
Institute of Software Engineering
Software Quality and Architecture

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelor’s Thesis

Automatic Issue Relation Prediction

Tobias Kässmann

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Steffen Becker

Supervisor: PD Dr. Roman Klinger,
Sandro Speth, M.Sc.

Commenced: March 1, 2021

Completed: August 23, 2021

Abstract

Context. When developing or maintaining large component-based software systems (for example,
microservices, which are getting more and more popular1), software developers are usually divided
into multiple developer teams working on different components. Additionally, it is not uncommon
to include third-party components in one’s software. During the development and maintenance of
such a system, issues might occur. Those bugs might not harm the component they arose in but
might cause failures on neighbouring ones. Traditionally, this is avoided by manually annotating or
linking issues across components to indicate their relationships.

Problem. In large projects, this is hardly feasible due to the lack of knowledge a single developer
has over the whole system as well as the other issues/components involved.

Objective. This bachelor’s thesis tries to predict issue relations using machine learning (ML), which
solves the generalisation of the problem. The objective hereby is to create a data set of annotated
issue relations, train ML models on it, as well as measure their performance.

Method. ML models have to be trained on an existing data set of annotated issues and their relations.
Those samples of issues and relations are obtained from public GitHub repositories by scraping and
inferring their relations. Issue relations can be categorised into five distinct categories, namely:

(1) “issue A depends on issue B”

(2) “issue B depends on issue A”

(3) “issue A and B do not stand in a
relation”

(4) “issue A and B have a mutual relation”

(5) “issue A is a duplicate of B”

Afterwards, a baseline model will be created to test other models against it and measure their
performance.

Conclusion. The conclusion would be to determine if and to what extent the method presented
above will lead to good results.

1The global microservice architecture market size will increase from 2019 to 2026 at a compound annual growth rate
of 21.37% and therefore reach 3.1 billion by 2026 according to the Cloud Microservices Market Research Report
prediction in February 2020 (https://www.instanttechnews.com/technology-news/2020/02/16/cloud-microservices-
market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/)

iii

Kurzfassung

Kontext. Bei der Entwicklung oder Wartung großer komponentenbasierter Softwaresysteme (z. B.
Microservices, die immer beliebter werden2), werden Softwareentwickler in der Regel in mehrere
Entwicklerteams aufgeteilt, die an verschiedenen Komponenten arbeiten. Darüber hinaus ist es
nicht unüblich, Komponenten von Drittanbietern in die eigene Software einzubinden. Während der
Entwicklung und Wartung eines solchen Systems können Probleme auftreten. Diese Fehler betreffen
zwar nicht die Komponente, in der sie entstanden sind, können aber bei benachbarten Komponenten
zu Bugs führen. Traditionell wird dies durch manuelle Anmerkungen oder Verknüpfungen von
Bugs zwischen den Komponenten vermieden, um ihre Beziehungen zu verdeutlichen.

Problem. Bei großen Projekten ist dies aufgrund des mangelnden Wissens eines einzelnen En-
twicklers über das gesamte System und die anderen beteiligten Issues oder Komponenten kaum
machbar.

Zielsetzung. In dieser Bachelorarbeit wird versucht, Issue Relations mit Hilfe von maschinellem
Lernen vorherzusagen, wodurch die Generalisierung des Problems gelöst wird. Das Ziel besteht
darin, einen Datensatz mit annotierten Problembeziehungen zu erstellen, ML-Modelle darauf zu
trainieren und ihre Leistung zu messen.

Methodik. Die ML-Modelle müssen auf einem bestehenden Datensatz von annotierten Issues
und deren Beziehungen trainiert werden. Diese Stichproben von Issues und Beziehungen werden
aus öffentlichen GitHub-Repositories durch Scraping und durch die Ableitung ihrer Beziehun-
gen gewonnen. Issue-Beziehungen können in fünf verschiedene Kategorien eingeteilt werden,
nämlich:

(1) “Issue A hängt von Issue B ab”

(2) “Issue B hängt von Issue A ab”

(3) “Issue A und B stehen nicht in
einer Beziehung”

(4) “Issue A und B stehen in einer gegenseitigen
Beziehung”

(5) “Issue A ist ein Duplikat von B”

Anschließend wird ein Basismodell erstellt, um andere Modelle daran zu testen und deren Leistung
zu messen.

Schlussfolgerung. Abschließend wäre zu prüfen, ob und inwieweit die oben vorgestellte Methode
zu guten Ergebnissen führt.

2Die globale Marktgröße für Microservice-Architekturen wird von 2019 bis 2026 mit einer durchschnittlichen jährlichen
Wachstumsrate von 21, 37% wachsen und damit bis 2026 3,1 Milliarden erreichen, so die Prognose des Cloud Microser-
vices Market Research Report im Februar 2020 https://www.instanttechnews.com/technology-news/2020/02/16/cloud-
microservices-market-2020-trends-market-share-industry-size-opportunities-analysis-and-forecast-by-2026/

v

Contents

1 Introduction 1
1.1 State-of-the-Art . 2
1.2 Open Challenges . 2

2 Foundations and Related Work 5
2.1 Issues and Management Systems . 5
2.2 Component-based Architecture . 5
2.3 Text Classification . 5

2.3.1 Creating a Labelled Data Set . 6
2.3.2 Feature Construction and Weighting . 7
2.3.3 Feature Projection, Selection and Training of a Classification Model . . . 11
2.3.4 Topic Modelling . 12

2.4 Evaluation Metrics . 13
2.5 Related work . 14

2.5.1 Literature Research Methodology . 14
2.5.2 Duplicate Issue Detection . 15
2.5.3 Inference . 15

3 Data 17
3.1 Data Gathering . 17

3.1.1 Formal Description . 17
3.1.2 Selecting Issues . 18
3.1.3 Relation Validation by Participants . 20
3.1.4 Collecting the Issues . 20
3.1.5 Implementation . 21

3.2 Generating unrelated Issues . 22
3.2.1 Choosing Issue Pairs . 22
3.2.2 Risk . 22
3.2.3 Test Data Set . 23

3.3 Generalisation . 23
3.4 Corpus Statistics . 24

3.4.1 Amount of Comments per Issue . 24
3.4.2 Token Amount . 24
3.4.3 30 Most Occurring Words . 24
3.4.4 Representation of the Issues for the Classifier 25

4 Classifier 27
4.1 Sub. Model . 27
4.2 Mult. Model . 29

vii

4.3 Avg. Model . 29
4.4 Concat. Model . 29
4.5 CosConcat. Model . 29
4.6 UniCosConcat. Model . 30
4.7 SumConcat. Model . 30
4.8 Issue-vector Model . 30
4.9 Topic Model . 31

5 Implementation as a Microservice 33
5.1 Architecture . 33
5.2 Vectorisation Service . 33
5.3 Classification Service . 34
5.4 Kubernetes . 35

6 Evaluation 37
6.1 Results . 37
6.2 Discussion . 40

6.2.1 Discussion of the Research Question . 40
6.2.2 Model Comparison . 40
6.2.3 Vectorisation Methods . 42

6.3 Threats to Validity . 42
6.3.1 Internal Validity . 43
6.3.2 External Validity . 43
6.3.3 Construct Validity . 44

7 Conclusion 45
7.1 Summary . 45
7.2 Benefits . 47
7.3 Limitations . 47
7.4 Lessons Learned . 47
7.5 Future Work . 47

Bibliography 49

viii

List of Figures

1.1 Motivation example of a component-based architecture. 1

2.1 Example Siamese Network architecture modelled after Sentence-BERT from
Reimers et al. [RG19]. 12

2.2 Graphical model of LDA after Hoffman [HBWP13]. 12

3.1 Elements of the gathering. 18
3.2 GitHub mention viewed from both issues. 19
3.3 Different types of relation annotations. 19
3.4 Issue Relation Graph (IRG) sub-graph. 22
3.5 Number of comments in the issue documents. 25
3.6 Number of tokens in issue documents. 26
3.7 30 most occurring tokens. 26

4.1 Basic classifier architecture. 28

5.1 Microservice architecture. 34

6.1 Overview of threats to validity of this thesis’ concept. 42

ix

List of Tables

2.1 Cohen’s kappa guidelines. 7

3.1 Scraped class distribution. The “*” in the “total” column of the table denotes the
total relations, including the added unrelated issues. 23

3.2 Class distribution between the data sets. 24

6.1 Precision and Recall measures for the different models. 38
6.2 Precision and Recall measures for the different models. 38

A.1 Precision and Recall measures for the different Sub vectorisation configurations. . 54
A.2 5 1 measures for the different Sub vectorisation configurations. 55
A.3 Precision and Recall measures for the different Mult vectorisation configurations. 56
A.4 5 1 measures for the different Mult vectorisation configurations. 57
A.5 Precision and Recall measures for the different Avg vectorisation configurations. . 58
A.6 5 1 measures for the different Avg vectorisation configurations. 59
A.7 Precision and Recall measures for the different Concat vectorisation configurations. 60
A.8 5 1 measures for the different Concat vectorisation configurations. 61
A.9 Precision and Recall measures for the different CosConcat vectorisation configurations. 62
A.10 5 1 measures for the different CosConcat vectorisation configurations. 63
A.11 Precision and Recall measures for the different UniCosConcat vectorisation config-

urations. 64
A.12 5 1 measures for the different UniCosConcat vectorisation configurations. 65
A.13 Precision and Recall measures for the different SumConcat vectorisation configura-

tions. 66
A.14 5 1 measures for the different SumConcat vectorisation configurations. 67
A.15 Precision and Recall measures for the different Issue-vector vectoriser configurations. 68
A.16 5 1 measures for the different Issue-vector vectorisation configurations. 69
A.17 Precision and Recall measures for the different Topic vectoriser configurations. . 70
A.18 5 1 measures for the different Topic vectorisation configurations. 71
A.19 A list of the repositories we scraped issues from. 72

xi

List of Listings

2.1 LDA Generative process . 13
3.1 Relation and issue interfaces . 21
5.1 Issue Request JSON . 34
5.2 Vectorise Issue Response JSON . 34
5.3 Issue Relation Response JSON . 35

xiii

Acronyms

BOW Bag of words. 8

CBOW Continuous Bag-of-Words. 9

fastText fastText. 9

FN false negative. 13

FP false positive. 13

GloVe Global Vectors for Word Representation. 9

IMS Issue management systems. 2

IRG Issue Relation Graph. ix

LDA Latent Dirichlet Allocation. 12

ML machine learning. iii

SIF Smoothed Inverse Frequency. 9

Skip-Gram Continuous Skip-gram. 9

tf-idf term frequency–inverse document frequency. 8

TN true negative. 13

TP true positive. 13

uSIF Unsupervised Smoothed Inverse Frequency. 9

Word2Vec Word2Vec. 9

xv

1 Introduction

Component-based architectures are steadily gaining popularity due to the rise of cloud applica-
tions1 and the increasing popularity of microservice architectures as instances of service-oriented
architectures (SOA). However, they come with their own set of challenges when developing them in
the large. Usually, the components are developed by different developer teams. So, when a bug
occurs in one of the architecture’s components, this bug might lead to other bugs or unexpected
behaviour in neighbouring (dependent) ones. In small component-based architectures, managed
by a small set of developers, this might dependent on the buggy microservice not be a huge deal
since every developer might know which components consume other ones and, therefore, they can
find easily out if the bug originated in another service and react accordingly. However, in a larger
architecture maintained by multiple teams spanning multiple organisations, this provides a whole
new set of challenges. A single programmer or eventually the whole developer team usually does
not know which other components have bugs, that might influence their service. Therefore, the
team maintaining the affected service might have to invest vast amounts of resources in finding the
root cause of their bug.

A simple example of such a pitfall is the following scenario described in Figure 1.1: A modification
of the interface of one service (the “location/map” service) may adversely affect the functionality
of other services dependent on that interface (i.e., “shopping cart” service) if the modification
introduces new bugs or regressions and, thus, leading to errors to the affected services. Due to the
complex architecture, the development team of the affected service might spend a lot of time finding
the bugs’ source(s), which leads to higher maintaining costs and possibly a longer downtime.

Figure 1.1: Motivation example of a component-based architecture.

1https://www.instanttechnews.com/technology-news/2020/02/16/cloud-microservices-market-2020-trends-market-
share-industry-size-opportunities-analysis-and-forecast-by-2026/

1

1 Introduction

1.1 State-of-the-Art

The state-of-the-art of annotating issue relations is through manual labour, like using the issue
dependency model provided by Jira [20a]. Another possibility is by linking issues (GitHub [20b],
Redmine [18]) using their ID and a description of the relationship in the issue’s body. However, this
method assumes that the person annotating issues understands the system and knows the current
bugs. That is often not the case, especially if one included other peoples’ code in the form of
libraries or by developing software by independent teams, which is common with service-oriented
architectures.

Another way of helping the users on solving those issues was provided by Speth et al. [SBB20]
through the work of Gropius. Gropius provides the possibility of managing issues from other Issue
management systems (IMS) such as GitHub, Jira, Redmine etc. in one system, hence a person
annotating issues is able to see the issues of the other teams, even if they are using a different issue
management system. Furthermore, Gropius allows it to annotate cross-component issues [SBB21],
which are issues that affect multiple components and is, therefore, the first of its kind. Nevertheless,
it is still not capable of automatically detecting those issue relations and, therefore, still relying on a
manual annotation by the developers.

1.2 Open Challenges

The traditional way of manually annotating or linking issues to others from other components
to emphasise their relationship is no longer feasible. Also, this problem might not be an SOA
problem - using an automatic algorithm to find bug relations might also help finding faulty libraries
during development or even issue relations on the same component.

This bachelor’s thesis aims to automate those processes, hence developing a way of finding and
annotating related issues by using the information provided by the issues’ title, body texts and
comments. This leads to the research question:

RQ
“How can relationships between issues that possibly target independently managed software
projects be detected?”

2

1.2 Open Challenges

This proposal is going to tackle this problem by automatically categorising issue relations using
machine learning into the following five categories “A depends on B (f), B depends on A (), A
and B do not have a relation (!−), A and B have a mutual relation (!), A and B are duplicates
(duplicate)”, where A and B are the issues provided.

Automatically categorising and detecting issue relations might ease the work done by many devel-
opers with less misspend time and energy.
Our contributions are:

• A scraped and manually annotated dataset for all four classes consisting out of over 2:
relations, validated by two annotators.

• Nine different classifier models, tested on different vectorisation strategies and their compari-
son.

• A Docker-compose and Kubernetes (K8s) microservice architecture utilising our best model
for ease of use.

Thesis Structure

This is a brief overview over the structure.

Chapter 2 – Foundations and Related Work: We provide an overview about the foundations as
well as the previous research conducted in this and related area(s).

Chapter 3 – Data The data (training, validation and testing), corpus generation as well as its
composition are focused on.

Chapter 4 – Classifier: We define the models used in this thesis.

Chapter 5 – Implementation as a Microservice We describe our implementation of the process,
and the architecture utilised in the Docker-compose and Kubernetes architectures.

Chapter 6 – Evaluation The results of the different classifiers are presented, analysed and dis-
cussed.

Chapter 7 – Conclusion We conclude our thesis with an outlook as well as by presenting our final
results.

3

2 Foundations and Related Work

2.1 Issues and Management Systems

In the scope of our work, issues are pieces of information for documenting characteristics of
components, the source code, or the project in general. A characteristic can be anything like a
bug, feature, error, enhancement, or change request. In the case of bugs, they document crucial
information for the developers such as a detailed description of the failure [BJS+08]. Issues can be
parts of other issues or related to other ones. To organise them and keep track of them, they usually
are managed using IMS such as Jira [20a], Redmine [18], GitHub [20b] and Gropius [SBB20]. IMS
also provide the possibility to add, edit, and resolve issues. In addition, they often offer the user
a possibility to annotate or tag related issues even though their implementation differs. Jira, for
example, provides the user with the choice of annotating whether an issue is connected to another
one within this projects (and within its environment). Redmine implements this by letting the user
annotate related tasks. In GitHub, users can “link” issues over the comments or the issue description
together using GitHub mentions. Gropius provides all of the features above by combining those
issues into one place. Moreover Gropius is able to link issues of different components together,
which are lying on different issue management system providers. Further, IMS can be connected to
repository systems or even be an instance of one.

2.2 Component-based Architecture

A Component-based software architecture consists of multiple independent and loosely coupled
components. The components, their relationships, and their interactions define the architecture
of a so-called component-based architecture. Reussner et al. define a (software) component as a
“contractually specified building block for software” [RBH+16]. We are using the terms microservice
architecture and component-based architecture interchangeably because components can be deployed
as services. Therefore, they do not differ from an architectural point of view [FL15]. Also,
components/services can be combined to form composite services/components [SGM02]. So,
a microservice architecture functionally decomposes an application into small (modular) services,
which communicate over API calls [New21; Ric17].

2.3 Text Classification

Text classification is the task of automatically assigning one or more classes � to a given document
� by learning a function 5 (2.1) [Joa+99; Man08], as depicted in Equation (2.1).

5 : � → � (2.1)

5

2 Foundations and Related Work

The algorithm learns 5 by adjusting its weights using previous examples. This procedure is called
supervised learning because the algorithm sees the “solutions” after making a guess [CCD08].

The task of assigning one or more classes to a document can be divided further into the problems
binary-, multiclass-, and multilabel- classification as stated by Hossin et al. [HS15]. Binary classifi-
cation stands for the task of assigning the document one of two classes, multiclass classification
classifies a document into one of three or more classes, and multilabel classification is the task of
assigning = of < classes (or also called labels) to a given document.

The task of text classification is usually split into multiple parts, Minonczuk et al. [MP18] breaks it
down into the following five steps:

1. Data acquisition to create an unlabelled data set

2. Data analysis and labelling to create a labelled data set from the unlabelled data set.

3. Feature construction and weighting of said features to create data representations from a
labelled data set.

4. Feature projection, selection, and training of a classification model to create a classifier from
data representations.

5. Solution evaluation of the classifiers.

After the acquisition step, it is common practice to divide the data randomly into three distinct sets:
a training-, validation- and test-set. Splitting the data like this ensures that the model’s bias towards
the training data can be kept as low as possible.

The training data is, as the name suggests, used for the model training. Using the examples in the
training data, the model adjusts its weights accordingly - also called fitting.

After the model was fit using the training data, the validation data can estimate the prediction
error for the model selection. Moreover, the validation data can evaluate the model’s accuracy
after changing its hyperparameters and, therefore, simulate the models’ performance on previously
unseen data.

The test set is the final data set the model gets to see. On the test set, the generalisation of the final
model gets tested. Ideally, the test set should only be used at the end of the data analysis to hinder
bias towards the best test set performance [HTF09].

2.3.1 Creating a Labelled Data Set

In order to obtain an annotated data set, the labels need to be constructed by one of several methods
like crowdsourcing using Amazon’s Mechanical Turk1, CrowdFlower2 or using an expert annotation
as described by Klinger et al. [Kli+18].

1https://www.mturk.com/2
2https://www.crowdflower.com/

6

2.3 Text Classification

Landis and Koch
< 0 no agreement

0 − 0.20 slight agreement
0.21 − 0.40 fair agreement
0.41 − 0.60 moderate agreement
0.61 − 0.80 substantial agreement

0.81 − 1 almost perfect agreement

Fleiss
< 0.40 poor agreement

0.40 − 0.60 fair agreement
0.60 − 0.75 good agreement
> 0.75 excellent agreement

Table 2.1: Cohen’s kappa guidelines.

For this work, we used expert annotation. For the expert annotation, several experts need to be asked
to annotate the data. However, this will almost unavoidably lead to different results because humans
are not able to consistently report a gold standard of relevance [Man08]. Therefore, to validate
the results, the expert agreement has to be measured to conclude whether or not the results can
be considered a gold standard. We used Cohen’s kappa coefficient ^ [Coh60], a common measure
designed to judge the agreement rate corrected by the chance of a chance agreement for categorical
judgements [Man08] for the measurement even though there are several other methods to measure
the agreement, like Krippendorff’s alpha or Fleiss’ kappa.

The kappa ^ (2.2), itself is calculated using ?0 (2.3) the agreement percentage, and ?4 (2.4), the
probability of an agreement by chance.

^ =
?0 − ?4
1 − ?4

(2.2)

?0 =
1
#

∑
2∈�

ℎ88 (2.3)

?4 =
∑
2∈�

?(2 |01)?(2 |02) (2.4)

The interpretation of the kappa value has no theoretical foundation, and there are no universally
accepted guidelines on this topic because they all were chosen arbitrarily by their creators. Here the
guidelines from Landis and Koch [LK77] and guidelines created by Fleiss, which have been stated
by Wentura et al. [GW97], are tabulated to illustrate the general agreement.

2.3.2 Feature Construction and Weighting

Before the data can be used to train the classifier, it has to be first converted into a suitable form
because it consists primarily out of strings of characters [Joa+99].

7

2 Foundations and Related Work

A popular method to transform documents into machine-readable representations is the so-called
Bag of words (BOW). BOW represents a document 3 (2.5) as a vector on basis of the tokens3 of a
vocabulary + appearing in it.

3 = (5C0,3 , ..., 5C|+ | ,3); + ⊆ {C ∈ 3 | 3 ∈ �} (2.5)

5C ,3 indicates how often the term C appears in the document 3. As shown in the formula, each
document vector has the length = = |+ |. This results in mostly large sparse vectors because it is
very unlikely that most of the tokens will occur in a given document. To reduce the length of those
vectors, Joachims [Joa98] considers a token a feature (and thus part of the vocabulary) if it occurs
more than three times in the data set and if it is not a stop word such as “the” or “and”. Also, the
words are often converted to lower case to reduce unnecessary entries in the vocabulary [HM21].
Moreover, there are other methods such as stemming [Lov68] or lemmatisation [MWC19] to further
reduce the words in the vocabulary, into which details we will not go here. In addition to that, the
words occurring in the BOW vector representation can even be weighted with measures such as the
binary representation4 or measures such as the term frequency–inverse document frequency (tf-idf)
score to encode the importance of a word [Joa+99; Ull11]. tf-idf is defined as the product of the
term frequency C 5 (2.6) and the inverse document frequency 835 (2.7).

C 5 =
5C ,3∑

C′∈3 5C′,3
(2.6)

835 = ;>6(|� |
|{3 ∈ � | C ∈ 3}|) (2.7)

It measures the importance of a word by weighting the number of its occurrences in the document
(C 5) and the inverse frequency of how often it occurs in all documents (835).

However, all the extensions mentioned still only capture the presence or absence in a given corpus.
For example, sentences like “A implies B” and “B implies A” both would have the same document
representation even though the meaning is different. Therefore it is still a basic “bag of words”.
Nevertheless, Joachims et al. [Joa98] stated that losing the ordering of the words is of minor
importance.

Even so, if one wants to get some of the contexts back, one can extend the BOW model by using
N-grams. The “N” in N-grams describes how many neighbouring words are packed together in one
tuple5. Single words can be regarded as unigrams, and pairs of words as bigrams. A bigram for “A
implies B” could look like “A implies, implies B”. They can also be mixed by appending bigrams
onto unigrams “Uni+Bigrams”, bigrams onto trigrams “Bi+Trigrams” or uni- onto, bi- and trigrams
“Uni+Bi+Trigrams”. However, this unavoidably leads to larger document representations [HM21].

A problem of this representation is that the words themselves are reduced to a single number
without any meaning. Embeddings solve that issue by grouping words that are similar in context
together. Therefore, the meaning of a word is kept, and similar words are forming clusters in

3A token can be a word, emoji, or number.
4If the token does not appear in the document, the binary representation corresponds to a value of zero, otherwise it

takes on a non-zero positive value.
5Instead of using token N-grams, one can also use N-grams at the character level [CT+94]

8

2.3 Text Classification

the embedding space. Moreover, embedding representations are denser than word occurrence
representations. There are many methods and algorithms to produce embeddings like Word2Vec
(Word2Vec) by Milkov et al. [MCCD13], Global Vectors for Word Representation (GloVe) by
Pennington et al. [PSM14], fastText (fastText) by Bojanowski et al. [BGJM17] and even transformer
architectures like BERT by Devlin et al. [DCLT19].

Two different model-architectures to create the word representations were introduced by Milkov et
al. in their publication [MCCD13]. The first model was the Continuous Bag-of-Words (CBOW)
model, which predicts a word based on the context words. The context consists of a few words
surrounding the current (middle) word. This model is called BOW model because the order of the
words in the context is not important.

The second model is the Continuous Skip-gram (Skip-Gram) model, which predicts words within a
certain range around the current word in the same sentence. The quality of the Skip-Gram model
was further improved by Mircov et al. in their second publication, in which they also proposed a
method of creating word vectors out of phrases [MSC+13].

GloVe [PSM14] created by Pennington et al. is an unsupervised learning algorithm for obtaining
vector representations for words. They showed that GloVe is able to outperform Word2Vec while
having just half the amount of training data available. GloVe itself is trained on the non-zero entries
of a global word-word co-occurrence matrix, which lists how frequently words co-occur with one
another. Using this matrix, GloVe creates token embeddings.

FastText extends the Skip-Gram model of Word2Vec. By generating character-level N-grams (3-
to 6-grams) of the centre word (in angle brackets like 〈20C〉 for 20C), which then get hashed (the
hash function uses integers between [1; 2, 106]) and averaged. The context words are directly taken
from the embedding table without using the N-grams and they also used for each positive example
five negatives at random with a probability to the square root of the uni-gram frequency [BGJM17].
Using this, it is able to surpass models without morphological analysis and it is able to deal with
out of vocabulary words due to their sub-word N-gram averaging method.

The word embeddings of any of those methods can then be averaged or tf-idf weighed to generalise
for documents and sentences [BMCG15; CMS17]. Alternatively, they can be weighted using
different measures such as the Smoothed Inverse Frequency (SIF) [ALM16] or even Unsupervised
Smoothed Inverse Frequency (uSIF) [Eth18]. SIF embeddings [ALM16] are computed by the
weighted average of the smoothed inverse frequencies 2̃B and applying the common component
removal on it, to retrieve the discourse vector of the document or sentence 2B. The weighted average
is computed by 2̃B (2.8), where B denotes the sentence or document, ?(F) the word frequency, −→F
the word vector of the embeddings and 0 is a scalar, which needs tuning. The common component
removal is computed by 2B (2.9).

2̃B =
1
|B |

∑
F ∈B

0

?(F) + 0 · −→F (2.8)

2B = 2̃B − ?A> 920 2̃B (2.9)

9

2 Foundations and Related Work

SIF embeddings are not completely unsupervised because of the scalar U. Additionally, vector
lengths can have a confounding effect on the SIF embedding [Eth18]. uSIF solves those problems
by using an angular distance based walk model instead of the log-linear one. The embeddings are
retrieved by using the unsupervised smoothed inverse frequency 2̃B as shown in 2.10

2̃B =
1
|B |

∑
F ∈B

0

?(F) + 1
20

· −→F (2.10)

2B = 2̃B −
<∑
8=1

_8?A> 92′
8

(2.11)

and the partial common component removal 2B (2.11).

_8 are weights on the common discourse vectors [Eth18]. uSIF can estimate 0 by using ?(F), the
vocabulary size and the average sentence length.

Other, often better, approaches to generate sentence embeddings are Doc2Vec by Quoc et al. [LM14],
Sentence-BERT by Reimers et al. [RG19], InferSent by Conneau et al. [CKS+17], or the universal
sentence encoder by Cer et al. [CYK+18].

Doc2Vec is based on Word2Vec, and there are again two algorithms, the PV-DM (Distributed
Memory version of Paragraph Vector), which is basically the same procedure as the CBOW except
for the fact that it concatenates a paragraph vector onto the averages of the word vectors before
passing it into the output layer.

Furthermore, a PV-DOBW (Distributed Bag of Words version of Paragraph Vector) model was
presented, which is similar to the “skip-gram” version. This version takes in a document ID and
tries to return randomly sampled words from the document.

The SentenceBERT is a siamese network based on BERT/RoBERTa based architectures, from
which the obtained embeddings are passed through a pooling layer to derive a fixed-sized sentence
embedding. They evaluated their performance for Semantic Textual Similarity tasks using the cosine
similarity for their embeddings.

InferSent is another model trained on the SNLI data set, They trained their sentence embeddings
on 12 different transfer tasks and showed that supervised learning is better than unsupervised for
generating embeddings.

Furthermore, the universal sentence encoder from Cer et al. also consists of two different architectures
with a different design challenge. The first architecture is based on a transformer [VSP+17] and
build for maximum accuracy at the cost of having a high complexity, while the second architecture
is based on a deep averaging network (DAN) (Iyyer et al. [IMBD15]) and build targeting inference.
However, it lacks some accuracy. For the DAN architecture, the input embeddings for words and
bigrams are averaged together and then fed into a feedforward deep neural network (fully connected
layers with a dropout before passing them into a softmax function) to produce sentence embeddings.
An advantage of the DAN over the transformer is its asymptotic complexity, which lies in O(=) for
the sentence length compared to the transformer architecture of O(=2).

Because embedding and BOW vectors with a similar meaning are grouped closely together, they can
be measured using methods such as the cosine similarity, which is the standard way of quantifying
the similarity between two documents [Man08; MRS08]. The cosine similarity uses the angle

10

2.3 Text Classification

between two vectors (document representations) and ignores the length of the vector to create a
distance metric. That leads to the advantage that longer documents are not negatively biased. The
cosine similarity gets calculated by Equation (2.12):

2>B(\) = � · �
‖�‖‖�‖ (2.12)

Because the vector representation of the texts is always positive, the cosine value is consequently
also always positive and lies in the interval [0, 1].

2.3.3 Feature Projection, Selection and Training of a Classification Model

Several models for text classification include :-nearest neighbours, a random forest classifier, support-
vector machines, multinomial naive Bayes or neural networks. Neural networks are designed to
roughly mimic how the human brain works, i.e., as a collection of interconnected neurons. A neuron
itself is defined as the function (2.13).

H = 5

(∑
8

F8G8

)
(2.13)

on a vector input G [Kri05]. The weights are adjusted by learning, and 5 is the activation function.
Some common activation functions are the A4!* (2.14) and B> 5 C<0G (2.15) functions.

A4!* (G) = <0G(0, G) (2.14)

B> 5 C<0G(G) = 4G?(G)∑
= 4G?(G=)

(2.15)

Normally, for the output function, a softmax function is used as an activation function to create
unary vectors out of the inputs. For the hidden units (units within the hidden layers of the network),
A4!*B are often used because their advantage lies in learning high numbers. The network itself
consists of multiple neurons that are connected to each other6.

Another neural network structure is the siamese network (illustrated in Figure 2.1). This network
works with input pairs. For both elements of all pairs, the same operations are conducted before
they are combined into a single element by a distance-/merging-/loss- layer.

Siamese networks are a type of architecture which lead to groundbreaking results in tasks like
image comparison or duplicate comment matching [IUA+20] due to their ability to learn similarity
measures. Moreover, they have desirable properties such as symmetry, which helps them not be
distracted by the arrangement of the inputs. Siamese networks were first introduced by Bromly et
al., who used them in their publication [BGL+93] for comparing signatures.

6A network is dense if each neuron is connected to its previous neuron(s).

11

2 Foundations and Related Work

BERT

pooling

Softmax
classifier

pooling

BERT

Sentence A Sentence B

Figure 2.1: Example Siamese Network architecture modelled after Sentence-BERT from Reimers
et al. [RG19].

topic for the
nth word

observable word distribution over wordstopic distribution
Dirichlet PriorDocumens

Words in

Topics

topic word

document topic

Figure 2.2: Graphical model of LDA after Hoffman [HBWP13].

2.3.4 Topic Modelling

For retrieving topic distributions of documents, we use Latent Dirichlet Allocation (LDA), which is
a generative model for discovering abstract topics from a collection of documents.

Generative means that instead of discriminating or classifying and thus providing a probability of
the target y given an observation G %(H |- = G), it provides the prediction of an observable - given
the target H %(- |. = H) and therefore generates the outcome.

LDA assumes that each document exhibits topics with different proportions, which it needs to
determine.

12

2.4 Evaluation Metrics

Listing 2.1 LDA Generative process

Draw topics V: ∼ �8A82ℎ;4C ([) for : ∈ ;

For each 3 ∈ �:

Draw topic proportions \ ∼ �8A82ℎ;4C (U);
For each F ∈ #:

Draw topic assignment I3= ∼ "D;C8=><80; (\3);
Draw (observed) word F3= ∼ "D;C8=><80; (VI3=);

Figure 2.2 illustrates the LDA as a graphical three-level generative model. As shown in the graph,
each node is a random variable and is used for the generating process. The greyed-out node
symbolises that it is observable. The other nodes are latent (hidden) variables. The LDA uses the
observed words to infer the hidden abstract topic structure by adjusting the weights of U and \.
For values G � 1 the values generated by the �8A82ℎ;4C (G) are likely to contain a mixture of most
(topics/words), the values for G � 1 generated by it are likely to contain a mixture of only a few
(topics/words), and for 0 == 1 it is evenly distributed.

Using the generative process of the model described by Listing 2.1 one is able to retrieve the matrices
Θ:×3 = ?(: |3) and ΦF×: = ?(F |:).

For these, the following holds: ?(F |3) ≈ Θ ×Φ because ?(F |3) = ∑
C ∈) ?(F |:, 3)?(: |3)

�
=⇒∑

C ∈) ?(F |:)?(: |3). � stands for “conditional independence”. However, first acquired topics are
probably not perfect. In order to retrieve better topics, the priors U and [have to be adjusted. There
are many methods to approximate them, such as Markov chain Monte Carlo methods, expectation
propagation and variational inference [HBWP13; Tom18].

2.4 Evaluation Metrics

Evaluation metrics are essential to evaluating and comparing models and their performances. The
most common metrics are precision, recall, and the 5 1 score.

Those measurements are based on the properties of predicted instances, the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), which distinguish right from wrong
predictions from the view of a single class.

From this view, true predictions can be of one of two kinds. Instances that are correctly classified to
be part of this class (TP) as well as instances correctly classified not to be a part of this class (TN).
For wrong predictions, there are also two kinds of errors. These are instances predicted to be in the
class, which are no a part of the class (FP), and instances predicted to be not a part of the class even
though they are a part of it (FN), as explained by Hossin et al. [HS15].

Distinguishing those cases leads to the ability to tell how much precision a classifier has for a class
by using the formula (2.16).

% =
)%

)% + �% (2.16)

13

2 Foundations and Related Work

Moreover, one can also calculate the recall of one class, which measures how many issues from this
class are predicted to be in this class using the formula (2.17)

' =
)%

)% + �# (2.17)

Both precision and recall are measuring how good a given prediction is. Furthermore, they provide
valuable insights into what the strengths and weaknesses of a prediction are. The F-measure
(2.18) combines those two measurements to generate a score that weights the importance of both
measurements to provide a unified measurement unit in the interval [0, 1].

� = (1 + V2) % ∗ '
V2 ∗ % + '

(2.18)

V is a constant which can be chosen to weigh the recall, which is V times as important as the
precision. A common approach is to use V = 1, which is the harmonic mean between precision and
recall and results in the �1 (henceforth 5 1) score. The F-score can also be enhanced to measure
multiple classes by using macro or micro averaging. The macro 5 17 is defined as the averaged 5 1
score of all the 5 1 scores of the classes (2.19).

<02A> 5 1 =

∑#
8=0 5 18
#

(2.19)

The micro 5 1 is calculated by aggregating the TP, FP, and FN for each class and using those values
to calculate %, ', 5 1. However, the micro 5 1 has the undesirable property of washing out less
occurring labels as stated by Lipton et al. [LEN14].

2.5 Related work

This section focuses on previous work and their accomplishments. It is split into two parts, the first
part presents work in the field of detecting duplicate issues, and the second part presents work in
the field of language inference. For each field, we present several bodies of research and compare
them. In addition, we also describe briefly why they are not able to solve our objective.

2.5.1 Literature Research Methodology

We used Google Scholar for finding publications about this research topic to see, what research
already has been conducted because of the wide variety of papers it provides. In addition to that
we also used Google, because it yields more promising search results than DuckDuckGo from our
experience.

Research keywords: issue relation prediction, automatic issue relation prediction, duplicate issue
detection, issue deduplication, siamese networks, topic modelling, topic prediction, scikit-learn,
tensorflow, nlp, embeddings, entailments, document embeddings, nli, natural language inference,
multiclass classification, keras, kubernetes microservice, autotuning, duplicate detection

7There are two variants of the 5 1 score, here we used the more robust variant, the “averaged F1” according to Opitz et
al. [OB19].

14

2.5 Related work

2.5.2 Duplicate Issue Detection

There has been much research in the area of duplicate issue detection (deduplication). Here, we
introduce and compare some of the works like the works of Nguyen et al. [NNN+12], Alipour et al.
[AHS13], Klein et al. [KCK14] as well as Hindle et al. [HAS16]. Nguyen et al. [NNN+12] used
a topic model-based approach using LDA, and combined it with information retrieval as well as
categorical features to identify duplicate bugs.

Alipour et al. [AHS13] also used this technique. However, they also improved it by using contextual
information based on their prior knowledge about software quality, software architecture, and
system-development Latent Dirichlet Allocation topics to improve the bug deduplication.

Klein et al. [KCK14] further refined the technique by introducing metrics based on the topic
distribution of the issue reports, relying only on data taken directly from bug reports, like using the
time difference or the difference in the number of words. Moreover, they introduced a novel metric
that measures the first shared topic between two topic-document distributions.

Hindle et al. [HAS16] used the ideas from their previous work Alipour et al. [AHS13] by evaluating
their approach in the context of the candidate-duplicate ranking, instead of the duplicate-or-not
decision used previously. Candidate-duplicates is a list of duplicates sorted by their probability of
being a duplicate. Moreover, instead of just testing their model on the Android repository, they also
tested their model on the Eclipse, Mozilla, and OpenOffice software systems repositories to allow a
more direct comparison to other previous works.

All those works made achievements on the task of deduplication. However, our objective is not to
focused on deduplication alone but also on predicting the relations between the issues of which
duplication plays a part in. Also, our focus is a more general model for different repositories. None
of the previous works is able to satisfy this objective of predicting whether or not an issue resulted
in another one, or if they are related.

2.5.3 Inference

Another related research field is that of Natural language Inference (also Recognising Textual
Entailments), which is one of the problems in natural language understanding [DDMR10]. This
research field aims to determine the inference relation between two texts fragments (a text and a
hypothesis). The relation can be one of three kinds: “Entailment” meaning the hypothesis can be
deduced from the text, “Contradiction” the text can deduce a contradiction to the hypothesis, or
“Neutral” meaning the hypothesis is neither true nor false.

There have also been many publications in this research area like the ones of Parikh et al. [PTDU16],
or Chen et al. [CZL+17].

Parikh et al. presented an attention-based approach for natural language inference [PTDU16]. For
their data, they used the SNLI corpus of Bowman et al. [BAPM15] consisting of 570K human-
written English sentence pairs. They used attention to split their problem into smaller sub-problems
that can be solved in parallel. Moreover, their model achieved a state-of-the-art accuracy without
relying on word-order information. Besides, they also tested adding a minimum amount of order
into account by using intra-sentence attention to improve their model further.

15

2 Foundations and Related Work

Chen et al. [CZL+17] demonstrated that carefully designed sequential inference models based on
LSTMs were able to outperform all previous models. Moreover, incorporating syntactic parsing
information resulted in their best result. For this matter, they presented two different architectures, a
sequential model named ESIM that outperforms all previous models and a better, more sophisticated
network incorporating parsing information using tree LSTM’s.

Like Parikh et al., they used the SNLI corpus of Bowman et al. [BAPM15]. Moreover, they tested
using some of the findings of Parikh et al. in their work to improve their models. They used a
concatenation of average and max pooling before passing it into the classifier, which stands in
contrast to Parikh et al. work that utilises summation. They considered that summation could
be sensitive to the sequence length, which makes it less robust. Nevertheless, they also tested
summation but showed that pooling instead of summation leads to significantly better results. In
addition to that, their base model (ESIM) outperformed the work of Parikh et al., their vanilla
decomposable attention model, and their approach using intra-sentence attention.

16

3 Data

This chapter focuses on the gathering and generation of the data. Moreover, it also focuses on the
statistics of the data and analyses the relations the issues are standing in. It is split into four sections.
The first section is about gathering the data, the second about generating unrelated issues, the third
about generalising the corpus and presenting the relation distribution, and the last one presents the
statistics regarding the corpus and its relations.

3.1 Data Gathering

Before a classifier can be trained on data, the data has to be first gathered. First, a formal description
is defined, which is used throughout the thesis. Afterwards, the methods for the selection process of
the data are presented, followed by information about the participants’ inquiries, which was used to
ensure the validity of the annotations to create a central label of reference. Lastly, we present some
insights and implementation details about the data collected. Figure 3.1 illustrates the process of
the data gathering from collecting the issues from GitHub to validating the annotations. The steps
of this picture describe the process described in the subsections (the numbers at the bottom of each
element)

3.1.1 Formal Description

Let � be the set of all issues, then a relation ' ∈ � between two issues is defined as 0 ' 1 B (0, 1)'
for 0, 1 ∈ �. A relation can be one of the following five classes { ; f; !; !− ; duplicate}.
The five classes identified are:

1. “Issue B depends on A” B � �

2. “Issue A depends on B” B �f �

3. “Issue A and issue B do not have a relation” B �!− �

4. “Issue A and issue B have a mutual relation1” B �! �

5. “Issue A is a duplicate of issue B” B � 3D? �

Therefore, the whole scraped document relations �' are defined as {(0, 1, 2) | 0, 1 ∈ �, 2 ∈ �}.

1It can mean, that an issue C is causing the other two hence from an unknown source or that the direction was just
unclear to the persons commenting in GitHub

17

3 Data

Scraping
Tool

XHR

Issue-
Storage

Relation-
Storage

Annotated
Relations

JSON

JSON:
IssueInterface []

URL

Blanks

JSON:
IssueRelation []

Validation
(Cohen's kappa)

3.1.2

3.1.3

3.1.3

3.1.4 /
3.1.5

Annotated
Relations

(Participant)

Figure 3.1: Elements of the gathering.

3.1.2 Selecting Issues

The issues were selected from GitHub, which has a lot of easily accessible, popular open-source
projects. First, repositories were searched by going through popular projects in GitHub (as illustrated
in Figure 3.1 by the magnifying glass). Those projects are used and maintained by a vast user base
due to their popularity. As such, it tends to be the case that these repositories contain more issue
reports than smaller ones. Furthermore, the big user base potentially leads to a lot of coding issues
(issues based on software or source code errors), and most importantly, the issues are reviewed and
commented on by many users to identify the problem in which they originated. Another factor for
choosing the repositories was that they should consist of a coding project and not just an assembly
of resources such as the popular projects “free-programming-books”2 or “papers we love”3, because
the issues of those projects are most certainly not coding issues. We tabulated the final repositories
from which issues were selected in the appendix section Table A.19. Moreover, the issues should
not be “pull requests” because they are utilised for fixing issues. Lastly, we did not refrain from
closed issues because the resolution of an issue was not of any importance to us.

Also, we obtained issues from multiple repositories to generate a bit of diversity because repositories
like Kubernetes4 have around 40.000 issues, and we did not want the classifier to be fixated on
specific issue templates.

2https://github.com/EbookFoundation/free-programming-books
3https://github.com/papers-we-love/papers-we-love
4https://github.com/Kubernetes/Kubernetes/issues?q=is%3Aissue

18

3.1 Data Gathering

(a) GitHub mention in nextcloud/docker/issues/294a.

ahttps://github.com/nextcloud/docker/issues/294

(b) GitHub mention in nextcloud/server/issues/6650a.

ahttps://github.com/nextcloud/server/issues/6550

Figure 3.2: GitHub mention viewed from both issues.

(a) Sample of self annotated relations.

(b) Blank relations to be filled out by the participant.

(c) Sample of annotated relations by the participant.

Figure 3.3: Different types of relation annotations.

After an issue from a repository was selected, we manually searched for GitHub mentions5 (such as
the one seen in Figure 3.2), or URLs linking two issues. The GitHub comments of both issues were
read by us to validate that the reference between the issues is correct. Moreover, through reading
through the GitHub comments, the class most fitting to the issue relation was obtained.

Both issue URLs and the relation (in the form of an arrow) were documented in a separate text
document (illustrated in the form of a way-point in Figure 3.1) when we found an issue relation
class. For simplicity, the arrows representing the classes were changed to a simpler variant in the
text document, as depicted in Figure 3.3a to document the findings.

5https://guides.github.com/features/issues/notifications — GitHub mentions are a feature provided by GitHub to connect
two issues together.

19

3 Data

3.1.3 Relation Validation by Participants

We chose to use the expert annotation over crowdsourcing methods as described by Klinger et
al. [Kli+18]. Therefore, the documented findings were then cut into smaller text documents (hence-
forth work packages) containing about 100 issues each. Furthermore, the arrows in the documents
handed to the participant were replaced by blanks, as illustrated in Figure 3.3b.

The participant is male and 21 years old. He has fundamental programming knowledge and has
used GitHub in the past. After briefing him on filling out the blanks with the relation class most
fitting to the relation, he received every second day one of the work package documents containing
about 100 issues.

We undertook the practice of splitting the data into multiple smaller work packages and handing
them out in this particular manner to reduce the “carry over stress” of the participant.

A piece of a document filled out by the participant (with the relationships he saw most fitted) can
be seen in Figure 3.3c. To validate the participant’s reports, both findings of our own annotation
and the participant’s annotation were compared using Cohen’s kappa. The reason for this is that
humans are not able to consistently report a gold standard of relevance [Man08].

The corresponding : value for the first 1460 issues of the two different annotators for the data set
was : = 0.7041. This kappa value is considered a “Substantial Agreement” according to Landis and
Koch [LK77], and a “fair to good” agreement according to Fleiss [GW97] Table 2.1 which means
there is a broad mutual agreement. Therefore, there was no need to inquire further participants to
review the disagreements of the class choice on some of the issues.

3.1.4 Collecting the Issues

After the validity was verified, data of the issue relations had to be collected. In each issue relation,
two vital elements were essential; The issues themselves, and the relation they are standing in.

The relation itself consists of two issues and a relation date. This date is a part of the GitHub mention
and can be seen from both issues as shown in Figure 3.2. It corresponds to when one of either
issues (Figure 3.2a) was mentioned in the other’s comments (Figure 3.2b). Note that there is not
always a date attached in the relation file, which can happen due to an outdated URL or if the issue
was mentioned in the issue’s body. The “mention” date is used to ensure that the classifier is not
getting all the information handed to it by reading through the comments. Instead, the classifier can
see all the dates and comments leading up to the mention to get the most background information.
No comments are provided to the classifier if there was no date (an undefined one) provided in the
relation.

For the issues, the data kept is the issue title, the issue description (body), the comment bodies, and
their dates, as explained previously.

20

3.1 Data Gathering

Listing 3.1 Relation and issue interfaces

/**

* This interface is used for documenting the

* relations between two issues

*/

export interface IssueRelation {

urlIssueA: string;

urlIssueB: string;

relation: Relation;

dateMentioned: Date

}

/**

* An issue can have several comments

*/

export interface Comment {

createdAt: Date;

updatedAt: Date;

body: string;

}

/**

* The IssueInterface is the interface used for issues

**/

export interface IssueInterface {

id: string;

issueID: number;

repository: string;

user: string;

title: string;

body: string;

comments: Comment[];

url: string;

}

3.1.5 Implementation

To collect the data from GitHub, we developed a scraper. This scraper takes as input the text file of the
annotated relations as depicted in Figure 3.3a whose lines serve to document the relations between
two issues, and uses the relations and URLs to create relation JSONs using the “IssueRelation”
interface shown in Listing 3.1.

Additionally, it takes the URLs of the GitHub issues and creates REST API requests by taking the
user-/repository name and the issue number from the URLs. More precisely, it creates two API
requests per issue to query the GitHub issue body and title with the first request and the comments of
a given issue with the second one. Using this information, issue JSON objects are being constructed
using the “IssueInterface” shown in Listing 3.1.

21

3 Data

Figure 3.4: IRG sub-graph.

3.2 Generating unrelated Issues

Figure 3.4 depicts a sub-graph of the IRG built of our collected data. It visualises the relations
between some issues (here denoted as dots). The edges between two nodes have a label attached to
them, which shows the relation class the two issues are standing in (visualised in the same simple
notation as in the Figure 3.3a) and the direction of the relation (if there is one).

3.2.1 Choosing Issue Pairs

The whole IRG is a disconnected graph. It consists of many connected sub-graphs like the one
in Figure 3.4. We utilised this property to generate unrelated issues by randomly picking two distinct
disconnected graphs. From each graph, we selected one issue at random. Then, this newly created
unrelated issue was appended to the unrelated issue data set iff. the newly constructed unrelated
issue was not already present there. Like the other data sets, this data set also got shuffled.

3.2.2 Risk

We did not use two issues from the same connected sub-graphs because they can stand in a transitive
relation. For example, three of the four green nodes at the top in Figure 3.4 are probably standing in
such a transitive relation. The reason for this is that the first node is a duplicate of the second one,
and the second node is a duplicate of the third. Therefore, the first node may also be a duplicate
of the third. Hence, there is a risk involved that the GitHub users did not find all the relations or
did not see the need of annotating more issues (and their relation) as duplicates. To counteract this
problem, GitHub issues from different sub-graphs were taken to minimise the risk of them standing
in a relation.

22

3.3 Generalisation

 f ! 3D?;820C4 !− Total
relations 492 56 898 558 899 2004 (2903)*

Table 3.1: Scraped class distribution. The “*” in the “total” column of the table denotes the total
relations, including the added unrelated issues.

3.2.3 Test Data Set

The test data set and validation data set were generated by randomly cutting out sub-graphs of
the IRG so that the overall sum of the nodes of the sub-graphs in the test and validation data sets
consisted at least of 20% each of all the nodes. Using this number, the percentage of data used
for each validation and testing lies in the typical range of 20% to 25% [HTF09]. The physical
separation ensures that the issues provided in the test and validation sets were not previously seen
by the classifier. Furthermore, the unrelated issues in the test and validation sets are created only
from issues within the set because, otherwise, the same problem might occur.

3.3 Generalisation

For the text corpus over 2000 issue relations were scraped as depicted in Table 3.1 by the method
described in Section 3.1. The issue relations are comprised of a total of 1952 distinct issues. The
difference in number between the amount of relation and issues is due to the sub-graphs not always
being sparse graphs. For example, an issue is not always having a relation with a previously unseen
issue. Moreover, at least two issues are standing in a relation, and there can be no issue without
relation. Besides, the relations can form dense sub-graphs.

The added unrelated issues have been separated because they were not scraped but generated using
the procedure seen in Section 3.2.

Ensuring Symmetry

From these scraped relations, equivalence classes for the classifier can be derived by rearranging
them. This can be done, because iff. ∀0, 1 ∈ � ∀2′ ∈ {!,!− , 3D?} : (0, 1)2′ ⇔ (1, 0)2′ for the
other classes ∈ {f, } , 1 ∈ �: (0, 1)2 ⇔ (1, 0)2 holds.

By this procedure, the amount of issues suitable for training gets doubled. This step is essential to
generate more data and generalise it so that the relations of the data set do not bias the classifier.
Hence, the prediction would be less influenced by the issue order handed to the classifier.

Issue Distribution

After ensuring the symmetry by reordering the issues, the relations in the resulting relation classes
were shuffled and cropped. Removing some relations ensured that the amount of relations in each
class is the same. The final relation distribution can be seen in Table 3.2.

23

3 Data

 f ! 3D?;820C4 !− Total
train 238 238 238 238 238 1190

validation 134 134 134 134 134 670
test 176 176 176 176 176 880

Total 548 548 548 548 548 2740

Table 3.2: Class distribution between the data sets.

The training data was used for the classifier’s training. The validation data was used to validate
the classifier and the effect of the hyperparameters, such as finding the best vectorisation strategy.
The test data was used explicitly for testing and comparing the different classifier architectures by
presenting them with previously unseen data. All the data sets are distinct data set. Hence they do
not share issues with each other.

3.4 Corpus Statistics

Here the document corpus gets analysed, consisting of the issue titles and bodies of the GitHub
issues. The comments are not present in these documents because the length of an issue is influenced
by the date in the GitHub mention as can be seen in Figure 3.2 and, hence, this would not be an
accurate representation of the real issues’ lengths. Additionally, due to the length of an issue being
influenced by the comments and the respective relation date, the same issue has different lengths for
different relations (as we want to preserve the most information possible for the classification).

3.4.1 Amount of Comments per Issue

The number of comments in an issue varies widely; some have none, and others have over 500, as
can be seen, in Section 3.4.1. The median number of comments is five as depicted in Figure 3.5b
without outliers.

3.4.2 Token Amount

Without comments and (English) stop words, the issues have an average length of around 130 tokens,
as depicted in Figure 3.6. Furthermore, both box plots in this figure are representing the same data,
except for the fact that the outliers have been removed for the second one (Figure 3.6b) to enhance
the readability.

3.4.3 30 Most Occurring Words

Also, the top 30 tokens of the corpus were plotted to analyse abnormalities illustrated in Figure 3.7.
Another observation is that there are many terms referring to software systems. Several names
such as “npm”, “Docker”, “minikube”, or “Kubernetes”, are among the 30 most occurring tokens.
Therefore, it seems, that the data set is heavily influenced by the technologies the repositories

24

3.4 Corpus Statistics

0 100 200 300 400 500 600

1

Number of comments

(a) Boxplot with outliers.

0 5 10 15 20 25 30 35 40

1

Number of comments

(b) Boxplot without outliers.

Figure 3.5: Number of comments in the issue documents.

(Table A.19 tabulates the repository names) used. Nevertheless, there are still the usual stopwords
like “to” (as shown in Figure 3.7b). Another observation is that there are plenty of different numbers
amongst the top 30 tokens, which might be due to the versioning of the different frameworks and
libraries.

3.4.4 Representation of the Issues for the Classifier

The issues given to the classifier consist of an issue title, issue body, and the comment’s bodies
up to the date found in the relation. They are all concatenated by using a line break character and
represented in the form of a string. The idea behind this was that the classifier is not influenced by
unique tokens between title, body and comments. Moreover, the classifier has the maximum amount
of text in its corpus without knowing the relation class determined by the annotator in the comment.
If no date was found in the relation JSON, our script appended none of the issue comments onto the
issue. An exception to this rule are the randomly generated comments generated from within the
specific set (the train, validation or test set). For those, all the comments were appended to simulate
two not labelled issues.

25

3 Data

0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000 16500 18000 19500 21000 22500 24000 25500

1

Document length without comments

(a) Boxplot with outliers.

0 100 200 300 400 500 600 700

1

Document length without comments (without outliers)

(b) Boxplot without outliers.

Figure 3.6: Number of tokens in issue documents.

th
e to go

do
ck

er is in fo
r

np
m 10 v1

ve
rs

io
n

co
m

m
in

ik
ub

e 20 14 no
t

er
ro

r

ht
tp

s

an
d

tim
e

no
de

_m
od

ul
es at

ku
be

le
t

th
is

wi
th

fa
ile

d of io

in
fo it0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f o
cc

ur
re

nc
es

Tokens

(a) Top 30 tokens.

do
ck

er

np
m 10 v1

ve
rs

io
n

co
m

m
in

ik
ub

e 20 14

er
ro

r

ht
tp

s

tim
e

no
de

_m
od

ul
es

ku
be

le
t

fa
ile

d io

in
fo

no
de

ku
be

rn
et

es 11 00

gi
th

ub

ku
be

co
nt

ai
ne

r js

cli
en

t

12 09 01 21

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f o
cc

ur
re

nc
es

Tokens

(b) Top 30 tokens without English stop words.

Figure 3.7: 30 most occurring tokens.

26

4 Classifier

This chapter presents the experiment setups for the different siamese models for distinguishing the
relations of a given text.

The “basic” classifier architecture of the models consisting out of a vectoriser (with additional topics
in case of the “Topic” model 4.9) is depicted in Figure 4.1. As shown in this image, the models
themselves can be split into two parts; The vectorisation part, where the text is converted into
feature vectors, and the classification part, where the vectors are merged into one to encapsulate their
information. This single vector is afterwards used to compute the output using a dense (softmax)
layer. To enable a direct comparison of each model, the batch size was fixed to 25, and the number
of epochs to 25. Moreover, a word was considered part of the vocabulary if it occurred at least two
times.

We regarded finding the optimal vectorisation method as a hyperparameter to be tuned for the
different models. Also, by using multiple vectorisation methods, their ability to transform large
documents into vector representations can be tested. We used the standard BOW vectoriser, a vec-
toriser which uses word embeddings to obtain the document embeddings and a encoder specialised
to obtain embeddings from word sequences.

For the BOW vectorisation strategies, different vocabulary sizes were tested, those are 512, 1024,
8192 and 16384 words. In addition, we tested for all those vocabulary sizes unigrams and uni+bi-
grams, as well as having tf-idf as a weighting. Before the vectorisation, the English stopwords
were removed, and all the words were transformed to lower case to save words in the vocabulary.
Moreover, a token was included in the vocabulary if it appeared more than two times.

For the embedding-based solutions, we tested averaged and uSIF fastText vectors and averaged and
uSIF pretrained glove vectors1. Both embedding variations generated embeddings of a length of
100. The window size for the fastText embeddings was 3. Besides those, we also tested the impact
of the standard 512 length universal sentence encoder2.

4.1 Sub. Model

The “Sub.” model is our baseline model to compare against. It is inspired by the siamese networks
of the Sentence Bert [RG19] from Reimers et al. that utilised a concatenation (D, E, |D − E |) of the
single vectors D, E as well as the element-wise difference |D − E | to merge both document vectors.

1Based on Wikipedia 2014 and Gigaword, with 5.6B uncased tokens, https://github.com/RaRe-Technologies/gensim-
data/releases/tag/glove-wiki-gigaword-100

2https://tfhub.dev/google/universal-sentence-encoder/4

27

4 Classifier

Normalisation

Issue A

Vectoriser

Distance- /
Merge-
Layer

Issue B

Vectoriser

Dense Layer

Topics A Topics B

Ve
ct

or
is

at
io

n
C

la
ss

ifi
ca

tio
n

(Softmax)
Classification

Not always used

Figure 4.1: Basic classifier architecture.

And the InferSent model architecture [CKS+17] from Conneau et al. that used the concatenation
(D, E, |D − E |, D ∗ E) of both single vectors, the element-wise difference in addition to their dot wise
product for their baseline.

Our model consists of 3 layers. It takes two document strings of varying length as input and outputs
a vector representation D, E. The vector representations for the strings differ in length due to the
different vectorisation processes. Therefore, the length of the vector also does not stay the same.

After the vector representations of the documents were created, the input is fed into a merging
layer. This merging layer performs an element-wise subtraction of both vectors to create one vector
containing all the information. Then the merged vector gets fed into a dense softmax layer for
prediction.

Using the subtraction instead of an absolute element-wise difference allows the model to distinguish
whether an input token came from the left or right input (for an input, which is not present in
both documents), while the property of minimising the impact of overlapping input tokens gets
preserved.

28

4.2 Mult. Model

4.2 Mult. Model

The “Mult.” model is built on the basis that unrelated and duplicate issues have a low and high
overlap, respectively. Therefore, using an element-wise multiplication for the merge should improve
the models’ abilities to identify if the issues are either duplicated, related or unrelated.

The mode architecture for this model is essentially the same as the one for the baseline “Sub.”
model Section 4.1. The only difference is that an element-wise multiplication is used for the merge
instead of an element-wise subtraction.

4.3 Avg. Model

By using the average of the tokens from both vectors, tokens, which are present in one but not both
documents, are still taken into account, while the ones that are present in both issues do not lead
to overly high numbers. Therefore, this property stands in contrast to the “Mult.” model, which
“removes” tokens that do not occur in both documents. Therefore, it should lead to slightly better
results than the “Mult.” model because it should better understand what words do occur in the
documents. Moreover, the values would not get as big as for the pure multiplication layer, which
can help the model adjusting its weights accordingly.

This model also utilises the same basic architecture as the previous ones except for the element-wise
average for the merging process.

4.4 Concat. Model

This model utilises all the previous techniques and merges them into one big vector representation.
Therefore, this model is able to access all the information the previous model have and should, in
theory, be able to make a better prediction based on the input vector representation. The model
architecture differs from the previous models because the merging layer now consists out of a
concatenation of the previous techniques. Hence, it looks like (0 − 1, 0 ∗ 1, (0 + 1)/2) and, thus,
produces a longer output vector for the two given vectors 0, 1 from the vectorisation process.
Nevertheless, the output any input layers are still the same.

4.5 CosConcat. Model

BOW vector representations for similar documents are relatively close in vector space. The same
holds for similar (sentence) embeddings, which are also grouped closely in space. Therefore, this
model should have a better understanding of “duplicate” documents and “unrelated” ones due to
their similarity or dissimilarity in the problem they describe. The merged vector is defined by
(0 − 1, 0 ∗ 1, (0 + 1)/2, \) for the two document vectors 0, 1. \ is the value of the cosine similarity
of both input vectors. Other than that, the model consists out of the two input vectors and one dense
B> 5 C<0G output vector.

29

4 Classifier

4.6 UniCosConcat. Model

This architecture takes into consideration, that the cosine values lie in the interval [0, 1]. In contrast,
the other values of the merged vectors can take any value in Z for the standard BOW vectorisation.
Therefore, the absolute values of the merged vectors (except for the averaged vector) that are not
zero will most likely be larger than the cosine similarity value. Taking this into account, this model
uses the Euclidean / ;2 norm to produce unit vectors 0̂, 1̂ out of the given vectors 0, 1 by appending
a so-called lambda layer in front of the merging layer. The lambda layer is used to apply a function
onto all elements of the vector. In this case, it takes the document vectors 0, 1 as input and applies
the formula D̂ = D/‖D‖ on it. So the merging layer looks as follows (0̂ − 1̂, 0̂ ∗ 1̂, (0̂ + 1̂)/2, \). This
should decrease the effect of common non-stop words that might have a significant impact due to
their high occurrences in some documents in the context of BOW. The sentence encoder already
deals with that problem, and the tf-idf weighting also reduces the impact of those words due to the
log normalisation (if a token occurs a lot in a given document). Besides, the cosine similarity \ will
not be influenced by the unit vectors because the direction of the stays the same.

4.7 SumConcat. Model

Unary vectors might negatively influence the embeddings in the embedding space because they pull
all the vectors closer together. Moreover, small changes in the weights of the model will probably have
a considerable impact in dealing with smaller numbers. Therefore, this model appends the weights of
the vectors onto the concatenation instead of creating unit vectors. So this model tests the hypothesis
of whether or not it is advantageous to provide the model with the length information of the vectors so
that it can adjust its weights accordingly and therefore reach a better macro 5 1 score. The extended
merging layer looks as follows: (G, ‖G‖, H, ‖H‖, I, ‖I‖); G = 0−1 H = 0∗1 I = (0+1)/2.

4.8 Issue-vector Model

Both publications, the Sentence Bert [RG19] from Reimers et al. as well as the InferSent model
architecture from [CKS+17] from Conneau et al. appended the document vectors onto their distance
metric (0, 1, |0 − 1 |) and (0, 1, |0 − 1 |, 0 ∗ 1). Therefore, this architecture tests if the appending
of the issue vectors themselves can help the model to improve on finding the source-issue. The
merging layer of this model looks like (0, 1, 0 − 1, 0 ∗ 1, (0 + 1)/2).

30

4.9 Topic Model

4.9 Topic Model

Nguyen et al. used topic modelling in their work for deduplication. They found out that increasing
the number of topics increased their accuracy up to a specific range, in which it becomes stable.
After this range with more than 380 topics, their accuracy began to decline due to nuanced topics,
which may lead topics to a semantically overlap with each other. [NNN+12] Moreover, they stated
that different repositories have different stable ranges. Besides, all the ranges started between
100− 140 topics. Nevertheless, our issues are from multiple projects and not single ones. Hence we
can deduce that the lower bound has to be larger than 100. Therefore, we used the topic similarity
measured by the cosine distance of the topic predictions to enhance the deduplication of this model.
The model’s merging layer has four inputs, two for the vectorised issue documents 0, 1 and two
for the vectorised topics G, H. Those are getting combined to (0 − 1, 0 ∗ 1, (0 + 1)/2, \C), where \C
stands for the cosine similarity of the topic and not the document vectors.

To decrease the number of numbers in the training set, we created a special count vectoriser for the
topics, which replaces numbers by “num” and transforms words to lower case. Also, the English
stop words were removed, and the vocabulary was capped to 20000. Also, the topic words have
to appear at least 5 times in the data set, and they should not appear in more than 50% of the
documents

31

5 Implementation as a Microservice

This chapter discusses the implementation of the processes “vectorisation” and “classification” into
a microservice-based solution. Section 5.1 explores the architecture of the microservice. Section 5.2
discusses the details of the Vectorisation Service which acts as a pre-processor for the Classification
Service. Section 5.3 details the classification microservice and its functionality. Last but not least,
Section 5.4 outlines how the microservice is deployed into a Kubernetes cluster.

5.1 Architecture

The architecture consists of two services; The classifier Service and the Vectorisation Service. This
is shown in Figure 5.1. Through the decoupling of both services, the issues can be independently
vectorised and classified. The advantage is that the classification process is much faster than the
vectorisation process. Moreover, as a result of decoupling both services, the vectorisation phase can
make use of vertical scaling. In addition, the data can also be stored in a database for later use. Both
services are written in python:3.8 and make use of the tiangolo/uvicorn-gunicorn-fastapi Docker
image1. This image creates an Uvicorn ASGI server managed by Gunicorn to run the FastAPI web
framework.
The microservice itself gets created using Docker compose and is connected using a bridge net-
work2.

5.2 Vectorisation Service

At the beginning, the universal sentence encoder3 (which is used for the vectorisation process) gets
loaded by the Vectorisation Service. After the sentence encoder has been fully loaded, the service
exposes two routes/endpoints: The vectorise_issue endpoint, and the vectorise_and_classify_issues
endpoint. Both expect JSON arrays of the form outlined in Listing 5.1 as input. These JSON arrays
provide the vectorisation service with a list of issues.

After computing the vectorised issues, the service responds with “Vectorise Issue Response JSON”
(cf. Listing 5.2) and “Issue Relation Response” (cf. Listing 5.3) in the case of a request to the
vectorise_issue endpoint and the vectorise_and_classify_issues endpoint, respectively. For the
classification of the issues, it sends an HTTP request to the Classification Service using HTTPX4,
an asynchronous HTTP client.

1https://hub.docker.com/r/tiangolo/uvicorn-gunicorn-fastapi/
2The name is “mybridge”
3https://tfhub.dev/google/universal-sentence-encoder/4
4https://www.python-httpx.org/

33

5 Implementation as a Microservice

Bridge Network:
 msBridge
Hosted on:
 localhost

/vectorise_issues
/vectorise_and_classify_issues

Port
:5000

Port
:5001

Vectorisation
Service

Flask
 :5000

Classification
Service

Flask
 :5000

/classify_documents

Figure 5.1: Microservice architecture.

Listing 5.1 Issue Request JSON

{

"issueTexts": ["fuu", "bar", ...]

}

5.3 Classification Service

The classification service makes use of the “UniCosConcat.” model introduced in Section 4.6. The
model (included as a tar file in the folder) gets loaded for fast deployment during service startup.

Listing 5.2 Vectorise Issue Response JSON

//response from vectorise_issue

{

"issueTexts": ["fuu", "bar", ...]

"vectorisedTexts": [

[0.1232, 0.2123, ...],

...

]}

34

5.4 Kubernetes

Listing 5.3 Issue Relation Response JSON

//response from vectorise_and_classify_issues

{

"issueTexts": ["fuu", "bar", ...]

"relations": [

{"issueA": 0, "issueB": 1, "relation": 0},

{"issueA": 0, "issueB": 2, "relation": 2},

...

]}

This service expects JSON objects of the form of the vectorise_issue response Listing 5.2 and
creates an “Issue Relation Response” Listing 5.3. The response of this service encodes the relation
using two integers for the issue indexes (“issueA”, and “issueB”) and one for the relation “relation”,
which reduces the space requirements of the response. In addition, not all issue pairs are classified;
just the upper half of the adjacency matrix of the dependency graph is considered, which is enough
to encode the whole IRG.

5.4 Kubernetes

For Kubernetes, the Docker images have to be first built using Docker Compose or using the
Dockerfile’s. Those images are then used in the Kubernetes deployment file5. Afterwards, it creates
two Kubernetes services: The Vectorisation Service, and the Classification Service with one pod
each containing the images created previously. Both services are of the type Load Balancer and
exposed using an external IP address outside of the cluster.
The whole configuration YAML for the deployments, services and network policy as well as the code
for building the images can be found with the other code in our GitHub repository6.

5If the images should be pulled from a registry, the “imagePullPolicy” has to be changed
6https://github.com/T0B1K/Issue_Relations

35

6 Evaluation

This chapter presents the results of our findings divided into three sections; results, discussion, and
threats to validity. The first section presents the findings themselves by discussing the results. The
second section discusses our findings and argues about the acceptance/rejection of the research
hypotheses. In the last section, we discuss situations and conditions that could threaten the validity
of the research.

6.1 Results

This section presents the general results of our experiment and compares the results of the different
models. All models have been trained using the ADAM optimiser [KB17] and a Crossentropy loss.
Moreover, for each model, several vectorisation methods were evaluated, as stated in Chapter 4.

Those vectorisation methods were only tested on the validation data set. The reason, for that is that
the vectorisation step was regarded as a hyperparameter to tune. The best performing vectorisation
process according to the macro 5 1 score on the validation data set was used on the test data set
with the corresponding model. This step was undertaken to mitigate bias. Nevertheless, all the
different vectorisation methods for the different models are tabulated in the appendix and sorted by
the model.

The results of the models for the experiment are shown in Table 6.1 and Table 6.2. Table 6.2 lists the
5 1 scores as well as the macro 5 1 score for the models and the issue relation classes. The Table 6.1
further divides the 5 1 scores of the classes into their respective precision and recall values.

Both tables, as well as the tables in the appendix section encode the names of the models and their
vectorisation strategy in the following manner:
model_name-(tfidf | count | sentence | ft | glove)_{(vocabulary_size [,Un+Bigram]? | avg | sif)}

The only two variables in this regular expression are the “model_name” and the “vocabulary_size”.
So “C 5 �351024;*=+�86A0<” stands for a tf-idf vectoriser with a vocabulary size of 1024 using un- and
bigrams. And “ 5 C0E6” stands for an vectoriser using fastText word level embeddings and a average
weighting for the document embeddings, and “sentence” stands for the embeddings obtained using
the universal sentence encoder.

The experiment results in Table 6.2 show that all of the models reached a macro 5 1 score of over
0.2, which is the expected value for a model, which makes uniformly distributed random guesses
for all five classes. Nevertheless, the results also show that none of the models was able to reach a
macro 5 1 score of over 0.5. Moreover, it can be seen that there is no universal model that reached
the best score for each of the five classes of relations, and each model has its own strengths and
weaknesses for the different classes. For the classes “ ”, “f”,“unrelated” and “duplicate”, the

37

6 Evaluation

Model % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

sub-tfIdf1024 0.3545 0.6648 0.375 0.6136 0.2353 0.1136 0.2522 0.1648 0.2097 0.0739
mult-tfIdf1024,*=+�86A0< 0.2308 0.0682 0.2254 0.1818 0.2351 0.4489 0.5596 0.6932 0.3333 0.25
avg-count1024,*=+�86A0< 0.2185 0.1875 0.2453 0.0739 0.2061 0.1932 0.2612 0.5284 0.1806 0.1591

concat-count512 0.3388 0.233 0.4468 0.2386 0.2438 0.2216 0.3411 0.5852 0.2906 0.3352
issue_vector-count512 0.3985 0.3011 0.3971 0.3068 0.2564 0.1705 0.3436 0.5682 0.2709 0.3125
cosConcat-count8192 0.4264 0.3125 0.5385 0.3977 0.2486 0.2557 0.4263 0.7727 0.2562 0.1761

uniCosConcat-sentence512 0.5062 0.4659 0.5058 0.4943 0.2523 0.1591 0.7124 0.6193 0.2908 0.4659
sumConcat-count8192 0.4694 0.2614 0.4889 0.375 0.2619 0.1875 0.394 0.75 0.2688 0.2841

topic-count1024,*=+�86A0< 0.3401 0.3807 0.4423 0.2614 0.229 0.1705 0.3946 0.6591 0.2078 0.1818

Table 6.1: Precision and Recall measures for the different models.

Model 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
sub-tfIdf1024 0.4625 0.4655 0.1533 0.1993 0.1092 0.278

mult-tfIdf1024,*=+�86A0< 0.1053 0.2013 0.3086 0.6193 0.2857 0.304
avg-count1024,*=+�86A0< 0.2018 0.1135 0.1994 0.3496 0.1692 0.2067

concat-count512 0.2761 0.3111 0.2321 0.431 0.3113 0.3123
issue_vector-count512 0.343 0.3462 0.2048 0.4283 0.2902 0.3225
cosConcat-count8192 0.3607 0.4575 0.2521 0.5495 0.2088 0.3657

uniCosConcat-sentence512 0.4852 0.5 0.1951 0.6626 0.3581 0.4402
sumConcat-count8192 0.3358 0.4244 0.2185 0.5166 0.2762 0.3543

topic-count1024,*=+�86A0< 0.3592 0.3286 0.1954 0.4936 0.1939 0.3141

Table 6.2: Precision and Recall measures for the different models.

“UniCosConcat.” model (introduced in Section 4.6) reached the best 5 1 scores with scores of about
0.49, 0.5, 0.66, 0.36 respectively, while the “mult.” model (introduced in Section 4.2) reached the
best 5 1 score for the class “!” with a score of about 0.31.

The results of the models listed in Table 6.2 yield that almost every model reached a relatively low
5 1 score for the! class. As stated previously, the highest 5 1 score was reached by the “Mult.”
model with an 5 1 score of about 0.31, which is a considerable amount higher than the score for the
second-best model, the “CosConcat.” model with an 5 1 score of about 0.25. However, examining
the precision and recall creating the 5 1 score of the “Mult.” model shows that the reason for its
comparably high 5 1 score is a relatively high recall value of 0.4459. Its precision lags behind and
is even lower than the precision of the “CosConcat.” model with a score of 0.2351 compared to
0.2486. Moreover, both the “CosConcat.” and the “Mult.” model are the only models with lower
precision than recall.

The highest precision in this class was reached by the “SumConcat.” model, with a value of about
0.26. However, the recall of the “SumConcat.” model is with about 0.19, significantly lower than
its precision. Therefore, it only reached the fourth-highest 5 1 score of this class. It got surpassed
by the “Concat.” model with an 5 1 score of about 0.23. Nevertheless, the rest of the models, with
the exception of the “issue” vector model with an 5 1 score of 0.2048, lie below 0.2.

On the “duplicate” class the models reached on average a slightly higher 5 1 score compared to the
! class. The “duplicate” class can be split into two categories: Models with an 5 1 score under
0.21 and models with an 5 1 score over 0.27. For the models under 0.21, the best model is the

38

6.1 Results

“CosConcat.” model, with an 5 1 score of 0.2088, closely followed by the “Topic” model with an
5 1 score of 0.19 lower by about 0.02. About 0.2 lower than that lies with an 5 1 score of about
0.17 the “Avg.” model, followed by the “Sub.” model with an 5 1 score of about 0.11. For all those
models, their recall is lower than their precision. While the recall is only about 0.02 lower than the
precision for the “Avg.” model, the recall for the “Topic”, “CosConcat.” and “Sub.” models are
lower by about 0.03, 0.08 and 0.14 respectively.

For the other half of the models with an 5 1 score of over 0.27, the worst performing models are the
“SumConcat.” model with an 5 1 score of 0.2762 followed by the “Mult.” model with an 5 1 score
of about 0.29 and the “Issue-vector” model with an 5 1 score of about 0.29 for the “duplicate” class.
The best two models for this class are the “Concat.” model and the “UniCosConcat.” model with
5 1 scores of about 0.31 and 0.36 respectively. As can be seen in Table 6.1, for this models, their
precision for this class is lower than their recall.

For the models of this half, their precision is lower than their recall. For the “SumConcat.” model,
the precision is lower by about 0.01, which is the least difference compared to the other models in
this category. The other models have differences of about 0.04 for the “Issue-vector” model, 0.05
for the “Concat.” model and even 0.18 for the “UniCosConcat.” model between their precision and
recall. The only model in this category, for which this does not hold, is the “Mult.” model with a
about 0.08 higher precision than recall.

For the other three classes, ,f and especially the “unrelated” class, the models performed on
average better than for the previous classes. Moreover, with the exception of the “Sub.” model with
an 5 1 score of about 0.2, which is worse than the ones for the classesf and , all other models
reached their highest 5 1 score for the “unrelated” class. The second lowest 5 1 score was reached
by the “Avg.” model for this class, followed by the“Issue-vector” and the “Concat.” model with
5 1 scores of about 0.43. The other models performed a lot better with 5 1 scores of about 0.49
for the “Topic” model, 0.52 for the “SumConcat.” model and 0.55 for the “CosConcat.” model.
Nevertheless, those models are still far worse than the “UniCosConcat.” model with an 5 1 score of
0.6626 for the “unrelated” class. Moreover, with the exception of the “Sub.” model with a relatively
low 5 1 score, the “UniCosConcat.” model is the only model, which has a higher precision than
recall, with a precision slightly higher than 0.7 and a recall of about 0.62. The other models have a
far higher recall compared to their precision for this class.

Comparing the model’s yields, that for the class, the best models are the “UniCosConcat.” model
and the “Sub.” model. Both models reached an 5 1 score of over 0.4 with an 5 1 score of about
0.46 for the “Sub.” model and an 5 1 score of about 0.49 for the “UniCosConcat.” model. Those
models performed by far better than the subsequent best models (the “CosConcat.” model and
the “Topic” model), which reached 5 1 scores of about 0.36. In addition to that, the “Issue-vector”
model and the “SumConcat.” model are also not too far off with 5 1 scores of about 0.34. The worst
performing models for this class are the “Concat.” model with an 5 1 score of about 0.28 followed
by the “Mult.” model and the “Avg.” model with scores of about 0.2 and 0.11 respectively. For this
class, with the exception of the “Sub.”, and the “Topic” model, all models have a better precision
than recall.

For thef class, the same holds, with the exception of the “Topic” model, which has this time a
considerate higher precision. Besides the best models for this class are again the “UniCosConcat.”
and the “Sub.” model with 5 1 scores of about 0.5 and 0.47 respectively. Moreover, for this class,
the “CosConcat.” and the “sumCount” model both reached a comparably high 5 1 score with an

39

6 Evaluation

5 1 score of about 0.46 for the “CosConcat.” and one of about 0.42 for the “SumConcat.” model.
Those scores are considerably higher than the ones of the next models, the “Issue-vector” model,
the “Topic” model and the “Concat.” model with values of about 0.35, 0.33 and 0.31 respectively.
The worst models are the “Mult.” model with a score of about 0.2 and the “Avg.” model at around
0.11. For the classesf and roughly the half of the models reached similar results for their 5 1
scores which only differ by about 0.03 (the “UniCosConcat.”, “Sub.”, “Concat.”, “Issue-vector” and
the “Topic” model).

6.2 Discussion

This section analyses the results presented in section Section 6.1. First, the research question posed
in the introduction and its acceptance/rejection gets discussed. Afterwards, the different models and
their vectorisation methods get analysed in detail.

6.2.1 Discussion of the Research Question

The research question posed in the introduction was “How can relationships between issues that
possibly target independently managed software projects be detected?” is solved through most
of the models presented in Chapter 4 (excluded the average mode, which is producing more or
less random results). Therefore, using a siamese-like network that classifies the relation for two
given issues can detect issues, which can be even from different repositories. Nevertheless, as can
be seen in Section 6.1 different models have different strengths and weaknesses. Our best model,
according to our findings, is the “UniCosConcat.” model using the Universal Sentence Encoder
to create document embeddings. Even though it is the best model by a relatively large margin, it
is still not able to detect every relationship between the issues, and it is also not able to reach a
truly high performance. In addition, it was outperformed for the class! by the “Mult.” model.
Moreover, it can be seen that the classification task for the “duplicate” class and especially the!
class seems to be the most challenging one for the models. This is indicated by the better models
having a considerable higher recall than precision for this class. Therefore, there is still room for
improvement.

6.2.2 Model Comparison

The element-wise subtraction had a profound impact on the models’ performance to predict issues
of the classesf and . That can be seen by all of the models using an element-wise subtraction
as part of the merging layer having a better 5 1 score for those classes than the “Mult.” or “Avg.”
model. Nevertheless, the high 5 1 score for those classes for the “Sub.” model can be traced back
to a comparably high recall. At the same time, the precision of the “Sub.” model for predicting
the classes f, and is comparably poor, which indicates that the model was just focused on
predicting one of those two classes. Therefore, it is beneficial to use a slightly more sophisticated
model for this task, like the ones using the concatenation of the element-wise subtraction, average
and multiplication in addition to either the topic distribution, cosine similarity or even the issue
vectors themselves.

40

6.2 Discussion

For detecting “unrelated” issues, our results show that an element-wise multiplication has a profound
impact. This can be seen by comparing the models “Avg.” and “Sub.” with the rest, which uses
element-wise multiplication within their merging layer. All of the classes using an element-wise
multiplication have a precision of over 0.3 for the “unrelated” class, while the ones not using it
reached a precision under 0.27. The “Avg.” class reached a comparably high recall for this class
with about 0.53. Nevertheless, the recall for all classes using the element-wise multiplication was
higher than 0.56 (only the “Concat.” and “Issue-vector” model were under 0.6, and some models
reached even a recall over 0.7). The element-wise multiplication even has an slight advantage in
predicting “duplicates”. This advantage, however, is minimal because the precision of the “Topic”
model has a worse precision than 0.25 while the other models have a higher precision than 0.25 for
identifying “dupicate” issues and are thus about 0.05 better than the “Avg.” and “Sub.” model. Also,
except for the “CosConcat.” and the “Topic” model, the recall for those models is also significantly
higher by being higher than 0.28 while the other classes are below 0.2. The cosine values without
weighting might be responsible for the lower values because the “CosConcat.” and the “Topic”
model are the only two models with an unweighted cosine value.

The cosine similarity of the topics seems to have a relatively low impact. Comparing the “concat.”
model and the “Topic” model shows that using the topic similarity mostly leads to a better recall
for thef and class. Also, it has a profound impact on identifying unrelated issues, as can be
seen by the higher precision and recall compared to the “Concat.” model. Nevertheless, it is at
the expense of the “duplicate” class and the “!” class. Here, the problem may be issue relations,
where issues may be classified as “duplicate” or “!” (the two largest classes) while actually not
being members of them as stated in Section 6.3.

The cosine impact of the document vectors themselves, on the other hand, had a profound impact
on the classification. Both models, the “CosConcat.” one and the “UniCosConcat.” one reached
the best macro 5 1 scores of all models. Comparing them to the other models shows that using the
cosine similarity of the document vectors leads to a drastic increase in precision for the classesf,
 and “unrelated”. Nevertheless, comparing the unweighted cosine similarity of the “CosConcat.”
model with the “Concat.” model reveals that the “duplicate” class suffers under the unweighted
cosine similarity due to its low recall. However, weighting the model (as with the “UniCosConcat.”)
normalises the precision and enhances the recall. However, this is again at the cost of the recall of
the! class. Nevertheless, the precision of unweighted cosine similarity is still worse than with
the plain multiplication. The reason for those issues is probably that the weighting of the cosine
similarity can hardly adjust according to the document length. Therefore, the impact even after the
weighting is either too big or too small depending on the often occurring words in a document.

Besides, a weighting of sorts also has a relatively positive impact on the classification of issue
relations. This can be seen by the “SumConcat.” in comparison to the “Concat.” model. Except
for a slight decrease in precision for the “duplicate” class, the precision increased for every class.
Nevertheless, this does not seem to hold for the recall, which was worse for the “duplicate” as well
as for the “!” class.

The unary vectors resulted of the “UniCosConcat.” model resulted in an overall better 5 1 score.
However, the! class suffered under it, as can be seen in comparison to the “CosConcat.” one. So
applying a weighting of sorts always seems to have a negative impact on this class, which may be
due to the reasons mentioned in Section 6.3.

41

6 Evaluation

Threats of
Validity

Internal
Validity

Construct
Validity

External
Validity

Possibly misclassified
data

Possible bias in
the annotated data-set

No cross- validation
due to special data

Only trained for
the English language

Possible influence of
issue templates

Balanced data does not
represent real data

Different structural representations
of issues across IMS may
not be represented accurately

Measured agreement over all
classes, not specific ones

Figure 6.1: Overview of threats to validity of this thesis’ concept.

Also worth mentioning is that the simpler models like the “Sub.” and the “Mult.” model still
outperformed the more sophisticated models in the classes at which they were good. Therefore, a
more complex model does not necessarily lead to better 5 1 scores, as can be seen in the case of the
! class, for which all models have trouble getting a high 5 1 score.

6.2.3 Vectorisation Methods

From the vectorisation results presented in the results section, it can be deduced that the BOW
methods, as well as the sentence encoder, lead to the best embeddings for this task. While the BOW
vectorisation strategies work for many of our classifiers, the sentence encoder works best when the
vectors have been previously transformed to euclidean vectors. Besides, the worst vectorisation
results were the ones of the averaged embeddings as well as the uSIF ones. Nevertheless, the
uSIF method was able to beat the average one constantly. In addition, we did not find significant
differences in using pretrained GloVe embeddings over the fastText ones. The poor performance
of those embeddings can be traced back to the relatively long document length, which presents a
problem for most sentence embeddings obtained by word embeddings [CKS+17]. This was probably
also a challenging task for the sentence encoder due to the document length.

6.3 Threats to Validity

This section discusses what might threaten the validity of our results. It is divided into three parts:
The internal validity discussed in Section 6.3.1, the external validity discussed in Section 6.3.2, and
the construct validity in Section 6.3.3. Figure 6.1 depicts and summarises the threats to the validity
of this thesis’ concept.

42

6.3 Threats to Validity

6.3.1 Internal Validity

One threat is that the annotators in GitHub presumably put a lot of effort into identifying bugs and
duplicates, but the other relations did not receive much attention. That might have led to issues
lying in the “!” class (where the direction is not known), which are probably members of the “f”
or “ ” classes, which in turn could have influenced the classifiers’ predictions (the same holds for
the “duplicate” class).

In addition, the training, testing, and validation data sets are completely distinct from one another,
and the “unrelated” issues are created from them. Therefore, we did not use cross-validation or a
stratified split to train the models. However, this in itself could lead to the bias of us just seeing one
result for the test set, which might not represent the data as a whole. We attempt to lessen the bias
by using only the best vectoriser for each model on the test set to mitigate this. Nevertheless, this
might not have nullified the bias.

Another threat to the internal validity is our own and the participant’s biases. In order to validate
the data, two annotated data sets were created, which reached a substantial agreement according to
Landis and Koch [LK77]. Nevertheless, the data might be influenced by opinion and interpretation.
Also, we did not inquire experts of the repository, and therefore the relations extracted might not be
the actual relations.

6.3.2 External Validity

A threat to the external validity is the use of issue templates within the issues scraped. We tried to
reduce the bias posed by issue templates by using many different repositories. However, the risk
might not be fully mitigated and therefore a generalisation for all issues irrespective of the utilised
issue template is not possible. In addition, the issues were collected from GitHub, and because of
its open-source nature, the comments of the users might not live up to the quality of the comments
of closed repositories such as the ones in IMS such as Jira etc.

Another threat to the external validity is the use of the English language. For our issues, we collected
issues that were written in English. Therefore, our models will unavoidably lead to worse results for
other languages or ones using multilingual phrases.

A different threat is that the models were trained on the same amount of data samples for each class,
so it is as “fair” as possible for each class. However, this leads to the model not reflecting the real
world distribution, such as “unrelated” issues being more common than “duplicated” ones, when
creating an IRG for a whole repository.

The last external validity threat we identified is the use of the GitHub issues themselves. GitHub
issues may be structured differently across different IMS such as Jira, Redmine etc. Therefore, they
may not be represented in our models the right way.

43

6 Evaluation

6.3.3 Construct Validity

For measuring the agreement with respect to the annotation between ours and the participant’s, we
used Cohen’s kappa. However, we did not look further into which classes were mismatched in detail,
so there might be a higher miss-match of one class over the others, which could have influenced our
data set and is therefore not taken into account by the kappa value.

44

7 Conclusion

This chapter presents a summary of this thesis. In addition, it lists the advantages and limitations of
our findings. Lastly, it lists the lessons learned and provides an outlook for the future work.

7.1 Summary

The research question this thesis aims to solve is “How can relationships between issues that possibly
target independently managed software projects be detected?”.

To solve this research question, a data set of issue relations had to be created. Those issue relations
were gathered from multiple GitHub repositories listed in Table A.19. GitHub was chosen because
of the ease of accessing issues as well as the sheer amount of different repositories publicly available.
The relations themselves were extracted by searching for GitHub mentions within the comments of
an issue. The class was extracted from the comments of the issues and the comment of the annotator
linking those issues (the other comments sometimes disagreed with the annotator of the comment).
Using multiple repositories and cross-component/cross-repository issues resulted in a data set of
over 2000 issues relations, which target independently managed software projects. Moreover, we
conducted an expert survey to evaluate the accuracy of the classes, which resulted in a kappa value
of 0.7041, representing a “substantial agreement” according to Landis and Koch [LK77] and a
“fair to good” agreement according to Fleiss. Using the issues and relations, we created the data
by using the issue title, body and the comment bodies up to the specific mention, whose string
representations we concatenated using line-breaks. This ensures that the relation type is not directly
stated in the data while the data contains the most information possible. Moreover, we constructed
unrelated issues to provide five possible categories a issue pair of the data can belong to (“� �,
�f �, �!− �, �! �, � 3D?;820C4 �” 1, where A and B are the issues provided.)

The models for the classification are split into two parts; A vectorisation part, a the classification
model part. This leads to the ability of testing different vectorisation strategies for the different
classifiers, The vectorisation strategies can be categorised into the BOW vectoriser, the word
embedding vectoriser and the sentence embedding vectoriser. For the BOW vectoriser, different
vocabulary lengths (512, 1024, 8192, 16384), the use of bigrams in addition to unigrams and the
usage of a tf-idf weighting in comparison to a “count” vectoriser were tested. For the word
embeddings, we tested two kinds of embeddings: pre-trained GloVe embeddings based 5.6� uncased
tokens from Wikipedia 2014 and Gigaword2, and fasttext embeddings. The word embeddings were

1“A depends on B” B � � “B depends on A” B �f � “A and B do not have a relation” B �!− � “A and
B have a mutual relation” B �! � “A and B are duplicates” B �3D?;820C4�

2https://github.com/RaRe-Technologies/gensim-data/releases/tag/glove-wiki-gigaword-100

45

7 Conclusion

then combined to form sentence embeddings using average weighting or uSIF. The last vectorisation
method was the universal sentence encoder3 which is trained and optimised for greater-than-word
length texts.

The classification models have a siamese network-like structure. They take in two4 inputs and then
merge both vectors in the merging layer together to form a vector representation of both vectors.
This vector representation representing both documents then gets passed into a fully connected
dense softmax layer, which predicts the class the two issues belong to. For those classification
models, we created nine different merging strategies and evaluated them against each other.

The baseline model was a model with an element-wise subtraction as a merging layer to combine
both vectors. The second model tested was using an element-wise multiplication and the third an
element-wise averaging. The fourth model uses a concatenation of the previous merging techniques
for the merge. The fifth model follows this approach by using the cosine similarity in addition
to the concatenation. The sixth model uses unary weighted vectors in addition to the cosine
similarity and the concatenation. The seventh model is also based on the concatenation one but
appends three new dimensions onto the final vector, the length of the element-wise subtraction,
average and multiplication vectors. The eighth model appends the issue vectors themselves onto the
concatenation. The ninth model has four inputs and uses the topic label predictions using a LDA
topic model in addition to the vectorised documents. Then, it calculates the cosine distance between
the topics and appends this onto the concatenation of the element-wise average, multiplication,
subtraction.

Our results show that the BOW vectorisation strategies are able to outperform the sentence embed-
dings constructed by the word embeddings for every model. The sentence/document embeddings
obtained by the universal sentence encoder were almost as good as the BOW approach, except for
the unary weighted vectors, in which it outperformed BOW. The different merging strategies showed
that it is indeed possible to detect related issues. Moreover, we concluded, that using an element wise
subtraction allows the model to predict dependent relations. Further, using multiplication allows
the model to distinguish related from unrelated issues, and using concatenation of the different
models combined their capabilities into one model. However, the “specialised” models are better
suited for their respective tasks. Using LDA- generated labels yields only a small advantage for
classifying unrelated issues, and appending the issue vectors onto the concatenation helps it to find
the direction of dependent issues. Using the summation and the cosine similarity helped the model
to find the direction of a dependent relation and helps in distinguishing duplicates at the cost of the
duplicate detection. Using unit vectors in addition to the cosine similarity and the concatenation led
to the best results with a macro 5 1 score of about 0.44 whose only disadvantage is the classification
of!.

Lastly, we created a microservice architecture consisting of the vectorisation service and the
classification service to build a scalable solution for identifying the issue relations for multiple
issues.

3https://tfhub.dev/google/universal-sentence-encoder/4
4except for the LDA one

46

7.2 Benefits

7.2 Benefits

Using our software, software developers are able to find possibly related issues in a system and,
therefore, are able to detect the origins of issues. Moreover, by splitting the software up into
vectorisation and classification, the resource-heavy vectorisation process can be scaled up. This
reduces the time to generate vector representations out of the issues before passing them into the
classifier for comparison. Even though the results are not yet fully matured, it is still a massive leap
over not having cross-component issues/issue origins identified and marked as such.

7.3 Limitations

A limitation of our model is that they are not good at the task of plain deduplication. In addition to
that, our models were trained using English data. Therefore it does not support multiple languages
or multilingual issues/data. Another limitation is that our models have been trained on GitHub
issues and, therefore, are not necessarily representing issues from other IMS.

7.4 Lessons Learned

The task of identifying issue relations is a complex task for humans and machines alike, and there is
still a lot of potential in this area of research. Also, in most GitHub repositories, the issues are just
marked as “duplicated” or “related”, but the direction of the relationship is often unclear, which led
to a bunch of relations we could not use. This could have been different with issues from different
IMS such as Redmine or Jira, which also support multiple relation types. Also, it was surprising
to see that a lot of the models have a comparably low effort on detecting dependent issues of the
classesf and .

7.5 Future Work

In the future, we want to find out if the usernames or issue date difference have a positive impact
on the predictions of our model, similar to Klein’s et al. publication for duplicate bug detec-
tion [KCK14]. Moreover, we want to try out different non-siamese model architectures to see how
they are performing on that task. In addition, there are still other vectorisation methods worth
testing, such as using ELMo [PNI+18] embeddings. Furthermore, we want to test our software in a
production environment to evaluate the impact of using our microservice on the productivity of
software developer teams. Also, we plan to get rid of the influence of certain issue templates by
trying to filter them out. Moreover, the amount of issues is still not satisfactory. Therefore we want
to try gathering more data.

47

Bibliography

[18] RedmineIssues - Redmine. https://www.redmine.org/projects/redmine/wiki/
RedmineIssues. (Accessed on 12/17/2020). 27.12 2018 (cit. on pp. 2, 5).

[20a] Link an issue | Jira Software Cloud | Atlassian Support. https://support.atlassian.
com/jira-software-cloud/docs/link-an-issue/. (Accessed on 12/17/2020). Nov.
2020 (cit. on pp. 2, 5).

[20b] Mastering Issues · GitHub Guides. https://guides.github.com/features/issues/.
(Accessed on 12/17/2020). July 2020 (cit. on pp. 2, 5).

[AHS13] A. Alipour, A. Hindle, E. Stroulia. “A contextual approach towards more accurate du-
plicate bug report detection”. In: 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE. 2013, pp. 183–192 (cit. on p. 15).

[ALM16] S. Arora, Y. Liang, T. Ma. “A simple but tough-to-beat baseline for sentence embed-
dings”. In: (2016) (cit. on p. 9).

[BAPM15] S. R. Bowman, G. Angeli, C. Potts, C. D. Manning. A large annotated corpus for
learning natural language inference. 2015. arXiv: 1508.05326 [cs.CL] (cit. on pp. 15,
16).

[BGJM17] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov. “Enriching Word Vectors with Sub-
word Information”. In: Transactions of the Association for Computational Linguistics
5 (2017), pp. 135–146. issn: 2307-387X (cit. on p. 9).

[BGL+93] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah. “Signature verification using
aßiamese”time delay neural network”. In: Advances in neural information processing
systems 6 (1993), pp. 737–744 (cit. on p. 11).

[BJS+08] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, T. Zimmermann. “What
makes a good bug report?” In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. ACM. 2008, pp. 308–318 (cit. on
p. 5).

[BMCG15] Y. Belinkov, M. Mohtarami, S. Cyphers, J. Glass. “VectorSLU: A continuous word
vector approach to answer selection in community question answering systems”. In:
Proceedings of the 9th international workshop on semantic evaluation (SemEval
2015). 2015, pp. 282–287 (cit. on p. 9).

[CCD08] P. Cunningham, M. Cord, S. J. Delany. “Supervised learning”. In: Machine learning
techniques for multimedia. Springer, 2008, pp. 21–49 (cit. on p. 6).

[CKS+17] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes. “Supervised learning of
universal sentence representations from natural language inference data”. In: arXiv
preprint arXiv:1705.02364 (2017) (cit. on pp. 10, 28, 30, 42).

49

https://www.redmine.org/projects/redmine/wiki/RedmineIssues
https://www.redmine.org/projects/redmine/wiki/RedmineIssues
https://support.atlassian.com/jira-software-cloud/docs/link-an-issue/
https://support.atlassian.com/jira-software-cloud/docs/link-an-issue/
https://guides.github.com/features/issues/
https://arxiv.org/abs/1508.05326

Bibliography

[CMS17] E. A. Corrêa Júnior, V. Q. Marinho, L. B. dos Santos. “NILC-USP at SemEval-2017
Task 4: A Multi-view Ensemble for Twitter Sentiment Analysis”. In: Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017). Vancouver,
Canada: Association for Computational Linguistics, Aug. 2017, pp. 611–615. doi:
10.18653/v1/S17-2100. url: https://www.aclweb.org/anthology/S17-2100 (cit. on
p. 9).

[Coh60] J. Cohen. “A coefficient of agreement for nominal scales”. In: Educational and
psychological measurement 20.1 (1960), pp. 37–46 (cit. on p. 7).

[CT+94] W. B. Cavnar, J. M. Trenkle, et al. “N-gram-based text categorization”. In: Proceed-
ings of SDAIR-94, 3rd annual symposium on document analysis and information
retrieval. Vol. 161175. Citeseer. 1994 (cit. on p. 8).

[CYK+18] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, Y.-H. Sung, B. Strope, R. Kurzweil. Universal
Sentence Encoder. 2018. arXiv: 1803.11175 [cs.CL] (cit. on p. 10).

[CZL+17] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, D. Inkpen. “Enhanced LSTM for
Natural Language Inference”. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (2017). doi:
10.18653/v1/p17-1152. url: http://dx.doi.org/10.18653/v1/P17-1152 (cit. on
pp. 15, 16).

[DCLT19] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL]

(cit. on p. 9).
[DDMR10] I. Dagan, B. Dolan, B. Magnini, D. Roth. “Recognizing Textual Entailment: Rational,

Evaluation And Approaches”. In: Journal of Natural Language Engineering 4 (Jan.
2010). url: https://www.microsoft.com/en-us/research/publication/recognizing
-textual-entailment-rational-evaluation-and-approaches/ (cit. on p. 15).

[Eth18] K. Ethayarajh. “Unsupervised random walk sentence embeddings: A strong but simple
baseline”. In: Proceedings of The Third Workshop on Representation Learning for
NLP. 2018, pp. 91–100 (cit. on pp. 9, 10).

[FL15] M. Fowler, J. Lewis. “Microservices: Nur ein weiteres Konzept in der Soft-
warearchitektur oder mehr?” In: (2015) (cit. on p. 5).

[GW97] W. Greve, D. Wentura. Wissenschaftliche Beobachtung: eine Einführung. Beltz, 1997,
p. 111. isbn: 3-621-27360-3. doi: http://dx.doi.org/10.22028/D291-27212 (cit. on
pp. 7, 20).

[HAS16] A. Hindle, A. Alipour, E. Stroulia. “A contextual approach towards more accurate
duplicate bug report detection and ranking”. In: Empirical Software Engineering 21.2
(2016), pp. 368–410 (cit. on p. 15).

[HBWP13] M. D. Hoffman, D. M. Blei, C. Wang, J. Paisley. “Stochastic variational inference.”
In: Journal of Machine Learning Research 14.5 (2013) (cit. on pp. 12, 13).

50

https://doi.org/10.18653/v1/S17-2100
https://www.aclweb.org/anthology/S17-2100
https://arxiv.org/abs/1803.11175
https://doi.org/10.18653/v1/p17-1152
http://dx.doi.org/10.18653/v1/P17-1152
https://arxiv.org/abs/1810.04805
https://www.microsoft.com/en-us/research/publication/recognizing-textual-entailment-rational-evaluation-and-approaches/
https://www.microsoft.com/en-us/research/publication/recognizing-textual-entailment-rational-evaluation-and-approaches/
https://doi.org/http://dx.doi.org/10.22028/D291-27212

Bibliography

[HM21] T. Hasan, A. Matin. “Extract Sentiment from Customer Reviews: A Better Approach of
TF-IDF and BOW-Based Text Classification Using N-Gram Technique”. In: Proceed-
ings of International Joint Conference on Advances in Computational Intelligence.
Ed. by M. S. Uddin, J. C. Bansal. Singapore: Springer Singapore, 2021, pp. 231–244.
isbn: 978-981-16-0586-4 (cit. on p. 8).

[HS15] M. Hossin, M. Sulaiman. “A review on evaluation metrics for data classification
evaluations”. In: International Journal of Data Mining & Knowledge Management
Process 5.2 (2015), p. 1 (cit. on pp. 6, 13).

[HTF09] T. Hastie, R. Tibshirani, J. Friedman. The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, 2009 (cit. on pp. 6,
23).

[IMBD15] M. Iyyer, V. Manjunatha, J. Boyd-Graber, H. Daumé III. “Deep unordered composition
rivals syntactic methods for text classification”. In: Proceedings of the 53rd annual
meeting of the association for computational linguistics and the 7th international
joint conference on natural language processing (volume 1: Long papers). 2015,
pp. 1681–1691 (cit. on p. 10).

[IUA+20] Z. Imtiaz, M. Umer, M. Ahmad, S. Ullah, G. S. Choi, A. Mehmood. “Duplicate
Questions Pair Detection Using Siamese MaLSTM”. In: IEEE Access 8 (2020),
pp. 21932–21942. doi: 10.1109/ACCESS.2020.2969041 (cit. on p. 11).

[Joa+99] T. Joachims et al. “Transductive inference for text classification using support vector
machines”. In: Icml. Vol. 99. 1999, pp. 200–209 (cit. on pp. 5, 7, 8).

[Joa98] T. Joachims. “Text categorization with support vector machines: Learning with many
relevant features”. In: European conference on machine learning. Springer. 1998,
pp. 137–142 (cit. on p. 8).

[KB17] D. P. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG] (cit. on p. 37).

[KCK14] N. Klein, C. S. Corley, N. A. Kraft. “New features for duplicate bug detection”. In:
Proceedings of the 11th Working Conference on Mining Software Repositories. 2014,
pp. 324–327 (cit. on pp. 15, 47).

[Kli+18] R. Klinger et al. “An analysis of annotated corpora for emotion classification in text”.
In: Proceedings of the 27th International Conference on Computational Linguistics.
2018, pp. 2104–2119 (cit. on pp. 6, 20).

[Kri05] D. Kriesel. Ein kleiner Überblick über Neuronale Netze. dkriesel, 2005. url: http:
//www.dkriesel.com/_media/science/neuronalenetze-de-zeta2-2col-dkrieselcom.

pdf (cit. on p. 11).
[LEN14] Z. C. Lipton, C. Elkan, B. Naryanaswamy. “Optimal thresholding of classifiers to

maximize F1 measure”. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. 2014, pp. 225–239 (cit. on p. 14).

[LK77] J. R. Landis, G. G. Koch. “The Measurement of Observer Agreement for Categorical
Data”. In: Biometrics 33.1 (1977), pp. 159–174. issn: 0006341X, 15410420. url:
http://www.jstor.org/stable/2529310 (cit. on pp. 7, 20, 43, 45).

51

https://doi.org/10.1109/ACCESS.2020.2969041
https://arxiv.org/abs/1412.6980
http://www.dkriesel.com/_media/science/neuronalenetze-de-zeta2-2col-dkrieselcom.pdf
http://www.dkriesel.com/_media/science/neuronalenetze-de-zeta2-2col-dkrieselcom.pdf
http://www.dkriesel.com/_media/science/neuronalenetze-de-zeta2-2col-dkrieselcom.pdf
http://www.jstor.org/stable/2529310

Bibliography

[LM14] Q. Le, T. Mikolov. “Distributed representations of sentences and documents”. In:
International conference on machine learning. PMLR. 2014, pp. 1188–1196 (cit. on
p. 10).

[Lov68] J. B. Lovins. “Development of a stemming algorithm.” In: Mech. Transl. Comput.
Linguistics 11.1-2 (1968), pp. 22–31 (cit. on p. 8).

[Man08] C. D. Manning. Introduction to Information Retrieval. https://nlp.stanford.edu/
IR-book/pdf/irbookonlinereading.pdf(visited 2021-06-03). London: Cambridge
University Press, 2008. isbn: 0521865719 (cit. on pp. 5, 7, 10, 20).

[MCCD13] T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient Estimation of Word Representa-
tions in Vector Space. 2013. arXiv: 1301.3781 [cs.CL] (cit. on p. 9).

[MP18] M. M. Mirończuk, J. Protasiewicz. “A recent overview of the state-of-the-art elements
of text classification”. In: Expert Systems with Applications 106 (2018), pp. 36–54.
issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2018.03.058. url:
https://www.sciencedirect.com/science/article/pii/S095741741830215X (cit. on
p. 6).

[MRS08] C. D. Manning, P. Raghavan, H. Schutze. Introduction to Information Retrieval.
https://nlp.stanford.edu/IR-book/pdf/06vect.pdf. (Accessed on 11/26/2020).
2008 (cit. on p. 10).

[MSC+13] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean. “Distributed representations
of words and phrases and their compositionality”. In: arXiv preprint arXiv:1310.4546
(2013) (cit. on p. 9).

[MWC19] C. Malaviya, S. Wu, R. Cotterell. “A simple joint model for improved contextual
neural lemmatization”. In: arXiv preprint arXiv:1904.02306 (2019) (cit. on p. 8).

[New21] S. Newman. Building microservices. Ö’Reilly Media, Inc.”, 2021 (cit. on p. 5).
[NNN+12] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, C. Sun. “Duplicate Bug Report

Detection with a Combination of Information Retrieval and Topic Modeling”. In:
(2012) (cit. on pp. 15, 31).

[OB19] J. Opitz, S. Burst. “Macro f1 and macro f1”. In: arXiv preprint arXiv:1911.03347
(2019) (cit. on p. 14).

[PNI+18] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer.
“Deep contextualized word representations”. In: Proc. of NAACL. 2018 (cit. on p. 47).

[PSM14] J. Pennington, R. Socher, C. D. Manning. “Glove: Global vectors for word repre-
sentation”. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). 2014, pp. 1532–1543 (cit. on p. 9).

[PTDU16] A. P. Parikh, O. Täckström, D. Das, J. Uszkoreit. A Decomposable Attention Model
for Natural Language Inference. 2016. arXiv: 1606.01933 [cs.CL] (cit. on p. 15).

[RBH+16] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek,
M. Kramer, K. Krogmann. Modeling and simulating software architectures: The
Palladio approach. MIT Press, 2016 (cit. on p. 5).

[RG19] N. Reimers, I. Gurevych. “Sentence-bert: Sentence embeddings using siamese bert-
networks”. In: arXiv preprint arXiv:1908.10084 (2019) (cit. on pp. 10, 12, 27, 30).

[Ric17] C. Richardson. Microservice Patterns MEAP. Manning, 2017 (cit. on p. 5).

52

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://arxiv.org/abs/1301.3781
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.058
https://www.sciencedirect.com/science/article/pii/S095741741830215X
https://nlp.stanford.edu/IR-book/pdf/06vect.pdf
https://arxiv.org/abs/1606.01933

Bibliography

[SBB20] S. Speth, U. Breitenbücher, S. Becker. “Gropius—A Tool for Managing Cross-
component Issues”. In: European Conference on Software Architecture. Springer.
2020, pp. 82–94 (cit. on pp. 2, 5).

[SBB21] S. Speth, S. Becker, U. Breitenbücher. “Cross-Component Issue Metamodel and
Modelling Language.” In: CLOSER. 2021, pp. 304–311 (cit. on p. 2).

[SGM02] C. Szyperski, D. Gruntz, S. Murer. Component software: beyond object-oriented
programming. Pearson Education, 2002 (cit. on p. 5).

[Tom18] A. Tomar. Topic modeling using Latent Dirichlet Allocation(LDA) and Gibbs Sam-
pling explained! | by Ankur Tomar | Analytics Vidhya | Medium. https://medium.
com/analytics-vidhya/topic-modeling-using-lda-and-gibbs-sampling-explained-

49d49b3d1045. (Accessed on 07/13/2021). Nov. 2018 (cit. on p. 13).
[Ull11] J. Ullman. Mining of massive datasets. Cambridge University Press, 2011 (cit. on

p. 8).
[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

I. Polosukhin. “Attention is all you need”. In: arXiv preprint arXiv:1706.03762 (2017)
(cit. on p. 10).

All links were last followed on August 20, 2021.

53

https://medium.com/analytics-vidhya/topic-modeling-using-lda-and-gibbs-sampling-explained-49d49b3d1045
https://medium.com/analytics-vidhya/topic-modeling-using-lda-and-gibbs-sampling-explained-49d49b3d1045
https://medium.com/analytics-vidhya/topic-modeling-using-lda-and-gibbs-sampling-explained-49d49b3d1045

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.246 0.3433 0.3028 0.3209 0.2151 0.1493 0.2086 0.2164 0.1468 0.1194
tfIdf512 0.3524 0.5522 0.4083 0.6642 0.2388 0.1194 0.2308 0.2015 0.2069 0.0896

count512,*=+�86A0< 0.1769 0.194 0.3 0.2463 0.2406 0.2388 0.2308 0.2463 0.2482 0.2537
tfIdf512,*=+�86A0< 0.3397 0.5299 0.3349 0.5373 0.2167 0.097 0.2358 0.2164 0.2222 0.1045

count1024 0.3282 0.3209 0.2177 0.2388 0.1504 0.1269 0.2416 0.2687 0.2692 0.2612
tfIdf1024 0.3691 0.6418 0.3818 0.6269 0.2063 0.097 0.2727 0.2239 0.3409 0.1119

count1024,*=+�86A0< 0.2222 0.2239 0.3642 0.4104 0.156 0.1642 0.2019 0.1567 0.2086 0.2164
tfIdf1024,*=+�86A0< 0.3409 0.5597 0.3934 0.6194 0.1739 0.0896 0.2727 0.2239 0.2333 0.1045

count8192 0.268 0.306 0.3442 0.3955 0.2439 0.1493 0.2083 0.2239 0.1898 0.194
tfIdf8192 0.3611 0.6791 0.3957 0.6791 0.275 0.0821 0.2451 0.1866 0.2174 0.0746

count8192,*=+�86A0< 0.3099 0.3284 0.1987 0.2239 0.1887 0.1493 0.1824 0.2313 0.2871 0.2164
tfIdf8192,*=+�86A0< 0.3438 0.5746 0.3632 0.6045 0.2535 0.1343 0.2642 0.209 0.3043 0.1045

count16384 0.3377 0.3806 0.2714 0.2836 0.2394 0.1269 0.1895 0.2164 0.1484 0.1716
tfIdf16384 0.3684 0.6791 0.3766 0.6493 0.2444 0.0821 0.2 0.1418 0.25 0.097

count16384,*=+�86A0< 0.2026 0.2313 0.1697 0.209 0.2121 0.1567 0.2013 0.2313 0.1616 0.1194
tfIdf16384,*=+�86A0< 0.362 0.597 0.3923 0.6119 0.1757 0.097 0.2455 0.2015 0.3214 0.1343

ft0E6 0.3021 0.4328 0.2723 0.4552 0.1636 0.0672 0.2131 0.194 0.1818 0.1045
glove0E6 0.2922 0.4776 0.2675 0.4552 0.1493 0.0746 0.2323 0.1716 0.1754 0.0746

ftDB8 5 0.3081 0.4552 0.2406 0.3358 0.1395 0.0896 0.2358 0.2164 0.25 0.1418
gloveDB8 5 0.3037 0.4851 0.2949 0.4776 0.1688 0.097 0.1591 0.1045 0.2162 0.1194

sentence512 0.3911 0.791 0.3961 0.7537 0.2093 0.0672 0.2121 0.1045 0.2286 0.0597

Table A.1: Precision and Recall measures for the different Sub vectorisation configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.2866 0.3116 0.1762 0.2125 0.1317 0.2237
tfIdf512 0.4302 0.5057 0.1592 0.2151 0.125 0.287

count512,*=+�86A0< 0.1851 0.2705 0.2397 0.2383 0.2509 0.2369
tfIdf512,*=+�86A0< 0.414 0.4126 0.134 0.2257 0.1421 0.2657

count1024 0.3245 0.2278 0.1377 0.2544 0.2652 0.2419
tfIdf1024 0.4687 0.4746 0.132 0.2459 0.1685 0.2979

count1024,*=+�86A0< 0.223 0.386 0.16 0.1765 0.2125 0.2316
tfIdf1024,*=+�86A0< 0.4237 0.4812 0.1182 0.2459 0.1443 0.2827

count8192 0.2857 0.3681 0.1852 0.2158 0.1919 0.2493
tfIdf8192 0.4715 0.5 0.1264 0.2119 0.1111 0.2842

count8192,*=+�86A0< 0.3188 0.2105 0.1667 0.2039 0.2468 0.2293
tfIdf8192,*=+�86A0< 0.4302 0.4538 0.1756 0.2333 0.1556 0.2897

count16384 0.3579 0.2774 0.1659 0.2021 0.1592 0.2325
tfIdf16384 0.4777 0.4767 0.1229 0.1659 0.1398 0.2766

count16384,*=+�86A0< 0.216 0.1873 0.1803 0.2153 0.1373 0.1872
tfIdf16384,*=+�86A0< 0.4507 0.4781 0.125 0.2213 0.1895 0.2929

ft0E6 0.3558 0.3408 0.0952 0.2031 0.1327 0.2255
glove0E6 0.3626 0.337 0.0995 0.1974 0.1047 0.2202

ftDB8 5 0.3675 0.2804 0.1091 0.2257 0.181 0.2327
gloveDB8 5 0.3736 0.3647 0.1232 0.1261 0.1538 0.2283

sentence512 0.5235 0.5193 0.1017 0.14 0.0947 0.2758

Table A.2: 5 1 measures for the different Sub vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.1583 0.1418 0.2338 0.1343 0.1967 0.1791 0.3275 0.694 0.2388 0.1194
tfIdf512 0.2899 0.1493 0.275 0.0821 0.2151 0.2761 0.4835 0.6567 0.3961 0.6119

count512,*=+�86A0< 0.2576 0.1269 0.2591 0.3731 0.2627 0.2313 0.3833 0.6493 0.2576 0.1269
tfIdf512,*=+�86A0< 0.2195 0.0672 0.2973 0.1642 0.2118 0.2687 0.4241 0.709 0.3851 0.4627

count1024 0.1933 0.1716 0.2586 0.1119 0.2222 0.2388 0.3939 0.6791 0.2627 0.2313
tfIdf1024 0.2564 0.1493 0.2708 0.097 0.214 0.3881 0.5673 0.7239 0.3308 0.3209

count1024,*=+�86A0< 0.2609 0.0448 0.2201 0.2612 0.2737 0.194 0.3477 0.7239 0.3333 0.2836
tfIdf1024,*=+�86A0< 0.25 0.1269 0.2955 0.097 0.2414 0.3134 0.5185 0.7313 0.3795 0.5522

count8192 0.2903 0.2015 0.23 0.1716 0.22 0.2463 0.4206 0.791 0.2667 0.1493
tfIdf8192 0.2154 0.1045 0.3111 0.1045 0.2275 0.4328 0.5538 0.7687 0.3529 0.3134

count8192,*=+�86A0< 0.2252 0.1866 0.2466 0.1343 0.2292 0.2463 0.4487 0.8806 0.2785 0.1642
tfIdf8192,*=+�86A0< 0.2 0.0373 0.2785 0.1642 0.2159 0.4254 0.5964 0.7388 0.3382 0.3433

count16384 0.3034 0.2015 0.2105 0.1194 0.1872 0.2836 0.5116 0.8209 0.2644 0.1716
tfIdf16384 0.2778 0.0373 0.2444 0.1642 0.2231 0.403 0.5303 0.7836 0.3852 0.3507

count16384,*=+�86A0< 0.3514 0.194 0.1839 0.1194 0.2323 0.2687 0.4226 0.8358 0.3596 0.2388
tfIdf16384,*=+�86A0< 0.2 0.0075 0.2672 0.2313 0.2211 0.3284 0.5549 0.7537 0.3036 0.3806

ft0E6 0.2955 0.097 0.2439 0.0746 0.2034 0.0896 0.272 0.7836 0.2786 0.291
glove0E6 0.0 0.0 0.1818 0.0299 0.2041 0.0746 0.27 0.2015 0.1864 0.694

ftDB8 5 0.32 0.0597 0.2255 0.1716 0.2889 0.097 0.2861 0.7836 0.3588 0.3507
gloveDB8 5 0.2105 0.0299 0.2 0.0299 0.2742 0.1269 0.402 0.597 0.2378 0.6567

sentence512 0.0 0.0 0.1732 0.2313 0.1719 0.2836 0.8769 0.4254 0.1527 0.2313

Table A.3: Precision and Recall measures for the different Mult vectorisation configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.1496 0.1706 0.1875 0.445 0.1592 0.2224
tfIdf512 0.197 0.1264 0.2418 0.557 0.4809 0.3206

count512,*=+�86A0< 0.17 0.3058 0.246 0.482 0.17 0.2748
tfIdf512,*=+�86A0< 0.1029 0.2115 0.2368 0.5307 0.4203 0.3004

count1024 0.1818 0.1563 0.2302 0.4986 0.246 0.2626
tfIdf1024 0.1887 0.1429 0.2759 0.6361 0.3258 0.3139

count1024,*=+�86A0< 0.0764 0.2389 0.2271 0.4697 0.3065 0.2637
tfIdf1024,*=+�86A0< 0.1683 0.1461 0.2727 0.6068 0.4498 0.3287

count8192 0.2379 0.1966 0.2324 0.5492 0.1914 0.2815
tfIdf8192 0.1407 0.1564 0.2982 0.6438 0.332 0.3142

count8192,*=+�86A0< 0.2041 0.1739 0.2374 0.5945 0.2066 0.2833
tfIdf8192,*=+�86A0< 0.0629 0.2066 0.2864 0.66 0.3407 0.3113

count16384 0.2422 0.1524 0.2255 0.6304 0.2081 0.2917
tfIdf16384 0.0658 0.1964 0.2872 0.6325 0.3672 0.3098

count16384,*=+�86A0< 0.25 0.1448 0.2491 0.5614 0.287 0.2985
tfIdf16384,*=+�86A0< 0.0144 0.248 0.2643 0.6392 0.3377 0.3007

ft0E6 0.1461 0.1143 0.1244 0.4038 0.2847 0.2147
glove0E6 0.0 0.0513 0.1093 0.2308 0.2938 0.137

ftDB8 5 0.1006 0.1949 0.1453 0.4192 0.3547 0.2429
gloveDB8 5 0.0523 0.0519 0.1735 0.4805 0.3492 0.2215

sentence512 0.0 0.1981 0.2141 0.5729 0.184 0.2338

Table A.4: 5 1 measures for the different Mult vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.1829 0.1119 0.1538 0.0597 0.1484 0.1418 0.204 0.5299 0.2333 0.1045
tfIdf512 0.0 0.0 0.087 0.0149 0.1633 0.0597 0.2069 0.8507 0.2326 0.0746

count512,*=+�86A0< 0.2268 0.1642 0.1683 0.1269 0.1383 0.097 0.2082 0.5299 0.2703 0.0746
tfIdf512,*=+�86A0< 0.2308 0.0224 0.1429 0.0075 0.2241 0.097 0.2098 0.8657 0.1538 0.0448

count1024 0.2212 0.1866 0.0 0.0 0.2353 0.1791 0.2252 0.6269 0.3387 0.1567
tfIdf1024 0.0714 0.0075 0.3333 0.0149 0.1525 0.0672 0.2115 0.8806 0.2424 0.0597

count1024,*=+�86A0< 0.3265 0.2388 0.1972 0.1045 0.1769 0.194 0.2727 0.5149 0.2277 0.1716
tfIdf1024,*=+�86A0< 0.0 0.0 0.0714 0.0075 0.1803 0.0821 0.212 0.8731 0.2439 0.0746

count8192 0.24 0.0896 0.1532 0.1269 0.2034 0.1791 0.231 0.6119 0.1667 0.0448
tfIdf8192 0.1 0.0149 0.1333 0.0149 0.2022 0.1343 0.2058 0.7985 0.1538 0.0299

count8192,*=+�86A0< 0.2241 0.097 0.32 0.0597 0.165 0.2463 0.253 0.6194 0.2203 0.097
tfIdf8192,*=+�86A0< 0.1176 0.0149 0.0 0.0 0.1959 0.1418 0.2199 0.8731 0.087 0.0149

count16384 0.1647 0.1045 0.1304 0.0224 0.1857 0.097 0.2425 0.7836 0.2034 0.0896
tfIdf16384 0.1724 0.0373 0.1667 0.0299 0.175 0.1045 0.2222 0.8507 0.1667 0.0299

count16384,*=+�86A0< 0.1739 0.0299 0.2542 0.1119 0.2 0.1791 0.2356 0.7313 0.2692 0.1045
tfIdf16384,*=+�86A0< 0.0 0.0 0.1429 0.0075 0.2449 0.1791 0.2144 0.8657 0.2353 0.0299

ft0E6 0.2407 0.097 0.1525 0.0672 0.3333 0.1269 0.1827 0.4254 0.1598 0.2313
glove0E6 0.1818 0.0896 0.125 0.0149 0.1531 0.1119 0.2021 0.2836 0.2053 0.4627

ftDB8 5 0.2143 0.0896 0.1875 0.0448 0.2295 0.1045 0.2107 0.5896 0.2123 0.2313
gloveDB8 5 0.1429 0.0299 0.2344 0.1119 0.2245 0.1642 0.2359 0.5 0.1939 0.2836

sentence512 0.0 0.0 0.0 0.0 0.2791 0.0896 0.2196 0.8881 0.1571 0.0821

Table A.5: Precision and Recall measures for the different Avg vectorisation configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.1389 0.086 0.145 0.2946 0.1443 0.1618
tfIdf512 0.0 0.0255 0.0874 0.3328 0.113 0.1117

count512,*=+�86A0< 0.1905 0.1447 0.114 0.2989 0.117 0.173
tfIdf512,*=+�86A0< 0.0408 0.0142 0.1354 0.3377 0.0694 0.1195

count1024 0.2024 0.0 0.2034 0.3314 0.2143 0.1903
tfIdf1024 0.0135 0.0286 0.0933 0.341 0.0958 0.1144

count1024,*=+�86A0< 0.2759 0.1366 0.1851 0.3566 0.1957 0.23
tfIdf1024,*=+�86A0< 0.0 0.0135 0.1128 0.3411 0.1143 0.1163

count8192 0.1304 0.1388 0.1905 0.3354 0.0706 0.1731
tfIdf8192 0.026 0.0268 0.1614 0.3272 0.05 0.1183

count8192,*=+�86A0< 0.1354 0.1006 0.1976 0.3593 0.1347 0.1855
tfIdf8192,*=+�86A0< 0.0265 0.0 0.1645 0.3514 0.0255 0.1136

count16384 0.1279 0.0382 0.1275 0.3704 0.1244 0.1577
tfIdf16384 0.0613 0.0506 0.1308 0.3524 0.0506 0.1291

count16384,*=+�86A0< 0.051 0.1554 0.189 0.3564 0.1505 0.1805
tfIdf16384,*=+�86A0< 0.0 0.0142 0.2069 0.3437 0.053 0.1236

ft0E6 0.1383 0.0933 0.1838 0.2556 0.189 0.172
glove0E6 0.12 0.0267 0.1293 0.236 0.2844 0.1593

ftDB8 5 0.1263 0.0723 0.1436 0.3104 0.2214 0.1748
gloveDB8 5 0.0494 0.1515 0.1897 0.3206 0.2303 0.1883

sentence512 0.0 0.0 0.1356 0.3521 0.1078 0.1191

Table A.6: 5 1 measures for the different Avg vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.4133 0.2313 0.3858 0.3657 0.2595 0.306 0.3873 0.5896 0.2453 0.194
tfIdf512 0.3553 0.2015 0.4235 0.2687 0.26 0.097 0.2225 0.6194 0.2791 0.1791

count512,*=+�86A0< 0.3804 0.2612 0.3425 0.1866 0.2061 0.2537 0.3476 0.6045 0.2897 0.2313
tfIdf512,*=+�86A0< 0.3088 0.1567 0.3864 0.2537 0.2143 0.0896 0.2262 0.6567 0.3188 0.1642

count1024 0.2889 0.194 0.31 0.2313 0.2407 0.194 0.3443 0.6269 0.2422 0.2313
tfIdf1024 0.2897 0.2313 0.3933 0.2612 0.1296 0.0522 0.2066 0.5597 0.1404 0.0597

count1024,*=+�86A0< 0.3103 0.2687 0.3667 0.1642 0.2199 0.2313 0.331 0.7015 0.3188 0.1642
tfIdf1024,*=+�86A0< 0.2874 0.1866 0.4318 0.2836 0.1897 0.0821 0.2114 0.5821 0.25 0.1269

count8192 0.3458 0.2761 0.4066 0.2761 0.2025 0.2463 0.4241 0.709 0.2235 0.1418
tfIdf8192 0.3421 0.291 0.4811 0.3806 0.1724 0.0746 0.1955 0.5224 0.1471 0.0373

count8192,*=+�86A0< 0.3723 0.2612 0.3273 0.2687 0.2024 0.1269 0.3137 0.7164 0.25 0.1418
tfIdf8192,*=+�86A0< 0.3039 0.2313 0.3883 0.2985 0.1719 0.0821 0.2039 0.5522 0.2632 0.0746

count16384 0.3762 0.2836 0.3659 0.3358 0.1917 0.1716 0.417 0.7313 0.2198 0.1493
tfIdf16384 0.375 0.3358 0.463 0.3731 0.1754 0.0746 0.1953 0.5 0.2143 0.0672

count16384,*=+�86A0< 0.378 0.2313 0.3492 0.3284 0.2162 0.1791 0.4024 0.7388 0.2667 0.209
tfIdf16384,*=+�86A0< 0.3404 0.2388 0.4815 0.291 0.1463 0.0896 0.2021 0.5672 0.1622 0.0448

ft0E6 0.2262 0.1418 0.2143 0.1343 0.1951 0.0597 0.2556 0.6866 0.2277 0.1716
glove0E6 0.3241 0.2612 0.2817 0.2985 0.1304 0.0448 0.2312 0.2985 0.1841 0.2761

ftDB8 5 0.2576 0.1269 0.1667 0.0896 0.1154 0.0224 0.2892 0.7985 0.3603 0.3657
gloveDB8 5 0.3333 0.2612 0.3036 0.2537 0.2128 0.0746 0.2707 0.4627 0.1977 0.2612

sentence512 0.424 0.3955 0.431 0.3731 0.3793 0.0821 0.2107 0.5299 0.1905 0.0896

Table A.7: Precision and Recall measures for the different Concat vectorisation configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.2967 0.3755 0.2808 0.4675 0.2167 0.3274
tfIdf512 0.2571 0.3288 0.1413 0.3274 0.2182 0.2546

count512,*=+�86A0< 0.3097 0.2415 0.2274 0.4414 0.2573 0.2955
tfIdf512,*=+�86A0< 0.2079 0.3063 0.1263 0.3365 0.2167 0.2387

count1024 0.2321 0.265 0.2149 0.4444 0.2366 0.2786
tfIdf1024 0.2573 0.3139 0.0745 0.3018 0.0838 0.2063

count1024,*=+�86A0< 0.288 0.2268 0.2255 0.4498 0.2167 0.2814
tfIdf1024,*=+�86A0< 0.2262 0.3423 0.1146 0.3101 0.1683 0.2323

count8192 0.3071 0.3289 0.2222 0.5307 0.1735 0.3125
tfIdf8192 0.3145 0.425 0.1042 0.2846 0.0595 0.2376

count8192,*=+�86A0< 0.307 0.2951 0.156 0.4364 0.181 0.2751
tfIdf8192,*=+�86A0< 0.2627 0.3376 0.1111 0.2978 0.1163 0.2251

count16384 0.3234 0.3502 0.1811 0.5312 0.1778 0.3127
tfIdf16384 0.3543 0.4132 0.1047 0.2809 0.1023 0.2511

count16384,*=+�86A0< 0.287 0.3385 0.1959 0.5211 0.2343 0.3154
tfIdf16384,*=+�86A0< 0.2807 0.3628 0.1111 0.298 0.0702 0.2246

ft0E6 0.1743 0.1651 0.0914 0.3725 0.1957 0.1998
glove0E6 0.2893 0.2899 0.0667 0.2606 0.2209 0.2255

ftDB8 5 0.17 0.1165 0.0375 0.4246 0.363 0.2223
gloveDB8 5 0.2929 0.2764 0.1105 0.3416 0.2251 0.2493

sentence512 0.4093 0.4 0.135 0.3015 0.1218 0.2735

Table A.8: 5 1 measures for the different Concat vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.3426 0.2761 0.338 0.1791 0.2 0.2537 0.2983 0.5299 0.1928 0.1194
tfIdf512 0.3372 0.2164 0.4176 0.2836 0.2449 0.0896 0.275 0.6567 0.3468 0.3209

count512,*=+�86A0< 0.4086 0.2836 0.3438 0.2463 0.1948 0.2239 0.354 0.597 0.2178 0.1642
tfIdf512,*=+�86A0< 0.3151 0.1716 0.3977 0.2612 0.2281 0.097 0.2578 0.6791 0.3434 0.2537

count1024 0.296 0.2761 0.3415 0.3134 0.2418 0.2761 0.4 0.6418 0.1852 0.0746
tfIdf1024 0.307 0.2612 0.3556 0.2388 0.2206 0.1119 0.2872 0.6343 0.3039 0.2313

count1024,*=+�86A0< 0.3368 0.2388 0.3671 0.2164 0.2541 0.3507 0.3532 0.5299 0.3273 0.2687
tfIdf1024,*=+�86A0< 0.2841 0.1866 0.382 0.2537 0.2297 0.1269 0.2701 0.6269 0.3148 0.2537

count8192 0.3425 0.3731 0.4211 0.2985 0.2155 0.1866 0.4306 0.694 0.2268 0.1642
tfIdf8192 0.3492 0.3284 0.4825 0.4104 0.2394 0.1269 0.2635 0.5448 0.3293 0.2015

count8192,*=+�86A0< 0.396 0.2985 0.3566 0.3433 0.1953 0.1866 0.4163 0.7239 0.2025 0.1194
tfIdf8192,*=+�86A0< 0.2897 0.2313 0.375 0.2687 0.2278 0.1343 0.2484 0.5896 0.2571 0.1343

count16384 0.3542 0.3806 0.4684 0.2761 0.2014 0.209 0.3824 0.6791 0.2143 0.1119
tfIdf16384 0.3636 0.3284 0.4464 0.3731 0.2429 0.1269 0.2527 0.5299 0.3488 0.2239

count16384,*=+�86A0< 0.3434 0.2537 0.3778 0.2537 0.2772 0.209 0.3591 0.7985 0.2805 0.1716
tfIdf16384,*=+�86A0< 0.3333 0.2463 0.4773 0.3134 0.1959 0.1418 0.25 0.5746 0.2949 0.1716

ft0E6 0.2125 0.1269 0.2099 0.1269 0.2286 0.0597 0.2548 0.6866 0.2478 0.209
glove0E6 0.2857 0.2687 0.2358 0.1866 0.1552 0.0672 0.2535 0.2687 0.1891 0.3358

ftDB8 5 0.2895 0.1642 0.2055 0.1119 0.1786 0.0373 0.2877 0.7687 0.3778 0.3806
gloveDB8 5 0.3053 0.2164 0.2871 0.2164 0.2069 0.0896 0.2892 0.4403 0.1981 0.3134

sentence512 0.432 0.403 0.4262 0.3881 0.3143 0.0821 0.2305 0.5299 0.1625 0.097

Table A.9: Precision and Recall measures for the different CosConcat vectorisation configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.3058 0.2341 0.2237 0.3817 0.1475 0.2586
tfIdf512 0.2636 0.3378 0.1311 0.3877 0.3333 0.2907

count512,*=+�86A0< 0.3348 0.287 0.2083 0.4444 0.1872 0.2923
tfIdf512,*=+�86A0< 0.2222 0.3153 0.1361 0.3737 0.2918 0.2678

count1024 0.2857 0.3268 0.2578 0.4928 0.1064 0.2939
tfIdf1024 0.2823 0.2857 0.1485 0.3953 0.2627 0.2749

count1024,*=+�86A0< 0.2795 0.2723 0.2947 0.4239 0.2951 0.3131
tfIdf1024,*=+�86A0< 0.2252 0.3049 0.1635 0.3775 0.281 0.2704

count8192 0.3571 0.3493 0.2 0.5314 0.1905 0.3257
tfIdf8192 0.3385 0.4435 0.1659 0.3552 0.25 0.3106

count8192,*=+�86A0< 0.3404 0.3498 0.1908 0.5286 0.1502 0.312
tfIdf8192,*=+�86A0< 0.2573 0.313 0.169 0.3496 0.1765 0.2531

count16384 0.3669 0.3474 0.2051 0.4892 0.1471 0.3111
tfIdf16384 0.3451 0.4065 0.1667 0.3422 0.2727 0.3066

count16384,*=+�86A0< 0.2918 0.3036 0.2383 0.4954 0.213 0.3084
tfIdf16384,*=+�86A0< 0.2833 0.3784 0.1645 0.3484 0.217 0.2783

ft0E6 0.1589 0.1581 0.0947 0.3717 0.2267 0.202
glove0E6 0.2769 0.2083 0.0938 0.2609 0.2419 0.2164

ftDB8 5 0.2095 0.1449 0.0617 0.4187 0.3792 0.2428
gloveDB8 5 0.2533 0.2468 0.125 0.3491 0.2428 0.2434

sentence512 0.417 0.4062 0.1302 0.3213 0.1215 0.2792

Table A.10: 5 1 measures for the different CosConcat vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.3725 0.4254 0.4155 0.4403 0.1889 0.1269 0.3057 0.4403 0.3913 0.2687
tfIdf512 0.4029 0.4179 0.4658 0.5075 0.1711 0.097 0.3866 0.5597 0.3652 0.3134

count512,*=+�86A0< 0.3622 0.3433 0.4898 0.3582 0.2 0.1194 0.2874 0.5448 0.3694 0.306
tfIdf512,*=+�86A0< 0.4365 0.4104 0.5294 0.4701 0.1791 0.0896 0.3306 0.597 0.3534 0.306

count1024 0.4 0.3731 0.4062 0.3881 0.15 0.1119 0.3205 0.5597 0.3133 0.194
tfIdf1024 0.4274 0.3731 0.4697 0.4627 0.2621 0.2015 0.3946 0.6567 0.4 0.2836

count1024,*=+�86A0< 0.3952 0.3657 0.4215 0.3806 0.1868 0.1269 0.3226 0.597 0.3721 0.2388
tfIdf1024,*=+�86A0< 0.4 0.3582 0.439 0.403 0.2041 0.1493 0.371 0.6119 0.3148 0.2537

count8192 0.4257 0.3209 0.5303 0.2612 0.2275 0.2836 0.2996 0.6194 0.3559 0.1567
tfIdf8192 0.4239 0.291 0.5185 0.3134 0.25 0.2985 0.3552 0.6866 0.4231 0.2463

count8192,*=+�86A0< 0.4713 0.306 0.6071 0.2537 0.2405 0.2836 0.3253 0.709 0.3247 0.1866
tfIdf8192,*=+�86A0< 0.4681 0.3284 0.5 0.306 0.2518 0.2612 0.3495 0.7537 0.4091 0.2015

count16384 0.3846 0.1493 0.4655 0.2015 0.25 0.4254 0.2842 0.5896 0.3704 0.1493
tfIdf16384 0.4177 0.2463 0.5263 0.2985 0.2515 0.306 0.3225 0.6642 0.3816 0.2164

count16384,*=+�86A0< 0.3768 0.194 0.5167 0.2313 0.2412 0.306 0.3065 0.709 0.3279 0.1493
tfIdf16384,*=+�86A0< 0.4576 0.2015 0.5395 0.306 0.2789 0.306 0.3234 0.7313 0.3294 0.209

ft0E6 0.25 0.2164 0.2241 0.194 0.2963 0.0597 0.253 0.4701 0.216 0.2612
glove0E6 0.3246 0.2761 0.2803 0.2761 0.0962 0.0373 0.2812 0.3358 0.2075 0.3284

ftDB8 5 0.2574 0.194 0.2604 0.1866 0.2292 0.0821 0.2824 0.5373 0.2588 0.3284
gloveDB8 5 0.2903 0.2015 0.2593 0.209 0.1458 0.0522 0.3179 0.4627 0.2345 0.3955

sentence512 0.4505 0.3731 0.44 0.4104 0.2737 0.194 0.5548 0.6418 0.2826 0.3881

Table A.11: Precision and Recall measures for the different UniCosConcat vectorisation configura-
tions.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.3972 0.4275 0.1518 0.3609 0.3186 0.3312
tfIdf512 0.4103 0.4857 0.1238 0.4573 0.3373 0.3629

count512,*=+�86A0< 0.3525 0.4138 0.1495 0.3763 0.3347 0.3254
tfIdf512,*=+�86A0< 0.4231 0.498 0.1194 0.4255 0.328 0.3588

count1024 0.3861 0.3969 0.1282 0.4076 0.2396 0.3117
tfIdf1024 0.3984 0.4662 0.2278 0.493 0.3319 0.3835

count1024,*=+�86A0< 0.3798 0.4 0.1511 0.4188 0.2909 0.3281
tfIdf1024,*=+�86A0< 0.378 0.4202 0.1724 0.462 0.281 0.3427

count8192 0.366 0.35 0.2525 0.4039 0.2176 0.318
tfIdf8192 0.3451 0.3907 0.2721 0.4682 0.3113 0.3575

count8192,*=+�86A0< 0.371 0.3579 0.2603 0.446 0.237 0.3344
tfIdf8192,*=+�86A0< 0.386 0.3796 0.2564 0.4775 0.27 0.3539

count16384 0.2151 0.2812 0.3149 0.3835 0.2128 0.2815
tfIdf16384 0.3099 0.381 0.2761 0.4341 0.2762 0.3355

count16384,*=+�86A0< 0.2562 0.3196 0.2697 0.4279 0.2051 0.2957
tfIdf16384,*=+�86A0< 0.2798 0.3905 0.2918 0.4485 0.2557 0.3333

ft0E6 0.232 0.208 0.0994 0.329 0.2365 0.221
glove0E6 0.2984 0.2782 0.0538 0.3061 0.2543 0.2382

ftDB8 5 0.2213 0.2174 0.1209 0.3702 0.2895 0.2439
gloveDB8 5 0.2379 0.2314 0.0769 0.3769 0.2944 0.2435

sentence512 0.4082 0.4247 0.2271 0.5952 0.327 0.3964

Table A.12: 5 1 measures for the different UniCosConcat vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.4262 0.194 0.2879 0.1418 0.2174 0.2612 0.3208 0.5746 0.3028 0.3209
tfIdf512 0.3841 0.3955 0.4621 0.4552 0.2368 0.0672 0.2943 0.5821 0.4124 0.2985

count512,*=+�86A0< 0.413 0.4254 0.4068 0.1791 0.2188 0.209 0.2863 0.5448 0.2889 0.194
tfIdf512,*=+�86A0< 0.3629 0.3358 0.4545 0.3731 0.2895 0.0821 0.2623 0.597 0.3656 0.2537

count1024 0.3579 0.2537 0.3488 0.2239 0.2328 0.3284 0.4269 0.5448 0.2791 0.2687
tfIdf1024 0.3611 0.3881 0.469 0.5075 0.2273 0.0746 0.29 0.5821 0.3824 0.194

count1024,*=+�86A0< 0.3219 0.3507 0.4468 0.1567 0.2586 0.2239 0.3713 0.6567 0.2016 0.1866
tfIdf1024,*=+�86A0< 0.3852 0.3507 0.4365 0.4104 0.2174 0.0746 0.2687 0.5896 0.3415 0.209

count8192 0.4175 0.3209 0.3981 0.3209 0.2319 0.2388 0.4404 0.7164 0.2913 0.2239
tfIdf8192 0.4014 0.4254 0.4603 0.4328 0.2698 0.1269 0.2857 0.5522 0.375 0.2239

count8192,*=+�86A0< 0.3509 0.2985 0.3711 0.2687 0.1884 0.194 0.3731 0.7239 0.2623 0.1194
tfIdf8192,*=+�86A0< 0.3704 0.3731 0.4508 0.4104 0.2581 0.1194 0.25 0.5448 0.2712 0.1194

count16384 0.4396 0.2985 0.3763 0.2612 0.1908 0.2164 0.4424 0.7164 0.2479 0.2164
tfIdf16384 0.4044 0.4104 0.4553 0.4179 0.3016 0.1418 0.2704 0.5448 0.359 0.209

count16384,*=+�86A0< 0.4909 0.2015 0.3871 0.3582 0.2047 0.194 0.3785 0.709 0.2212 0.1866
tfIdf16384,*=+�86A0< 0.3937 0.3731 0.4912 0.4179 0.2533 0.1418 0.2708 0.5597 0.3766 0.2164

ft0E6 0.2188 0.1045 0.2099 0.1269 0.1622 0.0448 0.2657 0.694 0.2464 0.2537
glove0E6 0.2906 0.2537 0.2632 0.1493 0.1475 0.0672 0.2289 0.2836 0.204 0.3806

ftDB8 5 0.2297 0.1269 0.2308 0.1119 0.1395 0.0448 0.3028 0.8134 0.3516 0.3358
gloveDB8 5 0.34 0.2537 0.3084 0.2463 0.24 0.0896 0.2851 0.4851 0.2054 0.2836

sentence512 0.4203 0.4328 0.4359 0.3806 0.3571 0.0746 0.2445 0.5821 0.1618 0.0821

Table A.13: Precision and Recall measures for the different SumConcat vectorisation configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.2667 0.19 0.2373 0.4118 0.3116 0.2835
tfIdf512 0.3897 0.4586 0.1047 0.391 0.3463 0.3381

count512,*=+�86A0< 0.4191 0.2487 0.2137 0.3753 0.2321 0.2978
tfIdf512,*=+�86A0< 0.3488 0.4098 0.1279 0.3645 0.2996 0.3101

count1024 0.2969 0.2727 0.2724 0.4787 0.2738 0.3189
tfIdf1024 0.3741 0.4875 0.1124 0.3871 0.2574 0.3237

count1024,*=+�86A0< 0.3357 0.232 0.24 0.4744 0.1938 0.2952
tfIdf1024,*=+�86A0< 0.3672 0.4231 0.1111 0.3692 0.2593 0.306

count8192 0.3629 0.3554 0.2353 0.5455 0.2532 0.3505
tfIdf8192 0.413 0.4462 0.1726 0.3766 0.2804 0.3378

count8192,*=+�86A0< 0.3226 0.3117 0.1912 0.4924 0.1641 0.2964
tfIdf8192,*=+�86A0< 0.3717 0.4297 0.1633 0.3427 0.1658 0.2946

count16384 0.3556 0.3084 0.2028 0.547 0.2311 0.329
tfIdf16384 0.4074 0.4358 0.1929 0.3614 0.2642 0.3323

count16384,*=+�86A0< 0.2857 0.3721 0.1992 0.4935 0.2024 0.3106
tfIdf16384,*=+�86A0< 0.3831 0.4516 0.1818 0.365 0.2749 0.3313

ft0E6 0.1414 0.1581 0.0702 0.3843 0.25 0.2008
glove0E6 0.2709 0.1905 0.0923 0.2533 0.2656 0.2145

ftDB8 5 0.1635 0.1508 0.0678 0.4413 0.3435 0.2334
gloveDB8 5 0.2906 0.2739 0.1304 0.3591 0.2382 0.2584

sentence512 0.4265 0.4064 0.1235 0.3444 0.1089 0.2819

Table A.14: 5 1 measures for the different SumConcat vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

count512 0.4444 0.4179 0.4507 0.2388 0.1553 0.1866 0.3891 0.694 0.274 0.1493
tfIdf512 0.3289 0.1866 0.4634 0.2836 0.2364 0.097 0.2281 0.6418 0.275 0.1642

count512,*=+�86A0< 0.3585 0.2836 0.4186 0.2687 0.2069 0.2239 0.3506 0.6567 0.2561 0.1567
tfIdf512,*=+�86A0< 0.2949 0.1716 0.4 0.2836 0.2653 0.097 0.2207 0.6194 0.2778 0.1493

count1024 0.4045 0.2687 0.3243 0.2687 0.2037 0.2463 0.4096 0.5746 0.2583 0.2313
tfIdf1024 0.2989 0.194 0.3766 0.2164 0.1746 0.0821 0.2193 0.6269 0.2167 0.097

count1024,*=+�86A0< 0.3955 0.3955 0.3889 0.209 0.2442 0.1567 0.3308 0.6493 0.2174 0.1866
tfIdf1024,*=+�86A0< 0.2857 0.1642 0.4483 0.291 0.1724 0.0746 0.2174 0.597 0.3125 0.1866

count8192 0.3478 0.4179 0.3918 0.2836 0.225 0.2015 0.408 0.6119 0.1978 0.1343
tfIdf8192 0.3611 0.291 0.4667 0.3134 0.1625 0.097 0.2129 0.5672 0.2857 0.0746

count8192,*=+�86A0< 0.4286 0.2463 0.3212 0.3955 0.2258 0.209 0.3982 0.6567 0.1807 0.1119
tfIdf8192,*=+�86A0< 0.3299 0.2388 0.4524 0.2836 0.25 0.194 0.2266 0.597 0.25 0.0597

count16384 0.3889 0.3134 0.3846 0.3358 0.2469 0.1493 0.3333 0.7761 0.2692 0.1045
tfIdf16384 0.38 0.2836 0.4742 0.3433 0.1842 0.1045 0.2165 0.5672 0.3043 0.1045

count16384,*=+�86A0< 0.322 0.2836 0.3737 0.2761 0.2118 0.1343 0.3623 0.7463 0.2065 0.1418
tfIdf16384,*=+�86A0< 0.3404 0.2388 0.4634 0.2836 0.1923 0.1493 0.2171 0.5672 0.35 0.1045

ft0E6 0.2394 0.1269 0.1918 0.1045 0.2 0.0448 0.252 0.7164 0.2435 0.209
glove0E6 0.2945 0.3209 0.2913 0.2761 0.1562 0.0373 0.2553 0.3582 0.1751 0.2313

ftDB8 5 0.2688 0.1866 0.2295 0.1045 0.1714 0.0448 0.2902 0.7537 0.3835 0.3806
gloveDB8 5 0.3043 0.2612 0.2842 0.2015 0.1887 0.0746 0.2735 0.4776 0.2023 0.2612

sentence512 0.4412 0.3358 0.4455 0.3358 0.2222 0.0896 0.2203 0.5672 0.1765 0.0896

Table A.15: Precision and Recall measures for the different Issue-vector vectoriser configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.4308 0.3122 0.1695 0.4987 0.1932 0.3209
tfIdf512 0.2381 0.3519 0.1376 0.3366 0.2056 0.254

count512,*=+�86A0< 0.3167 0.3273 0.2151 0.4571 0.1944 0.3021
tfIdf512,*=+�86A0< 0.217 0.3319 0.1421 0.3255 0.1942 0.2421

count1024 0.3229 0.2939 0.223 0.4783 0.2441 0.3124
tfIdf1024 0.2353 0.2749 0.1117 0.325 0.134 0.2162

count1024,*=+�86A0< 0.3955 0.2718 0.1909 0.4383 0.2008 0.2995
tfIdf1024,*=+�86A0< 0.2085 0.3529 0.1042 0.3187 0.2336 0.2436

count8192 0.3797 0.329 0.2126 0.4896 0.16 0.3142
tfIdf8192 0.3223 0.375 0.1215 0.3096 0.1183 0.2493

count8192,*=+�86A0< 0.3128 0.3545 0.2171 0.4958 0.1382 0.3037
tfIdf8192,*=+�86A0< 0.2771 0.3486 0.2185 0.3285 0.0964 0.2538

count16384 0.3471 0.3586 0.186 0.4664 0.1505 0.3017
tfIdf16384 0.3248 0.3983 0.1333 0.3134 0.1556 0.2651

count16384,*=+�86A0< 0.3016 0.3176 0.1644 0.4878 0.1681 0.2879
tfIdf16384,*=+�86A0< 0.2807 0.3519 0.1681 0.314 0.1609 0.2551

ft0E6 0.1659 0.1353 0.0732 0.3728 0.2249 0.1944
glove0E6 0.3071 0.2835 0.0602 0.2981 0.1994 0.2297

ftDB8 5 0.2203 0.1436 0.071 0.4191 0.382 0.2472
gloveDB8 5 0.2811 0.2358 0.107 0.3478 0.228 0.2399

sentence512 0.3814 0.383 0.1277 0.3173 0.1188 0.2656

Table A.16: 5 1 measures for the different Issue-vector vectorisation configurations.

Vectoriser % ' %f 'f %! '! %!− '!− %duplicate 'duplicate

512 0.3762 0.2836 0.4348 0.3731 0.219 0.1716 0.3134 0.6269 0.2963 0.1791
tfIdf512 0.3596 0.2388 0.44 0.3284 0.2262 0.1418 0.2898 0.5299 0.2895 0.3284

count512,*=+�86A0< 0.3514 0.291 0.3864 0.2537 0.1961 0.2985 0.3676 0.5075 0.2195 0.1343
tfIdf512,*=+�86A0< 0.3152 0.2164 0.4066 0.2761 0.209 0.1045 0.2552 0.5448 0.2836 0.2836

count1024 0.275 0.1642 0.3163 0.2313 0.2153 0.2313 0.3517 0.6194 0.2321 0.194
tfIdf1024 0.2793 0.2313 0.3878 0.2836 0.23 0.1716 0.2469 0.4403 0.2295 0.209

count1024,*=+�86A0< 0.3529 0.3582 0.3582 0.1791 0.2202 0.2761 0.4009 0.6343 0.3218 0.209
tfIdf1024,*=+�86A0< 0.2929 0.2164 0.3936 0.2761 0.2048 0.1269 0.2764 0.5075 0.2973 0.3284

count8192 0.3016 0.1418 0.3545 0.291 0.1931 0.209 0.3636 0.7164 0.3409 0.2239
tfIdf8192 0.3559 0.3134 0.4561 0.3881 0.2233 0.1716 0.2546 0.4104 0.2353 0.209

count8192,*=+�86A0< 0.3855 0.2388 0.3438 0.3284 0.2054 0.1716 0.37 0.7537 0.2973 0.1642
tfIdf8192,*=+�86A0< 0.3208 0.2537 0.4 0.3134 0.2385 0.194 0.2568 0.4925 0.2151 0.1493

count16384 0.3644 0.3209 0.4327 0.3358 0.1958 0.209 0.4097 0.694 0.1923 0.1119
tfIdf16384 0.3684 0.3134 0.4444 0.3881 0.2321 0.194 0.2582 0.4104 0.2281 0.194

count16384,*=+�86A0< 0.3667 0.1642 0.3565 0.306 0.2171 0.209 0.3796 0.7761 0.25 0.1716
tfIdf16384,*=+�86A0< 0.3333 0.2612 0.5 0.2985 0.1983 0.1791 0.2481 0.4851 0.2353 0.1791

ft0E6 0.2025 0.1194 0.2192 0.1194 0.2031 0.097 0.296 0.6119 0.226 0.2985
glove0E6 0.3038 0.1791 0.2353 0.1493 0.1765 0.1343 0.4318 0.1418 0.1917 0.5149

ftDB8 5 0.2796 0.194 0.2267 0.1269 0.1852 0.0746 0.3029 0.694 0.3121 0.3284
gloveDB8 5 0.3304 0.2761 0.2589 0.2164 0.1475 0.0672 0.2868 0.2761 0.207 0.3955

sentence512 0.408 0.3806 0.4307 0.4403 0.2653 0.097 0.2477 0.3955 0.1862 0.2015

Table A.17: Precision and Recall measures for the different Topic vectoriser configurations.

Vectoriser 5 1 5 1f 5 1! 5 1!− 5 1duplicate macro f1
count512 0.3234 0.4016 0.1925 0.4179 0.2233 0.3117
tfIdf512 0.287 0.3761 0.1743 0.3747 0.3077 0.304

count512,*=+�86A0< 0.3184 0.3063 0.2367 0.4263 0.1667 0.2909
tfIdf512,*=+�86A0< 0.2566 0.3289 0.1393 0.3476 0.2836 0.2712

count1024 0.2056 0.2672 0.223 0.4486 0.2114 0.2712
tfIdf1024 0.2531 0.3276 0.1966 0.3164 0.2188 0.2625

count1024,*=+�86A0< 0.3556 0.2388 0.245 0.4913 0.2534 0.3168
tfIdf1024,*=+�86A0< 0.2489 0.3246 0.1567 0.3579 0.3121 0.28

count8192 0.1929 0.3197 0.2007 0.4824 0.2703 0.2932
tfIdf8192 0.3333 0.4194 0.1941 0.3143 0.2213 0.2965

count8192,*=+�86A0< 0.2949 0.3359 0.187 0.4963 0.2115 0.3051
tfIdf8192,*=+�86A0< 0.2833 0.3515 0.214 0.3376 0.1762 0.2725

count16384 0.3413 0.3782 0.2022 0.5152 0.1415 0.3157
tfIdf16384 0.3387 0.4143 0.2114 0.317 0.2097 0.2982

count16384,*=+�86A0< 0.2268 0.3293 0.2129 0.5098 0.2035 0.2965
tfIdf16384,*=+�86A0< 0.2929 0.3738 0.1882 0.3283 0.2034 0.2773

ft0E6 0.1502 0.1546 0.1313 0.399 0.2572 0.2185
glove0E6 0.2254 0.1826 0.1525 0.2135 0.2794 0.2107

ftDB8 5 0.2291 0.1627 0.1064 0.4218 0.32 0.248
gloveDB8 5 0.3008 0.2358 0.0923 0.2814 0.2718 0.2364

sentence512 0.3938 0.4354 0.1421 0.3046 0.1935 0.2939

Table A.18: 5 1 measures for the different Topic vectorisation configurations.

12699freeCodeCamp/freeCodeCamp 2muchcoffeecom/ngx-restangular AuthorizeNet/sdk-node Automattic/mongoose Azure/AKS BishopFox/h2csmuggler
CaliStyle/ng-intercom Capgemini/Apollo CaptainFact/captain-fact-frontend CellProfiler/CellProfiler CodeChain-io/codechain-explorer Concorda/concorda-dashboard

ContinuumIO/anaconda-issues DHTMLX/angular2-gantt-demo DamonOehlman/travis-multirunner DarkaOnLine/SwaggerLume Dashticz/dashticz DataDog/docker-dd-agent
DefinitelyTyped/DefinitelyTyped EugenMayer/docker-sync ExpDev07/coronavirus-tracker-api FountainJS/generator-fountain-webapp FreeCodeCamp/FreeCodeCamp Gbuomprisco/ngx-chips
GustavoCostaW/ngc-float-button HabitRPG/habitica Homebrew/legacy-homebrew IBM-Cloud/ibm-cloud-developer-tools InterDigitalInc/AdvantEDGE Invis1ble/assistant-client

JamesMGreene/node-flex-sdk JedWatson/classnames JeffreyWay/laravel-mix Julian/jsonschema Ks89/angular-modal-gallery MartinoMensio/spacy-universal-sentence-encoder
MichaIng/DietPi Miserlou/Zappa NationalBankBelgium/stark NativeScript/nativescript-plugin-seed NetApp/trident Norkart/L.Control.NorkartSearch

PIVX-Project/PIVX Painted-Fox/docker-mariadb Painted-Fox/docker-postgresql PatrickJS/angular-starter PyWavelets/pywt RaRe-Technologies/gensim
RasaHQ/rasa ReactTraining/react-router ReactiveX/rxjs Redocly/redoc SamSaffron/graphite3>2:4A SassDoc/gulp-sassdoc

Semantic-Org/Semantic-UI-React Shippable/support SoftwareCarpentryLessonManager/lesson-manager Stannieman/audacity-with-asio-builder SteveLTN/https-portal TrilonIO/aspnetcore-angular-universal
TypeStrong/atom-typescript TypeStrong/ts-loader Unidata/thredds-docker Unitech/pm2 Varying-Vagrant-Vagrants/VVV WoltersKluwerPL/ng-spin-kit

WordPress/gutenberg XervoIO/demeteorizer Yelp/dumb-init Zulko/moviepy aberezkin/ng2-image-upload abiosoft/caddy-docker
adopted-ember-addons/ember-electron agdsn/pycroft ajv-validator/ajv andrewrk/node-s3-cli angular/angular angular/angular-cli

angular/devkit angular/protractor angular/quickstart ansible-collections/community.kubernetes ansible/ansible-modules-core ansible/awx
ant-design/ant-design apache/openwhisk archfz/drup arkon/ng-sidebar aspnet/JavaScriptServices asreview/asreview

atom/atom aurelia/webpack-plugin auth0/angular2-jwt aws-samples/amazon-rekognition-video-analyzer aws/amazon-ecs-agent aws/amazon-sagemaker-examples
aws/amazon-vpc-cni-k8s aws/aws-cli aws/aws-sdk-js aws/aws-sdk-ruby aws/containers-roadmap awslabs/amazon-eks-ami

bcgov/ckanext-openapiviewer beeworking/voyant benpolinsky/artvsartA 402C big-data-europe/docker-hadoop-spark-workbench bitcoin/bitcoin bitcraze/crazyflie-clients-python
bitnami/bitnami-docker-wordpress-nginx bitnami/charts boot2docker/boot2docker boto/botocore bower/bower brave/browser-laptop

brikis98/docker-osx-dev browserify/module-deps brunch/brunch bsidelinger912/react-tooltip-lite callmehiphop/backend canjs/canjs
captivationsoftware/react-sticky carlosedp/cluster-monitoring ceph/ceph-csi channl/dynamodb-lambda-autoscale che-incubator/chectl chenkie/angular-cli-heroku

chili-epfl/FROG cilium/cilium clarity-h2020/simple-table-component clearcontainers/runtime cleverbeagle/pup cli/cli
cloudfleet/blimp-engineroom cloudinary/cloudinary0=6D;0A cloudnativelabs/kube-router clux/symlink codekitchen/dinghy codemirror/CodeMirror

commitizen/cz-cli concourse/concourse conda/conda connext/indra coredns/deployment coreos/bugs
coreos/flannel crisbeto/angular-svg-round-progressbar cypress-io/cypress-test-node-versions d-akara/vscode-extension-fold danielhusar/gulp-remove-empty-lines datacats/datacats

datawire/ambassador davidkpiano/react-redux-form dbashford/mimosa dbfannin/ngx-logger dduportal-dockerfiles/docker-compose deis/deis
deis/postgres deis/workflow derhuerst/vbb-stations-cli deviantony/docker-elk devilbox/docker-php-fpm dhaus97/pi-gen-k8s

digitalascetic/ngx-pica digitalocean/digitalocean-cloud-controller-manager dimpu/ngx-md dminca/docker-phabricator docker-archive/for-azure docker-flow/docker-flow-monitor
docker-java/docker-java docker-library/mongo docker-library/openjdk docker-library/redis docker-library/tomcat docker-library/wordpress

docker-mailserver/docker-mailserver docker-php/docker-php docker/classicswarm docker/cli docker/compose docker/docker-py
docker/for-linux docker/for-mac docker/for-win docker/machine docker/toolbox dockerstuff/docker-dachs

dokku/dokku dokku/dokku-rabbitmq dotnet-architecture/eShopOnContainers dotnet/core dotnet/dotnet-docker dpkp/kafka-python
drone-plugins/drone-s3 drud/ddev drud/vault-consul-on-kube dschnelldavis/angular2-json-schema-form dunovank/jupyter-themes dustinspecker/eslint-plugin-no-use-extend-native
ebi-ait/hca-ebi-dev-team elabftw/elabctl elabftw/elabftw elastic/kibana electron-userland/electron-forge emacs-pe/docker-tramp.el

ember-cli/ember-page-title encode/starlette enricomarino/is enthought/traits ericgio/react-bootstrap-typeahead etcd-io/etcd
ethereum/go-ethereum evertramos/docker-compose-letsencrypt-nginx-proxy-companion explosion/spaCy ezequiel/react-typeahead-component facebook/create-react-app facebook/flow

facebook/jest facebook/react facebook/react-native fastify/fastify-swagger fecgov/fec-cms fecgov/openFEC
filipesilva/angular-quickstart-lib final-form/react-final-form firebase/firebase-js-sdk firoorg/firo fission/fission flannel-io/flannel

flapjack/omnibus-flapjack flowtype/flow-bin flynn/flynn freeCodeCamp/freeCodeCamp fulcrologic/fulcro ga4gh-beacon/specification
gamechanger/dusty gardener/dashboard gardener/gardener gardenlinux/gardenlinux gdlg/panoramic-depth-estimation geerlingguy/ansible-role-docker

geerlingguy/ansible-role-docker0A< geerlingguy/raspberry-pi-dramble getsentry/onpremise gliderlabs/docker-alpine gliderlabs/herokuish gmacario/easy-jenkins
go-delve/delve goharbor/harbor golang/go google-research/motion8<8C0C8>= google/cadvisor google/material-design-icons

googleapis/gcs-resumable-upload googleapis/google-cloud-node googleforgames/agones grafana/grafana grpc-ecosystem/grpc-gateway grpc/grpc
gruntjs/grunt handsontable/angular-handsontable hapijs/hapi hardkernel/linux hardware/mailserver hashicorp/consul

hashicorp/consul-helm hashicorp/nomad hashicorp/packer hashicorp/terraform hashicorp/terraform-provider-aws hashicorp/vault
hasura/graphql-engine helm/charts helm/helm hemanth/node-nightly heroku/heroku-buildpack-ruby hetznercloud/csi-driver

hetznercloud/hcloud-cloud-controller-manager hexops/vecty hilbert/hilbert-cli hirak/prestissimo home-assistant/core hpe-storage/csi-driver
hpe-storage/python-hpedockerplugin hydraslay/ng2-polymer-static-gen hyfen-nl/PIVT hyperledger/besu igraph/python-igraph imagemin/imagemin-guetzli
indiana-university/itpeople-functions intelsdi-x/snap-plugin-collector-docker ionic-team/ionic-app-scripts ionic-team/ionic-framework ios-control/ios-deploy ipfs/js-ipfs

iproduct/course-angular ipython/ipython istio/istio istreamlabs/pebble jadjoubran/webdash-package-json javivelasco/react-css-themr
jaymoulin/google-musicmanager-dedup-api jcmoraisjr/haproxy-ingress jdleesmiller/docker-chat-demo jediproject/generator-jedi jesseduffield/lazydocker jetstack/cert-manager

jfrog/terraform-provider-artifactory jhipster/generator-jhipster johnagan/clean-webpack-plugin jonathantneal/precss joshswan/react-native-globalize jquery/jquery
jschneier/django-storages jshimko/meteor-launchpad jupyter/docker-stacks jupyterlab/jupyterlab just-containers/s6-overlay jvandemo/generator-angular2-library

k3s-io/k3s kaliber5/ember-fastboot-addon-tests kashjs/angular-workshop kata-containers/kata-containers kbst/terraform-provider-kustomization keystonejs/keystone-classic
knative/eventing kolide/launcher krispo/ng2-nvd3 kubeflow/pipelines kubeflow/tf-operator kubermatic/machine-controller

kubernetes-client/csharp kubernetes-client/java kubernetes-retired/heapster kubernetes-retired/kube-aws kubernetes-sigs/kind kubernetes-sigs/kubespray
kubernetes-sigs/sig-windows-tools kubernetes-sigs/vsphere-csi-driver kubernetes/client-go kubernetes/dns kubernetes/ingress-nginx kubernetes/kops

kubernetes/kube-state-metrics kubernetes/kubeadm kubernetes/kubernetes kubernetes/minikube kubernetes/node-problem-detector kubernetes/release
kubernetes/website kubevirt/kubevirt kuzzmi/ember-cli-webfontloader kvaps/kube-linstor l-lin/angular-datatables laantorchaweb/ember-cli-slick

laboratoriobridge/bold lando/lando lerna/lerna less/less.js lfarran/ngx-soundmanager2 liberodark/ODrive
linkerd/linkerd2 linnovate/mean llSourcell/tensorflow2ℎ0C1>C lodash/lodash longhorn/longhorn lovell/sharp

lowerquality/gentle luzifer-docker/mumble lxc/lxc mafintosh/tar-fs mailcow/mailcow-dockerized manekinekko/angular-web-bluetooth
mapbox/npm-internal mapbox/rasterio marcorinck/ngStart mariocasciaro/npm-workspace marko-js/marko matiboy/angular2-prettyjson
matplotlib/matplotlib mattermost/desktop maximegris/angular-electron maximelafarie/ngx-smart-modal mdn/infra mesosphere/marathon

metallb/metallb meteor/meteor meumobi/ion-ams-report mgechev/angular-seed microsoft/OMS-Agent-for-Linux microsoft/TypeScript
microsoft/TypeScript-React-Starter microsoft/WSL microsoft/dotnet-computevirtualization microsoft/fluentui microsoft/go-winio microsoft/hcsshim

microsoft/navcontainerhelper microsoft/pxt microsoft/types-publisher microsoft/vscode microsoft/vscode-vsce miguelcobain/ember-cli-selectize
mininet/mininet minio/mc minishift/minishift mitodl/micromasters mkuchin/docker-registry-web mne-tools/mne-python

mobxjs/mobx-react moby/libnetwork moby/moby moff/angular2-flash-messages mohsinulhaq/react-popper-tooltip mono/docker
moribvndvs/ng2-idle moroshko/react-autosuggest mozilla-mobile/firefox-ios mozilla/fxa-auth-server mozilla/vinz-clortho mpalourdio/ng-http-loader

mperrin/poppy mquan/cortex mui-org/material-ui nats-io/k8s ng-alain/ng-alain ng-hal/ng-hal
ng2-ui/map nginx-proxy/docker-letsencrypt-nginx-proxy-companion nginx-proxy/nginx-proxy nginxinc/docker-nginx ngrx/store ngx-formly/ngx-formly

ngx-translate/core nodeca/pako nodejs/docker-node nodejs/nan nodejs/node nodejs/node-v0.x-archive
nodeschool/discussions nosir/cleave.js npm/npm npm/npme-installer numpy/numpy ohmyzsh/ohmyzsh

olivere/elastic onehungrymind/ng2-reactive-app onivim/oni open-api-spex/open0?8B?4G opencontainers/runc openebs/openebs
openfaas/faas openhab/openhab-docker openshift/openshift-ansible openshift/origin oracle/oci-volume-provisioner orchardup/docker-mysql

ossec/ossec-hids outlyerapp/dataloop-docker ova2/angular-development-with-primeng overleaf/overleaf pandas-dev/pandas paulmillr/chokidar
pgilad/gulp-angular-htmlify phac-nml/staramr phusion/passenger-docker pinellolab/STREAM pingcap/tidb pingcap/tidb-operator

pnpm/pnpm polyaxon/polyaxon portainer/portainer pravega/pravega-operator prawnsalad/KiwiIRC pre-commit/mirrors-eslint
pre-commit/pre-commit preactjs/preact-cli prettydiff/prettydiff projectcalico/calico prometheus-operator/prometheus-operator prometheus/prometheus

psfinaki/CheckYourCzech puckel/docker-airflow puntonim/ansible-biostar puntonim/docker-postgresql93 pupil-labs/pupil-detectors pypa/pip
quasarframework/quasar-cli r0man/sablono rackerlabs/docs-dedicated-networking rancher/os rancher/rancher rancher/rke

raspberrypi/linux rd-dev-ukraine/angular-io-datepicker react-bootstrap/react-router-bootstrap react-toolbox/react-toolbox reactioncommerce/reaction reactjs/react-chartjs
reactjs/react-modal redux-form/redux-form reduxjs/react-redux reduxjs/redux renato-bohler/redux-form-input-masks request/request-promise-native
requireio/aperture rescript-lang/rescript-compiler ritzyed/ritzy rlidwka/sinopia rmasters/laravel-vm robcowart/elastiflow

rodolfocop/ng2-mask-money rook/rook rroemhild/docker-ejabberd runem/lit-analyzer s-panferov/awesome-typescript-loader salesforce/design-system-react
sameersbn/docker-gitlab sanniassin/react-input-mask sbt/sbt scaleway/kernel-tools scality/metalk8s scipy/scipy

sclorg/postgresql-container scrapinghub/splash sdelements/lets-chat seishun/node-steam select2/select2 sequenceiq/docker-spark
shama/webpack-stream signavio/react-mentions silveridea/ngx-push-notifications sindresorhus/downgrade-root sindresorhus/open sitespeedio/sitespeed.io
slara/generator-reveal smallstep/cli smoketurner/dropwizard-swagger sollenne/angular-fittext sous-chefs/postgresql spotify/helios

statianzo/webpack-livereload-plugin statsmodels/statsmodels steam-forward/node-steam-forum stefan-jansen/machine-learning-for-trading stellar/docker-stellar-core-horizon stoplightio/prism
storj/storj strapi/strapi-docker strimzi/strimzi-kafka-operator strongloop/loopback-next stylelint/stylelint substack/html-select

swagger-api/swagger-editor swagger-api/swagger-js swagger-api/swagger-ui syncfusion/ej2-angular-ui-components syncthing/syncthing technomancy/leiningen
telerik/kendo-angular tensorflow/text tessel/node-usb therecipe/qt tiagob/create-full-stack tiangolo/fastapi

tianon/dockerfiles tinesoft/generator-ngx-library tmspzz/Rome tomdale/ember-cli-addon-tests tracer0tong/android-emulator traefik/traefik
trailsjs/trails travelist/ng2-file-tree travis-ci/travis-ci typings/typings uber/peloton unstubbable/custom-tslint-formatters

vauxite-org/typescript-logging vercel/next.js vimalavinisha/angular2-google-chart vlad-ignatov/react-numeric-input vmware-archive/vsphere-storage-for-docker vpicavet/docker-pggis
weaveworks-experiments/weave-kube weaveworks/eksctl weaveworks/weave webcompat/web-bugs webfactorymk/ng2-canvas-whiteboard webpack/webpack

websockets/ws wechaty/wechaty why520crazy/ngx-validator wilmoore/selectn.js wordpress-clients/wp-api-angular worstcase/blockade
wurstmeister/kafka-docker xianyi/OpenBLAS xolvio/chimp yakyak/yakyak yarnpkg/yarn ypinskiy/GBF-Raiders

yuyang041060120/ng2-animate zammad/zammad-docker zefoy/ngx-color-picker zooniverse/Panoptes-Front-End zxing-js/ngx-scanner

Table A.19: A list of the repositories we scraped issues from.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 State-of-the-Art
	1.2 Open Challenges

	2 Foundations and Related Work
	2.1 Issues and Management Systems
	2.2 Component-based Architecture
	2.3 Text Classification
	2.3.1 Creating a Labelled Data Set
	2.3.2 Feature Construction and Weighting
	2.3.3 Feature Projection, Selection and Training of a Classification Model
	2.3.4 Topic Modelling

	2.4 Evaluation Metrics
	2.5 Related work
	2.5.1 Literature Research Methodology
	2.5.2 Duplicate Issue Detection
	2.5.3 Inference

	3 Data
	3.1 Data Gathering
	3.1.1 Formal Description
	3.1.2 Selecting Issues
	3.1.3 Relation Validation by Participants
	3.1.4 Collecting the Issues
	3.1.5 Implementation

	3.2 Generating unrelated Issues
	3.2.1 Choosing Issue Pairs
	3.2.2 Risk
	3.2.3 Test Data Set

	3.3 Generalisation
	3.4 Corpus Statistics
	3.4.1 Amount of Comments per Issue
	3.4.2 Token Amount
	3.4.3 30 Most Occurring Words
	3.4.4 Representation of the Issues for the Classifier

	4 Classifier
	4.1 Sub. Model
	4.2 Mult. Model
	4.3 Avg. Model
	4.4 Concat. Model
	4.5 CosConcat. Model
	4.6 UniCosConcat. Model
	4.7 SumConcat. Model
	4.8 Issue-vector Model
	4.9 Topic Model

	5 Implementation as a Microservice
	5.1 Architecture
	5.2 Vectorisation Service
	5.3 Classification Service
	5.4 Kubernetes

	6 Evaluation
	6.1 Results
	6.2 Discussion
	6.2.1 Discussion of the Research Question
	6.2.2 Model Comparison
	6.2.3 Vectorisation Methods

	6.3 Threats to Validity
	6.3.1 Internal Validity
	6.3.2 External Validity
	6.3.3 Construct Validity

	7 Conclusion
	7.1 Summary
	7.2 Benefits
	7.3 Limitations
	7.4 Lessons Learned
	7.5 Future Work

	Bibliography

