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Abstract

We add several new augmentation methods to RAFT, a deep learning architecture that is used
to calculate the optical flow between two sequential images. Because RAFT is trained using
supervised learning, it requires annotated training data that not only contains image sequences but
also the corresponding ground truth optical flow. Since the optical flow cannot be automatically
generated from arbitrary image sequences, synthetic data sets are created to train these networks.
One drawback of these data sets is their small size and low variety of optical flows they contain.
To increase this variety, one option is to use data augmentation techniques to modify the training
samples before feeding them to the network. These augmentations can change the images of a
sample on the pixel level, but also modify the geometry of these images and hence the optical flow
as well. We conduct experiments during each training phase to find out which kind of augmentation
at which intensity is able to increase the accuracy of the trained model when estimating the
optical flow of MPI-Sintel. Furthermore we compare this accuracy to that achieved by the original
RAFT implementation. We find out that it depends on the specific training phase which kind
of augmentation and which intensity is beneficial for the model’s performance. The model that
uses our augmentations is able to beat the original RAFT implementation after both are trained
on FlyingChairs and after both are trained FlyingChairs and FlyingThings3D afterwards. When
using these models to estimate the optical flow of KITTI-15, these models then perform worse,
which shows that ideal augmentation settings are dependent on the target data set. The results after
training on MPI-Sintel in the third phase show that adding these augmentations does not necessarily
improve the model’s performance, as the model that uses advanced augmentations doesn’t manage
to beat the original RAFT implementation.

3





Contents

1 Introduction 7

2 Related Work 9
2.1 Optical Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Introduction to RAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Adding Advanced Data Augmentations to RAFT 13
3.1 Geometric Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Photometric Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Augmentations of the Original RAFT Implementation . . . . . . . . . . . . . . 27

4 Experimentation Approach 29
4.1 Training Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Decreasing Training Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Experimentation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Results and Discussion 41
5.1 Training Phase 1: FlyingChairs . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Training Phase 2: FlyingThings3D . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Training Phase 3: MPI-Sintel Mix . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Evaluating the Full Models on the MPI-Sintel Benchmark . . . . . . . . . . . . 45
5.5 KITTI-15 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion and Outlook 51

Bibliography 53

A Full Results of RAFT-S Experiments 55
A.1 FlyingChairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 FlyingThings3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3 MPI-Sintel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B Kurzfassung 59

5





1 Introduction

One of the main challenges in current computer vision research is the accurate computation of
optical flow. Optical flow is the apparent motion of one ore more objects that is perceived by an
observer, triggered either by actual movement of the objects, by movement of the observer or by a
combination of both. In the context of computer vision, optical flow refers to the movement of a
pixel in the image plane between two consecutive frames in an image sequence as can be observed
in Figure 1.1. This movement is described by a two-dimensional vector where the first component
describes horizontal movement while the second component describes vertical movement.

Since every pixel of an image has its own flow vector, a visualization of the optical flow field of
an entire image using these vector arrows quickly becomes unreadable. That’s why usually the
vector directions are colour coded, where the direction of the vector corresponds to a colour and
the magnitude of the movement corresponds to the intensity of this colour. Figure 1.2 shows the
colour codification that we use in this thesis, while Figure 1.3 shows two consecutive images and
the corresponding optical flow between those images, colour coded as described above.

One of the ways to estimate the optical flow between two consecutive images is with the help of
Convolutional Neural Network (CNN) architectures. These networks first require training on large,
annotated data sets to afterwards be able to estimate the optical flow field of new image sequences.
The data sets contain lots of training samples, each consisting of a pair of sequential images and the
corresponding ground truth optical flow field between these images. In order to achieve a good
accuracy when estimating the optical flow, the architectures need to generalize well and have to be

Figure 1.1: Example of the optical flow vector of a pixel.
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1 Introduction

Figure 1.2: Colour coding for optical flow vectors.

(a) Image 1. (b) Image 2. (c) Colour coded optical flow.

Figure 1.3: Example of an image pair and its colour coded flow field.

trained with a large variety of optical flows. One way to increase this variety of optical flows that is
found in the data sets is to use data augmentation. This procedure randomly modifies the training
image pairs and the corresponding optical flow before feeding them into the network.

In this thesis, we study the impact of adding various data augmentation methods to the RAFT
(Recurrent All-Pairs Field Transforms) architecture [TD20], a deep learning architecture released in
2020. This network is trained sequentially on several different data sets, and while RAFT already
uses light data augmentations in every training phase, we want to explore whether we can improve
the network’s performance by using more advanced data augmentation methods. The question we
want to answer is which combination of data augmentation methods during which training phase is
able to improve the performance of the network.

In this thesis we first will give a brief overview of earlier approaches and deep learning architectures
that were created to estimate optical flow, as well as describe RAFT’s functionality. Furthermore
we will introduce the data sets that are used for training RAFT. Then we describe in detail the
data augmentations that we add to the RAFT architecture and our approach of conducting the
experiments. During each of these experiments we will use one ore more of our data augmentations
during the training of a model and afterwards evaluate the model’s performance. Lastly we present
our results and findings.
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2 Related Work

2.1 Optical Flow Estimation

Conventional approaches have long treated the estimation of optical flow as an energy minimization
problem [HS81]. These methods’ accuracy in estimating optical flow is often restricted by the
fact that they have to make very approximate assumptions about image brightness changes and the
spatial structure of the flow.

In 2015, Fischer et al. [DFI+15] propose the first deep learning approach to estimating optical
flow, building two CNN networks, FlowNetS and FlowNetC. While these aren’t able to match the
performance of conventional approaches, they already establish a multi-phase training schedule that
consists of first training on a large synthetic data set and afterwards finetuning the model on another
data set that has similar properties to the target data set. The networks already make use of several
methods of data augmentation during training: translation, rotation and scaling of the images and
the optical flow field and changing the brightness, contrast, gamma and colour of the images, as
well as adding Gaussian noise. Ilg et al. [IMS+17] stack several FlowNet networks into a large one,
called FlowNet 2.0. While their data augmentations stay unchanged compared to FlowNet, they add
another synthetic data set to the training schedule and note that the order in which the data sets
are presented to the network during the learning phase influences its performance. The resulting
network manages to beat conventional approaches but the architecture of several stacked networks
leads to very high memory requirements and complicated training procedures.

Further progress is made by embedding classical principles into the network architecture: Spynet
[RB17] uses coarse to fine spatial pyramids to improve its performance and create a model that
is much smaller than FlowNet 2.0. Their data augmentations include rotations, scaling, changing
brightness, contrast and saturation as well as adding Gaussian noise. Sun et al. [SYLK18] present
PWC-Net, which instead of using image pyramids uses learned feature pyramids of the images. The
resulting network is 17 times smaller than Flownet 2.0, while offering even better performance.
Their training schedule and use of data augmentations is similar to the FlowNet networks. Hur
and Roth [HR19] propose IRR, a network based on PWC that iteratively refines its optical flow
estimation by reusing the same network block with shared weights while again using FlowNet’s
data augmentation scheme.

Another method to calculate optical flow is to use an unsupervised learning approach. Yu et al.
[YHD16] introduce a model that, similarly to conventional methods, combines a data constancy
term with a spatial smoothness term. While the performance of these networks is currently not as
good as that of models that use a supervised approach, they can be trained on arbitrarily large data
sets that do not need to include ground truth optical flow. As a consequence these unsupervised
methods rarely use data augmentations, but Liu et al. [LZH+20] propose a framework that uses
augmented training samples as a regularization technique.
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2 Related Work

2.2 Introduction to RAFT

In this thesis we will use the RAFT (Recurrent All-Pairs Field Transforms) architecture to estimate
optical flow. This architecture also uses deep learning techniques, was introduced in 2020 and
achieved great results on various benchmarks for optical flow [TD20]. Compared to other network
architectures, RAFT in its original implementation only uses a very limited number of data
augmentations during training. It consists of three stages:

1. feature extraction

2. computation of visual similarity

3. iteratively updating the optical flow.

Figure 2.1 gives on overview of the RAFT architecture.

The features are extracted from the input images using a convolutional neural network. This feature
encoder network extracts 256 features per pixel from both input images. The resulting feature maps
have 1/8 of the resolution of the input images. The context encoder, which is another network with
an identical architecture, extracts features only from the first image.

In the second step, a correlation layer is constructed by computing the dot product of every vector
of the first feature map and every vector of the second vector map. The higher the value of a dot
product between two feature vectors is, the more similar the underlying pixels are. The last two
dimensions of the resulting four-dimensional (horizontal position of vector 1, vertical position of
vector 1, horizontal position of vector 2, vertical position of vector 2) correlation volume are then
pooled at multiple scales to construct a set of volumes.

These multi-scale correlation volumes are then used in the next step, where a flow field is initialized
at zero and an update operator iteratively updates this flow field by retrieving values from the
correlation volumes. When applied to video or data sets that contain more than two sequential
images, the user can choose not to initialize the flow field at zero but to instead use the flow field of
the previous two images to acquire a better starting point. This process is called warm start.

Since the resulting optical flow field only has 1/8 of the resolution of the input images, the final step
is to upsample the optical flow to the original image dimensions.

2.3 Data Sets

Deep learning networks that rely on supervised training require large datasets that contain image
pairs and the corresponding ground truth optical flow between these images. When training a neural
network, its parameters are first set randomly and the image pairs of the training samples are fed
into the network. The resulting estimated optical flow is then compared to ground truth optical flow
of the training samples by using a loss function. The goal is to minimize this loss function, so that
the estimated flow and the ground truth optical flow are as close as possible. Since the loss function
is dependent on all parameters of the network, minimizing this function requires adjusting these
parameters, which is done iteratively using gradient descent and backpropagation.
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2.3 Data Sets

Figure 2.1: Overview of the RAFT network. Image source: [TD20].

In many other areas of computer vision like segmentation, object recognition etc., the ground
truth can be captured by specialized sensors or via manual labeling. This means that datasets of
arbitrarily large sizes can be created. In the case of optical flow, this is not the case. There are no
sensors that can automatically capture the ground truth optical flow of an image sequence and since
the optical flow can differ from pixel to pixel, manual labeling of the flow is not feasible even for
low resolution images. That’s why the data sets that are used when training the network have to be
created synthetically. This section introduces the data sets that we use when training the RAFT
network.

MPI-Sintel

The MPI-Sintel data set [BWSB12] was created by using scenes from the open source 3D animated
short film ”Sintel”. It contains two versions for each of the 1,041 training samples: the more
challenging final pass includes atmospheric effects and motion blur to mimic natural scenes, while
the clean pass does not.

FlyingChairs

The FlyingChairs data set was created for training the Flownet network [DFI+15]. It consists of
more than 22,000 image pairs and the corresponding ground truth optical flow fields. The images
are random background images from Flickr, which are overlayed with renderings of 3D chair models.
These chairs move between the first and the second image, while the background image also slightly
moves. Both of these movements are planar, so there is no size increase or decrease of the chair
models between the two images.

FlyingThings3D

The FlyingThings3D data set [MIH+16], which includes around 40,000 samples, is at first sight
similar to the FlyingChairs data set: the images contain rendering of 3D objects in front of static
backgrounds. The difference is that the objects show true 3D motion and there is a greater variety
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2 Related Work

Figure 2.2: Example of the sparse optical flow of a KITTI-15 sample. Only yellow pixels contain
valid ground truth optical flow.

of objects. Like the Sintel data set, the data set includes two versions of every sample: the final pass
includes additional effects like depth-of-field blur, motion blur, sunlight glare and gamma curve
manipulation. The clean pass does not include these effects.

KITTI-15

The KITTI-15 dataset [MG15] consists of 200 training samples. These are real world traffic scenes,
where the ground truth optical flow was obtained by simultaneously recording the scenes with a
camera and a 3D laser scanner. One drawback of this technique is that the optical flow of distant
object cannot be captured in this way, hence there is only sparse ground truth optical flow available.
This means that in contrast to the data sets described above, the optical flow is only available for a
small number of pixels of the images, as observable in Figure 2.2: ground truth optical flow is only
available for the yellow pixels.

HD1K

The HD1K benchmark suite [KNH+16] contains a data set that consists of more than 1000 training
samples. Similar to the KITTI-15 data set, the images show diverse traffic scenarios. These real
world scenes were captured during different times of the day and can include lens flare effects,
reflections and other weather effects. As is the case with KITTI-15, the training samples only offer
sparse ground truth optical flow.
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3 Adding Advanced Data Augmentations to
RAFT

The fact that all data sets introduced in the previous section are mostly synthetic and also relatively
small presents a problem: the variety of different optical flows that a network is trained on might
be too low, and in turn it may very well be the case that a model overfits this data. Overfitting
means that while the trained model explains the training samples very well, its generalization
capability is weak and so accuracy of optical flow estimations of new data may be low. Because the
generalization capability is crucial for the performance of a model, we have to find ways to prevent
overfitting and increase the variety of optical flows that a network trains on. One way to achieve
this is to use data augmentations.

In this chapter, the different types of data augmentations that we implement for use during training
the network are introduced. We implement the augmentations in Pytorch1 to be compatible to the
RAFT network: during training, the image pairs and optical flow are converted into tensors. Our
data augmentations are then applied to these tensors and afterwards they are fed into the RAFT
network. Furthermore, using Pytorch enables us the use of its torchvision library which includes
many methods that facilitate the construction of our data augmentations.

There exist a great number of other data augmentations that we have not included. Our selection is
mostly based on those successfully used in FlowNet [DFI+15], Flownet 2.0 [IMS+17], PWC-Net
[SYLK18] and VCN [YR19] and is more varied than that of the RAFT original implementation.
Generally, we can distinguish two kinds of data augmentations: geometric augmentations and
photometric augmentations.

3.1 Geometric Augmentations

Geometric augmentations change the geometry of one or both of the images. Since the optical
flow describes the movement of all pixels between the first and the second image, any changes in
geometry of any of these images hence also inevitably change the optical flow. This means that
using these augmentations we can increase the variety of optical flow geometries that the network
learns during training.

1www.pytorch.org
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3 Adding Advanced Data Augmentations to RAFT

3.1.1 Random Flipping

There are two flipping augmentations: horizontal flipping and vertical flipping. These are straight
forward: both images are flipped along the horizontal or the vertical axis of the images. Additionally,
the optical flow has to be flipped as well: in the case of horizontal flipping, the x-components of
the optical flow have to be flipped, while the y-components stay the same. In the case of vertical
flipping, the y-components are flipped and the x-components stay the same. Figure 3.1 shows an
example of an image pair and its corresponding optical flow in its original orientation (first row of
images), in a horizontally flipped orientation (second row of images) and in a vertically flipped
orientation (third row of images).

Once a flipping augmentation is active, the probability of a training sample being flipped can be
adjusted. In our experiments, the probability that a training sample (consisting of the image pair
and its flow) is flipped is 50 percent. That means with both flipping augmentations active, the
probabilities are evenly distributed among the four cases:

• sample is not flipped

• sample is only flipped horizontally

• sample is only flipped vertically

• sample is flipped both horizontally and vertically

3.1.2 Random Scaling

The scaling augmentation can increase or decrease the dimensions of the images and flow field by
multiplying the height and width with a scaling factor and then resizing the images and flow field
to these new dimensions. In our case, this resizing is achieved via the torchvision library, using
bilinear interpolation. After the resizing of the images and the optical flow field, all flow vectors of
the optical flow field needs to be adjusted to account for the new dimensions: The x-component
of each flow vector is multiplied with the ratio between the new and the old image width, while
the y-component of each flow vector is multiplied with the ratio between the new and old image
height. The scaling factor that is applied to each training sample is a random variable that is
uniformly distributed in a range that we specify. Via this range we can influence the intensity of the
augmentation. There are two ways to augment an image using scaling:

• Random symmetric scaling: both images are rescaled

• Random asymmetric scaling: only the second image is rescaled

Random Symmetric Scaling

RAFT requires training samples whose dimensions are divisible by 8. This means that before
feeding the image pairs and their corresponding optical flow of a training sample into the network,
the images and their flow field always have to be cropped to such dimensions. This crop size is
fixed for every training phase and is not changed by any augmentation. The white rectangle in the
images in Figure 3.2 signifies the border of the image that will be cropped at this arbitrary position
and then fed into the network. By using the scaling augmentation, we can increase or decrease the

14



3.1 Geometric Augmentations

(a) Original image 1. (b) Original image 2. (c) Original optical flow.

(d) Horizontally flipped image 1. (e) Horizontally flipped image 2. (f) Horizontally flipped optical
flow.

(g) Vertically flipped image 1. (h) Vertically flipped image 2. (i) Vertically flipped optical flow.

Figure 3.1: Horizontal and vertical flipping.

amount of objects that will be part of this cropped image. The middle image row of Figure 3.2
shows both images and the optical flow after their dimensions were increased. As the cropping size
is unaffected by this, the resulting cropped image now contains less objects than before, for example
only a small part of the chair on the lower right is now part of the cropped image. Conversely, in
the bottom image row of Figure 3.2 the dimensions of the images and optical flow were decreased.
This results in the cropped image containing more objects and flow information than the original,
non augmented image.

The minimal scaling factor that can be applied to the images depends on the fixed crop size: in
case that the resulting dimensions after rescaling would be smaller than the crop size, the factor is
adjusted so that both the new height and width of the image are at least as large as the corresponding
crop width and height.
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3 Adding Advanced Data Augmentations to RAFT

(a) Original image 1. (b) Original image 2. (c) Original optical flow.

(d) Scaled up image 1. (e) Scaled up image 2. (f) Scaled up optical flow.

(g) Scaled down
image 1.

(h) Scaled down
image 2.

(i) Scaled down
optical flow.

Figure 3.2: Symmetric scaling.

Random Asymmetric Scaling

In asymmetric scaling, only the size of the second image is increased or decreased. If the size of the
second image is increased while the crop size stays the same, then as before fewer objects are part
of the cropped image, and the size of the remaining objects inside the cropped image increases.
When there is no scaling in the first image, then the motion between the first and second image is
akin to zooming in, i.e. the objects in the cropped space appear larger in the second image than they
do in the first image.

Conversely, if the scale of the second image is decreased, the objects in the cropped images then
appear smaller in the second image than in the first image and the motion is akin to zooming out.

To apply this augmentation, first the second image is scaled up or down using a scaling factor and
bilinear interpolation. Then the optical flow field has to be adjusted:
Let 𝑣 = (𝑥, 𝑦) the displacement vector between the position of an arbitrary but fixed pixel between
image 1 and image 2.
Let 𝑣′ = (𝑥 ′, 𝑦′) the displacement vector between the original position of the pixel in image 2 and
the position of the pixel in the scaled image 2’. This displacement vector is dependent on two
things:
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3.1 Geometric Augmentations

• The scaling factor, since the larger the re-scaled image is, the larger is the displacement vector
between the pixel’s position in the original and the re-scaled version of the image and vice
versa.

• The distance of the pixel from the center of the image. The closer a pixel is from the center
of the image, the less its position is affected by any resizing.

Let 𝑉 the resulting displacement vector between the pixel in image 1 and the pixel in the scaled
image 2’.

𝑉 = 𝑣 + 𝑣′ = (𝑥 + 𝑥 ′, 𝑦 + 𝑦′)

After the adjustment of all flow vectors, the image pairs and the flow field are cropped.

Figure 3.3 shows both variants in which asymmetric scaling can be used. In the middle image
row, the size of the second image is decreased, which means the objects inside the (unchanged)
cropped area now appear smaller than they do in image 1. The resulting flow shows this zooming
out motion.

In the bottom row of Figure 3.3, the size of the second image is increased, which leads to the objects
in the cropped area now appearing larger in image 2 than they do in image 1. Now the resulting
flow shows this zooming in motion.

3.1.3 Random Rotation

The rotation augmentation rotates the images and the optical flow field of a training sample around
the center. The angle of the rotation of each training sample is a random variable that is uniformly
distributed in a range that we specify. Through choosing this range we influence the intensity of the
augmentation. There are two ways to augment a training sample using rotation:

• Random symmetric rotation: both images are rotated the same amount

• Random asymmetric rotation: only the second image is rotated

Random Symmetric Rotation

The first step in applying this augmentation is rotating the image pairs and the optical flow field
around a random angle \. While after this step the position of each flow vector in the rotated flow
field is correct, as it is on the same coordinates as the pixel that it relates to on the rotated images,
the flow vectors themselves now have to be rotated as well so that they again point in the correct
direction. This is done by multiplying each flow vector with a rotation matrix 𝑅:

𝑅 =

(
𝑐𝑜𝑠\ −𝑠𝑖𝑛\
𝑠𝑖𝑛\ 𝑐𝑜𝑠\

)
The rotation above results in images that contain black borders, as visible in the second row of
figure 3.4. To eliminate these borders, the images and the optical flow field are scaled up (using
the same technique as the scaling augmentation described above) with a factor that results in an
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3 Adding Advanced Data Augmentations to RAFT

(a) Original image 1. (b) Original image 2. (c) Original optical flow.

(d) Image 1, unchanged. (e) Image 2, decreased scale.
(f) Cropped resulting optical

flow.

(g) Image 1, unchanged. (h) Image 2, increased scale.
(i) Cropped resulting optical

flow.

Figure 3.3: Asymmetric Scaling.

image size that allows us to crop out an area of the original image dimensions that doesn’t contain
any black borders. The third row of Figure 3.4 shows the images and the optical flow at their new
increased size, with the white rectangle inside the images (and the black rectangle inside the optical
flow) having the same dimensions as the original image pairs and optical flow. In the final step,
these border free images (that have the same dimensions as the original images) are then cropped
out, as shown in the bottom row of Figure 3.4.

Random Asymmetric Rotation

In this augmentation, only the second image is rotated. After this rotation, the flow field has to be
adjusted:
Let 𝑣 = (𝑥, 𝑦) the displacement vector of the position of a pixel between image 1 and image 2.
Let 𝑣′ = (𝑥 ′, 𝑦′) the displacement vector between the original position of the pixel in image 2 and
the position of the pixel in the rotated image 2’. Similarly to the asymmetric scaling augmentation,
this displacement vector v’ is influenced by two things:
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3.1 Geometric Augmentations

(a) Original image 1. (b) Original image 2. (c) Original optical flow.

(d) Image 1, rotated. (e) Image 2, rotated. (f) Optical flow, rotated and cor-
rected.

(g) Image 1, scaled up. (h) Image 2, scaled up. (i) Optical flow, scaled up.

(j) Image 1, cropped. (k) Image 2, cropped. (l) Optical flow, cropped.

Figure 3.4: Symmetric Rotation.

• The amount of rotation. The higher this amount is, the larger is the distance (and hence the
displacement vector) between the original position of the pixel and the position in the rotated
image.

• The distance of the pixel from the rotation center, which in our augmentation is the center
of the image. The larger this distance is, the stronger the pixel is displaced by the rotation.
The opposite is true as well: a pixel right in the center of the image is not influenced by any
amount of rotation. This means that its displacement vector 𝑣′ is zero.

Let 𝑉 the resulting vector between the pixel in image 1 and the pixel in the rotated image 2’.

𝑉 = 𝑣 + 𝑣′ = (𝑥 + 𝑥 ′, 𝑦 + 𝑦′)

The flow field is hence adjusted so that every vector has this correct orientation. As in the case of
symmetric rotation, the second, rotated image now contains black borders. That’s why at this point,
similarly to the case of symmetric rotation, both images as well as the optical flow are now again
scaled up in order to be able to crop out an area that has the same dimensions as the original images
and optical flow but doesn’t include any black borders. The middle row of images of Figure 3.5
shows these scaled up images and flow, with the white rectangles having the same dimension as the
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3 Adding Advanced Data Augmentations to RAFT

(a) Original image 1. (b) Original image 2. (c) Original optical flow.

(d) Image 1, scale
increased.

(e) Image 2, rotated, scale in-
creased.

(f) Corrected optical flow, scale
increased.

(g) Image 1, cropped. (h) Image 2, cropped. (i) Cropped resulting flow.

Figure 3.5: Asymmetric Rotation.

original images. Lastly, the images and optical flow field are cropped, as shown in the bottom row
of Figure 3.5. The resulting optical flow shows the rotation between the two images: the further
away a pixel is from the rotation center (i.e the image center), the stronger the rotation influences
the pixel’s optical flow vector.

3.1.4 Random Translation

The final geometric data augmentation is the translation augmentation. In this augmentation, the
two images are cropped at two different positions. In the upper row of Figure 3.6, we can see that
the cropped area (as indicated by the white rectangles) in the first image and the optical flow field is
located to the left of the cropped area of the second image. After cropping the images and flow
field, this results in the movement of the objects inside the cropped images in this direction: In
Figure 3.6, we can observe that the objects traveled to the left between image 1 and image 2. The
flow is corrected by adding the offsets between the two crop positions: the horizontal offset is
added to the x-component of each flow vector of the flow field, while the vertical offset is added to
the y-component of each flow vector of the flow field. Hence the resulting flow field shows the
translative movement that was induced by the different cropping positions between the first and
second image.

The amount of offset between the first and second image is a random varible uniformly distributed in
a range that we specify. The choice of range allows us to influence the intensity of this augmentation.
Of course the possible offsets are also limited by the (random) cropping position of the first image
and the crop size itself: if for example the horizontal cropping position of the first image is at the
left border of the image, then the horizontal offset between the two cropping positions cannot be
negative, as this would mean the second image would be cropped outside of its borders. Furthermore
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(a) Original image 1. (b) Original image 2. (c) Original optical flow.

(d) Cropped image 1. (e) Cropped image 2. (f) Cropped resulting flow.

Figure 3.6: Translation

if an image has a width of 𝑥 pixels and a crop width of 𝑐 pixels, the maximal offset between the two
cropped images is 𝑥 − 𝑐 pixels, and is further reduced if the horizontal cropping position of the first
image is not directly at the image border.

3.2 Photometric Augmentations

In contrast to geometric augmentations, photometric augmentations simply change the image
properties of one or both of the images at the pixel level. Since there is no change in geometry
of the images, the optical flow field does not have to be adjusted when applying any of these
augmentations.

3.2.1 Random Brightness Shifting

There are two different augmentations that shift the brightness of the images:

• Random additive brightness shift

• Random multiplicative brightness shift

Both can be used in two ways: either both images are shifted the same amount or only the second
image is shifted.
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Random Additive Brightness Shifting

In this augmentation for any training sample a shifting value is randomly chosen from a normal
distribution. The properties of this distribution, i.e. its mean and its standard deviation, are set
beforehand and influence the augmentation’s intensity. As we deal with 8 bit images, the values of
all three colour channels in any pixel of the image are in a range between 0 and 255. The channel
values are normalized by division through 255 and afterwards the random value is added to all
channels for every pixel of the image. Afterwards we multiply all channel values with 255. If a
channel value is larger than 255 or smaller than 0 after the addition of the random shifting value,
the channel value is then set to 255 or 0 respectively. Since the added shifting value is the same
across all pixels, all pixels of the image are shifted the same amount. If this value is positive, the
image gets brighter, as shown in in Image 3.7b, if it is negative, the image gets darker as shown in
Image 3.7c.

Random Multiplicative Brightness Shifting

In this augmentation for any training sample a factor is randomly picked from a uniformly distributed
range. Increasing or decreasing this range allows us to influence the augmentation’s intensity. As
above the colour channel values are normalized by dividing them by 255 and then lie in a range
between 0 and 1. Then they are multiplied with the random factor and afterwards again multiplied
with 255. A factor > 1 increases the brightness of each pixel, while a factor < 1 decreases its
brightness. This multiplication has a different effect than the addition of a value before: bright
pixels with high channel values are influenced much stronger by this multiplication than pixels that
are darker and have low channel values. In Image 3.7e for example we can observe that while the
brighter areas get much brighter, the dark background stays dark. This is not the case in the additive
brightness augmentation, where an increase in brightness also increased the dark background, as
seen in Image 3.7b.

3.2.2 Random Contrast Shifting

This augmentation allows us to increase or decrease the contrast of either both images or of only the
second image. For any training sample a factor is chosen randomly out of uniformly distributed
range that we specify. Then the average gray value of the image is computed. Then the image is
adjusted in the following way:
Let 𝑐 the randomly chosen contrast factor.
Let 𝑔 the average gray value of the image.
Let 𝑓 (𝑥, 𝑦) the colour values of the image at the position (𝑥, 𝑦) before the application of the
augmentation.
Let out(𝑥, 𝑦) the colour values of the image at the position (𝑥, 𝑦) after the application of the
augmentation.

out(𝑥, 𝑦) = 𝑐 ∗ 𝑓 (𝑥, 𝑦) − (1 − 𝑐) ∗ 𝑔
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(a) Original
image.

(b) Added brightness,
value +0.25.

(c) Added brightness,
value -0.25.

(d) Original
image.

(e) Multiplicated brightness,
factor 1.25

(f) Multiplicated brightness,
factor 0.75

Figure 3.7: Additive and multiplicative brightness augmenations.

(a) Original
image.

(b) Contrast augmentation,
factor 1.5.

(c) Contrast augmentation,
factor 0.5.

Figure 3.8: Contrast augmentation.

If the factor is larger than 1, the contrast of the image is increased, as visible in Image 3.8b. If the
factor is between 0 and 1, the contrast of the image is decreased, as visible in Image 3.8c.
If the factor is 0, then every pixel of the resulting image has the average gray value, so there is no
more contrast.

3.2.3 Random Gamma Shifting

With this augmentation we can change the gamma property of either both or the second one of
the images of a training sample. For every training sample a value is randomly picked out of a
uniformly distributed range we specify. The channel values are divided by 255 so that each one lies
in a range between 0 and 1. Afterwards the channel values are raised by the random value.
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(a) Original
image

(b) Gamma augmentation,
value = 0.75

(c) Gamma augmentation,
value = 1.25

Figure 3.9: Gamma augmentation.

Let 𝑔 the randomly chosen value.
Let 𝑓 (𝑥, 𝑦) the colour values of the image at the position (𝑥, 𝑦) before the application of the
augmentation.
Let out(𝑥, 𝑦) the colour values of the image at the position (𝑥, 𝑦) after the application af the
augmentation.

out(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)𝑔

Afterwards the channel values are again multiplied with 255. As visible in Image 3.9b, values
smaller than 1 make dark areas of the image lighter. This can be useful to increase the visibility of
details in dark areas. Gamma values larger than 1 make dark areas darker, as visible in Image 3.9.
This can be useful to improve the contrast when overall the image is very light.

3.2.4 Random Hue Shifting

This augmentation changes the hue of both images. To achieve this, the image is first converted into
an HSV image. In this representation, the hue (H) channel is represented by a colour circle and
every hue value corresponds to an angle on this circle. A value is then randomly chosen out of
a specified uniformly distributed range and the hue values of all pixels are then shifted along the
circle by this value. Afterwards, the image is converted back into the RGB representation. Figure
3.10 shows an example of this augmentation.

3.2.5 Random Additive Gaussian Noise

This augmentation adds noise to all three colour channels of the images. For every training sample
we set up the Gaussian distribution of the noise by setting its mean as zero and randomly picking
its standard deviation out of a uniformly distributed range we specify. This means that while
every training sample is augmented with Gaussian-distributed noise, the standard deviation of the
distribution of this noise differs between the training samples. For each colour channel of each
pixel, a value is randomly picked out of the resulting Gaussian distribution and then added to the
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(a) Original
image.

(b) Hue augmentation,
value = 0.5

Figure 3.10: Hue augmentation.

(a) Original
image.

(b) Added Gaussian noise with a
standard deviation of 15.

Figure 3.11: Additive Gaussian noise augmentation.

value of the colour channel. To make sure that all resulting values stay between 0 and 255, all
resulting negative values are set to 0 and all resulting values larger than 255 are set to 255. Figure
3.11 gives an example of added noise.

3.2.6 Motion Blurring

Generally, motion blur is generated by convolving an image with a box function in the direction of
the motion. Due to the fact that the final pass of the MPI-Sintel data contains motion blur effects,
we want to add a motion blur augmentation during training in the hope to improve the network’s
performance when estimating the optical flow of image pairs that include motion blur. Since in our
training images often times different objects move in different directions, ideally several kernels
(one for each movement direction present in the image) would be generated and only areas close to
a moving object would be convoluted with the correct kernel for the object’s direction of movement.
Unfortunately such an approach isn’t viable when the procedure is used for augmenting training
data, since in this case the speed of applying an augmentation is paramount and our attempts to
implement the above behaviour were too slow to be used during training. This is why we implement
two different motion blur augmentations:

• Random motion blur

• Nonrandom motion blur
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(a) Original image. (b) Applied motion blur.

Figure 3.12: Motion blur augmentation.

Random Motion Blurring

In this augmentation, we use the Motion Blur augmentation from the Albumentations framework2.
This augmentation randomly chooses a direction and generates the corresponding kernel for this
direction. Afterwards, the image is convolved with this kernel. Since both images of a training
sample are augmented individually in this case, both are blurred in different directions.

Nonrandom Motion Blurring

Our own motion blur augmentation uses the optical flow field to first calculate the average direction
of all optical flow vectors that are larger then a set threshold. For example if this threshold is zero,
then the average direction is the average of all optical flow vectors of the flow field. But if it is 20, it
is the average direction of all optical flow vectors of the image that are larger than 20. This may be
advantageous when we have a fast object that goes in one direction but there’s slow background
movement that goes into another direction. With this threshold, the slow background movement
is ignored and the blur will be applied in the direction of the fast moving object. The resulting
direction is used to build a box kernel which is then convolved with both images. In our experiments
we set the threshold to 20. If there are no flow vectors that exceed this threshold, no blurring is
applied. Figure 3.12 shows an example of an image that was augmented with nonrandom motion
blur.

3.2.7 Fog

Here again the fact that the final pass of the MPI-Sintel data set includes weather effects such as fog
motivates us to include a fog augmentation during training. We use the fog augmentation of the
Albumentations framework, which tries to emulate fog by working as follows: at several random
coordinates of an image, transparent white circles are added one by one. If parts of circles overlap,
the transparency in this overlapping area is reduced. Finally, the complete image is blurred. Since
both images of a training sample are augmented separately, the coordinates of the random fog
circles differ between the two images. The bottom row of Figure 3.13 shows this: the left image is
the first image of the image pair and the right image is the second image.

2www.albumentations.ai
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(a) Original image 1. (b) Original image 2.

(c) Image 1 after fog augmentation. (d) Image 2 after fog augmentation.

Figure 3.13: Fog augmenation.

3.3 Augmentations of the Original RAFT Implementation

The original RAFT implementation only uses a comparably limited number of data augmentations.
This section gives an overview and briefly explains any augmentations that are used in the original
implementation but are not used by ours.

Geometric Augmentations

The original RAFT implementation uses three different geometric augmentations:

• Horizontal and Vertical Flipping

• Symmetric Scaling

• Symmetric Stretching

The Flipping and Symmetric Scaling augmentations work just like our versions described above.
The only geometric augmentation we don’t use in our implementation is the symmetric stretching
augmentation. This augmentation is very similar to the symmetric scaling augmentation as both
change the dimensions of the images. The difference is that while in the scaling augmentation, both
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height and width of the images are scaled by the same factor, here height and width are scaled with
different factors. This means that the ratio between height and width is different after applying this
augmentation.

Photometric Augmentations

There are four photometric augmentations in the original implementation of RAFT:

• Multiplicative brightness shifting

• Contrast shifting

• Hue shifting

• Saturation shifting

• Addition of occlusions

The brightness, contrast and hue augmentations again work like in our implementation described
above. Additionally there’s an augmentation which changes the saturation of the images. All
four can also be used either symmetrically, i.e. on both images with the same parameters, or
asymmetrically, where both images are augmented with different parameters and intensity. The
decision which mode of the two is used is randomized: in 80 percent of all training samples,
symmetric augmentation is used, while the remaining 20 percent are augmented asymmetrically.

The addition of occlusions is another augmentation that is not part of our implementation. This
augmentation changes the second image of a training sample pair: The colour channel values inside
several rectangular areas of random dimensions at random positions are replaced with the average
colour of the image. This way these rectangles simulate occlusions, i.e. areas that are visible in
the first image but are no longer visible in the second image because they may be covered by other
objects.
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4 Experimentation Approach

In this section, we describe the experimentation process we conduct to answer our research question:
can we improve RAFT’s performance by adding augmentation methods? Specifically, we test for
every phase of our training pipeline what combinations of data augmentations and which intensities
of these augmentations improve the final accuracy of the trained model the most.

4.1 Training Protocol

Like the original RAFT implementation, our network is trained in three phases: first we train the
network on large and relatively simple data and then we finetune on a complex dataset:

1. Phase 1: Training on the FlyingChairs data set

2. Phase 2: Training on the FlyingThings3D dataset (both clean and final pass)

3. Phase 3: Training on a mix of several data sets: MPI-Sintel (both clean and final pass),
FlyingThings3D (clean pass only), KITTI-15 and HD1K.

A training step includes

• sampling batches of image pairs and their corresponding optical flow from the data set

• applying specific data augmentations at specific intensities to the images and the optical flow

• cropping the images and optical flow to a dimensions that are divisible by 8

• feeding the images and optical flow into the network

• adjusting the network’s parameters via a loss function and backpropagation

We conduct experiments in all three training phases. In each experiment, we activate certain
data augmentations at certain intensities and then train a model on the phase-specific training set
using these settings. Afterwards, the performance of this model is evaluated on the phase-specific
evaluation set. Our goal is to find a combination of data augmentations and their intensities on
every phase so that a model which is trained on all three of these phases achieves a better accuracy
on MPI-Sintel than the original RAFT implementation. All experiments are carried out using a
single NVIDIA RTX 3090 GPU.

Since our final goal is to build a network that works well on the MPI-Sintel data set, we generally
evaluate every model after every experiment on the full MPI-Sintel training split. The only exception
to this is the third training phase. Since in this phase we already use the MPI-Sintel training
split to train our model, we cannot also use it to evaluate the performance of the trained model.
Training and evaluating a model on the same data set doesn’t give any insights on the generalization
capabilities on the network, because very good performance in the evaluation could simply be a

29



4 Experimentation Approach

result of overfitting the model to the data. That’s why in the third phase we split the MPI-Sintel
training split into two disjoint sets, as described by Zhao et al. [ZSD+20]. The first one, that we call
”eval”, contains 225 of the 1041 image pairs of the original MPI-Sintel training split and is used for
evaluating the models. The second one, called ”train”, contains the rest of the image pairs and is
used to train the network in place of the original, full MPI-Sintel training split. Table 4.1 gives an
overview of the data sets and evaluation set used for each training phase.

Phase Training set(s) Evaluation set

1 FlyingChairs MPI-Sintel training split
2 FlyingThings3D MPI-Sintel training split
3 MPI-Sintel training split subset ”train” MPI-Sintel training split subset ”eval”

& FlyingThings3D clean pass
& KITTI-15
& HD1K

Table 4.1: Overview of the training and evaluation sets.

To measure the performance of a trained model, we use the average endpoint error (EPE). To
calculate the EPE, a trained model first estimates the optical flow of all image pairs of an evaluation
data set. These evaluation data sets also include the corresponding ground truth optical flow for
each image pair. For every pixel of an image, the Euclidian distance between the ground truth
optical flow vector of this pixel and the estimated optical flow is calculated. These distances are
then averaged over all pixels of the image.

Let 𝑉gt, x the horizontal component of the ground truth optical flow of a pixel.
Let 𝑉gt, y the vertical component of the ground truth optical flow of this pixel.
Let 𝑉est, x the horizontal component of the estimated optical flow of this pixel.
Let 𝑉est, y the vertical component of the estimated optical flow of this pixel.

EPE =

∑
pixels

√︃
(𝑉gt, x −𝑉est, x)2 + (𝑉gt, y −𝑉est, y)2

number of pixels

Finally, the EPE is averaged over all samples of the evaluation data set.

4.2 Decreasing Training Time

Several issues prevent us from evaluating the influence of every single data augmentation separately.
Any adjustment of the intensity of a data augmentation again necessitates time consuming training
of the network, which limits the number of experiments that are achievable in a given time frame.
Even if the ideal intensity for this augmentation was found, this would not guarantee that this
intensity is ideal once another augmentation is added to the network. This interdependency leads to
a number of experiments that is not feasible.
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The goal is to decrease the number and time consumption of individual experiments while still
finding well performing augmentation combinations and intensities. This influenced several design
decisions of our experimentation process.

4.2.1 Grouping of Data Augmentations

To decrease the number of experiments, we group several data augmentations into data augmentation
classes. Any augmentations that are part of such a class are never activated and evaluated individually.
Instead, we add all augmentations of a class to the network at the same time. Furthermore, when
studying the effects of intensity changes, we also change the intensity of all augmentations of the
class at the same time. There are two augmentation classes.

Geometric Augmentation Class

This class contains all of our geometric augmentations:

• Flipping, horizontally and vertically

• Scaling, symmetrically and asymmetrically

• Rotation, symmetrically and asymmetrically

• Translation

Photometric Augmentation Class

This class contains most of our photometric augmentations:

• Additive and multiplicative brightness changes, symmetric and asymmetric

• Contrast changes, symmetric and asymmetric

• Gamma changes, symmetric and asymmetric

• Hue changes

The rest of our photometric augmentations (additive Gaussian noise, fog and motion blurring) are
not part of any class and hence are activated and evaluated individually.

While we lose the ability to evaluate the impact of any single data augmentation method that is
part of a class, splitting the augmentations up into these two classes at least leaves us the ability to
differentiate between the impact of augmentations that do change the flow and those that don’t. The
reason that we do not include motion blur and fog into our photometric augmentation class is that
contrary to the other augmentations, these two haven’t been used in previous works. It is therefore
deemed important to be able to evaluate their usefulness individually without diluting their impact
by combining them into a class.
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4.2.2 Fixed Augmentation Order

Another design decision that is made is to fix the order in which augmentations or augmentation
classes are added. In any of the three training phases, we always use the following ordering:

• Addition of the geometric augmentation class and evaluating the impact at different intensities

• Addition of the photometric augmentation class and evaluating the impact at different
intensities

• Evaluation the impact of different cropping sizes

• Addition of Gaussian noise and evaluating its impact at different intensities

• Addition and evaluation of fog, motion blur and a combination of both

Keeping this order fixed reduces the number of experiments, with the drawback of preventing
us from further insights, for example since the photometric augmentations are always added
after the geometric augmentations we don’t conduct any experiments that only use photometric
augmentations without using geometric augmentations and hence cannot judge the impact of
activating only photometric augmentations.

4.2.3 Usage of RAFT-S Instead of Full RAFT

To decrease the actual training time during an experiment, most experiments are conducted using the
RAFT-S network architecture. While the feature and context encoders remain unchanged between
the two smaller RAFT-S and the full RAFT architecture, the RAFT-S network uses a simpler
architecture to iteratively update the optical flow. While this leads to a less accurate final network,
the number of parameters and hence the training time are significantly reduced: the original RAFT
network has around 4.8 million parameters, the smaller RAFT-S network only has around 1 million
parameters. In our case, training on RAFT-S is roughly twice as fast as training on the full RAFT
model. Figure 4.1 shows a comparison of both architectures.

In our experiments we use RAFT-S to find well performing augmentation combinations during all
training phases. Once these are found, at the end of each training phase we train a full RAFT model
using these augmentations. This way we can directly compare the performance of our model to that
of the original RAFT implementation, which always uses the full RAFT architecture.

4.3 Experimentation Process

This section describes the process to find well-performing augmentation settings. It is used in all
three of our training phases. The only difference is the model that is trained during the experiments:
In the first phase, every experiment trains a model from scratch. At the end of this phase we will
have acquired one model that performs the best.

This model is then always the basis for any experiment in the second phase: for every experiment,
this model (which was already trained in the first phase) is copied and then trained with the
experiment-specific settings in the second phase. The same holds true for the experiments of our
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Figure 4.1: Comparison af the RAFT and RAFT-S architectures. Image source: [TD20].

third phase: after completion of the experiments of the second phase we will have acquired a model
that performs best after having been trained on the first and second data sets. This is then copied
and further trained for each of our experiments of the third stage.

Step 1: Minimizing The Number Of Training Iterations

The evaluation of the impact of an augmentation or the change of the augmentation’s intensity or
parameters in a training phase requires two steps: firstly, training a network with the augmentation
active and set at the desired intensity and secondly evaluating this trained network on the evaluation
set. This means that every single adjustment of an augmentation requires training a network. The
original implementation of RAFT uses 100.000 training iterations for all three training phases.

To decrease the required training time for each experiment and thus allow a greater number of
experiments, we try to decrease the number of iterations used in training as much as possible
while still keeping this number high enough so that the difference between using and not using the
augmentations stays recognizable. This is done in two steps: First the network is trained without
any augmentations for 100.000 iterations. After every 500 iterations of training the network, the
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(a) Clean pass. (b) Final pass.

Figure 4.2: Evaluations of a model trained on FlyingChairs with geometric augmentations (red)
and one without any augmentations (orange) on the MPI-Sintel training split every 500
iterations.

network is evaluated on the corresponding evaluation data set. In the second step, we now activate
the geometric augmentations and train a new network for 100.000 iterations while evaluating every
500 iterations. This way we acquire the EPE of two different networks for each 500 steps and can
judge after which number of iterations the data augmentation starts making an impact on the EPE
and especially the point at which the difference between the EPE’s of both networks is similar to the
difference of EPE’s after the full 100.000 iterations. We fix this number as the number of training
iterations for all of the following experiments of the current phase.

Figure 4.2 shows the EPEs of two different networks for the first phase (training on FlyingChairs).
The orange graphs show the EPEs of the network trained without any augmentations, the red graphs
show the EPEs of the network trained with activated geometric augmentations. The left image
shows the EPE of both networks on Sintel’s clean pass every 500 iterations, the right image shows
the EPE on Sintel’s final pass every 500 iterations. In this example, we observe that at 30.000
iterations, both in the clean and final pass the network that uses the geometric data augmentations
achieves a higher accuracy than the network that doesn’t use any augmentations, so consequently
the experiments in this training phase are all conducted using 30.000 iterations.

Step 2: Setting the Baseline EPE

The EPE of a network using no augmentations during training, trained for the number of iterations
set in the previous step, is our first baseline EPE. From this point on, the performance of every
network that is trained is compared against this baseline and if a network manages a better EPE
than the current baseline, the baseline is updated as described below.

Step 3: Adding Geometric Augmentations

Now we train a network using all augmentations that are part of the geometric augmentation class.
The intensity for each of these augmentations for the first experiment are based on those used in the
PWC network [SYLK18]. We call this intensity level 0.

• Horizontal flipping active, probability 50 %

• Vertical flipping active, probability 50 %
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• Symmetric scaling active, scaling factor range: 0.75 to 1.5

• Asymmetric scaling active, scaling factor range: 0.95 to 1.05

• Symmetric rotation active, rotation range: -10 to 10 degrees

• Asymmetric rotation active, rotation range: -1 to 1 degree

• Max translation active, range: 0 to 2 pixels

This resulting network is then evaluated on our evaluation set. Now there are two possible
outcomes:

Outcome 1

The first possibility is that the resulting EPE is worse than our baseline EPE (i.e the network that
was trained without any augmentations). In this case we train another network with decreased
intensities, called -:

• Horizontal flipping active, probability 50 %

• Vertical flipping active, probability 50 %

• Symmetric scaling active, scaling factor range: 0.9 to 1.1

• Asymmetric scaling active, scaling factor range: 0.95 to 1.05

• Symmetric rotation active, rotation range: -5 to 5 degrees

• Asymmetric rotation active, rotation range: -1 to 1 degree

• Max translation active, range: 0 to 1 pixels

If this network still performs worse than the network without any augmentations (i.e. doesn’t
manage to beat the baseline EPE), none of the augmentations of the geometric augmentations class
will be activated for the rest of this training phase and the experiments continue with the next
augmentation class. If on the other hand this network (with activated geometric augmentations
but decreased intensities of these augmentations) performs better than our baseline (i.e its EPE is
lower than our baseline EPE), the augmentations stay activated for the rest of the experiments in the
current phase and the baseline EPE is updated to the EPE of this network. The experiments then
also continue with the next augmentation class.
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Outcome 2

The second possibility is that the EPE of this network that uses intesity level 0 is lower than our
current EPE baseline. In this case we update our EPE baseline to the EPE achieved by the network
and then train another network, now using increased intensities of the augmentations, called +. This
procedure then continues until a further increase of intensities results in an EPE that is worse than
the current EPE baseline. At this point, experiments on geometric augmentations are completed and
the data augmentations of the geometric augmentation class stay activated at their best performing
intensity for the rest of the experiments during that phase.

Intensity level +

• Horizontal flipping active, probability 50 %

• Vertical flipping active, probability 50 %

• Symmetric scaling active, scaling factor range: 0.5 to 1.75

• Asymmetric scaling active, scaling factor range: 0.9 to 1.1

• Symmetric rotation active, rotation range: -15 to 15 degrees

• Asymmetric rotation active, rotation range: -3 to 3 degree

• Max translation active, range: 0 to 2 pixels

Intensity level ++

• Horizontal flipping active, probability 50 %

• Vertical flipping active, probability 50 %

• Symmetric scaling active, scaling factor range: 0.3 to 2

• Asymmetric scaling active, scaling factor range: 0.8 to 1.2

• Symmetric rotation active, rotation range: -20 to 20 degrees

• Asymmetric rotation active, rotation range: -5 to 5 degree

• Max translation active, range: 0 to 5 pixels

Intensity level +++

• Horizontal flipping active, probability 50 %

• Vertical flipping active, probability 50 %

• Symmetric scaling active, scaling factor range: 0.2 to 2.5

• Asymmetric scaling active, scaling factor range: 0.6 to 1.4

• Symmetric rotation active, rotation range: -25 to 25 degrees

• Asymmetric rotation active, rotation range: -8 to 8 degree

• Max translation active, range: 0 to 10 pixels
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Step 4: Adding Photometric Augmentations

This step is similar to the previous step, but we now add the data augmentations of our photometric
augmentations class. The intensities of the first experiment again are based on those used on the
PWC-Net, again named intensity level 0:

• Symmetric additive brightness shift, range: 0 - 0.15

• Asymmetric additive brightness shift, range: 0 - 0.015

• Symmetric Gamma shift, range: 0.8 - 1.2

• Asymmetric Gamma shift, range: 0.98 - 1.02

• Symmetric multiplicative brightness shift, range: 0.8 - 1.2

• Asymmetric multiplicative brightness shift, range: 0.95 - 1.05

• Symmetric contrast shift, range: 0.8 - 1.2

• Asymmetric contrast shift, range: 0

• Symmetric hue shift, range -0.05 - 0.05

Again, if the EPE of the resulting network is worse then our current baseline EPE, there is another
try of using decreased intensities:

Intensity level -

• Symmetric additive brightness shift, range: 0 - 0.1

• Asymmetric additive brightness shift, range: 0 - 0.01

• Symmetric Gamma shift, range: 0.9 - 1.1

• Asymmetric Gamma shift, range: .99 - 1.01

• Symmetric multiplicative brightness shift, range: 0.9 - 1.1

• Asymmetric multiplicative brightness shift, range: 0.98 - 1.02

• Symmetric contrast shift, range: 0.9 - 1.1

• Asymmetric contrast shift, range: 0

• Symmetric hue shift, range -0.025 - 0.25

If the EPE of this network is still worse than our baseline EPE, we continue with the next step
and no photometric augmentations will be activated during this training phase. If the EPE of this
network is better than our baseline EPE, we update our current baseline EPE and the photometric
augmentations will stay activated at this low intensity.

Like in the previous step, if the EPE of this first experiment is lower than our current baseline (i.e.
the EPE of the network with the best performing geometric augmentations), the baseline EPE is
updated and other models with increasing intensities are trained until the baseline EPE no longer
improves.
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Photometric intensity level +

• Symmetric additive brightness shift, range: -0.15 - 0.15

• Asymmetric additive brightness shift, range: -0.015 - 0.015

• Symmetric Gamma shift, range: 0.5 - 1.5

• Asymmetric Gamma shift, range: 0.9 - 1.1

• Symmetric multiplicative brightness shift, range: 0.8 - 1.2

• Asymmetric multiplicative brightness shift, range: 0.95 - 1.05

• Symmetric contrast shift, range: 0.6 - 1.4

• Asymmetric contrast shift, range: 0.95 - 1.05

• Symmetric hue shift, range -0.05 - 0.05

Photometric intensity level ++

• Symmetric additive brightness shift, range: -0.25 - 0.25

• Asymmetric additive brightness shift, range: -0.025 - 0.025

• Symmetric Gamma shift, range: 0.25 - 1.75

• Asymmetric Gamma shift, range: 0.8 - 1.2

• Symmetric multiplicative brightness shift, range: 0.5 - 1.5

• Asymmetric multiplicative brightness shift, range: 0.9 - 1.1

• Symmetric contrast shift, range: 0.5 - 1.5

• Asymmetric contrast shift, range: 0.8 - 1.2

• Symmetric hue shift, range -0.1 - 0.1

Step 5: Influence of Crop Size

In this step we explore the influence that the crop size has on the performance of the network. This
is motivated by Bar-Haim and Wolf [BW20], who found out that using the maximum possible crop
size during training increases the accuracy of the network. Their experiments were done on the
IRR-PWC network architecture. During this step we decrease the crop size to check whether this
holds true for RAFT as well.

Up until this point, our crop size is always close to the actual size of the images of this phase, which
means we crop as little as possible. The images are only cropped in a way that both width and
height are divisible by 8, which is necessary for RAFT to work.

The first experiment decreases the crop size to around 90 percent of the base values (while
maintaining height and width which are divisible by 8). If this network achieves a lower EPE
than the current baseline EPE, the baseline EPE is updated to this new EPE and further cropping
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4.3 Experimentation Process

experiments are done, where the crop size is again reduced by 10 percent of the original dimensions,
until the performance of a network is worse than the current baseline. The resulting, best performing
crop size is then kept for the rest of the experiments of this training phase.

Step 6: Activation of Additive Gaussian Noise

Now we activate additive Gaussian noise. In the first experiment a network is trained using a
range between 0 and 5, which means that for every training sample the standard deviation of the
Gaussian noise added to the image pairs of the training sample is uniformly distributed between
these values.

If this network performs worse then our baseline EPE, the additive Gaussian noise augmentation is
turned off and experiments continue with the next step. If on the other hand this network performs
better then our baseline EPE, the baseline EPE is updated and the upper value of the noise range is
increased by 5. This procedure is repeated until the performance is worse than the current baseline
EPE. The noise range that resulted in the lowest EPE is then kept for the rest of the experiments of
this phase.

Step 7: Adding Fog or Motion Blur

In this final step, we evaluate the influence of the fog and motion blur augmentations by comparing
the performance of four networks:

1. Activation of random motion blur

2. Activation of nonrandom motion blur

3. Activation of fog

4. Activation of both fog and the better performing type of motion blur

This way we can evaluate the impact of all three of these augmentations individually and also the
impact of a combination of fog and motion blur. If the best performing of these 4 networks manages
a lower EPE than a network without any of these augmentations, then the fog and motion blur
settings of this network are kept.

After this step, the experiments of this training phase are finished. The resulting model is copied
and these copies are used as the starting point for every experiment of the next training phase. This
means that in training phase 2 (training on FlyingThings3D), we always do experiments with the
model that was already trained on FlyingChairs in phase 1, and in training phase 3 we always use
the model trained both on FlyingChairs (in phase 1) and FlyingThings3D (in phase 2).
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4.3.1 Comparing our Network with the Original RAFT Implementation

After completing each phase, we train two full RAFT models (instead of the small RAFT-S model
used during the experiments to find well performing augmentation settings) for the full number of
iterations on the phase’s training set: one using the augmentations that we determined during the
experiments that lead to the lowest EPE and another one using the augmentations of the original
RAFT implementation. Even though the original RAFT implementation uses single precision
during training, we use mixed precision during training of both networks, which is a little bit faster.
The performance of these two models is then compared by evaluating them on the phase’s evaluation
set.
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5 Results and Discussion

In this chapter we present the results of the conducted experiments of all three phases. The full
results of the experiments conducted with a small RAFT-S model are included in the appendix.
Unless specifed otherwise, we always use the cold start option when calculating the optical flow
during evaluation.

5.1 Training Phase 1: FlyingChairs

In this phase we need to use 30,000 iterations to observe a difference in the network’s performance
when using no augmentation and when using our geometric data augmentations. That’s why during
this phase all experiments on the small RAFT-S network are conducted using this amount of
iterations. Table 5.1 gives an overview of the results of this phase.

Augmentations Parameters/Intensity Level baseline EPE after 30k steps
clean pass final pass

None 3.497 5.241
+ Geometric Augmentations + 3.106 4.273
+ Photometric Augmentations + 3.07 3.955
+ Crop Size 100 % 3.07 3.955
+ Additive Gaussian noise [0, 5] 2.983 3.932
+ Fog/Motion Blur Nonrandom Motion Blur, no fog 2.96 3.825

Table 5.1: Evaluation on the MPI-Sintel training split after training on FlyingChairs, small models.

The addition of the geometric data augmentations improves the accuracy of the network in both
the clean and the final pass. The best performance is achieved using the intensity level +, which
means using higher intensities than used in the PWC-Net implementation. In the clean pass the
addition of this augmentation class improves the accuracy by around 11 percent, in the final pass
the EPE is even 18 percent smaller than when using no augmentation. The reason for these large
improvements might be that the FlyingChairs data set includes only very limited types of object
motions. The strong geometric augmentations change that and allow the network to learn much
more varied types of motions.

The photometric augmentation further improves the performance, again using intensity level +, and
the activation of additive Gaussian noise with a standard deviation range between 0 and 5 further
increases the network’s accuracy as well. While the fog augmentation decreases the network’s
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performance and is hence omitted, the nonrandom motion blur augmentation does indeed improve
the networks performance on both the clean and final pass, even though the clean pass of the
MPI-Sintel training set does not include any motion blur.

Overall, the RAFT networks benefits from using strong augmentation intensities when using the
FlyingChairs data set during its first training phase. With the exception of the fog augmentation, all
of our implemented augmentation methods are being used here and help to improve the network’s
performance.

Any reduction of crop sizes during this phase decreases the performance, which means there should
be as litte cropping as possible to maximize the network’s performance.

Model EPE after 100k steps
Cold Start Warm Start

clean pass final pass clean pass final pass

RAFT original implementation 2.436 4.55 2.316 4.488
Our augmentations 2.249 3.472 2.226 3.392

Table 5.2: Evaluation on the MPI-Sintel training split after training on FlyingChairs, full RAFT
models.

We use the resulting data augmentation settings to train a full RAFT model on the FlyingChairs
data set. Then we compare the performance of this model against the performance of another
model trained on FlyingThings using the data augmentations of RAFT’s original implementation
when estimating the optical flows of the MPI-Sintel training set. Table 5.2 shows the results: our
network beats the original implementation both in the clean and in the final pass, which means that
our data augmentations improve the networks generalization capabilities compared to the original
augmentations.

5.2 Training Phase 2: FlyingThings3D

We now use the model that was trained in phase 1 on FlyingChairs and achieved the lowest EPE and
further train it using the FlyingChairs3D data set. The results of the experiments of the second
phase are listed in Table 5.3. Again we have to use 30,000 iterations for each experiment to make
sure that any impact of a data augmentation on the performance is visible.

Contrary to the behaviour during the first training phase, the activation of the geometric augmentations
deteriorates the accuracy of the network when further training the network on FlyingThings3D
in the second phase. This is the case with the default intensity level 0 and even when using the
low intensity level -, the resulting accuracy is still worse than using no geometric augmentations.
Consequently, the geometric augmentations are deactivated during this training phase. One reason
for this behaviour might be the fact that the FlyingThings3D data set was already designed to include
a lot of variations of optical flow. The objects already do full 3D movements between two frames,
so adding another layer of object movements through the use of our geometric data augmentations
seems to make it more difficult for the network to learn.
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Augmentations Parameters/Intensity level baseline EPE after 30k+30k steps
clean pass final pass

None 2.439 3.492
+ Geometric Augmentations Not activated 2.439 3.492
+ Photometric Augmentations - 2.491 3.464
+ Crop Size 100 % 2.491 3.464
+ Additive Gaussian noise Not activated 2.491 3.464
+ Fog/Motion Blur Nonrandom Motion Blur, no fog 2.594 3.398

Table 5.3: Evaluation on the MPI-Sintel training split after training on FlyingChairs and
FlyingThings3D, small model.

The addition of our photometric augmentations only improves things when using the low intensity
level. Furthermore, only the results of MPI-Sintel’s final pass improve, while the clean pass
results deteriorate even when only using these low intensities. Whenever we observe this different
behaviour between the clean and final pass, we always use the augmentation setting that improves
the final pass, even if this means that the accuracy of the clean pass gets worse. We do this because
the final pass is more challenging than the clean pass and our hope is that a model that works as well
as possible on this challenging final pass is more powerful than one that works as well as possible
on the clean pass.

While in the previous training phase the activation of additive Gaussian noise improved the model’s
performance, this is no longer the case now. Here the addition decreases the network’s accuracy
even when using the lowest range of standard deviations (0 to 5) and as a result no additive Gaussian
noise is activated during this training phase. The fog augmentation again doesn’t improve the
accuracy and is also not used, while the addition of nonrandom motion blur does improve the
performance at least on the final pass but actually decreases it during the clean pass. Following the
strategy described above, we again keep the nonrandom motion blur augmentation activated. As
before, any cropping of the images leads to decreased accuracy and hence we again crop the images
as little as possible.

In summary, in this phase we see only a very limited use of data augmentations. Even those
augmentations that are activated, namely the photometric augmentations, only benefit the network’s
performance when their intensities are chosen very low.

Model EPE after 100k+100k steps
Cold Start Warm Start

clean pass final pass clean pass final pass

RAFT original implementation 1.504 2.713 1.424 2.689
Our augmentations 1.406 2.625 1.44 2.595

Table 5.4: Evaluation on the MPI-Sintel training split after training on FlyingChairs and
FlyingThings3D, full models.
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After obtaining the augmentation settings for this second phase, we apply them during training
phase 2 of our full RAFT model. Furthermore, the model which uses the data augmentation settings
of RAFT’s original implementation is now trained on phase 2 as well.

The performance of the resulting models is again compared on the MPI-Sintel training split, as
shown in Table 5.4: As expected both networks benefit from adding another training phase and
deliver a greater accuracy after training for two phases instead of just one, and again our network
manages to beat the original RAFT implementation in both the clean and the final pass when using
the cold start.

When using the warm start, our model actually performs worse than when using the cold start
when evaluating the clean pass. In fact, the original RAFT implementation beats our network
in this instance. This is not the case during the final pass, where our network beats the original
implementation when using the warm start. A reason for this behaviour might be the inclusion
of the nonrandom motion blur augmentation. As we saw in Table 5.3, its inclusion increases
the performance of the small network when evaluating the final pass, but also leads to a worse
performance during the clean pass.

5.3 Training Phase 3: MPI-Sintel Mix

In this third training phase we now have to use 50,000 iterations during training the networks. The
results are depicted in Table 5.5. As described above, during this training phase we no longer
evaluate the network’s performance using the full MPI-Sintel training split but instead we use the
”eval” subset. This evaluation set seems to be a lot more challenging than the full data set, as a
network trained on phase 3 without any augmentations only manages an EPE of 3.21 in the clean
pass and 5.836 in the final pass.

In this training phase the activation of our geometric augmentations increases the resulting network’s
performance in both the clean and final pass. In fact, the best performance is achieved by using the
++ level of intensities. The same cannot be said about the addition of our photometric augmentations.
Even at the lowest intensities, their activation worsens the accuracy of the network and consequently
no augmentations of this augmentation class are activated.

Contrary to the findings of Bar-Haim and Wolf [BW20], decreasing the crop size in this training
phase improves the accuracy of the network, at least on the final pass, albeit only slightly. Every
reduction of the dimensions of 10 percent (of the original image dimensions) improves the network’s
performance until we reach the best performance at 60 percent. This result is surprising given that
each pair of pixels in a way acts as a data sample when learning optical flow. This means using a
smaller crop size leads to fewer training samples, which should be detrimental to the network’s
performance.

As was the case in the previous training phase, the activation of additive Gaussian noise also decreases
the network’s performance and is omitted. Lastly, none of the two motion blur augmentations
improve the accuracy, but here for the first time the addition of the fog augmentation benefits the
network’s performance in the final pass, even though the activation of this augmentation deteriorates
the performance during the clean pass. This is to be expected as the clean pass doesn’t include any
fog effects.
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Augmentations Parameters/Intensity Level baseline EPE after 30k+30k+50k steps
clean pass final pass

None 3.21 5.836
+ Geometric Augmentations ++ 3.057 4.993
+ Photometric Augmentations Not activated 3.057 4.993
+ Crop Size 60 % 3.057 4.758
+ Additive Gaussian noise Not activated 3.057 4.758
+ Fog/Motion Blur Fog, no motion blur 3.146 4.718

Table 5.5: Evaluation on the MPI-Sintel training split subset ”eval” after training on FlyingChairs,
FlyingThings3D and the MPI-Sintel mix, small model.

To compare the performance of the full models, we now train our full RAFT network on the
MPI-Sintel mix using these augmentation settings. We also train the network that uses RAFT’s
original implementation data augmentations during training on this data set mix. The performance
of these two networks is now evaluated using the ”eval” subset of the MPI-Sintel training split. As
depicted in Table 5.6, the result is no longer clear cut: While our RAFT network beats the original
implementation in the final pass, our augmentations lead to an accuracy that is worse than that of
the original implementation in the clean pass. A reason for this might be our strategy to always
keep augmentations if they improve the performance during the final pass evaluation, even if these
augmentations deteriorate the performance during the clean pass evaluation. Both networks improve
their performance when the warm start option is used, in both the clean and the final pass.

Model EPE after 100k+100k+100k steps
Cold Start Warm Start

clean pass final pass clean pass final pass

RAFT original implementation 1.657 3.649 1.583 3.246
Our augmentations 2.049 3.169 2.037 3.044

Table 5.6: Evaluation on the MPI-Sintel ”eval” subset after training on FlyingChairs,
FlyingThings3D and the MPI-Sintel mix, full models.

5.4 Evaluating the Full Models on the MPI-Sintel Benchmark

The MPI-Sintel benchmark allows the comparison of different models using a special evaluation
data set, the MPI-Sintel test split. Similar to the MPI-Sintel training split, this data set contains two
version of its image samples, the clean and the final pass. The difference is that the ground truth
optical flow of this data set is not openly available. Instead, the samples of this evaluation data
set are fed into the model that is to be benchmarked and the resulting optical flow estimations are
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uploaded to the MPI-Sintel website1. There the estimations and the ground truth optical flow are
used to calculate the achieved EPE of the model for both the clean and the final pass, which is then
presented on the website and can be compared to the performance of other models.

To be able to compare our network to the original RAFT implementation on this benchmark, we
now train a network on the same data sets as the benchmarked original implementation, using our
data augmentation settings: as before first on FlyingChairs, then on FlyingThings3D, but in the third
phase we now use the full MPI-Sintel training split in the mix of data sets instead of the MPI-Sintel
training subset ”train” that we used in our experiments before. This is now possible because we
now evaluate on the MPI-Sintel test split so we no longer have the problem of avoiding training and
evaluating on the same data set.

Model EPE after 100k+100k+100k steps
Cold Start Warm Start

clean pass final pass clean pass final pass

RAFT original implementation 1.94 3.18 1.61 2.86
Our augmentations 2.36 3.78 2.33 3.67
No augmentations in 3rd phase 2.17 3.79 1.83 3.42

Table 5.7: MPI-Sintel benchmark results after training on FlyingChairs, FlyingThings3D and
the MPI-Sintel training split, full models.

As shown in table 5.7, our model does not manage to beat the original RAFT implementation on
the MPI-Sintel benchmark. In both the clean pass and the final pass the accuracy of our network,
trained with our augmentation settings, is worse than that of the original implementation. This is
the case despite the fact that as we saw in tables 5.2 and 5.4, both a full model trained only on
FlyingChairs and a full model trained on FlyingChairs and FlyingThings manage to beat the original
implementation that is trained on the same data sets when we use our augmentation settings. There
are a couple of issues that might be the reason for this result:

In the earlier experiments, we can optimize our augmentation parameters directly on the target data
set, namely the MPI-Sintel training split in phase 1 and 2 and the ”eval” subset in phase 3. Since the
MPI-Sintel test split doesn’t offer publicly available ground truth data, we cannot directly optimize
our augmentations and their intensities on this benchmark. This is of course by design to prevent
people from overfitting their models to the benchmark, but it means that we have to use another
evaluation set to optimize our parameters, in our case the MPI-Sintel training split ”eval” subset. It
may be the case that that the impact that an augmentation has on the model’s performance on this
subset is not similar to the impact of this augmentation on the MPI-Sintel benchmark: We choose
augmentation settings to maximize the performance in the ”eval” subset, and these settings do not
necessarily maximize the performance on the MPI-Sintel test split used in the benchmark.

To test this, as a further experiment we train another full network using our data augmentation
settings during the first and second training phase but using no data augmentations whatsoever
during training of the third phase. Intuitively, this seems to make a lot of sense because when
finetuning on the third and final phase, which contains samples that are very similar to the target

1http://sintel.is.tue.mpg.de/
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evaluation set, it may be beneficial to not augment and therefore change these training samples too
much so that the finished model can learn their properties better. Also this approach is motivated by
the results of Bar-Haim and Wolf [BW20], wo argue that the amount of data augmentation should
decrease in later training stages.

Afterwards we again perform the MPI-Sintel benchmark using this model. As shown in the bottom
row of Table 5.7, while this model also doesn’t manage to beat the original RAFT implementation,
it actually performs better than our original model (which does use our data augmentations during
phase 3 training) in both the clean and final passes. This is despite the fact that as we saw above
(Table 5.5), using no augmentations in the third phase during our experiments on the small RAFT-S
model resulted in worse performance than adding augmentations, albeit when evaluating on the
”eval” subset.

Two different explanations are possible for this behaviour: firstly, it might be possible that the
impact of an augmentation differs between the small RAFT-S and the full RAFT model, at least
when training on this specific data set. Secondly, the MPI-Sintel training split ”eval” subset may
not be suitable when trying to choose augmentation settings that perform well on the MPI-Sintel
test split benchmark.

The other conclusion stemming from this additional experiment is that even though using no
augmentation in the third phase during training results in a better performing model on the MPI-
Sintel benchmark than using our augmentation settings, some amount of data augmentation is still
necessary: The original RAFT implementation does use data augmentations during phase 3 training
and beats our model that uses no augmentation on the MPI-Sintel benchmark. The reason for this
might be that when using no augmentation at all during this phase, the network overfits the data and
its generalization capabilities deteriorate.

5.5 KITTI-15 Performance

In all of our previous experiments for choosing augmentations and their intensities, we always use
an MPI-Sintel data set to evaluate the resulting models and optimize our settings to achieve the best
performance in MPI-Sintel flow estimation: in the first phase and second training phase we use the
MPI-Sintel training split and in the third phase a subset of this training split. In this section we
take a look at the performance of these models when they are used to estimate the optical flow of a
different data set, namely KITTI-15.

Table 5.8 shows the performance of our full RAFT network, trained only on FlyingChairs using our
augmentations and the performance of the original RAFT implementation trained on FlyingChairs,
when estimating the optical flow of the KITTI-15 data set. The EPE column shows the average
endpoint error as before. The F1-all column shows the average percentage of pixels where the
endpoint error is both larger than 3 pixels and larger than 5 percent, so the lower the F1-all error is,
the better is the performance of the network. As we saw earlier in table 5.2, our optimized network
managed to beat the original RAFT implementation when evaluating on the MPI-Sintel training set
after only training on FlyingChairs. The result when comparing the performance on KITTI-15 is
not as clear cut: the network using our augmentation indeed achieves an EPE that is lower than that
of the original RAFT implementation, but the F1-all error of our model is actually higher.
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Model after 100k steps
EPE F1-all

RAFT original implementation 9.733 34.91
Our augmentations 9.027 36.078

Table 5.8: Evaluation on KITTI-15 after training on FlyingChairs, full models.

Training the model further on the FlyingThings3D data set leads to the results as shown in table 5.9.
Now the original implementation network manages to beat our network in both the EPE and the
F1-all error, even though our network was superior during the MPI-Sintel evaluation. This result
shows that while we can tweak our augmentation settings to achieve better results on one target data
set, these settings do not necessarily represent the optimum for any other data sets: the optimal data
augmentation settings are dependent on the target data set.

Model after 100k + 100k steps
EPE F1-all

RAFT original implementation 4.836 16.535
Our augmentations 4.869 17.317

Table 5.9: Evaluation on KITTI-15 after training on FlyingChairs and FlyingThings3D, full models.

5.6 Limitations

There exist a number of caveats concerning our experimentation design and consequentially the
found augmentation settings that one has to be aware of when classifying the results. In this section
we address those.

We always use the model which performs best in one training phase’s evaluation as a base that
gets trained further in the following phase. It might be possible though that a model that actually
performs worse during this evaluation in the earlier training phase is a better base for the next
phase and could be trained to a higher performance. Properly testing this would take a lot of
experiments.

The number of iterations we use for each experiment of a training phase is chosen by comparing a
model with no augmentation and one using our geometric augmentations and it is then kept for any
experiment of this training phase. This means we implicitly make the assumption that this number
of iterations is sufficient to show the impact of all the other augmentations during this phase as well.
To remedy this in later works, if time allows it would be advantageous to compare the necessary
number of iterations for all augmentations separately and choose the largest of these numbers for all
experiments. A related issue is that the number of iterations that are necessary may also depend on
the intensity of these augmentations. Ideally and if enough time is available, experiments should be
conducted using the full number of iterations to bypass these problems.
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Another issue lies in the augmentation order. We always keep the augmentation intensities of
one augmentation that lead to the best performance fixed for the rest of the experiments of the
training phase. Then we add another augmentation and again search its best intensity to improve the
model even more. But it is possible that using another, less well performing intensity on the earlier
augmentation would allow us to find another augmentation intensity for the later augmentation so
that the overall resulting model performs better.

Further problems may arise from the grouping of some augmentation into classes: as we increase
the intensities of several augmentations of a class at once, in case of deteriorating performance of
the model after this increase it might be possible that the intensity increase is actually beneficial for
all but one augmentation and the resulting performance is only worse because this one augmentation
intensity increase negates all positive effects of the intensity increases of the other augmentations.
So ideally and it time allows, individual evaluation of each intensity would be preferable. This may
be more viable if the sheer number of data augmentations is simply decreased.
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In this thesis we explored the impact of adding advanced data augmentation to the RAFT network
on its performance. To this end we implemented our data augmentations into the RAFT architecture
and then followed an experimentation procedure to find the best performing data augmentation
combinations and intensities for all training phases, in our case FlyingChairs, FlyingThings3D
and a mix of data sets including a subset of the MPI-Sintel training split . This procedure first
adds geometric augmentations and optimizes their intensities, then adds and optimizes photometric
augmentations, sets the best performing crop size and additive Gaussian noise levels and finally
checks the impact of fog and motion blur augmentations. The performance was usually measured
on the MPI-Sintel training split, the only exception being the third phase were we only use another
subset of this data set.

We found out that the network benefits from relatively strong levels of data augmentation when
training on FlyingChairs. This is not the case during the second training phase on FlyingThings3D,
where the best results were achieved when using almost no data augmentations. In the third and
final training phase, again adding data augmentations improved the network’s performance on the
MPI-Sintel evaluation subset.

Even though we use the RAFT-S architecture to find optimal settings, in most cases the full models
that use these settings indeed perform better than the original RAFT implementation: our model
beats the original implementation’s performance on the MPI-Sintel training set evaluation after
training on FlyingChairs and also after additional training on FlyingThings3D. But after additional
training in the third phase on the mix of data sets which includes a subset of the MPI-Sintel training
split, our model only manages to beat the original implementation in the final pass of our evaluation
set and not in the clean pass.

We then trained another model using our augmentation settings on the data sets that were also used
during training of an original RAFT implementation model that was benchmarked on the MPI-Sintel
test split: FlyingChairs, FlyingThings3D and a data set mix that now includes the full MPI-Sintel
training split in the third phase. Performing this benchmark on our model shows that in both the
clean and final pass, our model is unable to beat the original implementation’s performance.

We conjectured that the MPI-Sintel subset that we used to find optimal augmentation parameters
during the third training phase might not be suitable for this task or that the RAFT-S architecture
reacts differently to augmentations than the full RAFT model and hence using this small model to
optimize augmentation settings doesn’t lead to the best results with the full model. We found out
that using no augmentations during the third phase training results in a model that actually performs
better in the MPI-Sintel benchmark than the one that uses our augmentation settings. Such a model
still doesn’t beat the performance of the original RAFT implementation, but this result shows that
its more beneficial to use very low augmentation intensities in the final training phase instead of
strong intensities.
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Finally, we tested our network’s performance when estimating the optical flow of KITTI-15 after one
and two training phases and found out that the augmentation settings that resulted in a model that
offers good performance when evaluating on the MPI-Sintel training split but worse performance
when evaluating on KITTI-15. This implies that there is no single optimal augmentation setting
that works very good on all different data sets.

Outlook

There are several interesting questions that could be answered by future works. Firstly an open
question is how we can attain augmentation settings for the third training phase that allow us to beat
the original RAFT implementation in the MPI-Sintel benchmark, since optimizing these settings on
the MPI-Sintel subset as we did wasn’t successful.

As described above, there are several decisions when constructing the experimentation process
that can be made differently. Also the kind of experiments can be expanded: during our thesis we
explore the impact of intensity changes of a data augmentation, but another possibility might be
simply changing the probability with which the augmentation is applied to a training sample.

Finally, this thesis did not perform any experiments to confirm whether the sequence of training data
sets that is used by the original RAFT implementation and consequently by us as well is actually
optimal.

As we have seen, there are a lot of cases where advanced data augmentations can improve the
performance of RAFT, but optimizing the use of these augmentations through experimentation is
currently very time consuming. To circumvent this problem, automating this process or exploring
other approaches like using RAFT in an unsupervised manner could be very valuable.
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A Full Results of RAFT-S Experiments

This section shows the data augmentation settings and the achieved EPE’s of all individual RAFT-S
networks that were trained following our experimentation process. Underlined results show that a
network achieves a better performance than any previous networks.

A.1 FlyingChairs

Table A.1 lists the results of all experiments during training on the FlyingChairs data set.

Parameters EPE after 30k steps
Geometric A. Photometric A. Crop Size Noise Fog/MB clean final

None None 100% None None 3.497 5.241
0 None 100% None None 3.324 4.644
+ None 100% None None 3.164 4.279

++ None 100% None None 3.377 4.544
+ 0 100% None None 3.061 4.055
+ + 100% None None 3.07 3.955
+ ++ 100% None None 3.301 3.967
+ + 90% None None 3.099 4.077
+ + 100% 5 None 2.983 3.932
+ + 100% 15 None 3.077 3.992
+ + 100% 5 Random MB 3.132 4.033
+ + 100% 5 Nonrandom MB 2.96 3.825
+ + 100% 5 Fog 3.281 3.932
+ + 100% 5 Fog & Nonrandom MB 3.369 3.986

Table A.1: Evaluation on the MPI-Sintel training split after training on FlyingChairs, small model.

A.2 FlyingThings3D

Table A.2 lists the results of all experiments during training on the FlyingThings3D data set.
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A Full Results of RAFT-S Experiments

Parameters EPE after 30k+30k steps
Geometric A. Photometric A. Crop Size Noise Fog/MB clean final

None None 100% None None 2.439 3.492
0 None 100% None None 2.476 3.668
- None 100% None None 2.631 3.577

None 0 100% None None 2.574 3.525
None - 100% None None 2.491 3.464
None - 90% None None 2.474 3.473
None - 100% 5 None 2.452 3.504
None - 100% None Random MB 2.609 3.484
None - 100% None Nonrandom MB 2.594 3.398
None - 100% None Fog 2.674 3.53
None - 100% None Nonrandom MB & Fog 2.629 3.474

Table A.2: Evaluation on the MPI-Sintel training split after training on FlyingChairs and
FlyingThings3D, small model.

A.3 MPI-Sintel

Table A.3 lists the results of all experiments during training on the mix.
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A.3 MPI-Sintel

Parameters EPE after 30k+30k+50k steps
Geometric A. Photometric A. Crop Size Noise Fog/MB clean final

None None 100% None None 3.21 5.836
0 None 100% None None 3.203 5.626
+ None 100% None None 3.098 5.235

++ None 100% None None 3.057 4.993
+++ None 100% None None 3.167 5.253
++ 0 100% None None 3.055 5.162
++ - 100% None None 3.115 5.256
++ None 90% None None 3.037 4.979
++ None 80% None None 3.17 4.874
++ None 70% None None 3.099 4,874
++ None 60% None None 3.057 4.758
++ None 50% None None 3.073 4.801
++ None 60% 5 None 3.034 5.186
++ None 60% None Random MB 3.119 4.855
++ None 60% None Nonrandom MB 2.964 4.8
++ None 60% None Fog 3.146 4.718
++ None 60% None Fog & Nonrandom MB 3.358 4.73

Table A.3: Evaluation on the MPI-Sintel training split subset ”eval” after training on FlyingChairs,
FlyingThings3D and the MPI-Sintel mix, small model.
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B Kurzfassung

Wir fügen der RAFT Architektur, einem Deep Learning Netzwerk zur Berechung des optischen
Flusses zwischen zwei aufeinanderfolgenden Bildern einer Videosequenz, neue Methoden zur
Augmentation der Trainingsdaten hinzu. Da RAFT durch überwachtes Lernen trainiert wird,
benötigt es Datensätze, die nicht nur Bildersequenzen sondern auch Informationen über den
optischen Fluss zwischen diesen Bildersequenzen enthalten. Da sich diese Informationen nicht
automatisiert aus beliebigen Bildsequenzen generieren lassen, werdem zum Training stattdessen
synthetisch generierte Datensätze verwendet. Ein Nachteil dieser Datensätze ist ihre relativ geringe
Größe und die dadurch beschränkte Vielfalt an Optischen Flüssen, die das Netzwerk während
des Trainings erhält. Augmentationsmethoden erlauben es, diese Daten vor dem Einlesen durch
das Netzwerk zu modifizieren. Dabei können diese Modifikationen auf Pixelebene erfolgen, aber
auch die Geometrie der Bilder und damit den optischen Fluss zwischen den Bildern verändern.
Dies erhöht die Vielfalt an Mustern, die das Netzwerk während des Lernens kennenlernt. Wir
experimentieren in jeder Trainingsphase, welche Kombination von Augmentationen in welcher
Stärke die Leistung eines so trainierten Modells auf dem MPI-Sintel Trainingssatz erhöht. Daneben
vergleichen wir die so erzielte Leistung mit jener, die ein ursprüngliche RAFT Modell erzielt.
Dabei stellen wir fest, dass die Art und Stärke der Augmentationen, die die Leistungsfähigkeit des
Modells verbessern, von der Trainingsphase abhängt. Unsere Augmentationsmethoden erhöhen die
Leistungsfähigkeit bei der Berechnung vom optischen Fluss des MPI-Sintel Datensatzes sowohl
nach der ersten als auch nach den ersten beiden Trainingsphasen (durchgeführt auf FlyingChairs
und FlyingThings3D) und schlagen dort das ursprüngliche RAFT Modell. Dieser Vorteil bleibt
jedoch nicht bestehen, wenn die Modelle den optischen Fluss von KITTI-15 berechnen sollen. Die
Ergebnisse nach der dritten Trainingsphase auf MPI-Sintel zeigen uns, dass das Hinzufügen weiterer
Augmentationen nicht zwangsläufig die Leistungsfähigkeit eines Modells verbessert: das Netzwerk
schafft es hier nicht, das ursprüngliche RAFT Modell im MPI-Sintel Benchmark zu schlagen.
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