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Abstract

Predicting accurately coalescence phenomena is critical to the accurate description of the
hydrodynamics of fluids and their mixtures. A promising framework for the development of
models for such phenomena is dynamic density functional theory. Dynamic density functional
theory enables the analysis of dynamical processes in inhomogeneous systems of pure fluids
and fluid mixtures at the molecular level. In this work, a hydrodynamic density functional
theory model for mixtures in conjunction with Helmholtz energy functionals based on the
PC-SAFT equation of state is proposed, that obeys the first and second law of thermodynamics
and simplifies to the isothermal Navier-Stokes equation for homogeneous systems. The hydro-
dynamic density functional theory model is derived from a variational principle and accounts
for both viscous forces and diffusive molecular transport. A Maxwell-Stefan model is applied
for molecular transport. This work identifies a suitable expression for the driving force for
molecular diffusion of inhomogeneous systems that captures the effect of interfacial tension.
The proposed hydrodynamic density functional theory is a non-local theory that requires
the computation of weighted (spatial averaged) densities around each considered spatial
coordinate by convolution, which is computationally expensive. This work uses Fourier-type
transforms to determine the weighted densities. A pedagogical derivation is presented for
the efficient computation of the convolution integrals occurring in the Helmholtz energy
functionals in Cartesian, cylindrical, and spherical coordinates on equidistant grids using
fast Fourier and similar transforms. The applied off-the-shelf algorithms allow to reduce
dimensionality and complexity of many practical problems. Furthermore, an algorithm for a
fast first-order Hankel transform is proposed, allowing fast and easy density functional theory
calculations in rotationally symmetric systems. Application of the hydrodynamic density
functional theory model using a well-balanced finite-volume scheme to one-dimensional
droplet and bubble coalescence of pure fluids and binary mixtures is presented. The required
transport coefficients, shear viscosity and Maxwell-Stefan diffusion coefficients, are obtained
by applying entropy scaling to inhomogeneous fluids. The considered systems show a qual-
itative difference in the coalescence characteristics of droplets compared to bubbles. This
constitutes a first step towards predicting the phase rupture leading to coalescence using
dynamic density functional theory.
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Kurzfassung

Genaue Vorhersage von Koaleszenzphänomenen ist entscheidend für die genaue hydrody-
namische Beschreibung von Flüssigkeiten und ihren Gemischen. Eine vielversprechende
Methode für die Entwicklung von Modellen für solche Phänomene ist die dynamische Dichte-
funktionaltheorie. Dynamische Dichtefunktionaltheorie ermöglicht die Analyse dynamischer
Prozesse inhomogener Systeme aus Reinstoffen oder Fluidgemischen auf molekularer Ebene.
In dieser Arbeit wird eine hydrodynamische Dichtefunktionaltheorie für Mischungen mit
Helmholtz-Energie-Funktionalen basierend auf der PC-SAFT Zustandsgleichung vorgeschla-
gen, die den ersten und zweiten Hauptsatz der Thermodynamik erfüllt und sich für homogene
Systeme auf die isotherme Navier-Stokes-Gleichung vereinfacht. Die hydrodynamische Dichte-
funktionaltheorie wird aus einem Variationsprinzip abgeleitet und berücksichtigt viskose
Kräfte und diffusiven Stofftransport; letzterer wird mittels Maxwell-Stefan-Diffusion model-
liert. Diese Arbeit identifiziert eine geeignete Triebkraft für diffusiven Stofftransport in inho-
mogenen Systemen, die den Effekt von Grenzflächenspannung berücksichtigt. Die vorgeschla-
gene hydrodynamische Dichtefunktionaltheorie ist eine nicht-lokale Theorie, die die Berech-
nung gewichteter (räumlich gemittelter) Dichten um jede betrachtete Ortskoordinate durch
rechenintensive Faltung erfordert. In dieser Arbeit werden Fourier-Transformationen verwen-
det, um die gewichteten Dichten zu bestimmen. Es wird didaktisch gezeigt, wie man die in den
Helmholtz-Energiefunktionalen auftretenden Faltungsintegrale in kartesischen, zylindrischen
und sphärischen Koordinaten auf äquidistanten Gittern mit schnellen Fourier- und ver-
wandten Transformationen effizient berechnen kann. Die verwendeten Standardalgorithmen
erlauben es, die Dimensionalität und Komplexität vieler praktischer Probleme zu reduzieren.
Weiterhin wird ein Algorithmus für eine schnelle Hankel-Transformation erster Ordnung
vorgeschlagen, der schnelle und einfache Dichtefunktionaltheorie-Berechnungen in rotation-
ssymmetrischen Systemen ermöglicht. Das hydrodynamische Dichtefunktionaltheorie-Modell
wird mit Hilfe eines well-balanced Finite-Volumen-Verfahrens auf eindimensionale Tropfen-
und Blasenkoaleszenz von Reinstoffen und binären Mischungen angewendet. Die erforder-
lichen Transportkoeffizienten, Scherviskosität und Maxwell-Stefan-Diffusionskoeffizienten,
werden durch Anwendung von Entropieskalierung auf inhomogene Systeme bestimmt. Die be-
trachteten Systeme zeigen für Tropfen ein qualitativ unterschiedliches Koaleszenzverhalten im
Vergleich zu Blasen. Dies ist ein erster Schritt in Richtung der Vorhersage des zur Koaleszenz
führenden Phasenbruchs unter Verwendung dynamischer Dichtefunktionaltheorie.
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1 Necessity for Developing a Thermodynamic Coalescence

Model

The hydrodynamic behavior of two droplets can be categorized into the following regimes1:
(I) coalescence after minor deformation, (II) bouncing, (III) coalescence after substantial
deformation, (IV) separation with satellite droplets, and (V) splattering of droplets. As (VI) I
add to this list the growth of one droplet and the dissolution of the other through a diffusive
mass transport mechanism (Ostwald ripening). Coalescence (I-III) is accompanied by convec-
tive mass transport, Ostwald ripening (VI) by diffusive mass transport. During coalescence,
droplets merge while their positions change; during Ostwald ripening, molecules diffuse
through the surrounding phase and one droplet grows at the expense of the disappearing
droplet without changing their positions2. The behavior of two bubbles can be cast into
similar categories. The hydrodynamics of each of these different regimes can be robustly
reproduced by computational fluid dynamics3–8. However, the common question remains
as to the conditions under which first rupture between approaching dispersed phases, and
hence the formation of a meniscus phase bridge, occurs† (cf. figure 1.1).

Figure 1.1: Two approaching liquid droplets (in blue) after developing a phase rupture
leading to a meniscus phase bridge between the two droplets (indicated in green). A spatial
volume-of-fluid grid is depicted in gray.

Mason et al. 4 proposed a distance criterion of less than 40 nm for the phase rupture of
approaching sharp interfaces for simulations using a volume-of-fluid method in combination
†»[. . .] the reason for the first rupture is not known, so it is unclear if it can be captured by standard continuum
models or if additional intermolecular forces [. . .] must be considered« (Focke et al. 5).
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1 Necessity for Developing a Thermodynamic Coalescence Model

with a subgrid film model. Similar length scales (10–50 nm) were proposed after experimental
studies of coalescing droplets on a flat surface by Mackay and Mason 9 and droplet collisions
by Bradley et al. 10. Due to different capillary waves for different sized droplets, different
criteria were proposed for different droplet sizes9. Liu and Bothe 8 suggested applying
simulation criteria for volume-of-fluid simulations using piecewise linear interface calculation
and a lubrication theory subgrid model for the distinction between droplet coalescence and
bouncing: a threshold of liquid in a volume-of-fluid cell or collision of the reconstructed
piecewise linear interfaces. Nonetheless they acknowledged that the distinction between
coalescence and bouncing remains dependent on the resolution of the spatial discretization.
A criterion based on the time required for the vapor film drainage between liquid droplets
was used by Mohammadi et al. 11 in combination with volume-of-fluid simulations. Each of
these different criteria share one common feature in that they must be parameterized in
order to reproduce experimental results. Experimental results by Qian and Law 1 suggest that
these parameterizations are not transferable to other fluids or other mixtures than those used
in the study. They found that the introduction of an ambient vapor consisting of a different
component than the liquid droplets affects the coalescence behavior. This conclusion is
supported by molecular dynamics results of binary mixtures of different Lennard-Jones fluids
by Murad and Law 12 , which showed that introducing the second Lennard-Jones component
leads to a different coalescence vs. bouncing behavior. The influence of surfactants on the
coalescence dynamics of droplets was analyzed by Lu et al. 7 , though limited to the time after
the first phase rupture.
This demonstrates the necessity for predictive thermodynamic models, based on molecular
theories, for phase rupture in coalescence processes of droplets and bubbles. These models can
then be used to realize predictive hydrodynamic simulations and parameterize coarse-grained
coalescence models, inter alia models for population balance equations13, for large-scale
simulations. In doing so, expensive experiments can be greatly reduced or even avoided
for a wide variety of diverse applications. These include, among others, bubble or absorp-
tion columns14–17, liquid-liquid extraction, spray breakup18, bioreactors19,20, spray painting,
internal combustion, cleaning of oil spills, microfluidics, emulsification, and foaming.

1.1 Scope & Outline of This Thesis

The objective of this work is the development of a predictive molecular coalescence model
for pure fluids and fluid mixtures employing dynamic density functional theory (DDFT) in
combination with the Helmholtz energy functionals based on the perturbed-chain statistical
associating fluid theory (PC-SAFT) equation of state. Density functional theory (DFT) in

2



1.1 Scope & Outline of This Thesis

conjunction with PC-SAFT Helmholtz energy functionals shows excellent predictive capa-
bilities for inhomogeneous fluid systems in thermodynamic equilibrium, like vapor-liquid
and liquid-liquid equilibria as well as adsorption phenomena on solid surfaces, predicting
properties such as interfacial tension21–24, adsorption isotherms25, and contact angles of
fluids on solid surfaces26. It can be expected that the predictive capabilities of DFT in combi-
nation with the PC-SAFT Helmholtz energy functionals will persist in DDFT for predicting
dynamic phenomena dominated by interfacial processes like droplet or bubble coalescence
and Ostwald ripening.
Such a model also provides insight into microscopic processes, the influence of additional
(possibly surface active) components, and thermodynamic driving forces at interfaces leading
to coalescence or Ostwald ripening, in particular the first rupture between approaching
droplets or bubbles resulting in a meniscus phase bridge during coalescence. The findings
obtained within this work are intended to help numerical approaches to resolve droplet or
bubble coalescence in multiphase flow by enabling the development of predictive coalescence
criteria for hydrodynamic simulations of pure fluids and fluidmixtures, possibly even including
surfactants, for a wide range of ambient temperatures, pressures, and mixture compositions.
Chapter 2 introduces DFT for equilibrium systems and summarizes the Helmholtz energy
functionals based on the PC-SAFT equation of state (which are subsequently applied to DDFT).
The theoretical background of DDFT models are presented as well as models for the viscosity
and diffusion coefficients required in DDFT, i.e., entropy scaling.
In chapter 3, a method for the efficient computation of the Helmholtz energy functionals in
Cartesian, cylindrical, and spherical coordinate systems is presented, which is indispensable
for successful practical DDFT simulations.
Chapter 4 extends the numerical procedure for the efficient computation of Helmholtz energy
functionals to simplify and accelerate (D)DFT computations in cylindrical coordinates.
A DDFT model for mixtures is proposed in chapter 5. The proposed modeling framework
extends a DDFT model for pure fluids to mixtures. The resulting balance equations are shown
to globally satisfy the first and second law of thermodynamics. It should be noted that the
balance equations for DDFT cannot be formulated in conservative form, which requires the
application of a suitable well-balanced finite-volume scheme for the numerical solution. The
Helmholtz energy functionals based on the PC-SAFT equation of state are used within the
proposed DDFT formalism. Results for coalescence of droplets or bubbles in one dimension
are presented for pure liquids and binary mixtures. The derived DDFT model is not limited to
transport phenomena in fluid systems, but is capable of describing fluid-solid interactions
with possible application to coalescence of droplets or bubbles on solid surfaces, prediction of

3
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dynamic contact angles and flow through confined geometries. This includes the possibility of
the analysis of inhomogeneities in the solid structure for such phenomena or time-dependent
external potentials.
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2 Modeling of Equilibrium Properties and the Dynamics of

Inhomogeneous Fluids

This chapter introduces the fundamentals of classical density functional theory (DFT) along
with the Helmholtz energy functionals based on the perturbed-chain statistical associating
fluid theory (PC-SAFT) equation of state. I then proceed to review dynamic density functional
theory (DDFT). With a suitable Helmholtz energy functional, DDFT has predictive power
for interfacial tensions and local enrichment or depletion of species, including adsorptive
processes. Dynamic transport coefficients, such as shear viscosity or diffusion coefficients,
however, need to be provided into the model. I give a brief introduction to models based on
entropy scaling for determining such transport coefficients using the Helmholtz energy model
of PC-SAFT.

2.1 Thermodynamic Modeling of Static Interfacial Properties

Classical DFT in combination with molecular models for inhomogeneous fluids is a powerful
tool for studying and predicting thermodynamic systems in which the influence of interfaces on
the thermodynamic potentials is not negligible and thermodynamic equilibrium is determined
by competing contributions from bulk and interfacial effects.

2.1.1 Classical Density Functional Theory

Classical DFT describes averages of thermodynamic properties in the grand canonical ensemble
with natural variables temperature T , volume V , and the chemical potentials µi of the various
components i. Their conjugate variables entropy S, pressure p, and number of molecules Ni,
are functions of these natural variables. Since only ensemble averages are described by DFT,
individual microstates of the system need not be considered†. DFT connects the density
profiles ρi(r) (with spatial and potentially orientation and conformation coordinates r) to the
external potentials V ext

i (r). For fluid systems Evans 1 demonstrated that for given chemical
potentials, the external potentials result uniquely from the equilibrium density profiles
†Or, depending on interpretation, cannot be considered.
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ρ0
i (r). The reverse conclusion also applies, except for, e.g., phase equilibria where multiple

equilibrium density profiles can exist for the same external potential. The equilibrium density
profiles are defined by

ρ0
i (r) =

® Ni
∑

j=1

δi(r− r j)

¸

Ξ

(2.1)

where δi(r − r j) describes the probability density of finding the j-th molecule out of Ni

molecules of component i with coordinate r j at coordinate r, and the angle brackets 〈. . .〉Ξ
denote the grand canonical ensemble average. The probability density δ is merely a Dirac
delta function.
DFT is based on the grand potential density functional Ω depending on the density profiles,
the temperature and the chemical potentials of all components, which is defined for a mixture
of Nc components as

Ω([{ρi(r)}]; T, {µi}) = F([{ρi(r)}]; T )−
Nc
∑

i=1

µi

∫

ρi(r)dr (2.2)

with the total Helmholtz energy functional F . The explicit dependence of the thermodynamic
potentials on T and µi is omitted from here on for the sake of clarity. Square brackets ‘[. . .]’
denote a functional dependence and curly brackets ‘{. . .}’ indicate a vector of all components
within a mixture with i = 1, . . . , Nc. The grand potential functional follows two theorems by
Hohenberg and Kohn 2 and Mermin 3 originally developed for electron densities and later
adapted by Evans 1 for fluid systems. First, the insertion of the equilibrium density profiles ρ0

i (r)
into the grand potential functional yields the grand potential

Ω0 = Ω[{ρ0
i (r)}] (2.3)

Second, the grand potential functional obeys a variational principle, such that the grand
potential Ω0 is the minimum of the grand potential functional

Ω[{ρi(r)}]≥ Ω[{ρ0
i (r)}] = Ω

0 (2.4)

i.e., the grand potential functional for density profiles out of equilibrium is larger than
the grand potential. A key result of the work of Evans 1 is that the total Helmholtz energy
functional F can be uniquely separated into the intrinsic Helmholtz energy functional∗ F ,
dependent solely on the density profiles (the internal structure) and a contribution from
∗From this point on referred to simply as the Helmholtz energy functional.
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external potentials according to

F[{ρi(r)}] = F[{ρi(r)}] +
Nc
∑

i=1

∫

ρi(r)V
ext

i (r)dr (2.5)

In particular, the Helmholtz energy functional F is a unique functional of the density pro-
files ρi(r) (with the previously mentioned exception for phase equilibria) and is valid for
all external potentials V ext

i (r), which forms the foundation of DFT. It is beneficial to split
the Helmholtz energy functional into an ideal gas and a residual contribution, defined by
F ≡ F ig + F res, since the structure of the the ideal gas contribution is known exactly as

βF ig[{ρi(r)}] =
Nc
∑

i=1

∫

ρi(r)
�

ln
�

ρi(r)Λ
3
i

�

− 1
�

dr (2.6)

with the inverse thermodynamic temperature β ≡ 1
kBT , Boltzmann constant kB, and de Broglie

wavelengths Λi, containing all kinetic and internal degrees of freedom of the molecules of the
considered components i. Combination of eqs. (2.2), (2.5), and (2.6) leads to the formally
exact description of the grand potential functional

βΩ[{ρi(r)}] =
Nc
∑

i=1

∫

�

ρi(r)
�

ln
�

ρi(r)Λ
3
i

�

− 1
�

+ρi(r)
�

βV ext
i (r)− βµi

�

�

dr+ βF res[{ρi(r)}]

(2.7)

In general, the structure of the residual Helmholtz energy functional F res (and thus, by
extension, the structure of the grand potential functional Ω) is not known exactly and
approximations must almost always be used∗. The de Broglie wavelengthsΛi can be eliminated
from eq. (2.7) by also splitting the chemical potentials into ideal gas and residual contributions
according to µi ≡ µ

ig
i + µ

res
i , with the formally exact† chemical potentials for an ideal gas

βµ
ig
i (r0) = ln

�

ρi(r0)Λ3
i

�

for any position r0. Note that µres
i (r0) will also depend on the choice

of r0. Because r0 can even be a hypothetical position, one can always choose a bulk density
ρbulk

i ≡ ρi(r0) and the chemical potential will accordingly be µres,bulk
i ≡ µres

i (r0), resulting in

βΩ[{ρi(r)}] =
Nc
∑

i=1

∫ �

ρi(r)

�

ln

�

ρi(r)
ρbulk

i

�

− 1

�

+ρi(r)
�

βV ext
i (r)− βµ

res,bulk
i

�

�

dr+βF res[{ρi(r)}]

∗With a few exceptions, e.g., the hard-rod system.
†The structure of the Helmholtz energy (functional) of an ideal gas is exact, while the de Broglie wavelengths
may be not known exactly. Therefore, the exact value of the Helmholtz energy cannot be determined. Since
the de Broglie wavelengths are solely functions of temperature, they can be eliminated everywhere for the
isothermal conditions considered in this work.
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(2.8)

To find the equilibrium density profiles ρ0
i (r) for a given grand potential density functional

the variational principle from eq. (2.4) is exploited by applying the Euler-Lagrange equation
to each component, defined by

δΩ[{ρi}]
δρ j(r)

�

�

�

�

{ρ0
i (r)}
= 0 ∀ j (2.9)

For the grand potential density functional from eqs. (2.2) and (2.5), the Euler-Lagrange
equations read

δF[{ρi}]
δρ j(r)

�

�

�

�

{ρ0
i (r)}
=

�

δF ig[{ρi}]
δρ j(r)

+
δF res[{ρi}]
δρ j(r)

��

�

�

�

{ρ0
i (r)}
= µ j − V ext

j (r) ∀ j (2.10)

or using eq. (2.8)

ρ0
j (r) = ρ

bulk
j exp

�

βµres,bulk
j − βV ext

j (r)−
δβF res[{ρ0

i }]
δρ j(r)

�

∀ j (2.11)

Equation (2.11) can be solved for the density profiles ρ0
i (r) for a given residual Helmholtz

energy functional. Solutions may be found by means of simple algorithms, like Picard iteration
or Anderson mixing4, or by more sophisticated methods for nonlinear systems5–10.
The residual Helmholtz energy functional contains all the information from intermolecular
interactions which can be deduced from the Yvon-Born-Green (YBG) hierarchy1,11–13 for
mixtures14, defined by

−ρ0
j (r1)∇c(1)j (r1, [{ρ0

i }]) =−∇ρ
0
j (r1)−ρ0

j (r1)∇βV ext
j (r1) (2.12a)

=
Nc
∑

k=1

∫

ρ
(2),0
jk (r1, r2, [{ρi}])∇r1

βφ
(2)
jk (r1, r2)dr2

+
Nc
∑

k=1

Nc
∑

l=1

∫∫

ρ
(3),0
jkl (r1, r2, r3, [{ρi}])∇r1

βφ
(3)
jkl(r1, r2, r3)dr2 dr3

+ . . . (2.12b)

with the two-body densities ρ(2),0jk of components j and k, the three-body densities ρ(3),0jkl of
components j, k and l, as well as the the two- and three-body intermolecular potentials φ(2)jk

and φ(3)jkl (there may also be higher multi-body contributions, which are indicated by ‘+ . . .’),
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in combination with the one-particle direct correlation function of component j, defined by15

c(1)j (r, [{ρ0
i }])≡ −

δβF res[{ρ0
i }]

δρ j(r)
(2.13)

The YBG hierarchy, eq. (2.12), and the definition of the one-particle direct correlation function
from eq. (2.13) are essential during the derivation of DDFT, as will be discussed in section 2.2.

2.1.2 Modeling Inhomogeneous Fluids Based on the PC-SAFT Equation of State

The Helmholtz energy functionals used in this work are inhomogeneous generalizations of the
widely used PC-SAFT equation of state16–21. SAFT models22–34, first proposed by Chapman
et al. 22–24, are based on Wertheim’s thermodynamic perturbation theory35–38 for tangent
hard chains. The PC-SAFT equation of state provides a good description of thermodynamic
properties in bulk phases for a wide variety of pure components and mixtures. The robust
behavior and predictive capabilities are preserved when generalized to inhomogeneous
fluids by DFT39–45. The model parameters of the PC-SAFT equation of state allow a physical
interpretation due to the strong background in statistical mechanics.

2.1.2.1 The PC-SAFT Equation of State

The PC-SAFT equation of state accounts for various interactions of real molecular fluids as
additive contributions to the Helmholtz energy

ã = ãig + ãhs + ãhc + ãdisp + ãpolar + ãassoc (2.14)

with the reduced Helmholtz energy ã ≡ A
NkBT

∗ using the Helmholtz energy A and the total
number of molecules N . The different contributions to the Helmholtz energy are depicted in
figure 2.1: the ideal gas contribution† as well as contributions for hard-sphere, hard-chain,
dispersion, multipolar, and association interactions.
Among all contributions to the Helmholtz energy, only the structure of the ideal gas contribu-
tion is explicitly known. The hard-sphere contribution is taken to be the Helmholtz energy
of the Boublík-Mansoori-Carnahan-Starling-Leland46,47 equation of state. The hard spheres
∗In the bulk equation of state I use the symbol A for the Helmholtz energy to distinguish it from Helmholtz
energy functionals F used in DFT.

†The ideal gas contribution contains all the kinetic and internal contributions of the molecular system to the
canonical partition function. This is due to the assumption that intermolecular interactions are independent
of the velocity of the individual molecules. To obtain additive contributions to the Helmholtz energy the
intermolecular forces are assumed to be additive as well. This assumption is often an approximation.
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ideal gas hard spheres chain formation dispersion
multipolar
interactions association

Figure 2.1: Schematic representation of the molecular model and the intermolecular inter-
actions of the different contributions to the Helmholtz energy modeled with the PC-SAFT
equation of state, cf. eq. (2.14).

are bounded to tangent hard chains22–24 using Wertheim’s thermodynamic perturbation
theory (TPT1)35–38. The resulting hard-chain fluid is used as the reference fluid for a second
order Barker-Henderson48,49 perturbation theory to model dispersion interactions16. Using
the hard chain as the reference fluid not only gives the PC-SAFT equation of state its name,
but often improves the accuracy of the description of thermodynamic properties compared to
the original SAFT equation of state.
Molecules described by the first four contributions in eq. (2.14) can be parameterized with
three pure component parameters for component i: a parameter for the segment diameter σi,
another for the number of segments in a chain mi, and finally one for the strength of the
dispersion interactions εi. Multipolar interactions are considered either as dipole-dipole19,
quadrupole-quadrupole20 and dipole-quadrupole21 interactions. These multipolar contri-
butions are based on a third order perturbation theory with a two-centered Lennard-Jones
reference fluid parameterized through the dipolar and quadrupolar moments µ̆i and Q i,
respectively. Hydrogen bonds between molecules can be considered as association contribu-
tions18 which are modeled with TPT124,26 and parameterized by the interaction strengths εAi B j

and the association volumes κAi B j of the interaction sites Ai and B j.

2.1.2.2 Helmholtz Energy Functionals Based on the PC-SAFT Equation of State

The molecular model of the PC-SAFT equation of state can also be applied to inhomogeneous
fluids. The individual contributions to the Helmholtz energy functional can be separated in
analogy to eq. (2.14). The ideal gas contribution is given in eq. (2.6). As demonstrated in
section 2.1.1, it is often advantageous to split the Helmholtz energy functional into ideal gas
and residual contributions as F ≡ F ig + F res, with the residual contributions of the PC-SAFT
functionals

F res[{ρi(r)}] = Fhs[{ρi(r)}]+ Fhc[{ρi(r)}]+ Fdisp[{ρi(r)}]+ Fpolar[{ρi(r)}]+ F assoc[{ρi(r)}]
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(2.15)

All contributions are formulated as weighted density approximations with a similar structure.
The hard-sphere contribution is modeled using the fundamental measure theory (FMT)
initially introduced by Rosenfeld 50 using scaled particle theory51,52. For homogeneous bulk
phases this functional simplifies to the Percus-Yevick equation of state for hard spheres53–55.
Extensions to obtain the more accurate Boublík-Mansoori-Carnahan-Starling-Leland46,47

equation of state used within the PC-SAFT model for the homogeneous case were developed
independently by Roth et al. 56 and Yu and Wu 57. A version corresponding to an even more
accurate hard-sphere equation of state58 also exists15,59. All of these different variants share
a common structure with the dimensionless Helmholtz energy functional

βFhs[{ρi}] =
∫

ΦFMT({nα(r)})dr (2.16)

formulated as an integral over the dimensionless Helmholtz energy density ΦFMT, which
is a function of four scalar-valued and two vector-valued weighted densities nα with α ∈
{0, 1,2, 3,V1, V2}. The weighted densities are functionals of the density profiles and are
defined as convolution integrals

nα(r) =
Nc
∑

i=1

mi

∫

ρi(r
′)ωαi (r− r′)dr′ (2.17)

with the density profiles ρi and weight functions ωαi . The number of hard-sphere segments
in a hard chain mi is already incorporated here to account for chain molecules. The weight
functions are

ω0
i (r) =

1
4πR2

i

δ(Ri − |r|) (2.18a)

ω1
i (r) =

1
4πRi

δ(Ri − |r|) (2.18b)

ω2
i (r) = δ(Ri − |r|) (2.18c)

ω3
i (r) = Θ(Ri − |r|) (2.18d)

ωV1
i (r) =

1
4πRi

r
|r|
δ(Ri − |r|) (2.18e)

ωV2
i (r) =

r
|r|
δ(Ri − |r|) (2.18f)

with the hard-sphere radii Ri, the Dirac delta function δ, the Heaviside step function Θ, and
spatial coordinate vector r. This allows for an interpretation of their respective weighted
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densities as averages calculated over the surface, the volume, and the direction of the outward
normal on the surface of a sphere∗. A FMT without using vectorial, and hence different weight
functions, was proposed by Kierlik and Rosinberg 60,61 . This concept was extended to attractive
interactions by Bernet et al. 62.
The hard-chain contribution was developed by Tripathi and Chapman 63,64 derived from an
inhomogeneous formulation of the TPT1 association contribution in the limit of complete
association and reads

βFhc[{ρi(r)}] =
Nc
∑

i=1

(mi − 1)

∫

ρi(r)
�

ln
�

ρi(r)Λ
3
i

�

− 1
�

dr

−
Nc
∑

i=1

(mi − 1)

∫

ρi(r)
�

ln
�

ydd
ii

�

{ρ̄hc
i (r)}

�

λhc
i (r)

�

− 1
�

dr

+mi ln
�

Λ3
s,i

�

Nc
∑

i=1

∫

ρi(r)dr (2.19)

with the two weighted densities ρ̄hc
i and λhc

i , as well as the hard-sphere cavity correlation
functions at contact distance63,65 ydd

ii based on the Boublík-Mansoori-Carnahan-Starling-
Leland theory, evaluated from

ydd
ii ({ρ̄i(r)}) =

1

1− ζ̄3(r)
+

1.5 diζ̄2(r)

(1− ζ̄3(r))2
+

0.5 (diζ̄2(r))2

(1− ζ̄3(r))3
(2.20)

with

ζ̄2(r) =
π

6

Nc
∑

i=1

ρ̄hc
i (r)mid

2
i (2.21a)

ζ̄3(r) =
π

6

Nc
∑

i=1

ρ̄hc
i (r)mid

3
i (2.21b)

using the hard-sphere diameters di = 2Ri. The cavity correlation function can be interpreted
as a radial distribution function g(r) in which the interaction potential between the reference
particle and the particle at distance r is deactivated while all other interaction potentials
are active†. The hard-chain contribution has been, according to Wertheim’s theory35–38,66,
developed for an ideal gas reference of unbound segments. Since the PC-SAFT equation of
∗Integration over the scalar-valued weight functions,

∫

ωαi (r)dr, yields the fundamental geometrical measures
of a sphere in three dimensions giving FMT its name: the Euler characteristic (α= 0), the radius (α= 1),
the surface area (α = 2), and the volume (α = 3). The integrals over the vector-valued weight functions
(α ∈ {V1, V2}) vanish.

†In this case, both particles are hard spheres, and the cavity correlation function is equal to the radial
distribution function for distances larger than the hard-sphere diameter.
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2.1 Thermodynamic Modeling of Static Interfacial Properties

state takes the ideal gas contribution of entire chain molecules as a reference, the ideal gas
contribution of additional (mi − 1) segments needs to be accounted for in the first term. The
last term contains the de Broglie wavelengths Λs,i of unbound segments, which are irrelevant
for the isothermal applications considered here67. The two weighted densities required for
the hard-chain contribution are

ρ̄hc
i (r) =

∫

ρi(r
′)ωhc,ρ

i (r− r′)dr′ with ω
hc,ρ
i (r) = 3

4πd3
i
Θ(di − |r|) (2.22a)

λhc
i (r) =

∫

ρi(r
′)ωhc,λ

i (r− r′)dr′ with ωhc,λ
i (r) = 1

4πd2
i
δ(di − |r|) (2.22b)

with the average densities at contact-distance λi around a segment of chain i. Considering a
hard-chain reference puts all orientational and conformational degrees of freedom into the
de Broglie wavelengths Λi of the ideal gas contribution. A further improvement considering
density profiles of individual segments was developed by Jain et al. 68 and already applied in
combination with PC-SAFT functionals69.
The dispersion contribution to the PC-SAFT equation of state was derived from a second
order Barker-Henderson49 perturbation theory using a hard-chain reference fluid70 with
temperature-dependent hard-sphere segment diameters di(T ). In this work, the dispersion
contribution is modeled as a weighted density approximation13,71

βFdisp [{ρi(r)}] =
∫

β f disp({ρ̄disp
i (r)})dr with ρ̄

disp
i =

∫

ρi(r
′)ωdisp

i (r−r′)dr′ (2.23)

based on the Helmholtz energy density f disp and the weighted densities ρ̄disp
i with weight

functions ωdisp
i for the dispersion contribution. The applied dispersion Helmholtz energy

functional contribution was developed by Sauer and Gross 67, based on preceding work by
Ye et al. 72 and Shen et al. 73–75. Their work is based on the bulk equation of state (with
parameters mi, σi, and εi) by approximating the dimensionless Helmholtz energy density
as76,77 β f disp({ρ̄disp

i }) ≈ ρ̄
dispãdisp({ρ̄disp

i }), with the reduced Helmholtz energy ãdisp of the
dispersion contribution (cf. eq. (2.14)). The weighted density approximation now reads

βFdisp [{ρi(r)}] =
∫

ρ̄disp(r)ãdisp({ρ̄disp
i (r)})dr (2.24)

with the weighted densities for the dispersion contribution defined by

ρ̄
disp
i (r) =

∫

ρi(r
′)ωdisp

i (r− r′)dr′ with ω
disp
i (r) =

3
4πψ3d3

i
Θ(ψdi − |r|) (2.25)
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2 Modeling of Equilibrium Properties and the Dynamics of Inhomogeneous Fluids

where ψ= 1.3862 is a model constant that defines the size of the sphere in which the density
is averaged67. This weighted density approach can be applied not only to fluid-fluid but
also to fluid-solid interfaces41,42,67. This presents a significant advantage over previously
developed Helmholtz energy functionals for the dispersion contribution based on the PC-SAFT
equation of state39,40,78 which were derived from an inhomogeneous perturbation approach.
By using the bulk formulation of the Helmholtz energy density, the approach in eq. (2.24)
recovers the bulk description for homogeneous profiles∗.
The multipolar interactions are modeled using the same approach applied to the dispersion
interactions in eqs. (2.24) and (2.25), using a weighted density approximation with the same
weighted densities and a reduced bulk Helmholtz energy density (incorporating the bulk
parameters for the molecular dipoles µ̆i and quadrupoles Q i)†. Due to this simple procedure
it is not possible to resolve the orientational structure at inhomogeneities typical for polar
components. Helmholtz energy functionals considering orientational degrees of freedom
were proposed by Frodl and Dietrich 79–82.
The work of Yu and Wu 83 proposes a perturbation theory for inhomogeneous associating
fluids based on Wertheim’s thermodynamic perturbation theory35–38,84,85 with a hard-sphere
reference. The contribution to the Helmholtz energy functional is formulated as a weighted
density approximation using similar weighted densities as FMT. The functional formulation
reads83

βF assoc[{ρi}] =
∫ Nc
∑

i=1

n0,i(r)

mi
ζi

∑

{Ai}

NAi

�

ln
�

χAi(r)
�

−
χAi(r)

2
+

1
2

�

dr (2.26)

with the different types of association sites Ai of component i, the number of association
sites NAi

of type A on component i, the fraction of non-bounded association sites χAi of
type Ai (which in turn depends on the bulk parameters for the strength of the association
interactions εAi B j and the association volumes κAi B j ; in general χAi must be determined
iteratively22,86), and the FMT-like component-wise weighted densities

nα,i(r) = mi

∫

ρi(r
′)ωαi (r− r′)dr′ (2.27)

for α ∈ {0,2, 3,V2} and the elementary FMT weight functions from eq. (2.18) with the
shorthand ζi = 1− nV2,i ·nV2,i

n2
2,i

. The weighted densities used in FMT are recovered by summation
of all components nα =

∑Nc

i nα,i.
∗This is not always the case as the simple and popular mean-field approach would not be able to recover the
bulk description of PC-SAFT, for example.

†For a complete description of the procedure consult Sauer and Gross 67 .
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2.2 Dynamic Density Functional Theory

A further formulation for inhomogeneous associating chain fluids was developed by By-
master and Chapman 87. Their approach is computationally more involved, requiring more
complicated internal iterations for determining the the fraction of non-bounded association
sites χAi , which is why for a DDFT approach I prefer the approach of Yu and Wu 83 , eqs. (2.26)
and (2.27).

2.2 Dynamic Density Functional Theory

The dynamic processes in this work are described by DDFT, combining hydrodynamics and
microscopic theories of fluids. DDFT can be rigorously derived from the single-particle phase-
space distribution function using assumptions for the non-equilibrium fluid structure88. This
leads to continuum balance equations for density and velocity with the familiar transport
coefficients: shear viscosity and Maxwell-Stefan diffusion coefficients, as discussed in the
following section 2.3. Density and velocity are the two lowest hydrodynamic moments of
the single-particle phase-space distribution function. It is assumed that the consideration of
the lowest hydrodynamic moments is sufficient, since the thermodynamic non-equilibrium
is not very pronounced in the considered cases within this work. This distinguishes DDFT
from similar microscopic non-equilibrium descriptions using the single-particle phase-space
distribution functions by truncating or approximating the Bogoliubov-Born-Green-Kirkwood-
Yvon11,12,89–91 (BBGKY) hierarchy∗.
The DDFT models considered in this work are deterministic microscopic descriptions of
the hydrodynamic variables density (and velocity) using balance equations very similar to
the macroscopic isothermal diffusion (or Navier-Stokes) equation. DFT, as portrayed in
section 2.1.1, describes equilibrium density profiles as averages of microscopic molecular
coordinates in the grand canonical ensemble. In contrast, DDFT describes non-equilibrium
ensemble averages of density and velocity profiles ρi(r, t) and v(r, t), respectively. The time-
evolution of these non-equilibrium averages can be understood as ensemble averages of
different microscopic systems with different microscopic trajectories (of molecule position
and potentially orientation and conformation).
The first to rigorously derive such amodel for spherical particles were Marconi and Tarazona 94,

95, deriving a DDFT for dense and highly structured systems where hydrodynamic modes
become irrelevant and the density profile remains as the only relevant variable. Their
∗This leads, for example, to the Boltzmann equation92,93 and the numerous methods derived from it.
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2 Modeling of Equilibrium Properties and the Dynamics of Inhomogeneous Fluids

derivation starts from the stochastic equations for Brownian motion

∂ ri

∂ t
= −Γ∇ri

�

N
∑

j=1

φ(2)(ri − r j) + V ext(ri)

�

+ ξi(t) (2.28)

with the particle position ri of particle i, the mobility of each particle Γ , the pair and external
potential φ(2) and V ext, respectively, and the stochastic noise vectors ξi. Considering solely
Brownian dynamics limits the applicability of the resulting model to the description of
relaxational dynamics, e.g., systems of colloidal Brownian particles in a solvent (heat bath),
where the local velocity distribution function is close to Maxwellian and the density profile
varies slowly in time (much slower than the velocity profile)94–96. By taking the ensemble
average of the microscopic particle positions, similar to eq. (2.1), a deterministic equation
for the isothermal density profile is obtained. This takes the form of an isothermal diffusion
equation, namely

∂ ρ

∂ t
=∇ ·

�

ρDself∇
�

δβF
δρ

+ βV ext
��

(2.29)

with time t, self-diffusion coefficient Dself connected to the mobility Γ via the Einstein-Smolu-
chowski relation βDself = Γ , the functional derivative of the Helmholtz energy functional δF

δρ ,
and the external potential V ext. The gradient of the pair potential in eq. (2.28) of the
non-equilibrium system is used in conjunction with an artificial equilibrium state induced
by an additional instantaneous external potential Uad,t(r). This is a hypothetical external
potential that would be necessary to obtain the instantaneous density profile in a hypothetical
equilibrium state ρad,t(r), that is identical to the instantaneous density ρ(r, t) of the dynamic
process. This allows the use of the YBG hierarchy1,11–13, described in eq. (2.12b), which
for an instantaneous equilibrium density profile ρad,t(r) at time t interacting only via pair
potentials reads

−
1
β
∇ρad,t(r)−ρad,t(r)∇

�

V ext(r) + Uad,t(r)
�

=

∫

ρ(2),ad,t(r, r′, [ρad,t])∇rφ
(2)(r, r′)dr′ (2.30)

The assumption of instantaneous equilibrium profiles, in combination with the equilibrium
definitions of the one-particle direct correlation function and the functional derivative from
eqs. (2.12) and (2.13), leads to the appearance of the functional derivative in eq. (2.29).
This assumption implies that correlation functions at any given instant are identical to the
correlation functions of the equilibrium system with the same density profile. This is usually
referred to as adiabatic approximation∗.
∗This term, like many in classical DFT, is borrowed from quantum mechanics, where it refers to a dynamical
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2.2 Dynamic Density Functional Theory

In contrast to the stochastic description in eq. (2.28), the deterministic DDFTmodel can exhibit
some shortcomings94,95. If the functional derivative of the Helmholtz energy landscape of the
non-equilibrium density profile possesses local minima (metastable states), the deterministic
equation might get trapped in such a state. The stochastic equation is able to escape said
minimum. Also, the DDFT model describes the time evolution of a grand canonical system
with constant ensemble average of the particle number 〈N〉Ξ. The effect of the surrounding
particle reservoir leads to a faster relaxation of the system compared to the purely canonical
description in eq. (2.28), where these interactions do not occur. This effect is most prominent
in small systems98, noting that averages in the grand canonical and the canonical ensemble
become identical in the thermodynamic limit.
Equation (2.29) can be understood as a diffusion equation99, described by

∂ ρ

∂ t
= −∇ · j with j= −ρDself∇µ (2.31)

with particle flux j using the gradient of the chemical potential µ for the non-equilibrium
density profile defined by the result of equilibrium DFT, eq. (2.10), while the fluid structure
is held in equilibrium by the vanishing instantaneous external potential Uad,t(r). This means
that the density profile evolves through equilibrium states of the fluid structure. From linear
non-equilibrium thermodynamics100 (which assumes local thermodynamic equilibrium) it is
expected that the particle flux can be described by j = −L∇µ, with the phenomenological
Onsager coefficient L. This illustrates what local thermodynamic equilibrium (local validity of
the Gibbs-equation) means in this case: the fluid structure must be in a state of equilibrium.
While Brownian and Newtonian dynamics give the same result for t →∞, eq. (2.29) results
from the assumption that the system under consideration can be described by Brownian
dynamics, reducing the applicability to atomic/molecular fluids where the microscopic dy-
namics is Newtonian. Newtonian dynamics is accounted for in the derivation of a DDFT
model for spherical particles considering inertia by Archer 88 , who used Newton’s equation of

system that develops so slowly that it can be considered to be in an equilibrium state. A famous example
is the Born-Oppenheimer approximation97. In classical mechanics it refers to processes that are much
slower than the time scale of temperature equilibration, and in classical thermodynamics the equivalent is a
quasi-static process.
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motion to describe a system of N identical particles via

∂ ri

∂ t
=

pi

m̌
(2.32a)

∂ pi

∂ t
= −∇ri

 

N
∑

j=1

φ(2)(ri, r j) +
N
∑

j=1

N
∑

k> j

φ(3)(ri, r j, rk) + . . .+ V ext(ri, t)

!

− γpi + ξi(t)

(2.32b)

with the linear momentum vectors pi = m̌vi (with mass m̌ and the velocities vi) of particle i,
the friction coefficient γ= 1

m̌Γ which is reciprocally proportional to themobility of the particle Γ ,
cf. eq. (2.28), and the stochastic noise vectors ξi. Two- and three-body interparticle potentials,
φ(2) and φ(3), are explicitly depicted here while higher multi-body potentials are indicated by
‘+ . . .’. In the limiting case of infinite friction coefficients γ, the Brownian equations of motion
for overdamped dynamics (e.g., colloidal particles in a damping solvent), eq. (2.28), can be
recovered from eq. (2.32). In the limit γ→ 0, which also yields ξi → 0 because both terms
are linked by a fluctuation-dissipation relation, eq. (2.32) simplifies to the (deterministic)
Newtonian equation of motion

m̌
∂ 2ri

∂ t2
= −∇ri

 

N
∑

j=1

φ(2)(ri, r j) +
N
∑

j=1

N
∑

k> j

φ(3)(ri, r j, rk) + . . .+ V ext(ri, t)

!

(2.33)

which is suitable to describe atomistic/molecular fluids (without a damping solvent) that can
be described by the Liouville equation13.
Based on eq. (2.32), Archer 88 utilized the first equation of the BBGKY hierarchy11,12,89–91 for
the single-particle phase space distribution function f (1)(r1,p1, t) to obtain a balance equation
for density and linear momentum (the first and second hydrodynamic moment of f (1)) using a
local equilibriumMaxwell-Boltzmann approximation for f (1). Instead of truncating the BBGKY
hierarchy, for example by the Kirkwood superposition approximation101, the full YBG hierarchy
from eq. (2.12) was used. This is the same approach taken by Marconi and Tarazona 94,95,
where the non-equilibrium fluid structure is approximated by the correlation structure of
the fluid of the same instantaneous density profile ρad,t(r) in an artificial equilibrium state.
This leads to an equation structure similar to the isothermal compressible Navier-Stokes
equations88

∂ ρ

∂ t
+∇ · (ρv) = 0 (2.34a)

∂ (m̌ρv)
∂ t

+∇ · (m̌ρvvᵀ) = −ρ∇
�

δF
δρ
+ V ext

�

−η∇2v− γm̌ρv (2.34b)
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2.3 Entropy Scaling for Shear Viscosity & Diffusion Coefficients

with the velocity profile v and shear viscosity η. Archer 88 obtained the viscous contribution
to the pressure tensor for an incompressible colloidal fluid by using a Taylor expanded version
of the Maxwell-Boltzmann distribution.
Using the same approach for colloidal particles by considering inertia but disregarding the
viscous contribution to the pressure tensor, Goddard et al. 102 derived a DDFT model for
mixtures defined by

∂ ρi

∂ t
+∇ · (ρivi) = 0 (2.35a)

∂ (m̌iρivi)
∂ t

+∇ ·
�

m̌iρiviv
ᵀ
i

�

= −ρi∇
�

δF
δρi
+ V ext

i

�

− γim̌iρivi (2.35b)

where each component i is described by its own momentum equation. Although the model
also includes hydrodynamic interactions, they are omitted here for an easier comparison with
eq. (2.34).
The introduced DDFT models can be extended for colloidal systems in solvents by hydrody-
namic interactions103–107 or fluctuations108–111. Fluctuations can be retained in the equations
of motion by coarse-graining instead of rigorous ensemble averaging of the phase space vari-
ables112,113. Both hydrodynamic interactions and fluctuations are disregarded in this work,
because the focus is on atomic/molecular fluids. The presented DDFT models, eqs. (2.29),
(2.34), and (2.35), are based on the approximation of adiabatic dynamics, making them
non-exact in contrast to their equilibrium counterpart. This approximation can be relaxed
by considering superadiabatic forces as introduced in the formally exact power functional
theory114–119, which contains (adiabatic) DDFT as a limiting case. For the systems investi-
gated in this work, superadiabatic forces are not considered under the assumption that the
non-equilibrium effects on the fluid structure are negligible. For a more complete overview of
the entire realm of DDFT, I refer to the review by te Vrugt et al. 120.

2.3 Entropy Scaling for Shear Viscosity & Diffusion Coefficients

The connection between transport coefficients, i.e., shear viscosity η, thermal conductivity
λ, and self-diffusion coefficients Dself,0

i and the residual entropy∗, defined by sres(T, {ρi}) ≡
−kBT

�

�

∂ ãres

∂ T

�

{ρi}
+ ãres

T

�

, was recognized by Rosenfeld 121–123, who also applied it to the scaling
of radial distribution functions124 and perturbation theories125. Entropy scaling states that a
reduced form of the transport coefficients can, to a good approximation, be described by a
univariate function of the reduced molar residual entropy s∗(T, {ρi}). This allows to represent
∗The over ideal gas entropy, obtained from ãres ≡ ã− ãig.
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the complex temperature and density dependence of the reduced transport coefficients as
simple univariate relations for reduced shear viscosity η∗(s∗), thermal conductivity λ∗(s∗),
and self-diffusion coefficients Dself,0,∗

i (s∗).
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η
∗
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(a) Reduced viscosity η∗ over residual entropy s∗.

10−1 100 10110−3
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η
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s
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isotherms

(b) Shear viscosity η over pressure p.

Figure 2.2: Shear viscosity of dimethyl ether126: (a) univariate relation between logarithmic-
reduced shear viscosity η∗ and the reduced residual entropy s∗ for experimental values and the
correlation function obtained from molecular dynamics simulations126; (b) shear viscosity η
as a function of pressure for various temperatures. The shear viscosity in both phases at
vapor-liquid equilibrium is also shown.

The univariate relation between reduced transport coefficients and reduced residual entropy,
obtained from the PC-SAFT equation of state, is shown exemplarily for the viscosity in
figure 2.2(a). The simple univariate relation indicated by the correlation function for η∗(s∗)
is able to approximate the more complex shear viscosity behavior shown in figure 2.2(b).
The same approach is applicable for self-diffusion coefficients with a different correlation
function for Dself,0,∗

i (s∗). The application of entropy scaling for pure fluids and mixtures
in combination with the PC-SAFT equation of state16–20 was performed for viscosities by
Lötgering-Lin et al. 127–129, and for thermal conductivities and self-diffusion coefficients by
Hopp et al. 130–134.
The shear viscosity η∗(s∗) and the self-diffusion coefficients Dself,0,∗

i (s∗) are modeled by

ln(η∗) = ln
�

η

ηCE

�

= f̆ (s∗) (2.36a)

ln(Dself,0,∗
i ) = ln

�

ρDself,0
i

ρDself,0
i,CE

�

= ğ(s∗) (2.36b)

where the transport coefficients η and Dself,0
i are reduced by their Chapman-Enskog counter-

24



2.3 Entropy Scaling for Shear Viscosity & Diffusion Coefficients

parts135,136, ηCE and Dself,0
i,CE . The univariate correlation functions f̆ (s∗) and ğ(s∗) depend only

on the reduced residual entropy s∗ = sres(T,{ρi})
kBm̄ , reduced by the Boltzmann constant kB and the

average chain-length parameter of the PC-SAFT equation of state m̄=
∑Nc

i x imi defined using
the mole fractions x i and number of segments per chain mi of component i. The correlation
functions are parameterized such that the resulting transport coefficients match experimental
or simulation data of pure components126,127,133. The shear viscosity of mixtures can be
obtained using combining rules for the parameters of the correlation function f̆ .
The Maxwell-Stefan diffusion coefficients can be obtained from the self-diffusion coefficients
using the combined methods of Zmpitas et al. 137, Liu et al. 138, Darken 139 and Sridhar 140.
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3 Guide to Efficient Solution of PC-SAFT Classical Density

Functional Theory in Various Coordinate Systems Using Fast

Fourier and Similar Transforms

The content of this chapter is a literal quote of the publication:
R. Stierle, E. Sauer, J. Eller, M. Theiss, P. Rehner, P. Ackermann, and J. Gross. Guide to efficient Solution
of PC-SAFT classical Density Functional Theory in various Coordinate Systems using fast Fourier and
similar Transforms. Fluid Phase Equilibria, 504:112306, 2020. doi:10.1016/j.fluid.2019.112306

Abstract

Classical density functional theory (DFT) is a powerful tool for studying solvation or problems
where resolution of interfacial domains or interfacial properties among phases (or thin films)
is required. Many interesting problems necessitate multi-dimensional modeling, which calls
for robust and efficient algorithmic implementations of the Helmholtz energy functionals.
A possible approach for achieving efficient numerical solutions is using the convolution
theorem of the Fourier transform. This study is meant to facilitate research and application
of DFT methods, by providing a detailed guide on solving DFT problems in multi-dimensional
domains. Methods for efficiently solving the convolution integrals in Fourier space are
presented for Cartesian, cylindrical, and spherical coordinates. For cylindrical and spherical
coordinate systems, rotational and spherical symmetry is exploited, respectively. To enable
easy implementation, our approach is based on fast Fourier, fast Hankel, fast sine and cosine
transforms on equidistant grids, all of which can be applied using off-the-shelf algorithms.
Subtle details for implementing algorithms in cylindrical and spherical coordinate systems
are emphasized. The work covers functionals based on weighted densities exemplarily.
Functionals according to fundamental measure theory (FMT) as well as a Helmholtz energy
functional based on the perturbed-chain statistical associating fluid theory (PC-SAFT) equation
of state are worked out in detail (and given as supporting information†).
†in appendices A and B
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3 Efficient Solution of PC-SAFT Density Functional Theory Using Fast Integral Transforms

3.1 Introduction

Efficient numerical solution of convolution integrals is important for solving classical density
functional theory (DFT) or dynamic density functional theory (DDFT) in multidimensional
problems. The solution of a DFT model, namely the densities of all species, is obtained
iteratively. The computational demand for the iterative solution is the repetitive computation
of numerous convolution integrals. Naïve numerical convolution through integration leads to
long computation times and complicated integration schemes, especially for multidimensional
DFT problems. One approach to address this problem is the utilization of the convolution
theorem of the Fourier transform. The O(N log N) computational complexity of fast Fourier
transform (FFT) algorithms (compared to O(N 2) for numerical convolution) leads to a signifi-
cant advantage regarding computational performance. Additionally, working with integral
transforms like FFT simplifies multidimensional convolutions, because each dimension can
be treated separately which averts multidimensional integration schemes.
Several authors applied integral transforms to convolution integrals appearing in DFT. Kne-
pley et al. 1 used the FFT approach for convolutions in a DFT for ionic solutions. A short
introduction to usage of FFT for Rosenfeld’s fundamental measure theory2 (FMT) was also
given. Frink et al. 3,4 proposed Fourier space convolution on a multidimensional Cartesian
grid in combination with nonlinear iterative solvers and Sears and Frink 5 proposed using
FFT in combination with a matrix-free scheme and compared computational efficiency for
one-, two- and three-dimensional systems. Hlushak et al. 6 employed the FFT on a two-
dimensional Cartesian grid to analyze flexible chain molecules at curved surfaces, whereas
Hlushak et al. 7,8 studied attractive particles in nanopores. While analyzing rotationally sym-
metric systems, rotational symmetry was not exploited in the computation of the convolution
integrals, leading to unnecessary computational overhead. Oettel et al. applied the Fourier
convolution approach within the framework of three-dimensional FMT and compared results
to those obtained by phase-field models10 and Monte Carlo simulations9. A similar analysis
of crystal structures and solid-liquid interfaces using three-dimensional FMT combined with a
Helmholtz energy contribution to account for attractive interactions was conducted by Wang
et al. 11. Solvation effects in water were studied by Levesque et al. 12; solvation energies of
amino acid side chains by Liu et al. 13 , both by three-dimensional DFT. Zhou et al. 14 applied
three-dimensional Cartesian DFT to heterogeneous nucleation of Lennard-Jones fluids on
solid walls.
For cylindrical systems, rotational symmetry can be exploited to reduce dimensionality of the
DFT problem. In one-dimensional cylindrical coordinates, González et al. 15 proposed using
the Hankel transform for computation of the convolution in Fourier space. The fast Hankel
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3.1 Introduction

transform was not employed, however. Malijevský 16 and Mariani et al. 17 took advantage of
rotational symmetry to formulate the convolution integrals of FMT for cylindrical coordinates
in real space. In Fourier space this was done by Boţan et al. 18 for the analysis of hard-sphere
fluids in annular wedges. In cylindrical coordinates the Fourier transform can not be computed
using FFT, but requires a, preferably fast, Hankel transform algorithm for the radial direction.
Boţan et al. 18 reformulated the DFT problem on a logarithmic grid to apply a fast Hankel
transform.
Spherical symmetry can be exploited to efficiently compute spherical DFT systems in one
dimension. This was applied by González et al. 15 to hard spheres in a spherical cavity, utilizing
Fourier space convolution. For FMT in spherical coordinates projection of the weight functions
onto one dimension was described by Roth 19.
Convolution in Fourier space by exploiting the FFT or similar algorithms is not the only
approach to speed up the computation of the convolution integrals appearing in DFT problems.
Yatsyshin et al. introduced a Chebyshev pseudo-spectral collocation method in combination
with Clenshaw-Curtis quadrature for computation of the convolution integrals in one20 and
two dimensions21 of a Cartesian grid, extended by Nold et al. 22 . Contrary to FFT convolution,
equidistant grid spacing is not required, but possible. Problem-specific grid spacing has
potential to reduce computational effort. Xu and Cao 23 used a two-dimensional multiscale
finite element approach to reduce computational complexity for the convolution integrals.
Computation time, of course, not only depends on the performance of the Helmholtz functional
computation and the involved convolution integrals but also depends on the algorithm used
to solve the system of nonlinear equations as well. Previous work on numerical algorithms
can be found in Frink et al. 3,4, Kovalenko et al. 24, Frink and Salinger 25,26, Frink et al. 27, a
comparison of different nonlinear solvers in Mairhofer and Gross 28.
Classical DFT or DDFT are theoretical approaches that carry molecular detail through averaged
quantities. DFT approaches are predictive when a suitable Helmholtz energy functional is ap-
plied. We aim at applying FFT convolution to a functional consistent with the perturbed-chain
statistical associating fluid theory (PC-SAFT) equation of state29,30. The PC-SAFT equation of
state is formulated in terms of the Helmholtz energy allowing easy generalization to Helmholtz
energy functionals. PC-SAFT provides good descriptions of thermodynamic properties in
bulk phases for a wide variety of real substances and mixtures, including components of
low molecular mass30, but also complex species like polymers31 or associating substances32.
The underlying molecular model regards molecules as hard chains with attractive van der
Waals segment-segment interactions or hydrogen-bonding (associating)32–37 or dipolar and
quadrupolar interactions38–40. Several approaches combining PC-SAFT and DFT have been
proposed. Gross 41 described a DFT for pure substances which was generalized by Klink and
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Gross for mixtures and successfully applied to vapor-liquid42, liquid-liquid interfaces43. Klink
et al. 44 and Lamanna et al. 45 applied this PC-SAFT DFT to interfacial transport resistivities.
Sauer and Gross 46 suggested a Helmholtz energy functional for the dispersion contribution
based on a weighted density approximation suitable for confined systems, predicting phys-
ical phenomena like surface tension, contact angles47 and adsorption isotherms. Similar
approaches were taken by Shen et al. 48,49, Ye et al. 50 and Xu et al. 51.
This work provides a practical guide to implementing and solving DFTmodels that are based on
weighted densities. Wewish to facilitate the use of DFT approaches in engineering applications.
More specifically we demonstrate implementation of the ideal gas, hard-sphere, hard-chain
and dispersion contribution of PC-SAFT DFT in Cartesian, cylindrical and spherical coordinate
systems. We use the FFT algorithm for Cartesian coordinates and the axial contribution
to cylindrical systems, the fast Hankel transform is applied for the radial contribution to
cylindrical systems and the fast sine and cosine transform is adopted for systems described in
spherical coordinates. In contrast to previous work using cylindrical coordinates18, we apply
the fast Hankel transform of Hansen 52,53 , which allows computation of Hankel transforms on
equidistant (rather than logarithmic) grids by using a combination of fast Abel54 and fast sine
and cosine transforms. Equidistant grids reduce computational overhead because a smaller
number of overall grid points is usually possible, while maintaining the same worst-case grid
density as compared to logarithmic grids. Fourier space convolution is easier to implement
than naïve real space convolution, which allows writing robust simulation codes.
The general procedure is shown for weighted density approximations in the main part of
this work. A detailed description of equations for Helmholtz energy functionals based on the
PC-SAFT equation of state is provided in the supporting information∗, including functional
derivatives of the model as well as a comprehensive introduction to Fourier space convolution.

3.2 Classical Density Functional Theory

The starting point for classical DFT is the grand potential functional Ω, which, for a mixture
of Nc components is written as

Ω[{ρi(r)}] = F[{ρi(r)}] +
Nc
∑

i=1

∫

ρi(r)
�

V ext
i (r)−µi

�

dr (3.1)

with Helmholtz energy functional F , chemical potential µi of component i and the external
potential V ext

i , acting on component i. Although not made explicit in this notation, the
∗in appendix A
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specified variables of Ω are temperature T , volume V , and chemical potentials µi of all species.
Square brackets denote a functional dependence and curly brackets around {ρi(r)} indicate
a vector of all densities within a mixture, i = 1, . . . , Nc.
In equilibrium the grand potential functional is minimal and the value of the grand potential
functional reduces to the grand potential Ω0 = Ω[{ρ0

i }]. The minimum implies, that for
the equilibrium density profile {ρ0

i (r)}, the functional derivatives of the grand potential
functional Ω with respect to the density profiles {ρi(r)} vanish according to

δΩ[{ρi}]
δρ j(r)

�

�

�

�

{ρ0
i (r)}
= 0 (3.2)

which leads to the main equation of DFT

δF[{ρi}]
δρ j(r)

= µ j − V ext
j (r) ∀ j (3.3)

that can be solved for the density profiles {ρ0
i (r)} in the considered volume, provided a model

for the Helmholtz energy functional is available.

3.2.1 Weighted Density Approximation Functionals

Weighted density approximation functionals can be constructed generically as

βF[{ρi(r)}] =
∫

Φ({nα(r),nβ(r)})dr (3.4)

where α ∈ {1, . . . } is a generic index that denotes the scalar-valued weighted densities and
β ∈ {V1, . . . } points at the vector-valued weighted densities, with βF = F

kBT , where kB is
the Boltzmann constant, and with the reduced Helmholtz energy density Φ, which is solely
a function of the weighted densities nα,β . The weighted densities nα,β are calculated via
convolution of the density profile {ρi} as

nα,β(r) =
Nc
∑

i=1

∫

ρi(r
′)ωα,β

i (r− r′)dr′ ≡
Nc
∑

i=1

ρi(r)⊗ω
α,β
i (r) (3.5)

The respective weight functions ωαi are typically defined as functions including Heaviside
step functions Θ, Dirac delta functions δ, or derivatives thereof δ′ as shown for scalar-valued
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weight functions

ωαi (r)∝ Θ(Ri − |r|) (3.6a)
ωαi (r)∝ δ(Ri − |r|) (3.6b)
ωαi (r)∝ δ′(Ri − |r|) (3.6c)

Vector-valued weight functions are expressed as combinations of the previous weights with
the position vector r as

ω
β

i (r)∝
r
|r|
ωαi (r) (3.7)

For the case of eq. (3.6a) one averages over a spherical volume, whereas for the case of
eq. (3.6b), the weighting is defined on the surface of a sphere with radius Ri. The functional
derivative is calculated as

δβFhs[{ρi}]
δρ j(r)

=

∫

δΦ

δρ j(r)
dr′ =

∫

∑

α,β

∂Φ

∂ nα,β(r′)
·
δnα,β(r′)

δρ j(r)
dr′ (3.8)

with the functional derivative of the weighted densities according to

δnα,β(r′)

δρ j(r)
=

δ

δρ j(r)

Nc
∑

i=1

∫

ρi(r
′′)ωα,β

i (r
′ − r′′)dr′′

=
Nc
∑

i=1

∫

δi jδ(r
′′ − r)ωα,β

i (r
′ − r′′)dr′′ =ωα,β

j (r
′ − r) (3.9)

with δi j as the Kronecker delta and δ as the Dirac delta function. Substitution of eq. (3.9) in
eq. (3.8) allows the functional derivative to be rewritten as a sum of convolution integrals
according to

δβFhs[{ρi}]
δρ j(r)

=
∑

α,β

∫

∂Φ

∂ nα,β
ω
α,β
j (r

′ − r)dr′ =
∑

α

∂Φ

∂ nα
⊗ωαj −

∑

β

∂Φ

∂ nβ
⊗ωβj (3.10)

The scalar-valued weight functions are even, with

ωαi (r
′ − r) =ωαi (r− r′) for α ∈ {1, . . . } (3.11)
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while the vector-valued weight functions are odd functions

ω
β

i (r
′ − r) = −ωβi (r− r′) for β ∈ {V1, . . . } (3.12)

leading to the minus signs in eq. (3.10).

3.3 Fourier Space Convolutions

Weighted density approximation functionals and functional derivatives can be calculated
efficiently in Fourier space, by making use of the convolution theorem of the Fourier transform.
In this section, we show how to compute the required Fourier transforms in various coordinate
systems using off-the-shelf FFT, fast Hankel, fast sine/cosine transform algorithms.
We show the procedure by considering weighted densities as convolutions of density ρi with
weight function ωi. One transforms the density profile ρi to Fourier space using a discrete
transform scheme and, after multiplication in Fourier space with the analytically transformed
weight function, transforms the result back to real space using the inverse discrete transform
scheme according to

nα,β(r) =

∫

ρi(r
′)ωα,β

i (r− r′)dr′ = ρi(r)⊗ω
α,β
i (r)

= F−1
�

F [ρi(r)]F
�

ω
α,β
i (r)

��

= F−1
�

ρ̂i(k)ω̂
α,β
i (k)

�

(3.13)

with the Fourier space vector k, and introducing the Fourier transform F and inverse Fourier
transform operator F−1. The circumflex (ˆ) above quantities indicates them being the Fourier
transforms of the respective quantity.
The scalar-valued weight functions in Fourier space, eq. (3.6), are obtained using

ω̂αi (k) = F
�

ωαi (r)
�

(3.14)

The vector-valued weight functions in Fourier space can be described by

ω̂
β

i (k)∝−ikω̂αi (k) (3.15)

where the position vector r
|r| in eq. (3.7) transforms to (−ik) in Fourier space, with the

imaginary unit i .
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3.3.1 Convolution in Cartesian Coordinates

For Cartesian coordinates we substitute r = [x , y, z]ᵀ and k = [kx , ky , kz]ᵀ. The Fourier
transform of the density profiles is computed as

ρ̂i(kx , ky , kz) = FxFyFz [ρi(x , y, z)] (3.16)

just as presented in appendix B.2 in eq. (B.11). For computation of the scalar-valued weighted
densities

nα(x , y, z) =
Nc
∑

i=1

F−1
x F−1

y F−1
z

�

ρ̂i(kx , ky , kz)ω̂
α
i (kx , ky , kz)

�

(3.17)

the inverse Fourier transform for scalar functions, eq. (B.12), is needed. For the vector-valued
weighted densities we use the vector-valued weight functions in Fourier space from eq. (3.15).
The inverse Fourier transform is obtained as

nβ(x , y, z) =
Nc
∑

i=1

F−1
�

−ikω̂αi (k)ρ̂i(k)
�

(3.18)

with

F−1
�

−ikω̂αi (k)ρ̂i(k)
�

=







F−1
x F−1

y F−1
z

�

−i kx ω̂
α
i (kx , ky , kz)ρ̂i(kx , ky , kz)

�

F−1
x F−1

y F−1
z

�

−i ky ω̂
α
i (kx , ky , kz)ρ̂i(kx , ky , kz)

�

F−1
x F−1

y F−1
z

�

−i kz ω̂
α
i (kx , ky , kz)ρ̂i(kx , ky , kz)

�






(3.19)

using the inverse Fourier transform for vector-valued functions from eq. (B.19). The convolu-
tion integrals of the Helmholtz energy density derivatives ∂Φ

∂ nα
with the weight functions ωαi

are computed similarly.
The scalar-valued convolution integrals in eq. (3.10) are obtained using the scalar inverse
Fourier transform from eq. (B.12), leading to

∂Φ

∂ nα
⊗ωαi = F−1

x F−1
y F−1

z

�

ˆ∂Φ
∂ nα
(kx , ky , kz)ω̂

α
i (kx , ky , kz)

�

(3.20)

with the scalar Fourier transform of the partial derivative of the Helmholtz energy density,
eq. (B.11), computed according to

ˆ∂Φ
∂ nα
(kx , ky , kz) = FxFyFz

�
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∂ nα
(x , y, z)

�

(3.21)
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The vector-valued convolution integrals in eq. (3.10) can be handled using the inverse Fourier
transform of scalar-valued functions, eq. (B.12), leading to

∂Φ
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(3.22)

where the dot product in Fourier space is used, calculated according to
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(3.23)

whereby the vector-valued weight functions, eq. (3.15), in Fourier space in each direction are
defined as

ω̂
β

i |kx
(kx , ky , kz) = −i kxω̂

α
i (kx , ky , kz) (3.24a)

ω̂
β

i |ky
(kx , ky , kz) = −i kyω̂

α
i (kx , ky , kz) (3.24b)

ω̂
β

i |kz
(kx , ky , kz) = −i kzω̂

α
i (kx , ky , kz) (3.24c)

The vector-valued Fourier transform, eq. (B.16), of the vector-valued derivatives of the reduced
Helmholtz energy yields
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(3.25)

3.3.2 Convolution in Cylindrical Coordinates

We regard problems in cylindrical coordinates with angular symmetry, leading to two-dimen-
sional problems. The presented formalism follows Boţan et al. 18 , but instead of separating the
external potential to obtain vanishing boundary conditions, we separate the density profile
directly. The fast Hankel transform algorithm used for computing the Fourier transform
requires the function to vanish for large values of the radial coordinate r. That is why we
decompose the density profile into a part that approaches zero at large r = rmax and a part
that only depends on the axial coordinate according to

ρi(r, z) = ρ∆i (r, z) +ρ∞i (z) (3.26)
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The contribution that shifts the density profiles is defined at the r-boundary ρ∞i (z) ≡
ρi(r = rmax, z). The remaining contribution ρ∆i (r, z) is well-behaved for a treatment with
the fast Hankel transform.
The Fourier transform of the density profiles is computed according to eq. (B.29) as presented
in appendix B.2

ρ̂i(kr , kz) = FzH0

�

ρ∆i (r, z)
�

+Fz

�

ρ∞i (z)
� δ(kr)

2πkr
(3.27)

with the Hankel transform of order zero H0. The solely z-dependent contribution ρ∞i is
transformed via a Fourier transform in z-direction, while the analytical Hankel transform in
the constant r-direction yields δ(kr )

2πkr
.

The scalar-valued weighted densities nα, are calculated using the inverse Fourier transform
for scalar functions, eq. (B.30), leading to

nα(r, z) =
Nc
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z H−1

0

�

ρ̂∆i (kr , kz)ω̂
α
i (kr , kz)

�

+F−1
z

�

ρ̂∞(kz)ω̂
α
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� �

(3.28)

For the vector-valued weighted densities we use the vector-valued weight functions from
eq. (3.15). The inverse Fourier transform is obtained as

nβ(r, z) =
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(3.29)

with the Hankel transform of zeroth and first order, H0 and H1, respectively. For this result
we made use of the inverse Fourier transform for vector-valued functions, eq. (B.45). The
convolution integrals of the Helmholtz energy density derivatives ∂Φ

∂ nα,β
with the weight

functions ωα,β
i are computed similarly. The partial derivatives ∂Φ

∂ nα,β
at the r-boundary do not

approach zero in general. Analogous to eq. (3.26), we therefore shift the profile by splitting
the partial derivatives into a r- and z-dependent contribution ∂Φ∆

∂ nα,β
(r, z), which approaches

46



3.3 Fourier Space Convolutions

zero at the r-boundary, and the z-dependent value at the r-boundary ∂Φ∞

∂ nα,β
(z) according to

∂Φ

∂ nα,β
(r, z) =
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For the scalar terms one obtains
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(3.31)

using the scalar inverse Fourier transform from eq. (B.30). With the scalar Fourier transform
of the partial derivative of the Helmholtz energy density, eq. (B.29), according to
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(3.32)

For the vector-valued contributions we have
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where the expression in angular brackets results from the dot product in Fourier space
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requiring the weight functions from eq. (3.15)
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α
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using the inverse Fourier transform for scalar functions from eq. (B.30). Equation (3.33) fur-
ther requires the vector-valued Fourier transform, eq. (B.38), of the vector-valued derivatives
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(3.36)
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Combining eqs. (3.35) and (3.36) in eq. (3.33) we obtain for the vector-valued contributions
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3.3.3 Convolution in Spherical Coordinates

The fast sine/cosine transform algorithms used for computing the Fourier transform in
spherical coordinates require the function to vanish for large values of r. If the density
profiles ρi(r) do not approach zero, we define shifted profiles ρ∆i (r) which do approach zero
at large radial distances r = rmax by splitting the density profile

ρi(r) = ρ
∆
i (r) +ρ

∞
i (3.38)

into a r-dependent contribution ρ∆i (r), vanishing at the boundary, and the constant value
at the boundary ρ∞i (r = rmax). The Fourier transform of the density profiles is computed as
presented in appendix B.2 according to eq. (B.53) while the constant boundary value can be
computed analytically, leading to

ρ̂i(kr) =
2
kr
SIN

�

ρ∆i (r) r
�

+ρ∞i δ(kr) (3.39)

The scalar-valued weighted densities nα, are then calculated based on the inverse Fourier
transform for scalar functions, eq. (B.54), leading to
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(3.40)

For the vector-valued weighted densities we use the vector-valued weight functions, eq. (3.15),
and transform them back to real space using the inverse Fourier transform for vector-valued
functions from eq. (B.72). For the vector-valued weight functions

nβ(r) =
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(3.41)

the convolution with the constant value from shifting the density profile vanishes due to
ω̂
β

i (kr = 0) = 0. The convolution integrals of the Helmholtz energy density derivatives ∂Φ
∂ nα,β

with the weight functions ωα,β
i are computed similarly. If the partial derivatives ∂Φ

∂ nα,β
do not
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vanish, we shift the profile to zero by splitting the partial derivatives into a r-dependent
contribution ∂Φ∆

∂ nα,β
(r), vanishing at the boundary, and the constant value at the boundary ∂Φ∞

∂ nα,β

according to
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For the scalar terms one obtains
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using the scalar inverse Fourier transform from eq. (B.54). With the scalar Fourier transform
of the partial derivative of the Helmholtz energy density, eq. (B.53), obtained from
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For the vector-valued derivatives we compute the dot product
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in Fourier space, the convolution with the constant value from shifting the density profile
vanishes due to ω̂βi (kr = 0) = 0. The weight functions, eq. (3.15), are obtained from
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In real space, this results in
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with the inverse Fourier transform for scalar functions, eq. (B.54). With the vector-valued
Fourier transform, eq. (B.63), of the vector-valued derivatives obtained from
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Combining the above equations for the vector-valued convolution, we obtain
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3.4 From Integral Transform to Discretized Representation

In this section, we discuss the transition from continuous integral transforms to discrete
representations of the inhomogeneous field variables (e.g., ρi). For Cartesian coordinates,
the fast Fourier transform is used. For cylindrical coordinates we apply a combination of the
fast Fourier and the fast Hankel transform (from a combination of fast Abel and fast Fourier
transform, appearing as fast sine and cosine transform). For spherical coordinates the fast sine
and cosine transforms are utilized. Because the weight functions from the weighted density
approaches ωi are transformed to Fourier space analytically, we also show the connection of
the r-grid in real space to the k-grid in Fourier space. The fast Fourier, fast sine and fast cosine
transforms are taken from FFTPACK 55,56, while the fast Abel transform follows Hansen 53

and Hansen and Law 54, described in detail in appendix B.4. Strategies to minimize Gibbs
phenomenon are presented in appendix B.6.

3.4.1 Cartesian Grid

N = 8 ∆z

1 2 3 4 5 6 7 8

z1 z2 z3 z4 z5 z6 z7 z8

Lout,z Lin,z Lout,z

Ltot,z

Figure 3.1: Schematic equidistant Cartesian grid with N = 8 grid points and grid spacing ∆z.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements zi. The density
profiles are computed on the inner domain Lin,z, while the buffer zones Lout,z compensate the
periodic continuation of the FFT and serve as boundary conditions.

For Cartesian coordinates, we use the FFT in each dimension. A schematic grid is visualized in
figure 3.1. FFT algorithms require real space samples evaluated on an equidistant grid. Even
though a physical problem may be non-periodic in the domain of interest Lin,z, fast Fourier
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transforms will treat the considered domain as is it was surrounded by infinitely many (i.e.,
periodic) images of itself. To suppress the unwanted effect of periodic copies of the regarded
domain, definition of a buffer region Lout,z on each side of the domain is needed. The two
outer buffer regions Lout,z also serve as constant boundary conditions for the evaluation of
the weighted densities at the boundary. Due to the functional nature of the problem a buffer
domain is required as boundary condition, in contrast to boundary conditions for functions
where information about a single point is sufficient.

3.4.1.1 Grid and Boundary Conditions

We thus consider a grid covering three domains, the two outer buffer domains with length
Lout,z, and the inner domain of interest with length Lin,z, where the density profiles are
iterated. To better connect this section to the previous one, we remind that the grand
potential functional Ω is a functional of density profiles {ρi} and a function of the variables
({µi}, T, V ), whereby the system volume V is defined by the domain length Lin,z in z-direction.
The choice for the value of the buffer length Lout,z is determined by the influence length of
the weight functions. Here, the weight functions, eq. (3.6), have an influence length of Ri.
For the hard-sphere fluid as described with the modified FMT57,58, two times the influence
length corresponds to the closest approach of two hard spheres of type i. Because two types
of convolutions are computed (one for computation of the weighted density profiles and
one for the convolution of the reduced Helmholtz energy with the weight functions), the
buffer length Lout,z has to be at least twice the value of Ri. After each of the two convolutions,
a fraction of the buffer domain with length Ri is tainted due to possible inhomogeneous
boundary conditions and periodic continuation of the FFT, which leads to the length of the
buffer zone, as

Lout,z ≥max
i
{2Ri(T )} (3.50)

3.4.1.2 Discrete Representation for FFT Algorithm

We now explain the k-grid in Fourier space for the computation of the weight functions,
eqs. (3.14) and (3.15). The approach is shown for one dimension only. Higher dimensions
are the result of multiple consecutive Fourier transforms and can be treated analogously.
The discrete Fourier transform with Fourier variable k as used in FFT algorithms is defined as
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the following sum

f̂k =
N−1
∑

j=0

f j e−2πi jk
N with k = 0, . . . , (N − 1) (3.51)

which transforms a finite series of N equally-spaced samples z j = j∆z of a function f j into
a series of equally-spaced samples of the function in Fourier space f̂k. Index j denotes the
discrete grid points in real space, while k denotes the grid points in Fourier space.
In comparison, the continuous Fourier transform can be discretized as well with z j = j∆z

and f (z j) = f j. The continuous Fourier transform then leads to a similar equation as the
discretization of the Fourier transform, eq. (3.51), namely to

f̂ (kz) =

∞
∫

z=−∞

f (z)e−2πi zkz dz ≈
N−1
∑

j=0

f j e−2πi j∆zkz∆z (3.52)

where the result is multiplied with ∆z compared to the unscaled version in eq. (3.51). Com-
parison of the arguments of the exponential functions in eqs. (3.51) and (3.52), jk

N = j∆zkz,
yields the discretization in Fourier space, as

kz =
k

N∆z
=

k
Ltot,z

with k = 0, . . . , (N − 1) (3.53)

At first glance, this result differs from the one proposed by Knepley et al. 1, because we
define Ltot,z differently. We evaluate the function to be transformed at the center of the
elements in figure 3.1 instead of the edges, as done by Knepley et al. 1 , so that the regarded
overall domain for the work of Knepley et al. (L̃tot,z = Ltot,z −∆z) is different to our overall
domain length (Ltot,z) for the same number of grid points N and the same discretization
step size ∆z. Complex-valued FFT algorithms include negative k-values as well. For an even
number of grid points, the k-vector for the computation of the discrete representation of the
weight functions, eqs. (3.14) and (3.15), is

kz =
1

Ltot,z

�

0,1, . . . ,
�

N
2
− 1

�

,
�

−
N
2

�

, . . . ,−1
�

(3.54)

For real-valued FFT algorithms, the k-vector looks differently

kz =
1

Ltot,z

�

0,1, 1,2, 2, . . . ,
�

N
2

��

(3.55)

This yields a kz-grid in Fourier space which is used for the analytical computation of the

52



3.4 From Integral Transform to Discretized Representation

weight functions ω̂i, eqs. (3.14) and (3.15). These weight functions ω̂i are then multiplied
in Fourier space with the FFT output of the function to be convolved, the result of which
is transformed back to real space using the inverse FFT. For higher dimensions, the k-grid
becomes a two- or three-dimensional array, while kx and ky are constructed equivalently to
eq. (3.54) or eq. (3.55) with their respective length scale Ltot,x and Ltot,y . The absolute value
of k is calculated as

|k|=
q

k2
x + k2

y + k2
z (3.56)

3.4.2 Cylindrical Grid

N = 6 ∆r

1 2 3 4 5 6

r1 r2 r3 r4 r5 r6

Lin,r Lout,r

Ltot,r

r = 0

Figure 3.2: Schematic equidistant radial grid with N = 6 grid points and grid spacing ∆r.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements ri. The density
profiles are computed on the inner domain Lin,r , while the buffer zone Ltot,r serves as boundary
condition, where the density profiles ρ∆i go to zero.

For cylindrical coordinates, we use the fast Fourier in axial and the fast Hankel transform
(as a combination of fast Abel and fast sine and cosine transform) in radial direction. The
procedure of the axial direction is equivalent to the approach for Cartesian coordinates as
described in the previous section, therefore, only the radial direction is regarded here. A
schematic grid is visualized in figure 3.2. As opposed to the approach of Boţan et al. 18 , who
computed discrete Hankel transform on a logarithmic grid, we adopt the ideas of Hansen 52,53

and Hansen and Law 54, using a combination of Abel and Fourier transforms, which allows
computation of the Hankel transform on equidistant grids.

3.4.2.1 Grid and Boundary Conditions

The radial grid is divided into two domains, the outer domain with length Lout,r , which is
needed as boundary condition for the evaluation of the weighted densities at the boundary,
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and the inner domain with length Lin,r , where the density profiles are iterated. Due to even
and odd continuation of the fast sine and fast cosine transform, respectively, no boundary
domain for r < 0 is needed. The size of the outer domain Lout,r is determined as described in
section 3.4.1.1. Therefore, the size of the outer domain is determined as

Lout,r ≥max
i
{2Ri(T )} (3.57)

3.4.2.2 Discrete Representation for FFT and Fast Hankel Transform Algorithms

The k-grid in Fourier space for the computation of the weight functions, eqs. (3.14) and (3.15),
is computed as follows. The axial direction is equivalent to the Cartesian grid, eq. (3.53),
whereas for the radial component the k-values correspond to twice the domain shown in
figure 3.2. Instead of the Fourier, the discrete sine and cosine transform are used, which
exploit symmetry and, therefore, require only half of the Fourier domain. The length of the
whole Fourier domain in radial direction is (2Ltot,r). This leads to the following k-grid for the
radial component

kr =
k

2N∆r
=

k
2Ltot,r

with k = 0, . . . , (N − 1) (3.58)

This yields a kr-grid in Fourier space which, together with the kz-grid, is used for the analytical
computation of the weight functions ω̂i, eqs. (3.14) and (3.15). These weight functions ω̂i

are then multiplied in Fourier space with the FFT and fast Hankel transform output of the
function to be convolved, and this result can be transformed back to real space using the
inverse FFT and inverse fast Hankel transform algorithms. For two dimensional problems in
cylindrical coordinates, the k-grid becomes a two-dimensional array. The absolute value of k

is calculated as

|k|=
Æ

k2
r + k2

z (3.59)

In this work, we utilize the projection-slice theorem for the computation of the Hankel
transform, where the Hankel transform is replaced by

H0 [ f (r)] = FrA [ f (r)] (3.60)

a combination of Fourier F and Abel transform A. The algorithm for computation of the
fast Hankel transform is based on work of Hansen 52 and described in detail in appendix B.4.
The inverse transform is computed from a combination of inverse Abel and inverse Fourier
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3.4 From Integral Transform to Discretized Representation

transform, as

H−1
0

�

f̂ (kr)
�

=A−1F−1
r

�

f̂ (kr)
�

(3.61)

The Abel transform is computed as described in appendix B.4. As a result of rotational
symmetry, all density profiles are even with respect to r = 0. This allows using the cosine
instead of the Fourier transform. Because some calculations require a division by the radius
r, we locate the first grid point at r = ∆r

2 . For this grid distribution, we require the discrete
cosine transform II (DCT II) which is available in FFTPACK as subroutine COSQ1B. More
details on the discrete cosine transform are presented in appendix B.5. The Fourier transform
of scalar functions f (r, z), using the Hankel transform of zeroth order as in eq. (B.29), is
computed from

f̂ (kr , kz) = Fz DCT II A [ f (r, z)] (3.62)

with the Abel transform A. The inverse transform uses the discrete cosine transform III
(DCT III =DCT −1

II ) which is available in FFTPACK as subroutine COSQ1F and can be computed
via

f (r, z) =A−1 DCT III F−1
z

�

f̂ (kr , kz)
�

(3.63)

For vector-valued functions, the Hankel transform of first order is computed from the zeroth
order Hankel transform with eq. (B.75) from appendix B.3, leading to

f̂ (kr , kz)|kr
= FzH1 [ f (r, z)|r] = Fz

�

1
2πkr

DCT IIA
�

f (r, z)|r
r

+
∂ f (r, z)|r
∂ r

��

(3.64)

The application of this is limited to the radial contribution in eq. (3.36), where f (r, z)|r =
−i ∂Φ

∆

∂ nβ

�

�

r(r, z) is an odd function in r. This leads to the derivative ∂ f (r,z)|r
∂ r being an even function.

Even continuation of the DCT II allows neglecting the odd contribution f (r,z)|r
r , which leads to

the simpler form

f̂ (kr , kz)|kr
= Fz

�

1
2πkr

DCT IIA
�

∂ f (r, z)|r
∂ r

��

(3.65)

The derivative ∂ f (r,z)
∂ r can be approximated using central differences with vanishing boundary

conditions from

∂ f (z, r(n))
∂ r

≈
f (r(n+1), z)− f (r(n−1), z)

r(n+1) − r(n−1)
(3.66)
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The inverse transform is computed similarly according to

f (r, z)|r =H−1
1 F−1

z

�

f̂ (kr , kz)|kr

�

=
1
r
H−1

0

�F−1
z

�

f̂ (kr , kz)|kr

�

2πkr
+
∂F−1

z

�

f̂ (kr , kz)|kr

�

∂ kr

�

=
1
r
A−1F−1

r

�F−1
z

�

f̂ (kr , kz)|kr

�

2πkr
+
∂F−1

z

�

f̂ (kr , kz)|kr

�

∂ kr

�

(3.67)

The derivative in the second term of eq. (3.67) can be replaced using the identity

F−1
r

�

∂ ĝ(kr , z)
∂ kr

i
�

= 2πrF−1
r [ ĝ(kr , z)] (3.68)

with ĝ(kr , z) = F−1
z

�

f̂ (kr , kz)|kr

�

. This is applied to eq. (3.29) where ĝ(kr , z) is a real even
function in kr , making

�

∂ ĝ(kr ,z)
∂ kr

i
�

purely imaginary and odd in kr . The purely imaginary and
odd inverse Fourier transform F−1

r

�

∂ ĝ(kr ,z)
∂ kr

i
�

can, therefore, be replaced by the sine transform
2πrDST III [ ĝ(kr , z)]. The first term in eq. (3.67) transforms an even function and allows for
replacing the Fourier transform F−1

r with the DCT III according to

f (r, z)|r =
1
r
A−1

�

DCT IIIF−1
z

�

f̂ (kr , kz)|kr

2πkr

�

+ 2πrDST IIIF−1
z

�

f̂ (kr , kz)|kr

�

�

(3.69)

Equation (3.65) with eqs. (3.66) and (3.69) are our final equations for the forward and
inverse transform in radial direction, respectively.
Here we require the discrete sine transform III (DST III) which is available in FFTPACK as
subroutine SINQ1F. The grid for the DST III algorithm has to be shifted in Fourier space. The
procedure is described in section 3.4.3.2 and visualized in figure 3.5. More details on the
discrete sine and cosine transform are presented in appendix B.5.

3.4.3 Spherical Grid

In spherical coordinates we only consider one-dimensional problems, where angular symmetry
exists. We use the fast sine and fast cosine transform. A schematic grid is visualized in
figure 3.3. Fast sine and cosine transform algorithms require real space samples evaluated on
an equidistant grid.
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N = 6 ∆r

1 2 3 4 5 6

r1 r2 r3 r4 r5 r6

Lin Lout

Ltot

r = 0

Figure 3.3: Schematic equidistant spherical grid with N = 6 grid points and grid spacing ∆r.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements ri. The density
profiles are computed on the inner domain Lin, while the buffer zone Lout compensates for
periodic continuation of the fast sine and cosine transform, and serves as boundary condition,
where the density profiles ρ∆i go to zero.

3.4.3.1 Grid and Boundary Conditions

Similar to cylindrical coordinates, no boundary domain for r < 0 is needed, because the used
algorithms for the discrete sine and cosine transform assume odd and even continuation,
respectively, which can be exploited here due to spherical symmetry requirements. The size
of the outer domain Lout is determined as described in section 3.4.1.1. Therefore, the size of
the outer domain is determined as

Lout ≥max
i
{2Ri(T )} (3.70)

3.4.3.2 Discrete Representation for Sine and Cosine Transform Algorithms

The k-grid in Fourier space for the computation of the weight functions, eqs. (3.14) and (3.15),
is computed as follows. The discrete sine and cosine transform are recovered by discretization
of the derived Fourier transform in spherical coordinates. There are four relevant variants
of the sine and cosine transform, each with a set of different boundary conditions and
discretization schemes. Due to the singularity at the origin in spherical coordinates, we locate
the first grid point at r = ∆r

2 . For this grid distribution, we need the discrete sine transform II
(DST II) according to

f̂k∗ =
N−1
∑

j=0

f j sin
�

π

N

�

j +
1
2

�

(k∗ + 1)
�

with k∗ = 0, . . . , (N − 1) (3.71)
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which is available in FFTPACK as subroutine SINQ1B. More details on the discrete sine
transform are presented in appendix B.5. The iteration variable k∗ does not represent the
true Fourier variable k, which for the DST II is obtained from k = k∗ + 1.
The matching discrete cosine transform is the DCT II, computed as

f̂k =
N−1
∑

j=0

f j cos
�

π

N

�

j +
1
2

�

k
�

with k = 0, . . . , (N − 1) (3.72)

which is available in FFTPACK as subroutine COSQ1B. More details on the discrete cosine
transform are presented in appendix B.5. Both transforms transform a finite series of equally-
spaced samples z j =

1
N ( j +

1
2) of a function f j into a series of equal length in Fourier space f̂k.

The index j denotes the discrete grid points in real space, while k denotes the grid points in
Fourier space.

DST III

DST II

DCT II

k∗ = 0 · · · (N − 1)

k = 0 · · · N

Figure 3.4: Shift of indices to match DST II and DCT II to DST III. Filled spheres represent
the k-grid of the respective forward (red) and inverse (blue) transform.

For both transforms, indices k and k∗ run from 0, . . . , (N − 1) in Fourier space, but the DST II

treats the point k = 0 implicitly as f̂ DST
k=0 = 0, while the DCT II treats the value f̂ DCT

k=0 explicitly.
In contrast, theDCT II does not provide a value for k = N , while theDST II does (as k∗ = N−1).
Because the transformation to Fourier space in eqs. (3.41) and (3.48) requires f (r) to be
multiplied with r, the argument of the sine and cosine transform are always zero at r = 0,
which leads to f̂ DCT

k=0 = 0.
For the computation of eq. (3.48) a combination of DST II and DCT II is needed. Because the
inverse transform, eq. (3.47), uses solely the DST III the value f̂ DCT

k=0 = 0 can be neglected,
but the value for k = N (or k∗ = N − 1) for the DST III has to be added: f̂ DST

k=N = 0. This
approach is not exact, but a reasonable approximation as f̂ DCT

k→∞ → 0 for smooth functions
and appropriate number of grid points. This procedure is necessary to match the different
k-values of the DST II, DCT II and DST III. The shifting of indices is visualized in figure 3.4.
The inverse of the DST II and DCT II are the DST III and DCT III, respectively. The DST III is
available from FFTPACK as subroutine SINQ1F and DCT III as subroutine COSQ1F. Again, the
k-values of the DST III and DCT III do not match. For computation of eq. (3.41), a function
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3.4 From Integral Transform to Discretized Representation

in Fourier space as result of a DST II is transformed back to real space using the DST III

and DCT III. The DST III can be performed immediately. For the inverse transform using the
DCT III, the exact value f̂ DCT

k=0 = 0 has to be added. Therefore, f̂ DST
k=N is disregarded, which has

negligible effect as f̂ DCT
k→∞→ 0 for smooth functions and appropriate number of grid points.

The shifting of indices is visualized in figure 3.5.

DST II

DCT III

DST III

k∗ = 0 · · · (N − 1)

k = 0 · · · N

Figure 3.5: Shift of indices to match DST II and DCT III to DST II. Filled spheres represent
the k-grid of the respective forward (red) and inverse (blue) transform.

For computation of the appropriate discrete k-grid, the analytical sine transform can be
discretized with r j = ( j+

1
2)∆z and f (r j) = f j. This leads to a similar equation as the discrete

sine transform, eq. (3.71), according to

f̂ (kr) =

∞
∫

r=0

f (r) sin (2πrkr) dr ≈
N−1
∑

j=0

f j sin
�

2π
�

j +
1
2

�

∆rkr

�

∆r (3.73)

Comparison of the arguments of the sine functions in eqs. (3.72) and (3.73), πN ( j + 1
2)(k

∗+ 1)
= 2π( j + 1

2)∆rkr , yields the discretization in Fourier space according to

kr =
k∗ + 1
2N∆z

=
k∗ + 1
2Ltot

with k∗ = 0, . . . , (N − 1) (3.74)

In contrast to eq. (3.53), we divide by (2Ltot), because the DST II assumes odd continuation
by considering only half of the domain compared to the corresponding Fourier transform.
For N grid points, the k-vector for the computation of the discrete representation of the
weight functions, eqs. (3.14) and (3.15), is

kDST
r =

1
2Ltot

[1, . . . , N] (3.75)

while the same approach leads to a k-vector for the DCT II according to

kDCT
r =

1
2Ltot

[0, . . . , (N − 1)] (3.76)
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This yields a kr-grid in Fourier space which is used for the analytical computation of the
weight functions ω̂i, eqs. (3.14) and (3.15). These weight functions ω̂i are then multiplied
in Fourier space with the DST II and DCT II output of the function to be convolved, while this
result can be directly transformed back to real space using the DST III and DCT III algorithms.

3.5 Performance Analysis of FFT Convolution

To compare the efficiency of convolution algorithms using fast Fourier or similar transforms
(i.e., discrete sine, cosine and Abel transforms), we compare the performance of one-dimen-
sional FFT convolutions, computed via

ρ ⊗ω= F−1
z [Fz [ρ(z)] ω̂(kz)] (3.77)

with three real space convolution algorithms. We adapt the notation of the weighted densities
defined in eq. (3.5).
The first real space convolution algorithm, hereafter referred to as naïve convolution, approxi-
mates the convolution integral of a density profile ρ with the weight function ω (each with N

discretization points) over the whole discrete domain, where the value for the i-th element
of the discrete sequence is computed according to59

(ρ ⊗ω)i =
1
N

N−1
∑

k=0

ωkρi−k ∀i (3.78)

The second real space algorithm, referred to as compact convolution, exploits the fact that
weight functions are nonzero on a finite domain. As a consequence, the sequence for the
weight function is shorter (length M < N) than the sequence for the density profile. Therefore,
the value for the i-th element is computed as

(ρ ⊗ω)i =
1
M

M−1
2
∑

k=−
M−1

2

ωkρi−k ∀i (3.79)

with the number of discretization points M ∈ {2n+ 1|n ∈ N+} for the weight function, which
is always an odd number due to the symmetry of the weight function.
The third real space algorithm uses dense matrix multiplication

ρ ⊗ω=ωρ (3.80)

60



3.5 Performance Analysis of FFT Convolution

with the convolution matrix ω and the density profile vector ρ.

27 28 29 210 211 212 213 21410−6

10−5

10−4

10−3

10−2

10−1

100

N/−

t/
s

matrix O(N 2)
naïve O(N 2)
compact O(N 1.5)
FFT O(N log N)

Figure 3.6: Comparison of computing time t for one convolution using Fourier space, naïve,
compact and matrix multiplication convolution, eqs. (3.77)–(3.80) respectively, for different
number of grid points N , including scaling behavior O. Length of the inner domain is
Lin,z = 100Å and the radius for convolution is R= 1.8Å.

Figure 3.6 depicts the computing time for one convolution using the four algorithms defined in
eqs. (3.77)–(3.80) with respect to the number of spatial discretization points N . Additionally,
scaling behavior O of the used algorithms is presented (non-continuous lines).
For small system sizes N , convolutions with convolution matrices perform best, while com-
puting times for naïve, compact and FFT convolutions are higher (staying in the same order
of magnitude). For N = 214, the scaling behavior of the FFT, O(N log N), renders the FFT
convolution at least one order of magnitude faster than the remaining algorithms. For a
large number of discretization points, convolutions using a matrix product, eq. (3.80), take
the longest, while naïve convolutions, eq. (3.78), compute faster; both scaling with O(N 2).
Compact convolutions, eq. (3.79), scale better with respect to approximately O(N 1.5), making
this convolution algorithm for large systems superior to the matrix product and naïve ap-
proach. FFT convolutions, eq. (3.77), scale best for large systems (here N = 214) according to
O(N log N), performing at least one order of magnitude better than the remaining algorithms.
Even for typical number of discretization points N = 210 = 1024 convolution algorithms ex-
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ploiting fast Fourier or similar transforms perform best among the four considered numerical
convolution approaches.
To summarize, convolution algorithms exploiting fast Fourier or similar transforms perform
best for relevant systems among the four considered numerical convolution approaches.

3.6 Conclusion

This work serves as a guide on efficient numerical implementations of classical DFT methods in
Cartesian, cylindrical and spherical coordinates using the convolution theorem of the Fourier
transform. Applied to Helmholtz energy functionals expressed in terms of weighted densities,
this allows for fast and easy DFT calculations using off-the-shelf algorithms: fast Fourier,
Hankel, sine and cosine transforms. Especially for two- and three-dimensional problems, using
Fourier space convolution simplifies computation of multi-dimensional convolution integrals
compared to real space methods. The main text describes scalar-valued and vector-valued
weighted densities that appear with FMT. The equations for a Helmholtz energy functional
based on the perturbed-chain statistical associating fluid theory are explicitly written out in
the supporting information∗.

∗in appendix A
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4 A Fast Inverse Hankel Transform of First Order for Computing

Vector-Valued Weight Functions Appearing in Fundamental

Measure Theory in Cylindrical Coordinates

The content of this chapter is a literal quote of the publication:
R. Stierle and J. Gross. A fast inverse Hankel Transform of first Order for Computing vector-valued
weight Functions appearing in Fundamental Measure Theory in cylindrical Coordinates. Fluid Phase
Equilibria, 511:112500, 2020. doi:10.1016/j.fluid.2020.112500

Abstract

Application of classical density functional theory in cylindrical coordinates requires a fast
Hankel transform algorithm of order zero and its inverse, when the involved convolution inte-
grals are solved in Fourier space. Vector-valued fundamental measure theory requires a fast
Hankel transform of first order and its inverse. Compared to naïve real space convolution, this
not only reduces complexity of the required computer code, but also increases computational
performance due to the efficiency of the fast Hankel transform. This study proposes a new
approach to compute the inverse of the first order fast Hankel transform on equidistant grids
as a combination of a modified inverse Abel transform and a fast sine transform. Equidistant
grids have a significant advantage over alternative implementations that require logarithmic
grid spacing, since most problems, such as pores or droplets, require a certain resolution in
the outer region of the radial domain, which in the case of a logarithmic grid necessitates an
overly high number of grid points in the inner region of the radial domain. The proposed
algorithm for the modified inverse Abel transform is straightforward to implement, while for
the fast sine transform off-the-shelf algorithms can be used.
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4 Inverse Fast Hankel Transform of First Order for FMT in Cylindrical Coordinates

4.1 Introduction

Classical density functional theories (DFT) commonly involve several convolution integrals.
Any DFT model based on the fundamental measure theory (FMT)1–4 for modeling the hard-
sphere contribution to the fluid behavior, for example, implies such convolutions. The
convolution integrals can be calculated efficiently using fast Fourier transform algorithms,
which is especially useful for multidimensional problems. For cylindrical coordinates, the
Fourier transform in the radial direction converts to a Hankel transform of order zero or of
first order for scalar-valued and for vector-valued weight functions, respectively. Efficient
solution of the DFT models in cylindrical coordinates thus requires a fast Hankel transform
algorithm.
For logarithmic grids, algorithms for the Hankel transform can be constructed using a co-
ordinate transform5 and a fast Fourier transform algorithm6. As noted by Sauer et al. 7,
logarithmic grids have a significant disadvantage over equidistant grids, since most applica-
tions, such as pores or droplets, require a certain grid resolution in the outer region of the
radial domain, resulting in an overly dense resolution for small radii (implying concomitant
increase in computational effort).
Alternatively, in [chapter 3]∗ we applied the fast Hankel transform proposed by Hansen 9,10

to the Helmholtz functionals of the perturbed-chain statistical associating fluid theory (PC-
SAFT)11–16, which includes FMT. This algorithm9,10 allows computation of the fast Hankel
transform of zeroth order, and its inverse, on equidistant grids utilizing a combination
of a fast Abel transform17 (by solving a nine-dimensional state-space model18) and fast
cosine transform19. We thereby reformulated the Hankel transform of order one as a Hankel
transform of order zero, which involves a combination of fast Abel, fast sine, and fast cosine
transforms8.
A different algorithm for computing a fast Hankel transform of first order based on the method
proposed by Hansen 9,10 was developed by Kim 20, using a combination of a modified Abel
and sine transform. Due to the self-inverse nature of the Hankel transforms, the algorithm
developed by Kim 20 can, theoretically, be applied in both directions, for transformations to
Fourier space and back to real space. However, due to poor resolution and high oscillations
in Fourier space, the transformation back to real space leads to substantial errors. Even
extensive zero padding to increase Fourier space resolution leads to minor improvements
only. The inverse zeroth order fast Hankel transform proposed by Hansen 9,10 does not suffer
from this issue, because the order of cosine and Abel transform can be reversed with respect
to the forward transform, due to availability of the inverse Abel transform. Subsequently, the
∗The text in the original publication reads: [our earlier work8].
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4.2 Projection Method for Hankel Transforms

inverse Hankel transform of zeroth order is computed by a combination of fast cosine and
inverse Abel transform.
In this work, we derive the inverse of the modified Abel transform proposed by Kim 20 , which
allows easy computation of the inverse of the Hankel transform of first order on equidistant
grids. The inverse is computed using a combination of a modified inverse Abel transform and
the sine transform. For ease of implementation, we provide real and Fourier space discretiza-
tions suitable for off-the-shelf algorithms of the sine transform. The proposed algorithm
makes FMT calculations in cylindrical coordinates conceptually easy and computationally
efficient. In this study, we use sine transform algorithms provided by FFTPACK 19,21.
This work is structured as follows. In section 4.2, we illustrate the method of Kim 20 for
calculating the Hankel transform of first order based on the Hankel and inverse Hankel
transform of order zero proposed by Hansen 9,10 . Then, we derive the projection method for
the inverse fast Hankel transform of first order. In section 4.3, we discuss the transition from
a continuous to a discrete transform and we introduce the algorithm for the inverse of the
modified Abel transform and the inverse Hankel transform of first order. Numerical accuracy
of the algorithm is evaluated in section 4.4 for two analytically known transform pairs.

4.2 Projection Method for Hankel Transforms

The Hankel transform Hν of order ν of the rotationally symmetric function f , is defined as

Hν [ f (r)] = 2π

∞
∫

r=0

f (r) r Jν(2πrkr)dr (4.1)

with Jν as the Bessel function of first kind and order ν, the radial coordinate in real space r,
and the radial coordinate in Fourier space kr . Cree and Bones 22 rewrote the Hankel transform
as

Hν [ f (r)] = i−ν
∞
∫

−∞

∞
∫

|r̃|

2 f (r)Tν
�

r̃
r

�

Ç

1−
�

r̃
r

�2
dr

︸ ︷︷ ︸

≡Fν(r̃)

e−2πi r̃kr dr̃ (4.2)

with the imaginary unit i , the ν-th order Chebyshev polynomial Tν(x) = cos
�

ν cos−1(x)
�

, the
generalized Abel transform Fν, and the integration variable of the Abel transform r̃. Kim 20
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4 Inverse Fast Hankel Transform of First Order for FMT in Cylindrical Coordinates

separated the Fourier transform for even or odd order ν, expressing eq. (4.2) as

Hν [ f (r)] = i−νF [Fν(r̃)] =







i−νFSIN [Fν(r̃)] , ν odd
i−νFCOS [Fν(r̃)] , ν even

(4.3)

with Fourier transform F and the Fourier sine and cosine transform, FSIN (imaginary part of
the Fourier transform) and FCOS (real part of the Fourier transform), respectively. For the
Hankel transform of zeroth and first order, this leads to

H0 [ f (r)] = COS [F0(r̃)] (4.4a)
H1 [ f (r)] = SIN [F1(r̃)] (4.4b)

with the sine and cosine transform SIN and COS, respectively, defined as

COS [ f (r)] =

∞
∫

r=0

f (r) r cos(2πrkr)dr (4.5a)

SIN [ f (r)] =

∞
∫

r=0

f (r) r sin(2πrkr)dr (4.5b)

We note here, that the sine and cosine transform are self-inverse.

4.2.1 Projection Method for Zeroth Order Hankel Transform

For order ν= 0, with the Chebyshev polynomial T0(x) = 1, the generalized Abel transform Fν,
defined in eq. (4.2), becomes the Abel transform. Insertion of T0(x) = 1 into the Hankel trans-
form defined in eq. (4.2) thus results in a combination of cosine COS and Abel transform A,
as H0 [ f (r)] = COS [F0(r̃)], with the Abel transform defined by

A [ f (r)] = 2

∞
∫

r̃

f (r)
Ç

1−
�

r̃
r

�2
dr (4.6)

while the inverse Abel transform A−1 is obtained from

A−1
�

f̃ (r̃)
�

= −
1
π

∞
∫

r

f̃ ′(r̃)

r̃
Ç

1−
�

r
r̃

�2
dr̃ (4.7)
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4.2 Projection Method for Hankel Transforms

where the prime (′) denotes the derivative with respect to r̃. Combination of eq. (4.4a)
with eqs. (4.6) and (4.7) leads to the Hankel and inverse Hankel transform of zeroth order,
respectively

f̂ (kr) =H0 [ f (r)] = COS A [ f (r)] (4.8a)
f (r) =H−1

0

�

f̂ (kr)
�

=A−1 COS
�

f̂ (kr)
�

(4.8b)

with f̂ as the function in Fourier space. Equation (4.8) leads to the algorithms proposed by
Hansen 9,10.

4.2.2 Projection Method for First-Order Hankel Transform

For order ν= 1, with the Chebyshev polynomial T1(x) = x , the generalized Abel transform Fν,
defined in eq. (4.2), becomes a modification of the Abel transform Ã, defined by

f̃ (r̃) = Ã [ f (r)]≡ 2

∞
∫

r̃

f (r)
�

r̃
r

�

Ç

1−
�

r̃
r

�2
dr (4.9)

which, in combination with eq. (4.4b), leads to the Hankel transform of first order H1, while
the inverse of eq. (4.9) is obtained from

f (r) = Ã−1
�

f̃ (r̃)
�

≡ −
1
π

∞
∫

r

�

f̃ (r̃)
�

r
r̃

��′

r̃
Ç

1−
�

r
r̃

�2
dr̃ (4.10)

which, in combination with eq. (4.4b), leads to the inverse of the Hankel transform of first
order H−1

1 , both obtained from

f̂ (kr) =H1 [ f (r)] = SIN Ã [ f (r)] (4.11a)
f (r) =H−1

1

�

f̂ (kr)
�

= Ã−1SIN
�

f̂ (kr)
�

(4.11b)

This allows for a much easier first-order Hankel transform and inverse Hankel transform than
the one proposed in [section 3.4.2.2]∗, which for convenience we restate in appendix C, as
eqs. (C.1) and (C.2). Equations (4.9) and (4.11a) represent the algorithm for the Hankel
transform of first order proposed by Kim 20 . This work proposes an algorithm for the inverse
Hankel transform of first order through eq. (4.11b) using eq. (4.10) (the inverse of the
algorithm proposed by Kim 20).
∗The text in the original publication reads: [our earlier work8].
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4.3 Discrete Modified Abel & Inverse Abel Transform

In this section, we proceed with converting the continuous integral transform to a discrete
representation. We ensure that established fast sine transform algorithms provided by
FFTPACK 19,21 can be used for applications of classical DFT, especially FMT. Therefore, we
show the connection between the sample grid in real and Fourier space. Notation and
application is based on [chapter 3]∗.

4.3.1 From Integral Transform to Discrete Representation

N = 7 ∆r

1 2 3 4 5 6 7

r1 r2 r3 r4 r5 r6 r7

Lin Lout

Ltot

r = 0

Figure 4.1: Schematic equidistant radial grid with N = 7 grid points and grid spacing ∆r.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements ri. The density
profiles are computed on the inner domain Lin, while the buffer zone Lout serves as boundary
condition, where function f approaches zero.

The majority of the computational effort in DFT is required for calculating convolutions with
weight functionsω. The weight functions have a finite convolution kernel in real space, which
can be transformed to Fourier space analytically (which is why, we require the grid spacing
in Fourier space).
The radial grid is divided into two domains, as illustrated in figure 4.1. The inner domain of
length Lin is the domain of physical interest and the domain for which the convolutions are
desired. An outer domain with length Lout is needed because the functions f in DFT applica-
tions are usually non-periodic in the considered radial direction of a cylindrical coordinate
system. The outer domain is introduced as a buffer zone for convolutions and additionally
serves as a boundary condition. On the outer domain, the function f approaches zero. The
size of the outer domain depends on the used weight functions, for FMT the outer domain
∗The text in the original publication reads: [our previous work8].
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has to fulfill the following relation

Lout,r ≥max
i
{2Ri} (4.12)

with the hard-sphere radius Ri of component i. Different weight functions lead to different
requirements for the outer domain, as described in [section 3.4.1.1]∗. The sampling grid in
Fourier space is defined by8

kr =
k

2N∆r
=

k
2Ltot

with k = 0, . . . , (N − 1) (4.13)

with the integer samples k, the number of grid points N , and the grid spacing ∆r.
The discrete version of the sine transform, eq. (4.5b), is the discrete sine transform (DST ).
Several versions of the discrete sine transform exist, depending on what symmetry properties
are exploited. The first grid point of the grid presented in figure 4.1 is located at ∆r

2 . For this
grid distribution, we require the discrete sine transform II (DST II), available from FFTPACK
as subroutine SINQ1B. The Hankel transform of first order, eq. (4.11a), is then computed
from

f̂ (kr) =H1 [ f (r)] =DST IIÃ [ f (r)] (4.14)

It is important to note, that the output of the DST II algorithm excludes the vanishing result
for k = 0 but adds one for k = N . Hence, the first element in the solution vector represents the
value for k = 1. The implementation of the DST III algorithm used for the inverse transform
also requires a sequence excluding the value for k = 0. As a result, for FMT weight functions
defined on the grid described in eq. (4.13), a shift in index is required. That is visualized in
figure 4.2. A more detailed description is given in [section 3.4.3.2]†.

DST III

DST II

k = 0 · · · N

Figure 4.2: Algorithm output of DST II and input of DST III. Filled spheres represent the
k-grid of the respective forward (red) and inverse (blue) transform.

The inverse of the discrete sine transform II is the discrete sine transform III (DST III =
DST −1

II ), which is available from FFTPACK as subroutine SINQ1F. The inverse Hankel trans-
∗The text in the original publication reads: [previous work8].
†The text in the original publication reads: [previous work8].
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form of first order, eq. (4.11b), is then obtained from

f (r) =H−1
1

�

f̂ (kr)
�

= Ã−1DST III

�

f̂ (kr)
�

(4.15)

Using eq. (4.14) in combination with eq. (4.15) allows easy computation of convolutions
with vector-valued weight functions appearing in FMT in cylindrical coordinates.
Numerical details on how to apply the DST algorithms can be found in [appendix B.5]∗.

4.3.2 Algorithm for Modified Abel & Inverse Abel Transform

The following algorithm for the modified Abel transform, eq. (4.9), and its inverse, eq. (4.10),
is derived following Hansen 9,10 and Kim 20 . The forward modified Abel transform describes
the algorithm of Kim 20 for equidistant grids, while the modified inverse Abel transform is the
result of this work. The derivation of the forward transform is well documented in literature20,
which is why in the following we solely describe the derivation of the modified inverse Abel
transform Ã−1. An algorithm for computing both, the modified Abel and its inverse transform,
is given at the end of this section.
Solving the product rule in eq. (4.10) and conducting the coordinate transforms r = exp(−τ)
and r̃ = exp(−t) leads to

Ã−1
�

f̃ (r̃)
�

=

∞
∫

−∞

− f̃ ′(t)
π

exp(−(τ− t))Θ(τ− t)
p

1− exp(−2(τ− t))
dt +

∞
∫

−∞

f̃ (t)
πexp(−t)

exp(−(τ− t))Θ(τ− t)
p

1− exp(−2(τ− t))
dt

(4.16)

with the Heaviside step function Θ. Both terms on the right-hand-side of eq. (4.16) are
convolution integrals of two different inputs. For the following analysis we use the short-hand
notation u(t) to represent both inputs, i.e.,

u(t)≡







− f̃ ′(t)
π

f̃ (t)
πexp(−t)

(4.17)

for the first and for the second convolution integral of eq. (4.16), respectively. For the transfer
function we introduce the notation

g(t)≡
exp(−t)

p

1− exp(−2t)
(4.18)

∗The text in the original publication reads: [our previous work8 appendix D].
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Hansen and Jablokow 18 showed, that this kind of convolution can be approximated by a low
order state-space representation (here the order of the state-space model is K = 9), as

ẋ(r̃) = Ax(r̃) + bu(r̃) (4.19a)
y = cᵀx(r̃) (4.19b)

with states x and input u, as well as

A= diag [(λ1 − 1), . . . , (λK − 1)] (4.20a)
b= [h1, . . . , hK]

ᵀ (4.20b)
c= [1, . . . , 1]ᵀ (4.20c)

with system matrix A, input vector b, and output vector cᵀ. The output y of the state-space
model, eq. (4.19), corresponds to the solution of the convolution integral in eq. (4.16), i.e.,
the transfer function, eq. (4.18), is equivalent to the combination of state matrix A, input
vector c, and output vector cᵀ. The model parameters9,17 of the system, λk and hk are listed
in table 4.1. Solution of the state-space convolution, defined by9

x(r̃) = eA(r̃−r̃0)x(r̃0) +

r̃
∫

r̃0

eA(r̃−ξ)bu(ξ)dξ (4.21)

and substituting the input with a piecewise linear function (first-order hold approximation)9,
obtained from

u(ξ) =p+ qξ with r̃ < ξ≤ r̃0 (4.22a)

p =
r̃ u(r̃0)− r̃0 u(r̃)

r̃ − r̃0
(4.22b)

q =
u(r̃)− u(r̃0)

r̃ − r̃0
(4.22c)

leads to the following recursive algorithm for the modified (inverse) Abel transform F̃n
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Table 4.1: Parameters for Abel transform9,17.
k hk/π λk

1 0.318 0
2 0.19 -2.1
3 0.35 -6.2
4 0.82 -22.4
5 1.8 -92.5
6 3.9 -414.5
7 8.3 -1889.4
8 19.6 -8990.9
9 48.3 -47391.1

according to

xn−1 = Φ̃nxn + B̃0,n fn + B̃1,n fn−1 (4.23a)
F̃n = C̃xn (4.23b)
xN = 0 (4.23c)

Φ̃n = diag

�

�

rn

rn−1

�λ1−1

, . . . ,
�

rn

rn−1

�λK−1
�

(4.23d)

C̃ = [1, . . . , 1] (4.23e)
B̃0,n =

�

h1β̃0,n(λ1), . . . , hK β̃0,n(λK)
�ᵀ (4.23f)

B̃1,n =
�

h1β̃1,n(λ1), . . . , hK β̃1,n(λK)
�ᵀ (4.23g)

with the modified (inverse) discrete Abel transform F̃n at grid point index n, the grid
dependent state transition matrix Φ̃n, the grid dependent states of the state-space model xn,
the grid dependent discrete input vectors B̃0,n and B̃1,n, as well as model parameters from
Hansen 9,10 , λk and hk (see table 4.1). The recursion is started at the outermost grid point rN

with xN = 0 and is continued inwards towards the origin of the radial grid. For rn−1 this
method cannot be used.
The forward Hankel transform of first order H1, as proposed by Kim 20 , is obtained by using

β̃ f
0,n(λ1 = 0) =

2rn−1

rn − rn−1

�

rn − rn−1 − rn−1 ln
�

rn

rn−1

��

(4.24a)

β̃ f
1,n(λ1 = 0) =

2rn−1

rn − rn−1

�

rn−1 − rn + rn ln
�

rn

rn−1

��

(4.24b)
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for λk=1 = 0, and

β̃ f
0,n(λk) =

2rn−1

rn − rn−1

rn−1 + [rnλk − rn−1(λk + 1)]
�

rn
rn−1

�λk

λk(λk + 1)
λk 6= 0 (4.25a)

β̃ f
1,n(λk) =

2rn−1

rn − rn−1

[rn−1λk − rn(λk + 1)] + rn

�

rn
rn−1

�λk

λk(λk + 1)
λk 6= 0 (4.25b)

for k ∈ {2, . . . , 9}, in combination with the DST II according to eq. (4.14). The inverse Hankel
transform of first order H−1

1 is obtained by performing the DST III before computing the
modified inverse Abel transform using

β̃b
0,n(λk) =

1−
�

rn
rn−1

�λk−1

π(λk − 1)(rn − rn−1)
+

1+
�

rn
rn−1

�λk−1 �

(λk − 2)− (λk − 1)
�

rn−1
rn

��

π(λk − 1)(λk − 2)(rn − rn−1)
(4.26a)

β̃b
1,n(λk) =

�

rn
rn−1

�λk−1
− 1

π(λk − 1)(rn − rn−1)
+

�

rn
rn−1

�λk−1
+
�

(λk − 2)− (λk − 1)
�

rn
rn−1

��

π(λk − 1)(λk − 2)(rn − rn−1)
(4.26b)

4.4 Numerical Results & Accuracy

In order to test the accuracy of the proposed algorithm, eqs. (4.15) and (4.23), we chose
two analytically known transform pairs. The first test case was chosen as an example of a
continuous function. The second test case transforms a function with a discontinuity and we
test how well the algorithm can handle such discontinuities. The first test case is defined as

f̂ (kr) =
2πkr

(2a)2
exp

�

−
(2πkr)2

4a

�

(4.27a)

H−1
1

�

f̂ (kr)
�

= r exp
�

−ar2
�

(4.27b)

with parameter a = 1
10 , and

f̂ (kr) =
1
2

J2(2πkr b)
2πkr

(4.28a)

H−1
1

�

f̂ (kr)
�

=







1
2

r
b2 , 0< r < b

0, b ≤ r <∞
(4.28b)

with the Bessel function of the first kind and second order J2 and parameter b = 8. The
procedure is divided into the following steps. First, the function f̂ is transformed by a DST III

before being transformed with the algorithm for the modified Abel transform Ã−1, proposed
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4 Inverse Fast Hankel Transform of First Order for FMT in Cylindrical Coordinates

in eq. (4.23). The results of the transform are shown for eq. (4.27) in figure 4.3 and eq. (4.28)
in figure 4.4.
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Figure 4.3: Result of inverse fast Hankel transform of first order with absolute deviation
from analytical solution for eq. (4.27) using N = 1024 grid points.

For the first transform pair, eq. (4.27), depicted in figure 4.3, the here proposed algorithm
leads to satisfactory results with small but smooth deviations. The numerical result is shifted
somewhat to the left, probably caused by the inward iteration and the inertia of the dynamical
system leading to the modified Abel transform.
The second transform pair, eq. (4.28), depicted in figure 4.4, shows a jump at r = 8. This
jump causes Gibbs phenomenon at the singularity in the output of the fast sine transform
algorithm which are directly adopted by the inverse modified Abel transform.
Despite large local deviations, the algorithm is still able to describe the shape of the transform.
This is in accordance with results obtained by Hansen 9 for the zeroth order inverse Hankel
transform. Fortunately, no profile jumps have to be resolved by this transform applied to FMT.
Gibbs phenomenon occurring for very steep profiles can be reduced applying the Lanczos
σ-factor23 in Fourier space, a short guide on how to apply the σ-factor to DFT can be found
in [appendix B.6]∗.
∗The text in the original publication reads: [our previous work8 appendix E].
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Figure 4.4: Result of inverse fast Hankel transform of first order with absolute deviation
from analytical on a logarithmic scale for eq. (4.28) using N = 1024 grid points. Due to Gibbs
phenomenon, the maximum contour of the error is visualized as a conservative estimate.

FMT using tensor-valued weight functions as proposed by Tarazona 24, Tarazona et al. 25

requires fast Hankel transform algorithms of zeroth, first and second order as well as their
respective inverse transforms for application to cylindrical coordinates. While the algorithms
for Hankel transforms of zeroth and first order are already derived, the approach of Kim 20

and the one applied in this work can also be used to derive an algorithm for a fast Hankel
transform of second order and its inverse. This development is left to future work.

4.5 Conclusion

A new method for computing the inverse fast Hankel transform of first order on equidistant
grids is presented for solving convolution integrals in polar or cylindrical coordinates appear-
ing in vector-valued DFT, for example vector-valued FMT. This allows much easier and more
efficient computation of the above convolution integrals compared to the method proposed in
[chapter 3]∗. Numerical accuracy for continuous functions, as found in FMT, is satisfactory.
∗The text in the original publication reads: [our previous work8].
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5 Hydrodynamic Density Functional Theory for Mixtures from a

Variational Principle and Its Application to Droplet Coalescence

The content of this chapter is a literal quote of the publication:
R. Stierle and J. Gross. Hydrodynamic Density Functional Theory for Mixtures from a Variational
Principle and Its Application to Droplet Coalescence. The Journal of Chemical Physics, 155(13):134101,
2021. doi:10.1063/5.0060088

Abstract

Dynamic density functional theory (DDFT) allows the description of microscopic dynamical
processes on the molecular scale extending classical density functional theory (DFT) to non-
equilibrium situations. Since DDFT and DFT use the same Helmholtz energy functionals, both
predict the same density profiles in thermodynamic equilibrium. We propose a molecular
DDFT model, in this work also referred to as hydrodynamic DFT, for mixtures based on a
variational principle that accounts for viscous forces as well as diffusive molecular transport
via the generalized Maxwell-Stefan diffusion. Our work identifies a suitable expression for
driving forces for molecular diffusion of inhomogeneous systems. These driving forces contain
a contribution due to the interfacial tension. The hydrodynamic DFT model simplifies to the
isothermal multicomponent Navier-Stokes equation in continuum situations when Helmholtz
energies can be used instead of Helmholtz energy functionals, closing the gap between
micro- and macroscopic scales. We show that the hydrodynamic DFT model, although not
formulated in conservative form, globally satisfies the first and second law of thermodynamics.
Shear viscosities and Maxwell-Stefan diffusion coefficients are predicted using an entropy
scaling approach. As an example, we apply the hydrodynamic DFT model with a Helmholtz
energy density functional based on the perturbed-chain statistical associating fluid theory
(PC-SAFT) equation of state to droplet and bubble coalescence in one dimension and analyze
the influence of additional components on coalescence phenomena.
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5 Hydrodynamic Density Functional Theory for Mixtures

5.1 Introduction

Following the work of Rohde 1 , we show a derivation of the molecular dynamic density func-
tional theory (DDFT), in this work also referred to as hydrodynamic DFT, proposed by Archer 2
for pure molecular fluids and extended to colloidal mixtures by Goddard et al. 3 , by means of
a variational principle (which automatically incorporates the adiabatic approximation leading
to DDFT) put forward by Herivel and Lin4,5. Our derivation naturally leads to a diffuse
interface model that incorporates established Helmholtz energy functionals into microscopic
hydrodynamics. We model the convective flux by a momentum balance for the barycentric
velocity of the mixture and diffusive molecular fluxes for each individual component, similar
to the Navier-Stokes-Korteweg equations for mixtures; in distinction to the work of Goddard
et al. 3 , who instead described each component in a colloidal mixture with its own momentum
balance. We demonstrate that the resulting system of equations globally obeys the first and
second law of thermodynamics, even though the momentum balance cannot be expressed
in conservative form∗. The description of molecular transport by applying a hydrodynamic
DFT model with a structure related to the macroscopic Navier-Stokes equations is motivated
by the work of Hitz et al. 6,7, who were able to show that the results of non-equilibrium
molecular dynamics simulations of shock tube flow can be reproduced surprisingly well with
hydrodynamic methods.
The principle of stationary action, which we use for our derivation, is formulated such that the
difference between kinetic and Helmholtz plus potential energy becomes stationary. While the
original formulation of the Herivel-Lin principle4,5 uses the difference between kinetic and
internal plus potential energy in the variational principle, we follow the procedure proposed
by Rohde 1 , where we use the Helmholtz energy instead of the internal energy. The resulting
reformulation of the Navier-Stokes-Korteweg equations by Rohde 1 can be considered as
a hydrodynamic DFT with a simple Helmholtz energy functional. With the exception of
the Helmholtz energy functional, no other prerequisites are required for the derivation. In
this work, we use a Helmholtz energy functional based on the perturbed-chain statistical
associating fluid theory (PC-SAFT) equation of state8–19 for quantitative modeling of the fluid
behavior [see appendix A].
DDFT was first developed by Marconi and Tarazona 20,21 for colloidal systems of Brownian
particles in an isothermal system and put on a more rigorous theoretical foundation by
Chan and Finken 22. Since then, it has been applied not only to spinodal decomposition23,
phase separation of colloidal fluids in a cavity24, but also to the relaxation dynamics of
colloidal systems of Brownian particles by means of the van Hove correlation function25–28

∗All spatial derivatives in the balance equations can be formulated as divergences.
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or non-equilibrium phase transition of colloids29. Besides to colloidal systems, DDFT for
molecular fluids incorporating inertia2,30 or considering hydrodynamic interactions31–34 and
fluctuations35–39 gained attention. While DDFT, unlike its equilibrium counterpart, is not
exact and requires approximations, power functional theory40–43 formally removes these
approximations.
The focus of this work is on microscopic hydrodynamics of molecular systems based on the
work of Archer 2 . Hydrodynamics describes thermodynamic non-equilibrium by a set of local
variables, namely, density, momentum, and temperature of the fluid. Phenomena that do
not vary slowly enough in space do not justify such a description and necessitate a finer
level of characterization, such as the time-evolution equations for the phase-space density
distribution functions of molecules. Similar hydrodynamic approaches have been followed by
Burghardt and Bagchi 44 who coupled the solvent dynamics to a quantum subsystem using a
molecular hydrodynamic description; when investigating wetting with a DDFT/phase field
method by Mickel et al. 45 , or by Marconi and Melchionna 46–48 who solve the time-evolution
equations of the single-particle phase-space distribution function of colloids and molecular
fluids using a lattice Boltzmann method. Baskaran et al. 49 obtained a hydrodynamic DFT
for pure hard spheres from the integration of the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy50–55 to study the fluid-solid phase transition of hard spheres. All ap-
proaches using the single-particle phase-space distribution function starting from the Liouville
equation require an approximation or closure relation for the BBGKY hierarchy; Hughes and
Burghardt 56 applied a maximum entropy closure to derive hydrodynamic equations from the
hydrodynamic moments of the single-particle phase-space distribution function.
Microscopic hydrodynamic systems of mixtures have been studied by Rotenberg et al. 57 for
binary mixtures of charged particles, and by Okamoto and Onuki 58 who studied the stability
of bubbles in a binary system, and extensively by Marconi and Melchionna 59,60and Marconi 61
who analyzed multicomponent diffusion in nanosystems by employing the multicomponent
Boltzmann-Enskog equation. Microscopic hydrodynamics at the liquid-solid interface, in
particular the Navier slip condition was analyzed by Camargo et al. 62,63 for solid spheres,
while the time-dependent average of a fluid confined by planar walls was studied by Duque-
Zumajo et al. 64,65. Further details on DDFT can be found in the review articles by Lutsko 66

and te Vrugt et al. 67.
This [chapter]∗ is organized as follows. In section 5.2 we derive a hydrodynamic DFT model for
microscopic hydrodynamics of mixtures using a generalization of the Herivel-Lin variational
principle. We incorporate diffusive phenomena into the component and momentum balance,
viscous momentum transport and generalized Maxwell-Stefan diffusion68–70, respectively.
∗The text in the original publication reads: [paper].
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We propose generalized expressions for the driving forces of molecular diffusion for inho-
mogeneous systems (section 5.2.4.5). Since the focus of this work is on model synthesis
and analysis, we show that the hydrodynamic DFT model satisfies the integral version of the
first and second law of thermodynamics. Section 5.3 illustrates the modeling of the required
mixture viscosities and Maxwell-Stefan diffusion coefficients using entropy scaling. The ap-
plied well-balanced numerical discretization scheme is described along with implementation
details in section 5.4. For this purpose, the hydrodynamic DFT model is reformulated to
apply numerical methods for hyperbolic-parabolic conservation laws. The hydrodynamic DFT
model in combination with a Helmholtz energy functional based on the PC-SAFT equation of
state is applied to droplet and bubble coalescence of binary mixtures in section 5.5 to show
that the proposed model allows predictions for typically difficult problems.

5.2 Dynamic Density Functional Theory from a Variational Principle

This section introduces classical density functional theory (DFT) before deriving the hy-
drodynamic DFT equations for viscous mixtures using a generalization of the Herivel-Lin
principle4,5. We then analyze the hydrodynamic DFT model equations with respect to the
first and second law of thermodynamics.

5.2.1 Classical Density Functional Theory

Classical (equilibrium) DFT is formulated as a variational principle using a grand potential
functional Ω, which is defined for a mixture of Nc components as

Ω[{ρi(r)}] = F[{ρi(r)}] +
Nc
∑

i=1

∫

ρi(r)
�

V ext
i (r)−µi

�

dr (5.1)

with Helmholtz energy functional F , molecular density ρi(r) of component i at coordinate r,
chemical potential µi, and external potential V ext

i acting on component i. The Helmholtz
energy functional describes interactions between the fluid molecules. Solid structures are,
in the spirit of DFT, represented as external potentials V ext

i (r) acting on all components i of
the fluid. The external potentials model interactions of the fluid with, e.g., solid structures.
Although not made explicit in this notation, the specified variables of Ω are temperature T ,
volume V , and chemical potentials µi of all components. Square brackets denote a functional
dependence, and curly brackets around {ρi(r)} indicate a vector of all components within a
mixture, i = 1, . . . , Nc.
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In equilibrium the grand potential functional is minimal with respect to all density pro-
files {ρi(r)}, and the value of the grand potential functional becomes equal to the grand
potential Ω0 = Ω[{ρ0

i }]. The minimum implies that for the equilibrium density profiles {ρ0
i },

the functional derivatives of the grand potential functional Ω with respect to the density
profiles {ρi(r)} vanish according to

δΩ

δρi

�

�

�

�

{ρ0
i }
= 0 (5.2)

which leads to the main equation of DFT

µi =
δF
δρi
+ V ext

i (5.3)

that can be solved for the equilibrium density profiles {ρ0
i (r)} in the volume under consider-

ation, if a model for the Helmholtz energy functional is available. The equilibrium theory,
eqs. (5.1)–(5.3), is exact and can be derived without approximations (approximate models are
usually required for the Helmholtz energy functional F[{ρi(r)}] of real fluids). In equilibrium,
the chemical potential µi is constant over the whole domain; the imposed (constant) variables
are (T, V, {µi}).
For DDFT under non-equilibrium conditions, eq. (5.3) can be used to define a chemical
potential profile µi(r), the gradients of which we can use as the thermodynamic driving
forces in diffusion models for molecular transport. This approach is no longer exact, since it
assumes that the functional form of the Helmholtz energy functional for the non-equilibrium
density is the same as the Helmholtz energy functional in equilibrium, i.e., the higher order
non-equilibrium multi-body densities ρ(n)i (r1, . . . , rn) can be approximated by the ones of the
equilibrium fluid2,20,21,23 (adiabatic approximation); dynamic intramolecular correlations are
thus also neglected.
In the above considerations, the coordinate r may contain, in addition to spatial coordinates,
orientational and conformational coordinates that are relevant for describing molecular
microstates. In this work, we use a Helmholtz energy functional based on the PC-SAFT
equation of state13–16, for which the coordinate r denotes only the center-of-mass position of
the molecules∗, while the orientational and conformational degrees of freedom are absorbed
in the de Broglie wavelength Λi(T ), which is irrelevant in all equations due to the isothermal
conditions considered in this work.
∗In a more elaborate variant of the PC-SAFT functional, the single-particle density of each segment is described
individually, which is advantageous, for example, for surfactants, where the polar head-groups are spatially
resolved71.
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5.2.2 Generalization of the Herivel-Lin Variational Principle

The Herivel-Lin variational principle4,5 is based on the action functional S, defined by

S [{ρi(r, t),vi(r, t)}] =
∫∫

L ([{ρi(r, t),vi(r, t)}]) drdt (5.4)

with the LagrangianL as a function of themolecular densitiesρi and themolecular velocities vi

of components i. Both depend on the position vector r and time t. By applying this variational
principle, the adiabatic approximation of DDFT is automatically incorporated. Following
Rohde 1, the Lagrangian is defined as

L ({ρi,vi}) =
Nc
∑

i=1

m̌i

2
ρi|vi|2 −ρa({ρ̄i})−

Nc
∑

i=1

ρiV
ext

i (5.5)

with the difference between the kinetic energy density m̌i
2 ρ|vi|2 including the molecular

mass m̌i of component i and the Helmholtz energy density ρa, with the overall molecular
density ρ =

∑Nc

i ρi and the Helmholtz energy per molecule a = F
N using the number of

molecules N and the weighted densities {ρ̄i}. Using the Helmholtz energy density instead of
the internal energy density later leads to a system of balance equations that obey the first
and second law of thermodynamics without an additional constraint for the time evolution of
entropy in the system (as the Helmholtz energy already incorporates this entropy constraint
for isothermal systems). In order to show that easily, we assume that there are no fluxes
across the fixed system boundary and the external potential V ext is conservative (has no
time dependence). These assumptions can be relaxed by considering surface fluxes across
the system boundary as well as time-dependent source terms for time-dependent external
potentials. We omit these here for the sake of clarity and brevity.
With exception of the Helmholtz energy functional F[{ρi(r)}] =

∫

ρ(r)a({ρ̄i(r)})dr we do not
require any prior knowledge of the system. In this work, we propose using Helmholtz energy
functionals F[{ρi(r)}] appearing in classical DFT (cf. section 5.2.1). In the action functional S
the Helmholtz energy now appears as

∫∫

ρa({ρ̄i(r)})drdt =

∫

F[{ρi(r)}]dt (5.6)

The vector/matrix notation used below is clarified in appendix D.1.
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5.2 Dynamic Density Functional Theory from a Variational Principle

5.2.2.1 Incorporating Constraints into the Variational Principle

We obtain the equations of motion for the system from the stationary path of the action
functional S. The stationary path is subject to the constraint that the identity of the molecules
is preserved. This can be expressed as

dxi

dt
≡
∂ xi

∂ t
+ vi ·∇xi = 0 (5.7)

which corresponds to the Lagrangian coordinates xi of the molecules of component i. This
results in the constraints1 in Eulerian coordinates as

∂ ρi

∂ t
+∇ · (ρivi) = 0 (5.8a)

∂ xi

∂ t
+ vi ·∇xi = 0 (5.8b)

which represents the conservation of molecules of each component and the preservation
of the identity of the molecules of each component. Equation (5.8b) denotes the material
derivative of component i, eq. (5.7), in Eulerian coordinates.
Hence, the hydrodynamic DFTmodel is obtained by choosing ({ρi,vi}) such that ({ρi,vi,xi}) is
a stationary point of the action functional S, eq. (5.4), while the constraints from eq. (5.8) hold.
This problem is the same as searching for the stationary point with respect to ({ρi,vi,xi,δi,qi})
for the functional

t1
∫

t0

∫

Rd

L [{ρi,vi}] +
Nc
∑

i=1

δi

�

∂ ρi

∂ t
+∇ ·

�

ρivi

�

�

−
Nc
∑

i=1

ρiqi ·
�

∂ xi

∂ t
+ vi ·∇xi

�

drdt (5.9)

with the Lagrange multipliers δi(r, t) and qi(r, t). Multiplication of the second Lagrange mul-
tiplier qi with the molecular density profile ρi does not change the result1, but subsequently
leads to simplifications during the calculation.
In contrast to the original work of Herivel 4 and the depiction of Serrin 5 , we use the Helmholtz
instead of the internal energy which allows us to neglect a constraint for constant entropy of
each individual molecule.
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5 Hydrodynamic Density Functional Theory for Mixtures

5.2.2.2 Stationary Paths from the Euler-Lagrange Equation

Solutions of the Euler-Lagrange equation

∂ L
∂ f
−

d
∑

j=1

∂

∂ r j

 

∂ L

∂
�

∂ f
∂ r j

�

!

−
∂

∂ t

�

∂ L

∂
�

∂ f
∂ t

�

�

= 0 (5.10)

are stationary paths for the action functionals of the type S =
∫∫

L[ f ,∇ f , ∂ f
∂ t ]drdt using the

Lagrangian with incorporated constraints L. In this work, this means the stationary path for
the integration argument of eq. (5.9) with respect to f ∈ {ρi,vi,xi,δi,qi}.
The Euler-Lagrange equation with respect to the elements of the vector xi yields

∂ (ρiqi)
∂ t

+∇ ·
�

ρiviq
ᵀ
i

�

= 0 (5.11)

This result can be simplified using the component balance from eq. (5.8a), which leads to

∂ qi

∂ t
+ vi ·∇qi = 0 (5.12)

The Euler-Lagrange equation with respect to the molecular densities ρi results in

m̌i

2
|vi|2 −

�

δF
δρi
+ V ext

i

�

−
∂ δi

∂ t
− vi ·∇δi + qi ·

�

∂ xi

∂ t
+ vi ·∇xi

�

= 0 (5.13)

taking advantage of the fact that there is no flux over the boundaries of the considered
domain. This result can be further simplified by using eq. (5.8b), to

dδi

dt
=
∂ δi

∂ t
+ vi ·∇δi =

m̌i

2
|vi|2 −

�

δF
δρi
+ V ext

i

�

(5.14)

The Euler-Lagrange equation with respect to the velocities vi gives

m̌iρivi −ρi∇δi −ρi∇xi · qi = 0

m̌ivi −∇δi −∇xi · qi = 0 (5.15)

The material derivative of eq. (5.15) yields

d(m̌ivi)
dt

=
d∇δi

dt
+∇xi ·

dqi

dt
+

d∇xi

dt
· qi (5.16)
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which can be simplified with dqi
dt = 0 from eq. (5.12), and

d∇xi

dt
=
∂∇xi

∂ t
+ vi ·∇∇xi =∇

∂ xi

∂ t
+∇ (vi ·∇xi)−∇vi ·∇xi =∇

dxi

dt
−∇vi ·∇xi (5.17)

with ∂∇xi
∂ t =∇

∂ xi
∂ t as well as dxi

dt = 0 from eqs. (5.7) and (5.8b). This results in

d(m̌ivi)
dt

=∇
dδi

dt
−∇vi ·∇δi −∇vi ·∇xi · qi (5.18)

Replacing dδi
dt in the first summand with eq. (5.14) and ∇δi in the second summand with

eq. (5.15) yields

d(m̌ivi)
dt

=
∂ (m̌ivi)
∂ t

+ vi ·∇(m̌ivi) = −∇
�

δF
δρi
+ V ext

i

�

(5.19)

where we have used the identity∇ m̌i
2 |vi|2 = m̌ivi ·∇vi. Multiplication of eq. (5.19) with ρi and

using the component balance, eq. (5.8a), leads to the component-wise momentum balance

∂ (m̌iρivi)
∂ t

+∇ ·
�

m̌iρiviv
ᵀ
i

�

= −ρi∇
�

δF
δρi
+ V ext

i

�

(5.20)

This system contains only the reversible dynamics due to the derivation from a variational
principle. All intermolecular interactions, including those between different components of
the mixture, are described by the Helmholtz energy functional F . The irreversible effects of
viscosity and molecular diffusion are not yet included.
In this work, we only consider molecular systems and therefore disregard drag and hydro-
dynamic interactions (which are used to model colloidal systems), unlike in the work of
Goddard et al. 3 , for which the component-wise momentum balance for mixtures agrees with
this work. The same applies to previous results by Archer 2 for pure substances.

5.2.3 Hydrodynamic Density Functional Theory Including Diffusive Transport of Momentum

and Molecules

If we add the divergence of the Cauchy pressure tensors (−∇ ·τi) of each individual compo-
nent i on the right-hand side of eq. (5.20) and sum up all components, we obtain

∂ (m̌ρv)
∂ t

+∇ · (m̌ρvvᵀ) = −
Nc
∑

i=1

ρi∇
�

δF
δρi
+ V ext

i

�

−∇ ·τ (5.21)
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with the mean molecular mass in the mixture defined by m̌ ≡
∑Nc

i x im̌i using the mole
fraction x i, the barycentric velocity v ≡ 1

m̌ρ

∑Nc

i m̌iρivi
∗ with the shorthand m̌ρ ≡

∑Nc

i m̌iρi,
as well as the Cauchy pressure tensor of the mixture

τ ≡
Nc
∑

i=1

�

τi + m̌iρi(vi − v)(vi − v)ᵀ
�

=
Nc
∑

i=1

�

τi + m̌iρi(vi − v)vᵀi
�

(5.22)

which is composed of the Cauchy pressure tensors of the individual components τi and a
contribution from the diffusive molecular fluxes†. The sum of the momentum transfer between
the components needs to be zero for eq. (5.22) to maintain the conservative character of the
momentum balance72,73. For pure components, eq. (5.21) is the hydrodynamic DFT model
proposed by Archer 2 . Because we only consider molecular systems, we do not consider drag.
In this work, we model the Cauchy pressure tensor as a Newtonian fluid defined by

τ = −λ (∇ · v) I− 2η
�

1
2
∇v+

1
2
(∇v)ᵀ

�

(5.23a)

= −ζ (∇ · v) I−η
�

∇v+ (∇v)ᵀ −
2
3
(∇ · v) I

�

(5.23b)

with the identity matrix I, the first Lamé constant λ, the dynamic shear viscosity η (second
Lamé constant), and the volume viscosity ζ ≡ λ + 2

3η, which is often neglected in liquid
systems. The decomposition in eq. (5.23b) represents the dilatation and the viscous shear
contribution to the Cauchy pressure tensor separately. The viscous shear contribution is
symmetrical and traceless, which motivates this decomposition. All viscosities are mixture
properties.

5.2.3.1 Hydrodynamic Density Functional Theory – Model Equations

The complete hydrodynamic DFT model can be expressed as

∂ (m̌ρ)
∂ t

+∇ · (m̌ρv) = 0 (5.24a)
∂ ρi

∂ t
+∇ · (ρiv+ jdiff

i ) = 0 (5.24b)

∂ (m̌ρv)
∂ t

+∇ · (m̌ρvvᵀ) = −
Nc
∑

i=1

ρi∇
�

δF
δρi
+ V ext

i

�

−∇ ·τ (5.24c)

∗This expression can be reformulated to the more straightforward definition v ≡
∑Nc

i wivi, using the mass
fraction wi =

x i m̌i
∑Nc

j x j m̌ j
.

†The [last equality] can be obtained using eq. (5.25).
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5.2 Dynamic Density Functional Theory from a Variational Principle

where we introduced diffusive molecular fluxes jdiff
i ≡ ρi(vi − v) of components i with respect

to the barycentric velocity v. The diffusive fluxes need to be described by a constitutive
equation. In this work, we propose using the generalized Maxwell-Stefan diffusion68–70, as
described in detail in appendix D.3. Due to eq. (5.24a), eq. (5.24b) is considered for all
but one component, i.e., for i = 1, . . . , (Nc − 1), noting also that the diffusive fluxes are not
independent, but are connected by

m̌Nc
jdiff
Nc
= −

Nc−1
∑

i=1

m̌ij
diff
i (5.25)

The hydrodynamic DFT model in eq. (5.24) is characterized by a similar structure to diffuse
interface models, such as the isothermal Navier-Stokes-Korteweg equations. However, the
interfacial thickness is typically on the nanometer scale (in agreement with molecular simula-
tions). Moreover, the effect of fluid-fluid interfaces is captured by the DFT term

∑Nc

i ρi∇
�

δF
δρi

�

without the need for specifying interfacial tension or adsorption behavior. The effect of solid
walls or confinement is captured by external potentials V ext

i , as a field acting on the fluid.
In fact, the DFT term in eq. (5.24c) is predictive for interfacial properties and agrees well
with experimental data for interfacial tensions of mixtures13–16,74 including surfactants71,
adsorption isotherms of multicomponent systems75, and contact angles of sessile droplets17,
without any additional parameters. For sufficiently large distances from vapor-liquid, liquid-
liquid, or fluid-solid interfaces, the term

∑Nc

i ρi∇
�

δF
δρi

�

in eq. (5.24c) simplifies to the pressure
gradient ∇p, yielding the familiar momentum balance of the Navier-Stokes equations.

5.2.3.2 Assumptions of the Hydrodynamic Density Functional Theory

The hydrodynamic DFT model proposed in eq. (5.24) is based on several model assumptions
that we point out by comparison with the exact formulation of Chan and Finken 22.
The proposed hydrodynamic DFTmodel considers only the two lowest hydrodynamicmoments
of the phase-space distribution function (component and momentum balance) in an infinite
hierarchy (viz., the BBGKY hierarchy50–54), which is justified if the system is not too far
from equilibrium. The Yvon-Born-Green hierarchy55,76 is used as a closure relation for the
BBGKY hierarchy. This takes into account all multi-body correlations but is exact only in
thermodynamic equilibrium. This so-called adiabatic approximation implies that at any given
instant, all molecular correlation functions are equal to the correlation functions of the
equilibrium system (which exhibits no time correlation) with the same density profile. This
allows replacing the action functional used by Chan and Finken 22 with the Helmholtz energy
functional F[{ρi}] from equilibrium DFT (which is exact for equilibrium situations since it is
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based on the Yvon-Born-Green hierarchy).
Orientational and conformational relaxation as well as dynamic intramolecular correla-
tions are neglected in the hydrodynamic DFT model, which is consistent with the PC-SAFT
Helmholtz energy functional used in this work, that also does not resolve orientational and
conformational degrees of freedom.
Moreover, the pressure tensor functional that represents hydrodynamic effects, defined
by Chan and Finken 22 as σ[{ρi}], is approximated by σ ≡ ∇ ·

�

m̌ρvvᵀ +τ+ pigI
�

, which
results from the application of the generalized Herivel-Lin principle1 (which is a continuum
approach)∗. The description of the convective momentum transport ∇ · (m̌ρvvᵀ) and the
viscous contribution to the pressure tensor ∇ · τ in the hydrodynamic DFT model stems
from the continuum treatment of the fluid, which, however, is only an approximation for the
hydrodynamic effects on the molecular scale. An interaction of the two terms can already be
observed in eq. (5.22). A more complex relationship is not explored in this work.

5.2.4 Non-Equilibrium Thermodynamics, First & Second Law of Thermodynamics, Energy

Inequalities

In the following, we show that for the hydrodynamic DFT model for mixtures, proposed in
eq. (5.24), the integral versions of the first and second law of thermodynamics are fulfilled.
The previously used assumption (cf. appendix D.2) that no fluxes are allowed across the
system boundary, corresponds to an isolated thermodynamic system.

5.2.4.1 Isothermal Non-Equilibrium Thermodynamics

The volume specific entropy production σ̇ in an isothermal system without chemical reactions
and in the absence of an electrical field can be described by77

σ̇ =
Nc
∑

i=1

jdiff
i ·

�

−
1
T
∇Tµ

diff
i

�

+τ :
�

−
1
T
∇v
�

(5.26)

with the absolute temperature T and the thermodynamic driving force for diffusion ∇Tµ
diff
i in

the direction of constant temperature defined by ∇Tµ
diff
i =∇µdiff

i + si∇T , with partial molar
entropies si. For the isothermal systems considered in this work follows ∇Tµ

diff
i = ∇µdiff

i ,
thence we omit the temperature index in the gradients from here on. For suitable definition of
∗The notation of the pressure tensor functional σ[{ρi}] corresponds to ref. 22 and should not be confused
with the entropy production σ̇, the PC-SAFT segment size parameter σi, or the Lanczos σ-factor used in
this work.

96



5.2 Dynamic Density Functional Theory from a Variational Principle

a driving force for molecular diffusion in inhomogeneous systems, we introduce quantity µdiff
i ,

which is different from the chemical potential µi (as expressed in eq. (5.3)). The driving
force is identified below as eq. (5.45).
Entropy production σ̇ is the central quantity of linear non-equilibrium thermodynamics77.
Equation (5.26) can be reformulated as a sum of products of all independent fluxes Jk ∈
�

{jdiff
i },τ

	

and their conjugate driving forces Xk ∈
�

{− 1
T∇µ

diff
i },−

1
T∇v

	

according to

σ̇(r, t) =
∑

k

Jk ·Xk (5.27)

where the index k denotes different types of transport. Fluxes and driving forces have the
same tensorial rank. Entropy production is a local and time-dependent quantity, indicated by
the positional and time coordinate r and t in eq. (5.27).
Equation (5.27) contains no information about the relation between fluxes and conjugate
driving forces. Linear relations of the form

Ji =
∑

j

Li jX j (5.28a)

X j =
∑

k

R jkJk (5.28b)

can be assumed in conductivity, eq. (5.28a), or resistivity form, eq. (5.28b), including the
matrices for the phenomenological Onsager coefficients L and resistivities R, which must be
symmetric and positive semi-definite for thermodynamic consistency, as demonstrated by
Onsager 78,79.
The non-equilibrium thermodynamics framework described above rests upon the assumption
that the Gibbs equation is locally satisfied. This is compatible with the adiabatic approximation
of DDFT, which assumes that the dynamic processes occur quasi-statically, i.e., the fluid
structure can be assumed to be in an equilibrium state (induced by an additional instantaneous
external potential, satisfying the Yvon-Born-Green hierarchy55,76).
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5.2.4.2 Entropy Balance/Second Law & Entropy Production

The entropy balance of a isothermal system of mixtures can be expressed as

∂ (ρs)
∂ t

+∇ ·

� Nc
∑

i=1

ρisivi

�

= σ̇ (5.29a)

∂ (ρs)
∂ t

+∇ ·

� Nc
∑

i=1

ρisiv+
Nc
∑

i=1

jdiff
i si

�

= σ̇ (5.29b)

with the entropy per molecule s, the partial molar entropies si with entropy density ρs =
∑Nc

i ρisi, and the entropy production per unit volume σ̇. From integration of eq. (5.29) over
the entire domain and assuming that no transport across the stationary boundary of the
domain occurs (cf. appendix D.2), we obtain

∂

∂ t

∫

ρs dr=

∫

σ̇dr=

∫ Nc
∑

i=1

jdiff
i ·

�

−
1
T
∇µdiff

i

�

+τ :
�

−
1
T
∇v
�

dr (5.30)

where the convective entropy fluxes were eliminated by applying eq. (D.6). We can interpret
this result, namely, the change in entropy of the considered isolated system is solely due to
entropy production by molecular diffusion and viscous shear within the system.
In the following, we show in sections 5.2.4.3 and 5.2.4.4 that the right-hand side of eq. (5.30)
is non-negative so that for entropy production, σ̇ ≥ 0 holds, and the hydrodynamic DFT
model thus obeys the second law of thermodynamics. To show this, however, we first need to
be concerned with molecular diffusion, which we do below in section 5.2.4.5.

5.2.4.3 Entropy Production for Viscous Dissipation

In the following, we show under which circumstances entropy production in isothermal
systems, defined in eq. (5.26), is positive to satisfy the Clausius-Duhem inequality σ̇ ≥ 0.
The viscous dissipation in eq. (5.26) can be reformulated into

−τ :∇v= 2η
�

Γ −
1
3
(∇ · v) I

�

:
�

Γ −
1
3
(∇ · v) I

�

+ ζ (∇ · v)2 ≥ 0 (5.31)

using the definition of the shear pressure tensor, eq. (5.23), and a decomposition of the
velocity gradient into a scalar invariant, a symmetric traceless part, and an antisymmetric part
according to∇v= 1

3(∇·v)I+
�

Γ− 1
3(∇·v)I

�

+Ω, with the rate of strain tensor Γ = 1
2

�

∇v+(∇v)ᵀ
�

and the vorticity tensor Ω = 1
2

�

∇v− (∇v)ᵀ
�

. Note that both the double dot product of the
scalar invariant with the traceless part and the vorticity tensor with the traceless part vanish.
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From eq. (5.31), it can easily be seen that for positive volume and shear viscosities, ζ =
λ+ 2

3η≥ 0 and η≥ 0, the viscous contributions individually are always positive, as required
by the Curie principle77 (the scalar-valued dilatation contribution to entropy production does
not couple with the vector-valued shear contribution), since the rate of shear pressure tensor
and the divergence of the velocity both occur quadratically.

5.2.4.4 Entropy Production for Maxwell-Stefan Diffusion

In this work, we propose using Maxwell-Stefan diffusion, which is formulated in resistivity
form, cf. eq. (5.28b), according to

−
ρi∇µdiff

i

kBT
=

Nc
∑

j 6=i

1
Di j

�

x jj
diff
i − x ij

diff
j

�

(5.32)

with binary Maxwell-Stefan diffusion coefficients Di j connected to the phenomenological On-
sager resistivities defined in eq. (5.28b) via Ri j = −

kB
ρDi j

. We already set the frame of reference
to the barycentric velocity. We consider the generalized Maxwell-Stefan diffusion68–70.
Let us consider the entropy production, eq. (5.26), and more specifically the contribution
from molecular diffusion, defined as

Nc
∑

i=1

jdiff
i ·

�

−
1
T
∇µdiff

i

�

(5.33)

and the thermodynamic driving force from eq. (5.28b) for isothermal systems, we obtain

Xi =
�

−
1
T
∇µdiff

i

�

=
Nc
∑

j=1

Ri jj
diff
j (5.34)

which leads to
Nc
∑

i=1

Nc
∑

j=1

jdiff
i Ri jj

diff
j ≥ 0 (5.35)

For thermodynamic consistency, the resistivity matrix R must be at least positive semi-definite
(cf. section 5.2.4.1; for binary systems, as considered in this work, this implies D12 ≥ 0). Since
the Maxwell-Stefan diffusion coefficients Di j can be directly obtained from the resistivity
matrix R, we can argue that entropy production for the generalized Maxwell-Stefan diffusion
leads to positive entropy production when R is chosen to be thermodynamically consistent77.
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The same can be shown for the conductivity form by using eqs. (5.3), (5.28a), and (5.33),
which leads to

Nc
∑

i=1

Nc
∑

j=1

�

−
1
T
∇µdiff

i

�

Li j

�

−
1
T
∇µdiff

j

�

≥ 0 (5.36)

with the semi-definite conductivity matrix L of phenomenological Onsager coefficients78,79.
The analysis confirms that the second law of thermodynamics is obeyed; entropy production
as determined from the hydrodynamic DFT model for an adiabatic system cannot become
negative.

5.2.4.5 Combination of First & Second Law of Thermodynamics

Having shown that the proposed hydrodynamic DFT model obeys the second law of thermody-
namics (non-negative entropy production), we will show below that, although not formulated
in a conservative form, it conserves the sum of kinetic, internal, and potential energy in an
isolated system (integral version of the first law of thermodynamics).
Calculation of the dot product of eq. (5.24c) with the velocity and using v ·∇ ·τ =∇ · (τ · v)−
τ :∇v and the continuity equation, eq. (5.24a), leads to

∂
�

m̌
2ρ|v|

2
�

∂ t
+∇ ·

�

m̌
2
ρ|v|2v

�

= −
Nc
∑

i=1

ρiv ·∇
�

δF
δρi
+ V ext

i

�

−∇ · (τ · v) +τ :∇v (5.37)

which represents the balance equation of the kinetic energy density.
By integrating eq. (5.37) and assuming there is no transport across the domain boundary (cf.
appendix D.2), we obtain

∫

∂
�

m̌
2ρ|v|

2
�

∂ t
dr= −

∫ Nc
∑

i=1

ρiv ·∇
�

δF
δρi
+ V ext

i

�

dr+

∫

τ :∇vdr (5.38)

where we already applied eq. (D.6) to eliminate the convective fluxes of kinetic energy and
shear pressure. The first integral on the right-hand side of eq. (5.38) simplifies using eq. (D.7),
where we assume that there is no flux over the boundary of the considered domain, to

∫

∂
�

m̌
2ρ|v|

2
�

∂ t
dr=

∫ Nc
∑

i=1

�

∇ · (ρiv)
�

�

δF
δρi
+ V ext

i

�

dr+

∫

τ :∇vdr (5.39)

On the right-hand side, by replacing the divergence in the first integral with eq. (5.24b), we
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get

∫

∂
�

m̌
2ρ|v|

2
�

∂ t
dr= −

∫ Nc
∑

i=1

�

δF
δρi
+ V ext

i

�

∂ ρi

∂ t
dr−

∫ Nc
∑

i=1

�

∇ · jdiff
i

�

�

δF
δρi
+ V ext

i

�

dr

+

∫

τ : ∇vdr (5.40)

where the first term on the right-hand side simplifies to
∫ Nc
∑

i=1

�

δF
δρi
+ V ext

i

�

∂ ρi

∂ t
dr=

∂

∂ t

�

F[{ρi}] +
∫ Nc
∑

i=1

ρiV
ext

i dr

�

(5.41)

where we used the chain rule and eq. (5.6) (for more details, consult appendix D.4). The
second term of eq. (5.40) simplifies using eq. (D.7), assuming no flux across the domain
boundary, leading to rewrite eq. (5.40) as

∂

∂ t

∫

�

m̌
2
ρ|v|2 +ρa+

Nc
∑

i=1

ρiV
ext

i

�

dr+ T

∫ Nc
∑

i=1

jdiff
i ·

�

−
1
T
∇
�

δF
δρi
+ V ext

i

��

dr

+ T

∫ Nc
∑

i=1

jdiff
i ·

�

1
T

wi

ρi

Nc
∑

j=1

ρ j∇
�

δF
δρ j

+ V ext
j

�

�

dr+ T

∫

τ :
�

−
1
T
∇v
�

dr = 0 (5.42)

where (for a reason that is given below) we added a complicated zero as the third [integral
term]∗

� Nc
∑

i=1

jdiff
i

wi

ρi

�

·

� Nc
∑

j=1

ρ j∇
�

δF
δρ j

+ V ext
j

�

�

= 0 (5.43)

which is zero because
∑Nc

i jdiff
i

wi
ρi
=
∑Nc

i wi(vi−v) = v−v= 0, with the mass fractions wi ≡
m̌iρi
m̌ρ ,

as well as the definition of the diffusive molecular fluxes and the barycentric velocity from
section 5.2.3. We reformulate the dissipative terms of eq. (5.42) to match eq. (5.26), yielding

∂

∂ t

∫ �

m̌
2
ρ|v|2 +ρa+

Nc
∑

i=1

ρiV
ext

i

�

dr+ T

∫ Nc
∑

i=1

jdiff
i ·

�

−
1
T
∇µdiff

i

�

dr

+ T

∫

τ :
�

−
1
T
∇v
�

dr = 0 (5.44)

where the driving force for molecular diffusion of component i for inhomogeneous fluids can
∗The text in the original publication reads: [line].
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be identified as

ρi∇µdiff
i ≡ ρi∇

�

δF
δρi
+ V ext

i

�

−wi

Nc
∑

j=1

ρ j∇
�

δF
δρ j

+ V ext
j

�

(5.45)

We recall that the DFT formalism, eq. (5.3), states that
�

δF
δρi
+ V ext

i

�

= µi. Thus, the driving
force expressed as ∇µdiff

i contains an additional term (on the right-hand side of eq. (5.45))
that accounts for pressures/tensions that contribute considerably at interfaces. The structure
of eq. (5.45) is in agreement with refs. 68–70 considering the definition of the DFT chemical
potential from eq. (5.3) and the external forces Fi ≡ −∇

�

δF
δρ j
+ V ext

i

�

from the momentum
balance of the hydrodynamic DFT model, eq. (5.24c).
Driving forces for molecular diffusion, as defined in eq. (5.45), have the important property

Nc
∑

i

ρi∇µdiff
i = 0 (5.46)

which is a prerequisite for deriving Maxwell-Stefan equations, where the diagonal elements
of the resistivity (or diffusion) coefficients are eliminated due to this relation. Equation (5.46)
implies the Gibbs-Duhem equation for inhomogeneous fluids. The requirement to obey
eq. (5.46) for the driving force led us to introduce a complicated zero: eq. (5.43) within
eq. (5.42). For fluids sufficiently far from interfaces, a comparable form, namely, the gen-
eralized driving force, was proposed by Curtiss and Bird 68,69. Their expression reads in our
notation as

ρi∇µdiff
i = ρi∇µi −wi

�

∇p+
Nc
∑

j=1

ρ j∇V ext
j

�

(5.47)

which also satisfies the condition in eq. (5.46). The chemical potential µi is also defined by
eq. (5.3), now for homogeneous fluids, which includes the contribution due to external po-
tentials. The pressure gradient ∇p corresponds to the homogeneous version of

∑Nc

j ρ j∇
�

δF
δρ j

�

in eq. (5.45). In that sense, eq. (5.45) can be regarded as a generalization of the generalized
driving force to inhomogeneous fluids.
The Helmholtz energy density in eq. (5.44) can be reformulated as

Nc
∑

i=1

ρiai = ρa = ρu− Tρs =
Nc
∑

i=1

(ρiui − Tρisi) (5.48)

with the partial molar Helmholtz energies ai, the internal energy density ρu, and the partial
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molar internal energies ui. Combining eqs. (5.3), (5.30), (5.44), and (5.48) leads to

∂

∂ t

∫

�

m̌
2
ρ|v|2 +ρu+

Nc
∑

i=1

ρiV
ext

i

�

dr= 0 (5.49)

where the entropy balance cancels with the integrals describing dissipation from molecular
diffusion and viscosity. This shows global conservation of the sum of kinetic, internal and
potential energy in an isolated system. This means that the hydrodynamic DFT model
proposed in eq. (5.24), although not written in local conservative form, satisfies integral
versions of the first and second law of thermodynamics.

5.2.4.6 Dissipation Relation

The total energy of the whole system remains constant without any fluxes across the system
boundary and constant external potential as shown in eq. (5.49). Combining eq. (5.44) with
the results from sections 5.2.4.3 and 5.2.4.4 shows that the right-hand side of the global
dissipation relation

∂

∂ t

�∫

m̌
2
ρ|v|2 dr+ F[{ρi}] +

∫ Nc
∑

i=1

ρiV
ext

i dr

�

= −T

∫ Nc
∑

i=1

jdiff
i ·

�

−
1
T
∇µdiff

i

�

dr− T

∫

τ :
�

−
1
T
∇v
�

dr ≤ 0 (5.50)

is non-positive (due to dissipation from molecular diffusion and viscous momentum diffusion).
After rewriting the left-hand side into separate terms for reasons of clarity, this indicates
that for the overall system, the sum of kinetic energy, Helmholtz energy, and energy from
an external potential decreases monotonically over time, establishing a natural Lyapunov
functional. For an isothermal system without fluxes across the boundary and in mechanical
and thermodynamic equilibrium, this corresponds to the minimum principle of the Helmholtz
energy.

5.3 Modeling of Transport Coefficients

Knowledge of the transport coefficients, namely, shear viscosity η (in this work, we neglect
the effect of the volume viscosity ζ) and Maxwell-Stefan diffusion coefficients Di j, is required
to solve the proposed hydrodynamic DFT model. We model the shear viscosity in mixtures
and the self-diffusion coefficients of pure components by entropy scaling based on the
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PC-SAFT equation of state80–83. The Maxwell-Stefan diffusion coefficients are determined
from an approximation for the self-diffusion coefficients in a mixture combined with the
Darken equation84,85. Entropy scaling methods originally developed by Rosenfeld 86–88 suggest
a simple, univariable correlation of transport coefficients with the residual entropy per
molecule sres({ρi}, T ).
These methods were developed for bulk fluids. We assume that the entropy scaling approach
is also predictive for inhomogeneous fluids. We calculate the residual entropy from the
Helmholtz energy functional according to

sres = −
1
ρ̄(r)

�

∂ (ρares)
∂ T

�

ρ

!
≤ 0 (5.51)

with the residual Helmholtz energy per molecule ares defined by F res ≡
∫

ρares dr and the
weighted density ρ̄(r) computed with the appropriate convolution radius for each PC-SAFT
contribution to the residual Helmholtz energy functional (we use the weighted density because
otherwise we get unreasonable values for the residual entropy and hence the transport
coefficients in the entropy scaling approaches that follow).
To exclude unexpected results in the transport coefficients for positive residual entropies,
noting the model equations were fitted to non-positive residual entropies only, we limit the
residual entropy to negative values (sres = 0 corresponds to the ideal gas state).
By using a Helmholtz energy functional based on the PC-SAFT equation of state, the same
limitations apply to the determination of transport properties as to the determination of
density profiles in the inhomogeneous regions: since the thermodynamic modeling of the non-
equilibrium fluid is based on the molecular correlation functions of the equilibrium system,
dynamic intramolecular correlations are not considered; orientational and conformational
degrees of freedom are not resolved and therefore only considered in a bulk manner. The
tensorial rank of the transport properties is also neglected for simplicity because only the
density profiles of the center of mass and not the orientation profiles are available for transport
property modeling.
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5.3 Modeling of Transport Coefficients

5.3.1 Entropy Scaling for Shear Viscosity & Self-Diffusion Coefficients

The shear viscosity η and the self-diffusion coefficients Dself,0
i of (hypothetical) pure compo-

nents are modeled by81–83,89

ln
�

η

ηCE

�

=
Nc
∑

i=1

x iAi +
Nc
∑

i=1

x imi

m̄
Bis
∗ +

Nc
∑

i=1

x imi

m̄
Ci(s

∗)2 +
Nc
∑

i=1

x imi

m̄
Di(s

∗)3 (5.52a)

ln

�

ρDself,0
i

ρDself,0
i,CE

�

= Ai + Bis
∗ − Ci

�

1− exp(s∗)
�

(s∗)2 − Di(s
∗)4 − Ei(s

∗)8 (5.52b)

with the reduced residual entropy s∗ ≡ sres({ρi},T )
kBm̄ , the Boltzmann constant kB, and the average

chain length parameter of the PC-SAFT equation of state m̄=
∑Nc

i x imi defined in terms of
the number of segments per chain mi of component i. The component-specific parameters Ai,
Bi, Ci, Di, and Ei were fitted to experimental data of pure component bulk systems81–83,89.
The self-diffusion coefficient Dself,0

i requires some explanation. Let us consider a binary mixture
with a volatile component (incapable of forming a liquid phase as a pure fluid), forming a
vapor-liquid interface. Furthermore, we consider a location where a liquid-like density is
observed, with the volatile component dissolved. Then, Dself,0

i of the volatile component is
the self-diffusion coefficient of a hypothetical liquid (noting that the pure volatile component
is vaporous under the considered conditions) because we assess Dself,0

i using the residual
entropy s∗({ρi}, T ), which corresponds to a liquid phase in the considered scenario. In this
sense, the volatile component is considered in a hypothetical liquid state. For this approach
to work robustly, it is important that the typical ranges of s∗ are comparable for various
(potentially very different) components. In our definition of s∗, this is the case (cf. refs.
80–83,89).
The transport coefficients are reduced by their Chapman-Enskog counterpart90,91, defined by

ηCE =
Nc
∑

i=1

x iηCE,i
∑Nc

j=1 x jφi j

ηCE,i =
5

16

Ç

Mi kBT
NAπ

σ2
i Ω
(2,2)∗
i

φi j =

�

1+
Ç

ηCE,i

ηCE, j

4

r

M j

Mi

�2

r

8
�

1+ Mi
M j

�

(5.53a)

ρDself,0
i,CE =

3
8

Ç

RT
πMi

σ2
i Ω
(1,1)∗
i

(5.53b)

with the pure-component Chapman-Enskog viscosities ηCE,i of components i, the mixture
reference for shear viscosities ηCE

92,93 with factors φi j, the Chapman-Enskog self-diffusion
coefficients Dself,0

i,CE the molar masses Mi, the Avogadro constant NA (so that m̌i =
Mi
NA
), the

universal gas constant R, the dimensionless collision integrals94 Ω(1,1)∗
i and Ω(2,2)∗

i , and the
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PC-SAFT segment size parameters σi.

5.3.2 Maxwell-Stefan Diffusion Coefficients Estimated from Self-Diffusion Coefficients Using

the Darken Equation

x i

D
ij

Dself,0
i

Dself
i (x)

Dself,∞
i

Dself,0
j

Dself
j (x)

Dself,∞
j

Di j(x)

{T, p}= const.

Figure 5.1: Schematic illustration of different diffusion coefficients in a binary mixture of
components i and j at constant temperature and pressure: the self-diffusion coefficients in a
pure fluid Dself,0

i , the self-diffusion coefficients at infinite dilution Dself,∞
i , the self-diffusion

coefficients in a mixture Dself
i , and the Maxwell-Stefan binary diffusion coefficient Di j.

The Maxwell-Stefan diffusion coefficients in fluid mixtures are obtained from the self-diffusion
coefficients. The relationship between the self-diffusion coefficients and the Maxwell-Stefan
diffusion coefficients is illustrated in figure 5.1.
The self-diffusion coefficients at infinite dilution Dself,∞

i are estimated following the method
by Zmpitas et al. 89, namely,

Dself,∞
i = Dself,0

j

�

d j

di

�2.23

(5.54)

using the effective molecular diameters

di

Å
=

�

ρ
pure
i (T sat

i (p
−◦ ), p−◦ )

#Å−3

�−
0.71

3

(5.55)

inspired by Wilke and Chang 95 , from the liquid densities of the pure components ρpure
i at their

normal boiling temperatures T sat
i (p

−◦ ) with p−◦ = 1.013 25bar. The self-diffusion coefficients
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for the binary mixtures considered in this work are estimated using the approach of Liu
et al. 96,

1

Dself
i (x)

=
x i

Dself,0
i

+
(1− x i)

Dself,∞
i

(5.56)

Then, the binary Maxwell-Stefan diffusion coefficient is approximated by the Darken equa-
tion84,85 according to

Di j(x) =
�

x i D
self
j (x) + x j D

self
i (x)

�

Γ αi j (5.57)

with Γi j =
x i

kBT

�

∂ µi
∂ x j

�

T,p,
∑

i x i=1
as the thermodynamic factor and an empirical parameter α. In

this work, for simplicity, we neglect the influence of the non-ideality of the mixtures and set
the thermodynamic factor to unity, Γi j = 1.

5.4 Well-Balanced Finite-Volume Discretization Scheme

The well-balanced finite-volume discretization scheme used in this work is the first-order
scheme developed by Carrillo et al. 97 applied to mixtures. The rationale behind this dis-
cretization scheme is to preserve the stationary states of the original system, eq. (5.3), on
the discrete level. The dissipation relations, eqs. (5.44) and (5.50), ensure that the sum of
kinetic, Helmholtz, and potential energy decreases monotonically with time. Assuming there
are no fluxes across the system boundary as specified in section 5.2, this yields v= 0 and thus
the stationary state described in eq. (5.3), which we can rewrite for each component i as

µi =
δF
δρi
+ V ext

i =
δF ig

δρi
+
δF res

δρi
+ V ext

i = kBT ln(ρiΛ
3
i ) +

δF res

δρi
+ V ext

i ∀i (5.58)

The effective de Broglie wavelength Λi(T ) cancels out of our isothermal model, and we can
simply set it to unity Λi = 1Å. On the discrete level, eq. (5.58) translates to

(µi)k = kBT ln
�

(ρiΛ
3
i )k
�

+
�

δF res

δρi
+ V ext

i

�

k
∀i, k (5.59)

for each discrete cell with index k.

107



5 Hydrodynamic Density Functional Theory for Mixtures

5.4.1 Reformulation of the Hydrodynamic DFT Model

The hydrodynamic DFT model as described in eq. (5.24) does not incorporate a pressure-term
as required by the well-balanced finite-volume scheme97. To obtain a pressure-term for the
convective flux, we employ the ideal gas contribution to the Helmholtz energy functional,
defined by

F ig[{ρi}] =
∫

ρaig({ρi(r
′)})dr′ = kBT

∫ Nc
∑

i=1

ρi(r
′)
�

ln
�

ρi(r
′)Λ3

i

�

− 1
�

dr′ (5.60)

with the Helmholtz energy density of the ideal gas ρaig. The ideal gas contribution is
the only local Helmholtz energy contribution of the employed PC-SAFT Helmholtz energy
functional8,13,16 used in this work. For the (local) ideal gas contribution, the functional
derivative simplifies to a partial derivative according to

δF ig

δρi(r)
≡ µig

i (r) = kBT ln
�

ρi(r)Λ
3
i

�

=
∂ (ρaig)
∂ ρi(r)

(5.61)

with the chemical potential of the ideal gas contribution µig
i . This motivates the separation of

the Helmholtz energy functionals F = F ig + F res into the ideal gas contribution F ig (local) and
the residual contributions F res (non-local), which allows rewriting the momentum balance of
eq. (5.24c) as

∂ (m̌ρv)
∂ t

+∇ ·
�

m̌ρvvᵀ + pigI
�

= −
Nc
∑

i=1

ρi∇
�

δF res

δρi
+ V ext

i

�

−∇ ·τ (5.62)

where we used the Gibbs-Duhem equation (which also assumes a local form as
∑Nc

i ρi∇Tµ
ig
i =

∇pig), and introducing the pressure of the ideal gas contribution pig ≡ ρkBT , that represents
the purely kinetic contribution to the static pressure. The influence from intermolecular
interactions is represented in the functional derivative of the residual Helmholtz energy
functional δF res

δρi
.

With eq. (5.62), the balance equations of the hydrodynamic DFTmodel formixtures, eq. (5.24),
can be written in a manner in which the pressure of the ideal gas contribution is considered
in the convective flux in the following way

∂U
∂ t
+∇ · Fconv(U) +∇ · Fdiff(U,∇U) = S(r,U) (5.63)

with the vector of unknowns U, the convective and diffusive fluxes Fconv and Fdiff, and the
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source S, defined by

U=







m̌ρ

{ρi}
m̌ρv






(5.64a)

Fconv(U) =







m̌ρv

{ρi}v
m̌ρvvᵀ + pig(ρ)I






(5.64b)

Fdiff(U,∇U) =







0

jdiff
i ({ρi})
τ({ρi},∇v)






(5.64c)

S(r,U) =









0

0

−
Nc
∑

i=1
ρi∇

�

δF res[{ρi}]
δρi

+ V ext
i (r)

�









(5.64d)

where we explicitly included the dependencies of the unknowns for clarity.
To satisfy the well-balanced property on the discrete level, the pressure of the ideal gas
contribution pig must be balanced with the source S using eq. (5.59). Due to the structure of
the Helmholtz energy functional used in this work, only the ideal gas contribution (the only
local contribution) can be extracted in a (local) pressure pig.
Not taking the ‘correct’ system pressure into account for the numerical flux approximations
using a numerical Riemann solver might not seem convincing at first, but, as it turns out, has
several advantages. The ideal gas pressure pig(ρ) is a convex function of density ρ for all
physical densities ρ ≥ 0 and temperatures T ≥ 0. The ideal gas does not show a two-phase
region and hence no van der Waals loop and thus no non-convex (unstable) region with
�

∂ p
∂ ρ

�

T
≤ 0, which would require additional attention because in these cases, the type of

the non-viscous momentum equation becomes mixed hyperbolic-elliptic. The loss of pure
hyperbolicity would prevent the straightforward application of upwind schemes that use
numerical Riemann solvers. This problem and how it can be circumvented is described in
refs. 98–101.

5.4.2 First-order Discretization Scheme for Convective Fluxes

The first-order well-balanced finite-volume scheme used in this work developed by Carrillo
et al. 97 (for cell-centered nodes identified by indices k) uses the discrete stationary state
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relation from eq. (5.59) to define interface values at the cell faces (identified by half-numbered
indices k+ 1

2) from

kBT ln
�

(ρiΛ
3
i )
−
k+ 1

2
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+
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i
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2

=
�

kBT ln(ρiΛ
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(5.65a)
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(5.65b)

where ()±
k+ 1

2
denotes the reconstruction of the left (−) and right (+) boundary value of the

molecular density ρi and the velocity v at the cell face located at k + 1
2 , and the choice of

average value
�

δF res

δρi
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i

�
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(5.66a)
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(5.66b)

Solving for the reconstructed values at the cell face leads to

(ρi)
−
k+ 1

2
= (ρi)k exp
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(5.67a)
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(5.67b)

with the inverse thermodynamic temperature β ≡ 1
kBT .

The reconstructed values ()±
k+ 1

2
are then used for the convective flux calculation at the interface

according to
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2
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2
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(5.68)

with the numerical flux F (approximate Riemann solver).
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The source S is discretized to preserve a stationary state on the discrete level. The system
described in eq. (5.64) simplifies for the stationary state (v= 0) to

S= −
Nc
∑

i=1

ρi∇
�

δF res[{ρi}]
δρi

+ V ext
i (r)

�

=∇ ·
�

pigI
�

(5.69)

which must be satisfied on the discrete level. This motivated replacing the original source
term with the pressure gradient ∇pig =∇ ·

�

pigI
�

. Integrating eq. (5.69) over finite-volume
cells k yields

∫

Ωk

Sdr=

∫

Ωk

∇ ·
�

pigI
�

dr=

∫

∂ Ωk

�

pigI
�

· ndA (5.70)

where Ωk and ∂ Ωk denote the volume and surface of cell k, respectively. In the following,
we show exemplarily the procedure for two dimensions; the extension to three dimensions
follows analogously. Equation (5.70) for Cartesian cells leads to

∫∫

Ωk

Sk dx dy =





�

(pig)−
k+ 1

2 ,x
− (pig)+

k− 1
2 ,x

�

∆y
�

(pig)−
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2 ,y
− (pig)+
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2 ,y

�
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 (5.71)

where the subscripts x and y indicate from which cell faces the values are taken and
(pig)±

k+ 1
2 ,x
≡ pig

�

ρ±
k+ 1

2 ,x

�

. This discretization for the source Sk is not only used for station-
ary states but out of global equilibrium as well.
For discrete stationary states, conservation of the following property needs to be satisfied
for each dimension. For the x-component of the momentum flux F conv,ρv

x using eq. (5.71), it
reads

F conv,ρv

k+ 1
2 ,x
− F conv,ρv

k− 1
2 ,x
= Sk,x∆x = (pig)−

k+ 1
2 ,x
− (pig)+

k− 1
2 ,x

(5.72)

Equations (5.65a) and (5.65b) in combination with the discrete stationary state relation
from eq. (5.59) show that (ρi)−k+ 1

2
= (ρi)+k+ 1

2
holds for stationary states. Exploiting this, the

convective momentum flux F conv,ρv

k+ 1
2 ,x

in a stationary state (v= 0) is calculated using eq. (5.68).
Exploiting consistency of the numerical flux (approximate Riemann solver), F(U,U) = F(U),
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yields

F conv,ρv

k+ 1
2 ,x
= Fρv
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2 ,x
ρ−
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2 ,x
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m̌+
k+ 1

2 ,x
ρ+

k+ 1
2 ,x

�

(ρi)+k+ 1
2 ,x

	

0

















= (pig)−
k+ 1

2 ,x
= (pig)+

k+ 1
2 ,x

(5.73)

The same can be shown for F conv,ρv

k− 1
2 ,x

, which confirms that eq. (5.72) is satisfied on a discrete
level. The y-component can be treated analogously.
Although specialized Riemann solvers tailored to diffusive transport equations have already
been proposed102,103, we follow the approach taken by Carrillo et al. 97 and apply simple
and versatile approximations to the Riemann problem: the local Lax-Friedrichs flux for the
convective transport, defined by

Fk+ 1
2 ,x

�

U−
k+ 1

2 ,x
,U+

k+ 1
2 ,x

�

=
1
2

�

F−
k+ 1

2 ,x
+ F+

k+ 1
2 ,x

�

−
λk+ 1

2 ,x

2

�

U+
k+ 1

2 ,x
−U−

k+ 1
2 ,x

�

(5.74)

with the maximum absolute value of the eigenvalues of the Jacobian of the equation system
(cf. appendix D.5) at the cell faces, defined by

λk+ 1
2 ,x ≡ max

U±
k+ 1

2 ,x

��

�vx + cig
s

�

� ,
�

�vx − cig
s

�

�

	

(5.75)

with the isothermal speed of sound of the ideal gas contribution cig
s ≡

q

kBT
m̌ , which, in the

isothermal system considered here, depends only on the composition of the mixture (cf.
eq. (D.34)). Equation (5.75) selects the maximum information speed of the positive and
negative characteristic of the system of equations for the negative (−) and positive (+) side of
the cell face, i.e., the maximum out of four values.
Using the same discretization scheme for mixtures as Carrillo et al. 97 used for pure fluids is
motivated in appendix D.6.

5.4.3 Discretization for Diffusive Fluxes

The diffusive fluxes jdiff
i and τ of the left (−) and right (+) side of the cell face located at k+ 1

2

are naïvely approximated with their respective cell values for the velocities and the projected
densities at the cell faces (equivalent to the convective fluxes, cf. eq. (5.67)). For viscous
momentum transports we use

τ−
k+ 1

2 ,x
= τk and τ+

k+ 1
2 ,x
= τk+1 (5.76)
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For the diffusive molecular fluxes jdiff
i ≡ ρi(vi − v), we choose a similar approach as for the

convective transport, namely
�

jdiff
i

�−
k+ 1

2
= (ρi)

−
k+ 1

2
(vi − v)k and

�

jdiff
i

�+

k+ 1
2
= (ρi)

+
k+ 1

2
(vi − v)k+1 (5.77)

where the density at the cell faces is determined by eq. (5.67).
Like for the convective fluxes (cf. eq. (5.68)) we use an approximate Riemann solver. For
diffusive fluxes, we apply the central flux, defined by

Fdiff,τ

k+ 1
2 ,x
= F

�

τ−
k+ 1

2 ,x
,τ+

k+ 1
2 ,x

�

ex =
1
2
(τk +τk+1)ex (5.78)

for the viscous momentum transport at the face in the positive x-direction, and by

F
diff,jdiff

i

k+ 1
2 ,x
= F

�

�

jdiff
i

�−
k+ 1

2 ,x
,
�

jdiff
i

�+

k+ 1
2 ,x

�

=
1
2

�

�

jdiff
i

�

k
+
�

jdiff
i

�

k+1

�

(5.79)

for molecular diffusion.
Approximation of the gradients

�

{−∇µi},−∇v
	

at the cell centers k occurring in the ther-
modynamic driving forces for molecular and momentum transport (cf. section 5.2.4.1) is
described in detail in appendix D.7.

5.5 Application of Hydrodynamic Density Functional Theory Model to

Droplet/Bubble Coalescence

The main result of this work is the synthesis and analysis of the hydrodynamic DFT model,
eq. (5.24), with a suitable driving force for molecular diffusion, eq. (5.45), to be used with the
Maxwell-Stefan diffusion model, eq. (5.32). In this section, we show that the proposed model
allows predictions for typically difficult problems. Therefore, we apply the hydrodynamic
DFT model to one-dimensional droplet and bubble coalescence of mixtures.
We model the fluid mixtures with a Helmholtz energy functional based on the PC-SAFT
equation of state13,14,16. The required PC-SAFT and entropy scaling parameters are listed in
tables 5.1 and 5.2. No external potentials are considered for the coalescence computations.
The arising convolution integrals are computed using fast Fourier methods19 [see chapter 3],
where symmetry at the left edge of the computational domain can be exploited by using
fast sine and cosine transforms (the full symmetric results are depicted for clarity). To
improve stability of the convolution calculation, we apply the Lanczos σ-factor19,104 once
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Table 5.1: Used PC-SAFT parameters for chain length mi, segment size parameterσi, segment
energy parameter εi

kB
, quadrupole moment Q i, molecular mass m̌i, and binary interaction

parameters kN2, j of nitrogen with the n-alkanes.
propane nitrogen n-dodecane

mi / – 2.0018 1.1504 5.3058
σi / Å 3.6184 3.3848 3.8959
εi
kB
/ K 208.1101 91.4 249.2145

Q i / DÅ – 1.43 –
m̌i / u #−1 44.0962 28.0134 170.3374

kN2, j / – 0.0251 – 0.1661

Table 5.2: Entropy scaling parameters for shear viscosity and self-diffusion coefficients,
consistent with the PC-SAFT parameters in table 5.1.

propane nitrogen n-dodecane
viscosity self-diffusion viscosity self-diffusion viscosity self-diffusion

Ai −0.8013 −0.6752 −0.1964 −0.1286 −1.6719 −1.7100
Bi −1.9972 0.3212 −0.9461 0.2489 −3.3902 0.4350
Ci −0.2907 0.1002 −0.0310 0.0805 −0.6956 0.3567
Di −0.0467 – −0.0303 – −0.1546 –
Ei – – – – – –

during the calculation∗. The semi-discrete system of ordinary differential equations (obtained
by discretizing the system of partial differential equations) is solved using the backward
differentiation formula (BDF) method105–107 implemented in the Python library SciPy108. All
results are computed with 256 grid points (taking advantage of symmetry, the following
plots therefore effectively consist of 512 grid points), and the integrator parameters listed in
table 5.3.
The considered coalescence systems are described by droplets/bubbles with their respective
equivalent diameter and an equivalent distance between them. The equivalent diameter deq

is determined as the diameter of a droplet/bubble with sharp (equivalent) vapor-liquid
interfaces and the same number of enclosed molecules. The equivalent distance between
two droplets/bubbles describes the distances between two equivalent interfaces. Note that
enrichment of the volatile component at the interface reduces the equivalent diameter and
thus increases the equivalent distance between two droplets/bubbles compared to a monotonic
vapor-liquid interface.
∗[For details on the Lanczos σ-factor consult appendix B.6.]
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Table 5.3: Integrator parameters for the BDF integrator used for the different systems
considered in this work: absolute tolerance for the molecular densities and the velocities
(atolρi

and atolv, respectively), relative tolerance (rtol), initial step size (first_step),
and the maximum allowed step size (max_step).

atolρi
atolv rtol first_step max_step

#Å−3 Åps−1 – ps ps

Figure 5.2 1e−4 1e−3 1e−6 1e−10 1e−2
Figure 5.3 1e−4 1e−3 1e−6 1e−10 1e−2
Figure 5.4 1e−6 1e−4 1e−8 1e−12 20e−2
Figure 5.5 1e−6 1e−4 1e−8 1e−12 15e−2

5.5.1 Coalescence of Pure Propane Droplets/Bubbles
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Figure 5.2: Density and velocity profiles for the coalescence of two one-dimensional propane
droplets at T = 200K and p = 0.20195 bar with equivalent diameter deq = 40Å and initial
distance of 15Å. For the definition of atomic units, see appendix D.8.
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The coalescence of two pure propane droplets is depicted in figure 5.2. The initial conditions
are obtained by equilibrating a single droplet in vapor-liquid equilibrium. The two-droplet
system is created by moving the droplet in the direction of the symmetry axis on the left edge
of the domain. The initial velocity profile is set to zero.
The driving force for coalescence is the source term −ρ∇

�

δF
δρ

�

in the momentum balance,
eq. (5.24c), resulting in a velocity that pulls both droplets together. After coalescence (see
figure 5.2 at 72 ps), the density in the center of the domain is compressed to a value higher
than the equilibrium liquid density (giving an idea of the large forces at work). The inertia
of the system leads to oscillatory behavior, best observed in the velocity profile. The shear
viscosity damps the oscillation, which is no longer visible after 200 ps at the latest.

5.5.2 Influence of Second Component on Propane Droplet Coalescence

How a second component affects the coalescence behavior is depicted in figure 5.3 for the
addition of nitrogen to the propane system considered previously (for the same temperature
and pressure conditions). The temperature, equivalent droplet diameter, and the distance
between the droplets are maintained compared to the pure propane droplets; to preserve
vapor-liquid equilibrium, the pressure of the binary system deviates from the pure fluid case.
This system shows a small temporary enrichment of nitrogen at the vapor-liquid interface.
For mixtures, the driving force leading to coalescence consists of two contributions:
−ρC3H8

∇
�

δF
δρC3H8

�

and −ρN2
∇
�

δF
δρN2

�

. We can see that the additional component, in this case
nitrogen, formally has an influence on the coalescence behavior. The influence is small, but
this might well be due to the small concentration of nitrogen at these vapor-liquid equilibrium
conditions.
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Figure 5.3: Coalescence of two one-dimensional propane/nitrogen droplets with equivalent
diameter deq = 40Å and initial distance of 15Å at T = 200 K and p = 1 bar. The left panels
show the density and velocity profiles of the mixture, labeled ρ and v, and of the pure propane
system, ρpure and vpure, respectively (cf. figure 5.2). The molecular densities of propane (C3H8)
and nitrogen (N2) are shown on the right; the molecular densities of nitrogen are magnified.
Note that the mixture is not yet in thermodynamic equilibrium at 200 ps.

5.5.3 Droplet Coalescence of Dodecane/Nitrogen Mixture

The coalescence of two n-dodecane/nitrogen droplets is depicted in figure 5.4. Compared to
the previously examined propane/nitrogen mixture shown in figure 5.3, the system regarded
here shows a more pronounced enrichment of nitrogen at the vapor-liquid interface.
Similar to the two systems considered previously, the n-dodecane/nitrogen system shows
a density higher than the equilibrium liquid density in the middle of the domain after
coalescence (cf. figure 5.4 at 135 ps). This can be attributed to the temporary enrichment of
nitrogen between the vapor-liquid interfaces. The nitrogen layer between the two droplets
does not prevent coalescence. It is noticeable that the interdiffusion of both components is
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5 Hydrodynamic Density Functional Theory for Mixtures

much slower than the convective processes, as can be seen in figure 5.4 at 500 ps, where the
velocity is already damped by the shear viscosity, but the molecular density profiles have not
reached their equilibrium values yet.
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Figure 5.4: Coalescence of two one-dimensional n-dodecane/nitrogen droplets with equiv-
alent diameter deq = 40Å and initial distance of 15Å at T = 300K and p = 60 bar. The left
panels show the density and velocity profiles, and the right panels show the molecular density
profiles of nitrogen (N2) and n-dodecane (C12H26).

5.5.4 Bubble Coalescence of Dodecane/Nitrogen Mixture

The coalescence of two n-dodecane/nitrogen bubbles is depicted in figure 5.5. For the
considered systems, bubble coalescence shows different characteristics than the droplet
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system illustrated in figure 5.4. Unlike the droplet system, there is no over-/undershoot of
the density profile in the middle of the domain after coalescence. Temporary enrichment
or depletion of one component between the bubbles is not visible due to larger diffusive
molecular fluxes (larger Maxwell-Stefan diffusion coefficients) in the vapor phase. In addition,
oscillations are much less pronounced than in the droplet system. This might be caused by the
surrounding liquid phase, which has a high viscosity compared to the bubble and effectively
damps the oscillation.
For this system, bubble coalescence occurs in three distinguishable stages: (I) fast convective
transport in the vapor phase (cf. 4 ps) followed by small oscillations (cf. 40 ps); (II) slow
diffusive molecular transport (cf. 2400 ps, where the barycentric velocity starts to build up
again); and (III) simultaneous convective and diffusive molecular transport until complete
coalescence.

5.6 Conclusion & Outlook

A variational principle is used to derive a hydrodynamic DFT model for mixtures that sim-
plifies to the isothermal Navier-Stokes equations for local Helmholtz energy functionals,
similar to diffuse interface models such as the Navier-Stokes-Korteweg equations. The applied
variational principle already incorporates the adiabatic approximation of DDFT. Molecular
diffusion is described by generalized Maxwell-Stefan diffusion. We derived a suitable expres-
sion for the driving force of diffusion for inhomogeneous systems. Our expression can be
regarded as an extension of the generalized driving force of the Maxwell-Stefan approach to
inhomogeneous systems. Diffusive momentum transport is described by the Cauchy pressure
tensor of a Newtonian fluid.
The proposed hydrodynamic DFT model is characterized by its predictive power regarding in-
terfacial properties. The underlying DFT model predicts interfacial tensions and the structure
of interfaces of mixtures in thermodynamic equilibrium without additional parameterization.
The influence of walls or confinement can be described by external potentials, as fields
acting on the fluid. Thus, not only the adsorption behavior of mixtures can be predicted but
also hydrodynamics interacting with solid walls. The required transport coefficients, shear
viscosity, and Maxwell-Stefan Diffusion coefficients can be described using entropy scaling.
The required parameters are fitted to single-phase pure substances only. This allows the
transport coefficients in mixtures to be predicted. Our approach is an application of entropy
scaling to inhomogeneous fluids that deserves further assessment in future work.
We are able to show that the hydrodynamic DFT model globally satisfies the first and second
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Figure 5.5: Coalescence of two one-dimensional n-dodecane/nitrogen bubbles with equivalent
diameter deq = 40Å and initial distance of 15Å at T = 300 K and p = 60 bar. The left panels
show the density and velocity profiles, and the right panels show the molecular density
profiles of nitrogen (N2) and n-dodecane (C12H26).

law of thermodynamics, provided the transport coefficients are chosen such that the matrices
of phenomenological Onsager coefficients are positive semi-definite∗.
We applied the derived hydrodynamic DFT model to droplet and bubble coalescence of binary
mixtures. The fluid and transport coefficients were modeled with entropy scaling using a
Helmholtz energy functional based on the PC-SAFT equation of state. The model equations
∗In particular, this implies that volume and shear viscosity are non-negative and the Maxwell-Stefan diffusion
coefficients lead to a semi-definite matrix of phenomenological Onsager coefficients.
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were semi-discretized with a well-balanced finite-volume scheme and solved with a BDF
integrator.
We were able to describe droplet and bubble coalescence of binary mixtures in one dimension
with the hydrodynamic DFT, observing phenomena such as temporary enrichment of one
component between the droplet interfaces, the influence of a second component on coales-
cence phenomena (although the effect was small for the chosen system), and different stages
of coalescence as in the bubble coalescence example.
In the future, the following aspects should be addressed. The considered systems represent
only a small subset of possible applications. For a more realistic prediction of droplet and
bubble coalescence, the hydrodynamic DFT model should be solved in two or, for real physical
droplets, three dimensions.
An off-the-shelf integrator not tailored to fluid dynamic problems, such as the used BDF
implementation, is probably not the best choice. In particular, in higher dimensions, the fully
implicit numerical treatment of the system of ordinary differential equations could prove
unreasonably time-consuming.
A higher-order extension to the used well-balanced finite-volume scheme already exists109.
Its use may allow for a coarser spatial discretization, which is particularly advantageous
when considering higher-dimensional cases. With the current discretization of the gradients
appearing in the driving forces of the diffusive fluxes, a discrete stationary state cannot be
exactly satisfied due to the naïve central differentiation scheme; therefore, a different gradient
approximation is desirable. Since the gradient of the non-local contributions to the Helmholtz
energy functional is required for the diffusive molecular fluxes, a cell-wise entropy inequality
as proved for the convective fluxes97 seems difficult to obtain.
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6 Conclusion & Outlook

In this work, I proposed a hydrodynamic density functional theory (DFT) model for multi-
component mixtures that can be derived from a variational principle. To efficiently solve
convolution integrals that appear in the hydrodynamic DFT, I gave a derivation on how to
efficiently compute the convolution integrals appearing in the PC-SAFT Helmholtz energy
functionals in Cartesian, cylindrical, and spherical coordinates using fast Fourier and similar
transforms.
Convolution integrals can be computed efficiently in Fourier space using off-the-shelf fast
Fourier as well as fast sine and cosine algorithms. In addition, they allow easy exploitation
of symmetries, reducing the dimensionality and complexity of many practical problems. In
cylindrical coordinates, rotational symmetry can be easily exploited. The resulting convolution
integrals are then computed by zero- and first-order Hankel transforms. While previous
approaches used logarithmic grids, that are not well suited for hydrodynamic DFT applications,
an existing first-order fast Hankel transform algorithm was extended by its inverse transform
to overcome this limitation. This new approach uses an equidistant spatial discretization,
combining a fast sine and a modification of a fast Abel transform. In spherical coordinates,
exploiting spherical symmetry results in the convolution integrals being computed by sine and
cosine transforms. Thus, in addition to Cartesian systems, single spherical droplets, radial
distribution and van Hove correlation functions, as well as rotationally symmetric pores can
be efficiently computed with (dynamic) DFT. This allows, for example, the analysis of size
dependence of the interfacial tension of small droplets/bubbles or adsorption isotherms in
cylindrical pores or spherical cavities.
Efficient convolution algorithms are crucial for the efficient application of the proposed
hydrodynamic DFT model, since the computation of the convolution integrals constitutes
the determining factor for the computing time. The proposed hydrodynamic DFT model
accounts for viscous forces modeled by a Newtonian shear pressure tensor. For molecular
multicomponent diffusion, a Maxwell-Stefan model is applied. A suitable expression for
the driving force for diffusion is derived. The driving force includes a term that captures
the effect of a pressure gradient or interfacial tension, which contributes substantially to
diffusion in the vicinity of interfaces. The expression can be considered an extension of the
generalized driving force proposed by Curtiss and Bird 1,2 to inhomogeneous systems. The
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use of this driving force is essential because the mechanical equilibrium assumption required
in Maxwell-Stefan diffusion is not satisfied with more naïve expressions for the driving force
for the intended applications.
The proposed hydrodynamic DFT simplifies to the isothermal Navier-Stokes equation for con-
tinuum situations where local Helmholtz energy functionals can be used (which is equivalent
to an ordinary thermal equation of state), allowing a bridging of the gap between microscopic
and macroscopic length scales. I was able to show that the hydrodynamic DFT model for an
isolated system satisfies the first and second law of thermodynamics, even though the model
is not formulated in conservative form.
I applied the hydrodynamic DFTmodel to droplet and bubble coalescence of binary mixtures in
one spatial dimension. The transport coefficients (shear viscosity andMaxwell-Stefan diffusion
coefficients) are obtained via entropy scaling. Originally developed and parameterized for
bulk fluids, I applied the method to inhomogeneous fluids, i.e., the droplet or bubble systems
considered. Since the hydrodynamic DFT model is not formulated in conservative form, a well-
balanced finite-volume discretization scheme is used that, unlike naïve flux discretizations,
does not generate numerical artifacts. The hydrodynamic DFT model combined with the
well-balanced finite-volume scheme was proven to be capable of describing droplet and
bubble coalescence of pure components and binary mixtures. For the considered systems,
n-alkane/nitrogen mixtures exhibiting nitrogen enrichment at the vapor-liquid interface,
the addition of nitrogen is shown to have a noticeable effect on the coalescence behavior.
Furthermore, different behaviors are observed for the coalescence of droplets and bubbles. This
is caused by different physical properties in the vapor and liquid phases, which affect the time
evolution of the system and thus the driving forces in the component and momentum balance.
For the systems considered, droplet coalescence proceeds in two stages: (I) convective and
diffusive molecular transport leading to a oscillating coalesced droplet, and (II) slow diffusion
of species within a single coalesced droplet. Coalescence of bubbles shows three distinct
phases: (I) very rapid convective transport in the vapor phase with minor oscillations, (II) slow
diffusive transport, and (III) simultaneous convective and diffusive transport to coalescence.

6.1 Interesting Aspects for Subsequent Investigations

First and foremost, one-dimensional droplets and bubbles are not a good representation for
their three-dimensional equivalents. While one-dimensional representations certainly capture
the continuous interface and potential for density oscillations of three-dimensional bodies,
they are limited by their low dimensionality. Curvature effects and the resulting pressure
difference between the droplet or bubble and the environment, as well as oscillations in a
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second direction, exist only in higher dimensions. Simulation of two- or three-dimensional
systems would enable the analysis of additional phenomena and hence a more accurate
representation of reality. Two- or three-dimensional droplets or bubbles allow the analysis
of Ostwald ripening, in particular the effect of different components or mixing effects such
as the enrichment of one component at the vapor-liquid interface. Furthermore, since in
one-dimensional systems the component accumulated at the vapor-liquid interface can only
diffuse through the liquid phase (in the case of droplets) or the vapor phase (in the case of
bubbles), it is also possible to analyze displacement effects of the component enriched at the
interface during coalescence when considering higher-dimensional systems. Consideration
of higher-dimensional systems allows not only the observation of coalescence or Ostwald
ripening of sessile droplets or bubbles on solid, possibly even heterogeneous, surfaces, but also
the determination of dynamic contact angles on these surfaces. Moreover, three-dimensional
droplets can then be compared to molecular dynamics simulations of droplets or bubbles,
validating the hydrodynamic DFT model or helping to identify model shortcomings for further
improvement, including the validity of entropy scaling methods for inhomogeneous fluids.
In addition, some numerical aspects warrant exploration. These include the discretization
of the gradient operator that appears in the thermodynamic driving forces of the diffusive
fluxes. The current discretization does not conserve discrete stationary states∗ between two
adjoining cells because in addition to the adjacent cells, the next-to-nearest cells are also
used to approximate the gradient. The application of numerical time integration algorithms
tailored to fluid dynamics problems should also be further investigated, especially when
considering higher-dimensional systems. While the fast Fourier transforms applied to compute
the convolution integrals of DFT show good scaling behavior for larger systems, they do
not lend themselves well to domain decomposition, a multi-node parallelization approach
commonly used in computational fluid dynamics. Real-space convolution algorithms are better
suited for this purpose. First steps toward real-space convolution based on the discontinuous
Galërkin spectral element method yielded promising results in one and two dimensions, but
are complex to implement for two- or three-dimensional systems for exact integration of the
ansatz functions; approximate integration methods could help with this issue.
The hydrodynamic DFT model was derived for isothermal situations. Although rigorous
derivation of a non-isothermal dynamical system usually requires a functional for internal
energy and entropy, it would be worthwhile to test whether a thermodynamically consistent
extension of the hydrodynamic DFT model could be achieved by simply including an internal
energy balance.

∗see eq. (5.59)
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PC-SAFT Classical Density Functional Theory in Various

Coordinate Systems Using Fast Fourier and Similar

Transforms

The content of this appendix is a literal quote of the supporting information:
R. Stierle, E. Sauer, J. Eller, M. Theiss, P. Rehner, P. Ackermann, and J. Gross. Supporting Informa-
tion: Guide to efficient Solution of PC-SAFT classical Density Functional Theory in various Coordi-
nate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504:112306, 2020.
doi:10.1016/j.fluid.2019.112306

Abstract

Classical density functional theory (DFT) is a powerful tool for studying solvation or problems
where resolution of interfacial domains or interfacial properties among phases (or thin films)
is required. Many interesting problems necessitate multi-dimensional modeling, which calls
for robust and efficient algorithmic implementations of the Helmholtz energy functionals.
A possible approach for achieving efficient numerical solutions is using the convolution
theorem of the Fourier transform. This study is meant to facilitate research and application
of DFT methods, by providing a detailed guide on solving DFT problems in multi-dimensional
domains. The work covers functionals based on weighted densities, such as the fundamental
measure theory (FMT), or a Helmholtz energy functional based on the perturbed-chain
statistical associating fluid theory (PC-SAFT) equation of state. Methods for efficiently
solving the convolution integrals in Fourier space are presented for Cartesian, cylindrical,
and spherical coordinates. For cylindrical and spherical coordinate systems, rotational and
spherical symmetry is exploited, respectively. To enable easy implementation, our approach
is based on fast Fourier, fast Hankel, fast sine and cosine transforms on equidistant grids,
all of which can be applied using off-the-shelf algorithms. Subtle details for implementing
algorithms in cylindrical and spherical coordinate systems are emphasized.
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A.1 Introduction

Efficient numerical solution of convolution integrals is important for solving classical density
functional theory (DFT) or dynamic density functional theory (DDFT) in multidimensional
problems. The solution of a DFT model, namely the densities of all species, is obtained
iteratively. The computational demand for the iterative solution is the repetitive computation
of numerous convolution integrals. Naïve numerical convolution through integration leads to
long computation times and complicated integration schemes, especially for multidimensional
DFT problems. One approach to address this problem is the utilization of the convolution
theorem of the Fourier transform. The O(N log N) computational complexity of fast Fourier
transform (FFT) algorithms (compared to O(N 2) for numerical convolution) leads to a signifi-
cant advantage regarding computational performance. Additionally, working with integral
transforms like FFT simplifies multidimensional convolutions, because each dimension can
be treated separately which averts multidimensional integration schemes.
Several authors applied integral transforms to convolution integrals appearing in DFT. Kne-
pley et al. 1 used the FFT approach for convolutions in a DFT for ionic solutions. A short
introduction to usage of FFT for Rosenfeld’s fundamental measure theory2 (FMT) was also
given. Frink et al. 3,4 proposed Fourier space convolution on a multidimensional Cartesian
grid in combination with nonlinear iterative solvers and Sears and Frink 5 proposed using FFT
in combination with a matrix-free scheme and compared computational efficiency for one-,
two- and three-dimensional systems. Hlushak et al. 6 employed the FFT on a two-dimensional
Cartesian grid to analyze flexible chain molecules at curved surfaces, whereas Hlushak et al. 7 ,
and Hlushak et al. 8 studied attractive particles in nanopores. While analyzing rotationally
symmetric systems, rotational symmetry was not exploited in the computation of the convolu-
tion integrals, leading to unnecessary computational overhead. Oettel et al. applied the Fourier
convolution approach within the framework of three-dimensional FMT and compared results
to those obtained by phase-field models10 and Monte Carlo simulations9. A similar analysis
of crystal structures and solid-liquid interfaces using three-dimensional FMT combined with a
Helmholtz energy contribution to account for attractive interactions was conducted by Wang
et al. 11. Solvation effects in water were studied by Levesque et al. 12; solvation energies of
amino acid side chains by Liu et al. 13 , both by three-dimensional DFT. Zhou et al. 14 applied
three-dimensional Cartesian DFT to heterogeneous nucleation of Lennard-Jones fluids on
solid walls.
For cylindrical systems, rotational symmetry can be exploited to reduce dimensionality of the
DFT problem. In one-dimensional cylindrical coordinates, González et al. 15 proposed using
the Hankel transform for computation of the convolution in Fourier space. The fast Hankel
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transform was not employed, however. Malijevský 16 and Mariani et al. 17 took advantage of
rotational symmetry to formulate the convolution integrals of FMT for cylindrical coordinates
in real space. In Fourier space this was done by Boţan et al. 18 for the analysis of hard-sphere
fluids in annular wedges. In cylindrical coordinates the Fourier transform can not be computed
using FFT, but requires a, preferably fast, Hankel transform algorithm for the radial direction.
Boţan et al. 18 reformulated the DFT problem on a logarithmic grid to apply a fast Hankel
transform.
Spherical symmetry can be exploited to efficiently compute spherical DFT systems in one
dimension. This was applied by González et al. 15 to hard spheres in a spherical cavity, utilizing
Fourier space convolution. For FMT in spherical coordinates projection of the weight functions
onto one dimension was described by Roth 19.
Convolution in Fourier space by exploiting the FFT or similar algorithms is not the only
approach to speed up the computation of the convolution integrals appearing in DFT problems.
Yatsyshin et al. introduced a Chebyshev pseudo-spectral collocation method in combination
with Clenshaw-Curtis quadrature for computation of the convolution integrals in one20 and
two dimensions21 of a Cartesian grid, extended by Nold et al. 22 . Contrary to FFT convolution,
equidistant grid spacing is not required, but possible. Problem-specific grid spacing has
potential to reduce computational effort. Xu and Cao 23 used a two-dimensional multiscale
finite element approach to reduce computational complexity for the convolution integrals.
Computation time, of course, not only depends on the performance of the Helmholtz functional
computation and the involved convolution integrals but also depends on the algorithm used
to solve the system of nonlinear equations as well. Previous work on numerical algorithms
can be found in Frink et al. 3,4, Kovalenko et al. 24, Frink and Salinger 25,26, Frink et al. 27, a
comparison of different nonlinear solvers in Mairhofer and Gross 28.
Classical DFT or DDFT are theoretical approaches that carry molecular detail through averaged
quantities. DFT approaches are predictive when a suitable Helmholtz energy functional is ap-
plied. We aim at applying FFT convolution to a functional consistent with the perturbed-chain
statistical associating fluid theory (PC-SAFT) equation of state29,30. The PC-SAFT equation of
state is formulated in terms of the Helmholtz energy allowing easy generalization to Helmholtz
energy functionals. PC-SAFT provides good descriptions of thermodynamic properties in
bulk phases for a wide variety of real substances and mixtures, including components of
low molecular mass30, but also complex species like polymers31 or associating substances32.
The underlying molecular model regards molecules as hard chains with attractive van der
Waals segment-segment interactions or hydrogen-bonding (associating)32–37 or dipolar and
quadrupolar interactions38–40. Several approaches combining PC-SAFT and DFT have been
proposed. Gross 41 described a DFT for pure substances which was generalized by Klink and
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Gross for mixtures and successfully applied to vapor-liquid42, liquid-liquid interfaces43. Klink
et al. 44 and Lamanna et al. 45 applied this PC-SAFT DFT to interfacial transport resistivities.
Sauer and Gross 46 suggested a Helmholtz energy functional for the dispersion contribution
based on a weighted density approximation suitable for confined systems, predicting phys-
ical phenomena like surface tension, contact angles47 and adsorption isotherms. Similar
approaches were taken by Shen et al. 48,49, Ye et al. 50 and Xu et al. 51.
This work provides a practical guide to implementing and solving DFTmodels that are based on
weighted densities. Wewish to facilitate the use of DFT approaches in engineering applications.
More specifically we demonstrate implementation of the ideal gas, hard-sphere, hard-chain
and dispersion contribution of PC-SAFT DFT in Cartesian, cylindrical and spherical coordinate
systems. We use the FFT algorithm for Cartesian coordinates and the axial contribution
to cylindrical systems, the fast Hankel transform is applied for the radial contribution to
cylindrical systems and the fast sine and cosine transform is adopted for systems described in
spherical coordinates. In contrast to previous work using cylindrical coordinates18, we apply
the fast Hankel transform of Hansen 52,53 , which allows computation of Hankel transforms on
equidistant (rather than logarithmic) grids by using a combination of fast Abel54 and fast sine
and cosine transforms. Equidistant grids reduce computational overhead because a smaller
number of overall grid points is usually possible, while maintaining the same worst-case
grid density as compared to logarithmic grids. A complete presentation of the Helmholtz
energy functionals of PC-SAFT DFT is given, including their functional derivatives and a
comprehensible introduction to Fourier space convolution. Fourier space convolution is easier
to implement than naïve real space convolution, which allows writing robust simulation
codes.

A.2 Classical Density Functional Theory Using PC-SAFT Functionals

The starting point for classical DFT is the grand potential functional Ω, which, for a mixture
of Nc components is written as

Ω[{ρi(r)}] = F[{ρi(r)}] +
Nc
∑

i=1

∫

ρi(r)
�

V ext
i (r)−µi

�

dr (A.1)

with Helmholtz energy functional F , chemical potential µi of component i and the external
potential V ext

i , acting on component i. Although not made explicit in this notation, the
specified variables of Ω are temperature T , volume V , and chemical potentials µi of all species.
Further, ρi(r) describes the density of component i at position r, placing the orientational and
conformational degrees of freedom in the de Broglie wavelengths Λi(T ), which will cancel out
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in all equations due to isothermal treatment. For DFT with the PC-SAFT30 chain contribution,
the configuration of the chain fluid is considered in an averaged manner only by the position
vector r. Therefore, ρi(r) denotes the average of density profiles for the individual segments
in molecule i. This approximation neglects any density dependence of the internal degrees of
freedom, i.e., treating complex fluids as simple ones. Square brackets denote a functional
dependence and curly brackets around {ρi(r)} indicate a vector of all densities within a
mixture, i = 1, . . . , Nc.
In equilibrium the grand potential functional is minimal and the value of the grand potential
functional reduces to the grand potential Ω0 = Ω[{ρ0

i }]. The minimum implies, that for
the equilibrium density profile {ρ0

i (r)}, the functional derivatives of the grand potential
functional Ω with respect to the density profiles {ρi(r)} vanish according to

δΩ[{ρi}]
δρ j(r)

�

�

�

�

{ρ0
i (r)}
= 0 (A.2)

which leads to the main equation of DFT

δF[{ρi}]
δρ j(r)

= µ j − V ext
j (r) ∀ j (A.3)

that can be solved for the density profiles {ρ0
i (r)} in the considered volume, provided a model

for the Helmholtz energy functional is available.
We consider a state-of-the-art Helmholtz energy functional using PC-SAFT30, which is based
on a division into an ideal gas, hard-sphere, hard-chain, and dispersion contribution according
to

F[{ρi(r)}] = F ig[{ρi(r)}] + Fhs[{ρi(r)}] + Fhc[{ρi(r)}] + Fdisp[{ρi(r)}] (A.4)

with model parameters for each component in the mixture i: the hard-sphere radii Ri (or
hard-sphere diameters di) describing repulsive interactions, the chain lengths mi, and εi,
describing the attractive segment-segment interactions. Possible extensions are contributions
for association and multipolar interactions41,46, which are not considered here. The treatment
of these terms is entirely analogous to the expressions detailed in this work.
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A.2.1 Ideal Gas Contribution

The ideal gas contribution to the Helmholtz energy functional is known exactly,

βF ig[{ρi(r)}] =
Nc
∑

i=1

∫

ρi(r)
�

ln
�

ρi(r)Λ
3
i

�

− 1
�

dr (A.5)

where Λi denotes the de Broglie wavelength, which contains the translational and internal
degrees of freedom of the chain fluid, and β = 1

kBT is the inverse temperature, with Boltz-
mann constant kB. This is an approximation for a chain considered as an ideal gas with
average treatment of internal degrees of freedom, with corrections therefor introduced in
appendix A.2.3. The functional derivative is calculated as

δβF ig[{ρi}]
δρ j(r)

=
Nc
∑

i

∫

δρi(r′)
δρ j(r)

�

ln
�

ρi(r
′)Λ3

i

�

− 1
�

dr′ +
Nc
∑

i

∫

ρi(r
′)
δ ln

�

ρi(r′)Λ3
i

�

δρ j(r)
dr′

=
Nc
∑

i

δi j

∫

δ(r′ − r) ln
�

ρi(r
′)Λ3

i

�

dr′ = ln
�

ρ j(r)Λ
3
j

�

(A.6)

where we used
δρi(r′)
δρ j(r)

= δi jδ(r− r′) (A.7)

with δi j as the Kronecker delta and δ as the Dirac delta function.

A.2.2 Hard-Sphere Contribution – Fundamental Measure Theory

The White-Bear version19,55,56 of the fundamental measure theory (FMT) is used to calculate
the hard-sphere contribution

βFhs[{ρi(r)}] =
∫

ΦWB({nα(r)})dr (A.8)

where α ∈ {0, 1,2, 3,V1, V2}. The reduced Helmholtz energy density Φ, which is solely a
function of the weighted densities nα(r), is obtained from

ΦWB({nα}) = −n0 ln(1− n3) +
n1n2 − nV1 · nV2

1− n3

+
�

(n2)
3 − 3n2nV2 · nV2

� n3 + (1− n3)2 ln(1− n3)
36π(n3)2(1− n3)2

(A.9)
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with the weighted densities nα(r) calculated via convolution of the density profile ρi as

nα(r) =
Nc
∑

i=1

mi

∫

ρi(r
′)ωαi (r− r′)dr′ ≡

Nc
∑

i=1

miρi(r)⊗ωαi (r) (A.10)

The respective weight functions2,19,55 ωαi are defined as

ω0
i (r) =

1
4πR2

i

δ(Ri − |r|) (A.11a)

ω1
i (r) =

1
4πRi

δ(Ri − |r|) (A.11b)

ω2
i (r) = δ(Ri − |r|) (A.11c)

ω3
i (r) = Θ(Ri − |r|) (A.11d)

ωV1
i (r) =

1
4πRi

r
|r|
δ(Ri − |r|) (A.11e)

ωV2
i (r) =

r
|r|
δ(Ri − |r|) (A.11f)

with the hard-sphere radius Ri of component i, the Dirac delta function δ, and the Heaviside
step function Θ. We note that, for homogeneous fluids, FMT reduces to the Boublík-Mansoori-
Carnahan-Starling-Leland (BMCSL) equation of state57,58, used as hard-sphere contribution
for PC-SAFT.
The PC-SAFT model considers molecules to be composed of chains of spherical segments. A
molecule consists of mi identical spherical segments, commonly referred to as chain length.
We note, that in PC-SAFT the chain length is an adjustable parameter characterizing real
substances and can take on non-integer values. For chain fluids, mi has to be considered for
the weighted densities in eq. (A.10) of the hard-sphere contribution. Here, miρi determines
the segment density in contrast to the molecular density ρi

46. Within PC-SAFT, the soft
repulsion between molecules of a fluid is modeled by a temperature-dependent effective
hard-sphere diameter30

di(T ) = 2Ri(T ) = σi[1− 0.12 exp(−3βεi)] (A.12)

with PC-SAFT segment size parameter σi and energy parameter εi defining the van der Waals
(dispersive) interaction potential. The functional derivative is calculated as

δβFhs[{ρi}]
δρ j(r)

=

∫

δΦ

δρ j(r)
dr′ =

∫

∑

α

∂Φ

∂ nα(r′)
·
δnα(r′)
δρ j(r)

dr′ (A.13)
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with the functional derivative of the weighted densities according to

δnα(r′)
δρ j(r)

=
δ

δρ j(r)

Nc
∑

i

mi

∫

ρi(r
′′)ωαi (r

′ − r′′)dr′′

=
Nc
∑

i

mi

∫

δi jδ(r
′′ − r)ωαi (r

′ − r′′)dr′′ = m jω
α
j (r
′ − r) (A.14)

Substitution of eq. (A.14) in eq. (A.13) allows the functional derivative to be rewritten as a
sum of convolution integrals according to

δβFhs[{ρi}]
δρ j(r)

= m j

∑

α

∫

∂Φ

∂ nα
ωαj (r

′ − r)dr′

= m j

�

∂Φ

∂ n0
⊗ω0

j +
∂Φ

∂ n1
⊗ω1

j +
∂Φ

∂ n2
⊗ω2

j +
∂Φ

∂ n3
⊗ω3

j

−
∂Φ

∂ nV1
⊗ωV1

j −
∂Φ

∂ nV2
⊗ωV2

j

�

(A.15)

The scalar weight functions are even, with

ωαi (r
′ − r) =ωαi (r− r′) for α ∈ {0, 1,2, 3} (A.16)

while the vector weight functions are odd functions

ωαi (r
′ − r) = −ωαi (r− r′) for α ∈ {V1, V2} (A.17)

leading to the minus signs in eq. (A.15). The partial derivatives ∂ΦWB

∂ nα
are derived from eq. (A.9),

as

∂ΦWB

∂ n0
= − ln(1− n3) (A.18a)

∂ΦWB

∂ n1
=

n2

1− n3
(A.18b)

∂ΦWB

∂ n2
=

n1

1− n3
+ 3(n2

2 − nV2 · nV2)
n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

(A.18c)

∂ΦWB

∂ n3
=

n0

1− n3
+

n1n2 − nV1 · nV2

(1− n3)2

−
n3

2 − 3n2nV2 · nV2

36π

�

n2
3 − 5n3 + 2

n2
3(1− n3)3

+
2 ln(1− n3)

n3
3

�

(A.18d)

∂ΦWB

∂ nV1
= −

nV2

1− n3
(A.18e)
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∂ΦWB

∂ nV2
= −

nV1

1− n3
− n2nV2

n3 + (1− n3)2 ln(1− n3)
6πn2

3(1− n3)2
(A.18f)

A.2.3 Hard-Chain Contribution

The PC-SAFT chain contribution to the Helmholtz energy functional is based on Wertheim’s
thermodynamic perturbation theory33–36 and has been developed by Tripathi and Chap-
man 59,60. Here we follow the description of Sauer and Gross 46

βFhc[{ρi(r)}] =
Nc
∑

i=1

(mi − 1)

∫

ρi(r)
�

ln (ρi(r))− 1
�

dr

−
Nc
∑

i=1

(mi − 1)

∫

ρi(r)
�

ln
�

ydd
ii ({ρ̄

hc
i (r)})λ

hc
i (r)

�

− 1
�

dr

+
Nc
∑

i=1

∫

ρi(r)dr
�

mi ln
�

Λ3
s,i

�

− ln
�

Λ3
i

�

�

(A.19)

with the cavity correlation function at contact distance60,61 ydd
ii , the weighted density in

the interpenetration volume of two segments around the position of a molecule ρ̄hc
i , the

weighted density at contact-distance around a segment of the chain λhc
i . The bar (¯) above

quantities indicates them being, or using, a weighted density. The second term in eq. (A.19)
uses the ideal gas of non-bonded segments as a reference state. The first and last term on
the right-hand side correct the ideal gas contribution, eq. (A.5), of the chain fluid used in
appendix A.2.1, where the whole chain is considered as one ideal gas particle. Because the
second term in eq. (A.19) considers the fluid on non-bounded segments as a reference fluid,
the ideal gas contribution of the (mi − 1) additional segments has to be added. The last term
contains the de Broglie wavelength of an individual segment Λs,i and of the chain Λi. This
term is irrelevant for all isothermal applications and, therefore, it will be neglected henceforth
(for a more detailed description see appendix D in Sauer and Gross 46).
The weighted densities for the chain contribution are computed as

ρ̄hc
i (r) =

3
4πd3

i

∫

ρi(r
′)Θ(di−|r−r′|)dr′ ≡

∫

ρi(r
′)ωhc,ρ

i (r−r′)dr′ = ρi(r)⊗ω
hc,ρ
i (r) (A.20)

with the weight function ωhc,ρ
i (r) = 3

4πd3
i
Θ(di − |r|). The average densities at contact-distance

around a segment of chain i is defined as

λhc
i (r) =

1
4πd2

i

∫

ρi(r
′)δ(di−|r−r′|)dr′ ≡

∫

ρi(r
′)ωhc,λ

i (r−r′)dr′ = ρi(r)⊗ω
hc,λ
i (r) (A.21)

145



A Supporting Information:Efficient Solution of PC-SAFTDFTUsing Fast Integral Transforms

with the weight function ωhc,λ
i (r) = 1

4πd2
i
δ(di − |r|). The cavity correlation function ydd

ii is
calculated based on the Mansoori-Carnahan-Starling-Leland theory, evaluated with weighted
densities60,61, leading to

ydd
ii ({ρ̄i(r)}) =

1

1− ζ̄3(r)
+

1.5 diζ̄2(r)

(1− ζ̄3(r))2
+

0.5 (diζ̄2(r))2

(1− ζ̄3(r))3
(A.22)

with the weighted quantities

ζ̄2(r) =
π

6

Nc
∑

i=1

ρ̄hc
i (r)mid

2
i (A.23a)

ζ̄3(r) =
π

6

Nc
∑

i=1

ρ̄hc
i (r)mid

3
i (A.23b)

The functional derivative of the hard-chain contribution, eq. (A.19), is calculated as

δβFhc[{ρi}]
δρ j(r)

=
Nc
∑

i=1

(mi − 1)

∫

δρi(r′)
δρ j(r)

ln(ρi(r
′))dr′

−
Nc
∑
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∫

δρi(r′)
δρ j(r)

�

ln
�

ydd
ii ({ρ̄
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i (r

′)})λhc
i (r

′)
�

− 1
�

dr′

−
Nc
∑

i=1

(mi − 1)

∫

ρi(r′)
ydd

ii ({ρ̄
hc
i (r′)})

Nc
∑

k=1

∂ ydd
ii ({ρ̄

hc
i (r

′)})
∂ ρ̄hc

k (r′)

δρ̄hc
k (r

′)

δρ j(r)
dr′

−
Nc
∑

i=1

(mi − 1)

∫

ρi(r′)
λhc

i (r′)

δλhc
i (r

′)

δρ j(r)
dr′ (A.24)

The occurring functional derivatives of the weighted densities, eqs. (A.20) and (A.21), are
computed as follows: because both weight functions ωhc,ρ

i and ωhc,λ
i are even functions, the

functional derivatives simplify to

δρ̄hc
k (r

′)

δρ j(r)
=

∫

δρk(r′′)
δρ j(r)

ω
hc,ρ
k (r′ − r′′)dr′′ =

∫

δ jkδ(r
′′ − r)ωhc,ρ

k (r′ − r′′)dr′′

= δ jkω
hc,ρ
k (r′ − r) = δ jkω

hc,ρ
k (r− r′) (A.25)

δλhc
i (r

′)

δρ j(r)
=

∫

δρi(r′′)
δρ j(r)

ωhc,λ
i (r′ − r′′)dr′′ =

∫

δi jδ(r
′′ − r)ωhc,λ

i (r′ − r′′)dr′′

= δi jω
hc,λ
i (r′ − r) = δi jω

hc,λ
i (r− r′) (A.26)
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Substitution of eq. (A.7) in eq. (A.24) leads to the following simplification

δβFhc[{ρi}]
δρ j(r)

= (m j − 1) ln(ρ j(r))− (m j − 1)
�

ln
�

ydd
j j ({ρ̄

hc
i (r)})λ

hc
j (r)

�

− 1
�

−
Nc
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(mi − 1)

∫

ρi(r′)
ydd

ii ({ρ̄
hc
i (r′)})

∂ ydd
ii ({ρ̄

hc
i (r

′)})
∂ ρ̄hc

j (r′)
ω

hc,ρ
j (r− r′)dr′

− (m j − 1)

∫

ρ j(r′)

λhc
j (r′)

ωhc,λ
j (r− r′)dr′ (A.27)

which can be rewritten using the standard notation for convolution integrals, as

δβFhc[{ρi}]
δρ j(r)

= (m j − 1) ln(ρ j(r))− (m j − 1)
�

ln
�

ydd
j j ({ρ̄

hc
i (r)})λ
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j (r)

�

− 1
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−
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(mi − 1)

�

ρi(r)
ydd

ii ({ρ̄
hc
i (r)})

∂ ydd
ii ({ρ̄

hc
i (r)})

∂ ρ̄hc
j (r)

�

⊗ωhc,ρ
j (r)

− (m j − 1)

�

ρ j(r)

λhc
j (r)

�

⊗ωhc,λ
j (r) (A.28)

with the partial derivative of the cavity correlation function ydd
ii obtained from

∂ ydd
ii ({ρ̄

hc
i (r)})

∂ ρ̄hc
j (r)

=

�

1.5 di

(1− ζ̄3(r))2
+

d2
i ζ̄2(r)

(1− ζ̄3(r))3

�

π

6
m jd

2
j

+
�

1

(1− ζ̄3(r))2
+

3 diζ̄2(r)

(1− ζ̄3(r))3
+

1.5(diζ̄2(r))2

(1− ζ̄3(r))4

�

π

6
m jd

3
j (A.29)

A.2.4 Dispersive Contribution

The dispersive contribution is obtained via the approach proposed by Sauer and Gross 46
which utilizes the PC-SAFT equation of state30. In contrast to previously proposed dispersion
functionals41–43, the functional of Sauer and Gross 46 is formulated as a weighted density
approximation

βFdisp [{ρi(r)}] =
∫

ρ̄disp(r)ãdisp({ρ̄disp
i (r)})dr (A.30)

with the reduced, dispersive Helmholtz energy contribution for a bulk fluid

ãdisp({ρ̄disp
i (r)}) = −2πρ̄disp(r)I1(η̄, m̄)m2εσ3−πρ̄disp(r)m̄C1(η̄, m̄)I2(η̄, m̄)m2ε2σ3 (A.31)
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with

m2ε(n)σ3 =
Nc
∑

k=1

Nc
∑

l=1

x̄k(r) x̄ l(r)mkml (βεkl)
(n)σ3

kl (A.32)

obtained from the PC-SAFT equation of state30 with the combining rules for unlike segments,
obtained from

σi j =
σi +σ j

2
(A.33a)

εi j =
p

εiε j(1− ki j) (A.33b)

with the binary interaction parameter ki j, and using the and the weighted density for the
dispersion contribution defined as

ρ̄
disp
i (r) =

3
4πψ3d3

i

∫

ρi(r
′)Θ

�

ψdi − |r− r′|
�

dr′

≡
∫

ρi(r
′)ωdisp

i (r− r′)dr′ = ρi(r)⊗ω
disp
i (r) (A.34)

with ψ = 1.3862 as the size parameter for the influence region of the weight function
ω

disp
i (r) =

3
4πψ3d3

i
Θ(ψdi −|r|)46. The absolute weighted density profile is computed as the sum

of all partial weighted densities

ρ̄disp(r) =
Nc
∑

i=1

ρ̄
disp
i (r) =

Nc
∑

i=1

x̄ i(r)ρ̄
disp(r) (A.35)

from which one can calculate the mole fraction profile x̄ i, the distributed weighted chain
length m̄, the weighted packing fraction profile η̄

x̄ i(r) =
ρ̄

disp
i (r)
ρ̄disp(r)

(A.36)

m̄(r) =
Nc
∑

i=1

x̄ i(r)mi (A.37)

η̄(r) =
π

6

Nc
∑

i=1

ρ̄
disp
i (r)mid

3
i (A.38)
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The power series representation of the correlation integrals are defined as

I1(η̄, m̄) =
6
∑

n=0

an(m̄)η̄
n (A.39)

I2(η̄, m̄) =
6
∑

n=0

bn(m̄)η̄
n (A.40)

an(m̄) = a0n +
m̄− 1

m̄
a1n +

m̄− 1
m̄

m̄− 2
m̄

a2n (A.41)

bn(m̄) = b0n +
m̄− 1

m̄
b1n +

m̄− 1
m̄

m̄− 2
m̄

b2n (A.42)

with model constants a0n, a1n, a2n and b0n, b1n, b2n from Gross and Sadowski 30, as well as
the compressibility of the hard-chain reference fluid

C1(η̄, m̄) =

�

1+ m̄
8η̄− 2η̄2

(1− η̄)4
+ (1− m̄)

20η̄− 27η̄2 + 12η̄3 − 2η̄4

[(1− η̄)(2− η̄)]2

�−1

(A.43)

obtained from PC-SAFT30.
The functional derivative of eq. (A.30) can be written in terms of the convolution of the
residual chemical potential βµdisp

j with the weigh function ωdisp
j as

δβFdisp[{ρi}]
δρ j(r)

=

∫ Nc
∑

i=1

δ
�
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∂
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δi jω
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i (r− r′)dr′
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j ({ρ̄

disp
i (r)})⊗ωdisp

j (r) (A.44)

utilizing eq. (A.7), as well as the functional derivative of the weighted densities

δρ̄
disp
i (r′)
δρ j(r)

=
δ

δρ j(r)

∫

ρi(r
′′)ωdisp

i (r
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= δi jω
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For brief notation, we termed the partial derivative ∂
�

ρ̄disp(r)ãdisp({ρ̄disp
i (r)})

�

∂ ρ̄
disp
i (r)

as the chemical poten-
tial βµdisp
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i (r)}), which is calculated as follows
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ρ̄disp(r)ãdisp({ρ̄disp
i (r)})

�

∂ ρ̄
disp
j (r)

= −π
Nc
∑

k=1

Nc
∑

l=1

�

2
∂ I1

∂ ρ̄
disp
j

+
�

∂ m̄

∂ ρ̄
disp
j

C1I2 + m̄
∂ C1

∂ ρ̄
disp
j

I2 + m̄C1
∂ I2

∂ ρ̄
disp
j

�

βεkl

�

×
�

ρ̄
disp
k (r)ρ̄disp

l (r)mkmlβεklσ
3
kl

�

− 2π
Nc
∑

k=1

�

�

2I1 + m̄C1I2βε jk

�

ρ̄
disp
k (r)m jmkβε jkσ

3
jk

�

(A.46)

with the derivatives

∂ η̄

∂ ρ̄
disp
j

=
π

6
m jd

3
j (A.47)

∂ m̄

∂ ρ̄
disp
j

(r) =
m j − m̄(r)

ρ̄disp(r)
(A.48)
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=
∂ I1

∂ m̄
∂ m̄
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+
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∂ η̄
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(A.49)

∂ I1

∂ m̄
=

6
∑

n=0

�

a1n
1

m̄2
+ a2n

3m̄− 4
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η̄n (A.50)
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6
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an(m̄)n η̄
n−1 (A.51)
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=
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+
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(A.52)
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∂ I2

∂ m̄
=

6
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�

b1n
1

m̄2
+ b2n

3m̄− 4
m̄3

�

η̄n (A.53)

∂ I2

∂ η̄
=

6
∑

n=1

bn(m̄)n η̄
n−1 (A.54)

∂ C1

∂ ρ̄
disp
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=
∂ C1

∂ m̄
∂ m̄

∂ ρ̄
disp
j

+
∂ C1

∂ η̄

∂ η̄

∂ ρ̄
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(A.55)

∂ C1

∂ m̄
= −C1(m̄, η̄)2

�

8η̄− 2η̄2

(1− η̄)4
−

20η̄− 27η̄2 + 12η̄3 − 2η̄4

[(1− η̄)(2− η̄)]2
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(A.56)

∂ C1

∂ η̄
= −C1(m̄, η̄)2

�

m̄
8+ 20η̄− 4η̄2

(1− η̄)5
+ (1− m̄)

40− 48η̄+ 12η̄2 + 2η̄3

[(1− η̄)(2− η̄)]3

�

(A.57)

A.3 Fourier Space Convolutions

The PC-SAFT functionals and functional derivatives can be calculated efficiently in Fourier
space, by making use of the convolution theorem of the Fourier transform. In this section, we
show how to compute the required Fourier transforms in various coordinate systems using
off-the-shelf FFT, fast Hankel, fast sine/cosine transform algorithms.
We show the procedure by considering weighted densities as convolutions of density ρi with
weight function ωi. One transforms the density profile ρi to Fourier space using a discrete
transform scheme and, after multiplication in Fourier space with the analytically transformed
weight function, transforms the result back to real space using the inverse discrete transform
scheme according to

ρ̄i(r) =

∫

ρi(r
′)ωi(r− r′)dr′ = ρi(r)⊗ωi(r)

= F−1 [F [ρi(r)]F [ωi(r)]] = F−1 [ρ̂i(k)ω̂i(k)] (A.58)

with the Fourier space vector k, and introducing the Fourier transform F and inverse Fourier
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transform operator F−1. The circumflex (ˆ) above quantities indicates them being the Fourier
transforms of the respective quantity. The analytically transformed weight functions for FMT,
eq. (A.59), hard-chain contribution, eq. (A.60) and dispersion contribution, eq. (A.61) are
calculated as

ω̂0
i (k) = j0(2πRi|k|) (A.59a)

ω̂1
i (k) = Rij0(2πRi|k|) (A.59b)

ω̂2
i (k) = 4πR2

i j0(2πRi|k|) (A.59c)

ω̂3
i (k) =

4
3
πR3

i

�

j0(2πRi|k|) + j2(2πRi|k|)
�

(A.59d)

ω̂V1
i (k) =

−ik
2Ri

ω̂3
i (k) (A.59e)

ω̂V2
i (k) = −i 2πkω̂3

i (k) (A.59f)

ω̂
hc,ρ
i (k) = j0(4πRi|k|) + j2(4πRi|k|) (A.60a)
ω̂hc,λ

i (k) = j0(4πRi|k|) (A.60b)

ω̂
disp
i (k) = j0(4πψRi|k|) + j2(4πψRi|k|) (A.61)

with the spherical Bessel functions of the first kind of order zero and two, defined by

j0(ξ) =
sin(ξ)
ξ

(A.62a)

j2(ξ) =
�

3
ξ2
− 1

�

sin(ξ)
ξ
−

3 cos(ξ)
ξ2

(A.62b)

In comparison to the sine and cosine representation of the Fourier transformed weight
functions used in appendix B.1, eqs. (B.1)–(B.3), a description exploiting spherical Bessel
functions allows writing shorter and safer code. Additionally, the limits for k→ 0, eqs. (B.4)–
(B.6), do not have to be considered explicitly, because spherical Bessel functions have well
defined limits: j0(0) = 1 and j2(0) = 0.
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A.3.1 Convolution in Cartesian Coordinates

For Cartesian coordinates we substitute r = [x , y, z]ᵀ and k = [kx , ky , kz]ᵀ. The Fourier
transform of the density profiles is computed as

ρ̂i(kx , ky , kz) = FxFyFz [ρi(x , y, z)] (A.63)

just as presented in appendix B.2, eq. (B.11).

A.3.1.1 Hard-Sphere Contribution – Fundamental Measure Theory Convolutions in Cartesian

Coordinates

For computation of the scalar-valued (α ∈ {0, 1,2, 3}) weighted densities

nα(x , y, z) =
Nc
∑
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z

�
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α
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�

(A.64)

the inverse Fourier transform for scalar functions, eq. (B.12), is needed. For the vector-
valued (α ∈ {V1,V2}) weighted densities we use the vector-valued weight functions, ω̂V1

i (k) =
−i
2Ri

kω̂3
i (k) and ω̂V2

i (k) = −i 2πkω̂3
i (k). The inverse Fourier transform is obtained as
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(A.65a)
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Nc
∑

i=1

2πmiF−1
�

−i ρ̂i(k)kω̂
3
i (k)

�

(A.65b)

with
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−i ρ̂i(kx , ky , kz) ky ω̂
3
i (kx , ky , kz)

�

F−1
x F−1

y F−1
z

�

−i ρ̂i(kx , ky , kz) kz ω̂
3
i (kx , ky , kz)

�






(A.66)

using the inverse Fourier transform for vector-valued functions from eq. (B.19). The convolu-
tion integrals of the White-Bear Helmholtz energy density derivatives ∂Φ

∂ nα
with the weight

functions ωαi are computed similarly.
The scalar-valued convolution integrals in eq. (A.15) are obtained using the scalar inverse
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Fourier transform from eq. (B.12), leading to

∂Φ

∂ nα
⊗ωαi = F−1

x F−1
y F−1

z

�

ˆ∂Φ
∂ nα
(kx , ky , kz)ω̂

α
i (kx , ky , kz)

�

(A.67)

with the scalar Fourier transform of the partial derivative of the Helmholtz energy density,
eq. (B.11), computed according to

ˆ∂Φ
∂ nα
(kx , ky , kz) = FxFyFz

�

∂Φ

∂ nα
(x , y, z)

�

(A.68)

The vector-valued convolution integrals in eq. (A.15) can be handled using the inverse Fourier
transform of scalar-valued functions, eq. (B.12), leading to

∂Φ

∂ nα
⊗ωαi = F−1

x F−1
y F−1

z

�

ˆ∂Φ
∂ nα

�

�

�

kx

ω̂αi |kx
+

ˆ∂Φ
∂ nα

�

�

�

ky

ω̂αi |ky
+

ˆ∂Φ
∂ nα

�

�

�

kz

ω̂αi |kz

�

(A.69)

where the dot product in Fourier space is used according to

ˆ∂Φ
∂ nα
· ω̂αi =









∂̂Φ
∂ nα

�

�

kx
∂̂Φ
∂ nα

�

�

ky
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�

�
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·







ω̂αi |kx

ω̂αi |ky

ω̂αi |kz






=

ˆ∂Φ
∂ nα

�

�

�

kx

ω̂αi |kx
+

ˆ∂Φ
∂ nα

�

�

�

ky

ω̂αi |ky
+

ˆ∂Φ
∂ nα

�

�

�

kz

ω̂αi |kz
(A.70)

whereby the vector-valued weight functions, eqs. (A.59e) and (A.59f), in Fourier space in
each direction are defined as

ω̂V1
i |kx
(kx , ky , kz) =

−i
2Ri

kxω̂
3
i (kx , ky , kz) (A.71a)

ω̂V1
i |ky
(kx , ky , kz) =

−i
2Ri

kyω̂
3
i (kx , ky , kz) (A.71b)

ω̂V1
i |kz
(kx , ky , kz) =

−i
2Ri

kzω̂
3
i (kx , ky , kz) (A.71c)

ω̂V2
i |kx
(kx , ky , kz) = −i 2πkxω̂

3
i (kx , ky , kz) (A.72a)

ω̂V2
i |ky
(kx , ky , kz) = −i 2πkyω̂

3
i (kx , ky , kz) (A.72b)

ω̂V2
i |kz
(kx , ky , kz) = −i 2πkzω̂

3
i (kx , ky , kz) (A.72c)

The vector-valued Fourier transform, eq. (B.16), of the vector-valued derivatives of the reduced
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Helmholtz energy yields

ˆ∂Φ
∂ nα
(kx , ky , kz) =







FxFyFz

�

∂Φ
∂ nα

�

�

x(x , y, z)
�
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�

∂Φ
∂ nα

�

�
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�

FxFyFz

�

∂Φ
∂ nα

�

�

z(x , y, z)
�






(A.73)

A.3.1.2 Hard-Chain Contribution Convolutions in Cartesian Coordinates

For the hard-chain contribution the two weighted densities ρ̄hc
i and λhc

i are calculated with
the scalar Fourier transform according to

ρ̄hc
i (x , y, z) = ρi(x , y, z)⊗ωhc,ρ

i (x , y, z) = F−1
x F−1

y F−1
z

�

ρ̂i(kx , ky , kz)ω̂
hc,ρ
i (kx , ky , kz)

�

(A.74)

λhc(x , y, z) = ρi(x , y, z)⊗ωhc,λ
i (x , y, z) = F−1

x F−1
y F−1

z

�

ρ̂i(kx , ky , kz)ω̂
hc,λ
i (kx , ky , kz)

�

(A.75)

In similar fashion, the other two convolutions from eq. (A.28) are obtained from
∫

ρi(r′)
ydd

ii ({ρ̄i(r′)})
∂ ydd

ii ({ρ̄i(r′)})
∂ ρ̄ j(r′)

ω
hc,ρ
j (r− r′)dr′

= F−1
x F−1

y F−1
z

�

FxFyFz

�

ρi(x , y, z)
ydd

ii ({ρ̄i})
∂ ydd

ii ({ρ̄ j})
∂ ρ̄ j

�

ω̂
hc,ρ
j (kx , ky , kz)

�

(A.76)

∫

ρ j(r′)

λhc
j (r′)

ωhc,λ
j (r− r′)dr′ = F−1

x F−1
y F−1

z

�

FxFyFz

�

ρ j(x , y, z)

λhc
j (x , y, z)

�

ω̂hc,λ
j (kx , ky , kz)

�

(A.77)

A.3.1.3 Dispersive Contribution Convolutions in Cartesian Coordinates

The dispersion contribution weighted densities ρ̄disp
i are computed with the scalar Fourier

transform, leading to

ρ̄
disp
i (x , y, z) = ρi(x , y, z)⊗ωdisp

i (x , y, z) = F−1
x F−1

y F−1
z

�

ρ̂i(kx , ky , kz)ω̂
disp
i (kx , ky , kz)

�

(A.78)

The convolution for the functional derivative, eq. (A.44), is obtained in similar fashion
according to

µ
disp
j

�

ρ̄disp(x , y, z)
�

⊗ωdisp
j (x , y, z) = F−1

x F−1
y F−1

z

�

µ̂
disp
j (kx , ky , kz)ω̂

disp
j (kx , ky , kz)

�

(A.79)
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with the Fourier transform of the distributed residual chemical potential of the dispersion
contribution computed via

µ̂
disp
j

�

ρ̄disp(x , y, z)
�

(kx , ky , kz) = FxFyFz

�

µ
disp
j (x , y, z)

�

(A.80)

A.3.2 Convolution in Cylindrical Coordinates

We regard problems in cylindrical coordinates with angular symmetry, leading to two-
dimensional problems. The presented formalism follows Boţan et al. 18, but instead of
separating the external potential to obtain vanishing boundary conditions, we separate
the density profile directly. The fast Hankel transform algorithm used for computing the
Fourier transform requires the function to vanish for large values of the radial coordinate
r. That is why we decompose the density profile into a part that approaches zero at large
r = rmax and a part that only depends on the axial coordinate according to

ρi(r, z) = ρ∆i (r, z) +ρ∞i (z) (A.81)

The contribution that shifts the density profiles is defined at the r-boundary ρ∞i (z) ≡
ρi(r = rmax, z). The remaining contribution ρ∆i (r, z) is well-behaved for a treatment with
the fast Hankel transform.
The Fourier transform of the density profiles is computed according to eq. (B.29) as presented
in appendix B.2

ρ̂i(kr , kz) = FzH0

�

ρ∆i (r, z)
�

+Fz

�

ρ∞i (z)
� δ(kr)

2πkr
(A.82)

with the Hankel transform of order zero H0. The solely z-dependent contribution ρ∞i is
transformed via a Fourier transform in z-direction, while the analytical Hankel transform in
the constant r-direction yields δ(kr )

2πkr
.

A.3.2.1 Fundamental Measure Theory Convolutions in Cylindrical Coordinates

The scalar-valued (α ∈ {0,1, 2,3}) weighted densities nα, are calculated using the inverse
Fourier transform for scalar functions, eq. (B.30), leading to

nα(r, z) =
Nc
∑

i=1

mi

�

F−1
z H−1

0

�

ρ̂∆i (kr , kz)ω̂
α
i (kr , kz)

�

+F−1
z

�

ρ̂∞(kz)ω̂
α
i (kr = 0, kz)

� �

(A.83)
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For the vector-valued (α ∈ {V1,V2}) weighted densities we use the vector-valued weight
functions, ω̂V1

i (k) =
−i
2Ri

kω̂3
i (k) and ω̂V2

i (k) = −i 2πkω̂3
i (k). The inverse Fourier transform is

obtained as

nV1(r, z) =
Nc
∑

i=1

mi

2Ri

�
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�
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3
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�

−i ρ̂∆i (kr , kz) kz ω̂
3
i (kr , kz)

�
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0

0

F−1
z

�

−i ρ̂∞i (kz) kz ω̂
3
i (kr = 0, kz)

�







�

(A.84)

nV2(r, z) =
Nc
∑

i=1

2πmi

�
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�

ρ̂∆i (kr , kz) kr ω̂
3
i (kr , kz)

�

0

F−1
z H−1

0

�

−i ρ̂∆i (kr , kz) kz ω̂
3
i (kr , kz)

�







+







0

0

F−1
z

�

−i ρ̂∞i (kz) kz ω̂
3
i (kr = 0, kz)

�







�

(A.85)

with the Hankel transform of zeroth and first order, H0 and H1, respectively. For this result
we made use of the inverse Fourier transform for vector-valued functions, eq. (B.45). The
convolution integrals of the White-Bear Helmholtz energy density derivatives ∂Φ

∂ nα
with the

weight functions ωαi are computed similarly. The partial derivatives ∂Φ
∂ nα

at the r-boundary
do not approach zero in general. Analogous to eq. (A.81), we therefore shift the profile
by splitting the partial derivatives into a r- and z-dependent contribution ∂Φ∆

∂ nα
(r, z), which

approaches zero at the r-boundary, and the z-dependent value at the r-boundary ∂Φ∞

∂ nα
(z)

according to

∂Φ

∂ nα
(r, z) =

∂Φ∆

∂ nα
(r, z) +

∂Φ∞

∂ nα
(z) (A.86)

For the scalar terms one obtains

∂Φ

∂ nα
⊗ωαi = F−1

z H−1
0

�

ˆ∂Φ∆

∂ nα
(kr , kz)ω̂

α
i (kr , kz)

�

+F−1
z

�

ˆ∂Φ∞

∂ nα
(kz)ω̂

α
i (kr = 0, kz)

�

(A.87)
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using the scalar inverse Fourier transform from eq. (B.30). With the scalar Fourier transform,
eq. (B.29), of the partial derivative of the Helmholtz energy density according to

ˆ∂Φ
∂ nα
(kr , kz) = FzH0

�

∂Φ∆

∂ nα
(r, z)

�

+Fz

�

∂Φ∞

∂ nα
(z)
�

δ(kr)
2πkr

(A.88)

For the vector-valued contributions we compute the dot product in Fourier space

ˆ∂Φ
∂ nα
· ω̂αi =







∂̂Φ
∂ nα

�

�
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0
∂̂Φ
∂ nα
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·
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=

ˆ∂Φ
∂ nα

�

�

�

kr

ω̂αi |kr
+

ˆ∂Φ
∂ nα

�

�

�

kz

ω̂αi |kz
(A.89)

with the weight functions from eqs. (A.59e) and (A.59f)

ω̂V1
i |kr
(kr , kz) =

−i
2Ri

krω̂
3
i (kr , kz) (A.90a)

ω̂V1
i |kz
(kr , kz) =

−i
2Ri

kzω̂
3
i (kr , kz) (A.90b)

ω̂V2
i |kr
(kr , kz) = −i 2πkrω̂

3
i (kr , kz) (A.91a)

ω̂V2
i |kz
(kr , kz) = −i 2πkzω̂

3
i (kr , kz) (A.91b)

using the inverse Fourier transform for scalar functions from eq. (B.30). This results in

∂Φ

∂ nα
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(A.92)

with the vector-valued Fourier transform, eq. (B.38), of the vector-valued derivatives

ˆ∂Φ
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(A.93)

For α= V1, we obtain

∂Φ
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(A.94)

158



A.3 Fourier Space Convolutions

Likewise, for α= V2 this results in

∂Φ
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(A.95)

A.3.2.2 Hard-Chain Contribution Convolutions in Cylindrical Coordinates

For the hard-chain contribution the two weighted densities ρ̄hc
i and λhc

i are computed with
the scalar Fourier transform according to

ρ̄hc
i (r, z) = ρi(r, z)⊗ωhc,ρ

i (r, z)

= F−1
z H−1

0

�

ρ̂∆i (kr , kz)ω̂
hc,ρ
i (kr , kz)

�

+F−1
z

�

ρ̂∞i (kz)ω̂
hc,ρ
i (kr = 0, kz)

�

(A.96)

as well as

λhc(r, z) = ρi(r, z)⊗ωhc,λ
i (r, z)

= F−1
z H−1

0

�

ρ̂∆i (kr , kz)ω̂
hc,λ
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�

+F−1
z

�
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hc,λ
i (kr = 0, kz)

�

(A.97)

In similar fashion, the other two convolutions from eq. (A.28) are computed as
∫

ρi(r′)
ydd

ii ({ρ̄i(r′)})
∂ ydd

ii ({ρ̄i(r′)})
∂ ρ̄ j(r′)

ω
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ii ({ρ̄ j})
∂ ρ̄ j

�∆�
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j (kr , kz)
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(A.98)

and

∫

ρ j(r′)

λhc
j (r′)

ωhc,λ
j (r− r′)dr′ = F−1
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(A.99)
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A.3.2.3 Dispersive Contribution Convolutions in Cylindrical Coordinates

For the dispersion contribution the weighted densities ρ̄disp
i are computed with the scalar

Fourier transform according to

ρ̄
disp
i (r, z) = ρi(r, z)⊗ωdisp

i (r, z)

= F−1
z H−1

0

�

ρ̂∆i (kr , kz)ω̂
disp
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�

+F−1
z

�

ρ̂∞i (kz)ω̂
disp
i (kr = 0, kz)

�

(A.100)

while the convolution for the functional derivative from eq. (A.44) is computed in similar
fashion, as

µ
disp
j

�

ρ̄disp(r, z)
�

⊗ωdisp
j (r, z) = F−1

z H−1
0

�

µ̂
disp,∆
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z

�
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disp,∞
j (kz)ω̂

disp
j (kr = 0, kz)

�

(A.101)

with the Fourier transform of the distributed residual chemical potential of the dispersion
contribution

µ̂
disp
j

�

ρ̄disp(r, z)
�

(kr , kz) = FzH0

�

µ
disp,∆
j (r, z)

�

+Fz

�

µ
disp,∞
j (z)

� δ(kr)
2πkr

(A.102)

A.3.3 Convolution in Spherical Coordinates

The fast sine/cosine transform algorithms used for computing the Fourier transform in
spherical coordinates require the function to vanish for large values of r. If the density
profiles ρi(r) do not approach zero, we define shifted profiles ρ∆i (r) which do approach zero
at large radial distances r = rmax by splitting the density profile

ρi(r) = ρ
∆
i (r) +ρ

∞
i (A.103)

into a r-dependent contribution ρ∆i (r), vanishing at the boundary, and the constant value
at the boundary ρ∞i (r = rmax). The Fourier transform of the density profiles is computed as
presented in appendix B.2 according to eq. (B.53) while the constant boundary value can be
computed analytically, leading to

ρ̂i(kr) =
2
kr
SIN

�

ρ∆i (r) r
�

+ρ∞i δ(kr) (A.104)
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A.3.3.1 Fundamental Measure Theory Convolutions in Spherical Coordinates

The scalar-valued (α ∈ {0, 1,2, 3}) weighted densities nα, are then calculated based on the
inverse Fourier transform for scalar functions, eq. (B.54), leading to

nα(r) =
Nc
∑

i=1

mi

�

2
r
SIN

�

ρ̂∆i (kr)ω̂
α
i (kr) kr

�

+ρ∞i ω̂
α
i (kr = 0)

�

(A.105)

For the vector-valued (α ∈ {V1,V2}) weighted densities we use the vector-valued weight
functions, ω̂V1

i (k) =
−i
2Ri

kω̂3
i (k) and ω̂V2

i (k) = −i 2πkω̂3
i (k), and transform them back to real

space using the inverse Fourier transform for vector-valued functions from eq. (B.72). For the
vector-valued weight functions
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∑

i=1

mi

2Ri

�

er
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3
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3
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(A.106)

nV2(r) =
Nc
∑

i=1

2πmi
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πr2
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3
i (kr)
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(A.107)

the convolution with the constant value from shifting the density profile vanishes due to
ω̂V1

i (kr = 0) = 0= ω̂V2
i (kr = 0). The convolution integrals of the White-Bear Helmholtz energy

density derivatives ∂Φ
∂ nα

with the weight functions ωαi are computed similarly. If the partial
derivatives ∂Φ

∂ nα
do not vanish, we shift the profile to zero by splitting the partial derivatives

into a r-dependent contribution ∂Φ∆

∂ nα
(r), vanishing at the boundary, and the constant value at

the boundary ∂Φ∞

∂ nα
according to

∂Φ

∂ nα
(r) =

∂Φ∆

∂ nα
(r) +

∂Φ∞

∂ nα
(A.108)

For the scalar terms one obtains

∂Φ

∂ nα
⊗ωαi =
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∂ nα
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�

+
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∂ nα
ω̂αi (kr = 0) (A.109)
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using the scalar inverse Fourier transform from eq. (B.54). With the scalar Fourier transform
of the partial derivative of the Helmholtz energy density, eq. (B.53), obtained from

ˆ∂Φ
∂ nα
(kr) =

2
kr
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�

+
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δ(kr) (A.110)

For the vector-valued derivatives we compute the dot product
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kr

δ(kr)ω̂
α
i |kr

(A.111)

in Fourier space, the convolution with the constant value from shifting the density profile
vanishes due to ω̂V1

i (kr = 0) = 0 = ω̂V2
i (kr = 0). With the weight functions, eqs. (A.59e)

and (A.59f), obtained from

ω̂V1
i |kr
(kr) =

−i
2Ri

krω̂
3
i (kr) (A.112)

ω̂V2
i |kr
(kr) = −i 2πkrω̂

3
i (kr) (A.113)

In real space, this results in
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∂ nα
⊗ωαi =

2
r
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(A.114)

with the inverse Fourier transform for scalar functions from eq. (B.54). With the vector-valued
Fourier transform of the vector-valued derivatives, eq. (B.63), obtained from

ˆ∂Φ
∂ nα
(kr) = ekr

2i
kr
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For α= V1, we obtain

∂Φ

∂ nV1
⊗ωV1

i =
2
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3
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(A.116)
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Likewise, for α= V2 this results in

∂Φ

∂ nV2
⊗ωV2

i =
2
r
SIN
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−i 2πkrω̂
3
i (kr)
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(A.117)

A.3.3.2 Hard-Chain Contribution Convolutions in Spherical Coordinates

The two weighted densities ρ̄hc
i and λhc

i for the hard-chain contribution are computed with
the scalar Fourier transform according to

ρ̄hc
i (r) = ρi(r)⊗ω

hc,ρ
i (r) = SIN

�

ρ̂∆i (kr)ω̂
hc,ρ
i (kr)

�

+ ρ̂∞i ω̂
hc,ρ
i (kr = 0) (A.118)

and

λhc(r, z) = ρi(r, z)⊗ωhc,λ
i (r, z) = SIN

�

ρ̂∆i (kr)ω̂
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i (kr)

�

+ ρ̂∞i ω̂
hc,λ
i (kr = 0) (A.119)

In similar fashion, the other two convolutions from eq. (A.28) are computed via
∫

ρi(r′)
ydd
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and

∫

ρ j(r′)
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A.3.3.3 Dispersive Contribution Convolutions in Spherical Coordinates

For the dispersion contribution the weighted densities ρ̄disp
i are computed with the scalar

Fourier transform according to

ρ̄
disp
i (r) = ρi(r)⊗ω

disp
i (r) = SIN

�

ρ̂∆i (kr)ω̂
disp
i (kr)

�

+ ρ̂∞i ω̂
disp
i (kr = 0) (A.122)
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The convolution for the functional derivative from eq. (A.44) is computed in similar fashion,
as

µ
disp
j

�

ρ̄disp(r)
�

⊗ωdisp
j (r) = SIN

�

µ̂
disp,∆
j (kr)ω̂

disp
j (kr)

�

+ µ̂disp,∞
j ω̂

disp
j (kr = 0) (A.123)

with the Fourier transform of the distributed residual chemical potential of the dispersion
contribution obtained from

µ̂
disp
j

�

ρ̄disp(r)
�

(kr) = SIN
�

µ
disp,∆
j (r)

�

+µdisp,∞
j δ(kr) (A.124)

A.4 From Integral Transform to Discretized Representation

In this section, we discuss the transition from continuous integral transforms to discrete
representations of the inhomogeneous field variables (e.g., ρi). For Cartesian coordinates,
the fast Fourier transform is used. For cylindrical coordinates we apply a combination of the
fast Fourier and the fast Hankel transform (from a combination of fast Abel and fast Fourier
transform, appearing as fast sine and cosine transform). For spherical coordinates the fast sine
and cosine transforms are utilized. Because the weight functions from the weighted density
approaches ωi are transformed to Fourier space analytically, we also show the connection of
the r-grid in real space to the k-grid in Fourier space. The fast Fourier, fast sine and fast cosine
transforms are taken from FFTPACK 62,63, while the fast Abel transform follows Hansen 53

and Hansen and Law 54, described in detail in appendix B.4. Strategies to minimize Gibbs
phenomenon are presented in appendix B.6.

A.4.1 Cartesian Grid

For Cartesian coordinates, we use the FFT in each dimension. A schematic grid is visualized in
figure A.1. FFT algorithms require real space samples evaluated on an equidistant grid. Even
though a physical problem may be non-periodic in the domain of interest Lin,z, fast Fourier
transforms will treat the considered domain as is it was surrounded by infinitely many (i.e.,
periodic) images of itself. To suppress the unwanted effect of periodic copies of the regarded
domain, definition of a buffer region Lout,z on each side of the domain is needed. The two
outer buffer regions Lout,z also serve as constant boundary conditions for the evaluation of
the weighted densities at the boundary. Due to the functional nature of the problem a buffer
domain is required as boundary condition, in contrast to boundary conditions for functions
where information about a single point is sufficient.
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N = 8 ∆z

1 2 3 4 5 6 7 8

z1 z2 z3 z4 z5 z6 z7 z8

Lout,z Lin,z Lout,z

Ltot,z

Figure A.1: Schematic equidistant Cartesian grid with N = 8 grid points and grid spacing ∆z.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements zi. The density
profiles are computed on the inner domain Lin,z, while the buffer zones Lout,z compensate the
periodic continuation of the FFT and serve as boundary conditions.

A.4.1.1 Grid and Boundary Conditions

We thus consider a grid covering three domains, the two outer buffer domains with length
Lout,z, and the inner domain of interest with length Lin,z, where the density profiles are
iterated. To better connect this section to the previous one, we remind that the grand
potential functional Ω is a functional of density profiles {ρi} and a function of the variables
({µi}, T, V ), whereby the system volume V is defined by the domain length Lin,z in z-direction.
The choice for the value of the buffer length Lout,z is determined by the influence length of
the weight functions. Here, the dispersion contribution has the largest influence length 2ψRi

in every direction (with ψ from appendix A.2.4). Because two types of convolutions are
computed (one for computation of the weighted density profiles and one for the convolution
of the reduced Helmholtz energy with the weight functions), the buffer length Lout,z has to be
at least twice the value of 2ψRi. After each of the two convolutions, a fraction of the buffer
domain with length 2ψRi is tainted due to possible inhomogeneous boundary conditions and
periodic continuation of the FFT, which leads to the length of the buffer zone, as

Lout,z ≥max
i
{4ψRi(T )} (A.125)

A.4.1.2 Discrete Representation for FFT Algorithm

We now explain the k-grid in Fourier space for the computation of the weight functions,
eqs. (A.59)–(A.61), is computed as follows. The approach is shown for one dimension only.
Higher dimensions are the result of multiple consecutive Fourier transforms and can be
treated analogously.
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The discrete Fourier transform with Fourier variable k as used in FFT algorithms is defined as
the following sum

f̂k =
N−1
∑

j=0

f j e−2πi jk
N with k = 0, . . . , (N − 1) (A.126)

which transforms a finite series of N equally-spaced samples z j = j∆z of a function f j into
a series of equally-spaced samples of the function in Fourier space f̂k. Index j denotes the
discrete grid points in real space, while k denotes the grid points in Fourier space.
In comparison, the continuous Fourier transform can be discretized as well with z j = j∆z

and f (z j) = f j. The continuous Fourier transform then leads to a similar equation as the
discretization of the Fourier transform, eq. (A.126), namely to

f̂ (kz) =

∞
∫

z=−∞

f (z)e−2πi zkz dz ≈
N−1
∑

j=0

f j e−2πi j∆zkz∆z (A.127)

where the result is multiplied with ∆z compared to the unscaled version in eq. (A.126).
Comparison of the arguments of the exponential functions in eqs. (A.126) and (A.127),
jk
N = j∆zkz, yields the discretization in Fourier space, as

kz =
k

N∆z
=

k
Ltot,z

with k = 0, . . . , (N − 1) (A.128)

At first glance, this result differs from the one proposed by Knepley et al. 1, because we
define Ltot,z differently. We evaluate the function to be transformed at the center of the
elements in figure A.1 instead of the edges, as done by Knepley et al. 1 , so that the regarded
overall domain for the work of Knepley et al. (L̃tot,z = Ltot,z −∆z) is different to our overall
domain length (Ltot,z) for the same number of grid points N and the same discretization
step size ∆z. Complex-valued FFT algorithms include negative k-values as well. For an even
number of grid points, the k-vector for the computation of the discrete representation of the
weight functions, eqs. (A.59)–(A.61), is

kz =
1

Ltot,z

�

0,1, . . . ,
�

N
2
− 1

�

,
�

−
N
2

�

, . . . ,−1
�

(A.129)

For real-valued FFT algorithms, the k-vector looks differently

kz =
1

Ltot,z

�

0,1, 1,2, 2, . . . ,
�

N
2

��

(A.130)
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This yields a kz-grid in Fourier space which is used for the analytical computation of the
weight functions ω̂i, eqs. (A.59)–(A.61). These weight functions ω̂i are then multiplied in
Fourier space with the FFT output of the function to be convolved, the result of which is
transformed back to real space using the inverse FFT. For higher dimensions, the k-grid
becomes a two- or three-dimensional array, while kx and ky are constructed equivalently to
eq. (A.129) or eq. (A.130) with their respective length scale Ltot,x and Ltot,y . The absolute
value of k is calculated as

|k|=
q

k2
x + k2

y + k2
z (A.131)

A.4.2 Cylindrical Grid

N = 6 ∆r

1 2 3 4 5 6

r1 r2 r3 r4 r5 r6

Lin,r Lout,r

Ltot,r

r = 0

Figure A.2: Schematic equidistant radial grid with N = 6 grid points and grid spacing ∆r.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements ri. The density
profiles are computed on the inner domain Lin,r , while the buffer zone Ltot,r serves as boundary
condition, where the density profiles ρ∆i go to zero.

For cylindrical coordinates, we use the fast Fourier in axial and the fast Hankel transform
(as a combination of fast Abel and fast sine and cosine transform) in radial direction. The
procedure of the axial direction is equivalent to the approach for Cartesian coordinates as
described in the previous section, therefore, only the radial direction is regarded here. A
schematic grid is visualized in figure A.2. As opposed to the approach of Boţan et al. 18 , who
computed discrete Hankel transform on a logarithmic grid, we adopt the ideas of Hansen 52,53

and Hansen and Law 54, using a combination of Abel and Fourier transforms, which allows
computation of the Hankel transform on equidistant grids.
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A.4.2.1 Grid and Boundary Conditions

The radial grid is divided into two domains, the outer domain with length Lout,r , which is
needed as boundary condition for the evaluation of the weighted densities at the boundary,
and the inner domain with length Lin,r , where the density profiles are iterated. Due to even
and odd continuation of the fast sine and fast cosine transform, respectively, no boundary
domain for r < 0 is needed. The size of the outer domain Lout,r is determined as described in
appendix A.4.1.1. Therefore, the size of the outer domain is determined as

Lout,r ≥max
i
{4ψRi(T )} (A.132)

A.4.2.2 Discrete Representation for FFT and Fast Hankel Transform Algorithms

The k-grid in Fourier space for the computation of the weight functions, eqs. (A.59)–(A.61),
is computed as follows. The axial direction is equivalent to the Cartesian grid, eq. (A.128),
whereas for the radial component the k-values correspond to twice the domain shown in
figure A.2. Instead of the Fourier, the discrete sine and cosine transform are used, which
exploit symmetry and, therefore, require only half of the Fourier domain. The length of the
whole Fourier domain in radial direction is (2Ltot,r). This leads to the following k-grid for the
radial component

kr =
k

2N∆r
=

k
2Ltot,r

with k = 0, . . . , (N − 1) (A.133)

This yields a kr-grid in Fourier space which, together with the kz-grid, is used for the analytical
computation of the weight functions ω̂i, eqs. (A.59)–(A.61). These weight functions ω̂i are
then multiplied in Fourier space with the FFT and fast Hankel transform output of the function
to be convolved, and this result can be transformed back to real space using the inverse FFT
and inverse fast Hankel transform algorithms. For two dimensional problems in cylindrical
coordinates, the k-grid becomes a two-dimensional array. The absolute value of k is calculated
as

|k|=
Æ

k2
r + k2

z (A.134)

In this work, we utilize the projection-slice theorem for the computation of the Hankel
transform, where the Hankel transform is replaced by

H0 [ f (r)] = FrA [ f (r)] (A.135)
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a combination of Fourier F and Abel transform A. The algorithm for computation of the
fast Hankel transform is based on work of Hansen 52 and described in detail in appendix B.4.
The inverse transform is computed from a combination of inverse Abel and inverse Fourier
transform, as

H−1
0

�

f̂ (kr)
�

=A−1F−1
r

�

f̂ (kr)
�

(A.136)

The Abel transform is computed as described in appendix B.4. As a result of rotational
symmetry, all density profiles are even with respect to r = 0. This allows using the cosine
instead of the Fourier transform. Because some calculations require a division by the radius
r, we locate the first grid point at r = ∆r

2 . For this grid distribution, we require the discrete
cosine transform II (DCT II) which is available in FFTPACK as subroutine COSQ1B. More
details on the discrete cosine transform are presented in appendix B.5. The Fourier transform
of scalar functions f (r, z), using the Hankel transform of zeroth order as in eq. (B.29), is
computed from

f̂ (kr , kz) = Fz DCT II A [ f (r, z)] (A.137)

with the Abel transform A. The inverse transform uses the discrete cosine transform III
(DCT III =DCT −1

II ) which is available in FFTPACK as subroutine COSQ1F and can be computed
via

f (r, z) =A−1 DCT III F−1
z

�

f̂ (kr , kz)
�

(A.138)

For vector-valued functions, the Hankel transform of first order is computed from the zeroth
order Hankel transform with eq. (B.75) from appendix B.3, leading to

f̂ (kr , kz)|kr
= FzH1 [ f (r, z)|r] = Fz

�

1
2πkr

DCT IIA
�

f (r, z)|r
r

+
∂ f (r, z)|r
∂ r

��

(A.139)

The application of this equation is limited to the radial contribution in eq. (A.93) where
f (r, z)|r = −i ∂Φ

∆

∂ nα

�

�

r(r, z) is an odd function in r. This leads to the derivative ∂ f (r,z)|r
∂ r being an

even function. Even continuation of the DCT II allows neglecting the odd contribution f (r,z)|r
r ,

which leads to the simpler form

f̂ (kr , kz)|kr
= Fz

�

1
2πkr

DCT IIA
�

∂ f (r, z)|r
∂ r

��

(A.140)
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The derivative ∂ f (r,z)
∂ r can be approximated using central differences with vanishing boundary

conditions from

∂ f (z, r(n))
∂ r

≈
f (r(n+1), z)− f (r(n−1), z)

r(n+1) − r(n−1)
(A.141)

The inverse transform is computed similarly according to
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(A.142)

The derivative in the second term of eq. (A.142) can be replaced using the identity

F−1
r
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∂ ĝ(kr , z)
∂ kr

i
�

= 2πrF−1
r [ ĝ(kr , z)] (A.143)

with ĝ(kr , z) = F−1
z

�

f̂ (kr , kz)|kr

�

. This is applied to eqs. (A.84) and (A.85) where ĝ(kr , z) is
a real even function in kr , making

�

∂ ĝ(kr ,z)
∂ kr

i
�

purely imaginary and odd in kr . The purely
imaginary and odd inverse Fourier transform F−1

r

�

∂ ĝ(kr ,z)
∂ kr

i
�

can, therefore, be replaced by
the sine transform 2πrDST III [ ĝ(kr , z)]. The first term in eq. (A.142) transforms an even
function and allows for replacing the Fourier transform F−1

r with the DCT III according to

f (r, z)|r =
1
r
A−1
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DCT IIIF−1
z
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f̂ (kr , kz)|kr

2πkr
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+ 2πrDST IIIF−1
z

�
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(A.144)

Equation (A.140) with eq. (A.141), and eq. (A.144) are our final equations for the forward
and inverse transform in radial direction, respectively.
Here we require the discrete sine transform III (DST III) which is available in FFTPACK as
subroutine SINQ1F. The grid for the DST III algorithm has to be shifted in Fourier space. The
procedure is described in appendix A.4.3.2 and visualized in figure A.5. More details on the
discrete sine and cosine transform are presented in appendix B.5.

A.4.3 Spherical Grid

In spherical coordinates we only consider one-dimensional problems, where angular symmetry
exists. We use the fast sine and fast cosine transform. A schematic grid is visualized in
figure A.3. Fast sine and cosine transform algorithms require real space samples evaluated on
an equidistant grid.
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N = 6 ∆r

1 2 3 4 5 6

r1 r2 r3 r4 r5 r6

Lin Lout

Ltot

r = 0

Figure A.3: Schematic equidistant spherical grid with N = 6 grid points and grid spacing ∆r.
The partitioned elements represent a discretization used for finite volume methods, while
the function to be transformed is evaluated at the center of those elements ri. The density
profiles are computed on the inner domain Lin, while the buffer zone Lout compensates for
periodic continuation of the fast sine and cosine transform, and serves as boundary condition,
where the density profiles ρ∆i go to zero.

A.4.3.1 Grid and Boundary Conditions

Similar to cylindrical coordinates, no boundary domain for r < 0 is needed, because the used
algorithms for the discrete sine and cosine transform assume odd and even continuation,
respectively, which can be exploited here due to spherical symmetry requirements. The size
of the outer domain Lout is determined as described in appendix A.4.1.1. Therefore, the size
of the outer domain is determined as

Lout ≥max
i
{4ψRi(T )} (A.145)

A.4.3.2 Discrete Representation for Sine and Cosine Transform Algorithms

The k-grid in Fourier space for the computation of the weight functions, eqs. (A.59)–(A.61), is
computed as follows. The discrete sine and cosine transform are recovered by discretization of
the derived Fourier transform in spherical coordinates. There are four relevant variants of the
sine and cosine transform, each with a set of different boundary conditions and discretization
schemes. Due to the singularity at the origin in spherical coordinates, we locate the first grid
point at r = ∆r

2 . For this grid distribution, we need the discrete sine transform II (DST II)
according to

f̂k∗ =
N−1
∑

j=0

f j sin
�

π

N

�

j +
1
2

�

(k∗ + 1)
�

with k∗ = 0, . . . , (N − 1) (A.146)
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which is available in FFTPACK as subroutine SINQ1B. More details on the discrete sine
transform are presented in appendix B.5. The iteration variable k∗ does not represent the
true Fourier variable k, which for the DST II is obtained from k = k∗ + 1.
The matching discrete cosine transform is the DCT II, computed as

f̂k =
N−1
∑

j=0

f j cos
�

π

N

�

j +
1
2

�

k
�

with k = 0, . . . , (N − 1) (A.147)

which is available in FFTPACK as subroutine COSQ1B. More details on the discrete cosine
transform are presented in appendix B.5. Both transforms transform a finite series of equally-
spaced samples z j =

1
N ( j +

1
2) of a function f j into a series of equal length in Fourier space f̂k.

The index j denotes the discrete grid points in real space, while k denotes the grid points in
Fourier space.

DST III

DST II

DCT II

k∗ = 0 · · · (N − 1)

k = 0 · · · N

Figure A.4: Shift of indices to match DST II and DCT II to DST III. Filled spheres represent
the k-grid of the respective forward (red) and inverse (blue) transform.

For both transforms, indices k and k∗ run from 0, . . . , (N − 1) in Fourier space, but the
DST II treats the point k = 0 implicitly as f̂ DST

k=0 = 0, while the DCT II treats the value f̂ DCT
k=0

explicitly. In contrast, the DCT II does not provide a value for k = N , while the DST II does (as
k∗ = N−1). Because the transformation to Fourier space in eqs. (A.106), (A.107), and (A.115)
requires f (r) to be multiplied with r, the argument of the sine and cosine transform are
always zero at r = 0, which leads to f̂ DCT

k=0 = 0.
For the computation of eq. (A.115) a combination of DST II and DCT II is needed. Because the
inverse transform, eq. (A.114), uses solely the DST III the value f̂ DCT

k=0 = 0 can be neglected,
but the value for k = N (or k∗ = N − 1) for the DST III has to be added: f̂ DST

k=N = 0. This
approach is not exact, but a reasonable approximation as f̂ DCT

k→∞ → 0 for smooth functions
and appropriate number of grid points. This procedure is necessary to match the different
k-values of the DST II, DCT II and DST III. The shifting of indices is visualized in figure A.4.
The inverse of the DST II and DCT II are the DST III and DCT III, respectively. The DST III is
available from FFTPACK as subroutine SINQ1F and DCT III as subroutine COSQ1F. Again, the
k-values of theDST III andDCT III do not match. For computation of eqs. (A.106) and (A.107),
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a function in Fourier space as result of a DST II is transformed back to real space using the
DST III and DCT III. The DST III can be performed immediately. For the inverse transform
using the DCT III, the exact value f̂ DCT

k=0 = 0 has to be added. Therefore, f̂ DST
k=N is disregarded,

which has negligible effect as f̂ DCT
k→∞→ 0 for smooth functions and appropriate number of grid

points. The shifting of indices is visualized in figure A.5.

DST II

DCT III

DST III

k∗ = 0 · · · (N − 1)

k = 0 · · · N

Figure A.5: Shift of indices to match DST II and DCT III to DST II. Filled spheres represent
the k-grid of the respective forward (red) and inverse (blue) transform.

For computation of the appropriate discrete k-grid, the analytical sine transform can be
discretized with r j = ( j+

1
2)∆z and f (r j) = f j. This leads to a similar equation as the discrete

sine transform, eq. (A.146), according to

f̂ (kr) =

∞
∫

r=0

f (r) sin (2πrkr) dr ≈
N−1
∑

j=0

f j sin
�

2π
�

j +
1
2

�

∆rkr

�

∆r (A.148)

Comparison of the arguments of the sine functions in eqs. (A.147) and (A.148), πN ( j+ 1
2)(k

∗+1)
= 2π( j + 1

2)∆rkr , yields the discretization in Fourier space according to

kr =
k∗ + 1
2N∆z

=
k∗ + 1
2Ltot

with k∗ = 0, . . . , (N − 1) (A.149)

In contrast to eq. (A.128), we divide by (2Ltot), because the DST II assumes odd continuation
by considering only half of the domain compared to the corresponding Fourier transform.
For N grid points, the k-vector for the computation of the discrete representation of the
weight functions, eqs. (A.59)–(A.61), is

kDST
r =

1
2Ltot

[1, . . . , N] (A.150)

while the same approach leads to a k-vector for the DCT II according to

kDCT
r =

1
2Ltot

[0, . . . , (N − 1)] (A.151)
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This yields a kr-grid in Fourier space which is used for the analytical computation of the
weight functions ω̂i, eqs. (A.59)–(A.61). These weight functions ω̂i are then multiplied in
Fourier space with the DST II and DCT II output of the function to be convolved, while this
result can be directly transformed back to real space using the DST III and DCT III algorithms.

A.5 Performance Analysis of FFT Convolution

To compare the efficiency of convolution algorithms using fast Fourier or similar trans-
forms (i.e., discrete sine, cosine and Abel transforms), we compare the performance of
one-dimensional FFT convolutions, computed via

ρ ⊗ω= F−1
z [Fz [ρ(z)] ω̂(kz)] (A.152)

with three real space convolution algorithms. We adapt the notation of the weighted densities
defined in eq. (A.10).
The first real space convolution algorithm, hereafter referred to as naïve convolution, approxi-
mates the convolution integral of a density profile ρ with the weight function ω (each with N

discretization points) over the whole discrete domain, where the value for the i-th element
of the discrete sequence is computed according to64

(ρ ⊗ω)i =
1
N

N−1
∑

k=0

ωkρi−k ∀i (A.153)

The second real space algorithm, referred to as compact convolution, exploits the fact that
weight functions are nonzero on a finite domain. As a consequence, the sequence for the
weight function is shorter (length M < N) than the sequence for the density profile. Therefore,
the value for the i-th element is computed as

(ρ ⊗ω)i =
1
M

M−1
2
∑

k=−
M−1

2

ωkρi−k ∀i (A.154)

with the number of discretization points M ∈ {2n+ 1|n ∈ N+} for the weight function, which
is always an odd number due to the symmetry of the weight function.
The third real space algorithm uses dense matrix multiplication

ρ ⊗ω=ωρ (A.155)
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with the convolution matrix ω and the density profile vector ρ.

27 28 29 210 211 212 213 21410−6

10−5

10−4

10−3

10−2

10−1

100

N/−

t/
s

matrix O(N 2)
naïve O(N 2)
compact O(N 1.5)
FFT O(N log N)

Figure A.6: Comparison of computing time t for one convolution using Fourier space, naïve,
compact andmatrix multiplication convolution, eqs. (A.152)–(A.155) respectively, for different
number of grid points N , including scaling behavior O. Length of the inner domain is
Lin,z = 100Å and the radius for convolution is R= 1.8Å.

Figure A.6 depicts the computing time for one convolution using the four algorithms de-
fined in eqs. (A.152)–(A.155) with respect to the number of spatial discretization points N .
Additionally, scaling behavior O of the used algorithms is presented (non-continuous lines).
For small system sizes N , convolutions with convolution matrices perform best, while com-
puting times for naïve, compact and FFT convolutions are higher (staying in the same order
of magnitude). For N = 214, the scaling behavior of the FFT, O(N log N), renders the FFT
convolution at least one order of magnitude faster than the remaining algorithms. For a
large number of discretization points, convolutions using a matrix product, eq. (A.155), take
the longest, while naïve convolutions, eq. (A.153), compute faster; both scaling with O(N 2).
Compact convolutions, eq. (A.154), scale better with respect to approximately O(N 1.5), mak-
ing this convolution algorithm for large systems superior to the matrix product and naïve
approach. FFT convolutions, eq. (A.152), scale best for large systems (here N = 214) accord-
ing to O(N log N), performing at least one order of magnitude better than the remaining
algorithms. Even for typical number of discretization points N = 210 = 1024 convolution algo-
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rithms exploiting fast Fourier or similar transforms perform best among the four considered
numerical convolution approaches.
To summarize, convolution algorithms exploiting fast Fourier or similar transforms perform
best for relevant systems among the four considered numerical convolution approaches.

A.6 Conclusion

This work serves as a guide on efficient numerical implementations of classical DFT methods in
Cartesian, cylindrical and spherical coordinates using the convolution theorem of the Fourier
transform. Applied to Helmholtz energy functionals expressed in terms of weighted densities,
this allows for fast and easy DFT calculations using off-the-shelf algorithms: fast Fourier,
Hankel, sine and cosine transforms. Especially for two- and three-dimensional problems,
using Fourier space convolution simplifies computation of multi-dimensional convolution
integrals compared to real space methods.
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B Supporting Information Appendices: Guide to Efficient

Solution of PC-SAFT Classical Density Functional Theory in

Various Coordinate Systems Using Fast Fourier and Similar

Transforms

The content of this appendix is a literal quote of the appendix of the supporting information:
R. Stierle, E. Sauer, J. Eller, M. Theiss, P. Rehner, P. Ackermann, and J. Gross. Supporting Informa-
tion: Guide to efficient Solution of PC-SAFT classical Density Functional Theory in various Coordi-
nate Systems using fast Fourier and similar Transforms. Fluid Phase Equilibria, 504:112306, 2020.
doi:10.1016/j.fluid.2019.112306

B.1 Fourier Transform of Weight Functions

The analytically transformed weight functions for FMT, eq. (B.1), hard-chain contribution,
eq. (B.2), and dispersion contribution, eq. (B.3), using a functional representation including
sine and cosine, are calculated as

ω̂0
i (k) =

sin(2πRi|k|)
2πRi|k|

(B.1a)

ω̂1
i (k) =

sin(2πRi|k|)
2π|k|

(B.1b)

ω̂2
i (k) =

2Ri sin(2πRi|k|)
|k|

(B.1c)

ω̂3
i (k) =

1
2π2|k|3

�

sin(2πRi|k|)− 2πRi|k| cos(2πRi|k|)
�

(B.1d)

ω̂V1
i (k) =

−ik
2Ri

ω̂3
i (k) (B.1e)

ω̂V2
i (k) = −i 2πkω̂3

i (k) (B.1f)
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ω̂
hc,ρ
i (k) =

3
64π3R3

i |k|3
�

sin(4πRi|k|)− 4πRi|k| cos(4πRi|k|)
�

(B.2a)

ω̂hc,λ
i (k) =

sin(4πRi|k|)
4πRi|k|

(B.2b)

ω̂
disp
i (k) =

3
64π3ψ3R3

i |k|3
�

sin(4πψRi|k|)− 4πψRi|k| cos(4πψRi|k|)
�

(B.3)

For k→ 0, the limits can be calculated according to

lim
k→0
ω̂0

i (k) = 1 (B.4a)

lim
k→0
ω̂1

i (k) = Ri (B.4b)

lim
k→0
ω̂2

i (k) = 4πR2
i (B.4c)

lim
k→0
ω̂3

i (k) =
4
3
πR3

i (B.4d)

lim
k→0
ω̂V1

i (k) = 0 (B.4e)

lim
k→0
ω̂V2

i (k) = 0 (B.4f)

lim
k→0
ω̂

hc,ρ
i (k) = 1 (B.5a)

lim
k→0
ω̂hc,λ

i (k) = 1 (B.5b)

lim
k→0
ω̂

disp
i (k) = 1 (B.6)

B.2 Fourier Transform for Calculation of Convolution Integrals

All convolution integrals occurring throughout this work are convolutions of either a functional
derivative of the Helmholtz energy, or a density, with a suitable weight function ω. These
convolution integrals can be calculated efficiently using fast Fourier transform algorithms. In
this appendix, the Fourier transform F and its inverse F−1 in different coordinate systems
are derived in pedagogical detail.
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In Cartesian coordinates the standard fast Fourier transform can be used for all directions
(for 1-D, 2-D and 3-D systems). For cylindrical coordinates, rotational symmetry (2-D) can
be exploited, such that one can use the standard fast Fourier transform for the axial direction
and the fast Hankel transform (of order 0 and 1 for scalar and vector weighted functions,
respectively) for the radial direction. In cylindrical coordinates (1-D), only fast Hankel
transforms are used. For spherically symmetric systems (1-D), fast sine/cosine transforms are
used for the calculation of the Fourier and the inverse Fourier transform.
In the following, we lay out the details of how to compute the Fourier and inverse Fourier
transform for Cartesian (1-D, 2-D & 3-D), cylindrical (2-D), cylindrical and spherical (1-D)
coordinates. Detailed derivations are presented to show consistency of the approach and
facilitate own implementations of DFT methods. The Fourier and inverse Fourier transform
are defined as

f̂(k) =

∫

f(r)e−2πi r·k dr (B.7a)

f(r) =

∫

f̂(k)e2πi r·k dk (B.7b)

with f as the function to be transformed, the imaginary unit i , and the position vector in real
and Fourier space r and k, respectively. Here, r · k stands for the dot product of two vectors,
and the circumflex (ˆ) indicates the function being considered in Fourier space. By exploiting
symmetry in the appropriate coordinate system, the Fourier transform from eq. (B.7a) can
be used for the derivation of the appropriate integral transform. In the following, integral
transforms for Cartesian, cylindrical and spherical coordinates are calculated for scalar and
vector-valued functions f= { f , f}, respectively.

B.2.1 Cartesian Coordinates

The Fourier transform is formulated in Cartesian coordinates, therefore, the Cartesian vectors
are used for the dot product of r and k, leading to

r · k=







x

y

z






·







kx

ky

kz






= xkx + yky + zkz (B.8)
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and the volume integral in eq. (B.7a) simplifies to a triple integral with volume element
dr= dx dy dz, leading to

f̂(kx , ky , kz) =

∞
∫

z=−∞

∞
∫

y=−∞

∞
∫

x=−∞

f(x , y, z)e−2πi xkx dxe−2πi yky dy e−2πi zkz dz

= FxFyFz [f(x , y, z)] (B.9)

The inverse Fourier transform is computed similarly according to

f(x , y, z) =

∞
∫

kz=−∞

∞
∫

ky=−∞

∞
∫

kx=−∞

f̂(kx , ky , kz)e
2πi xkx dkxe2πi yky dky e2πi zkz dkz

= F−1
x F−1

y F−1
z

�

f̂(kx , ky , kz)
�

(B.10)

B.2.1.1 Fourier Transform of Scalar Quantities

The x-, y- and z-direction of the Fourier transform can be separated according to

f̂ (kx , ky , kz) = FxFyFz [ f (x , y, z)] (B.11)

yielding a Fourier transform in each direction.

B.2.1.2 Inverse Fourier Transform of Scalar Quantities

The inverse transform can be treated analogously, leading to

f (x , y, z) = F−1
x F−1

y F−1
z

�

f̂ (kx , ky , kz)
�

(B.12)

B.2.1.3 Fourier Transform of Vector Quantities

The Fourier transform of vector quantities is performed by splitting the vector into its different
contributions depending on the underlying coordinate system. For the case of Cartesian unit
vectors

ex =







1

0

0






,ey =







0

1

0






,ez =







0

0

1






(B.13)
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the vector-valued function f can be represented according to

f(x , y, z) =







fx

f y

fz






= fxex + f yey + fzez (B.14)

Although this detailed treatment may not be necessary here, we include it nonetheless, as it
will help to understand the forthcoming treatment in cylindrical and spherical coordinates.
The Fourier transform of f is calculated via

f̂(kx , ky , kz) =

∞
∫

z=−∞

∞
∫

y=−∞

∞
∫

x=−∞







fx(x , y, z)
f y(x , y, z)
fz(x , y, z)






e−2πi xkx dx e−2πi yky dy e−2πi zkz dz (B.15)

or element-wise, as

f̂(kx , ky , kz) =







f̂kx
(kx , ky , kz)

f̂ky
(kx , ky , kz)

f̂kz
(kx , ky , kz)






=







FxFyFz [ fx(x , y, z)]
FxFyFz

�

f y(x , y, z)
�

FxFyFz [ fz(x , y, z)]






(B.16)

Each of the elements of the vector-valued function can be transformed to Fourier space
individually and, just as for scalar-valued functions, can be transformed for every direction
separately.

B.2.1.4 Inverse Fourier Transform of Vector Quantities

Treatment of the inverse transform of a vector quantity is analogous to the treatment laid out
in the previous section, i.e., with the Cartesian unit vectors in Fourier space

ekx
=







1

0

0






,eky

=







0

1

0






,ekz
=







0

0

1






(B.17)

the vector-valued function f̂ can be represented according to

f̂(kx , ky , kz) =







f̂kx

f̂ky

f̂kz






= f̂kx

ekx
+ f̂ky

eky
+ f̂kz

ekz
(B.18)
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The inverse Fourier transform of f̂ is calculated as

f(x , y, z) =

∞
∫

kz=−∞

∞
∫

ky=−∞

∞
∫

kx=−∞







f̂kx
(kx , ky , kz)

f̂ky
(kx , ky , kz)

f̂kz
(kx , ky , kz)






e2πi xkx dkx e2πi yky dky e2πi zkz dkz

=







fx(x , y, z)
f y(x , y, z)
fz(, y, z)






=







F−1
x F−1

y F−1
z

�

f̂kx
(kx , ky , kz)

�

F−1
x F−1

y F−1
z

�

f̂ky
(kx , ky , kz)

�

F−1
x F−1

y F−1
z

�

f̂kz
(kx , ky , kz)

�






(B.19)

Each of the elements of the vector-valued function can be transformed to Fourier space
individually and, just as for scalar-valued functions, can be transformed for every direction
consecutively.

B.2.1.5 Treatment of 1-D & 2-D Cartesian Coordinates

Fourier transform of 1-D or 2-D Cartesian coordinates can be understood as a subset of
the 3-D Fourier transform. The dot product in eq. (B.8) for one dimension in x-direction
is r · k= xkx . This simplifies the Fourier, eq. (B.9), and inverse Fourier transform, eq. (B.10),
to f̂(kx) = Fx [f(x)] and f(x) = F−1

x

�

f̂(kx)
�

, respectively. The Fourier and its inverse transform
of a scalar quantity result in

f̂ (kx) = Fx [ f (x)] (B.20a)
f (x) = F−1

x

�

f̂ (kx)
�

(B.20b)

For a vector quantity, the Fourier and its inverse transform yield

f̂(kx) = Fx [ fx(x)] (B.21a)
f(x) = F−1

x

�

f̂kx
(kx)

�

(B.21b)

2-D Cartesian coordinates are the consequence of disregarding one dimension from the
general 3-D case.
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B.2.2 Cylindrical Coordinates

In cylindrical coordinates, the dot product r · k is calculated as

r · k=







r cosϕ

r sinϕ

z






·







kr cos kϕ
kr sin kϕ

kz






(B.22)

with the radial coordinate r and kr in the polar plane, the azimuthal angle ϕ and kϕ, and
the axial direction z and kz, in real and Fourier space, respectively. The identity cosϕ cos kϕ +
sinϕ sin kϕ = cos(ϕ − kϕ) = cos(kϕ −ϕ) simplifies eq. (B.22) to

r · k= rkr cosϕ + zkz (B.23)

where we chose a k-vector parallel to the kx -axis in Fourier space which implies kϕ = 0. With
the volume element dr= r dϕ dr dz, and the result of eq. (B.23), the Fourier transform from
eq. (B.7a) can be written as

f̂(kr , kz) =

∞
∫

z=−∞

∞
∫

r=0

f(r, z)

2π
∫

ϕ=0

e−2πi rkr cosϕ dϕ r dr e−2πi zkz dz (B.24)

The inverse Fourier transform can be computed analogously, leading to

f(r, z) =

∞
∫

kz=−∞

∞
∫

kr=0

f(kr , kz)

2π
∫

kϕ=0

e2πi rkr cos kϕ dkϕ kr dkr e2πi zkz dkz (B.25)

B.2.2.1 Cylindrical Fourier Transform of Scalar Quantities

We consider cases of rotational symmetry, where the integral in eq. (B.24) simplifies through
integration. With the definition of the Bessel function of first kind and zeroth order

J0(ξ) =
1

2π

2π
∫

ϕ=0

eiξ cosϕ dϕ (B.26)
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with dummy variable ξ and the identity J0(−ξ) = J0(ξ), the Fourier transform from eq. (B.24)
simplifies to

f̂ (kr , kz) =

∞
∫

z=−∞

2π

∞
∫

r=0

f (r, z)rJ0(2πrkr)dr e−2πi zkz dz (B.27)

The integration over the r-coordinate can be performed using the Hankel transformH, which
for order ν is defined as

Hν [ f (r)] = 2π

∞
∫

0

f (r)rJν(2πrkr)dr (B.28)

with the Bessel function of first kind and ν-th order Jν. Performing the integration over z

using the Fourier transform Fz, the Fourier transform of f (r, z) follows as

f̂ (kr , kz) = FzH0 [ f (r, z)] (B.29)

B.2.2.2 Cylindrical Inverse Fourier Transform of Scalar Quantities

Because the Bessel function of first kind and zeroth order is even J0(ξ) = J0(−ξ), the inverse
Fourier transform f̂ (kr , kz) can be computed analogous to the previous section as

f (r, z) = F−1
z H−1

0

�

f̂ (kr , kz)
�

(B.30)

with the inverse Hankel transform H−1
ν

of order ν of the kr-coordinate as

H−1
ν

�

f̂ (kr)
�

= 2π

∞
∫

0

f̂ (kr)krJν(2πrkr)dkr (B.31)

and the inverse Fourier transform F−1
z of the kz-coordinate.

B.2.2.3 Cylindrical Fourier Transform of Vector Quantities

Analogous to appendix B.2.1.3, the Fourier transform of vector quantities in cylindrical
coordinates is performed by splitting the vector into its different contributions: radial fr ,
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azimuthal fϕ and axial fz, with their respective unit vectors according to

er =







cosϕ

sinϕ

0






,eϕ =







− sinϕ

cosϕ

0






,ez =







0

0

1






(B.32)

these unit vectors are defined in a Cartesian frame of reference, which allows the Fourier
transforms to be treated analogously to the above regarded case in Cartesian coordinates.
The vector quantity can then be decomposed into three parts, as

f(r,ϕ, z) = frer + fϕeϕ + fzez (B.33)

However, due to rotational symmetry f is only a function of the radius r and the axial
coordinate z, whereas the azimuthal contribution equals zero, fϕ = 0, leading to

f(r,ϕ, z) = fr







cosϕ

sinϕ

0






+ fz







0

0

1






(B.34)

The Fourier transform of f is then calculated as

f̂(kr , kz) =

∞
∫

z=−∞

∞
∫

r=0

2π
∫

ϕ=0







fr(r, z) cosϕ

fr(r, z) sinϕ
fz(r, z)






e−2πi rkr cosϕ dϕ r dr e−2πi zkz dz (B.35)

With the definition of Bessel’s first integral of order ν for Bessel functions of first kind

Jν(ξ) =
1

2πi ν

2π
∫

ϕ=0

eiξ cosϕ cos(νϕ)dϕ (B.36)

eq. (B.35) simplifies to

f̂(kr , kz) =

∞
∫

z=−∞

2π

∞
∫

r=0







−i fr(r, z)J1(2πrkr)
0

fz(r, z)J0(2πrkr)






r dr e−2πi zkz dz (B.37)
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after utilization of J0(−ξ) = J0(ξ) and J1(−ξ) = −J1(ξ). Finally, the Hankel transform,
eq. (B.28), and the Fourier transform can be exploited, leading to

f̂(kr , kz) =

∞
∫

z=−∞







H1 [−i fr(r, z)]
0

H0 [ fz(r, z)]






e−2πi zkz dz =







FzH1 [−i fr(r, z)]
0

FzH0 [ fz(r, z)]






(B.38)

B.2.2.4 Cylindrical Inverse Fourier Transform of Vector Quantities

Treatment of the inverse transform of a vector quantity is analogous to the treatment laid out
in the previous section, i.e., with the unit vectors in cylindrical coordinates in Fourier space

ekr
=







cos kϕ
sin kϕ

0






,ekϕ =







− sin kϕ
cos kϕ

0






,ekz
=







0

0

1






(B.39)

the vector-valued function f̂ can be represented according to

f̂(kr , kϕ, kz) = f̂kr
ekr
+ f̂kϕekϕ + f̂kz

ekz
(B.40)

Due to rotational symmetry f̂ is only a function of the radius kr and the axial coordinate kz

(the azimuthal contribution equals zero, f̂kϕ = 0), this leads to

f̂(kr , kϕ, kz) = f̂kr







cos kϕ
sin kϕ

0






+ f̂kz







0

0

1






(B.41)

Applying the inverse Fourier transform yields

f(r, z) =

∞
∫

kz=−∞

∞
∫

kr=0

2π
∫

kϕ=0







f̂kr
(kr , kz) cos kϕ

f̂kr
(kr , kz) sin kϕ
f̂kz
(kr , kz)






e2πi rkr cos kϕ dkϕ kr dkre

2πi zkz dkz (B.42)

With the definition of Bessel’s first integral of order ν for Bessel functions of first kind and
zeroth J0 and first order J1

Jν(ξ) =
1

2πi ν

2π
∫

kϕ=0

eiξ cos(kϕ) cos(νkϕ)dkϕ (B.43)
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eq. (B.42) simplifies to

f(r, z) =

∞
∫

kz=−∞

2π

∞
∫

kr=0







i f̂kr
(kr , kz)J1(2πrkr)

0

f̂kz
(kr , kz)J0(2πrkr)






kr dkr e2πi zkz dkz (B.44)

Finally, the Hankel transform, eq. (B.28), and the inverse Fourier transform can be exploited,
leading to

f(r, z) =

∞
∫

kz=−∞







H−1
1

�

i f̂kr
(kr , kz)

�

0

H−1
0

�

f̂kz
(kr , kz)

�






e2πi zkz dkz =







F−1
z H−1

1

�

i f̂kr
(kr , kz)

�

0

F−1
z H−1

0

�

f̂kz
(kr , kz)

�






(B.45)

Note the different sign in the radial component compared to eq. (B.38), this is due to J1 being
an odd function.

B.2.2.5 Treatment of 1-D Cylindrical Coordinates

Fourier transform of one dimension in cylindrical coordinates can be understood as a subset of
the two dimensional Fourier transform in cylindrical coordinates. The dot product in eq. (B.23)
simplifies for one dimension to r · k= rkr cosϕ. This simplifies the Fourier, eq. (B.24), and
inverse Fourier transform, eq. (B.25). The Fourier and its inverse transform of a scalar quantity
result in

f̂ (kr) =H0 [ f (r)] (B.46a)
f (r) =H−1

0

�

f̂ (kr)
�

(B.46b)

For a vector quantity, the Fourier and its inverse transform yield

f̂(kr) =H1 [−i fr(r)] (B.47a)
f(r) =H−1

1

�

i f̂kr
(kr)

�

(B.47b)
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B.2.3 Spherical Coordinates

For spherical coordinates, r · k can be written as

r · k=







r cosϕ sinϑ

r sinϕ sinϑ

r cosϑ






·







kr cos kϕ sin kϑ
kr sin kϕ sin kϑ

kr cos kϑ






(B.48)

with radial coordinate r and kr , azimuthal angleϕ and kϕ, and polar angle ϑ and kϑ, in real and
Fourier space, respectively. We limit consideration to cases of rotational symmetry. Spherical
symmetry can be exploited utilizing the identity cosϑ cos kϑ + sinϑ sin kϑ = cos(ϑ − kϑ) =
cos(kϑ − ϑ) and choosing a k-vector parallel to the kz-axis in Fourier space with k= (0,0, k)ᵀ

which implies kϑ = 0. This simplifies the dot product r · k in eq. (B.48) to

r · k= rkr cosϑ (B.49)

With the volume element dr = r2 sinϑdϕ dϑdr, and the result of eq. (B.49), the Fourier
transform, eq. (B.7a), is calculated according to

f̂(kr) =

∞
∫

r=0

π
∫

ϑ=0

2π
∫

ϕ=0

f(r)e−2πi rkr cosϑr2 sinϑdϕ dϑdr (B.50)

The inverse Fourier transform can be computed analogously, as

f(r) =

∞
∫

kr=0

π
∫

kϑ=0

2π
∫

kϕ=0

f̂(kr)e
2πi rkr cos kϑk2

r sin kϑ dkϕ dkϑ dkr (B.51)

B.2.3.1 Spherical Fourier Transform of Scalar Quantities

Due to spherical symmetry, the integral in eq. (B.50) simplifies through integration. Integra-
tion over ϕ yields

∫ 2π

0
dϕ = 2π. Via substitution we can integrate over ϑ with u= cosϑ and

du= − sinϑdϑ, leading to

f̂ (kr) = −2π

∞
∫

r=0

−1
∫

u=1

f (r)e−2πi rkr ur2 du dr =

∞
∫

r=0

f (r)
e2πi rkr − e−2πi rkr

i rkr
r2 dr (B.52)
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Using Euler’s formula yields

f̂ (kr) =
2
kr

∞
∫

r=0

f (r)r sin(2πrkr)dr ≡
2
kr
SIN [ f (r)r] (B.53)

with the definition of the sine transform SIN . The Fourier transform for spherically symmetric
systems simplifies to the sine transform.

B.2.3.2 Spherical Inverse Fourier Transform of Scalar Quantities

Treatment of the inverse transform, eq. (B.51), is analogous to the treatment laid out in the
previous section, i.e.,

f (r) =
2
r

∞
∫

kr=0

f̂ (kr)kr sin(2πrkr)dkr ≡
2
r
SIN

�

f̂ (kr)kr

�

(B.54)

with the self-inverse sine transform SIN .

B.2.3.3 Spherical Fourier Transform of Vector Quantities

Analogous to appendix B.2.1.3 and B.2.2.3, the Fourier transform of vector quantities in
spherical coordinates is performed by separating the vector into different contributions:
radial fr , polar fϑ, and azimuthal fϕ, with their respective unit vectors according to

er =







cosϕ sinϑ

sinϕ sinϑ

cosϑ






,eϑ =







cosϕ cosϑ

sinϕ cosϑ

− sinϑ






,eϕ =







− sinϕ

cosϕ

0






(B.55)

f(r,ϑ,ϕ) = frer + fϑeϑ + fϕeϕ (B.56)

However, due to spherical symmetry f is only a function of the radius r = |r|. Therefore, both
other contributions equal zero, fϑ = 0= fϕ, leading to

f(r,ϑ,ϕ) = fr







cosϕ sinϑ

sinϕ sinϑ

cosϑ






(B.57)
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The Fourier transform of f then yields

f̂(kr) =

∞
∫

r=0

π
∫

ϑ=0

2π
∫

ϕ=0







fr(r) cosϕ sinϑ

fr(r) sinϕ sinϑ

fr(r) cosϑ






e−2πi rkr cosϑr2 sinϑdϕ dϑdr (B.58)

Performing the integration over ϕ leads to vanishing contributions for the first and second
vector entry due to

∫ 2π

ϕ=0
cos(ϕ)dϕ = 0 and

∫ 2π

ϕ=0
sin(ϕ)dϕ = 0. As a result, we only regard

the z-direction, leading to

f̂(kr) =

∞
∫

r=0

π
∫

ϑ=0

fr(r)







0

0

2π cosϑ






e−2πi rkr cosϑr2 sinϑdϑdr (B.59)

With (0,0, 2π cos(ϑ))ᵀ = 2π cos(ϑ)ez, eq. (B.59) yields

f̂(kr) = ez

∞
∫

r=0

π
∫

ϑ=0

fr(r)2π cosϑ e−2πi rkr cosϑr2 sinϑdϑdr (B.60)

Integration over ϑ is carried out using the substitution u= cosϑ and du= − sinϑdϑ followed
by partial integration, leading to

f̂(kr) = −ez

∞
∫

r=0

−1
∫

u=1

fr(r)2πue−2πi rkr ur2 du dr

= −ez

∞
∫

r=0

fr(r)
�

e2πi rkr + e−2πi rkr

i rkr
+

e−2πi rkr − e2πi rkr

2π(i rkr)2

�

r2 dr (B.61)

Using Euler’s formula gives

f̂(kr) = ez
2i
kr

∞
∫

r=0

fr(r)r cos(2πrkr)dr − ez
i
πk2

r

∞
∫

r=0

fr(r) sin(2πrkr)dr (B.62)

Due to alignment of vector k in Fourier space with ez, implying ez = ekr
we obtain a combina-

tion of sine (SIN ) and cosine transform (COS) according to

f̂(kr) = ekr

2i
kr
COS [ fr(r)r]− ekr

i
πk2

r

SIN [ fr(r)] (B.63)
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B.2.3.4 Spherical Inverse Fourier Transform of Vector Quantities

Treatment of the inverse transform of a vector quantity is similar to the treatment in the
previous section, i.e., with the unit vectors in spherical coordinates in Fourier space

ekr
=







cos kϕ sin kϑ
sin kϕ sin kϑ

cos kϑ






,ekϑ =







cos kϕ cos kϑ
sin kϕ cos kϑ
− sin kϑ






,ekϕ =







− sin kϕ
cos kϕ

0






(B.64)

the vector-valued function f̂ can be represented according to

f̂(kr , kϑ, kϕ) = fkr
ekr
+ fkϑekϑ + fkϕekϕ (B.65)

Due to spherical symmetry f̂ is only a function of the radius kr = |k|. Therefore, all other
contributions besides the radial one equal zero, leading to

f̂(kr , kϑ, kϕ) = fkr







cos kϕ sin kϑ
sin kϕ sin kϑ

cos kϑ






(B.66)

Applying the inverse Fourier transform yields

f(r) =

∞
∫

kr=0

π
∫

kϑ=0

2π
∫

kϕ=0







f̂kr
(kr) cos kϕ sin kϑ

f̂kr
(kr) sin kϕ sin kϑ
f̂kr
(kr) cos kϑ






e2πi rkr cos kϑk2

r sin kϑ dkϕ dkϑ dkr (B.67)

Performing the integration over kϕ leads to vanishing contributions for the first and second
vector entry due to

∫ 2π

kϕ=0
cos kϕ dkϕ = 0 and

∫ 2π

kϕ=0
sin kϕ dkϕ = 0. As a result, we only regard

the z-direction, leading to

f(r) =

∞
∫

kr=0

π
∫

kϑ=0

f̂kr
(kr)







0

0

2π cos kϑ






e2πi rkr cos kϑk2

r sin kϑ dkϑ dkr (B.68)

With (0,0, 2π cos kϑ)ᵀ = 2π cos kϑekz
, eq. (B.68) yields

f(r) = ekz

∞
∫

kr=0

π
∫

kϑ=0

f̂kr
(kr)2π cos kϑe

2πi rkr cos kϑk2
r sin kϑ dkϑ dkr (B.69)
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Integration over kϑ is carried out using the substitution u = cos kϑ and du = − sin kϑ dϑ

followed by partial integration, leading to

f(r) = −ekz

∞
∫

kr=0

−1
∫

u=1

f̂kr
(kr)2πue2πi rkr uk2

r du dkr

= ekz

∞
∫

kr=0

f̂kr
(kr)

�

e−2πi rkr + e2πi rkr

i rkr
+

e−2πi rkr − e2πi rkr

2π(i rkr)2

�

k2
r dkr (B.70)

Using Euler’s formula yields

f(r) = ekz

i
πr2

∞
∫

kr=0

f̂kr
(kr) sin(2πrkr)dkr − ekz

2i
r

∞
∫

kr=0

f̂kr
(kr)kr cos(2πrkr)dkr (B.71)

Due to alignment of the vector r in Fourier space with ekz
, implying er = ekz

we obtain a
combination of sine and cosine transform according to

f(r) = er
i
πr2

SIN
�

f̂kr
(kr)

�

− er
2i
r
COS

�

f̂kr
(kr)kr

�

(B.72)

Note that the forward Fourier transform, eq. (B.63), differs slightly from the inverse transform,
eq. (B.72).

B.3 Computation of First-Order Hankel Transform with Algorithm for Zeroth

Order

In the following, we derive a way to compute the Hankel transform of first order with
algorithms solving the Hankel transform of zeroth order. The Hankel transform of first order
is defined as

H1[ f (r)] = 2π

∞
∫

r=0

f (r)J1(2πrkr)r dr (B.73)

with the Bessel function of first kind and first order J1. Exploiting J1(r) = −J′0(r), with the
derivative with respect to r of the Bessel function of first kind and zeroth order J′0, and the
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coordinate transform r = x
2πkr
→ dr = dx

2πkr
, leads to

H1[ f (r)] = −
1

2πk2
r

∞
∫

x=0

f
�

x
2πkr

�

J′0(x)x dx (B.74)

Integration by parts with vanishing integration bounds
�

f
�

x
2πkr

�

J0(x)x
�∞

0
= 0 leaves us with

H1[ f (r)] =
1

2πk2
r

∞
∫

x=0

�

x
2πkr

f ′
�

x
2πkr

�

+ f
�

x
2πkr

��

J0(x)dx

=
1
kr

∞
∫

r=0

�

f (r)
r
+ f ′(r)

�

J0(2πrkr)r dr =
1

2πkr
H0

�

f (r)
r
+ f ′(r)

�

(B.75)

where the prime (′) denotes the derivative with respect to r. Instead of computing the discrete
Hankel transform on a logarithmic grid as was done by Boţan et al. 1 or Hamilton 2 , we follow
the approach of Hansen 3–5 and compute the Hankel transform on an equidistant grid by a
combination of the fast Abel and fast Fourier transform. The algorithm used for the fast Abel
transform is described below.

B.4 Computation of the Abel and Inverse Abel Transform

The algorithm for the Abel transform is taken from Hansen 3,5 and Hansen and Law 4. The
recursive scheme computes the Abel and inverse Abel transform on an equidistant grid with N

grid points, using the parameters given in table B.1. We define the grid in radial direction as
depicted in figure A.2.
The algorithm described in eq. (B.76) computes the forward and inverse Abel transform
using a low order state-space model (dimension K = 9). The input of the linear system is the
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first-order hold approximation of the discrete function fn to be transformed, leading to

xn−1 = Φnxn + B0,n fn + B1,n fn−1 (B.76a)
Fn = Cxn (B.76b)
xN = 0 (B.76c)

Φn = diag

�

�

rn

rn−1

�λ1

, . . . ,
�

rn

rn−1

�λK
�

(B.76d)

C = [1, . . . , 1] (B.76e)
B0,n =

�

h1β0,n(λ1), . . . , hKβ0,n(λK)
�ᵀ (B.76f)

B1,n =
�

h1β1,n(λ1), . . . , hKβ1,n(λK)
�ᵀ (B.76g)

with the grid point index n, the grid dependent states of the state-space model xn, the grid
dependent state transition matrix Φn, the grid dependent input vectors B0,n and B1,n, the
discrete (inverse) Abel transform Fn, the output vector of the state-space representation of
the linear system C , the radial grid points rn, as well as the model parameters from Hansen3,4,
λk and hk (see table B.1). The recursion is started at the outermost grid point rN with xN = 0

and is continued inwards toward the center of the radial grid. This method cannot be used
if rn−1 = 0. For the forward transform one uses β f

0,n and β f
1,n, obtained from

β f
0,n(λk) =

2rn−1

rn − rn−1

rn−1 +
�

rn(λk + 1)− rn−1(λk + 2)
�

�

rn
rn−1

�λk+1

(λk + 1)(λk + 2)
(B.77a)

β f
1,n(λk) =

2rn−1

rn − rn−1

�

rn−1(λk + 1)− rn(λk + 2)
�

+ rn

�

rn
rn−1

�λk+1

(λk + 1)(λk + 2)
(B.77b)

For the inverse transform one uses βb
0,n and βb

1,n according to

βb
0,n(λk) =







− 1
π(rn−rn−1)

ln
�

rn
rn−1

�

λk = 0
1

πλk(rn−rn−1)

�

1−
�

rn
rn−1

�λk
�

λk 6= 0
(B.78a)

βb
1,n(λk) = −βb

0,n(λk) (B.78b)
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Table B.1: Parameters for Abel transform3.
k hk/π λk

1 0.318 0
2 0.19 -2.1
3 0.35 -6.2
4 0.82 -22.4
5 1.8 -92.5
6 3.9 -414.5
7 8.3 -1889.4
8 19.6 -8990.9
9 48.3 -47391.1

B.5 Discrete Sine- & Cosine Transforms

In this work, in appendix A.4.2.2 and A.4.3.2 we used the discrete versions of the sine
and cosine transforms. Both transforms transform between a finite series of equally-spaced
samples j = 0, . . . , (N − 1) of a function f j in real space, and a series of equal length and
equally-spaced samples k = 0, . . . , (N −1) in Fourier space f̂k. The index j denotes the discrete
grid points in real space, while k denotes the grid points in Fourier space.
The discrete sine transforms DST II and DST III of the function f are defined by

f̂ DST II
k∗ =

N−1
∑

j=0

f j sin
�

π

N

�

j +
1
2

�

(k∗ + 1)
�

with k∗ = 0, . . . , (N − 1) (B.79a)

f DST III
j =

(−1) j

2
f̂N−1 +

N−2
∑

k∗=0

f̂k∗ sin
�

π

N
(k∗ + 1)

�

j +
1
2

��

with j = 0, . . . , (N − 1)

(B.79b)

with the number of discrete grid points N , where the iteration variable k∗ does not represent
the true Fourier variable k, which for the discrete sine transforms is obtained from k = k∗ + 1.
The DST II assumes the function f j to be odd around j = (−1

2) and j = (N − 1
2) (equivalent

to r = 0 and r = Ltot in figure A.3). However, the DST III implies the function f̂k∗ to be odd
around k∗ = (−1) and even around k∗ = (N −1) (equivalent to k = 0 and k = N , respectively).
Both discrete sine transforms are scaled with the factor η= 1p

2N
, allowing usage of the two

transforms as direct inverses of each other: DST −1
II =DST III.
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The discrete cosine transforms DCT II and DCT III are defined by

f̂ DCT II
k =

N−1
∑

j=0

f j cos
�

π

N

�

j +
1
2

�

k
�

with k = 0, . . . , (N − 1) (B.80a)

f DCT III
j =

1
2

f̂0 +
N−1
∑

k=1

f̂k cos
�

π

N
k
�

j +
1
2

��

with j = 0, . . . , (N − 1) (B.80b)

The DCT II assumes the function f j to be even around j = (−1
2) and j = (N − 1

2) (equivalent
to r = 0 and r = Ltot in figure A.3). However, the DCT III implies the function f̂k to be
even around k = 0 and odd around k = N . Both discrete cosine transforms are scaled with
the factor η = 1p

2N
, allowing usage of the two transforms as direct inverses of each other:

DCT −1
II =DCT III.

B.6 Reducing Gibbs Phenomenon via the Lanczos σ-Factor

Fourier transform algorithms applied to very sharp density profiles or non-periodic boundary
conditions, as used for Cartesian coordinates in appendix A.4.1.1, can cause ringing artifacts at
profile discontinuities (Gibbs phenomenon). These artifacts can be reduced by multiplication
of the Fourier space representation of the function with the Lanczos σ-factor6

σ(k) = sinc
k
M
=

sinπ k
M

π k
M

(B.81)

with the Fourier variable k, and where M denotes the number of k-values in the dimension of
interest (k = 0, . . . , M −1). For the FFT with an even number of grid points we get M = N

2 +1,
with N as the number of grid points (see eqs. (A.129) and (A.130)). For fast sine & cosine
transforms M = (N + 1) and M = N hold, respectively (see eqs. (A.150) and (A.151)).
The procedure can easily be implemented by multiplying the weight functions with the
σ-factor. For multidimensional Fourier transforms, the σ-factor has to be multiplied for every
dimension separately. For example, for 3-D Cartesian, 2-D cylindrical and 1-D spherical
coordinates the Lanczos σ-factor is computed as

ω̂σi (k) = ω̂i(kx , ky , kz)σx(kx)σy(ky)σz(kz) (B.82a)
ω̂σi (k) = ω̂i(kz, kr)σz(kz)σr(kr) (B.82b)
ω̂σi (k) = ω̂i(kr)σr(kr) (B.82c)

For increased smoothing, the weight function can be multiplied with the σ-factor multiple
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times.
For Cartesian coordinates, robustness of the FFT can further be increased by enforcing periodic
boundary conditions via an additional domain, with respect to the ones displayed in figure A.1,
using a smooth transition function (for example the hyperbolic tangent). The sine and cosine
transform inherently possess this property. Enforcing periodic boundary conditions is only
relevant if no Lanczos σ-factor is used.

B.7 Comparison of Convolution Results in Different Coordinate Systems

Computation of the convolution integrals discussed in appendix A.3 depends on the underlying
coordinate system. Figure B.1 presents results of three convolutions of density profile ρ
with different weight functions from FMT7, obtaining weighted densities n0, n3 and nV1, for
Cartesian, cylindrical and spherical coordinates. The remaining weighted densities (n1, n2

and nV1) differ from the considered ones only by a constant, and are thus not shown here.
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Figure B.1: Comparison of one-dimensional convolutions in Cartesian, cylindrical and spher-
ical coordinates presenting weighted densities n0, n3 and nV2 for a hard-sphere fluid with
radius R= 0.5Å modeled with FMT7. The density profile is given as a Heaviside step function
ρ(r) = 3

πΘ(1.5Å− r)Å−3.
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For r →∞ the convolution results are not dependent on the underlying coordinate system.
Only for small systems, such as the system depicted here, deviations occur. The weighted
densities in the region from 0–1Å and 2–3Å are equivalent for the three coordinate systems,
while differences are revealed between 1–2Å in the influence length R= 0.5Å of the weight
function around the density jump at r = 1.5Å. Between 1Å and 2Å, the scalar-valued
weighted densities are smaller for cylindrical, and smallest for spherical coordinates, compared
to Cartesian coordinates. The maximum of the vector-valued weighted densities lies directly
on the density step for Cartesian coordinates, while for cylindrical and spherical coordinate
systems the maximum is shifted towards smaller radii.
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C Appendix: A Fast Inverse Hankel Transform of First Order for

Computing Vector-Valued Weight Functions Appearing in

Fundamental Measure Theory in Cylindrical Coordinates

The content of this appendix is a literal quote of the appendix of:
R. Stierle and J. Gross. A fast inverse Hankel Transform of first Order for Computing vector-valued
weight Functions appearing in Fundamental Measure Theory in cylindrical Coordinates. Fluid Phase
Equilibria, 511:112500, 2020. doi:10.1016/j.fluid.2020.112500

C.1 Computation of Hankel Transform of Order 1 from Hankel Transform of

Order 0

In [section 3.4.2.2]†, we proposed computation of the Hankel transform of first order H1

from the zeroth order Hankel transform, as

H1 [ f (r)] =
1

2πkr
H0

�

f (r)
r
+ f ′(r)

�

(C.1)

while its inverse H−1
1 is computed according to

H−1
1

�

f̂ (kr)
�

=
1
r
H−1

0

�

f̂ (kr)
2πkr

+ f̂ ′(kr)

�

(C.2)

†The text in the original publication reads: [our earlier work1 section 4.2.2].
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D Appendix: Hydrodynamic Density Functional Theory for

Mixtures from a Variational Principle and Its Application to

Droplet Coalescence

The content of this appendix is a literal quote of the appendix of:
R. Stierle and J. Gross. Hydrodynamic Density Functional Theory for Mixtures from a Variational
Principle and Its Application to Droplet Coalescence. The Journal of Chemical Physics, 155(13):134101,
2021. doi:10.1063/5.0060088

D.1 Notation

For the derivation in section 5.2.2, we use the following notation. The velocity gradient is
defined as

∇v≡







∂ v1
∂ r1

· · · ∂ vd
∂ r1... . . . ...

∂ v1
∂ rd

· · · ∂ vd
∂ rd






=
�

∇v1 · · · ∇vd

�

(D.1)

with the velocity and spatial coordinate components, vi and ri, respectively. Left-hand side
multiplication of a vector with a matrix is defined by

v · T=











∑

i
vi Ti1

...
∑

i
vi Tid











(D.2)
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with matrix elements Ti j. The divergence of a matrix is defined as

∇ · T≡











∑

i

∂ Ti1
∂ ri

...
∑

i

∂ Tid
∂ ri











(D.3)

while the double dot product is defined by

A : B≡
∑

i

∑

j

Ai jBi j (D.4)

D.2 Divergence Theorem and No-Flux Boundary Condition

The divergence theorem for a closed, bounded set Ω ⊂ Rd with a piecewise smooth bound-
ary ∂ Ω for a scalar b and a vector v can be stated as

∫

∂ Ω

(bv) · n̂dA=

∫

Ω

∇ · (bv)dr=

∫

Ω

b(∇ · v)dr+

∫

Ω

(∇b) · vdr (D.5)

with the outward unit normal vector n̂ of the boundary.
For the transport problem in this work, Ω ⊂ Rd represents our computational domain with the
surface/boundary A= ∂ Ω, v is the barycentric velocity, and b is the transported property. If
we assume that there is no transport of b across the boundary, the product bv · n̂= 0 vanishes,
leading to

∫

∂ Ω

(bv) · n̂dA= 0=

∫

Ω

∇ · (bv)dr (D.6)

which in combination with eq. (D.5) results in
∫

Ω

b(∇ · v)dr= −
∫

Ω

(∇b) · vdr (D.7)
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D.3 Maxwell-Stefan Diffusion Formulation

Maxwell-Stefan diffusion1–3 for multicomponent mixtures as described in eq. (5.32) can be
expressed for isothermal systems as







−ρ1∇βµdiff
1...

−ρNc−1∇βµdiff
Nc−1






= B







jdiff
1...

jdiff
Nc−1






(D.8)

with the generalized driving forces1–3, for hydrodynamic DFT defined by

ρi∇βµdiff
i ≡ ρi∇

�

δβF
δρi

+ βV ext
i

�

−wi

Nc
∑

j=1

ρ j∇
�

δβF
δρ j

+ βV ext
j

�

(D.9)

with the mass fraction wi ≡
m̌iρi
m̌ρ . The structure of eq. (D.9) is equal to the structure of the

generalized driving force1–3, which reads for isothermal cases

ρdi ≡ ρi∇βµi −wi

Nc
∑

j=1

ρ j∇βµ j (D.10)

The matrix B is defined as4

Bi j =











x i

�

m̌i
m̌Nc

1
DiNc
− 1

Di j

�

for j 6= i

m̌i
m̌Nc

x i
DiNc
+

Nc
∑

k 6=i

xk
Dik

for j = i
(D.11)

with the molar fractions x i, the Maxwell-Stefan diffusion coefficients Di j, and the molecular
mass m̌i for component indices i and j, where we already exploited the relation for the
diffusive molecular flux of the Nc-th component (vanishing sum of all diffusive molecular
fluxes) for the barycentric reference velocity5

m̌Nc
jdiff
Nc
= −

Nc−1
∑

i=1

m̌ij
diff
i (D.12)

The molecular fluxes can be calculated by inverting the matrix B, which leads to






jdiff
1...

jdiff
Nc−1






= −B−1







ρ1∇βµdiff
1...

ρNc−1∇βµdiff
Nc−1






(D.13)

211



D Appendix: Hydrodynamic Density Functional Theory for Mixtures

D.4 Time Derivatives of Helmholtz Energy Functionals

The time derivative of functionals of the Helmholtz energy and the external potential over a
stationary domain used in eq. (5.41) is calculated via

∂

∂ t

�

F[{ρi}] +
∫ Nc
∑

i=1

ρiV
ext

i dr

�

=

∫ Nc
∑

i=1

δF[{ρi}]
δρi(r)

∂ ρi(r)
∂ t

dr′ +

∫ Nc
∑

i=1

∂ ρi(r)
∂ t

V ext
i (r)dr

=

∫ Nc
∑

i=1

δ
�

ρ(r′)a({ρ̄i(r′)})
�

δρi(r)
∂ ρi(r)
∂ t

dr′ +

∫ Nc
∑

i=1

∂ ρi(r)
∂ t

V ext
i (r)dr (D.14)

[. . .] by using the functional derivative of the weighted density, defined by

δF[{ρi}]
δρi(r)

=

∫

δ
�

ρ(r′)a({ρ̄i(r′)})
�

δρi(r)
dr′ (D.15)

eq. (D.14) simplifies to
∫ Nc
∑

i=1

�

δF[{ρi}]
δρi(r)

+ V ext
i (r)

�

∂ ρi(r)
∂ t

dr (D.16)

which corresponds to eq. (5.41). Here, we explicitly considered the integration variables for
clarity. Since the integration domain is stationary, Reynolds theorem simplifies to differentia-
tion under the integral sign.
For local Helmholtz energy functionals (e.g., local density approximations and density/squared
gradient theories) the equality of eqs. (D.14) and (D.16) applies not only to the integral but
also to the local form.

D.5 Wave Speed of the Non-diffusive Hydrodynamic Density Functional

Theory Model

The Jacobian matrix J̃ ≡ ∇ŨF̃conv of the purely convective one-dimensional hydrodynamic
DFT model (Fdiff = 0 and S= 0) of a binary mixture with

Ũ=







m̌1ρ1

m̌2ρ2

m̌ρv






and F̃conv(Ũ) =







m̌1ρ1v

m̌2ρ2v

m̌ρvvᵀ + pig(ρ)I






(D.17)
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D.6 Mathematical Cell-Wise Entropy Identity

considering the component and momentum balances (the continuity equation is linearly
dependent on the two component balances) in contrast to the corresponding variant in
eq. (5.64) is

J̃=







w2v −w1v w1

−w2v w1v w2
kBT
m̌1
− v2 kBT

m̌2
− v2 2v






(D.18)

with the velocity component v and the mass fractions wi ≡
m̌iρi
m̌ρ with w1 + w2 = 1. The

eigenvalues of the Jacobian matrix, which represent the wave propagation speeds in the
hydrodynamic DFT model, can be calculated to be

λ1 = v and λ2/3 = v ± cig
s (D.19)

with the isothermal speed of sound of the ideal gas contribution cig
s =

r

1
m̌

�

∂ pig

∂ ρ

�

T
=
q

kBT
m̌ and

the eigenvectors

λ1 =







−m̌1

m̌2

(m̌2 − m̌1)v






and λ2/3 =







w1

w2

v ± cig
s






(D.20)

D.6 Mathematical Cell-Wise Entropy Identity

Based on the local version of the kinetic energy balance, eq. (5.37), we can derive a local
mathematical entropy balance for the hydrodynamic DFT model for mixtures outlined in
section 5.4.1 considering the ideal gas pressure, as

∂ %

∂ t
+∇·G= −

Nc
∑

i=1

�

ρiv+ jdiff
i

�

·∇
�

δF res

δρi
+ V ext

i

�

−T
Nc
∑

i=1

jdiff
i ·
�

−
1
T
∇µdiff

i

�

−Tτ :
�

−
1
T
∇v
�

(D.21)

with the mathematical entropy % and mathematical entropy flux G defined by

% =
m̌
2
ρ|v|2 +ρaig (D.22a)

G=
m̌
2
ρ|v|2v+

Nc
∑

i=1

�

ρiv+ jdiff
i

� ∂ (ρaig)
∂ ρi

+τ · v (D.22b)

analogous to the cell-wise mathematical entropy balance for pure fluids described by Carrillo
et al. 6 . The non-diffusive (τ = 0 and jdiff

i = 0) hydrodynamic DFT model satisfies the condition
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∇ŨG(Ũ) =∇Ũ%(Ũ)J̃(Ũ) (D.23)

with the Jacobian matrix for the non-diffusive hydrodynamic DFT model J̃, eq. (D.18),
which in combination with a strictly convex∗ mathematical entropy % shows that the non-
diffusive hydrodynamic DFT model is also purely hyperbolic7 even for mixtures, motivating
the application of the well-balanced scheme developed by Carrillo et al. 6 for the convective
fluxes in the mixture.
Integrating eq. (D.21) over the entire spatial domain and assuming no transport across the
domain boundary (cf. appendix D.2) lead directly to the global dissipation relation, eq. (5.50),
where the local and non-local contributions to the Helmholtz energy functional can be treated
in the same way.
Guarantees for the finite-volume scheme as proven by Carrillo et al. 6 are probably not possible
with the applied discretization scheme described in appendix D.7.

D.7 Approximating Gradients via Lifting

To maintain the order of the discretization scheme, we employ the so-called lifting8 to
approximate the gradients

�

{−∇µi},−∇v
	

that occur in the thermodynamic driving forces
for molecular and momentum transport (cf. section 5.2.4.1). Therefore, the second-order
partial differential equations in eq. (5.64) are replaced by a system of coupled first-order
partial differential algebraic equations, as

∂U
∂ t
+∇ · Fconv +∇ ·







0

jdiff
i

τ






= S(r,U) (D.24a)

jdiff
i = −

Nc−1
∑

j=1

(B−1)i j ρ j∇βµdiff
j ∀i (D.24b)

τ = −ζ (∇ · v) I−η
�

∇v+ (∇v)ᵀ −
2
3
(∇ · v) I

�

(D.24c)

where we treat the diffusive molecular flux jdiff
i and the viscous pressure tensor τ as additional

variables. To obtain the integral mean value for our finite-volume scheme, we integrate
eqs. (D.24b) and (D.24c) over finite-volume element Ωk. For simplicity, we consider here only
∗The Helmholtz energy density βρaig =

∑Nc

i ρi (ln(ρi)− 1) of the ideal gas contribution is strictly convex since
its Hessian matrix is positive definite.
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two-dimensional elements Ωk, and the extension to three dimensions can be done analogously.
For the chemical potential (defined in eq. (5.58)) gradient, application of the gradient theorem
leads to

∫

Ωk

∇µi dr=

∫

∂ Ωk

n̂µi dA (D.25)

with outward unit normal vector n̂ of the boundary ∂ Ωk of the finite-volume cell. Performing
the integration for cell k, this leads to

∇(µi)k =





(µi)k+ 1
2 ,x
−(µi)k− 1

2 ,x

∆x
(µi)k+ 1

2 ,y
−(µi)k− 1

2 ,y

∆y



 (D.26)

Since the values at the boundaries k± 1
2 are not uniquely defined, we apply an approximate

Riemann solver

F(U−
k+ 1

2
,U+

k+ 1
2
) =

1
2

�

U−
k+ 1

2
+U+

k+ 1
2

�

(D.27)

using the central flux corresponding to the sum of chemical and external potential used in
eq. (5.66b). Combining eqs. (D.26) and (D.27) leads to

∇(µi)k =

� (µi)k+1,x−(µi)k−1,x

2∆x
(µi)k+1,y−(µi)k−1,y

2∆y

�

(D.28)

which is equivalent to a central difference scheme.
For the velocity gradient ∇v, the gradient theorem in eq. (D.25) leads to

∫

Ωk

∇vdr=

∫

∂ Ωk

n̂vᵀ dA (D.29)

Performing the integration for cell k leads to

(∇v)k =





(vx )k+ 1
2 ,x
−(vx )k− 1

2 ,x

∆x

(vy )k+ 1
2 ,x
−(vy )k− 1

2 ,x

∆x
(vx )k+ 1

2 ,y
−(vx )k− 1

2 ,y

∆y

(vy )k+ 1
2 ,y
−(vy )k− 1

2 ,y

∆y



 (D.30)

By applying the Riemann solver, eq. (D.27), and defining the velocities at the cell face from
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eq. (5.67), we get

(∇v)k =

� (vx )k+1,x−(vx )k−1,x

2∆x
(vy )k+1,x−(vy )k−1,x

2∆x
(vx )k+1,y−(vx )k−1,y

2∆y
(vy )k+1,y−(vy )k−1,y

2∆y

�

(D.31)

which, similar to eq. (D.28), corresponds to a central difference scheme. Equivalently, the
transpose of the velocity gradient (∇v)ᵀk can be obtained, while for the approximation of ∇ · v
the divergence theorem is used instead of the gradient theorem, which finally leads to

(∇ · v)k =
(vx)k+1,x − (vx)k−1,x

2∆x
+
(vy)k+1,y − (vy)k−1,y

2∆y
(D.32)

D.8 Atomic Unit System

Table D.1: Atomic units used in this work. For the sake of clarity, the unit for a molecule # is
explicitly considered here.

number density ρ #Å−3

molecular mass m̌ u #−1

velocity v/cig
s Åps−1

time t ps

pressure p uÅ−1
ps−2

viscosity ζ/η uÅ−1
ps−1

functional derivative δF
δρi

uÅ2
#−1 ps−2

functional derivative δβF
δρi

–

Due to the molecular nature of the considered length and time scales, the atomic units from
table D.1 are used in this work. The values of the used physical constants is presented in

Table D.2: Values of the physical constants used. For the sake of clarity, the unit for a
molecule # is explicitly considered here.

Boltzmann constant kB 1.380 649 · 10−23 J #−1 K−1

Avogadro constant NA 6.022140 76 · 1023 # mol−1

ideal gas constant R 8.314462 618153 24 J mol−1 K−1

table D.2. For example, the ideal gas law in atomic units is defined as

pig = ρkBT

� NA

# mol−1

�

10
(D.33)

The squared isothermal speed of sound in atomic units of the ideal gas contribution using
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eq. (D.33) is defined by

�

cig
s

�2
=

1
m̌

�

∂ pig

∂ ρ

�

T

=
kBT
m̌

�

NA

10 # mol−1

�

(D.34)

using the Avogadro constant NA. The unit of the Avogadro constant needs to be removed
because the factor

� NA

10 # mol−1

�

is just a result from converting ‘kg’ to the atomic mass unit
‘u’: 1 kg= 6.022140 76 · 1026 u. The isothermal speed of sound of the ideal gas contribution
only varies in this work with composition through the mean molecular mass of the mixture
m̌=

∑Nc

i x im̌i.
More conversions are shown in table D.3.

Table D.3: Conversions of physical properties to atomic units.
viscosity 1 Pas NA

# mol−1 1 · 10−19 uÅ−1
ps−1

diffusion coefficient 1 m2 s−1 1 · 108 Å2
ps−1

atomic mass unit 1 kg 6.022 14076 · 1026 u
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