
Studiengang: 

Prüfer: 

Betreuer: 

begonnen am: 

beendet am: 

Analytic Computing
Institut für Parallele und Verteilte Systeme

Universitätsstraße 32
70569 Stuttgart

Bachelorarbeit

Multistep Prediction of Vehicle 
States using Transformers

Stefan Bolz

B.Sc. Informatik

Prof. Dr. Steffen Staab

Alexandra Baier, M.Sc.

08.10.2020

08.06.2021





Abstract

We develop a transformer architecture for multistep prediction of vehicle states. Multistep prediction
is the prediction of states based on initial states and a series of control inputs. Research in natural
language processing (NLP) promises advantages w.r.t. training time and prediction accuracy for the
transformer architecture compared to a state-of-the-art LSTM model. We investigate the benefits of
positional encoding and non-linear input embeddings for our multi-step transformer. Due to the
inherent causality in dynamical systems, an explicit inclusion of time information via positonal
encodings might not be necessary. Learning non-linear embeddings might improve prediction
accuracy by extracting relevant data from the original input similar to word embeddings used with
transformers in NLP. We evaluate our method on the use case of predicting ship motion under
environmental disturbances. We cannot prove any benefits w.r.t. training time compared to LSTMs,
transformers do however achieve similar prediction accuracy. We show that positional encodings
have a detrimental effect on the prediction accuracy of multistep transformers, which proves that
the transformer infers causal information from the input. Non-linear embeddings of control inputs
and initial state yield a negligible improvement of prediction accuracy.

Kurzfassung

Wir entwickeln eine Transformer-Architektur für die mehrstufige Vorhersage von Fahrzeugzuständen.
Mehrstufige Vorhersage ist die Vorhersage von Zuständen auf der Grundlage von Ausgangszuständen
und einer Reihe von Steuereingaben. Die Forschung im Bereich der natürlichen Sprachverarbeitung
(NLP) verspricht für die Transformer-Architektur Vorteile in Bezug auf Trainingszeit und Vorher-
sagegenauigkeit im Vergleich zu einem modernen LSTM-Modell.

Wir untersuchen die Vorteile von Positionskodierungen und nicht-linearen Eingabeeinbettungen für
unseren mehrstufigen Transformer. Aufgrund der inhärenten Kausalität in dynamischen Systemen
ist eine explizite Einbeziehung von Zeitinformationen über Positionskodierungen möglicherweise
nicht notwendig. Das Lernen nichtlinearer Einbettungen könnte die Vorhersagegenauigkeit
verbessern, indem relevante Daten aus der ursprünglichen Eingabe extrahiert werden, ähnlich wie
bei Worteinbettungen, die für Transformer in NLP verwendet werden.

Wir evaluieren unsere Methode am Anwendungsfall der Vorhersage von Schiffsbewegungen unter
Umwelteinflüssen. Wir können mit unserem Transformer keine Vorteile in Bezug auf die Train-
ingszeit im Vergleich zu LSTMs nachweisen, erreichen aber eine ähnliche Vorhersagegenauigkeit.
Wir zeigen, dass Positionskodierungen einen nachteiligen Effekt auf die Vorhersagegenauigkeit
von Transformern für mehrstufige Vorhersagen haben, was beweist, dass der Transformer kausale
Informationen direkt aus der Eingabe ableitet. Nichtlineare Einbettungen von Steuereingängen und
Anfangszustand führen zu einer vernachlässigbaren Verbesserung der Vorhersagegenauigkeit.
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1 Introduction

Multistep prediction is the prediction of multiple future states in a time series based on its previous
values and additional external control inputs [5]. Applications for multistep prediction with such
control inputs include simulation, predictive maintenance or fault detection of technical systems
[8, 19]. Another use case is model-predictive control (MPC), where the immediate future of a
system like a vehicle is predicted to choose and control its path. MPC has high performance
requirements regarding the predictive models speed and accuracy. Because MPC uses the predictive
model to make multiple predictions with different control inputs to find the best one to get the
vehicle or system to a desired state, the predictions have to be much quicker than for a simulation
scenario where prediction accuracy is usually much more important than speed. More accurate and
time-efficient multistep prediction models can enable the simulation and control of complex systems,
which is of particular interest in the development towards more automation in many industries.

Current approaches for multi-step prediction use different types of models, such as physically
accurate simulation models which are usually very difficult to create for nontrivial systems and
often require vast amounts of computational resources [27]. They are therefore in most cases
not suited for model-predictive control. Alternatively, linear models allow cheap but inaccurate
approximations of the system, which are suitable for some less complicated environments[7].

Deep learning is used for approximation when the system dynamics are non-linear and external
disturbances have a strong impact on the dynamics [18, 19, 21]. An example for such a complex
problem is the prediction of the movement of a ship in harsh weather conditions. Here the nonlinear
and stochastic processes of the hydrodynamic interactions of the ship hull with the surrounding
water can often only be approximated. Other environmental influences cannot be measured at all.
The current state-of-the-art deep learning method for multistep prediction is the use of an LSTM
network. While this network architecture fares better than older models like feed-forward networks
or linear models in terms of prediction accuracy [19], it has to be trained sequentially [12], without
the possibility to parallelize the process which results in long training times.

This thesis proposes the use of transformers for multistep prediction. Recent results in natural
language processing [28] suggest that the transformer model may also be able to achieve better
multistep prediction accuracy than an LSTM. We adjust the standard transformer model to include
control inputs that are independent from the states at each time step.

Our implementation of a transformer model was not able to outperform an LSTM overall but it did
have a better prediction accuracy for one of the predicted variables.

The contributions of this paper can be summarized as follows:

1. The transformer architecture is adapted for multistep prediction with control inputs.
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1 Introduction

2. Different variants of the transformer model are evaluated and compared to determine whether
an nonlinear embedding is beneficial and whether the model is able to infer the order of
causally linked states in a sequence without positional encoding.

3. The transformer model is compared to a state-of-the-art LSTM w.r.t. prediction accuracy at
the example of the prediction of a ship state
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2 Neural Networks

Artificial neural networks have become the de-facto standard for most of machine learning
applications. This chapter explains the different types of neural networks that we will use in
our implementation or that will be relevant as a comparison baseline for this thesis. Section 2.1
explains feedforward neural networks and how neural networks are trained. Section 2.2 describes
recurrent neural networks like LSTMs. Finally in section 2.3 we describe the standard transformer
architecture.

2.1 Feedforward Neural Networks

Neural Networks are comprised of one or multiple layers. A typical layer consists at least of a
weight matrix , and a bias vector 1. The input G of a layer is multiplied by the matrix and the
result subsequently added to the bias vector. This results in the output H of the layer:

H = ,G + 1

Because this is an affine linear operation, networks with such layers would be limited to approximating
only linear functions. To prevent this, some linear layers use a nonlinear activation function which
is applied to the output of the linear operation. The most commonly used activation function today
is the rectifier function 5'4!* , which returns zero for all negative inputs and is the identity function
for all positive inputs:

5'4!* (G) = <0G(0, G)

A unit in a network that employs this function is called a ’rectified linear unit’ (ReLU).

Other common activation functions are the sigmoid function f(G) and C0=ℎ(G).

f(G) = 1
1 + 4−G

The sigmoid function maps values to the interval (0,1) while C0=ℎ(G) maps to the interval (-1,1).

Because ReLUs are partwise linear, gradients computed for networks using ReLUs scale mostly
linearly, which is useful when training the network. In most cases, ReLUs keep the training
simple and efficient while sigmoid and C0=ℎ activation functions are used when the output of those
functions is used in further calculations that require a bounded value interval.
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2 Neural Networks

Figure 2.1: Example architecture of a feedforward neural network

Neural nets are comprised of multiple layers, that feed into each other. Depending on their intended
purpose, networks differ in the size, number, type and order of their layers. A Feedforward Neural
Network (FFN) combines multiple linear layers of which most use nonlinear activation. Figure 2.1
shows how multiple linear layers form a feedforward neural network. It is common to use nonlinear
activation in the hidden layers but not the output layer.

Depending on the weights of a model its output changes. A loss function L calculates a distance
metric between the output of a model and a desired ground truth H. A widely used loss function is
the mean squared error (MSE) function which sums the squared differences between our desired
output H and our actual output Ĥ over each of their = dimensions:

"(� (H, Ĥ) = 1
=

=∑
8=1
(H8 − Ĥ8)2

The goal of training a model is to minimize the loss function which requires the weights to be
modified in a way that the model output Ĥ is closer to the desired output H. For this purpose a
training dataset containing pairs of inputs and desired outputs is required.

In general, the optimization objective of a neural network implementing the function #\ with
weights \, a training dataset ( and a loss function L is defined as:

\∗ = argmin
\ ∈Θ

L(H, #\ (G)) ∀(G, H) ∈ (
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2.2 Recurrent Neural Networks

The standard method of optimizing a loss function is the gradient descent method. Gradients for
gradient descent are computed via backpropagation and used to update the collective weights \
weighted with a so-called learning rate _ step by step according to the following formula:

\C+1 = \C − _∇L(H, #\ (G))

Backpropagation feeds the training input G into the model to compute the models predicted output
Ĥ and the resulting loss. We then compute partial derivatives regarding the loss for each of the
weights which together form a gradient.

This process exploits the fact that a neural network with = layers and an activation function 5act
implements a nested function chain:

Ĥ = ,1 5act (,2 5act (...,=G + 1=...) + 12) + 11

Using the chain rule we can compute the gradient for one layer at a time and propagate the loss
gradient through the whole network [15]. A layer at depth i has a layer input 8=8 = ,8>8−1 + 18 and
a layer output >8 = 5act (8=8). Backpropagation calculates the gradients as follows [15]:

mL8
m,8

=
mL8
m>8
· m>8
m8=8
· >8−1

mL8
m>8−1

= ,)
8 ·

mL8
m8=8

Adding more layers increases the number of calculations that is required during training but enhance
the models ability to approximate complex functions [17] by learning different abstractions of input
features. This means that a network may learn to recognize basic attributes about the input in
its first few layers and use this knowledge to make more complex distinctions at a higher level of
abstraction. Learning with a multilayered neural network is also called ’deep learning’. Because
the gradient that is calculated for the weights of each layer has a more direct changing impact on
the last layers of the network compared to earlier layers, very deep networks with many layers are
difficult to train. This can be prevented by integrating skip connections, that take the output of one
layer and feed it not into the next layer but add onto the output of a later layer. Besides fixing the
vanishing gradient problem this also has the added benefit that the model can learn to ignore layers
that are not necessary for the problem which increases the models accuracy.

Besides the basic linear layers, activation function and skip connections, there are several other
building blocks neural networks use for specific purposes.

2.2 Recurrent Neural Networks

A widespread machine learning approach to calculate an output sequence from an input sequence
are Recurrent Neural Networks (RNNs) whose structure is designed to work on sequential data.
While calculating the predicted output RNNs keep a copy ℎC of this output vector, which serves as a
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2 Neural Networks

Figure 2.2: Architecture of an RNN cell [22]

memory of past inputs and is used together with a new input to generate the output of the next time
step. This enables the model to calculate the output not only based on the last input but also on
several inputs before that [10, 12]:

ℎC = tanh(,ℎ · [ℎC−1, GC ] + 1ℎ)

The state-of-the-art RNN architecture for sequential prediction tasks is the Long Short-Term
Memory neural network (LSTM) [25]. LSTM cells calculate a memory cell vector �C and a
hidden state vector ℎC which are fed back into the LSTM in the next timestep alongside the new
input. The following equations describe the forward computation of the LSTM cell:

5C = f(, 5 · [ℎC−1, GC ] + 1 5 )(2.1)
8C = f(,8 · [ℎC−1, GC ] + 18)(2.2)
�̃C = tanh(,� · [ℎC−1, GC ] + 1�)(2.3)
�C = 5C ∗ �C−1 + 8C ∗ �̃C(2.4)
>C = f(,> · [ℎC−1, GC ] + 1>)(2.5)
ℎC = >C ∗ tanh(�C )(2.6)

An LSTM cell performs multiple learned separate calculations on those vectors. First the output of
the last step and the new input are concatenated. Then a layer with a sigmoid activation function
calculates a mask vector 5C of values between zero and one (2.1). This vector is then multiplied
element wise with the memory vector �C−1 coming from the last (2.4). Doing this effectively
’forgets’ parts of the memory which were multiplied by values close to zero while other parts are
multiplied by values close to 1 and are therefore retained.

Two other layers are fed the same inputs, one activated by a sigmoid (2.2) and one activated by
a tanh function (2.3). The resulting vectors are multiplied to again retain only the parts that the
sigmoid output 8C doesn’t set to zero and then added to the memory vector (2.4). The memory
vector �C is now fully updated and is fed forward for the calculation of the next timestep. A copy of
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2.3 Transformers

Figure 2.3: Architecture of an LSTM cell [22]

this memory vector is however multiplied with another sigmoid output >C of the two other inputs.
The resulting vector ℎC is the actual output and hidden state of the LSTM for this timestep. The
combination of these calculation steps enables the model to control exactly which parts of the inputs
and the memory are combined.

The main benefit of an LSTM over conventional RNNs is its ability to decide whether it forgets
some parts of the memory and whether it adds its output to the memory. This increases the span of
inputs which the model can effectively keep in its memory, which enables the LSTM to capture
long-term dependencies in sequential data.

The controlled forgetting also prevents the buildup of large errors by blocking irrelevant inputs and
noise from entering the cell, improving the training convergence [10, 13]. The memory of an LSTM
is however still not perfect as the capacity of the hidden state vector is limited and over time most
information about past inputs is displaced by newer information.

2.3 Transformers

Transformer models use self-attention to learn dependencies between different inputs. Self attention
works by first calculating a key, query and value for every input. This is achieved by learning three
matrices,&,, and,+ , which together make up an attention head. ,& is multiplied with an
input vector G to generate the query @,,: is multiplied with an input vector G to generate the key :
and,+ is multiplied with an input vector G to generate the value E.

@ = ,&G

: = , G

E = ,+ G

Transposing these vectors into a row, combining all @ vectors into a Matrix & and doing the same
for the : and E vectors yields the Matrices &,  ,+ .
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2 Neural Networks

The output of one attention head is calculated using a softmax function and normalization by
dividing with the square root of the key dimension:

�CC4=C8>=(&,  ,+) = B> 5 C<0G( & 
)

√
38<:

)+

Figure 2.4: Scheme of the transformer architecture [28]

Figure 1 shows the original transformer architecture. The elements of the input sequences, which
are words of a sentence in the NLP case, are embedded into a vector space. In language processing
this is often achieved by a pretrained embedding network.

Out transformer models will instead use a vector embedding that they learn themself with either
a simple linear transformation layer or a full FFN which is trained together with the rest of the
model.

After that a positional encoding (PE) is added, which retains data about the relative position of the
elements in the input sequence vector to each other [28]. For NLP models, the ’position’ (?>B)
means the place of the word in the input sequence. Here this positional encoding is crucial for
model functionality, because the meaning of a sentence can change completely when the same

14



2.3 Transformers

words are put in a different order. The following is added as positional encoding to all features at
position = in the embedded input vectors of length 3 at the position ?>B in the sequence:

%� (?>B, =) =
{
B8=(?>B/10000 28

3 ) = = 28, 8 ∈ N
2>B(?>B/10000 28

3 ) = = 28 + 1, 8 ∈ N

The encoded vectors feed into the main components of the transformer, the encoder and decoder
blocks, which each contain a feed forward layer and a multi-head attention layer [28]. In each
’head’ of the multi-head attention layer the attention is computed separately in parallel. This allows
different attention distributions on different parts of the input vector to be passed on simultaneously.
Every time step and all words are compared with each other. The output of the attention blocks feed
in an FFN and finally in a softmax layer that outputs the normalised probabilities for the possible
predictions.

Our implementation of the transformer network differs from this implementation as described in
section 4.3.
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3 Related Work

This chapter will summarize the previous scientific work and the current state-of-the-art for multistep
prediction and the transformer architecture.

3.1 LSTMs for Multistep Prediction

Recurrent architectures, such as LSTMs, are prominently used for modeling of time series including
multistep prediction. Successful applications of LSTMs for multistep prediction are found for
example in financial time series prediction [26] and have also been used for system identification
and the prediction of dynamic systems [1, 19]. Depending on the specific problem, the original
LSTM architecture is augmented with techniques like hidden state initialization, where the initial
hidden state is computed via a separate neural network rather than initialized as zero or randomly.
Stacking multiple LSTMs in hidden layers provides additional abstraction capabilities and gives the
model an inherent view on time frames of different sizes [12].

3.2 Transformers

The transformer architecture has shown great improvements in terms of accuracy and training
time for natural language processing tasks compared to RNNs [28]. Because it does not share
the basic recurrent structure of RNNs, it is more readily parallelised and therefore provides great
improvements in training time. This acceleration is possible without a trade-off in terms of prediction
accuracy, with the transformer based models GPT-2 and its successor GPT-3 being two of the best
generative natural language models to date [3, 24]. Its main advantage over other neural networks
lies in the multi-head attention layers, that generate a mapping of relevance between different parts
of the input. This happens regardless of the actual distance in the input vector, which is why the
transformer can relate inputs to each other over longer time frames than an RNN.

Although the transformer architecture has in the three years since its first publication mainly been
recognized for its breakthrough performance in NLP, it has already been applied on several other
problems. These include image generation [23], where the local self attention aspect of the encoder
and decoder blocks was modified to be fed the individual pixel channels of an image. Another
recent application is the time series forecasting of the prevalence of influenza-like illness [29]. Here
the original transformer architecture remained unchanged.

Transformers have also been used for traffic prediction [4], where they replaced a combination of
convolutional and recurrent neural networks as the state-of-the-art.
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3 Related Work

Transformers have also been combined with generative adversarial networks (GANs) for time series
forecasting [30]. The Transformer serves as the generator and can attain smaller error accumulation
on sequential data than a traditional GAN.

The original transformer implementation has been used to predict the trajectory of human social
behaviour [11] where it outperformed an LSTM model.

3.3 Variants of Transformers

A more efficient variant of the transformer, the reformer, builds upon the transformer architecture but
achieves similar results with much smaller time and memory requirements for long sequences [14].
In a similar attempt Li et al. restricted the attention layers to only local attention which improved
local awareness and memory requirements [16]. While this is important for language applications,
where the input sequences might consist of hundreds of words, the runtime improvements are
negligible for the comparably short input sequences of our vehicle state prediction task.

Another proposed improvement to the transformer architecture is the adaptively sparse transformer
which aimed to deliver the same performance as the regular transformer while lowering space
requirements [6]. This is achieved by replacing the softmax functions in the transformer with an
U-entmax function which dynamically sets very low weights to zero.

The bulk of the research regarding transformer networks has been on natural language processing.
And while some successful work promises a wide array of other beneficial applications, so far the
research is thin on multistep prediction with exogenous inputs. This thesis is aimed to clear up
whether or not transformer models can replace LSTMs in this respect.
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4 Multistep Transformer

In this chapter we describe our developed multistep transformer and baselines. In section 4.1
we formally define multistep prediction, in section 4.2 we list the research questions we wish to
answer with this thesis and in section 4.3 we explain all our models that will be compared in the
evaluation.

4.1 Problem Definition

In (singlestep-)prediction a nonlinear prediction function � with exogenous inputs relates a predicted
future state B̂C+1 in a time series to both recent states B8 of this time series and recent states 28 of an
series of control inputs.

B̂C+1 = � (BC−=, BC−=+1, ..., BC , 2C−=, 2C−=+1, ..., 2C )

In prediction problems this function � has to be identified. It can be any linear or nonlinear function
and therefore may be replaced by anything from a simple lookup table to a range of different
machine learning models like the proposed transformer model. For multistep prediction or system
identification frequently used models have been physics engines and RNNs.

To use � for multistep prediction, one can follow an approach called multi-stage prediction where
the outputs of � are used as another input state in a series of additional prediction steps, which
forms a feedback loop that theoretically can predict the state at any future time step.

B̂C+2 = � (BC−=+1, BC−=+2, ..., BC , B̂C+1, 2C−=+1, 2C−=+2, ..., 2C , 2C+1)
B̂C+3 = � (BC−=+2, BC−=+3, ..., B̂C+1, B̂C+2, 2C−=+2, 2C−=+3, ..., 2C+1, 2C+2)
B̂C+4 = ...

Because the estimation of � likely yields some error for any prediction, the accuracy of the
predictions will decrease for a larger number of prediction steps, when multiple prediction errors
accumulate. To construct our transformer model for multistep prediction with control inputs we will
first retain as much of the structure used for the language generation or the influenza prediction as
possible, which means the code provided in the original transformer paper [28] will be only slightly
altered to fit in the evaluation framework.

The optimisation goal for all our models is to minimize their loss function. We consider two
different loss functions, starting with the widely used mean squared error (MSE). The waves in our
ship scenario cause oscillations in the state values that the models have to predict, especially the roll
angle of the ship. Using the MSE can lead to models predicting a constant value in these outputs
and ignore its oscillating properties. To prevent this, we can compute the MSE on the gradient of
the predicted values instead of on the values themselves. This mean squared gradient error (MSGE)
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4 Multistep Transformer

incentivises the model to capture the dynamics of oscillations more thoroughly [2]. The MSE and
the MSGE are calculated for a prediction horizon of � future states as follows:

"(� =
1
�

�∑
C=1
(BC − B̂C )2

"(�� =
1
�

�∑
C=1

(
(BC − BC−1) − ( B̂C − B̂C−1)

)2

Preliminary testing showed no benefit for using the MSGE to train our transformer models so they
all use the MSE as a loss function. The MSGE is used to train our baseline LSTM model [2].

4.2 Research Questions

This thesis aims to answer the following research questions:

1. Does the transformer architecture perform better than a LSTM for multistep prediction? We
expect it to have comparable or better accuracy and to its parallel architecture we expect the
transformer model to also have shorter training times.

2. Does a nonlinear transformation of the input (by a conventional feed-forward neural network
(FFN)) provide any benefit over a simple linear mapping to the hidden dimension of the
model? In the original use case of transformers for NLP pretrained embeddings were used in
the input embedding layer. As such embeddings do not exist for our use case, we want to
determine whether FFN serve as a viable replacement for the input embedding. Equal or
better performance than the baseline can be expected because a FFN can learn to behave the
same way as any linear mapping while also being able to learn nonlinear transformations.

3. Is a positional encoding of the input vectors necessary in a prediction setting of a physical
system? In other words, can a transformer learn physical causality from data? The underlying
physical regularities of the ship simulation are causal in the mathematical sense, meaning a
value is dependant solely on values and events that occurred before it. The relative temporal
position of the input states towards each other may therefore already be encoded in their
capture of physical events, without applying the additional positional encoding. This means
it is possible that the model learns to put the inputs in a temporal order by itself without loss
in prediction performance. For this we expect anything from equal to far worse performance
without positional encoding.

Comparing the baseline model and the FFN variant will provide an answer to the research question
2 and the results of the No-PE variant will be compared to the baseline to answer research question
3. The best preforming of the four transformer models will be compared to the LSTM model to
answer the research question 1. The results allow us to conclude if the transformer architecture
performs favorably in this setting and if the positional encoding is beneficial in this case.
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4.3 Models

4.3 Models

This section describes the linear and LSTM model used as baseline, as well as our multistep
transformer and its variants.

4.3.1 Linear Model

We use a simple linear model as a baseline to compare to the performance of our more complex
models. This model consists of only one linear layer as defined in section 2.1 with no activation
function.

The input of this linear model consists of several states B8−<, ..., B8 and control inputs 28−<, ..., 28 for
an input window of size <, which are all concatenated into one single vector. The model output is
the predicted next state B8+1. The linear model consists only of a weight matrix,; and bias vector
1; and uses no activation function:

BC+1 = ,;
[
BC−<, ..., BC , 2C−<, ..., 2C

]> + 1;
We train our linear model for 500 epochs using the Adam optimizer. We use gradient descent
instead of analytical solvers to get a more comparable training time baseline for our evaluation.

4.3.2 LSTM Model

As a second baseline for comparison and a representative for the state-of-the-art we use an
LSTM model as described by Mohajerin et al. [20]. We apply the specific implementation and
hyperparameters from Baier er al. [2]. This approach extends the basic LSTM architecture with an
initialization mechanism. A second LSTM computes the initial hidden state ℎC and cell state �C
given an initial window of control input and states.

The function �LSTM that represents this recurrent model looks as follows:

BC+1, ℎC+1, �C+1 = �LSTM (BC , 2C , ℎC , �C )

The depth of this LSTM model is 2 layers and it has a hidden dimension of 192. [2] The loss
function MSGE (defined in Section 4.1) is used together with Adam optimizer.

4.3.3 Transformer models

Initially our intention for our transformer models was to closely follow the approach by Vaswai et
al. in their paper on the original transformer architecture [28]. The encoder-decoder architecture
however proved difficult to train for our use case and models would not converge. We simplified the
transformer model to only contain an encoder block. With this modification the model was not
too deep to converge effectively. Additionally we added a linear output layer to the encoder that
concatenates all individual outputs of the multi-head attention layers and transforms them into our
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4 Multistep Transformer

output dimension. Now the transformer model can be utilized similar to the linear model with the
following representative Function �transformer:

BC+1 = �transformer (BC−<, ..., BC , 2C−<, ..., 2C )

Here the inputs are again the previous < states and control inputs, however each state/control-pair is
fed into the model as part of a sequence, which is processed in parallel.

There will be four variations of the transformer model:

1. Baseline transformer

An encoder-only transformer model as described above. Additionally the input embedding is
not performed by a pretrained network like it is common in NLP models but instead by a
linear layer that is trained with the rest of the model.

2. FFN variant

A variant of the baseline model where the linear layer is replaced by an FFN, which enables a
similar mechanism to the embedding used in many NLP models. This model will be used to
answer research question 2.

3. No-PE variant

A variant of the baseline model without the positional encoding, where the inputs are fed in
the embedding layer without any preprocessing. This means that all of the previous states
that make of the input of this calculation step are fed simultaneously into the model without
explicitly encoding the order they occurred in. The model will only be able to make sense of
the inputs if it can place them into their correct order by relying on the causal nature of the
dynamical system. This will be useful to determine the utility of a positional encoding in this
use case and answer research question 3.

4. FFN+No-PE variant

A variant that combines the modifications of the FFN variant and the No-PE variant in a
single model.

All possible combinations of our variants are therefore represented in their own model. The best
performing transformer variant is then compared to the baseline models. Each transformer variant
is trained for 500 epochs and uses the Adam optimizer.
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5 Evaluation

This chapter describes the dataset used for training and evaluation, how hyperparameters of the
transformer model variants were optimized and the evaluation process and its results. We evaluate
the research questions stated in Section 4.2 given our evaluation results.

5.1 Dataset

Our dataset is a set of simulations of a ship in open water generated by Baier et al. [2]. To enable
modeling wave-induced motion these simulation use a 4-DOF ship model. We only train a 3-DOF
model on this data because waves are not measurable or predictable for long prediction horizons
and predicting them is not the focus of our implementation. The ship executes random maneuvers
and is subject to environmental disturbances in the form of wind and waves. Each simulation is
initialized with a different wave height and wind speed. Every second, the ship state is captured by
sensors measuring the ship surge velocity u, sway velocity v and yaw rate r as shown in Figure 5.1

Figure 5.1: The body-fixed coordinate frame of a ship for movement in a plane. Our models predict
the surge velocity u, the sway velocity v and the yaw rate r of the ship. [9]

Additionally the control inputs for the angle and rotation speed of two rudder motors are also
captured every second. The ship states together with the control inputs over 1 hour form one
simulation with 3600 discrete data points.

The dataset consists of 96 simulations of 1 hour each. This is further split up into a training dataset
of 86 simulations and a test dataset of 10 simulations. 26 of the simulations in the training dataset
were used for validation during training.
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5 Evaluation

Before training and inference the data is normalized using z-score normalization I(G) = G−`
f

. The
means ` and standard deviations f used for the normalization are calculated using only the training
dataset.

5.2 Evaluation Process

Our models predict the 3 state variables for a prediction horizon of 60 seconds (which translates to
60 predicted states) with an input window of 20 seconds. We separate the test dataset into sections
of 60 seconds and for each of these sections we compare our prediction to the ground truth. This is
done by calculating the sum of the mean absolute errors (MAE) over all 60 predicted states for all 3
state variables. The metric we use for our evaluation is the average of these summed MAEs. The
MAE for a ground truth H and a prediction Ĥ of dimension = is defined as follows:

"�� (H, Ĥ) =
∑=
8=1 |H8 − Ĥ8 |

=

We search for optimal hyperparameters of the baseline transformer model using grid search. The
hyperparameters optimised by this search are the number of multi-head attention layers (model
depth) and the hidden dimension (model width) of the transformer network. The performance
measure used to determine the best model is the sum of the MAEs of all 3 state variables over a
separate dataset. To weigh the MAEs of each of the state variables equally the errors were calculated
on the z-score-normalized data.

The hyperparameter search showed a slight performance benefit for larger model widths up to
512 and no benefit for larger model depth. For more than 4 layers the model failed to converge
during training. The best performing model had only one multi-head attention layer and a hidden
dimension of 512. These hyperparameters are also used for the other transformer variants.

We compare the best transformer model to our linear model as a simple baseline and the LSTM
model as a state-of-the-art deep learning baseline.

5.3 Results

All four transformer variants are compared to find the best transformer model. We use the above
mentioned average unnormalized MAE over the whole test dataset as a performance metric. This
time the MAEs of the three state values of a prediction are calculated after denormalization and
evaluated separately instead of in a sum like in the hyperparameter search. The best performing
transformer variant is afterwards compared to the linear model and the LSTM model.
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5.3 Results

D E A

Variant [m s−1] [m s−1] [rad s−1]

Baseline transformer 0.1897 0.0762 0.0022
FFN variant 0.1409 0.0645 0.0026
No-PE variant 0.2069 0.0692 0.0029
FFN+No-PE variant 0.1226 0.0601 0.0022

Table 5.1: MAE of the 3 state variables for four transformer variants

5.3.1 Ablation Study

We compare the four transformer variants with regards to their prediction accuracy to determine
whether the modifications present in the variants are of any benefit. Table 5.1 shows the rounded
MAE of the 3 predicted state variables for all four transformer variants we tested.

Both variants without positional encoding performed better than the equivalent models with
positional encoding, with the FFN+No-PE variant being the best performing transformer model out
of the four. This strongly suggests that a positional encoding of the input vectors is unnecessary and
therefore answers research question 3.

This result is unexpected because positional encoding is essential when used in transformer NLP
models. Here it seems to be unnecessary and even a hindrance for the models to learn the order of
the state and control inputs. This is indicative of the models capability to infer the order of the input
sequence solely based on the physical causalities in the input data.

The FFN variant performed worse than the baseline transformer model while the FFN+No-PE
variant performed slightly better than the No-PE variant. We cannot conclude either way on the
benefit of the FFN as input embedding and therefore cannot answer research question 2. However the
embeddings appear to be less important for model performance in this case than in NLP transformer
models.

5.3.2 Comparison to baseline

The FFN+No-PE variant is now compared to our linear model and the LSTM model. Table 5.2
shows the MAE of the predictions for all 3 model types over the test dataset.

D E A

Model [m s−1] [m s−1] [rad s−1]

Linear model 0.3108 0.0999 0.0037
LSTM model 0.0893 0.0818 0.0013
FFN+No-PE variant 0.1226 0.0601 0.0022

Table 5.2: MAE of the 3 state variables for the FFN+No-PE variant, our linear model and the
LSTM model
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5 Evaluation

Both our transformer model and the LSTM model performed significantly better than the linear
model across all predicted values. These results are expected because these models are much larger
as seen in table 5.3 and unlike the linear model capable of learning nonlinear dependencies.

For two of three state variables (surge velocity u and yaw rate r) the LSTM produced more accurate
predictions than the transformer model. For one of the three (sway velocity v) however the
transformer models predictions were more accurate. While this result still places the LSTM model
as overall better performing, is is possible that further research and optimization may improve the
transformer model beyond the performance of the LSTM.

Table 5.3 shows the parameter count, training epochs and training time of all models.

parameter count epochs training time
Model [min]

Linear model 603 500 30
LSTM model 898950 1000+400 9
FFN+No-PE variant 3452419 500 84

Table 5.3: Parameter count, training epochs and training time of the FFN+No-PE variant, the linear
baseline and the LSTM baseline. All models were trained on a Nvidia A100 GPU. The
training epochs for the LSTM are given as 400 for the initializer network and 1000 for
the predictor network respectively. Because the LSTM uses a different formatting for
the training data with less redundant data, the training time for the LSTM cannot be
reasonably compared to that of the other models.

The transformer model has almost 4 times as many parameters as the LSTM model and more than
5000 times as many parameters as the simple linear model. The training time for the LSTM was
much shorter than either of the other models, this is however due to a difference in the sampling of
the training data: Each epoch the same training data was used to train all models, but the linear
and transformer model used it with much more redundancy than the LSTM model. This difference
allows no conclusions about the benefit in training time a transformer model for multistep prediction
may have over a LSTM model.

Training time of the linear model could have been reduced with an analytical optimization approach
instead of gradient descent, but having the same training method and the same number of epochs
the transformer model can be compared easily to the linear model. Despite having more than 5000
times more parameters the transformer model only had a 2.8 times longer training time. This is
likely due to the parallelization that is possible for training transformer models.

Our results provide no definitive answer to research question 1. In future work it would be
beneficial to compare the two model architectures across additional different multistep prediction
domains. Both LSTM and transformer models seem to be viable options for multistep prediction
applications.
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6 Conclusion

We adjusted the transformer architecture for multistep prediction. Our implementation replaced the
standard encoder-decoder architecture and featured only an encoder with variants using nonlinear
input embedding and positional encoding. We evaluated the performance of our transformer models
against a linear model and an LSTM model by comparing their multistep prediction accuracy for a
ship simulation.

We can answer our research questions as follows:

1. The transformer architecture is a viable candidate for multistep prediction. Although our
encoder-only transformer could not outperform the state-of-the-art LSTM model overall, it
was able to predict the sway velocity v more accurately than the LSTM. This suggests that
with further optimization a better result with a transformer than with the LSTM might be
achievable.

2. Using a FFN as nonlinear input embedding did offer a small improvement over the linear
embedding, but only when combined with a removal of the positional encoding. The
variant with positional encoding and FFN performed the worst of all variants. Compared to
the importance of embeddings in transformer models for NLP, the effect of the nonlinear
embedding was negligible for multistep prediction.

3. Contrary to what is seen in NLP applications, a positional encoding did decrease our model
performance consistently. The transformer model was able to infer the order of its input
sequence without any positional encoding using only the physical causality present in the data.
This finding indicates that transformer models for most physical simulation or modelling
applications likely also do not require positional encoding.

Future work could examine whether other forms of positional encoding can yield performance
benefits and how well the ability to reconstruct time sequences based on temporal causality translates
to other physical systems.
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