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Abstract

Word Usage Graphs (WUGs) are an approach of representing relations

between word usage pairs, where each word usage is considered as a node

and the weighted undirected edge between such a pair represents its semantic

proximity. This shifts problems of Computational Linguistics into the graph

problem space. There is only little research into how such WUGs can be

annotated efficiently and effectively. Therefore, we build a simulation to test

a broad range of sampling, clustering and stopping procedures with respect to

their impact on finding good solutions. We show that it is possible to simulate

graphs which share characteristics close to the observed WUGs. Based on this

we are able to scrutinize various annotation procedures and are able to extract

their advantages and disadvantages for the annotation process.

Wortverwendungsgraphen (WUGs) sind ein Ansatz zur Darstellung von

Beziehungen zwischen Wortverwendungspaaren, wobei jede Wortverwendung

als Knoten dargestellt wird und die gewichtete ungerichtete Kante zwischen

einem solchen Paar die semantische Nähe darstellt. Somit können Probleme

der Computerlinguistik in den Bereich der Graphen verlagert werden. Es gibt

nur wenig Forschung darüber, wie solche WUGs effizient und effektiv annotiert

werden können. Daher entwickeln wir eine Simulation, um eine breite Auswahl

an Sampling, Cluster und Stop-Prozeduren hinsichtlich ihrer Auswirkungen

auf das Finden guter Lösungen zu testen. Wir zeigen, dass es möglich ist,

Graphen zu simulieren, deren Eigenschaften nah der beobachteten WUGs

ähnelt. Auf dieser Grundlage sind wir in der Lage, verschiedene Annota-

tionsverfahren zu untersuchen und ihre Vor- und Nachteile für den Anno-

tationsprozess zu extrahieren.
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1 Introduction

Word Usage Graphs (WUGs, McCarthy et al., 2016; Schlechtweg et al., 2021b) is

an approach of representing relations between word usage pairs, where each word

usage is considered as a node and the weighted undirected edge between such a

pair represents its semantic proximity (Find example WUGs in Figure 1). This

representation is convenient, as it shifts the initial problem, like semantic change

detection (Schlechtweg et al., 2020) or sense detection (McCarthy et al., 2016), into

a graph theory problem space, allowing for new approaches to be defined and opens

the possibility of translating other well researched methods to this research area.

This representation does bear its drawbacks. For sense detection a fully anno-

tated graph would be the ideal, but the number of edges to be annotated grows

quadraticaly with number of nodes present in a WUG. Considering that each anno-

tations has to be done by a human annotator makes this an infeasible goal. Hence,

it is crucial to find approaches which solve this problem effectively and efficiently.

Efficiency is needed to reduce the annotation load, while effectiveness is needed to

find word usage pairs which carry the most information, such that a correct sense

structure can be found. These approaches also need to account for human annota-

tors, which can introduce noise because of ambiguity, unknown context (Schlechtweg

et al., 2021b) or when non-expert annotators are utilized (Schlechtweg et al., 2018).

Thus they need to be robust against effects arising from the annotation process

itself.

Our aim is to find such efficient and effective models, consisting of a sampling and

clustering strategy as well as a stopping criterion. This is done by evaluating models

in a simulation environment, which uses a generative procedure to generate complete

WUGs (True WUGs), which are assumed to be the ground truth, and simulate the

complete annotation procedure based on this ground truth and chosen model, thus

generating Annotated WUGs. These Annotated WUGs are then evaluated on their

correspondence respectively to their True WUGs, resulting in an assessment for the

models effectiveness and efficiency.

Section 3 describes the data used in the generative process of True WUGs. In
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Section 4 we take a look at some important characteristics of WUGs from the DWUG

DE/EN and DiscoWUG data set, and reviewed different approaches used during the

simulation in Section 5 and Section 6. Finally, we will discuss benefits and drawbacks

of each approach and what the best performing models are (Section 7).

2 Related Work

WUGs are a relatively new model of representing graded word usage relatedness

(Erk et al., 2013; McCarthy et al., 2016; Schlechtweg et al., 2021b; Kurtyigit et al.,

2021a). McCarthy et al. (2016) exploited the graph representation to research the

extend of clustering strategies as a tool for partitioning graphs into sense clusters.

Previous simulation done by (Schlechtweg et al., 2020; 2021b) introduced models on

how word usages could be sampled for the annotation process and how they could be

clustered. Yet there are no studies on how different sampling and clustering strategies

may affect the resulting WUGs and thus sense discovery. Such studies would also

take a long time and careful planing due to the need of human annotators.

Schlechtweg et al. (2021a) recently showed in his study, that by using a sim-

ple generative model, the Weighted Stochastic Block Model (Aicher et al., 2014;

Peixoto, 2017), an extension to the Stochastic Block Model (Holland et al., 1983),

it is possible to model Word Usage Graphs. Considering recent studies on creating

graded annotated data sets done by Schlechtweg et al. (2021b), building a large

data set with 100,000 human annotations for English, German, Swedish and Latin,

DiscoWUG by Kurtyigit et al. (2021a), DURel Schlechtweg et al. (2018) and others,

yielded a wide variety of WUGs. This opens the possibility to generate Word Us-

age Graphs without the need for human annotators, as these data sets can be used

for the generative model. Hence, allowing the research and comparison of possible

models for an more efficient annotation process and better sense detection.
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Figure 1: WUGs of Zehner from DiscoWUG (left), abbauen from DWUG DE (mid-

dle) and bag from DWUG EN (right). Nodes represent usages of the respective target

word. A nodes color represents its membership to a cluster. Edge-weights represent

the median of relatedness annotations between usages, where black/gray edge color

represents high/low edge-weights, i.e., weights ≥ 2.5/weights < 2.5.

3 Data

We utilize the annotated English, German DWUG (DWUG DE/EN, Version 1.0.0)

(Schlechtweg et al., 2021b) and DiscoWUG (Version 1.0.0) (Kurtyigit et al., 2021a)

data sets, where each WUG represents a target word and contains a set of word

usages (nodes) from two time periods.1 Word usage pairs are connected by a weighted

edge, representing their semantic relatedness, which is the median of all annotations

for this edge. The possible annotation are chosen from the DURel relatedness scale

(Schlechtweg et al., 2018) and can be found in Table 1. An edge which is annotated

with a zero, meaning that the annotator can not decide on the semantic relatedness

of a pair, is not included in the calculation of the weight. Figure 1 visualizes three

examples of WUGs from the chosen data sets.

We choose these data sets due to a number of reasons. DWUG DE/EN is in-

teresting, as it contains large WUGs with a lot of annotations where usages were

randomly sampled from a real corpus. They are especially interesting, as these are

two different languages, which might show different characteristics, thus models may

differ significantly in their performance. DiscoWUG is also interesting, as its word

usages were also randomly sampled from a real corpus, but noisy words were ex-

1https://www.ims.uni-stuttgart.de/data/wugs
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x
4: Identical

3: Closely Related

2: Distantly Related

1: Unrelated

0: Cannot decide

Table 1: DURel relatedness scale.

cluded. Furthermore, due to its small size and edges between word usages being

randomly sampled per annotator, we suspect that less bias was introduced and that

the edge-weight distribution resembles the true edge-weight distribution closely.

As we want the simulated annotation process to mirror the real process as closely

as possible, sampling from a small human annotated set is not possible. This is why

we used the generative model introduced by Schlechtweg et al. (2021a) to generate

the following two set.

Fitted WUGs This set of complete WUGs are generated based on the DWUG

DE/EN and DiscoWUG data set, and were generated by the process described by

Schlechtweg et al. (2021a). A more in-depth explanation on how we generated these

can be found in Section 6.

Coarse WUGs Coarse WUGs are based on observed characteristics of DWUG

DE/EN and DiscoWUG. We use these as parameters for the generative process.

Which observations were made can be found in Section 4, and how this data is

utilized to construct Coarse WUGs can be found in Section 6.

4 Word Usage Graph Analysis

Understanding the current state of Word Usage Graphs is imperative for designing

both efficient and effective approaches, but especially for designing a useful simu-
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lation suit, as we take advantage of human annotated WUGs to generate closely

related WUGs. For this we need to take a look at different characteristics emerging

from the currently annotated data sets.

Kilgarriff (1997) argues that the frequency of a word used in a specific context

leads to its observed senses. Examining the characteristics of sense distribution and

sizes may provide helpful approaches, as capturing these characteristic would be

crucial in developing reasonable artificial WUGs, but also would be an important

criteria in developing reasonable models. Hence in Section 4.2 we will take a closer

look at how senses are distributed and their sense size.

For word usage pairs with the same sense, we would expect that they would score

a high ranking on a graded relatedness scale, as described by Erk et al. (2013) 5-point

graded scale or DURels relatedness scale by Schlechtweg et al. (2018) (Table 1), but

due to ambiguity, unfamiliar meaning, context (Schlechtweg et al., 2021b) or non-

expert annotations Schlechtweg et al. (2018), these word pairs may be annotated

with an high annotator disagreement. Therefore, evaluating the current state of

how word usage pairs are annotated is important for choosing, building or refining

clustering approaches for WUGs (Section 4.3). Considering this, understanding the

current state of Word Usage Graphs is imperative for designing efficient and effective

approaches, but especially for designing a useful simulation suit.

4.1 Word Usages

Before we take a look at senses and annotations we need to evaluate the feasibility

of annotating a WUG fully, since if it is possible to annotate a WUG fully, there is

no reasonable explanation in employing sampling strategies.

(1) |E| = |N |(|N | − 1)

2
=
|N |2 − |N |

2

The number of word usages |N | directly correlate with feasibility of annotating a

WUG fully, as the number of edges (word usage pairs, |E|) grows quadratic with the

number of nodes (word usages) (Equation 1). Hence, fully annotating WUGs, where

the number of nodes are small (e.g. |N | = 10→ |E| = 45) is feasible, while WUGs
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|N̄ | |Ñ | min |N | max |N | |Ē| |Ẽ| min |E| max |E|

DWUG DE 176 183 126 200 15305 16562 7875 19900

DWUG EN 193 197 165 200 18559 19306 13530 19900

DiscoWUG 49 49 45 50 1175 1176 990 1225

All 120 149 45 200 7172 10952 990 19900

Table 2: Mean, Median, Minimum and Maximum number of nodes per WUG in

DWUG DE/EN and DiscoWUG and the resulting number of edges for fully anno-

tating a WUG.

Figure 2: Histogram of nodes per WUG in DWUG DE/EN and DiscoWUG.

with |N | = 50 (→ |E| = 1225) may already be outside the scope of possibility. In

such cases, only a subset of edges can be annotated. The number of nodes in a WUG

for the chosen data set can be seen in Figure 2 and Table 2 shows that even for the

smallest WUGs, with only 45 nodes, the annotation process may already be outside

the possible realm, especially if we want to include multiple annotations for cases

where word usages show ambiguity, word usage pairs which are annotated with zeros

on the DURel scale (Table 1) or have a high annotator disagreement. Therefore it

is imperative that edges are selected on some bases to ensure that they provide the

most information possible.
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|C̄| |C̃| |C̃0| |C̃1| |C̃2| |C̃i≥3|

DWUG DE 5.7 4.5 .84 .09 .01 .00

DWUG EN 8.2 5.0 .92 .05 .02 .00

DiscoWUG 4.8 4.0 .77 .12 .02 .00

All 5.9 5.0 .85 .08 .02 .00

Table 3: Number of senses and relative size of senses in DWUG DE/EN and Dis-

coWUG.

Figure 3: Left: Relative sense size for all WUGs of the data set. Middle: Relative

sense size where word usages were separated by their respective time-period. Right:

Comparison to a Log-normal distribution.

4.2 Senses

As mentioned above, understanding sense structure is important in reasoning how

to build WUGs that resemble real world data, but even more importantly for finding

good approaches that capture the underlying characteristics of a words senses. For

this we will take a look at two characteristics, the number of senses a WUG displays

and its sense sizes. Understanding these characteristics is especially interesting, as

they may be the main factor for choosing reasonable sampling and clustering strate-

gies.
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Figure 4: Left: Relative sense size for single WUGs in the data set. Middle: Relative

sense size for single WUGs, where word usages were separated by their respective

time-period. Right: Comparison to Poisson-distribution with different λ values.

Sense Sizes Figure 3 shows that the first sense is mostly dominant, while following

senses are less prominent. This is in line with observations made by Kilgarriff (1997),

which argues that the first sense is the most frequently observed sense for word

usages and that following senses rapidly decline in number of observed word usages.

If we split the word usages based on their time period, as our data set consists of

word usages from two time periods, this effect seems to be even more prominent. In

general it seems that the sense distribution follows a log-normal distribution.

Figure 4 shows the relative sense size for each WUG separately. Comparing

this against a Poisson-Distribution, we observe that each WUGs relative sense size

actually follows this distribution more closely. Still we can observe, that the most

dominant sense has the most word usages associated with.

Number of Senses We observe that most WUGs have between 1 and 5 senses

(Figure 5 and Table 3) and that WUGs with high number of senses are unlikely

and only occur rarely. Comparing the number of senses and their relative sizes (see

Table 3), it shows that with the rise of senses for a word, the number of word usages

associated with these additional senses tend to be very small. For example, if we had

a WUG with 100 word usages and 3 senses, we would expect only around 2 word

usages to express this third sense. Finding this sense would mean a lot of work, as

only around 4% of edges express this relationship and a sufficient number of these

12



Figure 5: Number of senses per WUG in DWUG DE/EN and DiscoWUG.

have to be sampled to identify this sense correctly.

4.3 Annotation

As we want to simulate a realistic annotation process, it is important to analyze

how annotations are distributed and how annotators differ compared to each other.

The number of annotations per WUG is an interesting property to consider, as it

provides a point at which a model should exhibit good performance.

Number of Annotations Most WUGs have around 500 annotations, see Figure

6 (left). For even the smallest WUGs, which are found in the data set DiscoWUG,

with around 49 word usages (Table 2) and only around 300 annotations, only around

25% percent of word usage pairs are annotated, which is even lower for the DWUG

DE/EN data set with only around 3.5% of word usage pairs being annotated. With

such a low number of word usage pairs being annotated in the data set, it shows the

importance of choosing the pairs carefully, such that the characteristics of a word

can be captured efficiently.
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|Ā| |Ã| |A0|
|A| V̄arAE ṼarAE ρA,A0 ρN0/A,SDNE

∆A ∆A′ ∆Ai

DWUG DE 818 659 .040 .20 .19 .78 .08 0.74 0.74 0.81

DWUG EN 816 665 .039 .26 .22 .54 .08 0.78 0.83 0.88

DiscoWUG 342 301 .058 .20 .00 .41 .00 0.68 0.74 0.92

All 609 475 .044 .22 .20 .41 .07 0.72 0.76 0.90

Table 4: From Left to Right: Mean of annotations per WUG. Median of annota-

tions per WUG. Relative number of zero-annotations for all WUGs. Mean variance

of annotations per word usage pair, where only edges with at least two non-zero

annotations were considered. Median variance of annotations per word usage pair.

Spearman rank comparing the number of annotations against the number of zero

annotations per WUG. Spearman rank comparing the mean relative number of zero

annotations of a word usages annotation against its mean annotations standard de-

viation. Sum where triangular inequality holds against sum of triangles in all WUGs.

Sum where triangular inequality holds against sum of triangles in all WUGs, where

only word usage pairs were considered having no annotation disagreement. Sum

where triangular inequality holds against sum of triangles in all WUGs, where tri-

angles where calculated per annotator.

Zero Annotations and Variance Zero annotations, from the DURel scale (Table

1), are undesired annotations, as they do not provide much information. We see

that the number of zero annotations rises with the overall number of annotations

for a WUG, which shows that most zero-annotations are a spurious effect of the

annotation process itself (see Figure 6 middle and Spearman’s ρA,A0 in Table 4) and

make around 4.4% of all annotations.

Word Usages with high number of zero annotations and high annotation devi-

ation may be an indicator for ambiguous usages, where the assignment to a sense

is not clear (Erk et al., 2009). Hence we also examine the correlation between the

mean relative number of zero-annotations against its mean annotations standard

deviation (Figure 6 right and Table 4 ρN0/A,SDNE
) per word usage in a WUG. We

are not able to observe a correlation between the rise of zero annotations and its
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Figure 6: Left: Number of annotations per WUG. Middle: Number of zero-

annotations against number of annotations per WUG. Right: A comparison per

node, where the mean of relative zero-annotations of all edges is compared against

the mean standard deviation of the annotations of all edges. We only consider edges

of a node, if there are at least two non-zero annotations.

Figure 7: Left: Mean standard deviation of annotations for all word usage of all

WUGs. Middle Left: Mean standard deviation of annotations for all word usages

of Zehner from DiscoWUG. Middle Right: Mean standard deviation of annotations

for all word usages of abbauen from DWUG DE. Right: Mean standard deviation

of annotations for all word usages of bag from DWUG EN. We only included word

usage pairs with at least two non-zero annotations.

standard deviation of a word usage, but do observe that there some nodes present

in each data set that express high annotation disagreement and high number of

zero-annotations. We suspect that there are some mechanisms that drives this be-

haviour. We do observe that the mean standard deviation per node does tend to be

small, between zero and .5, suggesting that for most word usage pairs the semantic

relatedness is well defined (Figure 7).

Figure 8 (left) shows that only a few edges are annotated more than once, which

is due to how the word usage pairs were sampled (Schlechtweg et al., 2021b; Kurtyigit

et al., 2021a). While Kurtyigit et al. (2021a) (DiscoWUG) only used a random sam-
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Figure 8: Left: Count of non-zero annotations per edge. Middle: Variance of an-

notation for different number of annotations. Right: Median variance of data set

compared to simulated variance with a Poisson-Distribution and different λ param-

eters.

Figure 9: Left: Relative weight (median of annotations per word usage pair) dis-

tribution between senses for DWUG DE/EN and DiscoWUG. Middle: Relative

annotation distribution between senses for DWUG DE/EN and DiscoWUG. Right:

Variance of annotations per word usage pair between senses for DWUG DE/EN and

DiscoWUG.

pling for word usage pairs, thus resulting in less multiple annotations, Schlechtweg

et al. (2021b) re-sampled word usage pairs, where the annotation disagreement was

not optimal. We simulate the effect of multiple annotators where the error is chosen

based on a Poisson-distribution (Figure 8 right, excluding green curve) and also see

the effect of rising variance, which indicates that this effect occurs naturally, but are

not able to reproduce this rapid rise in variance. Our observations about the anno-

tation disagreement is in line with that of Erk et al. (2009), which observed that by

using a graded scale the disagreement between annotations was not insignificant.
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Figure 10: Left: Triangular inequality for DWUG DE/EN and DiscoWUG over all

weights. Middle: Triangular inequality for DWUG DE/EN and DiscoWUG only

considering edges with no annotation variance. Right: Triangular inequality for

DWUG DE/EN and DiscoWUG where only edges are considered which are anno-

tated by the same annotator.

Annotation Distribution We can observe that most annotations for word usages

(Figure 9) in the same sense-cluster tend to have higher weighted edges, while the

opposite effect is seen for word usages between two sense-clusters. This is what we

would expect to see, as word usage pairs having the same sense should exhibit a

high score on a graded scale (here DURel scale, Table 1), while word usage pairs

assigned to different senses should exhibit lower scores. It is important to note that

all WUGs were clustered using Correlation Clustering, that optimizes this behaviour.

The distribution of weights and annotations seem to follow a binomial distribution.

What is interesting to mention is that we would expect the one-annotations to be

more prevalent than the two-annotations for word usages pairs not belonging to the

same sense. This indicates that annotators tend to annotate word usage pairs with

different senses less likely with an extreme value. We observe that the whole scale

was used, which is inline with Erk et al. (2009), as they also found that annotators

tend to use the full scale.

Triangular Inequality The triangular inequality property in graded annotations

is an important topic to consider. Erk et al. (2013) lists three important properties,

that can be used to assist in the annotation process. We compared the triangu-

lar inequality property for the following three different cases (Table 4 and Figure

10). When all annotators are considered for the weight of the edge, the triangular

17



property only holds in around 72%, which most likely is due to different annotators

perceiving either the graded scale or word usage pair differently. When only con-

sidering word usage pairs where the annotator disagreement is zero, the triangular

property only holds for around 76% of triangles. From Figure 8 (left), we observed

that most edges are annotated only once, thus resulting in mixing different annota-

tors annotations, which is not favourable. Considering every annotator separately,

the triangular inequality holds in 90% of cases, which is close to the observation

made by Erk et al. (2013). This is also a strong indicator, that annotators do not

perceive a graded scale and the relatedness of word usage pairs in the same fashion,

but do stay overall close to their own interpretation.

5 Simulation

For the simulation our goal is to reproduce the annotation procedure of WUGs,

such that there is no need for human annotators or specific word usage graphs.

The simulation can be described as follow. Before the annotation process starts,

a True WUG is generated (Section 5.1). A True WUG T = (V,E,W,C) is a

weighted undirected complete graph, where vertices v ∈ VT represent a node, v, u ∈
VT : (v, u) ∈ ET represent an edge between two nodes and wv,u ∈ WT the weight

of an edge. CT = {Ci|i ∈ N} describes the clusters in a graph, where for each

Ci ∈ CT : N ⊆ VT : Ci = N , for any Ci, Cj ∈ CT : Ci ∩ Cj = ∅ and ∪i∈NCi = VT .

Thus, ∀v ∈ VT : ∃!Ci ∈ CT : v ∈ Ci. This True WUG can be conceptualized

as a possible complete WUG where edge-weights and its corresponding clustering

represents the correct representation of a WUG for an unspecified word.

Based on this True WUG a model performs its sampling (Section 5.3) and clus-

tering (Section 5.4) steps. Each sampled edge is then annotated by some annotator,

mirroring the behaviour of human annotators (Section 5.2), by introducing some an-

notation noise to the weight of the sampled edge. The whole process can be stopped,

based on some stopping criterion (Section 5.5) defined by the model.

The resulting WUG is then an Annotated WUG A = (V,E,W,C), which is
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an undirected weighted graph where VA ⊆ VT and EA ⊆ ET . The weights WA may

differ to WT , as well as the clustering of VA compared to VT . This Annotated WUG

should then represent an annotated WUG with characteristics observed in Section

4, thus mirroring the real world annotation process of a word usage graph.

In the following subsections we will introduce some strategies used for the graph

generation, annotation imitation and models. It is important to note, that no model

may use information from the True WUG, which could not also be used during a

real annotation process, meaning that any model is restricted to only being able to

see what nodes are present in the True WUG and all information provided by the

Annotated WUG. The annotation phase is an exception, as it is able to access the

weight set of a True WUG, such that a realistic annotation is possible.

5.1 Graph generation

Graph generation is a critical part for the simulation, as generated True WUGs

should exhibit similar characteristics as observed WUGs. The Stochastic Block

Model (SBM) (Holland et al., 1983) is a simple generative model for random graphs

and takes the following two parameters into account for its generative process.

• A number of nodes n, clustered into m disjoint sets C1, ..., Cm

• A symmetric probability matrix P ∈ Rm×m, where each scalar value Pi,j of P

describes the probability of observing an edge between the nodes v ∈ Ci and

u ∈ Cj

The Weighted Stochastic Block Model (WSBM) (Aicher et al., 2014; Peixoto, 2017)

is an extension to the SBM generative model by incorporating edge-weights for

sampled edges. This is done by extending the generative model by the following

parameter:

• A symmetric matrix D of size m×m, which items consists of distribution di,j

from which the edge-weight of a sampled edge v ∈ Ci and u ∈ Cj is sampled
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Schlechtweg et al. (2021a) showed, that by using this process it is possible to generate

reasonable graphs which model WUGs, hence allowing us to generate undirected

weighted graphs used in the simulation as the underlying True WUG.

5.2 Annotation

Section 4.3 shows that annotation noise, in form of error or zero annotations, is

not an inconsiderable effect of the annotation process. Hence it is important to

model this process, as the simulated annotation process should resemble the true

annotation process as closely as possible. We model this effect by manipulating the

weight wv,u ∈ WT of a sampled edge from T and adding this manipulated weight

w′v,u to A. In this sense, the Annotated Graph represents a noisy True Graph, thus

mimicking the annotation process of WUGs. Only this process has access to the

weights of the True Graph, as it is modelling the annotation phase.

Annotation Error The annotation error models the divergence of annotation

from the ’true’ annotation, as well as the divergence of annotators per edge. This is

done in the following way. Given some edge (v, u) ∈ ET of T , sample an error e from

a distribution D. This error is then randomly added or subtracted from wv,u. The

resulting weight will then be min/maxed against a predefined range. This range in

most cases is defined by the extrema of the scale used to annotate the edges.

Zero Annotations This process models the indecisiveness of annotators, due to

ambiguity or other reasons, by changing the sampled edge-weight to zero with a

given probability p0.

5.3 Sampling Algorithms

As seen in Section 4.1, most WUGs contain many nodes, resulting in an enormous

expenditure for fully annotating such graphs. Considering the observations made

in Section 4.3, the order of edges sampled and annotated plays an important part.
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Thus sampling strategies should be employed in aiding to reduce the annotation

complexity, by choosing edges in such a manner, such that a sufficient and efficient

result can be derived quickly.

We model sampling as an algorithm that chooses two nodes u, v ∈ VT of the

True WUG T and adding the node pairs as well as the corresponding edge to the

Annotated WUG A by VA = {u, v} ∪ VA and EA = {(u, v)} ∪ EA. The weight of

this sampled edge is then modified by the two approaches described in Section 5.2

and added to WA. The weight of an edge for observed WUGs is the median of all

annotations for this edge. For simplicity we exclude the process of calculating the

median and assume that the weight of an edge from an Annotated WUG is the

median of all annotations added to this edge.

5.3.1 Random Sampling

Random sampling is the simplest sampling strategy, as it does not consider the

current state of an Annotated WUG in any way. Given a True Graph T and an

Annotated Graph A, for every step we sample randomly two nodes u, v ∈ VT , where

v 6= u, and add those pairs with their respective edge to the graph A. Thus any

node-pair is equally likely of being sampled and it is possible that some pairs are

sampled multiple times. We include this procedure, as it is an interesting base case

scenario and was used by DiscoWUG to generate its word usage pairs.

5.3.2 Random Walk

Random Walk works in the following way. Given a True WUG T and an Annotated

WUG A, randomly sample one node v ∈ VT , which serves as our starting point.

In every step sample a different node u ∈ VT and add the node-pair v, u and its

corresponding edge to A. Node u now servers as the staring point for the next step.

This leads to every node v ∈ VA at any step to be either directly connected or

connected by a path to any other node in VA \ {v}. Figure 11 illustrates the WUGs

created by Random Walk.
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Figure 11: Illustration of a WUG produced by Random Walk at some steps and

demonstrates that any added node is connected to any other node by some path.

Figure 12: Illustrating the behaviour of PageRank and the resulting sampled WUG.

The coloration of a node is for visualization of unconnected components produced

by a jump.

5.3.3 PageRank

PageRank is one of the well known algorithms for ranking web pages, by assigning a

score to each node in the web graph. We leverage the idea of PageRank, by using a

Random Walk combined with a teleportation probability t. The sampling steps are

mostly equivalent to the Random Walk algorithm as described in 5.3.2. The crucial

difference is that in every step there is a probability, that the starting point node for

the next step is replaced by a random node from VT . This probability is driven by

the teleportation probability t. Hence, in every step there is a probability t that the

Random Walk jumps to a randomly chosen node and continues the Random Walk

from there. This jumping behaviour is exemplified in Figure 12.
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Figure 13: Example of MRW sampling steps, illustrating the prioritization of new

nodes (yellow) as well as building denser structures.

5.3.4 Modified Random Walk

Modified Random Walk (MRW) builds on top of the Random Walk in the following

way. Given a True WUG T and an Annotated WUG A, let F, S be two sets, where

F = ∅ and S = VT . Randomly sample a starting node v from S and update the set

accordingly to F = F ∪ {v} and S = S − {v}. Now for every step the following is

applied:

• Sample a node u ∈ S if S is not empty. If S is empty, sample a node from F .

• Add the node-pair v, u and the corresponding edge to A

• Sample a node n ∈ F and add the node-pair u, n and the corresponding edge

to A

• Update the sets by F = F ∪ {u} and S = S − {u}

• Node n now servers as the starting point for the next step

The main idea is that we sample edges between two sets, a Found Set F and a

Search Set S. The Found Set contains all visited nodes, while the Search Set con-

tains only nodes, which currently are not in VA, therefore nodes which are currently

not in VA are prioritized and any sampled node is initially connected to at least

two nodes, that are already present in the Annotated WUG. The resulting graph

is similar in its properties compared to Random Walk (see Section 5.3.2), but due

to its modified walk prioritizes denser structures as well as adding new edges. This

difference can also be seen in Figure 13.
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Figure 14: A possible traversal and sampling by MERW. Yellow nodes represent the

sampled neighborhood for a given sampling step and the green node illustrates the

node to which MERW traversed next.

5.3.5 Modified Search Space Random Walk

The Modified Search Space Random Walk (MERW) extends the Random Walk in

the following way. Given a True WUG T and an Annotated WUG A, randomly sam-

ple one node v ∈ VT , which serves as our starting point. Now in every step, k nodes

are randomly sampled. For each sampled node a node-pair is constructed, containing

the starting node and the sampled node, and added with their corresponding edge

to A. After this, a node from this sampled set is chosen as the next starting node for

the next step. This approach allows us to capture some information about a nodes

neighbourhood. Figure 14 provides an example on how a WUG might be traversed

and exemplifies the behaviour of MERW.

5.3.6 DWUG Sampling

This sampling strategy is a derivative of the sampling strategy employed by Schlechtweg

et al. (2021b), and is the first approach that uses information gained from clustering.

Each step is characterised by the following two Phases. The Exploration Phase

performs a Random Walk based on some set of nodes till m edges are created. The

Combination Phase takes in a set of nodes and a set of clusters. For each node

in the set chooses a node from each clusters and adds this edge to the Annotated

WUG.

Given a True WUG T and an Annotated WUG A, the first step is defined in
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Figure 15: This is an illustration of the different phases of DWUG+RS Sampling

strategy. Left is the initial seeding. Middle left shows the exploration phase per-

formed on the yellow nodes, which do not belong to any cluster bigger than some

threshold (green or blue). Middle right is an example of the combination phase

performed on the purple nodes, which are currently not connected to all clusters big-

ger than some threshold (grey and blue) and the newly added nodes (yellow). Right

highlights the intrinsic stopping criterion of DWUG and the random sampling thus

performed by DWUG+RS.

the following way. Chosen randomly n number of nodes from VT . On this set of

nodes an Exploration Phase is performed. This step is only performed once and

in a sense is a seeding step for the DWUG Sampling approach (Figure 15 left).

After this initial step, each successive step can be considered as the normal loop for

DWUG Sampling. Given that a clustering is known for A choose all nodes, where

n ∈ VA ∧ n ∈ CA,i : |CA,i| = 1. Hence, all nodes are chosen, where this node is the

only member of its clustering assignment. Let this set be NB. Now this set NB is

divided into two sets NC and NE with the following rule:

(2) NC = {n|n ∈ NB : ∃Ci ∈ CA : |Ci| ≥ s ∧ ∀u ∈ Ci : (n, u) /∈ EA}

Thus, set NC contains all nodes, which are the only member of its clustering class

and is not connected to all clusters of at least size s ∈ N.

(3) NE = NB \NC

Set NE contains all nodes, which are the only member of its clustering class, but
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are already connect to all clusters of at least size s. NC is then extended by a set

of n nodes which are randomly sampled from VT , where ∀v ∈ NN : v /∈ VA holds.

For this extended set NC a Combination Phase is executed with all clusters larger

than s (Figure 15 middle right). For set NE an Exploration Phase is executed, with

a given number of edges m that have to be created (Figure 15 middle left).

This sampling strategy splits nodes into two groups, first one being a set of

nodes NC for which there is unknown information of its relation to other clusters.

The Combination Phase adds edges for those nodes, hence trying to find a cluster

that this node may belong to. This set is also expanded by yet not added nodes, as

their relation to other clusters is not known. NE is a set of nodes, where its relation

to other cluster is known, but do not appear to be a part of any of those bigger

clusters. Thus an Exploration Phase is performed on these nodes to add relational

information, that may lead to a new cluster.

5.3.7 DWUG+RS Sampling

DWUG Random Sampling (DWUG + RS) is an extension to the DWUG Sampling

approach from Section 5.3.6. In any given step after the first step, it is possible that

DWUG Sampling will not sample any new edges. This is due to if ∀Ci ∈ CA : |Ci| ≥ s

and VA = VT , meaning that if all clusters are bigger than some threshold and all

nodes from VT are added to VA, no nodes are selected for any of both phases, thus

no edges are sampled. This is an intrinsic stopping criterion of DWUG Sampling,

which may not always be desired, as nodes may only be sparsely connected and may

lead to bad results. Therefore we extended DWUG Sampling by adding a random

sampling. If both sets NC and NE are empty, n random sampled edges are added to

A (Figure 15 right). Random Sampling may be substituted by any other sampling

strategy.
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Figure 16: Illustrating two possible clustering (top and bottom) achieved by CW and

illustrates how the initial ordering of nodes for the iteration step may impact the

resulting clustering. We can also observe that the middle node (yellow) is trapped

between two ideal clusters.

5.4 Clustering Algorithms

Clustering is the back bone of finding senses in an annotated WUG. There are many

important things to consider in choosing a good clustering strategy. From observa-

tion made in Section 4.2 and Section 4.3 it is important, that a clustering strategy

is able to find small clusters and is robust against noise. As we use clustering on the

Annotate Graph, the performance heavily depends on the chosen sampling strategy

from Section 5.3, as well as the noise introduced during the annotation process (see

Section 5.2). Thus it is important that the clustering strategy is impervious against

effects introduced by these models, like sparse degrees for nodes and high annotation

error between and inside clusters.

5.4.1 Chinese Whispers

Chinese Whispers (CW) originates from the need for a low computational effort

clustering strategy for graphs with large number of nodes and edges, and was de-

veloped for problems in Natural Language Processing (Biemann, 2006). The basic

idea is that the assignment of a node to a cluster is based on the local neighbour-

hood of that nodes and works the following way. Given an Annotated Graph A, first
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Figure 17: An example of the different steps in Louvains method. Left represents the

initialization step, middle the cluster assignment step and right the combination

step.

an Initialization step is performed where all nodes VA are assigned to their own

clusters. Next an Iteration step is performed, where for every node v ∈ VA the

following rules are applied:

Cnew = argmaxCi∈C(
∑
u∈Ci

wv,u) ∪ {v}(4)

Cv = Cv \ {v}(5)

This means that a node v is assigned instantaneously to the cluster where its sum

of edge-weights is the highest. If there are multiple possible cluster assignments, a

cluster is chosen by random. The Iteration step is repeated, until there are no changes

in the clustering assignment or until some number of iterations are done. The order of

how nodes are chosen is determined randomly. Biemann (2006) mentions, that there

might be some nodes which are assigned to different clusters every iterations, as their

sum of edge-weights to different clusters are the same. This behaviour may prove

disadvantageous, as discussed in Section 4.2 some senses might only contain one

word usage, thus may not be found by this approach. An example of the clustering

strategies Iteration step can be found in Figure 16. Chinese Whispers provides a

hard clustering with a time complexity of O(|E|).

5.4.2 Louvain Method

Louvain Method was introduced by Blondel et al. (2008), which optimizes modularity

to find an optimal clustering for an given graph. Modularity is given by the following
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equation:

Q =
1

2m

∑
v,u∈A

(wv,u −
kvku
2m

)δ(Cv, Cu)(6)

m =
1

2

∑
w∈WA

w(7)

kv =
∑
u∈VA

wv,u(8)

Where m is the sum of all weights in a graph, kv is the sum of all weights connected

to node v and δ is the Kronecker delta function, which if both nodes are in the

same cluster, resolves to one. By optimizing this function, the edge density inside

a cluster is maximized, while the edge density between two clusters is minimized.

Louvains method does this in the following way. Given an Annotated Graph A, first

an Initialization step is performed where all nodes VA are assigned to their own

clusters. Next a Cluster Assignment step is performed. In this step, each node v

removed from its current cluster and is moved into each neighbouring cluster and the

gain in modularity is evaluated. If a cluster exists, for which the gain is positive and

the maximum, node v is moved into this cluster. If none of these gains is positive,

the node stays in its current cluster. The gain of modularity by moving an node v

into a cluster Ci is is calculated using the following rule:

∆Q =

[∑
in +kv,in
2m

−
(∑

tot +kv
2m

)2]
−
[∑

in

2m
−
(∑

tot

2m

)2

−
(
kv
2m

)2]
(9) ∑

in

=
∑

v,u∈Ci

wv,u(10)

∑
tot

=
∑

v∈Ci,u∈VA\Ci

wv,u(11)

kv,in =
∑
u∈Ci

wv,u(12)

kv =
∑
u∈VA

wv,u(13)

m =
1

2

∑
w∈WA

w(14)

(15)
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Figure 18: Example of the CCC, showing the individual steps performed. Left:

Initial WUG. Middle: Edge removal step. Right: Connected component search.

∑
in is the sum of all edge-weights in cluster Ci,

∑
tot the sum of all edge-weights

for edges going into the cluster Ci, kv,in the sum of all edge-weights for edges going

from node v to nodes in cluster Ci and kv as well as m are defined as above. The

change in modularity by removing node v from its current cluster is calculated in a

similarly.

This step is repeated for all nodes, as long as there is change in the cluster

assignment. The order of nodes has to be respected during each Cluster Assignment

step. If a stable clustering is found, a Combination step is performed. This steps

combines all nodes in a cluster and edges between clusters are combined, where

the sum of the edge-weights between two clusters is the new edge-weight. Both

steps, Cluster Assignment and Combination step are repeated, till no change in the

cluster assignment occurs. An example of each step can be found in Figure 17. This

clustering provides a hard clustering with time complexity of O(|V | · log |V |).

5.4.3 Connected Component Clustering

Connected Component Clustering (Hopcroft and Tarjan, 1973) exploits the idea

of connected components, where only nodes which are either directly connected

or connected by a path should be in the same cluster. We extend this by only

considering edges, which are above some given threshold t.

Given an Annotated WUG A, first an Edge Removal is performed, where all

edges from A are removed for which wv,u < t holds. Next a Connected Component

Search is performed on the modified Annotated WUG, for which a node is selected
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Figure 19: Example of how DWUG CC (right) finds a better clustering for a given

WUG (left) compared to CCC (middle).

and a breadth-first or depth-first search is performed and any visited nodes are

marked. If no more nodes can be reached by any of the marked nodes, a connected

component is found. This process is repeated until all nodes of the modified WUG

are marked. The connected components found during the search form the clustering

for the given WUG. An example of this clustering strategy can be found in Figure

18.

This process can be optimized by modifying the breadth-first or depth-first search

to only traverse edges above the given threshold t, thus the time-complexity of this

clustering is given by the search function, which in both cases are O(|V |+ |E|) and

returns a hard clustering for the given WUG.

5.4.4 DWUG corelation clustering

DWUG Correlation Clustering (DWUG CC) (Bansal et al., 2004; Schlechtweg et al.,

2020; 2021b) is a more specific clustering strategy geared towards WUGs, as it

exploits the meaning of edge-weights. As discussed in Section 3, word usage pairs

are annotated by a weight corresponding to its semantic relatedness (see Table 1).

By considering this edge-weight information, DWUG CC minimizes the following:

L(CA) =
∑

v,u∈ΦEA,CA

wv,u +
∑

v,u∈ΨEA,CA

|wv,u|(16)

ΦEA,CA
= {(u, v)|u, v ∈ VA : wv,u ∈ WA : CA,v 6= CA,u ∧ wv,u ≥ 2.5}(17)

ΨEA,CA
= {(u, v)|u, v ∈ VA : wv,u ∈ WA : CA,v = CA,u ∧ wv,u ≤ 2.5}(18)
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Thus, this clustering minimizes low annotation scores inside a cluster and high

annotation score between clusters, or worded differently, it maximizes the semantic

relatedness of word usages inside a cluster while maximizing the dissimilarity of

word usages between clusters. This approach may also cluster nodes together, which

are not connected by edges with weight ≥ 2.5, which might be splitted into separate

clusters. Figure 19 shows an example how DWUG CC finds a better clustering

compared to CCC, due to the function being optimized. The DWUG CC provides

a hard clustering for the given WUG.

5.4.5 Weighted Stochastic Block Model

The WSBM approach can not only be used as a generative process for graphs, but

can also be used to infer a clustering for a given graph (Peixoto, 2014a; Schlechtweg

et al., 2021a). The clustering approach consists roughly of the following two parts.

In the Agglomeration step a merge of the current clustering is performed, where

each node is moved into a cluster based on some probability and ranked on how well

they minimize a certain metric. Based on this ranking of moves, clusters are merged

together. This is done till a desired number of clusters is reached. The Markov

Chain Monte Carlo step is performed between each Agglomeration step. Here

each nodes clustering assignment is modified by some probability, thus allowing some

nodes to move between clusters. For further discussion regarding inferring clusters

refer to Peixoto (2014a) and Schlechtweg et al. (2021a). The time-complexity for

WSBM is O(|E| log2 |N |) and provides a hard clustering for the given WUG.

5.5 Stopping Criterion

For the model to be efficient and effective, we need a way to determine when to

stop an annotation process. These have to capture a point, where a reasonable state

in the annotation process is reached meaning that enough information is gathered,

such that the clustering reflects the sense structure. If the annotation process is ter-

minated to early, the resulting clustering might not reflect or capture the underlying
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sense structure completely or in the worst case be wrong. If too long, a reasonable

solution might have already be found and by continuing the process only marginal

information is added, while the annotation labor increases. Finding this delicate

balance is the main essence of a stopping criterion.

5.5.1 Bootstrapped JSD

Bootstrapping (Efron, 1979) is the method by which a distribution is randomly

sampled and a metric is calculated, such that some observation can be made about

the underlying distribution. The Confidence Interval (CI) describes an interval, in

which we expect an observed value to fall between, with some probability. The

Jensen–Shannon divergence (JSD) (Endres and Schindelin, 2003) is a measurement

of similarity of two distributions defined in the following way:

JSD(P ||Q) =
D(P ||M) +D(Q||M)

2
(19)

M =
P +Q

2
(20)

Where P and Q are two distributions and D(P ||Q) is the Kullback–Leibler diver-

gence. The bounds of JSD are [0, 1], where 0 means that distributions P and Q are

the same. We combine these three approaches in the following way.

Let A be an Annotated WUG, we random sample with replacement the cluster

distribution CA n times. Let
−→
CA be the vector representation of the clustering, where

each scalar represents the number of nodes in the cluster and is ordered by size. On

both vector representations
−→
CA and

−→
C′A, where C ′A is the sampled, we calculate

JSD(
−→
CA||
−→
C′A). This is done for several rounds, after which we have a sample of JSD

metrics with size m. On this sample size we calculate a higher percentile P and if

its value is below some threshold t, we accept and stop the annotation process.

5.5.2 Gambette

The Gambette method Gambette and Guénoche (2011) is an approach to qualita-

tively analyse the robustness of clustering. We use Gambettes approach as follows.
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Figure 20: An example round of Gambette, where left is the initial WUG, middel

represents the perturbed WUG by the random annotator and right is the resulting

new clustering for this modified WUG. Based on the left and right WUG the ARI

score is calculated.

Let A be an Annotated WUG. We make an identical copy A′ of A and on this copy

we let a random annotator annotate a percentage p of edges. The behaviour of the

random annotator is driven by randomly choosing how to annotate an edge, where

only edges are considered, which are already annotated at least once. This modified

graph A′ is then clustered and the adjusted Rand index Rand (1971) is calculated

between A and A′ as the robustness score of A. This is done for several rounds,

after which we have a sample of robustness scores for A. Based on this sample we

calculate the mean and if its value is higher than some threshold t we accept and

stop the annotation process.

6 Experiment Setup

A model, as discussed in Section 5, consists of annotators, a sampling and clustering

strategy, as well as an stopping criterion. We choose our models as all possible com-

binations of the previously mentioned sampling, clustering and stopping strategies.

This is due changing any part of the model may lead to completely different results.

For the annotation process we chose to model both the annotation error and zero

annotations. In the following Sections we will discuss how we generated the True

WUGs and the parameters used for the different models. Due to keeping the models

as similar to each other as possible, we did not change the parameters based on
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other models attributes (i.e. clustering, sampling).

Graph Generation For the graph generation process we make use of the gener-

ative model WSBM mentioned in Section 5.1 and use the implementation provided

by Chung et al. (2019).2 As discussed in Section 3, we utilize two two sets of WUGs,

Coarse WUGs and Fitted WUGs, to evaluate the models. For Coarse WUGs we use

the observation made in Section 4 and selected the parameters for WSBM in the

following way:

• Number of n nodes to be 100

• m ∈ {1, 3, 7, 10, 20}

• Log-normal distribution to dispense the nodes across the m clusters

• P as a unit matrix, where all entries are 1, to generate complete WUGs

• D, where each di,j is a binomial distribution, with parameters n = 3 and

p = 0.99 where i = j and 1− p for cases where i 6= j

The distribution matrix D was chosen this way, as we observe that the edge-weight

distribution follows a binomial distribution most closely, where edges for nodes inside

clusters are strongly annotated while edges between clusters are annotated with a low

annotation score (compare Section 4.3 and Figure 9). For Fitted WUGs we used the

data sets DWUG DE/EN as well as DiscoWUG to generate the True WUGs. As each

WUG already contains information about its clustering of nodes and their associated

edge weight, we use WSBM to statistically infer complete WUGs from each WUG

in the data set. Due to the limitation of Chung et al. (2019) implementation, we

use the approach described by Schlechtweg et al. (2021a) and the implementation

provided by Peixoto (2014b) to infer the distribution matrix D and its parameters.

2https://github.com/microsoft/graspologic

35

https://github.com/microsoft/graspologic


Annotation Each experiment was run once using one and five annotators per sam-

pled edge. Each annotator used shares the same parameter, based on the observa-

tions made in Section 4.3. For the Annotation Error we chose a Poisson-distribution

with λ = .35, we think this models the annotation error as described in Section 4.3

most closely, if we take into consideration that edges in DWUG DE/EN were re-

sampled based on high annotation disagreement. Hence choosing the variance more

closely related with two annotators, being a Poisson-distribution with λ = .3. The

Zero Annotation is sampled with a probability of 3.3%, which is lower by 1.1% from

the observation made in Section 4.3. Each annotator was randomly chosen to anno-

tate a sampled edge and as some sampling strategies allow an edge to be sampled

multiple times (for example random sampling), it is possible that some edges are

annotated multiple times.

Sampling As Random Sampling, Random Walk and MRW are autonomous sam-

pling strategies, there is no need to specify any parameters. For PageRank we choose

the teleportation probability t to be 0.1 and for MERW we chose the sample size k

of the neighborhood as 2. For the DWUG Sampling and DWUG+RS Sampling pa-

rameters we chose the added nodes n and found edges m to be ten. As DWUG+RS

Sampling also has the additional random sampling parameter n, we chose this to be

ten.

Clustering For all clustering strategies we use a modified Annotated WUG, where

all edge-weights were subtracted by 2.5, except DWUG CC, as it intrinsically sub-

tracts the weights by 2.5. We argue, that the relatedness between two nodes in a

WUG can be better captured by using this shifted scale for clustering. As Louvain

Method does not work with negative edge-weights, we did not modify the edge-

weights for this clustering strategy. For the WSBM we used the same approach as

Schlechtweg et al. (2021a), as it shows promising results. We kept the model selec-

tion static as a binomial distribution, based on the observation made in Section 4.3

and by Schlechtweg et al. (2021a).3 We also included both modes for DWUG CC,

3Implementation used from Peixoto (2014b) at https://graph-tool.skewed.de/
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where nodes which are not connected by edge-weights ≥ 2.5 were split into separate

clusters and kept together.4

Stopping Criterion For the Bootstrap JSD stopping criterion we used a sample

size of 30, where for each sampled distribution 100 samples were drawn from the

Annotated WUG and the percentile P was chosen as .975. For Gambette we choose a

sample size of 10, the percentage p of randomly annotated edges to be 10% and the

clustering to be the same as the models clustering. We did not specify a threshold

value t for both stopping criterions, as we are interested in how these criterions

develop over the number of annotations. This is why we also included them in the

data collection process.

Data Collection As we were interested how the models develop over a rising

number of annotations, we collected the adjusted Rand index, Jensen–Shannon di-

vergence and the results from the stopping criterions for each model at 10, 20, 30,

40, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000 and 5000 annotations. We

believe that these points cover the most interesting annotation points, as low num-

ber of annotations (10-50 annotations) may show that some models perform good at

low number annotations, mid-points (100-500 annotations) are a good measurement

point for the models general performance, as observed WUGs have around the same

number of annotations and late-points (1000-5000 annotations) may provide more

information about a specific model drawbacks and advantages.5

4For CW we used the implementation provided by Ustalov et al. (2019) which can be found

at https://github.com/nlpub/chinese-whispers-python. Louvain Method can be found at

https://github.com/taynaud/python-louvain. WSBM was provided by Peixoto (2014b) at

https://graph-tool.skewed.de/. DWUG CC and CCC was provided both by Schlechtweg et al.

(2021b) at https://github.com/Garrafao/WUGs
5The whole simulation framework can be found at https://github.com/confusedSerge/wug_

sampling

37

https://github.com/nlpub/chinese-whispers-python
https://github.com/taynaud/python-louvain
https://graph-tool.skewed.de/
https://github.com/Garrafao/WUGs
https://github.com/confusedSerge/wug_sampling
https://github.com/confusedSerge/wug_sampling


7 Analysis

The following sections will be divided into three parts. First we will cover how well

our generated graphs capture the observed characteristics of DWUG DE/EN and

DiscoWUG (Section 7.1). After that we will analyze the results of our models based

on Coarse WUGs (Section 7.2). Finally we will compare our models against the

Fitted WUGs (Section 7.3).

For comparatively measuring the performance of models and approaches we used

the adjusted Rand index (ARI) and the inverse Jensen–Shannon divergence (iJSD)

where Annotated WUGs are compared against their respective True WUGs. ARI is

evaluated on the cluster assignment of nodes present in Annotated WUGs, depicting

how well the true clustering has been recovered. For iJSD we use the sorted vector

representation from Section 5.5.1, calculating the JSD between both WUGs and

form the inverse. Hence this metric represents how accurate the cluster distribution

has been captured by the model. The main drawback by using this approach is

that for particular big WUGs with a heavy Log-distribution of nodes per cluster

the metric lacks in capturing small deviations, in particular when small clusters are

merged.

For example, let
−→
CT of a True WUG be (90, 6, 3, 1)T and

−→
CA of an Annotated

WUG be (100, 0, 0, 0)T . The iJSD would give a score of 0.964, while ARI would

give a score of 0. We still include this metric, as it does provide insight into the

distribution of nodes to clusters. Considering the case where
−→
CT is (100, 0, 0, 0)T

and
−→
CA is uniformly distributed, we get a distance score of 0.619. Thus iJSD can be

leveraged as a coarse indicator for the cluster distribution.

7.1 Generated WUGs comparison

Analysing characteristics of the generated WUGs is important, as those may be the

main factor on how well a model or its components perform. Arguably the most

important point is how well the Coarse WUGs and Fitted WUGs compare to and
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|C̄| |C̃| |C̃0| |C̃1| |C̃2| |C̃i≥3|
Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted

DWUG DE 5.7
3.6

2.8 4.5
2.0

2.0 .84
.77

.76 .09
.14

.15 .01
.00

.00 .00
.00

.00

DWUG EN 8.2 2.8 5.0 2.0 .92 .84 .05 .09 .02 .00 .00 .00

DiscoWUG 4.8 12.6 3.8 4.0 11 3.0 .77 .81 .80 .12 .02 .12 .02 .01 .02 .00 .00 .00

All 5.9 8.1 3.2 5.0 5.0 2.0 .85 .80 .82 .08 .05 .12 .02 .01 .00 .00 .00 .00

Table 5: Mean and median of clusters and their relative sizes.

capture the observed WUGs, giving credibility to the models performance and its

use case in non-simulated annotation processes.

For comparing the generated WUGs against observed WUGs, we choose the

models most closely resembling the annotation process of DWUG DE/EN and Dis-

coWUG. In the case of DiscoWUG this would be the model consisting of one ran-

domly chosen annotator per edge, where edges are randomly sampled and DWUG

CC as the clustering approach (Kurtyigit et al., 2021b). DWUG DE/EN model is

similar to the DiscoWUG model, but uses the sampling approach introduced by

Schlechtweg et al. (2021b). The DWUG Sampling methodology does not implement

re-sampling edges with disagreement or sampling between multi-clusters, which is

why we choose to increase the annotations per sampled edge up to 5 to counteract

this discrepancy. We selected Annotated WUGs with 500 annotations for compari-

son, as we have seen in Section 4 that most observed WUGs tend to have around this

many annotations. In the following Sections we will refer to DWUG and DiscoWUG

as the models used to generate the observed, coarse and Fitted WUGs.

Number of Senses From Figure 21 and Table 5 we can observe, that there is

some discrepancy in the number of clusters found by the models compared to the

observed data. For the Coarse WUGs this is mostly due to that an equal amount

of underlying True WUGs with different amount of clusters were chosen for the

simulation, explaining the more uniformly distributed cluster number. The fitting

process of the observed WUGs for the Fitted WUGs tends to generate less clusters

(Schlechtweg et al., 2021a), in most cases around 1 to 5 clusters, resulting in less

clusters.

The skewness of the DWUG model for the Coarse WUGs can be explained by the
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Figure 21: Left: Number of clusters (senses) in observed WUGs. Middle: Number

of clusters for Coarse WUGs. Right: Number of clusters for Fitted WUGs.

number of annotators used. As we use 5 annotators per sampled edge, the number

of possible sampled edges falls drastically and in addition with DWUG sampling,

where it is possible that multiple edges are sampled per node, the probability of

sampling an edge to a node belonging to a small cluster, as the clusters are log-

distributed, is very low. Combining this with WUGs containing many clusters, it is

even more improbable discovering these small clusters.

We do observe that the models reproduce the underlying True WUGs cluster

number rather well, hence if the cluster number for the True WUGs were similar to

the observed WUGs for the simulation, we would expect a similar distribution to

that of the observed WUGs.

Sense Size Figure 22 shows that we are able to reproduce the Log-distribution

of cluster sizes. This is expected, as we are able to control the distribution of nodes

per cluster, yet we do observe that the Fitted WUGs follow the observed WUGs

distribution more closely (see Table 5), which is even more visible comparing the

distribution for each WUG independently (Figure 23), hinting at that the general

distribution seems to follow a Poisson-Distribution, as discussed in Section 4.2.

Zero Annotations and Variance The percentage of zero annotations for coarse

and Fitted WUGs is around 3.3% (Table 6). This is lower than the percentage on
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Figure 22: Left: Relative sense size for all WUGs of the data set. Middle: Relative

cluster (sense) size for all Coarse WUGs. Right: Relative cluster (sense) for all

Fitted WUGs.

Figure 23: Left: Relative sense distribution for single WUGs for observed WUGs.

Middle: Relative cluster (sense) distribution for single WUGs for Coarse WUGs.

Right: Relative cluster (sense) distribution for single WUGs for Fitted WUGs.

the observed WUGs, which is expected, as we choose a zero annotation probability

of .033 for the simulation. This shows that it is possible to reproduce the amount

of zero annotations during the simulation and we expect that if the probability for

the simulation was chosen to be .044 we would observe this.

We were also able to reproduce similar Spearman rank scores for ρN0/A,SDNE
(Fig-

ure 24 and Table 6), indicating that for most nodes the number of zero annotations

does not correlate to its annotation error. However, we are not able to observe the

same frequency of nodes with high standard deviation and zero annotations (Figure

24), consolidating the concept that there is some relation between high annotation
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|A0|
|A| V̄arAE ṼarAE ρN0/A,SDNE

∆A

Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted Observed Coarse Fitted

DWUG DE .040
.032

.031 .20
.17

.21 .19
.16

.16 .08
.00

.00 .74
.94

.73

DWUG EN .039 .035 .26 .22 .22 .16 .08 .03 .78 .68

DiscoWUG .058 .033 .032 .20 .11 .15 .00 .00 .00 .00 -.01 -.03 .68 .68 .51

All .044 .033 .033 .22 .15 .19 .20 .00 .16 .07 .14 .12 .72 .69 .52

Table 6: Different metrics divided between the chosen models and the underlying

WUGs used. From left to right: Proportion of zero annotation. Mean Variance of

Annotation per Edge. Median Variance of Annotation per Edge. Spearman Rank

of mean relative number of zero annotations of a word usages annotation against

its mean annotations standard deviation. Proportion of where Triangular Inequality

holds.

Figure 24: Mean Relative Zero Annotation against the Mean Standard Deviation

per Node of the observed data (Left) compared against Coarse WUGs (Middle)

and Fitted WUGs (Right).

disagreement and high number of zero-annotations, as discussed in Section 4.3.

The simulation produces similar distribution of mean standard deviation per

node (Figure 25). We do observe that the standard deviation of 0 and .5 for the

DWUG models is lower than the observed, which is a consequent of the chosen

model, as each edge is annotated 5 times, thus more likely to produce a different

standard deviation. The discrepancy for the DiscoWUG model stems from the num-

ber of nodes and annotations used. As all Coarse WUGs have 100 nodes, doubling

that of the observed WUGs (Table 2), the probability of sampling an edge twice is

lower. Figure 25 also showcases, that we are not able to reproduce nodes with high

annotation error as frequent as for the observed WUGs.

In the case of annotation variance per edge, we are only moderately able to repro-
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Figure 25: Mean standard deviation of annotations for all word usages of observed

WUGs (Left), for all nodes (word usages) of Coarse WUGs (Middle Left) and for

all nodes (word usages) of Fitted WUGs (Middle Right). Right: Comparison of

median variance of edges per number of annotations of edges.

Figure 26: Relative weight distribution between clusters (senses) for observed WUGs

(Left), for Coarse WUGs (Middle) and for Fitted WUGs (Right)

duce the same variance (Table 6), especially the observed effect of rising annotation

disagreement between more than 2 annotators (Figure 25 right). The discrepancy is

probably due to how edges were re-sampled in DWUG DE and DWUG EN, as edges

with high annotation disagreement were annotated multiple times, thus leading to

a higher variance.

Annotations We do reasonably well approximate the distribution of weights, an-

notations and variance of annotations for Fitted WUGs compared to the observed

distribution (Figure 26, 27, 28). For the Coarse WUGs, this is not the case. Their

weight and annotation distributions are more skewed towards their extremum. This

is actually due to how we choose the parameter p for the distribution matrix D dur-

ing the generation phase. As we choose the parameter p to be equal to .99 and .01

for the binomial distribution inside and between clusters respectively, we expected

to observe the extreme values more often. From this we can assume that, if the
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Figure 27: Relative annotation distribution between clusters (senses) for observed

WUGs (Left), for Coarse WUGs (Middle) and for Fitted WUGs (Right)

Figure 28: Variance of annotations per node-pair between clusters (senses) for ob-

served WUGs (Left), for Coarse WUGs (Middle) and for Fitted WUGs (Right)

parameters are chosen carefully for the distribution matrix, for instance in the case

of Fitted WUGs, where the parameters were inferred from the observed distribution,

we are able to generate similar weight and annotation distributions.

Triangular Property We are only partially able to reproduce the triangular in-

equality. The DWUG model seems to be beneficial for the triangular inequality

property, as opposed to the DiscoWUG model (Table 6). The main difference be-

tween these models are the number of annotator per edge and the sampling strategy

employed. We also calculated the triangular property for edges which do not have

an annotation disagreement, but did not observe a significant increase, which is in

line with the observed data (Section 4.3). This leads us to believe that the sam-

pling strategy used may be a big factor for the triangular inequality. If we compare

the Coarse WUGs against the Fitted WUGs, we observe that the triangular prop-

erty drops significantly. The main difference between these generated WUGs is their
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Figure 29: Overview of sampling strategies with one annotation per sampled edge.

The data was generated by aggregating over all models.

weight distribution, where for the Coarse WUGs the distribution is skewed towards

both extremum (Figure 26 and 27). This shows that the weight distribution is a

significant factor for the triangular inequality.

7.2 Models on Coarse WUGs

In the following section we will compare the performance of models on Coarse

WUGs. We will first take a look at the performance of each sampling strategy (Sec-

tion 7.2.1), after which we will compare the clustering approaches (Section 7.2.2),

then take a look at how the introduced stopping criterion’s manage (Section 7.2.3)

and finally on the overall performance of each model (Section 7.2.4).

7.2.1 Sampling

Random Sampling’s performance between 10 and 100 judgments is not surprising,

as it creates a lot of WU-Annotation-Pairs which are not connected (Section 7.2.1).

This property of disconnectedness for small annotation sizes is being mitigated by
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doing a Random Walk across the WUG, thus only creating connected WU-Pairs,

which improves the performance. While this approach does solve the problem of Ran-

dom Sampling, it does bear the problem of cluster determination (Section 7.2.1).

As PageRank combines both properties of Random Sampling and Random Walk,

it is not surprising that this sampling strategy performs worse than than Random

Walk. It incorporates the bad behavior of creating unconnected components, while

performing better than Random Sampling, since it does not create these with the

same frequency (Section 7.2.1). Modified Random Walk builds on top of the idea

of keeping the graph connected, while extending this property by taking a path

between the found and unknown set of nodes, thus reducing the undesired effects

of Random Walk (Section 7.2.1) Modified Search Space Random Walk tries to im-

prove Random Walk by exploring the neighborhood of a given node. This does not

further improve performance compared to Random Walk, as it exhibits the same

disadvantages (Section 7.2.1). The DWUG Sampling approach performs well, due

to its heuristical approach of connecting small clusters and selecting edges which

might bear the most information, but due to its intrinsic stopping criterion might

stop in a local best state. This is mitigated by random sampling new edges between

nodes, thus restarting the sampling (Section 7.2.1). In general it seems there a two

factors in performance degradation:

• Unconnected Components

• Sparsity

Modified Random Walk and DWUG try to bypass both these problems by sam-

pling nodes multiple times (Section 5.3.4 and Section 5.3.6) creating a denser graph

structure. For later stages of the annotation process (≥ 500 annotations and one an-

notator per sampled edge) most sampling strategies exhibit the same performance,

which can be contributed to that most nodes have been added to the Annotated

WUG (around 90%) and most sampling strategies from this point onwards behave

similar.
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Figure 30: Random Sampled WUG with 10/50/100 annotations, illustrating the

creation of unconnected components during early annotation stages.

Random Sampling Random Sampling, compared to the other sampling strate-

gies, is the simplest strategy to execute, but this also shows in the performance,

especially for small annotation sizes. The underlying problem of Random Sampling

is that for small annotation sizes a lot of different unconnected components are cre-

ated (Figure 30), as edges are sampled randomly and there is no intrinsic property

that connects those found nodes. Hence, there is no information sampled between

those nodes. The lack of information between nodes reduces the performance, as

it is not possible to predict the correct clustering between those unconnected node

pairs. This can be seen in both the ARI and iJSD scores. It does not matter what

underlying True WUG is being sampled, as this behavior emerges from the sam-

pling strategy itself. As we can observe from the Figure 29, this performance damp

reduces as the annotation size grows. This is mostly due to that the number of un-

connected components and the sparseness of the Annotated WUG reduces, as more

annotations are being sampled.

Random Walk Random Walk compared to Random Sampling provides a per-

formance enhancement for small annotation sizes, as it does not form unconnected

componnets. This performance enhancement can be seen in Figure 29.

Random Walk does introduce a new problem for sparse WUGs. While traversing

the WUG, it is possible that a low annotation score edge is sampled. In the case that

there is no annotation error, this signals that we cross from one cluster to another.

This can be a problem for sparse annotated graphs, as Figure 31 shows, because
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Figure 31: Left: Example of Random Walk at some annotation step. Middle and

Right: Example of merging or splitting due to annotation error introduced for the

newly sampled edge.

Figure 32: Random Walk with 10/50/500 annotations exemplifying the traversing

of low annotation score edges and resulting multiple clustering.

if we traverse multiple low annotated edges there is no direct information if the

new cluster is part of an already found cluster or not. This behaviour is amplified

by the possibility of annotation error, as not only it is possible to split a cluster

by annotating an edge with a low score, it is also possible that clusters may be

merged (Figure 31). This effect is reduced, as more annotation are introduced into

the Annotated WUG (Figure 32).

PageRank PageRank is an extension to the the Random Walk sampling strat-

egy, incorporating a teleportation probability, which allows to continue the Random

Walk from any possible node. Figure 33 shows that PageRank combines both unde-

sired effects of Random Sampling and Random Walk. The effect of creating a new

unconnected components is not as severe as for Random Sampling, as the frequency

of restarting the Random Walk from a new node is lower, but still this behaviour

is not desirable, as it reduces the performance significantly compared to Random
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Figure 33: PageRank with 10/20/50 annotation, displaying both effects of Random

Sampling (unconnected components) and Random Walk (splitting clusters) .

Figure 34: Modified Random Walk with 10/20/50 annotation, illustrating the dense

annotation between nodes.

Walk.

Modified Random Walk This approach extends the Random Walk, by modify-

ing how the WUG is traversed, as described in Section 5.3.4. As newly added nodes

are connected to the Annotated WUG by two edges, each node is less susceptible to

an annotation error and the resulting WUG structure is initially more densely con-

nected when compared to other sampling strategies (Figure 34). This improves the

performance drastically in the early annotation stages (Figure 29) as it reduces the

probability of splitting clusters mentioned in Section 7.2.1 and does not introduces

unconnected components.

Modified Search Space Random Walk MERW exhibits mostly the same per-

formance as Random Walk, which is expected. Random Walk is mostly a special

case of MERW, where only one edge of its neighborhood is sampled. Increasing the
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sampled neighbourhood does seem to increase the performance slightly compared to

Random Walk (Figure 29), but has to be considered carefully, especially in size. Fig-

ure 14 demonstrates how sampling the neighborhood introduces stars structures in

WUGs, meaning that these nodes are dependent on their parent node. Considering

the effects of Random Walk observed in Section 7.2.1, we can see the susceptibility

of the parent node impacts its neighbourhood significantly and thus may lead to

bad performance in early annotation stages.

DWUG(+RS) Sampling The DWUG Sampling approach provides good early

performance, while also exhibiting stable performance across any number of anno-

tations. This is due to using the current clustering state of the WUG as a heuristic

for edges, sampling these which might introduce the most information. For example,

in the combination step of DWUG, edges are sampled for these nodes, which are

not yet part of a multi-cluster and are also not connected to each cluster present

in the WUG. Hence these edges are sampled as a mean of finding a possible clus-

ter assignment for the node. During the exploration phase only edges of nodes are

considered, which are yet not part of a multi-cluster but are already connected to

each multi-cluster. Thus sampling these edges would introduce information about

the relationship of those nodes and if they could be merged into a new cluster.

In Section 5.3.7 we explained that DWUG has an intrinsic stopping criterion,

which may lead the sampling strategy in a pseudo best state. This is visible in Figure

29, as the performance stagnates for a not inconsiderable amount of annotations.

By extending the DWUG Sampling strategy with Random Sampling, re-seed the

sampling strategy by introducing new edges. Figure 29 shows that this approach

improves the performance, as we avoid remaining in this possible pseudo state.

7.2.2 Clustering

From Figure 35 we can see that the chosen clustering strategy is detrimental for

the performance of a model. We can observe that Chinese Whispers performance is

highly dependent on how densely annotated a WUG is, while being robust against
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Figure 35: Overview of clustering strategies with one annotation per sampled edge.

The data was generated by aggregating over all models.

annotation error (Section 7.2.2). Louvain Method’s performance is unaffected by the

annotation amount of a WUG, which is due to the optimization of modularity being

a flawed criterion for WUGs, as it favours similar sized clusters (Section 7.2.2). For

Connected Components Clustering we see that it performs well for sparsely anno-

tated WUGs, but drops in performance for dense WUGs, which is due to annotation

error (Section 7.2.2). DWUG Correlation Clustering performs similar to CCC, but

due to the function being optimized exceeds the performance of CCC in densely

annotated WUGs, as it does not suffer from annotation error (Section 7.2.2). The

Weighted Stochastic Block Model performance can be mainly attributed to the opti-

mization against a binomial distribution of edge-weights inside and between clusters,

thus restoring the distribution used to generate the underlying True WUG (Section

7.2.2).
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Figure 36: Overview of sampling strategies performance with one annotation per

sampled edge using CW as the clustering strategy

Chinese Whispers CW exhibits poor performance for WUGs with low number

of annotations (Figure 35), while performing well on highly annotated WUGs. This

behaviour is due to CW only considering a nodes neighborhood during the assign-

ment to a cluster. Hence, for sparse annotated WUGs, which are created by Random

Sampling or Random Walk, the clustering can only consider one or two nodes and

their cluster assignment, resulting in a locally bound optimization of the cluster as-

signment for a given node. As WUGs are annotated more densely the performance

increases drastically, as a nodes neighborhood includes almost all nodes, thus this

local optimization results in a global optimization.

CW is also robust against annotation error for densely annotated WUGs, which

is due to how the cluster assignment is determined, as it considers the sum of all

outgoing edges towards each cluster (Section 5.4.1). Therefore, if most edges are an-

notated correctly, edges with high annotation error do not contribute to the decision

significantly, resulting in the correct assignment.

Louvain Method Louvain Methods poor performance is due to the modularity

criterion being optimized. It has been found that modularity is insufficient for finding
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Figure 37: Comparison of Louvain Methods clustering based on uniformly and Log-

distributed cluster sizes.

Figure 38: CCC with 200/500/1000/5000 annotation, illustrating the merging of

clusters due to annotation error.

small clusters in graphs and favors a more homogeneous distribution of clusters

(Fortunato and Barthelemy, 2007). This is unfavorable for the case of WUGs, as

their cluster distribution tends to be skewed towards the first cluster (Figure 22 and

23 and Table 6). Figure 37 present a comparison of LM performance against a small

set of WUGs, where the nodes are in one case distributed uniformly and in the other

follow a logarithmic distribution. We observe that for the uniformly distributed, the

performance is significantly better, while for the Log-distribution we observe the

same performance as for the Coarse WUGs.

Connected Component Clustering Connected Component Clustering shows

good performance for small number of annotations. This is due to clustering nodes
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Figure 39: DWUG CC with 200/500/1000/5000 annotation, illustrating the robust-

ness against introduced annotation error.

together that are connected by high annotation scores, which is desirable. We do

see a big drop in performance as more annotations are made, which is a sign of the

biggest drawback for this clustering approach, its weakness against annotation error.

As more annotations are made, the probability for high annotation error introduced

grows. Thus previously unconnected components might be connected by a high

annotation score edge, hence merging both clusters. This effect is visible in Figure

38.

DWUG Correlation Clustering DWUG CC’s performance results from the

function being optimized, as it maximizes high edge-weights inside clusters while

also maximizing low edge-weights between clusters (Section 5.4.4). This is a desirable

optimization approach, as it captures the semantic relatedness of word usage pairs.

We observe that DWUG CC performance is similar to that of CCC (Figure 35) for

less than 1000 annotations, after which they diverge. As discussed in Section 7.2.2,

CCC is not robust against annotation error, leading to merges of unrelated clusters.

DWUG CC’s function captures the global annotation state of the WUG (Schlechtweg

et al., 2021b), resulting in a robust clustering. This difference in robustness can be

observed when comparing between Figure 38 and Figure 39. Comparing DWUG CC

performance against that of CW, as it only uses local information (Section 7.2.2),

for low number of annotations, shows that using this global information is beneficial

for the overall performance.

Weighed Stochastic Block Model WSBM clustering uses a sophisticated ap-

proach, finding the most optimal clustering by minimizing its description length
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Figure 40: Weight distribution between and inside found clusters of Fitted WUGs

with 500 annotations for DWUG CC (Left), DWUG CC without splitting uncorre-

lated clusters (Middle) and WSBM (Right)

(Peixoto, 2014a). Most notably this approach also takes into account the distri-

bution of edge-weights and optimizes towards a clustering, such that the weights

between and inside the clusters follow a given distribution. As we used this ap-

proach optimizing towards a binomial distribution, due to the observations made

in Section 4.3, Section 7.1 and Figure 26, it is not surprising that this approach

performs well.

Figure 40 shows the distribution found by the DWUG CC and WSBM approach

on Fitted WUGs. It is interesting to observe, that both approaches fit the binomial

distribution rather well, especially in the case of DWUG CC as it does not optimize

for this behaviour intrinsically. As we will discuss in Section 7.3, the DWUG CC

approach does not perform as well as WSBM for a low number of annotations. There-

fore this shows that optimizing towards this behaviour is not the only characteristic

that should be considered for clustering approaches.

It is important to note, that we used WSBM to generate the coarse and Fitted

WUGs, thus the results are biased.

7.2.3 Stopping Criterion

Stopping criterions are important deciding factors when to stop the annotation pro-

cess and thus are crucial for an efficient and effective model. Figure 41 shows that the

Bootstrapped JSD (here inverse) does not capture any important information about
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Figure 41: Overview comparison of stopping criterions against measured perfor-

mance.

the Annotated WUG and thus is not a usable indicator. Gambettes method does

capture information about the annotation process, but only produces reasonable

statements after 200 annotations, thus being only partially usable.

Bootstrapped JSD From Figure 41, we can see that the Bootstraped iJSD met-

ric does not correlate to the observed iJSD, nor captures any information about the

Annotated WUG and stays close to 1. This is due to how the metric is calculated.

By random sampling with replacement from a distribution, we expect the sampled

distribution to be closely related to the actual underlying distribution. As we boot-

strap the random samples from the cluster distribution of the Annotated WUG, we

expect a similar cluster distribution, resulting in a JSD ≈ 0 (iJSD ≈ 1) and thus

the resulting percentile value to be close to 0 (iJSD ≈ 1) as well.

Gambette Gambettes measured performance follows the actual ARI very closely

from around 200 annotations (Figure 41), indicating that this stopping criterion can

be used very well for approximating the actual performance of the Annotated WUG.

The problem for sparse annotated WUGs arises from the number of randomly an-

notated edges. Gambettes random annotator only annotates already existing edges
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Figure 42: Models on Coarse WUGs in comparison for ARI Score based on the

number of annotations with 50 annotations (left), with 100 annotations (Middle)

and with Gambette > .9 and at least 100 annotations.

in the Annotated WUG, resulting in an additional annotation of this edge, hence

the probability of heavily influencing the weight of this edge is low. Additionally,

only 10% of the existing edges are annotated, consequently only a few edges are

annotated by the random annotator. Thus the newly clustered permuted WUG is

very similar to the initial Annotated WUG.

7.2.4 Model Overview

Figure 42 shows the performance of different models at 50 and 300 annotations. We

only include the scores for ARI, as iJSD behaves relatively similar. We choose to

compare the models at 50 annotations to understand how well the models perform
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under low number of annotations and at 300 annotations as this captures the most

common number of annotations found in the observed data (Section 4.3). For higher

number of annotations, sampling strategies perform similar (Figure 29) and a models

performance only depends on the clustering strategy employed. Hence for these cases

we would recommend DWUG CC or WSBM as they identify the correct clustering

very well and are robust against annotation noise (Section 7.2.2 and Section 7.2.2).

CW should also be considered for later annotation stages, as its robust against

annotation error, providing good performance and lower time complexity.

Figure 42 for models with 50 annotations illustrates the favourable trait of build-

ing dense structures and sampling edges based on some heuristics, as MRW and

DWUG (+RS) sampling exhibit good performance. It is important to note, that

MRW in contrast to DWUG (+RS) sampling does not depend on a clustering strat-

egy during the annotation phase, thus being more fitted for environments where

clustering is not possible during this phase.

Figure 42 for models with 300 annotations demonstrate the importance of cluster-

ing strategies incorporating and optimizing towards characteristics found in WUGs,

as these clustering strategies, namely DWUG CC and WSBM, exhibit higher and

stable performance compared to other strategies.

We can see that models using MRW or DWUG (+RS) in combination with

DWUG CC or WSBM achieve higher performance with less annotations than other

models, which is in line with the observations made in the previous sections.

In Figure 42 (right) we include a possible use case of Gambette, where the

annotation process is stopped after the calculated mean ARI of Gambette is above

the threshold of 0.9. For most models this stopping criterion is triggered between

500 and 1000 annotations, which is in line with the performance observations made

in previous sections, hence pointing towards the usefulness of this criterion.

7.2.5 Increasing Annotators per Edge

Annotation noise can introduce undesired effects, like splitting clusters (Section

7.2.1, 7.2.1 and 7.2.1) or merging unrelated clusters in the case of CCC (Section
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Figure 43: Overview of sampling strategies with five annotation per sampled edge.

The data was generated by aggregating over all models.

7.2.2). Table 4 and Figure 7 show that most annotation error lies between 0 and .5,

hence annotations mostly deviate by one on the DURel relatedness scale (Table 1).

Therefore, introducing more annotators per edge, we would expect to dampen the

effect high of annotation error, particularly for one annotator. As clustering strate-

gies are especially susceptible to noise, we compare the performance of clustering

strategies with 5 annotators per edge (Figure 44) against the performance with 1

annotator per edge (Figure 35), and observe that the performance for DWUG CC

and CCC rises significantly. Increasing the annotation load per edge also increases

the annotations needed to annotate the same amount of edges. This is visible in the

shift of performance for sampling strategies (Figure 43). The high performance for

low number of annotations (≈ 10) is a spurious effect, due to the low number of

edges sampled. The trade off between performance and annotation load has to be

considered carefully.
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Figure 44: Overview of clustering strategies with five annotation per sampled edge.

The data was generated by aggregating over all models.

7.3 Models on Fitted WUGs

In Section 7.1, we discussed the differences between observed, Coarse and Fitted

WUGs. The main difference between Fitted WUGs and Coarse WUGs are the

weight and annotation distributions (Figure 26 and Figure 27), where the Fitted

WUGs follow the observed distribution more closely, hence the distinction between

unrelated and related pairs becomes more blurred. Considering annotation error,

the probability for annotating an unrelated pair as being related rises. This reflects

heavily in the performance of each model (Figure 45), as clustering strategies are

not able to distinguish the cluster assignment of a node as clearly as in the case

for Coarse WUGs, particularly for small number of annotations. We still observe

that the sampling strategies MRW and DWUG paired with DWUG CC and WSBM

perform better than other models.
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Figure 45: Models on Fitted WUGs in comparison for ARI score based on the number

of annotations. Left 50, middle 300 and right 500 annotations.

8 Conclusion

The goal of this thesis was to test different models, consisting of a sampling, cluster-

ing and stopping strategy, exhaustively on their ability to efficiently and effectively

find the correct sense assignment of word usages in WUGs. Hence we build a frame-

work, which is able to simulate the real world annotation process of WUGs, allowing

the models to be evaluated and compared extensively and automatically without the

need for human annotators.

In Section 4 we analyzed different characteristics exhibited by the WUGs in

DWUG DE/EN and DiscoWUG data set, including observations made about their

structure as well as their annotations. In Section 7.1 we showed that it is possible to
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generate WUGs with characteristics resembling that of observed WUGs, based on

the observations made. This allowed us to use these as underlying True WUGs in

the simulation and evaluation of performance for different models, giving credibility

to their results.

Section 7.2 and Section 7.3 discussed the various advantages and disadvantages

of different sampling, clustering and stopping strategies. We found that models using

Modified Random Walk (Section 5.3.4) or DWUG Sampling (Section 5.3.6) in com-

bination with DWUG Correlation Clustering (Section 5.4.4) or Weighted Stochastic

Block Model (Section 5.4.5) clustering strategy achieved good results, even for very

low number of annotations. This is due to these models generating dense structures

as well as optimizing towards characteristics observed in the data set. Furthermore,

we found that Gambettes Method (Section 5.5.2) provides a good approximation of

how well the Annotated WUG, generated by a model, captures the correct cluster

assignment of nodes.

It is interesting to note that these models can be seen as solutions to an opti-

mization problem. For example a sampling strategy has to find an optimal ordering

of edges, such that the edges which provide the most information are added ear-

lier in the annotation process. Thus, strategies should be considered which are also

effective for other optimization problems.

There are two drawbacks in our current approach. As we simulated on a di-

achronic data set, meaning that each WUG contained information from two time

periods, without differentiating between those, our results might be biased towards

such data sets. However, we analyzed the time periods separately (Section 4) and

found that they exhibit similar characteristics, suggesting that these results might

be generalizable. It is also important to note, that we did not further improve the

parameters of a model. This may lead to better results, but may also be highly

dependent on the underlying True Graphs.

We did not further research the possibility of using the triangular property (Sec-

tion 4.3) to enhance the models, but think that this is an important topic to further

delve into. As we have shown that it is possible to generate WUGs and simulate
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the annotation process, this may serve as a testing ground for defining and refining

models before they are used in a real world application.

References

Christopher Aicher, Abigail Z. Jacobs, and Aaron Clauset. Learning latent block

structure in weighted networks. Journal of Complex Networks, 3(2):221—-248,

Jun 2014. ISSN 2051-1329. doi: 10.1093/comnet/cnu026. URL http://dx.doi.

org/10.1093/comnet/cnu026.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine

Learning, 56(1-3):89–113, 2004. doi: 10.1023/B:MACH.0000033116.57574.95.

Chris Biemann. Chinese whispers - an efficient graph clustering algorithm and its ap-

plication to natural language processing problems. In Proceedings of TextGraphs:

the First Workshop on Graph Based Methods for Natural Language Processing,

pages 73–80, New York City, June 2006. Association for Computational Linguis-

tics. URL https://aclanthology.org/W06-3812.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statisti-

cal Mechanics: Theory and Experiment, 2008(10):P10008, oct 2008. doi: 10.

1088/1742-5468/2008/10/p10008. URL https://doi.org/10.1088/1742-5468/

2008/10/p10008.

Jaewon Chung, Benjamin D Pedigo, Eric W Bridgeford, Bijan K Varjavand, Hay-

den S Helm, and Joshua T Vogelstein. Graspy: Graph statistics in python. J.

Mach. Learn. Res., 20:158–1, 2019.

B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of

Statistics, 7(1):1 – 26, 1979. doi: 10.1214/aos/1176344552. URL https://doi.

org/10.1214/aos/1176344552.

63

http://dx.doi.org/10.1093/comnet/cnu026
http://dx.doi.org/10.1093/comnet/cnu026
https://aclanthology.org/W06-3812
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552


D.M. Endres and J.E. Schindelin. A new metric for probability distributions. IEEE

Transactions on Information Theory, 49(7):1858–1860, 2003. doi: 10.1109/TIT.

2003.813506.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord. Investigations on word senses

and word usages. In Proceedings of the Joint Conference of the 47th Annual Meet-

ing of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 1, pages 10–18, Stroudsburg, PA, USA, 2009.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord. Measuring word meaning in

context. Computational Linguistics, 39(3):511–554, 2013.

Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.

Proceedings of the national academy of sciences, 104(1):36–41, 2007.

Philippe Gambette and Alain Guénoche. Bootstrap clustering for graph partitioning.

RAIRO - Operations Research - Recherche Opérationnelle, 45(4):339–352, 2011.

doi: 10.1051/ro/2012001.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic

blockmodels: First steps. Social Networks, 5(2):109 – 137, 1983.

John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph

manipulation. Commun. ACM, 16(6):372–378, June 1973. ISSN 0001-0782. doi:

10.1145/362248.362272. URL https://doi.org/10.1145/362248.362272.

Adam Kilgarriff. ”I don’t believe in word senses”. Computers and the Humanities,

31(2), 1997.

Sinan Kurtyigit, Maike Park, Dominik Schlechtweg, Jonas Kuhn, and Sabine Schulte

im Walde. Lexical semantic change discovery, 2021a.

Sinan Kurtyigit, Maike Park, Dominik Schlechtweg, Jonas Kuhn, and Sabine Schulte

im Walde. Lexical Semantic Change Discovery. In Proceedings of the Joint

Conference of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language

64

https://doi.org/10.1145/362248.362272


Processing, Online, 2021b. Association for Computational Linguistics. URL

https://arxiv.org/abs/2106.03111.

Diana McCarthy, Marianna Apidianaki, and Katrin Erk. Word sense clustering and

clusterability. Computational Linguistics, 42(2):245–275, 2016.

Tiago P. Peixoto. Efficient monte carlo and greedy heuristic for the inference of

stochastic block models. Physical Review E, 89(1), Jan 2014a. ISSN 1550-2376.

doi: 10.1103/physreve.89.012804. URL http://dx.doi.org/10.1103/PhysRevE.

89.012804.

Tiago P. Peixoto. The graph-tool python library. figshare, 2014b. doi: 10.6084/m9.

figshare.1164194. URL http://figshare.com/articles/graph_tool/1164194.

Tiago P. Peixoto. Nonparametric weighted stochastic block models. Physical Review

E, 97, 08 2017. doi: 10.1103/PhysRevE.97.012306.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66(336):846–850, 1971.

Dominik Schlechtweg, Sabine Schulte im Walde, and Stefanie Eckmann. Diachronic

Usage Relatedness (DURel): A framework for the annotation of lexical semantic

change. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 169–174, New Orleans, Louisiana, 2018. URL https://www.aclweb.org/

anthology/N18-2027/.

Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky,

and Nina Tahmasebi. SemEval-2020 Task 1: Unsupervised Lexical Semantic

Change Detection. In Proceedings of the 14th International Workshop on Seman-

tic Evaluation, Barcelona, Spain, 2020. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/2020.semeval-1.1/.

Dominik Schlechtweg, Enrique Castaneda, Jonas Kuhn, and Sabine Schulte im

Walde. Modeling sense structure in word usage graphs with the weighted stochas-

tic block model. In Proceedings of *SEM 2021: The Tenth Joint Conference

65

https://arxiv.org/abs/2106.03111
http://dx.doi.org/10.1103/PhysRevE.89.012804
http://dx.doi.org/10.1103/PhysRevE.89.012804
http://figshare.com/articles/graph_tool/1164194
https://www.aclweb.org/anthology/N18-2027/
https://www.aclweb.org/anthology/N18-2027/
https://www.aclweb.org/anthology/2020.semeval-1.1/


on Lexical and Computational Semantics, pages 241–251, Online, August 2021a.

Association for Computational Linguistics. doi: 10.18653/v1/2021.starsem-1.23.

URL https://aclanthology.org/2021.starsem-1.23.

Dominik Schlechtweg, Nina Tahmasebi, Simon Hengchen, Haim Dubossarsky, and

Barbara McGillivray. DWUG: A large Resource of Diachronic Word Usage Graphs

in Four Languages. CoRR, abs/2104.08540, 2021b. URL https://arxiv.org/

abs/2104.08540.

Dmitry Ustalov, Alexander Panchenko, Chris Biemann, and Simone Paolo Ponzetto.

Watset: Local-Global Graph Clustering with Applications in Sense and Frame

Induction. Computational Linguistics, 45(3):423–479, 2019. ISSN 0891-2017. doi:

10.1162/COLI a 00354.

66

https://aclanthology.org/2021.starsem-1.23
https://arxiv.org/abs/2104.08540
https://arxiv.org/abs/2104.08540


Figure 46: Left: Relative cluster size for inferred graphs. Middle: Relative cluster

size per inferred graph. Right: Weight distribution for inferred graphs.

Appendices

A Inferred Graphs Characteristics

As the WSBM is used to infer the parameters for Fitted WUGs from the data set

DWUG DE/EN and DiscoWUG (Section 6), we also include Figure 46, showing

that these inferred graphs also capture the characteristics observed in Section 4.

B German Summary

B.1 Einleitung

Wortverwendungsgraphen (WUGs, McCarthy et al., 2016; Schlechtweg et al., 2021b)

sind ein Ansatz zur Darstellung von Beziehungen zwischen Wortverwendungspaaren,

wobei jede Wortverwendung als Knoten dargestellt wird und die gewichtete un-

gerichtete Kante zwischen einem solchen Paar die semantische Nähe darstellt. Schlechtweg

et al. (2020) benutzt WUGs um semantische Änderung zu erkennen, während Mc-

Carthy et al. (2016) diese Darstellung ausnutze, um durch Clustering-Prozeduren

Sinne von Wörtern zu erkennen. Diese Darstellung hat ihren Nachteil, da für eine
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gute Sinneserkennung im Wortverwendungsgraphen ein vollständiger Graph von

Nöten wäre. Da aber die Anzahl der zu annotierenden Kanten quadratisch mit der

Anzahl der Knoten in einem WUG wächst, würde sich dies auf den Annotation-

sprozess Negativ auswirken.

Unser Ziel ist es, effizienten und effektiven Modelle zu finden, die aus einer Sam-

pling und Cluster-Strategie sowie einem Stoppkriterium bestehen. Dies erreichen wir

durch die Evaluierung von Modellen in einer Simulationsumgebung, die ein genera-

tives Verfahren verwendet, um automatisiert vollständige WUGs zu generieren und

auf Basis dieser die Modelle zu simulieren und evaluieren. Die Basis dafür bietet

der Deutsche und Englische DWUG Datensatz (Version 1.0.0) (Schlechtweg et al.,

2021b) und der DiscoWUG Datensatz (Version 1.0.0) (Kurtyigit et al., 2021a).

B.2 Wortverwendungsgraph Analyse

Bevor wir uns der Simulation widmen, analysieren wir die derzeitigen existieren-

den, von Menschen annotierten Wortverwendungsgraphen. Hierfür beleuchten wir

verschiedene Aspekte dieser WUGs, wie die Anzahl der Wortverwendungen, Sin-

nesstrukturen und derren Annotationen. Die Anzahl der Wortverwendungen ist

wichtig zu behandeln, da wenn es möglich ist, ein WUG vollständig zu annotieren,

der Einsatz von Sampling-Strategien nicht begründbar ist. Die Sinnesstrukturen

zu verstehen ist deshalb wichtig, um geeignete simulierte WUGs zu generieren und

sowie gute Ansätze zu finden, die die zugrunde liegenden Merkmale eines Wortsinnes

erfassen. Um einen realistischen Annotationsprozess zu simulieren, ist es wichtig zu

analysieren, wie Annotationen und Annotatoren sich untereinander unterscheiden.

Wortverwendung Da die Anzahl der Annotationen quadratisch mit den Wortver-

wendungen in einem WUG anwächst, beobachten wir, dass sogar für die kleinsten

WUGs im Datensatz der Annotationsprozess außerhalb des möglichen Rahmens

liegt.
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Sinne Für die Sinne in den WUGs erkennen wir, dass diese grob einer logarith-

mischen Normalverteilung ähneln. Dies stimmt mit der Beobachtung von Kilgarriff

(1997) überein. Weiterhin beobachten wir, dass die Sinnesstrukturen für einzelne

WUGs eher einer Poisson-Verteilung ähneln.

Annotation Die annotierten WUGs besitzen meist um die 500 Annotationen.

Dies ist interessant, da somit die meisten Graphen nur eine sehr geringe Anno-

tationsdichte besitzen. Auch interessant zu sehen ist, dass der Annotationsfehler

eine nicht unerhebliche Konsequenz des Annotationsprozesses ist. Dies spiegelt sich

besonders in der Varianz der Annotation (um die .22), sowie in der Anzahl der

Null-Annotationen auf der DURel-Skala (Schlechtweg et al., 2018) (4.4%) wieder.

B.3 Simulation

Da das Ziel der Simulation ist, das Annotationsverfahren von WUGs realisitsch zu

reproduzieren, nutzen wir die folgenden zwei Graphen. Den Wahren WUG und

den Annotierten WUG. Der Wahre WUG ist dabei ein vollständiger Graph,

bei der die Kantengewichte und die entsprechende Cluster-Zuweisung die korrekte

Darstellung eines WUGs für ein nicht spezifiziertes Wort darstellen. Basierend auf

diesem Wahren WUG führen die verschiedenen Modelle ihre Sampling, Cluster und

Stop-Prozeduren aus und generieren damit den Annotierten WUG. Für die Wahren

WUGs generieren wir zwei Datensätze. Groben WUGs und Angepassten WUGs.

Diese unterscheiden sich insofern, dass für die Groben WUGs nur observierte Charak-

teristiken für den Generierungsprozess verwendet wurden, während für die Angepassten

WUGs der Datensatz selber verwendet wurde.

Graph Generierung Um diese Wahren WUGs in der Simulation verwenden zu

können, bedienen wir uns der Technik von Schlechtweg et al. (2021a). Hierbei wird

ein generativer Prozess verwendet, das Weighted Stochastic Block Model (Aicher

et al., 2014; Peixoto, 2017), um mögliche Graphen generieren zu können. Schlechtweg

et al. (2021a) zeigt, dass es mit diesem Verfahren möglich ist, Graphen zu generieren,
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die den beobachteten Graphen sehr nahe kommen. Dies erlaubt uns Wahre WUGs

für unsere Simulation zu generieren, ohne auf Annotatoren zurückgreifen zu müssen.

Annotation Da wir beobachten konnten, dass das Annotationsverfahren zu nicht

unerheblichen Fehlannotation auf dem WUGs führen, simulieren wir folgende zwei

Prozesse bei der Annotation einer Kante. Der Annotationsfehler modelliert die Ab-

weichung der Annotation von der ”wahren” Annotation, indem es einen Fehler

mithilfe einer Verteilung berechnet und diesen mit verrechnet. Eine Null-Annotation

beschreibt die Unentschlossenheit eines Annotators und wird zufällig mit einer gewis-

sen Wahrscheinlichkeit mit der ”wahren” Annotation ersetzt.

Modelle Modelle bestehen aus drei Grundkomponenten, ein Sampling, Cluster

und Stop-Prozedur. Wir definieren mehrere Komponenten und bilden aus denen

verschiedene Modelle, welche wir dann auf ihre Leistungsfähigkeit prüfen.

B.4 Analyse

Graph Generation Es ist wichtig, die Eigenschaften der generierten WUGs zu

analysieren, um festzustellen, wie gut die Groben WUGs und die Angepassten WUGs

mit den beobachteten WUGs vergleichbar sind und diese erfassen, um die Glaubwürdigkeit

der Modelle und deren Einsatz in nicht simulierten Annotationsprozessen zu unter-

mauern. Hierbei können wir feststellen, dass wir die beobachteten Eigenschaften sehr

gut annähren können, sowohl für die Sinnesverteilung als auch die Annotationsfehler.

Sampling-Prozeduren Im Allgemeinen scheint es zwei Faktoren zu geben, die zu

einer Leistungsminderung der Sampling-Prozedur führt. Die unverbundenheit von

Komponenten sowie dünnbesetzte Graphen. Dies wird besonders deutlich, wenn wir

uns die Leistungen der Prozeduren für wenige Annotationen betrachten. Prozeduren,

welche Knoten-Paare generieren, die nicht zum restlichen Graph verbunden sind,

oder welche, die eine geringe Dichte von Kanten bilden, schneiden im Vergleich zu

anderen, welche genau dieses Verhalten umgehen, schlechter ab.
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Cluster-Prozeduren Die Cluster-Prozedur ist für die Leistung eines Modells

äußerst wichtig. Dabei beobachten wir, dass die Leistung abhängig von mehreren

Faktoren ist. Unter anderem ist die gewählte Sampling-Prozedur wichtig, da diese

sich stark auf das erkennen von Clustern auswirken kann. Dabei sehen wir, dass

besonders Prozeduren, welche für wenige Annotationen unverbundene Komponen-

ten generieren, besonders schlecht abschneiden. Weiterhin beobachten wir das die

Grundstruktur des Graphens, besonders die Cluster-Größe des Wahren WUGs, sich

stark auf die Leistung auswirkt. Wir können außerdem erkennen, dass Cluster-

Prozeduren, welche nicht robust gegen Annotationsfehlern sind, ebenfalls schlechte

Ergebnisse liefern.

Stop-Kriterien Abbruchkriterien sind wichtige Entscheidungsfaktoren dafür, wann

der Annotationsprozess beendet werden kann, und sind daher für ein effizientes und

effektives Modell von entscheidender Bedeutung. Wir haben zwei Stop-Kriterien un-

tersucht, Bootstrapped JSD und Gambette. Dabei konnten wir erkennen, dass Boot-

strapped JSD keine wichtigen Informationen über den Annotierten WUG erfasst und

daher kein brauchbarer Indikator ist. Gambette erfasst zwar Informationen über den

Annotationsprozess, aber erst nach genügend Annotationen. Was aber interessant

ist, ist das Gambette die Leistung des Annotierten WUG sehr gut annähren kann

und ist deshalb als Abbruchkriterien geeignet.

Leistung der Modelle Wir konnten beobachten, dass Modelle, wo die einzelnen

Komponenten die oben genannten Faktoren beachten, sehr gute Leistungen auch

für sehr niedrige Annotationen produzieren. Die Modelle schneiden aber bei den

Angepassten WUGs deutlich schlechter ab, da die Gewichtsverteilung sich zwischen

den Groben WUGs und Angepassten WUGs stark unterscheidet.

B.5 Fazit

Das Ziel dieser Arbeit war, verschiedene Modelle, bestehend aus einer Sampling-,

Cluster- und Stop-Prozedur, umfassend auf ihre Fähigkeit zu testen. Dabei lag das
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Hauptmerkmal auf der korrekten Sinnzuweisung von Wortverwendungen in WUGs

effizient und effektiv zu finden. Modelle, die sowohl dichte Strukturen erzeugen als

auch auf die im Datensatz beobachteten Merkmale hin optimieren, erbringen gute

Leistungen. Wir haben ebenfalls gezeigt, dass es möglich ist, Wahre WUGs mithilfe

des generativen Modelles zu erstellen, deren Eigenschaften denen der beobachteten

WUGs (DWUG DE/EN und DiscoWUG) ähnelt. Dies erlaubt es uns, WUGs für

die Simulation als auch für die Bewertung der Leistung der verschiedenen Modelle

zu verwenden und verleiht deren Ergebnissen Glaubwürdigkeit.
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