
IMPROVING SAMPLE-EFFICIENCY

FOR MODEL-FREE OFF-POLICY

DEEP REINFORCEMENT LEARNING

IN CONTACT-RICH MANIPULATION

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde einer Doktorin der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

SABRINA HOPPE

aus Mainz

Hauptberichter: Prof. Dr. Marc Toussaint
Mitberichter: Prof. Dr. Marco Huber

Tag der mündlichen Prüfung: 07.09.2021

Institut für Parallele und Verteilte Systeme (IPVS)
2021

ii

Abstract

For centuries, humans have been dreaming of intelligent machines which
can move and behave like humans. With the industrial revolution, au-
tonomously moving machinery came into existence. The intelligence to
make such a machine behave or even learn autonomously is still a huge
challenge however. Since first steps in this direction have been taken we
have seen a rising demand for intelligent robots in many fields including
production automation where robots may help to cope with increasingly
flexible and rapidly changing manufacturing processes.

Researchers in the field of Reinforcement Learning investigate how to
design algorithms such that agents can learn autonomously. For instance
robots can be enabled to figure out the optimal way to perform production
tasks by themselves. In this thesis, I will focus on insertion tasks which
frequently occur in manufacturing. Today’s algorithms for such tasks typ-
ically trade off sample efficiency against generalization capabilities. This
means that one extreme type of algorithms makes an agent learn quickly
by pre-defining a lot of structure or making specific assumptions about the
task at hand, but this typically implies that the algorithm becomes very
specific to this task. The other extreme type of algorithms, model-free
learning methods, are very broadly applicable but then typically require
vast amounts of data to learn reasonable behavior.

In this thesis, I will start from flexible, general-purpose model-free Re-
inforcement Learning algorithms and examine ways how to add small
amounts of common sense or human prior knowledge to considerably
speed up learning. Such an improvement can be characterized by the
type of information that is used as well as by the approach that is chosen
to make use of the information. The types of information I will use in this
thesis include the robot itself, i.e., for example dynamics information; prior

iii

knowledge about the task, for instance a coarse solution strategy that in-
tuitively seems sensible for humans; and mathematical insights into the
type and structure of data that the agent has collected.

I will also suggest a number of methods to integrate such information in
a learning process: as a way to make informed choices about new actions
for the agent to try (the so-called exploration), as criteria for an engineer
on how to formally describe the task (i.e., how to design a suitable Markov
Decision Process), and by choosing and adapting the type of function
approximation that is used inside the learning process.

All methods that I will present in this thesis have been evaluated on
real-world robotic manipulation tasks that have been derived or taken from
industrial production plants. The results show that the proposed ways to
make use of additional information significantly increase the efficiency of
learning processes and can improve their stability even in adverse set-
tings.

iv

Zusammenfassung

Die Menschheit träumt seit Jahrhunderten von intelligenten Maschinen,
die sich bewegen und verhalten wie Menschen. Seit der ersten indus-
triellen Revolution gibt es nun ausgefeilte mechanische Systeme, die au-
tonome Bewegungen ermöglichen. Die Intelligenz jedoch, die diese Be-
wegungen steuern und adaptiv auf die Umgebung anpassen könnte, lässt
noch immer auf sich warten. Durch erste Schritte in diese Richtung gibt
es aber bereits heute einen steigenden Bedarf für autonome und adap-
tive Robotik Anwendungen, etwa in der Fertigungsautomatisierung um
der steigenden Nachfrage nach flexiblerer Planung und individualisierten
Produkten aus automatischer Herstellung gerecht zu werden.

Forscher im Bereich Reinforcement Learning beschäftigen sich all-
gemeiner mit der Frage, wie man Algorithmen schreiben kann um au-
tonome Agenten zu befähigen, selbst zu lernen. Beispielsweise könnte
ein Fertigungsroboter dann selbst herausfinden, welches Verhalten oder
welche Strategie eine gegebene Aufgabe am schnellsten und zuverläs-
sigsten löst. In der vorliegenden Doktorarbeit habe ich mich mit Füge-
prozessen beschäftigt, wie sie häufig in der heutigen industriellen Ferti-
gung vorkommen. Für Algorithmen, die typischerweise im Reinforcement
Learning angewandt werden, können typischerweise Generalisierungs-
fähigkeit gegen die Effizienz abgewägt werden, mit der verfügbare Infor-
mationen verarbeitet werden. Das heißt, es gibt ein ganzes Spektrum
an Methoden die zwischen zwei Extremen liegen: Auf der einen Seite
sehr spezifische Methoden, die viel Struktur und Vorwissen mitbringen
und dadurch höchst effizient an eine spezielle Aufgabe angepasst sind;
auf der anderen Seite Algorithmen, die für eine Vielzahl von Aufgaben
geeignet sind und dann aber mehr Zeit und Daten brauchen, um sich
mit einer spezifischen Aufgabe zurechtzufinden. In dieser Doktorarbeit

v

werde ich daher von flexiblen, allgemein anwendbaren Methoden starten
und zeigen, wie durch Zuhilfenahme einzelner Informationen über die Auf-
gabe, den Roboter oder menschlicher Intuition der Lernprozess signifikant
beschleunigt werden kann.

Die zu diesem Zweck vorgeschlagenen Methoden können von zwei
Seiten charakterisiert werden: die Art der verwendeten Information und
die Art der Verwendung. Die Informationen, die ich in der folgenden Pro-
motionsschrift verwenden werde, beinhalten den Roboter an sich, z.B.
Informationen über seine Dynamik; Vorwissen über die Aufgabe, aus-
gedrückt etwa von Menschen durch Skizzierung grober Lösungsansätze;
und schließlich abstrakterer mathematischer Einsichten in die Art der Auf-
gabe und der daraus entstehenden Daten. All diese Informationen kön-
nen verwendet werden, und zwar durch zielgerichtete Exploration des
lernenden Agenten, also das gezielte Ausprobieren erfolgversprechender
neuer Handlungen; durch eine gezielte formale Charakterisierung der Auf-
gabe, sodass ein besonders effizient zu lösendes Optimierungsproblem
entsteht; und indem Wahlmöglichkeiten bei der Zusammenstellung des
Reinforcement Learning Algorithmus genutzt werden, etwa die genaue
Art der verwendeten Funktionsapproximation.

In diesem Spielraum aus zur Verfügung stehenden Informationen und
Verwendungsmöglichkeiten werde ich in der vorliegenden Arbeit mehrere
Methoden vorschlagen und durch Experimente mit echten Robotern eva-
luieren, die sich aus Fügeaufgaben im industriellen Fertigungsumfeld er-
geben haben. Die Ergebnisse zeigen, dass die vorgeschlagenen Wege
zusätzliche Informationen im flexiblen Modell-freien Reinforcement Learn-
ing zu integrieren tatsächlich zu einer Beschleunigung und unter Umstän-
den auch Stabilisierung des Lernprozesses führen; selbst für nachteilige
Situationen und Aufgaben.

vi

The only difference between
stumbling stones and stepping stones
is the way you use them.

— AMERICAN PROVERB

viii

acknowledgments

I am deeply grateful for the support and inspiration that my advisor, Marc
Toussaint, has provided to me over the last years. His honest curiosity and
passion for research questions combined with in-depth technical expertise
provided an enjoyable open space for science. I appreciated the open-
mindedness in our discussions as well as the friendly and constructive
guidance I received through them.

Daniel Hennes, who joined our lab as a proxy to Marc Toussaint, be-
came my main advisor for roughly one year. I am very grateful for his fresh
input to my work which made the first journal paper for this thesis possible.

Additionally, I am thankful for all the time that I got to spend at the Ma-
chine Learning and Robotics Lab together with my wonderful colleagues:
Andreas, Camille, Carola, Danny, Heiko, Hung, Janik, Jim, Jung-Su, Matt,
Oz, Peter, Philipp, Ruth, Vien, Yoojin.

I was employed by Bosch for my PhD thesis and also received im-
mense support from this side: Thomas and Zhongyu gave me the oppor-
tunity to work on the topic of this thesis and were a great source of support
in setting up the formal framework for my PhD. I am thankful to numerous
Bosch colleagues, for scientific input through various reading groups but
above all from Michael, Markus and Robert; help in engineering and hard-
ware aspects from Jens, Martin and Andreas; input on scientific writing
and proof-reading of this thesis by Eduardo, Ruyu and Zhongyu; and fi-
nally the exchange among Bosch PhD students.

Finally, I cannot treasure enough everybody who supported me from
the private side of life. You have been the backbone to my perseverance
throughout all these years.

ix

x

Contents

Acronyms xv

Symbols xvii

1 Introduction and Motivation 1
1.1 Manipulation Tasks in Production 2
1.2 Challenges in Reinforcement Learning for Real-World Manipulation

Tasks . 3
1.3 Contributions and Structure of this Thesis 4

2 Background 7
2.1 Types of Reinforcement Learning 9
2.2 Learning with Q-Values . 11
2.3 Function Approximation . 12

2.3.1 Bayesian Optimization and Gaussian Process 12
2.3.2 Artificial Neural Networks 14

2.4 Model-Free Off-Policy Deep RL 17

3 Peg in Hole Variants and Challenges 21
3.1 Tasks . 21

3.1.1 Clearance Fit Peg in Hole 23
3.1.2 Double Peg in Hole . 24
3.1.3 Form Fit Peg in Hole . 26

3.2 Hardware: Robots and Sensors 26
3.2.1 KAWADA Nextage Open Setup 27
3.2.2 Franka Emika CoBot Setup 28

xi

4 Prestudies 31
4.1 Function Approximation with Discontinuities 31

4.1.1 Motivation . 31
4.1.2 Method . 33
4.1.3 Results . 34
4.1.4 Conclusion . 36

4.2 Uncertainty Estimates for Value Networks in Low-Dimensional Spaces 41
4.2.1 Motivation . 41
4.2.2 Method . 41
4.2.3 Results . 42

5 Modalities to Efficiently Learn Peg In Hole Tasks 49
5.1 Introduction & Motivation . 49

5.1.1 Disambiguating Sensory Input 49
5.2 Related Work . 50
5.3 Experimental Setup . 52
5.4 Method . 52

5.4.1 Residual Policy Formulation 54
5.4.2 Data Collection . 54
5.4.3 Network Architecture and Training Procedure 55
5.4.4 Control Loop Variants . 57
5.4.5 Experimental Results . 60

5.5 Discussion . 61
5.6 Limitations and Open Questions 62

6 Exploration through Approximate Uncertainty-Based Trajectory Opti-
mization 65
6.1 Introduction & Motivation . 66
6.2 Related Work . 67
6.3 Method . 69

6.3.1 Advantage Networks . 69
6.3.2 Greedy Exploration using Bootstrapped Advantage Networks 71
6.3.3 Training Bootstrapped Advantage Networks 71
6.3.4 Global Exploration using Trajectory Optimization 73

6.4 Experimental Results . 74
6.4.1 Exploration Speed . 76
6.4.2 Robustness to Corrupted Steering Functions 78
6.4.3 Feasibility on a Real Robot 78
6.4.4 Sample Efficiency for Policy Learning 80

6.5 Discussion . 82
6.6 Limitations and Open Questions 83

xii

7 Linking Data Graph Structures to Soft Divergence 85
7.1 Introduction & Motivation . 85
7.2 Preliminaries . 87
7.3 Related Work . 88

7.3.1 Instabilities in RL: the Deadly Triad 88
7.3.2 Graph Perspective on Training Data 90

7.4 Method: Data Graph Structure 91
7.4.1 Characterizing Transitions 91

7.5 Experimental Results . 92
7.5.1 Experimental Setup . 92
7.5.2 Empirically Assessing Divergence 93
7.5.3 Example I: Types of Transitions 93
7.5.4 Example II: Chains of Transitions 97

7.6 Discussion . 98
7.7 Limitations and Open Questions 99

8 Stabilizing DDPG through Q-Graph-based Lower Bounds 101
8.1 Related Work: Constrained Q-learning 101
8.2 Method . 102

8.2.1 Q-Graph Implementation 103
8.2.2 Zero Actions . 106
8.2.3 Q-Graph Values as Lower Bounds 106
8.2.4 Q-Graph-bounded Q-learning 108

8.3 Experimental Results . 110
8.3.1 Baird’s Star Example . 110
8.3.2 Simulated Clearance Fit Peg Insertion Task 110

8.4 Discussion . 121
8.5 Limitations and Open Questions 122

9 System Study: Q-Graph-bounded DDPG for Industrial Assembly 125
9.1 Introduction & Motivation . 125
9.2 Industrial Shaft Fitting Task . 129
9.3 Related Work . 130
9.4 Residual Formulation . 131

9.4.1 States . 131
9.4.2 Actions . 131
9.4.3 Reward . 132
9.4.4 QG-DDPG . 132

9.5 Experimental Setup . 133
9.5.1 Network Details . 135
9.5.2 Robot Control . 135

9.6 Experimental Results . 135

xiii

9.6.1 Task Difficulty and Baselines 136
9.6.2 Sample Efficiency and Robustness to Hyperparameters . . 137
9.6.3 Relation to Soft Divergence 138
9.6.4 Robustness to Sparse Rewards and Limited Memory . . . 139

9.7 Discussion . 140
9.8 Limitations and Open Questions 142

10 Conclusion 145

Appendices 161

A Visual Experiment Documentation 163
A.1 Visual Evaluation: Results from Chapter 5 164

A.1.1 Controller A: Vision & Passive Compliance 164
A.1.2 Controller B: Closed (Hard-Coded) Control Loop 165
A.1.3 Controller C: Vision & Compliance Feedback 168

A.2 Visual Evaluation: Results from Chapter 6 169
A.2.1 Illustration of Steering Function 169
A.2.2 Task Illustration in Simulation 169
A.2.3 Learning Progress on the Real Robot 170

A.3 Visual Evaluation: Results from Chapter 9 174
A.3.1 Human Baseline . 176
A.3.2 Learning Progress . 177

xiv

Acronyms

GP Gaussian Process
BO Bayesian Optimization
RL Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
QG Q-Graph
QG-DDPG QG-bounded Deep Deterministic Policy Gradient
DQN Deep Q-Networks
MDP Markov Decision Process
ZA Zero Action
RBF Radial Basis Function
MLP Multi Layer Perceptron
TD Temporal Difference
EEF End Effector
ANN Artificial Neural Network
LQR Linear Quadratic Regulator
UCB Upper Confidence Bound
ReLU Rectified Linear Unit
DoF Degree of Freedom
tanh Hypberbolic tangent function

xv

xvi

Symbols

Throughout this thesis, I use the following notation: matrices are typeset as bold
upper case letters like W; vectors are represented by lower case letters in bold
such as x, while regular lower case letters like x represent scalars. Probability
distributions as well as the constituents of a Markov Decision Process are typeset
as calligraphic upper case letters like T . Sets and tuples are referred to by capital
letters in script style, e.g. W .

Indices

i Set indices, enumerating un-ordered elements
t Indices of a sequence expressing temporal order
k Indices of repetitions in an iterative algorithm or loop

Probabilities

N Normal probability distribution, parameterized by mean µ and variance
σ
µ Mean value of a normal distribution. If estimated from data, it

is marked as µ̂
σ Standard deviation of a normal distribution. If estimated from

data, it is marked as σ̂
κ Scalar trading off µ and σ in the Upper Confidence Bound

(UCB)
U Uniform probability distribution
ε Probability of random actions in so-called ε-greedy exploration
p Dropout probability

Artificial Neural Networks (ANN)

D Data Set. Elements of the set are indexed with i

xvii

NN Neural network. A function that maps an input χ to an output ϕ using
multiple layers
χ Input to a neural network. Is a tensor of different dimensional-

ity depending on the network architecture
ϕ Output of a neural network. Is a tensor of different dimension-

ality depending on the network architecture
l Layer of a neural network, a non-linear function
N Number of layers in a neural network
n Index to identify the layers of a neural network, from 0 to N
fin Number of in-going connections of a neuron
fout Number of out-going connections of a neuron
z Output of a neural network layer. Also referred to as latent

representation of the input
h Nonlinear activation function used to compute a layer’s activa-

tion in a Multi Layer Perceptron (MLP)
W Weight matrix of a layer in an MLP
b Bias vector of a layer in an MLP
θ All parameters of a neural network flattened and concatenated

L Loss function
`2 The `2 metric, also noted as `2(x) = ||x||2 =

√∑
i x

2
i . Used to define

loss functions, regularization and distance measures
λ Regularization coefficient such that a loss Lis combined with a regu-

larization term ρ as L + λ · ρ
B Number of instances used in bootstrapping
b Index used for instances in bootstrapping, element of [0, B − 1]

Reinforcement Learning

M Markov Decision Process (MDP)
A Action Space in a MDP M
S State Space in a MDP M
T Transition Probabilities in a MDP M
R Reward Function in a MDP M
rmin Lower bound of the reward function R
rmax Upper bound of the reward function R
P0 Initial State Probabilities in a MDP M

T Maximum number of transitions in one episode
T Transition in a MDP. Indexed by t to express the temporal order in

which an agent transitions; indexed by i to emphasize it is part of a
batch of randomly sampled transitions from a replay memory
s State in a transition T . Element of S

xviii

a Action in a transition T that was executed from state s. Ele-
ment of A

s
′ State in a transition T that was reached by executing a from

s. Element of S
r Reward in a transition T , received after executing a from s

and reaching s
′. Element of R

a
′ Notes an action that was taken after a transition, i.e. starting from state

s
′

π Policy. A function mapping from state to action: S → A
γ Discount factor.
R Return. Sum over discounted rewards
A Series of actions an agent has taken
δ Maximum difference in the return that the agent obtains for different A
V State Value

V target Target State Value in Temporal Difference (TD)-learning
Q State-Action Value

Qtarget Target State-Action Value in TD-learning
Q̂ Approximation to Q, e.g. critic in Deep Deterministic Policy

Gradient (DDPG)
A Advantage. Difference between Q and V

Atarget Target Advantage in TD-learning
α Hyperparameter in the TD formulation of Q-learning, could be seen as

a step size

Trajectory Optimization

W ∗ Set of waypoints representing an optimal trajectory
w Waypoints on an optimal trajectory, element of S
η Number of waypoints in an optimal trajectory

υ Scaling factor for distance between successive waypoints

Bayesian Optimization (BO) and Gaussian Processes (GP)

f Objective function to maximize
f̂ Approximation to f

x Input vector for the objective function f
x̂ Vector selected by the acquisition function for evaluation by f
m Mean function of a GP
k Covariance function of a GP
ι Length scale parameter of the Matern kernel
ν Smoothness parameter of the Matern kernel

xix

Observations & Measurements

I Three dimensional tesnor representing an image
c Feedback from a custom compliance feedback containing the six di-

mensional offset between the grippers and the wrist
cmax Manually tuned threshold on `2(c)

∆ Euclidean distance
p Tip position of the peg in world coordinates

Task and Policy Parametrization

g Goal position, element of S
ε Maximum euclidean distance to target in reaching task
¶ Policy step in z direction of the task space
ζ Feedforward wrench vector, 6 dimensional, consisting of 3D force and

3D torque
¤ Feedforward force in one dimension that is given as subscript,

e.g. ¤x in x direction
τ Feedforward torque in one dimension that is given as sub-

script, e.g. τx in x direction
¤̂ Estimated external force at the End Effector (EEF) in one dimension

given as subscript, e.g. ¤̂x
τ̂ Estimated torque at the EEF in one dimension given as subscript, e.g.

τ̂x

Q-Graph

G Q-Graph
E Edges of the Q-Graph, representing transitions between states
V Vertices of the Q-Graph, representing states

M G MDP with finite discrete state and action spaces, induced by data from
Q-Graph G which is a specific subset of the data collected for a learning
task with MDP M
Q
G

Q-value for a transition in the simplified MDP M G . Can be
used as lower bound to the Q-value in M

EGs1 Set of actions that the Q-Graph-induced MDP M G contains
starting from s1

Q
G
target Target Q-value after bounds from the Q-Graph G were applied

LB Lower bound to a Q-value
LBAP A priori lower bound

UB Upper bound to a Q-value
UBAP A priori upper bound

xx

az Zero Action. Element of A
C Capacity of a Q-Graph, i.e. maximum number of transitions it can hold

Bounds to Q-values after He et al. (2017)

L Lower bound
U Upper bound
� Hyperparameter for He et al. (2017)’s bounds: maximum number of fu-

ture or past transitions to consider. Counter ¨ can take values between
0 to �− 1

xxi

xxii

List of Figures

2.1 Deep Q-Networks network architecture 18
2.2 Deep Deterministic Policy Gradient network architecture 19

3.1 Clearance fit peg in hole illustration 22
3.2 Double peg in hole illustration . 24
3.3 Form fit peg in hole illustration . 27
3.4 KAWADANextage Open setup . 28
3.5 Franka Emika Panda CoBot setup 29

4.1 Illustration of discontinuities in peg in hole problems 31
4.2 Illustration of discontinuities in contact-rich manipulation 32
4.3 Toy example for discontinuities 34
4.4 Results: MLP on toy example for discontinuities 35
4.5 Results: GP on toy example for discontinuities 40
4.6 2D example for uncertainty estimates 44
4.7 Results: uncertainty for center condition 44
4.8 Results: uncertainty for upper left condition 45
4.9 Results: uncertainty for lower right condition 46
4.10 Results: uncertainty for center condition 47

5.1 Disambiguation of sensory input 51
5.2 Experimental setup . 53
5.3 Automatic labelling . 55
5.4 Network architecture . 56

6.1 Bootstrapped Advantage Network 70
6.2 Results: ablation study . 77
6.3 Results: robustness to corrupted steering function 79
6.4 Results: sample efficiency in policy learning 81

xxiii

7.1 From replay memory to data graph 86
7.2 The 15 subsets of the data graph in example I 95
7.3 Standard deviation of predicted Q-values by transition type 96
7.4 Results: distribution of predicted Q-values for the chain example . 98

8.1 Results on 7-state star problem 111
8.2 Results: hyperparameter search and sample efficiency 113
8.3 Results: standard deviation of predicted Q-values 114
8.4 Results: sample efficiency with Zero Actions 115
8.5 Baseline performance on a grid of hyperparameters 116
8.6 Results: empirical and a priori bounds as baselines 118
8.7 Results: limited graph capacity and non-determinism 120

9.1 Close-up view on the industrial insertion task 128
9.2 Initial and target poses . 134
9.3 Results: random baseline . 136
9.4 Results: sample efficiency on a grid of hyperparameters 138
9.5 Results: best and worst case learning curves 139
9.6 Evolution of mean Q-value predictions during training 140
9.7 Results: robustness to sparse rewards and limited memory 141

xxiv

List of Algorithms

1.A Test Time Control Loop: Open Loop, Vision Only 58
1.B Test Time Control Loop: Closed Loop, Vision Only 59
2 Exploration Episode using Approximate Uncertainty-Based Trajec-

tory Optimization . 75
3 Exemplar Q-Graph implementation 104
4 QG-bounded Deep Deterministic Policy Gradient (QG-DDPG) . . . 109

xxv

xxvi

List of Tables

5.1 Results: success rate for control loop variants 60

10.1 Summary: sources of information and how to exploit them 146

xxvii

xxviii

Chapter 1

Introduction and
Motivation

The rich corpus of mythology is full of passages showing that people
have already dreamt of artificial creatures in ancient times. In the Iliad,
Homer describes Hephaestus’ home with mechanical "golden handmaids
also who worked for him, and were like real young women, with sense
and reason, voice also and strength, and all the learning of the immor-
tals" (Butler S., 1898). These ideas have evolved over hundreds of years
in literature before the industrial revolution led to significant progress in
engineering. Machines soon came into existence but their "sense and
reason" as well as "learning" capabilities are still largely lacking behind.

In the early 20th century, the school of behaviorism lead to new para-
digms in psychological research. Contrasting other schools of thought like
mentalism, they focused on observable, measurable behavior and there-
fore provided easily accessible inspiration to contemporaneous research
in the field of robotics. Among the most influential ideas in behaviorism
is operant conditioning, which describes a learning process in which the
strength of a specific behavior is modulated by reward or punishment. In
the late 1980s, this thread of psychological research has been combined
with methods from computer science such as dynamic programming for
optimal control problems (Sutton and Barto, 2018). Together, these ideas
gave rise to the research field that is now called Reinforcement Learning

1

(RL) and that this thesis aims to contribute to. Research in this field in-
vestigates how an autonomous agent can learn to act optimally based on
observed rewards and punishment.

This type of learning has many aspects. Intelligent behavior or Homer’s
"sense and reason" is a collection of abilities: one would expect a being to
be able to learn, i.e., improve over time, to handle failures, to predict the
effect of future actions, to transfer skills to new tasks and so on. In this the-
sis, I will focus on the speed of learning. On the one hand, fast learning—
potentially even from suboptimally presented material—is widely regarded
as a sign of intelligence (e.g., Jensen (1989)). On the other hand, many
of today’s RL algorithms need vast amounts of data to derive decent be-
havior. In this thesis, I will therefore propose multiple strategies to improve
learning speed, i.e., in technical terms increase sample efficiency by mak-
ing smarter use of broadly available information.

1.1 Manipulation Tasks in Production

We as humans tend to have the strong intuition that everyday tasks such
as manipulating things are very easy compared to complex abstract tasks
like playing checkers. While computers have been programmed to play
checkers better than humans decades ago, the seemingly easy tasks
still pose large challenges (Moravec, 1988). To perform a manipulation
task, such as inserting a peg into a hole, many intricate processes are in-
volved: Assuming that there is some abstract concept of physical objects,
an agent would have to perceive the scene, locate the objects, decide
where and how to grasp, and plan how to move the arm considering that
the movement may have to change when the objects touch, e.g., because
friction can increase. Programming such sophisticated behavior to work
for a variety of tasks, objects, materials and backgrounds can be close to
impossible. Even just for one specific task, immense engineering effort
may be required.

One important field of application for robotic manipulation is production
automation: According to the International Federation of Robotics, 44% of
the operational robots in industry are used for handling operations which
includes tasks like picking, placing, and insertions. More than 400,000
robotic units were estimated to have been newly installed in industry in
2018 alone, corresponding to a rise of 15% compared to 2017 (Müller

2

and Kutzbach, 2019). This steep increase may further accelerate with
progress in robotics leading to more and more tasks which can be auto-
mated.

Recent changes in manufacturing industry, such as more individu-
alized products, more product variants, and more agile planning have
caused a trend towards smaller lot sizes (Spath et al., 2013). To cope with
this required flexibility, re-configurable production systems are needed and
create an additional demand for intelligent robots. These machines would
ideally be easy and fast to setup, use and re-use on different tasks. Thus,
a truly intelligent, learning agent who figures out how to solve a task ro-
bustly and is then able to transfer this skill to other tasks seems highly
desirable for practical challenges in today’s production plants.

1.2 Challenges in Reinforcement Learning for
Real-World Manipulation Tasks

The famous no free lunch theorems by Wolpert and Macready (1997)
state, loosely speaking, that on average over all possible optimization
problems, every pair of algorithms performs equally well. This means that
there is no single best algorithm which outperforms all others in all cases.
Instead, each approach has advantages and disadvantages that can be
traded off against each other.

In RL, prior knowledge versus generalization across tasks form a very
prominent trade-off: If only a single task is considered, knowledge about
the particular task at hand can be used to create a very efficient algorithm.
However, such a hand-drafted algorithm for one task is unlikely to gener-
alize to a wide range of other tasks. Similarly, algorithms which do not use
any knowledge about the task at hand typically need much more data to
infer good behavior.

In practice, the sweet spot is often somewhere in between and only re-
quires to add as much knowledge as possible but keep as much flexibility
and generalization capabilities as needed. In this thesis, I will start from
very general RL algorithms and experiment with different ways of injecting
prior knowledge without loosing too much of the algorithm’s generaliza-

3

tion capabilities and without requiring too much human input for setup. As
I will show, already small and relatively abstract pieces of information can
speed up the learning process substantially.

1.3 Contributions and Structure of this Thesis

After giving common background information on the field of RL in Chap-
ter 2, I will first give full details and background on the manipulation tasks
I have chosen to evaluate all methods for the remainder of this thesis in
Chapter 3.

In Chapter 4 I will present systematic prestudies on function approx-
imation that motivate my choice of methods for the subsequent chapters
of this thesis. First, I have evaluated how different function approxima-
tors deal with discontinuities (Section 4.1). This question is important in
the context of RL for manipulation tasks, because physical contact is very
likely to introduce discontinuities. For example, the dynamics function but
also the desired behavior changes instantly when the end effector gets
in touch with a rigid object such as a hard table top. The results show
that neural networks have slight advantages over other methods in these
cases, but one of the most obvious drawbacks is that networks do not
intrinsically offer an uncertainty measure for their predictions. I therefore
evaluated different types of uncertainty measures for neural networks in
Section 4.2.

My investigations towards the main topic of this thesis, increasing sam-
ple efficiency, start in Chapter 5. I have analyzed the relation of input
modalities to sample efficiency and show on a dataset of fixed size that
using more informative data speeds up learning even if it increases the di-
mensionality of the learning problem. These results have been published
in

Hoppe, S., Lou, Z., Hennes, D., and Toussaint, M. (2017).
Deep learning for manipulation with visual and haptic feed-
back. IROS Workshop on Frontiers in Contact-Rich Robotic
Interaction

In Chapter 6 I will present insights from an analysis on a particular
aspect of RL algorithms, namely exploration—which refers to new behav-
ior the agent tries in order to learn more about its environment or task.

4

I show that algorithms which do not make use of detailed knowledge of
the robots dynamics, and therefore are more easily applicable in environ-
ments with changing types of contacts, benefit if such knowledge is used
to plan exploration trajectories. These results have been published in:

Hoppe, S., Lou, Z., Hennes, D., and Toussaint, M. (2019).
Planning approximate exploration trajectories for model-free
reinforcement learning in contact-rich manipulation. IEEE Robotics
and Automation Letters, 4(4):4042–4047

Starting from Chapter 7 I will take a more abstract perspective on the
data that an agent is supposed to learn from. In particular, I propose a
graph view on past experience and show that one of the major stability
issues for Deep Deterministic Policy Gradient (DDPG), namely soft diver-
gence, can be linked to the graph structure. The graph view furthermore
allows to derive novel lower bounds for Q-learning based deep RL meth-
ods which, as I will show in Chapter 8, can help to stabilize learning. All
details and experiments are also publicly available in:

Hoppe, S. and Toussaint, M. (2020). Q-graph-bounded Q-
learning: Stabilizing model-free off-policy deep reinforcement
learning. arXiv preprint arXiv:2007.0758

In Chapter 9 I will present a system study on an industrial insertion
task and a particularly sample-efficient residual policy formulation. Such
a formulation induces a particular type of graph structure, because the
agent may be more likely to reach its goal but the average trajectory length
increases. I have shown that this provokes soft divergence on the one
hand, and can be prevented using my graph-based lower bounds on the
other hand. Thus, this concluding system study is based on the insights
from the previous chapters and corroborates several effects under real-
world conditions. These results have been published in:

Hoppe, S., Giftthaler, M., Krug, R., and Toussaint, M. (2020).
Sample-efficient learning for industrial assembly using Q-graph-
bounded DDPG. In International Conference on Intelligent
Robots and Systems, pages 9080–9087

The system study as well as all the preceding research on Q-Graphs
and their relation to soft divergence have been combined and presented
in an on-going submission:

5

Hoppe, S., Giftthaler, M., Krug, R., and Toussaint, M. (2021).
Stabilizing deep Q-learning with Q-Graph-based bounds. Un-
der review for the International Journal for Robotics Research
(IJRR)

6

Chapter 2

Background

The term reinforcement has first been used in psychology by Behavior-
ists for systematic changes in an organism’s environment which influence
its behavior; similar to a child learning from praise or reproach. In com-
puter science, Reinforcement Learning (RL) describes a problem setting
in which an agent learns from interacting with its environment (Sutton and
Barto, 2018). In contrast to supervised learning, the agent initially has
no data to learn from but instead collects its own data over time. RL has
therefore been described as a ’way of programming agents by reward and
punishment without needing to specify how a task is to be achieved’ (Kael-
bling et al., 1996). The agent receives reinforcement for its behavior and
is striving to maximize the amount of long-term reinforcement. Silver et al.
(2021) even hypothesize that ’reward is enough’ for intelligence, and thus
reinforcement learning could—if their conjecture is true—be ’a direct path-
way towards understanding and constructing an artificial general intelli-
gence.’

Formally, the setting is typically described as a Markov Decision Pro-
cess (MDP) that consists of a state space S, a probability distribution over
initial states P0, an action spaceA, transition probabilities between states
T and the reward function R (Sutton and Barto, 2018). At each discrete
time step t, the agent can then observe its state st ∈ S and choose an
action according to a function called policy π(st) = at ∈ A, which leads
to a new state st+1 with probability T (st+1|st,at) and an immediate re-
ward rt = R(at, st+1). One such transition is summarized as a tuple

7

T = (s,a, s′, r), where the time index is omitted and state st+1 is also
referred to as s′. The action taken from s′ is not part of the transition
anymore but for brevity also referred to as a′.

The discounted sum over all rewards until a terminal state was reached
is called return:

R =
∑
t

γtrt,

where γ is a so-called discount factor that ensures convergence of this
sum even over infinite terms. The discount factor γ can also be inter-
preted as trading off immediate rewards against those which are farther
in the future. Often, RL tasks are designed to be episodic: after a certain
number of steps T the agent is reset to an initial position even if no ter-
minal state was reached. The agent’s goal is to find the optimal policy π∗

which maximizes the expected future return E [R].

Striving for improvement, the agent from time to time needs to explore
actions that are different from its behavior policy π. In the simplest case,
actions can be chosen randomly with some probability ε. This leads to a
trade-off between exploration and what is called exploitation: namely exe-
cuting safe and rewarding behavior that the agent has already discovered.
If actions are continuous, so-called dithering strategies can be applied,
where some noise is added to the output of the policy. Different noise pro-
cesses have been examined for this, such as simple Gaussian noise or
the temporally correlated Ornstein-Uhlenbeck noise (e.g., in Lillicrap et al.
(2015)).

The reinforcement or punishment an agent receives typically has been
manually designed by a programmer. The process of defining a good
reward function for a MDP such that the agent can learn quickly is called
reward shaping (e.g., Grześ (2017)). For instance, if the goal position
is known, a reward can be inversely proportional to the agent’s distance
from the goal. Such a distance-based reward could lure the agent towards
the goal even if the agent has not actually discovered the goal state yet.
To make the agent minimize the number of steps it needs to reach the
goal, rewards are often negative at every time step. The return for a long
trajectory will therefore decrease with every step the agent needs to take.
This is one example how prior knowledge about a task can be used to
speed up learning. In this thesis, I will explore further ways to infuse prior
knowledge into RL methods.

8

2.1 Types of Reinforcement Learning

The RL problem of finding an optimal policy for a given task can be ap-
proached with a variety of different methods, but there are three main
categories:

• Policy Optimization methods directly optimize a parameterized pol-
icy. That is, a policy gradient is computed that determines how to
change the parameters of the policy to increase the expected re-
turn. In the simplest case, this expectation can be approximated by
the sample mean of gradients for all trajectories and associated re-
turn that an agent has experienced so far. More complex algorithms
may for example also limit the change in policy for each update step
(Schulman et al., 2015, 2017). Algorithms in this category can typ-
ically be further differentiated by how the policy gradient is found,
e.g., whether or which type of approximations are used. The advan-
tage of policy search methods is that they directly optimize what the
agent is seeking to find: the policy. On the downside these algo-
rithms work on-policy : that is, they reason about the current policy
only and thus, may not be able to learn from data collected in states
that the current policy would not encounter or from actions the cur-
rent policy would never choose.

• Model-based methods first identify models of relevant system prop-
erties such as the agent dynamics (e.g., Yu et al. (2017)). This can
be very efficient because typically supervised learning can be ap-
plied. Since these models are trained on all available data irrespec-
tive of the current policy, this is an example of off-policy methods. In
a second step, a variety of robotics methods can utilize the model,
e.g., for planning or imaginary rollouts (Sutton, 1990), which can
speed up learning and help to restrict rollouts on the actual robot to
promising interaction that seem safe to execute. There is always an
underlying assumption that the function class used to fit the model
is capable to capture the true dynamics. In Section 4.1 I will show
that this assumption can be problematic when the dynamics are dis-
continuous.

9

• Model-free methods do not explicitly identify models but instead rely
on value learning: A state value V π(s) represents the expected re-
turn for an agent that starts at state s and follows policy π:

V π(s) = E

[∑
t

γtrt

]
(2.1)

Analogously, a state-action value Qπ(s,a) represents the expected
return for an agent in state s that first executes a and then follows
policy π (Watkins, 1989). The difference in reward the agent re-
ceives when choosing action a rather than π(s) in the first step and
then follow policy π is also referred to as advantage

Aπ(s,a) = Qπ(s,a)− V π(s) (2.2)

The core of model-free RL methods is then often function approxi-
mation to find V or Q (Mnih et al., 2015). Given the correct Q, the
optimal policy can be easily inferred:

π∗(s) = arg max
a∈A

Q(s,a) (2.3)

In the absence of models, all data to work with needs to be collected
by the agent through experience. However, the lack of predictive
models can make this exploration process dangerous. For instance,
there is no model that could be used to predict what consequences
one action will have and thus every state-action pair may in principle
be tried directly in the real world.
On the positive side, these algorithms can be also applied in do-
mains where models are hard to obtain, for example contact-rich
manipulation. Such generality often comes at the cost of decreased
sample efficiency though. This means that, because the algorithm
can cope with a huge variety of environments, it takes particularly
much data to narrow all the possible policies down to the optimal
one.

10

2.2 Learning with Q-Values

One way to estimate Q-values Q̂ from data is Q-iteration: In each repeti-
tion k, Q-iteration iterates over all states and actions as follows (Watkins,
1989):

∀s,a. Q̂k+1(s,a) = R(s,a) + γ
∑
s
′∈S

T (s′ | a, s) ·max
a
′∈A

Q̂k(s′,a′) (2.4)

If the transition probabilities T are not known (or explicitly estimated),
often the Temporal Difference (TD) formulation of Q-learning is used. It
does not iterate over all state-action pairs but instead only uses past ex-
perience which has been stored as a set of trajectories. Each trajectory
is a sequence of transitions T = (s,a, s′, r) with state s, the action a
that the agent took, the state s′ that the agent reached and the reward
r it received. The TD formulation then iteratively updates the estimated
Q-values Q̂k in iteration k as follows:

Q̂k+1(s,a) = (1− α)Q̂k(s,a) + α

r + γmax
a
′
Q̂k(s′,a′)︸ ︷︷ ︸

Qtargetk

 (2.5)

where the hyperparameter α determines how far Q̂k is moved towards
the TD target Qtargetk. This formulation of Q-learning can be seen as a
stochastic variant of Q-iteration and for cases where the full state-action
space can be iterated it converges under some conditions for the learning
rate with probability 1 (Watkins and Dayan, 1992; Jaakkola et al., 1994).

A widely used variant of this formulation uses α = 1 and explicitly
considers terminal states for which the TD target becomes r:

Qtargetk(s,a) = r +

{
0, if s′ is terminal
γ · Q̂k(s′, π(s′)), else

(2.6)

11

which makes use of the definition of π as choosing the action that is opti-
mal with respect to the current estimate of Q:

Q̂(s′, π(s′)) = Q̂k(s′, arg max
a
′

Q̂k(s′,a′))

= max
a
′
Q̂k(s′,a′)

2.3 Function Approximation

For small and finite MDPs, Q-values can be represented in tables using
one entry per state-action pair. In robotics applications however, both
states and actions are typically real-valued. To circumvent discretization
issues, function approximation can then be applied instead of tables—may
it be to fit a model, to obtain value-functions or to find a parameterized
policy.

The following sections will therefore cover two general types of function
approximation: Gaussian Processes (GP) and Deep Learning. Finally,
deep Reinforcement Learning (RL) methods which use deep function ap-
proximators for RL methods will be introduced in detail.

2.3.1 Bayesian Optimization and Gaussian Process

Bayesian Optimization (BO) is a sequential approach for maximizing an
objective function that is not analytically known and can only be evaluated
at few input vectors x (Shahriari et al., 2015):

x∗ = arg max
x

f(x)

This optimization problem is solved by iteratively refining an estimate f̂ ,
starting from a prior belief. For each step of refinement, new points x̂ are
determined for which the estimate f̂(x̂) is compared to the outcome of the
true objective function f(x̂). The function that is used to choose x̂ is called
acquisition function. Given a new objective function evaluation f(x̂), the
current estimate f̂ is updated to a better informed posterior distribution
over the space of admissable functions.

12

One example of an acquisition function is the Upper Confidence Bound
(UCB) as suggested by Auer (2002) which I will refer to as UCBf :

x̂ = arg max
x

µ̂(f̂(x)) + κ · σ̂(f̂(x)) (2.7)

= arg max
x

UCBf̂ (x)

As can be seen from Eq. (2.7), the UCB uses a coefficient κ to combine
two criteria: a high mean value µ̂(f̂(x)) indicates that x may be a good
candidate for a maximum, while a high standard deviation σ̂(f̂(x)) addi-
tionally means that there is uncertainty to resolve. Combined, an input
vector x which leads to both relatively high mean and standard deviation
in the current estimate f̂ is particularly likely to lead to a high function eval-
uation f(x). With f being the (unknown) reward function, this acquisition
function can be applied to trade off exploration and exploitation in RL: a
high predicted mean reward for exploitation on the one hand and a large
variance as a good opportunity for exploration on the other hand.

A function approximator that is often used with BO are GPs. While mul-
tiple views on GPs exist, the following function-space centered definition
is most accessible in the context of function approximation (see Williams
and Rasmussen (2006) for more details): A GP describes a probability
distribution over functions f(x) and is completely specified by its mean
function m(x) and covariance function k(x,x′):

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)]

Intuitively, the covariance function k encodes the smoothness of functions
f , i.e., how similar f(x) and f(x′) are depending on the similarity of x and
x′.

Generally, the covariance function has a large impact on BO perfor-
mance. If well tuned, it can lead to very useful generalization between
samples, but in special cases it can also pose challenges: if the function
to approximate changes quickly in some particular areas (e.g., a cliff the
robot must avoid), one may need to use small covariances to make the
acquisition function sample close enough to the cliff to obtain informative

13

data. On the other hand, this would automatically also lead to less gen-
eralization in all other areas of the state space and thus decrease sample
efficiency. I will come back to this issue in Section 4.1.

2.3.2 Artificial Neural Networks

Artificial Neural Network (ANN) have been investigated as function ap-
proximators for a long time. First work in the 1950ies was mainly inspired
by brain research. For instance the first perceptron—today still known as
a simple type of ANN—was introduced by Rosenblatt (1958) in a journal
that, by their current description, publishes articles "that make important
theoretical contributions to any area of scientific psychology"1.

A number of algorithmic improvements starting in the 1980ies have led
to breakthroughs for ANNs: On the algorithmic side, algorithms such as
backpropagation (Rumelhart et al., 1986) lead to efficient training of ANNs
even with complex internal structures. Further improvements include prin-
ciples such as weight sharing (LeCun et al., 1989) that is mainly used to
reduce the number of free parameters in convolutional neural networks
and specific initializations that consider the network architecture (Glorot
and Bengio, 2010).

In 2001, Kussul et al. (2001) have shown that Rosenblatt’s perceptron
network architecture could perform similar to state of the art on the MNIST
dataset, a widely used benchmark in computer vision, by only few modi-
fications. In the 21st century more and more resources could be used to
train networks and allowed researchers to create, share and store huge
datasets. In computer vision for example, a lot of progress has been at-
tributed to datasets and challenges such as ImageNet (Deng et al., 2009)
which played an important role for the impressive improvements in the
field since 2010 (LeCun et al., 2015).

Today it is possible to easily download network weights for popular ar-
chitectures that resulted from extensive training on these huge datasets.
This allows other researchers to work with trained networks without the
burden of time-consuming training, and therefore gave rise to what is
called fine-tuning: Neural networks that have been trained on one task
can often quickly adopt to new domains, for instance by fixing the first
layers and only re-training the latter ones (Oquab et al., 2014).

1https://www.apa.org/pubs/journals/rev/, last retrieved: 01.12.2019

14

https://www.apa.org/pubs/journals/rev/

Many intricate variants of ANNs exist but this thesis will only work with
feed-forward fully connected neural networks—the so-called Multi Layer
Perceptrons (MLP), which will be introduced in the following paragraph.
Networks represent weight-parameterized non-linear functions

ϕ = NN(χ ∈ Rd,θ)

The function is called network because of the modular structure that is
used to compute NN (LeCun et al., 2015): It consists of N layers ln which
are functions that map input from previous layers zn to output vectors zn+1

using a weight matrix Wn, a bias vector bn and a non-linear activation
function h:

zn+1 = hn(Wnzn + bn)

The input of the first layer is at the same time the input to the network, and
the output of the last layer is also interpreted as the output of the network.
The full network is therefore a highly non-linear function of the input:

ϕ = NN(χ ∈ Rd,θ)

= hN−1
(
WN−1

[
. . . h1(W1[h0(W0χ+ b0)

]
+ b1) . . .]+ bN−1

)
All weight matrices and bias vectors are flattened and concatenated to

form the so-called weights of the network, i.e., its parameters:

θ = {W0,b0, ...WN−1,bN−1}

Popular choices for activation functions include the Hypberbolic tan-
gent function (tanh) or Rectified Linear Unit (ReLU):

tanh(z) =
exp(2z)− 1

exp(2z) + 1

ReLU(z) = max(z,0)

where the exp and max operation are applied element-wise to the input
vector z.

The weights θ of a neural network are trained in a supervised learning
scheme: there is a data set D = {(x,y)i} that contains a number of input
- output pairs. A loss function L is used to compare the current output of

15

the network with the ground truth from the dataset D . A popular choice
for a loss function is the `2 loss function:

L
(
NN|D

)
= `2

(
NN(X)−Y

)
=

√∑
i

(
NN(xi)− yi

)2

(2.8)

where X and Y are the concatenation of all xi and yi respectively.

This loss function can be used to compute gradients δ`2
δθ . Together

with the chain rule and a scheme called backpropagation, these gradients
can be used to update all network parameters such that the output of the
loss function is minimized (Rumelhart et al., 1986).

There is a large body of literature covering the choice of initial net-
work weights, activation functions and their interplay. For instance, initial
weights that are drawn from a simple uniform distribution often lead to
saturation when activation functions such as tanh or ReLUs are used as
activation function (Glorot and Bengio, 2010). Saturation means that a
neuron outputs mostly values close to the limit of the range of the func-
tion, e.g., such as zero as the lower limit of values that a ReLU activation
function yields. In such cases, the gradients often become very flat and
make it hard to further optimize the neural network although the current
predictions may not be good. Saturation can be limited when the type
of activation function is analyzed more closely though. For instance for
tanh activations, initial weights that are drawn uniformly from the following
interval were shown to be advantageous:[

−
√

6

fin + fout
,+

√
6

fin + fout

]

where fin and fout represent the number of in- and out-going connections
to a neuron (Glorot and Bengio, 2010). This is also referred to as Xavier -
initialization after its inventor Xavier Glorot.

16

A similar initialization scheme has also been derived by He et al. (2015)
for ReLU activation functions which is referred to as he-uniform-initializa-
tion and will be used for most of the ANNs in this thesis: Initial weights for
ReLU activation function are better drawn uniformly from the interval:[

−
√

6

fin
,+

√
6

fin

]

Many more improvements have been suggested to make ANNs learn
faster and more stable. For example, normalizing the input to each layer
of neurons by standardizing their mean and variance has been shown
to improve the learning procedure (Ioffe and Szegedy, 2015). However,
as for many empirical findings, the theoretical reason for the apparent
improvements is still under debate (Santurkar et al., 2018; Yang et al.,
2019).

2.4 Model-Free Off-Policy Deep RL

As discussed in Section 2.2, the key idea in Q-learning is to find a Q-
function which assigns the expected future return to state-action pairs.

Since neural networks are powerful function approximators, they can
also be used to fit Q-functions. In Deep Q-Networks (DQN), a network
takes a state representation as an input and predicts one Q-value per
action as an output (see Figure 2.1, Mnih et al. (2015)). This network
can then be trained using TD learning as follows: the TD target value
is computed as in Eq. (2.6) and compared to the currently estimated Q-
values using the expected squared error

L(θ) = ET ∼U(D)

[(
Qtarget(s,a | θ

−)− Q̂(s,a | θ)
)2
]

(2.9)

where the transition T is a tuple (s,a,r, s′). D refers to all the experience
an agent has collected and is represented as a data storage called replay
memory (Mnih et al., 2015). The expectation in Eq. (2.9) is then approx-
imated by averaging the error from a number of randomly sampled tran-
sitions (batch) from the replay memory. Randomly sampling transitions
increases the statistical independence of samples in one batch, because

17

s0

s1

s2

. . .

.

Q(s, a = 0)

Q(s, a = 1)

Q(s, a = 2)

Q(s, a = 3)

...

Figure 2.1: DQN network architecture. A state is used as input (s =
[s0 s1 s2]). The output consists of one Q-value for each possible action a
in the finite action spaceA. Note that the actions are only enumerated and
not parameterized. The network structure can vary, e.g., use convolutions
in case the state input are images.

it breaks the order in which samples were collected and in most domains
data of subsequent time steps is very close. In turn this statistical inde-
pendence is a requirement for the stochastic optimization methods that
are typically used to update network weights.
θ− are parameters of a target network which is also introduced in Mnih
et al. (2015) because learning with TD updates tends to become unsta-
ble when the TD targets change too quickly. Therefore, a second network
representing a Q̂-function, the so-called target network, is parameterized
by θ− in Eq. (2.9). The weights of the target network are updated to be
equal to those of the Q̂ network, but far less frequently. They therefore do
develop as the weights in Q̂ but act as a low pass filter, which helps to sta-
bilize training. However, recent work on divergence in deep RL has found
that target networks only tend to delay stability problems but not solve
them (Van Hasselt et al., 2018). I will come back to this point in Chapter 7.

Since the network in DQN predicts one Q-value per action, it is only
applicable for finitely many actions. In settings with continuous actions—
as typically required for robotics applications—an actor-critic architecture
called Deep Deterministic Policy Gradient (DDPG) can be used (see Fig-
ure 2.2, Lillicrap et al. (2015)): The network that takes both state and
action as an input and predicts the Q-value for this pair is referred to as
critic. The policy is represented as an actor network that maps states to
the optimal action to take. The critic is trained using TD learning and the
same loss function as in Eq. (2.9). The current estimate of the critic is then

18

s0

s1

s2

a0

a1

...

s0

s1

s2

a0

a1

Q(s, a)...

Actor network:

Critic network:

Figure 2.2: DDPG uses two networks: the actor networks represents the
policy. It takes a state (s = [s0 s1 s2]) as input and predicts the optimal
action (a = [a0 a1]). The critic network takes a state-action pair as input
([s a] = [s0 s1 s2 a0 a1]) and predicts the Q-value for this pair.

also used as a training signal for the actor network which in other words
means that the actor network π is trained to maximize the Q-value that the
critic predicts:

π(s) = max
a

Q̂(s,a)

Once an actor network has been trained, it is computationally much more
efficient to evaluate the network at test time than it would be to maximize
the highly non-linear Q-function Q̂.

19

20

Chapter 3

Peg in Hole Variants and
Challenges

All methods I will discuss in the following chapters of this thesis were eval-
uated on tasks that were taken from or inspired by real industrial use cases
for robotic manipulation. In many aspects, evaluations in simulation may
have been advantageous but one of the fundamental motivations for this
work was the idea that model-free methods are promising in fields where
exact models are hard to obtain. Therefore, the idea that realistic simu-
lation environments are available for these tasks seems incompatible. In-
stead, there is a whole research community (cf. for instance Collins et al.
(2019)) who investigates simulation on the one hand, and transfer learn-
ing or other techniques to bridge the gap between simulation and the real
world which are beyond the scope of this thesis.

In this chapter, I will first describe the tasks in detail and introduce their
respective challenges. Afterwards, I will present the two robotic setups
that have been used for the experiments throughout this thesis.

3.1 Tasks

All tasks in this doctoral thesis are variants of a paradigm called peg in
hole. Peg in Hole tasks are well-established in robotics and automation
research: one lengthy object has to be inserted into a second object of

21

inverted shape, see Figure 3.1 for an illustration. This task is one of the
universal steps that frequently re-occur in industrial assembly, e.g., for
assembly processes as in Sayler (2011).

Figure 3.1: Clearance fit peg in hole tasks: one object needs to be inserted
into a second object. Top: prototypical simulation screenshot. Middle:
real-world setup with a custom passive compliance element as well as
the KAWADA’s built-in camera inside of an illuminated ring as light source.
Bottom: series of images from real-world experiment.

22

3.1.1 Clearance Fit Peg in Hole

A peg in hole task can, in principle, be solved by avoiding any contact,
as long as the hole is slightly wider than the peg. I therefore started my
investigations with a simplified setting that is also referred to as clearance
fit peg in hole. Large portions of the experiments on this task consisted
of motion in free air, i.e. contactless. If the robot dynamics are known or
a model can be inferred, model-based robot control is straight forward to
apply and achieves robust solutions. However, I only regard the task as
a step towards more complex tasks. Therefore I already apply model-free
methods which promise to still be applicable in contact-rich environments,
particularly for tight form fit peg in hole tasks, which are much more likely
to occur in real-world industrial tasks.

3.1.1.1 Simulation Details

The simulation environment corresponding to clearance fit tasks was im-
plemented using pybullet1 and is illustrated in the top row of Figure 3.1.
The blue peg is always upright and velocity-controlled: an action repre-
sents the three-dimensional offset to the next position. To execute an ac-
tion, the new reference position is set and the simulation stepped forward
until a stable new position is reached. The actions are box-constrained to
[−1, 1] in each dimension which corresponds to a movement of 1 cm. The
green object has a width of 5 cm and is placed on the bottom of a cubic
state space with side length 20 cm. The peg has a diameter of 1 cm while
the hole has a diameter of 2 cm. In our default RL setting for this task,
the agent receives a distance-based reward r = exp(− ∆

0.03)−1, where ∆
is the Euclidean distance to the goal position in meters. This reward was
shaped such that all possible positive distances lead to a reward in [−1, 0]
and thus urge the agent to find solutions with as few steps as possible.

3.1.1.2 Real-World Task Details

In the real-world experiment corresponding to the clearance fit example
shown on the bottom of Figure 3.1, a square metal piece of side length
1.3 cm was supposed to be inserted into a 3D-printed object with 1mm
clearance. That is the square hole inside the 3D printed object was of

1https://github.com/bulletphysics/bullet3

23

https://github.com/bulletphysics/bullet3

side length 1.4 cm. For visual clarity, the object was 3D printed with white
on the inside and black on the outside. The robot operated in a 3D rect-
angular state space with width and length of 3 cm and height of 5 cm.
This work space was centered around the 3D-printed object that also had
side length 3 cm. To avoid harmful collisions, a compliance element was
mounted at the end effector (cf. Subsection 3.2.1) and its feedback used
in different control loops which will be discussed in more detail in Subsec-
tion 5.4.4.

3.1.2 Double Peg in Hole

Figure 3.2: Double peg in hole: Extending the classical peg in hole by
a second peg enforces contact: one peg must stay in contact until the
second peg is inserted as well.

To evaluate my methods in contact-rich tasks, I introduced a so-called
double peg in hole task. This task principle is similar to the clip insertion
investigated in Vecerik et al. (2017). In our setting, instead of a clip, two
rigid pegs are mounted on a bar with off-axis joints such that the two pegs
are pointing towards the center in free air. The second object consists of
two holes that the pegs can only be inserted into when one of the pegs is
first inserted a little, then this peg stays in contact while the bar is moved

24

such that the second peg can also be inserted (see Figure 3.2). The
video accompanying the publication presented in Chapter 5 also shows
this task as executed on a real robot and can be accessed under https:
//www.youtube.com/watch?v=JTfeHhWSb0Y.

In this extension of the classical peg in hole setting, dynamics models
are already harder to obtain: as soon as the pegs touch the second object,
the dynamics vary locally depending on the peg tip position (e.g., inside
vs. outside of a hole) and further properties such as the surface friction
when sliding from one hole to the other. Additionally, the robot may be un-
deractuated for this task: there is no motor to control and maybe also no
sensor to measure the individual peg orientations. Formally, this can turn
the environment from a MDP into a Partially Observable Markov Decision
Process (POMDP). However, due to the nature of the task, locally the un-
observed Degrees of Freedom (DoF) are often a function of the observed
DoFs—in particular, when working with a deterministic policy.

3.1.2.1 Simulation Details

For the simulation task shown at the bottom of Figure 3.2, the blue object
can move in a plane, i.e. there are two positional degrees of freedom and
one rotational (

[
−π2 ; π2

]
). The state is defined by the raw coordinates for

these three dimensions. The state space was manually restricted to some
box area around the green object and scaled linearly to [−1,+1] in all
dimensions before being fed into a network. The initial state of the blue
object was uniformly chosen from all states at the upper end of the box
and combined with any possible rotation.

Actions are defined as 3D offsets between states. The resulting tar-
get poses are tracked by a task space position controller. After a step
has been triggered, the simulation is designed to wait until the agent in-
cluding both pegs has reached a stable position before the next action is
applied. The terminal states were manually defined such that only states
with both pegs correctly inserted were included. The reward is based on
the euclidean distance in state space between the current state s and the
goal g:

r = exp

(
−||s− g||2

0.3

)
− 1,

25

https://www.youtube.com/watch?v=JTfeHhWSb0Y
https://www.youtube.com/watch?v=JTfeHhWSb0Y

where the constant denominator was manually tuned and fixed for all ex-
periments. Analogously to the clearance fit task, this reward function leads
to rewards in [−1, 0] and encourages fast solutions with few steps.

3.1.2.2 Real-World Task Details

For real-world evaluation, a 3D printed version of the task was used (see
the top row in Figure 3.2). The lower object was 4.5 cm wide. The state
space covers 8 cm from right to left, 5 cm from the lowest to the highest
point in z direction and a rotation of up to 30◦. One action could move
the robot by up to 0.5 cm. To avoid collisions, a light-weight 6-axis force-
torque sensor (KMS40, Weiss Robotics) was mounted on the robot’s wrist.
In contrast to the heavier compliance element from the clearance task, this
sensor exerted less force on the end effector under extreme rotations. No
passive compliance was used in this case though.

3.1.3 Form Fit Peg in Hole

Apart from passively sustained contact as in the previously described dou-
ble peg in hole task, a robot may also have to actively apply force in order
to achieve a peg in hole fitting task. In our final evaluations, I therefore
chose a real industrial application: a shaft needs to be inserted into a
ball bearing inside an eBike drive unit. To finish the tight form fit a force
of about 10N and a determined push are needed to succeed. The task
is illustrated in Figure 3.3 and a video from the publication associated
with Chapter 9 can be found at https://www.youtube.com/watch?v=
Z_GcNbCWE-E.

3.2 Hardware: Robots and Sensors

In this section, I will give details about the two robotic setups that I used
for the real-world experiments.

26

https://www.youtube.com/watch?v=Z_GcNbCWE-E
https://www.youtube.com/watch?v=Z_GcNbCWE-E

Figure 3.3: Form fit peg in hole: the shaft for an eBike drive unit needs to
be inserted into a ball bearing. For the last bit of motion, forces of approx-
imately 10N and a determined push are required. The motor housing is
turned upside down for better visibility of the ball bearing.

3.2.1 KAWADA Nextage Open Setup

The experiments on clearance fit in Chapter 5 and double peg in hole in
Chapter 6 have been conducted with a KAWADA Nextage Open, which
for instance in Japan is used in real-world production plants2 (see Fig-
ure 3.4). For all experiments, I used a task space position controller that
was provided through the manufacturer’s API.

For the evaluation with the clearance fit peg in hole task in Chapter 5, I
additionally mounted a custom passive compliance element as described
in Rueb and Becker (2016) on one of the robot’s wrists. It allows the
peg to be passively displaced against the end effector and provides full
6D feedback about the positional and rotational displacement through a
serial interface. The full setup, including also the built-in camera and light
source on the KAWADA’s second wrist, is shown in Figure 3.1.

2http://nextage.kawada.jp/en/gallery/, last retrieved: 23.08.2020

27

http://nextage.kawada.jp/en/gallery/

Figure 3.4: KAWADANextage Open with a custom passive compliance
element (Rueb and Becker, 2016).

3.2.2 Franka Emika CoBot Setup

Finally, for the experiments in Chapter 9, I used a different setup that
achieved compliance through joint torque control: The experiments were
performed on a Franka Emika Panda CoBot (see Figure 3.5) with a cus-
tom control toolchain running at 1 kHz. For rigid body kinematics, dy-
namics, and for efficiently computing its derivatives, I employed the open-
source library ’Pinocchio’ (Carpentier et al., 2019). The required inertial
parameters of our Panda robot were identified using an Linear Matrix In-
equality (LMI) approach as presented in Sousa and Cortesão (2019). The
end-effector contact wrench was estimated at 1 kHz real-time using an
extended Kalman filter-based disturbance observer implementation taken
from Giftthaler et al. (2018). The state and action definitions for the RL
setup will be discussed in detail in Chapter 9.

28

Figure 3.5: Full setup for the experiments in Chapter 9 using a Franka
Emika Panda CoBot and the form fit task with an eBike drive unit.

29

30

Chapter 4

Prestudies

In this chapter I will present two smaller prestudies which I conducted
before all other experiments in this thesis. They concern very general
questions and motivate the broader choice of methods to be examined in
the remaining pieces of research.

4.1 Function Approximation with Discontinu-
ities

4.1.1 Motivation

When robotic manipulation tasks are mathematically modelled, physical
contact leads to discontinuities in the functions created. This can be illus-
trated with a schematic peg in hole task that is shown in Figure 4.1.

PT

P1

PT

P2

PT

P3

Figure 4.1: Illustration of discontinuities in peg in hole problems.

31

P1 P2 P3

1.0

0.5

0.0

0.5

1.0

optimal movement in x direction

1.0 0.3 0.1
current x position

1.0

0.8

0.6

0.4

0.2

0.0

effect on y position by pushing downwards

Figure 4.2: Illustration of discontinuities in contact-rich manipulation. This
plot uses the task in Figure 4.1 to illustrates the sudden jumps in the x
coordinate of the optimal policy (top) as well as in the dynamics function
for a given action (pushing down in y direction, bottom).

The task is to insert the peg into a hole, where the agent only knows
the tip position pi which is supposed to reach the target pT . To achieve
this from point p1, the shortest path would be to slide to the right through
p2 until p3 and then to move downwards until pT is reached. Thus, the
optimal policy in 2D would be to move to the right first ([1, 0]) and then
downwards ([0, 1]) which causes a discontinuity for both the x and y coor-
dinate (see Figure 4.2 for illustration). Similar discontinuities arise when
the robots dynamics are considered: The effect of the peg being pushed
downwards in p1 and p2 is close to zero, but when p3 is reached the same
push downwards will change the y coordinate of the tip. This discontinuity
is illustrated in Figure 4.2 as well.

32

When RL is applied on such a manipulation task, both state and ac-
tions are very likely presented in continuous spaces. Thus, function ap-
proximation is typically applied and needs to approximate discontinuous
functions such as the optimal policy or dynamics described above. I there-
fore investigated different function approximators and their ability to fit dis-
continuous functions.

4.1.2 Method

For the experimental evaluation, I considered the following step function:

ς(x) =

{
+1, if x ≤ 0

−1, else

To simulate a setting where this function should be approximated, arti-
ficial noisy training data was created by sampling 70 values from a Gaus-
sian around the true values:

D =

{(
x,N

(
ς(x), σ = 0.05

))
i

}
To be closer to an RL setting in which the agent performs strategically
orchestrated exploration, 50 out of 70 training points (x) were sampled in
close vicinity of the step (i.e., −0.2 ≤ x ≤ 0.2) and only 10 in each of the
two remaining intervals ([−1,−0.2] and [0.2, 1]). The ground truth as well
as sampled training data is illustrated in Figure 4.3.

I evaluated two of the most popular general purpose function approx-
imators: GPs and MLPs. For the GPs, different versions of the Matern
kernel were examined using a parameterization by length scale ι as well
as an additional hyperparameter ν that controls the smoothness of the
resulting function. I experimented with ν in [0.5, 1.5, 2.5, inf] and ι in
[0.01, 0.1, 1, 2]. These values include the special cases of a Radial Ba-
sis Function (RBF) kernel (ν = inf) and the absolute exponential kernel
(ν = 0.5), both of which are very popular choices for kernel functions in
GPs.

For the MLPs, I used a network with five fully connected layers. Each
of these layers had 300 nodes and applied ReLU activation functions. All
layers were initialized using He uniform sampling and optimized by an

33

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0 ground truth
training samples

Figure 4.3: Toy example for function approximation on a discontinuous
step function.

Adam Optimizer in 2000 training epochs using the full set of training data
split into batches of size eight. The learning rate was set to values in[
10−6, 10−5, 10−4

]
.

4.1.3 Results

The results for MLPs are shown in Figure 4.4. The networks are able to
learn the step function under all three learning rates. The main difference
is that the lowest learning rate leads to very smooth predicted function
and thus underfits the data very close to the step. In contrast, the highest
learning rate leads to overfitting: the noisy training data is perfectly fit in
those areas with less dense training samples.

In Figure 4.5, the results from in total 12 combinations of length scale
ι and smoothness ν are illustrated. The mean function is shown as the
solid green line, the shade highlights the GP’s standard deviation. At first
glance, the figure shows that most variants of GPs do not deal with the
discontinuity well. Closer inspection shows the following problematic pat-
terns: a smaller ι means that only values which are very close to each
other are assumed to have similar values. This is useful for a step function
and, as the first column of Figure 4.5 shows, results in a tight fit around the
step. However, these function then lack the generalization capabilities in
areas with less samples. The same column also shows that the predicted

34

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

MLP with learning rate 1E-06
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

MLP with learning rate 1E-05
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

MLP with learning rate 1E-04
ground truth
train
prediction

Figure 4.4: MLP results for the prestudy on function approximation with
discontinuities: underfitting with the lowest learning rate (top) and overfit-
ting with the highest learning rate (bottom).

35

mean value between two points tends toward the global mean training
value, even if all neighboring values have different values. For the other
extreme, a long length scale of ι = 2, which is shown in the last column
of Figure 4.5, the result depends more on the chosen ν. For infinity, which
assumes very smooth functions and is equivalent to the RBF kernel, the
discontinuous function cannot be represented. For larger values of ν, the
fit becomes better but also immediately leads to overfitting of the noisy
training samples.

4.1.4 Conclusion

Overall, I note that all MLPs solve the task relatively well with only mi-
nor differences, while GPs are much more sensitive to the specific variant
used and vary a lot in their performance. There is a large body of re-
search about extensions of GPs, including works on automatic inference
of suitable kernels such as Duvenaud et al. (2013) as well as works on
non-stationary kernels, e.g., based on ANN as in Wilson et al. (2016). On
the other hand there is also a growing body of work that reports of high-
dimensional model-free learning methods which cope better with discon-
tinuities by using ANNs; for instance Chebotar et al. (2017) in the area of
policy search. I therefore decided to use MLPs for all the upcoming work
in this thesis.

36

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

1.5

length scale: 0.01 nu: 0.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1

2
length scale: 0.01 nu: 1.5

ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

6

4

2

0

2

length scale: 0.01 nu: 2.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

30

20

10

0

10

20

30

length scale: 0.01 nu: inf
ground truth
train
prediction

37

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

1.5

length scale: 0.1 nu: 0.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

5

4

3

2

1

0

1

length scale: 0.1 nu: 1.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

8

6

4

2

0

2

4
length scale: 0.1 nu: 2.5

ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

200

0

200

400

600

800
length scale: 0.1 nu: inf

ground truth
train
prediction

38

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

1.5
length scale: 1.0 nu: 0.5

ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

3

2

1

0

1

length scale: 1.0 nu: 1.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.5

1.0

0.5

0.0

0.5

1.0

length scale: 1.0 nu: 2.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1

0

1

2

3
length scale: 1.0 nu: inf

ground truth
train
prediction

39

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

length scale: 2.0 nu: 0.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

length scale: 2.0 nu: 1.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

length scale: 2.0 nu: 2.5
ground truth
train
prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

2

1

0

1

2

length scale: 2.0 nu: inf
ground truth
train
prediction

Figure 4.5: GP results for the prestudy on function approximation with
discontinuities.

40

4.2 Uncertainty Estimates for Value Networks
in Low-Dimensional Spaces

4.2.1 Motivation

In the previous chapter, I have shown that MLPs can relatively easily be
used to approximate discontinuous functions. However, neural networks
have one major drawback in comparison to GPs: they do not come with an
innate mechanism to determine the prediction uncertainty. In the second
prestudy, I therefore reviewed the two most popular methods from the
literature that promise to alleviate this issue: dropout as proposed by Gal
and Ghahramani (2016a) and bootstrapping by Osband et al. (2016).

When bootstrapping is used to represent uncertainty, a number of in-
dependent copies of the same network are set up and trained of different
subsets of the training data. For large network structures, it is also possi-
ble to use one network with a number of heads to obtain different outputs.
If a new test input is then fed to all networks, their outputs can be inter-
preted as samples from a distribution over outputs.

An alternative to model uncertainty in neural networks is dropout: ap-
plying dropout to the input of a layer means that each input node is ran-
domly "dropped", i.e., is set to zero with some probability p. Gal and
Ghahramani (2016a) have shown that this procedure can be interpreted
as approximate Bayesian inference as thus can provide a theoretically
grounded uncertainty estimate.

In the following, I will assess two aspects:

1. how well the methods perform on low-dimensional data, such as
pose information of a robot. In prior work, the methods have often
been evaluated on high-dimensional input in the form of images.

2. how well the methods perform on discontinuous data, similar to the
previous prestudy.

4.2.2 Method

Both aspects were considered in the design of the function to approxi-
mate: Thinking of a state value function for a 2D maze in which the agent
is supposed to reach a target, I designed the function to approximate such

41

that it approximately quantifies the length of the shortest path to the goal
from every point in the maze—see Figure 4.6 for illustration. This func-
tion is defined on a low-dimensional support (2D) and it has significant
discontinuities due to the walls of the maze.

Since formal performance criteria for the task of uncertainty estimation
are hard to define, I based the experimental evaluation on the following
expectations:

1. "good" uncertainty measures would lead to high uncertainty for input
ranges with few training data.

2. if the predicted mean values are erroneous for some input, the un-
certainty for this input should also be high. This could, for instance,
be the case close to discontinuities which may be hard to approxi-
mate even with many training samples.

3. "good" uncertainty measures would lead to low uncertainty for all
other cases, in particular for cases where many training samples
were available and the correct mean function value has been learned.

To assess these criteria, I performed supervised training on four differ-
ent training sets: for the "full" training data, 1000 samples were sampled
uniformly from the full state space; for "center" training data, the 1000
samples were sampled from a Gaussian in the center of the state space;
for "upper left" and "lower right", the data was sampled from a narrow
Gaussian in one of the state space’s corners.

Both methods, i.e., bootstrapping- and dropout-based uncertainty mea-
sures, were built on the same network architecture: a MLP with three fully
connected layers with 200 nodes each and a ReLU activation function.
The networks were trained using an Adam optimizer, a learning rate of
0.001, batch size 16 and 1000 full epochs. For bootstrapping, ten such
networks were trained in parallel. Each training sample was uniquely as-
signed to one of the ten networks. For the dropout experiments, dropout
with p ∈ {0.1, 0.25, 0.5} was applied to every layer input at test time. All
networks were trained without dropout.

4.2.3 Results

The results for each method on each training set are visualized with two
plots: one illustrating the uncertainty, the second one the prediction error.

42

The results for "center" Figure 4.7, "lower right" Figure 4.9 and "upper
left" Figure 4.8 can be used to assess our first performance criterion: in
areas with few training samples, the uncertainty (shown on the left plot for
each method) should be high. While this is somewhat the case for each
method, bootstrapping seems to have the clearest shape. For example,
for the "upper left" training data, only bootstrapping also has increased
uncertainty in the upper right corner of the state space. This is particularly
important for performance criterion (2), that uncertainty should correlate
with areas of erroneous predictions. For the same results on "upper left"
training data, there seems to be a particularly error-prone area in the up-
per right corner—but only bootstrapping also shows at least moderately
increased uncertainty in this area.

The last training set, "full", has provided the algorithm with uniformly
sampled samples of the full function. In this case, most uncertainty should
be found around locations that are hard to approximate—e.g., locations of
discontinuities. Evaluating the results in Figure 4.7 shows that the uncer-
tainty from bootstrapping clearly focuses around the upper left wall, where
the gap in values above and below the wall is particularly large. But also
for walls with smaller gaps, some uncertainty is predicted. For all dropout
results, the base uncertainty in areas with smooth and continuous function
values is higher than for dropout. This is a negative performance indicator
as we discussed for our evaluation criterion (3). Additionally, the uncer-
tainty is less significantly increased for areas with discontinuities and the
prediction error even for easy to predict areas are higher than for boot-
strapping.

Combining these results, we conclude that it is indeed possible to ap-
proximate prediction uncertainty even for MLPs. Bootstrapping seems
to perform better in a low-dimensional and discontinuous setting, which
means that its uncertainty estimates are better correlated with the density
of training samples, its uncertainty estimates are better correlated with
prediction errors, e.g., for inputs close to jumps in the discontinuous target
function, and its uncertainty estimates are lower for uncritical input ranges.

43

0

2

4

6

8

10

12

14

Figure 4.6: 2D example for uncertainty estimates: inspired by a task where
an agent has to reach a target position in a 2D maze (left), an optimal state
value function is defined. Samples from this state value function were
drawn randomly and are illustrated on the right. Note that this function is
discontinuous at the walls of the maze.

Training Data "center":

0

2

4

6

8

10

12

14

Bootstrapping:
var

20

40

60

80

100

120

prediction error

50

100

150

200

Dropout with p ∈ [0.1, 0.25, 0.5]:
var

100

200

300

400

500

600

700

prediction error

200

400

600

800

1000

var

200

400

600

800

1000

1200

1400

prediction error

200

400

600

800

1000

var

500

1000

1500

2000

2500

3000

3500

4000

prediction error

500

1000

1500

2000

2500

Figure 4.7: Prestudy on uncertainty under discontinuities. Results on
"center" training data.

44

Training Data "upper left":

0

2

4

6

8

10

12

14

Bootstrapping:
var

20

40

60

80

prediction error

20

40

60

80

100

120

140

160

Dropout with p ∈ [0.1, 0.25, 0.5]:
var

25

50

75

100

125

150

175
prediction error

50

100

150

200

250

300

350

var

100

200

300

400

prediction error

50

100

150

200

250

300

350

400

var

200

400

600

800

1000

prediction error

100

200

300

400

500

Figure 4.8: Prestudy on uncertainty under discontinuities. Results on "up-
per left" training data.

45

Training Data "lower right":

0

2

4

6

8

10

12

14

Bootstrapping:
var

100

200

300

400

500

600

700

800
prediction error

200

400

600

800

1000

Dropout with p ∈ [0.1, 0.25, 0.5]:
var

50

100

150

200

250

300

350

prediction error

1000

2000

3000

4000

5000

6000

var

200

400

600

800

1000

1200

1400
prediction error

1000

2000

3000

4000

5000

6000

var

1000

2000

3000

4000

5000

prediction error

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.9: Prestudy on uncertainty under discontinuities. Results on
"lower right" training data.

46

Training Data "full":

0

2

4

6

8

10

12

14

Bootstrapping:
var

2

4

6

8

10

12

14

16
prediction error

5

10

15

20

25

30

35

40

Dropout with p ∈ [0.1, 0.25, 0.5]:
var

5

10

15

20

25

30

35
prediction error

10

20

30

40

50

60

70

var

10

20

30

40

50

prediction error

10

20

30

40

50

var

20

40

60

80

100

120

140

160

prediction error

20

40

60

80

Figure 4.10: Prestudy on uncertainty under discontinuities. Results on
"full" training data.

47

48

Chapter 5

Modalities to Efficiently
Learn Peg In Hole Tasks

5.1 Introduction & Motivation

There is a wide variety of peg in hole tasks with different characteristics.
The clearance fit variant is particularly easy to solve because it does not
necessarily require contact between the peg and the second object. It
is therefore possible to exploit supervised learning which is known to be
more efficient than RL. Yet a clearance fit task can be used to illustrate the
effects of different modalities, in particular visual and haptic feedback. In
this work I therefore investigated a number of control strategies and func-
tion approximation strategies to fuse these pieces of information. Building
on the results from the prestudy on function approximation under disconti-
nuities (Section 4.1), I decided to work with MLPs as function approxima-
tors.

5.1.1 Disambiguating Sensory Input

The purpose of sensory input in a learning setting in general is to observe
the robot state and allow the agent to make decisions based on its current
state. For peg in hole tasks, this typically means that the pose of the peg
relative to the hole should be identified. Which source of information is

49

most informative also depends on the state of the system as illustrated in
Figure 5.1: When the peg is not in contact with the hole, visual information
is most likely to describe the system state appropriately. The closer the
peg gets to the hole however, the more likely also a vision system reaches
its limit: either because the resolution is not enough for fine-grained pose
estimation, or a monocular camera angle cannot detect small deviations
in the direction that is perpendicular to the image plane. Also depth infor-
mation may be insufficient in this case.
In contrast, estimated forces at the peg tip are only informative in special
cases: without contact between the objects, no information at all is avail-
able. Depending on the point of contact, a single force measurement may
also not be conclusive enough. For instance, the two peg poses in the
middle of Figure 5.1 cannot be disambiguated based on force readings
only. If the peg is in contact with a single edge of the hole, the measured
forces become informative again: assuming that the peg on the right plot
in Figure 5.1 is pushing down in z direction, and assuming that there is
no parallel edge at the outer walls of the second object that the peg could
be in contact with, then the force information is unique. Overall, one could
either manually design or restrict the setting such that force readings are
informative enough (as I will do in Chapter 9 to focus on force-driven in-
teraction), or information from multiple sources must be combined as I will
do in this chapter. How to best combine sensory information from differ-
ent sources is an open research problem that is typically summarized as
sensor fusion. To focus on open questions in this field, I chose to first
evaluate different control settings in an otherwise simplistic setting: the
task was designed such that supervised learning could be applied, and
the clearance was large enough to avoid issues with high contact forces.

5.2 Related Work

Supervised learning is known to be much more sample efficient than RL.
This is because the function approximator is trained to fit fixed labels, while
in RL these labels are estimated over time and thus are subject to change.
In areas such as computer vision and natural language processing, su-
pervised learning combined with ANNs has lead to substantial progress in
recent years (Voulodimos et al., 2018; Young et al., 2018). When robots
are supposed to learn how to perform a certain task, supervised learn-

50

Figure 5.1: Disambiguation of sensory input: On the left, the peg is not
in touch with the object surface and thus no haptic feedback can help to
locate the peg. In the middle, two peg positions are shown in which the
peg is in contact and yet, the haptic feedback is ambiguous. In some
cases, as illustrated on the right, haptic feedback can be useful.

ing is much harder to apply: Often, optimal controllers that could create
automatic labels are not known—or if they are known, the task is solved
and no further learning required. Levine et al. (2016a) have proposed one
notable exception: local models are fit using iLQR, an iterative approach
to fit Linear Quadratic Regulators (LQR). The LQR problem is a classi-
cal setting from control theory, where the optimal controller for a system
that is described with linear differential equations is computed under a
quadratic cost term. The derived optimal controllers are executed and the
resulting experience is recorded, i.e., the resulting transitions consisting of
state-action pairs and an associated reward in RL terminology. Combin-
ing the experience from all iLQR solutions, a large dataset is formed for
supervised learning. In a complex iterative scheme, an ANNs is trained
to imitate all iLQR solutions in a single network. Importantly, the network
may operate on a different observation or state description than the iLQR
problem did. For example, the collected experience may consist of im-
ages that the iLQR policies did not use. In the clearance task I used for
evaluation in this chapter, the training set for a supervised training setting
can be derived more easily, but I will exploit the same idea that additional
information can be exploited to create the training data which will not be
passed to the network policy.

The aforementioned work has demonstrated the possibility to train
neural network policies end-to-end from raw images to control signals di-
rectly (Levine et al., 2016a). For complex contact-rich manipulation tasks,
haptics play an important role however and it therefore seems promis-
ing to jointly work with both (high-dimensional) visual and haptic sen-

51

sory input. In model-free learning for contact-rich applications, prior work
tends to work with more low-dimensional data instead of images, e.g.,
with a vector including object positions and velocities as well as applied
torques as input (Levine et al., 2015). Low-dimensional representations
may also be learned from high-dimensional and potentially visual input,
e.g., through an autoencoder structure (Van Hoof et al., 2016). In this
work however, a model-free controller is designed which learns to com-
bine high-dimensional images with low-dimensional sensory input. Since
the time when this work was carried out in 2016, more work has been
published on directly integrated multimodal feedback in model-free learn-
ing systems. I will discuss those in Section 5.5.

5.3 Experimental Setup

All experiments in this chapter were conducted on a dual arm robot—the
KAWADA Nextage (see Figure 5.2 and the introduction in Section 3.2). A
custom passive compliance module (Rueb and Becker, 2016) is mounted
on one of the wrists. It allows for some displacement between the robot’s
wrist and End Effector (EEF) and provides full 6D feedback c about the
current positional and rotational displacement through a serial port inter-
face. The second robot arm provided the light source and camera images
from a static view point for our experiments.

5.4 Method

As discussed in Section 1.2 in the context of the free lunch theorems, sam-
ple efficiency in learning can typically be traded off against generalization.
To enable sample efficient learning from multimodal high-dimensional in-
put, I therefore make use of two core assumptions: First, the target posi-
tion may not be known at test time, but for training I can use it to automat-
ically create a labelled dataset for supervised learning. Second, I exploit
the geometric structure of the insertion task by using a residual formula-
tion so the downward part of the motion does not need to be learned or
discovered by the agent.

52

light source
and camera

passive compliance &
displacement feedback

target object

Figure 5.2: System consisting of a camera at the left robot arm and the
right arm carrying a compliance element and the metal object to be in-
serted into the white square hole inside the black target object on the
bottom of the image. The hole is slightly larger than the hole; in other
words this is a clearance fit (see also Figure 3.1).

53

5.4.1 Residual Policy Formulation

For many manipulation tasks, it is intuitively possible for humans to sketch
a rough policy that represents a good initial guess. For the case of peg
insertion, I therefore choose to represent the policy as a residual policy.
That is, the policy consists of two policies, one learned and one constant,
that are combined.

In this case, the constant part of the task space policy is a hard-coded
controller for the z coordinate of the EEF. Different control loops for the z
coordinate task will be compared experimentally. For instance, I have ex-
perimented with a control loop that also allows the robot to move upwards
again in case the contact forces exceed some manually tuned threshold.

The x and y coordinates of the EEF are learned and predicted by a
neural network that takes an image of the scene and haptic feedback as
input. More precisely, the network outputs are interpreted as relative EEF
positions in task space. Overall, this means that only two instead of three
positional dimensions need to be learned by the agent, which typically
implies it can learn faster due to a smaller search space. A small prestudy
had shown that such a residual formulation is particularly useful when the
optimal values for x or y are on substantially different scales than the value
for z; for instance because the EEF should move slowly in z direction but
x and y can be much larger because their offset to the target position is
supposed to be reduced quickly.

5.4.2 Data Collection

In assembly tasks for production processes which served as inspiration
for the tasks in this doctoral thesis, the target positions is often roughly
known: a theoretical value can be given but due to random influences or
production tolerances, the true position of the object will deviate and thus
be unknown at test time. For training however, it is easy to create a setting
in which the target position is known, either because it is hard-coded or
because a precise robot arm was used to put the target object in place or
simply because the experiment can be repeated with few known objects
that therefore do not suffer from random production tolerances.

54

(x,y)

Figure 5.3: Automatic labelling: each randomly sampled position is anno-
tated with the relative position that the EEF (here, only the peg is drawn
for clarity) has compared to the center of the hole.

Using the target position, it is possible to automatically create a dataset
for supervised training: 10,000 positions were uniformly sampled from a
cubic space above the target object as well as 5,000 positions with surface
contact. The label for each position is the x and y offset between the EEF
and the center of the hole (as illustrated in Figure 5.3).

For the samples without contact (i.e., with the EEF being well above
the target object), the robot was maneuvered to the randomly sampled po-
sitions. At the target position, an image was taken and stored together with
the haptic feedback from the compliance element and the automatically
computed label. Exemplar images are shown on the bottom of Figure 3.1.

For the positions which lead to a contact between peg and target ob-
ject, also the direction of movement matters. Therefore, additionally to the
already sampled position to take the image, also a second nearby position
was sampled from which the EEF moved towards the first target position.
The resulting dataset thus contained various positions and contact angles
which lead to different force readings.

5.4.3 Network Architecture and Training Procedure

Based on this dataset, I trained an ANN to map from an image and com-
pliance feedback to the task space movement in x and y direction that
centers the EEF above the hole. Preliminary studies had shown that the

55

visual

convolutions

7x7x64

5x5x32

5x5x32

dense

40 40

haptic

dense

4 4 40

dense

80 40

(x,y)
relative

task space
movement

Figure 5.4: Network architecture: the black parts process visual input,
i.e., images. It was trained starting from pretrained filters from GoogLeNet
trained on ImageNet (Szegedy et al., 2015) to predict the relative task
space movement (x, y). In a second step, the output (dashed line) was
discarded and instead the gray parts that process haptic feedback from
the compliance element were added. To train the grey part, all weights
from the black part of the network were frozen. The numbers inside the
white blocks specify layer sizes.

training procedure for such a network with different input modalities was
very likely to diverge. Therefore, I designed the structure shown in Fig-
ure 5.4, which consists of two parts that were trained in separate phases.

First, one stream of the network was set up to process the visual input:
pretrained convolutions from GoogLeNet trained on ImageNet (Szegedy
et al., 2015) were topped with two fully connected layers. This part of the
network is highlighted in black in Figure 5.4 and was trained to predict the
relative task space movement the EEF would have to execute to hover
above the hole ((x, y), illustrated by the dashed arrow).

In a second stage, the output layer was removed. Instead, a sec-
ond block (illustrated in gray) was introduced: a fully connected network
that processes the haptic input. The output of both the image block and
the haptic block has 40 neurons which are then concatenated. Another
fully connected block on top was then trained to predict the relative task
space movement again, while the already trained parts for visual process-
ing were frozen.

In the experiments section, I will present an ablation study that gives
further insights into how important the different parts of the networks are
and how they can be combined with different control loops at test time.

56

Network Implementation Details

I used the Xavier initialization and Batch Normalization for all layers as well
as the Adam optimizer and `2 regularisation with coefficient λ = 0.005.
The fully connected layers were trained using dropout with probability p =
0.1 for improved stability. As activation function for the fully connected
layers, the exponential linear unit (eLu) function was chosen which is a
smooth variant of the ReLU function:

eLu(x) =

{
exp(x)− 1, if x < 0

x, else

5.4.4 Control Loop Variants

Since the network policy only predicts a relative movement in x and y di-
rection, the height of the EEF can be controlled separately in our residual
policy formulation. Since in most applications for peg insertions, the hole
is in an upright position on a table top, I made the assumption that the
EEF starts higher in z direction than the target object’s surface. A simple
constant policy could then use a constant step (−¶) downwards in z di-
rection at each time step. Using the haptic feedback from the compliance
element, it is possible to detect when the forces in z direction become too
high, that is when the robot gets stuck on the surface of the target object
rather than inserting the peg. Based on these assumptions and sources
of information, I derived the following controllers which will be compared
in the upcoming experiments:

A) a vision-only, open loop baseline.
Only the vision part of the network (black in Figure 5.4) is used, and
an open-loop controller decreases z at each step. Due to the con-
stant decrease in z direction, the robot inevitably either reaches the
hole or gets stuck on the surface of the object. The haptic feed-
back the compliance element provides is a six dimensional vector
describing the positional and rotational displacement between peg
and EEF. If the `2 norm of the displacement between peg and EEF
exceeds a manually tuned threshold cmax , the episode is stopped
and counted as a failure. The z coordinate of the position of the

57

EEF is used to detect whether the peg is fully inserted into the hole
and thus whether an episode was successful. Pseudocode for one
episode under this controller is given in Algorithm 1.A.

Algorithm 1.A Test Time Control Loop: Open Loop, Vision Only
Given:

step size ¶

threshold on compliance feedback cmax

1: move EEF to random initial position
2: while EEF above target height do
3: take image I, get compliance feedback c
4: if ||c||2 ≥ cmax then . high contact forces
5: break . episode failed
6: end if
7: network prediction (x, y) = NN (I)
8: move EEF by (x, y,−¶) . policy step
9: end while

B) vision only, closed loop.
Only the vision part of the network is used to predict x and y of the
EEF movement again. However, the feedback from the compliance
element is used to also increase the z position of the EEF again in
case it pushes too hard into the target object, i.e., in case a man-
ually tuned threshold cmax for the `2 norm of the displacement is
exceeded. Pseudocode for this variant is given in Algorithm 1.B. Ef-
fectively, this is a manually tuned resetting behavior which could the-
oretically lead to infinite episodes. The episode is therefore stopped
after 40 steps, and counted as a failure if the peg is not inserted
(indicated by a high z coordinate for the EEF position as for variant
A).

C) vision & haptics, closed-loop.
This variant is equal to B but the full network is used, i.e., both vi-
sual input in the form of camera images as well as the displacement
feedback from the compliance element is used. In Algorithm 1.B,
this would modify line 8 to (x, y) = NN(c, I).

58

Algorithm 1.B Test Time Control Loop: Closed Loop, Vision Only
Given:

step size ¶

force correction step size ¶up
max. steps per episode N
threshold on compliance feedback cmax

1: move EEF to random initial position
2: for t in {0..N} do . time steps
3: take image I , get compliance feedback c
4: if ||c||2 ≥ cmax then . high contact forces
5: move EEF by (0, 0,+¶up) . new in Version B: move up
6: end if
7: network prediction (x, y) = NN(I) . Version C: compute NN(I, c)

instead
8: move EEF by (x, y,−¶) . policy step
9: if target height reached by EEF then

10: break . success
11: end if
12: end for

59

For all experiments, ¶ was fixed at 1.5mm, the upward movement when
the robot got stuck, ¶up was constantly set to 2mm.

5.4.5 Experimental Results

To assess the previously introduced variants of control loops, I executed
100 test episodes (consisting of up to 40 time steps each) for each variant
starting from different initial positions above the hole. The numbers in
Table 5.1 summarize how many out of these runs were successful: Variant
A) with camera input only succeeded in 77/100 runs. Using closed-loop
controller B) that moves the EEF up when the contact forces exceeded a
manually defined threshold, the success rate increases to 85%. The full
network architecture trained on visual and haptic feedback (C) solves the
task in all 100 trials.

short description success rate
A) vision + passive compliance 77/100
B) A) + closed loop controller 85/100
C) B) + compliance feedback 100/100

Table 5.1: The test time control loop variants A, B and C were run for
100 trials each. One trial was successful if the robot reached the target
position in less than 40 steps without getting stuck, i.e., without causing
contact forces above a manually defined threshold cmax.

For qualitative assessment, all experiments were recorded as videos
which allow the following observations:

• First, there is a positive example for variant A) in Subsection A.1.1
showing how the robot successfully centers the peg above the hole.

• Second, there is an example in Subsection A.1.2 where the peg first
gets stuck on the left corner of the hole (which would be a failure
with controller A). Due to controller B however the EEF is moved up
and the insertion trial continues. Finally, in this case, the peg can be
successfully inserted.

• The failure case that is also presented in Subsection A.1.2 illus-
trates that this upward movement is not always enough to solve the
task. In the example, the robot gets stuck on the rear left corner and

60

by successive upward movements gets stuck again multiple times
along the rear edge until it reaches the rear right corner where the
timeout was reached.

• Such a behavior did not occur with control variant C as illustrated in
a similar setting in Subsection A.1.3: the robot also gets stuck in the
rear left corner but then is able to interpret the compliance feedback
such that it successfully corrects the peg position.

5.5 Discussion

This study emphasizes a number of aspects that contribute to successful
and sample-efficient solutions for robotic learning in manipulation tasks:

First, for optimal results, different input modalities need to be com-
bined. On a theoretical level, the examples in Figure 5.1 illustrate why for
peg in hole tasks neither vision nor haptics alone can be sufficient to dis-
ambiguate the system state. The empirical evaluation has confirmed this
hypothesis and demonstrated that successful and robust insertion skills
cannot be learned without haptic feedback. Even with an improved test
time controller which resets the robot when contact forces exceed some
threshold, the resulting policy was significantly inferior to a fully learned
policy based on information from both sensory modalities.

Second, learning from multiple modalities may require new network
architectures. Training a single network from scratch on input from mul-
tiple sources (which often produce raw data across different scales and
with different variances) is challenging. Instead I designed an incremental
network architecture that could be trained in two phases. The research
area of sensor fusion has been quite active in the years after this work
was originally carried out. Several papers have proposed novel methods
how to use deep learning to extract a joint abstract representation from
multiple input sources, e.g., Lee et al. (2019a).

Third, I explored ways to integrate prior knowledge about the task at
hand in this experiment: Similar to Levine et al. (2016a), additional knowl-
edge about the task is used during training to create data on which a test
time policy with a different input can be trained. More precisely, I used
the known target position at train time. Given the target position, a good
solution is already known: moving in x and y direction such that the peg

61

hovers above the hole. Thus, it is possible to employ supervised learning,
which is known to be much more efficient than other techniques such as
RL. After training, the test time controller takes an image and compliance
information as input—but does not need access to the target position.

Fourth, the learning task can be simplified even further through a resid-
ual policy formulation: expert knowledge, and in the case of insertion
tasks even human common sense, can often provide simple strategies
that roughly summarize the desired behavior and only need to be slightly
adapted for successful manipulation. In the case of peg insertion that I
considered in this work, this simple strategy is a constant movement in
z direction. The algorithm therefore does not need to learn this part and
can focus on the residuals in x and y direction instead. Since the work
presented in this chapter, research on residual policies has progressed
also for model-free learning (Silver et al., 2018; Johannink et al., 2019) as
I will discuss again in Chapter 9.

5.6 Limitations and Open Questions

The study presented in this chapter is one step towards sample efficient
learning in contact-rich robotic manipulation tasks. It has shown how net-
work architectures, prior knowledge and residual policies can contribute
to increased sample efficiency. However, manipulation tasks in our every
day lives as well as in real-world robotic tasks, e.g., in industrial assembly,
are much more sophisticated than the simplified clearance fit peg inser-
tion task that was considered here. The study thus leaves the question
open to what degree results from this chapter generalize in more complex
settings. The upcoming chapters in this thesis will deal with such tasks of
increasing difficulty.

When tasks become more complex, creating labelled data for super-
vised learning becomes harder. In Chapter 9 for example, I will apply a
similar residual policy formulation for a real industrial assembly task. For
this particular application no optimal controller is known; even under the
assumption of known target positions. Thus, supervised learning is not
applicable. The question which of the effects from supervised learning
this chapter transfer to an RL setting remains open for now.

62

Further open questions are beyond the scope of this doctoral thesis:
First, the image acquisition I used in this experiment is limited. Certainly,
binocular images or depth information could help the agent in performing
an insertion task. This shifts the sensor fusion problem from integrating
haptics with vision to fusing multiple input channels.
Second, all manually designed components in the experiment could either
be improved or replaced by a learning system: all thresholds as well as
the test time controller that moves the EEF up in case of contact.
Finally, the disambiguities in system state that I illustrated in Figure 5.1
could also be resolved by keeping a history of observations. Whether
such a history of sensory input is still superior when based on multiple
input modalities is an interesting open question for future research.

63

64

Chapter 6

Exploration through
Approximate
Uncertainty-Based
Trajectory Optimization

For insertion tasks with large clearance, such as in the last chapter, it is
often feasible to design good datasets for supervised learning. For more
complex tasks, when manually crafted data is not available, RL becomes
more appealing: the agent can be enabled to detect solutions by itself.
However, the harder the task the less likely a standard RL agent will dis-
cover optimal behavior without explicit guidance in a feasible amount of
time. In this chapter, I therefore examined whether it is possible to employ
model-free deep RL combined with planning to quickly generate informa-
tive data for a manipulation task. For planning, I will not use an accurate
model but a coarse steering function, which can be seen as one way to
inject prior knowledge about the robot at hand into model-free RL.

65

6.1 Introduction & Motivation

When enough data is available, e.g., by collecting experience from sev-
eral robots over the span of multiple months, model-free deep RL has
been proven to outperform many conventional approaches (Levine et al.,
2016b). In particular for contact-rich manipulation tasks, where models
are hard to obtain, purely data-driven deep learning approaches have out-
performed model-based approaches (Fazeli et al., 2017). However, col-
lecting sufficiently much data real-world settings can be slow, costly and
might need human supervision throughout the collection process.

One reason for this sample-inefficiency is exploration, which is noto-
riously hard for model-free approaches. In general, only dithering strate-
gies can be used. Alternatively, exploration can be circumvented to some
degree by exploiting expert demonstrations (Schaal, 1996) or known lo-
cal optimal controllers (Levine et al., 2016a). In this work, I investigated
whether model information can be used to plan optimal exploration be-
havior. In particular, I use an estimated Bayesian-like Upper Confidence
Bound (UCB) on the advantage function to plan optimal exploration tra-
jectories. For an efficient approximation of the UCB, I extend the critic
network to consist of separate streams for state-value and advantage, al-
lowing to estimate prediction uncertainty only for the advantage stream
using ensembles of networks. The resulting exploration data can then
be used analogously to demonstrations in state-of-the-art learning from
demonstrations (Vecerik et al., 2017) and, as I will show, outperforms
purely model-free RL with dithering exploration in terms of sample effi-
ciency.

The approach is evaluated on the novel double peg in hole paradigm
which is discussed in detail in Subsection 3.1.2 and illustrated in Fig-
ure 3.2. Task A, with the two pegs stiffly connected to the upper bar,
is equivalent to traditional peg in hole: given the right pose, it is possi-
ble to insert the peg while mostly avoiding contact. With dangling pegs
and off-axis joints (Task B, see Figure 3.2), sustained contact is needed
to reach the goal pose. This task principle is similar to the clip insertion
investigated in Vecerik et al. (2017) and was also 3D printed for evaluation
on a real robot (see https://youtu.be/JTfeHhWSb0Y and Section A.2
for key frames).

66

https://youtu.be/JTfeHhWSb0Y

6.2 Related Work

If prior knowledge about the task is available, model-based RL can use
this information for efficient exploration (e.g., Houthooft et al. (2016)). In
the presence of contacts however, models are notoriously hard to ob-
tain (Fazeli et al., 2017). Even when models are theoretically available,
robotics practitioners might struggle with limited knowledge about the ma-
terials at hand or the availability of suitable environment representations.

Without imposing models or structure on the functions to learn, explo-
ration is the main bottleneck. There are different dithering strategies rang-
ing from ε-greedy (Sutton and Barto, 2018) and Gaussian noise to more
sophisticated processes like the temporally correlated Ornstein-Uhlenbeck
(Lillicrap et al., 2015) or adaptive parameter space noise (Plappert et al.,
2017). However, all dithering strategies mainly explore locally around
states that the current policy tends to visit and it can take a long time
until the relevant part of the state space is discovered—even more so, if
some area is only reachable after a specific series of actions.

Model-based and model-free methods have also been combined: For
instance, guided policy search turns RL into iterative supervised learning
from model-based solutions (Levine et al., 2016a). This approach is lim-
ited to tasks where model-based solutions are known or easy to obtain
though. In this chapter, I will make use of a coarse steering function which
can be seen as a simplistic type of model knowledge within a model-free
learning framework.

Reward shaping can help to lure the agent into relevant parts of the
state space but it typically requires experience and manual effort or other-
wise easily leads to unintended local minima (Lowrey et al., 2018). Count-
based exploration schemes aim to explore the full state space uniformly
by keeping track of which area was visited how frequently (Brafman and
Tennenholtz, 2002; Tang et al., 2017). This behavior is often seen as
an analogy to human intrinsic motivation (Chentanez et al., 2005), but in
many cases it is unrealistic to cover the full state space. If an agent knows
what it knows (Li et al., 2008; Lopes et al., 2012) it can deliberately explore
areas it is unsure about.

Model uncertainties from neural networks can formally be obtained
from Bayesian Neural Networks that consider distributions over weights.
Since those are often intractable, there are approximations such as net-
work ensembles or dropout at test time (Osband et al., 2016; Gal and

67

Ghahramani, 2016b), which I explored in Section 4.2 already. Using in-
formation-theoretic criteria like the UCB, these approximations can be
used to speed up learning (Chen et al., 2017). Still, existing strategies
for model-free RL only explore greedily for a current state. In this chapter
I combine UCB-based exploration with global state space exploration via
trajectory optimization to also explore far-away states if they seem promis-
ing in terms of their UCB.

To perform global exploration, I utilize a coarse steering function: that
is, I assume that a known function can return actions that will guide the
agent approximately towards a given goal state. In contrast to model-
based learning, this steering function is only used for exploration while the
learned policy remains model-free. Therefore the method is quite robust
to perturbations in this function (as I will show in Subsection 6.4.2). Impor-
tantly, this exploration scheme even generates informative data if it does
not solve the task, as I will discuss in my evaluations.

Supervised learning from fixed input-output pairs is generally much
more sample efficient than iterative RL where changing optimization tar-
gets introduce non-stationarity. Instead of model-based solutions also ex-
pert demonstrations can help speed up learning (Schaal, 1996) but they
are often costly to acquire. When available, already single demonstrations
can be enough for robots to learn (Englert and Toussaint, 2018). In this
work, I follow the idea that learning from demonstration could be used on
top of automatically generated demonstrations. When exploration is sep-
arated from policy learning, the modalities and type of information that is
used can change between the two stages (similar to the previous chapter
or for instance Levine et al. (2016a)). Crucially, exploration can be much
faster when the value function in the exploration stage can change quickly
without hindering convergence of the actor network which mostly matters
in the policy learning stage.

Convergence of the function approximation can be additionally sped
up by separately learning the value function and the advantage as op-
posed to learning their sum, the Q-value (Greensmith et al., 2001). This
idea has already been transferred to deep learning by Wang et al. (2016)
but their method loses the original semantics of the state value V and
the advantage A. I will introduce novel update rules that enable separate
training of both streams, preserving their semantics and thus allowing to
build policies on the actual advantage.

68

6.3 Method

The problem of RL can be split into two stages: exploration and learning
from demonstration. For the second stage, all samples from the first phase
are slowly added to a new replay memory, similar to Vecerik et al. (2017).
For the first stage I combine the following components to efficiently guide
exploration for DDPG-like Q-learning (Lillicrap et al., 2015), each of which
will be discussed in greater detail in one of the following paragraphs:

1. I structurally encode the decomposition of Q-values into state-value
and advantage (cf. Eq. (2.2)) in a network architecture with two
streams similar to Wang et al. (2016). This reduces the gradient
variance which leads to faster and more stable training. To preserve
the semantics of both streams, I introduce a novel training update
scheme.

2. Exploiting this network structure, an ensemble of networks in the
advantage stream can be used to approximate model uncertainty.
I will argue that only this portion of uncertainty in the Q-function is
relevant for exploration and deriving a policy.

3. Using trajectory optimization under coarsely approximated dynam-
ics, the agent can globally explore areas of high model uncertainty
by choosing trajectories such that the sum over the UCB on the
advantage for a set of waypoints is maximized.

6.3.1 Advantage Networks

Decomposing the state-action value Q into state-value V and the ad-
vantage A is formally equivalent to using V as a control variate which
leads to more stable learning if V correlates strongly with Q (but A does
not) (Greensmith et al., 2001; Wang et al., 2016). If, for instance in my
environment, there is a reward at each time step, then V and Q sum up
(discounted) rewards over potentially long trajectories, while the advan-
tage is the difference between V and Q. Effectively this means that V and
Q might be in a very large range of absolute values, while A might be on a
range of very small numbers. In those cases, V dominates gradients and
uncertainty measures derived from Q. If a policy is derived from Q, it is

69

s

a

critic

MLP MLP V (s)

µ̂Â(s,a)

σ̂
2
Â(s,a)

MLP

+

MLP Â(s,a)

Figure 6.1: Bootstrapped Advantage Network: This network architecture
consists of four MLPs, each consisting of four fully connected layers—the
first three using leaky ReLU activations (Maas et al., 2013), the last one
using linear activations. The advantage stream of the network is boot-
strapped, i.e., there are B copies of the lower part of the network.

also dominated by V although actually only A matters:

arg max
a

Q(s,a) = arg max
a

(
A(s,a) + V (s)

)
= arg max

a
A(s,a) (6.1)

I structurally encode the split into V andA as two fully separate streams
within the network architecture that consists of four MLPs: The inputs, i.e.,
state and action, are each processed by one MLP. The outputs of both
MLPs are added element-wise and fed into a third MLP that predicts the
advantage A(s,a). The output of the state-MLP is also fed into the fourth
MLP to predict V (s) (see Figure 6.1 for illustration). In contrast to Wang
et al. (2016) the network branches are trained separately as described in
the following sections.

Since the advantage of an action over the state-values associated with
the optimal policy cannot be larger than zero, I use a ReLU activation on
the advantage network and change the sign of the output.

70

6.3.2 Greedy Exploration using Bootstrapped Advantage
Networks

Bootstrapping uses ensembles of networks to get an uncertainty esti-
mate (Osband et al., 2016) which can then be used for exploration. In
preliminary investigations (cf. Section 4.2), bootstrapping has outper-
formed dropout-based methods for uncertainty estimates for models with
low-dimensional raw input signals.

To determine the next action to take for exploration, acquisition func-
tions inspired by Bayesian Blackbox Optimization (BO) can be used, e.g.,
the UCB in a Q-learning setting (Chen et al., 2017):

π(s) = arg max
a∈A

UCBQ̂(s,a) (6.2)

= arg max
a∈A

(
µ̂Q̂(s,a) + κ · σ̂2

Q̂
(s,a)

)
(6.3)

where κ is a hyperparameter that trades off variance and mean1. µ̂Q̂ de-
notes the estimated mean of the distribution over the predicted Q-values
Q̂ and σ̂2

Q̂
its variance.

A policy that greedily optimizes Q depends on A but is independent of
V :

π(s) = arg max
a∈A

Q(s,a)
Eq. (6.1)

= arg max
a∈A

A(s,a) (6.4)

Therefore, I only add bootstrapping to two out of four MLPs, such that a
distribution over advantage predictions can be fit, but only a single state-
value V̂ (s) is predicted. The predicted state-values V̂ are needed for
optimization, as will be explained in the next section (Eq. (6.6)).

6.3.3 Training Bootstrapped Advantage Networks

Each advantage network is updated independently with data from its sep-
arate replay memory (as in previous work that utilizes bootstrapping, e.g.,
Osband et al. (2016)). The advantage networks and their associated re-
play memories are both indexed by b = 0, .., B. During each episode all

1For all evaluations, I fixed κ in the UCB-based exploration to 1.96 which corresponds to
the 97.5 percentile under a Gaussian probability distribution.

71

data is written to one of these replay memories. To update the state-value
network, samples are drawn from all replay memories. All networks are
trained using stochastic gradient descent to approximate iterative targets
Atarget and V target which are computed using the replay memory with tra-
jectories T = (s,a, r, s′) as follows:

V target(s) = r +

{
0, if s′ is terminal
γ · V̂ (s′), else

(6.5)

Abtarget(s,a) = Qbtarget(s,a)− V̂ (s) (6.6)

where

Qbtarget(s,a) = r +

{
0, if s′ is terminal

γ · Q̂b̂(s′, πgreedy(s
′)), else

(6.7)

Q̂b(s,a) = Abtarget(s,a) + V̂ (s) (6.8)

b̂ ∼ U
(
{1..B}\b

)
(6.9)

πgreedy(s) = arg max
a∈A

µ̂Â(s,a) (6.10)

where µ̂Â denotes the empirical mean over the advantage predictions for
a given input. b̂ 6= b is a uniformly sampled replay memory index. It was in-
troduced in analogy to double Q-learning (van Hasselt, 2010; Van Hasselt
et al., 2016) to avoid bias in estimating Q caused by the argmax operation
to evaluate π in Eq. (6.7). Using b̂ has turned out crucial for performance
of this method.

Since µ̂Â can in general be a highly non-convex function, the argmax in
Eq. (6.10) to compute πgreedy was approximated by evaluating 100 sam-
pled actions. Empirically, a higher sample size did not improve perfor-
mance in my evaluation setting. Moreover, the experiment on the real
robot has confirmed that the additional time for this update is negligible
compared to the time needed for the robot rollouts.

72

6.3.4 Global Exploration using Trajectory Optimization

Just using the UCB over the advantage is already enough to derive a
greedy exploration policy as in Eq. (6.10). This will explore locally but
often it is necessary to go through well-explored areas for several steps
before reaching a point of high uncertainty. I therefore use trajectory op-
timization to compute a series of states throughout the full state space to
visit. The resulting exploration is referred to as global, because not just
locally reachable states but the whole state space is considered. The op-
timal states to visit are referred to as waypoints w and selected such that
the following sum over UCBs is be maximized:

W ∗ = arg max
{wi∈S}

η
i=1

η∑
i

max
a

UCBÂ(wi,a)

subject to ||wi−1−wi||≤Tη ·υ

(6.11)

In my experiments I fixed the number of waypoints η = 5, and set the
number of steps per rollout T = 200. υ is a manually tuned maximum
step size. The optimization was solved using the Powell method (Powell,
1964).

Given this set of waypoints, the agent is supposed to move towards
each of them successively. This could in principle be achieved by exploit-
ing a dynamics model, but contacts and friction are hard to model and
some of the physical properties of relevant materials might be unknown.
Instead of a fully fleshed model I rely on general domain knowledge for
robotic manipulation tasks in form of a steering function and a task-space
position controller: an action a in the MDP of the RL formulation repre-
sents an offset from the current state s that is sent to a position controller
and thus, the action that is expected to lead the agent to a target state s′

can be computed as
a = s′ − s (6.12)

A state in the upcoming experiments was represented in two positional
and one rotational dimension. This is only a coarse approximation of
the dynamics and will fail whenever obstacles or contacts come into play.
However this steering function is only needed for exploration and never
at test time. In Section 6.4, I demonstrate the robustness of exploration
under noise and miscalibration of the steering function.

73

As a result, the agent will subsequently try to reach the waypoints
by moving according to the approximate steering function, which leads to
piecewise linear motion in configuration space. Since an action in most RL
settings is restricted, the agent might effectively take several small steps
towards the waypoint. If a waypoint w is reached, the optimal action w.r.t.
the advantage UCB is executed:

a∗ = arg max
a∈A

UCBÂ(w,a) (6.13)

Note that a∗ is the same action that was used to compute the sum of
UCBs in Eq. (6.11).

If the agent does not get any closer to a waypoint, e.g., because the
steering function fails in the presence of objects, the agent discards this
waypoint and moves on to the next waypoint (see Subsection A.2.1 for an
illustration including obstacles). When the last waypoint has been reached
or discarded, the greedy exploration policy πgreedy is used as a fallback
until the end of the episode.

Empirically, I found it beneficial to start with a small number of episodes
using a random policy and introduce some random steps after each way-
point was reached to further explore the area of high uncertainty2.

The full exploration algorithm is formally given in Algorithm 2.

6.4 Experimental Results

The proposed exploration scheme is designed to generate useful data
such that in a second step, these samples can give a head start to train a
policy, similar to learning from demonstration.

I therefore evaluated how fast the exploration scheme is able to find
successful solutions, how robust the scheme is to a perturbed or mis-
calibrated steering function, the feasibility of my exploration strategy on a
real robot, and if the combination of exploration and learning from demon-
stration is superior to direct RL from scratch. Most results were obtained
from simulation where a larger number of experiments could be conducted.

2I used 5 random steps after each waypoint and 10 random episodes in the beginning of
each experiment.

74

Algorithm 2 Exploration Episode using Approximate Uncertainty-Based
Trajectory Optimization

Given:
max. number of steps per episode T
target reaching tolerance ε
max. step size υ

1: t← 0 . initialize step counter
2: for all wi ∈ W ∗ do . W ∗ computed with Eq. (6.11)
3: ∆t−1 ← inf . initialize distance to waypoint
4: observe current state s
5: ∆t ← ||s−wi||2 . update distance to waypoint
6: while (∆t > ε) and (∆t ≤ ∆t−1) do

. while waypoint not reached yet but distance is decreasing
7: execute a∗ towards waypoint wi

. using the steering function in Eq. (6.12)
8: observe current state s
9: if ∆t ≤ ε then . waypoint reached

10: execute arg maxa UCBA(s,a)
11: end if
12: t← t+ 1
13: if t == T then . time-out
14: return
15: end if
16: ∆t ← ||s−wi||2 . update distance to waypoint
17: end while
18: end for
19: for t to T do . remaining steps until time-out
20: execute πgreedy(s) . Equation 6.10
21: end for

75

All results are based on the double peg in hole tasks described and il-
lustrated in Subsection 3.1.2, where two pegs need to be inserted into an
object with two holes. Subsection A.2.2 illustrates a successful insertion
strategy in simulation. All tasks use continuous state and action spaces.
The states consist of two positional dimensions and one rotational, i.e.,
effectively the object can be moved and rotated in a 2D plane. The agent
uses position control with a reference position that was obtained by sum-
ming up the current position of the EEF and the action representing a
3D offset. The reward is based on the Euclidean distance in state space
between the current state and goal configuration.

6.4.1 Exploration Speed

I first evaluated the speed of exploration, measured by the number of suc-
cessful trials generated during exploration, i.e., in off-policy behavior. In
an ablation study, I compared the full system (OURS) to two baselines:

1. the exact same system but with bootstrapped Q-networks instead
of the split into state-value and advantage, changing the number of
states in the last MLP such that both types of networks use the same
number of parameters (Q-NET).

2. the system with advantage networks but with greedy UCB explo-
ration instead of trajectory optimization (UCB-GREEDY).

The approach in Chen et al. (2017) is a combination of these two base-
lines, where a greedy exploration is chosen based on Q-networks.

Each method was tuned with a hyperparameters grid search3 and ten
random seeds per parameter set. Only the set with best performance
on average was chosen for evaluation. Figure 6.2 illustrates the mean
cumulative number of episodes that ended in a terminal state for different
random seeds. Each algorithm was run with 10 different random seeds,
the mean performance is shown as a solid line, the shaded area covers
one standard deviation of the mean estimator. My full exploration scheme
achieves more successful episodes than the same algorithm based on Q
networks or a greedy UCB policy.

3learning rates in {0.0001, 0.001, 0.01}, batch sizes {32, 64}, noise scales
{0.1, 0.2, 0.3}. After each rollout, 50 training steps with stochastic gradient descent were
performed.

76

0 25 50 75 100 125 150 175 200
episodes

0

5

10

15

20

25
cu

m
ul

at
iv

e
nu

m
be

r o
f s

uc
ce

ss
fu

l t
ria

ls task A
ours: UCB-TrajOpt
UCB-greedy
Q-net

0 25 50 75 100 125 150 175 200
episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cu
m

ul
at

iv
e

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls task B

ours: UCB-TrajOpt
UCB-greedy
Q-net

Figure 6.2: Ablation study on off-policy exploration performance: For each
algorithm, the same grid search for hyperparameters was applied and only
results for the best-performing set of hyperparameters are shown. Task A
is the task variant with fixed pegs, task B has dangling pegs as illustrated
in Subsection 3.1.2.

77

6.4.2 Robustness to Corrupted Steering Functions

To perform global state-space exploration, my method exploits a so-called
steering function. This is used to compute control inputs, i.e., actions, for
an agent to take in order to move towards a given target state. The target
states that the agent is supposed to reach in this approach are the way-
points from trajectory optimization during exploration. During test time,
the steering function is not used at all. Since the steering function is only
used for exploration, I hypothesized that my approach would be robust to
perturbations and re-ran the experiment from the previous section on the
variant with stiff pegs with different kinds of disturbances: Additive Gaus-
sian noise (NORMAL-X) as well as systematic mis-calibrations of 5◦, 10◦

and 30◦ around one (X◦ 1D) or all three action dimensions (X◦ 3D). All
experiments were conducted using the best set of hyperparameters from
the previous section under 10 different random seeds. The results in Fig-
ure 6.3 show that the system is robust to most disturbances: Gaussian
noise does not affect performance on average, presumably because this
cancels out over time along a trajectory. Similarly, rotations of 5◦ and
10◦ around one axis can be tolerated. The performance decreases for
stronger disturbances and is worst for a 30◦ rotation around all dimen-
sions. Except for this last perturbation, all exploration schemes based on
noisy steering functions outperform the best baseline from Figure 6.2 on
average.

6.4.3 Feasibility on a Real Robot

I also replicated the experiment from Subsection 6.4.1, i.e., the exploration
phase, on a real robot: A KAWADA Nextage Open and a 3D printed ver-
sion of the harder double peg in hole with dangling pegs as illustrated in
the upper row of Figure 3.2.

States and actions were defined exactly as in simulation. More details
on the 3D printed objects are given in Figure 3.2. To avoid harmful colli-
sions, a force-torque sensor was installed at the EEF. Whenever the force
or torque exceeded a manually set threshold, the current robot move-
ment was stopped and the EEF was moved upwards until the pressure
was relieved. Since evaluation on real hardware is too time-consuming
to perform statistically sound analyses with multiple hyperparameters and

78

0 25 50 75 100 125 150 175 200
episodes

0

5

10

15

20

cu
m

ul
at

iv
e

nu
m

be
r o

f s
uc

ce
ss

fu
l t

ria
ls task A

ours
normal-0.1
normal-0.01
30° 3D
30° 1D
10° 3D
10° 1D
 5° 3D
 5° 1D

Figure 6.3: robustness of off-policy exploration performance to corrupted
steering functions: my method was re-run with different perturbations
added to the steering function: Gaussian noise (NORMAL-STD) that might
cancel out over longer trajectories as well as systematic mis-calibrations
of 5◦, 10◦ and 30◦ around one (X

◦ 1D) or all three action dimensions (X
◦

3D). Each line represents the mean over results from ten different random
seeds, the gray shade represents the standard deviation around the mean
estimator without disturbance. Task A refers to the task variant with stiff
pegs.

79

random seeds, I used those hyperparameters that performed best in sim-
ulation. To save time, I only executed 2 random episodes in the beginning
though.

The video at https://youtu.be/JTfeHhWSb0Y and extracted key-
frames in Subsection A.2.3 also allow quantitative visual inspection of
the exploration behavior. It demonstrates what the initial episodes with
Gaussian noise look like and how this compares to the first exploration
using trajectory optimization and piecewise linear movements afterwards.
With some more training, the uncertainty estimates start to lure the agent
towards exploring promising areas: first a local minimum in the middle
between both holes (optimizing the Euclidean distance to the target posi-
tion), the the agent starts to focus on the area around the holes before it
finally finds the target position after less than 1200 steps.

6.4.4 Sample Efficiency for Policy Learning

Exploration data that contains experience from successful behavior intu-
itively seems useful. Still, here I experimentally verified the hypothesis
that the exploration data collected in Subsection 6.4.1 will speed up the
training process for a policy.

A DDPG actor-critic setup4 served as a baseline (DDPG) for learn-
ing from scratch with Gaussian noise, Ornstein-Uhlenbeck (Lillicrap et al.,
2015) and adaptive parameter noise (Plappert et al., 2017). Additional pa-
rameters for these noise processes were included in the hyperparameter
grid search. For the proposed approach (OURS), the experience from my
exploration scheme is slowly added into the replay memory (similar to Ve-
cerik et al. (2017)). Except for this experience injection, the same DDPG
algorithm as for the baseline is run.

I used the exploration data from the best performing hyperparameter
set in my ablation study as exploration samples. Since all configurations
were run 10 times, I chose the random seed whose performance was clos-
est to average to keep the data as representative as possible. Empirically,
I found it beneficial to discard the initial random episodes and add sam-
ples from 10 exploration episodes at each training episode in the policy
learning stage.

4as implemented in the openAI baselines repository https://github.com/openai/
baselines

80

https://youtu.be/JTfeHhWSb0Y
https://github.com/openai/baselines
https://github.com/openai/baselines

0 50 100 150 200 250
episodes

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

task A
DDPG-adaptive-param
DDPG-normal
DDPG-ou
ours-adaptive-param
ours-normal
ours-ou

0 200 400 600 800 1000
episodes

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

task B
DDPG-adaptive-param
DDPG-normal
DDPG-ou
ours-adaptive-param
ours-normal
ours-ou

Figure 6.4: Sample efficiency in policy learning: Policies learned from
scratch (DDPG, dashed lines) are compared to policies that started with
data from my exploration scheme (OURS, solid lines starting after explo-
ration episodes). Each line represents the ratio of successful policies
during on-policy evaluation over ten independent trainings using differ-
ent random seeds. Using data from my exploration scheme seems to
speed up convergence; and the difference becomes more significant for
the harder contact-rich manipulation task B (dangling pegs) than for task
A (stiff pegs).

81

Training an actor from the exploration data in a supervised setting
without any further environment interaction failed completely—most likely
due to compounding errors known in behavioral cloning (e.g., Jiang et al.
(2015)). Also training an actor network while exploring with my strategy
off-policy was empirically unstable unless a very small learning rate was
used (which in turn counteracts the sample efficiency).

I defined a run to be converged if the actor network without noise was
able to solve the problem 10 times in a row starting from random initial
positions. Figure 6.4 compares the performance of vanilla DDPG trained
from scratch to DDPGfD (DDPG from demonstration) using 80 episodes
of exploration data for the simpler task and 160 for the harder one.

There were no successful samples in the demonstration data before
episode 80 or 160 respectively, but it can be observed that injecting the
data from my exploration scheme speeds up learning anyway. Interest-
ingly, the improvement of the full policy trained on my data over training
from scratch is larger for the task with dangling pegs, although the steering
function should fail more often for dangling than for fixed pegs. Together
this indicates that the data created is generally informative, and that the
number of successful episodes may not be the best criterion to evaluate
the usefulness of data for RL.

6.5 Discussion

To overcome the infamous sample inefficiency of exploration for model-
free RL from scratch, I have proposed to use global state space explo-
ration via trajectory optimization to generate informative data in a first step
and then use this data in analogy to expert demonstrations in a second
step to train a full model-free policy.

The approximate trajectory optimization aims to maximize the UCB on
advantages at a set of waypoints that the agent visits sequentially using a
coarse steering function. I have also demonstrated the robustness of the
approach to noise and systematic mis-calibration of the steering function.

To compute the advantage function and derive an uncertainty mea-
surement over advantages, I designed a network with two branches, which
—in contrast to prior work (Wang et al., 2016)— can be trained without
loosing the semantic meaning of the branches.

82

The experimental evaluation has illustrated that the proposed approach
rapidly finds successful sample trajectories; and experience collected dur-
ing this exploration can significantly speed up policy learning even if the
exploration does not contain successful samples. Additionally, the largest
speed-up is achieved in training full policies for the harder contact-rich ma-
nipulation task although significantly less successful samples are found
during exploration. Together, these results indicate that data from my ex-
ploration scheme is generally more informative than existing strategies.

Beyond its contributions, this work is one step towards integrating prior
knowledge into model-free deep RL. In a trade-off between generalization
and specificity, this can move model-free deep RL one step closer to ef-
ficiency. The loss in generalization seems manageable in many areas of
application, e.g., for contact-rich manipulation in robotics, where tasks are
almost always performed with robots for which a coarse steering function
and a task space controller are available.

6.6 Limitations and Open Questions

The experiments are limited by the type of task performed. It remains
open to what degree the results could be transferred to different tasks, in
particular because theoretical arguments about which kind of task is easy
or hard to solve for deep RL are hard to make. Also it is unclear how
much the task formulation and modalities matter, i.e., whether the same
kind of effects could be observed for visual input and deeper networks, or
for sparse reward formulations. The latter is a particularly important open
question, because sparse reward settings make exploration even harder
in general.

Using a coarse steering function can be seen as one particular step
towards integrating approximate model information into deep RL through
exploration. One question left for future work is thus what types of models
can be exploited, in particular models that go beyond the coarse steering
function I applied here. It would be interesting to see whether approaches
from model-learning can be used as well; and how much the quality of
exploration data improves when the model accuracy improves. Measuring
quality of exploration data however is a full open research topic in itself.

83

The next chapter will take first steps towards characterizing properties of
datasets and exploring how this characterization is linked to success and
speed of RL processes.

84

Chapter 7

Linking Data Graph
Structures to Soft
Divergence

Exploration in RL aims to collect informative data that an agent can learn
from. Improving exploration therefore typically means to collect data which
is supposed to improve learning in some form, e.g., improving learning
speed, learning stability, the safety of exploration or many more. How-
ever, there is barely any formal definition of what makes data useful. In
this chapter, I will represent the contents of a replay memory from off-
policy deep RL as a graph where nodes correspond to states and edges
to transitions between states. This graph perspective allows extracting
structural information of the data which can, as I will show, be linked to
soft divergence, one of the issues in (deep) Q-learning that are not en-
tirely understood yet and hard to prevent.

7.1 Introduction & Motivation

DQN and DDPG are two state of the art algorithms for deep model-free off-
policy RL that have been successfully applied on a wide range of tasks in-
cluding continuous control tasks both in simulation and the real world (Lilli-

85

replay memory

s a r s′ s′ is terminal
s0 a0 −1 s1 0
s0 a1 −1 s2 0
s2 a2 −1 s2 0
s0 a3 −1 s3 0
s3 a4 0 s4 1

data graph

s0

s1

s2s3

s4

a
0

,−
1

a
1 ,−

1a 3
,−

1

a
2 , 0

a4 ,−1

Figure 7.1: The replay memory (left) can be represented as a data graph
(right): nodes correspond to states and transitions are represented by
edges between states. Additional transition information, such as the re-
ward, can be seen as an annotation to the edge. The structure of the data
graph is shown to be linked to soft divergence in Chapter 7 and will be
used constructively to improve sample efficiency and robustness of deep
model-free off-policy RL in Chapter 8.

crap et al., 2015; Vecerik et al., 2017). Both algorithms however are based
on Q-learning (Watkins, 1989), which is still not fully understood. On the
contrary, Q-learning even with linear function approximation is known for
convergence issues (Baird, 1995). Deep Q-learning combines highly non-
linear function approximation with off-policy learning and bootstrapping—
a combination that has been termed deadly triad by Sutton and Barto
(2018) because of the instabilities it is likely to induce. Empirically, deep
Q-learning does not seem to fully exhibit these expected divergence is-
sues (Van Hasselt et al., 2018) but its performance can be unreliable and
hard to reproduce (Henderson et al., 2018).

With the work I present in this chapter, I aim to extend the commu-
nity’s understanding of when deep Q-learning diverges: I propose to take
a graph perspective on the replay memory (see Figure 7.1 for illustration),
which allows analyzing its structure and show on small characteristic ex-
ample problems how specific structures are linked to soft divergence.

86

7.2 Preliminaries

Building on the definitions for return, state value and state-action value in
Chapter 2, the following properties can be derived for state values:

For γ < 1 and an infinite trajectory with constant reward r, the return
forms a geometric series:

R =

∞∑
t

γtr =
r

1− γ
(7.1)

Thus, under the assumption of a policy π which induces such an infi-
nite trajectory with constant reward, also the state value converges:

V π(s) = E

[∞∑
t

γtr

]
=

r

1− γ
(7.2)

The state action value converges analogously:

Qπ(s,a) =E
[
ra + γQπ(s′, π(s′))

]
=E

[
ra + γV π(s′)

]
=E

[
ra + γ

∞∑
t

γtr

]

where ra refers to the reward that the agent received for executing action
a in the first step which may be different from π(s).

This also means, that if the reward function is bounded by rmin and
rmax, the smallest and largest possible Q-value can be computed as[

min

(
rmin,

rmin

1− γ

)
,max

(
rmax,

rmax

1− γ

)]
(7.3)

respectively (Lee and Kim, 2015). The min/max operations ensure that
also cases when terminal states are reached are covered.

Analogously, state(-action) values for loops with different rewards can
be derived. Assume that one loop consists of m ever repeating transitions
(s1,a1, r1, s2) to (sm,am, rm, s1) which are induced by a policy π and
rewarded equally in each loop traversal. Then the state value can be

87

computed as follows:

V (s1) = r1 + γr2 + ...+ γm−1rm︸ ︷︷ ︸
rL

+γmr1 + γm+1r2 + ...

= rL + γmrL + γ2mrL + ...

= rL

∞∑
t

(γm)t =
rL

1− γm
(7.4)

7.3 Related Work

RL based on Q-learning has been known to be instable even with linear
function approximation for more than 20 years (Baird, 1995). While the
problem to date is not fully understood, in particular for more complex
nonlinear settings, there are several approaches to characterizing insta-
bility and prevent it.

7.3.1 Instabilities in RL: the Deadly Triad

The combination of function approximation, bootstrapping and off-policy
RL has been called the deadly triad by Sutton and Barto (2018) because
of its tendency to diverge. While deep RL methods within the deadly triad
tend to be hard to reproduce and evaluate empirically (Henderson et al.,
2018), it seems to exhibit soft divergence only (Van Hasselt et al., 2018):
that is, following the authors’ definitions, deep RL does not actually reach
floating point NaN values but instead plateaus or oscillates at Q-values that
are outside of the theoretically derived bounds as given in Eq. (7.3). My
experiments will largely support these findings.

To understand causes and remedies against divergence in the deadly
triad, all three properties of the triad have been the focus of investigations.

Function Approximation

Different networks for function approximation and update schemes have
been linked to convergence: Fu et al. (2019) found large neural networks
with compensation for overfitting to be beneficial for learning stability. Mnih

88

et al. (2015) introduced target networks: These are a second function ap-
proximator that is only updated slowly or periodically and therefore serves
as a kind of low pass filter on the network parameters. Its values are there-
fore more stable and lead to more stable target Q-values in TD learning.
Besides, a second network can help to counteract maximization bias in
Q-learning (Van Hasselt et al., 2016). Also other methods that delay (Fu-
jimoto et al., 2018) or average target values (Anschel et al., 2017) have
been shown to stabilize learning. Achiam et al. (2019) theoretically link
generalization properties of the Q-function approximator to the stability of
learning. I empirically confirm and provide further intuition about this effect
in Subsection 7.5.3.

Off-Policy

In policy gradient methods, reducing the impact of off-policy data has been
beneficial for stability, e.g., by mixing on- and off-policy (Gu et al., 2017) or
by constraining the gradient update through a proximity term (Touati et al.,
2020). Also in DQN and DDPG, restricting the action space to achieve
lower levels of off-policy data have been explored (Fujimoto et al., 2019).
Constrained action selection when computing the target Q-values can also
stabilize deep RL (Kumar et al., 2019).

Kumar et al. (2020) emphasize that the interaction of off-policy learning
and bootstrapping can lead to cases where a state is visited frequently and
yet its incorrectly estimated Q-value is not updated because the state that
the target value depends on is not visited. They refer to this phenomenon
as ’lack of corrective feedback’ and derive a re-weighting of transitions
from the replay buffer that is supposed to mitigate this issue. The full ver-
sion of my proposed method, using zero actions, will be able to improve
performance with such tail ends of data distributions without downweight-
ing the associated transitions, without an additional error model and with-
out constraining the action selection.

Further questions regarding the impact of off-policy data remain open
however: Correcting off-policy samples may have adverse effects as well,
as reported by Hernandez-Garcia and Sutton (2019) for SARSA which is
an on-policy algorithm that is quite close to Q-learning (Sutton and Barto,
2018). Fedus et al. (2020) found that counter-intuitively, n-step return up-
dates which are not corrected for policy differences are beneficial in off-
policy deep RL despite being theoretically ungrounded.

89

Bootstrapping

Standard Q-learning uses bootstrapping as in Eq. (2.6) to estimate a Q-
function, i.e., the estimate at one iteration is used to derive the update for
the next iteration’s estimates. Alternatives to bootstrapping include fixed-
horizon TD methods (De Asis et al., 2019) and finite-horizon Monte Carlo
updates, in which a Q-value is estimated based on observed Returns from
each state. While the resulting estimator for the Q-function has low bias, it
comes with high variance. Introducing eligibility traces of different lengths,
a spectrum of methods between TD and Monte Carlo methods can be
spanned (Sutton and Barto, 2018; Precup et al., 2000), also in a deep
learning setting (Munos et al., 2016; Mnih et al., 2016; Amiranashvili et al.,
2018). Similarly to Monte Carlo estimates, my proposed method propa-
gates information along full trajectories. However, I do not apply return
values as high-variance targets but use them to derive a lower bound for
each target Q-value instead.

7.3.2 Graph Perspective on Training Data

Monte Carlo updates can be seen as a special case of graph perspec-
tive: data from full episodes is used to derive updates along a trajectory.
Episodic backward updates are classical TD updates that are executed
along trajectories in reverse order, such that information is quickly prop-
agated through consecutive states (Lee et al., 2019b). To prevent errors
from sequential updates of correlated states, a diffusion coefficient is in-
troduced.

Zhu et al. (2019) take a full graph perspective on the agent’s experi-
ence: using a learned state embedding, episodes with shared states are
identified and can benefit from inter-episode information, i.e., the algo-
rithm can combine multiple trajectories from experience. State embed-
dings have also been combined with k-nearest neighbors as a method to
estimate Q-values for unseen states (Blundell et al., 2016). Corneil et al.
(2018) use a network model to map states to an abstract tabular model
where planning can be easily applied. In my approach, I also use a graph
perspective but without a learned embedding inter-episodic information is
only exchanged if the exact same state is revisited (up to floating point
precision). Note however, that in many cases there are points which are
very likely re-visited, e.g., physical corners between objects.

90

7.4 Method: Data Graph Structure

Despite the continuous state-action space, the networks in DDPG are up-
dated based on a finite set of transitions from the replay memory. It is
therefore possible to take a graph perspective on this data: A transition
(s,a, r, s′) can be seen as an edge between the nodes corresponding to
states s and s′; and can be annotated with action a and reward r. Any
hashing function can be used to encode nodes and detect if the same
node is revisited. This is not supposed to introduce any discretization be-
yond the limits of precision. I refer to the resulting directed graph as data
graph (see Figure 7.1 for an illustration).

7.4.1 Characterizing Transitions

In the experimental section I will present results that link different types
of transitions to different levels of soft divergence. The differentiation be-
tween transition types is based on the following definitions:

1. If s′ is terminal, target Q-values for TD learning equal the observed
reward r (see Eq. (2.6)) and thus RL reduces to supervised learn-
ing. I thus hypothesized that Q-values for such directly connected
transitions are very unlikely to diverge.

2. Transitions that end in a non-terminal state from which a terminal
state is reachable are referred to as (indirectly) connected. This
class of transitions can further be parameterized by the length of
the shortest path that is known to reach a terminal state.

3. If no terminal state is reachable from s′ but there is at least one
infinite path from s′, this transition is referred to as disconnected.
Such an infinite path means in practice that there is at least one
loop on the path ahead of s′. If this loop is deterministically induced
by a policy and rewarded equally across loop iterations, the resulting
state-values can be analytically derived using Eq. (7.4).

4. If no terminal state is reachable from s′ and there is no infinite path
from s′, the transition is referred to as a loose end. These transitions
occur for instance at the end of each episode in episodic learning
setups, when the agent does not succeed but is reset to a starting
position.

91

It is insightful to note that Q-values for such transitions are concep-
tually ill-defined in tabular Q-learning where a state without succes-
sors would be defined as terminal. For non-terminal states, a Q-
value could be determined under the assumption that further tran-
sitions exist (and just have not been discovered yet), but then the
Q-value is estimated using bootstrapping from another Q-value that
has never been explicitly updated. This phenomenon is one ex-
ample for what has been referred to as a lack of corrective feed-
back (Kumar et al., 2020). In other words, the estimate depends
only on network initialization and generalization from data for other
state-action pairs; cf. also Achiam et al. (2019) who analyze the
theoretical link between approximator generalization properties and
learning stability.

7.5 Experimental Results

In this chapter, I illustrate how the different types of transitions impact
the Q-value estimates in deep off-policy model-free RL using a series of
toy examples. The examples differ in the data graph they work on, i.e.,
they consist of different types of transitions following the definitions in the
previous section.

7.5.1 Experimental Setup

The following offline policy evaluation task was set up: An agent can ma-
neuver in a 2D continuous state space with 2D actions such that adding
state and action yields the next state s′ = s + a. For each step, the agent
receives a reward of −1 and 0 at the terminal state. The replay mem-
ory stays fixed, i.e., is not extended, while a DDPG-like critic network is
trained to find an approximation to the Q-function. The policy π is not ap-
proximated by an actor network as in DDPG, but instead defined based on
the replay memory such that for a given state it selects the action from the
full graph that is currently associated with the highest Q-value prediction.
Like in DDPG, this means that the actor may choose an action that has
not been observed before. As in DQN and DDPG, all network updates are
solely derived from the finitely many samples in the replay memory. The

92

network consists of two layers with four hidden states each, ReLU activa-
tions (except on the output) and Xavier-initialization. No target networks
or other bells and whistles were used.

7.5.2 Empirically Assessing Divergence

The training procedure was repeated with ten random seeds that were
drawn uniformly from [0, 1000]. For further analysis, I propose to com-
pute the standard deviation of Q-values that were predicted from net-
works based on different random seeds as a measure of divergence: if
Q-learning for a transition converges, all Q-values should be identical and
thus have a standard deviation close to zero. The more divergence oc-
curs however, the larger the standard deviation becomes. Even if all trials
diverge, it is highly unlikely that the resulting Q-values are identical.

All results in the following sections were in line with the finding in
Van Hasselt et al. (2018), according to which no unbounded divergence
occurs (which would cause floating point NaNs). Instead, I argue about
occurrences of soft divergence, i.e., Q-values beyond the realizable range
as given by Eq. (7.3).

7.5.3 Example I: Types of Transitions

Let me first illustrate the types of transitions with an exemplar data graph:

0

1 2

It consist of three states, one of which is terminal (double circle). To learn
a Q-function from data which can be represented by this graph, I as-
signed 2D coordinates to each state as follows: s0 = [0, 0], s1 = [−1, 1],
s2 = [1, 1] Furthermore, let’s assume that the agent could possibly have
collected any subset of the four transitions on the graph. This creates
24 = 16 subsets; one of which is empty and therefore ignored. Moreover,
each subset contains different types of transitions. These types are illus-
trated for all subsets by a color coding in Figure 7.2: directly connected
transitions, that is those leading to the terminal state 0, are shown in blue.

93

In my example this is only ever the transition between states 1 and 0.
Indirectly connected states are those for which a longer path to the ter-
minal state exists. They are illustrated in orange in Figure 7.2. Here it
can be highlighted that the type of a transition depends on the context:
The transition from state 2 to state 1 is indirectly connected to the terminal
state, only if the transition from state 1 to state 0 exists as well. Other-
wise, if the transition from state 1 to state 0 is not present, the transition
from state 2 to state 1 becomes a loose end (illustrated in green, e.g., the
top left example in Figure 7.2). Loose ends are those transitions that end
in a non-terminal state from which no further transitions are known. The
remaining transitions, highlighted in red in Figure 7.2, are disconnected
transitions: from their end state no path to a terminal state is known, but
at least one infinite path (i.e., loop) exists.

To verify that these transition types are linked to different divergence
behavior in deep model-free RL, the training that was described in Sub-
section 7.5.1 has been repeated with multiple random seeds for each of
the 15 subsets of the data graph. To empirically assess soft divergence, I
evaluated the predicted Q-values for each transition after the training pro-
cess as follows: First, the standard deviation over Q-value predictions for
one specific transition in one example subset from different random seeds
was computed. Second, the distribution over predicted Q-values for all
transitions of a specific type was illustrated in a boxplot in Figure 7.3. The
line inside each box represents the median, the box extends to the quar-
tiles and the whiskers cover 1.5 times the inter quartile range.

Evaluating the distribution of standard deviations reveals a clear link
between the structure of the data graph and soft divergence: Q-values for
transitions which directly end in a terminal state (’directly connected’) are
estimated almost perfectly, most likely because Q-learning is reduced to
supervised learning in these cases (cf. Eq. (2.6)).

Q-values for transitions ending in states with a longer path to a ter-
minal state, the connected transitions, exhibit only slightly more variance
than the directly connected transitions. Presumably the reachable termi-
nal state still acts as an anchor for the Q-value (as long as all transitions
on the path are regularly used for updates). Transitions without such an
anchor congruously have caused much more variance in their predictions:
loose ends and disconnected transitions.

94

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

0

1 2

Figure 7.2: The 14 incomplete subsets of the data graph in example I.
The 15th subset is empty, the 16th subset is the complete graph. There
are three states (with state 0 being terminal) and up to four transitions,
which are colored based on the graph structure as directly connected to
a terminal state (blue), indirectly connected (orange), disconnected but
infinite paths (red) or loose ends (green).

95

directly_connected connected loose_end disconnected

10−6

10−4

10−2

100

102

st
d
 (

lo
g
 s

ca
le

)

Figure 7.3: Standard deviation over predicted Q-values for each type of
transition from all 15 possible subsets of the educational example.

96

Loose ends, whose Q-values are conceptually ill-defined for tabular
Q-learning as discussed above, caused high variance in predictions—a
finding which is in line with other works (Kumar et al., 2020; Achiam et al.,
2019).

Disconnected transitions occur frequently in practical applications of
RL, e.g., when the robot gets stuck in a non-terminal state. Such dis-
connected transitions caused the highest variance in my experiment. In
contrast to loose ends however, the Q-value for these transitions is well-
defined under the assumption that all possible transitions are known and
can even be computed analytically (cf. Eq. (7.4)).

7.5.4 Example II: Chains of Transitions

In the last example, only few states and relatively short paths have been
examined (except for the infinite paths on loops). Transitions with a short
path to a terminal state barely caused soft divergence. In real world appli-
cations however, data graphs tend to me much larger and more complex.
From the previous example it remains unclear how this interacts with di-
vergence.

Depending on the learning formulation or domain of application, the
structure of the graph can even vary. Residual formulations for example
tend to produce paths which often still end in a terminal state, but it may
take much more than the one step in the previous example to reach a
terminal state.

Therefore, I designed a second example to investigate the impact of
long chains of transitions. As mentioned in Subsection 7.4.1, this can be
seen as examining an additional parameterization of indirectly connected
transitions by the length of the chain ahead.

In this example I thus created a data graph which could have been
induced by a replay memory with a single episode of 100 steps. The self-
loops are additional options that the policy has when choosing an action.

s0 s1 s2 ... s10 ... s20 ... s100

97

1-0 11-10 21-20 31-30 41-40 51-50 61-60 71-70 81-80 91-90
transition

−60

−50

−40

−30

−20

−10

0
pr

ed
ict

ed
 Q

 v
al

ue

ground truth
chain

Figure 7.4: Distribution of predicted Q-values for transitions of the chain
example.

Using the same setup as in the previous example, I trained a number
of critic networks on data from this fixed replay memory to predict the
Q-function, i.e., a reward of -1 for each step and a mapping from states
to coordinates as st = [0, t]. An action was again defined as the offset
between the two states it connects and the policy was set as the one policy
that always moves from one state to the next in the chain, i.e., ∀t. π(st) =
st−1 − st. The Q-value for the transition from state st to st−1 thus equals
the state value which can be analytically computed as:

V (st) =

t∑
j=0

γt−j · (−1) = −
t∑

j=0

γj (7.5)

The results shown in Figure 7.4 illustrate that the distance between the
end state s′ of a transition and the terminal state plays an important role:
the longer the path to the anchor, the higher the variance in predictions.

7.6 Discussion

Based on the observation that even for continuous state and action spaces,
model-free off-policy deep RL algorithms perform network updates on a fi-
nite set of transitions, I have used a graph perspective on the replay mem-
ory that allows closer analysis. Transitions can be characterized based

98

on their structural properties, such as the length of the path between the
end state and its closest terminal state. Using four different types of graph
structures, I have shown that these types are clearly linked to soft diver-
gence: Loose ends, which often occur at the end of an episode, are rel-
atively likely to lead to soft divergence. This is not surprising since the
Q-value for such a transition necessarily depends on estimated Q-values
for states that have never been visited. Therefore the correctness of all
predictions almost exclusively depends on correct generalization of the Q-
network. This insight is not new but has, in a different framing, also been
mentioned in Kumar et al. (2020).

Also disconnected loop structures lead to soft divergence—in my ex-
ample even more likely so than loose ends. This is surprising because
the Q-value for loops can even be analytically computed in case the policy
stays in this loop forever. An optimal policy may be able to do better than
staying in the loop, but it cannot do worse. In this sense there is a theoret-
ically justified lower bound and yet, I also observe divergence to negative
infinity. In the next chapter, I will have a closer look at this idea of lower
bounds.

7.7 Limitations and Open Questions

Since updates for the neural networks that are used to estimate Q-values
in DQN and DDPG are only based on a finite replay memory, the data it
contains can be represented as a graph. I have shown that the structure
of this graph is correlated with soft divergence on two small examples for
fixed datasets. It is not clear up to this point, whether the results from these
examples transfer to real RL settings where the agent keeps collecting
data and exploring while the networks are trained. Chapter 9 will touch
upon this question in a system study with a real-world industrial insertion
task.

The phenomenon of soft divergence in deep RL is still not fully un-
derstood: it remains unclear whether there are further factors, i.e., more
precisely MDP properties in an environment, that impact convergence.
For instance it remains unclear how the reward function is linked to soft di-
vergence; and whether there are principles to follow for reward shaping to
allow stable learning. If soft divergence occurs, it is also not understood in

99

which cases it diverges to plus and in which cases to minus infinity; and in
which cases the weights to update spiral out to infinity as in Baird (1999)’s
star example.

Also beyond reward shaping, it is open at this point whether the graph
and its information can be used in a constructive way to improve con-
vergence properties of deep off-policy model-free RL. This may contain
smaller changes in the learning setup, such as a residual policy formula-
tion, which can change the structure of the resulting data graph. Other
ways to improve the graph structure may potentially be to explore in a
directed fashion towards states or transitions which are anticipated to
enhance the graph structure. This could be an automated exploration
scheme as in Chapter 6 or based on expert demonstrations which could
be queried for particular start or target states. While these questions are
left for future work however, I will show in the next chapter that even for
any dataset that has been collected without considering the data graph
structure, the information contained in the data graph can be used con-
structively to improve the stability of learning.

100

Chapter 8

Stabilizing DDPG through
Q-Graph-based Lower
Bounds

In the last chapter I have taken a graph view on the data in the replay mem-
ory and linked the structure of this graph to soft divergence in model-free
off-policy deep RL. While this work was insightful, it had a purely descrip-
tive character. In this chapter, I will show that the graph structure can
also be used in a constructive way: non-parametric information from the
graph can be used to compute lower bounds to Q-values in the parametric
network updates. Among other effects, this can prevent soft divergence
and therefore on average increases sample efficiency in a series of exper-
iments with DDPG and a simulated peg insertion task.

8.1 Related Work: Constrained Q-learning

Q-learning, which is prone to divergence as discussed in Section 7.3, can
be stabilized by introducing constraints on the change in either target val-
ues or network parameters (Durugkar and Stone, 2018; Ohnishi et al.,
2019). However, constraining change rates in a learning system may also
limit the rate at which an agent can improve.

101

He et al. (2017) take an episode-wise trajectory perspective on the
data an RL agent has collected and derive the following lower and upper
bounds for the true Q-valuesQ∗ and � steps of future and past experience
on a trajectory:

max
¨∈{1,...,�}

Lt,¨ ≤ Q
∗(st,at) ≤ min

¨∈{1,...,�}
U t,¨ (8.1)

where

U t,¨ = γ−¨−1Q∗(st−¨−1,at−¨−1)−
¨∑
i=0

γi−¨−1rt−¨−1+i

Lt,¨ =

¨∑
i=0

γirt+i + γ¨+1 max
a

Q∗(st+¨+1,a)

During training however, the optimal Q-value Q∗ is not known yet.
Therefore, the authors suggest to compute the lower and upper bounds
using the current estimate for Q-values Q̂ instead. Thus, computing these
bounds requires multiple additional forward passes in each update step
and, more crucially, the resulting bounds need not be correct in general.
In contrast, I will derive correct lower bounds for π∗ in near-deterministic
settings and show that incorrect empirical bounds can have adverse ef-
fects on the learning process.

Tang (2020) offers the intuition that lower bounds encourage the algo-
rithm to focus on the best actions so far and thereby speed up learning.
This idea is in line with Zhang et al. (2019) who introduce a separate replay
buffer that only holds the best episodes and empirically improves learning
performance on a range of simulated continuous control tasks.

8.2 Method

Let us again start from the data graph that represents the data an RL agent
has collected. From the edges in the data graph the largest subset is se-
lected such that it induces a well-defined MDP with finitely many discrete
states and transitions: The subset of transitions from the data graph forms
a new graph G with vertices V representing states and edges E that rep-

102

resent actions. The induced MDP M G is then a tuple (E ,V,R,P0
G , T G),

where the action and state spaces are represented by the edges and ver-
tices from the subgraph; the reward function is the same as for the original
MDP M with continuous state and action spaces. The initial state prob-
abilities P0

G are defined by the original probabilities P0 on those initial
states from M that also occur in G. To obtain a probability distribution,
P0
G may need to be normalized. Since I assume deterministic transitions,

all transition probabilities T G are one for a given state-action pair.

Selecting a subgraph such that M G is well-defined means that one
particular type of transitions is excluded from the data graph: loose ends,
i.e., transitions which end in a non-terminal state with no out-going edges.
From such a non-terminal state no action could be taken and the target
Q-value as in Eq. (2.6) is not defined, because the state contradicts the
definition of "non-terminal".

On the finite MDP M G that was induced by a subgraph G without loose
ends, exact Q-values QG can be computed analytically for all transitions.
All transitions in subgraph G can thus be annotated with their Q-valuesQG

from M G . The full annotated subgraph is then referred to as Q-Graph.

8.2.1 Q-Graph Implementation

The Q-function QG for the finite MDP M G can be computed using tabular
Q-iteration with guaranteed convergence due to its contraction property.
The method I propose here is agnostic to the exact algorithm that is used,
so for instance it is also possible to solve the linear equation system for a
sparse transition matrix. In any case, the computational overhead to com-
pute these Q-values depends on the number of transitions in the replay
memory, but it is independent of the input dimensionality since the graph
representation is non-parametric.

For my experiments, I implemented a Q-Graph such that it does not
need to be re-computed for each usage but can instead be extended iter-
atively as more data comes in (see Algorithm 3).

103

Algorithm 3 Exemplar Q-Graph implementation for incrementally incom-
ing data.

Initialization:
successors = {} . initially empty mapping from state s to list of tuples (s′, a, r, LBQ)
predecessors = {} . initially empty mapping from state s

′ to list of tuples (a, r, s)
discount factor γ
zero action az , if known
capacity C . max. number of transitions to store

1: procedure ADDTRANSITION(s, a, r, s′)
2: add (a, r, s) to predecessors[s′] unless already exists
3: LB=LBFORNEWTRANSITION(s, a, r, s′)
4: add (s′, a, r, LB) to successors[s] unless already exists
5: if LB > −∞ then . if lower bound known
6: PROPAGATELB(s) . Update predecessor bounds
7: end if
8: if capacity C reached then
9: remove transition . e.g. first-in-first-out (FIFO)

10: end if
11: if Zero Action az known and s

′ is not terminal and s 6= s
′ then

12: ADDTRANSITION(s′ , az , r
1−γ , s′)

13: end if
14: end procedure

104

15: function LBFORNEWTRANSITION(s, a, r, s′)
16: LB = −∞ . lower bound unknown so far
17: if s′ is terminal then
18: LB = r
19: end if
20: if s = s

′ then . self-loop, e.g. zero action
21: LB = max(LB, r

1−γ)

22: end if
23: if larger loop with n transitions from s detected then
24: LB = max(LB, rL

1−γn
) . see Eq. (7.4)

25: end if
26: if there is at least one successor transitions from s

′ with lower bound LB’ then
27: LB = max(LB, r + γ ·max{lower bound LB’ for transitions in successors[s′]})
28: end if
29: return LB . tightest lower bound
30: end function

31: procedure PROPAGATELB(s0)
32: S = [s0] . list of states to visit
33: while states in S do
34: s = S.pop(0) . remove and obtain first element in S
35: if s has predecessors and successors then

. if sequence of at least two transitions exists
36: LB′ = max{lower bounds LB′Q for transitions in successors[s]}
37: for (ap, rp, sp) in predecessors[s] do . iterate predecessors of s
38: LB2 = rp + γ · LB′

39: if LB2 > existing bound for sp → s then
40: update LBQ in successors[sp] for the transition to s
41: S.add(sp) . propagate LBQ to predecessors of sp
42: end if
43: end for
44: end if
45: end while
46: end procedure

105

8.2.2 Zero Actions

As discussed above, loose ends are discarded when a Q-Graph is con-
structed. It would therefore still be desirable to include information from
loose end transitions into the Q-Graph however. In many settings, this is
possible through zero actions az: those are actions that do not change
the agent’s state, e.g., moving by zero units or applying zero force.

If those are applicable in all states, a self-loop can be added to ev-
ery single node in the data graph (without actually executing an additional
action). This effectively eliminates all loose ends and turns them into dis-
connected states. In other words it allows the Q-Graph G to contain all
transitions from the data graph and compute their exact Q-values for the
simplified MDP M G .

8.2.3 Q-Graph Values as Lower Bounds

In general, the original MDP M contains more states or transitions than
the Q-Graph-induced M G . Then, the Q-values QG do not transfer to the
original MDP as a correct solution but can be used as lower bounds for
Q-values in the original MDP.

Assume w.l.o.g. that at least two transitions (s0, a1, r1, s1) and (s1,
a2, r2, s2) are known and part of the Q-Graph G. Since Q-values for all
transitions in G can be computed exactly using Q-iteration, the Bellman
optimality equation applies:

QG(s0,a1) = r1 + max
a∈EGs1

QG(s1,a) (8.2)

where EGs1 denotes all actions on out-going edges from s1.

In the original MDP M with potentially continuous state and action
spaces, unseen states and transitions may exist. Still, for deterministic
MDPs M and M G , the Q-value is lower bounded due to the max oper-
ation and the fact that the available actions in the Q-Graph (EGs1) are a

106

subset of those in the continuous action space A:

Q(s0,a1) = r1 + max
a∈A

Q(s1,a) (8.3)

EGs1⊆A
≥ r1 + max

a∈EGs1

Q(s1,a)

EGs1⊆A
≥ r1 + max

a∈EGs1

QG(s1,a) = QG(s0,a1) (8.4)

Thus, each Q-value for a transition in the Q-Graph G represents a
lower bound of the Q-value for the same transition in the original MDP
on continuous state and action spaces. In contrast to the prior work in He
et al. (2017), these lower bounds do not depend on the current Q-estimate
but hold for the optimal Q-value in general.

Note that the max operation in Eq. (8.4) operates on a discrete space
and can thus be computed by a simple look-up and comparison of all
known transitions from s1. The max operation in Eq. (8.3) does not need
to be evaluated additionally.

For non-deterministic dynamics, potentially less tight bounds can be
established under additional assumptions: If for any state and any series
of actions A, the empirical return R that an agent can observe when fol-
lowing A from s differs by at most δ, then all QG-values apply as lower
bounds with margin δ:

Q(s,a) ≥ QG(s,a)− δ (8.5)

Since non-deterministic environments are quite common and δ may
not be known, I will additionally evaluate the empirical performance of my
method under violation of the determinism assumption.

107

8.2.4 Q-Graph-bounded Q-learning

Bounds on Q-values, for instance those computed in Eq. (8.4), can be
enforced in TD learning by clipping target values from Eq. (2.6) as follows:

Qtarget(s,a) = r +

{
0, if s′ is terminal
γ · Q̂(s′, π(s′)), else

QGtarget(s,a) = max
(
LB, Qtarget(s,a)

)
(8.6)

where LB can generally be any lower bound; in Q-Graph-bounded Q-
learning I use the Q-value for the same transition in the Q-Graph LB =
QG(s,a). If another lower bound is known, e.g., based on a bounded
reward as in Eq. (7.3), LB can be the maximum over all available lower
bounds. Analogously, upper bounds UB could be enforced using the min
operation.

He et al. (2017) have not applied clipping as I suggest here but en-
coded the constraints into the loss function from Eq. (2.9):

L(θ) = E(s,a,r,s
′
)∼U(D)

[(
Qtarget(s,a | θ

−)− Q̂(s,a | θ)
)2

+ λ(Lmax − Q̂(s,a))2
+

+ λ(Q̂(s,a)− Umin)2
+

]
where Lmax is the highest lower bound and Umin the lowest upper bound
from Eq. (8.1). Empirically, I did not find a significant difference between
the two variants and therefore used the clipping version which has less
hyperparameters. Since our lower bounds are correct in general however,
it also makes sense to enforce them strictly. The bounds by He et al.
(2017) in comparison are heuristic and therefore may be better applied as
soft constraints.

I refer to the suggested method of enforcing Q-values from G by clip-
ping the target values for TD learning as Q-Graph-bounded Q-learning.
When the Q-function is represented by a function approximator, e.g., a
neural network in DDPG, it is defined for a continuous state and action
space. While training however, the Q-targets are constrained by bounds
derived from the Q-Graph-based QG-values on a discrete domain.

108

If a state-action pair is not associated with a lower bound, i.e., loose
ends, it can still be used as usual in Eq. (2.6) without clipping of their target
value. If coincidentally no bounds are violated, the proposed method then
reduces to vanilla DDPG. A full training step is illustrated as pseudocode
in Algorithm 4. Note that the pseudocode also includes a priori bounds
which were only introduced as baselines in the experimental sections be-
low.

Algorithm 4 QG-bounded Deep Deterministic Policy Gradient (QG-
DDPG)
1: procedure TRAINSTEP(

discount factor γ,
actor network π, . mapping states to actions
critic network Q̂, . predicting Q-values for state-action pairs
Q-Graph G, . see Algorithm 4
a priori lower bound LBAP, . −∞ if unknown
a priori upper bound UBAP) . +∞ if unknown

. sample minibatch with N transitions from Q-Graph:
2: T i = (si,ai, s

′
i, ri, Q

G
i)
N
i=0 ∼ G

. Q
G
i is set to −∞ if unknown (e.g. loose end)

. compute classical target Q-values as in Eq. (8.6)

3: ∀i.Qtarget(si,ai) =

{
ri, if s′ is terminal
ri + γ · Q̂(s

′
, π(s

′
)), else

4: ∀i.LBi = max(QG i, LBAP
) . tightest lower bound

5: Q
G
target(si,ai) = min(UBAP

,max(LBi, Qtarget(si,ai))) . clipping (Eq. (8.6))

6: L
Q̂

= 1
N

∑N
i=0(Q

G
target(si,ai)− Q̂(si,ai))

2
. DDPG critic loss

7: Lπ = − 1
N

∑N
i=0 Q̂(si, π(si)) . DDPG actor loss

8: Optimize both networks using Lπ and L
Q̂

9: end procedure

109

8.3 Experimental Results

I have evaluated the proposed method in a series of experiments: first
on a classical example for divergence in Q-learning after Baird (1999) in
Subsection 8.3.1, then on a simulated continuous control task which has
been introduced in detail in Subsection 3.1.1.

8.3.1 Baird’s Star Example

The 7-state star problem (Figure 8.1) was proposed by Baird (1999) to
demonstrate convergence issues in value iteration with (linear) function
approximation and often serves as a baseline tasks for approaches against
divergence (e.g., Durugkar and Stone (2018)). The agent receives a re-
ward of zero for each action and thus the correct solution to the problem
is to set all weights to zero and obtain state-values of zero. If all weights
are initially positive and w0 larger than the others, this causes oscillatory
behavior of both state values and weights. I reproduced the exact set-
ting and result plots for Figure 4.2 in Baird (1999). Applying the proposed
graph view to the problem, I can derive a lower bound of zero for V 7

because it has a self-loop with reward 0; and thus this lower bound recur-
sively leads to a lower bound of 0 + γV 7 = 0 for all other states. These
graph-based bounds can be applied in TD learning in analogy to Eq. (8.6)
as V target(s) = max(LB, r + γV (s′)). As a result, the proposed method
converges to the correct state values rather than spiraling out to infinity
as Figure 8.1 illustrates. This is a notable effect because the lower bound
here not only stops divergence to minus infinity but an oscillatory behavior.

8.3.2 Simulated Clearance Fit Peg Insertion Task

To allow for extensive hyperparameter studies, I evaluated the proposed
method on a simulated continuous control task in terms of sample effi-
ciency and robustness to hyperparameters (subsubsection 8.3.2.2). In sub-
subsection 8.3.2.3, I verify that the outcome on the continuous control
problem is in line with the insights about soft divergence from example I
in Subsection 7.5.3. I further examined the impact of zero actions in sub-
subsection 8.3.2.4, different types of upper and lower bounds on Q-values
(subsubsection 8.3.2.5) as well as the method’s interaction with limited

110

V1 = w0 + 2w1

V3 = w0 + 2w3 V4 = w0 + 2w4

V6 = w0 + 2w6

V7 = 2w0 + w7

V2 = w0 + 2w2 V5 = w0 + 2w6

8 6 4 2 0 2 4 6
w0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w7

15 10 5 0 5 10
V1

15

10

5

0

5

10

V7

Figure 8.1: Graph-based bounds quickly lead to the correct solution (blue,
solid) on the 7-state star problem after Baird (1999), for which states and
weights spiral out to infinity under vanilla TD learning (orange, dotted).

replay memory capacity (subsubsection 8.3.2.6). Finally, I empirically as-
sess the impact of non-deterministic transition dynamics in subsubsec-
tion 8.3.2.7.

8.3.2.1 Network Details

For all upcoming experiments I used the following instance of a standard
DDPG architecture for learning: The critic network consists of three fully
connected layers with 200 nodes each. For the inner layers, ReLU ac-
tivations were used. The network was initialized with weights sampled
from N (µ = 0, σ = 0.001). The actor network also consists of three
fully connected layers with 200 nodes each, but used tanh activations and
was initialized from a He-uniform distribution (He et al., 2015). All neural
networks were implemented using Tensorflow (Abadi et al., 2015) and op-
timized using the Adam optimizer (Kingma and Ba, 2014), with 50 training
epochs after each episode (i.e., 200 agent steps) and up to 15 random
mini batches of data per epoch. No target network was used, since those
are known to prolong training and thereby postpone convergence issues
but not solve them (Van Hasselt et al., 2018).

111

I tested vanilla DDPG for 300 episodes on a grid of learning rates
for actor and critic in {10−2, 10−3, 10−4} and chose three sets of hyper-
parameters for the following experiments that are representative for the
spectrum of DDPG performance, see Figure 8.2. Each experiment was
repeated ten times with different random seeds. In our plots, all learn-
ing curves are summarized such that the solid line represents the mean
performance over all runs and the shaded area highlights the standard
deviation of the mean estimator, i.e., σ√

n
for n runs.

8.3.2.2 Sample Efficiency and Robustness to Hyperparameters

I hypothesized that Q-Graph-based lower bounds would correctly limit the
range of Q-values which prevents some cases of soft divergence and
thereby increases sample efficiency. I further hypothesized that explicit
bounds would barely have any impact in cases when vanilla Q-learning
works well, because my method as described in Eq. (8.6) reduces to stan-
dard TD learning when no bound is violated. In other words this implies
that Q-Graph-bounded Q-learning should never decrease performance.
For a first overview, I compared learning curves of Q-Graph-bounded Q-
learning (’Q-Graph (QG)’) to those of vanilla DDPG; see the lower plot
in Figure 8.2. As expected, Q-Graphs speed up learning for all examined
learning rates. The effect size varies and is larger for those learning rates
that lead to relatively poor performance in vanilla DDPG. This decreases
the gap in performance between different learning rates and can therefore
be interpreted as an indicator for increased robustness to hyperparame-
ters.

8.3.2.3 Variance of Predictions

To assess if this increase in performance is due to similar effects as in
the examples in Subsection 7.5.3, I evaluated the variance in predicted Q-
values at the end of each experiment under the learning rate with largest
effect size (10−4). I covered the state space with a regular grid of 27
states and evaluated the learned Q-value for each of these states with a
set of eleven given actions (’given’) as well as with the action that the actor
network suggests for each state (’pi’).

112

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd

C:10 2, A:10 2

C:10 2, A:10 3

C:10 2, A:10 4

C:10 3, A:10 2

C:10 3, A:10 3

C:10 3, A:10 4

C:10 4, A:10 2

C:10 4, A:10 3

C:10 4, A:10 4

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd

vanilla C:10 3, A:10 3

QG C:10 3, A:10 3

vanilla C:10 4, A:10 4

QG C:10 4, A:10 4

vanilla C:10 4, A:10 2

QG C:10 4, A:10 2

Figure 8.2: Performance of vanilla DDPG on the full grid of learning rates
(top). Three representative parameters were identified (solid lines) and
compared to the proposed method (’QG’, dotted lines) on the bottom of
the plot.

113

QG (given) QG (pi) vanilla (given) vanilla (pi)

0

5

10

15

20

25

30

35

Figure 8.3: Standard deviation of predicted Q-values.

For the boxplot in Figure 8.3, I collected the standard deviations over
the predicted Q-values for each state-action pair from 10 runs with differ-
ent random seeds. The orange line indicates the median value, the box
extends from the lower to the upper quartile value, the whiskers cover 1.5
times the inter quartile range and outliers are shown as circles. The results
shows very clearly that Q-Graph-runs resulted in significantly less vari-
ance for predicted Q-values, indicating that Q-Graph-bounded Q-learning
does indeed prevent cases of soft divergence as already suggested in
Subsection 7.5.3.

8.3.2.4 Zero Actions

A zero action does not change the agent’s state, in this case the offset
in position by zero meters. I compare DDPG on the replay memory as is
(’vanilla’) to DDPG on enhanced data that was created by adding zero ac-
tions after each transition (’vanilla-ZA’). This improves the structure of the
data graph by turning loose ends into disconnected transitions. The re-
sults as illustrated by the dotted lines in Figure 8.4 show that adding zero

114

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd
QG
QG-ZA
vanilla
vanilla-ZA

Figure 8.4: Performance of both vanilla DDPG and QG-DDPG with and
without zero actions (Zero Action (ZA)) which effectively eliminate loose
ends.

actions does lead to a slight improvement, even without any Q-Graph-
bounded learning—emphasizing the importance of the data graph struc-
ture for Q-learning in general.

I also compared the proposed method (’QG’) with and without zero
actions (solid lines) which barely shows any effect. The largest gap in Fig-
ure 8.4 is clearly between vanilla-ZA and either version of QG. This in-
dicates that while the data graph structure matters, the propagation of
information through the Q-Graph and the integration of lower bounds into
TD-learning are the main benefits of the proposed method.

8.3.2.5 Further Baselines

To prepare the evaluation of baselines, I first tuned hyperparameters for
one of the main baselines: the bounds from He et al. (2017). All exper-
iments were performed with the best set of learning rates I identified in
Figure 8.2, i.e., both learning rates were fixed to 10−4.

Using the same additional hyperparameters He et al. (2017) report
in the paper (λ = � = 4) did not perform well on my task and reward
function. Instead, much smaller values for λ turned out useful for per-

115

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd

HE-4 clip
HE-4 = 0.001
HE-4 = 0.005
HE-4 = 0.01
HE-4 = 0.05
HE-4 = 0.1
HE-4 = 0.5
HE-4 = 1.0
HE-8 clip
HE-8 = 0.001
HE-8 = 0.005
HE-8 = 0.01
HE-8 = 0.05
HE-8 = 0.1
HE-8 = 0.5
HE-8 = 1.0

Figure 8.5: Performance of the He et al. (2017) baseline on the full grid of
hyperparameters.

formance. Figure 8.5 shows the results of tuning the method with a grid
of hyperparameters where λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0} and
� ∈ {4, 8}.

Additionally, I experimented with clipping Q-targets as in Eq. (8.6)
rather than using λ and a regularization term. Since the data in my re-
play memory was stored as a graph already, I sampled � steps in the
future and past from this graph for each update step. It is theoretically
possible that experience from multiple trajectories has been mixed if they
shared a state.

I compared the proposed theoretically grounded Q-Graph-based lower
bounds to various baselines:

1. I included the best case performance for the approach by He et al.
(2017) (� = 8, λ = 0.01) from the previous tuning procedure.

2. For a given range of possible rewards [rmin, rmax], the range of pos-
sible Q-values can be determined using Eq. (7.3). Note that these
bounds are the same for each transition though, whereas Q-Graph-
based bounds are determined separately for each state-action pair.

116

For a priori bounds I used prior knowledge about the true rmin and
rmax for the problem at hand, which leads to correct lower and upper
bounds.

3. For empirical bounds, I determined rmin and rmax as the currently
lowest and highest reward from the replay memory and then used
Eq. (7.3) to derive lower and upper bounds. These bounds may not
be correct in general.

Both a priori and empirical bounds can be used with vanilla DDPG: in
this case, the target values are clipped by the given bounds. However, ad-
ditional bounds can also be combined with Q-Graph-bounded Q-learning:
then, the target values are clipped by the tightest available bounds, i.e., us-
ing the highest lower and the lowest upper bound. Adding further bounds
to the Q-Graph-based method mainly adds upper bounds to the learning
process, because the Q-Graph-derived lower bounds are available for all
transitions except loose ends already. Note that the empirical bounds may
be incorrect and could therefore clip the target value to wrong ranges.

I first compare unbounded DDPG (’vanilla’) to DDPG with a priori and
empirical bounds. As the dotted lines in Figure 8.6 show, there are only
marginal differences but incorrect empirical bounds perform worst. Using
bounds based on the current Q-estimates as in He et al. (2017) outper-
forms all tested variants of vanilla DDPG (red dashed line).

However, comparing the proposed Q-Graph-based bounds (solid lines)
shows that Q-Graph-bounded Q-learning outperforms both trivial bounds
only as well as He et al. (2017)’s bounds. Using incorrect empirical bounds
has a significant adverse effect on QG; adding a priori bounds to the pro-
posed method does not seem to have any significant effect. I hypothesize
that this may be because mainly upper bounds are added but the behavior
of a Q-learning system differs for under- and over-estimated states: while
under-estimated states may be rarely visited, over-estimated states are
likely to be visited using the currently estimated optimal policy. Therefore,
lower bounds correcting under-estimated states may be more important
than upper bounds which would correct over-estimated states. Overall, I
conclude that the tight transition-specific lower bounds from the Q-Graph
are key.

117

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd

QG
vanilla
QG + empirical bounds
QG + a priori bounds
vanilla + empirical bounds
vanilla + a priori bounds
He et al.

Figure 8.6: Baselines: Q-Graph-bounded Q-learning (’QG’, solid lines)
versus vanilla DDPG (Lillicrap et al. (2015), dotted), both combined with
empirical and a priori bounds; as well as the bounds from He et al. (2017)
(dashed) which are based on n-step returns and the currently predicted
Q-values.

118

8.3.2.6 Limited Graph Capacity

In deep RL, the replay memory is typically a FIFO-buffer (’first in, first
out’), i.e., those elements that were added first are overwritten first when
the buffer is full. For a data graph, it is possible to delete single transitions
but there are two possible effects: On the one hand, some information
from deleted transitions can be implicitly contained in its predecessors’
Q-values on the Q-Graph, which could imply that the proposed method
is more robust to small memory capacities. On the other hand, cuts from
deleted transitions can stop information propagation through the Q-Graph,
which could in turn slow down further progress.

I therefore empirically compared the drop in performance for vanilla
DDPG and Q-Graph-bounded Q-learning with graph capacities of 1000
and 5000 transitions. For comparison, the average unlimited graph con-
tained roughly 30,000 unique transitions at the end of the 300 episode
experiments. As Figure 8.7 illustrates, a Q-Graph-based method that is
limited to only 1000 samples still performs on par with unlimited vanilla
DDPG, while the vanilla DDPG performance decreases for a limit of 1000
transitions.

8.3.2.7 Non-Deterministic Transitions

As discussed in Section 8.2.3, the Q-Graph-derived lower bounds are
based on the assumption that all transitions are deterministic. In case
of non-deterministic transitions, correct lower bounds can be derived if for
any state and any series of actions A, the empirical return R that an agent
can observe when following A from s differs by at most δ. In practice
however, δ may not exist or be unknown. I therefore empirically com-
pare the results from subsubsection 8.3.2.2 with increasing amounts of
transition uncertainty. To obtain the results shown in Figure 8.7, each ac-
tion was sampled from a Gaussian around the actor output with different
σ: N (π(s), σ). The results show that the performance generally drops
with non-determinism for all methods, but the improvement of Q-Graph-
bounded Q-learning over vanilla DDPG remains significant.

119

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd

QG-unlimited
QG-5000
QG-1000
vanilla-unlimited
vanilla-5000
vanilla-1000

0 50 100 150 200 250 300
episodes

200

175

150

125

100

75

50

25

0

cu
m

ul
at

iv
e

re
wa

rd

QG-0.0
vanilla-0.0
QG-0.2
vanilla-0.2
QG-0.4
vanilla-0.4
QG-0.6
vanilla-0.6
QG-0.8
vanilla-0.8

Figure 8.7: Performance with limited graph capacity (top) and increasingly
non-deterministic transitions (bottom).

120

8.4 Discussion

The experiments in the previous chapter had shown that there is a link
between data graph structure and soft divergence in Q-learning based
deep RL methods. Loops without connections to a terminal state were
more likely lead to soft divergence than other types of transitions although
their Q-value can be computed analytically under the assumption that no
further transitions exist. In this chapter, I have extended this by the insight
that this analytically derived Q-value is a lower bound to the actual Q-value
in the continuous MDP due to the max operation in TD learning (Eq. (8.4)).

The proposed method constructs a simplified MDP from a subgraph
such that its exact Q-values can be computed by Q-iteration—resulting in
a Q-Graph. This subgraph does not contain loose ends, but I introduce
so-called zero actions which, if known, can be used to integrate loose
ends into the Q-Graph as well. Q-values on the discrete simplified MDP
associated with the Q-Graph represent lower bounds for the Q-values in
the original continuous MDP. Enforcing these bounds in TD-learning em-
pirically prevents cases of soft divergence on a continuous control task.
Empirically I have shown that Q-Graph-bounded Q-learning indeed leads
to less standard deviation in the distribution of predicted Q-values, which I
have used as a proxy to measure soft divergence in the previous chapter.

Preventing soft divergence as the proposed method does, also in-
creases sample efficiency on average and has its strongest impact un-
der unfavorable hyperparameters; in other words the proposed method
increases robustness to adverse hyperparameters. I have also demon-
strated that the Q-Graph can serve as an additional implicit memory hold-
ing information from transitions that have already been overwritten in the
replay memory and thus, the algorithm is able to cope better with re-
stricted memory capacity. In contrast to prior work which has only derived
either relatively loose bounds which are equal for each transition (Lee
and Kim, 2015) or bounds that are based on the currently predicted Q-
values (He et al., 2017), the bounds I have derived for Q-Graph-bounded
Q-learning are correct in general. Empirically, the method also works in
non-deterministic settings despite being derived under the assumption of
deterministic transitions.

121

Taking a graph perspective on the data leads to a non-parametric rep-
resentation which holds information about the graph structure. This rep-
resentation is complementary to the parametric approach that is taken in
function approximation, for instance in DDPG where each state is a multi-
dimensional vector. The work presented in this chapter can therefore be
seen as combining parametric information for function approximation with
non-parametric information from the graph structure.

Relating to Chapter 5 and Chapter 6, the work in this chapter can also
be seen as one more way to integrate prior (expert) knowledge into a
model-free learning framework. Prior knowledge about the reward func-
tion can be used to derive a priori bounds as in Lee and Kim (2015) and
prior knowledge about the action space can be used to define zero actions
which can help to improve the structure of the data graph to learn from. In
practice, these two ideas are very practical, because very often a MDP is
not given from the start but instead, it is often an engineer who—searching
for a good solution—describes the problem as a MDP and can therefore
also actively choose the action representation and reward function such
that they allow to apply a priori bounds and zero actions.

8.5 Limitations and Open Questions

I have shown that graph structures and the information contained in their
structure can have a substantial impact on learning stability. Although the
experiments in this chapter were conducted on a more realistic simulated
control task than the small toy example from the last chapter, it remains
open whether these effects could also be found on a real robotics system.
In the upcoming chapter, I will thus present evidence from such a real-
world systems study.

Moving on to real robotics systems, one of the main theoretical step-
ping stones is uncertainty. Most derivations in this chapter were based
on the assumption of (near-)determinism and to this point it is unclear in
how far the experiments on Gaussian non-determinism would transfer to
robotics applications.

On a theoretical level, it remains unclear whether there are milder as-
sumptions than the ones I have presented but that would allow to derive
bounds for the expected Q-value also in non-deterministic settings. All
the transition-specific bounds from a Q-Graph are lower bounds. It re-

122

mains open whether correct upper bounds can be derived, or alternatively
which further useful heuristics can be defined. On the other hand, it is
also unclear in which cases function approximation for Q-learning based
model-free deep RL tends to overestimation, to underestimation or to a
spiralling behavior as in Baird’s star example (Baird, 1995). If there is
a way to characterize these issues in function approximation, potentially
one could also derive further guidelines on how to design a MDP such that
learning is facilitated as far as possible.

Propagating information through a non-parametric graph structure is
clearly related to trajectory-centric approaches such as eligibility traces
(Precup et al., 2000). The bounds suggested by He et al. (2017) make use
of these trajectories by explicitly incorporating n-step returns. One open
question is therefore also whether it can be disentangled, to which degree
the speed-up in learning for Q-Graph-bounded Q-learning is based on the
fact that information is propagated along the full episode trajectory and
how large the impact of bounds which prevent divergence is on sample
efficiency.

123

124

Chapter 9

System Study:
Q-Graph-bounded DDPG
for Industrial Assembly

In the previous two chapters I have shown that the structure of the graph
representing the data that an agent is supposed to learn from has a di-
rect impact on learning stability—at least for Q-learning based deep RL
methods, for deterministic environments and a small number of relatively
simple example problems. In this chapter, I will therefore present re-
sults from extensive empirical evaluations of QG-bounded Deep Deter-
ministic Policy Gradient (QG-DDPG) for a contact-rich task from indus-
trial assembly for real robots and under substantial uncertainties (see
https://youtu.be/Z_GcNbCWE-E).

9.1 Introduction & Motivation

This chapter aims to empirically address questions that were left open
in the previous two chapters and additionally evaluate the practical use-
fulness of the proposed approach for industrial automation tasks. The
following paragraphs will revisit these points in more detail.

125

https://youtu.be/Z_GcNbCWE-E

In Chapter 7, I have demonstrated that there is a link between the
structure of the data graph and the extent of soft divergence as measured
by the standard deviation of predicted Q-values on small toy examples.
In this chapter, I will corroborate that soft divergence is a problem not
only on contrived examples but also for real-world challenges in RL. For
improvements in sample efficiency with QG-DDPG, I will provide insights
indicating that the observed improvements correlate strongly with the de-
gree of soft divergence and therefore suggest a causal link between soft
divergence and graph structures—even for complex real-world scenarios.

QG-DDPG was built on the assumption that transitions and rewards
are deterministic. While I have shown that artificially introduced Gaussian
noise on transitions probability only has mild effects on the algorithm’s
performance, it remained unclear whether this robustness against non-
determinism would transfer to real-world settings. The task I will examine
in this chapter involves a lot of friction and contact between different ob-
jects which the robot can only perceive through a force-torque sensor at
the wrist. Additionally, the shaft to insert into the hole is freely grasped
and thus can slip between the grippers. Both slippage and force-sensing
introduce a great amount of uncertainty and non-determinism into this set-
ting, but as I will show, Q-Graph-based lower bounds still improve learning
stability for DDPG.

There is a strong interest from industry to economically automate con-
tact-rich assembly tasks such as shaft insertion or cable plugging for small
and medium lot sizes. Classical solutions based on compliant control
require prohibitive effort in designing appropriate manipulation strategies
and tuning, even though the latter might be attenuated with black-box opti-
mization strategies (Johannsmeier et al., 2019). To assess the applicabil-
ity of the proposed method in industrial automation, I applied the method
on the task that was introduced in Figure 3.5. The following evaluation
criteria were considered:

• Sample Efficiency:
it is generally desirable to have a task formulation that allows the
robot to quickly learn its task. I will evaluate the impact of Q-Graph-
based lower bounds not only on learning stability but also on speed.

126

Additionally, I chose a residual policy formulation for this task that
can be seen as incorporating prior knowledge about the task and is
known to improve sample efficiency in learning (Silver et al., 2018;
Johannink et al., 2019).

Another way to improve sample efficiency that I exploit is to de-
sign the action space such that model-based controllers can be
used (Martín-Martín et al., 2019). This idea can be seen as an anal-
ogy to Chapter 6 where I used model information during exploration.

• Simplicity:
Ideally, it is easy to set up a learning task even for engineers with rel-
atively weak background in machine learning. Therefore the resid-
ual policy is not built around a complex manually designed insertion
strategy. Instead only a coarse approximation to the desired move-
ment is used: a constant force pushing in z direction of the EEF (see
Figure 9.1).

Another aspect of simplicity is the amount of expertise that is re-
quired to tune an algorithm. To lower the burden to get to good
solutions, learning systems should therefore be as robust as possi-
ble against changes in hyperparameters and the reward function. I
have therefore evaluated not only results for a variety of hyperpa-
rameters but also investigated the simple to set up sparse reward
function as an alternative to the relatively intricate distance-based
reward with position and rotation components that I used before.

• Computing Requirements:
While all experiments in this chapter were conducted with a desk-
top machine next to the robot, one may want to consider robots with
embedded computing resources in the future. As these resources
will be scarcer than those on a separate machine, I have also as-
sessed whether the results from Chapter 8 transfer to the real world
and could show that QG-DDPG copes better with limited memory
than vanilla DDPG.

• Generalization:
For most insertion tasks, it is possible to engineer a solution which
solves the task in a single specific setting, e.g., for one given peg
and hole pose. However, it is typically much more difficult to de-
sign a general solution which can also be applied to further settings,

127

Figure 9.1: Close-up view on an e-Bike drive unit. The task was to insert
the shaft into a tight ball bearing inside the drive unit’s housing, which
is turned upside down for images and the video to capture the relevant
areas from a more natural angle. The colored arrows illustrate the EEF’s
coordinate system.

e.g., a slightly rotated hole. In production automation such tasks
are particularly important though because the robot typically does
not perform its task in isolation. It is more likely embedded into a
production line and thus has to deal with all uncertainties that pre-
ceding production steps have introduced. For insertion tasks this
often means for example that the target object may be placed in
slightly different orientations. I therefore added an additional exper-
iment showing that the solution I propose in this chapter transfers
to different orientations of the target object. This is again possible
because of the way I defined the MDP for the learning task: the
states do not include any pose information. Instead the robot op-
erates on force input only which naturally transfers much better to
unseen target poses.

128

9.2 Industrial Shaft Fitting Task

In this work, I consider a realistic industrial manufacturing step taken
from a Bosch eBike motor plant. The task is to achieve a tight fit be-
tween a shaft and a ball bearing in a motor housing. The insertion task
considered in this work requires both high accuracy and significant force
when solved using classical machinery: High accuracy is required to pre-
cisely align the bearing and the shaft. High force is required to over-
come significant resistance of the fitting process originating from the me-
chanical specification and static friction effects. The accompanying video
(https://youtu.be/Z_GcNbCWE-E) and Subsection A.3.1 show the in-
sertion as performed by a human, which requires force greater than 10 N
and a determined push to reach the final configuration. Note that the mo-
tor housing is turned upside down for the videos to obtain a better field
of view around the ball bearing. In manufacturing lines, the fitting pro-
cess is realized using a hydraulic press operated by a human, combined
with high-accuracy alignment equipment designed to ensure perfect cen-
tering of the shaft. In the plant process, between 10 and 15 seconds of
time are available for the fitting. The assembly of such a tight fit appears
to be a particularly interesting benchmarking problem for robot learning
approaches: While it is simple enough to be reproducible at any time, it
comes with interesting challenges due to the stochasticity of the reaction
forces.

My objective is not to investigate the entire process including grasping
the shaft and positioning it in the vicinity of the ball-bearing—these steps
are beyond the scope of the paper. Instead, I focus on performing the
insertion step: it starts in loose, randomly oriented contact with the ball
bearing, requires significant interaction force and ends with the shaft being
completely inserted with some predefined accuracy.

This task can be considered a variant of classical peg-in-hole inser-
tion, which belongs to the most extensively studied assembly problems in
robotics. A complete review of peg-in-hole insertion methods is beyond
the scope of this thesis, so I provide a coarse overview in the following
section.

129

https://youtu.be/Z_GcNbCWE-E

9.3 Related Work

The industrial shaft fitting task for evaluation in this chapter comes with sig-
nificant friction forces. Finding a model accurate enough for such contact-
rich manipulation tasks however is challenging, even for data-driven ap-
proaches (Fazeli et al., 2017). Residual networks, in which only an offset
to an analytical model is learned, have been shown to be a particularly
efficient solution (Kloss et al., 2017). Residual policies transfer this idea
to RL (Silver et al., 2018; Johannink et al., 2019), and will also be applied
in this work.

Especially in the context of industrial robotics, much effort is spent on
providing hardware solutions for reliably executing insertion tasks. Suc-
cessful examples are the active and controllable remote center compli-
ance element from Rueb and Becker (2016) or the vibration device pre-
sented in Kilikevičius and Bakšys (2011). Torque-controlled robots as well
as manipulators equipped with force/torque sensors can be used to imple-
ment force-controlled approaches to peg insertion. Often, an analytic point
of view is adopted, trying to model and understand the contact physics and
then deriving control strategies (Bruyninckx et al., 1995; Li, 1997). A cru-
cial element of these methods is the accurate estimation of contact states,
which is challenging but pivotal to the success of the insertion (Fei and
Zhao, 2003). Once a contact has been established, compliant controllers
are used to perform the insertion itself (Lefebvre et al., 2005). Most classi-
cal methods require the specification of a sequence of contact states and
careful controller design. There have been efforts to lessen the manual
engineering work using black-box optimization for controller tuning (Jo-
hannsmeier et al., 2019). Nevertheless, they are typically not robust to
variations of model parameters like (static) friction or force limits. Also,
they still require intricate manual strategy design and significant tuning
effort to work for specific instances of the problem.

Only few model-free RL approaches have addressed industrially rele-
vant tasks and often make additional assumptions such as the availability
of CAD models (Schoettler et al., 2019; Thomas et al., 2018; Wirnshofer
et al., 2018). In Inoue et al. (2017), a peg insertion task is learned from
discrete actions in a Q-learning formulation using LSTMs. My approach
uses a continuous action space and therefore also deals with a more intri-
cate optimization process in DDPG.

130

9.4 Residual Formulation

One of the major drivers for sample complexity in many RL problems is ex-
ploration (Plappert et al., 2017). In general, adding prior (possibly domain-
specific) knowledge, can speed up this phase as I discussed in Chapter 6.
If the character of the task is known, e.g., in my case a shaft insertion
with a dominant direction of force, this knowledge can be efficiently in-
corporated into the problem through residual policies (Silver et al., 2018;
Johannink et al., 2019): the agent then does not learn the full behavior
from scratch but an addition to a fixed policy. In this spirit, I model the
insertion task as an MDP with the following definitions.

9.4.1 States

A state is defined as (̂¤x, ¤̂y, τ̂x, τ̂y), which are the estimated contact forces
and torques in x and y direction in the EEF frame, c.f. Figure 9.1. Torques
along the z axis correspond to a rotation around the shaft’s symmetry axis
and are omitted.

9.4.2 Actions

The actions are formulated as task-space wrenches and consist of a con-
stant and a residual policy component from the MDP:

• the constant part of the policy exerts a force ¤z = −15 N in z-
direction of the EEF frame, c.f. Figure 9.1.

• the residual actions as defined in the MDP consist of torques [τx, τy]
along the x and y axes of the EEF frame and are computed directly
as the output of the actor network scaled to the interval [−3, 3] Nm.

Combined, a feedforward wrench ζ = [0 0 ¤z τx τy 0] is obtained and
set as reference to a hybrid task-space force/impedance controller (Ander-
son and Spong, 1988) together with the current EEF pose. The controller
position gains are constantly set to 250 N/m in x and y direction and 0 N/m
in z direction. The orientation gain is set to be 4.0 Nm/rad in all directions.

131

When executing the policy, an action is considered completed once
the robot’s EEF reaches a steady state with velocities below a predefined
threshold. In essence, this leads to the robot applying constant force in
z-direction of the shaft, while the residual policy allows to apply torque to
the shaft and rotate the EEF in space.

Lastly, the controller allows to impose a limit onto the orientation of the
tool. In this work, I limit the maximum tool tilt to be equal to π

4 w.r.t. the
horizontal ground plane, which essentially allows the learning algorithm to
safely explore all EEF orientations within a cone of π2 opening angle w.r.t.
the table.

9.4.3 Reward

I investigate two different reward functions:

• Sparse reward:
in this setting, a reward of r = −1 is given for each transition and
r = 0 if the terminal state is reached.

• Dense reward:
the reward is considered proportional to the distance error between
the current EEF pose and a target EEF pose (corresponding to a
fully inserted peg). The distance error in position ∆P is computed as
the `2 norm of the Euclidean position difference vector. The distance
error in orientation ∆R is computed as the `2 norm of the angle-axis
error in x and y rotation, since the insertion task is invariant to z
orientation. The combined reward is then computed as

r = rP + rR =
1

2

(
exp

(
−∆R

σR

)
+ exp

(
−∆P

σP

))
− 1

with manually tuned scaling factors σP = 0.015 and σR = 0.7. This
formulation guarantees that r is always in [−1, 0] for the given task.

9.4.4 QG-DDPG

Employing the residual policy, the agent reaches the goal in many episodes—
so instead of loose ends or disconnected transitions, the predominant type
of transitions in my problem are indirectly connected ones. In Chapter 7

132

I had shown that the degree of soft divergence that is introduced into
DDPG by indirectly connected transitions largely depends on the length
of the path between a state and the nearest terminal state. In my set-
ting, the path length between initial- and target state can easily reach high
numbers, up to 1,000. I therefore take the results from Chapter 7 as a
motivation to apply QG-DDPG from Chapter 8 to my industrial task. More
precisely, I apply the following items in the QG-DDPG conditions:

1. Q-Graph-based lower bounds, enforced in TD targets

2. a priori lower and upper bounds based on the minimum and maxi-
mum reward: rmin=−1

1−γ ≤ Q ≤ rmax=0
1−γ = 0,

3. zero actions which here correspond to zero residual torques. The
constant force in z direction remains but since an action is executed
until a steady state is reached, it will not have an effect without
changes in the torque.

9.5 Experimental Setup

All experiments in Section 9.6 followed the same setup: The training
phase consisted of 40 episodes. To start an episode, the EEF was man-
ually set to one out of eight initial poses with different inclinations (see
Figure 9.2). Note that these manual resets introduce additional noise on
the initial poses and only the rough orientation of the shaft was fixed. The
initial poses were alternated in a fixed order such that metrics like the aver-
age number of steps it takes the robot to reach the goal, can be averaged
with a kernel width of eight to average out the impact of different initial
poses. Each episode was stopped when either the target state or a max-
imum of 1000 steps was reached. I implemented a pose-based heuristic
to verify whether the target state is reached, but always confirmed this
by detailed inspection and manual feedback because of possible slippage
between shaft and gripper fingers. The network was trained after every
cycle consisting of 20 steps; the number of training iterations after each
cycle is one of the hyperparameters investigated in Subsection 9.6.2.

The test phase consisted of eight more episodes also covering all initial
positions. A test episode was stopped after 200 steps if the target is not
reached, the remaining setup remained unchanged to the training phase.

133

Figure 9.2: Top: Eight different orientations for initial poses that the robot
is manually reset to in the beginning of each episode. Bottom: Target pose
for comparison

134

9.5.1 Network Details

All networks were implemented in Tensorflow (Abadi et al., 2015). Both the
actor and critic network consist of three fully connected layers, where the
two hidden layers contain 100 nodes. The actor network has tanh activa-
tions on all layers and a two-dimensional output; all weights were initialized
from a Glorot uniform distribution (Glorot and Bengio, 2010). The critic
network has ReLU activations on the first two layers and no non-linearity
on the one-dimensional output; the weights are initialized from a He uni-
form distribution (He et al., 2015). The forces and torques which served as
state descriptors to the critic network were linearly scaled such that all val-
ues were in [−1,+1]. For optimization, the Adam optimizer (Kingma and
Ba, 2014) was used—different learning rates and the number of training
iterations per cycle were tuned on a grid of hyperparameters as described
in Subsection 9.6.2. Following the argumentation in Van Hasselt et al.
(2018), no target networks were used since they are known to delay but
not prevent divergence.

9.5.2 Robot Control

All experiments were performed on a Franka Emika Panda CoBot, where
I controlled the joint torques at 1 kHz using a custom control toolchain as
introduced in Subsection 3.2.2. The gripper was controlled to grasp the
shaft with a constant gripping force. In order to ensure a safe grasp, I used
custom-printed finger tips shaped such that a variety of cylindrical objects
can be centered and grasped robustly (see Figure 9.1).

9.6 Experimental Results

To validate the claims from Chapter 8 on the industrial force-fitting task, I
evaluated the following aspects of the learning system: random baselines,
robustness to hyperparameters, reproducibility of results, sparse rewards,
limited replay memory capacity and generalization capability. Additionally,
I evaluated the variance in predicted Q-values to close the loop to theoret-
ical claims about soft divergence from Chapter 7.

135

normal-0.2 normal-0.5 normal-0.8 ou-0.2 ou-0.5 ou-0.8 uniform
0

200

400

600

800

1000
nu

m
be

r o
f s

te
ps

 p
er

 in
se

rti
on

Figure 9.3: Random baseline performance: distribution of the number of
steps per episode for different random actions. Each episode was stopped
after 1000 steps if not successful and the experiment consisted of up to
3000 steps.

Due to the stochasticity of the experiments, I ran each experiment
three times with different random seeds. All plots illustrating these results
show the mean as a solid line surrounded by a shaded area representing
the standard deviation of the mean estimator, i.e., σ√

n=3
. One experiment

took between 30 and 180 minutes, in total the results in the following sec-
tions sum up to approximately 60 hours of real world interaction.

9.6.1 Task Difficulty and Baselines

Significant force and precision is needed to fit the shaft into the ball bear-
ing (see video attachment). However, the constant part of my residual
policy already serves as a strong prior for this type of task. I therefore first
evaluated a number of random baselines: instead of the actor net out-
put, the residual policy consists of randomly sampled actions in the same
output range. I compare uniform sampling and two of the standard noise
processes for exploration in RL (Plappert et al., 2017), namely Gaussian
noise (’normal’) and Ornstein-Uhlenbeck (’ou’), both with different σ. For
Ornstein-Uhlenbeck noise, I fixed θ = 1 and dt = 0.01.

As Figure 9.3 shows, the uniformly sampled random actions show the
best performance and solve the task in 32 steps on average. On first
glance it may seem surprising that uniform sampling performs best but in

136

this case it is due to the residual formulation: uniform sampling leads to
a wiggling kind of behavior with particularly large amplitudes which is the
most successful trivial behavior for an insertion.

9.6.2 Sample Efficiency and Robustness to Hyperparam-
eters

To obtain a broad overview of learning performance, I tuned those hyper-
parameters that are most related to sample efficiency on a grid: learning
rates for actor and critic networks, as well as the number of training itera-
tions per cycle.

I tested learning rates in [10−5, 10−4, 10−3, 10−2] for the critic and
used one tenth of this learning rate for the actor. In prestudies a smaller
learning rate for the actor seemed advantageous and confirms results
from Chapter 8. Either 10 or 50 training iterations per cycle were used.

Each of these eight combinations of hyperparameters was tested with
three random seeds and both algorithms, leading to robot interactions of
approximately 48 hours for this particular experiment. Figure 9.4 shows
the mean number of steps needed to successfully complete the task at test
time for each combination of hyperparameters. Bearing in mind that the
best baseline from Subsection 9.6.1 solved the task within 32 episodes,
one can see that vanilla DDPG outperforms uniformly sampled action un-
der only one particular set of hyperparameters. QG-DDPG, however, per-
forms better than the best random baseline in six out of eight cases.

For closer inspection, Figure 9.5 depicts learning curves for the most
favorable and unfavorable hyperparameters for both algorithms and plots
the development of train and test performance. The shaded area repre-
sents the standard deviation of the mean estimator for performance during
training episodes, the intervals on the right show the same confidence in-
terval for test time results.

For the best case hyperparameters, both algorithms’ test time perfor-
mances are quite close, which is in line with the findings in Chapter 8. In-
terestingly, the variance during training is lower for QG-DDPG, potentially
indicating higher reliability and reproducibility. For the worst case hyper-
parameters, one can observe that DDPG does not solve the task even
once (at 200, the episodes were stopped if not successful). QG-DDPG
also decreases in performance but still solves the task.

137

It: 10 It: 50

Q: 1e-05
A: 1e-06

Q: 1e-04
A: 1e-05

Q: 1e-03
A: 1e-04

Q: 1e-02
A: 1e-03

40.5 200.0

74.5 136.5

10.1* 161.3

43.0 147.8

DDPG

It: 10 It: 50

64.7 12.8*

44.0 16.0*

17.6* 24.9*

9.5* 26.9*

QG

Figure 9.4: Performance comparison on full grid of hyperparameters,
measured as steps needed to solve the task. Lower (darker) is better,
entries beating all random baselines are highlighted by *. While classical
DDPG outperforms the random baseline in just one out of eight cases,
QG-DDPG achieves this in six cases.

The dotted green line illustrates anecdotal results from a single run
of QG-DDPG in an extended setting where not only the initial shaft ori-
entation was changed, but also the ball bearing orientation changed af-
ter four episodes during training and every second episode at test time.
This evaluation is shown in the video attachment (https://youtu.be/Z_
GcNbCWE-E). Key frames are also shown in Subsection A.3.2.

9.6.3 Relation to Soft Divergence

Since QG-DDPG resulted from observations about soft divergence that I
empirically measured using the variance in predicted Q values, I also eval-
uated whether the differences in performance from the previous section
correlate with variance in predicted Q-values. Figure 9.6 plots the pre-
dicted mean Q-value for each batch in training over time. Only for DDPG
and unfavorable hyperparameters the Q-values diverge over time, while
even bad trials of QG-DDPG do not lead to divergence.

138

https://youtu.be/Z_GcNbCWE-E
https://youtu.be/Z_GcNbCWE-E

4 12 20 28 36 test
training episodes

0

25

50

75

100

125

150

175

200

nu
m

be
r o

f s
te

ps

random baseline
QG-best
DDPG-best
QG-worst
DDPG-worst
QG-general.

Figure 9.5: Best and worst case performance for vanilla DDPG and QG-
DDPG (QG). The x-axis shows the number of episodes and at each tick,
the performance of eight episodes has been averaged. The y-axis extends
to 200, which is the worst possible test time performance in my setting.
The green dotted line illustrates QG’s performance on a more general
and time-consuming task, where the orientation of the motor housing is
changed for every fourth training episode and every second test episode.

9.6.4 Robustness to Sparse Rewards and Limited Mem-
ory

To successfully apply RL in practice, robustness is not only desirable w.r.t.
hyperparameters but also regarding other design choices. Exemplarily, I
here assess a drastic change in the reward function to sparse rewards,
and a replay memory buffer that is limited to only 300 transitions.

Sparse rewards are a natural formulation for my setting because they
reflect more precisely my evaluation criterion (the number of steps) and at
the same time circumvent all issues related to reward shaping because the
EEF pose of the robot only partially reflects the shaft pose. Limited mem-
ory availability is particularly interesting in industrial robotics as it creates
a setting that is closer to the requirements of embedded AI.

139

Figure 9.6: Evolution of mean Q-values over training episodes for the
same hyperparameters as in Figure 9.5. Only DDPG diverges under bad
hyperparameters while QG-DDPG is robust against those. The line rep-
resents the mean over all trials, the shaded area spans the full range
between minimum and maximum.

Figure 9.7 summarizes the results for both sparse rewards and limited
memory capacity under their respective best hyperparameter configura-
tions. I can observe that QG-DDPG still performs better than random on
average for both settings while DDPG does not. Additionally, QG-DDPG
keeps the relatively low variance in performance, while the variance for
DDPG increases significantly compared to its peak performance as in Fig-
ure 9.5.

9.7 Discussion

Targeting an industrial force fitting task, I have chosen an efficient formu-
lation of a RL problem using residual policies. Applying classical DDPG in
this setting however often leads to soft divergence. Partially, this can be
explained with the particular structure of the data graph for residual pol-
icy formulations as discussed in Chapter 7. With more than 60 hours of
real-world interaction, I have provided empirical evidence that QG-DDPG

140

4 12 20 28 36 test
training episodes

0

25

50

75

100

125

150

175

200

nu
m

be
r o

f s
te

ps

random baseline
QG sparse
DDPG sparse
QG limited
DDPG limited

Figure 9.7: Robustness to changes in the learning setting: sparse rewards
(blue) and limited memory capacity (orange) for vanilla DDPG (dashed)
and QG-DDPG (’QG’, solid lines). Both axes are scaled as in Figure 9.5
for comparison.

can indeed prevent this type of soft divergence: In trials in which DDPG
happened to perform well, the predicted Q-values did not diverge. When
DDPG performed worse, Q-values were consistently far beyond the range
of true Q-values. In none of all trials with QG-DDPG however, such di-
verging behavior for Q-values has been observed. This indicates that not
only the proposed method from QG-DDPG is effective in increasing sta-
bility of the learning process but also that the underlying reasoning and
assumptions about causality transfer from toy examples as in Chapter 7
to real industrial tasks with substantial uncertainty.

Due to the reduced amount of soft divergence, the sample efficiency
for QG-DDPG increases. On top, the proposed algorithm exhibits a se-
ries of further advantages: A grid search over hyperparameters has re-
vealed that QG-DDPG reaches good performance six times more often
than vanilla DDPG. Results for one given set of hyperparameters differ
less for QG-DDPG, indicating improved reproducibility. QG-DDPG is also
able to deal more gracefully with further changes in the learning setup,
such as sparse rewards and limited replay memory. I showcase the gen-

141

eralization capabilities of my approach to varying ball bearing orientations,
for which the algorithm autonomously discovers an appropriate insertion
strategy.

9.8 Limitations and Open Questions

Although the results from Chapter 7 are interesting and have been con-
firmed for real-world applications in this chapter, our understanding of
(soft) divergence in model-free off-policy deep RL remains limited. For
instance, it remains unclear how other aspects of the learning formula-
tion interact with divergence tendencies, for example hyperparameters,
the choice of reward functions, action representation or state modalities in
the specific MDP. The choice of state space is also linked to the question
of whether QG-DDPG can benefit from state aggregation; and whether
this could extend the approach to hierarchical learning.

The lack of theoretically grounded insights and instructions leads to
increased tuning efforts for practitioners. To make sample efficient RL
more easily accessible for industrial applications, several ideas from the
previous chapters could be combined and evaluated in future work: First,
better insertion strategies for the constant part of the residual policy for-
mulation could be considered. For example, it may be possible to employ
kinesthetic teaching or an intuitive user interfaces in which even untrained
experts in production can sketch rudimentary strategies to replace the
hard-coded push in z direction I have used in this chapter.

Second, an ideal autonomous robot that learns through RL can quickly
be assigned new tasks and will help to increase flexibility in production.
For this purpose however, it may need to learn how to solve tasks without
custom hardware—in this case, without the 3D printed grippers. It would
therefore be interesting and relevant to explore the limits of uncertainty
from imprecise grasps or slippage that the system can learn to deal with.

Third, the shaft insertion for real-world industrial assembly processes
may have to be integrated with other steps such as grasping the shaft or
positioning the motor housing. On the one hand, such previous steps may
increase the uncertainty due to imprecision which sums up over multiple
steps. On the other hand, process information from previous manipulation
steps could already provide valuable information. Combining information
across tasks in an assembly process may be an additional way of improv-

142

ing sample efficiency once the individual subtasks have reached a good
efficiency. Ultimately, such information from previously investigated tasks
would be a very interesting type of information to integrate in model-free
learning approaches.

143

144

Chapter 10

Conclusion

The overarching question for this doctoral thesis was how to improve sam-
ple-efficiency for model-free off-policy deep Reinforcement Learning (RL).
This topic was driven by the emerging evidence that on the one hand,
model-free RL promises to alleviate difficulties in obtaining accurate mod-
els for complex tasks such as contact-rich robotic manipulation; but on the
other hand model-free RL is also known to be prohibitively data hungry.
Improving sample-efficiency for model-free learning approaches therefore
is one route towards unleashing the full potential of model-free learning
also for domains with costly data such as real-world robotic manipulation.
However, improving sample-efficiency typically comes at a cost—for ex-
ample, it can be traded off against generalization capabilities.

In this thesis, I have proposed and used several types of information
that can be infused into model-free learning approaches in various ways
to achieve higher sample efficiency for use cases that were taken from
or inspired by assembly processes in production automation. Table 10.1
lists these approaches from the previous chapters again and classifies the
source of information as well as the method to infuse the information into
the learning process. Note that there is no one-to-one mapping between
information source and infusion approach, i.e., one source of information
may be used in different places and vice versa.

The first source of information that model-free approaches can benefit
from is the maybe most obvious one: environment dynamics or robot dy-
namics as used or approximated in model-based learning. In Chapter 6,

145

source of information infusion approach

coarse environment dynamics
exploration,
e.g. via trajectory optimization
(Chapter 6)

off-policy
exploration

action space using model-
based control
(Chapter 6, Chapter 9)

ro
bo

t

robot dynamics model design action space to contain
zero actions and complete the
Q-Graph
(Chapter 9)

observability
choose modality for observa-
tion space
(Chapter 5)

coarse solution strategy
residual formulation,
e.g. movement in z direction
(Chapter 5, Chapter 9)

success criteria
design reward function with a
priori Q-learning bounds
(Chapter 8)

M
D

P
design

ta
sk

additional information at train
time, e.g. target pose

custom data collection
(Chapter 5)

discontinuities
choose appropriate function
approximator
(Section 4.1)

relevance of information
network design,
e.g. advantage stream
(Section 4.2)

av
ai

la
bl

e
da

ta

graph structure
Q-Graph-based lower bounds
(Chapter 8)

function
approxim

ation

Table 10.1: Summary of pieces of information that I infused into model-
free deep RL approaches to improve sample efficiency.

146

I have shown how a coarse steering function can be used to create more
informed exploration data even in environments with unknown dynamics
to speed up off-policy model-free RL. A precise model of the robot’s dy-
namics can in addition be used when the MDP is designed, namely by
defining actions not in joint space but in task space—exploiting model-
based controllers for execution as in Chapter 6 and Chapter 9. Moreover,
the action space can be designed such that the data the agent will collect
has a favorable structure for learning. In Chapter 7 I have demonstrated
how data can be represented by a graph whose structure can be linked
to divergence in deep Q-learning-based RL approaches. For example,
an action space that includes zero actions leads to more favorable graph
structures for learning; and enables QG-DDPG to work with complete Q-
Graphs—an approach I developed in Chapter 8 to prevent convergence
issues in DDPG and thereby stabilize the learning process.

A second source of information is prior knowledge about the task at
hand. For example, the observation space in an MDP can be designed
such that the task becomes observable as in Chapter 5. Even for cases for
which such information is not easily accessible, a coarse solution strategy
may be intuitively available for humans: for instance, all successful peg
insertion strategies involve a movement downwards in z direction. Such
intuition can be captured by residual policy formulations as in Chapter 5
and Chapter 9, where the RL agent does not need to learn everything
from scratch but only residuals which are added to a given base policy.
Moreover, a human expert typically gets to design a reward function which
is supposed to capture sensible criteria for successful task completion.
This reward function can typically be chosen quite freely and therefore
also such that it is bounded, e.g., if all rewards are negative then both
empirical returns and the optimal Q-values are upper bounded by zero.
Such a priori bounds for Q-values can be enforced in TD learning and also
help to stabilize learning as shown in Chapter 7. If even more information
is available at train time, e.g., the target pose, this can be used to design
a custom data collection process as in Chapter 5.

The third and last source of information I identified is the data an agent
collects during the learning process. Some information may be known in
advance, e.g., from an expert view on the task. As I discussed in Sec-
tion 4.1, contact-rich tasks are known to introduce discontinuities that dif-
ferent function approximators deal with more or less easily. The most intri-
cate task is to tailor the function approximation directly to the task at hand.

147

I have demonstrated this in Chapter 6 by designing a network structure
that structurally encodes the split of state-action values into state-value
and advantage without losing their semantic meaning. This network archi-
tecture enabled me to build a custom exploration scheme which only re-
lies on uncertainty from one of the two branches. Also the Q-Graph-based
bounds that I introduced in Chapter 8 are an instance of such adaptations
of the function approximation scheme.

All these instances constitute steps towards more efficient learning
that utilizes flexible model-free RL methods, while sample efficiency is
improved through targeted injection of single pieces of information that
are available for certain tasks. The main novelty and contributions to the
research community are the usage of a coarse steering function for tra-
jectory optimization during exploration (Chapter 6), and all ideas related
to the structure of a data graph and its application through Q-Graphs and
zero actions (Chapter 7, Chapter 8). These approaches have been illus-
trated with toy examples, their effects were analyzed in detail on simulated
control tasks first but the applicability of the proposed methods has finally
been demonstrated on a real industrial assembly task with substantial un-
certainties in Chapter 9.

Beyond the open questions that I discussed in the final sections of
each of the previous chapters, some more high-level overarching ques-
tions arise or remain from the findings in this thesis.

First, instead of taking model-free approaches and infusing additional
knowledge, one could also take the opposite approach and remove sin-
gle pieces of information from model-based approaches. It would be an
interesting task for future work to compare how far both paths lead and
whether they converge to similar points on a spectrum between model-
free and model-based methods.

Second, the list of information sources and infusion approaches in Ta-
ble 10.1 is not exhaustive. Additional sources of information could be
physical laws or affordances from sequencing, e.g., when multiple manip-
ulation steps are supposed to be chained. Many items listed in the table
could be extended and examined in more detail in the future. For exam-
ple base policies for residual formulations can come from various sources
and therefore differ greatly in maturity and optimality. Interesting directions
for future research thus include simple user interfaces to define policies
(whether this is by scribbling on a touch screen, using teleoperation or

148

physical teaching) as well as algorithms to derive policies from such input,
as well as efficient methods to tune those policies by interacting with the
environment as in RL.

Finally, I have demonstrated in this thesis how model-free approaches
can be modified to achieve higher sample-efficiency and even become
feasible for industry-scale assembly tasks. However, it remains unclear
whether model-free approaches or RL in general are the best way to go
for industrial assembly. On a more theoretical level it would be interesting
to investigate whether there are theoretical limits in sample efficiency that
specific RL methods can reach; and how these limits compare to those of
alternative non-RL methods for automatic tuning of robotic manipulation
strategies in contact-rich tasks.

149

150

Bibliography

Abadi, M. et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Achiam, J., Knight, E., and Abbeel, P. (2019). Towards characterizing divergence in deep
Q-learning. arXiv preprint arXiv:1903.08894.

Amiranashvili, A., Dosovitskiy, A., Koltun, V., and Brox, T. (2018). Analyzing the role of tem-
poral differencing in deep reinforcement learning. In International Conference on Learning
Representations.

Anderson, R. J. and Spong, M. W. (1988). Hybrid impedance control of robotic manipulators.
Journal on Robotics and Automation, 4(5):549–556.

Anschel, O., Baram, N., and Shimkin, N. (2017). Averaged-DQN: Variance reduction and
stabilization for deep reinforcement learning. In International Conference on Machine
Learning, pages 176–185.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3(Nov):397–422.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation.
In Machine Learning Proceedings 1995, pages 30–37. Elsevier.

Baird, L. C. (1999). Reinforcement learning through gradient descent. PhD thesis, Carnegie
Mellon University.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., Rae, J., Wierstra, D., and
Hassabis, D. (2016). Model-free episodic control. arXiv preprint arXiv:1606.04460.

Brafman, R. I. and Tennenholtz, M. (2002). R-max –a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–
231.

Bruyninckx, H., Dutre, S., and De Schutter, J. (1995). Peg-on-hole: a model based solution
to peg and hole alignment. In International Conference on Robotics and Automation,
volume 2, pages 1919–1924. IEEE.

151

Butler S., t. (1898). The Iliad of Homer. Longmans, Green, & Co.

Carpentier, J., Valenza, F., Mansard, N., et al. (2015–2019). Pinocchio: fast forward and
inverse dynamics for poly-articulated systems. https://stack-of-tasks.github.io/pinocchio.

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., and Levine, S. (2017). Path
integral guided policy search. In international conference on robotics and automation,
pages 3381–3388. IEEE.

Chen, R. Y., Sidor, S., Abbeel, P., and Schulman, J. (2017). UCB and InfoGain exploration
via Q-ensembles. Computing Research Repository, abs/1706.01502.

Chentanez, N., Barto, A. G., and Singh, S. P. (2005). Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems, pages 1281–1288.

Collins, J., Howard, D., and Leitner, J. (2019). Quantifying the reality gap in robotic manipula-
tion tasks. In 2019 International Conference on Robotics and Automation (ICRA), pages
6706–6712.

Corneil, D., Gerstner, W., and Brea, J. (2018). Efficient model-based deep reinforcement
learning with variational state tabulation. In International Conference on Machine Learn-
ing, pages 1049–1058.

De Asis, K., Chan, A., Pitis, S., Sutton, R. S., and Graves, D. (2019). Fixed-horizon temporal
difference methods for stable reinforcement learning. arXiv preprint arXiv:1909.03906.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
large-scale hierarchical image database. In Conference on Computer Vision and Pattern
Recognition. IEEE.

Durugkar, I. and Stone, P. (2018). TD learning with constrained gradients.
https://openreview.net/forum?id=Bk-ofQZRb.

Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., and Zoubin, G. (2013). Structure dis-
covery in nonparametric regression through compositional kernel search. In International
Conference on Machine Learning, pages 1166–1174.

Englert, P. and Toussaint, M. (2018). Learning manipulation skills from a single demonstra-
tion. The International Journal of Robotics Research, 37(1):137–154.

Fazeli, N., Zapolsky, S., Drumwright, E., and Rodriguez, A. (2017). Learning data-efficient
rigid-body contact models: Case study of planar impact. In Conference on Robot Learn-
ing, pages 388–397.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M., and
Dabney, W. (2020). Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning.

Fei, Y. and Zhao, X. (2003). An assembly process modeling and analysis for robotic multiple
peg-in-hole. Journal of Intelligent and Robotic Systems, 36(2):175–189.

152

Fu, J., Kumar, A., Soh, M., and Levine, S. (2019). Diagnosing bottlenecks in deep Q-learning
algorithms. In International Conference on Machine Learning, pages 2021–2030.

Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning with-
out exploration. In International Conference on Machine Learning, pages 2052–2062.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation error in
actor-critic methods. Proceedings of Machine Learning Research, 80:1587–1596.

Gal, Y. and Ghahramani, Z. (2016a). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning,
pages 1050–1059.

Gal, Y. and Ghahramani, Z. (2016b). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning.

Giftthaler, M., Neunert, M., Stäuble, M., and Buchli, J. (2018). The control toolbox — an
open-source c++ library for robotics, optimal and model predictive control. International
Conference on Simulation, Modeling, and Programming for Autonomous Robots, pages
123–129.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2001). Variance reduction techniques for
gradient estimates in reinforcement learning. Journal of Machine Learning Research,
5:1471–1530.

Grześ, M. (2017). Reward shaping in episodic reinforcement learning. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, pages 565–573.

Gu, S. S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., and Levine, S. (2017).
Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep
reinforcement learning. In Advances in Neural Information Processing Systems, pages
3846–3855.

He, F. S., Liu, Y., Schwing, A. G., and Peng, J. (2017). Learning to play in a day: Faster deep
reinforcement learning by optimality tightening. In International Conference on Learning
Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In international conference on com-
puter vision, pages 1026–1034. IEEE.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep
reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.

Hernandez-Garcia, J. F. and Sutton, R. S. (2019). Understanding multi-step deep reinforce-
ment learning: A systematic study of the dqn target. arXiv preprint arXiv:1901.07510.

153

Hoppe, S., Giftthaler, M., Krug, R., and Toussaint, M. (2020). Sample-efficient learning
for industrial assembly using Q-graph-bounded DDPG. In International Conference on
Intelligent Robots and Systems, pages 9080–9087.

Hoppe, S., Giftthaler, M., Krug, R., and Toussaint, M. (2021). Stabilizing deep Q-learning with
Q-Graph-based bounds. Under review for the International Journal for Robotics Research
(IJRR).

Hoppe, S., Lou, Z., Hennes, D., and Toussaint, M. (2017). Deep learning for manipulation
with visual and haptic feedback. IROS Workshop on Frontiers in Contact-Rich Robotic
Interaction.

Hoppe, S., Lou, Z., Hennes, D., and Toussaint, M. (2019). Planning approximate explo-
ration trajectories for model-free reinforcement learning in contact-rich manipulation. IEEE
Robotics and Automation Letters, 4(4):4042–4047.

Hoppe, S. and Toussaint, M. (2020). Q-graph-bounded Q-learning: Stabilizing model-free
off-policy deep reinforcement learning. arXiv preprint arXiv:2007.0758.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P. (2016). Vime:
Variational information maximizing exploration. In Advances in Neural Information Pro-
cessing Systems, pages 1109–1117.

Inoue, T., De Magistris, G., Munawar, A., Yokoya, T., and Tachibana, R. (2017). Deep re-
inforcement learning for high precision assembly tasks. In International Conference on
Intelligent Robots and Systems, pages 819–825. IEEE.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms. In Advances in neural information processing systems,
pages 703–710.

Jensen, A. R. (1989). The relationship between learning and intelligence. Learning and
individual differences, 1(1):37–62.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The dependence of effective planning
horizon on model accuracy. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, pages 1181–1189. Citeseer.

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A., Loskyll, M., Ojea, J. A., Solowjow, E.,
and Levine, S. (2019). Residual reinforcement learning for robot control. In International
Conference on Robotics and Automation, pages 6023–6029. IEEE.

Johannsmeier, L., Gerchow, M., and Haddadin, S. (2019). A framework for robot manipula-
tion: Skill formalism, meta learning and adaptive control. In International Conference on
Robotics and Automation, pages 5844–5850. IEEE.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285.

154

Kilikevičius, S. and Bakšys, B. (2011). Experimental investigation of vibratory peg-in-hole
insertion for robotic assembly. In Náprstek, J., Horáček, J., Okrouhlík, M., Marvalová, B.,
Verhulst, F., and Sawicki, J. T., editors, International Conference on Vibration Problems,
pages 621–627, Dordrecht. Springer Netherlands.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kloss, A., Schaal, S., and Bohg, J. (2017). Combining learned and analytical models for
predicting action effects. arXiv preprint arXiv:1710.04102.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy Q-learning
via bootstrapping error reduction. In Advances in Neural Information Processing Systems,
pages 11784–11794.

Kumar, A., Gupta, A., and Levine, S. (2020). Discor: Corrective feedback in reinforcement
learning via distribution correction. arXiv preprint arXiv:2003.07305.

Kussul, E., Baidyk, T., Kasatkina, L., and Lukovich, V. (2001). Rosenblatt perceptrons for
handwritten digit recognition. In International Joint Conference on Neural Networks. Pro-
ceedings (Cat. No. 01CH37222), volume 2, pages 1516–1520. IEEE.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.

LeCun, Y. et al. (1989). Generalization and network design strategies. In Connectionism in
perspective, volume 19. Citeseer.

Lee, K. and Kim, K.-E. (2015). Tighter value function bounds for bayesian reinforcement
learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

Lee, M. A., Zhu, Y., Srinivasan, K., Shah, P., Savarese, S., Fei-Fei, L., Garg, A., and Bohg,
J. (2019a). Making sense of vision and touch: Self-supervised learning of multimodal
representations for contact-rich tasks. In International Conference on Robotics and Au-
tomation, pages 8943–8950. IEEE.

Lee, S. Y., Sungik, C., and Chung, S.-Y. (2019b). Sample-efficient deep reinforcement learn-
ing via episodic backward update. In Advances in Neural Information Processing Sys-
tems, pages 2112–2121.

Lefebvre, T., Xiao, J., Bruyninckx, H., and De Gersem, G. (2005). Active compliant motion:
a survey. Advanced Robotics, 19(5):479–499.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016a). End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373.

Levine, S., Pastor, P., Krizhevsky, A., and Quillen, D. (2016b). Learning hand-eye coordina-
tion for robotic grasping with deep learning and large-scale data collection. Computing
Research Repository, abs/1603.02199.

Levine, S., Wagener, N., and Abbeel, P. (2015). Learning contact-rich manipulation skills
with guided policy search. Computing Research Repository, abs/1501.05611.

155

Li, L., Littman, M. L., and Walsh, T. J. (2008). Knows what it knows: a framework for self-
aware learning. In International Conference on Machine Learning, pages 568–575. ACM.

Li, Y. (1997). Hybrid control approach to the peg-in hole problem. Robotics & Automation
Magazine, 4(2):52–60.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wier-
stra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y. (2012). Exploration in model-based
reinforcement learning by empirically estimating learning progress. In Advances in Neural
Information Processing Systems, pages 206–214.

Lowrey, K., Rajeswaran, A., Kakade, S. M., Todorov, E., and Mordatch, I. (2018). Plan on-
line, learn offline: Efficient learning and exploration via model-based control. Computing
Research Repository, abs/1811.01848.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning. Citeseer.

Martín-Martín, R., Lee, M. A., Gardner, R., Savarese, S., Bohg, J., and Garg, A. (2019). Vari-
able impedance control in end-effector space: An action space for reinforcement learning
in contact-rich tasks. In International Conference on Intelligent Robots and Systems,
pages 1010–1017. IEEE.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529.

Moravec, H. (1988). Mind children: The future of robot and human intelligence. Harvard
University Press.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. (2016). Safe and efficient off-
policy reinforcement learning. In Advances in Neural Information Processing Systems,
pages 1054–1062.

Müller, C. and Kutzbach, N. (2019). World robotics 2019 – industrial robots. Technical report,
International Federation of Robotics.

Ohnishi, S., Uchibe, E., Nakanishi, K., and Ishii, S. (2019). Constrained deep Q-learning
gradually approaching ordinary Q-learning. Frontiers in neurorobotics, 13:103.

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). Learning and transferring mid-level
image representations using convolutional neural networks. In Conference on computer
vision and pattern recognition, pages 1717–1724. IEEE.

156

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via boot-
strapped dqn. In Advances in Neural Information Processing Systems, pages 4026–4034.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel,
P., and Andrychowicz, M. (2017). Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905.

Powell, M. J. (1964). An efficient method for finding the minimum of a function of several
variables without calculating derivatives. The computer journal, 7(2):155–162.

Precup, D., Sutton, R. S., and Singh, S. (2000). Eligibility traces for off-policy policy evalua-
tion. In International Conference on Machine Learning.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386.

Rueb, A. and Becker, L. (US Patent US10480923B2, November 2016). Sensor apparatus
and robot system having the sensor apparatus.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088):533–536.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization
help optimization? In Advances in Neural Information Processing Systems, pages 2483–
2493.

Sayler, S. (2011). Universelle Manipulationsstrategien für die industrielle Montage. KIT
Scientific Publishing.

Schaal, S. (1996). Learning from demonstration. In Advances in Neural Information Pro-
cessing Systems.

Schoettler, G., Nair, A., Luo, J., Bahl, S., Ojea, J. A., Solowjow, E., and Levine, S. (2019).
Deep reinforcement learning for industrial insertion tasks with visual inputs and natural
rewards. arXiv preprint arXiv:1906.05841.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning, pages 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. (2021). Reward is enough. Artificial
Intelligence, page 103535.

Silver, T., Allen, K., Tenenbaum, J., and Kaelbling, L. (2018). Residual policy learning. arXiv
preprint arXiv:1812.06298.

157

Sousa, C. D. and Cortesão, R. (2019). Inertia tensor properties in robot dynamics identifica-
tion: A linear matrix inequality approach. Transactions on Mechatronics, 24(1):406–411.

Spath, D., Müller, R., and Reinhart, G. (2013). Zukunftsfähige Montagesysteme
Wirtschaftlich, wandlungsfähig und rekonfigurierbar. Fraunhofer Verlag, Stuttgart.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Machine Learning Proceedings, pages 216–
224. Elsevier.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In Conference on computer
vision and pattern recognition, pages 1–9. IEEE.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, O. X., Duan, Y., Schulman, J., DeTurck,
F., and Abbeel, P. (2017). # exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in Neural Information Processing Systems, pages
2750–2759.

Tang, Y. (2020). Self-imitation learning via generalized lower bound Q-learning. arXiv preprint
arXiv:2006.07442.

Thomas, G., Chien, M., Tamar, A., Ojea, J. A., and Abbeel, P. (2018). Learning robotic
assembly from CAD. In International Conference on Robotics and Automation, pages
1–9. IEEE.

Touati, A., Zhang, A., Pineau, J., and Vincent, P. (2020). Stable policy optimization via off-
policy divergence regularization. arXiv preprint arXiv:2003.04108.

van Hasselt, H. (2010). Double Q-learning. In Advances in Neural Information Processing
Systems.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Modayil, J. (2018). Deep
reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
Q-learning. In AAAI.

Van Hoof, H., Chen, N., Karl, M., van der Smagt, P., and Peters, J. (2016). Stable re-
inforcement learning with autoencoders for tactile and visual data. In 2016 IEEE/RSJ
international conference on intelligent robots and systems, pages 3928–3934. IEEE.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl, T.,
Lampe, T., and Riedmiller, M. A. (2017). Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards. Computing Research Reposi-
tory, abs/1707.08817.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep learning
for computer vision: A brief review. Computational intelligence and neuroscience, 2018.

158

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016). Dueling
network architectures for deep reinforcement learning. In International Conference on
Machine Learning, pages 1995–2003.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2016). Deep kernel learning. In
Artificial intelligence and statistics, pages 370–378. PMLR.

Wirnshofer, F., Schmitt, P. S., Feiten, W., Wichert, G. v., and Burgard, W. (2018). Robust,
compliant assembly via optimal belief space planning. In International Conference on
Robotics and Automation, pages 1–5. IEEE.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. Trans.
Evolutionary Computation, 1:67–82.

Yang, G., Pennington, J., Rao, V., Sohl-Dickstein, J., and Schoenholz, S. S. (2019). A mean
field theory of batch normalization. In International Conference on Learning Representa-
tions.

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent trends in deep learning
based natural language processing. Computational Intelligence Magazine, 13(3):55–75.

Yu, W., Tan, J., Liu, C. K., and Turk, G. (2017). Preparing for the unknown: Learning a
universal policy with online system identification. arXiv preprint arXiv:1702.02453.

Zhang, Z., Chen, J., Chen, Z., and Li, W. (2019). Asynchronous episodic deep determinis-
tic policy gradient: Toward continuous control in computationally complex environments.
Transactions on Cybernetics.

Zhu, G., Lin, Z., Yang, G., and Zhang, C. (2019). Episodic reinforcement learning with
associative memory. In International Conference on Learning Representations.

159

160

Appendices

161

Appendix A

Visual Experiment
Documentation

163

A.1 Visual Evaluation: Results from Chapter 5

This section contains key frames from a video that was taken during the
experiments in Chapter 5 and therefore allows to qualitatively inspect pos-
itive and negative examples for each controller.

A.1.1 Controller A: Vision & Passive Compliance

Positive example:

164

The illustration of the other two controllers in the upcoming sections
will be using failure cases of controller A. Therefore, I omit the illustration
of failure here.

A.1.2 Controller B: Closed (Hard-Coded) Control Loop

Positive example (in a trial which would have been a failure with controller
A):

165

Failure case:

166

167

A.1.3 Controller C: Vision & Compliance Feedback

positive example:

From one hundred tests with randomly sampled initial positions, there
were no failures in this condition.

168

A.2 Visual Evaluation: Results from Chapter 6

In this section, the main content from the video that illustrates learning
progress in the empirical evaluation in Chapter 6 is summarized. The full
video, which was published as supplementary material for Hoppe et al.
(2019) is available online at https://youtu.be/JTfeHhWSb0Y.

A.2.1 Illustration of Steering Function

A.2.2 Task Illustration in Simulation

The steering function is only a coarse approximation of the dynamics and
will fail whenever obstacles or contacts come into play. To move a long an
optimal trajectory, the robot steers towards each waypoint but if it cannot
get closer anymore, the waypoint is skipped.

169

https://youtu.be/JTfeHhWSb0Y

A.2.3 Learning Progress on the Real Robot

Setup:

First episode:
random movement based on actor network initialization and Gaussian
noise:

170

First episode with trajectory optimization:
small linear movements:

171

Focus on relevant areas:
local minimum in distance-based reward function (center between the two
holes) and the holes themselves (in analogy to previous episodes which
lead to high reward):

172

First solution found after less than 1200 steps:

173

A.3 Visual Evaluation: Results from Chapter 9

In this section, the main content from the video that illustrates learning
progress in the empirical evaluation in Chapter 9 is summarized. The full
video, which was published as supplementary material for Hoppe et al.
(2020) is available online at https://youtu.be/Z_GcNbCWE-E.

174

https://youtu.be/Z_GcNbCWE-E

175

A.3.1 Human Baseline

176

A.3.2 Learning Progress

Episode 0:
(random movement, every 20th video frame)

177

178

Episode 9 (every 3rd video frame):

179

Episode 18 (every 3rd video frame):

180

Episode 27 (every 3rd video frame):

181

182

Episode 32 (all available video frames):

183

Test Episodes:
without exploration noise. Every 3rd video frame.

184

185

186

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig
und ausschließlich auf der Grundlage der in der Arbeit angegebenen Hilfs-
mittel und Hilfen verfasst habe.

Sabrina Hoppe
Stuttgart, den 19.04.2021

187

	Acronyms
	Symbols
	Introduction and Motivation
	Manipulation Tasks in Production
	Challenges in Reinforcement Learning for Real-World Manipulation Tasks
	Contributions and Structure of this Thesis

	Background
	Types of Reinforcement Learning
	Learning with Q-Values
	Function Approximation
	Bayesian Optimization and Gaussian Process
	Artificial Neural Networks

	Model-Free Off-Policy Deep RL

	Peg in Hole Variants and Challenges
	Tasks
	Clearance Fit Peg in Hole
	Double Peg in Hole
	Form Fit Peg in Hole

	Hardware: Robots and Sensors
	KaWaDa Nextage Open Setup
	Franka Emika CoBot Setup

	Prestudies
	Function Approximation with Discontinuities
	Motivation
	Method
	Results
	Conclusion

	Uncertainty Estimates for Value Networks in Low-Dimensional Spaces
	Motivation
	Method
	Results

	Modalities to Efficiently Learn Peg In Hole Tasks
	Introduction & Motivation
	Disambiguating Sensory Input

	Related Work
	Experimental Setup
	Method
	Residual Policy Formulation
	Data Collection
	Network Architecture and Training Procedure
	Control Loop Variants
	Experimental Results

	Discussion
	Limitations and Open Questions

	Exploration through Approximate Uncertainty-Based Trajectory Optimization
	Introduction & Motivation
	Related Work
	Method
	Advantage Networks
	Greedy Exploration using Bootstrapped Advantage Networks
	Training Bootstrapped Advantage Networks
	Global Exploration using Trajectory Optimization

	Experimental Results
	Exploration Speed
	Robustness to Corrupted Steering Functions
	Feasibility on a Real Robot
	Sample Efficiency for Policy Learning

	Discussion
	Limitations and Open Questions

	Linking Data Graph Structures to Soft Divergence
	Introduction & Motivation
	Preliminaries
	Related Work
	Instabilities in RL: the Deadly Triad
	Graph Perspective on Training Data

	Method: Data Graph Structure
	Characterizing Transitions

	Experimental Results
	Experimental Setup
	Empirically Assessing Divergence
	Example I: Types of Transitions
	Example II: Chains of Transitions

	Discussion
	Limitations and Open Questions

	Stabilizing DDPG through Q-Graph-based Lower Bounds
	Related Work: Constrained Q-learning
	Method
	Q-Graph Implementation
	Zero Actions
	Q-Graph Values as Lower Bounds
	Q-Graph-bounded Q-learning

	Experimental Results
	Baird's Star Example
	Simulated Clearance Fit Peg Insertion Task

	Discussion
	Limitations and Open Questions

	System Study: Q-Graph-bounded DDPG for Industrial Assembly
	Introduction & Motivation
	Industrial Shaft Fitting Task
	Related Work
	Residual Formulation
	States
	Actions
	Reward
	QG-DDPG

	Experimental Setup
	Network Details
	Robot Control

	Experimental Results
	Task Difficulty and Baselines
	Sample Efficiency and Robustness to Hyperparameters
	Relation to Soft Divergence
	Robustness to Sparse Rewards and Limited Memory

	Discussion
	Limitations and Open Questions

	Conclusion
	Appendices
	Visual Experiment Documentation
	Visual Evaluation: Results from Chapter 5
	Controller A: Vision & Passive Compliance
	Controller B: Closed (Hard-Coded) Control Loop
	Controller C: Vision & Compliance Feedback

	Visual Evaluation: Results from Chapter 6
	Illustration of Steering Function
	Task Illustration in Simulation
	Learning Progress on the Real Robot

	Visual Evaluation: Results from Chapter 9
	Human Baseline
	Learning Progress

