
3 is not indecomposable. 4

1.7.1 From a cover (A,P) to EndA(P)op

In this subsection, we will give further properties of covers, but now we will assume that R is a Noetherian
commutative ring.

The following result, although elementary, does not seem to appear in the literature.

Proposition 1.7.9. Let R be a commutative Noetherian ring. Suppose that (A,P) is a cover of B. If B is a

relative semi-simple R-algebra, then A is a relative semi-simple R-algebra. Conversely, if A is a relative semi-

simple R-algebra and DA is the epimorphic image of some module belonging to addDA⊗A P then B is a relative

semi-simple R-algebra.

Proof. Assume that B is relative semi-simple. Since P∈ A-proj, HomA(P,A) is a B-generator and projective as R-
module. Consequently, HomA(P,A) is a B-progenerator. Therefore, B and A are Morita equivalent. In particular,
A is relative semi-simple with respect to R.

Assume that A is relative semi-simple and there exists a surjective homomorphism θ : DA⊗A X → DA for
some X ∈ addA P. Since DA ∈ R-proj then θ is an (A,R)-epimorphism. So, by assumption, it splits over A, and
therefore DA ∈ addDA⊗A P. Hence, HomA(P,A) is a projective generator of A-mod. Since (A,P) is a cover of B

then A and B are Morita equivalent.
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For finite-dimensional algebras, instead of using techniques on faithful modules, we could have used tech-
niques involving the Jacobson radical. In fact, rad(eAe) = e radAe (see [Lam01, Theorem (21.10)]).

Covers also give some insights into the classification of indecomposable modules.

Proposition 1.7.10. Let R be a commutative Noetherian ring. Let (A,P) be a cover of B. If A is an algebra of

finite representation type, then B is an algebra of finite representation type.

Proof. The functor G : B-mod→ A-mod is fully faithful. Therefore, we can identify B-mod with some full
subcategory of A-mod. Since A is of finite type there exists a finite number of indecomposable modules in
A-mod. In particular, there exists a finite number of indecomposable objects in any full subcategory of A-mod. It
follows that B is of finite representation type.

The following result states that if there exist projective covers of finitely generated modules for a cover of an
algebra B, then the modules belonging to the module category B-mod have also projective covers.

Theorem 1.7.11. Let R be a commutative Noetherian ring. Let (A,P) be a cover of B. If A is semi-perfect

algebra, then B is semi-perfect.

Proof. By Proposition 3.14 of [Fac98], A is a direct sum of A-modules with local endomorphism rings. By
Theorem 2.12 of [Fac98], any two direct sum decompositions of At (for any t > 0) into indecomposable modules
are isomorphic. In particular, P is a direct sum of A-modules with local endomorphism rings. By Proposition
3.14 of [Fac98], B = EndA(P)op is semi-perfect.

The converse implication holds if and only if HomA(P,A) is a direct sum of B-modules with local endomor-
phism rings.

Given an idempotent e of A, the center of eAe and the ring eZ(A)e can be quite different, where Z(A) denotes
the center of A.

Example 1.7.12. Consider the R[t]-module R satisfying t1R = 0. Let A be the triangular matrix ring

[
R[t] R

0 R

]
.

Then, the center of A, Z(A) = R

[
1 0
0 1

]
, is isomorphic to R. But, choosing the idempotent e =

[
1 0
0 0

]
yields

eZ(A)e = R while the center of eAe is isomorphic with R[t]. 4

On the other hand, the center of eAe can be computed using A if there exists a double centralizer property
between eAe and A.

Proposition 1.7.13. Let R be a commutative Noetherian ring. If (A,Ae) is a cover of eAe for some idempotent e

in A, then Z(eAe) = eZ(A)e.

Proof. Suppose that (A,Ae) is a cover of eAe for some idempotent e in A. It follows directly from definition
that eZ(A)e ⊂ Z(eAe). Conversely, assume that x ∈ Z(eAe). Then, the map eA→ eA given by ea 7→ xea is a
left eAe-homomorphism. Denote this map by αx. Moreover, for any φ ∈ EndeAe(eA), φ ◦αx(ea) = φ(xea) =

xφ(ea) = αx ◦φ(ea) for all a ∈ A. Hence, αx ∈ Z(EndeAe(eA)op). Since (A,Ae) is a cover of eAe the canonical
map ψ : A→ EndeAe(eA)op is an isomorphism of algebras. Therefore, there exists a ∈ Z(A) such that ψ(a) = αx.
Hence, for all b ∈ A, eba = ψ(a)(eb) = αx(eb) = xeb = xb. So, x = xe = eae ∈ eZ(A)e.

As we saw in Proposition 1.6.12 and 1.6.11, some cellular algebras B appear as the endomorphism algebra of
projective modules over split quasi-hereditary algebras with a duality. This motivates us to study the following
problem:
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Problem 1. For a given cellular algebra B, study a split quasi-hereditary algebra (A,{∆(λ )λ∈Λ}) such that
(A,P) is a cover of B.

Observe that if B is not a split quasi-hereditary algebra over a regular ring with finite Krull dimension, then
according to Theorem 1.6.16 B has infinite global dimension while A has finite global dimension. In algebraic
geometry, non-singular varieties are associated with regular rings with finite global dimension (see [Rot09, The-
orem 8.62, Proposition 8.60, Example 8.57]). Therefore, asking to realise an algebra B with infinite global
dimension as EndA(P)op with (A,P) being a cover of B and A having finite global dimension is a representation
theoretic analogue of resolution of singularities.

The following result illustrates that finding a cover with finite global dimension for finite-dimensional alge-
bras over fields cannot be seen as another technique for resolution of singularities in algebraic geometry in view
of Proposition 1.7.1. In fact, we cannot expect a cover of a commutative algebra to be again commutative.

Proposition 1.7.14. [Cru21, Proposition 10] Let R be a commutative Noetherian ring. Suppose that A is a

commutative projective Noetherian R-algebra. If (A,Ae) is a cover of eAe for some idempotent e in A, then A is

isomorphic to eAe.

Proof. Thanks to A being commutative we obtain that eAe is commutative. If (A,Ae) is a cover of eAe, then

A' EndeAe(eA) = EndeAe(e2A) = EndeAe(eAe)' eAe.

Studying non-commutative resolutions for commutative rings have been attracting much attention in recent
years. See for example [DITV15], for a different perspective and different types of resolutions than the one we
use here. Over self-injective commutative Noetherian rings, their concept of resolution coincides with the concept
of a cover with finite global dimension. In fact, over self-injective algebras faithful finitely generated modules are
exactly the generators. Let R be a commutative self-injective ring. So, if M is a non-commutative resolution of R,
in the sense of [DITV15], then HomN(M,N) is a projective (left) N-module where N := EndR(M). In particular,

EndN(HomN(M,N))op ' EndN(M)' R,

and M ' HomN(HomN(M,N),N) as (R,N)-bimodules since M is projective over N. So, (N,HomN(M,N))

is a cover of R and N has finite global dimension. Conversely, if (N,P) is a cover of a self-injective com-
mutative Noetherian ring R and N has finite global dimension, then HomN(P,N) is faithful over R and N '
EndR(HomN(P,N))op has finite global dimension. Since R is Noetherian, EndR(HomN(P,N)) has finite global
dimension, and therefore HomN(P,N) is a non-commutative resolution of R, in the sense of [DITV15].

As we have mentioned, our interest is to resolve cellular algebras (not necessarily being commutative alge-
bras) by covers. Going back to Proposition 1.6.12, we obtain even more information in the passage from (A,P)

to a cellular algebra B than we had discussed so far. In particular, the Schur functor sends the standard modules
of A to cell modules of B. By imposing this extra condition to Problem 1, we are more strict in choosing (if it
exists) the ”best” cover of a cellular algebra B so that the connection between A-mod and B-mod is the strongest
possible (see Section 3.1). In Section 3.1, we will address how to measure the quality of a cover. Relative dom-
inant dimension, to be studied in the next chapter, will give us both a tool to construct some quasi-hereditary
covers and to measure their quality.
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Chapter 2

Relative dominant dimension

In this chapter, we will generalize the classical theory of dominant dimension of finite-dimensional algebras to
the Noetherian realm. The material to be developed here is intended to be self-contained. In particular, we can
recover the classical theory by fixing the ground ring to be a field. Some highlights are the relative Morita-
Tachikawa correspondence (Theorem 2.4.10), the relative version of Mueller’s characterization of dominant di-
mension over an algebra in terms of cohomology over a certain endomorphism algebra of a projective-injective
module (Theorem 2.4.15). We will also see how this theory is interconnected with the classical theory of domi-
nant dimension of finite-dimensional algebras over algebraically closed fields (Theorem 2.5.13 and Proposition
2.5.10).

Much of the results on dominant dimension of finite-dimensional algebras can be found in [Mue68, Tac73,
ARS95, Tac70, Mor58].

2.1 Definition

Unless otherwise stated, in this chapter, all algebras will be projective Noetherian R-algebras for a Noetherian
commutative ring R.

Definition 2.1.1. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Let
M ∈ A-mod. We say that M has relative dominant dimension at least t ∈ N if there exists an (A,R)-exact
sequence of finitely generated left A-modules

0→M→ I1→ ··· → It (2.1.0.1)

where Ii are all projective and (A,R)-injective modules. If M admits no such (A,R)-exact sequence, then we say
that M has relative dominant dimension zero. Otherwise, the relative dominant dimension of M is the supremum
of the set of all values t such that an (A,R)-exact sequence of the form 2.1.0.1 exists. We denote by domdim(A,R) M

the relative dominant dimension of M.

Analogously, we can define relative dominant dimension for right A-modules.

Proposition 2.1.2. (A,R)-dominant dimension is invariant under Morita equivalence.

Proof. Let B be an algebra which is Morita equivalent to A. In view of Remark 1.4.18, B is a projective Noethe-
rian R-algebra. Since (A,R)-exact sequences and (A,R)-injective modules are preserved under Morita equiva-
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lence due to Corollaries 1.2.7 and 1.2.11, it follows that (A,R)-dominant dimension is preserved under Morita
equivalence.

Observe that since the zero module is projective and relative injective, if a module admits a finite projective
(A,R)-injective coresolution, then it has infinite relative dominant dimension. We can make more precise the
case of infinite relative dominant dimension for a module with finite relative injective dimension.

Proposition 2.1.3. Let M ∈ A-mod∩R-proj having idim(A,R) M < ∞. The following assertions are equivalent.

(a) domdim(A,R) M =+∞;

(b) M is a projective and (A,R)-injective module.

Proof. Assume that (b) holds. Consider the (A,R)-exact sequence 0→ M→ M→ 0. By Definition 2.1.1, (a)
holds.

Assume that (a) holds. In particular, domdim(A,R) M ≥ t = idim(A,R) M, so there exists an (A,R)-exact se-
quence 0→M

α0−→ I0
α1−→ ·· · αt−→ It with Ii being projective and (A,R)-injective modules (possibly with some of

them being zero). By Proposition 1.2.43, imαt is (A,R)-injective. So, it is an A-summand of It . Thus, it is
also projective over A. Further, the exact sequence 0→ M → I0 → ··· → imαt → 0 splits over A. Hence,
M ∈ add I0.

Proposition 2.1.4. Let M ∈ A-mod. Then, domdim(A,R) M > 0 if and only if M is an (A,R)-submodule of a (left)

module that is both projective over A and (A,R)-injective. In particular, domdim(A,R) AA ≥ 1 if and only if A is

an (A,R)-submodule of a projective (A,R)-injective (left) A-module.

Proof. Assume that M is not an (A,R)-submodule of a (left) A-module that is both projective and (A,R)-injective.
Assume by contradiction that domdim(A,R) M > 0. Then, there exists by definition an (A,R)-monomorphism
M→ I1 with I1 ∈ A-proj∩(A,R)-inj. This contradicts our assumption. Then, domdim(A,R) M = 0. Conversely,
assume that domdim(A,R) M = 0. By contradiction assume that M is an (A,R)-submodule of a (left) A-module
that is both projective and (A,R)-injective, say N. Then, the monomorphism M→ N is (A,R)-exact and by the
definition, we get domdim(A,R) M > 0.

As a consequence, we see that every module with positive relative dominant dimension is projective over the
ground ring. Observe that if domdim(A,R) M ≥ 1 for some M ∈ A-mod∩R-proj, then there is an (A,R)-injective
left A-proj∩(A,R)-inj-approximation of M.

2.2 Strongly faithful modules

The following result is folklore but useful to characterize faithful modules.

Proposition 2.2.1. Let M ∈ A-Mod. If 0→ A→Mt for some t > 0, then M is faithful. The converse holds for

Artinian rings or if M is a finitely generated A-module.

Proof. Assume that there exists a monomorphism i : A→Mt for some t > 0. Let a ∈ A such that am = 0 for all
m ∈M. Then, ax = 0 for all x ∈Mt . Hence, i(a) = i(a1A) = ai(1A) = 0. So, a = 0 and M is faithful. Assume
that M is faithful finitely generated. Let {m1, . . . ,mt} be a generator set over A of M. Consider for each x ∈M

the A-map lx : A→M, given by lx(a) = ax,a ∈ A. The map i : A→Mt , given by i(a) = (lm1(a), . . . , lmt (a)), is a
monomorphism since M is faithful.
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Now assume that M is faithful and A is an Artinian ring. Then, for a ∈ A,

a = 0⇔ lx(a) = 0,∀x ∈M⇔ a ∈
⋂

x∈M

ker lx. (2.2.0.1)

Since A is Artinian the chain ker lx1 ⊃ ker lx1 ∩ker lx2 ⊃ ·· · must become stationary. Hence,

0 =
⋂

x∈M

ker lx =
⋂

x1,...xt

ker lxi , (2.2.0.2)

for some t > 0. Then, the A-map i : A→Mt , given by i(a) = (lx1(a), . . . , lxt (a)), is a monomorphism.

Note that if we drop either the Artinian condition or M ∈ A-mod, then faithfulness cannot be characterized
through existence of these exact sequences. In fact, let R = A = Z and M =

⊕
n∈N
Z/nZ. M is Z-faithful since for

every a ∈ Z, 1+(a+ 1)Z ∈M and a · 1+(a+ 1)Z = a+(a+ 1)Z 6= 0. Now assume that there exists an exact
sequence 0→ Z→Mt for some t > 0. Recall that

Q⊗ZM '
⊕
n∈N

Q⊗Z Z/nZ'
⊕
n∈N

0 = 0. (2.2.0.3)

So, applying Q⊗Z− would imply that 0→Q→ 0 is exact. Hence, such an exact sequence does not exist.
This characterization is essential to deal with cases where the projective faithful modules are not given by

an idempotent element. With this characterization, it is also easier to see that the concept of faithful finitely
generated modules is Morita invariant.

In relative dominant dimension theory, faithful modules without further properties no longer play a key role in
the study of relative dominant dimension of projective Noetherian algebras over commutative Noetherian rings.
Here they are replaced by the following concept.

Definition 2.2.2. Let R be a commutative ring. We say that a (left) module M is (A,R)-strongly faithful if there
is an (A,R)-monomorphism AA ↪→Mt for some t > 0. The definition for right modules is analogous.

If R is a field, then A becomes a finite-dimensional algebra. Thus, (A,R)-strongly faithful coincides with
faithful, by Proposition 2.2.1.

For every commutative ring R, any generator of A-mod is (A,R)-strongly faithful. Because of M being a gen-
erator of A-mod there exists t > 0 such that Mt 'A⊗K as A-modules. In particular, the canonical monomorphism
A ↪→Mt splits over A, and thus is an (A,R)-monomorphism.

Looking back to Proposition 2.2.1, we see that Proposition 2.1.4 says that an algebra has positive relative
dominant dimension if and only if it has an (A,R)-strongly faithful, projective (A,R)-injective A-module. By an
(A,R)-injective-strongly faithful module we mean a module that is simultaneously (A,R)-injective and (A,R)-
strongly faithful.

If R is a commutative Noetherian ring, any (A,R)-strongly faithful contains as summand a minimal (A,R)-
strongly faithful module in the following sense.

Proposition 2.2.3. Let R be a commutative Noetherian ring. Let M be a finitely generated projective and (A,R)-

injective-strongly faithful A-module. Then, there exists an (A,R)-strongly faithful module N ∈ addA M which does

not contain any proper (A,R)-strongly faithful module as A-summand.

Proof. If M does not contain a proper (A,R)-strongly faithful module as A-summand, then we are done. Other-
wise we can write M ' N0

⊕
K0 where N0 is an (A,R)-strongly faithful module and K0 6= 0. Then, we can apply
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the same reasoning to N0. After a finite number of steps, we can construct a proper chain

0( K0 ( K1
⊕

K0 ( · · ·( Kn
⊕
· · ·
⊕

K0. (2.2.0.4)

Since M is a Noetherian module, this chain must stabilize. Hence, this construction must stop after a finite
number of steps, say t. The module Nt−1 belongs to addM and does not contain any proper (A,R)-strongly
faithful module as A-summand.

Lemma 2.2.4. Let M be a finitely generated (A,R)-strongly faithful projective and (A,R)-injective A-module.

Then, every projective (A,R)-injective A-module belongs to addM. In particular, all endomorphism rings of

modules N being finitely generated (A,R)-strongly faithful, projective over A and (A,R)-injective are Morita

equivalent.

Proof. Let N be projective and (A,R)-injective A-module. Since N ∈ A-proj, then there is n such that An '
N
⊕

L. Denote by kN and πN the canonical injection and projection, respectively. Since M is (A,R)-strongly
faithful, there exists i ∈ HomA(A,Mt) and π ∈ HomR(Mt ,A) such that π ◦ i = idA. Define f = (i, · · · , i) ◦ kN ∈
HomA(N,Mtn). Then,

πN ◦ (π, · · · ,π)◦ f = πN ◦ (π, · · · ,π)◦ (i, · · · , i)◦ kN = πN ◦ idAn ◦kN = idN . (2.2.0.5)

Thus, f is an (A,R)-monomorphism. Since N is (A,R)-injective f splits over A. In particular, N ∈ addA M.
If N is also (A,R)-strongly faithful, then by reversing the roles of M and N, we obtain M ∈ addN. Thus,

addN = addM. This concludes the proof.

2.2.1 Relative self-injective algebras

(A,R)-strongly faithful modules play an important role for relative self-injective algebras in the same fashion that
faithful modules play an important role in self-injective Artinian algebras.

Definition 2.2.5. Let R be any commutative ring. An R-algebra B is called relative (left) self-injective if BB is
(B,R)-injective.

Examples of relative self-injective algebras are quite common. For example, the class of relative self-injective
algebras includes the class of group algebras over a commutative ring. The argument follows exactly as in [CR06,
(62.1)].

Proposition 2.2.6. For every finite group G, the group algebra RG is a relative self-injective R-algebra for any

commutative ring R.

Proof. Consider the R-linear map π : RG→ R, given by

π(g) =

{
1R, if g=e

0, otherwise
, g ∈ G.

Define the RG-map φ : RG→ DRG, given by φ(g)(h) = π(gh) for every h ∈ RG. Note that

φ(hg)(x) = π((hg)x) = π(h(gx)) = φ(h)(gx) = φ(h)g(x),∀g,h,x ∈ G. (2.2.1.1)

Thus, φ is an RG-right homomorphism. We claim that φ is injective. In fact, let x = ∑g∈G xgg ∈ kerφ . Then, for
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all h ∈ G,

0 = φ(x)(h) = π(xh) = π(∑
g∈G

xggh) = ∑
g∈G

xg1{gh=e}(g) = ∑
g∈G

xg1{h−1}(g) = xh−1 . (2.2.1.2)

Thus, x = 0.
We shall now prove that φ is surjective. Observe that DRG has an R-basis {g∗ : g ∈ RG}, given by g∗(h) =

1{g}(h), h ∈ G. Moreover, g∗(∑g∈G hgg) = hg. We claim that φ(g−1) = g∗ for every g ∈ G. In fact,

φ(g−1)(x) = π(g−1
∑

h∈G
xhh) = ∑

h∈G
xh1{g−1h=e}(h) = ∑

h∈G
xh1{g=h}(h) = xg = g∗(x), ∀x ∈ RG. (2.2.1.3)

Therefore, RG' D(RG) as right RG-modules. Consequently, RG' DDRG' D(RG) as left RG-modules, since
RG ∈ R-proj. Hence, RG is (RG,R)-injective.

Theorem 2.2.7. Let B be a relative (left and right) self-injective R-algebra. Let M be a (B,R)-strongly faithful

module. Then, M is a generator (B,R)-cogenerator and it satisfies a double centralizer property: A=EndB(M)op

and B = EndA(M).

Proof. Since M is (B,R)-strongly faithful, there exists a (B,R)-monomorphism 0→ B→ Mt . As B is (B,R)-
injective, this monomorphism splits over B. Hence, B ∈ addM. In particular, M is a generator of B-mod. Since
double centralizer properties hold on generators, it follows that B ' EndA(M) with A = EndB(M). Since B is
right self-injective algebra then BB belongs to addDBB. Consequently, DBB belongs to addB B ⊂ addM. So, M

is a B-generator (B,R)-cogenerator.

For projective Noetherian R-algebras the notions of relative left and right self-injective R-algebra are equiva-
lent.

Proposition 2.2.8. Let B be a projective Noetherian R-algebra. B is a relative left self-injective R-algebra if and

only if B is a relative right self-injective R-algebra.

Proof. Assume that B is a relative right self-injective R-algebra. Then, B is (B,R)-injective as a right module.
By Theorem 1.2.57, B(m) is right B(m)-injective for every maximal ideal m in R. In particular, every projective
right B(m)-module is B(m)-injective. It is well known that this implies that every B(m)-injective is projective
over B(m) ([ARS95, IV. 3]). For the sake of completeness, we will give a proof of this fact: Let S be a simple
B(m)-module. Denote by P(S) its projective cover. Then, {P(S) : S simple B(m)-module} is a complete set
of all non-isomorphic projective indecomposable B(m)-modules. In particular, it is a set of non-isomorphic
injective indecomposable B(m)-modules. Since the set of injective hulls of simple modules gives a complete set
of non-isomorphic injective indecomposable modules, the number of non-isomorphic injective indecomposable
modules is exactly the number of simple modules. Thus, {P(S) : S simple B(m)-module} is also a complete set
of non-isomorphic injective indecomposable B(m)-modules. So, all right B(m)-injective modules are projective.
In particular, HomR(m)(B(m),R(m)) is projective as a right B(m)-module. So, B(m) is B(m)-injective as a left
module for every maximal ideal m in R. Again, by Theorem 1.2.57, B is left (B,R)-injective. Thus, B is a relative
left self-injective R-algebra.

Projective Noetherian R-algebras which are relative self-injective over a commutative Noetherian ring were
considered several times during the 1960s. The structure of these algebras that have global dimension at most
one was determined in [End67].
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Note that every relative self-injective R-algebra has infinite relative dominant dimension domdim(A,R) = ∞.
Indeed, we can consider the (A,R)-exact sequence 0→ A→ A→ 0. In parallel, we conjecture the following
relative version of Nakayama conjecture:

Conjecture 2.2.9. Given a projective Noetherian R-algebra A over any commutative Noetherian ring R satisfying

domdim(A,R) AA =+∞, then A is a relative (left and right) self-injective R-algebra.

As we will see afterwards, this conjecture is equivalent to the Nakayama conjecture.

2.2.2 Double centralizer properties on strongly faithful modules

For Noetherian algebras over commutative rings, it is easier to check the double centralizer property in the
presence of (A,R)-strongly faithful modules. Using Nakayama’s Lemma for (A,R)-monomorphisms 1.2.59, we
can generalize Lemma 1.4.8 to commutative rings.

Proposition 2.2.10. Let A be a Noetherian R-algebra. Let M be an (A,R)-strongly faithful and B = EndA(M)op.

Then, the following assertions are equivalent.

(i) (A,M) satisfies the double centralizer property.

(ii) A' EndB(M) as R-modules.

(iii) A' EndB(M) as R-algebras.

Proof. i)⇒ iii)⇒ ii) is clear. We shall prove ii)⇒ i). Since M is (A,R)-strongly faithful, there is a diagram

0 A Mt M
i

ε

π j

k j

such that ε ◦ i = idA and ∑ j k j ◦π j = idMt .
Consider ψ : EndB(M)→ A, given by ψ( f ) = ∑ j ε ◦ k j ◦ f (π j ◦ i(1A)), f ∈ EndB(M). This is an R-map and

ψ ◦ρ(a) = ∑
j

ε ◦ k j ◦ρ(a)(π j ◦ i(1A)) = ∑
j

ε ◦ k j(aπ j ◦ i(1A))

= ∑
j

ε ◦ k j(π j(i(a))) = ε ◦∑
j

kk ◦π ji(a) = ε ◦ i(a) = a

Hence, ρ is an (A,R)-monomorphism. By Lemma 1.2.59, since A ' EndB(M) as finitely generated R-modules,
it follows that ρ is an isomorphism. By Definition, (A,M) satisfies the double centralizer property.

Theorem 2.2.7 motivates us to study endomorphism rings of generators-relative cogenerators. For finite
dimensional algebras over a field, they can be characterized using dominant dimension. In order to obtain a
relative version of this fact for Noetherian algebras, we need first some technical lemmas and it will be useful to
introduce another definition of relative dominant dimension and its relation to approximation theory.

2.3 Relative dominant dimension with respect to a module, and approx-
imation theory

Definition 2.3.1. Let T ∈ A-mod. An A-homomorphism M → N is called a left addT -approximation of M

provided that N belongs to addT and the induced homomorphism HomA(N,X)→ HomA(M,X) is surjective for
every X ∈ addT .
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An A-homomorphism Y →M is called a right addT -approximation of M provided that Y belongs to addT

and the induced homomorphism HomA(X ,Y )→ HomA(X ,M) is surjective for every X ∈ addT .

Lemma 2.3.2. Let N,T ∈ A-mod∩R-proj and M ∈ addT . Then, an A-homomorphism f : M → N is a right

addT -approximation of N if and only if the map HomA(T, f ) : HomA(T,M)→ HomA(T,N) is surjective.

Proof. The claim follows from the following commutative diagram

HomA(T1⊕T2,M) HomA(T1⊕T2,N)

HomA(T1,M)⊕HomA(T2,M) HomA(T1,N)⊕HomA(T2,N)

(−◦k1,−◦k2)'

HomA(T1⊕T2, f )

(−◦k1,−◦k2)'
HomA(T1, f )⊕HomA(T2, f )

,

where k1,k2 are the canonical injections of the direct sum T1⊕T2 ∈ addT.

Lemma 2.3.3. Let M,T ∈ A-mod∩R-proj and N ∈ addT . An A-homomorphism f : M → N is a left addT -

approximation of M if and only if D f : DN→ DM is a right addDT -approximation of DM.

Proof. The diagram

HomA(T,M) HomA(T,N)

HomA(DM,DT ) HomA(DN,DT )

ψT ,M'

HomA(T , f )

ψT ,N'
HomA(D f ,DT )

,

where ψT,M and ψT,N are defined according to Proposition 1.1.64, is commutative. In fact,

HomA(D f ,DT ◦ψT,M(h)(s) = ψT,M(h)◦D f (s) = ψT,M(h)(s◦ f ) = s◦ f ◦h,

ψT,N ◦HomA(T, f )(h)(s) = ψT,N( f ◦h)(s) = s◦ f ◦h, h ∈ HomA(T,M), s ∈ DN.

Therefore, HomA(T, f ) is surjective if and only if HomA(D f ,DT ) is surjective.

Trivial cases are the projective A-modules and relative injective modules. Naturally, every surjective map
P � M with P ∈ A-proj is a right addA-approximation of M and every (A,R)-monomorphism M → I, with I

being an (A,R)-injective and projective as R-module, is a left addDA-approximation.

Lemma 2.3.4. Let M,T ∈ A-mod∩R-proj. Let Xi ∈ addT , i≥ 0. The following assertions are equivalent.

(i) An (A,R)-exact sequence

Xt
αt−→ ·· · → X1

α1−→ X0
α0−→M→ 0 (2.3.0.1)

remains exact under HomA(T,−) if and only if for every factorization

Xi Xi−1

imαi

αi

,

the (A,R)-epimorphism Xi � imαi and α0 are right addT -approximations with i≥ 1.
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(ii) An (A,R)-exact sequence

0→M
α0−→ X0

α1−→ X1→ ··· → Xt (2.3.0.2)

remains exact under HomA(−,T ) if and only if for every factorization

Xi Xi+1

imαi+1

αi+1

,

the (A,R)-monomorphism imαi+1 ↪→ Xi+1 and α0 are left addT -approximations with i≥ 0.

Proof. (i). Assume that every factorization Xi � imαi is a right addT -approximation. Consider the (A,R)-exact
sequences

0→ imαi+1→ Xi
αi−→ imαi→ 0. (2.3.0.3)

As αi is a right addT -approximation, applying HomA(T,−) yields the exact sequence

0→ HomA(T,imαi+1)→ HomA(T,Xi)
HomA(T,αi)−−−−−−−→ HomA(T,imαi)→ 0. (2.3.0.4)

Thus, for every i,

kerHomA(T,αi) = HomA(T,imαi+1) = imHomA(T,αi+1),

where the last equality follows from Xi+1
αi+1−−→ imαi+1 being a right addT -approximation.

Conversely, assume that (2.3.0.1) remains exact under HomA(T,−). We shall proceed by induction on i to
show that Xi � imαi is a right addT -approximation. By definition, α0 is a right addT -approximation. Assume
that Xi

αi−→ imαi is a right addT -approximation for some i > 0. Consider the (A,R)-exact sequence

0→ imαi+1→ Xi
αi−→ imαi→ 0. (2.3.0.5)

As HomA(T,−) is left exact and αi is a right addT -approximation (2.3.0.5) remains exact under HomA(T,−).
Hence,

HomA(T,imαi+1) = kerHomA(T,αi) = imHomA(T,αi+1).

thus, the image of HomA(T,Xi+1 � imαi+1) is exactly HomA(T,imαi+1). Hence, (i) follows. The case (ii) is the
dual of (i). By Lemma 2.3.3, (ii) follows.

We will now introduce an alternative definition of relative dominant dimension. This will be extremely useful
for the arguments in the relative Morita-Tachikawa correspondence. In chapter 5, this definition will be of interest
in its own right.

Definition 2.3.5. Let T,X ∈ A-mod∩R-proj. If X does not admit a left addT -approximation which is an (A,R)-
monomorphism, then we say that relative dominant dimension of X with respect to T is zero. Otherwise, the
relative dominant dimension of X with respect to T , denoted by T − domdim(A,R) X , is the supremum of all
n ∈ N such that there exists an (A,R)-exact sequence

0→ X → T1→ ··· → Tn (2.3.0.6)
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which remains exact under HomA(−,T ) with all Ti ∈ addT .

By convention, the empty direct sum is the zero module. So, the existence of a finite relative addT -
coresolutions implies that T − domdim(A,R) X is infinite. In the same way, we can define the relative dominant
dimension of a right module with respect to a right module Q.

Definition 2.3.5 generalizes the concept of relative dominant dimension introduced in 2.1.1 as we can see in
the following Proposition. Furthermore, this is a generalization of [Tac73, 7.3, 7.7].

Proposition 2.3.6. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra with

domdim(A,R) AA≥ 1 with projective (A,R)-injective-strongly faithful left A-module P. Then,

P−domdim(A,R) X = domdim(A,R) X , X ∈ A-mod . (2.3.0.7)

Proof. Assume that there exists an (A,R)-exact sequence

0→ X → X1→ X2→ ·· · → Xn (2.3.0.8)

with projective (A,R)-injective left A-modules Xi for all i ≥ 1. Recall that since P is (A,R)-injective, the
functor HomA(−,P) is exact on (2.3.0.8). Since all Xi are projective there exists ki such that Aki ' Xi⊕Ki.
Choose k = max{k1, . . . ,kn}. So, each Xi can be embedded in Ak as A-summand. Denote by fi : Xi → Aki ,
gi : Aki → Ak the canonical injections and denote by f ′i : Aki → Xi, g′i : Ak→ Aki the canonical projections. Since
P is (A,R)-strongly faithful there exists an (A,R)-monomorphism l : A→ Pt for some t > 0. Hence, there exists
π ∈ HomR(V t ,A) such that π ◦ l = idA. Then, the composition (⊕k

j=1l) ◦ gi ◦ fi ∈ HomA(Xi,Ptk) is an (A,R)-
monomorphism. In fact, f ′i ◦g′i ◦ (⊕k

j=1π) ∈ HomR(V tk,Xi) satisfies

f ′i ◦g′i ◦ (⊕k
j=1π)◦ (⊕k

j=1l)◦gi ◦ fi = f ′i ◦g′i ◦⊕k
j=1 idA ◦gi ◦ fi = f ′i ◦g′i ◦ idAk ◦gi ◦ fi = f ′i ◦ idAki ◦ fi = idXi .

As Xi is (A,R)-injective, then the map (⊕k
j=1l)◦gi ◦ fi splits over A. Therefore, Xi is an A-summand of Ptk,

hence Xi ∈ addP.
If Xi = 0 for some i, then domdim(A,R) X =+∞ = P−domdim(A,R) X . This shows that if domdim(A,R) X ≥ n

then P−domdim(A,R) X ≥ n. Hence, domdim(A,R) X ≤ P−domdim(A,R) X .
Now since each module in addP is projective (A,R)-injective, it follows that

P−domdim(A,R) X ≤ domdim(A,R) X .

This concludes the proof.

Analogously, we have the right version,

Proposition 2.3.7. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra with

domdim(A,R) AA ≥ 1 with given projective (A,R)-injective-strongly faithful right A-module V . Then,

V −domdim(A,R) X = domdim(A,R) X , X ∈mod-A. (2.3.0.9)

Proof. It is analogous to Proposition 2.3.6.
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2.4 Relative Morita-Tachikawa correspondence and relative Mueller’s
characterization

2.4.1 Modules with relative dominant dimension at least two

Given X ∈ A-mod, V ∈ mod-A, fix C = EndA(V ) and denote by αX the map X → HomC(V,V ⊗A X) given by
αX (x)(v) = v⊗ x, v ∈V , x ∈ X . This is an (A,EndA(X)op)-bimodule homomorphism. In fact,

αX (a · x)(v) = v⊗ax = va⊗ x = αX (x)(va) = (a ·αX (x))(v), a ∈ A, v ∈V, x ∈ X

αX (x ·b)(v) = αX (b(x))(v) = v⊗b(x) = v⊗ (x ·b) = (v⊗ x) ·b = (αX (x) ·b)(v), b ∈ EndA(X)op, v ∈V, x ∈ X .

Lemma 2.4.1. Let A be a projective Noetherian R-algebra with domdim(A,R) AA ≥ 1 with given (A,R)-strongly

faithful projective (A,R)-injective right A-module V . Let F be the Schur functor

HomA(Hom(V,A),−) : A-mod→C-mod.

For any X ∈ A-mod, there exists an isomorphism βX ∈HomA(HomC(V,V ⊗A X),HomC(FA,FX)) making the

following diagram commutative:

X HomC(V,V ⊗A X)

X HomC(FA,FX)

αX

βX

ηX

Proof. Denote by wV the map V → HomA(HomA(V,A),A), given by w(v)( f ) = f (v). Since V is a projective
A-module, this map is an (EndA(V ),A)-bimodule isomorphism.

Fix ψX : HomA(HomA(V,A),A)⊗A X → HomA(HomA(V,A),X) according to Lemma 1.4.11. Then, define
βX = HomC(FA,ψX ◦wV ⊗ idX )◦HomC(w−1

V ,V ⊗A X). Let x ∈ X . Then,

HomC(FA,ψX ◦wV ⊗ idX )◦HomC(w−1
V ,V ⊗A X)(αX (x)) = HomC(FA,ψX ◦wV ⊗ idX )(αX (x)◦w−1

V )

= ψX ◦wV ⊗ idX ◦αX (x)◦w−1
V . (2.4.1.1)

For v ∈V, f ∈ HomA(V,A),

ψX ◦wV ⊗ idX ◦αX (x)(v)( f ) = ψX ◦wV ⊗ idX (v⊗ x)( f ) = ψX (wV (v)⊗ x)( f ) = wV (v)( f )x = f (v)x. (2.4.1.2)

On the other hand, ηX (x) ◦wV (v)( f ) = wV (v)( f )x = f (v)x. Therefore, composing with w−1
V on both sides we

conclude

HomC(FA,ψX ◦wV ⊗ idX )◦HomC(w−1
V ,V ⊗A X)(αX (x)) = ηX (x), x ∈ X .

In particular, since η is well behaved with respect to direct summands α is well behaved with respect to
direct summands. The following lemma although technical is crucial for our purposes. This can be seen as the
relative version of Proposition 4.8 of [Tac73].

Lemma 2.4.2. Let P be a projective (A,R)-injective left A-module and let V be a projective right A-module

(A,R)-strongly faithful. Fix C = EndA(V ), B = EndA(P)op. Then, the following assertions hold.

(a) The canonical map αP : P→HomC(V,V⊗A P), given by αP(p)(v)= v⊗ p, v∈V , p∈P, is an isomorphism

of (A,B)-bimodules.
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(b) The canonical map ψ : B→ EndC(V ⊗A P)op, given by ψ( f )(v⊗ p) = v⊗ f (p), f ∈ B,v ∈V, p ∈ P, is an

isomorphism as left B-modules and as R-algebras.

(c) V ⊗A P is (C,R)-injective as left C-module.

Proof. We will start by showing that α := αP is an (A,R)-monomorphism. Since P is projective over A there
are maps kP ∈ HomA(P,As), πP ∈ HomA(As,P) satisfying πP ◦ kP = idP. Since V is (A,R)-strongly faithful
there exists i ∈ HomA(A,V t) and ε ∈ HomR(V t ,A) such that ε ◦ i = idA. In addition, consider the A-maps ν j ∈
HomA(V,V t), λ j ∈ HomA(V t ,V ) satisfying λ j ◦ν j = idV , the multiplication map µ ∈ HomA(V ⊗A A,V ) and the
canonical maps γ j ∈ HomA(V s,(V t)s), γ j(v1, . . . ,vs) = (ν j(v1), . . . ,ν j(vs)) for 1≤ j ≤ t.

Define τ the R-map HomC(V,V ⊗A P)→ P given by

τ(h) = ∑
j

πP ◦ ε
s ◦ γ j ◦µ

s ◦ idV ⊗AkP ◦h◦λ j ◦ i(1A), h ∈ HomC(V,V ⊗A P).

Hence,

τ ◦α(p) = ∑
j

πP ◦ ε
s ◦ γ j ◦µ

s ◦ idV ⊗AkP ◦α(p)(λ j ◦ i(1A)) = ∑
j

πP ◦ ε
s ◦ γ j ◦µ

s ◦ idV ⊗AkP(λ j ◦ i(1A)⊗ p)

= ∑
j

πP ◦ ε
s ◦ γ j ◦µ

s(λ j ◦ i(1A)⊗ kP(p)) = ∑
j

πP ◦ ε
s ◦ γ j ◦µ

s(λ j ◦ i(1A)⊗ (kP(p)1, . . . ,kP(p)s))

= ∑
j

πP ◦ ε
s ◦ γ j(λ j(i(1A)kP(p)1), . . . ,λ j(i(1A)kP(p)s))

= ∑
j

πP ◦ ε
s ◦ γ j(λ j ◦ i(kP(p)1), . . . ,λ j ◦ i(kP(p)s))

= ∑
j

πP ◦ ε
s ◦ (ν j ◦λ j ◦ i(kP(p)1), . . . ,ν j ◦λ j ◦ i(kP(p)s)) = πP ◦ ε

s(i(kP(p)1), . . . , i(kP(p)s))

= πP(kP(p)1, . . . ,kP(p)s) = πP(kP(p)) = p, p ∈ P. (2.4.1.3)

Thus, τ ◦α = idP and α is an (A,R)-monomorphism.
We claim that α is an essential embedding, that is, imα ∩Aβ 6= 0 if 0 6= β ∈ HomC(V,V ⊗A P).
Denote by πV : Al → V , kV : V → Al , π j ∈ HomA(Al ,A),k j ∈ HomA(A,Al) the canonical surjections and

injections induced by the direct sum Al , 1≤ j ≤ t. For each j, define eV, j = πV ◦ k j(1A) ∈V and for each y ∈V ,
define φy, j ∈ EndA(V ) =C given by φy, j(x) = y ·π j ◦ kV (x), x ∈V . Then,

∑
j

φeV, j , j · v = ∑
j

φeV, j , j(v) = ∑
j

eV, j ·π j ◦ kV (v) = ∑
j

πV ◦ k j(1A) ·π j ◦ kV (v) = ∑
j

πV ◦ k j(1Aπ j ◦ kV (v))

= πV ◦ kV (v) = v. (2.4.1.4)

Let 0 6= β ∈ HomC(V,V ⊗A P). Hence, there exists v ∈V such that β (v) 6= 0. Moreover, for y ∈V ,

∑
j

π j ◦ kV (v) ·β (y) = ∑
j

β (yπ j ◦ kV (v)) = ∑
j

β (φy, j(v)) = ∑
j

β (φy, j · v) = ∑
j

φy, jβ (v). (2.4.1.5)

Assume that β (v) = ∑i xi⊗ pi ∈V ⊗A P. Then,

∑
j

φy, jβ (v) = ∑
j,i

φy, jxi⊗ pi = ∑
i, j
(φy, j · xi)⊗ pi = ∑

i, j
(y ·π j ◦ kV (xi))⊗ pi = ∑

i, j
y⊗π j ◦ kV (xi)pi (2.4.1.6)

= α(∑
i, j

π j ◦ kV (xi)pi)(y) =⇒ α(∑
i, j

π j ◦ kV (xi)pi) = (∑
j

π j ◦ kV (v)) ·β ∈ imα ∩Aβ . (2.4.1.7)
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Since

∑
j

π j ◦ kV (v)) ·β (eV, j) = ∑
j

β (eV, jπ j ◦ kV (v))) = ∑
j

β (φeV, j , jv) = β (∑
j

φeV, j , jv) = β (v) 6= 0,

it follows that α is an essential embedding.
Since P is (A,R)-injective and α is (A,R)-mono, there exists h ∈ HomA(HomC(V,V ⊗A P),P) such that

h◦α = idP. Assume that there exists 0 6= β ∈ im(idHomC(V,V⊗AP)−α ◦ h). As α is an essential embedding, 0 6=
imα∩Aβ ⊂imα∩im(idHomC(V,V⊗AP)−α ◦h) = 0 which lead us to a contradiction. Thus, α ◦h= idHomC(V,V⊗AP).
So, α is an isomorphism.

The map ψ given in (b) is an B-homomorphism since

ψ(g◦ f )(v⊗ p) = ψ( f ◦g)(v⊗ p) = v⊗ f ◦g(p) = v⊗ f (p ·g) = (idV ⊗ f )(v⊗ p ·g) (2.4.1.8)

= (g · (idV ⊗ f ))(v⊗ p), v⊗ p ∈V ⊗A P, f ,g ∈ B. (2.4.1.9)

The map ψ is a homomorphism of R-algebras since

ψ(g · f ) = idV ⊗A( f ◦g) = idV ⊗A f ◦ idV ⊗Ag = idV ⊗Ag · idV ⊗A f = ψ(g) ·ψ( f ), f ,g ∈ B (2.4.1.10)

ψ(idP) = idV⊗AP . (2.4.1.11)

We claim that ψ is bijective. Towards this goal, our procedure will be as follows. We will construct a commutative
diagram

B Ps

HomC(V ⊗A P,V ⊗A P) HomC(V,V ⊗A Ps)

kB

ψ αPs

H

where H will be a split mono and kB is the natural injection.
Combining Lemma 1.4.26 with Lemma 2.4.1, we obtain by (a) that αPs is an isomorphism.
Since As ' K⊕P as A-modules we can see that, as right B-modules,

Ps ' HomA(As,P)' HomA(P,P)⊕HomA(K,P) = B⊕HomA(K,P). (2.4.1.12)

We denote by kB, kX the canonical injections of this direct sum (2.4.1.12) and πB and πX the canonical surjections,
where X = HomA(K,P). So, explicitly, kB(b) = b◦πP(1A, . . . ,1A). We will by kK and πK the canonical injection
K→ As and the canonical surjection As→ K, respectively. In order to define H, we first consider the following
isomorphism τ given by the following commutative diagram:

HomC(V s,V ⊗A P) HomC(V,V ⊗A Ps)

HomC(V,V ⊗A P)s HomC(V,(V ⊗A P)s)

τ

'

'

HomC(V ,σ)

where σ(x1⊗ p1, . . . ,xs⊗ ps) = x1⊗ (p1,0, . . . ,0)+ . . .+ xs⊗ (0, . . . ,0, ps).
Consider H = τ ◦HomC(V ⊗A πP ◦θ ◦ (µ−1)s,V ⊗A P), where θ is the isomorphism (V ⊗A A)s→ V ⊗A As.

Then,

H ◦ψ(b)(v) = τ(ψ(b)◦V ⊗A πP ◦θ ◦ (µ−1)s)(v)

= σ(ψ(b)◦V ⊗A πP ◦θ ◦ (µ−1)s(v,0, . . . ,0), . . . ,ψ(b)◦V ⊗A πP ◦θ ◦ (µ−1)s(0, . . . ,0,v))

204



Chapter 2. Relative dominant dimension

= σ(ψ(b)◦V ⊗A πPθ(v⊗1A,0, . . . ,0), . . . ,ψ(b)◦V ⊗A πPθ(0, . . . ,0,v⊗A 1A)) (2.4.1.13)

= σ(ψ(b)◦V ⊗A πP(v⊗ (1A,0, . . . ,0)), . . . ,ψ(b)◦V ⊗A πP(v⊗ (0, . . . ,0,1A))) (2.4.1.14)

= σ(v⊗bπP(1A, . . . ,0), . . . ,v⊗bπP(0, . . . ,1A)) = v⊗bπP(1A, . . . ,1A) (2.4.1.15)

αPs ◦ kB(b)(v) = αPs(b◦πP(1A, . . . ,1A))(v) = v⊗bπP(1A, . . . ,1A), v ∈V,b ∈ B. (2.4.1.16)

Hence, H ◦ψ is injective. In particular, ψ is injective. Since V ⊗A πP ◦ θ ◦ (µ−1)s ∈ HomC(V s,V ⊗A P) is
the surjection that gives V ⊗A P as C-summand of V s the map HomC(V ⊗A πP ◦ θ ◦ (µ−1)s,V ⊗A P) is split
monomorphism. So, H is a split monomorphism. Thus, there exists a map H ′ such that H ′ ◦H = id. In
particular, ψ ◦πB = H ′ ◦αPs ◦kB ◦πB = H ′ ◦αPs is surjective if H ′ ◦αPs ◦kX ◦πX = 0. So, it remains to show that
H ′ ◦αPs ◦ kX ◦πX = 0.

Observe that H ′ = HomC(µ
s ◦ θ−1 ◦V ⊗A kP,V ⊗A P) ◦ τ−1 and in the following πA

j ∈ HomA(As,A),
kA

j ∈ HomA(A,As) will denote the surjections and injections of the direct sum As. We remark that the inverse
of τ is given by the mapping

g 7→

(
(v1, . . . ,vs) 7→

s

∑
i=1

(σ−1 ◦g(vi))i

)
.

Thus,

H ′ ◦αPs ◦ kX ◦πX (p1, . . . , ps)(v⊗ p) = τ
−1(αPs ◦ kX ◦πX (p1, . . . , ps))(µ

s ◦θ
−1 ◦V ⊗A kP(v⊗ p))

= τ
−1(αPs ◦ kX ◦πX (p1, . . . , ps))(vπ

A
1 (kP(p)), . . . ,vπ

A
s (kP(p)))

=
s

∑
i=1

(
σ
−1 ◦αPs ◦ kX ◦πX (p1, . . . , ps)(vπ

A
i ◦ kP(p))

)
i

=
s

∑
i=1

(
σ
−1(vπ

A
i ◦ kP(p)⊗ kX ◦πX (p1, . . . , ps))

)
i

=
s

∑
i=1

vπ
A
i ◦ kP(p)⊗ (kX ◦πX (p1, . . . , ps))i

=
s

∑
i=1

vπ
A
i ◦ kP(p)⊗

s

∑
j=1

π
A
j ◦ kK ◦πK ◦ kA

i (1A)p j

= v⊗
s

∑
i, j=1

π
A
j ◦ kK ◦πK ◦ kA

i ◦π
A
i (kP(p))p j

= v⊗
s

∑
j=1

piAj ◦ kK ◦πK ◦ kP(p)p j = 0, pi, p ∈ P, v ∈V,1≤ i≤ s.

The last equality follows since πK ◦ kP = 0. So, (b) follows.
Consider the canonical C-monomorphism εV⊗AP : V ⊗A P→ HomR(C,V ⊗A P). The following diagram is

commutative

HomC(V,V ⊗A P) HomC(V,HomR(C,V ⊗A P))

P HomR(V,V ⊗A P)

HomC(V ,ε)

fαP

δ

where δ : P→ HomR(V,V ⊗A P) is the morphism given by δ (p)(v) = v⊗ p, and f is a canonical map given by
Tensor-Hom adjunction. We want to show that the map δ is an (A,R)-monomorphism. For that purpose, we need
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further notation. Define τ ′ the R-map HomR(V,V ⊗A P)→ P given by

τ(h) = ∑
j

πP ◦ ε
s ◦ γ j ◦µ

s ◦ idV ⊗AkP ◦h◦λ j ◦ i(1A), h ∈ HomR(V,V ⊗A P).

Using the same computations as in (2.4.1.3), it follows that τ ′ ◦δ = idP. Since P is (A,R)-injective, it follows that
P ∈ addA HomR(V,V ⊗A P). Therefore, V ⊗A P ∈ addC V ⊗A HomR(V,V ⊗A P). By Lemma 1.4.14 and Lemma
1.1.63,

V ⊗A HomR(V,V ⊗A P)'V ⊗A HomC(V,HomR(C,V ⊗A P))' HomR(C,V ⊗A P). (2.4.1.17)

Thus, V ⊗A P ∈ addC HomR(C,V ⊗A P) and V ⊗A P is (C,R)-injective.

Lemma 2.4.3. Let P be a projective left A-module (A,R)-strongly faithful and let V be a projective right A-

module and (A,R)-injective. Fix C = EndA(V ), B = EndA(P)op. Then, the following assertions hold.

(a) The canonical map αV : V→HomB(P,V⊗A P), given by αV (v)(p)= v⊗ p, v∈V , p∈P, is an isomorphism

of (C,A)-bimodules.

(b) The canonical map ψC : C→ EndB(V ⊗A P), given by ψC( f )(v⊗ p) = f (v)⊗ p, f ∈ B,v ∈V, p ∈ P, is an

isomorphism as left C-modules and as R-algebras.

(c) V ⊗A P is (B,R)-injective as right B-module.

Proof. It is the dual version of the Lemma 2.4.2.

2.4.1.1 Relative QF3 algebras

At this point, it is not yet clear that the existence of a projective relative injective strongly faithful left module
implies the existence of a projective relative injective strongly faithful right module. In particular, we cannot
yet address the problem of left-right symmetry of relative dominant dimension. For this, we will need change
of rings techniques. We are interested in the algebras which have positive relative dominant dimension which
motivates the following definition.

Definition 2.4.4. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Let
P∈ A-mod and V ∈mod-A. We call a triple (A,P,V ) a relative QF3 R-algebra, or just RQF3 algebra provided
P is a projective (A,R)-injective-strongly faithful left A-module and V is a projective (A,R)-injective-strongly
faithful right A-module.

Given X ∈A-mod, V ∈mod-A, denote by ΦX the map HomA(V,DX)⊗CV→DX defined by ΦX (g⊗ v) = g(v),

v ∈ V , g ∈ HomA(V,DX). This map is an (EndA(X)op,A)-bimodule homomorphism. Let b ∈ EndA(X)op,
g⊗ v ∈ HomA(V,DX)⊗C V and a ∈ A. Then,

ΦX (b · (g⊗ v)) = ΦX (b ·g)⊗ v) = (b ·g)(v) = bg(v) = bΦX (g⊗ v), (2.4.1.18)

ΦX ((g⊗ v) ·a) = ΦX (g⊗ v ·a) = g(v ·a) = g(v)a = ΦX (g⊗ v) ·a. (2.4.1.19)

Thus, ΦX is an (EndA(X)op,A)-bimodule homomorphism.
Dually, we can define the map δY : P ⊗B HomA(P,DY ) → DY , given by δY (p ⊗ h) = h(p), p ∈ P,

h ∈ HomA(P,DY ) for any P ∈ A-mod and Y ∈mod-A.
In the same manner, δY is an (A,EndA(Y ))-bimodule homomorphism.
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Lemma 2.4.5. Let (A,P,V ) be a relative QF3 R-algebra. Fix C = EndA(V ), B = EndA(P)op. Then, the following

assertions hold.

(a) addA DV = addA P. Furthermore, B is Morita equivalent to C.

(b) V ⊗A P satisfies a double centralizer property

EndB(V ⊗A P)'C, EndC(V ⊗A P)op ' B

and V ⊗A P is a left (C,R)-injective-cogenerator and a right (B,R)-injective-cogenerator.

(c) P ∈mod-B is a B-generator (B,R)-cogenerator and projective over R;

(d) V ∈C-mod is a C-generator (C,R)-cogenerator and projective over R.

(e) The canonical map ΦX : HomA(V,DX)⊗C V →DX, given by ΦX (g⊗v) = g(v), v∈V , g∈HomA(V,DX),

is an A-isomorphism for any X ∈ addA P.

(f) The canonical map δY : P⊗B HomA(P,DY )→ DY , given by δY (p⊗ h) = h(p), p ∈ P, h ∈ HomA(P,DY ),

is an A-isomorphism for any Y ∈ addA V .

Proof. By Lemma 1.2.56, DP is a projective (A,R)-injective right A-module and DV is projective (A,R)-injective
left A-module. According to Lemma 2.2.4, DP∈ addV and DV ∈ addP. Hence, P∈ addDV and C'EndA(DV )op

is Morita equivalent to B = EndA(P)op. Thus, (a) follows.
Note that D(V ⊗A P)' HomA(P,DV ). By (a), P ∈ addA DV . Hence,

BB = HomA(P,P) ∈ addB HomA(P,DV ) = addB D(V ⊗A P). (2.4.1.20)

Hence, DB ∈ addB V ⊗A P. So, V ⊗A P is a right (B,R)-cogenerator. In the same fashion, by (a) V ∈ addA DP.
Consequently,

CC = HomA(V,V ) ∈ addC HomA(V,DP) = addC D(V ⊗A P). (2.4.1.21)

Then, V⊗A P is a left (C,R)-cogenerator. Now, due to Proposition 1.4.6, there exists a double centralizer property
on V ⊗A P between C and B. By Lemma 2.4.3 (c) and Lemma 2.4.2 (c), (b) follows.

Since P ∈ A-proj there exists s > 0 such that As ' P⊕K as left A-modules. Thus, as right A-modules,

As ' HomA(A,AA)
s ' HomA(As,AA)' HomA(P⊕K,AA)' HomA(P,AA)⊕HomA(K,AA). (2.4.1.22)

Therefore, as right B-modules

Ps ' As⊗A P' HomA(P,AA)⊕HomA(K,AA)⊗A P' HomA(P,AA)⊗A P⊕HomA(K,AA)⊗A P (2.4.1.23)

' HomA(P,P)⊕HomA(K,AA)⊗A P = B⊕HomA(K,AA)⊗A P. (2.4.1.24)

Hence, P is a right B-generator. In the same fashion, V is a left C-generator.
Since V is a projective right A-module, there exists t > 0 such that At ' V ⊕K′ as right A-modules. So, as

right B-modules,

Pt ' At ⊗A P' (V ⊕K′)⊗A P'V ⊗A P⊕K′⊗A P. (2.4.1.25)

Hence, V ⊗A P ∈ addB P. In particular, by (b) P is also a right (B,R)-cogenerator. In the same way, V is a left
(C,R)-cogenerator. This completes the proof for (c) and (d).
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We claim that ΦX and δX are compatible with direct sums. Let X = X1⊕X2 ∈ A-mod. Denote by ki the
canonical injections and πi the canonical projections i = 1,2. This follows from the following commutative
diagram

HomA(V,D(X1⊕X2))⊗C V D(X1⊕X2)

HomA(V,DX1)⊗C V ⊕HomA(V,DX2)⊗C V DX1⊕DX2

(Dk1◦−,Dk2◦−)⊗C idV

ΦX1⊕X2

(Dk1,Dk2)

ΦX1⊕ΦX2

.

In fact,

ΦX1 ⊕ΦX2 ◦ (Dk1 ◦−,Dk2 ◦−)⊗C idV (g⊗ v) = ΦX1 ⊕ΦX2(Dk1 ◦g⊗ v,Dk2 ◦g⊗ v) (2.4.1.26)

= (Dk1 ◦g(v),Dk2 ◦g(v)) = (g(v)◦ k1,g(v)◦ k2) (2.4.1.27)

(Dk1,Dk2)◦ΦX1⊕X2(g⊗ v) = (Dk1,Dk2)(g(v)) = (Dk1(g(v)),Dk2(g(v))) (2.4.1.28)

= ((g(v)◦ k1,g(v)◦ k2),g⊗ v ∈ HomA(V,D(X1⊕X2))⊗C V.

Since both columns are isomorphisms it follows our claim. The reasoning for δX is analogous.
Now since ΦDV is the isomorphism HomA(V,DDV )⊗C V ' HomA(V,V )⊗C V ' C⊗C V ' V ' DDV it

follows that ΦX is an isomorphism for any X ∈ addDV = addP.

We should remark that the statement of Lemma 2.4.5 is a generalization of (5.1) of [Tac73].

Remark 2.4.6. The canonical map Φ : HomA(V,Y )⊗C V → Y is an A-isomorphism for any Y ∈ AddA(V ). This
follows from the fact that the tensor product commutes with arbitrary coproducts and since V is a finitely gen-
erated projective A-module the Hom functor HomA(V,−) commutes with arbitrary coproducts (see [Zim14,
Lemma 4.1.9]). Hence, we can apply the same argument as in Lemma 2.4.5. The dual statement also holds for
the canonical maps δ . 4

The importance of these canonical maps ΦX and αX stems from the following theorem.

Proposition 2.4.7. Let (A,P,V ) be a relative QF3 R-algebra. Fix C = EndA(V ), B = EndA(P)op.

Let X ∈ A-mod∩R-proj and let Y ∈mod-A∩R-proj, then:

(a) domdim(A,R) X ≥ 1 if and only if the canonical map ΦX : HomA(V,DX)⊗C V → DX is an epimorphism.

(b) If domdim(A,R) X ≥ 1, then αX : X → HomC(V,V ⊗A X) is an (A,R)-monomorphism. If, in addition,

HomA(V,DX)⊗C V ∈ R-proj, then domdim(A,R) X ≥ 1 if and only if αX : X → HomC(V,V ⊗A X) is an

(A,R)-monomorphism.

(c) domdim(A,R)Y ≥ 1 if and only if the canonical map δY : P⊗B HomA(P,DY )→ DY is an epimorphism.

(d) If domdim(A,R)Y ≥ 1, then αY : Y → HomB(P,Y ⊗A P) is a right (A,R)-monomorphism. If, in addition,

P⊗B HomA(P,DY ) ∈ R-proj, then domdim(A,R)Y ≥ 1 if and only if αY : Y → HomB(P,Y ⊗A P) is a right

(A,R)-monomorphism.

(e) The following assertions are equivalent:

(i) domdim(A,R) X ≥ 2;

(ii) The canonical map ΦX : HomA(V,DX)⊗C V → DX is a right A-isomorphism;

(iii) HomA(V,DX) ⊗C V ∈ R-proj and the canonical map αX : X → HomC(V,V ⊗A X) is a left

A-isomorphism.
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(f) The following assertions are equivalent:

(i) domdim(A,R)Y ≥ 2;

(ii) The canonical map δY : P⊗B HomA(P,DY )→ DY is a left A-isomorphism;

(iii) HomA(V,DX) ⊗C V ∈ R-proj and the canonical map αY : Y → HomB(P,Y ⊗A P) is a right

A-isomorphism.

Proof. (a). Assume that domdim(A,R) X ≥ 1. Then, there exists an (A,R)-monomorphism f : X → X0 with
X0 ∈ addDV = addP. In particular, D f is a surjective map. Applying HomA(V,D−)⊗C V yields the following
diagram with exact rows

HomA(V,DX0)⊗C V HomA(V,DX)⊗C V 0

DX0 DX 0

HomA(V ,D f )⊗C idV

ΦX0 ΦX

D f

Hence, ΦX is surjective because D f ◦ΦX0 is. Conversely, assume that ΦX is an epimorphism.
Observe that HomC(V,M) is a projective (A,R)-injective left A-module for any (C,R)-injective left mod-

ule M which is projective over R. In fact, HomC(V,DC) ' HomR(C⊗C V,R) ' DV is a projective (A,R)-
injective left A-module. Moreover, every (A,R)-injective projective over R belongs to addC DC, so HomC(V,M)∈
A-proj∩addDA.

Consider a projective presentation over C P0
g−→ HomA(V,DX)→ 0. The functor −⊗C V is right exact, so

g⊗C idV is surjective. So, ΦX ◦g⊗C idV : P0⊗CV→DX is surjective, by assumption. As X ∈R-proj, DX ∈R-proj
and consequently, ΦX ◦g⊗C idV is a right (A,R)-epimorphism. So, applying D yields an (A,R)-monomorphism
X → D(P0⊗C V )' HomC(V,DP0). Hence, domdim(A,R) X ≥ 1.

(b). We can relate the maps ΦX and αX using the following commutative diagram

HomC(V,V ⊗A X) HomC(V,V ⊗A DDX) HomC(V,DHomA(V,DX))

D(DDHomA(V,DX)⊗C V )

X DDX D(HomA(V,DX)⊗C V )

HomC(V ,V⊗AwX )

'

HomC(V ,ιV ,DX )

'
κV ,DHomA(V ,DX)'

D(wHomA(V , DX)⊗C idV )'

αX

wX
'

DΦX

(2.4.1.29)

Here wX denotes the natural transformation from the identity to the double dual functor. As X ∈ R-proj and
HomA(V,DX) ∈ R-proj wX and wHomA(V,DX) are isomorphisms. The isomorphism ιV,DX and κV ,HomA(V ,DX) are
according to Proposition 1.1.65.

Diagram 2.4.1.29 is commutative because

DΦX ◦wX (x)( f ⊗ v) = wX (x)◦ΦX ( f ⊗ v) = wX (x)( f (v)) (2.4.1.30)

D(wHomA(V,DX)⊗C idV )◦κV,DHomA(V,DX) ◦HomC(V, ιV,DX )◦HomC(V,V ⊗A wX )◦αX (x)( f ⊗ v) = (2.4.1.31)

= κV,DHomA(V,DX)(ιV,DX ◦V ⊗A wX ◦αX (x))◦wHomA(V,DX)⊗C idV ( f ⊗ v) = (2.4.1.32)

= wHomA(V,DX)( f )(ιV,DX ◦V ⊗A wX ◦αX (x)(v)) = wHomA(V,DX)( f )(ιV,DX (v⊗wX (x))) = (2.4.1.33)

= ιV,DX (v⊗wX (x))( f ) = wX (x)( f (v)), x ∈ X , f ⊗ v ∈ HomA(V,DX)⊗C V. (2.4.1.34)
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Assume that domdim(A,R) X ≥ 1. Then, by (a), ΦX is an (A,R)-epimorphism. Thus, DΦX is an (A,R)-
monomorphism. By diagram (2.4.1.29), αX is an (A,R)-monomorphism. Assume now that αX is an (A,R)-
monomorphism and HomA(V,DX)⊗CV ∈R-proj. Then, DαX is an (A,R)-epimorphism. Applying D to (2.4.1.29),
we deduce that DDΦX is surjective. Because of HomA(V,DX)⊗C V ∈ R-proj wHomA(V,DX)⊗CV is an isomor-
phism. Thus, wDX ◦ΦX = DDΦX ◦wHomA(V,DX)⊗CV is surjective. Since DX ∈ R-proj, ΦX is surjective. By (a),
domdim(A,R) X ≥ 1.

The assertions (c) and (d) are analogous to (a) and (b), respectively.
(e). Assume that (i) holds. By definition, there exists an (A,R)-exact sequence 0→ X

ε0−→ P0
ε1−→ P1 with

P0,P1 ∈ addP. Applying D yields the exact sequence

DP1
Dε1−−→ DP0

Dε0−−→ DX → 0. (2.4.1.35)

The functor HomA(V,−)⊗C V is right exact, hence applying HomA(V,−)⊗C V to (2.4.1.35) yields the following
commutative diagram with exact rows

DP1 DP0 DX 0

HomA(V,DP1)⊗C V HomA(V,DP0)⊗C V HomA(V,DX)⊗C V 0

Dε1 Dε0

HomA(V ,Dε1)⊗CV
ΦP1

HomA(V ,Dε0)⊗CV
ΦP0 ΦX .

In fact,

ΦX ◦HomA(V,Dε0)⊗C V ( f ⊗ v) = ΦX (Dε0 ◦ f ⊗ v) = Dε0 ◦ f (v) (2.4.1.36)

Dε0 ◦ΦP0( f ⊗ v) = Dε0( f (v)), f ⊗ v ∈ HomA(V,DP0)⊗C V. (2.4.1.37)

By Lemma 2.4.5, ΦP0 ,ΦP1 are isomorphisms. By diagram chasing, we deduce that ΦX is an isomorphism. So
(ii) holds.

Assume that (ii) holds. ΦX induces the isomorphism as R-modules HomA(V,DX)⊗C V ' DX ∈ R-proj. In
particular, DΦX is an isomorphism. Using diagram (2.4.1.29), we deduce that αX is an isomorphism. Thus, (iii)
follows. Now consider a projective C-resolution for HomA(V,DX), P1 → P0 → HomA(V,DX)→ 0. Applying
−⊗C V we obtain the exact sequence

P1⊗C V → P0⊗C V → HomA(V,DX)⊗C V → 0. (2.4.1.38)

Since ΦX and X ∈ R-proj is an isomorphism this yields an (A,R)-exact sequence

P1⊗C V → P0⊗C V → DX → 0. (2.4.1.39)

Finally, applying D yields an (A,R)-exact sequence

0→ X → D(P0⊗C V )→ D(P1⊗C V ). (2.4.1.40)

As we have seen D(Pi⊗C V ) ∈ A-proj∩addDA, i = 1,2, therefore domdim(A,R) X ≥ 2. So, (i) holds.
Assume that (iii) holds. By diagram (2.4.1.29), DΦX is an isomorphism. Since HomA(V,DX)⊗C V ∈ R-proj

wHomA(V,DX)⊗CV is an isomorphism. So, wDX ◦ΦX = DDΦX ◦wHomA(V,DX)⊗CV is an isomorphism. Thus, (ii)
follows.

The argument for ( f ) is analogous to (e).

Here we can see that for a commutative ring, a module having relative dominant dimension at least two is
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equivalent to a stronger type of the double centralizer property DV ⊗C V ' DA, which over fields is exactly the
double centralizer property EndC(V )op ' A.

This situation raises the question of which situations can the R-module DV ⊗C V be at least projective over
R. The following lemma answers this question for relative QF3 R-algebras with a left or right relative dominant
dimension greater than or equal to two.

Lemma 2.4.8. Let (A,P,V ) be a relative QF3 R-algebra. Fix C = EndA(V ) and B = EndA(P)op. If

domdim(A,R) AA≥ 2 or domdim(A,R) AA ≥ 2, then DV ⊗C V ∈ R-proj and P⊗B DP ∈ R-proj.

The result is a consequence of the following lemma.

Lemma 2.4.9. Let X be a left B-progenerator and C = EndB(X)op. Consider the equivalence of categories

F = HomB(X ,−) : B-mod→C-mod and G = HomB(HomB(X ,B),−) : mod-B → mod-C. Then, for any

M ∈mod-B, N ∈ B-mod, addR(M⊗B N) = addR(GM⊗C FN).

Proof. By Corollary 1.4.21,

GM⊗C FN ' HomB(HomB(X ,B),M)⊗C HomB(X ,N)'M⊗B HomB(HomB(X ,M),B)⊗C HomB(X ,B)⊗B N

'M⊗B X⊗C HomB(X ,B)⊗B N 'M⊗B X⊗C HomC(X ,C)⊗B N 'M⊗B HomC(X ,X)⊗B N

'M⊗B B⊗B N 'M⊗B N.

Proof of Lemma 2.4.8. By Lemma 2.4.5(b), C ' EndB(D(V ⊗A P)) with D(V ⊗A P) a left B-progenerator. Thus,
F = HomB(D(V ⊗A P),−) and G = HomB(HomB(D(V ⊗A P),B),−). Note that by Lemma 2.4.3(a)

FDP = HomB(D(V ⊗A P),DP)' HomB(P,V ⊗A P)'V, (2.4.1.41)

GP' HomB(HomB(D(V ⊗A P),B),DDP)' HomR(HomB(D(V ⊗A P),B)⊗B DP,R) (2.4.1.42)

' DHomB(D(V ⊗A P),DP)' DHomB(P,V ⊗A P)' DV (2.4.1.43)

The last isomorphism follows from Lemma 2.4.3. Consequently,

addR(P⊗B DP) = addR(GP⊗C FDP) = addR(DV ⊗C V ).

If domdim(A,R) AA≥ 2, then according to Proposition 2.4.7(e),

DV ⊗C V ' HomA(V,DA)⊗C V ' DA ∈ R-proj . (2.4.1.44)

If domdim(A,R) AA ≥ 2, then according to Proposition 2.4.7(f),

P⊗B DP' P⊗B HomA(P,DA)' DA ∈ R-proj .

2.4.2 Relative Morita-Tachikawa correspondence

For finite-dimensional algebras the Morita-Tachikawa states that every finite-dimensional algebra with dominant
dimension greater than or equal to two is the endomorphism algebra of a generator-cogenerator. We will present
in the following the relative version of this statement now for projective Noetherian algebras.
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Theorem 2.4.10 (General case). Let R be a commutative Noetherian ring. There is a bijection:
(B,M) :

B a projective

Noetherian R-algebra,

M a B-generator (B,R)-cogenerator,

M ∈ R-proj,
DM⊗B M ∈ R-proj


/
∼1←→

A :

A a projective Noetherian

R-algebra with

domdim(A,R) AA≥ 2,
domdim(A,R) AA ≥ 2


/
∼2

In this notation, A∼2 A′ if and only if A and A′ are isomorphic, whereas, (B,M)∼1 (B′,M′) if and only if there

is an equivalence of categories F : B-mod→ B′-mod such that M′ = FM.

(B,M) 7→ A = EndB(M)op

(EndA(N),N)←[ A

where N is a projective (A,R)-injective-strongly faithful right A-module.

Proof. We will start by checking that ∼1 is an equivalence relation. The reflexive property is clear using the
identity functor idA-mod. The symmetry property is also clear using the quasi-inverse functor of F . The transitive
property follows using the composition of the equivalence of categories. Let A be a projective Noetherian R-
algebra with right and left relative dominant dimension greater than or equal to two. Hence, by definition, there
exists P ∈ A-mod∩R-proj and V ∈ mod-A∩R-proj such that (A,P,V ) is a RQF3 algebra. Let B = EndA(V ).
Since V is a projective right A-module B is a projective Noetherian R-algebra. Since R is Noetherian, it follows
that B is Noetherian. By Lemma 2.4.5(d), V is a left B-generator (B,R)-cogenerator and projective over R. By
Lemma 2.4.8, DV ⊗B V ∈ R-proj. Furthermore, by Proposition 2.4.7, there holds the double centralizer property
A ' EndB(V )op. If there exists another pair (P′,V ′) such that (A,P′,V ′) is RQF3, then we deduce by Lemma
2.2.4 that addA V = addA V ′. So, (EndA(V ′),V ′)∼1 (B,V ).

Conversely, let (B,M) be a pair such that B is a projective Noetherian R-algebra and M is a B-generator
(B,R)-cogenerator satisfying M,DM⊗B M ∈ R-proj. Define A = EndB(M)op. Since DM⊗R M, it follows that
A = HomB(M,M)'D(DM⊗B M)∈ R-proj. Thus, A is a projective Noetherian R-algebra. As M is a B-generator
Mt ' B⊕K. In particular, there exists a surjective B-homomorphism φ : Mt � B for some t > 0. Let π j ∈
HomB(Mt ,M) and k j ∈ HomB(M,Mt), 1 ≤ j ≤ t, be the canonical surjections and injections, respectively. In
particular, 1B = ∑ j φ ◦ k j(m j) for some m j ∈M, 1 ≤ j ≤ t. For any x ∈M, define hx ∈ HomB(B,M) satisfying
hx(1B) = x. Then, tx ◦φ ◦ k j ∈ HomB(M,M) = A, 1≤ j ≤ t. Then, for any x ∈M,

x = tx(1B) = tx(∑
j

φ ◦ k j(m j)) = ∑
j

tx ◦φ ◦ k j(m j) = ∑
j

m j · tx ◦φ ◦ k j. (2.4.2.1)

This shows that M is finitely generated as a right A-module.
As a result of M being a B-generator, we can write

At ' HomB(M,MA)
t ' HomB(Mt ,MA)' HomB(B⊕K,MA)' HomB(B,MA)⊕HomB(K,MA) (2.4.2.2)

'M⊕HomB(K,MA). (2.4.2.3)

Hence, M is a projective right A-module. On the other hand, as M is a (B,R)-cogenerator, we can write

As ' HomB(MA,M)s ' HomB(MA,Ms)' HomB(MA,DB⊕K′)' HomB(MA,DB)⊕HomB(M,K′) (2.4.2.4)

' HomB(B,DM)⊕HomB(M,K′)' DM⊕HomB(M,K′), (2.4.2.5)
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for some s > 0 and K′ ∈ B-mod. Therefore, DM is a projective left A-module, and consequently, M is (A,R)-
injective as right module. Hence, M is a projective (A,R)-injective right A-module. Consider a left projective
B-presentation for M, P1→ P0→M→ 0. Due to DM⊗B M ∈ R-proj applying DM⊗B− yields the (A,R)-exact
sequence

DM⊗B P1→ DM⊗B P0→ DM⊗B M→ 0. (2.4.2.6)

Now applying D yields the right (A,R)-exact sequence

0→ A→ D(DM⊗B P0)→ D(DM⊗A P1). (2.4.2.7)

Observe that D(DM⊗B Pi)'HomB(Pi,M)∈ addM, i= 1,2. Hence, the (A,R)-monomorphism A→ D(DM⊗B P0)

makes M an (A,R)-strongly faithful module and (2.4.2.7) implies domdim(A,R) AA ≥ 2. Consider now a right pro-
jective B-presentation for DM, Q1→ Q0→ DM→ 0. Applying −⊗B M yields the (A,R)-exact sequence

Q1⊗B M→ Q0⊗B M→ DM⊗B M→ 0. (2.4.2.8)

Applying D we obtain the (A,R)-exact sequence

0→ A→ D(Q0⊗B M)→ D(Q1⊗B M). (2.4.2.9)

Here D(Qi⊗B M) ' HomB(Qi,DM) ∈ addDM. Therefore, (2.4.2.9) yields that domdim(A,R) AA ≥ 2 and DM is
an (A,R)-strongly faithful module.

As generators satisfy the double centralizer property we have that B' EndA(M). If (B,M)'1 (B′,M′), then
by Corollary 1.4.23, A = EndB(M)op ' EndB′(M′)op. This concludes the proof.

We should emphasize the importance of R being a commutative Noetherian ring in the proof of the relative
Morita-Tachikawa correspondence. Furthermore, we remark that using finitely generated modules in Definition
2.1.1 of relative dominant dimension instead of general modules is no mistake. One of the reasons is that the
Hom functors do not preserve in general arbitrary direct sums. Consequently, the techniques employed in relative
Morita-Tachikawa correspondence would not hold in such a general setting.

Moreover, it follows from equation 2.4.2.1 the following result which goes back to [Mor58].

Corollary 2.4.11. Let B be a projective Noetherian R-algebra. Let M be a generator in B-Mod. Then, M is

finitely generated as an EndB(M)op-module.

Therefore, it is not expected that a version of Morita-Tachikawa correspondence can hold in general for
arbitrary commutative non-Noetherian rings. Nonetheless, if such a version happens to exist it should involve at
very least compact modules in order to solve the problems of Hom regarding direct sums.

The surprise in this relative version is that we are only interested in the generators relative cogenerators that
satisfy DM⊗B M ∈ R-proj. Modules are faithful over its endomorphism algebras. The importance of the property
DM⊗B M ∈ R-proj lies on the fact that this is a sufficient condition for a given B-module M to be strongly faithful
over its endomorphism algebra. Later in Proposition 2.5.14, we will see a characterization of this property and
what it means for the endomorphism algebra EndB(M) in terms of base change properties.
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2.4.3 Relative Morita-Tachikawa correspondence in case of Krull dimension one

For regular commutative Noetherian rings with Krull dimension less or equal to one, we can drop the condition
DM⊗B M ∈ R-proj in the relative Morita-Tachikawa correspondence and we can reformulate the relative Morita-
Tachikawa correspondence in the following way.

Theorem 2.4.12. Let R be a commutative regular Noetherian ring with Krull dimension less than or equal to

one. There is a bijection between

(B,M) :
B a projective Noetherian

R-algebra, M ∈ R-proj
M a B-generator (B,R)-cogenerator


/
∼1←→



A :

A a projective

Noetherian R-algebra with

domdim(A,R) AA≥ 1,
domdim(A,R) AA ≥ 1,

all projective

(A,R)-injective-strongly faithful

modules satisfy the

double centralizer property



/
∼2

In this notation, A∼2 A′ if and only if A and A′ are isomorphic, whereas, (B,M)∼1 (B′,M′) if and only if there

is an equivalence of categories F : B-mod→ B′-mod such that M′ = FM.

(B,M) 7→A = EndB(M)op

(EndA(N),N)← [A

where N is a projective (A,R)-injective-strongly faithful right A-module.

Proof. Let A be a projective Noetherian R-algebra with domdim(A,R) AA ≥ 1, domdim(A,R) AA ≥ 1 and all pro-
jective (A,R)-injective-strongly faithful modules satisfy the double centralizer property. Hence, there exists
P ∈ A-mod and V ∈ mod-A such that (A,P,V ) is a relative QF3 R-algebra. Define B = EndA(V ). As V is a
projective right A-module, B is a projective Noetherian R-algebra. By Lemma 2.4.5, V is a left B-generator
(B,R)-cogenerator. By assumption, V satisfies the double centralizer property, thus A' EndB(V )op. By the same
argument as in relative Morita-Tachikawa, correspondence, the mapping← [ is well defined.

Conversely, let (B,M) with M ∈ B-mod∩R-proj a B-generator (B,R)-cogenerator. Define A = EndB(M)op.
Note that A = HomB(M,M)⊂ HomR(M,M) ∈ addR M. Since R has Krull dimension less or equal than one, and
A is an R-submodule of a projective module then A is projective as R-module. Thus, A is a projective Noetherian
R-algebra. As in the proof of Theorem 2.4.10, M is a projective (A,R)-injective finitely generated A-module that
satisfies the double centralizer property. Consider a projective presentation for M, P1→ P0→M→ 0. Applying
DM⊗B− we get the exact sequence

DM⊗B P1→ DM⊗B P0→ DM⊗B M→ 0. (2.4.3.1)

Now, applying D yields the following commutative diagram

0 A D(DM⊗B P0) D(DM⊗B P1)

0 A D(DM⊗B P0) coker 0

.

By Snake Lemma, the map coker→ D(DM⊗B P1) ' HomB(P1,M) is a monomorphism and HomB(P1,M) ∈
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addM. As dimR≤ 1, coker ∈ R-proj. Thus, the monomorphism A→D(DM⊗B P0) is an (A,R)-monomorphism.
It follows that domdim(A,R) AA ≥ 1. Using a projective resolution for DM and applying D ◦−⊗B M we deduce
that domdim(A,R) AA≥ 1. In particular, (A,DM,M) is a RQF3 algebra and there exists an A-exact sequence

0→ A→ X0→ X1, (2.4.3.2)

with X0,X1 ∈ addDM. Now assume that V is another right projective (A,R)-injective-strongly faithful module.
Then, (A,DM,V ) is a RQF3 algebra. By Lemma 2.4.5(a), addA M = addA V . Then, (C :=EndA(V ),V )∼1 (B,M).
Now applying HomC(V,V ⊗A−) to (2.4.3.2) yields a commutative diagram where the map A→ HomC(V,V )

appears. Combining such diagram with Lemma 2.4.3, we deduce that the canonical map A→ HomC(V,V ) is an
isomorphism, therefore (A,V ) has the double centralizer property.

In general, we know very little about the properties of the natural inclusion

EndC(V )→ EndR(V ) (2.4.3.3)

even in the case where V is a left C-generator. In particular, one question that arises is when this map splits over
R. A relation between this property and relative dominant dimension can be found in the next proposition.

Proposition 2.4.13. Let (A,P,V ) be a relative QF3 R-algebra. Fix C = EndA(V ).

(a) If domdim(A,R)≥ 2, then the canonical inclusion

i : EndC(V ) ↪→ EndR(V ) (2.4.3.4)

splits over R.

(b) Assume also that the splitting map τ : EndR(V )→ EndC(V ) satisfies the following two properties:

τ(h◦g) = h◦ τ(g), τ(g◦h) = τ(g)◦h, g ∈ EndR(V ),h ∈ EndC(V ). (2.4.3.5)

Let δ : Mi+1→Mi→Mi−1 be a (C,R)-exact sequence. If HomC(V,Mi+1)→HomC(V,Mi)→HomC(V,Mi−1)

is exact and Mi ∈ R-proj, then the sequence HomC(V,δ ) is (A,R)-exact.

Proof. By Proposition 2.4.7, ΦA : DV ⊗C V →DA is an isomorphism. In particular, DV ⊗C V ∈ R-proj. Consider
the canonical R-epimorphism ε : DV ⊗R V → DV ⊗C V , given by f ⊗ v 7→ f ⊗ v, f ∈ DV,v ∈V . So, ε splits over
R. Using the commutativity of the diagram with bijective columns

0 D(DV ⊗C V ) D(DV ⊗R V )

0 HomC(V,DDV ) HomR(V,DDV )

0 HomC(V,V ) HomR(V,V )

Dε

' '

i

' '

we obtain that the natural inclusion i splits over R.
Assume that the splitting map τ : EndR(V )→ EndC(V ) satisfies the following two properties:

τ(h◦g) = h◦ τ(g), τ(g◦h) = τ(g)◦h, g ∈ EndR(V ),h ∈ EndC(V ). (2.4.3.6)
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Let

Mi+1
fi+1−−→Mi

fi−→Mi−1 (2.4.3.7)

be an (C,R)-exact sequence. Hence, there are maps h j ∈ HomR(M j,M j+1) satisfying fi+1 ◦hi +hi−1 ◦ fi = idMi ,
j = i, i−1.

Since V is C-generator there exists a surjective π(i) : V ti→Mi. As Mi ∈R-proj, there exists k(i) ∈HomR(Mi,V ti)

such that π(i) ◦k(i) = idMi . Let π
(i)
j and k(i)j be the canonical surjections and inclusions of the direct sum V ti . Since

V is a (C,R)-cogenerator, Mi can be embedded in V s through a map l(i). Denote by φz and νz the canonical pro-
jections and injections of the direct sum V s. Define the map Hi : HomC(V,Mi)→ HomC(V,Mi+1), given by
Hi(g) = ∑ j π(i+1)k(i+1)

j τ(π
(i+1)
j k(i+1)hig) for each g ∈ HomC(V,Mi). For any g ∈ HomC(V,Mi),

l(i)(HomC(V, fi+1 ◦Hi +Hi−1 ◦HomC(V, fi)))(g) = l(i)( fi+1 ◦Hi(g)+Hi−1( fi ◦g)) (2.4.3.8)

= ∑
z, j

νz(φzl(i) fi+1π
(i+1)k(i+1)

j τ(π
(i+1)
j k(i+1)hig)+φzl(i)π(i)k(i)j τ(π

(i)
j k(i)hi−1 fig)) (2.4.3.9)

= ∑
z

νz(τ(φzl(i) fi+1π
(i+1)

∑
j

k(i+1)
j π

(i+1)
j hig)+ τ(φzl(i)π(i)

∑
j

k(i)j π
(i)
j k(i)hi−1 fig)) (2.4.3.10)

= ∑
z

νzτ(φzl(i) fi+1hig+φzl(i)hi−1 fig) = ∑
z

νzτ(φzl(i)g) = ∑
z

νzφzl(i)g = l(i)g. (2.4.3.11)

Therefore, HomC(V, fi+1 ◦Hi +Hi−1 ◦HomC(V, fi) = idHomC(V,Mi). Analogously, we can see the same statement
holds for the functor HomC(−,V ).

The existence of such a map may not exist in general, otherwise, every module should satisfy the prop-
erty HomA(V,DM)⊗C V ∈ R-proj. However, such a map with the given properties exists for relative separable
algebras (see for example [Hat63, 2.2]).

2.4.4 Mueller’s characterization of relative dominant dimension

We will now study how to compute the relative dominant dimension of a module in terms of the homology over
the endomorphism algebra of a projective relative injective strongly faithful module.

The following technical lemma will be useful for the relative Mueller theorem.

Lemma 2.4.14. Consider the following commutative diagram with one exact row

X0 X1 X2 X3

Y

α0 α1

ε

α2

t
.

The following assertions hold.

(i) If ε is surjective and ε ◦α0 = 0, then t is mono.

(ii) If t is mono and α2 ◦ t = 0, then ε is surjective.

Proof. (i). Let y ∈ ker t. Since ε is surjective, we can write y = ε(x) for some x ∈ X1. Thus, α1(x) = tε(x) =

t(y) = 0. So, x ∈ imα0 = kerα1. Hence, y = ε(α0(z)) = 0 for some z ∈ X0. Hence, t is injective.
(ii). Let y ∈ Y . Then, t(y) ∈ kerα2 = imα1. So, we can write t(y) = α1(x) = tε(x) for some x ∈ X1. As t is

injective, y = ε(x).
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Let X ∈ A-mod. Denote by Ωi(X ,P•) the i-th syzygy of X with respect to a projective A-resolution P•.
Naturally, Ω0(X ,P•)' X for any P• and Ωi(X ,P•) ∈ R-proj whenever X ∈ R-proj.

Theorem 2.4.15. Let (A,P,V ) be a relative QF3 R-algebra. Fix C = EndA(V ). For any projective R-module left

A-module M, the following assertions are equivalent.

(i) domdim(A,R) M ≥ n≥ 2;

(ii) φM : HomA(V,DM)⊗C V → DM is an isomorphism and TorC
i (HomA(V,DM),V ) = 0, 1≤ i≤ n−2;

(iii) αM : M→ HomC(V,V ⊗A M) is an isomorphism, Ωi(HomA(V,DM),P•)⊗C V ∈ R-proj, 0≤ i≤ n−2 for

every projective C-resolution P• of HomA(V,DM) and ExtiC(V,V ⊗A M) = 0, 1≤ i≤ n−2.

Proof. (i) =⇒ (ii). By Proposition 2.4.7, ΦM is an isomorphism. By definition, there exists an (A,R)-exact
sequence

0→M ε−→ X0
f1−→ X1

f2−→ X2→ ··· → Xn−1, (2.4.4.1)

with projective (A,R)-injective A-modules Xi. The functor HomA(V,−) is exact, and since D preserves (A,R)-
exact sequences, applying HomA(V,D−) yields the exact sequence

HomA(V,DXn−1)
HomA(V ,D fn−1)−−−−−−−−−→ HomA(V,DXn−2)→ ··· → HomA(V,DX0)

HomA(V,Dε)−−−−−−−→ HomA(V,DM)→ 0.
(2.4.4.2)

As HomA(V,DXi) ∈ addHomA(V,V ) = C-proj, we can extend (2.4.4.2) to a projective C-resolution of
HomA(V,DM), P•, where Pi =HomA(V,DXi), 0≤ i≤ n−1. Applying−⊗C V we get the following commutative
diagram so that the top row is exact.

DXn−1 DXn−2 · · · DX0 DM

HomA(V,DXn−1)⊗C V HomA(V,DXn−2)⊗C V · · · HomA(V,DX0)⊗C V HomA(V,DM)⊗C V

D fn−1 Dε

ΦXn−1
HomA(V ,D fn−1)⊗CV

ΦXn−2 ΦX0
HomA(V ,Dε)⊗CV

ΦM .

According to Lemma 2.4.5, the maps ΦM and ΦXi , i = 1, . . . ,n− 1 are isomorphisms. Thus, the bottom row is
exact. Thus,

TorC
i (HomA(V,DM),V ) = kerHomA(V,D fi)⊗C V/imHomA(V,D fi+1)⊗C V = 0, 1≤ i≤ n−2. (2.4.4.3)

(ii) =⇒ (iii). By Proposition 2.4.7, HomA(V,DM)⊗C V ' D(V ⊗A M)⊗C V ∈ R-proj and αM is an isomor-
phism. Let

· · · → P2
p2−→ P1

p1−→ P0
p0−→ D(V ⊗A M)→ 0. (2.4.4.4)

be an arbitrary projective C-resolution of D(V⊗A M). In particular, for every 1≤ i≤ n−2, we have the following
exact sequence

0→Ω
i(HomA(V,DM),P•)

ki−→ Pi−1
pi−1−−→ Pi−2→ ··· → P0→ D(V ⊗A M)→ 0, (2.4.4.5)

where P• is the deleted projective resolution of (2.4.4.4). It follows from TorC
i (HomA(V,DM),V ) = 0, 1 ≤ i ≤

n−2 the existence of the following exact sequence and factorization of pi⊗C V

Pn−1⊗C V
pn−1⊗CV−−−−−→ Pn−2⊗C V → ·· · → P0⊗C V → D(V ⊗A M)⊗C V → 0, (2.4.4.6)
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Pi+1⊗C V Pi⊗C V Pi−1⊗C V Pi−2⊗C V

Ωi(HomA(V,DM),P•)⊗C V

pi+1⊗CV pi⊗CV

εi⊗CV

pi−1⊗CV

ki⊗CV ,

where εi is the map given in the factorization (epi, mono) kiεi = pi. For the case i = 1, we can take
P−1 = D(V ⊗A M). Observe that 0 = pi pi+1 = kiεi pi+1. Hence, εi pi+1 = 0 because ki is a mono. Consequently,
εi⊗C V pi+1⊗C V = 0. By Lemma 2.4.14, ki⊗C V is a monomorphism, and thus

Ω
i(HomA(V,DM),P•)⊗C V ' im(pi⊗C V ) = ker(pi−1⊗C V ) ∈ R-proj (2.4.4.7)

since D(V ⊗A M)⊗C V ∈ R-proj and every Pi ∈ R-proj. By Tensor-Hom adjunction there exists the following
commutative diagram

0 D(D(V ⊗A M)⊗C V ) D(P0⊗C V ) · · · D(Pn−1⊗C V )

0 HomC(V,V ⊗A M) HomC(V,DP0) · · · HomC(V,DPn−1)

' ' ' , (2.4.4.8)

such that every column is an isomorphism. The upper row is just the exact sequence obtained by applying D

to the (A,R)-exact sequence (2.4.4.6), and therefore it is exact. Now, the commutativity of diagram (2.4.4.8)
yields that the bottom row of (2.4.4.8) is exact. Taking into account that 0→ V ⊗A M → DP0 → DP1 → ·· ·
is a (C,R)-injective resolution (D(V ⊗A M) ∈ R-proj, the exactness of the bottom row of (2.4.4.8) means that
Exti(C,R)(V,V ⊗A M) = 0, 1 ≤ i ≤ n− 2. Again, since V ⊗A M ∈ R-proj and V ∈ R-proj the standard (C,R)-
projective resolution of V is a projective C-resolution of V . Therefore,

ExtiC(V,V ⊗A M) = Exti(C,R)(V,V ⊗A M) = 0, 1≤ i≤ n−2.

(iii) =⇒ (i). We shall proceed by induction on k to show that if αM : M→ HomC(V,V ⊗A M) is an isomor-
phism, Ωi(HomA(V,DM),P•)⊗C V ∈ R-proj, 0≤ i≤ k−2 for every projective C-resolution P• of HomA(V,DM)

and ExtiC(V,V ⊗A M) = 0, 1 ≤ i ≤ k− 2 then domdim(A,R) M ≥ k ≥ 2. If k = 2, then the result holds by
Proposition 2.4.7. Assume that the result holds for a given k satisfying n > k > 2. Assume, in addition,
that αM : M → HomC(V,V ⊗A M) is an isomorphism, Ωi(HomA(V,DM),P•)⊗C V ∈ R-proj, 0 ≤ i ≤ k− 1 for
every projective C-resolution P• of HomA(V,DM) and ExtiC(V,V ⊗A M) = 0, 1 ≤ i ≤ k− 1. By induction,
domdim(A,R) M ≥ k. So, there exists a (A,R)-exact sequence

0→M
α0−→ X0

α1−→ X1→ ·· · → Xk−1, (2.4.4.9)

with all Xi ∈ addDV . Applying V ⊗A− yields the (C,R)-exact sequence

0→V ⊗A M→V ⊗A X0→V ⊗A X1→ ··· →V ⊗A Xk−1. (2.4.4.10)

Now, observe that D(V ⊗A Xi)' HomA(V,DXi) ∈ addHomA(V,DDV ) =C-proj. So, we can extend (2.4.4.10) to
a (C,R)-injective resolution of V ⊗A M, I•. Furthermore, we have the (epi, mono) factorization

V ⊗A Xk−2 V ⊗A Xk−1

DΩk−1(D(V ⊗A M),D((V ⊗A X)•)

V⊗Aαk−1

ε t ,
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where (V ⊗A X)• denotes the deleted (C,R)-injective resolution obtained by I•. Denote by Ω the module
DΩk−1(D(V ⊗A M),D((V ⊗A X)•). Since ExtiC(V,V ⊗A M) = Exti(C,R)(V,V ⊗A M) = 0, i ≤ k− 1 applying
HomC(V,−) to the (C,R)-injective I• we obtain the exact sequence

HomC(V,V ⊗A M) HomC(V,V ⊗A X0) · · · HomC(V,V ⊗A Xk−2) HomC(V,V ⊗A Xk−1) HomC(V, Ik)

HomC(V,Ω)

HomC(V ,V⊗Aαk−1)

HomC(V ,ε)

HomC(V ,ik)

HomC(V ,t)

(2.4.4.11)
where HomC(V, t) is injective and ker ik = imV ⊗A αk−1. Note that 0 = ikV ⊗−Aαk−1 = iktε . Thus, ikt = 0
since ε is surjective. Now, as HomC(V, ik)◦HomC(V, t) = HomC(V, ikt) = 0, it follows by Lemma 2.4.14(ii) that
HomC(V,ε) is surjective. On the other hand,

HomC(V,Ω)' D(Ωk−1(D(V ⊗A M),D((V ⊗A X)•)⊗C V ) ∈ R-proj . (2.4.4.12)

Hence, the exact sequence

0→ HomC(V,V ⊗A M)→ HomC(V,V ⊗A X0)→ ·· · → HomC(V,V ⊗A Xk−2)→ HomC(V,Ω)→ 0 (2.4.4.13)

is (A,R)-exact. As M ' HomC(V,V ⊗A M) and each HomC(V,V ⊗A Xi) ' Xi ∈ addDV it is enough to show
that HomC(V,Ω) has relative dominant dimension greater than or equal to two. In such a case, there exists
Y0,Y1 ∈ addDV and an (A,R)-exact sequence 0→HomC(V,Ω)→Y0→Y1. Combining this (A,R)-exact sequence
with (2.4.4.13) we obtain an (A,R)-exact sequence

0→M→ HomC(V,V ⊗A X0)→ ·· · → HomC(V,V ⊗A Xk−2)→ Y0→ Y1. (2.4.4.14)

This would imply that domdim(A,R) M ≥ k+1.
We can see that by Lemma 1.4.14 and by assumption on the R-projectivity of the k−1 syzygy that

HomA(V,DHomC(V,Ω))⊗C V ' D(V ⊗A HomC(V,Ω))⊗C V )' D(Ω)⊗C V (2.4.4.15)

'Ω
k−1(D(V ⊗A M),D((V ⊗A X)•)⊗C V ∈ R-proj . (2.4.4.16)

By Lemma 1.4.14, the map ξΩ is an isomorphism. Moreover,

HomC(V,ξΩ)◦αHomC(V,Ω)( f )(v) = ξΩ(v⊗ f ) = f (v), f ∈ HomC(V,Ω),v ∈V. (2.4.4.17)

Thus, HomC(V,ξΩ) ◦αHomC(V,Ω) = idHomC(V,Ω). It follows that αHomC(V,Ω) is an isomorphism. By Proposition
2.4.7, domdim(A,R) HomC(V,Ω)≥ 2.

Theorem 2.4.16. Let (A,P,V ) be a relative QF3 R-algebra. Fix B = EndA(P)op. For any right A-module M

being projective over R, the following assertions are equivalent.

(a) domdim(A,R) M ≥ n≥ 2;

(b) δM : P⊗B HomA(P,DM)→ DM is an isomorphism and TorB
i (P,HomA(P,DM)) = 0, 1≤ i≤ n−2;

(c) αM : M→ HomB(P,M⊗A P) is an isomorphism, P⊗B Ωi(HomA(P,DM),Q•) ∈ R-proj, 0 ≤ i ≤ n− 2 for

every left projective B-resolution Q• of HomA(P,DM) and ExtiB(P,M⊗A P) = 0, 1≤ i≤ n−2.

Proof. The proof is analogous to Theorem 2.4.15.
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Comparing this version with the Mueller’s characterization of dominant dimension over Artinian algebras, we
can see that the functors Tor take a more important role than Ext. Furthermore, condition (c) does not seem very
practical to use in applications since we have to test every syzygy of a projective resolution of HomA(V,DM).
However, if the ground ring is regular, using Ext is still useful provided we know the Krull dimension of the
ground ring.

Remark 2.4.17. By Observation 2.4.6 we can deduce as in Theorem 2.4.15 that the existence of an (A,R)-exact
sequence

Yn→ Yn−1→ ·· · → Y1→ Y → 0, (2.4.4.18)

where Yi ∈ AddA V , 1≤ i≤ n, for a given Y ∈Mod-A is equivalent to requiring Φ : HomA(V,Y )⊗C V → Y to be
an isomorphism and TorC

i (HomA(V,Y ),V ) = 0, 1≤ i≤ n−2. 4

Proposition 2.4.18. Let R be a commutative Noetherian regular ring. Let (A,P,V ) be a relative QF3 R-algebra.

Fix C = EndA(V ) and B = EndA(P)op. Let n≥ 2, M ∈ A-mod∩R-proj, and N ∈mod-A∩R-proj. The following

assertions hold.

(i) If αM : M→ HomC(V,V ⊗A M) is an isomorphism and ExtiC(V,V ⊗A M) = 0 for every 1≤ i≤ n−2, then

domdim(A,R) M ≥ n−dimR.

(ii) If αN : N → HomB(P,N⊗A P) is an isomorphism and ExtiB(P,N⊗A P) = 0 for every 1 ≤ i ≤ n− 2, then

domdim(A,R) N ≥ n−dimR.

Proof. If dimR≥ n, then there is nothing to prove. Assume that n > dimR. Let j = n−dimR. Let

0→V ⊗A M
α0−→ Y0

α1−→ Y1→ ··· (2.4.4.19)

be a (C,R)-injective resolution of V ⊗A M. The modules Yi can be chosen to be projective over R as well. Since
ExtiC(V,V ⊗A M) = 0, 1≤ i≤ n−2, applying HomC(V,−) yields the exact sequence

0→M ' HomC(V,V ⊗A M)
HomC(V,α0)−−−−−−−→ HomC(V,Y0)

HomC(V,α1)−−−−−−−→ ·· · → HomC(V,Yn−1). (2.4.4.20)

Note that HomC(V,Yi) ∈ addHomC(V,DC) = addDV = addP. Let Ci = imHomC(V,αi),∀i. The exact sequence
(2.4.4.20) induces the exact sequence

0→C j→ HomC(V,Yj)→ ··· → HomC(V,Yn−2)→Cn−1→ 0. (2.4.4.21)

Note that this sequence has length dimR+ 1. Furthermore, since pdimR Cn−1 ≤ dimR, we must have that C j is
projective over R. This implies that the exact sequence

0→M→ HomC(V,Y0)→ ··· → HomC(V,Yj−1) (2.4.4.22)

is (A,R)-exact. Therefore, it follows that domdim(A,R) M ≥ j = n−dimR. (ii) is analogous to (i).

When the Krull dimension is at most one, we can formulate the Mueller theorem in the following way.

Theorem 2.4.19. Let R be a commutative Noetherian regular ring with Krull dimension at most one. Let (A,P,V )

be a relative QF3 R-algebra. Fix C = EndA(V ). Let M ∈ A-mod∩R-proj and n≥ 2. The following assertions are

equivalent.
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(i) domdim(A,R) M ≥ n−1 where the (A,R)-exact sequence

0→M→ X1→ ··· → Xn−1, (2.4.4.23)

with (A,R)-injective projective A-modules Xi , can be continued to an exact sequence

0→M→ X1→ ··· → Xn−1→ Y (2.4.4.24)

where Y is (A,R)-injective projective over A.

(ii) αM is an isomorphism and ExtiC(V,V ⊗A M) = 0, 1≤ i≤ n−2.

Proof. Assume that (ii) holds. Using Proposition 2.4.18, we see that domdim(A,R) M ≥ n− 1. Moreover, using
the (A,R)-exact constructed there we have

0→M→ HomC(V,Y0)→ ··· → HomC(V,Yn−2)→Cn−1→ 0. (2.4.4.25)

Since Cn−1 can be embedded into HomC(V,Yn−1) (i) follows.
Conversely, assume that (i) holds. Since n ≥ 2, there exists an exact sequence 0→ M → X1 → X2 where

Xi ∈ addDV . The functor HomC(V,V ⊗A−) is left exact, so it yields the following commutative diagram with
exact rows

0 M X1 X2

0 HomC(V,V ⊗A M) HomC(V,V ⊗A X1) HomC(V,V ⊗A X2)

αM αX1 αX2 (2.4.4.26)

By diagram chasing, it follows that αM is an isomorphism. Applying V ⊗A− to (2.4.4.24) we obtain the exact
sequence

0→V ⊗A M→V ⊗A X1→ ··· →V ⊗A Xn−1→V ⊗A Y. (2.4.4.27)

Note that by deleting V ⊗A Y we obtain a (C,R)-exact sequence. We can continue such (C,R)-exact to a (C,R)-
injective resolution of V ⊗A M. Now consider the following commutative diagram

0 M · · · Xn−1 Y

0 HomC(V,V ⊗A M) · · · HomC(V,V ⊗A Xn−1) HomC(V,V ⊗A Y )

αM' αXn−1' αY' (2.4.4.28)

It follows that the bottom row is exact. In particular, Ext(C,R)(V,V ⊗A M) = 0, 1 ≤ i ≤ n− 3. Notice that by
continuing the (C,R)-injective resolution we have the following commutative diagram

V ⊗A Xn−1 V ⊗A Y

V ⊗A coker X̃n

λn

ε t

ν

. (2.4.4.29)

Since HomC(V,−) is left exact,

kerHomC(V,ν ◦ ε) = kerHomC(V,ε) = kerHomC(V, t ◦ ε) = imHomC(V,λn−1). (2.4.4.30)
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This last equality follows from the exactness of (2.4.4.28). This means that

0→ HomC(V,V ⊗A M)→ ··· → HomC(V,V ⊗A Xn−1)→ HomC(V, X̃n) (2.4.4.31)

is exact. So, (ii) holds.

This method gives a hint why for Krull dimension one we can say that by continuing an (A,R)-exact sequence
of projective relative injectives to a non-(A,R)-exact sequence of projective relative injectives is still enough to
recover information about Ext. The method here used requires that at each step to compute the exact sequence we
might have to replace the projective (A,R)-injective. This happens in general because we do not have a standard
choice here unless the algebra is semiperfect. In such a case, the projective covers can take that role.

Proposition 2.4.20. Let A be a semi-perfect R-algebra. Let M ∈ A-mod∩R-proj. Let

· · · → P1
p1−→ P0

p0−→ DM→ 0 (2.4.4.32)

be a minimal right projective A-resolution. Then, domdim(A,R) M ≥ n if and only if every Pi, i = 0, . . . ,n− 1, is

right (A,R)-injective.

Proof. One of the implications is clear. Assume that domdim(A,R) M ≥ n. Then, there exists an (A,R)-exact
sequence

0→M
α0−→ I0→ ·· ·

αn−1−−−→ In−1, (2.4.4.33)

with projective (A,R)-injective A-modules Ii. Hence, applying D we obtain an exact sequence

DIn−1
Dαn−1−−−−→ ·· · → DI0

Dα0−−→ DM→ 0. (2.4.4.34)

Since P0 and DI0 are projective A-modules there are maps f0 ∈ HomA(P0,DI0), g0 ∈ HomA(DI0,P0) satisfying
p0 ◦ g0 = Dα0 and Dα0 ◦ f0 = p0. Hence, p0 ◦ g0 ◦ f0 = p0. Since (P0, p0) is the projective cover of DM, it
follows that g0 ◦ f0 ∈ EndA(P0) is an isomorphism. Consequently, g0 is surjective and thus, P0 is an A-summand
of DI0. In particular, P0 is (A,R)-injective. Observe that

p0 ◦g0 ◦Dα1 = Dα0 ◦Dα1 = 0. (2.4.4.35)

Hence, img0 ◦Dα1 ⊂ ker p0. Let x ∈ ker p0. Then, by the surjectivity of g0, there exists y ∈ DI0 such that
g0(y) = x. Therefore, Dα0(y) = p0(x) = 0. Thus, y ∈ kerDα0 = imDα1. So, x ∈ img0 ◦Dα1. We deduced that
the sequence

DIn−1→ ·· · → DI1
g0◦Dα1−−−−→ P0

p0−→ DM→ 0 (2.4.4.36)

is exact. Now we can proceed by induction, where in the next step ker p0 takes the place of DM, to obtain that
each Pi is an A-summand of DIi.

We shall now see some properties of relative dominant dimension that follow from the relative Mueller
theorem. In particular, the relative Mueller characterization applied to A takes the following form. This result is
the relative analogue of [Mue68, Lemma 3] and [Tac73, 7.5].

Theorem 2.4.21. Let (A,P,V ) be a relative QF3 R-algebra with domdim(A,R) AA ≥ 2 and domdim(A,R) AA ≥ 2.

For n≥ 3, the following are equivalent.
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(i) domdim(A,R) AA≥ n;

(ii) TorC
i (DV,V ) = 0, i = 1, . . . ,n−2;

(iii) ExtiC(V,V ) = 0, i = 1, . . . ,n− 2 and Ω j(DV,Q•)⊗C V ∈ R-proj, 0 ≤ j ≤ n− 2 for every projective C-

resolution Q• of DV ;

(iv) TorB
i (P,DP) = 0 i = 1, . . . ,n−2;

(v) ExtiC(P,P) = 0, i = 1, . . . ,n− 2 and P⊗B Ω j(DP,Q•) ∈ R-proj, 0 ≤ j ≤ n− 2 for every projective B-

resolution Q• of DP;

(vi) domdim(A,R) AA ≥ n.

Proof. The implications (i)⇔ (ii)⇔ (iii) and (iv)⇔ (v)⇔ (vi) follow from Theorem 2.4.15 and Theorem
2.4.16, respectively. We will, therefore, focus on the implication (ii)⇔ (iv).

Consider a left projective B-resolution

· · · → Pn−1
fn−1−−→ ·· · f1−→ P0

f0−→ DP→ 0. (2.4.4.37)

Applying the exact functor HomB(D(V ⊗A P),−) we get the exact sequence

· · · → HomB(D(V ⊗A P),Pn−1)→ ··· → HomB(D(V ⊗A P),P0)→ HomB(D(V ⊗A P),DP)→ 0. (2.4.4.38)

Since D(V ⊗A P) is a B-generator, each Pi ∈ addD(V ⊗A P), therefore HomB(D(V ⊗A P),Pi) ∈ C-proj. Also,
HomB(D(V ⊗A P),DP)' HomB(P,V ⊗A P)'V as left C-modules. Thus, (2.4.4.38) is a projective C-resolution
for V .

We recall that in Lemma 2.4.8, we saw that for F = HomB(D(V ⊗A P),−) and
G = HomB(HomB(D(V ⊗A P),B),−) there was an isomorphism GM⊗C FN ' M⊗B N for every M ∈ mod-B
and N ∈ B-mod. Since all the isomorphisms involved are functorial, it follows that there exists a natural isomor-
phism of bifunctors θ : G(−)⊗C F(−)→ id(−)⊗B id(−). In particular, the following diagram is commutative

P⊗B Pi−1 P⊗B Pi−2 · · · P⊗B P0 P⊗B DP 0

GP⊗B FPi−1 GP⊗B FPi−2 · · · GP⊗C FP0 GP⊗C FDP 0

idP⊗B fi idP⊗B f0

G idP⊗BF fi
θP,Pi−1 ' θP,Pi−2 '

G idP⊗CF f0
θP,P0 ' θP,DP ' . (2.4.4.39)

So, the upper row is exact if and only if the bottom row is exact. Furthermore, the bottom row is exactly the
complex obtained by applying DV ⊗C− to the exact sequence (2.4.4.38). It follows that TorC

i (DV,V ) = 0 if and
only if TorB

i (P,DP) = 0.

Corollary 2.4.22. Let (A,P,V ) be a relative QF3 R-algebra. Then, domdim(A,R) AA = domdim(A,R) AA.

Proof. Assume that domdim(A,R) AA ≥ 2. By Lemma 2.4.5, V is a left C-generator (C,R)-cogenerator. In view
of Lemma 2.4.8, DV ⊗C V ∈ R-proj. By Theorem 2.4.15, V satisfies the double centralizer property. By relative
Morita-Tachikawa correspondence, EndC(V )' A has left and right relative dominant dimension greater than or
equal to two. By Theorem 2.4.21, we have domdim(A,R) AA ≥ domdim(A,R) AA. Symmetrically, domdim(A,R) AA≥
domdim(A,R) AA.

Another consequence of Theorem 2.4.21 is that we can characterize every endomorphism algebra of a gener-
ator relative cogenerator such that the generator remains projective over R under tensor product over its dual. In
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fact, Let B be the endomorphism algebra over A of a generator (A,R)-cogenerator such that DM⊗A M ∈ R-proj.
By relative Morita-Tachikawa, B has left and right relative dominant dimension greater than or equal to two.
Now Theorem 2.4.21 gives that domdim(B,R)≥ n+2 if and only if TorA

i (DM,M) = 0, 1≤ i≤ n.

Corollary 2.4.23. Let (A,P,V ) be a relative QF3 R-algebra. Let Mi ∈ A-mod∩R-proj, i ∈ I for some finite set I.

Then,

domdim(A,R)
⊕
i∈I

Mi = inf{domdim(A,R) Mi : i ∈ I}. (2.4.4.40)

Proof. Since the maps ΦX are compatible with direct sums, we get that ΦMi is surjective/bijective for every
i ∈ I if and only if Φ⊕

i∈I Mi is surjective/bijective. Thus, domdim(A,R)
⊕

i∈I Mi ≥ 1 (resp. 2) if and only if
domdim(A,R) Mi ≥ 1 (resp. 2) for every i ∈ I. Now since for every n

TorC
n (HomA(V,D(

⊕
i∈I

Mi)),V )' TorC
n (HomA(V,

⊕
i∈I

DMi),V )'
⊕
i∈I

TorC
n (HomA(V,DMi),V ), (2.4.4.41)

the result follows by Theorem 2.4.15.

Remark 2.4.24. It follows that the value of the relative dominant dimension is independent of the direct sum
decomposition of the module. 4

The following Lemma is another consequence of relative Mueller characterization. In the field case, this
proof is quicker using the relations between dominant dimension and the socle of the regular module and it was
first stated in [FK11b, Proposition 3.6].

Lemma 2.4.25. Let (A,P,V ) be a relative QF3 R-algebra. Let M ∈ R-proj and consider the following (A,R)-

exact

0→M1→M→M2→ 0. (2.4.4.42)

Let n = domdim(A,R) M and ni = domdim(A,R) Mi. Then, the following holds.

(a) n≥min{n1,n2}.

(b) If n1 < n, then n2 = n1−1.

(c) (i) n1 = n =⇒ n2 ≥ n−1.

(ii) n1 = n+1 =⇒ n2 ≥ n.

(iii) n1 ≥ n+2 =⇒ n2 = n.

(d) n < n2 =⇒ n1 = n.

(e) (i) n = n2 =⇒ n1 ≥ n2.

(ii) n = n2 +1 =⇒ n1 ≥ n2 +1.

(iii) n≥ n2 +2 =⇒ n1 = n2 +1.

Proof. Applying D and HomA(V,D−)⊗C V we get the commutative diagram with exact rows

TorC
1 (HomA(V,DM1),V ) HomA(V,DM2)⊗C V HomA(V,DM)⊗C V HomA(V,DM1)⊗C V

0 DM2 DM DM1

ΦM2 ΦM ΦM1
.

(2.4.4.43)
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By Snake Lemma, ΦM is surjective/bijective if ΦM1 and ΦM2 are surjective/bijective. Thus, min{n1,n2} ≥ k,
k ≤ 2, implies that n≥ k. Consider the long exact sequence

TorC
i (HomA(V,DM1),V )→ TorC

i (HomA(V,DM),V )→ TorC
i (HomA(V,DM2),V ) (2.4.4.44)

we obtain that if n1,n2 ≥ k ≥ 2, TorC
i (HomA(V,DM1),V ) = TorC

i (HomA(V,DM2),V ) = 0 for i = 1, . . . ,k− 2,
then TorC

i (HomA(V,DM),V ) = 0. Thus, n≥min{n1,n2}. By Theorem 2.4.15, (a) follows.
(b). If n1 = 0, then ΦM1 is not surjective. By diagram chasing, if ΦM is surjective, then ΦM1 is surjective.

Thus, n > 0 implies that n1 > 0. Assume n1 = 1 and n > n1. Thus, ΦM is bijective and ΦM1 is surjective. If
ΦM2 is surjective, then by Snake Lemma, ΦM1 is also injective. This would imply that n1 ≥ 2. So, n2 = 0.
Assume now n1 ≥ 2. By Snake Lemma, ΦM2 is surjective. So, n2 ≥ 1. If n2 ≥ 2, then, in particular, ΦM2 is
surjective. The exactness of the bottom row of (2.4.4.43) makes HomA(V,DM2)⊗C V → HomA(V,DM)⊗C V

injective. Since TorC
1 (HomA(V,DM),V ) = 0 , the long exact sequence induces that TorC

1 (HomA(V,DM1),V ) = 0.
This contradicts n1 = 2. Thus, n2 = 1. Now assume that n1 ≥ 3. Thus, (2.4.4.43) becomes

0 HomA(V,DM2)⊗C V HomA(V,DM)⊗C V HomA(V,DM1)⊗C V

0 DM2 DM DM1

ΦM2 ΦM ΦM1
. (2.4.4.45)

Thus, by Snake Lemma ΦM2 is bijective. Furthermore, using the long exact sequences and as n > n1 we deduce
that

TorC
i+1(HomA(V,DM1),V )' TorC

i (HomA(V,DM2),V ), 1≤ i≤ n1−2. (2.4.4.46)

Thus, n2 = n1−1.
Analogously, (c), (d), (e) hold.

2.5 Relative dominant dimension under change of rings

2.5.1 Strongly faithful modules - revisited

Our immediate aim now is to understand how strongly faithful modules behave under change of rings. The proofs
of the following two lemmas are technical however they are very useful to characterize strongly faithful modules.

Lemma 2.5.1. Let A be a projective Noetherian R-algebra . Let V ∈ mod-A∩R-proj. Consider the A-map

δV :
⊕

g∈HomA(DV,DA) DV →DA, given by δV ( fg) = g( f ). Then, δV is surjective if and only if V is (A,R)-strongly

faithful.

Proof. First, we need to check that δV is well defined. Let g ∈ HomA(DV,DA). Let θg : DV → DA be the map
given by θg( f ) = g( f ), f ∈ DV . This is clearly an A-map since g ∈ HomA(DV,DA). Taking the direct sum of
maps θg over g ∈ HomA(DV,DA) yields the map δV . Thus, δV is well defined.

Assume that δV is surjective. Let { f1, . . . , ft} be an R-generator set for DA. By assumption, there exists for
each 1≤ i≤ t a natural number si > 0 and elements wi, j ∈DV , gi, j ∈HomA(DV,DA) with j = 1, . . . ,si such that

fi = δV (
si

∑
j=1

(wi, j)gi, j). (2.5.1.1)
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Let h ∈ DA. Then,

h =
t

∑
i=1

αi fi =
t

∑
i=1

αiδV (
si

∑
j=1

(wi, j)gi, j) = δV (
t

∑
i=1

si

∑
j=1

αi(wi, j)gi, j), αi ∈ R. (2.5.1.2)

Therefore, the restriction of δV to the summands indexed by gi, j 1 ≤ i ≤ t, 1 ≤ j ≤ si is surjective. Denote by
o the number of such indexes. Then, we found a surjective A-map (DV )o � DA. As DA ∈ R-proj, this map is
an (A,R)-epimorphism. Thus, applying D yields an (A,R)-monomorphism A→ V o. So, V is (A,R)-strongly
faithful.

Conversely, assume that V is (A,R)-strongly faithful. Hence, there is an (A,R)-monomorphism A→ V t for
some t > 0. Applying D we obtain a surjective map DV t →DA. Denote this map by ε . Let k j ∈HomA(DV,DV t)

and π j ∈ HomA(DV t ,DV ) be the canonical injections and projections, respectively. Define
g j = ε ◦ k j ∈ HomA(DV,DA). For every h ∈ DA, there exists y ∈ DV t such that ε(y) = h. Therefore,

h =
t

∑
j=1

ε ◦ k j ◦π j(y) = δV (
t

∑
j=1

π j(y)g j). (2.5.1.3)

So, δV is surjective.

Lemma 2.5.2. Let A be a projective Noetherian R-algebra. For every commutative R-algebra S, and X ,Y ∈
A-mod there exists a map

θS : S⊗R

 ⊕
g∈HomA(X ,Y )

X

−→ ⊕
h∈HomS⊗RA(S⊗RX ,S⊗RY )

S⊗R X ,

given by θS(s⊗ xg) = (s⊗ x)1S⊗g.

Moreover, if X ∈ A-proj, then θR(m) is surjective for every maximal ideal m in R.

Proof. Consider the map

θ : S×
⊕

g∈HomA(X ,Y )

X →
⊕

h∈HomS⊗RA(S⊗RX ,S⊗RY )

S⊗R X ,

given by θ(s,xg) = (s⊗ x)1S⊗g for s ∈ S, x ∈ X , g ∈ HomA(X ,Y ). By definition, this map is linear in each term.
Let r ∈ R. Then,

θ(rs,xg) = (rs⊗ x)1S⊗g = (s⊗ rx)1S⊗g = θ(s,(rx)g). (2.5.1.4)

So, θ induces uniquely the S-map θS. Assume that X ∈ A-proj. Let m be a maximal ideal in R. Then,
HomA(m)(X(m),Y (m))' HomA(X ,Y )(m). Thus, every element in HomA(m)(X(m),Y (m)) can be written in the
form h⊗(r+m)= (rh)⊗1R(m) for rh∈HomA(X ,Y ). Moreover, every element in

⊕
h∈HomS⊗RA(S⊗RX ,S⊗RY ) S⊗R X

is the sum of elements (1R(m)⊗x)1R(m)⊗h = θR(m)(1R(m)⊗xh), h ∈HomA(X ,Y ) and S = R(m). This implies that
θR(m) is surjective.

Proposition 2.5.3. Let A be a projective Noetherian R-algebra. Let V ∈ mod-A∩R-proj. Then, the following

assertions are equivalent.

(a) V is a projective (A,R)-injective-strongly faithful right A-module.

(b) S⊗R V is a projective (S⊗R A,S)-injective-strongly faithful right S⊗R A-module for every commutative

R-algebra S.
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(c) Vm is a projective (Am,Rm)-injective-strongly faithful right Am-module for every maximal ideal m in R.

(d) V (m) is projective-injective faithful over right A(m) for every maximal ideal m in R.

Proof. (i) =⇒ (ii). Let S be a commutative R-algebra. The module V is a right A-summand of At for some
t > 0. Hence, S⊗R V is a right S⊗R A-summand of S⊗R At ' (S⊗R A)t . Thus, S⊗R V is a right projective
S⊗R A-module. As V is (A,R)-injective, V is an A-summand of HomR(A,V ). So, S⊗R V is an S⊗R A-summand
of S⊗R HomR(A,V )'HomS(S⊗R A,S⊗R V ) since A ∈ R-proj. Hence, S⊗R V is projective (S⊗R A,S)-injective.
By Lemma 2.5.1, the map δV ∈ HomA(

⊕
g∈HomA(DV,DA) DV,DA) is surjective. Applying the functor S⊗R− we

have the following commutative diagram

S⊗R

 ⊕
g∈HomA(DV,DA)

DV

 S⊗R DA

⊕
g∈HomS⊗RA(S⊗RDV,S⊗RDA)

S⊗R DV

⊕
h∈HomS⊗RA(HomS(S⊗RV,S),HomS(S⊗RA,S))

HomS(S⊗R V,S) HomS(S⊗R A,S)

θS

S⊗RδV

lS

κS

δS⊗RV

, (2.5.1.5)

where lS and κl are the canonical isomorphisms (as V,A ∈ R-proj). This diagram is commutative since:

δS⊗RV ◦κS ◦θS(s⊗ xg) = δS⊗RV ◦κS(s⊗ x)1S⊗g = δS⊗RV ((s⊗ x)1S⊗g) = 1S⊗g(s⊗ x) = s⊗g(x) (2.5.1.6)

lS ◦S⊗R δV (s⊗ xg) = l(s⊗g(x)) = s⊗g(x), s ∈ S,x ∈ DV,g ∈ HomA(DV,DA). (2.5.1.7)

The right exactness of S⊗R −implies that S⊗R δV is surjective. Using the commutativity of the diagram
δS⊗RV ◦κS ◦θS is surjective. Hence, δS⊗RV is surjective. By Lemma 2.5.1, (ii) follows.

(ii) =⇒ (iii). For every maximal ideal m in R, consider S = Rm.
(iii) =⇒ (iv). Let m be a maximal ideal in R. Recall that

Xm(m) = Xm⊗Rm Rm/mm = X⊗Rm Rm⊗Rm Rm/mm = X⊗R Rm/mm = X(m). (2.5.1.8)

Hence, using the same argument as discussed in (i) =⇒ (ii) now with S = Rm/mm yields that V (m) is projective
(A(m),R(m))-injective-strongly faithful. Since R(m) is a field, every (A(m),R(m))-injective is A(m)-injective
and strongly faithful coincides with faithful. So, (iv) follows.

(iv) =⇒ (i). Since V (m) is a projective right A(m)-module for every maximal ideal m in R and V ∈ R-proj,
we deduce that V is a projective right A-module. By Theorem 1.2.57, V is (A,R)-injective. By Lemma 2.5.1,
δV (m) is surjective for every maximal ideal m in R. By Lemma 2.5.2, θR(m) is surjective. By the commutative
diagram (2.5.1.5) with S = R(m) we get that lR(m) ◦R(m)⊗R δV is surjective. Since lR(m) is bijective, it follows
that R(m)⊗R δV is surjective for every maximal ideal m in R. By Nakayama’s Lemma, δV is surjective. So, V is
also (A,R)-strongly faithful.

By symmetry, we obtain:

Proposition 2.5.4. Let A be a projective Noetherian R-algebra. Let P ∈ A-mod∩R-proj. Then, the following

assertions are equivalent.
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(a) P is a projective (A,R)-injective-strongly faithful left A-module.

(b) S⊗R P is a projective (S⊗R A,S)-injective-strongly faithful left S⊗R A-module for every commutative R-

algebra S.

(c) Pm is a projective (Am,Rm)-injective-strongly faithful left Am-module for every maximal ideal m in R.

(d) P(m) is a projective-injective faithful left A(m)-module for every maximal ideal m in R.

2.5.2 Left-Right symmetry

For finite-dimensional algebras, there exists a left faithful projective-injective if and only if there exists a right
faithful projective-injective [Tac63, Theorem 2]. From what we have done so far, the left and right symmetry can
be deduced for finite-dimensional algebras once one observes that the dual of a faithful module is again faithful.
Although we do not have an argument for (A,R)-strongly faithfulness being preserved under standard duality,
we can recover the following statement.

Lemma 2.5.5. Let A be a projective Noetherian R-algebra. Then, domdim(A,R) AA ≥ 1 if and only if

domdim(A,R) AA ≥ 1. In particular, if domdim(A,R)AA ≥ 1 or domdim(A,R) AA ≥ 1, then there exists P and

V such that (A,P,V ) is a relative QF3 R-algebra.

Proof. Assume that domdim(A,R) AA ≥ 1. Then, there exists a right A-module V which is projective (A,R)-
injective-strongly faithful. Since A ∈ R-proj, it follows that V ∈ R-proj. By Proposition 2.5.3, V (m) is a
projective-injective faithful right A(m)-module for every maximal ideal m in R. Then, HomR(m)(V (m),R(m)) is
a projective-injective left A(m)-module for every maximal ideal m in R.

Observe that in general if a finitely generated module X over a finite-dimensional algebra B over a field K

is faithful, then HomK(X ,K) is faithful as left B-module. In fact, let b ∈ B and assume that b · f = 0 for every
f ∈ HomK(X ,K). Then, for each x ∈ X ,

0 = b f (x) = f (xb),∀ f ∈ HomK(X ,K).

Since X is finitely generated, we deduce that xb = 0. Now using that X is faithful over B yields b = 0.
Therefore, DV (m) ' HomR(m)(V (m),R(m)) is a projective-injective faithful left A(m)-module for every

maximal ideal m in R. By Proposition 2.5.4, DV is a projective (A,R)-injective-strongly faithful left A-module.
Thus, domdim(A,R) AA ≥ 1. The converse implication is analogous. We also showed that (A,DV,V ) is a relative
QF3 R-algebra.

Corollary 2.5.6. Let A be a projective Noetherian R-algebra. Then, domdim(A,R) AA = domdim(A,R) AA.

Proof. Assume that domdim(A,R) AA ≥ n for some n ≥ 1. By Lemma 2.5.5, domdim(A,R) AA ≥ 1. By Corollary
2.4.22, domdim(A,R) AA≥ n. Hence, domdim(A,R) AA≥ domdim(A,R) AA.

Similarly, domdim(A,R) AA ≥ domdim(A,R) AA.

Thus, we will write domdim(A,R) avoiding the left and right notation.

2.5.3 Computing relative dominant dimension using classical dominant dimension

Proposition 2.5.7. Let (A,P,V ) be a relative QF3 R-algebra. Let M ∈ A-mod∩R-proj. Then, the following

assertions are equivalent.
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(i) domdim(A,R) M ≥ 1.

(ii) domdim(S⊗RA,S) S⊗R M ≥ 1 for every commutative R-algebra S which is a Noetherian ring.

(iii) domdim(Am,Rm) Mm ≥ 1 for every maximal ideal m in R.

(iv) domdim(A(m) M(m)≥ 1 for every maximal ideal m in R.

Proof. Let C = EndA(V ). Denote by DS the standard duality with respect to S, HomS(−,S). Consider the map
ΦM : HomA(V,DM)⊗C V → DM. Applying the functor S⊗R− we get the commutative diagram

S⊗R HomA(V,DM)⊗C V S⊗R DM

S⊗R HomA(V,DM)⊗S⊗RC S⊗R V

HomS⊗RA(S⊗R V,DS(S⊗R M))⊗S⊗RC S⊗R V DS(S⊗R M)

θS,M'

S⊗RΦM

lS,M'

κS,M'
ΦS⊗RM

, (2.5.3.1)

where the θS,M , κS,M and lS,M are the natural maps. These are isomorphisms since V ∈ Aop-proj and M ∈ R-proj.
(i) =⇒ (ii). Since ΦM is an epimorphism, it follows by diagram 2.5.3.1 that ΦS⊗RM is an epimorphism. As

(S⊗R A,S⊗R P,S⊗R V ) is a relative QF3 S-algebra, (ii) follows by Theorem 2.4.15.
The implication (ii) =⇒ (iii) follows by using (ii) with S = Rm. The implication (iii) =⇒ (iv) follows by

using the same argument as in the implication (i) =⇒ (ii) with S = Rm/mm over Rm.
(iv) =⇒ (i). By the diagram (2.5.3.1), it follows that R(m)⊗R ΦM is surjective for every maximal ideal m

in R. By Nakayama’s Lemma, ΦM is surjective. Finally (i) follows by Theorem 2.4.15.

This last Proposition is not surprising since S⊗R− is right exact and relative dominant dimension one can
be characterized by surjective maps. For the same reason, flat extensions are compatible with relative dominant
dimension of a module.

Proposition 2.5.8. Let (A,P,V ) be a relative QF3 R-algebra. Let M ∈ A-mod∩R-proj. The following assertions

are equivalent. Let n ∈ N.

(i) domdim(A,R) M ≥ n≥ 1.

(ii) domdim(S⊗RA,S) S⊗R M ≥ n≥ 1 for every flat commutative R-algebra S which is a Noetherian ring.

(iii) domdim(Am,Rm) Mm ≥ n≥ 1 for every maximal ideal m in R.

Proof. By Proposition 2.5.3, (S⊗R A,S⊗R P,S⊗R V ) is a relative QF3 S-algebra. Note that

S⊗R C ' S⊗R EndA(V )' EndS⊗RA(S⊗R V ).

By Proposition 2.5.7, domdim(S⊗RA,S) S⊗R M ≥ 1. Assume that n ≥ 2. Hence, ΦM is an isomorphism. By the
diagram (2.5.3.1), ΦS⊗RM is an isomorphism. So, domdim(S⊗RA,S) S⊗R M ≥ 2. Now assume that n≥ 3. Then,

0 = S⊗R TorC
i (HomA(V,DM),V ) = TorS⊗RC

i (S⊗R HomA(V,DM),S⊗R V )

= TorS⊗RC
i (HomS⊗RA(S⊗R V,DS(S⊗R M)),S⊗R V ), 1≤ i≤ n−2.

Now, (ii) follows by Theorem 2.4.15.
The implication (ii) =⇒ (iii) follows by applying S = Rm for every maximal ideal m in R.

229



2.5. Relative dominant dimension under change of rings

(iii) =⇒ (i). If n≥ 1, then by Proposition 2.5.7, domdim(A,R) M ≥ 1. If n≥ 2, then ΦMm is isomorphism for
every maximal ideal m in R. By the diagram (2.5.3.1), Rm⊗R ΦM is isomorphism for every maximal ideal m in
R. Hence, ΦM is an isomorphism. Moreover,

TorC
i (HomA(V,DM),V )m = TorCm

i (HomAm(Vm,DmMm),Vm) = 0, 1≤ i≤ n−2.

By Theorem 2.4.15,domdim(A,R) M ≥ n≥ 1.

Proposition 2.5.9. Let (A,P,V ) be a relative QF3 R-algebra. Let M ∈ A-mod∩R-proj. If S is a Noetherian

faithfully flat R-algebra, then

domdim(S⊗RA,S) S⊗R M = domdim(A,R) M. (2.5.3.2)

Proof. By Proposition 2.5.8, domdim(S⊗RA,S) S⊗R M ≥ domdim(A,R) M. The map ΦS⊗RM is epimorphism (resp.
isomorphism) if and only the map S⊗R ΦM is epimorphism (resp. isomorphism). Recall that since S is faithfully
flat an R-module is zero if and only if it is the zero module under the functor S⊗R−. In particular, the map
ΦS⊗RM is epimorphism (resp. isomorphism) if and only if the map ΦM is epimorphism (resp. isomorphism). By
flatness of S,

TorS⊗RC
i (HomS⊗RA(S⊗R V,HomS(S⊗R M,S),S⊗R V )' S⊗R TorC

i (HomA(V,DM),V ), ∀i > 0. (2.5.3.3)

Therefore, for each natural number i, TorS⊗RC
i (HomS⊗RA(S⊗R V,HomS(S⊗R M,S),S⊗R V ) = 0 if and only if

TorC
i (HomA(V,DM),V ) = 0. The result follows Theorem 2.4.15 and Proposition 2.4.7.

An immediate application of Proposition 2.5.9 is for polynomial rings R[X1, . . . ,Xn]. Further, R[X1, . . . ,Xn] is
free of infinite rank over R, and so it is faithfully flat.

An example of the importance of changing the ground ring to compute dominant dimension is that for finite-
dimensional algebras the computation of dominant dimension can be reduced to the computation of dominant
dimension over algebraically closed fields. This is a known fact, and it can be found in [Mue68, Lemma 5].

Proposition 2.5.10. Let A be a finite-dimensional algebra over a field K. Assume that A is QF3-algebra. Then,

domdimA = domdimK⊗K A.

Proof. Let K be the algebraic closure of K. In particular, K can be regarded as K-vector space, hence it is K-free.
Furthermore, K is faithfully flat over K. By Proposition 2.5.9, the claim follows.

The idea here used can be generalized to the next Proposition. For the second part of its proof, we will require
the following lemma.

Lemma 2.5.11. Let f : R→ S be a surjective R-algebra map. Let A be a projective Noetherian R-algebra. Then,

for every Y ∈ S⊗R A-mod, S⊗R Y ' Y as S⊗R A-modules.

Proof. Let Y ∈ S⊗R A-mod. Y can be regarded as an A-module with action a · y = ( f (1R)⊗R a) · y = (1S⊗a) · y.
Consider the multiplication map µ : S⊗R Y → Y . We have, for s′⊗a ∈ S⊗R A, s⊗ y ∈ S⊗R Y ,

µ(s′⊗a · s⊗ y) = µ(s′s⊗ay) = s′s(ay) = s′s(1S⊗a)y = (s′s⊗a)y = (s′⊗a)(s⊗1A)y = (s′⊗a)µ(s⊗ y).

Therefore, µ is an S⊗R A-homomorphism. Consider the map ν : Y → S⊗R Y , given by ν(y) = 1S⊗ y. We have

ν(s⊗a · y) = 1S⊗ (s⊗a) · y = 1S⊗ ((s⊗1A)(1S⊗a)y) = 1S⊗ (( f (r)⊗1A)ay) = 1S⊗ ((r1S⊗1A)ay)

(2.5.3.4)
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= r1S⊗ay = s⊗ay = (s⊗a)(1S⊗ y) = s⊗aν(y). (2.5.3.5)

So, ν is an S⊗R A-homomorphism. ν and µ are inverse to each other. In fact, since f is surjective

µ ◦ν(y) = µ(1S⊗ y) = 1Sy = y, y ∈ Y

ν ◦µ(s⊗ y) = ν ◦µ( f (rs)⊗ y)) = 1S⊗ (rs f (1R)y) = rs1S⊗ y = s⊗ y, s⊗ y ∈ S⊗R Y.

It follows that µ is an S⊗R A-isomorphism.

Proposition 2.5.12. Let S be a commutative R-algebra which is a Noetherian ring. Let A be a projective Noethe-

rian algebra over a commutative Noetherian ring R. Let M ∈ A-mod∩R-proj.
Then, domdim(A,R) M ≤ domdim(S⊗RA,S) S⊗R M. Assume, additionally the following

• (A,P,V ) is a relative QF3 R-algebra;

• there is a surjective map of R-algebras R→ S making S a projective R-module.

Then, domdim(A,R) M = domdim(S⊗RA,S) S⊗R M.

Proof. Let domdim(A,R) M ≥ n. Then, there exists an (A,R)-exact sequence

0→M→ X1→ ··· → Xn (2.5.3.6)

such that each Xi is a projective (A,R)-injective A-module. Applying D yields the (A,R)-exact sequence

DXn→ DXn−1→ ·· · → DX1→ DM→ 0. (2.5.3.7)

The functor S⊗R− is exact on (A,R)-exact sequences, so we have the S⊗R A-exact sequence

S⊗R DXn→ S⊗R DXn−1→ ·· · → S⊗R DX1→ S⊗R DM→ 0. (2.5.3.8)

Observe that S⊗R DM = S⊗R HomR(M,R)' HomS⊗RR(S⊗R M,S⊗R R) = DS(S⊗R M) and each S⊗R DXi is a
projective (S⊗R A,S)-injective right S⊗R A-module. As S⊗R M ∈ S-proj, (2.5.3.8) is S⊗R A,S)-exact. Applying
DS yields that domdim(S⊗RA,S) S⊗R M ≥ n. This shows that, domdim(S⊗RA,S) S⊗R M ≥ domdim(A,R) M.

Now assume that there is a surjective map of R-algebras R→ S. In particular, S can be regarded as an R-
module by restriction of scalars. Assume that this map makes S a projective R-module. Let
domdim(S⊗RA,S) S⊗R M ≥ n for some integer n≥ 0. Then, there exists an (S⊗R A,S)-exact sequence

0→ S⊗R M→ Y1→ ··· → Yn, (2.5.3.9)

where Yi, 1≤ i≤ n, is a projective (S⊗R A,S)-injective (S⊗R A)-module. Applying DS we obtain the (S⊗R A,S)-
exact sequence

DSYn→ ·· · → DSY1→ DS(S⊗R M)→ 0. (2.5.3.10)

Observe that (S⊗R A,S⊗R P,S⊗R V ) is a relative QF3 S-algebra. Thus, each DSYi ∈ addS⊗RA S⊗R V . As S

is projective over R, S is an R-summand of ⊕IR for some set I. Hence, DSYi is an A-summand of S⊗R V t

which is an A-summand of ⊕IV t . Therefore, DSYi ∈ AddA V . By Observation 2.4.17, the canonical map
Φ : HomA(V,DS(S⊗R M))⊗C V → DS(S⊗R M) is an isomorphism and TorC

i (HomA(V,DS(S⊗R M)),V ) = 0,
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1≤ i≤ n−2. Now note that

DS(S⊗R M)' HomS(S⊗R M,S)' S⊗R HomR(M,R) = S⊗R DM

is an A-summand of⊕IDM. In particular, ΦM is an isomorphism and TorC
i (HomA(V,DM),V ) = 0, 1≤ i≤ n−2.

So, domdim(A,R) M ≥ n. This shows that domdim(A,R) M ≥ domdim(S⊗RA,S) S⊗R M.

In the following, we will see that we can reduce the computation of relative dominant dimension to computing
dominant dimension over fields.

Theorem 2.5.13. Let R be a commutative Noetherian ring. Let (A,P,V ) be a relative QF3 R-algebra. Let

M ∈ A-mod∩R-proj. Then,

domdim(A,R) M = inf{domdimA(m) M(m) : m maximal ideal in R}.

Proof. Let m be a maximal ideal in R. By Proposition 2.5.12, domdimA(m) M(m)≥ domdim(A,R) M.
Assume that inf{domdimA(m) M(m) : m maximal ideal in R} ≥ n. We want to show that domdim(A,R) M ≥ n.

By Proposition 2.5.3, (A(m),P(m),V (m)) is a QF3 algebra for every maximal ideal m in R. Denote by D(m) the
standard duality with respect to R(m) and denote C = EndA(V ).

If n = 0, there is nothing to show. Assume that n = 1. Consider the following commutative diagram

HomA(m)(V (m),DM(m))⊗C(m)V (m) D(m)M(m)

R(m)⊗R HomA(V,DM)⊗C V DM(m)

ΦM(m)

ΦM(m)

' ' . (2.5.3.11)

By assumption, ΦM(m) is an epimorphism. Thus, ΦM(m) is an epimorphism for every maximal ideal m in R. By
Nakayama’s Lemma, ΦX is an epimorphism. By Proposition 2.4.7, domdim(A,R) M ≥ 1.

Assume that n = 2. By the commutative diagram (2.5.3.11) ΦM(m) is an isomorphism for every maxi-
mal ideal m in R. Since ΦM is an epimorphism and M ∈ R-proj, ΦM splits over R. That is, there is a map
t ∈ HomR(DM,HomA(V,DM)⊗C V ) such that ΦM ◦ t = idDM . In particular, t is a monomorphism. Applying
R(m)⊗R−, we get idDM(m) = ΦM ◦ t(m) = ΦM(m)◦ t(m) for every maximal ideal m in R. Since ΦM(m) is an
isomorphism for every maximal ideal m in R it follows that t(m) is an isomorphism for every maximal ideal m
in R. By Nakayama’s Lemma, t is surjective. So, t is an R-isomorphism. It follows that ΦM is bijective. By
Proposition 2.4.7, domdim(A,R) M ≥ 2.

Assume now that n≥ 3. In particular, domdim(A,R) M ≥ 2. Hence, HomA(V,DM)⊗C V ' DM ∈ R-proj. By
Theorem 2.4.15, TorC(m)

i (HomA(m)(V (m),DM(m),V (m)) = 0, 1≤ i≤ n−2 for every maximal ideal m in R. Let

· · · → Q2→ Q1→ Q0→V → 0 (2.5.3.12)

be a projective C-resolution of V . Since V ∈ R-proj, this resolution is (C,R)-exact. Thus,

· · · → Q2(m)→ Q1(m)→ Q0(m)→V (m)→ 0 (2.5.3.13)

is a projective C(m)-resolution of V . Consider the chain complex P• = HomA(V,DM)⊗C Q•, where Q• denotes
the deleted projective resolution (2.5.3.12). Each object HomA(V,DM)⊗C Qi ∈ addR HomA(V,DM) ⊂ R-proj,
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since HomA(V,DM) ∈ R-proj. By Lemma 1.3.17, we obtain the Künneth Spectral sequence

E2
i, j = TorR

i (H j(HomA(V,DM)⊗C Q•),R(m)) =⇒ Hi+ j(HomA(V,DM)⊗C Q•(m)). (2.5.3.14)

We have that

HomA(V,DM)⊗C Q•(m)' HomA(V,DM)(m)⊗C(m) Q(m)• ' HomA(m)(V (m),DM(m))⊗C(m) Q(m)•,

(2.5.3.15)

where Q(m)• is a projective C(m)-resolution of V (m). Hence,

Hi+ j(HomA(V,DM)⊗C Q•(m)) = TorC(m)
i+ j (HomA(m)(V (m),DM(m)),V (m)) (2.5.3.16)

and

H j(HomA(V,DM)⊗C Q•) = TorC
j (HomA(V,DM),C). (2.5.3.17)

Thus, for every maximal ideal m in R,

E2
i, j = TorR

i (TorC
j (HomA(V,DM),V ),R(m)) =⇒ TorC(m)

i+ j (HomA(m)(V (m),DM(m)),V (m)). (2.5.3.18)

We shall prove by induction on 1≤ i≤ n−2 that TorC
j (HomA(V,DM),V ) = 0. By Lemma 1.3.7 there is an exact

sequence

E2
2,0→ E2

0,1→ TorC(m)
1 (HomA(m)(V (m),DM(m)),V (m)) = 0. (2.5.3.19)

As HomA(V,DM)⊗C V ∈ R-proj, E2
2,0 = TorR

2 (HomA(V,DM)⊗C V,R(m)) = 0. Thus, for every maximal ideal m
in R, 0 = E2

0,1 = TorC
1 (HomA(V,DM),V )⊗R R(m). Therefore, TorC

1 (HomA(V,DM),V ) = 0.
Assume now that TorC

l (HomA(V,DM),V ) = 0 for some 1≤ l < n−2. Then,

E2
i, j = TorR

i (TorC
j (HomA(V,DM),V ),R(m)) = TorR

i (0,R(m)) = 0, 1≤ j ≤ l, i≥ 0. (2.5.3.20)

By Lemma 1.3.11, there exists an exact sequence

E2
l+2,0→ E2

0,l+1→ TorC(m)
l+1 (HomA(m)(V (m),DM(m)),V (m)) = 0, (2.5.3.21)

where E2
l+2,0 = TorR

l+2(HomA(V,DM)⊗C V,R(m)) = 0. Therefore, E2
0,l+1 = TorC

l+1(HomA(V,DM),V )(m) = 0,
for every maximal ideal m in R. Therefore, TorC

l+1(HomA(V,DM),V ) = 0. Hence, we obtain

TorC
i (HomA(V,DM),V ) = 0, 1≤ i≤ n−2. (2.5.3.22)

By Theorem 2.4.15, domdim(A,R) M ≥ n.

Combining this theorem with Proposition 2.5.10, we deduce that the computation of relative dominant di-
mension of a projective Noetherian R-algebra can be reduced to computing the dominant dimension of finite-
dimensional algebras over algebraically closed fields. This shows that the dominant dimension is more static
under change of ring than other homological invariants. For example, the global dimension of an algebra can
heavily depend on the ground field of the algebra.
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2.5.3.1 Base change property

This reduction theorem also explains the meaning behind the generators relative cogenerators which arise in the
relative Morita-Tachikawa correspondence. These are the ones that make its endomorphism algebra admit a base
change property like the Schur algebra.

Proposition 2.5.14. Let B be a projective Noetherian algebra over a commutative Noetherian ring R. Let M ∈
B-mod∩R-proj be a B-generator (B,R)-cogenerator. The following assertions are equivalent.

(i) DM⊗B M ∈ R-proj.

(ii) For every commutative R-algebra S, S⊗R EndB(M)op ' EndS⊗RB(S⊗R M)op as S-algebras.

Proof. Assume that DM⊗B M ∈ R-proj holds. Let S be a commutative R-algebra. Denote by DS the standard
duality over S. As S⊗R− preserves coproducts,

DS(S⊗R M)⊗S⊗RB S⊗R M = HomS(S⊗R M,S)⊗S⊗RB S⊗R M ' S⊗R HomR(M,R)⊗B M ∈ S-proj . (2.5.3.23)

Denote by µ the canonical map S⊗R HomB(M,M)→ HomS⊗RB(S⊗R M,S⊗R M). By Proposition 1.1.30, the
canonical map S⊗R DM⊗B M→DS(S⊗R M)⊗S⊗RB S⊗R M is an isomorphism. Consider the following commu-
tative diagram

DS HomS⊗RB(S⊗R M,S⊗R M) DS(S⊗R HomB(M,M))

DS(S⊗R M)⊗S⊗RB S⊗R M S⊗R DM⊗B M

DSµ

' '

'

, (2.5.3.24)

where the columns are isomorphisms by Proposition 1.1.65 since

DM⊗B M ∈ R-proj, DS(S⊗R M)⊗S⊗RB S⊗R M ∈ S-proj . (2.5.3.25)

Consequently, DSµ is an isomorphism. Again, since DS(S⊗R M)⊗S⊗RB S⊗R M ∈ S-proj it follows that µ is
bijective.

Conversely, assume that (ii) holds. In particular, for every maximal ideal m in R, EndB(m)(M(m)) '
EndB(M)(m). Since R(m)⊗R− preserves direct sums, we get that M(m) is a generator-cogenerator over B(m).
Hence, by Morita-Tachikawa correspondence, domdimEndB(m)(M(m))op ≥ 2. Now, for each maximal ideal m
in R, (ii) yields domdimEndB(M)op(m)≥ 2. By Proposition 2.5.3, M is a projective (EndB(M)op,R)-injective-
strongly faithful EndB(M)op-module. By Proposition 2.5.13, domdim(EndB(M)op,R) ≥ 2. By relative Morita-
Tachikawa correspondence, DM⊗B M ∈ R-proj.

As usual, we can compare this situation with what happens to regular rings with Krull dimension at most one.

Lemma 2.5.15. Let R be a commutative Noetherian regular ring with Krull dimension at most one. Then, the

canonical map S⊗R HomA(M,X)→HomS⊗RA(S⊗R M,S⊗R X) is a monomorphism for every M,X ∈ A-mod and

every commutative R-algebra S.

Proof. Let M,X ∈ A-mod and let S be a commutative R-algebra. Consider a projective presentation over A

P1→ P0→M→ 0. (2.5.3.26)

The functor HomS⊗RA(−,S⊗R X) ◦ S⊗R− : A-mod→ S⊗R A-mod is contravariant left exact. So, the induced
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sequence

0→ HomS⊗RA(S⊗R M,S⊗R X)→ HomS⊗RA(S⊗R P0,S⊗R X)→ HomS⊗RA(S⊗R P1,S⊗R X) (2.5.3.27)

is exact. The functor HomA(−,X) is left exact, thus we have the exact sequence

0→ HomA(M,X)→ HomA(P0,X)→ HomA(P1,X). (2.5.3.28)

Denote by f the map HomA(M,X)→ HomA(P0,X). By exactness of (2.5.3.28), the cokernel of f is a sub-
module of HomA(P1,X). Since dimR ≤ 1, the cokernel of f is projective over R. In particular, f is a split
R-monomorphism and so it remains a monomorphism under S⊗R−. Using the commutative diagram

S⊗R HomA(M,X) S⊗R HomA(P0,X)

HomS⊗RA(S⊗R M,S⊗R X) HomS⊗RA(S⊗R P0,S⊗R X)

S⊗R f

' , (2.5.3.29)

we conclude that the canonical map S⊗R HomA(M,X)→ HomS⊗RA(S⊗R M,S⊗R X) is a monomorphism.

2.6 Dominant dimension, global dimension and Nakayama’s conjecture

In order to compare the relative global dimension with the relative global dimension we need the following result.
The argument is essentially Lemma 5.5 of [ARS95, C. VI].

Lemma 2.6.1. Let A be a projective Noetherian R-algebra. Then,

idim(A,R) AA = pdimA DA = sup{m : ExtmA (DA,A) 6= 0} ≤ idimAA. (2.6.0.1)

Moreover, if gldimA <+∞, then gldimA = idimA.

Proof. Since DA is projective over R, it is clear using the standard duality D that pdimDA = idim(A,R) AA.
Let M ∈ A-mod∩R-proj with finite projective dimension n. We claim that ExtnA(M,A) 6= 0. So, by contradic-

tion assume that ExtnA(M,A) = 0. Let

0→ Pn
h−→ Pn−1→ ··· → P1→ P0→M→ 0 (2.6.0.2)

be a projective A-resolution of M. Applying HomA(−,Pn) to (2.6.0.2) we get the surjective map HomA(Pn−1,Pn)→
HomA(Pn,Pn). So, there exists f ∈ HomA(Pn−1,Pn) such that idPn = f ◦h. So, Pn is an A-summand of Pn−1, and
therefore we can remove Pn from the projective resolution. This would imply that pdimA M ≤ n−1.

It is clear that ExtpdimA DA+i
A (DA,A) = 0 for any i > 0. Hence, by the previous argument, it follows that

(2.6.0.1) holds.
Assume that gldimA is finite. Consider the A-module M = ⊕X∈A-modX . Then, n = pdimA M = gldimA. In

particular, ExtnA(M,A) 6= 0. So, idimA ≥ gldimA. It is clear by definition, that gldimA ≥ idimA. Since left and
right global dimension coincide for algebras over Noetherian rings, we get idim AA = idimAA.

As for finite-dimensional algebras, the relative dominant dimension of Noetherian algebras is bounded by the
global dimension.
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Proposition 2.6.2. Let A be a projective Noetherian R-algebra. If domdim(A,R)< ∞, then

domdim(A,R)≤ gldim f (A,R), domdim(A,R)≤ gldimA.

Proof. Assume that domdim(A,R) = n <+∞. So, there exists an (A,R)-exact sequence

0→ A→ X0→ X1→ ·· · → Xn−1, (2.6.0.3)

with all Xi being (A,R)-injective projective over A. Applying D we obtain the right A-exact sequence

DXn−1→ ··· → DX1→ DX0→ DA→ 0. (2.6.0.4)

In particular, there exists an exact sequence

0→ Kn−2→ DXn−2→ ·· · → DX1→ DX0→ DA→ 0. (2.6.0.5)

By contradiction, assume that n > pdimA DA. Since all DXi are projective over A, it follows that Kn−2 must be
projective over A. Hence, DKn−2 is (A,R)-injective and projective over R. Moreover, we have a factorization

Xn−2 Xn−1

DKn−2

, (2.6.0.6)

and the monomorphism is an (A,R)-monomorphism since this factorization is given by (2.6.0.3). So, it must split
over A, and therefore DKn−2 is also projective over A. Applying D to (2.6.0.5), it follows that domdim(A,R) is
infinite. Therefore, we must have

gldim f (A,R)≥ idim(A,R) AA = pdimA DA≥ n = domdim(A,R)

gldimA≥ pdimA DA≥ n = domdim(A,R).

Theorem 2.6.3. If the Nakayama conjecture holds for finite-dimensional algebras over a field, then the relative

Nakayama Conjecture holds for any projective Noetherian algebra over a commutative Noetherian ring.

Proof. Assume that domdim(A,R) = +∞. By Theorem 2.5.13, domdimA(m) = +∞ for every maximal ideal m
in R. If the Nakayama conjecture holds for finite-dimensional algebras over fields, then A(m) is A(m)-injective,
for every maximal ideal m in R. As A is projective when regarded as R-module, it follows that the (left) regular
module A is (A,R)-injective by Theorem 1.2.57. In the same way, the right regular module A is (A,R)-injective.
Thus, A is a relative self-injective R-algebra.

2.7 Orders of Finite Lattice Type

When the ground ring R is a Dedekind domain, projective Noetherian R-algebras A are known in the literature
as R-orders. For a more detailed exposure of representation theory of R-orders, we refer to [Rei70]. The
modules belonging to A-mod∩R-proj are known as A-lattices. Let F be the quotient field of R, then F ⊗R A is
a finite-dimensional algebra over F . We can identify A with 1⊗R A, so A is embedded in the finite-dimensional
algebra F ⊗R A. The same idea holds for the A-lattices. Every A-lattice M can be embedded in the vector
space F ⊗R M. The (A,R)-monomorphisms also receive special attention in order theory. Given two A-lattices
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M,N, M is said to be R-pure A-sublattice of N if there exists an (A,R)-monomorphism M→ N. Moreover, the
(A,R)-monomorphisms arise as inclusions of F⊗R A-modules.

Theorem 2.7.1. [Zas38] Let R be a Dedekind domain and let A be an R-order. Let F be the quotient field of R.

Given any A-lattice N, there is a bijection between A-submodules W of F⊗R N and R-pure A-sublattices M of N.

The correspondence is given by

M = N∩W, W = F⊗R M.

Moreover, each V ∈ F⊗R A-mod is of the form F⊗R N for some A-lattice N in V .

We can deduce in this section that the characterization of orders of Finite Lattice-Type by Auslander and
Roggenkamp [AR72] is a particular case of relative Morita-Tachikawa correspondence (Theorem 2.4.12). We
say that an R-order A has finite lattice-type if A has a finite number of indecomposable A-lattices. Otherwise,
we say that A is of infinite lattice-type.

By [Fad65, Proposition 25.1], if F ⊗R A is not semi-simple, then A is of infinite lattice type. We remark
that semi-simple algebras over algebraic number fields are separable. In [AR72], R is assumed to be a complete
discrete valuation ring such that its quotient field is a completion of an algebraic number field. This is due to the
following fact:

Theorem 2.7.2. [Kne66, Jon63] Let R be a Dedekind domain such that its quotient field is an algebraic number

field. Let G be a finite group and RG the group algebra of G over R. Then, RG is of finite lattice type if and only

if R̂Gm is of finite lattice type for every maximal ideal m in R.

This reduction technique is useful because for every Noetherian algebra over a commutative Noetherian local
complete ring, A, A-mod is a Krull-Schmidt category. In particular, this allowed Jones, Heller and Reiner to
completely determine all group algebras of finite type.

Theorem 2.7.3. Let R be a local complete discrete valuation ring such that its quotient field K is a completion

of an algebraic number field. There is a bijection between

A :
A an R-order in a

semi-simple K-algebra

of finite type


/
∼←→

B :

B an R-order in a semi-simple K-algebra with

domdim(B,R)≥ 1,gldimB≤ 2,
and all minimal (B,R)-injective-strongly faithful

projective satisfy the double centralizer property


/

iso

In this notation, B∼ B′ if and only if B and B′ are Morita equivalent. This is correspondence is given by:

A 7→ B = EndA(G)op

(EndB(N))← [ B

where N is a projective (B,R)-injective-strongly faithful right B-module and G is an additive generator of

A-mod∩R-proj.

Proof. Let A be an R-order such that K⊗R A is a semi-simple algebra and A is of finite type. Consider G=⊕i∈IMi,
where Mi are all non-isomorphic indecomposable A-lattices for some finite set I. In particular, every module of
A-mod belongs to addG. Thus, G is an additive generator of A-mod. So, G is a generator (A,R)-cogenerator. As
A ∈ R-proj, it follows by Theorem 2.4.12 that B = EndA(G)op has relative dominant dimension domdim(B,R)

greater than or equal to one and all minimal projective (B,R)injective-strongly faithful modules satisfy the double
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centralizer property between A and B. Since K is flat as R-module B is an R-order in the semi-simple K-algebra

K⊗R B = K⊗R EndA(G)' EndK⊗RA(K⊗R G). (2.7.0.1)

In fact, K⊗R G is a semi-simple module over K⊗R A and consequently, its endomorphism algebra is semi-simple
by the Wedderburn Theorem. It remains to show that gldimB≥ 2.

Let X ∈ B-mod. Let P1
h−→ P0→ X → 0 be a projective B-presentation of X . By projectivization, the functor

HomA(G,−) : A-mod→ B-mod induces an equivalence between A-mod∩R-proj = addG and B-proj. Hence,
there exist modules M0,M1 ∈ A-mod∩R-proj such that Pi ' HomA(G,Mi), i = 0,1. Further, there exists a map
f ∈ HomA(M1,M0) satisfying h = HomA(G, f ). Consider the exact sequence

0→ ker f →M1
f−→M0. (2.7.0.2)

Applying HomA(G,−) yields the exact sequence

0→ HomA(G,ker f )→ P1
h−→ P0→ X → 0. (2.7.0.3)

R has Krull dimension one, therefore ker f is an A-lattice. This shows that HomA(G,ker f ) ∈ addHomA(G,G) =

B-proj. Hence, pdimB X ≥ 2.
Conversely, assume that B is an R-order in a semi-simple K-algebra K⊗R B with domdim(B,R)≥ 1, gldimB≤

2 and all minimal (B,R)-injective-strongly faithful projective modules M satisfy a double centralizer property be-
tween B and EndB(M). Let M be a B-lattice such that (B,DM,M) is a relative QF3 R-algebra. By Theorem 2.4.12,
A = EndB(M) ∈ R-proj and M is an A-generator (A,R)-cogenerator such that B' EndA(M)op as R-algebras. So,
A is an R-order in the semi-simple K-algebra

K⊗R A' K⊗R EndB(M)' EndK⊗RB(K⊗R M). (2.7.0.4)

Since A-mod is a Krull-Schmidt category, the number of indecomposable A-lattices summands of M is finite and
unique up to isomorphism. Therefore, it is enough to prove that addA M = A-mod∩R-proj.

Let X ∈ A-mod∩R-proj. Let 0→ X → I0→ I1 be the standard (A,R)-injective resolution of X . Applying the
functor HomA(M,−) yields the B-exact sequence

0→ HomA(M,X)→ HomA(M, I0)→ HomA(M, I1)→ Y → 0, (2.7.0.5)

for some Y ∈ B-mod. Now, the fact that M is an (A,R)-cogenerator implies that HomA(M, Ii)∈ addHomA(M,M).
The projective dimension of Y is at most two, and consequently, HomA(M,X) is projective over B. By projec-
tivization, there exists M0 ∈ addA M satisfying HomA(M,X) ' HomA(M,M0). Now, thanks to the exactness of
M⊗B− and the standard (A,R)-injective resolution of X , M0 'M⊗B HomA(M,X) is isomorphic to X .

2.8 Classification of relative torsionless modules and reflexive modules

Given M ∈ A-mod, we say that M is (A,R)-torsionless if there exists a projective module P ∈ A-proj and an
(A,R)-monomorphism M→ P.

Lemma 2.8.1. Every strongly (A,R)-torsionless (A,R)-injective module is projective over A.

Proof. Let M be an (A,R)-torsionless (A,R)-injective module. By definition, there exists an (A,R)-monomorphism
M → P for some projective A-module. Since M is (A,R)-injective, this monomorphism splits over A. Thus,
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M ∈ addP. So, M is projective over A.

In the next theorem, the relative injective hull of a module M, when it exists, is the dual of the projective
cover in the opposite algebra of the dual of M. We will denote by IR(M) the relative injective hull of M. More
precisely, given M ∈ A-mod, IR(M) = HomR(P(DM),R), where P(DM) denotes the projective cover of DM in
Aop-mod.

Proposition 2.8.2. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra over a commutative Noetherian ring

and relative QF3 R-algebra. The following assertions are equivalent.

(i) domdim(A,R) ∆(λ )≥ 1 for every λ ∈ Λ.

(ii) domdim(A,R) T ≥ 1 for a characteristic tilting module T .

(iii) Every module in F (∆̃) is (A,R)-strongly torsionless and F (∆̃m) is closed under relative injective hulls

for every maximal ideal m in R.

Proof. (i) =⇒ (iii). For every Uλ ∈ R-proj, ∆(λ )⊗R Uλ ∈ add∆(λ ). So, domdim(A,R) ∆(λ )⊗R Uλ ≥ 1 for every
λ ∈ Λ and Uλ ∈ R-proj. It follows by Lemma 2.4.25 that domdim(A,R) M ≥ 1 for every module M ∈F (∆̃). So,
there is an (A,R)-monomorphism M→ P for an (A,R)-injective projective module. In particular, every module
M ∈F (∆̃) is (A,R)-strongly torsionless. Let m be a maximal ideal in R. By Theorems 1.5.84 and 1.5.69, Am

and Aop
m are semi-perfect algebras. Let M ∈F (∆̃m). Then, DmM ∈F (∇̃m). Let P be the projective cover of

DmM.
By Proposition 2.5.8, domdim(Am,Rm) M ≥ 1. Hence, there exists a projective (Am,Rm)-injective module

I and an (Am,Rm)-monomorphism M → I. So, DmI is (Am,Rm)-injective and DmI → DmM is surjective.
Thus, P ∈ addDmI. Consequently P is right (Am,Rm)-injective. Thus, IRm(M) = DP is projective over Am. In
particular, IRm(M) ∈F (∆̃m).

(iii) =⇒ (ii). Let m be a maximal ideal in R. Then, Tm is a characteristic tilting module in Am. By assump-
tion, IRm(Tm)∈F (∆̃m). By localizing at m, it follows that every module in F (∆̃m) is (Am,Rm)-strongly torsion-
less. Furthermore, the relative injective hull of Tm IRm(Tm) is (Am,Rm)-strongly torsionless. By Lemma 2.8.1,
IRm(Tm) is a projective (Am,Rm)-injective Am-module. Using the (Am,Rm)-monomorphism Tm→ IRm(Tm) we
deduce that domdim(Am,Rm) Tm ≥ 1. By Proposition 2.5.7, (ii) follows.

(ii) =⇒ (i). For every λ ∈ Λ, there is an (A,R)-monomorphism ∆(λ )→ T (λ ) since its cokernel belongs
to F (∆̃), and therefore it is projective over R. By Corollary 2.4.23, domdim(A,R) T (λ ) ≥ 1. So, there exists an
(A,R)-injective projective module P and an (A,R)-monomorphism T (λ )→ P. Hence, the composition of maps
∆(λ )→ T (λ )→ P gives domdim(A,R) ∆(λ )≥ 1.

In [FKY18] Fang, Kerner and Yamagata showed that the theory of dominant dimension over finite dimen-
sional algebras over a field was related to the exactness of left adjoint of the double dual functor

(−)∗∗ : A-Mod→ A-Mod, M 7→ HomAop(HomA(M,A),A). (2.8.0.1)

For relative dominant dimension, the relevant functor to consider is the following functor

O : A-Mod→Mod-A, M 7→ HomA(M,A)⊗A DA. (2.8.0.2)

Proposition 2.8.3. Let (A,P,V ) be a relative QF3 R-algebra with domdim(A,R)≥ 2.

Define the natural transformation γ : O → D with morphisms γX : HomA(X ,A)⊗A DA → DX, given by

γX ( f ⊗g)(x) = g( f (x)), f ⊗g ∈ HomA(X ,A)⊗A DA, x ∈ X.
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There exists a natural equivalence Σ : HomA(V,D−)⊗C V →O making the following diagram commutative:

HomA(V,DX)⊗C V OX

DX DX

'

ΦX γX , ∀X ∈ A-Mod . (2.8.0.3)

Proof. Let X ∈ A-mod. By assumption ΦA : HomA(V,DA)⊗C V → DA is an isomorphism. Consider the C-
isomorphism
κX : HomA(V,DX)→ HomR(V ⊗A X ,R)→ HomA(X ,DV ) given by κX (g)(x)(v) = g(v)(x), g ∈ HomA(V,DX),
x ∈ X , v ∈V . By Tensor-Hom adjunction the following composition of C-maps is a C-isomorphism

HomA(V,DX) HomA(X ,DV ) HomA(X ,HomA(HomA(DV,A),A))

HomA(HomA(DV,A),HomA(X ,A)) HomA(HomA(DV,A)⊗A X ,A)

κX HomA(X ,wDV )

ρX ,HomA(DV ,A)

σHomA(DV ,A),X

.

(2.8.0.4)
Denote this isomorphism by Σ

(1)
X . By Tensor-Hom adjunction and since DV ∈ Aop-proj the following map is an

C-isomorphism

HomA(X ,A)⊗A DV
HomA(X ,A)⊗AwDV−−−−−−−−−−−→ HomA(X ,A)⊗A (DV )∗∗

ψHomA(DV,A)−−−−−−−→ HomA(HomA(DV,A),HomA(X ,A)).

Denote this isomorphism by Σ
(2)
X . We claim that the following diagram is commutative:

HomA(X ,A)⊗A DV ⊗C V HomA(X ,A)⊗A DA

HomA(HomA(DV,A),HomA(X ,A))⊗C V HomA(V,DX)⊗C V DX

Σ
(2)
X ⊗C idV

HomA(X ,A)⊗AΦA

γX

ΦXΣ
(1)
X ⊗C idV

. (2.8.0.5)

First, note that Σ
(1)
X
−1

= κ
−1
X ◦HomA(X ,wDV )

−1 ◦σX ,HomA(DV,A) ◦ρHomA(DV,A),X . Let g ∈ HomA(X ,A), f ∈ DV ,
v ∈V , x ∈ X . Then,

ΦX ◦Σ
(1)
X
−1
⊗C idV ◦Σ(2)

X ⊗C idV (g⊗ f ⊗ v)(x) = ΦX ◦Σ
(1)
X
−1
⊗C idV (ψHomA(DV,A) ◦HomA(X ,A)⊗A wDV )(g⊗ f ⊗ v)(x)

= ΦX ◦Σ
(1)
X
−1
⊗C idV (ψHomA(DV,A)(g⊗wDV ( f )⊗ v)(x) (2.8.0.6)

= ΦX ◦Σ
(1)
X
−1
⊗C idV (gwDV ( f )(−)⊗ v)(x) (2.8.0.7)

= Σ
(1)
X
−1
(gwDV ( f )(−))(v)(x) (2.8.0.8)

= κ
−1
X ◦HomA(X ,wDV )

−1 ◦σX ,HomA(DV,A) ◦ρHomA(DV,A),X (gwDV ( f )(−))(v)(x). (2.8.0.9)

Let h ∈ HomA(DV,A), then

σX ,HomA(DV,A) ◦ρHomA(DV,A),X (gwDV ( f )(−))(x)(h) = ρHomA(DV,A),X (gwDV ( f )(−))(h⊗ x) (2.8.0.10)

= gwDV ( f )(−)(h)(x) = (g ·wDV ( f )(h))(x) = (g ·h( f ))(x) = g(x)h( f ). (2.8.0.11)

Note that γX HomA(X ,A)⊗A ΦA(g⊗ f ⊗−)(−) ∈ HomA(V,DX). In fact, for a ∈ A,

γX HomA(X ,A)⊗A ΦA(g⊗ f ⊗−)(−)(va)(x) = γX (g⊗ f (va(−))(x) = f (v ·ag(x)) = f (vg(ax)) (2.8.0.12)

= γX HomA(X ,A)⊗A ΦA(g⊗ f ⊗−)(−)(v)(ax) (2.8.0.13)
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= (γX HomA(X ,A)⊗A ΦA(g⊗ f ⊗−)(−) ·a)(v)(x). (2.8.0.14)

Now, observe that,

HomA(X ,wDV )κX (γX ◦HomA(X ,A)⊗A ΦA(g⊗ f ⊗−)(−))(x)(h) = wDV κX (γX (g⊗ΦA( f ⊗−)(x)(h) (2.8.0.15)

= h(κX (γX (g⊗ΦA( f ⊗−)(x)) (2.8.0.16)

= h(γX (g⊗ΦA( f ⊗−)(x) (2.8.0.17)

= h(ΦA( f ⊗−)(g(x)) (2.8.0.18)

= h( f (−·g(x)) = h(g(x) · f ) = g(x)h( f ).

Therefore, combining ( 2.8.0.15), (2.8.0.12) and (2.8.0.11) we get

γX ◦HomA(X ,A)⊗A ΦA)(g⊗ f ⊗−)(−) = Σ
(1)
X
−1
(gwDV ( f )(−)). (2.8.0.19)

It follows that the diagram (2.8.0.5) is commutative.
Let ΣX be the composition (HomA(X ,A)⊗A ΦA)

−1 ◦ (Σ(2)
X ⊗C idV )

−1 ◦ Σ
(1)
X ⊗C idV . Since all these maps

are functorial then Σ is a natural equivalence between the functors HomA(V,D−)⊗C V and O which satisfies
γX ◦ΣX = ΦX for all X ∈ A-mod.

Theorem 2.8.4. Let (A,P,V ) be a relative QF3 R-algebra with domdim(A,R)≥ 2. Let M ∈ A-mod∩R-proj. The

following assertions are equivalent.

(i) M is (A,R)-torsionless.

(ii) domdim(A,R) M ≥ 1.

(iii) The map ΦM : HomA(V,DM)⊗C V → DM is surjective.

(iv) The map γM : HomA(M,A)⊗A DA→ DM is surjective.

The following assertions are equivalent.

(a) M is A-reflexive and HomA(M,A)⊗A DA ∈ R-proj.

(b) domdim(A,R) M ≥ 2.

(c) The map ΦM : HomA(V,DM)⊗C V → DM is bijective.

(d) The map γM : HomA(M,A)⊗A DA→ DM is bijective.

Proof. By Proposition 2.8.3, the implications (iii)⇔ (iv) and (c)⇔ (d) hold. By relative Mueller characteriza-
tion 2.4.7, (ii)⇔ (iii) and (b)⇔ (c) follow. Assume that (i) holds. Since domdim(A,R)≥ 1 there exists a pro-
jective (A,R)-injective module X such that A→ X is an (A,R)-monomorphism. Using the (A,R)-monomorphism

M→ P→ At → X t (2.8.0.20)

(ii) follows. Assume that (ii) holds. Then, there exists an (A,R)-monomorphism of M into a projective (A,R)-
injective A-module. In particular, M is (A,R)-torsionless.

It remains to show that (a) is equivalent to (d).
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The diagram

DDM D(HomA(M,A)⊗A DA)

M HomA(HomA(M,A),A)

DγM

τM

wM κ ' (2.8.0.21)

is commutative. In fact, for m ∈M, f ∈ HomA(M,A), g ∈ DA,

κτM(m)( f ⊗g) = g(τM(m)( f )) = g( f (m)), (2.8.0.22)

DγM ◦wM(m)( f ⊗g) = HomR(γM,R)wM(m)( f ⊗g) = wM(m)◦ γM( f ⊗g) = γM( f ⊗g)(m) (2.8.0.23)

= g( f (m)). (2.8.0.24)

Assume that (a) holds. Then, τM is an isomorphism. So, by the diagram (2.8.0.21) DγM is an isomorphism.
Since HomA(M,A)⊗A DA ∈ R-proj, γM is an isomorphism. Assume now that (d) holds. As DM ∈ R-proj, it
follows that HomA(M,A)⊗A DA ∈ R-proj. Also, DγM is an isomorphism. By the diagram (2.8.0.21), τM is an
isomorphism. So, M is A-reflexive.

2.9 Relative Morita algebras

We shall now introduce a generalization of Morita algebras introduced in [KY13] to algebras over commutative
Noetherian rings. This also generalizes [Cru21, Theorem 11] and [FHK21, Proposition 2.9].

Theorem 2.9.1. Let A be a projective Noetherian algebra over a commutative Noetherian ring R. The following

assertions are equivalent.

(a) (A,P,DP) is a relative QF3 R-algebra so that domdim(A,R) ≥ 2 and the restriction of the Nakayama

functor DA⊗A− : addP→ addP is well defined;

(b) (A,P,DP) is a relative QF3 R-algebra so that domdim(A,R)≥ 2 and addA DA⊗A P = addA P.

(c) A is the endomorphism algebra of a generator M ∈ B-mod∩R-proj satisfying DM⊗B M ∈ R-proj over a

relative self-injective R-algebra, where B ∈ R-proj.

(a’) (A,P,DP) is a relative QF3 R-algebra so that domdim(A,R) ≥ 2 and the restriction of the Nakayama

functor −⊗A DA : addDP→ addDP is well defined;

(b’) (A,P,DP) is a relative QF3 R-algebra so that domdim(A,R)≥ 2 and addA DP⊗A DA = addA DP.

Proof. We will show (b) =⇒ (a) =⇒ (c) =⇒ (b). The implications (b′) =⇒ (a′) =⇒ (c) =⇒ (b′) are
analogous.

The implication (b) =⇒ (a) is clear since DA⊗A X ∈ addDA⊗A P = addP for all X ∈ addA P.
Assume that (a) holds. By relative Morita-Tachikawa correspondence (see Theorem 2.4.10) P⊗B DP ∈

R-proj, B = EndA(P)op = EndA(DP) and A ' EndB(P) ' EndB(DP)op. It remains to show that B is relative
self-injective. But this follows immediately from observing that

B = HomA(P,P)' HomA(P,A)⊗A P' D(DA⊗A P)⊗A P ∈ addDP⊗A P = addDB. (2.9.0.1)

Hence, B is (B,R)-injective.
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Finally, assume that (c) holds. By the relative Morita-Tachikawa correspondence, domdim(A,R)≥ 2 so that
(A,DM,M) is a relative QF3 R-algebra and A = EndB(M)op. Moreover,

DA⊗A DM ' DM⊗B M⊗A DM ' DM⊗B DB. (2.9.0.2)

Since B is a relative self-injective R-algebra DB is a B-progenerator. Hence, addA DM⊗B DB = addA DM. This
completes the proof.

The pair (A,P) (or (A,DP) if one prefers to work with right modules) is called a relative Morita R-algebra
if it satisfies one of the conditions of Theorem 2.9.1.

Using Theorem 2.9.1(c), we see that relative Morita algebras generalize relative self-injective algebras.

2.10 Relative Gendo-symmetric algebras

Definition 2.10.1. Let B be a projective Noetherian algebra over a commutative Noetherian ring R. B is said to
be a relative symmetric R-algebra if there exists a (B,B)-bimodule isomorphism DB' B.

Using the proof of Proposition 2.2.6, we see that group algebras RG are relative symmetric R-algebras for
any commutative Noetherian ring R and finite groups G. We refer to [Yam96] for the study of symmetric finite
dimensional algebras. We see that over finite-dimensional algebras, the concept of relative symmetric algebra
coincides with the concept of symmetric algebra (see [Yam96, Theorem 2.3.1]). A commutative Noetherian ring
R is always a relative symmetric R-algebra. So it might happen that a Noetherian algebra is relative symmetric
over one commutative Noetherian ring and not being relative symmetric over another unlike finite-dimensional
algebras which remain symmetric even if we change the ground field (not necessarily by extension of scalars).

Theorem 2.10.2. Let A be a projective Noetherian algebra over a commutative Noetherian ring R. The following

assertions are equivalent.

(a) domdim(A,R) ≥ 2 and V ' V ⊗A DA as (EndA(V ),A)-bimodules where V is a right projective (A,R)-

injective-strongly faithful module.

(b) domdim(A,R) ≥ 2 and P ' DA⊗A P as (A,EndA(P)op)-bimodules where P is a left projective (A,R)-

injective-strongly faithful module.

(c) A is the endomorphism algebra of a generator M ∈ B-mod∩R-proj satisfying DM⊗B M ∈ R-proj over a

relative symmetric R-algebra.

Proof. Assume that (a) holds. Let B=EndA(V ). By relative Morita-Tachikawa correspondence 2.4.10, V is a left
B-generator satisfying DV ⊗B V ∈ R-proj and A = EndB(V )op. In particular DA'DV ⊗B V as (A,A)-bimodules.
Furthermore, DV ' D(V ⊗A DA)' HomA(V,A) as (A,B)-bimodules. Thus, as (B,B)-bimodules

DB'V ⊗A DV 'V ⊗A HomA(V,A)' HomA(V,V )' B. (2.10.0.1)

Hence, B is a relative symmetric R-algebra. So, (c) follows.
Conversely, assume that (c) holds. Every generator over a relative symmetric algebra is a generator relative

cogenerator. By relative Morita-Tachikawa correspondence 2.4.10, A=EndB(M)op has domdim(A,R)≥ 2 and M

is a projective (A,R)-injective-strongly faithful right module. In particular, DA'DM⊗B M as (A,A)-bimodules.
Moreover, as (B,A)-bimodules

M⊗A DA'M⊗A DM⊗B M ' DB⊗B M ' B⊗B M 'M.
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Analogously, one can show the equivalence between (b) and (c)

Let A be a projective Noetherian algebra over a commutative Noetherian ring R. By a relative gendo-
symmetric R-algebra we mean a pair (A,V ) satisfying (a) and (c) of Theorem 2.10.2 or a pair (A,P) satisfying
(b) and (c) of Theorem 2.10.2.

Proposition 2.10.3. Let (A,V ) be a relative gendo-symmetric R-algebra. Then,

(i) DA⊗A DA' DA as (A,A)-bimodules.

(ii) DV ' DA⊗A DV as (A,EndA(V ))-bimodules.

Proof. Let B = EndA(V ). We can identify as (A,A)-bimodules

DA⊗A DA' DV ⊗B V ⊗A DV ⊗B V ' DV ⊗B DB⊗B V ' DV ⊗B B⊗B V ' DV ⊗B V ' DA. (2.10.0.2)

So, (i) follows. By assumption, V 'V ⊗A DA as (B,A)-bimodules. Hence, as (A,B)-bimodules

DV ' D(V ⊗A DA)' HomA(V,DDA)' HomA(V,A). (2.10.0.3)

In particular, there exists an (A,B)-bimodule isomorphism

DA⊗A DV ' DA⊗A HomA(V,A)' HomA(V,DA)' HomR(V ⊗A A,R)' DV.

Over fields, these class of algebras were introduced by Fang and Koenig in [FK11a] to give an homological
characterization of a class of algebras that generalize Schur algebras and the category O .

Proposition 2.10.3 allows us to construct a comultiplication on A in the same fashion as in [FK16]. The
advantage here is of course that the ground ring is any commutative Noetherian ring instead of a field.

A question that arises in this setup is whether the condition (i) in Proposition 2.10.3 is enough to deduce that
there exists V ∈ proj(A) such that (A,V ) is a relative gendo-symmetric R-algebra. The difficulty lies in fact in the
construction of V . It is also unclear for the author if an algebra being symmetric can be characterized in terms of
closed points.

2.11 Application to class A of Koenig and Fang

The following is based on Corollary 3.7 of [FK11b].

Theorem 2.11.1. Let A be a split quasi-hereditary algebra over a commutative Noetherian ring and a relative

QF3 R-algebra. Let T be a characteristic tilting module. Then,

domdim(A,R) T = min{domdim(A,R) ∆(λ ) : λ ∈ Λ}= min{domdim(A,R) M : M ∈F (∆̃)}. (2.11.0.1)

Proof. Denote by c the value min{domdim(A,R) ∆(λ ) : λ ∈Λ} and λ0 the index such that domdim(A,R) ∆(λ0) = c.
Let M ∈F (∆̃). By Lemma 2.4.25,

domdim(A,R) M ≥min{domdim(A,R) ∆(λ )⊗R Uλ : λ ∈ Λ, Uλ ∈ R-proj}= c, (2.11.0.2)

since ∆(λ )⊗R Uλ ∈ add∆(λ ). Consider the (A,R)-exact sequence

0→ ∆(λ0)→ T (λ0)→ X(λ0)→ 0, (2.11.0.3)
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given by Proposition 1.5.109. By Lemma 2.4.25,

domdim(A,R) T (λ0)≥min{domdim(A,R) ∆(λ0),domdim(A,R) X(λ0)}.

Since X(λ0) ∈F (∆̃) we obtain domdim(A,R) X(λ0)≥ c. Hence, min{domdim(A,R) ∆(λ0),domdim(A,R) X(λ0)}=
c. Assume that domdim(A,R) T (λ0)> c. Then,

domdim(A,R) X(λ0) = domdim(A,R) ∆(λ0)−1 = c−1. (2.11.0.4)

This contradicts the minimality of c. Thus,

domdim(A,R) T = min{domdim(A,R) T (λ ) : λ ∈ Λ}= c.

For any λ ∈ Λ, we define the length of λ ∈ Λ to be the length t of the longest chain λ = x0 < x1 < .. . < xt in
Λ and denote it by d(Λ,λ ). Denote by d(Λ) to be the maximum value of d(Λ,λ ) over all λ ∈ Λ.

Note that λ ∈ Λ is maximal if and only if d(Λ,λ ) = 0 and d(Λ) is bounded by |Λ|. If z > λ , then d(Λ,λ )≥
d(Λ,z)+1. In the following, we will see how the length of a weight together with the relative dominant dimension
of the algebra gives a lower bound to the relative dominant dimension of standard modules.

Proposition 2.11.2. Let (A,Λ) be a split quasi-hereditary algebra over a commutative Noetherian ring. For any

λ ∈ Λ, domdim(A,R) ∆(λ )≥ domdim(A,R)−d(Λ,λ ).

Proof. We shall prove this result by induction on d(Λ,λ ). If d(Λ,λ ) = 0, then λ is maximal in Λ. Thus, ∆(λ ) is
a projective A-module. By Corollary 2.4.23 and Lemma 2.4.25, domdim(A,R) ∆(λ )≥ domdim(A,R).

Suppose now the claim holds for all µ ∈ Λ with d(µ) < t for some t > 1. Let λ ∈ Λ such that d(λ ) = t.
Consider the (A,R)-exact sequence

0→ K(λ )→ P(λ )→ ∆(λ )→ 0, (2.11.0.5)

where K(λ ) ∈ ·µ>λ and P(λ ) ∈ A-proj. Comparing lengths, d(Λ,µ) < d(Λ,λ ) = t for µ > λ . By induction,
domdim(A,R) ∆(µ)≥ domdim(A,R)−d(Λ,µ)> domdim(A,R)−d(Λ,λ ). By Lemma 2.4.25, domdim(A,R) K(λ )>

domdim(A,R)−d(Λ,λ ). If domdim(A,R) P(λ )> domdim(A,R) K(λ ), then by Lemma 2.4.25, we have

domdim(A,R) ∆(λ ) = domdim(A,R) K(λ )−1≥ domdim(A,R)−d(Λ,λ ). (2.11.0.6)

If domdim(A,R) P(λ )≤ domdim(A,R) K(λ ), then by Lemma 2.4.25, we have

domdim(A,R) ∆(λ )≥ domdim(A,R) P(λ )−1≥ domdim(A,R)−1≥ domdim(A,R)−d(Λ,λ ).

Recall that a duality ω of an algebra A is an anti-isomorphism ω : A→ A inverse to itself fixing a suitable
set of orthogonal idempotents of A. The image of the previous orthogonal idempotents in A(m) must form a
complete set of primitive orthogonal idempotents. We say that (A,e) is a split quasi-hereditary algebra with a
duality ω if ω is a duality of A with respect to e := {e1, . . . ,et} and A is split quasi-hereditary with split heredity
chain 0⊂ AetA⊂ ·· · ⊂ A(e1 + · · ·+ et)A = A.

Theorem 2.11.3. Let A be a projective Noetherian R-algebra. Assume that the following holds.

• (A,e) is split quasi-hereditary algebra with a duality.

• (A,Ae) is a relative gendo-symmetric R-algebra for some idempotent e of A.
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Let T be a characteristic tilting module of A. Then,

domdim(A,R) = 2domdim(A,R) T. (2.11.0.7)

Proof. Let m be a maximal ideal in R. Let T be a characteristic tilting module of A. By Proposition 1.5.56
and Proposition 1.5.126, A(m) is a split quasi-hereditary algebra over R(m) with characteristic tilting mod-
ule T (m). Fix V := eA. Let θ be the (EndA(V ),A)-bimodule isomorphism given by V → V ⊗A DA. Apply-
ing the functor R(m)⊗R− to θ gives an (EndA(m)(V (m)),A(m))-bimodule isomorphism between V (m) and
V (m)⊗A(m) HomR(m)(A(m),R(m)). By Theorem 2.5.13, domdimA(m) ≥ domdim(A,R) ≥ 2. Hence, (A(m) is
a gendo-symmetric algebra. By Theorem [FK11b, Theorem 4.3], domdimA(m) = 2domdimA(m) T (m). Hence,
by Theorem 2.5.13

domdim(A,R) = min{domdimA(m) : m is a maximal ideal in R} (2.11.0.8)

= min{2domdimT (m) : m is a maximal ideal in R} (2.11.0.9)

= 2min{domdimT (m) : m is a maximal ideal in R}= 2domdim(A,R) T.

Remark 2.11.4. Although it is not completely clear from the proof of Lemma 3.2 of [FK11b], an algebra A in
class A of Fang and Koenig satisfying Definition 2.1 of [FK11b] is also gendo-symmetric. This becomes clearer
by considering also Theorem 3.7 of [MS08] and Theorem 3.2 of [FK11a]. 4

In Example 4.6.7 we can see that there are quasi-hereditary gendo-symmetric algebras which do not belong
to the class A of Fang and Koenig algebras.
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A -covers and faithful split
quasi-hereditary covers

In this chapter, we give the setup to measure the quality of a cover. In particular, we introduce the concept of
an A -cover (A,P) for an arbitrary resolving subcategory A of A-mod. Under this concept, faithful split quasi-
hereditary covers are exactly F (∆̃)-covers. Some highlights are the upper bounds for the level of faithfulness of
a cover (Section 3.2) and results of how A -covers behave under change of ground ring (Section 3.3) and under
truncation (Section 3.4) leading to many deformation results. These results are general and valid for A -covers,
where A behaves similarly to F (∆̃) and A-proj. Such resolving subcategories are called here well behaved
resolving subcategories. We discuss the problems of existence and uniqueness of covers.

3.1 Definition and properties of A -covers

Unless otherwise stated, in this chapter, all algebras will be projective Noetherian R-algebras for a Noetherian
commutative ring R.

By a split quasi-hereditary cover of B we mean a cover (A,P) of B such that A is a split quasi-hereditary
algebra. By a quasi-hereditary cover of B we mean a cover (A,P) of B such that A is a quasi-hereditary algebra.

Definition 3.1.1. Let A be a projective Noetherian R-algebra. Let A be a resolving subcategory of A-mod. Let
B = EndA(P)op and i≥ 0. We say that the pair (A,P) is an i−A cover of B if the Schur functor F = HomA(P,−)
induces isomorphisms

Ext j
A(M,N)→ Ext j

B(FM,FN), ∀M,N ∈A , j ≤ i.

We say that (A,P) is a i-cover of B if (A,P) is an i−A-proj cover of B.
We say that (A,P) is an (−1)−A cover of B if (A,P) is a cover of B and F induces monomorphisms

HomA(M,N)→ HomB(FM,FN), ∀M,N ∈A .

Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. As we have noticed earlier F (∆̃) is a resolving
subcategory of A-mod∩R-proj. When (A,P) is an i−F (∆̃) cover of B we say that (A,P) is an i-faithful split
quasi-hereditary cover of B for i ≥ −1. For split quasi-hereditary algebras this definition was introduced by
Rouquier in [Rou08]. Over fields, we say that (A,P) is an i-faithful quasi-hereditary cover of B if (A,P) is an
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i−F (∆) cover of B, where A is a quasi-hereditary algebra (not necessarily split).
Notice that if the adjoint functor of HomA(P,−) is exact and (A,P) is a cover of B, then FA is projective over

B. Therefore, F sends A-proj to B-proj. Hence, the restriction of F to A-proj induces an equivalence of categories
between A-proj and B-proj. Therefore, in such a case, F is an equivalence of categories.

Remark 3.1.2. In our notation, a 0-cover is a cover in the usual sense. 4

Taking into account Proposition 1.6.12 and Definition 3.1.1, we can reformulate Problem 1 into:

Problem 2. For a given cellular algebra B with cell datum (Λ,M,C, ι), study a split quasi-hereditary
algebra (A,{∆(λ )λ∈Λ}) and determine the largest integer i possible such that (A,P) is a faithful

quasi-hereditary i-cover of B. Furthermore, if possible, the Schur functor HomA(P,−) should send the
standard modules of A into the cell modules of B.

Again, the study of i−A covers of finite-dimensional algebras over a field with i ≥ 0 can be reduced to
covers coming from idempotents.

Proposition 3.1.3. Let R be a field and let i ≥ 0 be an integer. Let A be a resolving subcategory of A-mod. If

(A,P) is an i−A cover of B, then there exists an idempotent e ∈ A such that (A,Ae) is an i−A cover of eAe.

Proof. By Proposition 1.7.1, there exists an idempotent e ∈ A such that (A,Ae) is a cover of eAe and eAe is
Morita equivalent to B. Denote by H the equivalence of categories B-mod→ eAe-mod. For M,N ∈A ,

Ext j
A(M,N)' Ext j

B(FM,FN)' Ext j
eAe(HFM,HFN), j ≤ i. (3.1.0.1)

It remains to show that HFM ' HomA(Ae,M) for every M ∈ A . But, this isomorphism holds since (A,P) is a
0−A cover of B. Thus, (A,Ae) is an i−A cover of eAe.

Lemma 3.1.4. Let (A,P) be a cover of B. The following holds.

(a) Let M ∈ A-mod. The map ηM is monomorphism if and only if HomA(N,M)→HomB(FN,FM) is injective

for any N ∈ A-mod if and only if HomA(A,M)→ HomB(FA,FM) is injective.

(b) The map ηM is epimorphism if and only if HomA(A,M)→ HomB(FA,FM) is surjective.

Proof. Assume that HomA(N,M) → HomB(FN,FM) is injective for any N ∈ A-mod. In particular,
HomA(A,M)→ HomB(FA,FM) is injective. Let m ∈ M such that ηM(m) = 0. Consider fm ∈ HomA(A,M),
given by fm(1A) = m. Then, F fm = ηM(m) = 0. Thus, fm = 0 and m = 0. So, ηM is a monomorphism. Now
assume that ηM is a monomorphism. Let f ∈ HomA(N,M) satisfying F f = 0. Then,

ηM ◦ f = GF f ◦ηN = 0 =⇒ f = 0. (3.1.0.2)

Thus, a) follows.
Assume that ηM is surjective. Let y∈HomB(FA,FM) =GFM. There exists x∈M such that ηM(x) = y. Con-

sider fx ∈HomA(A,M) given by fx(1A) = x. Then, F fx = ηM(x) = y. Hence, HomA(A,M)→HomB(FA,FM) is
surjective. Reciprocally, assume that HomA(A,M)→ HomB(FA,FM) is surjective. Let y ∈ GFM. There exists
x ∈ HomA(A,M) such that Fx = y. We have that ηM(x(1A)) = Fx = y.

This Lemma gives that (A,P) is a (−1)−A cover of B if and only if the restriction of HomA(P,−) to A is
faithful if and only if ηM is a monomorphism for every M ∈A .
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Proposition 3.1.5. Let (A,P) be a cover of B and A be a split quasi-hereditary algebra over a commutative

Noetherian ring. The following assertions are equivalent.

(i) (A,P) is a−1-faithful split quasi-hereditary cover of B; that is the restriction of F = HomA(P,−) to F (∆̃)

is faithful.

(ii) η ⊕
λ∈Λ

∆(λ ) is a monomorphism;

(iii) η∆(λ ) is a monomorphism for all λ ∈ Λ;

(iv) ηM is a monomorphism for all M ∈F (∆̃);

(v) ηT is a monomorphism for all (partial) tilting modules T ;

(vi) Every module of F (∆̃) can be embedded into some module in the image of the functor G = HomB(FA,−).

Proof. (i) =⇒ (ii). A ∈F (∆̃) and clearly
⊕

λ∈Λ

∆(λ ) ∈F (∆̃).

In view of (i), HomA(A,
⊕

λ∈Λ

∆(λ ))→ HomB(FA,F
⊕

λ∈Λ

∆(λ )) is injective. By Lemma 3.1.4, η ⊕
λ∈Λ

∆(λ ) is a

monomorphism.
(ii) =⇒ (iii). It is clear by Lemma 1.4.26.
(iii) =⇒ (iv). Every M ∈F (∆̃) has a filtration by standard modules. By induction on |Λ| and using the

Snake Lemma, it follows that ηM is a monomorphism for all M ∈F (∆̃).
(iv) =⇒ (vi). It is clear.
(vi) =⇒ (v). Every (partial) tilting module belongs to F (∆̃)∩F (∇̃). In particular, it belongs to F (∆̃).

Thus, given a (partial) tilting T , there exists a monomorphism α : T → GN for some N ∈ B-mod. Since idGN =

GεN ◦ηGN and εN is an isomorphism according to Proposition 1.4.25, it follows that ηGN is an isomorphism.
Now, GFα ◦ηT = ηGN ◦α is a monomorphism. Thus, ηT is a monomorphism.

(v) =⇒ (iv). Let M ∈ F (∆̃). By Proposition 1.5.109, there exists T (partial) tilting module N ∈ F (∆̃)

and an exact sequence 0→M→ T → N→ 0. Applying G◦F = HomB(FA,F−) (left exact functor) yields the
following commutative diagram with exact rows

0 M T N 0

0 GFM GFT GFN

ηM ηT ηN .

By assumption, ηT is a monomorphism. By Snake Lemma, ηM is a monomorphism.
(i)⇔ (iv). By Lemma 3.1.4, ηM is monomorphism for every M ∈F (∆̃) if and only if the functor F|F (∆̃)

is
faithful.

Proposition 3.1.6. The following assertions are equivalent.

(a) (A,P) is a 0−A cover; that is, the restriction of F = HomA(P,−) to A is full and faithful;

(b) ηM is an isomorphism for all M ∈A ;

(c) Every module of A is in the image of the functor G = HomB(FA,−).

Proof. (a) =⇒ (b). Since A is resolving of A-mod∩R-proj, A ∈A . By a) HomA(A,M)→ HomB(FA,FM) is
an isomorphism. By Lemma 3.1.4, ηM is an isomorphism.

(b) =⇒ (c). Let M ∈A . By assumption, ηM is an isomorphism. Hence, M ' G(FM).
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(c) =⇒ (b). Let M ∈ A . There exists N ∈ B-mod such that GN 'M. Since idGN = GεN ◦ηGN and εN is
an isomorphism according to Proposition 1.4.25, it follows that ηGN is an isomorphism. Let α : M→ GN be an
isomorphism. As ηM is the composition of the isomorphisms GFα−1 ◦ηGN ◦α , it is an isomorphism.

(b) =⇒ (a). By Lemma 1.4.27, HomA(M,N)→ HomB(FN,FM) for every N,M ∈A .

Proposition 3.1.7. [Rou08, Proposition 4.40] The following assertions are equivalent.

(i) (A,P) is a 0-faithful split quasi-hereditary cover of B; that is, the restriction of F = HomA(P,−) to F (∆̃)

is full and faithful;

(ii) η ⊕
λ∈Λ

∆(λ ) is an isomorphism;

(iii) η∆(λ ) is an isomorphism for all λ ∈ Λ;

(iv) ηM is an isomorphism for all M ∈F (∆̃);

(v) Every module of F (∆̃) is in the image of the functor G = HomB(FA,−);

(vi) ηT is an isomorphism for all (partial) tilting modules T ;

(vii) Let T be a characteristic tilting module. Every module of addT is in the image of the functor

G = HomB(FA,−).

Proof. (i) =⇒ (ii). Since A,
⊕

λ∈Λ

∆(λ )∈F (∆̃), HomA(A,
⊕

λ∈Λ

∆(λ ))→HomB(FA,F
⊕

λ∈Λ

∆(λ ))is an isomorphism,

by assumption. By Lemma 3.1.4, η ⊕
λ∈Λ

∆(λ ) is an isomorphism.

(ii) =⇒ (iii). It is clear by Lemma 1.4.26.
(iii) =⇒ (iv). Let M ∈F (∆̃). There exists a filtration

0 = Mn+1 ⊂Mn ⊂Mn−1 ⊂ ·· · ⊂M1 = M (3.1.0.3)

with Mi/Mi+1 ' ∆i⊗R Ui, Ui ∈ R-proj and n = |Λ|. We will prove by induction on j that ηM is an isomorphism
M satisfying Ui 6= 0 only if i≤ j. Assume that M ' ∆1⊗R U1. Note that, for x⊗u ∈ ∆1⊗R U1, f ∈ FA, p ∈ P,

η∆1⊗RU1(x⊗u)( f )(p) = f (p) · (x⊗u) = ( f (p)x)⊗u = η∆1(x)( f )(p)⊗u. (3.1.0.4)

So, η∆1⊗RU1(x⊗ u) = η∆1(x)⊗ idU1(u). Thus, ηM is an isomorphism. Assume the result holds for an arbitrary
1≤ j ≤ n−1. Assume M with a filtration satisfying Ui 6= 0 only if i≤ j+1. Consider the exact sequence

0→ ∆ j+1⊗R U j+1→M→M j+1/∆ j+1⊗R U j+1→ 0. (3.1.0.5)

Applying GF (left exact functor) we get the commutative diagram with exact rows

0 ∆ j+1⊗R U j+1 M M j+1/∆ j+1⊗R U j+1 0

0 GF(∆ j+1⊗R U j+1) GFM GF(M j+1/∆ j+1⊗R U j+1)

η∆ j+1⊗RUj+1 ηM ηMj+1/∆ j+1⊗RUj+1 .

By induction ηM j+1/∆ j+1⊗RU j+1 is an isomorphism. By assumption, η∆ j+1⊗RU j+1 is an isomorphism. It follows by
Snake Lemma that ηM is an isomorphism. Thus, iv) follows.

(iv) =⇒ (v). Let M ∈F (∆̃). By assumption, ηM is an isomorphism. Hence, M ' G(FM). So, (v) follows.
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(v) =⇒ (vi). Let T be a partial tilting module. By (v), there exists N ∈ B-mod such that GN ' T . Since
idGN = GεN ◦ηGN and εN is an isomorphism according to Proposition 1.4.25, it follows that ηGN is an isomor-
phism. Let α : T →GN be an isomorphism. As ηT is the composition of the isomorphisms GFα−1 ◦ηGN ◦α , it
is an isomorphism.

(vi) =⇒ (vii). Let T be a characteristic tilting module. Consequently, every module M belonging to addT

is (partial) tilting. By assumption, ηM is an isomorphism. Thus, M ' GFM.
(vii) =⇒ (vi). Let M be a partial tilting module. By Corollary 1.5.123, addT =F (∆̃)∩F (∇̃). In particular,

M ∈ addT . By assumption, there exists N ∈ B-mod such that M ∈ GN. Now applying the same argument used
in the implication (v) =⇒ (vi), (vi) holds.

(vi) =⇒ (iv). Let M ∈F (∆̃). By Proposition 1.5.109, there exists T partial tilting module N ∈F (∆̃) and
the exact sequence

0→M→ T → N→ 0. (3.1.0.6)

Applying G◦F = HomB(FA,F−) (left exact functor) yields the following commutative diagram with exact rows

0 M T N 0

0 GFM GFT GFN

ηM ηT ηN .

By Snake Lemma, ηM is a monomorphism. Since M is arbitrary, ηM is a monomorphism for every M ∈F (∆̃).
In particular, ηN is a monomorphism. As ηT is an isomorphism, applying again Snake Lemma yields that ηM is
an isomorphism.

(iv) =⇒ (i). By Lemma 1.4.27, HomA(M,N)→ HomB(FN,FM) for every N,M ∈ F (∆̃). Hence, (i)
holds.

Proposition 3.1.8. Let (A,P) be a cover of B. (A,P) is a 0-faithful split quasi-hereditary cover of B if and only

if η∆(λ ) is an epimorphism for all λ ∈ Λ.

Proof. By Proposition 3.1.7, one implication is clear.
Assume that η∆(λ ) is an epimorphism for all λ ∈ Λ. We claim that ηM is an epimorphism for all M ∈F (∆).

We will prove it by induction on the size of filtration of M, t. If t = 1, then M ' ∆(λ ) for some λ . So, there is
nothing to show. Assume t > 1. There is a commutative diagram with exact rows

0 M′ M ∆(µ) 0

0 GFM′ GFM GF∆(µ)

ηM′ ηM η∆(µ) .

By induction ηM′ is an epimorphism. By Snake Lemma, ηM is an epimorphism. Now consider the commutative
diagram

0 K(λ ) P(λ ) ∆(λ ) 0

0 GFK(λ ) GFP(λ ) GF∆(λ )

ηK(λ ) ηP(λ ) η∆(λ ) .

Since K(λ ) ∈F (∆̃), ηK(λ ) is an epimorphism. By Snake Lemma, there is an exact sequence

0 = kerηP(λ )→ kerη∆(λ )→ cokerηK(λ ) = 0. (3.1.0.7)

251



3.1. Definition and properties of A -covers

It follows that η∆(λ ) is also a monomorphism, and thus η∆(λ ) is an isomorphism for every λ ∈ Λ. By Proposition
3.1.7, the result follows.

For the resolving subcategory A-proj, 0-covers can be described in the following way.

Proposition 3.1.9. The following assertions are equivalent.

(I) (A,P) is a 0-cover of B;

(II) ηM is an isomorphism for all M ∈ A-proj;

(III) F =HomA(P,−) restricts to an equivalence of categories A-proj→ addB FA with inverse G=HomB(FA,−).

Proof. (I)⇔ (II) follows from Proposition 3.1.6. Assume that (III) holds. In particular, the functor FA-proj is full
and faithful. By definition, (I) holds.

Assume that (I) holds. Note that A-proj→ addFA is well defined since for M ∈ A-proj, At 'M
⊕

K, for some
K. Hence,

(FA)t ' F(At)' F(M
⊕

K)' FM
⊕

FK =⇒ FM ∈ addFA. (3.1.0.8)

By (I), FA-proj : A-proj→ addFA is full and faithful. Let M ∈ addFA. Then, FAt 'M
⊕

K for some t > 0. Since
(A,P) is a 0-cover and A ∈ A-proj, we have At ' GFAt ' GM

⊕
GK. Hence, GM ∈ A-proj. Now since the

counit εM : FGM→M is an isomorphism, it follows that F is essentially surjective and G : addFA→ A-proj is
well defined. Since GaddFA is right adjoint of FA-proj and FA-proj is an equivalence, it follows that GaddFA is its
inverse.

Proposition 3.1.10. Let (A,P) be a 0-A cover of B. Then, (A,P) is a 1−A cover of B if and only if R1 G(FM) =

0 for all M ∈A .

Proof. Assume that (A,P) is a 1−A cover of B. Let M ∈A . Then,

R1 G(FM) = R1 HomB(FA,−)(FM) = Ext1B(FA,FM)' Ext1A(A,M) = 0. (3.1.0.9)

Conversely, assume that R1 G(FM) = 0 for every M ∈A . We will start by showing that the natural correspon-
dence Ext1A(M,N)→ Ext1B(FM,FN), M,N ∈A is injective.

Let

0→ N→ X1
p1−→M→ 0 (3.1.0.10)

0→ N→ X2
p2−→M→ 0 (3.1.0.11)

be short exact sequences such that they have the same image in Ext1B(FM,FN). Hence, there is the following
commutative diagram with exact rows and the columns are isomorphisms

0 FN FX1 FM 0

0 FN FX2 FM 0

ϑN ϑX1 ϑM .

Since M,N ∈ A and A is a resolving subcategory then X1,X2 ∈ A . As (A,P) is a 0−A cover, the functor
HomA(P,−)|A is full and faithful, thus there are A-maps θX1 : X1 → X2, θN : N → N, θM : M → M such that
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ϑX1 = FθX1 , ϑM = FθM, ϑN = FθN . Note that since η is a natural transformation, the fact that each ϑ is an
isomorphism implies that each θ is an isomorphism. In fact, for X1 we have

GϑX1 ◦ηX1 = GFθX1 ◦ηX1 = ηX2 ◦θX1 . (3.1.0.12)

So, θX1 is a composition of isomorphisms. Now since the functor F|A is faithful, it follows that the following
diagram is commutative

0 N X1 M 0

0 N X2 M 0

θN θX1 θM .

In fact, we can see

F(p2 ◦θX1) = F p2 ◦FθX1 = F p2 ◦ϑX1 = ϑM ◦F p1 = F(θM ◦ p1). (3.1.0.13)

By the commutativity of the diagram and the columns being isomorphisms, we see that both exact sequences are
equivalent, and therefore the map Ext1A(M,N)→ Ext1B(FM,FN), M,N ∈A is injective.

Let M,N ∈A . Consider an exact sequence

0→ FN k−→ X π−→ FM→ 0 ∈ Ext1B(FM,FN). (3.1.0.14)

Applying the functor G yields the exact sequence

0→ GFN Gk−→ GX Gπ−−→ GFM→ R1 G(FN) = 0, (3.1.0.15)

by assumption. So, we have an exact sequence

0→ N
Gk◦ηN−−−−→ GX

η
−1
M ◦Gπ

−−−−−→M→ 0 ∈ Ext1A(M,N). (3.1.0.16)

Since A is resolving, GX ∈A . Consider the following diagram

0 FN FGX FM 0

0 FN X FM 0

F(Gk◦ηN)

εX

F(η−1
M ◦Gπ)

k π

.

This is a commutative diagram where the columns are isomorphisms. In fact,

εX ◦FGk ◦FηN = k ◦ εFN ◦FηN = k ◦ idFN , (3.1.0.17)

FηM ◦π ◦ εX = FηM ◦ εFM ◦FGπ = FGπ, (3.1.0.18)

since FηM is an isomorphism the equality id = εFM ◦FηM implies FηM ◦ εFM = id. Thus, the previous exact
sequences are equivalent and consequently Ext1A(M,N)→ Ext1B(FM,FN) is also surjective.

Similarly with Proposition 1.7.10, 0−A covers can help us understand the indecomposable objects in B-mod
using the indecomposable modules of A .

Proposition 3.1.11. Let (A,P) be a 0−A cover of B for some resolving subcategory A of A-mod. Then, the

Schur functor F = HomA(P,−) preserves the indecomposable objects of A .
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Proof. Let M ∈A be an indecomposable module. Assume that we can write FM ' X1⊕X2. Then,

M ' GFM ' GX1⊕GX2. (3.1.0.19)

So, either GX1 = 0 or GX2 = 0. Since FA is a B-generator, there must exist a non-zero epimorphism FAt → X1

for some t > 0 if X1 is non-zero. So, if X1 6= 0, then GX1 6= 0. Thus, FM is indecomposable.

We shall now recall the definition of an exact category.

Definition 3.1.12. A category A is an exact category if A is a full subcategory of some abelian category C

and if A is closed under extensions. In particular, A is an exact subcategory of C .
A functor F : A →B between exact categories is called exact if F preserves exact sequences. F is said to

be an exact equivalence of categories if it is an equivalence of categories and exact.

Proposition 3.1.13. [Rou08, Proposition 4.41] Let (A,P) be a 0-faithful split quasi-hereditary cover of B. The

following assertions are equivalent.

(a) (A,P) is a 1-faithful split quasi-hereditary cover of B;

(b) F = HomA(P,−) restricts to an exact equivalence of categories FA(∆̃)→FB(F∆̃) with inverse the exact

functor G|FB(F∆̃)
= HomB(FA,−)|FB(F∆̃)

.

(c) For all M ∈FA(∆̃), we have R1 G(FM) = 0.

Proof. By Proposition 3.1.10, (a)⇔ (c) holds. Assume that (b) holds. In particular, G is exact on FB(F∆̃). Let
M ∈FA(∆̃). Let

0→ FM→ X → FA→ 0 ∈ Ext1B(FA,FM) = R1 G(FM). (3.1.0.20)

Note that X/FM ' FA ∈ FB(F∆̃), thus X ∈ FB(F∆̃). Consequently, G is exact on this exact sequence. By
assumption, (A,P) is a 0-faithful split quasi-hereditary cover of B. In particular, ηA : A→GFA is an isomorphism.
So, the exact sequence

0→ GFM→ GX → GFA→ 0 (3.1.0.21)

is split over A. We have the commutative diagram making the following exact sequences equivalent

0 FM X FA 0

0 FGFM FGX FGFA 0

εFM εX εFA .

Since the bottom row is split over A the upper row must also be split over A. We conclude that
R1 G(FM) = Ext1B(FA,FM) = 0.

Conversely, assume that (c) holds. It is clear that the image of FA(∆̃) under F is contained in FB(F∆̃) since
F is exact. By assumption, F|FA(∆̃)

is full and faithful. So, it remains to show that F|FA(∆̃)
: FA(∆̃)→FB(F∆̃) is

essentially surjective. Let U ∈FB(∆̃). Then, there is a filtration

0⊂Ut ⊂ ·· · ⊂U1 =U, where Ui/Ui+1 ' F(∆i⊗R Fi). (3.1.0.22)
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We shall prove by induction on t that U can be written as FM for some M ∈FA(∆̃). If t = 1, there is nothing to
show. Assume t > 1. We have an exact sequence

0→Ut →U1→U1/Ut → 0. (3.1.0.23)

Here U1/Ut has a filtration of size t−1. By induction, U1/Ut = FM1, M1 ∈FA(∆̃ j 6=t). Clearly, Ut = F(∆t⊗R Ft).
Applying G yields the exact sequence

0→ GUt → GU1→ GU1/Ut → R1 G(Ut) = R1 G(F(∆t ⊗R Ft)) = 0 (3.1.0.24)

and GUt ' GF(∆t ⊗R Ft) ' ∆t ⊗R Ft and GU1/Ut ' GFM1 'M1 ∈FA(∆̃). Therefore, GU1 ∈FA(∆̃). Now as
εU1 : FGU1→U1 is an isomorphism, (b) follows.

Here we can see one property that distinguishes faithful covers and A -covers. For 1-faithful covers, the
image of FA(∆̃) under the Schur functor is fully determined by the filtrations of the image of standard modules
in B-mod. Furthermore, the image of the resolving subcategory F (∆̃) under F is an exact category.

For the resolving subcategory A-proj we can also describe 1−A-proj covers in a similar way.

Proposition 3.1.14. Let (A,P) be a cover of B. The following assertions are equivalent.

(a) (A,P) is a 1-cover of B.

(b) The category addB FA is an exact subcategory of B-mod. Furthermore, F = HomA(P,−) restricts to an ex-

act equivalence of categories A-proj→ addFA with inverse the exact functor G|addFA
= HomB(FA,−)|addFA

.

(c) For all M ∈ A-proj, we have R1 G(FM) = 0.

Proof. (a)⇔ (c) follows from Proposition 3.1.10. The implication (b)⇔ (c) is analogous to the argument used
in Proposition 3.1.13. Assume that (b) holds.

Let M ∈ addFA. Let

0→ FM→ X → FA→ 0 ∈ Ext1B(FA,FM) = R1 G(FM). (3.1.0.25)

In particular, FM,FA ∈ addFA. By assumption, addFA is closed under extensions. Hence, X ∈ addFA. Con-
sequently, G is exact on (3.1.0.25). By assumption, (A,P) is a 0-cover of B. In particular, ηA : A→ GFA is an
isomorphism. So, the exact sequence

0→ GFM→ GX → GFA→ 0 (3.1.0.26)

is split over A. We have the commutative diagram making the following exact sequences equivalent

0 FM X FA 0

0 FGFM FGX FGFA 0

εFM εX εFA .

Since the bottom row is split over A the upper row must also be split over A. We conclude that
R1 G(FM) = Ext1B(FA,FM) = 0.

Assume that (c) holds. By Proposition 3.1.9, F restricts to an equivalence of categories A-proj→ addFA

with inverse G|addFA
= HomB(FA,−)|addFA

.
Let 0→ FM→ X → FN→ 0 be B-exact with M,N ∈ A-proj. Applying G yields the exact sequence

0→ GFM→ GX → GFN→ R1 G(FM) = 0 (3.1.0.27)
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Since GFM 'M and GFN ' N, we have GX ∈ A-proj. Hence, X ' FGX ∈ addFA. Thus, addFA is an exact
subcategory of B-mod and G is exact on addFA. This completes the proof.

We should remark that this exact equivalence does not make the image of the resolving subcategory A under
the Schur functor a resolving subcategory in B-mod∩R-proj. In fact, this only occurs when the Schur functor is
an equivalence of categories.

Proposition 3.1.15. Let A be a resolving subcategory of A-mod. Let (A,P) be a 1−A cover of B. Assume that

{FM : M ∈A } is a resolving subcategory of B-mod. Then, F = HomA(P,−) is an exact equivalence.

Proof. Consider the projective B-presentation

δ : 0→ K→ Q→ FA→ 0. (3.1.0.28)

By projectivization, Q = FX for some X ∈ addP, and consequently X ∈ A . Because {FM : M ∈ A } is a
resolving subcategory, there exists N ∈A such that K ' FN. Hence,

δ ∈ Ext1B(FA,K)' Ext1A(A,N) = 0. (3.1.0.29)

Therefore, FA is a B-summand of Q. Thus, FA ∈ B-proj. As we have seen before, since (A,P) is a cover of B,
this implies that F is an exact equivalence.

In Example 4.6.15, we can see that {FM : M ∈A } being a resolving subcategory of B-mod is not a sufficient
condition for F to be an equivalence of categories.

In order to determine characterizations for level i with i ≥ 2 we will use Grothendieck’s Spectral sequence
applied to the Schur functor F . Indeed, this spectral sequence has been used several times on special cases of
Schur functors (see for example [Fan08, Proposition 3.1] and [DEN04, 2.2]).

Lemma 3.1.16. Let M ∈ A-mod. Suppose Ri G(FM) = 0 for 1 ≤ i ≤ q. Then, for any X ∈ A-mod, there are

isomorphisms ExtiA(X ,GFM)' ExtiB(FX ,FM), 0≤ i≤ q and an exact sequence

0→ Extq+1
A (X ,GFM)→ Extq+1

B (FX ,FM)→ HomA(X ,Rq+1 G(FM))→ Extq+2
A (X ,GFM)→ Extq+2

B (FX ,FM).

Proof. Let X ∈ A-mod. For i = 0, the result follows from the fact that F is left adjoint to G. Fix, in accordance
with Lang’s notation, T := G, G := HomA(X ,−). Both of these functors are left exact covariant. Let I be an
injective B-module. Since F is a left adjoint to T we have

HomA(X ,T I)' HomB(FX , I) = HomB(−, I)◦F(X) (3.1.0.30)

and HomB(−, I) and F are exact functors, thus HomA(−,T I) is an exact functor. Hence, T I is an injective A-
module. So, T preserves injective modules. Hence, for any N ∈ B-mod, there is a spectral sequence {Er(N)}
such that E i, j

2 ⇒ Ri+ j(HomA(X ,−)◦T )(N). Let N = FM. So

E i, j
2 = ((Ri)HomA(X ,−))(Ext j

B(FA,FM)) = ExtiA(X ,Ext j
B(FA,FM)). (3.1.0.31)

On the other hand,

HomA(X ,−)◦T (N) = HomA(X ,T N)' HomB(FX ,N) = HomB(FX ,−)(N). (3.1.0.32)
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So,

Ri+ j(HomA(X ,−)◦T )(FM)' Ri+ j(HomB(FX ,−))(FM) = Exti+ j
B (FX ,FM). (3.1.0.33)

Therefore, we have

E i, j
2 = ExtiA(X ,Ext j

B(FA,FM))⇒ Exti+ j
B (FX ,FM). (3.1.0.34)

By assumption, Ext j
B(FA,FM) = R j T (FM) = 0, 1 ≤ j ≤ q. Hence, E i, j

2 = 0 for 1 ≤ i ≤ q. By Lemma 1.3.10,
ExtiA(X ,GFM) = E i,0

2 = ExtiB(FX ,FM), 0≤ i≤ q and the result follows.

Proposition 3.1.17. Let (A,P) be a 0−A cover of B. Let i≥ 1. The following assertions are equivalent.

(a) (A,P) is an i−A cover of B;

(b) For all M ∈A , we have R j G(FM) = 0, 1≤ j ≤ i.

Proof. (a) =⇒ (b). Let M ∈A . Let 1≤ j ≤ i. Then,

R j G(FM) = R j HomB(FA,−)(FM) = Ext j
B(FA,FM)' Ext j

A(A,M) = 0. (3.1.0.35)

(b) =⇒ (a). Let M ∈ A . By assumption, R j G(FM) = 0, 1 ≤ j ≤ i. By Lemma 3.1.16,
Ext j

A(X ,GFM)' Ext j
B(FX ,FM), 0 ≤ j ≤ i for any X ∈ A-mod. Since Let (A,P) is a 0−A cover of B,

ηM : M→ GFM is an A-isomorphism, and thus we have

Ext j
A(X ,M)' Ext j

B(FX ,FM), 0≤ j ≤ i,∀X ∈ A-mod . (3.1.0.36)

The choice of M ∈A is arbitrary, hence (a) follows.

For faithful split quasi-hereditary covers this translates to:

Proposition 3.1.18. Let (A,P) be a 0-faithful split quasi-hereditary cover of B. Let i ≥ 1. The following asser-

tions are equivalent.

(a) (A,P) is an i-faithful split quasi-hereditary cover of B;

(b) For all M ∈F (∆̃), we have R j G(FM) = 0, 1≤ j ≤ i.

(c) For all λ ∈ Λ, we have R j G(F∆(λ )) = 0, 1≤ j ≤ i.

Proof. (a)⇔ (b) is given by Proposition 3.1.17. The implication (b) =⇒ (c) is also clear.
Assume that (c) holds. Let M ∈F (∆̃). There is a filtration

0 = Mn+1 ⊂Mn ⊂Mn−1 ⊂ ·· · ⊂M1 = M, Mi/Mi+1 ' ∆i⊗R Ui, 1≤ i≤ n. (3.1.0.37)

We claim that R j G(FMt) = 0, for t = 1, . . . ,n, 1 ≤ j ≤ i. We will prove it by induction on n− t + 1. Assume
that n− t + 1 = 1. Let 1 ≤ j ≤ i. Then, R j G(FMt) = R j G(F(∆t ⊗R Ut)) is an R-summand of R j G(F∆t)

s = 0
for some s > 0 since Ut ∈ R-proj. Thus, R j G(FMt) = 0. Moreover, R j G(F(∆i)⊗R Ui) = 0 for every i = 1, . . . ,n.
Assume that the claim holds for s > t for some n≥ t > 1. Consider the exact sequence

0→Mt+1→Mt → ∆t ⊗R Ut → 0. (3.1.0.38)
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Applying the left exact functor G◦F yields the exact sequence

R j G(FMt+1)→ R j G(FMt)→ R j G(F∆t ⊗R Ut) = 0. (3.1.0.39)

By induction, R j G(FMt+1) = 0, hence R j G(FMt) = 0. Therefore, (b) follows.

Hence, the quality of a 0-faithful split quasi-hereditary cover is given by the value

n(F (∆̃)) = sup{i ∈ N0 : R j G(F∆(λ )) = 0, λ ∈ Λ, 1≤ j ≤ i}.

3.2 Upper bounds for the quality of an A -cover

3.2.1 F (∆)

For finite-dimensional algebras over fields, there is an upper bound for the level of faithfulness of a split quasi-
hereditary cover.

Theorem 3.2.1. Let R be a field and let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra over R. Let

{S(λ ) : λ ∈ Λ} be a complete set of non-isomorphic simple A-modules.

We shall denote by Λ∗ the set {λ ∈ Λ : FS(λ ) 6= 0}. Recall that d(Λ∗,λ ) denotes the length of λ in the poset

Λ∗ and d(Λ∗) denotes the value max{d(Λ∗,λ ) : λ ∈ Λ∗} (see Section 2.11).

If (A,P) is a split quasi-hereditary (d(Λ∗)+ 1)-faithful cover of B-mod, then the Schur functor induces by

restriction to A-proj the functor F|A-proj : A-proj→ B-proj. Moreover, F is an equivalence of categories.

Proof. Since R is a field we can assume, without loss of generality, that there exists an idempotent e ∈ A such
that P = Ae and B = eAe. By Theorem 1.7.2, the simple B-modules can be written in the form FS where S is
a simple A-module. Moreover, the simple B-modules are indexed by Λ∗. The set Λ∗ is again a poset where its
partial order is the one induced by the poset Λ.

Consider M a finitely generated projective A-module. We want to show that FM is a projective B-module. It
is enough to show that Ext1B(FM,S) = 0 for all simple B-modules S.

We claim that Ext j
B(FM,FS(λ )) = 0, 1≤ j ≤ d(Λ∗,λ )+1, λ ∈ Λ∗.

We shall proceed by induction on n(λ ) = d(Λ∗)− d(Λ∗,λ ), λ ∈ Λ∗. Assume that n(λ ) = 0. Then, λ is
minimal in Λ∗. Assume that λ is also minimal in the poset Λ. Then, ∆(λ ) = S(λ ). Hence, F∆(λ ) = FS(λ ).
Now, assume that λ is not minimal in Λ. Consider the short exact sequence

0→ X → ∆(λ )→ S(λ )→ 0, (3.2.1.1)

where X has a composition series with composition factors S(µ) satisfying µ < λ . The minimality of λ in Λ∗

implies that FS(µ) = 0 for µ < λ , µ ∈ Λ. By induction on the length of the composition series of X it follows
that FX = 0. Applying the functor F to the short exact sequence (3.2.1.1) yields F∆(λ )' FS(λ ).

Therefore,

Ext j
B(FM,FS(λ )) = Ext j

B(FM,F∆(λ ))' Ext j
A(M,∆(λ )) = 0, 1≤ j ≤ d(Λ∗)+1 = d(Λ∗,λ )+1.

The last isomorphism follows from the fact that (A,P) is a (d(Λ∗)+1)-faithful cover of B.
Assume that there exists a positive integer k such that the claim holds for all λ ∈ Λ∗ satisfying n(λ )< k. Let

λ ∈ Λ∗ such that n(λ ) = k. Consider again the short exact sequence (3.2.1.1). Let S(µ) be a composition factor
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of X . Hence, µ < λ . If µ /∈ Λ∗, then FS(µ) = 0. Otherwise, d(Λ∗,µ)≥ d(Λ∗,λ )+1 and

n(µ) = d(Λ∗)−d(Λ∗,µ)≤ d(Λ∗)−d(Λ∗,λ )−1 = k−1 < k

By induction, Ext j
B(FM,FS(µ)) = 0, 1≤ j≤ d(Λ∗,λ )+2. By induction on the length of the composition series

of FX , we obtain Ext j
B(FM,FX) = 0, 1 ≤ j ≤ d(Λ∗,λ )+ 2. Now, applying the functor HomB(FM,−) ◦F to

(3.2.1.1) yields the long exact sequence

0 = Ext j
B(FM,F∆(λ ))→ Ext j

B(FM,FS(λ ))→ Ext j+1
B (FM,FX) = 0, 1≤ j ≤ d(Λ∗,λ )+1. (3.2.1.2)

This completes the proof of our claim. In particular, Ext1B(FM,FS(λ )) = 0 for all λ ∈ Λ∗. So, FM is projective
over B. By projectivization, since the Schur functor is written in the form F = HomA(P,−), B-proj is equivalent
to add(P). Thus, by projectivization, the functor F|A-proj is essentially surjective. As by definition of cover, the
functor F|A-proj is fully and faithful it follows that the functor F|A-proj is an equivalence of categories.

So, for any finitely generated projective A-module M, we obtain FM = HomA(P,M)∼= HomA(P,P′) for some
P′ ∈ add(P). By applying the adjoint functor G we get that M ' GFM ' GFP′ ' P′. So, A ∈ add(P), which
means that P is a progenerator. Hence, by Morita theory, F is an equivalence of categories.

Observe that d(Λ∗) + 1 ≤ |Λ∗| − 1+ 1 = |Λ∗| which is exactly the number of non-isomorphic classes of
simple B-modules. We have therefore proved that the number of simple B-modules is an upper bound for the
level of faithfulness of a split quasi-hereditary cover of B.

3.2.2 A-proj

We can also give upper bounds for A-proj-covers. To do that, we will use another example of resolving sub-
categories. Let i ≥ 0 be an integer. Let P i be the full subcategory of A-mod whose modules have projective
dimension over A less or equal to i. The category P i is a resolving subcategory of A-mod∩R-proj. For i = 0,
P i is exactly A-proj. For i = gldimA, P i = A-mod.

Theorem 3.2.2. Let i, j ≥ 0 be integers. If (A,P) is an i−P j cover of B, then (A,P) is an (i−1)−P j+1-cover

of B.

Proof. Let X be a module with projective dimension at most j+ 1. We can consider a projective presentation
over A for X

0→ Q→ P→ X → 0, (3.2.2.1)

such that Q ∈P j and P ∈ A-proj. Consider the following commutative diagram

0 Q P X 0

0 GFQ GFP GFX R1 G(FQ)

ηQ ηP ηX . (3.2.2.2)

Due to i ≥ 0 and Q,P ∈P j, ηQ and ηP are A-isomorphisms. By Snake Lemma, ηX is an monomorphism. So,
(A,P) is an (−1)−P j+1-cover of B. If i≥ 1, then R1 G(FQ) = 0. In such a case, the Snake Lemma implies that
ηX is an isomorphism. So, the claim holds for i = 1. Assume now that i ≥ 2. Applying GF to (3.2.2.1) yields
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the long exact sequence

0 = Rl G(FP)→ Rl G(FX)→ Rl+1 G(FQ) = 0, 1≤ l ≤ i−1. (3.2.2.3)

Thus, (A,P) is an (i−1)−P j+1-cover of B.

An immediate consequence of this result is the following bound on A-proj-covers.

Corollary 3.2.3. Let i= gldimA. Let (A,P) be an i−A-proj cover of B. Then, F = HomA(P,−) : A-mod→ B-mod
is an equivalence of categories.

Proof. Using induction on Theorem 3.2.2, we obtain that (A,P) is a 0−PgldimA-cover of B. Moreover, (A,P)
is a 0−A-mod cover of B. Thus, ηM is an isomorphism for every M ∈ A-mod. This means that the functor
HomA(P,−) : A-mod→ B-mod is full and faithful. Because of (A,P) being a cover of B, the left adjoint of
HomA(P,−) is also full and faithful. Therefore, HomA(P,−) is an equivalence of categories.

3.3 A -covers under change of ground ring

We shall now see how A -covers behave under change of ground ring. Here we need to impose constraints to
the resolving subcategories A we want to work with. As a first step, note that A-mod∩R-proj is a resolving
subcategory of A-mod. So, we will restrict our attention to resolving subcategories of A-mod∩R-proj since exact
sequences in this category remain exact under extension of scalars. However, this is not sufficient, so we are
interested in resolving subcategories which behave well under change of ground ring in the following sense.

Definition 3.3.1. We will call R(A) a well behaved resolving subcategory of A-mod∩R-proj if it is a resolving
subcategory of A-mod∩R-proj and the following properties are satisfied:

1. For any commutative Noetherian R-algebra S, there is a resolving subcategory R(S ⊗R A) of
S⊗R A-mod∩S-proj and the functor H : R(A) → R(S⊗R A), given by M 7→ S⊗R M, is well defined
with 〈HR(A)〉= R(S⊗R A), where 〈HR(A)〉 denotes the smallest subcategory of S⊗R A-mod∩S-proj
containing HR(A) closed under direct summands and extensions.

2. M ∈R(A) if and only if Mm ∈R(Am) for every maximal ideal m in R.

3. M ∈R(A) if and only if M(m) ∈R(A(m)) for every maximal ideal m in R and M ∈ R-proj.

From now on we will consider R(A) to be a well behaved resolving subcategory of A-mod∩R-proj. Here are
some examples of well behaved resolving subcategories.

Proposition 3.3.2. Let A be a projective Noetherian R-algebra. The following assertions hold.

(I) A-proj is a well behaved resolving subcategory of A-mod∩R-proj.

(II) Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra. Then, F (∆̃) is a well behaved resolving subcate-

gory of A-mod∩R-proj.

Proof. Clearly, A-proj is a resolving subcategory of A-mod∩R-proj. Condition 3.3.1.2 follows from Theorem
1.1.45, whereas condition 3.3.1.3 follows by Theorem 1.1.51. Let M ∈ A-proj. Then, At 'M

⊕
K for some t > 0

and some module K. Hence, (S⊗R A)t ' S⊗R M
⊕

S⊗R K. So, S⊗R M ∈ S⊗R A-proj. Thus, the functor H is well
defined. Let
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X ∈ S⊗R A-proj. Hence, S⊗R As ' (S⊗R A)s ' X
⊕

K for some s > 0 and S⊗R As ∈ 〈H(A-proj)〉, thus
X ∈ 〈H(A-proj)〉. So, (I) holds.

By Theorem 1.5.104, F (∆̃) is a resolving subcategory of A-mod∩R-proj. Recall that 0 = Exti>0
A (M,T ) if

and only if Exti>0
A (M,T )m = 0 for ever maximal ideal of R if and only if Exti>0

Am
(Mm,Tm) = 0 for every maximal

ideal of R. By Corollary 1.5.125 and Proposition 1.5.126, Condition 3.3.1.2 follows. Condition 3.3.1.3 follows
from Proposition 1.5.131. Since the exact sequences arising from a filtration of M ∈ F (∆̃) are (A,R)-exact,
applying the tensor product S⊗R− preserves the filtration and hence S⊗R M ∈F (S⊗ ∆̃). So, the functor H is
well defined. Let X ∈F (S⊗R ∆̃). Then, there is a filtration

0 = Xn+1 ⊂ Xn ⊂ ·· · ⊂ X1 = X , Xi/Xi+1 ' S⊗R ∆i⊗S Ui,1≤ i≤ n. (3.3.0.1)

We will proceed by induction to prove that each Xi belongs to 〈HR(A)〉. For i = n, Xn = S⊗R ∆n⊗S Un is an
S⊗R A-summand of (S⊗R ∆n)

s ' S⊗R ∆s
n ∈ 〈HF (∆̃)〉 for some s > 0. Since 〈HF (∆̃)〉 is closed under direct

summands, Xn ∈ 〈HF (∆̃)〉. Assume that we have proven the result for Xs for s > i for some i. Consider the exact
sequence

0→ Xi+1→ Xi→ S⊗R ∆i⊗S Ui→ 0. (3.3.0.2)

By induction, Xi+1 ∈ 〈HF (∆̃)〉, and since it is closed under extensions, Xi ∈ 〈HF (∆̃)〉. Thus, (II) holds.

As before we will separate the cases -1 and 0 and consider them first.

Proposition 3.3.3. Let i ∈ {−1,0}. Let R(A) be a well behaved resolving subcategory of A-mod∩R-proj. The

following assertions are equivalent.

(a) (A,P) is an i−R(A) cover of B;

(b) (S⊗R A,S⊗R P) is an i−R(S⊗R A) cover of S⊗R B for any commutative flat R-algebra S;

(c) (Am,Pm) is an i−R(Am) cover of Bm for every maximal ideal m of R;

Proof. Let M ∈ A-mod∩R-proj. Consider the following diagram

S⊗R M S⊗R HomB(HomA(P,A),HomA(P,M))

HomS⊗RB(S⊗R HomA(P,A),S⊗R HomA(P,M))

S⊗R A HomS⊗RB(HomS⊗RA(S⊗R P,S⊗R A),HomS⊗RA(S⊗R P,S⊗R M))

S⊗RηM

ωHomA(P,A),HomA(P,M)

ηS⊗RM

ω
−1
P,M◦(−)◦ωP,A

. (3.3.0.3)

The maps ω are the canonical maps given by Lemma 1.1.36, hence they are isomorphisms. This is a commutative
diagram. In fact, for every s,s′,s′′ ∈ S, m ∈M, g ∈ HomA(P,A), p ∈ P, we have

ωP,M ◦ω
−1
P,M ◦ (−)◦ωP,A ◦ηS⊗RM(s⊗m)(s′⊗g)(s′′⊗ p) = ηS⊗RM(s⊗m)ωP,A(s′⊗g)(s′′⊗ p)

= ωP,A(s′⊗g)(s′′⊗ p)s⊗m = ss′s′′⊗g(p)m

ωP,M ◦ωHomA(P,A),HomA(P,M) ◦S⊗R ηM(s⊗m)(s′⊗g)(s′′⊗ p) =

ωP,MωHomA(P,A),HomA(P,M)(s⊗ηM(m))(s′⊗g)(s′′⊗ p) = ωP,M(ss′⊗ηM(m)(g))(s′′⊗ p) = ss′s′′⊗g(p)m.

Assume that (a) holds. By Proposition 1.4.30, (S⊗R A,S⊗R P) is a cover of S⊗R B. Let M ∈ R(A). By
assumption, ηM is mono in case i = −1 or it is an isomorphism in case i = 0. Applying the exact functor
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S⊗R −, S⊗R ηM is a monomorphism (if i = −1) or S⊗R ηM is an isomorphism in case i = 0. In view of
the diagram (3.3.0.3), ηS⊗RM is a monomorphism if i = −1 and it is an isomorphism if i = 0. According to
Lemma 1.4.26 and Snake Lemma, ηN is a monomorphism/isomorphism i = −1 and i = 0 respectively for any
N ∈ 〈HR(A)〉= R(S⊗R A). By Proposition 3.1.6 and Lemma 3.1.4, (b) follows. (b) =⇒ (c) is clear.

Assume that (c) holds. By Proposition 1.4.30, (A,P) is a cover of B. Let M ∈R(A). By assumption, ηMm is
a monomorphism in case i =−1 or it is an isomorphism in case i = 0 for every maximal ideal m in R. According
to the diagram (3.3.0.3), (ηM)m is a monomorphism in case i =−1 or it is an isomorphism in case i = 0 for every
maximal ideal m in R. Therefore, ηM is a monomorphism in case i = −1 or it is an isomorphism in case i = 0.
Thus, (a) follows.

Proposition 3.3.4. Let R(A) be a well behaved resolving subcategory of A-mod∩R-proj. Let (A,P) be a 0−
R(A) cover of B. For i≥ 1, the following assertions are equivalent.

(a) (A,P) is an i−R(A) cover of B;

(b) (S⊗R A,S⊗R P) is an i−R(S⊗R A) cover of S⊗R B for any commutative flat R-algebra S;

(c) (Ap,Pp) is an i−R(Ap) cover of Bp for every prime ideal p of R;

(d) (Am,Pm) is an i−R(Am) cover of Bm for every maximal ideal m of R;

Proof. (a) =⇒ (b). By Proposition 3.3.3, (S⊗R A,S⊗R P) is a 0−R(S⊗R A) cover of S⊗R B for any commu-
tative flat R-algebra S. Let M ∈R(A). Let 1≤ j ≤ i. Then,

R j GS(FS(S⊗R M)) = Ext j
S⊗RB(HomS⊗RA(S⊗R P,S⊗R A),HomS⊗RA(S⊗R P,S⊗R M))

= Ext j
S⊗RB(S⊗R HomA(P,A),S⊗R HomA(P,M))

= S⊗R Ext j
B(HomA(P,A),HomA(P,M)) = S⊗R R j G(FM) = 0

Using long exact sequences coming from the derived functors R j GS and since it commutes with direct summands
we obtain that R j GS(FS(N)) = 0 for all N ∈ 〈HR(A)〉 = R(S⊗R A). By Proposition 3.1.17, (b) follows. The
implications (b) =⇒ (c) =⇒ (d) are clear.

Assume that (d) holds. By Proposition 3.3.3, (A,P) is a 0−R(A) cover of B. Let M ∈R(A). Let 1≤ j ≤ i.
We have, for every maximal ideal m in R,

R j G(FM)m = Ext j
B(HomA(P,A),HomA(P,M))m ' Ext j

Bm
(HomAm(Pm,Am),HomAm(Pm,Mm)) (3.3.0.4)

= R j Gm(FmMm) = 0, (3.3.0.5)

since Mm ∈R(Am). Therefore, R j G(FM) = 0. By Proposition 3.1.17, (A,P) is an i−R(A) cover of B.

Theorem 3.3.5. Let R be a regular Artinian ring. Denote by pB the number of non-isomorphism classes of

projective indecomposable of B. Assume k = sup{pBm : m maximal ideal of R} < ∞. Let (A,P) be an i-faithful

split quasi-hereditary cover of B. If i≥ k, then A and B are Morita equivalent.

Proof. Let m be a maximal ideal in R. By Theorem 1.1.60, Rm is a regular local commutative Noetherian ring
and dimRm = gldimRm = 0. By Lemma 1.1.57, Rm is a field, and thus Bm is a finite-dimensional algebra. By
Proposition 3.3.4, (Am,Pm) is i−F (∆̃m) cover of Bm. By assumption i≥ k≥ pBm which is equal to the number
of isomorphism classes of simple Bm-modules. By Theorem 3.2.1, HomAm(Pm,−) : Am-mod→ Bm-mod is an
equivalence of categories. In particular, the functor HomAm(Pm,−) preserves projectives. Let Q ∈ A-proj. Then,

HomA(P,Q)m ' HomAm(Pm,Qm) ∈ Bm-proj (3.3.0.6)
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for every maximal ideal m in R. By Theorem 1.1.45, HomA(P,Q) ∈ B-proj. Hence, HomA(P,−) preserves
projective modules, thus A-proj' B-proj. Consequently, A and B are Morita equivalent by Theorem 1.4.17.

Proposition 3.3.6. Let R(A) be a well behaved resolving subcategory of A-mod∩R-proj. Let P∈A-mod∩R-proj.
Let (A(m),P(m)) be a (−1)−R(A(m)) cover of B(m) for every maximal ideal m of R. Then, (A,P) is a

(−1)−R(A) cover of B.

Proof. By Proposition 1.4.34, (A,P) is a cover of B. Let M ∈R(A). By definition, M(m) ∈R(A(m)) for every
maximal ideal m in R and M ∈ R-proj. By Lemma 3.1.4, ηM(m) is a monomorphism. By Lemma 1.4.31, ηM is a
monomorphism. Applying again Lemma 3.1.4, it follows that (A,P) is a (−1)−R(A) cover of B.

Proposition 3.3.7. Let R be a regular (commutative Noetherian) ring. Let R(A) be a well behaved resolving

subcategory of A-mod∩R-proj. Let P ∈ A-mod∩R-proj. If (A(m),P(m)) is a 0−R(A(m)) cover of B(m) for

every maximal ideal m of R, then (A,P) is a 0−R(A) cover of B.

Proof. By Proposition 3.3.6, (A,P) is a (−1)−R(A) cover of B. Let m be a maximal ideal m in R. Then,
(Am(mm),Pm(mm)) = (A(m),P(m)) is a 0−R(A(m)) =R(Am(mm)) cover of (B(m)) = Bm(mm). So, in view
of Proposition 3.3.3, we can assume, without loss of generality, that R is a local regular commutative Noetherian
ring. In particular, dimR < ∞. We shall proceed by induction on the Krull dimension of R.

If dimR = 0, then R is a field, so there is nothing to show. Assume the result is known for regular local
rings with Krull dimension less than t. Let R be with dimR = t. Let m be the unique maximal ideal of R. Let
x ∈m/m2 be a non-zero element. By Lemma 1.1.57, Q := R/Rx is a regular commutative Noetherian local ring
with dim(Q) = t−1 and Q(mQ)' R/Rx/m/Rx' R/m= R(m). Moreover,

(Q⊗R A)(mQ) = Q(mQ)⊗Q Q⊗R A' R(m)⊗R A = A(m).

Hence, ((Q⊗R A)(mQ),(Q⊗R P(mQ)) is a 0−R((Q⊗R A)(mQ)) cover of Q⊗R B(mQ). By induction,
(Q⊗R A,Q⊗R P) is a 0−R(Q⊗R A) cover of Q⊗R B. The remaining of the proof is similar to Proposition
1.4.34. Let M ∈R(A).

By definition, Q⊗R M ∈R(Q⊗R A). By Lemma 3.1.6, ηQ⊗RM is an isomorphism. By Lemma 1.1.32 and
Proposition 1.1.31, the composition map

Q⊗R M HomQ⊗RB(HomQ⊗RA(Q⊗R P,Q⊗R A),HomQ⊗RA(Q⊗R P,Q⊗R M))

HomQ⊗RB(Q⊗R HomA(P,A),Q⊗R HomA(P,M)) HomB(HomA(P,A),Q⊗R HomA(P,M))

ηQ⊗RM

is an isomorphism. We will denote this map by µQ,M .
We have a commutative triangle

Q⊗R M HomB(HomA(P,A),Q⊗R HomA(P,M))

Q⊗R HomB(HomA(P,A),HomA(P,M))

µQ,M

Q⊗RηM

δ

with a monomorphism given by Lemma 1.4.33. Since µQ,M is an isomorphism, the inclusion map δ is also
surjective. Thus, Q⊗R ηM is an isomorphism. Denote the canonical surjective map Q→ Q/m/Rx = R(m) by π .
There is the commutative diagram
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Q⊗R M Q⊗R HomB(HomA(P,A),HomA(P,M))

R(m)⊗R M R(m)⊗R HomB(HomA(P,A),HomA(P,M))

Q⊗RηM

M⊗Rπ π⊗RHomB(HomA(P,A),HomA(P,M))

ηM(m)

.

It follows that ηM(m)◦M⊗R π is surjective. In particular, ηM(m) is surjective. By Nakayama’s Lemma, ηM is
surjective. Since (A,P) is a (−1)−R(A) cover of B, ηM is also a monomorphism, hence ηM is an isomorphism.
By Proposition 3.1.6, the result follows.

Proposition 3.3.8. Let R be a regular (commutative Noetherian) ring. Let R(A) be a well behaved resolving

subcategory of A-mod∩R-proj. Let P ∈ A-mod∩R-proj. Let i ≥ 1. If (A(m),P(m)) is an i−R(A(m)) cover of

B(m) for every maximal ideal m of R, then (A,P) is an i−R(A) cover of B.

Proof. (A(m),P(m)) is a 0−R(A(m)) cover of B(m) for every maximal ideal m of R. By Proposition 3.3.7,
(A,P) is a 0−R(A) cover of B. We can assume, without loss of generality, that R is a local regular ring. Let
M ∈R(A). Let

HomA(P,A)• : · · · → Q1→ Q0→ 0 (3.3.0.7)

be a deleted complex chain obtained by deleting HomA(P,A) from a projective B-resolution of HomA(P,A).
Consider the cochain complex P• = HomB(HomA(P,A)•,HomA(P,M)). Note that each module in HomA(P,A)•

is projective over B, so that each module in P• belongs to addR HomA(P,M). In particular, each module in P• is
projective over R.

We claim that R j G(FM) = 0, 1≤ j ≤ i. We shall prove it by induction on dimR.
If dimR = 0, there is nothing to show. Assume that dimR > 0. Let x ∈m/m2. Then, dim(R/Rx) = dimR−1.

m/Rx is the unique maximal ideal of R/Rx and R/Rx/m/Rx' R/m as R-modules. Hence, for every X ∈ A-mod,

R/Rx⊗R X(m/Rx) = R/Rx/m/Rx⊗R/Rx R/Rx⊗R X ' R/m⊗R X = X(m). (3.3.0.8)

Thus, (R/Rx⊗R A(m/Rx),R/Rx⊗R P(m/Rx)) = (A(m),P(m)) is an i-R(A(m/Rx)) cover of R/Rx⊗R B(m/Rx).
Denote by Fx a Gx the adjoint functors associated with this cover. Therefore, R jGx(Fx(R/Rx⊗R M)) = 0 for
1≤ j ≤ i.

Observe that pdimR R/Rx≤ 1. By Corollary 1.3.16, for each 1≤ j ≤ i, there exists an exact sequence

0→ R/Rx⊗R H j(P•)→ H j(R/Rx⊗R P•). (3.3.0.9)

Note that, H j(R/Rx⊗R P•) = R jGx(Fx(R/Rx⊗R M)) = 0 and H j(P•) = Ext j
B(FA,FM) for each 1≤ j ≤ i.

Consider the surjective map R/Rx→ R/m induced by the canonical map R→ R/m. Applying, for each 1≤
j≤ i, Ext j

B(FA,FM)⊗R− yields that Ext j
B(FA,FM)(m) = 0, 1≤ j≤ i. So, we conclude that Ext j

B(FA,FM) = 0,
for 1≤ j ≤ i.

We shall now see that under some conditions truncating a cover, the quality of the cover drops at most by
one.

Theorem 3.3.9. Let R be a commutative Noetherian ring. Let I be an ideal of R such that I ∈ R-proj and i≥ 0.

Let R(A) be a well behaved resolving subcategory of A-mod∩R-proj. Let (A,P) be an i-R(A) cover of B. Then,

(R/I⊗R A,R/I⊗R P) is an (i−1)-R(R/I⊗R A) cover of R/I⊗R B.
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Proof. Denote by Q the commutative ring R/I. Consider the exact sequence

0→ I→ R→ Q→ 0. (3.3.0.10)

This exact sequence induces the fully faithful functor H : Q⊗R A-mod→ A-mod. Moreover, for every M ∈
Q⊗R A-mod, Q⊗R HM 'HM/IHM = HM = M. Hence, it is enough, to show that if η

Q
Q⊗RM is an isomorphism

(resp. a monomorphism) for every M ∈ R(A), then (Q⊗R A,Q⊗R P) is a 0 (resp. −1)-R(Q⊗R A) cover of
Q⊗R B.

Here, ηQ denotes the unit associated with the adjunction

FQ := HomQ⊗RA(Q⊗R P,−) a HomQ⊗RB(FQ(Q⊗R A),−) := GQ. (3.3.0.11)

First, we will show that for every M ∈R(A) we can relate ηM with η
Q
Q⊗RM .

Applying −⊗R M and GF(−⊗R M) to (3.3.0.10) yields the commutative diagram

0 I⊗R M M R/I⊗R M 0

0 GF(I⊗R M) GFM GF(R/I⊗R M) Ext1B(FA,F(I⊗R M))

ηI⊗RM ηM ηQ⊗RM (3.3.0.12)

with exact rows. Since I ∈ R-proj, I⊗R M ∈ addA M. Thus, I⊗R M ∈ R(A). Hence, ηI⊗RM and ηM are iso-
morphisms. By Snake Lemma, ηQ⊗RM is a monomorphism. If Ext1B(FA,F(I⊗R M)) = 0, then ηQ⊗RM is an
isomorphism.

On the other hand, there are isomorphisms δ and ψ making the following diagram commutative:

Q⊗R M GF(Q⊗R M)

HomQ⊗RB(Q⊗R FA,Q⊗R FM) HomB(FA,Q⊗R FM)

ηQ⊗RM

µ

δ

HomB(FA,ψ) . (3.3.0.13)

By Lemma 1.1.32, δ is an isomorphism. By Proposition 1.1.33, ψ is an isomorphism. We define µ to be
the Q⊗R A-homomorphism that maps m⊗ q to the map (q1⊗ f 7→ qq1⊗ f (−)m). We claim that (3.3.0.13) is
commutative. Let m ∈M, q ∈ Q, g ∈ FA, p ∈ P. Then,

HomB(FA,ψ)δ µ(q⊗m)(g)(p) = ψ(δ µ(q⊗m))(g)(p) = ψ(µ(q⊗m)(1Q⊗g))(p) (3.3.0.14)

= ψ(q⊗g(−)m)(p) = q⊗g(p)m (3.3.0.15)

= ηQ⊗RM(q⊗m)(g)(p). (3.3.0.16)

Finally, we shall relate µ with η
Q
Q⊗RM . There exists a commutative diagram

Q⊗R M HomQ⊗RB(Q⊗R FA,Q⊗R FM)

HomQ⊗RB(FQ(Q⊗R A),FQ(Q⊗R M)) HomQ⊗RB(Q⊗R FA,FQ(Q⊗R M))

µ

η
Q
Q⊗RM HomB(Q⊗RFA,ϕM)

HomQ⊗RB(ϕA,FQ(Q⊗RM))
, (3.3.0.17)
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where ϕX , X ∈ A-mod, is the canonical isomorphism Q⊗R FX → FQQ⊗R X . In fact,

HomQ⊗RB(ϕA,FQ(Q⊗R M))ηQ
Q⊗RM(q1⊗m)(q2⊗ f )(q3⊗ p) = η

Q
Q⊗RM(q1⊗m)(ϕA(q2⊗ f ))(q3⊗ p)

= ϕA(q2⊗ f )(q3⊗ p)(q1⊗m)

= q2q3⊗ f (p)q1⊗m

= q1q2q3⊗ f (p)m

HomB(Q⊗R FA,ϕM)µ(q1⊗m)(q2⊗ f )(q3⊗ p) = ϕM(µ(q1⊗m)(q2⊗ f ))(q3⊗ p)

= ϕM(q1q2⊗ f (−)m)(q3⊗ p)

= q1q2q3⊗ f (−)m(p)

= q1q2q3⊗ f (p)m, m ∈M, p ∈ P, f ∈ FA,q1,q2,q3 ∈ Q.

Thus, using commutative diagrams (3.3.0.13) and (3.3.0.17) we deduce that η
Q
Q⊗RM is a monomorphism. Further,

η
Q
Q⊗RM is an isomorphism if R1 G(FM) = 0. So, the result follows for i ∈ {0,1}. Assume that i ≥ 1. Then,

(Q⊗R A,Q⊗R P) is a 0-R(Q⊗R A) cover of Q⊗R B. The exact sequence (3.3.0.10) yields that flatdimR Q ≤ 1.
Let FA• be a deleted projective B-resolution of FA and M ∈R(A). By Corollary 1.3.16, for each n ≥ 0, there
exists an exact sequence

0→ Hn(HomB(FA•,FM))⊗R Q→ Hn(HomB(FA•,FM)⊗R Q)→ TorR
1 (H

n+1(HomB(FA•,FM)),Q)→ 0.

Notice that Hn(HomB(FA•,FM)) = ExtnB(FA,FM) = 0, 1≤ n≤ i. Hence,

0 = Hn(HomB(FA•,FM)⊗R Q) = Hn(HomQ⊗RB(Q⊗R FA•,Q⊗R FM)) (3.3.0.18)

= Hn(HomQ⊗RB(FQ(Q⊗R A)•,FQQ⊗R M)) = ExtnQ⊗RB(FQQ⊗R A,FQQ⊗R M), 1≤ n≤ i−1. (3.3.0.19)

It follows that (Q⊗R A,Q⊗R P) is an (i−1)-R(Q⊗R A) cover of Q⊗R B.

We can describe Theorem 3.3.9 not just for projective ideals of R but also for prime ideals of R in case R is a
commutative Noetherian regular local ring.

Corollary 3.3.10. Let R be a commutative Noetherian regular local ring. Let R(A) be a well behaved re-

solving subcategory of A-mod∩R-proj. Let (A,P) be an i-R(A) cover of B for some integer i ≥ 0. Then,

(R/p⊗R A,R/p⊗R P) is an (i− ht(p))-R(R/p⊗R A) cover of R/p⊗R B for every prime ideal p of R with

ht(p)≤ i+1.

Proof. Let p be a prime ideal of R. Suppose that, for n = ht(p),

0 = p0 ⊂ p1 ⊂ ·· · ⊂ pn = p (3.3.0.20)

is the largest chain of distinct prime ideals that are contained in p. We will proceed by induction on n = ht(p).
If n = 0, there is nothing to show. Assume that n > 0. By construction, ht(pn−1) = ht(p)− 1 = n− 1, or

even, ht(p/pn−1) = 1. By induction, (R/pn−1⊗R A,R/pn−1⊗R P) is an (i− ht(pn−1))-R(R/pn−1⊗R A) cover
of R/pn−1⊗R B. On the other hand, R/pn−1 is a local regular ring. Hence, R/pn−1 is a unique factorization
domain. Therefore, every prime ideal of height one is principal. So, p/pn−1 = R/pn−1x ∈ R/pn−1-proj for some
x ∈ R/pn−1. Note that, i−ht(pn−1) = i−ht(p)+1≥ i− i−1+1 = 0. By Theorem 3.3.9,

(R/p⊗R A,R/p⊗R P) = (R/pn−1/p/pn−1⊗R/pn−1 R/pn−1⊗R A,R/pn−1/p/pn−1⊗R/pn−1 R/pn−1⊗R P)
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is an i−ht(p)-R(R/p⊗R A) cover of R/p⊗R B.

Now, we shall see that under some conditions we can obtain a reciprocal statement of Theorem 3.3.9. Fur-
thermore, we want to establish, similar to Rouquier’s work, that covers might improve by increasing the Krull
dimension of the ground ring.

Theorem 3.3.11. Let R be a commutative Noetherian regular ring with Krull dimension at least one. Let i≥ 0.

Let R(A) be a well behaved resolving subcategory of A-mod∩R-proj. Let P ∈ A-mod∩R-proj. Assume that

(K⊗R A,K⊗R P) is an i+1−R(K⊗R A) cover of K⊗R B for some Noetherian commutative flat R-algebra K.

If (A(m),P(m)) is an i−R(A(m)) cover of B(m) for every maximal ideal m of R, then (A,P) is a (1+ i)−R(A)

cover of B.

Proof. We can assume, without loss of generality, that R is a local commutative Noetherian regular ring. By
Proposition 3.3.8, (A,P) is an i−R(A) cover of B. Let M ∈R(A). It is enough to show that Ri+1 G(FM) = 0.
Hence, we want to show that the annihilator of Ri+1 G(FM) is R. Assume, by contradiction, that AnnR Ri+1 G(FM)=

0. In particular, Ri+1 G(FM) is a faithful R-module. Thus, there exists an exact sequence

0→ R→
⊕

I

Ri+1 G(FM), (3.3.0.21)

for some set (possibly infinite) I. Since K is flat over R we obtain a monomorphism K→
⊕

I K⊗R Ri+1 G(FM).
On the other hand, as K⊗R M ∈R(K⊗R A),

K⊗R Ri+1 G(FM)' Exti+1
K⊗RB(K⊗R FA,K⊗R FM)' Exti+1

K⊗RB(FK(K⊗R A),FK(K⊗R M)) = 0. (3.3.0.22)

Here, FK denotes the functor HomK⊗RA(K⊗R P,−). This would imply that K = 0. Hence, Ri+1 G(FM) cannot
be R-faithful. Moreover, there exists a non-zero divisor x ∈ R such that

Ri+1 G(FM)[x] := {y ∈ Ri+1 G(FM) : xy = 0}= Ri+1 G(FM). (3.3.0.23)

Observe that if x1x2y = 0, then x2y ∈ Ri+1 G(FM)[x1] where y ∈ Ri+1 G(FM) and x1 and x2 belong to the unique
maximal ideal m. Thus, we can assume without loss of generality, that the element x given in (3.3.0.23) belongs to
m\m2. Furthermore, m/Rx is the unique maximal ideal of R/Rx so that (R/Rx⊗R A(m/Rx),R/Rx⊗R P(m/Rx))=

(A(m),P(m)) is an i-R(A(m)) cover of B(m). Therefore, (R/Rx⊗R A,R/Rx⊗R P) is an i-R(R/Rx⊗R A) cover
of R/Rx⊗R B. Denote by Fx and Gx, with Fx a Gx, the adjoint functors associated with this cover. Let

HomA(P,A)• : · · · → Q1→ Q0→ 0 (3.3.0.24)

be a deleted complex chain obtained by deleting HomA(P,A) from a projective B-resolution of HomA(P,A).
Observe that pdimR R/Rx ≤ 1, so applying P• := HomB(HomA(P,A)•,HomA(P,M)) on Corollary 1.3.16

yields exact sequences

0→ R/Rx⊗R Hn(P•)→ Hn(R/Rx⊗R P•)→ TorR
1 (H

n+1(P•),R/Rx)→ 0, ∀n≥ 0. (3.3.0.25)

First, assume that i > 0. Then, H i(R/Rx⊗R P•) = Ri Gx(FxR/Rx⊗R M) = 0. So,

Ri+1 G(FM) = Ri+1 G(FM)[x] = TorR
1 (H

i+1(P•),R/Rx) = 0. (3.3.0.26)

Now, assume that i = 0. We need to proceed by induction on the Krull dimension of R. If dimR = 1, then
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Rx =m. As R/m is a field and

R/m⊗R H0(P•) = R/m⊗R GFM 'M(m)' GxFx(M(m)) = H0(R/m⊗R P•) (3.3.0.27)

the exact sequence (3.3.0.25) yields that

R1 G(FM) = R1 G(FM)[x] = TorR
1 (H

1(P•),R/m) = 0. (3.3.0.28)

Assume that the result holds for all rings with Krull dimension less than t. Let R have Krull dimension t. The
Krull dimension of R/Rx is t−1. By induction, R1 Gx(FxR/Rx⊗R M) = 0. The exact sequence (3.3.0.25) implies
that 0 = R/Rx⊗R H1(P•) = R/Rx⊗R R1 G(FM). Applying the functor R1 G(FM)⊗R− on the surjective map
R/Rx→ R/m we get that R1 G(FM)(m) = 0. Thus, R1 G(FM) = 0. This completes the proof.

We remark that Proposition 4.42 of [Rou08] is a particular case of Theorem 3.3.11 by fixing R(A) = F (∆̃)

and i = 1. To illustrate, recall that for a flat K R-algebra with gldimK⊗R A = 0, every module in K⊗R A-mod is
projective over K⊗R A. So, R(K⊗R A) =K⊗R A-mod. By Proposition 3.3.4, (K⊗R A,K⊗R P) is a 0-R(K⊗R A)-
cover of K⊗R B. By Lemma 1.4.27, the functor HomK⊗RA(K⊗R P,−) : K⊗R A-mod→ K⊗R B-mod is full and
faithful. Consequently, it is an equivalence of categories.

With Theorem 3.3.11, it is natural to ask how much better can a deformed cover be comparing to covers of
finite-dimensional algebras.

Example 4.6.3 shows that the assumption on Theorem 3.3.11 is not enough to increase the quality of a
deformed cover more than one. This motivates the introduction of flat R-sequences.

3.3.1 Flat R-sequences

Assume, until the end of this section, that R is a local regular commutative Noetherian ring. Let m be the unique
maximal ideal of R.

Recall that an R-sequence of size t is an ordered sequence {x1, . . . ,xt} ⊂m such that x1 is a non-zero divisor
of R and for i > 1 each xi is not a zero divisor on the module R/(x1, . . . ,xi−1). Note that t ≤ dimR and every
R-sequence can be extended to a maximal R-sequence of size dimR. This is a well-known fact of the theory of
regular rings. In fact, for every non-zero divisor x, dimR/Rx = dimR−1.

Given an R-sequence x = {x1, . . . ,xt} of size t ≥ 1, we will denote by Rx
l the ring R/(x1, . . . ,xl), 1≤ l ≤ t and

Rx
0 will denote R. For each R-sequence x of size t, we can construct an ordered sequence {Kx

0 , · · · ,Kx
t } so that

Kx
l is a flat commutative Noetherian Rx

l -algebra, 0≤ l ≤ t. We will call {Kx
0 , · · · ,Kx

t } a flat R-sequence of x.

Theorem 3.3.12. Let R be a local regular commutative Noetherian ring with unique maximal ideal m. Let R(A)

be a well behaved resolving subcategory of A-mod∩R-proj. Let P ∈ A-mod∩R-proj and i≥ 0, 0≤ j ≤ dimR−1
be integers. Assume that for every R-sequence x of size j there exists a flat R-sequence of x making

(Kx
l ⊗R A,Kx

l ⊗R P) an (i+ j+1− l)-R(Kx
l ⊗R A) cover of Kx

l ⊗R B for 0≤ l ≤ j.

If (A(m),P(m)) is an i-R(A(m)) cover of B(m), then (A,P) is an (i+ j+1)-R(A) cover of B.

Proof. We claim that for every R-sequence x of size j, (Rx
l ⊗R A,Rx

l ⊗R P) is an (i+ j+1− l)-R(Rx
l ⊗R A) cover

of Rx
l ⊗R B, 0≤ l ≤ j.
We shall proceed by induction on t := j− l. If t = 0, then l = j. Let x be an R-sequence of size j. The unique

maximal ideal of Rx
j = R/(x1, . . . ,x j) is m/(x1, . . . ,x j) and

Rx
j ⊗R M(m/(x1, . . . ,x j))' R/m⊗R M, ∀M ∈ R-mod . (3.3.1.1)
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Thus, the cover (Rx
j ⊗R A,Rx

j ⊗R P) is in the conditions of Theorem 3.3.11. So, (Rx
j ⊗R A,Rx

j ⊗R P) is an (i+1)-
R(Rx

j)⊗R A) cover of Rx
j ⊗R B.

Assume now that the claim holds for a given t > 0. We shall prove it for t +1. Let x be an R-sequence of size
j. By induction, (Rx

j−t⊗R A,Rx
j−t⊗R P) is an (i+ j+1− ( j− t)) = (i+1+ t)-R(Rx

j−t⊗R A) cover of Rx
j−t⊗R B.

Denote by Fx
j−t−1 a Gx

j−t−1 the usual adjoint functors of the cover (Rx
j−t−1⊗R A,Rx

j−t−1⊗R P).
Since (A(m),P(m)) is a 0-R(A(m)) cover of B(m), it follows that (Rx

j−t−1 ⊗R A,Rx
j−t−1 ⊗R P) is a 0-

R(Rx
j−t−1⊗R A) cover of Rx

j−t−1⊗R B.
Note that

Rx
j−t−1/Rx

j−t−1(x j−t +(x1, · · · ,x j−t−1))' R/(x−1, · · · ,x j−t−1,x j−t) = Rx
j−t . (3.3.1.2)

In fact, the isomorphisms are the maps induced by the canonical maps

R→ R/(x1, · · · ,x j−t−1)→ R/(x1, · · · ,x j−t−1)/(R/(x1, · · · ,x j−t−1))(x j−t +(x1, · · · ,x j−t−1)), (3.3.1.3)

R→ R/(x1, · · · ,x j−t−1,x j). (3.3.1.4)

Consequently, for every M ∈R(Rx
j−t−1⊗R A), we have

Rx
j−t ⊗Rx

j−t−1
M ∈R(Rx

j−t ⊗Rx
j−t−1

Rx
j−t−1⊗R A) = R(Rx

j−t ⊗R A). (3.3.1.5)

By Corollary 1.3.16, for each 1≤ n≤ i+1+ t,

Rn Gx
j−t−1(F

x
j−t−1M)⊗Rx

j−t−1
Rx

j−t = 0, ∀M ∈R(Rx
j−t−1⊗R A). (3.3.1.6)

There exists a surjective map Rx
j−t → Rx

j−t−1/(m/(x1, · · · ,x j−t−1)). For each M ∈ R(Rx
j−t−1⊗R A) and each

1≤ n≤ i+1+ t, applying the functor Rn Gx
j−t−1(F

x
j−t−1)⊗Rx

j−t−1
− yields that Rn Gx

j−t−1Fx
j−t−1M = 0. Now we

can use the same argument as in the last part of the proof of Theorem 3.3.11 (replacing K by Kx
j−t−1) to deduce

that

Ri+2+t Gx
j−t−1Fx

j−t−1M[x j +(x1, · · · ,x j−t−1)] = 0 (3.3.1.7)

and Ri+2+t Gx
j−t−1Fx

j−t−1M is not faithful. Since x j is arbitrary, this shows that (Rx
j−t−1⊗R A,Rx

j−t−1⊗R P) is an
(i+ j + 1− ( j− t− 1))-R(Rx

j−t−1⊗R A) cover of Rx
j−t−1⊗R B. Hence, the claim follows. Now the statement

follows applying t = j.

3.3.2 Quality of a cover and the spectrum of the ground ring

In the same spirit of Theorem 3.3.11, we can obtain a converse statement for Corollary 3.3.10.

Theorem 3.3.13. Let R be a local commutative regular Noetherian ring with quotient field K. Suppose that

(A,P) is a 0-R(A) cover of B for some resolving subcategory R(A) of A-mod∩R-proj. Let i ≥ 0. Assume that

the following conditions hold:

(i) (K⊗R A,K⊗R P) is an i+1-R(K⊗R A) cover of K⊗R B;

(ii) For each prime ideal p of height one, (R/p⊗R A,R/p⊗R P) is an i-R(R/p⊗R A) cover of R/p⊗R B.

Then, (A,P) is an i+1-R(A) cover of B.

Proof. Let 1≤ j ≤ i+1 and let M ∈R(A). Denote by FK and GK the adjoint functors associated with the cover
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(K⊗R A,K⊗R P) and denote by Fp and Gp the adjoint functors associated with the cover (R/p⊗R A,R/p⊗R P),
for each prime ideal p of R. Assumption (i) implies that

K⊗R R j G(FM)' R j GK(FKK⊗R M) = 0. (3.3.2.1)

Hence, R j G(FM) cannot be R-faithful. Moreover, for each 1 ≤ j ≤ i+ 1, there exists a non-zero divisor x j ∈
m/m2 such that

R j G(FM)[x j] = R j G(FM), (3.3.2.2)

where m is the unique maximal ideal of R. Since x j ∈ m/m2, R/Rx j is an integral domain of Krull dimension
dimR−1. So, Rx j is a prime ideal of height one. Like before, applying P• := HomB(HomA(P,A)•,HomA(P,M))

on Corollary 1.3.16 we get exact sequences

0→ R/Rx j⊗R Hn(P•)→ Hn(R/Rx j⊗R P•)→ TorR
1 (H

n+1(P•),R/Rx j)→ 0, ∀n≥ 0. (3.3.2.3)

Using now assumption (ii) it follows that H j−1(R/Rx j⊗R P•) = 0 for i≥ j > 1. So, R j G(FM) = 0 for 2≤ j ≤
i+1. The case j = 1 requires a little more work. For each x ∈m/m2, consider the exact sequence

0→ R→ R→ R/Rx→ 0, (3.3.2.4)

where the first map is multiplication by x. Since M ∈ R-proj, we get an exact sequence

0→M→M→M/xM→ 0, (3.3.2.5)

where the first map is multiplication by x. Denote by π the projection M→M/xM. Applying HomB(FA,F−)
yields a long exact sequence

GFM→ HomB(FA,F(M/xM))→ R1 G(FM)→ R1 G(FM). (3.3.2.6)

By Lemma 1.1.32 and Proposition 1.1.33, there exists a commutative diagram

GFM HomB(FA,F(M/xM)) GRxFRx(M/xM)

M M/xM

HomB(FA,Fπ)

'

ηM

π

ηRx
M/xM ' . (3.3.2.7)

Thus, HomB(FA,Fπ) is surjective. By exactness of (3.3.2.6), the map R1 G(FM)→R1 G(FM) is injective. Since
this map is given by multiplication by x, its kernel is R1 G(FM)[x] = 0. As discussed before, 0 = R1 G(FM)[x] =

R1 G(FM). Thus, the result follows.

In Example 4.6.4 we can see that the assumptions on Theorem 3.3.13 are optimal.
Observe that the arguments used in the proof of Theorems 3.3.11 and 3.3.8 remain valid if we are interested

only in a given module M ∈R(A). Hence, the following corollary follows.

Corollary 3.3.14. Let (S⊗R A,S⊗R P) be a cover of S⊗R B for any commutative Noetherian R-algebra and M ∈
A-mod∩R-proj. Assume that the following conditions hold.

1. The unit ηM : M→ GFM is an isomorphism;

2. Ext j
B(m)

(FA(m),FM(m)) = 0 for every maximal ideal m of R, where 1≤ j ≤ i for some i≥ 0.
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Then, Ext j
B(FA,FM) = 0 for all 1≤ j ≤ i. If, in addition, dimR≤ 1 and there exists a Noetherian commutative

R-algebra K such that Exti+1
K⊗RB(K⊗R FA,K⊗R FM) = 0, then Ext j

B(FA,FM) = 0 for all 1≤ j ≤ i+1.

3.4 Truncation of split quasi-hereditary covers

In the previous section, we saw how the quality of a cover relates with the quality of a cover under change of
the ground to specific quotient rings. A similar question may be posed to the setup of split quasi-hereditary
algebras. More precisely, given a split heredity ideal of A, how covers involving A are related to covers involving
the split quasi-hereditary algebra A/J? The following result shows that contrary to Theorem 3.3.9, truncating a
split quasi-hereditary cover will induce a new cover with at least the same quality as the original one.

Theorem 3.4.1. Let A be a split quasi-hereditary Noetherian R-algebra. Assume that (A,P) is an i−F (∆̃) cover

of EndA(P)op for some integer i ≥ 0. Let J be a split heredity ideal of A. Then, (A/J,P/JP) is an i−F (∆̃J)

cover of EndA/J(P/JP)op, where F (∆̃J) = F (∆̃)∩A/J-mod.

Proof. Denote by B the endomorphism algebra EndA(P)op. The map A � A/J induces the fully faithful func-
tor A/J-mod→ A-mod. Hence, EndA/J(P/JP)op ' EndA(P/JP)op. We wish to express EndA/J(P/JP)op as a
quotient of B. To see this, consider the exact sequence of (A,B)-bimodules

0→ JP→ P→ P/JP→ 0. (3.4.0.1)

Applying HomA(P,−) yields the exact sequence

0→ HomA(P,JP)→ B→ HomA(P,P/JP)→ 0, (3.4.0.2)

while applying HomA(−,P/JP) yields the exact sequence

0→ EndA(P/JP)→ HomA(P,P/JP)→ HomA(JP,P/JP). (3.4.0.3)

Thanks to J = J2 we have HomA(JP,X) = 0 for every X ∈ A/J-mod. Combining (3.4.0.3) with (3.4.0.2) we
obtain the exact sequence

0→ HomA(P,JP)→ B→ EndA/J(P/JP)→ 0. (3.4.0.4)

Since (3.4.0.1) is exact as (A,B)-bimodules the latter is exact as (B,B)-bimodules. Denote by BJ the endomor-
phism algebra EndA/J(P/JP)op. By the previous argument, the functor BJ-mod→B-mod is fully faithful. Denote
by GJ the functor HomBJ (HomA/J(P/JP,A/J),−) = HomB(HomA/J(P/JP,A/J),−) : BJ-mod→ A/J-mod and
FJ = HomA/J(P/JP,−) = HomA(P/JP,−) : A/J-mod→ BJ-mod.

To assert that the truncated cover is a 0−F (∆̃) cover it is enough to compare the restrictions of the functors
F and G◦F to F (∆̃)∩A/J-mod with the restriction of the functors FJ and GJ ◦FJ to F (∆̃J), respectively. For
each X ∈ A/J-mod, applying HomA(−,X) to (3.4.0.1) instead of HomA(−,P/JP) yields that FJX ' FX . By
applying HomB(−,FX) to 0→ FJ→ FA→ F(A/J)→ 0 we obtain the exact sequence 0→ GJFJX → GFX →
HomB(FJ,FX). Fixing X ∈F (∆̃J) we obtain that HomB(FJ,FX)'HomA(J,X) = 0 since (A,P) is a 0−F (∆̃)

cover of B. These isomorphisms are functorial, so if we denote by ηJ the unit of the adjunction FJ aGJ , then ηJ
X

is an isomorphism for every X ∈F (∆̃J). This shows that (A/J,P/JP) is a 0−F (∆̃J) cover of BJ .
Our aim now is to compute R j GJ(FJX) for j ≤ i and every X ∈F (∆̃J). Hence, fix an arbitrary X ∈F (∆̃J).

Applying HomB(−,FX) to (3.4.0.2) we obtain Ext1B(BJ ,FX)= 0 and ExtlB(BJ ,FX)'Extl−1
B (FJP,FX) for every

271



3.5. Relative dominant dimension and covers

l > 1. Observe that JP' J⊗A P as left A-modules since P∈ A-proj. Moreover, JP∈ addA J, and thus it is projec-
tive as left A-module. Thus, ExtlB(BJ ,FX)' Extl−1

A (JP,X) = 0 for every 0 < l−1≤ i. Hence, ExtlB(BJ ,FX) = 0
for every 1 ≤ l ≤ i+ 1. Let · · · → Pi → ·· · → P1 → P0 → FJA/J → 0 be a projective BJ-resolution of FJA/J.
Denote by Ω j+1 the kernel of Pj→ Pj−1, with P−1 = Ω0 = FJA/J. Note that ExtlB(Pj,FX) = 0 for 1≤ l ≤ i+1.
Taking into account that BJ-mod→B-mod is a fully faithful functor, applying HomB(−,FX) and HomBJ (−,FX)

to the BJ projective resolution of FA/J yields

ExtlB(Ω
j,FX)' Extl+1

B (Ω j−1,FX), ExtsBJ
(Ω j,FX)' Exts+1

BJ
(Ω j−1,FX), (3.4.0.5)

for 1≤ l ≤ i, s, j ≥ 1 and the commutative diagram

HomB(Pj,FJX) HomB(Ω
j+1,FJX) Ext1B(Ω

j,FJX) 0

HomBJ (Pj,FJX) HomBJ (Ω
j+1,FJX) Ext1BJ

(Ω j,FJX) 0

. (3.4.0.6)

By the commutative diagram, Ext1B(Ω
j,FX) is zero if and only if Ext1BJ

(Ω j,FX) is zero. By assumption and the
previous discussion, for each 1≤ l ≤ i,

0 = ExtlB(FA/J,FX) = ExtlB(Ω
0,FX)' Ext1B(Ω

l−1,FX) = Ext1BJ
(Ωl−1,FJX)' ExtlBJ

(FJA/J,FJX). (3.4.0.7)

This concludes the proof.

Remark 3.4.2. The module P/JP might not be injective even if P is. 4

Remark 3.4.3. It follows from the proof of Theorem 3.4.1 that if (A,P) is a cover of B such that (A/J,P/JP) is
a 0−F (∆̃J) cover of BJ , then (A,P) is a (−1)−F (∆̃) cover of B. 4

This gives another reason to be interested in zero faithful split quasi-hereditary covers. These are exactly
the covers for which double centralizer properties occur in every step of the split heredity chain. In particular,
this gives another perspective on why zero faithful split quasi-hereditary covers possess so much nicer properties
compared to the minus one faithful case.

In Example 4.6.11, we can see that the improvement of the quality of a truncated cover with respect to the
original might be dramatic for trivial reasons.

3.5 Relative dominant dimension and covers

Definition 3.5.1. Let (A,P) be a cover of B = EndA(P)op. Let A be a resolving subcategory of A-mod∩R-proj.
The Hemmer–Nakano dimension of A (with respect to P) is the maximal number n such that (A,P) is an n−A

cover of B. We will denote by HNdimF A , where F denotes the functor HomA(P,−).

We also say the Hemmer–Nakano dimension of A (with respect to the functor F = HomA(P,−)). When
there is no confusion about the functor F , we will just call HNdimF A the Hemmer-Nakano dimension of A . If
(A,P) is not a (−1)−A cover of B, then we say that the Hemmer-Nakano dimension of A (with respect to P)
is −∞.

Proposition 3.5.2. Let (A,P,V ) be a RQF3 algebra over a commutative Noetherian ring R. If domdim(A,R)≥ 2,

then (A,HomA(V,A)) is a cover of B := EndA(V ).
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Proof. Since domdim(A,R) ≥ 2 then αA : A→ HomB(V,V ) is an isomorphism (see Section 2.4). By Lemma
1.4.28, it follows that (A,HomA(V,A)) is a cover of B = EndA(HomA(V,A))op ' EndA(V ).

Remark 3.5.3. It is essential to consider the projective HomA(V,A) instead of P. Indeed, in Example 4.6.2, we
see that there are examples of algebras with dominant dimension two with a projective-injective-faithful module
P but the pair (A,P) fails to be a cover of EndA(P)op. 4

Given Remark 3.5.3, we could ask in what situations (A,P) is a cover of EndA(P)op for a given (A,P,V )

RQF3 algebra. It turns out that this property characterizes Morita algebras.

Theorem 3.5.4. [Cru21, Theorem 1] Let R be a field. Let (A,P,V ) be a QF3 k-algebra. Then, (A,P) is a cover

of EndA(P)op if and only if A is a Morita algebra.

Proof. Assume that A is a Morita algebra. By Theorem 2.9.1, addDA ⊗A P = addP. Consequently,
addHomA(P,A) = addDP. Then, (A,DA⊗A P,HomA(P,A)) is a QF3 algebra. Therefore, in view of Proposi-
tion 2.3.7,

HomA(P,A)−domdim(A,R) AA = DP−domdim(A,R) AA = domdim(A,R)≥ 2. (3.5.0.1)

Hence, EndB(HomA(P,A))op ' A. This shows that (A,P) is a cover of B.
Conversely, suppose that (A,P) is a cover of B :=EndA(P)op. By assumption, there exists a double centralizer

property on HomA(P,A). More precisely,

EndA(HomA(P,A))' B EndB(HomA(P,A))op ' A. (3.5.0.2)

In particular, HomA(P,A) is faithful projective as right A-module. Hence, there exists an injective A-homo-
morphism A→HomA(P,A)s for some s > 0. Since DP is projective as right A-module, there is a monomorphism
DP→ At → HomA(P,A)st . DP is injective as right A-module. Hence, DP ∈ addA HomA(P,A).

We claim now that DA⊗A P is a projective left A-module. To see this, define P′ to be the direct sum of
all non-isomorphic indecomposable A-modules that belong to the additive closure of P. So, addP = addP′ and
P′ ∈ addA DA⊗A P = addA DA⊗A P′. By Krull-Remak-Schmidt theorem, we can write DA⊗A P′ ' P′⊕X for
some A-module X . On the other hand,

EndA(P′⊕X)' EndA(DA⊗A P′)op ' EndA(HomA(P′,A))' EndA(P′)op. (3.5.0.3)

So, by comparing R-dimensions X must be the zero module. Hence, DA⊗A P′ is a projective-injective-faithful
module. Consequently, DA⊗A P is also a projective-injective-faithful module. Thus, (A,DA⊗A,HomA(P,A)) is
a QF3 algebra. Now, the double centralizer property (3.5.0.2) implies that domdim(A,R)≥ 2. By Lemma 2.2.4,
addA P = addA DA⊗A P. So, (A,P) is a Morita algebra by Theorem 2.9.1.

Remark 3.5.5. It remains true that if (A,P) is a relative Morita algebra over a commutative Noetherian ring R,
then (A,P) is a cover of B. 4

Theorem 3.5.6. Let (A,P,V ) be a RQF3 algebra over a commutative Noetherian ring R with domdim(A,R)≥ 2.

Suppose that R(A) is a well behaved resolving subcategory of A-mod∩R-proj. Let

n = min{domdim(A,R) M : M ∈R(A)}.

Then, (A,HomA(V,A)) is an (n− 2)−R(A) cover of EndA(V ). Moreover, the Hemmer–Nakano dimension of

R(A) is less or equal to n+dimR−2.
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Proof. By Proposition 3.5.2, (A,HomA(V,A)) is a cover of EndA(V ). Assume n = 0. By contradiction, assume
that (A,HomA(V,A)) is a dimR− 1-R(A) cover of EndA(V ). If dimR = 0, then every localization of R at a
maximal ideal is a field. In particular, ηMm is a monomorphism for every maximal ideal m in R for every
M ∈ R(A). As Rm is a field, in view of Lemma 2.4.1, domdimAm Mm ≥ 1 for every maximal ideal m in R.
By Proposition 2.5.7, domdim(A,R) M ≥ 1 for every M ∈ R(A). This is a contradiction with n being zero. If
dimR ≥ 1, then ηM is an isomorphism for every M ∈ R(A) by Proposition 3.1.6. By Proposition 2.4.18 and
Lemma 2.4.1, domdim(A,R) M ≥ 1 for every M ∈R(A) which contradicts our assumption on n.

Now assume that n = 1. For every M ∈R(A), domdim(A,R) M ≥ 1. Hence, for every maximal ideal m in R

domdimA(m) M(m) ≥ 1. By Lemma 2.4.1 and Proposition 2.4.7, ηM(m) is a monomorphism for every maximal
ideal m in R. By Lemma 1.4.31, ηM is an (A,R)-mono for every M ∈R(A). By Lemma 3.1.4, we obtain that
(A,HomA(V,A)) is a −1−R(A) cover of EndA(V ). By contradiction, assume that (A,HomA(V,A)) is a dimR-
R(A) cover of EndA(V ). Then, in particular, ηM is an isomorphism for every M ∈R(A). By Lemma 2.4.1, αM

is an isomorphism for every M ∈R(A). By Proposition 2.4.18, domdim(A,R) M ≥ dimR+2−dimR = 2 which
contradicts our assumption of n.

Finally assume that n≥ 2. By Theorem 2.4.15, αM is an isomorphism for every M ∈R(A) and

0 = ExtiB(V,V ⊗A M)' ExtiB(HomA(HomA(V,A),A),HomA(HomA(V,A),A)⊗A M) (3.5.0.4)

= ExtiB(HomA(HomA(V,A),A),HomA(HomA(V,A),M)) = ExtiB(FA,FM) = Ri G(FM), 1≤ i≤ n−2.

Hence, (A,HomA(V,A)) is an (n− 2)−R(A) cover of B. Using again the Proposition 2.4.18, we see that
(A,HomA(V,A)) cannot be an n+3−dimR−R(A) cover of B.

In particular, for A-proj, (A,HomA(V,A)) is an i-cover of B for some
domdim(A,R)−2≤ i≤ domdim(A,R)−2+dimR. For split quasi-hereditary algebras, (A,HomA(V,A)) is an
i-F (∆̃) cover of B for some domdim(A,R) T − 2 ≤ i ≤ domdim(A,R) T − 2+ dimR for T a characteristic tilting
module. The idea that computing the Hemmer-Nakano dimension of A-proj (resp. F (∆̃)) using the dominant
dimension of the regular module (resp. dominant dimension of a characteristic tilting module) goes back to
[FK11b].

For algebras admitting additional properties and with Krull dimension larger than one, we can improve the
lower bound.

Theorem 3.5.7. Let R be a commutative Noetherian regular ring with Krull dimension at least one. Let (A,P,V )

be a RQF3 algebra over a commutative Noetherian ring R with domdim(A,R) ≥ 2. Let R(A) be a well be-

haved resolving subcategory of A-mod∩R-proj. Let n = min{domdim(A,R) M : M ∈ R(A)} ≥ 2. Assume that

min{domdim(K⊗RA,K) N : N ∈ R(K⊗R A)} ≥ n+ 1 for some Noetherian commutative flat R-algebra K. Then

(A,HomA(V,A)) is an (n−1)−R(A) cover of EndA(V ). Moreover, if dimR = 1 the Hemmer–Nakano dimension

of R(A) is n−1.

Proof. Assume first that n ≥ 2. Let B denote EndA(V ). Let m be a maximal ideal in R. Fix F(m) the functor
HomA(m)(HomA(m)(V (m),A(m)),−) and G(m) its right adjoint. Since every module in R(A(m)) is constructed
as a direct summand or via extensions of modules R(m)⊗R M for M ∈ R(A), it is enough to check that
ηM(m) is an isomorphism and Ri G(m)F(m)(M(m)) = 0, 1 ≤ i ≤ n− 2 for every M ∈ R(A) to deduce that
(A(m),HomA(m)(V (m),A(m))) is an (n−2)−R(A) cover of B(m). Let M ∈R(A). Then,

domdimA(m) M(m)≥ domdim(A,R) M ≥ 2. (3.5.0.5)
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By Theorem 2.4.15,

0 = ExtiB(m)(V (m),V (m)⊗A(m) M(m)) = ExtiB(m)(F(m)A(m),F(m)(M(m))),1≤ i≤ n−2. (3.5.0.6)

In the same way, (K⊗R A,K⊗R HomA(V,A)) is an (n−1)-R(K⊗R A) cover of EndK⊗RA(K⊗R V ). By Theorem
3.3.11, (A,HomA(V,A)) is an (n−1)−R(A) cover of EndA(V ).

Applying this result to A-proj, we see that the double centralizer properties arising from situations of relative
dominant dimension greater than or equal to two are stronger in positive Krull dimension. In truth, the Hemmer–
Nakano dimension of A-proj is not inferior for algebras with positive Krull dimension than the finite-dimensional
algebras over a field.

It may be tempting to think that the Hemmer-Nakano dimension of A-proj, HNdimF A-proj, is equal to
domdim(A,R)− 2+ dimR. Although, this is not the case, in general. Let K be an algebraically closed field
with characteristic 3. Consider R = K[X ] and assume n ≥ d ≥ 3. Then, the Hemmer-Nakano dimension of
SK[X ](n,d)-proj with respect to (K[X ]n)⊗d is 2 (see Example 4.6.1) . Furthermore, in this example, the Hemmer-
Nakano dimension of SK[X1,...,Xr ](n,d)-proj is independent of the Krull dimension r. This example also shows
that the condition of existence of flat R-algebra K such that the Hemmer-Nakano dimension of R(K⊗R A) in
Theorems 3.5.7 and Theorem 3.3.11 cannot be omitted.

If we know that the ground ring is an integral domain, we can use its quotient field to take the role of K. Even
better using the quotient field we can improve Theorem 3.5.7 to include the case n = 1.

Theorem 3.5.8. Let R be a commutative Noetherian regular integral domain with Krull dimension at least

one and with quotient field K. Let (A,P,V ) be a RQF3 algebra over a commutative Noetherian ring R with

domdim(A,R)≥ 2. Let R(A) be a well behaved resolving subcategory of A-mod∩R-proj. Let

n = min{domdim(A,R) M : M ∈R(A)} ≥ 1.

Assume that min{domdim(K⊗RA,K) N : N ∈R(K⊗R A)} ≥ n+1. Then, (A,HomA(V,A)) is an (n− 1)−R(A)

cover of EndA(V ). Moreover, if dimR = 1 the Hemmer–Nakano dimension of R(A) is n−1.

Proof. The case n = 2 is just a particular case of Theorem 3.5.7. We will now consider the case n = 1. Hence,
domdimA(m) M(m) ≥ domdim(A,R) M ≥ 1 for any M ∈ R(A). Taking into account that domdim(A,R) ≥ 2 we
obtain by Proposition 3.3.6 that (A,P) is a (−1)−R(A) cover of EndA(V ). Further, by Lemma 2.4.1, Proposition
2.4.7 and 3.5.2, we obtain that the unit map ηM : M→ GFM is an (A,R)-monomorphism for every M ∈R(A).
On the other hand, K⊗R M ∈R(K⊗R A). Hence, ηK⊗RM is an isomorphism by assumption. Thus, K⊗R ηM is
an isomorphism.

Denote by X the cokernel of ηM . By the flatness of K and K⊗R ηM being an isomorphism, it follows that
K⊗R X = 0. In particular, X is a torsion R-module. Using the monomorphism

GFM→ HomR(V,FM) ∈ R-proj, (3.5.0.7)

we deduce that GFM is a torsion-free R-module. By a result of Auslander-Buchsbaum (see Proposition 3.4 of
[AB59]) if X 6= 0, then there exists a prime ideal of height one q such that Xq 6= 0. But dimRq = 1, so the
localization GFMq is a projective Rq-module. Thus, Xq is a projective Rq-module. By applying the tensor
product K⊗Rq − it follows that Xq = 0. So, we must have X = 0. Hence, ηM is an isomorphism. This finishes
the proof.

In Section 4.1.1, we can see a complete classification of the Hemmer-Nakano dimension of projective mod-
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ules and modules admitting a filtration by standard modules for Schur algebras and quantised Schur algebras. We
will see that for these algebras the Hemmer-Nakano dimension is either n−1 or n−2 where n is fixed according
to Theorem 3.5.7. This behaviour can be explained due to the presence of a base change property and an integral
version for which one can define all Schur algebras and q-Schur algebras.

Proposition 3.5.9. Let R be a regular local commutative Noetherian ring with Krull dimension greater than or

equal to one. Let (AZ,PZ) be a 0-R(AZ) cover of BZ for some resolving subcategory R(AZ) of AZ ∩Z-proj.
Suppose that nm is the Hemmer-Nakano dimension of R(R(m)⊗Z AZ), where m is the unique maximal ideal of

R. Then, the Hemmer-Nakano dimension of R(R⊗Z AZ) is at most nm+1.

Proof. Denote by F the functor HomAZ(PZ,−) : AZ-mod→ BZ-mod. If dimR = 1, the result follows from
Corollary 3.3.10. Suppose that dimR > 1. The completion R̂ is faithfully flat over R. By Theorem 1.1.62, either
R̂ is faithfully flat over R̂(m̂) = R(m) (see [GS71, Corollary 2.18]) or R̂ is faithfully flat over some complete
discrete valuation ring k with residue field R(m). In the first case, Proposition 3.3.4 says that

nm = HNdimR(m)⊗ZF(R(R(m)⊗Z AZ))≥ HNdimR̂⊗ZF(R(R̂⊗Z AZ)) = HNdimR⊗ZF(R(R⊗Z AZ)) (3.5.0.8)

So, it remains to consider the second case. Since dimk = 1 and due to Theorem 3.3.9

HNdimk⊗ZF(R(k⊗Z AZ))≤ HNdimR(m)⊗ZF(R(R(m)⊗k k⊗Z AZ))+1 = nm+1. (3.5.0.9)

Since R̂ is faithfully flat over k, it follows that

HNdimR⊗ZF(R(R⊗Z AZ)) = HNdimR̂⊗ZF(R(R̂⊗Z AZ)) = HNdimk⊗ZF(R(k⊗Z AZ))≤ nm +1.

Although this Proposition only considers the case of projective Noetherian Z-algebras, we see the importance
of a base change property and an integral version for the Hemmer-Nakano dimension.

In the absence of a base change property, according to Theorems 3.3.9 and 3.3.12, the Hemmer-Nakano
dimension can be equal to min{domdim(A,R) M : M ∈R(A)}+dimR−2 if for every localization of R, Rm, the
cover is compatible with all the possible Rm-sequences.

We can extend to Noetherian rings the result given in [Fan08] which indicates an upper bound of the faith-
fulness of a faithful split quasi-hereditary cover in terms of relative dominant dimension of the algebra.

Proposition 3.5.10. Let A be a projective Noetherian R-algebra. If domdim(A,R)≥ d(Λ)+2+s for some s≥ 1,

then (A,HomA(V,A)) is an s-faithful split quasi-hereditary cover of EndA(V ).

Proof. By Proposition 2.11.2,

domdim(A,R) ∆(λ )≥ domdim(A,R)−d(∆,λ )≥ d(Λ)−d(Λ,λ )+2+ s, (3.5.0.10)

for every λ ∈ Λ. Hence, min{domdim(A,R) ∆(λ ) : λ ∈ Λ} ≥ 2+ s. The result follows from Theorem 3.5.6.

For the split quasi-hereditary algebras satisfying Theorem 2.11.3, the Hemmer-Nakano dimension of F (∆̃)

is at least
domdim(A,R)

2
−2.

Proposition 3.5.10 is particularly useful when we have no clear relation between the relative dominant di-
mension of a characteristic tilting module and the relative dominant dimension of the regular module.

We can use this cover technology to prove some statements involving the Nakayama conjecture.
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Proposition 3.5.11. Let A be a projective Noetherian R-algebra such that

A-proj = {Y ∈ A-mod∩R-proj : Exti>0
A (Y,A) = 0}.

If (A,P) is an ∞−A-proj cover of B, then F = HomA(P,−) : A-mod→ B-mod is an equivalence of categories.

Furthermore, the Nakayama conjecture holds for these class of algebras.

Proof. Consider a projective B-presentation for FA,

0→ K→ Q→ FA→ 0. (3.5.0.11)

Applying HomB(−,FA) yields

ExtiB(K,FA)' Exti+1
B (FA,FA)' Exti+1

A (A,A) = 0, ∀i > 0. (3.5.0.12)

As (A,P) is an ∞−A-proj cover of B we have

Exti>0
A (GK,A)' Exti>0

A (GK,GFA)' Exti>0
B (FGK,FA)' Exti>0

B (K,FA) = 0. (3.5.0.13)

By assumption, it follows that GK ∈ A-proj. Hence, R1 G(K)' R1 G(FGK) = 0. Thus, G is exact on (3.5.0.11),
so we have an exact sequence

0→ GK→ GQ→ GFA' A→ 0. (3.5.0.14)

Moreover, this sequence splits over A, and A is a summand of GQ. Thus, FA is a B-summand of FGQ ' Q.
Therefore, FA ∈ B-proj. It follows that F is an equivalence of categories.

By fixing P = HomA(V,A) for algebras with infinite relative dominant dimension with projective (A,R)-
injective-strongly faithful right module V we conclude the result.

Observe that every finite global dimension algebra satisfies this property.
In the following, we present evidence using the Nakayama conjecture that for a given projective Noetherian

R-algebra B the Hemmer-Nakano dimension of A-proj must be finite, where (A,P) is the cover with finite global
dimension of B.

Theorem 3.5.12. Let R be a Noetherian regular ring with finite Krull dimension. Let (A,P,V ) be a relative

QF3 R-algebra. Fix C = EndA(V ). If ExtiC(V,V ) = 0 for all i > 0 and (A,HomA(V,A)) is a cover of C, then

the Nakayama conjecture implies that V is an A-progenerator. In particular, the Nakayama conjecture implies

that C Mor∼ A is relative self-injective to R and the Schur functor HomA(HomA(V,A),−) : A-mod→ C-mod is an

equivalence of categories.

Proof. Since dimR is finite, ExtiC(V,V ) = 0 for all i > 0 and αA is bijective it follows by Proposition 2.4.18
that domdim(A,R) = +∞. By Nakayama’s conjecture, A is an (A,R)-injective projective A-module. By Lemma
2.2.4, the regular module A belongs to addDV . Hence, C = EndA(DV )op = EndA(V )' EndA(HomA(V,A))op is
Morita equivalent to A through the functor HomA(HomA(V,A),−). In particular, V = HomA(HomA(V,A),A) is
projective as C-module.

This shows that the Nakayama Conjecture implies that the level of faithfulness of covers arising from RQF3
algebras is finite unless the cover algebra is already a self-injective algebra relative R. In practice, most of the
examples that we are interested in are the ones that arise in this way.
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We can also reformulate the Nakayama Conjecture in terms of Schur functors in a similar way as the cover
property is defined.

Proposition 3.5.13. Let A be a finite-dimensional algebra over a field. Let V be a projective right A-module.

Let B = EndA(V ) = EndA(HomA(V,A))op. If the restriction of the Schur functor F = HomA(HomA(V,A),−) to

addDA⊕A is faithful, then F is an equivalence of categories.

Proof. By assumption, the map induced by F , HomA(A,DA)→ HomB(FA,F(DA)) is injective. By Lemma
3.1.4, ηDA : DA→ HomB(FA,FDA) is a monomorphism. Note that FA = V and FDA = V ⊗A DA. Consider an
injective B-presentation of V⊗A DA, 0→V⊗A DA→ I0. Since HomB(V,−) is left exact, the composition of maps
DA→HomB(V,V ⊗A DA)→HomB(V, I0) is a monomorphism. Observe that HomB(V, I0)∈ addHomB(V,DB) =

addDV . Hence, DA ∈ addDV and consequently V is a right A-progenerator. By Morita theory, HomA(V,A) is a
left A-progenerator.

So, we can rewrite the Nakayama Conjecture in the following way:

• If domdim(A,R) = +∞, then (A,DV,V ) is a relative QF3 R-algebra such that the restriction of the Schur
functor HomA(HomA(V,A),−) to addDA⊕A is faithful.

3.6 Uniqueness of faithful covers

We will start by introducing a more general concept of equivalence of covers.

Definition 3.6.1. Let A,A′,B,B′ be projective Noetherian R-algebras and A and A ′ be resolving subcategories
of A-mod∩R-proj and A′-mod∩R-proj, respectively.

Assume that (A,P) is a 0−A cover of B and (A′,P′) is a 0−A ′ cover of B′. We say that the A -covers
(A,P) and (A′,P′) are equivalent if there is an equivalence of categories H : A-mod→ A′-mod, which restricts
to an exact equivalence A →A ′, and an equivalence of categories L : B-mod→ B′-mod making the following
diagram commutative:

A-mod B-mod

A′-mod B′-mod

HomA(P,−)

H L

HomA′ (P
′,−)

.

We say that two covers (A,P) and (A′,P′) are isomorphic if they are equivalent with L being the identity functor
B-mod→ B-mod and B′ ' B as R-algebras.

The first observation to make is that equivalent covers have the same level of faithfulness.

Proposition 3.6.2. Let (A,P) be a 0−A cover of B and let (A′,P′) be a 0−A ′ cover of B′. Assume that the

covers (A,P) and (A′,P′) are equivalent. If (A,P) is an i−A cover of B, then (A′,P′) is an i−A ′ cover of B′.

Proof. Denote the functor HomB′(F ′A′,−) by G′. Let M ∈A ′. Then, for 1≤ j ≤ i,

R j G′(F ′M) = Ext j
B′(F

′A′,F ′M) = Ext j
B(F

′HQ,F ′HX) = Ext j
B′(LFQ,LFX) = Ext j

B(FQ,FX) = Ext j
A(Q,X) = 0,

for some X ∈A and Q ∈ A-proj. By Proposition 3.1.17, the result follows.

Rouquier defined equivalence of split quasi-hereditary covers in the following way.
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Definition 3.6.3. Two split quasi-hereditary covers (A,P) and (A′,P′) are equivalent in the sense of Rouquier
if there is an equivalence of highest weight categories A-mod '−→ A′-mod making the following diagram commu-
tative:

A-mod

B-mod

A′-mod

HomA(P,−)

'

HomA′ (P
′,−)

.

We will show next that this definition is a particular case of our definition of isomorphic covers by fixing
A =F (∆̃), A ′ =F (∆̃′), and L the identity functor. Moreover, the notion of isomorphic covers for the resolving
subcategory F (∆̃) is equivalent with the equivalence of covers of Definition 3.6.3.

Proposition 3.6.4. Let A,A′ be two split quasi-hereditary algebras over a commutative Noetherian ring R. Let

(A,P) and (A′,B′) be split quasi-hereditary covers of B. The covers (A,P) and (A′,P′) are equivalent in the sense

of Definition 3.6.3 if and only if they are isomorphic in the sense of Definition 3.6.1 with respect to the resolvings

subcategories F (∆̃) and F (∆̃′).

Proof. Assume that (A,P) and (A′,P′) are equivalent in the sense of Definition 3.6.3. Let H : A-mod→ A′-mod
be a highest weight category equivalence such that HomA′(P′,−)◦H = HomA(P,−). Since H is an equivalence
of highest weight categories, there is a bijection φ : Λ→ Λ′ satisfying H∆(λ ) = ∆′(φ(λ ))⊗R Uλ . As H is exact
and H∆(λ ) ∈F (∆′), the restriction functor H : F (∆̃)→F (∆̃′) is well defined and it is fully faithful and exact.
As Uλ ∈ Pic(R) there is Fλ such that Fλ ⊗R Uλ ' R, thus ∆(λ ′) = H∆(φ−1(λ ′))⊗R Fλ ′ = H(∆(φ−1(λ ′))⊗R Fλ ′).
Let M ∈F (∆̃′). By induction on the filtration of M, we deduce that M is in the image of H|F (∆̃)

. Therefore, H

restricts to an exact equivalence F (∆̃)→F (∆̃′) and B ' EndA(P)op ' EndA′(P′)op. Hence, the covers (A,P)

and (A′,P′) are isomorphic in the sense of Definition 3.6.1.
Conversely, assume that the covers (A,P) and (A′,P′) are isomorphic in the sense of Definition 3.6.1 with

respect to the resolving subcategories F (∆̃) and F (∆̃′). Let I be the quasi-inverse of H. Then, HA is a B-
progenerator and for any Y ∈ B-mod,

HomB(HA,Y )' HomA(IHA, IY )' HomA(A, IY )' IY. (3.6.0.1)

In particular, I commutes with tensor products of projective R-modules, that is, for Y ∈ B-mod and X ∈ R-proj,
I(Y ⊗R X) = IY ⊗R X . In view of the proof of Proposition 1.5.80, there is a bijection φ : Λ→ Λ′ and

HomB(HA,∆′(λ ′)) = ∆(φ−1(λ ′))⊗R Uλ ′ = ∆(λ )⊗R Uλ ′ , Uλ ′ ∈ Pic(R). (3.6.0.2)

Moreover, as A-modules,

I(∆′(λ ′)⊗R Fλ ′)' I∆
′(λ ′)⊗R Fλ ′ ' HomA(A, I∆

′(λ ′))⊗R Fλ ′ ' HomA(IHA, I∆
′(λ ′))⊗R Fλ ′ (3.6.0.3)

' HomB(HA,∆′(λ ′))⊗R Fλ ′ ' ∆(λ )⊗R Uλ ′ ⊗R Fλ ′ ' ∆(λ ). (3.6.0.4)

Thus,

H∆(λ )' HI(∆′(λ ′)⊗R Fλ ′)' ∆
′(φ(λ ))⊗R Fλ , (3.6.0.5)

with Fλ ′ = Fλ . Thus, H is an equivalence of highest weight categories, and it follows that (A,P) and (A′,P′) are
equivalent in the sense of Definition 3.6.3.
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The main reason to make the difference between isomorphic covers and equivalent covers is that intuitively
the covers constructed in Proposition 3.1.3 should be equivalent although they are not isomorphic. So, from now
on, we will use only the concepts in the sense of Definition 3.6.1.

In [Rou08, Proposition 4.45], further assumptions are required to the pair (Y (M),M). For instance, if R is
a local ring, then a suitable condition would be requiring Y (M) to be indecomposable. This problem manifests
itself in [Ari08, 4.2]. A counter-example to such a pair without further assumptions could be the following:

Example 3.6.5. Let A the path algebra of the quiver

2 1
α

β

modulo the ideal generated by αβ . Pick the partial order 2 > 1 and ∆(2) = P(2), ∆(1) = 1. Trivially, (A,AA) is
a 1-faithful split quasi-hereditary cover of A. The exact sequence

0→ ∆(2)⊕∆(2)→ ∆(2)⊕P(1)→ ∆(1)→ 0 (3.6.0.6)

also satisfies the conditions required for the pair (Y (∆(1)), p∆(1)). 4

However, this does not cause problems to the content of [Rou08, Corollary 4.46] since we can use Proposition
1.5.80 to replace [Rou08, Proposition 4.45].

We will now give an alternative proof of [Rou08, Corollary 4.46].

Corollary 3.6.6. [Rou08, Corollary 4.46] Let (A,P) and (A′,P′) be two 1-faithful split quasi-hereditary cov-

ers of B. Let F = HomA(P,−) and let F ′ = HomA′(P′,−). Assume that there exists an exact equivalence

L : B-mod→ B-mod which restricts to an exact equivalence

FB(F∆̃)→FB(F ′∆̃′). (3.6.0.7)

Then, (A,P) and (A′,P′) are equivalent as faithful split quasi-hereditary covers of B. If, in addition, the given

bijection φ : Λ→ Λ′ associated with the equivalence of categories H : A-mod→ A′-mod satisfies

F∆(λ ) = F ′∆′(φ(λ ))⊗R Uλ ,∀λ ∈ Λ.

where H∆(λ )' ∆′(φ(λ ))⊗R Uλ , Uλ ∈ Pic(R), then (A,P) and (A′,P′) are isomorphic as split quasi-hereditary

covers of B.

Proof. By Proposition 3.1.13, there exists an exact equivalence

FA(∆̃)
F−→FB(F∆̃)

L−→FB(F ′∆̃′)
G′−→FA′(∆̃

′).

By Proposition 1.5.80, A and A′ are equivalent as split quasi-hereditary algebras. Furthermore, the equivalence
of categories is given by H = HomA(GL−1F ′A′,−) : A-mod→ A′-mod. Thus, for every X ∈ A-proj,

HX ' HomA(GL−1F ′A′,X)' HomB(FGL−1F ′A′,FX)' HomB(L−1F ′A′,FX) (3.6.0.8)

' HomB(F ′A′,LFX)' HomA′(A
′,G′LFX)' G′LFX . (3.6.0.9)

Therefore, F ′HX ' LFX for every X ∈ A-proj. Since all functors involved are exact we conclude that F ′H = LF .
Assume, in addition,

F∆(λ ) = F ′∆′(φ(λ ))⊗R Uλ ,∀λ ∈ Λ
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and H∆(λ )' ∆′(φ(λ ))⊗RUλ , Uλ ∈ Pic(R) for some bijection φ : Λ→Λ′. Thus, for every λ ∈Λ, as B-modules,

F ′H∆(λ )' F ′(∆′(φ(λ ))⊗R Uλ )' F ′∆′(φ(λ ))⊗R Uλ ' F∆(λ ). (3.6.0.10)

Now, using induction on the filtrations by standard modules together with the fact

Ext1B(F∆(λ )⊗R Fλ ,F∆(µ)⊗R Xµ)' Ext1B(F
′H∆(λ )⊗R Fλ ,F

′H∆(µ)⊗R Xµ)' Ext1A(∆(λ )⊗R Fλ ,∆(µ)⊗R Xµ)

with Fλ and Xµ being invertible R-modules, we obtain that FX ' F ′HX for every X ∈ F (∆̃). In particular,
FA' F ′HA as B-modules. This means that we can write

HomA(H−1P′,A)' HomA′(P
′,HA)' HomA(P,A), (3.6.0.11)

also as right A-modules. By applying HomA(−,A) we obtain HP ' P′. Thus, FX ' F ′HX for every X ∈
A-mod.

For the resolving subcategory A-proj, we only require for A and A′ to be Morita equivalent with the projective
modules of A and A′ being mapped to the same full subcategory of B-mod.

In the same fashion as for quasi-hereditary covers, we can deduce a trivial uniqueness result for the resolving
subcategory A-proj.

Corollary 3.6.7. Let (A,P) and (A
′
,P′) be two 1-covers of B. Assume that addFA = addF ′A′. Then, A and A′

are Morita equivalent. If, in addition, FA = F ′A′, then (A,P) and (A′,P′) are isomorphic covers of B.

Proof. By Proposition 3.1.14, there is an exact equivalence

A′-proj F ′−→ addF ′A′ = addFA G−→ A-proj . (3.6.0.12)

By Morita theory, GF ′A′ = HomB(FA,F ′A′) is an A-progenerator. Hence, the functor
HomA(HomB(FA,F ′A′),−) : A-mod→ A′-mod is an exact equivalence of categories. In particular, it restricts
to an exact equivalence A-proj→ A′-proj. Assume that FA = F ′A′. Let X ∈ A-mod. Then,

F ′HomA(HomB(FA,F ′A′),X)' F ′HomA(HomB(FA,FA),X)' F ′HomA(HomA(A,A),X)' F ′X .

3.7 Existence of faithful covers

Every finite-dimensional algebra over a field has a quasi-hereditary cover (see [DR89a]).
In Example 4.6.8, we will see that the group algebra KSd might have several (−1)-faithful quasi-hereditary

covers. This is not a mere coincidence. In fact, Iyama gave another construction of quasi-hereditary covers
in [Iya03, Iya04] to establish the Iyama’s finiteness theorem. This construction has better properties than the
construction established in [DR89a]. In particular, we have the following result.

Theorem 3.7.1. Let k be a field. Let B be a finite-dimensional k-algebra. Then, B has a (−1)-faithful (not

necessarily split) quasi-hereditary cover (A,P).

Proof. By Theorem 5(2) of [Rin10], there is a left strongly quasi-hereditary algebra A and an idempotent e of A

such that eA is a generator-cogenerator of eAe = B and A = EndeAe(eA). Therefore, (A,Ae) is a cover of eAe = B.
Now, since A is left strongly quasi-hereditary for a certain poset Λ, there are for each λ ∈ Λ, exact sequences

0→ X(λ )→ P(λ )→ ∆(λ )→ 0 (3.7.0.1)
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with both X(λ ) and P(λ ) projective A-modules. Let F = HomA(Ae,−) and G its right adjoint. Since, (A,Ae) is
a cover of B, ηX is an isomorphism for every X ∈ A-proj. By the commutativity of the diagram

0 X(λ ) P(λ ) ∆(λ ) 0

0 GFX(λ ) GFP(λ ) GF∆(λ )

ηX(λ ) ηP(λ ) η∆(λ ) , (3.7.0.2)

and the Snake Lemma we deduce that η∆(λ ) is a monomorphism for every λ ∈ Λ.

In Example 4.6.9, we can see that not every split quasi-hereditary cover is a (-1)-faithful quasi-hereditary
cover.

We will now focus our attention on covers over commutative Noetherian rings. We can use Dlab-Ringel
standardization to construct (if they exist) split quasi-hereditary 1-faithful covers when the ring is regular with
Krull dimension at most one.

Theorem 3.7.2. Let R be a regular commutative Noetherian ring with Krull dimension at most one. Let B be a

projective Noetherian R-algebra. Assume that there exists a split standardizable set Θ of B-mod. If B ∈F (Θ),

then there exists a 1-faithful split quasi-hereditary cover (A,P) of B.

Conversely, assume that (A,P) is a 1-faithful split quasi-hereditary cover of B. Then, there exists a split

standardizable set Θ of B-mod with B ∈F (Θ).

Proof. By Theorem 1.5.83, there exists a split quasi-hereditary cover A and the functor
HomB(Q,−) : B-mod→ A-mod restricts to an exact equivalence between F (Θ) and F (∆). Here Q=

⊕n
i=1 Pθ (i)

as constructed in the proof of Theorem 1.5.83. Since B ∈ F (Θ), there exists by Theorem 1.5.83 (see equa-
tion (1.5.9.32 in the proof of Theorem 1.5.83), a surjective map X � B with X ∈ addB Q. Hence, B ∈ addB Q,
and thus Q is a B-generator. In particular, Q satisfies the double centralizer property, so EndA(Q) ' B and
QA ' HomB(B,QA) is a right A-summand of HomB(Q,QA) ' AA. Therefore, Q is a projective right A-module.
Thus, P = HomA(Q,A) is a projective left A-module and

EndA(P)op ' EndA(HomA(Q,A))op ' EndA(Q)' B. (3.7.0.3)

Fix F = HomA(P,−). Then, by definition of A, A = EndB(Q)op = EndB(FA)op. So, (A,P) is a cover of B. Let
X ∈ A-mod and Y ∈ B-mod. Then,

HomB(FX ,Y ) = HomB(HomA(P,X),Y )' HomB(HomA(P,A)⊗A X ,Y )' HomB(Q⊗A X ,Y ) (3.7.0.4)

' HomA(X ,HomB(Q,Y )). (3.7.0.5)

So, F is left adjoint to HomB(Q,−). In particular,

F∆(i) = FHθ(i)' θ(i), (3.7.0.6)

since εθ(i) is an isomorphism. Thus, F (F∆) = F (Θ). Moreover, for X ,Y ∈ F (∆), FX ,FY ∈ F (Θ), so F

induces the isomorphism

HomB(FX ,FY )' HomA(HFX ,HFY )' HomA(X ,Y ). (3.7.0.7)
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By Lemma 3.1.4, η∆(i) is an isomorphism for every i = 1, . . . ,n. For every i = 1, . . . ,n

R1H(F∆(i)) = R1H(θ(i)) = Ext1B(Q,θ(i)) = 0. (3.7.0.8)

By Proposition 3.1.13, the result follows.
Conversely, assume that (A,P) is a 1-faithful split quasi-hereditary cover of B. Define θ(i) := F∆(λ ). Then,

B = HomA(P,P) = FP. Since F is exact, it sends the modules belonging to F (∆) to F (Θ). Thus, B ∈F (Θ).
We have

HomB(θ(i),θ( j)) = HomB(F∆(i),F∆( j))' HomA(∆(i),∆( j)),∀i, j, (3.7.0.9)

and

Ext1B(θ(i),θ( j))' Ext1A(∆(i),∆( j)). (3.7.0.10)

By Proposition 1.5.50 and definition of split highest weight category, the conditions (i),(iii) and (iv) of split
standardizable set are checked.

Now consider the inclusion ∆( j) ↪→ T ( j) given by Proposition 1.5.109. Applying the functor HomA(∆(i),−)
we obtain the monomorphism HomA(∆(i),∆( j)) → HomA(∆(i),T ( j)). By Corollary 1.5.119,
HomA(∆(i),T ( j)) ∈ R-proj. Since dimR ≤ 1, HomB(θ(i),θ( j)) ' HomA(∆(i),∆( j)) ∈ R-proj. Hence
Θ = {θ(i) : 1≤ i≤ n} is a split standardizable set of B-mod.

Observe that if B is self-injective relative to R, then Q (according to the notation of the previous Proposition)
is also a cogenerator of B-mod. Furthermore, each B(m) is self injective for every maximal ideal m in R, Q(m) is a
generator-cogenerator. Hence, P(m) is a faithful projective-injective A(m)-module for every maximal ideal m in
R, and therefore P is a projective (A,R)-injective-strongly faithful module. So, for self-injective algebras relative
to R, Dlab–Ringel standardization gives us the construction of a unique 1-faithful quasi-hereditary cover for B

which arises from a projective relative injective module, connecting this topic with relative dominant dimension.
We note again that this technique as described is only for rings of Krull dimension one. But if the algebra

B admits an integral version, then using ideas similar to Proposition 3.5.9, we can construct a cover of B by
changing the ground ring of the cover constructed for the integral version. This would extend this construction
for complete local commutative Noetherian rings.

Unfortunately, there is no guarantee that a projective Noetherian algebra over a commutative Noetherian ring
possesses a split quasi-hereditary cover.

Corollary 3.7.3. Let C3 be the abelian group of order 3. Let Z7 be the localization of Z at 7Z. The group algebra

Z7C3 over Z7 does not have a split quasi-hereditary cover. Moreover, the group algebra ZC3 does not have a

split quasi-hereditary cover.

Proof. In [Woo74], it was shown that the ring Z7C3 is not semi-perfect. The ring Z7 is a local commutative
Noetherian ring. By Theorem 1.5.84, every split quasi-hereditary algebra over Z7 is semi-perfect. So, Z7C3

cannot have a split quasi-hereditary cover because of Theorem 1.7.11. Since any split quasi-hereditary cover
remains a split quasi-hereditary cover under localization we obtain that ZC3 cannot have a split quasi-hereditary
cover.

Observe that any division ring is local, so the split condition is not the reason why the existence of split
quasi-hereditary covers of Z7C3 fails. We should remark that if we are interested only in covers of finite global
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dimension, then the construction used by Koenig in [Kön91] can still be applied to these cases when the ground
ring is a discrete valuation ring. Again, if the algebra in question admits an integral version, then one can apply
the same idea as described for a generalization of Dlab-Ringel standardization for higher Krull dimensions to
determine the existence of 1-faithful split quasi-hereditary covers.
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Chapter 4

Applications and Examples - Part I

In this chapter, we consider applications of our theory of dominant dimension and covers. In particular, we
compute the relative dominant dimension of Schur algebras (and also of q-Schur algebras) SR(n,d) satisfying
n≥ d and of block algebras of a deformation of the BGG category O in the sense of Gabber and Joseph [GJ81].
We show that both algebras are split quasi-hereditary and together with their projective relative injective mod-
ules form split quasi-hereditary covers of certain relative self-injective algebras. We compute Hemmer-Nakano
dimensions with respect to these covers, clarifying the interconnections between relative dominant dimension
and the Hemmer-Nakano dimension. In addition, we consider additional examples to explain the necessity of
assumptions imposed in the above statements of previous chapters.

4.1 Classical Schur algebras

The study of Schur algebras goes back to the PhD thesis of Schur [Sch01]. Using Schur algebras, he connected
the polynomial representation theory of the complex general linear group with the representation theory of the
symmetric group over the complex numbers. The latter was known at the time due to Frobenius [Fro00]. Nowa-
days, the connection is used oppositely. A classical reference for the study of Schur algebras (over infinite fields)
is [Gre07].

Let R be a commutative ring with identity. Fix natural numbers n,d. The symmetric group on d letters Sd

acts by place permutation on the d-fold tensor product (Rn)⊗d , that is,

(v1⊗·· ·⊗ vd)σ = vσ(1)⊗·· ·⊗ vσ(d), σ ∈ Sd , vi ∈ Rn.

We will write V⊗d
R instead of (Rn)⊗d or simply V⊗d when the ground ring is well understood. In particular, V⊗d

is a right module over the group algebra RSd .

Definition 4.1.1. [Gre07] The subalgebra EndRSd

(
V⊗d

)
of the endomorphism algebra EndR

(
V⊗d

)
is called the

Schur algebra. We will denote it by SR(n,d).

We recall some facts about these algebras.
Let I(n,d) be the set of maps i : {1, . . . ,d} → {1, . . . ,n}. We write i(a) = ia. We can associate to I(n,d) a

right Sd-action by place permutation. In the same way, Sd acts on I(n,d)× I(n,d), by setting:

(i, j)σ = (iσ , jσ), ∀i, j ∈ I(n,d),∀σ ∈ Sd . (4.1.0.1)
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We will write (i, j) ∼ ( f ,g) if (i, j) and ( f ,g) belong to the same Sd-orbit. Then, SR(n,d) has a basis over R

{ξi, j | (i, j) ∈ I(n,d)× I(n,d)} satisfying

ξi, j(es1 ⊗·· ·⊗ esd ) = ∑
l∈I(n,d)
(l,s)∼(i, j)

el1 ⊗·· ·⊗ eld , (4.1.0.2)

for a given basis {es1⊗·· ·⊗esd : 1≤ s1, . . . ,sd ≤ n} of V⊗d . In particular, ξi, j = ξ f ,g if and only if (i, j)∼ ( f ,g).
In this section, we will sometimes abbreviate ei1 ⊗·· ·⊗ eid to ei, i ∈ I(n,d).

An immediate consequence of the existence of an R-basis for SR(n,d) satisfying (4.1.0.2) is the existence of
a base change property

R⊗Z SZ(n,d)' SR(n,d). (4.1.0.3)

It also follows that R⊗ZV⊗d
Z 'V⊗d

R as SR(n,d)-modules.
For each i ∈ I(n,d) we can associate a weight λ (i). More precisely, a weight of an element i ∈ I(n,d) is the

composition λ = (λ1, . . . ,λn) of d in at most n parts with λ j = |{1≤ µ ≤ d : iµ = j}. Let Λ(n,d) be the set of all
weights associated with I(n,d). Then, by (4.1.0.2), for each λ (i) ∈ Λ(n,d) there exists an idempotent ξλ := ξi,i.
Let Λ+(n,d) be the subset of Λ(n,d) formed by the partitions λ = (λ1 ≥ . . . ≥ λn) of d in at most n parts.
Λ+(n,d) is partially ordered by the dominance order≤, that is, λ ≤ µ if and only if λ1+ . . .+λ j ≤ µ1+ . . .+µ j,
for all j. Let Λ+(n,d)→{1, . . . , t}, λ k 7→ k be an increasing bijection. Set ek to be the idempotent ∑l≥k ξ

λ l . Put
Jk = SR(n,d)ekSR(n,d). Then, with this notation,

Theorem 4.1.2. For any commutative Noetherian ring R, the Schur algebra SR(n,d) is a split quasi-hereditary

algebra over R with split heredity chain 0⊂ Jt ⊂ ·· · ⊂ J2 ⊂ J1 = SR(n,d).

Proof. The statement for algebraically closed fields follows from Theorem 4.1 of [Par89]. For arbitrary fields
see [PW91, Theorem 11.5.2]. The statement for commutative Noetherian rings which are not fields follows from
Theorem 3.7.2 of [CPS90]. An alternative proof for this statement without using Theorem 3.7.2 of [CPS90]
is to apply Theorem 1.5.73. Using filtrations, this statement for principal ideal domains follows by [Don87,
1.2] together with Theorem 1.5.65. Another proof for the general case of the present statement can be found in
[Gre93, 7.2].

Due to the quasi-hereditary structure on SR(n,d), if R is a regular ring with finite global dimension, then the
Schur algebra SR(n,d) has finite global dimension. The global dimension of SR(n,d) was computed in [Tot97].
The standard modules associated with this split heredity chain are called Weyl modules. In particular, the Weyl
modules are indexed by the partitions of d in at most n parts. Also, the simple SK(n,d) modules are indexed by
the partitions of d in at most n parts for K a field. As of the time of writing, determining simple modules of the
Schur algebra remains still an open problem.

In addition to the quasi-hereditary structure, we can associate a cellular structure to the Schur algebra. Con-
sider the R-linear map ι : SR(n,d)→ SR(n,d) given by ι(ξ f ,g) = ξg, f , f ,g ∈ I(n,d). We call ι the involution of
the Schur algebra. Observe that ι(ξλ ) = ξλ for every λ ∈ Λ+(n,d). In particular, ι preserves all idempotents in
the split heredity chain of SR(n,d). Hence, by a version of Corollary 4.2 [KX98] for commutative Noetherian
rings (see Proposition 1.6.12), SR(n,d) is a cellular algebra. Note that, the order of Λ+(n,d) for the definition of
cellular algebra is now the reversed order of the dominance order.
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We will now focus on the case n≥ d. In this case,

V⊗d ' SR(n,d)ξ(1,...,d),(1,...,d), DV⊗d ' ξ(1,...,d),(1,...,d)SR(n,d). (4.1.0.4)

Hence, V⊗d is a projective (SR(n,d),R)-injective SR(n,d)-module.

Remark 4.1.3. V⊗d is not an SR(n,d)-injective if R is a regular Noetherian commutative ring with positive Krull
dimension. In fact, assume that R is a local commutative Noetherian regular ring with unique (non-zero) maximal
ideal m. Then, ExtdimR

R (R(m),R) 6= 0. Since V⊗d is a progenerator over R we obtain

0 6=V⊗d⊗R ExtdimR
R (R(m),R)' ExtdimR

SR(n,d)
(V⊗d(m),V⊗d). 4

By the Schur functor we mean the functor FR = HomSR(n,d)(V
⊗d ,−) : SR(n,d)-mod→ RSd-mod (we will

write just F when there is no confusion on the ground ring R). Using Theorem 3.4 of [Cru19] and (4.1.0.4), we
can deduce that (SR(n,d),V⊗d) is a split quasi-hereditary cover of RSd . Much of the representation theory of
symmetric groups can be studied through the representation theory of Schur algebras using the Schur functor.
For example, since ι(ξ(1,...,d),(1,...,d)) = ξ(1,...,d),(1,...,d) and

RSd ' EndSR(n,d)(V
⊗d)' ξ(1,...,d),(1,...,d)SR(n,d)ξ(1,...,d),(1,...,d), (4.1.0.5)

F sends the split heredity chain of SR(n,d) to a cell chain of RSd . This makes RSd a cellular algebra. In
particular, the Schur functor sends the Weyl modules to the cell modules of RSd . Usually, the cell modules of
RSd are also called Specht modules. However, a few remarks are in order regarding the cell modules obtained
here by this construction and the ones that appear in the literature. By θ(λ ) we mean the cell module F∆(λ ),
λ ∈ Λ+(n,d). Denote by SJ(λ ) and SM(λ ) the Specht modules defined by James [Jam78] and Mathas [Mat99],
respectively. The Weyl modules ∆(λ ) coincide with the left Weyl modules of [CPS96]. They work with the
functor HomRSd (−,V⊗d) : mod-RSd → SR(n,d)-mod while in our work the adjoint functor of the Schur functor
is HomRSd (DV⊗d ,−) : RSd-mod→ SR(n,d)-mod. Thus, the left cell modules F∆(λ ) coincide with DSJ(λ ) while
SM(λ ) coincide with the twisted modules F∆(λ ′)ι , where λ ′ is the conjugate partition of λ . For a given natural
number p, a partition λ = (λ1, . . . ,λn) ∈ Λ+(n,d) is called p-regular if each λi occurs no more than p−1 times
in λ .

The following result illustrates what are the projective-injective modules over SR(n,d). This result will play
a role to find what is the image of V⊗d in Schur algebras with indexes n < d.

Proposition 4.1.4. Let K be an algebraically closed field with positive characteristic and n ≥ d be natural

numbers. Let λ ∈ Λ+(n,d). Then,

(i) P(λ ) is projective-injective if and only if λ is a conjugate of a charK-regular partition of d.

(ii) λ is a charK-regular partition of d if and only if the (partial) tilting module T (λ ) is projective-injective

module.

Proof. For (i) see [CPS96, (5.2.7), (5.2.8)]. Denote by R(SK(n,d)) the Ringel dual of SK(n,d) with ∆R(µ) and
PR(µ) being the standard and projective modules, respectively. By [Don93, (3.8)] there exists an equivalence
functor (−)θ : R(SK(n,d))-mod→ SK(n,d)-mod satisfying PR(λ )

θ = P(λ ′) and ∆R(λ )
θ = ∆(λ ′), where λ ′ de-

notes the conjugate partition of λ . Assuming that T (λ ) is projective-injective then HomSK(n,d)(T,T (λ )) is also a
(partial) tilting module. Since (−)θ preserves the (partial) tilting modules, P(λ ′)'PR(λ )

θ 'HomSK(n,d)(T,T (λ ))
θ

is also (partial) tilting. By Lemma 3.2 of [FK11b], P(λ ′) is a projective-injective module. Hence, λ ′ is a conju-

287



4.1. Classical Schur algebras

gate of a charK-regular partition of d. Therefore, λ is a charK-regular partition of d. Since there are no more
partitions that index projective-injective modules other than the regular ones the converse statement follows.

Observation 4.1.5. By [Don93, (3.8)] and Lemma 1.5.134, the Schur algebra SR(n,d) with n ≥ d is Ringel
self-dual for every commutative Noetherian local ring R.

We now wish to determine the Hemmer-Nakano dimension of F (∆̃), generalizing the results of Hemmer
and Nakano [HN04] by completely determining the quality of the correspondence between Weyl filtrations and
Specht filtrations. This is achieved through the computation of the relative dominant dimension of SR(n,d)

extending some results of Fang and Koenig [FK11b] contained in the following Theorem.

Theorem 4.1.6. [FK11b, Theorem 5.1] Let K be a field.

domdimSK(n,d) =

2(charK−1) if d ≥ charK > 0

+∞, otherwise.
(4.1.0.6)

In the following, we will show that we can compute the dominant dimension of SR(n,d) by knowing the
invertible elements of R, which we will denote by U(R).

Theorem 4.1.7. Let R be a commutative Noetherian ring. If n≥ d are natural numbers, then (SR(n,d),V⊗d) is

a relative gendo-symmetric R-algebra and

domdim(SR(n,d),R) = inf{2k ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 2. (4.1.0.7)

Proof. V⊗d
K is a projective-injective faithful SK(n,d)-module for every field K. By Proposition 2.5.4,

(SR(n,d),V⊗d ,DV⊗d) is a relative QF3 R-algebra. Denote by MaxSpec(R) the set of maximal ideals of m.
By Theorem 2.5.13,

domdim(SR(n,d),R) = inf{domdimSR(n,d)⊗R R(m)|m ∈MaxSpec(R)} (4.1.0.8)

= inf{domdimSR(m)(n,d)|m ∈MaxSpec(R)} ≥ 2. (4.1.0.9)

By relative Morita-Tachikawa correspondence, V⊗d is a generator of RSd satisfying V⊗d ⊗RSd DV⊗d ∈ R-proj.
Therefore, (SR(n,d),V⊗d) is a relative gendo-symmetric R-algebra because RSd is a relative symmetric R-
algebra.

Let k ∈ N such that (k+ 1)1R /∈U(R) and k < d. Then, (k+ 1)1R ∈ m for some maximal ideal m of R. In
particular, charR(m) is positive and it is less or equal than k+1≤ d. Hence, domdimSR(m)(n,d)≤ 2k for some
maximal ideal m of R. This shows that

domdim(SR(n,d),R)≤ inf{2k ∈ N | (k+1) ·1R /∈U(R), k < d}. (4.1.0.10)

In particular, if domdim(SR(n,d),R) = +∞ there is nothing more to prove. Assume now that
domdim(SR(n,d),R) = l ≥ 2. So, there exists m ∈MaxSpec(R) such that

2(charR(m)−1) = l, and charR(m)≤ d. (4.1.0.11)

In particular, the image of charR(m)1R in R(m) is zero, and so charR(m)1R ∈ m. Hence, charR(m)1R /∈U(R).
Therefore,

l ∈ {2k ∈ N|(k+1)1R /∈U(R), k < d}. (4.1.0.12)
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This finishes the proof.

Once again, we see that the invertible elements of the ground ring determine the quality of a double centralizer
property. In [Cru19], a ring having sufficiently many invertible elements under some mild assumptions was a
sufficient condition for Schur–Weyl duality to hold. We recall that in that case either the quality of the double
centralizer property is the best possible (coming from an equivalence of categories) or is the worst possible (the
double centralizer property does not exist at all).

For the Hemmer-Nakano dimension of F (∆̃) the relevant dominant dimension to consider is the relative
dominant dimension of a characteristic tilting module.

Corollary 4.1.8. Let R be a commutative Noetherian ring and assume that n ≥ d. Let T be a characteristic

tilting module of SR(n,d). Then,

domdim(SR(n,d),R) T = inf{k ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 1. (4.1.0.13)

Proof. The result follows from applying Theorem 4.1.7 and Theorem 2.11.3. Alternatively, one can reproduce
the proof of Theorem 4.1.7 together with Theorem 4.3 of [FK11b].

In Theorem 4.1.7, we saw that V⊗d is an (SR(n,d),R)-strongly faithful module. In general for Noetherian
algebras, it is difficult to prove directly that a module is strongly faithful and whenever possible we always prefer
to show this property using change of rings techniques. However, it is not difficult to show directly that V⊗d is
strongly faithful. This is the aim of the next example.

Example 4.1.9. Let {es1⊗·· ·⊗esd : 1≤ s1, . . . ,sd ≤ n} be an R-basis of V⊗d . Choose Λ to be a set of represen-
tatives of Sd-orbits on I(n,d)× I(n,d). Define the R-map υ ∈ HomR(SR(n,d),(V⊗d)t), satisfying

υ(ϕ) = ∑
(i, j)∈Λ

κi, j(ϕ(e j1 ⊗·· ·⊗ e jd )), ϕ ∈ SR(n,d), (4.1.0.14)

with κi, j and πi, j, (i, j) ∈ Λ, being the inclusion and projection mappings of V⊗ into the direct sum (V⊗d)t as
SR(n,d)-modules, respectively, where t =

(n2+d−1
d

)
. Observe that

υ(ηϕ) = ∑
(i, j)∈Λ

κi, j(ηϕ(e j1 ⊗·· ·⊗ e jd )) = ∑
(i, j)∈Λ

ηκi, jϕ(e j1 ⊗·· ·⊗ e jd ) = ηυ(ϕ), ϕ,η ∈ SR(n,d).

(4.1.0.15)

Thus, υ ∈ HomSR(n,d)(SR(n,d),V⊗dt
)). For each (i, j) ∈ Λ, define fi, j ∈ HomR(V⊗d ,SR(n,d)) satisfying

fi, j(es1 ⊗·· ·⊗ esd ) =

ξi, j if (s1, . . . ,sd) = i

0, otherwise.
(4.1.0.16)

Finally, denote by ε the R-map ∑(i, j)∈Λ fi, j ◦πi, j ∈ HomR((V⊗d)t ,SR(n,d)). Then, the following holds,

ε ◦υ(ξ f ,g) = ε

(
∑

(i, j)∈Λ

κi, jξ f ,g(e j1 ⊗·· ·⊗ e jd )

)
= ∑

(t,u)∈Λ

∑
(i, j)∈Λ

ft,uπt,uκi, jξ f ,g(e j1 ⊗·· ·⊗ e jd ) (4.1.0.17)

= ∑
(i, j)∈Λ

fi, jξ f ,g(e j1 ⊗·· ·⊗ e jd ) = ∑
(i, j)∈Λ

fi, j

 ∑
l∈I(n,d)

(l, j)∼( f ,g)

el1 ⊗·· ·⊗ eld

 (4.1.0.18)
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= ∑
(i, j)∈Λ

∑
l∈I(n,d)

(l, j)∼( f ,g)

1{i}(l)ξi, j = ∑
(i, j)∈Λ

1{(i, j)∼( f ,g)}(i, j)ξi, j = ξ f ,g. (4.1.0.19)

Here, 1{(i, j)∼( f ,g)} denotes the indicator function. Therefore, υ is an (SR(n,d),R)-monomorphism. 4

4.1.1 Hemmer-Nakano dimension of SR(n,d)-proj

In sections 4.1.1 and 4.1.2, R is assumed to be a local regular Noetherian commutative ring.
In relative Mueller characterization (see Theorem 2.4.15) we saw that the vanishing of certain Ext groups

alone might not give the value of relative dominant dimension, only a lower bound dependent of the Krull
dimension of the ground ring. Of course, when the ground ring is a field the dominant dimension can be deter-
mined using only Ext groups. Fortunately, for the Schur algebra over a local ring we can completely determine
the Hemmer-Nakano dimensions in terms of relative dominant dimensions. We can reduce the problem to local
rings R due to Propositions 3.3.4 and 3.3.3. Essentially, the value of Hemmer-Nakano dimension of SR(n,d)-proj
in terms of relative dominant dimension divides in two separate cases. Either a local Noetherian regular commu-
tative ring contains a field or not.

4.1.1.1 Case 1 - R contains a field

First, we would like to recall the following elementary result.

Lemma 4.1.10. A local integral domain R with maximal ideal m is equicharacteristic, that is, charR(m)= charR,

if and only if R contains a field.

Proof. Assume that R contains a field. If charR is a prime number, there is nothing to prove. Suppose that
charR = 0 and K ⊂ R. In particular, charK = 0. It follows that charR/m = 0 by considering the injective map
K→ R→ R/m.

Conversely, assume that R is equicharacteristic. Assume that charR/m = 0. Then, the map Z→ R→ R/m

is injective. Since R is local, for each n ∈ Z, n1R is invertible in R. So, we can embed Q into R. Assume now
that charR/m= p > 0 is a prime number. So, the map Z→ R→ R/m factors through Z/pZ. Moreover, we can
embed Fp into R.

The idea behind the definition of an equicharacteristic ring comes from the fact that R/m is the residue field of
every quotient ring of R. In particular, the characteristic of R/m divides the characteristic of every quotient ring
of R. On the other hand, the characteristic of every quotient ring of R divides the characteristic of R. Since these
characteristics are either a prime number or zero it follows that for equicharacteristic rings all these characteristics
coincide.

Theorem 4.1.11. Let R be a local regular commutative Noetherian ring containing a field k as a subring. Assume

that n≥ d. Then,

HNdimF(SR(n,d)-proj) = domdim(SR(n,d),R)−2 = inf{2(k−1) ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 0.

Proof. Let K be the quotient field of R. Then, charK = charR = charR(m), where m is the unique maximal ideal
of R. In particular, domdimSK(n,d) = domdim(SR(n,d),R). By Theorem 3.5.6 and the flatness of K over R,

HNdimFR(SR(n,d-proj))≥ domdim(SR(n,d),R)−2 = domdimSK(n,d)−2 (4.1.1.1)

= HNdimFK (SK(n,d)-proj)≥ HNdimFR(SR(n,d)-proj).
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By Theorem 4.1.7, the result follows.

4.1.1.2 Case 2 - R does not contain a field

Theorem 4.1.12. Let R be a local regular commutative Noetherian ring that does not contain a field as a subring.

Assume that n≥ d. Then,

HNdimF(SR(n,d)-proj) = domdim(SR(n,d),R)−1 = inf{2k−1 ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 1.
(4.1.1.2)

Proof. Of course, R has Krull dimension greater or equal than one. By assumption, charR = 0 and charR(m) is a
prime number p > 0. In particular, charK = 0 for the quotient field of R. By Theorem 3.5.7,
HNdimF(SR(n,d)-proj) ≥ domdim(SR(n,d),R)− 1. We can assume, without loss of generality, that p ≥ d.
Otherwise, equation (4.1.1.2) is just +∞ = +∞ = +∞ ≥ 1, and consequently the equality holds. Since R is a
local regular ring, R is a unique factorization domain. Therefore, we can write p1R = up1 · · · pn for some prime
elements of R. So, p1R belongs to a prime ideal p of height one. Hence, charR/p is p. Let Q(R/p) be the quotient
field of R/p. Then, charQ(R/p) = p and domdimSQ(R/p)(n,d) = domdim(SR(n,d),R). Therefore,

HNdimFR/p(SR/p(n,d)-proj)≤ HNdimFQ(R/p)(SQ(R/p)(n,d)-proj) = domdim(SR(n,d),R)−2. (4.1.1.3)

By Corollary 3.3.10, the Hemmer-Nakano dimension of SR(n,d)-proj cannot be higher than
domdim(SR(n,d),R)−1. The result now follows by Theorem 4.1.7.

4.1.2 Hemmer-Nakano dimension of F (∆̃)

Because of Corollary 4.1.8, we divide the computation of the Hemmer-Nakano dimension of F (∆̃) in two cases,
as well.

4.1.2.1 Case 1 - R contains a field

Theorem 4.1.13. Let R be a local regular commutative Noetherian ring containing a field k as a subring. Assume

that n≥ d. Let T be a characteristic tilting module of SR(n,d). Then,

HNdimF(F (∆̃)) = domdim(SR(n,d),R) T −2 = inf{k−2 ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ −1. (4.1.2.1)

Proof. Let K be the quotient field of R. Since R contains a field, domdim(SR(n,d),R) T = domdimSK(n,d) K⊗R T .
Note that K⊗R T is the characteristic tilting module of SK(n,d). Again, by Theorem 3.5.6 and the flatness of K,

HNdimF(F (∆̃))≥ domdim(SR(n,d),R) T −2 = domdimSK(n,d) K⊗R T −2 (4.1.2.2)

= HNdimFK (F (K⊗R ∆))≥ HNdimF(F (∆̃)). (4.1.2.3)

By Corollary 4.1.8, the result follows.

Remark 4.1.14. We should point out that there is a typo in Corollary 3.9.2 of [HN04]. It should read p− 3
instead of p− 2. This typo is a repercussion of a typo in the use of spectral sequences in the published version
[KN01, 2.3]. There we should read 0 ≤ i ≤ t instead of 0 ≤ i ≤ t + 1. The reader can check Lemma 3.1.16 for
clarifications. The result [KN01, 2.3] was corrected in Kleshchev’s homepage. 4
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4.1.2.2 Case 2 - R does not contain a field

Theorem 4.1.15. Let R be a local regular commutative Noetherian ring that does not contain a field as a subring.

Assume that n≥ d. Let T be a characteristic tilting module of SR(n,d). Then,

HNdimF(F (∆̃)) = domdim(SR(n,d),R) T −1 = inf{k−1 ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 0. (4.1.2.4)

Proof. Let m be the unique maximal ideal of R. By assumption, charR = 0 and charR(m) = p for some prime
number. By Theorem 3.5.6, HNdimF(F (∆̃)) ≥ domdim(SR(n,d),R) T −2 = p−3. Hence, if p < d, the equation
(4.1.2.4) reads +∞ =+∞ =+∞. So, the equality holds. Assume that p≥ d and p 6= 2. Let K be the quotient field
of R. So, charK = 0 and therefore, domdimSK(n,d) K⊗R T =+∞. Since p 6= 2, HNdimF(F (∆̃))≥ 0. Therefore,
we are in the conditions of Theorem 3.5.7. Hence,

HNdimF(F (∆̃))≥ domdim(SR(n,d),R) T −1. (4.1.2.5)

Constructing a prime ideal p of height one as in the proof of Theorem 4.1.12, we obtain that charR/p= p. Denote
by Q(R/p) the quotient field of R/p. Therefore,

HNdimFR/p(F (R/p⊗R ∆̃))≤ HNdimFQ(R/p)(F (Q(R/p⊗R ∆)) (4.1.2.6)

= domdimSQ(R/p)(n,d) Q(R/p)⊗R T −2 = p−3 = domdim(SR(n,d),R) T −2.

By Corollary 3.3.10, the Hemmer-Nakano dimension of F (∆̃) cannot be higher than domdim(SR(n,d),R) T − 1.
This finishes our claim for p 6= 2. It remains to show that the equality holds for p = 2. In other words, we want
to show that HNdimF(F (∆̃)) = 0 whenever p = 2. The existence of a prime ideal of height one p such that R/p

has characteristic 2 implies by the same argument as before that the Hemmer-Nakano dimension of F (∆̃) cannot
be higher than domdim(SR(n,d),R) T −1 = 0.

Applying Theorem 3.5.8 taking into account that charK = 0 and consequently HNdimFK (F (K⊗R ∆)) =+∞

the proof becomes complete.

We note that the situation for Z is way better than for F2. In fact,

HNdimFZ(SZ(n,d)-proj) = 1, HNdimFF2
(SF2(n,d)-proj) = 0 (4.1.2.7)

HNdimFZ(F (∆̃Z)) = 0, HNdimFF2
(F (∆F2)) =−1. (4.1.2.8)

These results are compatible with the results of [CPS96]. Moreover, these two particular cases were already
known for them and they used this knowledge to define the Young modules and Specht modules of the group
algebra F2Sd by defining first the Young and Specht modules for the integral group algebra ZSd and then applying
the functor F2⊗Z−. This becomes more relevant for Weyl modules over fields of characteristic two since they
cannot be reconstructed from Specht modules. That is, the image of a Specht module under the adjoint functor
of the Schur functor only contains, in general, a Weyl module.

4.1.3 Uniqueness of covers for RSd

Considering the localization of Z away from 2, Z[ 1
2 ], on Theorem 4.1.15 yields that (SZ[ 1

2 ]
(n,d),V⊗d

Z[ 1
2 ]
) is a 1-

faithful cover of Z[ 1
2 ]Sd . By Corollary 3.6.6, this Schur algebra is the unique cover of RSd which sends the

standard modules (in this case the Weyl modules) to the Specht modules. We remark that this improves the
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situation for the fields of characteristic 3 since they are algebras over Z[ 1
2 ] and for characteristic 3 the Hemmer-

Nakano dimension of F (∆) is only zero.
For the ring of integers, we can already conclude that there is no better cover than the Schur algebra to study

the Specht modules over the symmetric group.

Theorem 4.1.16. Let k be a field of characteristic two and d ≥ 2. Let θ = {θ(λ ) : λ ∈ Λ+(d)} be the cell mod-

ules of kSd . Then, (kSd ,θ) does not have a 0-split quasi-hereditary cover. Moreover, there are no 1-faithful split

quasi-hereditary covers of ZSd satisfying F∆(λ ) = θZ(λ ),λ ∈ Λ+(d), where F is the Schur functor associated

to the cover of ZSd .

Proof. Assume, by contradiction, that (A,P) is a 0-faithful quasi-hereditary cover of kSd satisfying
HomA(P,∆(λ )) = θ(λ ),λ ∈ Λ+(d) := Λ+(d,d).

Let \(−) : kSd-mod→ kSd-mod be the simple preserving duality of the symmetric group. By Theorem 8.15
of [Jam78],

\
θ(1d)' θ(d). (4.1.3.1)

On the other hand, θ(1d) is a simple module, so θ(d)' θ(1d). This implies that

HomA(∆(d),∆(1d))' HomkSd (θ(d),θ(1
d))' HomkSd (θ(d),θ(d)) 6= 0. (4.1.3.2)

This contradicts A being split quasi-hereditary with the order on the partitions d > 1d . So, kSd has no such
faithful quasi-hereditary cover.

Assume that there exists a 1-faithful split quasi-hereditary cover ofZSd , say (A,P) such that HomA(P,∆(λ ))=

θ(λ ). By Theorem 3.3.9, (A(2Z),P(2Z)) is a 0-faithful quasi-hereditary cover of Z/2ZSd = F2Sd satisfying

θF2(λ ) = Z/2Z⊗Z θ(λ ) = Z/2Z⊗ZHomA(P,∆(λ ))' HomF2⊗ZA(P(2Z),∆(λ )(2Z)). (4.1.3.3)

By the first part of Theorem, this cannot happen.

As mentioned, over the integral Schur algebra there is no exact equivalence on the full subcategory of modules
admitting a filtration by standard modules. However, we are able to recover an exact equivalence on another
resolving subcategory of SZ(n,d)-mod∩Z-proj other than SZ(n,d)-proj.

Theorem 4.1.17. Let A be the following resolving subcategory of SZ(n,d)-mod, n≥ d,

A := {X ∈ SZ(n,d)∩Z-proj : R1 G(FX) = 0, ηX is bijective }. (4.1.3.4)

There is an exact equivalence between A and

B := {Y ∈ ZSd-mod∩Z-proj : R1 G(Y ) = 0}. (4.1.3.5)

Proof. The exactness follows by construction. We will start by showing that this correspondence is well-defined.
Let X ∈ A . It is clear that FX ∈ B. Moreover, GFX ' X . Let Y ∈ B. Then, 0 = R1 G(Y ) = R1 G(FGY )

and GFGY ' GY . Therefore, GY ∈ A with FGY ' Y . It remains to show that A is a resolving subcategory
of SZ(n,d)-mod∩Z-proj. Since domdim(SZ(n,d),Z) = 2 and the Hemmer-Nakano dimension of SZ(n,d)-proj
is one SZ(n,d)-proj ⊂ A . The unit η is a natural transformation, so it is clear that A is closed under direct
summands. Any exact sequence of SZ(n,d)-modules

0→ X →M→ N→ 0, (4.1.3.6)
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by applying GF , yields a long exact sequence

0→ GFX → GFM→ GFN→ R1 G(FX)→ R1 G(FM)→ R1 G(FN). (4.1.3.7)

Therefore, if X ,N ∈A then R1 G(FM)= 0 and by Snake Lemma ηM is iso. Hence, A is closed under extensions.
Assume that M,N ∈A then by Snake Lemma R1 G(FX) = 0 and ηX is bijective. This finishes the proof.

4.2 q-Schur algebras

The Hecke algebra of the symmetric group (usually called the Iwahori-Hecke algebra) is obtained by a small
perturbation q on the group algebra of the symmetric group. By a small perturbation q we mean replacing the
identity of the group algebra in some of its defining relations by a non-trivial root of unity. Although, one usually
is more general and defines it for an invertible element q. Usually, the name quantum is referred to q being a
small perturbation.

Let R be a commutative ring with identity. Fix natural numbers n,d. Let u be an invertible element of R

and put q = u−2. The Iwahori-Hecke algebra HR,q(d) is the R-algebra with basis {Tσ : σ ∈ Sd} satisfying the
relations

Tσ Ts =

Tσs, if l(σs) = l(σ)+1

(u−u−1)Tσ +Tσs, if l(σs) = l(σ)−1,
(4.2.0.1)

where s ∈ S := {(1,2),(2,3), · · · ,(d− 1,d)} is a set of transpositions and l is the length function, that is, l(σ),
σ ∈ Sd , is the minimum number of simple transpositions belonging to S needed to write σ .

There are many ways to define Hecke algebras. Here, we are following the definition of Hecke algebras
according to Parshall-Wang [PW91] (but we use u instead of q and q instead of h). In [Mat99], they use a
different basis for HR,q(d) which is the same as Definition (11.3a) of [PW91]. We would also like to point out
that HR,q in Definition 4.4.1 of [DD91] is exactly HR,q(d) in our notation.

Due to the relations (4.2.0.1), Ts, s ∈ S, generates as algebra HR,q(d).
The Iwahori-Hecke algebra HR,q(d) admits a base change property.

HR,q(d)' R⊗Z[u,u−1] HZ[u,u−1],u−2(d) (4.2.0.2)

Under this isomorphism of R-algebras 1R⊗Z[u,u−1] Tσ is mapped to Tσ ∈ HR,q(d).
We can regard V⊗d as right HR,q(d)-module by imposing to an R-basis {ei1 ⊗·· ·⊗ eid | i ∈ I(n,d)} of V⊗d ,

ei1 ⊗·· ·⊗ eid ·Ts =


ei1 ⊗·· ·⊗ eid · s if it < it+1

uei1 ⊗·· ·⊗ eid if it = it+1

(u−u−1)ei1 ⊗·· ·⊗ eid + ei1 ⊗·· ·⊗ eid · s if it > it+1

, s =(t, t +1) ∈ S, (4.2.0.3)

1≤ t < d.

By considering q = 1, we recover the action on V⊗d of the symmetric group by place permutation.

Definition 4.2.1. The subalgebra EndHR,q(d)
(
V⊗d

)
of the endomorphism algebra EndR

(
V⊗d

)
is called the

q-Schur algebra. We will denote it by SR,q(n,d).

The q-Schur algebras were introduced by Dipper and James [DJ91, DJ89].
By [Du92, 2.d] (see also [DD91, Lemma 4.4.3 ]) SR,q(n,d)= SR,u−2(n,d) is isomorphic to the q-Schur algebra
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of Dipper and James [DJ91].
We should remark, at this point, that V⊗d can be regarded in many different ways as HR,q(d)-module in the

literature. However, they are not isomorphic as HR,q(d)-modules (unless one changes the action on V⊗d) although
they always have isomorphic endomorphism algebras making the q-Schur algebra well defined. Essentially, this
is due to a change of basis of HR,q(d) not being compatible with quantum deformation of the general linear group
(see Section 4 of [DD91]). A classical reference to q-Schur algebras is [Don98].

Similar to the Schur algebra we will start by recalling some facts about q-Schur algebras. We wish to illustrate
an R-basis for SR,q(n,d). In chapter 2, we discussed the importance of the condition DM⊗B M ∈ R-proj for some
generator M ∈ B-mod. It is now a good opportunity to exhibit an R-basis of V⊗d ⊗HR,q(d) DV⊗d . By dualizing
such R-basis we will obtain an R-basis for SR,q(n,d). Note, once more, that in general if EndB(M) has an R-basis
nothing can be said about DM⊗B M, M ∈ B-mod.

Lemma 4.2.2. Let {e∗i1 ⊗ ·· · ⊗ e∗id | i ∈ I(n,d)} be an R-basis of DV⊗d . DV⊗d is a left HR,q(d)-module with

action

Ts · e∗i1 ⊗·· ·⊗ e∗id =


s · e∗i1 ⊗·· ·⊗ e∗id if it < it+1

ue∗i1 ⊗·· ·⊗ e∗id if it = it+1

(u−u−1)e∗i1 ⊗·· ·⊗ e∗id + s · e∗i1 ⊗·· ·⊗ e∗id if it > it+1

, s =(t, t +1) ∈ S, (4.2.0.4)

1≤ t < d.

Proof. Let ek1 ⊗·· ·⊗ ekd ∈V⊗d be an element basis. Let s = (t, t +1) be a transposition. Then,

(Ts · e∗i1 ⊗·· ·⊗ e∗id )(ek1 ⊗·· ·⊗ ekd ) =e∗i1 ⊗·· ·⊗ e∗id (ek1 ⊗·· ·⊗ ekd ·Ts) (4.2.0.5)

=


e∗i1 ⊗·· ·⊗ e∗id (ek1 ⊗·· ·⊗ ekd · s) if kt < kt+1

e∗i1 ⊗·· ·⊗ e∗id (uek1 ⊗·· ·⊗ ekd ) if kt = kt+1

e∗i1 ⊗·· ·⊗ e∗id ((u−u−1)ek1 ⊗·· ·⊗ ekd + ek1 ⊗·· ·⊗ ekd · s) if kt > kt+1

=


1{i}(k · s) if kt < kt+1

u1{i}(k) if kt = kt+1

(u−u−1)1{i}(k)+1{i}(k · s) if kt > kt+1

= 1{i}(k · s)1{kt<kt+1}(k)+u1{i}(k)1{it=it+1}(i)+(u−u−1)1{i}(k)1{kt>kt+1}(k)+1{i}(k · s)1{kt>kt+1}(k)

= 1{i·s−1}(k)1{it>it+1}(i)+u1{i}(k)1{it=it+1}(i)+(u−u−1)1{i}(k)1{it>it+1}(i)+1{i·s−1}(k)1{it<it+1}(i)

=


s · e∗i1 ⊗·· ·⊗ e∗id (ek1 ⊗·· ·⊗ ekd ) if it < it+1

ue∗i1 ⊗·· ·⊗ e∗id (ek1 ⊗·· ·⊗ ekd ) if it = it+1

((u−u−1)e∗i1 ⊗·· ·⊗ e∗id + s · e∗i1 ⊗·· ·⊗ e∗id )(ek1 ⊗·· ·⊗ ekd ) if it > it+1

Here, 1 denotes the indicator function.

We can associate to I(n,d)× I(n,d) the lexicographical order. Each Sd-orbit of I(n,d)× I(n,d) has a repre-
sentative (i, j) satisfying (i1, j1)≤ ·· · ≤ (id , jd).

Proposition 4.2.3. V⊗d⊗HR,q(d) DV⊗d is a free R-module with basis

{ei1 ⊗·· ·⊗ eid ⊗HR,q(d) e∗j1 ⊗·· ·⊗ e∗jd : i, j ∈ I(n,d), (i1, j1)≤ ·· · ≤ (id , jd)}. (4.2.0.6)
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Proof. Since {ei1 ⊗·· ·⊗ eid | i ∈ I(n,d)} is an R-basis of V⊗d and {e∗j1 ⊗·· ·⊗ e∗jd | j ∈ I(n,d)} is an R-basis of
DV⊗d the set {ei1 ⊗·· ·⊗ eid ⊗HR,q(d) e∗j1 ⊗·· ·⊗ e∗jd |i, j ∈ I(n,d)} generate (over R) V⊗d⊗HR,q(d) DV⊗d .

Denote by Λ the set

Λ := {(i, j) ∈ I(n,d)× I(n,d) : (i1, j1)≤ ·· · ≤ (id , jd)}. (4.2.0.7)

Let (l,s) ∈ I(n,d)× I(n,d). Assume that (l,s) /∈ Λ. Then, there exists 1≤ k < d such that (lk,sk) 6≤ (lk+1,sk+1).
Hence, either lk > lk+1 or lk = lk+1 and sk > sk+1. Assume that lk > lk+1. Take i = l · (k,k+1) and ω = (k,k+1).
Then, ik < ik+1 and

el1 ⊗·· ·⊗ eld = (ei1 ⊗·· ·⊗ eid ) · (k,k+1) = ei1 ⊗·· ·⊗ eid ·Tω . (4.2.0.8)

Hence,

el1 ⊗·· ·⊗ eld ⊗HR,q(d) e∗s1
⊗·· ·⊗ e∗sd

= ei1 ⊗·· ·⊗ eid ·Tω ⊗HR,q(d) e∗s1
⊗·· ·⊗ e∗sd

(4.2.0.9)

= ei1 ⊗·· ·⊗ eid ⊗HR,q(d) Tω e∗s1
⊗·· ·⊗ e∗sd

(4.2.0.10)

Therefore, we can write el1 ⊗ ·· ·⊗ eld ⊗HR,q(d) e∗s1
⊗ ·· ·⊗ e∗sd

as a linear combination of elements ei⊗HR,q(d) e∗f
where i1 ≤ . . . ik ≤ ik+1, i, f ∈ I(n,d). Now, assume that lk = lk+1 and sk > sk+1 for some k. Put j = s ·ω ,
ω = (k,k+1). Then, jk < jk+1 and

el1 ⊗·· ·⊗ eld ⊗HR,q(d) e∗s1
⊗·· ·⊗ e∗sd

= el1 ⊗·· ·⊗ eld ⊗HR,q(d) ωe∗j1 ⊗·· ·⊗ e∗jd (4.2.0.11)

= el1 ⊗·· ·⊗ eld ⊗HR,q(d) Tω e∗j1 ⊗·· ·⊗ e∗jd (4.2.0.12)

= el1 ⊗·· ·⊗ eld Tω ⊗HR,q(d) e∗j1 ⊗·· ·⊗ e∗jd (4.2.0.13)

= uel1 ⊗·· ·⊗ eld ⊗HR,q(d) e∗j1 ⊗·· ·⊗ e∗jd . (4.2.0.14)

So, we can order the elements (for example using Bubble sort) (l,s)∈ I(n,d)×I(n,d) into (i, j)∈ I(n,d)×I(n,d)

with (i, j)∈Λ and we obtain that each element el1⊗·· ·⊗eld⊗HR,q(d) e∗s1
⊗·· ·⊗e∗sd

, s, l ∈ I(n,d) can be written as a
linear combination of elements ei1⊗·· ·⊗eid ⊗HR,q(d) e∗j1⊗·· ·⊗e∗jd , i, j ∈Λ. Moreover, the coefficients appearing
in this linear combination belong to the image of Z[u,u−1]→ R. Denote these coefficients by pl,s

i, j(u). We claim
that our desired set is linearly independent. For each (i, j) ∈ Λ, we define the map ψi, j : V⊗d ×DV⊗d → R

satisfying

ψi, j = ∑
l,s∈I(n,d)

pl,s
i, j(u)(el ,e∗s )

∗, (4.2.0.15)

where (el ,e∗s )
∗ is the dual element of (el ,e∗s ). So, this map is R-bilinear. By construction, the coefficients pl,s

i, j(u)

satisfy the following relations: For each ω = (k,k+1), we have

pl,sω

i, j (u) = uplω,s
i, j (u) if lt = lt+1, st < st+1

plω,s
i, j (u) = pl,sω

i, j (u) if lt < lt+1, st < st+1

plω,s
i, j (u) = upl,s

i, j(u) if lt < lt+1, st = st+1

plω,s
i, j (u) = (u−u−1)pl,s

i, j(u)+ pl,sω

i, j (u) if lt < lt+1, st > st+1

. (4.2.0.16)

We are now ready to check that ψi, j satisfies the relation ψi, j(e f Tω ,e∗g) = ψi, j(e f ,Tω e∗g) for all f ,g ∈ I(n,d). For
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f ,g ∈ I(n,d) and ω = (t, t +1),

ψ(e f Tω ,e∗g) =



∑
l,s∈I(n,d)

pl,s
i, j(u)1{ f ω=l,s=g}(l,s) if ft < ft+1

∑
l,s∈I(n,d)

pl,s
i, j(u)1{ f=l,g=s}(l,s)u if ft = ft+1

∑
l,s∈I(n,d)

(u−u−1)pl,s
i, j(u)1{ f=l,g=s}(l,s)+ pl,s

i, j(u)1{ f ω=l,s=g}(l,s) if ft > ft+1

(4.2.0.17)

=


p f ω,g

i, j (u) if ft < ft+1

up f ,g
i, j (u) if ft = ft+1

(u−u−1)p f ,g
i, j (u)+ p f ω,g

i, j (u) if ft > ft+1

. (4.2.0.18)

On the other hand,

ψ(e f ,Tω e∗g) =


p f ,gω

i, j (u) if gt < gt+1

up f ,g
i, j (u) if gt = gt+1

(u−u−1)p f ,g
i, j (u)+ p f ,gω

i, j (u) if gt > gt+1

. (4.2.0.19)

Using the relations (4.2.0.16) we obtain our claim. Hence, ψi, j induces a unique map ψ ′i, j : V⊗d⊗HR,q(d) DV⊗d→
R, satisfying

ψ
′
i, j(e f ⊗HR,q(d) e∗g) = p f ,g

i, j (u), f ,g ∈ I(n,d). (4.2.0.20)

In particular ψ ′i, j(ei⊗HR,q(d) e∗j) = 1 and ψ ′i, j(e f ⊗HR,q(d) e∗g) = 0 for all ( f ,g) ∈ Λ distinct from (i, j). This shows
that (4.2.0.6) is an R-basis of V⊗d⊗HR,q(d) DV⊗d .

The dual elements of ei⊗HR,q(d) e∗j , (i, j) ∈ Λ, denoted by ξ j,i ∈ D(V⊗d⊗HR,q(d) DV⊗d)' SR,q(n,d), form an
R-basis of the q-Schur algebra. Moreover, (by a Tensor-Hom adjunction argument)

e∗g(ξ j,i(e f )) = ψ
′
i, j(e f ⊗HR,q(d) e∗g) = p f ,g

i, j (u), f ,g ∈ I(n,d). (4.2.0.21)

Thus, we can write

ξ j,i(e f ) = ∑
f∈I(n,d)

p f ,g
i, j (u)eg, ∀ f ∈ I(n,d). (4.2.0.22)

Using our approach to a basis of the q-Schur algebra it is clear that the q-Schur algebra admits a base change
property (see also [DJ89, 2.18(ii)]).

Lemma 4.2.4. Let R be a commutative ring with an invertible element u. Fix q = u−2. For any commutative

R-algebra S,

SR,q(n,d)' R⊗Z[u,u−1] SZ[u,u−1],u−2(n,d), (4.2.0.23)

SS,q1S(n,d)' S⊗R SR,q(n,d). (4.2.0.24)

Proof. Since V⊗d⊗HR,q(d)DV⊗d is a free R-module and HR,q(d) admit a base change property the q-Schur algebra
SR,q(n,d) has also a base change property:

SS,q1S(n,d)' S⊗R SR,q(n,d). (4.2.0.25)
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The first equation follows by fixing R = Z[u,u−1].

According to the notation of proof of Proposition 4.2.3, p f , f
i,i = 1{i∼ f}( f ) for f ∈ I(n,d). Therefore, for

each (i, i) ∈ Λ, ξi,i is an idempotent. Further, we can index these idempotents by the compositions of d in at
most n parts, in the same manner as it was to SR(n,d). Analogously, to the classical case, we can consider
an increasing bijection Λ+(n,d)→ {1, . . . , t}, λ k 7→ k. Set ek to be the idempotent ∑l≥k ξ

λ l and define Jk =

SR,q(n,d)ekSR,q(n,d). It follows that SR,q(n,d) is split quasi-hereditary.

Theorem 4.2.5. For any commutative Noetherian ring R, the q- Schur algebra SR,q(n,d) is a split quasi-

hereditary algebra over R with split heredity chain 0⊂ Jt ⊂ ·· · ⊂ J2 ⊂ J1 = SR(n,d).

Proof. The statement for fields follows from [PW91, Theorem 11.5.2]. The statement for Noetherian rings
which are not fields follows from Theorem 3.7.2 of [CPS90]. An alternative proof for this statement without
using Theorem 3.7.2 of [CPS90] is to apply Theorem 1.5.73.

In particular, SR,q(n,d) has finite global dimension whenever R has finite global dimension. The standard
modules associated with this split heredity chain of the q-Schur algebra are called q-Weyl modules, indexed by
the partitions of din at most n parts. To define a cellular structure on the q-Schur algebra we can define the
involution ι by assigning to each element basis ξ j,i (i, j)∈Λ, the image in SR,q(n,d) of (e j⊗HR,q(d) e∗i )

∗. Observe
that ι(ξλ ) = ξλ for every λ ∈ Λ+(n,d). In particular, ι preserves all idempotents in the split heredity chain of
SR,q(n,d). Hence, by a version of Corollary 4.2 [KX98] for commutative Noetherian rings, SR,q(n,d) is a cellular
algebra.

We will now focus on the case n≥ d. There are isomorphisms,

V⊗d ' SR,q(n,d)ξ(1,...,d),(1,...,d), DV⊗d ' ξ(1,...,d),(1,...,d)SR,q(n,d). (4.2.0.26)

Hence, V⊗d is a projective (SR,q(n,d),R)-injective SR,q(n,d)-module. Thus, we can consider the Schur functor
FR,q =HomSR,q(n,d)(V

⊗d ,−) : SR,q(n,d)-mod→HR,q(d)-mod (we will write just Fq when there is no confusion on
the ground ring R). Note that these facts follow by extending the results of Donkin (see [Don98]) to commutative
rings. In particular, the arguments of the results [Don98, Section 2.1 (5), (6),(7)] can easily be extended to
commutative rings. Alternatively, we can see these facts as applications of Proposition 1.4.34 and 2.5.3 and
Nakayama’s Lemma.

Parallel to the classical case, using the representation theory of q-Schur algebras we can obtain information
for the representation theory of Hecke algebras. In particular, (SR,q(n,d),V⊗d) is a split quasi-hereditary cover
of HR,q(d). Since ι(ξ(1,...,d),(1,...,d)) = ξ(1,...,d),(1,...,d) and

HR,q(d)' EndSR,q(n,d)(V
⊗d)' ξ(1,...,d),(1,...,d)SR,q(n,d)ξ(1,...,d),(1,...,d), (4.2.0.27)

F sends the split heredity chain of SR,q(n,d) to a cell chain of HR,q(d). This makes HR,q(d) a cellular algebra. In
particular, the Schur functor sends the q-Weyl modules to the cell modules of HR,q(d). We aim now to determine
the connection between q-Weyl modules filtrations and cell filtrations.

At this point, it is not surprising that this is reduced to computing relative dominant dimensions. For the
Schur algebra, the dominant dimension is directly related to the characteristics of the residue fields of the ground
ring. So, it is natural to consider a quantum version of the characteristic of the ring. This is done by replacing
the identity with q on the definition of the characteristic of a ring.
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Definition 4.2.6. The q-characteristic of R, denoted by q-char, is the smallest positive number s such that
1+q+ · · ·+qs−1 = 0 if such s exists, and zero otherwise.

We shall refer to q -charR as the quantum characteristic of R when there is no misunderstanding about q.
Note that (1−q)(1+q+ · · ·+qs−1) = 1−qs for all s > 0. So, for integral domains the quantum characteristic is
zero if and only if either q is not a root of unity or q = 1 and charR = 0. We refer to [LQ13] for a more detailed
discussion of quantum characteristic.

The computation of dominant dimension for quantised Schur algebras over fields is due to Fang and Miyachi.

Theorem 4.2.7. [FM19, Theorem 3.13] Let K be a field. Assume that q = u−2 for some non-zero element u ∈ K

and n≥ d.

domdimSK,q(n,d) =

2(q -charK−1) if d ≥ q -charK > 0

+∞, otherwise.
(4.2.0.28)

We will now extend this computation for all q-Schur algebras. Further, we can determine the relative domi-
nant dimension of the q-Schur algebra by knowing the invertible elements of R.

Theorem 4.2.8. Let R be a commutative ring with invertible element u ∈ R. Put q = u−2 and assume that n≥ d.

Then, (SR,q(n,d),V⊗d) is a relative gendo-symmetric R-algebra and

domdim(SR,q(n,d),R) = inf{2s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}. (4.2.0.29)

Proof. By Proposition 2.5.3, V⊗d is a projective (SR,q(n,d))-injective-strongly faithful module. Hence,
(SR,q(n,d),V⊗d ,DV⊗d) is a relative QF3 R-algebra. Let MaxSpec(R) be the set of maximal ideals of R.

By Theorem 2.5.13,

domdim(SR,q(n,d),R) = inf{domdimSR,q(n,d)⊗R R(m)|m ∈MaxSpec(R)} (4.2.0.30)

= inf{domdimSR(m),qm(n,d)|m ∈MaxSpec(R)} ≥ 2, (4.2.0.31)

where qm is the image of q in R(m). In particular, V⊗d is a generator-cogenerator of HR,q(d). Similarly to
Proposition 2.2.6, we can define an R-linear map π : HR,q(d)→ R, given by

π(Tσ ) =

{
1R, if σ = e

0, otherwise
, σ ∈ Sd .

Afterwards, we can define the HR,q(d)-isomorphism φ : HR,q(d)→ DHR,q(d), given by φ(Tσ )(Tω) = π(Tσ Tω)

for every σ ,ω ∈ Sd . This yields that the Hecke algebra HR,q(d) is a relative symmetric R-algebra. By Theorem
2.10.2, (SR,q(n,d),V⊗d) is a relative gendo-symmetric R-algebra. First, we will show that

domdim(SR,q(n,d),R)≤ inf{2s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}. (4.2.0.32)

If the right hand side is infinite, then there is nothing to prove. Assume that there exists s < d such that
1+q+ · · ·+qs /∈U(R). Then, 1 + q + · · ·+ qs belongs to some maximal ideal of R, say m. Therefore,
1+qm+ . . .+qs

m is zero in R(m). Assume that qm = 1 in R(m). Then, 0 6= qm -charR(m) = charR(m) ≤
s+1≤ d−1+1 = d, so domdimSR(m),qm(n,d)≤ 2s. Now, assume that qm 6= 1. Then,

0 < qm -charR(m)≤ s+1≤ d−1+1 = d. (4.2.0.33)
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Hence,

domdim(SR(m),qm(n,d),R) = 2(qm -char−1)≤ 2s. (4.2.0.34)

So, our claim follows. If domdim(SR,q(n,d),R) is infinite then, of course, that the equality (4.2.0.29) holds.
Suppose that domdim(SR,q(n,d),R) = l > 0. So, there exists a maximal ideal m of R such that

l = domdimSR(m),qm(n,d) = 2(qm -charR(m)−1), (4.2.0.35)

and 0 < qm -charR(m) ≤ d. By definition of quantum characteristic, the image of 1+ q+ · · ·+ qqm -charR(m)−1

in R(m) is zero. So, 1+ q+ · · ·+ qqm -charR(m)−1 belongs to m. Since qm -charR(m)− 1 ≤ d − 1 < d then
l ∈ {2s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}. This finishes the proof.

We can now compute domdim(SZ[u,u−1],u−2(n,d),Z[u,u−1]). The invertible elements of Z[u,u−1] are the
powers of u and the constants 1 and −1. Hence, 1+q = 1+u−2 is not invertible. So,

domdim(SZ[u,u−1],u−2(n,d),Z[u,u−1]) = 2, d ≥ 2. (4.2.0.36)

Corollary 4.2.9. Let R be a commutative ring with invertible element u ∈ R. Put q = u−2 and assume that n≥ d.

Let T be a characteristic tilting module of SR,q(n,d). Then,

domdim(SR,q(n,d),R) T = inf{s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}. (4.2.0.37)

Proof. The result follows from applying Theorem 4.2.8 and Theorem 2.11.3.

4.2.1 Hemmer-Nakano dimension of SR,q(n,d)-proj and F (∆̃)

For the Schur algebras, we saw that both the Hemmer-Nakano dimension and the relative dominant dimension
are independent of the Krull dimension of the ground ring contrary to other homological invariants like the global
dimension. For q-Schur algebras, we expect a similar behaviour. Further, a crucial fact for a better value of the
Hemmer-Nakano dimension regarding the relative dominant dimension of SR(n,d)-proj was R not being similar
to a field. In particular, R must have Krull dimension bigger or equal to one and it does not contain a field. So, a
natural question that arises is

• For what rings R does SR,q(n,d)-proj and F (∆̃) have higher Hemmer-Nakano dimension than the respec-
tive resolving subcategories over its residue fields?

The following notion based on the work [LQ13, 1.9] gives us the answer to this question.

Definition 4.2.10. Let R be a commutative ring with invertible element q. We call R a q-divisible ring (or
quantum divisible ring) if 1+q+ · · ·+qs ∈U(R) whenever 1+q+ · · ·+qs 6= 0 for any s∈N. For a given natural
number d, we call R a d-partial q-divisible ring (or d-partial quantum divisible ring) if 1+q+ · · ·+qs ∈U(R)

whenever 1+q+ · · ·+qs 6= 0 for any s < d.

For example, any field is a quantum divisible ring, and in particular, it is a d-partial quantum divisible ring
for any d.

Once again, we can assume that R is a local regular (commutative Noetherian) ring for the computation of
Hemmer-Nakano dimension of SR,q(n,d)-proj and F (∆̃).
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4.2.1.1 Case 1 - R is a d-partial quantum divisible ring

Theorem 4.2.11. Let R be a local regular d-partial q-divisible ring, where q = u−2, u ∈ U(R). Assume that

n≥ d. Then,

HNdimFq(SR,q(n,d)-proj) = domdim(SR,q(n,d),R)−2 = inf{2(s−1) ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}

= inf{2(s−1) ∈ N | 1+q+ · · ·+qs = 0, s < d} ≥ 0,

Moreover, if T is a characteristic tilting module of SR,q(n,d), then

HNdimFq(F (∆̃)) = domdim(SR,q(n,d),R) T −2 = inf{s−2 ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}

= inf{s−2 ∈ N | 1+q+ · · ·+qs = 0, s < d} ≥ −1.

Proof. By Theorem 3.5.6 and Theorem 4.2.8,

HNdimFq(SR,q(n,d),R-proj)≥ domdim(SR,q(n,d),R)−2 = inf{2(s−1) ∈ N | 1+q+ · · ·+qs /∈U(R), s < d},

HNdimFq(F (∆̃))≥ domdim(SR,q(n,d),R) T −2 = inf{s−2 ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}.

If inf{s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}=+∞, then we are done.
Assume that inf{s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d} is finite. Let K be the quotient field of R. Since R is

a d-partial q-divisible ring,

inf{s ∈ N | 1+q+ · · ·+qs /∈U(R), s < d}= inf{s ∈ N | 1+q+ · · ·+qs = 0, s < d} (4.2.1.1)

= q -charR−1 = q -charK−1 > 0. (4.2.1.2)

Therefore,

HNdimFq(SR,q(n,d)-proj)≥ (domdimSR,q(n,d),R)−2 = 2(q -charK−1)−2 (4.2.1.3)

= domdimSK,q(n,d)−2 (4.2.1.4)

= HNdimFK,q(SK,q(n,d)-proj)≥ HNdimFq(SR,q(n,d),R-proj). (4.2.1.5)

Furthermore,

HNdimFq(F (∆̃))≥ domdim(SR,q(n,d),R) T −2 = q -charK−3 (4.2.1.6)

= domdimSK,q(n,d)K⊗R T −2 = HNdimFK,q(F (K⊗R ∆))≥ HNdimFq(F (∆̃)).

4.2.1.2 Case 2 - R is not a d-partial quantum divisible ring

Theorem 4.2.12. Let R be a local regular ring with invertible element u ∈ R. Put q = u−2. Assume that R is not

a d-partial q-divisible ring. Assume that n≥ d. Then,

HNdimFq(SR,q(n,d)-proj) = domdim(SR,q(n,d),R)−1 = inf{2s−1 ∈ N | 1+q+ · · ·+qs /∈U(R), s < d} ≥ 1.

Moreover, if T is a characteristic tilting module of SR,q(n,d), then

HNdimFq(F (∆̃)) = domdim(SR,q(n,d),R) T −1 = inf{s−1 ∈ N | 1+q+ · · ·+qs /∈U(R), s < d} ≥ 0.
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Proof. Since R is not a d-partial q-divisible ring there exists a natural number s smaller than d such that the sum
0 6= 1+q+ · · ·+qs /∈U(R) is a non-zero invertible element of R. Let s be smallest natural number with such a
property. Suppose that there exists a natural number l smaller than s satisfying 1+q+ · · ·+ql = 0. Then,

0 6= ql+1 + · · ·+qs = ql+1(1+q+ · · ·qs−l−1) /∈U(R). (4.2.1.7)

As ql+1 ∈U(R) we obtain that

0 6= 1+ · · ·+qs−l−1 /∈U(R). (4.2.1.8)

So, the existence of l contradicts the minimality of s. Therefore,

inf{t ∈ N : 1+q+ · · ·+qt = 0, t < d}> s. (4.2.1.9)

Let K be the quotient field of R. By the previous discussion,

HNdimFK,q(SK,q(n,d)-proj) = domdimSK,q(n,d)−2 = inf{2t ∈ N : 1+q+ · · ·+qt = 0, t < d}−2 > 2s−2,

(4.2.1.10)

HNdimFK,q(F (K⊗R ∆)) = domdimSK,q(n,d) K⊗R T = inf{t ∈ N : 1+q+ · · ·+qt = 0, t < d}−2 > s−2.

(4.2.1.11)

Whereas, by Theorem 3.5.6

HNdimFq(SR,q(n,d)-proj)≥ domdim(SR,q(n,d),R)−2 (4.2.1.12)

= inf{2t−2 ∈ N | 1+q+ · · ·+qt /∈U(R), t < d}= 2s−2≥ 0 (4.2.1.13)

HNdimFq(F (∆̃))≥ domdim(SR,q(n,d),R) T −2 (4.2.1.14)

= inf{t−2 ∈ N : 1+q+ · · ·+qt /∈U(R), t < d}= s−2≥−1. (4.2.1.15)

Using (4.2.1.13) and (4.2.1.10) on Theorem 3.5.7, we deduce that HNdimFq(SR,q(n,d)-proj) ≥ 2s− 2 = 1 =

2s− 1. On the other hand, R is a unique factorization domain. So, we can write 1+ q+ · · ·+ qs = xy for some
prime element x ∈ R. Thus, Rx is a prime ideal of height one. Therefore, the image of 1+q+ · · ·+qs in R/Rx is
zero. Denote by Q(R/Rx) the quotient field of R/Rx and qx the image of q in R/Rx. Then,

inf{2t ∈ N : 1+qx + · · ·+qt
x = 0, t < d} ≤ 2s (4.2.1.16)

and so,

HNdimFR/Rx,qx
(SR/Rx,qx(n,d)-proj)≤ HNdimFQ(R/Rx),qx

(SQ(R/Rx),qx(n,d)-proj)≤ 2s−2. (4.2.1.17)

By Corollary 3.3.10, we cannot have HNdimFq(SR,q(n,d)-proj) > 2s− 1. Thus, HNdimFq(SR,q(n,d)-proj) =
2s− 1. If s > 1, then by applying the same argument as we did for SR,q(n,d)-proj for F (∆̃) the result follows.
Assume that s = 1. Then, since

HNdimFR/Rx,qx
(F (R/Rx⊗R ∆̃))≤ HNdimFQ(R/Rx),qx

(F )(Q(R/Rx)⊗R ∆)≤ s−2 =−1 (4.2.1.18)

HNdimFq(F (∆̃)) cannot be higher than zero. So, it is enough to show that the unit ηT : T → GqFqT is an
isomorphism, where Gq is the right adjoint functor of the Schur functor Fq : SR,q(n,d)-mod→HR,q(d). Applying
Theorem 3.5.8 taking into account the inequality (4.2.1.11) the result follows.
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Observation 4.2.13. If R is a regular integral domain with invertible element u ∈ R which is not a d-partial u−2-
divisible ring, then there exists a maximal ideal m so that 0 6= 1+q+q+ · · ·+qs ∈m for some s < d. Then, Rm

is not a d-partial qm-divisible ring and

domdim(SR,q(n,d),R) = domdim(SRm,qm(n,d),Rm).

Therefore,

HNdimFq(SR,q(n,d)-proj)≥ domdim(SR,q(n,d),R)−1 = HNdimFRm,qm
(SRm,qm(n,d)-proj)

≥ HNdimFR,q(SR,q(n,d)-proj).

The ring Z[u,u−1] is not a d-partial q-divisible ring for d > 2.
Hence, the previous exposition generalizes many of the results present in [PS05].

4.3 Auslander algebra of R[X ]/(Xn) for a commutative Noetherian ring
R

Let R be a commutative Noetherian ring. The algebra B = R[X ]/(Xn) is a cellular algebra with cellular datum

Λ = {0,1, . . . ,n−1}, M(λ ) = {1}, Cλ =Cλ
1,1 = Xλ +(Xn), λ ∈ Λ, (4.3.0.1)

where Λ is ordered by the reverse order of the usual ordering.
Let A = EndB(⊕ΛBCλ ) the Auslander algebra of B. B has the base change property, that is, for any commu-

tative Noetherian R-algebra S

S⊗R R[X ]/(Xn)' S[X ]/(Xn), S⊗R R[X ]/(Xn)(Xλ +(Xn))' S[X ]/(Xn)(Xλ +(Xn)) (4.3.0.2)

Since, for every field K, Ext1K[X ]/(Xn)(M,N) 6= 0 for every arbitrary non-projective modules M,N ∈K[X ]/(Xn)-mod
we obtain that

domdimEndB(m)

(⊕
λ∈Λ

B(m)Cλ

)
= 2, (4.3.0.3)

for every maximal ideal m of R. This follows by identifying B(m) (or if necessary K⊗R(m)B(m) with K being the
algebraic closure of R(m)) with the bound quiver algebra of the one-loop quiver, and with paths of length greater
than or equal to n being zero. Therefore, domdim(A,R) = 2 and A has the base change property. Moreover,
consider, for each j = 0, . . . ,n−1, the idempotent

e j :=
⊕
λ∈Λ

BCλ � BC j ↪→
⊕
λ∈Λ

BCλ ∈ A. (4.3.0.4)

Then, (A,Ae0) is a cover of B. We aim to go further and show that this is a split quasi-hereditary cover. To do
that, we start by claiming that Aen−1A is a split heredity ideal of A. It is easier to observe this by viewing A as
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the matrix algebra 
HomB(B,B) HomB(BC,B) · · · HomB(BCn−1,B)

HomB(B,BC) HomB(BC,BC) · · · HomB(BCn−1,BC)
...

...
. . .

...
HomB(B,BCn−1) HomB(BC,BCn−1) · · · HomB(BCn−1,BCn−1)

 . (4.3.0.5)

For each t = 0, . . . ,n−1, the homomorphism φt ∈HomB(BCn−1,BCt) sending Cn−1 to Ct is linearly independent
and generates HomB(BCn−1,BCt). In particular, Aen−1 is the left A-module isomorphic to

0 0 · · · HomB(BCn−1,B)

0 0 · · · HomB(BCn−1,BC)
...

...
. . .

...
0 0 · · · HomB(BCn−1,BCn−1)

 . (4.3.0.6)

Therefore, Aen−1 is a free R-module with rank n. Analogously, en−1A is a free R-module with rank n. Now,
the elements of Aen−1A are the morphisms that factor through BCn−1. The entry i, j of a morphism in Aen−1A

is a map in HomB(BC j,BCi) which factors through BCn−1. Hence, such map is an R-linear combination of the
map sending C j to Ci. This map is linearly independent. So, this shows that Aen−1A is a free R-module with

rank n2. Further, the quotient A/Aen−1A is isomorphic to EndR[X ]/(Xn−2)(
n−2⊕
λ=0

BCλ ). Therefore, the canonical map

Aen−1⊗R en−1A→ Aen−1A→ A is an (A,R)-monomorphism. By proceeding on induction we obtain that A is a
split quasi-hereditary algebra for the ordering n−1 > n−2 > · · ·> 0.

We can also see that the simple standard module of A, ∆(0) is sent to the simple B-module BCn−1 by the
Schur functor HomA(Ae0,−). But, HomB(⊕ΛBCλ ,BCn−1) is isomorphic to ∆(n−1) = Aen−1 as left A-modules.
We showed the following:

Proposition 4.3.1. Let R be a commutative Noetherian ring and let A be as above. Then, (A,Ae0) is a (−1)
faithful quasi-hereditary cover of R[X ]/(Xn).

There are two direct consequences of Proposition 4.3.1. In contrast to the Schur algebras case, here the
integral cover versions do not have higher values of the Hemmer-Nakano dimension. Although, the cellular
algebras R[X ]/(Xn) have split quasi-hereditary covers, from a level of faithfulness-point of view they fit into the
extreme situation of having the worst possible resolution into quasi-hereditary covers.

4.4 Deformations of the BGG category O

We will follow closely the material of Gabber and Joseph [GJ81] to study the Bernstein-Gelfand-Gelfand cate-
gory O over a commutative ring and use as most as possible the notation and ideas in [Hum08]. We will assume
throughout this section that the reader is familiar with Lie algebras and with the material discussed in [Hum08].
We shall start by recalling some facts about root systems in semi-simple complex Lie algebras. The initial moti-
vation to consider a category O over commutative rings was the study of the Kazhdan-Luzstig conjecture. At the
time, this construction did not seem fruitful. However, we will find here that they are very interesting to cover
theory.
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4.4.1 Root systems

Let g be a complex semi-simple Lie algebra with Cartan subalgebra h and associated root system Φ⊂ h∗, where
h∗ denotes the dual vector space of h. In particular, g admits a direct sum decomposition into weight spaces for
h of the form g= h⊕

⊕
α∈Φ gα , where gα = {x ∈ g : [h,x] = α(h)x, ∀h ∈ h}. Let Π be the set of simple roots of

Φ, and therefore it is a basis of the root system Φ (see [EW06, Definition 11.9]). It is also a basis of the vector
space h∗. Set Φ+ := Z+

0 Π ∩Φ, giving a direct sum decomposition g = n+⊕h⊕n−, where n± :=
⊕

α∈Φ± gα .
The Lie algebra b= n+⊕h is called the Borel subalgebra of g.

Let E be the real span of Φ and (−,−) be the symmetric bilinear form on E induced by the Killing form
associated with the adjoint representation of g. The Weyl group associated with the root system Φ which we
denote by W is the finite subgroup of GL(E) generated by all reflections sα , α ∈Φ, where sα(λ ) = λ − 2(λ ,α)

(α,α) α ,
λ ∈ h∗. For each root α ∈Φ, we associate the coroot α∨ := 2

(α,α)α. Denote by Φ∨ the set of all coroots. Hence,

the bilinear form induces, in addition, the following map 〈−,−〉 : Φ×Φ∨→ Z, given by 〈β ,α∨〉 := 2(β ,α)
(α,α) . This

operator is called Cartan invariant in [Hum08]. We call ZΦ the root lattice.

4.4.2 Integral semi-simple Lie algebras

The first step to obtain an integral version of a finite-dimensional algebra, or in this case a finite-dimensional Lie
algebra is to find a basis of the algebra which behaves nicely under the ring multiplication or in this case under
the Lie bracket operation. By this, we mean that the ring multiplication of two basis elements is an integral linear
combination of the elements of the basis under consideration. For Lie algebras, this means that the Lie bracket
of two element basis is an integral linear combination of the elements of the basis under consideration.

Let {hα : α ∈Π}∪{xα : α ∈Φ} be a Chevalley basis of the semi-simple Lie algebra g, where {hα : α ∈Π}
is a basis of h and xα ∈ gα for each root α ∈ Φ. In particular, α(hα) = 2 and hα = [xα ,x−α ] for every α ∈ Φ.
Also, 〈β ,α∨〉= β (hα), α,β ∈Φ. Let gZ be the additive subgroup of g with basis {hα : α ∈Π}∪{xα : α ∈Φ}.
The restriction of the Lie bracket [−,−] to gZ×gZ has image in gZ making gZ a Lie algebra.

For each commutative Noetherian ring with identity R, we define the Lie algebra gR := R⊗Z gZ. By con-
struction, gC = C⊗Z gZ ' g. Using the Chevalley basis, we define the following integral Lie subalgebras of gZ:
hZ =

⊕
α∈Π Zhα , n±Z =

⊕
α∈Φ+ Zx±α , bZ = n+Z ⊕hZ.

Analogously, we define for each commutative Noetherian ring with identity R, hR = R⊗Z hZ, n±R = R⊗Z n±Z ,
bR = R⊗Z bZ. Since hR is free over R, its dual HomR(hR,R) which we will denote by h∗R is free over R.

Observe that gQ is again a semisimple Lie algebra since otherwise every solvable ideal of gQ could be
extended to a solvable ideal of gC' g. Therefore, for any field extension K⊃Q, the Lie algebra gK is semisimple.

Let U(gR) be the universal enveloping algebra of gR, that is, U(gR) is the quotient T (gR)/IR of the tensor
algebra T (gR) = R⊕ g⊕ (g⊗ g)⊕ ·· · , where IR is the two-sided ideal generated by the elements of the form
x⊗ y− y⊗ x− [x,y], x,y ∈ gR. We denote by S(gR) the symmetric algebra of gR, that is, S(gR) is the quotient
T (gR)/JR of the tensor algebra and JR is the two-sided ideal generated by the elements of the form x⊗ y− y⊗ x,
x,y ∈ gR. The symmetric algebra S(gR) is isomorphic to the polynomial algebra

R[{1R⊗hα : α ∈Π},{1R⊗ xα : α ∈Φ}].

In particular, R⊗Z S(gZ)' S(gR). The enveloping algebra of gR also has the base change property. Since gR and
T (gR) are free over R, with basis elements independent of R, we can identify R⊗ZT (gZ) with T (gR) and R⊗Z IZ
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with IR. Hence, we have a commutative diagram with exact rows

R⊗Z IZ R⊗Z T (gZ) R⊗ZU(gZ)

IR T (gR) U(gR)

' ' . (4.4.2.1)

Therefore, we obtain:

Lemma 4.4.1. Let R be a commutative Noetherian ring with identity.

Then, U(gR)' R⊗ZU(gZ) and S(gR)' R⊗Z S(gZ).

Since gR is free over R, the PBW theorem (see for example [Hum80, 17.3]) gives the R-isomorphism

U(gR)'U(n−R )⊗R U(hR)⊗R U(n+R ), (4.4.2.2)

and U(gR) has, as an R-module, a monomial basis over the basis elements of gR. We call PBW monomials such
monomials forming the basis of U(gR). Further, it follows that the enveloping algebra of a free Lie algebra is a
Noetherian ring (see [MR87, 7.4]).

Since both U(n+R ) and U(n−R ) are free over R, the PBW theorem allows us to view U(hR) as an R-summand
of U(gR). Further, denote by πR the projection U(gR)� U(hR) which sends all PBW monomials with factors
either in n+R or in n−R to zero.

Let Z(gR) be the center of the universal enveloping algebra U(gR). The restriction of πR to the center Z(gR)

is called the Harish-Chandra homomorphism. For details on why this map is an R-algebra homomorphism
see for example [GJ81, 1.3.2]. For each λ ∈ h∗R, the central character associated with λ is the R-algebra
homomorphism χλ : Z(gR)→ R , given by χλ (z) = λ (π(z)), z ∈ Z(gR). For a given semisimple Lie algebra over
a splitting field K, the Harish-Chandra theorem (see [Hum08, 1.10]) says that all K-algebra homomorphisms are
of the form χλ for some λ ∈ h∗.

4.4.3 BGG category O over commutative rings

Assume in the remaining of this section, unless stated otherwise, that R is a commutative Noetherian ring and a
Q-algebra. In particular, R has characteristic zero and there exists an injective homomorphism of rings Q→ R,
q 7→ q1R. We can extend the map 〈−,−〉 to h∗R×Φ∨→ R. Let {(1⊗ hα)

∗ : α ∈ Π} denote a basis of h∗R. We
define 〈λ ,α∨〉R := ∑β∈Π tβ 〈β ,α∨〉 for λ = ∑β∈Π tβ (1⊗hβ )

∗ ∈ h∗R.
We call the set of integral weights ΛR := {λ ∈ h∗R : 〈λ ,α∨〉R ∈ Z, ∀α ∈ Φ} the integral weight lattice

associated with Φ with respect to R. For each M ∈U(gR)-mod and each λ ∈ h∗R, we define the weight space
Mλ := {m ∈M : h ·m = λ (h)m, ∀h ∈ hR}.

For each λ ∈ h∗R, we will denote by [λ ] the set of elements of h∗R, µ , that satisfy µ −λ ∈ ΛR. We define an
ordering in [λ ] by imposing µ1 ≤ µ2 if and only if µ2−µ1 ∈ Z+

0 Φ+ ⊂ ΛR.
To motivate both the introduction of the notation [λ ] and the definition of the category O over commutative

rings we need the definition of the category O for a semi-simple complex Lie algebra g' gC.

Definition 4.4.2. The BGG category O (or just the category O) of a semi-simple Lie algebra g over a splitting
field of characteristic zero is the full subcategory of U(g)-Mod whose modules satisfy the following conditions:

(i) M ∈U(g)-mod;

(ii) M is semi-simple over h, that is, M =
⊕

λ∈h∗Mλ ;
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(iii) M is locally n+-finite, that is, for each m ∈M the subspace U(n+)m of M is finite-dimensional.

In a naive look, one could think that the category O is too large to be considered under the techniques that
we studied here for projective Noetherian R-algebras. Especially, since there is an infinite number of Verma
modules (which are the standard modules making the category O a split highest weight category) and even
these have infinite vector space dimension. So, instead of generalizing already the Definition 4.4.2 we will first
decompose O into smaller subcategories. In fact, for any λ ∈ h∗, there is a ”block” associated with λ . In the
following, we will identify Λ⊂ h∗ with ΛC and [λ ]⊂ h∗.

Lemma 4.4.3. Let M ∈ O . For each λ ∈ h∗, define the vector space M[λ ] :=
⊕

µ∈[λ ] Mµ , where µ ∈ [λ ] if and

only if µ−λ ∈ Λ. Then, M[λ ] ∈U(g)-mod and M =
⊕

[λ ]∈h∗/∼M[λ ], where ∼ denotes the equivalence relation

given by µ−λ ∈ Λ.

Proof. Let µ,λ ,ω ∈ h satisfying µ ∈ [λ ]∩ [ω]. Then, µ −λ ,µ −ω ∈ Λ, and so ω −λ = µ −λ − (µ −ω) ∈
Λ. So, [λ ] = [ω]. Let m ∈ Mµ for µ ∈ [λ ]. By PBW theorem, U(g) is generated by the elements xt1

1 · · ·xtn
n ,

t1, . . . , tn ≥ 0, where {x1, . . . ,xn} denotes a basis for g. But the elements xt1
1 · · ·xtn

n m have weight l ∈ µ +ZΦ. So,
l−µ ∈ ZΦ⊂ Λ. Therefore, l ∈ [λ ]. This implies that U(g)Mµ ⊂ ∑λ∈[λ ] Ml . So, M[λ ] ∈U(g)-mod and since as
vector spaces M =

⊕
λ∈h∗Mλ =

⊕
[λ ]∈h∗/∼

⊕
µ∈[λ ] Mµ , the result follows.

Definition 4.4.4. [GJ81, 1.4] Let R be a commutative Noetherian ring which is a Q-algebra. Let λ ∈ h∗R.

• We define O[λ ],(II),R to be the full subcategory of U(gR)-Mod whose modules M satisfy M = ∑µ∈[λ ] Mµ .

• We define O[λ ],(I),R to be the full subcategory of O[λ ],(II),R whose modules M are U(n+R )-locally finite, that
is, U(n+R )m ∈ R-mod for every m ∈M.

• We define O[λ ],R to be the full subcategory of O[λ ],(I),R whose modules are finitely generated over U(gR).

As we have seen in Lemma 4.4.3, we can reduce the study of the category O to the categories O[λ ],C, where
λ ∈ h∗. Moreover, by a BGG category O over a commutative ring R we will mean a category O[λ ],R for some
λ ∈ h∗R.

It comes as no surprise that Verma modules can be defined over any ground ring. Let µ ∈ [λ ] and Rµ be the
free R-module with rank one together with the U(hR)-action h1R = µ(h)1R, h ∈ hR. We can extend Rµ to be an
U(bR)-module by letting 1R⊗ xα , α ∈ Φ+, act on Rµ identically as zero. The Verma module ∆(µ) (associated
with µ) is defined to be the U(gR)-module ∆(µ) :=U(gR)⊗U(bR) Rµ .

Lemma 4.4.5. Let λ ∈ h∗R. If µ ∈ [λ ], then ∆(µ) ∈ O[λ ],R and ∆(µ) is free as U(n−R )-module.

Proof. The result follows once we show that the weight modules ∆(µ)ω are zero unless ω ∈ µ −Z+
0 Π ⊂ [λ ].

By PBW theorem, we obtain as U(n−R )-modules,

∆(µ) =U(gR)⊗U(bR) Rµ 'U(n+R )⊗R U(hR)⊗R U(n−R )⊗U(bR) Rµ 'U(n−R )⊗R U(bR)⊗U(bR) Rµ (4.4.3.1)

'U(n−R )⊗R Rµ 'U(n−R ). (4.4.3.2)

Moreover, if we denote by α1, . . . ,αt all the roots in Π , then

{(1R⊗ x−α1)
i1 · · ·(1R⊗ x−αt )

it (1U(gR)⊗U(bR) 1R) : i1, . . . , it ≥ 0}

is an R-basis of ∆(µ), where the monomials (1R⊗ x−α1)
i1 · · ·(1R⊗ x−αt )

it are PBW monomials. Denote by
y := 1U(gR)⊗U(bR) 1R ∈ ∆(µ). Let h ∈ hR. Then, hy = (h1U(gR))⊗U(bR) 1R = 1U(gR)⊗U(bR) h1R = µ(h)y. Also,
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for α ∈Φ+, we obtain

h((1R⊗ x−α)y) = (h(1R⊗ x−α))y = [h,1R⊗ x−α ]y+(1R⊗ x−α)hy (4.4.3.3)

=−α(h)(1R⊗ x−α)y+(1R⊗ x−α)µ(h)y. (4.4.3.4)

Hence, y ∈ ∆(µ)µ and (1R⊗ x−α)y ∈ ∆(µ)µ−α , α ∈ Φ+. This shows that ∆(µ)ω is zero unless ω ∈ µ −Z+
0 Π

and ∆(µ) =
⊕

ω∈µ−Z+0 Π
∆(µ)ω . Further, Z+

0 Π ⊂ ΛR. Therefore, ∆(µ) ∈ O[l],(II),R.
Again by (4.4.3.4) (1⊗ xα)∆(µ)ω ⊂ ∆(µ)ω+α for α ∈ Φ+. So, for a large enough i j depending on

ω ∈ µ−Z+
0 Π , (1R⊗ xα j)

i j ∆(µ)ω ⊂ ∆(µ)ν = 0 for some ν /∈ µ−Z+
0 Π . Thus, ∆(µ) ∈ O[λ ],(I),R. Since ∆(µ) is

finitely generated by y we obtain that ∆(µ) ∈ O[λ ],R.

We observe that ∆(µ) is not finitely generated over R. In the following, we state some known facts about
homomorphisms between Verma modules.

Lemma 4.4.6. Let λ ∈ h∗R. Then:

(i) For every µ,ω ∈ [λ ], if HomO[λ ],R(∆(µ),∆(ω)) 6= 0, then µ ≤ ω .

(ii) EndO[λ ],R
(∆(µ))' R for every µ ∈ [λ ].

(iii) For every µ,ω ∈ [λ ], any non-zero map in HomO[λ ],R(∆(µ),∆(ω)) is injective.

Proof. Let µ,ω ∈ [λ ] such that HomO[λ ],R(∆(µ),∆(ω)) 6= 0. By Tensor-Hom adjunction,

HomO[λ ],R(∆(µ),∆(ω))' HomU(bR)(Rµ ,∆(ω))⊂ ∆(ω)µ .

By assumption, µ is a weight of ∆(ω). Hence, µ ∈ ω−Z+
0 Π . So, µ ≤ ω .

If µ = ω , then for any homomorphism f ∈ HomU(bR)(Rµ ,∆(µ)), f (1R) ∈ ∆(µ)µ = R and it is annihi-
lated by n+R . Further, for every element r ∈ R, we can define g ∈ HomU(bR)(Rµ ,∆(µ)), by imposing g(1R) =

r(1U(gR)⊗U(bR) 1R). This shows that EndO[λ ],R
(∆(µ))' R.

For (iii), we can apply the same idea as in the classical case (see [Hum08, 4.2]). In fact, for every f ∈
HomO[λ ],R(∆(µ),∆(ω)) we can write f (1U(gR)⊗U(bR) 1Rµ

) = u1U(gR)⊗U(bR) 1Rω
for some u ∈U(n−R ). Using

the PBW theorem we can see that U(n−R ) is an integral domain (see [MR87, 7.4]). By identifying f with an
endomorphism of U(n−R ) given by a 7→ au, U(n−R ) being an integral domain implies that f is injective.

4.4.4 Properties of (classical) BGG category O

Before we proceed any further, we should recall some properties of the category O for a given a semisimple Lie
algebra g over a splitting field K of characteristic zero without giving proofs.

The category O can be decomposed in finer blocks than the ones described in Lemma 4.4.3 and these can be
completely determined by the orbits under the dot action of the Weyl group. In fact, for any M ∈O , M =

⊕
χ Mχ ,

as χ runs over the central characters Z(g)→ K and

Mχ := {m ∈M : ∀z ∈ Z(g) ∃n ∈ N (z−χ(z))nm = 0}. (4.4.4.1)

is a module in O . The argument provided in [Hum08, 1.12] requires K to be an algebraically closed field, but we
do not need such a condition. We could use instead Gabber and Joseph techniques (see [GJ81, 1.4.2]) together
with the Harish-Chandra theorem stating that χλ = χµ if µ and λ are linked by a certain Weyl group and taking
into account that the category O is both Artinian and Noetherian (see [Hum08, 1.11]). To see that this is a finite
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direct sum is also required to observe that ∆(λ )χλ = ∆(λ ) and M 7→Mχλ is an exact functor O → O for every
λ ∈ h∗. For each central character χ , denote by Oχ the full subcategory of O whose objects are the modules M

satisfying M = Mχ .
The dot action of the Weyl group W is defined as w ·λ := w(λ +ρ)−ρ , where ρ is the half-sum of all

positive roots. With this, for each λ ∈ h, one can define another Weyl group W[λ ] associated with a root system
that views λ as an integral weight lattice. Explicitly, W[λ ] := {w ∈W : w ·λ −λ ∈ ZΦ}.

Theorem 4.4.7. The following results hold for the category O of a semisimple Lie algebra over a splitting field

of characteristic zero.

(a) For each λ ∈ h∗, the Verma module ∆(λ ) has a unique simple quotient and every simple module in O is

isomorphic to the simple quotient of some Verma module ∆(λ ) which we will denote by L(λ ).

(b) The simple module L(λ ) in O is finite-dimensional if and only if 〈λ ,α∨〉 ∈ Z+
0 for every α ∈ Φ+. Such

weights are known as integral dominant weights. In such a case, L(λ ) ' U(g)/J. Here, J is the left

ideal of U(g) generated by the elements xα , (α ∈ Φ+), h− λ (h)1, (h ∈ h) and x
nβ+1
β

, (β ∈ Π ), where

nβ = 〈λ ,β∨〉 ∈ Z+
0 .

(c) The Verma module ∆(λ ) is simple in O if and only if λ is antidominant, that is, 〈λ +ρ,α∨〉 /∈ N for all

α ∈Φ+. In particular, λ is minimal and the unique antidominant weight in its W[λ ]-orbit.

(d) The Verma module ∆(λ ) is projective in O if and only if λ is dominant, that is, 〈λ +ρ,α∨〉 /∈ Z− for all

α ∈Φ+. In particular, λ is maximal and the unique dominant weight in its W[λ ]-orbit.

(e) O has enough projectives, and the projective cover of ∆(λ ) (which exists) is injective if and only if λ is

antidominant.

(f) The category O is the direct sum of the subcategories Oχλ
consisting of modules whose composition factors

all have highest weights linked by W[λ ], as λ runs over all antidominant weights (or alternatively over all

dominant weights). In particular, χλ = χµ if µ and λ belong to the same orbit under the Weyl group W[λ ].

(g) The blocks Oχλ
with the Verma modules being the standard modules are split highest weight categories with

a finite number of standard modules. Here, the ordering is given by µ1 ≤ µ2 if and only if µ2−µ1 ∈ Z+
0 Π .

Proof. For (a) see [Hum08, p.18]. For (b) see [Hum08, p.21, p.44]. For (c) see [Hum08, p.55,p.77]. For (d) see
[Hum08, p.55, p.60]. For (e) see [Hum08, p.60-61, p.149-151] For (f) see [Hum08, p.83]. For (g) see [Hum08,
p.64-65, p.68].

Observe that if a weight λ is both antidominant and dominant, then ∆(λ ) is projective and simple. So, the
block Oχλ

is semisimple if and only if λ is both antidominant and dominant.

4.4.5 Properties of BGG category O over commutative rings

The crucial point of the category O is that ultimately it can be viewed as a direct sum of module categories over
finite-dimensional algebras. This is what we will explore for the BGG category O over a commutative ring.
As we will see later on, we must impose that R is also local so that the classical category O is obtained as a
specialization of a direct sum of module categories of projective Noetherian R-algebras. But for now assume just
that R is a commutative Noetherian ring which is a Q-algebra.
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Definition 4.4.8. Let S be any commutative ring and {Ji}i∈I be a family of two-sided ideals of S such that
Ji + J j = S whenever i 6= j. Let J be the category of S-modules M = ∑i∈I Mi where

Mi = {m ∈M : ∀x ∈ Ji ∃n ∈ N xnm = 0}.

Note that m1 +m2 ∈Mi whenever m1,m2 ∈Mi since for each x ∈ Ji we can choose the higher value n1 and n2

and then xmax{n1,n2} kills m1 +m2. Since S is commutative Mi becomes an S-module.

Lemma 4.4.9. [GJ81, 1.4.2] M ∈J if and only if each m ∈M there exists a finite set F ⊂ I such that for all

xi ∈ Ji, i ∈ F, there is ni ∈ N satisfying ∏i∈I xni
i m = 0.

Proof. Let m ∈M = ∑i∈I Mi. So, there exists a finite set F ⊂ I such that m = ∑i∈F mi, and mi ∈Mi. For all xi ∈ Ji

there exists ni ∈ N so that xni
i mi. Therefore, ∏

i∈I
xni

i ∑
i∈F

mi = 0.

Conversely, let M ∈ S-Mod so that for each m ∈ M there exists a finite set F ⊂ I such that for all xi ∈ Ji,
i ∈ F , there is ni ∈ N satisfying ∏i∈I xni

i m = 0. We need to show that M = ∑i∈I Mi. Clearly, ∑i∈I Mi ⊂M. For
each finite set F ⊂ I define MF = {m ∈ M|∀xi ∈ Ji, i ∈ F, ∃ni ∈ N ∏i∈F xni

i m = 0}. We claim that MF is an
S-submodule of M. To see that observe that for m1,m2 ∈MF for any xi ∈ Ji, i ∈ F then there exists n(1)i ,n(2)i ∈ N

so that ∏i∈F x
n(1)i
i m1 = ∏i∈F x

n(2)i
i m2 = 0. Therefore,

∏
i∈F

x
n(1)i +n(2)i
i (m1 +m2) = 0. (4.4.5.1)

Since S is commutative, it is clear that MF is an S-module. Now, we will proceed by induction on |F | to show that
MF = ∑i∈F Mi. If |F |= 1, there is nothing to prove. Assume now that |F |> 1. Since Ji+J j = S then 1S = xi+x j,
for some xi ∈ Ji and x j ∈ J j. Let m ∈ MF . By assumption, there exists n j ∈ N such that x

n j
j m ∈ MF\{ j}. By

induction, x
n j
j m = ∑i∈F\{ j}mi, mi ∈Mi. So,

m−m′ = (1S− xi)
n j m = ∑

i∈F\{ j}
mi, (4.4.5.2)

where m′ is a sum of elements of the form xt
im ∈ MF , t > 0. Proceed now induction with these elements xt

im.
Eventually, we obtain a sum of xt1

1 · · ·x
ti
i = 0. This shows that MF = ∑i∈F Mi.

Now since each element m ∈ M belongs to some MF , where F is a finite subset of I we obtain that m =

∑i∈F mi, where mi ∈Mi. Hence, M ∈J .

Lemma 4.4.10. [GJ81, 1.4.3] Let S be any commutative ring and {Ji}i∈I be a family of two-sided ideals of S

such that Ji + J j = S whenever i 6= j. The following assertions hold.

(i) If M ∈J , then M =
⊕

i∈I Mi.

(ii) The category J is closed under submodules, quotients and direct sums.

(iii) The functor J →J , given by M 7→Mi, is an exact functor.

Proof. We have already that M = ∑i∈I Mi. To prove (a) it remains to show that the elements of M can be written
in an unique way as a sum of elements belonging to Mi. For this, it is enough to show that 0 = ∑i∈F mi implies
that mi = 0 for all i ∈ F . If |F |= 1, the result is clear. Again, 1S = xl + x j for some xi ∈ Ji and x j ∈ J j. So, there
exists nl ∈ N satisfying

0 = xnl
l ∑

i∈F
mi = ∑

i∈F\{l}
xnl

l mi = ∑
i∈F\{l}

(1S− x j)
nl mi. (4.4.5.3)
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By induction, we obtain, for each i ∈ F\{l}, 0 = (1S− x j)
nl mi = mi−m′i, where m′i is a sum of elements of the

form xt
jmi with t > 0. Consider j ∈ F and the minimal n j ∈N such that x

n j
j m j = 0. Then, x

n j−1
j m j = x

n j−1
j m′j = 0,

which is a contradiction to the choice of n j. Hence, m j = 0. Going through all j ∈ F we obtain that mi = 0 for
all i ∈ F .

Let M′ be a submodule of M ∈J . Since every element of M′ satisfies the condition of Lemma 4.4.9 we
obtain that M′ ∈J . Due to Lemma 4.4.9, J is also closed under direct sums. For each element of the quotient
of M ∈J and for every xi ∈ Ji we can pick the ni ∈ N which satisfies the condition in Lemma 4.4.9 for its
preimage. Hence, J is also closed under quotients. So, (b) follows. By (ii), for every M ∈J , Mi ∈J . By
(i), each M '

⊕
i∈I Mi and by the definition of direct sums of modules the functor is exact.

To get an idea of what Lemma 4.4.10 is doing we can think about central idempotents. For a set of central
orthogonal idempotents, {e1, . . . ,en} of a commutative ring S, define Ji = S∑

n
j=1, j 6=i e j. Then, Ji + J j = S when-

ever i 6= j and Mi = eiM. Hence, Lemma 4.4.10 is a generalization of the process of decomposing a module in
terms of orthogonal idempotents over a commutative ring.

We will now apply Lemma 4.4.10 to the symmetric algebra of the Cartan algebra S =U(hR) = S(hR) and the
category O[λ ],(II),R taking the role of J . For each λ ∈ h∗R, define the R-algebra homomorphism pλ : S(hR)→ R,
given by h 7→ λ (h), h ∈ hR. This is where R being a Q-algebra is useful.

Lemma 4.4.11. [GJ81, 1.4.4] Fix λ ∈ h∗R. Consider the family of ideals Jµ := ker pµ , µ ∈ [λ ], of the symmetric

algebra S(hR). Then, Jµ1 + Jµ2 = S(hR) whenever µ1 6= µ2.

Proof. Since µ1,µ2 ∈ [λ ] then µ1− µ2 = µ1−λ − (µ2−λ ) ∈ ΛR. Since they are non-zero, there exists α ∈ Φ

such that

µ1(hα)−µ2(hα) = (µ1−λ )(hα)− (µ2−λ )(hα) = 〈µ1−λ − (µ2−λ ),α∨〉 ∈ Z\{0}. (4.4.5.4)

Since R is a commutative Q-algebra the element (µ1(hα)− µ2(hα))1R is invertible. But, µi(hα)− hα ∈ Jµi ,
i = 1,2. Therefore,

(µ1(hα)−µ2(hα))1R = µ1(hα)−hα − (µ2(hα)−hα) ∈ Jµ1 + Jµ2 . (4.4.5.5)

It follows that Jµ1 + Jµ2 = S(hR).

Now combining Lemma 4.4.10 with Lemma 4.4.11 we obtain the following.

Corollary 4.4.12. For every M ∈ O[λ ],(II),R, the following assertions hold:

1. M =
⊕

µ∈[λ ] Mµ ;

2. The assignment M 7→Mµ is an exact functor on O[λ ],(II),R;

3. The category O[λ ],(II),R is closed under quotients, submodules and direct sums.

Of course, we want these properties for the category O[λ ],R. In fact, these can be transported to our case of
interest but it is done in steps.

Lemma 4.4.13. [GJ81, 1.4.6] Let M ∈ O[λ ],(II),R. Then, M ∈ O[λ ],(I),R if and only if for all m ∈M there exists a

natural number s such that n+R
sm = 0.

Proof. Assume that for all m ∈M there exists a natural number s such that n+R
sm = 0. The associative algebra

U(n+R ) has an R-basis formed by the monomial elements (1R⊗ xα1)
t1 · · ·(1R⊗ xαn)

tn , where α1, . . . ,αn are the
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simple roots. By hypothesis, (1R⊗ xα1)
t1 · · ·(1R⊗ xαn)

tnm is zero unless t1, . . . , tn ∈ Z+
0 so that t1 + · · ·+ tn ≤ s.

Hence, U(n+R )m ∈ R-mod for every m ∈M.
Conversely, assume that M ∈ O[λ ],(I),R. Let m ∈ M. We can choose, without loss of generality, that m ∈

Mµ for some µ ∈ [λ ] since m ∈
⊕

µ∈[λ ] Mµ . By assumption, U(n+R )m ∈ R-mod and it is an U(hR)-submodule
of M. By Corollary 4.4.12, U(n+R )m ∈ O[λ ],(II),R. Further, since U(n+R )m ∈ R-mod there exists a finite set
of [λ ] such that U(n+R )m ⊂ ∑µ∈F Mµ . Since (1⊗ xα)Mµ ⊂ Mµ+α we can find a natural number s such that
(1⊗ xα1)

t1 · · ·(1⊗ xαn)
tnm is not contained in ∑µ∈F Mµ if t1 + · · ·+ tn > s.

Corollary 4.4.14. [GJ81, 1.4.7] The categories O[λ ],(I),R and O[λ ],R are closed under submodules, quotients and

direct sums.

Proof. We will just prove the claim for submodules, the others are analogous. Let M ∈ O[λ ],(I),R and M′ ⊂M.
By Lemma 4.4.13, we obtain that for all m ∈ M′ ⊂ M there exists a natural number s such that n+R

sm = 0. By
Corollary 4.4.12, M′ ∈ O[λ ],(II),R. By Lemma 4.4.13, M′ ∈ O[λ ],(I),R.

It follows by the PBW theorem and Hilbert basis theorem that U(gR) is a Noetherian ring (see [MR87, 7.4]).
So, submodules of finitely generated modules over U(gR) are again finitely generated. Combining this fact with
O[λ ],(I),R being closed under submodules, we obtain that O[λ ],R is closed under submodules.

Lemma 4.4.15. [GJ81, 1.4.8] Let M ∈ O[λ ],R. Then, M ∈U(n−R )-mod.

Proof. By assumption, M ∈U(gR)-mod. Thus, we can write M =∑
t
i=1 U(gR)mi. Moreover, since M'

⊕
µ∈[λ ] Mµ

we can choose the elements mi to belong to weight spaces Mµ . Thus, U(hR) preserves Rmi.
By the PBW theorem, U(gR)'U(n−R )⊗RU(hR)⊗RU(n+R ). Since U(n+R )mi ∈R-mod we can write U(n+R )mi =

∑
qi
j=1 Rmi, j where each element mi, j belongs to some weight space. Combined all these facts, we obtain that

M = ∑
t
i=1 ∑

qi
j=1 U(n−R )mi, j.

Taking into account that the Verma modules are free of rank one over U(n−R ), Lemma 4.4.15 can be inter-
preted as saying that Verma modules are in some sense the building blocks of the category O[λ ],R taking the place
of projective indecomposable modules. Note once more that for non-local rings the category O[λ ],R is very far
from being Krull-Schmidt. To make this statement about Verma modules more precise, it is useful to consider an
equivalent construction of Verma modules.

For each λ ∈ h∗R, the Verma module ∆(λ ) is generated by 1U(gR)⊗U(bR) 1R as U(gR)-module. Moreover,
for every α ∈ Φ+, 1R⊗ xα acts as zero and each h ∈ hR acts as λ (h). Also ∆(λ ) is free as U(n−R )-module,
therefore the surjective map U(gR)→ ∆(λ ) given by 1U(gR) 7→ 1U(gR)⊗U(bR) 1R has kernel Iλ where Iλ is the
ideal generated by 1R⊗ xα , α ∈Φ+ and h−λ (h)1R, h ∈ hR. Hence, ∆(λ )'U(gR)/Iλ .

Lemma 4.4.16. [GJ81, 1.4.9] If M ∈O[λ ],R, then M has a finite filtration with quotients isomorphic to quotients

of ∆(µ), µ ∈ [λ ].

Proof. By the proof of Lemma 4.4.15, we can assume that M = ∑
s
i=1 U(n−R )xs−i with xi ∈ Mµi . The labelling

is chosen such that i < j =⇒ µi � µ j. In this way, the weights of U(n−R )xi are less or equal than µi. So,
(U(n−R )xi)µ j = 0 and also (U(n−R )xi)µ = 0 with µ ≥ µ j. Set

Fs−tM =
t

∑
i=1

U(n−R )xs−i, t = 1, . . . ,s. (4.4.5.6)

Hence, 0 = FsM ⊂ Fs−1M ⊂ ·· · ⊂ F1M ⊂ F0M = M is a filtration of M. We will separate the proof in the
following steps:
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Claim 1. Each F jM ∈U(gR)-Mod for all j = 0, . . . ,s.

Claim 2. ∀α ∈Φ+, (1R⊗ xα)F jM ⊂ F jM =U(n−R )x j + · · ·+U(n−R )xs−1.

Claim 3. Each module F jM/F j+1M is a quotient of a Verma module.

We will start by proving Claim 2. Let α ∈ Φ+. Pick an element y of U(n−R )x j, that is, y = zx j for some
z ∈U(n−R ). But, (1R⊗xα)x j has weight α +µ j which cannot be smaller than any µi, with i≤ j, by the choice of
labelling. Thus, (1R⊗ xα)x j ∈ F j+1M. Further,

(1R⊗ xα)(zx j) = [1R⊗ xα ,z]x j + z((1R⊗ xα)x j)

and z((1R⊗ xα)x j) ∈ F j+1M. Now, decomposing [1R⊗ xα ,z] into a linear combination of PBW monomials we
obtain that [1R⊗ xα ,z]x j ∈ F jM. So, Claims 2 and 1 follow. Now, for the last claim, observe the following

F jM/F j+1M =U(n−R )x j + · · ·+U(n−R )xs−1/U(n−R )x j+1 + · · ·+U(n−R )xs−1 'U(n−R )x j, (4.4.5.7)

where x j denotes the image of x j in the quotient F jM/F j+1M. In particular, (1R⊗ xα)x j = 0 for all α ∈ Φ+.
Hence, the surjective U(gR)-homomorphism U(gR) → F jM/F j+1M, given by 1U(gR) 7→ x j, factors through
∆(µ j). Hence, there exists a surjective U(gR)-homomorphism ∆(µ j)→ F jM/F j+1M. This concludes the proof.

Corollary 4.4.17. [GJ81, 1.4.10] For each M ∈O[λ ],R the weight modules Mµ , µ ∈ [λ ] are finitely generated as

R-modules.

Proof. By Lemma 4.4.16, and the exactness of M 7→Mµ it is enough to show the result for Verma modules ∆(µ),
µ ∈ [λ ]. For each weight δ of ∆(µ), there is only a finite number of ways of writing δ as an element in λ−Z+

0 Π ,
since the set of simple roots Π is finite. Therefore, ∆(µ)δ = (U(n−R )(1U(gR)⊗U(bR) 1R))δ ∈ R-mod.

Another consequence of Lemma 4.4.16 is the fact that endomorphisms of modules belonging to the category
O are finitely generated over the ground ring.

Proposition 4.4.18. Let M,N ∈ O[λ ],R. Then, HomO[λ ],R
(M,N) ∈ R-mod.

Proof. We will proceed by induction on the length of M and N by quotients of Verma modules given in Lemma
4.4.16. Let Q(µ) be a quotient of ∆(µ) and Q(ω) be a quotient of ∆(ω), µ,ω ∈ [λ ]. Applying HomO[λ ],R

(−,Q(µ))

we obtain the monomorphism HomO[λ ],R
(Q(ω),Q(µ))→HomO[λ ],R

(∆(ω),Q(µ))⊂Q(µ)ω . By Corollary 4.4.17,
Q(µ)ω ∈ R-mod. Since R is a Noetherian ring we obtain in this way that HomO[λ ],R

(Q(ω),Q(µ)) ∈ R-mod. As-
sume now that there exists an exact sequence 0→M′→M→ Q(ω)→ 0. Again, applying HomO[λ ],R

(−,Q(µ))

we obtain the exact sequence

0→ HomO[λ ],R
(Q(ω),Q(µ))→ HomO[λ ],R

(M,Q(µ))→ X → 0, (4.4.5.8)

where X is a submodule of HomO[λ ],R
(M′,Q(µ)) ∈ R-mod by induction.

Thus, X ∈ R-mod and HomO[λ ],R
(M,Q(µ)) ∈ R-mod. Now, using exact sequences 0→ N′→ N→Q(µ)→ 0

and applying HomO[λ ],R
(M,−)) we obtain by induction that HomO[λ ],R

(M,N) ∈ R-mod.

Eventually, we would like to reduce the study of O[λ ],R into blocks which in turn can be reduced to the study
of module categories of projective Noetherian R-algebras. But, for that, we need to first study filtrations by
Verma modules and construct projective objects in O[λ ],R.
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4.4.6 Verma flags

For this subsection, we will require in addition that R is a local commutative Noetherian ring which is aQ-algebra.
We will now discuss modules having filtrations by Verma modules. As usual, we will denote by F (∆[λ ]) the full
subcategory of O[λ ],R having a filtration by modules ∆(µ)⊗R Xµ , Xµ ∈ R-proj, µ ∈ [λ ]. In the literature, these
filtrations are known as Verma flags.

Before we proceed any further and give examples of how such modules having Verma flags appear naturally
we need to discuss tensor product of modules in O[λ ],R.

Let aR be any Lie algebra with finite rank over R. Recall that L⊗R M ∈U(aR)-Mod whenever L,M ∈U(aR)

with action a · (l ⊗m) = (al)⊗m+ l ⊗ (am) and any left U(aR)-module L can be regarded as right U(aR)-
module by taking l ·a := −al. This is a consequence of the universal enveloping algebra of a Lie algebra being
a Hopf algebra. For each left U(aR)-module, by L∗ we mean the left U(aR), HomR(L,R), which inherits the
left action by regarding L as a right U(aR). So, for every L,M ∈U(aR) we can also regard HomR(L,M) as an
U(aR)-module by taking (a · f )(l) := a f (l)− f (al), f ∈HomR(L,M), a ∈U(aR), l ∈ L. In particular, the U(aR)-
invariants of HomR(L,M) are the elements f ∈ HomR(L,M) satisfying a · f = 0. Therefore, they coincide with
HomU(aR)(L,M).

So, the tensor Identity as Humphreys calls to the isomorphism in the next lemma also holds for Lie algebras
over commutative rings.

Lemma 4.4.19. For L ∈U(bR)-Mod, M ∈U(gR)-Mod, we have the isomorphism

U(gR)⊗U(bR) (L⊗R M)' (U(gR)⊗U(bR) L)⊗R M. (4.4.6.1)

Proof. For any X ∈U(gR)-Mod, we can write

HomU(gR)(U(gR)⊗U(bR) (L⊗R M),X)' HomU(bR)(L⊗R M,X) (4.4.6.2)

' HomU(bR)(L,HomR(M,X)) (4.4.6.3)

' HomU(bR)(L,HomU(gR)(U(gR),HomR(M,X)) (4.4.6.4)

' HomU(gR)((U(gR)⊗U(bR) L)⊗R M,X). (4.4.6.5)

The first isomorphism is obtained by Tensor-Hom adjunction, the second by Tensor-Hom adjunction and taking
on both sides bR-invariants and the other ones are again obtained by Tensor-Hom adjunction. So, this provides
an isomorphism between these two Hom functors. By taking the image of the identity on (U(gR)⊗U(bR) L)⊗R M

under the unit of the isomorphism of functors we obtain the desired isomorphism as U(gR)-modules.

Remark 4.4.20. The functor U(gR)⊗U(bR)− : U(bR)-Mod∩R-Proj→ U(gR)-Mod is exact. In fact, U(gR) '
U(n−R )⊗R U(bR) ∈U(bR)-Proj when regarded as U(bR)-module. 4

The following is the generalization of [Hum08, 3.6].

Proposition 4.4.21. Assume that R is a local commutative Noetherian ring which is aQ-algebra. Let M ∈O[λ ],R

which is free over the ground ring R. Then, ∆(ω)⊗R M ∈F (∆(µ +ω){µ∈[λ ] : Mµ 6=0}).

Proof. The module M is free of finite rank, and so each Mµ is also free of finite rank. Hence, the basis of M

can be picked among the weight vectors of M. The module N := Rω ⊗R M is free with basis elements v1, . . . ,vn

being weight vectors with weights ν1, . . . ,νn, respectively. We can choose them so that νi ≥ ν j if and only if
i ≥ j. This gives a filtration 0 ⊂ Nn ⊂ ·· · ⊂ N1 = N, where Nk is the U(bR)-submodule generated by vk, . . . ,vn.
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Now induction on the rank of M shows that ∆(ω)⊗R M 'U(gR)⊗U(bR) (Rω ⊗R M) has a filtration on U(gR) by
modules ∆(νi), i = 1, . . . ,n.

Observe that the weights of Rω ⊗R M are of the form ω +µ where Mµ 6= 0. Further, if µ is a highest weight
in M, then ∆(ω)⊗R M has a submodule ∆(ω + µ) and for the lower weight δ gives that ∆(ω +δ ) is a quotient
of ∆(ω)⊗R M.

Now, we show that the results in [Hum08, 3.7] also hold in this setup.

Proposition 4.4.22. Assume that R is a local commutative Noetherian ring which is a Q-algebra. Let M ∈
F (∆[λ ]). The following assertions hold.

(a) If µ is a maximal weight in M, then ∆(µ)⊂M and M/∆(µ) ∈F (∆[λ ]).

(b) The category F (∆[λ ]) is closed under direct summands.

(c) M is free as U(n−R )-module.

Proof. By assumption, there is no weight ω ≥ µ so that Mω is non-zero. Hence, n+R annihilates every vector in
Mµ . Therefore, there exists a non-zero map f : ∆(µ)→ M. Let 0 ⊂ M1 ⊂ M2 ⊂ ·· · ⊂ M be a filtration of M.
Assume that im f ⊂Mi and im f *Mi−1. Then, f induces a non-zero homomorphism ∆(µ)→Mi/Mi−1 ' ∆(µi),
for some weight µi. Denote such homomorphism by ψ . This implies that µ ≤ µi. On the other hand, Mi/Mi−1 '
∆(µi) implies that (Mi)µi 6= 0 and consequently Mµi 6= 0 which contradicts the choice of µ . So, µ = µi. Hence,
there exists r ∈ R such that ψ = r id∆(µ). Further, ∆(µ) is free of infinite rank over R, therefore ψ is injective. By
Snake Lemma, we obtain that f is injective, as well. Hence, ∆(µ)⊂Mi ⊂M. Applying the Snake Lemma to the
commutative diagram

0 Mi−1 Mi ∆(µ) 0

0 0 ∆(µ) ∆(µ) 0

(4.4.6.6)

we obtain that Mi−1'Mi/∆(µ). It follows that Mi−1⊂M/∆(µ) and M/Mi'M/∆(µ)/Mi/∆(µ)'M/∆(µ)/Mi−1.
Since both M/Mi,Mi−1 have filtrations by Verma modules the middle term M/∆(µ) has also a filtration by Verma
modules.

In addition, the map ∆(µ)
ψ−→ Mi → Mi/Mi−1 is injective. So, Mi−1 ∩∆(µ) = 0. Thus, the canonical map

Mi−1→M/∆(µ) is injective and we have an exact sequence

0→Mi−1→M/∆(µ)→M/Mi→ 0 (4.4.6.7)

Assume that M = M1⊕M2 has a filtration by Verma modules. If M is a Verma module, then there is nothing
to prove since R is local the Verma modules are indecomposable modules. We shall proceed by induction on
the size of the filtration of M. Let µ be a maximal weight of M. We have Mµ = (M1)µ ⊕ (M2)µ . Assume that
(M1)µ 6= 0. By (a), ∆(µ) ⊂M1 ⊂M and M/∆(µ) 'M1/∆(µ)⊕M2 ∈F (∆[λ ]). By induction, M1/∆(µ) has a
filtration by Verma modules. So, M1 ∈F (∆[λ ]).

By proceeding on induction on the filtration of M and since each Verma module is free as U(n−R )-module we
obtain that M is also free as U(n−R )-module.

4.4.7 Duality in BGG categories over commutative rings

The classical category O admits a simple preserving duality functor. However, since the most interesting modules
in the category O are not finite-dimensional we cannot use the usual standard duality. But, the weight spaces
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are finite-dimensional, and so this property could be used to define a duality in O using the standard duality
”locally”. However, there is another problem in this case. For a general BGG category O over a commutative
local Noetherian ring R which is a Q-algebra we cannot define a duality, even locally, for all modules. We have
to focus our attention only on those modules which are free over R. In addition, we have to impose that R is an
integral domain.

Define M∨ =
⊕

µ∈[λ ] DMµ for M ∈O[λ ],R∩R-Proj. This becomes an U(gR)-module by imposing (g · f )(v) =
f (τ(g)v), where τ : U(gR)→U(gR) is the involution map that fixes hR and sends xα to x−α for every α ∈ Φ.
Using the fact that R is an integral domain one sees that his action identifies (DM)µ with D(Mλ ) justifying why
we changed the action. In fact, any f ∈ DM with weight µ satisfies

f (µ(h)m) = µ(h) f (m) = (h · f )(m) = f (τ(h)m) = f (hm) = f (ω(h)m), ∀m ∈Mω . (4.4.7.1)

Now using that R is an integral domain we would obtain that f (m) = 0 for all m ∈Mω whenever ω 6= µ . Hence,
M∨ ∈ O[λ ],(II),R whenever M ∈ O[l],R.

Observe also that for every α ∈Φ+, f ∈ (DM)µ , we have

h(xα f ) = [h,xα ] f + xα h f = α(h)xα f +µ(h)xα f = (α +µ)(h)xα f , ∀h ∈ hR. (4.4.7.2)

Hence, xα f ∈ (DM)α+µ 'D(Mα+µ). So, n+R f ∈ R-mod and consequently, M∨ ∈O[λ ],(I),R whenever M ∈O[λ ],R.
The problem lies in deciding if M∨ ∈ O[λ ],R, that is if M∨ is finitely generated as U(gR)-module. In the classical
case, this is achieved by exploiting the simple modules and the composition series of the modules in O .

Observe that for M ∈ O[λ ],(I),R∩R-Proj, (M∨)∨ =
⊕

µ∈[λ ] DDMµ '
⊕

µ∈[λ ] Mµ 'M.
So, in short, we obtained a contravariant exact functor (−)∨ : O[λ ],(I),R ∩R-Proj→ O[λ ],(I),R ∩R-Proj which

is self-dual. In particular, it is fully faithful.

4.4.8 Change of rings

It is at this point that our approach will start to diverge with Gabber and Joseph. As the reader may see we
are closer to see that O[λ ],R is a split highest weight category. But, for that we require further techniques and
constructions. In particular, how O[λ ],R behaves under change of ground ring.

Concerning Verma modules, we can see that they remain Verma under change of ring. In fact, for every
commutative R-algebra S which is a Noetherian ring, and any λ ∈ h∗R,

S⊗R ∆(λ ) = S⊗R U(gR)⊗U(bR) Rλ ' S⊗R U(gR)⊗S⊗RU(bR) S⊗R Rλ 'U(gS)⊗U(bS) S1S⊗Rλ = ∆(1S⊗R λ ).

More generally, we can say the following.

Lemma 4.4.23. Let R be a commutative Noetherian ring which is a Q-algebra and let λ ∈ h∗R. For any com-

mutative Noetherian ring S which is an R-algebra, the functor S⊗R− : O[λ ],R→ O[1S⊗Rλ ],S is well defined and

S⊗R ∆(µ)' ∆(1S⊗R µ) for every µ ∈ [λ ]. Moreover, S⊗R Mµ = (S⊗R M)1S⊗µ for every µ ∈ [λ ].

Proof. Observe that S is also aQ-algebra, by imposing q ·1S =(q1R) ·1S. Let M ∈O[λ ],R. By Lemma 4.4.12, M =⊕
µ∈[λ ] Mµ . Thus, S⊗R M = ∑µ∈[λ ] S⊗R Mµ and S⊗R M ∈U(gS)-mod, by identifying U(gS) with S⊗R U(gR).

By assumption, for all m ∈M,

U(n+S )(1S⊗m)' S⊗R U(n+R )(1S⊗m)' S⊗R U(n+R )m ∈ S-mod . (4.4.8.1)

Since the elements 1S⊗m, m ∈ M, generate S⊗R M we obtain that S⊗R M ∈ O[1S⊗Rλ ],S. It remains to show
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that S⊗R Mµ = (S⊗R M)µ for every µ ∈ [λ ]. Any element of S⊗R Mµ has weight 1S⊗R µ . So, S⊗R Mµ ⊂
(S⊗R M)1S⊗µ . But, for each µ ∈ [λ ],

(S⊗R M)1⊗µ ⊂ S⊗R M = ∑
θ∈[λ ]

S⊗R Mθ ⊂ ∑
θ∈[λ ]

(S⊗R M)1⊗θ . (4.4.8.2)

Since S⊗R M ∈ O[1S⊗Rλ ],S, we can write S⊗R M =
⊕

ω∈[1S⊗Rλ ](S⊗R M)ω and consequently the result follows.

We observe that we cannot apply right way Theorem 1.5.56 since O[λ ],R is still too big and contains a finite
number of Verma modules. Instead, we will construct projective objects and decompose O[λ ],R into smaller
subcategories which will allow us to construct projective Noetherian R-algebras with module categories being
deformations of the blocks of the category O . To obtain such a statement R being local is crucial. In fact, Gabber
and Joseph [GJ81, 1.7] proved that all simple modules are quotients of Verma modules and the number of simple
modules for deformations of the category O that appear as a quotient of a Verma module depends on the number
of maximal ideals of the ground ring. So, outside local rings we cannot expect O[λ ],R to decompose in the desired
way.

As in the classical case, the first step is to see that the center of the universal enveloping algebra behaves well
under change of ground ring.

Lemma 4.4.24. Let R be a commutative Noetherian ring which is a Q-algebra and S a commutative Noetherian

ring which is an R-algebra. Then, S⊗R Z(gR)' Z(gS).

Proof. Actually, we just need to observe that

R⊗Q Z(gQ) = Z(R⊗Q gQ). (4.4.8.3)

Assume for the moment that (4.4.8.3) holds. Then,

S⊗R Z(U(gR))' S⊗R Z(R⊗QU(gQ))' S⊗R R⊗Q Z(U(gQ))' S⊗Q Z(U(gQ))' Z(S⊗QU(gQ))' Z(U(gS)).

Proving (4.4.8.3) is in some sense folklore. The inclusion R⊗Q Z(gQ)⊂ Z(R⊗Q gQ) is clear. Let ∑i∈F ri⊗ai ∈
Z(R⊗QU(gQ)) for some finite set F . We can assume that {ri : i ∈ F} is a linearly independent set over Q.
Otherwise, we can rearrange the sum ∑i∈F ri⊗ai. In fact, rl = ∑i 6=l biri for some bi ∈Q. This would imply that

∑
i∈F

ri⊗ai = ∑
i∈F\{l}

ri⊗ai + ∑
i∈F\{l}

biri⊗al = ∑
i∈F\{l}

ri⊗ (ai +bial), (4.4.8.4)

where the elements ai +bial can take the place of the previous ai.
Now, for any a ∈U(gQ),

∑
i∈F

ri⊗aia =

(
∑
i∈F

ri⊗ai

)
(1R⊗a) = (1R⊗a)

(
∑
i∈F

ri⊗ai

)
= ∑

i∈F
ri⊗aai. (4.4.8.5)

Therefore, ∑i∈F ri⊗ (aai− aia) = 0. Since the set {ri : i ∈ F} is assumed to be linearly independent we obtain
aai−aia = 0 for all i ∈ F . Therefore, ai ∈ Z(gQ). This shows that ∑i∈F ri⊗ai ∈ R⊗Q Z(U(gQ)).

In light of Lemma 4.4.24, the next natural question is to know what happens to the central characters under
change of ring.

Let πR denote the projection U(gR)�U(hR) and λ ∈ h∗R.
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By the PBW theorem, for each λ ∈ h∗R, and each commutative Noetherian ring S which is an R-algebra, we
obtain the commutative diagrams

S⊗R U(gR) S⊗R U(hR) S⊗R U(hR) S⊗R R

U(gS) U(hS) U(hS) S

S⊗RπR

' '

1S⊗Rλ

' '
πS 1Sλ

. (4.4.8.6)

Here, 1Sλ denotes the homomorphism of R-algebras given by (1Sλ )(1S⊗Z hα) = 1Sλ (1R⊗Z hα) ∈ S for each
α ∈Π . In particular, 1Sλ ∈ h∗S.

By Lemma 4.4.24, and combining all these diagrams we obtain the following commutative diagrams

S⊗R Z(gR) S⊗R U(hR) S⊗R Z(gR) S⊗R R

Z(gS) U(hS) Z(hS) S

' '

S⊗Rχλ

' '
χ1Sλ

. (4.4.8.7)

If I is an ideal of R, there is one more commutative diagram of interest:

R/I⊗R U(hR) R/I⊗R R

U(hR)/IU(hR) R/I

1R/I⊗Rλ

' ' , (4.4.8.8)

where the bottom map is given by 1R⊗Z hα + IU(hR) 7→ λ (1R⊗Z hα)+ I, α ∈ Π . In other words, this is the
image of λ ∈ h∗R in h∗R/Ih∗R.

4.4.9 Decomposition of O[λ ],R into blocks

Assume in the remaining of this section that R is a local commutative Noetherian ring which is a Q-algebra. To
simplify notation, we shall denote by λ the image of λ ∈ h∗R in h∗R/mh∗R, where m is the maximal ideal of the
local ring R, and denote by r the image of r ∈ R in the quotient R/m. We will also denote by z the image of
z ∈ Z(gR) in Z(gR)/mZ(gR). Recall that W is the Weyl group associated with the root system Φ. Explicitly,
each reflection sα acts in the following way: sα λ = λ −〈λ ,α∨〉Rα , where 1Rα can be seen as the element in h∗R
satisfying 1Rα(1⊗hα) = 2. So, the Weyl group W acts on h∗R(m) ' R(m)⊗R h

∗
R ' h∗R/mh∗R.

Lemma 4.4.25. For any w ∈W and λ ∈ h∗R we have w ·λ = w ·λ , under the dot action.

Proof. Let α ∈Π and assume that λ = ∑β∈Π tβ (1R⊗Z β ) ∈ h∗R. In the following, we write α as 1R(m)α . Then,

sα ·λ = sα(λ +ρ)−ρ = λ +ρ−〈λ +ρ,α∨〉α−ρ = λ −〈λ ,α∨〉Rα−α = λ − ∑
β∈Π

tβ 〈β ,α∨〉α−α.

(4.4.9.1)

On the other hand,

sα ·λ = sα(λ +ρ)−ρ = λ +ρ−〈λ +ρ,α∨〉R(m)α−ρ = λ − ∑
β∈Π

tβ 〈β ,α∨〉α−α.

For what follows we are going to need more notation.
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Definition 4.4.26. Let K be a field of characteristic zero. For each µ ∈ h∗K , we can consider the root sys-
tem making the weight µ integral, that is, Φµ := {α ∈ Φ : 〈µ,α∨〉K ∈ Z} and its associated Weyl group
Wµ := {w ∈W : w ·µ−µ ∈ ΛK}.

Definition 4.4.27. Let λ ∈ h∗R. We call D ⊂ [λ ] a block of [λ ] if {µ : µ ∈D} is an orbit under the dot action of
the Weyl group W .

Remark 4.4.28. 1. Orbits under the Weyl group are always finite, so a block is always finite.

2. If µ1,µ2 ∈ D , then µ1 − µ2 ∈ ΛR and since all non-zero integers are invertible in R, we also obtain
µ1−µ2 ∈ ΛR(m). Further, {µ : µ ∈D} is a W -orbit and also an orbit under the subgroup Wµ1 . 4

Lemma 4.4.29. Let λ ∈ h∗R and let D ⊂ [λ ] be a block. Then, there exists µ ∈ h∗R, ν ∈mh∗R satisfying

(i) sα µ−µ ∈ Zα for all α ∈Φµ ;

(ii) D =Wµ ·µ +ν .

Proof. See [GJ81, 1.8.2].

Knowing the form of the blocks of [λ ] it is no surprise as the name indicates that [λ ] is a disjoint union of
its distinct blocks. In fact, assume that µ ∈ [λ ] belongs to two distinct blocks D1 = Wµ1 · µ1 + ν1 and D2 =

Wµ2 ·µ2 +ν2. Then, there exists w1,w2 ∈W such that ν1−ν2 = w1µ1−w2µ2. Hence, w1µ1−w2µ2 = 0. Hence,
µ1 and µ2 are in the same orbit under the Weyl group. By assumption, µ1−µ2 ∈ ΛR, therefore Wµ1 =Wµ2 . But
then we would obtain ν1− ν2 ∈ Zµ1. So, we must have ν1 = ν2. This means that D1 ∩D2 = /0 whenever the
blocks are distinct.

Now knowing how to decompose [λ ], we shall proceed to decompose O[λ ],R. The idea is similar to how
we proved that any module decomposes into its weight modules as U(hR)-modules. But, now we will consider
the commutative algebra Z(gR). Hence, this will be analogue to finding a suitable set of central orthogonal
idempotents. Indeed, their analogue will be the central characters of Z(gR).

Lemma 4.4.30. [GJ81, 1.8.3] Let λ ∈ h∗R. Suppose that µ,ω ∈ [λ ] belong to distinct blocks.

Then, ker χω +ker χµ = Z(gR).

Proof. Recall the notation used in diagrams (4.4.8.6) and (4.4.8.7). The central characters χqR(m)µ and χ1R(m)ω

are surjective into the field R(m), so ker χ1R(m)µ
and ker χ1R(m)ω are maximal ideals of Z(gR(m)). These are

distinct, otherwise 0 6= χ1R(m)µ − χ1R(m)ω(z) = χ1R(m)µ(z− χ1R(m)ω(z)) for some z ∈ Z(gR(m)). Because of
z−χ1R(m)ω(z) ∈ ker χ1R(m)ω , these maximal ideals are distinct.

We can separate the proof in the following two steps.

Claim 1. Z(gR) = ker χω +ker χµ +mZ(gR).

Claim 2. χω(ker χµ) = R.

By the commutative diagrams (4.4.8.6) and (4.4.8.7) and previous discussion, for each z ∈ Z(gR) there
are s, t ∈ Z(gR) so that z− s− t ∈ mZ(gR) and χµ(s) = 0, χω(t) = 0. Hence, χµ(s)+ χω(t) ∈ mZ(gR). So,
z− (s−χµ(s))− (t−χω(t)) ∈mZ(gR). Thus, Claim 1. follows.

Let 1R ∈ Z(gR). Then, there exists t ∈ ker χω and s ∈ ker χµ so that 1R− (t + s) ∈ mZ(gR). Hence, 1R−
χω(s) ∈m. So, χω(s) is invertible in R. So, Claim 2. follows.

Let z ∈ Z(gR). By Claim 2, we can write χω(z) = χω(s) for some s ∈ ker χµ . Therefore, z− s ∈ ker χω .
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As a consequence, it follows that all central characters which are non-zero χµ : Z(gR)→ R are surjective for
µ ∈ [λ ] since we can always find a weight which belongs to a different block than the one that contains µ .

Now we would like to see what happens to the central characters of weights belonging to the same block.

Lemma 4.4.31. Let λ ∈ h∗R. Suppose that µ,ω ∈ [λ ] belong to the same block. Then, ker χω = ker χµ .

Proof. Let D = Wµ · µ + ν be a block of [λ ]. By the commutative diagram (4.4.8.6) and Theorem 4.4.7, the
surjective map χw·µ−µ = χw·µ+ν − χµ+ν becomes zero under R(m)⊗R− for any w ∈Wµ . So, the image of
χw·µ−µ is contained in m and the central character is not surjective. But, this can only happen if χw·µ−µ is the
zero map. Now, assume that x ∈ ker χµ+ν . Then, for every w ∈Wµ ,

χw·µ+ν(x) = w ·µ(πR(x))+ν(πR(x)) = w ·µ(πR(x))−µ(πR(x)) = χw·µ−µ(x) = 0. (4.4.9.2)

So, x is also an element of ker χw·µ+ν .

Proposition 4.4.32. [GJ81, 1.8.4, 1.8.5, 1.8.6] Let R be a local commutative Noetherian ring which is a Q-

algebra. Let λ ∈ h∗R. For every M ∈ O[λ ],R, M =
⊕

D MD , where D runs over all blocks of [λ ] and

MD := {m ∈M : ∀x ∈ ker χµ , µ ∈D , ∃n ∈ N xnm = 0}.

Moreover, the following assertions hold:

(a) MD is non-zero only for a finite number of blocks D of [λ ];

(b) ∆(µ)D = ∆(µ) if and only if µ ∈D , otherwise it is zero;

(c) M 7→MD is an exact endofunctor on O[λ ],R.

Proof. The idea is to apply Lemma 4.4.10 together with Lemma 4.4.30 and 4.4.31. So, first we have to show
that we can write M = ∑D MD for every M ∈ O[λ ],R. To obtain an idea, how to show this we shall consider first
the case of M being a Verma module ∆(µ), µ ∈ [λ ].

Denote by y the element 1U(gR)⊗U(bR) 1R. Since the actions of Z(gR) and U(hR) commute, for every element
z ∈ Z(gR) the element zy has weight µ . By the PBW theorem, we can write z as a linear combination of PBW
monomials. The monomials with factors of elements in n+R send y to zero. The monomials without factors of
elements in n+R but with factors on n−R send y to some weight module ∆(µ)ω with ω < µ . But since zy must have
weight µ , we deduce that zy = πR(z)y = µ(πR(z))y = χµ(z)y, since πR(z) ∈ hR. So, for every z ∈ ker χµ , and
a ∈U(n−R ), zay = azy = 0. This shows by Lemma 4.4.31 that ∆(µ)D = ∆(µ). In particular, every element of
every quotient of ∆(µ) is annihilated by ker χµ .

We can proceed by induction on the size of a filtration of M ∈O[λ ],R in quotients of Verma modules to prove
that for every m ∈M and every zi ∈ ker χµi , i = 1, . . . , t, the product z1 · · ·ztm is zero where µ1, . . . ,µt are weights
involved in a filtration of M.

The case of size one is already proved. Consider the exact sequence 0→N→M→Q(µ)→ 0, where Q(µ) is
a quotient of ∆(µ). By the above discussion, for every m ∈M, and every z ∈ ker χµ zm ∈ N. Since N inherits the
filtration of M, by induction, z1 · · ·ztzm = 0. By Lemma 4.4.9, Lemma 4.4.30 and 4.4.31, we obtain ∑D MD . By
Lemma 4.4.10, the first assertion, (b) and (c) follow. By (c) and (b), every quotient of the Verma module ∆(µ),
say L, satisfies LD = L and zero in the other blocks. Now by (c) and using the finite filtrations of M ∈ O[λ ],R in
quotients of Verma modules, (a) follows.

Definition 4.4.33. Let R be a local commutative Noetherian ring which is a Q-algebra. Let λ ∈ h∗R. For a block
D ⊂ [λ ], define OD the full subcategory of O[λ ],R whose objects satisfy M = MD .
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In the classical case, the blocks of the category O are in a one to one correspondence with the antidominant
weights. We can generalize the notion of dominant and antidominant weight to this setup since these notions will
help us study the structure of the category O[λ ],R. We will call µ ∈ h∗R a dominant weight if µ is a dominant
weight. Analogously, we will call µ an antidominant weight if µ is an antidominant weight. We call µ ∈ h∗R an
integral dominant weight if µ is an integral dominant weight.

We should remark that the blocks D of [λ ] are constructed with the ring R in mind. So, after change of
rings these blocks can be refined even further. Moreover, the interested reader can see that typically the Weyl
groups associated with elements 1S⊗µ are subgroups of the Weyl groups associated with elements µ . This is
the phenomenon that we will exploit on this deformation of the category O , although we will not explore it under
the current formulation.

Lemma 4.4.34. Let λ ∈ h∗R. Let D be a block of [λ ]. Then, D admits a unique (resp. antidominant) dominant

weight µ . In addition µ is (resp. minimal) maximal in D .

Proof. Assume that D = W
θ

θ +ν , ν ∈ mh∗R and sθ +ν ∈ D is a dominant weight, with s ∈W
θ

. There exists
always one since there is a dominant weight in {µ : µ ∈D}. Then, for any w∈W

θ
, sθ +ν−wθ −ν = sθ−wθ ∈

NΠ . Hence, sθ−wθ ∈NΠ +mh∗R. Hence, there exists ν1 ∈mh∗R so that sθ−wθ +ν1 ∈NΠ . But, sθ−wθ ∈ΛR

and consequently ν1 belongs to ΛR. However, this only happens if ν1 is zero since every non-zero integer is
invertible in R. We conclude that sθ + ν is maximal in D , and therefore it is the unique dominant weight in
D .

It is a natural question to know whether extension of scalars S⊗R− preserves dominant (resp. antidominant)
weights.

Lemma 4.4.35. Let R be a local Noetherian integral domain which is a Q-algebra. Assume that S is:

• a localization Rp of R at some prime ideal p of R;

• a quotient ring R/I of R for some ideal I.

If λ ∈ h∗R is a dominant weight, then 1S⊗R λ is a dominant weight. If λ ∈ h∗R is an antidominant weight, then

1S⊗R λ is an antidominant weight.

Proof. We will prove the assertion for dominant weights. The other case is analogous. By assumption, λ is a
dominant weight. That is, 〈λ +1R(m)ρ,α

∨〉R(m) /∈ Z− for every α ∈ Φ+. So, 〈λ +ρ,α∨〉R /∈ Z−+m for every
α ∈ Φ+. Assume that S = Rp for some prime ideal p of R and assume, by contradiction, that 1Rp ⊗λ is not a
dominant weight. Hence, there exists α ∈ Φ+ such that 〈1S⊗λ +1Sρ,1Sα∨〉S ∈ Z−+pp. Further, there exists
t ∈ Z− and s ∈ R\p so that s(〈λ +ρ,α∨〉R− t) ∈ p. Thus, 〈λ + ρ,α∨〉R− t ∈ p ⊂ m for some α ∈ Φ+. The
existence of such t contradicts λ being a dominant weight. So, 1S⊗R λ is a dominant weight.

Assume now that S = R/I for some ideal I. In particular, m/I is the unique maximal ideal of S. Assume,
by contradiction, that 1S ⊗R λ is not a dominant weight. Then, there exists α ∈ Φ+, t ∈ Z−, x ∈ m so that
〈λ +ρ,α∨〉R− t− x ∈ I ⊂m. Hence, 〈λ +ρ,α∨〉R− t ∈m which contradicts λ being a dominant weight.

We can now see that there are no homomorphisms between Verma modules that belong to distinct blocks.

Lemma 4.4.36. Let R be a local commutative Noetherian ring which is a Q-algebra. Let λ ∈ h∗R. Then,

HomO[λ ],R
(M,N) = 0 if M ∈ OD1 ∩F (∆) and N ∈ OD2 ∩F (∆) for distinct blocks D1 6= D2 of [λ ].
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Proof. Assume that D1 = Wµ · µ +ν1 and D2 = Wω ·ω +ν2. As usual, we will start with the Verma modules.
Suppose that HomO[λ ],R

(∆(w1 ·µ +ν1),∆(w2 ·ω +ν2)) 6= 0 for w1 ∈Wµ , w2 ∈Wω . Then,

0 6= HomU(gR)(U(gR)⊗U(bR) Rw1·µ+ν1 ,∆(w2 ·ω +ν2)) (4.4.9.3)

' HomU(bR)(Rw1·µ+ν1 ,∆(w2 ·ω +ν2))⊂ ∆(w2 ·ω +ν2)w1·µ+ν1 . (4.4.9.4)

It follows that w2 ·ω +ν2−w1 · µ −ν1 ∈ Z+
0 Π . By Lemma 4.4.23, we obtain that ∆(w2 ·ω)w1·µ 6= 0. So, also

∆(w2 ·ω)w1·µ(m)' ∆(w2 ·ω)w1·µ 6= 0. Since ∆(w2 ·ω)w1·µ ∈ R-proj it must be non-zero. Hence, w2 ·ω−w1 ·µ ∈
Z+

0 Π . Therefore, ν2− ν1 ∈ Z+
0 Π . But, this forces ν2 = ν1 since all non-zero integers are invertible in R. By

assumption, ∆(w2ω + ν2)w1·µ+ν2 6= 0 and it contains an element which is killed by n+R . Since this module is
free, one of its elements basis of the form xt1

−α1
· · ·xtd

−αd
(1U(gR)⊗U(bR)

1Rw2 ·ω+ν2
), αi ∈ Π which does not belong

to m∆(w2 ·ω + ν2) is killed by n+R . Therefore, there exists a non-zero map between ∆(w1 · µ) and ∆(w2 ·ω).
Therefore, both Verma modules ∆(w1 · µ) and ∆(w2 ·ω) have a common simple module as composition factor,
and so they belong to the same block. By Theorem 4.4.7 (f), Wµ =Wω , and ω = w ·µ for some w ∈Wµ . Hence,
ω−w ·µ = ν for some ν ∈mh∗R. As we have seen, w2 ·ω−w1 ·µ = w2w ·µ +w2 ·ν−w1 ·µ ∈ Z+

0 Π . So, also
w2 ·ν ∈ Z+

0 Π . Therefore, ν = 0. This shows that the blocks D1 and D2 coincide.
Now, the claim follows using the (finite) filtrations of M and N by quotients of Verma modules.

4.4.10 Projective objects in O[λ ],R

At this point, it is difficult to know whether there is information getting out of the blocks of O[λ ],R, that is, if
there are non zero homomorphisms between modules belonging to distinct blocks. For modules with a Verma
filtration we saw that such a situation is not possible. But, since we do not know if this is the case for general
modules, the classical arguments of construction of projective objects do not carry over to this more general
setup. In particular, not knowing if the previous situation might or might not happen makes it difficult to deduce
whether the Verma module associated with a dominant weight is a projective object or not. Instead, we will take
the advantage of knowing projective objects in O[λ ],(II),R to construct projective objects in O[λ ],R∩R-Proj, using
change of rings techniques.

For each µ ∈ [λ ], define Q(µ) :=U(gR)⊗U(hR) Rµ ∈ O[λ ],(II),R. These modules are a sort of linearisation of
the projective module U(gR). Note that by the PBW theorem, Q(µ)'U(n−R )⊗R U(hR)⊗R U(n+R )⊗U(hR) Rλ '
U(n+R )⊗R U(n−R ) ∈ R-Proj. Also, for every commutative R-algebra which is a Noetherian ring, S⊗R Q(µ) '
Q(1S⊗R µ). The main difference between Q(µ) and the Verma modules is that Q(µ) is not annihilated by n+R .
But, this feature allows Q(µ) to detect more information outside O . For instance, for every M ∈U(gR)-Mod,
HomU(gR)(Q(µ),M)'Mµ , and thus the functor HomU(gR)(Q(µ),−) : O[λ ],(II),R→O[λ ],(II),R is exactly the func-
tor M 7→Mµ which is exact by Corollary 4.4.12. Therefore, Q(µ) is a projective object in O[λ ],(II),R. As Gabber
and Joseph pointed out, O[λ ],(II),R is closed under arbitrary direct sums, hence each weight module Mµ is a quo-
tient of an arbitrary direct sum of copies of Q(µ), and so each M ∈ O[λ ],(II),R is a quotient of an arbitrary direct
sum of copies of modules of the form Q(µ), where µ runs over all weights in [λ ]. Hence, O[λ ],(II),R has enough
projectives, and so we can use homological algebra techniques on O[λ ],(II),R. We obtained so far, the following:

Lemma 4.4.37. Let R be a local commutative Noetherian ring which is a Q-algebra. Let λ ∈ h∗R. The following

assertions hold.

(a) The modules Q(µ) =U(gR)⊗U(hR) Rµ ∈ O[λ ],(II),R∩R-Proj are projective objects in O[λ ],(II),R.

(b) The module
⊕

µ∈[λ ] Q(µ) is a projective generator of O[λ ],(II),R and O[λ ],(II),R has enough projectives.
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(c) For every commutative R-algebra S which is a Noetherian ring, S⊗R Q(µ)' Q(1S⊗R µ), µ ∈ [λ ].

Now, observe the following: given an exact sequence 0→ Q→ X → P→ 0 ∈ Ext1O[λ ],(II),R
(P,Q), if P,Q ∈

O[λ ],R, then also X ∈U(gR)-mod and some power of n+R annihilates X . Hence, X ∈ O[λ ],R. Since O[λ ],R is a full
subcategory of O[λ ],(II),R, such exact sequence is an exact sequence in O[λ ],R.

Lemma 4.4.38. Let R be a local regular commutative Noetherian ring which is aQ-algebra with unique maximal

ideal m. Let λ ∈ h∗R. The following assertions hold.

(a) For each P ∈ O[λ ],(I),R∩R-Proj, Ext1O[λ ],(II),R
(P,X) = 0 for every X ∈ O[λ ],(I),R∩R-Proj if and only if P is a

projective object in O[λ ],(I),R∩R-Proj.

(b) For each P ∈ O[λ ],R ∩ R-Proj, Ext1O[λ ],(II),R
(P,X) = 0 for every X ∈ O[λ ],R ∩ R-Proj if and only if P is a

projective object in O[λ ],R∩R-Proj.

(c) If P ∈ O[λ ],R ∩ R-Proj so that P(m) is a projective object in O[λ ],R(m), then P is a projective object in

O[λ ],R∩R-Proj.

Proof. The assertions (a) and (b) follow immediately from the above discussion. To prove (c) we want to apply
(b) together with Corollary 1.3.16. In order to do that we have to proceed by induction on the Krull dimension
of R. If dimR is zero, then R = R(m) and there is nothing to prove. Let x ∈ m/m2. Fix S = R/Rx, so dimS =

dimR− 1 and for any module X ∈U(gR)-Mod, we can write X(m) ' (S⊗R X)(mS), where mS denotes m/Rx.
Hence, by assumption, S⊗R P ∈ O[1S⊗Rλ ],S ∩ S-Proj so that P(mS) ' P(m) is a projective object in O[λ ,S(mS)]

,
where S(mS) = R(m). By induction, S⊗R P is a projective object in O[1S⊗Rλ ],S∩S-Proj.

Consider a projective resolution of P by direct sums of
⊕

µ∈[λ ] Q(µ) and denote the respective deleted pro-
jective resolution by Q•. Since P ∈ R-Proj, each Q(µ) ∈ R-Proj and the tensor product commutes with arbitrary
direct sums we obtain that S⊗R Q• is a deleted projective resolution of S⊗R P in O[1S⊗Rλ ],(II),S. Now, for each
X ∈ O[λ ],R∩R-Proj,

HomO[λ ],(II),R
(
⊕

µ∈[λ ]
Q(µ),X)' ∏

µ∈[λ ]
HomO[λ ],(II),R

(Q(µ),X)' ∏
µ∈[λ ]

Xµ . (4.4.10.1)

Each Xµ is a flat module, and since every Noetherian ring is coherent, so the arbitrary direct product of flat
modules is flat. Hence, the complex HomO[λ ],(II),R

(Q•,X) satisfies the hypothesis of Corollary 1.3.16. Further,
since R is Noetherian and applying Lemma 4.4.23 we obtain

S⊗R HomO[λ ],(II),R
(
⊕

µ∈[λ ]
Q(µ),X)' S⊗R ∏

µ∈[λ ]
Xµ ' ∏

µ∈[λ ]
S⊗R Xµ ' ∏

µ∈[λ ]
X1S⊗Rµ (4.4.10.2)

' HomO[1S⊗Rλ ],(II),S
(

⊕
1S⊗Rµ∈[1S⊗Rλ ]

Q(1S⊗R µ),S⊗R X). (4.4.10.3)

Therefore, for each integer i > 0,

H i(HomO[λ ],(II),R
(Q•,X)) = ExtiO[λ ],(II),R

(P,X),

H i(S⊗R HomO[λ ],(II),R
(Q•,X)) = ExtiO[1S⊗Rλ ],(II),S

(S⊗R P,S⊗R X).

By Corollary 1.3.16 and S⊗R P being projective in O[1S⊗Rλ ],(II),S we obtain that Ext1O[λ ],(II),R
(P,X)⊗R R/Rx = 0.

Using the surjective map R/Rx→ R/m we obtain that Ext1O[λ ],(II),R
(P,X)⊗R R/m = 0. Observe that P is finitely

generated as U(gR)-module (for which such generator set can be chosen to be a set of weight vectors). Hence, we
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can choose only a finite set of weights F so that
⊕

µ∈F Q(µ)→ P is a surjective map. Since R is Noetherian and
each weight module of X is finitely generated as R-module, Ext1O[λ ],(II),R

(P,X) is a quotient of a finitely generated

R-module, and so it is finitely generated. By Nakayama’s Lemma, Ext1O[λ ],(II),R
(P,X) = 0. By (b), P is a projective

object in O[λ ],R∩R-Proj.

The construction of projective objects in O is based on tensoring Verma projective modules with simple
modules of finite vector space dimension. These are the simple modules indexed by an integral dominant weight.
Their deformations in O[λ ],R are similarly obtained. We are expecting them to be free as U(n−R )-modules and
consequently free as R-modules. So, the modules taking the place of simple modules should be free over R.
Here, we already say that these modules are not the simple modules in O[λ ],R. The reason for this is that Gabber
and Joseph showed that the simple modules in O[λ ],R, where R is a local commutative Noetherian Q-algebra, are
of the form ∆(µ)/N, where m∆(µ)⊂ N, µ ∈ [λ ] and m is the unique maximal ideal of R. Thus, mL(µ) = 0, and
so L(µ) would be free over the ground ring if and only if mN = m∆(µ). The latter condition is something that
we just do not know at this point. So, we must consider a different approach.

As we discussed we will try to obtain an integral version of the simple modules indexed by integral dominant
weights. Let µ ∈ h∗R be an integral dominant weight. We define JR be the left ideal of U(gR) generated by the set
of elements

{xα : α ∈Φ
+}∪{hα −µ(hα)1R : α ∈Π}∪{xnα+1

−α : α ∈Π}, (4.4.10.4)

where nα = 〈µ,α∨〉R(m) ∈ Z+
0 .

By the PBW theorem, the monomials generated by this set of elements are linearly independent and also
PBW monomials making JR a free R-module. Moreover, the basis of JR can be extended to a basis of U(gR),
so the canonical inclusion of JR into U(gR) is an (U(gR),R)-monomorphism. Also for any commutative R-
algebra S, S⊗R JR is isomorphic to JS. Let E(µ) denote the quotient U(gR)/JR. Since 0→ JR → U(gR)→
E(µ)→ 0 remains exact under R(m)⊗R− and U(gR) is free over R we obtain TorR

1 (E(µ),R(m)) = 0. Further,
S⊗R E(µ) ' E(1S ⊗R µ) for every commutative R-algebra S which is a Noetherian ring making 1S ⊗R µ an
integral dominant weight in h∗S. We can also see that E(µ) is a quotient of ∆(µ). Therefore, E(µ) ∈ O[µ],R.
In addition, R(m)⊗R E(µ) ' L(1⊗R µ) and 1⊗R µ is an integral dominant weight in h∗R(m). Therefore, it is
finite-dimensional. By Nakayama’s Lemma, E(µ) is finitely generated over R. By Theorem 1.1.44, E(µ) is free
over R with finite rank. Observe that for each n∈N, by Lemma 4.4.23, the weights of E(nρ) are weights ranging
from −nρ to nρ . Moreover, the weight modules associated with −nρ and nρ are free with rank one.

For each µ ∈ h∗R, if µ is not a dominant weight, then there is some α ∈ Φ+ so that 〈µ +ρ,α∨〉R(m) ∈ Z−.
Since 〈ρ,α∨〉R(m) = 1, there exists n ∈ N so that µ +nρ is a dominant weight.

Definition 4.4.39. Let λ ∈ h∗R and µ ∈ [λ ]. If µ is a dominant weight, define P(µ) := ∆(µ). Otherwise, pick
n ∈ N minimal so that µ +nρ ∈ [λ ] is a dominant weight and define P(µ) := (∆(µ +nρ)⊗R E(nρ))Dµ , where
Dµ is the block of [λ ] that contains µ .

Theorem 4.4.40. Let R be a local regular commutative Noetherian ring which is a Q-algebra with unique

maximal ideal m. Let λ ∈ h∗R. The following assertions hold.

(a) If µ ∈ [λ ] is a dominant weight, then ∆(µ) is projective in O[λ ],R∩R-Proj.

(b) The modules P(µ) ∈ ODµ
are projective objectives in O[λ ],R ∩R-Proj, where Dµ is the block of [λ ] that

contains µ .
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(c) For each µ ∈ [λ ], there exists an exact sequence in ODµ

0→C(µ)→ P(µ)→ ∆(µ)→ 0, (4.4.10.5)

where C(µ) ∈F (∆(ω)ω>µ) and Dµ is the block that contains µ .

(d) Fix P =
⊕

µ∈[λ ] P(µ). For each Q ∈ addO[λ ],R
P, HomO[λ ],R

(Q,M) ∈ R-proj for every M ∈F (∆).

(e) Assume that S is:

• a localization Rp of R at some prime ideal p of R;

• a quotient ring R/I of R for some ideal I.

Then, for each ω ∈ [λ ], and M ∈F (∆), the canonical map

S⊗R HomO[λ ],R(P(ω),M)→ HomO[1S⊗Rλ ],S(S⊗R P(ω),S⊗R M)

is an isomorphism.

Proof. If µ is a dominant weight, then µ is dominant. By Theorem 4.4.7(d), ∆(µ) is projective in O[λ ],R(m). By
Lemma 4.4.38(b), ∆(µ) is projective in O[λ ],R∩R-Proj.

Since E(nρ) ∈ R-proj it is clear that P(µ) ∈ R-Proj. By Theorem 4.4.7(e), R(m)⊗R ∆(µ +nρ)⊗R E(nρ)'
∆(µ +n1R(m)ρ)⊗R(m) L(1R(m)nρ) is a projective object in O[λ ],R(m). By Lemma 4.4.38, ∆(µ +nρ)⊗R E(nρ) is
a projective object in O[λ ],R∩R-Proj. As P(µ) is a summand of ∆(µ +nρ)⊗R E(nρ) it is also a projective object
in O[λ ],R∩R-Proj and also in ODµ

∩R-Proj.
If µ is dominant, the exact sequence on (c) is just the identity map on ∆(µ). Assume that µ is not dominant.

By Proposition 4.4.21, ∆(µ +nρ)⊗R E(nρ) ∈F (∆(µ +nρ +ω){ω∈[λ ] : E(nρ)ω 6=0}. So, the lowest weight in the
filtration of ∆(µ +nρ)⊗R E(nρ) which occurs only once is µ +nρ−nρ = µ which again by Proposition 4.4.21
appears at the top of the filtration. We obtained in this way an exact sequence

0→C1(µ)→ ∆(µ +nρ)⊗R E(nρ)→ ∆(µ)→ 0. (4.4.10.6)

The remaining weights are of the form µ+nρ+γ , where γ ∈NΠ not smaller than−nρ . Hence, µ+nρ+γ−µ ∈
NΠ . So, all weights of C1(µ) are greater than µ . Applying Dµ to (4.4.10.6) we obtain (c).

By the above discussion for (b), for each n ∈ N and each ω ∈ [λ ], the functor HomO[λ ],R
(∆(ω)⊗R E(nρ),−)

is exact on F (∆). Therefore, HomO[λ ],R
(∆(ω)⊗R E(nρ),M) ∈ R-proj for every M ∈ F (∆) if and only if

HomO[λ ],R
(∆(ω)⊗R E(nρ),∆(µ)) ∈ R-proj for every µ ∈ [λ ]. By Lemma 4.4.36,

HomO[λ ],R
((∆(ω)⊗R E(nρ))D ,∆(µ)D )' HomO[λ ],R

((∆(ω)⊗R E(nρ))D ,∆(µ)), (4.4.10.7)

which is zero unless µ ∈D . Assuming that µ ∈D , again by Lemma 4.4.36,

HomO[λ ],R
((∆(ω)⊗R E(nρ))D ,∆(µ))' HomO[λ ],R

((∆(ω)⊗R E(nρ)),∆(µ))' HomO[λ ],R
(∆(ω),E(nρ)∗⊗R ∆(µ)).

Since ω is dominant ∆(ω) is a projective object in F (∆). Hence, if ∆(λ ) appears as factor in a Verma filtration
of an arbitrary M ∈ F (∆), then we can assume that all its occurrences appear at the bottom of the filtration.
Moreover, all its occurrences can be encoded in a direct sum of copies of ∆(ω). Thanks to ω being dominant, by
Lemma 4.4.6 and Lemma 4.4.36, homomorphisms from ∆(ω) to another Verma module ∆(ω1) are only non-zero
if ω = ω1.
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Therefore, if we fix M := E(nρ)∗⊗R ∆(µ) ∈F (∆) by Proposition 4.4.21, we obtain

HomO[λ ],R
(∆(ω),M)' HomO[λ ],R

(∆(ω),∆(ω) j)' R j, (4.4.10.8)

where j denotes the number of occurrences of ∆(ω) in M. This shows that HomO[λ ],R
(P(ω),∆(µ))∈R-proj for all

µ ∈ [λ ]. By induction on the size of filtrations by Verma modules, we obtain (d). Indeed, if M ∈F (∆), then there
exists an exact sequence 0→M′→M→∆(µ)→ 0 for some µ ∈ [λ ] and M′ ∈F (∆) having a filtration by Verma
modules with lesser length than a filtration by Verma modules of M. By induction, HomO[l],R

(P(ω),M′)∈ R-proj.
Since HomO[l],R

(P(ω),−) is exact on F (∆) our claim follows.
Now, we will proceed to prove (e). Let S be a local commutative Noetherian ring which is aQ-algebra. Since

any M ∈ F (∆) is free as R-module (of infinite rank), the filtrations in F (∆) remain exact under S⊗R−. In
particular, assuming that 1S⊗R ω is a dominant weight

S⊗R HomO[λ ],R
((∆(ω)⊗R E(nρ))D ,∆(µ))' S⊗R R j ' S j ' HomO[1S⊗Rλ ],S(∆(1S⊗R ω),S⊗R E(nρ)∗⊗R ∆(µ))

' HomO[1S⊗Rλ ],S(∆(1S⊗R ω),E(n1Sρ)∗⊗S ∆(1S⊗R µ))

' HomO[1S⊗Rλ ],S(∆(1S⊗R ω)⊗S E(n1Sρ),∆(1S⊗R µ))

' HomO[1S⊗Rλ ],S(S⊗R ∆(ω)⊗R E(nρ),∆(1⊗R µ))

' HomO[1S⊗Rλ ],S(S⊗R P(ω−nρ),∆(1⊗R µ)).

Since all these isomorphisms are functorial, we obtain that the canonical map

S⊗R HomO[λ ],R(P(ω−nρ),∆(µ))→ HomO[1S⊗Rλ ],S(S⊗R P(ω−nρ),S⊗R ∆(µ))

is an isomorphism for every µ ∈ [λ ]. Since P(ω − nρ) is a projective object in O[λ ],R ∩R-Proj by using the
previous statement there is for every M ∈F (∆) a commutative diagram with exact columns

S⊗R HomO[λ ],R(P(ω−nρ),M′) HomO[1S⊗Rλ ],S(S⊗R P(ω−nρ),S⊗R M′)

S⊗R HomO[λ ],R(P(ω−nρ),M) HomO[1S⊗Rλ ],S(S⊗R P(ω−nρ),S⊗R M)

S⊗R HomO[λ ],R(P(ω−nρ),∆(µ)) HomO[1S⊗Rλ ],S(S⊗R P(ω−nρ),S⊗R ∆(µ))

'

'

, (4.4.10.9)

where M′ ∈F (∆) which together with ∆(µ) gives a Verma filtration to M. Hence, the upper row is obtained by
induction. By Snake Lemma, the middle map is also an isomorphism.

Remark 4.4.41. Using the same argument as in the classical theory of the category O , we could see that the
Verma modules associated with dominant weights are projective objects in their blocks. 4

4.4.11 Noetherian algebra AD associated with a category O[λ ],R

Let R be a local regular commutative Noetherian ring which is a Q-algebra. Let D be a block of [λ ] for some
λ ∈ h∗R. Define PD :=

⊕
µ∈D P(µ).

Definition 4.4.42. Let λ ∈ h∗R and D a block of [λ ]. We define the R-algebra AD to be the endomorphism algebra
EndO[λ ],R

(PD )op.
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By Theorem 4.4.40, AD is a projective Noetherian R-algebra. By Lemma 4.4.16, we can see that PD is a
generator of OD . Moreover, since the filtrations involved in Lemma 4.4.16 are finite for each object X ∈OD there
exists an exact sequence Ps

D → Pt
D → X → 0. Unfortunately, our methods in Theorem 4.4.40 do not allow us to

state already that PD is a projective generator. However, we can see that the functor H :=HomOD
(PD ,−) : OD →

AD -mod is fully faithful since PD is a generator of OD . It is an equivalence of categories whenever R is a field.
Further, the restriction of H to F (∆) is an exact fully faithful functor. This reduces the study of the category
O[λ ],R to the study of module categories of projective Noetherian R-algebras and its subcategories.

As we have been mentioning throughout this section, the algebras AD are split quasi-hereditary.

Theorem 4.4.43. Let R be a local regular commutative Noetherian ring which is a Q-algebra. Let D be a block

of [λ ] for some λ ∈ h∗R. The algebra AD is split quasi-hereditary with standard modules ∆A(µ) :=H∆(µ), µ ∈D .

The set D is a poset with the partial order µ1 < µ2 if and only if µ2−µ1 ∈ NΠ .

Proof. By Theorem 4.4.40 (d), ∆A(µ) ∈ R-proj for all µ ∈ D . By Lemma 4.4.6(i) and (ii) and together with H

being fully faithful we obtain EndAD
(∆A(µ))' R and if HomAD

(∆A(µ1),∆A(µ2)) 6= 0, then µ1 ≤ µ2. Denote by
PA(µ) the projective A-modules HomOD

(PD ,P(µ)). By Theorem 4.4.40 (c),(b), and H being fully faithful we
obtain, for each µ ∈ [λ ], an exact sequence

0→CA(µ)→ PA(µ)→ ∆A(µ)→ 0, (4.4.11.1)

where CA(µ) ∈F (∆A(ω)ω>µ). Further,⊕
µ∈D

PA(µ) =
⊕
µ∈D

HomOD
(PD ,P(µ))' HomOD

(PD ,
⊕
µ∈D

P(µ))' AD
AD . (4.4.11.2)

Hence, this direct sum is a progenerator of AD . By Corollary 1.5.43, the result follows.

We could wonder given the definition of P(µ) if there could be other projectives taking its role of mapping
surjectively to ∆(µ). By Proposition 1.5.61, we see that PA(µ) is the right choice and it PA(µ)(m) is actually the
projective cover of ∆A(µ). Hence, the idempotents

eµ := PD � P(µ) ↪→ PD , µ ∈D ,

in EndOD
(PD )op = AD form a set of orthogonal idempotents such that their image under R(m), according to

Theorem 4.4.40(e), form a complete set of primitive orthogonal idempotents of AD (m). In particular, by Theorem
1.5.73,

0⊂ ADeω AD ⊂ ·· · ⊂ AD ( ∑
µ∈D

eµ)AD

is a split heredity chain of AD . Here, ω is the dominant weight of D .

Corollary 4.4.44. Let R be a local regular commutative Noetherian ring which is aQ-algebra. Let D be a block

of [λ ] for some λ ∈ h∗R.

(a) The algebra AD is semi-perfect and AD -proj is a Krull-Schmidt category.

(b) The algebra AD has finite global dimension.

Proof. By Theorem 1.5.84, (a) follows. R is a regular local ring, so gldimR is finite. By Corollary 1.5.76, AD

has finite global dimension.
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The category O has a simple preserving duality, so we expect the algebra AD to be a cellular algebra as well.
We can use the duality functor restricted to the block (−)∨ : OD ∩R-Proj→ O[λ ],(I),R ∩R-Proj to construct the
relative injective modules of AD .

Lemma 4.4.45. Let R be a local regular commutative Noetherian ring which is a Q-algebra. Let D be a block

of [λ ] for some λ ∈ h∗R. For each µ ∈ D , the module HomO[λ ],(I),R
(PD ,P(µ)∨) is projective over R and (AD ,R)-

injective.

Proof. Since (−)∨ is exact the module P(µ)∨ belongs to F (∆(ω)∨
ω∈D ) for each µ ∈ D . As we saw, by the

construction of the duality functor ∆(ω)∨ ∈ O[λ ],(I),R∩R-Proj and each weight module of ∆(ω)∨ is finitely gen-
erated as R-module. Using the same arguments as in Lemma 4.4.38, replacing P by ∆(ω1) and X by ∆(ω)∨ and
knowing that in the classical case ∆(ω)∨ are the costandard modules making O a split highest weight category
we obtain Ext1O[λ ],(I),R

(∆(ω1),∆(ω)∨) = 0 for all ω1,ω ∈D . Hence, using induction on finite filtration by Verma
modules ∆ and on finite filtration by dual Verma modules ∆∨ we can reduce the problem of HomO[λ ],(I),R(PD ,X)

being projective over R, with X ∈ F (∆(ω)∨
ω∈D ), to showing that HomO[λ ],(I),R

(∆(ω),∆(θ)∨) ∈ R-proj for all
weights ω,θ ∈D .

Observe that HomO[λ ],(I),R
(∆(ω),∆(θ)∨) ⊂ (∆(θ)∨)ω = D(∆(θ))ω . So, if the homomorphism group is non-

zero, then ω ≤ θ . In addition,

0 6= HomO[λ ],(I),R
(∆(ω),∆(θ)∨)' HomO[λ ],(I),R

(∆(θ),∆(ω)∨). (4.4.11.3)

So, also θ ≤ ω . Therefore, HomO[λ ],(I),R
(∆(ω),∆(θ)∨) = 0 unless θ = ω . In case, θ = ω we obtain

HomO[λ ],(I),R
(∆(ω),∆(ω)∨)' HomU(bR(Rω ,∆(ω)∨)' ∆(ω)∨ω ' D∆(ω)ω ' R ∈ R-proj . (4.4.11.4)

Since Ext1O[λ ],(I),R
(∆(ω1),∆(ω)∨) = 0 for all ω1,ω ∈ D we can apply the same argument in Proposition

1.5.117 and Corollary 1.5.118 to deduce that the homomorphisms between modules with Verma filtrations
and modules with dual Verma filtrations commute with the functor R(m)⊗R−. Since P(µ)∨ is injective and
R(m)⊗R H is an equivalence we obtain, by Theorem 1.2.57, HomO[λ ],(I),R

(PD ,P(µ)∨) is (AD ,R)-injective.

Remark 4.4.46. The reader can observe that the modules HomO[λ ],(I),R
(PD ,∆(µ)∨), µ ∈ D , are the costandard

modules of AD . 4

It follows that HomO[λ ],(I),R
(PD ,P∨D ) '

⊕
µ∈D HomO[λ ],(I),R

(PD ,P(µ)∨) ' DAD . Using this we can deduce a
duality map on AD . In fact, as R-algebras, we have the following commutative diagram
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AD (m) EndOD
(PD )op(m) EndO[λ ],(I),R

(P∨D )(m)

Aop
D (m)

EndAop
D
(AD )op(m) EndAD

(DAD )(m) EndAD
(HomO[λ ],(I),R

(PD ,P∨D ))(m)

A(m)D EndO(PD (m))op EndO(PD (m)∨)

A(m)op
D

EndA(m)
op
D
(A(m)D )op EndA(m)D

(DAD (m)) EndA(m)D
(HomO(PD (m),PD (m)∨))

'

'

'

''

' '

'

' '

'

'

'

'

'

'

'

The isomorphisms in the diagram are marked with'. We required this approach since without it we do not know
if the Hom functor on the generator PD is fully faithful on the additive closure of its dual P∨D . Since AD ∈ R-proj
by Nakayama’s Lemma we obtain that the following composition of maps is an isomorphism of R-algebras

AD EndOD
(PD )op EndO[λ ],(I),R

(P∨D )

Aop
D

EndAop
D
(AD )op EndAD

(DAD ) EndAD
(HomO[λ ],(I),R

(PD ,P∨D ))

.

Observe that under this composition of maps, for each µ ∈D ,

eµ 7→ PD � P(µ) ↪→ PD 7→ P∨D � P(µ)∨ ↪→ P∨D

7→ HomO[λ ],(I),R
(PD ,P∨D )� HomO[λ ],(I),R

(PD ,P(µ)∨) ↪→ HomO[λ ],(I),R
(PD ,P∨D )

7→ DAD � I(µ) = D(eµ AD ) ↪→ DAD 7→ AD � eµ AD ↪→ AD 7→ eµ .

Hence, this gives an involution on AD , denoted by ι , which fixes the set of orthogonal idempotents {eµ : µ ∈D}.
In addition, we can assign a new duality functor on AD using the duality ι . For each M ∈ AD -mod, define the
right AD -module Mι ∈ by imposing m ·ι a := ι(a)m, m ∈M. The assignment M 7→ DMι is a duality functor on
AD -mod∩R-proj, which we will denote by (−)\.

Theorem 4.4.47. Let R be a local regular commutative Noetherian ring which is a Q-algebra. Let D be a block

of [λ ] for some λ ∈ h∗R. The algebra AD is a cellular algebra with involution ι and cell chain

0⊂ ADeω AD ⊂ ·· · ⊂ AD ( ∑
µ∈D

eµ)AD = AD ,

where ω is the dominant weight of D .

Proof. The result follows by Proposition 1.6.12.
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4.4.12 The algebra AD is a relative gendo-symmetric algebra

Our aim now is to compute the relative dominant dimension of the algebra AD and to prove that it is a relative
gendo-symmetric algebra.

Koenig, Slungård and Xi gave a lower bound for the dominant dimension of the blocks of the classical
category O in [KSX01, Theorem 3.2]. Later, Fang proved in [Fan08, Proposition 4.5] that this lower bound
was indeed the value of the dominant dimension. Mainly, the dominant dimension sees two cases. Either the
algebra associated with a block is semi-simple which obviously gives infinite dominant dimension or the algebra
associated with a non semi-simple block has dominant dimension two. The main reason for this situation is that
the blocks of the category O only have one projective-injective module. We will now generalize these results to
the Noetherian algebras AD .

Theorem 4.4.48. Let R be a local regular commutative Noetherian ring which is a Q-algebra with unique

maximal ideal m. Let D be a block of [λ ] for some λ ∈ h∗R. For the unique antidominant weight µ ∈ D ,

(AD ,PA(µ),DPA(µ)) is a relative QF3 R-algebra and

domdim(AD ,R) =

+∞, if |D |= 1,

2, otherwise.

Proof. By Lemma 4.4.29, D is of the form Wµ ·µ +ν for some ν ∈ h∗R and w ·µ−µ ∈ ZΦ for every w ∈Wµ .
By Theorem 4.4.7(e), for an antidominant weight ω ∈ D , P(ω) is the unique projective-injective in OWµ ·µ .

By Theorem 4.4.43 and 4.4.40, PA(ω)(m) ' PA(m)(ω) is the unique projective-injective of AWµ ·µ ' AD (m).
There are now two distinct cases. Assume that AWµ ·µ is semi-simple. In particular, ∆(µ) is projective-injective.
By Theorem 4.4.7, µ is a dominant and antidominant weight. On the other hand, if there exists a weight in
Wµ ·µ which is both dominant and antidominant, then it is both a maximal and minimal element in Wµ ·µ . Thus,
Wµ ·µ = {µ}. In such a case, AWµ ·µ ' R(m). Further, for any two elements w1,w2 ∈Wµ we have w1 ·µ−w2 ·µ ∈
mh∗R. By construction of µ , we also have w1 · µ −w2 · µ ∈ ZΦ. So, we deduce that domdimAWµ

= +∞ if and
only if the cardinality of D is one.

Assume now that the cardinality of D is greater than one. By [Fan08, Proposition 4.5], domdimAWµ ·µ = 2
with faithful projective-injective PA(ω)(m) ' PA(m)(ω). By Proposition 2.5.4 and Theorem 2.5.13, the result
follows.

It follows from Theorem 4.4.48 and Proposition 2.4.7, the analogue of integral Schur–Weyl duality for the
blocks of the category O: There is a double centralizer property

C := EndAD
(PA(ω))op, AD ' EndC(PA(ω))

where ω is the antidominant weight of D . Here, C(m) is the so-called coinvariant algebra S(hR(m))/I whenever
|Wµ ·µ|= |Wµ | for the block D =Wµ µ+ν . Here, I denotes the ideal of the symmetric algebra of h∗R(m) generated
by the polynomials which are invariants, under the Weyl group linear action, of positive degree with respect to
the grading of the symmetric algebra of h∗R(m). In the other cases, where the stabilizer of µ under the Weyl group
Wµ is non-trivial, the algebra C(m) is a subalgebra of invariants of the coinvariant algebra under the elements of
the stabilizer of µ . In particular, C(m) is a commutative algebra (see [Soe90, Endomorphismensatz]).

Taking advantage of the previous double centralizer property, we can define the Schur functor

VD = HomAD
(PA(ω),−) : AD -mod→C-mod .
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In the literature, this functor is known as Soergel’s combinatorial functor. The famous result known as
Skrutursatz [Soe90, Struktursatz 9] states that VD : AD (m)-mod→C(m)-mod is fully faithful on projectives.
To see that, in this more general setup, we start by observing that since PA(ω) is projective-injective, it is a
(partial) tilting module, so it is self-dual with respect to (−)\, that is, PA(ω)\ ' PA(ω). So, it follows by
[FK11b, Proposition 2.4 and Lemma 3.2] that C(m) ' DC(m). We will briefly explain the idea: the argu-
ments are based on bookkeeping the twisted actions and realizing that PA(ω)(m) being self dual implies that the
isomorphism of PA(ω)(m) to its dual is also an isomorphism of C(m) under the twisted action. Then, apply-
ing HomR(m)(−,R(m)) one would obtain an isomorphism between D(ADeω)(m) and eω AD (m) as left C(m)-
modules under the usual action. Now, applying the Schur functor we would obtain the desired isomorphism.
Since C ∈C-proj we can complete the diagram

C C(m)

DC DC(m)

' (4.4.12.1)

by a C-homomorphism f : C→ DC. Moreover, f (m) is an isomorphism. Since C,DC ∈ R-proj we obtain that
f is an isomorphism as C-modules. This shows that C is a relative self-injective R-algebra. Now, using that C

is a commutative R-algebra f yields in addition that C is a relative symmetric R-algebra. To see this observe
that the action of the center of the enveloping algebra Z(gR) on P(ω) (ω the antidominant weight of D) yields a
homomorphism of R-algebras Z(gR)→ EndAD

(HP(ω)). Further, we have a commutative diagram

Z(gR)(m) EndAD
(HP(ω))(m)

Z(gR(m)) EndA(m)D
(HomO(PD (m),P(ω))

' ' . (4.4.12.2)

Here, the bottom row is surjective due to Soergel [Soe90, Lemma 5], the left map is an isomorphism by Lemma
4.4.24 while the right map is an isomorphism by Theorem 4.4.40. It follows that the upper map is also a surjective
map. Denote by X the cokernel (as R-homomorphisms) of the homomorphism Z(gR)→ EndAD

(HP(ω)). Thus,
X(m) = 0. Since EndAD

(HP(ω)) ∈ R-proj, we obtain X ∈ R-mod and by Nakayama’s Lemma X = 0. Hence,
Z(gR)→C is surjective, and therefore C is a commutative R-algebra.

To sum up, we obtained:

Theorem 4.4.49. Let R be a local regular commutative Noetherian ring which is a Q-algebra with unique

maximal ideal m. Let D be a block of [λ ] for some λ ∈ h∗R. Suppose that ω is the antidominant weight of D . The

following assertions hold.

(a) (AD ,PA(ω)) is a relative gendo-symmetric R-algebra.

(b) AD is split quasi-hereditary over R with standard modules ∆A(µ), µ ∈D .

(c) AD is a cellular R-algebra with cell modules ∆A(µ), µ ∈D , with respect to the duality map ι .

(d) (Integral Struktursatz) (AD ,PA(ω)) is a split quasi-hereditary cover of the commutative R-algebra C.

(e) C is a cellular R-algebra with cell modules VD∆A(µ), µ ∈D , with respect to the duality map ι|eω AD eω
.

(f) If T is a characteristic tilting module of AD , then 2domdim(AD ,R) T = domdim(AD ,R).
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Proof. Statements (b) and (c) are Theorem 4.4.43 and 4.4.47, respectively. By Theorem 2.4.10 and 4.4.48, P(ω)

is a generator as C-module and satisfies PA(ω)⊗C DPA(ω) ∈ R-proj. By Theorem 2.10.2(c) and the discussion
above showing that C is a relative symmetric R-algebra (a) follows.

By (a), HomAD
(PA(ω),AD ) ' DPA(ω). This fact, together with Theorem 4.4.48 implies the existence of a

double centralizer property on VAD . This shows (d). By Proposition 1.6.11, (e) follows. By Theorem 2.11.3, (f)
follows.

4.4.13 Hemmer-Nakano dimension under VD

Given that (AD ,PA(ω)) is a cover of the algebra C, the Schur functor VD is fully faithful on projectives. There
are two natural questions. One might wonder what happens in higher levels of the Schur functor, that is, how
fully faithful is on Ext groups regarding the projectives. Since AD is split quasi-hereditary, the same question
can be posed involving the Verma modules. Lets start by discussing the classical case of complex semi-simple
Lie algebras. In that case, the Schur functor V (on a non semisimple block) restricted to the projective modules
cannot induce a bijection on the first Ext groups since otherwise the fact that AWµ ·µ is a gendo-symmetric algebra
would imply an increase in the dominant dimension to at least three.

Now, regarding the Verma modules, the situation in the classical case is not very promising. Indeed, the
vector space dimension of V∆(w · µ) is equal to the multiplicity of the simple module ∆(ω) in the standard
module ∆(w · µ for every w ∈Wµ , where ω is the unique antidominant weight in the orbit. Since the non-
zero homomorphisms between Verma modules are always injective ∆(ω) only occurs in the socle of ∆(w · µ).
Therefore, dimR(m)V∆(w ·µ) = 1. Since the Schur functor V kills all simple modules which are not in the top of
the projective module PA(ω) then V sends all standard modules to the same module with dimension one over C.
Therefore, V is not even fully faithful on Verma modules. It is only faithful on Verma modules.

This is the major difference between the classical case and the Noetherian algebras AD as we will see now.

Theorem 4.4.50. Fix t a natural number. Let R be the localization of C[X1, . . . ,Xt ] at the maximal ideal

(X1, . . . ,Xt). Denote by m the unique maximal ideal of R. Pick θ ∈ h∗R(m) ' h∗R/mh∗R to be an antidominant

weight which is not dominant. Define µ ∈ h∗R to be a preimage of θ without coefficients in m in its unique linear

combination of simple roots. Fix s to be a natural number satisfying 1 ≤ s ≤ rankR h
∗
R and s ≤ t. Consider the

block D =Wµ ·µ + X1
1 α1 + · · ·+ Xs

1 αs, where αi ∈Π are distinct simple roots, i = 1, . . . ,s and by f
1 we mean the

image of f ∈ C[X1, . . . ,Xt ] in R. Then,

(i) HNdimVD
AD -proj = s;

(ii) HNdimVD
F (∆A) = s−1.

Proof. Denote by m the maximal ideal of R. Assume that α1, . . . ,αn ∈ Π are the simple roots of Φ and µ =

∑
n
i=1 ciαi, where ci is the image of some complex number in R. Denote by ν the weight X1

1 α1 + · · ·+ Xs
1 αs. By

Theorem 4.4.49, (AD ,PA(µ)) is a split quasi-hereditary cover of C and it is a relative gendo-symmetric R-algebra.
We will start by showing that s and s− 1 are upper bounds for the Hemmer-Nakano dimension of AD -proj

and F (∆A), respectively, under the Schur functor VD . Let T be a characteristic tilting module of AD .
Choose p the prime ideal of R generated by the monomials Xi

1 , with i = 1, . . . ,s. In particular, p has height
s. Further, R/p⊗R µ is an antidominant weight which is not dominant and it has no coefficients belonging
to the maximal ideal of R/p in its unique linear combination of simple roots and R/p⊗R ν = 0. Therefore,
Q(R/p)⊗R D contains Q(R/p)⊗R µ which is an antidominant but it is not dominant, where Q(R/p) denotes
the quotient field of R/p. Therefore, Q(R/p)⊗R AD contains as direct product the algebra AWQ(R/p)⊗Rµ ·Q(R/p)⊗Rµ
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which is not semi-simple. By Theorem 4.4.48, 3.5.6 and the flatness of Q(R/p) over R/p,

−1 = HNdimVWQ(R/p)⊗Rµ
·Q(R/p)⊗Rµ

F (Q(R/p)⊗R ∆A)≥ HNdimQ(R/p)⊗RVD
F (Q(R/p)⊗R ∆A) (4.4.13.1)

≥ HNdimR/p⊗RVD
F (R/p⊗R ∆A). (4.4.13.2)

0 = HNdimVWQ(R/p)⊗Rµ
·Q(R/p)⊗Rµ

AWQ(R/p)⊗Rµ ·Q(R/p)⊗Rµ -proj≥ HNdimQ(R/p)⊗RVD
Q(R/p)⊗R AD -proj

≥ HNdimR/p⊗RVD
R/p⊗R AD -proj . (4.4.13.3)

As a consequence of Corollary 3.3.10 and thanks to ht(p) = s we obtain

HNdimVD
F (∆A)≤ HNdimR/p⊗RVD

F (R/p⊗R ∆A)+ht(p) =−1+ s (4.4.13.4)

HNdimVD
AD -proj≤ HNdimR/p⊗RVD

R/p⊗R AD -proj+ht(p) = s. (4.4.13.5)

We claim that this inequality is actually an equality. To show that we will proceed by induction on the
coheight of prime ideals p of R, that is, on dimR−ht(p) with induction basis step t− s to show that

HNdimR/p⊗RVF (R/p⊗R ∆A)≥−1+ s−ht(p)

and
HNdimR/p⊗RVD

R/p⊗R AD -proj≥ s−ht(p).

Let p be a prime ideal of R with coheight t− s, then it has height s. Since R/p has maximal ideal m/p with
residue field R(m) the claim follows by Theorem 3.5.6, Theorem 4.4.49(f) and Theorem 4.4.48.

Now assume that p is a prime ideal of R with coheight greater than t− s. Then, p has height smaller than
s. In particular, p cannot contain any prime ideal with height s. Consequently, some monomial Xi

1 has non-zero
image in R/p. Moreover, ν has non-zero image in R/p and its image belongs to m/p. Therefore, any weight
in R/p⊗R D when viewed as weight in the quotient field h∗Q(R/p) does not belong to the integral weight lattice.
Thus, all weights belonging to R/p⊗R D viewed as weights in h∗Q(R/p) are both dominant and antidominant. By
the discussion in Theorem 4.4.48, we obtain that

domdimQ(R/p)⊗R AD = domdimQ(R/p)⊗RAD
Q(R/p)⊗R T =+∞. (4.4.13.6)

By Theorem 3.5.8, we obtain that the claim holds for prime ideals with coheight t− s+1.
Upon these considerations, assume the induction claim known for some prime ideal with coheight t− s+ r

with r≥ 1. Let p be a prime ideal of coheight t−s+r+1. Then, ht(p) = t−t+s−1= s−r−1< s and (4.4.13.6)
holds. By Theorem 3.5.8 the assumptions of Theorem 3.3.13 for R/p⊗R AD and the resolving subcategories
F (R/p⊗R ∆A) and R/p⊗R AD are satisfied. Also, condition (i) of Theorem 3.3.13 is also satisfied. It remains to
consider (ii). Let q be a prime ideal of R/p of height one. Then, we can write q = q′/p for some prime ideal q′

of R. Furthermore,

1 = ht(q′/p) = dim(R/p)− coht(q′/p) = coht(p)− coht(q′), (4.4.13.7)

where the symbol coht(p) denotes the coheight of the prime ideal p. Hence, coht(q′) = coht(p)−1 = t− s+ r.
By induction,

HNdimR/q′⊗RVF (R/q′⊗R ∆A)≥−1+ s−ht(q′) =−1+ r (4.4.13.8)

HNdimR/q′⊗RVD
R/q′⊗R AD -proj≥ s−ht(q′) = r. (4.4.13.9)
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Because of R/q′ ' R/p/q′/p= R/p/q Theorem 3.3.13 yields

HNdimR/p⊗RVF (R/p⊗R ∆A)≥ r (4.4.13.10)

HNdimR/p⊗RVD
R/p⊗R AD -proj≥ r+1 (4.4.13.11)

This finishes the proof of the claim.
Now considering the prime ideal zero which has height zero, the result follows.

Hence, for the algebras AD not only the Schur functor is fully faithful on Verma modules but also the Schur
functor behaves quite well on Ext groups of Verma modules. This fact alone justifies studying the category O

under other rings than the complex numbers.

Remark 4.4.51. The non-zero homomorphisms between distinct Verma modules are injective maps but they are
not (AD ,R)-monomorphisms, in general. Otherwise, we would obtain a (C,R)-monomorphism
V∆(ω1)→ V(∆(ω2)) which remains injective under R(m)⊗R−. V∆(ω2)(m) is a simple module, hence the
mentioned map must be an isomorphism and by Nakayama’s Lemma, so is the map V∆(ω1)→ V(∆(ω2)). By
Theorem 4.4.50, we can choose rings R for which such a situation cannot happen. 4

4.5 Comparison between Hemmer-Nakano dimension, dominant dimen-
sion and Krull dimension

Assume now that R is regular Noetherian commutative local ring. Much focus on Chapter 2 was given to illustrate
that the dominant dimension should be measured using Tor groups instead of Ext groups. The reason for this
was that the Krull dimension of regular local rings is an obstruction to deduce information on vanishing of Ext
groups. By Proposition 2.4.18 for any module M ∈ A-mod∩R-proj we could obtain the interval

n≥ domdim(A,R) M ≥ n−dimR, (4.5.0.1)

where n is the optimal value making ExtiC(V,V ⊗A M) = 0 and αM : M→HomC(V,V ⊗A M) an isomorphism for
1≤ i≤ n. This leads to the following question: How much information do we lose using Ext groups to compute
the relative dominant dimension of a module? To answer this question we can view it from the point of view of
covers. For example, fix M to be the regular module A. This question can be translated using Theorem 3.5.6 to
how much a cover (A,P) improves with respect to a cover (A(m),P(m)). Further, the interval (4.5.0.1) becomes

domdim(A,R)−2≤ HNdimF A-proj≤ domdim(A,R)+dimR−2 (4.5.0.2)

Now, knowing what happens with Schur algebras, BBG category O and Integral Auslander algebras of R[X ]/(Xn)

we can see that both of these bounds cannot be improved in general since every the relative dominant dimension
and the Hemmer-Nakano dimension can take any value in the above intervals. In a nutshell, the behaviour of the
Hemmer-Nakano dimension on:

BGG Category O over R

• Depends on the Krull dimension;

• Depends on the rank of the Cartan subalgebra of the semisimple algebra under study;

• HNdimF A-proj can take any value in (4.5.0.2) provided the Cartan subalgebra of g is big enough.
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Schur algebras SR(n,d) with n≥ d

• Depends on whether R contains a field or not;

• 1≤ domdim(SR(n,d),R)−HNdimF SR(n,d)-proj≤ 2.

Integral Auslander algebras of R[X ]/(Xn)

• Does not depend of R;

• domdim(A,R)−2 = HNdimF A-proj.

4.6 Further examples

Example 4.6.1. For an algebraically closed field K with characteristic three, the Hemmer-Nakano dimension of

SK[X1,··· ,Xr ](n,d)-proj is two while domdimSK[X1,··· ,Xr ](n,d) is four.

Let K be an algebraically closed field with characteristic three. Let r > 0 be an integer and n ≥ d ≥ 3. Fix
R = K[X1, . . . ,Xr]. By Hilbert’s Nullstellensatz Theorem, the maximal ideals of R are of the form

ma1,...,ar = (X1−a1, . . . ,Xr−ar), a1, . . . ,ar ∈ K. (4.6.0.1)

Hence, R/ma1,...,ar ' K for every maximal ideal of R. Thus,

domdim(SR(n,d),R) = inf{domdimSR(n,d)(ma1,...,ar) : a1, . . . ,ar ∈ K} (4.6.0.2)

= inf{domdimSK(n,d) : a1, . . . ,ar ∈ K}= 2(3−1) = 4. (4.6.0.3)

Hence, (SR(n,d),(Rn)⊗d) is a 2-SR(n,d)-proj cover of RSd . Assume, by contradiction, that (SR(n,d),(Rn)⊗d) is a
3-SR(n,d)-proj cover of RSd . As K(X1, . . . ,Xr) is flat over R, this would imply that
(SK(X1,...,Xr)(n,d),(K(X1, . . . ,Xr)

n)⊗d) is a 3-SK(X1,...,Xr)(n,d)-proj cover of K(X1, . . . ,Xr)Sd . But K(X1, . . . ,Xr)

has Krull dimension zero, so, by Proposition 2.4.18, this implies that domdimSK(X1,...,Xr)(n,d) is at least 5. On the
other hand, K(X1, . . . ,Xr) is a field with characteristic three. By Theorem 5.1 of [FK11b], domdimSK(X1,...,Xr)(n,d)

is exactly 4. Therefore, (SR(n,d),(Rn)⊗d) cannot be a 3-SR(n,d)-proj cover of RSd . 4

Example 4.6.2. (Example 15 of [Cru21]) For a QF3 algebra (A,P,DP), the pair (A,P) might not be a cover of

EndA(P)op.

Let K be an algebraically closed field. Let A be the following bound quiver K-algebra

1 2 3,
α1 α2

α2α1 = 0.

Denote by P(i) the projective indecomposable module associated with the vertex i and denote by I(i) the inde-
composable injective module associated with the vertex i.

The indecomposable projective (left) modules are given by

P(1) = I(2) =
1
2

P(2) = I(3) =
2
3

P(3) = 3 . (4.6.0.4)

The exact sequence

0→ A→ P(1)⊕P(2)⊕P(2)→ P(1)→ I(1)→ 0 (4.6.0.5)
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is a minimal injective resolution of A. Denote by P the projective module P(1)⊕P(2). Hence, (A,P,DP) is a QF3
algebra with domdimA≥ 2. So, (A,P(2)⊕P(3)) is a cover of EndA(P)op. In fact, P(2)⊕P(3)'HomA(DA,P) =

HomA(DP,A) as left A-modules. Here B = EndA(P)op is the path algebra with quiver

1 2.
α1

However, (A,P) is not a cover of B. To see this, observe that

HomA(P,A) =
1
2
⊕ 2 (4.6.0.6)

as B-modules. Thus, EndB(HomA(P,A))op has only K-dimension 3 whereas the dimension of A = EndB(P) is
5. 4

Example 4.6.3. If n ≥ d ≥ 2, the Hemmer-Nakano dimension of SZ[X ](n,d)-proj is one while

domdim(SZ[X ](n,d),Z[X ]) is two.

Let n≥ d ≥ 2. The ideal generated by 2 and X over Z[X ] is maximal. So,

2 = domdimSF2(n,d) = domdimSZ[X ](n,d)(2,X)≥ domdim(SZ[X ](n,d),Z[X ])≥ 2. (4.6.0.7)

On the other hand,Q(X) is a field of characteristic zero flat overZ[X ]. By Theorem 3.5.7, (SZ[X ](n,d),(Z[X ]n)⊗d)

is a 1-cover of Z[X ]Sd . Assume, by contradiction, that (SZ[X ](n,d),(Z[X ]n)⊗d) is a 2-cover of Z[X ]Sd . Z[X ]2 is
a prime projective ideal of Z[X ] with

Z[X ]/Z[X ]2' F2[X ]. (4.6.0.8)

By Theorem 3.3.9, (SF2[X ](n,d),(F2[X ]n)⊗d) is a 1-cover of F2[X ]Sd . Now, F2(X) is a field of characteristic two
flat over F2[X ]. Hence, (SF2(X)(n,d),(F2(X)n)⊗d) is a 1-cover of F2(X)Sd . In particular, domdimSF2(X)(n,d) is
at least 3. This is a contradiction with Theorem 5.1 of [FK11b]. Therefore, the Hemmer-Nakano dimension of
SZ[X ](n,d)-proj is 1. 4

Example 4.6.4. Assume the notation of Theorem 3.3.12. Given a regular local ring R with maximal ideal

m, knowing one system of R-parameters together with the values of HNdimR/Rxi⊗RF(R(R/Rxi ⊗R A)) is not

enough to determine HNdimF(R(A)). More precisely, it can happen that HNdimR/Rxi⊗RF(R(R/Rxi⊗R A)) >

HNdimR/Rx⊗RF(R(R/Rx⊗R A)), i = 1, . . . ,n, where x ∈m and {x1, . . . ,xn} generate m.

Let R0 be the localization of Z3[X1,X2] at the maximal ideal (3,X1,X2). Let f be the image of f ∈ Z3[X1,X2]

in R0. Define R = R0/(−3+(X1 +X2)2). Denote by Ti the image of Xi in R, i = 1,2. Then, T1,T2 is a system of
R-parameters. By Theorem 4.1.12,

HNdimF(SR(3,3)-proj) = 3, HNdimR/Ti⊗RF(SR/Ti(3,3)-proj) = 3, i = 1,2. (4.6.0.9)

However, if HNdimR/x⊗RF(SR/x(3,3)-proj) = 3 for any x ∈ m, then by the proof of Theorem 3.3.11,
HNdimF(SR(3,3)-proj) would be bigger than 3. This is, of course, false. Hence, there exists x ∈ m such that
HNdimR/x⊗RF(SR/x(3,3)-proj) = 2. 4

The following example indicates that given a collection of covers of an algebra, evaluating the covers based
only on the value of global dimension is not sufficient to select the cover with better properties.

Example 4.6.5. Given an algebraically closed field with characteristic three K, the group algebra KS3 admits

two distinct 2-covers. By [Xi92], the algebra KS3 is Morita equivalent to the path algebra of the quiver
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2 1
α

β

modulo the ideal generated by

αβα, βαβ . (4.6.0.10)

In particular, KS3 is of finite type. The indecomposable projective (left) modules are given by

P(1) =
1
2
1

, P(2) =
2
1
2

. (4.6.0.11)

The endomorphism algebras EndKS3 (KS3
⊕

1)op and EndKS3 (KS3
⊕

2)op are Morita equivalent to the Schur
algebra SK(3,3). In particular, SK(3,3) is Morita equivalent to the path algebra of the following quiver

3 2 1
α2

β2

α1

β1

modulo the ideal generated by

β2α2, α1α2, β2β1, β1α1−α2β2. (4.6.0.12)

The indecomposable projective (left) SK(3,3)-modules are given by

P(1) =
1
2
1

, P(2) =
2

1 3
2

, P(3) =
3
2
. (4.6.0.13)

The indecomposable injective (left) SK(3,3)-modules are given by

P(1) = I(1), I(2) = P(2), I(3) =
2
3

. (4.6.0.14)

The module (K3)⊗3 is regarded as P(1)⊕P(2). Since

0→ SK(3,3)→ P(1)⊕P(2)⊕P(2)→ P(1)→ P(1)→ P(2)→ I(3)→ 0 (4.6.0.15)

is a minimal injective resolution of the regular module SK(3,3) we obtain that domdimSK(3,3) = 4.
Now, using the following projective resolutions

0→ P(3)→ P(2)→ P(1)⊕P(3)→ P(2)→ 1→ 0 (4.6.0.16)

0→ P(3)→ P(2)→ P(1)→ 2→ 0 (4.6.0.17)

0→ 1→ P(3)→ 3→ 0 (4.6.0.18)

we obtain that gldimSK(3,3) = 4.

On the other hand, the endomorphism algebra EndKS3

(
KS3⊕

1
2

)op

is the path algebra of the following

quiver
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3

1 2

α

β

γ

modulo the ideal generated by

γβα, βαγβ . (4.6.0.19)

We will denote this algebra by C. The indecomposable projective (left) C-modules are given by

P(1) =

1
2
3
1

, P(2) =

2
3
1
2

, P(3) =
3
1
2

, (4.6.0.20)

whereas the indecomposable injective C-modules are given by

I(1) = P(1), P(2) = I(2), I(3) =
1
2
3

. (4.6.0.21)

The regular module C has minimal injective resolution

0→C→ P(2)⊕P(1)⊕P(2)→ P(2)→ P(1)→ I(3)→ 0. (4.6.0.22)

Thus, domdimC = 4. Using the exact sequences

0→ P(3)→ P(2)→ 2→ 0 (4.6.0.23)

0→ 2→ P(2)→ P(1)→ 1→ 0 (4.6.0.24)

2→ P(3)→ P(1)→ P(3)→ 3→ 0 (4.6.0.25)

we conclude that gldimC = 4. In addition, C is not split quasi-hereditary. Assume, by contradiction, that it is
split quasi-hereditary. The only projective module that can be standard is P(3). Hence, 3 must be maximal. This

implies that ∆(2) must be 2 and ∆(1) is a quotient of
1
2

. But, P(1) does not have a filtration by these candidates

to be standard modules. Thus, C cannot be split quasi-hereditary. 4

Remark 4.6.6. For our purposes, and according to Proposition 2.3.6 and Lemma 2.2.4, over finite-dimensional
algebras we can ignore the multiplicities of V⊗

d
throughout this chapter as we did in the last example. 4

Example 4.6.7. Let A be the Auslander algebra of F3S3, where HomA(P,A) =
⊕
i>0

F3S3/ radiF3S3. (A,P) is a

(−1)-F (∆A) cover of F3S3. On the other hand, (SF3
(3,3),V⊗3) is a 0-F (∆) cover of F3S3 and

F (HomA(P,∆A)) = F (F∆), (4.6.0.26)

where F =HomSF3
(3,3)(V⊗3,−) and V =F3

3
. Furthermore, the algebra A is a gendo-symmetric quasi-hereditary

algebra without a simple preserving duality. Denote by K the field F3. As we have seen SK(3,3) is Morita
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equivalent to the bound quiver algebra defined in (4.6.5). The standard modules of SK(3,3) are

∆(1) =
2
1
, ∆(2) = 1 , ∆(3) =

3
2
, (4.6.0.27)

with the usual order 3 > 2 > 1. The costandard modules of SK(3,3) are

∇(1) = 1 , ∇(2) =
1
2

, ∇(3) =
2
3

. (4.6.0.28)

Applying the Schur functor, we see that the Specht modules of KS3 are

θ(1) =
2
1
, θ(2) = 1 , θ(3) = 2 . (4.6.0.29)

Since domdimSK(3,3)= 4, (SK(3,3),V⊗3) is a 0-F (∆) cover of KS3. Moreover, under the functor G=HomKS3(V
⊗3,−)

we can see that G2 = P(3) and G1 = 1.

Now, the Auslander algebra of KS3, A = EndKS3

 1
2
1

⊕ 2
1
2

⊕
1
⊕ 2

1
⊕ 1

2
⊕

2


op

, is isomorphic

to the following bound quiver algebra

5

3 2 6 1

4

α2

β4β3
α1

α3

β1β2

α4

,
α2β3 = β2α3 = β1β4β3 = β2β1β4 = 0,

β3β2 = α1α4, α3α2 = β1β4
(4.6.0.30)

The projective A-modules are given by

PA(1) =

1

4

2 3

5

1

, PA(2) =

2

5

1 6

4

2

, PA(3) =

3

5

1

, PA(4) =

4

2 3

5

1

, (4.6.0.31)

PA(5) =

5

6 1

4

2

, PA(6) =

6

4

2

. (4.6.0.32)
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The injective A-modules are given by

IA(1) =

1

4

2 3

5

1

, IA(2) =

2

5

1 6

4

2

, IA(3) =

1

4

3

, IA(4) =

2

5

1 6

4

, (4.6.0.33)

IA(5) =

1

4

2 3

5

, IA(6) =

2

5

6

. (4.6.0.34)

The standard A-modules, with the ordering 3,6 > 4 > 2 > 5 > 1 making A a split quasi-hereditary algebra, are

∆A(1) = 1 , ∆A(2) =
2
5
1

, ∆A(3) = PA(3), ∆A(4) =
4
2

, ∆A(5) =
5
1
, ∆A(6) = PA(6). (4.6.0.35)

In fact, there are short exact sequences

0→ ∆A(3)→ PA(4)→ ∆A(4)→ 0 (4.6.0.36)

0→ ∆A(6)→ PA(1)→ ∆A(1)→ 0 (4.6.0.37)

0→ ∆A(6)→ PA(5)→ ∆A(5)→ 0 (4.6.0.38)

and the radical of PA(1) has a filtration by ∆A(4) and ∆A(3). The minimal projective-injective A-module P =

PA(1)⊕PA(2). Under the Schur functor FA = HomA(P,−), we obtain

FA∆A(1) = 1, FA∆A(2) = θ(1), FA∆A(3) = 1, FA∆A(4) = 2, FA∆A(5) = 1, FA∆A(6) = 2. (4.6.0.39)

Therefore, F (FA∆A) = F (F∆). By the minimal injective resolution of A

0→ A→ PA(1)⊕PA(2)⊕PA(2)⊕PA(1)⊕PA(1)⊕PA(2) (4.6.0.40)

→ PA(1)⊕PA(2)⊕PA(1)⊕PA(2)→ IA(3)⊕ IA(6)⊕ IA(5)⊕ IA(4)→ 0, (4.6.0.41)

we conclude that domdimA = 2. Let GA be the right adjoint of FA. By projectivization, GAθ(1) = PA(4),
GA(1) = PA(3), GA(2) = PA(6). Thus, domdim∆A = 1. Therefore, (A,P) is a (−1)-F (∆A) cover of KS3.

Since KS3 is a symmetric algebra, A is a gendo-symmetric algebra. If, A had a duality preserving simples
then such duality would send PA(4) to IA(4). This cannot happen since the simple modules appearing in PA(4)
and IA(4) are not the same. 4

Example 4.6.8. KS4 has at least two (−1)-faithful covers (including the Schur algebra), where K is a field of

characteristic two. But, contrary to Example 4.6.7, only the standard modules of the Schur algebra are sent to

the complete set of cell modules of KS4.
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By Theorem 3.5 of [Xi93], the Schur algebra SK(4,4) is Morita equivalent to the bound quiver algebra

4

3 5 1

2

γ

β1α

α1

β

ε1

σ

γ1

ε

σ1

,

α1α = ε1α = γ1γ = ββ1 = σσ1 = α1ε = 0

σγ = ε1β1, εε1 = β1β , βε = γ1σ1,

γβαα1 = σ1ε1, αα1β1γ1 = εσ .

(4.6.0.42)

The indecomposable projective SK(4,4)-modules are given by

P(1) =

1

2 4

5 1

3 2

1 5

4

1

, P(2) =

2

5 1

2 4

5 1

2

, P(3) =

3

5

4

1

, P(4) =

4

5 1

3 2

5

4

1

, (4.6.0.43)

P(5) =

5

3 2 4

5 5 1

4 2

1

. (4.6.0.44)

The indecomposable injective SK(4,4)-modules are given by

I(1) = P(1), I(2) = P(2), I(3) =

1

4

5

3

, I(4) =

1

4

5

3 2

5 1

4

, I(5) =

1 2

4 5 1

5 2 4

3

5

. (4.6.0.45)

Using the minimal injective resolution

0→ SK(4,4)→ P(1)⊕P(2)⊕P(1)⊕P(1)⊕P(1)⊕P(2)→ P(1)4⊕P(2)2→C2→ 0, (4.6.0.46)

we see that domdimSK(4,4) = 2 since the socle of C2 contains 4. Similarly, we can see that the global dimension
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of SK(4,4) is 6. SK(4,4) is split quasi-hereditary with 1 < 2 < 5 < 4 < 3 and the standard modules

∆(1) = 1, ∆(2) =
2

1
, ∆(3) = P(3), ∆(4) =

4

5 1

2

, ∆(5) =
5

2
. (4.6.0.47)

From the point of view of the dominance order, we can assign 1 to the partition 1+1+1+1, 2 to 2+1+1, 3 to 4+0,
4 to 3+1 and 5 to 2+2. The respective costandard modules are

∇(1) = 1, ∇(2) =
1

2
, ∇(3) = I(3), ∇(4) =

2

5 1

4

, ∇(5) =
2

5
. (4.6.0.48)

The indecomposable (partial) tilting SK(4,4)-modules are

T (1) = ∆(1), T (2) =

1

2

1

, T (3) = P(1), T (4) = P(2), T (5) =

2

1 5 1

2

. (4.6.0.49)

The module P(1)⊕P(2) is the minimal faithful projective-injective module, hence V⊗d is regarded as P(1)⊕P(2)
as left SK(4,4)-modules. In addition, we can see that domdim∆(3) = domdim∆(4) = domdim∆(5) = 2 and
domdim∆(1) = domdim∆(2) = 1. Applying the Schur functor F = HomSK(4,4)(V

⊗d ,−) we obtain that the
group algebra KS4 is Morita equivalent to the bound quiver algebra

1 2γγ1
σ

ε1ε

σ1
,

(γγ1)
2 = (ε1ε)σ = σ1(ε1ε) = σσ1 = 0,

(ε1ε)2 = σ(γγ1)σ1, σ1σ(γγ1) = (γγ1)σ1σ ,
(4.6.0.50)

with projective KS4-modules

PS4(1) =

1

1 2

2 1

1

, PS4(2) =

2

1

2

1

2

. (4.6.0.51)

The generator DV⊗4 is the module

PS4(1)⊕PS4(2)⊕1⊕
1

2

1

⊕ 2 1

1 2
. (4.6.0.52)

Applying the Schur functor, we see that the cell modules of KS4 are the following:

θ(1) = 1, θ(2) =
2

1
,θ(3) = 1, θ(4) =

1

2
, θ(5) = 2. (4.6.0.53)
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Let M =

1

2 1

1 2

1

⊕

2

1 2

1

2

⊕
1

2 1

1 2

⊕
2

2 1

1

⊕ 1

2 1
⊕ 2

2 1
⊕ 1⊕ 2. Consider

the algebra E := EndKS4 (M)op with quiver

4 1

8 6 2

7

5 3

(4.6.0.54)

and projective modules

PE(1) =

1

4 3

2 5 6 1

3 7 4

1 5 2

3

1

, PE(2) =

2

3 6

1 5 4

3 8 2

1 6

4

2

, (4.6.0.55)

PE(3) =

3

6 1 5

7 4 3 8

5 2 1 6

3 4

1 2

, PE(4) =

4

8 2 5

6 3 7

4 1 5

3

2 1

, PE(5) =

5

8 3 7

6 1 5

4 3

2 1

,

PE(6) =

6

4 7

8 2 5

6 3

4

2 1

, PE(7) =

7

5

3

1

, PE(8) =

8

6

4

2

.

Since M is a generator over KS4, E has dominant dimension at least two and PE(1)⊕PE(2) is the minimal
faithful projective-injective (left) E-module. E is split quasi-hereditary with the usual ordering and the following
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standard modules

∆E(1) = 1, ∆E(2) = 2, ∆E(3) =
3

1
, ∆E(4) =

4

2
, ∆E(5) =

5

3

1

, ∆E(6) =

6

4

2

, ∆E(7) = PE(7), ∆E(8) = PE(8).

Applying the Schur functor FE := HomE(PE(1)⊕PE(2),−) to the standard modules we obtain as KS4-modules

FE∆E(1) = FE∆E(3) = FE∆E(5) = FE∆E(7) = 1, FE∆E(2) = FE∆E(4) = FE∆E(6) = FE∆E(8) = 2.
(4.6.0.56)

Hence, by (4.6.0.53) F (F∆) is different from F (FE∆E). Let GE be the right adjoint of the Schur functor FE .
Then, GE(1) = PE(7) and GE(2) = PE(8). So, the canonical map ∆E → GEFE∆E is a monomorphism but not
an isomorphism for ∆E = ⊕i=1,...,8∆E(i). Thus, (E,PE(1)⊕PE(2)) is a (-1) faithful quasi-hereditary cover of
KS4. 4

Example 4.6.9. Not every split quasi-hereditary cover is a (-1)-faithful quasi-hereditary cover. Recall the bound
quiver algebra A defined in Example 4.6.2. A is quasi-hereditary for the canonical order 3> 2> 1 with the simple
modules being the standard modules. Consider the Schur functor F = HomA(P(2⊕P(3),−) : A-mod→C-mod

and consider G = HomC(2⊕
2
3
⊕3,−), where C is the bound quiver algebra

3 2α
. (4.6.0.57)

We can see that

G3 = P(3), G(2) = P(1), G(
2
3

) = P(2). (4.6.0.58)

Therefore, (A,P(2)⊕P(3)) is a cover of C. But F∆(1) = 0. Thus, η∆(1) is the zero map. So, (A,P(2)⊕P(3)) is
not a (-1)-faithful cover of C. 4

Denote by Λ+(d,d, p) the set of p-regular partitions of d and (R,m) a discrete valuation ring. In [CPS96,
(4.6.4)] Cline, Parshall and Scott showed that there exists an exact equivalence between the full subcategory
F (∆λ∈Λ+(d,d,p)) of SR(d,d)-mod and F (F∆λ∈Λ+(d,d,p)), where F is the Schur functor and p = charR(m). The
following example shows that this exact equivalence cannot be improved for the Schur algebra SZ2(5,5) in the
sense that this equivalence cannot be extended to a bigger (in terms of inclusion) full subcategory of F (∆). In
view of Corollary 3.3.14 it is enough to see that the standard modules of the Schur algebra SF2(5,5) associated
to partitions which are not 2-regular have dominant dimension one.

Example 4.6.10. For n = d = 5, denote by Λ+(5,5,2) the set of 2-regular partitions of 5. All standard modules

of SF2(5,5), ∆(λ ) with λ ∈ Λ+(5,5,2), have dominant dimension one. By Proposition 3.8 of [Xi93], the basic
algebra of the Schur algebra SK(5,5) is the bound quiver algebra

1 2 3 4 5 6 7
α β

α1

γ

β1

σ

γ1 σ1

η

ε

(4.6.0.59)

0 = α1α = β1β = γ1γ = σσ1 = ηε = σγβα = α1β1γ1σ1, γ1σ1σγ = ββ1,

γβαα1 = σ1σγβ ,αα1β1γ1 = β1γ1σ1σ , (4.6.0.60)
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where K is an algebraically closed field of characteristic two. Denote by P(i) the projective indecomposable
modules. The basic module of V⊗5 is P(4)⊕P(5)⊕P(6). The standard modules of the basic algebra of SK(5,5)
are

∆(1) =

1
2
3
4

, ∆(2) =

2
3
4
5

, ∆(3) =

3
4
5
4

, ∆(4) = 4 , ∆(5) =
5
4

, ∆(6) = 6 , ∆(7) =
7
6
. (4.6.0.61)

In particular, 1 > 2 > 3 > 5 > 4,7 > 6 is the order associated with this quasi-hereditary structure. Therefore, we
have the following correspondence between {1, . . . ,7} and the partitions of 5:

1↔ 5+0, 2↔ 3+2, 3↔ 3+12, 4↔ 1+1+1+1+1, 5↔ 2+2+1, 6↔ 2+1+1+1, 7↔ 4+1
(4.6.0.62)

Finally, we can see that

domdim∆(1) = domdim∆(2) = domdim∆(7) = 2 (4.6.0.63)

domdim∆(3) = domdim∆(4) = domdim∆(5) = domdim∆(6) = 1. (4.6.0.64)

4

Example 4.6.11. Truncating a cover might produce a new cover with higher Hemmer-Nakano dimension. Con-
sider the Schur algebra of finite type A with quiver

1 2 3 , (4.6.0.65)

and with projective indecomposables

P(1) =

1

2

1

, P(2) =

2

1 3

2

, P(3) =
3

2
. (4.6.0.66)

A is quasi-hereditary with standard modules ∆(3) = P(3), ∆(2) =
2

1
, ∆(1) = 1. Fix P = P(2)⊕P(3). Then,

(A,P) is a 0-F (∆) cover of EndA(P)op. Let J be the split heredity ideal associated with ∆(3). Then, P/JP' A/J

as left A/J-modules. Of course, (A/J,P/JP) is an +∞ cover of EndA/J(P/JP)op. 4

Example 4.6.12. The cover property is not preserved under arbitrary truncations. By A we will denote the
principal block of the basic algebra of SK(5,5) where charK = 2. Let J = A(e1 + e2)A. Then, the algebra A/J is
isomorphic to the following bound quiver algebra

3 4 5
γ σ

γ1 σ1
,σσ1 = γ1γ = γ1σ1σγ = 0. (4.6.0.67)

By Example 4.6.10, (A,P(4)⊕P(5)) is a cover of the bound quiver algebra

4 5γγ1
σ

σ1
,

0 = σσ1 = γγ1γγ1 = σσ1γγ1σ1σγγ1σ1 = σγγ1σ1σγγ1σ1σ ,

σ1σγγ1σ1σγγ1 = γγ1σ1σγγ1σ1σ .
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Further, for P = P(4)⊕P(5), BJ := EndA/J(P/JP)op is a quotient of EndA(P(4)⊕P(5))op with projective mod-
ules

5

4

4

5

4

⊕
4

4 5

5 4

4 4

5

4

.

We can see that EndBJ

BJ⊕
4
5
4


op

has infinite global dimension. Therefore, this endomorphism algebra

cannot be isomorphic to A/J. This shows that (A/J,P/J) is not a cover of BJ . 4

Remark 4.6.13. By computing the Iyama generator of the regular module of KS5, when charK is 2, we can see
that V⊗5 does not belong to the additive closure of the Iyama generator. Thus, we cannot expect to construct a
cover by just selecting summands of the Iyama generator. 4

Example 4.6.14. There are cellular algebras that their cell structure is not given by a quasi-hereditary cover.

More precisely, for a given cellular algebra B with cell datum (Λ,M,C, ι) there is not, in general, a split quasi-

hereditary cover (A,P) satisfying HomA(P,∆(λ )) = θλ ,λ ∈ Λ.

Let K be an algebraically closed field with characteristic different from two. By Proposition 3.4 of [AKMW20],
the bound quiver algebra, denoted by B,

1 2 3
α

δ

β

ε

γ

, βα = δγ = εα = βε = εγ = δε = 0, αδ = ε
2 = γβ (4.6.0.68)

is a cellular self-injective algebra with poset Λ = {1,2,3,4,5} together with the reversed order 5 < 4 < 3 < 2 < 1
and

M(i) =

{1}, if i ∈ {1,3,5},

{1,2}, if i ∈ {2,4}.
(4.6.0.69)

Note that in [AKMW20] their definition of cellular algebras uses the reversed order of the original definition of
cellular algebras. Denote by P(i) the projective indecomposable module associated with the primitive idempotent
ei and put S(i) = topP(i). Then,

P(1) =
1
2
1

, P(2) =

2

2 1 3

2

, P(3) =
3
2
3

. (4.6.0.70)
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The cell modules are

θ1 = 3 , θ2 =
2
3
, θ3 = 2 , θ4 =

1
2

, θ5 = 1 . (4.6.0.71)

Assume that there exists a quasi-hereditary cover (A,P) such that HomA(P,∆(i)) = θi. Note that the order of
the quasi-hereditary algebra in A must be 5 > 4 > 3 > 2 > 1. From now on, this is the order that we consider.
Further, there are exact sequences

0→ Xi→ Yi→ θi→ 0, Xi ∈F (θ j>i), (4.6.0.72)

for all i = 1, . . . ,5. Here, A = EndB(⊕5
i=1Yi), and Yi are indecomposable modules. Hence, it is clear that Y5 must

be θ5 and Y4 must be P(1). In the same way, Y1 must be P(3). Since radP(2) /∈F (θ3,θ4,θ5) we must have
Y2 = P(2). It remains to consider Y3. Observe that X3 ∈F (θ4,θ5) and θ5 appears always at the bottom of the
filtration. So, if both θ4 and θ5 are in the filtration of X3, then P(1) is a summand of Y3 which cannot happen. So,
either X3 ∈F (θ5) or X3 ∈F (θ4). But since 5 is maximal, F (θ5) = addB θ5. If Y3 = θ3, then we can see that the
quiver of A has a loop on the vertex 3, and therefore A cannot be split quasi-hereditary. In the remaining cases,
we can see that the Cartan matrix of A(with entry i, j equal to dimK HomA(PA( j),PA(i)) = dimK HomB(Yj,Yi) )
has determinant equal to

det


2 1 0 0 0
1 3 dimK HomB(Y3,Y2) 1 0
0 dimK HomB(Y2,Y3) dimK HomB(Y3,Y3) dimK HomB(Y4,Y3) dimK HomB(Y5,Y3)

0 1 dimK HomB(Y3,Y4) 2 1
0 0 dimK HomB(Y3,Y5) 1 1

=

= det


2 1 0 0 0
1 3 [Y3 : S(2)] 1 0
0 [Y3 : S(2)] dimK HomB(Y3,Y3) [Y3 : S(1)] [socY3 : S(1)]
0 1 [Y3 : S(1)] 2 1
0 0 [topY3 : S(1)] 1 1

 (4.6.0.73)

In any of this cases this value is always bigger than one. So, A cannot be quasi-hereditary. 4

Example 4.6.15. A Schur functor can preserve a resolving subcategory while not being an equivalence.

Fix g to be the complex semisimple Lie algebra sl2. Denote by V the Schur functor between the principal
block of the category O , that is the block that contains the simple module with highest weight zero, and the
coinvariant algebra C. Then, V sends all standard modules to the unique simple module of C. Also, it sends all
costandard modules to the unique simple module of C. Hence, F (F∆) = F (F∇) =C-mod . But, V is not even
fully faithful on the standard modules. 4
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Chapter 5

Cocovers and relative codominant
dimension with respect to a module

It is now appropriate to look back what we have done so far. So far, our aim was to study covers (A,P) and their
quality. In particular, we studied the cover (SR(n,d),V⊗d) and the Hemmer-Nakano dimension of F (∆) (and of
SR(n,d)-proj) among other cases. On the latter part, extending the notion of dominant dimension to Noetherian
algebras was crucial. We should emphasize that in all these cases n≥ d. The situation for n < d seems to be more
mysterious. For n< d, the SR(n,d)-module V⊗d still has the double centralizer property (see for example [Cru19,
Theorem 3.4] and [BD09]) but it might not be projective-injective anymore (see for example [KSX01, 3.3] or
Example 6.2.7). In [Fan14], Fang shows that the dominant dimension of SK(n,d), in case n < d ≤ n(charK−1),
is at least two but V⊗d is not necessarily the projective-injective module over SK(n,d). Our attempt here will
be to understand what happens to V⊗d rather than computing the dominant dimension of SR(n,d) for n < d (see
[Fan14]). As in the case n≥ d, the additional properties of this double centralizer property highly depend on the
ground ring. For example, if R is a field of characteristic zero, the double centralizer property between SR(n,d)

and EndSR(n,d)(V
⊗d) comes from a Morita equivalence. So, we would like to attach a measure of quality to

this double centralizer property in a similar way to the Hemmer-Nakano dimension and to replace the notion
of cover by one suitable for this situation. In [KSX01], they consider a notion of relative dominant dimension
of SK(n,d) (with K being a field) with respect to the tilting module V⊗d . However, there is no version of the
Mueller theorem for this dominant dimension. Another approach was taken in [BS98] by introducing the notion
of faithful dimension of a module. The relative dominant dimension with respect to a module that we will study
in this chapter generalizes this notion although we will not use minimal approximations (see also Definition
2.3.5). We will start by looking for a notion analogue to covers for general double centralizer properties.

Let A be a projective Noetherian R-algebra, where R is a commutative ring. For the moment, assume that
P ∈ A-proj. The study of the Schur functor F = HomA(P,−) was made through the derived functor of the right
adjoint G = HomB(FA,−), with B = EndA(P)op. Recall that F also has a left adjoint I= P⊗B− by Tensor-Hom
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adjunction:

A-mod EndA(P)op-modF

I

a

G

a

(5.0.0.1)

The existence of a right adjoint to F is only guaranteed for the case when P ∈ A-proj. In fact, left adjoint
functors preserve cokernels. So, we should now focus our attention to the left adjoint of F when P is not
necessarily projective. Another fact that we should consider is that for P∈A-proj it is clear that DP⊗A P∈R-proj.

Although we have not mentioned it directly the fact that F is a right adjoint has appeared before in Chapter
2. Indeed, F being a right adjoint is the reason of the appearance of Tor in relative dominant dimension (with
respect to a projective relative injective module). Moreover, for covers, the interest lies in which level G fails to
be exact on certain subcategories. Turning towards I, it is only natural to be interested in the exactness of the left
adjoint of F , I. It is therefore this direction that we will take in this chapter.

5.1 Cocovers

Once again, unless stated otherwise R is a Noetherian commutative ring, A is a projective Noetherian R-algebra.
Let Q ∈ A-mod∩R-proj satisfying DQ⊗A Q ∈ R-proj. By FQ (or just F when no confusion arises) we mean
the functor HomA(Q,−) : A-mod→ B-mod, where B is the endomorphism algebra EndA(Q)op. In particular,
B ∈ R-proj and B-mod is an abelian category. By IQ (or just I when no confusion arises) we mean the left adjoint
of F , Q⊗B− : B-mod→ A-mod. We will denote by υ the unit idB-mod → FI and χ the counit IF → idA-mod.
Thus, for any N ∈ B-mod, υN is the B-homomorphism υN : N→ HomA(Q,Q⊗B N), given by υN(n)(q) = q⊗n,
n ∈ N,q ∈ Q. For any M ∈ A-mod, χM is the A-homomorphism Q⊗B HomA(Q,M)→M, given by χM(q⊗g) =

g(q), g ∈ FM,q ∈ Q. By projectivization, the restriction of F to addQ gives an equivalence between addQ and
B-proj. Moreover, χM is an isomorphism for every M ∈ addQ. If Q has no self-extensions, then this equivalence
is exact. Further, there are commutative diagrams

Q⊗B HomA(Q,X⊕Y ) X⊕Y

Q⊗B HomA(Q,X)⊕Q⊗B HomA(Q,Y ) X⊕Y

χX⊕Y

χX⊕χY

' , (5.1.0.1)

and
M⊕N HomA(Q,Q⊗B (M⊕N))

M⊕N HomA(Q,Q⊗B M)⊕HomA(Q,Q⊗B N)

υM⊕N

υM⊕υN

' , (5.1.0.2)

for every X ,Y ∈ A-mod, M,N ∈ B-mod.

Remark 5.1.1. Note that, for each M ∈ A-mod∩R-proj, the map χM is equivalent with the map δDM given in
Lemma 2.4.5 when Q = P is a projective (A,R)-injective-strongly faithful module. 4

We shall write χr and υr for the counit and unit, respectively, of the adjunction −⊗B DQ a HomA(DQ,−).
We will now present a version of Lemma 1.4.28 for general double centralizer properties. This result is in

some capacity already known in the literature for Artinian algebras (see for example [AS93, Corollary 2.4]).
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Lemma 5.1.2. Let A be a projective Noetherian R-algebra. Let Q∈ A-mod∩R-proj satisfying DQ⊗A Q∈ R-proj
and denote by B the endomorphism algebra EndA(Q)op. The following assertions are equivalent.

(i) The canonical map of algebras A→ EndB(Q)op, given by a 7→ (q 7→ aq), is an isomorphism.

(ii) DχX is an isomorphism of right A-modules for all X ∈ (A,R)-inj∩R-proj.

(iii) The restriction of F to addDA is full and faithful.

Proof. We will start by showing the equivalence (i) ⇔ (ii). Denote by ψ the canonical map of algebras
A→ EndB(Q)op and denote by ωX the natural transformation between the identity functor and the double dual
DD for X ∈ A-mod. There is a commutative diagram

DDA D(Q⊗B HomA(Q,DA))

HomB(Q,DHomA(Q,DA))

HomB(Q,DDQ)

A EndB(Q)

DχDA

θ'

HomB(Q,σQ) '

ψ

ωA '

HomA(Q,ωQ) '

(5.1.0.3)

with vertical maps being isomorphisms, where σQ : DDQ→DHomA(Q,DA) is given by h 7→ ( f 7→ h( f (−)(1A))),
and θ is the isomorphism given by Tensor-Hom adjunction. In fact,

HomB(Q,σQ)◦HomA(Q,ωQ)◦ψ(a)(q)( f ) = σQ ◦HomA(Q,ωQ)(ψ(a))(q)( f ) = σQ ◦ωQ ◦ψ(a)(q)( f )

= σQ(ωQ(aq))( f ) = ωQ(aq)( f (−)(1A)) = f (aq)(1A)

= a f (q)(1A) = f (q)(1Aa),

θ ◦DχDA ◦ωA(a)(q)( f ) = θ(ωA(a)◦χDA)(q)( f ) = ωA(a)◦χDA(q⊗ f ) = ωA(a)( f (q))

= f (q)(a),∀a ∈ A, q ∈ Q, f ∈ HomA(Q,DA).

By (5.1.0.3), DχDA is bijective if and only if ψ is bijective. Taking into account that χ commutes with direct
sums, the implication (i)⇔ (ii) follows.

Assume that (iii) holds. Therefore, the map HomA(DA,DA) → HomB(FDA,FDA), given by
f 7→ F f = HomA(Q, f ), is bijective. Denote such map by FDA,DA. We can fit ψ into the following commu-
tative diagram:

A HomA(A,A) HomA(DA,DA)

HomB(Q,Q) HomB(DQ,DQ) HomB(FDA,FDA)

'
ζ

ψ

ψA,A

'

FDA,DA

ψQ,Q

'
κ

'

. (5.1.0.4)

Here, ψA,A and ψQ,Q are the isomorphisms provided by Proposition 1.1.64, ζ is given by ζ (a)(b) = ab, a,b ∈ A

and κ = s−1 ◦−◦ s, where s is the isomorphism HomA(Q,DA)→ DQ given by Tensor-Hom adjunction. The
diagram (5.1.0.4) is commutative since

FDA,DA ◦ψA,A ◦ζ (a)(g)(q)(x) = HomA(Q,ψA,A ◦ζ (a))(g)(q)(x) = ψA,A ◦ζ (a)◦g(q)(x) (5.1.0.5)

= ψA,A(ζ (a))(g(q))(x) = g(q)◦ζ (a)(x) = g(q)(ax), (5.1.0.6)
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κ ◦ψQ,Q ◦ψ(a)(g)(q)(x) = s−1 ◦ψQ,Q(ψ(a))s(g)(q)(x) = ψQ,Q(ψ(a))(s(g))(xq) (5.1.0.7)

= s(g)◦ψ(a)(xq) = s(g)(axq) = g((ax)q)(1A) (5.1.0.8)

= axg(q)(1A) = g(q)(ax),∀a,x ∈ A, q ∈ Q, g ∈ FDA. (5.1.0.9)

It follows that κ ◦ψQ,Q ◦ψ is bijective. As κ ◦ψQ,Q is bijective, so it is ψ . This shows (i). Assume now
that (ii) holds. Let M,N ∈ addDA. We want to prove that the map f 7→ F f , f ∈ HomA(M,N) is bijec-
tive. Let f ∈ HomA(M,N) such that F f = 0. Then, f ◦ χM = 0, and therefore D f = 0 since DχM is an iso-
morphism. Now thanks to M being projective over R, DD f = 0 implying that f = 0. So, the desired map
is injective. Let g ∈ HomB(FM,FN). Define h = Dχ

−1
M ◦D(Q⊗B g)DχN ∈ HomA(DN,DM) and consider

ψM,N : HomA(M,N)→ HomA(DN,DM) the isomorphism as given in Proposition 1.1.64. Define
f = ψ

−1
M,N(h) ∈ HomA(M,N). (iii) follows once we show that F f = g. To do that we shall compute

ωN(HomA(Q,ψ−1
M,N(h)(t)(q)) for every t ∈ HomA(Q,M), q ∈ Q. Let l ∈ DN. Then,

ωN(HomA(Q,ψ−1
M,N(h))(t)(q))(l) = l(ψ−1

M,N(h)◦ t(q)) = h(l)◦ t(q) = Dχ
−1
M ◦D(Q⊗B g)(l ◦χN)(t(q))

= Dχ
−1
M (l ◦χN ◦Q⊗B g)◦χM(q⊗ t) = DχM(Dχ

−1
M (l ◦χN ◦Q⊗B g))(q⊗ t)

= l ◦χN ◦Q⊗B g(q⊗ t) = l(g(t)(q)) = ωN(g(t)(q))(l) (5.1.0.10)

Since ωN is bijective and q and t are arbitrary it follows that F f = g. This concludes the proof.

Remark 5.1.3. The assumption DQ⊗A Q ∈ R-proj is only used in Lemma 5.1.2 to deduce that B is a projective
Noetherian R-algebra, so the argument provided also gives the result if we drop such a condition. As we will see
later on, this condition is true in all cases of interest that we will consider. 4

Definition 5.1.4. Let R be a Noetherian commutative ring and let A be a projective Noetherian R-algebra. Assume
that Q ∈ A-mod∩R-proj. We say that (A,Q) is a cocover of B := EndA(Q)op if the following holds:

(a) DQ⊗A Q ∈ R-proj;

(b) The restriction of F = HomA(Q,−) : A-mod→ B-mod to (A,R)-inj∩R-proj is full and faithful.

Remark 5.1.5. The notion of cocover generalizes the notion of double centralizer property to category theory. 4

Combining Lemmas 5.1.2, 1.4.28 and Proposition 3.5.13, we arrive to the following observation:

Observation 5.1.6. Let P ∈ A-proj,

• If HomA(P,−) is fully faithful on addA, then (A,P) is a cover of EndA(P)op;

• If HomA(P,−) is fully faithful on addDA, then there exists a double centralizer property on P between A

and EndA(P)op;

• Assume that R is a field. If HomA(P,−) is fully faithful on addA⊕DA, then P is a left A-progenerator and
a right EndA(P)op-progenerator.

By Theorem 3.5.4, for Morita algebras A and projective-injective faithful modules P, (A,P) is simultaneously
a cover and a cocover. These are the only algebras with this property if we restrict ourselves to finite-dimensional
algebras over a field.

So, in contrast to covers, there is the following symmetry for cocovers.

Proposition 5.1.7. The pair (A,Q) is a cocover of B if and only if the pair (Aop,DQ) is a cocover of Bop.
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Proof. Since Q ∈ R-proj, EndA(Q)op ' EndA(DQ) and EndB(Q)' EndB(DQ)op. Hence, the result follows.

Remark 5.1.8. If (A,Q) is a cocover of B and Q is a B-generator, then Q ∈ A-proj and (A,HomA(Q,A)) is a cover
of B. In fact, with these assumptions Q' HomB(B,Q) ∈ addA HomB(Q,Q) = A-proj. 4

Note that for a cocover (A,Q), the module DQ⊗A Q is (B,R)-injective.
We wish now to generalize for cocovers, the properties presented in Subsection 1.4.5.

Lemma 5.1.9. The following assertions are equivalent.

(i) (A,Q) is a cocover of B.

(ii) (S⊗R A,S⊗R Q) is a cocover of S⊗R B for every flat commutative R-algebra S which is a Noetherian ring.

(iii) (Ap,Qp) is a cocover of Bp for every prime ideal p of R.

(iv) (Am,Qm) is a cocover of Bm for every maximal ideal m of R.

Proof. Let S be a commutative flat R-algebra. Then, there exists the commutative diagram

S⊗R A S⊗R EndB(Q)

S⊗R A EndS⊗RB(S⊗R Q)

S⊗RψA

cQ,Q

ψS⊗RA

, (5.1.0.11)

where cQ,Q denotes the isomorphism given by Proposition 1.1.35. In fact, for every s,s′ ∈ S, q ∈ Q, a ∈ A,

cQ,Q ◦S⊗R ψA(s⊗a)(s′⊗q) = ss′⊗ψA(a)(q) = ss′⊗aq = ψS⊗RA(s⊗a)(s′⊗q). (5.1.0.12)

If (i) holds, then ψA is an isomorphism. By (5.1.0.11), S⊗R ψA is an isomorphism and, consequently, (ii) holds.
The implications (ii)⇒ (iii)⇒ (iv) are clear. Assume that (iv) holds. Then, ψAm is an isomorphism for every
maximal ideal m of R. By (5.1.0.11), ψAm is an isomorphism, and therefore ψA is an isomorphism. So, (i)
holds.

Lemma 5.1.10. Let M ∈A-mod∩R-proj such that the canonical map HomA(Q,M)(m)→HomA(m)(Q(m),M(m))

is an isomorphism for every maximal ideal m of R. Then, χM is surjective if and only if χM(m) is surjective for

every maximal ideal m of R. If, in addition, Q⊗B HomA(Q,M) ∈ R-proj, then DχM is an (A,R)-monomorphism

if and only if χM(m) is surjective for every maximal ideal m of R.

Proof. As before, it is enough to consider a certain commutative diagram. For each maximal ideal m of R there
exists a commutative diagram

Q(m)⊗B(m) HomA(m)(Q(m),M(m)) M(m)

Q(m)⊗B(m) HomA(Q,M)(m)

Q⊗B HomA(Q,M)(m) M(m)

χM(m)

Q(m)⊗B(m)cQ,M

s

χM⊗RR(m)

, (5.1.0.13)

where cQ,M denotes the usual map and s denotes the isomorphism given by Lemma 1.1.32. In fact,

χM(m) ◦Q(m)⊗B(m) cQ,M ◦ s(q⊗g⊗ r+m) = χM(m)((q⊗ r+m)⊗ cQ,M(g⊗1R +m)) = g(q)⊗ r+m

(5.1.0.14)
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= χM⊗R R(m)(q⊗g⊗ r+m), q ∈ Q, g ∈ FM, r ∈ R. (5.1.0.15)

It follows by the commutative diagram that, for every maximal ideal m of R, χM(m) is surjective if and only if
χM(m) is. Thus, the result follows by Nakayama’s Lemma and by the right exactness of R(m)⊗R−. Assume,
in addition, that Q⊗B HomA(Q,M) ∈ R-proj. If χM(m) is surjective for every maximal ideal m of R, then, by
the previous discussion, χM is surjective onto a projective R-module M. Thus, applying the dual D yields an
(A,R)-monomorphism. Conversely, since Q⊗B HomA(Q,M) ∈ R-proj, DDχM is surjective and consequently χM

is surjective.

Proposition 5.1.11. Assume that R is a commutative Noetherian regular ring. Let A be a projective Noetherian

R-algebra and let Q∈A-mod∩R-proj. Assume that DQ⊗A Q∈R-proj and write B=EndA(Q)op. If (A(m),Q(m))

is a cocover of B(m) for every maximal ideal m of R, then (A,Q) is a cocover of B.

Proof. The argument is analogous to Proposition 1.4.34. In view of Lemma 5.1.9, we can assume that R is a local
commutative Noetherian regular ring. We shall proceed by induction on the Krull dimension of R. If the Krull
dimension of R is zero, then it is a field, so there is nothing to prove. Assume that R has positive Krull dimension.
Let x ∈ m/m2, where m is the unique maximal ideal of R. Fix S = R/Rx a local commutative regular ring with
unique maximal ideal m/Rx. By assumption, (S⊗R A(m/Rx),S⊗R Q(m/Rx)) is a cocover of S⊗R B(m/Rx). By
induction, (S⊗R A,S⊗R Q) is a cocover of S⊗R B. Thanks to Lemma 1.1.32, the map

S⊗R A→ EndS⊗RB(S⊗R Q)' HomB(Q,S⊗R Q)

is bijective. Denote this map by µS. In particular µQ(s⊗ a)(q) = s⊗ aq, a ∈ A, q ∈ Q, s ∈ S. Let δ be the
monomorphism given in Lemma 1.4.33 and ψ the canonical map between A and EndB(Q). Then, δ ◦S⊗R ψ = µS.
Hence, S⊗R ψ is bijective. Applying the Nakayama’s Lemma together with the commutative diagram

S⊗R A S⊗R EndB(Q)

R(m)⊗R A R(m)⊗R EndB(Q)

S⊗Rψ

ψ(m)

(5.1.0.16)

we deduce that ψ is surjective. For the injectivity, we need to observe that by Lemma 5.1.2, χD(m)A(m) is an
isomorphism and, consequently, χDA is surjective. Thus, DχDA is injective. By the proof of Lemma 5.1.2 this
implies that ψ is also injective.

Remark 5.1.12. If (A,Q) is a cocover of B, then (A,R)-inj∩R-proj (which is equivalent to addB DQ) is a cocover
of B-proj in the sense of [HU96]. This follows from the fact that for any X ∈ B-proj, IX ∈ R-proj and it can be
embedded into some module in the additive closure of DA. By the left exactness of F and FDA' DP, the claim
follows. 4

5.2 Relative dominant dimension with respect to a module and relative
codominant dimension with respect to a module

Recall the definition of relative dominant dimension introduced in Definition 2.3.5. In this section, we will study
a version of Mueller theorem for the relative dominant dimension with respect to a module. The arguments for
this are based on [AS93, Proposition 2.1].
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Theorem 5.2.1. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. For M ∈ A-mod∩R-proj, the following assertions hold.

(i) The counit χM : Q⊗B HomA(Q,M)→M is surjective if and only if DQ−domdim(A,R) DM ≥ 1.

(ii) The counit χM : Q⊗B HomA(Q,M)→M is an isomorphism if and only if DQ−domdim(A,R) DM ≥ 2.

Proof. Assume that χM is surjective. Since HomA(Q,M) ∈ B-mod there exists X ∈ addQ and a surjective map
HomA(Q,X)� HomA(Q,M), say g. The functor Q⊗B− is right exact, so Q⊗B g is surjective as well. Define
f := χM ◦Q⊗B g ◦ χ

−1
X . The map f is surjective and we claim that HomA(Q, f ) = g. To see that, observe first

that q⊗ h = χ
−1
X χX (q⊗ h) = χ

−1
X (h(q)) for every q ∈ Q and h ∈ HomA(Q,X). Now, we can see that for every

h ∈ HomA(Q,X), q ∈ Q,

HomA(Q, f )(h)(q) = f ◦h(q) = χM ◦Q⊗B g(q⊗h) = g(h)(q). (5.2.0.1)

Applying D yields the (A,R)-monomorphism DM → DX which remains exact under HomA(−,DQ). Thus,
DQ−domdim(A,R) DM ≥ 1. Conversely, assume that DQ−domdim(A,R) DM ≥ 1. So, there exists X ∈ addQ and
an (A,R)-monomorphism f : DM→ X which is also a left addQ-approximation. Since χ is a natural transforma-
tion between Q⊗B HomA(Q,−) between idB-mod we have χDDM ◦Q⊗B HomA(T,D f ) = D f ◦ χDX is surjective.
In particular, χDDM is surjective. As DDM 'M, χM is surjective and (i) follows.

Now, assume that DQ−domdim(A,R) DM≥ 2. Then, there exists an (A,R)-exact sequence 0→DM
f0−→X0

f1−→
X1 which remains exact under HomA(−,DQ). As Q⊗B− is right exact, the following diagram is commutative
with exact rows

Q⊗B HomA(Q,DX1) Q⊗B HomA(Q,DX0) Q⊗B HomA(Q,DDM)

DX1 DX0 DDM

Q⊗BHomA(Q,D f1)

χDX1'

Q⊗BHomA(Q,D f0)

χDX0' χDDM

D f1 D f0

. (5.2.0.2)

By diagram chasing, χDDM is an isomorphism. Since DDM ' M, χM is an isomorphism. Conversely, assume
that χM is an isomorphism. B is a Noetherian R-algebra, so we can consider a projective B-presentation for
HomA(Q,M) of the form

HomA(Q,Qm)
g1−→ HomA(Q,Qn)

g0−→ HomA(Q,M)→ 0, (5.2.0.3)

for some integers m,n. Since HomA(Q,−)|addT
is full and faithful there exists f1 ∈ HomA(Qm,Qn) such that

HomA(Q, f1) = g1. Fix f0 = χM ◦Q⊗B g0χ
−1
Qn . We have seen previously, that HomA(Q, f0) = g0. So, the

diagram

Q⊗B HomA(Q,Qm) Q⊗B HomA(Q,Qn) Q⊗B HomA(Q,M)

Qm Qn M

Q⊗Bg1

χQm'

Q⊗Bg0

χQn' χM

f1 f0

(5.2.0.4)

is commutative. Since the vertical maps are isomorphisms and the upper row is exact it follows that the bottom
row is exact and by construction it remains exact under HomA(Q,−). As M ∈ R-proj, it is, in addition, (A,R)-
exact. By applying the standard duality D we obtain that DT −domdim(A,R) DM ≥ 2.

Putting together Theorem5.2.1 and Lemma 5.1.2 we obtain that if the relative dominant dimension
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DQ−domdim(A,R) with respect to DQ is greater than or equal to two for a module Q satisfying DQ⊗A Q ∈
R-proj then (A,Q) is a cocover of EndA(Q)op.

Similarly, we can write the dual version of Theorem 5.2.1.

Theorem 5.2.2. Let R be a commutative Noetherian ring. Let A be projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. For M ∈ A-mod∩R-proj, the following assertions hold.

(i) The (right) counit χr
DM : HomA(DQ,DM)⊗B DQ→DM is surjective if and only if Q−domdim(A,R) M≥ 1.

(ii) The counit χr
DM : HomA(DQ,DM)⊗B DQ→DM is an isomorphism if and only if Q−domdim(A,R) M ≥ 2.

It is important to observe that cocovers of relative self-injective algebras arising from higher values of relative
dominant dimension with respect to a module is not anything new. Indeed, if Q− domdim(A,R) ≥ 2 then
Q⊗B DQ ∈ R-proj. Now, Q being finitely generated over A means that there exists a surjective A-map As→ Q,
for some s > 0. Consequently, there exists a surjective map DQ⊗A As → DQ⊗A Q ' DB. Since B is relative
self-injective it follows that Q is a B-generator (B,R)-cogenerator satisfying Q⊗B DQ ∈ R-proj. By the relative
Morita-Tachikawa correspondence, Q is a projective-injective A-module and A is a relative Morita algebra.

In order to avoid changing from left to right modules systematically, we can introduce the relative codominant
dimension with respect to a module.

Definition 5.2.3. Let A be a projective Noetherian R-algebra. Let Q,X ∈ A-mod∩R-proj. If X does not admit a
surjective right addQ-approximation, then we say that relative codominant dimension of X with respect to Q is
zero. Otherwise, the relative codominant dimension of X with respect to Q, denoted by Q−codomdim(A,R) X ,
is the supremum of all n ∈ N such that there exists an (A,R)-exact sequence

Qn→ ·· · → Q1→ X → 0

which remains exact under HomA(Q,−) with all Qi ∈ addQ. If some Qi = 0, then we say that Q− codomdim(A,R) X

is infinite.

In particular, DQ−domdim(A,R) DM = Q− codomdim(A,R) M whenever Q,M ∈ A-mod∩R-proj.
With Theorem 5.2.1, we can see that examples of cocovers are very abundant. As we have seen, if Q is

projective (A,R)-injective-strongly faithful and domdim(A,R) ≥ 2 then (A,Q) is a cocover of EndA(Q)op. By
Propositions 1.5.133 and 1.5.109, if Q is a characteristic tilting module of a split quasi-hereditary algebra A then
(A,Q) is a cocover of the Ringel dual of A. But, more interesting are the cases where Q is a tilting module
(not a characteristic tilting module) of a split quasi-hereditary algebra that have a double centralizer property.
Following the work developed in [MS08, 2.2], we will see in following lemma that every split quasi-hereditary
algebra has a (partial) tilting module with a double centralizer property. At worst, this (partial) tilting module
coincides with the characteristic tilting module.

Lemma 5.2.4. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra and let T be a characteristic tilting module

of A. Then, there is an exact sequence 0→ A→M→ X → 0 where M is (partial) tilting and X ∈F (∆̃A). More-

over, there exists a (partial) tilting module Q ∈ A-mod∩R-proj such that DM ∈ addQ and

Q−domdim(A,R)≥ 2. In particular, (A,Q) is a cocover of EndA(Q)op.

Proof. Denote by RA the Ringel dual EndA(T )op. Let P � T be a right projective presentation of T over RA.
Then, P ∈F (∆̃Rop

A
). Note that T ' HomA(A,T )' HomAop(DT,DA) ∈F (∆̃Rop

A
). Since F (∆̃RA) is resolving, so
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the kernel of P→ T belongs to F (∆̃Rop
A
). Since HomAop(DT,−) gives an exact equivalence between F (∇̃Aop)

and F (∆̃Rop
A
) there exists an exact sequence of right A-modules

0→ K→M′→ DA→ 0, (5.2.0.5)

where M′ is a (partial) tilting module and K ∈F (∇̃Aop). Applying D we obtain the desired exact sequence. By
Proposition 1.5.109, since DK ∈F (∆̃A) there exists an exact sequence 0→DK→M′′→ K′′→ 0, where M′ is a
(partial) tilting module and K′ ∈F (∆̃A). Put Q = DM′⊕M′′. Hence, Q is (partial) tilting module and the (A,R)-
exact sequence 0→ A→DM′→M′′ remains exact under HomA(Q,−). This means that Q−domdim(A,R)≥ 2.
By Theorem 5.2.2 and Proposition 5.1.7, (A,Q) is a cocover of EndA(Q)op.

5.2.1 Relative Mueller’s characterization of relative dominant dimension with respect
to a module

Now, we are ready to formulate the Mueller version for relative codominant dimension with respect to a module.

Theorem 5.2.5. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. For M ∈ A-mod∩R-proj, the following assertions hold.

(i) Q− codomdim(A,R) M ≥ n ≥ 2 if and only if χM : Q⊗B HomA(Q,M)→ M is an isomorphism of left A-

modules and TorB
i (Q,HomA(Q,M)) = 0, 1≤ i≤ n−2.

(ii) Q− domdim(A,R) M ≥ n ≥ 2 if and only if χr
DM : HomA(DQ,DM)⊗B DQ→ DM is an isomorphism and

TorB
i (HomA(DQ,DM),DQ) = TorB

i (HomA(M,Q),DQ) = 0, 1≤ i≤ n−2.

Proof. We shall prove (i). The statement (ii) is analogous to (i). Assume that DQ− domdim(A,R) DM ≥ n ≥ 2.
By Theorem 5.2.1, χM is an isomorphism. By definition, there exists an (A,R)-exact sequence

0→ DM→ X0→ X1→ ··· → Xn−1 (5.2.1.1)

which remains exact under HomA(−,DQ) with Xi ∈ addDQ, i = 0, . . . ,n−1. In particular, HomA(Xn−1,DQ)→
·· · → HomA(X0,DQ)→ HomA(DM,DQ)→ 0 is exact and can be continued to a left projective B-resolution of
HomA(Q,M). Consider the following commutative diagram

Q⊗B HomA(Q,DXn−1) · · · Q⊗B HomA(Q,DX0) Q⊗B HomA(Q,M)

DXn−1 · · · DX0 DDM

χDXn−1' χDX0' χDDM' . (5.2.1.2)

Observe that the bottom row is exact since the exact sequence (5.2.1.1) is (A,R)-exact. Since all vertical maps
are isomorphisms, it follows that the upper row is exact. Thus, TorB

i (Q,HomA(Q,M)) = 0, 1≤ i≤ n−2.
Conversely, assume that χM is an isomorphism and TorB

i (Q,HomA(Q,M)) = 0 for 1 ≤ i ≤ n− 2. Let
HomA(Q,Xn−1)

gn−1−−→ ·· · → HomA(Q,X0)
g0−→ HomA(Q,M) → 0 be a truncated projective B-resolution of

HomA(Q,M) and Xi ∈ addA Q. Furthermore, HomA(Q,−)|addQ
is full and faithful, so each map gi can be written

as HomA(T, fi) including g0 since χM is an isomorphism, where fi ∈HomA(Xi,Xi−1) and f0 ∈HomA(X0,M). So,
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we have a commutative diagram

Q⊗B HomA(Q,Xn−1) · · · Q⊗B HomA(Q,X0) Q⊗B HomA(Q,M)

Xn−1 · · · X0 M

χXn−1'

Q⊗BHomA(Q,gn−1) Q⊗g0

χX0' χM'
fn−1 f0

. (5.2.1.3)

By assumption, TorB
i (Q,HomA(Q,M)) = 0, 1 ≤ i ≤ n−2. So, the upper row is exact. By the exactness and the

vertical maps being isomorphisms the bottom row becomes exact. Since M ∈ R-proj it is also (A,R)-exact and so
it remains (A,R)-exact under D. By construction, such the bottom row remains exact under HomA(Q,−), thus
DQ−domdim(A,R) DM ≥ n≥ 2.

An immediate consequence of Theorems 5.2.5 and 5.2.1 is the following.

Corollary 5.2.6. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Then,

DQ−domdim(A,R) = Q− codomdim(A,R) DA = Q−domdim(A,R).

Proof. By Tensor-Hom adjunction, there are isomorphisms HomA(Q,DA) ' DQ, given by f 7→ ( f (−)(1A)),
and Q ' HomA(DQ,DA), given by q 7→ ( f 7→ (a 7→ f (aq))). We shall denote the first by ψ and the second
isomorphism by ω . So, ψ is a left B-isomorphism while ω is a right B-isomorphism. Moreover, χr

DA ◦ω⊗B ψ =

χDA. In fact, for a ∈ A, q ∈ Q, g ∈ HomA(Q,DA),

χ
r
DA ◦ω⊗B ψ(q⊗g)(a) = ω(q)(ψ(g))(a) = ψ(g)(aq) = g(aq)(1A) = (ag(q))(1A) = g(q)(a) = χDA(q⊗g)(a).

By Theorem 5.2.1 and Theorem 5.2.2, DQ−domdim(A,R) AA≥ i if and only if Q−domdim(A,R) AA≥ i for i= 1,2.
Finally, by Theorem 5.2.5, DQ− domdim(A,R) AA = DQ− domdim(A,R) DDAA ≥ n ≥ 2 if and only if χDA is an
isomorphism and 0 = TorB

i (Q,HomA(Q,DA)) = TorB
i (Q,DQ) = TorB

i (HomA(DQ,DA),DQ), 1≤ i≤ n−2 if and
only if Q−domdim(A,R) AA≥ n≥ 2.

We can obtain a version of Corollary 5.2.6 for (partial) tilting modules. In fact, if the split quasi-hereditary
algebra admits a duality functor on A-mod∩R-proj interchanging ∆(λ ) with ∇(λ ) (or a simple preserving duality
if the ground ring is a field), then the relative codominant dimension and the relative dominant dimension of a
characteristic tilting module with respect to a partial tilting module are the same.

Proposition 5.2.7. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary R-algebra with a characteristic tilting module

T . Let V ∈ addA T be a (partial) tilting module and assume that \(−) : A-mod→ A-mod is a duality satisfying
\∆(λ ) = ∇(λ ) for all λ ∈ Λ. Then, V −domdim(A,R) T =V − codomdim(A,R) T .

Proof. Assume that V −domdim(A,R) T ≥ n≥ 1. By definition, there exists an (A,R)-exact sequence

0→ T
α0−→V0

α1−→V1→ ·· · →Vn−1 (5.2.1.4)

which remains exact under HomA(−,V ), with Vi ∈ addA V . Applying the duality \ we obtain the exact sequence

\Vn−1
\αn−1−−−→ ·· · → \V1

\α1−−→ \V0
\α0−−→ \T → 0. (5.2.1.5)

But all Vi and T are (partial) tilting modules, so \T ' T and \Vi ' Vi as A-modules, i = 1, . . . ,n. In particular,
(5.2.1.5) is (A,R)-exact. It remains to show that (5.2.1.5) remains exact under HomA(V,−)' HomA(

\V,−). To
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show that consider, for each i, the factorization of αi+1 through its image αi+1 = νi ◦ πi. Hence, α0 and νi,
i = 0, . . . ,n− 1, are left addV -approximations. By the exactness of the contravariant functor \, \(kerαi+1) '
coker(\αi+1) and \imαi+1 = im(\αi+1) for all i. Moreover, for every homomorphism f ∈ HomA(N,L) the maps
HomA(

\V, \ f ) and HomA( f ,V ) are related by the commutative diagram

HomA(
\V, \L) HomA(

\V, \N)

HomA(L,V ) HomA(N,V )

HomA(
\V ,\ f )

'
HomA( f ,V )

' . (5.2.1.6)

Hence, for each i, \νi is an surjective right addV -approximation and \αi+1 =
\πi ◦ \νi. The same is true for \α0.

By Lemma 2.3.3, (5.2.1.5) remains exact under HomA(V,−). Hence, V −codomdim(A,R) T ≥ n≥ 1. Conversely,
V − codomdim(A,R) T = DV −domdim(A,R) DT ≥ DV − codomdim(A,R) DT =V −domdim(A,R) T .

The existence of Theorem 5.2.5 is the main advantage of this definition compared to [KSX01, Definition 2.1]
giving a meaning to what this relative dominant measures. Another point of view that we should refer is the
Wakamatsu tilting conjecture (see [Wak88]). In this context, the Wakamatsu tilting conjecture says that if Q has
finite projective A-dimension and it admits no self-extensions in any degree, then Q− domdim(A,R) measures
how far Q is from being a tilting module. In particular, for split quasi-hereditary algebras this amounts to saying
that for a module Q in the additive closure of a characteristic tilting module, Q− domdim(A,R) measures how
far Q is from being a characteristic tilting module of A. We will come back later to this question once we have
better tools to analyse it.

It is worth to point out that this is indeed the case if Q has finite projective dimension over B.

Proposition 5.2.8. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying the following:

1. DQ⊗A Q ∈ R-proj;

2. The projective dimensions pdimA Q and pdimB Q are finite;

3. Exti>0
A (Q,Q) = 0.

If Q−domdim(A,R)> pdimB Q, then Q is a tilting A-module (in the sense of Definition 1.5.120).

Proof. Fix n = pdimB Q. By assumption, DQ− codomdim(A,R) DA ≥ n+ 1, so there exists an exact sequence
Xn

αn−→ Xn−1→·· ·→ X0
α0−→DA→ 0, with Xi ∈ addA DQ which remains exact under HomA(DQ,−). Denote such

a exact sequence by δ . Since n= pdimB Q and HomA(DQ,DA)'Q as B-modules the kernel of HomA(DQ,αn−1)

(which is the image of HomA(DQ,αn)) is projective over B. By projectivization, kerHomA(DQ,αn−1) is isomor-
phic to HomA(DQ,Y ) for some Y ∈ addA DQ and the inclusion of the kernel can be written as HomA(DQ, f ) for
some f ∈HomA(Y,Xn−1). Applying Lemma 2.4.14 on Q⊗B HomA(DQ,δ ) we obtain that HomA(DQ,Y )⊗B DQ'
Y is the kernel of the map HomA(DQ,αn−1)⊗B DQ. It follows that Q is a tilting A-module.

5.2.1.1 Behaviour of relative dominant dimension on long exact sequences

Using Theorem 5.2.5 is now easy to obtain how the relative dominant dimension with respect to a module behaves
in short exact sequences.
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Lemma 5.2.9. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q∈ R-proj. Let M ∈ R-proj and consider the following

(A,R)-exact

0→M1→M→M2→ 0 (5.2.1.7)

which remains exact under HomA(−,Q). Let n = Q− domdim(A,R) M and ni = Q− domdim(A,R) Mi. Then, the

following holds.

(a) n≥min{n1,n2}.

(b) If n1 < n, then n2 = n1−1.

(c) (i) n1 = n =⇒ n2 ≥ n−1.

(ii) n1 = n+1 =⇒ n2 ≥ n.

(iii) n1 ≥ n+2 =⇒ n2 = n.

(d) n < n2 =⇒ n1 = n.

(e) (i) n = n2 =⇒ n1 ≥ n2.

(ii) n = n2 +1 =⇒ n1 ≥ n2 +1.

(iii) n≥ n2 +2 =⇒ n1 = n2 +1.

Proof. By assumption, 0→ HomA(DQ,DM2)→ HomA(DQ,DM)→ HomA(DQ,DM1)→ 0. The remaining of
the proof is exactly analogous to Lemma 2.4.25.

In the same manner, it follows that Q−domdim(A,R) M⊕N = min{Q−domdim(A,R) M,Q−domdim(A,R) N},
for any M⊕N ∈ R-proj.

Usually, proving that a certain exact sequence remains exact under a certain Hom functor might be difficult.
In the following, we show a known result that we can extend an (A,R)-exact sequence if it is only the last
homomorphism not being decomposed into an addQ-approximation.

Lemma 5.2.10. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra and

Q, M ∈ A-mod∩R-proj. Assume that Q−domdim(A,R) M ≥ n≥ 1 where the (A,R)-exact sequence

0→M→ X1→ ·· · → Xn−1, (5.2.1.8)

where Xi ∈ addQ, which remains exact under HomA(−,Q), can be continued to an (A,R)-exact sequence

0→M→ X1→ ··· → Xn−1→ Y (5.2.1.9)

where Y ∈ addQ. Then, Q−domdim(A,R) M ≥ n+1.

Proof. Apply D to the exact sequence (5.2.1.8). Denote by αi the maps DXi → DXi−1, where we fix X−1 :=
DM. Also the map DY → DXn−1 which we will denote by h admits a factorization through kerαn−1, say
ν ◦ π . Since B is a Noetherian R-algebra there exists Z ∈ addDQ such that there exists a surjective map
g : HomA(DQ,Z)→ HomA(DQ,kerαn−1). Further, by projectization, the map HomA(DQ,ν) ◦ g is equal to
HomA(DQ, f ) for some f ∈HomA(Z,DXn−1). By construction, the exact sequence Z

f−→DXn−1→ ···→DX1→
DM→ 0 remains exact under HomA(DQ,−) and if exact it is (A,R)-exact. The remaining of the proof is a routine
check that kerαn−1 = im f . First, observe that HomA(DQ,αn−1 ◦ f ) = HomA(DQ,αn−1)◦HomA(DQ,ν)◦g = 0.
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Thus, αn−1 ◦ f χr
Z = χr

DXn−2
◦HomA(DQ,αn−1 ◦ f ) = 0. So, αn−1 ◦ f = 0. By definition of kernel, there ex-

ists s ∈ HomA(Z,kerαn−1) such that f = ν ◦ s. Since HomA(DQ,−) is left exact, g = HomA(DQ,s). So, s is
a right addDQ-approximation of kerαn−1. In particular, there exists h1 ∈ HomA(DY,Z) such that π = s ◦ h1.
Consequently, s is surjective, as well. This concludes the proof.

Remark 5.2.11. We can observe that Theorem 2.8 of [KSX01] and consequently also Theorem 2.15 of [KSX01],
are particular cases of Lemma 5.2.10 (when n = 1) and Theorem 5.2.2. 4

Recall that ⊥Q = {M ∈ A-mod∩R-proj |Exti>0
A (M,Q) = 0} is a resolving subcategory of A-mod∩R-proj.

In contrast to Lemma 5.2.10, if we know well the last map in an exact sequence and its cokernel, then we can
deduce the value of relative dominant dimension with respect to a module using that exact sequence.

Proposition 5.2.12. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra and

Q ∈ A-mod∩R-proj so that DQ⊗A Q ∈ R-proj and Exti>0
A (Q,Q) = 0. Suppose that M ∈ ⊥Q. An exact sequence

0→M→ Q1→ ··· → Qn (5.2.1.10)

yields Q−domdim(A,R) M ≥ n if and only if Qi ∈ addQ and the cokernel of Qn−1→ Qn belongs to ⊥Q.

Proof. Assume that Q− domdim(A,R) M ≥ n. By definition, Qi ∈ addQ and (5.2.1.10) is (A,R)-exact. Hence,
the cokernel of Qn−1→Qn belongs to A-mod∩R-proj. Denote by Xi the cokernel of Qi−1→Qi and fix Q0 = M.
Combining the conditions of Exti>0

A (Qi,Q) = 0, HomA(−,Q) being exact on (5.2.1.10) and M ∈ ⊥Q, it follows
by induction on i that Xi ∈ ⊥Q.

Conversely, assume that Qi ∈ addQ and the cokernel of Qn−1 → Qn belongs to ⊥Q which we will denote
again by Xn. So, Xn ∈ R-proj and (5.2.1.10) is (A,R)-exact. It follows that Ext1A(Xi,Q) ' Extn−i+1

A (Xn,Q) = 0.
This means that (5.2.1.10) remains exact under HomA(−,Q). So, the result follows.

We note the following application of Lemma 5.2.9 useful in examples.

Corollary 5.2.13. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj and Exti>0
A (Q,Q) = 0. Let M ∈ R-proj and

consider the following (A,R)-exact sequence 0→M→Q1→·· ·→Qt→ X→ 0. If ExtiA(X ,Q) = 0 for 1≤ i≤ t,

then Q−domdim(A,R) M = t +Q−domdim(A,R) X.

Proof. Let Ci be the image of the maps Qi → Qi+1, i = 1, . . . , t − 1. Since Exti>0
A (Q,Q) = 0, it follows that

Ext1A(Ci,Q) ' Extt−i+1
A (X ,Q) = 0. So, every exact sequence 0→Ci → Qi+1 →Ci+1 → 0 remains exact under

HomA(−,Q) (also if we consider C0 =M and Ct =X). By Lemma 5.2.9 and induction on t, the result follows.

5.3 Change of rings on relative dominant dimension with respect to a
module

We will now that, as the usual relative dominant dimension, relative dominant dimension with respect to a module
behaves well under change of rings techniques. As usual, the following results also hold for right A-modules and
consequently with codominant dimension in place of dominant dimension. For brevity, we will only consider the
left versions.

Lemma 5.3.1. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. Assume that M ∈ A-mod∩R-proj, satisfies the following two conditions:
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1. HomA(M,Q) ∈ R-proj;

2. The canonical map R(m)⊗R HomA(M,Q)→HomA(m)(M(m),Q(m)) is an isomorphism for every maximal

ideal m of R.

Then, the following assertions are equivalent.

(a) Q−domdim(A,R) M ≥ 1;

(b) S⊗R Q−domdim(S⊗RA,S) S⊗R M ≥ 1 for every commutative R-algebra S which is a Noetherian ring;

(c) Qm−domdim(Am,Rm) Mm ≥ 1 for every maximal ideal m of R;

(d) Q(m)−domdimA(m) M(m)≥ 1 for every maximal ideal m of R.

Proof. Let S be a commutative R-algebra. Denote by DS the standard duality with respect to S, HomS(−,S). The
result follows from the following commutative diagram:

S⊗R HomA(DQ,DM)⊗B DQ S⊗R DM

S⊗R HomA(DQ,DM)⊗S⊗RB S⊗R DQ

HomS⊗RA(DSS⊗R Q,DSS⊗R M)⊗S⊗RB DS(S⊗R Q) DSS⊗R M

S⊗Rχr
DM

θS,M'

'

ϕS
χr

DSS⊗RM

(5.3.0.1)

where the map θS,M is the isomorphism given in Proposition 1.1.30 while ϕS is the tensor product of the canon-
ical map given in Proposition 1.1.31 (which is not claimed at the moment to be an isomorphism) with the one
providing the isomorphism S⊗R DQ' DSS⊗R Q.

The implications (ii)⇒ (iii)⇒ (iv) are immediate. Assume that (i) holds. Then, χr
DM is surjective. By the

commutative diagram, χr
DSS⊗RM is surjective, and so (ii) follows. Assume that (iv) holds. By condition 2, ϕR(m)

must be an isomorphism for every maximal ideal m of R. Thus, by the diagram, χr
DM(m) is surjective for every

maximal ideal m of R. By Nakayama’s Lemma, χr
DM is surjective and (i) holds.

Lemma 5.3.2. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. For M ∈ A-mod∩R-proj, the following assertions are equivalent.

(a) Q−domdim(A,R) M ≥ n≥ 1;

(b) Q−domdim(S⊗RA,S) S⊗R M ≥ n≥ 1 for every flat commutative R-algebra which is a Noetherian ring;

(c) Q−domdim(Am,Rm) Mm ≥ n≥ 1 for every maximal ideal m of R.

Proof. By the flatness of S, the vertical maps of the commutative diagram (5.3.0.1) are isomorphisms. So, by
Lemma 5.3.1, the implication (a)⇒ (b) is clear for n = 1,2. Again, since S is flat and B is finitely gener-
ated projective over R, S⊗R− commutes with Tor functors over B. Therefore, (b) follows by Theorem 5.2.5.
Analogously, we obtain (c)⇒ (a).

It is no surprise that relative dominant dimension with respect to a module remains stable under extension of
scalars to the algebraic closure. For sake of completeness, we give the result.

Lemma 5.3.3. Let k be a field with algebraic closure k. Let A be a finite-dimensional k-algebra and assume that

Q ∈ A-mod. Then, k⊗k Q−domdimk⊗kA k⊗k M = Q−domdimA M.
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Proof. Of course, k is free over k. Therefore, TorB
i (HomA(DQ,DM),DQ) = 0 if and only if

Tork⊗kB
i (Homk⊗kA(k⊗k DQ,k⊗k DM),k⊗k DQ) = 0. By the same reason, χr

DM is surjective (or bijective) if and
only if χr

k⊗kDM
is surjective (or bijective).

Lemma 5.3.4. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. Let M ∈ A-mod∩R-proj, so that HomA(M,Q) ∈ R-proj. Assume that S is a commutative R-algebra

and a Noetherian ring such that the canonical map S⊗R HomA(M,Q)→ HomS⊗RA(S⊗R M,S⊗R Q) is an iso-

morphism. Then, Q−domdim(A,R) M ≤ S⊗R Q−domdim(S⊗RA,S) S⊗R M.

Proof. Assume that Q− domdim(A,R) M ≥ n ≥ 1. Then, there exists an (A,R)-exact sequence 0→M→ X1 →
·· ·→ Xn which remains exact under HomA(−,Q), where Xi ∈ addA Q. The functor S⊗R− preserves R-split exact
sequences. Hence, 0→ S⊗R M→ S⊗R X1→ ··· → S⊗R Xn is (S⊗R A,S)-exact and S⊗R Xi ∈ addS⊗RA S⊗R Q.
By assumption,

HomA(Xn,Q)→ HomA(Xn−1,Q)→ ··· → HomA(X1,Q)→ HomA(M,Q)→ 0 (5.3.0.2)

is exact. Since HomA(M,Q) ∈ R-proj (5.3.0.2) splits over R. Thus, (5.3.0.2) remains exact under S⊗R−. Using
the commutative diagram

S⊗R HomA(Xn,Q) S⊗R HomA(Xn−1,Q) · · · S⊗R HomA(M,Q)

HomS⊗RA(S⊗R Xn,S⊗R Q) HomS⊗RA(S⊗R Xn−1,S⊗R Q) · · · HomS⊗RA(S⊗R M,S⊗R Q)

' ' '

it follows that the bottom row is exact. Hence, S⊗R Q−domdim(A,R) S⊗R M ≥ n.

Finally, we reach the most important result in this section.

Theorem 5.3.5. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. Assume that M ∈ A-mod∩R-proj, satisfies the following two conditions

1. HomA(M,Q) ∈ R-proj;

2. The canonical map R(m)⊗R HomA(M,Q)→HomA(m)(M(m),Q(m)) is an isomorphism for every maximal

ideal m of R.

Then, Q− domdim(A,R) M = inf{Q(m)− domdimA(m) M(m) : m ∈ MaxSpec(R)}, where MaxSpec(R) denotes

the set of maximal ideals of R.

Proof. By Lemma 5.3.4, Q(m)− domdimA(m) M(m) ≥ Q− domdim(A,R) M for every maximal ideal m of R.
Conversely, assume that Q(m)−domdimA(m) M(m)≥ n for every maximal ideal m of R. We want to show that
Q−domdim(A,R) M ≥ n. If n = 0, then there is nothing to show. Using the analogue version of the commutative
diagram (5.1.0.13) for χr we obtain that if n ≥ 1 (n ≥ 2), then χr

DM(m) is surjective (is bijective) for every
maximal ideal m of R. By Nakayama’s Lemma χr

DM is surjective and since DM ∈ R-proj, χr
DM is bijective in case

n≥ 2. So, the inequality holds for n = 1,2. Assume now that n≥ 3. In particular, Q−domdim(A,R) M ≥ 2, and
therefore HomA(DQ,DM)⊗B DQ ∈ R-proj. By assumption, TorB(m)

i (HomA(m)(M(m),Q(m)),D(m)Q(m)) = 0,
where D(m) = HomR(m)(−,R(m)) and 1 ≥ i ≥ n− 2 for every maximal ideal m of R. Let Q• be a deleted B-
projective resolution of DQ. So the chain complex P• = HomA(M,Q)⊗B Q• is a projective complex over R since
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HomA(M,Q) ∈ R-proj. By Lemma 1.3.17, we have the Künneth spectral sequence for chain complexes

E2
i, j = TorR

j (Hi(HomA(M,Q)⊗B Q•),R(m))⇒ Hi+ j(HomA(M,Q)⊗B Q•(m)). (5.3.0.3)

Since HomA(M,Q)⊗B DQ ∈ R-proj, HomA(M,Q)⊗B Q•(m) becomes a deleted projective B(m)-resolution of
DQ(m). We shall proceed by induction on 1 ≤ i ≤ n−2 to show that TorB

i (HomA(M,Q),DQ) = 0. By Lemma
1.3.7, TorB

1 (HomA(M,Q),DQ)⊗R R(m) = 0 for every maximal ideal m of R. Hence, TorB
1 (HomA(M,Q),DQ) =

0. Assume now that TorB
i (HomA(M,Q),DQ) = 0 for all 1≤ i≤ l with 1≤ l ≤ n−2 for some l. Then, E2

i, j = 0,
for 1≤ i≤ l, j ≥ 0 and E2

0, j = 0, j > 0. By Lemma 1.3.12, it follows that TorB
l+1(HomA(M,Q),DQ)(m) = 0 for

every maximal ideal m of R. Therefore, TorB
i (HomA(M,Q),DQ) = 0 for 1 ≤ i ≤ n− 2. By Theorem 5.2.5, the

result follows.

Remark 5.3.6. The condition DQ⊗A M ∈ R-proj implies both of the conditions required in Theorem 5.3.5. 4

Combining Theorem 5.3.5 with Lemma 5.3.3, we obtain that, in most applications, the computations of
relative dominant dimension with respect to a module over a commutative ring can be reduced to computations
of relative dominant dimension with respect to a module in the setup of algebraically closed fields.

It may seem unnatural the condition DQ⊗A M ∈ R-proj but we should refer once again that projective mod-
ules, or more generally tilting modules of split quasi-hereditary algebras do satisfy such a condition. The follow-
ing result explains why we should expect that there are many modules with such a condition (see also [CPS96,
1.5.2(e), (f)]).

Lemma 5.3.7. Let R be a commutative Noetherian ring and let A be a projective Noetherian R-algebra. Let

Q ∈ A-mod∩R-proj. If Ext1A(m)(Q(m),Q(m)) = 0 for every maximal ideal m of R, then DQ⊗A Q ∈ R-proj.

Proof. For each maximal ideal m of R,

TorA(m)
1 (DQ(m),Q(m)) = HomR(m)(Ext1A(m)(Q(m),Q(m)),R(m)) = 0. (5.3.0.4)

Let Q• be a deleted projective A-resolution of Q. Since Q∈R-proj, Q•(m) is a deleted projective A(m)-resolution
of Q(m). Thus, applying Lemma 1.3.17 with P = DQ⊗A Q• we obtain

E2
i, j = TorR

i (TorA
j (DQ,Q),R(m)) = TorR

i (H j(DQ⊗A Q•),R(m))

⇒ Hi+ j(DQ⊗A Q•⊗R R(m)) = TorA(m)
i+ j (DQ(m),Q(m)). (5.3.0.5)

By Lemma 1.3.7, E2
1,0 = TorR

1 (DQ⊗A Q,R(m)) = 0 for every maximal ideal m of R. Hence, DQ⊗A Q ∈ R-proj.

5.4 Quality of cocovers on coresolving subcategories

Again, assume throughout this section that R is a commutative Noetherian ring, A is a projective Noetherian
R-algebra, Q belongs to A-mod∩R-proj with DQ⊗A Q ∈ R-proj and B is the endomorphism algebra EndA(Q)op.

We wish now to compare how high values of relative dominant dimension of A-modules with respect to a
module Q influence the quality of the cocover (A,Q). In particular, our aim is to show that the higher the relative
dominant dimension the more properties we can attach to the cocover. Ultimately, this will allow us to use
cocovers to construct new covers.
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Lemma 5.4.1. Let A be a resolving subcategory of A-mod∩R-proj. Then, the full subcategory

DA := {DX : X ∈A } of A-mod∩R-proj is a relative coresolving subcategory of A-mod∩R-proj.

Proof. Every (A,R)-injective module which is projective over the ground ring can be written as DP for some
projective A-module P. Hence, P ∈A . DA is closed under direct summands since if X ⊕Y ' DM ∈ DA , then
M ∈ R-proj and DX ⊕DY ' DDM ' M ∈ A . Thus, both DX ,DY ' A and consequently X ' DDX ∈ DA .
It is closed under extensions since every extension is an (A,R)-exact sequence, and therefore it remains exact
under D and the middle term is also projective over the ground ring. So, A being closed under extensions
immediately implies that DA is closed under extensions. It remains to prove that DA is closed under cokernels
of monomorphisms. Let 0→ X→Y → Z→ 0 be an exact sequence in A-mod∩R-proj with Y 'DY ′ and Z 'DZ′

where Y ′,Z′ ∈A . So, the exact sequence under consideration is (A,R)-exact. Applying D and the fact that A is
closed under kernels of epimorphisms it follows that DZ ∈A . Hence, Z ' DDZ ∈ DA .

The definition of cocover motivates us to study faithfullness in relative coresolving subcategories instead
of resolving subcategories. Here, relative coresolving subcategories because we just want the relative injective
modules instead of the ”absolute” injective modules. Hence, it is natural to make the following definition.

Definition 5.4.2. Let A be a projective Noetherian R-algebra. Let C be a relative coresolving subcategory of
A-mod∩R-proj. Let B = EndA(Q)op and i≥ 0. We say that the pair (A,Q) is an i−C cocover of B if the functor
F = HomA(Q,−) induces isomorphisms

Ext j
A(M,N)→ Ext j

B(FM,FN), ∀M,N ∈ C , j ≤ i.

We say that (A,Q) is an (−1)−C cover of B if (A,Q) is a cocover of B and F induces monomorphisms

HomA(M,N)→ HomB(FM,FN), ∀M,N ∈ C .

In the following, by an i-cocover we mean an i− (A,R)-inj∩R-proj cocover.

Lemma 5.4.3. Let X be the full subcategory of A-mod∩R-proj whose modules X satisfy DQ−domdim(A,R) DX ≥
2. Then, HomA(Q,−) is fully faithful on X .

Proof. By Theorem 5.2.1, χX is an isomorphism for every X ∈X . Fix F = HomA(Q,−) and I its left adjoint.
Then, if F f = 0 for some f ∈ HomX (M,N), we obtain f ◦ χM = χN ◦ IF f = 0. Hence, in such a case, f = 0.
So, F is faithful. To show fullness, let g ∈ HomB(FM,FN) with M,N ∈X . Fixing h = χN ◦ Ig ◦ χ

−1
M we get

Fh = g.

Lemma 5.4.4. Let M ∈ A-mod. Suppose that TorB
i (Q,FM) = Li I(FM) = 0 for 1 ≤ i ≤ q. For any X ∈ Q⊥ :=

{Y ∈ A-mod |Exti>0
A (Q,Y ) = 0}, there are isomorphisms ExtiA(IFM,X) ' ExtiB(FM,FX), 0 ≤ i ≤ q, and an

exact sequence

0→ Extq+1
A (IFM,X)→ Extq+1

B (FM,FX)→ HomA(TorB
q+1(Q,FM),X)

→ Extq+2
A (IFM,X)→ Extq+2

B (FM,FX). (5.4.0.1)

Proof. Let X ∈ A-mod such that Exti>0
A (Q,X) = 0. Fix i = 0. Then, by Tensor-Hom adjunction,

HomA(IFM,X)' HomB(FM,FX). (5.4.0.2)
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To obtain the result for higher values we will use Theorem 10.49 of [Rot09]. So, fix f = HomA(−,X) and
g = Q⊗B−. f is a contravariant left exact and g is covariant. We note that gP is f -acyclic for any P ∈ B-proj. In
fact, R j>0 f (gP) = Ext j>0

A (gP,X) = 0, since gP = Q⊗B P ∈ addA Q. So, for each a ∈ B-mod, there is a spectral
sequence

E i, j
2 = (Ri f )(L jg)(a)⇒ Ri+ j( f ◦g)(a). (5.4.0.3)

By Tensor-Hom adjunction f ◦ g(N) = HomA(Q⊗B N,X) ' HomB(N,HomA(Q,X)) = HomB(−,FX)(N), for
every N ∈ B-mod. Hence, we can rewrite the previous spectral sequence into

E i, j
2 = ExtiA(TorB

j (Q,a),X)⇒ Exti+ j
B (a,FX). (5.4.0.4)

For each M ∈ A-mod, fix a = FM. By assumption, TorB
i (Q,FM) = 0 for 1 ≤ i ≤ q. Hence, E i, j

2 = 0, 1 ≤ i ≤ q.
By Lemma 1.3.10, the result follows.

Theorem 5.4.5. Let R be a commutative Noetherian ring. Let A be a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. If Q− codomdim(A,R) DA ≥ n ≥ 2, then

(A,Q) is an (n−2)-cocover of EndA(Q)op.

Proof. Denote by B the endomorphism algebra EndA(Q)op. By Lemma 1.2.58, any (A,R)-injective module
belongs to Q⊥. By Proposition 5.1.2 and Theorem 5.2.1, (A,Q) is a cocover of EndA(Q)op. Further, it is also
clear that HomA(M,X) ' HomB(FM,FX) ∈ R-proj for every (A,R)-injective projective R-modules M,X . The
result now follows from Lemma 5.4.4.

Note that this value is optimal if TorB
n−1(Q,DQ) is not just non-zero but also a projective R-module.

5.5 Relations between Ringel duality and cover theory

In Section 3.1, we were always comparing the quality of covers, through the computation of Hemmer-Nakano
dimensions on certain resolving subcategories like A-proj and F (∆̃) (in case A is split quasi-hereditary). So, the
focus for cocovers should rely on (A,R)-inj∩R-proj and F (∇̃). In particular, we may wonder what information
does the ”level of faithfulness” on F (∇̃) of a functor HomA(Q,−) provide for a given tilting module Q of a split
quasi-hereditary algebra. It turns out that this pursuit will lead us back to cover theory. Moreover, this approach
will show us a connection between Ringel duality and cover theory.

Recall that for a given set (possibly infinite) of modules Θ in A-mod∩R-proj, F (Θ) denotes the full subcat-
egory of A-mod∩R-proj whose modules admit a filtration by the modules in Θ.

Theorem 5.5.1. Let R be a commutative Noetherian ring. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary R-

algebra with a characteristic tilting module T . Denote by RA the Ringel dual of A, that is RA = EndA(T )op.

Assume that Q ∈ addT is a (partial) tilting module of A. Then, the following assertions hold.

(a) Q− codomdim(A,R)F (∇̃) = Q− codomdim(A,R) T = Q− codomdim(A,R)
⊕
λ∈Λ

∇(λ ).

(b) If Q− codomdim(A,R) T ≥ n≥ 2, then (A,Q) is an (n−2)−F (∇̃) cocover of EndA(Q)op.

(c) If Q− codomdim(A,R) T ≥ 3, then the functor F = HomA(Q,−) induces an exact equivalence between

F (∇̃) and F (F∇̃).

366



Chapter 5. Cocovers and relative codominant dimension with respect to a module

(d) If Q−codomdim(A,R) T ≥ n≥ 2, then (RA,HomA(T,Q)) is an (n−2)-F (∆̃RA) split quasi-hereditary cover

of EndA(Q)op.

Proof. The proof of (a) is analogous to Theorem 2.11.1. Thanks to HomA(Q,−) and D being exact on short
exact sequences of modules belonging to F (∇̃) we obtain that we can apply Lemma 5.2.9 to the filtrations by
costandard modules. Further, for every X ∈ R-proj so that Rt ' X⊕Y

Q− codomdim(A,R) ∇(λ ) = Q− codomdim(A,R) ∇(λ )t (5.5.0.1)

= min{Q− codomdim(A,R) ∇(λ )⊗R X ,Q− codomdim(A,R) ∇(λ )⊗R Y}. (5.5.0.2)

Therefore, Q−codomdim(A,R)
⊕
λ∈Λ

∇(λ ) = Q−codomdim(A,R)F (∇̃). Now using the exact sequences (1.5.14.2)

together with Lemma 5.2.9 and the reasoning of Theorem 2.11.1, assertion (a) follows.
By Proposition 1.5.133, DQ⊗A Q ∈ R-proj. As before, By Lemma 1.2.58, any (A,R)-injective module be-

longs to Q⊥. By Proposition 5.1.2 and Theorem 5.2.1, (A,Q) is a cocover of EndA(Q)op. By Theorem 5.2.5,
TorB

i (Q,FM) = 0, 1 ≤ i ≤ n− 2 for every M ∈F (∇̃). By Lemma 5.4.4, ExtiB(FM,FX) ' ExtiA(IFM,X) for
0≤ i≤ n−2, where M,X ∈F (∇̃). Since χM is an isomorphism for every M ∈F (∇̃), (b) follows.

By the exactness of F on F (∇̃) and according to Lemma 1.1.33, F(∇(λ )⊗R X) ' F∇(λ )⊗R X for every
λ ∈ Λ and X ∈ R-proj, the restriction of the functor F on F (∇̃) has image in F (F∇̃). By (b), it is enough to
prove that for each module M in F (F∇̃), there exists N ∈F (∇̃) so that FN 'M. By (b), the functor I= Q⊗B−
is exact on short exact sequences of modules belonging to F (F∇̃). Thanks to Q⊗B F∇(λ )⊗R X ' ∇(λ )⊗R X

for every X ∈ R-proj and λ ∈ Λ, we obtain that I sends F (F∇̃) to F (∇̃). So, (c) follows.
Assume now that Q− codomdim(A,R) T ≥ n ≥ 2. Fix B = EndA(Q)op. By Lemma 1.5.121, for each M ∈

F (∇̃),

HomRA(HomA(T,Q),HomA(T,M))' HomA(Q,M) (5.5.0.3)

as (B,RA)-bimodules. In particular, HomRA(HomA(T,Q),RA)' HomA(Q,T ) as (B,RA)-bimodules. By (c), F is
fully faithful on F (∇̃). Hence,

EndB(HomA(Q,T ))op ' EndA(T )op (5.5.0.4)

and EndRA(HomA(T,Q))op ' EndA(Q)op. So, (RA,HomA(T,Q)) is a split quasi-hereditary cover of B. Now, by
(b) and Lemma 1.5.121, for each M ∈F (∇̃),

ExtiB(HomA(Q,T ),HomRA(HomA(T,Q),HomA(T,M)))' ExtiB(HomA(Q,T ),HomA(Q,M)) (5.5.0.5)

= ExtiB(FT,FM) = 0, 1≤ i≤ n−2. (5.5.0.6)

By Theorem 1.5.122 and Proposition 3.1.18, we conclude the proof.

We note that since every projective module is the image of a (partial) tilting under the Ringel dual functor,
every quasi-hereditary cover can be recovered/discovered using this approach. More precisely, every split quasi-
hereditary algebra A is Morita equivalent to the Ringel dual of its Ringel dual RRA and every projective over
RRA can be written as HomRA(TRA ,Q) for some Q ∈ addTRA , where TRA is a characteristic tilting module of RA.
Hence, every split quasi-hereditary cover can be written in the form (RA,HomA(T,Q)) for some split quasi-
hereditary algebra A, T a characteristic tilting module and Q ∈ addT . This dramatically increases the scope
of the theory of quasi-hereditary covers since before the main tools to construct these covers were the classical

367



5.5. Relations between Ringel duality and cover theory

dominant dimension (covers related with a projective-injective module) and Dlab-Ringel standardization for 1-
faithful quasi-hereditary covers. Further, if the split quasi-hereditary algebra A also has a duality the Ringel dual
of A is a cover of the cellular algebra EndA(Q)op whenever Q is a (partial) tilting module (that is, Q ∈ addT for
a characteristic tilting module T ) having a double centralizer property. Therefore, this description is our main
theoretical example for our main problem of studying split quasi-hereditary covers of cellular algebras.

In Example 6.2.7, we can see an example where a quasi-hereditary cover can be constructed using relative
dominant dimension with respect to a (partial) tilting (non projective-injective) and it cannot be constructed using
Dlab-Ringel standardization. Moreover, in such an example HomA(T,Q) is not injective.

Remark 5.5.2. T −codomdim(A,R)F (∇̃) = T −codomdim(A,R) T =+∞ for a characteristic tilting module T . Of
course, the Ringel dual is an infinite cover of itself. 4

Remark 5.5.3. The cover constructed in Theorem 5.5.1 makes the following diagram commutative

F (∇̃A) F (∆̃RA)

F (F∇̃A)

HomA(T ,−)

HomA(Q,−) HomRA (HomA(T ,Q),−)
. (5.5.0.7)

4

Corollary 5.5.4. Let k be a field. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary k-algebra with a characteristic

tilting module T . Denote by RA the Ringel dual of A, that is RA = EndA(T )op. Assume that Q ∈ addT is a

(partial) tilting module of A and n ≥ 2 is a natural number. Then, Q− codomdim(A,R) T ≥ n ≥ 2 if and only if

(RA,HomA(T,Q)) is an (n−2)-F (∆̃RA) split quasi-hereditary cover of EndA(Q)op.

Proof. It follows by Theorem 5.5.1, equations 5.5.0.3 and 5.5.0.6 together with Theorem 5.2.5.

Therefore, the previous results say that the quality of faithful split quasi-hereditary covers of finite-dimensional
algebras are controlled by the relative codominant dimension of characteristic tilting modules with respect to
(partial) tilting modules.

Also, Theorem 5.5.1 says that for bound quiver algebras with dominant and codominant dimension larger
than one with respect to a projective-injective module we can see which order should we choose (in case there is
more than one) so that the algebra is split quasi-hereditary from a cover point of view.

As application of Theorem 5.5.1, we will establish in Theorem 6.1.4 one of the main findings of this PhD
thesis. That is, we will construct a split quasi-hereditary cover (over any commutative ring) of the cellular algebra
EndSR(n,d(V

⊗d) without restrictions on n and d.

5.5.1 An analogue of Lemma 5.1.2 for Ringel duality

Lemma 5.5.5. Let R be a commutative Noetherian ring. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary R-

algebra with a characteristic tilting module T . Denote by RA the Ringel dual of A, that is RA = EndA(T )op.

Assume that Q ∈ addT is a (partial) tilting module of A and fix B = EndA(Q)op. Then, the following assertions

hold.

(a) If DχT : DT → HomB(HomA(Q,T ),DQ) is an isomorphism, then (RA,HomA(T,Q)) is a split quasi-

hereditary cover of B.

(b) If Dχr
DT : DDT → HomB(HomA(DQ,DT ),DDQ) is an isomorphism, then HomA(T,Q) satisfies a double

centralizer property between RA and B.
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Proof. By projectivization, HomA(T,Q) ∈ RA-proj and EndRA(HomA(T,Q))op ' EndA(Q)op = B. By (a) and
Proposition 1.5.133, we have as (RA,RA)-bimodules

RA = HomA(T,T )' HomAop(DT,DT )' HomAop(DT,HomB(HomA(Q,T ),DQ)) (5.5.1.1)

' HomAop(DT,HomBop(Q,DHomA(Q,T )))' HomBop(DT ⊗A Q,DHomA(Q,T )) (5.5.1.2)

' HomB(HomA(Q,T ),HomA(Q,T )). (5.5.1.3)

Since FRA = HomRA(HomA(T,Q),HomA(T,T ))' HomA(Q,T ) assertion (a) follows.
Now using the isomorphism χr

DT and Proposition 1.5.133 we obtain

RA = HomA(T,T )' HomA(T,HomBop(HomA(T,Q),Q))' HomA(T,HomB(DQ,DHomA(T,Q))) (5.5.1.4)

' HomB(DQ⊗A T,DHomA(T,Q))' HomB(HomA(T,Q),HomA(T,Q)).

We did not yet address the case of Q− codomdim(A,R) T = 1. For this case, we can recover the Ringel dual
being a cover using deformation theory.

Corollary 5.5.6. Let R be a commutative regular Noetherian domain with quotient field K. Let (A,{∆(λ )λ∈Λ})
be a split quasi-hereditary R-algebra with a characteristic tilting module T . Denote by RA the Ringel dual of A,

that is RA = EndA(T )op. Assume that Q ∈ addT is a (partial) tilting module of A so that Q−codomdim(A,R) T ≥
1 and K ⊗R Q− codomdim(K⊗RA) K ⊗R T ≥ 2. Then, (RA,HomA(T,Q)) is a split quasi-hereditary cover of

EndA(Q)op. Moreover, (RA,HomA(T,Q)) is a 0−F (∆̃) split quasi-hereditary cover of EndA(Q)op.

Proof. If Q − codomdim(A,R) T ≥ 2, then this is nothing more than Theorem 5.5.1. Assume that
Q− domdim(A,R) T = 1. By Theorem 5.2.1, χT is surjective. In view of Lemma 5.5.5, it is enough to prove
that DχT is an isomorphism. Since T ∈ R-proj, χT is an (A,R)-epimorphism, and therefore DχT is an (A,R)-
monomorphism. By assumption, K⊗R Q− codomdim(K⊗RA) K⊗R T ≥ 2. Hence, thanks to the flatness of K,
K⊗R DχT is an isomorphism.

Denote by X the cokernel of DχT . As we saw, K⊗R X = 0. In particular, X is a torsion R-module. We
cannot deduce right away that HomB(HomA(Q,T ),DQ) ∈ R-proj but we can embed HomB(HomA(Q,T ),DQ)

into HomR(HomA(Q,T ),DQ) which is projective over R due to both HomA(Q,T ) and DQ being projective over
R. So, HomB(HomA(Q,T ),DQ) is a torsion free R-module. As we did in Theorem 4.1.2.4, applying Proposition
3.4 of [AB59] to DχT we obtain that X must be zero, and consequently DχT is an isomorphism. Denote by FR

the Schur functor and GR its adjoint of this cover. Observe that HomA(T,DA) is a characteristic tilting module
of R(A). Since DχT is a monomorphism and

HomB(HomA(Q,T ),DQ)' HomB(HomA(Q,T ),HomA(Q,DA)) (5.5.1.5)

' HomB(HomR(A)(HomA(T,Q),HomA(T,T )),HomR(A)(HomA(T,Q),HomA(T,DA)))

' GRFR HomA(T,DA), (5.5.1.6)

the claim follows by Proposition 3.1.5.

5.5.2 Ringel self-duality and uniqueness of covers

We will now see how can we relate Ringel self-duality with uniqueness of covers.

Corollary 5.5.7. Let (A,P,V ) be a relative Morita R-algebra. Assume that domdim(A,R) T,codomdim(A,R) T ≥ 3,

for a characteristic tilting module T . Then, there exists an exact equivalence F (F∆̃A)→F (F∇̃A) if and only if
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A is Morita equivalent as split quasi-hereditary algebra to its own Ringel dual.

Proof. By Theorems 5.5.1, 3.5.6 and 3.5.4, (A,P) is a 1-faithful split quasi-hereditary cover of EndA(P)op and
(RA,HomA(T,P)) is a 1-faithful split quasi-hereditary cover of EndA(P)op. As illustrated in Remark 5.5.3, F

restricts to exact equivalences F (∇̃A)→ F (F∇̃A) and F (∆̃A)→ F (F∆̃A). Therefore, there exists an exact
equivalence between F (F∆̃A) and F (F∇̃A) if and only if there exists an exact equivalence between F (∆̃A) and
F (∇̃A). By Corollary 1.5.130, the latter is equivalent to A being Ringel self-dual.

This is an indication that the phenomenon of Ringel self-duality behaves better the larger the dominant
dimension of the characteristic tilting module. As before, for deformations we can weaken the conditions on the
dominant and codominant dimension of the characteristic tilting module.

Corollary 5.5.8. Let R be an integral regular domain with quotient field K. Let (A,P,V ) be a relative Morita

R-algebra. Fix B = EndA(P)op. Assume the following conditions hold.

(i) (K⊗R A,K⊗R P) is a 1-faithful split quasi-hereditary cover of B;

(ii) (K⊗R A,K⊗R P) is a 1−F (∇̃K⊗RA) cocover of B;

(iii) domdim(A,R) T , codomdim(A,R) T ≥ 2 for a characteristic tilting module T ;

(iv) There exists an exact equivalence F (F∆̃A)→F (F∇̃A).

Then, A is Morita equivalent as split quasi-hereditary algebra to its own Ringel dual.

Proof. Observe that domdimA(m) T (m) ≥ 2 and domdimAop(m) DT (m) = codomdimA(m) T (m) ≥ 2 for every
maximal ideal m of R. By Theorem 5.5.1 and Corollary 1.5.118,

(RK⊗RA,HomK⊗RA(K⊗R T,K⊗R P)) = (K⊗R RA,K⊗R HomA(T,P))

is a 1-faithful split quasi-hereditary cover of K ⊗R B, and (RA(m),HomA(T,P)(m)) is a 0-faithful split quasi-
hereditary cover of B(m) for every maximal ideal m of R. By Theorem 3.5.6, (A(m),P(m)) is a 0-faithful split
quasi-hereditary cover of B(m) for every maximal ideal m of R. By Theorem 3.3.11, (RA,HomA(T,P)) and
(A,P) are 1-faithful split quasi-hereditary covers of B. By Remark 5.5.3 and Proposition 3.1.13, there exists an
exact equivalence,

F (∆̃A)→F (F∆̃A)
(iv)−−→F (F∇̃A)→F (∇̃A). (5.5.2.1)

By Corollary 1.5.130, A being Ringel self-dual.

As an application of Corollary 5.5.8 we obtain a new proof for the fact that the Schur algebras SZ[ 1
2 ]
(n,d) are

Ringel self-dual for n≥ d.
So far, the author has not been able to find an example of split quasi-hereditary algebra, not being Ringel

self-dual, with a characteristic tilting module having relative dominant and codominant dimension bigger than 2.
In view of Corollary 5.5.7, such an example would provide a case where there are at least two covers of B having
a large level of faithfulness if one drops the condition about the filtrations of Corollary 3.6.6.
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5.6 Relative dominant dimension with respect to a module in the image
of a Schur functor preserving the highest weight structure

Many split quasi-hereditary algebras can be written as endomorphism algebras of certain projective modules Ae

over a bigger quasi-hereditary algebra A. This is the case for Schur algebras SK(n,d) when n < d (recall Theorem
1.7.5 and Proposition 1.7.7). Further, if the bigger algebra A has large relative dominant dimension with respect
to a projective-(A,R)-injective module P, then one can ask if this can be used to compute the relative dominant
dimension of eAe with respect to the partial tilting module eP.

As we saw in Theorem 5.3.5, we can restrict ourselves to the finite-dimensional algebras for the computations
of relative dominant dimension of costandard modules with respect to a partial tilting module.

Theorem 5.6.1. Let k be a field and (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary algebra over k. Assume that

there exists an idempotent e of A such that both e and A satisfy the conditions of Theorem 1.7.5. Suppose that P

is a projective-injective faithful module. Let M ∈F (∇). If codomdimA M ≥ i, then eP− codomdimeAe eM ≥ i

for i ∈ {1,2}.

Proof. Denote by B=EndA(P)op and by C =EndeAe(eP)op. Since P is a (partial) tilting module the map given by
multiplication by e, B→C is surjective according to Proposition 1.7.7. Thus, C is a quotient of B. In particular,
C-mod is a full subcategory of B-mod. Again by Proposition 1.7.7, the map HomA(P,M)→ HomeAe(eP,eM)

is a surjective left B-homomorphism. Denote such a map by ϕM . We can consider the following commutative
diagram

e · (P⊗B HomA(P,M)) (eP)⊗B HomA(P,M) (eP)⊗B HomeAe(eP,eM) (eP)⊗C HomeAe(eP,eM)

eM eM

eδDM

(e·P)⊗BϕM

χeM

with the composition of the upper rows being surjective (see also Remark 5.1.1). In fact, thanks to the C-mod
being a full subcategory of B-mod we have the isomorphisms

D((eP)⊗C HomeAe(eP,eM))' HomC(HomeAe(eP,eM),D(eP)) = HomB(HomeAe(eP,eM),D(eP)) (5.6.0.1)

' D((eP)⊗B HomeAe(eP,eM)). (5.6.0.2)

Since domdimAop DM = codomdimA M ≥ 1(resp. 2) if and only if δDM is surjective (resp. isomorphism) we
obtain that eδDM is surjective if i = 1 and bijective if i = 2. So, if i = 1 it follows that χeM is surjective, by the
commutative diagram. Assume that i = 2. Then, (e ·P)⊗B ϕM must be injective, and so it is an isomorphism.
This implies that χeM is also an isomorphism.

For larger values of relative dominant dimension the most natural approach to consider is to see when the
exact sequence giving the value of dominant dimension under the Schur functor eA⊗A− gives information about
the relative dominant dimension of eAe with respect to eP. As we know, we can focus only in what happens over
finite-dimensional algebras over a field.

Proposition 5.6.2. Let k be a field. Let (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary k-algebra. Suppose that A

has dominant dimension at least n with exact sequence

0→ A→ P0→ ··· → Pn−1, (5.6.0.3)
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which we will denote by δ , where Pi ∈ addP, i = 0, . . . ,n− 1 for a projective-injective module P. Assume, in

addition, the existence of an idempotent e in the conditions of Theorem 1.7.5. Then, the exact sequence eδ

remains exact under HomeAe(−,eP) if and only if P ∈ addD(eA). In particular, if eδ remains exact under

HomeAe(−,eP), then eP is a projective-injective eAe-module.

Proof. Assume that P ∈ addA D(eA). Then, eP ∈ addeAe D(eAe), that is, eP is injective over eAe. It is clear that
the functor HomeAe(−,eP) is exact.

Conversely, suppose that eδ remains exact under HomeAe(−,eP). Let X0 be the cokernel of A→ P0. Consider
the commutative diagram

HomA(P1,P) HomA(P0,P) HomA(A,P)

HomA(X0,P)

HomeAe(eX0,eP)

HomeAe(eP1,eP) HomeAe(eP0,eP) HomeAe(eA,eP)

(5.6.0.4)

The vertical maps are surjective maps due to Proposition 1.7.7. By assumption, the bottom row of (5.6.0.4) is
exact. Hence, the lower triangle is a epi-mono factorization. Therefore, HomA(X0,P)→ HomeAe(eX0,eP) is
surjective. By Snake Lemma, we obtain that the map HomA(A,P)→ HomeAe(eA,eP) is in addition to being
surjective an injective map. Since eA has a filtration by standard modules over eAe, Exti>0

eAe(eA,eP). By Lemma
2.10 of [GK15] for every M ∈ A-mod,

HomA(M,P)' HomA(M,HomeAe(eA,eP))' HomeAe(eM,eP). (5.6.0.5)

By Theorem 3.10 of [Psa14], this means that there exists an exact sequence 0→ P→ HomeAe(eA,D(eAe)) '
D(eA). Since P is injective, this exact sequence splits and we obtain that P ∈ addA D(eA).

For Schur algebras, this is only true in case V⊗d is projective-injective module since it is a partial tilting
module. We can however give a lower bound to the relative dominant dimension with respect to V⊗d based on
its injective dimension.

Corollary 5.6.3. Let k be a field and A a finite-dimensional k-algebra. Let Q ∈ A-mod with Exti>0
A (Q,Q) = 0.

Suppose that M ∈ ⊥Q and assume that there exists an A-exact sequence

0→M→ Q1→ ·· · → Qn, (5.6.0.6)

with Qi ∈ addQ. Then, Q−domdimA M ≥ n− idimA Q.

Proof. Assume that n > idimA Q, otherwise there is nothing to prove. Denote by Xi the cokernel of Qi−1→ Qi

where by convention we consider Q0 := M. By dimension shifting,

Exti>0
A (Xn−idimA Q,Q)' Exti+1>0

A (Xn−idimA Q+1,Q)' Exti+idimA Q>0
A (Xn,Q) = 0. (5.6.0.7)

So, the exact sequence 0→M→ Q1→ ··· → Qn−idimA Q satisfies the assumptions of Proposition 5.2.12.
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We should mention that, for Schur algebras, even the global dimension remains an open problem for the case
n < d.

Other approach is to consider the homology over EndeAe(eP) by regarding the algebra as a quotient of
EndA(P). This surjective map is not, in general, an homological epimorphism (see Remark 6.2.6). As it turns
out, we do not need such assumption on the map EndA(P)op→ EndeAe(eP)op to give lower bounds of codomi-
nant dimension with respect to eP using the codominant dimension with respect to P. We can use, instead, the
techniques of truncation of covers. This techniques are only fruitful for values of Hemmer-Nakano dimension
greater than or equal to zero but this poses no problem in our situation since the lower cases can be treated using
Theorem 5.6.1.

Theorem 5.6.4. Let k be a field and (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary k-algebra with a duality ω .

Assume that there exists an idempotent e of A such that both e and A satisfy the conditions of Theorem 1.7.5. If

A is a gendo-symmetric algebra with faithful projective-injective A f and ω( f ) = f , then

eA f −domdimeAe eT ≥ domdimA T,

where T is the characteristic tilting module of A.

Proof. We can assume without loss of generality that A is a basic algebra and A f is also basic. If domdimA T = 1,
then the result follows from Theorem 5.6.1. Assume that domdimA T ≥ 2.

By Proposition 1.7.7, eT is the characteristic tilting module of eAe. Hence, the endomorphism algebra
EndeAe(eT )op is the Ringel dual of eAe which we will denote by ReAe. Also, by Proposition 1.7.7 there exists an
exact sequence 0→ X→ RA→ ReAe→ 0 where X is an ideal of the Ringel dual of A. More precisely, X is the set
of all endomorphisms g ∈ EndA(T ) satisfying eg = 0. Fix P = A f . We claim that X HomA(T,P) is the kernel of
the surjective map HomA(T,P)→ HomeAe(eT,eP). Denote this surjection by ψ . Let g ∈ X and l ∈ HomA(T,P)

then e(lg) = (el)(eg) = 0. So, it is clear that X HomA(T,P)⊂ kerψ . Now, let l ∈ HomA(T,P) such that el = 0,
that is, l ∈ kerψ . By assumption, we can write i◦π = idP, where π ∈HomA(T,P). So, e(i◦ l) = ei◦el = 0. This
means that i◦ l ∈ X . Now l = π ◦ i◦ l = (i◦ l) ·π ∈ X HomA(T,P). Now, a k-basis of EndA(T ) can be constructed
using its filtration by modules HomA(∆(ν),∇(ν)), ν ∈ Λ and the liftings of ∆(λ ) ↪→ T (λ )� ∇(λ ) along these
filtrations (see Proposition 1.5.117). In particular, these maps factor through T (λ ), λ ∈ Λ. By assumption,
eS(λ ) = 0 if and only if λ < µ for a fixed µ ∈ Λ, and so eT (λ ) = 0 if and only if λ < µ . Analogously,
EndeAe(eT ) has a k-basis of the maps factoring through eT (λ ) 6= 0. So, X has a basis whose maps T → T factor
through T (λ ), λ < µ . Let gλ denote the idempotent T � T (λ ) ↪→ T and ge = ∑λ<µ gλ . Then, we showed that
X = RAgeRA. In particular, X has a filtration by split heredity ideals of quotients of RA.

As codomdimA T ≥ 2, Theorem 5.5.1 implies that (RA,HomA(T,P)) is a (codomdimA T−2)−F (∆RA) cover
of EndA(P)op. By induction on the filtration of X by split heredity ideals and using Theorem 3.4.1, we obtain
that

(EndeAe(eT ),HomeAe(eT,eP))' (RA/X ,HomA(T,P)/X HomA(T,P)) (5.6.0.8)

is a codomdimA T − 2−F (∆ReAe) cover of EndRA/X (HomA(T,P)/X HomA(T,P))op which is isomorphic to
EndReAe(HomeAe(eT,eP))op ' EndeAe(eP)op. By Lemma 5.4.4 and 5.2.5, it follows that

eP− codomdimeAe eT = eA f −domdimeAe eT ≥ domdimA T = codomdimA T.
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5.7 The reduced grade with respect to a module

For this section, we return to the general case of R being a Noetherian commutative ring and A a projective
Noetherian R-algebra. In [GK15], Koenig and Gao compared the Auslander-Bridge grade with dominant di-
mension. We will now see that the same method also works for relative dominant dimension over any ring with
respect to a module once we replace the Ext in the notion of grade by Tor, giving rise to the name cograde. Also,
this technique has the advantage of avoiding to deal with approximations. There is, however, another modifica-
tion that needs to be considered. We are not interested in the case of grade being zero, and so we will instead
talk about the dual notion of reduced grade (see for example [Hos90]). Roughly speaking, the reduced grade will
coincide with the notion of grade if the grade is non-zero otherwise the reduced grade is bigger than the grade.

Definition 5.7.1. Let R be a Noetherian commutative ring and A a projective Noetherian R-algebra. Let X ∈
mod-A∩R-proj and M ∈ A-mod∩R-proj. The reduced cograde of X with respect to M, written as rcogradeM X ,
is defined as the value

rcogradeM X = inf{i > 0|TorA
i (X ,M) 6= 0}.

Analougously, we can define the reduced cograde of a right module with respect to a left module.

The following is based on Theorem 2.3 of [GK15].

Theorem 5.7.2. Let R be a Noetherian commutative ring and A a projective Noetherian R-algebra. Assume

that Q ∈ A-mod∩R-proj satisfying in addition that DQ⊗A Q ∈ R-proj. Denote by B the endomorphism algebra

EndA(Q)op. For any Y ∈ A-mod∩R-proj with an exact sequence

Q1
f−→ Q0→ Y → 0, (5.7.0.1)

define X = cokerHomA( f ,Q) ∈mod-B. Then, Q−domdim(A,R)Y ≥ n≥ 1 if and only if rcogradeDQ X ≥ n+1.

Proof. Applying the functor HomA(−,Q) yields the exact sequence

0→ HomA(Y,Q)→ HomA(Q0,Q)
HomA( f ,Q)−−−−−−→ HomA(Q,Q)� X . (5.7.0.2)

Denote by C the kernel of HomA(Q,Q)→X which is the same as the image of HomA( f ,Q). Since HomA(Q,Q)∈
proj-B by applying −⊗B DQ we obtain the exact sequence

0→ TorB
1 (X ,DQ)→C⊗B DQ ι−→ HomA(Q1,Q)⊗B DQ→ X⊗B DQ→ 0 (5.7.0.3)

and TorB
i+1(X ,DQ) =TorB

i (C,DQ), i≥ 1. Since Y ∈R-proj we can consider the (A,R)-exact sequence 0→DY →
DQ0→ Dim f → 0. Applying HomA(DQ,−) to such exact sequence we obtain the commutative diagram

TorB
1 (C,DQ) HomA(DQ,DY )⊗B DQ HomA(DQ,DQ0)⊗B DQ C⊗B DQ

0 DY DQ0 Dim f

χr
DY

χr
DQ0'

π2

(5.7.0.4)

and TorB
i+1(C,DQ)'TorB

i (HomA(DQ,DY ),DQ) for all i≥ 1. Thus, TorB
i (HomA(DQ,DY ),DQ)'TorB

i+2(X ,DQ),
for all i ≥ 1. By the commutativity of the diagram (5.7.0.4) we can complete the diagram with a map
g : C⊗B DQ→ Dim f . By Snake Lemma, there exists an exact sequence ker χr

DY → 0→ kerg→ coker χr
DY →

0→ cokerg→ 0. Also, by the diagram (5.7.0.4) we obtain that ker χr
DY ' TorB

1 (C,DQ).Therefore, ker χr
DY '

TorB
2 (X ,DQ). So, it remains to show that coker χr

DY = 0 if and only if TorB
1 (X ,DQ) = 0. For that, consider the

374



Chapter 5. Cocovers and relative codominant dimension with respect to a module

diagram

DQ0 Dim f DQ1

HomA(DQ,DQ0)⊗B DQ C⊗B DQ HomA(DQ,DQ1)⊗B DQ

π1

�

k

?

π2

χr
DQ0

ι

g χr
DQ1 ' . (5.7.0.5)

By construction of g, � is a commutative diagram. Since C is isomorphic to the image of HomA(DQ,D f ),
HomA(DQ,D f )⊗B DQ factors through C⊗B DQ. More precisely, ι ◦π2 = HomA(DQ,D f )⊗B DQ. Observe that
k ◦π1 = D f . Hence, the external diagram is commutative. Therefore,

k ◦g◦π2 = k ◦π1 ◦χ
r
DQ0

= D f χ
r
DQ0

= χ
r
DQ1
◦HomA(DQ,D f )⊗B DQ = χ

r
DQ1
◦ ι ◦π2. (5.7.0.6)

By the surjectivity of π2, the diagram ? is commutative. Now, assume that, coker χr
DY = kerg = 0, then the

diagram ? implies that ι is injective. By (5.7.0.3), TorB
1 (X ,DQ) = 0. Conversely, suppose that TorB

1 (X ,DQ) = 0.
Then, ι is injective and k ◦g = χr

DQ1
◦ ι is injective. Thus, g is injective and χr

DY is surjective.

5.8 Wakamatsu tilting conjecture for quasi-hereditary algebras

In this section, we apply Theorem 5.5.1 to deduce that a Wakamatsu tilting module which is also a (partial) tilting
module over a quasi-hereditary algebra must be a characteristic tilting module.

Theorem 5.8.1. Let R be a Noetherian commutative ring and (A,{∆(λ )λ∈Λ}) be a split quasi-hereditary R-

algebra. Assume that T is a characteristic tilting module and Q ∈ addA T is a partial tilting module.

If Q−domdim(A,R) = +∞, then Q is a characteristic tilting module of A.

Proof. Consider first that R is a field. By assumption, DQ− codomdim(Aop,R) DA =+∞. Since HomAop(DQ,−)
is exact on F (∇̃Aop) we obtain by Lemma 5.2.9 that DQ−codomdim(Aop,R)F (∇̃Aop) = +∞. By Theorem 5.5.1,
(EndAop(DT )op,HomAop(DT,DQ)) is an +∞ faithful split quasi-hereditary cover of EndAop(DQ)op. By Corollary
3.2.3, EndAop(DT )op is Morita equivalent to EndAop(DQ)op. In particular, by projectization, DT and DQ have
the same number of indecomposable modules. Therefore, addAop DQ = addAop DT , and so Q is a characteristic
tilting module. Assume now that R is an arbitrary Noetherian commutative ring. If Q−domdim(A,R) =+∞, then
we have Q(m)− domdimA(m) = +∞ for every maximal ideal m of R. Hence, Q(m) is a characteristic tilting
module for every maximal ideal m of R. By Proposition 1.5.131, we conclude that Q is a characteristic tilting
module.

Historical Remarks

Many generalizations of dominant dimension have been proposed over the years. Here, we are proposing one for
the setup of projective Noetherian algebras over a Noetherian commutative ring. The essence of the dominant
dimension is being an invariant that controls the connection between the representation theory of two algebras.
Some desired properties are its left-right symmetry, the existence of a version of a Mueller characterization of
dominant dimension (including the relation of dominant dimension of an algebra and double centralizer proper-
ties, see [Mue68]) and the ground ring should not be an obstacle to dominant dimension of an algebra. This last
means that a regular module over any commutative Noetherian algebra (which is an algebra over itself) should
have infinite dominant dimension.
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Since projective-injective modules rarely exist for projective Noetherian algebras over Noetherian commuta-
tive rings, there were some approaches to extending dominant dimension by replacing the projective modules for
flat (see [Hos89]) or even torsionless (see [Kat68]) modules. Neither of these approaches seemed successful in
the long run. Other approach was the introduction of the so-called U-dominant dimension (see [Mor70]). Basi-
cally, here one replaces projective-injectives by modules in the additive closure of U . This approach seems more
fruitful compared to the previous ones, especially if one is interested in double centralizer properties. Such ideas
were exploited in [KSX01]. Note that for the cases where U is projective-injective, one recovers the original
definition of dominant dimension. An extension of both U-dominant dimension and dominant dimension based
on flat modules was introduced in [Hua06]. Unfortunately, most of these concepts lack a similar characterization
theorem for dominant dimension of the form developed in [Mue68] and in some of these notions even a left-right
symmetry is not guaranteed. Another variation of U-dominant dimension was proposed in [Hua05].

Our attempt here is to find a generalization of dominant dimension that captures the properties that dominant
dimension should have, and, in particular, to also introduce a notion of dominant dimension with respect to a
module that coincides with the original when the module is projective-injective. In doing so, we also generalize
the notion of faithful dimension introduced in [BS98]. Moreover, the faithful dimension of a module Q coincides
with the dominant dimension of the regular module (of a finite-dimensional algebra over a field) with respect to
the module Q. Here, one could ask why not calling it relative faithful dimension to this new generalization. One
of the reasons is that faithful modules do not play a role in the relative setup (of algebras over a Noetherian ring).
They are replaced by relative strongly faithful modules. Another reason is the notion introduced here of relative
dominant dimension with respect to a module Q really controls in some sense the connection of the algebras A

and the endomorphism algebra of Q over A. In particular, our focus lies more in evaluating how much the functor
HomA(Q,−) (or HomA(HomA(Q,−),−) depending of the context that we are working in) is fully faithful than
evaluating how much Q is faithful. Recently, the U-dominant dimension has attracted some interest where U is
chosen to be an injective module (see [LZ21]). This case is a particular case of the relative dominant dimension
with respect to U here proposed giving more evidence that the generalization of dominant dimension here studied
is the right one to consider.

In the literature, the words of cover and cocover appear very often (even in representation theory) but one
must be careful not to confuse concepts. However, we would like to remark that there are some resemblances of
the notions cover/cocover that appear for example in [HU96, AS80] and the covers (in the sense of Rouquier) and
cocovers that we introduce here. If (A,P) is a cover of B, then addB HomA(P,A) (which is equivalent to A-proj
under the cover assumption) is a cover of B-mod in the terminology of [AS80]. On the other hand, if (A,Q) is
a cocover of B, then addB DQ (which is equivalent to (A,R)-inj∩R-proj) is a cocover of B-proj in the sense of
[HU96].
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Chapter 6

Applications and Examples - Part II

The main examples in this thesis are the class of Schur algebras and the BGG category O of semi-simple Lie
algebras, in both cases over commutative rings. Applying the results of the previous chapters culminates in new
proofs of Ringel self-duality of Schur algebras SK(n,d) with parameters n≥ d where K is a field of characteristic
distinct from two and of Ringel self-duality of blocks of the BGG category O of complex semi-simple Lie
algebras. Both cases illustrate the advantage of going integrally and relative to split quasi-hereditary covers with
better quality. For the class of Schur algebras SR(n,d) with parameters n < d our approach culminates in the
discovery of new split quasi-hereditary covers and lower bounds for their quality.

6.1 Generalized Schur algebras in the sense of Donkin

We considered so far only the Schur algebras SR(n,d) with parameters n ≥ d mainly because, once we drop
n ≥ d, the pair (SR(n,d),V⊗d) is no longer, in general, a split quasi-hereditary cover of EndSR(n,d)(V

⊗d)op. At
first sight, one could think that this is just a small technicality since the definition of Schur algebras does not
make a distinction between these two cases. But, if we look from the symmetric group side of the definition
of Schur algebra we see already a big change. If n ≥ d, the RSd-module V⊗d is faithful whereas if n < d it
is not. Further, the higher the difference between d and n with d > n the farther is V⊗d from being faithful
as RSd-module. In fact, the annihilator of V⊗d over RSd grows by decreasing the parameter n. Taking into
account KSd being a self-injective algebra over a field K, it becomes clear that the first case involves classical
dominant dimension while the second case seems more complicated. We aim to unify these two cases by using
the relative dominant dimension theory. For us, to make such a distinction between these cases will be similar
to the the study of classical Schur–Weyl duality between the general linear group and Sd . First, one deals with
algebraically closed fields/infinite fields. Second, we try to transfer the results from algebras over infinite fields
to algebras over finite fields and finally we transfer the information from algebras over fields to algebras over
arbitrary commutative rings. Typically, this involves using the known particular case to understand the more
general case. In this situation, this strategy reads as follows: apply the known results for the case n ≥ d into
the case n < d. Such technique was made possible using Schur functors by Green [Gre07] to transfer properties
from SR(d,d) to SR(n,d) with n < d. In [KSX01] this relation between these two Schur algebras was exploited to
deduce Schur–Weyl duality between SR(n,d) and RSd in both cases n≥ d and n < d for arbitrary fields without
using invariant theory. Here, we will use this relation to regard the cover (SR(n,d),V⊗d) with n ≥ d studied in
Section 4.1 as a particular case of a more general cover that contains both situations n≥ d and n < d. This gives
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an additional motivation to compute the relative dominant dimension studied in Chapter 5. This phenomenon
also explains why [KSX01] were successful since their situation is a special case of relative dominant dimension
that we use here.

For the benefit of the reader, we shall start by recalling the connection between SR(d,d) and SR(n,d) if n < d.
For simplicity, we will focus on the case of Schur algebras but all these results in this section for Schur algebras
have analogue versions for q-Schur algebras.

Theorem 6.1.1. [Gre07, 6.5]Let n,d be natural numbers so that d > n. Define

Λ(d,d)n := {β ∈ Λ(d,d) : βn+1 = · · ·= βd = 0}.

Let R be a commutative Noetherian ring. Define the idempotent f = ∑
β∈Λ(d,d)n

ξβ . Then,

f SR(d,d) f = SR(n,d).

Moreover, f (Rd)⊗d ' (Rn)⊗d as SR(n,d)-modules.

Proof. Recall that SR(d,d) has an R-basis {ξi, j : i, j ∈ I(d,d)} and SR(n,d) has an R-basis {ξi, j : i, j ∈ I(n,d)}.
Consider the injective map ϒ : Λ(n,d)→Λ(d,d), given by α 7→ (α1, · · · ,αn,0, · · · ,0). The image of ϒ is exactly
Λ(d,d)n. Note that if i ∈ I(d,d) has weight β ∈ Λ(d,d)n, then i ∈ I(n,d). By Equation (4.1.0.2), the following
holds for each i, j ∈ I(d,d)

f ξi, j = ∑
β∈Λ(d,d)n

ξβ ξi, j = ∑
β∈Λ(d,d)n

∑
[k]∈I(d,d)/∼

1{k∈I(d,d) : ω(k)=β}(k)ξk,kξi, j (6.1.0.1)

= ∑
β∈Λ(d,d)n

∑
[k]∈I(d,d)/∼

1{k∈I(d,d) : ω(k)=β}(k)1{i∼k}(k)ξi, j =

ξi, j, if i ∈ I(n,d)

0, otherwise.
(6.1.0.2)

Here, ω(k) means the weight of k. Analogously,

ξi, j f =

ξi, j, if j ∈ I(n,d)

0, otherwise.
(6.1.0.3)

This shows that f SR(d,d) f = SR(n,d). By (4.1.0.4), (Rd)⊗d ' SR(d,d)ξλ with λ = (1, · · · ,1) ∈ Λ(d,d). So,

f (Rd)⊗d ' f SR(d,d)ξλ . (6.1.0.4)

Hence, the left SR(n,d)-module f (Rd)⊗d is generated by { f ξi, jξλ : i, j ∈ I(d,d)} and for i, j ∈ I(d,d)

f ξi, jξλ = f ξi, j1{ω( j)=λ}( j) =

ξi, j, if i ∈ I(n,d) and ω( j) = λ ,

0, otherwise.
(6.1.0.5)

Moreover, ξi, j(e1⊗ ·· ·⊗ ed) = ei1 ⊗ ·· ·⊗ eid for i ∈ I(n,d) and ω( j) = λ . Therefore, f SR(d,d)ξλ → (Rn)⊗d ,
given by f ξi, jξλ 7→ f ξi, jξλ (e1⊗·· ·ed) is an SR(n,d)-isomorphism.

The following result can also be found in 4.2 and 3.9 of [Erd94].

Corollary 6.1.2. Let n,d be natural numbers so that d > n. Then, the following assertions hold.

(a) For any field K, the idempotent f = ∑
β∈Λ(d,d)n

ξβ ∈ SK(d,d) satisfies the hypothesis of Theorem 1.7.5.
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(b) V⊗d is a partial tilting module of SR(n,d).

Further, if R = K is a field then,

(i) The (partial) tilting indecomposable modules of SK(n,d) are the image of the (partial) tilting indecompos-

able modules of SK(d,d) under the Schur functor HomSR(d,d)(SR(d,d) f ,−);

(ii) The partial tilting module T (λ ) is a summand of V⊗d ∈ SR(n,d)-mod if and only if λ is a charK-regular

partition of d in at most n parts.

Proof. By Theorem 4.1.2 and applying f SR(d,d) to the split heredity chain of SR(d,d) we obtain f ∆(µ) = 0 for
every partition µ of d in m parts with m > n. Now fix an arbitrary field K, since ∆(µ)� S(µ) the idempotent
f = ∑

β∈Λ(d,d)n
ξβ satisfies the condition fixing Γ to be the subset of all partitions of d in at least n+1 parts. Since

V⊗d is the image of a projective-injective module by the Schur functor HomSR(d,d)(SR(d,d) f ,−), (b) follows by
Proposition 1.7.7. The remaining follows by Proposition 4.1.4, Theorem 6.1.1 and Proposition 1.7.7.

Theorem 6.1.3. Let R be a commutative Noetherian ring and n,d be natural numbers. Let T be a characteristic

tilting module of SR(n,d). Then,

V⊗d−domdim(SR(n,d),R) T ≥ inf{k ∈ N | (k+1) ·1R /∈U(R), k < d} ≥ 1.

Proof. The result follows from Theorems 5.6.4, 6.1.1, 5.3.5 and Corollary 4.1.8.

This inequality is sharp in general since this becomes an equality in case n ≥ d. Although the lower bound
might be just one, this is already quite a strong statement giving that the rational Schur algebra is semi-simple.
This brings us to one of the main theorems of this chapter.

Theorem 6.1.4. Let R be a commutative Noetherian ring. Denote by R(SR(n,d)) the Ringel dual of the Schur

algebra SR(n,d) (there are no restrictions on the natural numbers n and d). Then, the following assertions hold.

(i) EndSR(n,d)(V
⊗d)op is a cellular algebra.

(ii) Let T be a characteristic tilting module of SR(n,d). Then, (R(SR(n,d)),HomSR(n,d)(T,V
⊗d)) is a

(V⊗d−domdim(SR(n,d),R) T −2)−F (∆̃R(SR(n,d))) split quasi-hereditary cover of EndSR(n,d)(V
⊗d)op.

Proof. The assertion (i) follows from Theorems 1.6.20 and 4.1.2 together with the existence of the standard
duality on Schur algebras.

The assertion (ii) follows from Theorems 6.1.3, 5.5.1 and Proposition 5.2.7, if V⊗d−domdim(SR(n,d),R) T ≥ 2.
For R = Z, it follows that (R(SR(n,d)),HomSR(n,d)(T,V

⊗d)) is a 0−F (∆̃R(SR(n,d))) split quasi-hereditary cover
of EndSR(n,d)(V

⊗d)op because of SQ(n,d) being semi-simple and Corollary 5.5.6. By Theorem 3.3.9, the assertion
(ii) holds for R = F2. Since all fields of characteristic two are faithfully flat over F2 we obtain (ii) with R being a
field of characteristic two. By Proposition 3.3.6, the result follows.

With this formulation, we give meaning to the Schur–Weyl duality between SR(n,d) and RSd without restric-
tions on the parameters n and d. Moreover, this generalizes the results of Hemmer and Nakano in [HN04] and
[FK11b, Theorem 3.9] on the Schur algebra (SR(n,d) with parameters n≥ d). In fact, if n≥ d, then by [Don93,
Proposition 3.7] the Ringel dual of SR(n,d) is the opposite algebra of SR(n,d) and we can identify the projective-
injective module HomSR(n,d)(T,V

⊗d) with DV⊗d . In this case, Schur–Weyl duality gives EndSR(n,d)(V
⊗d) '

RSop
d . So, for n ≥ d, Theorem 6.1.4 is translated to (SR(n,d)op,DV⊗d) being a split quasi-hereditary cover
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of RSop
d . More precisely, the cover (R(SR(n,d)),HomSR(n,d)(T,V

⊗d)) is equivalent to (SR(n,d),V⊗d). Let
H : SR(n,d)-mod→ R(SR(n,d)) be the equivalence of categories given by Ringel self-duality in [Don93, Propo-
sition 3.7]. Denote by F ′ the Schur functor associated with the cover (R(SR(n,d)),HomSR(n,d)(T,V

⊗d)). Then,
F∆(λ ) = ξ(1,...,d),(1,...,d)∆(λ ) and by [CPS96, Lemma 1.6.12],

F ′H∆(λ )' F ′HomSR(n,d)(T,∇(λ ′))' F∇(λ ′) = ξ(1,...,d),(1,...,d)D∆(λ ′)ι (6.1.0.6)

' D(ξ(1,...,d),(1,...,d)∆(λ
′))ξ(1,...,d),(1,...,d)ιξ(1,...,d),(1,...,d) ' sgn⊗Kξ(1,...,d),(1,...,d)∆(λ ). (6.1.0.7)

Here sgn is the free module R with the Sd-action σ · 1R = sgn(σ)1R and Mι is the right module M with right
action m · a = ι(a)m, m ∈ M and a ∈ SR(n,d). The same notation is used for modules over RSd . Thus, there
exists a commutative diagram

SR(n,d)-mod RSd-mod

R(SR(n,d))-mod RSd-mod

F

H sgn⊗R−

F ′

.

Therefore, for n ≥ d, this statement is nothing new and since SR(n,d) is relative gendo-symmetric this cover is
the cover studied in (4.1.0.4 and 4.1.0.5). The novelty lies in the case n < d.

In case n < d, the Ringel dual of SR(n,d) is no longer, in general, a Schur algebra; it is instead a generalized
Schur algebra in the sense of Donkin. The construction of the Ringel dual of SR(n,d) is as follows: let UZ be
the Konstant Z-form of the enveloping algebra of the semi-simple complex Lie algebra sld(C). That is, UZ is the
subring of the enveloping algebra of sld(C) generated by the elements

em
i, j

m!
, 1≤ i 6= j ≤ d, m≥ 0,

where ei, j, 1 ≤ i 6= j ≤ d denote the generators of the enveloping algebra of sld(C). Then, the Ringel dual of
SZ(n,d) is the free Noetherian Z-algebra UZ/IZ, where IZ is the largest ideal of UZ so that the simple modules
of Q⊗ZUZ/IZ are isomorphic to the Weyl modules indexed by the weights belonging to Λ+(n,d) (see [Don86,
3.1] and [Don93, Proposition 3.11]). For an arbitrary commutative ring R, R⊗ZUZ/IZ is the Ringel dual of
SR(n,d) known as generalized Schur algebra associated with sld and the set Λ+(n,d). Since the Ringel dual of
the Schur algebra is a quotient of R⊗ZUZ, Theorem 6.1.4 suggests why Schur–Weyl duality between SR(n,d)

and RSd can be deduced by studying the action of the Konstant Z-form on V⊗d .
The existence of the quasi-hereditary cover described in Theorem 6.1.4 makes that the multiplicities of simple

modules of the cellular algebra EndSR(n,d)(V
⊗d) which is a quotient of RSd can be studied through the multiplici-

ties of simple modules in the Ringel dual of the Schur algebra. In particular, this explains the background for the
techniques used in [Erd94] to determine decomposition numbers in the symmetric group. For example, [Erd94,
4.5] can be deduced using the Schur functor constructed in Theorem 6.1.4, the Ringel duality functor and BGG
reciprocity.

If R is a field, the value of the cover in Theorem 6.1.4 is optimal. But, as we saw even for the case n≥ d the
situation can be improved in some cases. We will not pursue this direction now, instead, we will try to understand
a bit more what values V⊗d−domdim(SR(n,d),R) T can take. For this, it is enough to consider R a field.
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6.2 Some particular cases of relative dominant dimension over Schur
algebras

The Schur algebras of finite type already offer us some glimpses of what happens to V⊗d−domdimSK(n,d) and
some of its behaviours compared to the classical dominant dimension.

Example 6.2.1. For any m ≥ 2, and any algebraically closed field K, let Am be the following bound quiver

K-algebra

1 2 3 · · · m−1 m
α1

β1

α2

β2

αm−1

βm−1

,
αiαi−1 = βi−1βi = β1α1 = 0,

βiαi = αi−1βi−1, 2≤ i≤ m−1.
(6.2.0.1)

Assume that P denotes the minimal faithful projective-injective module of Am and ei denotes the primitive idem-

potent associated with the vertex i, i = 1, . . . ,m. Then, for each i < m, εiP− domdimεiAmεi = +∞, where

εi = e1 + · · ·+ ei, and εiAmεi = Ai.
The indecomposable projective Am-modules are

P(1) =
1

2
, P(2) =

2

1 3

2

, · · · , P(m−1) =

m−1

m−2 m

m−1

, P(m) =

m

m−1

m

. (6.2.0.2)

The indecomposable injective Am-modules are

I(1) =
2

1
, I(2) = P(2), · · · , I(m−1) = P(m−1), I(m) = P(m). (6.2.0.3)

We can see that domdimAm = 2(m− 1). Together with the partial order 1 > 2 > · · · > m, Am is split quasi-
hereditary with standard modules

∆(1) = P(1), ∆(2) =
2

3
, · · · , ∆(m−1) = m−1

m
, ∆(m) = m . (6.2.0.4)

Hence, the partial tilting modules are

T (1) = P(2), T (2) = P(3), · · · , T (m−1) = P(m), T (m) = m . (6.2.0.5)

Fix i < m. By Theorems 1.7.5 and 1.7.7, εiAmεi is split quasi-hereditary with characteristic tilting module
εiT (1)⊕ εiT (2) · · ·⊕ εiT (i) = εiP and the result follows. 4

Corollary 6.2.2. Let K be an algebraically closed field of characteristic p > 0. Then,

V⊗p−domdimSK(n, p) = +∞

whenever n < p.

Proof. By [Xi92], the non-simple block of SK(p, p) is of the form of Example 6.2.1.

Observation 6.2.3. By [Erd93], all blocks of Schur algebras of finite type are of the form of Example 6.2.1. By
Proposition 1.7.7, we are killing the simple tilting modules m in each block whenever we lower the value of n.
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Hence, by Example 6.2.1, for a fixed natural number d, (V⊗d − domdimSK(n,d))n∈N is a decreasing sequence
on n with lower bound 2(charK−1) if SK(d,d) is an algebra of finite type.

In particular, if SK(d,d) is of finite type and n < d the blocks of SK(n,d) are of the form εiAmεi = Ai, where
Am is a block of SK(d,d). Moreover, in such a case,

domdimSK(n,d)≤ domdimSK(d,d) = 2(charK−1)≤V⊗d−domdimSK(n,d).

In general, the partial tilting module V⊗d contains all indecomposable projective-injective SK(n,d)-modules
since V⊗d−domdimSK(n,d)≥ 1. So, we expect the following to happen:

Conjecture 6.2.4. For all n,d ∈ N, and for any commutative ring R

V⊗d−domdim(SR(n,d),R)≥ domdim(SR(n,d),R).

Using the Schur algebras of finite type, we can also see that, in general, the lower bound in Theorem 5.6.4 is
sharp.

For the following, we can ignore the multiplicities of V⊗
d

as we observed in Remark 4.6.6 taking now into
account that according to Definition 2.3.5, the value of relative dominant dimension with respect to V⊗

d
does not

change if we ignore multiplicities.

Example 6.2.5. Let K be an algebraically closed field of characteristic three. Then,

V⊗5−domdimSK(4,5) = 4 = domdimSK(5,5). (6.2.0.6)

Further,

V⊗5−domdimSK(4,5) Q = 2 = domdimSK(5,5) T, (6.2.0.7)

where Q and T are the characteristic tilting modules of SK(4,5) and SK(5,5), respectively. In view of [Don94],
the Schur algebra SK(5,5) has two non-simple blocks, each containing 3 simple modules. As SK(5,5) is of finite
type, it must be Morita equivalent to A3×A3×A1 in the notation of Example 6.2.1, where A1 denotes a simple
block corresponding to the partition (3,1,1). Therefore, SK(4,5) is Morita equivalent to A2×A3×A1 and
(K2)⊗5 corresponds to the module Q1×P2×A1, where Q1 is the characteristic tilting module of A2, P2 is the
minimal faithful projective-injective module of A3 and A1 is the regular module of the simple block A1. Hence,
(K2)⊗5−domdimSK(4,5) = domdimA3 = 4 and (K2)⊗5−domdimSK(4,5) Q = domdimA3 Q2 = 2, where Q2 is
the characteristic tilting module of A3. 4

To prove this bound we wondered if using for example homological epimorphisms could yield an alternative
argument. But, as we see in the next remark this is not the case.

Remark 6.2.6. Even for a field K, the surjective map ψ : KSd � EndSK(n,d)(V
⊗d) may not be a homological

epimorphism if n < d. Indeed, by Proposition 2.2(a) of [dlPX06], ψ is a homological epimorphism if and only if
kerψ is an idempotent ideal and TorKSd

i>0 (kerψ,KSd/kerψ) = 0. Fix n = 2, d = 3 and K a field of characteristic
three. Then, kerψ is the ideal generated by a := e+(132)+(123)− (12)− (13)− (23). As a2 = 0, kerψ is not
an idempotent ideal. 4

We shall now consider the cases of d = 4, charK = 2, n ∈ {2,3}.

Example 6.2.7. Let K be an algebraically closed field of characteristic two. Let T3 and T2 be the characteristic
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tilting module of SK(3,4) and of SK(2,4), respectively. Then

V⊗4−domdimSK(3,4) = 2V⊗4−domdimSK(3,4) T3 = 2 (6.2.0.8)

V⊗4−domdimSK(2,4) = 2V⊗4−domdimSK(2,4) T2 = 4 (6.2.0.9)

By Theorem 1.7.5 and [Gre07, 6.5] on Example 4.6.8, SK(3,4) is Morita equivalent to the following bound
quiver algebra

4

3 5

2

β1α

α1

β

ε1

ε

,
α1α = ε1α = ββ1 = α1ε = 0

εε1β1 = 0, εε1 = β1β .
(6.2.0.10)

Moreover, the (partial) tilting modules of SK(3,4) are

T3(2) = 2, T3(3) =

2 4

5

3

5 2

4

, T3(4) =

2

5

2 4

5

2

, T3(5) =

2

5

2

, (6.2.0.11)

and V⊗4 is the module T3(3)⊕T3(4). Therefore, V⊗4 is not projective-injective. We can see that the cokernel
of a inclusion of 2 to V⊗4 has socle either 5 or it is a quotient of T3(3). In both cases, this cokernel cannot be
embedded into a module in the additive closure of V⊗4. Since the cokernel of P(3) ↪→ T3(3) has summand 2, the
result follows from Theorem 6.1.3.

We shall now compute SK(2,4). By Theorem 1.7.5 and [Gre07, 6.5] on Example 4.6.8, SK(2,4) is Morita
equivalent to the following bound quiver algebra

3 5 4
α β

α1 β1

,
α1α = ββ1 = 0

β1βα = α1β1β = 0.
(6.2.0.12)

The indecomposable projective SK(2,4)-modules are

P2(3) =

3

5

4

, P2(4) =

4

5

3

5

4

, P2(5) =

5

3 4

5 5

4

. (6.2.0.13)

The (partial) tilting SK(2,4)-modules are

T2(3) = P2(4), T2(4) =

5

4

5

, T2(5) = 5. (6.2.0.14)
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V⊗4 is the module T2(3)⊕T2(4).
To compute V⊗4 − domdimSK(2,4) T2, we only need to compute V⊗4 − domdimSK(2,4) 5. We want to use

Theorem 5.2.2 and 5.2.5 to compute this value. We denote by B the endomorphism algebra EndSK(2,4)(V
⊗4)op.

The algebra B is Morita equivalent to the following bound quiver algebra

1 2
α

β

t , αβ = β t = tα = t2 = 0, (6.2.0.15)

where the simple associated with the vertex 1 is the top of HomSK(2,4)(V
⊗4,T2(3)) and the simple associ-

ated with the vertex 2 is the top of HomSK(2,4)(V
⊗4,T2(4)). Moreover, HomSK(2,4)(V

⊗4,T2(3)) is projective-
injective. We can see that DV⊗4 ' HomSK(2,4)(V

⊗4,DSK(2,4)) is isomorphic to HomSK(2,4)(V
⊗4,T2(3))⊕ 1⊕

1 2

2 1
.

Observe that DHomSK(2,4)(T2(5),V⊗4) = DHomSK(2,4)(T2(5),T2(4)) is a simple module, so it must coincide
with the top of HomSK(2,4)(V

⊗4,T2(4)). Therefore,

HomB(DV⊗4,DHomSK(2,4)(T2(5),V⊗4))' HomB


1

2

1

⊕1⊕ 1 2

2 1
,2


is a simple module. Since Dχr

DT2(5)
is injective into a simple module it must be also surjective. By Theorem

5.2.2, V⊗4−domdimSK(2,4) 5≥ 2. It cannot be higher than two since the simple 2 over B has extensions with the
simple module 1. Hence, V⊗4−domdimSK(2,4) T2 = 2.

Using the exact sequence (which remains exact under HomSK(2,4)(−,V
⊗4))

0→
3

5

4

→ P2(4)→ T2(4)→ 5→ 0, (6.2.0.16)

together with Corollary 5.2.13 and Lemma 5.2.9, we obtain that

V⊗4−domdimSK(2,4) P2(5) =V⊗4−domdimSK(2,4)

3

5

4

= 2+V⊗4−domdimSK(2,4) 5 = 4. 4

Example 6.2.8. Assume the same notation as in Example 6.2.7. The Ringel dual of SK(2,4) has dominant

dimension zero and (R(SK(2,4)),HomSK(2,4)(T2,V⊗4)) is a 0−F (∆R(SK(2,4))) quasi-hereditary cover of B which

is not a 1−F (∆R(SK(2,4))) cover of B.

The latter follows by Example 6.2.7, Theorem 5.5.1 and Theorem 6.1.4.
To check the claim about dominant dimension. Observe that the Ringel dual of SK(2,4) is Morita equivalent

to the following bound quiver algebra

1 2 3
α γ

β θ

, γα = βθ = αβ = γθ = 0. (6.2.0.17)
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Only the projective
1

2

1

is injective. So, the projective 3

2
has dominant dimension zero. Moreover,

HomSK(2,4)(T2,V⊗4) is isomorphic to RAe1⊕RAe2, where ei denotes the idempotent associated with the vertex
i. 4

Example 6.2.9. Let V be the free Z-module Z2. Then, V⊗4 is not isomorphic to DSZ(2,4)⊗SZ(2,4) V⊗4 as

(SZ(2,4)),ZS4)-bimodules. Assume, by contradiction, that such isomorphism holds. Then, as bimodules,

DSZ(2,4)⊗SZ(2,4) DSZ(2,4)' DSZ(2,4)⊗SZ(2,4)V⊗4⊗ZS4 DV⊗4 'V⊗4⊗ZS4 DV⊗4 ' DSZ(2,4). (6.2.0.18)

This bimodule isomorphism remains exact under Z(2Z)⊗Z−. The existence of such isomorphism is a contra-
diction with the fact that domdimSF2(2,4) = 0. 4

We will now consider the case d = 6 to see what happens and still the characteristic two case to see what
happens.

Example 6.2.10. Let K be an algebraically closed field of characteristic two. Let T be the characteristic tilting

module of SK(2,6). Then,

V⊗6−domdimSK(2,6) = 2V⊗6−domdimSK(2,6) T = 6 (6.2.0.19)

By [DEMN99, p. 153], SK(2,6) is Morita equivalent to the following bound quiver algebra

1 2 3 4
α1

β1

α2 α3

β2 β3

,
β1α1 = β2α2 = α3β3 = α3α2α1 = β1β2β3 = 0,

α2α1β1 = β3α3α2, β2β3α3 = α1β1β2.
(6.2.0.20)

The indecomposable projective SK(2,6)-modules are

P(1) =

1

2

3

, P(2) =

2

1 3

2 4

3

, P(3) =

3

2 4

3 1 3

4 2

3

, P(4) =

4

3

2

3

4

(6.2.0.21)

and P(3) together with P(4) are the projective-injective modules. We can see that the dominant dimension of
SK(2,6) is exactly two. The standard modules of SK(2,6) with respect to the order 1 > 2 > 4 > 3 are

∆(1) = P(1), ∆(2) =

2

3

4

, ∆(3) = 3 , ∆(4) =
4

3
. (6.2.0.22)

The (partial) tilting modules of SK(2,6) are T (1) = P(3), T (2) = P(4), T (3) = 3, T (4) = P(3)/P(2). The
module (K6)⊗6 corresponds to the module T (6)⊕ T (5+ 1)⊕ T (4+ 2)⊕ T (3+ 2+ 1) in SK(6,6) since these
are the 2-regular partitions of 6. But, in SK(2,6) only the partitions in at most 2 parts appear. Hence, 6 >

5+ 1 > 4+ 2 > 3+ 3. So, for V = K2, V⊗6 is the module T (1)⊕ T (2)⊕ T (4). The endomorphism algebra
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EndSK(2,6)(V
⊗6)op which we will denote by B has quiver

3 1 2 , (6.2.0.23)

with projective modules

PB(1) =

1

3 2

1 1

2 3

1

, PB(2) =

2

1

3

1

2

, PB(3) =

3

3 1

2

1

.

Now, DV⊗6 is the left B-module

HomSK(2,6)(SK(2,6),DV⊗6)' HomSK(2,6)(V
⊗6,DSK(2,6))' PB(1)⊕PB(2)⊕1⊕

1

2

1

. (6.2.0.24)

So, DV⊗6 has four non-isomorphic indecomposable summands as left B-module. This value is consistent with the
theory because since DV⊗6 has a double centralizer property as B-module, the number of non-isomorphic sum-
mands as left B-module is equal to the number of non-isomorphic projective indecomposable SK(2,6)-modules
which is four. Note that the exact sequence 0→ P(2)→ P(3)→ T (4)→ 0 gives that V⊗6−domdimP(2) =+∞.
By Corollary 5.2.13 the exact sequence 0 → P(1) → P(3) → P(4)⊕ T (4) → T (4) → 3 → 0 gives V⊗6 −
domdimSK(2,6) = 3 +V⊗6 − domdimSK(2,6) T (3). To compute V⊗6 − domdimSK(2,6) T (3) we can see that

HomSK(2,6)(T (3),V
⊗6)=

3

1
and HomB(DV⊗6,DHomSK(2,6)(T (3),V

⊗6))=HomB(PB(1)⊕PB(2)⊕1⊕
1

2

1

,
1

3
)

is a simple module, therefore V⊗6−domdimSK(2,6) T (3)≥ 2. So, it is enough to check when the module

ExtiB(DV⊗6,DHomSK(2,6)(T (3),V
⊗6)) = ExtiB(DV⊗6,

1

3
) = ExtiB(1⊕

1

2

1

,
1

3
)

is zero. Since Ω1(

1

2

1

) = PB(3) and the map PB(3) ↪→ PB(1) �
1

3
is a basis of HomB(PB(3),

1

3
) we obtain

that Ext1B(

1

2

1

,
1

3
) = 0. The simple 1 in B has no self-extensions of degree one, therefore Ext1B(1,

1

3
) is also

zero. However, Ω2(1) =

3

1

2

and the map Ω2(1) ↪→ PB(3)⊕PB(2)→
1

3
is zero. Thus, Ext2B(1,

1

3
) 6= 0. Hence,
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V⊗6−domdimSK(2,6) T (3) = 3. 4

The previous Examples 6.2.7 and 6.2.10 together with the case n≥ d motivates us to conjecture the following:

Conjecture 6.2.11. Let R be a commutative Noetherian ring with identity. Let n and d be natural numbers and

T be a characteristic tilting module of the Schur algebra SR(n,d). Then,

V⊗d−domdimSR(n,d) = 2V⊗d−domdim(SR(n,d),R) T.

6.3 Temperley-Lieb algebras

In this section, we will focus on the Temperley-Lieb algebras, introduced in [TL71], and their relations with
Schur algebras. The crucial and first step was done by Jones when he established the Temperley Lieb algebras as
quotients of Iwahori-Hecke algebras [Jon83] and [Jon87].

Definition 6.3.1. Let R be a commutative ring. The Temperley-Lieb algebra, denoted by T LR,d(−2) is the
R-algebra generated by elements U1, . . . ,Ud−1with defining relations i = 1, . . . ,d−1,

UiUi±1Ui =Ui (6.3.0.1)

UiU j =U jUi, |i− j|> 1 (6.3.0.2)

U2
i =−2Ui (6.3.0.3)

The elements Ui can be represented by the diagram

1 2 · · · i i+1 · · · d−1
• • · · · • • · · · •

• • · · · • • · · · •
(6.3.0.4)

and the multiplication can be viewed as the concatenation of diagrams (replacing the internal loops by the element
(-2)).

Although the arguments to be provided in the following results, up to some modifications, can be used to
general Temperley-Lieb algebras and consequently with its relations to the quantized Schur algebras, we will
focus, for simplicity, in the cases T LR,d(−2). As we have mentioned, it is commonly known that this algebra is
a quotient of the group algebra RSd (see [Wes95, 7] or [Jon83, Jon87]. Moreover, we will approach the study of
this algebra and its properties from this point of view.

Lemma 6.3.2. There exists a surjective R-algebra homomorphism Φ : RSd→ T LR,d(−2) that maps Ti = (i i+1)
to Ui +1, i = 1, . . . ,d−1.

Proof. Recall that RSd is the R-algebra generated by T1, . . . ,Td−1 with defining relations i = 1, . . . ,d−1

TiTi+1Ti = Ti+1TiTi+1 (6.3.0.5)

TiTj = TjTi, |i− j|> 1 (6.3.0.6)

T 2
i = 1. (6.3.0.7)
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Hence, Φ is well defined if and only if Φ preserves the defining relations of RSd . To this end, observe that

Φ(Ti)Φ(Ti+1)Φ(Ti) = (Ui +1)(Ui+1 +1)(Ui +1) =Ui +Ui+1Ui +UiUi+1 +Ui+1 +1 (6.3.0.8)

= (Ui+1 +1)(Ui +1)(Ui+1 +1) = Φ(Ti+1)Φ(Ti)Φ(Ti+1). (6.3.0.9)

Let i, j be two elements satisfying |i− j|> 1. Then,

Φ(Ti)Φ(Tj) = (Ui +1)(U j +1) =UiU j +Ui +U j +1 =U jUi +Ui +U j +1 = (U j +1)(Ui +1) = Φ(Tj)Φ(Ti).

Also,

Φ(Ti)Φ(Ti) = (Ui +1)(Ui +1) =U2
i +2Ui +1 = 1. (6.3.0.10)

Therefore, Φ is well defined. It is clear that Φ is surjective. In fact, any element ∑i αiUi ∈ T LR,d(−2) can be
written as

∑
i

αiUi = ∑
i

αiΦ(Ti−T 2
i ) = Φ(∑

i
αi(Ti−T 2

i )).

In the following, we wish to compute the kernel of the map Φ. This goes back to [Jon87, p.364].

Theorem 6.3.3. For each i = 1, . . . ,d−2, define xi := TiTi+1Ti−TiTi+1−Ti+1Ti+Ti+Ti+1−1. Let I be the ideal

of RSd generated by the elements xi, i = 1, . . . ,d−2. Then, there exists an exact sequence

0→ I→ RSd
Φ−→ T LR,d(−2)→ 0 (6.3.0.11)

Proof. Using (6.3.0.8), we can see that Φ(xi) = 0 for each i = 1, . . . ,d− 2. Hence, I ⊂ kerΦ and we can write
the commutative diagram

0 kerΦ RSd T LR,d(−2) 0

0 I RSd RSd/I 0

Φ

⊆ π , (6.3.0.12)

where π maps Ti + I to Φ(Ti) = Ui + 1. Now, consider the map π ′ : T LR,d(−2)→ RSd/I by setting π ′(Ui) =

Ti−1+ I. We must check that π ′ is well-defined. Again, for this it is enough to check π ′ preserves the defining
relations of T LR,d(−2). In fact,

π
′(Ui)π

′(Ui)+2π
′(Ui) = (Ti−1)(Ti−1)+2Ti−2+ I = 0+ I,

π
′(Ui)π

′(U j) = (Ti−1+ I)(Tj−1+ I) = TiTj−Ti−Tj +1+ I = TjTi−Ti−Tj + I = π
′(U j)π

′(Ui), |i− j|> 1,

π
′(Ui)π

′(Ui+1)π
′(Ui)−π

′(Ui) = xi + I = 0,

π
′(Ui)π

′(Ui−1)π
′(Ui)−π

′(Ui) = xi−1 + I = 0.

Finally, we can observe that

π
′(π(Ti + I)) = π

′(Ui +1) = Ti−1+1+ I = Ti + I, (6.3.0.13)

ππ
′(Ui) = π(Ti−1+ I) =−1+Ui +1 =Ui, ∀i. (6.3.0.14)

Therefore, I = kerΦ.
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Note that if d ≤ 2, then Φ is an isomorphism. It is due to Martin [Mar92] and Jimbo [Jim86] that Temperley
Lieb algebras can be interpreted as the centralizer algebras of quantum groups sl2 in the endomorphism algebra
of a tensor power. In the following, we adapt this statement to our situation with the Schur algebras SR(2,d)
replacing sl2. It can also be found in [DPS98b, Theorem 6.2] with a different approach.

Theorem 6.3.4. Let R be a commutative ring and denote by V the free R-module R2. (R2)⊗d is a T LR,d(−2)-
module where Ui acts in (R2)⊗d as id⊗

(i−1)⊗τ⊗ id⊗
(d−i−1)

. Here, τ : (R2)⊗2→ (R2)⊗2 is defined by τ(v1⊗v2) =

v2⊗v1−v1⊗v2, v1,v2 ∈ (R2)⊗2. Moreover, there is an isomorphism of R-algebras T LR,d(−2)→EndSR(2,d)(V
⊗d).

Proof. For d = 1,2 the map is well-defined since T LR,d(−2) ' RSd and RSd → EndSR(2,d)(V
⊗d) is an isomor-

phism. Let d > 2 and 1≤ i≤ d−2.
Consider the surjective homomorphism of R-algebras ψ : RSd → EndSR(2,d)(V

⊗d). Let xi be the generator of
I with index i. Observe that

ψ(xi)(ek1 ⊗·· ·⊗ ekd ) = ψ(TiTi+1Ti−TiTi+1−Ti+1Ti +Ti +Ti+1−1)(ek1 ⊗·· ·⊗ ekd )

= ek1 ⊗·· ·⊗ (eki+2 ⊗ eki+1 ⊗ eki − eki+2 ⊗ eki ⊗ eki+1 − eki+1 ⊗ eki+2 ⊗ eki + eki+1 ⊗ eki ⊗ eki+2

− eki ⊗ eki+1 ⊗ eki+2 + eki ⊗ eki+2 ⊗ eki+1)⊗·· ·⊗ ekd . (6.3.0.15)

Since ki+1,ki,ki+2 ∈ {1,2} there must be two indexes that are the same. Assume, without loss of generality,
that ki = ki+1. Then, either ki+2 = ki or ki+2 6= ki. In both of these cases, it is immediate by (6.3.0.15) that
ψ(xi)(ek1 ⊗ ·· ·⊗ ekd ) = 0. Hence, the surjective homomorphism of R-algebras ψ factors through T LR,d(−2),
that is, there exists a surjective homomorphism ψ : T LR,d(−2)→ EndSR(2,d)(V

⊗d) satisfying ψ ◦Φ = ψ . In

particular, ψ maps Ui to ψ(Ti− 1) = (i i+ 1)− id = id⊗
(i−1)⊗τ ⊗ id⊗

(d−i−1) ∈ EndSR(2,d)(V
⊗d). It remains to

show that ψ is injective. Let ∑i αiUi ∈ T LR,d(−2) such that

0 = ψ(∑
i

αiUi) = ∑
i

αi id⊗
(i−1)⊗τ⊗ id⊗

(d−i−1)
. (6.3.0.16)

Consider yk := e1⊗·· ·⊗e1⊗e2⊗e1⊗·· ·⊗e1, where e2 appears only in the position k+1 for a certain k. Then,

0 = ψ(∑
i

αiUi)(yk) = αke1⊗·· ·⊗ τ(e1⊗ e2)⊗ e1⊗·· ·⊗ e1 +αk+1e1⊗·· ·⊗ e1⊗ τ(e2⊗ e1)⊗·· ·⊗ e1

(6.3.0.17)

The last equality follows from the fact that τ(e1⊗ e1) = 0. Since these are element basis, it follows that αk =

0 = αk+1. As k is arbitrary we obtain that kerψ = 0.

Theorem 6.3.4 turns V⊗d a central piece to understand the structure of Temperley-Lieb algebras T LR,d(−2).
Since it is a partial tilting module over the Schur algebra it follows immediately that the Temperley-Lieb algebra
is a cellular algebra. Moreover, the relative dominant dimension with respect to V⊗d gives meaning to the
connection between Schur algebras and Temperley-Lieb algebras by illustrating that this scenario fits in our
main problem of quasi-hereditary covers of cellular algebras.

Corollary 6.3.5. Let R be a commutative Noetherian ring. Let d be a natural number. Denote by R(SR(2,d)) the

Ringel dual of the Schur algebra SR(2,d). Then, the following assertions hold.

(i) T LR,d(−2) is a cellular algebra.

(ii) Let T be a characteristic tilting module of SR(2,d). Then, (R(SR(2,d)),HomSR(2,d)(T,V
⊗d)) is a

(V⊗d−domdim(SR(2,d),R) T −2)−F (∆̃R(SR(2,d))) split quasi-hereditary cover of T LR,d(−2).

389



6.3. Temperley-Lieb algebras

Proof. The result follows by Theorem 6.3.4 and Theorem 6.1.4.

This, of course, motivates us to compute V⊗d − domdimSR(2,d) to obtain information about the structure
of Temperley-Lieb algebras and it establishes this relative dominant dimension as a new point of view to the
representation theory of Temperley-Lieb algebras. Further, we now see that the Schur–Weyl duality between
Schur algebras and Temperley-Lieb algebras is a manifestation of cover theory similar to the Schur–Weyl duality
between Schur algebras and the symmetric groups (in case n ≥ d). Assuming that R is a field, the main differ-
ence, however, is that the cover for symmetric groups is composed of a Schur algebra and a projective-injective
module and the cover for Temperley-Lieb algebras is composed of the Ringel dual of a Schur algebra and a pro-
jective module (not necessarily injective). On special cases which were completely determined in [EH02], the
Schur algebra is Ringel self-dual. Hence, on those cases, the Schur algebra SR(2,d) together with the projective
module HomSR(2,d)(T,V

⊗d)ι are a split quasi-hereditary cover of the Temperley-Lieb algebra T Ld,R(−2). By un-
derstanding the value V⊗d −domdimSR(2,d) we understand what are the Hemmer-Nakano versions of [HN04]
replacing the symmetric groups by Temperley-Lieb algebras.

Corollary 6.3.6. Let n = 2 and d an odd number. Let R be a commutative Noetherian ring. The (partial) tilting

modules of SR(2,d) are summands of V⊗d . Moreover, V⊗d is a characteristic tilting module of SR(2,d). In

particular, V⊗d−domdim(SR(2,d),R) = +∞.

Proof. Assume first that R= k is an algebraically closed field. By Proposition 1.7.7, the indecomposable (partial)
tilting modules of Sk(2,d) are exactly {eT (λ ) : λ ∈ Λ+(2,d)}, where e is the idempotent making eSk(d,d)e '
Sk(2,d) and T (λ ) are (partial) tilting modules of Sk(d,d). Since d is odd it cannot be written as d = λ1 +λ2,
λ1 = λ2. Hence, all partitions in exactly 2-parts of d are 2-regular partitions of d. Hence, T (λ ) is projective-
injective for λ ∈ Λ+(2,d). Therefore, T (λ ) is a summand of (kn)⊗d . It follows that eT (λ ) is a summand of
V⊗d and V⊗d is the characteristic tilting module of Sk(2,d). Let R be a commutative Noetherian ring. It is clear
that R(m) has a trivial Picard group and a flat algebraic closure. Furthermore, (R2)⊗d ∈ R-proj. By Propositions
1.5.126 and 1.5.131, the result follows. The last part is clear since V⊗d is a characteristic tilting module of
SR(2,d).

Corollary 6.3.7. Let R be a Noetherian commutative ring. Let d be an odd number. The Temperley-Lieb algebra

T Ld,R(−2) is split quasi-hereditary and it is the Ringel dual of SR(2,d).

Proof. By Corollary 6.3.6, V⊗d is a characteristic tilting module of SR(2,d). In view of Theorem 6.3.4, T Ld,R(−2)
is the Ringel dual of SR(2,d).

For d an even number, the Temperley-Lieb algebra is no longer split quasi-hereditary, in general. Based on
the Examples 6.2.7 and 6.2.10 we are lead to believe that the characteristic two case is completely classified in
the following way.

Conjecture 6.3.8. Let K be a field of characteristic two and d a natural number. Then,

(K2)⊗d−domdimSK(2,d) T =

+∞ if d is an odd number,

d if d
2 is an even number,

where T is a characteristic tilting module of SK(2,d). In particular, (R(SK(2,d)),HomSK(2,d)(T,V
⊗d)) is a

d
2 −2-faithful split quasi-hereditary cover of T LK,d(−2), where R(SK(2,d)) denotes the Ringel dual of the Schur

algebra SK(2,d).
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6.4 Relative dominant dimension as a tool for Ringel self-duality

6.4.1 Ringel self-duality of BGG category O

It is well known that the blocks of classical BGG category O are Ringel self-dual. This goes back to the work
of Soergel [Soe98, Corollary 2.3]. This fact was then reproved independently in [FKM00, Proposition 4] using
the Enright completion functor. Using the methodology introduced here we can establish a new proof of this fact
without using the so-called semi-regular bimodule and without using Enright’s completions.

Theorem 6.4.1. Let R be a local regular commutative Noetherian ring which is aQ-algebra. Let D be a block of

[λ ] for some λ ∈ h∗R. The split quasi-hereditary R-algebra AD (defined in Definition 4.4.42) is Ringel self-dual.

Proof. Let µ ∈ D . Both ∆(µ) and ∇(µ) belong to AD/J-mod where J is an ideal admitting a filtration by split
heredity ideals and such that ∆(µ) is a projective AD/J-module. Further, since ∇(µ)(m) is the dual of ∆(µ)(m)

its socle coincides with the top of ∆(µ)(m). Denote by f the non-zero AD/J(m)-homomorphism ∆(µ)(m) �

top∆(µ)(m) ↪→ ∇(µ)(m). As ∆(µ) is a projective object in AD/J-mod there exists an AD -homomorphism f

making the following diagram commutative:

∆(µ) ∆(µ)(m)

∇(µ) ∇(µ)(m)

f f . (6.4.1.1)

Consider the Schur functor F = HomAD
(PA(ω),−), where ω is the antidominant weight. Applying F , we obtain

the commutative diagram
F∆(µ) F∆(µ)(m)

F∇(µ) F∇(µ)(m)

F f F f . (6.4.1.2)

Recall that by Lemma 1.1.32 for any X ∈ AD -mod,

F(X(m)) = HomAD
(PA(ω),X(m))' HomAD (m)(PAD (m)(ω),X(m)) (6.4.1.3)

and F f is isomorphic to the map HomAD (m)(PA(m)(ω), f ) which is non-zero since topPA(m)(ω) is the image of f .
Moreover, F∆(µ)(m) ' R(m) and F∇(µ)(m) ' R(m). Hence, F f is an isomorphism. Applying R(m)⊗R− to
the diagram (6.4.1.2) we obtain that F f (m) is an isomorphism. Since both F∆(µ),F∇(µ)∈ R-proj, Nakayama’s
Lemma yields that F f is an isomorphism. This shows that

F∆(µ)' F∇(µ), ∀µ ∈D . (6.4.1.4)

The results in Theorem 4.4.50 hold if we replace the complex numbers by any field of characteristic zero. Fix,
for a moment R = K[X1,X2](X1,X2) and D to be the block Wµ µ + X1

1 α1 +
X2
1 α2, where α1,α2 are distinct simple

roots (so we are excluding the case g = sl2), where µ ∈ h∗R is a preimage of an antidominant weight in h∗R(m)

which is not dominant without coefficients in m in its unique linear combination of simple roots. Hence, we are
excluding the simple blocks which are trivially Ringel self-dual. By Theorem 4.4.50, (AD ,PA(ω)) is a 1−F (∆̃)

cover of C.
Let T be a characteristic tilting module of AD . We claim that (R(AD ),HomAD

(T,P(ω)) is a 1−F (∆̃R) cover
of C, where R(AD ) denotes the Ringel dual of AD . In the proof of Theorem 4.4.50 (replacingC by K), we observe
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that, for any prime ideal p of R with height at most one, Q(R/p)⊗R AD is semi-simple. Here, Q(R/p) denotes
the quotient field of R/p. Therefore, the Ringel dual of Q(R/p)⊗R AD , which is Q(R/p)⊗R R(AD ) according to
Propositions 1.5.126 and 1.5.133, is semi-simple for any prime ideal p of R with height at most one. Therefore,

Q(R/p)⊗R P(ω)− codomdimQ(R/p)⊗RAD
Q(R/p)⊗R T =+∞ (6.4.1.5)

and (Q(R/p) ⊗R R(AD ),Q(R/p) ⊗R HomAD
(T,P(ω)) is a +∞−faithful split quasi-hereditary cover of

Q(R/p)⊗R C for every prime ideal p of R with height at most one. By Theorems 4.4.48 and 4.4.49 and Proposi-
tion 5.2.7, P(ω)− codomdim(AD ,R) T = 1. By Corollary 5.5.6, (R(AD ),HomAD

(T,P(ω)) is a 0−F (∆̃R) cover
of C. So, we can apply Theorem 3.3.13 to obtain that (R(AD ),HomAD

(T,P(ω)) is a 1−F (∆̃R) cover of C. Now,
rewriting (6.4.1.4) we obtain

F∆(θ)' F∇(θ) = HomAD
(P(ω),∇(θ))' HomR(AD )(HomAD

(T,P(ω)),HomAD
(T,∇(θ))). (6.4.1.6)

By Corollary 3.6.6, AD is Ringel self-dual. That is, there exists an equivalence of categories
H : AD -mod→ R(AD )-mod preserving the highest weight structure. Applying R(m)⊗R− to H we obtain that
AD (m) is Ringel self-dual. That is, the blocks of category O over a field of characteristic zero are Ringel self-
dual. We excluded the case g= sl2. But the non-simple blocks of the category O associated with sl2 are Morita
equivalent to A2 according to Example 6.2.1 which is Ringel self-dual.

Return to the general case of R being an arbitrary local regular commutative Noetherian ring which is a Q-
algebra and D an arbitrary block. Since R(m) is a field of characteristic zero, AD (m) is Ringel self-dual. By
Lemma 1.5.134, AD is Ringel self-dual.

6.4.2 Ringel self-duality of Schur algebras

The approach presented in Theorem 6.4.1 can also be applied to Schur algebras. However, we have to exclude the
case of characteristic two for similar reasons why we excluded the case sl2 for the general cases in the category
O .

Theorem 6.4.2. Assume that n≥ d are natural numbers. The Schur algebra SZ[ 1
2 ]
(n,d) is Ringel self-dual.

Proof. The quotient field ofZ[ 1
2 ] isQ. So, for SZ[ 1

2 ]
(n,d) conditions (i) and (ii) of Corollary 5.5.8 hold. Condition

(iii) follows by Proposition 5.2.7 and Corollary 4.1.8. Now we will focus on the image of the dual of Weyl
modules under the Schur functor. Fix R = Z[ 1

2 ]. We can see that, for any λ ∈ Λ+(n,d)

F∇(λ )' ξ(1,...,d),(1,...,d)∇(λ )' ξ(1,...,d),(1,...,d)D∆(λ )ι ' D(ξ(1,...,d),(1,...,d)∆(λ ))
ι (6.4.2.1)

' Dθ(λ )ι ' sgn⊗Rθ(λ ′). (6.4.2.2)

The last isomorphism is [CPS96, Lemma 1.6.12] and λ ′ is the conjugate partition of λ . Here sgn is the free
R-module with rank one with the action the sign of the permutation σ · 1R = sgn(σ), σ ∈ Sd . Moreover,
RSd acts on sgn⊗RM through the diagonal action. Hence, sgn⊗R⊗R M ' M for any M ∈ RSd-mod. Hence,
sgn⊗R− : RSd-mod→ RSd-mod is an isomorphism of categories. Therefore,

F∇(λ )' sgn⊗Rθ(λ ′)' sgn⊗RF∆(λ ′), ∀λ ∈ Λ
+(n,d), (6.4.2.3)

and F (F∇)'F (F∆). By Corollary 5.5.8, the result follows.
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6.4.3 Uniqueness of covers

As we can use the point of view of cocovers to prove Ringel self-duality, this could be exploited to construct an
example of a cover (if it exists) with a level of faithfulness as big as we want (always smaller than the global
dimension) which is not unique, emphasizing the importance of the condition (3.6.0.7) on Corollary 3.6.6. The
author believes that the following example is a first step towards such a construction.

Example 6.4.3. For any m≥ 2, the bound quiver algebra, which we will denote by Am,

1

m m−1 · · · 3 2

α1

αm α3

α2 , αiαi+1 = 0, i = 1, . . .m−1, (6.4.3.1)

is a quasi-hereditary algebra not being Ringel self-dual with a characteristic tilting module having positive

dominant and codominant dimension. The indecomposable projective Am-modules are

Pm(1) =
1
m

m−1

, Pm(2) = 2
1
, Pm(3) = 3

2
, · · · , Pm(m) =

m
m−1

. (6.4.3.2)

The indecomposable injective Am-modules are

Im(1) = Pm(2), Im(2) = Pm(3), · · · , Im(m−2) = Pm(m−1), Im(m−1) = Pm(1), Im(m) = 1
m

. (6.4.3.3)

Therefore, Pm := Pm(1)⊕·· ·⊕Pm(m−1) is a projective-injective module and the exact sequence

0→ Pm(m)→ Pm(1)→ Pm(2)→ ···Pm(m−1)→ Pm(1)→ Im(m)→ 0 (6.4.3.4)

is both a minimal injective resolution of Pm(m) and a minimal projective resolution of Im(m). In particular,
domdimAm = m.

With the order m > 1 > 2 > · · ·> m−1 and standard modules

∆(1) = topPm(1), · · · , ∆(m−1) = topPm(m−1), ∆(m) = Pm(m), (6.4.3.5)

Am is a split quasi-hereditary algebra. For this order, the costandard modules are

∇(1) = Im(1), · · · , ∇(m−2) = Im(m−2), ∇(m−1) = topPm(m−1), ∇(m) = Im(m). (6.4.3.6)

So, Pm⊕∆(m−1) is the characteristic tilting module. Further, the exact sequences

0→ Pm(m)→ Pm(1)→ Pm(2)→ ··· → Pm(m−1)→ m−1→ 0 (6.4.3.7)

0→ m−1→ Pm(1)→ Im(m)→ 0 (6.4.3.8)

give that domdimT = m− 1 and codomdimT = 1. So, (Am,Pm) is a (-1)-faithful quasi hereditary cover of
EndAm(Pm)

op and (R(Am),HomAm(T,Pm)) is an m− 3-faithful quasi hereditary cover of EndAm(Pm)
op. We can

observe that the endomorphism algebra EndAm(Pm)
op has radical square zero and it is self-injective while the

Ringel dual functor does not send costandard modules to simple modules (except the maximal one). So, Am is
not Ringel self-dual. 4
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