
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Coupling Julia-based
Simulations via preCICE

Pavel Kharitenko

Course of Study: Softwaretechnik

Examiner: Jun.-Prof. Dr. rer. nat. Benjamin Uekermann

Supervisor: Ishaan Desai, M.Sc.

Commenced: 22. April 2021

Completed: 22. October 2021

Abstract

The coupling library preCICE allows to couple single-physics solvers to partitioned
multi-physics simulations in a black-box fashion. preCICE is a C++ library, but it offers
language bindings to access the preCICE API from solvers written in other languages,
such as C, Python, Fortran and MATLAB. The Julia Programming Language designed
for numerical computing is a strong candidate to be supported by preCICE. While Julia
provides a wide set of tools for interfacing with other languages, including C++, porting
a library such as preCICE that is made for High Performance Computing and runs on a
huge number of processes, requires little to no compromises. Multiple ways of wrapping
a C/C++ library are presented and implemented. In addition come Julia’s own features,
for example the Distributed base library, that deviate from classic standards of known
scientific languages. To test the bindings, two dummy solvers are coupled and presented
in an example setup, with an outlook on further development.

3

Kurzfassung

Die Kopplungsbibliothek preCICE ermöglicht es, Single-Physik Löser zu partitionierten
Multi-Physik Simulationen in einer Black-Box-Manier zu koppeln. Zwar ist preCICE eine
C++-Bibliothek, bietet sie Bindings für den Zugriff auf ihre API von Solvern, die in einer
anderen Sprachen wie C, Python, Fortran und MATLAB geschrieben wurden, an. Die
Programmiersprache Julia, die für die wissenschaftliche Programmierung entwickelt
wurde, ist ein starker Kandidat für die Unterstützung von preCICE. Während Julia eine
breite Auswahl für schnittstellen mit anderen Sprachen, einschließlich C++, bereit-
stellt, erfordert die Portierung einer Bibliothek wie preCICE, die für High Performance
Computing entwickelt wurde und auf einer Vielzahl von Prozessesoren ausgeführt wer-
dem kann, wenig bis gar keine Kompromisse. Es werden mehrere Möglichkeiten zum
Portieren einer C/C ++-Bibliothek vorgestellt und implementiert. Hinzu kommen Julias
eigene Features, zum Beispiel die Bibliothek Distributed, die von klassischen Standards
bekannter Sprachen abweichen. Um die Bindings zu testen, werden zwei Dummy-Solver
gekoppelt und in einem Beispielaufbau mit einem Ausblick auf die weitere Entwicklung
vorgestellt.

5

Contents

1. Introduction 11

2. The Julia Programming Language 13
2.1. Julia’s background and core language components 13
2.2. Example of Julia code: solving the heat equation 16

3. The coupling library preCICE 21
3.1. Overview of preCICE . 21
3.2. Using preCICE’s API to couple a solver 23

4. Coupling Julia solvers using preCICE 27
4.1. Calling C++ code in Julia . 27
4.2. The final Julia binding for preCICE . 31
4.3. Final remarks about the bindings . 38

5. Testing the Julia bindings 41
5.1. Coupling two dummy solvers . 41
5.2. Coupling two parallel dummy solvers in Julia that use MPI 47
5.3. Using Julia’s native parallelization . 52

6. Conclusions and Outlook 59

A. Complete Code 61
A.1. Ferrite.jl Heat Transfer Solver . 61
A.2. CxxWrap.jl CMakeLists.txt for building the C++ wrapper library 63
A.3. C++ side part of CxxWrap.jl . 64
A.4. Solverdummy configuration file . 65
A.5. Code for solverdummy.jl . 66
A.6. Parallel solverdummy.jl with MPI Communication 68
A.7. Solverdummy using native parallelism 70
A.8. Native parallelism solverdummy, workers only 72

Bibliography 75

7

List of Figures

2.1. Comparison of adding a module to one’s scope 15
2.2. Example call to a C library . 16
2.3. Code of the Heat Equation Solver . 18
2.4. Heat distribution at T = 200. 19

3.1. Overview of the preCICE ecosystem . 22
3.2. Computational loop of the Julia solver 23
3.3. Solver extended with the preCICE API 24
3.4. Structure of a precice-config.xml . 25

4.1. Running C++ inside Julia code. 28
4.2. Using a C++ Class from a shared library. 28
4.3. CMakeLists for the CxxWrap bindings . 32
4.4. C++ side code of the CxxWrap binding 33
4.5. Importing the auxiliary library in a Julia module. 33
4.6. Deviating from the library function’s signature. 36

5.1. M:N Coupling . 48
5.2. Native Julia parallelism in a coupled scenario 55
5.3. Native parallelism with Julia worker processes only 56
5.4. Writing distributed coupling setup from one Julia file 57

9

1. Introduction

Multi-physics simulations are used to compute physical processes, such as fluid-structure
interactions (e.g., an aircraft in a wind channel), where different physical phenomena
have an influence on each other. Here, the solution of one domain is depending on the
one they share a boundary with, by exchanging values like forces, heat, temperature,
etc.

One way to formulate and solve these complex simulations is the monolithic approach:
to create one physical domain, in which all interacting physics are computed and solved
globally. There is also a partitioned approach: each physics is simulated by a single-
physics solver specialized in their respective physical problem, and coupled by exposing
their computed data to each other through a communication method during runtime.
Both have their pros and cons, but the latter approach could provide reusability by using
already established solvers that are devoted to simulating their part, and reducing the
complexity of the physics simulation, since the domain is after all partitioned.

The open-source library preCICE[3] is exactly made for this kind of coupling. Two solvers
can be coupled in a minimally invasive approach by making function calls to the library
from their codes. While preCICE is a C++ library, it offers language bindings to access
its API from solvers written in other languages, such as C, Python, FORTRAN and Matlab.
The support for different languages widens the possibilities of composing a coupled
simulation and enriches the selection of existing solvers for a particular domain.

The Julia Programming Language1 is an open-source, dynamically typed programming
language designed to be fast, targeting numeric and scientific computing. Its perfor-
mance2, which is reaching levels comparable to traditional statically-typed languages
like C++ and FORTRAN, makes it a strong candidate to be supported by preCICE.

Developing a Julia binding would bring partitioned multi-physics simulations to the
open-source community of Julia. That means, the various base and third-party Julia
physics libraries could now be coupled to simulate multi-physics scenarios. But not
only will Julia programmers be able to use preCICE among themselves. At the same

1https://julialang.org/
2https://julialang.org/benchmarks/

11

1. Introduction

time, this is beneficial for the rest of the field of multi-physics problems, since preCICE
enables to mix the different solvers for languages it supports. That would make solvers
written with Julia’s high performance3 and scientific4 libraries available to setups with
solvers written in C++, for example OpenFOAM5, and other languages. Since Julia was
designed to bring the productivity and abstraction of dynamic languages to the field of
numerical computing, which has benefited the least in the last decades as stated in [1],
there is no better time to embed the still growing language like Julia into the emerging
field of multi-physics simulations, which will only get closer in the future.

The aim of this thesis is to provide a solid investigation in coupling Julia code with the
library preCICE. This includes implementing and testing a Julia language binding in the
form of a Julia module for the preCICE library, and researching possible compatibility
limitations between Julia’s native features like process-level parallelization and the
communication means of preCICE when coupling distributed solvers.

Structure of the thesis

The thesis consists of the following sections:

Chapter 2 – The Julia Programming Language: We dive in with an introduction to
Julia and look at a FEM solver code.

Chapter 3 – The coupling library preCICE: Presents the features and an example of
preCICE’s API.

Chapter 4 – Coupling Julia solvers using preCICE: We investigate in how to access
C++ code in Julia and implement Julia bindings for preCICE.

Chapter 5 – Testing the Julia bindings: The bindings are examined on a number of
different coupling scenarios and demonstrate their functionality.

Chapter 6 – Conclusions and Outlook: The work is summed up and its contribution
with an outlook on further challenges are addressed.

3https://docs.julialang.org/en/v1/manual/parallel-computing/
4http://www.juliafem.org/
5https://www.openfoam.com/

12

2. The Julia Programming Language

This chapter presents some major features of Julia and covers the language specific
details needed for the understanding of implementations in later chapters.

2.1. Julia’s background and core language components

Julia’s development started at MIT in 2009 and it was released in 2012. As stated in[2],
the overall aim is to achieve high performance of low-level languages such as C or Fortran
while also providing the productivity or convenient abstraction that popular high-level
languages offer to their users. This improvement should eliminate the habit found in
numerical or scientific programming: using high-level environments for prototyping first
and then rewriting an algorithm in a low-level language for an improved performance
in speed and memory usage. Julia should finally allow technical computing to benefit
from abstraction. Let see get an overview of Julia.

2.1.1. Julia’s code selection paradigm

Julia is a dynamically typed language and its syntax reminds strongly of MATLAB, Python
and other languages known in Scientific Computing. Julia is Just-In-Time compiled and
build on top of the LLVM compiler framework[2]. A dynamic language derives its type
information during runtime, and it still can be fast: Julia joined in 2017 the petaFLOPS
club of our static C++ and Fortran languages1, as it was used to write Celeste[7], a
model categorizing astronomical objects from large data sets.

Julia derives its speed thanks to being designed around something any language needs
to be good at: managing uncertainty[1, 2]. It has code selecting mechanisms on multiple
levels of its design one of which is multiple dispatch. When we create a function in Julia,
we also define a method. A function can have multiple methods, it is the implementation
of the function for a certain combination of argument types, that Julia resolves during

1https://juliacomputing.com/media/2017/09/julia-joins-petaflop-club/

13

2. The Julia Programming Language

runtime on a function call. When calling add(a,b), Julia looks at both types of a and
b to decide which implementation to use. This is not method overloading, as Java
or C++ generate during compile time a definite name for add(a,b), something (e.g.,
_typea_typeb_add) called name mangling. They decide only on one, the runtime type of
obj which implementation of add to call during execution.

In addition to that, Julia stores optimized code of a function for the argument type it
was called. If during runtime, func(1.0) is called for the first time, Julia will cache
native code for a program flow of the function where Float64 was the type of the input
argument, in a table for func (if all types can be inferred inside func). Calling func will
be fast for the rest of the session, until it gets called with another concrete type (e.g., an
Integer), then again, Julia will generate optimized code for that type. Having this in
mind, consider a language that consists of nothing but function calls.

Julia is an imperative or procedural language, it has no classes, only structs and methods
who operate on these structs. So over time in a session, for repetitive and predictable
code (and in technical computing it usually is) the program turns to just deciding what
native code to run next. But it prompts some compromises, as we have to make sure we
write type safe routines and for very short prototyping or interactive use, the runtime
compilation yields more inconvenience as a language like Python, that is using an
interpreter.

2.1.2. Modules, Packages and Environments in Julia

There are a few concepts of Julia that need to be mentioned for understanding later
shown code.

In a Julia module common defined functions, types and constants can be grouped in
the Module ... end-block. Modules have their own scope, and when we can load them
with using or import keyword, the former brings the exported definition inside our
scope, as shown in Figure 2.1, where the latter only imports the module name in our
namespace. After this chapter, this differentiation is ignored and we will write lines
like ModName.funcName(... even if we loaded the packages with using to make clear to
which module the definition belongs.

14

2.1. Julia’s background and core language components

Module A

export myFunc

...

end

using A

myFunc()

Module A

export myFunc

...

end

import A

A.myFunc()

Figure 2.1.: Comparison of adding a module to one’s scope

One or multiple Modules can be bundled in a Julia package. A Julia package is a module,
that can contain further modules inside of it and has metadata for redistribution such
as name, uuid, and so on. In this thesis, we will refer to packages as "PackageName.jl",
this convention comes from the fact that the outermost module ModuleName in a package
is written in a file ModuleName.jl.

Many programming languages come with the concept of local environments (e.g., virtual
environments or pipenvs in Python) that list exact versions of all depending libraries.
The Julia equivalent concepts are Julia projects, that are managed through the package
manager "pkg" (similar to "pip" in Python).

Packages and projects are both portable environments, they contain a Project.toml file
in their directory that contains metadata about dependencies, and a package in addition
has name, uuid and version entry there.

The code examples from this thesis can be launched in a Julia REPL or as a script
julia <scriptname>.jl ..., given that the packages in the code are in your global en-
vironment (pkg> add PackageName) or in a local project environment (pkg> activate .,
pkg> add PackageName).

2.1.3. Calling C code from Julia

Since we are particularly interested in porting a C++ library, we should take a look at
the closest feature we get from the standard library for doing that. Julia offers native
ways to call functions of C or FORTRAN shared libraries. With the ccall function, which
is part of the Base library, code in those languages can be called from Julia as long as
they are compiled to shared libraries.

An example call of a C library libmean that computes the mean of two numbers would
eventually look as shown in Figure 2.2.

It can be easily understood that the function ccall takes the function name and the
path of the target library, possible arguments, and returns the result after execution.

15

2. The Julia Programming Language

julia> mean = ccall(

(“calcMean”, ”path/to/libmean.so”), # (function-library pair)

Cdouble, # return type of C function

(Cdouble, Cdouble), # argument types of C function

10.0, 20.0) # actual Julia input arguments

15.0

Figure 2.2.: Example call to a C library

Before our actual arguments, as shown in the example, we pass Cdouble once and then
again as a tuple. Julia offers alias types like the Cdouble specifically created to suit a
type mapping from C/FORTRAN to Julia and the other way around.

Our calcMean function expects two arguments with the C++ type double, so we pass
our two Julia arguments of the type Float64 and tell ccall to cast them to Cdouble with
that type tuple. That means, if a C function needs a float, we pass the Julia base type
Float32, if a C function returns a char[] (a string), we state to expect the Julia alias
type Cstring (that we later convert to a Julia string).

As long as ccall gets the corresponding type information, it will make a cast (where
possible) before invoking the foreign function.

One more remark on the return types: We get in the example the mean as a Cdouble

back, which in this case can be indeed just interpreted as a Julia Float64, but this is
not trivial for other types. One has to be aware if the return type may need further
conversion. For example, the returned types Cshort, Cint or Cstring can not be treated
as Julia’s Integer (Int64 or Int), AbstractFloat or AbstractString types. They are
actually Julia’s Int16, Int32 and Ptr{Uint8} types, so one is dealing with bitstypes
or concrete types. A type correspondence table is provided in the documentation for
ccall2.

2.2. Example of Julia code: solving the heat equation

This section presents Julia code of an finite element method (FEM) solver to get a first
look at Julia’s syntax and a basic understanding of physics solvers we are interested in.
The provided example solves the heat equation in 2D space, in other words, simulating
heat transfer on a rectangular plate.

2https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/

16

2.2. Example of Julia code: solving the heat equation

2.2.1. Problem Definition

The distribution of temperature in space over a period of time is described through
the heat equation, a partial differential equation. On a two-dimensional plate with an
external heat source, the time-dependant heat equation has the following form:

∂u

∂t
= k (∂2u

∂x2 + ∂2u

∂y2) + f (x, y) ∈ Ω (2.1)

where k is the thermal conductivity, f the heat source and u(x, y, t) is the unknown
function that describes the temperature at a certain time and point on the rectangular
domain Ω. For this domain we consider the following fixed boundary condition:

u(x, y) = 0 for x, y ∈ ∂Ω (2.2)

where ∂Ω is the boundary of Ω, and is also called a Dirichlet boundary condition, that
needs to be fulfilled by the solution u. Together, (2.1) and (2.2) describe a boundary
value problem (BVP). We can solve this boundary value problem using FEM, a numerical
method to compute an approximate solution.

2.2.2. Solver Code

The example code uses Ferrite.jl3, a Julia library for finite element analysis. The solver
describes the weak form of the heat equation as the variational form, an integrated
version of the heat equation. This results in an variational problem, that reduces to
solving a linear system. Figure 2.3 shows the important parts of the solver.

3https://ferrite-fem.github.io/Ferrite.jl/dev/

17

2. The Julia Programming Language

using Ferrite, SparseArrays # importing library methods into scope with 'using'

grid = generate_grid(Quadrilateral, (100, 100)) # create domain

...

simulation parameters

max_temp = 100

∆t = 1

T = 200 # total time steps

define dirichlet boundary conditions on top and bottom edge of the domain

∂Ω1 = setBoundaries(["top", "bottom"], (x,t) -> 0)

...

temperature on left boundary is described as function a

a(x,t) = t*max_temp / T

∂Ω2 = setBoundaries(["left"], a)

...

assemble linear system

K, f, M, A = ... # stiffness matrix K, mass matrix M, system matrix A

un = zeros(length(f)) # initialize first timestep

@time for t in 0:∆t:T

update!(ch, t) # update boundary condition values

b = ∆t .* f .+ M * un # compute right-hand side

apply_rhs!(rhsdata, b, ch) # apply boundary conditions of the current time step

u = A \ b # solve timestep

un .= u # update solution

saveData(u, t) # write output file

end

Figure 2.3.: Solver snippet of the Ferrite.jl time dependant Heat Transfer example1.
Note that Julia supports all characters of the UTF-8 encoding.

First meshes, simulation parameters, boundary conditions, and the equation are defined.
Then, the initial state is set. The simulation’s main part is the for-loop, where we
compute u for the current timestep t, save it for visualization and then move on in time
by the timestep-length ∆t.

Regarding the Julia syntax: Methods such as generate_grid, update! and apply_rhs!

come from the package Ferrite.jl. Function names with an exclamation marks indicate
that they change the objects passed. Julia is not Object-Oriented so it consists throughout

1https://ferrite-fem.github.io/Ferrite.jl/dev/examples/transient_heat_equation/

18

2.2. Example of Julia code: solving the heat equation

of functions working on types. Note that the point of loading functions into one’s
namespace with using is to allow multiple packages to extend the same operation for
different arguments. Other packages could provide the function update! but not for the
types Ferrite.jl is using.

Another concept is the broadcast operator .=, .*, and so on, that applies the operator to
every element of the first operand and the inverse divide operator \ that in this case is
overloaded and solves the algebraic equation. Before the for loop we can see a @time

macro expression. We will see it through the thesis a couple of times, it wraps the
expression after it into a new one, giving it a new functionality with little change to the
syntax. The @time macro is prompting the execution time and memory allocation of the
for loop.

After running the simulation, Ferrite.jl provides vtk_save to write u to VTU files, that
can be visualized with ParaView:

Figure 2.4.: Heat distribution at T = 200.

19

3. The coupling library preCICE

This chapter introduces the coupling library preCICE in a condensed form. It starts with
a general overview of the features and then covers the library API.

3.1. Overview of preCICE

preCICE is an open-source C++ coupling library for partitioned multi-physics simula-
tions, and is developed at the University of Stuttgart1,2 and at the Technical University
of Munich3.

The idea of the library is to create a multi-physics simulation by taking already existing
single-physics solvers and couple them in a partitioned manner. Since the individual
solvers are capable of simulating a sub-part of the complete physics, joining them
with preCICE is commonly termed as a partitioned simulation. This approach enables
the reuse of popular solvers that are already well adapted in their field and provides
advantages usually known from modular software architectures, such as flexibility and
lower overall complexity of the code setup.

preCICE is not a framework or a software executable, it provides its library API which
is accessed from the solver’s code. The calls to the preCICE API, the library functions,
which we will inspect in greater detail in the next sub-chapter, are minimally-invasive
changes to the source code: preCICE couples the solvers in a black-box fashion, not
requiring details of their physics or discretization.

preCICE is written in C++, but it offers language bindings to couple solvers written
in other languages. At the time of this thesis there are bindings for Python, MATLAB,
Fortran and C, the latter two being native bindings that are part of its core library. For
popular solvers (e.g., OpenFoam, FEniCS, and more), there are also adapters, which are
software packages that simplify coupling to the solvers by wrapping the preCICE API

1https://www.ipvs.uni-stuttgart.de/departments/us3/
2https://www.ipvs.uni-stuttgart.de/departments/sgs/
3https://www.in.tum.de/en/i05/home/

21

3. The coupling library preCICE

into the native style of the solver. Figure 3.1 shows overview of preCICE‘s ecosystem,
and work in progress features in grey.

in-house
solver

CFD solver

ad
ap

te
r

FEM solver

lib
pr
ec
ice

coupling schemes

data mapping

. . .

. . .

communication

time interpolation

A Coupling Library for Partitioned
Multi-Physics Simulations

Particle solver

so
lve

r

OpenFOAM
SU2

deal.II
FEniCS
Nutils
CalculiX
code_aster
MBDyn

API in: C++
C

Python
Fortran

Matlab MercuryDPM
XDEM

Julia

Figure 3.1.: Basic features and concepts. From [4], which is summarizing preCICE’s
development from 2016 to 2021.

When solvers are coupled with preCICE, they do not "connect" a central instance.
Conducting the partitioned simulation consists of configuring an XML file first, in which
methods and parameters of the coupling are set. After that, the solvers are started in
their respective environments on their own, each making calls to the shared library
libprecice during runtime and start to couple. Think of preCICE as a distributed or
peer-to-peer software enabling solvers to communicate, and a monolithic depiction
throughout this thesis serves only as an abstraction.

preCICE offers, as seen in the Figure 3.1, data mapping, communication methods,
coupling schemes; various features/components necessary for multi-physics coupling.
To give an overview for these features it is best to consider what coupling solvers in a
partitioned simulation would require numerically and technically:

Solvers are computing data values on points of their discretized domains (meshes)
during runtime, that requires the data to be brought to the other solver’s domain, while
their meshes may have non-matching grids. For that, preCICE offers data mapping
options for interpolation (mapping types, mapping methods and more).

Then, the two solvers are computing the solutions of their equations that depend on each
other, resutling in a coupled equation. Depending on the interactions of the involved
physical phenomena, it is a weakly or a strongly coupled problem. The numerical

22

3.2. Using preCICE’s API to couple a solver

solutions of the former case can be computed with a fixed number of solver executions
per timestep, the latter requires multiple iterations due to stability issues. For these cases
preCICE provides coupling schemes. A detailed explanation can be found in chapter 2
and 4 of [5]. While the details do not concern us for the rest of this thesis, note that
the coupling schemes are a core part of preCICE since solving those strongly coupled
problems is still conducted in a black-box coupling, contrary to a monolithic approach.

Finally our solvers might want to run on a large number of nodes, multiple processes
for a parallel computation, what would require a scalable communication in terms of
the number of parallel processes. And for that, preCICE offers means to establish a
point-to-point communication, based on the geometry of the meshes from the two
domains. We discuss this feature more in 5.2.

preCICE offers many more features for coupling, most of which are beyond the scope
of this thesis. Further information can be found on the website4. These main features
and further concepts such as multi-coupling are described accurately in [3]. But since
preCICE is not only a library but also an open-source project, an extended description
can be found in [4].

3.2. Using preCICE’s API to couple a solver

The previous section explained that solvers are coupled by making calls to the preCICE
API. Let us take a closer look at what that means. Figure 3.2 shows a simplified loop of
the Julia solver from 2.2.

un = zeros(length(f))

while t < T

un = solveTimeStep(∆t, un)

t += ∆t

saveData(un, t)

end

Figure 3.2.: Structure of the solver’s loop computing Temperature distribution u.

This solver computes some values temperature values u, and we want to exchange at the
right boundary to another solver during their runtime. Technically, preCICE is a shared

4https://precice.org/

23

3. The coupling library preCICE

library, libprecice.so, a binary that we need to access from our solver’s code. Either
our programming language offers a way to access shared libraries or your are using
languages supported by preCICE (C++, Python, and so on), in which case preCICE is
available as a package or library in that language.

Let us assume that we have a preCICE package for Julia called PreCICE.jl, with which
we can access the library (but note that the concept of the API is independent of the
programming language). We would then extend our solver with the following calls:

Using PreCICE

PreCICE.createSolverInterface("temperatureSolver", "./precice-config.xml", 0, 1)

meshID = PreCICE.getMeshID("MeshA")

writeDataID = PreCICE.getDataID("temperature", meshID)

vertices = [100,1, 100,2, 100,3, ..., 100,100] # right side of 100x100 grid

vertexIDs = PreCICE.setMeshVertices(meshID, 100, vertices)

∆t = PreCICE.initialize()

un = zeros(length(f))

while PreCICE.isCouplingOngoing()

un = solveTimeStep(∆t, un)

temperature .= un[100,:] # right boundary values

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, temperature)

∆t = PreCICE.advance(∆t)

saveData(un, t)

end

PreCICE.finalize()

Figure 3.3.: Solver extended to provide temperature values to coupling partner.

First, we create a SolverInterface instance. Besides our solver, we refer to a
precice-config.xml where the coupling configurations (participants, mapping method,
data and meshes, coupling schemes and communication) are set. It has the structure as
in Figure 3.4.

24

3.2. Using preCICE’s API to couple a solver

<precice-configuration>

<solver-interface dimensions="2">

<data name="temperature" .../>

<mesh name="meshA" .../>

<mesh name="meshA".../>

<participant name="SolverA" .../>

<participant name="SolverB" .../>

<m2n exchange-directory="." .../>

<coupling-scheme .../>

</solver-interface>

</precice-configuration>

Figure 3.4.: The basic contents of a configuration xml defining the coupling setup. Note
that it is not limited to only two participants.

The call createSolverInterface requires the location of the configuration file and
the name of the participant as which the solver takes the role in the coupling. We
create an instance of the SolverInterface class in our process, that is a handle for
steering the coupling. As seen in Figure 3.4, the computation loop is now depend-
ing on isCouplingOngoing and the next timestep is provided by advance. As well as
advance, initialize and finalize are the steering methods, that reserve/write/free
data structures and set up/close communication during the coupling.

Our solver writes temperature values to his mesh. For this we defined a coupling data
and mesh in the configuration, that we access with getMeshID and getDataID. To write
to our coupling mesh, we define, depending on the dimension set in the configuration,
a set of 2D or 3D coordinates of vertices. We set them to the coupling mesh with
setMeshVertices, and access them with vertexIDs, provided by the solver instance.
Now we can begin with the computation.

With initialize we start the coupling process, where preCICE starts building up the
communication with other participants. The solver stops at this line until the other solver
"solverB" calls initialize. To establish communication the solvers place files in the
directory set in the <m2n /> tag. Our solver could run in parallel, where first a master-
slave communication is established between the parallel solvers of one participant,
before the participants start to communicate.

Inside the while, we use writeBlockVectorData, it is one of the functions to write data
values to our mesh. The participant on the other side would use another calls for reading
data from meshes, for example readBlockVectorData to retrieve them. In 5.1 we see a
setup were a participant does read as well as write data.

25

3. The coupling library preCICE

After we read/write and are finished computing the timestep, we call advance, in which
preCICE does the actual coupling: sending meshes, the interpolation, update data, and
iterating (depending on the coupling scheme).

As we see, the library approach of preCICE is indeed minimal invasive, the only real
changes we did was to the computational loop, where we use the timesteps that advance
and initialize yield. In the configuration of a coupling, we define a total maximum
time for the coupling, and timestep sizes. Each solver calls advance with the timestep
size ∆t it used, so when the timestep size from the configuration, the "time-window" is
used, advance actually then does the coupling.

26

4. Coupling Julia solvers using preCICE

In 3.2 it was shown that in order to couple a Julia solver we have to make calls to the
preCICE API, or more specifically, to run the functions of the C++ class SolverInterface
from Julia. This implies the need of a Julia binding for preCICE, analogous to the other
non-C++ languages that preCICE supports.

The desired outcome is a module that can be redistributed to all users, a Julia package.
It has the structure of a directory PreCICE with a Project.toml file, and a subdirectory
src with a PreCICE.jl file containing the Julia module PreCICE. The following chapters
describe what we will write in that script.

This chapter documents the development of accessing the preCICE library in Julia. In
4.1 the goal in the context of Julia is stated. 4.2 presents ways to call C++ code in Julia,
and 4.3 provides the final solution, demonstrated in an example case of coupling two
Julia codes.

4.1. Calling C++ code in Julia

Julia offers a wide set of tools for interfacing with other languages such as C++, but
there will be never complete a guide on how to port any library we want to use; each
binding for a C library can vary according its functionality. We look take a look the
possibilities Julia offers and investigate them to write the package, what as a side-effect
eventually creates a guide or overview for bringing a C++ library to Julia.

4.1.1. Cxx.jl

When first searching for a way to run C++ code in Julia, one will very likely first
encounter the Julia package Cxx.jl1. It provides C++ code interfacing, meaning we
can integrate C++ code directly in Julia code. An example from its documentation:

1https://github.com/JuliaInterop/Cxx.jl

27

4. Coupling Julia solvers using preCICE

function playing()

for i = 1:5

icxx"""

int tellme;

std::cout<< "Please enter a number: " << std::endl;

std::cin >> tellme;

std::cout<< "\nYour number is "<< tellme << "\n" <<std::endl;

"""

end

end

Figure 4.1.: Running C++ inside Julia code.

using Cxx

using Libdl

Libdl.dlopen("./libArrayMaker.so", Libdl.RTLD_GLOBAL)

cxxinclude("ArrayMaker.h")

create array with 5 entries, that have the values 2^1 to 2^5

maker = @cxxnew ArrayMaker(5, 2.0)

arr = @cxx maker->fillArr()

Figure 4.2.: Using a C++ Class from a shared library.

Cxx.jl can also load shared libraries and it should be possible to write a C++ wrapper
on “Julia’s side”. It seems very convincing. Bu it could become more complicated, since
the final member call "@cxx maker->..." does not return a Julia data structure, but a
pointer. We need to write a wrapper code to further process arr or more complicated
data structures.

Furthermore, a concerning issue is that this package only supports Julia versions 1.1 to
1.3 at the time of this thesis work and prompted because of this building errors on the
more recent stable releases like Julia 1.6.1:

ERROR: Error building `Cxx`:
ERROR: LoadError: could not load library "libLLVM-11.0.1"

libLLVM-11.0.1.so: cannot open shared object file: No such file or directory

Stacktrace:

...

28

4.1. Calling C++ code in Julia

Cxx.jl might change in the future but this and the support for the overall newer versions
of Julia are still open issues, offering the only fix to it by using Julia versions 1.1 to 1.3.
It is not an official Julia package and the future of this project seems unclear. Because
of this, this solution was not further investigated. But for future references, we should
add that if the support will continue, this Cxx.jl package should be considered in future
bindings of C++ libraries.

4.1.2. CxxWrap.jl

CxxWrap.jl2 is a Julia package for wrapping C++ libraries. Contrary to Cxx.jl, this
package is intended to wrap complete libraries and create a Julia-equivalent package.

As we know from chapter 2, ccall is a native way to run C functions, but does not work
for C++ symbols since C++ compilers use a different name mangling, that Julia does
not expect when trying to access a function of the library.

The main idea is to store pointers of the desired C++ functions in an array that is
then exposed to Julia by being returned in a C function, a function declared in the
’extern "C"’ block, that we know from 2.1.3 Julia can access with ccall. On the
Julia side this array is extracted, in a module with equivalent functions, where they
are accessing the according C++ function pointers. And for further C++ features
like classes, standard and custom data structures, this array would have to be more
complicated, but the concept remains.

The convenience of CxxWrap.jl is that the structure of the C++ exposing class and
the creation of the Julia module are handled by it. There is only an additional C++
code part to write and compile. It is producing an auxiliary C++ library, exposing our
desired library, and requires a short Julia part that is generating the Julia module which
is linking to the auxiliary library.

The following example gives a short demonstration of the required programming:

In a .cpp file that includes the jlcxx header, we use the Module class, to which we add
the desired C++ construct. In this example, we add a method by putting the address
&greet of it together with the desired name "greet" we want to have on Julia’s side.

2https://github.com/JuliaInterop/CxxWrap.jl

29

4. Coupling Julia solvers using preCICE

#include <string>

#include "jlcxx/jlcxx.hpp"

std::string greet()

{

return "hello, world";

}

JLCXX_MODULE define_julia_module(jlcxx::Module& mod)

{

mod.method("greet", &greet);

}

This C++ side is built and compiled in a CMake project, linking to jlcxx. On the Julia
side, we create our own Module using the CxxWrap.jl package. Here we just have to
load the compiled library with the @wrapmodule macro, and CxxWrap.jl will generate
the respective Julia function greet together with the proper return and input argument
types.

module CppHello

using CxxWrap

@wrapmodule("path/to/built/libgreet.so")

function __init__()

@initcxx

end

end

Now use the added function

CppHello.greet()

So this solution enables to write a wrapper mostly in C++ and demands less knowledge
from the user about the mapping of C++ types to Julia types and vice versa. The greet

function from the example will be annotated with the respective Julia String type as its
return type, and if it would return a custom C++ class, CxxWrap.jl will also generate
the appropriate Julia struct type.

The Julia Module will depend on this compiled wrapper C++ library (besides the C++
library we wanted to port to Julia) that needs to be distributed or compiled on other
machines in addition to the Julia module.

In 4.3 a possible Julia-binding of the preCICE library with CxxWrap.jl will be presented
and discussed.

30

4.2. The final Julia binding for preCICE

4.1.3. Using Julia’s build in ccall

As discussed in 2.1.3, Julia can call functions of C libraries with ccall, which is not
compatible with C++ libraries without further work because of the different name
mangling. But if a C++ library offers, similar to what the CxxWrap.jl solution is doing,
a C interface, then ccall can be used to write a wrapper library entirely in Julia like for
any ordinary C library.

The binding would essentially be a Julia module that contains low-level methods access-
ing the API of the C library with ccall. This approach, wrapping an entire C library with
a corresponding Julia module may be the go-to solution for bringing many famous C
libraries such as MPI.jl or LibSerialPort.jl to Julia, but for C++ libraries it should
be considered whether writing a C interface and then the corresponding Julia module
to it requires less effort than just generating the binding using CxxWrap.jl. The almost
effortless creation of a Julia module that contains all the C++ functions with correctly
typed argument annotations from CxxWrap.jl should not be overlooked at this point.

This solution of writing low-level ccall wrapper functions eventually works for preCICE.
It has the exactly needed C interface since it already provides a C binding included in
its core library. The possible solution of writing a binding for preCICE with ccall is
described in 4.3.

4.2. The final Julia binding for preCICE

In the previous subsections, ways of writing a Julia binding for C++ libraries were
presented. This chapter describes the final software solutions which were developed.

4.2.1. The CxxWrap.jl binding

CxxWrap.jl is, as stated in the previous subsection, a fast solution to create a Julia
binding for a C++ library. However, the development and building process might
appear confusing because it is scattered around two repositories, one3 for the Julia and
one4 for the C++ part, called "libcxxwrap-julia". Another guide for it is a recording5

of a workshop “Wrapping a C++ Library with CxxWrap.jl” from JuliaCon 2020. The

3https://github.com/JuliaInterop/CxxWrap.jl
4https://github.com/JuliaInterop/libcxxwrap-julia
5https://www.youtube.com/watch?v=VoXmXtqLhdo

31

4. Coupling Julia solvers using preCICE

steps required for wrapping the preCICE library were derived from the above-mentioned
resources.

To create the C++ side of the wrapping, CxxWrap.jl offers the CMake project repository
libcxxwrap-julia 6. It needs to be built and compiled to libcxxwrap_julia.so. We create
our own CMake project, that links to that libcxxwrap_julia.so build location and to
the preCICE shared library in its CMakeLists.txt, as shown in Figure 4.3.

project(Juliaprecice)

...

set(JlCxx_DIR /path/to/libprecice.soDir/)

set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib")

find_package(precice REQUIRED CONFIG)

find_package(JlCxx)

get_target_property(JlCxx_location JlCxx::cxxwrap_julia LOCATION)

get_filename_component(JlCxx_location ${JlCxx_location} DIRECTORY)

set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib;${JlCxx_location}")

add_library(jlprecice SHARED juliaprecice.cpp)

target_link_libraries(jlprecice precice::precice)

target_link_libraries(jlprecice JlCxx::cxxwrap_julia)

...

Figure 4.3.: An abbreviated CMakeLists.txt for compiling the auxiliary library.

We write the C++ wrapper code in a juliaprecice.cpp file, in which we expose the
SolverInterface class we want to the Julia side:

6https://github.com/JuliaInterop/libcxxwrap-julia

32

4.2. The final Julia binding for preCICE

#include "jlcxx/jlcxx.hpp"

#include <precice/SolverInterface.hpp>

using namespace precice;

JLCXX_MODULE define_julia_module(jlcxx::Module& mod)

{

mod.add_type<SolverInterface>("SolverInterface")

.constructor<const std::string, const std::string, int, int>()

.method("initialize", &SolverInterface::initialize)

...

.method("advance", &SolverInterface::advance)

.method("finalize", &SolverInterface::finalize)

mod.method("getVersionInformation", &getVersionInformation);

}

Figure 4.4.: Adding SolverInterface to the C++ class "mod" that representing a Julia
module

The full code of Figures 4.3 and 4.4 can be found at A.2 and A.3, and a minimal template
of the CMakeLists.txt is provided in an example repository7. The linking method from
the documentation8 of preCICE was followed to include its shared library to a CMake
project.

After that, this CMake project is built and compiled to a shared library libjlprecice.so.
This library is then referenced on the Julia side. Here we create a new Julia package
“PreCICE”, and write in src/PreCICE.jl the module that imports CxxWrap.jl and uses its
wrapmodule macro:

module PreCICE

using CxxWrap

@wrapmodule "path/to/libjlprecice.so"

function __init__()

@initcxx

end

end

Figure 4.5.: Importing the auxiliary library in a Julia module.

7https://github.com/barche/libfoo
8https://precice.org/installation-linking.html

33

4. Coupling Julia solvers using preCICE

Now the Julia package contains all the exposed symbols added to the module entry on
the C++ side that can be called like a Julia function:

import PreCICE

PreCICE.getVersionInformation()

Since Julia is not an Object-Oriented Language, we run functions of the SolverInterface

class still from the module, but insert the instance of SolverInteface as the first argu-
ment:

using PreCICE

interface = SolverInterface(solverName, configFileName, commRank, commSize)

...

dt = initialize(interface)

...

dt = advance(interface, dt)

...

The convenience comes obviously from the auto generation of these Julia methods
with the correct argument type annotations. The drawback here is that PreCICE.jl is
depending on another, the CxxWrap.jl and the auxiliary library jlprecice.so. This means
that along PreCICE.jl, one would have to distribute this binary too.

The Julia package manager and Julia packages are actually more than their equivalent
in other languages. Julia offers a way for distributing binaries through so-called JLL
packages, that are redistributed and downloaded like a Julia package.

For example, the first step where we compile libcxxwrap.so, can be omitted because it is
available as a JLL package: We would download the binary libcxxwrap_julia_jll from
Julia’s general wrapper repository9 instead. This JLL package detects the target operating
system and builds the appropriate binary file, in this case the libcxxwrap_julia.so.

This made possible through a binarybuilder.jl script, such one we would in turn write
for our own libjlprecice.so, where preCICE and its dependencies are installed, and
again distribute it as libjlprecice_jll. Overall, the module would be written now
as:

module PreCICE

using CxxWrap

@wrapmodule jlprecice_jll # package manager downloads the jll package automatically

...

9https://github.com/JuliaBinaryWrappers

34

4.2. The final Julia binding for preCICE

In short, the building and redistribution of a binary can be reduced to a simple depen-
dency on a JLL package. This is made possible through BinaryBuilder.jl10. A Julia
script can be either written manually or through a wizard from BinaryBuilder.jl, that
saves for which operating system platforms, where to download the archive, and how to
build and compile the depending library.

This extra effort implies that while a CxxWrap.jl solution depends on additional binary
artifacts, Julia offers native ways to redistribute them.

4.2.2. The native ccall binding

Writing the preCICE library with Julia’s native ccall works just like wrapping any other
C library, as described in 2.1.3, by calling functions of preCICE’s C bindings.

Let us take a look at an example by wrapping the function setMeshVertex. This method’s
signature looks on the C interface side like this:

int precicec_setMeshVertex(int meshID, const double *position);

setMeshVertex is used to create a single mesh vertex on a coupling mesh. The arguments
are the ID of the target mesh (C integer) and a pointer to an array (C pointer to a
container) holding the coordinates (C double) of the vertex. It returns an ID of the
vertex created (C integer).

The Julia side method is simply wrapping ccall with the following arguments:

function setMeshVertex(meshID::Integer, position::AbstractArray{Float64})

id = ccall(

(:precicec_setMeshVertex, libprecicepath),

Cint,

(Cint, Ref{Float64}),

meshID, position)

return id

end

• The function name and library path tuple,

• Cint as the expected return type from precicec_setMeshVertex,

• a tuple containing the input types Cint and Ref{Float64} expected on the C end,

• and the actual values we want to call precicec_setMeshVertex with.

10https://binarybuilder.org/

35

4. Coupling Julia solvers using preCICE

The documentation of ccall11 provides a table on what Julia alias types for which C/C++
types should be used. Here we can use Cint for int and T* (for an alias type T) is passed
as Ref{T}, in this case Ref{Cdouble} or Ref{Float64} (since Cdouble is also an alias
for Float64). Note that as these alias types are passed to ccall, the actual types of
the arguments passed at the end of ccall such as meshID and position in the above
example do not have to match those alias types exactly. This ccall function call is
wrapped in a function that takes the necessary arguments annotated with the closest
Julia equivalent type, such as Integer and AbstractArray{Float64} and not Cint and
Ref{Float64} since ccall will implicitly convert them to the alias types, before finally
passing them to precicec_setMeshVertex.

Writing the wrapper method or the signature of one can in some cases be less trivial, as
in the case of setMeshVertices, a similar function as the one before, but now multiple
vertices are defined on a coupling mesh at once. The original method signature looks
like this:

void precicec_setMeshVertices(int meshID, int size, const double *positions, int * ids);

The difference to setMeshVertex is the new argument size of the amount of the new
vertices one wants to set, and the void return type. Since C/C++ functions do not
support returning multiple values at once, multiple references or just one reference
of one array are passed as arguments that are set by the C function. This is the case
here with ids, as an array is expected to be passed by reference that is set with all
the ids of the created vertices after the function call. This should be done internally
instead of demanding the caller of such a wrapper function to create an array himself,
because that would require knowledge with which type the Julia array one would need
to parametrize. For example, AbstractArray{Integer} would yield wrong conversions
than AbstractArray{Int32}. So the Julia side wrapper method should look as shown in
Figure 4.6.

function setMeshVertices(meshID::Integer,size::Integer, positions::AbstractArray{Float64})

ids = Array{Int32, 1}(undef, size)

ccall((:precicec_setMeshVertices, libprecicePath),

Cvoid,

(Cint, Cint, Ref{Cdouble}, Ref{Cint}),

meshID, size, positions, ids)

return vertexIDs

end

Figure 4.6.: Deviating from the library function’s signature.

11https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/#man-bits-types

36

4.2. The final Julia binding for preCICE

Internally, the method that wraps setMeshVertices first creates a Julia array with Int32

(Cint) as its element type. This array is then passed on to ccall with Ref{Cint} as the
expected type of the C function. This example demonstrates an exception where the
Julia signature will have to change from the library function, since passing an array with
anything other than Int32/Cint typed elements would return an array not with the ids
but with corrupted values, and that would demand knowledge about the C function and
the inner workings of ccall to get it right.

In similar ways exception handling could be built into the wrapper functions, but the
error checking was left to ccall and the preCICE library itself for the initial solution.

The wrapped functions are included next in a Julia module PreCICE. This module
embodies the core part of the Julia binding.

Some Julia bindings of other C libraries separate between the wrapper functions and
their handling of type conversions or errors. An example structure of such a library is
LibSerialPort.jl12, that consists of multiple modules. PreCICE.jl contains only one
module with the wrapper functions, to keep the maintenance of the code to that one of
changing a single file and to correspond to the file "SolverInterface.cpp" of the core C++
library of preCICE. Should the complexity of the binding evolve in the future, a similar
structure of LibSerialPort should be considered.

In addition to the wrapper functions, a way to provide the location of preCICE library
location is required, since ccall depends on it in the first (functionname, librarypath)

tuple argument. As discussed at the end of the CxxWrap.jl implementation, the Julia
way of providing additional binary files is by creating a JLL package, that will be included
at the top of our module with "using preCICE_jll". An alternative or more straight
forward way is to create a global variable libprecicePath, that is referenced in every
ccall.

The total code of PreCICE.jl for the ccall implementation can be found on the
julia-bindings13 repository.

We have seen above that ccall needs Julia alias types to know to what C types the
provided Julia typed arguments have to be converted as it is invoking them on the
shared library.

12https://github.com/JuliaIO/LibSerialPort.jl
13https://github.com/precice/julia-bindings

37

4. Coupling Julia solvers using preCICE

C method Julia wrapper ccall
int Integer Cint / Int32

double Float64 Cdouble / Float64

char* String Cstring / Ptr{UInt8}

int* AbstractArray{Cint} Ref{Cint} / Ptr{Cint}

double* AbstractArray{Float64} Ref{Cdouble} / Ptr{Cdouble}

void* MPI.Comm MPI.MPI_Comm / Ptr{Cvoid}

Table 4.1.: Type translation of the ccall binding.

For the sake of completeness, Table 4.1 shows all the shows all the according Julia types
chosen for the arguments of the wrapper methods.

It depicts the relation of a wrapper template

function wrapperMethodName(juliaArg1::TypeX)

ccall((:cfunc, libpath), Cvoid, (TypeY,), juliaArg1)

return vertexIDs

end

and the C function signature void methodName(TypeZ cArg2); where TypeX, TypeY, and
TypeZ are the Julia wrapper, the ccall, and the C method types from the table. The
last row in the table is for an alternative constructor of the SolverInterface class takes an
MPI communicator, what can be replicated in Julia with the Comm and MPI_Comm types
from the MPI.jl package. However, the type Ptr{Cvoid} is a valid type as well and does
not make MPI.jl a dependency for PreCICE.jl.

4.3. Final remarks about the bindings

The last section described two ways of writing a Julia binding for preCICE. No comparison
was intended, but chronologically the CxxWrap.jl solution was developed first. The
CxxWrap.jl solution is included in the appendix of this thesis, but it is not preferred
because of preCICE’s C bindings being part of the core library, the native wrapper
solution is not depending on any other Julia packages or binaries, besides libprecice.

Another remark is that the C bindings do not return a SolverInterface instance (but it
is created as a field referenced by further calls inside the process), what makes the API
calls closer to Julia’s class-less paradigm. We remember, Julia is not Object-Oriented,
PreCICE.apicall() notation is calling a method of namespace (the one of module
PreCICE).

38

4.3. Final remarks about the bindings

Let it also be said that the Julia bindings we are discussing are implemented to work on
Linux. Note that preCICE is also available on other platforms, at the time of this thesis
work for macOS; support for Windows is given at the moment through WSL (Windows
Subsystem for Linux).

39

5. Testing the Julia bindings

This chapter demonstrates the Julia bindings on various coupling scenarios. First, two
dummy Julia solvers are coupled in a minimal example setup. 5.1 is describing this
setup in detail, whereas later in 5.2, the configuration and solver files are extended to
show coupling scenarios using parallelism with MPI. In ??, the coupling example from
5.2 is modified use Julia’s native parallelism.

5.1. Coupling two dummy solvers

This example is based on the solverdummies1 from preCICE’s library, where two pseudo
Julia solvers are coupled, that exchange arbitrary data. It is meant to serve as a minimal
working example, without simulating any physics.

5.1.1. Configuration of preCICE

Consider two participants SolverOne and SolverTwo that exchange some data every
timestep. For this setup, we create a precice-config.xml with the following contents.

1. We define the data values we want to exchange:

<data:vector name="dataOne" />

<data:vector name="dataTwo" />

In a proper scenario those values would be forces or temperature, that can also be scalars
instead of vectors.

2. After we defined the type of data we want to exchange, we need to define the
geometry or domain on which the solvers make their computation:

1https://github.com/precice/precice/tree/develop/examples/solverdummies

41

5. Testing the Julia bindings

<mesh name="MeshOne">

<use-data name="dataOne" />

<use-data name="dataTwo" />

</mesh>

<mesh name="MeshTwo">

<use-data name="dataOne" />

<use-data name="dataTwo" />

</mesh>

We created two coupling meshes MeshOne and MeshTwo. Between these two meshes, the
data mapping is performed by preCICE.

3. Now it is time to add the two participants themselves:

<participant name="SolverOne">

<use-mesh name="MeshOne" provide="yes" />

<write-data name="dataOne" mesh="MeshOne" />

<read-data name="dataTwo" mesh="MeshOne" />

</participant>

<participant name="SolverTwo">

<use-mesh name="MeshOne" from="SolverOne" />

<use-mesh name="MeshTwo" provide="yes" />

<write-data name="dataTwo" mesh="MeshTwo" />

<read-data name="dataOne" mesh="MeshTwo" />

</participant>

The participants provide the respective meshes MeshOne and MeshTwo (make them visible),
and in addition to that, SolverTwo uses SolverOne’s MeshOne because we choose to
perform the data mapping on SolverTwo (the mapping has to be done on either one of
the participants).

4. We add the nearest-neighbor mapping to SolverTwo:

<participant name="SolverTwo">

<use-mesh name="MeshOne" from="SolverOne" />

<use-mesh name="MeshTwo" provide="yes" />

<mapping:nearest-neighbor

direction="write" from="MeshTwo" to="MeshOne" constraint="conservative" />

<mapping:nearest-neighbor

direction="read" from="MeshOne" to="MeshTwo" constraint="consistent" />

<write-data name="dataTwo" mesh="MeshTwo" />

<read-data name="dataOne" mesh="MeshTwo" />

</participant>

42

5.1. Coupling two dummy solvers

5. Finally, we define the coupling scheme, how our two solvers exchange their data after
calling advance:

<coupling-scheme:serial-implicit>

<participants first="SolverOne" second="SolverTwo" />

<max-time-windows value="2" />

<time-window-size value="1.0" />

<max-iterations value="2" />

<min-iteration-convergence-measure

min-iterations="5"

data="dataOne"

mesh="MeshOne" />

<exchange data="dataOne" mesh="MeshOne" from="SolverOne" to="SolverTwo" />

<exchange data="dataTwo" mesh="MeshOne" from="SolverTwo" to="SolverOne" />

</coupling-scheme:serial-implicit>

While a serial-implicit coupling scheme is not the most minimal one, we set it
instead of serial-explicit so we can observe multiple iterations of one timestep and
convergence measures in the coupling too.

6. For the communication between the participants, we just add

<m2n:sockets from="SolverOne" to="SolverTwo"/>

for a communication via sockets. How we set the from-to direction does not matter in
this setup.

All the above tags are included inside <solver-interface dimensions="3"> tag. The
full precice-config.xml file can be found at A.4.

5.1.2. Julia code of solver dummies

For writing the two Julia solvers, we can create one solverdummy.jl file. In it we first
import our PreCICE package and create an interface object for the participant we want
to couple:

using PreCICE

PreCICE.createSolverInterface("SolverOne", "precice-config.xml", 0, 1)

Since SolverOne provides the mesh MeshOne, we need to define vertices on it. For that,
we first get the meshID, create an array with the coordinates of the vertices and create
them with setMeshVertices:

meshID = PreCICE.getMeshID("MeshOne")

vertexIDs = PreCICE.setMeshVertices(meshID, numberOfVertices, vertices)

43

5. Testing the Julia bindings

vertices is an array of size n = numberOfVertices * dimensions, of the structure
[x1, y1, z1, x2, y2, z2, ...] since our domain is three-dimensional.

Now the initial "timestepping" part of our solver:

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

read data changed by other participant

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

compute data for this timestep

for i in 1:(numberOfVertices * dimensions)

writeData[i] = readData[i] + 1.0

end

write new data to vertices

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

finish timestep by telling it preCICE

println("DUMMY: Advancing in time")

dt = PreCICE.advance(dt)

This loop is where solvers usually solve some algebraic system for the current timestep,
write the values, and then go to the next timestep. Here we just read data, update our
write data, write them to the vertices, and call PreCICE.advance.

There are two more modifications to add. Since we are testing implicit coupling,
a timestep is run multiple times, or sub-iterated, to reach a convergence threshold.
preCICE needs us to revert to a previous state, an older timestep. That means we write
(set variables to that of the previous timestep) or read a checkpoint.

44

5.1. Coupling two dummy solvers

We query when to save a state with the help of isActionRequired. We extend the loop
to just log when reading or writing checkpoints would be required:

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

if PreCICE.isActionRequired(PreCICE.actionWriteIterationCheckpoint())

println("DUMMY: Writing iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionWriteIterationCheckpoint())

end

read data changed by other participant

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

compute data for this timestep

for i in 1:(numberOfVertices * dimensions)

writeData[i] = readData[i] + 1.0

end

write new data to vertices

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

finish timestep by telling it preCICE

dt = PreCICE.advance(dt)

if PreCICE.isActionRequired(PreCICE.actionReadIterationCheckpoint())

println("DUMMY: Reading iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionReadIterationCheckpoint())

else

println("DUMMY: Advancing in time")

end

In addition to that, the time window size is defined in the configuration file as fixed.
This means that preCICE prescribes the maximal timestep size until which the solvers
can compute their next values for, before preCICE communicates the coupling data.

The solvers can use smaller timestep sizes, so preCICE provides isWriteDataRequired
and isReadDataAvailable for reducing unnecessary calls while they subcycle:

45

5. Testing the Julia bindings

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

if PreCICE.isActionRequired(PreCICE.actionWriteIterationCheckpoint())

println("DUMMY: Writing iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionWriteIterationCheckpoint())

end

if PreCICE.isReadDataAvailable()

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

end

for i in 1:(numberOfVertices * dimensions)

writeData[i] = readData[i] + 1.0

end

if PreCICE.isWriteDataRequired(dt)

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

end

dt = PreCICE.advance(dt)

if PreCICE.isActionRequired(PreCICE.actionReadIterationCheckpoint())

println("DUMMY: Reading iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionReadIterationCheckpoint())

else

println("DUMMY: Advancing in time")

end

Finally, PreCICE.finalize() is called after the while-block when the simulation is
complete, to close communication channels.

A similar script for SolverTwo can be written. Instead of this, we modify the solver-
dummy.jl file so it can take the role of "SolverOne" as well as "SolverTwo", depending
on script arguments passed along.

This modified full solverdummy.jl file can be found in A.5, which is just one Julia solver
for SolverOne as well as SolverTwo that are started with

julia ./solverdummy.jl ./precice-config.xml <SolverName>

in each terminal.

After launching one solver, it will execute until initialize, and then preCICE blocks
and waits for the other solver:

46

5.2. Coupling two parallel dummy solvers in Julia that use MPI

~$ julia solverdummy.jl precice-config.xml SolverOne MeshOne

preCICE: This is preCICE version 2.2.0

preCICE: Revision info: v2.2.0

preCICE: Configuration: Release (Debug and Trace log unavailable)

preCICE: Configuring preCICE with configuration "precice-config.xml"

preCICE: I am participant "SolverOne"

preCICE: Setting up master communication to coupling partner/s

After starting SolverTwo, they start to read, write, advance until the maximum
amount of time windows is reached. Regarding the implicit coupling: We also
set in our precice-config.xml the min-iterations-convergence-measure to 5 and
max-iterations to 2, so they will also iterate 2 times during each time-window, not
reaching the convergence minimum.

5.2. Coupling two parallel dummy solvers in Julia that use
MPI

The previous section demonstrates the bindings for coupling a solver that is running on
one process. For large scale simulations, solvers make use of parallel computing.

5.2.1. Considerations for parallelism

Technically, this means that the algorithm of the solver allows a parallel computation
of the domain. The mesh is spatially divided and parts of it are computed on different
processes. This extends a coupled simulation where the solvers run on a different
number of processes, called ranks. 5.1 sketches our situation:

47

5. Testing the Julia bindings

Figure 5.1.: Participants work on distributed data where a rank of A may not influence
a rank of B

preCICE provides communication means so the coupling does not limit simulations that
work on distributed data. It makes it possible through establishing a point-to-point
connection between the ranks of all the participants. In an M to N parts decomposition of
the domains, some sub-parts of Solver A’s mesh may only touch with a certain subset of
Solver B’s meshes. This means that their respective ranks only need a communication
between them, and preCICE can establish for that an M:N communication, a process
mapping that establishes who communicates with whom.

The architecture of preCICE is distributed, where every rank i of a participant "Solver"
creates a SolverInterface instance with

PreCICE.createSolverInterface("Solver", "./precice-config.xml", i, totalRankSize)

in its process.

To only establish connections between ranks from different domains that do touch, pre-
CICE performs at the beginning a partitioning algorithm of the coupling meshes, based
on how the geometries influence each other the M:N communication is established.

How the M:N communication and the mesh re-partitioning of preCICE work are de-
scribed in [6, 8]. The important part for this sections is, that in order to be able to use
solvers using the Julia bindings on massively parallel systems, we need to be able to inte-
grate them in the M:N communication between ranks. Note that before the decentralized
M:N communication is established, to send mesh information to the other participant for
the mesh partitioning, another communication between ranks and between participants
is created.

48

5.2. Coupling two parallel dummy solvers in Julia that use MPI

5.2.2. Coupling a Julia solver that uses MPI

When writing code logic for parallel computing, in our case a solver that works on a
distributed mesh, a common standard is the Message Passing Interface2 (MPI). Multiple
C libraries exist that implement the API of MPI. They have the following application:

The solver code is started in n number of instances/n different processes. MPI’s API
provides for every process an identifying rank pi, and further methods for the communi-
cation of those processes. The algorithms of the solver are then depending on their rank,
for example, the solver computes only for points on its mesh at positions (x, pi), but are
otherwise the same. Such a model is also referred to as SPMD (Single Program Multiple
Data).

preCICE’s own M:N communication can be configured to work with MPI Ports or TCP/IP
sockets, and supports an easy integration of existing MPI communications used by a
solver. We take a look again at the solverdummy example, and modify it to use parallel
computation with MPI.

MPI in Julia

MPI.jl3 is a Julia wrapper library (just like PreCICE.jl) that provides an interface for
common MPI implementations.

We first install MPI.jl into our Julia environment with either add MPI in the Pkg REPL or
import Pkg; Pkg.add("MPI") in a Julia script. This will in addition to the package install
and link against an MPI library. You can check the downloaded MPI implementation
with MPI.MPI_LIBRARY and MPI.MPI_LIBRARY_VERSION. It downloaded the MPICH library
version 3.4.2 at the time of writing.

Configuration of MPI.jl

The version of MPI used by MPI.jl may not be compatible with the one that comes with
preCICE. An error is thrown when we couple a solver using MPICH 3.4.2 and preCICE

2.2.0:

preCICE:ERROR: Accepting a socket connection at 127.0.0.1:63010 failed with the system

error: boost::filesystem::rename: No such file or directory

2https://www.mpi-forum.org/docs/
3https://github.com/JuliaParallel/MPI.jl

49

5. Testing the Julia bindings

It was fixed when MPI.jl was set to use the MPI version on the system where this test
was run (Debian OpenMPI 4.0.3). It can be done by setting an environmental variable
and rebuilding MPI.jl, in short with the following command line:

julia -e 'ENV["JULIA_MPI_BINARY"]="system"; using Pkg; Pkg.build("MPI"; verbose=true)'

For further and more default information, consider the configuration section4 of MPI.jl’s
documentation.

5.2.3. Writing the solver

We can write a similar solverdummy as in 5.1, extend it to use MPI Communication:

using PreCICE

using MPI

MPI.Init()

comm = MPI.COMM_WORLD

commRank = MPI.Comm_rank(comm)

commSize = MPI.Comm_size(comm)

PreCICE.createSolverInterface("SolverOne", "./precice-config.xml", commRank, commSize)

In the previous solverdummy example, the rank was 0 and the communication size was
1, since we were not using parallelization and ran the solver for on one process. Here
we first initiate an MPI computation and create comm, the communicator handle, that
indentifies processes. There is nothing special, as we just use the basic MPI functions.

As for coupling to preCICE, we create in the current process a SolverInterface instance
and specify our rank commRank and the total size commSize. All processes of SolverOne
need to couple as "SolverOne".

For a demonstration of computing distributed data, we create the vertices array con-
taining their coordinates, and offset them by the rank so each process has its own
"segment":

for i in 1:numberOfVertices, j in 1:dimensions

offset = commRank * numberOfVertices

vertices[j + dimensions * (i-1)] = i-1 + offset

end

4https://juliaparallel.github.io/MPI.jl/latest/configuration/

50

5.2. Coupling two parallel dummy solvers in Julia that use MPI

That creates for rank 0 the array [0, 0, 0, 1, 1, 1, 2, 2, 2], for rank 1 the array
[3, 3, 3, 4, 4, 4, 5, 5, 5] and so on.

At the end of the solver, we can add MPI.Finalize() to clean up MPI related state, but
MPI.jl will call it either way when a Julia session ends.

The resulting solverdummy.jl that can be started as either as SolverOne or SolverTwo
can be found at A.6.

Configuration

Regarding the configuration of preCICE, we can write and use the same precice-config.xml
as in 5.1.

Running the coupling

We start the solver in N parallel processes with an MPI launcher, common are
mpirun, mpiexec:

$ mpirun -n 3 julia solverdummy-parallel.jl config.xml SolverOne

preCICE: This is preCICE version 2.2.0

preCICE: Revision info: v2.2.0

preCICE: I am participant "SolverOne"

preCICE: Connecting Master to 2 Slaves

preCICE: Connecting Slave #0 to Master

preCICE: Connecting Slave #1 to Master

preCICE: Setting up master communication to coupling partner/s

preCICE: Setting up master communication to coupling partner/s

preCICE: Setting up master communication to coupling partner/s

As can be seen from the log, when we start a solver in 3 parallel processes, process 0,
called here the master will wait until the other two, called Slaves, will connect, before
they start communicating with the other solver. The Master-Slave division is made for
the mesh re-partitioning algorithm to build the M:N communication later.

MPI.jl comes with is own mpiexecjl executable, that is just similar to mpirun or mpiexec
but can take the --project argument, to start the Julia processes in a local Julia project
environment.

To use the MPI implementation (if changed in the configuration of MPI.jl) of the current
Julia project environment (similar if a "mpirunpy" would be venv or pipenv aware).

51

5. Testing the Julia bindings

5.3. Using Julia’s native parallelization

While the last section provided solutions to write Julia solvers that work on distributed
data with MPI, it is not a default paradigm or feature of Julia. Julia provides primitives
for distributed computing at every level:

The shared-memory parallelization of Julia is provided with the standard Base.Threads

package for multi-threading. However, to initialize and use preCICE’s parallelism
we need separate memory spaces, so for example, starting a Julia script with
julia --threads n solvers.jl and running

using Base.Threads

solvers = ["SolverOne", "SolverTwo"]

@threads for i = 1:2

createSolverInterface(solvers[i], "precice-config.xml", i-1, 2)

end

would not work. We are particularly interested in Julia’s process-level parallelism, which
is provided with the standard Distributed module.

5.3.1. The Distributed module

Distributed is its own solution of managing processes and different than MPI. Let us
shortly discuss its main concepts from the documentation5.

There is one master process with id 1, managing all other processes that can be created
on local or remote machines. The other processes but the master are called workers
with ids 2 or higher. The communication appears to be "one-sided", as workers do not
synchronize their state on their own (module or method definitions, global variables,
and so on), the master has to explicitly load a module on each of them for example. For
the rest of this chapter, we refer to the group containing the master and the workers
together as "processes".

This "one-sided" approach becomes convincing when examining theremote references

and remote call primitives. We do not need to work or inspect them directly, but
Distributed is built on them. The former allow referencing data that is actually stored
on another process; the latter are requests to execute a function on any other or on a
particular process. We can already guess what convenience they in combination can
provide, and let us see the higher-level concepts.

5https://docs.julialang.org/en/v1/manual/distributed-computing/

52

5.3. Using Julia’s native parallelization

By starting the Julia REPL or script with "julia -p k (not -t, that starts threads) or
by running addprocs(k) we have k workers ready to use. It is advised to set k to the
number of logical cores on the machine. The @spawnat p <expression> macro evaluates
an expression on process p, but when the symbol :any is passed as p, Julia will run it on
an unspecified process:

using Distributed

remote_ref = @spawnat :any createABigSquareMatrix() # ref is now stored at some worker

det = @spawnat :any computeDeterminant(fetch(remote_ref)) # fetch is for copying locally

The second @spawnat does not copy remote_ref it to where it is called, it moves it
directly to where :any will be, but in this case @spawn choose the process where ref is
already stored.

So Julia’s parallel computing is less about referencing specific processes, but we can still
technically employ a parallel Julia solver in a preCICE coupling.

5.3.2. Writing the solver

While the master/worker division appears more "one-sided", we can create a solver-
dummy, that works on his distributed data very similar to the MPI parallelism solution
from the previous section.

Our practical considerations: We modify the resulting solverdummy.jl file from 5.1
to be started with julia solverdummy.jl N ./precice-config.xml SolverName, what
launches N-1 additional workers and run the solverdummy code on N different processes,
including the master process.

Our theoretical considerations: We tell every process of the solver to create the
SolverInterface object and pass the total size N and the id of the process. This
works analogous to the MPI example, instead of the rank id we pass the id of the
master/worker process.

So first we import PreCICE and Distributed and define the parameters of the solver:

using Distributed

numberOfProcs = 10

ConfigFileName = "./precice-config-parallel.xml"

SolverName = "SolverOne"

MeshName = "MeshOne"

addprocs(numberOfProcs - 1)

53

5. Testing the Julia bindings

We set the total number of processes to an arbitrary 10, and create for that 9 additional
workers with addprocs that comes with Distributed. Note that all this is executed on
the master process and in its scope.

Now comes the solver part, that is executed on every process:

@everywhere begin

using PreCICE

A begin ... end block is just a way to bind multiple expressions into one. The
@everywhere macro from Distributed is evaluating on all processes, including mas-
ter, the expression after it, so our code inside begin.

On every process, we set the participant and rank specific parameters:

using PreCICE

commRank = myid() - 1

commSize = nprocs()

configFileName = $ConfigFileName

solverName = $SolverName

meshName = $MeshName

commRank is set to myid(), the process id, and decremented by one, because Julia uses
1-based indexing (master has id 1, and workers have 2 to n). preCICE is expecting to
get ranks (numbered 0 to n − 1) as in the MPI standard and will throw an error on the
last process with id 10, stating that the size (nprocs() yields 10) cannot be less than a
rank.

When we want to define the variables configFileName, solverName and meshName, we
cannot use variables defined outside of @everywhere since the macro does not copy them
to other processes, and they are not defined there. So we use the interpolation operator
$, that does make the values of the variables as a part of the begin expression. The
reason is that otherwise, myid() would return on every process 0, if not being strict to
remote context.

After that, in every Julia process we create the SolverInterface object:

PreCICE.createSolverInterface(solverName, configFileName, commRank, commSize)

meshID = PreCICE.getMeshID(meshName)

dimensions = PreCICE.getDimensions()

...

54

5.3. Using Julia’s native parallelization

Further from here on there is nothing different than in the solverdummy using MPI. The
complete solver can be found in A.7. This example reproduced the SPMD paradigm of
the MPI standard by running the computations with @everywhere. Figure 5.2 visualizes
the Julia processes in a M:N coupling.

Figure 5.2.: Julia processes coupled as ranks; (n) denotes worker/master id

In the context of preCICE, there exists also a conception of a "master", it is the rank that
is coupled as "0", whereas the other ranks of the same participant are called "slaves".

The differentiation is made in preCICE for its mesh re-partitioning algorithm. We want to
add that the two meanings of "masters" are not related in any way, and the Julia master
process here coupling as the first rank 0 is arbitrary. The Julia master process is not even
required to participate at all, important is that every process of Julia participating in
the coupling creates a SolverInterface to be included in the process mapping and calls
further API methods of preCICE on them.

For a workers coupling only, we can use @everywhere [...] <expr>, where [...] is a
subset of processes:

Using Distributed

addprocs(numberWorkers; exeflags="--project")

@everywhere workers() begin

using PreCICE

commRank = myid() - 2

commSize = nworkers()

...

55

5. Testing the Julia bindings

where workers() yields all ids of the worker processes, and we decrement them by 2
since now our first rank 0, the worker, has an id of 2. We also pass the total communica-
tion size as nworkers() instead of nprocs(). This frees the master process and leads to
the relation described in Figure 5.3.

Figure 5.3.: Native parallelism with Julia worker processes only

And again, this is not limited to freeing the master process only. This means that a subset
of Julia processes can connect as a participant to preCICE, the master and another set of
processes left out. The full script for the workers only version can be found in appendix
A.8.

This arrangement becomes very interesting; if the master process adds N additional
processes, a Julia solver could couple as both participants, a coupling managed from
one Julia script. Consider Figure 5.4, the "start" script, has all the control over what
to execute where, as Julia’s Distributed paradigm intended. We are reproducing the
MIMD (Multiple Instruction Multiple Data) structure.

56

5.3. Using Julia’s native parallelization

using Distributed

solverOne = ["SolverOne", "conf.xml", "DataOne", "MeshOne", 2:M]

solverTwo = ["SolverTwo", "conf.xml", "DataTwo", "MeshTwo", (M+1):(N+M)]

addprocs(M+N)

@everywhere using PreCICE

SolverOne

@everywhere 2:M begin

conf = $solverOne

createSolverInterface(conf[1], conf[2], myid()-conf[end][1], conf[end][end])

data_id = getMeshID(conf[3])

mesh_id = getMeshID(conf[4])

...

end

SolverTwo

@everywhere (M+1):(N+M) begin

conf = $solverTwo

createSolverInterface(conf[1], conf[2], myid()-conf[end][1], conf[end][end])

data_id = getMeshID(conf[3])

mesh_id = getMeshID(conf[4])

...

end

...

Figure 5.4.: Writing distributed coupling setup from one Julia file

Furthermore, we are not limited to process-level parallelism, as masters and work-
ers can start threads, for example with julia -p n -t k or with addprocs(n,

execflags="--threads k") starts n workers with k threads each, so a single rank of a
Julia process could still use all the multi-threading functionality.

One thing that derivates from the MPI setup is the configuration.

5.3.3. Configuration for native parallelism

While the solver from looked very similar from the setup of MPI, we have to make
changes to the configuration of the coupling. The way the intra-participant communica-
tion is built in preCICE, it is desirable to reuse a MPI communicator of a participant, if
available. So by default, preCICE uses the global communicator MPI_COMM_WORLD, but
when we use Julia’s native parallelism it is not present, and an error will be thrown.

57

5. Testing the Julia bindings

For this case preCICE also supports building its intra-participant communication with
TCP/IP sockets. We add to the participant that uses Julia’s native parallelism the
<master:sockets/> tag in the precice-configuration.xml:

<participant name="SolverOne">

<master:sockets/>

<use-mesh name="MeshOne" provide="yes"/>

<write-data name="dataOne" mesh="MeshOne" />

<read-data name="dataTwo" mesh="MeshOne" />

</participant>

58

6. Conclusions and Outlook

This thesis looked into two complementary open-source projects: Julia, being a high-
level programming language bringing a fresh new approach to Scientific Computing,
and preCICE, a state-of-the-art multi-physics coupling library for scientific discoveries in
various important and advanced fields.

preCICE’s API for coupling single-physics solvers in a multi-physics simulation is available
for a number of different languages through language bindings. We researched ways to
access the library through calls from Julia and presented two implementations. While
CxxWrap.jl provided a template solution to wrap C++ libraries as Julia packages, an
independent native solution could be developed due to preCICE’s C bindings being a part
of the core library and Julia’s native support for calling to C libraries and its managing of
C-Julia type conversions. The resulting Julia package PreCICE.jl was tested on dummy
solvers, affirming a seamless integration of preCICE’s basic API and parallelization
using the package MPI.jl into the world of Julia. Finally, the Julia in-house features for
distributed/parallel computing were explored upon compatibility with preCICE, where
the workers of the Distributed package were employed to connect in a preCICE coupling
setup as distributed solver processes, again providing at least a functional success, owing
to preCICE upholding alternative options for solvers using a closed-source or modified
communication in its configuration.

From a software developing perspective, this thesis provided an outline of how to port a
full C or C++ library to Julia, summarizing available directions and multiple options
into one of a single documented guide. For further development of Julia bindings for
any C/C++ library, one is now able to build upon the outline from this thesis instead of
starting from researching the options again.

The resulting Julia bindings brought the coupling library of preCICE into Julia’s scope,
making the creation of partitioned multi-physics simulations in Julia a viable option.
Julia was intended to bring abstraction into the field of numerical computing, which
translates into the field of multi-physics as users of preCICE now have a new paradigm
ready for exploitation. For the open-source project of preCICE itself, the Julia bindings
could serve as a new individual software package having its place besides the other
languages rather than being an alternative, as the bindings seem to have integrated
themselves into preCICE frictionless and without bitter compromises. For example,

59

6. Conclusions and Outlook

Julia’s C interfacing has its limitations in certain areas, but these use cases never
applied for preCICE; the parallelization provided its own Message Passing Interface,
but coincidentally they offered everything preCICE needed; Julia supports distributing
binaries through JLL packages, and all dependencies of preCICE are available as JLLs
too, making a future preCICE_jll possible to compile, leading to install PreCICE.jl in the
Julia REPL the simplest way to install preCICE and to get their hand on it (quicker than
the quickstart1 on preCICE’s website!).

However, while this thesis provides the first code and working examples with arbitrary
data, performance tests and real coupling scenarios using the API in action is further
work that needs to be pursued to fully confirm the working state of the Julia bindings.

Same applies for the native parallelization of Julia on multiple points. The coupling
as a distributed participant worked, but if there is any advantage to it instead of using
MPI.jl remains until the end of this thesis an open question. There needs to be a further
investigation of the "idea" of the Distributed package and how it fits within preCICE.
The technical aspect too, as the ids of Julia processes use 1-based indexing, what
makes the createSolverInterface(solverName, config, myid()-offset, nprocs())

seem "hacky". If preCICE wants to allow a solver using its own version of MPI, then
perhaps for languages such as Julia a more generic way to register as ranks of a
participant could be considered, but for now it is only a matter of changing up values.

1https://precice.org/quickstart.html

60

A. Complete Code

A.1. Ferrite.jl Heat Transfer Solver

using Ferrite, SparseArrays # importing library methods into scope with 'using'

create domain

grid = generate_grid(Quadrilateral, (100, 100))

dim = 2

ip = Lagrange{dim, RefCube, 1}()

qr = QuadratureRule{dim, RefCube}(2)

cellvalues = CellScalarValues(qr, ip)

dh = DofHandler(grid)

push!(dh, :u, 1)

close!(dh)

K = create_sparsity_pattern(dh)

M = create_sparsity_pattern(dh)

f = zeros(ndofs(dh))

function doassemble_K!(K::SparseMatrixCSC, f::Vector,

cellvalues::CellScalarValues{dim},

dh::DofHandler) where {dim}

n_basefuncs = getnbasefunctions(cellvalues)

Ke = zeros(n_basefuncs, n_basefuncs)

fe = zeros(n_basefuncs)

assembler = start_assemble(K, f)

@inbounds for cell in CellIterator(dh)

fill!(Ke, 0)

fill!(fe, 0)

reinit!(cellvalues, cell)

for q_point in 1:getnquadpoints(cellvalues)

dΩ = getdetJdV(cellvalues, q_point)

for i in 1:n_basefuncs

v = shape_value(cellvalues, q_point, i)

v = shape_gradient(cellvalues, q_point, i)

fe[i] += v * dΩ
for j in 1:n_basefuncs

u = shape_gradient(cellvalues, q_point, j)

Ke[i, j] += (v u) * dΩ
end

end

end

61

A. Complete Code

assemble!(assembler, celldofs(cell), fe, Ke)

end

return K, f

end

function doassemble_M!(M::SparseMatrixCSC,

cellvalues::CellScalarValues{dim},

dh::DofHandler) where {dim}

n_basefuncs = getnbasefunctions(cellvalues)

Me = zeros(n_basefuncs, n_basefuncs)

assembler = start_assemble(M)

@inbounds for cell in CellIterator(dh)

fill!(Me, 0)

reinit!(cellvalues, cell)

for q_point in 1:getnquadpoints(cellvalues)

dΩ = getdetJdV(cellvalues, q_point)

for i in 1:n_basefuncs

v = shape_value(cellvalues, q_point, i)

for j in 1:n_basefuncs

u = shape_value(cellvalues, q_point, j)

Me[i, j] += (v u) * dΩ
end

end

end

assemble!(assembler, celldofs(cell), Me)

end

return M

end

function saveData(u, t)

vtk_grid("transient-heat-$t", dh) do vtk

vtk_point_data(vtk, dh, u)

vtk_save(vtk)

end

end

simulation parameters

max_temp = 100

∆t = 1

T = 200

define dirichlet boundary conditions on top and bottom edge of the domain

ch = ConstraintHandler(dh)

u_d(x,t) = 0

∂Ω1 = union(getfaceset.((grid,), ["top", "bottom"])...)

dbc = Dirichlet(:u, , u_d)

add!(ch, dbc)

temperature on left boundary is described as function a

62

A.2. CxxWrap.jl CMakeLists.txt for building the C++ wrapper library

a(x,t) = t*max_temp / T

∂Ω2 = union(getfaceset.((grid,), ["left"])...)

dbc = Dirichlet(:u, ∂Ω2, a)

add!(ch, dbc)

close!(ch)

update!(ch, 0.0)

assemble linear system

K, f = doassemble_K!(K, f, cellvalues, dh)

M = doassemble_M!(M, cellvalues, dh)

A = (∆t .* K) + M # system matrix A

rhsdata = get_rhs_data(ch, A)

un = zeros(length(f)) # initialize first timestep

apply!(A, ch) # apply boundary conditions

@time for t in 0:∆t:T

update!(ch, t) # update boundary condition values

b = ∆t .* f .+ M * un # compute right-hand side

apply_rhs!(rhsdata, b, ch) # apply boundary conditions of the current time step

u = A \ b # solve timestep

un .= u # update solution

saveData(u, t) # write output file

end

A.2. CxxWrap.jl CMakeLists.txt for building the C++
wrapper library

project(Juliaprecice)

cmake_minimum_required(VERSION 2.8.12)

set(CMAKE_MACOSX_RPATH 1)

set(JlCxx_DIR /path/to/libprecice.soDir/)

set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib")

find_package(precice REQUIRED CONFIG)

find_package(JlCxx)

get_target_property(JlCxx_location JlCxx::cxxwrap_julia LOCATION)

get_filename_component(JlCxx_location ${JlCxx_location} DIRECTORY)

set(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib;${JlCxx_location}")

add_library(jlprecice SHARED juliaprecice.cpp)

target_link_libraries(jlprecice precice::precice)

target_link_libraries(jlprecice JlCxx::cxxwrap_julia)

install(TARGETS

jlprecice

LIBRARY DESTINATION lib

ARCHIVE DESTINATION lib

RUNTIME DESTINATION lib)

63

A. Complete Code

A.3. C++ side part of CxxWrap.jl

#include "jlcxx/jlcxx.hpp"

#include <precice/SolverInterface.hpp>

JLCXX_MODULE define_julia_module(jlcxx::Module& mod)

{

using namespace precice;

mod.method("getVersionInformation", &getVersionInformation);

mod.add_type<SolverInterface>("SolverInterface")

.constructor<const std::string, const std::string, int, int>()

.constructor<const std::string, const std::string, int, int, void*>()

// Steering Methods

.method("initialize", &SolverInterface::initialize)

.method("initializeData", &SolverInterface::initializeData)

.method("advance", &SolverInterface::advance)

.method("finalize", &SolverInterface::finalize)

// Status Queries

.method("getDimensions", &SolverInterface::getDimensions)

.method("isCouplingOngoing", &SolverInterface::isCouplingOngoing)

.method("isReadDataAvailable", &SolverInterface::isReadDataAvailable)

.method("isWriteDataRequired", &SolverInterface::isWriteDataRequired)

.method("isTimeWindowComplete", &SolverInterface::isTimeWindowComplete)

// Action Methods

.method("isActionRequired", &SolverInterface::isActionRequired)

.method("markActionFulfilled", &SolverInterface::markActionFulfilled)

// Mesh Access

.method("hasMesh", &SolverInterface::hasMesh)

.method("getMeshID", &SolverInterface::getMeshID)

.method("setMeshVertex", &SolverInterface::setMeshVertex)

.method("getMeshVertexSize", &SolverInterface::getMeshVertexSize)

.method("setMeshVertices", &SolverInterface::setMeshVertices)

.method("getMeshVertices", &SolverInterface::getMeshVertices)

.method("getMeshVertexIDsFromPositions",

&SolverInterface::getMeshVertexIDsFromPositions)

.method("setMeshEdge", &SolverInterface::setMeshEdge)

.method("setMeshTriangle", &SolverInterface::setMeshTriangle)

.method("setMeshTriangleWithEdges", &SolverInterface::setMeshTriangleWithEdges)

.method("setMeshQuad", &SolverInterface::setMeshQuad)

.method("setMeshQuadWithEdges", &SolverInterface::setMeshQuadWithEdges)

// Data Access

.method("hasData", &SolverInterface::hasData)

.method("getDataID", &SolverInterface::getDataID)

.method("mapReadDataTo", &SolverInterface::mapReadDataTo)

.method("mapWriteDataFrom", &SolverInterface::mapWriteDataFrom)

.method("writeBlockVectorData", &SolverInterface::writeBlockVectorData)

.method("writeVectorData", &SolverInterface::writeVectorData)

64

A.4. Solverdummy configuration file

.method("writeBlockScalarData", &SolverInterface::writeBlockScalarData)

.method("writeScalarData", &SolverInterface::writeScalarData)

.method("readBlockVectorData", &SolverInterface::readBlockVectorData)

.method("readVectorData", &SolverInterface::readVectorData)

.method("readBlockScalarData", &SolverInterface::readBlockScalarData)

.method("readScalarData", &SolverInterface::readScalarData)

;

mod.method("actionWriteInitialData", &constants::actionWriteInitialData);

mod.method("actionWriteIterationCheckPoint",

&constants::actionWriteIterationCheckpoint);

mod.method("actionReadIterationCheckPoint",

&constants::actionReadIterationCheckpoint);

}

A.4. Solverdummy configuration file

<?xml version="1.0" encoding="UTF-8" ?>

<precice-configuration>

<log>

<sink

type="stream"

output="stdout"

filter="%Severity% > debug"

format="preCICE:%ColorizedSeverity% %Message%"

enabled="true" />

</log>

<solver-interface dimensions="3">

<data:vector name="dataOne" />

<data:vector name="dataTwo" />

<mesh name="MeshOne">

<use-data name="dataOne" />

<use-data name="dataTwo" />

</mesh>

<mesh name="MeshTwo">

<use-data name="dataOne" />

<use-data name="dataTwo" />

</mesh>

<participant name="SolverOne">

<use-mesh name="MeshOne" provide="yes" />

<write-data name="dataOne" mesh="MeshOne" />

<read-data name="dataTwo" mesh="MeshOne" />

</participant>

<participant name="SolverTwo">

<use-mesh name="MeshOne" from="SolverOne" />

<use-mesh name="MeshTwo" provide="yes" />

65

A. Complete Code

<mapping:nearest-neighbor

direction="write"

from="MeshTwo"

to="MeshOne"

constraint="conservative" />

<mapping:nearest-neighbor

direction="read"

from="MeshOne"

to="MeshTwo"

constraint="consistent" />

<write-data name="dataTwo" mesh="MeshTwo" />

<read-data name="dataOne" mesh="MeshTwo" />

</participant>

<m2n:sockets from="SolverOne" to="SolverTwo" />

<coupling-scheme:serial-implicit>

<participants first="SolverOne" second="SolverTwo" />

<max-time-windows value="2" />

<time-window-size value="1.0" />

<max-iterations value="2" />

<min-iteration-convergence-measure

min-iterations="5"

data="dataOne"

mesh="MeshOne" />

<exchange data="dataOne" mesh="MeshOne" from="SolverOne" to="SolverTwo" />

<exchange data="dataTwo" mesh="MeshOne" from="SolverTwo" to="SolverOne" />

</coupling-scheme:serial-implicit>

</solver-interface>

</precice-configuration>

A.5. Code for solverdummy.jl

using PreCICE

commRank = 0

commSize = 1

if size(ARGS, 1) < 2

println("ERROR: pass config path, solver name and mesh name, example:

julia solverdummy.jl ./precice-config.xml SolverOne MeshOne")

exit(1)

end

configFileName = ARGS[1]

solverName = ARGS[2]

if solverName == "SolverOne"

meshName = "MeshOne"

dataWriteName = "dataOne"

dataReadName = "dataTwo"

66

A.5. Code for solverdummy.jl

else

meshName = "MeshTwo"

dataReadName = "dataOne"

dataWriteName = "dataTwo"

end

println("""DUMMY: Running solver dummy with preCICE config file

"$configFileName", participant name "$solverName", and mesh name "$meshName" """)

PreCICE.createSolverInterface(solverName, configFileName, commRank, commSize)

meshID = PreCICE.getMeshID(meshName)

dimensions = PreCICE.getDimensions()

numberOfVertices = 3

readDataID = PreCICE.getDataID(dataReadName, meshID)

writeDataID = PreCICE.getDataID(dataWriteName, meshID)

readData = zeros(numberOfVertices * dimensions)

writeData = zeros(numberOfVertices * dimensions)

vertices = Array{Float64, 1}(undef, numberOfVertices * dimensions)

create array of vertices v_i = (i,i,i)

for i in 1:numberOfVertices, j in 1:dimensions

vertices[j + dimensions * (i-1)] = i

end

vertexIDs = PreCICE.setMeshVertices(meshID, numberOfVertices, vertices)

let # setting local scope for dt outside of the while loop

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

if PreCICE.isActionRequired(PreCICE.actionWriteIterationCheckpoint())

println("DUMMY: Writing iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionWriteIterationCheckpoint())

end

if PreCICE.isReadDataAvailable()

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

end

for i in 1:(numberOfVertices * dimensions)

writeData[i] = readData[i] + 1.0

end

if PreCICE.isWriteDataRequired(dt)

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

end

dt = PreCICE.advance(dt)

if PreCICE.isActionRequired(PreCICE.actionReadIterationCheckpoint())

println("DUMMY: Reading iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionReadIterationCheckpoint())

else

println("DUMMY: Advancing in time")

end

67

A. Complete Code

end # while

end # let

PreCICE.finalize()

println("DUMMY: Closing Julia solver dummy...")

A.6. Parallel solverdummy.jl with MPI Communication

using PreCICE

using MPI

if size(ARGS, 1) < 2

println("ERROR: pass config path, solver name,

example: julia solverdummy.jl ./precice-config.xml SolverOne")

exit(1)

end

MPI.Init()

comm = MPI.COMM_WORLD

commRank = MPI.Comm_rank(comm)

commSize = MPI.Comm_size(comm)

configFileName = ARGS[1]

solverName = ARGS[2]

set meshName depending on solverName

if solverName == "SolverOne"

meshName = "MeshOne"

else

meshName = "MeshTwo"

end

println("""DUMMY ($(MPI.Comm_rank(comm))): Running solver dummy with preCICE config file

"$configFileName", participant name "$solverName", and mesh name "$meshName" """)

PreCICE.createSolverInterface(solverName, configFileName, commRank, commSize)

meshID = PreCICE.getMeshID(meshName)

dimensions = PreCICE.getDimensions()

numberOfVertices = 1

if solverName == "SolverOne"

dataWriteName = "dataOne"

dataReadName = "dataTwo"

else

dataReadName = "dataOne"

dataWriteName = "dataTwo"

68

A.6. Parallel solverdummy.jl with MPI Communication

end

readDataID = PreCICE.getDataID(dataReadName, meshID)

writeDataID = PreCICE.getDataID(dataWriteName, meshID)

readData = zeros(numberOfVertices * dimensions)

writeData = zeros(numberOfVertices * dimensions)

vertices = Array{Float64, 1}(undef, numberOfVertices * dimensions)

create different vertices coordinates for different procs

for i in 1:numberOfVertices, j in 1:dimensions

offset = commRank * numberOfVertices

vertices[j + dimensions * (i-1)] = i-1 + offset

end

vertexIDs = PreCICE.setMeshVertices(meshID, numberOfVertices, vertices)

let # setting local scope for dt outside of the while loop

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

if PreCICE.isActionRequired(PreCICE.actionWriteIterationCheckpoint())

#println("""DUMMY ($(MPI.Comm_rank(comm))): Writing iteration checkpoint""")

PreCICE.markActionFulfilled(PreCICE.actionWriteIterationCheckpoint())

end

if PreCICE.isReadDataAvailable()

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

end

for i in 1:(numberOfVertices * dimensions)

writeData[i] = readData[i] + 1.0

end

if PreCICE.isWriteDataRequired(dt)

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

end

dt = PreCICE.advance(dt)

if PreCICE.isActionRequired(PreCICE.actionReadIterationCheckpoint())

println("""DUMMY ($(MPI.Comm_rank(comm))): Reading iteration checkpoint""")

PreCICE.markActionFulfilled(PreCICE.actionReadIterationCheckpoint())

else

println("""DUMMY ($(MPI.Comm_rank(comm))): Advancing in time""")

end

end # while

end # let

PreCICE.finalize()

println("""DUMMY ($(MPI.Comm_rank(comm))): Closing Julia solver dummy...""")

69

A. Complete Code

A.7. Solverdummy using native parallelism

using Distributed

if size(ARGS, 1) < 3

println("ERROR: pass total processes number N, config path, solver name and

mesh name, example: julia solverdummy.jl 5 ./precice-config.xml SolverOne")

exit(1)

end

numberWorkers = parse(Int, ARGS[1]) - 1

ConfigFileName = ARGS[2]

SolverName = ARGS[3]

add --project flag if PreCICE is installed in a local Julia environment

addprocs(numberWorkers)

@everywhere begin

using PreCICE

commRank = myid() - 1

commSize = nprocs()

configFileName = $ConfigFileName

solverName = $SolverName

set meshName depending on solverName

if solverName == "SolverOne"

meshName = "MeshOne"

else

meshName = "MeshTwo"

end

println("""DUMMY ($commRank): Running solver dummy with preCICE config file

"$configFileName", participant name "$solverName", and mesh name "$meshName" """)

PreCICE.createSolverInterface(solverName, configFileName, commRank, commSize)

meshID = PreCICE.getMeshID(meshName)

dimensions = PreCICE.getDimensions()

numberOfVertices = 1

if solverName == "SolverOne"

dataWriteName = "dataOne"

dataReadName = "dataTwo"

else

dataReadName = "dataOne"

dataWriteName = "dataTwo"

end

70

A.7. Solverdummy using native parallelism

readDataID = PreCICE.getDataID(dataReadName, meshID)

writeDataID = PreCICE.getDataID(dataWriteName, meshID)

writeData = zeros(numberOfVertices * dimensions)

readData = zeros(numberOfVertices * dimensions)

vertices = Array{Float64, 1}(undef, numberOfVertices * dimensions)

create different vertices coordinates for different procs

for i in 1:numberOfVertices, j in 1:dimensions

offset = commRank * numberOfVertices

vertices[j + dimensions * (i-1)] = i-1 + offset

end

let # setting local scope for dt outside of the while loop

vertexIDs = PreCICE.setMeshVertices(meshID, numberOfVertices, vertices)

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

if PreCICE.isActionRequired(PreCICE.actionWriteIterationCheckpoint())

println("DUMMY ($commRank): Writing iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionWriteIterationCheckpoint())

end

if PreCICE.isReadDataAvailable()

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

end

writeData = readData .+ 1.0

if PreCICE.isWriteDataRequired(dt)

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

end

dt = PreCICE.advance(dt)

if PreCICE.isActionRequired(PreCICE.actionReadIterationCheckpoint())

println("DUMMY ($commRank): Reading iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionReadIterationCheckpoint())

else

println("DUMMY ($commRank): Advancing in time")

end

end # while

end # let

PreCICE.finalize()

println("DUMMY ($commRank): Closing Julia solver dummy...")

end

71

A. Complete Code

A.8. Native parallelism solverdummy, workers only

using Distributed

if size(ARGS, 1) < 3

println("ERROR: pass total processes number N, config path, solver name and mesh

name, example: julia solverdummy.jl 5 ./precice-config.xml SolverOne")

exit(1)

end

numberWorkers = parse(Int, ARGS[1])

ConfigFileName = ARGS[2]

SolverName = ARGS[3]

add --project flag if PreCICE is installed in a local Julia environment

addprocs(numberWorkers; exeflags="--project")

@everywhere workers() begin

using PreCICE

commRank = myid() - 2

commSize = nworkers()

configFileName = $ConfigFileName

solverName = $SolverName

set meshName depending on solverName

if solverName == "SolverOne"

meshName = "MeshOne"

else

meshName = "MeshTwo"

end

println("""DUMMY ($commRank): Running solver dummy with preCICE config file

"$configFileName", participant name "$solverName", and mesh name "$meshName" """)

PreCICE.createSolverInterface(solverName, configFileName, commRank, commSize)

meshID = PreCICE.getMeshID(meshName)

dimensions = PreCICE.getDimensions()

dataWriteName = nothing

dataReadName = nothing

numberOfVertices = 1

if solverName == "SolverOne"

dataWriteName = "dataOne"

dataReadName = "dataTwo"

end

if solverName == "SolverTwo"

dataReadName = "dataOne"

dataWriteName = "dataTwo"

end

72

A.8. Native parallelism solverdummy, workers only

readDataID = PreCICE.getDataID(dataReadName, meshID)

writeDataID = PreCICE.getDataID(dataWriteName, meshID)

writeData = zeros(numberOfVertices * dimensions)

readData = zeros(numberOfVertices * dimensions)

vertices = Array{Float64, 1}(undef, numberOfVertices * dimensions)

create different vertices coordinates for different procs

for i in 1:numberOfVertices, j in 1:dimensions

offset = commRank * numberOfVertices

vertices[j + dimensions * (i-1)] = i-1 + offset

end

let # setting local scope for dt outside of the while loop

vertexIDs = PreCICE.setMeshVertices(meshID, numberOfVertices, vertices)

dt = PreCICE.initialize()

while PreCICE.isCouplingOngoing()

if PreCICE.isActionRequired(PreCICE.actionWriteIterationCheckpoint())

println("DUMMY ($commRank): Writing iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionWriteIterationCheckpoint())

end

if PreCICE.isReadDataAvailable()

PreCICE.readBlockVectorData(readDataID, numberOfVertices, vertexIDs, readData)

end

writeData = readData .+ 1.0

if PreCICE.isWriteDataRequired(dt)

PreCICE.writeBlockVectorData(writeDataID, numberOfVertices, vertexIDs, writeData)

end

dt = PreCICE.advance(dt)

if PreCICE.isActionRequired(PreCICE.actionReadIterationCheckpoint())

println("DUMMY ($commRank): Reading iteration checkpoint")

PreCICE.markActionFulfilled(PreCICE.actionReadIterationCheckpoint())

else

println("DUMMY ($commRank): Advancing in time")

end

end # while

end # let scope

PreCICE.finalize()

println("DUMMY ($commRank): Closing Julia solver dummy...")

end

73

Bibliography

[1] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah. Julia: A Fresh Approach to
Numerical Computing. 2015. arXiv: 1411.1607 [cs.MS] (cit. on pp. 12, 13).

[2] J. Bezanson, S. Karpinski, V. B. Shah, A. Edelman. Julia: A Fast Dynamic Language
for Technical Computing. 2012. arXiv: 1209.5145 [cs.PL] (cit. on p. 13).

[3] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev,
B. Uekermann. “preCICE – A fully parallel library for multi-physics surface cou-
pling.” In: Computers and Fluids 141 (2016). Advances in Fluid-Structure In-
teraction, pp. 250–258. ISSN: 0045-7930. DOI: https : / / doi . org / 10 . 1016 / j .
compfluid.2016.04.003. URL: http://www.sciencedirect.com/science/article/pii/
S0045793016300974 (cit. on pp. 11, 23).

[4] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis, B. Uekermann,
G. Abrams, H.-J. Bungartz, L. C. Yau, I. Desai, K. Eder, R. Hertrich, F. Lindner,
A. Rusch, D. Sashko, D. Schneider, A. Totounferoush, D. Volland, P. Vollmer,
O. Z. Koseomur. preCICE v2: A Sustainable and User-Friendly Coupling Library. 2021.
arXiv: 2109.14470 [cs.MS] (cit. on pp. 22, 23).

[5] B. Gatzhammer. “Efficient and Flexible Partitioned Simulation of Fluid-Structure
Interactions.” Dissertation. Munich: Technical University of Munich, 2014 (cit. on
p. 23).

[6] F. Lindner. Data Transfer in Partitioned Multi-Physics Simulations: Interpolation
Communication. https : //elib .uni - stuttgart . de/bitstream/11682/10598/3/
Lindner%20-%20Data%20Transfer%20in%20Partitioned%20Multi-Physics%
20Simulations.pdf. Dissertation. 2019 (cit. on p. 48).

[7] J. Regier, A. Miller, J. McAuliffe, R. Adams, M. Hoffman, D. Lang, D. Schlegel,
Prabhat. Celeste: Variational inference for a generative model of astronomical images.
2015. arXiv: 1506.01351 [astro-ph.IM] (cit. on p. 13).

[8] B. W. Uekermann. “Partitioned Fluid-Structure Interaction on Massively Parallel
Systems.” Dissertation. Department of Informatics, Technical University of Munich,
2016. DOI: https://doi.org/10.14459/2016md1320661 (cit. on p. 48).

All links were last followed on October 19, 2021.

https://arxiv.org/abs/1411.1607
https://arxiv.org/abs/1209.5145
https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003
https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003
http://www.sciencedirect.com/science/article/pii/S0045793016300974
http://www.sciencedirect.com/science/article/pii/S0045793016300974
https://arxiv.org/abs/2109.14470
https://elib.uni-stuttgart.de/bitstream/11682/10598/3/Lindner%20-%20Data%20Transfer%20in%20Partitioned%20Multi-Physics%20Simulations.pdf
https://elib.uni-stuttgart.de/bitstream/11682/10598/3/Lindner%20-%20Data%20Transfer%20in%20Partitioned%20Multi-Physics%20Simulations.pdf
https://elib.uni-stuttgart.de/bitstream/11682/10598/3/Lindner%20-%20Data%20Transfer%20in%20Partitioned%20Multi-Physics%20Simulations.pdf
https://arxiv.org/abs/1506.01351
https://doi.org/https://doi.org/10.14459/2016md1320661

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	Introduction
	The Julia Programming Language
	Julia’s background and core language components
	Example of Julia code: solving the heat equation

	The coupling library preCICE
	Overview of preCICE
	Using preCICE's API to couple a solver

	Coupling Julia solvers using preCICE
	Calling C++ code in Julia
	The final Julia binding for preCICE
	Final remarks about the bindings

	Testing the Julia bindings
	Coupling two dummy solvers
	Coupling two parallel dummy solvers in Julia that use MPI
	Using Julia's native parallelization

	Conclusions and Outlook
	Complete Code
	Ferrite.jl Heat Transfer Solver
	CxxWrap.jl CMakeLists.txt for building the C++ wrapper library
	C++ side part of CxxWrap.jl
	Solverdummy configuration file
	Code for solverdummy.jl
	Parallel solverdummy.jl with MPI Communication
	Solverdummy using native parallelism
	Native parallelism solverdummy, workers only

	Bibliography

