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Abstract

Connected cars enhance cars with high-performance computational devices and the ability to
connect with the cloud as well as with other connected cars. Usage of these computational devices
enables video games within connected cars. But connected cars also offer additional abilities,
which can be used for advanced integration of video games into connected cars to exploit the
additional functionality to enhance the gaming experience. As basis for this advanced integration
a data exchange model is introduced, which covers the injection of data from the real-life into
the video game and the extraction of data from the in-game world to be used in the real-life. To
demonstrate the potential of this vision for advanced integration of video games into connected cars,
the kart racing game SuperTuxKart is used as foundation for two prototypes. The first implemented
prototype is the World Generation. The World Generation uses OpenStreetMap data and satellite
images to generate a SuperTuxKart track based on the real-life. It takes the car’s position and the
size of area that should be mapped as input parameter and produces the track with all necessary
track constituents as result. The World Generation prototype demonstrates how data injection
can be used to connect the game with the real-life and improve realism and therefore immersion
in-game. The second implemented prototype is the REST API for SuperTuxKart, which serves as
middleware for bidirectional data exchange. The REST API eases interaction with SuperTuxKart as
knowledge about the internal structure of SuperTuxKart is not needed to interact with the REST
API. The REST API itself does not improve the integration of SuperTuxKart into connected cars
but serves as foundation for further projects that extend and amplify the integration of video games
and especially SuperTuxKart into connected cars. Both prototypes reveal the potential of this vision
and future projects.
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Kurzfassung

Vernetzte Autos erweitern Autos um leistungsfähige Computersysteme und die Fähigkeit, sich
mit der Cloud und anderen vernetzten Autos zu verbinden. Die Nutzung dieser Computersysteme
ermöglichen es Videospiele innerhalb des vernetzten Autos zu spielen. Zusätzlich bieten vernetzte
Autos aber noch weitere Möglichkeiten und damit Potential, das genutzt werden kann, um das
Spielerlebnisses zu verbessern. Dazu ist allerdings eine tiefgreifende Integration der zusätzlichen
Hardware und Möglichkeiten nötig. Aus diesem Grund wird ein Datenaustauschmodell eingeführt,
das die Injektion von Daten aus der echten Umgebung des Autos ins Spiel und die Extraktion
von Daten aus der Spielwelt zur Verwendung im echten Leben umfasst. Das Kart-Racing-Spiel
SuperTuxKart dient als Grundlage für zwei Prototypen, die das Potenzial der Vision für die tiefe
Integration von Videospielen in vernetzte Autos zeigen. Der erste implementierte Prototyp ist die
Welt-Generierung. Die Welt-Generierung verwendet OpenStreetMap-Daten und Satellitenbilder,
um eine SuperTuxKart-Rennstrecke auf Basis der realen Umgebung zu generieren. Eingabe ist die
Position des Fahrzeugs und die abzubildende Fläche und Ausgabe ist die Rennstrecke mit allen
notwendigen Streckenbestandteilen und Dateien. Der Welt-Generierungs-Prototyp zeigt, wie die
Dateninjektion genutzt werden kann, um den Realismus und damit die Immersion im Spiel zu
verbessern und das Spiel mit der Realität zu verbinden. Der zweite implementierte Prototyp ist die
REST-API für SuperTuxKart, die als Middleware für den bidirektionalen Datenaustausch dient. Die
REST-API erleichtert die Interaktion mit SuperTuxKart, da die Interna von SuperTuxKart vor dem
Anwender verborgen bleiben. Damit sind keine Vorkenntnisse außerhalb der REST-API nötig, um
mit der REST-API und damit SuperTuxKart zu interagieren. Das Ziel der REST-API ist dabei nicht
selbst die Integration von SuperTuxKart in vernetzte Autos zu verbessern, sondern als Grundlage
weitere Integrationsprojekte von Videospielen und insbesondere von SuperTuxKart in vernetzte
Autos zu ermöglichen. Beide Prototypen zeigen das Potenzial der Vision von Videospielen in
vernetzten Autos und damit einhergehenden zukünftiger Projekte.
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1 Introduction

Video games are popular within large parts of the population and are played in various situations
and on various devices. Usual cars are not equipped to allow playing video games within the car.
With the real-world availability of connected cars, usage scenarios for their additional functionality
are becoming more and more relevant and possible to realize. Therefore, it stands reason to also
play video games in connected cars and strongly integrate those games into these connected cars.

1.1 Context

The purpose of a usual car is to transport passengers from a source to a destination. In order
to increase comfort while driving, many technical support systems have been added like driver
assistance systems or entertainment systems for passengers’s amusement and satisfaction. Connected
cars with their additional sensors and ability to connect to the cloud and other connected cars
go beyond the limitations of regular cars. These additional possibilities allow advanced driving
assistant systems as well as advanced entertainment systems.

Video games are a well-known entertainment possibility, usually played on stationary devices,
e.g., computers, video game consoles, or mobile devices. With the availability of all hardware
requirements needed to run video games built into connected cars, it is possible to play video
games inside a connected car. Either while taking a break from driving or with full autonomous
driving even while being en route. But connected cars are not limited to local computing hardware.
Therefore, it is possible to create new or extend existing video games that make use of the additional
sensor data and accessibility of the connected system of cars.

Car racing in sports has a long tradition. In racing, cars drive on a racetrack built into a specific
landscape trying to be as fast as possible and score the lowest lap time or reach the finish line before
their opponents. But car racing is not limited to the real-life. The concept of car racing is mapped
to video games as racing games. Based on the closely related concepts of cars, racing, and racing
games, it is possible to generate high immersion by integrating racing games into connected cars.

SuperTuxKart as kart racing game that allows players to drive through virtual worlds using fictional
karts against computer-controlled opponents or against other players on the network. Because of
the close relation of racing and racing games it is possible to use SuperTuxKart as a representative
example and basis for advantageous integration of video games into connected cars.
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1 Introduction

1.2 Objectives

To demonstrate the advantages of strong integration of video games into connected cars the goal of
this work is to extend the functionality of SuperTuxKart to integrate into the context of connected
cars. Therefore, SuperTuxKart is extended by a mechanism to increase realism within the game
by generating an in-game world based on the real-world surrounding and an abstraction layer
easing maintainability by hiding the internal structure of the game and allowing the easy usage of
SuperTuxKart for future projects in the context of connected cars.

1.2.1 World-Generation

To increase realism within SuperTuxKart the idea is to generate an in-game world based on
real-world data. This replication of the real-life can then be used to stage races within the real-world
surrounding of the player. The result is a stand-alone service taking the user’s position and producing
an archive containing the racetrack and anything required to load the track with SuperTuxKart.
The service integrates existing data sources and transforms their information into a format that
is understandable by SuperTuxKart. It is thereby necessary to generate an in-game world that
is as realistic as possible but still integrates into the SuperTuxKart universe and that follows the
SuperTuxKart gameplay.

1.2.2 Maintainability

As SuperTuxKart is a rather complex game and knowledge of the internal structure and interfaces
requires time and effort to be understood, an abstraction layer eases future projects using Super-
TuxKart as foundation. To further ease usage and reduce time needed to learn how to use this
abstraction layer it is necessary to use well-known interaction standards. The goal is therefore to
create a REST API that offers access to the game’s internal state. Using this REST API, it is then
possible to access and extract as well as manipulate the game’s current state. As interaction format
the well-known JSON format is used, which further reduces learning effort.

1.3 Structure

The resolution of these objectives is structured as follows:

Chapter 2: Background Information contains the knowledge needed to understand the suggested
solutions.

Chapter 3: Vision describes the detailed vision about advanced integration of video games in
connected cars and what steps need to be done to achieve it.

Chapter 4: World Generation presents the realization of the World Generation prototype.

Chapter 5: REST API introduces the prototypical solution of the maintainability objective.

18



2 Background Information

The following sections contain a brief elaboration of the relevant software projects and technologies
needed to understand the introduced concepts and their realization. It contains information about
SuperTuxKart in section 2.1, the definition of the Space Partitioned Mesh (SPM) file format in
section 2.2, building blocks of a SuperTuxKart track in section 2.3, the algorithm for finding cycles
in graphs in section 2.4, and an overview about application interfaces and REST in section 2.5.

2.1 SuperTuxKart

SuperTuxKart is an open-source, multi-platform kart racing game using a three-dimensional (3D)
comic-style artwork. It takes places in a fictional world using fictional karts and characters. Each
character has its own unique kart. The karts differ in design and driving capabilities like acceleration
and mass. The goal of the game is to drive races by controlling one of the characters against time
limits or opponent characters. While a race is running, the 3D world is rendered showing the kart of
the player centered and in third person perspective. If there is no active race, the menu is shown,
which allows the player to select options or start a new race.

There are multiple game modes possible. The player can choose between a regular race with or
without opponents where the first characters who crosses the finish line wins, a race against time, a
race against prerecorded rival karts, or special modes like “Battle” to destroy opponents, “Soccer”
to score goals using a soccer ball, or “Egg hunt” to find hidden Easter eggs. For each game mode
the player can choose between different tracks, or a consecutive set of tracks called a “Grand Prix”.
Each race takes place in its own location and therefore its own 3D model of the world. For the
regular game modes, the racetrack follows a cyclic path through the in-game world, and the number
of laps can be specified, which needs to be driven until the race ends. The opponents can be
controlled by an artificial intelligence (AI) or by other players using the same device by splitting the
screen into multiple views, showing the kart of each player in its own view, or over the network
[Sup21b].

2.2 Space Partitioned Mesh File Format

SuperTuxKart expects 3D models to be stored in the SPM format. SPM is a binary file format
containing the 3D model represented as triangles in the 3D vector space, the model’s textures,
and the color of each triangle endpoint. The SPM specification shown here is extracted from
the SuperTuxKart source code as there is no formal specification and no publicly available
documentation. The used source code is the SPM writer used to export 3D models out of Blender
[SPM21] and the parser used to load the models into SuperTuxKart [Sup21a].
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2 Background Information

Offset Bytes Type Value Description

0 1 character ’S’
1 1 character ’P’
2 1 binary 0x0a Static mesh
3 1 binary 0b00000 normal color tangent
4 4 float32 ignored 𝑥min

8 4 float32 ignored 𝑦min

12 4 float32 ignored 𝑧min

16 4 float32 ignored 𝑥max

20 4 float32 ignored 𝑦max

24 4 float32 ignored 𝑧max

28 2 uint16_t no restriction Number of textures 𝑛
30 𝑠𝑛 texture texture Textures
30 + 𝑠𝑛 2 uint16_t no restriction Number of sectors
32 + 𝑠𝑛 2 uint16_t no restriction Number of used textures

in sector
34 + 𝑠𝑛 4 uint32_t no restriction Number of vertices 𝑚
38 + 𝑠𝑛 4 uint32_t no restriction Number of indices 𝑖
40 + 𝑠𝑛 2 uint16_t consecutively numbered Material identifier
42 + 𝑠𝑛 𝑠𝑚 vertex vertex Vertices
42 + 𝑠𝑛 + 𝑠𝑚 𝑖 · 𝑠𝑖 uint𝑠𝑖_t index triple Indices

Table 2.1: Space Partitioned Mesh memory layout

Table 2.1 shows the general memory layout of the SPM format. As it is a binary format the
constituents are shown bytewise. The byte order is Little Endian. It starts with the two characters
“SP” followed by one byte indicating that a static model follows. It is also possible to load animated
models by using the flag 0x0a instead of 0x09 and add the data needed to animate the model to
each vertex and after the vertex data section. As the focus is on static models, the structure of the
animation data is omitted here. The flags “normal”, “color” and “tangent” indicate whether each
vertex contains normal, color or tangent information. The following six floating point numbers
represent the three-dimensional bounding-box of the model but remain unused in SuperTuxKart.

Given the number of textures 𝑛, SuperTuxKart tries to read 𝑛 textures following the structure
described in table 2.2. A texture consists of the two filenames of the two images that should be
used for this texture. The first image is displayed on the model whereas the second image can
only be used in shaders to create specific effects. The second or both of these filenames may be
empty. If a filename is empty, SuperTuxKart creates an empty texture. In all other cases if the
filename does not correspond to a valid file, i.e., the file does not exist or cannot be loaded by
SuperTuxKart, the loading of the SPM file fails. The files are looked up in the assets directory of
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2.2 Space Partitioned Mesh File Format

Offset Bytes Type Value Description

0 1 uint8_t no restriction Length 𝑓first of filename of the first texture in
bytes

1 𝑓first string characters The 𝑓first characters of the second filename
1 + 𝑓first 1 uint8_t no restriction Length 𝑓second of filename of the second texture

in bytes
2 + 𝑓first 𝑓second string characters The 𝑓second characters of the second filename

Table 2.2: Space Partitioned Mesh texture memory layout

the SuperTuxKart installation or in the directory where the SPM file is located. If the same first
filename occurs multiple times, the SPM file cannot be loaded correctly. All textures in the SPM
result in an accumulated size of 𝑠𝑛 = 2 · 𝑛 +∑𝑛

𝑖=1( 𝑓first𝑖 + 𝑓second𝑖 ) bytes for all 𝑛 textures.

Bytes Type Flag Condition Description

12 3 · float32 “normal” Normal vector of vertex
1 uint8_t “color” If set to 1, color is set to

white
3 3 · uint8_t “color” Previous not equal to 1 Color given as red, green and

blue
4 2 · float16 First filename of material is

not empty
𝑢 and 𝑣 coordinates of first
material

4 2 · float16 First and second filename of
material are not empty

𝑢 and 𝑣 coordinates of
second material

4 uint32_t “tangent” First filename of material is
not empty

Tangent of vertex

Table 2.3: Space Partitioned Mesh vertex memory layout

For each sector and material SuperTuxKart tries to load the 𝑚 triangle vertices whereas each vertex
is defined by the structure described in table 2.3. SuperTuxKart supports at most 65535 vertices per
material else the SPM file cannot be loaded. The rows of table 2.3 are evaluated in consecutive
order. The data for each row is only loaded if the flag specified in column “Flag” is set and the
condition in column “Condition” is satisfied. Else the row is skipped and the condition for the
next row is evaluated. The 𝑢 and 𝑣 coordinates are in the range [0, 1] describing the normalized
horizontal and vertical position on the image used as texture. Each texturized triangle has for each
vertex its own 𝑢 and 𝑣 coordinates resulting in a distorted projection of the image to the triangle.
Figure 2.1 illustrates this mapping using 𝑢 and 𝑣 coordinates to transform a rectangular image to a
texturized triangle.
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2 Background Information

Figure 2.1: Mapping of textures to triangles using 𝑢𝑣 coordinates [ope13]

To define the triangles based on the set of vertices the list of indices follows the vertex data. Every
three indices span a triangle of the three vertices corresponding to the three given indices in the set
of vertices. Therefore, the number of indices must be divisible by three and each index must have a
corresponding vertex in the list of vertices. If the number of vertices is at most 255, each index is
stored using one byte else two bytes are used.

2.3 Track Constituents

A SuperTuxKart track consists of distinct components stored in multiple files in a single track
directory. Given such a track directory, SuperTuxKart can load it at startup or during runtime. The
loaded track is then shown in the list of available tracks, and the user can select it to start a race on
this track. The racetrack path is a circuit through the 3D landscape on which the karts can drive
without interruptions.

The racetrack circuit is thereby implemented in two parts. The first part is the representation as
graph used for the AI to navigate through the track and show a minimap of the current track for the
user. This graph consists of quads. Each quad represents a two-dimensional (2D) edge of the graph.
Adjacent quads must not intersect. These quads represent the width of the road, and the AI tries to
drive within its borders. The second part of the racetrack circuit is the lap counting functionality.
Therefore, there are so called “checklines” placed along the circuit. A “checkline” is a line segment
on the horizontal plane. These line segments must then be driven through in consecutive order. It
can be configured if the kart must be in a specific height to cross the “checkline” or if it is enough
that the 2D projection to the horizontal plane crosses the line segment. If a segment is omitted by
the driver, the next segment cannot be crossed and therefore the lap not finished [Sup16].
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2.4 Circuit search

Table 2.4: List of SuperTuxKart track constituents

*.spm The 3D models of the world and objects are stored in the SPM format with
extension “spm”. If the model is invalid, SuperTuxKart terminates. If a
texture cannot be found in the SuperTuxKart installation or the current track
directory, the track cannot be loaded. If an empty texture is used, the model
appears in gray.

.jpg, *.png The track directory can contain additional image resources. All textures,
which are not part of the default SuperTuxKart installation, and an optional
preview icon of the track are placed into the track directory.

scene.xml The “scene.xml” file is the main configuration file for the track. It contains
references to all used 3D models of the world, the placed objects and their
placement information, the checklines, and the bonus items.

quads.xml The “quads.xml” file contains a list of quads. Each quad is a set of four
coordinates. These quads are then used to build the routing graph.

graph.xml The “graph.xml” file contains the mapping of quads to a routing graph. This
routing graph is then used as minimap and for the steerage of the AI karts.

track.xml The “track.xml” file contains static meta information about the track like
name, version, membership in the standard or add-on group, author, music
track name, preview icon filename, default number of laps, and driving
direction.

materials.xml The “materials.xml” file contains the information about which shader and
shader configuration shall be used for a texture.

scripting.as Tracks can be extended by scripted functionality. This scripting is located in
the “scripting.as” file in the AngelScript programming language.

easter-eggs.xml The “easter-eggs.xml” file is an optional file with information about the
existence and positioning of Easter eggs.

File Description

The possible files and therefore track constituents in a track directory and their description are
shown in table 2.4. Additional files are ignored while loading.

2.4 Circuit search

Finding a long circuit or even a circuit with a specific length for a given graph is not simple as
it is closely related to the NP-complete Hamiltonian cycle problem [Die17, p. 307]. There are
some heuristic approaches, which try to approximate the exact solution and find a long cycle in
polynomial time in order to overcome the exponential worst-case runtime of computing the exact
solution, e.g., [CSF20] or [CBHG17]. Therefore, the definition of a graph is recapitulated, and then
the fundamental algorithms for finding a fixed-length circuit in a graph are elaborated.

23



2 Background Information

2.4.1 Graph

A graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices 𝑉 and a set of edges 𝐸 . Each edge 𝑒 ∈ 𝐸 connects
two vertices 𝑣1, 𝑣2 ∈ 𝑉 . If each edge has a direction, i.e., it connects an initial vertex with a terminal
vertex but does not connect the terminal vertex with the initial vertex, the graph is called directed.
A path is a graph with distinct vertices 𝑉 = {𝑥1, 𝑥2, ..., 𝑥𝑘 } and edges 𝐸 = {𝑥0𝑥1, 𝑥1𝑥2, ..., 𝑥𝑘−1𝑥𝑘 }.
A cycle is a path where the first vertex 𝑥1 equals the last vertex 𝑥𝑘 . Two paths are independent if
they do not share any vertex of each other except their first or final vertex [Die17, pp. 2–8].

2.4.2 Hamiltonian Cycle

A Hamiltonian cycle 𝐻 of a graph𝐺 is a cycle that contains each vertex of𝐺 exactly once. Therefore,
the upper limit for the length of path without duplicated vertices is the length of a Hamiltonian
cycle, which is equal to the number of nodes in the graph. Under the assumption NP ≠ 𝑃 there is no
polytime algorithm to determine 𝐻 for all kinds of graphs [Die17, p. 307]. As a Hamiltonian cycle
is the longest vertex distinct cycle in a graph and it is not possible to determine it in polynomial
time finding the longest cycle in a graph is also not possible in polytime as it could be used to find
Hamiltonian cycles.

2.4.3 Dijkstra

Given a directed graph 𝐺 = (𝑉, 𝐸) with a weight for each edge defined by a cost function
cost : 𝐸 → R≥0 Dijkstra’s algorithm finds the shortest path by edge weight if existent from a
starting vertex 𝑠 ∈ 𝑉 to a target vertex 𝑡 ∈ 𝑉 in polytime [Dij59].

Algorithm 2.1 describes Dijkstra’s algorithm in pseudo code. The input is a weighted graph
𝐺 = (𝑉, 𝐸), a starting vertex 𝑠 ∈ 𝑉 , a target vertex 𝑡 ∈ 𝑉 , and a cost function cost : 𝐸 → R≥0. The
result is the list 𝐷 of shortest distance from 𝑠 to each vertex 𝑣 ∈ 𝑉 and the list 𝑃 of the previous
vertex for each vertex 𝑣 ∈ 𝑉 for the shortest paths starting in 𝑠. For all vertices part of the shortest
𝑠 − 𝑡 path the values of 𝐷 are provably their global minimum and it is guaranteed that 𝑃 contains
the previous vertices of all vertices of the 𝑠 − 𝑡 path. The shortest 𝑠 − 𝑡 path can then be determined
using backtracking by starting at a vertex 𝑡 and repeatably using the previous vertex as current
vertex as long as the current vertex is not 𝑠. The list of visited nodes is the shortest 𝑠 − 𝑡 path in
reverse order. If no path 𝑠 − 𝑡 exists, the previous vertex of 𝑡 is undefined.

At the beginning all elements of 𝐷 except of 𝐷 [𝑠] are set to ∞ and all elements of 𝑃 are set to
undefined. The distance 𝐷 [𝑠] of 𝑠 is set to zero. The set of yet unvisited vertices 𝑄 is initialized
with 𝑠. As long as there are unvisited vertices, the element 𝑣 of 𝑄 with the minimal distance in 𝐷 is
popped out of 𝑄. If 𝑣 = 𝑡, the loop can be terminated as the distance of 𝑣 is minimal in 𝑄 and can
therefore not decrease anymore as 𝐷 [𝑣] is the lower limit for any further distance calculation, which
can be seen on line 14. This also halts for all neighbors of 𝑣 as their distance is based recursively on
the distance of 𝑣. If 𝑣 ≠ 𝑡 for each of the neighbors of 𝑣, an alternative distance 𝑢alt is determined by
adding the weight of the edge (𝑢, 𝑣) to the current distance of 𝑣. If 𝑢alt is smaller than the current
distance of 𝑢, the distance of 𝑢 is set to 𝑢alt and the previous vertex of 𝑢 is set to 𝑣. All neighbors of
𝑣 with an 𝑢alt smaller than their current distance are then added to 𝑄 as their current distance to
𝑠 decreased and also their neighbors’s distance may decreased in one of the following iterations.
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2.4 Circuit search

Algorithm 2.1 Dijkstra’s algorithm [Dij59]
1: function dijkstra(𝐺 = (𝑉, 𝐸), 𝑠 ∈ 𝑉, 𝑡 ∈ 𝑉, cost)
2: 𝐷, 𝑃← ∅ // 𝐷 and 𝑃 are arrays of size |𝑉 |
3: 𝑄 ← {𝑠}
4: ∀𝑣 ∈ 𝑉 \ 𝑠 : 𝐷 [𝑣] ← ∞
5: ∀𝑣 ∈ 𝑉 : 𝑃[𝑣] ← undefined
6: 𝐷 [𝑠] = 0
7: while |𝑄 | > 0 do
8: 𝑣 ← 𝑣 ∈ 𝑄 : 𝐷 [𝑣] = 𝑚𝑖𝑛({𝐷 [𝑥] |𝑥 ∈ 𝑄}) // 𝑣 is vertex with minimal distance 𝐷 [𝑣]
9: 𝑄 ← 𝑄 \ 𝑣 // Remove 𝑣 from 𝑄

10: if 𝑣 = 𝑡 then
11: break // Early exit as 𝐷 [𝑡] cannot decreased anymore
12: end if
13: for all 𝑒 = (𝑣, 𝑢) ∈ 𝐸 do // All neighbors 𝑢 of 𝑣
14: 𝑢alt ← 𝐷 [𝑣] + cost(𝑒)
15: if 𝐷 [𝑢] > 𝑢alt then
16: 𝐷 [𝑢] ← 𝑢alt
17: 𝑃[𝑢] ← 𝑣

18: 𝑄 ← 𝑄 ∪ 𝑢 // Add 𝑢 to 𝑄

19: end if
20: end for
21: end while
22: return 𝐷, 𝑃
23: end function

After 𝑄 is empty or the early exit of line 11 terminated the loop, 𝐷 contains the shortest distance of
all vertices 𝑣 ∈ 𝑉 part of the shortest 𝑠 − 𝑡 path or∞ if not reachable from 𝑠 and 𝑃 contains for each
vertex 𝑣 ∈ 𝑉 of the shortest 𝑠 − 𝑡 path the vertex that is previous on this 𝑠 − 𝑡 path or undefined
if the vertex is not reachable from 𝑠. All other entries of 𝐷 and 𝑃 may contain temporary values
and cannot be used for shortest distance computations. If there are multiple shortest paths with the
same distance, the path that is found first is used as result [Dij59].

𝑄 can be implemented as an array or using an advanced data structure like a min-heap in order to
improve performance. The runtime complexity using a min-heap data structure for 𝑄 Dijkstra’s
algorithm has a runtime complexity of 𝑂 (( |𝐸 | + |𝑉 |)𝑙𝑜𝑔 |𝑉 |) [Lia14]. With an almost linear runtime
complexity, Dijksta’s algorithm is suitable for nearly all kinds of real-world routing problems.

As Dijkstra’s algorithm is limited to non-negative edge weights Bhandari suggests a modified
version of Dijkstra’s algorithm, which can handle negative edge weights. This modification can be
done by altering Algorithm 2.1 to allow the same vertex 𝑢 to be added multiple times to 𝑄. This
can happen if 𝑢 was already processed and removed from 𝑄 but because of negative edge weights
𝑢 is added again to 𝑄 with a smaller current distance 𝐷 [𝑢] than in the previous iteration. The
early exit of Algorithm 2.1 in lines 10-12 is no longer possible. The algorithm terminates when 𝑄

is empty. Because 𝑄 will never be empty if 𝐺 contains a cycle with negative accumulated edge
weight 𝐺 must not contain such negative cycles to allow the algorithm to terminate [Bha99a]. As
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the same vertex may be visited multiple times the runtime of the modified version of Dijkstra’s
algorithm may increase. An investigation on runtimes and a comparison to alternative algorithms
like Bellman-Ford is part of [Lew20].

2.4.4 Yen’s Algorithm

Yen’s algorithm finds the 𝑘 shortest 𝑠 − 𝑡 paths by their accumulated edge weight beginning at a
start vertex 𝑠 ∈ 𝑉 and ending at a target vertex 𝑡 ∈ 𝑉 within a weighted, directed graph 𝐺 = (𝑉, 𝐸).
Each of the 𝑘 shortest paths can be determined in polytime.

Algorithm 2.2 Yen’s algorithm [Yen71]
1: function yen(𝐺 = (𝑉, 𝐸), 𝑠 ∈ 𝑉, 𝑡 ∈ 𝑉, cost, 𝑘)
2: result← [dijkstra(𝐺, 𝑠, 𝑡, cost)]
3: for 𝑖 ← 1 to 𝑘 do
4: for 𝑗 ← 0 to |result[𝑖 − 1] | − 2 do
5: 𝑉current ← 𝑉

6: 𝐸current ← 𝐸

7: spurNode← result[𝑖 − 1] [ 𝑗]
8: rootPath← result[𝑖 − 1] [0 : 𝑗]
9: for all 𝑃 ∈ result do

10: if rootPath = 𝑃[0 : 𝑗] then
11: 𝐸current ← 𝐸current \ (𝑃[ 𝑗], 𝑃[ 𝑗 + 1])
12: end if
13: end for
14: 𝑉current ← (𝑉current \ rootPath) ∪ spurNode ∪ 𝑠

15: spurPath = dijkstra((𝑉current, 𝐸current), spurNode, 𝑡, cost)
16: totalPath = rootPath ∪ spurPath
17: end for
18: if |candidates| = 0 then
19: break // No further 𝑠 − 𝑡 path exist
20: end if
21: result[𝑖] ← 𝑐 ∈ candidates : length(𝑐) = min({length(𝑥) |𝑥 ∈ candidates}) //

Candidate with minimal cumulated edge weight
22: candidates← candidates \ result[𝑖]
23: end for
24: return result
25: end function

Algorithm 2.2 shows the pseudo code of Yen’s algorithm. The input is a weighted directed graph
𝐺 = (𝑉, 𝐸), a start vertex 𝑠 ∈ 𝑉 , a target vertex 𝑡 ∈ 𝑉 , a cost function cost : 𝐸 → R≥0, and the
number of to be searched shortest paths 𝑘 . The first step is the computation of the shortest 𝑠 − 𝑡 path
using Dijkstra’s algorithm. The other 𝑘 − 1 shortest paths are determined in ascending order. The
𝑖-th shortest path is determined by looping over the vertices of the 𝑖 − 1-th path and maintaining a set
of possible shortest 𝑠 − 𝑡 paths called “candidates”. As the set of vertices and edges is manipulated
the set of vertices 𝑉 is copied to 𝑉current and the set of edges 𝐸 is copied to 𝐸current. The “spurNode”
is the 𝑗-th vertex of the 𝑖 − 1-th path. The “rootPath” is the 𝑖 − 1-th path but using only the first 𝑗
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vertices. To avoid duplicated nodes, the edges of all previous shortest path from the “spurNode” to
the next vertex of the previous shortest path are removed if the previous shortest path contains the
“rootPath”. All vertices of the “rootPath” except the “spurNode” are then removed from the set of
vertices 𝑉current. The set of candidates is then extended by the path beginning with the “rootPath”
and ending with the shortest path from the “spurNode” to 𝑡. After all possible root paths of the
𝑖 − 1-th shortest path are handles the 𝑖-th shortest path is taken from the set of “candidates” by
selecting the shortest path out of these “candidates”. If the set of “candidates” is empty, no further
𝑠 − 𝑡 path exists and the algorithm terminates and returns all yet found paths in ascending order by
their length. The result of Yen’s algorithm is the list of the 𝑘 shortest 𝑠 − 𝑡 paths [Yen71]. To find
the 𝑘 shortest cycles through a vertex 𝑠 Yen’s algorithm can be used by splitting 𝑠 into two vertices
𝑠1 and 𝑠2 and introducing an edge (𝑠1, 𝑠2).

2.4.5 Bhandari

Bhandari suggests an algorithm to find the 𝑘 edge-disjoint 𝑠 − 𝑡 paths whose accumulated edge
weight is minimal for a given weighted graph 𝐺 = (𝑉, 𝐸) in polytime.

Algorithm 2.3 Bhandari’s algorithm [Bha99b]
1: function bhandari(𝐺 = (𝑉1, 𝐸1), 𝑠 ∈ 𝑉, 𝑡 ∈ 𝑉, cost, 𝑘)
2: 𝐸𝑃1 ← dijkstra(𝐺, 𝑠, 𝑡, cost)
3: for 𝑖 ← 2 to 𝑘 do
4: (𝐼𝑃𝑖

, costmodified) ← inverse(𝐸𝑃𝑖
, cost)

5: 𝐺modified = (𝑉𝑖+1, 𝐸𝑖+1) ← (𝑉𝑖 , (𝐸𝑖 \ 𝐸𝑃𝑖
) ∪ 𝐼𝑃𝑖

)
6: 𝐸𝑃𝑖+1 ← modified_dijkstra(𝐺modified, 𝑠, 𝑡, costmodified)
7: end for
8: 𝑅 ←

𝑘⋃
𝑖=1

𝐸𝑃𝑖

9: 𝑅 ← remove_opposite_edges(𝑅)
10: return 𝑅

11: end function

Algorithm 2.3 shows the pseudo code of Bhandari’s algorithm. The input is a weighted, directed
graph 𝐺 = (𝑉, 𝐸), a start vertex 𝑠 ∈ 𝑉 , a target vertex 𝑡 ∈ 𝑉 , a cost function cost : 𝐸 → R≥0,
and the number of searched paths 𝑘 . The first step is the search for the shortest 𝑠 − 𝑡 path in 𝐺

using Dijkstra’s algorithm. The second step is to find the other 𝑘 − 1 shortest paths iteratively.
To find each of the other 𝑘 − 1 shortest paths the graph of the previous iteration is modified to
ensure edge-disjointedness by removing the edges of the previous path and adding their inverse
counterpart. An edge is inversed by switching its direction so that (𝑥𝑖 , 𝑥 𝑗) becomes (𝑥 𝑗 , 𝑥𝑖) and
assignment of the negative 𝑐𝑜𝑠𝑡modified ((𝑥 𝑗 , 𝑥𝑖)) = −𝑐𝑜𝑠𝑡 ((𝑥𝑖 , 𝑥 𝑗)). Using the modified version of
Dijkstra’s algorithm, which allows negative edge weights, for 𝐺modified reveals the 𝑖-th path 𝑃𝑖 and
its edges 𝐸𝑃𝑖

. To assemble the final 𝑘 𝑠 − 𝑡 paths the edges of all 𝑘 paths 𝐸𝑃𝑖
are merged. Pairs of

edges between the same two nodes with opposite direction and the accumulated edge weight of 0
cancel each other out and are removed using the function “remove_opposite_edges”. The result of
Bhandari’s algorithm is the set of edges of the 𝑘 edge-disjoint paths with the smallest cumulated
edge weight, which can be assembled to form the desired paths [Bha99b].
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Figure 2.2: Example graph for Bhandari’s algorithm [Mac15]

Figures 2.2 to 2.5 depict an example of Bhandari’s algorithm to elaborate the algorithm
in more detail. The input graph 𝐺example = (𝑉, 𝐸) is shown in figure 2.2. It has
the set of vertices 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} and the set of undirected edges 𝐸 =

{{𝐴, 𝐵}, {𝐴, 𝐸}, {𝐵,𝐶}, {𝐶, 𝐷}, {𝐷, 𝐸}, {𝐷, 𝐹}, {𝐷, 𝐻}, {𝐸, 𝐹}, {𝐹, 𝐺}, {𝐺, 𝐻}}. The edge
weight of each edge is 1 and therefore ∀𝑒 ∈ 𝐸 : cost(𝑒) = 1. Bhandari’s algorithm is used
to find the two shortest edge-disjoint 𝐴 − 𝐻 paths. Therefore, the start vertex is 𝑠 = 𝐴 and the target
vertex is 𝑡 = 𝐻.
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Figure 2.3: Step 1: Finding the shortest 𝐴 − 𝐻 path of figure 2.2 [Mac15]

The first step is the execution of Dijkstra’s algorithm to find the shortest 𝐴 − 𝐻 path. As Dijkstra
needs a directed graph each edge {𝑥𝑖 , 𝑥 𝑗} ∈ 𝐸 is replaced with the two edges (𝑥𝑖 , 𝑥 𝑗) and (𝑥 𝑗 , 𝑥𝑖)
pointing in opposite direction both with the same weight as the original edge. Figure 2.3 shows the
result of the run of Dijkstra’s algorithm marked in red. The shortest 𝐴 − 𝐻 path 𝑃1 goes through
the vertices {𝐴, 𝐸, 𝐷, 𝐻} using the edges 𝐸𝑃1 = {(𝐴, 𝐸), (𝐸, 𝐷), (𝐷, 𝐻)} and has the accumulated
weight of 3.

To look for the second shortest path and ensure edge-disjointedness the input graph 𝐺example needs
to be modified. Each edge (𝑥𝑖 , 𝑥 𝑗) ∈ 𝐸𝑃1 is removed from 𝐺example and replaced with an edge
in the opposite direction with the negative weight costmodified ((𝑥 𝑗 , 𝑥𝑖)) = −cost((𝑥𝑖 , 𝑥 𝑗)) of the
original edge. For all other edges 𝑒 ∈ 𝐸 \ 𝐸𝑃1 the weight does not change and therefore the
cost function is equal to the unmodified cost function costmodified (𝑒) = cost(𝑒). Note that the
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Figure 2.4: Step 2: Finding the shortest 𝐴 − 𝐻 path in the modified graph [Mac15]

edges in opposite direction of the edges in 𝐸𝑃1 are omitted as they link to the same edge of the
original undirected graph 𝐺example. The resulting graph 𝐺modified is then used as input for finding
the second shortest 𝐴 − 𝐻 path using the modified version of Dijkstra’s algorithm. Figure 2.4
shows the results of the run of the modified version of Dijkstra’s algorithm marked in blue. The
shortest 𝐴 − 𝐻 path 𝑃2 of 𝐺modified goes through the vertices {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺} using the edges
𝐸𝑃2 = {(𝐴, 𝐵), (𝐵,𝐶), (𝐶, 𝐷), (𝐷, 𝐸), (𝐸, 𝐹), (𝐹, 𝐺), (𝐺, 𝐻)} and has the accumulated weight of
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Figure 2.5: Step 3: Cancel out opposite edges [Mac15]

Figure 2.5 shows how to construct the two shortest edge-disjoint 𝐴 − 𝐻 paths out of 𝑃1 and 𝑃2. If
there are two edges 𝑒1 ∈ 𝐸𝑃1 and 𝑒2 ∈ 𝐸𝑃2 connecting the same two vertices in opposite direction,
these two edges cancel each other out. The correctness of the shortest path search is not affected as
the sum of both edge weight is 0 due to the construction of 𝐺modified using the negative cost of the
original edge. Therefore, the resulting paths are the two shortest 𝐴 − 𝐻 paths. To assemble the two
resulting paths the remaining edges of 𝑃1 and 𝑃2 needs to be joined. Starting from 𝐴 there are only
the two starting edges of the resulting paths left. By following these two edges and using the only
available edge at each vertex results in the two searched paths. Figure 2.5 shows these two paths in
green and yellow. To generate the 𝑘 shortest paths the graph modification and path search using the
modified version of Dijkstra’s algorithm need to be repeated until 𝑘 paths are found. The final path
assembly is then done like the version for 𝑘 = 2.
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2.5 Service

While web services and service computing are ubiquitous the most relevant parts are recapitulated
here. Also, a short summary of problems with concurrency are stated, which are relevant when
services process requests in parallel.

“A service is a self-contained unit of software functionality, or set of functionalities, designed to
complete a specific task such as retrieving specified information or executing an operation. It
contains the code and data integrations necessary to carry out a complete, discrete business function
and can be accessed remotely and interacted with or updated independently.” [Red20b]. A service
is called stateless if it does not store information about the past or other interactions. The state of
interaction lasts only as long as the request takes. After each request the service returns to a state
without knowledge of the former interaction and works independently of other requests [Red20a].
Therefore, stateless services can easily be scaled horizontally.

An application programming interface (API) is the set of interfaces of an application, which can be
used to integrate with the application without knowledge about the application’s internal structure.
The API can therefore be seen as the specified contract between two application, which allows
them to interact and integrate. The API of a service defines the structure of request and the form
of response and is therefore fundamental for any interaction and communication with this service
[Red17].

2.5.1 REST

Representational State Transfer (REST) is an architectural style for distributed systems and mainly
relevant for services using hypermedia. It is based on the stateless interaction between clients and
servers. Servers provide interactive resources. Resources are represented using hypermedia and
request are formulated using the Hypertext Transfer Protocol (HTTP) [Fie00]. Using REST and
HTTP provides therefore a canonical architectural style for service APIs.

HTTP defines the interaction protocol for REST resources. Each request and response message
consists of a status code, a resource representation as payload, and header fields describing the
payload.

Verb Summary Expected response

GET Transfer of a resource to the client. 200 OK
POST Manipulate a resource. 200 OK
PUT Create a new resource. 201 Created
DELETE Remove a resource. 204 No Content

Table 2.5: Selected HTTP verb definitions

Each HTTP method is linked to a HTTP verb, which specifies which HTTP method is requested.
Table 2.5 contains a selection of HTTP methods for accessing resources by their HTTP verb. Also,
the summary of the expected handling and the expected status code of the response are stated. A
GET request requires a resource representation identified by a resource identifier to be transmitted
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to the client. A POST request enforces that the request is processed on the resource based on the
resource’s specification. A PUT request demand that a resource is created or replaced based on the
content of the request. A DELETE request requires the target resource or correlation to be removed
from the server [FR14, pp. 24–30].

Code Name Class

200 OK Success
201 Created Success
204 No Content Success
400 Bad Request Client error
404 Not Found Client error
500 Internal Server Error Server error

Table 2.6: Selected HTTP status code definitions

Table 2.6 contains a selection of relevant HTTP status codes. Codes in the range [200, 299] indicate
that the request was processed successfully. The code range [400, 499] is used for client errors,
which indicate a syntactical or semantical invalid request. A code in [500, 599] represents a server
error that could not be resolved by the server.

The result of a successful GET or POST request is the status code 200 OK. The response of a GET
request is the requested resource. The response of a POST request is the manipulated resource.
The status code 201 Created is the result of a successful PUT request. It is used to indicate that a
new resource was created. The response describes the created resource. A Location header field
contains the address of the newly created resource. The code 204 No Content indicates an empty
body. It is return after a DELETE request indicating that the resource was deleted.

The client error code 400 Bad Request notifies the client about an invalid request. The client error
code 404 Not Found is used to indicate that the requested resource could not be found. The server
error code 500 Internal Server Error is used to describe that the request failed because the server
erred. The response payload body of all failed request should contain a description about the
occurred error [FR14, pp. 57–71].

2.5.2 Concurrency

In order to process request in a performant way without interruptions of other parts of the system a
service can use concurrency to process requests in parallel. Working in parallel can cause special
kinds of failures, which must be addressed. The following definitions are based on the ISO standard
for the C++ programming language. “Two actions are potentially concurrent if [...] they are
performed by different threads, or [...] at least one is performed by a signal handler, and they are not
both performed by the same signal handler invocation” [ISO17, p. 18]
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The list of possible faults and how to handle these to not became failures is as follows:

• Data race: “Two expression evaluations conflict if one of them modifies a memory location
and the other one reads or modifies the same memory location. [...] The execution of a
program contains a data race if it contains two potentially concurrent conflicting actions, at
least one of which is not atomic, and neither happens before the other[...]. Any such data race
results in undefined behavior” [ISO17, pp. 15–18]. Therefore, it is necessary to prohibit data
races by using atomic operations and mutexes as synchronization operations as undefined
behavior cannot be handled during runtime.

• Race condition: A race condition arises when a common resource is accessed concurrently,
and the result is dependent on the timing of the requests. A program containing a race condition
may produce different results during different executions. Unintended non-deterministic
results based on timing are in general non-desirable and should therefore be tackled with
correct synchronization [Pra11]. A race condition may lead to a data race, which must be
prohibited due to its undefined behavior.

• Deadlock: “A deadlock is a condition that may happen in a system composed of multiple
processes that can access shared resources. A deadlock is said to occur when two or more
processes are waiting for each other to release a resource. None of the processes can make any
progress” [Cam11]. As a deadlock is a fault, which may interrupt the overall system activity,
the error that led to the deadlock must be fixed by correcting the interfering synchronization
mechanisms.
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Video games take place in virtual worlds and provide immersive adventures for their players. These
virtual in-game worlds are visualized and shown on a display. The player can influence the game
by using some kind of input device. Music and ambient sound effects are made audible using
speakers.

Connected cars extend cars by additional hardware and software in order to gather detailed data
about the car, its hardware, and its surrounding and connect the cars with the cloud and each other.
As part of the additional hardware, connected cars are equipped with powerful computers and
high-resolution displays with quick response times. This allows video games to be played in a
connected car using the built-in display, speakers and input devices.

But connected cars also offer access to external data sources and additional hardware that goes
beyond display, speakers and input devices. This offers the possibility to augment the gaming
experience and introduce more realism and therefore immersion to the game. In order to take
advantage of these additional abilities in video games, the video games need to be adapted and
extended to integrate the new possibilities. When integrating, the question arises how the real-life
relates to the in-game world and how data can be exchanged.

Extract

Inject

Figure 3.1: The data exchange model
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To elaborate the relations between real-world data and in-game data and how data can be exchanged
to connect the real-life with the video game a data exchange model is introduced. Figure 3.1
contains this data exchange model for data exchange between connected cars and video games
adapted for connected cars. The real-life is represented as car on the left side of the figure, and
the game is represented as video game controller on the right side. The blue arrow labeled with
“Inject” describes the data transfer from the real-life into the game. The data injection into the game
takes effect by altering the in-game state and keeps the game in sync with the real-life. The red
arrow labeled with “Extract” describes the data transfer from the in-game world to the real-life. To
transfer the game data, the in-game state is extracted and can then be used to align the real-world
surrounding to the in-game reality.

Figure 3.2: Car halting on a street

In order to demonstrate the amount of data of an everyday situation, an example is examined.
Figure 3.2 shows a car on a regular real-world street and serves as a representative example for the
real-world environment of cars. The car is in front of red traffic light. The stoplight shines red
indicating that the car is braking in order to stop. Behind the traffic light there is a construction
site on the left half of the street. The street has been repaired at least once, which can be seen on
the heterogeneous thickness of the road pavement. A cyclist is waiting in front of the car. On the
left there are three pedestrians sitting on a bench. The street is surrounded by trees. The picture is
taken in fall and therefore the leaves are yellow, have fallen and are now on the ground surrounding
the trees. There are no leaves on the road surface. In the front of the picture a traffic sign and a
streetlight are visible. In the background are buildings and parked cars. There is a corn field on the
left and grassland on the right. The sun is shining and the sky shines in light blue.

Figure 3.3 shows a screenshot of Bing Maps [Mic21]. The position of the car of figure 3.2 is marked
with a pushpin. It is used to illustrate the additional data that is neither visible nor detectable by
sensors but accessible through the cloud infrastructure of the connected car. The additional spatial
data visualized is the road network including street names, administrative division, vegetation,
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Figure 3.3: Bing Maps screenshot of the surrounding of figure 3.2

abstract 3D models of the buildings, and points of interest like restaurants or bus stops. Further map
related data like routing, traffic information, or satellite images are directly reachable by selecting
the appropriate option in the menu. Other location related data that goes beyond pure spatial data
like opening hours, event schedules, or creation of calendar appointments at a specific location is
visualized and accessible in the same way.

This everyday situation shows how much information is accessible using the visual information
and external data sources located in the cloud. Further external data sources can be used to access
additional data like weather forecasts or leverage the locally available data by adding additional
information or usage of external compute power. In addition, cars can access sensor data like
temperature, wind, distance to other road users, current speed, steering, motor and oil temperature,
air conditioning settings, remaining fuel, car and ambient light settings, information about the audio
system and any other value, which is measurable by an installed sensor. But also, the video game
itself produces data, which can be gathered and analyzed.

Applications, which benefit from the advanced integration of video games in connected cars, can be
put into two categories. The first category is data “injection” and contains the applications that use
the additional information inside the game. The second category is data “extraction” and covers the
applications that use the extracted data from the game. Possible applications that go beyond current
limitations and benefit from the additional data are listed below.

35



3 Vision

3.1 Injection

Using data injection of real-world data into the running game enables many use cases. The list of
possibilities covers:

• Manipulation of in-game state: This makes it feasible to adapt the current state of the game
while the game is active and allows the reaction to environmental changes in or around the
car while keeping the immersion. E.g., if it starts to rain it can also start to rain in-game.

• Real-world surrounding: To create an immersive in-game environment the real-world
environment of the player can be mapped to the in-game world. This includes terrain, objects
and textures. The data sources can be local sensors to determine the surrounding as well as a
data lake in the cloud providing data for the regional city or landscape architecture, the road
network including street types and road signs, rivers, train or aircraft schedules, 3D models of
buildings or further advanced scenery options. As an example, the road data at the position
of the car can be used to generate in-game streets. The player is then able to drive within the
game along the streets that surround them in real-life.

• Actual user / car: To increase realism further 3D models of the actual user respectively the
actual car and the surrounding road users can be used as in-game characters.

• Realistic input devices: By using the car’s steering devices like steering wheel, blinker,
or accelerator pedal as input device for the game it is possible to convey a realistic driving
experience when the player drives through the in-game world.

3.2 Extraction

By extracting and gathering the in-game state further possibilities arise. These include:

• Mapping of in-game state: It is possible to map the in-game conditions to the car’s hardware.
This includes to activate the car’s fans to map in-game wind conditions, the usage of the
car’s air conditioning to transmit the in-game temperature, or to splash washer fluid over the
windscreen to simulate rain.

• Augmented reality: The extracted data can also be used to create augmented reality
environments. In combination with full autonomous driving this can be used by the
passengers to play augmented reality games inside their car while driving.

• Telemetry: Collecting the extracted data for big data analysis can be used to find out what
players actually do in-game and how to improve the games based on this analysis. Also
the analysis results can be used to introduce comprehensive player statistics, leaderboards,
achievements, or special user challenges in order to increase the players’s motivation.
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3.3 Prototypes

As representative example for sensible integration of video games in connected cars, the kart
racing game SuperTuxKart is examined. It also serves as foundation for further research projects,
prototypes, and feasibility studies to show the potential of advanced integration of video games into
connected cars.

Figure 3.4: SuperTuxKart surrounding of karts

Figure 3.4 shows a screenshot of SuperTuxKart running a race on the track “Cornfield Crossing”
using the character “Beastie”. The kart is shown in the center. The race takes place between
multiple cornfields on a dirt road. On the left side a combine harvester produces hay bales. A power
line runs through the landscape. There are mountains in the background. The sky is realized as a
blue and purple color gradient. In the lower left corner, a minimap of the current track is visible.
Three bonus boxes are places in front of the kart.

In comparison to the real-world environment of figure 3.2 the in-game world of figure 3.4 reveals
many similarities. Both worlds offer lanes on which the vehicles can drive, have a surrounding
landscape with fields and trees, and have additional road user like the combine harvester in-game
and the cyclist and pedestrians in the real-world image. Also, both worlds can have objects placed
around the streets, e.g., buildings, construction sites, street signs, trees, benches, traffic lights, street
lights, leaves or parked vehicles. Weather effects like sky color, sun, and shadows are also available
in both worlds. But there are differences. One main difference is the lack of details in the in-game
world. Reasons for that lack of detail are for example the low resolution of in-game textures and
their repetition, or the lower number of placed objects in-game. As a concrete example for missing
details from the figures the road surface in-game is just a repetition of one dirt texture whereas in
real-life the road surface can differ, e.g., like the repaired asphalt in the real-world image. The
reduced number of objects can be seen at the lack of stoplights in-game. Another main difference is
the usage of a comic-style art, which further reduces realism. Also, there are minor differences
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to improve gameplay in-game. Instead of realistic cars fictional karts and characters are used. To
show additional information the game uses additional user interface components like a minimap to
show the road network. In the real-world car this information is visible on an additional screen
as in figure 3.3 and may not be visible for the driver all the time. Additional objects like bonus
boxes can be added to the world. Another fundamental difference is that the real-life changes during
a day, during the change of season, or because of environmental changes whereas the in-game
world remains rather static. All these gameplay changes make the game more enjoyable but less
realistic.

This comparison shows that the in-game world is a simplified version of the real-life. Details
are omitted, additional user interface elements and fictional items are placed. But regarding the
similarities the in-game world can be used as foundation for exchanging information between the
real-life and the game. To put real-world data into the in-game world this data needs to be mapped
to the simplified model of the in-game world and to use the data extracted out of the in-game world
this data may need to be extended with further details. Additional gameplay elements need to be
mapped to adequate real-world counterparts.

To approach this vision for games in connected cars the realized prototypes are based on two stages
of the game life cycle. The first stage covers any action that is done before the start of the game.
The second stage consists of everything that takes place while the game is active. Anything after the
end of the game can be seen as before the next game and thus be part of the first stage. As starting
point for projects for the first stage, the first realized prototype is the usage of existing data to form
the in-game world. This world is then loaded at the beginning of the game and transfers the player
into a virtual reproduction of the real-life surrounding them. To fit into the world model of the
game this reproduction is of abstract manner and changes the reality in ways that integrate into the
gameplay but reduce realism. This prototype can then be used as an example or starting point for
more sophisticated concepts or projects. The second prototype is the creation of a REST API for
SuperTuxKart. This REST API serves as abstraction layer for the SuperTuxKart internals and is
the easy-to-use and extendable foundation for further projects that implement the vision for video
games in connected cars. It eases the exchange of information and state from and into the game and
allows the user to manipulate the game or the surrounding while the game is running. It is in the
second stage as it is launched with the game and terminated with the end of the game.
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The first prototypically realized idea of the data injection part of the vision for advanced integration
of video games into connected cars is the “World Generation” for SuperTuxKart. It covers the
generation of a racetrack based on real-world data, which can be loaded by SuperTuxKart. After the
injection of the generated racetrack, it can be selected for new races. Races can then take place in
the generated track and provide an immersive replication of the real-life. The World Generation is
done before the race start and therefore realized as performant, independent service, which can be
consulted on demand.

4.1 State of the Art

There are already some suggestions to solve subproblems of the automated World Generation.
SuperTuxKart tracks can be manually designed using Blender using a SuperTuxKart add-on.
Further details are elaborated in section 4.1.1. Section 4.1.2 portrays the stand-alone application
OSM2World, which can generate areal 3D models out of OpenStreetMap (OSM) data. As alternative
for OSM2World section 4.1.3 presents a Blender add-on, which extends Blender with geographic
information system (GIS) functionality and is able to generate 3D models out of OSM, terrain,
and satellite data inside Blender. Relevant ideas for finding an appropriate racetrack within a road
network with relaxed time and path conditions are listed in section 4.1.4.

4.1.1 SuperTuxKart

Tracks for SuperTuxKart are designed by hand using the open-source 3D computer graphics software
Blender [Ble21] with a SuperTuxKart add-on. The SuperTuxKart add-on allows the export of
the Blender 3D model into the SuperTuxKart track format. The first step is the manual creation
of an in-game world using the regular Blender designer and utilities for 3D model construction.
Then the racetrack path, checklines, objects, sound emitters, and bonus items are placed. Existing
SuperTuxKart 3D models can also be embedded. To release the track, the meta data like track name,
author, or music information is added. The completed track is then either submitted to be part of
the next SuperTuxKart release or made available for download as add-on track. The SuperTuxKart
documentation states some guides on how to create tracks [Sup16].

4.1.2 OSM2World

OSM2World is a stand-alone, open-source application that produces 3D models based on OSM
data. The input is a file containing the OSM data and the output is the 3D model of the world in one
of many common standard formats for 3D data. Figure 4.1 shows an example of a generated 3D
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Figure 4.1: OSM2World exemplary mapping of OpenStreetMap data to a 3D model [Ope21c]

model using OSM2World. Buildings are mapped using their shape and height. Streets, railroads,
and rivers are transformed to 2D shapes and made visible using colors. Objects like trees, benches,
or bridges are mapped using an embedded set of predefined 3D models. Additional pre-built 3D
miniatures of some historic sight and points of interest are also available. Only small map fragments
are supported as according to the documentation inefficient algorithm are used and are not yet
replaced with faster alternatives. There is an experimental support for elevation to support terrain
data [Ope21c].

3D models generated by OSM2World can be imported into Blender and the regular SuperTuxKart
track creation workflow of section 4.1.1 can be used to construct a SuperTuxKart track. Using the
imported 3D model as foundation the racetrack path, objects, and bonus items need to be added
by hand. Predefined 3D models, e.g., of trees, which enable advanced SuperTuxKart gameplay
possibilities like sound effects, animation, or an adaptive level of detail (LOD), cannot be used
to replace the OSM2World models of these objects without manual editing. In general, each
replacement or modification of parts of the OSM2World 3D model requires manual editing using
the appropriate Blender functionality. The workflow is in conclusion to manually generate the 3D
model using OSM2World and the OSM data for a specific location as input, import the generated
3D model into blender, and then design the remaining parts of the SuperTuxKart racetrack by hand
[Ope19].

4.1.3 Blender GIS

Blender GIS is an add-on for blender that enables GIS functionality within Blender. It allows the
usage of satellite images, OSM data, and terrain data for elevation to automatically generate a 3D
model of the real-life. The created models can then be used within Blender for further modeling or
exported using the default Blender export functionality [Ble20]. Figure 4.2 contains a screenshot of
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Figure 4.2: Blender GIS screenshot

Blender GIS using satellite images as ground textures and generated 3D models of buildings and
streets highlighted in orange. Terrain information is used to generate elevation, which can be seen
at the lowered buildings in the background.

4.1.4 Racetrack Generation

A road network can be mapped to a directed, weighted graph where each road segment corresponds
to an edge and each crossroads corresponds to a vertex. The cost function assigns to each edge the
linear distance between the initial and terminal vertex of the edge as weight. Out of the graph point
of view a racetrack is a path or cycle in a road network. The objective of the racetrack generation
is to find a racetrack in a road network with a specific length 𝑙, which starts at a specific vertex 𝑠.
Willems et al. and Lewis each suggest an algorithm to find such a racetrack within a given road
network.

Willems et al. suggest to use Yen’s algorithm as described in section 2.4.4 to search for the shortest
path with minimum length 𝑙. Yen’s algorithm is adapted to not terminate after the first 𝑘 shortest
paths but after the first shortest path that is longer than 𝑙. To find cycles Willems et al. suggest to
adapt the input graph by splitting 𝑠 into two artificial vertices 𝑠1 and 𝑠2 and then use Yen’s algorithm
to find the path between 𝑠1 and 𝑠2 [WZR18]. Whereas the racetrack property of being at least as
long as 𝑙 but also being as close as possible to 𝑙 enables many real-world use-cases it comes at the
cost of 𝑘 being not constant. By choosing 𝑙 large enough the algorithm is able to find Hamiltonian
cycles, which leads to an exponential worst case runtime complexity. But also 𝑘 is a lower bound
for the runtime complexity as at least 𝑘 paths are found. Considering a grid graph as part of a road
network and the shortest 𝑠 − 𝑡 paths cross the grid graph. If 𝑙 is chosen large enough, all cycles of
the grid graph must be considered because Yen’s algorithm finds all 𝑠 − 𝑡 paths in ascending order.
The number of cycles in a grid graph has a lower bound of Ω(2𝑛) [Mat17]. Therefore, also 𝑘 has a
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lower bound of Ω(2𝑛). This leads to an overall exponential worst case runtime complexity. As road
networks in cities often contain grid graphs as subgraphs and 𝑙 is large enough to cover some of
these grid graphs this could lead to serious runtime issues.

Lewis suggests to use Bhandari’s algorithm with 𝑘 = 2 as heuristic for finding appropriate racetracks
in polytime by starting at 𝑠 and choosing the target vertex 𝑡 far enough. The two found paths are then
joined to get a cyclic racetrack. As the best 𝑡 for finding the circuit whose length is closest to 𝑙 cannot
be determined upfront in polytime it is suggested to heuristic choose a vertex 𝑡 being close to 1

2 · 𝑙
away from 𝑠 [Lew20]. As Bhandari’s algorithm uses the shortest path search to determine both paths
the paths are in general rather straight and have few sharp turns, which is also a desirable property
of racetracks as the vehicles do not have to brake. But that does not always halt. E.g., the shortest
path between two diagonal vertices in a grid graph consists of many rectangular turns. Another
drawback is that Bhandari’s algorithm only guarantees that the racetrack is edge-disjoint. Therefore,
vertices may not be unique in the racetrack, which might lead to confusion while driving.

4.2 Requirements

The objective of the World Generation is to create an in-game world based on existing real-world
data. Given a geo-spatial position it uses OpenStreetMap data as well as satellite images and public
domain textures to generate a racetrack. This racetrack can then be loaded by SuperTuxKart, and
the user can drive through this reproduction of the real-life. To integrate with SuperTuxKart a
cyclic path based on the OpenStreetMap road network is computed and allows the user to score
laps following this path through the in-game world. Along this path collectable bonus items are
distributed. Objects like trees are mapped to pre-built SuperTuxKart models. Buildings are created
and texturized based on their shape and their height. Table 4.1 shows the requirements set up for
the World Generation project.

Table 4.1: World Generation requirements

W1-1 Web service The result of the project shall be a web service.
W1-2 Standalone The service shall not require any SuperTuxKart coding to build or

execute.
W1-3 Non-interactive The service shall compute the result based on the input

parameters without further user interaction.
W1-4 Performance Each request shall be processed in at most the magnitude of one

minute.

W2 Input The service shall be able to process requests with the parameters
position as pair of longitude and latitude and the size of the area
that shall be replicated to the in-game world.

№ Title Definition

Continued on next page
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Table 4.1: World Generation requirements (Continued)

W3-1 Output The output of each request shall be a SuperTuxKart track
compressed as ZIP archive including all data that is needed to
load and use the track in SuperTuxKart.

W3-2 World The track shall contain a 3D model of the real-life.
W3-3 World size The world size shall match the given size specified as parameter.
W3-4 Textures Each structure of the 3D model shall be texturized based either on

real-world data or following the SuperTuxKart art style.
W3-5 Racetrack path Given an existing road network the service shall find a cyclic path

through the road network starting and ending at the closest road
segment to the input position.

W3-6 Path length The path shall have approximately maximum length.
W3-7 Path intersections The racetrack path shall not contain the same vertex or edge more

than once.
W3-8 Path curvature The racetrack path shall contain as few sharp turns as possible to

allow the user to drive along the track with as little braking as
possible.

W3-9 Sight The world shall not contain parts that are out of sight following
the racetrack path.

W3-10 Objects Some pre-built SuperTuxKart objects are part of each
SuperTuxKart installation. If there exists a natural real-world
counterpart, it shall be mapped to the in-game object, i.e., a
real-world tree shall be mapped to a SuperTuxKart tree object.

W3-11 Bonus items Bonus items shall be distributed along the path through the
in-game world.

W3-12 Level of detail The in-game world shall be a compromise to be as realistic as
possible but also match the performance requirements and
integrate into the SuperTuxKart gameplay and art style.

W4 Real-world data The service shall use freely accessible real-world data sources to
compute the in-game world.

W5-1 Portability The service shall operate platform independently.
W5-2 Extensibility It shall be possible to add additional data sources without

changing the existing data sources’s implementation.
W5-3 Scalability The service shall be stateless to allow easy scale-out.

№ Title Definition
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4.3 Design of Solution

To fulfill the requirements W1-1, W1-2, W1-3, and W5-3 the World Generation application is
implemented as a stateless service. Each World Generation is designed as request to the service.
The input parameters of each request as defined by requirement W2 are position as longitude and
latitude and the area that should be considered and mapped to the generated in-game world. The
response and therefore result of the World Generation request as defined by requirement W3-1 is a
SuperTuxKart track as ZIP archive containing all track constituents as described in section 2.3. The
generated track can then be loaded into SuperTuxKart, and races can take place in a model of the
real-world surrounding. As data sources OSM data and satellite images are used as foundation for
the generated in-game world.

Figure 4.3 shows the process of the World Generation. The first step is to gather the OSM data
for the specified position and area. The OSM data consists of the real-world road network and the
positions of real-world objects. Using the OSM data as input the mapping of objects, the racetrack
path computation, and the 3D model generation can be done independently and in parallel. The
mapping of objects step maps the OSM objects to appropriate predefined SuperTuxKart objects.
The result of the mapping is a list of in-game objects with their position, rotation, and scale. The
racetrack path computation uses the road network and the real-world position of the car and finds a
cycle through the street graph with a specific minimum length and no duplicated vertices or edges.
Using the racetrack path as input the quads, and the checklines can be computed, and the bonus
items can be placed. To create the 3D model in addition to the OSM data also the satellite images
are used. The step “Gather satellite images” downloads the satellite images from a map tile server.
Each tile of the map corresponds to one satellite image. All map tiles for the selected area with
their satellite image as texture form the basemap for the in-game world. The step “Generate world
model” generates building models for the building shapes defined in the OSM data and places them
on the basemap. The combination of basemap and buildings then results in the 3D model in the
SPM format as defined in section 2.2. The “Objects”, “Quads”, “Checklines”, “Bonus items”, and
the “3D model” are finally packed and result in the track archive in the ZIP format.

4.3.1 Object Mapping

To fulfill requirement W3-10 suitable real-world objects of the OSM data are mapped to in-game
objects. The mapping of objects is a one-to-one mapping of OSM objects to SuperTuxKart
objects. The SuperTuxKart objects are predefined 3D models included in the default SuperTuxKart
installation and can be placed in the in-game world in an arbitrary amount and at arbitrary positions.
The object mapping step consists of filtering the OSM object nodes for objects that have an
appropriate predefined SuperTuxKart counterpart, e.g., trees, and transforming the OSM object to
its in-game counterpart. The result of the transformation is for each suitable real-world object a
tuple consisting of the identifier of the predefined SuperTuxKart object, the position of the object
transformed to the in-game coordinate system, the scaling, and the rotation of the 3D model. Finally,
the resulting list of tuples is mapped to XML elements following the SuperTuxKart schema and
placed in the “scene.xml” file.
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Figure 4.3: UML activity diagram of the World Generation
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4.3.2 Racetrack Path

The SuperTuxKart’s guidelines for gameplay define that a racetrack follows exactly one path through
the world. This path should be unambiguous and clear to the user so that they always know where
to go and where the surrounding terrain begins. While racing the karts follow the racetrack path to
compete in the race. Many consecutive or tight curves should be avoided as they increase driving
difficulty [Sup19]. Requirement W3-5 requires that such a racetrack needs to be found based on
the OSM data. Therefore the OSM road network is used as input to allow karts to drive along the
real-world streets, which is the natural mapping of real-world streets and avoids confusion. The
usage of the road network as graph with inherent spatial meaning allows the usage of graph routing
algorithms to find the racetrack path. According to requirement W3-6 the racetrack path should
be heuristically as long as possible. Requirements W3-5, W3-6, and W3-7 can all be achieved by
using Willems et al.’s suggestion to use Yen’s algorithm, but requirement W3-8 states that sharp
turns shall be avoided. Furthermore, the algorithm’s runtime might be too high for road networks
as required by requirement W1-4. Lewis idea of using Bhandari’s algorithm to find racetrack paths
fulfills W1-4, W3-5, W3-6, and W3-8, but to further reduce confusion, requirement W3-7 states
that nodes must be unique in the racetrack path.

The idea to solve this problem is to use an extension of Bhandari’s algorithm called Suurballe’s
algorithm. Suurballe’s algorithm comprises all guarantees of Bhandari’s algorithm and further
guarantees that each vertex on the found path is unique [Suu74].
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Figure 4.4: Example graph for Suurballe’s algorithm [Mac15]

The differences between Bhandari’s algorithm and Suurballe’s algorithm are described with an
example. Figure 4.4 shows the input graph. The objective is to find the two shortest 𝐴 − 𝐻 paths,
which can then be joined to a cycle. The first shortest 𝐴 − 𝐻 path is marked in red. As in figure 2.4
the next step is the inversion of edges of the first shortest 𝐴 −𝐻 path and assignment of the negative
weights of the original edges to the inversed edges 𝐼. After the inversion step Suurballe’s algorithm
splits each vertex 𝑣 of the first shortest 𝐴 − 𝐻 path into two vertices 𝑣in and 𝑣out.

Figure 4.5 shows the inversed edges and split vertices of figure 4.4. For each split vertex 𝑣 an edge
(𝑣out, 𝑣in) with weight 0 is added. All original ingoing edges (·, 𝑣) are altered to (·, 𝑣in) and all
original outgoing edges (𝑣, ·) are altered to (𝑣out, ·). Each inversed edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐼 is altered to
point from the “in” vertex to the “out” vertex and results therefore in the edge (𝑣𝑖in , 𝑣 𝑗out ). The
remaining steps of Suurballe’s algorithm are identical to Bhandari’s algorithm.
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Figure 4.5: Example graph of figure 4.4 with inversed edges and split vertices [Mac15]

The steps to determine the racetrack path are therefore as follows:

1. Sort all road segments by their distance to the car’s position.

2. Starting at the closest segment Dijkstra’s algorithm is used to determine the shortest distance
to all other vertices in the street graph.

3. Starting at the furthest vertex Suurballe’s algorithm finds the corresponding second shortest
path. Both paths can then be joined to form the racetrack path without duplicated vertices.

4. If there is no second path, go back to step 3 using the next furthest vertex.

5. If there is no racetrack path for the segment, go back to step 2 with the next closest segment.

6. If no racetrack path can be found in the whole street graph, the request fails.

Using this application of Suuraballe’s algorithm enables finding long racetrack cycles in polytime.
As the street graph is typically connected the algorithm usually terminates after the first execution
of step 3. The resulting racetrack path is then used as input for further processing.

4.3.3 Quads

To allow SuperTuxKart to show the minimap of the track and enable the AI for karts to drive along
the racetrack path SuperTuxKart requires the racetrack path segments to be enriched with track
width information. Therefore, the displacements for a predefined track width of the racetrack path
are computed and split to one quad per edge of the racetrack path. Finally, all quads are serialized
by their endpoints in counterclockwise order as XML elements conforming the SuperTuxKart XML
schema and stored into the file “quads.xml”. The order of quads is defined in the file “graph.xml”.

To adapt to curvatures, the displacements are computed by computing the angle bisector of two
consecutive racetrack path segments. On the angle bisector on both sides of the intersection point an
auxiliary point is added in a distance of 0.5 forming a slope segment with the length 1. Connecting
two consecutive slope segments with one connection segment on each of both sides of the racetrack
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Figure 4.6: Quad construction based on triangular racetrack
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Figure 4.7: Finalize quad construction of figure 4.6 through connection segments
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Figure 4.8: Real-world quad construction example

path segment results in the quad for the racetrack path segment. Vertices on a straight line between
their adjacent vertices are skipped during quad computation as this would not create new information
but just split the surrounding quad.

The displacement segment computation based on a given racetrack path is described with the
example shown in figure 4.6. The racetrack path is colored in black and goes through the vertices 𝐴,
𝐵, and 𝐶. The slope segments are marked in red with their auxiliary endpoints on both sides shown
in blue. The first step to compute the slope is to compute the angle 𝛼 between two consecutive
racetrack path segments, e.g., 𝑎 and 𝑏.

𝐷𝑖 = 𝑃𝑖 − 𝑃𝑖−1(4.1)
𝛼𝑖 = arctan2(𝐷𝑖−2, 𝐷𝑖−1) − arctan2(𝐷𝑖−1, 𝐷𝑖)(4.2)

As the order of auxiliary points is important for the serialization in counterclockwise order it is
necessary to compute 𝛼𝑖 as the left angle between the segments 𝑖 − 1 and 𝑖. It is important to
not calculate the smaller angle between the two segments. Therefore, 𝛼𝑖 can be computed as
described in equation (4.2) by using the arctan2 and the directional vector 𝐷𝑖 of the segment 𝑖. The
computation of 𝐷𝑖 is described in equation (4.1) with 𝑃𝑖 being the endpoint of the segment and
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𝑃𝑖−1 being the starting point of the segment. For further calculations 𝛼𝑖 is also shifted to be in
[−𝜋, +𝜋].

𝑇 (𝜙) =
(
cos(𝜙) − sin(𝜙)
sin(𝜙) cos(𝜙)

)
(4.3)

𝑇left (𝛼) = 𝑇 (1
2
𝛼 + 𝜋

2
)(4.4)

𝑇right (𝛼) = 𝑇 (1
2
𝛼 − 𝜋

2
)(4.5)

𝑆left𝑖 = 𝑃𝑖 +
1
2
· 𝑇left (𝛼𝑖) ·

𝐷𝑖

|𝐷𝑖 |
(4.6)

𝑆right𝑖 = 𝑃𝑖 +
1
2
· 𝑇right (𝛼𝑖) ·

𝐷𝑖

|𝐷𝑖 |
(4.7)

Using the counterclockwise 2D transformation matrix for the angle 𝜙 described in equation (4.3)
the endpoints for the slope segments can be computed. The transformation matrix for an angle 𝛼

along the angle bisector in the left direction is described in equation (4.4) and in right direction in
equation (4.5). The computation of the left slope endpoint for segment 𝑖 is defined in equation (4.6)
and for the right slope endpoint in equation (4.7) by adding the normalized and transformed
directional vector scaled to the length 0.5 to the endpoint of the segment. The scaling to 0.5 is used
to set the length of the slope segments to 1. Connecting both endpoints of the slope segment results
in the slope segment itself.

The addition of the connection segments of figure 4.6 to complete the quad construction is shown in
figure 4.7. The connection segments are thereby colored in green. The resulting serialized quads in
counterclockwise order are 𝐷𝐸𝐹𝐺, 𝐺𝐹𝐻𝐼, and 𝐼𝐻𝐸𝐷. As only the endpoints are required for
the serialization the connection segment computation can be omitted as the endpoints are already
determined for the slope segments and is only shown here to visualize the interpretation of the quad
data in SuperTuxKart.

Figure 4.8 shows a complex example of the quad generation based on real-world data. The racetrack
path is shown as black path. The computed slopes are depicted in red for each vertex of the racetrack
path. The green segments represent the connection segments. Therefore, each quad consists of two
red slope segments and two green connection segments of two consecutive vertices. Each quad is
serialized by creating a tuple of the four endpoints of the segments in counterclockwise order. As
visible for point 𝐿 all vertices that are on a straight line between the previous and next vertex are
omitted for quad generation.

4.3.4 Checklines

The checklines are required for lap counting and to ensure that the player does not skip parts of
the track. The checklines must be crossed in consecutive order and no checkline can be omitted.
Therefore, checklines are an essential constituent of each SuperTuxKart track.

The idea to implement checklines in the generated in-game model of the real-life is to use orthogonal
lines to the racetrack path segments. The checkline is placed in the center of the segment with a
specified width. The width of the checkline is chosen to be large enough to allow driving aside the
road. The road segment must thereby be longer than a specified minimum length to allow cutting
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edges as checklines must be crossed and putting a checkline on a short segment forces the kart to
drive along that segment. Intersections with previous checklines must be avoided as this could
lead to driving through the checklines in the wrong order while still following the racetrack path,
especially in curves. Therefore, the idea is to loop through the racetrack path segments. If the
segment is long enough and the checkline does not intersect the previous checkline, the checkline is
added to the list of checklines. There needs to be at least one checkline to enable the lap counting
functionality. Finally, each checkline including its predecessor is stored as XML element following
the SuperTuxKart schema and placed in the “scene.xml” file.

The segment intersections can be computed by transforming the segments to linear equations and
calculating their intersection point. If the intersection point is within the segment boundaries, the
checkline is dismissed.

4.3.5 Bonus Items

To integrate into the SuperTuxKart universe and enable further gameplay opportunities like speed-up
and guidance, requirement W3-11 requires bonus items to be places along the racetrack. It is
thereby important to place the bonus items in the right distance between the previous and next
bonus items to not interfere with previously collected bonus items but also to place enough bonus
items be able to benefit from the gameplay opportunities. To realize the bonus item placement the
idea is to loop over the checklines and place the bonus items uniformly on a straight line along the
checkline if the distance to the previously placed bonus items matches a certain threshold. The
threshold is thereby a fix distance and chosen to be approximately the distance that is needed to
consume a speed-up bonus item as a compromise, which matches the SuperTuxKart gameplay for
bonus items. Finally, each bonus item is mapped to an XML element following the SuperTuxKart
schema and placed in the “scene.xml” file.

4.3.6 3D model

The track takes place in a 3D model of the real-life stored in the SPM format, which requires to map
the real-life to texturized, or colored polygons. As in other current solutions like Blender GIS this is
possible by using satellite images as basemap and generating building models based on the building
shapes located in the OSM data. The basemap is thereby a plane on ground level. The satellite
images are taken from a map tile server, which splits the map into squarish tiles. For each tile in the
specified area around the car’s location as specified in requirement W3-3 the corresponding satellite
image is downloaded. As the tile is squarish it can be represented as two triangles. To match the
requirements W3-2 and W3-4 tiles are texturized and assembled to form the basemap on which the
karts can drive.

To further increase realism building models are created by using the shape of the building stored in
the OSM data and augment it with height information. This height information is either given, or
can be computed by the number of floors, or chosen randomly in a reasonable interval. Following
requirement W3-4 the cuboids are then texturized by using public domain building textures of
different building types and placed on the basemap at the position of the real-world building. The
public domain building textures are cropped between the windows to be able to match different wide
building walls. Therefore, to texturize a building, the building type is determined by the building’s
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height, and the walls are texturized by the wall’s width with the cropped building images. Finally,
the 3D model is rectangularly cropped along the outer boundaries of the racetrack path including
some padding to remove parts out of sight as required by requirement W3-9 to reduce map size.
The resulting SPM file is then packed into the final ZIP archive.

4.4 Realization of Solution

As the service shall be platform independent and easily extendible for others the service is
implemented using the TypeScript programming language for the Node.js [Ope21a] runtime
environment. Access to external data sources via HTTP is encapsulated using axios [Zab21]. Matrix
operations are implemented using the math.js [Jon21] library. The resulting ZIP archive with all
track constituents is packed using JSZip [KDBA21].

To implement the suggested solution the algorithm of figure 4.3 is transformed into an object-
oriented application. Therefore, the class structure of the implemented application is elaborated.
Furthermore, the structures of input data from OSM, and a map tile server are examined in detail.

4.4.1 Data

OSM data consists of the elements “nodes”, “ways”, and “relations”. A node is a specific point on
the map. It is identified by a unique identifier. Its position is defined by latitude and longitude. A
way is a list of nodes, which expresses correlation between these nodes. For further processing the
nodes of a way are linearly connected resulting in a polyline. Ways are used to represent roads,
rivers, or shapes. A relation adds relation data to other elements, e.g., which set of ways form a
highway.

For each of the basic elements, tags can be specified. A tag adds the intention to an element and is
used to determine how to use the element. E.g., a tag specifies whether a way is a road, or a building.
[Ope21b]. The OSM API allows access to all elements by specifying the bounding box of the
requested area. The elements are then accessible and serialized as XML or JSON. For processing
nodes can be used independently and therefore do not require other data to be accessible. As ways
consist of nodes it is necessary to first process all nodes to make them accessible while processing a
way. This makes the processing of OSM data a two-stage procedure.

Satellite images are available using a map tile service. The map is thereby a 2D projection of
the geo-spatial data of the earth as ellipsoid in the well-known Mercator projection. As geo-data
may be huge it is necessary to allow access to be restricted to a certain area or level of detail.
Therefore, the map is split into tiles on different abstraction levels. Each tile corresponds to an
image with the resolution 256x256. The splitting of map data on three different abstraction levels is
shown in figure 4.9. As visible the first level consists of four tiles resulting in a total map size of
512x512. Each level of abstraction doubles the available resolution and therefore the accessible
data. Therefore, each tile on the same abstraction level corresponds to four tiles on the next finer
lever of detail.
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Figure 4.9: Map tile composition [Mic18]

To access a certain tile the tile needs to be addressable. Figure 4.9 shows the addressing of tiles on
different abstraction levels for Bing Maps using a quadkey. The quadkey is thereby marked in red.
Using the quadkey as identifier the tile data can then be downloaded as image [Mic18]. Other map
tile server providers may offer different addressing schemes.

To gather the map data for a certain area on a certain level all tiles on this level intersecting the
specified area are addressed and downloaded. When all tiles are downloaded, the tiles are merged
and form the map data for the whole requested area.

4.4.2 Implementation

Figure 4.10 shows the implementation class diagram of the request handling for the World Generation
service. The request handling is done by the Server. The Server receives a request, distributes
the request to the OsmDownloader, the StreetGraph, the TileGenerator, the BonusItemCreator, the
ObjectMapper, the SpmCreator, the BuildingCreator, and calls the TrackConstituentCollector to
pack the track constituents to the resulting archive. The resulting archive is then packed and returned
to the requester. The server endpoints listen for HTTP GET requests and expects the longitude,
latitude, and the expected number of tiles as URL parameters. In case of an error, or invalid user
parameters the logic of each class called by the Server throws an exception. The Server catches
the exception and return the error code “400 Bad Request” in case of invalid parameters, or “500
Internal Server Error” in case of an error in the application logic. If the request is successful, the
status code “200 OK” with the resulting archive as ZIP and the “Content-Type” header for ZIP
archives are returned.
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Figure 4.10: UML implementation class diagram of World Generation
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Following the algorithm structure of figure 4.3 the processing is mapped to calls to the class
hierarchy. The order of calls is thereby as follows:

1. The Server receives request for World Generation. If longitude, latitude, or the expected
number of tiles are missing, the error code “400 Bad Request” is returned and the algorithm
terminates.

2. The Server creates an instance of the TrackConstituentCollector to collected the computed
results. The TrackConstituentCollector maps the computed results into the expected
SuperTuxKart format. The TrackConstituentCollector uses thereby the SceneGenerator, and
the StaticXml as helper classes. The SceneGenerator collects the results for the “scene.xml”
file. StaticXml contains static XML files for “track.xml”, and “materials.xml”.

3. The Server initiates the download of the map tiles via the TileGenerator.

4. The TileGenerator download all map tiles in the specified area in parallel and computes the
bounding box of all intersecting tiles.

5. The Server creates an instance of the SpmCreator for the creation of the 3D model of the
in-game world. The SpmCreator collects materials and texturized polygons. Polygons are
thereby represented as instances of Polygon to encapsulate vertex data and vertex correlations
by a list of triangles consisting of the corresponding vertex indices. The polygon vertices are
represented as instances of PolygonVertex to encapsulate position, color, and texture. The
final 3D model in the SPM format is created by concatenating the results of createHeader,
createMaterialHeader, and writePolygonData.

6. The downloaded tiles are added as materials to the SpmCreator instance.

7. The Server uses the static method download of OsmDownloader to gather the OSM data for the
computed bounding box.

8. The OSM ways are filtered for building shapes and 3D building models are created by the
BuildingCreator. Each building is thereby mapped to an instance of Building to encapsulate
shape, height, and textures.

9. Using the tiles and building models the SpmCreator generates the final 3D model of the
in-game world and stores it in the TrackConstituentCollector.

10. The Server creates a StreetGraph for the downloaded OSM data.

11. The StreetGraph converts the OSM nodes, and ways to a Graph. Nodes are mapped to instance
of Vertex. Ways are mapped to instances of Edge. An instance of Edge is thereby from a
Vertex to another Vertex, and has a weight stored as member.

12. The StreetGraph uses Suurballe’s algorithm in findRoutingTrack. The Graph supports the
needed operations via Dijkstra’s algorithm as allToAllShortestPath, the modified version
of Dijkstra’s algorithm as modifiedShortestPath, the splitting and merging of vertices via
splitVertices and resetSplitVertices. The method modifiedShortestPath thereby return
the length of the shortest path or infinity if no path exists. To construct the final path the
method getPathOfModifiedDijkstra is called. All instances of Dijkstra’s algorithm and its
modified version require PriorityQueue as a data structure for fast access of the next closest
vertex and fast insertion of further vertices. PriorityQueue is thereby implemented as binary
min-heap.
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13. Using the computed racetrack path createQuadsFromRoute generates the quads as instances
of Quad. Following the SuperTuxKart logic a quad consists thereby of four points either as
coordinates or a reference to a previous point as formatted string.

14. The checklines for the racetrack are computed in generateChecklines.

15. Using the checklines as input the BonusItemCreator computes the bonus item placement.

16. The ObjectMapper maps appropriate OSM nodes to predefined SuperTuxKart objects.

17. All previously computed results are collected in the Server’s instance of the
TrackConstituentCollector. The final step is the packing of the track constituents by
calling pack of the TrackConstituentCollector.

4.4.3 Results

Figure 4.11 shows a race in a generated world of a small city. All buildings except one have one
floor. Two different textures are used. The only taller building is the town’s steeple. The basemap
shows the street, some cars but also the shadows that where present while the satellite image was
taken. The minimap and therefore the quads are visible in the lower left corner. As the buildings
are small and numerous, large parts of the basemap are texturized as asphalt but also green plants
are visible the scenery tries to convey the impression of a small city to the player.

Figure 4.12 presents a screenshot of a race taking place in a large city. The basemap shows a wide
street with many lanes. The used satellite image also contains other cars visible on the right side of
the player’s kart. As the height information is used to generate tall buildings with skyscraper textures
the scenery seems rather realistic and the kart seems to be small in-between the tall buildings. Also,
no plants, or vegetation is visible, which increases the impression of being in a large city.

Figure 4.13 shows the start of a race on a generated track in a rural area. The karts are on a dirt
road between fields and small buildings. The vegetation of the fields is visible through the satellite
image texture. As large parts of the sky are visible and the fields are flat, the scenery creates the
expression of an agriculturally used area.

Figure 4.14 visualizes the checkline placement. Each checkline is represented as 2D plane. The
height and width of the checkline are visible by the extent of the planes. The currently active
checkline is colored in red. All other checklines are colored in white. The checklines are one after
the other along the racetrack path on street between the field and the buildings. The placement of
wide checklines along the racetrack path forces the player to drive along the expected path while
still being allowed to drive aside the street to a certain extent.

Figure 4.15 shows the results of the placement of bonus items and the mapping of objects on a
generated track. The race takes place in a larger city between a tall building on the right, and a
small building on the left. The bonus items are visible on the left side between the trees and are
placed on a line orthogonal to the street. Each visible tree originates in a node with a tree tag in the
OSM data. This demonstrates the mapping of real-world objects to objects of the SuperTuxKart
universe while maintaining realism. The bonus items try tp ease orientation as they show where to
drive while invoking bonus actions.
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Figure 4.11: World Generation results: Small city

Figure 4.12: World Generation results: Large city
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Figure 4.13: World Generation results: Field

Figure 4.14: World Generation results: Checkline visualization
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Figure 4.15: World Generation results: Objects and bonus items

4.5 Evaluation of Solution

To evaluate the prototype and check whether the prototype satisfies all expectations the fulfillment
of the requirements is validated, and the limitations of the prototype are elaborated. If there are no
unfulfilled requirements and limitations within the scope of the prototype, the implementation of
the prototype can be seen as successful.

Table 4.2: World Generation requirement evaluation

W1-1 Web service The service is implemented as REST service using
the TypeScript programming language and the
Node.js runtime environment. Each request is
handled as HTTP request and each response is sent as
HTTP response for the corresponding request.
Therefore, all requirements for a web service are
fulfilled.

Yes

№ Title Evaluation Fulfilled

Continued on next page
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Table 4.2: World Generation requirement evaluation (Continued)

W1-2 Standalone The service only depends on the external data sources.
The generated track archive follows the SuperTuxKart
requirements for tracks and contains all necessary
track constituents. For 3D data the SPM file format is
used. Therefore, there is no need or connection to any
SuperTuxKart tooling like its Blender integration or a
SuperTuxKart installation itself.

Yes

W1-3 Non-interactive Only the input parameters are considered. There is
not option to interrupt or manipulate the execution
after the initial start.

Yes

W1-4 Performance The main performance relevant parts are the
gathering of satellite images and the computation of
the racetrack path. All satellite images are
downloaded in parallel, and the usage of Suuraballe’s
algorithm allows computing the racetrack path in
polytime. Several random samples with the number
of tiles between 30 and 50 and different positions
reveal a real-world runtime of around 30s. The
computation is therefore within the required limit.

Yes

W2 Input The input parameters position and area are handed
over to the service with each request and considered
for processing the request. As there are no further
interaction mechanisms the requirement is fulfilled.

Yes

W3-1 Output The response to a World Generation request is a ZIP
archive containing the SuperTuxKart track with all
required constituents. The archive can then be
unzipped and loaded with SuperTuxKart to compete
in the races on the generated track.

Yes

W3-2 World The resulting track contains a 3D model of the
real-life in the SPM format based on satellite images
and OSM data.

Yes

W3-3 World size The input data is restricted to the selected area and
therefore also the generated in-game world.

Yes

W3-4 Textures The basemap is texturized using real-world satellite
images. Buildings are texturized using public domain
image data following the SuperTuxKart comic art
style. Objects and bonus items use already texturized
predefined models.

Yes

W3-5 Racetrack path Fulfilled by using Suuraballe’s algorithm. Yes

№ Title Evaluation Fulfilled

Continued on next page
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Table 4.2: World Generation requirement evaluation (Continued)

W3-6 Path length Fulfilled by using Suuraballe’s algorithm. Yes
W3-7 Path intersections Fulfilled by using Suuraballe’s algorithm. Yes
W3-8 Path curvature Fulfilled by using Suuraballe’s algorithm. Yes
W3-9 Sight The world model is cropped to the region around the

racetrack. This allows the world to be as small as
possible but still containing all visible and therefore
relevant elements.

Yes

W3-10 Objects Suitable objects within the OSM data are mapped to
their SuperTuxKart counterpart. This is demonstrated
with trees.

Yes

W3-11 Bonus items Bonus items are distributed in a reasonable distance
on a straight line orthogonal to the racetrack.

Yes

W3-12 Level of detail Based on the available data the basemap is texturized
using real-world satellite images, building models are
generated using real-world OSM data, and races take
place along real-world streets, which leads to a
realistic representation of the real-life. Building
textures, objects, and bonus items match the
SuperTuxKart art style and gameplay.

Yes

W4 Real-world data The service uses publicly available OSM data for
road and object data and accesses map tile services
for satellite images.

Yes

W5-1 Portability Fulfilled by the usage of TypeScript and Node.js and
only platform-independent dependencies.

Yes

W5-2 Extensibility Further data sources can be added and encapsulated
as classes. The results are added to the appropriate
files. It is therefore not necessary to alter existing
coding for the other data sources.

Yes

W5-3 Scalability The service is stateless. Therefore, it can be easily
scaled.

Yes

№ Title Evaluation Fulfilled

Table 4.2 represents the evaluation and fulfillment of each requirement. Overall, all requirements
set for the prototype are satisfied. Therefore, the prototype can be used as foundation for further
project and to extend functionality.

Section 4.4.3 shows some results of the World Generation. Based on the figures 4.11 to 4.15, it can
be estimated whether the World Generation has achieved its objectives. The success can thereby
be measured by realism and gameplay. All figures show a playable SuperTuxKart track. Basic
functionality like lap counting and the integration of a minimap for AI routing are implemented.

61



4 World Generation

Therefore, the functional gameplay requirements are fulfilled. Further gameplay improvements are
realized by placing bonus items. The largest reduction of gameplay is the missing highlighting of
the racetrack path, but this would also reduce realism. Therefore, it is important for later projects to
find a compromise between the creation of a distinguishable racetrack path and realism. Regarding
the realism, all figures show a replication of the real world. Using satellite images as basemap
improves the recognition factor. As the buildings only use public domain texture, they cannot be
recognized. Also, the resolution of the satellite images and the visibility of shadows on the satellite
images reduce recognizability. Therefore, the objective to create a representation of the real-life
as realistic as possible is fulfilled but can be improve using better data. In conclusion, the World
Generation utilizes the full capacity of the data. The generated racetrack is playable and rather
realistic. Drawbacks in gameplay and realism are based on missing data or unavailable gameplay
elements like elevation. This can be mitigated by the usage of sophisticated algorithms or advanced
data sources in future projects. In general, this leads to the limitations out of scope.

There are two noticeable limitations going beyond the scope of the prototype. The first limitation is
the availability of data, which can be used to create the in-game world. There is no publicly available
database for 3D models of buildings, which would allow the creation of easily recognizable city
surroundings. Instead, the prototype is limited to cuboids based on the shapes of the buildings. The
issue of also not available building textures is mitigated by the usage of public domain building
images or image sections as textures. Also, available OSM data may be incomplete or incorrect.
E.g., building height information is often missing. This may lead to unrecognizable locations as
buildings may appear different than in real-life. Also, satellite images are not available for all
regions and the resolution of the available images is rather limited. This may also leads to reduced
realism. The second limitation is the orientation within a race. As the generated model of the
real-life is similar to the real-world surrounding there are few landmarks to accentuate the racetrack
path. The prohibition of intersections of the racetrack, the generation of the minimap data, and the
placement of bonus items tries to soften this issue, but orientation is sometimes still hard. Insertion
of additional gameplay elements that helps to identify the racetrack helps to mitigate the orientation
problem but also reduces realism.
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4.6 Outlook

Whereas the implemented World Generation application fulfills all requirements it can still be
improved. Major improvements can be done by using advanced data sources with detailed
information about the real-life. Using a database of 3D models of buildings and important
monuments would greatly improve realism, but these data sources are usually not freely available.

The in-game world can be improved by considering terrain information to include height information
for the basemap. Buildings can then be placed using their real-world elevation data. The quads
would have to be enriched with the height as 𝑧 coordinate as well. The satellite image textures
would have to be stretched along the basemap polygon.

The sky is currently unicolor. To increase realism the sky can be texturized using real-world images
of the sky around the car.

The object mapping is demonstrated using trees. Further objects like benches can also be mapped
to their in-game counterpart.

To improve gameplay, additional bonus items of different kinds like nitro for a speed boost could be
distributed within the in-game world. Additional signs or marks would ease orientation. Using a
model of the actual car as kart would increase realism and enables further integration opportunities
for SuperTuxKart in connected cars.

The realism of buildings can be improved by adding a roof to the building models. This can be
done by adding a slanted roof with a fix angle in a random direction to small buildings. The flat
roofs for tall buildings remain unchanged.
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The second prototype is the extension of SuperTuxKart with a REST API. Using the REST API,
it is possible to extract data from and inject data into SuperTuxKart while the game is running.
Therefore, the prototype realizes both parts, injection and extraction, of the vision for video games
in connected cars. To provide access to SuperTuxKart following the REST architectural style, the
constituents of SuperTuxKart are mapped to resources, which are accessible through HTTP. Gather
and manipulation operations for a resource are thereby initiated using the appropriate HTTP verbs
as define in section 2.5.1. To ease usage the OpenAPI documentation of the entire REST API is
located in the REST API source code directory.

5.1 State of the Art

SuperTuxKart offers a variety of resources, which are active during a game. Also predefined resources
and resource models are part of the game installation. The current possibility to dynamically adapt
SuperTuxKart is scripting, which is limited to a predefined set of functionalities.

5.1.1 SuperTuxKart Resources

The fundamental resources of SuperTuxKart are tracks, karts, and objects. These are placed and
used according to the SuperTuxKart guidelines for gameplay [Sup19]. The track, player, and AI
karts are chosen during race setup. Objects are pre-defined 3D models and part of the track. The
track objects are placed upfront by the track designer using 3D modeling tools [Sup16].

SuperTuxKart supports additional karts and tracks as add-ons [Sup21c]. All add-ons are installed
into a special add-on directory and loaded with the game or while the game is running [Sup20].
Objects as parts of tracks cannot be installed separately and are instantiated and manipulated through
the game logic.

Internally SuperTuxKart is implemented in C++ and resource handling is implemented in an
object-oriented manner without platform specific dependencies. For storage, resources are serialized
using XML in a custom SuperTuxKart schema. Both ensures that SuperTuxKart and SuperTuxKart
resources can be used on multiple platforms.

SuperTuxKart allows playing over the network. Therefore, special status messages are sent to
synchronize the progress of the players. For the status messages parts of the custom XML schema are
reused, but its purpose is limited to the exchange of information about movable objects [Sup21d].
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5.1.2 SuperTuxKart Scripting

AngelScript is an open-source, multi-platform library offering to extend applications by external
scripts written in an own AngelScript scripting language. The AngelScript scripting language
is based on the C++ syntax and data types but does not rely on manual memory management
[Jön21]. SuperTuxKart allows AngelScript scripts to be located in the file “scripting.as” inside
the track directory. During the race special functions are offered that can be called from the
AngelScript coding to allow the modification of in-game state, e.g., to enable or disable an object
on the track. For usage inside AngelScript, the internal data structures of SuperTuxKart are
mapped to special AngelScript data structures. Also, it is possible to write event callbacks in
AngelScript, which are called when the event conditions are satisfied. Callback allow dynamic
reactions to special conditions, e.g., the contact of two karts. Scripting in SuperTuxKart is limited
to a predefined set of functions and callbacks. Additional functions, callbacks, or libraries cannot
be used. Using the scripting functionality, SuperTuxKart tracks can dynamically adapt to changing
circumstances, which enables further gameplay opportunities like special game modes with custom
victory conditions. Therefore, scripting in contrast to add-ons can be used to dynamically add
objects [Sup17].

5.2 Requirements

The REST API for SuperTuxKart is intended as an extension to SuperTuxKart, and its source code
written in C++. Therefore, it is started and terminated with SuperTuxKart to be used during the
whole time the application is running. It offers additional functionality for SuperTuxKart to access
and manipulate the current state of the game through an API following the well-known REST
mechanisms. This additional functionality allows the access to the game without knowledge about
the internal structure. Also, previous race results are stored and can be accessed for later analysis.
Input parsing and the handling of the HTTP requests can be done in parallel, but to extract and
maintain consistent data, the game may have to be halted and continued after all data is collected
or manipulated. To not interrupt the player, the game can be halted between the computation of
two frames. For a common 60Hz panel this results in around 16ms, which can be used to extract
the data. Minor delays, e.g., if one frame is skipped, do not effect gameplay and are therefore
acceptable. The requirements for the REST API are defined in table 5.1.

Table 5.1: REST API requirements

R1-1 Technical foundation The REST API shall be based on SuperTuxKart respectively its
code.

R1-2 Seamless integration The REST API shall be started with the launch and terminated
with the exit of SuperTuxKart.

№ Title Definition

Continued on next page
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Table 5.1: REST API requirements (Continued)

R1-3 Multi-platform SuperTuxKart including the REST API shall be running on the
Linux, macOS, and Windows operation systems.

R2-1 Domain Model There shall be a domain model created, which covers the major
parts of the game logic.

R2-2 Identifier Each resource of the domain model shall have its own unique
identifier.

R3-1 Data exchange The project shall offer the possibilities to exchange data in both
directions, i.e., to extract or manipulate the current state of the
game as an API using REST over HTTP.

R3-2 Paths Each resource of the domain model shall be mapped to a
unique endpoint using the resource’s name as path.

R3-3 Endpoints The host of the endpoints shall be the same host that runs the
game.

R3-4 Path parameters Individual resources shall be addressable using path
parameters.

R3-5 Race resources For all resources that are only available while a race is active,
its endpoints shall be started when the race starts and
terminated when the race is finished.

R3-6 Race resource paths The endpoints for the resource defined in R3-5 shall reference
the current race in their path.

R3-7 Read The unabridged state of each resource shall be accessible via
HTTP requests sent to the resource’s endpoint using the HTTP
verb “GET”. The result of the query shall be the current state
of the resource and the status code “200 OK” if the resource
exists.

R3-8 Update If a resource can be manipulated in the game logic, this
manipulation functionality shall be accessible via requests sent
to the resource’s endpoint using the HTTP verb “POST”. The
result of the query shall be the current state of the resource and
the status code “200 OK” if the resource exists.

R3-9 Create For alterable list resources there shall be the option to create
new resources via HTTP requests sent to the resource’s
endpoint using the HTTP verb “PUT”. The result of the query
shall be the newly created resource and the status code “201
Created”.

№ Title Definition

Continued on next page
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Table 5.1: REST API requirements (Continued)

R3-10 Delete If a resource can be deleted without putting the application into
an inconsistent state, it shall be possible to delete the resource
via a request sent to the resource’s endpoint using the HTTP
verb “DELETE” and the resource’s unique identifier. The
result of the query shall be the status code “204 No Content”
and no further data.

R3-11 Consistency After each request the application shall remain in a consistent
state.

R3-12 Not found If a requested resource does not exist, the API shall return the
status code “404 Not Found” and no further data.

R4 Usability The REST API shall be usable without knowledge of the
underlying implementation and technologies by using the
REST API’s documentation.

R5 Extensibility The list of resources as well as their constituents shall be
extensible without changing the existing functionality.

R6-1 Input format The application shall be able to process JSON input.
R6-2 Pre-built resources The application shall be able to process pre-built resources

packed as ZIP archive.
R6-3 Output format The application shall be able to produce output in the JSON

format.

R7-1 Errors If any error occurs during any operation of the REST API, the
application shall return the status code “500 Internal Server
Error”.

R7-2 Resilience If any error occurs because of the REST API, the application
shall remain functional, i.e., the application is in a consistent
state and the user can continue playing without interruption.

R7-3 Input validation If the input contains any syntactical or semantical errors, the
application shall return the status code “400 Bad Request” and
the reason why the request cannot be processed.

R7-4 Testability The request handling, i.e., parsing and forwarding of the
request to the game logic, shall be automatically testable.

R8-1 Persistence Newly created resources shall be stored persistently.
R8-2 Previous races Previous race results shall be accessible using the race’s unique

identifier.

R9 Performance Each query shall not affect the user’s match, i.e, each request
shall pause the game for at most 16ms on average. Minor
delays are acceptable as they do not effect gameplay.

№ Title Definition
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5.3 Design of Solution

The main objective of the REST API is the exchange of information, i.e., the internal state of the
game, with any other application or any user. Therefore, the internal state of the game is mapped to
a set of endpoints, which then can be used consistently and without the need to know the internal
structure of the game. This REST API can be used to adapt the game to match certain real-world
conditions or to trigger actions to establish the in-game conditions in real-life.

The access to the game state is encapsulated as a service. The service is accessible using REST
and HTTP. Therefore, the domain model for SuperTuxKart is extracted from the SuperTuxKart
class hierarchy containing the most relevant subset of all SuperTuxKart functionality and data. The
REST API for SuperTuxKart maps the constituents of the domain model to resources and offers
endpoints to access the resources.

Extract

Inject REST
API Extract

Inject

Figure 5.1: Vision and REST API correlation

Figure 5.1 shows the REST API in the context of the vision for advanced integration of video
games into connected cars as presented in chapter 3. The REST API is thereby used as middleware
in-between the real-life and the video game to enable the data exchange between the video game
and the real-life as expected by requirement R3-1. Data injection from the real-life into the video
game is send from the real-life to the REST API and then forwarded to the game. Data extraction is
performed the other way around by collecting the requested data within the REST API and send the
complete data to the connected car. This abstraction as middleware fulfills requirement R4 as it
eases data exchange as the internals of the video game are hidden and only the easier communication
patterns of the REST API need to be known.

5.3.1 Integration into the SuperTuxKart Lifecycle

Figure 5.2 presents the SuperTuxKart lifecycle with the start and termination of the REST API
handlers as UML activity diagram according to requirement R1-2. The REST API handlers are
thereby divided into game handlers, which are active the whole-time the game is running, and race
handlers, which are only active during a race. Activities related to the game handlers are marked in
green. Activities related to the race handlers are marked in orange.

The SuperTuxKart lifecycle begins with the launch of SuperTuxKart and the start of the game
handlers. The user interface shows the game menu, which allows the player to select and start the
race. After the user selected the race, the race is initialized. When the in-game world is ready,
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Launch SuperTuxKart

Start REST API game listeners

Start race

Player competes in the race

Finish race

Stop REST API race listeners

Start REST API race listeners

Initialize race

Stop REST API game listeners

Terminate SuperTuxKart

Exit race

[exit]

[start new race]

Figure 5.2: SuperTuxKart lifecycle with REST handlers as UML activity diagram
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the race listeners of the REST API are started. The race starts as soon as the in-game world as
well as the race listeners are ready. The next step is to wait for the player to compete in the race
until all karts have reached the finish line or the race is aborted because the player wants to return
to the game menu. When the race is over, the race listeners are stopped and the user interface
returns to the game menu. In the game menu the player can either start a new race or exit the game.
If the player chooses to start a new race, the race and therefore the race handlers are initialized
again, and the player can compete in the new race. If the player wants to exit the game, the game
listeners and SuperTuxKart itself are terminated. The start and termination of the race handlers in
correspondence to the race start and termination fulfills requirement R3-5.

5.3.2 Domain Model

Figure 5.3 shows the most relevant parts of the domain model of SuperTuxKart as UML class
diagram as required by R2-1. Attributes are thereby omitted for the sake of briefness. The coloring is
in correspondence to the SuperTuxKart lifecycle shown in figure 5.2. The classes that are accessible
while SuperTuxKart is running are marked in green, and the classes that are only accessible while
a race is running are marked in orange. The coloring is thereby also consistent with the object
composition. All classes that are part of a Race are marked in orange, and all other classes, which
are independent of a race, are marked in green. If a race does not exist, also no orange marked
objects exist.

On top there is the game SuperTuxKart itself. It is the entry point of the application, and if it does
not exist no other object exists as well. The installed karts are represented by the KartModel, and
the installed tracks are represented by the TrackModel. Sound effects are accessible through the
SfxLibrary. The individual available sound effects are instances of SfxLibraryEntry. The music is
stored in the MusicLibrary, and the individual music tracks are instances of Music.

The CurrentRace is used to indicate whether there currently is a race and which status the current
race has, e.g., started or finished. The races are encapsulated in the class Race. Each race has Karts
and a Track. Each Kart is based on a KartModel. None or a single Music track is played in loop
while the race is running. While there is only one currently active Race, the results of the previous
races can still be accessed. Therefore, the races of SuperTuxKart are modeled as a list.

The Track is linked to a TrackModel, which contains the in-game world and defines how the
track constituents have to be initialized. As each TrackModel can be used in arbitrary Tracks the
relationship from the TrackModel to the Track is modeled with the multiplicity of 0..*. The track
constituents are modeled as parts of the Track. The Sfx controls whether sound effects are played
and manages the sound effect volume. All sound effects of the current race are modeled as SfxSound,
which is linked to a SfxLibraryEntry. The checklines are represented as instances of Checkline.
The quads are Quads, which also contain links to the following quads in the race graph. Therefore,
it is sufficient to have the Quad class to generate the race graph and a potential Graph class can be
omitted. It is important that there is at least one Checkline to enable lap counting, and at least
one Quad to form a racetrack path. The in-game objects, e.g., trees, are instances of the class
Object, which can be refined to e.g., lights or particle emitters. The materials and therefore textures
are handled as Materials. Some materials are part of the SuperTuxKart installation, but as these

71



5 REST API

SuperTuxKart

KartModel

Kart

Checkline Quad BonusItemObject

Track

MusicLibrary

Music

SfxLibrary

Sfx

SfxSound

WeatherMaterial

SfxLibraryEntry

Race

CurrentRace

1

0..*

1

1

0..*

1

0..1
0..1

1

0..*
0..*

1

1

0..*

1

0..*0..1

1
0..*

1..*

1 1..* 1..* 0..* 0..* 0..*

1

1

1

1

TrackModel

0..*

0..*

1

Figure 5.3: SuperTuxKart domain model as UML class diagram

preinstalled materials are merged with the track materials during the instantiation, the materials
are handled as part of the Race. Bonus items like bonus boxes or nitro cylinders are represented as
instances of the class BonusItem. The weather of the track is maintained in the class Weather.

5.3.3 Endpoints

To allow access to SuperTuxKart in a resource-oriented manner required for the REST architectural
style, the available resources of SuperTuxKart need to be specified. Therefore, the domain model
of figure 5.3 is used as starting point to map the internal structure of SuperTuxKart to accessible
resources. Each class of the domain model can be seen as a resource. To access the resource an
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Lifecycle Resource Endpoint

Game Current race /races/{raceId}

Kart models /karts/{kartId}

Music library /music/{musicId}

SFX library /sfx/{sfxId}

Track models /tracks/{trackId}

Race Bonus items /races/{raceId}/items/{itemId}

Checkline /races/{raceId}/checklines/{checklineId}

Karts /races/{raceId}/karts/{kartId}

Materials /races/{raceId}/materials/{materialId}

Music /races/{raceId}/music

Objects /races/{raceId}/objects/{objectId}

Quads /races/{raceId}/quads/{quadId}

SFX /races/{raceId}/sfx/{sfxId}

Weather /races/{raceId}/weather

Table 5.2: REST API mapping of resources to endpoints

endpoint for the resource is required. Table 5.2 shows the mapping of the resources of SuperTuxKart
based on the domain model to the endpoints as expected by requirement R3-2. The resources are
thereby divided by their existence in the SuperTuxKart lifecycle. The resources in the “Game” rows
are available the whole-time the game is running and correspond to the green listeners and resources
of figure 5.2 and figure 5.3. The “Race” resources are only existent while a race is running and
therefore also the endpoints are only available while a race is active as they represent the resources
of the running race. The race resources thereby correspond to the orange listeners and resources of
figure 5.2 and figure 5.3.

For list resources the individual resources can be accessed using the resource identifier marked with
braces. The addressing of individual resources thereby fulfills requirement R2-2 and R3-4. The list
itself can be accessed by omitting the resource identifier and the slash character. E.g., the list of
karts is accessible using the endpoint /karts and the kart with the identifier kartId is accessible
using the endpoint /karts/kartId.

The races are also modeled as resources. If a new race is started, a new race is instantiated, and a
new race identifier is generated. As the response contains the newly created race resource including
the new race identifier, the user can continue querying the resource using the race identifier and the
available endpoints. The race endpoints for the currently active race are accessible using the race
identifier of the current race as described in requirement R3-6. The latest state of the race resources
of a previous race is accessible using the endpoint /races/{raceId} with the raceId of the previous
race as described by requirement R8-2. The other race endpoints are only accessible for the current
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race. This allows maintaining knowledge about the past and enables the analysis of the player’s
in-game progress. The Track resource is omitted as it is only an intermediate resources, and the
data is accessible using the linked resources directly.

The mapping of the SuperTuxKart resources to endpoints enables accessing the internal structure
of SuperTuxKart using REST. The endpoints are the interface to the SuperTuxKart resources and
therefore the REST API itself.

5.3.4 Concurrency

To not interrupt the player while playing SuperTuxKart it is important to only intercept the game
execution if absolutely necessary and to not halt the game for longer than 16ms as described in
requirement R9. The first parameter for performance is the usage of concurrency. The request
handling of the REST API can be done in parallel to the game computations and therefore does
not affect the in-game performance while still enabling performant request processing. It is only
necessary to interrupt the SuperTuxKart computation for the pure data injection and extraction
operations without the REST request handling overhead, which also keeps the application in a
consistent state and returns only self-consistent data.

The second parameter for performance is the extraction and injection of data from and into
SuperTuxKart without affecting the gameplay and still maintaining consistency as required by
requirement R3-11. To enable performant request handling it is essential to understand how
SuperTuxKart computes the game progress and renders the in-game world. The game progress
is thereby a linear sequence of frames. The temporal distance between each frame is a timestep.
When a frame is rendered, the progress of the in-game world for one timestep is computed. After
the progress is computed, the game is halted until the next frame needs to be computed. This
intermediate time between the computation of the progress of the in-game world and the rendering
of the next frame can be used by the REST API to extract and inject data without any performance
impact on the gameplay.

Figure 5.4 shows an UML sequence diagram of an exemplary interaction between the player,
SuperTuxKart, the REST API, and the REST API users. In correspondence to figure 5.2 and
figure 5.3 the game handlers of the REST API are colored in green, and the race handlers colored in
orange. The messages are consecutively numbered in the order of their appearance. The player’s
interactions are shown on the left player lifeline. The REST API users’s interactions are shown on
the right api users lifeline. SuperTuxKart is represented by the supertuxkart lifeline. The game
handlers are shown on the game lifeline, and the race handlers are shown on the race lifeline. The
requests of each lifeline can occur and be handled in parallel. Within the SuperTuxKart application
supertuxkart is the first thread, and the REST API as game and race is the second thread.

Consistent to figure 5.2 the first two messages are used to launch SuperTuxKart and start the game
listeners. Messages 3 to 6 show a data extraction request from the api users to supertuxkart with
the REST API in the form of the game listeners. Message 4 has to be answered by supertuxkart

and has therefore a time constraint to not take longer than 16ms. To maintain consistency, it is
performed in the intermediate time between two frames. As visible by the absence of the race

lifeline at this time it would not be possible to query the race endpoints. Messages 7 to 11 represent
the selection and start of a race and therefore the race listeners. Messages 12 to 15 show a data
injection request to the race endpoints. As for message 4 message 13 is temporally restricted to at
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REST API Concurrent Request Handlingsd

player: User api users: User

supertuxkart: SuperTuxKart

game: Game Listeners

race: Race Listeners

{0ms..16ms}

{0ms..16ms}

{0ms..16ms}

1 : Start game
«create»

2 : Start game listeners
«create»

3 : Gather data

4 : Gather data

5 : Data

6 : Data

7 : Initialize race

8 : Start race listeners

9 :
«create»

10 : Listeners active

11 : Race running

12 : Inject data

13 : Inject data

14 : Success

15 : Success

16 : Perform action

17 : Success

18 : Gather data19 : Gather data

20 : Data
21 : Data

22 : Perform action

23 : Success

24 : Perform action

25 : Race finished

26 : Exit race
27 : Stop race listeners

«destroy»

28 : Main menu

29 : Exit game
«destroy»

30 : Stop game listeners
«destroy»

Figure 5.4: UML sequence diagram of REST API concurrent request handling
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most 16ms and executed between the computation of two frames. Messages 16 and 17 symbolize
the interaction of the player with supertuxkart to compete in the race. As the game endpoints are
also accessible while the race is running, messages 18 to 21 show a data extraction request from the
api users to the game endpoints. As the messages 4 and 13, message 19 is temporally restricted.
Messages 22 and 23 as well as the messages 24 and 25 represent an interaction of the player with
supertuxkart similar to the messages 16 and 17. In message 26 the player decides to quit the race,
which induces the termination of the race handlers in message 27. As observable in message 28,
the user interface returns to the game menu. In the game menu the player decides to quit the game
in message 29, which induces the termination of supertuxkart and the game handlers.

5.4 Realization of Solution

The prototype is realized by extending the SuperTuxKart C++ code [Sup21d]. To allow REST
request using HTTP the library cpp-httplib [yhi21] is used to encapsulate HTTP. To process JSON
the library RapidJSON [TY16] is used. To test the handlers the C++ unit test framework GoogleTest
[Goo21] is used.

5.4.1 Implementation Architecture

The implementation is based on three main components data exchange, handler, and endpoint. The
integration of all three components into SuperTuxKart enables the fulfillment of the requirements.

• Data Exchange: The data exchange interface is the foundation for the integration into
SuperTuxKart. The classes implementing the data exchange interface offer getters and setters
for resource attributes. The implementation of these getters and setters access the internal
structure of SuperTuxKart, and therefore encapsulate the internal structure SuperTuxKart
within the REST API. In other words, an implementation of the data exchange interface
represents the internal structure of a resource of SuperTuxKart.

• Handler: The handler class is the superclass for all request handlers. It provides methods for
all HTTP operations, and encapsulates the request handling. The parameters of the HTTP
operations are the request body, and if applicable, the identifier of the resource, which is
extracted as path parameter of the request path. The parsing of the request body is done within
the handler. To ease development, the handler superclass offers a default implementation for
all request types. Therefore, only the intended operations need to be overloaded. The default
implementation just returns the status code “404 Not Found” and an empty body. The result
of an HTTP operation implemented by a request handler is the response body as well as the
status code as specified in R3-7, R3-8, R3-9, or R3-10.

• Endpoint: The endpoint coordinates the matching of a request path to a handler class. It is
implemented to use a list of available request handlers and therefore resources, and their path
including path parameters. The endpoint is responsible for extracting the values of the path
parameters if available. If a handler path matches the request path, the handler’s logic for the
HTTP operation is executed.
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To further elaborate the relationship between the data exchange classes, the handler classes, and the
endpoints, it is important to understand the interaction between the components. Therefore, the call
sequence for a request to the REST API is examined.

1. The user sends a HTTP request to an endpoint.

2. The endpoint corresponding to a path that matches the request’s path is identified.

3. The endpoint calls the method of the HTTP operations on its handler. The parameters are the
body of the request, and if applicable, the resource’s identifier.

4. The handler parses the request.

5. The handler calls the appropriate methods of the data exchange to satisfy the user’s request.

6. When the initiated modifications have taken place, the data exchange model returns control.

7. The handler generates the result body.

8. The handler returns the result body with the specified status code as response to the user.

5.4.2 Data Exchange

KartModel

+id: string {id}
+name: stirng
+mass: float
+engine-max-speed: float
+acceleration-efficiency: float
+nitro-consumption: float

TrackModel

+id: string {id}
+name: string
+race-mode: bool
+soccer-mode: bool
+arena-mode: bool
+groups: string[0..*]

MusicLibrary SfxLibrary

Race

+id: int {id}
+major-race-mode: string
+minor-race-mode: string
+difficulty: string
+clock-type: string
+time: float
+track: TrackModel

CurrentRace

+status: string

0..1

0..1

SfxLibraryEntry

+id: string {id}
+file: string
+loaded: bool
+positional: bool
+roll-off: float
+volume: float
+max-distance: float
+duration: float[0..1]

Sfx

+sfx-allowed: bool
+master-volume: float

MusicLibraryEntry

+id: string {id}
+title: string
+composer: string
+filename: string
+fast-filename: string[0..1]

DataExchange

1

0..*

1

0..*

Figure 5.5: UML class diagram of game data exchange classes

Figure 5.5 presents the UML class diagram of the data exchange classes of all resources that are
available independently of an active race. The classes are colored green in correspondence to
the coloring of section 5.3. The class attributes conform to the attributes of the resources of the
REST API without simplification. The implementation thereby does not allow access to member
variables but offers getters and setters that cover the underlying SuperTuxKart integration. These
getters and setters are omitted for the sake of briefness. Whereas all attributes are readable, only a
specified subset is modifiable. All classes implementing the DataExchange interface correspond to
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Checkline

+id: int {id}
+active-at-reset: bool
+other-ids: Checkline[0..*]
+same-group: Checkline[0..*]
+kart: Kart[0..*]

+getKind()

Quad

+id: int {id}
+ignore: bool
+invisible: bool
+ai-ignore: bool
+position: Vector[4]
+height-testing: float[2]
+successors: Quad[0..*]

Object

+id: int {id}
+name: string
+type: string
+enabled: bool
+drivable: bool
+animated: bool
+position: Vector
+center: Vector
+rotation: Vector
+scale: Vector
+lod-group: string
+interaction: string
+children: Object[0..*]
+movable-children: Object[0..*]

BonusItem

+id: int {id}
+position: Vector
+type: string
+original-type: string
+ticks-until-return: int
+used-up-counter: int

Material

+texture: string
+below-surface: bool
+falling-effect: bool
+surface: bool
+drive-reset: bool
+jump-texture: bool
+gravity: bool
+ignore: bool
+high-tire-adhesion: bool
+collision-reaction: string
+collision-particles: ParticleEmitter[0..1]
+on-drive-particles: ParticleEmitter[0..1]
+on-skid-particles: ParticleEmitter[0..1]
+clamp-u: bool
+clamp-v: bool
+hue: float[0..*]
+max-speed-fraction: float[0..1]
+sfx: SfxSound
+alpha-mask: string
+colorization-factor: float
+colorization-mask: string[0..1]
+shader: string
+uv-two-texture: string
+sampler-path: string[6]

Weather

+sky-color: int
+sound: SfxSound
+particles: ParticleEmitter
+lightning: bool

Kart

+id: int {id}
+rank: int
+controller: string
+model: KartModel
+current-speed: float
+max-speed: float
+min-boost-speed: float
+position: Vector
+velocity: Vector
+jumping: bool
+flying: bool
+near-ground: bool
+on-ground: bool
+pitch: float
+roll: float
+lean: float
+lean-max: float
+handicap: string
+boosted-ai: bool
+blocked-by-plunger: bool
+shielded: bool
+squashed: bool
+eliminated: bool
+ghost: bool
+rescue: bool
+skidding-status: string
+skidding-ready: bool
+skidding-factor: float
+skidding-max: float
+steerage: float
+max-steerage: float
+acceleration: float
+braking: bool
+fire: bool
+look-back: bool
+skid-control: string
+collision-impulse: float
+collision-time: float
+collision-restitution: float
+nitro-collected: float
+nitro-max: float
+nitro-min-ticks: int
+nitro-consumption-per-tick: float
+nitro-activated: bool
+attachment: string
+icon: string
+minimap-icon: string
+shadow: string
+ground: string

ChecklineActivate

+ignore-height: bool
+position: Vector[2]

+getKind()

ChecklineLap

+getKind()

Light

+color: int
+energy: float
+radius: float

ParticleEmitter

+size: float[2]
+rate: float[2]
+lifetime: float[2]
+fadeout-time: int
+shape: string
+material: Material
+color: int[2]
+box-size: Vector
+sphere-radius: float
+angle-spread: int
+velocity: Vector
+emission-decay-rate: float
+scale-affector: float[2]
+flips: bool
+vertical-particles: bool
+randomize-initial-y: bool

SfxSound

+sound: SfxLibraryEntry {id}
+status: string
+loop: bool
+volume: float
+pitch: float
+play-time: float
+position: Vector

PowerUp

+type: string
+count: int

1

0..1

KartSpeedIncrease

+kind: string
+time-left: int[0..1]
+value: float
+engine-force: float

1

0..*

KartSpeedDecrease

+kind: string
+time-left: int[0..1]
+fraction: float

1

0..*

DataExchange

Music

+track-music: MusicLibraryEntry[0..1]

Figure 5.6: UML class diagram of race data exchange classes
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Handler

+handleGet()
+handleGet(is: string)
+handlePost(body: string)
+handlePost(id: string, body: string)
+handlePut(body: string)
+handlePutZip(zip: string)
+handleDelete(id: string)
+createHandler(type: HandlerType, model: DataExchange)

ChecklineHandlerBonusItemHandler

KartHandler MaterialHandler MusicHandler

MusicLibraryHandler

ObjectHandler QuadHandler

RaceHandler

KartModelHandler TrackModelHandler

SfxHandler

SfxLibraryHandler

WeatherHandler

Figure 5.7: UML implementation class diagram of REST API handlers

a SuperTuxKart resource and can therefore be directly accessed using an endpoint. The directed
associations result in member attributes of the data exchange classes in the response of the REST
API.

Figure 5.6 contains the UML class diagram of the data exchange classes of the resources that are
only available during a race. The classes are colored orange in correspondence to the coloring of
section 5.3. Like in figure 5.5 getters and setters are omitted for the sake of briefness. Also, the
set of attributes is complete and accessible, but only a subset can be modified to not endanger the
application’s consistency. Classes implementing the data exchange interface are directly accessible
through an endpoint, associated classes as member attributes, and inherited classes just add their
attributes to the superclass resource. The data exchange interface is the same as in figure 5.6.
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5.4.3 Handler Design

Figure 5.7 presents the design of the handler component. The Handler class is the abstract superclass
of all request handlers. The HTTP operations are realized as methods of the Handler class, and can
take the response body, the resource identifier, or both as parameters. The static factory method
createHandler is substitutional for one factory method for each handler implementation. To create
a handler, the factory method of the handler needs to be called with the data exchange model of the
resources that is represented by the handler. To encapsulate, the implementation of the handler
classes stays hidden in an anonymous namespace and is therefore not accessible without calling the
factory method. The coloring of handlers available the whole time the game is running in green,
and of handlers only available while a race is active in orange are consistent to the coloring in
section 5.3.

Another demand satisfied by the solution architecture is the realization of the testability requested
in requirement R7-4. As the request handler processes the request body, typing errors and oversight
can easily occur. Unit testing is a useful technique to prevent these kinds of mistakes. As other
parts of SuperTuxKart do not support unit testing, the GoogleTest framework is used to maintain
the tests. The testing is done by handing over a mock implementation of a data exchange class to a
Handler class that should be tested. If the expected methods of the mock implementation are called,
the implementation of the Handler class does not contain rough mistakes. The semantics still need
to be checked by the developer.

5.4.4 Endpoint Matching

Endpoint Regular Expression

/races/{raceId} ^\/races(\/(\d+))?$

/karts/{kartId} ^\/karts(\/(.+))?$

/music/{musicId} ^\/music(\/(.+))?$

/sfx/{sfxId} ^\/sfx(\/(.+))?$

/tracks/{trackId} ^\/tracks(\/(.+))?$

/races/{raceId}/items/{itemId} ^\/races\/(\d+)\/items(\/(\d+))?$

/races/{raceId}/checklines/{checklineId} ^\/races\/(\d+)\/checklines(\/(\d+))?$

/races/{raceId}/karts/{kartId} ^\/races\/(\d+)\/karts(\/(\d+))?$

/races/{raceId}/materials/{materialId} ^\/races\/(\d+)\/materials(\/(\d+))?$

/races/{raceId}/music ^\/races\/(\d+)\/music$

/races/{raceId}/objects/{objectId} ^\/races\/(\d+)\/objects(\/(\d+))?$

/races/{raceId}/quads/{quadId} ^\/races\/(\d+)\/quads(\/(\d+))?$

/races/{raceId}/sfx/{sfxId} ^\/races\/(\d+)\/sfx(\/(\d+))?$

/races/{raceId}/weather ^\/races\/(\d+)\/weather$

Table 5.3: REST API path to endpoint matching
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The correlation between endpoints and resources is established by assigning each resource a unique
path as defined in table 5.2. To allow path parameters as dynamic parts of a path each path is
converted to a regular expression.

The regular expressions of the resource paths are shown in table 5.3. Each path parameter is matched
as a capturing group. Numeric parameters are limited to set of numerals (\d). String parameters can
use arbitrary characters (.). Each identifier must not be empty (+). To only match whole paths, the
start (^) and end ($) anchors are specified for each path.

The matching is done by looping over the list of endpoints and calling the handler of the first
matching endpoint. To be able to process a specific regular expression before a more general
regular expression that matches the same path, the order of endpoints is maintained and needs to be
considered while integrating endpoints. If the requested path does not lead to any matches, the
status code “404 Not Found” is returned.

5.4.5 Race Result Persistency

RaceObserver

-active: bool
-currentRaceId: unsigned int[0..1]
-getCurrentState: function

+RaceObserver(loader: RaceResultLoader, getCurrentState: function)
+start()
+update()
+stop()
+getCurrentRaceId()

RaceResultLoader

+create()
+getLatestId()
+get(id: unsigned int)
+store(id: unsigned int, result: string)

InMemoryRaceResultLoader

-data: HashMap
-latestId: unsigned int[0..1]

Figure 5.8: UML class diagram of race result persistency

In order to realize requirement R8-2 to allow access to previous race results a persistency mechanism
is established. Figure 5.8 shows the UML class diagram of this persistency mechanism.

The RaceResultLoader is an abstract interface implemented by the InMemoryRaceResultLoader. The
InMemoryRaceResultLoader stores the previous results in a hash map with the race identifier as key
and the serialized result as value. The optional attribute latestId of the InMemoryRaceResultLoader

indicates whether there is a previous result and what the identifier of the latest result is. The static
factory method create of RaceResultLoader returns an instance of the InMemoryRaceResultLoader,
which allows the InMemoryRaceResultLoader to stay hidden in an anonymous namespace. To use
other persistency mechanisms like storage in files only the interface RaceResultLoader needs to be
implemented and linked in the create method.
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An instance of RaceObserver is created each time a new race starts. The maintenance of the
RaceObserver is integrated into the SuperTuxKart race handling. Each instance of RaceObserver
receives the same instance of RaceResultLoader to allow persistency over several races. When the
status of the race changes, start, update, or stop is called, and the current state of the race is stored
in the RaceResultLoader by calling getCurrentState to get the serialized state of the current race.

As SuperTuxKart does not maintain information about previous races, the RaceObserver is also
used to maintain the identifier of the current race. getCurrentRaceId returns whether there is an
active race and what the identifier of the current race is. The status if a race is active is maintained
using the attribute active, which is set by start and stop.

5.4.6 Concurrency

As the request handling is implemented to run in parallel in a different thread than the SuperTuxKart
game logic, concurrency challenges arise. Data races, race conditions, and deadlocks must be
prohibited as they might lead to an inconsistent application state.

Considering that only the time between two frames can be used for data injections or extractions, a
mechanism is needed that starts execution right after the processing of one frame ends and finishes
before the next frame needs to be computed. The timing for execution between two frames is
realized using a mutex. While a frame is calculated the mutex is locked and the REST API cannot
start processing until the frame computation is finished. Also, the next frame cannot be computed
until the REST API established a consistent state. As the locking and unlocking is only performed
once a frame, at most one request is processed per frame, and there is a computational break between
the frame, the impact on the performance is not measurable.

The second challenge is the detection when an initiated modification takes place. This is necessary
to not send the response to the REST API user before the modification has been performed. A
conditional variable allows a thread to wait for a specific condition satisfied by another thread
without the need for further processing power as e.g., polling requires. Therefore, a conditional
variable is introduced waiting on the condition that the modification has taken place. When the
condition is satisfied, the modification is included in the current state, and the REST API can send
the response based on the modified resource. This mechanism can also be combined with the mutex
approach to maintain consistency while the response is computed.

The third challenge is the thread-dependence of some operations. E.g., it is not possible to load a
texture for usage with OpenGL on a thread that is not registered as an OpenGL contributor. In order
to maintain separation of concerns a data injection mechanism is established, which is synchronized
using a conditional variable. The instructions for the SuperTuxKart thread are stored in a variable.
The next time the SuperTuxKart thread finishes processing a frame the variable is evaluated, and
the instructions are executed. When the thread continues, the condition of the conditional variable
is satisfied, and the response is sent to the REST API user. This allows coordination between the
thread to perform thread-dependent operations, and still know when the modification has taken
place without putting extra load on the system.
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5.4.7 ZIP Resources

In order to realize requirement R6-2 it is required that packed resources as ZIP archive can be
uploaded in a PUT operation. The extracted resources are then stored in the SuperTuxKart add-on
directory. When the extraction is done, the SuperTuxKart functionality to load the resource is called.
As the add-on directory is persistent even if SuperTuxKart is restarted, the uploaded resources stay
available and are loaded with the start of SuperTuxKart. It is expected that the uploaded ZIP archive
contains a single directory with the name of the resource. If a resource with the same type and
name as the uploaded resource already exists, the operation is aborted. When an add-on resource is
deleted, the corresponding add-on directory is deleted as it would else be loaded again on the next
launch of SuperTuxKart. If any error occurs during the extraction or while loading the resource,
the operation is rolled back by deleting the newly created directory. This ensures consistency as
expected by requirement R3-11. The response is not sent before the resource is loaded successfully
or the request failed.

The supported resources for ZIP archive upload are the game resources KartModel, TrackModel,
MusicLibrary, and the SfxLibrary as they maintain persistent data. The race resources are only
temporary, and therefore not eligible for uploading persistent resources. The SuperTuxKart add-on
directory is designed to have a designated subdirectory for each resource type. The in-game logic
for handling add-on KartModels and TrackModels is already included in SuperTuxKart and just
needs to be called. The logic for the MusicLibrary and the SfxLibrary needs to be added. This is
done by adding a unique add-on directory for music tracks and for sound effects, which is created
when the game starts and the directory does not exist yet. The logic for handling music tracks and
sound effects is extended to also check the new add-on directories during start-up. When an add-on
resource is deleted, the in-game functionality for removal is called to not create memory leaks.

C++ does not offer integrated support for extracting ZIP archives. Also, SuperTuxKart does not
include a library for ZIP handling but includes zlib [GA17] instead, which enables deflation of
single files within a ZIP archive. As parsing a ZIP archive file according to the ZIP specification
[PKW20] is less effort and less error-prone than adding further dependencies, a simple ZIP archive
parser is implemented. As the ZIP format is well-known it is only recapitulated briefly. The central
directory with metadata like offset and filename about all files of the ZIP archive is located at the
end of the ZIP archive file. It is found by reverse iterating through the file. The zlib functionality
can then be used to decompress the ZIP file at the specified offset.

5.5 Evaluation of Solution

The main objective of the REST API for SuperTuxKart is to support the manipulation of in-game
state via REST and to serve as easy-to-use foundation for further projects. Therefore, it is checked
whether the requirements set on the REST API are fulfilled. Furthermore, it is evaluated if the
REST API is suitable for future projects on the basis of a representative example. To suit advanced
use cases the extensibility for further resources and therefore endpoints but also additional resource
attributes are examined.
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5.5.1 Requirement Analysis

Table 5.4: REST API requirements evaluation

R1-1 Technical foundation Fulfilled by extending the SuperTuxKart source
code.

Yes

R1-2 Seamless integration Fulfilled by integrating launch and termination of
the REST API handlers into the SuperTuxKart
lifecycle as described in figure 5.2.

Yes

R1-3 Multi-platform The SuperTuxKart source code is extended by
additional C++ code and libraries that are also
platform-independent. By using the installation
instructions of SuperTuxKart and the added
libraries, SuperTuxKart with the REST API can be
built and used on the specified platforms.

Yes

R2-1 Domain Model The domain model is located in figure 5.3. Yes
R2-2 Identifier By implementing the endpoints of the REST API

as described in table 5.2 the individual resources
can be accessed using the resource’s identifier as
path parameter.

Yes

R3-1 Data exchange As described in figure 5.1 the REST API is
designed as middleware between the connected car
and the game. The data extraction and injection
operations are implemented by using the
appropriate HTTP mechanisms.

Yes

R3-2 Paths The mapping of resources to endpoints can be
found in table 5.2.

Yes

R3-3 Endpoints The REST API is designed as single host extension
of the SuperTuxKart source code. Therefore, the
REST API operates on the same host as
SuperTuxKart itself, and no further hosts are
involved.

Yes

R3-4 Path parameters The addressing schema for the resource identifier
of R2-2 is described in table 5.2.

Yes

R3-5 Race resources The race resources are considered in the domain
model of figure 5.3 and the race handlers are only
active during a race as described in figure 5.2.

Yes

R3-6 Race resource paths The race endpoints as specified in table 5.2 require
the identifier of the current race as path parameter.

Yes

№ Title Evaluation Fulfilled

Continued on next page
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Table 5.4: REST API requirements evaluation (Continued)

R3-7 Read If the requested resource exists, the resources
handlers return the unabridged and serialized state
of the requested resource as JSON together with
the specified status code for “GET” requests.

Yes

R3-8 Update “POST” requests lead to a modification of the state
of SuperTuxKart. After the modification takes
place the updated state of the resource is returned
together with the specified status code.

Yes

R3-9 Create New resources are created as SuperTuxKart add-on
resources using a “PUT” operation, and stored in
the appropriate SuperTuxKart add-on directory. If
the resource was successfully created, the specified
status code is returned.

Yes

R3-10 Delete SuperTuxKart add-on resources can be deleted by
using a “DELETE” request, which unloads the
resources using the SuperTuxKart functionality for
resource handling, and deletes the directory of the
add-on resources. If the deletion was successful,
the specified status code is returned.

Yes

R3-11 Consistency By processing data extractions and injection
between the computation of two frames the
response data is always consistent. The internal
state during and after data injections is kept
consistent by changing the internal state through
SuperTuxKart procedures especially designed to
change state.

Yes

R3-12 Not found The resource handlers check the existence of a
resource and return the specified status code if
nonexistent.

Yes

R4 Usability The REST API is documented using OpenAPI.
The internal structure of SuperTuxKart is hidden
behind the resource layout and knowledge about it
is therefore not required to know to use the REST
API.

Yes

R5 Extensibility Additional resource handlers and endpoints can be
easily added by adding a new class for the handler
and registering the endpoint via its path as regular
expression. Existing handlers do not have to be
changed.

Yes

№ Title Evaluation Fulfilled

Continued on next page
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Table 5.4: REST API requirements evaluation (Continued)

R6-1 Input format The REST API requires requests to be in the JSON
format, which is processed using RapidJSON.

Yes

R6-2 Pre-built resources Pre-built resources packed as ZIP archives can be
uploaded using PUT operations. These resources
are then extracted in the corresponding
SuperTuxKart add-on directory and loaded by the
appropriate SuperTuxKart functionality.

Yes

R6-3 Output format All responses are in the JSON format, and built
using the RapidJSON functionality for creating
JSON files, which ensures syntactically
correctness.

Yes

R7-1 Errors Internal errors are encapsulated as
std::runtime_error, and converted to the specified
status code in the request handling.

Yes

R7-2 Resilience Errors of the REST API are implemented as
exceptions in the thread of the REST API. The
thrown exceptions are handled in the request
handling. The game thread is not affected by the
REST API exceptions.

Yes

R7-3 Input validation The input is syntactically verified by using the
RapidJSON parser, and semantically validated by
the request handlers. Errors are encapsulated as
std::invalid_argument and handled accordingly
in the request handling.

Yes

R7-4 Testability By the class design to encapsulate the request
handling and the separation of request handling
and request execution the testing of the request
handlers is possible. Existing handlers are tested
using the GoogleTest unit test framework.

Yes

R8-1 Persistence Created resources are stored persistently as
SuperTuxKart add-on resources in the
SuperTuxKart add-on directory.

Yes

R8-2 Previous races When the status of a race changes, all resources are
serialized and stored. These serialized results can
then be accesses using the race’s identifier.

Yes

№ Title Evaluation Fulfilled

Continued on next page
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Table 5.4: REST API requirements evaluation (Continued)

R9 Performance By using multi-threading and the intermediate time
between the computation of two frames as
described in section 5.3.4 the impact of the request
to the REST API are in the magnitude of a few
milliseconds. Therefore, no further investigations
or improvements are necessary.

Yes

№ Title Evaluation Fulfilled

The fulfillment of the requirements set on the REST API is evaluated in table 5.4. Overall all
requirements are fulfilled and the REST API can be used as foundation for future projects to fulfill
the vision of advanced integration of SuperTuxKart into connected cars.

5.5.2 Exemplary Future Project

The main objective of the REST API is its usage as foundation for other projects. To evaluate
the fulfillment of this main objective the usage of the REST API in an exemplary future project
is presented. The examined project is the integration of weather data. The endpoint for weather
data of the REST API is /races/{raceId}/weather. The supported attributes are sky-color, sound,
particles, and lightning. As weather is only possible if an in-game world exists, the endpoint is
only available while a race is running. Both directions of the data exchange model are examined.

The data injection direction is evaluated by injecting weather data into SuperTuxKart. The real-world
weather conditions can be determined using sensor data of the connected car or an external weather
data provider located in the cloud. To use the weather data within SuperTuxKart it needs to be
preprocessed. Precipitation needs to be mapped to particles. Lightning can be extracted from the
weather data. Sky color can be determined by the actual sky color, the surrounding light color
determined by a sensor, and cloudiness. The ambient mood specified by the light color, landscape,
and loudness of the environment can be mapped to an appropriate in-game sound effects. This can
be done, e.g., by using artificial intelligence trained with the list of available in-game sound effect.
These four values are then sent to the REST API using a POST request. The in-game weather is
immediately changed, and the response contains the changed weather resource to allow validation
of the modification. When the weather in the real-life changes, the data preprocessing and injection
is performed again.

The data extraction is used to adapt the real-world surrounding to match the in-game conditions.
This can be used to transfer the mood of the in-game track to the car’s interior. Using a GET request
on the weather endpoints reveals the previously mentioned four attributes of the in-game weather
resource. The sky-color can be directly mapped to the color of the interior illumination. The
lightning information can be used to flash the interior as well as external lights in randomized
intervals, if there is lightning in-game. Lightning sound is already present through the in-game
sound effects. Particle information can be used to e.g., spray windshield washer fluid on the glass,
and activating the windshield wiper. In-game sound effects are already audible but can be further
extended, e.g., by engine sounds of the real engine of the car.
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This example shows that further sophisticated projects using the REST API as foundation are
possible and increase immersion and gaming experience. The REST API eases integration of
weather data in the injection as well as in the extraction direction as the SuperTuxKart internals are
hidden and data exchange is reduced to the exchange of the weather resource with its four attributes.
Limitations are the resource exchange via self-contained messages, which do not support continuous
values and data exchange and the supported attributes of the weather resource. Continuous value
exchange can be added, e.g., by adding additional exchange mechanisms for continuous values,
e.g., web-sockets. Additional weather attributes or even additional resources can be realized by
exploiting the REST APIs extension capabilities.

5.5.3 Extensibility

Based on the open-closed principle for application development [Mar96] software should be open
for extension but closed for modification. As the resources of the domain model of figure 5.3 only
cover the most relevant resources of SuperTuxKart it might be necessary to add additional resources
for special use cases. Therefore, it should be possible to add new resources without large integration
effort and the need to change existing program code.

Adding a new resource involves three components: a data exchange component, a handler component
and an endpoint. The scope of the components is as follows:

• DataExchange: The DataExchange component for data handling and integration with
SuperTuxKart is a class that implements the data exchange interface. It offers getters and
setters for all requested attributes. As this is newly written code no further code needs to be
adapted.

• Handler: The Handler component is a class that inherits from the handler class. It receives
the request body and if applicable, the identifier of the requested resource. Therefore, it needs
to implement the body parsing logic. As the handler class already offers default behavior for
all request types, only the required operations need to be overwritten. To ease implementation
available helper functionality for JSON parsing and ZIP handling can be used. As the data
exchange component, the handler component contains only newly written code, and therefore
does not require any further program code modifications.

• Endpoint: The endpoint matches a resource path to a resource handler. It is therefore the
tuple of endpoint path and resource handler. The path matching is implemented by specifying
the path as a regular expression and appending it to the list of existing endpoints. The resource
handler is implemented by handing over a static factory method of the handler component to
the endpoint. The other endpoints are not affected by this endpoint injection and do therefore
not subject any modification.

By implementing these three components it is possible to extend the REST API by further resources.
The open-closed principle is fulfilled, and extension is easily possible.

Adding further attributes to existing resources is more difficult as it involves a modification operation.
The involved components of the resource are the data exchange component, and the handler
component. The endpoint is not affected as the resource identity remains unchanged. The data
exchange component is extended by adding new getters, setters, and integration logic for the newly
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added attributes. The handler component logic needs to handle the new attributes and is therefore
modified to support these new attributes in requests as well as in responses. As this is a modification,
it is more difficult to integrate, but as the handler component mainly comprises parsing logic, it
is still rather simple to add additional attributes to existing resources. Therefore, the open-closed
principle for being open for extensions is fulfilled.

As the open-closed principle states, the application is closed for modification. It is not intended to
change existing behavior and is therefore much more complex than an extension as the existing
logic needs to be analyzed, understood, and altered correctly.

5.6 Outlook

Considering the vision for advanced integration of video games into connected cars and the data
exchange model between the real-life and the video game the REST API is the connector that
connects the real-life with the video game and enables the data exchange. The REST API itself
does not realize the vision but serves as foundation for future projects in the context of advanced
integration of SuperTuxKart into connected cars. Therefore, it is important to not only consider the
improvements of the REST API itself but also the projects that are possible using the REST API as
foundation.

The REST API can be improved using its extensibility mechanisms. Additional endpoints for
additional resources as well as the mapping of additional attributes within existing resources are
possible. Also, additional operations on existing or new resources can be added. Further resource
types and interaction mechanisms, e.g., to control steerage by transmitting data using a WebSocket
connection, are feasible.

The amount of integration possibilities of SuperTuxKart into connected cars is almost infinite. The
REST API thereby supports data extraction projects, e.g., to control the interior or environment to
match the in-game conditions, as well as data injection projects like the adaption of the in-game
weather to match the real-world surrounding. Also, bidirectional data exchange, e.g., to realize
augmented reality projects, is feasible.

The REST API can also be used to integrate the generated tracks by the World Generation application.
Therefore, the World Generation application generates an in-game track. The generated track is
then uploaded to the track endpoint and a new race on the uploaded track is started using the
race endpoint. This enables seamless integration of multiple advanced integration approaches for
SuperTuxKart and gives an impression how the realized vision may look like.
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6 Conclusion

The vision of advanced integration of video games enables the usage of the additional abilities of
connected cars in video games. Therefore, the data exchange model for data exchange between the
real-life and the in-game world is introduced. The data exchange model covers the data injection
from the real-life into the video game and the extraction of data out of the game. Based on the
data exchange model many projects can be implemented to realize the advanced integration. To
demonstrate the potential of this vision the World Generation prototype and the prototype for the
REST API based on the kart racing game SuperTuxKart are presented.

The World Generation prototype enables the SuperTuxKart track generation based on the real-world
data of the car’s environment. It allows the player to compete in the races taking place in a replication
of the real-life in order to create immersion. For the computation of the in-game model of the
real-life a writer for the SPM file format is proposed, and the usage of Suurballe’s algorithm is
suggested for determining the racetrack path. Racetrack path displacements can be determined
using 2D spatial computations. Whereas the prototype is able to create recognizable world models,
it is limited to freely accessible data. The usage of further data sources would make the generated
in-game world more realistic. The more and the better the used data is, the more realistic the
generated world becomes. The World Generation demonstrates how data injection into the game
can be used to increase realism and is a first step towards the disappearance of the boundaries
between the real-life and the in-game world.

The REST API for SuperTuxKart is the second implemented prototype. In the data exchange model,
the REST API serves as middleware for data exchange in both directions. To enable the accessing
of SuperTuxKart in a resource-oriented manner the domain model is presented. The domain model
comprising the most important resources of SuperTuxKart. Requests are handled in parallel to not
interrupt the gameplay. Data extraction and injection operations that require consistency can be
executed in the intermediate time between the computation of two frames. Special effort is placed
on the ability to serve as foundation for further projects. This is archived by making the REST API
easy-to-use as the internal structure of SuperTuxKart does not have to be known in order to use the
REST API. Also, it is possible to extend the REST API by further resource endpoints and attributes
without changing the source code of the exiting handlers by adding and registering new independent
handlers.

SuperTuxKart is a good example for video games that benefit from the additional possibilities that
connected cars offer. It is important for further projects to also consider the additional hardware and
the cloud capabilities of connected cars. The results of this work serve thereby as foundation and
leverage for the contributions of further projects to the next abstraction level, i.e., that the projects
can focus on their objective by using the basis that is introduced within this work.

Video games of other categories than racing games are also covered by the vision and the data
exchange model but as the natural analogy of a vehicle is missing new metaphors need to be
introduced. This may also cover including all passengers into the game.
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