
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Load Shedding in Complex Event
Processing with Probabilistic

Features

Timo Grosskopf

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Henriette Röger, M.Sc.
Sukanya Bhowmik, Dr.

Commenced: April 24, 2021

Completed: October 28, 2021

Abstract

Complex Event Processing (CEP) is a stream processing paradigm primarily searching for event
type patterns in continuous event streams. Furthermore, load shedding is a common practice in
CEP applications when resources are limited and under heavy load. Operators, which become
a bottleneck due to bursts in event streams and therefore message queuing, drop event messages
with a low matching probability to comply with their latency bound. Existing CEP load shedding
mechanisms show a need for improvement if application queries consider an arithmetic relation
between event attribute values, which are then called dependent attributes. In this case, incoming
events of the same type must be differentiable in their individual matching probability, which bases
on their dependent attribute values.
This work introduces the Probabilistic Feature Shedding (PFS) approach, which leverages probability
distributions of the dependent attribute values to derive thresholds as shed margins for incoming
events. These thresholds categorize incoming events into probable and improbable events to fulfill
the arithmetic relation. Improbable events are dispensable for their lower matching probability.
The intention behind the PFS mechanism is, that existing shedding mechanisms are complemented
with its functionality. In the course of this work, a random shedding mechanism and a distributed
shedding approach with linear program solver are each extended with an implementation of the
introduced PFS paradigm. Hence, extensive experiments on synthetic datasets as well as a real
world dataset are executed with the different shedding paradigms and extensions. The results of
all experiments confirm the expectation of a significant improvement in output quality, measured
in the number of complex events. Furthermore, simulations show a linear dependency between
probabilistic feature evaluation and processing time.

3

Contents

1 Introduction 10

2 Related work and background 12
2.1 Related work . 12
2.2 Background . 14

3 Problem statement and hypothesis 16
3.1 Shortcomings of existing approaches . 16
3.2 Research questions and hypothesis . 17

4 Approach 19
4.1 Assumptions . 19
4.2 Preliminaries . 20
4.3 Probabilistic feature shedding mechanism . 22

5 Data collection 30
5.1 Shedding mechanisms . 30
5.2 Scenarios . 32
5.3 Datasets . 34
5.4 Experiment setup . 44

6 Evaluation 46
6.1 Results . 46
6.2 Discussion . 50
6.3 Limitations . 57

7 Conclusion and Outlook 58

Bibliography 59

A Diagrams 61

5

List of Figures

4.1 Operator graph of CEP system used in experiments with synthetic data 19
4.2 Class diagram of given CEP load shedding framework 21
4.3 Message communication between components with linear program shedding active 21
4.4 Class diagram of given CEP load shedding framework extended with PFS 24
4.5 Message communication between components with probabilistic feature shedding

replacing linear program shedding . 25
4.6 Threshold determination in a sample cummulative distribution function and corre-

sponding probability density function . 27
4.7 Message communication between components with probabilistic feature shedding

extending linear program shedding . 28

5.1 Value distributions of datasets D1, D2, D3 . 35
5.2 Value distributions of dataset D4 . 35
5.3 Event type ratios of datasets D1 and D4 . 36
5.4 Event type ratios of datasets D2 and D3 . 36
5.5 Event type ratios of events 1-30,000 of dataset D5 37
5.6 Event type ratios of events 30,001-60,000 of dataset D5 37
5.7 Value distribution of segment 1 for events 1-15,000 in dataset D6 38
5.8 Value distribution of segment 1 for events 15,001-30,000 in dataset D6 38
5.9 Value distribution of segment 1 for events 30,001-45,000 in dataset D6 38
5.10 Value distribution of segment 1 for events 45,001-60,000 in dataset D6 39
5.11 Excerpt of the reduced, filtered and sorted NYC Taxi Trip dataset 40
5.12 Daily taxi trip start times aggregated every 15 minutes 41
5.13 Aggregated passenger counts within one week 41
5.14 Aggregated longitudes of taxi trip start locations 42
5.15 Aggregated latitudes of taxi trip start locations 42
5.16 Aggregated longitudes of taxi trip destination locations 42
5.17 Aggregated latitudes of taxi trip destination locations 43

6.1 Total number of complex events for all experiments with dataset D1 47
6.2 Total number of complex events for all experiments with dataset D2 48
6.3 Total number of complex events for all experiments with dataset D3 48
6.4 Total number of complex events for all experiments with dataset D4 48
6.5 Total number of complex events for all experiments with dataset D5 49
6.6 Total number of complex events for all experiments with dataset D6 49
6.7 Total number of complex events for all experiments with dataset D7 49
6.8 Calculated output qualities for all experiments with dataset D1 51
6.9 Calculated output qualities for all experiments with dataset D2 52
6.10 Calculated output qualities for all experiments with dataset D3 52

6

6.11 Calculated output qualities for all experiments with dataset D4 52
6.12 Calculated output qualities for all experiments with dataset D5 53
6.13 Calculated output qualities for all experiments with dataset D6 53
6.14 Calculated output qualities for all experiments with dataset D7 53
6.15 Total number of false positives for all experiments with dataset D7 54
6.16 Ordered average fitting times for the chosen 13 distributions, fitting of 2 event types 56
6.17 Average fitting times for 2, 5, 20 and 100 different event types to be fitted 56

A.1 Total number of false negatives for experiments with dataset D1 61
A.2 Total number of false negatives for experiments with dataset D2 62
A.3 Total number of false negatives for experiments with dataset D3 62
A.4 Total number of false negatives for experiments with dataset D4 62
A.5 Total number of false negatives for experiments with dataset D5 63
A.6 Total number of false negatives for experiments with dataset D6 63
A.7 Total number of false negatives for experiments with dataset D7 63
A.8 Ratios of required to measured processing rates for experiments with dataset D1 . 64
A.9 Ratios of required to measured processing rates for experiments with dataset D2 . 64
A.10 Ratios of required to measured processing rates for experiments with dataset D3 . 64
A.11 Ratios of required to measured processing rates for experiments with dataset D4 . 65
A.12 Ratios of required to measured processing rates for experiments with dataset D5 . 65
A.13 Ratios of required to measured processing rates for experiments with dataset D6 . 65
A.14 Ratios of required to measured processing rates for experiments with dataset D7 . 66
A.15 Ratios of required to measured processing times for experiments with dataset D1 66
A.16 Ratios of required to measured processing times for experiments with dataset D2 66
A.17 Ratios of required to measured processing times for experiments with dataset D3 67
A.18 Ratios of required to measured processing times for experiments with dataset D4 67
A.19 Ratios of required to measured processing times for experiments with dataset D5 67
A.20 Ratios of required to measured processing times for experiments with dataset D6 68
A.21 Ratios of required to measured processing times for experiments with dataset D7 68
A.22 Measured processing times for experiments with dataset D1 68
A.23 Measured processing times for experiments with dataset D2 69
A.24 Measured processing times for experiments with dataset D3 69
A.25 Measured processing times for experiments with dataset D4 69
A.26 Measured processing times for experiments with dataset D5 70
A.27 Measured processing times for experiments with dataset D6 70
A.28 Measured processing times for experiments with dataset D7 70

7

List of Tables

5.1 Matrix for combinations of value and ratio characteristics to create synthetic datasets 34
5.2 Taxi trips in Manhattan (M), outside of Manhattan (O) and in between 41

6.1 Total number of complex events for variable shedding types, processing rates und
datasets . 47

6.2 Resulting output quality for variable shedding types, processing rates und datasets 51

8

List of Algorithms

4.1 Probabilistic feature algorithm . 25
4.2 Algorithm for a best fit distribution to attribute values 26
4.3 Algorithm to calculate thresholds from the lower end distribution of an event type

attribute value . 27
4.4 LP_receive thread of the probabilistic feature algorithm when LP shedding is active 28
4.5 Simple excerpt of the dropping mechanism within the operator’s load shedder . . 29
5.1 Recursive refinement of event type drop rates 32

9

1 Introduction

Complex event processing (CEP) [BK09; Rob10] is a state-of-the-art paradigm when it comes to
monitoring and evaluating continuous streams of information in the form of events, also called a
primitive event stream. Continuous event streams offer nearly limitless information insight, which
can be derived through aggregation and composition by querying for patterns occuring in primitive
event streams. In CEP systems, one or multiple operators implement continuous queries to detect
patterns. On a query match, the respective operator emits a complex event for further processing.
The complexity of queries varies strongly depending on the application. It has impact on the number
of operators, whereas an operator either implements an individual query or is part of a composite
query together with other operators. One single operator might suffice for a query of low complexity,
but the number of operators is likely to increase with query complexity. Operators then form an
acyclic operator graph.
The incoming event streams of an operator contain primitive events emitted by known or unknown
event sources as well as complex events emitted by upstream operators in the operator graph.
Emitted complex events can either be used as an input for downstream operators or flow into a sink,
where the occurrence of the respective complex event gets further processed.

CEP systems are applicable in various environments, whereby event streams can originate from
different kinds of sources such as sensor networks, edge and fog computing components or from
applications, which are globally distributed over the internet. The volume of these event streams
can be huge and often changes in unpredictable rates. Capacities of single machines are easily
exceeded in case of incoming event bursts, which causes dissonance with given time constraints, also
called latency bounds. A common approach to fix this circumstance is parallelism and distribution
of operators on multiple processing nodes [JKD+15]. The corresponding paradigm is called
distributed CEP. In case of operator overload the concept of parallelism is only applicable if there
are infinite resources available, as it is in cloud computing. However, there are various reasons for
limited resources, such as monetary limitations, geographical and installation space constraints or
architectural causes to use a fixed number of nodes.
If scaling out is not applicable, operators become a bottleneck when under high load. This results in
event message queuing, high latency (or processing times) and delayed pattern detection, which is
often unacceptable in CEP applications. One of CEP’s features is real time processing of incoming
event streams. For example in safety relevant applications or for other time critical pattern detections
such as stock exchange applications or fraud detection where short response times are key to
efficacy.

Load shedding [HBN13; SBFR19; SBR19; SBR20; TÇZ07; ZVW20] is an established method to
resolve bottleneck operators when resources are limited as in edge or fog computing environments,
where parallelization [JKD+15; RM19] is not possible. The main goal of the shedding mechanism
is to reduce load on the bottleneck operator and lower its resulting latency. This is achieved by
dropping a part of incoming events and thereby loosing them for all further analysis. Dropping a
primitive event prior to processing it will potentially lead to miss a complex event, if the primitive

10

event is part of a match. This would directly reduce the output quality, which is measured in the
number of complex events. However, this is acceptable for numerous CEP applications if it allows
to maintain real time processing. Shedding mechanisms put up with a loss of output quality as
long as the operator latency stays below the application’s maximum tolerable boundary. Efforts to
keep the output quality high emphasise dropping events of types, which arrive in excessive rates in
relation to their portion in the search pattern [HBN13; SBFR19; SBR19; SBR20; ZVW20].
The previously mentioned CEP load shedding efforts all share restrictions in decision making.
Single events are dropped according to event types and operator metrics, but not considering other
attributes of the event payload. A hybrid CEP and stream processing (SP) query, where a match
depends on both event type as well as event attribute values, raises issues which can not be tackled
by present shedding approaches. Optimizing output quality is limited while solely taking the event
type into account, which gives space for this work’s contribution to fill this gap in research. The
probabilistic feature shedding (PFS) approach established in this thesis utilizes the natural presence
of a probabilistic distribution in attribute values. This allows to predict the probability of incoming
event attribute values within their corresponding distributions. Further on, it enables the approach’s
mechanism to tag incoming events with matching probabilities based on their attribute values and
define thresholds, which classify events into high and low matching probability. In this context, the
shedding mechanism enables the bottleneck operator to stay below a latency bound by shedding
according to the calculated thresholds. It is anticipated that the output quality raises for such
attribute dependent query applications in comparison to given CEP shedding mechanisms.

This thesis provides a detailed insight into contributions made in the course of this work, starting
with a short state-of-the-art recap in section 2.1 and a necessary clarification of terms and concepts
in section 2.2.
Following the related work and background chapter 2, chapter 3 examines existing CEP shedding
approaches in section 3.1 and emphasizes a flaw which they have in common. These CEP approaches
perform unsatisfactory when applied on widely established CEP applications querying for event
attribute value relations. In section 3.2 the driving research questions are formulated, which were
established in the course of this thesis and dictated most of the actions. The section closes out with
the hypothesis, consequently resulting out of these questions.
Chapter 4 states the rationale behind this work, such as in section 4.1 general assumptions and a given
CEP environment where improvements are implemented. The following section 4.3 documents
detailed intentions of how to solve the stated issues and prove the formulated hypothesis.
All data for evaluation is raised from experiments further illustrated in chapter 5. First, section 5.1
provides a listing of examined shedding strategies for a throughout evaluation of the introduced
PFS mechanism. Section 5.2 illuminates different scenarios regarding data distribution followed by
the illustration of datasets in section 5.3, where these scenarios led to. The chapter closes with a
description of the experiment setup in 5.4.
The following chapter 6 presents the results of experiments in 6.1 and closes up this thesis’
contributions to load shedding in CEP systems with probabilistic features in section 6.2 before
chapter 7 provides an outlook to future work.

11

2 Related work and background

There is a broad spectrum of work published by established researchers in the area of SP and
CEP. This chapter gives a brief summary of existing load shedding mechanisms in section 2.1,
their shedding approach as well as their suitability for queries including attribute value relations.
In the course of this work, a wide range of terminologies is used, which are not yet established
unambiguously and therefore need extra clarification. The section 2.2 covers all terms and concepts
to follow the proposed improvements and results presented in this work.

2.1 Related work

Tatbul et al. follow a blackbox vision on the operators with cost and selectivity values. They
define drop locations along the data flow arcs to reduce the respective incoming data streams.
The shedding mechanism is designed for SP systems, but applies a linear program approach on
distributed operators to optimize the output quality and determine the drop probability of input
tuples. Applying a linear optimization program to maximize the global output aligns well with the
optimization algorithm of the shedding framework this work is based on, which is the reason it
obtained special attention upon searching for related work. Within the approach, load shedding
plans are previously generated according to drop locations and maximum feasible rates and then
stored for future usage in case a bottleneck occurs. The total weighted query throughput is used as a
quality metric. The individual queries, which are implemented in the operators, are not considered.
Therefore the approach is not fit for CEP load shedding. [TÇZ07]

Slo et al. propose shedding of single incoming events as well as shedding of partial matches. The
incoming event shedding mechanism named eSpice assigns an utility value to events, depending
on their occurence in a window of events. This utility value reflects the probability of a primitive
event, located at a specific location within a window, to be part of a complex event. A utility
function uses statistics from past complex events to determine the importance of single primitive
events in relation to their position in an event window. [SBR19] pSpice, which is a partial match
shedding framework published by Slo et al., assigns utility values to the state machines tracking
the progress of partial matches to full matches. The pSpice utility values are calculated from the
probability of a partial match to become a full match, from the estimated processing time a partial
match needs to be completed as well as a weight assigned to the pattern. Partial matches with a
low utility value are dropped from the operator in order to reduce the latency for every incoming
event to check if they align with existing partial matches. eSpice and pSpice improve established
SP shedding mechanisms to be capable of CEP load shedding by considering the query pattern
and other incoming event types instead of independently assessing utility values to single events.
[SBFR19] In 2020, Slo et al. published a shedding mechanism combining both, eSpice and pSpice.
The resulting approach called hSpice assigns utility values to event types considering the importance

12

2.1 Related work

of the single event, as well as the importance of existing partial matches. The research group adapt
a probabilistic model, which uses the type and position of an event in a window and the states of
partial matches to assign a utility to events corresponding to different partial matches. [SBR20]

Zhao et al. propose a hybrid shedding mechanism to combine partial match shedding with incoming
event shedding. The rationale behind the mechanism is a cost model classifying a partial match right
after its creation. This classification of partial matches reflects a matching probability with incoming
events to maximize the number of complete matches. Additionally, it serves as a foundation for
decisions which partial matches are dropped when a latency bound is exceeded. Dropping partial
matches is a fine granular optimization of the CEP system and has a small effect on the latency. If
the latency violation is high, the hybrid mechanism switches to input-based shedding. The same
partial match classification is utilized to identify incoming events which have the lowest influence
on the output quality when shed. Since shed events are not processed in the first place, the influence
of input-based shedding on the latency is higher and stays active as long as the latency bound is
violated. [ZVW20]

He et al. investigate two shedding mechanisms called integral load shedding and fractional load
shedding. The integral approach focuses on dropping types of events or partial query matches. In
fractional laod shedding a proportion of event types or partial query matches is dropped randomly.
They examine both, memory bound and CPU bound shedding, and base on assigning utility values
for queries. The algorithm minimizes utility loss, which in turn maximizes utility gain, and
categorizes the queries into promising and unpromising queries. The set of event types in promising
queries will be accepted, while the unpromising ones are all rejected, which means they are dropped
by the load shedder. [HBN13]

These existing shedding mechanisms all are restricted in their functionality to the same characteristics.
These are event input rates, the implemented event type patterns and the global output rate. Even
though queries potentially consider logical or arithmetic relations between event attribute values,
they are not incorporated into shedding decisions. This work starts off on the basis of a given
CEP load shedding framework further outlined in section 4.2. The framework fixes latency bound
violations by optimizing local and global output quality at runtime with a linear program solver.
It utilizes incoming rates of different event types as well as the operator patterns to calculate a
processing rate given a required maximum operator latency. The processing rate is determined as
percentage of each event type’s input rate. The requested maximum latency for a single event at the
bottleneck operator can be maintained when the calculated processing rates are applied. This work
targets to improve the described CEP shedding mechanism.

13

2 Related work and background

2.2 Background

This section introduces terminologies and concepts, which must be defined or clarified to follow the
narrative of this thesis.

Complex Event Processing (CEP) is the core paradigm of this thesis, which uses queries to search
continuous streams of primitive events for pattern occurrences.

Primitive event refers to an atomic event, which is not further decomposable and therefore the
lowest level event in the CEP system. All primitive events in this work are tuples of the structure
𝑒 =< 𝑡, 𝑝, 𝑖𝑑, 𝑡𝑠 >. Thereby 𝑡 refers to the event type, 𝑝 is the payload containing all attributes and
their respective values embodied in the event, 𝑖𝑑 is a unique message identification and 𝑡𝑠 a unique
timestamp containing information when the event was issued.

Event type is a distinction of events, which allows the operator to identify primitive events without
accessing their payload. In this work, event types are integer values.

Event attributes (also called event features) are contained in the payload and accessible in a
key-value fashion.

A query is the center piece of CEP applications containing an event pattern and dependencies
between attributes, which will lead to a complex event if all constraints are satisfied. An application
query can be divided and distributed to multiple operators, potentially running on different nodes.

Patterns contain a sequence of event types to search for in the event stream. A pattern can be
a complete application query or a sub-query of a composed query. In this work, a pattern also
contains arithmetic relations between values of event attributes, which further specify the query.

A Composed query is formed when a sophisticated application query is divided into multiple
operators, each implementing a simplified sub-pattern. Participating operators emit complex events
to downstream operators in the operator graph in order to communicate when a sub-pattern match
is found.

Operator is the architectural component implementing a pattern or sub-pattern of the application
query. An operator has primitive events as input from event sources or complex events as input
from upstream operators. It emits output events, which are always complex.

An operator graph is composed of multiple operators, each implementing a sub-query of the
application query. When the application query is fulfilled, the furthest downstream operator will
emit a complex event, which serves as application output.

Downstream and upstream operators are the subsequent and preceding operators from the view of
an operator within the operator graph.

Load shedders are implemented in operators and responsible for decisions of processing individual
events. Load shedders contain a shedder configuration, which defines the rationale to drop single
incoming events.

Bottleneck operator refers to an operator, which is overloaded by incoming events and violates its
latency bound.

Latency of an operator refers to the average processing time the operator needs to process a single
event.

14

2.2 Background

Latency bound of an operator is its maximum possible latency to guarantee proper performance.
In case the latency bound is violated during runtime, the load shedding mechanism reduces the
incoming event stream to reduce the latency.

Optimal processing rate _𝜔,𝑜𝑝𝑡 is the proportion of all incoming events, which can be processed
without violating the latency bound.

Dependent attribute values are part of an arithmetic relation in an application query with other
events’ attribute values.

Arithmetic relations are applied in search queries and specify the relationship, dependent event
attribute values must exhibit to each other in order to generate a complex event.

Complex events result from a successful match of a query or sub-query in an operator. Operator
queries are previously defined by the application query and operator graph.

A partial match is present in an operator from the point on, when the initial event for an operator
pattern is detected. It is available while subsequent events of the pattern arrive, but not yet complete.
It gets discarded as soon as the match is complete.

Matching probability indicates the likelihood of an incoming event to participate in a match.

Thresholds are used as margins to decide if incoming events have a high or low matching probability.
The event attribute values are used as reference for classification.

Output quality is for this work defined by the ratio of the number of complex events arriving at the
sink to the number of all possible output events. Output quality is a floating point number, typically
in the range [0,1], and is decreased when complex events stay undetected. These undetected events
are referred to as false negatives. Output quality values higher than 1.0 imply false positives.

False negatives are the difference of total emitted complex events with shedding activated to the
benchmark number of total emitted complex events when shedding is inactive. False negatives
occur when events are shed, which would have led to a match.

False positives are the contrary to false negatives and refer to complex events which would not
occur in the benchmark run, but appear due to shedding activity.

Linear program refers to the optimization function of the local output of single operators or the
global output of the whole application. This work’s contributions build upon a framework with a
linear program already implemented and seen as given.

Probabilistic feature shedding (PFS) is the improvement this work suggests as extension for
existing shedding mechanisms.

Probabilistic feature component (PFC) depicts the actual implementation of this work’s PFS
mechanism as an extension to the given framework.

Apache Kafka [Apa] is a distributed event streaming platform, providing a robust publish-subscribe
functionality. Events are published on channels, called topics. Kafka offers an interface where
publishers emit events to topics and Kafka consumers subscribe to these topics to subsequently
process events in the order they are published.

15

3 Problem statement and hypothesis

Previous works of related research communities pose a comprehensive and thorough analysis of
load shedding mechanisms in CEP applications. They also show that shedding mechanisms of SP
systems [BDM04; TÇZ+03; TÇZ07] do not suffice the needs of CEP systems [HBN13; TÇZ07;
ZVW20]. This section provides an overview of the approaches and spotlight of different CEP load
shedding strategies. It points out their limitations where this work begins to provide an improvement.
Existing shedding mechanisms assign utility scores to event types [SBR19; ZVW20] and partial
matches [SBFR19] in single operator CEP systems. They also use matching probability predictions
[TÇZ07] for single events or event windows in distributed CEP systems. These mechanisms focus
on the event patterns implemented in operators and the input rate events arrive at these operators.
Solutions for single operator applications [SBR19; ZVW20] either consider the operator patterns
and incoming event windows to assign utility values to single event types or the internal operator
state to assign utility values to the state machines. In the first case, an incoming event can be
dropped without risk of much quality reduction if its type has been assigned a low utility value.
This mechanism reduces the incoming event stream for a bottleneck operator to lower its latency.
In the second case the operator’s internal state is considered to assign utility values to its state
machines, which keep track of partial matches. The state machine is dropped completely if the
probability to form a match in the near future is low. This mechanism reduces the computational
effort when checking for incoming events to complete any partial matches. Both approaches result
in a lower strain on the respective operator.
The solutions provided for distributed SP [TÇZ07] maximize the local operator output, the global
application output or both by implementing a linear program. The linear program uses current or
possible violation of the maximum tolerable latency, the rates event types arrive in and knowledge
about operator patterns to calculate an optimal processing rate for each event type. The goal is
to reduce the latency at the bottleneck operator. These processing rates are either pre-processed
or calculated at runtime, as in the CEP shedding framework used in this work to implement an
improvement. Resulting processing rates are in this context forwarded to the bottleneck operator’s
load shedder, which applies the rates on incoming events by dropping the exceeding percentage of
each incoming event type.

3.1 Shortcomings of existing approaches

All mentioned approaches analyze incoming events only in regard of their event type, in order to
make a processing or dropping decision to maximize output quality 𝑂𝑄. This decision is made
nondeterministically by shedding the appropriate ratio of incoming events of the respective type.
This indeterminism limits the number of feasible reasonable applications strongly.
An existing distinction between classic stream processing, also called data stream management
system (DSMS), from CEP blurred within the last decades [Bas07]. Per definition, SP applications

16

3.2 Research questions and hypothesis

are used to continuously compute the informational content of event streams, whereas CEP
applications emphasise the detection of patterns in event streams. This definition does not limit
CEP to pattern detection, but enables it to perform further event stream analysis in order to produce
complex events [Rob10]. CEP systems provide additional meaningful information when extended
with SP functionality by considering attribute values of events. A pattern of primitive events could
only lead to a match, if their respective attribute values in the payload are in a specific relation to
each other. For example suppose a stock exchange application searches for a pattern of share price
alterations in different stocks. The alteration of a share price is signaled by a primitive event with
the stock as type. The queried pattern of stock alteration events is only of interest, if the alterations
have a specified relation to each other. To be more precise, a simple query sequence is a sequence
of 𝑠𝑒𝑞(𝐴, 𝐵), whereas an event of type 𝐴 signals a price alteration of stock 𝐴, and an event of type
𝐵 an alteration of stock 𝐵. Additionally, the CEP system only produces a complex event if the
price alteration of stock 𝐴 is greater than the alteration of stock 𝐵. Alternatively, one could only
be interested in this sequence 𝑠𝑒𝑞(𝐴, 𝐵) if the alteration of 𝐴 is positive and the alteration of 𝐵 is
negative. These examples are only two of the possible queries when combining patterns in event
streams with the information contained in these events.
Even though such overlap of CEP and SP is fairly common in exsisting CEP applications [BGAH06;
GWC+06] and does not pose any novelty, there is no shedding approach present to consider any
event attributes next to the event type. This work attempts to establish a relation between event
types and attribute values to assess the importance of single events.

3.2 Research questions and hypothesis

The missing functionalities in existing CEP load shedding solutions stated in section 3.1 raise
attention to several research questions. This section provides an aggregation of the questions
towards a hypothesis, which will further be analyzed in the course of this work.
The following list contains the research questions which received the most attention during the
analysis and development

Q1 : Is there a way to assess a matching probability of events based on dependent attribute
values?

Q2 : How to predict relevant attribute values?

Q3 : How can knowledge about event type, event attribute values and query requirements lead to
a shedding decisions?

Q4 : Where can PFS be applied to improve existing shedding mechanisms?

Q5 : Which metrics justify the efficacy of a PFS extension?
Shedding mechanisms further explained in section 2.1 consider the type of incoming events as well
as the ratios these events arrive in at the operators. Therefore the final shedding decision for any
single event is made in a nondeterministic fashion. For example, assume in a CEP application the
latency bound is violated and an existing shedding mechanisms examined, that events of a certain
type should be processed with a rate of 50 %. There are various ways to reach this goal such as
dropping every second event. Another way is to assign a random number x in the range [0,1] to every
event and drop the event if 𝑥 > 0.5 resolves to 𝑇𝑟𝑢𝑒. Both methods achieve the correct processing

17

3 Problem statement and hypothesis

rate, but the final decision is not reproducible. There is no deterministic approach developed, which
takes other event attributes into consideration to distinguish events of the same type.
The existing approaches offer a high output quality for complex queries based on event types, but all
of them are flawed when operator queries browse for relations between values of event’s dependent
attributes. The first step to tackle given shortcomings is to extend an existing load shedding
framework with an analytic component to evaluate event attribute values and make predictions based
on the probability distribution of these past attribute values. Consecutive steps collect application
results of the implemented shedding algorithm when executed on a simple event query with a
synthetic dataset of events. The results are then compared to existing solutions running on the same
query and dataset. Finally the proposed shedding solution will be tested on a real world dataset and
again compared to an existing shedding solution.
At this point the running example and subject to experiments on synthetic data is introduced and
further elucidated in section 4.1. The example considers an operator 𝜔 receiving events of types 0
and 1, whereby every event contains an attribute value as payload 𝑝. While a sequence of event 𝑒0 of
type 0 followed by event 𝑒1 of type 1 is well known in CEP systems, an additional relation between
attribute values of 𝑒0 [𝑝] and 𝑒1 [𝑝] introduces higher complexity when load shedding is applied. In
this running example for synthetic data, the sequence 𝑠𝑒𝑞(𝑒0, 𝑒1) and relation 𝑒0 [𝑝] > 𝑒1 [𝑝] both
need to resolve to 𝑇𝑟𝑢𝑒 for the operator to emit a complex event.
Because the importance of an event depends on its type and also its attribute values, shedding
mechanisms which act nondeterministically within a single event type will inevitably decrease the
output quality. The PFS mechanism approaches to track values of dependent attributes and deter-
mines their probabilistic distributions. This leads to the capability of deriving threshold values for
required processing rates. According to these thresholds, incoming events are classified into either
having a high or a low probability to participate in a match. Consequently the derived thresholds
are used as drop margins to reach specific processing rates in order to comply a latency bound.
This deterministic categorization into important and unimportant events will eventually increase
the output quality when extending a nondeterministic shedding mechanism. The improvement is
achieved through minimizing false negatives in the total number of complex events when shedding is
applied. False negatives will decrease because the load shedder will first drop events with the lowest
probability to form a match, considering the event attribute values. This additional consideration is
new to shedding mechanisms in CEP.
The effectiveness of the introduced PFS extension can be assessed by the total number of complex
events at the application output. The output quality 𝑂𝑄𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎 is assessed for all
experiments introduced in section 5.4 for different processing rates 𝑝_𝑟𝑎𝑡𝑒, shedding types 𝑠_𝑡𝑦𝑝𝑒
and datasets 𝑑𝑎𝑡𝑎. It is defined in section 2.2 as the quotient between the number of emitted complex
events 𝑛𝐶𝐸,𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎 when shedding is active, and the complex events 𝑛𝐶𝐸,𝑏𝑚,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎
from a benchmark run when shedding is inactive. A quality value close to 1 denotes a low number
of false negatives and is most desirable.

𝑂𝑄𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎 =
𝑛𝐶𝐸,𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎

𝑛𝐶𝐸,𝑏𝑚,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎

This chapter presented a listing of substantial research questions, which lead to the hypothesis
that PFS improves application output when appointed as extension of existing CEP load shedding
mechanisms. The implementation, examination and validation of the research questions and
hypothesis is further outlined in chapters 4, 5 and 6.

18

4 Approach

This chapter represents the main part of the contribution provided to the CEP load shedding
paradigm. Section 4.1 states assumptions about the environment and framework conditions for the
approach to be applicable and verifiable. Section 4.2 gives an introduction to the CEP framework
this work builds upon. Section 4.3 specifies the implemented concepts to achieve the desired
improvements.

4.1 Assumptions

In order to reduce the complexity of shedding experiments described in chapter 5 to the necessary
minimum, a number of assumptions regarding the environment and synthetic dataset are made in
this section. This work’s experiments base on a CEP system receiving primitive events of types
{0, 1}, all having the same structure {𝑡𝑦𝑝𝑒, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑚𝑠𝑔_𝑖𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝} where the payload 𝑝 is
a continuous floating point number following a normal distribution. Section 5.3 further specifies
the defined distributions and attribute values of applied datasets. Primitive events are emitted by a
source 𝑆𝑂𝑈𝑅𝐶𝐸 in a constant emission rate _𝑆𝑂𝑈𝑅𝐶𝐸 . The source emits events to a Kafka topic,
where an operator 𝜔 subscribes to. The operator implements the application query and emits a
complex event CE to an output topic in case of a pattern match, where a sink 𝑆𝐼𝑁𝐾 subscribes to
the output topic and further evaluates emitted complex events. Figure 4.1 displays the described
setup as an operator graph.

Figure 4.1: Operator graph of CEP system used in experiments with synthetic data

Operator 𝜔 implements the application query 𝑞 as a combination of 2 conditions 𝑞 = 𝐶1 ∧ 𝐶2. The
condition 𝐶1 is a sequence of event types 𝐶1 = 𝑠𝑒𝑞(𝑒0, 𝑒1) with 𝑒0 [𝑡] = 0, 𝑒1 [𝑡] = 1, condition 𝐶2
is an arithmetic relation between event payloads 𝐶2 = 𝑒0 [𝑝] > 𝑒1 [𝑝]. Incoming events can only
participate in one match and are consequently unavailable for any further partial matches once they
are used. Partial matches are removed after a specified timeout 𝑡𝑜 from the operator storage to keep
actuality high and latency low.

The arrival rate of incoming events at the operator 𝜔 is traced as _𝜔 . Additionally, the ratios of all
incoming event types 𝛾𝜔,𝑡𝑦𝑝𝑒 are tracked as a fraction of their respective arrival rates _𝜔,𝑡𝑦𝑝𝑒 to
the operator’s incoming rate _𝜔 .

𝛾𝜔,𝑡𝑦𝑝𝑒 =
_𝜔,𝑡𝑦𝑝𝑒

_𝜔

19

4 Approach

There exists a given optimal processing rate _𝜔,𝑜𝑝𝑡 of events, which can be processed by operator
𝜔 without violating its maximum latency. The fraction of the optimal processing rate and the event
arrival rate is denoted as optimal event processing ratio 𝛾𝜔,𝑜𝑝𝑡 . It is specified as a fraction of the
arrival rate _𝜔 and serves as indicator, which proportion of all incoming events the operator con
process, while staying below its maximum latency.

𝛾𝜔,𝑜𝑝𝑡 =
_𝜔,𝑜𝑝𝑡

_𝜔

Optimal processing rates _𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 for each event type can be derived from the operator query 𝑞,
arrival rates _𝜔,𝑡𝑦𝑝𝑒 and the latency violation. As soon as shedding reduces incoming event rates
at the bottleneck operator to the optimal processing rates, the system will achieve the total optimal
processing rate _𝜔,𝑜𝑝𝑡 . This means, the shedding mechanism uses past incoming rates _𝜔,𝑡𝑦𝑝𝑒 to
calculate corresponding optimal processing rates _𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 for each event type. It also provides
the most beneficial incoming event type ratios 𝛾𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 to reach the highest potential number of
complex events.
On receiving an initial event for a query pattern, operators instantiate state machines as partial
matches to wait for completion through consecutive events. These partial matches exist until a
specific timeout 𝑡𝑜 after their creation is reached or until completion. The PFS approach does not
utilize partial matches, but discards them nevertheless after their timeout to prevent the operator to
be spammed. Operators are capable of accessing attributes in the payload of events before starting
to actually process the event. This assumption is essential for the approach to be beneficial.

4.2 Preliminaries

Figure 4.2 shows the simplified architecture of the given CEP framework, which serves as basis for
this work’s contribution and as reference for load shedding improvements.

The framework starts a producer process as 𝑆𝑂𝑈𝑅𝐶𝐸 , which emits events in the rate _𝜔. Events
are published as a primitive event stream to a Kafka topic 𝑡𝜔,𝑖𝑛 with the targeted operator as topic
name, where operators and monitoring components can subscribe to. Complex events are equally
published to Kafka topics to be available for operators, monitoring components and sinks. The
communication setup is displayed in figure 4.3.

A metrics collector component task, hosting a shedding controller, runs in parallel to monitor the
system’s statistics. The shedding controller receives frequent updates of incoming event rates _𝜔
and latency 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔 at the monitored operator. It uses the latest statistics as well as knowledge
about the operator’s search patterns and the required maximum latency 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔,𝑚𝑎𝑥 to execute a
linear program (LP). This LP returns optimized processing ratios 𝛾𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 by either maximizing
the potential local operator output or global application output considering the operator patterns and
latency bounds 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔,𝑚𝑎𝑥 . The processing ratios 𝛾𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 contain one ratio value for each
corresponding event type. The responsible LP is given and subject to another work by researchers
of University of Stuttgart. The metrics collector sends latest optimal processing ratios 𝛾𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡

as shedder configurations to the operators. The operators update their load shedders with the new
shedder configurations. In case no metrics collector is started, operators can apply random shedding
mechanism with a fixed processing rate. Random processing rates are set on operator startup and
are not updated during runtime.

20

4.2 Preliminaries

Figure 4.2: Class diagram of given CEP load shedding framework

Figure 4.3: Message communication between components with linear program shedding active

21

4 Approach

Operators subscribe to their respective event input topics 𝑡𝜔,𝑖𝑛 and process incoming events as soon
as they arrive. First the operator’s load shedder checks whether the incoming event gets processed.
This check is a nondeterministic action and bases on optimal processing ratios 𝛾𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 provided
by the metrics collector. In case the event gets discarded, the operator takes the next incoming event
from its input topic. In case it gets processed, the operator starts it’s procedure of examining existing
state machines and initial state machine conditions. Every operator implements at least one state
machine which represents the search pattern. For every incoming event taken from the operator
input topic 𝑡𝜔,𝑖𝑛, the operator sequentially checks against all existing partial matches whether it can
proceed or complete a match. If a partial match can proceed, the operator executes all necessary
steps and eventually continues by processing the next incoming event from the topic 𝑡𝜔,𝑖𝑛. Provided
there exists no partial match for the event to complement, the operator checks whether the event
corresponds to the initial state of any state machine. In this case, the operator creates a new partial
match by instantiating a state machine. The new partial match is added to the list of existing partial
matches for future incoming events to check against. Events which do neither complement partial
matches nor initiate the state machine get discarded. The operator has no usage for events, which do
not participate in the currently available sates of its search query. Instead it continues with the next
incoming event from the topic 𝑡𝜔,𝑖𝑛.
Operators implement a partial match timeout 𝑡𝑜𝜔 . Partial matches which exist for longer than the
operator’s timeout are discarded no matter how complete they are. This sanction gives a guarantee
of actuality in potential complete matches. Timeouts need individual evaluation and verification for
each use case.

As mentioned before, a metrics collector runs centrally to monitor operator inputs as well as latency.
Monitored operators aggregate their processing times and send the statistics to the Kafka topic
𝑡𝑙𝑜𝑔𝑠, where the metrics collector subscribes to. It is the metrics collector’s task to keep track
of operator latency and detect violations. Moreover, bottleneck operators are started as remote
processes on separate machines to guarantee measured latency to be independent from any other
CPU straining processes like the metrics collector. Upon completion of partial matches before they
reach their timeout 𝑡𝑜𝜔 , the respective operator publishes a complex event to its output topic 𝑡𝜔,𝑜𝑢𝑡 .
Depending on the application query and operator graph, downstream operators or sinks subscribe to
the output topic. Downstream operators further process the emitted complex events whereby sinks
provide them as application output.

4.3 Probabilistic feature shedding mechanism

From the given assumptions and preliminaries of section 4.1, this work’s contribution considers
the following case. There is a bottleneck at the operator 𝜔 because its predefined latency bound is
violated. Therefore, the incoming event stream needs to be reduced by shedding single incoming
events. From the latency bound violation and current incoming rates, a given algorithm calculates
an optimal processing rate _𝜔,𝑜𝑝𝑡 for operator 𝜔 to stay below the latency bound. To achieve a
reduction of the incoming event stream to _𝜔,𝑜𝑝𝑡 , the PFS mechanism will determine a set of
threshold values to the load shedder, which act as drop margins for different incoming event types. In
previous solutions, the load shedder was provided processing rates for event types instead of actual
threshold values. This section shows how the PFS approach derives the correct threshold values
for the operator to achieve the calculated optimal processing rate _𝜔,𝑜𝑝𝑡 . Thresholds guarantee,
that events with irrelevant attribute values are shed, whereas events with relevant attribute values,

22

4.3 Probabilistic feature shedding mechanism

which receive a high matching probability, are kept for further processing. The correct thresholds
are calculated in a new probabilistic feature component (PFC), containing the main contribution
to enable PFS in CEP applications. Figure 4.4 shows how the PFC fits into the given framework
architecture.

To keep operator output quality high (i.e. minimize false negatives when shedding is active), the PFC
determines thresholds according to matching probabilities. The matching probability is dependent
on the event’s type and it’s payload, as explained in section 3.2. Every event type gets assigned one
or two thresholds, depending on the application. One threshold suffices if the application query
searches for attribute values being lower or higher than a another dependent attribute value. The
PFC will return two threshold values if the query seeks for attribute values within a window. These
thresholds classify every incoming event for the load shedder to decide which events to drop. The
load shedding contribution consists of two steps. It will first replace the metrics collector and work
with fixed processing rates. The appropriate communication between components is shown in figure
4.5. The metrics collector will be reintroduced when the aptitude of PFS is clarified.

First, the PFC is introduced in algorithm 4.1, which fits common probability distributions to the
incoming payload values, selects the best distribution and calculates thresholds for load shedding.
It gets initialized with an application dependent update interval and an update timeout. They both
initiate the same update mechanism, depending on which one arises first. The update interval starts
the update mechanism after a specific number of received events, whereas the timeout starts it after
a specific time. Additionally, the PFC receives initial processing rates and thresholds in case it acts
as standalone shedding mechanism and does not get its processing rates dictated by an LP shedding
mechanism. In the main loop, all events are continuously tracked and stored in memory. At stated
intervals of either incoming events or a fixed timeout, the probabilistic feature algorithm described
in algorithm 4.1 calculates the cummulative distribution function (CDF) of each event type for
previously defined relevant event attributes. The algorithm to determine the CDFs is described in
algorithm 4.2. Algorithm 4.1 uses the calculated CDFs to derive thresholds for each event type
according to the initial processing rates, if there is no LP shedding mechanism activated. In case a
linear program shedding mechanism provides processing rates, the PFC starts a separate thread to
receive these updated processing rates. Whenever the PFC receives new processing rates, it initiates
the calculations and update mechanism. Algorithm 4.4 shows the LP_receive thread and describes
how these updates are received and further processed.

In order to derive a CDF for each event type attribute, past event attribute values are used as data
to fit common probability distributions using the scipy.stats package as shown in algorithm 4.2.
The PFC finds the best distribution using smallest squared error (sse) comparison and additionally
provides corresponding parameters to determine the probability density function (PDF). From the
PDF, the PFC calculates the CDFs 𝐶𝐷𝐹𝑡 𝑦 𝑝𝑒 for each event type. All CDFs accept floating point
values as input and return a continuous floating point value in the range (0,1). The returned value is
the statistical probability of any data point in the same distribution to have a smaller value than
the input value. Values close to 0 mean that the requested data point is on the lower end in the
distribution. Values close to 1 mean that the data point value is greater than the majority of data
points in the distribution.

23

4 Approach

Figure 4.4: Class diagram of given CEP load shedding framework extended with PFS

24

4.3 Probabilistic feature shedding mechanism

Figure 4.5: Message communication between components with probabilistic feature shedding
replacing linear program shedding

Algorithm 4.1 Probabilistic feature algorithm
INPUT update_interval, update_timeout, processing_rates, thresholds,

LP_shedding_active, relevant_distribution_types
INIT events, event_counters, CDFs← empty dictionary
SET distributions← relevant_distribution_types
START update_timer
for each event type do

INIT events[type]← empty list
SET event_counters[type]← 0

end for
if LP_shedding_active then START LP_receive_thread
end if
repeat

RECEIVE event e
APPEND e to list of events[e.type]
INCREMENT integer event_counters[e.type]
if event_counters[e.type] == update_interval OR update_timer reached update_timeout then

for each event type do
CALL CALC_CDF with events[type] and distributions, RETURNS cdf
SET CDFs[type]← cdf

end for
if not LP_shedding_active then

CALL CALC_THRESHOLDS with CDFs and processing_rates,
RETURNS new_thresholds

if new_thresholds ≠ thresholds then
SET thresholds← new_thresholds
SEND thresholds to operator

end if
end if
SET event_counters[e.type]← 0
RESET update_timer

end if
until RECEIVE final flag

25

4 Approach

Algorithm 4.2 Algorithm for a best fit distribution to attribute values
function calc_cdf(data, distributions)

INIT best_distribution
SET best_sse← INF
for each distribution in distributions do

SET params, sse← CALL scipy.stats.fit(data, distribution)
if sse < best_sse then

SET best_distribution← params
SET best_sse← sse

end if
end for
RETURN best_distribution

end function

The PFC uses the CDF of each event type as shown in algorithm 4.3 to reversely find a threshold
value 𝑇𝑡 𝑦 𝑝𝑒, which corresponds to a given processing rate _𝜔,𝑡𝑦𝑝𝑒. This means, depending on the
arithmetic relation between event type attributes, the threshold value separates the range of values
in the distribution 𝐶𝐷𝐹𝑡 𝑦 𝑝𝑒 into two sections. The lower section corresponds to _𝜔,𝑡𝑦𝑝𝑒 ∗ 100 %
of the event attribute values and serves as the proportion to process if the arithmetic relation
of event attribute values prioritizes the lower part of values. The upper section corresponds to
(1 − _𝜔,𝑡𝑦𝑝𝑒) ∗ 100 % of event attribute values, which can be dropped. In case the arithmetic
relation in the query requires the upper part of event attribute values, then the lower part can be
dropped. Figure 4.6 displays the plots of a CDF and PDF taken from a sample distribution with the
mean ` = 0.0 and standard deviation 𝜎 = 1.0. An exemplary processing rate of _𝜔,𝑡𝑦𝑝𝑒 = 0.85
and the displayed sample distribution in figure 4.6 as attribute values of incoming events illustrate
the procedure to derive a threshold 𝑇𝑡 𝑦 𝑝𝑒 for this exemplary event type. Assuming the overload
operator requires an optimal processing rate _𝜔,1 = 0.85 for type 1 events and the application
query states the following. It searches for an event sequence 𝑠𝑒𝑞(0, 1), whereas it only leads to a
match if the attribute value of the type 1 event is smaller than the value of the type 0 event. Type 1
events receive the highest matching probability if they have low attribute values. With the CDF, the
PFC finds a threshold value 𝑇1 = 1.035 for type 1 events, which separates the probability density
function displayed in the upper diagram in figure 4.6 into proportions of 85 % and 15 %. The blue
area corresponds to 85 % of all incoming events of type 1. When shedding all events with an
attribute value higher than 𝑇1 = 1.035, the operator reduced its processing rate for type 1 events to
_𝜔,1 = 0.85, all the while having low risk of losing events with a high matching probability.

The previously introduced algorithms show, the PFC can calculate thresholds as load shedder
configuration depending on a fixed processing rate of each event type. At this point the metrics
collector gets reintroduced, which calculates optimal event type processing rates _𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡

depending on the incoming event ratios 𝛾𝜔,𝑡𝑦𝑝𝑒 and potential latency bound violations at operator
𝜔. Therefore, the processing rates emitted by the metrics consumer are redirected to the PFC instead
of the operator. The PFC calculates appropriate thresholds to the processing rates and sends them
to the operator’s load shedder. Figure 4.7 shows the communication between components after
implementing the PFS extension.

26

4.3 Probabilistic feature shedding mechanism

Algorithm 4.3 Algorithm to calculate thresholds from the lower end distribution of an event type
attribute value

function calc_thresholds(CDFs, processing_rates)
SET thresholds← empty dictionary
for each event type do

for each value in CDFs[type] do
if CDFs[type](value) > processing_rate[type] then

SET thresholds[type]← value
end if

end for
end for
RETURN thresholds

end function

Figure 4.6: Threshold determination in a sample cummulative distribution function and corre-
sponding probability density function

27

4 Approach

Algorithm 4.4 LP_receive thread of the probabilistic feature algorithm when LP shedding is active
INIT thresholds
SET processing_rate← 1.0
loop

RECEIVE new_processing_rate
if new_processing_rate ≠ processing_rate then

SET new_thresholds← CALL calculate_thresholds(CDFs, processing_rates)
if new_thresholds ≠ thresholds then

SET thresholds← new_thresholds
SEND thresholds to operator

end if
end if

end loop

Figure 4.7: Message communication between components with probabilistic feature shedding
extending linear program shedding

Algorithm 4.4 shows how the PFS extension is used to improve the already existing linear program
shedding mechanism. The PFS extension algorithm runs in a separate thread, which receives
processing rates through a Kafka topic 𝑡𝑃𝐹𝑆 from the metrics collector and its shedding controller.
It can access the CDFs, which are frequently reevaluated and updated by the PFC’s main thread
shown in 4.1 to calculate threshold values and send them to the bottleneck operator 𝜔.

The bottleneck operator receives and stores threshold values as shedder configuration in a separate
message receiving thread. Algorithm 4.5 displays in short, how the operator checks every incoming
event attribute value with an individually implemented function if the event gets processed. The
processing of the event is not part of this work, which is why the algorithm 4.5 simply depicts it
with ’process(e)’.

28

4.3 Probabilistic feature shedding mechanism

Algorithm 4.5 Simple excerpt of the dropping mechanism within the operator’s load shedder
SET shedder_configuration← initial_shedder_configuration
repeat

RECEIVE event e
SET thresholds← shedder_configuration[e.type]
if event_gets_processed(e.payload, thresholds) then

CALL process(e)
end if

until RECEIVE final flag

This chapter introduced an environment of assumptions and given technologies in section 4.1 in
order to solve the problems stated in chapter 3.1. Two approaches were proposed to either shed
with probabilistic features and a fixed processing rate or by extending a given shedding mechanism,
which provides processing rates to the PFC.
The next step is to evaluate the efficacy of a PFS extension first in comparison to a rudimentary
random shedding mechanism and then to the introduced LP load shedding mechanism. The load
shedding mechanism uses an LP to determine suitable processing rates, aiming to reduce the latency
back to a predefined latency bound in case of a violation. In the following chapter the means to
assess efficacy of the PFS extension are introduced. Different scenarios are explained in section 5.2
on how the structure and variable parameters of synthetic test data is determined in section 5.3.
The experiments executed on the datasets are specified in section 5.4. The produced data will be
discussed and evaluated in chapter 6.

29

5 Data collection

One of the core tasks in this work is to raise expressive data in order to support the hypothesis
formulated in section 3.2. This chapter designates and exemplifies all parts and steps of data
collection. This includes a brief summary of shedding types applied on the data, the different
scenarios targeted by the datasets and experiments, the applied synthetic and real world datasets as
well as the setup of experiments. The target of data collection is mainly to prove efficacy of the PFS
extension, which is measured in output quality. Changes in output quality can be assessed in the
difference of emitted complex events, whereas benchmark experiments are executed without load
shedding to determine the total possible amount of complex events. The resulting complex events
of an experiment with active load shedding is set into relation with the result of its corresponding
benchmark run to reveal both false negatives and false positives occurring due to load shedding
activity. Conclusions about the results are discussed in chapter 7.

5.1 Shedding mechanisms

As already stated in section 4.3, the PFS extension is introduced and examined in 2 stages. First
random shedding is improved before stepping forward to extend the more complex LP load shedding
mechanism. In the course of experiments, the results are examined to proof efficacy in the random
shedding experiments, only then the behavior of the PFS extension is executed in combination
with a linear program, which determines and updates processing rates at runtime. For structural
reasons, the four shedding mechanisms are all presented together in this section before the results of
experiments are summarized in chapter 6.

5.1.1 Random shedding

A random shedding mechanism is already implemented. On operator instantiation, ach event type
receives a processing rate in the range (0, 1) within the load shedder configuration. The processing
rate tells the operator’s load shedder which proportion of incoming event types must be processed,
consequently it also tells which proportion must be dropped. A value of 0.0 means no event will
be processed and a value of 1.0 makes the operator process every event of the respective type. A
nondeterministic mechanism decides at processing time, which events to process eventually. This
shedding mechanism has the lowest expectations with regards to output quality.

30

5.1 Shedding mechanisms

5.1.2 Probabilistic feature shedding

The first step to improve random shedding is to dynamically calculate threshold values during
runtime for the bottleneck operator 𝜔. For the probabilistic feature shedding approach, a previously
determined required processing rate _𝜔,𝑜𝑝𝑡 is defined to force the PFC to reduce the rate of incoming
events _𝜔. This required processing rate and the incoming event type ratios 𝛾𝜔,𝑡𝑦𝑝𝑒 are used
to determine optimal processing rates for each event type _𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 . The PFC leverages these
optimal processing rates to determine threshold values for each event type 𝑇𝑡 𝑦 𝑝𝑒. The calculated
thresholds serve the operator’s load shedder to decide which events to process and which to shed
according to their attribute values. Shedding each event type at its threshold will result in processing
its respective processing rate and eventually lead to the total required processing rate _𝜔,𝑜𝑝𝑡 at the
bottleneck operator. The PFC calculates optimal processing rates for each type from the respective
drop rate 𝑑𝑟𝑡 𝑦 𝑝𝑒 as _𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 = 1 − 𝑑𝑟𝑡 𝑦 𝑝𝑒, whereas the drop rate is calculated for all types as
defined in equation 5.1. The event type drop rates depend on incoming ratios of event types 𝛾𝜔,𝑡𝑦𝑝𝑒,
total required processing rate _𝜔,𝑜𝑝𝑡 , the number of occurences of the respective type 𝑛𝑡 𝑦 𝑝𝑒 in the
operator’s patterns and the total number of events 𝑛 participating in the operator’s search patterns.
Drop rates are finally recursively refined as shown in algorithm 5.1. Refinement is needed if the
drop rate for an event type is negative 𝑑𝑟𝑡 𝑦 𝑝𝑒 < 0. This is the case if its incoming ratio 𝛾𝜔,𝑡𝑦𝑝𝑒

is too low for the required processing rate _𝜔,𝑜𝑝𝑡 . A negative drop rate 𝑑𝑟𝑡 𝑦 𝑝𝑒 states, that for an
optimal event type ratio there is need of adding events of this certain event type. This is not possible,
so the drop rates of other event types need to be adapted in order to eventually achieve the required
processing rate _𝜔,𝑜𝑝𝑡 . Since processing rates are updated frequently for each event type, the
resulting thresholds are equally updated and published to the operators as described in chapter 4.

(5.1) 𝑑𝑟𝜔,𝑡𝑦𝑝𝑒 =
𝛾𝜔,𝑡𝑦𝑝𝑒 −

_𝜔,𝑜𝑝𝑡

𝑛𝑡𝑦𝑝𝑒𝑠

𝛾𝜔,𝑡𝑦𝑝𝑒

5.1.3 Linear program shedding

A linear program shedding mechanism has already been implemented and provided as subject to
improvement and comparison for the contribution and experiments of this thesis. The details of
its functionality is part of another research work and not further discussed in this thesis. For the
purpose of running shedding experiments and to use their results as assessment of improvement,
this section gives a coarse outline of linear program shedding, whereas the correct performance
of the shedding mechanism is seen as given. As described in section 4.2, an existing metrics
collector provides processing rates _𝜔,𝑡𝑦𝑝𝑒 for each event type to the bottleneck operator. Therefore,
the metrics collector receives frequent updates on the operator latency to detects latency bound
violations as well as the ratios of incoming event types 𝛾𝜔,𝑡𝑦𝑝𝑒. The severity of a latency bound
violation and incoming rates of event types serve as input values for a linear program solver, which
provides optimal processing rates _𝜔,𝑡𝑦𝑝𝑒,𝑜𝑝𝑡 for each event type in return. Main task of the solver
is a latency reduction through reduced processing rates while considering the search query pattern
and corresponding incoming rates of event types participating in the pattern. Resulting processing
rates are applied by the load shedder and decrease the load on the bottleneck operator to achieve the
optimal processing rate _𝜔,𝑜𝑝𝑡 , which leads to processing times below the latency bound.

31

5 Data collection

Algorithm 5.1 Recursive refinement of event type drop rates
function calc_drop_rates(incoming_rates, processing_rate)

INIT processing_rates, drop_rates← empty dictionary
for each event type do

CALCULATE drop_rate as in equation 5.1
SET drop_rates[type]← drop_rate

end for
for each event type do

if drop_rates[type] < 0 then
SET reduced_incoming_rates← incoming_rates REDUCED BY type
SET processing_rate← processing_rate - incoming_rates[type]
CALL CALC_DROP_RATES with reduced_incoming_rates and processing_rate,

RETURNS drop_rates
SET drop_rates[type]← 0.0

end if
end for
RETURN drop_rates

end function

5.1.4 Linear program shedding extended with probabilistic feature shedding

A practical application of probabilistic feature shedding is the extension of the already existing LP
load shedding mechanism, which optimizes processing rates at runtime using a linear program. The
LP load shedding is the same as described in section 5.1.3, providing optimized processing rates for
each event type. The processing rates base on incoming event rates, a latency bound and a violation
of that bound. However, the resulting processing rates are not directly sent to the bottleneck operator,
to decide which proportion of the incoming events to process, but are forwarded to the PFC running
in a separate process. At the PFC, optimized processing rates are used as described in section 4.3 to
determine thresholds from the frequently updated CDFs of query relevant event attribute values.
These thresholds are sent to the bottleneck operator, as in the PFS mechanism in section 5.1.2. In
contrary to the given linear program shedding mechanism in section 5.1.3, threshold values enable
the load shedder to deterministically drop events in order to achieve the requested processing rates.
However, the requested optimized processing rates result from the required maximum latency and
its violation, as explained in section 5.1.3. It has to be noticed, that output quality is expected to
improve because events with lowest matching probability are preferably shed.

5.2 Scenarios

Continuous event streams, which are input to a CEP application where relations of attribute values
are part of the search query, do typically not follow any rules regarding incoming rates, value
distribution or maximum operator latency. In order to prove the functionality of the PFS mechanism
against a broad variety of possible event stream properties, this section provides potential scenarios.
These scenarios reflect possible properties in the event streams which need special consideration. All
these scenarios have to be covered the synthetic datasets to prove efficacy of the PFS mechanism.

32

5.2 Scenarios

A Scenario is built from combinations of different characteristics of the two dominant event stream
properties in this work: value distribution and event type ratios. Value distributions themselves
can either be static with parameters staying the same during the whole experiment or they change
over the course of an experiment which makes them dynamic. Changing distribution parameters
during one single experiment entail an adjustment of threshold values at runtime. Simultaneously,
the value distributions of different event types can either have a large or a small overlap, depending
on their mean `𝑡 𝑦 𝑝𝑒 and variance 𝜎𝑡 𝑦 𝑝𝑒. In case of dynamic distributions, there are two cases.
First is, the distribution means `𝑡 𝑦 𝑝𝑒 change similarly but the overlap remains constant as seen in
figures 5.7 through 5.9 in section 5.3. Second is, their means `𝑡 𝑦 𝑝𝑒 change unequally, which causes
a variable overlap as seen in figures 5.9 and 5.10 in section 5.3. There are 3 prominent cases of
characteristics within the event type ratio. The ratios can be the same for all event types, which
means they are balanced. The ratios can be imbalanced, meaning the ratios of incoming event types
𝛾𝜔,𝑡𝑦𝑝𝑒 differ. In the imbalanced case the ratios can be steadily or unsteadily imbalanced. Steady
imbalance shows a constant difference between incoming event type rates and unsteady imbalance
displays a variance in the difference of the respective incoming rates.

Value distribution characteristics are

V1 static distributions with a large overlap

V2 static distributions with a small overlap

V3 dynamic distributions with a constant overlap

V4 dynamic distributions with a variable overlap

Event type ratio characteristics are

R1 balanced and steady ratios

R2 imbalanced and steady ratios

R3 imbalanced and unsteady ratios

The combinations of these characteristics lead to a matrix, displayed in table 5.1. During the
conceptual process of synthetic datasets, all fields in the matrix have to be covered by either one
dataset or a combination of datasets for the experiments to be wholesome. All synthetic datasets
for the validation of this work, which are introduced in section 5.3, are chosen to leave no blanks
in the matrix of characteristic combinations. Additionally, the optimal processing rate in the PFS
mechanism or the latency bound in linear program shedding mechanisms acts as a third characteristic
which also has influence on certain scenarios. As an example scenario, one event type has a very
low incoming event type ratio 𝛾𝜔,𝑡𝑦𝑝𝑒, but is relevant for the search query. There are scenarios
where load shedding is active, but the output quality suffers if any of the low rate event type events
is shed. This behavior needs to be considered and processing rates of the experiments need to be
chosen over a broad spectrum to cover all potential scenarios. Therefore, the experiments defined
in section 5.4 implement a variance of processing rates. This last scenario is an example for the
necessity of refining drop rates as described in section 4.3. Dataset D7 is not present in table 5.1 for
the simple reason that is not part of the synthetic datasets and most likely covers every cell of the
matrix with characteristics.

33

5 Data collection

Value characteristics
V1 V2 V3 V4

Ratio characteristics

R1 D1 D4 D6 D6
R2 D2 & D3 D5 D5 & D6 D5 & D6
R3 D5 D5 D5 & D6 D5 & D6

Table 5.1: Matrix for combinations of value and ratio characteristics to create synthetic datasets

5.3 Datasets

The previous sections 5.1 and 5.2 introduced different shedding mechanism and scenarios for
primitive event streams. This section takes all possible scenarios into consideration and gives a
summary about the datasets, which have been used to prove the efficacy of the PFS mechanism
subject to this thesis. Additionally, this section gives an insight into the decisive properties of the
final datasets. For the purpose of covering all scenarios in table 5.1 six synthetic datasets {D1, D2,
D3, D4, D5, D6} of equal size were created to provide all properties requested. These synthetic
datasets are further explained in the following section 5.3.1. To proof the improvement through a
PFS extension of existing shedding mechanisms, all experiments for shedding types introduced in
5.1 have additionally been executed on a real world dataset D7. Section 5.3.2 gives further insight
into the structure and content of the real world dataset as well as arrangements in the application
search query.

5.3.1 Synthetic data

All synthetic datasets consist of only two event types {0,1} to keep complexity at a minimum,
because the search query for these datasets is defined for two event types only. These datasets each
consist of 60,000 primitive events. This high number of primitive events allows for changes in
event stream properties while still having a sufficient amount of events in between the changes.
The payload values of events are for the datasets {D1, D2, D3, D4} chosen to be distributed in a
normal fashion around a mean `0 = 1.3 for type 0 events and around a mean `1 = 1.5 for type
1 events. The standard deviation is chosen to be 𝜎 = 0.1 for all synthetic datasets and does not
change over the course of an experiment. Dataset D1 provides a static normal distribution of
attribute values and has a large overlap between type 0 and type 1 events as shown in figure 5.1.
Incoming ratios of each event type are at 𝛾𝜔,𝑡𝑦𝑝𝑒 = 50 % and do not change over the course of
an experiment. Dataset D4 is similar to D1 regarding statics of the attribute value distributions
and constant ratios of 𝛾𝜔,𝑡𝑦𝑝𝑒 = 50 % for the whole experiment as seen in figure 5.3. However, it
differs in the overlap of the attribute value distributions as seen in figure 5.2. A shift in the mean
values to `0 = 1.2 and `1 = 1.6 causes the PDFs to have less overlap. With a smaller overlap, the
probability for a match decreases strongly for the defined search query in section 4.1. This shift in
means of probability distribution consequently reduces the number of matches and emphasizes the
importance of attribute value dependent shedding in order not to miss complex events when they
occur. As seen in figure 5.4 datasets D2 and D3 show a steady imbalance in the incoming event
type ratios. 70 % of all events in dataset D2 are of type 0 and 30 % are type 1 events. Dataset D3

34

5.3 Datasets

Figure 5.1: Value distributions of datasets D1, D2, D3

Figure 5.2: Value distributions of dataset D4

flipped this relation to 30 % type 0 events and 70 % type 1 events. With this strong imbalance and
the assumed query from section 4.1, the load shedder is forced to prioritize event types with the
lower incoming ratio 𝛾𝜔,𝑡𝑦𝑝𝑒 over higher represented event types.

Datasets D5 and D6 introduce a dynamic behavior of in section 5.2 mentioned characteristics in
event streams. In dataset D5 the event type ratios change after 15,000 events, which makes up for
25 % of all events. The first change of incoming event type ratios is from 60 % type 0 events and
40 % type 1 events to 40 % type 0 events and 60 % type 1 events. After 30,000 events, which is
50 % of all events, the ratios change to 80 % type 0 events and 20 % type 1 events. After 45,000
events, which is 75 % of all events, the ratios flip to 20 % type 0 events and 80 % type 1 events.
Figures 5.5 and 5.6 show the various incoming ratios in D5. This dataset examines the ability of the
shedding mechanism to adapt to unsteadiness of incoming event ratios and to update the thresholds
accordingly. The PFS mechanism illustrated in section 5.1 as well as the LP shedding approach take
care of suboptimal incoming rates for the search pattern. Dataset D6 has has a dynamic behavior in
the attribute value distributions. After 15,000 events, which is 25 % of all events, the initial attribute
value distributions change simultaneously. The mean of type 0 events changes from `0,1 = 1.3

35

5 Data collection

Figure 5.3: Event type ratios of datasets D1 and D4

Figure 5.4: Event type ratios of datasets D2 and D3

to `0,2 = 1.4 and the mean of type 1 events changes from `1,1 = 1.5 to `1,2 = 1.6. After 30,000
events, which is 50 % of all events, the distributions again change simultaneously to `0,3 = 1.5 and
`1,3 = 1.7. The last change in attribute value distributions appears at 75 % of all events, which
is 45,000 events, but falls out of alignment with a change to `0,4 = 1.4 and `1,4 = 1.8. This last
change in value distributions decreases the overlap of PDFs for type 0 and type 1 events. Figures
5.7 through 5.10 display the variety of type 0 and type 1 event attribute distributions in the dataset.
The first two distribution alterations represent a dynamic attribute value distribution with constant
overlap, whereas the last alteration makes up for the dynamic distribution with a variable overlap.

36

5.3 Datasets

Figure 5.5: Event type ratios of events 1-30,000 of dataset D5

Figure 5.6: Event type ratios of events 30,001-60,000 of dataset D5

5.3.2 Real world data

Dataset D7 is an excerpt of the New York City taxi trip data provided by Chris Whong [Chr]. The
complete dataset consists of 12 files formatted in csv, each representing one month of the year
2013. Each file contains information about taxi trips published by NYC’s Taxi and Limousine
Commission. The original dataset is reduced by removing unneeded entries, but the sheer amount
of taxi trips is still too much for reasonable experiments. Therefore, only one week is chosen as
an expressive excerpt of taxi trips. Even though the further reduced dataset depicts one week, the
total amount of primitive events still consists of 3,381,158 taxi trips. To pick a representative time
frame of taxi trips, the biggest desire was to find a common week outside of vacation periods and
which does not contain any holidays. Therefore the final data only consists of taxi trips in the week
from 07th of October 2013 to 13th of October 2013, which are chronologically ordered by pickup

37

5 Data collection

Figure 5.7: Value distribution of segment 1 for events 1-15,000 in dataset D6

Figure 5.8: Value distribution of segment 1 for events 15,001-30,000 in dataset D6

Figure 5.9: Value distribution of segment 1 for events 30,001-45,000 in dataset D6

38

5.3 Datasets

Figure 5.10: Value distribution of segment 1 for events 45,001-60,000 in dataset D6

timestamps to emit events in the exact order they occurred. Figure 5.11 shows an excerpt of the
finalized taxi trip data with 7 columns containing potentially relevant data for future processing
tasks. In the final dataset, each line contains one trip entry while every trip entry has information in
its 7 columns about the start and stop times, passenger count, pickup and drop-off coordinates as
well as the resulting trip duration and distance. Figure 5.12 visualizes the start times of taxi trips
throughout the day, aggregating all 7 days of the chosen week. It is easy see, that the frequency of
trips increases at rush hours and at night. Passenger counts and the number of their occurrences is
displayed in figure 5.13, which shows that most trips are with one passenger only. Figures 5.14
through 5.17 shows the probability distributions of pickup and dropoff coordinates in degrees
longitude and latitude. Pickup and dropoff coordinates with the highest frequencies are right in the
center of New York City. The red vertical dashed line marks the coordinates of the Times Square,
which means most taxi trips start and / or end there. Further computationally intensive investigation
of the dataset shows in table 5.2 that 441,425 taxi trips started from outside Manhattan and ended in
Manhattan. 592,360 taxi trips startet in Manhattan and ended outside of Manhattan and 623,147
trips started and ended outside of Manhattan. As expected, the majority of rides with 1,724,226
taxi trips started and ended in Manhattan. These data explorations could further be utilized by taxi
companies to analyze customer behavior or most profitable car placements. For the purpose of this
work a potentially real scenario has been constructed, which searches for car pooling possibilities.
Since most rides are with only one customer, half empty cars are clogging the streets. Numerous
research findings confirm a malicious impact of traffic jams on the environment, on the experience
of any driver as well as on the profit of taxi companies [DG16; JVV04; KD95]. Including these
motivations but not limited to them, it is in the interest of both the taxi companies and the customers
to share cars.

39

5
D

ata
collection

Figure 5.11: Excerpt of the reduced, filtered and sorted NYC Taxi Trip dataset

40

5.3 Datasets

Figure 5.12: Daily taxi trip start times aggregated every 15 minutes

trip origin and destination O→M M→ O O→ O M→M
number of taxi trips 441,425 592,360 623,147 1,724,226

Table 5.2: Taxi trips in Manhattan (M), outside of Manhattan (O) and in between

A simple approach to find potential carpooling trips is, to define a taxi trip with one passenger as
initial event. Naturally, the next event in the query pattern is another taxi trip with one passenger
in close geographic proximity to the initial event. A third taxi trip with one passenger in close
proximity to the initial event is optional to refine the search query. The geographic relation of close
proximity is assessed with a 2-stage arithmetic operation. First it checks if the difference of the
longitudes of pickup location do not exceed a specified limit 𝑙𝑖𝑚𝑙𝑜𝑛𝑔. If this resolves to 𝑇𝑟𝑢𝑒, it
checks for the difference of the latitudes of pickup locations to be below a specified limit 𝑙𝑖𝑚𝑙𝑎𝑡 .
If this check also resolves to 𝑇𝑟𝑢𝑒, then the two trips both start within a cuboid with the edge
lengths 2 ∗ 𝑙𝑖𝑚𝑙𝑜𝑛𝑔 and 2 ∗ 𝑙𝑖𝑚𝑙𝑎𝑡 with the initial event being at the center. If any of the operations
resolves to 𝐹𝑎𝑙𝑠𝑒, then the second event in the sequence will further be checked against other

Figure 5.13: Aggregated passenger counts within one week

41

5 Data collection

Figure 5.14: Aggregated longitudes of taxi trip start locations

Figure 5.15: Aggregated latitudes of taxi trip start locations

Figure 5.16: Aggregated longitudes of taxi trip destination locations

42

5.3 Datasets

Figure 5.17: Aggregated latitudes of taxi trip destination locations

existing partial matches. In case of a third event getting checked against the start coordinates of the
initial event, whereas both checks resolve to 𝑇𝑟𝑢𝑒, then all three taxi trips start within the specified
cuboid with the initial trip at the center. This example is of practical use for customers to find
potential carpooling trips in their area, or for taxi companies to act more economically. However,
the application query for the NYC taxi dataset used in this thesis differs slightly from this suggested
one for experimental reasons. To task and examine the PFS approach under more complex query
and event attribute relations, the search query to form a complex event has been adapted for the
experiments with the real world taxi dataset. In contrast to the suggested real world application,
the search pattern sequence of event types includes multiple event types for the real world data
experiments. The arithmetic operation of the PFC to derive thresholds from event attribute values
also needs alteration to a window function and produces two threshold values. For the new query
pattern and threshold assessment, the assumptions about the CEP application made in section 4.1
change as follows. The event producer has access to the trip entries and assigns the passenger
count as the event type 𝑒[𝑡] when forming primitive events 𝑒 to be published. This extends the
possible event types to integers {1,2,3,4,5,6,7,8,9} and allows to implement a search query pattern
containing more than 2 event types. Consequently, the query 𝑞 = 𝐶1 ∧ 𝐶2 has been extended
and searches as first condition 𝐶1 for a sequence of event types 𝑠𝑒𝑞(𝑒1, 𝑒2, 𝑒3, 𝑒4) with 𝑒1 [𝑡] = 1,
𝑒2 [𝑡] = 2, 𝑒3 [𝑡] = 3, 𝑒4 [𝑡] = 4, within a time frame of one minute. Partial matches get discarded
after a timeout 𝑡𝑜 = 60 s to free the operator from old partial matches. The extension from 10 s to
60 s increases the total number of complex events getting emitted by the operator. The condition 𝐶2
referring to the event attribute value relation is set to 𝐶2 = 𝑐12 ∧ 𝑐13 ∧ 𝑐14 with

𝑐12 = |𝑒1 [𝑝] [𝑙𝑜𝑛𝑔] − 𝑒2 [𝑝] [𝑙𝑜𝑛𝑔] | < 𝑙𝑖𝑚𝑙𝑜𝑛𝑔 ∧ |𝑒1 [𝑝] [𝑙𝑎𝑡] − 𝑒2 [𝑝] [𝑙𝑎𝑡] | < 𝑙𝑖𝑚𝑙𝑎𝑡

𝑐13 = |𝑒1 [𝑝] [𝑙𝑜𝑛𝑔] − 𝑒3 [𝑝] [𝑙𝑜𝑛𝑔] | < 𝑙𝑖𝑚𝑙𝑜𝑛𝑔 ∧ |𝑒1 [𝑝] [𝑙𝑎𝑡] − 𝑒3 [𝑝] [𝑙𝑎𝑡] | < 𝑙𝑖𝑚𝑙𝑎𝑡

𝑐14 = |𝑒1 [𝑝] [𝑙𝑜𝑛𝑔] − 𝑒4 [𝑝] [𝑙𝑜𝑛𝑔] | < 𝑙𝑖𝑚𝑙𝑜𝑛𝑔 ∧ |𝑒1 [𝑝] [𝑙𝑎𝑡] − 𝑒4 [𝑝] [𝑙𝑎𝑡] | < 𝑙𝑖𝑚𝑙𝑎𝑡

This change in the query makes the CEP application search for taxi trips with one, two, three and
four passengers occurring in this exact order. State machines of partial matches only proceed if
subsequent event attribute values of pickup longitude and latitude respectively are within a specific
proximity to the initiating taxi trip event with one passenger.

43

5 Data collection

5.4 Experiment setup

Running actual experiments requires to define previously introduced theoretical parameters like
emission rate_𝑆𝑂𝑈𝑅𝐶𝐸 , required processing rates_𝜔,𝑜𝑝𝑡 , timeouts 𝑡𝑜𝜔 , update interval 𝑓 𝑟𝑒𝑞𝑢𝑝𝑑𝑎𝑡𝑒
and the distributions, which are used to fit incoming data within the PFS mechanism. The values
assigned to these parameters are discussed in this section as well as all variables which are adjusted
between experiment runs.

The different experiments of shedding types all use the same datasets, data producer and operator
for complex events processing. The experiment series with random shedding as well as with sole
probabilistic feature shedding run on a single machine because the resulting output quality is
independent of processing times. Therefore no processing times are recorded for the evaluation
in chapter 6. For all experiments with linear program shedding involved, a single machine does
not suffice. The calculated load shedder configurations depend on measured operator processing
times, whereas calculations for CDFs and corresponding thresholds use extensive computing power
on the machine where they are executed. These calculations influence measurements of operator
processing times if the bottleneck operator executes on the same machine. To be able to compare
experiments depending on processing times, the bottleneck operator runs on another machine.
This ensures a decoupling of event processing times on the bottleneck operator from any other
computational expenses used for distribution fitting and threshold calculation.

The given CEP shedding framework provides an event producer, which has been adapted to fit
the needs of the stated research questions. The event producer publishes events of synthetic
datasets with their respective payload in intervals of 7 ms, which results in an emission frequency
of 142.857 Hz. For events of the real world NYC taxi dataset the emission intervals change to
5ms, which corresponds to a frequency of 200 Hz. The reason for this adaption is simply to
reduce experiment runtimes. One real world data experiment runs for 6.57 hours if executed with
emission intervals of 7 ms. With the mentioned adaption, the experiment runtime is reduced to
4.69 hours. The published events are received by the operator’s receiving thread and queued for
further processing in a working thread. Operators are ultimately responsible for event shedding
and therefore receive processing rates as load shedder configurations in case of random shedding
and LP shedding, or event attribute thresholds as load shedder configurations in case of PFS. The
operator drops the necessary amount of incoming events to either achieve the required processing
time, or to process a proportion of all events, which is specified on experiment initiation.
Each shedding type described in section 5.1 results in 8 experiment runs, each with a specified
required processing rate _𝜔,𝑜𝑝𝑡 . These are chosen to be {1.0, 1.0, 1.0, 0.85, 0.65, 0.45, 0.25, 0.05}.
The first three runs are the mentioned benchmark runs to receive the number of all possible complex
output events in order to asses the output quality. Additionally, they provide an operator benchmark
latency 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔,𝑏𝑚, which is used to determine a respective latency bound in LP shedding
experiments with and without PFS extension when shedding is applied. The subsequent runs return
results presented in chapter 6. Required processing rates are treated differently for the four shedding
types. In case of random shedding, they are sent directly to the bottleneck operator. In case of
PFS, the application instantiates a PFC with the required processing rate and frequently calculates
threshold values from the fitted CDF. These thresholds are sent to the bottleneck operator as shedder
configurations. In case of LP shedding with and without PFS extension, the latency measured in the
benchmark runs is multiplied by the respective required processing rate. These resulting latency
bounds 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔,𝑜𝑝𝑡 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔,𝑏𝑚 ∗ _𝜔,𝑜𝑝𝑡 serve the LP to calculate processing rates for the

44

5.4 Experiment setup

bottleneck operator.
Section 4.1 elucidated the function of a partial match timeout 𝑡𝑜 for operators. The timeout is chosen
as 𝑡𝑜𝜔,𝑠 = 10 s for experiments with synthetic datasets. For real world datasets it is increased to
𝑡𝑜𝜔,𝑟𝑤 = 60 s to guarantee a higher number of matches and complex events for the final evaluation.
A timeout of one minute for a carpooling application described in 5.3 is more reasonable than a 10
second timeout to provide both customers and taxi companies a longer time frame to find matching
trips, which optimizes the number of shared cars and the time to wait for customers.
When the PFS extension is active, updated shedder configurations are sent to the bottleneck operator
in intervals of 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑝𝑑𝑎𝑡𝑒 = 100 received events or after a timeout 𝑡𝑜𝑢𝑝𝑑𝑎𝑡𝑒 = 5 s. After
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑢𝑝𝑑𝑎𝑡𝑒 incoming events or after the timeout 𝑡𝑜𝑢𝑝𝑑𝑎𝑡𝑒, the PFC starts its fitting process
before calculating new threshold values and sending them to 𝜔. The fitting process uses the latest
𝑛 𝑓 𝑖𝑡 = 100 received event attribute values of each event type to fit its respective distribution and
calculate the corresponding CDF. This leads to an update every 700 ms or 500 ms, which can be
prolonged if the application allows for slower reaction time and decreased output quality in order
to economize computing resource consumption. This update interval has to be prolonged if the
amount of event types participating in a query increases.
All experiments with synthetic datasets only fit incoming event attribute values to a normal
distribution as their best fit is already known to be a normal distribution. For the real world dataset
of New York City taxi trips, the relation between fitting operations and the resulting processing time
for fitting, which is further explained in chapter 6, has been used to declare three common probability
distributions to fit the incoming event attribute values. The chosen probability distributions are a
normal distribution, a gamma distribution and a chi-squared distribution. The reason for this is to
cover a spectrum of different probability distribution types. As mentioned before, this selection can
be supplemented in case longer update intervals are applicable or they can be exchanged if the data
should be checked against other probability distributions.

45

6 Evaluation

This chapter summarizes the outcome of shedding experiment in section 6.1. It assesses output quality
and emphasizes the suitability of the PFS mechanism to improve existing shedding mechanisms
in section 6.2. In order to assess the output quality of different shedding type experiments, their
resulting number of complex events are set into relation to the total number of possible complex
events. The amount of possible complex events is determined in benchmark runs when shedding is
not activated whereas the output quality is defined in section 4.1 as follows.

𝑂𝑄𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎 =
𝑛𝐶𝐸,𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎

𝑛𝐶𝐸,𝑏𝑚,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎

The final evaluation is achieved by comparing the output qualities 𝑂𝑄𝑝_𝑟𝑎𝑡𝑒,𝑠_𝑡 𝑦 𝑝𝑒,𝑑𝑎𝑡𝑎 of the
experiments with PFS extensions with the output qualities of corresponding extended shedding
mechanisms random shedding and LP shedding. In addition, this chapter compares secondary
experiment outcomes like the ratios of required processing rates and measured processing rates
as well as the ratios of required processing times to the measured processing times. Further of
interest are concerns regarding to scalability of the fitting process, targeting the question how raising
numbers of event types and probability distributions impact resulting fitting times. Experiments
with real world taxi trip data also resulted in a substantial number of false positive complex events.
All mentioned additional results are further clarified in section 6.2.

6.1 Results

Total complex events received by the sink with active load shedding is the main indicator for output
quality, as already stated in section 2.2. The table 6.1 presents the results of shedding experiments
introduced in chapter 5. Each row represents the results of all seven datasets executed with one of
the determined processing rates and in one of the four shedding type experiments from section 5.1.
Columns are sorted from top to bottom in a combination of processing times and shedding types.
Overreaching rows are the processing rates of experiments in descending order and within each of
the six processing times all four shedding types are listed one below the other. Grey rows highlight
the experiment results with active PFS.

Figures 6.1 through 6.7 show plots of the seven columns of table 6.1. The four different shedding
types are aligned next to each other to allow direct comparison of the resulting complex events.
Gray and blue shaded bars depict existing shedding mechanisms random shedding and LP shedding,
whereas the striped bars display the respective improvement through PFS extension.

46

6.1 Results

dataset
processing rate shedding type D1 D2 D3 D4 D5 D6 D7

random 9080 7836 8012 1224 7886 7193 1965
PFS 9080 7836 8012 1224 7886 7193 1995
linear program 9088 7842 8017 1226 7897 7195 1980

Benchmark 1.0

LP with PFS ext. 9087 7843 8017 1226 7897 7196 2077
random 7688 6642 6846 1040 6623 6042 2121
PFS 9080 7835 8012 1224 7888 7192 26974
linear program 8195 7515 6924 1147 7351 7044 4849

0.85

LP with PFS ext. 8956 7734 8016 1226 7637 5351 16574
random 5886 4976 5080 774 5073 4603 1832
PFS 9078 7835 8012 1224 7887 7192 31861
linear program 7639 7132 5870 1065 6992 6271 9974

0.65

LP with PFS ext. 7065 7618 7751 1223 7576 6122 19950
random 3989 3412 3464 519 3441 3220 1240
PFS 9078 7834 8011 1223 7882 7189 23679
linear program 6378 5784 4690 953 5902 4278 20048

0.45

LP with PFS ext. 9061 7567 8015 1223 7228 7182 24097
random 2136 1879 1908 245 1856 1602 475
PFS 7757 7593 7695 1223 7136 6177 28107
linear program 4981 5992 3080 696 5161 3581 35191

0.25

LP with PFS ext. 8981 7029 8001 1226 7325 7184 40260
random 386 317 286 31 306 316 83
PFS 1688 1727 1740 1190 1760 1624 3936
linear program 1983 2741 1261 290 1945 1613 62685

0.05

LP with PFS ext. 7701 7104 6864 1226 6766 6130 40816

Table 6.1: Total number of complex events for variable shedding types, processing rates und
datasets

Figure 6.1: Total number of complex events for all experiments with dataset D1

47

6 Evaluation

Figure 6.2: Total number of complex events for all experiments with dataset D2

Figure 6.3: Total number of complex events for all experiments with dataset D3

Figure 6.4: Total number of complex events for all experiments with dataset D4

48

6.1 Results

Figure 6.5: Total number of complex events for all experiments with dataset D5

Figure 6.6: Total number of complex events for all experiments with dataset D6

Figure 6.7: Total number of complex events for all experiments with dataset D7

49

6 Evaluation

6.2 Discussion

In all experiments but one, the number of complex events from experiments with the PFS extension
exceed the produced complex events of each corresponding basic shedding mechanism, which are
random shedding and LP shedding. Especially when processing rates decrease, the benefit gained
through PFS becomes even more obvious. This outcome confirms the expected behavior of the
PFS mechanism, which selectively drops events with less relevant payload. Especially with low
processing rates, the few remaining events to be processed need to be relevant for the search query.
This can be achieved through the PFS extension. Interestingly, dataset D4 seen in 6.4 shows a very
high number of complex events throughout all processing rates for the PFS extension. This behavior
can be explained in the same way as the efficacy of PFS for low processing rates. If there is a low
number of complex events to start with, the importance of processing the few relevant primitive
events becomes even more visible.

The discussed plots of experiment results show on a first glimpse, that a PFS extension improves
output quality significantly if the query is structured to relate attribute values of incoming events, as
defined for this thesis. Table 6.2 shows the calculated output qualities for all resulting complex
events presented in table 6.1. Values below 1 depict a decrease in output quality compared to
benchmark experiments, whereas values higher than 1 insicate false positives, which are further
discussed later in this section. Figures 6.8 through 6.14 show the corresponding diagrams for
better visualization. Unexpected results for LP shedding with PFS extension are seen in figure
6.8 as a drop in output quality for a processing rate of _𝜔,𝑜𝑝𝑡 = 0.65 as well as in figure 6.13 as
a low start of output quality for processing rates 0.85 and 0.65. Explanations for this behavior
are faulty experiment runs, since these are the only occurrences of low output qualities for high
processing rates. The output quality of the real world dataset D7 with a processing rate of 0.05
displays another unexpected result. Figure 6.14 shows a spike in output quality, even in comparison
to the PFS extension. The reason for this observation is obscure, but necessary investigations to
find an explanation exceeded the time limit of this thesis. A possible reason is a bug in the PFS
implementation, which stayed undetected until the end of all experiments. Another possible reason
is, that indeterministic shedding decisions of LP shedding combined with beneficial event type
ratios in some way facilitate the occurrence of pattern matches. This behavior is a candidate for
future research in the topic of this project.

Figures A.1 through A.7, located in the appendix, visualize the number of false negatives for each
experiment with decreasing processing rate. As described in section 2.2, false negatives emerge
from missing complex events when shedding is active in comparison to the benchmark run. High
numbers of false negatives imply a low output quality. The opposite to false negatives are false
positives, which are additional complex events not present in the benchmark run, but occurring
due to shedding activity. Only in the real world dataset D7 a significant number of false positives
emerged when running the experiments. Figure 6.15 shows the numbers of resulting false positive
complex events for different shedding types and processing rates in experiments with dataset D7.
A reason for more false positive complex events in this experiment than in the other experiments
is, that the search query is more sophisticated by involving four instead of two event types. The
relation Z of total primitive events 𝑛𝑡𝑜𝑡𝑎𝑙 as operator input to the total number of complex events in
the benchmark runs 𝑛𝐶𝐸,𝑏𝑚 as operator output gives further insight. The ratio Z =

𝑛𝑡𝑜𝑡𝑎𝑙
𝑛𝐶𝐸

is much
lower in experiments with datasets D1-D6 than it is with dataset D7.

50

6.2 Discussion

dataset
processing rate shedding type D1 D2 D3 D4 D5 D6 D7

random 0.847 0.848 0.854 0.85 0.84 0.84 1.324
PFS 1.000 1.000 1.000 1.000 1.000 1.000 3.607
linear program 0.902 0.958 0.864 0.936 0.931 0.979 2.002

0.85

LP with PFS ext. 0.986 0.986 1.000 1.000 0.967 0.744 5.887
random 0.648 0.635 0.634 0.632 0.643 0.640 1.144
PFS 1.000 1.000 1.000 1.000 1.000 1.000 5.048
linear program 0.841 0.909 0.732 0.869 0.885 0.872 5.192

0.65

LP with PFS ext. 0.777 0.971 0.967 0.998 0.959 0.851 12.338
random 0.439 0.435 0.432 0.424 0.436 0.448 0.774
PFS 1.000 1.000 1.000 0.999 0.999 0.999 11.153
linear program 0.702 0.738 0.585 0.777 0.747 0.595 9.570

0.45

LP with PFS ext. 0.997 0.965 1.000 0.998 0.915 0.998 14.902
random 0.235 0.240 0.238 0.200 0.235 0.223 0.297
PFS 0.854 0.969 0.960 0.999 0.905 0.859 12.627
linear program 0.548 0.764 0.384 0.568 0.654 0.498 17.153

0.25

LP with PFS ext. 0.988 0.896 0.998 1.000 0.928 0.998 24.898
random 0.043 0.040 0.036 0.025 0.039 0.044 0.052
PFS 0.186 0.220 0.217 0.972 0.223 0.226 1.210
linear program 0.218 0.350 0.157 0.237 0.246 0.224 35.001

0.05

LP with PFS ext. 0.847 0.906 0.856 1.000 0.857 0.852 25.242

Table 6.2: Resulting output quality for variable shedding types, processing rates und datasets

Figure 6.8: Calculated output qualities for all experiments with dataset D1

51

6 Evaluation

Figure 6.9: Calculated output qualities for all experiments with dataset D2

Figure 6.10: Calculated output qualities for all experiments with dataset D3

Figure 6.11: Calculated output qualities for all experiments with dataset D4

52

6.2 Discussion

Figure 6.12: Calculated output qualities for all experiments with dataset D5

Figure 6.13: Calculated output qualities for all experiments with dataset D6

Figure 6.14: Calculated output qualities for all experiments with dataset D7

53

6 Evaluation

Figure 6.15: Total number of false positives for all experiments with dataset D7

For example compare Z𝐷1 =
60,000
9088 = 6.6 and Z𝐷7 =

3,381,158
2077 = 1, 527.9. This ratio implies, that in

average every 7th primitive event in dataset D1 leads to a complex event, whereas averagely every
1,528th primitive event leads to a complex event when running the car sharing query on the real
world taxi dataset D7. This implies many partial matches with 1,2 or 3 events already waiting for
completion will expire eventually, but clutter the operator until getting discarded. In the case that
events, which are irrelevant due to their event type or payload values, are shed before being checked
against all existing partial matches and unnecessarily consuming computing resources, higher
numbers of complex events can occur. The reason is, other events with higher matching probability
do get the chance to complete a partial match before it expires and gets discarded. Another reason
for false positives is a longer timeout before partial matches are discarded. The explanation is the
same as already stated. Irrelevant events are shed instead of consuming computing resources and
clogging the operator, therefore relevant events get processed earlier and complete partial matches
which expired in the benchmark runs.

There are secondary factors of influence to be considered next to the number of complex events in
order to evaluate experiment results. A high output quality is only valuable if it is not at cost of the
original intention, which is a reduction of processing time per incoming event. This is the motivation
to start load shedding in the first place and must not be omitted. Therefore, processing rates of
all four shedding type experiments and processing times of LP shedding with and without PFS
extension have been measured. Figures A.8 through A.14 located in the appendix show the actually
achieved processing rate in relation to the required processing rates _𝜔,𝑜𝑝𝑡 {0.85, 0.65, 0.45, 0.25
0.05} for all seven datasets. The red dashed horizontal line displays the optimal relation of 1.0,
where values above this line shed too many events and values below reveal insufficient shedding in
order to reach the respective required processing rate. The diagrams show a decreasing ratio for LP
shedding with and without PFS extension towards low processing rates, but not for random shedding
with and without PFS extension. It is reasonable for random shedding to meet the processing rate
requirements, for it can just process the correct proportion of incoming events, not considering
any attributes. The extension with PFS has a slightly worse performance, since processing rates
are reached through calculated probability distributions and payload value predictions based on
these probabilities. Nonetheless, the resulting processing rate ratios show that the PFS mechanism
works as desired and behaves closely to the base shedding mechanism. Low ratios for LP shedding
as well as its PFS extension depict the difficulty of load shedding with an LP mechanism. The

54

6.2 Discussion

similarly behaving PFS extension shows the efficacy of PFS once again, because even for the same
inability to reach the required rates, the output quality of the PFS extension is higher than for plain
LP shedding. Figures A.15 through A.21 in the appendix show the equivalent plots of measured
processing times in relation to the required processing times to reach the anticipated processing
rate _𝜔,𝑜𝑝𝑡 . Required processing times represent the latency bound 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝜔,𝑜𝑝𝑡 of the bottleneck
operator. Values above the red dashed horizontal line point out, that the measured processing time is
lower than the required processing time, which is a desirable relation. Values below the line reveal
an average processing time higher than the defined latency bound. The results show a decreasing
ratio for LP shedding with and without PFS extension towards low processing rates. This means that
the given latency bounds are not reached for high shedding ratios in both cases. Nonetheless, the
diagrams show a slightly better performance of LP shedding in reaching the latency bound. It has
to be decided individually for each application case, if this behavior invalidates the improvement in
output quality.

The PFC, introduced in section 4.3, runs in a separate process to execute calculations in short
intervals and will inevitably lead to higher computational workload on the central machine. In order
to make estimations about scalability, a series of simulation experiments collect data of the actual
fitting process. These experiments consider on one side variable numbers of predefined distributions
to fit and on the other side a variable number of event types to execute the fitting process. For the
first case, each distribution is analyzed on itself, then in combination with other. It is expected that
different distribution fitting processes have different computational requirements and it is desirable
that they build upon each other in a linear manner. For the second case, a linearly increasing
distribution fitting processing time for increasing numbers of event types is desired. The results of
these simulations show the fitting process for multiple distribution types linearly increasing with
the number of possible distributions. They demonstrate a slight deviation in computing time of
fitting operations with different distribution types, some fitting processes seem to have a higher
consumption of computational resources. For example, fitting an exponential distribution takes
longer than fitting a gamma distribution, which again takes longer than fitting a normal distribution.
Figure 6.16 aligns the fitting times for 2 event attribute values in 13 different distributions, which
are considered in the course of this work for scalability.

Simulations with variable numbers of event types in the fitting process within the PFC confirm, that
fitting times are linear in the number of event types with dependent attributes. Figure 6.17 shows
the fitting times for 2, 5, 20 and 100 different event types with interpolated values in between, which
illustrates their linearity.

Messaging overhead is an influential parameter which also has to be considered, when discussing
scalability. The PFC sends frequent threshold update messages to all bottleneck operators. Each
update message contains one or two threshold values for every event type and pattern, which is
searched for by the operator. This means the overhead produced through message size is in linear
dependency to the number of patterns implemented in the bottleneck operator as well as to the
number of event types being part of the implemented patterns. Regarding to the number of messages
the messaging system has to cope with, each bottleneck operator receives one update message in
defined intervals. This puts the overhead produced by message quantity in a linear relation to the
number of bottleneck operators. For these reasons, message overhead as an influential factor on
efficacy of a PFS mechanism was not further considered within this work.

55

6 Evaluation

Figure 6.16: Ordered average fitting times for the chosen 13 distributions, fitting of 2 event types

Figure 6.17: Average fitting times for 2, 5, 20 and 100 different event types to be fitted

When executing the LP shedding experiments, the average processing times varied strongly between
the different datasets. This variance could be traced back to the event type ratios 𝛾𝜔,𝑡𝑦𝑝𝑒 of the
datasets, with D2 and D3 having the biggest differences between event type ratios. These two
datasets consequently show the highest deviation in average processing times with 0.002 s for D2
and 0.000,5 s for D3 in benchmark runs, compared to the benchmark runs on the other synthetic
datasets D1, D4, D5 and D6. As shown in figures A.23 and A.24, the average processing time
of a single event in experiments with dataset D2 is two times longer than in dataset D1 or D4
(see figures A.22 and A.25 as reference). This observation can be explained with a much higher
number of type 0 events in dataset D2. Since every incoming type 0 event starts a state machine,
the operator creates a substantial higher number of partial matches. In turn, each incoming type 1
event gets considered for every existing partial match as a potential match. This higher number
of partial matches increases the average processing times for dataset D2. Similarly, the average

56

6.3 Limitations

processing times for dataset D3 are accordingly lower because less partial matches are present from
type 0 events to check against. These variations need to be taken into account when setting required
processing times for datasets D2 and D3 with active shedding.

6.3 Limitations

This chapter’s considerations of secondary factors introduce some of the limitations of this
work’s contribution. One limitation is the already discussed computing overhead and processing
time of fitting data in distributions. There are limits regarding to the number of event types
or distribution types to fit, depending on the update frequency and the necessity of actuality of
shedding configurations. The application can run into timing issues if each fitting process takes up
considerable high computing resources. This can happen because the query searches for a high
number of event types or many different distribution types. When an operator becomes a bottleneck,
response times need to be shortened for the application to behave properly. In this case, the PFS
approach needs further research and adaptions. To guarantee short response times, there has to be a
limit of event types and distributions, depending on the maximum tolerable response time. The
limits of event types and distributions depend on each other and can be solved by linear equations.

Another limitation, which has not been addressed within this work, is the actual number of false
negatives and false positives within experiments. The presented results in section 6.1 do simply
state the difference of complex events registered in benchmark runs and the complex events when
shedding is active. Assumptions made in section 4.1 equally lead to limitations. The cost of
reading event attribute values is assumed to be small enough to be ignored. In the case that payload
values are not accessible as easy and cheap as assumed, this extra computational effort needs to
be considered when evaluating experiment results and efficacy of the shedding mechanism. The
assumption that only one operator exists in the implemented operator graph makes this work leave
out scenarios with multiple operators. In theory, the extension is able to improve existing shedding
mechanism for multiple operators just as efficiently as it does with a single operator. This thesis’
scope does not provide proof for that hypothesis.

The limitations close up this chapter, which evaluates the PFS extension by the results taken from
numerous experiments. The following chapter 7 concludes the findings of this work and presents
possible future topics in this field of research.

57

7 Conclusion and Outlook

In chapter 6, the results of shedding experiments with and without the PFS extension are presented
and discussed in detail. This chapter concludes the findings in this work. Furthermore, the
assumptions from 4.1 lead to a number of limitations in this work, which can be used as basis for
future work and further research.

In chapter 3, the analysis of existing CEP shedding mechanisms led to questions, which defined the
course of this work significantly. Chapter 4 describes an approach to assess the importance of single
events on the basis of dependent attribute values. It also introduces an algorithm to trace the values
of dependent attributes and determine probability density function parameters, which enables the
application to assign probabilities to event attribute values. The PFS mechanism links cumulative
distribution functions of event attribute values with processing rates to find threshold values, which
serve as a margin for shedding decisions. An architecture proposal in section 4.3 places the PFC
in a given LP shedding architecture to extend its functionality and improve overall application
output quality for an existing shedding mechanisms. Finally, section 6.2 introduces metrics like
output quality and ratios between processing times and rates to testify efficacy of the PFS extension
addressed in this work. The findings in chapters 5 and 6 are direct resolutions of the stated research
questions in section 3.2 and confirm the hypothesis, that existing CEP load shedding mechanisms
will receive an output quality improvement when extended with the PFS mechanism from section
4.3. However, this improvement is linked to a relationship of dependent event attribute values in the
search query of the CEP application. The effectiveness is most prominent when complex events are
scarce or the intended processing rate _𝜔,𝑜𝑝𝑡 is low.

Future research in probabilistic feature shedding mechanisms may pick up at the stated limitations
in section 6.3. An implementation of the algorithm for multi-operator applications and assessment
of its efficacy is a valuable advancement. Furthermore, it would be of interest to investigate
mechanisms to calculate an optimal number of distributions the algorithm uses for fitting processes
depending on the search query, current shedding performance and response time requirements of
the application.
Tracing event identifications to determine the correct numbers of both, false negatives and false
positives in complex events, will lead to a more transparent evaluation of experiment results.
The algorithm itself could be improved by determining a number of threshold values for each event
type in order to categorize incoming events into multiple matching probability areas. With this
improvement, the application might not need the algorithm to determine a new set of thresholds
for every change in workload. Changing processing rates due to sinking or raising latency bound
violations could be handled by using different previously calculated matching probability areas to
make shedding decisions.

58

Bibliography

[Apa] Apache Software Foundation. Apache Kafka. https://kafka.apache.org/. Accessed:
2021-10-01 (cit. on p. 15).

[Bas07] T. Bass. “Mythbusters: Event Stream Processing versus Complex Event Processing”.
In: Proceedings of the 2007 Inaugural International Conference on Distributed Event-
Based Systems. DEBS ’07. Toronto, Ontario, Canada: Association for Computing
Machinery, 2007, p. 1. isbn: 9781595936653. doi: 10.1145/1266894.1266896. url:
https://doi.org/10.1145/1266894.1266896 (cit. on p. 16).

[BDM04] B. Babcock, M. Datar, R. Motwani. “Load shedding for aggregation queries over data
streams”. In: Proceedings. 20th International Conference on Data Engineering. 2004,
pp. 350–361. doi: 10.1109/ICDE.2004.1320010 (cit. on p. 16).

[BGAH06] R. S. Barga, J. Goldstein, M. Ali, M. Hong. “Consistent streaming through time: A
vision for event stream processing”. In: arXiv preprint cs/0612115 (2006) (cit. on
p. 17).

[BK09] A. Buchmann, B. Koldehofe. “Complex Event Processing:” in: 51.5 (2009), pp. 241–
242. doi: doi:10.1524/itit.2009.9058. url: https://doi.org/10.1524/itit.2009.
9058 (cit. on p. 10).

[Chr] Chris Whong. FOILing NYC’s Taxi Trip Data. https://chriswhong.com/open-
data/foil_nyc_taxi/. Accessed: 2021-08-12 (cit. on p. 37).

[DG16] P. Delhomme, A. Gheorghiu. “Comparing French carpoolers and non-carpoolers:
Which factors contribute the most to carpooling?” In: Transportation Research Part
D: Transport and Environment 42 (2016), pp. 1–15 (cit. on p. 39).

[GWC+06] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, G. Anderson. “SASE: Complex
event processing over streams”. In: arXiv preprint cs/0612128 (2006) (cit. on p. 17).

[HBN13] Y. He, S. Barman, J. F. Naughton. On Load Shedding in Complex Event Processing.
2013. arXiv: 1312.4283 [cs.DB] (cit. on pp. 10, 11, 13, 16).

[JKD+15] S. Jayasekara, S. Kannangara, T. Dahanayakage, I. Ranawaka, S. Perera,
V. Nanayakkara. “Wihidum: Distributed complex event processing”. In: Journal
of Parallel and Distributed Computing 79-80 (2015). Special Issue on Scalable
Systems for Big Data Management and Analytics, pp. 42–51. issn: 0743-7315. doi:
https://doi.org/10.1016/j.jpdc.2015.03.002. url: https://www.sciencedirect.
com/science/article/pii/S0743731515000519 (cit. on p. 10).

[JVV04] J. A. Joireman, P. A. Van Lange, M. Van Vugt. “Who cares about the environmental
impact of cars? Those with an eye toward the future”. In: Environment and behavior
36.2 (2004), pp. 187–206 (cit. on p. 39).

[KD95] A. R. Kearney, R. De Young. “A knowledge-based intervention for promoting car-
pooling”. In: Environment and Behavior 27.5 (1995), pp. 650–678 (cit. on p. 39).

59

https://kafka.apache.org/
https://doi.org/10.1145/1266894.1266896
https://doi.org/10.1145/1266894.1266896
https://doi.org/10.1109/ICDE.2004.1320010
https://doi.org/doi:10.1524/itit.2009.9058
https://doi.org/10.1524/itit.2009.9058
https://doi.org/10.1524/itit.2009.9058
https://chriswhong.com/open-data/foil_nyc_taxi/
https://chriswhong.com/open-data/foil_nyc_taxi/
https://arxiv.org/abs/1312.4283
https://doi.org/https://doi.org/10.1016/j.jpdc.2015.03.002
https://www.sciencedirect.com/science/article/pii/S0743731515000519
https://www.sciencedirect.com/science/article/pii/S0743731515000519

Bibliography

[RM19] H. Röger, R. Mayer. “A comprehensive survey on parallelization and elasticity in
stream processing”. In: ACM Computing Surveys (CSUR) 52.2 (2019), pp. 1–37
(cit. on p. 10).

[Rob10] D. Robins. “Complex event processing”. In: Second International Workshop on
Education Technology and Computer Science. Wuhan. Citeseer. 2010, pp. 1–10
(cit. on pp. 10, 17).

[SBFR19] A. Slo, S. Bhowmik, A. Flaig, K. Rothermel. “pSPICE: partial match shedding for
complex event processing”. In: 2019 IEEE International Conference on Big Data
(Big Data). IEEE. 2019, pp. 372–382 (cit. on pp. 10–12, 16).

[SBR19] A. Slo, S. Bhowmik, K. Rothermel. “espice: Probabilistic load shedding from input
event streams in complex event processing”. In: Proceedings of the 20th International
Middleware Conference. 2019, pp. 215–227 (cit. on pp. 10–12, 16).

[SBR20] A. Slo, S. Bhowmik, K. Rothermel. “hSPICE: state-aware event shedding in complex
event processing”. In: Proceedings of the 14th ACM International Conference on
Distributed and Event-based Systems. 2020, pp. 109–120 (cit. on pp. 10, 11, 13).

[TÇZ+03] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, M. Stonebraker. “- Load Shedding
in a Data Stream Manager*”. In: Proceedings 2003 VLDB Conference. Ed. by
J.-C. Freytag, P. Lockemann, S. Abiteboul, M. Carey, P. Selinger, A. Heuer. San
Francisco: Morgan Kaufmann, 2003, pp. 309–320. isbn: 978-0-12-722442-8. doi:
https://doi.org/10.1016/B978- 012722442- 8/50035- 5. url: https://www.

sciencedirect.com/science/article/pii/B9780127224428500355 (cit. on p. 16).
[TÇZ07] N. Tatbul, U. Çetintemel, S. Zdonik. “Staying FIT: Efficient Load Shedding Techniques

for Distributed Stream Processing”. In: Proceedings of the 33rd International Confer-
ence on Very Large Data Bases. VLDB ’07. Vienna, Austria: VLDB Endowment,
2007, pp. 159–170. isbn: 9781595936493 (cit. on pp. 10, 12, 16).

[ZVW20] B. Zhao, N. Q. Viet Hung, M. Weidlich. “Load Shedding for Complex Event Pro-
cessing: Input-based and State-based Techniques”. In: 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 2020, pp. 1093–1104. doi: 10.1109/

ICDE48307.2020.00099 (cit. on pp. 10, 11, 13, 16).

All links were last followed on October 25th 2021.

60

https://doi.org/https://doi.org/10.1016/B978-012722442-8/50035-5
https://www.sciencedirect.com/science/article/pii/B9780127224428500355
https://www.sciencedirect.com/science/article/pii/B9780127224428500355
https://doi.org/10.1109/ICDE48307.2020.00099
https://doi.org/10.1109/ICDE48307.2020.00099

A Diagrams

Figure A.1: Total number of false negatives for experiments with dataset D1

Figure A.2: Total number of false negatives for experiments with dataset D2

Figure A.3: Total number of false negatives for experiments with dataset D3

Figure A.4: Total number of false negatives for experiments with dataset D4

Figure A.5: Total number of false negatives for experiments with dataset D5

Figure A.6: Total number of false negatives for experiments with dataset D6

Figure A.7: Total number of false negatives for experiments with dataset D7

Figure A.8: Ratios of required to measured processing rates for experiments with dataset D1

Figure A.9: Ratios of required to measured processing rates for experiments with dataset D2

Figure A.10: Ratios of required to measured processing rates for experiments with dataset D3

Figure A.11: Ratios of required to measured processing rates for experiments with dataset D4

Figure A.12: Ratios of required to measured processing rates for experiments with dataset D5

Figure A.13: Ratios of required to measured processing rates for experiments with dataset D6

Figure A.14: Ratios of required to measured processing rates for experiments with dataset D7

Figure A.15: Ratios of required to measured processing times for experiments with dataset D1

Figure A.16: Ratios of required to measured processing times for experiments with dataset D2

Figure A.17: Ratios of required to measured processing times for experiments with dataset D3

Figure A.18: Ratios of required to measured processing times for experiments with dataset D4

Figure A.19: Ratios of required to measured processing times for experiments with dataset D5

Figure A.20: Ratios of required to measured processing times for experiments with dataset D6

Figure A.21: Ratios of required to measured processing times for experiments with dataset D7

Figure A.22: Measured processing times for experiments with dataset D1

Figure A.23: Measured processing times for experiments with dataset D2

Figure A.24: Measured processing times for experiments with dataset D3

Figure A.25: Measured processing times for experiments with dataset D4

Figure A.26: Measured processing times for experiments with dataset D5

Figure A.27: Measured processing times for experiments with dataset D6

Figure A.28: Measured processing times for experiments with dataset D7

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related work and background
	2.1 Related work
	2.2 Background

	3 Problem statement and hypothesis
	3.1 Shortcomings of existing approaches
	3.2 Research questions and hypothesis

	4 Approach
	4.1 Assumptions
	4.2 Preliminaries
	4.3 Probabilistic feature shedding mechanism

	5 Data collection
	5.1 Shedding mechanisms
	5.2 Scenarios
	5.3 Datasets
	5.4 Experiment setup

	6 Evaluation
	6.1 Results
	6.2 Discussion
	6.3 Limitations

	7 Conclusion and Outlook
	Bibliography
	A Diagrams

