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Abstract

In this thesis, a framework for data-driven controller design for single-input
single-output (SISO) plants in the standard feedback loop based on closed-
loop finite-horizon dissipativity is presented. The work builds upon existing
literature in the data-driven setting for parametrizing trajectories of an
open-loop linear time-invariant (LTI) system and performing a finite-horizon
dissipativity analysis on an open-loop system. These works are naturally
extended in the way that, first, all closed-loop trajectories of the standard
feedback loop are parametrized using given input-output data of the plant
and a model of the controller. Secondly, the newly gained parametrization of
closed-loop trajectories is used for simulation in the standard feedback loop
and for developing necessary and sufficient conditions for closed-loop finite-
horizon dissipativity in terms of a definiteness condition on a single matrix.
Thereafter, for controller synthesis with desired closed-loop dissipativity
specifications, the definiteness conditions are turned into a quadratic matrix
inequality feasibility problem (QMIFP) in the controller parameters. Hence,
a purely data-driven synthesis inequality leading to a desired closed-loop
dissipativity property is obtained. The resulting controller design method
allows to perform multiobjective structured controller synthesis. Finally,
methods for solving the synthesis quadratic matrix inequality (QMI) are
presented for both the convex and non-convex case, which are used in a
concluding simulation example, where the results of this thesis are applied.
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List of abbreviations

ILC Iterative Learning Control

VRFT Virtual Reference Feedback Tuning

LMI linear matrix inequality

QMI quadratic matrix inequality

QMIFP quadratic matrix inequality feasibility problem

DC difference of convex functions

DCA difference of convex functions algorithm

SISO single-input single-output

MIMO multiple-input multiple-output

LTI linear time-invariant

DT discrete-time

7



Contents

8



Notation

R Set of real numbers.
Sn Set of real symmetric matrices of dimension n× n.
|x| Absolute value of x ∈ R.
‖x‖2 l2-norm of x ∈ Rn.
In Identity matrix of dimension n× n.
0n×m Zero matrix of dimension n×m.
0n Zero matrix of dimension n× n.
A> Transpose of the matrix A ∈ Rn×m.
A−1 Inverse of the matrix A ∈ Rn×n.
A⊥ Basis matrix of the kernel of the matrix A ∈ Rn×m.
A � 0 (A < 0) Matrix A ∈ Sn and is positive (semi)definite.
A ≺ 0 (A 4 0) Matrix A ∈ Sn and is negative (semi)definite.
col(A) Column space of the matrix A ∈ Rn×m.
rank(A) Rank of the matrix A ∈ Rn×m.
trace(A) Trace of the matrix A ∈ Rn×n.
⊗ Kronecker product.
dim(V) Dimension of the vector space V.
〈·, ·〉 Inner product 〈·, ·〉 : V×V 7→ R of the vector space V.
f ∗ : Rn 7→ R∪ {∞} The conjugate of f : Rn 7→ R defined by

f ∗(y) = sup{〈x,y〉 − f (x) : x ∈ Rn}.
∂ f (x) Subdifferential of f at x (set of all subgradients).
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1. Introduction

1.1. Motivation

The majority of the results in control theory are based on the knowledge
of a mathematical model of the system one wants to control. There are
many different control approaches and methods available in the model-
based theory. These methods are well established and successfully used in
various practical applications and a number of different fields. For instance,
the notion of dissipativity, introduced by Willems [36, 37], is one of the
most important and widely used concepts in both theory and practice.
Dissipativity is used for systems analysis as well as for controller design. In
particular, the key underlying concept in controller design, e.g., H∞-design
or positive real design, is dissipativity. Performance criteria for the closed
loop can be stated as dissipativity conditions and turned into tractable linear
matrix inequalitys (LMIs) in the controller parameters [31].

The main drawback of model-based control is the necessity of a well-suited
model for the true dynamics of the plant. Therefore, it is required to get
quite accurate models from first principles or use techniques from robust
control to handle the unmodeled dynamics via an uncertainty description.
Both, deriving an accurate model or a good uncertainty description for
the plant can be challenging. With the increasing complexity of systems,
modeling a system by first principles becomes even more difficult. In
addition, not only the complexity of systems is increasing, the available data
from these systems is rising exponentially (see Figure 1.1) due to the ongoing
digitalization. Because of that increase in data, system identification [20]
and data-driven control methods have become more and more important.
Via system identification one tries to identify a model from the data and
use the existing model-based methods to control the system. Therefore, two
steps are needed to design controllers, whereas the data-driven methods
skip the modeling part and the given data is used directly for controller
design and provide guarantees directly from the available data. For example,
Iterative Learning Control (ILC) [7, 27] is a data-driven method for reference
tracking, if a machine (e.g. robot) does the same task repeatedly. The
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1. Introduction

Figure 1.1.: Increasing amount of available data (see [15]).

control input for the next task-iteration is adapted based on the knowledge
from prior iterations to reduce the tracking error. Therefore, no model is
needed since the control input update is purely based on measurements
of the last iterations. Another data-driven method is Virtual Reference
Feedback Tuning (VRFT) [8], where the minimization of standard model-
reference performance indices is performed via input-output measurements,
i.e., finding a controller that minimizes a model-reference problem is solved
only by using measurements of the plant. An introduction to data-driven
control in general and a more complete summary over the existing methods
is available in [14].

However, many of the developed data-driven methods lack the well-known
guarantees for stability, performance, and robustness from the model-based
setting. To overcome these issues, the so-called Fundamental Lemma by [38]
has gained increasing attention in data-driven control, since it provides a
powerful approach to replace the usual mathematical model with a represen-
tation of the system directly on the basis of data. It was successfully applied
in several fields, for example in data-driven simulation [23], controller design
(e.g. [4,11,22,25]) and model predictive control [3,9]. Further, in [16,24,29] it
is used for a dissipativity analysis on an open-loop system.

12



1.2. Contribution and outline

1.2. Contribution and outline

The goal of this thesis is to formulate a controller design framework based
on finite-horizon dissipativity for SISO LTI discrete-time (DT) systems in the
standard feedback loop (see Figure 1.2) using only measured data of the
plant.

ur e z
− GK

Figure 1.2.: Standard feedback loop.

Hence, this thesis contributes to the general dissipativity controller design
methods in the data-driven setting. Since, from a practical point of view, the
measured data of the plant can only contain input-ouput data and generally
no state measurements, these dissipativity conditions have to be formulated
in the input-output context.

Therefore, the work of [29] for the dissipativity analysis of an open-loop
system is extended to perform analysis on the closed loop. To this end, a
parametrization of all closed-loop trajectories in the standard feedback loop,
based on given data of the plant and a model of the controller, employing
Willems’ Fundamental Lemma, is presented. This parametrization is then
used for closed-loop data-driven simulation, similar to the simulation of an
open-loop system in [23]. Furthermore, this developed representation of
closed-loop trajectories is used to derive necessary and sufficient conditions
for finite-horizon closed-loop dissipativity. Finally, it is shown how these
conditions can be used for controller design. Therefore, the conditions are
translated into a QMIFP in the controller parameters and then solved using a
difference of convex functions (DC) programming method [18, 28].

The thesis is structured as follows. In Chapter 2, the theoretical founda-
tions are introduced by explaining important definitions and existing results
in the data-driven setting. Furthermore, Chapter 3 provides the closed-
loop trajectory parametrization and the resulting necessary and sufficient
conditions for closed-loop dissipativity. Next, in Chapter 4, the controller
synthesis framework for closed-loop finite-horizon dissipativity in form of a
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1. Introduction

QMIFP and a demonstration on an example system is presented. Finally, the
thesis is concluded in Chapter 5.

The results of this master thesis have also already been submitted and
accepted for publication at the 3rd Annual Learning for Dynamics & Control
Conference. Hence, this thesis is based on and taken in parts literally from [35].

1.3. Notation

In this thesis, the following notation is used. For a finite sequence {xk}N−1
k=0 ,

xk ∈ Rn, of length N, x is used to denote either the sequence itself or the
stacked vector  x0

...
xN−1

 ∈ RNn

containing the components of the sequence. For such a sequence x, the
Hankel matrix of depth L is given by

HL(x) =


x0 x1 · · · xN−L
x1 x2 · · · xN−L+1
...

...
. . .

...
xL−1 xL · · · xN−1


and for a one-dimensional sequence, with n = 1, the lower-triangular Toeplitz
matrix is given by

T(x) =


x0 0 · · · 0

x1 x0
. . .

...
...

...
. . . 0

xN−1 xN−2 · · · x0

 .

A matrix inequality Q(ξ) 4 0 in ξ ∈ Rnq is called QMI, if Q(ξ) is quadratic
in ξ, i.e., of the form

Q(ξ) = Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

ξiξ jQij, (1.1)

14



1.3. Notation

where Q0, Qi ∈ S for i = 0, . . . ,nq and Qij ∈ S for i,j = 1, . . . ,nq are
symmetric matrices of the same dimension. For a set C the indicator function
is defined as

iC (x) =
{

0, for x ∈ C
∞, for x 6∈ C .

The set C is convex if and only if its indicator function iC is convex.
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2. Data-driven control framework

This chapter describes the theoretical foundation for the data-driven set-
ting in this thesis. First, in Section 2.1, the system representation via the
Fundamental Lemma, using only measured data, is presented. Furthermore,
this representation is used in Section 2.2 for a data-driven finite-horizon
dissipativity characterization.

2.1. Trajectory-based representation of LTI systems

Throughout the whole thesis, LTI DT systems are considered, where an
input-output trajectory of such system is given by following definition.

Definition 2.1 An input-output sequence {uk,yk}N−1
k=0 with uk ∈ Rm, yk ∈ Rp

is a trajectory of a DT LTI system G, if there exists an initial condition x̂ ∈ Rn and
a state sequence {xk}N

k=0 such that

xk+1 = Axk + Buk, x0 = x̂,

yk = Cxk + Duk,

for k = 0,1, . . . ,N − 1, where (A,B,C,D) is a minimal realization of G.

The goal is to describe all possible input-output trajectories of an LTI DT
system, using one measured trajectory. Therefore, clearly the measured
trajectory needs to contain enough information to be able to describe the
input-output behavior of the system purely by data. In the LTI case, this in-
formativity is characterized by persistency of excitation of the measurements
input signal, which is defined as follows.

Definition 2.2 A sequence {ck}N−1
k=0 , ck ∈ Rq, is persistently exciting of order L,

if rank(HL(c)) = qL.

In other words, for c to be persistently exciting of order L, there have
to exist qL linearly independent windows of length L in that sequence,
implying a length N > (q + 1)L − 1 for c. Therefore, for our purposes,

17



2. Data-driven control framework

a signal is informative enough, if it is long enough and exciting enough,
described by linear independence.

This informativity characterization is now used in the next result to
provide a parametrization of all possible input-output trajectories of an
unknown system using only one measured data trajectory. It was originally
formulated in [38] in the behavioral context and has since been used in
several data-driven publications, as mentioned in the introduction in Section
1.1, under the name Fundamental Lemma. It is explained in detail for state-
space systems in [2] and proven in [33].

Theorem 2.1 ( [2, Theorem 3]) Suppose {uk,yk}N−1
k=0 is a trajectory of an LTI

system G, where u is persistently exciting of order L + n. Then, {ūk,ȳk}L−1
k=0 is a

trajectory of G if and only if there exists α ∈ RN−L+1 such that

HL(u,y)α =

(
ū
ȳ

)
, where HL(u,y) =

(
HL(u)
HL(y)

)
. (2.1)

Theorem 2.1 is a powerful approach to replace the usual model by a
representation using only one measured trajectory of the system. It can be
used to build any input-output trajectory (ū,ȳ) of length L of the system G,
by taking linear combinations of windows of length L of the given measured
trajectory (u,y). The if-direction follows from the fact that G is linear and
hence any linear combination of trajectories of G results in a trajectory of
G, i.e., persistence of excitation is not required for this direction. For the
"only if"-direction, the input signal of the measured trajectory indeed has to
be persistently exciting of order L + n to guarantee existence of a suitable
α for all trajectories of G. Intuitively speaking, the L degrees of freedom
are required to span the whole input space and the additional n degrees of
freedom account for the initial conditions. In conclusion, the stacked Hankel
matrix in (2.1) spans the whole space of trajectories of length L of the system
G.

Remark 2.1 Theorem 2.1 can be extended to multiple, possibly not connected
shorter, measurements, as shown in [33]. This reduces the requirements on the
available measurements since none of the available inputs have to be persistently
exciting. Moreover, the collection of the input measurements needs to be collectively
persistently exciting, which is less restrictive then persistency of excitation for each
individual input signal. Furthermore, collective persistency of excitation provides
more flexibility in the length of the available measurements.

18



2.2. Data-driven dissipativity characterization

Given our new system representation in the data-driven context by The-
orem 2.1, it is now possible to employ it for a data-driven dissipativity
characterization, which is presented in Section 2.2.

2.2. Data-driven dissipativity characterization

The classical dissipativity definition from [36, 37] involves the state variables
of the system, which are assumed to be unknown in the present problem
setup, while only input-output data is available. Therefore, the dissipativity
definition from [12] in the input-output context is used, which reads as
follows.

Definition 2.3 The system G is dissipative w.r.t. the supply rate

Π =

(
Q S
S> R

)
,

with Q ∈ Sm, R ∈ Sp and S ∈ Rm×p, if

r

∑
k=0

(
uk
yk

)>
Π
(

uk
yk

)
≥ 0, ∀r ≥ 0,

for all trajectories {uk,yk}∞
k=0 of G with initial condition x0 = 0, where x is the

state of an arbitrary minimal realization of G.

In [12] it is shown that this input-output definition is in fact equivalent to
the definition by [37] for controllable LTI systems. Definition 2.3 only allows
quadratic supply rates, but nevertheless covers important system properties,
e.g., the L2-gain or passivity. The L2-gain γ of a system G can be found by
the minimal γ̂ such that the system is dissipative w.r.t. the supply rate

Π =

(
γ̂2 Im 0m×p
0p×m −Ip

)
(2.2)

and passivity of a system can be verified by checking dissipativity w.r.t. the
supply rate

Π =

(
0m

1
2 Im

1
2 Im 0m

)
.

In our data-driven setting, only finite input-output data is available, which
results in a parametrization of finite-length trajectories and therefore a
relaxed version of Definition 2.3, namely L-dissipativity, is introduced.
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2. Data-driven control framework

Definition 2.4 The system G is L-dissipative w.r.t. the supply rate Π, if

r

∑
k=0

(
uk
yk

)>
Π
(

uk
yk

)
≥ 0, ∀r = 0, . . . ,L− 1, (2.3)

for all trajectories {uk,yk}L−1
k=0 of G with initial condition x0 = 0, where x is the

state of an arbitrary minimal realization of G.

This definition leads to a finite-horizon dissipativity characterization in
the input-output context. In [16] it is shown under weak assumptions that
for L → ∞, L-dissipativity is equivalent to infinite-horizon dissipativity
as seen in Definition 2.3. From a practical point of view, it is sufficient to
choose the horizon L large enough to obtain good approximations of the
infinite-horizon case. In Definition 2.4, it is necessary that the inequality in
(2.3) holds for all horizons r = 0, . . . ,L− 1. It was shown in [29] that in the
LTI case, L-dissipativity is equivalent to inequality (2.3) holding only over
the horizon L. This result is summarized in following proposition.

Proposition 2.1 ( [29, Proposition 1]) The LTI system G is L-dissipative w.r.t.
the supply rate Π if and only if

L−1

∑
k=0

(
uk
yk

)>
Π
(

uk
yk

)
≥ 0, (2.4)

for all trajectories {uk,yk}L−1
k=0 of G with initial condition x0 = 0, where x is the

state of an arbitrary minimal realization of G.

The result follows from the fact that any trajectory of length L, with zero
initial conditions and the first r steps zero in the input, can be split up in two
parts. The first part of length r is a trajectory with zeros in both the input
and the output and the second part can be seen as a new trajectory of length
L− r with zero initial conditions. Therefore, the first part can be neglected
in (2.4) and it results that inequality (2.4) holds for the shorter horizon L− r.

Defining the stacked supply rate

ΠL =

(
IL ⊗Q IL ⊗ S
IL ⊗ S> IL ⊗ R

)
=

(
QL SL
S>L RL

)
, (2.5)

condition (2.4) can be compactly rewritten as a vector-matrix product(
u
y

)>
ΠL

(
u
y

)
≥ 0. (2.6)
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2.2. Data-driven dissipativity characterization

In order to be able to parametrize all trajectories with zero initial conditions
via Theorem 2.1, additional matrices are needed. First, the matrix

Ṽν
L =

(
Imν 0mν×m(L−ν) 0mν×pν 0mν×p(L−ν)

0pν×mν 0pν×m(L−ν) Ipν 0pν×p(L−ν)

)
∈ Rν(m+p)×L(m+p),

(2.7)
for some positive integer ν ≤ L, is introduced. This implies for any trajectory
{uk,yk}L−1

k=0 of length L,

Ṽν
L

(
u
y

)
= 0

if and only if
u0 = . . . = uν−1 = 0,

y0 = . . . = yν−1 = 0.

Therefore, the space of all trajectories of length L with the first ν entries
equal to zero in both, the input and output, is equal to the image of
HL(u,y)Vν

L (u,y), where

Vν
L (u,y) = (Ṽν

L HL(u,y))⊥. (2.8)

In more detail, Vν
L (u,y) is a basis matrix for the space

{α ∈ RN−L+1|Ṽν
L HL(u,y)α = 0}

and therefore an input-output trajectory(
ū
ȳ

)
= HL(u,y)Vν

L (u,y)β, (2.9)

with the first ν entries equal to zero, can be constructed by taking any
β ∈ Rdim(col(Vν

L (u,y))).
Using these matrix definitions the main result of [29], the data-driven

L-dissipativity characterization, can be stated.

Theorem 2.2 ( [29, Theorem 2]) Suppose {uk,yk}N−1
k=0 is a trajectory of a DT LTI

system G, where u is persistently exciting of order L + n. Then, for every ν with
n ≤ ν < L, the system G is (L− ν)-dissipative w.r.t. the supply rate Π if and only
if

Vν
L (u,y)>HL(u,y)>ΠL HL(u,y)Vν

L (u,y) < 0. (2.10)
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2. Data-driven control framework

Theorem 2.2 combines Theorem 2.1 and Proposition 2.1 by parametrizing
the trajectories in (2.6) via the stacked Hankel matrices in (2.1) and the newly
introduced basis matrix Vν

L (u,y). One important aspect is the condition
n ≤ ν < L, which guarantees that the image of HL(u,y)Vν

L (u,y) only contains
trajectories with zero intial conditions since at least the first n (dimension
of the state of an arbitrary minimal realization of G) entries in the input
and the output of these trajectories are all zero. This is only possible if the
initial conditions are zero, otherwise we would see a value different from
zero in the n-th step in the output since the minimal realization implies
observability of the system. Theorem 2.2 provides a data-driven condition
for L-dissipativity in terms of a definiteness condition on one matrix, which
is indeed easy to check with numerical methods. Based on this idea, using
the Fundamental Lemma to parametrize all trajectories of an LTI system and
using it for a data-driven dissipativity characterization, the next chapter
shows how to verify closed-loop L-dissipativity for a given controller and
available data of the plant in the standard feedback loop (Figure 1.2).
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3. Data-driven controller validation for
closed-loop dissipativity

In Chapter 2, a data-driven system representation of an open-loop system
was presented and how one can use it to perform a finite-horizon dissipativ-
ity analysis on that system. The goal is now to transfer the general idea of
the open-loop system analysis procedure to the standard feedback loop (see
Figure 1.2). Given a model of the controller K and data of the plant G, it is
possible to perform a dissipativity analysis on all closed-loop input-output
channels (r 7→ z, r 7→ e, r 7→ u). Note that for the remainder of this thesis,
only SISO systems are considered. To this end, given K and the measured tra-
jectory of G, a parametrization of all closed-loop trajectories is presented by
exploiting the commutativity property of SISO systems. This parametrization
can be used for simulating an input signal r and to validate or invalidate the
controller K for given L-dissipativity specifications for the closed loop. More
precisely, necessary and sufficient conditons for closed-loop L-dissipativity
for the channels r 7→ z, r 7→ e and r 7→ u are provided.

The chapter is structured as follows. First, a general well-posedness
assumption on the feedback loop for the developed framework and how
to verify it in the data-driven context is presented. After disscusing the
restrictiveness of this assumption, the mentioned parametrization of all
closed-loop trajectories is introduced. Next, the possible applications of this
parametrization are shown. First, it is applied for data-driven simulation
and secondly it is shown how this parametrization yields a dissipativity
characterization in form of a definiteness condition similar to the open-loop
case. Finally, a comment on the applicability of this framework on multiple-
input multiple-output (MIMO) systems and a numerical example conclude
this chapter.

3.1. Well-posedness of the standard feedback loop

The setting in this chapter is as follows. A measured trajectory {uk, yk}N−1
k=0

with persistently exciting input signal of the plant G and the finite-length
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3. Data-driven controller validation for closed-loop dissipativity

impulse response {gk}L−ν−1
k=0 of the controller K are available. The need for

the impulse response of the controller does not impose any restrictions on
the framework at all, since in any model-based system representation the
impulse response can either be computed or generated by simulation. For
example, when K is given in the state-space by (Ac,Bc,Cc,Dc), the impulse
response g can be calculated through the Markov parameters

g0 = Dc,

g1 = CcBc,

gk = Cc Ak−1
c Bc, for k = 2, . . . ,L− ν− 1.

(3.1)

In order to be able to find a mathematical description of the standard
feedback loop in Figure 1.2, we have to impose one condition on this
interconnection. The interconnected system has to be well-posed, which is
defined as follows.

Definition 3.1 ( [10]) The standard feedback loop (Figure 1.2) is well-posed, if all
signals e, u and z in the feedback loop are uniquely defined for every choice of the
system state variables for both, the controller K and the plant G, and every choice of
the external input r.

Well-posedness guarantees the existence of a unique response to every
input. Without this condition we would not be able to describe the input-
output behavior at all, since there can be multiple solutions to the same
input. In conclusion, the well-posedness assumption is not a restriction on
this framework, it is a necessity to be able to formulate it.

Well-posedness for LTI state-space systems can be ensured by using the
following proposition.

Proposition 3.1 ( [10]) Suppose (A,B,C,D) is a realization of the SISO LTI plant G
and (Ac,Bc,Cc,Dc) is a realization of the SISO LTI controller K. Then, the standard
feedback loop is well-posed if and only if 1 + DDc 6= 0.

Clearly, a simple sufficient condition for well-posedness is, if either the
controller or the plant has no direct feedthrough term D. Furthermore,
well-posedness also guarantees the existence of a well-defined closed-loop
state-space realization, see [10]. In our data-driven setting, there is no state-
space description for the plant G available, but Definition 2.1 ensures the
existence of a realization describing the available data. Also for Proposition
3.1, only the feedthrough term D of the plant is needed, which can be
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3.2. Trajectory-based representation of the closed loop

calculated using the presented results. To this purpose, one can use Theorem
2.1, i.e., equation (2.9) with ν ≥ n, where n is the dimension of the state of
an arbitrary minimal realization of G, to construct an input-output trajectory
of G with zero initial conditions(

ũ
ỹ

)
= HL(u,y)Vν

L (u,y)β

such that ũν 6= 0, by choosing an appropriate β. Now, one can directly
calculate the feedthrough term by

D =
ỹν

ũν
,

since (ũ,ỹ) is a trajectory with zero intial conditions and both, the input
and the output are zero the first ν entries. The feedthrough term Dc of
the controller K can be read of by using the dependency in (3.1) from the
given impulse response g and therefore we can check well-posedness of the
standard feedback loop by applying Proposition 3.1. Now we can assure
that all signals in the standard feedback loop are uniquely defined in our
data-driven setting and develop a description of all closed-loop trajectories.

3.2. Trajectory-based representation of the closed loop

In this section, the closed-loop data-driven trajectory parametrization is
stated. The setting is as described in Section 3.1, the model of the controller
K and a measured trajectory of the plant G with persistently exciting input
signal are available. To this end, Theorem 2.1 will be naturally extended to
the feedback interconnection case, by exploiting the fact that SISO LTI systems
are commutative when dealing with trajectories corresponding to zero initial
conditions. Therefore, we obtain a single matrix for each channel r 7→ z,
r 7→ e and r 7→ z, which span the whole trajectory space of that channel. For
a clearer structure, only the channel r 7→ z is extensively studied since the
other channels follow exactly the same procedure.

The main result of this section, the closed-loop trajectory parametrization,
reads as follows.

Proposition 3.2 Suppose the standard feedback loop in Figure 1.2 is well-posed.
Let {uk,yk}N−1

k=0 be a trajectory of G, where u is persistently exciting of order
L + n, and {gk}L−ν−1

k=0 be the finite-length impulse response of the controller K.
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3. Data-driven controller validation for closed-loop dissipativity

Then, for any ν with n ≤ ν < L, {rk,zk}L−ν−1
k=0 is a closed-loop trajectory of the

standard feedback loop with zero initial conditions if and only if there exists a vector
β ∈ Rdim(col(Vν

L (u,y))) such that

ML−ν(g)Jν
L HL(u,y)Vν

L (u,y)β =

(
r
z

)
, (3.2)

where

ML−ν(g) =
(

IL−ν T(g)
0L−ν T(g)

)
and

Jν
L =

(
J̃ν
L 0(L−ν)×L

0(L−ν)×L J̃ν
L

)
with J̃ν

L =
(
0(L−ν)×ν IL−ν

)
.

Proof if: For a fixed β ∈ Rdim(col(Vν
L (u,y)))

HL(u,y)Vν
L (u,y)β =

(
ū
ȳ

)
(3.3)

is an input-output trajectory of length L of G with ū0 = . . . = ūν−1 = 0 and
ȳ0 = . . . = ȳν−1 = 0, by using Theorem 2.1 combined with the definition
(2.8) of Vν

L (u,y). Since ν ≥ n by assumption, (ū,ȳ) is a trajectory of G with
x̄k = 0 for k = 0, . . . , ν − 1, where x̄ is the corresponding state in some
minimal realization. Multiplying (3.3) with Jν

L from the left yields

Jν
L HL(u,y)Vν

L (u,y)β =

(
J̃ν
L 0(L−ν)×L

0(L−ν)×L J̃ν
L

)(
ū
ȳ

)
=

(
û
ŷ

)
, (3.4)

where (û,ŷ) contains the last L− ν entries of (ū,ȳ) and is therefore a tra-
jectory of length L− ν of G with zero initial conditions. Representing the
controller K via the Toeplitz matrix T(g) implies also zero initial conditions
by assumption for the controller. Therefore, using the commutativity of SISO
LTI systems with zero initial conditions, the standard feedback loop has the
same input-output behavior from r 7→ z as the transformed loop shown in
Figure 3.1. Multiplying (3.4) by ML−ν(g) from the left, we obtain

ML−ν(g)Jν
L HL(u,y)Vν

L (u,y)β = ML−ν(g)
(

û
ŷ

)
.
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3.2. Trajectory-based representation of the closed loop

wr e z
− KG

Figure 3.1.: Standard feedback loop with interchanged controller and plant.

Using the signal definition of the interchanged standard feedback loop in
Figure 3.1 leads to

ML−ν(g)
(

û
ŷ

)
= ML−ν(g)

(
ê
ŵ

)
=

(
ê + T(g)ŵ

T(g)ŵ

)
=

(
ê + ẑ

ẑ

)
=

(
r̂
ẑ

)
,

(3.5)

where ê = û, ŵ = ŷ and ẑ = T(g)ŵ. Since the closed loop is well-posed, we
can construct a state-space realization of the resulting closed loop by stacking
the states of an arbitrary realization of the controller and the states of an
arbitrary realization of the plant. As we assumed zero initial conditions for
both, the controller and the plant, also the constructed closed-loop realization
has zero initial conditions. Therefore, (r̂,ẑ) is a trajectory of length L− ν
of the closed loop with zero initial conditions, which, together with (3.5),
concludes the "if"-part.

Only if: Suppose {r̂k,ẑk}L−ν−1
k=0 is a closed-loop trajectory of the standard

feedback loop (Figure 1.2) with zero initial conditions. Since a closed-loop
state-space realization can be constructed by stacking the individual states
of realizations of K and G, zero initial conditions for the closed loop imply
zero initial conditions for both, the controller and the plant. Similar to the
if-part, we use the commutativity property and reverse the steps seen in (3.5)
to guarantee the existence of a trajectory (û,ŷ) of length L− ν of G with zero
initial conditions, which satisfies (3.5). Hence, we can artificially insert zeros
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3. Data-driven controller validation for closed-loop dissipativity

to deduce that (
ū
ȳ

)
=


0ν×1

û
0ν×1

ŷ


is a trajectory of length L of G. Thus, using Theorem 2.1 and the definition
(2.8) of Vν

L (u,y), there exists a vector β satisfying (3.2).

Proposition 3.2 is a natural extension of Theorem 2.1, which allows us to
parametrize all closed-loop trajectories by one single matrix (see (3.2)). The
introduced parametrization is linear in the controller parameters, which is
an essential fact to perform controller synthesis (Chapter 4). As mentioned
above, not only the channel r 7→ z can be considered, but also all other
input-output pairs. The following remark gives more details about the other
available channels.

Remark 3.1 Similar to Proposition 3.2, it is possible to parametrize closed-loop
input-output trajectories corresponding to further channels, for instance r 7→ e
(reference to error) or r 7→ u (reference to control variable). To this purpose, one
has to change the matrix ML−ν(g) in (3.2). For the channels r 7→ e and r 7→ u,
Proposition 3.2 holds with

ML−ν(g) =
(

IL−ν T(g)
IL−ν 0L−ν

)
(3.6)

and

ML−ν(g) =
(

IL−ν T(g)
T(g) 0L−ν

)
, (3.7)

respectively. The proof for these channels goes along the same lines as for r 7→ z.

Since we are now able to construct all input-output trajectories of the
standard feedback loop, we can use Proposition 3.2 for data-driven simula-
tion (Section 3.3) and a dissipativity analysis on the standard feedback loop
(Section 3.4).

3.3. Closed-loop simulation

Simulation, the calculation of the output signal of a system for a given input
signal and an initial condition, is a widely used tool in system analysis as well
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3.3. Closed-loop simulation

as in controller design. In the data-driven context, [21] provides an approach
for closed-loop data-driven simulation for a controller in minimal kernel
representation. With Proposition 3.2, on the other hand, it is possible to
perform simulation of the closed loop similar to the idea in [23] for an open-
loop LTI system using Theorem 2.1. However, Proposition 3.2 is restricted
to trajectories with zero initial conditions. Following result summarizes the
data-driven simulation for trajectories in the standard feedback loop.

Proposition 3.3 Suppose the standard feedback loop in Figure 1.2 is well-posed.
Let {uk,yk}N−1

k=0 be a trajectory of G, where u is persistently exciting of order L + n,
and {gk}L−ν−1

k=0 be the finite-length impulse response of the controller K. Then, for
any ν with n ≤ ν < L and any reference signal {r̃k}L−ν−1

k=0 , there exists a unique
output {z̃}L−ν−1

k=0 of the closed loop. The output z̃ corresponding to zero initial
conditions, can be calculated by solving following system of equations

Eν
L(u,y,g)β = ( J̃ν

L HL(u)Vν
L (u,y) + T(g) J̃ν

L HL(y)Vν
L (u,y))β = r̃ (3.8)

for β and plug it into

z̃ = T(g) J̃ν
L HL(y)Vν

L (u,y)β. (3.9)

Proof By the well-posedness assumption of the feedback loop, the existence
of a unique response z̃ to any input r̃ and arbitrary initial condition is
guaranteed. It remains to show that (3.8) is always solvable when considering
zero inital conditions and (3.9) leads to the corresponding output of the
feedback loop. Well-posedness and persistence of excitation of the input
signal u of the data trajectory of the plant G guarantee the existence of a,
possibly non-unique, β for equation (3.8), which is shown now.

Defining T(gG) as the lower-triangular Toeplitz matrix of the impulse
response {gG,k}L−1

k=0 of length L, containing the Markov parameters (see (3.1))
obtained from any minimial realization (A,B,C,D) of the plant G, Eν

L(u,y,g)
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3. Data-driven controller validation for closed-loop dissipativity

in the left-hand side of (3.8) can be reformulated into

Eν
L(u,y,g) =

= J̃ν
L HL(u)Vν

L (u,y) + T(g) J̃ν
L HL(y)Vν

L (u,y)

= ( J̃ν
L + T(g) J̃ν

LT(gG))HL(u)Vν
L (u,y)

=

(0(L−ν)×ν IL−ν
)
+


? ··· ··· ? Dc D 0 ··· 0
...

. . .
. . .

... ?
. . .

. . .
...

...
. . .

. . .
...

...
. . . Dc D 0

? ··· ··· ? ? ··· ? Dc D


HL(u)Vν

L (u,y)

=


? · · · · · · ? 1 + DcD 0 · · · 0
...

. . .
. . .

... ?
. . .

. . .
...

...
. . .

. . .
...

...
. . . 1 + DcD 0

? · · · · · · ? ? · · · ? 1 + DcD

HL(u)Vν
L (u,y),

where ? denotes irrelevant entries. Recall, that the first ν rows in HL(u)Vν
L (u,y)

are zero and therefore we can further rewrite Eν
L(u,y,g) into

Eν
L(u,y,g) =


1 + DcD 0 · · · 0

?
. . .

. . .
...

...
. . . 1 + DcD 0

? · · · ? 1 + DcD


︸ ︷︷ ︸

Ẽ

J̃ν
L HL(u)Vν

L (u,y)︸ ︷︷ ︸
Ê

.

Since we assumed well-posedness, 1 + DcD 6= 0 by Proposition 3.1 and
therefore Ẽ has full rank. Furthermore, u is persistently exciting of order
L + n, and hence the image of Ê contains all input signals of length L− ν,
i.e., col(Ê) = RL−ν, implying full row rank for Ê. In conclusion, the product
Eν

L(u,y,g) = ẼÊ has full row rank implying solvability of equation (3.8).
Further, we have to show that (3.9) yields the output of the feedback

loop when plugging in the obtained β while solving (3.8). Note that (3.8) is
equivalent to the upper block row condition in (3.2) from Proposition 3.2.
Using Proposition 3.2 the corresponding output has to satisfy the lower block
row condition in (3.2), which is equivalent to (3.9) and therefore concludes
the proof.
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3.4. Closed-loop dissipativity validation

Remark 3.2 Based on Remark 3.1, closed-loop simulation, as summarized in Propo-
sition 3.3, is also possible for the other known input-output channels.

Note that Vν
L (u,y) ∈ R2L×2(L−ν), resulting in a wide matrix Eν

L(u,y,g), pro-
vides additional freedom in β, which can be exploited to further specify the
desired resulting β when solving (3.8). This is especially valuable when the
data (u,y) of the plant is affected by noise, which is in practice always the
case. Hence, additional regularization terms for β can counteract overfitting
for the present noise. Useful examples for regularizer are, e.g., l1-norm regu-
larization, which yields a sparse β, or l2-norm regularization, which yields
the β with the smallest energy. Considering the l2-norm regularization, the
resulting quadratic program in β, for solving (3.8), would exemplarily read

min
β
‖Eν

L(u,y,g)β− r̃‖2
2 + λ‖β‖2

2, (3.10)

where λ ∈ R is the regularization parameter. This design parameter λ can
be used to determine the relative importance of the regularization term ‖β‖2

2

compared to the error term
∥∥Eν

L(u,y,g)β− r̃
∥∥2

2, depending on the available
data. For further details about regression and regularization the reader is
refered to [5].

In summary, Proposition 3.3 can be used to simulate the output of the
standard feedback loop for a given input reference, which can be applied for
validating the performance of a given controller. In addition, in Section 3.4,
the main result of this chapter is presented, where Proposition 3.2 is used to
validate L-dissipativity for the closed loop in a similar fashion as done in
Theorem 2.2.

3.4. Closed-loop dissipativity validation

Now the main result of this chapter, the closed-loop data-driven finite-
horizon dissipativity characterization for an unknown plant G and a given
controller K in the standard feedback loop (Figure 1.2) is presented. Neces-
sary and sufficient conditions for L-dissipativity in terms of one definiteness
condition of a single matrix are provided.

Exploiting the advantages of Proposition 3.2 results in the following
theorem.

Theorem 3.1 Suppose the standard feedback loop in Figure 1.2 is well-posed. Let
{uk,yk}N−1

k=0 be a trajectory of G, where u is persistently exciting of order L + n,
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3. Data-driven controller validation for closed-loop dissipativity

and {gk}L−ν−1
k=0 be the finite-length impulse response of the controller K. Then, for

any ν with n ≤ ν < L, the channel r 7→ z is (L− ν)-dissipative w.r.t. the supply
rate Π if and only if

Vν
L (u,y)>HL(u,y)> Jν

L
>ML−ν(g)>ΠL−ν ML−ν(g)Jν

L HL(u,y)Vν
L (u,y) < 0,

(3.11)
where

ML−ν(g) =
(

IL−ν T(g)
0L−ν T(g)

)
.

Proof By using the dissipativity condition (2.4) in the rewritten form (2.6),
the closed loop from r 7→ z is (L− ν)-dissipative w.r.t. the supply rate Π if
and only if (

r
z

)>
ΠL−ν

(
r
z

)
≥ 0.

for all trajectories (r,z) of length L − ν with zero initial conditions. Fur-
thermore, using Proposition 3.2, this turns out to be equivalent to (3.11).

Theorem 3.1 provides a validation technique for closed-loop (L− ν)- dissi-
pativity in the standard feedback loop. The provided definiteness condition
(3.11) can easily be checked numerically and therefore is a simple tool for
verifying dissipativity. As for Proposition 3.2, it is possible to obtain closed-
loop dissipativity conditions for other channels by using the appropriate
matrix ML−ν(g) as discussed in Remark 3.1. The main advantage of this
result, compared to applying Theorem 2.2 to closed-loop data, is that the
controller K does not have to be implemented and no new measurements
have to be taken. One single measurement of the plant allows us to validate
all possible controllers. This is indeed a very important aspect since this
allows us to perform controller synthesis via finite-horizon dissipativity
specifications directly from the available data of the plant G by solving a
QMIFP (see Chapter 4).

3.5. Comment on MIMO systems

In the introduction to Chapter 3, it was stated that only SISO systems are
considered, which is due to the fact that MIMO systems are not commuta-
tive in general and this property is used in the trajectory parametrization
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in Proposition 3.2. The SISO-assumption was only made to guarantee the
commutativity of the plant and the controller. Hence, the framework could
be formulated in a more general manner, including all LTI DT commuta-
tive systems. Nevertheless, when not restricted to the SISO case, it is not
straightforward to guarantee this commutativity property in the data-driven
setting without a model for the plant G. There is a workaround available,
which does include the identification of the input-output map to some extent,
more precisely the Toeplitz matrix of the impulse response of the plant G.
The general idea is sketched in the following, but not extensively studied
since there are more robust and advanced methods available to identify the
input-output map of a system in the system identification literature (see [20]).
To this purpose, we pick out columns from the data-driven system represen-
tation (2.9) of an open-loop system, such that the upper part, corresponding
to u, is invertible. This allows us to come up with an explicit equation for
the output y in terms of the input u.

Given a trajectory (u,y) of the plant G with persistently exciting input
signal u of order L + n, recall that(

ũ
ỹ

)
=

((
0m(L−ν)×mν Im(L−ν)

)
HL(u)Vν

L (u,y)(
0p(L−ν)×pν Ip(L−ν)

)
HL(y)Vν

L (u,y)

)
β

=

(
Nu(u,y)
Ny(u,y)

)
β,

with ν ≥ n and any β, is a trajectory of length L− ν with zero initial con-
ditions. Taking now m(L− ν) linearly independent columns with indices
c =

(
c0 . . . cm(L−ν)−1

)
out of Nu(u,y), e.g., by calculating the row re-

duced echolon form and taking the pivot column indices, we can construct
the following matrices

Nr
u(u,y) = Nu(u,y)[:, c],

Nr
y(u,y) = Ny(u,y)[:, c],

where [: ,c] denotes the submatrix containing all rows and the columns with
indices defined in c. Since our chosen columns c from Nu(u,y) are linearly
independent, the matrices Nr

u(u,y) and Nr
y(u,y) contain all the necessary

information to construct new trajectories via(
ũ
ỹ

)
=

(
Nr

u(u,y)
Nr

y(u,y)

)
βr.
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3. Data-driven controller validation for closed-loop dissipativity

Therefore, for a given input ũ we can calculate the corresponding output by

ỹ = Nr
y(u,y)Nr

u(u,y)−1ũ = T(gG)ũ.

More precisely, we can determine the Toeplitz matrix of the finite-length
impulse response gG of the plant G by T(gG) = Nr

y(u,y)Nr
u(u,y)−1. Note

that the necessary inversion can be very sensitive w.r.t. noise and is thus
impractical. Once the input-output map of the plant is available, one can
either check commutativity by following assertion

T(g)T(gG) = T(gG)T(g)

and apply the introduced framework in this thesis or on the other hand use
this input-output map directly for analysis of the closed loop. In conclusion,
the in Chapter 3 presented results can be extended to commutative MIMO
systems. However, checking commutativity for non SISO systems is not
straightforward without identifying a model of the plant and therefore
cannot be seen as a direct data-driven method.

3.6. Numerical example

To conclude this chapter, the presented results, especially the use of Propo-
sition 3.2 in Section 3.3 and Section 3.4, are applied to an example system
to perform data-driven analysis on the closed loop. More precisely, it is
shown how these results can be used to, first, simulate the closed-loop
step response in Section 3.6.1, and secondly, how the L2-gain from r 7→ z
of the feedback interconnection can be approximated by a finite-horizon
dissipativity specification in Section 3.6.2. The numerical calculations were
all performed in Matlab.

To this purpose, following random example plant G

xk+1 =

 0.3637 −0.0625 −0.4839
−0.4745 0.3945 0.1415
−0.1136 0.4912 0.4620

 xk +

 0
−1.2701
1.1752

 uk

yk =
(
2.0292 0 0.6037

)
xk

has been generated, by using the command drss(3,1,1) with a seed of rng(1).
Additionally, the feedtrough term has been set to D = 0, due to simplifi-
cations when designing a suitable controller via LMI techniques (see [31]).
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These LMI techniques for continous-time system were transfered to discrete-
time systems and used to design a suitable controller for the example plant
G, where following controller

xc,k+1 =


0.1661 0.0626 −0.3206 0.1229
−2.8036 2.6432 3.3166 2.0776
2.1072 −1.5541 −2.3887 −1.8661
−0.0082 −0.0064 −0.0138 0.9940

 xc,k +


−0.0157
−0.5686
0.4511
−0.2455

 uk,

yc,k =
(
−1.9041 1.7464 2.4391 1.6098

)
xc,k + (−0.3932)uc,k.

was obtained.

3.6.1. Step response simulation

In this section, the closed-loop step response for the mentioned plant G and
controller K is calculated through the data-driven closed-loop simulation,
shown in Section 3.3, i.e, we have to solve (3.8) for β when choosing r as the
step input and plug it into (3.9) to yield the corresponding output. After
that, the same procedure is repeated while considering noisy measurements,
and it is illustrated how the mentioned regularization (3.10) can counteract
the noise and lead to quite good results. Therefore, we assume the model
of the plant G is unknown to us and only an input-ouput trajectory (u,y)
is available. This trajectory {uk,yk}N−1

k=0 of length N = 559 was generated
by simulating the model of G with a persistently exciting input u of order
L + n, where the horizon was chosen L = 140 and the dimension of the
state is n = 3. The persistently exciting input u was created by using the
rand(N,1) command with a seed rng(1), which yields a vector containing
pseudorandom values from the standard uniform distribution between 0 and
1. By shifting the vector via u = u− 0.5ones(N,1) and scaling it afterwards
by u = 20u, we get a random persistently exciting vector u containing values
in the interval [−10,10]. With the available input-output trajectory (u,y), one
can calculate the corresponding Hankel matrices HL(u) and HL(y). Next,
the matrix Vν

L (u,y) can be calculated by Vν
L (u,y) = null(Ṽν

L HL(u,y)), where
ν needs to be an upper bound on the plants state dimension. Since we
know the dimension exactly we can choose ν = n. Afterwards, the impulse
response {gk}L−ν−1

k=0 of the controller is calculated via (3.1). Finally, to solve
(3.8) for β with r = ones(L− ν,1), we use the least-squares solution which
can be obtained in Matlab by β = (Eν

L(u,y,g)>Eν
L(u,y,g))\(Eν

L(u,y,g)>r). The
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Figure 3.2.: Step response from r 7→ z.

corresponding output

z = T(g) J̃ν
L HL(y)Vν

L (u,y)β

for the step input is shown in Figure 3.2. Figure 3.2 also shows the step
response obtained from simulating the closed loop via the available models,
and it can be seen that both outputs, the calculated one and the simulated
one, coincide perfectly. Hence, our data-driven closed-loop simulation works
as expected.

Since in real word problems data is never clean and always affected by
some noise, the impact of noise for data-driven simulation is shown in the
following. Therefore, the available trajectory (u,y) of the plant is artificially
corrupted by output noise, i.e., we can only measure the noisy output
ỹ = y + 2θ(rand(N,1)− 0.5ones(N,1) for the input u of the plant G, where
θ represents the maximal amplitude of the noise. Now, the above described
procedure of calculating the step output of the closed loop is done for θ = 0.1
and θ = 0.5 by using the input-output trajectory (u,ỹ) instead of (u,y). The
results can bee seen in Figure 3.3. As expected, the calculated outputs from
our data-driven simulation from noisy measurements differ from the true
output of the closed loop. As one would expect, the difference between the
true signal and the calculated signal increases with increasing θ, which can
be seen in Figure 3.3. For θ = 0.5 there exist big spikes far away from the
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Figure 3.3.: Step response from r 7→ z with noisy measurement (u,y).

true signal. As mentioned in Section 3.3, regularization can be used to yield
better results even when the data is affected by noise. To show the effect of
regularization, the noisy measurement (u,ỹ) with θ = 0.5 has been used and
the optimization problem (3.10) was solved for β for various regularization
parameters λ. The solution to the optimization problem can be obtained in
Matlab by β = (Eν

L(u,y,g)>Eν
L(u,y,g) + λI)\(Eν

L(u,y,g)>r) for one specific λ.
The corresponding calculated output z is illustrated in Figure 3.4. Naturally,
for λ = 0 the calculation yields the same results as seen in Figure 3.3 for
θ = 0.5. However, when increasing to λ = 0.5, the data-driven simulation
results nearly in a perfect fit compared to the true simulated step response
from the model. This is a remarkable result, since we were able to construct
nearly the true step response from noisy data by a purely data-driven
simulation method. To be fair, the selection of a suitable λ is without the
knowledge of the actual response not straightforward. The general heuristic
is to increase the regularization parameter until the curve is smooth enough.
When increasing λ too much, the response starts to drift away resulting in
a flattened curve (see Figure 3.4, λ = 10000) since the regularization term
in (3.10) gets increasingly important, hence decreasing the norm of β more
and more. Overall, the introduced data-driven simulation method for the
standard feedback loop works remarkably well, even when the measured
data is affected by noise, where regularization can help to improve the
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Figure 3.4.: Step response from r 7→ z with regularization by λ.

results.

3.6.2. L2-gain approximation via dissipativity analysis
After showing an example for simulation, we take advantage of the data-
driven L-dissipativity analysis framework for the closed loop from Section
3.4 to approximate the L2-gain from r 7→ z. The influence of the horizon
L− ν is examined for the quality of the approximation for the example plant
and controller mentioned at the beginning of the section. To this purpose,
the minimal γ has to be found such that the closed loop from r 7→ z is L− ν
dissipative w.r.t. the supply rate

Π =

(
γ2 0
0 −1

)
as defined in (2.2). This can be done by a simple bisection algorithm over γ
with the condition

Vν
L (u,y)>HL(u,y)> Jν

L
>ML−ν(g)>ΠL−ν ML−ν(g)Jν

L HL(u,y)Vν
L (u,y) < 0

for each iteration. To this end, we collect again an input-output trajectory
(u,y) of the plant G and construct all necessary matrices as described at the
beginning of Section 3.6.1. Then, we run this bisection algorithm multiple
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3.6. Numerical example

times for different values of L. Starting at L = ν and increasing L until
L = 200. The minimal γ, and therefore the L2-gain approximation, for the
closed loop over the different horizons L are plotted in Figure 3.5 (labeled
"plant data"). It can be seen that the approximation approaches the true
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Figure 3.5.: L2 approximation r 7→ z over the horizon L.

L2-gain quickly for small L, but then slows down and barely changes over
a wide range of horizons. Only from L = 100 upwards the approximation
starts to get more accurate again and at L = 200 nearly reaches the true
value. Note that the quality of the approximation in regard to the horizon
depends heavily on the system and therefore it cannot be concluded that
for all systems a horizon of, e.g., L = 60 yields good results. Indeed, it is
remarkable that this seemingly low horizon works suprisingly well. For
comparison reasons, Figure 3.5 also shows the approximation of the L2-gain,
when applying Theorem 2.2 to closed-loop data (labeled "closed-loop data").
It can be seen that both methods converge almost equally fast to the true
value, although the method introduced in Section 3.4 is a little faster, since
for the same horizon L, Theorem 3.1 can guarantee dissipativity over the
horizon L− ν with ν = n = 3, whereas Theorem 2.2 can only guarantee
dissipativity over the horizon L− ν with ν = n + nc = 7, where nc = 4 is
the state dimension of the controller K. This little advantage of Theorem
3.1 is most noticeable for small horizons (compare Figure 3.5). However,
mentioning again, for Theorem 2.2, it was necessary to collect closed-loop
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3. Data-driven controller validation for closed-loop dissipativity

data by implementing the controller K, which was obsolete for Theorem
3.1, the main aspect why this theorem can be extended to a controller
synthesis framework as presented in Chapter 4. In conclusion, this example
demonstrates the applicability of Theorem 3.1 to perform a dissipativity
analysis, in the form of an L2-gain approximation, on the closed loop on the
basis of plant data and a model of the controller.

40



4. Data-driven controller synthesis for
closed-loop dissipativity

Using the framework in Chapter 3, one can perform analysis on the standard
feedback loop using a single measurement of the plant and a model of the
controller. In this chapter, the data-driven analysis framework is extended
to a controller synthesis framework. Given a measurement of the plant G,
the goal is to design a controller such that given finite-horizon dissipativity
specifications for the closed loop are met. This dissipativity conditions can
be used to design meaningful controller depending on the corresponding
use case. For example, the theory of mixed-sensitivity design [17] can be
formulated in dissipativity conditions and used for loopshaping for refer-
ence tracking control. However, also many other well-known dissipativity
conditions can be imposed on the closed loop for controller design. In a
first step, in Section 4.1, the dissipativity analysis inequality from Section
3.4 is reformulated into a synthesis inequality in terms of a QMI in the con-
troller parameters. This resulting QMI has to be solved to yield a satisfying
controller, which is done in Section 4.2. After summarizing the general data-
driven controller design procedure in Section 4.3, including useful design
specifications as well as multi-objective design, the procedure is applied to
an example system in Section 4.4.

4.1. Synthesis inequality

The setting is as follows: An input-output trajectory (u,y) with persistently
exciting input u of the plant G is available. Furthermore, a finite-horizon
dissipativity specification for the closed loop in terms of a supply rate Π and
an horizon L is given. The goal is to find a finite-length impulse response
{gk}L−ν−1

k=0 of the controller such that the closed loop is dissipative w.r.t.
the supply rate Π. As already mentioned in Section 3.2, one advantage of
the closed-loop trajectory representation (3.2) is the linear dependence of
the controller parameters. This allows us to reformulate the dissipativity
analysis inequality (3.11) into a QMI in the controller parameters. Beforehand,
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4. Data-driven controller synthesis for closed-loop dissipativity

we impose some structure for the controller, which first guarantees causality
of the controller and gives us the opportunity to design controllers with
a priori chosen structure, e.g., a PI controller structure. To this end, the
following definition is used.

Definition 4.1 A set K is called controller structure, if there exist lower-triangular
Toeplitz matrices Ti ∈ R(L−ν)×(L−ν), for i = 1, . . . , d, with at least one Ti 6= 0L−ν

such that

K = {T ∈ R(L−ν)×(L−ν)|∃p ∈ Rd s.t. T =
d

∑
i=1

piTi}. (4.1)

Since only lower-triangular basis matrices Ti are allowed in a controller
structure K, causality for a controller K ∈ K is guaranteed. In the following,
when we say a controller K is of structure K, we mean that the Toeplitz matrix
T(g) of its impulse response {gk}L−ν−1

k=0 is in the set K. An example for a
controller structure K is the discrete PI controller structure defined by

T1 = I and T2 =


0 0 . . . 0
Ts 0 . . . 0
...

. . .
. . .

...
Ts . . . Ts 0

 , (4.2)

with sampling rate Ts. Note that no specific structure needs to be imposed
on the controller. This can be achieved by choosing Ti, for i = 1, . . . ,L− ν, as
square matrices of size L− ν with ones on the (i− 1)-th diagonal below the
main diagonal, i.e., i = 1 represents the main diagonal. Using this structure
all controllers with finite-length impulse response can be represented. Thus,
if a controller is of structure K, we can parametrize its Toeplitz matrix by

T(g(p)) =
d

∑
i=1

piTi,

which is linear in p. Hence, the matrices ML−ν(g(p)) in Proposition 3.2
and therefore also in Theorem 3.1 are also linear in the new controller
parameters p for all channels (r 7→ z, r 7→ e, r 7→ u) in the standard feedback
loop. Given data (u,y) of the plant G, a controller structure K and an L-
dissipativity specification, we can translate the analysis inequalitiy into a
synthesis inequality in the parameters p via the following theorem.
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4.1. Synthesis inequality

Theorem 4.1 Let K be a desired controller structure and the supply rate Π with
the horizon L a desired dissipativity specification for the standard feedback loop
from r 7→ z. Suppose furthermore that {uk,yk}N−1

k=0 is a trajectory of the plant G,
where u is persistently exciting of order L + n. Then, for any ν with n ≤ ν < L,
there exists a controller K of structure K that renders the closed loop from r 7→ z
(L− ν)-dissipative w.r.t. the supply rate Π if and only if the QMI in p

Vν
L (u,y)>HL(u,y)> Jν

L
>ML−ν(g(p))>ΠL−ν ML−ν(g(p))Jν

L HL(u,y)Vν
L (u,y) < 0,

(4.3)
where

ML−ν(g(p)) =
(

IL−ν T(g(p))
0L−ν T(g(p))

)
,

has a solution p̂ and the resulting controller K, represented by T(g( p̂)) = ∑d
i=1 p̂iTi,

renders the closed loop well-posed.

Proof Combining Theorem 3.1 with Definition 4.1 directly leads us to
the inequality (4.3) and to the well-posedness condition and vice versa.
Furthermore, it remains to show that (4.3) is a QMI in the newly introduced
controller parameters p. To this purpose, we use the following abbreviation

Nu(u,y) = Jν
L HL(u)Vν

L (u,y),
Ny(u,y) = Jν

L HL(y)Vν
L (u,y)

(4.4)

and define the following matrices

Q0=−Nu(u,y)>QL−ν Nu(u,y),

Qi=−Nu(u,y)>(QL−ν+SL−ν)Ti Ny(u,y)−Ny(u,y)>T>i (QL−ν+S>L−ν)Nu(u,y),

Vij=−Ny(u,y)>T>i (QL−ν + SL−ν + S>L−ν + RL−ν)Tj Ny(u,y),

Qij=


Vij, if i = j
Vij + Vji, if i < j
0, else

.

(4.5)
Then, multiplying (4.3) out yields

Q(p) = Q0 +
d

∑
i=1

piQi +
d

∑
i=1

d

∑
j=1

pi pjQij 4 0,

which is by (1.1) a QMI in p and therefore concludes the proof.
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4. Data-driven controller synthesis for closed-loop dissipativity

Theorem 4.1 is the natural extension of Theorem 3.1, from the analysis con-
dition to the synthesis inequality, taking a special controller structure K into
consideration. It allows us to design controllers by defining a dissipativity
specification and solving the corresponding synthesis inequality (4.3) for the
controller parameters p.

Remark 4.1 Of course, as mentioned for Theorem 3.1, Theorem 4.1 can be stated
for the other channels, r 7→ u and r 7→ e, in the standard feedback loop (Figure 1.2),
as well. For the channel r 7→ u the QMI matrices are

Q0 = −Nu(u,y)>QL−ν Nu(u,y),

Qi = −Nu(u,y)>QL−νTi Ny(u,y)− Nu(u,y)>SL−νTi Nu(u,y)

− Ny(u,y)>T>i QL−ν Nu(u,y)− Nu(u,y)>T>i SL−ν Nu(u,y),

Vij = −
(
?
)> ( Ti 0L−ν

0L−ν Ti

)> (QL−ν SL−ν

S>L−ν RL−ν

)(
Tj 0L−ν

0L−ν Tj

)(
Nu(u,y)
Ny(u,y)

)
,

Qij =


Vij, if i = j
Vij + Vji, if i < j
0, else

(4.6)
and for the channel r 7→ e the matrices read

Q0=−Nu(u,y)>(QL−ν + SL−ν + S>L−ν + RL−ν)Nu(u,y),

Qi=−Nu(u,y)>(QL−ν+S>L−ν)Ti Ny(u,y)−Ny(u,y)>T>i (QL−ν+SL−ν)Nu(u,y),

Vij=−Ny(u,y)>T>i QL−νTj Ny(u,y),

Qij=


Vij, if i = j
Vij + Vji, if i < j
0, else

.

(4.7)

Clearly, solving the synthesis QMI for a suitable controller parametrization p
is in general a non-convex problem, which cannot be solved in a straight-
forward fashion. In Section 4.2, we discuss two approaches to solve the
QMI.

44



4.2. Solution of the synthesis inequality

4.2. Solution of the synthesis inequality

In general, a QMIFP is a non-convex problem, which makes it difficult to solve
globally or even solve at all. In this section, two approaches are presented:
First, if the given QMI is convex, it can be turned into an LMI, which can
then be solved by LMI techniques. Secondly, a DC programming approach is
presented, which can be used to obtain a solution for the general non-convex
case, but gives only sufficient computational guarantees.

4.2.1. Convex case
An LMI defines a convex set in its decision variable, whereas this does not
hold for a QMI in general. Convexity of a QMI allows us to reformulate it
into an LMI which can then be efficiently solved via convex optimization
methods, especially Interior Point methods. To this purpose, a general QMI
of the form (1.1) can be expressed as

Q(ξ) = Q0 + Q̂Ξ̃ + Ξ̃>Q̃Ξ̃ 4 0, (4.8)

where Ξ̃ = ξ ⊗ I, Q̂ =
(
Q1 . . . Qnq

)
and

Q̃ =


Q11 . . . Q1nq

...
. . .

...
Qnq1 . . . Qnqnq

 . (4.9)

In this form, convexity of a QMI can be ensured by the following lemma.

Lemma 4.1 ( [34, Lemma 1]) The QMI constraint Q(ξ) 4 0 in (1.1) forms a
convex set for the decision variable ξ, if the corresponding matrix Q̃ in (4.9) is
positive semidefinite.

This positive semidefiniteness condition on Q̃ allows us to state the following
result, which summarizes results from [34], which are again proven in this
thesis for the reasons of insight and completeness.

Lemma 4.2 ( [34]) The QMI Q(ξ) 4 0 is equivalent to the LMI(
−I UΞ̃

Ξ̃>U> Q0 + Q̂Ξ̃

)
4 0,

with Q̃ = U>U, if Q̃ < 0.
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4. Data-driven controller synthesis for closed-loop dissipativity

Proof The assumption Q̃ < 0 allows us to factorize Q̃ by Q̃ = U>U with
U ∈ R•×• by choosing, e.g., U as U = Q̃

1
2 [13, Theorem 7.2.7]. Therefore,

we can rewrite (4.8) as

Q(ξ) = Q0 + Q̂Ξ̃− Ξ̃>U>(−I)UΞ̃ 4 0

and apply a Schur Complement (see Lemma A.1 in the Appendix) to find the
equivalent semidefiniteness condition(

−I UΞ̃
Ξ̃>U> Q0 + Q̂Ξ̃

)
4 0. (4.10)

Since all terms in (4.10) depend affinely on Ξ̃, and Ξ̃ is linear in the decision
variables ξ, (4.10) is an LMI in ξ, which concludes the proof.

The semidefiniteness condition on Q̃, for our special synthesis inequalities
for all channels in the standard feedback loop with the matrices defined in
(4.5), (4.6) and (4.7), translates into the condition Vii < 0, for i = 1, . . . , d,
because of the special structure in

Q̃ =


V11 (V12 + V21) . . . (V1d + Vd1)

0 V22
. . .

...
...

. . .
. . . (V(d−1)d + Vd(d−1))

0 . . . 0 Vdd


and the eigenvalues of a block-triangular matrix are the combined eigenval-
ues of its diagonal blocks.

If we look at the matrices

Vii = −Ny(u,y)>T>i (QL−ν + SL−ν + S>L−ν + RL−ν)Ti Ny(u,y)

from (4.5) for the channel r 7→ z, Vii < 0, for i = 1, . . . , d, can be ensured by

(QL−ν + SL−ν + S>L−ν + RL−ν) 4 0. (4.11)

Of course this condition is not necessary for Vii < 0, but yields a nice
condition in terms of the supply rate, under which the synthesis inequality
(4.3), for the channel r 7→ z, can be turned into an LMI.
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4.2. Solution of the synthesis inequality

Remark 4.2 A sufficient condition in terms of the supply rate Π for the convexity
of the synthesis inequality (4.3) for the channel r 7→ e, and therefore the ability of
rewriting the inequality into an LMI, is given by

QL−ν 4 0. (4.12)

For the channel r 7→ u, it would not be useful to state a condition in terms of the
supply rate, since the condition(

QL−ν SL−ν

S>L−ν RL−ν

)
4 0 (4.13)

contradicts the dissipativity conditions for L-dissipativity in Definition 2.4 itself.

In conclusion, (4.11) is a condition on the supply rate matrices for the given
dissipativity specification to translate the corresponding synthesis inequality
(4.3) into an LMI via Lemma 4.2 and apply LMI techniques to yield a satisfying
controller parametrization p. The great advantage is that we can solve
the inequality globally and therefore can guarantee infeasibility/feasibility
through the available numerical solvers, e.g., [1]. Unfortunately, the shown
conditions for the supply rate, can be quite restrictive in the selection of
a dissipativity specification. Therefore, in Section 4.2.2, an algorithm for
the general non-convex case is presented, which at least is able to provide
a feasible solution in a local manner, if the algorithm is initialized in the
neighborhood of a solution.

4.2.2. General case
As mentioned above the reformulation of the synthesis inequality (4.3) into
an LMI is only possible under certain restrictive semidefiniteness conditions
on the supply rate. Therefore, it is necessary to develop further tools for
solving (4.3) in the general non-convex case for a controller parametrization p
in the given controller structure K. To this end, a DC programming approach
is employed to find a feasible solution for a general QMI and therefore also
the synthesis inequality. A general DC program has the form

inf{g(ξ)− h(ξ) : ξ ∈ Rndc}, (4.14)

where g, h are convex. The idea of DC programming goes back to 1985. There
are several publications since then, including general theory (existence of
a solution, convergence of difference of convex functions algorithm (DCA)),
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4. Data-driven controller synthesis for closed-loop dissipativity

singled out [28], and several applications to real world problems and spe-
cific non-convex problems. A recent survey on the developments of DC
programming for both, theory and algorithmic tools, is available in [18].
The main concept of the DCA is the approximation of a non-convex DC
program by iteratively solving convex ones. Therefore, two sequences {ξk}
and {ψk} are constructed, which guarantee that the resulting sequences
{g(ξk)− h(ξk)} and {h∗(ξk)− g∗(ξk)} are decreasing. Given an initial start-
ing point ξ0 ∈ Rndc for the DC program, at each iteration k, calculate

1.
ψk ∈ ∂h(ξk) (4.15)

2.
ξk+1 ∈ ∂g∗(ψk) (4.16)

for the general DCA. Note that ∂g∗(ψk) can be determined by

∂g∗(ψk) = arg min
ξ∈Rndc

g(ξ)− [h(ξk) + 〈ξ − ξk, ψk〉] (Pk)

and ∂h(ξk) can be obtained from

∂h(ξk) = arg min
ψ∈Rndc

h∗(ψ)− [g∗(ψk−1) + 〈ξk,ψ− ψk−1〉] (Dk).

(Pk) is a convex program in ξ as well as (Dk) is convex in ψ. Therefore, for
generating the sequences {ξk} and {ψk} one has to iteratively solve convex
programs, by using the components g, h of the DC (4.14) separately. Conver-
gence of DCA is always guaranteed independently of the initial starting point
ξ0, however there are no guarantees that the limit value of this sequence
results in a global solution of the optimization problem. More explicitly,
depending on the choice of ξ0, DCA can converge to a non-global solution
and ξ0 can affect the number of necessary iterations. The complete conver-
gence theorem and the proof of this proposed generating scheme can be
found in [28, Theorem 3]. In this thesis, no further details about the general
theory of DC programming are given, rather than applying the concept of DC
programming to the QMIFP, which is extensively studied in [26]. For more
details about DC programming in general, we refer to [28].

In order to apply the DC programming approach to the controller synthesis
problem, a general QMIFP of the form (1.1) has to be rewritten into a DC
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program of the form (4.14). Therefore, a QMI (1.1) in ξ can be rewritten into

Q(ξ,W) = Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

wijQij, (4.17)

where
(ξ,W) ∈ {(ξ,W) ∈ Rnq × Snq : W = ξξ>}

by replacing the bilinear/quadratic terms ξiξ j with new variables wij. Q(ξ,W)
in (4.17) depends now affinely on its variables ξ and W and is therefore a
convex constraint. However, the additional equality constraint W = ξξ>

does destroy convexity. This additional constraint can also be expressed as
follows.

Lemma 4.3 ( [32, Lemma 5]) Let W ∈ Snq and ξ ∈ Rnq . Then, W = (wij) =

ξξ> if and only if (
W ξ

ξ> 1

)
< 0 and (4.18)

trace(W − ξξ>) ≤ 0. (4.19)

Proof First, notice that (4.18) is equivalent to W̃ = W− ξξ> < 0 by applying
the Schur Complement from Lemma A.1 in the Appendix.

if: From (4.18), i.e., from W̃, and the fact that positive semidefinite matrices
have non-negative entries on its diagonal, we infer wii − ξ2

i ≥ 0 for i =
1, . . . ,nq. Since (4.19) is equivalent to

trace(W)− trace(ξξ>) =
nq

∑
i=1

wii −
nq

∑
i=1

ξ2
i =

nq

∑
i=1

wii − ξ2
i ≤ 0,

it follows that wii − ξ2
i = 0 for i = 1, . . . ,nq. Therefore, trace(W̃) = 0, and

we conclude by Lemma A.2 from the Appendix that W̃ = 0, and hence
W = ξξ>.

Only if: Using W = ξξ>, one gets W̃ = W − ξξ> = 0 < 0 and trace(W −
ξξ>) = trace(0nq×nq ) = 0. Therefore, (4.18) and (4.19) are satisfied.

The proof of Lemma 4.3 is included since it provides necessary information
for the upcoming results. Using this lemma, a QMIFP can be stated as done
in the following result originally proven in [26]. However, we give a more
detailed and structured version of the proof in [26] for a better understanding
of the subject.
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Lemma 4.4 ( [26, Theorem 1]) The QMI (1.1) is feasible if and only if there exists
a point (ξ,W) ∈ C, where

C = {(ξ,W) ∈ Rnq × Snq |Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

wijQij 4 0,
(

W ξ

ξ> 1

)
< 0},

and

trace(W)−
nq

∑
i=1

ξ2
i = 0.

Proof if: If there exists (ξ,W) ∈ C with trace(W)−∑
nq

i=1 ξ2
i = 0, we can use

Lemma 4.3 to infer that W = ξξ>. Since (ξ,W) also satisfies

Q(ξ,W) = Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

wijQij 4 0,

we conclude with the dependency in (4.17) that

Q(ξ) = Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

ξiξ jQij 4 0.

Only if: Suppose ξ ∈ Rnq satisfies the QMI (1.1), more explicitly

Q(ξ) = Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

ξiξ jQij 4 0.

Then, we can choose W = ξξ> ∈ Snq . Again using the dependency (4.17) and
Lemma 4.3, we infer that (ξ,W) ∈ C and trace(W)−∑

nq

i=1 ξ2
i ≤ 0. Moreover,

as seen in the proof of Lemma 4.3, trace(W)−∑
nq

i=1 ξ2
i = 0, which concludes

the proof.

Employing Lemma 4.4, feasibility of the QMI (1.1) can be checked by the
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following concave minimization problem

min
ξ,W

trace(W)−
nq

∑
i=1

ξ2
i

s.t. Q(ξ,W) = Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

wijQij 4 0,

(
W ξ

ξ> 1

)
< 0,

(ξ,W) ∈ Rnq × Snq .

(4.20)

The QMI is feasible if and only if the corresponding optimal cost of (4.20)
is zero. The last step towards the DC formulation (4.14) is to define g(ξ,W)
as the indicator function iC (ξ,W) for the convex set C from Lemma 4.4 and
h(ξ,W) = ∑

nq

i=1 ξ2
i − wii, which is also convex. Hence the minimization

problem in (4.20) is equivalent to

min f (ξ,W) = min g(ξ,W)− h(ξ,W)

a minimization of a difference of convex functions.

Now we are able to apply the general DCA iteration ((4.15),(4.16)) and if the
solution (ξ̃,W̃) renders the cost function f (ξ̃,W̃) = 0, then ξ̃ is a solution to
the corresponding QMI. The function h(ξ,W) is differentiable and therefore
the subdifferential ∂h(ξk,Wk) at (ξk,Wk) only contains ∇h(ξk,Wk), which can
be computed explicitly. Hence, the dual variables of the iteration satisfy
(ψk,Zk) ∈ ∂h(ξk,Wk) = {(2ξk,−Inq )}. For the second step (4.16) of the DCA
iteration, following program has to be solved

arg min
(ξ,W)∈Rnq×Snq

g(ξ,W)−[h(ξk,Wk)+〈ξ−ξk, ψk〉+〈W−Wk, Zk〉],

51



4. Data-driven controller synthesis for closed-loop dissipativity

which can be reduced to

arg min
(ξ,W)∈Rnq×Snq

g(ξ,W)−[h(ξk,Wk)+〈ξ−ξk, ψk〉+〈W−Wk, Zk〉]

= arg min
(ξ,W)∈Rnq×Snq

iC (ξ,W)−[
nq

∑
i=1

ξ2
k,i−wk,ii+〈ξ,ψk〉−〈ξk, ψk〉+〈W,Zk〉−〈Wk,Zk〉]

= arg min
(ξ,W)∈C

−〈ξk,ξk〉+trace(Wk)−〈ξ, 2ξk〉+〈ξk,2ξk〉−〈W,−Inq 〉+〈Wk,−Inq 〉

= arg min
(ξ,W)∈C

〈ξk,ξk〉−〈ξ,2ξk〉+trace(W)

= arg min
(ξ,W)∈C

trace(W)−〈ξ,2ξk〉.

Hence, the sequences ξk, Wk can be generated by solving

(ξk+1,Wk+1) ∈ arg min
(ξ,W)∈C

trace(W)− 〈ξ,2ξk〉 (4.21)

iteratively, without using the dual variables (ψ,Z). Note that the program
in (4.21) involves the minimization of a linear objective function over the
convex set C, hence is a linear semidefinite program or otherwise known
as LMI optimization problem. As mentioned for the convex case in Section
4.2.1, this can be efficiently solved by Interior Point algorithms. In conclusion,
the overall algorithm by [26] for finding a feasible solution of a QMI can be
stated (see Algorithm 4.1). Algorithm 4.1 provides a possibility to find a
feasible solution to a general non-convex QMI and is very easy to implement
in Matlab with the tool from [19] and additional LMI solvers like [1]. The
solution depends on the starting value since, as mentioned for the general
DCA, the DCA converges to a local minimum of its objective function. In
our case, if the objective function at the found local minimum is non zero,
then the local minimum is no solution to the QMI. Nevertheless, there could
be another local minimum where the objective function is indeed zero and
therefore the QMI has a solution. Only if the global minimum renders the
objective function non zero, the QMI is infeasible. Namely, if Algorithm 4.1
returns no feasible solution, we cannot conclude that the QMI is infeasible.
To overcome this issue, one can run Algorithm 4.1 over a grid of starting
points ξ0 or add other global solvers, e.g., Branch & Bound, around Algorithm
4.1 to ensure globality of the obtained overall solution.
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4.2. Solution of the synthesis inequality

Algorithm 4.1 DCA for QMIFP from [26]

1: Given:

• QMI Q(ξ) 4 0

• Starting point ξ0

• Stopping parameters ε1 > 0, ε2 > 0

2: Initialize: W0 = ξ0ξ>0 and k = 0.
3: Set f (ξ,W) = trace(W)−∑

nq

i=1 ξ2
i .

4: while True do
5: Solve
6:

(ξk+1,Wk+1) ∈ arg min trace(W)−〈ξ,2ξk〉

s.t. Q0 +
nq

∑
i=1

ξiQi +
nq

∑
i=1

nq

∑
j=1

wijQij 4 0,

(
W ξ

ξ> 1

)
< 0,

(ξ,W) ∈ Rnq × Snq .

7: if f (ξk,Wk) ≤ ε1 then
8: return ξk+1 as feasible solution of the QMI Q(ξ) 4 0.
9: else if | f (ξk+1,Wk+1)− f (ξk,Wk)| ≤ ε2 | f (ξk,Wk)| then

10: return No feasible solution found.
11: else
12: Set k = k + 1.
13: end if
14: end while

Remark 4.3 Multiple QMIs in one variable can be incorporated to one big QMI by
diagonal augmentation. Given multiple QMIs Qi(ξ) 4 0, for i = 1, . . . ,h, finding a
feasible point ξ for all QMIs is equivalent to finding a feasible point ξ for the QMI

Q(ξ) =

Q1(ξ)
. . .

Qh(ξ)

 4 0 (4.22)
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4. Data-driven controller synthesis for closed-loop dissipativity

In conclusion, Algorithm 4.1 can also be used to solve multiple QMIs simultaneously.

Remark 4.4 Additional convex constraints on the variables ξ, e.g., LMI constraints,
can be easily added to the DCA for QMI by constraining the set C further. They do
not have to be formulated as a QMI without quadratic terms and added to the original
QMI by diagonal augmentation, rather then explicitly added to the constraints in
the optimization problem in Algorithm 4.1.

Since we are now able to find a solution to a QMI for both, the convex and
non-convex case (only sufficient computational guarantees), we can apply
these tools to solve the synthesis inequality (4.3) for controller design. This
is shown numerically for an example system in Section 4.4, after a summary
of the data-driven design procedure in Section 4.3.1 and useful specifications
(Section 4.3.2) for controller design in the standard feedback loop.

4.3. Controller design

This section summarizes the whole data-driven design procedure via finite-
horizon dissipativity, as well as state some dissipativity specifications, e.g.,
mixed sensitivity design [17], and additional constraints on the controller
parameters, which can be useful for the standard feedback loop.

4.3.1. Design procedure

In this subsection, the overall controller design process following from the
presented results is stated. As already mentioned in Remark 4.3, multiple
QMIs can be collected into one big QMI by diagonal augmentation. Applying
this to our design process gives us the opportunity to not only design con-
troller constrained by one single dissipativity specification in the standard
feedback loop, but rather impose multiple dissipativity constraints on all
different input-output channels in form of multiple synthesis inequalities
Qi(p) 4 0 for i = 1, . . . ,h. More precisely, we are able to perform multi-
objective structured controller design via a QMIFP. In comparison, in the
model-based setting, structured controller design, as well as multi-objective
design via LMI techniques [30], is in general difficult, because of the neces-
sary convexifying controller parameter transformation. However, a direct
comparison of both methods is difficult since we allow for QMIs in the data-
driven synthesis approach, which introduce aforementioned limitations to
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4.3. Controller design

the LMI based solutions. Another great feature of the presented framework
is that additional constraints on the controller parameters p can be added on
top of the dissipativity specifications for the closed loop. In Definition 4.1,
the definition of the controller structure, we did not impose any constraints
on p, but we can directly introduce them as additional QMI or LMI constraints

Qc(p) 4 0.

In summary, the overall synthesis inequality

Q(p) =


Q1(p)

. . .
Qh(p)

Qc(p)

 4 0 (4.23)

in the controller parameter p gathers all dissipativity specifications (from
Theorem 4.1) for the standard feedback loop as well as the additional con-
troller parameter constraints. To summarize the whole design procedure,
Algorithm 4.2 can be used to perform data-driven multiobjective structured
controller design for the standard feedback loop via finite horizon dissipa-
tivity.

4.3.2. Specifications
After stating the overall design procedure, some more intuiton on how the
framework can be used is given. Namely, some exemplary dissipativity
specifications as well as exemplary controller parameter constraints are
introduced. Multiobjective design gives us the opportunity to perform
mixed sensitivity design [17], where the transfer functions from r 7→ e and
r 7→ u are shaped through the introduction of additional filters We and
Wu with impulse responses gWe and gWu . More specifically, the standard
feedback loop (Figure 1.2) is artificially extended to the feedback loop in
Figure 4.1. These filters are added to the outputs of the channels and the
input-output behavior of these new outputs can be described by(

r
kW

)
=

(
IL−ν 0L−ν

0L−ν T(gWk )

)
ML−ν(g(p))Jν

L HL(u,y)Vν
L (u,y)β,

for k = e, u, via an extension of Proposition 3.2. If now, an L2-gain specifica-
tion with γ = 1 (see (2.2)) from the reference r to the output of the filters is
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4. Data-driven controller synthesis for closed-loop dissipativity

Algorithm 4.2 Data-driven controller design via finite-horizon dissipativity

1: Given:

• Upper bound ν on the state dimension of the unknown plant G

• Closed-loop dissipativity specifications in terms of supply rates Πi
and different horizons Li − ν for the channel r 7→ ki ∈ {z,e,u} for
i = 1, . . . ,h

• Controller structure K

• Controller parameter constraints Qc(p) 4 0

2: Collect input-output trajectory of the plant G with persistently exciting
input of order maxi Li + ν.

3: Derive all dissipativity synthesis inequalities Qi(p) 4 0 for i = 1, . . . ,h
by Theorem 4.1 for the corresponding channel ki.

4: Formulate overall synthesis inequality Q(p) 4 0 via (4.23).
5: if Q(p) is convex then
6: Use Lemma 4.2 to rewrite Q(p) 4 0 into an LMI and use LMI techniques

to solve for a satisfying controller parametrization p.
7: else
8: Use Algorithm 4.1 to find a suitable controller parametrization p.
9: end if

10: Apply the controller u = T(g(p))e.

imposed, the transfer functions of r 7→ u and r 7→ e are then shaped in the
sense that (for a sufficiently long horizon L− ν) the magnitude response of
the inverses of these filters is an upper bound for the magnitude response
of these sensitivity transfer functions. Generally speaking, we can perform
loopshaping of the closed loop by introducing these filters and impose L2-
gain specifications on the newly created channels (reference to output of
the filters). Therefore, the creation of dissipativity specifications for mixed
sensitivity design would be as follows:

1. Design filters We and Wu such that the magnitude response of the
inverses of these filters meet the closed-loop requirements.
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u

uW

r e

eW

z
− GK

We Wu

Figure 4.1.: Feedback loop for mixed sensitivity design.

2. Replace the stacked supply rate ΠL−ν in (4.3) by

Π̃L−ν,k =
(
?
)> ( IL−ν 0L−ν

0L−ν −IL−ν

)(
IL−ν 0L−ν

0L−ν T(gWk )

)
(4.24)

for k = e,u for the channels r 7→ e and r 7→ u.

Examples for closed-loop requirements for r 7→ e are, low gain at small
frequencies, high gain at high frequencies for good tracking and disturbance
attenuation. For r 7→ u one can choose, e.g., a constant magnitude response
to keep the control energy small. We have now presented one possibility
to use finite-horizon dissipativity for controller design as a general idea
how the framework can be used. For the theoretical results in this thesis,
noise-free measurements were assumed, which is never the case in practice.
A simple remedy, proposed in [29], for handling noisy data for a given
dissipativity synthesis inequality Q(p) 4 0 is to use the relaxation

Q(p) 4 δI, (4.25)

where δ > 0 is a parameter depending on the size of the noise. Of course,
this relaxation is without desirable guarantees, but can be used for all types
of uncertainties.

In Section 4.3.1, it was mentioned that additional constraints on the con-
troller parameters p can be incorporated into the framework. For example,
if one wants to impose a box constraint

p ∈ {ξ ∈ Rd : p
i
≤ ξi ≤ pi, i = 1, . . . ,d}
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by adding

Qc(p) =


p

1
0

0 −p1
. . .

p
d

0
0 −pd

+


−p1 0

0 p1
. . .

−pd 0
0 pd

 4 0

to the overall synthesis inequalitiy. This gives the opportunity to restrict the
parameter values to a certain range, which can be based on prior knowledge
of the plant or anything else. Another way to use the additional constraints
for controller design is to bound the matrix norm of the Toeplitz matrix
T(g(p)) to limit the control energy or even achieve finite-horizon input-
output stability by using similar arguments as in the small gain criterion.
More precisely, one can calculate the finite-horizon L2-gain γ of the plant
G via Theorem 2.2 and impose a strict upper bound of 1

γ to the norm
of T(g(p)) to obtain a finite-horizon L2-gain γcl < 1 of the closed loop.
The condition on the controller can be implemented by adding the convex
constraint T(g(p))>T(g(p)) ≺ 0 to the overall inequality. For a large enough
horizon L− ν, this implies that the (infinite-horizon) closed-loop L2-gain is
bounded by 1

γcl
, compare [16].

After summarizing the design procedure, as well as stating some ex-
emplary design specifications to give some intuition about the presented
framework, it is applied to an example system in Section 4.4.

4.4. Numerical example

In this section, the presented results for data-driven controller design, espe-
cially Algorithm 4.2, are applied to an example control problem. The goal
is to design a controller K in the standard feedback loop for an unknown
plant G such that the closed loop is able to perform reference tracking and
disturbance attenuation. The whole process is performed numerically in
Matlab. For the "unknown" plant G, a two-tank system is used, as shown
in Figure 4.2, where the input is the voltage u applied to the water pump
which generates a flow v = ku towards the first tank with level h1. The
output of the first tank is connected to the second tank with level h2, which
is measurable and represents the output y = h2 of the plant. The output of
the second tank is connected to a big water reservoir, to which the pump has
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vu

d

h1

h2

Figure 4.2.: Two tank system.

also access to. There is an additional output at the first tank which cannot
be measured and can be viewed as a disturbance d. The nonlinear system
without disturbance can be modeled as

ḣ1(t) = −
a1
A1

√
2gh1(t) +

k
A1

u(t),

ḣ2(t) = −
a2
A2

√
2gh2(t) +

a1
A2

√
2gh1(t),

where h1 and h2 are the states, and therefore we have n = 2 for the plant.
The model parameters are listed in Table 4.1. Since this system is nonlinear
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4. Data-driven controller synthesis for closed-loop dissipativity

Parameter Value Unit Description
A1 15.518 cm2 Cross-section tank 1

A2 15.518 cm2 Cross-section tank 2

a1 0.178 cm2 Cross-section outflow tank 1

a2 0.178 cm2 Cross-section outflow tank 2

g 981 cm
s2 Gravitational acceleration constant

k 4.3 cm3

Vs2 Water pump constant

Table 4.1.: Two-tank model parameters.

and the framework in this thesis would not be applicable, we consider the
system around a stationary point h1 = h1,0 = 15, h2 = h2,0 = 15, with the
corresponding input u = u0 = 7.1054, to at least reduce the nonlinearity.
In addition, our plant is a continuous-time system, which needs additional
discretiziation blocks to meet the requirements of the controller design
framework. To this purpose, our controller K is connected to the plant G as
shown in Figure 4.3, where S is a sampling element and H a zero-order hold

h2,0

S K H

u0

G
r e u

d

z

−

Figure 4.3.: Feedback loop for the two tank system.

element converting the continuous-time signal in a DT signal with sampling
rate Ts = 1.5 and vice versa. The disturbance d, the additional output in
tank 1, is modeled by an input disturbance to the plant. To achieve good
tracking and disturbance attenuation, we follow Algorithm 4.2:

1. Collect all necessary algorithm information: ν can be set as ν = n = 2,
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since the state dimension is known to us. Further, the mixed sensitivity
design, explained in Section 4.3.2, is used for the dissipativity specifica-
tions. To this purpose, the filters We and Wu with magnitude responses
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Figure 4.4.: Magnitude response of the filters from mixed sensitivity design.

as shown in Figure 4.4 are used and horizons L1 = L2 = L = 175
are chosen. The resulting supply rates for mixed sensitivity design
can be seen in (4.24). As controller structure K, the PI structure with
sampling rate Ts = 1.5 and basis matrices as defined in (4.2) are used.
Since we are dealing with a nonlinear plant, the relaxation (4.25) with
δ = 0.5 is used. No further constraints on the controller parameters p
are imposed.

2. An input-output trajectory (u,y) of the plant G with persistently ex-
citing input u of order L + n in open loop is collected. Therefore,
a trajectory (u

′
,y
′
) of length N = 524 is generated by simulation of

the continuous-time model with a uniform random input signal u
′

in the range of −2 + u0 and 2 + u0 in Matlab and discretization of
that simulated trajectory to match the sampling rate of Ts = 1.5. For
the simulation, initial values of h1(0) = h1,0 and h2(0) = h2,0 for the
model are used. As explained above, since the model is nonlinear, the
trajectory (u

′
,y
′
) is shifted by u0 and h2,0 to reduce the nonlinearity.

Therefore, we obtain the DT trajectory (u,y) = (u
′
,y
′
)− (u0, h2,0) (with
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4. Data-driven controller synthesis for closed-loop dissipativity

slight abuse of notation) of length N with persistently exciting input u
of order L + n .

3. Since we have two dissipativity specifications from the mixed sensitiv-
ity design, we end up with two synthesis inequalities Q1(p) 4 0 and
Q2(p) 4 0 using Theorem 4.1. The therefore needed matrices can be
constructed from the collected trajectory (u,y), the controller structure
K and the mixed sensitivity supply rates.

4. Putting both synthesis inequalities together by diagonal augmentation
the overall synthesis inequality reads

Q(p) =
(

Q1(p) 0
0 Q2(p)

)
4 0.

5. Q(p) is not convex, hence we cannot use LMI techniques directly.
Nevertheless, we can apply the DCA for QMIs, Algorithm 4.1, to
find a feasible controller parametrization p. To further increase the
chance of finding a solution, Algorithm 4.1 is initialized over the grid
{−5, − 4, − 3, . . . ,3,4,5} × {−1, − 0.9, − 0.8, . . . ,0.8,0.9,1} and solved
simultaneously using the Parallel Computing Toolbox in Matlab. The
obtained solution is

p =

(
1.0278
0.0220

)
,

where p1 is the proportional part and p2 the integral part of the PI
controller.

6. We apply the input u = T(g(p))e, which can be done by implementing
the controller K by using the transfer function

K(z) = p1 +
p2Ts
z− 1

of an Euler forward discretized PI controller.

The performance of the controller for reference tracking, as well as for
disturbance attenuation can be seen in Figure 4.5. The reference signal in
Figure 4.5 was chosen to be a step signal of magnitude 2 and the additional
output of the first tank (disturbance d) was opened after 250s, which can
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in our setting be done by using the following continuous-time disturbance
signal

d(t) =
{

0, for 0 ≤ t < 250
−0.5, for t ≥ 250 .

The tank model was excited at the stationary point, i.e., the initial states
were set to h1(0) = h1,0 and h2(0) = h2,0. It can be seen in Figure 4.5
that the reference is well tracked without steady state error. Recall from

0 100 200 300 400 500 600
15

15.5

16

16.5

17

17.5

Figure 4.5.: Closed-loop response with designed controller K.

Figure 4.3 that the reference is relative to the stationary point. After opening
the disturbance output, the tank level h2 drops slightly and immediately
recovers to its setpoint, and therefore the controller achieves disturbance
attenuation. In conclusion, the dissipativity specifications from mixed sensi-
tivity design with a large enough horizon, a PI controller structure and the
application of Algorithm 4.2 for data-driven controller design were used to
yield a controller that satisfies the given goals of good reference tracking
and disturbance attenuation.

To further give an intuition on how noise affects the synthesis inequality
Q(p) 4 0, Figure 4.6 compares the maximum eigenvalue of Q(p) to the
noise level θ. In more detail, as done in Section 3.6.1, we analyze the behavior
when the output of the plant data (u,y) is affected by noise. We can only
measure the noisy output ỹ = y + 2θ(rand(N,1)− 0.5ones(N,1)). The effect
of this noisy measurement on the maximum eigenvalue of Q(p), with p
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Figure 4.6.: Maximum eigenvalue of Q(p) with noisy data.

as calculated in the controller design process, can be seen in Figure 4.6.
For very small θ < 0.005, there is barely any change visible, but after that
the eigenvalue is increasing significantly rendering the synthesis inequality
infeasible. For θ = 0.02, for example, the relaxation parameter δ has to be
increased to δ = 10 for Q(p) to satisfy the inequality. If increasing δ too
much, we allow other controllers to be feasible, which have bad performance
but do satisfy the given inequality due to the relaxation. For example if δ
is too big, p = 0 is always a solution, which of course is not a desirable
controller. In conclusion, even for small noise levels the eigenvalues can
change significantly and the presented relaxation works only for relatively
small noise levels.

Unfortunately, this is a drawback of the presented framework, since it
does not account for noisy measurements but it can serve as a starting point
for further extensions, which are better applicable to real systems. However,
the framework can manage the nonlinearity of the model, which can also be
seen as noise since for small deviations ∆h = h− h0 and ∆u = u− u0 around
the stationary point (h0,u0) of a nonlinear model of the form ḣ = f (h,u), the
linear terms in

∆ḣ =
∂ f
∂h
∣∣
h0,u0︸ ︷︷ ︸

Ã

∆h +
∂ f
∂u
∣∣
h0,u0︸ ︷︷ ︸

B̃

∆u +O(∆h2) +O(∆u2)
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dominate over the nonlinear parts. Hence, the terms of higher order can be
modeled as process noise for the linear model

∆ḣ = Ã∆h + B̃∆u + dp,

with dp some noise signal. In summary, the developed results were capable
of designing a structured controller in the standard feedback loop from
multiple finite-horizon dissipativity specifications purely on the basis of
plant data, which achieves good tracking and disturbance attenuation.
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5. Conclusion and outlook

5.1. Summary

This thesis introduced a data-driven controller design method for SISO sys-
tems based on L-dissipativity conditions for the closed loop in the standard
feedback loop. In Chapter 3, the existing results for open-loop systems
were extended to the closed loop. More precisely, a parametrization of all
closed-loop trajectories, based on one open-loop input-output measurement
of the plant and a model of the controller, for all input-output channels has
been developed. The key ingredient for developing this trajectory represen-
tation was the commutativity property of SISO systems. This parametrization
was then used for closed-loop simulation and more importantly to perform
a dissipativity analysis on the feedback loop in form of a sufficient and
necessary definiteness condition on one single matrix. Since the developed
trajectory parmetrization is linear in the controller parameter, the definite-
ness conditions for disspativity were turned into a QMIFP in Chapter 4 for
controller synthesis. A solution for the resulting synthesis inequality can
be obtained either through LMI techniques directly, when the present QMI is
convex, or through the DC programming approach in the general case. In
summary, the present thesis provides a purely data-driven controller design
method, allowing to perform multiobjective structured controller design and
hence provides a controller synthesis framework in the field of data-driven
control.

5.2. Future work

Altough this work provides a promising framework for data-driven controller
design, it can and has to be extended to be more applicable on real world
problems. Mainly, there are three further directions for future research.

1. MIMO: The provided design framework only deals with SISO plants,
because of their commutativity property, and an interesting issue for
future research is the extension to general MIMO LTI sytems.
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2. Noise: In this thesis, only deterministic LTI systems are considered.
More explicitly, the developed guarantees hold only for noise-free
measurements, which is in practice usually not the case. Therefore, it
is necessary to develop guarantees for this framework when noise is
present, which would increase the applicability tremendously.

3. Infinite horizon: The developed results regarding dissipativity, are
finite-horizion dissipativity guarantees. To match the well-known
dissipativity results from the model-based setting, the existing results
have to be extended to the infinite-horizon case. Nonetheless, the
finite-horizon case can be useful in practice when choosing the horizon
large enough, see Section 4.4.

If further research is conducted on the described points, a purely data-driven
controller design framework for general MIMO LTI systems on the basis of
infinite-horizon dissipativity specifications would be desirable similar to the
model-based setting, which can then be used for controller synthesis in the
standard feedback loop for real noisy plants.
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A.1. Auxiliary Lemmas

Lemma A.1 (Adapted from [6]) Suppose U,V ∈ S, not necessarily the same
size.

• Let U ≺ 0. Then,
V −W>U−1W 4 0

is equivalent to (
U W

W> V

)
4 0.

• Let V ≺ 0. Then,
U −WV−1W> 4 0

is equivalent to (
U W

W> V

)
4 0.

These statements hold also when replacing ≺ with � and 4 with <, respectively.

Proof See the proof in [6] for the Schur Complement for non-strict inequalities
and apply the additional constraints from this Lemma.

Lemma A.2 ( [13, Corollary 7.1.5]) Let A ∈ Sn be positive semidefinite. Then,
trace(A) = 0 if and only if A = 0.
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