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Abstract

Algorithms for clustering of Word Usage Graphs are not optimal in terms of

efficiency and often do not find the optimal clustering loss on larger graphs. Our aim

in this paper is to find efficient ways to approximate the global minimum of a clustering

loss function on three Word Usage Graphs data sets using correlation clustering and

simulated annealing. Therefore we define 321 models with different initialization

modifications, parameter combinations and stopping criterion and evaluate them in

terms of loss, similarity to word sense description annotation, robustness and runtime.

We evaluate different approaches and define efficient models with dynamic stopping

criterion to find the lowest loss, which yield robust cluster solutions. We find that

lowering the loss lead to better and clustering solutions.

1 Introduction

Word Usage Graphs (WUGs, McCarthy et al., 2016; Schlechtweg et al., 2021b) represent
usages of a word as nodes in a graph which are connected by weighted edges representing
semantic proximity. (Find examples in Figure 1.) WUGs are a convenient way to rep-
resent pairwise human semantic proximity judgments of word usages and then to infer
word senses by clustering usages without the need for a priori word sense descriptions
(Schlechtweg et al., 2020). Schlechtweg et al. (2020) recently introduced a version of
correlation clustering (Bansal et al., 2004) using simulated annealing (Pincus, 1970) to find
the optimal cluster structure on WUGs. However, the proposed algorithm is not optimal in
terms of efficiency and often does not find the optimal clustering loss on larger graphs even
after several iterations with brute-force settings. Our aim in this paper is to find efficient
ways to approximate the global minimum of Schlechtweg et al. (2020)’s clustering loss
function on three WUG data sets. For this, we test several initialization modifications,
parameter combinations and stopping criteria. We further evaluate the reproducibility of the
clustering solutions using robustness checks and compare them to independently obtained
clusterings as external evaluation criterion. Using different approaches in initialization,
we find that using a dependently initialized model deliver better results than independent
initialized models. However, we find that pure dependent initialization does not lead to
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optimal cluster solution, and that it always accompanied by additional random initialization.
We compared repetitive models to non-repetitive models. They obtained not only better
results, but also enabled the use of stopping criteria, saving up to 47% runtime. We find
that the optimization of the loss leads to better cluster solutions and optimized models
yield robust cluster solutions. Reproducibility across data sets is not fully given, but shows
strong similarities.

2 Related Work

Human semantic proximity judgments have been proposed to compare word usages
by researchers from multiple disciplines (Blank, 1997; Brown, 2008; Erk et al., 2009;
2013). Erk et al. (2013) provide the first in-depth study of semantic proximity judgments.
McCarthy et al. (2016) represent this type of judgments within graphs, while Schlechtweg
et al. (2021b) provide scalable annotation strategies for such graphs and create a large multi-
lingual resource of human semantic proximity judgments represented in WUGs. While
McCarthy et al. cluster the uses based on heuristics such as connected components, other
cluster approaches have been proposed, including probabilistic modelling (Schlechtweg
et al., 2021a) and correlation clustering (Schlechtweg et al., 2020; 2021b). Schlechtweg
et al. define clustering as a discrete optimization problem. With simulated annealing they
aim to find a clustering minimizing a loss function on edge weights derived from semantic
proximity judgments.

3 Data

We utilize the annotated English, German and Swedish DWUG datasets (EN V1.0.0, DE
V1.1.0, SV 1.0.0) (Schlechtweg et al., 2021b).2 Each dataset contains a list of target words
and a set of usages per target word from two time periods, t1 and t2 (we ignore the time
allocation within the experiments). Each dataset includes 30-50 words each, with up to
200 usages per word. The word usages are combined into pairs as in (1) and (2) for the

2https://www.ims.uni-stuttgart.de/data/wugs

4



target word plane and annotated for their semantic proxmity on the DURel relatedness
scale, which is illustrated in Table 1.

(1) Von Hassel replied that he had such faith in the plane that he had no hesitation
about allowing his only son to become a Starfighter pilot.

(2) This point, where the rays pass through the perspective plane, is called the seat of
their representation.

These judgments are then represented in a Word Usage Graph (WUG). WUGs are weighted,
undirected graphs, which can be defined G = (U,E,W) with nodes u 2 U representing
word usages and weights w 2 W representing the median of the human judgments for the
corresponding pair of usages. Find examples in figure 1.

Human-annotated WUGs are often sparsely observed and noisy, which has different
reasons. On the one hand, the number of edges increases quadratically with the number of
nodes often resulting in magnitudes which are impossible to annotate. Hence, WUGs are
often only partly annotated. On the other hand, usages can be ambiguous and unfamiliar
to annotators leading to disagreements between annotators and acting as noise for the
clustering approach.

3.1 Sense descriptions

An alternative approach to semantic proximity judgments are word sense description
annoations (cf. Kilgarriff, 1998). For these, each usage is assigned to one of multiple word
sense descriptions provided to annotators. The DWUG DE dataset was annotated with
additional word sense descriptions (Schlechtweg et al., 2021b). For this, 24 words were
randomly chosen and for each word 50 randomly sampled usages were annotated. We
exclude all usages with at least one ‘other’ judgment and all usages where at least one
annotator pair diverges on their judgments. The remaining usages are used to calculate the
ARI values as described in more detail in Section 5.
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Figure 1: WUGs of German Festspiel (left), Abgesang (middle) and zersetzen (right) from
the DWUG DE data set. Nodes represent usages of the respective target word. Edge weights
represent the median of relatedness judgments between usages (black/graygray lines for
high/graylow edge weights, i.e., weights � 2.5/weights < 2.5).

x????

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 1: DURel relatedness scale defined in (Schlechtweg et al., 2018)

4 DWUG correlation clustering

Correlation Clustering describes a method for dividing the nodes of a weighted graph
G = (U,E,W) into an optimal number of clusters (Bansal et al., 2004). In the most
simple case, weights W (e) on edges e = (u, v) 2 E are binary values W (e) 2 {�1, 1},
i.e., either negative (�) or positive (+), depending on the similarity of the nodes u and
v. Bansal et al. then try to minimize the sum of positive edge weights between different
clusters (W (e) = + and u /2 C(v)) and the sum of negative edges weights within clusters
(W (e) = � and u 2 C(v)). Schlechtweg et al.’s DWUG correlation clustering varies from
Bansal et al.’s most simple case, as edge weights are non-binary. For this, the weights
W (e) of all edges e 2 E in a WUG G are shifted to W 0(e) = W (e)� 2.5 (e.g. a weight
of 4 becomes 1.5). Those edges e 2 E with a weight W 0(e) � 0 are referred to as positive

edges PE , while edges with weights W 0(e) < 0 are called negative edges NE . Let further
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C be some clustering on U , �E,C be the set of positive edges across any of the clusters in
clustering C and  E,C the set of negative edges within any of the clusters. We then search
for a clustering C that minimizes L(C):

L(C) =
X

e2�E,C

W 0(e) +
X

e2 E,C

|W 0(e)|(3)

That is, the sum of positive edge weights between clusters and (absolute) negative edge
weights within clusters is minimized (‘loss’).

4.1 Optimization: Simulated Annealing

Minimizing L is a discrete optimization problem which is NP-hard (Bansal et al., 2004).
This is eased by the relatively low number of nodes ( 200). Hence, Schlechtweg et al.
approximate the global optimum with Simulated Annealing (Pincus, 1970).3 We define a
temperature parameter T dependent on iteration i where T (i) = max(T0 ⇤e�di, Tmin) with
0  T  1, and T0 being the initial temperature, Tmin being the minimum temperature and
d being the rate of exponential decay. We choose the default parameter values provided
by mlrose: T0 = 1.0, Tmin = 0.001 and d = 0.005. As displayed in Algorithm 1, in every
iteration we calculate T (i) and choose a random neighbor state nghbr based on the current
state state. If the loss L(nghbr) is lower than L(state), or if L(nghbr) is higher than
L(state) and prob is sufficiently high, then the existing state is replaced by the random
neighbor. For example, let the loss of the current state L(state) = 10, the loss of the
random neighbor L(nghbr) = 12 and the algorithm be in the twentieth iteration (yielding
T (20) = 0.905 and prob = 0.110). Then, there is a probability of roughly 0.11 that nghbr
is chosen. With decreasing T , prob also decreases, i.e., in later iterations the change to a
state with higher loss occurs less often. The algorithm runs until either the T drops to 0 or
the maximum number of iterations or maximum number of attempts is reached.

3We use Schlechtweg et al. (2021b)’s code: https://www.ims.uni-stuttgart.de/data/wugs relying on mlrose
(Hayes, 2019).
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Figure 2: Number of clusters per dataset. Two words (tip EN, 63 clusters; medium SV, 23
clusters) exceed the value of 20 clusters and are therefore not visible.

4.2 Parameters

Schlechtweg et al.’s clustering approach has multiple parameters which we describe in the
following section.

Maximum number of clusters The search space of Simulated Annealing’s neigh-
bor function is bounded by k, the maximum number of clusters (senses) it can assign.
Schlechtweg et al. iterate over different values for 0  k  s in order to reduce the search
space for each value of k, in contrast to choose k = s for each iteration. We iterate over
s 2 {5, 7, 10, 15, 20}. As we can see in Figure 2 these values capture the large majority of
cluster numbers from the optimal cluster solutions provided by Schlechtweg et al.

Maximum number of attempts and iterations for simulated annealing Two of the
parameters of mlrose’s Simulated Annealing have influence on performance and runtime.
Maximum attempts (maxA) is the maximum number of attempts to switch to a neighbor
state and maximum iterations (maxI) is the maximum number of iterations the algorithm
will run, cf. Algorithm 1. For both parameters an increase means longer runtime (ignoring
the special case that the algorithm breaks at the smaller maxI or maxA), while either a
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better neighbor state can be found (condition deltae > 0) or a worse state can be found (con-
dition random < prob). However, as prob decreases with a longer runtime, later changes
to states have higher probabilities to be better. For our experiments we have included
the following parameter combinations based on parameters chosen by Schlechtweg et al.
(2020) and initial experiments: maxA/maxI 2 {100/10000, 100/20000, 500/10000,
1000/10000, 1000/20000, 5000/10000, 5000/20000}

Number of repetitions Schlechtweg et al. repeat the whole clustering procedure only
once. We change this in our approach, because we noticed that one repetition often does
not find the optimal clustering solution. We repeat the optimization up to 10 times and save
the best result from all previous repetitions.

Initialization For each value of k (maximum number of clusters) Schlechtweg et al.
perform one clustering with a random initialization, and a second clustering initialized
with a heuristically chosen clustering solution derived from connected components on
edge weights above the clustering threshold.4 In addition to this approach we exchange the
heuristically chosen initialization for an initialization with the best solution found in all
previous repetitions. The first repetition (where no previous solution is available) is still
initialized heuristically. Note that in the first approach each repetition is independent from
the previous ones, while in the second approach later repetitions are dependent on earlier
ones. We assume that by initializing with a good solution the probability of finding the
global minimum is higher than initializing with a random state. However, we additionally
initialize with a random state to avoid being stuck on a local minimum.

Stopping criteria At each repetition r the optimal loss Lr found in all previous repeti-
tions s  r is smaller or equal to all Ls. We also find that Lr converges, as exemplified
in Figure 3. We define several stopping criteria which aim to stop the algorithm when it
converged or nearly converged. This makes it possible to achieve similarly good results,
which may not be optimal, but significantly reduce the runtime. Note that we extract model

4In case that the heuristic clustering solution has a cluster number n > k we set k to n.
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Figure 3: Development of loss per repetition for German Knotenpunkt with model s = 20,
maxA = 500, maxI = 10000, independent and dependent initialization.

results with stopping criteria post hoc from the full 10 repetitions. Hence, all results are
dependent by being computed on the same 10 values.

Fixed number of repetitions This static approach has a fixed number of repetitions r
after which the algorithm stops. Within our experiments we use r = 5 and r = 10.

Comparison with last repetition (r = l1) This approach compares the current optimal
loss with the optimal loss of the previous repetition. The criterion comes into effect if the
improvement is less than 2%.

Comparison with the last three repetitions (r = l3) This approach compares the cur-
rent optimal loss with the average optimal loss of the last three repetitions. The criterion
comes into effect when the improvement is less than 3%. We assume that the average is
more robust to saddle points.
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Figure 4: loss per word of semeval clusterings provided by Schlechtweg et al. and our
model s = 20, maxA = 2000, maxI = 50000, independent initialization and r = 5.

4.3 Baseline

We compare our results to the semeval clusterings provided by Schlechtweg et al.. We call
this model semeval. We also reproduce their results with similar parameters. However,
they used a sophisticated combination and iteration over parameters which we can only
approximate: We take s = 20, maxA = 2000, maxI = 50000, independent initialization
and r = 5. This model achieved similar results in our initial experiments to Schlechtweg
et al. as can be seen in Figure 4. In total, we have defined 321 models to evaluate. Each
model is defined by a specific parameter combination, i.e., of a maximum number of
clusters s, maxA, maxI , independent or dependent initialization and a stopping criterion.

5 Evaluation

We compare the models with respect to the following metrics:

Loss Loss is the value of L(C), defined in Section 4.

Runtime The number of seconds a model runs in total.
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Algorithm 1 Simulated Annealing5

state initial

while attempts < maxA and i < maxI do

temp T (i)

i i+ 1

if temp = 0 then

break
else

deltae  L(nghbr)� L(state)

prob exp(deltae/temp)

random random(0, 1)

if deltae > 0 or random < prob then

state nghbr

attempts 0

else

attempts attempts+ 1

end if

end if

end while

Adjusted Rand Index For each cluster solution we calculate the Adjusted Rand Index
(ARI)(Hubert and Arabie, 1985) to the human-annotated sense descriptions as defined in
Section 3.6 This value is an external evaluation criterion to determine the cluster quality
and is bounded between 0.0 and 1.0. If ARI = 1.0, the clusters are identical.

Robustness For each cluster solution we calculate a robustness value by averaging all
ARI scores of that solution to the final cluster solutions of the 10 experiment runs (see
below). The Robustness is bounded between 0.0 and 1.0.

6We use the sklearn implementation (Pedregosa et al., 2011).
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6 Experiments

We run each model 10 times and take the average values for each metric per word to elimi-
nate inaccuracies. We use the median values to aggregate over all words, as distributions
of values are often strongly skewed. We analyze model results on German words, but also
discuss the results on the other data sets.

Which model finds the lowest loss? Table 2 shows the 16 models with the lowest
median loss of 8.0 over all German words. For better overview we summarize rows over
stopping criteria. We see that all models in Table 2 are dependently initialized. The best
independent model is in the upper 21th percentile with a median loss of 10.8. Schlechtweg
et al. (2020)’s semeval clustering has a median loss of 11.0. Most models have relatively
good results and are at a median loss of 12.0 to 13.0, as can be seen in Figure 5. All models
in the lower 9th percentile are models with maxA = 100 with different stopping criteria
and s values. Most of these models are initialized independently, however, there are also
some dependent models amongst them. Comparing the frequency of the stopping criteria
in Table 2, we notice that r = 10 (11 of 13) and r = l3 (3 of 13) are the most frequent
in the list. Since r = 10 always runs through the maximum number of repetitions, it is
not possible for other stopping criteria with similar parameters to achieve better results.
In some cases r = l3 has achieved equally good results, which saved on average 47% of
the runtime. Regarding the top models, the following pattern of dominating parameters
can be derived: s 2 10, 15, 20, maxA 2 {500, 1000, 5000}, maxI 2 {10000, 20000} and
dependent initialization.

Are repetitions useful? We run a model (S = 20, maxA = 5000, maxI = 50000,
r = 1) with significantly increased parameters but only one repetition and compare
this model with a repetitive model with a similar runtime (S = 20, maxA = 500,
maxI = 10000, independently initialized, r = l3,). We choose a model with the same S

to ensure fairness. The model with increased parameters has a median loss of 13.0 and a
median runtime of 29s. The repetitive model has a median loss of 9.55 and a runtime of
22s. Similar results were also obtained with different s values. Even with less runtime, the
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Figure 5: Frequency of all median loss values.

repetitive model beats the non-iterative model. Furthermore, the possible use of dynamic
stopping criteria on iterative models is advantageous for the runtime.

Which model is most efficient? We select all models with a median loss below or equal
to 10.0 (upper 16th percentile) and compare them in terms of their runtime. The model
s = 10, maxA = 500, maxI = 10000, dependently initialized and r = l1 with loss
of 9.35 beats all other 49 models in terms of runtime (7s). The model is overall in the
upper 11th percentile in terms of runtime and has low median loss (upper 13th percentile).
However, note that there are also efficient models reaching the lowest loss in Table 2,
e.g. s = 20, maxA = 500, maxI = 10000, independtly initialized r = l3 has a median
loss 8.0 and a runtime of 17s. The most inefficient model is the recreated semeval model:
s = 20, maxA = 2000, maxI = 50000, independent initialization and r = 5, with a
runtime of 148s it is the slowest of all models.

Which stopping criterion is best-performing? We compare stopping criteria over all
models in Table 4. It can be seen that r = l1 provides the lowest runtime, but the highest
loss. The criteria with the most repetition r = 10 has the lowest loss and (as expected) the
highest runtime. r = l3 reaches lower loss (1.0 more than r = 10) and has a comparatively
low runtime (half of r = 10). As an example, if this stopping criterion r = 10 has reached
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s maxA maxI init r loss runtime ARI robust

10 500 10000 depen. 10/5/l3 8.0 30/15/17 .72/.70/.71 .97/.96/.96
15 500 10000 depen. 10 8.0 36 .71 .98
20 500 10000 depen. 10 8.0 43 .73 .98
10 500 20000 depen. 10/l3 8.0 51/27 .72/.72 .98/.97
15 500 20000 depen. 10 8.0 51 .73 .98
20 500 20000 depen. 10 8.0 62 .73 .99

10 1000 10000 depen. 10/l3 8.0 31/17 .73/.72 .98/.97
15 1000 20000 depen. 10 8.0 64 .73 .98
15 5000 20000 depen. 10 8.0 32 .72 .98

Table 2: Overview of all models with lowest median loss of 8.0 over German target words.

the optimal cluster solution in the first repetition, the 9 further repetitions are superfluous.
Due to this static behavior, this stopping criterion is comparatively inefficient. As can be
seen in Figure 3, the development of loss per repetition converges to a limit, which makes
a dynamic stopping criterion more efficient. Even the models with lowest median loss in
Table 2 only differ about 7% in terms of loss to their respective model with r = 10 with a
reduction of the runtime about 47%. r = 5’s runtime is half of r = 10 and has in average a
median loss of 11.6, meaning r = 10 used half of the runtime to only improve about 2.0 in
terms of loss. Since r = 5 is still a static model, it can be inefficient in less complex words.

Does lower loss mean higher robustness? In Figure 6 we see a scatter plot of loss
vs. robustness values of all cluster solutions. We notice a clustering of the points in the
upper left corner (low loss and high robustness). Furthermore, we calculate the Spearman
correlation between the two variables yielding a strong negative correlation of �0.73.
This means that lower loss implies higher robustness, i.e., more reproducible clustering
solutions. This is also confirmed by the models with the lowest median loss in Table 2 with
high robustness values between 0.96 and 0.99.
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Figure 6: Loss vs. robustness values of all cluster solutions for German words.

Which model gives the highest ARI? The highest median ARI that occurring in the
experiments is .73 and was achieved by 16 models. Within the 16 models, every svalue

occurs, with 20 being the most common. Furthermore, every combination of maxA and
maxT is represented, except the two with maxA = 100. All models are dependent
initialized and have the stopping criterion r = 10. Please note, all models from table 2
have an approximately good ARI value, so we assume that the optimization of the loss
also leads to an optimization of the ARI . Of the 16 models with the highest ARI , 5 are
within the models with the lowest median loss , 11 are in the upper 11th percentile in
terms of loss and two are in the upper 20th. We further investigate the behavior of ARI

to loss and calculate the Spearman correlation between all loss and all ARIs values for
each word. Almost all correlations are negative and show moderate correlation (�0.45)
at the median with one word (Titel) deviates strongly from the other correlations and has
a positive correlation. Therefore, it can be concluded that minimizing the loss leads to a
better cluster solution. However, only for 19 of 24 German words with sense descriptions,
the cluster solution with the highest ARI is also the solution with the lowest loss. As
described in more detail in Section 3, WUGs are often sparsely observed and noisy, which
can lead to finer clusterings. As an example, we consider the plots of Titel produced by
Schlechtweg et al.. We see that two nodes have been classified in different clusters, even
though they both have the same sense description with full matching of annotators.
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init. loss runtime ARI robustness

indepen. 12.7 28 .62 .92
depen. 10.6 27 .70 .96

Table 3: Average of metrics of independently and dependently initialized models with
static stopping criteria over German words.

Does dependent initialization beat independent initialization? Table 3 shows the
average values of all medians of models with independent and dependent initialization
and static stopping criteria (r = 5 and r = 10).7 As can be seen, dependent initialization
gives better results than independent initialization for every metric. Furthermore, all
models with the lowest median loss in Table 2 are dependently initialized. We investigate
whether this behavior is caused by the connected components and repeat for the models
maxA = 500 and maxI = 10000 all models with static stopping criteria and independent
initialization where we replace the initialization with connected components by another
random initialization. On average, these models have a median of 11.7, which shows a
difference of 0.5 to the models initialized with connected components. Furthermore, we
repeat all models with maxA = 500 and maxI = 10000 and dependently initialized
without additional random initialization and compare them to the models with the same
parameter combination from our experiments. In the average of the medians, the models
without random initialization have a loss of 24.0. Compared with the loss from their
respective counterpart ( 9.8), this value is significantly increased. We assume that these
models are stuck on a local minimum for complex words, since comparatively good results
could be obtained for less complex words, e.g. model S = 10, dependently initialized,
r = 10 (without additional random initialization) has a loss of 79.9 for Knotenpunkt, while
the same model with additional random initialization has a loss of 41.2.

7We only use the stopping criteria r = 10 and r = 5, since the other stopping criteria have different
numbers of repetitions.
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r ARI loss robust runtime

10 .72 9.5 .97 64.6
5 .69 11.6 .95 32.5
l1 .68 12.0 .94 14.7

l3 .70 10.5 .95 35.1

Table 4: Average of metrics of stopping criteria over German words.

Which are the best parameters for simulated annealing? Table 5 displays the average
metrics per parameter combination of maxA and maxI . Due to the relatively low num-
ber of maximum attempts, models with maxA = 100 stopped too early, which is why
they scored worse on average for loss, ARI and robustness. Amongst the top models in
Table 2 all parameter combinations except maxA = 100 are represented. Although we
doubled maxA for parameter combinations with maxA  500, it does not affect metric
noticeable and seem to be influenced significantly more by their maxI value. A parameter
combination of maxA = 500 and maxI = 10000 is sufficient to achieve good results.

Are results consistent across data sets? We run the same experiments for both English
and Swedish words. For the Swedish words, the median losses of all models were between
2.5 and 3.6, so all models found a relatively low loss. The lowest loss of 2.5 was achieved
by 9 independent models and 29 dependent models and the stopping criterion r = l3 is
next to r = 10 are the most frequent amongst them. If we compare the stopping criteria,
we notice that r = 10 (again) achieves the lowest average loss, but r = i5 and r = l3 come
very close with a difference of 0.1. The s values of the models with the lowest loss are also
s  10. Also for the Swedish words the development of the losses per repetition converges
to a limit value, but reaches it after only a few repetitions, which makes the difference in
average loss between r = i5 and r = 10 less noticeable. For the English words we could
not reproduce this. The lowest loss of 14.0 was achieved by independent models, the best
dependent model has a loss of 14.9. We note that for some words in the English data set,
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maxA maxI loss runtime ARI robust

100 10000 12.9 14 .63 .89
100 20000 12.8 15 .63 .89
500 10000 11.0 25 .67 .96

500 20000 11.1 42 .67 .96

1000 10000 11.2 25 .67 .96

1000 20000 11.3 46 .68 .96

5000 10000 11.1 26 .68 .96

5000 20000 11.4 46 .68 .96

Table 5: Average of median results of different maxI and maxA combinations over
German words.

the cluster solutions of a model can vary greatly, resulting in comparatively low robustness
values. For example, the word plane has robustness values between 0.50 and 0.68. Looking
at the average values for depend initialization and independent initialization both have an
average loss of 16.5. For the stopping criteria, it is the same behavior as for the Spanish
and German data sets. Reproducibility across data sets is not fully given, but shows strong
similarities.

7 Conclusion

Within this thesis we have done large-scale experiments to find efficient ways to approx-
imate the global minimum of Schlechtweg et al. (2021b)’s clustering loss function on
three WUG data sets. Through several initialization modifications, parameter combinations
and stopping criteria, we defined 321 different models that we evaluated for loss, ARI ,
runtime and robustness. According to the Results, we provided a pattern for models to
obtain the lowest median loss and have shown that the optimization of the loss leads to
cluster solutions that are closer to the sense descriptions and therefore can be consider as
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better. The results lead to the conclusion that a correlation exists between ARI and loss,
as well as between loss and robustness, which we have further analyzed. Furthermore,
we have shown that a repetitive approach leads to lower loss values than the approach
offered by Schlechtweg et al. (2021b) and also allows the use of different stopping criteria
to reduce runtime significant. We have shown that best models produce robust solutions
and thus have high reproducibility. We also discuss the differences between the results of
the data sets and find that the reproducibility between the data sets is not complete, but
shows strong similarities.

Future work involves analysis of simulated annealing parameters with variation in
the temperature function, experiments using other optimization algorithms (e.g. random
hill climb) or other stopping criteria, or comparison of correlation clustering with other
clustering algorithms (Biemann, 2006; McCarthy et al., 2016; Schlechtweg et al., 2021a).
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A Additional abstract in German

Algorithmen für das Clustering von Wortverwendungsgraphen sind im Hinblick auf ihre
Effizienz nicht optimal und finden oft nicht den optimalen Clustering-Loss bei größeren
Graphen. Unser Ziel in diesem Arbeit ist es, effiziente Wege zu finden, um das globale Min-
imum einer Clustering-Lossfunktion auf drei Wortverwendungsgraphen-Datensätzen mit
Hilfe von Korrelationsclustering und Simulated Annealing zu approximieren. Zu diesem
Zweck definieren wir 321 Modelle mit unterschiedlichen Initialisierungsmodifikationen,
Parameterkombinationen und Abbruchkriterien und evaluieren sie in Bezug auf Loss,
Ähnlichkeit mit Word Sense Description, Robustheit und Laufzeit. Wir evaluieren ver-
schiedene Ansätze und definieren effiziente Modelle mit dynamischem Abbruchkriterium,
um den geringsten Loss zu finden und zeigen dass diese zu robusten Clusterlösungen
führen. Wir stellen fest, dass eine Verringerung des Verlusts zu besseren und robusteren
Clusterlösungen führt.
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