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Abstract

Distributed applications combine the computational capabilities of heterogeneous nodes. As such,
they offer challenges regarding data transfer and synchronization. HPX is a library for concurrent,
parallel applications. It strives not only to address challenges regarding distributed systems, but also
to conform to current and upcoming C++ standards. One of the solutions found in heterogeneous
systems is provided in form of the OpenCL standard. It enables the cooperation between hardware
resources through a unified interface. In this work, we combine HPX and OpenCL in form of an
executor. The OpenCL executor enables HPX users to benefit from more resources on heterogeneous
nodes. We describe the executor’s design and its implementation. Furthermore, we present the
testing methods to ensure the correctness of the executor. Finally, we provide benchmarks on
NVIDIA and AMD GPUs.
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1 Introduction

1.1 HPX

HPX is an acronym for High Performance ParalleX.

HPX is a library for concurrency and parallelism [KDL+20]. It is written in C++ and is developed by
the STE||AR Group. The goal of HPX consists of two major aspects. Firstly, it provides capabilities
in alignment with the C++ standard for local usage. Secondly, it facilitates the development of
scalable, distributed and concurrent systems. Figure 1.1 visualizes the idea. Using HPX , the
application is not limited by the resources on the local machine. Instead, HPX enables its user to
distribute computationally expensive tasks to distant nodes. Therefore, it provides scalability and
enables the use of resources.

HPX is dominantly used in scientific computing. Additionally, it is used in gaming, finances, data
mining and cyber security and other fields. Furthermore, HPX is the foundation of libraries for
shared programming, performance portability programming and distributed array processing kits.

The high level architecture of HPX is shown in in Figure 1.2. We highlight some parts of its design.
The users of the library benefit from the C++ API. The interface is designed based on the C++
standard. Therefore, most developers are already familiar with some parts of the API. Additionally,
HPX provides extensions, which currently are not part of the C++ standard. One example is
std::tag_invoke(), which is proposed to the language’s standard. However, std::tag_invoke()
has not been included in the standard, yet. Another example are features of later standards like
std::optional and std::filesystem, which are part of C++17.

Therefore, using HPX with C++14 provides access to library additions of C++17 and C++20.
Furthermore, HPX provides access to upcoming library features, which are proposed for the
upcoming C++23 standard.

Figure 1.1: Basic visualization of distributed functionality supported by HPX .
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1 Introduction

Figure 1.2: High level architecture of HPX .

Figure 1.3: OpenCL portability.

Moreover, it HPX provides extensions to the interface of the standard library. Firstly, it provides
enhanced capabilities for threading and scheduling through the threading subsystem and policy
engine, respectively. Additionally, it provides support for communication between instances on
distant nodes via the parcel transport layer. The implementation of the OpenCL executor relates to
local control objects.

1.2 OpenCL

OpenCL is a standard for cross-platform, parallel computing. It enables the usage of all supported
resources on the machine through a unified interface. It especially does not rely on the hardware
provided by any particular vendor.

The main goal of the OpenCL standard is visualized in Figure 1.3. We consider a machine featuring
a powerful CPU and two GPUs from different vendors. The usage of CUDA provides access to
GPUs from the supported vendor only. Therefore, CUDA’s user would have two options. One option
consists of adjusting the application to another interface, which provides desired functionality. The
second option is to disregard all of the additional resources. Contrary to OpenCL , the developer
has access to all supported resources through a unified interface.

OpenCL is used for professional creative tools, scientific software, medical software, vision
processing, neural network training and interfacing.
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1.3 Executor

1.3 Executor

An executor in HPX is an object that invokes a function [Dan15]. By using executors as abstraction
to a direct function call, the developer is relieved from internal details. In particular, executors in
HPX allow to choose the mode which defines how the state of execution is verified. Additionally, the
user is relieved from retrieving the state of the execution manually. Finally, further improvements
are achieved using executors as abstractions [KTK+17].

The OpenCL executor supports two modes of execution. Firstly, the executor supports a fire-and-
forget approach. Using this mode, the provided function is called. However, no future is returned.
This mode is intended for blocking operations Alternatively, this mode covers the use case which
does not require the function execution’s processing state in general.

Secondly, a future can be retrieved from the function’s invocation.

1.4 Goals

In this work, we implement an OpenCL executor for the HPX project. Using HPX features, we
intend it to allow direct usage of the OpenCL interface. HPX futures are to be supported. The
verification of invoked OpenCL functions’ state is to be determined using the callback and polling
mechanism.

Solutions for loose coupling between the executor and other parts of the implementation are to be
maximized. Additionally, the overhead caused by the executor’s provided abstraction is also to be
minimized. Finally, the provided interface is to be as direct and lightweight as possible.

1.5 Related Work

One alternative to HPX consists of the MPI standard [GGL+99]. MPI is an acronym for Message
Passing Interface. One implementation of the MPI standard is OpenMPI [GFB+04]. However,
HPX still provides better performance compared to OpenMPI by a factor of approximately 1.2
to 128 nodes [BKK+19]. Additionally, many MPI implementations provide solutions for specific
research problems disregarding compatibility to other implementations [GFB+04].

Another alternative is Cpp-Taskflow [HLGW19]. Cpp-Taskflow also provides better performance to
OpenMPI , but not to the extent of HPX . Additionally, Cpp-Taskflow focuses on minimizing the
code complexity over supporting an interface compatible to the C++ standard.

Furthermore, the OpenCL executor itself is derived from the implementation of the already
existing CUDA executor in HPX . We design the OpenCL executor to maintain the same API and
characteristics users of the CUDA executor might expect.
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1 Introduction

CUDA OpenCL
streaming multiprocessor compute unit
thread work item
thread block work group

Table 1.1: Terminology equivalents for CUDA and OpenCL .

1.6 Outline

The structure of this work is as following.

In Chapter 2 on the facing page, we describe the environment used for development. This chapter
provides an overview over the directory structure of the HPX project. Additionally, we provide the
information regarding the libraries we develop against.

In Chapter 3 on page 21, we provide the detailed description regarding the executor’s implementation.
Additionally, we provide local design decisions in this chapter.

In Chapter 4 on page 41, we prove the correctness of our implementation. We describe performed
tests and their results.

In Chapter 5 on page 49, we provide information regarding runtime characteristics of the OpenCL
executor. We especially focus different execution modes of the executor on various hardware.

In Chapter 6 on page 65, we provide a summary of our results. Furthermore, we provide an outlook
regarding future work.

Due to extensive tests, we provide more detailed runtime information in Appendix A on page 67.

Design decisions that affect the multiple parts of the implementation are elaborated in Appendix B
on page 71. In particular, we provide context to our decisions and the reasons for taken solutions.

Due to the variety of used hardware, we provide detailed information for every used machine in
Appendix C on page 75. This especially facilitates runtime predictions on hardware not participating
in our tests.

1.7 Terminology

At the date of writing, CUDA is primary used for GPU’s utilization. Because the OpenCL
terminology for functionally equivalent entities differs from the one used for CUDA, we provide a
short table of equivalent terminology in Table 1.1.

18



2 Setup

In this chapter, we describe the environment characteristics used for development. Additionally, we
provide the necessary steps in order to add a new module to HPX .

The goal of this section consists of two parts. Firstly, we want to provide the necessary conditions
to reproduce our results. Secondly, we provide a guidance for further extensions to HPX .

2.1 Environment

We use gcc as compiler and cmake as building system generator. As building system itself, we use
make. Furthermore, we use the OpenCL libraries supported by the CUDA runtime or those explicitly
installed on machines featuring an AMD GPU. Table 2.1 shows the corresponding versions.

Although OpenCL version 3.0 is available on some machines, we target version 1.2 as the greatest
common divisor. This is especially justified by support for version 1.2 only on machine pcsgs05,
featuring a CUDA device.

Note that cmake does not find the required OpenCL runtime on all machines using the default
configuration. Therefore, we provide the location of corresponding header files via option
OpenCL_INCLUDE_DIR. Additionally, we need to provide the location of the shared library in that
case. We set OpenCL_LIBRARY via the tool ccmake. Alternatively, cmake accepts the modification as
command line option.

We select commit

84cf823669 (Merge pull request #5279 from msimberg/more-gcc-10-deprecation-warnings)

in the HPX git repository for the final stage of the development.

gcc 10.2.0
make 4.2.1
cmake 3.18.2
OpenCL 1.2
CUDA 11.2.2
HPX 1.6.0-rc2
Linux 5.8.0-55-generic

Table 2.1: Versions of used development tools, libraries and the Linux distribution.
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2 Setup

Figure 2.1: Source code structure of the OpenCL executor.

2.2 Structure

We perform the development of the OpenCL executor in libs/full/compute_opencl. All HPX
modules follow a unified directory structure. We use the script libs/create_module_skeleton.py to
create a new module.

The final structure is shown in Figure 2.1. We mention the most important directories.

include/ contains the header files of the executor. See Appendix B.5 on page 73 for more detailed
elaboration.

src/ contains the source files of the executor.

tests/performance/ contains the performance tests.

tests/unit/ contains unit tests to verify the executor’s correct implementation.
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3 Implementation

In this chapter, we describe the executor’s implementation. We use a bottom-up approach in order
to cover potential dependencies before their usage. Because we intend to provide guidance for
future HPX developers, we focus on some details and our design decisions.

Firstly, we describe our error checking mechanism. Secondly, we justify the absence of any event
caching mechanism in the OpenCL executor. Then, we describe the design of the shared state. The
shared state is used for futures to determine whether the associated computation has completed.
Therefore, we describe the creation of futures as next step. The executor supports two operation
modes. Therefore, we first describe both modes and finally the executor itself. As end result, the
executor provides the interface intended to use outside of the module.

We implement most parts of the implementation in the namespace hpx::opencl::experimental.
Where possible, we use unnamed namespaces in order to hide the executor’s internals. We elaborate
the usage of unnamed namespaces in Appendix B.5 on page 73.

3.1 Error Checking

HPX heavily relies on exceptions as error propagation mechanism. No alternatives such as the
proposed std::expected to the C++ standard are used. Therefore, we align the implementation of
the OpenCL executor accordingly.

Utility functionality for error checking is implemented in opencl_error.hpp. It provides the
exception opencl_exception, which derives from hpx::exception and provides the error code
returned from an OpenCL function.

Function check_opencl_error() provides the core mechanism of successful invocation of an OpenCL
function. Listing 3.1 shows its implementation. It inspects the returned error code from an OpenCL
function and throws opencl_exception on failure.

For facilitated checking, the function opencl_checked() expects a message and an OpenCL function
to be called. The provided OpenCL function is expected to provide its result as return value. The
returned error code is then checked with check_opencl_error().

The benefit of dedicated error checking functions consists of consistent error checks across the
executor’s implementation.
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3 Implementation

Listing 3.1 Core error checking functionality for OpenCL functions.

inline auto check_opencl_error(char const * const message,

cl_int const errcode)

-> void

{

if (CL_SUCCESS != errcode)

{

throw opencl_exception{message, errcode};

}

}

3.2 Event Pool

One challenge in using CUDA is its poor performance for creating of events. Therefore, HPX
uses a dedicated event pool for its CUDA executor. The pool allocates a predefined number
of events in advance using cudaEventCreateWithFlags(). The usage of an event pool shifts
the performance penalty from the executor’s execution to the first access to the event pool in
hpx::cuda::experimental::cuda_event_pool::get_event_pool(). This is ensured by its static
instance in the function.

Instead of creating events individually in CUDA executor’s polling mode, the executor retrieves
events from the static event pool. After usage, it returns the events to the event pool. Should
the processing require more events than initially created, the event pool allocates one more event,
pushes it on the lockless stack and retrieves it again for the user.

CUDA’s events do not depend on the particular target device. Therefore, only one lockless stack is
maintained as underlying data structure. The lockless stack avoids expensive locking mechanisms
for concurrent access, while still providing necessary guarantees.

Contrary to CUDA, the OpenCL backend maintains events internally. Especially, it does not
assume provided event pointers to be initialized prior to their usage. While OpenCL still provides
clCreateUserEvent(), its purpose consists of waiting on an external event before the execution of a
command in the command queue. It is not intended to allocate events prior to their usage.

We verify that no performance impact exists if uninitialized events are provided to the enqueued
command on the command queue. Therefore, an event pool would not provide performance benefits.
As consequence, we do not implement an event pool for the OpenCL executor.

Moreover, clCreateUserEvent() depends on the device’s context in contrast to CUDA’s
cudaEventCreateWithFlags(). Therefore, an implementation of the event pool would require
one stack for each context. Together with the absence of a lockless map in HPX , this would
either require more expensive locking or custom implementation of an lockless map. A possible
implementation is provided in [AM04]. In both cases, the overhead is not justified given the design
of the OpenCL backend and the intended usage of OpenCL events.

In conclusion, we decide to omit any event caching mechanism in the OpenCL executor.
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3.3 Future Data

Figure 3.1: Interface of future_data.

3.3 Future Data

future_data is the pendant to std::promise in the C++ standard. It represents the shared state holding
the asynchronously calculated result until its retrieval through the corresponding hpx::future.
Because future_data is only used in the internal parts of the executor, we define the structure in
an unnamed namespace. It is located in opencl_future.cpp. This way we prevent the user from
accessing the executor’s internals and therefore facilitate its correct usage.

The internally available interface of future_data is shown in Figure 3.1. It is derived from
hpx::lcos::detail::future_data_allocator. The namespace lcos contains local control objects,
which we mentioned in Chapter 1 on page 15.

The structure is initialized using one of its constructors. Because constructors cannot be specialized
in a template using C++, we overload them by the executor’s operation type. Both constructors take
the allocators, which are required by the base type hpx::lcos::detail::future_data_allocator.
Additionally, they take OpenCL ’s command queue and the created event associated with the
execution state.

• For the polling mode, no further initialisation is performed as shown in Listing 3.2. The
future_data instance is simply added to the polling containers and the contained event is
periodically checked for completion.

• Listing 3.3 shows the constructor for the callback mode. It registers the callback function
callback() for the OpenCL event. This is performed in init_callback(), which utilizes
clSetEventCallback() and provides the constructed future_data as user defined data to the
callback function.
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3 Implementation

Listing 3.2 Constructor of future_data, overloaded for polling mode.

future_data(init_no_addref no_addref,

other_allocator const& other_alloc,

cl_command_queue const& queue,

cl_event const event,

cl_context const context,

polling_mode const)

: hpx::lcos::detail::future_data_allocator<void, Allocator>(no_addref, other_alloc)

, event_{event}

, context_{context}

, runtime_{hpx::get_runtime_ptr()}

{

}

Listing 3.3 Constructor of future_data, overloaded for callback mode.

future_data(init_no_addref no_addref,

other_allocator const& other_alloc,

cl_command_queue const& queue,

cl_event const event,

cl_context const context,

callback_mode const)

: future_data{no_addref, other_alloc, queue, event, context, polling_mode{}}

{

init_callback();

}

The constructor for the callback mode delegates to the constructor for the polling mode.
Because no mode-specific initialization is performed for the polling mode, this ensures the
initialization of future_data’s fields without repetition in the callback constructor. Therefore,
repetition of implementation is avoided.

While the referenced event is passed to callback() explicitly, future_data needs to provide it for
the polling function via get_event(). We annotate the function with HPX_NODISCARD in order to warn
in case of redundant usage.

After creating a future_data instance, HPX provides the associated hpx::future. On blocking
waiting for the result, the hpx::future would wait for the future_data to become available. We
invoke future_data::set_data(hpx::util::unused) to signal the completion of the corresponding
computation.

3.4 Futures

The creation of futures is implemented in opencl_future.{h,c}pp. The interface consists of
loosely coupled methods, which create hpx::futures according to the required operation mode. A
registration class for the polling mode is provided additionally.
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Listing 3.4 Definition of operation modes for the executor.

enum class future_mode : std::uint32_t

{

callback,

polling,

};

using callback_mode = std::integral_constant<future_mode, future_mode::callback>;

using polling_mode = std::integral_constant<future_mode, future_mode::polling>;

Firstly, we declare an enum class for the executor’s operation modes. Listing 3.4 shows their
definition. The usage of an enum enforces distinct indices among the modes, which helps to avoid
potential mistakes during future changes. Moreover, the enum class prevents implicit conversions,
further preventing another class of potential mistakes. We select an unsigned underlying type to use
the available range to full extent.

For each operation mode, we declare a dedicated type. This is required to make use of overload
resolution for the shared_data’s constructor.

After having declared supported operation modes, we provide a function template to create
corresponding futures. The template is explicitly specialized for each supported operation mode as
shown in Listing 3.5. This enables us to separate their declaration from definition.

The compiler selects the corresponding template specialization for callback_mode and event_mode.
The default consists of the unspecialized template. Because it is only used for unsupported
operation modes, it throws immediately. Consequently, we attach the HPX_NORETURN attribute to it.
HPX_NORETURN corresponds to [[noreturn]] from standard C++. The compiler is then allowed to
perform optimizations for the function, assuming that it never returns.

The goal of all create_future() specializations consists of creating a future_data instance.
Consequently, it also provides the corresponding hpx::future for the user to retrieve the result.
Additionally, mode specific operations are performed.

We first obtain a future_data instance through the module-internal function construct_future_data().
In the specialization for polling_mode, we additionally add the newly created instance to the polling
queue via add_to_futures_incoming() as shown in Listing 3.6. Finally, we construct the corre-
sponding hpx::future using hpx::traits::future_access() and return the result.

The construction of future_data’s instance is performed in the module-internal function
construct_future_data(), which is shown in Listing 3.7. As prerequisite, we create the re-
quired allocators. Then, we use traits::construct() in order to obtain a new future_data instance.
Besides the pointer to one of the allocators, the arguments provided to traits::construct() are
forwarded to the constructor of future_data. According to the provided operation mode, one of the
constructor overloads in Listing 3.3 or Listing 3.2 is used.
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Listing 3.5 Explicit template specifications for create_future().

template <typename mode>

HPX_EXPORT

HPX_NODISCARD

HPX_NORETURN

auto create_future(cl_command_queue const& queue,

cl_event const event,

cl_context const context)

-> hpx::future<void>

{

throw hpx::opencl::experimental::opencl_exception{"Executor mode not supported", -100};

}

template <>

HPX_EXPORT

HPX_NODISCARD

auto create_future<callback_mode>(cl_command_queue const& queue,

cl_event const event,

cl_context const context)

-> hpx::future<void>;

template <>

HPX_EXPORT

HPX_NODISCARD

auto create_future<polling_mode>(cl_command_queue const& queue,

cl_event const event,

cl_context const context)

-> hpx::future<void>;

Listing 3.6 Construction of future_data and corresponding hpx::future.

template<>

HPX_EXPORT

HPX_NODISCARD

auto create_future<polling_mode>(cl_event const event)

-> hpx::future<void>

{

auto ptr = construct_future_data<::polling_mode>(event);

add_to_futures_incoming(ptr.get());

return hpx::traits::future_access<hpx::future<void>>::create(

ptr.release(), false);

}
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Listing 3.7 Construction of a future_data from an OpenCL event.

template <typename mode>

HPX_NODISCARD

auto construct_future_data(cl_event const event)

-> unique_ptr

{

allocator alloc{};

other_allocator other_alloc{alloc};

unique_ptr ptr{traits::allocate(other_alloc, 1),

hpx::util::allocator_deleter<other_allocator>{other_alloc}};

traits::construct(other_alloc, ptr.get(), init_no_addref{}, other_alloc,

event, mode{});

return ptr;

}

3.5 Operation Modes

Currently supported operation modes are the callback mode and the polling mode. Common goal
to all modes consists of determining whether the computation has finished. In the successful case,
the according future_data is set to a ready state. For execution failures of the enqueued function,
an exception is set instead1.

We provide the implementation details for the callback mode. Then, we introduce the implementation
of the polling mode.

3.5.1 Callback Mode

Firstly, we describe the general idea of the callback mode. On computation begin, we set the
callback function callback() on the corresponding event as shown in Figure 3.2. Then, we rely on
the OpenCL runtime to call callback() on completion. In callback(), we set the shared state as
ready and the potentially waiting hpx::future obtains the result.

The implementation of the callback mode requires two steps. Firstly, we set the callback function to
the newly created event. This is performed by init_callback(), which is executed in future_data’s
constructor for the callback mode. We then need to process the event’s state in the callback
function.

As shown in Listing 3.8, we first increment the reference count to the future_data instance via
intrucive_ptr_add_ref().

1No exceptions can propagate across thread boundaries in C++. Therefore, exceptions are set on the hpx::future’s
shared state instead of being directly thrown.

27



3 Implementation

Figure 3.2: Mechanism of the callback mode.

Listing 3.8 Setting the callback on an event.

auto init_callback() -> void

{

hpx::lcos::detail::intrusive_ptr_add_ref(this);

auto const result = clSetEventCallback(event_.get(), CL_COMPLETE, callback, this);

if (CL_SUCCESS != result)

{

using hpx::opencl::experimental::check_opencl_error;

hpx::lcos::detail::intrusive_ptr_release(this);

check_opencl_error("clSetEventCallback()", result);

}

}

The callback function callback() is set via clSetEventCallback(). It expects the pointer to the
event as first argument. The second argument consists of the event’s state to trigger the callback.
For OpenCL version 1.2, only CL_COMPLETE is supported. We then provide the callback function and
the instance to the future_data as user defined data provided to the callback.

In this instance, we do not directly rely on the error checking functionality described in Section 3.1
on page 21. The reason is the adjusted path for the error case. Instead of throwing an exception
via check_opencl_error() right away, we first decrement the reference count on the pointer to the
future_data instance. Only then we throw the corresponding exception. This approach ensures
proper cleanup of future_data in the error case.

With the callback set, the OpenCL implementation triggers callback() on completed events.
Listing 3.9 shows its implementation. Special care is required for the implementation of callback().
Its execution is triggered by the OpenCL backend on a thread outside of HPX ’s control. Therefore,
we need to ensure minimal execution time for callback(). Blocking, locking and long-running
tasks are highly discouraged.
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Listing 3.9 Callback function setting the computation’s status in future_data.

static auto CL_CALLBACK callback(cl_event,

cl_int event_command_exec_status,

void* user_data)

-> void

{

future_data* const data = static_cast<future_data*>(user_data);

release_on_exit const on_exit{data};

if (CL_COMPLETE == event_command_exec_status)

{

set_future_ready(data);

}

else if (0 > event_command_exec_status)

{

namespace hpxcl = hpx::opencl::experimental;

data->set_exception(std::make_exception_ptr(

hpxcl::opencl_exception{std::string{"OpenCL function failed ("}

+ std::to_string(event_command_exec_status) + ")",

event_command_exec_status}));

}

}

Firstly, we cast the provided user data to a future_data pointer. On creating the future_data instance,
we increment the reference count to the pointer. As the execution associated with the event is
finished, we need to ensure its release upon finishing the execution of callback(). This is performed
using the module-internal release_on_exit type. As result, proper cleanup of hpx::future’s shared
state is maintained for all paths.

The taken path depends on the event’s error code, which is provided by the OpenCL backend via
event_command_exec_status. It is CL_COMPLETE for successful computation. A negative integer
indicates failure. In the successful case, we set the corresponding future_data as ready. In the
failure case, we set future_data’s exception instead. To do so, we assemble a string indicating the
error message.

Note that this operation mode will be removed in a future version of HPX . Therefore, we advice to
regard it as deprecated. Instead, the users of the executor are encouraged to use its polling mode.

3.5.2 Polling Mode

Executor’s polling mode avoids a callback on OpenCL ’s event. Instead, the created future_data is
added to designated containers. HPX ’s scheduler then polls periodically the state of events in the
containers. Figure 3.3 visualizes the polling mechanism. Note that polling functions are called in
dedicated threads by the scheduler.
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Figure 3.3: Mechanism of the polling mode.

We first describe the process of adding the events to the polling container. Then, we describe their
polling mechanism.

The constructor of future_data does not perform polling-specific initialization. Instead, we add
future_data instances to the lockless queue holding incoming instances. This avoids expensive
locking between the adding thread and the polling threads. We achieve that by the invocation of
add_to_futures_incoming() via create_future() for the polling mode. To do so, we first obtain the
queue via get_futures_incoming(). Then, we add the newly created future_data instance to it.

Note that get_futures_incoming() yields a local, static instance of the queue. Because multiple
instances of the queue are possible in the general case2, the described mechanism is not the singleton
anti-pattern. Instead, the static instance is used to delay its instantiation until its usage. On usage of
the callback only, this avoids redundant instances. The same applies to the polling container, which
we obtain via get_futures_active().

In order to enable polling, we first add the polling function to HPX ’s scheduler. First, we add the corre-
sponding function pointer polling_function_opencl_ to hpx::threads::policies::scheduler_base.
We initialize the pointer with null_polling_function initially. Therefore, OpenCL polling is
disabled by default. Then, we add the functions to set and remove the polling function from the
scheduler in set_opencl_polling_function() and clear_opencl_polling_function(), respectively.
Listing 3.10 shows their implementation. Note that both operations are performed atomically. The
atomicity is enforced by usage of std::atomic<polling_function_ptr> in the scheduler.

Finally, we adjust custom_polling_function() in HPX ’s scheduler. In order to call the newly added
polling function, we load its pointer from the atomic container and call it. The process is shown in
Listing 3.11 Note that the function pointer cannot be nullptr. During initialization, the polling
function is set to the idling null_polling_function(). If polling is set, it is set to the polling function
instead. Consequently, we can trade according checks for slightly increased performance.

2Note that hpx::concurrency::ConcurrentQueue is a move-only type. If moved, the state of the original instance is
well-formed, but undefined according to the current C++ standard. Additionally, thread-safety during movement
might be not guaranteed.
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Listing 3.10 Set and clear OpenCL polling function in HPX scheduler.

void set_opencl_polling_function(polling_function_ptr opencl_func)

{

polling_function_opencl_.store(opencl_func,

std::memory_order_relaxed);

}

void clear_opencl_polling_function()

{

polling_function_opencl_.store(&null_polling_function,

std::memory_order_relaxed);

}

Listing 3.11 Calling the polling function in the HPX scheduler.

#if defined(HPX_HAVE_MODULE_COMPUTE_OPENCL)

if ((*polling_function_opencl_.load(std::memory_order_relaxed))()

== detail::polling_status::busy)

{

status = detaul::polling_status::busy;

}

#endif

After the extension of HPX ’s scheduler for the new polling function, we provide an interface to
enable polling. For that purpose, we provide the polling structure in opencl_future.hpp. The
structure is shown in Listing 3.12. Its purpose consists of enabling polling for a specific scope
only.

We disable the copy and move semantics by disabling the corresponding constructors and operations
via HPX_NON_COPYABLE(). This prevents certain classes of the structure’s unintended use. In order to
prevent repetition of implementation, we define get_scheduler(). It returns the HPX scheduler
corresponding to the given thread pool, which is identified either by a string or an index. The default
thread pool has index 0.

The constructor of polling takes the thread pool’s name in form of a string. In case
the string is empty, polling uses the default thread pool. We declare polling::polling()

as explicit to prevent accidental, implicit conversions from std::string. In the construc-
tor, we retrieve the thread pool’s scheduler and enable OpenCL specific polling via pre-
viously defined scheduler_base::set_opencl_polling_function(). Polling is disabled using
scheduler_base::clear_opencl_polling_function().

As result, the instantiation of a polling instance enables polling for all used OpenCL executors in
the scope. Polling is disabled on leaving polling instance’s scope.

We define opencl_poll() as our polling function. The execution time of the function is vital for the
executor’s performance. The function performs polling in two stages. Firstly, it verifies all currently
executed OpenCL commands using their corresponding event’s state. Then, it checks newly added
future_data instances.
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Listing 3.12 Registration of the polling function and its removal on destruction.

struct HPX_NODISCARD polling final

{

HPX_NON_COPYABLE(polling);

explicit polling(std::string const& pool_name = "")

: pool_name_{pool_name}

{

auto* const scheduler = get_scheduler();

scheduler->set_opencl_polling_function(&opencl_poll);

}

~polling()

{

auto* const scheduler = get_scheduler();

scheduler->clear_opencl_polling_function();

}

private:

HPX_NODISCARD

auto get_scheduler() const

-> hpx::threads::policies::scheduler_base*

{

auto const& pool = pool_name_.empty()

? hpx::resource::get_thread_pool(0ull)

: hpx::resource::get_thread_pool(pool_name_);

return pool.get_scheduler();

}

std::string pool_name_;

};

We use check_future_ready() for the first task. It checks the event’s state and sets the shared state in
future_data accordingly on completion. Moreover, it indicates whether to remove the future_data

instance from the polling containers.

Listing Listing 3.13 shows the polling function. Note the usage of the erase-remove-idiom for
the container. As the C++ compiler may assume the semantics of standard library functions, this
provides extended optimization opportunities.

For the second task, we iterate through the dedicated concurrency queue. If the event is completed
until it reaches the check, its future_data is set as ready. In case the event indicates an ongoing
execution instead, it is added to the container of active future_data instances.

While we are using the lockless queue to insert newly created future_data instances into the polling
mechanism, we use a hpx::lcos::local::spinlock for locking between scheduler’s locking threads.
We elaborate on our decision against using std::mutex.
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Listing 3.13 OpenCL executor’s polling function.

HPX_NODISCARD

auto opencl_poll()

-> hpx::threads::policies::detail::polling_status

{

using hpx::threads::policies::detail::polling_status;

auto result = polling_status::idle;

std::unique_lock<mutex_type> const lock{::get_mutex(), std::try_to_lock};

if (lock.owns_lock())

{

auto& futures = get_futures_active();

futures.erase(std::remove_if(std::begin(futures),

std::end(futures),

check_future_ready),

std::cend(futures));

auto& incoming = get_futures_incoming();

future_data_ptr data;

while (incoming.try_dequeue(data))

{

if (!check_future_ready(data))

{

add_to_futures_active(std::move_if_noexcept(data));

}

}

result = futures.empty() ? polling_status::idle

: polling_status::busy;

}

return result;

}

The current implementation consists of multiple competing scheduler threads calling opencl_poll().
The number of cores on the target machine determines the number of polling threads. Because
the data structures consist of pointers only, the execution of opencl_opencl() is fast compared to
synchronisation overheads. Therefore, any single thread is enough to verify the state of all pending
events.

The performance of std::mutex depends on the number of collisions between threads. In the best
case, only few collisions occur between the threads. In such case, the performance of std::mutex
depends only on setting a flag atomically. However, in case of many collisions between the threads,
std::mutex would maintain an internal, synchronized state of all waiting threads. This would not
only block the polling mode for the OpenCL executor, but might event block other executor’s under
certain conditions. Therefore, we use an improved approach.
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Figure 3.4: Interface of the OpenCL executor.

As alternative to std::mutex, we use hpx::lcos::local::spinlock. Instead of maintaining an
internal, synchronized state, the spin lock would usually wait for the lock by busy-waiting. However,
we only attempt to secure the lock for the thread. On success, one single thread executes
opencl_poll(). On failure, the thread immediately leaves opencl_poll() without wasting CPU
time. This especially avoids the requirement for an internal, synchronized state in order to maintain
waiting threads.

3.6 Executor

Following the naming convention in HPX , the OpenCL executor’s interface is implemented in
opencl_executor.{h,c}pp. It is split into the base class opencl_executor_base and main class
opencl_executor as shown in Figure 3.4. The base class is designed to provide functionality
common to all usage modes. On the other hand, derived opencl_executor provides functionality for
its specific operation mode.

The public functionality of the OpenCL executer consists of opencl_executor.

The executor expects the indices of used OpenCL platform and device. The initialization is performed
in opencl_executor_base’s constructor with the assistance of helper functions. Listing 3.14 shows
the executor’s initialization. Note that the order of initialization is important here, as initialization
of fields depends on their requirements being initialized beforehand.
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Listing 3.14 Initialization of the OpenCL executor.

opencl_executor_base::opencl_executor_base(

std::size_t const platform, std::size_t const device)

: platform_{::get_platform(platform)}

, device_{::get_device(platform_.get(), device)}

, context_{::get_context(device_.get())}

, queue_{::get_queue(context_.get(), device_.get())}

{

}

Additionally, we need to consider what storage types to use for the executor internally. We evaluate
two options here.

• The first option consists of using pointers directly provided by OpenCL . We would implement
the cleanup mechanism in the executor’s destructor using this option. As a pointer is eight
bytes wide on a 64 bit platform, the size of the executor would be

8 byte︸︷︷︸
platform_

+ 8 byte︸︷︷︸
device_

+ 8 byte︸︷︷︸
context_

+ 8 byte︸︷︷︸
queue_

= 32 byte.

The cache line size on target machines is 64 bytes. Therefore, two OpenCL executors would
be loaded in one cache line, potentially improving performance if multiple executors are used.

• The alternative consists of using smart pointers instead of raw pointers. Every std::unique_ptr

instance would store the original raw pointer with a pointer to the deleter. As both pointers
are 16 bytes in total, the size of the executor is

16 byte︸  ︷︷  ︸
platform_

+ 16 byte︸  ︷︷  ︸
device_

+ 16 byte︸  ︷︷  ︸
context_

+ 16 byte︸  ︷︷  ︸
queue_

= 64 byte.

With this option, only one executor would fit into a cache line. However, the usage of
smart pointers facilitates cleanup of OpenCL objects and protects better against potential
implementation regressions.

Considering the use cases of the executor, we prioritize the slightly more robust implementation
over the size optimization. Therefore, we store OpenCL ’s platform, device, context and queue
using std::unique_ptr with custom deleting functionality for cleanup.

Note that the initialization order forces the ordering of the fields in opencl_executor_base to avoid
compiler warnings. Therefore, we diverge from our design decisions in this instance, as access
frequency and padding is of lower priority. Nevertheless, we analyse both criteria.

We introduce no padding in opencl_executor_base, as all fields are of size 16. Therefore, this
aspect is satisfied. We determine that the queue is the most frequently accessed field. Although it is
the last field, it would be loaded in the same cache line as others. We determine that the offset of
the field in the cache line is of lesser priority.

We retrieve the pointer to the OpenCL platform in get_platform() via clGetPlatformIDs(). The
helper function is shown in Listing 3.15. This requires two steps. Firstly, we determine the number
of available platforms. In order to achieve that, we provide a pointer to clGetPlatformIDs() as last
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Listing 3.15 Creating OpenCL platform by index.

HPX_NODISCARD

auto get_platform(std::size_t const platform)

-> std::unique_ptr<_cl_platform_id, decltype(&hpxcl::cleanup_platform)>

{

cl_uint number_platforms{};

opencl_checked("clGetPlatformIDs()",

clGetPlatformIDs,

0u,

nullptr,

&number_platforms);

if (number_platforms <= platform) {

HPX_THROW_EXCEPTION(hpx::bad_parameter,

"hpx::opencl::experimental::get_platform()",

"invalid platform index");

}

auto const platforms =

std::make_unique<cl_platform_id[]>(number_platforms);

opencl_checked("clGetPlatformIDs",

clGetPlatformIDs,

number_platforms,

platforms.get(),

nullptr);

auto const selected = platforms.get()[platform];

return {selected, hpxcl::cleanup_platform};

}

parameter. The according variable then contains the number of available OpenCL platforms. Finally,
we use the index to retrieve the pointer to the desired platform. Again, we use clGetPlatformIDs()

with different parameters to retrieve the pointer to the platform. The result consists of the platform’s
pointer and the corresponding deleter, packed in a std::unique_ptr. This ensures proper cleanup
on opencl_executor_base’s destruction.

We use the same approach to retrieve the platform’s device, according to provided index. To achieve
that, we utilize clGetDeviceIDs() in the same fashion.

As the next step, we create the device’s context via clCreateContext(). Its usage is shown in
Listing 3.16.

Finally, we create the OpenCL command queue. We utilize clCreateCommandQueue to achieve that,
which expects previously created pointers to device and context.

After initialization, the created platform, device, context and queue are accessible through the
corresponding getter functions. While std::unique_ptrs are stored internally, the getters provide raw
pointers. The reason consists in their anticipated usage for OpenCL ’s API. We avoid passing pointers
to corresponding deleters that way, while maintaining ownership over the field’s destruction.
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Listing 3.16 Creating OpenCL context on device.

HPX_NODISCARD

auto get_context(cl_device_id const& device)

-> std::unique_ptr<_cl_context, decltype(&hpxcl::cleanup_context)>

{

cl_int errcode{0};

auto const context = clCreateContext(nullptr, 1u, &device, nullptr, nullptr, &errcode);

check_opencl_error("clCreateContext()", errcode);

return {context, hpxcl::cleanup_context};

}

Note the protected destructor in opencl_executor_base. As base class, we cannot declare
opencl_executor_base as final. This leaves us with three options, which we elaborate in ap-
pendix Appendix B.1 on page 71.

The executor is capable of one-way and two-way execution via opencl_executor_base::post()

and opencl_executor<>::async_execute(), respectively. One-way execution is the fire-and-forget
approach, which does not yield a future. On the other side, the two-way execution provides a future.
Both functions use the executor’s internal command queue and take a clEnqueue* function with their
parameters as parameters. Listing 3.17 and Listing 3.18 show their implementation. Compared to
the call to a raw OpenCL function, two modifications in the parameter list are expected.

The first parameter to clEnqueue* is the command queue. As the executor-internal queue is used,
the first parameter is omitted in the call. The executor provides the pointer to its internal queue
instead. Secondly, the last parameter is OpenCL ’s event. The event is used to relay the execution
status to the future_data instance, pointed to by hpx::future. The internal usage of OpenCL ’s
event prevents executor’s user from providing a custom event for async_execute(). Therefore, the
last parameter to the provided clEnqueue* function is also omitted.

Because post() does not yield a feature, it does not utilize the provided event. This prompts a
decision whether to enable executor’s user to use events for the one-way execution.

• If events are used, the user can use hpx::apply() with an arbitrary OpenCL event. Especially,
the usage of custom events is possible to trigger the execution explicitly or depending on
OpenCL commands outside of the OpenCL executor. However, this might be not expected
because events are not supported by the two-way execution.

• The prevention of event’s usage for the one-way execution aligns with the interface for the
two-way execution. This option therefore aligns with the rule of least surprise while designing
the executor’s interface.

We decide for the second option. Therefore, we expect no event pointer to post() and set the
according argument to nullptr unconditionally as shown in Listing 3.17.

Finally, we need to provide HPX with the information that opencl_executor is one-way and two-way
executable. To do so, HPX cannot use concepts, which were introduced in C++20. The reason
consists of C++14 as requirement. This leaves HPX with two options. It could have used SFINAE
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Listing 3.17 One-way execution of provided OpenCL function. Error checking is omitted for
brevity.

template <typename F, typename... Ts>

auto post(F&& f, Ts&&... ts) -> decltype(auto)

{

return f(queue_.get(), std::forward<Ts>(ts)..., nullptr);

}

Listing 3.18 Two-way execution of provided OpenCL function. A corresponding hpx::future is
returned. Error checking is omitted for brevity.

template <typename F, typename... Ts>

auto async_execute(F&& f, Ts&&... ts) -> decltype(auto)

{

cl_event event{};

auto const result = f(queue_.get(), std::forward<Ts>(ts)..., &event);

return create_future<Mode>(queue_.get(), event, context_.get());

}

techniques to determine whether an executor provides the required methods. Instead, an explicit
approach is taken. It requires us to provide explicit template specializations for each type as shown
in Listing 3.19.

The benefit of this approach consists in its flexibility. For instance, this gives us the option to
introduce another operation type for the executor, which would only support one-way execution.

We provide short type definitions for convenience as shown in Listing 3.20. Because we are
operating in namespace hpx::opencl::experimental, the names are not prone to collisions with
other types in the HPX project. Therefore, we provide shorthand declarations for implemented
types.

Firstly, we determine the default for the executor’s operation mode. It is used for
hpx::opencl::experimental::executor<>. Because C++14 is supported, we can not benefit
from class template deduction. As consequence, we currently cannot omit the angle brackets after
the type’s name. C++17 and later would allow us to shorten the executor’s declaration.

Additionally, we provide explicit types for the callback and polling mode. Because those are easy to
remember, this minimizes cognitive load for the executor’s user.
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3.6 Executor

Listing 3.19 Enabling one-way and two-way execution for the OpenCL executor.

namespace hpxcl = hpx::opencl::experimental;

template <>

struct is_one_way_executor<hpx::opencl::experimental::opencl_executor<

hpxcl::callback_mode>> : std::true_type

{

};

template <>

struct is_two_way_executor<hpx::opencl::experimental::opencl_executor<

hpxcl::callback_mode>> : std::true_type

{

};

template <>

struct is_one_way_executor<hpx::opencl::experimental::opencl_executor<

hpxcl::polling_mode>> : std::true_type

{

};

template <>

struct is_two_way_executor<hpx::opencl::experimental::opencl_executor<

hpxcl::polling_mode>> : std::true_type

{

};

Listing 3.20 Short, memorable names for the OpenCL executor providing different operation modes.

using default_mode = callback_mode;

template <typename mode = default_mode>

using executor = opencl_executor<mode>;

using executor_callback = opencl_executor<callback_mode>;

using executor_polling = opencl_executor<polling_mode>;
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4 Testing

We verify the correctness of the OpenCL executor’s implementation using unit tests. The tests are
distributed in libs/full/compute_opencl/tests/unit/ across the following directories.

performance/ contains performance tests. While performance tests contain assertions to ensure
their correctness, their main purpose is performance measurement of the OpenCL executor.

regresions/ contains regression tests. As the implementation is too current to contain regressions,
the directory currently contains no tests.

unit/ contains unit tests. We focus unit tests in the sections of this chapter.

In case the executor’s operation mode might influence the test’s correctness, the executor is tested
using the callback and polling mode.

4.1 Usage

The build system requires HPX_WITH_TESTS set to ON in order to build the test cases. Unit tests
additionally require HPX_WITH_TESTS_UNIT set to ON.

The tests are compiled via make tests.unit.modules.compute_opencl.

Moreover, the user can enable performance benchmarks by setting HPX_WITH_TESTS_BENCHMARKS to
ON. This enables the compilation of the performance benchmark. Id contains additional assertions
for its use case.

One option to run tests consists of invoking the executable directly. In case of failure, this provides
the user with the error message of thrown exception. Alternatively, ctest -R ’opencl’ runs all tests
related to the OpenCL executor.

4.2 Test Setup

The build setup for tests is configured in CMakeLists.txt of the corresponding directory. In order
for ctest to pass the expected OpenCL source and kernel to the tests, opencl_executor_PARAMETERS
is configured accordingly. The configuration especially ensures an absolute path passed to the
test. If we run the executable directly issuing bin/opencl_executor_test, the test assumes the
build directory as current working directory to determine the relative path to OpenCL ’s source
code. Moreover, it assumes the default directory structure of the HPX project. We have considered
following options for our decision.
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4 Testing

Listing 4.1 Aligning return value with test results.

auto const result = hpx::init(argc, argv, init_params);

return result or hpx::util::report_errors();

• One option consists of creating a dedicated configuration file using configure_file() provided
by cmake. The advantage consists of absolute paths. That enables the user to issue run the
testing executable from any directory without providing an explicit path if used from any other
directory than the one used for compilation. However, this would introduce a dependency on
the build system, which is not precedented by the CUDA executor.

• The alternative consists of providing a default path assuming the directory structure and
working directory. In this case the user needs to provide an explicit path in some cases.
However, we avoid an unprecedented dependency on the build system using this option.
Furthermore, the assumption simplifies the test configuration and implementation.

As conclusion, we decide to implement default paths for the tests for the standalone test executable.

The tests are compiled issuing make tests.unit.modules.compute_opencl in the build directory of
HPX ’s source tree.

Note one detail regarding the return value of the tests. On the one hand, ctest considers the return
type only in order to determine whether the tested executable passes all tests successfully. On the
other hand, HPX_TEST() and HPX_TEST_MSG() only display error messages without affecting the return
type directly. We align both testing methods in the return value of the application as shown in
Listing 4.1.

On the one hand, we retrieve the executable’s return value through the return value of hpx::init().
On the other hand, we retrieve potentially failing test assertions via hpx::util::report_errors().
The final return value consists if one of the values evaluates to true. Consequently, the tests in the
executable fail for ctest if any of the HPX checks fail. This is the expected behavior for the test’s
user.

Note that we use operator or instead of the more common operator || in order to slightly improve
the code’s maintainability.

4.3 Test Cases

4.3.1 OpenCL

The standalone OpenCL unit test is located in opencl.cpp.

By using the OpenCL backend, the OpenCL executor in HPX relies on its availability and correct
results. To verify its correct execution, the OpenCL backend is tested directly in this test. It
verifies the availability and correctness of results provided by the OpenCL backend. If failures
are encountered in this test, the search for regressions can safely ignore OpenCL executor’s
implementation itself. Therefore, solutions are easier and more swiftly found.
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4.3 Test Cases

The test itself calculates the addition of vectors using two independent methods. Firstly, the vectors
are added using the CPU and standard C++ functionality only. Because the standard library of C++
is well tested, we can rely on its results. Secondly, vectors are added using the OpenCL backend.
Note that the C++ bindings of OpenCL are used to ensure absence of memory leaks. The test then
consists of both results’ comparisons. It fails, if the addition using the standard library does not
match with the results provided by the OpenCL device.

To exclude other causes for failure, the dependencies to HPX are minimized. The functionality of
HPX is only used for testing.

4.3.2 Executor

Unit tests regarding the core functionality of the OpenCL executor are located in
opencl_executor.cpp.

Initialization

We verify the correct initialization of the executor in test_initialization_from_valid_ids_is_successful().
The goal is to ensure the correct initialization of the executor in all modes.

Note that the order of returned devices from the OpenCL backend cannot be verified to be constant
for multiple invocations according to its documentation. Therefore, we need to consider precision
of the test against its portability to different platforms.

• The first option consists of relying on the information provided in expected order on each
request. This has the advantage of testing against the same platform and device, assuming
their indices in the provided result are equal. However, this might lead to unexpected and
unreliable tests if the order of provided devices changes.

• The second option consists of relying on less provided information, which is constant. This has
the disadvantage of less precise tests. However, this improves portability, as no undocumented
assumptions are necessary regarding any particular OpenCL implementation.

We decide for the second option. The purpose of the OpenCL executor consists of extending usable
platforms for HPX . Therefore, portability is of priority.

As conclusion, we verify that the platform and the device have been initialized only. Additionally,
we verify the initialization of the executor’s OpenCL context and the command queue.

Destruction

After destruction of the executor its platform, device, context and command queue need to be
released using OpenCL ’s API functions. Especially, the corresponding pointers need to provide
default values.
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4 Testing

We verify both criteria by calling the executor’s destructor and examining returned pointers. The
test is successful, if at least one pointer is not in valid state. We use that as indication that the
constructor is called. All all fields in opencl_executor_base and as extension in opencl_executor

are of type std::unique_ptr. On invocation of the distructor, all fields are cleaned up.

One-Way-Execution

We verify the correctness of the one-way execution of the executor in test_apply_executes(). As
prerequisite, we first generate the input in the array buffer_in. We are using a raw array instead
of std::array, as the latter requires the type as template argument. Since cl_int has alignment
attributes attached to it, this leads to warnings. By using a raw array, we avoid cl_int’s usage as
template argument and therefore corresponding warnings.

As next step, we populate the input buffer on the OpenCL device using clCreateBuffer(). The flag
CL_MEM_READ_ONLY guards against its modification by the executor. The flag CL_MEM_COPY_HOST_PTR

populates the buffer on the device with the contents of the host buffer.

Finally, we use hpx::apply() in order to trigger the one-way execution of the OpenCL executor.
Note that we pass the flag CL_BLOCKING to it. Therefore, the function is blocked until the buffer is
read. After the execution of hpx::apply(), we verify the data retrieved from the device. The test is
successful, if the contents of the input buffer and the output buffer match.

Shared State

Used hpx::future instances are required to point to a shared state, which consists of future_data.
Invocation of get() throws an exception, if the hpx::future does not satisfy this condition.

The test verifying the validity of returned hpx::futures is implemented in test_async_valid(). We
use the same setup an in test_apply_executes(). However, we verify the presence of the shared
state by invoking valid() on the returned future from hpx::async().

The test succeeds, if the executor returns futures that point to a valid shared state.

Future is Ready after Waiting

As soon as the result of the OpenCL backend is available, hpx::future instances are expected to
reflect its presence. In test_async_ready_after_waiting(), we wait for the hpx::future to become
ready after waiting on the result via wait(). The test is successful, if the returned hpx::future

becomes ready eventually.

The execution of the test for both modes ensures the correct implementation of the callback and
polling mode. Therefore, this test guards against classes of failures in both modes, which would fail
to set the shared state as required.

As additional remark, note the usage of wait() instead of wait_for() or get().

Note the usage of wait() instead of wait_for() or get(). We elaborate on our decision.
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4.3 Test Cases

• The usage of wait_for() would provide better feedback in case of infinite loops. For instance,
a timeout of two seconds can be set. Instead of blocking the test execution, the test would
then fail eventually. However, wait_for() has a negative performance impact on the test.
As the test already takes about two seconds to complete, we prioritize its performance over
improved feedback.

• The usage of get() would block the execution until the result is available. Contrary to wait()

and wait_for(), it is intended to fetch the result right away. The operation would modify
the hpx::future instance. Therefore, the check for whether the future is ready would not be
possible in some cases.

• The usage of wait() provides better performance than wait_for(). The waiting period is not
bounded. However, the future is not modified. Because wait() does not modify the future,
we can examine the future after waiting.

We prioritize performance and the ability to examine the future. Therefore, we decide for the latter
option.

Correctness of Provided Result

We verify the correct execution of the OpenCL executor using the two-way mode in
test_async_provides_correct_result(). The test setup is similar to the case for the one-way mode.
Instead of using a blocking operation, we rely on the returned hpx::future instead.

Because the future is not further examined in the test, we use get() for synchronization. The test
verifies the correct invocation of clEnqueueReadBuffer(). If the read contents match with the input,
the test is successful.

Asynchronous Processing

The main goal of the executor consists of facilitated asynchronous invocation of
OpenCL functionality. Therefore, we verify the executor’s asynchronous execution in
test_async_is_processed_asynchronously().

In this test, we have some challenges to solve. Firstly, OpenCL does not provide any delaying
functionality for the kernels. That is, we cannot execute a kernel for a predetermined period of time.
Secondly, we need to invoke an actual OpenCL kernel, because we rely on OpenCL updating the
state of the corresponding event. Therefore, we cannot use a custom function to mimic its behavior,
which would allow a predetermined delay using std::this_thread::sleep_for().

The execution of a native kernel would solve both challenges. Firstly, the OpenCL backend would
manage the state of the corresponding event. Secondly, we would gain the ability to execute a
kernel in form of a simple function using C. In such a native kernel, we potentially could use
sleep() to force a predetermined execution time. However, native kernels are not supported on all
devices. This can be verified by examination of the CL_EXEC_NATIVE_KERNEL capability in device’s
CL_DEVICE_EXECUTION_CAPABILITIES. Therefore, we prioritize the portability of the test and avoid
the usage of native kernels.
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4 Testing

Instead, we design an OpenCL kernel, which we attempt to run as long as necessary for the test.
The kernel is located in long_running.cl. It performs basic, computationally expensive, arithmetic
operations on the input.

By default, optimizations for OpenCL kernels are enabled. As we are using basic arithmetic
operations, the compiler might optimize the computation. This would defeat the purpose of the
kernel. In order to maintain the necessary runtime, we avoid optimizations on the kernel. For that
purpose, we pass the option -cl-opt-disable to clBuildProgram() in opencl_utils.cpp.

The core functionality of the test consists of invoking the long running kernel. Then, we verify that
the future is not ready via hpx::future::is_ready(). We wait for the future to complete and verify
that the future is ready after completion.

The test setup verifies asynchronous execution of the provided OpenCL function. Only asynchronous
operations can change the state of the future in a separate thread. Therefore, one of the checks
would fail if the execution is synchronous.

4.3.3 Performance Benchmark

For the performance test, we lay the focus on the execution performance of the OpenCL executor.
Nevertheless, the test’s implementation contains some checks. Running all unit tests using ctest -R

also includes the performance test by default.

However, the test result of the matrix multiplication is not verified by default. For the result’s
verification, the same matrix multiplication is additionally performed on the CPU. Moreover, we
implement the multiplication on the CPU with simplicity in mind. This facilitates maintainability in
the future with the disadvantage of decreased performance. Finally, the unit tests for the entire HPX
project are computationally expensive. Therefore, we disable the result verification by default.

In order to verify the result, add --verify-result=true to the command line parameters of the
benchmark test.

4.4 Results

All provided tests for the OpenCL executor are passing as shown in Listing 4.2. The additional
execution time for all HPX unit tests is approximately 2.86 seconds using the GeForce RTX 3080
GPU. Taking the setup time into account, the runtime impact is under a low number of seconds1.

Note that the custom kernel in test_async_is_processed_asynchronously() fails occasionally. In
some scheduling scenarios, it still completes its execution before the check for a busy feature.
Execution of the tests in a busy loop yields one failure in approximately one hour. We performed
the verification on a calm machine with no increased priority of execution.

1The exact runtime depends on used hardware.
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4.5 Analysis

Listing 4.2 Test results of all unit tests.

Test project /data/scratch/schupiml/pro/hpx/build

Start 256: tests.unit.modules.compute_opencl.opencl

1/3 Test #256: tests.unit.modules.compute_opencl.opencl .......................... Passed

0.32 sec

Start 257: tests.unit.modules.compute_opencl.opencl_executor

2/3 Test #257: tests.unit.modules.compute_opencl.opencl_executor ................. Passed

1.93 sec

Start 258: tests.performance.modules.compute_opencl.opencl_executor_stream

3/3 Test #258: tests.performance.modules.compute_opencl.opencl_executor_stream ... Passed

0.56 sec

100% tests passed, 0 tests failed out of 3

Total Test time (real) = 2.86 sec

One solution consists of increasing the kernel’s execution time. This still would not give guarantees
for successful test runs. As advantage, this would reduce the probability of occasional failures.
However, this would also impact the execution time of tests for users with other hardware. Therefore,
we hold that the current execution time with occasional failures is the correct solution.

Additionally, the tests have been conducted on an Intel i5-4300U in order to verify the correct
execution on an CPU.

4.5 Analysis

Firstly, the tests show the correct implementation of the OpenCL executor given the tested conditions.
The execution time of the tests is within the noise of the combined execution time for all tests.

However, the test implemented in test_async_ready_after_waiting() greatly contributes to the
total execution time. We decide to include the test in the current version. If the impact on the
execution time becomes of concern in the future, the removal of the test would reduce the execution
time in a range from one to two seconds.
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5 Benchmarking

We use three benchmarks to explore the runtime behavior of various devices using the implemented
OpenCL executor. Firstly, we multiply matrices and measure the runtime of a generic kernel.
Secondly, we copy data to the device and retrieve the result. This provides us with performance
impact introduced by data transfer between host and device. Lastly, we determine the effect of the
used work group’s number to calculate the result on the device.

The general goal of the benchmarks consists of identifying potential bottlenecks rather than providing
comparison with the CUDA implementation or evaluation of absolute processing times. Detailed
tables of some results are provided in Appendix A on page 67.

5.1 Matrix Multiplication

This benchmark consists of matrix multiplication. The kernel features some optimizations. However,
the optimizations are not exhaustive to allow better identification of performance bottlenecks. We
use four work groups in order to calculate the results on different devices.

The goal of the benchmark consists of identifying the best performing hardware. Moreover, we
identify bottlenecks for used devices.

5.1.1 Implementation

We use Algorithm 5.1 for runtime measurement. Firstly, we allocate and populate required buffers,
create the kernel, set its arguments and measure its execution time. Then, we perform the execution
of the kernel 1000 times. The performance result consists of the average runtime over all iterations.

In the benchmark, we are careful not to include the creation time of the future itself. Instead, the
same future instance is reused for all iterations. Moreover, we populate the input buffers with
random numbers using a constant seed. This provides us the advantage to test the general case,
while maintaining the reproducibility of the benchmark.

The kernel itself is presented in Listing 5.1. It accepts the dimensions of the input matrices in M, N
and K. Additionally, it expects the input matrices as arrays in A and B. We expect the matrices in
column-major format. Array C is populated with the result.

For matrix multiplication, we use the block_size of 4. Consequently, the matrices are multiplied
using blocks of 4× 4 elements for each work group. OpenCL enforces the usage of blocks’ multiples
for input and output buffers. Therefore, we use square matrices and measure their dimensions in
multiples of used blocks’ sizes.
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5 Benchmarking

Algorithm 5.1 Runtime benchmark of matrix multiplication.
procedure opencl_executor_multiplication_test(number_iterations ∈ N)

allocate_host_buffers
populate_host_buffers
allocate_device_buffers
create_kernel
set_kernel_arguments
timer_start
for all iteration ∈ {1 . . . number_iterations} do

execute_kernel
wait_on_future

end for
timer_end
print_iteration_time_average
cleanup

end procedure

5.1.2 Results

Figure 5.1 shows the results for the callback mode of the OpenCL executor. Similarly, Figure 5.2
shows the results for the polling mode. Moreover, we show the precise average runtime for both
modes in Table A.1 and Table A.2, respectively. Both tables are presented in Appendix A.1 on
page 67.

In both graphs, the abscissa corresponds to the number of matrix blocks in one direction. As we use
blocks of 4 × 4 in size, a block count in one direction of 64 corresponds to matrix dimension of

4 · 64 = 256

elements. Table 5.1 shows the relations between number of blocks, matrix dimensions used for
multiplication and the total number of computed elements. The according numbers correspond to
the size of one of three matrices used in calculation.

We identify two benchmarked sizes of interest.

• Firstly, the runtime for the callback mode increases abruptly between 16 and 64 blocks, which
corresponds to 64 × 64 and 256 × 256 matrices. Focusing the callback and event mode
separately, we show the relevant section in Figure 5.3 and Figure 5.4, respectively.

• Secondly, we find the runtime of small matrices notable. We display the runtime for matrices
up to dimension 36 × 36 in Figure 5.5 for both modes.

5.1.3 Analysis

Overall, we measure increasing runtime for calculations involving more data.
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5.1 Matrix Multiplication

Listing 5.1 OpenCL kernel used for matrix multiplication benchmark.

#define block_size 4u

void kernel multiply(int const M,

int const N,

int const K,

global float const * const A,

global float const * const B,

global float* const C)

{

int const row = get_local_id(0);

int const column = get_local_id(1);

int const row_global = block_size * get_group_id(0) + row;

int const column_global = block_size * get_group_id(1) + column;

local float A_sub[block_size][block_size];

local float B_sub[block_size][block_size];

float accumulator = 0.0f;

int const count_blocks = K / block_size;

for (int block_index = 0; block_index < count_blocks; ++block_index)

{

int const row_tiled = block_size * block_index + row;

int const column_tiled = block_size * block_index + column;

A_sub[column][row] = A[column_tiled * M + row_global];

B_sub[column][row] = B[column_global * K + row_tiled];

barrier(CLK_LOCAL_MEM_FENCE);

for (int index = 0; index < block_size; ++index)

{

accumulator += A_sub[index][row] * B_sub[column][index];

}

barrier(CLK_LOCAL_MEM_FENCE);

}

C[column_global * M + row_global] = accumulator;

}
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5 Benchmarking

Number of Blocks Matrix Dimensions Number of Elements
1 4 × 4 16

64 256 × 256 25 536
128 512 × 512 262 144
256 1 024 × 1 024 1 048 576
512 2 048 × 2 048 4 194 304

1024 4 096 × 4 096 16 777 216

Table 5.1: Relation of block count, matrix dimensions and number of participating float elements.

Figure 5.1: Runtime of matrix multiplication depending on block count for callback mode.

For the callback mode of the executor, we identify two major performance bottlenecks. While the
average multiplication requires 158.0𝜇s for 128 × 128 matrices, it raises to 454.88𝜇s for 256 × 256
matrices. After that, the runtime stays constant for matrices up to dimensions of 2048 × 2048. We
verify a similar behavior for the polling mode. However, the runtime is less prone to the bottleneck
using the polling mode.

Both modes experience degraded performance for matrices larger than 2048 × 2048 in dimension.
For larger calculation data, the performance drops drastically.
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5.2 Streaming

Figure 5.2: Runtime of matrix multiplication depending on block count for polling mode.

For small matrices, the polling mode exhibits better performance overall. Moreover, the performance
for the polling mode is more stable. On the contrary, the performance measurements show greater
variations for the callback mode. The average always exceeds the runtime using the polling mode.

5.2 Streaming

In this benchmark, we measure the required runtime to transfer data from the host to the device.
The runtime includes the allocation of buffers on the target device. Moreover, we measure the time
required to retrieve the result from the device.

The goal of the benchmark consists of identifying performance bottlenecks caused by memory
migration between the host and device.
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Figure 5.3: Runtime of matrix multiplication between 8 and 128 blocks using callback mode.

5.2.1 Implementation

The benchmark is outlined in Algorithm 5.2, which is based on the general use case. After setting
up host buffers, we repeatedly allocate three buffers on the device. Two buffers are populated with
input data from the host. After the execution of the kernel, we repeatedly retrieve the result from
the device again. The number of iterations is 1000 for both operations.

The kernel consists of a simple vector addition as its result is not relevant for this benchmark. To
facilitate comparison with other graphs, we use multiples of block size 4 in the mantissa. However,
the kernel does not utilize work groups.

5.2.2 Results

We show the necessary runtime for the buffers’ allocation in Figure 5.6. Figure 5.7 shows the
average runtime to retrieve the result again. Consult Table A.3 and Table A.4 for device’s input and
output, respectively. Both tables are located in Appendix A.2 on page 67.

Again, we focus the suspected bottleneck around block size 64 in Figure 5.8 and for input and output
Figure 5.9, respectively.
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5.2 Streaming

Figure 5.4: Runtime of matrix multiplication between 8 and 128 blocks using polling mode.

Finally, we provide focused visualisation of the results for small inputs in Figure 5.10.

5.2.3 Analysis

The runtime required for buffer allocation and population increases with memory requirements and
the volume of transferred data to the device. Especially on machine argon-epyc, we hit a bottleneck
using buffers with larger than 128 blocks in size. In this instance, the required runtime to allocate
buffers increases drastically after this point. We observe a similar behavior for other machines,
albeit to a lesser extent.

Retrieval of results performs better in our benchmark. The reason consists in less memory being
transferred from the device back to the host. Additionally, no buffer allocation is required. In order
to retrieve results of larger size, more runtime is generally required. A not linear performance
regression can be observed for buffer sizes larger than 128 blocks.

Additionally, we record a performance spike for 256 blocks on the argon-epyc machine. We confirm
the performance regression for this particular case over several benchmark runs.
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Figure 5.5: Runtime of matrix multiplication for all modes and small matrices.

5.3 Block Size

In the matrix multiplication test, we defined a constant block size for the matrices. Then, we
benchmarked the runtime for various matrix sizes. In this benchmark, we set the matrix size to
constant size of 256 × 256. Then, we use benchmark the runtime for various block sizes.

The goal consists of confirming the best work group size, which is reported by the individual
devices.

5.3.1 Implementation

This benchmark focuses on used work group size. It follows the same principle as the matrix
multiplication test. Especially, the same kernel is used. With constant matrix size, we divide the
matrix in blocks of 2 to 64 elements in dimension.
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5.3 Block Size

Algorithm 5.2 Runtime benchmark of data input-output.
procedure opencl_executor_multiplication_test(number_iterations ∈ N)

allocate_host_buffers
populate_host_buffers
timer_start
for all iteration ∈ {1 . . . number_iterations} do

allocate_device_buffers
end for
timer_end
print_iteration_time_average
create_kernel
set_kernel_arguments
execute_kernel
wait_on_future
timer_start
for all iteration ∈ {1 . . . number_iterations} do

retrieve_result
end for
timer_end
print_iteration_time_average
cleanup

end procedure

5.3.2 Results

Figure 5.11 and Figure 5.12 display the runtime for the callback and polling mode, respectively.

Machine argon-eypc has not provided any results for more than 16 work groups.

5.3.3 Analysis

As expected from the matrix multiplication benchmark, the performance for the polling mode is
superior to the callback mode’s performance. For both modes, we notice two block sizes of interest.
Using eight work groups on the device yields better performance for both modes. The effect is
especially noticeable for the callback mode due to its already increased runtime. We achieve best
performance with 64 work groups for all capable machines. This aligns with the information
provided by their respective devices.

Overall, the best results are expected using the polling mode on machines pcsgs05 and argon-tesla2

using 64 work groups.
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Figure 5.6: Runtime of allocating and populating input buffers on device.
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5.3 Block Size

Figure 5.7: Runtime of retrieving result from device.
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Figure 5.8: Runtime of allocating and populating input buffers on device focusing between 8 and
128 blocks.
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Figure 5.9: Runtime of retrieving buffers from device focusing between 8 and 128 blocks.
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Figure 5.10: Allocation and population of buffers on the device (input) and transferring the result
from the device (output) for small data volumes.
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5.3 Block Size

Figure 5.11: Runtime depending on work group size (block size) for callback mode.
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Figure 5.12: Runtime depending on work group size (block size) for polling mode.
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6 Conclusion

In this work, we enhanced the capabilities of HPX by providing an OpenCL executor. Users of the
executor can benefit from more available resources on their machines. With the capabilities of HPX
regarding concurrency and parallelism, this ensures better utilization of resources on all available
nodes.

With our detailed description of the implementation and our design decisions, we enable future
HPX contributors to benefit from our experience. This facilitates the addition of further executors
focusing additional libraries.

In particular, we described the process of creating futures using the HPX functionality. Moreover,
we provided detailed descriptions of the callback and event mode. Finally, we provided guidance on
extensions to the HPX scheduler in order to enable further polling mechanisms.

The correctness of the executor is ensured via the provided testing cases. All test cases are successful.
Therefore, we are confident in the stability of our solution. In particular, we have verified successful
execution on different GPUs from various vendors.

Our benchmarks provide results regarding the capabilities of tested GPUs. In particular, we have
shown some suspected bottlenecks under suboptimal conditions. By comparing our benchmarks of
our custom kernel, we have shown the importance of the computation’s optimization.

6.1 Reproducibility

The test results can be verified using the unit tests accompanying the executor. Moreover, Chapter 2
on page 19 outlines the conditions in which the tests have been conducted.

The benchmarks can be verified using the accompanying benchmark test of the OpenCL executor.
The corresponding data and its visualization can be reproduced using external scripts.

6.2 Outlook

As first step, the implementation will be rebased on the current development branch of the HPX
repository and contributed to the HPX project.

Additionally, OpenCL might be not the only executor to enhance the capabilities of HPX . Further
executors following a similar design are to be explored. Consequently, the possibility of a generic
executor is worth exploration. Especially type erasure or variants would be beneficial in the far
future in the HPX project.
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6 Conclusion

Note that the described callback mode of the executor yields worse results than its polling counterpart.
Therefore, the callback based functionality will likely be removed in the future.
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A Benchmarking Results

This chapter accompanies the visual representations of the results.

A.1 Matrix Multiplication

A.1.1 Callback

The results of matrix multiplication for various machines and devices for the callback mode is
provided in Table A.1.

A.1.2 Polling

The results of matrix multiplication for various machines and devices for the polling mode is
provided in Table A.2.

A.2 Data Stream

A.2.1 Input

The results of the data transfer benchmark to various devices is provided in Table A.3.

block size epyc gtx pcsgs05 (opencl) pcsgs05 (cuda)
1 110.38 55.63 38.00 78.96
2 104.00 71.00 38.63 80.00
4 109.63 70.88 39.13 79.77
8 120.50 75.75 42.75 92.06
16 136.88 77.75 4720.88 93.66
32 158.00 62933.50 74655.00 107.89
64 454.88 100154.38 100143.00 111.36
128 657.38 100187.50 100143.75 126.95
256 5013.38 100188.25 100142.88 244.12
512 42089.88 100189.50 100142.88 1132.09
1024 783418.50 700886.14 400516.63 9943.91

Table A.1: Matrix multiplication runtime for increasing block sizes (callback mode)..
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A Benchmarking Results

block size epyc gtx pcsgs05 (opencl) pcsgs05 (cuda)
1 120.875 41.00 12.13 11.47
2 120.50 41.88 12.63 11.75
4 125.88 41.38 13.00 11.85
8 126.50 40.50 14.00 13.54
16 135.13 40.88 16.00 13.68
32 156.50 55.75 21.00 19.45
64 452.75 153.88 73.00 21.87
128 664.38 908.50 448.75 38.72
256 5027.88 8179.50 3490.75 157.03
512 42198.13 74032.38 39500.75 1089.71
1024 783350.50 606707.57 383707.88 9853.82

Table A.2: Matrix multiplication runtime for increasing block sizes (callback mode)..

block size epyc testla1 tesla2
1 80.67 9.67 8.00
2 80.67 8.33 9.33
4 82.67 10.67 12.67
8 85.33 18.33 19.33
16 98.33 47.67 39.67
32 147.00 132.00 119.33
64 366.33 464.00 439.33
128 1484.67 1925.00 1721.67
256 71224.00 7790.00 6865.00
512 134969.00 36114.00 28287.00

Table A.3: Runtime for allocating and populating buffers on the device. The data volume is
measured in block counts.

A.2.2 Output

The results of the data transfer benchmark from various devices is provided in Table A.4.

A.3 Blocks

A.3.1 Callback

The impact of block size for various machines and devices for the callback mode is provided in
Table A.5.
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A.3 Blocks

block size epyc testla1 tesla2
1 39.67 40.00 32.67
2 49.67 33.67 33.00
4 47.67 31.33 34.00
8 44.00 31.0 35.67
32 66.33 49.33 72.0
64 108.67 108.33 137.0
128 285.67 365.67 363.0
256 5892.67 1078.67 1117.33
512 2477.00 4177.67 4023.67

Table A.4: Runtime for retrieving data from the device. The data volume is measured in block
counts.

block size epyc tesla1 tesla2
2 545.00 99136.40 100225.40
4 447.00 99242.80 100189.80
8 159.00 95987.80 24877.40
16 150.00 98499.80 76856.20
32 — 99163.40 83843.40
64 — 9467.20 38.80

Table A.5: Runtime of matrix multiplication using various block sizes (callback mode).

A.3.2 Polling

The impact of block size for various machines and devices for the callback mode is provided in
Table A.6.

block size epyc tesla1 tesla2
2 550.00 1531.8 490.00
4 442.00 936.80 97.20
8 153.00 906.40 30.60
16 157.00 961.80 36.60
32 — 1128.40 42.60
64 — 16.60 18.60

Table A.6: Runtime of matrix multiplication using various block sizes (polling mode).
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B Design Decisions

B.1 Protected Destructor in Base Classes

Generally, type inheritance might introduce challenges for ABI compatibility. Nevertheless, the
integration of the OpenCL executor encourages the usage of inheritance. Because inheritance is
widely used in the project already, we decide to split the public implementation of the executor in
opencl_executor_base and opencl_executor.

In Listing B.1, we have three options regarding the type’s destructor.

• We can avoid declaring a destructor. This is the default design choice taken in the implemen-
tation of the CUDA executor. In this case, the compiler generates a public, default destructor
for the type. However, this might lead to a failure to properly destruct the instance. A better
design consists of excluding wrong usage of the type.

• We can declare a virtual destructor. This would resolve the issue presented in the preceding
option. However, the compiler would generate a vtable on presence of the virtual destructor.
If only the destructor is virtual, this would increase the type’s size by sizeof(void*). On a 64
bit platform, the size would be increased by 64 bits.

If not used, the presence of the vtable alone has the same disadvantages as padding.
Another disadvantage consists of the type’s size. The location of the vtable depends on the
implementation. Most common implementations place the vtable in front of the contained
data. This would shift the contained fields by 64 bits. Without the vtable, opencl_executor
already fills a whole cache line. With the vtable, the queue_ would be carried over to the
next cache line. The use case of the executor would not trigger other optimizations of the
processor, which would compensate the distribution across cache lines. Therefore, lesser
performance is expected if a virtual destructor is used.

• We can declare a protected destructor. If declared as protected, the destructor would prohibit
the undesired use case [SA04]. If the type does not contain any virtual functions, no vtable is
created. Especially the type’s size would not change.

Considering all options, we decide to declare a defaulted, protected destructor in base types.

B.2 Avoiding Singletons

Singleton types are types that allow only one instance thereof. As such, they introduce a global state
to the application and have the same disadvantages as globally declared variables. If initialized
statically before the application’s execution, singletons might lead to the “static initialization fiasco”,
which oftentimes leads to not deterministic errors.
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B Design Decisions

Listing B.1 Destructor of type B is not invoked, because A:: A() is not virtual.

struct A

{

~A()

{

std::cout << "~A()\n";

}

};

struct B final : A

{

~B()

{

std::cout << "~B()\n";

}

};

auto main() -> int

{

A* a = new B();

delete a;

return EXIT_SUCCESS;

}

Furthermore, the singleton instance is oftentimes accessed in the function directly. Therefore, it has
a side effect, which is difficult to test.

Usage of singleton types would render the OpenCL executor less maintainable. Therefore, we do
not introduce singleton types to the executor.

B.3 Using Exceptions for Error Propagation

HPX heavily relies on the usage of exceptions in the whole project. However, exceptions are one
of the features that introduce performance penalties even if not thrown [Sch98]. An alternative
consists of proposed implementations for std::expected.

However, we are required to interact with core functionality in HPX . As the core functionality
expects error propagation via exceptions, we align the OpenCL executor with the rest of the
project.

B.4 Ordering of Fields

Multiple options exists for the field’s order in a type.
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B.5 Visibility of Declarations

• If fields are ordered without further consideration, two problems might arise. Firstly, the
fields might be loaded on different cache lines in the processor. Therefore, their access would
be less optimized. Secondly, the developer can accidentally introduce padding. As padding
reduces utilization of memory, this effect is to be avoided.

• Avoiding padding minimizes the type’s size. By extension, padding might relate to slightly
degraded performance. As conclusion, the developer should avoid padding in the types.

• The second consideration relates to the access frequency of the field. Placing most frequently
accessed fields at the beginning of the space occupied by the type benefits the performance.

As first priority, we strive to avoid padding in our types. Secondly, we consider to order fields based
on their access frequency, if possible.

B.5 Visibility of Declarations

The documentation included in the HPX repository suggests that header files can be put into the src/

directory of the OpenCL executor. However, this rule is not used anywhere in the project. Therefore,
we decide to place all header files in the include/ directory. Therefore, even implementation meant
to be used for the executor internally is accessible to the whole project.

Nevertheless, we limit the extent of accessible internals using unnamed namespaces where possible.
This way we declare contained types and functionality effectively as static. Firstly, we limit
the accessibility of such types as intended. Secondly, we provide the compiler with enhanced
optimization options with this design decision.
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C Machine Characteristics

In this chapter, we provide some detailed information regarding the used OpenCL devices for
benchmarking.

C.1 GeForce RTX 3080 GPU

The device information related to the GeForce RTX 3080 GPU is provided in Table C.1.

C.2 AMD EPYC 7551P GPU

The device information related to the AMD EPYC 7551P GPU is provided in Table C.2.

C.3 GeForce GTX 1080 Ti GPU

The device information related to the GeForce GTX 1080 Ti GPU is provided in Table C.3.
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C Machine Characteristics

Number of platforms 1
Platform Name NVIDIA CUDA
Platform Vendor NVIDIA Corporation
Platform Version OpenCL 1.2 CUDA 11.2.162
Platform Profile FULL_PROFILE
Platform Name NVIDIA CUDA
Number of devices 1
Device Name GeForce RTX 3080
Device Vendor NVIDIA Corporation
Device Vendor ID 0x10de
Device Version OpenCL 1.2 CUDA
Device OpenCL C Version OpenCL C 1.2
Device Type GPU
Device Profile FULL_PROFILE
Max compute units 68
Max clock frequency 1800MHz
Compute Capability (NV) 8.6
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple (kernel) 32
Global memory size 10501554176 (9.78GiB)
Max memory allocation 2625388544 (2.445GiB)
Global Memory cache line size 128 bytes
Local memory size 49152 (48KiB)
Max constant buffer size 65536 (64KiB)
Max size of kernel argument 4352 (4.25KiB)
Profiling timer resolution 1000ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Kernel execution timeout (NV) Yes
Concurrent copy and kernel execution (NV) Yes
Number of async copy engines 2

Table C.1: OpenCL device used on machine pcsgs05.
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C.3 GeForce GTX 1080 Ti GPU

Number of platforms: 1
Platform Profile: FULL_PROFILE
Platform Version: OpenCL 2.0 AMD-APP (3186.0)
Platform Name: AMD Accelerated Parallel Processing
Platform Vendor: Advanced Micro Devices, Inc.
Platform Name: AMD Accelerated Parallel Processing
Number of devices: 1
Device Type: CL_DEVICE_TYPE_GPU
Max compute units: 60
Max work items dimensions: 3
Max work items[0]: 1024
Max work items[1]: 1024
Max work items[2]: 1024
Max work group size: 256
Max clock frequency: 1801Mhz
Max size of kernel argument: 1024
Cache line size: 64
Cache size: 16384
Global memory size: 17163091968
Constant buffer size: 14588628172
Max global variable size: 14588628172
Max global variable preferred total size: 17163091968
Max read/write image args: 64
Max on device events: 1024
Queue on device max size: 8388608
Kernel Preferred work group size multiple: 64

Table C.2: OpenCL device used on machine argon-epyc.
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C Machine Characteristics

Number of platforms 1
Platform Name NVIDIA CUDA
Platform Vendor NVIDIA Corporation
Platform Version OpenCL 1.2 CUDA 11.2.162
Platform Profile FULL_PROFILE
Number of devices 8
Device Name GeForce GTX 1080 Ti
Device Vendor NVIDIA Corporation
Device Version OpenCL 1.2 CUDA
Device OpenCL C Version OpenCL C 1.2
Device Type GPU
Device Profile FULL_PROFILE
Max compute units 28
Max clock frequency 1582MHz
Max work item dimensions 3
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple (kernel) 32
Global memory size 11721506816 (10.92GiB)
Max memory allocation 2930376704 (2.729GiB)
Global Memory cache size 1376256 (1.312MiB)
Global Memory cache line size 128 bytes
Max number of constant args 9
Max constant buffer size 65536 (64KiB)
Max size of kernel argument 4352 (4.25KiB)
Profiling timer resolution 1000ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Kernel execution timeout (NV) No

Table C.3: Device used on machine argon-gtx.
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