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Zusammenfassung

Argumentation-Frameworks repräsentieren einen Ansatz der Formalisierung von Ar-
gumenten und derer Beziehungen in einer Graphenstruktur. Sie dienen dazu, Schluss-
folgerungen aus dieser Wissensmodellierung zu ziehen. Da Argumentation ein wich-
tiger Bestandteil der menschlichen Intelligenz ist, kann man diese Technologie als
eine interessante Methode der erklärbaren künstlichen Intelligenz betrachten. In die-
ser Bachelorarbeit werden Argumentation-Frameworks erstellt, um Klassifikations-
probleme zu lösen, indem man sie aus Mulilayer-Perceptrons (MLPs) erstellt. Die
argumentationale Klassifizierer werden implementiert, getestet, und evaluiert auf
drei unterschiedlichen Datensätzen. Da wir für ihre Interpretierbarkeit interessiert
sind, verwenden wir dünnbesetzte MLPs in der Implementierung. Das trägt dazu bei,
dass die Graphen simplere Strukturen haben. Das Problem des Strukturlernens der
dünnbesetzten MLPs wird als ein Teilmengensuchproblem modelliert und mit ei-
nem Schwarmintelligenz-Algorithmus, nämlich der Partikelschwarmoptimierung (PSO),
behandelt. Die Ergebnisse der Studie zeigen, dass Modelle der Argumentation Fra-
meworks gute Klassifikationsleistung mit minimalen Strukturen erbringen können.
Außerdem hat der PSO-Algorithmus seine Effizienz bei der Lösung des Problems
gezeigt.

Abstract

Argumentation Frameworks are an approach of formalizing arguments and their in-
terrelations in a graph structure. They can be used to draw conclusions from this
modelling of knowledge. Since argumentation is an important part of human rea-
soning, these graph structures can be considered easily interpretable, what makes
this technology an interesting explainable artificial intelligence method. Although
this is not their main purpose, Quantitative Argumentation Frameworks can be used to
solve classification problems by following a new approach. This approach is based
on constructing them out of multilayer perceptrons (MLP), based on the work of Po-
tyka.
In this thesis we were motivated to construct Quantitative Argumentation Frame-
works out of sparse MLPs. A swarm intelligence algorithm, namely Particle Swarm
Optimization (PSO), was developed to search for sparse MLP models with specific
characteristics that relate to performance and topology of the graphical structures.
Models were implemented, tested, and evaluated on three different datasets.
The implementation includes preprocessing of the datasets, parameter learning of
MLPs based on backpropagation, and structure learning of the MLP graphical struc-
tures. The evaluation involves constructing fully connected MLPs and decision trees
for comparison purposes.
The resulting models achieved high performance and low complexity in their struc-
ture. The PSO algorithm also proved its efficiency in solving the structure learning
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problem. Additionally, the study showed that this technology can be considered
an important explainable machine learning approach in terms of performance and
interpretability, based on comparing it to other machine learning technologies.

Keywords: Argumentation Frameworks, Sparse Neural Networks, Swarm In-
telligence, and Particle Swarm Optimization.
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1. Introduction

Argumentational reasoning constitutes an essential part of human intelligence [4].
We form our thoughts and opinions in arguments and engage in argumentation in
almost every aspect of human interaction. We express these arguments, sometimes
attempt to defend or attack them by using other arguments. Interestingly, we can
perceive this study as an argumentational reasoning work. We can consider each
statement in it as an argument that is a subject of correctness, including this very
one.
Studying the nature and mechanism of argumentation has drawn many researchers’
interest in different fields, such as philosophy, logic, and artificial intelligence [4].

Argumentation frameworks as introduced by Dung [4] represent an approach for
formalizing argumentation. His work was focused on constructing graph structures
out of arguments and their interrelations in order to have a computational frame-
work that mimics the process of drawing conclusions and determining acceptable
arguments in an argumentational problem. In an argumentation graph, arguments
are represented by nodes and the relations are represented by edges. In his original
work, the relations are considered attack relations. Dung claims that the principle of
argumentational reasoning is that an argument is believable (accepted) if it is able
to successfully stand against its attacking arguments [4]. However, the relations
can be extended to include support relations (bipolar) [18]. Frameworks with this ex-
tension are called bipolar. The intuitiveness of this technology and its closeness to
human thinking makes its models easy to interpret and understand. This makes it
an exciting method of explainable artificial intelligence that is worthy of exploring.

In a more recent work, Potyka explored the relationship between argumentation
frameworks and neural networks [20]. His work introduced an approach to in-
terpret multilayer perceptrons (MLPs) as quantitative argumentation frameworks. In a
quantitative argumentation framework, the acceptance of an argument is numeri-
cally measured. This interpretation opened the door to constructing argumentation
frameworks out of MLPs, which is one of the goals of this thesis. In this thesis,
argumentation frameworks are constructed, tested, and evaluated for classification
purposes and out of sparse MLPs. The sparsity of MLPs is crucial here, since we are
interested in simple structures that can yield good interpretability. The argumen-
tational classifiers are deployed on three different datasets. Classification models
of other types, namely decision trees and fully connected MLPs are also built to
establish a comparison.

The work on this thesis was done parallel to the study in [24]. The authors also
aimed to explore argumentational classifiers following the approach that Potyka in
[20] proposed. However, structure learning of sparse MLPs was approached by
using a genetic algorithm. Therefore, one of the goals of this thesis is to present
an additional implementation based on the deployment of a swarm intelligence
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algorithm, namely the particle swarm optimization algorithm (PSO). The problem of
finding sparse models with specific properties (structure learning) is considered a
subset search problem, and a version of the PSO algorithm for discrete spaces was
deployed for this purpose. This different method can deliver us a comparison of the
performance of the two algorithms in approaching the problem.

Finally, the Combination of the two topics of argumentation, which is a technol-
ogy inspired by human intelligence, and swarm intelligence, which is an algorithm
family inspired by nature and complex systems, was found very intriguing and was
personally the main incitement behind the work on this thesis.
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Figure 1: Example of a BAG of a decision problem presented in [20]

2. Background

2.1. Argumentation Frameworks and QBAFs

This chapter presents background on argumentation frameworks and their variants
that were used in this thesis.

2.1.1. Abstract Argumentation Frameworks and Bipolar Argumentation
Graphs

Abstract argumentation frameworks are an approach for representing arguments
and the relations among them in a graph structure. Arguments are modelled as
abstract entities. These entities are represented as nodes in the graph, while the re-
lations among the arguments are modelled as edges among the entities in the graph
[18].
This thesis considers only bipolar argumentation frameworks, where a relation between
two entities can be either a support or an attack relation. In an argumentation frame-
work, arguments are quantified by their acceptability, where the acceptability of an
argument depends on the acceptability of its attackers and supporters.
The resulting graph is called a bipolar argumentation graph (BAG). In a BAG, attack
and support relations are usually denoted by solid and dashed edges, respectively.
In figure 1, we see an example of a BAG that models a part of a decision problem
that is modelled as an argumentation framework. This example was presented in
[18]. The interest here is to determine whether to buy or sell stocks in a company.
A1, A2, and A3 represent statements from experts that could relate to each other or
the decision arguments, e.g. to buy or to sell.
Our focus in this study is on a variant of these frameworks, namely the quantitative
bipolar argumentation frameworks, which we introduce in the next chapter 2.1.2.
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2.1.2. Quantitative Bipolar Argumentation Frameworks (QBAFs)

Definition 1: Quantitative bipolar argumentation frameworks (QBAFs). A QBAFs
over the interval (D = [0, 1]) is a quadruple (A, Att, Sup, β) where A is a set of
arguments, Att and Sup are two sets of binary relations that are called attack and
support relations, and β is a function that assigns a base score to each argument a ∈ A
[20].

In quantitative argumentation frameworks, acceptability is a numerical value.
The semantics of a QBAF is defined by using interpretations. An interpretation rep-
resents a function that assigns a strength value to each argument of the framework
[20]. Formally defined:

Definition 2: QBAF interpretation. Let Q be a QBAF = (A, Att, Sup, β) with A
is over D = [0, 1]. An interpretation of Q is a function σ : A → [0, 1] ∪ {⊥}. For an
argument a ∈ A, we call σ(a) the strength of a. The strength of an argument a is
called partially defined if σ(a) =⊥. Otherwise, it is called fully defined [20].

Usually, interpretations are defined in iterative procedures based on updating the
strength values iteratively. The Semantics defined in this way are called modular
semantics. In [20], a modular semantics procedure is described as follows:
Initially, the strength of each argument is initialized with its base score. Then, we
do the following in each update iteration: For each argument, its strength value
is updated in two steps. In the first step, the strength values of the attackers and
supporters of the argument are aggregated by an aggregation function α to one single
value called the aggregate. Aggregation functions can be based on different types
of functions, such as addition, multiplication, and the maximum function [20]. In
the second step, an influence function ι is applied to the resulting aggregate. The
influence function adapts the strength value with consideration of the base score of
the argument [20]. This update procedure is illustrated in figure 2 .

With this procedure, we anticipate the convergence of the strength values after
some iterations. However, convergence is not always guaranteed, as shown in [16],
in the case of cyclic graphs. In this thesis, we are interested in another type of se-
mantics, namely the MLP-based semantics, and convergence is not discussed fur-
ther, since it is guaranteed for acyclic graphs and all BAGs that we implement are
acyclic. In the next chapter, we introduce the relationship between multilayer per-
ceptrons (MLPs) and QBAFs, and the MLP-based semantics of QBAFs. This topic
represents the base of constructing BAG classifiers in this thesis.

2.2. MLPs and MLP-based Semantics for QBAFs

Multilayer perceptrons (MLPs) are a popular class of feed-forward neural networks
that are usually used for classification and regression problems. MLPs have a lay-
ered graph structure with three or more layers [20]. An MLP consists of an input
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Figure 2: Illustration of the strength update procedure [20]

Figure 3: Layered graph structure of an MLP (left) and illustration of the local feed-
forward mechanism at a node in an MLP (right) [20]
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layer, an output layer, and one or more hidden layers. Each layer consists of nodes
or neurons that are (fully) connected to the nodes of the previous and the next layer.
Nodes are associated with activation values. These values at the hidden nodes and
the output nodes are computed by feed-forward-propagating the values of the the
input nodes, which are initialized with input feature values, through the network
[20]. Figure 3 illustrates the structure and the feed-forward propagation mechanism
of MLP.

Each node in an MLP is optionally associated with a bias θ0 and the incoming
edges are associated weights (θ1, · · · , θn). In a local feed-forward propagation at
some node, each of the weights θi is multiplied by the value of its source node xi,
and the resulting values are summed up. The sum is then added to the bias of
the node θ0. Afterwards, the result is fed to an activation function ϕ. There are
various types of activation functions. However, we only use the logistic function
φ(z) = 1

1+exp(−z) for this purpose due to its property of mapping its input to the
interval [0, 1], which yields a simple interpretation of the activation values [20].

In [20], Potyka discussed the high similarity between the local update mechanics
in QBAFs and the local feed-forward propagation mechanics in MLPs. One can
visually identify this similarity by comparing figure 2 and 3 (right). The author also
mentioned that we can view an MLP as a QBAF, of which the aggregation function α
is based on addition, and the influence function ι is based on the activation function
of the MLP. For simplifying the connection between MLPs and QBAFs, we introduce
the edge-weighted QBAF as in [16]:

Definition 3: Edge-weighted QBAF. An Edge-weighted QBAF (over D = [0, 1]) is
a quadruple QBAF = (A, E, β, ω) whereA is a set of arguments, E is a set of binary
edges between arguments of A, β : A → [0, 1] is a function that assigns a base score
β(a) to each argument a ∈ A, and ω : E → R is a function that assigns a weight to
each edge in E [20].

Edge-weighted QBAFs have only one set of edges. We consider edges with neg-
ative weights as the attack relations and those with positive weights as the support
relations. In order to interpret the arguments in an edge-weighted QBAF, we use
a modular semantics based on the relationship between QBAFs and MLPs that we
introduced earlier. Similar to the modular semantics that are presented in chapter
2.1.2, the strength values are computed in an iterative approach. For each argument
a, we let the base score β(a) be the initial strength value. The strength values are
then updated by repeating the two following steps for all a ∈ A:

• Aggregation: α(i+1)
a :=

∑
(b,a)∈E w(b, a) · s(i)b

• Influence: s(i+1)
a := φl

(
ln
(

β(a)
1−β(a)

)
+ α

(i+1)
a

)
where α

(i)
a and s

(i)
a are respectively the aggregate and the strength value of argu-

ment a in the i-th iteration, and φl(z) =
1

1+exp(−z) is the logistic function [20].
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Based on this introduction, we established the connection between MLPs as QBAFs
and can now conceive MLPs as QBAFs.

2.3. Discrete Binary PSO for Subset Problems

2.3.1. Swarm Intelligence

Swarm Intelligence is a discipline for designing and implementing computational
methods that are aimed to solve problems in a way that is inspired by the be-
haviour of biological swarms and colonies. These biological entities represent sys-
tems with complex collective behaviour that emerges from specific features, such as
self-organization and local or indirect communication [15].

The early stages of swarm intelligence research included attempts from scientists
and biologists to understand and simulate complex social behaviours of natural
swarms, such as bird flocks and fish schools [9]. For example, researchers were
intrigued by the organized movement of bird flocks. They tried to find the underly-
ing rules that enabled large numbers of birds to flock synchronously, like suddenly
changing direction, scattering, and regrouping. The simulations suggested that the
mechanism behind these phenomena was the birds’ attempt to maintain an opti-
mum distance between themselves and their neighbours [9].

Swarm intelligence depends on several principles: The problem-solving ability
should emerge in the interactions of simple information-processing units that com-
pose the swarm. The concept of swarm proposes multiplicity and stochasticity.
These simple information-processing units represent an abstract modelling of simu-
lation units or problem variables, i.e., human beings, birds, bees, or array elements
[8]. The interaction among the units can have different characteristics, but it is an
essential principle. This flexibility of rules gives us a diversity of paradigms and
approaches. Therefore there exists numerous algorithms and methods that specify
as swarm intelligence methods, such as Ant Colony Optimization and Particle Swarm
Optimization [8].

In the following chapters, we present the particle swarm optimization algorithm
and elaborate its deployment in this study.

2.3.2. Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm (PSO) was introduced by Kennedy and
Eberhart as an optimization method for non-linear functions [10]. A series of stud-
ies on bird flocking and fish schooling inspired them to develop the algorithm [15].
PSO is also considered a metaheuristic. Metaheuristics are algorithmic frameworks
that are usually nature-inspired and designed to solve complex optimization prob-
lems. Metaheuristics generate or search for heuristics in order to find a sufficiently
good solution depending on a balance between exploration and exploitation of the
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search space [1]. PSO has been found a powerful method for solving problems with
aspects of non-linearity, non-differentiability, multiple optima, and high dimension-
ality [11].

According to [15], the optimization problem is initially modelled in a D-dimensional
search space. The algorithm maintains a set of m particles that represent points in
the search space, each with a coordinates vector xi = (xi1, · · · , xiD). The algorithm
maintains also for each particle a velocity vector vi = (vi1, · · · , viD) that represents
the rate of position change in each dimension. The position of a particle at some
point is evaluated (score) with an objective function f that has to be defined. Each
particle i ∈ 1, · · · ,m is initialized with a random position in the search space. A
Particle xi keeps and updates a record of the position of its personal so-far-best
found position in a vector pi and the associated score. The algorithm also keeps and
updates the overall (global) so-far-best found position and its associated score.
In each iteration of a PSO algorithm, the particles evaluate their scores with the eval-
uation function f and update there personal best positions pi, i.e., if f(xi) > f(pi)
then assign pi := xi. Afterwards, the algorithm updates the global best position and
score, i.e., if f(pi) > f(pg) then assign pg := pi.
Then, the velocity of each vector is updated for each dimension d ∈ 1, ..., D. The
newly calculated velocity vid depends on three factors: the previous velocity vi, the
current position of the particle xi, the current personal best position of the particlepi,
and the current global best position pg. vid is calculated as follows:

vid := w · vid + c1 · r1 · (pid − xid) + c2 · r2 · (pgd − xid) (1)

where:

• w is a parameter that is called the inertia weight. It expresses the influence of
the previous velocity in a particular direction. The higher the value of w, the
more the particles tend to search in new areas. Usually, w takes values that are
slightly smaller than 1.

• c1 and c2 are acceleration coefficients. c1 is called the cognitive parameter.
It controls the influence of the personal best position. c2 is called the social
parameter. It determines the influence of the global best position. The higher
these coefficients are, the more the particles tend to search near their personal
best positions and the global best position, respectively. [15] states that these
two parameters usually take the value of 2.

• r1 and r2 are random numbers that are drawn uniformly from the interval
[0, 1].

To calculate the new position of the particle, its newly calculated velocity is added
to its current position as a rate of change:

xid := xid + vid (2)
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Algorithm 1 Particle Swarm Optimization [15]
1: for particle i ∈ 1, · · · ,m do:
2: initialize xi and vi
3: end for
4: repeat
5: for particle i ∈ 1, · · · ,m do:
6: evaluate f(xi)
7: update personal best position
8: end for
9: update the global best position

10: for particle i ∈ 1, · · · ,m do:
11: update velocity vi
12: update the new position xi
13: end for
14: until Stopping condition is reached

2.3.3. Discrete Binary PSO for Subset Problems

In order to use the PSO for our search problem, we need a specific variant of the
algorithm for discrete spaces and subset search problems, since our goal is to find a
suitable subset of connections of the set of all possible connections in a sparse MLP.
In discrete binary PSO, the search space is represented by a D-dimensional binary
vector where D = |M | is the size of the given set M. Each bit element in the vector
corresponds to the existence of a corresponding element of M in the subset. Thus the
position of a particle corresponds to a candidate subset or a possible solution [15]
[11]. The discrete binary PSO algorithm is similar to the continuous PSO. However,
particles’ positions are updated differently. Since we deal with binary components,
velocity is translated into probability. A high-velocity value in one dimension cor-
responds to a high probability that the corresponding bit takes the value of one [15].

A velocity component is computed exactly as in equation 1. However, in order to
interpret velocities as probabilities, we need to map the continuous velocity values
to the interval [0, 1]. We achieve this by applying the sigmoid function:

sig (vid) = 1/ (1 + exp (−vid)) (3)

To determine the state of the dth bit of the position vector of particle i, we compare
the sigmoid value of the corresponding velocity component vid as in equation 3 with
a random component rid that is uniformly drawn from [0, 1]. This step guarantees
the constant movement of particles in the search space. The bit state is determined
as:

xid =

{
1 : rid < sig (vid)

0 : otherwise
(4)
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With equations 3 and 4 we connect the continuous movement of particles in the PSO
algorithm for continuous spaces to the discrete search space [15] [11].

3. Related Work

In this chapter, studies that relate to the followed methods in this thesis are pre-
sented, such as using argumentation frameworks for machine learning problems
and structure learning of multilayer perceptrons.

3.1. Argumentation Frameworks and Machine Learning

Combining argumentative reasoning and machine learning has been gaining a grow-
ing interest in recent years [20]. An example is a work of Garcez, Gabbay, and Lamb
in 2005 on using neural networks for argumentation [2]. The authors indicated how
value-based argumentation frameworks can be translated into MLPs. Each argument
in a value-based argumentation framework is related to a value. The arguments are
then either subjectively accepted by one member of the set of audiences that have dif-
ferent preferences over the values or objectively accepted by all these audiences. The
authors also showed that the prevailing arguments in these frameworks can be com-
puted with an MLP with a single hidden layer and a semi-linear activation function
[2].
In more recent works [13] [23], authors presented attempts to apply neural networks
for the approximate computation of labellings of classical argumentation frame-
works.
However, the most significant and recent work for this thesis is the paper by Potyka
N. in 2021 [20]. The author presented in this paper a detailed study of relationships
between quantitative bipolar argumentation frameworks (QBAFs) and multilayer
perceptrons (MLPs).

3.2. Sparse MLPs and MLP Structure learning

Sparse neural networks are also a topic with a recently growing research interest.
The aim of sparse neural networks is not limited to obtain better interpretability,
but also to reduce learning complexity and storage requirements [20].
Frankle and Carbin presented a technique for eliminating unnecessary weights from
neural networks (pruning) [5]. The technique depends on the lottery ticket hypothesis:
dense randomly-initialized neural networks contain subnetworks that can achieve
an accuracy that is comparable to the accuracy that the original network has reached
after training the networks for the same number of iterations.
Another related work to this topic is from Louizos, Welling, and Kingma [14]. Their
proposed method for pruning is based on using L0 regularization to encourage
weights to become exactly zero during training.
In this thesis, we consider the structure learning problem as a subset search problem,
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where we search for a subset of connections that hopefully delivers optimal perfor-
mance and interpretability.

4. Methodology

4.1. BAGs as classifiers

One of the main goals of this thesis is to construct argumentation frameworks to
solve classification problems. The aim of classification is to map instances of input
features x = (x1, · · · , xm) to class labels y ∈ L, where each xi belongs to a specific
domain Di and L = {y1, · · · , yn} is a finite set of class labels [19]. Classification is a
widely explored problem in machine learning. The task of a classifier is to predict
the class labels of instances of x.

A numerical classifier is a function c :
(
Xk

i=1Di

)
×L→ R that assigns a numerical

value to every pair (x, y). An important special case of numerical classifiers is the
probabilistic classifier p :

(
Xk

i=1Di

)
× L → [0, 1]. In this type of classifiers, the nu-

merical value is restricted to the interval [0, 1] and is comprehended as a probability
where

∑|L|
j=1 p (x, yi) = 1. This probability is associated with the confidence of the

classifier that the corresponding class label of x is y. Practically, every numerical
classifier can be transformed into a probabilistic one by normalizing the numerical
values for each label yi with the softmax function [19]:

pc(x, y) =
exp (c (x, yi))∑|L|
j=1 exp (c (x, yj))

(5)

As already introduced in section 2.1, argumentation frameworks can be used to
solve decision problems. Intuitively, we can perceive classification also as a decision
problem. Potyka describes in [19] the approach of using argumentation frameworks
for classification purposes. To achieve this, several measures have to be taken. For
instance, all input domains Di have to be transformed into arguments. Here we
have to distinguish between categorical and continuous features. For a categorical
feature with domain D = {d1, · · · , dl}, we construct l corresponding arguments
AD,1, · · · , AD,l. If the value of x for this feature has the value di, then we accept the
corresponding argument AD,i and reject all remaining arguments AD,j , j ̸= i. For a
continuous feature with domain D ⊆ R, we need to discretize D by partitioning it
into l intervals. Then, we construct l arguments that correspond to these intervals
analogously to categorical features. The resulting input arguments of this step are
denoted by Ain [18] .

The second measure is to convert class labels into arguments. For multiclass prob-
lems, we construct an argument for each class label analogously to the process for
categorical input features. For binary classification, we have the option to construct
one single argument for one of the two class labels. Rejecting this argument would
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then correspond to accepting the other class label. The resulting class arguments of
this step are denoted by Aout [18].
Figure 4 illustrates a visualization of the end result of these measures.
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Figure 4: High-level Architecture of Argumentation Classifiers as illustrated in [18]

One of the incentives behind exploring argumentation frameworks is the inter-
pretability of their graphical structures. Dung discusses this in his original paper of
argumentation frameworks [4]. The inspiration of argumentation frameworks orig-
inates from studying the mechanisms humans use in argumentation and reasoning
and trying to create similar computational models. Elements such as arguments,
relations, and acceptance are also present in human argumentation, which is a ma-
jor component of human intelligence [4]. Because these principles are also points
of interest in this thesis, we are interested also in the topographical features of the
constructed BAGs, such as sparsity.

So far, we have constructed input and output arguments out of the components
of the classification problem. Constructing relation edges only between these two
layers of arguments results in a BAG that has a simple structure and is easy to in-
terpret. However, it lacks the ability to express complicated relations among the
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input arguments [18]. Therefore, we construct hidden layers H1, · · · , Hk composed
of hidden arguments Hi,1, · · · , Hi,o for a layer Hi in order to overcome this problem.
The author in [18] defined classification BAGs with hidden layers as deep classifica-
tion BAGs. Their principle of hidden layers was inspired by the architecture of deep
feedforward neural networks, with the hope of gaining more sophisticated patterns
from the hidden layers [18].

Potyka also showed in [18], that similar to the idea of the approximation theorem
for neural networks [7], a classification BAG with a single hidden layer can approx-
imate any discrete function. This can be achieved by generating a hidden argument
for each possible input value that is fully connected with the input and the class
arguments. This type of construction has several disadvantages, such as the possi-
bility of overfitting the training data samples and high complexity in the graphical
structure, which leads to a difficulty in interpreting such models [18].

Since interpretability is an essential motivation behind using classification BAGs,
we are interested in creating sparse classification BAGs. In a sparse classification BAG,
arguments in some two layers are not fully connected among each other. A sparsely
connected network with a high sparsity degree has a low number of connections
among its nodes. Therefore, we consider this structure learning problem as an op-
timization and a search problem and try to solve it using the particle swarm opti-
mization algorithm with the hope of reaching models with interesting features.

4.2. Dataset Preprocessing

As already mentioned in the previous chapter, implementing classification BAGs
requires preprocessing of the data in order to create arguments of input features
and class labels. Because we build argumentation frameworks as MLPs (MLP-based
semantics), we prepared the datasets for MLP implementation. In the following, we
describe the techniques that were used on the experiments’ datasets.

For each categorical feature with a finite number of values k, an argument was
created for each value that corresponds to it. This was achieved by transforming
these features to a one-hot encoding. A one-hot encoder translates the values into a
binary vector with k corresponding bits. When a sample takes a value, its corre-
sponding bit will be set to one and all other bits will be set to zero. This technique
actually fulfils our requirements, since we need inputs in [0, 1], and extreme values,
i.e., from {0, 1} denote total acceptability (1) or total rejection (0) of the respective
argument.

For continuous numerical features, discretization is necessary to convert them
into categorical features. Afterwards, they can analogously be one-hot encoded. The
discretization method that was used is binning. A k-Bin discretizer divides the value
range of the numerical feature into k interval [17]. Each bin represents a single new
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value that represents all original values that reside in the corresponding interval.
This results in k categorical values that can be on-hot encoded. However, one task
remains to be done, which is defining the widths of the bins. There are different
strategies to choose from, such as equal width binning (uniform) and equal frequency
binning (quantile). In the "uniform" strategy, all the bins share the same width, i.e., the
range of values is divided into k equally wide intervals that correspond to the bins.
The advantage of this strategy is that it will preserve the probability distribution
of the values. In the "quantile" strategy, however, bin widths or interval edges are
defined in a way that guarantees that each bin has an approximately equal number
of samples. This is done by splitting the range of values into k intervals that have
equal sample frequencies depending on calculating distribution quantiles. More
information can be found in the documentation of the scikit-learn library [17].

In all the experiments, the quantile strategy was chosen. The reasoning behind
this choice is its guarantee of an approximately equal number of samples in each
bin. Other strategies can also be used. However, their exploration was not part of
this thesis. The number of bins was also experimentally defined after testing differ-
ent values. Regarding target features, multiclass labels were handled as categorical
features and were translated into a one-hot encoding. Binary classes were repre-
sented by single bits.

The end result of the dataset preprprocessing procedures is a single two-dimensional
binary matrix (dataframe), whose dimensions are the number of samples and the
number of features. The dataset matrix can be then used for the parameter learning
process.

4.3. Parameter Learning

MLP models are implemented in the thesis for two purposes. The first one is to
implement argumentation classifiers under MLP-based semantics as explained in
section 2.2. The models for this purpose are sparse MLPs, i.e., the nodes (neurons)
in some two neighbouring layers are not fully connected with each other. This kind
of models is also used for structure learning, as explained in the next section. The
second purpose is to implement fully connected classical MLP models as a compar-
ison reference for high performance since we know that removing connections in
an MLP could compromise its performance [18]. In the following, we present the
architecture and techniques that were applied in this thesis in order to implement,
train, and test MLP models, i.e., parameter learning.

Each MLP model consists of an input layer, an output (class) layer, and a single
hidden layer. The input and output layers are preprocessed as shown in section 4.2.
We were confined to one hidden layer to maintain the simplicity of the graphical
structure. The hidden layer has the sigmoid function sig (x) = 1/ (1 + exp (−x)) as
an activation function. The softmax function is also used as an activation function
on class layers.
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Parameter learning can be based on minimizing a loss function. A loss function
that is commonly used for classification problems is the cross entropy loss. Cross
entropy loss for non-binary classification is defined as:

L(θ) = − 1

N

N∑
i=1

|L|∑
j=1

yij · log (ŷij)

The loss value is associated with the current parameter tensor θ. For each sample xi,
we calculate its prediction loss by iterating over all class labels lj ∈ L and multiply-
ing log of prediction probability of the label log (ŷij) with the term yij . yij is a binary
value that takes the value one when the correct class label is lj . We apply this to all
N training samples and sum their loss values and finally invert the result [18].

A commonly used method for minimizing the loss function is gradient descent
which is an iterative optimization algorithm for finding a local minimum of an ob-
jective function [18]. It is based on moving in the search space in iterative steps in
the opposite direction of the gradient of the objective function. At the early stage
of implementation, the standard algorithm for stochastic gradient descent (SGD) in
the pytorch library was used in experimentation. Later, however, Adam (Adaptive
Moment Estimation), which is an optimized variant of the algorithm, was adopted
for optimizing the loss function minimization. This adoption was based on the
knowledge of Adam’s advantage of increasing the training speed [12]. The usage of
this optimization variant showed a substantial acceleration on the learning process.
More details on this method can be found in [12].

The functionality of MLPs is based on two key mechanisms. The first one is feed-
forward propagation which is used for calculating activation values on each node.
This is done by propagating them through the network, starting on the input level
and ending on the class level. The second mechanism is back-propagation which
functions similarly to feed-forward propagation and is used for learning the weights
and biases of the network. This is achieved by calculating the gradients of the loss
function and propagating them in the opposite direction of feed-forward propaga-
tion. The gradients are then used by the gradient descent algorithm to update the
parameters [6]. The number of training iterations (epochs) and the learning rate of
gradient descent are considered and explored as hyperparameters.

Training a model requires splitting the dataset into two subsets, the training set
and the test set. As its name reveals, the training set is used for the actual train-
ing of the parameters. The test set is then used after the training process finishes
to test it. Several measurements (scores) are used to evaluate parameter learning,
such as accuracy, precision, recall, and the F1-score. The Accuracy score is the per-
centage of correctly classified instances. The other scores are similar. However, they
take false (true) positives and false (true) negatives into account. More details on these
measurements are found in [21].
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All implementations of the previously presented methods, such as data prepro-
cessing, MLP models, parameter learning, and the evaluation scores were imple-
mented using several external python libraries such as pandas1, pytorch2, sklearn3,
and sparselinear4. More information and documentation can be found in the
URLs in the footnote section.

4.4. Structure Learning

In order to find a BAG with a desired graphical structure, the discrete binary PSO
algorithm was used. We use the PSO algorithm to search for sparse MLP models
with particular features such as high sparsity and performance. The found MLP
models would then be interpreted as QBAFs or BAGs under the MLP-based seman-
tics that were introduced in section 2.2. The quality of a sparse MLP model depends
on its classification performance after learning its weights and biases as presented
in section 4.3 and the number of connections the model has.
In order to use the PSO algorithm properly, we need to do some modelling, such as
defining particles, the search space, and the objective function.

4.4.1. Particles and Search Space

A particle is defined as a sparse MLP model with a graphical structure that has a
specific configuration of edges (connections).
The search problem can be viewed as a subset search problem where the given set
M is the set of all possible connections among the three layers of the MLP. A sub-
set represents a position point in the discrete space. As shown in chapter 2.3.3, the
position of a particle at a certain point in time is represented as a D-dimensional
binary vector with each element denoting the existence of a corresponding element
in the given set, and D is the cardinality of M . The position vector was modelled
by concatenating two vectors; each is the result of vectorizing (flattening) the corre-
sponding connection matrix described in section 4.3. Vectorization is a linear trans-
formation that converts an m×n matrix into an m·n×1 vector as illustrated in figure
5. In the python implementation, a helper script with functions was implemented
to transform connectivity matrices of the sparselinear library into our modelling
of connection matrices that was introduced in chapter 4.3. More information can be
found in the documentations of sparselinear.
For the velocity vectors, there is no need for modelling since they are only a func-
tional part of the algorithm.

1https://pandas.pydata.org/
2https://pytorch.org/
3https://scikit-learn.org/
4https://pypi.org/project/sparselinear/
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Figure 5: Illustration of transforming a binary connection matrix of a sparse MLP
layer into a vector, in order to construct the search space position vector.

4.4.2. Objective Function

To evaluate a particle’s position x, we need to define an objective function f that as-
signs a score to the particle. In our objective function, two elements are considered.
The first element is the classification performance. For this element, we used the
accuracy score (see section 4.3) Acc(x) ∈ [0, 1], where Acc(x) = 1 if the model was
able to successfully predict all instances.
The second element is the sparsity of the model’s graphical structure. Sparsity is
based on the number of existing connections in the network n(x). This number is
subtracted from and then normalized by the number of all possible connections in
the network Ntotal. The resulting term takes values in [0, 1], where 0 denotes a fully
connected graph and 1 denotes a graph with no connections.
The accuracy and sparsity terms are regularized by a parameter α ∈ [0, 1]. This
regularization parameter conveys the influence of each term in f . Thus, the higher
the values α takes, the more significant is the accuracy term in the function and vice
versa:

f(x) = α ·Acc(x) + (1− α) · Ntotal − n(x)

Ntotal

α is also considered and explored as a hyperparameter in the implementation.

The objective function f takes values in [0, 1]. The PSO algorithm aims to max-
imize f since high values indicate high performance and high sparsity. However,
a score of 1 is practically unreachable because it necessitates a graphical structure
with zero connections. This function was also deployed for a similar purpose in
[24].

4.4.3. Initialization

All position vectors are initialized by randomly distributing a predefined number of
initial connections in each connection matrix. The intuition behind this partially ran-
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dom initialization is that we have some prior knowledge of the problem. We know
that the desired and expected solution models should have a very low number of
connections. Therefore, we can initialize them with a low number of connections
and depend on the fine-tuning methods, introduced in chapter 4.4.5, to keep the
number of connections relatively low.
The two initial numbers of connections are predefined and considered hyperparam-
eters. In the initialization, we randomly chose a subset of n bits from a connection
matrix, where n is the number of initial connections in the matrix, and set these bits
to 1. All other bits will remain 0.
For velocity vectors, all the velocity values are initialized with zero. The velocity
values will then start to develop in the first iteration of the optimization.

4.4.4. Stopping Condition and Dynamic Execution

The stopping condition is dropped in the implementation. Instead, the optimization
loop was executed for a predefined number of iterations. The motivation behind this
was to obtain the freedom of monitoring the optimization process, and the ability
of dynamically changing certain parameters during runtime, such as the accelera-
tion coefficients and the number of training epochs. The number of iterations was
experimentally explored and is considered a hyperparameter. As a result, the PSO
algorithm was split into two main sub-routines: initialize and optimize. In "initialize",
particles and position/velocity vectors are initialized. The "optimize" sub-routine
takes an argument n (the number of iteration) and runs the optimization loop for n
iterations. Figure 2 illustrates an algorithm scheme with both sub-routines.

In all experiments, the optimization procedure was executed in three phases. This
approach aims to allow particles to explore more in the first phase and to exploit the
advanced search state more in the last phase. This can be achieved by modifying the
social and cognitive parameters (acceleration coefficients) c1 and c2 during runtime.
The following python code snippet illustrates a simplified example for running the
optimization with this approach:

# initialization
pso.initialize()

# first phase
pso.c_1 = 2
pso.c_2 = 2
pso.optimize(num_of_iterations=20)

# second phase
pso.c_1 = 4
pso.c_2 = 4
pso.optimize(num_of_iterations=50)

# third phase
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pso.c_1 = 1
pso.c_2 = 10
pso.optimize(num_of_iterations=30)

4.4.5. Fine-Tuning

During experimentation with the algorithm, it was noticed that the number of con-
nections in each model rapidly increases in the early stage, which led to high ineffi-
ciency.
Despite initialization with a very small number of connections, the MLP models in
the second iteration would have a number of connections that distributes around
Ntotal

2 , where Ntotal is the number of overall possible connections. This happens due
to randomness and the lack of information the algorithm has in the early stages of
optimization.

In an attempt to solve this problem, two measures were introduced:
Upper and lower boundaries were implemented to ensure that the numbers of con-
nections do not exceed certain values. Bits in connection matrices are prevented
from changing to one (or to zero) if the associated number of connections does not
lie within these boundaries. This mechanism was inspired by defining search space
boundaries and particle reflection in PSO for continuous spaces. The upper and
lower boundaries are also considered as hyperparameters in the implementation.

However, low upper boundaries were not enough to restrain the high number
of connections. Therefore, a velocity bias parameter, which is the second measure,
was introduced. The velocity bias ϵ serves as a suppression factor for randomly high
velocity values. As an outcome of this bias term, unless velocity values are high
enough because of the acceleration coefficients and the weighted previous velocity
value, it is more unlikely for their associated bits to be set to one. It is also useful
to note that all differential terms in the velocity equation 1 can have only values in
{−1, 0, 1}. Therefore, the parameters and the random terms in the velocity equation
play the main role in determining and scaling the velocity value.
The bias ϵ is subtracted from the sigmoid of the velocity before comparison with the
random factor rid:

xid =

{
1 : rid < sig (vid)− ϵ

0 : otherwise
(6)

Although these measures were experimentally implemented and were not stud-
ied or analyzed, they contributed to the optimization results and efficiency, as one
can see in section 5. Besides, one can argue that their mechanism is analogous to
regularization approaches in training of neural networks. Therefore, they were kept
in the final implementation.
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4.4.6. Time Efficiency

Evaluating a particle’s position in this implementation includes constructing an
MLP, training it, and evaluating its training. This leads to a very time-consuming
search problem. Therefore, two measures were taken to accelerate the optimization.
The first measure is early stopping of parameter learning. Early stopping methods are
usually used as regularization forms to tune the training process and avoid overfit-
ting [22]. However, we use it here to accelerate the PSO algorithm.
During training, if the current loss value does not decrease with a predefined early
stopping threshold, the model is given a chance of a certain number of epochs (pa-
tience) to achieve this decrease. If not reached, the training process will be stopped.
This approach can be justified by arguing that models with only "bad" connections
will not be able to improve in training from the start, what makes it efficient to not
fully train them. This technique was explored initially on fully connected MLP mod-
els, where it was experimented with different values of patience and threshold. The
patience and the early stopping threshold are also considered hyperparameters of
the PSO algorithm.
The second measure is gradually and dynamically increasing the number of train-
ing epochs between optimization phases. This can be justified by arguing that in the
early and middle stages of the optimization, the performance scores (accuracy) do
not have to be very accurate to judge the contribution of existing connections to the
performance. In the last stage, the greatest number of epochs is used for training all
models.
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Algorithm 3 Scheme of the two procedures of the PSO algorithm as used in the
implementation

1: procedure INIT_PARTICLES()
2: for particle i ∈ 1, · · · ,m do:
3: initialize xi randomly with a specific number of connections
4: initialize vi as (0, · · · , 0)
5: end for
6: end procedure
7:
8: procedure OPTIMIZE(iterations)
9: i← 0

10: while i < iterations do
11: for particle Pi, i ∈ 1, · · · ,m do:
12: evaluate Pi and update its score
13: update the personal best score of Pi

14: update pi (the personal best position of Pi)
15: end for
16: update the global best position g
17: for particle Pi, i ∈ 1, · · · ,m do:
18: update velocity of Pi

19: update position of Pi

20: end for
21: end while
22: end procedure
23:
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5. Experiments and Results

The previously presented methodology was applied on three different datasets from
the UCI machine learning repository5 [3]. These datasets differ in size and complexity
and had to be approached differently.
For each dataset, the data were preprocessed before deploying the PSO algorithm
for structure learning. Parameter learning was explored separately before, in order
to specify its parameters, namely the number of epochs and the learning rate. The
preprocessed dataset was split into train and test subsets with a ratio of 80/20%.
The split was done randomly with the predefined random seed for each experiment
run to maintain reproducibility. The progress of the training loss function decrease
was observed to roughly specify early stopping parameters, namely the patience
number and the early stopping threshold. These hyperparameters were deployed
afterwards in the structure learning process. For each dataset, the PSO was exe-
cuted ten times with different random seeds. The random seeds are identical to
those used for train/test splitting. The results of these runs were then averaged and
summarized.

To evaluate the results, two different types of classifiers were implemented on
each dataset as comparison benchmarks:

• fully-connected MLP models to compare their performance with the perfor-
mance of the resulting BAG classifiers

• decision trees with different depths to observe the effect of limited depth on
tree performance. Also, looking for tree models with a performance that is
comparable to the resulting BAG classifiers and compare both models in terms
of structural simplicity.

Extensive details on each dataset and the experiments’ results are summarized in
the appendix A. The appendix also includes tables with all hyperparameter values
and run configurations for each experiment. Additionally, all experiments are repro-
ducible, since they were executed with fixed random seeds for the pseudo-random
number generators of the used python libraries. The implementation with the result
reports can be found in the git repository 6.

5.1. The Iris Dataset

The Iris dataset is the first dataset that was explored. It is well known for its sim-
plicity, small size, and feasibility of yielding good classification results. It is also
considered a typical test case for many machine learning classification methods [3].
The dataset consists of 50 samples from each of the three species of the Iris plant,

5https://archive.ics.uci.edu/
6https://gitlab-ac.informatik.uni-stuttgart.de/potykano/
study-project-mohamad-wahed-bazo/

22

https://archive.ics.uci.edu/
https://gitlab-ac.informatik.uni-stuttgart.de/potykano/study-project-mohamad-wahed-bazo/
https://gitlab-ac.informatik.uni-stuttgart.de/potykano/study-project-mohamad-wahed-bazo/


where one of the classes is linearly separable from the other two classes. There are
four continuous numerical features that relate to certain properties of the iris flower.
The target attribute is the species of the flower.

In the preprocessing phase, all four input features were discretized with k-bin-
discretizers. The bin size was set to 10 samples for all four discretizers. As explained
in section 4.2, the quantile strategy was used, and a reasonable bin size was exper-
imentally chosen. Preprocessing resulted in 12 one-hot-encoded input nodes and
three class nodes, with each node corresponding to each species.

MLP models built for parameter learning and then structure learning consist of
one hidden layer with six hidden nodes. The number of hidden nodes was experi-
mentally chosen. Nevertheless, six hidden nodes were sufficient since all resulting
BAG models had at least two hidden nodes that were not connected to any feature.
After some exploration with parameter learning, a learning rate of 0.01 was found
suitable. Also, about 450 epochs of training were sufficient to reach a test accuracy
of 100% in a fully connected model. In structure learning, a population of 30 par-
ticles were deployed in the PSO algorithm. After experimentation with different
values for parameter α and observing their effect on particles’ scores, α = 0.7 was
found a balanced value for both good performance and high sparsity. The appendix
section for this dataset A.1 contains extensive details on the optimization’s parame-
ters and configurations. Also, two models were illustrated as BAGs; they highlight
the model with the highest performance and the model of highest sparsity (figures
6 and 7 respectively).

Averaging ten runs of the PSO algorithm with the previously presented configu-
rations, we obtain the results in table 1.

Training subset Test subset number of connections
accuracy accuracy recall precision f1 score 1. layer 2. layer

0.8933 0.9433 0.9330 0.9471 0.9346 4 2.4

std std std std

0.0359 0.0299 1.5491 0.6633

Table 1: Average of results after running the PSO algorithm ten times with different
random seeds on the iris dataset and with the parameters and configura-
tions in table 5. The data describe performance scores on the train and test
subsets and the average number of connections in both layers of the found
models.
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According to these results, we can say that we were able to reach relatively good
performance with very few connections. The relatively low standard deviation val-
ues of accuracy scores and numbers of connections also indicate the stability of these
results. However, the small size of this dataset prevents us from drawing solid con-
clusions over the implementation. In fact, the test subset on this dataset contains
only 30 samples when splitting with an 80/20% train-test ratio.
The experimentation also showed that we can reach very good optimization results
with a relatively small particle population and few PSO iterations, in comparison
with the other two datasets.
An also interesting observation is that the feature ”pl ∈ [5.1, 6.9]” appeared in nine
of the ten resulting models as a connected feature.

5.2. The Mushroom Dataset

The next and second-largest dataset that was deployed in the experiments is the
mushroom dataset. The dataset contains descriptions of hypothetical samples that
correspond to 23 species of gilled mushrooms [3]. Each sample is identified as "edi-
ble" or "poisonous", which represents the target class for classification. There are 22
categorical input features that describe certain characteristics such as odor, gill color,
and cap shape. The dataset has 8124 samples that are relatively balanced regarding
the target feature (52% edible and 48% poisonous). Also worth mentioning is that
there is no simple rule to determine the edibility of a mushroom in the dataset [3].
The mushroom dataset was explored the most in the thesis due to its medium size
and complexity.

The preprocessing of the dataset included transforming the 22 input features into
111 one-hot-encoded columns. There was no need for discretizations since all fea-
tures are categorical. Because some samples have missing values of the feature "stalk
root", the one-hot column that corresponds to the missing value (encoded as "?") was
dropped. The target feature was encoded in one binary column where the value of
1 corresponds to the label "poisonous".

For this dataset, a population of 100 particles was used in the PSO algorithm. A
0.7 value for parameter α was found balanced after some exploration. This exper-
imentally found value achieved a relative balance between performance and spar-
sity. The used run configurations with the corresponding PSO parameter values
can be found in the appendix section A.2. Particles were initialized with a hidden
layer with five nodes, and with (15, 5) initial connections for the two connection ma-
trices, respectively. For parameter training, a learning rate of 0.01 and 300 epochs
were found suitable for the training process. These values were also experimentally
found after exploring parameter training on a fully connected MLP.

Averaging ten runs with the previous configuration and with different random
seeds, we received the results in table 2. Noticeable here is that the numbers of
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all performance metrics are relatively high, and the number of connections are rel-
atively low. The low standard deviation values also indicate the stability of the
results.

Training subset Test subset number of connections
accuracy accuracy recall precision f1 score 1. layer 2. layer

0.9765 0.9761 0.9759 0.9764 0.9761 4.2 2.2

std std std std

0.0070 0.0059 0.8717 0.3999

Table 2: Average of results after running the PSO algorithm ten times with differ-
ent random seeds on the mushroom dataset and with the parameters and
configurations in table 8. The data describe performance scores on the train
and test subsets and the average number of connections in both layers of the
found models, in addition to the standard deviation of accuracy and num-
ber of connections.

Table 3 summarizes the results of ten runs of the PSO with the same configura-
tions as before, however, without the usage of the velocity bias ϵ and upper bound-
aries of connections. We notice here the higher values in performance, however
drastically higher numbers of connections. This can be considered as a validation of
the usage of these approaches in the implementation.

Training subset Test subset number of connections
accuracy accuracy recall precision f1 score 1. layer 2. layer

0.9906 0.9904 0.9902 0.9907 0.9904 66.2 4.6

std std std std

0.0056 0.0058 14.8512 0.4898

Table 3: Results of running the PSO algorithm with the same configurations in table
8, however with ϵ = 0 and without the usage of upper boundaries in all
optimization phases.

Two BAG models were illustrated in figures 10 and 11. Figure 10 represents a
BAG that depended on only three values of a single input feature "odor". In fact,
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the argument "odor = n" appeared in all ten found models as a connected feature.
This motivated the analyses of this feature. Figure 12 shows a count plot for the
feature "odor". The plot illustrates how this feature can divide the dataset based on
the target feature to a good extent, especially the value "n", where a relatively big
portion of the samples is concentrated with a predominance of the class "edible".
This analysis contributed to the validation of this finding in the PSO results.

Finally, comparing the PSO results in table 2 with the results of fully connected
MLPs in table 9 and of decision trees in table 10, we can be convinced that the found
BAG models are a good combination of both high performance and good simplicity.

5.3. The Adult Income Dataset

The adult income dataset is the third and largest dataset that was explored in the ex-
periments. The classification aim of this dataset is to predict whether an individual’s
annual salary exceeds $50, 000 based on census data, such as age, gender, and edu-
cation level. The dataset consists of 48842 samples with 13 attributes that comprise
personal information of individuals, in addition to the target attribute (income). The
features vary between categorical features and continuous (integer) features [3]. The
two classes are imbalanced, with a skew towards the "<= 50" class, approximately
75/25%.

In the preprocessing phase, all samples with missing values were dropped. One-
hot columns were created out of the categorical features. For continuous features,
k-bin-discretizers were deployed with the quantile strategy. The bin size for each
feature was chosen experimentally with regard to the particularity of each feature
and with the attempt of reducing the overall number of one-hot encoded columns.
For example, the feature ’age’ has values that range between 17 and 90 years. A
number of bins of 5 was found reasonable to divide this feature into five age groups.
The target feature was also encoded in a single binary column, where the value of
1 corresponds to a salary that is greater than $50, 000 a year. The outcome of this
process is 119 binary input features and one binary output feature.

This dataset was not widely explored as the mushroom dataset due to time limi-
tations. The most significant issue that was not addressed is the imbalance of class
labels. Despite this, the experiment was done to have an extra reference on the
implementation. In the PSO implementation, the parameter α had to be slightly in-
creased to α = 0.8 in order to maintain a balance. Table 4 shows the results of the
PSO optimization. Comparing accuracy scores with the results of fully connected
MLPs in table 12, we find some progress in achieving performance in the BAG mod-
els. Worth mentioning here is that the accuracy of 75% can be considered as random
classification since this complies with the imbalance ratio of the dataset. We also
notice higher numbers of connections and higher standard deviation values in com-
parison with the other datasets.
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Regarding connected input features, it was noticed that certain features reoc-
curred in the resulting BAGs. Values of the feature "education", for instance, existed
in all models as connected features. The feature "marital status: married civ spouse"
is also present in eight of the ten found models. Although these features were not
analyzed due to time limitations, we can consider these findings interesting for in-
terpretabilility discussions.

Training subset Test subset number of connections
accuracy accuracy recall precision f1 score 1. layer 2. layer

0.8103 0.8129 0.6870 0.7640 0.7086 6.7 2.4

std std std std

0.0082 0.007 2.14 0.68

Table 4: Average of results after running the PSO algorithm ten times with different
random seeds on the income dataset and with the parameters and configu-
rations in table 11. The data describe performance scores on the train and
test subsets and the average number of connections in both layers of the
found models, in addition to the standard deviation of accuracy and num-
ber of connections.
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6. Conclusion

In this thesis, we explored argumentation frameworks as argumentative classifiers.
Quantitative bipolar argumentation frameworks, represented as bipolar argumen-
tation graphs, were implemented to solve classification problems. This implemen-
tation was based on the ability of interpreting multilayer perceptrons as QBAFs.
Swarm intelligence was also deployed in the thesis. The problem of finding BAGs
with specific graphical features related to performance and graph-structural charac-
teristics was considered a subset search problem. The particle swarm optimization
algorithm was used for this purpose.

The two fundamental purposes of this study were to implement, test, and eval-
uate BAG classifiers on real classification problems and to implement and test the
particle swarm optimization and explore its efficiency in solving such a problem of
BAG structure learning.

After viewing and discussing the results and findings, we can assert that argu-
mentation frameworks can be considered an important and versatile explainable
machine learning technology. We were able to construct efficient BAG models with
very simple graph structures that can be a subject of interpretability discussion.
Comparing these BAG models with the comparison references, we can also claim
that the BAGs achieved very good results in terms of performance in fully con-
nected MLPs, and in terms of graphical complexity to performance relationship in
decision trees.

The particle swarm optimization algorithm also proved its efficiency in solving
the search problem. The algorithm was able to deliver consistent results when ex-
ecuted with different random states. Plotting the progress of the optimization has
also shown the advantage of the ability to monitor and dynamically modify the
optimization process. As also illustrated in the results, we can conclude that the de-
ployment of the fine-tuning measures, like the velocity bias parameter ϵ, is clearly
advantageous for the efficiency and quality of results. Being inspired by regulariza-
tion approaches in training of neural networks, when combined with the suitable
acceleration parameter values, the velocity bias parameter was able to suppress
volatile connections without preventing contributing connections from remaining
in the structure.

Finally, argumentation plays an essential role in human intelligence and reason-
ing. This makes argumentation frameworks an interesting explainable machine
learning technology. As this argument was part of the motivation behind the orig-
inal work of Dung on argumentation, it has also been a part of motivation behind
working on this thesis.
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7. Limitations and Future Work

Due to time limitations, there were some elements in the implementation that could
be further explored. For instance, some aspects that relate to the hyperparameters of
the PSO algorithm can be further explored, such as discretization strategies and the
numbers of bins. Another example is the hyperparameter of the number of training
epochs. In the implementation, we used a static number of epochs for parameter
training of all particles. This could lead to underfitting or overfitting in some mod-
els. This issue can be avoided by using a validation subset of the training subset to
tune the training process.
Additionally, the initialization strategy can be further explored. Despite the good
results, one cannot conclude that the partially random initialization method that
was applied does not have disadvantages on the results, compared with a com-
pletely random initialization. Therefor, the further exploration and analysis of the
two strategies can be a subject of future work.
Another idea for future work is to modify the objective function of the PSO algo-
rithm to include additional terms that relate to the topological features of the BAG
beside sparsity. For example, we can encourage the formation of incoming edges
to a certain node that share similar signs and discourage the formation of double
attack relations among three nodes, as in figure 7. These additional measures could
lead to simpler structures of the BAGs.
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A. Appendix

A.1. The Iris Dataset

Attribute Information

Input features:

1. Sepal length in cm

2. Sepal width in cm

3. Petal length in cm

4. Petal width in cm

Classes:

1. Iris Setosa

2. Iris Versicolour

3. Iris Virginica

Number of input nodes after preprocessing: 12

population hidden nodes α num. of initial connection upper boundaries patience threshold
30 6 0.7 7, 3 None None None

phase iterations w c1 c2 ϵ

first: 30 0.9 2 2 0.4
second: 30 0.9 4 4 0.4
third: 20 0.9 1 10 0.4

Table 5: Hyperparameter values and phase configurations for the iris dataset.
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sw ∈ [3, 4.4]

pl ∈ [1.6, 4.35]

pl ∈ [4.35, 5.1]

sl ∈ [6.4, 7.9]

pl ∈ [4.35, 5.1]

setosa

versicolor

virginica

−2.7076

−2
.99

95

2.850
1

5.5597

4.7864

4.487
3

−4.276
4

Figure 6: An example graph of a sparse MLP model (interpreted as a BAG) for the
iris dataset. The model achieved an accuracy of 100% on the test set. The
model was found using the PSO configuration in table 5, and it is the
model with the best accuracy score.

pl ∈ [5.1, 6.9]

pw ∈ [1.3, 2.5]

setosa

versicolor

virginica

−4.1438

4.0002

−4.456
0

−4.746
8

Figure 7: Graph of a sparse MLP model (interpreted as a BAG) for the iris dataset
that was found using the PSO configuration in table 5. This model had the
highest sparsity and achieved an accuracy of 93.33% on the test set.
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Training subset Test subset
accuracy accuracy recall precision f1 score

0.9783 0.98 0.9771 0.9825 0.9786

Table 6: Performance results of training a fully connected MLP with six hidden
nodes on the iris dataset, averaged over ten runs with different random
seeds. Each of the models was trained over 450 epochs and with a learning
rate of 0.01.

maximum depth avg. accuracy on training subset avg. accuracy on test subset
1 67.25% 64.33%

2 96.58% 93.33%

3 97.83% 95.33%

4 99.33% 94.33%

5 99.83% 94.66%

6 100% 95%

7 100% 95%

Table 7: Averaged accuracy scores of decision tree models with various depths on
the iris dataset. The values for each depth were averaged over ten different
runs, each with a unique random seed.

Figure 8: Example of a decision tree for the iris dataset with a depth of three (random
seed 42). The decision tree reached an accuracy of 95.83% on the training
set and 100% on the test set.
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A.2. The Mushroom Dataset

Attribute Information

Input features:
1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s
2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s
3. cap-color: brown=n,buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, red=e, white=w,

yellow=y
4. bruises?: bruises=t, no=f
5. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, pungent=p, spicy=s
6. gill-attachment: attached=a, descending=d, free=f, notched=n
7. gill-spacing: close=c, crowded=w, distant=d
8. gill-size: broad=b, narrow=n
9. gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, orange=o, pink=p, pur-

ple=u, red=e, white=w, yellow=y
10. stalk-shape: enlarging=e, tapering=t
11. stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, missing=?
12. stalk-surface-above-ring: fibrous=f, scaly=y, silky=k, smooth=s
13. stalk-surface-below-ring: fibrous=f, scaly=y, silky=k, smooth=s
14. stalk-color-above-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w,

yellow=y
15. stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, white=w,

yellow=y
16. veil-type: partial=p, universal=u
17. veil-color: brown=n, orange=o, white=w, yellow=y
18. ring-number: none=n, one=o, two=t
19. ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, sheathing=s,

zone=z
20. spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, purple=u, white=w,

yellow=y
21. population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, solitary=y
22. habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, woods=d

Target feature:
• poisonous?: poisonous=p, edible=e

Number of input nodes after preprocessing: 111
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population hidden nodes α num. of initial connection upper boundaries patience threshold
100 5 0.7 15, 5 15, 5 10 0.001

phase iterations w c1 c2 ϵ epochs
first: 20 0.9 2 2 0.5 100

second: 50 0.9 4 4 0.5 200
third: 30 0.9 0.5 10 0.5 300

Table 8: Hyperparameter values and phase configurations for the mushroom
dataset.

Figure 9: A plot of the development of the particles’ personal best scores. The per-
sonal best score is plotted (vertical axis) for each particle in the population
(horizontal axis) after each phase. This plot was taken from one of the runs
of the PSO algorithm with configurations in table 8. One can notice the ef-
fect of the high value of the social coefficient in the third phase, where
particles exploit the area of the global best position.

36



odor_a

odor_l
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9
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−3.5057
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Figure 10: A BAG of the mushroom dataset. This model achieved the highest spar-
sity among the ten models that were found with configuration 8. It
achieved a test accuracy of 98.33%. Noticeable is the dependency on only
three values of the feature "oder".

bruises_t

odor_f

odor_n

odor_p

scbr_y
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8
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1

−3.3584
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3.7227

−3.073
2
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Figure 11: Graph of a sparse MLP model (interpreted as a BAG) for the mushroom
dataset that was found using the PSO algorithm with configurations in
table 8. This model combined high sparsity and performance (98.52%
accuracy on the test subset).
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Figure 12: A plot of distribution of classes in the values of the feature "oder" in the
mushroom dataset. The count plot illustrates the importance of the value
"n" where a relatively big portion of the samples is concentrated with a
preponderance of one class "edible".

Figure 13: A violin plot of the mushroom dataset after transforming the categorical
features into ordinal ones. The plot illustrates the distribution of the two
class labels over the features. Here is also noticeable how the "oder" fea-
ture peaks at a certain value.
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Training subset Test subset
accuracy accuracy recall precision f1 score

0.9999 0.9994 0.9988 1.0 0.9994

Table 9: Performance results of training a fully-connected MLP on the mushroom
dataset with 5 nodes in the hidden layer. The results are averaged over ten
runs with different random seeds. Each of the models was trained over 300
epochs and with a learning rate of 0.01.

maximum depth avg. accuracy on training subset avg. accuracy on test subset
1 88.71% 88.46%

2 95.44% 95.34%

3 98.53% 98.49%

4 99.39% 99.20%

5 99.86% 99.75%

6 99.97% 99.94%

7 100% 99.97%

8 100% 99.97%

Table 10: Averaged accuracy scores of decision tree models with various depths on
the mushroom dataset. The values for each depth were averaged over 10
different runs, each with a unique random seed.
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Figure 14: Example of a decision tree for the mushroom dataset with a depth of three
(random seed 42). The decision tree reached an accuracy of 98.6% on the
training set and 98.21% on the test set. This illustration with this partic-
ular depth is chosen due to its comparable simplicity to the found sparse
MLP models.
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A.3. The Census Income Dataset

Attribute Information

Input features:
1. age: continuous
2. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-

pay, Never-worked
3. fnlwgt: continuous
4. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th,

7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool
5. education-num: continuous
6. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-

spouse-absent, Married-AF-spouse
7. occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty,

Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-
house-serv, Protective-serv, Armed-Forces

8. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried
9. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

10. sex: Female, Male
11. capital-gain: continuous
12. capital-loss: continuous
13. hours-per-week: continuous
14. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-

US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines,
Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yu-
goslavia, El-Salvador, Trinadad& Tobago, Peru, Hong, Holand-Netherlands

Target feature:
• Income: >50K, <=50K.

Number of input nodes after preprocessing: 119
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population hidden nodes α num. of initial connection upper boundaries patience threshold
50 5 0.8 15, 5 30, 10 25 1e-06

phase iterations w c1 c2 ϵ epochs
first: 25 1 10 10 0.5 500

second: 25 0.9 10 10 0.5 750
third: 10 0.9 1 20 0.5 1000

Table 11: Hyperparameter values and phase configurations for the income dataset.

edu_bachelors

m.s_married_civ

occ_exec_manag

occ_prof_spec

> 50K

−1.8640

−4.0267

−4.0608

−2.
783

5

−3.700
5

−1.7997

Figure 15: Graph of a sparse MLP model (interpreted as a BAG) for the income
dataset that was found using the PSO algorithm with configurations in
table 11. The model achieved a test accuracy of 82.67%.

Training subset Test subset
accuracy accuracy recall precision f1 score

0.8509 0.8410 0.7601 0.7933 0.7740

Table 12: Performance results of training a fully connected MLP on the income
dataset with five nodes in the hidden layer. The results are averaged over
ten runs with different random seeds. Each of the models was trained over
1000 epochs and with a learning rate of 0.01.
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Figure 16: A personal best score plot of a particular run of the PSO algorithm on the
income dataset with configurations 11.

maximum depth avg. accuracy on training subset avg. accuracy on test subset
1 75.05% 75.30%

2 79.68% 79.97%

3 81.46% 81.62%

4 82.99% 82.99%

5 84.36% 84.28%

6 84.99% 85.03%

7 85.27% 85.14%

8 85.73% 85.2%

9 86.16% 85.39%

10 86.66% 86.66%

11 87.15% 85.3%

12 87.69% 85.23%

30 97.98% 81.50%

50 99.97% 81.25%

Table 13: Averaged accuracy scores of decision tree models with various depths on
the income dataset. The values for each depth were averaged over 10 dif-
ferent runs, each with a unique random seed. One can notice the effect of
overfitting in trees with a depth that is greater than 10.
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A.4. General Results

Dataset Training Test Connections
accuracy (std) accuracy (std) recall precision f1 score 1.layer (std) 2. layer (std)

Iris 0.8933(0.0359) 0.9433(0.0299) 0.9330 0.9471 0.9346 4(1.54) 2.4(0.66)
Mushroom 0.9765(0.007) 0.9761(0.0059) 0.9759 0.9764 0.9761 4.2(0.87) 2.2(0.39)
Income 0.8103(0.0082) 0.8129(0.007) 0.6870 0.7640 0.7086 6.7(2.14) 2.4(0.68)

Table 14: Summery of performance scores of BAG classifiers implemented on the
three datasets. "std" denotes the standard deviation of the variable.

Figure 17: Summery of performance scores of BAG classifiers averaged over ten
runs, including standard deviation, from the genetic algorithm imple-
mentation in [24]. This table was taken directly from the paper. Note that
the performance values in the table are in percent, where performance
values in this study are between zero and one.
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