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Abstract

The increasing level of control attained over ultracold quantum gases provides a
platform for studying molecular binding mechanisms on a fundamental level, creating
molecules in exactly defined quantum states and paves the way for entering the
quantum regime of ion-atom scattering. In ultracold chemistry, photoassociation (PA)
is an important spectroscopic technique for producing isolated dimer molecules and
it is an encouraging approach to prepare trimer molecules, such as Rb3, in precisely
defined quantum states. In respect of exploring ion-atom scattering processes on the
quantum level, recent experiments demonstrated that a single ionic impurity implanted
into a Bose-Einstein condensate (BEC) represents a promising approach for opening
this new field.

This thesis is intended to theoretically investigate the prospects for PA of Rb3, which
includes to provide a broad overview of accessible states and possible transitions.
Particular emphasis is placed on the calculation of equilibrium states, the survey of
spin-orbit coupling effects and studying selected electronic dipole transition moments.
The exploration of the configuration space in terms of special cuts through the potential-
energy surfaces (PESs) provides an idea of their topology and gives a first estimate
on the expected density of states. In combination with a qualitative discussion of
Franck-Condon factors this allows for the identification of concrete and suitable PA
transitions to potentially produce long-lived trimer bound states. Further focus is
placed on thoroughly discussing symmetries that drive Jahn-Teller (JT) and related
effects. In the framework of JT effect theory an analytical representation of the JT
manifold with one of its constituting components identified as proper candidate state
for use in a PA scheme is derived. Jahn-Teller effect theory is further shown to
help in understanding the coupling mechanisms underlying a particular manifold of
quadruply interacting excited quartet states. Since these investigations require the
computation of a large number of expected states and transitions, a pragmatic but
considerably accurate has to be applied. Therefore, the multireference configuration-
interaction (MRCI) method together with a large-core effective core potential (ECP)
and a core-polarization potential (CPP) with a large uncontracted even-tempered basis
set is used.
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Another important aspect of this work is the construction of globally smooth and
physical meaningful PESs. The applied interpolation method is based on the concept
of kernel ride regression with a specifically adapted kernel function. This is generally
described in the mathematical framework of reproducing kernel Hilbert space (RKHS)
theory. The generated PESs may then serve as accurate input for subsequent scattering
calculations. This might finally lead either to improve the understanding of Rb2+Rb
collision processes or help in making more quantitative statements for conditions
needed to identify effects beyond Rb+Rb+ Langevin scattering.

The third key subject of this thesis is concerned with high-accuracy ab-initio calcu-
lations for Rb2

+. In doing so, certain limitations of several coupled-cluster methods
with perturbative non-iterative or approximate iterative treatments of triple excitations
are revealed. It is demonstrated that the use of these methods for X2

+ systems, with
X = {Li, Na, K, Rb, Cs}, lead to a small unphysical repulsive barrier in the long-range
region of the respective potential energy curves (PECs). Calculations allowing for
charge localization on one of the Rb nuclei show that the unphysical barrier is con-
nected to a symmetry instability of the underlying Hartree-Fock mean-field approach
leading to orbitals describing two +0.5-fold charged ions in the long-range limit. This
reflects in a leading-order 1/R repulsive Coulomb interaction that causes the repulsive
barrier. Here it is demonstrated that physically meaningful PECs may be obtained
using symmetry-broken triples corrections in the long-range region. This finally moti-
vates a construction procedure following an additive scheme to systematically include
results from higher level of theories. A proof of concept is performed at the CCSD(T)
level of theory including a modification that allows to correctly reproduce the exchange
splitting interaction. This procedure may be systematically extended to higher levels
of theory.
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Kurzzusammenfassung

Die zunehmende Kontrolle, die man über ultrakalte Quantengase erlangt, bietet eine
Plattform zur Untersuchung molekularer Bindungsmechanismen auf fundamentaler
Ebene, zur Erzeugung von Molekülen in genau definierten Quantenzuständen und
ebnet den Weg um Ion-Atom-Streuung auf Quantenebene zu erforschen. In der ul-
trakalten Chemie ist die Photoassoziation ein wichtiges spektroskopisches Werkzeug
um isolierte zweiatomige Moleküle herzustellen und sie ist ein vielversprechender
Ansatz um dreiatomige Moleküle, wie Rb3, in genau definierten Quantenzuständen zu
präparieren. In Bezug auf die Untersuchung von Ion-Atom Streuprozessen auf Quan-
tenebene zeigten jüngste Experimente, dass das Einbauen einer einzelnen ionischen
Verunreinigung in ein Bose-Einstein-Kondensat ein vielversprechender Ansatz ist um
dieses neue Gebiet zu erschließen.

In dieser Doktorarbeit werden die Möglichkeiten zur Photoassoziation von Rb3 unter
Verwendung der »multireference configuration-interaction« (MRCI) Methode zusam-
men mit einem »large-core effective core potential« (ECP) und einem »core-polarization
potential« (CPP) sowie eines großen unkontrahierten Basissatzes mit äquidistant
verteilten Exponenten (even-tempered), theoretisch untersucht. Das umfasst einen
umfassenden Überblick der erreichbaren Zustände und möglicher Übergänge. Das
Hauptaugenmerk liegt in der Berechnung von Gleichgewichtszuständen, der Anal-
yse von Spin-Bahn Kopplungseffekten und der Untersuchung ausgewählter elek-
tronischer Dipolübergangsmomente. Die Erschließung des Konfigurationsraumes
in Form spezieller Schnitte durch die Potentialenergieflächen verleiht ihrer Topolo-
gie eine Vorstellung und gibt eine erste Einschätzung über die zu erwartende Zus-
tandsdichte. In Verbindung mit einer qualitativen Diskussion von Franck-Condon
Faktoren ermöglicht dies eine Identifizierung konkreter und geeigneter Photoassozia-
tionsübergänge um etwaige langlebige gebundene Trimerzustände zu erzeugen. Ein
weiterer Schwerpunkt liegt in der gründlichen Diskussion von Symmetrien die zu
Jahn-Teller und verwandten Effekten führen. Im Rahmen der Jahn-Teller-Effekt-Theorie
leiten wir eine analytische Dartstellung derjenigen Jahn-Teller Mannigfaltigkeit her,
die einen Zustand enthält, der als geeigneter Kandidat zur Verwendung in einem
Photoassoziationsschema identifiziert wurde. Im Weiteren wird gezeigt, dass diese the-
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oretischen Grundbausteine auch dabei helfen den speziellen Kopplungsmechanismus
einer Mannigfaltigkeit angeregter Quartett-Zustände mit zugrundeliegender vierfacher
Wechselwirkung zu verstehen.

Ein weiterer wichtiger Aspekt dieser Arbeit ist die Konstruktion global glatter und
physikalisch sinnvoller Potentialenergieflächen. Die eingesetzte Interpolationsmethode
basiert auf dem Konzept der »kernel ridge regression« mit einer speziell angepassten
Kernelfunktion. Das wir allgemein im Rahmen der »reproducing kernel Hilbert space
(RKHS)« Theorie beschrieben. Die erzeugten Potentialenergieflächen könnten dann
als Grundlage für anschließende Streurechnungen dienen. Dies könnte letztendlich
entweder dazu führen Rb2+Rb Stoßprozesse besser zu verstehen oder dabei helfen
quantitativere Aussagen zu Bedingungen zu treffen, die bei Rb+Rb+ Streuung nötig
sind um Effekte über das Langevin-Regime hinaus zu identifizieren.

Der dritte Themenschwerpunkt dieser Doktorarbeit befasst sich mit hochgenauen
ab-initio Rechnungen zu Rb2

+. Hierbei werden bestimmte Anwendungsgrenzen ver-
schiedener coupled-cluster Methoden mit störungstheoretisch nicht-iterativer oder
approximativ iterativer Behandlung von dreifach Anregungen aufgedeckt. Es wird
gezeigt, dass der Einsatz dieser Methoden für X2

+ Systeme, mit X = {Li, Na, K, Rb, Cs},
zu einer kleinen unphysikalischen, repulsiven Barriere im langreichweitigen Bereich der
jeweiligen Potentialenergiekurve führt. Rechnungen mit einer Ladungslokalisierung
an einem der beiden Rb Kerne zeigen, dass die unphysikalische Barriere mit einer
Symmetrieinstabilität der zugrundeliegenden »Mean-Field-Näherung« der Hartree-
Fock Theorie einhergeht. Dies führt zu Orbitalen, die im langreichweitigen Limes
zwei +0.5-fach geladene Ionen beschreiben. Das schlägt sich wiederum in einer
abstoßen Coulomb-Wechselwirkung nieder, die sich wie 1/R verhält und letztlich
die repulsive Barriere verursacht. Ferner wird dargelegt, dass man physikalisch sin-
nvolle Potentialenergiekurven dadurch erhalten kann, dass symmetrie-gebrochene
Dreifachanregungskorrekturen im langreichweitigen Bereich verwendet werden. Das
motiviert schließlich ein Konstruktionsverfahren, das in additiver Weise systematisch
Ergebnisse aus höheren Theorieniveaus miteinbezieht. Ein Machbarkeitsnachweis wird
auf CCSD(T) Niveau erbracht, das eine Modifkation mit einschließt, die es erlaubt die
Austauschwechselwirkung korrekt zu reproduzieren. Dieses Vorgehen kann ebenso
auf höhere Theorieniveaus ausgedehnt werden.
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1
Introduction

The advent of laser cooling techniques for dilute atomic samples [1–3] gradually
allowed to enter the field of cold and ultracold matter. This is associated with tempera-
tures above and below 1 mK, respectively. At these low temperatures the de Broglie
wavelength becomes large compared to the atom dimensions and new quantum phe-
nomena were discovered. Probably one of the most striking achievement in this
regard was the realization of Bose-Einstein condensation in dilute gases of alkali-metal
atoms [4, 5] with typical temperatures between 1 nK to 1 µK. Here, alkali-metal atoms
played a fundamental role in the preceding development of laser cooling and magneto-
optical trapping techniques [6] as well as in the research of evaporative cooling [7],
which is often used as the final stage of cooling to reach sub-µK temperatures [8].
Alkali atoms have a comparatively simple electronic structure (one valence electron
and a polarizable ionic core) and show favorable (hyper)fine splittings that can be
conveniently exploited in the respective experiments (e.g. the D2 line of 87Rb has a
cycling transition that is used for cooling and trapping [9]).

These experimental milestones clearly opened a door towards an unprecedented
level of control gained over quantum systems and established a new intriguing research
area. This naturally evolved to the research on cold and ultracold molecules, which
succeeded in preparing molecules in precisely defined quantum states and thus led to
the realization of the longterm goal to control interactions on the quantum level [10–17].
Ultracold molecules moreover created new opportunities for high-resolution molecular
spectroscopy and therewith to highly precise measurements of molecular properties.
The level of expected accuracy is such that it may be even used to unravel fundamental
questions from high-energy physics, such as the existence of a permanent electric
dipole moment of the electron as a probe for the CP violation [13, 18]. Beyond that,
the ultracold domain provides prospects to study collisions and chemical reactions
in the quantum regime where only a single partial wave contributes. Moreover,
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1 Introduction

cold molecules have a number of applications, ranging from metrology and quantum
sensors, to quantum simulation and computation [15, 17]. The lowest temperatures and
the highest control in preparing the molecular quantum state are currently achieved
by associating two already ultracold atoms [10–12]. This led to a large number of
high-resolution molecular spectroscopy studies and to the production of a variety of
different ultracold diatomic molecules. They typically consist of alkali-metal atoms
such as the homonuclear dimers Li2, Na2, K2, Rb2, Cs2 or the heteronuclear species
NaRb, RbCs, NaK, LiNa, LiK, LiRb, LiCs and NaCs, but also compounds such as LiYb
and RbYb have been realized; see, e.g., Refs. [11, 12, 15, 16] and references therein.
The approaches to produce these molecules include three-body recombination [19–21],
photoassociation (PA) [22–24], and sweeping over a Feshbach resonance [25, 26].

The experimental breakthroughs related to the high-precision spectroscopy of alkali
dimers were also driven by a vast amount of theoretical studies; see, e.g., Ref. [13]
for a comprehensive overview. In this regard, the detailed theoretical knowledge of
the structure of ultracold molecules clearly marked a cornerstone for their formation
through association. The simple electronic structure of alkali-atoms with one active
valence electron and a polarizable ionic core stimulated a run towards highly accurate
ab-initio calculations of respective dimer systems. This also holds for the investigation
of compounds containing alkaline-earth or ytterbium atoms.

The following examples illustrate the state-of-the-art capabilities of ab-initio methods
and complement the review of Ref. [13]. Modern quantum chemistry calculations can
accurately deal with electron correlation. The standard approaches for computing ac-
curate potential-energy curves (PECs) often involve coupled-cluster (CC) theory [27] in
its “gold standard” variant CCSD(T) [28–33] with subsequent inclusion of higher-level
correlation contributions via CCSDT [34–37] or CCSDT(Q) [38–41] or CCSDTQ [42–45]
or via general CC models [46–48] to render the PECs even more accurate. Systems that
reveal a more complex electronic structure or the calculation of electronically excited
states can be accurately treated using multireference methods such as multireference
configuration-interaction (MRCI) [49, 50] and multireference coupled-cluster (MRCC)
theory [51]. Another method for the treatment of excited states is provided by the
equation-of-motion coupled-cluster (EOM-CC) theory [52–56]. The effective-core po-
tential (ECP) approach [57, 58] allows for implicitly incorporating major relativistic
effects, while at the same time reducing the computational time considerably by mod-
eling the inner core electrons via a scalar-relativistic pseudopotential. This caused
further increases in accuracy and significantly contributed to the feasibility of the previ-
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ously mentioned higher-level correlation methods for studying larger systems. In this
respect, a systematic investigation of all alkali pairs using ECPs and full configuration-
interaction (FCI) predicted the value of their permanent electric dipole moment in the
ground state to very good accuracy [59]. Furthermore, state-of-the-art ab-initio methods
are also capable of computing transition dipole moments, static dipole polarizabilities
and dynamic polarizabilities. Even hyperfine energy levels and Zeeman splittings
of homonuclear and heteronuclear alkali dimers were successfully investigated [60,
61]. It is moreover possible to account for excited electronic states that exhibit strong
perturbations; e.g. the well-known A Σ1 + − b Π3

u spin-orbit coupled manifold, which
is dominant when at least one heavy alkali atom (Rb or Cs) is involved. Among others,
the Fourier grid Hamiltonian method [62, 63] or the discrete variable representation
(DVR) method [64] were used to analyze the corresponding level structure. Recent
theoretical work on Mg2 [65] demonstrated the potential of ab-initio PECs to accurately
describe weakly bond systems. It was possible to compute 19 vibrational levels of the
respective ground-state to an accuracy of ∼ 1 cm−1 compared to 14 experimentally
measured term energies, providing thus prospects for the experimental detection of
the further so far unresolved levels.

In the spirit of these experimental and theoretical achievements, producing and
understanding ultracold alkali-metal triatomics, such as e.g., heteronuclear X2Y or
homonuclear X3 systems, with X,Y∈ {Li, Na, K, Rb, Cs}, would apparently mark a
next milestone for the superior goal of controlling the evolution of a complicated
quantum system at the quantum level. Alkali-metal trimers are much more complex
and challenging as compared to respective dimers, both from the theoretical and
experimental perspective. Concerning the latter, a generally reduced lifetime of many
trimer levels due to internal relaxation and dissociation processes makes it more
complicated to prepare and manipulate those species at the quantum level. Therefore,
highly resolved spectroscopy on free trimer molecules is still lacking and ultracold
trimers have not been produced yet, apart from extremely weakly bound Efimov
states [21, 66]. These are fast-decaying three-body states of resonantly interacting
atoms. They also attracted considerable theoretical interest; see, e.g., Refs. [67–72].
In the cold regime, i.e. at mK temperatures, alkali trimers have been produced in
experiments using supersonic beam expansion of Ar seeded with, e.g., Na atoms, as in
Refs. [73–75], or in experiments with alkali clusters formed on helium nanodroplets [76–
79]. Theoretical interest in homonuclear alkali-trimers dates back to the 1980s and
1990s, with some pioneering works in particular on Na3 (motivated by experimental
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results from supersonic beam expansion) [80–90] giving insights into the electronic
structure of those systems with special emphasis placed on thoroughly studying the
various implications of the intrinsic Jahn-Teller effect (JTE). Already at that time, the
large number of low-lying excited electronic states as well as the increased complexity
due to the JTE was realized as challenge to accurate electronic structure calculations.
Therefore, these early studies were restricted to the light alkali-metals Li, Na, and K.
This was certainly also connected with limited capabilites of ab-initio methods and
computational resources in those days. Later, remarkable progress in ab-initio electronic
structure theory and the success of the helium nanodroplet method led to a revival
of theoretical investigations [91–94], this time, also containing heavier elements such
as Rb [95–100]. However, the main focus of these works was again on the analysis of
selected JT states and the reproduction of special transitions and spectra measured with
the He droplet spectroscopy. Furthermore, emerging experiments studying ultracold
collisions between alkali atoms and an alkali dimers motivated calculations of the
ground-state potential energy surfaces (PESs) of alkali trimers (in particular for Li3,
Na3, K3 and Rb3), the theoretical analysis of respective scattering processes as well as
investigations on nonadditive three-body forces [10, 100–107].

A promising approach for preparing ultracold isolated trimer molecules in precisely
defined quantum states is PA. This thesis suggests two possible PA schemes for
the production of ultracold rubidium trimers: either photoassociating a previously
produced ultracold Rb2 molecule and a free ground-state Rb atom or photoassociating
thee colliding free ultracold Rb atoms. In principle both PA schemes can take place
at long-range (i.e. for large internuclear distances) or at short-range (i.e. at small
internuclear distances). While the former already attracted attention in a number of
theoretical works, see, e.g., Refs. [108, 109], the investigations of this thesis rather focus
on trimer PA at short-range. The identification of concrete pathways how the trimer PA
may explicitly work requires a detailed knowledge of the electronic structure of Rb3

with expected states and allowed optical transitions between them. While previous
theoretical studies on alkali trimers [80–100] were essentially restricted to either the
doublet or quartet ground-state or merely analyzed selected JT states, the present study
provides a broad overview of electronic states in terms of equilibrium energy levels
and reveals the topology of PESs. We are using standard ab-initio methods and include
spin-orbit effects to estimate their magnitude and explore respective interactions. The
PESs are carefully characterized with special emphasis on JT and related effects. We
extend the state-of-the-art analytic description to fourth-order and unravel parts of an
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unusual coupling mechanism with quadruple interactions. Finally, this work suggests
specific PA transitions and identifies a promising candidate state for use in a PA
scheme. The results discussed in this thesis could thus provide experimental guidance
for the creation of ultracold rubidium trimer molecules and serve as a solid foundation
for further more detailed investigations.

Reaching the quantum scattering regime for neutral particles is nowadays well
understood and ultracold dimers can routinely be formed. This is in contrast to hybrid
ion-atom systems where reaching the s-wave scattering regime is still a non-trivial
task due to more stringent temperature requirements [110]. However, reaching the
quantum regime for ion-atom mixtures is expected to provide a rich experimental
platform with novel phenomena and applications [111]. Among others, those may
reach from precision measurements of ion-atom collision parameters and associated
molecular potentials [112–114] to ultracold state-resolved quantum chemistry [115], to
the ultimate goal of realizing strongly coupled charge-neutral polaron systems [116–
118]. A comprehensive overview on both the theoretical and experimental state-of-
the-art research on cold hybrid ion-atom systems may be found in Refs. [110, 119].
Novel experimental approaches have been proposed recently [111, 114, 120–122].
These experiments start with an ionic impurity implanted into a 87Rb Bose-Einstein
condensate (BEC) through a single precursor Rydberg atom followed by subsequent
electric field ionization. In this way, the diffusive transport dynamics of the impurity
through the BEC and ion-atom-atom three-body recombination could be observed [121,
122], which was also supported by numerical simulations confirming the inelastic
scattering dynamics [123]. In the experimental run described in Ref. [121] it was
even possible to estimate the binding energies of some threshold bound states. These
experiments can offer a way to probe chemical reaction channels on the quantum level.
This so-called state-to-state chemistry will require to resolve the quantized molecular
energy levels, which seems in reach for this experimental technique.

This new experimental technique has been used in Ref. [114] for studying Li+-Li
scattering processes. Due to the small reduced mass of Li, it was possible to reach
the s-wave collision regime. Accompanying highly accurate ab-initio calculations
based on an additive scheme with CC computations and large basis sets, were for the
first time precise enough to yield usable bounds for the ion-atom scattering length.
If it may become possible to also reach the quantum regime for Rb-Rb+ collisions,
precise scattering predictions would require ab-initio interaction potentials that can
compete with the level of accuracy obtained for Li2+. Even if this were experimentally
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inaccessible, highly accurate ab-initio potentials could support further theoretical
investigations to make more quantitative statements for conditions needed to identify
effects for the Rb-Rb+ scattering that go beyond the classical regime. Recent approaches
for studying these collision processes [115, 123, 124] were based on model potentials.

Theoretical investigations of X2
+-system (with X = Li, Na, K, Rb) have been reported

earlier [125–131]. In respect of approaches aiming at higher precision, the electron
affinity equation-of-motion coupled-cluster (EA-EOM-CC) method at EA-EOM-CCSD
or EA-EOM-CCSDT level of theory and relativistic effects included via the Douglas-
Kroll-Hess method has been used for calculations on Li2+, Na2

+, and K2
+ [129–131].

The results reported therein yielded satisfactory agreement with available experimental
data. However, to the best of our knowledge there are neither examples that can
compete with the accuracy obtained for the Li2+ PEC in Ref. [114] nor are there any
examples on highly accurate computations of Rb2

+. Therefore, another major part
of this thesis originally aimed at first high accuracy calculations of Rb2

+ ion-atom
interaction potentials. In the course of these investigations, corresponding calculations
revealed some non-trivial subtleties in CC methods with perturbative noniterative and
approximate iterative treatments of triple excitations including the “gold standard”
of quantum chemistry: CCSD(T). It is demonstrated that these CC methods lead to
unphysical repulsive long-range barriers in the respective PECs, which seem to be
undocumented so far. This work explains the origin of the barrier and shows how
physically meaningful potentials can be recovered. Finally, we provide PECs that may
be subsequently used in scattering calculations and that extent the theoretical literature
on benchmark values of spectroscopic constants.

Outline

This thesis is organized as follows. Chapter 2 provides a general introduction into
Born-Oppenheimer (BO) theory and effects that go beyond, with particular emphasis
on the Jahn-Teller effect (JTE) theory. This includes discussing the breakdown of
the BO approximation for degenerate states, motivating the JT theorem and finally
focusing on the E⊗ e JTE of homonuclear triatomic systems. The theory underlying
the wavefunction-based ab-initio methods used throughout this thesis is summarized
in Chap. 3. This covers Hartree-Fock theory, single-reference and multireference
correlation methods such as CC theory and the MRCI approach, respectively, and
certain aspects of Gaussian basis sets.
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Chapter 4 first describes how PA processes work in general and then outlines two
possible PA schemes for the realization of trimers. After briefly introducing some
computational aspects and convenient coordinate systems for trimers, major topological
features of the PESs corresponding to Rb3 are discussed. This additionally involves
providing an overview of expected quartet and doublet equilibrium states of Rb3 and
investigating spin-orbit coupling (SOC) effects to estimate their magnitude. This leads
to an analysis of electronically excited states with regard to their applicability in PA
processes and it is shown that they can be reached conveniently via the inner turning
points (ITPs) on the quartet ground-state PES. In doing so, one component of the 1 E4 ′′

JT state can be identified as promising candidate for use in PA experiments. Thorough
investigations of electronic dipole transition strengths with the quartet ground state,
SOC and further mixing effects with other states in its close proximity confirm its
suitability as a target state. Hereafter, the 1 E4 ′′ state is studied analytically yielding
a fourth-order JT model of its potential-energy landscape. Finally, the manifold of
excited quartet states revealing quadruple interactions is analyzed in detail using tools
from JTE theory and computing non-adiabatic coupling matrix elements.

In Chap. 5 it is shown how to construct globally smooth and physically meaningful
molecular PESs within a specialized kernel ridge regression framework. A highly
accurate PES for the quartet ground-state of Rb3 is constructed based on ROHF-
CCSD(T) ab-initio calculations with large uncontracted basis sets.

The computation of Rb2
+ ion-atom interaction potentials in Chap. 6 reveals certain

limitations of standard CC approximations with perturbative noniterative and approxi-
mate iterative treatments of triples excitations. It is demonstrated that the use of these
methods leads to a small unphysical repulsive long-range barrier in the respective
potential energy curve (PEC). This unphysical barrier is shown to be connected with a
symmetry instability of the underlying Hartree-Fock mean-field theory.

Chapter 7 presents an appropriate construction procedure towards highly-accurate
Rb2

+ interaction potentials based on CCSD(T) calculations. In addition it is shown how
to incorporate a modification that accounts for the correct exchange splitting behavior
of the X Σ2 +

g and (1) Σ2 +
u states. The final PEC is constructed based on the method

introduced in Chap. 5 and is used to extract spectroscopic constants and to analyze
the rovibrational structure.

Finally, the main points and achievements of this work are summarized in Chap. 8.
This also includes an outlook to promising subsequent studies with potential for future
publications.
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2
From Born-Oppenheimer to

Jahn-Teller Theory

This chapter provides general insights into the Born-Oppenheimer approximation,
reveals its limitations and gives a mathematical explanation for its breakdown. In this
regard, general implications such as degenerate states and conical intersections are
discussed. This leads to a comparatively broad introduction to the Jahn-Teller effect
theory with particular emphasis on homonuclear triatomic systems and ends with
outlining coupling effects for linear triatomics.

2.1 Born-Oppenheimer approximation and beyond

The description of interactions of nuclei and electrons in molecular systems is given, in
the non-relativistic limit, by the many-body Hamiltonian

H = T̂n + T̂e + V̂ne + V̂ee + V̂nn

= −
M

∑
K=1

h̄2

2MK
∇2

K −
N

∑
i=1

h̄2

2me
∇2

i −
M

∑
K=1

N

∑
i=1

e2ZK

4πε0 |RK − ri|

+
N

∑
i>j

e2

4πε0
∣∣ri − rj

∣∣ +
M

∑
K>L

e2ZKZL

4πε0 |RK −RL|
,

(2.1)

where T̂n represents the kinetic energy of the nuclei with individual masses MK, T̂e

the kinetic energy of the electrons and the V̂-terms describe the Coulomb interactions
between all pairs of particles, where RK and ri denote the Cartesian positions of the
nuclei and electrons, respectively. It is impossible to solve the stationary molecular
Schrödinger equation for the Hamiltonian H, i.e.

HΨk(x,R) = EkΨk(x,R) , (2.2)
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with x = (r, σ) comprising the electrons spatial coordinates r and spin coordinates σ,
for any molecular quantum states k exactly. Hence, it is crucial to introduce approxi-
mations that reduce the dimensionality of Eq. (2.2). The most fundamental one is the
Born-Oppenheimer (BO) approximation that is central to quantum chemistry [132–
134] and is thus at the heart of most theoretical methods that generate approximate
solutions to Eq. (2.2).

The foundation of Born and Oppenheimer’s work [132] is that the mass of the nuclei
is much larger (≈ 2000 times) than the electron mass me. Thus, electrons should move
on a much faster time scale than the motion of nuclei (time-scale separation) and to a
good approximation the nuclear motion can be separated from the electronic one. This
further implies that for every fixed nuclear coordinate R̄, the electronic Schrödinger
equation

Helψ
el
n (x; R̄) = (T̂e + V̂ne + V̂ee)ψ

el
n (x; R̄) = En(R̄)ψel

n (x; R̄) (2.3)

can be solved separately. For fixed nuclei, the V̂nn term only contributes a constant
and can thus be neglected in the following derivation, but will be added later on. The
solution of Eq. (2.3), with the (adiabatic) electronic wavefunctions ψel

n (x; R̄) and the
electronic eigenstates En, is the main task of electronic structure theory, which will be
discussed in Chap. 3. The quantum number n specifies different electronic states. The
notation further indicates that the electronic wavefunctions depend explicitly on the
electronic coordinates x and parametrically on the fixed nuclear coordinates R̄, while
the eigenenergies depend explicitly on R̄. For each R̄ the electronic eigenfunctions
form a complete basis in the space of electronic coordinates x. Therefore, the total
molecular wavefunction from Eq. (2.2) can be expanded in this basis for any choice of
R, yielding

Ψk(x,R) = ∑
m

ψel
m(x;R)χmk(R) , (2.4)

which is also known as Born-Oppenheimer-Huang expansion [135]. The expansion
coefficients χmk(R) only depend on the nuclear coordinates and the index k labels
molecular quantum states that include all electronic and nuclear states. By inserting
this ansatz into the molecular Schrödinger equation, considering the nuclear repulsion
energy V̂nn to be constant, yields

(
T̂n +Hel

)
Ψtot

k = ∑
m

(
T̂n +Hel

)
︸ ︷︷ ︸
H−V̂nn

ψel
mχmk
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(2.2)
= Ek ∑

m
ψel

mχmk . (2.5)

Project this onto an electronic wavefunction gives

∑
m

〈
ψel

n

∣∣∣ T̂n +Hel

∣∣∣ψel
mχmk

〉
= Ek ∑

m

〈
ψel

n

∣∣∣ψel
mχmk

〉
, (2.6)

where orthonormalized electronic wavefunctions
〈
ψel

n
∣∣ψel

m
〉
= δnm are assumed. Using

Eq. (2.3) and integrating over all electronic coordinates x, this leads to

∑
m

〈
ψel

n

∣∣∣ T̂n

∣∣∣ψel
mχmk

〉
+ En(R)χnk(R) = Ekχnk(R) . (2.7)

Since ψel
m depends parametrically on R, Eq. (2.7) represents a coupled set of equations,

where the corresponding coupling is encoded in the integrals 〈ψel
n |T̂n|ψel

mχmk〉. By using
T̂n ∝ ∇2

K = ∇k · ∇k and the product rule, these coupling matrix elements become

∑
m

〈
ψel

n

∣∣∣ T̂n

∣∣∣ψel
mχmk

〉
= T̂nχnk + ∑

m

(
T̂′nm + T̂′′nm

)
χmk , (2.8)

with

T̂′nm(R) = −∑
K

h̄2

MK

〈
ψel

n

∣∣∣∇K

∣∣∣ψel
m

〉
· ∇K , (2.9a)

T̂′′nm(R) = −∑
K

h̄2

2MK

〈
ψel

n

∣∣∣∇2
K

∣∣∣ψel
m

〉
, (2.9b)

which both act on χmk(R) and thus depend on the nuclei coordinates. Since the ψel
n

are orthonormalized it further follows

∇K

〈
ψel

n

∣∣∣ψel
n

〉
= 0 = 2 · Re

(〈
ψel

n

∣∣∣∇K

∣∣∣ψel
n

〉)
, (2.10)

which implies T′nn = 0. With that Eq. (2.7) can be resorted, yielding

(
T̂n + En(R) + T̂′′nn(R)− Ek

)
χnk(R) = − ∑

m 6=n

[
T̂′nm(R) + T̂′′nm(R)

]
χmk(R) . (2.11)

The right hand side of Eq. (2.11) couples the components χmk for different electronic
states n and are therefore referred to as non-adiabatic coupling terms. In the adiabatic
approximation these terms are neglected. Including the diagonal terms T′′nn(R) leads
to the diagonal Born-Oppenheimer correction (DBOC). However, these terms are usually
very small compared to En(R). Neglecting them as well defines the BO approximation.
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This implies that the total molecular BO wavefunction is, in contrast to the Born-
Oppenheimer-Huang expansion of Eq. (2.4), a simple product of the electronic and the
nuclear wavefunction

ΨBO
k (x,R) = ψel

m(x;R)χmk(R) . (2.12)

Mathematically speaking, this constitutes a separability ansatz, which immediately
reflects the physical notion behind the BO approximation; namely the decoupling
of electronic and nuclear motion. This leads to an indpendent eigenvalue equation
for each electronic state n: the Schrödinger equation for nuclear motion with nuclear
wavefunctions χnk

[
T̂n + En(R)

]
χnk(R) = Enkχnk(R) . (2.13)

This shows that within the BO approximation the dynamics of nuclear wavepackets
is restricted to a single adiabatic potential energy surface (APES), which serves as
an effective potential in which the nuclei move. The APESs En(R) are obtained by
solving the electronic Schrödinger equation (2.3) for state n, on a grid of fixed nuclear
coordinates R̄. Note that due to the decoupling of electronic and nuclear motion the
molecular states and energies in Eq. (2.13) are now, in contrast to Eqs. (2.4) and (2.11),
specified by the two quantum numbers n and k, where n denotes the electronic
state and k labels the eigenstates of the Schrödinger equation for nuclear motion (i.e.
vibration and rotation).

The APESs En(R) in Eq. (2.13) have to be modified due to the neglection of the
constant Vnn-term. This gives the Born-Oppenheimer potential VBO

En(R)→ VBO(R) = En(R) + Vnn(R) , (2.14)

which should be accordingly replaced in Eq. (2.13).

2.1.1 A paradigm illustrating the limits of the approximation

Neglecting the non-adiabatic coupling matrix elements and the DBOC in Eq. (2.11) is
an excellent approximation as long as the energies of electronic states are sufficiently
separated. However, in early works by Longuet-Higgings and many others [136–
139], it has been shown that the potential energy surfaces of any polyatomic system
(including diatomics) can cross, or at least show avoided crossings. In these cases, given
two electronic states n and m, the corresponding APESs fulfill En(Rc) ≈ Em(Rc) at
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F igure 2.1. : The two lowest Σ1 + potential energy curves (PECs) of NaF with the inset showing a
close-up of the avoided crossing at Rc ≈ 10 a0. The first-order non-adiabatic coupling matrix element
(NACME) T12 =

∣∣∣
〈

ψ1

∣∣∣ ∂
∂R

∣∣∣ψ2

〉∣∣∣ is only dominant in close proximity of the avoided crossing at Rc. The
calculations were performed at MRCI/aug-cc-pCVQZ level of theory using Molpro with corresponding
NACMEs obtained from the DDR procedure.

some (near) crossing point Rc. If this is exact, En(Rc) = Em(Rc), we may obtain a
so-called conical intersection at Rc (see Sec. 2.2 for an in-depth discussion). In these
regions the character of the corresponding (adiabatic) states and thus the corresponding
electronic wavefunctions change very rapidly as a function of the nuclear coordinates
R. Therefore, the non-adiabatic coupling matrix elements from Eqs. (2.9) may become
large and the underlying assumption of electron-nuclei separability of the BO approach
is no longer valid. This results in a breakdown of the approximation. These so-called
non-adiabatic effects play an important role in the dynamics of these systems and induce,
e.g., radiationless transitions between different electronic states.

A prototypical system that reveals APESs with avoided crossings is the NaF molecule,
as shown in Fig. 2.1. The avoided crossing occurs between the two lowest Σ1 + states
at Rc ≈ 10 a0. For short internuclear distances the ground state APES shows ionic
character (Na+F– ), while in the asymptote the neutral state (Na+F) is energetically
more preferable than the ionic one (Na++F– ). At short internuclear distances this
neutral state correlates to the excited state. Consequently, both electronic characters
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are mixed and the corresponding electronic wavefunctions change rapidly at R ≈ Rc

from ionic to covalent for the ground state and vice versa for the excited state [140].
This leads to large derivatives with respect to R and therefore to large non-adiabatic
coupling matrix elements, cf. Eqs. (2.9). The matrix element T12 = | 〈ψel

1 | ∂
∂R |ψel

2 〉 | is
shown in Fig. 2.1. It is only large in close proximity to the avoided crossing at Rc and
negligibly small elsewhere. In other words, the electron transfer from Na to F (for
the ground state) can be viewed as a slow electronic motion on the same time-scale
as the nuclear motion, which is in contradiction to the basic assumption of the BO
approximation and thus leading to its breakdown.

2.1.2 Formal analysis of the limits of the approximation

The mathematical justification that (nearly) intersecting states cause the failure of the
BO approximation can be rigorously derived from the Born-Oppenheimer-Huang set
of coupled equations (2.11). Thereto, the non-adiabatic coupling terms, including the
DBOC, from Eqs. (2.9) are first summarized to a non-adiabatic coupling matrix [94,
135]

Λnm(R) = −(T′nm(R) + T′′nm(R))

= ∑
K

h̄2

2MK

(
2
〈

ψel
n

∣∣∣∇K

∣∣∣ψel
m

〉
· ∇K +

〈
ψel

n

∣∣∣∇2
K

∣∣∣ψel
m

〉)

= ∑
K

h̄2

2MK

(
2F K

nm(R) · ∇K + GK
nm(R)

)
, (2.15)

so that Eq. (2.11) takes on the form

Had
k χnk(R) =

[
T̂n + En(R)

]
χnk(R)−∑

m
Λnm(R)χmk(R) = Ekχnk(R) , (2.16)

where Had
k denotes the adiabatic Hamiltonian for state k. This equation can be written

in a more compact matrix form using atomic units (h̄ = 1) and mass-scaled coordinates
as well as the relations

T̂n = − 1
2M
∇2
R , (2.17a)

Λnm =
1

2M
(2Fnm · ∇R + Gnm) , (2.17b)

with the total mass of the system M and the elements of the non-adiabatic vector and
scalar matrices, respectively

Fnm =
〈

ψel
n

∣∣∣∇R
∣∣∣ψel

m

〉
and Gnm =

〈
ψel

n

∣∣∣∇2
R

∣∣∣ψel
m

〉
. (2.18)
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For a given sub-Hilbert space the matrices F and G are related as [94, 135]

G = ∇RF + F ·F . (2.19)

This leads from Eq. (2.16) to the final form of the Born-Oppenheimer-Huang equation

Hadχ =

[
− 1

2M
(∇R + F)2 + E(R)1

]
χ = Eχ , (2.20)

where χ is a column vector that contains the nuclear functions and E(R) represents
the APESs. The form of the kinetic part of Eq. (2.20), also denoted as the dressed kinetic
energy operator

̂̃T n = − 1
2M

(∇R + F)2 , (2.21)

illustrates, due to its non-diagonal nature and dependence on F, that it couples the
nuclear dynamics on multiple electronic PESs. In the BO approximation it is assumed
that these couplings are negligible, thus rendering the dressed kinetic energy operator
diagonal and recovering Eq. (2.13).

The limitation of this approximation is encoded in the matrix elements Fnm. With
some lines of algebra, recalling that the electronic wavefunctions parametrically depend
onR, and diagonalize the electronic HamiltonianHel [cf. Eq. (2.3)], which also depends
parametrically onR, it can be shown what is referred to as the second Hellmann-Feynman
theorem [141, 142] or adiabatic theorem [143]

〈
ψel

n

∣∣∣∇R
∣∣∣ψel

m

〉
= Fnm =

〈
ψel

n
∣∣∇RHel

∣∣ψel
m
〉

Em(R)− En(R)
. (2.22)

This directly reveals that for (near) degeneracies, Em ≈ En, the matrix elements Fnm

become huge or even infinite such that their neglection is no longer justified. In these
situations, the singular nature of Eq. (2.20) requires an alternative approach as outlined
below.

2.1.3 Diabatization in a nutshell

The aim in performing what is called diabatization, or adiabatic-to-diabatic trans-
formation, is to get rid of the problematic non-adiabatic coupling matrix Λnm from
Eq. (2.15) that becomes very large or even singular, as shown by Eq. (2.22), for avoided
crossings or conical intersections. The underlying idea relies on transforming the
kinetic coupling in the adiabatic representation of Eqs. (2.16), (2.20) and (2.21) into a
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2 From Born-Oppenheimer to Jahn-Teller Theory

potential coupling in the diabatic picture. This reduces the electronic-vibronic coupling
to an electronic one. Technically, the corresponding diabatic states are obtained from
the adiabatic ones, ψad

n (x;R) = ψel
n (x;R), through unitary transformation for each

nuclear configuration [144, 145]

φdiab
m (x;R) = ∑

n
ψad

n (x;R)Unm . (2.23)

The transformation matrix U is chosen such that the non-adiabatic coupling matrix F

vanishes for all R which is equivalent to

〈
φdiab

n

∣∣∣∇R
∣∣∣ φdiab

m

〉
!
= 0 , (2.24)

yielding the condition [94, 135]

U †FU +U †∇RU = 0 . (2.25)

Formally, the same transformation U has to be applied to the nuclear adiabatic basis
and thus to the total adiabatic wavefunction. In doing so, Eq. (2.20) finally transforms
into the potentially coupled (diabatic) Schrödinger equation

Hdiabχdiab =

[
− 1

2M
∇2
R1 +W

]
χdiab = Eχdiab , (2.26)

with the diabatic Hamiltonian Hdiab and the non-diagonal diabatic potential matrix W
carrying the non-adiabaticity formerly encoded as kinetic coupling.

Note that Eqs. (2.23) and (2.25) are not sufficient to define a diabatic basis unambigu-
ously. However, it can be shown that the matrix elements of Wnm must be simple and
smooth functions of the nuclear coordinates [145]. If in Eq. (2.23) both the adiabatic
and diabatic basis were complete or span the same vector space, the unitary matrix U
diagonalizes W

U †WU = E(R)1 , (2.27)

and the eigenvalues exactly reproduce the APESs E(R). The matrixU will be called the
adiabatic-to-diabatic transformation matrix. Because of Eq. (2.27) the matrix elements
of the diabatic potential may be written as

Wmn =
〈

φdiab
m

∣∣∣Hel

∣∣∣ φdiab
n

〉
. (2.28)
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2.2 Conical intersections

Conical intersections (COINs), also known as diabolical points, represent peculiar cases
that lead to a breakdown of the Born-Oppenheimer approximation. They reveal some
interesting features and are accompanied with special physical implications, which
will be introduced in the following.

2.2.1 General consideration

From a general point of view, COINs are degeneracies between two energy levels of
real symmetric or hermitian, parameter-dependent Hamiltonians H(λ), where the set
of parameters λ is in general a M-dimensional vector [146–148]. Let at some point λ(d)

in the parameter space the Hamiltonian reveal two degenerate eigenvalues E1(λ
(d)) =

E2(λ
(d)) ≡ E(d) with correlating eigenstates |ψ(d)

1 〉 and |ψ(d)
2 〉, such that [147]

H(λ(d))
∣∣∣ψ(d)

1

〉
= E(d)

∣∣∣ψ(d)
1

〉
, H(λ(d))

∣∣∣ψ(d)
2

〉
= E(d)

∣∣∣ψ(d)
2

〉
. (2.29)

In close proximity to the degeneracy λ(d), the behavior of the system can be studied
in terms of degenerate perturbation theory. The perturbed states |ϕ1(λ)〉 and |ϕ2(λ)〉
are, to lowest order in λ− λ(d), given as

|ϕi(λ)〉 = ci1(λ) |ψ(d)
1 〉+ ci2(λ) |ψ(d)

2 〉 , i = 1, 2 , (2.30)

whereas finding the coefficients cij and new energies involves the perturbation matrix
elements

H′ij(λ) =
〈

ψ
(d)
i

∣∣∣H(λ)−H(λ(d))
∣∣∣ψ

(d)
j

〉
. (2.31)

The resulting energies become [146]

E1,2(λ) = E(d) +
1
2

(
H′11(λ) + H′22(λ)±

√
[H′11(λ)− H′22(λ)]

2 + 4|H′12(λ)|2
)

,

(2.32)

such that the corresponding energy splitting reads

∆E(λ) =
√[

H′11(λ)− H′22(λ)
]2

+ 4
∣∣H′12(λ)

∣∣2 . (2.33)

This defines conditions for systematically searching and adjusting parameters for
degeneracies. For general complex hermitian Hamiltonians, i.e., e.g., those representing
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2 From Born-Oppenheimer to Jahn-Teller Theory

quantal systems without time-reversal symmetry, such as a particle bound by a scalar
potential and in an external magnetic field [147], there are three independent conditions

H′11(λ
(d)) = H′22(λ

(d)) , Re
[

H′12(λ
(d))
]
= 0 and Im

[
H′12(λ

(d))
]
= 0 , (2.34)

showing that at least three parameters are needed to satisfy them. If there are exactly
three, the degeneracy λ(d) defines an isolated point. For M > 3 parameters, the
degeneracies describe a M − 3-dimensional manifold. Therefore, degeneracies of
complex hermitian Hamiltonians have co-dimension three.

For real symmetric Hamiltonians, such as quantum systems with time-reversal sym-
metry, Eq. (2.34) reduces to two independent conditions to be satisfied for obtaining
degeneracies. Hence, degeneracies in real symmetric Hamiltonians have co-dimension
two. Analogously, for exactly two parameters they are isolated points, but in a M > 2-
dimensional parameter space they describe a M− 2-dimensional manifold.

The original idea behind all this dates back to von Neumann, Wigner and Teller [136,
137] who proved the non-crossing rule for electronic states of diatomic molecules of the
same symmetry. For real symmetric Hamiltonians, the result in Eq. (2.34) implies that
if there is only one parameter, e.g. the internuclear coordinate for diatomic molecules,
and if R(d) is a point at which H′11 − H′22 vanishes, then H′12 is most unlikely to vanish
at that point too. Hence, crossings between states of the same symmetry are very rare
events for diatomic molecules [139]. This is in contrast to the case where electronic
states are sufficiently different, i.e. for different spin multiplicities or if the respective
wavefunctions belong to different IRREPs of the corresponding point group. Then it
is H′12 = 0 and the corresponding potential energy curves can cross [149]. For every
polyatomic system with three or more atoms there are enough free parameters to
satisfy Eq. (2.34), independent from symmetry arguments. Equation (2.34) defines
general conditions for which accidental degeneracies, i.e. those not required by symmetry,
can occur. Longuet-Higgins [139] generalized the above conditions and showed that
intersections between more than two surfaces are possible and that 1/2r(r + 1) − 1
conditions are need to be satisfied to obtain r-fold degeneracies for real Hamiltonians.

As follows from perturbation theory, the matrix elements H′ij can be expanded into
a Taylor series about the degeneracy λ(d). In close proximity to the degeneracy the
matrix elements depend linearly on the components of λ− λ(d). If there are only two
parameters (λ1, λ2), the level separation according to Eq. (2.33) takes on the form

∆E =

√
A
(

λ1 − λ
(d)
1

)2
+ B

(
λ2 − λ

(d)
2

)2
+ 2C

(
λ1 − λ

(d)
1

) (
λ2 − λ

(d)
2

)
. (2.35)
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∆
E

λ1

λ2

∆
E

λ(d)

F igure 2.2. : Illustration of a conical intersection with diabolical point λ(d) for a real symmetric
Hamiltonian depending on two parameters λ1 and λ2. The blue circle marks a closed loop in the
two-dimensional parameter space around λ(d).

This represents a positive definite quadratic form, where A, B and C depend on
∇λH|λ=λ(d) , which will be analyzed in more detail in Sec. 2.2.2. Since Eq. (2.35)
represents a double cone, i.e. a diabolo geometry, this explains the commonly used
expression of a “conical intersection” or a “diabolical point” [146]. An illustration
of this characteristic topology is shown in Fig. 2.2. For hermitian Hamiltonians the
diabolical structure would generalize to a hyperconical intersection [147] in the four-
dimensional ∆E, λ1, λ2, λ3 space, with λ3 being the third parameter required to satisfy
the general three conditions defined by Eq. (2.34).

For a closed path C in the parameter space around diabolical points, a geometric
phase factor occurs resulting in a sign change of both electronic states involved in
the degeneracy. Longuet-Higgings [139] pointed out that this sign change is a test
for diabolical points of real symmetric Hamiltonians which appears, if and only if C
encloses an odd number of diabolical points – also known as Longuet-Higgins theorem.
Berry [150] generalized this and showed that eigenstates of parameter-dependent
Hamiltonians H(λ) are restored up to a phase factor when λ is varied adiabatically
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2 From Born-Oppenheimer to Jahn-Teller Theory

along a closed loop (not necessarily including degeneracies). In this case, a circuit-
dependent geometric phase eiγ(C) is accumulated in addition to the familiar dynamical
phase e−iE(λ)t/h̄. This geometric phase, also called Berry phase, is given as the flux of a
vector field through a surface A enclosed by the path C. The sign change of electronic
wavefunctions that occurs for closed loops around degeneracies of real symmetric as
well as hermitian Hamiltonians is herein contained as a special case.

2.2.2 Diabolical points in molecular physics

The following shall unify the general mathematical discussion from above with the
analysis of the BO approximation breakdown from Sec. 2.1.2 and Sec. 2.1.3 by means of
a typical example from molecular physics. Therefore, let at R0, where R represents the
vector of internuclear distances Rij, be a degeneracy between two adiabatic electronic
states |ψ1〉 and |ψ2〉 with corresponding APESs E1(R0) = E2(R0) ≡ E0. Due to
Eq. (2.22), the non-adiabatic coupling matrix becomes singular at this position and a
proper system analysis requires to transform to a diabatic basis {|φi〉}, according to
Eq. (2.23). In the sense of Eq. (2.28) this yields the diabatic potential matrix

W (R0) =

(
Hel

11(R0) Hel
12(R0)

Hel
12(R0) Hel

22(R0)

)
. (2.36)

Following the procedure from Sec. 2.2.1, applied to arrive at Eq. (2.35), the topology of
the intersecting APESs in close proximity to R0 is obtained by expanding W around it

W (R) =W (0)|R0 +W
(1)|R0 +W

(2)|R0 + . . . . (2.37)

The zeroth-order term just reproduces the degenerate energies at R0, i.e. W (0) =

E012×2 representing an constant offset, which will be set, without loss of generality, to
E0 = 0. The first order term becomes

W (1) =

(
∇RHel

11|R0 · ∆R ∇RHel
12|R0 · ∆R

∇RHel
12|R0 · ∆R ∇RHel

22|R0 · ∆R

)
, (2.38)

with ∆R = R−R0. By introducing the average gradient vector

s ≡ ∇R
(

Hel
11 + Hel

22
2

) ∣∣∣
R=R0

, (2.39)

the gradient difference vector

g ≡ ∇R
(

Hel
11 − Hel

22
2

) ∣∣∣
R=R0

(2.40)

22



2.2 Conical intersections

and the derivative coupling vector

h ≡ ∇RHel
12
∣∣
R=R0

, (2.41)

Eq. (2.38) can be rewritten as

W (1) =

(
s · ∆R+ g · ∆R h · ∆R

h · ∆R s · ∆R− g · ∆R

)
. (2.42)

In close proximity to the intersection, the topology of the APESs E1(∆R) and E2(∆R)

follows from diagonalization of W (1). The resulting energy difference becomes

∆E(∆R) = E2(∆R)− E1(∆R) =
√
(g · ∆R)2 + (h · ∆R)2 , (2.43)

which is of the same form as Eq. (2.35) and thus defines a double cone in the so called
g-h branching space (see, e.g. Ref. [151] for the basic notion and consequences for
introducing this branching space). The physical reason for this lifting of the degeneracy
is due to the coupling between electronic and nuclear motion [152]. Moreover, Eq. (2.43)
shows how the constants A, B and C from Eq. (2.35) depend on ∇R=R0 through
Eqs. (2.39)-(2.41).

If the degeneracy of the two electronic states E1 and E2 is accidental, so that E1 and
E2 each belong to a different irreducible representation (IRREP), a COIN is obtained.
If the degeneracy is essential, i.e. required by a high-symmetry nuclear configuration,
the COIN is called a Jahn-Teller intersection [153].

Further physical implications of conical intersections are as follows. At COINs
nuclear dynamics takes place on more than one adiabatic potential energy surface.
This is closely related with the phenomenon that close to a diabolical point in the
electron spectrum, an excited electron on the upper sheet of a cone can make a
radiationsless transition to the lower sheet, in which the small energy difference is
released not as a photon but into nuclear vibrations [146]. This plays a crucial role
in the photochemistry of polyatomic molecules. In this regard, COINs can be also
viewed as funnels converting the electronic energy of excited states into nuclear kinetic
energy [154]. The geometric or Berry phase effect [138, 150, 155], discussed briefly in
Sec. 2.2.1, lets the nuclear wavefunction acquiring an additional nondynamical phase
when transported around a closed path that encloses the COIN [156]. This leads to an
indirect effect of the diabolical point on the dynamics. Moreover, it is connected with
the molecular Aharonov-Bohm effect [157–159]. An in-depth analysis of the occurences
and consequences of diabolical points in molecular systems can be found, e.g., in
Ref. [156]. Prominent examples for molecular systems being inherent with this physics
are those showing the versatile facets of the Jahn-Teller effect.
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2 From Born-Oppenheimer to Jahn-Teller Theory

2.3 Jahn-Teller effect theory

Jahn-Teller (JT) systems may lead to the class of symmetry-required conical intersec-
tions and arise for highly symmetrical nuclear configurations for which the respective
point group reveals degenerate irreducible representations [153]. This causes interest-
ing implications that will be discussed in detail by means of the specific Jahn-Teller
effects (JTEs) present in X3 systems.

2.3.1 General formulation of the Jahn-Teller theorem

In the original work from 1937 [160], Jahn and Teller showed that stability and (orbital)
degeneracy are not possible simultaneously, unless the molecule is a linear one. Here,
when disregarding accidental degeneracy, a degenerate electronic state is only possible
for symmetrical nuclear configurations. The essential point of their work has been
summarized as follows

“All non-linear nuclear configurations are unstable for an orbitally degenerate electronic
state.” [. . . for an electronic state with orbital degeneracy.]

However, nowadays this formulation is not sufficiently rigorous and might be
missleading [161]. Also the limitation to linear molecules does not hold either, as will
be briefly outlined in Sec. 2.4 and has been analyzed in great detail, e.g., in Refs. [162,
163]. From a rather modern point of view it is more convenient to describe the main
effect of electronic degeneracy as producing a special coupling between the nuclear
and electronic motion, which in turn results in a series of observable effect: jointly
called Jahn-Teller vibronic coupling effects. Here, one might also consider to separate
the JT effect from the JT theorem. The latter solely refers to the adiabatic potential
energy surface (APES) of the system. Although the APES is not an observable, it may
serve as an indirect qualitative measure of many observable effects. In a more rigorous
framework, the JT theorem formulation according to Bersuker [161] is as follows:

Theorem 2.1– If the APES of a polyatomic system has two or more branches that intersect in
one point (degeneracy point Q0), then at least one of them has no extremum at this point. Two
kinds of cases are exceptions:

(i) Linear molecules

(ii) Twofold spin (Kramers) electronic degeneracy

This means that if this is the case, there exists at least one direction in the nuclear
configuration space for which the first derivative of the APES, with respect to this
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coordinate, does not vanish, leaving thus a COIN at the point of degeneracy. The proof
of this theorem is based on group theory applied to perturbation calculation. To follow
the basic idea of this proof, the Hamiltonian from Eq. (2.1) for a general polyatomic
system is rewritten as [164]

H = T̂n + Ĥr + V̂(x,Q) , (2.44)

with the nuclear kinetic energy T̂n, the operator Ĥr containing the purely electronic
part (i.e. electron kinetic energy and the interelectronic electrostatic interaction), and
V̂(x,Q) including electron-nuclear and nuclear-nuclear interactions. Here, x is the set
of electronic coordinates, and Q = {Qα} are the NQ symmetrized nuclear coordinates
(normal displacements) chosen to transform according to the IRREPs of the symmetry
group G at the point of degeneracy (=̂ JT center; without loss of generality Q0 = 0),
i.e. at the symmetrical configuration. As shown by Wigner [165], this choice is always
possible for small (infinitesimal) nuclear displacements qα = Qα −Q0α from the point
of degeneracy Q0α = 0 and one may expand V(x,Q) as a power series in qα = Qα,
yielding

V(x,Q) = V(x,0) + ∑
α

(
∂V
∂Qα

)

0
Qα +

1
2 ∑

α,β

(
∂2V

∂Qα∂Qβ

)

0

QαQβ + . . . , (2.45)

where it is convenient to introduce the terms

W(x,Q) = V(x,Q)−V(x,0)

= ∑
α

(
∂V
∂Qα

)

0
Qα +

1
2 ∑

α,β

(
∂2V

∂Qα∂Qβ

)

0

QαQβ + . . . , (2.46)

which are called vibronic coupling terms. Although it is the ultimate goal to solve the
full molecular Schrödinger equation as given in Eq. (2.2), considerable insight into
the physics of the system and the JT effect, is already gained from the form of the
corresponding APES. In JT problems the vibronic coupling terms are considered as a
perturbation to the electronic Hamiltonian

Hel |ψk(x,0)〉 =
[
Ĥr + V(x,0)

]
|ψk(x,0)〉 = Ek |ψk(x,0)〉 , (2.47)

which contains only the zeroth-order term at Q0α = 0 [164, 166]. If by solving this
equation one obtains a f -fold degenerate electronic term Ek = E0(k = 1, 2, . . . , f ),
the inclusion of linear terms of the vibronic coupling operator after Eq. (2.46) as a
perturbation will lead to a splitting of this degeneracy. This respresents the same

25
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approach as applied in Secs. 2.2.1 and 2.2.2 for analyzing the topology of conical
intersections close to the degeneracy. In analogy to Eq. (2.38), the perturbative inclusion
of W(x,Q) in linear order to Eq. (2.47) will lead to a secular equation of order f to

determine the electronic energies. This involves matrix elements of the form F
ΓγΓγ′
Qα

Qα,
with the linear vibronic coupling constant

F
ΓγΓγ′
Qα

=

〈
Γγ

∣∣∣∣
(

∂V
∂Qα

)

0

∣∣∣∣ Γγ′

〉
, (2.48)

where |Γγ〉 and |Γγ′〉 are the diabatic wave functions of the two electronic states in
the degenerate term of representation Γ. The lack of extremum at Q0α = 0, as stated
by the JT theorem, implies that at least one of the vibronic constants of Eq. (2.48) is
nonzero. For this, note that (∂V/∂Qα) transforms as Qα, which, as mentioned above,
can be chosen such that it transforms according to the IRREPs of the symmetry group

G at the JT center. Thus, F
ΓγΓγ′
Qα

6= 0, if there exists a normal displacement of IRREP
Γα (other than the totally symmetric one) for which Γα ⊗ Γ⊗ Γ contains the identical
representation. Jahn and Teller [160] proved that any nonlinear symmetrical nuclear
configuration necessarily possesses non-totally symmetric normal displacements that
transform according to Γα, such that the previously stated holds. This is equivalent
to showing that [Γ2] = Γ ⊗ Γ contains at least one of the IRREPs Γα. The proof is
based on applying Wigner’s method [165] (how to calculate for any given nuclear
configuration how many normal displacements of each IRREP occur) to symmetrical
nuclear configurations and checking all point groups one by one. Due to the lack of
extremum at the point of degeneracy, the APES may have its minimum for distorted
nuclear configurations at Qα 6= 0. Moreover, higher-order terms of Eq. (2.45) or
Eq. (2.46), respectively, introduce further features into the resulting APES.

In a diabatic basis the vibronic coupling terms of Eq. (2.46) define the diabatic
potential matrix W (Q) yielding the coupled set of equations as given in Eq. (2.26).
The eigenvalues obtained from solving Eq. (2.47) with the vibronic coupling terms
included as perturbation are functions of the nuclear coordinates Qα and produce the
f branches of APESs with a f -fold degeneracy at Qα0 = 0 [161, 164]

Ek(Q) =
1
2 ∑

α

KαQ2
α + Eν

k , k = 1, 2, . . . , f , (2.49)

where Kα are the primary force constants without vibronic coupling. Finally, with the
help of the Hellmann-Feynmann theorem [141, 142], one may define a generalized
force at the locus of degeneracy associated to a distortion coordinate Qα and state |Γγi〉,
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R13 R12

R23

C3

C2C2

F igure 2.3. : Generic representation of a homonuclear triatomic molecule in one plane of the three-
dimensional Cartesian coordinate system. Internuclear distances are denoted Rij with i < j ∈ {1, 2, 3}.
For a equilateral triangular configuration (as depicted), the symmetry of the system is described by the
D3h point group. This group contains, besides the trivial identity operator (Ê), symmetry operators for
a 2π/3 rotation (Ĉ3, pointing out of the drawing plane), three rotations by π/2 (Ĉ2), where one of them
coincides with the ordinate, three reflections on mirror planes oriented along each C2 axis (σ̂v), and the
(dotted) plane, the molecular plane, perpendicular to the C3 axis (σ̂h). See also the character table with
the corresponding IRREPs in Tab. A.1.

becoming [164]

Fα = −
〈

Γγi

∣∣∣∣
∂V
∂Qα

∣∣∣∣ Γγi

〉
. (2.50)

For Fα 6= 0, the system is unstable at the locus of degeneracy, and spontaneously
distorts until such a force vanishes at an equilibrium geometry of a lower symmetry.

2.3.2 The Jahn-Teller effect for X3 systems

Symmetry-required degenerate states, as a prerequisite for the occurrence of Jahn-Teller
vibronic coupling effects, naturally emerge for highly symmetric nuclear configura-
tions [161]. The E⊗ e JTE defines one class of these vibronic coupling effects and
describes the splitting of a doubly degenerate electronic E state due to the interaction
with a doubly degenerate vibrational e mode (IRREPs for electronic states are labeled
by capital letters, while nuclear coordinates correspond to small ones). A doubly
degenerate electronic E term arises for all molecules with at least one three-fold axis of
symmetry. The simplest systems one may think of are homonuclear triatomics X3 as
illustrated in Fig. 2.3. If the three nuclei define an equilateral triangle, the symmetry of
the system is characterized by the point group D3h with a three-fold axis of symmetry
(C3), thus allowing for doubly degenerate electronic E terms (cf. Tab. A.1). Typical
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examples are alkali trimers such as Li3 [80–84], Na3 [81, 84–91, 93], K3 [81, 84, 92,
94–97] and Rb3 [95–97].

Normal coordinates

As indicated above, it is convenient to introduce (symmetrized) normal coordinates Qα

to describe nuclear displacements and to analyze the topology of the APES near the
locus of degeneracy. For X3 systems, given the internuclear distances (R12, R23, R13), cf.
Fig. 2.3, proper (symmetry-adapted) normal coordinates may be defined as [152]




Q1

Q2

Q3


 =







=




√
1/3

√
1/3

√
1/3

−
√

1/2
√

1/2 0
−
√

1/6 −
√

1/6
√

2/3


 ·




R12

R13

R23


 . (2.51)

The totally symmetric, or “breathing” mode Q1 preserves the D3h symmetry of the
system with the associated IRREP a′1. The pair (Q2, Q3) constitutes the JT active
distortion coordinates (corresponding IRREP e′) with the asymmetric stretch and
bending normal modes, respectively. The former distorts the equilateral triangle into
a Cs scalene triangle with only the molecular plane as remaining symmetry element,
while the latter takes the system to isosceles triangular conformations of C2v point
group symmetry. This differentiation into Q2 and Q3 is only of formal nature, since
every linear combination of both coordinates yields a proper representation of the e′

space. The degeneracy remains for Q1 vibrations, while the Q2 and Q3 modes define
the two-dimensional coordinate space referred to as the branching space or g-h plane,
introduced in Sec. 2.2.2, in which the degeneracy is lifted.

For the following discussion it is convenient to transform Q2 and Q3 into polar
coordinates, with

Q2 = $ sin ϕ , Q3 = $ cos ϕ , with $2 = Q2
2 + Q2

3 , tan ϕ =
Q2

Q3
. (2.52)

Furthermore, it will turn out useful to introduce complex superpositions of these
normal modes, via [86, 167]

Q± = Q3 ± iQ2 = $e±iϕ . (2.53)
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The E⊗ e Jahn-Teller effect

The degeneracy of electronic E states for D3h configurations means that there exist two
linearly independent eigenvectors to the same eigenvalues of the electronic Hamil-
tonian, labeled |φ2〉 and |φ3〉, which span a two-dimensional subspace [167]. Within
this subspace, every normalized linear combination will be also an eigenvector to
the same eigenvalue. This allows to perform arbitrary unitary transformations on
such vectors. The same holds for the two-dimensional subspace of the degenerate
nulear e modes, i.e. the pair (Q2, Q3) and is finally the mathematical justification for
Eq. (2.53). Accordingly, the mapping of the degenerate electronic states to the complex
representation is obtained via

|φ±〉 =
1√
2
(|φ3〉 ± i |φ2〉) , (2.54)

where the factor 1/
√

2 accounts for proper normalization. This approach of the
choice of a complex (quasi-)diabatic basis is based on some pioneering work about the
dependence of the electronic wavefunction on the nuclear coordinates [155, 168] and
allows for deriving the JT Hamiltonian for a E⊗ e coupled system based on symmetry
arguments.

The canonical approach for analyzing JT problems requires to expand the potential
energies of the Hamiltonian H of a given system, which are determined by the
eigenvalues of the electronic Hamiltonian Hel at given nuclear geometries, into a
Taylor series in the nuclear coordinates, c.f. Eqs. (2.37), (2.45) and (2.46). The following
theorem is crucial to determine the non-vanishing terms of this expansion [167]

Theorem 2.2– The action of any symmetry operator Ô that belongs to the nuclear point group
G does not change the physics of the system described via the total Hamiltonian H, i.e.

[
H, Ô

]
= 0 , ∀Ô ∈ G

In the complex representation, the normal coordinates and electronic states according
to Eq. (2.53) and Eq. (2.54), respectively, are eigenfunctions of the symmetry operation
Ĉ3 with eigenvalues e±2πi/3. This implies

Ĉ3Q± = e±2πi/3Q± , (2.55a)

Ĉ3 |φ±〉 = e±2πi/3 |φ±〉 . (2.55b)

The electronic Hamiltonian in the {|φ+〉 , |φ−〉} basis becomes

W = ∑
i,j
|φi〉Wij 〈φj| , i, j = {+,−} , (2.56)

29



2 From Born-Oppenheimer to Jahn-Teller Theory

with the matrix elements Wij = 〈φi|Hel|φj〉 (i, j = +,−), defining thus the diabatic
potential matrix according to Eq. (2.28). These matrix elements are expanded into a
Taylor series in Q+, Q−, yielding, for instance [167, 169]

W++ =
g

∑
p+q

c(++)
p,q

(p + q)!
Qp

+Qq
− , (2.57)

with the expansion coefficients c(++)
p,q . The invariance condition [H, Ô] has to be fulfilled

by each term of Eq. (2.57) and implies for the diabatic potential matrix in the above
example

Ĉ3W++ = Ĉ3 |φ+〉Qp
+Qq
− 〈φ+| !

=W++

= e−2πi/3e+(p)2πi/3e−(q)2πi/3e2πi/3 |φ+〉Qp
+Qq
− 〈φ+| . (2.58)

Hence, only contributions with (p, q) combinations that satisfy the condition (p −
q)mod(3) give non-vanishing expansion coefficients in Eq. (2.57). By repeating the
same procedure for the remaining matrix elements and back-transforming to the real
presentation |φ2,3〉, yields

Wr = ∑
n

1
n!

{(
V (n) 0

0 V (n)

)
+

(
W (n) Z (n)

Z (n) −W (n)

)}
,

= ∑
n

1
n!

[
V (n)σI +Z (n)σx +W (n)σz

]
, (2.59)

with the 2× 2 unit matrix σI and the Pauli matrices σx and σz. The diagonal elements
V (n) correspond to the potential in the absence of the JTE and W (n) represent the
diagonal coupling terms, while Z (n) describe the off-diagonal coupling elements. All
these matrix elements are real functions of the normal coordinates Q2 and Q3, and the
so called JT parameters. Their explicit form can be found in Ref. [167]. Consequently,
the JT Hamiltonian matrix in diabatic representation is given as

Hdiab
JT = T̂nσI +Wr . (2.60)

The corresponding APESs are obtained by diagonalizing the diabatic potential matrix
Wr. The method used to derive this JT Hamiltonian is called diabatization by ansatz [167].
In practice, the JT parameters of the diabatic potential matrix, hidden in the matrix
elements V (n),W (n) and Z (n) in Eq. (2.59), are determined by least-square fits to the
APESs obtained from ab-initio calculations.
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2.3 Jahn-Teller effect theory

The main physical implications of the E⊗ e JT problem can be understood consid-
ering up to quadratic terms in Eqs. (2.59) and (2.60), yielding the corresponding JT
Hamiltonian

Hdiab
JT2 = T̂nσI +

[
∆ε0 + V2a(Q2

2 + Q2
3)
]
σI

+

(
V1eQ3 + V2e(Q2

3 −Q2
2) V1eQ2 − 2V2eQ2Q3

V1eQ2 − 2V2eQ2Q3 −V1eQ3 −V2e(Q2
3 −Q2

2) ,

)
(2.61)

with the nomenclature taken from Ref. [166], V2a describes the elastic force constant
and Vie , i ∈ {1, 2} denote the linear (1) and quadratic (2) coupling constants. The
zeroth-order term ∆ε0 defines the energetic position of the central COIN at the D3h

reference configuration. In general ∆ε0 6= 0, however the zero of energy can always be
chosen such that this term vanishes. By diagonalizing the potential part (Hdiab

JT2 − T̂nσI)
and using the polar representation of the normal coordinates after Eq. (2.52), the two
branches of the APESs are obtained [95]

E±($, ϕ) = V2a$2 ± $
[
V2

1e + 2V1eV2e cos(3ϕ)$ + V2
2e$

2
] 1

2 . (2.62)

If the quadratic coupling V2e is negligible, the APES becomes a surface of revolution
with E± independent of the polar angle ϕ, and the lower surface E− acquiring a
Mexican hat-like shape [161]. The point of degeneracy at $ = 0 reveals a COIN, as can
be seen by comparing the square root of Eq. (2.62) to the quadratic form in Eq. (2.35)
or by showing the lack of extremum via (∂E±/∂$)$→0 = ±V1e. The topology of the
APES is illustrated in Fig. 2.4 (a). For this particular case all pairs (Q2, Q3) with

$ = $min =
|V1e|
2V2a

(2.63)

correspond to minimum configurations of the APES, where $min defines the radius
of the trough. The movement of the system along the bottom of the trough is called
internal free rotation or pseudo-rotation. Moreover, it is convenient to introduce the
JT-stabilization energy Es that defines the energy difference between the central COIN
and the radially symmetric global minimum, cf. Fig. 2.4 (a), yielding

Es =
V2

1e
4V2a

. (2.64)

It is important to note that the system is degenerate for every D3h configuration,
i.e. for any triple (Q1, 0, 0), defining thus an one-dimensional COIN seam in the
full 3D configuration space. For nonzero quadratic coupling, as can be seen from
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2 From Born-Oppenheimer to Jahn-Teller Theory
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F igure 2.4. : (a) Mexican-hat-like APES resulting from the linear E⊗ e JT problem. The Jahn-Teller
stabilization energy Es defines the energy difference between the central conical intersection (COIN)
and the minimum of E− (bottom of the trough). (b) Equipotential sections of the lower sheet E− of the
JT APES for nonzero quadratic coupling. The APES acquires three equivalent minima (Mi , i ∈ {1, 2, 3}) at
ϕ = 0, 2π/3 and 4π/3, divided by three saddle points (Si , i ∈ {1, 2, 3}) at ϕ = π/3, π and 5π/3. This
is also referred to as tricorn potential. The points C′i , i ∈ {1, 2, 3} along the three lines that include
the saddle points mark additional COINs, occurring at C2v geometries if the quadratic coupling is
sufficiently large. The cross section in (c) shows one of these additional COINs along the red dashed
line displayed in (b). There are three equivalent such COINs besides the central one, forming thus three
additional COIN seams in the Q1-Q3 space.

Eq. (2.62), a cos(3ϕ)-warping is introduced to the lower APES sheet, where three
equivalent minima occur at ϕ = 0, 2π/3, 4π/3, divided by three saddle points at
ϕ = π/3, π, 5π/3. The topology is also called tricorn APES, where at each of these
minima the equilateral triangle is distorted to an isosceles one. This is shown in
Fig. 2.4 (b). In this case, instead of free rotations, hindered motions (pulsations) take
place, which spectroscopically reflects in a tunneling splitting of the vibrational levels
in each of the wells [161]. If the barriers between the minima are energetically too
high and the system does not have enough energy to cross them, the situation is
generally referred to as static Jahn-Teller effect. In the cases of free rotation (Mexican-hat
potential) and pseudorotation (tricorn APES with sufficiently small barriers), or if
pseudorotational motion is conveyed by tunneling, one may speak of the dynamic
Jahn-Teller effect. In Ref. [170] it was realized that the linear and quadratic coupling
terms are described by rather independent constants, which means that the quadratic
coupling is not necessarily small compared to the linear one. For sufficiently large
quadratic couplings, the topology of the APES changes essentially. In this case, the
two branches E+ and E− do not only intersect for the central COIN at $ = 0, but
also along the three lines that include the saddle points on the APES, cf. Figs. 2.4 (b)
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2.3 Jahn-Teller effect theory

and (c). Thus, in addition to the symmetry-required D3h crossing seam, there are three
symmetry-equivalent C2v COIN seams in the Q1-Q3 subspace in close proximity to
the central one. This will significantly affect the tunneling splitting and the general
understanding of the problem. This, however, is beyond the scope of this thesis and
the reader is referred to Ref. [161] and references therein for more details.

In general, the truncation of the JT expansion according to Eq. (2.59) at quadratic
terms is only sufficient for systems showing minima for comparatively small nuclear
distortions from the central COIN. For more pronounced anharmonic systems, i.e.
when minima occur for larger displacements from the central COIN, higher order
terms are needed for a appropriate description. This has been shown, e.g., in Refs. [95,
96] for some doublet and quartet states of K3 and Rb3, where cubic terms turned out
relevant. In Sec. 4.5 it will be shown that for a certain JT state of Rb3 it is necessary to
include even fourth- and higher-order terms.

Relativistic E⊗ e Jahn-Teller effect

In a next step, the consequences on Jahn-Teller vibronic coupling effects when addition-
ally including spin-orbit coupling (SOC) are outlined. Since this thesis is concerned
with the theoretical investigation of Rb3, we restrict ourselves to doublet and quartet
states as the only occuring spin multiplicities in this system. For detailed derivations of
the following equations it is referred to, e.g., Refs. [171–175] for an in-depth discussion.

With SOC included, the full vibronic Hamiltonian becomes

H = T̂n + Ĥel + ĤSO , (2.65)

where in addition to the nuclear kinetic energy operator T̂n and the electronic Hamilto-
nian Ĥel, the spin-orbit (SO) Hamiltonian is included. Therewith, both the interaction
of the electronic motion in a degenerate electronic state with the nuclear motion of
degenerate vibrational modes (i.e. nonrelativistic E⊗ e problem) and the interaction of
the electron spin angular momentum with the electronic orbital angular momentum
is considered [171]. This requires to first construct a proper basis. Considering the
doublet case first, it can be shown [171, 172] that the complex representation of the
electronic states according to Eq. (2.54) are convenient electronic basis states (|Λ〉)

|Λ〉 = |±1〉 = |φ±〉 . (2.66)

These states have to be augmented with the spin functions of the electron which, for
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2 From Born-Oppenheimer to Jahn-Teller Theory

doublet states, leads the full electronic basis

{|Λ〉 ⊗ |Σ〉 = |Λ, Σ〉} =
{∣∣∣∣+1,+

1
2

〉
,
∣∣∣∣−1,+

1
2

〉
,
∣∣∣∣+1,−1

2

〉
,
∣∣∣∣−1,−1

2

〉}
. (2.67)

As for the nonrelativistic case, the electronic Hamiltonian is expanded in a Taylor series
in the normal coordinates. In the basis |Λ, Σ〉 this yields, analogous to Eq. (2.61), the
diabatic potential matrix [171, 172, 174]

W̃r =

(
x + y z

z x− y

)
⊗ 12×2 , (2.68)

with

x = V2a(Q2
2 + Q2

3) , (2.69a)

y = V1eQ3 + V2e(Q2
3 −Q2

2) , (2.69b)

z = V1eQ2 − 2V2eQ2Q3 . (2.69c)

To a first approximation, the SO Hamiltonian can be represented by diagonal matrix
elements ±∆ [174]. This leads to the relativistic E⊗ e Hamiltonian with up to second-
order vibronic coupling terms included and spin multiplicity M = 2

HM=2
relJT2 = T̂n14×4 +

(
x + y + ∆ z

z x− y− ∆

)
⊗ 12×2 . (2.70)

Therefrom, the APESs follow from diagonalization of the potential part, again using
polar coordinates according to Eq. (2.52), yielding [95, 171]

E±($, ϕ) = V2a$2 ±
[
∆2 + V2

1e$
2 + 2V1eV2e cos(3ϕ)$3 + V2

2e$
4
] 1

2 , (2.71)

with the spin-orbit splitting 2∆ = αζ, where ζ is the projection of the electronic orbital
angular momentum onto the C3 axis, and α is the spin-orbit coupling constant. Appar-
ently, the inclusion of spin-orbit coupling, removes the central COIN for equilateral
triangular configurations, while each of the two APES branches are twofold degenerate
due to the corresponding Kramers pairs. A characteristic example of this situation is
shown in Fig. 2.5 (a).

The quartet case with spin multiplicity M = 4 is treated based on the arguments
outlined in Refs. [96, 97]. A rigorous derivation for general trigonal systems can be
found in Ref. [173]. In this case, a proper basis is defined by

{|Λ, Σ〉} =
{ ∣∣∣∣−1,−3

2

〉
,
∣∣∣∣+1,−3

2

〉
,
∣∣∣∣−1,−1

2

〉
,
∣∣∣∣+1,−1

2

〉
,
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F igure 2.5. : Illustration of possible APESs resulting from including spin-orbit coupling to the E⊗ e JT
problem. In (a) the spin multiplicity of the degenerate electronic state at D3h configuration corresponds
to the doublet case, thus rendering the problem to a relativistic 2E⊗ e one. Both branches of the APES
remain twofold degenerate due to the corresponding Kramers pairs, but inclusion of spin-orbit coupling
lifts the central JT COIN at Q3 = 0 by 2∆. In (b) the spin multiplicity corresponds to the quartet case, i.e.
relativistic 4E⊗ e JT problem, where both the upper and lower APES splits twice. Due to the Kramers
spin degeneracy each of the four branches is twofold degenerate. Inclusion of spin-orbit coupling leads
to a splitting of the central COIN by 2∆, respectively 6∆.

∣∣∣∣+1,+
1
2

〉
,
∣∣∣∣−1,+

1
2

〉
,
∣∣∣∣−1,+

3
2

〉
,
∣∣∣∣+1,+

3
2

〉}
, (2.72)

with |Λ〉 from Eq. (2.66). Again, the electronic Hamiltonian is expanded in a Taylor
series in the normal coordinates. By representing this expansion in the product space
defined by Eq. (2.72), the following diabatic potential matrix is obtained

˜̃W r =

(
x + y z

z x− y

)
⊗ 14×4 , (2.73)

with the matrix elements given in Eqs. (2.69). The SO Hamiltonian is again assumed to
be fully diagonal in the chosen basis set, with the matrix elements

[HSO]ij =
〈
{Λ, Σ}i

∣∣ ĤSO
∣∣ {Λ, Σ}j

〉
= 2∆ΛiΣiδij . (2.74)

The full 8× 8 matrix representation of the resulting JT HamiltonianHM=4
relJT2 can be found

in Ref. [97]. The APESs are obtained by diagonalizing the corresponding potential part,
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2 From Born-Oppenheimer to Jahn-Teller Theory

which by using polar coordinates according to Eq. (2.52) leads to [96]

E1/2±($, ϕ) = V2a$2 ±
[
∆2 + V2

1e$
2 + 2V1eV2e cos(3ϕ)$3 + V2

2e$
4
] 1

2 , (2.75a)

E3/2±($, ϕ) = V2a$2 ±
[
(3∆)2 + V2

1e$
2 + 2V1eV2e cos(3ϕ)$3 + V2

2e$
4
] 1

2 . (2.75b)

Due to the underlying Kramers degeneracy, each branch is twofold degenerate. A
prototypical example for the topology of the APESs is shown in Fig. 2.5 (b).

Two remarks to complete the understanding:

1. Only for electronic E states, Λ is related to the electronic angular momentum,
since only E states can carry a nonvanishing electronic angular momentum
around the molecule-fixed axis: the C3 axis, with an expectation value 〈Lz〉 =
h̄ζΛ [96, 97]

2. The diagonal form of the SO Hamiltonian as assumed here for both doublet and
quartet cases, is strictly valid only for systems having a horizontal symmetry
plane in addition to the threefold rotational symmetry axis, i.e. for systems
showing D3h symmetry [97]

Some further implications

We conclude the discussion of the E⊗ e problem for X3 systems by briefly mentioning
some further physical consequences. All of them are beyond the scope of this thesis,
but are good to keep in mind for future studies. Detailed information of the following
can be found, e.g., in Ref. [161] and references therein.

• In general, totally symmetric displacements, i.e. those connected with the normal
coordinate Q1 of Eq. (2.51), are also involved in the E⊗ e problem, making it in
fact an E⊗ (e + a) one. Whenever a complete three-dimensional description is
required it is inevitable to include this additional degree of freedom

• An analytic expression of the resulting three-dimensional APES with the corre-
sponding totally symmetric force constant and linear coupling term can be found
in Ref. [161].

• In Ref. [176] the authors discuss the impact of those total symmetric vibrations.

• Due to the central COIN occuring for the E⊗ e JTE of X3 systems, they are generic
for showing the molecular geometric phase [164, 177–179]

36



2.3 Jahn-Teller effect theory

• In Ref. [178] it has been shown that experimental data for the A← X transition
in Na3 could be only reproduced correctly by ab-initio calculations if a geometric
phase of π is imposed for the pseudorotation around the equilateral configuration.
This can be viewed as an experimental observation of the Berry phase

• It can be generalized that dynamical JT systems, i.e. those showing pseudoro-
tational motion or tunneling between the minima of the tricorn APES, show a
nonzero geometric phase [179]

• The existence of this geometric phase effect can have an significant impact on
femtosecond pump-probe experiments as demonstrated in Refs. [87, 180]

• For systems with very large quadratic vibrational couplings, the three additional
COINs mentioned above approach the central COIN. This provides additional
passes for tunneling between the neighbouring minima, eventually changing the
whole dynamics. There, instead of one COIN, four COINs are encircled which
does not change the sign of the wavefunction, as Berry phase only occurs when
an odd number of COINs are encircled [170]

2.3.3 The pseudo Jahn-Teller effect for X3 systems

The pseudo Jahn-Teller effect (PJTE) [181] can be viewed as a generalization of the JT
problem as reported in the previous section. It is concerned with the vibronic mixing
of two or several electronic states under nuclear displacements without the explicit
requirement of degeneracy among them [161]. In general, it can be shown that the
PJTE is the only source of instability and distortions of high-symmetry configurations
of polyatomic systems in nondegenerate states, and it contributes significantly to the
instability of degenerate states. The importance of the PJTE, the broad range of its
implications, and possible applications cannot be covered in this section. Thereto it is
referred to, e.g., Refs. [161, 163, 182, 183] and references therein.

For nonlinear homonuclear triatomics, cases where nearly degenerate (close-in-
energy) E and A states emerge are of particular interest. Here, a JT interaction in
the electronic E state combined with a PJT coupling that mixes the E and A states
may be observed. This is jointly called the (E + A) ⊗ e PJT problem. Within this
framework, it remains to investigate which of the two coupling mechanisms dominate
or if both enter equally. Among the alkali trimers, the Na3 molecule is probably the
most studied one with respect to the JTE; both theoretically and experimentally. It has
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been shown that spectroscopic data for the electronic B state could be only sufficiently
reproduced within the PJT model [86–91, 161], thus emphasizing its importance. The
following discussion is restricted to the (E + A)⊗ e problem, knowing full well that
this represents merely one class of PJT problems.

The above treatment for the E⊗ e problem can be extended to account for interactions
with a third nondegenerate state nearby in energy. Hereto, the two-dimensional sub-
Hilbert space that led to the JT Hamiltonian in Eq. (2.61) is increased by this additional
state, hereafter designated |φ0〉, while assuming sufficient separation from all other
states. With the states |φ±〉 from Eq. (2.54), corresponding to the two components of
the degenerate E term, this defines a proper basis ({|φi〉} = |φ0〉 , {|φ+〉 , |φ−〉}) [152,
168] to set up the Hamiltonian. In analogy to Sec. 2.3.2, the potential part of the
Hamiltonian is expanded up to second order in the nuclear displacements to obtain the
main physical implications. Couplings to the totally symmetric mode Q1 are neglected.
The back transformation to the real representation yields [184]

Hdiab
PJT2 = T̂n13×3 +



V (2)A W (2)

PJT −Z (2)
PJT

W (2)
PJT V (2)E +W (2)

JT Z (2)
JT

−Z (2)
PJT Z (2)

JT V (2)E −W (2)
JT


 , (2.76)

with the matrix elements V (2)E/A, still using the notation from Ref. [166], representing
the potentials in the absence of any coupling

V (2)A = ∆εA + VA
2a(Q

2
2 + Q2

3) and V (2)E = ∆ε0 + VE
2a(Q

2
2 + Q2

3) . (2.77)

The off-diagonal matrix elements W (2)
JT/PJT and Z (2)

JT/PJT that describe the coupling
interactions due to the JTE and PJTE, are defined via

W (2)
JT = VE

1eQ3 + VE
2e(Q

2
3 −Q2

2) , (2.78a)

Z (2)
JT = VE

1eQ2 − 2VE
2eQ2Q3 , (2.78b)

W (2)
PJT = VE/A

1e Q3 + VE/A
2e (Q2

3 −Q2
2) , (2.78c)

Z (2)
PJT = VE/A

1e Q2 − 2VE/A
2e Q2Q3 . (2.78d)

Here, VY
2a , Y = {E, A} are the eleastic force constants for the E and A states, respectively,

and VZ
ie , Z = {E, E/A} and i = {1, 2} are the linear and quadratic vibronic coupling

parameters, either describing the “pure” JT interaction (E) or the PJT mixing (E/A).
Further, ∆εA denotes the energy gap between the E and A states at the origin, where
in accordance to the treatment in Eq. (2.61) it is ∆ε0 = 0. The three branches of the
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APES are then obtained from the secular equation |Hdiab
PJT2 − [T̂n + ε(Q2, Q3)]13×3| = 0,

and are of the general form

EX(Q2, Q3) = VX
2a(Q

2
2 + Q2

3) + ϑX(Q2, Q3) , (2.79)

where ϑX(Q2, Q3) is the vibronic contribution [152]. For C2v configurations (Q2 = 0),
these APESs take on a comparatively simple form, as can be directly deduced from
Eq. (2.76) with ∆ε0 = 0

E0(Q3) = VE
2aQ2

3 −VE
1eQ3 −VE

2eQ2
3 , (2.80a)

E±(Q3) =
1
2

[
VE

2aQ2
3 + ∆εA + VA

2aQ2
3 + VE

1eQ3 + VE
2eQ2

3

]

± 1
2

[(
VE

2aQ2
3 − ∆εA −VA

2aQ2
3 + VE

1eQ3 + VE
2eQ2

3

)2
+ 4

(
VE/A

1e Q3 + VE/A
2e Q2

3

)2
] 1

2

.

(2.80b)

The component of the degenerate E term that transforms according to the B1 or B2

IRREP (depending on the choice of axes) for C2v geometries, corresponds to the branch
E0. The remaining component as well as the near-in-energy third state transform as
A1 or A2 for isosceles triangular configurations and correlate to the E± branches. This
form of the APESs displays a variety of minima, saddle points and COINs, which
reflect as local minima and curve crossings in the C2v subspace. For D3h configurations
at Q3 = 0, there occurs the COIN that is characteristic for the JTE of the E state. This
can be seen by proving the discontinuity of E± at Q3 = 0, i.e. taking its derivative
(∂E±/∂Q3)Q3→0. The presence of this intersections implies a linear splitting for the
E-type APESs in close proximity to the degeneracy and a reversal of the energetic
ordering of the A1/2 and B1/2 potential curves when changing the sign of Q3 [88].

The investigation of the (B, B′) system of Na3 (comprising the 4 A2
1, 3 B2

2 and 5 A2
1

states) in Refs. [86, 88], revealed that the linear JT coupling parameter VE
1e is vanishingly

small. The underlying theoretical model to explain these observations will be outlined
in the following.

For vanishing PJT coupling parameters VE/A
ie , i = {1, 2} the solutions of the “pure”

JT problem from Eq. (2.62) are recovered and E0 = ∆εA + VA
2a$2. If instead, the PJT

coupling dominates the three-state interaction, i.e. if VE
ie ≈ 0 , i = {1, 2}, the APESs

using polar coordinates from Eq. (2.52) take on the form [86]

E0 = VE
2a$2 , (2.81a)

E± =
1
2

(
VE

2a$2 + ∆εA + VA
2a$2

)
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± 1
2

{[
$2
(

VA
2a −VE

2a

)
+ ∆εA

]2
+ $2

[
(VE/A

1e )2 + (VE/A
2e )2$2 + VE/A

1e VE/A
2e $ cos(3ϕ)

]} 1
2

.

(2.81b)

This shows that one of the two degenerate states that correlate to the E term remains
unperturbed (E0), while the nondegenerate third A state and the remaining degenerate
component of the E term are dispersed about their energy by the discriminant term
(E±). For large distortions one can show that the mathematical form of E± from
Eq. (2.81) is equivalent to the one resulting from a “pure” JT treatment in Eq. (2.62),
see Ref. [86]. However, despite this formal analogy of the mixing, it now arises due
to accidentally degenerate states, rather than due to symmetry degenerate ones. For
∆εA 6= 0 it further follows that, in contrast to the general case of Eq. (2.80), there is
no COIN for $ = 0 (or Q3 = 0). Because, for ∆εA 6= 0, it follows from Eq. (2.81),
(∂E±/∂$)$→0 = 0, and thus the discontinuity vanishes. Only if the totally symmetric
mode Q1 equals a certain critical value Qc

1, with Q2 = Q3 = 0, the energy gap
∆εA vanishes and a triply degenerate COIN forms. Thus, instead of a COIN seam
in the 3D configuration space, as seen for the E⊗ e JT problem, merely one single
COIN is observed, whereas the crossing is avoided otherwise. The topology of the
resulting coupled APESs (for ∆εA 6= 0) is illustrated in Fig. 2.6 along the C2v symmetry
preserving coordinate Q3. As a direct consequence of the lack of a COIN for $ = 0
(Q3 = 0), the energetic ordering of the A1/2 and B1/2 potentials does not change when
changing the sign of Q3. Only at the critical value Qc

1 there will be an inversion of the
situation leading from the topology shown in Fig. 2.6 (a) to the one in Fig. 2.6 (b).

To obtain better agreement between experiment and theory, concerning the (B, B′)
system of Na3, it might be necessary to include higher-order terms in the expansion
of the potential matrix. An expansion up to sixth-order can be found in Ref. [184].
Moreover, considering couplings to the breathing mode Q1, which has been neglected
here, might turn out relevant as well. A proper treatment that includes Q1 couplings
can be found in Ref. [91]. Furthermore, it remains questionable to what extent the
assumption of vanishing linear and quadratic JT coupling parameters remains valid.
This means that one has to properly investigate the parameter ranges for VE

1e and VE
2e

where the JT coupling supersedes the PJT behaviour. Vice versa, the same should be
analyzed for the PJT coupling parameters. A more detailed analysis of this and its
connection to the presence or absence of the Berry phase can be found, e.g., in Refs. [88,
180].
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F igure 2.6. : Schematic illustration in the one-dimensional cross section along the symmetric distortion
coordinate Q3 of the APESs in case of a E−A pseudo Jahn-Teller effect as it emerges, e.g., in Na3 [86].
The labeling of states for Q3 6= 0 correlates to the corresponding IRREPs of the C2v point group
(depending on the choice of axes). In (a) one of the two degenerate (E) states remains unperturbed,
while the nondegenerate state and the remaining degenerate component dominate the interaction
and disperse about their energy minimum. In (b) the situation is inverted, but the interaction is still
dominated by the two A1/2 states and the the B1/2 component remains essentially unaffected.

2.4 Coupling effects for linear triatomics

Electronically degenerate Π states and combined cases of Π– with close-in-energy Σ
states are typical scenarios for linear configurations of homonuclear alkali trimers in
the energy range investigated in this thesis; see Chap. 4. Historically, it has been first
observed by Herzberg and Teller in 1933 [185] that the potential energy curves of linear
triatomic molecules split into two branches upon bending. These bending modes of
linear triatomics are twofold degenerate and are illustrated as

|πx〉 = and
∣∣πy
〉
= . (2.82)

In 1934, Renner [186] gave a theoretical explanation for these findings by including
rovibrational couplings in a perturbative manner to account for the breakdown of
the BO approximation – therefore, the splitting of degenerate electronic states of linear
molecules is jointly called Renner-Teller effect (RTE). In contrast to the JT effects the
breakdown of the BO approximation is here caused by the rotational kinetic energy
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2 From Born-Oppenheimer to Jahn-Teller Theory

operator instead by the vibrational one. The underlying physical interaction is a strong
Coriolis coupling.

Since the advent of this theory, it has been a longterm belief that solely the RTE is
the driving force in producing bending instabilities of linear molecules in degenerate
electronic states. While taking into account the PJTE in understanding bending
instabilities of nondegenerate (Σ) states in, e.g., Ref. [187], was well established, it has
been shown only recently, that also for linear molecules in degenerate states the PJTE
is the only cause of bending instabilities and distortions [163, 182, 188, 189]. Formal
insight is attained by applying the same ansatz as already discussed for the treatment
of JT problems in Sec. 2.3.1. Therefore, consider a high-symmetry linear configuration
in an electronically degenerate Π state with corresponding wavefunctions |Πx〉 and∣∣Πy

〉
and set up the potential matrix in this basis, including vibronic couplings to one

of the twofold degenerate bending modes, cf. Eq. (2.82), described in terms of normal
coordinates Qx and Qy. The inclusion of only up to quadratic terms in the nuclear
displacements and vibronic couplings, yields [163]

WRT =
1
2

K0(Q2
x + Q2

y)σI + F(Qxσz −Qyσx) + g
[
(Q2

x −Q2
y)σz + 2QxQyσx

]
, (2.83)

with the bending primary force constant K0 (i.e. the force constant without vibronic
coupling), the linear vibronic coupling constant F, and the quadratic coupling constant
g, calculated analogously as given in Eqs. (2.46) and (2.48), and the well-known 2× 2
Pauli matrices σi. For a degenerate electronic term F = 0 due to symmetry. Thus,
RT distortions are always quadratic in the bending coordinates. Solving the resulting
secular equation leads to the APESs of the form

E1,2($) =

(
1
2

K0 ± |g|
)

$2 , (2.84)

where, in analogy to Eq. (2.52), cylindrical coordinates Qx = $ cos ϕ and Qy = $ sin ϕ

were used [163, 182]. In Ref. [190] it has been shown that K0 > 0 for any polyatomic
system in a high-symmetry configuration. Thus, it follows that for |g| < K0/2, the two
APES branches of the Π term have different but positive curvatures and the degeneracy
solely splits upon bending distortions as ∆E = |2g|$2. Moreover, the average of the two
levels Eav = (1/2)(E1 + E2) = (1/2)K0$2 is independent of this effect. For |g| > K0/2,
the system would become unstable in the lower branch due to the negative curvature.
However, it has been proven in Ref. [189] that in addition to the previous finding
K0 > 0, in general, for any molecular system with linear geometry, (K0/2− |g|) > 0
has to be fulfilled. This implies that instability induced just by the RTE is not possible or
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F igure 2.7. : Schematic illustration of the essential difference between the “pure” RTE in (a), according
to Eq. (2.84), and the combined RTE plus PJTE in (b), according to Eq. (2.87), in application to linear
systems in a twofold degenerate Π state. The RTE solely leads to a splitting of the degeneracy, with
a softening of the lower curve (and hardening of the upper one). Only in a combined RT plus PJT
treatment a bending instability of the lower curve can be explained. The dashed dark blue curve
indicates a continuation of the lower state when fourth-order terms are added to Eq. (2.87). In both
cases the dashed light blue curves represent the average of the two levels Eav = (1/2)(E1 + E2) (see text
for details).

speaking even more strictly all instabilities and distortions of linear molecules (in degenerate
or nondegenerate states) are due to, and only to the mixing with appropriate excited states in
the pseudo Jahn-Teller effect (PJTE). This situation is illustrated in Fig. 2.7.

The physical reason for this is that the vibronic coupling with an excited state
produces additional covalent bonding that makes the distorted configuration preferable.
In contrast, the RTE has no such influence and the splitting of the degenerate term takes
place just because the charge distribution in the two states becomes nonequivalent
under the bending vibrations [182]. In Ref. [163] it has been demonstrated that simple
(Π + Σ)⊗ π or (Π + Σ + Σ)⊗ π PJT approaches do not fully solve the problem for
the degenerate state and are insufficient for quantitative estimates. This is because not
all effective vibronic coupling interactions are included. Accounting for the PJTE along
with the RTE by including both interactions in the matrix Eq. (2.83) finally solves the
problem and leads to the formulation of the combined RT plus PJT problem. To this
end, the PJT interaction P can be estimated as a second order perturbation correction
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2 From Born-Oppenheimer to Jahn-Teller Theory

to the degenerate term. In the {|Πx〉 ,
∣∣Πy

〉
} basis the matrix elemets are given as

Pxx = −∑
n

| 〈Πx|(∂H/∂Qx)0|n〉 |2
εn − ε0

Q2
x = −pQ2

x ,

Pyy = −pQ2
y , (2.85)

Pxy = −pQxQy ,

where |n〉 are the corresponding excited states with energies εn for which the PJT
vibronic coupling constants 〈Πx|(∂H/∂Qx)0|n〉 = 〈Πy|(∂H/∂Qy)0|n〉 6= 0, and p is
positive. This leads to the modified potential matrix

WRT+PJT =
1
2
(K0 − p)(Q2

x + Q2
y)σI +

(
g− 1

2
p
) [

(Q2
x −Q2

y)σz + 2QxQyσx

]
, (2.86)

and the corresponding secular equation now gives the following form of the APESs [188]

E1,2($) =

[
1
2
(K0 − p)±

∣∣∣∣g−
1
2

p
∣∣∣∣
]

$2 . (2.87)

Apparently, the PJTE, represented by the parameter p, reduces the primary curvature
K0 by p and the RT splitting (represented by the parameter g) by p/2 with ∆E =

|2g− p|$2. The average energy Eav = (1/2)(K0 − p)$2 is only influenced by the PJTE.
This approach does not require any explicit knowledge of excited states or correlating

energy gaps; only ab-initio calculated energies for the degenerate state as a function of
the distortion coordinate $ are needed. If all three constants of Eq. (2.87) were known,
this would provide a quantitative insight into the coupling mechanism. However,
extracting all parameters from least-square fits to ab-initio calculated APESs may be
insufficient. According to a procedure presented in Refs. [163, 188], it is possible to
independently compute g from ab-initio calculations such that K0 and p can be obtained
from fitting.

The reverse in understanding this bending mechanism as combined RT plus PJT
interaction, also leads to better rationalization and prediction of observables as dipole
moments and spectra [189]. Concerning the former, further contributions to permanent
dipole moments are possible with the inclusion of the PJTE. Moreover, the PJTE leads
to a relaxation of selection rules for optical transitions, which may be important for the
identification of the excited states based on spectroscopic observations.

For further reading and more details on coupling effects of polyatomic systems in
linear configurations, it is referred to, e.g., Refs. [161, 163, 182, 188, 189] and references
therein.
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3
Wavefunction Methods in

Electronic Structure Theory

Since the electronic Schrödinger equation (2.3) can only be solved exactly for one-
electron systems, it is inevitable to introduce approximations to describe many-electron
systems. This chapter introduces corresponding ab-initio methods used in this work,
which are all based on different ansätze for the electronic wavefunction. It will be
shown to which extent electron correlation effects are recovered and the concept of
basis sets as building blocks of electronic wavefunctions will be outlined.

3.1 Many-electron wavefunctions

The electronic Hamiltonian in Eq. (2.3) only depends on the spatial coordinates of
the electron. However, electrons are endued with a intrinsic property: their spin.
In a nonrelativistic framwork, this property is introduced ad hoc in terms of two
spin functions α(s) and β(s), corresponding to spin up (|↑〉) and spin down (|↓〉),
respectively [191]. The two spin functions form a complete set and are orthonormal

〈α|α〉 = 〈β|β〉 = 1 and 〈α|β〉 = 〈β|α〉 = 0 . (3.1)

A general one-electron wavefunction can formally be written in terms of spin orbitals,
via

ψα
i (x) = ϕi(r)α(s) or ψ

β
i (x) = ϕi(r)β(s) , (3.2)

where the spatial functions ϕi(r) are simply called (spatial) orbitals. Since the spin- and
spatial functions are assumed to be orthonormal, the relation

〈ψσ
i |ψσ′

j 〉 = δijδσσ′ (3.3)
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holds for the spin orbitals. In order to build a N-electron wavefunction Ψ(x1, . . . ,xN),
one has to regard that the nonrelativstic electronic Hamiltonian in Eq. (2.3) makes
no reference to the spin. Hence, it is not sufficient to simply introduce the spin to
the wavefunction [191]. It is rather necessary to additionally account for the Pauli
exclusion principle, generally stating that for identical fermions the wavefunction must
be antisymmetric with respect to the permutation of any pairs of coordinates. For
identical bosons the wavefunction must be symmetric. Since electrons have half-integer
spin they are fermions and thus the wavefunction must be antisymmetric with respect
to interchanging the coordinates of two electrons, i.e.

Ψ(x1, . . . ,xi, . . . ,xj, . . . ,xN) = −Ψ(x1, . . . ,xj, . . . ,xi, . . . ,xN) . (3.4)

The form of the electronic Hamiltonian in Eq. (2.3) suggests an ansatz in terms of a
linear combination of products of N one-electron functions. In order to further obey
the Pauli principle each orbital product has to be antisymmetrized. A generalization
of these requirements is implemented in a Slater determinant [192], which represents
the simplest N-electron wavefuntion ansatz

Φk`m...r(x1,x2, . . . ,xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣

ψk(x1) ψ`(x1) ψm(x1) · · · ψr(x1)

ψk(x2) ψ`(x2) ψm(x2) · · · ψr(x2)
...

...
... . . . ...

ψk(xN) ψ`(xN) ψm(xN) · · · ψr(xN)

∣∣∣∣∣∣∣∣∣∣

. (3.5)

In this notation, the spin orbitals are labeled by a single index as compared to Eq. (3.2),
with k = {i, σ}. The factor (N!)−1/2 accounts for proper normalization. Individual spin
orbitals are grouped in different columns, while each electron coordinate corresponds
to a different row. The mathematical properties of determinants ensure that the
physically required antisymmetry principle of Eq. (3.4) is fulfilled. Interchanging
two rows (=̂ interchanging the coordinates of two electrons) changes the sign of the
determinant and if there were two identical columns (=̂ two electrons occupying the
same spin orbital) the determinant is zero. A specific selection of an ordered set of N
different spin orbitals, i.e., e.g., k < ` < m < . . . < r is called an electron configuration
and describes a specific distribution of N electrons in these N orbitals [134].

3.2 Hartree-Fock theory

The Hartree-Fock (HF) method was one of the first methods to solve the electronic
Schrödinger equation for a general N-electron problem approximately [193, 194]. It
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relies on the clamped-nuclei approximation and uses a single Slater determinant |Φ0〉 as
an ansatz for the N-electron wavefunction. Consequently, it is computationally efficient
and is nowadays routinely used as starting point for many subsequent methods.

3.2.1 Closed-shell Hartree-Fock equations and the SCF method

Based on the electronic Hamiltonian from Eq. (2.3), with the individual terms accord-
ing to Eq. (2.1) converted to atomic units, the energy of a system in a single Slater
determinant representation, using the Slater-Condon rules, the indistinguishability
of electrons, and the symmetry of the Hamiltonian with respect to permutations of
electrons, becomes [140]

E = 〈Φ0 | Hel |Φ0〉 = ∑
i

hii + ∑
i>j

(Jij − Kij) + Vnn , (3.6)

where the one-electron integrals

hii = 〈ψi|ĥ|ψi〉 = −
1
2
〈ψi(x1)|∇2

1|ψi(x1)〉 −
M

∑
K=1

〈
ψi(x1)

∣∣∣∣
ZK

|r1 −RK|

∣∣∣∣ψi(x1)

〉
(3.7)

represent the kinetic energy of a single electron that moves in the field of all M nuclei.
The two-electron integrals Jij and Kij are defined as

Jij =
〈

ψi(x1)ψj(x2)
∣∣∣ r−1

12

∣∣∣ψi(x1)ψj(x2)
〉

, (3.8a)

Kij =
〈

ψi(x1)ψj(x2)
∣∣∣ r−1

12

∣∣∣ψj(x1)ψi(x2)
〉

, (3.8b)

where the former describes the classical Coulomb repulsion between two one-electron
charge distributions and is therefore also denoted as Coulomb integral. The latter
arises due to the antisymmetry of the wavefunction and is called exchange integral.
The nuclear repulsion energy is denoted by Vnn. This formal notation makes no
assumptions about the form of the spin orbitals ψi. If the number of spin-up electrons
equals the number of spin-down ones and if each spatial orbital is occupied by one
α- and one β-electron, this is called the closed-shell case, with the number of occupied
orbitals Nocc = N/2. The integration over the spin-coordinates in Eq. (3.6) yields the
closed-shell HF energy expression

EHF = 2
Nocc

∑
i=1

hii +
Nocc

∑
i,j

[
2 〈ϕi ϕj|r−1

12 |ϕi ϕj〉 − 〈ϕi ϕj|r−1
12 |ϕj ϕi〉

]
+ Vnn . (3.9)
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The objective of the Hartree-Fock method is to find the set of molecular orbitals
(MOs) such that the energy according to Eq. (3.9) represents a minimum or at least
a stationary point with respect to changes in these orbitals (variation principle). The
following outlines the derivation of the corresponding matrix equations required to
conveniently solve the problem numerically [195, 196].

The optimization of the MOs must be carried out such that the imposed orthonor-
mality constraint 〈ϕi|ϕj〉 = δij is fulfilled at any time. This can be achieved by the
method of Lagrange multipliers, for which the constrained minimization of the energy
becomes equivalent to the unconstraint minimization of the Lagrange functional [140]

minL[ϕ] = min

(
EHF −

Nocc

∑
i,j

λij(〈ϕi|ϕj〉 − δij)

)
, (3.10)

which leads to the set of Hartree-Fock equations that define the optimal orbitals ϕi

f̂ |ϕi〉 =
Nocc

∑
j

λij |ϕj〉 . (3.11)

The Fock operator f̂ is an effective one-electron energy operator describing the motion
of one electron in the field of all nuclei via ĥ as defined by Eq. (3.7), and the repulsion
to all other electrons through Ĵj and K̂j. It is given as

f̂ = ĥ +
Nocc

∑
j
(2 Ĵj − K̂j) . (3.12)

The one-electron character of the Coulomb- and exchange operator in Eq. (3.12), in
contrast to Eq. (3.8), is demonstrated by their definitions

Ĵj =
〈

ϕj(r2)
∣∣∣ r−1

12

∣∣∣ ϕj(r2)
〉
=
∫
|ϕj(r2)|2r−1

12 dr2 , (3.13a)

K̂j =
〈

ϕj(r2)
∣∣∣ r−1

12

∣∣∣ ϕi(r2)
〉
=
∫

ϕ∗j (r2)r−1
12 ϕi(r2) dr2 , (3.13b)

which shows that Ĵj describes the average local Coulomb potential at r1 arising from an
electron in ϕj [191]. The two-electron integrals of Eq. (3.8) represent the corresponding
matrix elements, i.e. Jij = 〈ϕi| Ĵi|ϕi〉 and Kij = 〈ϕi|K̂j|ϕi〉.

The optimal set of orbitals as defined through Eq. (3.11) is not unique, since the
energy expectation value after Eq. (3.6) and the Fock operator according to Eq. (3.12)
are invariant with respect to unitary transformations. This provides a certain degree of
flexibility for the orbitals: they can be mixed by unitary orbital rotations which will
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reflect only in an additional phase factor of the corresponding Slater determinant [191].
In particular, the unitary transformation can be chosen such that the matrix of Lagrange
multipliers in Eq. (3.11), and thus the occupied part of the Fock operator, becomes
diagonal i.e. λij = εiδij, yielding the canonical form of the Hartree-Fock equations

f̂ |ϕ′i〉 = εi |ϕ′i〉 , (3.14)

with the corresponding MOs |ϕ′i〉 commonly denoted as canonical (occupied) MOs. In
the basis of canonical MOs the diagonal Lagrange mutlipliers εi can be interpreted
as MO energies. With that, the Hartree-Fock energy expression after Eq. (3.9) can be
rewritten as

EHF = 2
Nocc

∑
i=1

εi −
Nocc

∑
i,j

[
2Jij − Kij

]
+ Vnn , (3.15)

which shows that the electronic energy does not equal the sum of MO energies. The
factor 2 arises because in the closed-shell case each MO is occupied twice.

The MO energy as defined by the Fock operator after Eqs. (3.12) and (3.13) contains
the interaction of an electron moving in the average field of all other electrons. The
electron-electron repulsion is thus only accounted for in an average fashion. This
lives on in the total Hartree-Fock energy as given in Eq. (3.15) and explains why this
cannot be exact. Therefore, the Hartee-Fock method is also referred to as a mean-field
approximation. These consequences are due to the approximation of a single Slater
determinant as the trial wavefunction.

The Hartree-Fock equations form a set of integro-differential equations, which is also
referred to as pseudo-eigenvalue problem, since the Fock operator depends, through Ĵ
and K̂, on the solutions {ϕi}. This nonlinear structure requires iterative procedures to
obtain solutions. To this end, a basis set must be introduced to represent the unknown
MOs in terms of known basis functions. In the quantum chemistry context, the LCAO
approximation is used: the linear combination of atomic orbitals (AOs) [140]. Here, the
orthogonal MOs |i〉 ≡ |ϕi(r)〉 are expanded in terms of a set of NAO non-orthogonal
AOs |µ〉 ≡ |χµ(r)〉, via

|i〉 =
NAO

∑
µ=1

Cµi |µ〉 , (3.16)

where the expansion coefficients Cµi are called MO coefficients. Since NAO is always
finite, the LCAO approximation of the resulting MO basis is not complete. However,
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by increasing the number of AO functions, the accuracy of the LCAO ansatz can be
driven to, in principle, any desired accuracy (for more details see Sec. 3.5). As MOs
are assumed to be orthonormal it follows

〈i|j〉 = ∑
µ,ν

Cµi 〈µ|ν〉Cνj =
[
C†SC

]
ij
= δij , (3.17)

with the AO overlap matrix Sµν = 〈µ|ν〉.
By inserting the LCAO ansatz (3.16) into the Hartree-Fock equations (3.14) and

projecting onto a specific AO, yields

NAO

∑
ν=1

〈
µ
∣∣∣ f̂
∣∣∣ ν
〉

︸ ︷︷ ︸
Fµν

Cνi = ∑
ν=1
〈µ|ν〉︸ ︷︷ ︸

Sµν

Cνiεi , (3.18)

or equivalently in matrix notation

FC = SCε . (3.19)

These are the Roothaan-Hall equations, which are nothing but the Hartree-Fock equations
in the AO basis [195, 196]. Here, F is the Fock matrix in AO basis, S the overlap
matrix, C the coefficient matrix and ε the diagonal matrix with orbital energies εi. The
Fock matrix in the AO basis, using Eqs. (3.8), (3.12) and (3.16), becomes

Fµν = Hµν + Gµν , (3.20a)

= Hµν + ∑
γδ

Dγδ

[
(µν|γδ)− 1

2
(µγ|δν)

]
, (3.20b)

with the one-electron Hamiltonian Hµν in AO basis and the electron interaction matrix
Gµν defined in Mulliken notation and in dependence of the density matrix Dγδ. The
latter is given by

Dµν = 2
Nocc

∑
i=1

CµiCνi = 2
[
CoC

†
o

]
µν

, (3.21)

where the subscript “o” denotes the NAO× Nocc coefficient matrix describing occupied
MOs. The density matrix is related to the charge density $(r) through [191]

$(r) = 2
Nocc

∑
i=1
|ϕi(r)|2 = ∑

µν

Dµνχµ(r)χν(r) . (3.22)
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With these quantities we can also rewrite the closed-shell Hartree-Fock energy expres-
sion in matrix form, which is nothing but Eq. (3.9) in the AO basis

EHF = tr
[
D ·

(
H +

1
2
G

)]
+ Vnn . (3.23)

Due to the transformation from the MO- to the AO basis, all relevant equations are
now given in matrix form as required for an efficient implementation as a computer
program. The Roothaan-Hall equations are still, due to the dependence of the Fock
matrix on the MO coefficients, as seen from Eqs. (3.20) and (3.21), nonlinear and require
an iterative procedure to be solved. This procedure starts off with an initial guess
for the density matrix D or, according to Eq. (3.22), guessing a charge density. This
is then used to compute the Fock matrix according to Eq. (3.20), where for a given
basis set the one-electron Hamiltonian and the two-electron integrals are constants
and are thus predetermined. Subsequent diagonalization of the Fock matrix yields,
according to Eq. (3.19), a new set of optimized MO coefficients C. This step usually
requires to first transform the Fock matrix and thus the Roothaan-Hall equations to
an orthogonal basis to solve the eigenvalue problem there and then transform back to
the original basis [191]. With the new set C, a new density and thus Fock matrix is
calculated. This procedure is continued until the coefficients used for constructing the
Fock matrix equal those resulting from its diagonalization [140]. If the MO coefficients
do not change so neither does the density matrix. Therewith, the field that would be
calculated from the charge density of Eq. (3.22) is consistent (identical) with the field
that produced a particular charge density by solving the Hartree-Fock equations. This
is why this procedure is commonly called self-consistent-field (SCF) method.

The Roothaan-Hall equations invoke NAO MOs while the Fock matrix resulting
from Eq. (3.12) a priori only depends on Nocc occupied MOs. The corresponding N
spin orbitals form the variational Hartree-Fock ground state wavefunction |Φ0〉. The
remaining Nvirt = NAO − Nocc orbitals are called virtual MOs and are orthogonal to
all the occupied ones. The SCF method involves a number of crucial technical details,
such as the Brillouin conditions, resulting from the existence of virtual orbitals, used as
convergence criterion. A more comprehensive review can be found, e.g., in Refs. [140,
191].

3.2.2 Open-Shell Hartree-Fock theory

The previous discussion assumed that the spin orbitals are represented by Eq. (3.2),
where each spatial orbital is doubly occupied by two electrons with antiparallel spin.
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3 Wavefunction Methods in Electronic Structure Theory

This clearly introduces a restriction to the spatial orbitals and the corresponding
Hartree-Fock method, which is usually used for closed-shell systems, is therefore
denoted as restricted Hartree-Fock (RHF). However, this restriction is not mandatory and
especially for open-shell systems it is important to consider all possibilities on how
to describe the spatial part. In the following high-spin coupled systems, in which all
open-shell orbitals are occupied by one α-spin electron (e.g. quartets) are considered.
These are the only cases for which a single reference wavefunction ansatz provides a
sufficient zeroth-order description. For low-spin coupled species, two or even more
determinants were required, which will be discussed in Sec. 3.4.

Lifting the restriction that the spatial orbitals are of the same form for both α- and
β-spin functions leads to the unrestricted Hartree-Fock (UHF) method. Here, the spin
orbitals are defined as

ψα
i (x) = ϕα

i (r)α(s) and ψ
β
i (x) = ϕ

β
i (r)β(s) , (3.24)

with in general (but not always) different spatial orbitals ϕα
i (r) and ϕ

β
i (r). Maintaining

the restriction according Eq. (3.2) for open-shell systems leads to the restricted open-
shell Hartree-Fock (ROHF) approach. An important consequence of the two different
choices is that only the RHF- and ROHF wavefunctions are eigenfunctions of the
total N-electron spin operators Ŝ2 and Ŝz. UHF wavefunctions are in general not
eigenfunctions of Ŝ2, but still of Ŝz, and are thus called spin contaminated or spin-
symmetry broken. In this case spin states of different multiplicities are admixed [140,
191]. The derivation of the UHF and ROHF equations is beyond the scope of this thesis,
see, e.g., Refs. [140, 191, 197, 198] for more details.

3.2.3 Electron correlation effects

The single Slater determinant ansatz, on which the Hartree-Fock method is based,
is merely an approximation and results in a mean-field description of the electron
movement. The corresponding energy is, due to the underlying variation principle,
always an upper bound to the exact energy. It is therefore convenient to introduce the
correlation energy

Ecorr = Eexact − EHF , (3.25)

as a quantity measuring the lacking physics in the Hartree-Fock approach. The term
“exact” refers to the solution of the non-relativistic Schrödinger equation as defined in
Eq. (2.3) with full correlation and a complete basis set. The correlated movement of
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3.2 Hartree-Fock theory

electrons can be categorized by Fermi correlation and Coulomb correlation. The former is
connected with the Pauli principle according to which the probability of finding two
electrons with the same spin at the same position must vanish. This is also connected
with the Fermi hole surrounding a given electron. This is already accounted for in
the Hartree-Fock theory through the exchange operator K̂i and through the inherent
antisymmetry of a Slater determinant. However, also electrons with opposite spins
tend to avoid each other, which is not accounted for in the Hartree-Fock theory leaving
them effectively uncorrelated due to the underlying mean-field character. This evasive
motion of electrons is due their repulsive Coulomb interaction through which they
interact instantaneously. The correlation energy according to Eq. (3.25) thus refers to
Coulomb correlation. Hence, it is at the heart of any theoretical model of quantum
chemistry to recover as much of this simultaneous pairwise interactions as possible.
The corresponding methods are often called post-Hartree-Fock approaches.

Mathematically, the physical observation of evasive motion can be understood by
inspecting the form of the Hamiltonian in Eq. (2.3) for the He atom in its ground state.
Here, the electron-electron Coulomb interaction ∝ r−1

12 diverges when their positions
coincide [199, 200]. As the stationary Schrödinger equation still needs to be fulfilled,
a second infinity with opposite sign is required. This can only be introduced via the
kinetic energy operator. Divergent second derivatives occur if there are discontinuities
in the first derivative that reflect in a cusp in the electronic wavefunction for r12 → 0.
This is schematically illustrated in Fig. 3.1.

For any atomic or molecular system there is a decreased probability for finding two
electrons at the same position due to the Coulomb interaction, which is referred to as
Coulomb hole. Consequently, certain cusp conditions for the wavefunction have to be
fulfilled in general.

By further subdividing into dynamic correlation and static correlation, it is accounted
for the fact that the Coulomb correlation varies significantly with the bond length. Dy-
namic correlation effects are present over the whole range of internuclear distances. In
the short-range region it is mainly characterized by the Coulomb hole. At intermediate
distances, the position of one electron defines the probability of finding other electrons
at other positions. In the long-range region dynamic correlation gives rise to dispersion
interactions. Dynamic correlation effects can be accounted for by including more
Slater determinants into the wavefunction ansatz. These are generated by performing
virtual excitations from the Hartree-Fock determinant [199]. This procedure leads to
accurate results whenever the Hartree-Fock solution provides a sufficient zeroth-order
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F igure 3.1. : Qualitative probability density for the exact helium ground state wavefunction. The
probability for finding two electrons with opposite spin at the same position, i.e. r12 → 0 decreases
due to their repulsive Coulomb interaction (Coulomb hole). The cusp in the electronic wavefunction
results from the singularity of the Coulomb potential for r12 = 0 (see text). Hartree-Fock theory merely
accounts for Coulomb interaction in an averaged fashion leaving the electrons uncorrelated.

description and are thus denoted single-reference correlation methods.

Whenever a single Slater determinant does not provide a good description of the
system these methods fail. Such situations, referred to as static correlation, arise if
a system has several (nearly) degenerate orbitals but less electrons than necessary
to fill these orbitals. Typical examples, related to this thesis, are homonuclear alkali-
metal triatomics in their doublet ground states as schematically illustrated in the
schematic representation in Fig. 3.2. In this case, two or more energetically equivalent
(near-degenerate) determinants have to be included to obtain a sufficient zeroth-order
wavefunction. Corresponding methods are thus denoted as multireference correlation
methods.

3.3 Single-reference correlation methods

Accounting for dynamic correlation effects requires a more flexible ansatz for the trial
wavefunction compared to the single Slater determinant approach. Whenever the
Hartree-Fock reference provides a sufficient zeroth-order description, this flexibility is
obtained by performing virtual excitations from it. This section introduces two of such
single-reference correlation methods.
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E

degenerate orbitals

F igure 3.2. : Schematic representation of the MO structure of a alkali-metal trimer (e.g. K3 or Rb3)
in their doublet ground state configuration. There are two energetically degenerate MOs which the
third electron can occupy thus representing a case with static correlation. A multireference correlation
approach is required.

3.3.1 Configuration Interaction

The Roothaan-Hall equations (3.19) of Sec. 3.2.1 were derived using NAO atomic basis
functions and thus their solution yields the same number of MOs. However, only the
energetically lowest Nocc occupied orbitals were used to build the resulting HF ground
state determinant |Φ0〉. The remaining Nvirt = NAO − Nocc virtual MOs (=̂2NAO − N
virtual spin orbitals) can be used to construct excited Slater determinants. Starting
from the HF reference determinant by replacing one occupied orbital i with a virtual
orbital a, leads to a singly excited determinant |Φa

i 〉. Running over all pairs of occupied
and virtual orbitals results in the manifold of all possible single excitations. The
same procedure can be applied to produce doubly, triply, etc. excited determinants
until all N electrons are distributed in all possible ways in the virtual subspace.
These determinants can be used as a basis in which to expand the exact N-electron
wavefunction, which provides enough flexibility to keep electrons apart. This results
in the configuration interaction (CI) ansatz [191]

|ΨFCI〉 = c0 |Φ0〉+
(

1
1!

)2

∑
i,a

ca
i |Φa

i 〉+
(

1
2!

)2

∑
ij,ab

cab
ij |Φab

ij 〉+ · · · = ∑
I

cI |ΦI〉 , (3.26)

with intermediate normalization 〈Φ0|ΨCI〉 = 1. The corresponding energies and
(generalized) expansion coefficients cI are determined variationally, which transforms
into solving the secular equation

∑
J
〈ΦI |Hel|ΦJ〉 cJ = cIECI , (3.27)
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which is equivalent to diagonalizing the electronic Hamiltonian in the basis {|ΦI〉}. The
electronic ground state corresponds to the lowest eigenvalue and the n-th eigenvalue
to the n-th state.

The {|ΦI〉} basis spans a complete space of all allowed N-electron wavefunctions. If
NAO → ∞, the wavefunction in Eq. (3.26) would represent the formally exact solution
of the nonrelativistic electronic Schrödinger equation. Although, NAO is always finite
Eq. (3.26) still provides the best possible solution within the subspace spanned by these
basis functions. It is called the full configuration interaction (FCI) wavefunction. The
total number of n-tuply excited determinants that can be build from N occupied and
2NAO − N virtual spin orbitals is determined by [191]

#det(n) =

(
N
n

)(
2NAO − N

n

)
. (3.28)

In total this amounts to
(

2NAO
N

)
different N-electron Slater determinants which is,

even for small molecules in small basis sets, of the order 109. By exploiting the fact
that there is no mixing between wave functions with different spin (provided, e.g.
spin-orbit coupling is neglected in the Hamiltonian), the number of determinants can
be reduced significantly, i.e. keep only those which are eigenfunctions of Ŝz with the
same eigenvalue. In practice one further takes appropriate linear combinations of
the remaining determinants such that they are eigenfunctions of Ŝ2. They are called
configuration state functions (CSFs). Nevertheless, the factorial growth of the number of
determinants limits the application of FCI to small molecules with moderate basis set
sizes. Thus, it is necessary to truncate the FCI expansion in Eq. (3.26).

The electronic Hamiltonian describes at most pairwise interactions, therefore twofold
excitations should recover most of the physics of correlated electron movement. This
defines the CISD method, which only contains the first three terms of Eq. (3.26).
However, truncated CI methods are in general no longer size extensive, while FCI is.
This means, given a molecule XY it is no longer possible to write the total wavefunction
as a product of the separated fragments [201], i.e.

ΨXY
CISD 6= AΨX

CISDΨY
CISD , (3.29)

where the operator A accounts for proper antisymmetrization. Therewith, the energy
of the supersystem of two infinitly separated molecules X and Y cannot be compared
with the sum of both fragements treated separately

EXY
CISD 6= EX

CISD + EY
CISD . (3.30)
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This constitutes a severe problem since experimentally meassured energies are relative
energies. Thus, truncated CI methods are nowadays barely used.

3.3.2 Coupled-Cluster theory

The aforementioned problem of size extensivity is resolved by the coupled-cluster
wavefunction ansatz. In the following, the fundamental equations are derived and
several standard approximations within this theoretical framework are outlined. This
leads to methods which are computationally feasible and produce accurate results. In
this discussion, the indices i, j, k, . . . shall refer to occupied, a, b, c, . . . to virtual and
p, q, r, . . . to any kind of orbitals.

A glimpse on second quantization

Coupled-cluster theory is most efficiently formulated within the formalism of second
quantization in which the physics is directly encoded in the inherent algebra. Slater
determinants are represented through occupation number vectors (ONVs), which
represent the mathematical stage: the Fock space. In ONVs, spin orbitals, as building
blocks of Slater determinants, are transformed to a binary encoding, where the occupa-
tion numbers “1” denote an occupied spin orbital and “0” an unoccupied one. A HF
calculation yields a set of {ψi} occupied spin-orbitals building the HF ground state
wavefunction |Φ0〉. The corresponding ONV representation becomes

|Φ0〉 = |ψiψjψk · · ·〉 ≡ |1, 1, 1, · · ·〉 . (3.31)

Excited determinants are generated from this HF reference determinant by applying
fermionic creation and annihilation operators. For instance, a singly excited determi-
nant is defined as

|Φa
i 〉 = a†

aai |Φ0〉 , (3.32)

where an occupied orbital ψi(1 → 0) is replaced by a virtual one ψa(0 → 1). The
creation and annihilation operators fulfill the following anti-commutation rules

[
a†

p, a†
q

]
+
=
[
ap, aq

]
+
= 0 and

[
ap, a†

q

]
+
=
[

a†
q , ap

]
+
= δpq , (3.33)

which ensure that the Pauli principle is fulfilled [202]. They may be also used to express
the electronic Hamiltonian in second quantization which, neglecting the constant nuclei
repulsion term Vnn, becomes [27, 201]

Ĥel = ∑
pq
〈ψp|ĥ|ψq〉 a†

paq +
1
4 ∑

pqrs
〈ψpψq||ψrψs〉 a†

pa†
qasar , (3.34)
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with the one-electron integrals 〈ψp|ĥ|ψq〉 and the antisymmetrized two-electron inte-
grals 〈ψpψq||ψrψs〉 ≡ 〈ψpψq|r−1

12 |ψrψs〉 − 〈ψpψq|r−1
12 |ψsψr〉.

The subsequent derivation of the coupled-cluster working equations shows that they
involve evaluating matrix elements and expectation values. This is simplified by intro-
ducing the concept of normal ordering and Wick’s theorem [203], which is explained
in more detail in the appendix B. Here suffice it to say that normal ordering provides a
systematic way of bookkeeping for nonzero contributions and Wick’s theorem implies
that for expectation values only fully contracted terms give nonvanishing contribu-
tions [201]. Moreover, Wick’s theorem allows to cast the second-quantized electronic
Hamiltonian after Eq. (3.34) into the normal-ordered form (subscripts “N”) [27]

Ĥel = E0 + ∑
pq

f q
p{a†

paq}+
1
4 ∑

pqrs
grs

pq{a†
pa†

qasar} , (3.35a)

= E0 + f̂N + ŴN , (3.35b)

with the HF reference energy E0 = 〈Φ0|Ĥel|Φ0〉, the one-particle operator f̂N, given
in terms of the Fock matrix elements f q

p according to Eq. (3.12), and the two-particle
operator ŴN with the antisymmetrized integrals grs

pq = 〈ψpψq||ψrψs〉. In the literature
it is also convenient to introduce a correlation Hamiltonian as ĤN = Ĥ − E0 [201].

Coupled-cluster ansatz and fundamental equations

To overcome the size extensivity issue resulting from a truncated CI wavefunction after
Eq. (3.26), an ansatz for which the product wavefunction recovers the original form is
required. This suggests an exponential function acting on the Hartree-Fock reference
|Φ0〉 and leads to the coupled-cluster ansatz [204, 205]

|ΨCC〉 = eT̂ |Φ0〉 =
∞

∑
k=0

1
k!

T̂k |Φ0〉 . (3.36)

For a system of N electrons, the cluster operator T̂, generates all kinds of singly, doubly,
triply, etc. up to N-fold excited determinants and is defined via

T̂ =
N

∑
n=1

T̂n . (3.37)

The n-fold excitation operators T̂n obey the definition

T̂n =

(
1
n!

)2 n

∑
ij...ab...

tab...
ij... {a†

aa†
b · · · ajai · · · } , (3.38)
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where the coefficients tab...
ij... are called the cluster amplitudes, and normal ordering of the

creation and annihilation operators is assumed [206]. By including all operators up to
T̂N, the coupled-cluster and the FCI ansatz according to Eq. (3.26) are equivalent and
will produce the same wavefunction. However, due to the exponential parametrization
in the CC theory, excitations are introduced in a different manner compared to the
linear FCI ansatz. For double excitations, the following relationship between CI and
CC may be established

Ĉ2 = T̂2 +
1
2

T̂2
1 . (3.39)

This shows that in CC theory, double excitations enter through connected terms (T̂2),
describing real two-electron correlations, and disconnected terms (T̂2

1 ) describing simul-
taneous single excitations [201]. In general, connected T̂n operators may be interpreted
as accounting for true n-electron correlation effects.

When considering two infinitely separated systems X and Y, the structure of the
coupled-cluster ansatz defines a total cluster operator as T̂ = T̂X + T̂Y and the total
wavefunction according to

|ΨXY
CC〉 = eT̂ |ΦXY

0 〉 = eT̂X
eT̂Y |ΦXY

0 〉 = A |ΨX
CC〉 |ΨY

CC〉 , (3.40)

ensuring thus the separability of the wavefunction and consequently also the size-
consistency criterion for the energy: EXY

CC = EX
CC + EY

CC [201].
The CC equations to determine the energy and the cluster amplitudes follow from

the stationary Schrödinger equation, with the normal-ordered Hamiltonian (omitting
the subscript “el”) according to Eq. (3.35) and the CC ansatz (3.36). The multiplication
from the left by e−T̂ and subsequently project onto either the reference or onto excited
determinants, yields

〈Φ0|e−T̂ ĤeT̂|Φ0〉 = 〈Φ0|H̄|Φ0〉 = E , (3.41a)

〈ΦI |e−T̂ ĤeT̂|Φ0〉 = 〈ΦI | H̄ |Φ0〉 = 0 , (3.41b)

using intermediate normalization 〈Φ0|ΨCC〉 = 1. In Eq. (3.41), the similarity transformed
Hamiltonian H̄ has been introduced, which is evaluated from the Baker-Campbell-
Hausdorff (BCH) expansion

H̄ = Ĥ +
[
Ĥ, T̂

]
+

1
2!
[[

Ĥ, T̂
]

T̂
]
+

1
3!
[[[

Ĥ, T̂
]

T̂
]

T̂
]
+

1
4!
[[[[

Ĥ, T̂
]

T̂
]

T̂
]

T̂
]

. (3.42)

As follows from Wick’s theorem, the termination after fourfold commutators is exact,
since the electronic Hamiltonian contains no more than two-electron operators giving
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rise to at most four contractions [27]. All higher order terms would only contain com-
mutators with the cluster operators which commute and thus vanish. The projection
technique in combination with the BCH expansion lead to decoupled amplitude and
energy equations which, due to Eq. (3.42), assume finite expressions. The general CC
energy may be derived using the BCH expansion and Wick’s theorem from which it
follows that only fully contracted terms contribute [201]

ECC = E0 + ∑
ia

f a
i ta

i +
1
4 ∑

ijab
gab

ij tab
ij +

1
2 ∑

ijab
gab

ij ta
i tb

j

︸ ︷︷ ︸
Ecorr

. (3.43)

The CC correlation energy is thus fully determined by singles and doubles amplitudes,
but higher excitation operators contribute indirectly through the corresponding ta

i and
tab
ij amplitude equations.

The projection technique comes with one drawback: the similiarity transformed
Hamiltonian H̄ is no longer hermitian and with that the CC energy cannot be deter-
mined variationally and will thus not be an upper bound to the exact energy [201].

Approximations

The inclusion of all excitation operators up to T̂N is, as already stated for the FCI
approach, a computationally unsolvable problem for all but very small systems [140].
In practice, the cluster operator after Eq. (3.37) needs to be truncated at a reasonable
rank. Thus, neither the derived amplitudes nor the corresponding correlation energy
and wavefunction are exact. Including only singles and doubles excitations, i.e. T̂ =

T̂1 + T̂2, defines the CCSD method [207–210] where the amplitudes are obtained
by projecting onto the manifold of singly and doubly excited determinants 〈ΦI | ∈
{〈Φa

i | , 〈Φab
ij |} in Eq. (3.41). The computational scaling of CCSD is O(N2

occN4
virt) ∝

O(N6
AO) [27]. The next higher level, T̂ = T̂1 + T̂2 + T̂3, defines the CCSDT method [34–

37], which scales as O(N3
occN5

virt) ∝ O(N8
AO). By including also connected fourfold

excitations in T̂, gives the CCSDTQ model [42–45] with a scaling of O(N4
occN6

virt) ∝
O(N10

AO). Nowadays, there are also codes available that can in principle generate any
kind of excitation rank which are referred to as general CC models [46–48]. However,
the scaling behavior shows that higher excitations are only feasible, if at all, for very
small systems rendering the CCSD method to the only generally applicable one.

It has been shown that to produce accurate results often higher excitations, in
particular triples, are required [29]. This led to the development of methods that
include effects of higher excitations approximately. The proposed methods are either
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classified as iterative or non-iterative approaches. For approximations to CCSDT both
approaches reduce the computational costs from O(N8

AO) to O(N7
AO).

Within the first category Bartlett et al. suggested a class of methods, which treat
triples excitations perturbatively, but include them systematically into the solution
of the amplitude equations: the CCSDT-n methods, with n = 1b, 2, 3, 4 [211–215].
In all those approaches, the singles and doubles residuals are identical to those of
the full CCSDT method. Hence, the CCSDT-n methods only differ in the way the
triples residuals are treated. Here further terms are subsequently included but any
N8

AO-scaling contributions are avoided. For the n = 1-3 methods the only contribution
from the T̂3 operator in the triple excitation residual appears via 〈Φ0|T̂†

3 f̂N T̂3|Φ0〉
defining an equation for determining the corresponding triples amplitudes tabc

ijk . This
provides an iterative procedure where the triples amplitudes are first computed “on
the fly” immediately followed by calculating the resulting contribution of T̂3 in the
projection onto the singles and doubles subspaces. The CCSDT-4 method partially
includes N8

AO terms via the full term 〈ΦI3 |[Ĥ, T̂3]|Φ0〉 and is thus almost as expensive
as CCSDT.

In non-iterative approaches, converged singles and doubles amplitudes from CCSD
computations are used to perturbatively formulate energy corrections due to triples
excitations. This leads to the CCSD(T) method which is, due to its great success in
producing accurate results for many different chemical problems with only O(N7

AO)

computational scaling, often referred to as the “gold standard” of quantum chem-
istry [33]. A rigorous derivation of the corresponding equations can be found, e.g., in
Refs. [28–32, 201], while the main aspects are outlined in the following.

A perturbative treatment of coupled-cluster theory starts with partioning the normal-
ordered Hamiltonian from Eq. (3.35) by defining E0 + f̂N as zeroth-order contribution
and considering ŴN as a perturbation

Ĥ = Ĥ(0) + λĤ(1) , (3.44)

where λ ∈ [0, 1] is a switching parameter. This also requires perturbed wavefunctions
and suggests to decompose the cluster operators by orders of perturbation theory

T̂n = T̂(1)
n + T̂(2)

n + T̂(3)
n + · · · . (3.45)

Moreover, Eqs. (3.44) and (3.45) lead to an expansion of the similiarity transformed
Hamiltonian after Eq. (3.42) in orders of perturbation theory and thus, after Eq. (3.41),
also of the energies

H̄ = H̄(0) + H̄(1) + H̄(2) + · · · , (3.46a)
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E = E(0) + E(1) + E(2) + · · · . (3.46b)

Alternatively, one may cast the CC equations (3.41) into a Lagrange functional and
require its stationarity with respect to variations of the cluster amplitudes. In both
approaches Wick’s theorem is used to derive the corresponding equations for each
perturbation order. With this kind of analysis it was shown that CCSD is complete
through third order and already contains higher-order contributions through dis-
connected terms [201]. The triples excitation operator T̂3 first enters at fourth order
perturbation theory defining an corresponding fourth order energy increment to ECCSD.
By assuming canonical orbitals, this energy expression is derived to

E(4)
(T) = 〈Φ0|T̂†

2 ŴN T̂3|Φ0〉 = −
〈

Φ0

∣∣∣ T̂†
3 f̂N T̂3

∣∣∣Φ0

〉
= − 1

36 ∑
ijk

∑
abc

(
tabc
ijk

)2
Dabc

ijk , (3.47)

where Dabc
ijk = εa + εb + εc − εi − ε j − εk is the sum of orbital energies that equal the

diagonal Fock matrix elements. The triples amplitudes in Eq. (3.47) are determined
from the following perturbative expression

tabc
ijk = −

〈Φabc
ijk |[ŴN, T̂2,CCSD]|Φ0〉

εa + εb + εc − εi − ε j − εk
= −
P(a|bc)P(i|jk)

(
∑d gid

abtjk
dc −∑` gij

a`t
`k
bc

)

εa + εb + εc − εi − ε j − εk
, (3.48)

where T̂2,CCSD denotes that amplitudes from converged CCSD computations are used.
The permutation operators generate the indices P(a|bc) = 1− (bac)− (cba), analo-
gously for P(i|jk), respectively, thus symmetrizing the expression [32]. The last term in
Eq. (3.48) is obtained from applying Wick’s theorem. Counting the indices in Eq. (3.48),
explains why the computational cost is O(N7

AO) with explicit contributions from occu-
pied and virtual subspaces according to O(N3

occN4
virt). Adding E(4)

(T) on top of ECCSD

defines the CCSD[T] method, which was originally referred to as CCSD+T(CCSD) [28].
For certain cases, see, e.g., Ref. [216], it was shown that CCSD[T] tends to overes-

timates the triples effect. It turned out that to properly balance the contribution of
singles and doubles excitations to the triples correction an additional term has to be
included. To this end, the fifth-order term

E(5)
(T) = 〈Φ0|T̂†

1 ŴN T̂3|Φ0〉 =
1
4 ∑

ijk
∑
abc

gbc
jk tabc

ijk ta
i (3.49)

was found to properly account for this balance [29–32]. This defines the CCSD(T)
method as

ECCSD(T) = ECCSD + E(4)
(T) + E(5)

(T) . (3.50)
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For both CCSD[T] and CCSD(T) there is no need for storing the approximated triples
amplitudes. The correction and thus the non-iterative step is carried out after the
preceeding CCSD calculation has converged.

Perturbative corrections are not only restricted to triples excitations but can be
extended, for instance, by including quadruples excitations perturbatively using con-
verged CCSDT amplitudes, which yields the CCSDT[Q] and CCSDT(Q) methods with
O(N9

AO) scaling [38–41].

A remark on spin factorization and open-shell CC theory

The previous discussion implicitly used spin-orbitals for the definition of determinants
and integrals without further referring to the exact form of the reference wavefunction
(RHF, UHF or ROHF). In general any set of orbitals may be used assigning α and β

spin functions to each occupied and virtual orbital. Thus, the corresponding integrals
and operators, and as such also the coupled-cluster energy and amplitude equations,
factor into their spin-dependent components. Due to the underlying spin-symmetry,
many of them will be zero after subsequent spin integration [201].

For open-shell systems, the situation becomes more challenging. It requires more
computational effort and the formulation of a spin-adapted theory is less trivial
compared to closed-shell cases. Nowadays, several approaches exist that tackle these
problems: spin-unrestricted (UCCSD) and partially spin-restricted (RCCSD) coupled-
cluster theories also including (T) corrections, see Refs. [32, 217, 218] and references
therein.

3.4 Multireference correlation methods

As indicated in Sec. 3.2.3 by the doublet ground states of alkali-metal triatomics, in the
case of static correlation there are two or more (nearly) degenerate determinants, which
show large weights in the FCI expansion of Eq. (3.26). Thus, a HF reference does not
provide a sufficient zeroth-order description of the system. A proper reference must
include all determinants that may assume a significant weight. The two multireference
methods used for calculations in this work will be discussed below.
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3.4.1 The multiconfiguration self-consistent field method

The multiconfiguration self-consistent field (MCSCF) approach can be viewed as an
analogue to HF with the key task of generating appropriate orbitals for multireference
systems. The corresponding wavefunction ansatz is based on the CI approach of
Eq. (3.26) but contains only a selected subset A0 of configurations considered as
important to obtain a sufficient zeroth-order description of the main characteristics of
the system. The ansatz for state n becomes [51, 219–221]

|Ψ(n)
MCSCF〉 = ∑

I∈A0

c(n)I |ΦI〉 , with ∑
I

(
c(n)I

)2
= 1 and 〈ΦI |ΦJ〉 = δI J , (3.51)

where |ΦI〉 is either a Slater determinant or a CSF and c(n)I are the CI coefficients.
The basic task of the MCSCF method is related to the CI problem but requires to
optimize both the CI coefficients and the MOs {ϕi}, from which the configurations
ΦI are constructed. This is achieved variationally subject to the constraints defined in
Eq. (3.51) [222].

The choice of A0 in Eq. (3.51) is a non-trivial problem, since there is no rigorous
mathematical criterion that determines all relevant determinants that have to be con-
sidered. A common approach is the complete active space (CAS) concept for which
A0 is referred to as active space and the method is denoted complete active space
self-consistent field (CASSCF). In this, the MO space is divided into inactive orbitals,
which are doubly occupied in all configurations, active orbitas being partially occupied
and virtual orbitals are unoccupied in all configurations. The CAS ansatz generates
all possible configurations resulting from distributing nε electrons over m active or-
bitals, which is then denoted as CAS(nε, m). This is illustrated in Fig. 3.3. A CAS
wavefunction represents a FCI expansion constrained to the subspace spanned by the
active orbitals [50]. This leads to an factorial increase of the CAS with the number of
active orbitals. Typically, the active orbitals will comprise some of the highest occupied
and lowest unoccupied MOs. In general, the selection of which orbitals to include
in the active space is still done manually and requires a certain degree of expertise.
Reference [140] lists a few rules of thumb that may be helpful. A route toward an
automated construction of the active space is described by the AVAS (Automated
construction of atomic Valence Active Spaces) technique in Ref. [223].

Due to its formal analogy to the CI problem, the energy expression for state n is
given as

En = ∑
I J

c(n)I 〈ΦI |Ĥ|ΦJ〉 c(n)J , (3.52)
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inactive

active

virtual

c1 + c2 + c3 + · · ·

F igure 3.3. : Schematic representation of the complete active space (CAS) concept. It describes the
distribution of nε electrons over m active orbitals and the corresponding CAS wavefunction includes all
possible configurations (either CSFs or Slater determinants) resulting from this scheme [CAS(nε, m)].

which shall be optimized with respect to both the CI coefficients and the MOs. To this
end, many efficient solutions exist, see, e.g., Ref. [49] for a comprehensive review. The
basic ideas underlying the MCSCF implementation in Molpro [224, 225] are outlined
in the following. The fundamental ideas dating back to some pioneering work of
Werner, Meyer and Knowles and therefore the optimization procedure is referred to as
the WMK method, which is a second-order algorithm [219, 220, 222, 226].

The orbital optimization is expressed via orbital rotations with an orthogonal trans-
formation U [221]

|ϕ̃i〉 = ∑
r
|ϕr〉Uri , (3.53)

where the indices r, s, . . . refer to any orbital (inactive + active + virtual), while i, j, . . .
denote internal indices (inactive + active). The U matrix is parametrized as proposed
by Werner and Meyer [222, 226] via

U = eR = 1+R+
1
2
R2 + · · · ≡ 1+ T , (3.54)

leading to improved convergence as compared to using an expansion in R. The
antisymmetric matrix R = −R† contains the independent orbital rotation parameters.
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Working with Eq. (3.52) after inserting Eq. (3.53) would be computationally too expen-
sive due to the involved two-electron integrals (rs|tu). Instead, the general way is to
define an approximate energy functional that is accurate to second-order with respect
to small changes in the CI coefficients c and orbital rotations T .

For fixed CI coefficients, the approximate energy functional E(2)(T ) is minimized
subject to the orthonormality constrained 〈ΦI |ΦJ〉 = δI J , which reflects in the orthogo-
nality condition U †U = 1. The minimization of the resulting Lagrange functional with
respect to the orbital rotation parameters T leads to the non-linear orbital equations of
MCSCF, which are iteratively solved.

For given orbitals, i.e. for a U = 1+ T , the CI coefficients could be obtained from
minimizing Eq. (3.52) subject to the constraint ∑I |c(n)I |2 = 1. However, since the
orbitals change during the optimization process, the integrals have to be recomputed
in each step, which for the two-electron integrals this is very costly. A more efficient
way to account for the coupling between the CI coefficients and orbital rotations is to
use second order approximations for the one- and two-electron integrals of Ĥ and thus
using a second-order approximate Hamiltonian H(2)

I J with corresponding second-order
energy expression Ẽ(2). The minimization of the resulting Lagrange functional with
respect to cI subject to the previous constraint leads to an CI eigenvalue problem
analogous to Eq. (3.27) for given orbitals.

In each macroiteration, the equations defining the orbitals and the CI coefficients
have to be satisfied simultaneously. The solution of these equations constitutes the
microiterations. The optimization of the orbitals and CI coefficients is decoupled in
the conventional WMK method corresponding to an alternating optimization of the
energy E(2)(T , c) with respect to T and c. The main challenge is to converge the
microiterations efficiently and reliably. This also involves improved numerical methods
and strategies for an coupled optimization of E(2)(T , c). These improvements are
described in Ref. [221, 227].

3.4.2 Multireference Configuration Interaction

The MCSCF method as a zeroth-order description for strongly correlated systems is
not well suited to recover dynamic correlation effects to a sufficient degree (in general
this depends on the choice of the active space). However, extending the CI method
to MCSCF reference wavefunctions provides a powerful tool for calculating accurate
potential energy surfaces for systems with strong static and dynamic correlation. The
resulting method is referred to as multireference CI (MRCI).
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In the sense of the CI method, the MRCI wavefunction ansatz is constructed by orbital
excitations, up to a certain excitation limit, for each member of the MCSCF reference
wavefunction according to Eq. (3.51). All configurations created in this way constitute
the MRCI expansion space. For practical reasons this expansion is truncated after
doubles excitations, thus strictly speaking the method should be denoted MRCI(SD).
It is useful to distinguish the following orbital subspaces: the entity of inactive and
active orbitals, which are occupied in the reference configurations and correlated in
the CI wavefunction, cf. Fig. 3.3, are denoted internal orbitals and are labeled with
i, j, k, `, . . ., and virtual or external orbitals are denoted with a, b, c, d, . . . . To label any
kind of orbitals the indices r, s, t, u, . . . will be used. This partitioning gives rise to
several excitation patterns:

• Internal (I): only active→ active or inactive→ active excitation, i.e. virtual orbitals
remain unoccupied

• Singly (S) external: virtual orbitals getting singly occupied

• Pairwise/Doubly (P) external: virtual orbitals getting doubly occupied

The wavefunction ansatz can be written as [50, 228]

|ΨMRCI〉 = ∑
I

cI |ΦI〉+ ∑
S

∑
a

ca
S |Φa

S〉+ ∑
P

∑
ab

cab
P |Φab

P 〉 , (3.55)

with |ΦI〉 representing internal configurations, |Φa
S〉 describing singly external configu-

rations with N− 1 electrons in the internal space and |Φab
P 〉 denoting double excitations

into the virtual space, thus representing configurations with N − 2 electrons in the
internal space. In general, the configurations {|ΦI〉 , |Φa

S〉 , |Φab
P 〉} are either Slater

determinants or CSFs. However, to keep the number of configurations in the MRCI
reference space as low as possible it is essential to work with CSFs [229].

Analogous to the single-reference CI problem the MRCI energy as well as the MRCI
wavefunction coefficients are determined variationally leading to the already discussed
CI eigenvalue problem of the general form as given in Eq. (3.27). Due to the factorial
growth of the nubmber of configurations, the solution to this problem is usually
performed iteratively using the Davidson subspace method [230]. This method relies
on projecting onto a much smaller subspace to solve the eigenvalue problem there,
rather than explicitly constructing and storing the full Hamiltonian matrix H . In each
iteration only the product H · c, where c is a trial vector representing the coefficients,
has to be computed. This method can be efficiently combined with the direct CI
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procedure, where the matrix-vector product is computed directly from molecular one-
and two-electron integrals [140]. The convergence of this approach is assessed by
defining a residual vector g = (H − E1) · c according to the CI problem. Thus, the
most expensive step in a MRCI calculation is the H · c product. More technical details
may be found, e.g., in Ref. [49].

Even though, the MRCI ansatz according to Eq. (3.55) is truncated after doubles
excitations and efficient algorithms for solving the eigenvalue problem exist, for large
basis sets and large reference spaces the resulting computational costs are often ex-
ceedingly high. To this end, contracted MRCI methods have been developed: internally
and externally contracted versions. The underlying idea of both is to group certain
primitive expansion functions together to reduce the number of variational parameters.
The external contractions scheme relies on grouping together configurations with the
same internal parts and fixing the contraction coefficients after obtaining them by
first-order perturbation theory [49]. In the internal contraction scheme singles and
doubles excitations are generated by applying single- and double-excitation operators
to the MCSCF reference wavefunction |ΨMCSCF〉 of Eq. (3.51) and keep the expansion
coefficients as calculated from a preceding MCSCF run fixed [50].

The most successful implementation of the internally contracted MRCI (icMRCI)
approach, as claimed in Ref. [49], is the one by Werner and Knowles [228, 229, 231] as
implemented in the Molpro program package [224, 225]. It is restricted to singles and
doubles excitations, where only the latter are contracted, while both the full internal
configuration space and the full space of uncontracted singly excited configurations
are included in the expansion space. In this implementation the configuration spaces
are spanned by CSFs. In the following, the basic aspects of the icMRCI method by
Werner and Knowles are outlined.

Let |Ψ0〉 ≡ |ΨMCSCF〉, the internally contracted doubly external configurations are
defined as [228]

|Φab
ij,p〉 =

1
2
(Êab

ij + pÊba
ij ) |Ψ0〉 =

1
2
(Êab

ij + pÊab
ji )∑

Rµ

cRµ |ΦRµ〉 , (3.56)

where p = 1 for external singlet pairs and p = −1 for triplet pairs and Rµ denotes
the reference configurations. The two-particle spin-summed excitation operators are
defined in terms of one-electron creation and annihilation operators Ês

r = ∑σ a†
rσasσ,

with σ accounting for the spin

Êtu
rs = Ês

r Êu
t − δu

s Êu
r . (3.57)
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The contracted configurations |Φab
ij,p〉 can be expanded in terms of the uncontracted

doubly external CSFs from Eq. (3.55) to

|Φab
ij,p〉 = ∑

P
〈Φab

ij,p|Φab
P 〉 |Φab

P 〉 , (3.58)

where the contraction coefficients are given by

〈Φab
ij,p|Φab

P 〉 =
1
2 ∑

Rµ

cRµ 〈ΦRµ |Êab
ij + pÊab

ji |Φab
P 〉 , (3.59)

showing that these configurations are obtained by contracting different internal states
|ΦRµ〉. Moreover, it shows that contracted configurations depend on the expansion
coefficients cRµ of the reference configurations, which are determined from a preceding
MCSCF calculation. Since internally contracted configurations are in general not
orthogonal, the overlap matrix needs to be computed according to

〈Φab
ij,p|Φcd

k`,q〉 =
1
2

δpq(δ
c
aδd

b + pδd
a δc

b)S
ij
k`,p

=
1
2

δpq(δ
c
aδd

b + pδd
a δc

b) 〈Ψ0|Êij
k` + pÊij

`k|Ψ0〉 , (3.60)

with the second-order density matrix Sij
k`,p. With that, the configurations can be

orthogonalized using symmetric Löwdin orthogonalization [191], via

|Φab
D,p〉 = ∑

i>j
Tij

D,p |Φab
ij,p〉 , with Tp = (Sp)

−1/2 . (3.61)

In this basis the icMRCI wavefunction is finally given as

|ΨicMRCI〉 = ∑
I

cI |ΦI〉+ ∑
S

∑
a

ca
S |Φa

S〉+ ∑
D

∑
p

∑
ab

cab
D,p |Φab

D,p〉 . (3.62)

This internal contraction scheme comes with the main advantage that the number of
configurations in the CI wavefunction is essentially independent of the number of
reference configurations and only depends on the number of correlated orbitals in the
reference wavefunction [228]. What is more, the error introduced by contractions is
only very small. The drawbacks, on the other hand, are the non-orthogonality of the
contracted configurations and their complex structure. However, since singly external
and internal configurations are not contracted in the Werner-Knowles approach, their
orthogonalization is avoided. Otherwise, this could be rather difficult and would
constitute a severe bottleneck since rather large sets of nonorthogonal singly external
and internal configurations are usually generated. Moreover, matrix elements between

69



3 Wavefunction Methods in Electronic Structure Theory

contracted singly and doubly external configurations would become quite difficult and
time consuming.

As mentioned above, the CI eigenvalue problem is tackeld using the Davidson
method combined with the direct CI approach. The required residual vector g = (H −
E1) · c involves calculating Hamiltonian matrix elements, which depend on so-called
coupling coefficients. From a strongly simplified point of view, the residual vector
is a function R(GD,p, gS, gI , cD,p, cS, cI), where cD,p, cS and cI represent coefficient
matrices resulting from the wavefunction expansion according to Eq. (3.62), and
the quantities GD,p, gs and gI denote energy expectation values and depend on the
coupling coefficients. These coupling coefficients essentially represent integrals and
their explicit form is given in Ref. [228]. Werner and Knowles also proposed an efficient
way to evaluate them in Ref. [229].

This eventually provides a powerful toolbox to formulate an algorithm to tackle the
icMRCI problem. The fundamental steps of the Werner-Knowles implementation are:

• Given the residual vector R, use the Davidson method [230] combined with the
direct CI procedure to obtain eigenvectors and eigenvalues iteratively

• Macroiterations:

1. Update expansion vectors cD,p and cS

2. Evaluate new quantities GD,p, gS and gI from which matrix elements
〈Φm

ext|Ĥ|Φn
ext〉, 〈ΦI |Ĥ|Φn

ext〉 and 〈Φm
ext|Φn

ext〉 are evaluated, with external
expansion functions

|Φn
ext〉 = ∑

S
∑

a
(cS)

n
a |Φa

S〉+ ∑
D

∑
p

∑
ab
(cD,p)

n
ab |Φab

D,p〉 , (3.63)

and the superscript n denoting different expansion vectors describing the
external configuration types (i.e. how many holes are generated to singly or
doubly occupy the virtual space)

• Microiterations: Optimize

|Ψ〉 = ∑
I

cI |ΦI〉+ ∑
n

αn |Φn
ext〉 (3.64)

variationally, with the corresponding eigenvalue problem solved iteratively

1. Simultaneously optimize coefficients cI of internal configurations and co-
efficients αn of sets of external expansion vectors (cD,p)

n, (cS)
n for which
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residual vectors (GD,p)
n, (gS)

n from previous macroiterations are available
=⇒ yields also variational energy for present iteration

2. Use new αn to obtain improved external coefficients cD,p, cS and correspond-
ing parts of GD,p, gS

3. Add contributions from internal part to GD,p, gS using new coefficients cI

4. Go to next macroiteration

This method can be further extended to a multistate treatment to compute excited
states which is briefly outlined below. A detailed description is given in Ref. [231].

The calculation of excited states within the icMRCI framework comes with the
difficulty, as shown in Eq. (3.59), that the contraction coefficients depend on the
expansion coefficients cRµ of the reference wavefunction. Hence, different contracted
configurations are required for each state. A straightforward approach would include
the union of all contracted functions formed from separate reference functions for each
state. If one is interested in the kth state, then the first k eigenvectors and eigenvalues
of the Hamiltonian matrix must be computed in this basis. In such, the number
of external pair functions would increase linear with the number of states and the
corresponding total computational effort would even scale quadratic to cubic with the
number of states thus limiting its application range.

This unfavourable scaling behaviour could be avoided if there were a state-specific
optimization procedure for computing the wavefunction |Ψk〉 for each state k separately.
To this end, Werner and Knowles came up with an efficient projection operator
approach, which also avoids root flipping problems [231]. In this procedure, a modified
Hamiltonian is diagonalized in which the kth state appears as the lowest root with the
k− 1 states shifted away. The projection operator is defined via

P (k) = 1−
k−1

∑
n=1

c(n)c(n)† (3.65)

and the projected Hamiltonian is given as

H (k) = P (k)HP (k) . (3.66)

The c(n) represents the eigenvector for the nth state. Since in a state-specific framework
different bases are used for each state, a direct construction of the full projector is
difficult. However, it has been shown that an approximate projector is sufficient where
only such configurations are included in c(n) that lie in the configuration set for both
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the nth and kth state calculations. For the Werner-Knowles icMRCI method, this
means that only internal CFSs, which are common to the nth and kth state bases are
included implying that the internal space should represent the dominant part of the
wavefunction.

After obtaining all desired states in the above manner individually, the resulting
k× k Hamiltonian of this subspace Hnm = 〈Ψ(n)|Ĥ|Ψ(m)〉 is formed and diagonalized
yielding the final states and energies. By using this approach it is also possible (in
many cases) to properly describe difficult situations such as avoided crossings [50].

Since the expansion space is usually limited up to doubles excitations, the MRCI
method is still lacking of size-consistency. This is, despite its great success in many ap-
plication, the most serious formal deficiency. However, there are many size-consistency
correction schemes available that account for this error. For a comprehensive review
on them see, e.g., Ref. [49] and references therein.

3.5 Basis sets

In the previous sections it was shown that all quantum chemical methods use the
LCAO approximation of Eq. (3.16) to represent the unknown MOs ϕi(r) as a linear
combination of AOs χα(r). Since all ab-initio methods scale at least with O(N4

AO), this
expansion should not become too large. On the other hand, an insufficient expansion
would impair the accuracy of the MOs. Therefore, it is very important to choose and
to optimize a basis set such that it yields a reasonable accurate expansion of the exact
MOs [191].

A reasonable choice to represent AOs might be hydrogen-like functions such as
Slater-type orbitals (STOs) that approximate the exact Schrödinger solutions very well.
In spherical polar coordinates they are defined as [140]

χSTO
α (r) = N STO

α Y`α,mα
(θ, φ)rnα−1e−ζαr , (3.67)

where N STO
α are normalization factors, Y`α,mα

are the spherical harmonics, the integers
n, `, m determinte the type of orbital (s,p,d, etc.) and ζα are known as the exponents.
This form ensures fast convergence with increasing number of functions but the
one- and two electron integrals 〈α|ĥ|β〉 and (αβ|γδ) cannot be computed analytically.
Therefore, Gaussian-type orbitals (GTOs) are used almost exclusively in practice. In
Cartesian coordinates, the Gaussian primitives are defined via

χGTO
α (r) = NGTO

α S`α,mα
(r−RK)e−ζα|r−RK |2 , (3.68)
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where NGTO
α are normalization factors, `, m determine the type of orbital, and RK

denotes the position of the nucleus K. The latter accounts for the fact that AOs have to
be placed on every atom. The functions S`α,mα

are the real solid harmonics. This choice
allows for efficiently computing the integrals due to the Gaussian product theorem, which
drastically reduces the complexity of the expressions. For the remaining tasks fast and
stable algorithms exist. This comes at the cost of physical meaningfulness, since the
radial part of GTOs do not show a cusp at the nuclei and GTOs decay too quickly
at long range. However, the correct physical behavior can be fitted to a very good
approximation by a linear combination of a sufficiently large number of GTOs with
different exponents. Therefore, more GTOs are needed for reaching a good accuracy
for representing MOs compared to using STOs. This deficiency is compensated by the
outperforming computational scaling.

It can be shown that a large amount of basis functions serve to model the energetically
important, but chemically unimportant core electrons [140]. As these core orbitals
change very little depending on the chemical bonding situation, the corresponding
MO coefficients (Cαi) in front of these inner basis functions also change very little.
This motivates to reduce the number of basis functions by combining certain primitive
Gaussians with the same ` and m quantum numbers but different exponents in pre-
defined superpositions. The resulting functions are called contracted GTOs (CGTOs) [232,
233]

χα,CGTO(r) =
P

∑
$=1

wα$χ$(r) , (3.69)

with the contraction coefficients wα$. In quantum chemical calculations ζα and wα$

are kept fix; only the MO coefficients ci,µ are varied. The exponents and contraction
coefficients are optimized in laborious atomic calculations. This is a highly non-
trivial task and also depends on the intended use of the basis set. The construction
and optimization of basis sets is therefore still object of current research and several
classifications exist, see, e.g., Ref. [232] for a comprehensive review. The following
outlines only such aspects which are important for this work.

Due to the cusp problem discussed in Sec. 3.2.3, correlated wavefunction methods
require large basis sets to obtain meaningful results. The singularity of the electronic
Coulomb operator ∝ r−1

12 requires the exact wavefunction to fulfill certain cusp con-
ditions [199, 200], as exemplarily illustrated in Fig. 3.1 for r12 → 0. Approximate
wavefunctions that are represented as linear combinations of Slater determinants never
show this cusp behavior making it impossible to exactly reproduce the discontinuity.
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However, by increasing the basis set size it is possible to slowly approach the exact
wavefunction. This is the underlying reason for the slow convergence of the correlation
energy with respect to the basis set size and due to the ≥ O(NAO) scaling, this makes
it difficult to estimate the exact correlation energy.

In this regard Dunning et al. invented a very important family of basis sets: the
correlation consistent (cc) basis sets [234]. They are designed to systematically improve
the correlation energy of the valence electrons when primitives corresponding to
higher ` quantum numbers are added. This is based on the hierarchical construction
principle that functions which contribute to similiar amounts to the correlation energy
are included at the same stage, independent of the function type [140]. The naming
convention of this basis set is: cc-pVnZ, where n is the cardinal number corresponding
to the highest angular momentum quantum number included in the basis set (e.g.
n = 2 for double-zeta includes up to d functions) [235]. The “p” denotes that polariza-
tion functions (also denoted as correlation functions) are included. These functions
correspond to higher angular momentum quantum numbers than required for the
neutral atom (e.g. d functions and higher for Ne). They allow for higher flexibility
of the basis set and account for deviations from the spherical shape of AOs due to
the environment. The “V” denotes that the basis set corresponding to the valence
electrons of a given element is increased since inner-shell electrons are less sensitive to
the environment.

The main advantage of correlation consistent basis sets comes with empirical obser-
vations that energies and also other properties converge smoothly toward the complete
basis set (CBS) limit when the cardinal number of the basis set is increased [232]. This
allows for a systematic improvement of ab-initio calculations toward the exact solution.
This improvement is not unique and a vast variety of (semi-) empirical extrapolation
formulas exist, see, e.g., Refs. [236, 237] and references therein for a comprehensive
review. One of the most popular formulas employed for the correlation energy was
proposed by Helgaker et al. [238, 239] and states that the error for a given basis set size
n with respect to the CBS limit scales as n−3.

Beyond that, cc basis sets provide great flexibility for a number of “extensions”:

• Augmentation with diffuse functions with small exponents which are necessary
to describe loosely bound electrons, e.g. in anions or excited states. Those diffuse
exponents are optimized and added to their parent set (e.g. aug-cc-pVDZ)

• Augmentation with tight functions with large exponents if the interest is in
recovering core-core and core-valence correlation (e.g. cc-pCVnZ)
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• For heavier elements relativistic effects become more important, while the num-
ber of electrons grows drastically such that correlating all electrons becomes
impossible. A computationally efficient approach to treat such elements are
relativistic pseudopotentials (PPs). They come either in a small-core (an extra
core-valence shell of electrons remain) or in a large-core (replacing all but the
valence electrons) variant to model the electrons with a relativistic PP, see, e.g.,
Refs. [57, 58] for more details. Correlation consistent basis sets can be designed
such that they accompany these PPs for yielding an accurate description, see,
e.g., Ref. [240]

Another particular useful approach for extending given basis set with additional
diffuse functions relies on even-tempered schemes [232]. Even-tempered basis set
are very powerful when extremely large basis sets are necessary and optimization of
individual Gaussian primitives is rather difficult [241]. In this regard it was shown in
Ref. [242] that these basis sets span the Hilbert space evenly and provide a way for
accurately simulate fully optimized exponents without optimizing any of them.
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4
Towards Photoassociation Processes

of Ultracold Rubidium Trimers

The main aspects of this chapter have been published previously in

[245] J. Schnabel, T. Kampschulte, S. Rupp, J. Hecker Denschlag, and A. Köhn, Phys.
Rev. A 103, 022820 (2021).

This part of the thesis is intended to provide experimental guidance for the creation
of ultracold rubidium trimer molecules. After briefly outlining the experimental
motivation behind this work, the prospects for photoassociation (PA) processes of Rb3

are theoretically investigated. This includes a broad overview of expected states and
transitions and involves special cuts through the potential-energy landscapes. Major
focus is placed on the calculation of equilibrium states, electronic dipole transition
moments, and a survey of spin-orbit coupling effects. In connection with a qualitative
discussion of Franck-Condon overlaps, concrete and suitable PA transitions to produce
long-lived trimer bound states are identified.

Further emphasis is placed on symmetries that drive Jahn-Teller and related effects.
It is demonstrated that the identified PA candidate state forming one component of a
Jahn-Teller manifold, requires an analytical JT analysis that goes beyond the standard
approach. In conclusion, the understanding of underlying coupling mechanisms of a
special manifold of quadruply interacting excited quartet states is broadened.

4.1 Experimental motivation

Experiments in the regime of ultracold controlled chemistry provide the ability to study
molecular binding mechanisms on a fundamental level and to create molecules in
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F igure 4.1. : (a) Schematic illustration of a PA process for the formation of diatomic molecules. The
PA laser (solid orange arrow) couples a continuum state of free colliding atoms (S+S asymptote)
in an ultracold quantum gas to a weakly bound excited molecular state |e〉 (S+P asymptote) at
large internuclear distance. The excited dimer state can radiatively (curly blue arrow) decay to a
number of long-lived rovibrational states of the ground state manifold |g〉. The PA transition can be
considered as occurring at the outer turning point Ro,e of the vibrational level of |e〉 (see text). (b)
Strongly simplified representation of two different PA schemes for the production of X3 species. PA1
photoassociates a previously formed X2 dimer with a free ground state X atom from the asymptote |g1〉.
PA2 photoassociates three X atoms from the asymptote |g2〉. Both PA processes can be also realized,
in principle, starting from an inner turning point (ITP), which produces more deeply bound excited
trimers. This is discussed in detail in Sec. 4.4 and indicated on the very left. In both cases the excited
trimer (more weakly bound for PA starting from |g1〉 or |g2〉) can spontaneously decay to the ground
state.

precisely defined quantum states. An important method to produce ultracold molecules
is photoassociation (PA), which so far has been successfully used for creating diatomic
molecules [22–24]. In PA processes a laser photon resonantly excites an unbound
scattering state of two atoms into a often weakly bound, but well-defined, rovibrational
level of the electronically excited state |e〉. Under favorable circumstances the short-
lived excited molecule may be subsequently stabilized by spontaneous decay into
a stable rovibrational level of the ground-state manifold |g〉. This is schematically
illustrated in Fig. 4.1 (a). The efficiency of a PA process depends on the density of
atomic pairs at a internuclear distance R, which scales with R2 [13]. Hence, it preferably
probes rovibrational levels of the excited state that are close to the corresponding
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dissociation limit, i.e. at large internuclear separations.

In general, the basic prerequisite of PA is a non-vanishing electric dipole transition
between the free scattering state and a molecular state with well-defined electronic
symmetries. Thus, PA processes follow certain selection rules representing necessary
conditions for PA transitions. The sufficient condition to drive PA transitions is
determined by the Franck-Condon factor: the squared overlap between the initial and
final vibrational wavefunctions as indicated in Fig. 4.1 (a). For diatomic molecules,
favorable Franck-Condon factors are, in many cases, usually obtained near the classical
outer turning points Ro,e of the rovibrational level of the excited state. Indeed, the
probability for making PA transitions is directly proportional to the square of the
ground state wavefunction at Ro,e [23]. However, this also implies that PA to an excited
state whose outer turning point lies over a node in the ground state wavefunction will
be suppressed.

Photoassociation was originally proposed for the production of homonuclear alkali-
metal dimers. But with the successful formation of these species, PA has been fur-
thermore employed to a more general class of dimers such as NaRb, RbCs, RbK,
NaK, LiNa, LiCs, NaCs, but also to other compounds, such as LiYb and RbYb, see,
e.g. Refs. [11, 12, 15, 16] and references therein. A general feature of homonuclear
alkali dimers is that the leading-order long-range interaction of excited states, for
instance those correlating to the S+P asymptote, scales as R−3. This leads to poten-
tials that can support vibrational levels with classical outer turning points at large
internuclear distances where the atomic pair density is high [24]. In contrast, the
long-range interaction of excited states of heteronuclear dimers, e.g., Rb(5S) + Cs(6P),
scales as R−6 [243]. Thus, corresponding outer turning points are located at smaller
distances. Therefore, PA rates of homonuclear dimers typically exceed those of the
heteronuclear species. The long-range part of the ground state potentials scales, for
both homo- and heteronuclear dimers, with R−6. For heteronuclear dimers, the ground
and excited potentials are thus of the same form, generally leading to large overlap
integrals between the vibrational wavefunctions of the photoassociated state and those
of the ground-state levels. However, in regard to formation processes both effects can
compensate each other so that the total molecule formation rate is often similar for
homo- and heteronuclear dimers.

Besides creating ultracold molecules from ultracold atoms, PA is a powerful tool for
high-resolution molecular spectroscopy and provides the ability to directly measure
absolute binding energies. Furthermore, PA spectra were widely used to measure
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scattering lengths and other aspects of cold atomic collisions [23]. To control the
spontaneous emission and to selectively enhance the population of a pre-determined
final state, the use of optical cavities has been proposed in Ref. [244] as promising
experimental improvement.

Due to previously discussed achievements, producing ultracold alkali-metal trimers,
such as X2Y or X3, with (X,Y)∈ {Li, Na, K, Rb, Cs}, apparently marks a next milestone.
However, alkali-metal trimers are much more complicated as compared to respective
dimers, both from the experimental and theoretical perspective. The experimental
challenge in preparing and manipulating trimer species on the quantum level is related
to a generally reduced lifetime of many of its levels due to internal relaxation and
dissociation mechanisms. Nevertheless, a promising approach for preparing isolated
trimer molecules in precisely defined quantum states is PA. In analogy to PA processes
for the creation of dimer molecules, one may think of two possible PA schemes for the
realization of trimers [245]:

1. A dimer molecule and a free ground-state atom are photoassociated (≡ PA1).
This is shown in Fig. 4.1 (b). The laser photon PA1 drives a transition form the
asymptote |g1〉 to an electronically excited bound state |e〉 of the trimer complex.
From there it can spontaneously relax to a stable level of the ground state.

2. Three colliding free atoms are photoassociated (≡ PA2). As shown in Fig. 4.1 (b)
the photon PA2 couples the asymptote |g2〉 to the excited trimer state |e〉.

Both PA processes can in principle take place at long-range or at short-range. Since
PA in the long-range regime was recently discussed theoretically in Ref. [109], the
following explorations rather focus on trimer PA in the short-range region. However,
recent theoretical work in Ref. [70] suggests that the simultaneous collision of three
atoms is strongly suppressed due to an effective barrier in the short-range of the
three-body potential, rendering the realization of PA2 at short-range less likely. So far,
this barrier has only been studied in a single-channel approach but considering the
more realistic multi-channel structure could turn out important. Thus, an approach
similar to what was shown recently in Refs. [246, 247] may be applied to obtain a more
comprehensive understanding. Nevertheless, it can be expected that the multi-channel
calculations will qualitatively reveal the same findings [248] concerning the short-range
barrier for PA2. In general, such a restriction is not expected for PA1.

This shows that PA processes depend on the detailed knowledge of the interaction
properties of the colliding atoms and of the electronic structure of the involved molec-
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ular states. The identification of efficient pathways for the production of ultracold
trimer species thus requires profound theoretical investigations.

4.2 Computational aspects

In order to theoretically investigate the prospects for PA of Rb3, an extensive survey of
a large number of expected states is required. Therefore, a pragmatic but sufficiently
accurate computational approach has to be applied. The calculations in this chapter are
based on using a large-core (lc) effective core potential (ECP) in combination with a core-
polarization potential (CPP) as it has been developed in Ref. [249]. In doing so, merely
the 5s valence electron of Rb is treated explicitly while the remaining 36 electrons are
described by the ECP. Simply speaking, ECPs modify the one-electron operator ĥ in
the Fock operator by replacing the V̂ne contribution, cf. Eqs. (2.1), (3.7) and (3.12), by a
pseudopotential (PP), leading thus to an effective valence-only Hamiltonian [58]. This
allows for significant computational savings in integral calculations. The large-core PP
takes on the explicit form [249]

VlcECP = −Z
r
+ ∑

`,j
B`,j exp(−β`,jr2)P`,j + VCPP ,

= −Z
r
+ ∑

`,j
B`,j exp(−β`,jr2)

j

∑
mj=−j

|`, j, mj〉 〈`, j, mj|+ VCPP , (4.1)

with Z the core charge (for lcECP: Z = 1) and the projection operator P`,j projecting
a given one-electron spin orbital into the subspace of orbital momentum ` and total
angular momentum j. The parameters B`,j and β`,j are in general adjusted to reproduce
all-electron relativistic atomic calculations (e.g. at four-component level using the Dirac-
Coulomb Hamiltonian with Breit interaction). In case of the lcECP of Ref. [249], they
are fitted so that the experimental ionization energies of the two lowest states of the
one-valence-electron atom are reproduced as orbital energies of the two lowest states
of the pseudo-Hamiltonian. This shows that ECPs are constructed such that (quasi-)
relativistic effects are implicitly incorporated in their parameterization. The CPP (VCPP)
accounts for dynamic polarization of the core electrons by the valence electron and
may be written as [250]

VCPP = −1
2

αdf
2 ,

= −1
2

αd

(
−∑

i

[
1− exp(−δr2

i )
]2 ri

r3
i

)2

, (4.2)
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where αd is the static dipole polarizability of the atomic core without valence electrons
and f is the instantaneous field produced by the valence electron at the site of the core.
Since the multipole expansion breaks down for positions near and inside the core, a
cut-off function with the damping parameter δ ∝ r−2

ion, i.e. correlated to the ion radius,
was introduced. Comprehensive reviews on the construction of ECPs and CPPs as well
as their parameterization and their adjustment can be found in Refs. [57, 58].

Rubidium trimers occur either as doublet or quartet states. The corresponding high-
spin states are often reasonably well described by single-reference approaches, while
the low-spin states have (nearly) degenerate configurations and are thus prototypical
systems showing multireference character, as discussed in Sec. 3.2.3. The doublet
and quartet states of Rb3, in the energy range considered in this work, were therefore
computed using the internally contracted multireference configuration-interaction
(icMRCI) method [228, 229, 231], cf. Sec. 3.4.2. Due to the lcECP approach, the system
reduces to an effective three-electron problem and thus the MRCI method does not
show size extensivity issues. This means that the PESs are entirely well defined and
dissociate correctly into three noninteracting Rb atoms.

The orbitals for the MRCI calculation were generated by a preceding MCSCF calcula-
tion with a corresponding CASSCF reference space. The active space, unless otherwise
stated, was chosen such that it comprises the 5s and 5p (px, py, pz) orbitals of Rb. As
shown in Sec. 4.3.1, the coordinate system is chosen such that the molecular plane of
Rb3 coincides with the xz plane. According to the internal orbital ordering of Molpro

(A1/B1/B2/A2) for the C2v point group, the active space for this coordinate system
corresponds to an 5/4/2/1 occupation pattern. For the Cs point group (A′/A′′) this
transforms into 9/3. Hence, the active space describes three electrons in 12 orbitals
which covers an energy spectrum of > 20000 cm−1. The calculations in this chapter
were performed using the Molpro program package in its versions 2018.2, 2019.2 or
2020.1 [224, 225, 251–253].

The corresponding basis set for these calculations was constructed in an uncontracted
even-tempered (UET) manner. As mentioned in Sec. 3.5, this approach can be used
when large basis sets are required, which is the case here, since basis set superposition
errors (BSSEs) shall be kept as small as possible. The construction started with the
[13s10p5d3f] basis set from Ref. [250] designed for the ECP28MDF small-core (sc)
ECP by first changing the tightest d exponent to 1.75067, as suggested by Soldán
in Ref. [100]. Since this basis set was originally optimized with respect to atomic
polarizabilities it does not provide enough diffuse functions for a proper description
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of higher electronic states [254], cf. Sec. 3.5. Therefore, a (2s, 2p, 2d, 2 f ) set of diffuse
functions was added, analogously to the approach in Ref. [100] for the quartet ground
state of Rb3. The corresponding ratios to obtain the diffuse functions were determined
from the original lowest two exponents in each orbital set. Within this resulting span of
functions, defined by the largest exponents of the original set and the new most diffuse
function, new exponents were calculated in an even-tempered manner as implemented
in Molpro. Here, the exponents in each orbital set are explicitly given by

log ei = log c + [(n + 1)/2− i] log r +
1
2
[(n + 1)/2− i]2 log d , i = 1, 2, . . . , n , (4.3)

with the number of exponents n, their geometric mean c, the mean ratio of successive
exponents r, and the variation of this ratio d, which is set to d = 1 in all cases. The
number of exponents for each orbital set followed from systematically increasing the
basis set size such that calculated atomic energy levels of Rb are as close as possible at
the basis set limit while, at the same time, the corresponding trimer calculations do not
suffer from linear dependencies in the basis set. Having identified the “optimal” basis
set size in this way, additional g-exponents were generated according to [255–257]

ζ`
′
= ζ`

`′ + 3
`+ 3

, (4.4)

with the angular momentum quantum number `′ of the new exponents (i.e. `′ = 4 for
g-functions) generated from existing exponents with quantum number ` (` = 3 for f -
exponents). This procedure resulted in a [15s12p7d5 f 3g] uncontracted even-tempered
basis set (≡ UET15), where the g-functions were added to provide more flexibility and
to account for additional polarization effects. The corresponding exponents are listed
in Tab. C.1.

As shown in the following, the pragmatic lcECP+CPP approach is sufficient for gain-
ing a reliable understanding of the physics of the system, while saving tremendously
on computational costs. As mentioned above, the lcECP is by construction designed so
to reproduce the experimentally determined atomic energy levels up to the 2F state to
a certain accuracy [249]. This is further demonstrated by the results listed in Tab. 4.1.
The mean differences ∆̄ show that both absolute energy levels and SO splittings are
reproduced to very good accuracy.

Benchmark calculations on spectroscopic constants for selected singlet and triplet
states of Rb2 reveal the expected accuracy for molecular systems. The results are
reported in Tab. 4.2 and the corresponding potential energy curves are shown in
Fig. 4.2. In contrast to atomic Rb, these calculations do not account for SOC effects.
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Table 4.1. : Comparison of calculated (calc.) Rb energy levels and spin-orbit (SO) splittings with exper-
imental data from the NIST [258] database. Calculations were performed at MRCI(lcECP+CPP)/UET15
(see text) level of theory using the ECP-LS technique to account for SOC effects. Differences ∆ between
theory and experiment as well as the mean difference ∆̄ and the absolute mean difference ∆̄abs for the
given set of states are also reported.

Term J
absolute levels [cm−1] SO splitting [cm−1]

calc. NIST ∆ calc. NIST ∆

S2 1/2 0 0 0 0 0 0

P2
1/2 12 577.76 12 578.95 −1.19 12 577.76 12 578.95 −1.19
3/2 12 811.80 12 816.55 −4.75 234.04 237.60 −3.56

D2
5/2 19 356.95 19 355.20 1.75 6545.15 6538.66 6.49
3/2 19 357.15 19 355.65 1.50 0.20 0.45 −0.25

∆̄: −0.67 ∆̄: 0.38
∆̄abs: 2.30 ∆̄abs: 2.87

Table 4.2. : Comparison of experimental (references given in square brackets) and calculated values
(calc.) of some spectroscopic constants of a few Rb2 states (see Fig. 4.2 for assignment). The dissociation
energy is denoted by De, Re is the equilibrium distance, and Te the electronic term energy. Calculations
were performed at MRCI(lcECP+CPP)/UET15 level of theory. Differences ∆ between theory and
experiment as well as the mean difference ∆̄ and the absolute mean difference ∆̄abs for the given set of
states are also reported.

State
De [cm−1] Re [Å] Te [cm−1]

calc. exp. ∆ calc. exp. ∆ calc. exp. ∆

X Σ1
g [259] 4116 3993.593 122 4.1689 4.2099 −0.0410 0 0 0

a Σ3
u [259] 250 241.503 8 6.0065 6.0940 −0.0875 3866 – –

b Π3
u [260] 7218 7039 179 4.1537 4.1329 0.0208 9632 9601 31

A Σ1
u [260] 6071 5981 90 4.8637 4.8737 −0.0100 10778 10750 28

(2) Σ1
g [261, 262] 3140 2963 177 5.4081 5.4399 −0.0318 13709 13602 107

(1) Π1
u [263] 2150 1907 243 4.5203 – – 14700 14666 34

(1) Π1
g [264] 1246 1290 −44 5.4225 5.4188 0.0037 15604 15510 94

∆̄ : 111 −0.0243 59
∆̄abs : 123 0.0325 59
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F igure 4.2. : Overview of Rb2 potential energy curves up to the 5S + 5P asymptote calculated at
MRCI(lcECP+CPP)/UET15 level of theory. Σ-states are plotted in dark blue, while Π states are given
in light blue. Solid curves represent electronic states of “gerade” (g) symmetry, while dashed lines
correspond to states of “ungerade” (u) symmetry. All energies are given as interaction energies with
respect to the 5S + 5S asymptote.
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This is the default setting (unless otherwise noted) for the following discussions of this
chapter. In Sec. 4.3.5 it is shown that in most cases, SOC effects for Rb3 are only rather
small perturbations. The mean differences given in Tab. 4.2 show that binding energies
are systematically overestimated by 100 to 250 cm−1, while equilibrium distances
are typically underestimated by 0.01 to 0.04 Å. This over- and underestimation is a
well-known bias introduced by the lcECP due to its approximative and insufficient
description of the repulsive interaction of core electrons [265–267]. The electronic
term energies usually show errors on the order of 30 to 100 cm−1. Since the Rb3

molecule forms three Rb-Rb bonds, the above mean errors suggest a corresponding
estimated accuracy of the ab-initio method of ≈ ±300 cm−1 for equilibrium energies.
For bond lengths the same accuracy as for Rb2 is expected, i.e. about 1 % of the total
predicted distance. According to the previous findings, energies are probably again
overestimated while bond lengths are underestimated. Although these errors seem
rather large in the context of ultracold chemistry, the deviations are already in the
regime of accurate quantum chemical calculations, defined by the “chemical accuracy”
level of ≈ ±1 kcal/mol ≈ 350 cm−1 for energies.

Increasing this accuracy is possible but requires steeply increasing computational
resources. The present approach only requires approximately 40 minutes on eight
cores to compute 27 states for a given Rb3 geometry, thus allowing to explore the
configuration space efficiently [245]. An approach toward higher accuracy is shown in
Chap. 5 in connection with the construction of a global potential energy surface for
the quartet ground state. However, this approach is still insufficient for doublet states,
which would ultimately require, e.g., a multireference coupled-cluster approach with a
reasonable basis set.

4.3 General overview of the Rb3 system

The following discussion gives broad insights into the physics of the Rb3 system,
ranging from proper coordinate systems to exploring occurring coupling and crossing
effects by special cuts through the PESs, to a detailed study of equilibrium states and a
survey of spin-orbit coupling effects.

4.3.1 Coordinates

The generic representation of homonuclear triatomic systems was already shown in
Fig. 2.3 to motivate the symmetry operations of the D3h point group. The results
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F igure 4.3. : (a) The Rb3 system in the xz plane with internuclear distances R12, R23, R13. (b) Sketch
of the geometric interpretation of the perimetric coordinates for triatomic molecules. They represent
the radii of three mutual tangent circles centered on the nuclei. Internuclear distances satisfying the
triangular inequality may be recovered using Eq. (4.5). (c) The positive octant in perimetric coordinates
to show special configuration subspaces of triatomic systems (i.e. D∞h, D3h and C2v). Freely adapted from
J. Schnabel et al., Phys. Rev. A 103, 022820 (2021).

presented below are based on calculations in which the Cartesian coordinate system
was chosen, without loss of generality, such that the molecular plane coincides with the
xz plane; see Fig. 4.3 (a). Apart from internal use, e.g., in Molpro to assign electronic
states to their corresponding IRREP, Cartesian coordinates are barely used to study the
physics of trimers. Triatomic systems have three internal degrees of freedom, except
for linear configurations for which they have a fourth degree of freedom. There are
many coordinate systems available to study three-body problems and in general each
of them has its strengths and weaknesses and the choice strongly depends on what
one wants to analyze. For the investigation of three-body collision processes, Jacobi
and hyperspherical coordinates are commonly used; see, e.g., Refs. [268–270] and
references therein. The findings reported in this thesis make use of three different
coordinate systems.

Two of these coordinate systems were already introduced in Eq. (2.51): the (symmetry-
adapted) JT coordinates and the internuclear distances, which can be used to define the
former. As shown in Sec. 2.3.2, JT coordinates are powerful to characterize the main
topological features of PESs near D3h equilateral triangular configurations, wherefore
JT theory is most efficiently formulated using these coordinates. It is straightforward
to use internuclear distances as illustrated in Fig. 4.3 (a). However, not every triple
(R12, R23, R13) obeys the triangular inequality and thus defines a possible molecular
conformation. Therefore, it is convenient to employ perimetric coordinates [271–277] as
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used by Davidson in his analysis of H3 [278]. This coordinate system follows from
mapping each set {R12, R23, R13} that satisfies the triangular inequality to the positive
octant and becomes

R1 =
1
2
(R12 + R13 − R23) , (4.5a)

R2 =
1
2
(R12 + R23 − R13) , (4.5b)

R3 =
1
2
(R13 + R23 − R12) . (4.5c)

These are the radii of three mutually tangent circles centered on the nuclei, as shown
in Fig. 4.3 (b). The perimetric coordinates reveal some general properties [245]:

1. Every triple of numbers (R1, R2, R3) in the positive octant, cf. Fig. 4.3 (c), gives a
unique molecular conformation (modulo permutational inversion; it is symmetric
in the three atoms), i.e. the coordinates fulfill the triangular inequality by
definition.

2. Internuclear distances are given as the sum of these coordinates, e.g. R12 =

R1 + R2.

3. Linear arrangements, in general of C∞v symmetry, are defined by one of the
perimetric coordinates being zero, this being the coordinate related to the central
atom (e.g. for R1 = 0, R2 = R12 and R3 = R13). In the positive octant this
corresponds to the three equivalent boundary planes.

4. The dissociation limit atom + dimer corresponds to the respective atom coordi-
nate being large (e.g. atom1 + dimer23 ⇔ R1 → ∞).

Fig. 4.3 (c) summarizes further special positions in the positive octant, i.e. all such
showing higher point group symmetry than Cs. Linear molecules of D∞h symmetry
are found on three equivalent diagonals of the boundary planes. Equilateral triangular
configurations are defined by the space diagonal and isosceles triangular conformations
are, due to the permutational symmetry, represented by one of the three space diagonal
surfaces. Since it is not defined if the atoms are labeled clockwise or counterclockwise,
strictly speaking there are six such C2v surfaces. All configurations which are not
described by one of the above subspaces are of Cs point group symmetry.

In the following it is shown that the use of perimetric coordinates provides a powerful
tool to efficiently explore the configuration space of Rb3.
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F igure 4.4. : Two-dimensional contour plots of the PESs of the quartet ground state 1 B4
1 in (a) and

the first excited quartet state 1 A4
2 in (b). The R1 and R2 = R3 subspace of perimetric coordinates

corresponds to one of the space diagonal surfaces in Fig. 4.3 (c). In (a), the diagonal line shown in
white represents the space diagonal along D3h configurations, while the horizontal line represents a
special one-dimensional C2v-cut for R23 = 6.094 Å drawn for later reference. The wavy character in (b)
is due to the underlying spline interpolation of the corresponding ab-initio data. Energies are given with
respect to the free atom-atom-atom limit and were computed at MRCI(lcECP+CPP)/UET15 level of
theory. Freely adapted from J. Schnabel et al., Phys. Rev. A 103, 022820 (2021).

4.3.2 Exploring the system by special cuts through the PESs

The identification of appropriate states for PA first requires a basic understanding
of occurring coupling and crossing effects. Hence, the following investigations start
with special cuts through the potential energy surfaces of both doublet and quartet
manifolds.

Two-dimensional cuts in the C2v subspace

To obtain a first insight it is sufficient to restrict the investigations to the C2v subspace,
since all equilibrium structures show at least isosceles triangular configurations, which
is further discussed in Sec. 4.3.3. This is moreover the reason that in the following all
electronic states are labeled according to the IRREPs of the C2v point group. With the
definition of coordinates as illustrated in Fig. 4.3 (a), A1 and B1 states are symmetric,
and B2 and A2 states are antisymmetric with respect to reflections of the electronic
coordinates at the molecular plane. The topology of the two-dimensional potential-
energy landscapes of the quartet ground state 1 B4

1 and the first excited quartet state
1 A4

2 is shown in Fig. 4.4. This corresponds to a two-dimensional scan of C2v nuclear
configurations, i.e. to one of the space diagonal surfaces shown in Fig. 4.3 (c). As
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depicted in Fig. 4.4 (a), the global minimum of the quartet ground state occurs at
equilateral triangular (D3h) symmetry and the PES is rather shallow. Linear geometries
correspond in this cut to R1 = 0, where the 1 B4

1 state reveals a saddle point marking
the transition to the inverted structure. These findings are in perfect agreement with
Soldán’s previous work [100] on the quartet ground state PES of Rb3. Moreover, it
turns out that the quartet ground state is well isolated from excited quartet states, with
crossings occurring only high above the dissociation limits and thus high above the
global minimum. From Fig. 4.4 (b) it is apparent that the global minimum on the PES
of the first excited quartet state 1 A4

2 occurs at C2v symmetry. This distortion from the
high-symmetry configuration is considered in detail in Secs. 4.4 and 4.5 and is due to
the JT effect forming a twofold degenerate 1 E4 ′′ state at D3h geometries. The PES of
the 1 A4

2 state rises significantly steeper than the shallow quartet ground-state PES.

One-dimensional D3h and C2v cuts

The presence of E⊗ e and (E + A)⊗ e (pseudo) Jahn-Teller vibronic coupling effects,
as discussed in detail in Sec. 2.3, are generic for homonuclear trimers. Equilateral
triangular configurations of X3 systems display D3h symmetry and allow for twofold
degenerate E terms. Since Molpro can only use Abelian point group symmetries, the
degenerate E terms have to be identified by hand from Fig. 4.5 using Tab. A.1. The
JT theorem states [152, 161, 164, 183] that the PES of at least one of the degenerate
states has no extremum at the high-symmetry point. According to Eq. (2.50) this
implies a non-vanishing generalized force at the point of degeneracy leading to a
stabilization of the system by symmetry-lowering. In the present case, E′ states branch
off into A1 + B1, and E′′ states branch off into B2 + A2 states, each with the formation
of a COIN at the D3h reference point. These (pseudo) Jahn-Teller interactions can be
already deduced from one-dimensional scans along the D3h subspace indicated by the
diagonal shown in white in Fig. 4.4 (a). The resulting PECs are shown in Fig. 4.5 in
the space of internal coordinates (R12 = R23 = R13). The JT-induced energy lowering
with respect to distortions to C2v configurations is indicated by the insets in Fig. 4.5.
Potential energy curves which are degenerate over the whole range shown in Fig. 4.5
correspond to Jahn-Teller E states and are thus actually one-dimensional COIN seams
in the full three-dimensional configuration space.

The doublet ground states of alkali trimers are well known to undergo JT distortions
with respective global minima occurring at obtuse triangular C2v geometries [80–84,
86–97]. This is also illustrated in Fig. 4.5 (a) by the correlating inset. Moreover, the
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2 2A1

2 2B1

3 2A1

1 2A2

1 2B2

2 2B2

en
er

gy

Q3

1 2B1

1 2A1 1 2E′

0

5

10

15

20

25

2 4 6 8 10 12 14 16

(b)

E
[1

00
0

cm
−
1
]

R12 = R23 = R13 [Å]
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F igure 4.5. : One-dimensional D3h cut through the PESs along the space diagonal in the perimetric
coordinate space shown Fig. 4.3 (c) or along the diagonal shown in white in Fig. 4.4 (a) (equilateral
triangular configuration maintained). Doublet states are shown in (a) and quartet states in (b), re-
spectively. Only states discussed in the text are colored, while remaining states are indicated by the
gray lines. Energies are given with respect to the free atom-atom-atom limit and were computed at
MRCI(lcECP+CPP)/UET15 level of theory. Freely adapted from J. Schnabel et al., Phys. Rev. A 103, 022820
(2021).

presence of combined JT and PJT coupling, cf. e.g., Ref. [86] for Na3, is also indicated
in Fig. 4.5. The 2 A2

1 and 2 B2
1 states are degenerate components of the 2 E2 ′ term

and the 3 A2
1 states is nearby in energy. Hence, as outlined in Sec. 2.3.3, the triple

of states {2 A2
1, 2 B2

1, 3 A4
1} constitutes a typical scenario for combined JT plus PJT

interactions [182].
In contrast to the doublet ground state, the quartet ground state is free of JT

distortions, with its global minimum occurring at D3h configurations. The first two
excited quartet states are degenerate along a one-dimensional COIN seam in the D3h

subspace forming the 1 E4 ′′ term. This term splits into the 1 A4
2 and 1 B4

2 states when
the symmetry is lowered. A further peculiarity is made up of the subset of quadruple
interactions of quartet states:

Q = {1 A4
1, 2 B4

1, 2 A4
1, 3 B4

1} . (4.6)

As illustrated in Fig. 4.5 (b), these states are nearly degenerate in the region from
≈ 5.0− 7.0 Å. Section 4.6 attempts to unravel the underlying coupling mechanisms.

The horizontal line in Fig. 4.4 (a) indicates a special one-dimensional cut along C2v
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1 2B1

2 2B1

1 2A1

2 2A1

3 2A1

1 2B2

2 2B2

1 2A2

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18

(b)

E
[1

00
0

cm
−
1
]

R12 = R13 [Å]
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F igure 4.6. : Upper panel: One-dimensional C2v cut through the PESs along one special direction on
one of the space diagonal surfaces shown in Fig. 4.3 (c). This C2v scan corresponds to R23 = Re(a 3Σu) =

6.094 Å and thus to the horizontal white line shown in Fig. 4.4 (a). Doublets are shown in (a) and
quartets in (b), respectively. Lower panel: One-dimensional scans along the JT active bending mode Q3

of Eq. (2.51), with Q2 = 0.0 Å, distorting equilateral triangular configurations to C2v geometries. For
Q3 6= 0 the states are labeled according to the IRREPs of the C2v point group while the corresponding
D3h IRREPs are given at Q3 = 0. Doublet states are depicted in (c) for Q1 = 8.1701 Å while quartet
states are shown in (d) for Q1 = 9.1989 Å. The area highlighted in gray represents the manifold Q of
excited quartet states where a complicated interplay between avoided crossings, conical intersections
and JT interactions is present (see text and Sec. 4.6 for details). Energies are given with respect to
the 3 · Rb limit and were computed at MRCI(lcECP+CPP)/UET15 level of theory. Freely adapted from J.
Schnabel et al., Phys. Rev. A 103, 022820 (2021).
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4.3 General overview of the Rb3 system

configurations and corresponds to a collision trajectory between a Rb2 molecule and
a Rb atom. For this cut, the distance R23 was fixed to the equilibrium distance of the
lowest triplet state a Σ3

u of Rb2. The resulting potential energy curves in the space
of internal coordinates R12 = R13 in Fig. 4.6 (a) and (b) give a first impression of the
expected states possibly involved in a PA1 scheme. The density of states increases for
higher energies for both doublet and quartet states and thus decreases the chance to
find sufficiently long-lived target states for PA experiments [245].

Inspired by Refs. [92, 95, 96, 99], a better understanding of present JT and PJT cou-
pling effects in Rb3 may be obtained from one-dimensional scans along the symmetric
distortion coordinate Q3 according to Eq. (2.51) preserving at least C2v symmetry. This
represents one dimension of the 2D branching space formally spanned by Q2 and Q3

and thus gives an improved notion of the topology of the full 3D potential-energy-
landscape near the central degeneracy at Q2 = Q3 = 0.0 Å. The resulting cuts are
shown in Fig. 4.6 (c) and (d). In this regard it is worth mentioning that the D3h scans
in Fig. 4.5 can be viewed as cuts along the totally symmetric breathing mode Q1 with
Q2 = Q3 = 0.0 Å, cf. Eq. (2.51).

In general, the doublet states in Fig. 4.6 (c) may be divided in three classes of
interactions: non-interacting states, JT states and PJT states. The first class is made up
of states that are free of strong JT interactions and which show minima near equilateral
configurations. Merely the 1 B2

2 and 4 B2
1 states belong to this class. Jahn-Teller

interacting states are those which cross at Q3 = 0.0 Å and lift the degeneracy for
Q3 6= 0.0 Å. These JT states form a one-dimensional COIN seam in the subspace of D3h

configurations as indicated in Fig. 4.5 (a). The third class is made up of near-in-energy
E and A states (in terms of D3h IRREPs, cf. Tabs. A.1 and A.7): the (E + A)⊗ e PJTE as
outlined in Sec. 2.3.3. Due to the interaction with the third state, the doubly degenerate
E terms may not always show COINs rather than glancing intersections at Q3 = 0.0 Å.
If this is the case, only at a single point in the D3h subspace all three states become
degenerate and form a triple COIN. This intersection is analogous to the JT one, but it
is not required by symmetry. This observation may be modeled by Eq. (2.81), which is
based on the assumption that the PJT interaction supersedes the JT one justifying thus
the approximation VE

ie ≈ 0 , i = {1, 2}, which then moreover implies that the central
COIN vanishes. This seems to reproduce the topology shown in Fig. 4.6 (c) and is
in agreement with what have been reported for the doublet states of Na3 in Ref. [86].
However, as insinuated, the absence of a central COIN for triply interacting states is not
generally implied by the PJT theory for X3 systems. In particular, as also pointed out
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for Na3 in Sec. 2.3.3 and in Ref. [88], it remains to properly investigate the parameter
range for which vanishing JT coupling parameters (i.e. VE

ie ≈ 0 , i = {1, 2}), i.e. a pure
PJT model, is a good approximation. Vice versa, it shall be investigated if there is a
parameter range for which the JT interaction supersedes the PJT one. In contrast to
what is reported here, Rocha and Varandas [152] found central COINs in their PJT
model for C3. Furthermore, to obtain a full three-dimensional picture, couplings to the
Q1 mode should be considered as well [91].

The quartet states as shown in Fig. 4.6 (d) may be classified accordingly with a fourth
class made up by the area highlighted in gray marking the peculiar sub-manifold of
quadruple interactions Q after Eq. (4.6). This complicated coupling situation describes
an interplay of JT couplings and avoided crossings and is analyzed in more detail in
Sec. 4.6.

More information on the JT and PJT states shown in Fig. 4.6 (c) and (d) are sum-
marized in Tab. 4.3. The lowest COIN corresponds to the respective minimum on the
one-dimensional D3h PEC and can be used to define a stabilization energy of the global
minimum on the respective JT PES [86]. Table 4.3 reveals that the lowest COINs on the
quartet 1 E4 ′′ and doublet 1 E2 ′′ JT manifolds occur at the exact same position. This
is due to the underlying orbital degeneracies, which are the same for both states. A
notion of the topology of the resulting JT-PESs in the 2D branching space according
to Fig. 2.4 can be deduced from the specification of the kind of extrema obtained for
the components forming the JT pairs. Explicit values of the extremal points are given
in Tabs. 4.4, D.1 and D.3. The energetically high-lying doublet and quartet JT states
3 E2 ′ and 3 E4 ′ as shown in Figs. 4.6 (c) and (d), respectively, correspond to cases where
the MRCI approach reaches its limits. The corresponding geometry optimization did
not properly converge and thus these states are not listed in Tab. 4.3. Figure 4.6 (c)
suggests that the 3 E2 ′ state shows PJT interaction with the close-in-energy 4 A2

1 state.
A final classification of the PJT interaction, possibly present between the 2 E4 ′′ JT pair
and either the 3 A4

2 or the 3 B4
2 state, requires to model the ab-initio data through a

PJT Hamiltonian of the form given in Eq. (2.76).

Linear configurations and corresponding coupling effects

One-dimensional cuts along the D∞h subspace for R1 = 0 [cf. Fig. 4.3 (c)] are shown
in Fig. 4.7. In the case of the Li trimer it has been shown [83, 100, 104, 106] that the
1 Σ4 +

u and 1 Π4
g state intersect and form a secondary D∞h minimum on the quartet

ground state PES. Moreover, the states cross on a COIN seam that lies below the
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Table 4.3. : Overview on (pseudo) Jahn-Teller pairs of the doublet and quartet states of Rb3 as shown
in Fig. 4.6 (c) and (d). Calculations were performed at MRCI(lcECP+CPP)/UET15 level of theory and
energies are given relative to the 3 · Rb asymptote. At D3h geometries there are degenerate states
which branch off into their correlating components when lowering the symmetry to C2v. The reported
geometries and energies E[min(COIN)] refer to the minima on the one-dimensional D3h PECs shown in
Fig. 4.5. The classification denotes if the interaction is due to a pure JT coupling, a PJT coupling or if it
is part of Q after Eq. (4.6). The kind of extrema corresponding to the components gives a notion of the
topology of the JT-PES in the 2D branching space, cf. Fig. 2.4.

State (D3h) Components (C2v)
R12, R23, R13 [Å]

E[min(COIN)] [cm−1] Classification
(R1, R2, R3)

1 E4 ′ 1 A4
1 + 2 B4

1
4.879, 4.879, 4.879

7202 part of Q manifold
(2.440, 2.440, 2.440)

2 E4 ′ 3 A4
1 + 4 B4

1
5.305, 5.305, 5.305

10302
JT pair

(2.653, 2.653, 2.653) 3 A4
1 saddle point, 4 B4

1 minimum

1 E4 ′′ 1 B4
2 + 1 A4

2
4.500, 4.500, 4.500

4146
JT pair

(2.250, 2.250, 2.250) 1 B4
2 saddle point, 1 A4

2 minimum

2 E4 ′′ 2 B4
2 + 2 A4

2
4.916, 4.916, 4.916

11271 possibly PJT with 3 A4
2 or 3 B4

2(2.458, 2.458, 2.458)

1 E2 ′ 1 A2
1 + 1 B2

1
4.546, 4.546, 4.546

-5494
JT pair

(2.273, 2.273, 2.273) 1 A2
1 saddle point, 1 B2

1 minimum

2 E2 ′ 2 A2
1 + 2 B2

1
4.824, 4.824, 4.824

1167 PJT with 3 A2
1(2.412, 2.412, 2.412)

1 E2 ′′ 2 B2
2 + 1 A2

2
4.500, 4.500, 4.500

4624
JT pair

(2.250, 2.250, 2.250) 2 B2
2 saddle point, 1 A2

2 minimum

three-atom dissociation limit and due to its proximity to the atom-diatom dissociation
limit it could potentially influence the low-energy atom-diatom collisions. The cut
in Fig. 4.7 (b) shows that for Rb3 no secondary minimum is formed on the quartet
ground state PES since the crossing occurs high above the three-atom limit and thus
also high above the atom-diatom dissociation limit. This was also demonstrated by
Soldán in Ref. [100].

In general, linear configurations of homonuclear trimers have four degrees of free-
dom and usually occur at D∞h symmetry. This point group allows for twofold degen-
erate Π terms, which have to be identified by hand (calculations were performed using
the C2v symmetry group) from Fig. 4.7 using Tab. A.8. Again, degenerate states give
rise to rovibrational coupling effects. The corresponding theoretical basics were out-
lined in Sec. 2.4 and are mainly based on the findings from Ref. [163]. The longstanding
belief that linear molecules in degenerate states are only affected by the Renner-Teller
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F igure 4.7. : One-dimensional D∞h cut through the PESs along the diagonal of the boundary plane
for R1 = 0 as shown in Fig. 4.3 (c). The central atom (1) in Fig. 4.3 (a) is fixed at the origin so that the
linear molecule is oriented along the x-axis. Doublet states are shown in (a) and quartet states in (b).
The states are labeled according to their corresponding C2v IRREPs and are assigned to their correlating
D∞h IRREPs after Tab. A.8. Doubly degenerate states form Π states. The insets illustrate the bending
instabilities of linear configurations with respect to triangular distortions due to a combined RTE plus
PJTE (see text). These calculations are based on an insertion scan of the central atom [cf. Fig. 4.3 (a)]
along the z-axis, while fixing the R23 coordinate. All energies are given with respect to the 3 · Rb limit
and were computed at MRCI(lcECP+CPP)/UET15 level of theory. Freely adapted from J. Schnabel et al.,
Phys. Rev. A 103, 022820 (2021).

effect has been reversed in this work and it was shown that bending instabilities are
only due to the PJTE. This led to the formulation of a combined RTE plus PJTE theory.
For homonuclear trimers close-in-energy Π and Σ states are of particular interest. As a
consequence of this combined pseudo Jahn-Teller and Renner-Teller interaction, two
A1 states, one of them arising from a Πu state, can mix for greater displacements along
D∞h geometries. This can be seen for both doublet and quartet states in Fig. 4.7. For
the energy range shown in Fig. 4.7, typical scenarios of bending instabilities due to a
combined RT plus PJT interaction are illustrated in the insets.

A deeper investigation of coupling mechanisms for linear configurations of Rb3 in
terms of the RTE or combined RTE plus PJTE theory is beyond the scope of this thesis.
This might be part of future investigations to fully understand occurring bending
instabilities on the one hand and stable linear configurations on the other hand.
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4.3.3 Equilibrium states

Useful information towards the realization of PA processes may be provided by the
electronic energies at the respective equilibrium geometries. A systematic overview
of these equilibrium energy levels of all doublet and quartet states of Rb3 within the
energy range investigated in this work is given in Fig. 4.8. The geometry optimiza-
tions for finding the equilibrium states started from D3h configurations followed by
lowering the symmetry to C2v geometries. Further decreasing the symmetry to Cs

allows for searching equilibrium structures of even lower symmetry. The topological
implications of the JT effect onto the potential-energy landscapes do not predict Cs

minima and neither revealed our analysis in this low-symmetry space. The explored
energy range contains all equilibrium states and corresponding term energies up to
the 5s + 2 · 5p asymptote. The energies of the Rb2+Rb or Rb+Rb+Rb dissociation
asymptotes are given in the middle panel. An unique assignment of the trimer states
to the Rb2+Rb asymptotes is only possible for the quartet ground state dissociating
into a Σ3

u + 5s. For cuts along one-dimensional C2v subspaces, as shown in Figs. 4.6 (a)
and (b), such assignments are also possible for the remaining trimer states both of
quartet and doublet spin multiplicity. In the general case, however, all Rb2+Rb asymp-
totes correlating with the respective trimer state symmetry are possible dissociation
channels [245]. The lowest doublet JT manifold 1 E2 ′ dissociates either to X Σ1

g + 5s or
to a Σ3

u + 5s. All excited doublet and quartet states given in Fig. 4.8 correlate to the
2 · 5s + 5p asymptote and thus to Rb2+Rb dissociation limits below that. So do most
of the states shown in Figs. 4.6 (c) and (d). For doublet states, both singlet and triplet
Rb2 states are possible. Merely the highly excited quartet states 2 B4

2, 3 B4
2 and 4 A4

1

correspond to the 5s + 2 · 5p asymptote and thus to the (1) Π3
u + 5p dissociation limit.

The top panel of Fig. 4.8 shows the ionized trimer states, which appear either in singlet
or triplet configuration. These Rb3

+ states could be useful if a resonance-enhanced
multi-photon ionization [279] scheme is used for the detection of previously generated
Rb3 species. All these findings, together with the corresponding harmonic vibrational
frequencies ν̃, are listed in Tab. 4.4 for triangular geometries and in Tab. 4.5 for D∞h

linear configurations.

These results are in good agreement with previous works on Rb3. Concerning
the quartet ground state PES of Rb3, Soldán [100] found the global minimum at
equilateral bond distances b with b = 5.450 Å and corresponding minimum energy
Emin = −1071 cm−1. These findings were based on a RHF-RCCSD(T) approach with a
[16s13p8d5f3g] basis set and the small-core pseudopotential ECP28MDF from Ref. [250].
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F igure 4.8. : Energy level diagram of the extremal points of doublet (right) and quartet (left) states of
Rb3 optimized at MRCI(lcECP+CPP)/UET15 level of theory. The dissociation asymptotes into Rb2+Rb
(with the corresponding equilibrium energies of the Rb2 states) or Rb+Rb+Rb are shown in the area
highlighted in blue. Levels given in black belong to triangular equilibrium configurations (i.e. D3h or
C2v symmetry) while levels given in green represent linear equilibrium configurations (all of them D∞h

symmetry). Light blue boxes mark selected Jahn-Teller pairs from Tab. 4.3, where the respective dashed
lines correspond to saddle points showing isosceles triangular geometry. Ionized Rb+

3 states are shown
at the top in terms of blue energy levels. All energies are given relative to the 3 · Rb [5s] limit. Freely
adapted from J. Schnabel et al., Phys. Rev. A 103, 022820 (2021).
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Table 4.4. : Synopsis of triangular (C2v and D3h) doublet and quartet states of Rb3 as well as the singlet
state of Rb3

+ computed at MRCI(lcECP+CPP)/UET15 level of theory. Equilibrium structures are given
in terms of the internal coordinates (perimetric coordinates) introduced in Fig. 4.3 and all corresponding
energies (Erel) are given relative to the (3 · 5s)–asymptote. The states are labeled according to the C2v

IRREPs while the corresponding assignment to D3h symmetry is given in parenthesis. This complements
the results of the energy level diagram of Fig. 4.8.

State (D3h)
R12, R23, R13 [Å]

Geometry Erel [cm−1] ν̃D3h [cm−1]a ν̃C2v [cm−1]a ν̃Cs [cm−1]a
(R1, R2, R3)

1 B4
1 (1 A4 ′

2)
5.311, 5.311, 5.311

D3h −1244 23.8 23.6 23.6
(2.656, 2.656, 2.656)

1 A4
2 (1 E4 ′′)

4.368, 5.700, 4.368
C2v 3397 50.2 17.2 35.8

(1.518, 2.850, 2.850)

2 B4
1 (1 E4 ′)

4.442, 8.179, 4.442
C2v 3962 40.3 9.6 40.4

(0.352, 4.090, 4.090)

1 A4
1 (1 E4 ′)

4.993, 8.076, 4.993
C2v 6766 32.8 9.8 50.7

(0.955, 4.038, 4.038)

2 A4
1 (1 A4 ′

1)
5.325, 5.325, 5.325

D3h 7722 32.0 83.9 83.9
(2.663, 2.663, 2.663)

3 B4
1 (2 A4 ′

2)
5.084, 5.084, 5.084

D3h 7869 43.0 58.2 58.2
(2.542, 2.542, 2.542)

2 B4
2 (2 E4 ′′)

4.443, 6.217, 4.443
C2v 9490 52.0 42.7 41.3

(1.335, 3.109, 3.109)

4 B4
1 (2 E4 ′)

5.283, 5.337, 5.283
C2v 10291 31.5 37.7 39.0

(2.615, 2.669, 2.669)

3 A4
1 (upper) (2 E4 ′)

4.687, 7.226, 4.687
C2v 11784 41.5 28.2 27.5

(1.074, 3.613, 3.613)

1 B2
1 (1 E2 ′)

4.379, 5.393, 4.379
C2v -6017 53.1 20.6 33.3

(1.682, 2.697, 2.697)

1 B2
2 (1 A2 ′′

2 )
4.276, 4.285, 4.276

C2v -1228 60.9 43.9 44.1
(2.134, 2.143, 2.143)

2 A2
1 (2 E2 ′)

4.398, 6.073, 4.398
C2v 229 50.4 26.7 42.1

(1.361, 3.037, 3.037)

3 A2
1 (1 A2 ′

1)
4.557, 4.557, 4.557

D3h 1898 51.9 100.6 100.6
(2.279, 2.279, 2.279)

1 A2
2 (1 E2 ′′)

4.337, 5.132, 4.337
C2v 4286 52.9 23.7 30.2

(1.771, 2.566, 2.566)

1 A1
1 ( A1 ′

1)
4.610, 4.610, 4.610

D3h 19942 53.2 36.6 36.5
(2.305, 2.305, 2.305)

a In general the assignment is not unique but usually ν̃D3h is Q1-like, ν̃C2v is Q3-like and ν̃Cs is Q2-like.
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Table 4.5. : Synopsis of linear (D∞h) doublet and quartet states of Rb3 as well as the triplet state of
Rb3

+ computed at MRCI(lcECP+CPP)/UET15 level of theory. Equilibrium structures are given in terms
of the internal coordinates (perimetric coordinates) introduced in Fig. 4.3 and all corresponding energies
(Erel) are given relative to the (3 · 5s)–asymptote. The states are labeled according to the C2v IRREPs
while the corresponding assignment to D∞h symmetry is given in parenthesis. This complements the
results of the energy level diagram of Fig. 4.8.

State (D∞h)
R12, R23, R13 [Å]

Erel [cm−1] ν̃symm [cm−1] ν̃asymm [cm−1] ν̃bending1
[cm−1] ν̃bending2

[cm−1]
(R1, R2, R3)

1 A4
2 + 2 B4

1 (1 Π4
g)a 4.435, 8.869, 4.435

4044 33.7 41.7 236.8 84.7
(0.000, 4.435, 4.435)

2 A4
1 (1 Σ4 +

g )b 4.937, 9.874, 4.937
7442 398.2 48.9 282.6 282.6

(0.000, 4.937, 4.937)

1 A2
1 (1 Σ2 +

g )
4.795, 9.590, 4.795

-2109 24.9 60.8 4.1 4.1
(0.000, 4.795, 4.795)

3 A2
1 (2 Σ2 +

g )b 4.440, 8.880, 4.440
3390 405.9 46.9 313.8 350.3

(0.000, 4.440, 4.440)

3 B2
1 (2 Σ2 +

u )
4.930, 9.860, 4.930

5647 27.7 48.4 169.6 169.6
(0.000, 4.930, 4.930)

1 B3
1 ( Σ3 +

u )
4.875, 9.749, 4.875

24043 30.3 49.7 6.3 6.3
(0.000, 4.875, 4.875)

a Renner-Teller pair with the 4B1 state turning out as saddle point at this linear configuration
b As a consequence of a combined pseudo Jahn-Teller and Renner-Teller interaction two A1 states, one of them arising from a Πu state, can mix for
greater displacements along D∞h geometries. This is also the reason for non-degenerate frequencies ν̃bending1,2

Hauser et al. [78, 96] reported bond distances b = 5.500 Å with a corresponding energy
Emin = −939 cm−1 and harmonic frequencies {ν̃D3h , ν̃C2v , ν̃Cs} = {18, 21, 21} cm−1

resulting from calculations at RHF-RCCSD(T) level of theory with the ECP28MDF
pseudopotential and the corresponding basis set augmented by a (1s, 1p, 1d) set of
diffuse functions. The present results, as listed in Tab. 4.4, reveal the global minimum of
the quartet ground state at a binding energy of −1244 cm−1, equilateral bond distances
of 5.311 Å, and harmonic frequencies of {ν̃D3h , ν̃C2v , ν̃Cs} = {23.8, 23.6, 23.6} cm−1.

The underlying JT interactions of the doublet ground state manifold lead to the a
1 E2 ′ potential-energy landscape with characteristics according to Fig. 2.4 (b). For the
global minimum on this lower PES sheet, Hauser et al. [95, 96] found bond distances of
R12 = R13 = 4.387 Å, R23 = 5.575 Å, and an equilibrium energy of Emin = −5321 cm−1.
The respective saddle point on the 1 E2 ′ PES was found at R12 = R13 = 4.951 Å, R23 =

4.220 Å with corresponding energy Esp = −5165 cm−1. Finally, the lowest COIN
was reported at equilateral bond distances b = 4.589 Å with a stabilization energy
of the global minimum from this COIN of Es[min(COIN)] = 591 cm−1. All these
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4.3 General overview of the Rb3 system

findings were based on RHF-UCCSD(T) calculations with the ECP28MDF and a
[14s11p6d3 f 1g] uncontracted even-tempered basis set derived from the scECP basis.
The corresponding numbers of this work can be deduced from Tabs. 4.3, 4.4 and D.3.
This results in a global minimum at bond distances R12 = R13 = 4.379 Å, R23 = 5.393 Å
with a corresponding binding energy of −6017 cm−1. The saddle point appears at
R12 = R13 = 4.863 Å, R23 = 4.197 Å with energy −5885 cm−1. The lowest COIN
is found at equilateral bond distances R12 = R23 = R13 = 4.546 Å leading to a
stabilization energy of 523 cm−1.

Hauser et al. [78, 96] moreover computed the vertical transition energy from the
quartet ground state to the high-spin 2 E4 ′ JT manifold. The calculations were
based on a modified version of the CASPT2 method (referred to as RS2C in Mol-
pro) with the ECP28MDF and the same basis set as described at last. In doing
so, they found E2 E4 ′←1 A4 ′

2
= 11530 cm−1. From Fig. 4.8 and Tab. 4.4 we obtain

E2 E4 ′←1 A4 ′
2
= 11535 cm−1. The corresponding experimental value [76, 79] is 11510 cm−1

referring to the lowest-energy maximum band of the measured band spectra apply-
ing laser-induced fluorescence (LIF) spectroscopy to Rb3 clusters formed on helium
nanodroplets.

A more detailed overview on all states including saddle points obtained within
the energy range up to the 5s + 2 · 5p asymptote is given in Tabs. D.1 to D.4 as well
as in Fig. D.1 of the Appendix D. Some of these saddle points define the barrier
heights between minima on the JT manifolds. In combination with Tab. 4.3 this
provides important information to get a notion of the topology of corresponding
potential-energy landscapes and serves as a starting point for subsequent JT analyses.

Technical remarks
Some peculiarities have to be considered carrying out the calculations corresponding to the
states listed in Tabs. 4.3, 4.4 and 4.5 and Tabs. D.1 to D.4 using Molpro:

• MRCI calculations performed with different computational point group symmetries
generally lead to different results

• Exact degeneracy of the 2 E4 ′ state at D3h configurations is only obtained for Cs

calculations using the AVAS scheme [223] for generating an appropriate active space.
A short note may be found in the Appendix C.2.2 with an example input in C.3. This
also accounts for the fact that the degeneracy is nearly symmetrically lifted when
lowering the symmetry to C2v; cf. Fig. 4.6 (d). These calculations were performed
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4 Towards Photoassociation Processes of Ultracold Rubidium Trimers

using the Molpro 2019.2 program package [252]

• An example input for a MRCI geometry optimization (using C2v symmetry) corre-
sponding to Tabs. 4.4 and 4.5 as well as Tabs. D.1 to D.4 is given in C.1

• Subsequent MRCI frequency calculations to characterize the obtained extremal points
are only possible without symmetry: see example input C.2.

4.3.4 Rotational constants

Besides equilibrium geometries and energies, rotational constants are important spec-
troscopic magnitudes. Within the rigid rotor approximation, the rotational constants
Ai , i ∈ {x, y, z} of a polyatomic molecule define the rotational term energies and are
given by

Ax =
h̄

4πcΘx
(4.7a)

Ay =
h̄

4πcΘy
(4.7b)

Az =
h̄

4πcΘz
, (4.7c)

with Θi , i ∈ {x, y, z} the principal moments of inertia. They are obtained as the
eigenvalues of the inertia tensor

Θij =
N

∑
k=1

mk

(
‖r‖2 δij − xixj

)
, (4.8)

which is a real symmetric rank-2 tensor and can thus be always diagonalized.
In general, it is only useful to calculate the inertia tensor with respect to the center of

mass. However, the molecule fixed coordinate system K′ according to Fig. 4.3 (a) does
not coincide with the center of mass system K. For obtaining the »correct« principal
moments of inertia to calculate the rotational constants after Eqs. (4.7), one has to
either account for the parallel axis theorem or transform to the center of mass system
first. In the center of mass system K, the inertia tensor is diagonal with

Θx =
2
3

m

(
R2

12 −
R2

23
4

)
=

2
3

m

(
R2

13 −
R2

23
4

)
(4.9a)

Θy =
1
3

m
(

R2
12 + R2

23

)
=

1
3

m
(

R2
13 + R2

23

)
(4.9b)

Θz =
1
2

mR2
23 , (4.9c)
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4.3 General overview of the Rb3 system

Table 4.6. : Overview of rotational constants for doublet and quartet states of Rb3 in triangular
configurations. The last row shows the rotational constants for the singlet state of Rb3

+. Numbers refer
to triatomic systems made up of the 87Rb isotope.

State (D3h) R12, R23, R13 [Å] Geometry Ax [cm−1] Ay [cm−1] Az [cm−1] Classification

1 B4
1 (1 A4 ′

2) 5.311, 5.311, 5.311 D3h 1.38 0.69 1.38 symmetric rotor

1 A4
2 (1 E4 ′′) 4.368, 5.700, 4.368 C2v 2.66 0.82 1.19 asymmetric rotor

2 B4
1 (1 E4 ′) 4.442, 8.179, 4.442 C2v 9.68 0.55 0.58 asymmetric rotor

1 A4
1 (1 E4 ′) 4.993, 8.076, 4.993 C2v 3.38 0.51 0.59 asymmetric rotor

2 A4
1 (1 A4 ′

1) 5.325, 5.325, 5.325 D3h 1.37 0.68 1.37 symmetric rotor

3 B4
1 (2 A4 ′

2) 5.084, 5.084, 5.084 D3h 1.50 0.75 1.50 symmetric rotor

2 B4
2 (2 E4 ′′) 4.443, 6.217, 4.443 C2v 2.89 0.74 1.00 asymmetric rotor

4 B4
1 (2 E4 ′) 5.283, 5.337, 5.283 C2v 1.40 0.69 1.36 asymmetric rotor

3 A4
1 (upper) (2 E4 ′) 4.687, 7.226, 4.687 C2v 3.27 0.61 0.74 asymmetric rotor

1 B2
1 (1 E2 ′) 4.379, 5.393, 4.379 C2v 2.44 0.86 1.33 asymmetric rotor

1 B2
2 (1 A2 ′′

2 ) 4.276, 4.285, 4.276 C2v 2.12 1.06 2.11 asymmetric rotor

2 A2
1 (2 E2 ′) 4.398, 6.073, 4.398 C2v 2.87 0.77 1.05 asymmetric rotor

3 A2
1 (1 A2 ′

1) 4.557, 4.557, 4.557 D3h 1.87 0.93 1.87 symmetric rotor

1 A2
2 (1 E2 ′′) 4.337, 5.132, 4.337 C2v 2.38 0.91 1.47 asymmetric rotor

1 A1
1 ( A1 ′

1) 4.610, 4.610, 4.610 D3h 1.82 0.91 1.82 symmetric rotor

where the mass m refers to the 87Rb isotope. For equilateral triangular configurations
it immediately follows Θx = Θz and corresponding molecules are usually denoted as
symmetric top ones. In the case of linear D∞h geometries it can be seen Θx = 0 and
Θy = Θz, which leaves the rotational constant Ax undefined. The rotational constants
corresponding to the equilibrium states listed in Tabs. 4.4 and 4.5 are given in Tab. 4.6
for triangular configurations and in Tab. 4.7 for linear geometries.

4.3.5 Spin-orbit coupling effects

A survey of expected SOC effects in the Rb3 system marks a further building block for
exploring the prospects of PA processes. As demonstrated in Tab. 4.1, the SOC induced
splitting of the atomic 2P state is ≈ 240 cm−1 and thus SOC is still a comparatively
weak effect. A posteriori, this justifies the labeling of states in terms of their total spin
as in the previous sections [245]. Nevertheless, as outlined in Sec. 2.3 and shown in
Fig. 2.5, SOC changes the topology of E⊗ e JT-PESs as they remove the central COIN.
Moreover, in particular for near-in-energy states, SOC may lead to a mixing of states
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4 Towards Photoassociation Processes of Ultracold Rubidium Trimers

Table 4.7. : Overview of rotational constants for doublet and quartet states of Rb3 in linear config-
urations. The last row shows the rotational constants for the triplet state of Rb3

+. Numbers refer to
triatomic systems made up of the 87Rb isotope.

State (D∞h) R12, R23, R13 [Å] Ax [cm−1] Ay [cm−1] Az [cm−1] Classification

1 A4
2 + 2 B4

1(1 Π4
g) 4.435, 8.869, 4.435 – 0.493 0.493 symmetric rotor

2 A4
1(1 Σ4 +

g ) 4.937, 9.874, 4.937 – 0.398 0.398 symmetric rotor

1 A2
1 (1 Σ2 +

g ) 4.795, 9.590, 4.795 – 0.422 0.422 symmetric rotor

3 A2
1 (2 Σ2 +

g ) 4.440, 8.880, 4.440 – 0.492 0.492 symmetric rotor

3 B2
1 (2 Σ2 +

u ) 4.930, 9.860, 4.930 – 0.399 0.399 symmetric rotor

1 B3
1 ( Σ3 +

u ) 4.875, 9.749, 4.875 – 0.408 0.408 symmetric rotor

of the same or of different spin. By computing the SO-matrix for selected nuclear
configuration one may get an estimate on the actual size of these couplings. Correlating
calculations were performed at the MRCI(lcECP+CPP)/UET15 level of theory using
the ECP-LS technique. In this approach, the spin-orbit coupling is obtained from the
ECP. The computations included 15 quartet (4/5/3/3) and 12 doublet (5/4/2/1) states,
according to the Molpro specific ordering of the IRREPs (A1/B1/B2/A2). That is, in
total a 84× 84 SO-matrix was set up and diagonalized.

A heat-map representation of the absolute values of the SO-matrix |ĤSO
ij | is given

in Fig. 4.9 at the equilibrium geometry of the first excited quartet state 1 A4
2. This

provides a qualitative overview, since it should look similar for comparable geometrical
configurations. The SO interactions are dominated by doublet-doublet (D ↔ D),
respectively quartet-quartet (Q↔ Q) couplings. The corresponding selection rules for
C2v configurations obtained from group theoretical arguments allow for ∆S = 0,±1 (a
detailed derivation is given in the Appendix A). Hence, there are also non-vanishing
doublet-quartet (D↔ Q and vice versa) couplings.

As shown in Fig. 4.9, the typical magnitude of the coupling strengths amounts to
20 to 70 cm−1, while the resulting energy shifts and zero-field splittings are much
smaller. Explicit values for these energy shifts and zero-field splittings corresponding
to the equilibrium states listed in Tabs. 4.4 and 4.5 are summarized in the Appendix
in Tabs. D.6 to D.9. For instance, the quartet ground state splits into the two states
E1/2 and E3/2 of the D3h spin double group [96], but the corresponding zero-field
splitting is less than 0.1 cm−1 and the energy lowering induced by the SOC is less
than 0.2 cm−1. This small splitting is due to most dominant couplings to the 1 B4

2
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F igure 4.9. : Heat-map representation of the absolute values of the spin-orbit matrix
√
|ĤSO

ij |2 (without
diagonal elements) for the Rb3 geometry fixed to the equilibrium configuration of the first excited
quartet state 1 A4

2 (see Tab. 4.4). Dashed black lines separate doublet-doublet (D↔D), quartet-quartet
(Q↔Q) and quartet-doublet (Q↔D) couplings. Dashed dark red lines mark the rows where the four
components corresponding to the 1 A4

2 state are found in the SO-matrix. The SO matrix is sorted
according to C2v IRREPs in the sequence (A1/B1/B2/A2), where each of them (in zeroth-order basis)
are ordered with respect to increasing energy and are accordingly combined with the ms spin function
starting from ms = +1/2 to ms = −1/2 for doublets and ms = +3/2 to ms = −3/2 for quartets. This
representation is complete with respect to the energetically lowest 12 doublet (5/4/2/1) and 15 quartet
states (4/5/3/3) leading to the 84× 84 SO-matrix. Freely adapted from J. Schnabel et al., Phys. Rev. A 103,
022820 (2021).

and 1 A4
2 states. For the latter, the SOC effects are again smaller than 1 cm−1 at its

respective equilibrium geometry. These small values are due to an effective quenching
of the orbital angular momentum in triangular geometries and due to a large energy
separation to other states. In general, SOC effects are expected to become larger for
highly symmetric configurations, in particular for linear geometries and in the presence
of spatial degeneracies. For instance, for the 1 Π4

g state, splittings and energy shifts
up to 200 cm−1 are computed.

The strength of SOC between the quartet ground state 1 B4
1 and the first excited

quartet state 1 A4
2, decays with respect to distortions from equilateral triangular
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4 Towards Photoassociation Processes of Ultracold Rubidium Trimers

geometries. Thus, only in the dissociation limits Rb2+Rb or 3 ·Rb, SOC effects become
larger. This is because Rb2 always has a well-defined C∞ axis. In conclusion, it can be
pointed out that SOC induced mixing of states near their equilibrium geometries are
not expected. This holds in particular for the quartet ground state and the first excited
quartet state.

Example input
The SO calculation corresponding to Fig. 4.9 is based on a calculation as defined by
input C.4.

4.4 Finding appropriate states for photoassociation

This section qualitatively discusses Franck-Condon overlaps and investigates electronic
transition dipole moments. In combination with the previous findings, this finally
allows for the identification of concrete and suitable PA transitions to potentially
produce long-lived trimer bound states.

4.4.1 Configuration space and electronic dipole transitions

The realization of PA processes necessarily requires non-vanishing electronic dipole
transition moments between the initial state and the corresponding excited state.
However, only if the correlating Franck-Condon factors are nonzero as well, this is
sufficient to drive PA transitions. In regard to trimer PA, this means that significant
overlap of the nuclear scattering wavefunction of Rb2+Rb or 3 · Rb collisions and
the molecular trimer vibrational wavefunction of the excited state is required. In an
initial approach it may be convenient to first explore the prospects for producing
deeply bound excited trimers near the vibrational ground state for reasons of increased
stability, lifetime and simplicity. The configuration space survey in Fig. 4.10 (a) shows
that a number of excited doublet and quartet equilibrium structures are in close
proximity to the inner turning points (ITPs) of the scattering wavefunction. Since the
scattering wavefunction typically exhibits a local maximum at the ITP, this suggests
that favorable Franck-Condon factors might be found for photoassociating excited
trimer states in their equilibrium geometry [245]; cf. Fig. 4.1 (b) for visual guidance.
For triatomic molecules, the ITPs are 2D surfaces in the complete 3D configuration
space, as indicated in Fig. D.2. They represent points on the quartet ground state PES
that equal a certain energy of the scattering state. For the case of PA1, i.e. Rb2+Rb,
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F igure 4.10. : Inner-turning points (ITPs) and locations of equilibrium geometries in the configuration
space of perimetric coordinates. (a) As all equilibrium geometries show at least C2v symmetry the
configuration space survey can be restricted to one of the space diagonal surfaces shown in Fig. 4.3 (c),
where the diagonal light blue line marks D3h configurations. ITPs on the quartet ground-state PES
with respect to either the Rb2 + Rb (ITP250) or 3 · Rb (ITP0) dissociation scenarios are given in green
and pink, respectively. States lying close to this lines are promising candidates for showing good
Franck-Condon factors. Section 4.4 focuses on the 1 A4

2 state highlighted in orange. The numbers given
in (b) along both ITP lines represent the electronic dipole transition strengths (in units of [D2]) between
the quartet ground state and this 1 A4

2 state at the corrsponding ITP locations. The numbers given in
(b) do not correlate with the equilibrium geometries depicted in (a). The transition dipole strength at
the equilibrium geometry of the first excited quartet state amounts to 0.018 D2. The ellipses shown in
(a) and (b) give an estimate of the size of the vibrational ground state wavefunction for the 1 A4

2 state.
Freely adapted from J. Schnabel et al., Phys. Rev. A 103, 022820 (2021).

this energy is given by the negative binding energy of the a Σ3
u state with ≈ 250 cm−1.

For 3 · Rb collisions, i.e. PA2, the energy is approximately zero. Both ITP locations, i.e.
ITP250 and ITP0 are given in Fig. 4.10. Since all equilibrium geometries show at least
C2v symmetry, this view corresponds to one of the three equivalent space diagonal
surfaces as shown in Fig. 4.3 (c).

As mentioned in Sec. 4.1, PA2 at short distances, i.e. at ITP locations, is expected
to be rather unlikely due to the effective repulsive short-range barrier reported in
Ref. [70]. But in the long-range PA2 should be possible. The feasibility of PA1 at large
distances has been shown in Ref. [109].

The identification of appropriate excited states to drive PA transitions is finally
determined by the electronic dipole transition moment. In C2v symmetry electronic
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dipole transitions with ∆S = 0 are allowed between all states except transitions between
A1 and A2 as well as B1 and B2. The corresponding selection rules are derived in
the Appendix A.2. From a theoretically point of view, due to the more complicated
electronic structure (multireference character) of the doublet ground state and the
more complex character due to the underlying JT effect, it is simpler to confine oneself
to the quartet manifold of states. In fact, in realistic experimental setups there is often
a magnetic field present [107]. This restricts collisions of molecules and atoms to
high-spin PESs and provides, to some degree, more control. Since the density of states
increases with increasing energy, the chance for finding sufficiently long-lived target
states for PA experiments decreases. Therefore, low-lying states shall be considered.
Combining this with the findings that the transition between the quartet ground state
and the first excited quartet state (1 A4

2) is symmetry-allowed and in close proximity
to the ITP lines, the following discussion will focus on this state.

The specific dipole transition strengths (in units of [D2]) between the quartet ground
state and the 1 A4

2 state at ITP configurations are shown in Fig. 4.10 (b) in the subspace
of C2v geometries. The magnitudes along the two ITP lines are approximately the same
and in both cases no considerable changes are obtained in Cs direction. Explicit values
for scans in Cs direction may be found in Fig D.2, which moreover indicates the actual
topology of the 2D ITP250 surface. Close to the D3h subspace (diagonal light blue line),
the transition strengths become vanishingly small. This is due to the fact that for D3h

geometries the 1 A4
2 state forms one component of the twofold degenerate 1 E4 ′′ JT

state and the quartet ground state is described by the A′2 IRREP of the D3h point group.
In Appendix A.1, it is shown that electronic dipole transitions between these two states
are zero by symmetry. For C2v configurations admixture of further components makes
the transition non-vanishing, but it remains rather small.

The extent of the vibrational ground-state wavefunction of the 1 A4
2 state can be

estimated from the harmonic frequencies in Tab. 4.4 and from the topology of the 2D
PES in Fig. 4.4 (b). To zeroth-order, the size associated with each normal mode i can
be approximated by the harmonic oscillator length. It can be derived from the one-
dimensional Schrödinger equation for a particle of reduced mass µ (for homonuclear
triatomics µ = m/

√
3) moving in a harmonic potential, yielding for 87Rb

xi =

√
h̄

µωi
=

√ √
3h̄

100 ·m(87Rb) · cν̃i
, (4.10)

with the speed of light c and the mass m of 87Rb. As already seen in Fig. 4.4 (b),
the PES in this region takes on the form of a rotated ellipse. Equation (4.10) yields
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a = 0.495 Å for the semi-major axis and b = 0.290 Å for the semi-minor axis using
the corresponding values for ν̃D3h and ν̃C2v from Tab. 4.4. This ellipse is indicated in
Fig. 4.10. Since it shows good overlap with the ITPs, a sizeable Franck-Condon factor
can be expected.

4.4.2 The 1 4E′′ Jahn-Teller pair and surrounding interactions

As repeatedly outlined in the previous sections and listed in Tab. 4.3 the first excited
quartet state 1 A4

2 forms, together with the 1 B4
2 state, the 1 E4 ′′ JT manifold. The

two states are degenerate for every equilateral triangular geometry (D3h point group)
and are thus paradigmatic for the E⊗ e JT effect of homonuclear trimer systems that
produces a one-dimensional COIN seam in the D3h subspace embedded in the full 3D
configuration space. A detailed discussion of the foundations of JT theory was given in
Sec. 2.3.2. In the context of PA processes it is important to note that due to underlying
JT interactions the 1 A4

2 and 1 B4
2 states cannot be viewed separately as one would be

tempted by the incomplete view from the C2v symmetry subspace. Here, both states are
of different symmetry and their corresponding PESs can intersect. However, in general
the Rb3 system is characterized by the Cs point group, where both states fall into the
same IRREP A′′ and thus the associated PESs avoid each other. This is illustrated in
Fig. 4.11 (a) and reveals the origin of discontinuities. These facts are further supported
by the following topological implications of JT potential-energy-landscapes.

When lowering the symmetry, by scanning along the asymmetric stretch mode Q2

and/or the bending mode Q3, the central symmetry-required COIN is lifted and both
states branch off forming a lower PES sheet E− and a upper PES E+. The former shows
the tricorn topology with three equivalent minima (of 1 A4

2 character) alternating
regularly with three equivalent saddle points (of 1 B4

2 character). This lower PES sheet
in the Q2 − Q3-branching space is illustrated by the lower inset in Fig. 4.11 (a). The
upper surface E+ is a paraboloid of revolution about the center at Q2 = Q3 = 0 [86], as
shown in Fig. 2.4 (a). The inset on the upper left of Fig. 4.11 (a) indicates, in accordance
with the underlying theory from Sec. 2.3.2, that including SOC removes the central
COIN [171–175] and leads to an energy splitting of ∆ ≈ 10− 20 cm−1 between the
corresponding Kramers pairs of E− and E+. The sizes of these splittings again confirm
that SOC is a comparatively weak effect.

The one-dimensional COIN seam occurs for Q2 = Q3 = 0 and is illustrated in
Fig. 4.11 (b) in the D3h-C2v subspace of Q1 and Q3. It also shows a contour plot of
the E− surface. The energetically lowest COIN is found for R1 = R2 = R3 = 2.250 Å
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7.2
7.6

8.0
8.4

Q1 [Å]

3.0 3.5 4.0 4.5 5.0 5.5 6.0

F igure 4.11. : The first two excited quartet states 1 4B2 and 1 4A2 (according to the simplified C2v

nomenclature) are degenerate for D3h configurations forming the 1 4E′′ Jahn-Teller pair. A complete
picture of the underlying physics can only be obtained from a consideration in terms of the Cs point
group. For each D3h configuration the two states reveal a conical intersection (COIN) leading to a
one-dimensional COIN seam in the full 3D configuration space. By scanning along a symmetry-lowering
coordinate, e.g. along the C2v preserving Q3-mode, the two states split; see (a) for Q1 = 8.335 Å and
Q2 = 0.0 Å. Since both states undergo the Jahn-Teller effect they cannot be viewed separately, as
suggested by the general description in Cs symmetry (1 4B2 and 1 4A2 both fall into the IRREP A′′). This
leads to the formation of a lower PES sheet E− showing tricorn topology and a parabolically shaped
upper surface E+. The former shows three equivalent minima alternating regularly with three saddle
points, separated by the localization energy Eloc = 225 cm−1. The global minimum on E− is of 1 A4

2

character while the saddle point is of 1 B4
2 character as seen in (a) for Q1 = 8.335 Å. Spin-orbit coupling

(SOC) removes the COIN and splits both parts of the JT surface by ∆ as shown by the inset on the top
left in (a). The topology of the PESs in the two-dimensional subspace of Q1 and Q3 is shown in (b). The
discontinuities at Q3 = 0.0 Å correspond to D3h geometries and represent the one-dimensional COIN
seam. The horizontal white line at the bottom indicates the one-dimensional cut shown in (a). Energies
are given with respect to the 3 · Rb limit and were computed at MRCI(lcECP+CPP)/UET15 level of
theory. Freely adapted from J. Schnabel et al., Phys. Rev. A 103, 022820 (2021).
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with an energy Emin(COIN) = 4146 cm−1, as listed in Tab. 4.3. As mentioned above, it is
convenient to specify a stabilization energy Es of the global minima on E− from the
central COINs. Another useful quantity is the localization energy Eloc defining the
barrier height in the tricorn potential. In the lower inset of Fig. 4.11 (a) this defines the
energy barrier for transitions between the three equivalent minima on E− separated by
three saddle points. Relative to the energetically lowest COIN the stabilization energy
becomes Es[min(COIN)] = 749 cm−1 while for a cut through the 1 A4

2 minimum it
yields Es[min(1 A4

2)] = 991 cm−1 as indicated in Fig. 4.11 (a). The localization energy
is Eloc = 225 cm−1 (obtained from Tab. D.1). The ambiguity in defining the stabilization
energy as well as the graphical definition of Eloc is illustrated in Fig. D.3.

Due to the small electronic dipole transition moments between the quartet ground
state and the first excited quartet state, cf. Fig. 4.10 (b), one might doubt the applica-
bility of the 1 A4

2 state for use in PA experiments. Nevertheless, it is suggested, as in
Ref. [245], for use as a promising candidate for realizing PA processes of Rb3. This is
explained by the reasons given below.

First, the global minimum of the 1 A4
2 state is sufficiently isolated from surrounding

intersections with either doublet or quartet states due to the low density of states. A
corresponding study in close proximity to the global minimum is shown in Fig. 4.12
for scans along the perimetric coordinate R1 with R2 and R3 adjusted such that either
C2v or nearby Cs configurations are realized. Only the 2 B2

1 and 3 A2
1 states show

intersections close to the 1 A4
2 minimum. The energetically closest intersection is

illustrated in Fig. 4.12 (b) and emerges at C2v symmetry with the 3 A2
1 state for

R2 = R3 = 2.65 Å and R1 ≈ 1.7 Å. Figure 4.12 (a) shows that for Cs geometries
intersections with the 2 B2

1 state move slightly closer to the minimum of the first
excited quartet state, while the 3 A2

1 intersections approximately remain at the same
position. But all intersections occur & 60 cm−1 away from the 1 A4

2 minimum. Since
realistic experiments often apply magnetic fields to obtain only spin-polarized states,
the near doublet intersections might actually not be problematic at all. Furthermore,
as mentioned above, the 1 A4

2 minimum is stabilized from COINs by Es[min(COIN)]

or Es[min(1 A4
2)].

In the presence of SOC the JT potential-energy landscapes are locally described by

Eqs. (2.75) showing that for large $ =
√

Q2
2 + Q2

3, which measures distortions from D3h

symmetry to acute C2v triangular geometries, the SO contribution vanishes as 1/$ [96,
171]. By scanning the configuration space around the 1 A4

2 equilibrium geometry,
strongest SOC are found to the quartet ground state 1 B4

1 and to the 1 A4
1 state with
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F igure 4.12. : One-dimensional scans along the perimetric coordinate R1 for different settings of
R2 and R3 to study intersections in proximity to the 1 A4

2 global minimum. (a) Solid and dashed
lines represent quartet and doublet states, respectively for C2v scans with R2 = R3 = 2.85 Å (1 A4

2

global minimum at R1 = 1.518 Å; cf. Tab. 4.4). Symbols represent geometries which are slightly Cs

distorted, with circles and squares corresponding to quartet and doublet states, respectively. Filled
symbols represent configurations with R2 = 2.85 Å and R3 = 2.8 Å while open symbols correspond
to R2 = 2.85 Å and R3 = 2.55 Å [cf. Fig. 4.3 (c)]. (b) C2v scan with R2 = R3 = 2.65 Å where solid
and dashed lines represent quartet and doublet states, respectively. Energies are given with respect to
the 3 · Rb limit and were computed at MRCI(lcECP+CPP)/UET15 level of theory. Freely adapted from J.
Schnabel et al., Phys. Rev. A 103, 022820 (2021).

typical magnitudes between 30 and 50 cm−1. According to Tab. 4.4, the 1 A4
1 state

shows its global minimum at Emin(1 A4
1) = 6766 cm−1 and is thus well separated from

the first excited quartet state. The same scans reveal that spin-orbit couplings to doublet
states are slightly weaker with interactions between 1 A4

2 and the 2 A2
1, 3 A2

1, 4 A2
1,

5 A2
1, 3 B2

1, and 4 B2
1 states in the order of 10 to 25 cm−1. Those equilibrium states

are found either well below the minimum of the 1 A4
2 state at 229 cm−1 or 1898 cm−1,

respectively, or well above, starting from 5431 cm−1 as obtained from Tab. D.3.

Example input for a Q3 scan including SOC
The example input C.5 shows how to perform a calculation corresponding to the upper left
inset of Fig. 4.11 (a), i.e. including SOC to Q3 scans to remove the central COIN.
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4.5 Jahn-Teller analysis of the 1 4E′′ state

The topology of the 1 E4 ′′ PES, as illustrated in the lower inset of Fig. 4.11 (a), can be
further analyzed and eventually analytically modeled by means of the (non-relativistic)
E⊗ e Jahn-Teller theory as presented in Sec. 2.3.2. This involves diagonalizing the
potential part of the JT Hamiltonian according to Eq. (2.60) to obtain an analytic
representation of the potential-energy landscape in the two-dimensional branching
space spanned by the JT active modes Q2 and Q3. The inclusion of quadratic JT
coupling parameters leads to the form given in Eq. (2.62). These JT parameters are
obtained from fits to ab-initio data and can be used to generate theoretical predictions
for vibrational spectra [96]. As mentioned in Sec. 2.3.2 including up to quadratic terms
is only a good approximation for matching the ab-initio data if the extrema (minium
and saddle points) occur near the central COIN. In this regard, the analysis of some
doublet and quartet JT manifolds in Refs. [95, 96] revealed that cubic terms were
necessary to sufficiently reproduce the ab-initio data. The resulting PES manifold EJT3

±
follows from Eq. (2.59) using polar coordinates according to Eq. (2.52) and becomes

EJT3
± ($, ϕ) = V2a$2 + V3a cos(3ϕ)$3 ± $

[
V2

1e + 2V1eV2e cos(3ϕ)$

+ (2V1eV3e + V2
2e)$

2 + 2V2eV3e cos(3ϕ)$3 + V2
3e$

4] 1
2 , (4.11)

with V`a , ` ∈ {2, 3} the elastic and cubic, respectively, force constants and Vie , i ∈
{1, 2, 3} the linear/quadratic/cubic coupling parameters.

Equation (4.11) demonstrates that the V3a and V2e terms produce the same kind of
cos(3ϕ) warping. However, there is no reason to prefer one term over the other in
the subsequent fitting procedure to obtain the JT parameters [95]. To this end, it has
been shown in Ref. [166] that the two contributions to the PES can be separated by
analyzing the oscillatory behavior of both branches E−($, ϕ) and E+($, ϕ) individually.
Therefore, Eq. (4.11) is first expanded up to third order in $, yielding

EJT3
± ($, ϕ) ≈ V2a$2 + V3a cos(3ϕ)$3

±
[

$V1e + V2e cos(3ϕ)$2 +
V2

2e
2V1e

sin2(3ϕ)$3 + V3e$
3

]
. (4.12)

Since sin2(3ϕ) = (1− cos(6ϕ))/2, this term would lead to a cos(6ϕ)-warping of the
PES. However, as indicated by the lower inset of Fig. 4.11 (a), no significant higher-
order warping contributions are observed for the 1 E4 ′′ state of Rb3. This suggests
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V2e � V1e and leads to the approximation

EJT3
± ($, ϕ) ≈ V2a$2 + V3a cos(3ϕ)$3 ±

[
$V1e + V2e cos(3ϕ)$2 + V3e$

3
]

, (4.13)

where in a first approximation V3e may be neglected as well [95]. Rewriting Eq. (4.13)
to the form

EJT3
± ($, ϕ) = c± + A± cos(3ϕ) , (4.14)

with the amplitudes of the cos(3ϕ)-warping term given as

A± = V3a$3 ±V2e$
2 , (4.15)

shows that both branches of EJT3
± have different dependence on cos(3ϕ). Thus, the

amplitudes A± convey information about the actual weight of the two contributions
V3a and V2e. The remaining parameters V2a, V1e and V3e are obtained from Eq. (4.13)
by defining [95]

F1($, ϕ) =
EJT3
+ ($, ϕ) + EJT3

− ($, ϕ)

2
= V2a$2 + V3a cos(3ϕ)$3 + Es[min(1 A4

2)] , (4.16a)

F2($, ϕ) =
EJT3
+ ($, ϕ)− EJT3

− ($, ϕ)

2
= V1e$ + V2e cos(3ϕ)$2 + V3e$

3 , (4.16b)

where Es[min(1 A4
2)] = 991 cm−1 is the JT-stabilization energy accounting for the fact

that in the following the zero of energy is chosen such that it coincides with the 1 A4
2

global minimum. This method can be applied to a cut of the PES at ϕ = 0, which
corresponds to a one-dimensional scan along the C2v symmetry preserving mode Q3

with Q2 = 0 and Q1 = 8.335 Å, i.e. to the ab-initio data shown in Fig. 4.11 (a). The
corresponding fitting procedure is illustrated in Fig. 4.13 (a). The method according to
Eq. (4.16) would also allow for extracting the parameters V3a and V2e, however the more
sophisticated approach uses Eqs. (4.14) and (4.15) describing the cos(3ϕ) oscillations
explicitly. Thereto, ab-initio data are calculated for $ = $min = 1.0876 Å in the range
ϕ ∈ {0, 2π/3} utilizing the symmetry of the PES. The data are fitted using cos(3ϕ)

functions to extract the unknowns c+, c−, A+, A−. For constant $ the two branches of
Eq. (4.15) form a system of linear equations, which can be solved for V3a and V2e. This
fitting procedure is illustrated in Fig. 4.13 (b).

The resulting JT parameters are listed in Tab. 4.8 for both cases: neglecting V3e in
Eq. (4.13) and including it. The inclusion of the cubic coupling parameter changes V1e

by only about 4 %. However, the obtained size of V3e shows that neglecting it is not
a good approximation, which is also displayed by the RMSD results. This is further
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F igure 4.13. : Illustration of the two fitting procedures applied for the extraction of JT parameters.
(a) Shows the approach according to Eqs. (4.16) with V3e included in F2 and the 1 B4

2 and 1 A4
2 states

as a function of $ = Q3, i.e. ϕ = 0 (calculated in C2v symmetry). Dots represent ab-initio data while
solid lines correspond to the respective polynomial fits from which the JT parameters V2a, V1e and V3e

(as well as V4a and Ṽ′4e, for the fourth order expansion) are extracted. (b) The fitting procedure based
on Eqs. (4.14) and (4.15) with the two branches of the 1 E4 ′′ JT manifold given as a function of the
polar angle ϕ with $ = $min = 1.0876 Å (calculated in Cs symmetry). This corresponds to a circle with
fixed radius $min in the Q2-Q3 branching plane. Both branches are fitted with trigonometric functions
according to Eq. (4.14) or Eq. (4.23) to extract the JT parameters V3a and V2e (as well as V4e and V′4e for
the fourth order expansion). Note that both branches are in phase, indicating the dominance of the
cubic anharmonicity parameter in Eqs. (4.11), (4.24) or (4.19). All ab-initio calculations were performed
at MRCI(lcECP+CPP)/UET15 level of theory with the zero of energy chosen so to coincide with the
1 A4

2 minimum (Q1 = 8.335 Å). The fitting procedures for the fourth order cases (JT4) are qualitatively
indistinguishable from the depicted ones in (a) and (b).

demonstrated by Fig. 4.14 (a) showing that the obtained topology of the lower PES
sheet EJT3

− according to Eq. (4.11) with V3e → 0 clearly does not match the ab-initio
data sufficiently. As shown in Fig. 4.14 (b), including the V3e parameter improves
the agreement between ab-initio data and analytic PES, but still fails in accurately
reproducing the shape around the global minima. These findings are also reflected in
the RMSD values of Tab. 4.8. Hence, considering even higher anharmonicities and JT
coupling parameters in the potential part of the JT Hamiltonian in Eqs. (2.59) and (2.60)
becomes inevitable.
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-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Q
2

[Å
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F igure 4.14. : Comparison of the 1 E4 ′′ lower branch JT-PES E− (light green crosses) obtained analyti-
cally at different model levels with the corresponding ab-initio data (pink solid lines). The third-order
JT expansion after Eq. (4.11) is shown in the upper panel, where in (a) the cubic vibronic coupling
parameter V3e is neglected. In (b) this parameter is included. The lower panel corresponds to the case
where the potential part of the JT Hamiltonian is expanded up to the fourth order. The “simplified”
fourth-order model after Eq. (4.22) is shown in (c), while the “complete” fourth-order PES according
to Eq. (4.17) is displayed in (d). In each figure the dashed squares indicate the area within which
the restricted RMSD values RMSDrestr were calculated. The zero of energy is chosen to coincide with
the 1 A4

2 minimum; i.e. the global minimum on E−. The contour lines are given equidistantly with
respective energy differences of 100 cm−1 covering a range from 0 to 2000 cm−1. All ab-initio data were
computed at MRCI(lcECP+CPP)/UET15 level of theory.
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Including all terms up to fourth order (JT4) yields

EJT4
± = V2a$2 + V3a cos(3ϕ)$3 + V4a$4 ± $

[
V2

1e + 2V1eV2e cos(3ϕ)$ + (2V1eV3e + V2
2e)$

2

+ 2(V1eV4e + V1eV′4e + V2eV3e) cos(3ϕ)$3 + (2V2eV′4e + V2
3e)$

4 + 2V2eV4e cos(6ϕ)$4

+ 2V3e(V4e + V′4e) cos(3ϕ)$5 + (V2
4e + (V′4e)

2)$6 + 2V4eV′4e cos(6ϕ)$6
] 1

2
, (4.17)

with the quartic force constant V4a and the two fourth-order coupling parameters V4e

and V′4e entering the theory as compared to Eq. (4.11). In analogy to the JT3 model,
the cubic anharmonicity V3a, the quadratic coupling V2e, and the two quartic coupling
parameters V4e and V′4e produce the same kind of cos(3ϕ)-warping of the PES. Again,
there is no reason to prefer one of the terms over the others in the corresponding
expansions. To derive a fitting procedure, analogous to Eq. (4.14) that allows for the
separation of these contributions, one may first expand Eq. (4.17) to fifth order in $,
yielding

EJT4
± ($, ϕ) ≈ V2a$2 + V3a$3 cos(3ϕ) + V4a$4 ±

[
V1e$ + V2e cos(3ϕ)$2 + V3e$

3

− V2
2e

4V1e
cos(6ϕ)$3 +

V2
2e

4V1e
$3 + (V4e + V′4e) cos(3ϕ)$4 +

3V3
2e

8V2
1e

cos(3ϕ)$4

+
V3

2e
8V2

1e
cos(9ϕ)$4 − V3

2e
2V2

1e
$4 +

V2e(V4e −V′4e)

2V1e
cos(6ϕ)$5 − V2

2eV3e

2V2
1e

cos(6ϕ)$5

+
V2e(V′4e −V4e)

2V1e
$5 − V2

2eV3e

V2
1e

$5 − V4
2e

8V3
1e

$5 + $5

(
3V2

2eV3e

2V2
1e

+
V4

2e
8V3

1e

)
cos(6ϕ)

− 5V4
2e

32V3
1e

cos(12ϕ)$5 +

(
3V2

2eV3e

2V2
1e

+
9V4

2e
32V3

1e

)
$5

]
. (4.18)

Since the ab-initio results for the 1 E4 ′′ state show no significant warping contributions
higher than cos(3ϕ), all those terms are neglected in Eq. (4.18). Assuming that the
quartic couplings only enter via Ṽ4e = V4e + V′4e, with Ṽ4e � V3a and Ṽ4e � V2e,
one may further neglect this contribution to the cos(3ϕ) oscillations. These two
assumptions give rise to rewriting Eq. (4.18) into the form of Eq. (4.14), where the
amplitudes now become

A′± = V3a$3 ±V2e$
2 ∓ 3V3

2e
8V2

1e
$4 . (4.19)

By fitting the ab-initio data corresponding to $ = $min = 1.0876 Å with a cos(3ϕ)

function, the two branches of Eq. (4.19) can be directly solved for V3a. The quadratic
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coupling V2e follows from finding the proper root of the residual function

R(V2e) = 8V2
1e$

2 ·V2e − 3$4 ·V3
2e − 4V2

1e(A′+ − A′−) , (4.20)

with V1e predetermined from polynomial fits defined analogously to Eq. (4.18), via

G1($, 0) =
EJT4
+ ($, 0) + EJT4

− ($, 0)
2

= V2a$2 + V3a$3 + V4a$4 + Es[min(1 A4
2)] , (4.21a)

G2($, 0) =
EJT4
+ ($, 0)− EJT4

− ($, 0)
2

= V1e$ + V2e$
2 + V3e$

3 + (V4e + V′4e)︸ ︷︷ ︸
Ṽ4e

$4 + σ$5 , (4.21b)

from which V2a, V3e, and Ṽ4e follow as well. Here, σ is a tiny correction summarizing all
terms ∝ $5 and leads to small changes of less than 2 % for V1e and V3e. This is due to the
respective curvature which is mainly linear as shown in Fig. 4.13 (a). The constant shift
Es[min(1 A4

2)] again denotes the JT-stabilization energy as introduced above. As for
the cubic case G1 and G2 are fitted to ab-initio data corresponding to a one-dimensional
scan along Q3 with Q2 = 0 and Q1 = 8.335 Å. Since the modifications introduced by
the amplitudes after Eq. (4.19) and by the polynomial fits G1,2 according to Eq. (4.21)
are rather small, the fitting procedures qualitatively look as already illustrated in
Fig. 4.13.

The assumptions that the quartic coupling only enters via Ṽ4e = V4e + V′4e and can
be extracted from G2, furthermore allows for approximations in the exact expression
for the fourth-order JT-PES of Eq. (4.17), yielding

EJT4,simpl
± ($, ϕ) = V2a$2 + V3a cos(3ϕ)$3 + V4a$4 ± $

[
V2

1e + 2V1eV2e cos(3ϕ)$

+ (2V1eV3e + V2
2e)$

2 + 2V1eṼ4e cos(3ϕ)$3 + V2eV3e cos(3ϕ))$3

+ V2
3e$

4 + 2V3eṼ4e cos(3ϕ)$5 + Ṽ2
4e cos(6ϕ)$6

] 1
2

, (4.22)

where 2V4eV′4e ≈ (V4e +V′4e)
2 = Ṽ2

4e was used. This form accounts for quartic couplings
on an equal footing and does not require to determine V4e and V′4e indiviudally. The
resulting JT parameters obtained from this “simplified” quartic approach are sum-
marized in Tab. 4.8. Including the fourth-order anharmonicity considerably changes
the elastic force constant V2a, while V3a does not change per definition. The linear
and quadratic coupling parameters show only minor changes due to the small size
of Ṽ4e. The resulting topology of the analytical JT-PES EJT4,simpl

− after Eq. (4.22) is
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4.5 Jahn-Teller analysis of the 1 4E′′ state

depicted in Fig. 4.14 (c) and shows excellent agreement with the corresponding ab-initio
data. This is also demonstrated by the respective values for the RMSD as given in
Tab. 4.8 showing that quartic terms are necessary to match the analytic JT model with
respective ab-initio data. This reflects the fact that the extrema on the 1 E4 ′′ PES occur
comparatively far away from the central COIN.

Nevertheless, the exact fourth-order form according to Eq. (4.17) suggests that
cos(6ϕ) contributions are relevant and the above approximations might turn out
insufficient. In an “complete” approach the quartic couplings V4e and V′4e should be
treated independently. To this end, one may merely neglect the cos(12ϕ) term in
Eq. (4.18) and rewrite it as

EJT4
± ($, ϕ) = c̃± + Ã± cos(3ϕ) + B̃± cos(6ϕ) + C̃± cos(9ϕ) , (4.23)

with the amplitudes of the corresponding oscillations given via

Ã± = V3a$3 ±V2e$
2 ± (V4e + V′4e)$

4 ∓ 3V3
2e

8V2
1e

$4 , (4.24a)

B̃± = ∓ V2
2e

4V1e
$3 ± V2e(V4e −V′4e)

2V1e
$5 ∓ V2

2eV3e

2V2
1e

$5 ±
(

3V2
2eV3e

2V2
1e

+
V4

2e
8V3

1e

)
$5 , (4.24b)

C̃± = ∓ V3
2e

8V2
1e

$4 . (4.24c)

For $ = $min = 1.0876 Å, Eqs. (4.23) and (4.24) define unique conditions to extract the
parameters V3a, V2e, V4e, and V′4e through fits of the corresponding ab-initio data. Again,
the remaining parameters are obtained from polynomial fits according to Eq. (4.21),
where V1e needs to be determined beforehand for use in Eqs. (4.24). The illustration of
this fitting procedure still qualitatively coincides with what is shown in Fig. 4.13.

The resulting JT parameters of this “complete” fourth order treatment are sum-
marized in Tab. 4.8 and the corresponding lower branch PES EJT4

− is illustrated in
Fig. 4.14 (d) showing that the “simplified” and “complete” fourth order approach are
qualitatively indistinguishable. The fitting procedure according to Eq. (4.24) causes
negligibly changes for V3a but significantly modifies the quadratic coupling V2e. Ta-
ble 4.8 reveals that the quartic couplings V4e and V′4e clearly contribute to the obtained
topology of the 1 E4 ′′ JT manifold. However, this also indicates that, despite the
success of the simplified JT4 approach to locally describe the correct topology, the
corresponding approximations concerning Ṽ4e may be in general invalid. The RMSD
values indicate that the simplified JT4 model is perfectly suited to describe the PES in
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4 Towards Photoassociation Processes of Ultracold Rubidium Trimers

Table 4.8. : Synopsis of the JT parameters extracted for the analytical PESs of the 1 E4 ′′ state of Rb3

according to Eq. (4.11) for the third order model JT3 as well as Eqs. (4.22) and (4.17) for the simplified
and complete fourth-order models JT4, respectively. The root-mean-square deviation (RMSD) values
provide a quantitative measure for the quality of the respective analytical JT model. The subscript “full”
refers to deviations with respect to the complete range of ab-initio data shown in Figs. 4.14 and D.4 ,
while the subscript “restr.” denotes deviations with respect to the constrained area indicated by dashed
squares in Fig. 4.14. These areas represent the most relevant region of the potential-energy landscape
and accounts for the fact that for |Q2|, |Q3| ≥ 1.5 Å the upper branch PES E+ starts to intersect with
higher-lying states. The corresponding “restr.,2” area is defined by Q2, Q3 ∈ [−1.3, 1.3]Å as shown in
Fig. D.4.

Parameter Unit
3rd order model JT3 4th order model JT4

V3e neglected V3e included simplified complete

V2a cm−1/Å
2

909.652 909.652 866.772 866.772
V1e cm−1/Å 1714.319 1784.133 1783.466 1783.446

V2e cm−1/Å
2

41.755 41.755 41.765 59.232

V3a cm−1/Å
3 −142.832 −142.832 −142.832 −142.827

V3e cm−1/Å
3

– −77.658 −75.571 −75.571

V4a cm−1/Å
4

– – 40.066 40.066

Ṽ4e cm−1/Å
4

– – 0.116 –

V4e cm−1/Å
4

– – – 16.164

V′4e cm−1/Å
4

– – – −27.171

RMSDfull(E−) cm−1 832.200 386.024 143.782 120.942
RMSDrestr.(E−) cm−1 290.492 130.018 13.262 30.370
RMSDrestr.,2(E+) cm−1 46.063 56.757 30.715 26.465

an restricted area whereas the complete JT4 model should be used for a more global
representation.

In general, since the quadratic couplings V2e for both third-order and fourth-order
approaches are about 50 times smaller than the linear couplings, no additional COINs
near the central one are expected [161].

It should be noted that the approach outlined in this section with the analytical
description of the JT-PES according to Eqs. (4.11), (4.22) or (4.17) does not account
for couplings to the totally symmetric mode Q1. In general, cutting the seam of an
E state at a slightly altered Q1 coordinate would result in different curvatures of
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4.6 Quadruple interactions in the high-spin manifold

the branches E±. However, as shown in Fig. 4.11 (b) the region around the global
minimum (cut indicated by the horizontal white line at the bottom) does not suggest
major changes in the curvature. Thus, this effect might be negligible and the main
physical implication may be already obtained from the two-dimensional approach.
Nevertheless, an analytical expression for a three-dimensional APES including the
totally symmetric force and the corresponding linear coupling term can be found in
Refs. [91, 161]. This approach would be necessary to accurately reproduce experimental
spectra.

Furthermore, the analysis presented here, neglects SOC effects which removes the
central COIN at Q2 = Q3 = 0. The analytic form of the corresponding PES as given
in Eqs. (2.75) assumes only a constant SO-induced shift ∆ of the corresponding PESs.
The investigation of Hauser et al. [95] concerning the impact of SOC onto the JT-
parameters of the 1 E2 ′ manifold of Rb3 revealed that its effect is negligibly small for a
corresponding energy splitting of ∆ = 30.2 cm−1. The same holds for the 2 E4 ′ state of
Rb3, for which Hauser et al. [96] found ∆ = 15.1 cm−1. Since the SO-splitting for the
1 E4 ′′ state amounts to ∆ ≈ 10 cm−1 (cf. Sec. 4.4.2) no major effects on the JT-parameters
caused by SOC are expected as well.

The results of the above fitting procedures concerning the higher branch PES E+ are
shown in Fig. D.4 in the appendix D.5.

4.6 Quadruple interactions in the high-spin manifold

The following discussion attempts to provide a qualitative understanding of the
physics underlying the quadruple interactions in the high-spin Q-manifold of Eq. (4.6).
The complex interplay of avoided crossings, COINs and JT interactions was already
mentioned above related to Fig. 4.6 (d). Since the four states (1 A4

1, 2 A4
1, 2 B4

1, 3 B4
1)

are close in energy, a PJT-like interaction pattern may be expected. However, due to
the fourth state this cannot be readily compared to the well-known (E + A)⊗ e PJTE
occuring, for instance, in the doublet manifold of homonuclear alkali-metal trimers,
as it has been extensively studied for Na3 in, e.g., Refs. [86–91, 93]. Nevertheless,
as suggested by PJT theory to detect triple degeneracies, the coupling mechanism
of the Q-manifold may be first analyzed by a one-dimensional cut along the totally
symmetric breathing mode Q1 preserving D3h symmetry. The resulting PESs are shown
in Fig. 4.15 where, for later reference, the area highlighted in gray marks the region left
to the triple COIN. Potential-energy curves which are degenerate over a certain range
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F igure 4.15. : One-dimensional cut through the Q manifold of Eq. (4.6) along the totally symmetric
breathing mode Q1 computed at MRCI(lcECP+CPP)/UET15 level of theory (Q2 = Q3 = 0). The D3h

preserving scan shows that the 1 A4
1 and 2 B4

1 states are degenerate forming the 1 E4 ′ JT state. At
QtCOIN

1 ≈ 9.5 Å this JT pair additionally coalesces with the 2 A4
1 state leaving a triply degenerate

COIN in the configuration space. Beyond the triple COIN the degeneracy with the 1 A4
1 state is lifted

suggesting a change of the JT interaction to 1 E4 ′ = 2 A4
1 + 2 B4

1. The intersection between the 2 A4
1

and 3 B4
1 states at Q1 ≈ 8.8 Å seems to be accidental. For later reference, the area highlighted in gray

marks Q1 values left to QtCOIN
1 . Energies are given relative to the 3 · Rb asymptote.

(i.e. not only at a single point) may indicate JT interactions; whereas the presence
of a triply degenerate COIN between the 1 A4

1, 2 A4
1 and 2 B4

1 states may suggest a
combined JT and PJT interaction as, e.g., observed for the (B, B′) system of Na3 [86] and
discussed in Sec. 2.3.3. Moreover, the triple COIN points to a change of components
forming the twofold degenerate 1 E4 ′ state: from 1 A4

1 + 2 B4
1 to 2 B4

1 + 2 A4
1. The

3 B4
1 state shows merely one accidental degeneracy at Q1 ≈ 8.8 Å with the 2 A4

1 state
thus excluding conventional JT interaction between these two states. An avoided
crossing between the 3 B4

1 and 2 B4
1 states can be observed at around Q1 ≈ 10.0 Å

suggesting mixing between them. Hence, the 3 B4
1 state may also contribute in a

PJT-like interaction scenario with the other states.

In order to better understand the effects of the triple COIN on the topology of
the PESs and on the respective coupling behavior among the states, scans along the
C2v symmetry preserving Q3 JT coordinate are performed. The resulting potential-
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4.6 Quadruple interactions in the high-spin manifold

energy curves together with the corresponding non-adiabatic coupling matrix elements
(NACMEs) are shown in Fig. 4.16. Since the Rb3 system is in general characterized by
the Cs point group, general investigations require the use of this symmetry. Therefore,
the left-hand side of Fig. 4.16 shows both C2v results (solid lines) and Cs data (dots),
wherefrom one may deduce a first notion of the full 3D topology. This is due to the
fact that the A1 and B1 IRREPs of the C2v point group fall both into the A′ IRREP in
the adjacent low symmetry subspace (cf. Tab. A.9) and thus mix and avoid each other.
Moreover, the use of Cs symmetry allows for computing NACMEs among all states
involved in the Q manifold since all of them are of A′ character (here: 2 A4 ′, 3 A4 ′, 4 A4 ′

and 5 A4 ′). The NACMEs were obtained using the DDR method in Molpro 2019.2 [252]
embedded in a MRCI(lcECP+CPP)/UET15 approach. In the DDR-procedure, the
matrix elements are assembled from the underlying wavefunctions and transition
densities by using finite differences. In its current implementation, this is only possible
among states of the same symmetry. The non-adiabatic coupling matrix is already
known from the Born-Oppenheimer-Huang equation (2.20) with its definition from
Eqs. (2.18) and (2.19). In general, NACMEs between two electronic states i, j are defined
with respect to all nuclear coordinates Qk of a given system. Usually they are given
componentwise as τ

ij
Qk

= (Fij)k = 〈ψi|∂/∂Qk|ψj〉, with Qk = {Q1, Q2, Q3} for the case
of Rb3. Thus, non-vanishing contributions are obtained if Γ(i)⊗ Γ(Qk)⊗ Γ(j) contains
the identical representation. The results on the right-hand side of Fig. 4.16 display the
Q3 component of NACMEs between all pairs of states given in Cs symmetry, i.e., e.g.,
τ23 =

〈
2 A4 ′ ∣∣ ∂/∂Q3

∣∣ 3 A4 ′〉. Since all calculations were performed in Cs symmetry, it
follows that Γ(Q1) = Γ(Q2) = Γ(Q3) = a′ and thus all components of the NACMEs
between the states of the Q manifold as depicted in Fig. 4.16 allow for non-vanishing
contributions.

The coupling left to the triple COIN [Fig. 4.16 (a)] is dominated by the δ-function-like
behavior of τ23 at Q2 = Q3 = 0.0 Å. This represents the JT interaction at the point of
degeneracy among the 2 A4 ′ and 3 A4 ′ components of the 1 E4 ′ term (in C2v described
by the 1 A4

1 and 2 B4
1 states). The vanishingly small NACME τ45 between the 4 A4 ′

and 5 A4 ′ states (i.e. the 2 A4
1 and 3 B4

1 states in C2v) once more suggests the lack of JT
interaction between both states. Preliminary results indicate that major contributions
to the Q3 component of the τ45 NACME occur for Cs scalene triangular configurations
of Rb3, i.e. in subspaces with Q2 6= 0. It remains to investigate the behavior of the Q1

and Q2 components of the respective NACME. The situation depicted in Fig. 4.16 (a)
implies that the size of the couplings of the 4 A4 ′ and 5 A4 ′ states to the components of
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F igure 4.16. : Cuts through the Q-manifold of Eq. (4.6) along the C2v preserving distortion coordinate
Q3 are given on the left-hand side of both panels for different Q1 and Q2 = 0.0 Å. Solid lines represent
C2v results, with IRREPs A1 and B1, while dots correspond to Cs data where all states fall into the
IRREP A′. At the central COIN (D3h symmetry) the twofold degenerate 1 E4 ′ JT state is formed. The
right-hand side of each panel displays the Q3 component of NACMEs between all pairs of states given in
Cs symmetry, i.e., e.g., τ23 =

〈
2 A4 ′ ∣∣ ∂/∂Q3

∣∣ 3 A4 ′〉. (a) Cut left to the triple COIN QtCOIN
1 [cf. Fig. 4.15]

at Q1 ≈ 8.451 Å which is the D3h minimum of the 1 E4 ′ state as shown in Fig. 4.15 and reported in
Tab. 4.3 (lower horizontal white lines in Fig. 4.17). A cut right to the triple COIN for Q1 = 10.5 Å (upper
horizontal white lines in Fig. 4.17) is shown in (b). A direct consequence of the triple COIN is an
inversion of components forming the 1 E4 ′ JT pair (see text for details). Vertical dashed lines highlight
the positions of COINs occurring both at D3h and C2v configurations. The NACMEs τ23 in (a) and τ34

in (b) scale with respect to the right axis. Calculations were performed at MRCI(lcECP+CPP)/UET15
level of theory and energies are given relative to the 3 · Rb asymptote.
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4.6 Quadruple interactions in the high-spin manifold

the JT manifold (=̂2 A4 ′ + 3 A4 ′) exceeds the coupling between these states themselves.
Therefore, one may consider the 4 A4 ′ and 5 A4 ′ states together and define combined
NACMEs τ2(4+5) and τ3(4+5) describing the couplings of this sub-manifold of states to
each of the two components of the 1 E4 ′ JT state separately. These two NACMEs give
sizable contributions at the positions of avoided crossings and at the high-symmetry
point Q3 = 0.0 Å. This may indicate the presence of a PJT coupling behavior besides
the dominant JT interaction. Thus, to reach comprehensive understanding an approach
within the PJT theory may be required (see below).

The topology right to the triple COIN [Fig. 4.16 (b)] occurs more complex with the
1 E4 ′ JT term now formed by the 3 A4 ′ and 4 A4 ′ states. The 2 A4 ′ and 5 A4 ′ state disperse
below and above the 1 E4 ′ JT-manifold with additional COINs occurring close to the
central one at C2v configurations. In contrast to Fig. 4.16 (a), the NACMEs are now
explicitly given among all pairs of states individually, since it is not straightforwardly
possible to define a joint sub-manifold as before. Again, the δ-function-like NACME
at Q2 = Q3 = 0.0 Å representing the JT interaction, here τ34, dominates the coupling
scenario. Besides, it is worth mentioning that the couplings at the additional C2v

COINs (for Q3 > 0.0 Å) are almost zero while they show significant contributions at
the avoided crossings for Q3 < 0.0 Å.

Note that for further use of the NACMEs, e.g. in a adiabatic-to-diabatic transforma-
tion, they have to be symmetry-adapted by the corresponding molecular symmetry
group as shown for K3 in Ref. [94].

Example input for the DDR procedure
The NACME scan according to Fig. 4.16 can be reproduced with the example input C.6.

Deeper understanding of the discussed effects may be attained by investigating the
potential-energy landscapes in two-dimensional subspaces. The D3h COIN seams (for
Q2 = Q3 = 0.0 Å) occur in cuts through the Q1-Q3 subspace. This is shown in Fig. 4.17.
The 2 A4 ′ state shown in Fig 4.17 (a) reveals an one-dimensional COIN seam up to
Q1 = QtCOIN

1 ≈ 9.5 Å. Beyond this point the COINs are removed due to the inversion
of components forming the 1 E4 ′ JT pair as a consequence of the triple COIN. The
3 A4 ′ states always forms one component of the 1 E4 ′ JT-manifold and thus shows a
one-dimensional COIN seam over the full Q1-range considered here. This is illustrated
in Fig. 4.17 (b). Since the 4 A4 ′ and 2 A4 ′ states change their role at the triple COIN, the
former shows a COIN seam for Q1 > QtCOIN

1 ≈ 9.5 Å as indicated in Fig. 4.17 (c). There
are further COINs occurring at C2v configurations for both Q3 < 0.0 Å and Q3 > 0.0 Å
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F igure 4.17. : Contour plots of the PESs of theQ-manifold according to Eq. (4.6) in the two-dimensional
subspace of Q1 and Q3 preserving at least C2v symmetry (i.e. Q2 = 0.0 Å). To obtain the correct topology
with respect to the full 3D configuration space the computational point group was chosen to be Cs. The
2 A4 ′ state is shown in (a), the 3 A4 ′ state in (b), the 4 A4 ′ state in (c) and the 5 A4 ′ state is illustrated in (d).
Discontinuities in the contour lines at Q3 = 0.0 Å correspond to the D3h COIN seam occurring due to JT
interactions among the respective states. Additional COINs are found for C2v geometries at Q3 < 0.0 Å
and Q3 > 0.0 Å. See text for more details. The lower and upper horizontal white lines represent the
respective cuts left and right to the triple COIN as shown in Figs. 4.16 and 4.18. Calculations were
performed at MRCI(lcECP+CPP)/UET15 level of theory and energies are given relative to the 3 · Rb
asymptote.
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4.6 Quadruple interactions in the high-spin manifold

due to accidental degeneracies with the 5 A4 ′ state as already shown in Fig. 4.16 (this
corresponds to accidental intersections between the 2 A4

1 and 3 B4
1 states mentioned

at the beginning). This finding is further demonstrated in Fig. 4.17 (d) where it is
moreover shown that the 5 A4 ′ state is free of COINs at D3h configurations.

The topology of the PESs in the two-dimensional branching space spanned by the Q2

and Q3 modes is shown in Fig. 4.18. The tricorn surface clearly indicates the presence
of the E⊗ e JT effect dominating over the PJT coupling, as discussed in Sec. 2.3.3. The
inversion of the states forming the 1 E4 ′ JT manifold is shown in Figs. 4.18 (a), (b)
and (c). The lower panels in each subframe demonstrate the situation right to the triple
COIN with additional C2v COIN seams near the central D3h one. These C2v COIN
seams are formed between the 2 A4 ′ and 3 A4 ′ states as well as between the 4 A4 ′ and
5 A4 ′ states. The similarity of the 4 A4 ′ and 5 A4 ′ surfaces left to the triple COIN and of
the 2 A4 ′ and 5 A4 ′ PESs right to the triple COIN may further indicate the presence of
combined JT and PJT couplings.

The minima on the 3 A4 ′ PES [lower panel of Fig. 4.18 (b)] are, for Q1 = 10.5 Å,
of 1 A4

1 character in the adjacent C2v subspace as indicated by Fig. 4.16 (b). This
explains the occurrence of a minimum of the 1 A4

1 state as reported in Tab. 4.4 at
(Q1, Q2, Q3) ≈ (10.428, 0.0, 2.517)Å, although it is found to form saddle points on
the lower PES branch of the 1 E4 ′ manifold left to the triple COIN. This proves the
non-static nature of the states forming the 1 E4 ′ JT pair and can be viewed as a direct
consequence of its inversion. This is also seen in Fig. 4.17 (b). In this regard, the
2 B4

1 minimum found at Q1 ≈ 9.85 Å in Tab. 4.4 may now be understood from a
broader perspective as occurring in close proximity to the triple COIN as illustrated
in Fig. 4.17 (a). The formation of this minimum at C2v symmetry is explained by the
underlying JT effect as shown in Fig. 4.18 (a). Moreover, the equilateral triangular
configurations of the 2 A4

1 and 3 B4
1 states occurring at (Q1, Q2, Q3) ≈ (9.22, 0.0, 0.0)Å)

and (Q1, Q2, Q3) ≈ (8.81, 0.0, 0.0)Å, respectively, as reported in Tab. 4.4, are also
confirmed by Figs. 4.17 (c) and (d).

In order to properly describe the quadruple interactions in the Q-manifold and to
quantitatively understand the topology and properties of the corresponding PESs, a
combined JT and PJT approach including all four states is required. The PJT treatment
is suggested by the occurrence of a triple COIN beyond which the characteristics of the
1 E4 ′ manifold is inverted, cf. Figs. 4.16 to 4.18. However, in contrast to the PJTE in the
E2 - A2 systems of homonuclear alkali-metal trimers, the JT coupling in the 1 E4 ′ state

strongly dominates the four-state interaction. This is the case both left and right to
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F igure 4.18. : Contour plots of the PESs of theQ-manifold according to Eq. (4.6) in the two-dimensional
branching space spanned by the JT-active modes Q2 and Q3. The upper panel of each subframe
corresponds to a cut left to the triple COIN for Q1 ≈ 8.451 Å (lower horizontal white lines in Fig. 4.17),
while the lower panel represents a cut right to QtCOIn

1 for Q1 = 10.5 Å (upper horizontal white line in
Fig. 4.17). The computational point group is Cs. (a) displays the 2 A4 ′ state, (b) the 3 A4 ′ state, (c) the
4 A4 ′ and (d) depicts the 5 A4 ′ state. The plots demonstrate the increasing complexity of the topology
right to the triple COIN (lower panel) and show the inversion of states forming the 1 E4 ′ JT manifold.
The tricorn topology of the lower branch is illustrated in (a) and (b) indicating the dominance of JT
interactions over PJT couplings. See text for a detailed discussion. Calculations were performed at
MRCI(lcECP+CPP)/UET15 level of theory and energies are given relative to the 3 · Rb asymptote.
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4.6 Quadruple interactions in the high-spin manifold

QtCOIN
1 as demonstrated by the respective NACMEs scans in Fig. 4.16. Left to the triple

COIN the interaction between the 2 A4 ′, 3 A4 ′ and 4 A4 ′ states may be first modeled
by a 3× 3 PJT-Hamiltonian according to Eq. (2.76). The resulting analytical PESs
after Eqs. (2.80) should reveal VE/A

1e → 0. This might at least serve as zeroth-order
approximation to gain a basic understanding of the problem. Including the remaining
5 A4 ′ state into the description and map the problem to a 4× 4 PJT Hamiltonian should
then lead to improved coincidence with ab-initio results. However, right to the triple
COIN a complete effective 4× 4 PJT-Hamiltonian would probably be needed right
from the start. The PJT-Hamiltonian should account for all states of the Q-manifold
and the respective interactions among them to properly model the underlying physics.
A first idea on how to extent a 3× 3 PJT-Hamiltonian after Eq. (2.76) to a 4× 4 one,
might be deduced from the NACMEs of Fig. 4.16 (b). It seems that both the 2 A4 ′

and the 5 A4 ′ states take a similar role as the 4 A4 ′ state left to QtCOIN
1 . In general, a

4× 4-approach is required in both cases since a proper treatment of vibronic coupling
effects needs to consider all excited states that show sufficient couplings [161, 182, 183].
This would finally also reveal which coupling mechanism dominates over the other
and if there is a smooth transition between both.

The quantitative approach outlined above only considers couplings to the JT active
modes Q2 and Q3. For a full three-dimensional treatment and to entirely understand all
topological properties of the corresponding PESs one also needs to consider couplings
to the totally symmetric breathing mode Q1. The correlating form of a 3× 3 PJT-
Hamiltonian can be found, e.g., in Ref. [91], which may further serve as an inspiration
for the 4× 4 case.

Once a suitable 4× 4 PJT-Hamiltonian HQPJT is set up, the analytical form of the
corresponding PESs is found by diagonalization, where the JT- and PJT-parameters
are obtained from proper fits to the ab-initio data. The positions of the extrema,
as displayed in Figs. 4.16 to 4.18, indicate that higher anharmonicities may become
relevant. This was shown in the previous discussion of Sec. 4.5, where fourth-order
terms turned out relevant for a sufficient agreement with ab-initio results.

Including spin-orbit coupling in the above analysis removes the central symmetry-
required COIN of the 1 E4 ′ JT state with rather small splittings between the respective
Kramers pairs of ∆ ≈ O(10 cm−1). Moreover, the additional C2v COINs resulting
from interactions with the remaining states are also lifted. Two generic situations are
shown in Fig. D.5 in appendix D.6. In general, it has been shown that the presence of
SOC reduces the dimension of the COIN seam to Nint − 3 (when Cs symmetry can be
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4 Towards Photoassociation Processes of Ultracold Rubidium Trimers

imposed); with Nint the number of internal degrees of freedom [280–282]. This means
that there is merely one COIN point in the full 3D configuration space.

The set of states according to Eq. (4.6) with occurring quadruple interactions are
expected for all high-spin alkali metal trimers [99]. However, in contrast to what has
been mentioned therein, it was shown that the coupling mechanism of the Q manifold
is not only due to pairs of E′ states but rather reveals a more complex interaction
behavior. In the course of the present discussion possible approaches for a more
quantitative analysis were outlined which may be part of future works.

Technical remark
The ab-initio data shown in Figs. 4.17 and 4.18 were generated using the Molpro 2020.1
program package [225, 253] with corresponding calculations performed on the Justus 2
cluster.
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5
Quartet Ground-State Potential

Energy Surface for Rubidium Trimer

This chapter provides a concise introduction into a particular kernel ridge regression
technique proposed for use as an effective tool for the construction of globally smooth
molecular potential energy surfaces. The respective technique is related (but mathemat-
ically not equivalent) to the well-known and widespread machine learning procedure
of Gaussian process regression but is designed such that the underlying physics of
molecules can be readily incorporated. By using this ansatz it is shown that highly
accurate potential-energy landscapes for both Rb2 and Rb3 can be constructed which
may be subsequently used in quantum dynamics calculations.

The following merely motivates the basics of the interpolation method used for
subsequent investigations of this chapter, rather than deriving them rigorously. The
mathematical interested reader is referred to Appendix E for a detailed and formal
discussion in the framework of reproducing kernel Hilbert space (RKHS) theory.

5.1 RKHS method for constructing potential energy

surfaces

The reproducing kernel Hilbert space (RKHS) theory [283–286] is a general concept
embedded in the field of functional analysis. With the formulation of the representer
theorem [284–287], it became particularly important in the field of statistical learning
theory. The representer theorem states that any function f of a RKHSHk that minimizes
an arbitrary regularized empirical risk functional (required by any data interpolation
problem) can be represented as a finite linear combination of a reproducing symmetric
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5 Quartet Ground-State Potential Energy Surface for Rubidium Trimer

kernel function k evaluated on the training data xi

f (·) =
N

∑
i=1

cik(·, xi) , (5.1)

with expansion coefficients ci ∈ R (see Appendix E.1 for more details). This reduces
any general infinite dimensional machine learning problem to the solution of a finite
dimensional linear system. For instance, assuming squared-error loss and regulariza-
tion based on Tikhonov’s method [284, 285, 288–292], the minimization problem for n
training data yi given at positions xi becomes

f ∗ = min f∈Hk

[
n

∑
i=1

(yi − f (xi))
2 + λ‖ f ‖2

]
, (5.2)

with ‖·‖ the L2 norm. The representer theorem defines the minimizer to be of the
form (5.1) so that Eq. (5.2) reduces to solve for the vector of expansion coefficients c,
yielding [284, 285]

c∗ = minc∈Rn

[
‖y −K · c||2 + λcTKc

]
, (5.3)

with the vector of training data y and the symmetric and positive (semi-) definite n× n
kernel matrix K with the ij-th entry k(xi, xj). The solution vector ĉ of Eq. (5.3) results
from solving the linear system

(K + λ1n×n) · ĉ = y , (5.4)

for which classical numerical procedures such as LU decomposition or Cholesky
factorization can be efficiently used [291]. More details on reproducing kernels may be
found in Appendix E.1.

The regularization used above (= λ1n×n) is a special case of Tikhonov’s method,
which is also referred to as L2 regularization and defines the class of (kernel) ridge
regression methods. The rationale of applying regularization is to account for ill-
conditioning in inverse problems such as Eq. (5.4). Ill-conditioning may arise due
to large or densely clustered training data sets rendering the matrix K nearly rank
deficient. In this case the solutions of the unregularized (λ = 0) linear system (5.4)
may become very sensitive to arbitrarily small perturbations such as machine roundoff
errors. Another origin of ill-posed problems may be data errors. Here, regularization
operates as a penalty function filtering out destabilizing high frequency components
corresponding to small singular values of the linear system under study [291]. More
details are outlined in the Appendix E.2.
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5.1 RKHS method for constructing potential energy surfaces

Although the representer theorem is a powerful tool to map general data inter-
polation problems to the solution of finite-dimensional linear systems, it does not
further specify the form (apart from being symmetric and positive (semi-) definite) of
the reproducing kernel function and thus introduces a certain degree of ambiguity.
From a simplified viewpoint the kernel function can be considered as measuring the
similarity between a pair of input data whereof it learns how to predict data that are
not in the training set. This illustrates that for certain problems some kernels are more
suited than others. One may either choose from a set of “standard” kernels (rational
quadratic, Matérn, periodic, RBF; see Ref. [286] for a comprehensive overview) or
explicitly derive a kernel function for a given problem. The latter approach was chosen
by Ho and Rabitz [291, 293, 294] who constructed a reciprocal power (RP) reproducing
kernel (r.k.) to obtain globally smooth molecular PESs as a function of distancelike
variables in the semi-infinite interval [0, ∞). This approach ensures that the resulting
PESs show the physical correct asymptotic form, which is especially important in the
context of scattering calculations. The construction is based on using the fundamental
properties of RKHSs and the fact that molecular PESs are asymptotically constant. A
detailed derivation is given in Appendix E.1, while the following merely shows its
final form, reading

qn,m
1 (x, x′) = n2x−(m+1)

> B(m + 1, n)2F1

(
−n + 1, m + 1; n + m + 1;

x<
x>

)
. (5.5)

Here x> and x< are, respectively the larger and smaller of x and x′, B(a, b) is the beta
function and 2F1(a, b; c; z) is the Gaussian hypergeometric function (see Appendix E.3
for their explicit form). The parameters n and m dictate, respectively, the number of
terms and the leading asymptotical reciprocal power behavior of the RP-r.k. function.
The latter may be also found from Eq. (5.5) with the help of Appendix E.3.3, yielding

lim
x′→∞

qn,m
1 (x, x′) ∝ x′−(m+1) , m ≥ 1 . (5.6)

A generic example of the behavior of the RP-r.k. for n = 3 and m = 2 (cf. Sec. 5.2) is
shown in Fig. 5.1 as a function of Rs (for later reference) with Ri ≈ 4.5 Å.

The RP-r.k. according to Eq. (5.5) was used in several applications for the construction
of alkali-metal diatomic and triatomic PESs [100, 103, 105, 107, 295–297]. Here, the PES
construction procedure for, e.g., the weakly interacting species K3 and Rb3 is based on
decomposing the total potential energy function into a sum of the pairwise additive
contributions and the three-body nonadditive part V3

VX3 = ∑
i<j

VX2(Rij) + V3(R12, R23, R13) , (5.7)
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F igure 5.1. : Generic example of the one-dimensional RP-r.k. qn,m
1 (Rs

i , Rs) according to Eq. (5.5) for
Ri ≈ 4.5 Å. The RP-RKHS hyperparameters n, m and s where chosen to represent the case discussed in
Sec. 5.2 with n = 3 and m = 2, while the power s = 2 is introduced for later reference. The functional
behavior for R ≷ Ri was deduced from the beta function B(a, b) and the special case of the Gaussian
hypergeometric function 2F1 given in Appendix E.3. The interpolation behavior for R < Ri (area
highlighted in gray) is merely polynomial ∝ R4, while for R > Ri it shows the correct reciprocal power
decay.

with Rij ; (i, j) ∈ {1, 2, 3} denoting the internuclear distances. The dimer and trimer
interaction energies VX2 and VX3 , respectively, are obtained from ab-initio calculations
relative to the non-interacting limits (i.e. 2 · X or 3 · X) and are used to extract the
nonadditive energies V3. The following outlines how the individual terms of Eq. (5.7)
are efficiently interpolated using the RP-RKHS method based on Eq. (5.5).

5.1.1 Additive two-body part

The subsequent derivation follows Ref. [294]

Motivated by the representer theorem (cf. Eq. (5.1)) the optimal interpolation ansatz
for the diatomic PEC VX2 given N internuclear distances Ri may be

VX2(R) =
N

∑
i=1

αiq
n,m
1 (Rs

i , Rs) , (5.8)

where s > 0 is a power introduced for later reference. From Eq. (5.5) and (5.8) one may
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obtain the behavior at large distances

V(R) = −
n−1

∑
k=0

Cs(k+m+1)

Rs(k+m+1)
, R > RN > RN−1 > · · · > R2 > R1 . (5.9)

Here, the individual n leading inverse power dispersion interactions Vdisp
s(k+m+1)(R) at

an asymptotic distance beyond the last ab-initio point R > RN take on the form

Vdisp
s(k+m+1) = −

Cs(k+m+1)

Rs(k+m+1)

=
Anmk

Rs(k+m+1)

N

∑
i=1

αiRsk
i , k = 0, 1, . . . , n− 1 , (5.10)

where the constant Anmk is given as

Anmk = n2B(n, m + 1)
(−n + 1)k(m + 1)k
(n + m + 1)kk!

, (5.11)

and the notation (a)k denotes the (rising) Pochhammer’s symbol (see Appendix E.3).
This allows for the formulation of a constrained construction procedure that provides
accurate long-range interactions by incorporating (high-level) theoretically calculated
or experimentally determined values of dispersion coefficients into the interpolation
protocol to obtain the expansion coefficients αi of Eq. (5.8).

Given N − n ab-initio energies V(Ri) at distances R1, . . . , RN−n and n leading disper-
sion coefficients Cs(m+1), . . . , Cs(m+n) one may derive, using Eqs. (5.8) and (5.10), the
linear system

N

∑
j=1

(Γ(s)
ij + λ1Dδij)αj = βi , i = 1, . . . , N . (5.12)

Here, Γ(s)
ij denote the matrix elements of the N × N positive (semi-) definite symmetric

kernel matrix Γ(s) defined as

Γ(s)
ij =





qn,m
1 (Rs

i , Rs
j) for i = 1, . . . , N′ = N − n

AnmkRsk
j

Rs(k+m+1)
a

for i = N′ + 1 + k , k = 0, . . . , n− 1
(5.13)

and βi are the elements of the training vector β, given as

βi =





V(Ri) for i = 1, . . . , N′ = N − n

Vdisp
s(k+m+1)(Ra) for i = N′ + 1 + k , k = 0, . . . , n− 1 .

(5.14)
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The fixed value Ra should be chosen such that all dispersion terms are within two
or three orders-of-magnitude of each other to ensure that they enter in a balanced
fashion; i.e. Ra is not necessarily at large distance. The solution of Eq. (5.12) yields
the expansion coefficients αi and requires R1 < · · · < RN−n < RN−n+1 < · · · < RN

internuclear distances. The last n distances are required to delimit the asymptotic
region and to provide the same number of input values and unknown expansion
coefficients αi. Furthermore, due to potential data and machine roundoff errors the
solution of Eq. (5.12) is subject to Tikhonov’s regularization procedure as given in
Eq. (5.4) with the corresponding regularization parameter λ1D.

Apparently, this approach effectively alleviates the dependence of the long-range
tail of the PEC on ab-initio data, while simultaneously retaining the globally smooth
interpolatory quality at the short- and intermediate-range of internuclear distances R.
As such, this method imposes by construction the correct long-range physics.

5.1.2 Nonadditive three-body part

The subsequent derivation follows Refs. [100, 103, 105, 107, 296]
The construction of a proper three-dimensional kernel function for the nonadditive

three-body part of Eq. (5.7) is based on the property of RKHSs that a product of
reproducing kernels is still a r.k. (cf. Appendix E.1). Hence, the 3D (symmetric) r.k.
Q(R,R′) can be written as a product of the one-dimensional (symmetric) kernels qn,m

1

according to Eq. (5.5), yielding

Qn,m(R,R′) = qn,m
1 (x, x′)qn,m

1 (y, y′)qn,m
1 (z, z′) . (5.15)

Furthermore, for X3 systems one needs to account for the underlying permutational
symmetry of the three identical nuclei X. Given M configurations of the X3 system,
the interpolation ansatz for the nonadditive three-body term may be expressed as

V3(R) =
M

∑
i=1

γi





1
3! ∑
{123}

P i
{123}Q

n,m(Ri,R)



 , (5.16)

as suggested by the representer theorem (5.1). For numerical reasons it is convenient
to introduce reduced internuclear distances

x = (R12/S)s , y = (R23/S)s , z = (R13/S)s , (5.17)

with an arbitrary scaling factor S and a power s > 0, to keep the expansion coefficients
γi small. The permutation operator P i

{123} renders V3 symmetric with respect to the
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5.1 RKHS method for constructing potential energy surfaces

exchange of any two atoms, while the summation over the subscript {123} is performed
over all 3! symmetry permutations of the trimer bond lengths associated with the
ij-th data point on the PES. Given M nonadditive energies V3(Ri) at configurations
Ri = (Ri

12, Ri
23, Ri

13)
T obtained from ab-initio calculations, the expansion coefficients γi

are obtained by solving the linear system

V3(Ri) =
M

∑
j=1


 1

3! ∑
{123}

P i
{123}Q

n,m(Ri,Rj)




︸ ︷︷ ︸
Ξij

γj + λ3Dδijγj . (5.18)

Due to large and densely clustered or numerically noisy data sets, the (symmetric)
kernel matrix Ξ might be ill-conditioned. Therefore, the solution of Eq. (5.18) is
subject to Tikhonov’s regularization method according to Eq. (5.4), with corresponding
parameter λ3D.

To use the resulting PES after Eq. (5.7) in low-energy scattering calculations it has to
show the physically correct long-range behavior. By construction this is always fulfilled
for the one-dimensional interaction potentials VX2 . From Eqs. (5.15) and (5.6) if follows
that the V3 potential extrapolates as R−(m+1)

12 R−(m+1)
23 R−(m+1)

13 in the long-range region.
However, the leading contributions in the asymptotic expansion of the nonadditive
energy are the third-order dipole-dipole-dipole (DDD) and dipole-dipole-quadrupole
(DDQ) terms given by [100, 103, 105]

VDDD
3 = 3Z(3)

111
1 + 3 cos φ3 cos φ1 cos φ2

R3
12R3

23R3
13

, (5.19)

which is also known as the Axilrod-Teller potential [298], and

VDDQ
3 = Z(3)

112

(
W123 + W231 + W312

)
, (5.20)

where

W ijk =
3

16R4
jkR4

ikR3
ij

[
9 cos φk − 25 cos 3φk + 6 cos(φi − φj) · (3 + 5 cos 2φk)

]
, (5.21)

and φi is the bond angle at atom i [299]. This shows that an isotropic interpolation
approach according to Eq. (5.18) is clearly incorrect in the long-range. Therefore, it is
best to first transform V3 to a form that behaves as a simple product of inverse powers
at large internuclear distances and then interpolate in that form [105]. This starts with
first subtracting out VDDD

3 and VDDQ
3 according to

V′3 = V3 − fdamp

[
VDDD

3 + VDDQ
3

]
, (5.22)
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5 Quartet Ground-State Potential Energy Surface for Rubidium Trimer

with the damping function fdamp(R12, R23, R13) = f (R12) f (R23) f (R13) preventing the
nonadditive energy from diverging at short-range, where

f (R) =





exp
[
−(k3/R− 1)2] 0 < R < k3

1 r ≥ k3

, (5.23)

with the cut-off parameter k3. The dispersion coefficients Z(3)
111 and Z(3)

112 are known
for all homonuclear alkali-metal atom systems and may be found in Refs. [100, 300,
301]. The leading term of the asymptotic multipole expansion of V′3 is the fourth-order
dipole-dipole-dipole-dipole (DDDD) term [100, 302]

VDDDD
3 = −45

64
Z(3)

1111

[
1 + cos2 φ1

R6
12R6

13
+

1 + cos2 φ2

R6
12R6

23
+

1 + cos2 φ3

R6
13R6

23

]
, (5.24)

which is apparently unfactorizable. If Z(3)
1111 were known, this contribution could be

subtracted out as well. Since VDDDD
3 is negative at all geometries a sufficient approach

is to simply modify it for isotropic interpolation by defining V′′3 = g ·V′3, with

g(R) =
R3

12R3
23R3

13

(1 + cos2 φ1)R6
23 + (1 + cos2 φ2)R6

13 + (1 + cos2 φ3)R6
12

. (5.25)

The resulting V′′3 term now reveals the simple asymptotic form ∝ R−3
12 R−3

23 R−3
13 and is

thus suitable for using the fully symmetrized 3D RP-RKHS interpolation procedure
according to Eq. (5.18). The original three-body nonadditive part is rebuilt afterwards
as

Vmult
3 =

1
g(R)

V′′3 + fdamp

[
VDDD

3 + VDDQ
3

]
. (5.26)

5.2 Proof of concept for Rb2

The power of the RP-RKHS method may be revealed by first studying the additive
contributions to Eq. (5.7). To obtain a highly accurate quartet ground state PES of
Rb3, the corresponding dimer potential VRb2 has to be the a Σ3

u state. The leading
long-range behavior of this state is given by [105, 259]

VLR(R) = −C6

R6 −
C8

R8 −
C10

R10 , (5.27)
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with the dispersion coefficients C6 = 0.227003 · 108 cm−1Å
6
, C8 = 0.778289 · 109 cm−1Å

8

and C10 = 0.286887 · 1011 cm−1Å
10

from Ref. [259]. This functional form requires the
free RP-RKHS parameters n, m, s in Eqs. (5.8) to (5.14) to become

n1D = 3 and m1D = 2 and s1D = 2 , (5.28)

and defines how the dimer potential energy is extrapolated beyond the last ab-initio
point included into the RP-RKHS procedure. The PEC construction for the a Σ3

u state
of Rb2 first uses ab-initio data obtained at the MRCI(lcECP+CPP)/UET15 level of
theory (cf. Chap. 4). It is important to include a sufficient amount of ab-initio data
at small internuclear distances to avoid extrapolation in this region [294, 303] due
to the merely polynomial behavior of the RP-r.k. qn,m

1 (Rs
i , Rs) in the short-range, as

indicated in Fig. 5.1. The interpolation procedure performed best if it was based on
N − n1D = 29 ab-initio interaction energies (training data); cf. Sec. 5.1.1. Since the
kernel matrix Γ(s) is low-dimensional and the underlying training data were carefully
selected it is sufficient to assume that the main source of error comes from machine
roundoff errors. Hence, the regularization parameter in Eq. (5.12) is set to λ1D = ε · σ1,
with ε and σ1 being the unit machine roundoff (∝ 10−16 for double precision) and
the largest singular value of the kernel matrix Γ(s) [291, 294]. The resulting order of
magnitude is O(10−21) and thus the interpolation is effectively exact. Furthermore,
the parameter Ra entering Eqs. (5.13) and (5.14) was chosen such that the RP-RKHS
dispersion coefficients obtained after Eq. (5.10) show optimal agreement with the ones
following from experiment after Ref. [259], yielding Ra = 18.0 a0. The quality of the
RP-RKHS interpolated/extrapolated PEC VRb2 according to Eq. (5.8) is illustrated in
Fig. 5.2. Due to the vanishingly small regularization parameter λ1D of order 10−21,
the RP-RKHS potential VRb2 reproduces the training data virtually exact. This can be
also observed from the respective energy differences in Fig. 5.2 (b). Beyond the last
ab-initio point the potential energy is extrapolated to the form of Eq. (5.27) yielding the
physically correct long-range behavior VLR, which is also illustrated in Fig. 5.2 (b). The
above mentioned importance of including a sufficient amount of ab-initio data in the
short-range is indicated in Fig. 5.2 (b). As the RP-r.k. is not designed for extrapolation
in the short-range region, the differences corresponding to data not included in the
training set become larger. Nevertheless, measuring the interpolative quality in terms
of the root-mean square deviation (RMSD) with respect to those ab-initio data shown in
Fig. 5.2 (a) that yield relative energies < 0.0 cm−1 give RMSD<0 = 0.00345 cm−1, while
those with interaction energies < 15000.0 cm−1 lead to RMSD<15000 = 1.909 cm−1. This
demonstrates that the major error contribution comes from the short-range. A close-up
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F igure 5.2. : Demonstration of the interpolatory quality of the RP-RKHS method for the a Σ3
u PEC

of Rb2. The underlying ab-initio (training) data were calculated at MRCI(lcECP+CPP)/UET15 level of
theory. (a) The RP-RKHS PEC VRb2(R) according to Eq. (5.8) based on 29 training data (see text for
details). Beyond the last ab-initio point the PEC is extrapolated to the long-range form of Eq. (5.10). The
inset shows a close-up of the short-range wall and reveals the limitations of the lcECP+CPP approach
(see text). (b) The full ab-initio set Vdata is very well reproduced as shown by the respective differences
(dark blue line). Computing the root-mean square deviation with respect to those ab-initio data yielding
relative energies < 0.0 cm−1 give RMSD<0 = 0.00345 cm−1, while those with interaction energies
< 15000.0 cm−1 lead to RMSD<15000 = 1.909 cm−1. Only in the short-range region the deviations
become larger as the RP-r.k. scales only polynomially in this area. The light blue curve displays the
deviation of the RP-RKHS PEC from the true long-range potential according to Eq. (5.27).

view of the short-range region as displayed by the inset of Fig. 5.2 (a) reveals that
the ab-initio data fail to describe the physically expected repulsive 1/R Coulomb wall
caused by the nuclei. The saturation behavior which would lead to the transition to
a short-range plateau is clearly unphysical and might be caused by the underlying
lcEPC+CPP approach which reaches its limits due to an insufficient description of the
repulsion of the core electrons and the repulsion between the nuclei in general.

The following discussion will thus use the small-core ECP developed in Ref. [250],
which widely accounts for the repulsive interaction of the core electrons. Furthermore,
studying scattering events in the ultracold regime requires very precise PESs suggesting
to improve the level of theory. Therefore, the UET15 basis set has been enlarged
according to the approach as described in Sec. 4.2. The resulting uncontracted even-
tempered basis set UET17 allows to systematically increase the cardinality from X = 4
to X = 6; see Appendix F.1 and Tab. F.1. Moreover, the computational method was
changed to the RHF-UCCSD(T) approach. Highly precise results usually also require
to estimate the complete basis set (CBS) limit. It was found that using the largest
basis set [UET17(X = 6)] for the Hartree-Fock reference energy and for the singles
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5.2 Proof of concept for Rb2

Table 5.1. : Overview on the spectroscopic constants De and Re of the a Σ3
u state of Rb2 obtained

from the 1D RP-RKHS interpolation based on ab-initio dimer interaction energies calculated at RHF-
UCCSD(T)/ECP28MDF/UET17 level of theory with increasing basis set size. The CBS values were
obtained from Eq. (5.29) with the pair energy and triples energy correlation contributions extrapolated
according to the conventional two-point extrapolation formula (5.30). The CBSζ values used an approach
based on the Riemann-ζ function, which has been recently proposed in Ref. [304]. Results based on
the MRCI(lcECP+CPP)/UET15 approach, with UET15 from Tab. C.1, are given for comparison. The
experimental values are Dexp

e = 241.5045 cm−1 and Rexp
e = 6.0650 Å and were taken from Ref. [305].

basis set size De [cm−1] Re [Å]

UET17(X = 4) 239.0766 6.0809
UET17(X = 5) 241.0339 6.0689
UET17(X = 6) 241.8987 6.0661
UET17(CBS) 242.2874 6.0624
UET17(CBSζ) 242.3365 6.0619

MRCI(lcECP+CPP)/UET15 249.9099 6.0063

contribution to the UCCSD(T) correlation energy, while extrapolating the remaining
contributions to their respective CBS limit, provides the most promising results. The
total RHF-UCCSD(T) energy at the CBS limit is thus approximated via

E∞
UCCSD(T) ≈ ERHF(X = 6) + Esingles(X = 6) + E∞

pair + E∞
(T) . (5.29)

The CBS values (E∞
i ) for the pair and perturbative triples contribution to the corre-

lation energy were either obtained from the conventional two-point extrapolation
formula [238, 239]

Ei(X) = E∞
i +

A
X3 , (5.30)

or by applying an approach based on the Riemann-ζ function (CBSζ), as proposed
recently in Ref. [304].

Table 5.1 gives an overview on the spectroscopic constants De and Re following
from PECs obtained using the RP-RKHS method with underlying dimer interaction
energies calculated at the RHF-UCCSD(T)/ECP28MDF/UET17 level of theory with
increasing basis set size. The corresponding interpolative quality was again assessed
by RMSDs which are of the same magnitude as the RMSD<0 and RMSD<15000 values
as given above. Again, major error contributions can be assigned to the region with
R < 4.5 Å, which is already high-up the repulsive short-range wall. In addition, the
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F igure 5.3. : Illustration of the modified RP-RKHS construction procedure according to Eq. (5.32) to
obtain a highly accurate PEC for the a Σ3

u state of Rb2. The underlying ab-initio data were generated
at RHF-UCCSD(T)/ECP28MDF/UET17(CBS) level of theory with extrapolation to the CBS limit after
Eq. (5.29). The inset shown on the left reveals that the resulting RP-RKHS interpolated PEC becomes
defective high-up the repulsive short-range wall due to the insufficient extrapolation behavior of the
RP-r.k. for small internuclear distances [102]. The introduction of a short-range correction according to
Eq. (5.31) with the ab-initio data shifted and scaled so that the experimentally derived values for De and
Re from Ref. [305] are reproduced yields a highly accurate and physically meaningful PEC.

CBS ab-initio data and the resulting interpolated PEC VRb2 are visualized in Fig. 5.3.
The ab-initio data do not show a saturation behavior in the short-range as observed for
the MRCI(lcECP+CPP) approach but the corresponding RP-RKHS interpolated PEC
still becomes defective high up the repulsive short-range wall. This is indicated by the
left inset in Fig. 5.3 and can be assigned to the insufficient extrapolation behavior of the
RP-RKHS method in the short-range region [303]. To ensure a correct description of
the repulsive part, which is also important for scattering calculations, one may employ
a short-range correction according to

VSR(R) =
a
R

e−bR , (5.31)

with the parameters a and b obtained from least-squares fits to the CBS ab-initio data in
the range [4.5, 5.25] a0, yielding a = 31.8214 and b = 0.89515. Inspired by the approach
of Soldán [100], one may furthermore scale and shift the ab-initio interaction energies
and internuclear distances so that the resulting PEC yields the experimentally derived
values for De and Re from Ref. [305]. These spectroscopic constants were in other

144



5.3 A high-quality Rb3 quartet ground state PES

works [306, 307] referred to as the most accurate ones. To this end, one may first
transform the ab-initio data according to

Ṽab-initio
Rb2

= κeVab-initio
Rb2

(R− Rs)−VSR(R− Rs) , (5.32)

with κe and Rs derived from the UET17(CBS) values of Tab. 5.1 to yield Dexp
e =

241.5041 cm−1 and Rexp
e = 6.0650 Å, respectively

κe =
241.5041 cm−1

242.2874 cm−1 = 0.99677 and Rs =
(6.0650− 6.0624)Å

0.529177
= 0.00491 a0 . (5.33)

The transformed ab-initio interaction energies Ṽab-initio
Rb2

are then interpolated using the
RP-RKHS method with the parameters from Eq. (5.28), yielding ṼRb2 . Finally, the
optimized dimer potential Vopt

Rb2
is rebuilt via

Vopt
Rb2

= ṼRb2(R) + VSR(R) , (5.34)

where shifted internuclear distances Ri,s = Ri + Rs have to be used in ṼRb2(R) as
defined via Eq. (5.8). This shifted, scaled and short-range-corrected PEC Vopt

Rb2
is

illustrated in Fig. 5.3 and serves as foundation for the high-accuracy PES construction
for the quartet ground state of Rb3 as discussed below. A more detailed insight to its
accuracy is outlined in Appendix F.3 by a comparison of computed vibrational energy
levels with experimentally measured term values. Appendix F.3 further shows the
effect of shifting and scaling the ab-initio data as compared to merely applying the
short-range correction.

5.3 A high-quality Rb3 quartet ground state PES

The previously discussed problems connected with the MRCI(lcECP+CPP) approach
suggest to also use the RHF-UCCSD(T)/ECP28MDF method for highly accurate cal-
culations of quartet ground state energies of Rb3. However, using the previously
introduced UET17 basis set causes linear dependencies in the corresponding trimer
calculations. Therefore, a slightly modified version of the UET15 basis set introduced
in Sec. 4.2 is used. Here, the existing exponents are augmented by one additional
g function; h- and i-functions are generated according to Eq. (4.4), thus allowing to
systematically increase the cardinality from UET15(X = 4) to UET15(X = 6). The
corresponding exponents are listed in Tab. C.2. In this way, 759 trimer interaction
energies VRb3 of the 1 B4

1 quartet ground state manifold of Rb3 (using the C2v nomen-
clature from Chap. 4) were calculated on a 3D grid of perimetric coordinates to ensure
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5 Quartet Ground-State Potential Energy Surface for Rubidium Trimer

that each generated configuration satisfies the triangular inequality. The resulting
configurations cover a range of internuclear distances from 4.5 to 36.0 a0 where R23

was pruned to R23 ≤ 30.0 a0.
From the trimer interaction energies at RHF-UCCSD(T)/ECP28MDF/UET15 level of

theory, the nonadditive energies V3 were extracted from the many-body decomposition
according to Eq. (5.7). Note that this approach is only valid if the nonadditive forces
do not dwarf the additive ones [102, 107], which is fulfilled for the quartet ground
state of Rb3, as shown in Appendix D.7. In general, for spin-polarized alkali-metal
trimers, the nonadditive terms make substantial contributions to the PESs and are
most important in the vicinity of the D3h minimum where they are attractive; cf.
Figs. 5.4 and D.6. Thus, the corresponding bond lengths are significantly shorter as
compared to the respective triplet dimers and trimer potentials are all deeper than
pairwise sums of dimer potentials. The physical explanation for this behavior may
be found in Refs. [102, 107]. Here suffice it to say that accounting for V3 is important
if the resulting trimer potential is to be capable of representing all the properties of
experimental interest (atom-atom scattering lengths, dimer and trimer bound states,
atom-diatom collisions and three-body recombination). This moreover requires that the
potential should dissociate properly into all possible sets of products (atom+diatom
and three separated atoms) with the correct long-range behavior. In this regard, the
nonadditive dispersion forces are important at long-range but show comparatively
small contributions around the trimer potential minimum.

After manipulating the extracted nonadditve energies to obtain the correct long-
range behavior according to the procedure described in Sec. 5.1.2, the resulting V′′3
points were then interpolated using the 3D RP-RKHS method with respect to the
reduced internuclear distances of Eq. (5.17), suggesting the parameters in Eqs. (5.15)
to (5.18)

n3D = 2 and m3D = 0 and s3D = 3 and S = 10.0 a0 . (5.35)

The cutoff parameter entering the damping function in Eq. (5.23) was chosen as
k3 = 18.0 a0. The three-body dispersion coefficients corresponding to the triple-dipole
VDDD

3 [cf. Eq. (5.19)] and dipole-dipole-quadrupole VDDQ
3 [cf. Eq. (5.20)] terms were

taken from Refs. [100, 300, 301] with Z(3)
111 = 3.543 · 105 Eha9

0 and Z(3)
112 = 7.750 · 106 Eha11

0 .
Again, assuming that the main source of instability comes from machine roundoff errors
(which may be a good approximation for data resulting from ab-initio calculations) the
regularization parameter in Eq. (5.18) was set to λ3D = 10−16 · σ̃1, with σ̃1 the largest
singular value of the kernel matrix Ξ, yielding λ3D ∝ 10−12.
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5.3 A high-quality Rb3 quartet ground state PES

Table 5.2. : Overview of the Rb3 quartet ground state equilibrium configuration and energy obtained
from the RP-RKHS approach using different UET15 basis set sizes (cf. Tab. C.2) for the RHF-UCCSD(T)/-
ECP28MDF calculations of respective ab-initio trimer interaction energies yielding the nonadditive
energies V3 according to Eq. (5.7). The corresponding dimer interaction potential was constructed based
on RHF-UCCSD(T)/ECP28MDF/UET17(CBS) ab-initio data employing short-range extrapolation but no
scaling and shifting to match experimental results as outlined previously. The results following from
Chap. 4 are given for comparison as well as the values reported by Soldán.

basis set size (V3) Req = (Req
12, Req

23, Req
13) [Å] Vtrimer(Req) [cm−1]

UET15(X = 5) 5.4048,5.4048,5.4048 −1141.7070
UET15(X = 6) 5.4047,5.4047,5.4047 −1141.9265
UET15(CBS) 5.4046,5.4046,5.4046 −1141.9265

MRCI(lcECP+CPP)/UET15 [cf. Tab. 4.4] 5.3110,5.3110,5.3110 −1244
Soldán [100] 5.5000,5.5000,5.5000 −1105

The dependence of the outlined approach on the UET15 basis set size used for
the calculation of trimer interaction energies is summarized in Tab. 5.2. The CBS
extrapolation follows the ansatz given in Eqs. (5.29) and (5.30) and thus only the
UET15(X = 5) and UET15(X = 6) results were considered. A detailed insight into this
basis set dependence of V3 is provided by Fig. 5.4 (a) in terms of a one-dimensional
scan along D3h geometries. The cuts of the nonadditive energy functions V3 show the
expected attractive behavior around the equilibrium geometry of the quartet ground
state (≈ 5.0 Å; cf. Tab. 4.4) as discussed previously. For larger bond distances one
obtains a small repulsive barrier due to the character of the Axilrod-Teller triple-dipole
potential after Eq. (5.19) defining the leading long-range behavior (together with
the VDDQ

3 term). However, a close-up of this region shows that due to intersections
of the UET15(X = 5) and UET15(X = 6) curves, the CBS extrapolation leads to
unphysical oscillations in the corresponding curve. This would be clearly undesirable
for quantum dynamics calculations, which require smooth potential-energy functions
without oscillations between ab-initio data. The negligible changes obtained for the
equilibrium energies and geometries of the Rb3 quartet ground state when using a
UET15(X = 6) or UET15(CBS) approach (cf. Tab. 5.2), thus suggest to base the 3D
RP-RKHS interpolation on UET15(X = 6) nonadditive energies.

Beyond that, by different C2v scans Fig. 5.4 (b) reveals that for certain cuts through
the nonadditive energy landscape one obtains an unphysical short-range behavior with
V3 → −∞, which consequently spoils the complete trimer interaction energy and thus
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F igure 5.4. : (a) One-dimensional scan along D3h geometries for the nonadditive energy function V3

obtained from the 3D RP-RKHS interpolation procedure as described in Sec. 5.1.2. The underlying
trimer interaction energies to extract the ab-initio V3 energies were computed at RHF-UCCSD(T)/-
ECP28MDF/UET15 level of theory with increasing basis set sizes and the CBS values obtained from
Eq. (5.29). The oscillatory behavior of the UET15(CBS) curve is due to intersections between the
UET15(X = 5) and UET15(X = 6) curves. (b) C2v scans for the RP-RKHS interpolated V3 function along
the internuclear coordinate R12. For some configurations the nonadditive energy reveals an unphysical
behavior in the short-range with V3 → −∞ spoiling the complete trimer interaction energy and thus
subsequent scattering calculations (see text for details). This motivates to introduce a short-range
correction according to Eqs. (5.36) and (5.37) to render physically correct functions. The resulting V∗3
curves are indicated by dashed lines.

subsequent scattering calculations. This could be due to the attractive nature around
equilateral geometries so that the RP-RKHS method “learns” the wrong behavior for
short internuclear distances, which are not covered by the training set. Furthermore,
in the very short-range the many-body decomposition of Eq. (5.7) would represent
V3 as the difference between two large quantities, which is certainly not a good
approximation. To ensure the physically correct short-range behavior one may modify
the interpolated V3 functions as follows [308]

V∗3 (R12, R23, R13) = α [h(R12/R0) + h(R23/R0) + h(R13/R0)]

+ [g(R12/R0)g(R23/R0)g(R13/R0)]V3(R12, R23, R13) (5.36)

where the parameters α and R0 are a priori free parameters and may eventually be
adjusted so to match experimental findings. The cutoff functions are defined as

h(Rij/R0) =
[
1− tanh(2Rij/R0)

12
]12

, (5.37a)

g(Rij/R0) = 1− h(Rij/R0) . (5.37b)
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5.3 A high-quality Rb3 quartet ground state PES

Note that the damping function according to Eq. (5.23) only controls the effect of the
leading long-range terms VDDD

3 and VDDQ
3 to the full nonadditive energy. Generic

cases of the short-range-corrected nonadditve energy function V∗3 are shown in Fig. 5.4
for R0 = 5.0 a0 and α = 0.1 a.u..

The final trimer PES is constructed according to

Vopt
Rb3

(R12, R23, R13) = ∑
i<j

Vopt
Rb2

(Rij) + V∗3 (R12, R23, R13) , (5.38)

with the dimer potentials according to Eq. (5.34) obtained at UET17(CBS) level of
theory and the short-range corrected nonadditive contribution V∗3 following from an
approach according to Eq. (5.26) based on UET15(X = 6) ab-initio calculations. Both
parts used the RHF-UCCSD(T)/ECP28MDF method. This, yields the following quartet
ground state equilateral triangular equilibrium

R
opt
eq = (5.4067, 5.4067, 5.4067)Å and Vopt

Rb3
(R

opt
eq ) = −1137.97569 cm−1 . (5.39)

Technical remarks
The discussion of this chapter may be supported by the following technical remarks:

• The CBS extrapolation for the Rb2 parts with the UET17 basis set family and for
the nonadditive contribution V3 based on the UET15 basis set series both follow the
ansatz given in Eqs. (5.29) and (5.30) and thus avoids an exp(−bX)-ansatz for
the ERHF and Esingles part as suggested in Ref. [236]. If this approach were used it
would have led to even more overestimated/underestimated spectroscopic constants
of Rb2 (cf. Tab. 5.1) and to even more pronounced oscillations in the long-range part
of V3 as shown in Fig. 5.4

• The RP-RKHS interpolation procedures for both the additive parts VRb2 and the
nonadditive part V3 (in terms of interaction energies) used atomic units for numerical
convenience. Thus the resulting data shown in Figs. 5.1 to 5.4 and provided in
Tabs. 5.1 and 5.2 were scaled afterwards to use consistent units (Å and cm−1)
throughout this thesis. According to Eq. (5.7) interaction energies were committed
to the RP-RKHS method

• The calculations of the Rb3 quartet ground state energies at RHF-UCCSD(T)/-
ECP28MDF/UET15 level of theory have been performed on the Justus 2 cluster

• This chapter uses the notation X when referring to the cardinality of the UET15 and
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UET17 basis sets to clearly distinguish from the RP-RKHS parameter n introduced
in Sec. 5.1. The remaining parts of this thesis however use n to label the cardinal
number

The RP-RKHS interpolation method as described in this chapter was implemented
in python and Fortran [309] and thus globally smooth and physically meaningful
PESs can be routinely generated. This allows for interfacing with codes designed for
studying ultracold collisions. Preliminary calculations of Rb2 +Rb collisional processes
based on the Rb3 quartet ground-state PES of this work revealed interesting insights
into the dynamics of the system. Further investigations will be devoted to these aspects
and may be published in the future.
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High-Accuracy ab-initio Calcula-
tions for Rb2

+
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6
Limitations of Coupled-Cluster

Approximations for Rb2
+

The material presented in this chapter has been published in

[324] J. Schnabel, L. Cheng, and A. Köhn, J. Chem. Phys. 155, 124101 (2021).

The following investigations were stimulated by recent experimental findings [111,
114, 120–122, 310] for studying ion-atom collisions in ultracold rubidium quantum
gases. These pilot experiments aim at entering the s-wave scattering regime which
is expected to provide a rich experimental platform for subsequent studies on the
quantum level. The physics of ion-atom scattering is based on the corresponding
interaction potentials, such as the X Σ2 +

g electronic ground state of Rb2
+ and the

asymptotically degenerate (1) Σ2 +
u state, as illustrated in Fig. 6.1. The characteristic

ion-atom interaction length scale is defined by R∗ ∝
√

µC4 ≈ 5000 a0 [110]. Due to the
level of control attained in the ultracold regime, highly accurate potentials (over the
full range of R∗) are needed as a starting point for subsequent studies of corresponding
properties related to the design and performance of these experiments.

When applying coupled-cluster (CC) methods with perturbative noniterative or
approximate iterative treatments of triple excitations to the determination of the
cationic dimer potential energy curves (PECs), certain limitations are revealed. It
is demonstrated that these CC approaches lead to an unphysical long-range barrier,
which seems to be undocumented so far. In particular, it is shown that this spurious
feature also occurs for the CCSD(T) method: the “gold standard” of quantum chemistry.
By unraveling the origin of this long-range problem, it is shown that it is related to
a symmetry instability of the underlying Hartree-Fock mean-field approach leading
to asymptotic orbitals representing two +0.5-fold charged ions. This in turn leads to
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F igure 6.1. : Schematic illustration of the X Σ2 +
g and (1) Σ2 +

u potential energy curves (PECs) of Rb2
+

over the entire range relevant to study ion-atom scattering physics. The PECs need to be accurate in the
binding region to investigate the ro-vibrational structure as well as in the long-range region where the
actual scattering events take place. Freely adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).

wrong leading-order 1/R components in the asymptotic region of respective PECs
obtained from perturbative coupled-cluster approximations.

6.1 Computational approach

High-accuracy ab-initio calculations of atomic and molecular energies often rely on
additivity schemes [236, 238, 311–314]. Here it is assumed that the Hartree-Fock
(HF) reference energy and the CCSD(T) correlation contribution, both extrapolated to
the complete basis set (CBS) limit, form a good basis to add higher-level correlation
contributions (i.e. those beyond CCSD(T) such as CCSDT, CCSDT(Q), etc.), and higher-
order relativistic effects on top to finally obtain the total electronic energy to the highest
possible accuracy.

The Rb2
+ system is treated as an effective 17 electron system where only the 4s24p65s1

electrons of Rb are explicitly correlated in the CC calculations, while all the remaining
electrons are modeled via the small-core scalar-relativistic pseudopotential ECP28MDF
from Ref. [250]. In general, results based on a small-core ECP (scECP) description are
more accurate as compared to using a lcECP (cf., e.g., the Rb3 system in Chap. 4), since
most of the repulsive interaction of the core electrons is recovered [265]. To exclude
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possible errors due to the scECP approach, the HF and CC parts were also investigated
using the all-electron spin-free exact two-component theory in its one-electron variant
(SFX2C-1e) [315, 316]. The spin-restricted open-shell (ROHF) approach was chosen for
the HF calculations and for generating orbitals for the subsequent single-reference CC
calculations. The latter used an spin-unrestricted formulation with singles, doubles
and perturbative noniterative triple excitations: the ROHF-CCSD(T) method [29, 30,
210, 317] (also often referred to as “RHF-UCCSD(T)”).

The exploration of the problem encountered for the CCSD(T) PEC also involved
approximative iterative triples methods as the CCSDT-n (n=1b,2,3,4) approaches [211–
215] as well as investigating contributions due to higher excitations entering via
CCSDT [34–37] and CCSDT(Q) [38–40]. For the latter the CCSDT(Q)/B variant for
ROHF reference was used [41].

Beyond that, generating highly accurate ion-atom interaction potentials requires
large basis sets which are flexible enough to describe both the entire range defined
by R∗ and the repulsive short-range region sufficiently accurate. The basis set should
moreover show smooth convergence behavior with respect to extrapolation to estimate
the CBS limit. This is generally fulfilled by correlation consistent basis sets (cf. Sec. 3.5)
and therefore the recently published [240] aug-cc-p(w)CVnZ-PP basis sets (n = 3, 4, 5)
for use in correlated molecular calculations of alkali metal and alkaline earth atoms,
designed for the ECP28MDF pseudopotential, have been used. For all-electron SFX2C-
1e based computations, the aug-cc-pwCVTZ-X2C basis set was used.

The ECP-based ROHF-CCSD(T) as well as the SFX2C-1e-ROHF-CCSD(T) calculations
were performed using the Molpro 2018.2 program package [224, 225, 251]. The
CCSDT-n (n=1b,2,3,4) and CCSDT results were obtained using the Cfour program
package [317–320], while CCSDT(Q) energies were computed using the Mrcc program
suite [40, 47, 321, 322].

6.2 Failure of standard coupled-cluster methods

The following investigations are restricted to the long-range region of the X Σ2 +
g PEC

of Rb2
+, while it is noted that there is the (1) Σ2 +

u state which becomes degenerate to
the former one in the asymptote, as shown in Fig. 6.1.

To avoid numerical errors in the underlying ROHF and CC calculations the corre-
sponding convergence thresholds were tightened a priori as discussed in more detail
in Appendix F.4. The resulting long-range tails are shown in Fig. 6.2 for the aug-cc-
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F igure 6.2. : Overview of the long-range tails of the X Σ2
g PECs of Rb2

+ for different aug-cc-pCVnZ-PP
basis set sizes and calculations based on the ECP28MDF approximation. The ROHF reference energies
are shown in (a). Coupled-cluster singles and doubles (CCSD) energies are illustrated in (b). The
inclusion of perturbative noniterative triples corrections are shown in (c) for the CCSD(T) approach and
in (d) for the CCSD[T] method. These perturbation-theory based methods lead to unphysical repulsive
long-range barriers as discussed in more detail in the text. All energies are given as interaction energies
with respect to the asymptote (extrapolated limit for R → ∞). Freely adapted from J. Schnabel et al., J.
Chem. Phys. 155, 124101 (2021).

pCVnZ-PP basis sets with n = T, Q, 5. The ROHF and CCSD contributions show the
expected, weakly attractive ∝ −R−4 [110], asymptotic behavior. However, including
perturbative noniterative triples corrections according to Eqs. (3.47), (3.49) and (3.50),
produces small repulsive barriers at R ≈ 100 Å with ≈ O(0.15 cm−1) in size. This is
illustrated in Figs. 6.2 (c) and (d) for the CCSD(T) and the CCSD[T] method, respec-
tively. The latter approach leads to a slightly more pronounced hump occurring at the
same position. This may indicate that the problem is connected with the fourth-order
energy correction after Eq. (3.47) and demonstrates that the fifth-order correction that
defines CCSD(T), leads to a small but clearly insufficient compensation effect. This is
discussed in more detail in Sec. 6.4.
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6.2 Failure of standard coupled-cluster methods

It turns out that the spurious long-range hump can indeed be considered as an
inherent problem of the CCSD(T) approximation, since further sources of error can be
excluded after thoroughly studying their impact (see Appendix F.4 for more details):

1. The convergence thresholds were tightened to reduce the numerical noise for
energies to O(2.5 · 10−7 cm−1) thus excluding numerical errors

2. A basis set incompleteness error can be already excluded from Fig. 6.2: the hump
is independent of the basis set size. In fact the size of the hump even slightly
increases with increasing basis set size, thus also excluding basis set superposition
errors (BSSEs). This is furthermore demonstrated in the appendix F.4.2 by
applying the counterpoise correction scheme.

3. The long-range barrier is independent of the choice of the reference determinant,
i.e. spin-restricted open-shell (ROHF) or spin-unrestricted (UHF) as demonstrated
by Fig. F.8 yielding to virtually the same result with absolute energy differences
O(10−2 cm−1)

4. Both spin-unrestricted [RHF-UCCSD(T)] and partially spin-restricted [RHF-
RCCSD(T)] coupled-cluster theory, cf. Refs. [32, 217, 218] and Sec. 3.3.2, lead to
the long-range hump with energy differences in the order of O(10−4 cm−1)

Furthermore, the problem is not an artefact due to the scECP approximation, since
an all-electron SFX2C-1e-ROHF-CCSD(T) calculation leads to a hump at the same
position and with the same order of magnitude. This is shown in Fig. 6.3, where
the ECP28MDF pseudopotential is replaced by the X2C Hamiltonian. The long-
range barrier is also independent of whether the aug-cc-pCVnZ-PP or the aug-cc-
pwCVnZ-PP basis sets from Ref. [240] are used, as demonstrated in Appendix F.4.3.
Beyond that, it is important to note that the reported problem is not due to neglecting
multireference effects. The quasi-degenerate X Σ2 +

g and (1) Σ2 +
u states of Rb2

+ are of
different symmetry and thus do not mix. Consequently, these states are single reference
systems for all internuclear distances and the situation is different as compared to the
ground state PEC of LiNa where multireference effects are present and CCSD(T) fails
to correctly describe the respective bond cleavage [323]. Finally, it was found that the
long-range barrier is universal for X2

+ systems with X= {Li, Na, K, Rb, Cs}, as shown
in Fig. F.10.

Further, it may be investigated if the occurrence of the long-range tail is due to
the noniterative approximative nature of the CCSD(T) and CCSD[T] approaches. In
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Sec. 3.3.2 a particular class of iterative approximations to CCSDT was introduced:
the CCSDT-n methods with n=1b,2,3,4 [211–215]. Here contributions due to triples
excitations conveyed via T̂3 are not determined perturbatively, rather than by including
them into the solution of the coupled-cluster equations according to Eq. (3.41). The
singles and doubles residuals are thus equivalent to the one obtained for full CCSDT
while the n=1b,2,3 methods avoid including N8

AO-scaling terms in the projection onto
triply excited determinants. The CCSDT-4 method partially includes such terms and
is thus almost as expensive as CCSDT. Figure 6.4 shows the resulting long-range
PECs obtained at ECP28MDF/aug-cc-pCVTZ-PP level of theory. The CCSDT-1b,
CCSDT-2 and CCSDT-3 methods still show the long-range barrier at the same position
(R ≈ 100 Å) and of the same order of magnitude (≈ 0.15 cm−1). The size of the hump
decreases with increasing number of terms included in the solution of the triples
residual equation. However, only if the full Hamiltonian enters via

〈
ΦI3

∣∣ [Ĥ, T̂3]
∣∣Φ0

〉
,

i.e. for CCSDT-4, the repulsive barrier disappears. This method is already almost as
expensive as CCSDT and there is no reason to prefer the former over the latter.

The CCSDT-n (n=1b,2,3) methods as well as the non-iterative CCSD(T) (or CCSD[T])
approach have the

〈
Φ0

∣∣∣ T̂†
3 f̂N T̂3

∣∣∣Φ0

〉
term as given in Eq. (3.47) in common. This

suggests that this term does not correctly account for interatomic interactions. In fact
it only contains the interaction with the Hartree-Fock density of the other atom [324].
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avoids the barrier. All energies are given as interaction energies relative to the asymptote obtained from
computations at ECP28MDF/aug-cc-pCVTZ-PP level of theory.

The perturbative inclusion of even higher excitations such as CCSDT(Q) [325], leads
to the same phenomenon. The observed hump is in fact smaller in size but nevertheless
entirely spoils the long-range behavior of the PEC. This is reported in Fig. F.11.

6.3 Symmetry breaking

From a mathematical perspective X2
+ systems, with X ∈ {Li, Na, K, Rb, Cs}, are gener-

ally characterized by the point group D∞h (i.e. the computational point group is D2h).
This reflects the quantum mechanical indistinguishability of the two limiting cases
Rb + Rb+ and Rb+ + Rb. The correct asymptotes of the Σg and Σu states, respectively,
are thus symmetric and antisymmetric superpositions of both limiting cases and are
given by

|X 2Σ+
g 〉 =

1√
2
(|0,+〉+ |+, 0〉) , (6.1a)

|(1) 2Σ+
u 〉 =

1√
2
(|0,+〉 − |+, 0〉) . (6.1b)
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either symmetry-adapted (D∞h, i.e. computational point group is D2h) or symmetry-broken (C∞v, i.e.
computational point group is C2v) ROHF orbitals. Breaking the symmetry of the system removes the
unphysical long-range barrier (see text for more details). (b) Doubly logarithmic representation of
the CCSD(T) PECs. The long-range interaction of the symmetry-broken solution shows the correct
weakly attractive R−4 behavior while the symmetry-adapted curve reveals a repulsive 1/R component
causing the unphysical barrier. The tiny deviation of the symmetry-broken solution for ≈ 12− 20 Å
is due to a numerical bistability discussed in more detail in connection with Fig. 6.7 (a). Calculations
were performed at ECP28MDF/aug-cc-pCVTZ-PP level of theory and energies are given as interaction
energies relative to the asymptote. Freely adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).

The coupled-cluster approach is based on a Hartree-Fock reference, which provides a
zeroth-order description of the system. As pointed out in Sec. 3.2.1, the Hartree-Fock
method is a mean-field theory and the solution of the nonlinear Roothaan-Hall equa-
tions (3.19) involves the iterative self-consistent field (SCF) method. This need to define
self-consistent solutions leads to different orbitals for Rb and Rb+ and thus the solution
of the separated fragments is at conflict with the symmetry requirement that the two
limiting cases Rb+Rb+ and vice versa are quantum mechanically indistinguishable. The
symmetry-adapted solution converges to the state-averaged orbitals of Rb and Rb+ and
thus all the orbitals are a compromise of the neutral and ionic orbitals. This problem
lives on in the Fockian, the effective one-electron potential of the system according
to Eq. (3.12). As indicated in the previous section, the Fock operator is crucial for
defining perturbative corrections in coupled-cluster theory. Instead of describing the
correct superposition it merely contains the compromise solution with half an electron
on the left and half an electron on the right nucleus, possibly explaining the repulsive
long-range barrier as a consequence of a leading-order repulsive 1/R component in
the asymptotic region of the respective PECs [324].

If the cause of the problem is indeed connected with a size-consistency error of
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symmetry-adapted mean-field solutions, breaking the symmetry of the system should
recover the correct long-range behavior. This means that the point group symmetry
may be lowered to C∞v (i.e. the computational point group is C2v) to obtain size-
consistent mean-field solutions. Quantum mechanically speaking one projects onto
one of the two limiting cases: |0,+〉 = Rb + Rb+ or vice versa. This can be tested
by carrying out CCSD(T) calculations using symmetry-broken ROHF orbitals. The
resulting long-range part of the PEC is shown in Fig. 6.5 (a).

Apparently, reducing the symmetry of the system to C∞v avoids the long-range
barrier and thus proves that it is related to a symmetry instability of the underlying
Hartree-Fock mean-field solution. This is further illustrated by the doubly logarithmic
representation in Fig. 6.5 (b), which clearly reveals the above mentioned leading-order
repulsive 1/R component in the long-range tail of the symmetry-adapted CCSD(T)
PEC. This wrong repulsive 1/R asymptotic behavior is also contained in the SFX2C-1e,
CCSDT-n (n=1b,2,3) and CCSDT(Q) approaches and explains the barriers obtained
in Figs. 6.3, 6.4 and F.11. This is in contrast to the PEC of the symmetry-broken
solution that reveals the correct leading-order attractive R−4 behavior. Moreover, the
symmetry-broken solutions coincide with the energy of the isolated fragments in the
long-range, while the symmetry-adapted solutions converge, as noted previously, to
the state-averaged orbitals of Rb and Rb+. This is reflected in the corresponding offsets
of ≈ 40 cm−1 for ROHF solutions, ≈ 10 cm−1 for CCSD results and ≈ −2 cm−1 for
CCSD(T) PECs, as displayed in Fig. 6.6. In the short-range region the symmetry-
broken solutions suddenly collapse to the symmetry-adapted ones. This takes place
at R = RCF ≈ 12.6 Å which defines the so-called Coulson-Fischer point, where the first
derivative shows a discontinuity. For R ≤ RCF the symmetry-broken and symmetry-
adapted solutions are degenerate, while for R > RCF the symmetry-broken curves
branch off the symmetry-adapted ones. Deeper understanding of this behavior may
be gained by analyzing the differences between the two solutions, as illustrated
on the right-hand side of Fig. 6.6. One may first note that due to the different
asymptotes of symmetry-adapted and symmetry-broken results, they show a different
decay behavior to the equilibrium state. This can be observed from the tiny humps
indicated by the respective insets in Fig. 6.6. Due to the repulsive long-range barrier of
symmetry-adapted CCSD(T) solutions, this behavior is more pronounced in this case.
Moreover, the CCSD and CCSD(T) cases show additional troughs for R ∈ (RCF, 15 Å].
For CCSD this is a consequence of an intersection between symmetry-broken and
symmetry-adapted solutions behind the Coulson-Fischer point. The CCSD(T) trough
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F igure 6.6. : Comparison of symmetry-adapted and symmetry-broken X Σ2 +
g PECs of Rb2

+. The
upper panel corresponds to the ROHF case with the PECs shown in (a) and their respective difference
illustrated in (b). The symmetry-broken solution collapses to the symmetric one at the Coulson-Fischer
point RCF showing a discontinuous first derivative. For R > RCF the symmetry-broken solution branches
off the symmetry-adapted one. The insets shown on the right-hand side in each figure on the right
panel indicate the different long-range decay behavior to the equilibrium between symmetry-broken
and symmetry-adapted solutions due to their convergence to different asymptotes. The left insets
on the right panel display the vicinity of the Coulson-Fischer point. The middle panel shows the
corresponding situations for the ROHF-CCSD case while the lower panel shows the ROHF-CCSD(T)
solutions. The calculations were performed at ECP28MDF/aug-cc-pCVTZ-PP level of theory, with
energies given relative to the separated isolated fragments limit, i.e. Rb+Rb+. Freely adapted from J.
Schnabel et al., J. Chem. Phys. 155, 124101 (2021).
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R ∈ (RCF, 15 Å], the symmetry-broken Σg solution strongly mixes with the Σu state, which falls into the
same IRREP for C2v calculations. This is further demonstrated by the corresponding CCSD(T) energy
differences, as shown in (b). The calculations are based on the ECP28MDF pseudopotential approach
with the aug-cc-pCVTZ-PP basis set. Energies are given relative to the separated isolated fragments
Rb+Rb+. Freely adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).

is significantly more pronounced and results from a hump in the symmetry-broken
PEC occurring in the previously mentioned region as shown by the lower inset in
Fig. 6.6 (e).

The origin of this tiny barrier can be explained by additionally considering the
symmetry-adapted Σu solution in this region, which is illustrated in Fig. 6.7. Due to
the numerical bistability of the symmetry-broken Σg solution it strongly mixes with
the Σu state, which, for the C2v point group symmetry, falls into the same IRREP as
the Σg state. This means that for R ∈ (RCF, 15 Å] the symmetry-broken solution cannot
“decide” between the symmetry-adapted Σg and Σu curves to which one to collapse.
The differences shown in Fig. 6.7 (b) further confirm this behavior. Finally, this also
explains the indicated deviation in Fig. 6.5 (b).

In conclusion, the findings reported in this section suggest that the best long-range
model may be based on symmetry-broken solutions. The most promising protocol is to
use symmetry-broken (T) [and (Q)] corrections in the long-range region and properly
merge with symmetry-adapted results in the intermediate range. This approach is
discussed in more detail in Chap. 7.
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F igure 6.8. : (a) Illustration of the fifth-order noniterative triples correction E(5)
(T) according to Eq. (3.49).

The area highlighted in gray marks the region where the long-range barrier usually occurs. The
inset demonstrates that E(5)

(T) is slightly attractive in this area explaining the tiny compensation effect
when closely comparing the CCSD(T) and CCSD[T] long-range tails as shown in Figs. 6.2 (c) and (d).
Thus, merely adding E(5)

(T) to the CCSD energy, as displayed in (b), does not show the long-range
hump. All energies are given relative to the last ab-initio point and calculations were performed at
ECP28MDF/aug-cc-pCVTZ-PP level of theory.

6.4 Discussion

The findings discussed so far suggest that the unphysical long-range barrier is con-
nected to a symmetry instability of the underlying mean-field approach and the
way it enters perturbative coupled-cluster approximations. Further analysis of the
CCSD(T) energy expression according to Eq. (3.50), with the fourth-order correction
after Eq. (3.47) and the fifth-order term as given by Eq. (3.49), reveals that the latter
contribution does not cause the problems. The E(5)

(T) term is shown in Fig. 6.8 (a) with
the area where the long-range hump usually occurs highlighted in gray. In this area,
E(5)
(T) is slightly attractive, thus explaining the above mentioned compensation effect

occurring for CCSD(T) as compared to CCSD[T]. Figure 6.8 (b) further demonstrates
that adding E(5)

(T) to the CCSD energy yields a physically correct long-range tail.

However, formally these findings do not reveal whether the previously discussed
mean-field problems are caused by the approximative nature of the energy expression
or if they are due to the use of approximate triples amplitudes T̂3 after Eq. (3.48).
The latter can be systematically investigated using a flexible framework for obtaining
leading order perturbative triples corrections as shown in Ref. [324]. Herein, it has been
demonstrated that the artificial long-range hump of (symmetry-adapted) CCSD(T)
PECs originates from the use of T̂3 amplitudes obtained from perturbative CC singles,
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doubles and triples (CCSDT) amplitude equations after Eq. (3.48). The basic idea
underlying this “proof” follows the derivation as outlined below [325].

It starts with the formulation of the coupled-cluster equations (3.41) in terms of an
energy functional, yielding [326]

L =
〈
Φ0
∣∣ (1 + Λ̂)H̄

∣∣Φ0
〉

, (6.2)

with the similarity transformed Hamiltonian H̄ after Eq. (3.42) and the Λ̂ operator
consisting of a set of deexcitation operators with analogous definition to that of the
excitation operators of the cluster operator in Eq. (3.38). This allows for an alternative
treatment of triples contributions in terms of an external perturbation to the CCSD
Lagrangian with fictitious field strength χ, yielding [326–329]

L(T̂1, T̂2, χT̂3) =
〈
Φ0
∣∣ (1 + Λ̂CCSD)H̄(χ)

∣∣Φ0
〉

, (6.3)

with the CCSD-Λ-operator Λ̂CCSD = Λ̂1,CCSD + Λ̂2,CCSD. Triples excitations T̂3 con-
tribute to H̄ in the same way as in the CCSDT method. If exact T̂3 amplitudes were
available a finite field CCSD calculation with χ = 1 would define the exact CCSDT
energy. This finite field CCSD calculation uses the CCSDT equation but treats triples
excitations as perturbation and as such, the CCSDT energy can be expressed via a
Taylor expansion

ECCSDT = L(T̂1, T̂2, χT̂3)
∣∣∣
χ=1

,

=

[
L
∣∣∣
χ=0

+ χ
dL
dχ

∣∣∣
χ=0

+
1
2

χ2 d2L
dχ2

∣∣∣
χ=0

+ · · ·
]
∣∣∣

χ=1

,

= L
∣∣∣
χ=0

+
dL
dχ

∣∣∣
χ=0

+
1
2

d2L
dχ2

∣∣∣
χ=0

+ · · · ,

= ECCSD +
dL
dχ

∣∣∣
χ=0

+
1
2

d2L
dχ2

∣∣∣
χ=0

+ · · · , (6.4)

with the first-order energy correction defined as

dL
dχ

∣∣∣
χ=0

=

〈
Φ0

∣∣∣∣ Λ̂CCSD
∂H̄(χ)

∂χ

∣∣∣∣Φ0

〉
∣∣∣

χ=0

,

=
〈
Φ0
∣∣ Λ̂CCSD[Ĥ, T̂3]

∣∣Φ0
〉

. (6.5)

If leading-order triples amplitudes according to Eq. (3.48) are used then Eq. (6.5)
represents the triples contribution of the CCSD(T)Λ method [31, 206, 330]. However,
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+

Eq. (6.5) also allows for using T̂3 amplitudes obtained from the n-th iteration of the
solution of the CCSDT amplitude equations with converged CCSD amplitudes adopted
as initial guess. This approach leads to a systematic improvement of the T̂3 amplitudes
as compared to those resulting from Eq. (3.48) and thus to an improved triples energy
correction through Eq. (6.5). Using triples amplitudes obtained form the n ≥ 3rd
iteration of CCSDT equations removes the long-range hump as reported in Ref. [324]
and finally proves the above statement. However, it should be noted that only from
order five on the method reveals the correct R−4 asymptotic behavior.

This finding also holds for iterative approximations to CCSDT, i.e. CCSDT-n (with
n=1b,2,3) since the resulting equations for determining triples amplitudes approxi-
mately, are formally similar to Eq. (3.48).
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7
Towards Highly-Accurate Rb2

+

Interaction Potentials

This chapter exploits the findings presented previously in Chap. 6 on how to avoid the
long-range barrier occurring for perturbative coupled-cluster approximations for the
construction of physical meaningful and highly-accurate Rb2

+ interaction potentials
based on ROHF-CCSD(T) ab-initio calculations. The procedure described below is
designed such that it may serve as a foundation for constructing as accurate potential
energy curves (PECs) as the present computational resources allow.

The following further outlines the underlying physics of ion-atom interactions,
including novel experimental techniques aiming to study these interactions on the
pure quantum level. The PEC construction procedure is restricted to the CCSD(T)
level of theory, but accounts for the correct long-range and exchange-splitting behavior
and can be straightforwardly extended to higher-level correlation effects. The finally
obtained interaction potentials for the X Σ2 +

g and (1) Σ2 +
u states of Rb2

+ are used to
extract spectroscopic constants and to investigate their ro-vibrational structure. These
results extent the available literature data and raise them to an improved level of
accuracy.

7.1 Physical basics and experimental motivation

The investigation of ion-atom interaction potentials has been stimulated by recent
experimental progress towards entering the ultracold quantum regime of hybrid ion-
atom systems [111, 114, 120–122, 310]. This would mark a milestone for exploring
ion-atom collisions, since the cold regime (T > 1 mK) is essentially classical, while
in the ultracold (T < 1 mK) the s-wave collision and thus the pure quantum regime
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F igure 7.1. : Schematic and strongly simplified illustration of the experimental idea to study ion-atom
interactions in a Bose-Einstein condensate (green). The BEC is trapped in an optical tweezer (pink) and
the ionic impurity is implanted into the BEC through a single Rydberg excitation, where the respective
Rydberg electron orbit (blue) exceeds the size of the atomic cloud (principal quantum number n ∼ 200).
The ion is accelerated by an applied electric field leading to diffusive transport through the BEC [122,
123]. Two exemplary trajectories indicate collisions with host gas atoms (green spheres), which is mainly
governed by Langevin scattering. This setup further allows for studying three-body recombination
processes involving the formation of a weakly bound Rb2

+ molecule and a second Rb atom carrying
away part of the released binding energy [121]. Inspired by figures from K.S. Kleinbach et al., Phys. Rev. Lett.
120, 193401 (2018) and T. Dieterle et al., Phys. Rev. Lett. 126, 033401 (2021).

is reached. In Ref. [114] this could be successfully demonstrated for Li2+, where
accompanying highly accurate ab-initio calculations were used to determine bounds
for the ion-atom scattering length. Reaching the s-wave collision regime for Rb2

+ is
considerably more difficult due to more stringent temperature requirements because
of its large reduced mass. Nevertheless, the respective experimental method uses the
same ideas that are based on implanting an ionic impurity into a cigar-shaped Bose-
Einstein condensate (BEC) through the controlled creation of an individual Rydberg
atom from the atomic ensemble (strong Rydberg blockade grants the creation of a
single impurity) [111, 120, 121]. In this way the Rydberg electron is promoted to an
orbit with principal quantum number n ∼ 200 (orbital radius ≈ 4 µm), exceeding
the BEC size (micron-sized) by far. In a subsequent step, the single Rydberg atom is
ionized to start the ion-atom interaction between the Rb+ ion and the ground state host
gas atoms. All this is schematically illustrated in Fig. 7.1. This procedure decelerates
the produced ion and results in a small initial kinetic energy of Ekin ≈ kB × 50 µK [121,
122].

The scattering properties depend on the long-range form of the X Σ2 +
g and (1) Σ2 +

u
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interaction potentials as illustrated in Fig. 6.1. For diatomic ions with a single active
electron (i.e. alkali-metal systems such as Rb2

+) this long-range behavior contains the
two contributions

VLR(R) = Vind/disp(R)±Vexch(R) , (7.1)

where Vind/disp(R) describes the leading induction and dispersion interactions and
Vexch is the exchange interaction term. For interactions between an S-state atom and
an S-state ion, Vind/disp(R) is defined as [110]

Vind/disp(R) = −Cind
4

R4 −
Cind

6
R6 −

Cdisp
6
R6 + · · · . (7.2)

The leading term is due to the charge of the ion inducing an electric dipole moment of
the atom and thus causing an interaction. The corresponding induction coefficient is
given by

Cind
4 =

1
2

q2αd , (7.3)

where q is the charge of the ion and αd is the static electric dipole polarizability of
the neutral atom. The next higher-order long-range induction term is caused by the
interaction between the charge of the ion and the induced electric quadrupole moment
of the atom, with the respective coefficient

Cind
6 =

1
2

q2αq , (7.4)

defined by the static electric quadrupole polarizability αq of the atom. The leading-
order dispersion term accounts for dynamic interactions due to instantaneous dipole-
induced dipole moments of the ion and the atom arising from quantum fluctua-
tions. Higher-order terms accounting for higher-order multipole polarizabilities and
higher-order dispersion interactions (dipole-quadrupole, dipole-octupole, quadrupole-
quadrupole, etc.) could be further added to Eq. (7.2), but since reaching the s-wave
scattering regime for Rb2

+ is barely possible at all, truncation after the R−6 terms is
usually sufficient.

The exchange interaction is a consequence of the indistinguishability of the two
limiting cases Rb+ + Rb and vice versa; cf. also Eq. (6.1). Thus, it is defined by the
energy splitting between the gerade and ungerade states and determines the cross
section for resonant charge transfer [331]. For alkali-metal X2

+ systems, it generally
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involves one active electron and if both ion and atom are in a S-state, it is of the form
(in atomic units) [119, 125]

Vexch(R) =
VX 2Σ+

g
(R)−V(1) 2Σ+

u
(R)

2
, (7.5)

=
1
2

ARαe−βR
[

1 +
B
R
+

C
R2 + · · ·

]
, (7.6)

where the parameters α, β and B are related by simple expressions to the ionization
potential IRb of the neutral Rb atom. They are defined as

β =
√

2IRb , ν =
1
β

, α = (2ν− 1) and B = ν2
(

1− 1
2

ν

)
. (7.7)

The value for the ionization potential IRb is taken from Ref. [258] and corresponds
to experimental results, yielding Iexp

Rb = 0.15350655 Eh (originally Iexp
Rb = 4.1771281±

0.0000012 eV). The parameter A corresponds to the normalization factor of the asymp-
totic wavefunction and becomes [125, 332], given the parameters from Eq. (7.7)

A = − β2(2β)2νe−ν

Γ(ν + 1)Γ(ν)
, (7.8)

where Γ(·) denotes the Gamma function as defined in Appendix E.3.1. The second
order expansion coefficient C of Eq. (7.7) may be obtained from fit to ab-initio data but
here it is taken from Ref. [119] with C = −19.22.

The leading term of the long-range ion-atom interaction potential according to
Eq. (7.2) marks the essential difference to atom-atom scattering events (e.g. for the
ground-state of Rb2 the leading long-range term is ∝ R−6). By equating the −C4/R4-
term to the kinetic energy one can define the characteristic interaction length scale R∗

as [110]

R∗ =

√
2µC4

h̄2 . (7.9)

This length scale is at least an order of magnitude larger as compared to neutral
atom-atom ones. The respective energy scale becomes

E∗ =
h̄2

2µ(R∗)2 ∝
1

2µ2C4
. (7.10)

This characteristic energy scale is at least two orders of magnitude smaller than the one
for neutral atom-atom systems, marking one of the reasons why reaching the s-wave
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collision regime for ion-atom systems is more challenging as compared to neutral atom
systems. Furthermore, this explains the comparatively early onset of s-wave scattering
for the Li ion-atom system due to its small reduced mass. For the Rb2

+ system the
s-wave scattering limit is E∗ = kB × 79 nK [111].

Nevertheless, most recent experimental achievements encourage to further work
on highly accurate Rb2

+ interaction potentials. By applying homogeneous electric
fields along the long-axis direction of the BEC, the transport of the ion through
the atomic cloud could be measured [121, 122]. This is also illustrated in Fig. 7.1.
These experiments revealed that a large fraction of the Rb+ ions undergo three-body
recombination processes and enabled to estimate typical binding energies of threshold
bound states. Therefore, the experiments may pave the way to probe chemical reaction
channels on the quantum level. This so-called state-to-state chemistry will require
resolving the quantized molecular energy levels both theoretically and experimentally.
This further shows the importance of having accurate ab-initio potentials at hand. The
ab-initio potentials could also help to make more quantitative statements for conditions
needed to identify effects beyond Langevin scattering, since current theoretical models
for scattering calculations only involve simplified long-range potentials [123].

Finally, the recent development of a high-resolution ion microscope [310] allows for
the spatial resolution of Rydberg atoms and marks, among the outlined achievements,
a next milestone towards the ultimate goal of studying polaron physics.

7.2 Computational aspects and prospects

In Sec. 6.1 it was already briefly outlined that high-accuracy quantum-chemical calcu-
lations often rely on additivity schemes [236, 238, 311–314]. A systematic way to define
such a scheme follows the so-called HEAT (High accuracy Extrapolated Ab-initio
Thermochemistry) protocol [313, 333, 334], according to which the total molecular
energy E is computed via

E = E∞
HF + ∆E∞

CCSD(T) + ∆EHLC + ∆Ehigher−rel . (7.11)

Herein, E∞
HF and ∆E∞

CCSD(T) are the contributions of the Hartree-Fock energy and the
CCSD(T) correlation energy at the estimated complete basis set (CBS) limit obtained via
extrapolation. Correlation effects that account for contributions beyond CCSD(T) are
denoted as higher-level correlation effects ∆EHLC and higher-order relativistic effects
are labeled by ∆Ehigher−rel. In this respect, it should be noted that for systems involving
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bond cleavage, CCSD(T) is expected to fail and thus Eq. (7.11) does not represent a
proper approach for computing corresponding PECs. However, for the ground state of
Rb2

+ this is unproblematic since it is a single reference system for the entire range of
internuclear distances and hence CCSD(T) is expected to work well.

As a natural continuation of Chap. 6, the following discussion is restricted to the
construction of high-precision and physically meaningful Rb2

+ PECs at CCSD(T)
level of theory, incorporating the previously acquired insights to avoid the spurious
long-range barrier. Thus, symmetry-adapted and symmetry-broken ROHF-CCSD(T)
[i.e. RHF-UCCSD(T) in Molpro fashion] calculations with the ECP28MDF small-core
pseudopotential [250] and the aug-cc-pCVnZ-PP (n =3,4,5) basis sets from Ref. [240]
were performed for all Rb2

+ results presented in this chapter. It should be noted
that the same convergence thresholds as outlined in Appendix F.4 are imposed for
these calculations. In the spirit of the additivity scheme of Eq (7.11), the construction
procedure discussed in Sec. 7.3 can be systematically extended to ab-initio calculations
accounting for higher-level correlation effects (i.e. CCSDT, CCSDT(Q), etc.) or to those
based on the all-electron spin-free exact two component theory in its one-electron
variant [i.e., e.g. SFX2C-1e-ROHF-CCSD(T)]. Therefore, it is useful to first benchmark
the HEAT protocol according to Eq. (7.11) to reveal both its expected accuracy and its
limitations.

This may be achieved by calculations of ionization energies IRb of atomic Rb as
presented in Tab. 7.1, showing the dependence of IRb on both core-valence correlated
basis set variants [aug-cc-p(w)CVnZ-PP] from Ref. [240] with respect to increasing
basis set size. As suggested by the E∞

HF and E∞
CCSD(T) terms of the HEAT protocol, it is

necessary to estimate the CBS limit values to obtain accurate results. However, due to
the small oscillations between the n = 4 and n = 5 values as obtained from Tab. 7.1,
the use of standard extrapolation techniques might cause convergence problems. In
this regard, a detailed analysis of the basis set convergence with respect to increasing
cardinality was carried out in Appendix F.2. This analysis revealed that the Hartree-
Fock reference energy and the singles contribution to the CC correlation energy
show an irregular behavior with increasing basis set size, possibly causing the above
oscillations. Instead of interpolating these terms using the largest basis set, with nmax

the largest consistent cardinal number, was found as a reasonable compromise. This
yields an ansatz of the form as already defined in Eq. (5.29), with

E∞
HF ≈ EHF(n = nmax) (7.12)
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Table 7.1. : Dependence of the Rb ionization energy IRb (in eV) on the aug-cc-p(w)CVnZ-PP basis
sets [240] with respect to increasing cardinality (labeled by n) and the impact of higher-level correlation
effects as well as higher-order relativistic corrections (see text for details). The correlation energy
was extrapolated either according to the conventional two-point n−3 formula [238, 239] or by using
an approach based on the application of the Riemann-ζ function, as proposed recently in Ref. [304].
Reference energies and singles contributions to the CCSD correlation energy were excluded from the
extrapolation procedure (see text for details). The experimental value is Iexp

Rb = 4.177 128 1 eV [258].

basis set size
ECP calcs. SFX2C-1e [325]

aug-cc-pwCVnZ-PP aug-cc-pCVnZ-PP ANO-RCC+UET17

n = 3 4.157429 4.125985 4.161396
n = 4 4.172722 4.159782 4.168993
n = 5 4.172448 4.166632 4.171510
n = 6 – – 4.172440

CBS 4.172207 4.174037 4.173717
CBSζ 4.172165 4.175328 4.173885

+∆ETQ
T 0.000108 0.000298 0.000211

[+∆ETQ
T (ζ)] 0.000016 0.000287 0.000157

+∆ETQ
(Q) [325] 0.001542 0.001329 0.001319

[+∆ETQ
(Q)(ζ)] [325] 0.001618 0.001370 0.001366

+∆Ehigher-rel – – 0.002425

∑ 4.173857 4.175664 4.177672

∑ζ 4.173799 4.176985 4.177833

and

∆E∞
CCSD(T) ≈ Esingles(n = nmax) + E∞

pair + E∞
(T) . (7.13)

The pair energy (E∞
pair) and the noniterative perturbative triples (E∞

(T)) contributions
were extrapolated to the CBS limit using either the conventional two-point n−3 formula
(CBS row), as given in Eq. (5.30) [238, 239], or an approach based on the Riemann-ζ
function (CBSζ), as proposed recently in Ref. [304].

The higher-level correlation contributions ∆EHLC of Eq. (7.11) are computed via

∆ETQ
T = ETQ

CCSDT − ETQ
CCSD(T) , (7.14a)
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∆ETQ
(Q) = ETQ

CCSDT(Q) − ETQ
CCSDT , (7.14b)

where TQ denotes that the corresponding correlation contribution has been obtained
by extrapolating the CCSD(T), CCSDT, and CCSDT(Q) correlation energies with n = 3
and n = 4 basis-sets using the two-point n−3 formula.

The resulting values of 4.173 857 eV for the aug-cc-pwCVnZ-PP basis sets and
4.176 985 eV for the aug-cc-pCVnZ-PP basis sets, as obtained from Tab. 7.1, agree
well with the experimental value of Iexp

Rb = 4.1771281± 0.0000012 eV [258]. A compar-
ative analysis in Appendix F.1 with the UET17 basis sets as introduced in Chap. 5
finally shows the need of using basis sets, which were explicitly designed for a specific
problem to obatin even better agreement with experimental findings. In the present
case, it is not surprising that the UET17 basis sets perform better for ionization energies
compared to the aug-cc-p(w)CVnZ-PP ones, since the former was constructed from
basis sets originally optimized with respect to atomic polarizabilities [250]. Hence,
the aug-cc-p(w)CVnZ-PP basis sets may still perform better for Rb2

+ as they where
designed for use in correlated molecular calculations.

Even more accurate results may be obtained by getting rid of the approximate
ECP treatment and apply the all-electron spin-free exact two-component theory in
its one-electron variant, SFX2C-1e [315, 316], instead. The expected accuracy of this
approach is also tested for ionization energies of atomic Rb. However, for SFX2C-1e
calculations, the corresponding aug-cc-pwCVnZ-X2C basis sets are only available
up to n = 4 [240]. Therefore, the calculations corresponding to the third column of
Tab. 7.1 used s-, p- and d-type primitive functions of the uncontracted ANO-RCC
(23s,19p,11d) set augmented with f-, g-, h-, and i-type functions of the UET17 basis set
series, as given in Tab. F.1 to obtain the TZ, QZ, 5Z, and 6Z sets [325]. The primitives
of the ANO-RCC set are considerably tighter than the respective exponents of the
UET17 basis set. In Appendix F.1 it is shown that the HF energy already reached its
CBS limit for the UET17 basis set family and the singles contributions do not reveal
the irregular behavior reported above for the aug-cc-p(w)CVnZ-PP basis sets. Thus,
the CBS extrapolation was carried out for the total correlation energies using an n−3

approach, yielding smooth convergence as shown in Tab. 7.1. The same holds for
higher-level correlation effects of SFX2C-1e calculations.

The higher-order relativistic effects ∆Ehigher-rel of Eq. (7.11) are defined relative
to the SFX2C-1e calculations and consist of the spin-orbit (SO) correction and the
contribution from the Gaunt term, the two-electron picture-change (2e-pc) correction
and quantum electrodynamics (QED) effects. The Gaunt term is obtained as the
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difference between the spin-orbit X2C Hamiltonian [335–337] with atomic mean-field
SO integrals [338] and the SFX2C-1e scheme at the CCSD(T) level. The 2e-pc correction
is obtained as the difference between spin-free Dirac-Coulomb (SFDC) and SFX2C-1e
CCSD(T) results [325]. It is less straightforward to incorporate ∆Ehigher−rel into ECP
calculations. The difficulty is that the ECP already contains a two-component spin-orbit
coupled part with corresponding parameters adjusted to valence energies obtained at
all-electron multiconfiguration Dirac-Coulomb-Hartree-Fock (DC-HF) level of theory,
which includes relativistic effects at a four-component level of theory. Furthermore,
one cannot use the difference between SFX2C-1e and higher order relativistic effects
and ECP results using TZ or QZ basis sets (which are the largest correlation consistent
basis sets available for SFX2C-1e) as the correction to ECP. The quality of these basis
sets are not exactly the same as those for ECP calculations, so taking the difference
introduces additional errors.

The spin-orbit, Gaunt, and two-electron picture-change corrections obtained at the
CCSD(T) level using the uncontracted ANO-RCC basis set amount to 0.000 401 eV,
0.000 066 eV and 0.000 721 eV, respectively. A QED correction of 0.001 237 eV has been
taken from Ref. [339]. The final computed value of 4.177 833 eV agrees very well
with the experimental value of 4.177 128 eV, although the present agreement to within
0.001 eV seems somewhat fortuitous considering the remaining uncertainty in the
treatment of basis-set and HLC effects.

This calculation of the ionization energy is very promising for reaching comparable
accuracy for Rb2

+ interaction potentials, if the HEAT protocol is systematically applied.
Thus, it is important to describe a construction procedure for physically meaning-
ful PECs at CCSD(T) level of theory, whereupon one can incorporate higher-order
contributions according to Eq. (7.11). In this section, corresponding scECP-based
ROHF-CCSD(T) calculations for IRb were performed using the Molpro 2018.2 program
package [224, 225, 251]. Higher-level correlation contributions as listed in Tab. 7.1 were
obtained using the Cfour program package [317–320] and the Mrcc program suite [40,
47, 321, 322].

7.3 Construction procedure

The findings of Sec. 6.3 suggest that using both symmetry-broken and symmetry-
adapted (T) corrections may be a promising approach to construct well-defined hybrid
PECs for the X Σ2 +

g and (1) Σ2 +
u states of Rb2

+. Using symmetry-broken solutions for

175



7 Towards Highly-Accurate Rb2
+ Interaction Potentials

the description of the respective long-range tails avoids the repulsive barriers and thus
renders the entire curve physically meaningful. With this, it remains to properly merge
with symmetry-adapted solutions in the intermediate range. The following describes a
construction procedure that joins symmetry-broken and symmetry-adapted solutions
and further grants a correct exchange splitting interaction between the X Σ2 +

g and
(1) Σ2 +

u states.
The hybrid ROHF-CCSD(T) energies for the gerade and ungerade states are defined

as

Ehybrid
CCSD(T)(R) = ED2h

ROHF(R) + ∆ED2h
CCSD(R) + ∆Ehybrid

(T) (R) , (7.15)

where the first two terms denote the ROHF reference energy and the CCSD correlation
contribution, respectively, both obtained from symmetry-adapted calculations. The last
term in Eq. (7.15) describes the hybrid (T) correction, which may be written as

∆Ehybrid
(T) (R) = ∆EC2v

(T)Θ(R− Rm) +
[
∆ED2h

(T) (R) + |∆Es|
]

Θ(Rm − R) , (7.16)

with the Heaviside function Θ(R). This formally represents the use of (T) corrections
from symmetry-broken calculations to model the long-range tail [first term in Eq. (7.16)]
and the proper merging to symmetry-adapted (T) corrections at some merging point
Rm in the intermediate region to describe the remaining part of the PEC [second term
in Eq. (7.16)]. At Rm the symmetry-adapted values have to be shifted by the respective
energy difference |∆Es| to the symmetry-broken solution to obtain a continuous curve.
This construction procedure is also visualized in Fig. 7.2. The small oscillation that
occurs for the symmetry-broken (T) curve before it collapses to the symmetry-adapted
one is a consequence of the numerical bistability of the symmetry-broken CCSD(T)
solution in the region where it cannot “decide” whether to collapse to the symmetry-
adapted Σg or Σu state; cf. Sec. 6.3. Note that the point group labels merely refer to
the computational point groups, which are Abelian subgroups of the actual D∞h and
C∞v continuous groups.

The merging point Rm enters as an additional degree of freedom into the model and
might eventually be adjusted so to optimally reproduce certain experimental findings
(e.g. spectroscopic constants, scattering lengths or vibrational levels). Since the X Σ2 +

u

and (1) Σ2 +
u states are asymptotically degenerate the above construction procedure can

be used for both PECs. This implies, as discussed below, that Rm should be chosen
identically for both the gerade and the ungerade state. The same choice for Rm is
only justified if both states are reasonably well degenerate for a particular merging
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F igure 7.2. : Schematic visualization of the hybrid PEC construction procedure according to Eqs. (7.15)
and (7.16). As discussed in Sec. 6.3, at the Coulson-Fischer point RCF the symmetry-broken solutions
collapse to the symmetry-adapted ones, which also holds for (T) corrections as displayed here. Using
symmetry-broken (T) solutions in the long-range (gray area) avoids the repulsive barrier. At some point
Rm (dashed vertical line; here chosen to be Rm = 40.0 Å) in the intermediate region one has to properly
merge with the symmetric solution by shifting it by ∆Es. This yields a hybrid (T) description. The
merging point enters as an additional degree of freedom with the only restriction defined by Eq. (7.17).
This example corresponds to calculations of the X Σ2 +

g state at ECP28MDF/aug-cc-pCV5Z-PP level of
theory.

point. In the following, it is assumed that this is the case if the difference between
the symmetry-adapted ROHF-CCSD(T) absolute energies is ≤ 10−8 Eh. Furthermore,
the merging point Rm should be sufficiently far apart from the repulsive long-range
barrier occurring at R ≈ 100 Å (cf. Fig. 6.2). These two conditions define the restriction

27.0 Å ≤ Rm < 50.0 Å . (7.17)

In the following this value is set, without loss of generality, to Rm = 40.0 Å.
The analysis of ionization energies listed in Tab. 7.1 demonstrated the importance of

basis set extrapolation to estimate the CBS limit of the aug-cc-pCVnZ-PP basis sets. This
importance is also expected for Rb2

+, where it was again found best to use an approach
based on Eqs. (7.12) and (7.13). An alternative approach with singles contributions
included in the n−3 two-point extrapolation formula for CCSD(T) correlation energies
revealed negligible effects on the dissociation energy De and the equilibrium distance
Re of the X Σ2 +

g and (1) Σ2 +
u states. However, due to the observed irregular behavior of
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singles contributions that occurred in atomic calculations, as discussed in Appendix F.2,
it may be better to also not extrapolate this part in molecular calculations. Furthermore,
it was found that using the actually suggested three-point-extrapolation formula [236]
according to Eq. (F.1) for the Hartree-Fock energy and the singles contribution yielded
rather strong oscillations in the asymptotic region of the corresponding Rb2

+ PECs.
This is in line with the observations from Chap. 5 concerning Rb2 PECs and the V3

contribution of Rb3 based on the UET17 and UET15 basis set series and might be due
to the fact that an e−bn-ansatz tends to exaggerate tiny irregularities.

Again, note that consistent CBS values are only obtained if the merging point Rm

has been chosen equally for all basis sets used for extrapolation.
Beyond estimating the CBS values, the PECs shall also serve as a solid foundation

for studying Rb+-Rb scattering events. As outlined in Sec. 7.1 this is determined by
the respective long-range form of the interaction potentials and involves the exchange
splitting [cf. Eq. (7.1)] between the gerade and ungerade states. Thus, to allow for
accurate predictions of scattering properties, it is important to ensure that the ab-initio
data reproduce the exchange interaction as suggested by Eq. (7.6). This also explains
why it is important to choose the same Rm value for both the X Σ2 +

g and the (1) Σ2 +
u

state (if it were chosen differently the Vexch term would show a discontinuity). The
following protocol may be used to incorporate the exchange interaction into the PEC
construction procedure:

1. Compute the difference ∆(R) between the theoretically suggested exchange
splitting Vexch(R) of Eq. (7.6) [with corresponding parameters from Eqs. (7.7)
and (7.8)] and the one according to Eq. (7.5) resulting from the use of CBS ab-initio
values Ṽexch(R), i.e.

∆(R) = Vexch(R)− Ṽexch(R) . (7.18)

2. It is not necessary to account for the correct exchange splitting of Eq. (7.6) over the
entire range of internuclear distances, since according to Ref. [332] this theoretical
formula is only valid for

Rβ� 1 and Rβ2 � 1 . (7.19)

In the following it is assumed that this means that both products have to be at
least one order of magnitude greater than one. Accordingly, this yields a range
V of internuclear distances R, where one has to ensure that the theoretically
suggested exchange splitting is correctly reproduced by the respective PECs. This
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means that the PECs have to be modified for (note that Eq. (7.6) is given in atomic
units)

R ∈ V = [40.0, ∞) a0 ≈ [21.0, ∞)Å . (7.20)

Note that this is independent from the fixed chosen merging parameter Rm

introduced above to join symmetry-broken and symmetry-adapted (T) corrections.
The ab-initio long-range parts ṼLR of the X Σ2 +

g and (1) Σ2 +
u states will show the

Vexch form of Eq. (7.6) if they are additionally modified according to

Ṽ
Σ+

g
LR (R) =





Ṽ
Σ+

g
LR (R) + ∆(Rv = 40.0 a0) , for R < 40.0 a0

Ṽ
Σ+

g
LR (R) + ∆(R) , for R ≥ 40.0 a0

, (7.21)

and

ṼΣ+
u

LR (R) =





ṼΣ+
u

LR (R)− ∆(Rv = 40.0 a0) , for R < 40.0 a0

ṼΣ+
u

LR (R)− ∆(R) , for R ≥ 40.0 a0

, (7.22)

where Rv labels the lower bound of the validity interval (7.20). Thus, for R ∈ V

the long-range tails are continuously shifted via ∆(R), while for R /∈ V they are
constantly shifted to provide a smooth connection.

3. Pass the modified ab-initio data (≡ “hybrid/CBS/mod” level of theory) to the
one-dimensional RP-RKHS interpolation method as discussed in Chap. 5. This
guarantees the correct reproduction of leading-order induction and dispersion
interaction according to Eq. (7.2).

In general, this scheme may be applied to those ab-initio data obtained at the highest
available level of theory, i.e. for instance the hybrid ROHF-CCSD(T) approach with
higher-level correlation effects included.

Figure 7.3 (a) provides an overview of exchange splittings Ṽexch that result from ab-
initio data with different basis set sizes and compares them with the theory curve (7.6).
The splittings for the QZ basis set show a tiny barrier of ≈ 3 · 10−3 cm−1 in size,
independent if the pure symmetry-adapted solution or the hybrid PEC model of
Eq. (7.15) is used. Numerical errors can be excluded since the same convergence
thresholds as in Chap. 6 were used (cf. Appendix F.4). It could be shown that the
tiny barrier already occurs at the HF level and may thus be attributed to limitations
of the aug-cc-pCVQZ-PP basis set in terms of lacking appropriate diffuse functions
(e.g. d-aug-QZ). The long-range tail is generally rather sensitive to the augmentation
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F igure 7.3. : Overview on basis set effects on the ab-initio exchange splitting Ṽexch according to Eq. (7.5).
(a) The tiny hump occurring for both symmetry-adapted and hybrid ROHF-CCSD(T) results [Eq. (7.15)]
at QZ basis set quality indicates an insufficient description in terms of diffuse functions. The barrier
disappears for the 5Z basis set but leads to a large deviation of the exchange splitting at the hybrid/CBS
level relative to the theoretical form (red curve). The black dotted line shows the modified hybrid/CBS
results (≡ hybrid/CBS/mod) that follow from modifying the hybrid/CBS ab-initio data according to
Eqs. (7.21) and (7.22) within the protocol discussed in this regard. (b) Logarithmic representation to
clarify the deviations.

of the applied basis set and more accurate and reliable answers may be generated
if these basis set effects were further studied and properly accounted for by higher
augmentations with diffuse functions. The aug-cc-pCV5Z-PP basis set almost coincides
with the theory curve and one may thus conclude that it is sufficiently augmented.
However, due to the comparatively bad performance of the QZ basis, the CBS result
goes off the theory curve. This demonstrates the need to modify these results to
correctly reproduce the theory. The deviations of the different approaches relative to
the theory curve (7.6) are clarified in the logarithmic representation of Fig. 7.3 (b).

The one-dimensional RP-RKHS interpolation method as discussed in Chap. 5 is
used to produce the Rb2

+ interaction potentials of the X Σ2 +
g and (1) Σ2 +

u states. Corre-
sponding training data are generated subject to the above construction procedure by
first transforming the ab-initio calculations according to the hybrid model of Eqs. (7.15)
and (7.16). The resulting data are then modified to reproduce the correct exchange
interaction using Eqs. (7.21) and (7.22). It is important to provide sufficient training
data in the region R ∈ [20.0, 60.0]Å to ensure precise interpolation of the exchange
interaction. Beyond that region, the training data should be chosen sparsely to grant
extrapolation to the correct long-range form after Eq. (7.2). As shown in Sec. 5.1.1 this
is readily incorporated in the RP-RKHS method, provided that experimental or highly
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accurate theoretical values for Cind
4 , Cind

6 , Cdisp
6 , etc. are available. The Cind

4 and Cind
6

induction coefficients are proportional to the static electric dipole polarizability αd and
the static electric quadrupole polarizability αq, respectively; cf. Eqs. (7.3) and (7.4). In
Ref. [340] it has been suggested to use the measured αd value from Ref. [341], yielding
Cind

4 = 2.751960345 · 106 cm−1Å
4
. There are several theoretical works that computed

values for static electric multipole polarizabilities. In the following the most recent
αq value based on relativistic coupled-cluster calculations from Ref. [342] is taken,

yielding Cind
6 = 0.156412961 · 108 cm−1Å

6
. The Cdisp

6 coefficient may be obtained from
fitting to ab-initio data, which is further discussed in Sec. 7.4. However, as the s-wave
scattering regime for Rb2

+ might not be reached at all (cf. Sec. 7.1) it is expected to be
sufficient to only include the first two leading-order induction contributions (i.e. Cind

4

and Cind
6 ).

The remaining RP-RKHS parameters are chosen as

nRb2
+ = 2 and mRb2

+ = 1 and sRb2
+ = 2 , (7.23)

and Ra = 20.0 Å for the X Σ2 +
g state and Ra = 85.0 Å for the (1) Σ2 +

u state. Furthermore,
to provide a physically meaningful short-range description a respective correction of
the form given in Eq. (5.31) has been applied.

7.4 Results

The above construction procedure yields the PECs shown in Fig. 7.4 (a) corresponding
to the hybrid ROHF-CCSD(T) approach of Eq. (7.15) at the CBS limit of the aug-cc-
pCVnZ-PP basis set with incorporated modification for correct exchange interaction
(i.e. hybrid/CBS/mod level of theory). As exemplarily depicted in Fig. 6.1, the ground
state is much deeper than the ungerade state, which only shows a very shallow well
at about 12 Å. The choice of the merging point Rm, within the constraints defined by
Eq. (7.17), mainly determines the long-range behavior of the respective PECs, while it
leaves Re effectively unchanged and alters De by less than 0.5 cm−1. This is even less
for the modification introduced by accounting for the theoretically suggested exchange
interaction. The free parameter Rm can be viewed as defining the lower bound of the
fitting range to extract higher-order induction and dispersion coefficients (Cdisp

6 , etc.)
from corresponding ab-initio data. This is indicated in Fig. 7.4 (b) in terms of differences
between ab-initio long-range tails and the theoretical behavior Vind according to Eq. (7.2)
with only Cind

4 or additionally Cind
6 included. Since symmetry-broken and symmetry-

adapted (T) solutions converge to different asymptotes (cf. Fig. 7.2), the long-range tail
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F igure 7.4. : (a) Potential energy curves of the X Σ2 +
g and (1) Σ2 +

u states of Rb2
+ resulting from the

construction procedure of Sec. 7.3 with the RP-RKHS interpolation method based on ab-initio data
at hybrid/CBS/mod level of theory. The inset shows the shallow potential well of the ungerade
state. (b) Differences between the hybrid ROHF-CCSD(T) ab-initio long-range PEC tails ṼLR obtained
according to Eq. (7.15) and Vind(R) after Eq. (7.2) with only Cind

4 included (≡ ∆C4) or additionally
Cind

6 considered (≡ ∆C4+C6) for different basis set sizes. The merging point Rm mainly determines the
fitting range to extract long-range C coefficients. Results corresponding to the QZ and 5Z basis sets
are more attractive as compared to the theory. The CBS result spoils the long-range description. This
explains the values obtained through fitting in Tab. 7.2 and indicates the problems to obtain higher-order
induction/dispersion coefficients from fits (see text for details).

and thus the difference with respect to the form after Eq. (7.2) behaves differently left
and right to Rm.

The extraction of higher-order induction and dispersion coefficients from fits to ab-
initio data might improve the PECs obtained from the RP-RKHS method by including
these coefficients into the extrapolation form defined by Eq. (7.2). The fit quality may
be first tested in terms of fitting approaches that merely involve the leading order
−Cind

4 /R4 term and then compare to experimental and theoretical available values of
the static electric dipole polarizability αd through Eq. (7.3). Table 7.2 lists the results
as a function of increasing basis set size. First this looks rather promising, since the
fitted Cind

4 values and thus the thereof extracted static electric dipole polarizabilities αd

are close to experimental values and in accordance with other theoretical works. The
theoretical values were either obtained from using simple asymptotic wavefunctions
for the valence electron to evaluate multipolar matrix elements [301] or from applying
relativistic ab-initio methods [250, 342, 344, 345]. However, the differences between
asymptotic ab-initio energies and Vind(R) according to Eq. (7.2) with Cind

4 or additionally
Cind

6 included, as shown in Fig. 7.4 (b) reveal certain problems connected with the
fitting approach to obtain higher-order induction/dispersion coefficients. The results
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Table 7.2. : Synopsis of Cind
4 coefficients obtained through fitting of corresponding ab-initio data at

hybrid ROHF-CCSD(T) level of theory after Eq. (7.15) with different basis set sizes. Equation (7.3)
connects the induction coefficients to the static electric dipole polarizability αd and allows for comparison
with experimental measurements and theoretical works. The numbers obtained here may be understood
with Fig. 7.4 (b) and the discussion in the text.

basis set size αd [Å
3
] Cind

4 [106 cm−1Å
4
]

n = 4 47.69 2.769 278 754
n = 5 47.43 2.754 157 578
CBS 47.14 2.737 557 003
CBS/mod 47.14 2.737 535 731

experimental works
[343] 47.24 2.743 249 772
[341] 47.39 2.751 960 345

theoretical works
[301] (asymptotic wavefunctions) 47.64 2.766 477 967
[250] (CCSD(T) with DK method) 47.29 2.746 153 296
[344] (relativistic all-order approach) 47.72 2.771 123 605
[342] (relativistic coupled-cluster method) 47.17 2.739 022 661

strongly depend on the fitting range which is mainly determined by Rm. Due to
the negative energy differences obtained for the QZ- and 5Z basis set qualities the
corresponding results are slightly larger compared to the experimental ones. If the
Cind

6 contribution is included to the theory curve after Eq. (7.2) the 5Z basis set shows
very good agreement. However, extrapolating to the CBS limit spoils this behavior
independent of the inclusion of the modification in terms of the exchange interaction.
Using the corresponding ab-initio energies in the fitting approach with Cind

4 and Cind
6

fixed to experiment and theory, respectively, would lead to exceedingly large and
negative values for Cdisp

6 . This would be in contrast to what has been observed for
other alkali dimer cations in Ref. [119]. In line with the observations for the exchange
interaction in Fig. 7.3, this also suggests to investigate basis set effects, in particular
in regard to augmentation with diffuse functions. So far, it is recommended, if at
all, to extract higher-order dispersion and induction coefficients from 5Z results. The
obtained values could be used to check the sensitivity of scattering calculations on
accounting for such higher-order effects.

Table 7.3 gives an overview of spectroscopic constants for both the X Σ2 +
g and the

(1) Σ2 +
u state. The minima of the potentials may be characterized by the dissociation

energy De (the positive binding energy) and the corresponding equilibrium distance Re
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Table 7.3. : Overview on the aug-cc-pCVnZ-PP basis set size dependence of spectroscopic constant
of the X Σ2 +

g and (1) Σ2 +
u states of Rb2

+ extracted from RP-RKHS interpolated PECs based on ab-
initio data obtained from the hybrid ROHF-CCSD(T) approach of Eq. (7.15). The CBS/mod results
contain the modifications entering through accounting for the correct exchange splitting behavior. The
potentials minima are characterized by the dissociation energy De and the equilibrium distance Re. The
rovibrational ground state (v = 0, J = 0) relative to the dissociation asymptote is labeled by D0 and was
calculated using the Level16 code [346]. Experimental and theoretical results are given for comparison.
The assignment to the respective constituting isotope 85Rb2

+ or 87Rb2
+ is given in parenthesis.

basis set size
X Σ2 +

g (1) Σ2 +
u

De [cm−1] D0 [cm−1] Re [Å] De [cm−1] D0 [cm−1] Re [Å]

n = 4 6153.2971 – 4.8269 80.3830 – 12.2205
n = 5 6163.4805 – 4.8139 79.4019 – 12.2067
CBS 6174.1610 – 4.8000 78.3109 – 12.1906
CBS/mod (87Rb2

+) 6174.1488 6151.3451 4.8000 78.3231 76.4975 12.1906
CBS/mod (85Rb2

+) 6174.1488 6151.0786 4.8000 78.3231 76.4764 12.1906

experimental works
[347, 348] 5888±484 – – – – –
[349] – – 3.94 – – –
[350] 6049±807 – – – – –
[351] (85Rb2

+) – ≥ 6307.5(6) – – – –

theoretical works
[127] 6167 – 4.7943 82 – 12.1340
[352] 5816 – 4.8684 – – –
[351] (85Rb2

+) – 6200 – – – –

obtained from the RP-RKHS interpolated PECs based on ab-initio interaction energies
relative to the last ab-initio point at R = 500.0 Å. The energies of the rovibrational
ground states [i.e. (v, J) = (0, 0)] are labeled by D0 and were extracted from calcu-
lations using the Level16 code [346]. Here, the quantum numbers v and J denote
vibrational and rotational states, respectively.

Due to the discussed basis set effects occurring for the ab-initio exchange splittings,
merely the extrapolated CBS values are modified according to Eqs. (7.21) and (7.22).
For both X Σ2 +

g and (1) Σ2 +
u states this only leads to tiny changes in De, while Re

remains unaffected as can be observed from Tab. 7.3. Further one may notice that
in the case of the X Σ2 +

g state, increasing the basis set size yields increased potential
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well depths and reduced equilibrium distances. For the (1) Σ2 +
u state the situation is

reversed with both De and Re decreasing with increasing basis set size. Note that the
results presented in this chapter are still based on the first two terms of the pursued
HEAT protocol after Eq. (7.11). Preliminary results for the X Σ2 +

g state including
higher-level correlation (HLC) effects at CCSDT level of theory according to Eq. (7.14)
revealed that De is increased by ≈ +2 cm−1 to De ≈ 6176 cm−1, while the equilibrium
distance slightly elongates by ≈ +0.2 pm.

There are comparatively few experimental data available in the literature to bench-
mark the accuracy of the presented ab-initio results. This might be due to the stringent
temperature requirements for the Rb2

+ system to enter the ultracold regime; cf. Sec. 7.1.
Experimental works found in the literature dating back to the 60s to 80s of the last cen-
tury and have been performed in Rb vapor with densities of 2.69 · 1019 atomscm−3 [347].
This clearly leads to large uncertainties in the measurements, as indicated in Tab. 7.3.
Experimental techniques range from associative photoionization [347, 348] to rough
estimates based on the analysis of charge exchange cross sections [349] to multiphoton
ionization of Rb2 and subsequent dissociation of dimer ions by one or more additional
photons [350]. The most recent experimental work [351] aimed at measuring the
ionization potential of 85Rb2 formed via photoassociation of ultracold 85Rb atoms. The
molecules were subsequently excited by single-photon UV transitions to states above
the ionization threshold. This approach resulted in an upper limit for the ionization
energy of 85Rb2 and provided a lower bound for D0 of 85Rb+

2 ; as reported in Tab. 7.3
with D0 ≥ 6307.5 cm−1.

Similarly, the literature barely provides any theoretical works on Rb2
+. Results are

either based on calculations using an approximated Hamiltonian and a large-core
pseudopotential approach [127] or on model potential calculations [352]. The latter
treats the molecular ion by one active electron moving in the field of two alkali ions.
This is described by the sum of `-independent electron-ion interaction potentials, a
core-polarization potential, and a core-core interaction potential. There are only few
ab-initio calculations; for instance the one accompanying the experimental work in
Ref. [351]. Herein, the authors use an approach originally proposed for calculations on
Rb2 based on a non-empirical relativistic large-core pseudopotential and a full-valence
configuration-interaction treatment. Spin-orbit effects were accounted for in the valence
CI calculations via the CIPSO procedure (configuration interaction with perturbation
including spin-orbit coupling). Details on this approach may be found in Ref. [353].

The previously mentioned HLC effects at CCSDT level merely introduce corrections
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of ≤ O(10 cm−1). Since correlation contributions beyond full triples corrections (i.e.
CCSDT(Q), CCSDTQ, etc.) are usually even smaller, one may not expect considerable
changes in regard to De, D0 and Re by including all computationally affordable HLC
terms so to get from D0(CBS/mod) = 6151.3451 cm−1 to the lower bound of Ref. [351]
with Dexp

0 ≥ 6307.5 cm−1. Therefore, if the latter is taken as solid reference, one
may first conclude that relativistic effects are rather important. But, the applied
ECP28MDF small-core pseudopotential [250] includes a two-component spin-orbit
coupled part with corresponding parameters adjusted to valence energies obtained at
all-electron multiconfiguration Dirac-Coulomb-Hartree-Fock (DC-HF) level of theory,
which includes relativistic effects at a four-component level of theory. Thus, the present
approach already accounts for important relativistic effects and it may not be expected
that higher-order relativistic contributions relative to SFX2C-1e results (cf. Sec. 7.2)
lead to significant changes of O(150 cm−1) to reach Dexp

0 as given in Tab. 7.3. This
implies that basis set effects may play the most decisive role, which is also supported
by the above observations concerning the exchange interaction in Fig. 7.3 and the fitting
approach to obtain induction and dispersion coefficients (cf. Fig. 7.4 and Tab. 7.2).
These findings suggested a lack of diffuse functions. Preliminary investigations in
Appendix F.7 using the UET17 and UET17(lt) basis sets of Tabs. F.1 and F.2, respectively,
as well as the aug-cc-pwCVnZ-PP variants from Ref. [240], confirm this sensitivity on
basis set effects. The aug-cc-pwCVnZ-PP series reveals an analogous irregular behavior
for De with increasing n as observed for ionization energies in Tab. 7.1; with De(n =

3) ≈ 6164 cm−1, De(n = 4) ≈ 6255 cm−1 and De(n = 5) ≈ 6173 cm−1. Thus, estimating
proper CBS values might turn out problematic. The equilibrium distance Re for each n
is shortened by ≈ 0.1 Å as compared to the respective aug-cc-pCVnZ-PP curves given
in Tab. 7.3. In contrast to that, the UET17 and UET17(lt) basis sets behave regularly.
The former yields De(UET17/n = 4) ≈ 6153 cm−1, De(UET17/n = 5) ≈ 6172 cm−1,
and De(UET17/n = 6) ≈ 6176 cm−1, thus suggesting De(UET17/CBS) ≈ 6180 cm−1.
The UET17(lt) basis set, where the tightest g-, h-, and i-exponents were replaced
by diffuse ones, show De(UET17(lt)/n = 4) ≈ 6156 cm−1, De(UET17(lt)/n = 5) ≈
6179 cm−1 and De(UET17(lt)/n = 6) ≈ 6188 cm−1 from which one can estimate
De(UET17(lt)/CBS) ≈ 6200 cm−1. For both the UET17 and UET17(lt) basis set, Re

is comparable to the values obtained for aug-cc-pCVnZ-PP in Tab. 7.3. On the one
hand this demonstrates that basis set effects introduce most significant contributions
as compared to missing HLC or higher-order relativistic effects. On the other hand
it endorses the importance of augmenting basis sets with diffuse functions. This
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augmentation may then have impact on both the exchange splitting and De (D0).
Beyond that, it may be worth testing different coupled-cluster methods such as the
electron affinity equation-of-motion coupled-cluster (EA-EOM-CC) approach [354].
Recent theoretical investigations on Li2+, Na2

+ and K2
+ [129–131] were based on

(non-relativistic) EA-EOM-CCSD or EA-EOM-CCSDT computations as well as on
EA-EOM-CCSD calculations with scalar relativistic effects included via the Douglas-
Kroll-Hess method. The results reported therein, e.g., for the X Σ2 +

g ground state
of K2

+ [131], with all electrons correlated at EA-EOM-CCSDT or EA-EOM-CCSD-
DK2 level of theory using ANO-RCC or ANO-RCC+ basis sets, respectively, show
deviations of ≈ ±200 cm−1 with respect to the experimentally derived value of De

and up to 0.1 Å discrepancy for Re. This is in line with present findings on Rb2
+ and

may support the previous implication that basis set effects are the most subtle part for
highly accurate investigations of X2

+ systems, with X = {Li, Na, K, Rb, Cs}.

Besides, an analysis of the rovibrational term values supported by the X Σ2 +
g and

(1) Σ2 +
u RP-RKHS interpolated PECs at hybrid/ROHF-CCSD(T)/CBS/mod level of

theory revealed the existence of 282 and 70 vibrational levels, respectively. These
calculations were performed using the Level16 program [346] assuming that Rb2

+

exclusively consists of the 87Rb isotope. To obtain V(r) with the correct long-range
behavior, inner-turning points ranging from 3.0 to 640.0 Å and 8.0 to 640.0 Å for the
gerade and ungerade states, respectively, have to be provided. The corresponding
rovibrational structures for (v, J = 0) are shown in Figs. 7.5 (a) and (b). The last
bound state for the gerade state was found for (v′′, J′′) = (281, 7) with E∗b [X Σ2 +

g ] =

−7.3878 MHz and the one for the ungerade state at (v′, J′) = (69, 5) with E∗b [(1) Σ2 +
u ] =

−5.1350 MHz. These numbers were obtained by integrating the radial Schrödinger
equation from 2.4 to 2500.0 Å in case of the X Σ2 +

g state and from 5.1 to 2500.0 Å,
respectively for the (1) Σ2 +

u state, using the Numerov-Cooley algorithm as implemented
in Level16. This huge integration range is by far larger than for conventional quantum
chemistry applications, but is necessary due to the characteristic interaction length
scale R∗ ≈ 2500 Å of Eq. (7.9). This required to set the integration mesh size to
RH = 0.01, which is much larger than RHLit = 0.0005, as actually suggested according
to Ref. [346]. The accuracy of the eigenvalues and eigenfunction obtained, however is
largely determined by the size of RH. Hence, the reliability of the obtained threshold
bound states should be considered with caution. There are even higher lying threshold
bound states expected; their detection would require integration ranges R > 2500.0 Å.
This is where conventional ab-initio codes reach their limits as they are usually designed
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F igure 7.5. : Binding energies Eb of vibrational levels v corresponding to the rotational quantum
number J = 0. The calculations are based on the RP-RKHS interpolated PECs at hybrid/CBS/mod level
of theory using the Level16 code assuming that Rb2

+ exclusively contains the 87Rb isotope. (a) Results
for the X Σ2 +

g state. It was found that the respective PEC supports 282 vibrational levels. The inset
shows a close-up to the threshold bound-states (note that the energy scale is given in GHz for improved
visualization of the threshold bound states). (b) Results for the (1) Σ2 +

u state. It was found that the
respective PEC supports 70 vibrational levels. The inset shows a close-up to the threshold bound-states
(note that the energy scale is given in GHz for improved visualization of the threshold bound states).

to accurately predict deeply bound rovibrational states. Furthermore, the calculation
of threshold bound states may also be affected by the final PEC depth.

Nevertheless, the deeply bound rovibrational states should be on the same level of
accuracy as the corresponding PEC. This means that the total number of rovibrational
states and their assignment to the respective eigenenergies depend on the final potential
depth obtained at the highest possible level of theory. As indicated in Tab. 7.3 and
discussed previously the potential depth, at least for the X Σ2 +

g state, is expected to
increase. However, comparing the magnitude of the states resolved so far, to the 41
vibrational levels supported by the a Σ3

u PEC of Rb2, with a well-depth of ≈ 241 cm−1

(see Appendix F.3), directly shows the exceedingly large interaction range of Rb2
+.

Even the (1) Σ2 +
u state of Rb2

+ supports 70 vibrational levels within a very shallow
well depth of ≈ 78 cm−1.

This chapter showed that it is possible to construct physically meaningful interaction
potentials for Rb2

+ based on a hybrid ROHF-CCSD(T) approach to circumvent the
occurrence of the repulsive long-range barrier as discussed in Chap. 6. Furthermore,
the PECs for the X Σ2 +

g and (1) Σ2 +
u states are designed such that they reproduce the

exchange splitting according to Eq. (7.6). This is particularly important for subsequent
scattering calculations based on these curves. While the presented approach also
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7.4 Results

allows to include higher-level correlation contributions and higher-order relativistic
effects, it could be demonstrated that basis set effects play the most important role in
reaching high accuracy. In this regard, the investigations of the exchange interaction
in Fig. 7.3, of the Cind

4 coefficients in Tab. 7.2, and of the spectroscopic constants De,
D0 and Re in Tab. 7.3 revealed the need for basis sets augmented with more diffuse
functions. This will be thoroughly analyzed for a future publication.
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8
Summary and Outlook

This thesis was stimulated by two experimental proposals in the field of ultracold
quantum gases. On the one hand, the realization of PA processes of isolated ultracold
rubidium trimers and on the other hand exploring the prospects towards entering
the quantum level for Rb + Rb+ ion-atom scattering processes. The presented results
may provide some experimental guidance but may also serve as a solid foundation
for subsequent theoretical studies. Concerning the latter, this work provides an
opportunity to directly interface with research groups studying ultracold collision
processes. Beyond that, the present work reveals certain limitations of standard
perturbative coupled-cluster methods and extents the theoretical understanding of the
inherent Jahn-Teller physics of the Rb3 system.

The major part of this thesis addressed the investigation of Rb3 in the context of PA
experiments. In doing so, it yielded an extensive overview of available states using
a pragmatic multireference configuration-interaction (MRCI) approach with a large-
core effective core potential (ECP) and a core-polarization potential (CPP) together
with a large uncontracted even-tempered valence basis set. The analysis of special
cuts through the potential-energy landscape of both doublet and quartet states gave
an idea of the respective topologies and helped to estimate the mutual position as
well as the expected density of electronic states. In connection with the topology of
the Rb3 PESs several aspects of the (pseudo) Jahn-Teller effect have been discussed.
Furthermore, the consequences of combined Renner-Teller plus PJT interactions for
linear geometries were outlined. A survey of SOC effects revealed that they are
generally weak, particularly for low-lying states involved in possible PA schemes. By
studying equilibrium states further useful information towards the realization of PA
processes could be generated. The exploration of selected inner-turning point (ITP)
locations on the quartet ground-state PES allowed to identify promising PA candidates.
Here major focus was placed on the 1 E4 ′′ state (formed by the two lowest-lying excited
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states 1 A4
2 and 1 B4

2). Investigating the main coupling effects for the first excited
quartet state (1 A4

2) including electronic dipole transition strengths at ITP geometries,
intersections to nearby doublet and quartet states as well as spin-orbit couplings,
confirmed the 1 A4

2 state as a promising candidate for use in PA processes.

Beyond that, the 1 E4 ′′ state was further analyzed in the framework of JT theory.
The potential part of the corresponding JT Hamiltonian including up to fourth-order
anharmonicity and vibronic coupling parameters was diagonalized. This yielded an
analytically exact representation of the respective JT potential-energy landscape in the
two-dimensional branching space spanned by the Q2 and Q3 modes. The comparison
to conventional analytic forms of the JT manifold revealed that the 1 E4 ′′ state indeed
requires a fourth-order approach to sufficiently reproduce ab-initio data.

Furthermore, the excited quartet manifold Q, showing an unusual coupling behavior
with quadruple interactions, has been thoroughly investigated. Several 1D and 2D cuts
through the subspaces spanned by the (symmetry-adapted) JT coordinates helped in
unraveling some aspects of the underlying coupling mechanisms. This was further
supported by an one-dimensional analysis of the Q3 component of respective non-
adiabatic coupling matrix elements (NACMEs).

Another achievement of this thesis was to provide an interface to codes designed for
studying, among others, Rb2 +Rb collision processes. In this regard, it was shown how
to construct a globally smooth and physically meaningful PES for the quartet ground-
state of Rb3 based on high quality ab-initio data using a specifically adapted variant
of the kernel ridge regression technique: the RP-RKHS interpolation method. The
corresponding implementation is available in python and Fortran [309]. The power
of this interpolation was demonstrated in an analysis of the Rb2 PEC corresponding to
the a Σ3

u state. The underlying ab-initio data were calculated at ROHF-CCSD(T) level
of theory with a small-core ECP and large uncontracted even-tempered basis sets. In
order to reach higher accuracy, the additive two-body contributions to the final Rb3

were modified so that they reproduce the experimentally derived values for De and Re

of the a Σ3
u state. Furthermore, the non-additive three-body term was scaled to grant

a meaningful short-range behavior of the respective contribution.

A further major topic of this thesis was to obtain highly accurate ion-atom interac-
tion potentials for Rb2

+ in the spirit of an additive scheme to systematically include
results from higher theory levels. In doing so, it could be demonstrated that several
coupled-cluster methods with noniterative or approximate iterative treatments of triple
excitations can lead to unphysical PECs with a small [≈ O(0.1 cm−1)] long-range
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barrier at around 100 Å. The origin was found to be connected with the need to
define self-consistent solutions, which at the same time cannot be both consistent with
the separated fragments (different orbitals for Rb+ and Rb) and with the quantum
mechanically imposed symmetry requirement (indistinguishable cases Rb++Rb and
vice versa). The resulting asymptotic orbitals tend to describe two +0.5-fold charged
ions in the long-range limit, thus causing a repulsive coulombic interaction with a
leading-order 1/R component. This problem lives on in the Fockian and affects the
perturbative estimates of the T̂3 amplitudes finally leading to the repulsive long-range
barrier. By breaking the symmetry of the system, it was shown how the unphysical
CCSD(T) long-range behavior can be avoided.

This led to a construction procedure for obtaining highly accurate ion-atom inter-
action potentials representing the final investigations of this work. The presented
procedure may straightforwardly be extended to any high-accuracy theory level but
in this thesis has been tested for ROHF-CCSD(T). It was demonstrated that using
symmetry-broken (T) corrections in the long-range properly merged with symmetry-
adapted ones in the intermediate range yield physically meaningful PECs for both the
X Σ2 +

g and (1) Σ2 +
u states of Rb2

+. The construction procedure further accounts for a
correct exchange interaction between the gerade and ungerade states. Accordingly
adapted ab-initio data were passed to the RP-RKHS interpolation method to obtain
smooth PECs allowing for potential later use in scattering calculations. Based on
the RP-RKHS interpolated PECs [355] spectroscopic constants were extracted and the
rovibrational structure has been analyzed.

Outlook

There are several possible extensions to the work presented in this thesis, some of
which have been already indicated at the respective parts. The work on studying the
prospects for photoassociating Rb3 would definitely benefit from using the generated
quartet ground state PES for further exploring Rb2+Rb collision processes. In this
regard, one should first verify if the part corresponding to the a Σ3

u PEC of Rb2 yields
the experimentally measured scattering length. If this is the case, subsequent scattering
calculations for Rb3 should provide valuable estimates of expected lifetimes and may
open new insights for improved guidance towards the experimental realization of Rb3

PA processes. In this spirit, future investigations could consider proper diabatization
techniques aiming at the subsequent use of a diabatic PES interpolation ansatz as
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presented in Ref. [145]. This approach would include a comprehensive study of SOC
effects and may yield coupled PES manifolds of excited states.

Beyond that, one could extent the understanding of the Rb3 system in terms of the
Jahn-Teller effect theory. This may include fitting proper PJT Hamiltonians to ab-initio
data and analyzing if there is a critical transition from a pure JT to a combined JT plus
PJT regime. In this regard, it may be finally necessary to also consider couplings to the
totally symmetric breathing mode Q1. One could start investigating this effect based
on the analytic representation obtained for the 1 E4 ′′ state in Sec. 4.5. This analytic
study could be further extended to fifth- or sixth-order JT Hamiltonians. Furthermore,
the understanding of the Q-manifold discussed in Sec. 4.6 could also benefit from
considering couplings to the Q1 mode. Here it is also necessary to set up proper model
Hamiltonians that capture the corresponding physics. This could be further improved
by extending the study of NACMEs to higher dimensions (i.e. exploring, e.g., the
Q2-Q3 subspace) and to also investigate the remaining components (Q1 and Q2) of the
NACMEs.

Finally, a deeper understanding of the coupling mechanisms for linear configurations
of Rb3 would require an analysis in terms of the Renner-Teller or the combined RT
plus PJT effect theory.

Future works related to the study of highly accurate ion-atom interaction potentials
of Rb2

+ may start with using the currently available RP-RKHS PECs of the X Σ2 +
g and

(1) Σ2 +
u states in scattering calculations. This might help to make more quantitative

statements for conditions needed to identify effects beyond Rb+Rb+ Langevin scattering
in corresponding experimental setups. From a theoretical or technical point of view
it would be interesting to examine the sensitivity of scattering calculations on using
higher-level PECs or on including higher-order induction/dispersion coefficients into
the description of the long-range tail.

The goal of producing as accurate PECs as available computational resources allow
may be further followed to push the PEC construction procedure in its current setup
as reported in Chap. 7 to its limits. In this respect, it were interesting to consider
both ECP-based calculations and all-electron approaches using the spin-free exact
two component theory in its one-electron variant (SFX2C-1e) and include higher-
order relativistic effects. However, the most important aspect may be a profound
analysis of basis set effects and their impact on the exchange splitting, the long-range
form and on spectroscopic constants. In combination with exploring higher-level
correlation contributions as well as relativistic effects, this may finally give an estimate
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on the achievable accuracy in general. Furthermore, it might be worth to study the
performance of alternative CC methods such as the electron affinity equation-of-motion
coupled-cluster (EA-EOM-CC) approach. Finally, one could devote some further effort
to properly study the rovibrational structure of the gerade and ungerade ground states
of Rb2

+, especially the exploration concerning the threshold bound-states.
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A
Point Groups and Selection Rules

This chapter is intended to support the discussion of the Jahn-Teller effect theory in
Sec. 2.3 and the analysis of electronic dipole transitions and spin-orbit coupling effects
of Rb3 in Chap. 4. The following group theoretical considerations are thus restricted to
the relevant point groups of homonuclear triatomic systems. The interested reader is
referred to, e.g., Ref. [356] for in-depth information.

A.1 The D3h point group

The symmetry properties of equilateral triangular configurations of X3 systems are
described by the D3h point group. The group consists of six irreducible representations
(IRREPs) Γ(i). Electronic states, i.e. the molecular wavefunction and molecular prop-
erties (dipole moment, orbital angular momentum, etc.) in general can be assigned
to an IRREP. The behavior of IRREPs under the symmetry operations of the group
are summarized in the character table A.1. The character of a symmetry operation is
defined as the trace of the corresponding matrix representation. The symmetry opera-
tions are: E the identity operation, rotations about the C3 axis (where 2C3 indicates
that the rotation is either clockwise or counter-clockwise), three rotations about the C2

axes, reflection at one horizontal mirror plane σh, reflections at three vertical mirror
planes σv and the rotation-reflection about the alternating S3 axis (where 2S3 again
denotes that there is also the inverse operation). The last two columns define to which
IRREPs given functions belong. Here x may refer to the µx component of the dipole
moment and Ri , i ∈ {x, y, z} could represent the orbital angular momentum operator.
The product table A.2 defines the resulting IRREP after taking the direct product of
any two IRREPs of the point group.

As described in Sec. 4.1 realizing photoassociation (PA) processes requires non-
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Table A.1. : Character table for the D3h point group.

E 2C3 3C2 σh 2S3 3σv lin. funct., rot. quad. funct.

A′1 1 1 1 1 1 1 – x2 + y2, z2

A′2 1 1 −1 1 1 −1 Rz –
E′ 2 −1 0 2 −1 0 x, y x2 − y2, 2xy
A′′1 1 1 1 −1 −1 −1 – –
A′′2 1 1 −1 −1 −1 1 z –
E′′ 2 −1 0 −2 1 0 Rx, Ry xy, yz

Table A.2. : Product table for the D3h point group.

A′1 A′2 E′ A′′1 A′′2 E′′

A′1 A′1 A′2 E′ A′′1 A′′2 E′′

A′2 A′2 A′1 E′ A′′2 A′′1 E′′

E′ E′ E′ A′1 + A′2 + E′ E′′ E′′ A′′1 + A′′2 + E′′

A′′1 A′′1 A′′2 E′′ A′1 A′2 E′

A′′2 A′′2 A′′1 E′′ A′2 A′1 E′

E′′ E′′ E′′ A′′1 + A′′2 + E′′ E′ E′ A′1 + A′2 + E′

vanishing electronic dipole transition matrix element between the initial and final states.
This involves considering selection rules to identify symmetry-allowed transitions.
First, in the case of electronic dipole transitions the total spin of the initial |i〉 and final
| f 〉 states must be the same, i.e.

∆S = 0 . (A.1)

Given the dipole operator

µ̂ = −qr̂ , (A.2)

with the electric charge q and the position operator r̂ = (x̂, ŷ, ẑ)T, non-vanishing
transitions for the components j ∈ {x, y, z} of the dipole operator, have to obey the
necessary condition

〈i|µ̂j| f 〉 6= 0 =⇒ Γ(|i〉)⊗ Γ(µ̂j)⊗ Γ(| f 〉) = A′1 . (A.3)
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A.2 The C2v point group

This shows that finite electronic dipole transition moments may be only obtained
if the direct product of the corresponding IRREPs Γ(i) yields the totally symmetric
IRREP A′1 of the D3h point group. The IRREPs for the respective components of the
dipole operator are obtained from Tab. A.1. Using the product table A.2 the following
symmetry-allowed dipole transitions can be identified

µ̂x,y :
〈
A′1
∣∣ µ̂x,y

∣∣E′
〉

,
〈
A′2
∣∣ µ̂x,y

∣∣E′
〉

,
〈
E′
∣∣ µ̂x,y

∣∣E′
〉

,
〈
A′′1
∣∣ µ̂x,y

∣∣E′′
〉

,
〈
A′′2
∣∣ µ̂x,y

∣∣E′′
〉

,
〈
E′′
∣∣ µ̂x,y

∣∣E′′
〉

, (A.4)

and

µ̂z :
〈
A′1
∣∣ µ̂z

∣∣A′′2
〉

,
〈
A′2
∣∣ µ̂z

∣∣A′′1
〉

,
〈
E′
∣∣ µ̂z

∣∣E′′
〉

. (A.5)

For homonuclear alkali-metal trimers this only allows for quartet-quartet- and doublet-
doublet-couplings due to Eq. (A.1).

When spin-orbit coupling (SOC) effects are considered this additionally allows for

∆S = 0,±1 , (A.6)

for the total spin between initial and final states. Thus, this condition allows for
doublet-quartet mixing besides the doublet-doublet and quartet-quartet couplings.
The necessary condition for non-vanishing SOC effects is analogous to Eq. (A.3), i.e. the
direct product of initial state, spin-orbit coupling operator (correlating to the function
Ri , i ∈ {x, y, z}) and final state must yield the totally symmetric IRREP A′1. Using
the character table A.1 as well as the corresponding product table A.2 one finds the
following symmetry-allowed couplings

(L̂Ŝ)x,y :
〈
A′1
∣∣ (L̂Ŝ)x,y

∣∣E′′
〉

,
〈
A′2
∣∣ (L̂Ŝ)x,y

∣∣E′′
〉

,
〈
A′′1
∣∣ (L̂Ŝ)x,y

∣∣E′
〉

,
〈
A′′2
∣∣ (L̂Ŝ)x,y

∣∣E′
〉

,
〈
E′
∣∣ (L̂Ŝ)x,y

∣∣E′′
〉

, (A.7)

and

(L̂Ŝ)z :
〈
A′1
∣∣ (L̂Ŝ)z

∣∣A′2
〉

,
〈
E′
∣∣ (L̂Ŝ)z

∣∣E′
〉

,
〈
A′′1
∣∣ (L̂Ŝ)z

∣∣A′′2
〉

,
〈
E′′
∣∣ (L̂Ŝ)z

∣∣E′′
〉

. (A.8)

A.2 The C2v point group

The symmetry properties of isosceles triangular geometries of X3 systems are described
by the C2v point group. The group consists of the four IRREPs A1, B1, B2, A2 and is
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defined by the following symmetry operations: the identity operator E, rotations about
the twofold rotation axis C2 chosen along a preferred direction (here, cf. Fig. 4.3 (a),
along the z axis), reflections at the two mirror planes σv(xz) and σv(yz) for a choice of
the coordinate system according to Fig. 4.3 (a). The character table A.3 summarizes the
behavior of the IRREPs with respect to the symmetry operations. Again, the last two

Table A.3. : Character table for the C2v point group.

E C2(z) σv(xz) σv(yz) lin. funct., rot. quad. funct.

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz

columns show to which IRREPs given functions (dipole operator, angular momentum
operator, etc.) belong to. The product table A.4 defines the IRREP resulting from
taking the direct product of any two IRREPs of the C2v point group.

Table A.4. : Product table for the C2v point group.

A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

Since the computational point group of the Rb3 system for configurations showing
at least C2v symmetry is C2v, it is required to also consider the corresponding selection
rules for this point group. First, for electronic dipole transitions the total spin of the
initial and final states must be the same and thus Eq. (A.1) has to be fulfilled. The
necessary condition for non-vanishing transitions now becomes

〈i|µ̂i| f 〉 6= 0 =⇒ Γ(|i〉)⊗ Γ(µ̂i)⊗ Γ(| f 〉) = A1 , (A.9)

with the totally symmetric IRREP A1 of the C2v point group. The IRREPs of the
components of the dipole operator µ̂i are given in the character table A.3 and with

204



A.3 The Cs point group

Tab. A.4 the following symmetry-allowed dipole transitions can be identified

µ̂x : 〈A1 | µ̂x |B1〉 , 〈B2 | µ̂x |A2〉 , (A.10)

and

µ̂y :
〈
A1
∣∣ µ̂y

∣∣B2
〉

,
〈
B1
∣∣ µ̂y

∣∣A2
〉

, (A.11)

and

µ̂z : 〈A1 | µ̂z |A1〉 , 〈B1 | µ̂z |B1〉 , 〈B2 | µ̂z |B2〉 , 〈A2 | µ̂z |A2〉 . (A.12)

The selection rules for spin-orbit couplings are derived analogously to the previous
section using Tabs. A.3 and A.4 as well as Eq. (A.9). This yields the following symmetry-
allowed spin-orbit couplings

(L̂Ŝ)x :
〈
A1
∣∣ (L̂Ŝ)x

∣∣B2
〉

,
〈
B1
∣∣ (L̂Ŝ)x

∣∣A2
〉

, (A.13)

and

(L̂Ŝ)y :
〈
A1
∣∣ (L̂Ŝ)y

∣∣B1
〉

,
〈
B2
∣∣ (L̂Ŝ)y

∣∣A2
〉

, (A.14)

and

(L̂Ŝ)z :
〈
B1
∣∣ (L̂Ŝ)z

∣∣B2
〉

,
〈
A1
∣∣ (L̂Ŝ)z

∣∣A2
〉

. (A.15)

Again, due to Eq. (A.6) besides quartet-quartet and doublet-doublet couplings also
doublet-quartet couplings are allowed.

A.3 The Cs point group

For non-linear arrangement of X3 systems the three atoms always define a plane
and thus the most general point group to characterize electronic states of triatomic
molecules is Cs. The group consists of the symmetric IRREP A′ and the antisymmetric
one A′′. The only symmetry operations are the identity operator E and reflections at
the mirror plane σh defined by the three atoms. The behavior of the IRREPs under
these symmetry operations in given in the character table A.5. The product table A.6 is
trivial and defines the IRREP resulting from taking the direct product.

The corresponding selection rules for electronic dipole transitions and spin-orbit
couplings are derived analogously to what was shown in the previous sections.

205



A Point Groups and Selection Rules

Table A.5. : Character table for the Cs point group.

E σh lin. funct., rot. quad. funct.

A′ 1 1 x, y, Rz x2, y2, z2

A′′ 1 −1 z, Rx, Ry xz, yz

Table A.6. : Product table for the Cs point group.

A′ A′′

A′ A′ A′′

A′′ A′′ A′

A.4 Subduction tables

The number of symmetry elements of a given group defines its order. Groups of higher
order have certain subgroups. For instance, the point group C2v with order four is a
subgroup of D3h with order 12, cf. Tabs. A.1 and A.3. The correlation between the
IRREPs of a given group and those of its subgroups is shown in so called correlation
or subduction tables. In many cases the correlation between groups is not unique. For
example in Cs one has to define which plane from the parent group becomes the sole
plane σh of the Cs point group.

In this work the doublet and quartet states of Rb3 are labeled according to the
IRREPs of the C2v point group. Moreover, Molpro calculations for Rb3 configurations
of D∞h or D3h symmetry were performed using the C2v point group symmetry. In
order to properly discuss (pseudo) Jahn-Teller and/or Renner-Teller coupling effects it
is important to obtain the correct assignment of the IRREPs in C2v to those in D3h or
D∞h. These mappings, C2v → D3h or C2v → D∞h, respectively, are obtained from the
correlation tables A.7 and A.8. The reduction of D∞h to D2h and C2v is only shown for
the relevant states of this work (i.e. Σ and Π).

The most general point group for investigating X3 systems is Cs since the three
atoms always define a plane. When, for instance, studying the JT APES in the Q2-Q3

branching space, corresponding calculation have to be performed in Cs symmetry.
Thus, to obtain global potential energy surfaces for X3 systems, the computational
point group has to be Cs to provide a sufficient set of data points that cover a vast
region of all possible configurations. Moreover, a rather technical aspect is that icMRCI
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Table A.7. : Subduction D3h to C2v.

D3h C2v [σh → σv(xz)] C2v [σh → σv(xy)] C2v [σh → σv(yz)]

A′1 A1 A1 A1

A′2 B1 B1 B2

E′ A1 + B1 A1 + B2 A1 + B2

A′′1 A2 A2 A2

A′′2 B2 B1 B1

E′′ A2 + B2 A2 + B1 A2 + B1

Table A.8. : Subduction D∞h to D2h to C2v.

D∞h D2h C2v [C2(z)] C2v [C2(y)] C2v [C2(x)]

Σ+
g Ag A1 A1 A1

Σ−g B1g A2 B2 B1

Σ+
u B1u A1 B1 B2

Σ−u Au A2 A2 A2

Πg B2g, B3g B1, B2 A2, B1 B2, A2

Πu B2u, B3u B2, B1 A1, B2 B1, A1

calculations, as implemented in Molpro, mostly show exact degeneracies of, e.g., Jahn-
Teller intersections at Q2 = Q3 = 0, only if the correlating calculations are performed
in Cs symmetry. Therefore it is important to know the mapping C2v → Cs which is
shown in Tab. A.9 . This correlation is not unique.

Table A.9. : Subduction table for the IRREPs from the C2v to the Cs point group.

C2v Cs [σ(xz)] Cs [σ(yz)]

A1 A′ A′

B1 A′ A′′

B2 A′′ A′

A2 A′′ A′′
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B
Normal ordering and Wick’s
theorem

Normal ordering and Wick’s theorem [203] are general mathematical concepts in the
framework of second quantization. These concepts originated from quantum field
theory where they refer to the vacuum state |vac〉. In the context of quantum chemistry
the vacuum state is not a good reference. A better choice is the Hartree-Fock reference
|Φ0〉 which will be used in the following discussion as the “mean-field vacuum”.

As described in Sec. 3.3.2 when formulating coupled-cluster theory in second quan-
tization, all operators can be expressed in terms of strings of fermionic annihilation (a)
and creation (a†) operators that fulfill the anti-commutation relations after Eq. (3.33).
The creation and annihilation operators are also used to generate excited determinants
from the Hartree-Fock reference |Φ0〉. Therefore, any matrix element of an operator
may be written as expectation value with respect to |Φ0〉. Here normal ordering pro-
vides a systematic way of bookkeeping for nonzero contributions. A normal ordered
string {bcde} is defined such that its expectation value vanishes

〈Φ0|{bcde}|Φ0〉 !
= 0 , (B.1)

where {} denotes normal ordering and b, c, d, e are arbitrary operators. Only if
the string is empty the expectation value becomes 〈Φ0|{}|Φ0〉 = 〈Φ0|Φ0〉 = 1.
Wavefunction-based quantum chemical mehtods are designed such that the orbital
space is splitted into the two subspaces of occupied, labelled with indices i, j, k, . . .,
and virtual orbitals, labelled with a, b, c, . . .. With the definition from Eq. (B.1) one can
directly deduce in which way two creation and annihilation have to be arranged to be
in normal order, i.e. such that action onto |Φ0〉 gives a zero

aia†
j or a†

aai or a†
aab or a†

i a†
j or a†

aa†
b . (B.2)
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B Normal ordering and Wick’s theorem

Using the anti-commutation relations of Eq. (3.33) any string of creation and annihi-
lation operators can be written as a linear combination of normally-ordered strings;
mostly containing a reduced number of operators multiplied by Kronecker deltas.
These reduced terms may be viewed as arising from so-called contractions between
operator pairs which are defined as [201]

bc = bc− {bc} . (B.3)

This is a systematization of the above indicated anticommutator trick and it can be
readily shown, using Eqs. (3.33) and (B.2), that the only nonvanishing contractions
between two creation and annihilation operators are

aaa†
b = aaa†

b − {aaa†
b}︸ ︷︷ ︸

−a†
b aa

= [aa, a†
b ]+ = δab , (B.4a)

a†
i aj = a†

i aj − {a†
i aj}︸ ︷︷ ︸
−aja†

i

= [a†
i , aj]+ = δij . (B.4b)

A formal generalization of the above to an arbitrary string of annihilation and
creation operators is achieved by Wick’s theorem. It states that any string of creation
and annihilation operators may be written as a linear combination of normal-ordered
strings [201]:

Theorem B.1 (Wick Theorem)– Let bcd · · · xyz be an arbitrary string of creation and annihi-
lation operators, then it holds

bcd · · · xyz = {bcd · · · xyz}+ ∑
1−fold

{bcd · · · xyz}+ ∑
2−fold

{bcde · · · xyz}+ · · ·

+ full contractions (B.5)

This further involves the following rules:

1. Contractions between non-neighboring operators introduce a sign change depending on
the number of transpositions:

{bcde} = {becd} or {bcde} = −{bdce}

2. Only expectation values (with respect to the reference determinant) with full contractions
give non-vanishing contributions.
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Normal ordering and Wick’s theorem B

3. Given two normal-ordered strings {bcd · · · } and {xyz · · · } only contractions between
normal-ordered strings need to be evaluated. For instance:

{bcd · · · }{xyz · · · } = {abc · · · xyz · · · }+ ∑
1−fold

{abc · · · xyz · · · }

+ ∑
2−fold

{abc · · · xyz · · · }+ · · ·+ full contractions

This systematically extends to products of several strings.
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C
Computational Details for Rb3

This part of the Appendix supports the discussion of Chap. 4 with a number of
techniqual details ranging from the exponents corresponding to the UET15 basis set to
certain aspects of some Molpro calculations. It is thus intended to interested readers
who may want to use the UET15 basis set or to those who may need some inspiration
for selected Molpro input files either for reproduction purposes or as a starting point
for subsequent calculations.

C.1 The UET15 basis set family

The construction procedure for the uncontracted even-tempered basis set (UET15) used
for investigating the Rb3 system as shown in Sec. 4.2 yields the exponents listed in
Table C.1.

For the proper construction of a high-accuracy quartet ground-state PES as described
in Sec. 5.3 the UET15 basis set was extended to allow for systematically increasing the
basis set size from UET15(n = 4) to UET15(n = 6), with the cardinal number n (note
that in Sec. 5.3 the cardinal number was labeled by X). This is required to estimate the
complete basis set (CBS) limit for corresponding energies through extrapolation. To
this end, first one additional g function was added to the original basis set according
to Tab. C.1 and h and i-exponents were subsequently generated using Eq. (4.4). The
resulting exponents corresponding to this UET15(n = 4, 5, 6) basis sets are summarized
in Tab. C.2.
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C Computational Details for Rb3

Table C.1. : Exponents ζi of the 15s12p7d5f3g uncontracted even-tempered basis set (UET15) con-
structed for investigating doublet and quartet states of Rb3 over an energy range of ≈ 20000 cm−1 using
a lcECP+CPP approach.

Exponents

s p d f g

240.216 800 46.597 790 1.750 670 2.431 530 2.836 785
105.929 280 17.646 390 0.614 850 0.714 329 0.833 384
46.712 021 6.682 615 0.215 940 0.209 854 0.244 830
20.598 771 2.530 679 0.075 840 0.061 650
9.083 515 0.958 358 0.026 636 0.018 112
4.005 591 0.362 926 0.009 355
1.766 360 0.137 439 0.003 285
0.778 918 0.052 047
0.343 482 0.019 710
0.151 467 0.007 464
0.066 793 0.002 827
0.029 454 0.001 070
0.012 988
0.005 728
0.002 526
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C.1 The UET15 basis set family

Table C.2. : Exponents ζi of the UET15(n = 4) [15s12p7d5f4g], UET15(n = 5) [15s12p7d5f4g3h] and
UET15(n = 6) [15s12p7d5f4g3h2i] basis sets constructed analogously to the ones listed in Tab. C.1.
These basis sets have been generated for use in RHF-UCCSD(T)/ECP28MDF calculations as described
in Sec. 5.3.

Exponents

s p d f g h i

240.216 800 46.597 790 1.750 670 2.431 530 2.836 785 3.242 040 3.647 295
105.929 280 17.646 390 0.614 850 0.714 329 0.833 384 0.952 439 1.071 494
46.712 021 6.682 615 0.215 940 0.209 854 0.244 830 0.279 805
20.598 771 2.530 679 0.075 840 0.061 650 0.071 926

9.083 515 0.958 358 0.026 636 0.018 112
4.005 591 0.362 926 0.009 355
1.766 360 0.137 439 0.003 285
0.778 918 0.052 047
0.343 482 0.019 710
0.151 467 0.007 464
0.066 793 0.002 827
0.029 454 0.001 070
0.012 988
0.005 728
0.002 526
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C.2 Molpro input files for Rb3 investigations

This section provides selected Molpro input files associated with several aspects of
the Rb3 investigations as discussed in Chap. 4. These inputs contain comments to
reveal their basic features. Some further experiences on how calculations might be
successfully completed are shared in Sec. C.2.6.

C.2.1 MRCI geometry optimization and frequency calculation

Input C.1 gives an idea on how to perform geometry optimizations using the C2v point
group symmetry. This specific example corresponds to the geometry optimization of
the quartet ground-state 1 B4

1.

Input C.1: Example input for a MRCI geometry optimization

***,Rb3 (1) {}^4 B_1 quartet ground state geometry optimization

memory ,800,m

gprint ,orbital ,civector ,ref;

! lcECP and UET15
basis={
ecp ,Rb ,36,4,2;
1; 2 ,1.000000 ,0.000000;
1; 2 ,1.106700 ,65.136000;
2; 2 ,0.317770 ,2.987200*1/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 , -1.957400*2/5; 2 ,0.372770 , -1.897200*3/5;
1; 2 ,0.088950 , -0.026739;
2; 2 ,0.317770 , -2.987200*2/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 ,1.957400*2/5; 2 ,0.372770 , -1.897200*2/5;
s,Rb,even ,15 ,2.26770917961 ,0.778918234455;
p,Rb,even ,12 ,2.64064146551 ,0.223338403475;
d,Rb,even ,7 ,2.84731323465 ,0.0758400392843;
f,Rb,even ,5 ,3.40393405964 ,0.209854050117;
g,Rb ,2.8367850 ,0.8333842 ,0.2448297;
}

!C2v symmetry
symmetry ,x,y
geometry ={rb ,0,0,0,DR;

rb ,0,Rd1 ,0,0;
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C.2 Molpro input files for Rb3 investigations

rb ,0,Rd2 ,0,0
}
! Define a meaningful starting geometry
DR = (sqrt (3) /2.) *10.037
Rd1 = 0.5*10.037
Rd2 = -Rd1

!CPP card
{cpp ,init ,1;
rb ,1 ,8.67 , , ,0.23;}

!MCSCF calc to produce reference space and orbitals
!only B1 symmetry required
{multi;occ ,5,4,2,1; closed;
wf ,3,2,3;state ,2;}

!MRCI only for 1^4B_1
{ci ,maxit=40, nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,2,3;

option ,nstati =37;}
! Geometry optimization by default uses first state
! of last computed symmetry
{optg ,displace=symm}

The characterization of the obtained extremum as minimum or saddle point, requires
to consider the corresponding Hessian (the matrix of second derivatives of the energy
with respect to nuclear displacements). Currently, Molpro MRCI frequency calcula-
tions are only possible without using any symmetry: this is referred to the null card C1.
As a consequence the electronic states cannot be assigned by their respective IRREPs.
Instead, one has to strictly follow the energetic ordering of the computed states for a
given geometry. Hence, before one can actually classify the kind of extremum found
from the preceding geometry optimization for the state under consideration, one first
has to determine the energetic ordering of states corresponding to this geometry. This
assignment is trivial for the quartet ground state in its equilibrium geometry since
it always corresponds to the first state. The respective frequency calculation of the
quartet ground state is given in input C.2.

Input C.2: Example input for MRCI frequency calculation

***,Rb3 quartet ground state MRCI frequency calc.
! Increasing memory mostly required
memory ,5000,m
! Tighten global thresholds often improves convergence
! and ensures accuracy
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gthresh ,energy =1.d-10, oneint =1.d-20, twoint =1.d-20;
gthresh ,prefac =1.d-15,zero =1.d-13

gprint ,orbital ,civector ,ref;

angstrom

basis={
ecp ,Rb ,36,4,2;
1; 2 ,1.000000 ,0.000000;
1; 2 ,1.106700 ,65.136000;
2; 2 ,0.317770 ,2.987200*1/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 , -1.957400*2/5; 2 ,0.372770 , -1.897200*3/5;
1; 2 ,0.088950 , -0.026739;
2; 2 ,0.317770 , -2.987200*2/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 ,1.957400*2/5; 2 ,0.372770 , -1.897200*2/5;
s,Rb,even ,15 ,2.26770917961 ,0.778918234455;
p,Rb,even ,12 ,2.64064146551 ,0.223338403475;
d,Rb,even ,7 ,2.84731323465 ,0.0758400392843;
f,Rb,even ,5 ,3.40393405964 ,0.209854050117;
g,Rb ,2.8367850 ,0.8333842 ,0.2448297;
}
! C1 -symmetry , using geometry from C2v OPTG
symmetry ,nosym
geometry ={rb ,0,0,0,DR;

rb ,0,Rd1 ,0,0;
rb ,0,Rd2 ,0,0;}

Rd1 = 0.5*5.331
Rd2 = -Rd1
DR = sqrt (3)*Rd1

{cpp ,init ,1;
rb ,1 ,8.67 , , ,0.23;}

!Reduce state averaging since only quartet ground state required
{multi ,maxit =150;occ ,12; closed;
wf ,3,1,3;state ,5;}

!test for pspace (-1)
{ci ,maxit =195, maxiti =900, nocheck;orbit ,ignore_error;occ ,12; closed;wf

,3,1,3;state ,1; option ,nstati =20; pspace ,-1;}
EMRCI = energy (1) !Save desired state to be optimized in variable EMRCI

!Geometry optimization using symmetrical displacement coordinates
!(want to classify C2v extremum)
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C.2 Molpro input files for Rb3 investigations

!reduce step length for improved convergence
{optg ,displace=symm ,dstep =0.005 , variable=EMRCI}
{freq;variable ,EMRCI}

A common error for frequency calculations of high-lying excited states is “CI VECTOR

FOR STATE X DOES NOT OVERLAP SUFFICIENTLY WITH REFERENCE VECTORS”. In some
cases it may help to increase the nstati value (as also suggested by the Molpro

output) or to redefine the pspace to avoid this error. Sometimes it is also helpful
to change the active space of the preceding MCSCF calculation. Another possibility
may be to reduce the number of states in the state-averaged MRCI calculation since it
might be the case that not all states are sufficiently described by the space of reference
configurations. Furthermore, it is usually advisable to use the noroot_follow option,
cf. Input C.5 and Sec. C.2.6, which is not documented in the Molpro manual.
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F igure C.1. : The 2 E4 ′ Jahn-Teller manifold, see Fig. 4.6 (d), along the C2v preserving coordinate Q3

with Q2 = 0.0 Å and Q1 = 9.1816 Å; cf. Input C.3. Calculations were performed using Cs symmetry.
The light blue and dark blue curves correspond to calculations based on the AVAS scheme to generate
an optimal active space. The red and green curves represent calculations based on a 9/3 active orbital
space. The failure of producing the degeneracy at Q3 = 0.0 Å in the latter case illustrates the importance
and sensitivity of accurate results on the choice of the active space.

C.2.2 Obtaining exact degeneracies: A short note

As indicated in the technical remarks of Sec. 4.3.3 (numerical) exact degeneracies,
as required by symmetry for JT states, are often not guaranteed when using the
MRCI approach as implemented in Molpro. This has been also reported in Ref. [94]
analyzing the pseudo Jahn-Teller potential-energy-landscape of the E2 ′ and 1 A2 ′

1 states
of K3. The following briefly considers this problem for the 2 E4 ′ JT manifold of Rb3,
where the degeneracy occurs between the high-lying excited states 3 A4

1 and 4 B4
1 in

C2v nomenclature, respectively between the 6 A4 ′ and 7 A4 ′ states in Cs nomenclature;
see Fig. 4.6 (d). This JT state has been studied previously by Hauser et al. in Ref. [96]
where it was noted that corresponding orbitals had to be hand-picked to ensure the
degeneracy of the 2 E4 ′ state at D3h geometries.

Furthermore, it was found that in some cases of this work using the MRCI method
as implemented in Molpro with C2v symmetry cannot produce (numerical) exact
degeneracies. The degeneracy of the 1 E4 ′′ JT pair at Q2 = Q3 = 0 occurring between
the states [(1 B4

2, 1 A4
2)=̂(1 A4 ′′, 2 A4 ′′)] is reproduced to good accuracy for calculations

using Cs symmetry and a 9/3 active orbital space (according to Molpro’s orbital
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C.2 Molpro input files for Rb3 investigations

ordering: A′/A′′). This approach fails for the 2 E4 ′ state as shown in Fig. C.1.
This failure in producing exact degeneracies is often due to an insufficiently chosen

active space. To find the optimal orbital reference space the AVAS scheme [223] was
applied yielding an active space of 12/3. The resulting PECs are shown in Fig. C.1
with the corresponding example input C.3 given below.

Input C.3: Producing exact degeneracy using AVAS

***,Rb3 2^4Ep state with AVAS for exact degeneracy

memory ,1000,m

gthresh ,energy =1.d-10, oneint =1.d-20, twoint =1.d-20;
gthresh ,prefac =1.d-15,zero =1.d-13

angstrom

gprint ,orbital ,civector ,ref;

! Fix breathing mode to value in equilateral triangular configuration
Q1 = 9.181601330922618

! array of symmetric distortion coordinate Qx
Qxvec =[ -0.3 , -0.2 , -0.1 , -0.05 , -0.025 ,0.0 ,0.025 ,0.05 ,0.1 ,0.2 ,0.3]

! Scan along symmetric stretch mode
do ii = 1,#Qxvec
Qx=Qxvec(ii)

! Transform to internal coordinates
R13 = (sqrt (6)*(sqrt (2)*Q1 - Qx))/6.
R23 = sqrt (3)*Q1 - 2.0* R13

! Transform to Cartesian coordinates
xb = 0.5* R23
xc = -xb
DR = sqrt(R13**2 - (R23 /2.) **2)

basis={
ecp ,Rb ,36,4,2;
1; 2 ,1.000000 ,0.000000;
1; 2 ,1.106700 ,65.136000;
2; 2 ,0.317770 ,2.987200*1/3; 2 ,0.303130 ,2.880100*2/3;
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2; 2 ,0.379960 , -1.957400*2/5; 2 ,0.372770 , -1.897200*3/5;
1; 2 ,0.088950 , -0.026739;
2; 2 ,0.317770 , -2.987200*2/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 ,1.957400*2/5; 2 ,0.372770 , -1.897200*2/5;
s,Rb,even ,15 ,2.26770917961 ,0.778918234455;
p,Rb,even ,12 ,2.64064146551 ,0.223338403475;
d,Rb,even ,7 ,2.84731323465 ,0.0758400392843;
f,Rb,even ,5 ,3.40393405964 ,0.209854050117;
g,Rb ,2.8367850 ,0.8333842 ,0.2448297;
}

! Cs symmetry
symmetry ,y
geometry ={rb ,0,0,0,DR;

rb ,0,xb ,0,0;
rb ,0,xc ,0,0}

{cpp ,init ,1;
rb ,1 ,8.67 , , ,0.23;}

! AVAS to generate proper active space
{rhft ,maxit =120;occ ,3,0;wf ,3,1,3;
avas ,basis=def2 -tzvp ,thr =0.1;
center ,1,1s,1p;
center ,2,1s,1p;
center ,3,1s,1p;
orbital ,2100.2;

}

! CASSCF starting with previously generated orbitals
{multi ,maxit =120; start ,2100.2;
wf ,3,1,3;state ,9;}

! 2^4Ep = 3^4A1+4^4B1 = 6^4Ap+7^4Ap
! energetically well separated from higher lying states of Ap symmetry
! ==> sufficient to set number of states to 7
{ci ,maxit =195, maxiti =1000 , nocheck;orbit ,ignore_error;wf ,3,1,3;state ,7;

option ,nstati =20;save ,3103.2}

! Define variables to save results in table
R(ii) = Qx
E1(ii) = energy (6)
E2(ii) = energy (7)
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end do
! Print results to table
table ,R,E1,E2

Besides, it should be noted that the 2 E4 ′ JT pair has to be treated with “extra” caution
as the extrema on the lower PES sheet occur close to the central COIN and are nearly
symmetrically lifted when lowering the symmetry to C2v; see Tab. D.1 and Fig. C.1.
Hence, it requires further detailed investigations to finally characterize the topology of
this potential-energy landscape: analyze if it is of tricorn topology or a Mexican-hat-like
surface.

C.2.3 Spin-orbit calculation with the ECP-LS technique

A generic input file that shows how to compute the spin-orbit matrix by using the
ECP-LS technique with the large-core ECP is given in input C.4. The calculation uses
the C2v point group symmetry and corresponds to the investigation of the size of
SOC effects at the equilibrium geometry of the first excited quartet state 1 A4

2. The
heat-map representation was shown in Fig. 4.9.

Input C.4: Example input for SO calculation

***,Rb3 SO coupling

memory ,800,m

gprint ,orbital ,civector;

ANGSTROM

! Geometry of the 1^4 A_2 state
DR =3.310
re =5.700
xb = 0.5*re
xc = -0.5*re

! lcECP and UET15 definition
basis={
ecp ,Rb ,36,4,2;
1; 2 ,1.000000 ,0.000000;
1; 2 ,1.106700 ,65.136000;
2; 2 ,0.317770 ,2.987200*1/3; 2 ,0.303130 ,2.880100*2/3;
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2; 2 ,0.379960 , -1.957400*2/5; 2 ,0.372770 , -1.897200*3/5;
1; 2 ,0.088950 , -0.026739;
2; 2 ,0.317770 , -2.987200*2/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 ,1.957400*2/5; 2 ,0.372770 , -1.897200*2/5;
s,Rb,even ,15 ,2.26770917961 ,0.778918234455;
p,Rb,even ,12 ,2.64064146551 ,0.223338403475;
d,Rb,even ,7 ,2.84731323465 ,0.0758400392843;
f,Rb,even ,5 ,3.40393405964 ,0.209854050117;
g,Rb ,2.8367850 ,0.8333842 ,0.2448297;
}

!Using C2v point group symmetry
symmetry ,x,y
geometry ={rb ,0,0,0,DR;

rb ,0,xb ,0,0;
rb ,0,xc ,0,0}

{cpp ,init ,1;
rb ,1 ,8.67 , , ,0.23;}

{multi;occ ,5,4,2,1; closed;
wf ,3,1,1;state ,5;wf ,3,2,1;state ,4;wf ,3,3,1;state ,2;wf ,3,4,1;
wf ,3,1,3;state ,4;wf ,3,2,3;state ,5;wf ,3,3,3;state ,3;wf ,3,4,3;state ,3;}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,1,1;state ,5;
option ,nstati =50;save ,3101.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,2,1;state ,4;
option ,nstati =50;save ,3102.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,3,1;state ,2;
option ,nstati =50;save ,3103.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,4,1;option ,nstati
=50;save ,3104.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,1,3;state ,4;
option ,nstati =37;save ,4101.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,2,3;state ,5;
option ,nstati =37;save ,4102.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,3,3;state ,3;
option ,nstati =37;save ,4103.2}

{ci ,nocheck;orbit ,ignore_error;occ ,5,4,2,1; closed;wf ,3,4,3;state ,3;
option ,nstati =37;save ,4104.2}

! SO -calculation
! Each SO matrix element is calculated individually (wigner =0)
! Individual matrix elements and contributions of internal and
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! external configuration classes are printed (matel =1)
{ci;hlsmat ,ecp ,3101.2 ,3102.2 ,3103.2 ,3104.2 ,4101.2 ,4102.2 ,4103.2 ,4104.2;

print ,hls=0,vls=0;option ,wigner=0,matel =1;}

C.2.4 A Q3 scan including spin-orbit coupling

The Input C.5 generally shows how to perform PES scans with spin-orbit coupling
included using the ECP-LS technique with the large-core ECP. This corresponds to
the upper left inset of Fig. 4.11 (a) but can be easily adapted to produce cuts along
different directions in the configuration space. These calculations may be required as a
starting point for subsequent diabatization approaches and diabatic PES interpolation
approaches (potential collaboration with W. Eisfeld, University Bielefeld).

Input C.5: Example input of a Q3 scan including SOC

***,Rb3 Q3 scan for 1^4Epp JT state including SOC

memory ,1000,m

gthresh ,energy =1.d-12, oneint =1.d-20, twoint =1.d-20;
gthresh ,prefac =1.d-15,zero =1.d-13

angstrom

gprint ,orbital ,civector ,ref;

! breathing mode fixed to 1^4A_2 Minimum
Q1 = 8.33463
! symmetric distortion coordinate Qx
Qxvec =[ -0.005 , -0.0025 ,0.0 ,0.0025 ,0.005]

do ii = 1,#Qxvec
Qx=Qxvec(ii)

R13 = (sqrt (6)*(sqrt (2)*Q1 - Qx))/6.
R12 = R13
R23 = sqrt (3)*Q1 - R12 - R13
xb = 0.5* R23
xc = -xb
DR = sqrt(R13**2 - (R23 /2.) **2)

basis={
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ecp ,Rb ,36,4,2;
1; 2 ,1.000000 ,0.000000;
1; 2 ,1.106700 ,65.136000;
2; 2 ,0.317770 ,2.987200*1/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 , -1.957400*2/5; 2 ,0.372770 , -1.897200*3/5;
1; 2 ,0.088950 , -0.026739;
2; 2 ,0.317770 , -2.987200*2/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 ,1.957400*2/5; 2 ,0.372770 , -1.897200*2/5;
s,Rb,even ,15 ,2.26770917961 ,0.778918234455;
p,Rb,even ,12 ,2.64064146551 ,0.223338403475;
d,Rb,even ,7 ,2.84731323465 ,0.0758400392843;
f,Rb,even ,5 ,3.40393405964 ,0.209854050117;
g,Rb ,2.8367850 ,0.8333842 ,0.2448297;
}
! Cs symmetry
symmetry ,y
geometry ={rb ,0,0,0,DR;

rb ,0,xb ,0,0;
rb ,0,xc ,0,0}

{cpp ,init ,1;
rb ,1 ,8.67 , , ,0.23;}

{multi ,maxit =120;occ ,9,3; closed;wf ,3,1,1;state ,9;wf ,3,2,1;state ,3;
wf ,3,1,3;state ,9;wf ,3,2,3;state ,6;}

! noroot_follow option to ensure convergence of all high -lying
! quartet and doublet states
{ci ,noroot_follow ,maxit =195, maxiti =2000, nocheck;orbit ,ignore_error;occ

,9,3; closed;wf ,3,1,1;state ,9;option ,nstati =50; pspace ,-1;save ,3101.2}
{ci ,noroot_follow ,maxit =195, maxiti =2000, nocheck;orbit ,ignore_error;occ

,9,3; closed;wf ,3,2,1;state ,3;option ,nstati =50; pspace ,-1;save ,3102.2}
{ci ,noroot_follow ,maxit =195, maxiti =2000, nocheck;orbit ,ignore_error;occ

,9,3; closed;wf ,3,1,3;state ,9;option ,nstati =20;save ,4101.2}
{ci ,noroot_follow ,maxit =195, maxiti =2000, nocheck;orbit ,ignore_error;occ

,9,3; closed;wf ,3,2,3;state ,6;option ,nstati =20;save ,4102.2}
! Compute SO matrix
{ci;hlsmat ,ecp ,3101.2 ,3102.2 ,4101.2 ,4102.2; print ,hls=0,vls =0; option ,

wigner=0,matel =1;}

end do

As mentioned previously, the use of the noroot_follow option works as a conve-
nient patch to avoid the common error message “CI VECTOR FOR STATE X DOES NOT
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OVERLAP SUFFICIENTLY WITH REFERENCE VECTORS”. For the above setup this occurs on
a quite regular basis as soon as high-lying doublet and/or quartet states are involved.

C.2.5 Non-adiabatic coupling matrix elements

Non-adiabatic coupling matrix elements (NACMEs), as shown for the NaF example in
Fig. 2.1 and for the investigations concerning the Q-manifold of Rb3 in Fig. 4.16, are
computed using the DDR procedure of Molpro. An example input for corresponding
calculations may follow the structure shown in input C.6.

Input C.6: Example input for calculating NACMEs along a Q3 scan

***,Rb3 non -adiabatic coupling

memory ,1000,m

gthresh ,energy =1.d-10, oneint =1.d-20, twoint =1.d-20;
gthresh ,prefac =1.d-15,zero =1.d-13

angstrom

gprint ,orbital ,civector ,ref;

! Reference geometry
Q1 = 10.5
Qx = -1.5

R13 = (sqrt (6)*(sqrt (2)*Q1 - Qx))/6.
R23 = sqrt (3)*Q1 - 2.0* R13

xb = 0.5* R23
xc = -xb
DR = sqrt(R13**2 - (R23 /2.) **2)

! lcECP and UET15
basis={
ecp ,Rb ,36,4,2;
1; 2 ,1.000000 ,0.000000;
1; 2 ,1.106700 ,65.136000;
2; 2 ,0.317770 ,2.987200*1/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 , -1.957400*2/5; 2 ,0.372770 , -1.897200*3/5;
1; 2 ,0.088950 , -0.026739;
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2; 2 ,0.317770 , -2.987200*2/3; 2 ,0.303130 ,2.880100*2/3;
2; 2 ,0.379960 ,1.957400*2/5; 2 ,0.372770 , -1.897200*2/5;
s,Rb,even ,15 ,2.26770917961 ,0.778918234455;
p,Rb,even ,12 ,2.64064146551 ,0.223338403475;
d,Rb,even ,7 ,2.84731323465 ,0.0758400392843;
f,Rb,even ,5 ,3.40393405964 ,0.209854050117;
g,Rb ,2.8367850 ,0.8333842 ,0.2448297;
}
symmetry ,y
! noorient should always be used for diabatization
orient ,noorient
geometry ={rb ,0,0,0,DR;

rb ,0,xb ,0,0;
rb ,0,xc ,0,0}

{cpp ,init ,1;
rb ,1 ,8.67 , , ,0.23;}

{multi;maxiter ,120;occ ,9,3; closed;
wf ,3,1,3;state ,5; orbital ,2140.2}

! Scan along symmetric stretch mode
Qxvec =[ -1.25 , -1.2 , -1.15 , -1.1 ,... ,1.1 ,1.15 ,1.2 ,1.25]

! Fixed displacement for each Qx
DQx = 0.001

! Loop over geometries
do ii=1,#Qxvec

Qx=Qxvec(ii)

R13 = (sqrt (6)*(sqrt (2)*Q1 - Qx))/6.
R23 = sqrt (3)*Q1 - 2.0* R13
xb = 0.5* R23
xc = -xb
DR = sqrt(R13 **2 - (R23 /2.) **2)

! Don ’t use extra symmetries
{multi;maxiter ,120;occ ,9,3; closed;wf ,3,1,3;state ,5; orbital ,2140.2;

noextra}
! MRCI at Qx, store orbitals at 6000.2 and (transition) densities to

8000.2
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{ci ,noroot_follow ,nocheck ,maxit =195, maxiti =1000; orbit ,ignore_error;occ
,9,3; closed;wf ,3,1,3;state ,5;option ,nstati =25;save ,6000.2;dm ,8000.2}

E1(ii)=energy (2)
E2(ii)=energy (3)
E3(ii)=energy (4)
E4(ii)=energy (5)

! Increment bond distance by DRa
Qxnew = Qx+DQx

R13 = (sqrt (6)*(sqrt (2)*Q1 - Qxnew))/6.
R23 = sqrt (3)*Q1 - 2.0* R13
xb = 0.5* R23
xc = -xb
DR = sqrt(R13**2 - (R23 /2.) **2)

! generate diabatic orbitals by maximizing the
! overlap with the orbitals at the reference geometry
{multi;maxiter ,120;occ ,9,3; closed;wf ,3,1,3;state ,5;start ,2140.2; orbital

,2141.2; diab ,2140.2; noextra}
! MRCI at positively displaced geometry. Save orbitals to 6001.2
{ci ,noroot_follow ,nocheck ,maxit =195, maxiti =1000; orbit ,ignore_error;occ

,9,3; closed;wf ,3,1,3;state ,5;option ,nstati =25;save ,6001.2;}
! Compute overlap and transition density <R|R+DR>
! save transition density to record 8100.2
{ci;trans ,6000.2 ,6001.2;dm ,8100.2}

! Repeat at Rap -DRa
Qxnew2 = Qx -DQx

R13 = (sqrt (6)*(sqrt (2)*Q1 - Qxnew2))/6.
R23 = sqrt (3)*Q1 - 2.0* R13
xb = 0.5* R23
xc = -xb
DR = sqrt(R13**2 - (R23 /2.) **2)

! generate diabatic orbitals by maximizing the
! overlap with the orbitals at the reference geometry
{multi;maxiter ,120;occ ,9,3; closed;wf ,3,1,3;state ,5;start ,2140.2; orbital

,2142.2; diab ,2140.2; noextra}
! MRCI at negatively displaced geometry. Save orbitals to 6002.2
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{ci ,noroot_follow ,nocheck ,maxit =195, maxiti =1000; orbit ,ignore_error;occ
,9,3; closed;wf ,3,1,3;state ,5;option ,nstati =25;save ,6002.2;}

! Compute overlap and transition density <R|R-DR>
! save transition density to record 8200.2
{ci;trans ,6000.2 ,6002.2;dm ,8200.2}

! Compute NACMEs using 3-point formula
{ddr ,2*DQx
orbital ,2140.2 ,2141.2 ,2142.2;
density ,8000.2 ,8100.2 ,8200.2;
states ,2.1 ,3.1}

nacme2_3(ii)=nacme

{ddr ,2*DQx
orbital ,2140.2 ,2141.2 ,2142.2;
density ,8000.2 ,8100.2 ,8200.2;
states ,2.1 ,4.1}

nacme2_4(ii)=nacme

{ddr ,2*DQx
orbital ,2140.2 ,2141.2 ,2142.2;
density ,8000.2 ,8100.2 ,8200.2;
states ,2.1 ,5.1}

nacme2_5(ii)=nacme

{ddr ,2*DQx
orbital ,2140.2 ,2141.2 ,2142.2;
density ,8000.2 ,8100.2 ,8200.2;
states ,3.1 ,4.1}

nacme3_4(ii)=nacme

{ddr ,2*DQx
orbital ,2140.2 ,2141.2 ,2142.2;
density ,8000.2 ,8100.2 ,8200.2;
states ,3.1 ,5.1}

nacme3_5(ii)=nacme

{ddr ,2*DQx
orbital ,2140.2 ,2141.2 ,2142.2;
density ,8000.2 ,8100.2 ,8200.2;
states ,4.1 ,5.1}

nacme4_5(ii)=nacme
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end do

table ,Qxvec ,E1 ,E2 ,E3 ,E4
title ,MRCI energies

table ,Qxvec ,nacme2_3 ,nacme2_4 ,nacme2_5 ,nacme3_4 ,nacme3_5 ,nacme4_5
title ,Non -adiabatic couplings for Rb3 quartets

C.2.6 Experiences for running calculations successfully

The input files given above use a number of options both for the calculations in
general and exclusively for the corresponding MRCI parts. The latter might cause
most of potential problems. The following comments may provide some hints how
to successfully run corresponding calculations by explaining why certain options
were used, how they might be adjusted for related calculations and what have to be
accounted for when using them:

• The nocheck and orbit,ignore_error options were originally used for PES
scans including all states under consideration corresponding to a given IRREP.
In these cases low-lying doublet and quartet states usually converge reliably
while energetically high-lying excited states may cause convergence problems.
To prevent the calculation from stopping and to use converged orbitals from
the previous geometry for calculating the present ones, these options were
included for efficiency reasons. Subsequently, the resulting outputs as well as
the corresponding PECs have to be carefully analyzed to identify and remove
non-converged states. For geometry optimizations and frequency calculations
these options should be removed.

• Tighten the global thresholds oneint, twoint and prefac allow for a denser
grid of available one- and two-electron integrals which often leads to improved
convergence to the cost of increased computation time.

• If the space of reference configuration was chosen properly, increasing or decreas-
ing the number defined by the nstati option may often help to accomplish the
calculation.

• In some cases the MRCI program breaks with the error message “Internal
expansion vectors linearly dependent”. To this end it is often helpful to
redefine the primary configuration space using the pspace option
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• The noroot_follow option is not documented in the Molpro manual, even
though it represents an effective patch to converge MRCI calculations that involve
all doublet and quartet states under consideration; cf. Input C.5. In particular,
this often avoids that the MRCI program breaks with the error “CI VECTOR FOR

STATE X DOES NOT OVERLAP SUFFICIENTLY WITH REFERENCE VECTORS”

As soon as energetically high-lying states and/or cases with a large number of states
belonging to the same IRREP (i.e. in particular in Cs symmetry) are considered, the
MRCI program might run into some problems while the preceding CASSCF calculation
usually converges rapidly and reliably. In some cases this might be due to the fact that
the reference space is incomplete to properly describe the states under consideration.
In these cases it may help to redefine the active space by including more orbitals in the
reference wavefunction or using the AVAS protocol to generate a suitable active space
automatically. In other cases it might suffice to increase the number of states which
are to be calculated or increase/decrease the number defined by the nstati option. In
many cases it is sufficient to use the noroot_follow option.
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D
Facts and Figures for the Rb3 System

This part of the Appendix provides more details in terms of numbers and additional
figures concerning the investigations of the Rb3 system and thus supports the findings
presented in Chaps. 4 and 5.

D.1 Extended overview of Rb3 states

In addition to Sec. 4.3 where only identified global (or local) minima of doublet
and quartet states of Rb3 were discussed, a more detailed overview is given in the
following. Therefore, all extremal points found for the doublet and quartet manifolds
up to the 5s + 2 · 5p asymptote are shown in Fig. D.1. The corresponding numbers and
classifications of the extrema are listed in Tabs. D.1 and D.3 for triangular configurations
and in Tabs. D.2 and D.4 for linear geometries. Due to the discussed numerical
difficulties of frequency calculations at MRCI level of theory (see Appendix C.2) there
occurred some convergence problems for a few high-lying and/or close-in-energy
states. In Tabs. D.1 and D.3 as well as in Tabs. D.2 and D.4 these states are labeled
with »true classification failed« . So far it is only ensured that they represent extremal
points on the corresponding PESs but they could still turn out as minimum or saddle
points and require further investigation.
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F igure D.1. : Overview of the energy levels of all doublet and quartet states of Rb3 listed in Tabs. D.1
to D.5 optimized at MRCI(lcECP+CPP)/UET15 level of theory. Black levels correspond to triangular
minima while green levels refer to linear minima. Levels given in bordeaux correspond to states
(linear or triangular) for which the true three-dimensional classification in terms of harmonic frequency
calculations failed. First-order saddle points are marked by dashed lines (both for linear and triangular
geometries). For degenerate components of a linear Π state (e.g. 1 4A2 + 2 4B∗1) the asterisks denotes that
this state corresponds to a first-order saddle point (bending instability due to combined Renner-Teller
and pseudo Jahn-Teller effect). Examples for Jahn-Teller pairs are highlighted by light blue boxes. A
complete overview of states that undergo JT distortions was given in Tab. 4.3. Freely adapted from J.
Schnabel et al., Phys. Rev. A 103, 022820 (2021).
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Table D.1. : Synopsis of extremal points found for triangular (C2v and D3h) configurations of quartet
states of Rb3 computed at MRCI(lcECP+CPP)/UET15 level of theory. Geometries are given in terms
of the internal coordinates (perimetric coordinates) introduced in Fig. 4.3 and energies (Erel) are
given relative to the 3 · Rb asymptote. The states are labeled according to the C2v IRREPs with the
corresponding assignment to the D3h IRREPs given in parenthesis. The listed numbers complement the
findings of the energy-level diagram of Fig. D.1.

State (D3h)
R12, R23, R13 [Å]

Geometry Erel [cm−1] Classification
(R1, R2, R3)

1 B4
1 (1 A4 ′

2)
5.311, 5.311, 5.311

D3h -1244 Minimum
(2.656, 2.656, 2.656)

1 A4
2 (1 E4 ′′)

4.368, 5.700, 4.368
C2v 3397 Minimum

(1.518, 2.850, 2.850)

1 B4
2 (1 E4 ′′)

4.913, 4.146, 4.913
C2v 3622

First-order saddle point
(2.840, 2.073, 2.073) imag. freq. asymmetric stretch mode

2 B4
1 (1 E4 ′)

4.442, 8.179, 4.442
C2v 3962 Minimum

(0.352, 4.090, 4.090)

1 A4
1 upper (1 E4 ′)

4.993, 8.076, 4.993
C2v 6766 Minimum

(0.955, 4.038, 4.038)

2 A4
1 (1 A4 ′

1)
5.325, 5.325, 5.325

D3h 7722 Minimum
(2.663, 2.663, 2.663)

3 B4
1 (2 A4 ′

2)
5.084, 5.084, 5.084

D3h 7869 Minimum
(2.542, 2.542, 2.542)

2 B4
2 (2 E4 ′′)

4.443, 6.217, 4.443
C2v 9490 Minimum

(1.335, 3.109, 3.109)

2 B4
2 upper (2 E4 ′′)

5.476, 4.207, 5.476
C2v 10205

First-order saddle point
(3.373, 2.104, 2.104) imag. freq. symmetric stretch mode

4 B4
1 (2 E4 ′)

5.283, 5.337, 5.283
C2v 10291 Minimum

(2.615, 2.669, 2.669)

3 A4
1 lower (2 E4 ′)

5.318, 5.279, 5.318
C2v 10295

First-order saddle point
(2.679, 2.640, 2.640) imag. freq. asymmetric stretch mode

2 A4
2 (2 E4 ′′)

4.924, 4.874, 4.924
C2v 11272 Local C2v extremum, true classification failed

(2.487, 2.437, 2.437)

3 B4
2 (1 A4 ′′

2 )
4.619, 4.619, 4.619

D3h 11550 Local C2v extremum, true classification failed
(2.310, 2.310, 2.310)

3 A4
1 upper (2 E4 ′)

4.687, 7.226, 4.687
C2v 11784 Minimum

(1.074, 3.613, 3.613)

4 A4
1 (3 E4 ′)

4.862, 6.126, 4.862
C2v 12902 Local C2v extremum, true classification failed

(1.799, 3.063, 3.063)
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Table D.2. : Synopsis of extremal points found for linear (D∞h) geometries of quartet states of Rb3

computed at MRCI(lcECP+CPP)/UET15 level of theory. Geometries are given in terms of the internal
coordinates (perimetric coordinates) introduced in Fig. 4.3 and energies (Erel) are given relative to the
3 ·Rb asymptote. The states are labeled according to the C2v IRREPs with the corresponding assignment
to the D∞h IRREPs given in parenthesis. The listed numbers complement the findings of the energy-level
diagram of Fig. D.1.

State (D∞h)
R12, R23, R13 [Å]

Erel [cm−1] Classification
(R1, R2, R3)

1 B4
1 (1 Σ4 +

u )
5.916, 11.831, 5.916

-551 First-order saddle point
(0.000, 5.916, 5.916)

1 A4
2 + 2 B4

1 (1 Π4
g)

4.435, 8.869, 4.435
4044 Renner-Teller pair with 2 4B1 turning out as saddle point

(0.000, 4.435, 4.435)

1 A4
1 + 1 B4

2 (1 Π4
u)

4.581, 9.162, 4.581
7180 Both first-order saddle points due to PJT interaction with 2 A4

1(0.000, 4.581, 4.581)

1 A4
1 (1 Π4

u → 1 Σ4 +
g )a 5.248, 10.495, 5.248

7289 First-order saddle point
(0.000, 5.248, 5.248)

2 A4
1 (1 Σ4 +

g → 1 Π4
u)a 4.937, 9.874, 4.937

7442 Minimum
(0.000, 4.937, 4.937)

3 B4
1 (2 Σ4 +

u )
4.660, 9.319, 4.660

10924
First-order saddle point

(0.000, 4.660, 4.660)

a As a consequence of a combined pseudo Jahn-Teller and Renner-Teller interaction two A1 (B1) states, one of them arising from a Π state,
can mix and thus interchange for greater displacements along D∞h geometries; cf. Fig. 4.7 (b).
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Table D.3. : Synopsis of extremal points found for triangular (C2v and D3h) configurations of doublet
states of Rb3 computed at MRCI(lcECP+CPP)/UET15 level of theory. Geometries are given in terms
of the internal coordinates (perimetric coordinates) introduced in Fig. 4.3 and energies (Erel) are
given relative to the 3 · Rb asymptote. The states are labeled according to the C2v IRREPs with the
corresponding assignment to the D3h IRREPs given in parenthesis. The listed numbers complement the
findings of the energy-level diagram of Fig. D.1.

State (D3h)
R12, R23, R13 [Å]

Geometry Erel [cm−1] Classification
(R1, R2, R3)

1 B2
1 (1 E2 ′)

4.379, 5.393, 4.379
C2v -6017 Minimum

(1.682, 2.697, 2.697)

1 A2
1 (1 E2 ′)

4.863, 4.197, 4.863
C2v -5885

First-order saddle point
(2.765, 2.096, 2.096) imag. freq. asymmetric stretch mode

1 B2
2 (1 A2 ′′

2 )
4.276, 4.285, 4.276

C2v -1228 Minimum
(2.134, 2.143, 2.143)

2 A2
1 lower (2 E2 ′)

4.398, 6.073, 4.398
C2v 229 Minimum

(1.361, 3.037, 3.037)

2 A2
1 upper (2 E2 ′)

5.170, 4.206, 5.170
C2v 686

First-order saddle point
(3.067, 2.103, 3.067) imag. freq. asymmetric stretch mode

2 B2
1 (2 E2 ′)

4.825, 4.825, 4.825
D3h 1165

First-order saddle point
(2.413, 2.413, 2.413) imag. freq. symmetric stretch mode

3 A2
1 (1 A2 ′

1)
4.557, 4.557, 4.557

D3h 1898 Minimum
(2.279, 2.279, 2.279)

1 A2
2 (1 E2 ′′)

4.337, 5.132, 4.337
C2v 4286 Minimum

(1.771, 2.566, 2.566)

2 B2
2 (1 E2 ′′)

4.742, 4.208, 4.742
C2v 4366

First-order saddle point
(2.638, 2.104, 2.104) imag. freq. asymmetric stretch mode

4 A2
1 lower (2 A2 ′

1)
4.603, 5.414, 4.603

C2v 5431 Local C2v extremum, true classification failed
(1.896, 2.707, 2.707)

4 A2
1 upper (2 A2 ′

1)
5.138, 4.350, 5.138

C2v 5446 Local C2v extremum, true classification failed
(2.963, 2.175, 2.175)

3 B2
1 (3 E2 ′)

4.921, 4.893, 4.921
C2v 6097

Local C2v extremum, true classification failed

(2.475, 2.447, 2.447)

4 B2
1 (1 A2 ′

2)
5.215, 5.215, 5.215

D3h 7077
Local C2v extremum, true classification failed

(2.608, 2.608, 2.608)
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Table D.4. : Synopsis of extremal points found for linear (D∞h) geometries of Rb3 doublet states
computed at MRCI(lcECP+CPP)/UET15 level of theory. Geometries are given in terms of the internal
coordinates (perimetric coordinates) introduced in Fig. 4.3 and energies (Erel) are given relative to the
3 ·Rb asymptote. The states are labeled according to the C2v IRREPs with the corresponding assignment
to the D∞h IRREPs given in parenthesis. The listed numbers complement the findings of the energy-level
diagram of Fig. D.1.

State (D∞h)
R12, R23, R13 [Å]

Erel [cm−1] Classification
(R1, R2, R3)

1 B2
1 (1 Σ2 +

u )
4.357, 8.714, 4.357

-5396 First-order saddle point
(0.000, 4.357, 4.357)

1 A2
1 (1 Σ2 +

g )
4.795, 9.590, 4.795

-2109 Minimum
(0.000, 4.795, 4.795)

2 A2
1 (1 Π2

u → 2 Σ2 +
g )a 4.755, 9.510, 4.755

3135 First-order saddle point
(0.000, 4.755, 4.755)

2 A2
1 + 1 B2

2 (1 Π2
u)

4.213, 8.426, 4.213
3243 True classification failed

(0.000, 4.213, 4.213)

3 A2
1 (2 Σ2 +

g → 1 Π2
u)a 4.440, 8.880, 4.440

3390 Minimum
(0.000, 4.440, 4.440)

1 A2
2 + 2 B2

1 (1 Π2
g)

4.358, 8.716, 4.358
4939 2 B2

1 first-order saddle point, 1 A2
2 classification failed

(0.000, 4.358, 4.358)

2 B2
1 (1 Π2

g → 2 Σ2 +
u )a 5.014, 10.028, 5.014

5634 First-order saddle point
(0.000.5.014, 5.014)

3 B2
1 (2 Σ2 +

u → 1 Π2
g)a 4.930, 9.860, 4.930

5647 Minimum
(0.000, 4.930, 4.930)

4 B2
1 (3 Σ2 +

u )
4.961, 9.922, 4.961

7664 First-order saddle point
(0.000, 4.961, 4.961)

4 A2
1 (3 Σ2 +

g )
5.197, 10.394, 5.197

8221 True classification failed
(0.000, 5.197, 5.197)

a As a consequence of a combined pseudo Jahn-Teller and Renner-Teller interaction two A1 (B1) states, one of them arising from a
Π state, can mix and thus interchange for greater displacements along D∞h geometries; cf. Fig. 4.7 (a).
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Table D.5. : Synopsis of extremal points found for both singlet and triplet state of Rb3
+ in triangular

and linear geometry, respectively, computed at MRCI(lcECP+CPP)/UET15 level of theory. Geometries
are given in terms of the internal coordinates (perimetric coordinates) introduced in Fig. 4.3 and energies
(Erel) are given relative to the 3 · Rb asymptote. The states are labeled according to the C2v IRREPs
with the corresponding assignment to the D3h/D∞h IRREPs given in parenthesis. The listed numbers
complement the findings of the energy-level diagram of Fig. D.1.

State (D3h/D∞h)
R12, R23, R13 [Å]

Geometry Erel [cm−1] Classification
(R1, R2, R3)

1 A1
1 ( A1 ′

1)
4.610, 4.610, 4.610

D3h 19942 Minimum
(2.305, 2.305, 2.305)

1 B3
1 ( Σ3 +

u )
4.875, 9.749, 4.875

D∞h 24043 Minimum
(0.000, 4.875, 4.875)
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D.2 More information on spin-orbit coupling effects

of Rb3

In Sec. 4.3.5 it was mentioned that the typical magnitude of spin-orbit coupling
strengths amounts to 20 to 70 cm−1 while corresponding spin-orbit-induced energy
shifts and zero-field splittings are much smaller. The Tabs. D.6 to D.9 give explicit
values to endorse these findings.
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D.2 More information on spin-orbit coupling effects of Rb3

Table D.6. : Synopsis of spin-orbit coupling (SOC) effects calculated at MRCI(lcECP+CPP)/UET15
level of theory using the ECP-LS technique. The results refer to the extremal points listed in Tab. D.1 for
the quartet states of Rb3 in triangular configurations (i.e. D3h or C2v). SOC leads to a splitting into two
degenerate levels: Kramers pairs. Energies are given as the difference between SO results E and the
corresponding unperturbed energy E0

State (geom.) E− E0 [cm−1] Splitting [cm−1] dominant couplings strength [cm−1]

1 B4
1(D3h)

−0.158
0.0837

1 B4
2 21.35

−0.0743 1 A4
2 14.24

1 A4
2(C2v)

−0.228
0.3907

1 A4
1 30.83

−0.618 1 B4
1 29.95

1 B4
2(C2v)

0.361
0.8121

1 B4
1 42.82

−0.451 1 A4
1 21.96

2 B4
1(C2v)

4.389
35.239

1 A4
2 38.58

39.628 1 A4
2 44.55

1 A4
1(C2v) upper

−0.696
2.506

2 A4
2 38.63

−3.202 1 B4
2 35.31

2 A4
1(D3h)

−1.819
17.391

2 A4
2 46.17

−19.210 3 B4
1 48.67

3 B4
1(D3h)

9.387
45.782

2 B4
2 50.64

55.169 2 A4
1 52.57

2 B4
2(C2v)

0.715
0.356

2 B4
1 63.54

0.359 1 A4
2 26.45

4 B4
1(C2v)

−19.171
45.262

3 A4
1 39.82

−64.433 3 A4
1 45.98

3 A4
1(C2v) lower

−23.718
45.764

3 A4
2 48.29

−69.482 4 B4
1 46.00

2 A4
2(C2v)

2.963
5.078

2 A4
1 53.33

8.041 3 B4
1 32.66

3 A4
1(C2v) upper

−3.066
2.974

3 A4
2 27.68

−0.0921 3 B4
1 20.50
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Table D.7. : Synopsis of spin-orbit coupling (SOC) effects calculated at MRCI(lcECP+CPP)/UET15
level of theory using the ECP-LS technique. The results refer to the extremal points (in the C2v subspace)
shown in Tab. D.2 for the quartet states of Rb3 in linear configurations (i.e. D∞h). SOC leads to a
splitting into two degenerate levels: Kramers pairs. Energies are given as the difference between SO
results E and the corresponding unperturbed energy E0

State (geom.) E− E0 [cm−1] Splitting [cm−1] dominant couplings strength [cm−1]

2 B4
1(D∞h)

−76.982
35.239

1 A4
2 46.12

−41.743 1 A4
2 53.25

1 A4
2(D∞h)

−164.998
34.357

2 B4
1 46.12

−199.354 2 B4
1 53.25

1 B4
2(D∞h)

−19.333
78.225

1 B4
1 36.74

58.892 1 A4
1 38.87

2 A4
1(D∞h)

−0.854
0.722

2 A4
2 67.14

−0.132 2 A4
2 22.38

Table D.8. : Synopsis of spin-orbit coupling (SOC) effects calculated at MRCI(lcECP+CPP)/UET15
level of theory using the ECP-LS technique. The results refer to the extremal points (in the C2v subspace)
listed in Tab. D.3 for the doublet states of Rb3 in triangular configurations (i.e. D3h or C2v). SOC leads
to a rising or lowering of the energy level representing the degenerate Kramers pair. Energies are given
as the difference between SO results E and the corresponding unperturbed energies E0.

State (geom.) E− E0 [cm−1] dominant couplings strength [cm−1]

1 B2
1(C2v) −0.4450 1 B2

2 33.16
1 A2

1(C2v) −0.588 1 B2
2 36.01

1 B2
2(C2v) 0.9964 1 A2

1 49.07
2 A2

1(C2v) upper 0.9760 2 B2
2 41.21

3 A2
1(D3h) −1.1198 1 A2

2 38.59
1 A2

2(C2v) 0.3728 2 A2
1 41.66

2 B2
2(C2v) 0.064 43 2 A2

1 44.48
4 A2

1(C2v) lower 0.2481 2 B2
1 32.86

4 A2
1(C2v) upper 0.6338 2 B2

1 33.36
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D.2 More information on spin-orbit coupling effects of Rb3

Table D.9. : Synopsis of spin-orbit coupling (SOC) effects calculated at MRCI(lcECP+CPP)/UET15
level of theory using the ECP-LS technique. The results refer to the extremal points (in the C2v subspace)
shown in Tab. D.4 for the doublet states of Rb3 in linear configurations (i.e. D∞h). SOC leads to a
rising or lowering of the energy level representing the degenerate Kramers pair. Energies are given as
the difference between SO results E and the corresponding unperturbed energies E0.

State (geom.) E− E0 [cm−1] dominant couplings strength [cm−1]

1 B2
1(D∞h) −0.1687 1 B4

2 25.54
1 A2

1(D∞h) −0.2102 2 A4
2 31.93

2 A2
1(D∞h) −3.1113 1 A2

2 39.28
1 B2

2(D∞h) −73.9239 2 A2
1 75.16

3 A2
1(D∞h) 67.8894 1 B2

2 69.11
1 A2

2(D∞h) −34.2703 3 A2
1 44.09

3 B2
1(D∞h) −0.6701 2 B2

2 39.75
4 B2

1(D∞h) 7.3173 1 B4
2 27.99

4 A2
1(D∞h) −0.038 12 3 A4

2 23.64
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D.3 Brief glimpse of 2D ITP surfaces

When exploring the configuration space in Sec. 4.4.1 it was mentioned that the inner
turning points (ITPs) are actually 2D surfaces in the full 3D configuration space. Fur-
thermore, the corrresponding analysis of electronic dipole transition strengths between
the quartet ground state 1 B4

1 and the first excited quartet state 1 A4
2 revealed that

there are no considerable changes in Cs direction (starting from a C2v configuration).
These findings are illustrated in Fig. D.2 which may further provide a notion of the
topology of the full 2D ITP surface.
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F igure D.2. : Supplementary to the discussion of ITPs along with Fig. 4.10 to indicate its actual 2D
nature by showing ITP position in Cs direction. The ITPs shown here correspond to the ITP250 case, i.e.
to the Rb2+Rb dissociation scenario. The green curve represents the ITP250 line in the two-dimensional
subspace of C2v configurations as shown in Fig. 4.10. Brown and yellow lines represent ITP scans in Cs

direction. The yellow curve starts at a C2v conformation close to the equilibrium geometry of the first
excited quartet state 1 A4

2. The brown curve starts at a geometry close to an equilateral triangle. Values
for the electronic dipole transition strengths (in units of [D2]) between the quartet ground state 1 B4

1
and the first excited quartet state 1 A4

2 are given at selected geometries of C2v or Cs symmetry.
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D.4 Supplementary to the 1 E′′ Jahn-Teller pair

D.4 Supplementary to the 1 E′′ Jahn-Teller pair

In Jahn-Teller (JT) theory it is convenient to define a stabilization energy Es of the global
minima on the lower PES branch E− from the central COIN as well as a localization
energy Eloc defining the barrier height in the tricorn potential. These quantities were
also introduced in Sec. 4.4.2 in regard to the discussion of the 1 E4 ′′ JT potential-energy
landscape. In case of the JT stabilization energy one may think of two reasonable
definition which are illustrated in Fig. D.3 together with the respective definition of
the localization energy.
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E
[1

00
0

cm
−
1
]

Es[min(COIN)]

Es[min(1 4A2)]

F igure D.3. : Cut through the lower PES branch E− of the 1 E4 ′′ JT pair in the D3h-C2v subspace of
Q1 and Q3 with Q1 = 8.335 Å adjusted to the position of the 1 A4

2 minimum (pink line) as shown in
Fig. 4.11 (a). The black line represents the one-dimensional conical intersection seam as indicated in
Fig. 4.11 (b). This cut was chosen to illustrate the JT stabilization energy Es as well as the localization
energy Eloc. Freely adapted from J. Schnabel et al., Phys. Rev. A 103, 022820 (2021).
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D.5 Supplementary to the analytic Jahn-Teller anal-

ysis of the 1 4E′′ state

The analysis of the analytic JT model for the 1 E4 ′′ manifold derived in Sec. 4.5
was mainly concerned with the respective lower PES branch E−. A comparison of
the corresponding upper branch E+ obtained analytically with ab-initio results is
shown in Fig. D.4. The upper surface is a paraboloid of revolution about the center
at Q2 = Q3 = 0 as suggested by JT theory. However, due to intersections with
higher-lying states the topology of E+ starts to deviate from this paraboloid shape for
|Q2|, |Q3| ≥ 1.5. It is thus useful to restrict the area wherein the fit quality is evaluated
in terms of the RMSD to Q2, Q3 ∈ [−1.3, 1.3]Å as indicated by the dashed squares in
Fig. D.4. This was referred to as “restr.,2” in Sec. 4.5.
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D.5 Supplementary to the analytic Jahn-Teller analysis of the 1 4E′′ state
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[Å
]

(d)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Q3 [Å]
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F igure D.4. : Comparison of the 1 E4 ′′ upper JT-APES E+ (light green crosses) obtained analytically
at different JT model levels with the corresponding ab-initio data (yellow solid lines). The third order
JT expansion after Eq. (4.11) is shown in the upper panel, where in (a) the cubic vibronic coupling
parameter V3e is neglected. In (b) this parameter is included. The lower panel corresponds to the case
where the potential part of the JT Hamiltonian is expanded up to the fourth order. The “simplified” JT4
model according to Eq. (4.22) is shown in (c) while the “complete” fourth order PES after Eq. (4.17) is
shown in (d). In each figure the dashed squares indicate the area within which the restricted RMSD
values RMSDrestr,2 are calculated. The zero of energy is chosen to coincide with the 1 A4

2 minimum; the
global minimum on E−. The contour lines are given equidistantly with respective energy differences
of 500 cm−1 covering a range from Es[min(1 A4

2)] = 991 cm−1 to 10000 cm−1. All ab-initio data were
computed at MRCI(lcECP+CPP)/UET15 level of theory.
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D.6 Spin-orbit coupling effects in the Q-manifold

The effect of spin-orbit coupling on the potential-energy landscape of the Q manifold
of quadruple interactions (cf. Sec. 4.6) is shown in Fig. D.5 for a one-dimensional scan
along the symmetric distortion coordinate Q3. As expected from the relativistic E⊗ e
JTE outlined in Sec. 2.3.2, SOC removes the central symmetry-required COIN with an
energy splitting of ∆ ≈ O(10 cm−1) between the corresponding Kramers pairs of the
upper and lower PES branches. The additional C2v COINs that are due to interactions
with the remaining states are lifted as well. This is in accordance with what has been
shown in Refs. [280–282]: the dimension of a COIN seam in the presence of SOC
is Nint − 3 dimensional (if Cs symmetry can be imposed); with Nint the number of
internal degrees of freedom. This means that there is merely one COIN point in the
full 3D configuration space.
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F igure D.5. : One-dimensional cuts through the Q-manifold along the C2v preserving symmetric
distortion coordinate Q3 as shown in Fig. 4.16 but including SOC. (a) Cut left to the triple COIN [cf.
Fig. 4.15] at Q1 ≈ 8.451 Å and Q2 = 0.0 Å; i.e. the D3h minimum of the 1 E4 ′ state as shown in Fig. 4.15
and reported in Tab. 4.3. A cut right to the triple COIN at Q1 = 10.5 Å and Q2 = 0.0 Å is illustrated
in (b). Spin-orbit coupling removes both the central symmetry-required COINs and the additional C2v

ones. Calculations were performed at MRCI(lcECP+CPP)/UET15 level of theory using the ECP-LS
technique to account for SOC effects. Energies are given relative to the 3 · Rb asymptote.
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D.7 Nonadditive three-body energy for the quartet ground state of Rb3

D.7 Nonadditive three-body energy for the quartet

ground state of Rb3

In Sec. 5.3 it was outlined that for the Rb3 quartet ground state the many-body
decomposition according to Eq. (5.7) is valid since the nonadditive contribution V3 is
not overwhelmingly larger than the additive one. This is demonstrated in Fig. D.6
by an one-dimensional scan along equilateral triangular geometries (D3h). This also
indicates that nonadditive forces are most important around the equilibrium position
of the trimer where they yield a significant contribution to the total trimer equilibrium
energy. The short- and long-range behavior is dominated by the additive contribution.
However, for scattering calculations it is important to also properly account for the
nonadditive effects in these regions.
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F igure D.6. : Comparison of additive (light blue line) and nonadditive (dark blue line) contributions
to the trimer interaction energy of the quartet ground-state potential of Rb3 for a cut along D3h

configurations. Calculations were performed at MRCI(lcECP+CPP)/UET15 level of theory. The behavior
is qualitatively the same for calculations using a RHF-UCCSD(T)/ECP28MDF/UET15 approach.
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E
Mathematical Details on Kernel

Ridge Regression and RKHS Theory

This part of the Appendix is intended to provide some mathematical background for
the RP-RKHS interpolation method as described in Chap. 5. This includes a discussion
from the statistical learning theory perspective as well as highlighting important
definitions and theorems. Furthermore, this chapter gives a brief introduction into
regularization and gives expressions of special functions.

E.1 General descriptions and derivation of the repro-

ducing kernel

The RP-RKHS interpolation method presented in Sec. 5.1 corresponds to the class
of kernel ridge regression techniques. The latter combines three approaches from
machine learning theory in one method. First, the goal of regression, as for any
machine learning approach, is to learn a mapping from inputs x to outputs y. A
formalization may be to assume yi = f (xi, βi) for some unknown function f assigning
a certain weight βi to each input. The goal of learning is to determine the weights for
a given labeled training set and to be subsequently able to make predictions on novel
inputs [286]. A famous representative is linear regression in which the target function
f is assumed to be a linear combination of the inputs and may in general (multiple
regression model) become

y = X · β+ ε , (E.1)

with coefficients (weights) βi and a noise vector ε between the linear predictions and
the true response. A standard approach to obtain the unknown βi is the least squares
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E Mathematical Details on Kernel Ridge Regression and RKHS Theory

method which minimizes the squared L2 norm (‖·‖2) of the residual ε

β∗ = minβ‖y −Xβ‖2 , (E.2)

where β∗ is the solution vector. In typical data prediction applications the matrix X
may become ill-conditioned, i.e. close to singular and thus the least-squares estimate
becomes highly sensitive to random errors in the observed targets. This can also result
in effects such as overfitting where some coefficients βi become large in size [286]. One
way to circumvent this problem is ridge regression which imposes a penalty on the size
of the coefficients. In general, this is described in terms of inverse problem theory and
leads to the concept of regularization. The penalty can generally assume many forms
while in the case of ridge regression the particular form of Tikhonov regularization
(see Appendix E.2 for more details) is imposed. This is a L2 norm penalty and the
coefficients βi follow from

β∗ = minβ
(
‖y −Xβ‖2 + λ‖β‖2

)
, (E.3)

with the regularization parameter λ ≥ 0.

The kernel ridge regression approach now combines ridge regression with the kernel
trick. In simple words this means that instead of transforming to a high-dimensional
so-called feature space F , which is often required to unravel the structure of data or
to enable linear learning approaches to learn nonlinear functions, a kernel function
accomplishes the same result in the original input space X . Thus, a kernel function
only implicitly performs the transformation. The kernel function may be also viewed
as measuring the similarity between a pair of input data to learn a corresponding
weight for it. Therefrom the method learns how to predict data that are not included
in the (input) training data set.

The mathematical stage of kernel ridge regression is the reproducing kernel Hilbert
space (RKHS) theory which generalizes any kernelized model. A RKHS is a subspace
of a Hilbert space and is formally defined as [285]

Definition E.1. Let Hk be a Hilbert space of real functions f defined on an index set X ;
then Hk is called a reproducing kernel Hilbert space (RKHS) endowed with an inner
product 〈·, ·〉Hk

(and norm ‖ f ‖ =
√
〈 f , f 〉Hk

) if there exists a function k : X ×X → R

with the following properties:

1. For every x, k(x,x′) as a function of x′ belongs to Hk
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2. k has the reproducing property

〈 f (·), k(·,x)〉Hk
= f (x) (E.4)

or similarly one may write

k(x,x′) = 〈k(x, ·), k(x′, ·)〉Hk
. (E.5)

Due to the reproducing property, k is denoted as the reproducing kernel (r.k.)
function further coming with the following properties [357]

Theorem E.1– Let k : X ×X → R be the kernel function of the RKHS Hk, then k satisfies
the following properties

1. k is symmetric: k(x, x′) = k(x′, x) for any x, x′ ∈ X .

2. k is positive semi-definite: For any (x1, x2, . . . , xn)T ∈ X n and (α1, α2, . . . , αn)T ∈ Rn,
it is always ∑n

i,j=1 αiαjk(xi, xj) ≥ 0 .

Here the RKHS uniquely determines k, and vice versa as stated by the theorem
below [285, 357]

Theorem E.2 (Moore-Aronszajn theorem [283])– Let X be an index set. Then for every
symmetric, positive semi-definite function k(·, ·) on X ×X there exists a unique RKHS, and
vice versa.

This theorem can be also viewed as establishing the correspondence between kernels
and reproducing kernel Hilbert spaces. An approximate idea on how to think of kernel
functions might follow from the analogy that in the Hilbert space L2 the δ-function
is the representer of evaluation, i.e. f (x) =

∫
f (x′)δ(x− x′) dx′. Kernels are the

analogue of δ-functions within the smoother RKHS. However, note that δ(x) /∈ L2

which is in contrast to a RKHS where the kernel function k is the representer of
evaluation and itself in the RKHS [285].

The concept of RKHS theory is particularly important in the field of statistical
learning theory. This is due to the representer theorem which provides solutions to
function estimation problems in the form of weighted linear combinations of kernel
functions. Hence, given a finite data sample, seeking a proper kernel function is much
easier to justify than a search within the unrestricted (in general infinite-dimensional)
Hilbert space [357].
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Theorem E.3 (Representer theorem according to Schölkopf and Smola [287])– Let X be a
nonempty set and k a kernel on X ×X . Given a training set (x1, y1), . . . , (xN , yN) ∈ X ×R,
a strictly monotonically increasing real-valued function g on [0, ∞) and an arbitrary cost
function L : (X ×R2)m → R∪ {∞}, and a class of functions

F = { f ∈ RX | f (·) =
∞

∑
i=1

βik(·, zi) , βi ∈ R , zi ∈ X , ‖ f ‖ < ∞} ,

where ‖·‖ is the norm in the RKHS Hk associated with k, i.e. for any zi ∈ X and βi ∈ R(i ∈
N), ∥∥∥∥∥

∞

∑
i=1

βik(·, zi)

∥∥∥∥∥

2

=
∞

∑
i,j=1

βiβ jk(zi, zj) .

Then any f ∈ F minimizing the regularized cost functional

L[(x1, y1, f (x1)), . . . , (xN, yN, f (xN))] + g(‖ f ‖)

admits a finite-dimensional representation of the form

f (·) =
N

∑
i=1

αik(·, xi) . (E.6)

In the example shown in Sec. 5.1 the cost (sometimes called loss-) function L was
chosen to be the squared error loss while the representer theorem also holds for other
convex loss functions [286].

Another powerful property of RKHS theory is that in general a P-dimensional RKHS
H can be written as a direct product

H = H1 ⊗H2 ⊗ · · · ⊗HP (E.7)

in terms of one-dimensional RKHSs Hi , i ∈ {1, . . . , P} corresponding to P independent
coordinates xi. Thus, the correlating P-dimensional reproducing kernel K(x,x′) can
be constructed via [291, 293]

K(x,x′) =
P

∏
i=1

ki(xi, x′i) , (E.8)

where ki are the r.k’s. associated with the one-dimensional RKHSs Hi.
These theoretical fundamentals of RKHSs can be used to derive the one-dimensional

reciprocal power (RP) reproducing kernel (r.k.) qn,m
1 (x, x′) according to Eq. (5.5) on

which the construction procedures of the high-accuracy Rb3 quartet ground state PES
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and the Rb2
+ PECs in Chap. 5 and Chap. 7, respectively, were based. In the following

one may assume that the PES V(x) as a function of the internal coordinate x belongs
to a RKHS Hq. By definition Hq is endowed with a reproducing kernel function q and
comes with the reproducing property [cf. Eq. (E.4)]

V(x) = 〈V(x′), q(x′, x)〉′ (E.9)

with the prime indicating that the inner product is taken over the coordinate x′. In
general, the 3N− 6 internal coordinates of an N-atomic molecule are either distancelike
(e.g. bond lengths) or anglelike (e.g. bond angles). It is assumed that x is distancelike,
thus belonging to the semi-infinite interval [0, ∞) and V(x) is a smooth function of
order n ≥ 2. Since PESs are usually asymptotically constant, V(x) shall further obey

lim
x→∞

dkV(x)
dxk = 0 , k = 0, 1, . . . , n− 1 . (E.10)

Furthermore, Ho and Rabitz [291, 293] introduced the inner product between any two
functions V1(x) and V2(x) defined in the interval [0, ∞) to be of the form

〈V1(x), V2(x)〉 =
∞∫

0

[
xnV(n)

1 (x)
Γ(n + 1)

] [
xnV(n)

2 (x)
Γ(n + 1)

]
dx

w(x)
, (E.11)

with V(n)(x) ≡ dnV(x)/ dxn and Γ(n + 1) is the Gamma function, see Sec. E.3.
The weight factor w(x) ≥ 0 is chosen such that it renders the correct asymptotic
x-dependence of the PES, i.e.

w(x) = x−m , m ≥ 1 . (E.12)

The corresponding r.k. q(x, x′) may then be obtained using Eq. (E.9), yielding

V(x) =
∫ ∞

0

[
x′n

n!
dnq(x, x′)

dx′n

] [
x′n

n!
dnV(x′)

dx′n

]
dx′

w(x′)
. (E.13)

Comparing this expression with the Taylor formula with exact remainder

f (x) = n(−1)n





∫ ∞
0 (x′ − x)n−1

[
1
n!

dn f (x′)
dx′n

]
dx′ , if x′ ≥ x

0 , if x′ < x
(E.14)

and using the asymptotic constancy Eq. (E.10) one can derive [291, 293]

q(x, x′) =





n2
∫ ∞

0 (x′′ − x)n−1(x′′ − x′)n−1x′′−2nw(x′′) dx′′ , x′′ ≥ x, x′

0 , else
. (E.15)

In general the last integral cannot be computed analytically. However, for the special
choice of the weight factor according to Eq. (E.12) the integral assumes an analytically
closed form and the expression for the 1D RP-r.k. after Eq. (5.5) follows.
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E.2 Tikhonov regularization

As indicated above employing regularization techniques is essential to avoid ill-
conditioning of linear systems of the form

A · x = b , (E.16)

which are basically at the heart of all regression approaches. In the machine learning
context ill-conditioning can arise for many reasons. On the one hand for a large
number of data points or if they are densely clustered the matrix A (e.g. the kernel
matrix, cf. Sec. 5.1) may become rank deficient. On the other hand it can happen
that the linear system Eq. (E.16) may not even have a solution if it effectively becomes
overdetermined [291]. Furthermore, the target data (b) may be rather noisy such
that solving the linear system again becomes ill-posed. Finally, numerical errors
may amplify small singular values which might cause destabilization of the solution
of the full system. Hence, one needs a trade-off between data interpolation (exact
reproduction of input data) and penalizing the function complexity. An important
method to circumvent these problems is the Tikhonov method [284, 285, 288–292]
which is used for the regularization of least squares approaches to minimize

xλ = minx
(
‖A · x− b‖2 + ‖R · x‖2

)
, (E.17)

with the Tikhonov matrix R to give preference to solutions showing desired properties.
For the special choice R = λ1 one obtains the ridge regression method according to
Eq. (E.3) giving preference to solutions with smaller norms. The essence of obtaining
a regularized (approximate) solution is to filter out destabilizing high frequency
components corresponding to small singular values. This can be seen from the singular
value decomposition (SVD) of a real square (n× n) matrix A [358]

A = UΣV T =
n

∑
i=1

σiuiv
T
i , (E.18)

with U and V orthogonal matrices and Σ = diag(σ1, . . . , σn), where σi are the singular
values. The left and right singular vectors ui and vi are the orthonormal columns
of the matrices U and V . With that, the exact least squares solution of Eq. (E.2), or
equivalently Eq. (E.16), is given by

x0 = A+ · b =
n

∑
i=1

uT
i b

σi
vi , (E.19)
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with the pseudoinverse A+. This form clearly reveals that if b is perturbed by errors,
then the solution is very likely to be dominated by errors that are reinforced by small
singular values σi

In contrast, the regularized solution of Eq. (E.17) expressed in terms of the SVD with
R = λ1 yields [358]

xλ =
n

∑
i=1

σ2
i

σ2
i + λ2

uT
i b

σi
vi . (E.20)

This immediately reveals the role of the regularization parameter λ that dampens or
filters out the high frequency components of the solution corresponding to singular
values smaller than λ.

The conditioning of a matrix A is measured by the so-called condition number κ(A),
which is defined as [290]

κ(A) = ‖A−1‖‖A‖ . (E.21)

If ‖·‖ is the L2 norm, this can be written in terms of the SVD, yielding

κ(A) =
σmax

σmin
, (E.22)

with σmax and σmin being the maximal and minimal singular values of A. A problem
is said to be ill-conditioned or ill-posed if κ(A) is large.

E.3 Special functions of mathematical physics

The one-dimensional reciprocal-power reproducing kernel as derived in the previous
section and applied in Chap. 5 depends on certain special functions. Some of these
function reappear in the constrained RP-RKHS method as applied for the diatomic
PECs in Sec. 5.1.1. The corresponding definitions are given in the following.

E.3.1 The Gamma function

The Gamma function is the Euler integral of second kind which is defined as [359]

Γ(y) =
∫ ∞

0
xy−1e−x dx . (E.23)

This is convergent for y > 0. It allows to extent the definition of the factorial to any
number x, even if x ∈ C.
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For x 6= 0,−1,−2, . . . it may be also defined via

Γ(x) = lim
x→∞

nx · n!
x(x + 1)(x + 2) · · · (x + n)

. (E.24)

Among others, the Gamma function comes with the properties

Γ(x + 1) = xΓ(x) , (E.25a)

Γ(n + 1) = n! , for n ∈N0 . (E.25b)

The latter property allows for a generalization of the factorial to any number.

E.3.2 The Pochhammer symbol

The (rising) Pochhammer symbol (p)n is defined as [360]

(p)n = p(p + 1) · (p + n− 1) (E.26)

=
Γ(p + n)

Γ(p)
(E.27)

for n ≥ 0. It satisfies

(−x)n = (−1)n(x− n + 1)n (E.28)

and a ratio of Pochhammer symbols is given in closed form by

(x)n

(x)m
=




(x + m)n−m if n ≥ m

1
(x+n)m−n

if n ≤ m .
(E.29)

E.3.3 The Gaussian hypergeometric function

The Gaussian hypergeometric function is defined for |z| < 1 by the power series [361]

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
, (E.30)

with the previously defined Pochhammer symbol (·)n. If c is a non-negative integer
the power series has the convergence radius $ = 1 and defines a holomorphic function
in z. In the one-dimensional reciprocal-power reproducing kernel qn,m

1 (x, x′) according
to Eq. (5.5) the Gaussian hypergeometric function assumes the form

2F1(∗) = 2F1

(
−n + 1, m + 1; n + m + 1;

x<
x>

)
. (E.31)
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The series of Eq. (E.30) terminates if one of the parameter arguments of the hyper-
geometric function is a nonpositive integer. In this case the function reduces to a
polynomial. In general

2F1(−m, b; c; z) =
m

∑
n=0

(−1)n

(
m
n

)
(b)n

(c)n
zn . (E.32)

In the case of the reproducing kernel qn,m(x<, x>) this is a finite sum of inverse powers
x−(m+k+1)
> , k = 0, . . . , (n− 1).

E.3.4 The Beta function

The beta function, also called the Euler integral of the first kind, is a special function
that is closely related to the Gamma function (Euler integral of second kind). It is
defined by the integral [359]

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt , (E.33)

with x, y ∈ C such that Re(x) > 0, and Re(y) > 0. The beta function is symmmetric,
i.e.

B(x, y) = B(y, x) (E.34)

for all inputs x and y. A key property of the beta function is its close relationship to
the gamma function

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

. (E.35)
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F
Computational Details for Rb2 and

Rb2
+

This part of the Appendix supports the investigations of Chaps. 5, 6 and 7 related to
Rb2 and Rb2

+ calculations with technical details. Furthermore, it is intended to those
readers who may want to use the uncontracted even-tempered UET17 or UET17(lt)
basis set series constructed for high-accuracy calculations of Rb2 and Rb2

+

F.1 The UET17 basis set family

F.1.1 Exponents and construction

The UET17 basis set series were used in Chap. 5 in the context of the construction of
a highly accurate Rb3 quartet ground state PES to perform ab-initio calculations for
the additive two-body contributions defined by the Rb2 potential of the a Σ3

u state.
Furthermore, the calculation of ionization energies of atomic Rb at SFX2C-1e level of
theory in Chap. 7 was based on the UET17 basis sets.

The corresponding construction procedure proceeded analogously to the one de-
scribed in Sec. 4.2 for the UET15 basis set given in Tab. C.1. The exponents were
derived starting from the valence basis set accompanying the small-core pseudopoten-
tial ECP28MDF [250] by first changing the corresponding tightest d exponent to 1.75067
as suggested by Soldán [100]. Subsequently, a (2s,2p,2d,2 f ) set of diffuse functions
was added. Within this resulting span of functions new exponents were calculated
in an even-tempered manner, while exponents of higher `-quantum number were
generated according to Eq. (4.4) [see Sec. 4.2 and references therein for more details].
This yielded an uncontracted even-tempered basis set family of up to n = 6 quality:
[17s14p9d7 f 6g5h4i] ≡ UET17(n = 6). This also defines the basis sets of n = 4, 5 quality
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Table F.1. : Exponents of the UET17(n = 4) [17s14p9d7f6g], UET17(n = 5) [17s14p9d7f6g5h] and
UET17(n = 6) [17s14p9d7f6g5h4i] uncontracted even-tempered basis set. The construction proceeded
analogously to the UET15 basis set given in Tab. C.1. Thus, the resulting span of functions (i.e. first and
last exponent) for s-, p-, d-, and f -exponents is the same for both basis sets but more exponents within
this range were generated in an even-tempered manner for the UET17 family. The UET17 basis set has
been used in Chap. 5 in the context of the construction of a high-accuracy Rb3 quartet ground state PES
and in Chap. 7 on the route towards highly accurate Rb2

+ interaction potentials.

s p d f g h i

240.216 800 46.597 790 1.750 670 2.431 530 2.836 785 3.242 040 3.647 295
117.344 959 20.489 637 0.798 689 1.074 547 1.253 639 1.432 730 1.611 820

57.322 550 9.009 552 0.364 377 0.474 866 0.554 011 0.633 155 0.712 300
28.001 840 3.961 614 0.166 236 0.209 854 0.244 830 0.279 805 0.314 781
13.678 788 1.741 972 0.075 840 0.092 739 0.108 196 0.123 652
6.682 034 0.765 967 0.034 599 0.040 984 0.047 814
3.264 147 0.336 805 0.015 785 0.018 112
1.594 523 0.148 098 0.007 201
0.778 918 0.065 120 0.003 285
0.380 498 0.028 634
0.185 872 0.012 591
0.090 798 0.005 536
0.044 354 0.002 434
0.021 667 0.001 070
0.010 584
0.005 170
0.002 526

by neglecting the respective higher functions. Due to the inherent systematically
increasing cardinality this basis set family can be also used to estimate complete basis
set (CBS) limit values through proper extrapolation approaches. The corresponding
exponents are listed in Tab. F.1.

The selection of higher `-exponents generated by application of Eq. (4.4) is not
unique. By comparing the exponents in Fig. F.1 corresponding to the UET17 basis sets
with the ones of the correlation-consistent basis sets [aug-cc-p(w)CVnZ-PP] designed
recently [240] one may note that the g, h and i functions of the UET17 basis set could
be too tight. Therefore, a second (less tight) basis set series [UET17(lt)] has been
constructed where the tightest g, h and i exponents were replaced by additional diffuse
ones. The resulting span of functions is listed in Tab. F.2.
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F igure F.1. : Comparison of exponents corresponding to the correlation consistent basis sets aug-cc-
p(w)CV5Z [240] and the exponents of the UET17(n = 5) basis set (see text for details on the construction
procedure) as listed in Tab. F.1. Exponents which are contracted in the literature basis sets are marked
with additional crosses. Left: aug-cc-pcV5Z-PP basis set. Right: aug-cc-pwCV5Z-PP basis set.

F.1.2 Extrapolation behavior for ionization energies of Rb

The possibility to systematically increase the cardinality of the UET17 basis sets allows
for estimating the CBS limit through proper basis set extrapolation techniques. The
respective ansatz used for calculations of the ionization energies of atomic Rb based
on the aug-cc-p(w)CVnZ-PP basis sets was outlined in Eqs. (7.12) and (7.13). The
Hartree-Fock reference energy and the singles contribution to the CC correlation en-
ergy were chosen not to be extrapolated whereas the pair energy Epair and noniterative
perturbative triples E(T) contributions were extrapolated according to the conventional
two-point n−3 formula [238, 239] or by applying an approach based on the Riemann-ζ
function [304]. In order to compare the results obtained with the aug-cc-p(w)CVnZ-PP
basis sets and the UET17 [UET17(lt)] basis set series consistently, the same CBS extrap-
olation approach was chosen for the latter ones. This yield the results shown in Tab. F.3
(the respective values from Tab. 7.1 are listed as well). As already mentioned in Sec. 7.2
the supposedly higher accuracy obtained for the UET17 [UET17(lt)] basis set families
may be due to the fact that the underlying basis set coming with the ECP28MDF
pseudopotential was originally optimized with respect to atomic polarizabilities [250].
In contrast, the aug-cc-p(w)CVnZ-PP were designed for use in correlated molecular
calculations [240]. Moreover, the UET17 [UET17(lt)] basis sets are available up to n = 6
quality such that the respective two-point extrapolation approach might reach higher
accuracy. A comparison of both basis set families for molecular calculations is given
in Sec. F.7 in terms of preliminary investigations of the X Σ2 +

g interaction potential of
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Table F.2. : Exponents of the less tight UET17(lt) variant of the [17s14p9d7f6g5h4i] basis set. Here
the tightest exponents in the sequence corresponding to the g, h and i angular momentum quantum
numbers, generated from Eq. (4.4), were replaced by additional diffuse ones. This basis set was used
only for testing and comparison purposes in Appendix F.2.

s p d f g h i

240.216 800 46.597 790 1.750 670 2.431 530 1.253 639 1.432 730 1.611 820
117.344 959 20.489 637 0.798 689 1.074 547 0.554 011 0.633 155 0.712 300

57.322 550 9.009 552 0.364 377 0.474 866 0.244 830 0.279 805 0.314 781
28.001 840 3.961 614 0.166 236 0.209 854 0.108 196 0.123 652 0.139 109
13.678 788 1.741 972 0.075 840 0.092 739 0.047 814 0.054 645
6.682 034 0.765 967 0.034 599 0.040 984 0.021 130
3.264 147 0.336 805 0.015 785 0.018 112
1.594 523 0.148 098 0.007 201
0.778 918 0.065 120 0.003 285
0.380 498 0.028 634
0.185 872 0.012 591
0.090 798 0.005 536
0.044 354 0.002 434
0.021 667 0.001 070
0.010 584
0.005 170
0.002 526

Rb2
+ with respect to the dissociation energy De.

Beyond that, for atomic calculations the design of the UET17 [UET17(lt)] basis sets
yields essentially the same Hartree-Fock energies for both Rb and Rb+ independent of
the cardinal number n, i.e. the CBS limit for the reference energy is already reached.
This is shown in Figs. F.2 (a) and F.3 (a), respectively. The remaining contributions
to the total CCSD(T) energy do not show the irregular behavior that occurs for the
aug-cc-p(w)CVnZ-PP basis sets (cf. Sec. F.2), as further demonstrated by Figs. F.2
and F.3. This has been already indicated in Sec. 7.2 regarding the CBS extrapolation
ansatz applied for the correlation contributions of SFX2C-1e calculations. Since all
corresponding terms show smooth convergence behavior, the two-point n−3 formula
can be also applied to the total correlation energy.
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Table F.3. : Comparison of Rb ionization energies EIP (in eV) calculated with the correlation-consistent
aug-cc-p(w)CVnZ-PP [240] and the UET17 and UET17(lt) basis sets given in Tabs. F.1 and F.2, respectively.
The correlation energy is extrapolated either according to the conventional two-point n−3 formula [238,
239] or by using a novel approach based on the application of the Riemann-ζ function [304]. Reference
energies and singles contributions to the correlation energy are excluded from the extrapolation
procedure (see text for details). The experimental value is Eexp.

IP = 4.177 128 eV [258].

basis set size aug-cc-pwCVnZ-PP aug-cc-pCVnZ-PP UET17 UET17(lt)

n = 3 4.157 429 4.125 985 – –
n = 4 4.172 722 4.159 782 4.171 369 4.171 330
n = 5 4.172 448 4.166 632 4.173 862 4.173 786
n = 6 – – 4.174 761 4.174 680

CBS 4.172 207 4.174 037 4.176 005 4.175 917
CBSζ 4.172 165 4.175 328 4.176 169 4.176 080
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F igure F.2. : Reference energy and individual energy contributions to the CCSD(T) correlation energy
(cf. Eqs. (7.12) and (7.13)) of the Rb atom as a function of the cardinal number n of the UET17 and
UET17(lt) basis set families. The Hartree-Fock energy (EHF) is essentially independent of the basis set
size while the individual correlation contributions show smooth convergence behavior.
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F igure F.3. : Reference energy and individual energy contributions to the CCSD(T) correlation energy
(cf. Eqs. (7.12) and (7.13)) of the Rb+ cation as a function of the cardinal number n of the UET17 and
UET17(lt) basis set families. The Hartree-Fock energy (EHF) is essentially independent of the basis set
size while the individual correlation contributions show smooth convergence behavior.
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F.2 Basis set extrapolation problems for the aug-cc-

p(w)CVnZ-PP family

In Tabs. 7.1 or F.3 the oscillatory behavior between the n = 4 and n = 5 values of the
ionization energies obtained with the aug-cc-p(w)CVnZ-PP basis sets was attributed
to the irregular behavior of the Hartree-Fock and singles energy contributions with
respect to increasing basis set size; cf. Sec. 7.2. A detailed view onto the reference
energy and each contribution of Eq. (7.13) is shown in Figs. F.4 and F.5 for Rb and Rb+,
respectively. Indeed, the occurring irregularities in EHF and Esingles clearly spoil the
application of proper CBS extrapolation approaches. Usually, both contributions are
extrapolated according to the three-point formula [236]

EHF,singles(n) = E∞
HF,singles + ae−bn . (F.1)

However, the observed irregular behavior renders this approach meaningless, thus
motivating the compromise procedure of Eqs. (7.12) and (7.13).
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F igure F.4. : Reference energy and individual energy contributions to the CCSD(T) correlation energy
(cf. Eqs. (7.12) and (7.13)) of the Rb atom as a function of the cardinal number n corresponding to
the aug-cc-p(w)CVnZ-PP basis sets [240]. The irregularities occurring in the Hartree-Fock (EHF) and
singles (Esingles) energies render the extrapolation ansatz according to Eq. (F.1) meaningless and cause
the oscillatory behavior between the n = 4 and n = 5 values in Tabs. 7.1 and F.3.
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F igure F.5. : Reference energy and individual energy contributions to the CCSD(T) correlation energy
(cf. Eqs. (7.12) and (7.13)) of the Rb+ cation as a function of the cardinal number n corresponding to
the aug-cc-p(w)CVnZ-PP basis sets [240]. The irregularities occurring in the Hartree-Fock (EHF) and
singles (Esingles) energies render the extrapolation ansatz according to Eq. (F.1) meaningless and cause
the oscillatory behavior between the n = 4 and n = 5 values in Tabs. 7.1 and F.3.
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F.3 Vibrational levels for the a Σ3
u state of Rb2

To reveal the quality of the Rb2 a Σ3
u potentials obtained from the RP-RKHS interpola-

tion procedure as described in Sec. 5.2, one may investigate the resulting rovibrational
structure and compare it to experimental data. It appears useful to analyze the RP-
RKHS potentials based on RHF-UCCSD(T)/ECP28MDF/UET17(CBS) ab-initio data
within an approach merely accounting for the short-range correction after Eq. (5.31)
[≡ approach 1] and the approach where ab-initio energies and internuclear distances
are additionally scaled and shifted to match the experimental results for De and Re

from Ref. [305] (≡ approach 2). The rovibrational energy levels (v, J) were calculated
using the Level16 program by R.J. Le Roy [346] assuming 87Rb isotopes. In this way
41 vibrational levels were found which is in accordance with experimental findings
in Ref. [259]. The corresponding binding energies Eb(v) for J = 0 are summarized in
Tab. F.4.
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Table F.4. : Synopsis of calculated (approach 1,2) and experimental values of vibrational energy levels
v with rotational quantum number J = 0 of the a Σ3

u state of Rb2. The rovibrational structure was
obtained from using the Level16 program [346] assuming 87Rb isotopes.

(v, J = 0) Eb(approach 1) [cm−1] Eb(approach 2) [cm−1] Eb(expt.) [cm−1] [259]

0 −235.6557 −234.8823 −234.7647
1 −222.6526 −221.9008 −221.6479
2 −210.0011 −209.2708 −208.8991
3 −197.7046 −196.9960 −196.5190
4 −185.7648 −185.0779 −184.5097
5 −174.1836 −173.5184 −172.8743
6 −162.9636 −162.3200 −161.6125
7 −152.1071 −151.4852 −150.7262
8 −141.6168 −141.0167 −140.2174
9 −131.4947 −130.9165 −130.0894
10 −121.7430 −121.1868 −120.3413
11 −112.3641 −111.8299 −110.9756
12 −103.3603 −102.8481 −102.0104
13 −94.3873 −94.2440 −93.3495
14 −86.4885 −86.0203 −85.1920
15 −78.6100 −78.1796 −77.3857
16 −71.1487 −70.7247 −69.9456
17 −64.0603 −63.6585 −62.9201
18 −57.3633 −56.9838 −56.2678
19 −51.0605 −50.7032 −50.0150
20 −45.1541 −44.8193 −44.1586
21 −39.6462 −39.3338 –
22 −34.5375 −34.2476 −33.6279
23 −29.8270 −29.5594 −28.9486
24 −25.5115 −25.2661 −24.6503
25 −21.5854 −21.362 −20.7647
26 −18.0410 −17.8393 −17.2351
27 −14.8688 −14.6883 −14.1013
28 −12.0578 −11.8981 −11.3249
29 −9.5961 −9.4565 −8.8950
30 −7.4706 −7.3504 –
31 −5.6671 −5.5655 −5.0539
32 −4.1700 −4.0860 –
33 −2.9612 −2.8939 −2.5735
34 −2.0185 −1.9665 −1.6694
35 −1.3115 −1.2730 –
36 −0.7973 −0.7694 −0.2781
37 −0.4287 −0.4092 −0.2634
38 −0.1852 −0.1736 −0.0963
39 −0.0550 −0.0500 −0.0217
40 −0.0074 −0.0062 –
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F.4 Excluding possible sources of error for the Rb2
+

long-range barrier

In Sec. 6.2 it was claimed that the unphysical repulsive long-range barrier of the
X Σ2 +

g PEC of Rb2
+ occurring for perturbative noniterative and approximate iterative

coupled-cluster methods is independent on several sources of error. The investigations
presented in the following will support this statement.

F.4.1 Numerical errors

First, convergence problems due to numerical errors were excluded by significantly
tightening several thresholds of the underlying computations:

1. Molpro

• The convergence threshold for the density matrix (square sum of the density
matrix element changes) of the RHF reference calculation was set to accu=14

• The convergence thresholds for the energy and the coupled-cluster am-
plitudes (square sum of the amplitudes) were set to thrden=1.d-12 and
thrvar=1.d-16

2. Cfour

• SCF_CONV=11, i.e. HF-SCF equations are considered converged if maximum
change in density matrix elements is less than 10−11

• CC_CONV=11, i.e. coupled cluster amplitude equations are considered to be
converged when the maximum of all (absolute) changes in the amplitudes
is less than 10−11.

F.4.2 Basis set superposition errors

The long-range barrier is further not caused by a basis set insufficiency as already
concluded from Fig. 6.2 which revealed that the hump is independent of the basis
set size and even slightly increases with increasing basis set size. Moreover, the basis
set superposition error (BSSE) in small systems (such as Rb2

+) is more conveniently
suppressed by using rather large basis sets (to which at least the aug-cc-pCV5Z-PP
basis set belongs to). Nevertheless, applying the counterpoise correction (cpc) scheme
to correct for BSSEs is shown in Fig. F.6 (a). This clearly demonstrates that BSSEs do
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F igure F.6. : Analysis of basis set superposition errors (BSSEs) at RHF-UCCSD(T)/ECP28MDF/aug-
cc-pCVTZ-PP level of theory by applying the counterpoise correction (cpc) scheme. The long-range tails
of the X Σ2 +

g PECs of Rb2
+ with cpc and without cpc are shown in (a). The presence of the long-range

barrier in both cases shows that the problem is not caused by BSSEs. The respective energy differences
shown in (b) reveals that accounting for BSSEs has only very small effects in the long-range region.
Freely adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).

not cause the long-range barrier. Figure F.6 furthermore indicates that accounting for
BSSEs or not is only a very small effect in the long-range region.

F.4.3 aug-cc-pCVTZ-PP versus aug-cc-pwCVTZ-PP

In line with the previous discussion on basis set insufficiencies, Fig. F.7 shows that
the long-range barrier occurs for both the aug-cc-pCVnZ-PP version and the aug-cc-
pwCVnZ-PP variant of the recently published correlation consistent basis sets [240].
Figure F.7 further reveals, exemplarily for n = 3, that the weighted core-valence
version leads to a slightly more pronounced hump and to an increase of the potentials
depth of ≈ 60 cm−1 as compared to the aug-cc-pCVTZ-PP basis set. Furthermore, the
equilibrium distance of the PEC corresponding to the aug-cc-pwCVTZ-PP basis set is
reduced by 0.1 Å relative to the curve resulting from the aug-cc-pCVTZ-PP basis set.

F.4.4 Choice of the reference determinant

The Rb2
+ system allows for choosing either a spin-restricted open shell (ROHF) or a

spin-unrestricted (UHF) approach for the reference determinant. The resulting Hartree-
Fock PECs are shown in Fig. F.8 (a) and their corresponding energy difference (in
terms of absolute energies) is illustrated in Fig. F.8 (b). The energy difference is in the
order of O(10−5 cm−1). Independent on the choice of the reference wavefunction the
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F igure F.7. : Comparison of the ground-state X Σ2 +
g potential energy curves obtained at ROHF-

CCSD(T)/ECP28MDF level of theory using either the aug-cc-pCVTZ-PP (dark blue) basis set or the
aug-cc-pwCVTZ-PP (light blue) basis set. The energies are given as interaction energies relative to the
last ab-initio point.

subsequent ROHF-CCSD(T) and UHF-CCSD(T) calculations both reveal the long-range
barrier; at the same position and of the same order of magnitude. This is shown in
Fig. F.8 (c). The resulting energy difference between both approaches, as depicted in
Fig. F.8 (d), demonstrates that the choice of the reference has only a minor effect to the
CCSD(T) energy.

F.4.5 Spin-restricted versus spin-unrestricted coupled-cluster

Besides, the choice of the reference wavefunction there is another degree of freedom
concerning the spin adaption: spin-unrestricted [RHF-UCCSD(T)] or partially spin-
restricted [RHF-RCCSD(T)] coupled-cluster theory. The resulting long-range tails of
the X Σ2 +

g PECs of Rb2
+ are shown in Fig. F.9 (a). The long-range barrier occurs for

both approaches, at the same position and of the same order of magnitude. This is
further illustrated by the corresponding energy differences (with respect to interaction
energies) in Fig. F.9 (b).
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EROHF−CCSD(T) − EUHF−CCSD(T)

F igure F.8. : Overview on the effect of the choice of the reference determinant on the long-range
tails of the X Σ2 +

g PECs of Rb2
+. The ROHF and UHF PECs are shown in (a). Their respective energy

differences (absolute energies) are illustrated in (b). ROHF calculations were performed using the
Molpro program package while UHF results were generates using Cfour. The impact of the reference
wavefunctions on the subsequent ROHF-CCSD(T) or UHF-CCSD(T) PECs, respectively are shown in
(c). The long-range barrier is still present, at the same position with the same order of magnitude. The
corresponding energy differences in (d) show that the choice of the reference wavefunction does not
matter much in the long-range. ROHF-CCSD(T) results were obtained using Molpro and UHF-CCSD(T)
energies using Cfour. For both cases, the calculations were performed at ECP28MDF/aug-cc-pCVTZ-PP
level of theory with energies given relative to the last ab-initio value. Freely adapted from J. Schnabel et al.,
J. Chem. Phys. 155, 124101 (2021).
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g PECs
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+. The PECs are shown in (a) with the long-range hump occurring for both cases, at the same
position with the same order of magnitude. The differences of the respective interaction energies are
shown in (b). The calculations were performed at ECP28MDF/aug-cc-pCVTZ-PP level of theory. Freely
adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).
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F.5 Universality of the long-range barrier for alkali-

metal dimer cations

The unphysical long-range barrier which is thoroughly investigated for Rb2
+ in Chap. 6

turns out to be universal for X2
+ systems with X = {Li, Na, K, Rb, Cs}. An overview

on the respective long-range tails of the X Σ2 +
g PECs is given in Fig. F.10. Moreover,

this shows that the problem is not connected with the pseudopotential approach, since
no ECP has been used for both Li and Na.
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F igure F.10. : Overview on the long-range tails of the X Σ2 +
g PECs of several X2

+ systems with
X = {Li, Na, K, Rb, Cs}. No ECP has been used for Li and Na while the ECP10MDF has been applied
for K and the ECP46MDF for Cs [250]. All energies are given relative to the respective last ab-initio point.
Freely adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).
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F.6 The CCSDT(Q)-PEC for Rb2
+

As discussed in Chap. 6 the long-range barrier is related to a symmetry instability of
the underlying Hartree-Fock mean-field solution. Furthermore, it was demonstrated
that the problem originates from the use of leading-order T̂3 amplitudes obtained from
approximate CCSDT amplitude equations. This is a general problem which is not
only restricted to the CCSD(T) method but occurs whenever iterative or noniterative
approximations to the respective complete treatment are introduced. This is shown
exemplarily in Fig. F.11 for the ROHF-CCSDT(Q) PEC [325] of the X Σ2 +

g state of Rb2
+.

More specifically, the CCSDT(Q)/B variant for ROHF reference wavefunctions was
used [41]. The hump is smaller in size, as the contributions of connected quadruples are
generally smaller than those of connected triples. Nevertheless, despite its smallness
the artificial barrier completely spoils the long-range behavior of the potential [324].
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F igure F.11. : The long-range tail of the ROHF-CCSDT(Q) PEC of the X Σ2 +
g state of Rb2

+. The
energies are given relative to the last ab-initio point and were obtained using the Mrcc program suite [40,
47, 321, 322] at ECP28MDF/aug-cc-pwCVTZ-PP level of theory. The hump moved to larger internuclear
distances R compared to the ROHF-CCSD(T) approach and to the iterative approximations to CCSDT
(CCSDT-n with n=1b,2,3). Freely adapted from J. Schnabel et al., J. Chem. Phys. 155, 124101 (2021).
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F.7 Basis set effects on the X Σ2 +
g interaction poten-

tial of Rb2
+

The investigations in Chap. 7 revealed that basis set effects play the most important
role for obtaining high-accuracy results concerning both the exchange interaction
according to Eq. (7.6) and spectroscopic constants such as De, D0 and Re. It was
already shown in Sec. F.4.3 that the aug-cc-pCVTZ-PP and aug-cc-pwCVTZ-PP basis
sets show significant differences concerning De and Re. Preliminary investigations at
ROHF-CCSD(T)/ECP28MDF level of theory using the UET17 and UET17(lt) basis sets
according to Tabs. F.1 and F.2, respectively, as well as the aug-cc-pwCVnZ-PP series,
give the minima shown in Fig. F.12. The energies are given as interaction energies with
respect to the respective last ab-initio point at R = 500 Å and can thus be used to obtain
first estimates on corresponding dissociation energies De and equilibrium distances Re.
A discussion of all these effects can be found in the main text in Sec. 7.4.
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F igure F.12. : Comparison of the minima of the X Σ2 +
g ion-atom interaction potential obtained at

ROHF-CCSD(T)/ECP28MDF level of theory using different basis sets. All energies are given as
interaction energies with respect to the respective last ab-initio point at R = 500 Å and can thus be used
to obtain first estimates on corresponding dissociation energies De and equilibrium distances Re. The
results for the UET17 (solid lines) and UET17(lt) [dashed lines] basis sets according to Tabs. F.1 and F.2,
respectively, are shown in (a). The basis set size is labeled by the cardinal number n. The minima for
calculations with the aug-cc-pCVnZ-PP (solid lines) and aug-cc-pwCVnZ-PP (dashed lines) basis sets of
Ref. [240] are shown in (b). The latter shows an irregular behavior for De with respect to increasing
basis set size.
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