
Models for Data-Efficient Reinforcement
Learning on Real-World Applications

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung derWürde eines

Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Andreas Dörr
aus Saarbrücken

Hauptberichter: Prof. Dr. Marc Toussaint
Mitberichter: Prof. Dr. Sebastian Trimpe

Tag dermündlichen Prüfung: 07.10.2021

Institut für Parallele und Verteilte Systeme
der Universität Stuttgart

2021





Models for
Data-Efficient Reinforcement Learning

on Real-World Applications

Andreas Doerr
2021



Models for Data-Efficient Reinforcement Learning on Real-World Applications
© 2021 Andreas Doerr



Acknowledgements

Great colleagues and friends accompaniedmy journey into theworld ofmachine learning, robotics, and

reinforcement learning. What I have learned and discovered, what I have developed and implemented,

and what I have published is most often rooted in their support, discussions, and motivation. I want

to thank all of you, my supervisors and colleagues, my discussion partners and friends who made this

work happen.

Coming from engineering and control, the Machine Learning and Robotics Lab at the University of

Stuttgart paved my way into the exciting world of intelligent systems. I am grateful for the supervision

by Prof. Marc Toussaint and Dr. Nathan Ratliff, who guidedme into the world of inverse reinforcement

learning, motion planning and robotics with their stunning grasp of mathematical concepts.

Getting to know the people at theMax Planck Institute for Intelligent Systems reinforcedmy decision

topursue research in thedirectionof autonomous learning. I especially enjoyed thedeepunderstanding,

technical discussions, and strive for novel solutions, which I experienced at Prof. Stefan Schaal’s

Autonomous Motion Department. Thank you, Stefan, for setting up the AMD and facilitating our

freedom to pursue our projects and topics! Thanks to all my colleagues, Jeanette, Nathan, Ludo,

Sebastian, Felix, Friedrich, my office-mates Alonso and Dominik, and many others at the AMD and

MPI-IS.

I found a second perspective on learning systems with Dr. Sebastian Trimpe and his Intelligent

Control Systems group, where control theory and machine learning ideas are combined. I want to

thank you for setting me up to conduct thorough and trustworthy research. I appreciate your great

eye for details, control background, and continuous discussions to figure out what is going on in our

methods and experiments.

In the last years, I found my second home in the Bosch Center for Artificial Intelligence. Thank you,

Yasser, for pulling off this AI organization at Bosch and bringing me on board. With the colleagues

and friends at Bosch, I got to experience a great mix of academic research, industrial products, and

development in-between. Thank you, Duy and Chris, for supervising my work and for pushing and

inspiringmy projects when I was stuck. Thanks to Heiner, Martin, Stefan, and all the others from BCAI,

CR, and our Bosch partners! I appreciate the fruitful discussions with Prof. Marc Toussaint and his

external views and advice on my projects!

Finally, this list would not be complete without my friends and family outside academia who

supportedmy projects, listened tomy rehearsal talks, or proofreadmy papers and publications (thanks,

Barbara!). I thank my parents, who encouraged and supported my scientific efforts right from the

beginning. Thank you to you, Sandra and Emily, for facilitating and being with me as my family in

crazy last-minute deadlines, when struggling with experiments, or going to conferences worldwide!

Andreas Doerr
Stuttgart, May 2021





Contents

Prologue 1

0 Introduction 3

1 Outline of this Work 5

2 Preliminaries 7

2.1 The Reinforcement Learning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Classes of Reinforcement Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Reinforcement Learning and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Model-Based Reinforcement Learning for Tuning of PID Controllers 17

3 Introduction 19

3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Model-Based Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Learning Multivariate PID Control 31

4.1 System State Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 PID as Static State Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Summary 47

II Learning Models for Model-Based Reinforcement Learning 49

6 Introduction 51

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Multi-Step Gaussian Process Models 61

7.1 Multi-Step Gaussian Processes for RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Probabilistic Recurrent State-Space Model 73

8.1 PR-SSMModel Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 PR-SSM Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3 Extensions for Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

III Model Assumptions in Model-Free Reinforcement Learning 85

9 Introduction 87



9.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2 Discussion on Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10 Deep-Deterministic Off-Policy Gradients 93

10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.2 Off-Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.3 Deterministic Policy Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.4 Model-Free Off-Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11 Experimental Evaluation 101

11.1 Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.2 Policy Gradient Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

12 Summary 105

Epilogue 107

13 Conclusions 109

Appendix 115

A Appendix: PILCO-PID 117

A.1 Transformation of Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . 117

B Appendix: MSGP 119

B.1 Model Learning Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Moment Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C Appendix: PR-SSM 123

C.1 PR-SSMModel Derivations and Configuration . . . . . . . . . . . . . . . . . . . . . . . . 123

C.2 Model Learning Benchmark Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D Appendix: DD-OPG 133

D.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

D.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

E Bibliography 137

F Publications 149

vi



List of Figures

1 Agent environment interaction loop. . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Reinforcement learning interaction loop. . . . . . . . . . . . . . . . . . . . . . . 7

3 Graphical model of a Markov decision process. . . . . . . . . . . . . . . . . . . 8

4 Graphical model of a partially observable Markov decision process. . . . . . . 9

5 Classes of reinforcement learning algorithms. . . . . . . . . . . . . . . . . . . . 11

6 Arrangements of dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Apollo robot for PILCO-PID experiments . . . . . . . . . . . . . . . . . . . . . 20

8 Model race car for PILCO-PID experiments. . . . . . . . . . . . . . . . . . . . . 20

9 Computations for forward predictions in PILCO-PID. . . . . . . . . . . . . . . 25

10 Perspective on contributions to the PID control output . . . . . . . . . . . . . . 26

11 Examples of possible PID control architectures. . . . . . . . . . . . . . . . . . . 27

12 Computations for forward predictions in PILCO-PID. . . . . . . . . . . . . . . 34

13 Apollo robot low-level tracking dynamics. . . . . . . . . . . . . . . . . . . . . . 38

14 Predicted and actual performance during learning. . . . . . . . . . . . . . . . . 41

15 Comparison of predicted and actual system behavior. . . . . . . . . . . . . . . 42

16 Disturbance rejection by the learned policy. . . . . . . . . . . . . . . . . . . . . 42

17 Remote controlled race car for vehicle control experiments. . . . . . . . . . . . 43

18 Target race track for learning vehicle control. . . . . . . . . . . . . . . . . . . . 43

19 RC race car vehicle control learning progress. . . . . . . . . . . . . . . . . . . . 44

20 RC race car performance for learned policies. . . . . . . . . . . . . . . . . . . . 45

21 Graphical representation of the MSGP model. . . . . . . . . . . . . . . . . . . . 63

22 MSGP model learning benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . 67

23 Apollo, a humanoid upper-body robot. . . . . . . . . . . . . . . . . . . . . . . . 69

24 Results from a robotic task with MSGP for model learning. . . . . . . . . . . . 70

25 Graphical model of the PR-SSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

26 Model predictions of the PR-SSM. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

27 Latent state initialization by PR-SSM recognition model. . . . . . . . . . . . . . 80

28 Predictions by all benchmarked methods in comparison to PR-SSM. . . . . . . 82

29 Predictions by PR-SSM on large-scale problem. . . . . . . . . . . . . . . . . . . 83

30 Incorporation of off-policy data in DD-OPG. . . . . . . . . . . . . . . . . . . . . 101

31 Benchmark results of DD-OPG learning on MuJoCo tasks. . . . . . . . . . . . 102

32 Reconstructing DD-OPG from REINFORCE baseline. . . . . . . . . . . . . . . 103

33 Influence of smoothing parameter on DD-OPG learning performance. . . . . . 104

34 Influence of exploration setting on DD-OPG performance. . . . . . . . . . . . . 104

35 Humanoid robot Apollo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

36 Learning with PR-SSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

37 DD-OPG, modeling expected cost . . . . . . . . . . . . . . . . . . . . . . . . . . 112

38 PR-SSM evaluation with full and stochastic ELBO gradient. . . . . . . . . . . . 128



39 Detailed PR-SSM results on the large-scale dataset. . . . . . . . . . . . . . . . . 129

List of Tables

1 Benchmark results for system identification tasks with MSGP. . . . . . . . . . 68

2 Benchmark results for PR-SSM on system-identification tasks. . . . . . . . . . 81

3 Synthetic datasets for MSGP benchmark experiments. . . . . . . . . . . . . . . 121

4 Real-world datasets for MSGP benchmark experiments. . . . . . . . . . . . . . 122

5 PR-SSM default hyper-parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 PR-SSM settings for benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Summary of benchmark system-identification tasks. . . . . . . . . . . . . . . . 126

8 Summary of all results from the PR-SSM system-identification benchmark. . . 131

9 Hyper-parameter settings for reference methods in DD-OPG benchmark. . . . 134

10 Hyper-parameter settings for the DD-OPG method. . . . . . . . . . . . . . . . 134

11 Information about the DD-OPG benchmark environments. . . . . . . . . . . . 135

List of Algorithms

1 Schematic Depiction of Model-Based Reinforcement Learning . . . . . . . . . 22

2 PILCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Model-free DD-OPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



Abstract

Large-scale deep Reinforcement Learning is strongly contributing to many recently published success

stories of Artificial Intelligence. These techniques enabled computer systems to autonomously learn and

master challenging problems, such as playing the game of Go or complex strategy games such as Star-
Craft on human levels or above. Naturally, the question arises which problems could be addressed with

these Reinforcement Learning technologies in industrial applications. So far, machine learning technolo-

gies based on (semi-)supervised learning create the most visible impact in industrial applications. For

example, image, video or text understanding are primarily dominated by models trained and derived

autonomously from large-scale data sets with modern (deep) machine learning methods. Reinforce-

ment Learning, on the opposite side, however, deals with temporal decision-making problems and is

much less commonly found in the industrial context. In these problems, current decisions and actions

inevitably influence the outcome and success of a process much further down the road.

This work strives to address some of the core problems, which prevent the effective use of Rein-

forcement Learning in industrial settings. Autonomous learning of new skills is always guided by

existing priors that allow for generalization from previous experience. In some scenarios, non-existing

or uninformative prior knowledge can be mitigated by vast amounts of experience for a particular

task at hand. Typical industrial processes are, however, operated in very restricted, tightly calibrated

operating points. Exploring the space of possible actions or changes to the process naively on the search

for improved performance tends to be costly or even prohibitively dangerous.

Therefore, one reoccurring subject throughout this work is the emergence of priors and model

structures that allow for efficient use of all available experience data. A promising direction is Model-
Based Reinforcement Learning, which is explored in the first part of this work. This part derives an

automatic tuningmethod for oneof themost common industrial control architectures, thePIDcontroller.

By leveraging all available data about the system’s behavior in learning a system dynamics model, the

derived method can efficiently tune these controllers from scratch.

Although we can easily incorporate all data into dynamics models, real systems expose additional

problems to the dynamics modeling and learning task. Characteristics such as non-Gaussian noise,

latent states, feedback control or non-i.i.d. data regularly prevent using off-the-shelf modeling tools.

Therefore, the second part of this work is concerned with the derivation of modeling solutions that are

particularly suited for the reinforcement learning problem.

Despite the predominant focus onmodel-based reinforcement learning as a promising, data-efficient

learning tool, this work’s final part revisits model assumptions in a separate branch of reinforcement

learning algorithms. Again, generalization and, therefore, efficient learning in model-basedmethods is

primarily driven by the incorporated model assumptions (e.g., smooth dynamics), which real, discon-

tinuous processes might heavily violate. To this end, a model-free reinforcement learning is presented

that carefully reintroduces prior model structure to facilitate efficient learning without the need for

strong dynamic model priors.

The methods and solutions proposed in this work are grounded in the challenges experienced when

operating with real-world hardware systems. With applications on a humanoid upper-body robot or

an autonomous model race car, the proposed methods are demonstrated to successfully model and

master their complex behavior.





Zusammenfassung

Hinter zahlreichen aktuellen Erfolgen von Künstliche Intelligenzer (KI) stecken Methoden des Deep Re-
inforcement Learning (DRL). Hiermit wurden Probleme gelöst, die bisher dem menschlicher Intelligenz

vorbehalten waren. Computer können nun in komplexen Problemen, wie z.B. dem Go Spiel oder

Strategie-Spielen wie „StarCraft“, menschliche Performance erreichen oder sogar übertreffen. In indus-

triellen Anwendungen ist das Potential dieser Methoden hingegen weitaus weniger ausgeschöpft. In

diesem Feld sind Erfolge von KI vorwiegend auf (semi-)supervised Lernverfahren zurückzuführen. In

den Bereichen der Bild-, Video- oder Text-Verarbeitung habenDeep-Learning (DL) Methoden klassische

Ansätze fast vollständig verdrängt. Im Gegensatz dazu beschäftigt sich Reinforcement Learning (RL) mit

zeitlichen Entscheidungsprozessen. In diesen Problemen können aktuelle Entscheidungen langfristige

Auswirkungen auf die Performance eines Systems haben.

In dieser Arbeit werden einige Kernprobleme von RL im industriellen Bereich adressiert. Grundsätz-

lich sind zum Lernen Annahmen erforderlich, um aus bisheriger Erfahrung Rückschlüsse auf ähnliche

Ereignisse zu ziehen. In manchen Anwendungen sind hierfür große Mengen an Daten verfügbar, so-

dass Lernen trotz schwacher Annahmen über die zugrundeliegenden Prozesse möglich wird. Typische

industrielle Prozesse sind diesbezüglich jedoch oft stark limitiert. Sie operieren in klar eingegrenzten

Arbeitspunkten und Abweichungen, die zum Lernen erforderlich wären, sind selten möglich, teuer

oder sogar schädlich.

Wesentliche Fragestellung in dieser Arbeit ist somit welche Annahmen effizientes Lernen ermögli-

chen. Eine vielversprechende Richtung ist modellbasiertes RL (MBRL). Der erste Teil dieser Arbeit stellt

eineMethode vor, die es ermöglicht eine dermeistverwendetsten Regler Architekturen, den PID Regler,

optimal für ein bestehendes Problem anzupassen.Mit diesenMethoden können alle verfügbarenDaten

in einemModell der Systemdynamik zusammengeführt werden. Hiermit kann der gewünschte Regler

autonom und praktisch ohne Vorwissen ideal eingestellt werden.

Obwohl Modelle der Systemdynamik alle verfügbaren Daten nutzen können, gibt es in der Pra-

xis zahlreiche Probleme bei der Modellierung realer Systeme. Typisch sind unbeobachtete Zustände,

komplexes stochastisches und korreliertes Verhalten, die oft den Grundannahmen der Modelle wider-

sprechen. Im zweiten Teil dieser Arbeit werden daher Methoden zur Modellierung abgeleitet, die auf

diese Probleme und auf die Verwendung im Kontext von RL zugeschnitten sind.

Ähnlich wie in MBRL, wird effizientes Lernen auch in anderen RL Klassen hauptsächlich durch die

verfügbaren Annahmen, wie z.B. Glattheit, bestimmt. Diese Annahmen können bei diskontinuierlichen

Systemen (z.B. Roboter die mit Gegenständen in ihrer Umgebung interagieren) unzutreffend sein und

somit den Lernprozess behindern. Als Lösung zu diesem Problem beschäftigt sich der letzte Teil dieser

Arbeitmit denModell freienRLMethoden.Mit geeignetenAnnahmenwird auch hier daten-effizienteres

Lernen ermöglicht. Hierzu stellt dieser Arbeit eine neue Methode vor, die mit möglichst wenig Modell-

Annahmen erfolgreich neues Verhalten erlernen kann.

Die Methoden und Lösungen, die in dieser Arbeit vorgeschlagen werden, sind abgeleitet aus den

Anforderungen und Besonderheiten realer Hardware. Am Beispiel eines humanoiden Roboters oder

eines autonomen Modellrennfahrzeugs, werden die Fähigkeiten der vorgeschlagenen Algorithmen

demonstriert komplexes Verhalten realer System zu modellieren und zu beherrschen.





Prologue





0Introduction
Action

Reward
Observation

Agent Environment

Figure 1: Visualization of the typ-

ical reinforcement learning interac-

tion loop between an agent and its

environment.

Learning from interactions with the environment surrounding us is

one of the most natural ways for humans to extend their abilities

and learn how to reach their goals. Reinforcement Learning (RL)

as a problem formulation tries to capture this situation in its most

general setting. An agent is interactingwith an unknown environment

by choosing from all possible action opportunities, observing some

effect, and reiterating with a potential new action given its improved

understanding of the environment. A reward signal indicates some

notion of goal fulfillment to the agent, such that ultimately, the agent

aims at maximizing its long-term, accumulated reward.

RL and, in particular, Deep Reinforcement Learning (DRL), which

employs deep Neural Networks (NNs) for learning, achieved some

impressive results in the past. Games are commonly utilized as a

benchmark and learning environment to assess the performance of

the computer’s reinforcement learning capabilities. Starting from the

early RL successes in backgammon [151], both the available compute [151] Tesauro, “Temporal difference

learning and TD-Gammon,” 1995
and the reinforcement learning tools evolved to a point where auto-

matically learned strategies could reach super-humanperformance on

more complex games, such as the ATARI video games [98]. In 2016 [98] Mnih, Kavukcuoglu, Silver, Graves,

Antonoglou, Wierstra, and Riedmiller,

“Playing atari with deep reinforcement

learning,” 2013

Deepmind’s AlphaGo defended Lee Sedol, one of the best players in

the game of go [138] and most recently, OpenAI’s RL agent defeated

[138] Silver, Huang, Maddison, Guez,

Sifre, Van Den Driessche, Schrittwieser,

Antonoglou, Panneershelvam, andLanc-

tot, “Mastering the game of Go with

deep neural networks and tree search,”

2016

the world champing in the 5 vs. 5 Dota 2 game [15].

[15] Berner, Brockman, Chan, Che-

ung, Dębiak, Dennison, Farhi, Fischer,

Hashme, and Hesse, “Dota 2 with large

scale deep reinforcement learning,” 2019

However, many of the reported successes of RL are achieved in

well-understood environments, which can be reasonably accurately

and cheaply simulated. Besides the previously mentioned game-

environments [151, 98, 138, 15] this scheme applies as well to learning

the control of physical systems, such as robots [11, 1]. The required

[11] Barth-Maron, Hoffman, Budden,

Dabney,Horgan, Tb,Muldal, Heess, and

Lillicrap, “Distributed distributional de-

terministic policy gradients,” 2018

[1] Akkaya, Andrychowicz, Chociej,

Litwin, McGrew, Petron, Paino, Plap-

pert, Powell, and Ribas, “Solving rubik’s

cube with a robot hand,” 2019

millions of system interactions, which can be obtained in large-scale,

distributed simulations, are typically infeasible to obtain on real sys-

tems due to wear-and-tear, time-, safety-, or cost-constraints.

In all the previously mentioned problems, RL was able to derive

high-performance behavioral strategies in complex, NP-hard prob-

lems, which cannot be solved optimally. Instead of manually engi-

neering heuristic strategies based on proxy objectives, RL automati-

cally strives to find an approximately optimal strategy. This benefit is

conceptually comparable to the breakthroughs in computer vision or

natural language processing, where machine learning systems largely

replaced and superseded manual feature engineering. At the same

time, RL methods are able to derive solutions that are robust to uncer-



4 | INTRODUCTION

tainties in the underlying system [153] and scale to high-dimensional [153] Tobin, Fong, Ray, Schneider,

Zaremba, and Abbeel, “Domain ran-

domization for transferring deep neu-

ral networks from simulation to the real

world,” 2017

input/output spaces [79]. A critical question in RL is how to leverage

[79] Lange, Riedmiller, and Voigtländer,

“Autonomous reinforcement learning on

raw visual input data in a real world ap-

plication,” 2012

these benefits in real-world industrial applications.

The RLproblem and the RLmethods are a superset ofmany related,

more specific problem and solution instances. For example, one can

find planning, optimal control, and system identification in typical

model-based RL concepts. Development and progress in RL can,

therefore, originate from at least two perspectives.

A first class of algorithms and concepts is concerned with improv-

ing the individual RL sub-problems and adapting these sub-methods

towards the overall setting of reinforcement learning. For example,

different notions and update rules exist to judge the value of specific

actions from data by taking more or less long-term dependencies into

account [28]. Similarly, novel modeling schemes have been presented [28]Dann,Neumann, andPeters, “Policy

evaluation with temporal differences: A

survey and comparison,” 2014

to account for uncertainty due to missing data [106]. In this work,

[106] Murray-Smith, Sbarbaro, Ras-

mussen, and Girard, “Adaptive, cau-

tious, predictive control with Gaussian

process priors,” 2003

we will present two novel schemes for modeling a system’s dynamics,

which improve the typical dynamics modeling and system identifi-

cation in RL’s direction in Part II. By exploiting the subsequent RL

problem’s structure, we can tailor these methods to obtain more data-

efficient learning in the RL setting.

As mentioned previously, the improvement of individual methods

strives tomake the best use of all available data to solve theRLproblem

without sacrificing its generality. In particular, for RL on a real-world

system, the second angle of attack is to narrow down the most general

RL framework by including specific structure and assumptions valid

for this particular domain or problem class. In this work, Sec. 7 dis-

cusses an example of a general-purpose, model-free RLmethodmade

significantly more data-efficient by exploiting an assumption over the

nature of available actions. Similarly, the method presented in Sec. 10

achieves data-efficient learning with minimal model assumptions for

a class of problems, where smoothness assumptions in action space

are valid.



1Outline of thisWork

This work is centered around the idea of identifying and improving

model-assumptions to enable efficient reinforcement learning in in-

dustrial domains. Typical questions which are discussed throughout

this work are (i) how to make the most out of available data? (ii)

where to incorporate prior knowledge? and (iii) what model assump-

tions can and should wemake? This work comprises three main parts

with the following contributions. More extensive details on the sci-

entific contributions can be found in the introduction sections of the

respective parts.

Model-BasedReinforcement Learning forTuningofPIDControllers
The first part of this work introduces an extended version of the Prob-

abilistic Inference for Learning COntrol (PILCO) [31] framework. In [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

particular, this extended version allows for the tuning of multivariate

and coupled PID controllers, which can be typically found in many in-

dustrial applications. It is demonstratedhowPIDcontrol architectures

can be seamlessly integrated into the probabilistic interpretation of the

model-based policy search methodology in PILCO. The efficiency of

the resulting method is demonstrated for robotic and automotive ap-

plications. Work presented in this part has been previously published

in

A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, and S. Trimpe.

“Model-based Policy Search for Automatic Tuning of Multivari-

ate PID Controllers.” In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 2017

LearningModels forModel-Based Reinforcement Learning
In the second part of the thesis, two novel methods Multi-Step Gaus-
sian Processes (MSGP) [39] andProbabilistic Recurrent State-Space-Models [39] Doerr, Daniel, Nguyen-Tuong,

Marco, Schaal, Toussaint, and Trimpe,

“Optimizing Long-term Predictions for

Model-based Policy Search,” 2017

(PR-SSM) [40] are presented. Both aim at learning improved long-

[40] Doerr, Daniel, Schiegg, Nguyen-

Tuong, Schaal, Toussaint, and Trimpe,

“Probabilistic Recurrent State-Space

Models,” 2018

term predictive models of the system dynamics from interaction data.

These methods are derived with the requirements of model-based RL

inmind. They address typical problems of real-world systems, such as

noise distribution and non-observed states, and leverage the structure



6 | OUTLINE OF THIS WORK

of the subsequent learning problem to improve model performance.

Work presented in this part has been previously published in

A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, M.

Toussaint, and S. Trimpe. “Optimizing Long-term Predictions

forModel-basedPolicy Search.” In: Conference onRobot Learning
(CORL). 2017, pp. 227–238

A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal,

M. Toussaint, and S. Trimpe. “Probabilistic Recurrent State-

Space Models.” In: International Conference on Machine Learning
(ICML). 2018, pp. 1280–1289

Model Assumptions inModel-Free Reinforcement Learning
The (seemingly) abundance of (model) assumptions in model-free RL

leads to impressive flexibility in learning novel skills but at the same-

time catastrophic data-efficiency. This final part of this work reintro-

duces mild model-assumptions into model-free RL to recover some

of the data-efficiency experiences in model-based methods. In this

part, Deep Deterministic Off-Policy Gradients (DD-OPG), an off-policy,

trajectory-based policy gradient method is introduced that leverages

all available trajectory data. A single model-assumption in action

space is required to learn from previous experience and judge the in-

fluence of past data. Work presented in this part has been previously

published in

A. Doerr, M. Volpp, M. Toussaint, S. Trimpe, and C. Daniel.

“Trajectory-based off-policy deep reinforcement learning.” In:

InternationalConference onMachine Learning (ICML). 2019, pp. 1636–
1645

Conclusion
This work concludes with a summary of the novel contributions pre-

sented in this thesis. Indications of the main problems and solutions

leading to the novel methods are given. A short outlook is provided

into some fundamental directions for future work.



2Preliminaries

The following sections introduce the main problem classes, nomen-

clature and preliminaries, which the three main chapters of this work

are based on. In particular, this section provides an overview on

the reinforcement learning problem in Sec. 2.1 and the types and

(dis)advantages of typical reinforcement learning methods in Sec. 2.2.

The connection between RL and (optimal) control, as well as the

nomenclature in the control literature is outlined in Sec. 2.3. Finally, a

brief introduction into Gaussian Processes and Gaussian Process Re-

gression is given, which is a main building-block of the probabilistic

models utilized throughout this work.

2.1 The Reinforcement Learning Problem

Action at

st(ot)
rt rt+1 st+1(ot)Reward

State (Observation)

Agent
π(at | st ; θ)

π(at | o0:t ; θ)

Environment
p(st+1 | st , at)

p(ot | st)

Figure 2: Visualization of the dis-

crete time interaction loop between

an agent and its environment in a

typical reinforcement learningprob-

lem.

In the following section, we formalize the general Reinforcement

Learning problem as it is most commonly used in related work and

throughout this work. Problems verymuch similar to the RL problem

are considered from the control community as well using a different

notation. This section introduces the RL perspective, whereas Sec. 2.3

presents the problems typically encountered in the classical control

setting and the respective notation.

Most of today’s RL literature is based on the repeated interactions

between an agent and and environment at discrete points in time as de-

picted in Fig. 2. In problem settings, where all information about the

current state of the system is revealed to the agent, the RL problem is

formalized in the framework of a Markov Decision Processes (MDPs).

A state s is said to fulfill the Markov property, if given the state, all

relevant information is available to predict the future development of

the system. In most real systems, only partial information about the

system’s state is available from sensormeasurements, e.g., cameras, ac-

celerometers or lidar readings. This situation is described by Partially

Observable Markov Decision Processes (POMDPs), where the system

receives a (partial) observation o from the system. The following RL

formalism mainly focuses on the MDP problem, with some pointers

to POMDPs at the end of this section. A comprehensive introduction

into RL can be found in [146]. [146] Sutton and Barto, Reinforcement
learning: An introduction, 1998



8 | PRELIMINARIES

Markov Decision Process
s0 s1 s2

a0 a1 a2

r0 r1

Figure 3: Graphical model of the

Markov Decision Process. Tran-

sitions are due to the policy

π(at | st; θ) ( ), system dynam-

ics p(st+1 | st, at) ( ), and reward

function r(st, at) ( ).

TheMarkovDecisionProcess (MDP) isdefinedbya5-tuple (S ,A, p, r, p0).

The agent interacts with the environment by taking an action at from

a set of all possible actionsA in timestep t. The environment is in state

st out of all possible states S . Following the (probabilistic) dynamics

of the environment, the distribution of the next state st+1 is distributed

according to p(st+1 | st, at). The agent typically starts in a fixed initial

state s0 = δ(s) or a distribution thereof, e.g., s0 ∼ p0(s).
The agent decides on future actions based on the current state

of the system st according to its policy. This policy can either be a

deterministic mapping of states to actions

at = µ(st) , (1)

or adistributionofpossible actions,where one concrete action instance

is sampled from

at ∼ π(· | st) (2)

For the purpose of learning, policies are most commonly represented

by parametrized function approximators. In cases with finitely many

states and actions, tabular policies are possible, such that each pa-

rameter corresponds to one table entry. In more complex environ-

ments with larger number or potentially infinitely many states and

actions, continuous function approximators are used. For example,

linear feature-based [118], radial basis function networks (RBF) [33], [118] Peters and Schaal, “Reinforcement

learning of motor skills with policy gra-

dients,” 2008

[33] Deisenroth, Fox, and Rasmussen,

“Gaussian processes for data-efficient

learning in robotics and control,” 2015

or (deep) neural networks (DNNs) [98] are typically employed. We

[98] Mnih, Kavukcuoglu, Silver, Graves,

Antonoglou, Wierstra, and Riedmiller,

“Playing atari with deep reinforcement

learning,” 2013

denote a policy with parameters θ as µθ in the deterministic case or

πθ in case of a probabilistic policy.

From the interaction of an agent with the environment as depicted

in Fig. 2, a continuous stream of states and actions is generated, which

we call a trajectory τ.

τ = (s0, a0, s1, a1, . . .) (3)

In cases where a parametrized policy is executed, we denote the

trajectory as τθ to indicate the dependency from the policy param-

eters. Given the initial state distribution ρ0(s0), the system dynamics

p(st+1 | st, at) and policy πθ(at | st), the distribution over trajectories

of length T is given by

p(τ | θ) = ρ0(s0)
T−1

∏
t=0

p(st+1 | st, at)π(at | st) (4)

The graphical model of the agent-environment interaction and the

resulting trajectory distribution is shown in Fig. 3. Computing the tra-



THE REINFORCEMENT LEARNING PROBLEM | 9

jectory distribution is non-trivial and typically not possible in closed-

form. This is due to the complex distributions arising from typi-

cal (unknown) non-linear transition models and non-linear policies.

Throughout this thesis we will explore different techniques to effi-

ciently but approximately compute this integral (e.g. using moment

matching in Part I and chapter 7 or sampling in chapter 8). Alterna-

tively, methods will be discussed that directly estimate statistics based

on this distribution using trajectory samples only (cf., chapter 10).

The agent receives an (immediate) reward rt in each timestep ac-

cording to the reward function rt = r(st, at)1. The goal of the agent is 1
Reward functions might be defined as

well as r(st, at, st+1]) or r(st) depending
on the context.

to maximize the cumulative reward which is called return R(τ).

R(τ) =
T

∑
t=0

γtrt (5)

Depending on the problem, a finite or infinite horizon T might be

employed. The discounting factor γ ∈ (0, 1] is a design element in

RL to decide how much short term reward is favored over long term

rewards.

Based on the trajectory distribution (4) and a trajectory’s return (5),

the goal of the RL agent can be formalized asmaximizing the expected

return as given by

J(θ) =
∫

τ
p(τ | θ)R(τ)dτ = E

τ∼p(τ|θ)
[R(τ)] (6)

Thus, the RL strives to find the optimal policy π∗ = π(θ∗), which

solves

θ∗ = arg max
θ

J(θ) . (7)

s0 s1 s2

o0 o1 o2

a0 a1 a2

r0 r1

Figure 4: Graphical model of a Par-

tially Observable Markov Decision

Process. Additionally to the MDP

in Fig. 3, the observation model

p(ot | st) ( ) is depicted. As in-

dicated in the model, the policy in

a POMDP is potentially influenced

by all previous observations and ac-

tions π(at | o0:t, a0:t−1; θ) ( ).

Partially ObservableMarkov Decision Process
In many real-world, e.g., industrial problems, full state information

cannot be achieved due to the cost of sensors or complexity of the

system. Instead, only some parts of the system are measured, e.g., a

vehicle position. Other states, such as the vehicle’s velocity, need to

be inferred. This situation is captured by Partially Observable Markov
Decision Processes (POMDPs), where the agent only obtains observa-

tions ot of the full state st according to some conditional observation

distribution p(ot | st). The graphicalmodel of a agent-environment in-

teraction in the POMDP setting is depicted in Fig. 4. Typical problems

arising from this abundance of true, Markovian state information in

real-world applications are discussed in Sec. 6.3.



10 | PRELIMINARIES

In contrast to the MDP case, the agent’s policy typically needs

to incorporate information from previous observations and actions,

to recover the missing state information. Thus, the action distribu-

tion is typically conditioned on the full, past interaction, i.e. π(at |
o0:t−1, a0:t−1). In some POMDP algorithms, the notion of a belief

state bt is introduced, which captures all information from previous

interactions, i.e., the agent maintains a belief of what the actual sys-

tem’s state st could be in form of a internal believe state distribution

p(bt | o0:t−1, a0:t−1). Similarly,methods in thisworkwill derive a latent

state, which captures the underlying true state-information. These

model-learning methods are discussed in Sec. 7 and Sec. 8.

2.2 Classes of Reinforcement LearningMethods
This section presents an overview of different classes of RL algorithms.

The main modeling problem in each of the RL classes is highlighted,

which raises the question of where and how to employ model as-

sumptions to learn efficiently. Each class of RL methods poses unique

challenges and opportunities to incorporate model knowledge when

applied to a real, industrial problem. The main part of this work will

be concerned with model assumptions in the first two classes of RL

methods.

Most of today’s Reinforcement Learning algorithms are designed

around theMDP or POMDP formalism as defined in Chap. 2.1. There-

fore, the input to these algorithms is given by time-discrete interaction-

data-tuples (st, at, rt, st+1). Furthermore, these algorithms are usually

aiming to derive an optimal policy π∗(a | s; θ). This policy is a state-

feedback controller, which decides on an action a (or a distribution

thereof) for each system state s. Such a policy is parametrized by

parameters θ ∈ Rp
. Thus, all the discussed methods belong to the

domain of Policy Search (PS) methods [34]. The RL problem is re- [34] Deisenroth, Neumann, and Peters,

“A survey on policy search for robotics,”

2013

duces from finding the optimal functional dependency to locating the

optimal set of policy parameters θ∗.
Ultimately, all RL algorithms need to incorporate the available in-

teraction data into a learning rule to select an improved policy. His-

torically, a broad range of methods evolved around different possible

model assumptions. Most notably, three main branches of work cor-

respond to three different modeling problems in which data can be

incorporated. A simplified view of this RL methodology cosmos is

depicted in Fig. 5
2
.

2
Credit for RL landscape overview and

visualization to Prof. Marc Toussaint



CLASSES OF REINFORCEMENT LEARNING METHODS | 11

data
{(st , at , rt , st+1)}

model
p(st+1 | st , at)

r(st , at)

value
V(st), Q(st , at)

policy
π(at | st ; θ)

Mode
l lear

ning

(Syst
em id

entifi
catio

n) Q/TD learning

DirectpolicysearchDynamic programming
Planning(Optimal control) Actio

n sele
ction

Figure 5: Simplifieddepiction of the

main algorithm categories in the re-

inforcement learning realm. Given

interaction data (state, action, re-

ward, next state) from an agentwith

an environment, the ideal policy

should be inferred.

Model-Based RL
A first branch of RL methods centers around a (probabilistic) model

p̂ of the system’s true dynamics, e.g., p(st+1 | st, at) in case of an

MDP. This regime is most related to the field of optimal control since,

subsequently, typical techniques such as model-based planning and

optimization of finite-horizon costs/reward are employed. A signif-

icant portion of methods in this branch of control literature deals

with elementary models, such as linear or linear Gaussian [20] mod- [20] Burl, Linear optimal control: H (2) and
H (Infinity) methods, 1998

els. This restriction enables analytic, closed-form solutions to policy

search problem. One such example is the Linear Quadratic Regulator

(LQR) [3] dealing with linear models and quadratic cost terms. Many [3]Anderson andMoore,Optimal control:
linear quadratic methods, 2007

mechanical systems are designed to exhibit close to linear behavior

around a specific operating point. Therefore, strong smoothness as-

sumptions such as linear models or standard variants of GP models

demonstrate impressive generalization capabilities from only a few

data-points.

Restricting the class of models to linear models is, however, a too

strong assumption for many non-linear, real-world problems. There-

fore, a multitude of different, more flexible, models have been pro-

posed formodel-basedRL.Ranging from linear-Gaussian-models [83], [83] Levine and Koltun, “Guided Policy

Search,” 2013
to Gaussian processes [35], and deep neural network models [54], the

[35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

[54] Gal, McAllister, and Rasmussen,

“Improving PILCOwith Bayesian neural

network dynamics models,” 2016

amount of required data to learn a new task clearly increases with

the flexibility of the employed models. A good overview of current

model-based RL methods is provided in [99] and a benchmark with

[99] Moerland, Broekens, and Jonker,

“Model-based reinforcement learning:

A survey,” 2020

state-of-the-art MBRL methods can be found in [80]. In this work,

[80] Langlois, Zhang, Zhang, Abbeel,

and Ba, “Benchmarkingmodel-based re-

inforcement learning,” 2019

methods in the realm of model-based RL are discussed in part I and

part II. The first discusses model-based RL as a data-efficient tool for

tuning PID control architectures in the context of continuous control.

In this part (cf. Sec. 3.3), a more detailed overview of model-based RL

and related work is provided. The second part focuses on exploiting



12 | PRELIMINARIES

the RL problem’s structure to improve the performance of learned

dynamics models for this specific use-case.

Model-Free RL
The second branch of methods directly operates on the expected re-

turn J (cf. (5)) from executing a policy π on the system. Therefore,

these methods model in the space of J(θ), which is the expected re-

turn given the specific policy parameters. Typical representatives of

these methods are Evolutionary Strategies (ES) [150], Bayesian Opti- [150] Szita and Lörincz, “Learning Tetris

using the noisy cross-entropy method,”

2006

mization (BO) [90], and Policy Gradient (PG) [169] methods. Similar

[90] Marco, Hennig, Bohg, Schaal, and

Trimpe, “Automatic LQR Tuning Based

on Gaussian Process Global Optimiza-

tion,” 2016

[169] Williams, “Simple statistical

gradient-following algorithms for

connectionist reinforcement learning,”

1992

to the model-based methods, it is again eminent how strong model-

assumptions are and how well these assumptions fit the true depen-

dency J(θ) for data-efficient learning. Irrespectively, these methods

are inherently restricted in their data-efficiency by only incorporating

summary statistics (i.e., the expected return) of all available interac-

tion data. There exist, however, methods to alter the utilized summary

statistic and reintroduce structure from the MDP/POMDP problem

to improve on data-efficiency. Examples of that can be found predom-

inantly in PG [67] methods, but also in BO [170]. Part II of this work [67] Jie and Abbeel, “On a connection

between importance sampling and the

likelihood ratio policy gradient,” 2010

[170] Wilson, Fern, and Tadepalli, “Us-

ing trajectory data to improve Bayesian

optimization for reinforcement learn-

ing,” 2014

deals with model-assumptions in the so-called model-free world of

PG methods.

Value-Based RL
Instead ofmodeling the expected return for an initial state distribution

p(s0), the third branch of RL algorithms builds uponmodels of the ex-

pected value for a specific state or state-action-tuple. These algorithms

model the state or state-action value function. Similar considerations

about the specification of model assumptions apply in this domain as

well. However, it is muchmore involved to specify meaningful model-

assumptions in this space. Assumptions for value-functions would

need to include the long-term interplay of policy, system dynamics

and reward function for arbitrary query points. Thus, most state-of-

the-art value-function methods revert back to very flexible, but thus

data-inefficient function approximators, such as tables (in discrete

state/action spaces) [164] or neural networks (for large-scale, continu- [164] Watkins and Dayan, “Q-learning,”

1992
ous problems) [98, 156]. Interestingly the relation between structure

[98] Mnih, Kavukcuoglu, Silver, Graves,

Antonoglou, Wierstra, and Riedmiller,

“Playing atari with deep reinforcement

learning,” 2013

[156] Van Hasselt, Guez, and Silver,

“Deep reinforcement learning with dou-

ble q-learning,” 2016

and model-assumptions in the system dynamics, cost, or policy space

to structure and assumptions in the value function domain is largely

unexploited by current state-of-the-art methods.



REINFORCEMENT LEARNING AND CONTROL | 13

2.3 Reinforcement Learning and Control
This work builds heavily on concepts and methods in the field of

model-based RL and model learning. Despite the renewed interest in

these methods in the RL community, in particular associated with the

recent surge of model-based deep RL, both fields are actually much

more established in the control community. With finite-horizon opti-

mal control [84] and system identification [88], two well established [84] Lewis, Vrabie, and Syrmos, Optimal
control, 2012

[88] Ljung, “System identification,” 1998

fields of research exist in the control community which capture very

much similar problems. In this section, we try to briefly highlight

the similarities but also the differences between the communities to

enable a shared appreciation of existing but also novel contributions

from both control and RL community.

Control is an engineering discipline concernedwith the behavior of

dynamical systems andmethods to influence their behavior by choosing

inputs to the systems appropriately. A dynamical systems is character-

ized by behavior which changes over time and is possibly influenced

by external inputs. Typically, multiple dynamical systems are com-

bined by feeding some output of one system to the input of the second

system. This relation is depicted in Fig. 6. In cases where the out-

put of the second system influences the input of the first system, a so

called closed-loop is established. In contrast, if no connection exists,

an open-loop system is formed.

(a) Open-loop system.
(b) Closed-loop system.

Figure 6: Typical arrangement of

two dynamical systems in control.

(a) Open loop system: a reference r
influences the first system, which in

turn influences the output of the sec-

ond system y by choosing an input

u. (b) In a feedback arrangement,

the output of the second system y
additionally influences the input to

the first system. Figure from [9].

In control, typically, the first system is aman-made controllerwhich

is designed to influence the behavior of some existing (physical) sys-

tem. This arrangement is called feedback control, since changes in

the behavior of the second system will be feedback into the controller

(system 1) and thus influence the future control behavior in a circular

pattern. This feedback loop is structurally identical to the typical RL

learning loop depicted earlier in Sec. 2.1, where an agent with some

policy acts to influence a (unknown) system.

The study of dynamical systems and control theory predates much

of the work in RL. It is thus worthwhile to understand both fields

and their perspectives on the problem. The following is an attempt to

contrast the commonly used problem formulation in RL with the one

from control. This is to get a better understanding of the respective

nomenclature in both fields and make the similarities in the underly-

ing problems apparent. It is remarked that different problem settings

and formulations exist in both fields, which extend these basic prob-



14 | PRELIMINARIES

lem setting. For example, the presented modeling schemes in Sec. 7

and Sec. 8 is based onpreviouswork in auto-regressive and state-space

models as known from the system identification community [17, 109]. [17] Billings, Nonlinear system identifica-
tion: NARMAX methods in the time, fre-
quency, and spatio-temporal domains, 2013

[109] Nelles, Nonlinear system identifica-
tion: from classical approaches to neural net-
works and fuzzy models, 2013

The field of control is concerned with analyzing properties of dy-

namical system, such as observability, reachability, or stability. To

make statements about these properties, models of the system need to

be available. Much of control is thus based on physical, first-principle

models, which derive the behavior of dynamical systems as ordinary

differential equations (ODEs). This perspective usually results in con-

tinuous time models in the form of

dx
dt

= f (x, u), y = h(x, u) . (8)

In this equation, the state of a system is characterized by a vector x of

state variables. The input to the system is similarly defined by a vector

of input variables u. The continuous change in the system state can be

described by a first-order ODE given the function f (·, ·). Finally, the
actually observed quantities y are given based on some observation

mapping h(·, ·). This model is called continuous-time, state-space

model, since the current state of the system is fully captured in the

state vector x. Despite the time continuous formulation, time discrete

descriptions of a system can be derived given appropriate integration

techniques, which results in

xt+1 = fd(xt, ut), yt = h(xt, ut) . (9)

with a time-discrete description of the system dynamics fd(·, ·). From
(9) it is straight forward to find the parallels to the POMDP system

description in RL as defined in Sec. 2.1.

Not only the system description, but also the objective in classical

control is very comparable to the one in RL. One branch of control

deals with problems, where minimal cost should be incurred when

operating a system over some time horizon T. This branch is called

optimal control and the main objective is given by

J =
∫ T

0
L(x(t), u(t), t]dt (10)

s.t.

ẋ(t) = f (x(t), u(t)) . (11)

Again, the resemblance to the RL objective in 2.1 is apparent.

Despite the strong similarities between RL and control problem set-

ting and objective, both fields tend to operate on different assumptions

and thus emphasis different parts of the problem.



GAUSSIAN PROCESSES | 15

system knowledge - In RL, the system is typically unknown to

the agent. The task of the agent is thus to explore the system suf-

ficiently well to learn about how to operate the system and maximize

its reward. This perspective results in the RL typical exploration-

exploitation trade-off. The agent, lacking prior information about the

system, needs to explore to solve the task, but at the same time needs

to exploit its knowledge to choose optimal actions. If models of the

system are incorporated in RL, these models are typically learned

from data and tend to incorporate some probabilistic formulation to

capture uncertainty about the true nature of the system and stochastic-

ity that might be inherent to the system. In contrast, models in control

are typically derived prior to the design of a controller. Despite the

broad range of model types, ranging from white, gray, to black-box

models, typically simplified first-principle-based models are utilized

for control design.

objective - Control theory developed a broad range of tools to ana-

lyze and understand the behavior of a dynamical system. Objectives

such as observability, reachability and stability can thus be analyzed

using classical control theory, which are not directly accessible by the

accumulated reward objective in RL. There is a trade-off between the

optimization of an behavior for a specific situation (or range of situ-

ation) as in RL or optimal control and understanding fundamental

properties of a system, given the assumption of an simplified, ap-

proximate model. RL might claim to solve the underlying problem

by optimizing the true objective. However, specifying the real objec-

tive is a hard problem for real systems, leading to sub-problems like

reward-shaping and research fields like inverse RL and learning from

demonstration.

2.4 Gaussian Processes
A Gaussian Process (GP) [168] is a distribution over functions f : [168]Williams and Rasmussen, Gaussian

processes for machine learning, 2005RD → R that is fully defined by a mean function m(·) and covariance

function k(·, ·). For each finite set of points X = [x1, . . . , xN ] from

the function’s domain, the corresponding function evaluations f =

[ f (x1), . . . , f (xN)] are jointly Gaussian as given by

p( f | X) = N ( f | mX , KX,X) , (12)

with mean vector mX having elements mi = m(xi) and covariance

matrix KX,X with entries Kij = k(xi, xj). Given observed function



16 | PRELIMINARIES

values f at input locations X, the GP predictive distribution at a new

input location x∗ is obtained as the conditional distribution

p( f ∗ | x∗, f , X) = N ( f ∗ | µ, σ2), (13)

with posterior mean and variance

µ = mx∗ + kx∗ ,XK−1
X,X( f −mX) , (14)

σ2 = kx∗ ,x∗ − kx∗ ,XK−1
X,XkX,x∗ , (15)

where kA,B denotes the scalar or vector of covariances for each pair of

elements in A and B. In this work, the squared exponential kernel

with Automatic Relevance Determination (ARD) [168] with hyper- [168]Williams and Rasmussen, Gaussian
processes for machine learning, 2005

parameters θ
GP

is employed.

Commonly, the GP prediction in (13) is obtained by conditioning

on all training data X, y. To alleviate the computational cost, several

sparse approximations have been presented [142]. By introducing [142] Snelson and Ghahramani,

“Sparse Gaussian processes using

pseudo-inputs,” 2006

P inducing GP targets z = [z1, . . . , zP] at pseudo input points ζ =

[ζ1, . . . , ζP], which are jointly Gaussian with the latent function f , the
true GP predictive distribution is approximated by conditioning only

on this set of inducing points,

p( f ∗ | x∗, f , X) ≈ p( f ∗ | x∗, z, ζ) , (16)

p(z) = N (z | mζ , Kζ,ζ) . (17)

The predicted function values consequently become mutually inde-

pendent given the inducing points.



Part I

Model-Based Reinforcement Learning for
Tuning of PID Controllers





3Introduction

Studies about feedback control in the refining, chemicals, and pulp

and paper industries reveled that 97% of the deployed controllers

involved some sort of PID feedback control scheme [38]. Even though [38] Desborough andMiller, “Increasing

customer value of industrial control per-

formance monitoring—Honeywell’s ex-

perience,” 2001

more complex control concepts, such as Model Predictive Control

(MPC) are increasingly adopted in the industry [123], PID is clearly the

[123]Qin andBadgwell, “An overviewof

industrial model predictive control tech-

nology,” 1997

predominant control algorithm in low-level, regulatory controllers.

Despite the low number of open parameters in PID control, tun-

ing multiple coupled controllers in multi-input multi-output (MIMO)

systems, can become tedious in practice. The goal in this first part is

to leverage the benefits of Reinforcement Learning for fast and auto-

matic tuning of PID controllers. In this work, we extend Probabilistic

Inference for Learning COntrol (PILCO) [31], a framework for iterative [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

improvement of controllers based on the expected finite horizon cost

as predicted from a learned system model. This model is learned in a

fully Bayesian setting using Gaussian Process Regression (GPR) as a

non-parametric function estimator [76]. Gaussian Processes (GPs) as [76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

probability distributions over a function space provide a prediction

and an uncertainty measure of the process dynamics. The uncer-

tainty component can be utilized to implement cautious control [106] [106] Murray-Smith, Sbarbaro, Ras-

mussen, and Girard, “Adaptive, cau-

tious, predictive control with Gaussian

process priors,” 2003

or trigger further exploration to improve the model knowledge [105].

[105]Murray-Smith and Sbarbaro, “Non-

linear adaptive control using non-

parametric Gaussian process prior mod-

els,” 2002

As controller tuning is based on the full non-linear system model,

this framework takes into account all process couplings for controller

tuning. In contrast to some of the related PID tuning techniques,

which are most commonly limited to SISO or multi-loop problems,

this framework imposes no structural restrictions on the multivariate

PID control design.

PILCO has been successfully applied to reinforcement learning

tasks, such as the inverted pendulum swing-up [31], the control of low-

cost manipulators [35], and some real-world applications like throttle [35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

valve control [18]. These examples focus mostly on non-linear state

[18] Bischoff, Nguyen-Tuong, Koller,

Markert, and Knoll, “Learning Throttle

ValveControlUsingPolicy Search,” 2013

feedback policies. In industrial applications, however, it is desirable

to obtain interpretable control designs, which is the case for PID con-

trol structures rather than for arbitrarily complex non-linear control

designs.

The main portion of the presentation in this part of the thesis has

been previously published as

A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, and S. Trimpe.

“Model-based Policy Search for Automatic Tuning of Multivari-



20 | INTRODUCTION

ate PID Controllers.” In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 2017

Additional experimental results from applying PILCO-PID to the

problem of learning control of an model race car are based on work

conducted in amaster thesis project, which has been supervised in the

context of this PhD research. The master thesis work on PILCO-PID

for gain-scheduled PID control has been previously published in

M. Lefarov. “Model-Based policy Search for Learning Multi-

variate PID Gain Scheduling Control.” MA thesis. University

of Stuttgart, Apr. 2018

3.1 Contributions

Figure 7: The humanoid upper-

body robot, Apollo, is balancing

an inverted pendulum. Using the

proposed framework, coupled PID

and PD controllers are trained to

stabilize the pole in the central,

upright position without requiring

prior knowledge of the pendulum

system dynamics.

Figure 8: The ability of PILCO-PID

to automatically tune strongly cou-

pled PID controllers on a highly

non-linear system is demonstrated

by learning to drive at the friction

limits of a model race car.

In this part, we propose PILCO-PID as a novel, general framework for

automatized and data-efficient tuning of multivariate PID controllers.

In particular, the main benefits of the developed PILCO-PID frame-

work are

• Applicability to non-linearMIMOsystemswith arbitrary couplings.

• Tuning of arbitrary multivariate PID structures.

• Consistent treatment of model uncertainty for PID tuning without

prior system knowledge.

• No process model required.

The auto-tuning method is demonstrated in pole balancing experi-

ments on Apollo, a complex robot platform as shown in Fig. 7. Ex-

tensions to GP-NARX system models are demonstrated to cope with

typical problems on real systems, such as imperfect low-level tracking

controllers and unobserved dynamics. As a second, real-world exam-

ple, the PILCO-PID algorithm is demonstrated to efficiently learn to

control a model race car, as shown in Fig. 8, close to its friction limits.

3.2 Outline
This part starts by introducing the two fundamental building blocks

of PILCO-PID: model-based reinforcement learning algorithms in

Sec. 3.3 and PID control in Sec. 3.4. The main ideas and flavors of

model-based reinforcement learning, related work and its relevance

for data-efficient learning are presented in Sec. 3.3. This is an exten-

sion to the discussion on classes of RL methods in Sec. 2.2. PILCO as

one specific representative of this type of data-efficient, model-based

RL algorithm is detailed in Sec. 3.3.1. Section 3.4 is a primer on PID



MODEL-BASED REINFORCEMENT LEARNING | 21

control and tuning methods. Related work from the field of classical

control in tuning PID control is discussed in Sec. 3.4.2.

The proposed multivariate PILCO-PID framework is developed in

Sec. 4. Section 4.3 presents the results of applying the framework for

tuning coupled PID controllers on the Apollo robot and on a model

race car. Finally, this part is concludedwith remarks and propositions

for future work in Sec. 5.

3.3 Model-Based Reinforcement Learning
The following section is a short summary of directions and related

work in the Model-Based Reinforcement Learning (MBRL) realm. In

MBRL, we use all available interaction data (st, at, rt, st+1), to learn

a model p̂(st+1 | st, at) of the true, underlying system dynamics

p(st+1 | st, at). This model can then be utilized together with the

policy π(at | st; θ) to simulate the system behavior over an horizon

T. This simulation is started at a deterministic state s0 or from a

sample from the initial state distribution s0 ∼ p(s0). With these com-

ponents, we can sample trajectories τ = (s0, a0, s1, a1, . . . , sT , at) by

at ∼ π(a | st; θ) and st+1 ∼ p(st+1 | st, at). Alternatively, the full

distribution of future states and actions can be computed as

p(s0:T , a0:T) = p(s0)
T

∏
t=0

p(st+1 | st, at)π(at | st; θ) . (18)

Model-based methods are currently gaining interest in the RL com-

munity due to empirical evidence of data efficiency [69, 99], [147, Ch. [69] Kaiser, Babaeizadeh, Milos, Osin-

ski, Campbell, Czechowski, Erhan, Finn,

Kozakowski, and Levine, “Model-based

reinforcement learning for Atari,” 2019

[99] Moerland, Broekens, and Jonker,

“Model-based reinforcement learning:

A survey,” 2020

8] over the predominant value or policy-gradient based RL methods

[147] Sutton and Barto, Reinforcement
learning: An introduction, 2018

(cf. Sec. 2.2). There are some clear advantages of constructing a model

of the system dynamics to learn from the interaction data. All avail-

able data can be integrated into the model, no matter if data was

collected on- or off-policy, i.e., with the current policy or any other

policy. Similarly, data across multiple tasks can be incorporated as

long as the underlying system remains unmodified. This is in contrast

to policy gradient or value function methods, where additional effort

is required to integrate off-policy data or data from a different tasks.

Furthermore, much of domain-specific prior knowledge usually exist

in the form of physical, i.e., first-principle dynamics models and can

potentially be integrated and combined with data-based models. The

model allows us to gain interpretable insights into future system be-

havior and is thus much more accessible to a human operator, e.g., in

comparison to a value function estimate. Finally, but maybe most im-

portantly, many physical systems exhibit great smoothness properties,

thus enabling strong generalization in model-space given only a few

data-points.



22 | INTRODUCTION

Algorithm 1: Schematic Depiction of Model-Based Reinforcement Learning

Input: Initial policy parameters θ0

Empty data buffer D
repeat
Execute policy πθ

Update data buffer D with new trajectory τ

Learn dynamics model from data D
repeat
Simulate system with dynamics model and policy

Compute expected return J(π)

Improve policy π

until Simulated performance converged (or max. iterations)

until Real performance converged (or max. iterations)

Despite these benefits of model-based RL, several problems limit

the common adoption of model-based methods so far. Complex sys-

tems are typically much harder to model solely from observed data.

Some of these problems will become apparent in the experiments con-

ducted in this part. Solutions for improvedmodel-learning techniques

will be presented in Part II of this work together with a discussion on

typical model learning obstacles in real-world systems in Sec. 6.3.

A schematic depiction of a typical MBRL algorithm is presented in

Alg. 1. In most MBRL algorithms, there exist an outer loop, where we

interact with the system to gather newdata andwherewe improve the

system dynamics model. In the inner loop, we subsequently improve

the policy based on the available model- and data-knowledge. This

scheme is then iterated till convergence. Based on this general scheme,

many different MBRL algorithms have been established. The main

differentiating factors are a) what kind of model is employed, b) how

this model is employed and c) how a policy update is computed.

model type Many model-based methods in control and RL rely on

deterministic models, i.e. st+1 = f (st, at). Additionally, most state-of-

the-art methods involve probabilistic models to capture stochasticity

in the system and uncertainty about the precise nature of the model.

Other degrees of freedom in the modeling are given by the model

structure, model prediction and model training. Many model archi-

tectures, ranging from local linear models [61], Gaussian Processes [61] Gu, Lillicrap, Sutskever, and

Levine, “Continuous deep q-learning

with model-based acceleration,” 2016

(GPs) [35], or Neural Networks (NN) [54], have been explored in the

[35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

[54] Gal, McAllister, and Rasmussen,

“Improving PILCOwith Bayesian neural

network dynamics models,” 2016

literature. These models can predict single steps ahead, e.g. st+1 or

capture full future trajectories st+1:t+N at once. Finally, many training

schemes and objectives have been derived to fit the model parameters

optimally to the available data. Options are one- or multi-step predic-

tions to minimize some sort of prediction error, e.g., least squares or

maximum likelihood. The Gaussian Process regression formalism as

[76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005



MODEL-BASED REINFORCEMENT LEARNING | 23

deployed in the proposed PILCO-PID framework is a fully Bayesian

scheme to account for uncertainties due to complex system dynam-

ics or missing data. It is most commonly trained for one-step-ahead

predictions [76] however extensions of these models to long-term pre-

dictions and latent-space models are presented later in this work, as

well as in [162]. [162] Wang, Hertzmann, and Fleet,

“Gaussian process dynamical models,”

2005

[57] Girard and Rasmussen, “Multiple-

step ahead prediction for non linear dy-

namic systems–a gaussian process treat-

ment with propagation of the uncer-

tainty,”

[22] Candela, Girard, Larsen, and Ras-

mussen, “Propagation of uncertainty in

Bayesian kernel models-application to

multiple-step ahead forecasting,” 2003

[107] Nagabandi, Kahn, Fearing, and

Levine, “Neural network dynamics for

model-based deep reinforcement learn-

ing with model-free fine-tuning,” 2018

[160] Vinogradska, Bischoff, Achterhold,

Koller, and Peters, “Numerical quadra-

ture for probabilistic policy search,”

2018

[145] Sutton, “Integrated architectures

for learning, planning, and reacting

based on approximating dynamic pro-

gramming,” 1990

[61] Gu, Lillicrap, Sutskever, and

Levine, “Continuous deep q-learning

with model-based acceleration,” 2016

[46] Feinberg, Wan, Stoica, Jordan, Gon-

zalez, and Levine, “Model-based value

estimation for efficient model-free rein-

forcement learning,” 2018

[78] Kurutach, Clavera, Duan, Tamar,

and Abbeel, “Model-ensemble trust-

region policy optimization,” 2018

[113] Pascanu, Li, Vinyals, Heess,

Buesing, Racanière, Reichert, Weber,

Wierstra, and Battaglia, “Learning

model-based planning from scratch,”

2017

[126] Racanière, Weber, Reichert,

Buesing, Guez, Jimenez Rezende,

Puigdomènech Badia, Vinyals, Heess,

and Li, “Imagination-augmented agents

for deep reinforcement learning,” 2017

[80] Langlois, Zhang, Zhang, Abbeel,

and Ba, “Benchmarkingmodel-based re-

inforcement learning,” 2019

model utilization A second perspective on MBRL originates from

the way the model is employed to predict future system behavior. In

particular, differences are based on howmuch the model is predicting

into the future and how probabilistic models and their predictive

distributions are computed. In particular non-linear, probabilistic

models cause highly complex predictive distributions. Only for very

simplified systems, e.g., linear system models and Gaussian noise,

long term predictive distributions maintain an analytically tractable

form. Both the model structure and policy structure might cause

more complex distributions, which in turn requires approximation.

Typically methods are based on linearization [57], moment matching

[22], sampling [107] or numerical integration [160].

policy update The third dimension of differences in model-based

RL methods is along with the utilization of the model and the model-

predictions in the policy update. In particular, some models are used

as a black-box simulator, whereas others are employed as a differ-

entiable dynamics model. With the black box simulator, interactions

with themodel are possible very similar to the interactionwith the real

environment. This is, trajectory sequences can be generated for poli-

cies. Thus, any standard RL method can be deployed on this model-

based rollout data, whichh is sometimes called hallucinated data. Also,

combinations of real and hallucinated data can be incorporated in dif-

ferent parts of theMBRLmethod to achieve a trade-off betweenmodel

and real system. The Dyna algorithm is one of the earliest examples of

utilizing a learnedworldmodel to generate data, which is then used in

another model-free RLmethod [145]. Other examples can be found in

[61], which utilizes data from local linear models to accelerate model-

free RL, [46] where hallucinated data is used for value updates, or [78]

where model-based trajectories are employed in trust-region policy

gradient methods. Alternatively, models and model-predictions can

potentially be made differentiable and thus enable the computation of

gradients, i.e. δst+1/δat or δst+1/δst. Instead of estimating the policy

gradient with standard RL frameworks, these gradients can facilitate

the direct computation of the policy gradient. Since gradient infor-

mation is propagated through the full rollout horizon, this method

is called Backpropagation Through Time (BPTT). Somewhat orthog-

onal, instead of manually designing how to utilize the model within



24 | INTRODUCTION

an algorithm, the agent itself can learn how to use model predictions

within the policy, as demonstrated in [113] and [126].

An attempt to benchmark current state-of-the-art MBRL methods

has been published by [80]. A full survey on current MBRL methods,

which reviews model learning techniques and model-based planing

can be found in [99]. [99] Moerland, Broekens, and Jonker,

“Model-based reinforcement learning:

A survey,” 2020

3.3.1 PILCO
In this work, we will focus on the PILCO framework [35]. For PILCO, [35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

the model is a probabilistic, Gaussian Process model (cf. 2.4), which

allows for a Bayesian treatment of model uncertainty to capture the

one-step-ahead predictive distribution [76]. A moment matching ap-
[76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

proximation allows to analytically compute the Gaussian marginal

distribution for each predicted state, such as to match the moments

of the true, non-Gaussian, predictive distribution. Thus, a multi-step

predictive distribution is available [58]. Due to the nature of the Gaus- [58] Girard, Rasmussen, Quinonero-

Candela, Murray-Smith, Winther, and

Larsen, “Multiple-step ahead predic-

tion for non linear dynamic systems—a

Gaussian process treatment with propa-

gation of the uncertainty,” 2003

sian Process and the moment matching approximation, BPTT can be

computed in closed form. This allows for efficient policy updates

using gradient-based optimization.

For the PILCO-PID framework, we consider discrete time dynamic

systems of the form

xt+1 = f (xt, ut) + εt , (19)

with continuously valued state xt∈RD
and input ut∈RF

. The system

dynamics f is not known a priori. We assume a fully measurable

state, which is corrupted by zero-mean independent and identically

distributed (i.i.d.) Gaussian noise, i.e. εt∼N (0, Σε).

The specific RL formulation in PILCO aims at minimizing the ex-

pected cost-to-go given by

J =
T

∑
t=0

E[c(xt, ut; t)], x0 ∼ N (µ0, Σ0) , (20)

where an immediate, possibly time dependent cost c(xt, ut; t) penal-
izes undesired system behavior. As a policy search method, the best

out of a range of policies ut =π(xt; θ) parametrized by θ. Particularly

in model-based policy search frameworks, a model f̂ of the system dy-

namics f is utilized to predict the system behavior and to optimize the

policy.

PILCO, as a specific model-based policy search framework empha-

sizes data-efficiency and consistent handling of uncertainty when con-

structing the system dynamics model f̂ . To incorporate all available

data from policy rollouts (experiments) on the actual system, a Gaus-

sian Process (GP) [168] is utilized as a non-parametric, probabilistic [168]Williams and Rasmussen, Gaussian
processes for machine learning, 2005



PID CONTROL | 25

x0

xt

ut

xt+1

iterate for t ∈ [0, H]

π(xt ; θ)

Figure 9: Computations for one

time step in the long-term predic-

tion. Black: original PILCO state

propagation steps. Red: Aug-

mented state propagation to accom-

modate PID policy optimization.

Algorithm 2: PILCO

1: Experiment: Execute random policy;

2: record {xt, ut}t=1...T

3: Train initial GP dynamics model xt+1 = f̂ (xt, ut)

4: repeat
5: repeat
6: Simulation: Predict J(θ) given f̂ , π(xt; θ)

7: Analytically compute gradient dJ(θ)/dθ

8: Gradient-based policy update (e.g. CG, BFGS)

9: until convergence: θ∗ = arg min J(θ)
10: Experiment: Execute π(xt; θ∗); record {xt, ut}t=1...T

11: Update dynamics model f̂ using all recorded data

12: until task learned

13: return π∗(xt; θ∗)

model.

The PILCO framework is outlined in Alg. 2. In the inner loop,

a simulated rollout is conducted based on the dynamics model f̂
and the current policy π(xt; θ). The system’s state xt is propagated

over a finite prediction horizon H starting at the system’s initial state

x0 ∼ N (µ0, Σ0) as visualized for one time step in Fig. 9. The poste-

rior distribution p(xt+1|xt, ut) is approximated in each time step by

a Gaussian distribution using moment matching [22]. Therefore, we [22] Candela, Girard, Larsen, and Ras-

mussen, “Propagation of uncertainty in

Bayesian kernel models-application to

multiple-step ahead forecasting,” 2003

obtain a Gaussian marginal distribution of the long-term predictions

p(x0), . . . , p(xH). The expected long-term cost (20) of this rollout as

well as its gradients with respect to the policy parameters θ can be

computed analytically. Policy optimization can then be conducted

based on this prediction method using standard gradient-based opti-

mization techniques.

Startingwith an initial randompolicy
1
, the algorithmoptimizes the

1
A random policy might be a

parametrized policy with randomly

chosen parameters (cf. [32]) or a random

input signal exciting the system to

generate initial dynamics data.

cost-to-go by repeatedly executing the policy on the system, thereby

gathering new data and building the dynamics model, subsequently

improving the policy iteratively, until the task has been learned.

[25] Cominos and Munro, “PID con-

trollers: Recent tuning methods and de-

sign to specification,” 2002

[66] Jiang and Gao, “An application of

nonlinear PID control to a class of truck

ABS problems,” 2001

[137] Siciliano, Sciavicco, Villani, and

Oriolo, Robotics: modelling, planning and
control, 2010

3.4 PIDControl
Proportional, Integral and Derivative (PID) control structures are still

the main control tool being used in industrial applications, in partic-



26 | INTRODUCTION

Figure 10: Visualization of the con-

tributions to a PID control signal. In

each time-step t, the PID control sig-

nal is comprising a linear combina-

tion of the accumulated past error,

the current error and the predicted

future error. Figure from [9]

ular in the process industry [25], but also in automotive applications

[66] and in low-level control in robotics [137]. The large share of PID

controlled applications is mainly due to the past record of success, the

wide availability, and the simplicity in use of this technique. Even in

multivariable systems, PID controllers can often be employed [68]. [68] Johnson and Moradi, PID control
- New Identification and Design Methods,
2005

3.4.1 Definition of the PIDControl Law
One of the goals in control is to make a system keep a desired set-

point or follow a desired reference trajectory. This is, the output of

the system y should match a reference r as closely as possible. The

task of a controller is to select suitable inputs u to the system such as

to minimize the control error e = r− y. One simple feedback control

mechanism is given the On-Off controller
2
described by

2
Also known as 2 step or Bang-Bang

control.

u =


umax if e > 0

umin if e < 0

0 otherwise .

(21)

This controller utilizes the maximal/minimal control signal umax and

umin to compensate for any non-zero error. The large, discontinuous

switch in action can lead to overreactions and oscillatory behavior. In-

stead, proportional control reacts by choosing a control input according

to the size of the error as given by

u =


umax if e ≥ emax

Kpe if emin < e ≥ emax

umin if e ≤ emin .

(22)

In a error-band in between emin and emax, the controller behaves lin-

early, according to the controller gain Kp.

Since the proportional control input contribution might not be suf-

ficient to reach a desired reference, integral control can be adopted to



PID CONTROL | 27

Sys 1

PID1

PID2

e1

e2

u1

u2
Sys 2+

PID1

PID2

e1

e2

u
Figure 11: Possible PID structures,

exemplified with two controllers.

Left: Individual PID controllers

acting on different system inputs.

Right: Combination of PID con-

trollers acting on the same system

input.

accumulate larger control contributions if the error is not diminishing.

u = Ki

∫ t

0
e(τ)dτ (23)

In integral control input is proportional to the accumulated error,

weightedwith the integral gain Ki. This control can be shown to result

in zero steady-state error, in cases where a non-oscillating stead-state

is reached.

Finally, derivative control is based on a prediction of future error.

In the simplest instance, a linear extrapolation based on the current

error derivative is taken into account.

u(t) = Kd
de(t)

dt
(24)

Combining these three control contributions, theproportional-integral-

derivative (PID) controller is given by

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + K

d

de(t)
dt

(25)

A visualization of the individual error contributions in the PID control

law is shown in Fig. 10.

The PID controller is agnostic to the system dynamics and depends

only on the system’s error. Each controller is parametrized by its

proportional, integral and derivative gain (θ
PID

= (Kp, Ki, K
d
)). A

general PID control structure C(s) for MIMO processes (19) can be

described in transfer function notation by a D × F transfer function

matrix

C(s) =


c11(s) · · · c1D(s)

.

.

.

.
.
.

.

.

.

cF1(s) · · · cFD(s)

 , (26)

where s denotes the complex Laplace variable and cij(s) are of PID

type. The multivariate error is given by et = x
des,t−xt∈RD

such that

themultivariate input becomesu(s)=C(s)e(s). Examples for possible

PID structures are shown in Fig. 11. A comprehensive overview on

PID control is given in [8]. [8] Åström, Hägglund, and Astrom, Ad-
vanced PID control, 2006



28 | INTRODUCTION

3.4.2 Tuning of PID Control Parameters
In practice, calibration of PID controllers is still often achieved by te-

dious manual tuning or by heuristic tuning rules [111]. The following [111] O’Dwyer, Handbook of PI and PID
controller tuning rules, 2009

review strives to categorize research and methods in tuning PID con-

trollers according to the respective algorithmic ideas and assumptions.

For the purpose of this work and to identify the connections and dis-

tinctions with respect to the proposed PILCO-PID framework, three

main categories of PID tuning methods will be discussed: feature-

based, model-based and optimization based methods.

Feature-Based PID Tuning

Feature-based methods are amongst the first commonly adopted PID

tuning concepts [174] and helped to provide systematic ways of de- [174] Ziegler and Nichols, “Optimum

settings for automatic controllers,” 1942
riving PID parameters for a novel plant. In feature-based methods,

characteristic properties ("features") of the closed loop system are di-

rectly measured on the system by executing specific excitation signals.

Given a set of rules ("gain functions"), the measured features are then

directly translated into PID parameters.

One of the earliest examples for feature-based PID tuning are the

heuristic Ziegler-Nichols (ZN) rules [174]. In this case, a limit ("ulti-

mate") proportional gain Ku is measured together with the oscillation

period Tu. These measures are obtained by increasing the propor-

tional gain Kp in closed-loop control until the system starts to oscillate.

Given Ku and Tu, the classic ZN tuning rules would set the PID pa-

rameters as

Kp = 0.6Ku, Ki = 1.2Ku/Tu, Kd = 0.075KuTu . (27)

Similar tuning rules are available, which strive to achieve different

shapes of the closed-loop response. For example, ZN rules for P, PI,

PD, or different amounts of overshoot are published. Other tuning

rules have been derived based on different features and with different

premisses regarding closed-loop performance and characteristics. For

example, the Approximate M-constraint Integral Gain Optimization

(AMIGO) rules [7] require the identification of a velocity gainKv. They [7] Åström and Hägglund, “Revisit-

ing the Ziegler–Nichols step response

method for PID control,” 2004

are designed to maximize the integral gain Ki such as to achieve faster

decay of steady-state errors.

Feature-based tuning rules are typically derived for SISO systems,

although some extensions toMIMO systems exist [115]. Conceptually, [115] Perez and Herrero, “Extending the

AMIGO PID tuning method to MIMO

systems,” 2012

the features can be understood as relatively simple to obtain param-

eters of a simplified, low-order model of the plant. In case of the

time-domain ZN rules, a first-order plus dead-time model can be di-



PID CONTROL | 29

rectly given from the measured static gain K, dominant time constant

T, and dominant dead time L.

Gp(s) =
K

1 + sT
e(−sL)

(28)

The tuning rules can be interpreted as the result of optimizing closed-

loop characteristics, such as disturbance rejection, steady-state error,

or overshoot, assuming the true system to be well approximated by

the low-order, identified model. This perspective directly leads to the

second class of model-based PID tuning techniques.

Model-Based PID Tuning

In situationswhere the true plant behavior can be accurately described

by low-order systemdynamicsmodels, control theory provides a large

tool-chest to derive controllers with desired properties. Many of these

methods directly carry over to the case of PID controllers. Methods

such as pole placement can be directly employed to shape the close-

loop behavior if sufficiently simple plant models (e.g. first or second

order transfer function models) are available. Extensions for pole

placements of the dominant pole in higher-order systems exist as well.

Methods like Internal Model Control (IMC) utilize the plant model

directly to compute the (higher-order) controller. For some simpler

plant models (first-order, first-order plus dead-time), these control

designs can be translated back into respective PID controllers [129]. [129] Rivera, Morari, and Skogestad, “In-

ternal model control: PID controller de-

sign,” 1986

Optimization-Based PID Tuning

The class of optimization-based techniques is concernedwith optimiz-

ing the (in)finite horizon closed-loop response of a plant controlled by

a given PID controller. An objective is set-up to characterize desired

behavior and optimization schemes are deployed to alter the PID pa-

rameters accordingly. Optimization objectives vary widely from Inte-

grated Absolute Error (IAE) [62] or Integrated Squared Error (ISE) for [62] Hang, Åström, and Ho, “Refine-

ments of the Ziegler–Nichols tuning for-

mula,” 1991

finite-horizon measurements, to H∞ constraints on the resulting sen-

sitivity or complementary sensitivity functions [55] for model-based,

[55] Garpinger and Hägglund, “A soft-

ware tool for robust PID design,” 2008

infinite-horizon performance.

Without model knowledge, tuning methods need to resort to opti-

mization schemes to optimize the empirically measured performance

asgivenby theobjective/cost-function. Derivative freemethodsbased

on Evolutionary Strategies (ES) or Bayesian Optimization (BO) can

directly optimize the PID gains to achieve optimal performance. Ex-

amples based on multi-crossover genetic algorithms [62] or particle

swarm optimization [53] have been presented. [53] Gaing, “A particle swarm optimiza-

tion approach for optimum design of

PID controller in AVR system,” 2004



30 | INTRODUCTION

Extensions to MIMO Systems

PID literature typically distinguishes between tuning methods for

multi-loop PID control and multivariable PID control systems. The

former have a diagonal transfer function matrix C(s) whereas the

latter allows PID controllers on all elements of C(s), i.e. all combina-

tions of errors and inputs can be controlled, thus allowing additional

cross-couplings.

More advanced tuning concepts are most frequently developed

for Single-Input-Single-Output (SISO) systems [8] [16]. For Multi- [8] Åström, Hägglund, and Astrom, Ad-
vanced PID control, 2006

[16] Berner, Hägglund, and Åström,

“Asymmetric relay autotuning - Practical

features for industrial use,” 2016

Input-Multi-Output (MIMO) systems, popular tuning methods, such

as biggest log-modulus and the dominant pole placement tuning

method [68], strive to tune each control loop individually, followed

[68] Johnson and Moradi, PID control
- New Identification and Design Methods,
2005

by a collective de-tuning to stabilize the multi-loop system. These

tuning methods, however, rely on linear process models and require

stable processes. For general PID control structures where multiple

controllers act on each input, controller design is usually conducted

by decoupling the process, subsequently allowing the design of in-

dividual SISO PIDs. Examples are online adjusted precompensators,

which decouple the process transfer function matrix [172]. [172] Yamamoto and Shah, “Design and

experimental evaluation of a multivari-

able self-tuning PID controller,” 2004

Contributions by PILCO-PID

With this framework, we address the general class ofmultivariable PID
control systems with no restrictions on the elements of C(s). In con-

trast to the previously presented tuning frameworks, PILCO-PID does

not rely on a simplified, e.g., low-order, approximation of the system

dynamics. PILCO’s Bayesian, non-parametric dynamics model, al-

lows to flexibly represent the true non-linear system dynamics. At the

same time, PILCO-PID accounts for uncertainty in the system model

in a principled way. Strong connections exist to the third class of

optimization-based methods. As discussed in the context of control

and RL in Sec. 2.3, the RL framework shares close ties with the finite

horizon optimal control setting. Again, in contrast to the aforemen-

tioned methods, PILCO-PID is able to exploit analytic gradients and

back-propagation through time to much more efficiently find locally

optimal solutions, in comparison to the derivative-free optimization

methods presented above.



4LearningMultivariate PIDControl

One of the challenges in model-based RL and in particular in the

PILCO framework is to efficiently compute the trajectory distribution

p(τ | θ) (cf. (4)). This problem arises from the probabilistic nature of

the systemmodel and policy aswell as the non-linear system behavior,

which in general causes complex probability distributions [30]. This [30] Deisenroth and Mohamed, “Expec-

tation propagation in Gaussian process

dynamical systems,” 2012

problem further involves the computation of analytic gradients dτ/dθ

to allow for efficient, gradient-based policy optimization.

The following derivation of the PILCO-PID framework is based on

two high-level insights. First, the state of the underlying system can

be augmented by artificial state information, to represent the required

PID input information, such as error or error derivatives. Second, the

change in these artificial states canbedescribedwith a linear dynamics.

Thus, closed form solutions for the propagation of Gaussian state

uncertainty into future states is available and closed-form gradients

can be given.

This sectionfirstly introduces the augmented systemstate in Sec. 4.1.

ThePID controller is reformulated as a linear, state-feedback controller

given the augmented state in Sec. 4.2. Utilizing the augmented state,

extensions such as multi-task training or time-varying goals are de-

rived in Sec. 4.2.3 and Sec. 4.2.4 respectively.

4.1 System State Augmentation
This section presents a sequence of operations to augment the current

system state xt into an fully augmented state z̃t. These augmentations

are designed such as to facilitate any multivariable PID controller (26)

in the form of a parametrized static state feedback law. In particular a

static state feedback policy is given by

ut = K
PID

(θ)z̃t , (29)

where K
PID

(θ) is a matrix with parameters θ, such that the product

of matrix and augmented state vector represent arbitrary PID control

structure as in (26).

To deploy a PID controller on a computer system, typically, the

continuous time elements of Eq. (25) need to be discretized. Therefore,



32 | LEARNING MULTIVARIATE PID CONTROL

the error derivative is approximated by a finite difference and the

integrated error is approximated by a sum of errors.

ėt ≈
et − et−1

∆T
, (30)∫ t·∆T

0
e(τ)dτ ≈ ∆T

t

∑
τ=0

eτ , (31)

where ∆T represents the system’s sampling time. More advanced

approximation schemes exist to mitigate, for example, strong noise

contributions in the numerical derivative computation. Details about

practical implementation of discrete-time PID controllers on computer

systems can be found in [6]. [6] Åström and Hägglund, PID con-
trollers: theory, design, and tuning, 1995

The discrete time PID controller is consequently given by

ut = Kpet + Ki∆T
t

∑
τ=0

eτ + Kd
et − et−1

∆T
. (32)

Most notably, the resulting, discrete-time PID controller is not state-

less but requires information about the previous error and the so-far

accumulated error. The physical system state xt is thus augmented by

the necessary error information to an augmented state zt defined by

zt := (xt, et−1, ∆T
t−1

∑
τ=0

eτ) . (33)

For simplicity, we denote vectors as tuples (v(1), . . . , v(n)), where v(i)

may be vectors themselves. In this case, z(1)t indicates the physical

system state at time step t, whereas z(2)t would indicate the added

control error, as memorized from the previous time step. Based on

the augmented system state zt further augmentations will be detailed

in the following sections to compute all required inputs for the PID

controller (32).

4.1.1 Desired Goal State
The PID controller is most commonly used to stabilize around a de-

sired set-point or track a desired reference trajectory. In both cases,

the current error is computed given some current desired state x
des,t.

Instead of a deterministic set-point, a Gaussian goal state distribution

with non-zero variance is utilized. The desired set-point or target [35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

trajectory state is given by x
des,t ∼N (µ

des,t, Σ
des,t). Drawing the de-

sired state from a Gaussian distribution yields better generalization

to unseen targets as discussed in [35] This external reference is inde-



SYSTEM STATE AUGMENTATION | 33

pendent of the current state zt. Thus, the joint distribution of the first,

augmented state is given by zt

x
des,t

 ∼ N
 µz

µ
des,t

 ,

Σz 0

0 Σ
des,t

 . (34)

4.1.2 Error States
The current error is a linear function of zt and x

des,t. Similarly, the

approximated error derivative and integrated error can be expressed

as linear operations on the so far computed state quantities.

et = x
des,t − z(1)t (35)

et − et−1

∆T
=

1
∆T

et −
1

∆T
z(2)t (36)

∆T
t

∑
τ=0

eτ = z(3)t + ∆Tet . (37)

As discussed earlier, the finite difference approximation of the deriva-

tive error is prone to measurement noise. Yet, this framework can

readily be extended to incorporate a low-pass filtered error derivative,

which we omit for notational simplicity. In this case, additional his-

toric error states would be added to the state zt to provide the input

for a low-pass Finite Impulse Response (FIR) filter.

Combining the previously introduced augmentations, we arrive at

the fully augmented state z̃t as given by

zt
(34)−−→ [zt, x

des,t] (38)

(35)−−→ [zt, xdes,t, et] (39)

(36),(37)−−−−→ [zt, xdes,t, et, ∆T
t

∑
τ=0

e(τ),
et − et−1

∆T
] = z̃t . (40)

Since all augmentations (34), (36), (35), (37) are linear transforma-

tions, the resulting augmented state distribution remains Gaussian

for a Gaussian distributed state zt. Details about linear operations on

Gaussian random variables are summarized in Appendix A.

Notice that state, desired state and error state do not necessarily

need to have the same dimensionality. The desired state is reused in

the cost function evaluation and can be utilized to penalize states that

are not needed for the control policy/error computation. The error

state needs to be a subset of the desired state which is itself a subset

of the system state.



34 | LEARNING MULTIVARIATE PID CONTROL

x0, z0 (45)

xt , zt z̃t

ut

xt+1 zt+1
(40)

(41)

GP f̂

(44)

iterate for t ∈ [0, H]

π(xt ; θ)

Figure 12: Computations for one

time step in the long-term predic-

tion. Black: original PILCO state

propagation steps. Red: Aug-

mented state propagation to accom-

modate PID policy optimization.

4.2 PID as Static State Feedback
Based on the final augmented state z̃t, the PID control policy for

multivariate controllers can be expressed as a static state feedback

policy:

ut = K
PID

(z̃(3)t , z̃(4)t , z̃(5)t )

= K
PID

(
et, ∆T

t

∑
τ=0

et,
et − et−1

∆T

)
,

(41)

where z̃(i)t indicates the i-th term of (40). The specific structure of the

multivariate PID control law is defined by the parameters in A
PID

. For

example, PID structures as shown in Fig. 11 would be represented by

K
left

=

K
p,1

0 K
i,1

0 K
d,1

0

0 K
p,2

0 K
i,2

0 K
d,2

 , (42)

K
right

=
[
K
p,1

K
p,2

K
i,1

K
i,2

K
d,1

K
d,2

]
. (43)

4.2.1 State Propagation
A visualization of the state augmentation integrated into the one-

step-ahead prediction is shown in red in Fig. 12 in comparison with

the standard PILCO setting (in black). Given a Gaussian distributed

initial state x0, the resulting predicted states will remain Gaussian for

the presented augmentations.

Given the Gaussian distributed state and control input as derived

in Sec. 4.1 and Sec. 4.2, the next system state is computed using the

GP dynamics model f̂ . PILCO approximates the predictive distribu-

tion p(xt+1) by a Gaussian distribution using exact moment matching.

From the dynamics model output xt+1 and the current error stored in

z̃t, the next state is obtained as

zt+1 = (xt+1, z̃(3)t , z̃(4)t ) = (xt+1, et, ∆T
t

∑
τ=0

eτ) . (44)



PID AS STATIC STATE FEEDBACK | 35

Iterating (33) to (44), the long-term prediction can be computed over

the prediction horizon H as shown in Fig. 12. For the initial state, we

define

z0 := (x0, x
des,0 − x0, 0) . (45)

4.2.2 Cost Function Derivatives
Given the presented augmentation and propagation steps, the ex-

pected cost gradient can be computed analytically such that the policy

can be efficiently optimized using gradient-based methods. We sum-

marize the high-level policy gradient derivation steps to point out

the modifications to standard PILCO that are necessary to allow PID

policy optimization. The expected cost
1
derivative is obtained as

1
We only address cost on the state zt

for simplicity. For practical implemen-

tations, cost on u can be included by

adding past inputs into the system state

as shown in Sec. 4.3.

dJ(θ)
dθ

=
H

∑
t=1

d
dθ

Ezt [c(zt)]︸ ︷︷ ︸
=:Et

=
T

∑
t=1

dEt

dp(zt)

dp(zt)

dθ
. (46)

To simplify the notation, we write dp(zt) to denote the sufficient statis-

tics derivatives dµt and dΣt of a Gaussian random variable p(zt) ∼
N (µt, Σt) (analogous to the treatment in [33]). The gradient of the [33] Deisenroth, Fox, and Rasmussen,

“Gaussian processes for data-efficient

learning in robotics and control,” 2015

immediate loss with respect to the state distribution, dEt/dp(zt), is

readily available for most standard cost functions like quadratic or sat-

urated exponential terms and Gaussian input distributions (cf. [35]). [35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

The gradient for each predicted state in the long-term rollout is ob-

tained by applying the chain rule to (44) resulting in

dp(zt+1)

dθ
=

δp(zt+1)

δp(z̃t)

dp(z̃t)

dθ
+

δp(zt+1)

δp(xt+1)

dp(xt+1)

dθ
. (47)

The derivatives highlighted in blue are computed for the linear trans-

formation in (44) according to the general rules for linear transforma-

tions on Gaussian random variables as summarized in the appendix.

Based on the dynamics model prediction as detailed in Sec. 4.2.1, the

gradient of the dynamics model output xt+1 is given by

dp(xt+1)

dθ
=

δp(xt+1)

δp(z̃t)

dp(z̃t)

dθ
+

δp(xt+1)

δp(ut)

dp(ut)

dθ
. (48)

The derivatives shown in red can be computed analytically for the

specific dynamics model [22]. Applying the chain rule for the policy [22] Candela, Girard, Larsen, and Ras-

mussen, “Propagation of uncertainty in

Bayesian kernel models-application to

multiple-step ahead forecasting,” 2003

output p(ut) obtained by (41) yields

dp(ut)

dθ
=

δp(ut)

δp(z̃t)

dp(z̃t)

dθ
+

δp(ut)

δθ
, (49)



36 | LEARNING MULTIVARIATE PID CONTROL

The derivatives marked in blue are introduced by the linear control

law (41) and can be computed as summarized in the appendix. The

gradient of the augmented state is given by

dp(z̃t)

dθ
=

dp(z̃t)

dp(zt)

dp(zt)

dθ
(50)

Again, the part marked in blue is computed for the linear transfor-

mation (40). Starting from the initial state where dp(z0)/dθ = 0, we

obtain the gradients for all states with respect to the policy parameters

dp(zt)/dθ by iteratively applying (47) to (50) for all time steps t.

4.2.3 Multiple Initial-State Goal State Combinations
In [32] PILCO has been extended to multiple-target reinforcement [32] Deisenroth and Fox, “Multiple-

target reinforcement learning with a sin-

gle policy,” 2011

learning which means to search for policies that are not only able to

stabilize the system around one predefined target but policies that can

stabilize the system aroundmultiple targets. These policies are meant

to generalize to arbitrary targets and to allow for trajectory tracking.

Therefore, the policy is defined as a function of the state and the target
u = π(x, τ; θ).

What they proposed is to use the joint probability distribution of

state xt = N (µt, Σt) and the derivation from a target τ = N (χ, Φt)

given by

p(xt, τt − xt) = N (

 µt

χt − µt

 ,

 Σt −Σt

−Σt Σt + Φ

) (51)

=: N (xx,τ
t |µx,τ

t , Σx,τ
t ) (52)

Given multiple training targets τ = (τ1, . . . , τN), the expected return

Jπ
assuming a uniform prior p(τ) over all targets is approximated by

E[Jπ(θ)] ≈ 1
|τ|∑τ

T

∑
t=1

E[c(xt)|τ]. (53)

Within our framework this is a specific case of a policy using only the

current state and error from the fully augmented state distribution

x̃(3)(t).
Given the fully augmented state x̃(3)(t) as presented in Sec. 4.1,

policies can be defined on arbitrary partitions of this state. This allows

for combinations like PID error feedback policies combined with state

feedback. Concepts like velocity compensation plus error feedback

as used in hydraulic force control can therefore easily incorporated in

this framework (cf. [2]). [2] Alleyne and Liu, “A simplified

approach to force control for electro-

hydraulic systems,” 2000

Instead of encoding an implicit goal state within the cost function,

we define a desired goal trajectory given by xdes = (xdes1 , . . . , xdesT ).



EXPERIMENTAL EVALUATION | 37

As demonstrated in [32], we can not only optimize the control policy [32] Deisenroth and Fox, “Multiple-

target reinforcement learning with a sin-

gle policy,” 2011

with respect to one combination of initial state x0 and goal state xdes

but with respect to multiple combinations by optimizing over the

summarized cost given by

J(θ) =
K

∑
k=1

T

∑
t=1

E{c(x)} (54)

where K is the number of initial state and goal state combinations. The

cost function is therefore formulated as a function of an current aug-

mented state x̃(1) where the measured state is augmented by the cur-

rently desired state of the goal trajectory x̃(1)(t) = (x(t)T , xdes(t)T)T
.

4.2.4 Time Varying Goal States
Additionally, in our framework, the target is not limited to onefixed set-

point but a time varying target trajectory might be incorporated. Each

target trajectory is defined as τi = (xdes,1, . . . , xdes,T). The intuition

is to enable exploration of wider regions of the target space by only

a small number of initial state/target combinations through the use

of time varying target positions and therefore better generalization to

new target positions.

Notice the two possibilities to enforce tracking behavior in this

framework. A control policy can be trained on multiple constant com-

binations of initial state and goal states (|τ| > 1) (e.g. demonstrated in

[32]). At the same time a policy can be trained on one (or possiblymul-

tiple) time varying goal trajectories to further emphasis the tracking

property of the desired control policy.

4.3 Experimental Evaluation
To demonstrate the capabilities of the presented framework to auto-

matically tune coupled PID controllers without prior system knowl-

edge and in a data-efficient fashion, we consider the problem of bal-

ancing an inverted pendulum on the Apollo robot as shown in Fig. 7.

The inverted pendulum is a well-known benchmark in the control and [146] Sutton and Barto, Reinforcement
learning: An introduction, 1998

[4] Anderson, “Learning to control an

inverted pendulum using neural net-

works,” 1989

reinforcement learning communities [146, 4]. Demonstrations of the

iterative learning process and the resulting optimized policy can be

found in the supplementary video material.



38 | LEARNING MULTIVARIATE PID CONTROL

Time t (s)

ẍ
(m

/s
2

)

0 0.5 1 1.5

−5

0

5

(a) Apollo robot simulation in SL.

Time t (s)

ẍ
(m

/s
2

)

0 0.5 1 1.5

−1

0

1

(b) Real-world Apollo robot.

Figure 13: Comparison of the com-

manded ( ) and actual ( ) ac-

celeration on the Apollo robot. Sig-

nificant differences are apparent be-

tween the commanded acceleration

and the actual acceleration, both in

simulation (a) and, even stronger,

on the real system (b). Effects are

caused by joint-level friction, gear-

drives and vibrations.

4.3.1 PID Learning for Robot Balancing

Experimental Setup

We employ an imperfect inverse dynamics model of Apollo’s seven

Degree-of-Freedom (DoF) robotic arm to compute the joint torques

necessary to track the desired end effector acceleration ut [128]. Tech- [128] Righetti, Kalakrishnan, Pastor, Bin-

ney, Kelly, Voorhies, Sukhatme, and

Schaal, “An autonomous manipulation

system based on force control and opti-

mization,” 2014

nical details concerning the hardware platform can be found in [90],

[90] Marco, Hennig, Bohg, Schaal, and

Trimpe, “Automatic LQR Tuning Based

on Gaussian Process Global Optimiza-

tion,” 2016

where reinforcement learning on this platform has been addressed

using Bayesian Optimization techniques. The state of the system xt

comprises the end effector position x, velocity ẋ, pendulum angle φ,

and angular velocity φ̇.

During the rollouts, the commanded acceleration is limited to

umax=3m/s
2
for safety reasons. Test policies are executed for 20 s or

interrupted once safety limits (xmax = 0.3m, θmax = 30◦) are violated.

The control signal is computed at 100Hz and low-pass filtered by a sec-

ond order Butterworth filter having a cut-off frequency of 20Hz. Joint

encoder readings and the robot’s kinematic model are used to calcu-

late the end-effector position at 1 kHz, whilst the pendulum position

is tracked by a VICON vision system at 200Hz.

The policy is optimized on a prediction horizon of T = 10 s based
on a saturated loss function [31] given by [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

c(et, ūt) = 1− exp(−(eT
t Qet + ūT

t Rūt)/2) . (55)

For balancing the pendulum in the upright position the desired trajec-

tory is givenby x
des,t = 0. Weights are set toQ = diag(1/0.22, 1/0.022)

for end effector and pendulum position error, and to R = 1/0.42
for

the control input. The selected cost function saturates quickly for

x > w if x is weighted by 1/w2
. End effector position and input are



EXPERIMENTAL EVALUATION | 39

therefore only penalized lightly, which permits higher gains while the

pendulum angle is stabilized as it is penalized much stronger.

pid control structure setup We employ a PID controller on the

position error ex = x
des,t − x and a PD controller acting on the pen-

dulum angular error eθ = θ
des,t − θ. The resulting control structure is

shown in the right plot of Fig. 11. The PID/PD control structure with

integral control on the end effector position serves to correct for any

static bias in the angle measurement (e.g., from imperfect calibration)

as is explained in [154, p. 67]. This structure has successfully been [154] Trimpe andD’Andrea, “TheBalanc-

ing Cube: A Dynamic Sculpture As Test

Bed for Distributed Estimation and Con-

trol,” 2012

used for other balancing problems [90, 154].

[90] Marco, Hennig, Bohg, Schaal, and

Trimpe, “Automatic LQR Tuning Based

on Gaussian Process Global Optimiza-

tion,” 2016

The specific structure is chosen based on prior knowledge about

the problem at hand as detailed in [90]. The integrator’s contribu-

tion is required to counteract any pendulum angle measurement bias

introduced by imperfect sensor calibration. The policy parametriza-

tion is therefore given by θ = (Kp,x, Ki,x, K
d,x

, K
p,θ , K

d,θ). Assuming

no prior knowledge, we initialize the policy to zero. Both controllers

are coupled by the system dynamics and can therefore not be tuned

independently, which makes the inverted pendulum a well suited

benchmark for multivariate PID controller tuning.

modifications for dynamics model learning When first trainingGP

dynamics models xt+1 = f̂ (xt, ut) in the standardway (Sec. 3.3.1), this

did not lead to acceptable models for long-term predictions and thus

successful controller learning. The problems are caused by imperfec-

tions in the inverse dynamics model, joint friction and stiction, as well

as sensor and actuator delay. These factors add unobserved states and

therefore additional dynamics to the system, corrupting themeasured

data. This is visible in Fig. 13, where the desired acceleration and the

numerically computed actual acceleration are visualized for a policy

rollout on the robot. Several adaptations to the standard GP dynamics

model learning framework were required to obtain a good prediction

model, which we explain next.

gaussian process setup In contrast to the model in (19), we train

the GP models to predict the difference between the current and the

next state ∆xt = xt+1 − xt. We compute a sparse GP using Snel-

son’s approximation [141] having a covariance parametrized by 400 [141] Snelson and Ghahramani,

“Sparse Gaussian processes using

pseudo-inputs,” 2005

inducing pseudo-input points. For both GP models, hyperparame-

ters θ
GP,i = (l1, l2, σ

f
, σn) including lengthscales for each dimension,

as well as signal and noise variance have to be chosen. We chose the

maximum likelihood estimate (MLE) on the basis of the previously

gathered system data to compute the hyperparameters. These hyper-

parameters are kept constant during the iterative policy learning.



40 | LEARNING MULTIVARIATE PID CONTROL

narx dynamics model In simulation only the joint level tracking

dynamics is visible but especially small or continuous changes are

tracked reasonablywell. In contrast, on the actual system, the effective

end effector accelerationdeviatesmuch stronger from the commanded

acceleration. On the joint level, PID controllers are employed to track

the computed joint torques.

In Fig.13 (a), the commanded acceleration ( ) and the resulting

acceleration at the end-effector ( ) are given for a random policy

rollout. The tracking dynamics of the low level joint controller is

obviously causing deterioration from the perfect tracking that was

assumed for the linear simulation (cf. Fig.13 (b)). The true end-effector

acceleration ( ) is now causing the state transitions visible in the

position and velocity states. However, the dynamics model is learned

having the commanded acceleration ( ) as input.

Despite the imperfect accelerating tracking, the presented frame-

work is capable of inferring a dynamics model from data and optimiz-

ing the PID control parameters to find a stabilizing policy. Fig.15 (c)

is visualizing the predicted system behaviour and one actual rollout

on the system for the final PILCO iteration.

This problem is caused by imperfections in the inverse dynamics

model, joint friction and stiction as well as sensor and actuator delay,

adding unobserved states and therefore additional dynamics to the

system, disturbing the measured data. Those low-level controllers

are already tuned for the robotic arm and therefore not part of the

presented PID tuning. A specificNARXmodel structure togetherwith

data-processing and fixed GP hyperparameters proved to be essential

to overcome the resulting artifacts in the recorded data.

Instead of modeling the system’s full, four dimensional state and

its dynamics, two independent GPs are trained tomodel the dynamics

of the measured state parts; the end effector and pendulum position.

The missing information about the system’s velocities and potential

latent states is recovered by employing a Nonlinear AutoRegressive

eXogenous model (NARX) [17] of the form [17] Billings, Nonlinear system identifica-
tion: NARMAX methods in the time, fre-
quency, and spatio-temporal domains, 2013xt+1= f̂ (xt, . . . , xt−n, ut, . . . , ut−m) . (56)

Information on latent states is implicitly encoded in the measured his-

toric states and inputs. Different lengths of history might be required

for individual parts of the system’s state depending on the dynamics’

time scales. We optimize the number of historic states individually

for end effector position, pendulum position and control input. The

NSGA II optimizer [29] is employed to compute the pareto front of [29] Deb, Pratap, Agarwal, and Meyari-

van, “A fast and elitist multiobjective ge-

netic algorithm: NSGA-II,” 2002

the model’s prediction error (using the same dataset as previously

used for hyperparameter tuning) and the size of the NARX history.

For our problem, we ended up with a new state of dimensionality



EXPERIMENTAL EVALUATION | 41

Iteration (-)

C
o
st

-t
o
-g

o
J

(-
)

1 2 3 4 5 6 7

0

50

100

150

200

250

300

iteration 6
iteration 5 and 7

iteration 4
iteration 3
iteration 2
iteration 1

Gradient-based policy updates (-)

0 5 10 15 20

0

50

100

150

200

250

300

Figure 14: Expected cost-to-go opti-

mization results. Left: Iterative im-

provement in predicted loss ( )

compared to the cost observed in

a single robot experiment ( ).

Right: Optimization results for each

iteration.

14 given by x
NARX

:= (xt, . . . , xt−3, φt, . . . , φt−2, ut, . . . , ut−6). The hid-

den dynamics between commanded input and executed acceleration

(cf. Fig. 13) requires a longer history in the input state to capture all

relevant effects.

data preprocessing The recorded data is downsampled to 25Hz

and non-causally low-pass filtered with a 2nd order Butterworth filter

and cut-off frequency 12.5Hz. The downsampled control input is

obtained by averaging the input signal on each sampling interval.

Learning Results

The iterative learning experiment is visualized in Fig. 14. To gather

initial data about the system, four random rollouts are conducted, ap-

plying a white noise input u
rnd,t ∼N (0, 1m/s

2) to the system. The

first iteration is based on the dynamics model learned from these ran-

dom rollouts. The left figure visualizes the optimized predicted loss

for each iteration in comparison to the actual loss obtained from eval-

uating (55) on one sample rollout of the actual system. The drop of

the predicted loss in iteration 5 shows that by that time, sufficient data

about the system dynamics has been gathered to find a stabilizing

policy parametrization. In the right figure, the predicted loss opti-

mization is visualized for each iteration individually, as a function of

the number of linesearches conducted by the BFGS optimizer.

In Fig. 15, we visualize the dynamics learning progress, showing

predicted system behavior and actual rollout for the dynamicsmodels

and policies as obtained at the first, intermediate and final stage of the

iterative learning process. In each iteration, the predictive distribution

is computed for the currently available dynamics model and the cur-

rently optimizedpolicy for starting at the initial state of the real system.

Given only few data points from the initial randompolicy rollouts, the

model prediction becomes quickly uncertain as shown in Fig. 15 (a).

Fig. 15 (b) shows increasedmodel accuracy but unstable controls. The

final dynamics model is accurately predicting the stabilization of the

system by the optimized policy. The obtained dynamics model is



42 | LEARNING MULTIVARIATE PID CONTROL

Time t (s)

P
o
si

ti
o
n
x

(m
),

an
g
le

θ
(r

ad
)

0 0.5 1 1.5 2

−0.5

−0.25

0

0.25

0.5

(a) Iteration 1

Time t (s)

P
o
si

ti
o
n
x

(m
),

an
g
le

θ
(r

ad
)

0 1 2 3

−0.5

−0.25

0

0.25

0.5

(b) Iteration 3

Time t (s)

P
o
si

ti
o
n
x

(m
),

an
g
le

θ
(r

ad
)

0 1 2 3 4 5

−0.5

−0.25

0

0.25

0.5

(c) Iteration 7

Figure 15: Predicted system behav-

ior (dashed lines, error-bars indi-

cate 95% confidence intervals) and

experimental results (solid lines) vi-

sualized for the first (a), an interme-

diate (b) and the final iteration (c)

of the policy learning process. The

end effector position ( ) and the

angular position ( ) are shown.

precisely incorporating disturbances caused by friction and low-level

tracking dynamics by additional uncertainty in the state distribution,

even in the steady state as visible in Fig. 15 (c).

In this example, the total interaction timewith thephysical system is

only 106 seconds, demonstrating fast and data-efficient learning. This

model-based method outperforms a model-free, Bayesian optimiza-

tion method (cf. [90]), with respect to the number of rollouts on the

actual system. The policy optimization itself is carried out offline, and

the predicted system behavior can be utilized to set appropriate safety [90] Marco, Hennig, Bohg, Schaal, and

Trimpe, “Automatic LQR Tuning Based

on Gaussian Process Global Optimiza-

tion,” 2016

boundaries to test new controllers without damaging the system.

Time t (s)

P
o
si

ti
o
n
x

(m
)

an
g
le

θ
(r

ad
)

Disturbance in pendulum angle

0 2 4 6 8 10

−0.1

−0.05

0

0.05

Figure 16: Disturbance rejection of

the optimized PID policy. End ef-

fector position ( ) and pendulum

angle ( ) display the closed loop

response of the optimized PID pol-

icy to manually introduced distur-

bances ( ).

To demonstrate the robustness of the learned policy, the system is

manually deflected. Disturbances in pendulum angle (cf. Fig. 16) and

end effector position are dispelled fast andwithout overshoot. By com-

manding a non-zero desired trajectory, the learned PID controller can

be utilized for tracking tasks as demonstrated in the supplementary

video for a sinusoidal end-effector trajectory.

4.3.2 PID Learning for RC Race Car
As a second application example, the proposed PILCO-PID method

is deployed to tune the vehicle controller of an autonomous model

race car. The model race car, as shown in Fig. 17, is supposed to drive

around a predefined race track at the physical limits of the tires. Two

coupled PID controllers are commanding throttle and steering to track

the desired target trajectory and speed as accurately as possible. A



EXPERIMENTAL EVALUATION | 43

visualization of the test track is shown in Fig. 18. The target velocity

is chosen to reach the friction limits of the tires in the fast hairpin

corners.

Figure 17: The efficiency of PILCO-

PID to tune multivariate PID con-

trol structures is demonstrated on a

scale 1:6 remote controlled race car.

Figure 18: The race track (top-down

view) and target vehicle velocity

(color coding) are selected to reach

the tire’s friction limit.

Driving a race car at the friction limits is a difficult control prob-

lem for several reasons. Unlike in normal operation, where linear

models are good approximations of the system dynamics, close to the

optimal friction, the tire-road interaction exposes strong non-linear

behavior. Crossing the point of optimal friction, the system becomes

inherently unstable. Finally, a strong coupling exist between the lat-

eral and longitudinal forces produces by a tire. This coupling results

in a trade-off between lateral (i.e. cornering/steering capabilities) and

longitudinal (i.e. acceleration/velocity tracking) control. The race-car

is thus an ideal testbed for the proposed PILCO-PID method, since

non-linear, unstable dynamics and couplings between the controllers

can be jointly addressed.

The evaluation of the PILCO-PIDmethod on themodel race car has

been conducted in a master thesis project and has been published in

[81]. The testbed itself and the proposed, coupled and multivariate

[81] Lefarov, “Model-Based policy

Search for Learning Multivariate PID

Gain Scheduling Control,” 2018

PID control structure have been designed and build in a previous

master thesis project as documented in [171].

[171] Wischnewski, “Control of highly

automated and autonomous vehicles in

critical driving situations,” 2017

Experimental Setup

The autonomous race car is based on a commercial remote controlled

(RC) race car in scale 1:6. The car is equipped with an on-board

micro-controller, inertial measure system and actuators to control the

vehicle’s throttle and steering. Details about the system hardware and

control system can be found in [171].

[171] Wischnewski, “Control of highly

automated and autonomous vehicles in

critical driving situations,” 2017

Similar to the experiments on the Apollo robot in Sec. 4.3.1, a GP-

NARX model is used to model the dynamics of the race car. In partic-

ular, the GP models the position and orientation of the car by taking

into account the previous positions, orientation, steering, and throttle

inputs.

For optimization, the car is placed at the origin (vehicle position

x = y = 0). The target trajectories are sub-trajectories of length three

seconds, sampled at random from the full race track. Each target

trajectory is started with a deviation of ∆x, ∆y ∼ N (0, 0.22) from the

origin to foster tracking of the desired target in the presence of initial

tracking errors. As detailed in Sec. 4.2.3 and Sec. 4.2.4, multiple, time-

varying goal states are utilized to optimize the policy for multiple

target trajectories simulatenously. A visualization of the resulting

optimization problem is provided in Fig. 19. Details about the model

training, cost function and experimental setup can be found in [81]. [81] Lefarov, “Model-Based policy

Search for Learning Multivariate PID

Gain Scheduling Control,” 2018



44 | LEARNING MULTIVARIATE PID CONTROL

(a) Iteration 5 (b) Iteration 15 (c) Iteration 30

Figure 19: The policy learning

progress for the RC race car is visu-

alized. A batch of desired target tra-

jectories ( ) is depicted together

with the predicted race car behav-

ior (mean , standard deviation

) for different iterations in the

policy optimization process. Whilst

the initial policy (a) is mostly not

steering at all, the trained policies

learned to accurately track the de-

sired targets (c).

Learning Results

For the inner learning loop of PILCO-PID (cf. Alg. 2), the current GP

dynamics model is employed to predict the closed-loop system behav-

ior and to find the optimal policy parameters. In Fig. 19, the predicted

system behavior and the desired target trajectories are visualized for

(a) beginning, (b) intermediate, and (c) final iterations in the policy

optimization.

For learning, the controller is initializedwith zeroPIDgains (i.e. θ =

0). Therefore, the GP model correctly predicts straight line motion

with nearly no steering or acceleration/deceleration commands. In

the absence of control interventions, the uncertainty about the closed-

loop system behavior grows over time. In Fig. 19, the mean ( ) and

standard deviation ( ) of the predicted vehicle position is visualized

together with the target trajectories ( ).

In later iterations (cf. Fig. 19 (b)), the updated policy parameters re-

sult in an improved, closed-loop system behavior. The final, learned

PID controller (cf. Fig. 19 (c)) is able to track the desired target tra-

jectories and simultaneously compensate uncertainty in the system

model. As depicted, the optimized controller compensates for un-

certainty (e.g. disturbances) in the vehicle position and reaches the

desired trajectory with little uncertainty.

So far, the predicted closed-loop behavior is subject to the accuracy

of the learned GPmodel. For comparison, the resulting policy param-

eters in different stages of the optimization process are evaluated in

a high-fidelity vehicle simulation and on the test vehicle. For valida-

tion, the target is to drive multiple laps around the test-track whilst

minimizing lateral and longitudinal tracking errors.

The target track and the resulting vehicle trajectories are visualized

in Fig. 20. As predicted by the GP model (cf. Fig. 19 (a)), the initial

policy with close to zero PID gains, can barely control the vehicle and

misses the first corner (cf. Fig. 20 (a)). Subsequent policy iterations in

the policy optimization drastically improve the tracking performance.

In iteration 15 (cf. Fig. 20 (b)) long and low-speed corners can be

tracked by the learned policy. Finally, in iteration 30 (cf. Fig. 20 (c)),



EXPERIMENTAL EVALUATION | 45

(a) Iteration 5 (b) Iteration 15 (c) Iteration 30

Figure 20: The race car’s target tra-

jectory ( ) is visualized together

with the actual, closed-loop, race

car trajectory ( ) for different it-

erations in the policy learning pro-

cess. Whilst initial controllers are

not able to control the race car in

corners (cf. Fig. (a) and (b)), the

learned policy from later iterations

can accurately track the desired tar-

get (cf. Fig (c)).

the final policy is able to drive multiple labs at target velocity with

minimal tracking deviations.





5Summary

This first part of thework introduced PILCO-PID, a novel algorithm to

automatically tune PID controllers, which are the number one control

structures utilized in industrial applications. We derive the PILCO-

PIDmethod as an extension of the Probabilistic Inference for Learning

COntrol (PILCO) [35] framework. Specifically, this framework repre- [35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

sents arbitrary, coupled, and multivariate PID controllers as linear

state feedback controllers in a new augmented system state. This way,

the PILCO-PID method can inherit the principled treatment of uncer-

tainty and handling of non-linear models directly from PILCO. The

proposed framework for multivariate PID tuning is flexible concern-

ing the possible PID control structures and the nature of the process

dynamics. In particular, it can cope with general non-linear MIMO

processes and multivariate PID structures.

In this part, we demonstrate the efficiency of PILCO-PID to tune

coupled PID controllers on real-world systems in two example appli-

cations. The first example demonstrates the efficiency of the proposed

PILCO-PID method to calibrate PID controllers for an inverted pen-

dulum balancing task on a complex humanoid upper-body robotic

system. Without prior knowledge about the robot’s kinematics or dy-

namics, the proposed method can learn robust, stabilizing controllers

within few rollouts on the real robot. With the tuning of PID con-

trollers for the control of an autonomous model race car, a second

example sheds light on learning PID control for a strongly coupled

and non-linear system. The learning agent is facing severe non-linear

system dynamics and strong coupling between the lateral and longi-

tudinal vehicle dynamics to operate the car at the physical limits of

the tire-road friction.

The presented framework can readily be extended to cascaded PID

structures and tracking controllers by considering multiple different

[32] and time-varying goal states. In the example of learning to con- [32] Deisenroth and Fox, “Multiple-

target reinforcement learning with a sin-

gle policy,” 2011

trol a race car, time-varying goal states and multiple goal trajectories

facilitated efficient learning of a global policy. The extension of the

PILCO-PID concept to gain-scheduled PID controllers is feasible. For

gain-scheduled PID control, the PID gains are no longer static but



48 | SUMMARY

become a function of the system state. In continuous-time system, the

gain-scheduled PID controller would thus be formulated as

u(t) = Kp(x(t))e(t) + Ki(x(t))
∫ t

τ=0
e(τ)dτ + Kd(x(t))ė(t) (57)

e(t) = x
des

(t)− x(t) . (58)

Initial work on extending PILCO-PID in this direction has been pre-

sented in [81]. Different from the PID controller, the treatment of [81] Lefarov, “Model-Based policy

Search for Learning Multivariate PID

Gain Scheduling Control,” 2018

uncertainty becomes more challenging for gain-scheduled PID con-

trollers. In particular, the joint distribution of system state x(t) and
control signal u(t) is no longer Gaussian, and approximations are

required to keep an analytically tractable, Gaussian distribution. In

particular, the non-linear dependency of u(t) on x(t) via the non-linear
control-gain mappings Kp(x(t)), Ki(x(t)), and Kd(x(t)) complicates

the computation of the cross-covariance between control u(t) and state

x(t). Possible approximate solutions have been proposed in [81].

Appropriately dealing with hidden and low-level dynamics, prob-

lems found in almost all real-world applications were significant hur-

dles in the experimental application. In particular, we found that the

learning of dynamics models geared towards long-term predictions

is critical to successful finite horizon policy optimization but largely

unaddressed by current approaches. In the following part of thework,

we will present principled ways to set up and learn models tailored

towards the use in real-world, model-based RL systems.



Part II

LearningModels forModel-Based
Reinforcement Learning





6Introduction

As introduced in thefirst part of thiswork,model-based reinforcement

learning methods are a promising direction to automatically derive

control policies in industrial applications. In the past, model-based

RL was already involved in the solution of several important RL prob-

lems such as learning directly from high-dimensional input space [82], [82] Levine, Finn, Darrell, and Abbeel,

“End-to-end training of deep visuomo-

tor policies,” 2016

generalizing between local solutions [83], safe exploration [14] or data-

[83] Levine and Koltun, “Guided Policy

Search,” 2013

[14] Berkenkamp, Schoellig, and Krause,

“Safe controller optimization for quadro-

tors with Gaussian processes,” 2016

efficient learning [31]. Despite these advances, many state-of-the-art

[31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

model-based RL methods require careful set-up, tuning and supervi-

sion when applied to real-world systems. Significant shortcomings

of these methods are rooted in the respective model assumptions and

the employed model-learning and prediction algorithms. In this part

of the work, we introduce two novel modeling frameworks to improve

model-based RL’s robustness in real-world scenarios. The presented

modeling frameworks follow two main directions to achieve this goal.

suitable model assumptions First and foremost, strong model as-

sumptions are often required to simplify the mathematical problem

butdonotwellmatch the characteristics of real-world systems. Typical

model-based RLmethods incorporate assumptions about the dynami-

cal system’s structure, noise processes, available data or observability.

For example, independently and identically distributed (i.i.d.) noise-

free data of a system’s input and output signals is most commonly

expected. In contrast, data from the closed-loop operation of a dy-

namical system is typically highly correlated. Sensor imperfections

typically corrupt the measured system signals. In particular, noise

is not only limited to the model output (e.g., the predicted next sys-

tem state) but needs to be incorporated in the model input as well.

Similarly, the available sensors are typically not sufficient to measure

the system’s full state, such that the standard MDP description, i.e.,

the assumption of a measured, Markovian state, is most commonly

violated.

models tailored for rl The second line of work to improve the ro-

bustness and data-efficiency of model-based RL frameworks strives

to adapt general model-learning frameworks to the subsequent task

of model-based RL. By taking the model-based policy search require-

ments into account, we can derive methods, which use the available

data more efficiently. As a result, these methods require fewer roll-

outs or facilitate more stable learning. For example, model-based



52 | INTRODUCTION

RL requires good long-term predictions from complete closed-loop

rollouts. In contrast, typical model learning approaches optimize one-

step-ahead predictions. The resulting models tend to diverge when

predicting long-term behavior due to the accumulation of small errors

[17]. Furthermore, when using a model to infer a policy, the model [17] Billings, Nonlinear system identifica-
tion: NARMAX methods in the time, fre-
quency, and spatio-temporal domains, 2013

does not necessarily need to perform well for arbitrary inputs, but

rather for typical inputs in the policy space.

6.1 Contributions
This part of the work proposes two novel model-learning techniques,

Multi-Step Gaussian Processes (MSGPs) and Probabilistic Recurrent

State-Space Models (PR-SSMs). Both methods are tailored to effi-

ciently learn long-term predictive models for real-world problems,

where latent states and noisy data are typically encountered.

With MSGP an efficient inference scheme is presented for latent

autoregressive GP dynamics models. These models are particularly

suited for model learning in policy search applications like PILCO,

however their effectiveness is demonstrated aswell for the puremodel-

learning use-case.

PR-SSM on the other hand presents an efficient inference scheme

for Gaussian Process State-Space models. With the proposed dou-

bly stochastic variational inference method, important limitations of

previousmodel learning techniques can be overcome. This method al-

lows to efficiently optimize the true latent state posterior distribution,

maintain the temporal correlations and thus learn non-linear Gaus-

sian process state-space models. At the same time the combination

of gradient-based information and sampling facilitates efficient and

scalable learning.

The main portion of the work presented in this part of the thesis

has been previously published at the following venues.

A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, M.

Toussaint, and S. Trimpe. “Optimizing Long-term Predictions

forModel-basedPolicy Search.” In: Conference onRobot Learning
(CORL). 2017, pp. 227–238

A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal,

M. Toussaint, and S. Trimpe. “Probabilistic Recurrent State-

Space Models.” In: International Conference on Machine Learning
(ICML). 2018, pp. 1280–1289



OUTLINE | 53

6.2 Outline
This part initially discusses the system identification problem, in

particular problems encountered on real-world, physical systems in

Sec. 6.3. Problems, related work and connections to the MSGP and

PR-SSM methods are outlined for problems such as noisy outputs,

latent states and noisy inputs in Sec. 6.3.1, Sec. 6.3.2, and Sec. 6.3.3

respectively.

The novel Multi-Step Gaussian Process (MSGP) model and infer-

ence scheme for improved long-term predictive model learning is

presented in the Sec. 7. Based on the main ideas underlying MSGP as

detailed in Sec. 7.1.1, the computation and optimization of the long-

term predictive distribution is derived in Sec. 7.1.2 and Sec. 7.1.3 re-

sepctively. The close link and thus reusability of the proposed MSGP

method in policy search, i.e., reinforcement learning, applications is

discussed in Sec. 7.1.4. Experimental results are presented in Sec. 7.2

for both, the model learning performance (cf. Sec. 7.2.1) and the im-

provements achieved in policy search applications (cf. Sec. 7.2.2). The

summary in Sec. 7.3 discusses the main advantages and drawbacks of

MSGP.

The second novel contribution in the model learning part of this

work is theProbabilisticRecurrent State-Space-Model (PR-SSM) aspre-

sented in Sec. 8. Themodel structure is outlined in Sec. 8.1 followed by

an efficient and tractable inference scheme in Sec. 8.2. Extensions are

presented to scale PR-SSM to large scale datasets in Sec. 8.3 Experimen-

tal evaluations demonstrate the PR-SSM performance in Sec. 8.4 on

bothbenchmarkdata (cf. 8.4.2) and large-scale data (cf. 8.4.3). This part

concludes with a discussion of the proposedmodel-learningmethods

in Sec. 8.5.

6.3 System Identification
System identification is the task of identifying mathematical models [89] Ljung, “Perspectives on system iden-

tification,” 2010

[10] Aström and Murray, Feedback sys-
tems: an introduction for scientists and en-
gineers, 2010

[21] Camacho and Alba, Model predictive
control, 2013

[31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

[41] Doerr, Nguyen-Tuong, Marco,

Schaal, and Trimpe, “Model-based Pol-

icy Search for Automatic Tuning of Mul-

tivariate PID Controllers,” 2017

to describe the behavior or patterns of input and output signals from

dynamical systems [89]. Thesemodels are key tomodel-based control

design [10, 21] and model-based reinforcement learning (RL) [31, 41].

In RL we usually assume no access to an analytical model of the real

system. Therefore, we need to infer the model from the available in-

put/output data. From an interactionwith the system of length H, we

obtain a trajectory of input/output data τ = ((u0, y0), . . . , (uH , yH))

and possibly the corresponding feedback policy πθ with parameters θ.

Learning good models from experimental data is difficult for several

reasons, which will be discussed in the following sections.



54 | INTRODUCTION

6.3.1 Noisy outputs
For system identification, we are limited to a finite amount of data,

which is corrupted by noise due to stochasticity in the system and in

the sensors. The resulting uncertainty about the true system behav-

ior given our data is generally classified into aleatoric and epistemic

uncertainty [37]. [37] Der Kiureghian and Ditlevsen,

“Aleatory or epistemic? Does it matter?”

2009

Aleatoric uncertainty is caused by stochastic processes in the un-

derlying system, which we cannot influence. Therefore, the results of

our experiments might be altered slightly each time. In case of dy-

namical systems this noise might be due to process noise, which alters

the state transitions. A second source of noise might be observation

noise, caused by sensor imperfections, which alters our observations.

Epistemic uncertainty on the other hand is due to our lack of data or

insufficient prior knowledge. Given a finite amount of measured data,

there necessarily remains some inherent uncertainty about the true,

underlying system behavior.

In system identification we try to incorporate and model these un-

certainties. Accurately modeling uncertainties is particularly impor-

tant to prevent control optimization from exploiting erroneous parts

in the model [106]. Assuming a fully measurable system state and [106] Murray-Smith, Sbarbaro, Ras-

mussen, and Girard, “Adaptive, cau-

tious, predictive control with Gaussian

process priors,” 2003

neglecting the observation noise, the one-step system dynamics could

be modeled as

xt+1 = f̂ (xt, ut) + εt. (59)

Bayesian nonparametric Gaussian Process (GP) models [168] are a [168]Williams and Rasmussen, Gaussian
processes for machine learning, 2005

popular choice for dynamics models as they allow one to incorporate

uncertainty about model and predictions [117] in a fully Bayesian way. [117] Peterka, “Bayesian system identifi-

cation,” 1981
Based on GP dynamics models, several methods have been pro-

posed to propagate model uncertainty over multiple prediction steps

using assumed density filtering (moment matching) [124] [58] or vari- [124] Quinonero-Candela, Girard, and

Rasmussen, Prediction at an uncertain in-
put for Gaussian processes and relevance
vector machines-application to multiple-step
ahead time-series forecasting, 2002

[58] Girard, Rasmussen, Quinonero-

Candela, Murray-Smith, Winther, and

Larsen, “Multiple-step ahead predic-

tion for non linear dynamic systems—a

Gaussian process treatment with propa-

gation of the uncertainty,” 2003

ational approximations [27]. However, the GP models are usually

[27] Damianou and Lawrence, “Deep

Gaussian Processes.,” 2013

intrinsically optimized for one-step-ahead predictions.

by a GP f̂ as

In contrast, both novel model learning frameworks, MSGP and PR-

SSM operate on long-term prediction objectives. MSGP involves the

moment matching approximation to facilitate analytically tractable

and therefore fast computations of the long-term predictive distri-

bution and its gradients. PR-SSM in contrast involves a mixture of

variational inference and sampling to allow for an even better approx-

imation of the true long-term predictive distribution.

The aleatoric uncertainty can further be divided into uncertainty in

the underlying process and uncertainty when observing this underly-

ing process. The process uncertainty is typically modeled by process



SYSTEM IDENTIFICATION | 55

noise as in (59). To account for sensor noise, an observationmodel can [76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

[157] Van Overschee and De Moor, Sub-
space identification for linear systems: The-
ory - Implementation - Applications, 2012

[87] Littman and Sutton, “Predictive rep-

resentations of state,” 2002

[140] Singh, Littman, Jong, Pardoe, and

Stone, “Learning predictive state repre-

sentations,” 2003

[130] Rudary and Singh, “A nonlinear

predictive state representation,” 2004

[103] Murray-Smith and Girard, “Gaus-

sian Process priors with ARMA noise

models,” 2001

[58] Girard, Rasmussen, Quinonero-

Candela, Murray-Smith, Winther, and

Larsen, “Multiple-step ahead predic-

tion for non linear dynamic systems—a

Gaussian process treatment with propa-

gation of the uncertainty,” 2003

[85] Likar and Kocĳan, “Predictive con-

trol of a gas–liquid separation plant

based on a Gaussian process model,”

2007

[17] Billings, Nonlinear system identifica-
tion: NARMAX methods in the time, fre-
quency, and spatio-temporal domains, 2013

[91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

[93] Mattos, Damianou, Barreto, and

Lawrence, “Latent Autoregressive Gaus-

sian Processes Models for Robust Sys-

tem Identification,” 2016

[39] Doerr, Daniel, Nguyen-Tuong,

Marco, Schaal, Toussaint, and Trimpe,

“Optimizing Long-term Predictions for

Model-based Policy Search,” 2017

be added, resulting in the system model

xt+1 = f̂ (xt, ut) + εt. (60)

yt = xt + γt , (61)

with noise process γ. In contrast to typical Bayesian treatments [76]

of dynamical systems with models similar to (59), both MSGP and

PR-SSM optimize the additional observation noise contribution as in

(61).

6.3.2 Latent states
Modeling the behavior of systemswith only partially observable states

has been an active field of research for many years and several schools

of thought have emerged. Representations range fromSSMs [157] over

Predictive State Representations (PSRs) [87, 140, 130] to autoregressive

models [103, 58, 85, 17], as well as hybrid versions combining these

approaches [91, 93, 39]. In most real-world scenarios, only a part of

the relevant system state can be directly observed. To still capture the

relevant information, which is required to predict the future system

behavior, two classes of methods have been established:

History-Based Models

The first class utilizes historical input and output measurements up

to a horizon ly and lu respectively, to predict the next observation. In-

cluding previous measurements can resolve the issue of having only

partial state measurements in many real systems. This leads to Non-

linear AutoRegressive models with eXogenous inputs (NARX),

yt+1 = f̂ (yt, . . . , yt−ly , ut, . . . , ut−lu) . (62)

NARX models based on GPs (GP-NARX) have been proposed for

example by [104] and [76].

[104] Murray-Smith, Johansen, and

Shorten, “On transient dynamics, off-

equilibrium behaviour and identifica-

tion in blended multiple model struc-

tures,” 1999

Autoregressive (history-based) methods avoid the complex infer-

ence of a latent state and instead directly learn a mapping from a

history of h past inputs and observations to the next observation, i.e.

yt+1 = f (yt:t−h, ut:t−h). These models face the issue of learning from

noise corrupted input data. Recent work addresses this problem by

either actively accounting for input noise [94] or reverting to a hybrid, [94]McHutchon and Rasmussen, “Gaus-

sian process training with input noise,”

2011

autoregressive formulation in a latent, but noise free state [93, 39].

Such models can be made deep and trained in a recurrent manner as

presented in [91]. In theory, a horizon h identical to the true latent

state dimensionality (dimension of xt) is sufficient to model all rele-

vant dependencies of the system under consideration [88]. In practice, [88] Ljung, “System identification,” 1998



56 | INTRODUCTION

however, autoregressive models typically need a much larger history

horizon to cope with noisy observations and arbitrary sampling fre-

quencies.

State-Space Models

SSMs form the second class of methods, where an explicit representa-

tion of a Markovian system state is inferred.

State-space models (SSMs) are one popular class of representations

for model learning [17], which describe a systemwith input ut, output [17] Billings, Nonlinear system identifica-
tion: NARMAX methods in the time, fre-
quency, and spatio-temporal domains, 2013

yt, anda latentMarkovian state xt. The transitionmodel f , observation
model g, process, and measurement noise εt and γt form a discrete-

time SSM

xt+1 = f (xt, ut) + εt ,

yt = g(xt) + γt .
(63)

In this work, we consider the control of an unknown dynamical

system given as a State-Space Model (SSM) with unknown transition

function f and observation function g as

xt+1 = f (xt, ut) + ε
(x)
t , yt = g(xt) + ε

(y)
t , (64)

with Gaussian process noise ε
(x)
t ∼ N (0, Σx) and Gaussian sensor

noise ε
(y)
t ∼ N (0, Σy). The systemhas time discrete, continuously val-

ued inputs ut ∈ RDu
and continuously valued observations yt ∈ RDy

.

Its internal, latent state xt ∈ RDx
can usually not be fullymeasured. In-

puts to the system are either feedforward control signals or generated

by a deterministic policy ut = π(yt; θπ) parametrized by θπ .

For a Bayesian treatment, GP-SSMs have been proposed by [49], [49] Frigola, Chen, and Rasmussen,

“Variational Gaussian process state-

space models,” 2014

[51] Frigola and Rasmussen, “Integrated

Pre-Processing for Bayesian Nonlinear

System IdentificationwithGaussianPro-

cesses,” 2013

[50] Frigola, Lindsten, Schön, and Ras-

mussen, “Bayesian Inference and Learn-

ing in Gaussian Process State-Space

Models with Particle MCMC,” 2013

[155] Turner, Deisenroth, and Ras-

mussen, “State-space inference and

learningwith Gaussian processes,” 2010

[91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

[44] Eleftheriadis, Nicholson, Deisen-

roth, and Hensman, “Identification of

Gaussian Process State Space Models,”

2017

where both the transition model and the observation model can have

GP priors. In [51], data preprocessing and Bayesian modeling is com-

bined for SSM. Inference in latent space proves to be a challenging task

which is themajor drawback of the existing SSMmethods. Usually, an

expectation-maximization (EM)-like method is employed to alternate

between latent-state inference (E-Step) and model learning (M-step).

While the E-step is usually based on smoothing methods, either using

sampling [50], variational approximations [49] or moment matching

approximations [155], theM-step usually consists in optimizing a vari-

ational lower bound on the trajectory likelihood. Learning the latent

state representation proves to be a hard problem as it leads to a num-

ber of open parameters, which increases linearly in the dataset size.

In recent work [91, 44], the fully parametrized latent state has been

replaced by a recurrent recognition model, which is essentially a deep

network that infers the latent state from future and past observations

and therefore restricts the unlimited number of open latent space pa-

rameters to a limited number of deep network parameters.



SYSTEM IDENTIFICATION | 57

By employing an autoregressive model, our method bypasses the [64] Hochreiter and Schmidhuber,

“LSTM can solve hard long time lag

problems,” 1997

[91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

[97]Mishra, Abbeel, andMordatch, “Pre-

diction and Control with Temporal Seg-

ment Models,” 2017

[70] Kalman, “A new approach to linear

filtering and prediction problems,” 1960

[157] Van Overschee and De Moor, Sub-
space identification for linear systems: The-
ory - Implementation - Applications, 2012

[158] Venugopalan, Xu, Donahue,

Rohrbach, Mooney, and Saenko, “Trans-

lating videos to natural language using

deep recurrent neural networks,” 2014

[144] Sutskever, Martens, and Hinton,

“Generating text with recurrent neural

networks,” 2011

[31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

[13] Bayer and Osendorfer, “Learning

stochastic recurrent networks,” 2014

[77] Krishnan, Shalit, and Sontag, “Deep

Kalman filters,” 2015

[165] Watter, Springenberg, Boedecker,

and Riedmiller, “Embed to control: A

locally linear latent dynamics model for

control from raw images,” 2015

[24] Chung, Kastner, Dinh, Goel,

Courville, and Bengio, “A recurrent la-

tent variable model for sequential data,”

2015

[5] Archer, Park, Buesing, Cunningham,

and Paninski, “Black box variational in-

ference for state space models,” 2015

[71] Karl, Soelch, Bayer, and Smagt,

“Deep variational bayes filters: Unsu-

pervised learning of state space models

from raw data,” 2016

[48] Fraccaro, Sønderby, Paquet, and

Winther, “Sequential neural models

with stochastic layers,” 2016

[56] Gemici, Hung, Santoro, Wayne,

Mohamed, Rezende, Amos, and Lil-

licrap, “Generative Temporal Models

with Memory,” 2017

challenging inference in latent space. At the same time, our method

allows for analytically tractable optimization of the long-term trajec-

tory likelihood similar to the inference in the SSM. In our experiments,

we compare the performance of the proposed method to GP-NARX

(and its PILCO variant).

In the deep learning community, powerful recurrent models have

been published for sequential data [64]. However, these models are

inherently deterministic. In order to utilize their long-term predic-

tions for policy search or trajectory optimization, additional precau-

tions are necessary to avoid regions of insufficient or inconclusive

system knowledge. Additionally, training these models requires large

amounts of data, whichmakes them less suitable for learning on phys-

ical systems with no prior knowledge. Recent work tries to alleviate

these issues by introducing deep recurrent GPs [91] to leverage the

data-efficiency of GP regression and to obtain uncertainty estimates.

Similarly, [97] utilize variational auto-encoders to obtain predictive

distributions for long-term system behavior. Whilst being conceptu-

ally interesting, extensions of thesemethods for data-efficient learning

from scratch are yet to be proposed.

In contrast, SSMs are based on a compact, Markovian state repre-

sentation. Furthermore, they allow for the direct application of many

existing control algorithms, which rely on the explicit representation

of the latent state. Exact solutions for state inference and model learn-

ing for linear Gaussian SSMs are given by the well known Kalman

filter/smoother [70] and subspace identification [157]. In the case

of non-linear latent state transition dynamics, both deterministic and

probabilistic variants are active fields of research.

Deterministic variants such as Long Short-Term Memory (LSTM)

models have been shown to be powerful representations for tasks

such as natural language processing [158] or text understanding [144].

However, for the purpose of system identification and control, prob-

abilistic predictions are often preferred to make model errors explicit

[31]. A variety of stochastic deep recurrentmodels has been presented

based on Stochastic Gradient Variational Bayes (SGVB) [13, 77, 165, 24,

5, 71, 48, 56]. These approaches, however, require large data sets to

train very flexible models. The PR-SSM inference is inspired by the

learning procedure in these deep recurrent models while employing

GPs as a principled way of model regularization. Both procedures

share the explicit unrolling of transition and observation model. Er-

rors between the predicted and the observed system output are prop-

agated back over time. Therefore, the transition dynamics has to be

inferred, but the latent state (distribution) is given implicitly. This way,

the challenging initialization and optimization of latent state variables

is prevented. In contrast to deep recurrent models, the PR-SSM loss



58 | INTRODUCTION

and model regularization is automatically obtained from the GP as-

sumption. Furthermore, PR-SSMs obtain predictive distributions and

the proposed initial state recognition model facilitates learning on

shorter sub-trajectories and unstable systems, which is not possible in

deep recurrent models.

GP-SSMs are a popular class of probabilistic SSMs [163, 75, 155, [163] Wang, Fleet, and Hertzmann,

“Gaussian process dynamicalmodels for

human motion,” 2008

[75] Ko and Fox, “GP-BayesFilters:

Bayesian filtering using Gaussian pro-

cess prediction and observation mod-

els,” 2009

[155] Turner, Deisenroth, and Ras-

mussen, “State-space inference and

learningwith Gaussian processes,” 2010

[50] Frigola, Lindsten, Schön, and Ras-

mussen, “Bayesian Inference and Learn-

ing in Gaussian Process State-Space

Models with Particle MCMC,” 2013

[49] Frigola, Chen, and Rasmussen,

“Variational Gaussian process state-

space models,” 2014

[44] Eleftheriadis, Nicholson, Deisen-

roth, and Hensman, “Identification of

Gaussian Process State Space Models,”

2017

50, 49, 44]. The use of GPs allows for a fully Bayesian treatment of

the modeling problem resulting in an automatic complexity trade-off,

which regularizes the learning problem. Filtering and smoothing in

GP-SSMs has already been covered extensively: deterministic (e.g. lin-

earization) as well as stochastic (e.g. particles) methods are presented

in [75, 36]. These methods, however, assume an established system

[75] Ko and Fox, “GP-BayesFilters:

Bayesian filtering using Gaussian pro-

cess prediction and observation mod-

els,” 2009

[36] Deisenroth, Turner, Huber,

Hanebeck, and Rasmussen, “Robust

filtering and smoothing with Gaussian

processes,” 2012

model, which is generally not available without prior knowledge. In

this work, the latent state smoothing distribution is given implicitly

and optimized jointly during model learning.

Approaches to probabilistic GP-SSMs mainly differ in their approx-

imations to the model’s joint distribution (e.g. when solving for the

smoothing distribution or for the observation likelihood). One class

of approaches aims to solve for the true distribution, which requires

sample-based methods, e.g. Particle Markov Chain Monte Carlo (PM-

CMC), as in [50, 49]. These methods are close to exact and thus are

able to represent temporal correlations. However, they are computa-

tionally inefficient and intractable for higher latent state dimensions

or larger datasets. A second class of approaches is based on vari-

ational inference and mean field approximations in the latent state

[91, 47]. These methods, however, operate on latent autoregressive

[91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

[47] Föll, Haasdonk, Hanselmann, and

Ulmer, “Deep Recurrent Gaussian Pro-

cess with Variational Sparse Spectrum

Approximation,” 2017

models, which can be initialized by the observed output time series,

such that the learned latent representation acts as a smoothed version

of the observations. In Markovian latent spaces, no such prior infor-

mation is available and therefore initialization is non-trivial. Model

optimization based on mean field approximations empirically leads

to highly suboptimal local solutions. Bridging the gap between both

classes, recent methods strive to recover (temporal) latent state struc-

ture. In [44], a linear, time-varying latent state structure is enforced as

[44] Eleftheriadis, Nicholson, Deisen-

roth, and Hensman, “Identification of

Gaussian Process State Space Models,”

2017

a tractable compromise between the true non-linear dependencies and

no dependencies as in mean field variational inference. However, to

facilitate learning, a more complex recognition model over the linear

time-varying dynamics is required. In contrast, the proposed PR-SSM

can efficiently incorporate the true dynamics by combining sampling-

and gradient-based learning.



SYSTEM IDENTIFICATION | 59

6.3.3 Noisy Inputs
The standard GP framework assumes noise free input measurements

and outputs corrupted by constant-variance Gaussian noise. In time-

series modeling, where each observation is corrupted by noise, the

noise free input assumptionaswell as the i.i.d. assumptionareviolated.

In models as in (59) or (61), the model input is [xt, ut]. Whilst ut is

typically a known control signal, for xt at best noisy observations are

available on real systems.

Neglecting the input noise results in model bias, especially in situa-

tions of low signal to noise ratios. An example formodel-bias is shown

in the top plot of Fig. 22, which illustrates the shortcomings of optimiz-

ing amodel on noisymeasurements using one-step ahead predictions

(cf. GP-NARX results). When performing full rollouts of a trajectory

on such a learned one-step dynamics, the model-bias leads to implau-

sible predictions. In contrast, methods that explicitly deal with noisy

inputs (NIGP) and optimize long-term predictions (REVARB, MSGP)

can improve prediction performance significantly.

One line of research addressing noisy input measurements is treat-

ing them as deterministic inputs and inflates the corresponding out-

put variance, which leads to state-dependent, heteroscedastic noise

models [59, 72]. In non-linear time series modeling, model input and [59] Goldberg, Williams, and Bishop,

“Regression with input-dependent

noise: A Gaussian process treatment,”

1997

[72] Kersting, Plagemann, Pfaff, and Bur-

gard, “Most likely heteroscedastic Gaus-

sian process regression,” 2007

output share the same noise distribution, which can be exploited by

more tailoredmethods as for exampleNoise Input Gaussian Processes

(NIGP) [94].

[94]McHutchon and Rasmussen, “Gaus-

sian process training with input noise,”

2011

In MSGP and PR-SSM, the model is based on estimated true latent

states x̂t, which are noise free. Therefore, inputs for each time-step can

be treated as noise-free variables and no special treatments of input

noise is required. In case of MSGP, the noisy observations yt only

serve as rough initialization to guide the learning.





7Multi-Step Gaussian ProcessModels

This chapter presents a novel model learning technique for Model-

Based Policy Search (MBPS). In particular, the main contribution is

the development of a new model optimization objective for learning

latent autoregressive GP dynamics models by maximizing the likeli-

hood of complete rollouts under a given policy. The proposedmethod

is tailored, but not limited, to model learning for policy search. The

effectiveness of our approach in both scenarios, model learning and

policy search, is confirmed through a number of benchmark evalua-

tions, as well as a comparison on a real robotic system.

7.1 Multi-Step Gaussian Processes for RL
In order to address the issues identified in Sec. 6.3, we propose an

improved model learning technique aiming at increasing the perfor-

mance of MBPS methods.

7.1.1 Main Idea
Our contribution is based on three core insights:

(i) Optimize for long-term predictions of closed loop behavior

Models employed for finite horizon policy optimization should cap-

ture the closed-loop, long-term behavior of the system given a feed-

back policy. When optimizing models for one-step-ahead predictions,

the model learning process is oftentimes derailed by effects such as

system noise, causing small errors to accumulate. If, however, the

model is trained to predict full trajectories and accumulated errors are

backpropagated into the predicted system states during model opti-

mization, the resultingmodel becomes better at capturing the relevant

long-term system dynamics.

(ii) Restrict model learning to feasible policy control outputs

When learning models with the purpose of policy search, we fre-

quently have access to the actual policy that generated the data. Thus,

by replacing the inputs to the model ut by the inputs generated by

the specific policy ut = π(yt, θπ), we are able to optimize the model

for predicting long-term system development based on how the pol-



62 | MULTI-STEP GAUSSIAN PROCESS MODELS

icy would act for the predicted system behavior. In contrast to gen-

eral system identification methods, which usually aim at learning a

model over the entire space of arbitrary control input sequences, our

method can learn a model tailored to the smaller control input man-

ifold spanned by the class of considered feedback policies. Given a

stabilizing policy, the incorporation of the feedback signal into the

long-term prediction can further compensate for model errors and

therefore stabilize model learning.

(iii) Learn model specifically for the approximations in the later policy search
step

Model-learning for long-term predictions and finite-horizon policy

search are strongly related problems. If approximations are neces-

sary in the model evaluation for the subsequent policy search step,

they should already be taken into account in the model learning step.

Instead of optimizing for an arbitrary prediction error measure, we di-

rectly optimize a quantity such as long-term predictive distributions,

which is required for policy search.

These three ideas taken together enable efficientmodel-based learn-

ing of policies on real systemswith latent states andnoisy observations

from scratch, which proved to be a major limitation for other state-of-

the-art frameworks. In the following sections, we elaborate on how

we implement these ideas in a Bayesian model learning framework,

which we refer to as Multi-Step Gaussian Processes (MSGP).

7.1.2 Trajectory LikelihoodOptimization
MSGP is built around a generative model for the distribution of ob-

servations y0:T conditioned on the system’s initial state x0 and either
the sequence of actions u0:T or the applied control policy, given by θπ .

Therefore, MSGP can learn fromdata observed in open-loop aswell as

closed-loop experiments. Ultimately, for a good long-term prediction

model, all trajectories observed on the real system should be likely

under these predictive distributions. The MSGP model is learned by

directly minimizing the negative log-likelihood. For a set D
ff
of trajec-

tories based on a feedforward (ff) control signals u0:Ti , and a different

set D
fb

of trajectories originating from feedback (fb) policies θπ,j, the

model loss is composed from

L
ff
(θ) = − ∑

τi∈D
ff

log p(y0:Ti |u0:Ti , x0,i) , (65)

and

L
fb
(θ) = − ∑

τj∈D
ff

log p(y0:Tj |θπ,j, x0,j) . (66)



MULTI-STEP GAUSSIAN PROCESSES FOR RL | 63

xt

yt

ut

xt+1

yt+1

ut+1

ft ft+1

Figure 21: General system descrip-

tion. The solid black line indicates

the latent states being jointly Gaus-

sian under a Gaussian Process prior.

This model can be extended to a

latent autoregressive model by in-

cluding historic states and inputs

into the transition model.

The generative MSGP model is parametrized by θ (made precise be-

low). MSGP approximates (65) and (66) such that temporal corre-

lations between the current timestep and all previous timesteps are

maintained. Model errors are therefore accumulated over time and

backpropagated duringmodel optimization to obtain good long-term

predictions. The optimal model parameters θ∗, taking into account all

open-loop and closed-loop trajectories, is obtained as

θ∗ = arg min
θ

L
ff
(θ) + L

fb
(θ) . (67)

TheMSGPmodel is a specific version of the SSM in (64). The obser-

vation function g is given, without loss of generality, by the identity

function (cf. [50]). The latent state transition model f is an autoregres- [50] Frigola, Lindsten, Schön, and Ras-

mussen, “Bayesian Inference and Learn-

ing in Gaussian Process State-Space

Models with Particle MCMC,” 2013

sive GP model. Thereby, we sidestep the challenging inference in a

truly latent state space with unknown dimensionality and represent

the missing information by taking into account historic state informa-

tion. As in (64), the model includes Gaussian process and observation

noise. A graphical model of the generative model is shown in Fig. 21.

In contrast to standard GP dynamics models, which are trained

on one-step-ahead predictions given measured training data, the la-

tent system state is not directly measurable. Following work by [155], [155] Turner, Deisenroth, and Ras-

mussen, “State-space inference and

learningwith Gaussian processes,” 2010

the latent state GP is therefore parametrized by m inducing inputs

X̄ = [x̄1, . . . , x̄m]T and targets ȳ = [ȳ1, . . . , ȳm]T . Inducing points

are artificial GP inputs and targets which can be optimized to cap-

ture the system behavior. This approach is commonly employed for

learning sparse GP representations [142, 125]. The GP inputs are [142] Snelson and Ghahramani,

“Sparse Gaussian processes using

pseudo-inputs,” 2006

[125] Quinonero-Candela, Rasmussen,

andWilliams, “Approximationmethods

for Gaussian process regression,” 2007

of the autoregressive form in (62). The GP hyperparameters θ
hyp

,

inducing inputs X̄ and targets ȳ, as well as process and observa-

tion noise variances are parameters of the generative model, which

are jointly optimized. The parameter vector is therefore given by

θ = (θ
hyp

, x̄1, . . . , x̄m, ȳ1, . . . , ȳm, Σx, Σy).

Standard GP models are usually trained by maximizing the data

log likelihood [168] given by [168]Williams and Rasmussen, Gaussian
processes for machine learning, 2005

log p(y|X) = −1
2

yT(K + σ2
n

I)−1y− 1
2

log |K + σ2
n

I| − n
2

log 2π , (68)



64 | MULTI-STEP GAUSSIAN PROCESS MODELS

where y and X are training data points obtained from measured sys-

tem data with input dimensionality n. These standard models only

account for Gaussian output noise given by σn. The GP covariance

matrix K is obtained as Kij = k(xi, xj), ∀xi, xj ∈ X̄ for a given kernel

function k. This objective automatically trades data-fit (first term) for

model complexity (second term). In contrast, the long-term trajectory

likelihood objectives in (65) and (66)) are not automatically penalizing

the model complexity of the latent dynamics model. Instead, all in-

ducing inputs and outputs can be modified independently. To avoid

overfitting of the latent state model, we add the model complexity

penalty given by

Lcomp(θ) = −
1
2

log |K + σ2
x

I| , (69)

to the long-term likelihood term in (65) and (66). The full MSGP

optimization objective is therefore given by

θ∗ = arg min
θ

L
ff
(θ) + L

fb
(θ) + Lcomp(θ) (70)

7.1.3 Marginal Observation Distribution
In the following, we summarize the necessary computations to obtain

the conditional observation distributions from (65) and (66). The ap-

proximations are inspiredby the long-termpredictionmethodutilized

in the policy search framework PILCO [31]. For clarity, we will drop [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

the notion of explicitly conditioning on the initial state x0, the input

sequence u0:T , the policy parameters θπ , and the model parameters θ.

We also drop the time indices and denote the full trajectories of states,

GP-predictions, outputs, and inputs over the prediction horizon by x,
f , y and u, respectively. Due to the Markovian state xt, the joint dis-

tribution of p(x, f , y, u) factorizes such that the marginal observation

distribution is given by

p(y) =
∫

p(x0)
T

∏
t=1

p(yt|xt)p(xt| ft)p( ft|xt−1, ut−1)

p(ut−1|yt−1; θπ)dudxd f . (71)

We assume a Gaussian distribution for the initial state

p(x0) = N (x0, Σ0) . (72)

Starting from p(x0), we can repeatedly apply the following steps to

obtain the full marginal observation distribution from (71).



MULTI-STEP GAUSSIAN PROCESSES FOR RL | 65

Observation Model

Based on the Gaussian approximation of the latent state p(xt) in every

prediction step the conditional observation distribution is obtained as

p(yt|xt) = N (yt|xt, Σy) . (73)

Policy

The policy ut = π(yt; θπ) is evaluated on the current observation

yt. To obtain the input to the dynamics model, we compute the joint

distribution of the current state and the policy output p(xt, ut) as given

by

p(xt, ut) =
∫

p(ut|yt, θπ)p(yt|xt)p(xt)dyt . (74)

This integral can be computed exactly for Gaussian observation mod-

els (cf. (73)) and linear policies. For non-linear policies (e.g. RBF

networks or neural networks), we revert to a moment matching ap-

proximation of the joint probability distribution p(xt, ut).

Dynamics Model

As detailed before, the latent state dynamics is modeled by an autore-

gressive GP based on m inducing inputs. Each latent state dimension

is modeled independently by a single output GP. We employ the pop-

ular Squared Exponential (SE) kernel [168] given by [168]Williams and Rasmussen, Gaussian
processes for machine learning, 2005

k(xi, xj) = σ2
f

exp(−1
2
(xi − xj)

TΛ(xi − xj)) , (75)

with lengthscalesΛ = diag(1/l2
1 , . . . 1/l2

D) and signal variance σ2
f
. The

predictive distribution for the next latent state ft+1 is then given by

p( ft+1|x̄t, X̄, ȳ) ∼ N (µ ft+1 , σ2
ft+1

) , (76)

where the mean and the variance are given by

µ ft+1 = k(x̄t)
TK−1ȳ , σ2

ft+1
= k(x̄t, x̄t)− k(x̄t)

TK−1k(x̄t) , (77)

with k(x̄t) = [k(x̄t, x̄1), . . . , k(x̄t, x̄m)]T .

Propagation of Uncertainty

The input to the dynamics model is jointly Gaussian. In general, the

marginal distribution for propagating a Gaussian distributed input

p(x̄t) through an arbitrary non-linear function f (x), as given by

p( ft+1) =
∫

p( ft+1|x̄t)p(x̄t)dx̄t , (78)



66 | MULTI-STEP GAUSSIAN PROCESS MODELS

is non-Gaussian. In order to obtain analytic gradients for the propa-

gation step, we utilize Moment Matching (MM). First and second mo-

ment of the predictive distribution can be calculated in closed form

if a Gaussian-like kernel is employed as derived in [124]. The ap- [124] Quinonero-Candela, Girard, and

Rasmussen, Prediction at an uncertain in-
put for Gaussian processes and relevance
vector machines-application to multiple-step
ahead time-series forecasting, 2002

proximated predictive distribution for a Gaussian distributed input

x̄t ∼ N (µx̄, Σx̄) is given by

p( ft+1) = N (µ ft+1,MM

, σft+1,MM

) , (79)

The expressions for mean and variance, and references to detailed

derivations of the moment matching formalism can be found in the

supplementary material. By applying the steps from (73) to (79) re-

peatedly over the prediction horizon, we obtain the full predictive

distribution (65) and (66). Every prediction step is therefore depen-

dent on all previous timesteps such thatmodel errors are accumulated

and consequently backpropagated during model optimization to im-

prove the quality of long-term predictions. Due to the choice of a GP

latent space dynamics model and the moment matching approxima-

tion for the predictive trajectory distribution, gradients for the loss

with respect to the model parameters θ can be obtained analytically.

We can then optimize the model parameters using standard gradient

descent methods.

7.1.4 Relation betweenModel Learning and Policy Search
Both, MBPS and model learning can be expressed as

θ∗ = arg min
θ

J(p(y0:T | x0, θ)) . (80)

In MSGP, the loss function J used for model learning is the negative

log-likelihood of the observed trajectories and the model’s open pa-

rameters θ are given by the GP parameters. In contrast, for policy

search, the loss J could be a quadratic penalty for deviations from a

desired trajectory and themodel’s parameters θ are given by the policy

parameters. In bothproblems, anoptimizationbasedon thepredictive

distribution p(y0:T) as given by (71) has to be carried out. Since (71) is

generally not analytically tractable, approximations aremade inmodel

learning and policy search. Ideally, the approximations made in the

subsequent policy search step should be incorporated in the model

learning part already. MSGP is therefore tailored for the Probabilistic

Inference for Learning COntrol (PILCO)method [31], sinceMSGP em- [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

ploys the same approximations to the predictive distribution (65) and

(66) as utilized in PILCO. Since we changed the GP training procedure

but not the GP-model structure itself, we end up with a standard GP,

which can be directly employed within the PILCO framework.



EXPERIMENTAL EVALUATION | 67

Figure 22: Comparison of the free

simulation on the synthetic system

4 test dataset. The predictive dis-

tribution of GP-NARX, NIGP, RE-

VARB and the proposed MSGP are

shown (mean , +/- 2 standard

deviation ) togetherwith the true,

latent state of the system ( ).

PILCO is amethodwhichpropagates aparametrizedpolicy through

a probabilistic model in order to compute the gradients of the policy

parameters with respect to the cost function. To learn about the sys-

tem, PILCO iterates betweenderiving anoptimal policy for the learned

system model and running the resulting policy on the real system to

acquire more data. This method has been successfully applied to

real-world systems like low-cost manipulators [35] and throttle valve [35] Deisenroth, Rasmussen, and Fox,

“Learning to Control a Low-Cost Ma-

nipulator usingData-Efficient Reinforce-

ment Learning,” 2011

control [18], and extensions are available formultiple task learning [35]

[18] Bischoff, Nguyen-Tuong, Koller,

Markert, and Knoll, “Learning Throttle

ValveControlUsingPolicy Search,” 2013

or training of multivariate PID structures [41].

[41] Doerr, Nguyen-Tuong, Marco,

Schaal, and Trimpe, “Model-based Pol-

icy Search for Automatic Tuning of Mul-

tivariate PID Controllers,” 2017

7.2 Experimental Evaluation

[76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

[31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

[94]McHutchon and Rasmussen, “Gaus-

sian process training with input noise,”

2011

[91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

In the previous sections, MSGP, a novel model learning technique has

been proposed, which is particularly tailored to the needs of model-

based RL. Thus, the upcoming experimental evaluation of MSGP is

twofold: (i) Evaluation of the model learning capabilities in compari-

son to existing system identification methods on a set of well-known

benchmarks. (ii) Comparison of theMSGP policy search performance

to a state-of-the-art method.

7.2.1 Model Learning Benchmark
For evaluating the system identification performance, the proposed

MSGPmethod is compared to state-of-the-artmodel learningmethods

from the literature: (i) GP-NARX [76], (ii) PILCO’s GP-NARX [31], (iii)

NIGP [94], and (iv) REVARB [91]. The benchmark is conducted on

five synthetic and five real-world datasets. To compare the quality of

the learned system dynamics models, we compute the free simulation



68 | MULTI-STEP GAUSSIAN PROCESS MODELS

Task GP-NARX GP-NARX

PILCO

NIGP REVARB 1 REVARB 2 MSGP

Synthetic system 1 0.2265 0.3511 0.2453 0.2129 0.1717 0.3805

Synthetic system 2 0.3535 0.3467 0.4100 0.3395 0.3726 0.3424

Synthetic system 3 0.1572 0.1487 0.1950 0.3657 0.1695 0.1341

Synthetic system 4 0.5711 0.6016 0.7814 0.6978 0.4554 0.3287

Synthetic system 5 0.0164 0.0150 0.0101 0.1193 0.0035 0.0143

Actuator 0.6376 1.3767 0.6483 0.4328 0.5522 0.7124

Balancing 0.0773 0.0881 0.0776 0.1360 0.0732 0.0599

Drives 0.6888 0.7024 0.7525 0.7463 0.5620 0.4217

Furnace 1.1996 1.2012 1.1949 1.3434 1.9569 1.2013

Dryer 0.2856 0.2956 0.2802 0.8764 0.1286 0.1523

Table 1: Comparison ofmodel learn-

ing methods on synthetic (first 5

rows) and real-world (last 5 rows)

benchmark examples. The RMSE

result is given for the free simula-

tion on the noise free test dataset.

The best model ( ) and the sec-

ond best model ( ) are indicated

for each dataset. The background

color indicates best ( ) toworst ( )

model performance. Best viewed in

color.

for each model. Each benchmark dataset comprises a system’s input-

output trajectory τ = (u0, y0), . . . , (uT , yT) up to a rollout horizon T.
Some initial input and output data is required for the NARX models’

history to predict into the future. The models thus start to predict

from x̄0 = [yly , . . . , y0, ulu , . . . , u0]
T
given their specific requirements

for input and output history lu and ly respectively. Details about

the benchmark datasets and the setup of the individual benchmark

methods can be found in Appendix B.

Synthetic Benchmark Datasets

The resulting RMSEs are stated for each method and dataset in Tab. 1

The results show that learning methods based on long-term predic-

tions (REVARB,MSGP) tend tooutperform theone-step-aheadmodels

(GP-NARX, GP-NARX-PILCO, NIGP). Overall, the results show that

the performance of MSGP is comparable to the one of REVARB meth-

ods, however, none of the methods outperforms the others in all cases.

The presented results are based on the moment matching approxi-

mation to obtain long-term predictive distributions. While moment

matching is essential to retrieve an estimate of the prediction’s un-

certainty, it also introduces additional errors. Propagating only the

mean prediction results in better RMSE results for some benchmarks

as reported in [93]. A visualization of the free running prediction [93] Mattos, Damianou, Barreto, and

Lawrence, “Latent Autoregressive Gaus-

sian Processes Models for Robust Sys-

tem Identification,” 2016

results on the synthetic system 4 dataset is shown Fig. 22. The model

bias introduced by the input noise is clearly visible for the standard

GP-NARX model (top plot); the true dynamics is not captured by this

model. In contrast, NIGP, REVARB and MSGP capture the dynamics

much better. However, REVARB is clearly underestimating the un-



EXPERIMENTAL EVALUATION | 69

certainty about the underlying system and both NIGP and REVARB

cannot properly fit the high and low peaks, i.e. the learned length-

scales are too short to generalize well on the brink of the state space

covered by training data.

Real-World Benchmark Datasets

The results in Tab. 1 show that (like for the synthetic benchmarks) the

methods based on long-term predictions (MSGP and REVARB) gen-

erally outperform the methods based on one-step-ahead predictions.

While there is still no clear overall winner, MSGP seems to perform

slightly better for the real-world data sets than for the synthetic ones.

7.2.2 Policy Search

Figure 23: A humanoid upper-body

robot learning to balance an in-

verted pendulum. For this task,

improved data-efficiency and there-

fore faster policy learning is demon-

strated based on the presented long-

term optimization model-learning

procedure.

So far, we evaluated the model learning performance as measured

by the root mean squared error of a long-term prediction on test

datasets. However, it is unclear how to quantify model quality with

respect to the purpose of policy search. For the purpose of learning

feedback policies, good models are not necessarily required to obtain

the best predictions for an arbitrary feedforward signal. However, this

is usually the objective in model learning methods.

To demonstrate the policy learning properties of the proposed

MSGP method combined with PILCO, we investigate the problem

of learning to balance an inverted pendulum, which is a well-known

benchmark scenario in control and reinforcement learning [4, 90].

[4] Anderson, “Learning to control an

inverted pendulum using neural net-

works,” 1989

[90] Marco, Hennig, Bohg, Schaal, and

Trimpe, “Automatic LQR Tuning Based

on Gaussian Process Global Optimiza-

tion,” 2016

Experimental Setup

Weemploy ahumanoidupper-body robot platformas shown inFig. 23.

The system outputs considered for balancing are the pendulum and

end-effector positions, and the input is given by the end-effector accel-

eration. Commanded accelerations are internally translated into joint

torques by an existing inverse dynamics model. The policy is com-

posed from a PID feedback controller on the end-effector and a PD

controller on the pendulum angle, similar to the experimental setup

in [41]. [41] Doerr, Nguyen-Tuong, Marco,

Schaal, and Trimpe, “Model-based Pol-

icy Search for Automatic Tuning of Mul-

tivariate PID Controllers,” 2017

Despite the simplicity of the task of balancing an inverted pendu-

lum, the robotic arm (cf. Fig. 23) introduces all real-world challenges

like noise, delays, and latent states as discussed in Sec. 6.3. These

problems have been tackled before [41] using standard PILCO, which

required additional prior system knowledge, manual tuning and a

GP-NARX model to deal with partial observability. Given the MSGP

framework, we can learn in this scenario from scratch without the

need for manual tuning and injection of prior knowledge.



70 | MULTI-STEP GAUSSIAN PROCESS MODELS

Iteration (-)

L
o
ss

(-
)

1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

(a) Predicted rollout loss.

Baseline

GP-NARX

MSGP

Iteration (-)

L
o
ss

(-
)

1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

(b) Actual rollout loss.

Figure 24: Iterative learning to bal-

ance the inverted pendulum with-

out prior knowledge based on the

GP-NARX model as used in stan-

dard PILCO ( ) and the pro-

posed MSGP model ( ). As base-

line, the performance of an optimal

policy ( ) based on a fixed GP-

NARX model is shown. In contrast

to the iterative learning procedures,

this baseline model was trained on

a much larger dataset that incorpo-

rates random, instable and stable

rollouts. MSGP improves the long-

term model predictions such that

policy search with no prior domain

knowledge is feasible. The graphs

represent the outcome of five inde-

pendent learning runs, depicted as

the average ( ) with +/- 1 stan-

dard deviations ( ).

For this task, most model learning methods discussed in Sec 7.2.1

are not directly applicable. In order to efficiently optimize the ex-

pected policy cost, analytic policy gradients must be available for a

long-term prediction. Since MSGP training results in a standard GP-

NARX model, we can directly employ the existing PILCO framework.

Deriving and implementing analytic policy gradients for the more

involved deep and recurrent GP models like REVARB [91] is challeng-

ing and not straight-forward to implement in existing model-based

RL frameworks. Additionally, the REVARB inference is implemented

for single trajectories only, whereas the iterative model learning pro-

cedure has to learn frommultiple experimental rollouts. Thus, policy

search is directly applicable only to GP-NARX and MSGP.

Experimental Results

We compare policy search results based on the proposedMSGPmodel

to standard PILCO using a GP-NARX model. Both methods are ini-

tiated with data from four rollouts based on smooth random signals.

The distribution of policy costs over learning iterations (mean +/- one

standard deviation) as obtained fromfive independent learning exper-

iments is visualized in Fig. 24. The left plot shows the predicted cost,

whereas the right plot shows the actual cost experienced for the rollout

of the policy on the real system. We employ the standard saturated

cost function in PILCO, penalizing both system outputs and inputs.

PILCO has been demonstrated to successfully learn pendulum

swing-up on a lab test-bench [31]. On our robotic setup, due to the [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

challenges discussed in Sec. 6.3, neither a standardGPnor aGP-NARX

dynamics model are sufficient to learn a good predictive model or a

stabilizing policy (cf. GP-NARX results in Fig. 24). In contrast, the

MSGP model optimization is able to learn a successful model and

policy from scratch without requiring prior system knowledge. Sta-

ble balancing is achieved after six to eight policy iterations, which

corresponds to roughly 30 seconds of interaction with the real system.

To demonstrate the general ability of the GP-NARX model to rep-

resent the system’s latent dynamics, we report in Fig. 24 (blue) also



SUMMARY | 71

the baseline policy obtained offline from a much larger, separately

recorded dataset. For this, policy search was performed on a GP-

NARX model that was trained on a larger dataset including multiple

random, unstable, and stable rollouts. The baseline model is clearly

sufficient to find a stabilizing policy. This indicates that progress in

the iterative PILCO procedure is not limited by the expressivity of

the GP-NARX model, but by the model optimization procedure it-

self. MSGP-based PILCO is able to robustly learn a stabilizing policy

iteratively and with a much smaller dataset than the baseline.

7.3 Summary
In this chapter, we introduced MSGP, a lightweight model learning

technique to improve long-term predictions, which is applicable to

model-based policy search frameworks in a straightforward way. The

methodology can be interpreted as optimizing a recurrent, latent GP-

NARX dynamics model by maximizing the likelihood of observed

system trajectories. In contrast to classic system identification meth-

ods, we explicitly optimize the model with respect to its applicability

in policy search. Therefore, long-term predictions take into account

the dependency on the employed policy and the errors introduced by

the approximations made in the policy search step.

Benchmark results are given for artificial and real-world system

identification tasks, comparing MSGP to several state-of-the-art non-

linear system identification methods, including recurrent (deep) GPs.

While MSGP is competitive to state-of-the-art methods for system

identification, it clearly outperforms existing approaches on the robot

policy search task. Using MSGP, iterative learning of a challenging

robotic task from scratch is possible, in contrast to the default PILCO

implementation.

One computational challenge in MSGP is the calculation of the full

predictive distribution for all training trajectories over the full trajec-

tory length in each function and gradient evaluation for every model

learning iteration. The model optimization is therefore expensive on

big datasets. Runtimes on the presented datasets range from minutes

(artificial/real-world datasets) up to two hours for the last iterations

on the robotic application. Potential speed improvements can be ob-

tained by more efficient autodifferentiation (e.g. using Tensorflow),

parallelization across trajectories and stochastic model update steps

utilizing minibatches of subtrajectories. The optimization problem

could possibly be relaxed by adding free latent state variables as addi-

tional optimization parameters. The system dynamics then becomes

an additional optimization constraint.



72 | MULTI-STEP GAUSSIAN PROCESS MODELS

By switching from the one-step-ahead prediction methods to long-

term optimization methods, we would expect to improve the robust-

ness against varying sampling frequencies, as well as delays and dis-

turbances due to non-measured latent states. Moreover, tailoring

model learning to the class of policies employed in the subsequent

policy search step should improve the learning performance. These

are promising directions for future research.



8Probabilistic Recurrent State-SpaceModel

In the previous sections, the novel MSGP method has been intro-

duced for learning long-term predictive models, in particular for pol-

icy search applications and real-world systems. As demonstrated

(cf. Sec.7.2), MSGP improves on state-of-the-art model-learning tech-

niques in RL. The impressive performance on real-systems can be

attributed to the ability of accounting for noisy data and unobserved

dynamics. MSGP facilitates this bymeans of optimizing the long-term,

latent states of a GP-NARX model (cf. Sec.7.1.1).

As discussed in the summary section 7.3, withMSGP, several draw-

backs remained open for future work. In this section, a second model

learning framework, Probabilistic Recurrent State-Space-Models (PR-

SSM) is introduced to address the shortcomings of MSGP. Most fun-

damentally, the efficiency of MSGP was facilitated by Gaussian ap-

proximations in each time-step. This assumption, however, implies

strong limitations of the MSGP framework. In particular, skewed or

multi-modal distributions that might easily arise from propagating

uncertainty in non-linear dynamics models (cf. [57]), can not be repre- [57] Girard and Rasmussen, “Multiple-

step ahead prediction for non linear dy-

namic systems–a gaussian process treat-

ment with propagation of the uncer-

tainty,”

sented in the MSGP per design.

With PR-SSM, one of the goals is to accurately represent complex,

i.e., non-Gaussian latent state distributions. Computing the full tra-

jectory distribution in non-linear state-space models is however not

analytically tractable. The main challenge is thus in finding an appro-

priate trade-off between the accuracy of the posterior approximation

and the computational tractability.

The PR-SSM model is defined in Sec. 8.1, followed by the novel

inference scheme in Sec. 8.2. Extensions to facilitate large-scale data

are discussed in Sec. 8.3. Experimental results are detailed in Sec. 8.4.

This section concludes with a summary of the presented PR-SSM

method and an outlook on possible future topics.

8.1 PR-SSMModel Definition
The PR-SSM is built upon a GP prior on the transition function f (·)
and a parametric observation model g(·). This is a common model

structure, which can be assumed without loss of generality over (63),

since any observation model can be absorbed into a sufficiently large

latent state [52]. Eliminating the non-parametric observation model, [52] Frigola-Alcade, “Bayesian time se-

ries learning with Gaussian processes,”

2015

however, mitigates the problem of ‘severe non-identifiability’ between



74 | PROBABILISTIC RECURRENT STATE-SPACE MODEL

transition model f (·) and observation model g(·) [49]. Independent [49] Frigola, Chen, and Rasmussen,

“Variational Gaussian process state-

space models,” 2014

GP priors are employed for each latent state dimension d given indi-

vidual inducing points ζd and zd.

In the following derivations, the system’s latent state, input and

output at time t are denoted by xt ∈ RDx
, ut ∈ RDu

, and yt ∈ RDy
, re-

spectively. The shorthand x̂t = (xt, ut) denotes the transition model’s

input at time t. The output of the transition model is denoted by

ft+1 = f (x̂t). A time series of observations from time a to time b
(including) is abbreviated by ya:b (analogously for the other model

variables).

The joint distribution of all PR-SSM random variables is given by

p(y1:T , x1:T , f2:T , z) =

[
T

∏
t=1

p(yt | xt)

]
p(x1)p(z) (81)[

T

∏
t=2

p(xt | ft)p( ft | x̂t−1, z)

]
,

where p( ft | x̂t−1, z) = ∏Dx
d=1 p( ft,d | x̂t−1, zd) and z ≡ [z1, . . . zDx ]. A

graphical model of the resulting PR-SSM is shown in Fig. 25.

The individual contributions to (81) are given by the observation

model and the transition model, which are now described in detail.

The observation model is governed by

p(yt | xt) = N (yt | g(xt),diag(σ2
y,1, . . . , σ2

y,Dy
)), (82)

In particular, in our experiments, we employed a parametric observa-

tion model

g(xt) = Cxt . (83)

The matrix C is chosen to select the Dy first entries of xt by defining

C := [I, 0] ∈ RDy×Dx
with I being the identity matrix. This model

is suitable for observation spaces that are low-dimensional compared

to the latent state dimensionality, i.e. Dy < Dx, which is often the

case for physical systems with a restricted number of sensors. The

first Dy latent state dimensions can therefore be interpreted as noise

free sensor measurements. For high-dimensional observation spaces

(e.g. images), a more involved, given observation model (e.g. a pre-

trained neural network) may be seamlessly incorporated into the pre-

sented framework as long as g(·) is differentiable.
Process noise is modeled as

p(xt | ft) = N (xt | ft,diag(σ2
x,1, . . . , σ2

x,Dx
)) . (84)

The transition dynamics is described independently for each latent

state dimension d by p( ft,d | x̂t−1, zd)p(zd). This probability is given

by the sparse GP prior (17) and predictive distribution (16), where



PR-SSM INFERENCE | 75

xt

yt

ut

xt+1

yt+1

ut+1

ft ft+1

Figure 25: Graphical model of the

PR-SSM. Gray nodes are observed

variables in contrast to latent vari-

ables in white nodes. Thick lines

indicate variables, which are jointly

Gaussian under a GP prior.

x∗ = x̂t and f ∗ = ft,d. The initial system state distribution p(x1) is

unknown and has to be estimated.

8.2 PR-SSM Inference
Computing the log likelihood or a posterior based on (81) is gener-

ally intractable due to the nonlinear GP dynamics model in the latent

state. However, the log marginal likelihood log p(y1:T) (evidence)

can be bounded from below by the Evidence Lower BOound (ELBO)

[19]. This ELBO is derived via Jensen’s inequality by introducing a [19] Blei, Kucukelbir, and McAuliffe,

“Variational inference: A review for

statisticians,” 2017

computationally simpler, variational distribution q(x1:T , f2:T , z) to ap-

proximate the model’s true posterior distribution p(x1:T , f2:T , z | y1:T)

(cf. eq. (81)). In contrast to previous work [49, 91, 44] , the proposed [49] Frigola, Chen, and Rasmussen,

“Variational Gaussian process state-

space models,” 2014

[91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

[44] Eleftheriadis, Nicholson, Deisen-

roth, and Hensman, “Identification of

Gaussian Process State Space Models,”

2017

approximation explicitly incorporates the true temporal correlations

in the latent state, whilst being scalable to large datasets. Previous

work based on sequential Monte Carlo methods [50, 149] already

[50] Frigola, Lindsten, Schön, and Ras-

mussen, “Bayesian Inference and Learn-

ing in Gaussian Process State-Space

Models with Particle MCMC,” 2013

[149] Svensson and Schön, “A flexible

state–space model for learning nonlin-

ear dynamical systems,” 2017

allowed for temporal correlations but required computationally chal-

lenging resampling in each timestep. The inference scheme is inspired

by doubly stochastic variational inference for deep GPs as presented

in [131].

[131] Salimbeni and Deisenroth, “Dou-

bly Stochastic Variational Inference for

Deep Gaussian Processes,” 2017

8.2.1 Variational Sparse GP
PR-SSM employs a variational sparse GP [152] based on a variational

[152] Titsias, “Variational Learning of In-

ducingVariables in SparseGaussianPro-

cesses,” 2009

distribution q(z) on the GP’s inducing outputs as previously used in

[49, 44]. Eliminating the inducing outputs, however, results in depen-

dencies between inducing outputs and data which, in turn, leads to a

complexity of O(NP2), where N is the number of data points and P
the number of inducing points [152]. Unfortunately, this complexity

is still prohibitive for large datasets. Therefore, we resort to an explicit

representation of the variational distribution over inducing outputs

as previously proposed in [63]. This explicit representation enables

[63] Hensman, Fusi, and Lawrence,

“Gaussian processes for big data,” 2013
scalability by utilizing stochastic gradient-based optimization since

individual GP predictions become independent given the explicit in-

ducing points. Following a mean-field variational approximation the

inducing output distribution is given as q(z) = ∏Dx
d=1N (zd | µd, Σd)



76 | PROBABILISTIC RECURRENT STATE-SPACE MODEL

for each latent state dimension d with diagonal variance Σd. Marginal-

izing out the inducing outputs, the GP predictive distribution is ob-

tained as Gaussian with mean and variance given by

µ = mx̂t + α(x̂t)(µd −mζd
) ,

σ2 = kx̂t ,x̂t − α(x̂t)(Kζd ,ζd
− Σd)α(x̂t)

T ,

α(x̂t) := kx̂t ,ζd
K−1

ζd ,ζd
.

(85)

8.2.2 Variational Approximation
In previous work [91], a factorized variational distribution is consid- [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

ered based on a mean-field approximation for the latent states x1:T .

Their variational distribution is given by

q(x1:T , f2:T , z) =[
Dx

∏
d=1

q(zd)

[
T

∏
t=2

p( ft,d | x̂t−1, zd)

]] [
T

∏
t=1

q(xt)

]
.

This choice, however, leads to several caveats: (i) The number ofmodel

parameters grows linearly with the length of the time series since

each latent state is parametrized by its individual distribution q(xt)

for every time step. (ii) Initializing the latent state is non-trivial since

the true, underlying observation mapping is generally unknown and

non-bĳective. (iii) The model design does not represent correlations

between time steps. Instead, these correlations are only introduced by

enforcing pairwise couplings during the optimization process. The

first two problems have been addressed in [91, 44] by introducing a [44] Eleftheriadis, Nicholson, Deisen-

roth, and Hensman, “Identification of

Gaussian Process State Space Models,”

2017

recognition model, e.g. a Bi-RNN
1
, which acts as a smoother which

1
A bi-directional RNN operates on a se-

quence from left to right and vice versa

to obtain predictions based on past and

future inputs.

can be learned through backpropagation and which allows to obtain

the latent states given the input/output sequence.

The issue of representing correlations between time steps, however,

is currently an open problem which we aim to address with our pro-

posed model structure. Properly representing these correlations is a

crucial step in making the optimization problem tractable in order to

learn GP-SSMs for complex systems.

For PR-SSM, the variational distribution is given by

q(x1:T , f2:T , z) = (86)

T

∏
t=2

[
p(xt | ft)

Dx

∏
d=1

[p( ft,d | x̂t−1, zd)q(zd)]

]
q(x1) ,

with

q(x1)=N (x1 | µx1 , Σx1) , q(zd)=N (zd | µd, Σd) .



PR-SSM INFERENCE | 77

In contrast to previous work, the proposed variational distribution

does not factorize over the latent state but takes into account the

true transition model, based on the sparse GP approximation from

(81). In previouswork, stronger approximations have been required to

achieve an analytically tractable ELBO. Thiswork, however, dealswith

the more complex distribution by combining sampling and gradient-

based methods.

In [49], the variational distribution over inducing outputs has been [49] Frigola, Chen, and Rasmussen,

“Variational Gaussian process state-

space models,” 2014

optimally eliminated. This leads to a smoothing problem in a sec-

ond system requiring computationally expensive, e.g. sample-based,

smoothing methods. Instead, we approximate the distribution by a

Gaussian, which is the optimal solution in case of sparseGP regression

(cf. [152]). [152] Titsias, “Variational Learning of In-

ducingVariables in SparseGaussianPro-

cesses,” 2009

The PR-SSM model parameters include the variational parameters

for the initial state and inducing outputs and hyperparameters, such

as inducing inputs, noise parameters and GP kernel parameters:

θ
PR-SSM

= (µx1 , Σx1 , µ1:Dx , Σ1:Dx , ζ1:Dx , σ2
x,1:Dx

, σ2
y,1:Dy

, θ
GP,1:Dx ) . (87)

Note that in the PR-SSM, the number of parameters grows only with

the number of latent dimensions, but not with the length of the time

series.

8.2.3 Variational Evidence Lower Bound
Following standard variational inference techniques [19], the ELBO is [19] Blei, Kucukelbir, and McAuliffe,

“Variational inference: A review for

statisticians,” 2017

given by

log p(y1:T)≥Eq(x1:T , f2:T ,z)

[
log

p(y1:T ,x1:T , f2:T ,z)
q(x1:T , f2:T , z)

]
=: L

PR-SSM
. (88)

Maximizing the ELBO is equivalent [19] to minimizing

KL(q(x1:T , f2:T , z) ‖ p(x1:T , f2:T , z | y1:T)) . (89)

Therefore, this is a way to optimize the approximated model parame-

ter distribution with respect to the intractable, true model parameter

posterior.

Based on (81) and (86) and using standard variational calculus, the

ELBO (88) can be transformed into

L
PR-SSM

=
T

∑
t=1

Eq(xt)[log p(yt | xt)]

−
Dx

∑
d=1

KL(q(zd) ‖ p(zd; ζd)) , (90)



78 | PROBABILISTIC RECURRENT STATE-SPACE MODEL

with q(xt) defined in Sec. 8.2.4. The first part is the expected log-

likelihood of the observed system outputs y based on the observation

model and the variational latent state distribution q(xt). This term

captures the capability of the learned latent state model to explain

the observed system behavior. The second term is a regularizer on

the inducing output distribution that penalizes deviations from the

GP prior. Due to this term, PR-SSM automatically trades off data fit

against model complexity. A detailed derivation of the ELBO can be

found in the supplementary material.

8.2.4 Stochastic Gradient ELBOOptimization
Training the proposed PR-SSM requires maximizing the ELBO in (90)

with respect to the model parameters θ
PR-SSM

. While the second term,

as KL between two Gaussian distributions, can be easily computed,

the first term requires evaluation of an expectation with respect to the

latent state distribution q(xt), given by

q(xt) =
∫ t

∏
τ=2

[p(xτ | fτ)p( fτ | x̂τ−1, z)]

q(x1)q(z)dx1:t−1d f2:tdz . (91)

Since the true non-linear, latent dynamics is maintained in the varia-

tional approximation (86), analytic evaluation of (91) is still intractable.

Because of the latent state’s Markovian structure, the marginal latent

state distribution q(xt) at time t is conditionally independent of past

time steps, given the previous state distribution q(xt−1) and the ex-

plicit representation of GP inducing points. This enables a differen-

tiable, sampling-based estimation of the expectation term. Samples x̃t

from (91) can be obtained by recursively drawing from the sparse GP

posterior in (85) for t = 1, . . . , T. Drawing samples from a Gaussian

distribution can be made differentiable with respect to its parameters

µd, σ2
d using the re-parametrisation trick [74]. The gradient can be propa- [74] Kingma and Welling, “Auto-

encoding variational bayes,” 2013
gated back through time due to this re-paramatrization and unrolling

of the latent state. An unbiased estimator of the first term in the ELBO

in (90) is given by

Eq(xt)[log(yt | xt)] ≈
1
N

N

∑
i=1

log p(yt | x̃(i)t ) . (92)

Based on the stochastic ELBO evaluation, analytic gradients of (90)

can be derived to facilitate stochastic gradient-descent-based model

optimization.



EXTENSIONS FOR LARGE DATASETS | 79

Figure 26: Predictions of the ini-

tial, untrained (left) and the final,

trained PR-SSM (right) based on

the full gradient ELBO optimiza-

tion. The system input/output data

( ) is visualized togetherwith the

model prediction ( ) for a part of

the Furnace dataset. Samples of the

latent state distribution and output

distribution are shown in gray. The

colored, shaded areas ( ) visual-

ize mean +/- two std of the latent

state x and observation y. The ini-

tial model exhibits a random walk

behavior in the latent space. In

the trained model, the decay of the

initial state uncertainty can be ob-

served in the first time steps. In this

experiment, no recognition model

has been used (cf. Sec. 8.3).

8.2.5 Model Predictions
After model optimization based on the ELBO (90), model predictions [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

for a new input sequence u1:T and initial latent state x1 can be ob-

tained based on the approximate, variational posterior distribution in

(86). In contrast to [91], no approximations such as moment matching

are required for model predictions. Instead, the complex latent state

distribution is approximated based on samples from (91). The pre-

dicted observation distribution can then be computed from the latent

distribution according to the observation model in (82). Instead of a

fixed, uninformative initial latent state, a learned recognition model

(cf. Sec. 8.3 for details) can be utilized to find amore informativemodel

initialization.

8.3 Extensions for Large Datasets
Optimizing the ELBO (90) based on the full gradient is prohibitive [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

[44] Eleftheriadis, Nicholson, Deisen-

roth, and Hensman, “Identification of

Gaussian Process State Space Models,”

2017

for large datasets and long trajectories. Instead, a stochastic optimiza-

tion scheme based on mini-batches of sub-trajectories is introduced.

Directly optimizing the initial latent state distribution q(x1) for each

sub-trajectory would lead to a full parametrization of the latent state

which is undesirable as described in Sec. 8.2.2. Instead, we propose a

parametric recognition model, which initializes the latent state q(x1).

In recent work on SSMs [91, 44], a recognition model is introduced



80 | PROBABILISTIC RECURRENT STATE-SPACE MODEL

Figure 27: Comparison of the fully

trained PR-SSM predictions with

(lower row) and without (upper

row) initial state recognition model

on a test dataset. The initial tran-

sient based on the uncertainty from

an uninformative initial state distri-

bution q(x1) = N (x1 | 0, I) decays,
as shown in upper plots. Below

the outcome is shownwhen q(x1) is

initialized by the smoothing distri-

bution q(x1 | y1:L, u1:L), given the

first L steps of system input/out-

put. Using the recognition model

yields a significantly improved la-

tent state initialization and there-

fore decreases the initial state un-

certainty and the initial transient be-

havior.
to parametrize the smoothing distribution p(x1:T | y1:T , u1:T). We

propose a similar approach, but only to model the initial latent state

q(x1) = N (x1 | µ1, Σ1) ≈ q(x1 | y1:L, u1:L) , (93)

µ1, Σ1 = h(y1:L, u1:L; θrecog) . (94)

The initial latent state distribution is approximated by a Gaussian,

where mean and variance are modeled by a recognition model h. The
recognitionmodel acts as a smoother, operating on the first L elements

of the system input/output data to infer the first latent state. Instead

of directly optimizing q(x1) during training, errors are propagated

back into the recognition model h, which is parametrized by θrecog.

Additionally, the proposed recognition model can also be used

to predict behavior on test data, where the initial latent state is not

known.

8.4 Experimental Evaluation
In the following, we present insights into the PR-SSM optimization

schemes, comparisons to state-of-the-art model learningmethods and

a large scale experiment.

8.4.1 PR-SSM Learning
For small datasets (i.e. short training trajectory lengths), the model

can be trained based on the full gradient of the ELBO in (90). A

comparison of the model predictions before and after training with

the full ELBO gradient is shown in Fig. 26.



EXPERIMENTAL EVALUATION | 81

One-step-ahead,

autoregressive

Multi-step-ahead, latent space

autoregressive

Markovian state-space

models

Task GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

Actuator 0.627 (0.005) 0.599 (0) 0.438 (0.049) 0.613 (0.190) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)

Ballbeam 0.284 (0.222) 0.087 (0) 0.139 (0.007) 0.209 (0.012) 0.124 (0.034) 411.6 (273.0) 0.073 (0.007)

Drives 0.701 (0.015) 0.373 (0) 0.828 (0.025) 0.868 (0.113) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)

Furnace 1.201 (0.000) 1.205 (0) 1.195 (0.002) 1.188 (0.001) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)

Dryer 0.310 (0.044) 0.268 (0) 0.851 (0.011) 0.355 (0.027) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

Sarcos 0.169 (-) n.a. n.a. n.a. n.a. n.a. 0.049 (-)

Table 2: Model learning benchmark

on five real-world datasets. The

RMSE result (mean (std. deviation))

from 5 independent runs is given

for the free simulation on the test

dataset. The best model ( ) and

the second best model ( ) are in-

dicated for each dataset. The back-

ground color indicates best ( ) to

worst ( ) model performance. Best

viewed in color. The proposed PR-

SSM consistently outperforms the

reference (SS-GP-SSM) in the class

of Markovian state space models

and robustly achieves performance

comparable to the one of state-of-

the-art latent, autoregressive mod-

els. Best viewed in color.

Empirically, three major shortcomings of the full gradient-based

optimization schemes are observed:

(i) Computing the full gradient for long trajectories is expensive and

prone to the well-known problems of exploding and vanishing

gradients [114].

(ii) An uninformative initial state is prohibitive for unstable systems or

systems with slowly decaying initial state transients.

(iii) Momentum-based optimizers (e.g.Adam) exhibit fragile optimiza-

tion performance and are prone to overfitting.

The proposed method addresses these problems by employing the

stochastic ELBOgradient based onminibatches of sub-trajectories and

the initial state recognition model (cf. Sec. 8.3). Fig. 27 visualizes the

initial state distribution q(x1) and the correspondingpredictive output

distribution p(y1) for the fully trainedmodel basedon the full gradient

(top row), as well as for the model based on the stochastic gradient

and recognition model (bottom row). The transient dynamics and

the associated model uncertainty is clearly visible for the first 15 time

steps until the initial transient decays and approaches the true system

behavior. In contrast, the learned recognition model almost perfectly

initializes the latent state, leading to much smaller deviations in the

predicted observations and far less predictive uncertainty. Notice

how the recognition model is most certain about the distribution of

the first latent state dimension (orange), which is directly coupled to

the observation through the parametric observation model (cf. (82)).

The uncertainty for the remaining, latent states, in contrast, is slightly

higher.

Comparing the full ELBO gradient-based model learning and the

stochastic version with the recognition model, the stochastic model

learning is far more robust and counteracts the overfitting tendencies



82 | PROBABILISTIC RECURRENT STATE-SPACE MODEL

Figure 28: Free simulation results

for the benchmark methods on the

Drives test dataset. The true, ob-

served system output ( ) is com-

pared to the individual model’s pre-

dictive output distribution (mean

+/- two std., ). Results are

presented for the one-step-ahead

models GP-NARX and NIGP in the

left column. REVARB and MSGP

(shown in the middle column) are

both based onmulti-step optimized

autoregressive GP models in latent

space. In the right column, the SS-

GP-SSMs, as a model based on a

Markovian latent state, is compared

to the proposed PR-SSM.

in the full gradient-basedmodel learning. A comparison of the model

learning progress for both methods is depicted in the supplementary

material. Due to the improved optimization robustness and the ap-

plicability to larger datasets, the stochastic, recognition-model-based

optimization scheme is employed for the model learning benchmark

presented in the next section. Empirically, the cost of the proposed

sampling scheme is much lower compared to methods employing

SMC for sampling the full model posterior. In the experiments, 50

latent state samples were employed (details in the supplementary ma-

terial).

8.4.2 Model Learning Benchmark
The performance of PR-SSM is assessed in comparison to state-of-the-

art model learning methods on several real-world datasets as previ-

ously utilized by [91]. The suite of reference methods is composed of: [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

One-step ahead autoregressive GP models: GP-FITC [142] and NIGP

[142] Snelson and Ghahramani,

“Sparse Gaussian processes using

pseudo-inputs,” 2006

[94]. Multi-step-ahead autoregressive and recurrent GP models in

[94]McHutchon and Rasmussen, “Gaus-

sian process training with input noise,”

2011

latent space: REVARB based on 1, respectively 2, hidden layers [91]

and MSGP [39]. GP-SSMs, based on a full Markovian state: SS-GP-

[39] Doerr, Daniel, Nguyen-Tuong,

Marco, Schaal, Toussaint, and Trimpe,

“Optimizing Long-term Predictions for

Model-based Policy Search,” 2017

SSM [149] and the proposed PR-SSM. Currently, no published and

[149] Svensson and Schön, “A flexible

state–space model for learning nonlin-

ear dynamical systems,” 2017

runnable code exists for the model learning frameworks presented in

[155, 50, 49, 44].

To enable a fair comparison of the methods’ performance and ro-

bustness, whitened data, a default configuration across tasks and a

predefined amount of input/output data for initialization is employed.

Thepresented results are thereforenotdirectly comparable toprevious

work, where different data pre/postprocessing or method configura-

tions are employed. A more thorough evaluation, which matches the



EXPERIMENTAL EVALUATION | 83

Figure 29: Results on the Sarcos

large scale task: Predictions from

the GP-NARX baseline ( ) and

the PR-SSM ( ) for two out of

seven joint positions are shown to-

gether with the ground truth, mea-

sured joint positions ( ). PR-SSM

clearly improves over the GP-NARX

predictions. Similar results are ob-

tained for PR-SSMon the remaining

5 joints, where theGP-NARXmodel

fails completely (cf. supplementary

materials for details).

published results from previous work, as well as experimental details

are given in the supplementary material.

The benchmark results are summarized in Tab. 2. A detailed visu-

alization of the resulting model predictions on the Drives dataset is
shown in Fig. 28. For the one-step-ahead models (GP-NARX, NIGP),

two variants are used to obtain long-term predictive distributions:

Propagating the mean (no uncertainty propagation) and approximat-

ing the true posterior by a Gaussian using exact moment matching

[58]. The results show that PR-SSM consistently outperforms the [58] Girard, Rasmussen, Quinonero-

Candela, Murray-Smith, Winther, and

Larsen, “Multiple-step ahead predic-

tion for non linear dynamic systems—a

Gaussian process treatment with propa-

gation of the uncertainty,” 2003

SS-GP-SSM learning method. Similarly, performance is improved in

comparison to baseline methods (GP-NARX andNIGP). In the ensem-

ble of models based on long-term optimized autoregressive structure

(REVARB, MSGP), no method is clearly superior. However, the per-

formance of PR-SSM is consistently strong. The probabilistic methods

results are competitive or improve over the performance of determin-

istic RNN/LSTMmodels, as shown in [91]. Note that PR-SSM demon- [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

strates robust model learning performance across all datasets.

8.4.3 Large Scale Experiment
To evaluate the scalability, results are provided for the forward dy-

namics model of the SARCOS 7 degree of freedom robotic arm. The

task is characterized by 60 experiments of length 337 (≈ 20.000 data-

points), 7 input, and 7 output dimensions. PR-SSM is set up with a

latent state dimensionality Dx = 14. From the set of reference meth-

ods, only GP-NARX can be adapted to run efficiently on this dataset

without major effort (details are given in the supplementary material).

A visualization of the model predictions is shown in Fig 29 and pre-

diction RMSEs are listed in Tab. 2. The results show that PR-SSM is

able to learn robustly and accurately for all system outputs from all

experimental data. In contrast, the GP-NARX baseline achieves worse

predictions and fails to predict the remaining five joints (not shown).



84 | PROBABILISTIC RECURRENT STATE-SPACE MODEL

8.5 Summary
In this work, we presented Probabilistic Recurrent State-SpaceModels

(PR-SSM) as a novel model structure and efficient inference scheme

for learning probabilistic, Markovian state-space models. Based on

GP priors and doubly stochastic variational inference, a novel model

optimization criterion is derived, which is closely related to the one

of powerful, but deterministic, RNNs or LSTMs. By maintaining the

true latent state distribution and thereby enabling long-term gradi-

ents, efficient inference in latent space becomes feasible. Furthermore,

a novel recognitionmodel enables learning of unstable or slowdynam-

ics as well as scalability to large datasets. Robustness, scalability and

high performance in model learning is demonstrated on real-world

datasets in comparison to state-of-the-art methods.

A limitation of PR-SSM is its dependency on an a-priori fixed latent

state dimensionality. This shortcoming could potentially be resolved

by a sparsity enforcing latent state prior, which would suppress un-

necessary latent state dimensions.



Part III

Model Assumptions inModel-Free
Reinforcement Learning





9Introduction

Policy search methods are amongst the few successful RL [148] meth- [148] Sutton, McAllester, Singh, and

Mansour, “Policy gradient methods for

reinforcement learningwith function ap-

proximation,” 2000

ods which are applicable to high-dimensional or continuous control

problems, such as the ones typically encountered in robotics [118, 34].

[118] Peters and Schaal, “Reinforcement

learning of motor skills with policy gra-

dients,” 2008

[34] Deisenroth, Neumann, and Peters,

“A survey on policy search for robotics,”

2013

The first two parts of this work focus on model-based policy search

methods and efficient modeling for real-world systems, respectively.

These methods promise great data-efficiency, principled treatment of

uncertainty and, therefore, fast and efficient policy improvement. For

one, this is due to the utilization of all available data from possibly

different policies and tasks, which can be integrated into a single

model of the actual system’s dynamics. Other than that, the efficiency

of model-based approaches is mostly influenced by prior model as-

sumptions’ strength. As an example, modeling a system’s dynamics

with GPs and the most commonly used squared exponential kernel,

which is infinitely differentiable, implies a process with mean square

derivatives of all orders. Thus, significant assumptions about themod-

eled dynamics’ smoothness are already made by the employed model

structure.

Ultimately, the question arises, which model assumptions are valid

for a givenmodelingproblem. Many real-worldproblems exist, where

strong smoothness assumptions are typically invalid. For example,

robotic applications with contact interactions typically experience dis-

continuous effects once contact is established or released [23]. Sim- [23] Chebotar, Hausman, Zhang,

Sukhatme, Schaal, and Levine, “Com-

bining Model-Based and Model-Free

Updates for Trajectory-Centric Rein-

forcement Learning,” 2017

ilarly, problems with discrete decisions, such as typically found in

scheduling or game-like applications, can not be well learned with

smooth dynamics models. Though more flexible models might be

able to capture these effects in the limit, data-efficiencywill be severely

restricted.

As discussed in Sec. 2.2, other classes of RL and policy search

methods exist. As in the (dynamics) model-based regime, these RL

classes as well incorporate the available interaction data to solve a

specific modeling problem. For Bayesian Optimization (BO) or Policy

Gradient (PG) methods, this is an expected return model. Value- or

Q-Functions methods model the expected value as a function of state

and possibly action. Consequently, similar questions about model

assumptions and thus the capability to generalize from all available

data arise for these modeling problems.

The following part shifts the focus to the class of Policy Gradient

(PG) methods. Instead of extending and refining the model assump-

tions in model-based RL methods to make them more applicable to



88 | INTRODUCTION

real-world applications, this part takes the opposite direction. A novel

methodology called Deep-Deterministic Off-Policy Gradients (DD-

OPG) is derived starting from amodel-free stance of vanilla policy gra-

dient methods. DD-OPG carefully reintroduces model-assumptions

to foster data-efficiency and robustness in learning.

The main portion of work presented in this part of the thesis has

been previously published as

A. Doerr, M. Volpp, M. Toussaint, S. Trimpe, and C. Daniel.

“Trajectory-based off-policy deep reinforcement learning.” In:

InternationalConference onMachine Learning (ICML). 2019, pp. 1636–
1645

9.1 Outline
This part initially discusses model-free policy gradient methods in

Sec. 9.2. Advantages and drawbacks are contrasted with the novel

contributions in the DD-OPG method. A discussion on related work

from different view angles is given in Sec. 9.3.

The novel DD-OPG method’s primary derivation can be found in

Chap. 10. This chapter starts by introducing the general problem for-

mulation and policy gradient framework in Sec. 10.1. A short presen-

tation of the standard importance sampling estimators to incorporate

off-policy data is given in Sec. 10.2. The surrogate model, necessary

to efficiently incorporate deterministic policy data, as the core of the

proposed model-free DD-OPG method is detailed in Sec. 10.3. In

Sec. 10.4, the main policy optimization scheme is presented.

The experimental evaluation of the DD-OPG method is presented

in 11. Individual studies are conducted to showcase the novel surro-

gate model (Sec. 11.1), a performance benchmark (Sec. 11.2), and an

ablation study for different parts of the DD-OPG methods (Sec. 11.3).

This work concludes with a summary and outlook into future work in [133] Schulman, Levine, Abbeel, Jordan,

and Moritz, “Trust region policy opti-

mization,” 2015

[134] Schulman, Wolski, Dhariwal, Rad-

ford, and Klimov, “Proximal policy opti-

mization algorithms,” 2017

[169] Williams, “Simple statistical

gradient-following algorithms for

connectionist reinforcement learning,”

1992

[12] Baxter and Bartlett, “Infinite-

horizon policy-gradient estimation,”

2001

Sec. 11.3.

9.2 Discussion on Policy GradientMethods
Policy Gradient (PG) algorithms have achieved impressive results on

highly complex tasks [133, 134]. However, standard algorithms are

vastly data-inefficient and rely on millions of data points to achieve

the aforementioned results. Typical applications are therefore limited

to simulated problems where policy rollouts can be cheaply obtained.

Algorithms based on stochastic policy gradients, like REINFORCE

[169] andG(PO)MDP [12], typically estimate the policy gradient based

on a batch of trajectories, which are obtained by executing the current



DISCUSSION ON POLICY GRADIENT METHODS | 89

policy on the system (i.e., based on on-policy samples). All previous

experience is discarded in the next step, and new trajectories are sam-

pled using the updated policy. This scheme also holds for more recent

methods, like PPO [134] or POIS [95], where a surrogate objective is [134] Schulman, Wolski, Dhariwal, Rad-

ford, and Klimov, “Proximal policy opti-

mization algorithms,” 2017

[95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

constructed, which can be optimized till convergence. Typically, Im-

portance Sampling (IS) techniques are employed to evaluate a target

policy based on rollouts obtained from behavioral policies (i.e., from

off-policy samples). Albeit these off-policy evaluation schemes, in

these algorithms, no data is shared between iterations. Prominent

examples of off-policy offline algorithms typically employ actor-critic

architectures [139]. The parametric critic model, typically a value [139] Silver, Lever, Heess, Degris, Wier-

stra, and Riedmiller, “Deterministic pol-

icy gradient algorithms,” 2014

function, is updated to summarize all knowledge gathered so far. In

contrast, we proposed the model-free Deep Deterministic Off-Policy

Gradient method (DD-OPG)
1
, which incorporates previously gath-

1
Code available at https://github.
com/boschresearch/DD_OPG

ered rollout data by sampling from a trajectory replay buffer. The

replay buffer of all available data effectively enables backtracking to

promising solutions. DD-OPG only requires minimal assumptions to

construct the surrogate model.

Next to the inefficient use of available data, stochasticity in both the

policy and the environment causes highly variable gradient estimates

and, therefore, slow convergence. When executing the probabilis-

tic policy on the system, noise is injected into the policy gradient in

each time step, leading to a variance, which linearly increases with

the length of the horizon [101]. Additive Gaussian noise is typically [101] Munos, “Policy gradient in contin-

uous time,” 2006
employed as a source of exploration. Additionally, PG methods built

around the likelihood ratio trick intrinsically require probabilistic poli-

cies. Only then can policies be updated to increase the likelihood of ac-

tions, which have been advantageous in previous rollouts. Instead of

independent noise, temporally-correlated noise [112], or exploration [112] Osband, Blundell, Pritzel, and

Van Roy, “Deep exploration via boot-

strapped DQN,” 2016

directly in parameter space can lead to a wider variety of behaviors

[121]. Here, the behavioral policy is deterministic, thereby effectively

[121] Plappert, Houthooft, Dhariwal,

Sidor, Chen, Chen, Asfour, Abbeel, and

Andrychowicz, “Parameter space noise

for exploration,” 2017

reducing the gradient variance. Methods like DPG [139] and DDPG

[86] learn a parametric value function model to translate changes in

[86] Lillicrap, Hunt, Pritzel, Heess, Erez,

Tassa, Silver, andWierstra, “Continuous

control with deep reinforcement learn-

ing,” 2015

policy and, therefore, actions to changes in expected value. Simi-

larly, our proposed model-free DD-OPG algorithm constructs a non-

parametric critic based on importance sampling. This critic, called the

surrogate model in the following, allows for updating a deterministic

policy without the need for explicit parametric value models.

To summarize: We propose an importance sampling-based surro-

gate model of the return distribution, which enables off-policy, offline

policy optimization. This surrogate facilitates deterministic policy

gradients to reduce gradient variance and enables the incorporation

of all available data from a replay buffer. Exploration in the policy

parameter space is achieved by a prioritized resampling of the surro-

gate’s support data, thus favoring promising regions in policy space.

https://github.com/boschresearch/DD_OPG
https://github.com/boschresearch/DD_OPG


90 | INTRODUCTION

Normalized IS, which we demonstrate to act similarly as a baseline

in standard PG methods, additionally reduces the variance of the em-

ployed estimates. Although no additional parametric value function

baseline (as utilized in TRPO/PPO for variance reduction) is required

in our method, fast progress and, therefore, data-efficient learning is

demonstrated on typical continuous control tasks.

9.3 RelatedWork
Policy search methods [118, 34] and policy gradient methods [169, [118] Peters and Schaal, “Reinforcement

learning of motor skills with policy gra-

dients,” 2008

[34] Deisenroth, Neumann, and Peters,

“A survey on policy search for robotics,”

2013

12]are well studied in the RL community and many connections to

[169] Williams, “Simple statistical

gradient-following algorithms for

connectionist reinforcement learning,”

1992

[12] Baxter and Bartlett, “Infinite-

horizon policy-gradient estimation,”

2001

DD-OPG exist. In the following, we review related work from several

perspectives.

Importance Sampling Perspective
Importance sampling has been employed to either reweight full tra-

jectory distributions [136, 67, 173, 95] or to reweight individual state-

[136] Shelton, “Policy improvement for

POMDPs using normalized importance

sampling,” 2001

[67] Jie and Abbeel, “On a connection

between importance sampling and the

likelihood ratio policy gradient,” 2010

[173] Zhao, Hachiya, Tangkaratt, Mo-

rimoto, and Sugiyama, “Efficient sam-

ple reuse in policy gradients with

parameter-based exploration,” 2013

[95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

action pairs [102, 45] . Except for [67], no global IS estimator is de-

[102] Munos, Stepleton, Harutyunyan,

and Bellemare, “Safe and efficient off-

policy reinforcement learning,” 2016

[45] Espeholt, Soyer, Munos, Simonyan,

Mnih, Ward, Doron, Firoiu, Harley,

and Dunning, “IMPALA: Scalable dis-

tributed Deep-RL with importance

weighted actor-learner architectures,”

2018

rived, but estimates are only based on the current iteration’s data. In

contrast, DD-OPG introduces a global surrogate model based on all

available deterministic policy rollouts and computes local, stochastic

approximations using prioritized replay. Instead of DD-OPG’s action

space lengthscale, alternative approaches consider truncation of the

importance weights [166, 134, 45]. So far, the connection between both

[166]Wawrzynski andPacut, “Truncated

importance sampling for reinforcement

learning with experience replay,” 2007

[134] Schulman, Wolski, Dhariwal, Rad-

ford, and Klimov, “Proximal policy opti-

mization algorithms,” 2017

approaches has not yet been the subject of more in-depth analysis.

Variance Reduction Perspective
Oneprimary concernwhen estimating thepolicy gradient fromMonte

Carlo samples of trajectory returns is the variance, or conversely, the

required number of trajectory samples. Several techniques have been

introduced to reduce the variance of the standard REINFORCEMonte

Carlo estimator. Instead of full trajectory returns, each action can be

judged based on the experienced reward to go, i.e., the accumulated

reward as started from the specific action. Most commonly, value

function estimates are deployed as baselines or control variates to

reduce the estimator variance further. In DD-OPG, the normalization

of the importance weighted estimator acts as a data-based baseline.

This results in variance reduction at the cost of introducing bias.



RELATED WORK | 91

Objective Function Perspective
In general, the goal of an RL agent is to maximize its expected re-

turn J by optimizing the parameters θ of its behavioral policy. Given

some local estimator for the policy gradient dJ/dθ, we can deploy

standard gradient ascent to achieve this objective [169]. Taking gradi- [169] Williams, “Simple statistical

gradient-following algorithms for

connectionist reinforcement learning,”

1992

ent steps typically moves farther away from available data and thus

naturally increases the variance or bias of the gradient estimators.

More advanced methods therefore incorporate trust regions [133] or
[133] Schulman, Levine, Abbeel, Jordan,

and Moritz, “Trust region policy opti-

mization,” 2015

lower bounds, which can be fully optimized till convergence [134, 95].

[134] Schulman, Wolski, Dhariwal, Rad-

ford, and Klimov, “Proximal policy opti-

mization algorithms,” 2017

[95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

Effectively, this results in a trade-off between the size of the policy

update and trust in the estimate. Secondly, when designing a policy

gradient algorithm based on this surrogate model, we can shape the

objective function to influence the exploration-exploitation trade-off.

For example, optimizing upper confidence bound fosters exploration

in promising but currently uncertain regions. The proposed DD-OPG

optimizes a stochastic version based on the lower bound, derived in

[95].

Exploration Perspective
Deterministic policies as means of variance reduction have been pre-

viously discussed for example in [135, 121]. Instead of action noise [135] Sehnke, Osendorfer, Rückstieß,

Graves, Peters, and Schmidhuber, “Pol-

icy gradients with parameter-based ex-

ploration for control,” 2008

[121] Plappert, Houthooft, Dhariwal,

Sidor, Chen, Chen, Asfour, Abbeel, and

Andrychowicz, “Parameter space noise

for exploration,” 2017

for exploration, exploration is achieved by stochasticity in parame-

ter space. The DD-OPG method relies on deterministic policies for

variance reduction but introduces exploration employing stochastic

gradients from the prioritized replay model.

Bayesian Optimization Perspective
Bayesian optimization methods are typically agnostic to the step-by-

step agent-environment interactions. Instead, they model the ex-

pected return as a function of the policy parameters, given return

estimates from rollouts with known policies. Typically in Bayesian op-

timization, a Gaussian Process prior is assumed to facilitate a Bayesian

inference scheme. However, many typically employed kernel func-

tions (e.g., the squared exponential kernel) can not appropriately ac-

count for abrupt changes and non-stationary behavior in the expected

return, as is generally observed when moving from stable to unstable

regions in parameter space.

In [170], the authors propose a kernel that expresses covariance [170] Wilson, Fern, and Tadepalli, “Us-

ing trajectory data to improve Bayesian

optimization for reinforcement learn-

ing,” 2014

in parameter space in terms of likelihood ratios of trajectory actions

conditions on observed state trajectories. The resultingwarping of the

parameter space is very comparable to our proposed surrogate model.



92 | INTRODUCTION

The likelihood ratios in the importance sampling weights determine

the influence of neighboring data-points on the estimate.



10Deep-Deterministic Off-Policy Gradients

In this chapter, the novel Deep-Deterministic Off-Policy Gradient (DD-

OPG) algorithm is developed, starting from the baseline Policy Gra-

dient (PG) estimator as known from the REINFORCE [169] algorithm. [169] Williams, “Simple statistical

gradient-following algorithms for

connectionist reinforcement learning,”

1992

First, the PG estimator is derived in Sec. 10.1. An extension to off-

policy data based on importance sampling is discussed in Sec. 10.2.

The novel DD-OPG contributions, learning from deterministic poli-

cies and objectives to optimize the resulting surrogate model, are

derived in Sec. 10.3 and Sec. 10.4 respectively.

10.1 Preliminaries
This section depicts the general episodic RL problem in a discrete-time

Markovian environment and summarizes the core building block of

the proposed DD-OPGmethod, the standard return-based policy gra-

dient estimators. DD-OPG closely follows this algorithmic structure

(cf. Alg. 3), however with extensions to incorporate deterministic, off-

policy rollouts as detailed in the following sections. The RL problem

is characterized by a discrete-time Markov Decision Process (MDP)

M = (S ,A, p, r, γ, p0). An agent is interacting with an environment,

whose states st ∈ S transitions according to the agent’s actions at ∈ A
and the environment’s transition probabilities p(st+1 | st, at) into a

successor state. Starting from a state s0 drawn from the initial state

distribution p(s0), agent tries to maximize its discounted reward, ac-

cording to a reward function r : S × A → R and discount factor γ,

accumulated over a horizon length H. In policy search, the agent acts

according to a (stochastic) policy πθ = π(at | st; θ), parameterized by

θ. The expected accumulated reward is given by

J(θ) =
∫

p(τ | θ)R(τ)dτ , (95)

where the trajectory τ ∈ T is the sequence of state-action pairs

τ = (s0, a0, . . . , sH , aH), the (discounted) trajectory return is given

by R(τ) = ∑H−1
t=0 γtr(sτ,t, aτ,t), and due to the Markov property, the

trajectory distribution in (95) is given by

p(τ | θ) = p(s0)
H

∏
t=0

p(st+1 | st, at)π(at | st; θ) . (96)



94 | DEEP-DETERMINISTIC OFF-POLICY GRADIENTS

The dynamics of the system p(st+1 | st, at) and the initial state distri-

bution p(s0) are generally unknown to the learning agent.

Model-free policy gradient methods typically directly estimate the

expected cost gradient based on the log-derivative trick. The gradient

is given by

∇θ J(θ) =
∫

p(τ | θ)∇θ log p(τ | θ)R(τ)dτ . (97)

Given on-policy samples τi ∼ p(τ|θ), the followingMonte Carlo (MC)

estimators are obtained for the expected return

ĴMC(θ) =
1
N

N

∑
i=1

R(τi) , (98)

and the policy gradient

ˆ∇θ JMC(θ)=
1
N

N

∑
i=1

[
H

∑
t=0
∇θ log π(at | st; θ)R(τi)

]
. (99)

[65] Ilyas, Engstrom, Santurkar, Tsipras,

Janoos, Rudolph, andMadry, “Are Deep

Policy Gradient Algorithms Truly Policy

Gradient Algorithms?” 2018

[173] Zhao, Hachiya, Tangkaratt, Mo-

rimoto, and Sugiyama, “Efficient sam-

ple reuse in policy gradients with

parameter-based exploration,” 2013

[45] Espeholt, Soyer, Munos, Simonyan,

Mnih, Ward, Doron, Firoiu, Harley,

and Dunning, “IMPALA: Scalable dis-

tributed Deep-RL with importance

weighted actor-learner architectures,”

2018

[102] Munos, Stepleton, Harutyunyan,

and Bellemare, “Safe and efficient off-

policy reinforcement learning,” 2016

[95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

Since the unknown initial state and dynamics distributions are in-

dependent of the policy parameters θ (cf. (96)), the trajectory like-

lihood gradient ∇θ log p(τ | θ) with respect to the policy parame-

ters can be computed analytically for a given, differentiable policy

∇θ log π(at | st; θ).

10.2 Off-Policy Evaluation
The MC estimators require a substantial amount of on-policy rollouts

τi ∼ p(τ|θ∗) to reduce the gradient estimator’s variance and typically

many more rollouts than used in state-of-the-art implementations to

approximate the true gradient [65] closely.

For off-policy data, Importance Sampling (IS) can be utilized to in-

corporate trajectories fromabehavioural policyπθ′ in order to evaluate

a new target policy πθ∗ [173, 45, 102, 95]. In general, a Monte Carlo

estimate of an expectation

∫
p(x) f (x)dx (such as (95)) can be obtained

by sampling from a tractable distribution xi ∼ q(x) and re-weighting

the sampled function evaluations f (xi) based on the likelihood-ratio

p(xi)/q(xi). The expected return can be rewritten as

J(θ) =
∫

p(τ | θ′)
p(τ | θ)

p(τ | θ′)
R(τ)dτ , (100)



OFF-POLICY EVALUATION | 95

such that the IS weighted Monte Carlo estimator is given by

Ĵ IS(θ) =
1
N

N

∑
i=0

p(τi | θ)

p(τi | θ′)
R(τi) (101)

=
1
N

N

∑
i=0

w(τi, θ)R(τi) , (102)

where N trajectories are sampled from a policy πθ′ to infer the ex-

pected cost of policy πθ . Although system dynamics and initial state

distribution in (96) are unknown, the likelihood-ratio, i.e. the impor-

tance weights, can be computed since the unknown parts cancel out,

such that

w(τ, θ) =
p(τ | θ)

p(τ | θ′)
=

∏H
t=0 π(at | st; θ)

∏H
t=0 π(at | st; θ′)

. (103)

During learning, trajectories are collected from multiple different

policies D = {(τi, θi)}N
i=1. To incorporate all data, the importance

sampling distribution can be replaced by an empirical mixture distri-

bution q(τ | θ1, . . . , θN) = 1/N ∑i p(τ | θi) such that the available

trajectories are i.i.d. draws from the empirical mixture distribution

τi ∼ q(τ | θ1, . . . , θN) [67]. The resulting importance weights are [67] Jie and Abbeel, “On a connection

between importance sampling and the

likelihood ratio policy gradient,” 2010

given by

w(τ, θ) =
∏H

t=0 π(at | st; θ)
1
N ∑j ∏H

t=0 π(at | st; θj)
. (104)

Computing the importance weights in (104), however, scales quadrat- [132] Schaul, Quan, Antonoglou, and Sil-

ver, “Prioritizedexperience replay,” 2015

[95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

[116] Peshkin and Shelton, “Learning

from Scarce Experience,” 2002

[96] Meuleau, Peshkin, Kaelbling, and

Kim, “Off-policy policy search,” 2000

[122] Precup, Sutton, and Singh, “Eligi-

bility Traces for Off-Policy Policy Evalu-

ation.,” 2000

[136] Shelton, “Policy improvement for

POMDPs using normalized importance

sampling,” 2001

ically with the number of available trajectories due to the summation

over the likelihoods of all trajectories given all available policies. Scal-

ing this estimator to today’s deep neural network policies with a large

number of required rollouts is, thus, a significant challenge. Comput-

ing the surrogatemodel based on all data, as in [67], is only feasible for

several hundred rollouts. Instead, the proposedDD-OPGmethod em-

ploys a trajectory replay buffer and a probabilistic selection scheme to

compute a stochastic approximation of the full surrogate model. This

idea is related to prioritized experience replay [132] but for full trajec-

tories. It enables scaling to much larger datasets and at the same time

helps to avoid local minima by stochastically optimizing the objective.

Another technique typically employed for IS is weight normaliza-

tion [95]. The weighted importance sampling estimator obtains a lower

variance estimate at the cost of adding bias. It has been employed

in [116] and is both theoretically and empirically better-behaved [96,

122, 136] compared to the pure IS estimator. Theweighted importance

sampling estimator is given by

ĴWIS(θ) =
1
Z

N

∑
i=0

w(τi, θ)R(τi) , (105)



96 | DEEP-DETERMINISTIC OFF-POLICY GRADIENTS

where importance weights w(τi, θ) might be computed according to

(103) or (104) and a normalizing constant Z = ∑N
i=0 w(τi, θ) instead of

the standard normalization Z = N, previously used in (102).

From the policy gradient perspective, by normalizing the impor-

tance weights, we obtain a gradient estimator, which includes a pa-

rameter dependent baseline.

Proposition1. The policy gradient estimator obtained from the self-normalized
importance sampling expected cost estimator ĴWIS is given by

∇θ ĴWIS(θ)=
1
Z

N

∑
i=1

[
w(τi, θ) (106)

H

∑
t=0

[
∇θ log π(a(i)t | s

(i)
t ; θ)

][
R(τi)− ĴWIS(θ)

] ]
.

Aproof of this proposition is shown inappendixD.1. This estimator

is closely related to standard PG estimators with an added baseline

term for variance reduction.

In standard, REINFORCE like, PG methods, two of the most com-

mon variance reduction techniques [60] are: i) incorporation of the [60] Greensmith, Bartlett, and Baxter,

“Variance reduction techniques for gra-

dient estimates in reinforcement learn-

ing,” 2004

reward-to-go for each policy action update instead of the entireMonte

Carlo path return; and ii) subtraction of a state-dependent baseline

term, such as to obtain an estimate of the advantage of the previously

taken action. The intuition behind method i) is to reward actions only

for rewards obtained after the action took effect, but not for those

obtained earlier on. However, to compute the importance weights

not for the full trajectory distribution but for each state-action pair

individually, the computation of a matrix of size O(N2H2) would

be required. Therefore, the model-free, importance sampling-based

approaches are typically limited to the path return based estimators.

Model-based methods (i.e., parametric models for the value function)

are employed in the cost-to-go estimators. Variance reductionmethod [67] Jie and Abbeel, “On a connection

between importance sampling and the

likelihood ratio policy gradient,” 2010

ii) is automatically obtained by the normalized estimator as shown in

proposition 1. However, in contrast to the bias-free value function

control variates, at the cost of adding bias. Additionally, optimal base-

lines to further decrease the variance of the gradient estimator have

been derived in [67] and could be incorporated into DD-OPG.

10.3 Deterministic Policy Gradients
The policy gradient estimators in (99) and (106) rely on a policy dis-

tribution π(at|st; θ) in order to obtain a gradient signal on how to

update the policy parameters to increase the likelihood of successful

actions. In this situation, the typically Gaussian additive policy noise

acts in two ways, causing exploration and serving as the basis for the

estimation of the objective function.



DETERMINISTIC POLICY GRADIENTS | 97

Exploration is being driven directly through the noise in the action

space, i.e., the policy covariance. While driving exploration through

noisy actions will converge in the limit, the resulting explorative be-

havior exhibits no temporal correlations, which canmake it inefficient.

Estimation of the objective function is typically achieved by reweight-

ing the action distribution according to the policy’s likelihood. Stan-

dard policies are given as π(at|st; θ) = N (at|µθ(st), Σθ), where µθ is

represented by some function approximator parameterized by θ, e.g.

a neural network. The additive Gaussian noise covariance is typically

a diagonal matrix, parameterized by θ as well. The proposed deter-

ministic policy gradient method strives to separate the exploration

and estimation part.

Parameter Space Exploration By utilizing deterministic rollout poli-

cies, the only noise introduced into the gradient estimate originates

from the stochasticity of the environment, and we have to perform ex-

ploration in parameter space instead of action space exploration. How-

ever, as stated above, parameter-based explorationmay, inmany cases,

be more efficient than exploration in action space since parameter-

based exploration will lead to temporally correlated actions that can

explore the state space faster. Typically, however, this effect is negated

for neural network policies since the parameter space that has to be ex-

plored is prohibitively large. Thus, to navigate large parameter spaces

efficiently, some approximate evaluation of the cost function (95) is

needed.

Trajectory based objective estimate Whilst evaluation of the Monte

Carlo based expected cost estimate is possible also for deterministic

policies, the off-policy evaluation is no longer feasible since the like-

lihood ratio p(τ|θ)/p(τ|θ′) (cf. (103)) becomes zero for two distinct

dirac policy action distributions if µθ(s) 6= µθ′(s).
However, we can still compare trajectories under a stochastic eval-

uation distribution, similar to a kernel function where the standard

deviation of the evaluation function relates to a kernel lengthscale in

action space.

Thus, we introduce the evaluation policy

p̃(at|st; θ) = N (at|µθ(st), Σ) , (107)

where Σ = diag(σ1, . . . , σDu) is a diagonal covariance matrix as typi-

cally employed in deep RL methods with Gaussian action noise. The

deterministic policy is given by p(at|st; θ) = δ(a = µθ(st)), where δ

is the dirac delta. From the general IS expectation in (100) and our

evaluation policy in (107), the surrogate model follows as

Ĵsurr(θ) =
1
Z

N

∑
i=1

w̃(τi, θ)R(τi) , (108)



98 | DEEP-DETERMINISTIC OFF-POLICY GRADIENTS

with surrogate weights

w̃(τi, θ) =
∏H

t=0N (a(i)t |µθ(s
(i)
t ), Σ)

1
N ∑N

j=0 ∏H
t=0N (a(i)t |µθj(s

(i)
t ), Σ)

, (109)

where, depending on the choice of normalization constant Z, we ob-

tain the analogue to the standard IS estimator (Z = N) or the analog

to the weighted IS estimator (Z = ∑N
i=1 w̃(τi, θ)). Reintroducing the

fixed Gaussian noise as an implicit loss to obtain gradients for the

evaluation of deterministic policies is clearly a model assumption in

the proposed method but can be justified from several perspectives.

The hyper-parameter Σ allows for control over the amount of in-

formation shared between neighboring policies. Similar to the cap of

importanceweights in PPO [134], this parameter allows to control bias [134] Schulman, Wolski, Dhariwal, Rad-

ford, and Klimov, “Proximal policy opti-

mization algorithms,” 2017

and variance of the surrogate model. Analyzing the introduced bias

and relation to the PPO weight cap is, however, ongoing research. In

the limit of Σ → 0, the proposed surrogate (108) approaches the MC

estimator (98). Only in case of two different policy parameterizations

θj 6= θi, but equivalent actions µθj(s) = µθi (s) for the sampled states s,
the surrogatemodel would output an averagewhereas theMC estima-

tor would not mix up the obtained returns. For Σ = Σθ , the surrogate

model recovers the true IS estimate, given that all trajectories are gen-

erated using the same additive Gaussian noise. Finally, for Σ → inf,
the estimate is simply the average over all available path returns.

Modeling the expected return distribution by choosing a length-

scale in action space can furthermore be motivated from a second per-

spective. Typically expected return distributions oftentimes comprise

sharp transitions between stable and unstable regions, where policy

parameters change only slightly but reward changes drastically. One

global lengthscale is, therefore, typically not well suited to directly

model the expected return. This is a common problem in Bayesian

Optimization for reinforcement learning, where typical smooth ker-

nel functions (e.g., squared exponential kernel) with globally fixed

lengthscales are unable to model both stable and unstable regimes

at the same time. However, in the proposed model, a lengthscale in

action space is translated via the sampled state distribution and pol-

icy function µ into implicit assumptions in the actual policy parameter

space. Doing so, instead of operating on arbitrary Euclidean distances

in policy parameter space, a more meaningful distance in trajectory

and action space is available. Typically, for a given system, the dis-

tance of trajectories and between actions is more graspable compared

to arbitrary deep neural network policy parameters.

The expected return estimator (108) falls back to zero for policy

evaluation far away from training data. To estimate the variance of the

importance sampling estimator itself, typically, the Effective Sample



MODEL-FREE OFF-POLICY OPTIMIZATION | 99

Size (ESS) is evaluated. Based on the variance of the importance

weights, it analyses the effective number of available data points at

a specific policy evaluation position. In [95], a lower bound on the [95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

expected return has been proposed such that with probability 1− δ it

holds that

Eτ∼p(τ|θ)[R(τ)] ≥
1
N

N

∑
i=1

w̃(τi, θ)R(τi)

− ‖R‖∞

√
(1− δ)d2(p(τ|θ)‖p(τ|θ′))

δN
, (110)

where d2 is the exponentiated 2-Rényi divergence. Due to the identity

ESS(P||Q) = N/d2(P||Q), this lower bound can be estimated in a

sample-based way by employing the ESS estimator

ˆ
ESS =

1

∑N
i=1 w̃(τi, θ)2

, (111)

such as to obtain the lower bound estimate

Eτ∼p(τ|θ)[R(τ)] ≥
1
N

N

∑
i=1

w̃(τi, θ)R(τi) (112)

− ‖R‖∞

√
1− δ

δ
ESS(θ)−1 . (113)

Refer to theorem 4.1 in [95] for details and proof regarding the lower [95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

bound in (110). The confidence parameter δ determines, similar to

the KL-divergence in TRPO [133], how far the policy optimization can

[133] Schulman, Levine, Abbeel, Jordan,

and Moritz, “Trust region policy opti-

mization,” 2015

step away from known regions. In DD-OPG, this uncertainty estimate

is employed as penalty

penalty(θ) = −‖R‖∞γ

√
ˆ

ESS(θ)−1 , (114)

with penalty factor γ as an hyper-parameter to control exploration, i.e.

following the objective estimate vs. risk awareness, i.e. staying within

a trust region.

10.4 Model-FreeOff-Policy Optimization
[173] Zhao, Hachiya, Tangkaratt, Mo-

rimoto, and Sugiyama, “Efficient sam-

ple reuse in policy gradients with

parameter-based exploration,” 2013

[121] Plappert, Houthooft, Dhariwal,

Sidor, Chen, Chen, Asfour, Abbeel, and

Andrychowicz, “Parameter space noise

for exploration,” 2017

[95] Metelli, Papini, Faccio, and Restelli,

“Policy Optimization via Importance

Sampling,” 2018

The surrogate model of the return distribution, as derived in Sec. 10.3,

can now be directly incorporated for policy optimization. In related

work, parametric search distributions (e.g. Gaussian) are employed as

policy search distribution or hyperpolicy [173, 121, 95]. However, in

high-dimensional spaces, as typically obtainedwith deep network pol-

icy representations, updating the full search distribution is challeng-

ing, and common approaches usually revert to heuristics to control

a simplified, e.g., diagonal or block-wise search distribution’s covari-

ance matrix.



100 | DEEP-DETERMINISTIC OFF-POLICY GRADIENTS

Instead, the proposedmodel-free DD-OPGmethod fully optimizes

a stochastic version of the surrogate objective to foster exploration

and overcome local minima. At the same time, the stochastic eval-

uation mitigates the unfavorable complexity of computing the full

importance sampling estimate based on all available data. Due to the

empirical mixture distribution in (104), computing the likelihood of

all observed trajectories under all policies is quadratic in the number

of observed paths. Instead, the proposed method employs a selec-

tion criterion to construct a stochastic surrogate model based on a

subset of rollouts in each policy optimization step. In particular, a

predefined number of Nmax rollout indices is drawn from the softmax

distribution over the discrete set of available trajectory indices I . The
softmax is computed based on the normalized, empirical returns R̃
and a temperature factor λ.

p(I|τ1, . . . , τN) =
exp(R̃(τI )/λ)

∑N
j=1 exp(R̃(τj)/λ)

. (115)

The temperature λ is used to trade off exploration against exploitation

in the selection of reference trajectories. This scheme is closely related

toprioritized experience replay [132]. There, insteadof full trajectories, [132] Schaul, Quan, Antonoglou, and Sil-

ver, “Prioritizedexperience replay,” 2015
single state-action transitions are sampled from a softmax over the

temporal difference error for deep q-network training. A study of the

effect of temperature selection on the learning progress is shown in

Sec. 11.3.

Algorithm 3: Model-free DD-OPG

Input: Initial policy parameters θ0

Empty trajectory replay buffer D0 = {}
repeat
Sample trajectory: τi ∼ p(τ | θi)

Update trajectory buffer: Di+1 = Di ∪ (τi, Ri)

Memory selection: i1, . . . , iNmax
iid∼ p(I|τ1, . . . , τi)

Surrogate model: J̃(θ), penalty(θ)
Lower bound optimization:

θi+1 = argmax

θ

J̃(θ)− penalty(θ)

until converged or maximum iterations

[73] Kingma and Ba, “Adam: A method

for stochastic optimization,” 2014

[119] Peters and Schaal, “Natural actor-

critic,” 2008

The full DD-OPGalgorithm is detailed inAlg. 3. Themain objective

is to incorporate all available deterministic policy rollouts, not only the

ones from the current iteration, into the surrogate model by means of

the softmax replay selection. The lower bound expected return can

then be fully optimized using standard optimization techniques. In

practice, Adam [73] is employed, but other techniques, e.g., based on

the natural policy gradient [119] could be incorporated as well.



11Experimental Evaluation

The experimental evaluation of the proposed DD-OPG method is

threefold. In Sec. 11.1, the resulting surrogate return model is visual-

ized, highlighting different modeling options. A benchmark against

state-of-the-art PG methods is shown in Sec. 11.2 to highlight fast

and data-efficient learning. Finally, essential parts of the proposed

algorithms and their effects on the final learning performance are

highlighted in an ablation study in Sec. 11.3.

−1.0 −0.5 0.0 0.5 1.0

Step size

0.0

0.2

0.4

0.6

0.8

1.0

R
et

u
rn

(a) log(Σ) = 0 · I

−1.0 −0.5 0.0 0.5 1.0

Step size

0.0

0.2

0.4

0.6

0.8

1.0

(b) log(Σ) = −1 · I

−1.0 −0.5 0.0 0.5 1.0

Step size

0.0

0.2

0.4

0.6

0.8

1.0

(c) log(Σ) = −2 · I
Figure 30: Visualization of the sur-

rogate return model. A cross-

section along a random direction in

parameter space is shown for pa-

rameters close to optimum. The

ground truth mean and std ( )

of the return distribution is shown

together with the mean and std es-

timate ( ) from the weighted im-

portance sampling surrogatemodel.

The lower confidence bound (δ =

0.2, ) is shown together with

the model’s input data ( ). No-

tice howmore or less information is

shared between points where data

is available depending on the cho-

sen lengthscale parameter Σ.

11.1 SurrogateModel
As discussed in Sec. 10.3, the proposed surrogate model can smoothly

interpolate between the Monte Carlo estimate, the importance sam-

pling estimate, and an average of all available returns. In Fig. 30,

the available surrogate model predictions are visualized for multiple

settings of the model hyper-parameter Σ. In particular, the estimate

for expected return ( ), return variance ( visualizes one stan-

dard deviation), and the lower bound of the expected return ( ) are

pictured for policy evaluations along a random direction around the

optimal policy θ∗ for the cart pole environment (experimental details

can be found in appendix D.2). Trajectory data, which is available to

the estimator, is highlighted ( ). The ground-truth return distribu-

tion (mean +/- one std. ) is computed using the standard MC

estimator, based on independent policy rollouts, which are not part of
the surrogate model.

Stepping from long lengthscales (cf. Fig. 30 (a)) to shorter length-

scales (cf. Fig. 30 (c)), the surrogate model predictions become more

local. Most visibly in the lower-bound estimate, the ESS drops signif-

icantly when moving away from data points and small model length-

scales, resulting in much higher uncertainty.



102 | EXPERIMENTAL EVALUATION

0 1 2 3 4 5
×104

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
re

tu
rn

(a) Cartpole, [-] ×105
steps

0.0 0.5 1.0 1.5
Environment steps ×105

−0.4

−0.2

0.0

(b) Mountaincar, [-] ×105
steps

0.0 0.2 0.4 0.6 0.8 1.0
×105

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn

(c) Swimmer, [-] ×105
steps

Figure 31: Policy gradient methods

benchmark. The proposed method

DD-OPG ( ) is compared to stan-

dard REINFORCE ( ), TRPO

( ) and PPO ( ) on three con-

tinuous control benchmark prob-

lems. Mean ( ) and standard

deviation ( ) of the average

return (obtained from 10 indepen-

dent random seeds) are plotted as

a function of the system interaction

steps (scaled by 105
). Significant

faster learning speed in the begin-

ning is observed for the model-free

off-policy method in comparison to

the on-policy PG methods.

11.2 Policy Gradient Benchmark
TheproposedDD-OPGmethod is evaluated in termsof data-efficiency

and learningprogress in comparison to state-of-the-art policy gradient

methods based onMonte Carlo return estimates. In contrast, methods

such as DDPG [86] employ TD learning for their value functionmodel

and are not part of this evaluation. The benchmark comparesDD-OPG

to the standard REINFORCE [169] baseline and both TRPO [133] and

PPO [134]. All competitor algorithms employ, as it is commonpractice,

the reward-to-go formulation and a linear feature-based baseline for

variance reduction. For all methods, hyper-parameters are selected to

achieve amaximal accumulated average return, i.e., fast and stable pol-

icy optimization. Details about the individualmethods’ configuration

and the employed environments can be found in Appendix D. [86] Lillicrap, Hunt, Pritzel, Heess, Erez,

Tassa, Silver, andWierstra, “Continuous

control with deep reinforcement learn-

ing,” 2015

[169] Williams, “Simple statistical

gradient-following algorithms for

connectionist reinforcement learning,”

1992

[133] Schulman, Levine, Abbeel, Jordan,

and Moritz, “Trust region policy opti-

mization,” 2015

[134] Schulman, Wolski, Dhariwal, Rad-

ford, and Klimov, “Proximal policy opti-

mization algorithms,” 2017

The resulting learning performances are visualized in Fig. 31 for

the cartpole, mountaincar and swimmer environment (left to right)

[43]. For REINFORCE ( ), TRPO ( ), PPO ( ), and DD-OPG

[43] Duan, Chen, Houthooft, Schulman,

and Abbeel, “Benchmarking deep rein-

forcement learning for continuous con-

trol,” 2016

( ), the mean average return (solid line) and its confidence inter-

vals (one standard deviation as shaded area) are depicted, as obtained

from 10 independent runs out of 10 random seeds for each environ-

ment and method. Notice that all competitors operate on fixed-sized

batches of environment steps, therefore collecting many more poten-

tially shorter rollouts at the beginning of the learning process to ob-

tain the required number of interactions. In contrast, DD-OPG only

obtains one rollout per iteration, no matter the actual length/number

of interactions in this specific rollout. To compare the learning speed

and data-efficiency between the batch-wise learning competitors and

the rollout-based DD-OPG, the results are visualized as a function of

collected environment interactions (scaled by 105
) in Fig. 31.

WithDD-OPG, rapid learning progress is achieved already, and the

final performance of the competitive, state-of-the-art policy gradient

methods is matched. In the hyper-parameter tuning phase, experi-

ments with TRPO and PPO have been conducted based on smaller

batch sizes. Still, due to the lack of data-efficient incorporation of off-

policydata, no faster and stable learningprogress couldbe achieved for

these methods than the one visualized in Fig. 31. Notice the large vari-



ABLATION STUDY | 103

ance of the DD-OPG learning progress in the swimmer environment.

Albeit the superior learning performance of DD-OPG on the swimmer

environment, some of the runs got stuck in local minima, resulting in

the large variance estimate. The stochastic memory selection partially

achieves this trade-off between exploration and exploitation. A mix

of prioritized trajectory replay and current trajectories is mandatory

to prevent greedy exploitation of previously seen, local minima and

to facilitate exploration. Our experiments show that it is mandatory

to incorporate previously seen rollout data, as it is done in DD-OPG,

to enable rapid progress already in the early stages of training.

11.3 Ablation Study
In the final DD-OPG algorithm, multiple aspects come together: i) the

deterministic surrogate model, ii) the memory selection strategy, and

iii) the optimization scheme. In this ablation study, we separate the

individual components to analyze their effect on the final learning per-

formance. Experiments are conducted on the cart pole environment,

and results are averaged over three random seeds.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Interaction steps (103)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn

Figure 32: Ablation study of DD-

OPG. The full DD-OPG model is

constructed from the REINFORCE

baseline by iteratively adding i) de-

terministic off-policy data incorpo-

ration and ii) full optimization of

the surrogate model. Visualized is

the mean learning progress from 3

random seeds on the cartpole envi-

ronment. REINFORCE (dashed red

line) is shown with DD-OPG opti-

mizing only for one gradient step

(dotted lines) and fully optimizing

the surrogate model (solid lines).

For DD-OPG, three levels of history

are shown (blue: Nmax = 5, green:
Nmax = 20, yellow: Nmax = 50).

In the first experiment, DD-OPG is reconstructed, starting from the

REINFORCE baseline. A visualization is shown in Fig. 32. In REIN-

FORCE (red dotted line), only one policy gradient step is taken based

on the current on-policy data. This behavior is comparable to DD-

OPG with almost no memory (Nmax = 5) and only one step gradient

update (visualized as a blue dotted line). Learning performance is

already increased by adding more memory paths (green: Nmax = 20,
yellow: Nmax = 50). More significantly, the full optimization of the

surrogate model (solid lines) achieves much faster progress.

In Fig. 33, the effect of the surrogate model’s lengthscale parameter

Σ is evaluated. Four different lengthscales log Σ are evaluated (red:

1.0, green: 2.0, yellow: 3.0, blue: 4.0). In this experiment, longer

lengthscales improve learning speed despite the introduced model



104 | EXPERIMENTAL EVALUATION

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Interaction steps

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn
Figure 33: Effect of the surrogate

hyper-parameter Σ on the learning

progress. Learning speed increases

from short lengthscales log Σ = 1.0
( ) to log Σ = 2.0 ( ), log Σ =

3.0 ( ), and log Σ = 4.0 ( ). Vi-

sualized are DD-OPG mean learn-

ing curves from three random seeds

as a function of the number of inter-

action steps with the cartpole envi-

ronment (scaled by 103
).

bias. In practice, a fixed log lengthscale of 3.0 is chosen in the bench-

mark experiments.

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

re
tu

rn

Figure 34: Learning progress for

multiple temperature settings for

softmax trajectory selection. From

lowest temperature (λ = 0.01, blue)

to highest temperature (λ = 2.0, red).

Both too high and too low tempera-

tures lead to suboptimal behaviour,

either by too much exploration or

too greedy behaviour.

The effects of the softmax temperature λ on the proposed priori-

tized trajectory replay and the learning progress are depicted in Fig. 34.

Explorative behavior is favored for higher temperatures (red), whereas

for low temperatures (blue), previous trajectories are selected more

greedily. In this example, an intermediate temperature achieves the

best trade-off exploration-exploitation trade-off.



12Summary

The final part of thiswork revisited data-efficient RL by starting from a

model-free perspectivewith almost nomodel assumptions. This work

explores how fast and efficient learning is possible with minimal and

explicit modeling assumptions. The work on Deep-Deterministic Off-

Policy Gradients (DD-OPG), as presented in this part, is very much in

contrast to the previously presented model-based RLmethods, which

inherently resulted in strong assumptions about the underlying nature

of the system dynamics. Instead, the novel DD-OPG framework is

build around a bias-free Monte Carlo estimator of the policy gradient

and a single assumption about smoothness in action-space.

This work presents a new surrogate model of the RL return distri-

bution inspired by importance sampling. It can incorporate off-policy

data and deterministic rollouts to reduce estimator variance. Despite

the promising results and the data-efficient learning progress, several

exciting topics remain for future work.

The proposed surrogatemodel ismotivated by its close connections

to the importance sampling estimator, the interpretability of themodel

assumption in action space and its desirable behavior in the model

limits. A detailed analysis of the resulting model assumptions in

policy space, implied by the model assumptions in action space and

an analysis of the resulting bias remains an open question.

The proposed optimization scheme empirically achieved good per-

formance in our benchmark experiments, outperforming state-of-the-

art methods. However, no additional parametric value function base-

line (as in TRPO/PPO) is employed. However, extensions to other

strategies for exploration vs. exploitation, for example, acquisition

functions like Expected Improvement or Probability of Improvement

from Bayesian Optimization [143], are to be explored and directly [143] Snoek, Larochelle, and Adams,

“Practical bayesian optimization of ma-

chine learning algorithms,” 2012

carry over to the proposed surrogate return model.

Finally, memory selection is required to scale the non-parametric

model structure to typical deep RL applications. The proposed pri-

oritized trajectory replay is only one possible option to address this

challenge.





Epilogue





13Conclusions

Figure 35: The humanoid upper-

body robot, Apollo, as an example

of an industrial system.

This work’s key objective was to leverage the benefits of reinforcement

learning methods to automatically and efficiently derive optimal con-

trol strategies in industrial problem settings. Several novel policy-

search and model-learning methods have been proposed to achieve

this objective. These methods are developed to match the limitations

of industrial applications and achieve the desired data efficiency. This

chapter summarizes the identified problems and solution contribu-

tions in the individual parts of this work.

Part I - Model-Based RL for Tuning of PID Controllers
As a starting point, the first part of this work focuses on a concrete

industrial application, PID controller architectures, and their param-

eters’ automatized tuning. According to [38], PID control is involved

[38] Desborough andMiller, “Increasing

customer value of industrial control per-

formance monitoring—Honeywell’s ex-

perience,” 2001

in 95% of today’s controller designs in the process industry. Chal-

lenges for existing control design methods are mainly originating

from complex, non-linear MIMO systems and coupled multivariate

PID structures.

The first part of this work contributes PILCO-PID, a novel, model-

based reinforcement learningmethod to automatically derive optimal

PID control parameters for an unknown system. The main contribu-

tions in this part are

• PILCO-PID: an extension of the PILCO to coupled, multivariate
PID control architectures.
With PILCO, a data-efficient model-based RL method has been

adapted to the specific PID control structures. PILCO efficiently

learns about an unknown system and tunes the control parameters

to achieve the desired control behavior.

• Bayesian treatment of uncertainties in the model-based PID op-
timization.
A suitable representation of the PID controller allows propagating

uncertainty in themodel-basedpredictions. Given this formulation,

the actual Gaussian state- and action-distribution can be computed.

This Bayesian treatment allows to reason about uncertainty about

the system behavior and enforces cautious control updates.

• Analytically differentiable representation of the PID control ar-
chitecture.



110 | CONCLUSIONS

Given an extended state representation, the PID controller can be

represented as a linear operation. Thus analytic gradients are avail-

able to optimize the control parameters in an efficient, gradient-

based optimization scheme.

• Extensions to tracking control.
The presented framework can readily be extended to cascaded PID

structures and tracking controllers by considering multiple differ-

ent [32] and time-varying goal states. [32] Deisenroth and Fox, “Multiple-

target reinforcement learning with a sin-

gle policy,” 2011
The proposed PILCO-PID framework has been demonstrated in two

real-world applications. Efficient learning of control policies has been

demonstrated on a robotic task and an automotive stability control

task. For both tasks, learning successful control policies was possible

within a few real-world rollouts for data collection.

Despite the promising learning results of the proposed PILCO-PID

method, several limitations of the state-of-the-art RL method are ap-

parent in real-world applications. In particular, the sub-problems

of model learning and model prediction limit the learning progress.

Problems originating from unobserved states (POMDP), noise, and

delays, have been found in the aforementioned industrial applica-

tions. These applications and systems are vital to successful policy

optimization to learn dynamics models geared towards high-quality

long-term predictions. Learning good long-term predictive models

for RL is mostly unaddressed by current approaches. The second part

of this work focuses on appropriate models, inference, and prediction

techniques to solve industrial modeling tasks.

Part II - LearningModels forModel-Based RL

Figure 36: Learning to accurately

predict long-term distributions of

latent states and observations with

the PR-SSM method.

In the second part of this work, two novel model learning methods,

Multi-Step Gaussian Processes (MSGP) (cf. Sec. 7) and Probabilis-

tic Recurrent State-Space-Models (PR-SSM) (cf. Sec 8) are presented.

Both methods have been developed to address the shortcomings of

state-of-the-art model learning techniques in model-based RL with

the perspective of industrial applications in mind.

With MSGP, a lightweight model learning technique has been in-

troduced, which is tailored for model-learning within the PILCO [31]

or PILCO-PID [41] framework. MSGP is a method to achieve im-
[41] Doerr, Nguyen-Tuong, Marco,

Schaal, and Trimpe, “Model-based Pol-

icy Search for Automatic Tuning of Mul-

tivariate PID Controllers,” 2017

proved long-termpredictions, which can be straightforwardly applied

to other model-based policy search frameworks. The main contribu-

tions of MSGP are

• Optimizing the full trajectory distribution for a latent, auto-
regressive GP dynamics model.
The methodology can be interpreted as optimizing a recurrent, la-



CONCLUSIONS | 111

tent GP-NARX dynamics model by maximizing the likelihood of

observed system trajectories. This allows incorporating process

and observation noise terms and complex non-linear behavior to

approximate the real system’s long-term behavior.

• Incorporate knowledge about the policy and action distribution.
Instead of optimizing a model for generic input/output sequences,

the MSGP method is tailored for policy search applications, where

a policy generates system inputs. Thus, the possible manifold of

system inputs and the complexity of the learning problem is re-

duced by operating on the closed-loop dynamical behavior, given

the specific policy class.

• Incorporation of policy search approximations inmodel learning.
Approximations are required in the policy search step to obtain a

tractable long-term predictive distribution and analytic gradients.

The MSGP model-learning incorporates such approximations, e.g.,

moment matching approximations, to obtain the optimal approxi-

mate predictive distribution and thus model. Therefore, long-term

predictions consider the errors introduced by the approximations

made in the policy search step.

Benchmark results are given for artificial and real-world system iden-

tification tasks, comparingMSGP to several state-of-the-art non-linear

system identificationmethods, including recurrent (deep) GPs. While

MSGP is competitive to state-of-the-art system identificationmethods,

it outperforms existing approaches on the robot policy search task. Us-

ingMSGP, iterative learning of a challenging robotic task from scratch

is possible. In contrast, learning this task was impossible with the

default GP-NARX model learning framework without providing ad-

ditional prior knowledge, such as suitable GP hyper-parameters.

There remain two significant caveats in the model-learning frame-

work, which are addressed by the second model-learning method

presented in this work. In PILCO and related algorithms, a moment-

matching approximation is employed, and a Gaussian distribution

approximates future state distributions. However, more flexible pre-

dictive distributions would be required to capture a real system’s

complex, non-linear behavior over a long prediction horizon. At the

same time, representing arbitrary complex predictive distributions is

restricted by computational requirements. As a second drawback,

auto-regressive models need to specify which historical information

is required to capture the full state of a system. Specifying the model

input for a real system is non-trivial and can easily lead to situations

with too little information or too large model-input spaces.

The Probabilistic Recurrent State-Space Model (PR-SSM) is intro-

duced to address the previouslymentionedmodel-learning problems.



112 | CONCLUSIONS

It comprises a novelmodel structure and efficient inference scheme for

learning probabilistic and Markovian state-space models. The main

novel contributions of PR-SSMs are

• Representation of complex non-Gaussian state distributions in
Gaussian-process state-space models.
The PR-SSM model can represent arbitrary latent-state distribu-

tions, which might arise from the learned non-linear system dy-

namics.

• Efficient and computationally tractable inference scheme.
Based on GP priors and doubly stochastic variational inference, a

novel model optimization criterion is derived, which is closely re-

lated to the one of powerful but deterministic RNNs or LSTMs. A

computationally tractable trade-off between the accurate represen-

tation of the latent state distribution and computational require-

ments is possible with the sampling-based inference scheme.

• Temporal dependencies in the state evolution allow to optimize
of long-term predictions efficiently.
By maintaining the latent state distribution’s temporal correlation

and thereby enabling long-term gradients, efficient inference in

latent space becomes feasible.

• Integrated recognition model to scale the inference scheme to
large datasets.
A novel recognition model learns a latent state estimate for each

part of the trajectory data. This model enables learning in systems

with unstable or slow dynamics and facilitates scalability to large

datasets.

Robustness andhighperformance inmodel learning aredemonstrated

on real-world datasets in comparison to state-of-the-art methods. The

scalability of the proposed inference scheme is demonstrated on a

large-scale dataset from real-world robotic data.

Part III - Model Assumptions inModel-Free RL

Figure 37: Predictions of the DD-

OPGexpected cost estimators based

on action smoothness assumptions.

Learning from the available interaction data in the previous parts of

thisworkwas limited to learning amodel of the dynamics and employ-

ing this (probabilistic)model in a planning scheme to optimize the pol-

icy. Even for sophisticated, Bayesian treatments to make the best use

of all available data, learning a model is always limited by the amount

of available data and the number of prior assumptions. In situations

where strong non-linearities or discontinuities are present, dynamics

models cannot be efficiently learned. This is, prior knowledge about



CONCLUSIONS | 113

the dynamics or excessive amounts of data would be required to cap-

ture the actual system behavior. Instead, one might consider another,

potentially smoother space to learn from andmodel the available data.

In the final part of this work, the focus is thus shifted to model-free RL
methods and howmodel assumptions in the space of expected return

can be incorporated to enable fast and efficient learning.

In this part, the novel Deep Deterministic Off-Policy Gradient (DD-

OPG) method is presented. It is based on several insights on how

to increase data efficiency by reintroducing model assumptions into

model-free policy gradient methods.

• Incorporation of all available data into the PG estimator.
A novel surrogate model of the expected return distribution is pre-

sented, which is inspired by importance sampling. This model

allows the usage of all available on- and off-policy data, which even

might originate from a deterministic policy.

• Variance reduction for efficient learning.
Two mechanisms are presented to reduce the high variance of stan-

dard PG estimators. A normalized importance sampling is shown

to act similar to a baseline term, which is commonly utilized for

variance reduction. Furthermore, with a single model assumption

about smoothness in action space, a trade-off between generaliza-

tion between data points (bias) and variance is achieved.

• Memory selection with prioritized trajectory replay.
A suitable memory selection scheme is introduced to scale the non-

parametric surrogate model to large-scale problems typically en-

countered in deep RL applications.

The proposed optimization scheme empirically achieved good perfor-

mance in our benchmark experiments, outperforming state-of-the-art

methods, even though no additional parametric value function base-

line (as in TRPO/PPO) is employed.

Outlook
Contributions in this work towards the deployment of Reinforcement

Learning in industrial applications are primarily out of two categories:

(i) Making the most out of available data, and (ii) tailoring parts of the

RLmethod to theoverall RLobjective ordomain-specific requirements.

In both regimes, several questions are raised by this work, which

remain open for future work.

The goal of leveraging data in the best possible way mainly re-

sulted in novel contributions regarding efficient and approximately

accurate Bayesian modeling and inference techniques. Despite these



114 | CONCLUSIONS

advances, it is primarily unclear which functionalmappingwe should

consider and what assumptions might be valid for a specific problem

or a given class of problems. For example, in RL, it is unclear what

assumptions and prior knowledge could help model a system’s dy-

namics, let alone introducing meaningful prior structure into value

or expected return models. Advances in meta-learning techniques,

model- or architecture search and Bayesian hyper-parameter selection

are pointing towards solutions for this problem. However, thesemeth-

ods are usually rather data-inefficient and not at all easily transferred

to one-of-a-kind industrial problems.

In the second category, considerable overlap with more mature, re-

lated fields, such as time-series modeling, system identification, or

optimal control, can be exploited to advance the field of model-based

RL. Most commonly used RL methods still deploy simple, off-the-

shelf sub-components, e.g., for model-learning, which results in poor

performance. Continuing to tailor these methods to the structural

assumptions and requirements in the MDP/POMDP-style RL setting

and the specific problem classes introduced by real industrial applica-

tions is promising for future research.



Appendix





AAppendix: PILCO-PID

Model-based RL with probabilistic, non-linear system models, typi-

cally results in complex state-action-distributions. The PILCO frame-

work [31] is build around a GP model and a moment matching ap- [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

proximation to keep the long-term, state-action distribution analyt-

ically tractable. In particular, the state-action distribution in each

time-step is Gaussian. In Sec. I of this work, a novel tuningmethod for

multivariate and coupled PID controllers based on the PILCO frame-

work has been proposed. Fundamentally, this method is build on the

insight that any PID control structure can be rewritten as a linear state-

feedback controller given an extended system state. Furthermore, the

specific extensions of the system state can be written as linear func-

tions of the state itself. Consequently, the proposed PILCO-PID vari-

ant can exploit the fact a Gaussian random variable remains Gaussian

under linear transformation. Thus, the full, probabilistic interpreta-

tion of the original PILCO framework remains intact for the proposed

PILCO-PID method. The following section states the required results

for distributions andderivatives of linear transformations onGaussian

random variables.

A.1 Transformation of Gaussian RandomVariables
For a linear transformation of a Gaussian random variable X ∼ N (· |
µX , ΣX) ∈ RD

given by

Y = AX + b (116)

where A ∈ RP×D
and b ∈ RP×1

, it can be shown that the random

variable Y is Gaussian as well, i.e.

Y ∼ N (µY, ΣY) ∈ RP
(117)

Also the joint probability distribution ofX andY is Gaussian and given

by

p(

X

Y

) = N (

µX

µY

 ,

 ΣX ΣXC

CTΣT
X ΣY

) (118)

where

µY = AµX + b, ΣY = AΣXAT , C = AT
(119)



118 | APPENDIX: PILCO-PID

The non-zero partial derivatives of Y’s sufficient statistics are given by

δµY
δµX

= A ∈ RP×D
(120)

δµY
δA

= µT
X ⊗ I ∈ RP×DP

(121)

δµY
δb

= I ∈ RP×P
(122)

δΣY
δΣX

= A⊗ A ∈ RP2×D2
(123)

δ(ΣY)kl
δAij

= δl j(ATΣX)ki + δkj(ΣX A)il
δ(ΣY)

δA
∈ RP2×PD

(124)

δCkl
δAij

= δilδkj
δC
δA
∈ RPD×D2

(125)

where ⊗ is the Kronecker product and δij is the Kronecker delta

(cf. [120] for useful matrix derivatives). [120] Petersen andPedersen, “Thematrix

cookbook,” 2008



BAppendix: MSGP

This chapter presents additional material about the Multi-Step Gaus-

sian Process (MSGP) model. Information about the model learning

benchmark can be found in Sec. B.1, including details about the em-

ployed reference methods in Sec. B.1.1 and datasets in Sec. B.1.2. The

moment matching approximation utilized in the uncertainty propaga-

tion is summarized in Sec. B.2.

B.1 Model Learning Benchmark
The proposed model learning method MSGP is compared to several

state-of-the-art methods. Details about the model configuration and

the employed benchmark datasets can be found in the following sec-

tions.

B.1.1 BenchmarkMethods
Each method utilizes 100 inducing inputs and moment matching is

applied for long-term predictions.

(i) GP-NARX [76] [76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

The system dynamics is modeled as a function of the history of

observations and inputs. A squared exponential kernel with auto-

matic relevance determination is employed and hyperparameters

are optimized based on the maximum likelihood objective.

(ii) PILCO’s GP-NARX [31] [31] Deisenroth and Rasmussen,

“PILCO: A model-based and data-

efficient approach to policy search,”

2011

PILCO adds penalty terms for large signal to noise ratios σ2
f

/σ2
n

and extreme length-scales l2
i to the log marginal data likelihood to

avoid numerical instabilities when optimizing the GP hyperparam-

eters. Especially on real datasets, the standard GP hyperparameter

optimization tends to underestimate the noise, which is prevented

by this heuristic.

(iii) NIGP [94] [94]McHutchon and Rasmussen, “Gaus-

sian process training with input noise,”

2011

Thismethod explicitly accounts for uncertainty in the input by treat-

ing input points as deterministic and inflating the corresponding

output uncertainty. This leads to state-dependent noise propor-

tional to the local gradient of the GP posterior mean. For time-

series data, both input and output noise are the same, which can

be exploited by this framework.



120 | APPENDIX: MSGP

(iv) REVARB [91] [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

Recurrent Variational Bayes (REVARB) is a recent proposition to

optimize the lower bound to the log-marginal likelihood log p(y)
using variational techniques. This framework is based on the vari-

ational sparse GP framework [152], but allows for computation of [152] Titsias, “Variational Learning of In-

ducingVariables in SparseGaussianPro-

cesses,” 2009

(time-)recurrent GP structures and deep GP structures (stacking

multiple GP-layers in each time-step). A Python-implementation

is available online [92]. For our benchmark, we run REVARB using [92] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, REVARB implemen-
tation for RGP, 2015

one (REVARB1) respectively two (REVARB2) hidden layers, where

each layer is provided with 100 inducing inputs. We closely follow

the original setup as presented by [91], performing 50 initial opti-

mization steps based on fixed variances and up to 10000 steps based

on variable variances. Unlike for the other benchmarkmethods, the

autoregressive history of REVARB implicitly becomes longer when

introducing additional hidden layers.

(v) MSGP

The proposed MSGP model learning method is implemented in

Python using autograd to automatically derive the loss gradients.

The latent GP-NARX model is initialized using a sparse GP model

trained on the observations D = (X, y). We optimized the GP

hyperparameters and targets by gradient descent using the Adam

optimizer.

B.1.2 Benchmark Datasets
The benchmarks datasets are composed of popular system identifica-

tion datasets from relatedwork [108, 76, 93]. For all of these problems, [108] Narendra and Parthasarathy,

“Identification and control of dynamical

systems using neural networks,” 1990

[76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

[93] Mattos, Damianou, Barreto, and

Lawrence, “Latent Autoregressive Gaus-

sian Processes Models for Robust Sys-

tem Identification,” 2016

both the inputs and outputs are one-dimensional Du = Dy = 1. How-

ever, the system’s true state is higher dimensional such that an autore-

gressive history or an explicit latent state representation is required to

capture the relevant dynamics. The number of historic inputs and out-

puts for the autoregressive methods is fixed a-priori for each dataset.

Synthetic Datasets

The synthetic benchmarks are taken from existing literature and are

described by difference equations. The first four synthetic systems

have been presented in [108], whereas the fifth originates from [76].

They have been used as benchmarks to assess robust system identifi-

cation in the presence of outliers in [93]. The systems’ training and

test data as well as observation noise are summarized in Tab. 3.



MOMENT MATCHING | 121

Task ODE Training Test Noise

Synthetic

system 1

yt =
yt−1yt−2(yt−1+2.5)

1+y2
t−1+y2

t−2
+ ut−1 ut = U(−2, 2)

300 samples

ut = sin(2πt/25)
100 samples

N (0, 0.29)

Synthetic

system 2

yt =
yt−1

1+y2
t−1

+ u3
t−1 ut = U(−2, 2)

300 samples

ut = sin(2πt/25)+

sin(2πt/10)
100 samples

N (0, 0.65)

Synthetic

system 3

yt =(ut−1 − 0.8)ut−1(ut−1 + 0.5)+

0.8yt−1
ut = U(−1, 1)
300 samples

ut = sin(2πt/25)
100 samples

N (0, 0.07)

Synthetic

system 4

yt =0.6yt−2 + 0.3 sin(3πut−1)+

0.1 sin(5πut−1) + 0.3yt−1
ut = U(−1, 1)
500 samples

ut = sin(2πt/250)
500 samples

N (0, 0.18)

Synthetic

system 5

yt = yt−1 − 0.5 tanh(yt−1 + u3
t−1) ut = N (ut|0, 1)

−1 ≤ ut ≤ 1
150 samples

ut = N (ut|0, 1)
−1 ≤ ut ≤ 1
100 samples

N (0, 0.0025)

Table 3: Artificial datasets used

in the benchmark experiments

(cf. [93]).

Real-World Datasets

The real-world benchmark datasets are composed from typical system

identification problems from technical systems like hydraulic actua-

tors, furnaces, hair dryers or electrical motors. References to the in-

dividual datasets, training and test trajectory length and the utilized

history for the GP-NARX models are summarized in Tab. 4.

B.2 MomentMatching
In the moment matching approximation, an intractable distribution

is approximated by a Gaussian distribution having its mean and vari-

ance. In order to propagate a Gaussian input through the non-linear

GP dynamics model, the following integral has to be solved

p( ft+1) =
∫

p( ft+1|x̄t)p(x̄t)dx̄t . (126)

First and second moment of the predictive distribution can be calcu-

lated in closed form if a Gaussian-like kernel is employed as derived

in [124]. The approximated predictive distribution for a Gaussian [124] Quinonero-Candela, Girard, and

Rasmussen, Prediction at an uncertain in-
put for Gaussian processes and relevance
vector machines-application to multiple-step
ahead time-series forecasting, 2002

distributed input x̄t ∼ N (µx̄, Σx̄) is given by

p( ft+1) = N (µ ft+1,MM

, σft+1,MM

) , (127)

where the mean is calculated as

µ ft+1,MM = q βT , (128)

where β = [β1, . . . , βm]T = K−1ȳ and

qi = |Λ−1Σx̄ + I|−1/2 exp(−1
2
(µx̄− x̄i)

T(Σx̄ +Λ)−1(µx̄− x̄i)) . (129)



122 | APPENDIX: MSGP

Task Training Test History

Hydraulic actuator [110] 512 512 ly = lu = 10

Ball balancing [100] 500 500 ly = lu = 10

Electrical drives [167] 250 250 ly = lu = 10

Gas furnace [100] 148 148 ly = lu = 3

Hair dryer [100] 500 500 ly = lu = 2

Table 4: Summary of the real-world

dataset characteristics. For each

dataset, the lengths of the training

and test trajectories are given to-

gether with the number of historic

states employed for the NARX dy-

namics models.

The variance is obtained as

σft+1,MM

= σ2
ft+1

+ Tr(K−1(kkT − L)) + Tr(ββT(L− qqT)) , (130)

and L is given by

Lij = k(x̄t, x̄i)k(x̄t, x̄j)|2Λ−1Σx̄ + I|−1/2

exp(2(µx̄ − x̄d)
TΛ−1(2Λ−1 + Σ−1

x̄ )−1Λ−1(µx̄ − x̄d)) , (131)

where x̄d = 0.5(x̄i + x̄j). A detailed derivation of the moment match-

ing approximation for GPs based on the SE kernel can be found

in [124]. [124] Quinonero-Candela, Girard, and

Rasmussen, Prediction at an uncertain in-
put for Gaussian processes and relevance
vector machines-application to multiple-step
ahead time-series forecasting, 2002



CAppendix: PR-SSM

This supplementary material provides details about the derivations

and configuration of the proposed PR-SSM in Sec. C.1. The follow-

ing section C.2 elaborates on the model learning benchmark. This in-

cludes details about the referencemethods and the employed datasets.

Finally, additional experimental results from PR-SSM learning, the

model learning benchmark, and the large scale experiment are sum-

marized in Sec. C.3.

C.1 PR-SSMModel Derivations and Configuration

C.1.1 Evidence Lower Bound (ELBO)
Summarizing themodel assumptions fromthemainpaper, themodel’s

joint distribution is given by

p(y1:T , x1:T , f2:T , z) =

[
T

∏
t=1

p(yt | xt)

]
[

T

∏
t=2

p(xt | ft)

]
[

T

∏
t=2

Dx

∏
d=1

p( ft,d | x̂t−1, zd)p(zd)

]
p(x1) . (132)

The variational distribution over the unknown model variables is de-

fined as

q(x1:T , f2:T , z) =

[
T

∏
t=2

p(xt | ft)

]
[

T

∏
t=2

Dx

∏
d=1

p( ft,d | x̂t−1, zd)q(zd)

]
q(x1) . (133)

Together, the derivation of the ELBO is given below in (134) to (135).



124 | APPENDIX: PR-SSM

Parameter Initialization

Inducing inputs ζd ∼ U (−2, 2) ∈ RP×(Dx+Du)

Inducing

outputs

q(zd) = N (zd | µd, Σd) ∈ RP

µd,i ∼ N (µd,i | 0, 0.052)

Σd = 0.012 · I

Process noise σ2
x,i = 0.0022 ∀i ∈ [1, Dx]

Sensor noise σ2
y,i = 1.02 ∀i ∈ [1, Dy]

kernel hyper-

parameters

σ2
f = 0.52

l2
i = 2 ∀i ∈ [1, Dx]

Table 5: Default configuration for

the initialization of the PR-SSM

(hyper-) parameters θ
PR-SSM

. This

configuration has been employed

for all experiments in the bench-

mark section.

log p(y1:T)≥Eq(x1:T , f2:T ,z)

[
log

p(y1:T ,x1:T , f2:T ,z)
q(x1:T , f2:T , z)

]
(134)

= Eq(x1:T , f2:T ,z)

log

[
∏T

t=1 p(yt | xt)
] [

∏T
t=2 p(xt | ft)

] [
∏T

t=2 ∏Dx
d=1 p( ft,d | x̂t−1, zd)p(zd)

]
p(x1)[

∏T
t=2 p(xt | ft)

] [
∏T

t=2 ∏Dx
d=1 p( ft,d | x̂t−1, zd)q(zd)

]
q(x1)


= Eq(x1:T , f2:T ,z)

log

[
∏T

t=1 p(yt | xt)
] [

∏Dx
d=1 p(zd)

]
p(x1)[

∏Dx
d=1 q(zd)

]
q(x1)


= Eq(x1:T , f2:T ,z)

[
log

T

∏
t=1

p(yt | xt)

]
+ Eq(x1:T , f2:T ,z)

[
Dx

∑
d=1

log
p(zd)

q(zd)

]
+ Eq(x1:T , f2:T ,z)

[
log

p(x1)

q(x1)

]

= Eq(x1:T)

[
log

T

∏
t=1

p(yt | xt)

]
+ Eq(z)

[
Dx

∑
d=1

log
p(zd)

q(zd)

]
+ Eq(x1)

[
log

p(x1)

q(x1)

]

=
T

∑
t=1

Eq(xt) [log p(yt | xt)] +
Dx

∑
d=1

KL(q(zd) ‖ p(zd)) +KL(q(x1) ‖ p(x1)) (135)

In the ELBO, as derived in (135), the last term is a regularization

on the initial state distribution. For the full gradient-based optimiza-

tion in the main paper, an uninformative initial distribution is chosen

and fixed, such that the third term is dropped. In the stochastic op-

timization scheme, this term acts as a regularization preventing the

recognition model to become overconfident in its predictions.

C.1.2 Model Configuration
The PR-SSM exhibits a large number of model (hyper-) parameters

θ
PR-SSM

which need to be initialized. However, empirically, most of

these model parameters can be initialized to a default setting as given

in Tab. 5. This default configuration has been employed for all bench-

mark experiments presented in the main paper.



MODEL LEARNING BENCHMARK DETAILS | 125

Parameter Initialization

Inducing points P = 20

State samples N = 50

Subtrajectories

N
batch

= 10

Tsub = 100

Latent space Dx = 4

Table 6: Structural configuration of

the PR-SSM as utilized in the bench-

mark experiments.

The PR-SSM’s latent state dynamics model and noise models are

configured to initially exhibit a random walk behavior. This behavior

is clearly visible for the prediction based on the untrained model in

Fig. 26 of the main text. The GP prior is approximating the identity

function based on an identity mean function and almost zero induc-

ing outputs (up to a small Gaussian noise term to avoid singularities).

The inducing inputs are spread uniformly over the function’s domain.

The noise processes are initializes such as to achieve high correlations

between latent states over time (i.e. small process noise magnitude).

At the same time, a larger observation noise is required to obtain a in-

flation of predictive uncertainty over time. This inflation of predictive

uncertainty is again clearly visible in Fig. 26 of the main text. Both

noise terms are chosen in a way to obtain numerically stable gradients

for both the sample based log likelihood and the backpropagation

through time in the ELBO evaluation.

The number of samples used in the ELBO approximation, num-

ber of inducing points in the GP approximation and batch size are,

in contrast, a trade-off between model accuracy and computational

speed. The proposed default configuration empirically showed good

performance whilst being computationally tractable.

Two tuning parameters remain, which are problem specific and

have to be chosen for each dataset individually. Depending on the

true system’s timescales/sampling frequency and system order, the

length of subtrajectories Tsub for minibatching and the latent state

dimensionality Dx have to be specified manually. For the benchmark

datasets we choose Tsub = 100 and Dx = 4.

C.2 Model Learning Benchmark Details
In the main text, the proposed PR-SSM’s long-term predictive perfor-

mance is compared to several state-of-the-art methods. The bench-

mark is set up similar to the evaluation presented in [39]. Details

about the individual benchmarkmethods, their configuration and the

employed datasets can be found in the following sections. Minor ad-

justments with respect to the setup in [39] will be pointed out in the



126 | APPENDIX: PR-SSM

following. These modifications have been introduced to enable fair

comparison between all benchmark methods.

Ntrain Ntest Lu, Ly

Actuator [110] 512 512 10

Ballbeam [100] 500 500 10

Drives [167] 250 250 10

Furnace [100] 148 148 3

Dryer [100] 500 500 2

Table 7: Summary of the real-

world, non-linear system identi-

fication benchmark tasks. All

datasets are generated by recording

input/output data of actual physi-

cal plants. For each dataset, the

lengths of training and test set are

given together with the number of

past input and outputs used for the

NARX dynamics models.

C.2.1 BenchmarkMethods
The proposed PR-SSM is evaluated in comparison to methods from

three classes:

1. One-step ahead autoregressive models (GP-NARX, NIGP)

2. Multi-step ahead autoregressive models in latent space (REVARB,

MSGP)

3. Markov state-space models (SS-GP-SSM)

To enable a fair comparison, all methods have access to a predefined

amount of input/output data for initialization.

(i) GP-NARX [76] [76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

The system dynamics is modeled as

yt+1 = f (yt, . . . , yt−Ly , ut, . . . , ut−Lu) (136)

with a GP prior on f . The GP has a zero mean function and a

squared exponential kernel with automatic relevance determina-

tion. The kernel hyper-parameters, signal variance and length-

scales, are optimized based on the standard maximum likelihood

objective. A sparse approximation [142], based on 100 inducing [142] Snelson and Ghahramani,

“Sparse Gaussian processes using

pseudo-inputs,” 2006

inputs is employed. Moment matching [58] is employed to obtain

[58] Girard, Rasmussen, Quinonero-

Candela, Murray-Smith, Winther, and

Larsen, “Multiple-step ahead predic-

tion for non linear dynamic systems—a

Gaussian process treatment with propa-

gation of the uncertainty,” 2003

a long-term predictive distribution.

(ii) NIGP [94]

[94]McHutchon and Rasmussen, “Gaus-

sian process training with input noise,”

2011

Noise Input GPs (NIGP) account for uncertainty in the input by

treating input points as deterministic and inflating the correspond-

ing output uncertainty, leading to state dependent noise, i.e. het-

eroscedastic GPs. The experimental results are based on the pub-

licly available Matlab code. Since no sparse version is available,

training is performed on the full training dataset. Training on the

full dataset is however not possible for larger datasets and provides



MODEL LEARNING BENCHMARK DETAILS | 127

an advantage to NIGP. Experiments based on a random data sub-

set of size 100 lead to decreased performance in the order of the

GP-NARX results or worse.

(iii) REVARB [91] [91] Mattos, Dai, Damianou, Forth, Bar-

reto, and Lawrence, “Recurrent Gaus-

sian processes,” 2015

Recurrent Variational Bayes (REVARB) is a recent proposition to

optimize the lower bound to the log-marginal likelihood log p(y)
using variational techniques. This framework is based on the vari-

ational sparse GP framework [152], but allows for computation of [152] Titsias, “Variational Learning of In-

ducingVariables in SparseGaussianPro-

cesses,” 2009

(time-)recurrent GP structures and deep GP structures (stacking

multiple GP-layers in each time-step). For our benchmark, we run

REVARB using one (REVARB1) respectively two (REVARB2) hid-

den layers, where each layer is provided with 100 inducing inputs.

We closely follow the original setup as presented by [91], perform-

ing 50 initial optimization steps based on fixed variances and up to

10000 steps based on variable variances. Unlike for the other bench-

mark methods, the autoregressive history of REVARB implicitly

becomes longer when introducing additional hidden layers.

(iv) MSGP [39] [39] Doerr, Daniel, Nguyen-Tuong,

Marco, Schaal, Toussaint, and Trimpe,

“Optimizing Long-term Predictions for

Model-based Policy Search,” 2017

MSGP is a GP-NARX model operating in a latent, noise free state,

which is trained by optimizing its long-term predictions. The ex-

perimental results are obtained according to the configuration de-

scribed in [39], again using 100 inducing points andmomentmatch-

ing.

(v) SS-GP-SSM [149] [149] Svensson and Schön, “A flexible

state–space model for learning nonlin-

ear dynamical systems,” 2017

The Sparse-Spectrum GP-SSM is employing a sparse spectrum

GP approximation to model the system’s transition dynamics in

a Markovian, latent space. The available Matlab implementation

is restricted to a 2D latent space. In the experimental results, a

default configuration is employed as given by: K = 2000, N =

40, n_basis_u = n_basis_x = 7. The variables are defined as given

in the code published for [149].

C.2.2 Benchmark Datasets
The benchmarks datasets are composed of popular system identifi-

cation datasets from related work [108, 76, 93]. They incorporate [108] Narendra and Parthasarathy,

“Identification and control of dynamical

systems using neural networks,” 1990

[76] Kocĳan, Girard, Banko, andMurray-

Smith, “Dynamic systems identification

with Gaussian processes,” 2005

[93] Mattos, Damianou, Barreto, and

Lawrence, “Latent Autoregressive Gaus-

sian Processes Models for Robust Sys-

tem Identification,” 2016

measured input output data from technical systems like hydraulic

actuators, furnaces, hair dryers or electrical motors. For all of these

problems, both inputs and outputs are one-dimensional Du = Dy = 1.
However, the system’s true state is higher dimensional such that an

autoregressive history or an explicit latent state representation is re-

quired to capture the relevantdynamics. Thenumberof historic inputs

and outputs for the autoregressive methods is fixed a-priori for each



128 | APPENDIX: PR-SSM

Figure 38: Comparison of the

learning progress of the proposed

method on the Drive dataset given
the full ELBO gradient ( ) and

the stochastic gradient ( ), based

on minibatches and the recogni-

tion model. RMSE and log like-

lihood results over learning itera-

tions are shown for the free sim-

ulation on training ( ) and test

( ) dataset. The full gradient op-

timization scheme overfitts (in par-

ticular visible in the log likelihood)

and exposes a difficult optimiza-

tion objective (cf. spikes in model

loss). Stochastically optimizing the

model-based on the proposed mini-

batched ELBO estimates and em-

ploying the recognition model sig-

nificantly reduces overfitting and

leads to more robust learning.

dataset as previously used in other publications. For model training,

datasets are normalized to zero mean and variance one based on the

available training data. References to the individual datasets, training

and test trajectory length, and the utilized history for the GP-NARX

models are summarized in Tab. 7.

C.3 Additional Results

C.3.1 Optimization Schemes Comparison
In Fig. 38, the RMSE and the negative log likelihood, which is obtained

for the model’s long-term prediction, is depicted over learning itera-

tions for the training- (solid line) and test- (dotted line) set from the

Drives dataset. The full gradient optimization (blue) obtains smaller

training loss in comparison to the stochastic optimization scheme for

both RMSE and negative log likelihood. The resulting test perfor-

mancehowever indicates similar performance in termsofRMSEwhilst

showing clear overfitting of the full-gradient-based model in terms of

log likelihood. Additionally, optimizing, based on the full gradient, is

much more delicate and less robust as indicated by the spikes in loss

and the higher variance of incurred optimization progress. Fig. 38 de-

picts mean (lines) andminimum tomaximum intervals (shaded areas)

of incurred loss, based on five independent model trainings.

C.3.2 Detailed Benchmark Results
In Tab. 8, detailed results are provided for the benchmark experiments.

The reference learningmethods in thepresentedbenchmark are highly



ADDITIONAL RESULTS | 129

Figure 39: Detailed results from the

Sarcos large scale task: Predictions

from the GP-NARX model ( )

and the PR-SSM ( ) for all seven

joint positions as obtained for the

first test experiment on top of the

measured, ground-truth joint posi-

tions ( ). PR-SSM is clearly able

to capture the robot arm dynam-

ics, whereas the GP-NARX model

only successfully captures a rough

model of the robot arm dynamics

for two out of seven joints.

deceptive to changes in the data pre-processing and the long-term pre-

diction method. Therefore, results are detailed for GP-NARX, NIGP,

REVARB 1, and REVARB 2 for all combinations of normalized/un-

normalized training data and mean or moment matching predictions.

The results for methods MSGP, SS-GP-SSM and PR-SSM are always

computed for the normalized datasets using themethod specific prop-

agation of uncertainty schemes. The RMSE result (mean (std) over 5

independently learned models) is given for the free simulation on the

test dataset in Tab. 8. For each dataset, the best result (solid underline)

and second best result (dashed underline) is indicated. The proposed

PR-SSM consistently outperforms the reference (SS-GP-SSM) in the

class of Markovian state space models and robustly achieves perfor-

mance comparable to the one of state-of-the-art latent, autoregressive

models.

Obtaining uncertainty estimates is one key requirement for employ-

ing the long-term predictions, e.g. in model-based control. Therefore,

only the predictive results based on the approximate propagation of

uncertainty through moment matching is considered in the main pa-

per, although better results in RMSE are sometimes obtained from

employing only the mean predictions. A comparison of the predic-

tive results based on mean and moment matching predictions on the

Drives dataset is shown in Fig. 5. The results from the unnormalized

datasets and moment matching are in line with the results published

in [39].

C.3.3 Large Scale Experiment Details
The Sarcos task is based on a publicly available dataset comprising

joint positions, velocities, acceleration and torques of a seven degrees-



130 | APPENDIX: PR-SSM

of-freedom SARCOS anthropomorphic robot arm. This dataset has

been previously used in [159, 168] in the task of learning the system’s

inverse dynamics, therefore mapping joint position, velocities, and

accelerations to the required joint torques. This task can be framed

as a standard regression problem, which is solved in a supervised

fashion. In contrast, in this paper, we consider the task of learning the

forward dynamics, i.e. predicting the joint positions given a sequence

of joint torques. The systemoutput is therefore given by the seven joint

positions (Dy = 7). Joint velocities and acceleration, as latent states,

are not available for learning but have to be inferred. The system input

is given by the seven joint torques (Du = 7).
The original training dataset (44.484 datapoints) recorded at 100Hz

has been downsampled to 50Hz. It is split into 66 independent exper-

iments as indicated by the discontinuities in the original time-series

data. Six out of 66 experiments have been utilized for testing whereas

the other 60 experiments remain for training. None of the reference

methods from the model learning benchmark is out-of-the-box ap-

plicable to this large scale dataset. To obtain a baseline, the sparse

GP-NARXmodel has been trained on a subset of training experiments

(400 inducing points, approx. 2000 training data points). The PR-SSM

can be directly trained on the full training dataset utilizing its stochas-

tic, minibatched optimization scheme. PR-SSM is setup similar to the

configuration described in the benchmark experiment but based on a

14 dimensional latent state (Dx = 14). Long-termprediction results on

one of the test experiments are visualized in Fig. 39. PR-SSM robustly

predicts the robot armmotions for all joints and clearly improves over

the GP-NARX baseline. In contrast, the GP-NARX baseline can not

predict the dynamics on 5 out of 7 joints.



ADDITIONAL RESULTS | 131

One-step-ahead

autoregressive

Multi-step-ahead autoregressive in

latent space

Markovian State-Space Models

Data unnormalized + Mean prediction Default configuration

Task GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

Actuator 0.645 (0.018) 0.752 (0) 0.496 (0.057) 0.565 (0.047) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)

Ballbeam 0.169 (0.005) 0.165 (0) 0.138 (0.001) 0.073 (0.000) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)

Drives 0.579 (0.004) 0.378 (0) 0.718 (0.081) 0.282 (0.031) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)

Furnace 1.199 (0.001) 1.195 (0) 1.210 (0.034) 1.945 (0.016) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)

Dryer 0.278 (0.003) 0.281 (0) 0.149 (0.017) 0.128 (0.001) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

Data unnormalized + Moment matching Default configuration

Task GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

Actuator 0.633 (0.018) 0.601 (0) 0.430 (0.026) 0.618 (0.047) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)

Ballbeam 0.077 (0.000) 0.078 (0) 0.131 (0.005) 0.073 (0.000) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)

Drives 0.688 (0.003) 0.398 (0) 0.801 (0.032) 0.733 (0.087) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)

Furnace 1.198 (0.002) 1.195 (0) 1.192 (0.002) 1.947 (0.032) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)

Dryer 0.284 (0.003) 0.280 (0) 0.878 (0.016) 0.123 (0.002) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

Data normalization + Mean prediction Default configuration

Task GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

Actuator 0.665 (0.014) 0.791 (0) 0.506 (0.092) 0.559 (0.069) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)

Ballbeam 0.357 (0.199) 0.154 (0) 0.141 (0.004) 0.206 (0.008) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)

Drives 0.564 (0.029) 0.369 (0) 0.605 (0.027) 0.376 (0.026) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)

Furnace 1.201 (0.001) 1.205 (0) 1.196 (0.002) 1.189 (0.001) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)

Dryer 0.282 (0.001) 0.269 (0) 0.123 (0.001) 0.113 (0) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

Data normalization + Moment matching Default configuration

Task GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM

Actuator 0.627 (0.005) 0.599 (0) 0.438 (0.049) 0.613 (0.190) 0.771 (0.098) 0.696 (0.034) 0.502 (0.031)

Ballbeam 0.284 (0.222) 0.087 (0) 0.139 (0.007) 0.209 (0.012) 0.124 (0.034) 411.550 (273.043) 0.073 (0.007)

Drives 0.701 (0.015) 0.373 (0) 0.828 (0.025) 0.868 (0.113) 0.451 (0.021) 0.718 (0.009) 0.492 (0.038)

Furnace 1.201 (0.000) 1.205 (0) 1.195 (0.002) 1.188 (0.001) 1.277 (0.127) 1.318 (0.027) 1.249 (0.029)

Dryer 0.310 (0.044) 0.268 (0) 0.851 (0.011) 0.355 (0.027) 0.146 (0.004) 0.152 (0.006) 0.140 (0.018)

Table 8: Comparison of model

learningmethods on five real-world

benchmark examples.





DAppendix: DD-OPG

In this chapter, additional material regarding the Deep Deterministic

Off-Policy Gradient (DD-OPG) method and evaluation is presented.

First, the proof of the weighted importance sampling estimator is pre-

sented in Sec. D.1. Details about the experimental evaluation are

presented in Sec. D.2, which summarize the benchmark reference al-

gorithms (cf. Sec. D.2.1) and test environments (cf. Sec. D.2.2).

D.1 Proof of Proposition 1
The weighted importance sampling estimator of the expected cost is

given by

ĴWIS(θ) =
1

∑M
i=0 w(τi, θ)

M

∑
i=0

w(τi, θ)R(τi) , (137)

as derived in Sec. 10.2 of the main text. Talking the derivative with

respect to the policy parameters, we obtain the policy gradient formu-

lation from theorem 1 as shown in (145).

∇θ ĴWIS(θ) = ∇θ

( N

∑
i=1

p(τi | θ)
1
N ∑j p(τi | θj)

)−1
 N

∑
i=0

p(τi | θ)
1
N ∑j p(τi | θj)

R(τi)+ (138)

(
N

∑
i=1

p(τi | θ)
1
N ∑j p(τi | θj)

)−1 N

∑
i=0
∇θ

(
p(τi | θ)

1
N ∑j p(τi | θj)

R(τi)

)
(139)

= −
(

N

∑
i=1

wi(θ)

)−2( N

∑
i=1
∇θwi(θ)

)(
N

∑
i=1

wi(θ)R(τi)

)
+ (140)

(
N

∑
i=1

wi(θ)

)−1( N

∑
i=1
∇θwi(θ)R(τi)

)
(141)

= − 1
Z2

(
N

∑
i=1
∇θwi(θ)

)(
N

∑
i=1

wi(θ)R(τi)

)
+

1
Z

(
N

∑
i=1
∇θwi(θ)R(τi)

)
(142)

=
1
Z

(
N

∑
i=1
∇θwi(θ)R(τi)−

N

∑
i=1
∇θwi(θ)

∑N
i=1 wi(θ)R(τi)

Z

)
(143)

=
1
Z

(
N

∑
i=1
∇θwi(θ)R(τi)−

N

∑
i=1
∇θwi(θ) ĴWIS(θ)

)
(144)

∇θ ĴWIS(θ) =
1
Z

N

∑
i=1
∇θwi(θ)

(
R(τi)− ĴWIS(θ)

)
(145)



134 | APPENDIX: DD-OPG

Algorithm Parameter Range Selected

REINFORCE Batch size [400, 5000] 5000

Step size [0.0001, 0.1] 0.03

TRPO Batch size [400, 5000] 5000

Step size [0.0001, 0.1] 0.1

PPO Batch size [400, 5000] 2000

Step size [0.0001, 0.2] 0.2

Table 9: Algorithm hyper-

parameter configuration for

the reference methods applied

across all benchmark tasks.

Algorithm Parameter Symbol Selected

DD-OPG Temperature λ 0.1

Penalty γ 0.05

Lengthscale log Σ 3I

Path buffer Nmax 50

Table 10: DD-OPG default hyper-

parameter configuration for the

benchmark tasks.

D.2 Experimental Details
In the following section, details about the reference implementations

of REINFORCE, TRPO and PPO and their parameter settings are sum-

marized for the benchmark experiments and the ablation study. Infor-

mation about the benchmark environments is given in Sec. D.2.2

D.2.1 AlgorithmConfigurations
The reference implementations of the benchmark algorithms REIN-

FORCE, TRPO and PPO are from the Garage RL framework [26, 43]. [26] contributors, Garage: A toolkit for re-
producible reinforcement learning research,
2019

[43] Duan, Chen, Houthooft, Schulman,

and Abbeel, “Benchmarking deep rein-

forcement learning for continuous con-

trol,” 2016

Ahyper-parameter grid search has been conducted for each algorithm

and each environment on separate random seeds. The parameter

ranges and selected hyper-parameters are indicated in Tab. 9. For the

benchmark itself, ten runs have been conducted for each algorithm

and each environment on the random seeds (404, 931, 159, 380, 858,

708, 16, 448, 136, 989). The configuration of the DD-OPG method is

summarized in Tab. 10.

D.2.2 Benchmark Environments
The benchmark environments are cartpole, mountaincar and swim-

mer from the Garage RL framework [26]. Details about the input and

state dimensions, as well as the task horizons are listed in Tab. 11.



EXPERIMENTAL DETAILS | 135

Environment Inputs Du States Dx Horizon H

Cartpole 1 4 100

Mountaincar 1 2 500

Swimmer 2 13 1000

Table 11: Information about the

benchmark environments.





EBibliography

[1] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert, G.

Powell, R. Ribas, et al. “Solving rubik’s cube with a robot hand.” In: arXiv preprint arXiv:1910.07113
(2019) (cit. on p. 3).

[2] A. Alleyne and R. Liu. “A simplified approach to force control for electro-hydraulic systems.” In:

Control Engineering Practice 8.12 (2000), pp. 1347–1356 (cit. on p. 36).

[3] B. D. Anderson and J. B. Moore. Optimal control: linear quadratic methods. Courier Corporation, 2007
(cit. on p. 11).

[4] C. W. Anderson. “Learning to control an inverted pendulum using neural networks.” In: IEEE
Control Systems Magazine 9.3 (1989), pp. 31–37 (cit. on pp. 37, 69).

[5] E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski. “Black box variational inference

for state space models.” In: arXiv preprint arXiv:1511.07367 (2015) (cit. on p. 57).

[6] K. J. Åström and T. Hägglund. PID controllers: theory, design, and tuning. Vol. 2. Instrument society of

America Research Triangle Park, NC, 1995 (cit. on p. 32).

[7] K. J. Åström and T. Hägglund. “Revisiting the Ziegler–Nichols step response method for PID

control.” In: Journal of process control 14.6 (2004), pp. 635–650 (cit. on p. 28).

[8] K. J. Åström, T. Hägglund, andK. J. Astrom.Advanced PID control. Vol. 461. ISA-The Instrumentation,

Systems, and Automation Society Research Triangle . . ., 2006 (cit. on pp. 27, 30).

[9] K. J. Åström and R. M. Murray. Feedback systems: an introduction for scientists and engineers. Princeton
university press, 2010 (cit. on pp. 13, 26).

[10] K. J. Aström and R. M. Murray. Feedback systems: an introduction for scientists and engineers. Princeton
university press, 2010 (cit. on p. 53).

[11] G. Barth-Maron,M.W.Hoffman, D. Budden,W.Dabney, D.Horgan, D. Tb, A.Muldal, N. Heess, and

T.Lillicrap. “Distributeddistributionaldeterministic policygradients.” In: arXiv preprint arXiv:1804.08617
(2018) (cit. on p. 3).

[12] J. Baxter and P. L. Bartlett. “Infinite-horizon policy-gradient estimation.” In: Journal of Artificial
Intelligence Research 15 (2001), pp. 319–350 (cit. on pp. 88, 90).

[13] J. Bayer andC.Osendorfer. “Learning stochastic recurrentnetworks.” In: arXiv preprint arXiv:1411.7610
(2014) (cit. on p. 57).

[14] F. Berkenkamp, A. P. Schoellig, and A. Krause. “Safe controller optimization for quadrotors with

Gaussian processes.” In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 491–496 (cit. on p. 51).

[15] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer, S.

Hashme, C. Hesse, et al. “Dota 2 with large scale deep reinforcement learning.” In: arXiv preprint
arXiv:1912.06680 (2019) (cit. on p. 3).



138 | BIBLIOGRAPHY

[16] J. Berner, T. Hägglund, and K. J. Åström. “Asymmetric relay autotuning - Practical features for

industrial use.” In: Control Engineering Practice 54 (Sept. 2016), pp. 231–245 (cit. on p. 30).

[17] S.A. Billings.Nonlinear system identification:NARMAXmethods in the time, frequency, and spatio-temporal
domains. John Wiley & Sons, 2013 (cit. on pp. 14, 40, 52, 55, 56).

[18] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll. “Learning Throttle Valve Control

Using Policy Search.” In: Machine Learning and Knowledge Discovery in Databases. Springer, 2013,
pp. 49–64 (cit. on pp. 19, 67).

[19] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. “Variational inference: A review for statisticians.” In:

Journal of the American Statistical Association 112.518 (2017), pp. 859–877 (cit. on pp. 75, 77).

[20] J. B. Burl. Linear optimal control: H (2) and H (Infinity) methods. Addison-Wesley Longman Publishing

Co., Inc., 1998 (cit. on p. 11).

[21] E. F. Camacho and C. B. Alba. Model predictive control. Springer Science & Business Media, 2013

(cit. on p. 53).

[22] J. Q. Candela, A. Girard, J. Larsen, and C. E. Rasmussen. “Propagation of uncertainty in Bayesian

kernelmodels-application tomultiple-step ahead forecasting.” In:Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). Vol. 2. 2003, pp. II–701 (cit. on pp. 23,

25, 35).

[23] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and S. Levine. “Combining Model-

Based andModel-FreeUpdates for Trajectory-Centric Reinforcement Learning.” In: 34th International
Conference on Machine Learning (ICML). PMLR. 2017, pp. 703–711 (cit. on p. 87).

[24] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. “A recurrent latent variable

model for sequential data.” In: Advances in Neural Information Processing Systems (NeurIPS). 2015,
pp. 2980–2988 (cit. on p. 57).

[25] P Cominos and NMunro. “PID controllers: Recent tuning methods and design to specification.” In:

IET Proceedings on Control Theory and Applications 149.1 (2002), pp. 46–53 (cit. on pp. 25, 26).

[26] T. garage contributors.Garage: A toolkit for reproducible reinforcement learning research. https://github.
com/rlworkgroup/garage. 2019 (cit. on p. 134).

[27] A. C. Damianou and N. D. Lawrence. “Deep Gaussian Processes.” In: International Conference on
Artificial Intelligence and Statistics (AISTATS). 2013, pp. 207–215 (cit. on p. 54).

[28] C. Dann, G. Neumann, J. Peters, et al. “Policy evaluation with temporal differences: A survey and

comparison.” In: Journal of Machine Learning Research 15 (2014), pp. 809–883 (cit. on p. 4).

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multiobjective genetic algorithm:

NSGA-II.” In: IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–197 (cit. on p. 40).

[30] M.Deisenroth and S.Mohamed. “Expectationpropagation inGaussian process dynamical systems.”

In: 25 (2012), pp. 2609–2617 (cit. on p. 31).

[31] M. P. Deisenroth and C. E. Rasmussen. “PILCO: A model-based and data-efficient approach to

policy search.” In: Proceedings of the 28th International Conference on Machine Learning (ICML). 2011,
pp. 465–472 (cit. on pp. 5, 19, 38, 51, 53, 57, 64, 66, 67, 70, 110, 117, 119).

[32] M. P. Deisenroth andD. Fox. “Multiple-target reinforcement learningwith a single policy.” In: ICML
Workshop on Planning and Acting with Uncertain Models. Citeseer. 2011 (cit. on pp. 25, 36, 37, 47, 110).

https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage


BIBLIOGRAPHY | 139

[33] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. “Gaussian processes for data-efficient learning in

robotics and control.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 37.2 (2015),

pp. 408–423 (cit. on pp. 8, 35).

[34] M. P.Deisenroth,G.Neumann, J. Peters, et al. “A survey onpolicy search for robotics.” In:Foundations
and Trends® in Robotics 2.1–2 (2013), pp. 1–142 (cit. on pp. 10, 87, 90).

[35] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. “Learning to Control a Low-Cost Manipulator using

Data-Efficient Reinforcement Learning.” In: Robotics: Science & Systems (RSS). Vol. 7. MIT Press

Journals, 2011, pp. 57–64 (cit. on pp. 11, 19, 22, 24, 32, 35, 47, 67).

[36] M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen. “Robust filtering

and smoothing with Gaussian processes.” In: IEEE Transactions on Automatic Control 57.7 (2012),

pp. 1865–1871 (cit. on p. 58).

[37] A. Der Kiureghian and O. Ditlevsen. “Aleatory or epistemic? Does it matter?” In: Structural safety
31.2 (2009), pp. 105–112 (cit. on p. 54).

[38] L. Desborough and R. Miller. “Increasing customer value of industrial control performance moni-

toring—Honeywell’s experience.” In: Chemical Process Control–VI (Tuscon, Arizona 98 (2001) (cit. on

pp. 19, 109).

[39] A.Doerr, C.Daniel, D.Nguyen-Tuong,A.Marco, S. Schaal,M. Toussaint, and S. Trimpe. “Optimizing

Long-termPredictions forModel-based Policy Search.” In:Conference on Robot Learning (CORL). 2017,
pp. 227–238 (cit. on pp. 5, 6, 52, 55, 82, 125, 127, 129, 149).

[40] A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint, and S. Trimpe. “Proba-

bilistic Recurrent State-Space Models.” In: International Conference on Machine Learning (ICML). 2018,
pp. 1280–1289 (cit. on pp. 5, 6, 52, 149).

[41] A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, and S. Trimpe. “Model-based Policy Search for

Automatic Tuning ofMultivariate PIDControllers.” In:Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). 2017 (cit. on pp. 5, 19, 53, 67, 69, 110, 149).

[42] A. Doerr, M. Volpp, M. Toussaint, S. Trimpe, and C. Daniel. “Trajectory-based off-policy deep

reinforcement learning.” In: International Conference on Machine Learning (ICML). 2019, pp. 1636–
1645 (cit. on pp. 6, 88, 149).

[43] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking deep reinforcement

learning for continuous control.” In: International Conference on Machine Learning (ICML). 2016,
pp. 1329–1338 (cit. on pp. 102, 134).

[44] S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman. “Identification of Gaussian Process

State Space Models.” In: Advances in Neural Information Processing Systems (NeurIPS). 2017, pp. 5315–
5325 (cit. on pp. 56, 58, 75, 76, 79, 82).

[45] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,

I. Dunning, et al. “IMPALA: Scalable distributed Deep-RL with importance weighted actor-learner

architectures.” In: arXiv preprint arXiv:1802.01561 (2018) (cit. on pp. 90, 94).

[46] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine. “Model-based value

estimation for efficient model-free reinforcement learning.” In: arXiv preprint arXiv:1803.00101 (2018)
(cit. on p. 23).



140 | BIBLIOGRAPHY

[47] R. Föll, B. Haasdonk, M. Hanselmann, and H. Ulmer. “Deep Recurrent Gaussian Process with

Variational Sparse Spectrum Approximation.” In: arXiv preprint arXiv:1711.00799 (2017) (cit. on

p. 58).

[48] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther. “Sequential neural models with stochastic

layers.” In: Advances in Neural Information Processing Systems (NeurIPS). 2016, pp. 2199–2207 (cit. on

p. 57).

[49] R. Frigola, Y. Chen, and C. E. Rasmussen. “Variational Gaussian process state-space models.” In:

Advances in Neural Information Processing Systems (NeurIPS). 2014, pp. 3680–3688 (cit. on pp. 56, 58,

74, 75, 77, 82).

[50] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen. “Bayesian Inference and Learning in

Gaussian Process State-Space Models with Particle MCMC.” In: Advances in Neural Information
Processing Systems (NeurIPS). 2013, pp. 3156–3164 (cit. on pp. 56, 58, 63, 75, 82).

[51] R. Frigola and C. E. Rasmussen. “Integrated Pre-Processing for Bayesian Nonlinear System Iden-

tification with Gaussian Processes.” In: 52nd IEEE Conference on Decision and Control (CDC). 2013,
pp. 5371–5376 (cit. on p. 56).

[52] R. Frigola-Alcade. “Bayesian time series learning with Gaussian processes.” In: University of Cam-
bridge (2015) (cit. on p. 73).

[53] Z.-L. Gaing. “A particle swarm optimization approach for optimum design of PID controller in AVR

system.” In: IEEE transactions on energy conversion 19.2 (2004), pp. 384–391 (cit. on p. 29).

[54] Y. Gal, R. McAllister, and C. E. Rasmussen. “Improving PILCO with Bayesian neural network

dynamics models.” In: Data-Efficient Machine Learning workshop, ICML. Vol. 4. 2016, p. 34 (cit. on

pp. 11, 22).

[55] O. Garpinger and T.Hägglund. “A software tool for robust PID design.” In: IFAC Proceedings Volumes
41.2 (2008), pp. 6416–6421 (cit. on p. 29).

[56] M. Gemici, C.-C. Hung, A. Santoro, G.Wayne, S. Mohamed, D. J. Rezende, D. Amos, and T. Lillicrap.

“Generative TemporalModels withMemory.” In: arXiv preprint arXiv:1702.04649 (2017) (cit. on p. 57).

[57] A. Girard and C. E. Rasmussen. “Multiple-step ahead prediction for non linear dynamic systems–a

gaussian process treatment with propagation of the uncertainty.” In: () (cit. on pp. 23, 73).

[58] A. Girard, C. E. Rasmussen, J Quinonero-Candela, R Murray-Smith, O Winther, and J Larsen.

“Multiple-step ahead prediction for non linear dynamic systems—a Gaussian process treatment

with propagation of the uncertainty.” In: Advances in Neural Information Processing Systems (NeurIPS).
Vol. 15. 2003, pp. 529–536 (cit. on pp. 24, 54, 55, 83, 126).

[59] P. W. Goldberg, C. K. Williams, and C. M. Bishop. “Regression with input-dependent noise: A

Gaussian process treatment.” In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 10.
1997, pp. 493–499 (cit. on p. 59).

[60] E. Greensmith, P. L. Bartlett, and J. Baxter. “Variance reduction techniques for gradient estimates in

reinforcement learning.” In: Journal of Machine Learning Research 5.Nov (2004), pp. 1471–1530 (cit. on

p. 96).

[61] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. “Continuous deep q-learning with model-based

acceleration.” In: International Conference on Machine Learning. 2016, pp. 2829–2838 (cit. on pp. 22, 23).



BIBLIOGRAPHY | 141

[62] C. C. Hang, K. J. Åström, and W. K. Ho. “Refinements of the Ziegler–Nichols tuning formula.” In:

IEE Proceedings D (Control Theory and Applications). Vol. 138. 2. IET. 1991, pp. 111–118 (cit. on p. 29).

[63] J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian processes for big data.” In: arXiv preprint
arXiv:1309.6835 (2013) (cit. on p. 75).

[64] S. Hochreiter and J. Schmidhuber. “LSTM can solve hard long time lag problems.” In: Advances in
Neural Information Processing Systems (NeurIPS). 1997, pp. 473–479 (cit. on p. 57).

[65] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry. “Are Deep

Policy Gradient Algorithms Truly Policy Gradient Algorithms?” In: arXiv preprint arXiv:1811.02553
(2018) (cit. on p. 94).

[66] F. Jiang and Z. Gao. “An application of nonlinear PID control to a class of truck ABS problems.” In:

IEEE Conference on Decision and Control (CDC). Vol. 1. 2001, pp. 516–521 (cit. on pp. 25, 26).

[67] T. Jie and P. Abbeel. “On a connection between importance sampling and the likelihood ratio policy

gradient.” In:Advances in Neural Information Processing Systems (NeurIPS). 2010, pp. 1000–1008 (cit. on
pp. 12, 90, 95, 96).

[68] M. A. Johnson and M. H. Moradi. PID control - New Identification and Design Methods. Springer, 2005
(cit. on pp. 26, 30).

[69] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan, C. Finn,

P. Kozakowski, S. Levine, et al. “Model-based reinforcement learning for Atari.” In: arXiv preprint
arXiv:1903.00374 (2019) (cit. on p. 21).

[70] R. Kalman. “A new approach to linear filtering and prediction problems.” In: Journal of Basic Engi-
neering 82.1 (1960), pp. 35–45 (cit. on p. 57).

[71] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. “Deep variational bayes filters: Unsupervised

learning of state spacemodels from raw data.” In: International Conference on Learning Representations.
2016 (cit. on p. 57).

[72] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. “Most likely heteroscedastic Gaussian process

regression.” In: Proceedings of the 24th International Conference onMachine learning (ICML). ACM. 2007,

pp. 393–400 (cit. on p. 59).

[73] D.P.Kingmaand J. Ba. “Adam:Amethod for stochastic optimization.” In: arXiv preprint arXiv:1412.6980
(2014) (cit. on p. 100).

[74] D. P. Kingma and M. Welling. “Auto-encoding variational bayes.” In: arXiv preprint arXiv:1312.6114
(2013) (cit. on p. 78).

[75] J. Ko and D. Fox. “GP-BayesFilters: Bayesian filtering using Gaussian process prediction and obser-

vation models.” In: Autonomous Robots 27.1 (2009), pp. 75–90 (cit. on p. 58).

[76] J. Kocĳan,A.Girard, B. Banko, andR.Murray-Smith. “Dynamic systems identificationwithGaussian

processes.” In: Mathematical and Computer Modelling of Dynamical Systems 11.4 (2005), pp. 411–424

(cit. on pp. 19, 22–24, 55, 67, 119, 120, 126, 127).

[77] R. G. Krishnan, U. Shalit, and D. Sontag. “Deep Kalman filters.” In: arXiv preprint arXiv:1511.05121
(2015) (cit. on p. 57).

[78] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. “Model-ensemble trust-region policy

optimization.” In: arXiv preprint arXiv:1802.10592 (2018) (cit. on p. 23).



142 | BIBLIOGRAPHY

[79] S. Lange, M. Riedmiller, and A. Voigtländer. “Autonomous reinforcement learning on raw visual

input data in a real world application.” In: The 2012 international joint conference on neural networks
(ĲCNN). IEEE. 2012, pp. 1–8 (cit. on p. 4).

[80] E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba. “Benchmarking model-based reinforcement

learning.” In: arXiv preprint arXiv:1907.02057 (2019) (cit. on pp. 11, 23, 24).

[81] M. Lefarov. “Model-Based policy Search for Learning Multivariate PID Gain Scheduling Control.”

MA thesis. University of Stuttgart, Apr. 2018 (cit. on pp. 20, 43, 48).

[82] S. Levine, C. Finn, T. Darrell, and P. Abbeel. “End-to-end training of deep visuomotor policies.” In:

Journal of Machine Learning Research 17.39 (2016), pp. 1–40 (cit. on p. 51).

[83] S. Levine and V. Koltun. “Guided Policy Search.” In: Proceedings of the 30th International Conference
on Machine Learning (ICML). 2013 (cit. on pp. 11, 51).

[84] F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley & Sons, 2012 (cit. on p. 13).

[85] B. Likar and J. Kocĳan. “Predictive control of a gas–liquid separation plant based on a Gaussian

process model.” In: Computers & chemical engineering 31.3 (2007), pp. 142–152 (cit. on p. 55).

[86] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N.Heess, T. Erez, Y. Tassa, D. Silver, andD.Wierstra. “Continuous

control with deep reinforcement learning.” In: arXiv preprint arXiv:1509.02971 (2015) (cit. on pp. 89,

102).

[87] M. L. Littman andR. S. Sutton. “Predictive representations of state.” In:Advances inNeural Information
Processing Systems (NeurIPS). 2002, pp. 1555–1561 (cit. on p. 55).

[88] L. Ljung. “System identification.” In: Signal analysis and prediction. Springer, 1998, pp. 163–173 (cit. on
pp. 13, 55).

[89] L. Ljung. “Perspectives on system identification.” In: Annual Reviews in Control 34.1 (2010), pp. 1–12
(cit. on p. 53).

[90] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. “Automatic LQR Tuning Based on Gaussian

Process Global Optimization.” In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). 2016 (cit. on pp. 12, 38, 39, 42, 69).

[91] C. L. C. Mattos, Z. Dai, A. Damianou, J. Forth, G. A. Barreto, and N. D. Lawrence. “Recurrent

Gaussian processes.” In: arXiv preprint arXiv:1511.06644 (2015) (cit. on pp. 55–58, 67, 70, 75, 76, 79,

82, 83, 120, 127).

[92] C. L. C. Mattos, Z. Dai, A. Damianou, J. Forth, G. A. Barreto, andN. D. Lawrence. REVARB implemen-
tation for RGP. https://github.com/zhenwendai/RGP. [Online; accessed 30-Jan-2017]. 2015 (cit. on

p. 120).

[93] C. L. C. Mattos, A. Damianou, G. A. Barreto, and N. D. Lawrence. “Latent Autoregressive Gaussian

Processes Models for Robust System Identification.” In: IFAC-PapersOnLine 49.7 (2016), pp. 1121–

1126 (cit. on pp. 55, 68, 120, 121, 127).

[94] A. McHutchon and C. E. Rasmussen. “Gaussian process training with input noise.” In: Advances in
Neural Information Processing Systems (NeurIPS). 2011, pp. 1341–1349 (cit. on pp. 55, 59, 67, 82, 119,

126).

[95] A. M. Metelli, M. Papini, F. Faccio, andM. Restelli. “Policy Optimization via Importance Sampling.”

In: arXiv preprint arXiv:1809.06098 (2018) (cit. on pp. 89–91, 94, 95, 99).

https://github.com/zhenwendai/RGP


BIBLIOGRAPHY | 143

[96] N. Meuleau, L. Peshkin, L. P. Kaelbling, and K.-E. Kim. “Off-policy policy search.” In:MIT Articical
Intelligence Laboratory (2000) (cit. on p. 95).

[97] N. Mishra, P. Abbeel, and I. Mordatch. “Prediction and Control with Temporal Segment Models.”

In: arXiv preprint arXiv:1703.04070 (2017) (cit. on p. 57).

[98] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.

“Playing atari with deep reinforcement learning.” In: arXiv preprint arXiv:1312.5602 (2013) (cit. on

pp. 3, 8, 12).

[99] T. M. Moerland, J. Broekens, and C. M. Jonker. “Model-based reinforcement learning: A survey.” In:

arXiv preprint arXiv:2006.16712 (2020) (cit. on pp. 11, 21, 24).

[100] D. Moor. DaISy: Database for the Identification of Systems. http://homes.esat.kuleuven.be/~smc/
daisy/. [Online; accessed 30-Jan-2017]. 2017 (cit. on pp. 122, 126).

[101] R.Munos. “Policy gradient in continuous time.” In: Journal ofMachine Learning Research 7.May (2006),

pp. 771–791 (cit. on p. 89).

[102] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare. “Safe and efficient off-policy reinforce-

ment learning.” In: Advances in Neural Information Processing Systems (NeurIPS). 2016, pp. 1054–1062
(cit. on pp. 90, 94).

[103] R. Murray-Smith and A. Girard. “Gaussian Process priors with ARMA noise models.” In: Irish
Signals and Systems Conference, Maynooth. 2001, pp. 147–152 (cit. on p. 55).

[104] R.Murray-Smith, T. A. Johansen, andR. Shorten. “On transient dynamics, off-equilibriumbehaviour

and identification in blendedmultiplemodel structures.” In:EuropeanControl Conference (ECC). IEEE.
1999, pp. 3569–3574 (cit. on p. 55).

[105] R. Murray-Smith and D. Sbarbaro. “Nonlinear adaptive control using non-parametric Gaussian

process prior models.” In: 15th Triennial World Congress of the International Federation of Automatic
Control (IFAC) (2002) (cit. on p. 19).

[106] R. Murray-Smith, D. Sbarbaro, C. E. Rasmussen, and A. Girard. “Adaptive, cautious, predictive con-

trolwithGaussianprocess priors.” In: 13th IFACSymposium onSystem Identification. IFACproceedings

volumes (2003), pp. 1195–1200 (cit. on pp. 4, 19, 54).

[107] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. “Neural network dynamics for model-based

deep reinforcement learning with model-free fine-tuning.” In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 7559–7566 (cit. on p. 23).

[108] K. S. Narendra and K. Parthasarathy. “Identification and control of dynamical systems using neural

networks.” In: IEEE Transactions on neural networks 1.1 (1990), pp. 4–27 (cit. on pp. 120, 127).

[109] O. Nelles. Nonlinear system identification: from classical approaches to neural networks and fuzzy models.
Springer Science & Business Media, 2013 (cit. on p. 14).

[110] M. Nørgaard. Hydraulic actuator dataset. http://www.iau.dtu.dk/nnbook/systems.html. [Online;

accessed 30-Jan-2017]. 2000 (cit. on pp. 122, 126).

[111] A. O’Dwyer. Handbook of PI and PID controller tuning rules. Vol. 57. World Scientific, 2009 (cit. on

p. 28).

[112] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. “Deep exploration via bootstrapped DQN.” In:

Advances in Neural Information Processing Systems (NeurIPS). 2016, pp. 4026–4034 (cit. on p. 89).

http://homes.esat.kuleuven.be/~smc/daisy/
http://homes.esat.kuleuven.be/~smc/daisy/
http://www.iau.dtu.dk/nnbook/systems.html


144 | BIBLIOGRAPHY

[113] R. Pascanu, Y. Li, O. Vinyals, N. Heess, L. Buesing, S. Racanière, D. Reichert, T. Weber, D. Wierstra,

and P. Battaglia. “Learning model-based planning from scratch.” In: arXiv preprint arXiv:1707.06170
(2017) (cit. on pp. 23, 24).

[114] R. Pascanu, T. Mikolov, and Y. Bengio. “On the difficulty of training recurrent neural networks.”

In: Proceedings of the 30th International Conference on Machine Learning (ICML). 2013, pp. 1310–1318
(cit. on p. 81).

[115] J. R. Perez and P. B. Herrero. “Extending the AMIGO PID tuning method to MIMO systems.” In:

IFAC Proceedings Volumes 45.3 (2012), pp. 211–216 (cit. on p. 28).

[116] L. Peshkin and C. R. Shelton. “Learning from Scarce Experience.” In: International Conference on
Machine Learning (ICML). Morgan Kaufmann Publishers Inc. 2002, pp. 498–505 (cit. on p. 95).

[117] V Peterka. “Bayesian system identification.” In: Automatica 17.1 (1981), pp. 41–53 (cit. on p. 54).

[118] J. Peters and S. Schaal. “Reinforcement learning of motor skills with policy gradients.” In: Neural
networks 21.4 (2008), pp. 682–697 (cit. on pp. 8, 87, 90).

[119] J. Peters and S. Schaal. “Natural actor-critic.” In:Neurocomputing 71.7-9 (2008), pp. 1180–1190 (cit. on
p. 100).

[120] K. B. Petersen, M. S. Pedersen, et al. “The matrix cookbook.” In: Technical University of Denmark 7

(2008), p. 15 (cit. on p. 118).

[121] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and M.

Andrychowicz. “Parameter space noise for exploration.” In: arXiv preprint arXiv:1706.01905 (2017)

(cit. on pp. 89, 91, 99).

[122] D. Precup, R. S. Sutton, and S. P. Singh. “Eligibility Traces for Off-Policy Policy Evaluation.” In:

Proceedings of the 17th International Conference on Machine Learning (ICML). Citeseer. 2000, pp. 759–
766 (cit. on p. 95).

[123] S. J. Qin and T. A. Badgwell. “An overview of industrial model predictive control technology.”

In: AIche symposium series. Vol. 93. 316. New York, NY: American Institute of Chemical Engineers,

1971-c2002. 1997, pp. 232–256 (cit. on p. 19).

[124] J. Quinonero-Candela, A. Girard, and C. E. Rasmussen. Prediction at an uncertain input for Gaussian
processes and relevance vector machines-application to multiple-step ahead time-series forecasting. Tech. rep.
Danish Technical University, 2002 (cit. on pp. 54, 66, 121, 122).

[125] J. Quinonero-Candela, C. E. Rasmussen, and C. K.Williams. “Approximationmethods for Gaussian

process regression.” In: Large-scale kernel machines (2007), pp. 203–224 (cit. on p. 63).

[126] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende, A. Puigdomènech

Badia, O. Vinyals, N. Heess, Y. Li, et al. “Imagination-augmented agents for deep reinforcement

learning.” In: 30 (2017), pp. 5690–5701 (cit. on pp. 23, 24).

[127] D. Reeb, A. Doerr, S. Gerwinn, and B. Rakitsch. “Learning Gaussian Processes by Minimizing PAC-

Bayesian Generalization Bounds.” In: Advances in Neural Information Processing Systems (NeurIPS).
2018 (cit. on p. 149).

[128] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. C. Voorhies, G. S. Sukhatme, and

S. Schaal. “An autonomous manipulation system based on force control and optimization.” In:

Autonomous Robots 36.1-2 (2014), pp. 11–30 (cit. on p. 38).



BIBLIOGRAPHY | 145

[129] D. E. Rivera, M. Morari, and S. Skogestad. “Internal model control: PID controller design.” In:

Industrial & engineering chemistry process design and development 25.1 (1986), pp. 252–265 (cit. on p. 29).

[130] M. R. Rudary and S. P. Singh. “A nonlinear predictive state representation.” In: Advances in Neural
Information Processing Systems (NeurIPS). 2004, pp. 855–862 (cit. on p. 55).

[131] H. Salimbeni and M. Deisenroth. “Doubly Stochastic Variational Inference for Deep Gaussian Pro-

cesses.” In: Advances in Neural Information Processing Systems (NeurIPS). 2017, pp. 4591–4602 (cit. on

p. 75).

[132] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience replay.” In: arXiv preprint
arXiv:1511.05952 (2015) (cit. on pp. 95, 100).

[133] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust region policy optimization.” In:

International Conference on Machine Learning (ICML). 2015, pp. 1889–1897 (cit. on pp. 88, 91, 99, 102).

[134] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy optimization

algorithms.” In: arXiv preprint arXiv:1707.06347 (2017) (cit. on pp. 88–91, 98, 102).

[135] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber. “Policy gradients

withparameter-basedexploration for control.” In: InternationalConference onArtificialNeuralNetworks.
Springer. 2008, pp. 387–396 (cit. on p. 91).

[136] C. R. Shelton. “Policy improvement for POMDPs using normalized importance sampling.” In: Pro-
ceedings of the 17th conference on Uncertainty in Artificial Intelligence (UAI). Morgan Kaufmann Pub-

lishers Inc. 2001, pp. 496–503 (cit. on pp. 90, 95).

[137] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: modelling, planning and control. Springer
Science & Business Media, 2010 (cit. on pp. 25, 26).

[138] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam, M. Lanctot, et al. “Mastering the game of Go with deep neural

networks and tree search.” In: nature 529.7587 (2016), pp. 484–489 (cit. on p. 3).

[139] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. “Deterministic policy

gradient algorithms.” In: ICML. 2014 (cit. on p. 89).

[140] S. P. Singh, M. L. Littman, N. K. Jong, D. Pardoe, and P. Stone. “Learning predictive state represen-

tations.” In: Proceedings of the 20th International Conference on Machine Learning (ICML). 2003, pp. 712–
719 (cit. on p. 55).

[141] E. Snelson and Z. Ghahramani. “Sparse Gaussian processes using pseudo-inputs.” In: Advances in
Neural Information Processing Systems (NeurIPS). 2005, pp. 1257–1264 (cit. on p. 39).

[142] E. Snelson and Z. Ghahramani. “Sparse Gaussian processes using pseudo-inputs.” In: Advances in
Neural Information Processing Systems (NeurIPS). Vol. 18. 2006, p. 1257 (cit. on pp. 16, 63, 82, 126).

[143] J. Snoek, H. Larochelle, and R. P. Adams. “Practical bayesian optimization of machine learning

algorithms.” In: Advances in Neural Information Processing Systems (NeurIPS). 2012, pp. 2951–2959
(cit. on p. 105).

[144] I. Sutskever, J. Martens, and G. E. Hinton. “Generating text with recurrent neural networks.” In:

Proceedings of the 28th International Conference on Machine Learning (ICML). 2011, pp. 1017–1024 (cit.

on p. 57).



146 | BIBLIOGRAPHY

[145] R. S. Sutton. “Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming.” In: Machine learning proceedings 1990. Elsevier, 1990, pp. 216–224 (cit. on

p. 23).

[146] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Vol. 1. MIT press Cambridge,

1998 (cit. on pp. 7, 37).

[147] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018 (cit. on p. 21).

[148] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. “Policy gradient methods for reinforce-

ment learning with function approximation.” In: Advances in Neural Information Processing Systems
(NeurIPS). 2000, pp. 1057–1063 (cit. on p. 87).

[149] A. Svensson and T. B. Schön. “A flexible state–space model for learning nonlinear dynamical sys-

tems.” In: Automatica 80 (2017), pp. 189–199 (cit. on pp. 75, 82, 127).

[150] I. Szita and A. Lörincz. “Learning Tetris using the noisy cross-entropy method.” In: Neural computa-
tion 18.12 (2006), pp. 2936–2941 (cit. on p. 12).

[151] G. Tesauro. “Temporal difference learning and TD-Gammon.” In: Communications of the ACM 38.3

(1995), pp. 58–68 (cit. on p. 3).

[152] M. K. Titsias. “Variational Learning of Inducing Variables in Sparse Gaussian Processes.” In: Proceed-
ings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS). Vol. 5. 2009,
pp. 567–574 (cit. on pp. 75, 77, 120, 127).

[153] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. “Domain randomization for

transferring deep neural networks from simulation to the real world.” In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 23–30 (cit. on p. 4).

[154] S. Trimpe and R. D’Andrea. “The Balancing Cube: A Dynamic Sculpture As Test Bed for Distributed

Estimation and Control.” In: IEEE Control Systems 32.6 (Dec. 2012), pp. 48–75 (cit. on p. 39).

[155] R. Turner, M. Deisenroth, and C. Rasmussen. “State-space inference and learning with Gaussian

processes.” In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
(AISTATS). 2010, pp. 868–875 (cit. on pp. 56, 58, 63, 82).

[156] H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double q-learning.” In:

Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1. 2016 (cit. on p. 12).

[157] P. Van Overschee and B. De Moor. Subspace identification for linear systems: Theory - Implementation -
Applications. Springer Science & Business Media, 2012 (cit. on pp. 55, 57).

[158] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko. “Translating videos

to natural language using deep recurrent neural networks.” In: arXiv preprint arXiv:1412.4729 (2014)
(cit. on p. 57).

[159] S. Vĳayakumar and S. Schaal. “LWPR: An O(n) algorithm for incremental real time learning in high

dimensional space.” In: Proceedings of the 17th International Conference on Machine Learning (ICML).
2000 (cit. on p. 130).

[160] J. Vinogradska, B. Bischoff, J. Achterhold, T. Koller, and J. Peters. “Numerical quadrature for prob-

abilistic policy search.” In: IEEE transactions on pattern analysis and machine intelligence 42.1 (2018),

pp. 164–175 (cit. on p. 23).



BIBLIOGRAPHY | 147

[161] M. Volpp, L. P. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel. “Meta-Learning

Acquisition Functions for Transfer Learning in Bayesian Optimization.” In: International Conference
on Learning Representations. 2019 (cit. on p. 149).

[162] J.Wang,A.Hertzmann, andD. J. Fleet. “Gaussian process dynamicalmodels.” In: 18 (2005), pp. 1441–

1448 (cit. on p. 23).

[163] J.M.Wang, D. J. Fleet, andA.Hertzmann. “Gaussian process dynamicalmodels for humanmotion.”

In: IEEE transactions on pattern analysis and machine intelligence 30.2 (2008), pp. 283–298 (cit. on p. 58).

[164] C. J. Watkins and P. Dayan. “Q-learning.” In:Machine learning 8.3-4 (1992), pp. 279–292 (cit. on p. 12).

[165] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. “Embed to control: A locally linear

latent dynamics model for control from raw images.” In: Advances in Neural Information Processing
Systems (NeurIPS). 2015, pp. 2746–2754 (cit. on p. 57).

[166] P. Wawrzynski and A. Pacut. “Truncated importance sampling for reinforcement learning with

experience replay.” In: Proc. CSIT Int. Multiconf (2007), pp. 305–315 (cit. on p. 90).

[167] T. Wigren. Input-Output Data Sets for Development and Benchmarking in Nonlinear Identification. Tech.
rep. Department of Information Technology, Uppsala University, 2010 (cit. on pp. 122, 126).

[168] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. MIT Press, 2005 (cit. on

pp. 15, 16, 24, 54, 63, 65, 130).

[169] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement

learning.” In: Reinforcement Learning. Springer, 1992, pp. 5–32 (cit. on pp. 12, 88, 90, 91, 93, 102).

[170] A. Wilson, A. Fern, and P. Tadepalli. “Using trajectory data to improve Bayesian optimization for

reinforcement learning.” In: The Journal of Machine Learning Research 15.1 (2014), pp. 253–282 (cit. on
pp. 12, 91).

[171] A. Wischnewski. “Control of highly automated and autonomous vehicles in critical driving situa-

tions.” MA thesis. University of Stuttgart, 2017 (cit. on p. 43).

[172] T Yamamoto and S. Shah. “Design and experimental evaluation of a multivariable self-tuning PID

controller.” In: IET Proceedings on Control Theory and Applications 151.5 (2004), pp. 645–652 (cit. on

p. 30).

[173] T. Zhao, H. Hachiya, V. Tangkaratt, J. Morimoto, andM. Sugiyama. “Efficient sample reuse in policy

gradients with parameter-based exploration.” In: Neural computation 25.6 (2013), pp. 1512–1547 (cit.

on pp. 90, 94, 99).

[174] J. G. Ziegler, N. B. Nichols, et al. “Optimum settings for automatic controllers.” In: trans. ASME 64.11

(1942) (cit. on p. 28).





FPublications

This work is based on results, which have been previously published in the following papers.

An outline of these contributions and the individual parts of the thesis is given in Sec. 1.

A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, and S. Trimpe. “Model-based Policy

Search for Automatic Tuning of Multivariate PID Controllers.” In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 2017

A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, M. Toussaint, and S. Trimpe.

“Optimizing Long-term Predictions for Model-based Policy Search.” In: Conference on
Robot Learning (CORL). 2017, pp. 227–238

A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint, and S. Trimpe.

“Probabilistic Recurrent State-Space Models.” In: International Conference on Machine
Learning (ICML). 2018, pp. 1280–1289

A. Doerr, M. Volpp, M. Toussaint, S. Trimpe, and C. Daniel. “Trajectory-based off-policy

deep reinforcement learning.” In: International Conference on Machine Learning (ICML).
2019, pp. 1636–1645

I contributed to the following publications during my Ph.D, which are not part of this thesis.

D. Reeb, A.Doerr, S.Gerwinn, andB. Rakitsch. “LearningGaussianProcesses byMinimiz-

ing PAC-Bayesian Generalization Bounds.” In: Advances in Neural Information Processing
Systems (NeurIPS). 2018

M. Volpp, L. P. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel. “Meta-

Learning Acquisition Functions for Transfer Learning in Bayesian Optimization.” In:

International Conference on Learning Representations. 2019



Large-scale deep Reinforcement Learning is strongly contributing to
many recently published success stories of Artificial Intelligence. These
techniques enabled computer systems to autonomously learn and
master challenging problems, such as playing the game of Go, on
human levels or above. Naturally, the question arises which problems
could be addressed with these Reinforcement Learning technologies
in industrial applications.

So far, machine learning technologies based on (semi-) supervised
learning create the most visible impact in industrial applications. For
example, image, video or text understanding are primarily dominated
by models trained and derived autonomously from large-scale data
sets with modern (deep) machine learning methods. Reinforcement
Learning, on the opposite side, however, deals with temporal
decision-making problems and is much less commonly found in the
industrial context. In these problems, current decisions and actions
inevitably influence the outcome and success of a process much
further down the road.

This work strives to address some of the core problems, which
prevent the effective use of Reinforcement Learning in industrial
settings. The methods and solutions proposed in this work are
grounded in the challenges experienced when operating with real-
world hardware systems. With applications on a humanoid upper-
body robot or an autonomous model race car, the proposed methods
are demonstrated to successfully model and master their complex
behavior.

Dissertation

Models for Data-Efficient Reinforcement
Learning on Real-World Applications
Andreas Doerr


	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Zusammenfassung
	Prologue
	0 Introduction
	1 Outline of this Work
	2 Preliminaries
	2.1 The Reinforcement Learning Problem
	2.2 Classes of Reinforcement Learning Methods
	2.3 Reinforcement Learning and Control
	2.4 Gaussian Processes


	I Model-Based Reinforcement Learning for Tuning of PID Controllers
	3 Introduction
	3.1 Contributions
	3.2 Outline
	3.3 Model-Based Reinforcement Learning
	3.4 PID Control

	4 Learning Multivariate PID Control
	4.1 System State Augmentation
	4.2 PID as Static State Feedback
	4.3 Experimental Evaluation

	5 Summary

	II Learning Models for Model-Based Reinforcement Learning
	6 Introduction
	6.1 Contributions
	6.2 Outline
	6.3 System Identification

	7 Multi-Step Gaussian Process Models
	7.1 Multi-Step Gaussian Processes for RL
	7.2 Experimental Evaluation
	7.3 Summary

	8 Probabilistic Recurrent State-Space Model
	8.1 PR-SSM Model Definition
	8.2 PR-SSM Inference
	8.3 Extensions for Large Datasets
	8.4 Experimental Evaluation
	8.5 Summary


	III Model Assumptions in Model-Free Reinforcement Learning
	9 Introduction
	9.1 Outline
	9.2 Discussion on Policy Gradient Methods
	9.3 Related Work

	10 Deep-Deterministic Off-Policy Gradients
	10.1 Preliminaries
	10.2 Off-Policy Evaluation
	10.3 Deterministic Policy Gradients
	10.4 Model-Free Off-Policy Optimization

	11 Experimental Evaluation
	11.1 Surrogate Model
	11.2 Policy Gradient Benchmark
	11.3 Ablation Study

	12 Summary

	Epilogue
	13 Conclusions

	Appendix
	A Appendix: PILCO-PID
	A.1 Transformation of Gaussian Random Variables

	B Appendix: MSGP
	B.1 Model Learning Benchmark
	B.2 Moment Matching

	C Appendix: PR-SSM
	C.1 PR-SSM Model Derivations and Configuration
	C.2 Model Learning Benchmark Details
	C.3 Additional Results

	D Appendix: DD-OPG
	D.1 Proof of Proposition 1
	D.2 Experimental Details

	E Bibliography
	F Publications


