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Abstract

Interfaces play an important role in natural and industrial processes. Classical density func-
tional theory (DFT) has been established as a tool capable of predicting interfacial properties,
but also of providing insight in the structure of fluids at interfaces. Compared to other sta-
tistical mechanical methods, particularly molecular simulation, an efficient implementation
of DFT offers a significant reduction in computation time. This advantage comes with the
cost of an increased modeling effort. In this work, the calculation of interfacial properties
using DFT is discussed and applied to different aspects of interfaces. First, the properties of
highly curved interfaces, as they appear in nucleation processes, are studied. This is done
first by directly calculating the properties of nanodroplets using DFT in spherical coordinates
and afterwards in an expansion around a flat interface. Because for some applications, the
calculation time of DFT is a limiting factor, a new method to predict surface tensions from
equation of state parameters is introduced. This is achieved by using a Taylor expansion of
the full DFT Helmholtz energy functional around a local density. The resulting functional
is identical to that used in density gradient theory except for an explicit, temperature and
density dependent expression for the influence matrix. The method is subsequently used
to examine in detail the parametrization of associating components, particularly water and
alcohols, that pose difficulties with respect to the simultaneous description of bulk phase
equilibria and interfacial properties. A multiobjective optimization approach is used to assess
different models and to quantify their capabilities and limitations. The so obtained water
model presents the foundation for the last segment of this work, that studies the interfa-
cial properties of water/surfactant and water/alkane/surfactant systems. The amphiphilic
surfactant molecules are modeled using a heteronuclear DFT approach that resolves the
distributions of individual segments. The parameters of this group contribution method are
obtained by fitting to properties of small surfactant molecules and can then be used to predict
properties of larger molecules for which less or no experimental data is available. The model
is used to study the adsorption and orientation of surfactant molecules at interfaces and the
corresponding reduction in interfacial tension.
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Zusammenfassung

Grenzflächen spielen eine wichtige Rolle in natürlichen und industriellen Prozessen. Die
klassische Dichtefunktionaltheorie (DFT) hat sich als ein Werkzeug etabliert, das in der
Lage ist, Grenzflächeneigenschaften vorherzusagen, aber auch Einblicke in die Struktur von
Fluiden an Grenzflächen zu geben. Im Vergleich zu anderen Methoden der statistischen
Mechanik, insbesondere der Molekularsimulation, bietet eine effiziente Implementierung
der DFT eine signifikante Reduktion der Rechenzeit. Dieser Vorteil geht jedoch mit einem
erhöhten Modellierungsaufwand einher. In dieser Arbeit wird die Berechnung von Gren-
zflächeneigenschaften mittels DFT diskutiert und auf verschiedene Aspekte von Grenzflächen
angewendet. Zunächst werden die Eigenschaften von stark gekrümmten Grenzflächen, wie sie
bei Nukleationsprozessen auftreten, untersucht. Dies geschieht erst durch direkte Berechnung
der Eigenschaften von Nanotropfen mittels DFT in sphärischen Koordinaten und anschließend
in einer Reihenentwicklung um eine ebene Grenzfläche. Da für einige Anwendungen die
Rechenzeit der DFT ein limitierender Faktor ist, wird eine neue Methode zur Vorhersage von
Oberflächenspannungen aus Zustandsgleichungsparametern eingeführt. Diese beruht auf
einer Taylorentwicklung des vollständigen DFT-Helmholtzenergiefunktionals um eine lokale
Dichte. Das resultierende Funktional ist identisch mit dem in der Dichtegradiententheorie
verwendeten, mit Ausnahme eines expliziten, temperatur- und dichteabhängigen Ausdrucks
für die Einflussmatrix. Die Methode wird anschließend verwendet, um die Parametrisierung
assoziierender Komponenten, insbesondere Wasser und Alkohole, die Schwierigkeiten bei der
gleichzeitigen Beschreibung von Bulk-Phasengleichgewichten und Grenzflächeneigenschaften
bereiten, im Detail zu untersuchen. Ein multikriterieller Optimierungsansatz wird verwendet,
um verschiedene Modelle zu bewerten und ihre Fähigkeiten und Grenzen zu quantifizieren.
Das so erhaltene Wassermodell stellt die Grundlage für den letzten Abschnitt dieser Arbeit
dar, in dem die Grenzflächeneigenschaften von Wasser/Tensid- und Wasser/Alkan/Tensid-
Systemen untersucht werden. Die amphiphilen Tensidmoleküle werden mit einem heteronuk-
learen DFT-Ansatz modelliert, der die Verteilungen der einzelnen Segmente auflöst. Die
Parameter dieser Gruppenbeitragsmethode werden durch Anpassung an Stoffdaten kleiner
Tensidmoleküle bestimmt und können dann zur Vorhersage von Eigenschaften größerer
Moleküle, für die weniger oder keine experimentellen Daten verfügbar sind, verwendet wer-
den. Das Modell wird benutzt, um die Adsorption und Orientierung von Tensidmolekülen an
Grenzflächen und die entsprechende Reduzierung der Grenzflächenspannung zu untersuchen.

viii



Journal Publications

This thesis is based on the following publications:

• Chapter 3: P. Rehner and J. Gross. Surface tension of droplets and Tolman lengths of
real substances and mixtures from density functional theory. The Journal of Chemical
Physics, 148.16:164703, 2018. doi:10.1063/1.5020421

• Chapter 4: P. Rehner, A. Aasen, and Ø. Wilhelmsen. Tolman lengths and rigidity
constants from free-energy functionals—General expressions and comparison of theories.
The Journal of Chemical Physics, 151.24:244710, 2019. doi:10.1063/1.5135288

• Chapter 5: P. Rehner and J. Gross. Predictive density gradient theory based on nonlocal
density functional theory. Physical Review E, 98.6:063312, 2018.
doi:10.1103/PhysRevE.98.063312

• Chapter 6: P. Rehner and J. Gross. Multiobjective Optimization of PCP-SAFT Parameters
for Water and Alcohols Using Surface Tension Data. Journal of Chemical & Engineering
Data, 65.12:5698-5707, 2020. doi:10.1021/acs.jced.0c00684

• Chapter 7: P. Rehner, B. Bursik and J. Gross. Surfactant Modelling Using Classical
Density Functional Theory and a Group Contribution PC-SAFT Approach. Industrial &
Engineering Chemistry Research, 60.19:7111-7123, 2021. doi:10.1021/acs.iecr.1c00169

The chapters 3 to 7 present literal quotes of the published work. Any addition with respect
to the published work is marked. Any deletion is indicated with square brackets as “[. . .]”.
Cross-references between chapters of this thesis are added to the published version of the
text to increase readability. The supporting information to the published work is presented in
the appendix of this thesis.

ix

https://doi.org/10.1063/1.5020421
https://doi.org/10.1063/1.5135288
https://doi.org/10.1103/PhysRevE.98.063312
https://doi.org/10.1021/acs.jced.0c00684
https://doi.org/10.1021/acs.iecr.1c00169




1 Interfaces from a molecular perspective

Whenever two or more phases coexist, they are separated by an interface, that is characterized
by a jump in properties like the density, composition, or, in the case of a curved interface,
pressure. From a macroscopic point of view, the transition appears sharp, however, on a
microscopic scale, all properties change continuously from one phase to the other. The
quantitative framework for the thermodynamic of interfaces was predominantly developed
by J. W. Gibbs1, decades before experimental evidence for the thickness of interfaces was
obtained using optical reflectivity measurements2.

The presence of an interface is associated with an interfacial tension, that can be understood
as a net force acting on the interface in a direction parallel to it. The concept of an interfacial
tension can be used to explain the shape of droplets and bubbles, the rise or fall of liquids in
a capillary tube, or the wetting of a solid surface. While the macroscopic theory of capillarity
is well understood and validated, a strict thermodynamic description leads to subtleties, that
are discussed in the subsequent chapter.

Observing interfaces from a molecular perspective gives insight into phenomena like the
enrichment of light-boiling components in the interface3, the structure and orientation of
molecules in confined media4, and the properties of highly curved interfaces appearing during
nucleation processes5,6. However, with sufficiently powerful models, it is possible to not only
describe these phenomena qualitatively, but also predict macroscopic properties. All methods
to describe interfaces on a molecular level stem from statistical mechanics, which studies
the behavior of many-body systems, and provides strict relations between (microscopic)
ensemble averages and (macroscopic) thermodynamic properties7. A well-established method
to calculate ensemble averages purely based on interactions of the molecules in the system, is
molecular simulation8. However, despite advances in the effectiveness of statistical methods
and in computational power, they are still computationally expensive.

Instead of finding methods to efficiently sample configurations of molecules, the relations
between averaged properties can be used directly to calculate properties of the system.
Classical density functional theory5,7 (DFT) can be understood as a generalization of bulk
thermodynamics to microscopically inhomogeneous systems. Since the properties studied
in DFT are already ensemble averages, no sampling is required and therefore no statistical
uncertainty is present in the results and the computational effort is reduced. It is also
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1 Interfaces from a molecular perspective

much more straightforward to reduce the dimensionality of the system when symmetry can
be exploited. The advantage in computation time comes at the cost of a higher modeling
requirement, because instead of a force field, that describes the interactions of atoms or groups
of atoms, a Helmholtz energy functional is required, that describes all effective interactions
in the fluid phase, analogously to an equation of state for bulk phases.

The key ideas, the major model developments, and the application to interfaces of DFT are
described in chapter 2. The theory is applied to study the interfacial properties of strongly
curved interfaces in chapter 3. In chapter 4, properties of curved interfaces are predicted
based only on properties of the planar interface. Chapter 5 introduces a fast method for
predicting interfacial tensions purely from equation of state parameters. This approach is
used in chapter 6 to improve the parametrization of water and alcohols using experimental
surface tension data as an additional input to the parameter regression. Finally, in chapter 7,
the model is extended to calculate interfacial properties of water/surfactant systems, that
are characterized by a significant enrichment of the amphiphilic surfactant molecules in the
interface and by drastically altered interfacial properties as a result.

References

[1] J. Gibbs. The Collected Works of J. Willard Gibbs, Volume I: Thermodynamics. Longmans, Green
and Co., 1928.
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2 Thermodynamics of inhomogeneous systems

Interfaces between different phases, including the adsorption of fluid phases on walls and in
porous media, and microstructures like colloids or micelles differ in their thermodynamic
properties from bulk phases due to their microscopic inhomogeneity. On a molecular level,
the isotropy of a bulk system is broken by the addition of an external field Vext(r) that acts
on all or some molecules and can be due to the presence of body forces like gravity or an
electric field. Solid matter that interacts with the fluid molecules but is considered with fixed
positions can also be approximated well by a constant external potential. The grand potential
functional Ω of an inhomogeneous system is

Ω=F −
∫

ρ(r) · (µ− Vext(r)) dr (2.1)

with the intrinsic Helmholtz energy F , the density profiles ρ(r) and the chemical potentials
µ. In this chapter bold symbols refer to arrays over all different species in the system. It
can be shown rigorously, that the intrinsic Helmholtz energy F =F (T, [ρ(r)]) is a unique
functional of the density profiles and a function of temperature T . Further, it can be shown,
that the density profile, that minimizes the grand potential functional defined in eq. (2.1)
is indeed the equilibrium density profile of the system and the corresponding value of Ω its
grand canonical energy. These two important findings are known together as Hohenberg-
Kohn-Mermin theorems and were initially developed for quantum systems1,2. Later, the
concept was transferred to statistical mechanics3–5 to form the foundation of methods to
describe inhomogeneous systems known as (classical) density functional theory. The intrinsic
Helmholtz energy functional describes fluid-fluid interactions independent of the external
potential and is therefore key to modeling inhomogeneous systems. For an ideal gas, the
intrinsic Helmholtz energy functional is known exactly from statistical mechanics5, as

βF ig =

∫

ρ(r) ·
�

ln
�

ρ(r)Λ3
�

− 1
�

dr (2.2)

with the overall molecular de Broglie wavelength Λ, that includes the contributions from
intramolecular degrees of freedom and the inverse temperature β = 1

kB T . The multiplication
of two array (bold) properties without the explicit dot product is assumed elementwise and so

3



2 Thermodynamics of inhomogeneous systems

is the logarithm. The bold face 1 is a vector of unities. For a real fluid, the Helmholtz energy
can be split into an ideal gas contribution at the same temperature and density distribution
and a residual contribution F res. An overview over different models is given in section 2.4.
The total Helmholtz energy

F =F +
∫

ρ(r) · Vext(r)dr (2.3)

is the sum of the intrinsic contribution F and the contribution due to the external field Vext

acting on the fluid. In the absence of an external potential, the total Helmholtz energy is
identical to the intrinsic Helmholtz energy. Therefore, no distinction between the two is made
in chapters 3–7.

2.1 Density functional theory

To find the equilibrium density profile of an inhomogeneous system, it is necessary to minimize
the grand potential functional as described above. Mathematically, this is done by solving for
the roots of the functional derivative of the grand potential, as

�

δΩ

δρ(r)

�

T,µ
= 0. (2.4)

Using eq. (2.1), the equation, often referred to as Euler-Lagrange equation, can be written as
�

δF
δρ(r)

�

T
= µ− Vext(r). (2.5)

Aside from the Helmholtz energy and the grand potential, additional thermodynamic proper-
ties are available from DFT. The relations from bulk thermodynamics apply with the exception,
that inhomogeneous systems are not Euler-homogeneous, and thus fundamental thermody-
namic relations for various potentials can not be simply integrated. By comparing the total
differential of F(T, [ρ(r)]) at equilibrium for fixed external potentials

dF =
�

∂F
∂ T

�

ρ(r)
dT +

∫

�

δF
δρ(r)

�

T
︸ ︷︷ ︸

µ−Vext(r)

·δρ(r)dr+

∫

Vext(r) ·δρ(r)dr (2.6)

=
�

∂F
∂ T

�

ρ(r)
dT +µ · dN (2.7)
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2.1 Density functional theory

with its fundamental equation at constant volume dF = −S dT +µ · dN, the entropy S can be
identified as

S = −
�

∂F
∂ T

�

ρ(r)
. (2.8)

It is not a function of the external potential and can be evaluated at constant density. With
the entropy, the internal energy U of the system is also known as

U = F + TS =F − T
�

∂F
∂ T

�

ρ(r)
+

∫

ρ(r) · Vext(r)dr (2.9)

or in the style of the Gibbs-Helmholtz equation as

U =
�

∂ βF
∂ β

�

ρ(r)
+

∫

ρ(r) · Vext(r)dr. (2.10)

From the total differential of Ω(T,µ, [ρ(r)]) at equilibrium for fixed external potentials

dΩ=
�

∂Ω

∂ T

�

µ,ρ(r)
dT +

�

∂Ω

∂ µ

�

T,ρ(r)
· dµ+

∫

�

δΩ

δρ(r)

�

T,µ
︸ ︷︷ ︸

0

·δρ(r)dr (2.11)

=
�

∂F
∂ T

�

ρ(r)
dT −

∫

ρ(r)dr · dµ (2.12)

and comparison with its fundamental equation at constant volume dΩ= −S dT − N · dµ, the
relation

N =

∫

ρ(r)dr= −
�

∂Ω

∂ µ

�

T,ρ(r)
(2.13)

follows, which is again a useful generalization of the partial derivative of Ω with respect to
the chemical potential to inhomogeneous systems.

The enthalpy and Gibbs energy are not properly defined for inhomogeneous systems, because
pressure p and volume V do not appear as Legendre pair in the fundamental equations
anymore. If the system is described using an external potential, the volume that is implicitly
contained in the bounds for the integration over r can be replaced by an integration over the
entire space with the external potential being infinite in non-accessible regions. In situations
in which no external potential is present, there is no physical boundary in the system. To
obtain meaningful results, it is therefore necessary to define domains in a way, that the fluid
is in a bulk state (or close to one) all over their boundaries. This would limit the possible
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2 Thermodynamics of inhomogeneous systems

systems to very few specific cases, however, it is possible to take advantage of the symmetry
of the systems by exploiting translational invariance. The most common example is a planar
interface, where the domain is set up in a way, that the axis perpendicular to the interface is
cut off when the density is reasonably close to each bulk density and the directions parallel
to the interface can be eliminated entirely due to the translational invariance of the system.

2.2 DFT with constraints

The nature of the open systems studied using density functional theory often poses problems
with respect to the uniqueness of the solutions, particularly if no external potentials are present.
A common case is a system that is at a bulk phase equilibrium for the given temperature
and chemical potentials. Because the derivation of the Euler-Lagrange equation only takes
equilibrium into account and not stability, both bulk phases and a planar interface are correct
solutions. The bulk phases have the lower grand potential and thus are the stable solutions,
but the more interesting solution is of course the interface. Further, due to the unboundedness
of the system, the interface can be shifted in its normal direction to generate infinite solutions
to the Euler-Lagrange equation. Similarly, for chemical potentials between the spinodal points,
a stable bulk phase, a metastable bulk phase, and a spherical or cylindrical droplet can all be
solutions to the Euler-Lagrange equation. In all these cases, it is useful to be able to specify
the number of molecules in the system rather than the chemical potentials.

If the system is described using temperature, volume and molecule numbers, the appropriate
thermodynamic potential is the Helmholtz energy F . Therefore, the equilibrium is described
by

F[ρ(r)]
!
=min s.t. N =

∫

ρ(r)dr. (2.14)

This constrained minimization problem is transformed to an unconstrained minimization
problem using the Lagrange multiplier λ, as

L ([ρ(r)],λ) = F +λ ·
�

N −
∫

ρ(r)dr

�

!
=min (2.15)
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2.2 DFT with constraints

The derivatives of the Lagrangian L are expressed using eqs. (2.2) and (2.3) as

δL
δρ(r)

=
δF
δρ(r)

−λ=
1
β

ln
�

ρ(r)Λ3
�

+
δF res

δρ(r)
+ Vext(r)−λ !

= 0 (2.16)

∂L
∂ λ
= N −

∫

ρ(r)dr
!
= 0 (2.17)

Equation (2.16) can be partially solved for the density profile and substituted into eq. (2.17),
giving

N = Λ−3eβλ
∫

e−β
�

δF
δρ(r)+Vext(r)

�

dr. (2.18)

Comparison with the Euler-Lagrange equation shows that at the solution of the constrained
optimization λ is indeed the chemical potential of the system. Therefore, it is appropriate to
refer to z = Λ−3eβλ as the fugacity* of the system6. From eqs. (2.16) and (2.18) the system
of equations

ρ(r) = ze−β
�

δF
δρ(r)+Vext(r)

�

(2.19)

z =
N

∫

e−β
�

δF
δρ(r)+Vext(r)

�

dr
(2.20)

can be derived, that extends the Euler-Lagrange equation by an additional equation for the
fugacities. Equations (2.19) and (2.20) can be combined to one single equation

ρ(r) =
Ne−β

�

δF
δρ(r)+Vext(r)

�

∫

e−β
�

δF
δρ(r)+Vext(r)

�

dr
, (2.21)

however, it can be advantageous to the flexibility with respect to the implementation and the
robustness of the numerical solution procedure to keep them separated.

For multi-component mixtures, the number of molecules of each species might not be the
preferred specification. A better specification can be the total number of molecules N , as it
can be used as an indicator of cluster or droplet sizes, in particular for vapor–liquid systems.
The correct thermodynamic potential can be found by rewriting the fundamental equation
for the Helmholtz energy as

dF = −S dT +µ · dN = −S dT +µ · dN−µ1 dN +µ1 dN = −S dT +∆µ · dN+µ1 dN (2.22)
*The fugacity z as used in a statistical mechanical context is related to the fugacity f used in classical
thermodynamics by z = β f and is also sometimes referred to as activity5.
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2 Thermodynamics of inhomogeneous systems

with µ1 the chemical potential of component 1 (for the further development it is irrelevant
which component is chosen as reference) and∆µ= µ−µ1. A Legendre transform with respect
to the ∆µ− N pair leads to the definition of the semi grand potential Ω∗ with

Ω∗ = F −∆µ · N and dΩ∗ = −S dT + N · d∆µ+µ1 dN . (2.23)

The constrained minimization problem thus becomes

Ω∗[ρ(r)]
!
=min s.t. N =

∫

ρ(r) · 1dr (2.24)

and the unconstrained problem

L ∗([ρ],λ) = Ω∗ +λ
�

N −
∫

ρ(r) · 1dr

�

!
=min (2.25)

The gradients of the new Lagrangian L ∗ using eqs. (2.2), (2.3) and (2.23) are

δL ∗

δρ(r)
=
δΩ∗

δρ(r)
−λ=

1
β

ln
�

ρ(r)Λ3
�

+
δF res

δρ(r)
+ Vext(r)−∆µ−λ !

= 0 (2.26)

∂L ∗

∂ λ
= N −

∫

ρ(r) · 1dr
!
= 0. (2.27)

Combining eqs. (2.26) and (2.27) leads to

N = eβλΛ−3eβ∆µ ·
∫

e−β
�

δF
δρ(r)+Vext(r)

�

dr. (2.28)

Similar to the canonical case before, the fugacity can be identified by comparing the Euler-
Lagrange equation to the constrained minimization which in this case leads to z = eβλΛ−3eβ∆µ.
The system of equations becomes

ρ(r) = ze−β
�

δF
δρ(r)+Vext(r)

�

(2.29)

z =
NΛ−3eβ∆µ

Λ−3eβ∆µ ·
∫

e−β
�

δF
δρ(r)+Vext(r)

�

dr
. (2.30)

It is important to keep in mind, that these expressions do not solve density profiles in a
canonical or semi-grand ensemble. The underlying equation is still the Euler-Lagrange
equation as derived in an open system. It is merely a mathematical modification of the
equations to find the chemical potentials that will result in a system containing the desired
number of molecules. A decomposition of density functional theory to obtain density profiles
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2.3 Thermodynamics of interfaces

in a canonical ensemble was presented by de las Heras and Schmidt7.

It might seem unintuitive to iterate the chemical potential for systems like planar interfaces
in which it can be easily determined from bulk phase equilibrium calculations. However, in
the presence of a planar interface T and ∆µ already specify the phase equilibrium completely.
The remaining degree of freedom N uniquely determines the position of the interface avoiding
the multiplicity of the solutions discussed at the outset of this section. Assuming a solver that
converges independent of initial conditions, a phase equilibrium calculation is not necessary
to calculate the density profile of an interface using the constrained DFT. However, given
the negligible computation time for determining the phase equilibrium compared to the DFT
calculation, it is still advisable to use it to generate good initial values. Another reason for
performing an initial phase equilibrium calculation is that for multi-component mixtures it is
usually desired to specify the composition of one of the phases instead of ∆µ.

2.3 Thermodynamics of interfaces

The systematic thermodynamic description of interfaces was pioneered by Gibbs8. The core
element of the approach is the definition of an abstract model system, that is identical to
the real system with respect to its thermodynamic potential and its characteristic variables.
For macroscopic systems, the distinction between abstract and physical system can appear
meaningless and is sometimes forgotten. However, it is crucial for describing microscopic
systems.

In the Gibbsian approach the model (or Gibbs) system contains two or more bulk phases that
are separated by interfaces. Extensive properties are then written as a sum over contributions
from each phase plus the contribution due to the interfaces. For the simplest case, two bulk
phases α and β and their interface σ, the grand potential Ω, entropy S, total number of
molecules N and the volume V can be written as

Ω= Ωα +Ωβ +Ωσ = −pαV α − pβV β + γA (2.31)

S = Sα + Sβ + Sσ = ŝαV α + ŝβV β + ΓSA (2.32)

N = Nα + Nβ + Nσ = ραV α +ρβV β + ΓA (2.33)

V = V α + V β . (2.34)

A is the interfacial area separating phases α and β . Equations (2.31)–(2.33) define the
interfacial tension γ, entropy ΓS, and adsorption Γ , respectively. Further ŝ indicates a bulk
entropy density. The volume of the interface is by definition negligible, therefore no additional
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2 Thermodynamics of inhomogeneous systems

term is required in eq. (2.34).

In the last section, it was illustrated, how, from a molecular modeling point of view, systems
are characterized using the temperature, chemical potentials, and external potentials. In
the absence of an external potential, the volume of the system is unbounded. Since the
Gibbs system is equated with the physical system, the extensive properties, but also the bulk
phase properties pα/β , ŝα/β and ρα/β are fixed, if the physical system is fixed. Therefore, in
eqs. (2.31)–(2.34) the geometry (V α, V β , A) and the interfacial properties can not be varied
independently. Instead, the interfacial properties are only defined within the Gibbs system
and depend on its chosen geometry.

2.3.1 Capillarity approximation

The observation, that interfacial properties depend on the chosen geometry of a reference
system can seem unintuitive, as the interfacial tension can be reliably measured in experiments
without considering the choice of dividing surface. They are also not in agreement with any
of the commonly given thermodynamic expressions for the interfacial tension5,6,9,10

γ=
�

∂ U
∂ A

�

S,V,N
=
�

∂ H
∂ A

�

S,p,N
=
�

∂ F
∂ A

�

T,V,N
=
�

∂ G
∂ A

�

T,p,N
=
�

∂Ω

∂ A

�

T,V,µ
. (2.35)

The reason for this discrepancy is that the effect of the curvature becomes only significant for
nanoscale systems. "Large" systems (i.e. length scales above ∼ 1µm) can be described without
major losses in precision using the capillarity approximation, that assumes the interfacial
tension is independent of the curvature of the interface. A work γdA is associated with the
change of the interfacial area, that must be included in the fundamental equation of the
homogeneous grand potential, as

dΩ= −S dT − p dV − N · dµ+ γdA. (2.36)

Since T , V and µ are all independent of A for planar interfaces, standard Legendre transforms
can be applied, that result in fundamental equations for all other thermodynamic potentials
and the expressions in eq. (2.35). To devise a model system, in which the interfacial area is
independent of the other fundamental variables requires some sort of movable confinements
as proposed by Rowlinson andWidom9 or Davis10. In the case of a fixed confinement geometry,
and thus also for every point in time during a reversible movement of the confinement, the
equilibrium state is characterized by a minimum in the thermodynamic potential at given
fundamental variables and the interfacial area A becomes an internal degree of freedom like
the density profiles in DFT. Equations (2.35) and (2.36) are thus not general and can only be

10



2.3 Thermodynamics of interfaces

applied and defended for planar or only slightly curved interfaces.

2.3.2 Young-Laplace equation

Going back to the strict application of Gibbs’ interfacial thermodynamics and with the re-
strictions for properly defined systems in mind, there are only three basic geometries, that a
two-phase system in the absence of an external field can reach in equilibrium: a spherical
droplet, a cylindrical tube, and a planar interface. If index α is assigned to the continuous
phase and β is used for the disperse phase, we can define ∆p = pβ − pα and eliminate the
volume from eq. (2.31) by writing

∆Ω= Ω+ pαV = −∆pV β + γA (2.37)

This definition of the property ∆Ω is useful because it eliminates the diverging volume from
all further considerations. Because Ω, pα and V are unambiguously defined by the physical
system, ∆Ω does not depend on the geometry of the Gibbs system. Taking the derivative
of eq. (2.37) with respect to V β while keeping the physical system unaltered results in the
general Young-Laplace equation

∆p = γ
�

∂ A
∂ V β

�

T,µ
+ A

�

∂ γ

∂ V β

�

T,µ
=
γg
R
+
�

∂ γ

∂ R

�

T,µ
(2.38)

with the geometry factor g, which is 0 for a planar interface, 1 for a cylindrical interface and 2

for spherical interface, and the radius R. The derivatives with respect to properties defined in
the Gibbs system are referred to as notional derivatives9. As a reminder, that these derivatives
describe the change of defined properties while keeping the physical system unaltered, they
are displayed using square brackets. Similar expressions can be derived from eqs. (2.32)
and (2.33), as

∆ŝ = −
ΓS g
R
−
�

∂ ΓS
∂ R

�

T,µ
and ∆ρ = −

Γ g
R
−
�

∂ Γ

∂ R

�

T,µ
. (2.39)

The interfacial tension has a unique value only after introducing a dividing surface. That is
reflected in the Young-Laplace equation which contains an additional term for the dependence
of the interfacial tension on this dividing surface. A pragmatic choice for the dividing surface
is the surface of tension with radius Rs, that is defined by

�

∂ γ

∂ R

�

T,µ
= 0 and thus eliminates the

notional derivative from (2.38). Although the resulting expression ∆p = γg
Rs

looks identical to
the Young-Laplace equation based on the capillarity approximation, the interfacial tension in
the Gibbs framework is still a function of the size of the droplet or bubble.
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2 Thermodynamics of inhomogeneous systems

Other choices for the dividing surface are the Koenig surface11 for which Γ · dµ= 0, the total
equimolar surface defined by Γ · 1= 0, or the equimolar surface of component i with Γi = 0.
For a pure component all these surfaces are identical and just referred to as equimolar surface.

2.3.3 Gibbs adsorption equation

As stated above, the interfacial tension depends on the temperature and chemical potentials,
as well as the choice of the dividing surface. To quantify this relationship, the fundamental
equations of the physical system

dΩ= −S dT − N · dµ (2.40)

and the bulk systems α and β

dΩα/β = −Sα/β dT − pα/β dV α/β − Nα/β · dµα/β (2.41)

are substituted in the derivative of eq. (2.31), namely

dΩ= dΩα + dΩβ + γdA+ Adγ. (2.42)

The resulting expression

−AΓS dT − AΓ ·µ= −pα dV α − pβ dV β + γdA+ Adγ (2.43)

can be solved for dγ, as

dγ= −ΓS dT − Γ · dµ+
∆p
A

dV β −
γ

A
dA= −ΓS dT − Γ · dµ+∆p dR−

γg
R

dR (2.44)

or using the general Young-Laplace equation (2.38), as

dγ= −ΓS dT − Γ · dµ+
�

∂ γ

∂ R

�

T,µ
dR. (2.45)

Equation (2.45) is known as Gibbs adsorption equation and can be interpreted as an extension
of the Gibbs-Duhem equation to interfacial systems. For a given dividing surface, γ= γ(T,µ)
and thus the interfacial tension becomes a function of the state variables. This relation is
only well defined if two stable or metastable states α and β can be found at a given T and
µ. In the case that pα(T,µ) = pβ(T,µ), the system is at a bulk phase equilibrium and the
interface is planar. If not, the system contains a metastable continuous phase with a droplet
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2.4 Non-local Helmholtz energy functionals

or a bubble. In this case, it is often more convenient to characterize the system using a bulk
phase equilibrium as reference and a supersaturation, that can be in terms of the temperature,
the pressure, or the the composition of one of the components. In chapter 3 density functional
theory is used to calculate the interfacial tensions of nanodroplets. Thereby it is shown, that
a convenient choice of variables is the temperature, the chemical potentials of a reference
point on the coexistence curve and the curvature 1

R of the droplet. This observation is used in
chapter 4 to develop a model, that allows a precise approximation of the surface tension of
curved interfaces based on properties of the planar interface.

The Gibbs adsorption equation can be used to relate the change of the surface tension of
planar interfaces with respect to the state variables. However, a planar interface only exists
at a phase equilibrium, therefore the variables in eq. (2.45) are connected and one variable
can be eliminated. For a pure component, the dependence of the surface tension on the
temperature is

dγ=

�

Γ
ŝα − ŝβ

ρα −ρβ
− ΓS

�

dT (2.46)

and for a mixture one possible way is to eliminate the temperature to give

dγ=

�

ΓS
ρα −ρβ

ŝα − ŝβ
− Γ

�

· dµ. (2.47)

2.4 Non-local Helmholtz energy functionals

As described above, the key to modeling inhomogeneous systems using density functional
theory is the knowledge about the intrinsic Helmholtz energy functional. Over the last decades,
developing and improving models for the residual Helmholtz energy functional has been an
important research topic in the field of density functional theory. The fluids, that have been
studied range from simple model fluids like hard spheres to multi-component mixtures of
real molecules.

Particularly non-local functionals have proved successful when it comes to modeling structural
properties of fluid. In these approaches, the Helmholtz energy density f is itself a functional
of the density profiles ρ(r). Often the non-locality can be fully included in the calculation of
a set of weighted densities nα with

F =
∫

f ({nα(r)})dr and nα(r) =

∫

ρ(r′) ·ωα(r− r′)dr′. (2.48)
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2 Thermodynamics of inhomogeneous systems

The weighted densities are obtained as convolutions of the density profiles with weight
functions ωα. The Helmholtz energy density is then only a local function of the weighted
densities.

2.4.1 Short-range repulsion

At high densities, the short-range repulsion is largely responsible for the structure of the
fluid. Therefore, many early efforts in DFT modeling were focussing on the description of
hard-sphere systems. Based on the insights from scaled particle theory12 and the Percus-Yevick
integral theory13,14 for bulk systems, Rosenfeld developed his fundamental measure theory
(FMT)15 to model inhomogeneous systems not only of hard spheres, but of hard sphere
mixtures with a remarkable accuracy. As opposed to the weighted density approximation
proposed earlier by Tarazona and Evans16, Rosenfelds FMT uses a number of weighted
densities associated with geometrical measures of the interacting particles. An FMT that
avoids the use of vector weighted densities, but was shown to be equivalent to Rosenfelds
version17 was proposed by Kierlik and Rosinberg18.

The disadvantage of Rosenfelds original FMT is, that for bulk systems it simplifies to the slightly
imprecise Percus-Yevick result19. Therefore, a modification to the theory was proposed20,21

that is based on the more precise Boublík-Mansoori-Carnahan-Starling-Leland22,23 equation
of state and is widely used as a reference in perturbation theories. In the meantime, a number
of extensions to FMT were proposed to deal with freezing transitions24–27 and non-spherical
particles28–30.

2.4.2 Van der Waals attraction

In order to model real fluids, van der Waals forces, like dispersive attraction and polar
interactions, must be included in the Helmholtz energy functional. As perturbation theories
have proven to be successful in the development of equations of state, it is straightforward
to apply the same concept to Helmholtz energy functionals. The pair potential φi j(r12) is
split into a reference contribution φref

i j (r12), usually containing mostly repulsive interactions,
and a perturbation contribution φPT

i j (r12) = φi j(r12)−φref
i j (r12). In this general notation, the

position vector r can also include orientational degrees of freedom of the molecules. With the
introduction of a coupling parameter λ, a continuous transition from the reference fluid to
the target fluid can be described, as

φλ,i j(r12) = φ
ref
i j (r12) +λφ

PT
i j (r12). (2.49)
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For pairwise additive potentials the Helmholtz energy functional is then known exactly, as5,31

F PT =
1
2

∑

i

∑

j

1
∫

0

∫∫

ρi(r1)ρ j(r2)gλ,i j(r1, r2)φ
PT
i j (r12)dr1 dr2 dλ. (2.50)

For inhomogeneous systems, the pair correlation function gλ,i j(r1, r2) is not only a function of
the distance and relative orientation of two molecules, but also of their respective positions
and orientations. Therefore, even a first order perturbation theory becomes difficult to
formulate. A common approximation is the so-called mean-field approach (MFA) in which
gλ,i j(r1, r2)≈ Θ(|r12| − di j) is assumed32. In this case, eq. (2.50) simplifies to

F PT =
1
2

∑

i

∑

j

∫∫

|r12|>di j

ρi(r1)ρ j(r2)φ
PT
i j (r12)dr1 dr2. (2.51)

The approach extends the van der Waals equation to inhomogeneous systems. Similar to the
equation of state, it covers important fluid features like phase equilibria, but can be seen as
at most semiquantitive33.

Instead of basing the expansion on the (long range) pair correlation function, the n-th order
direct correlation function c(n)(r1, r2) can be used. The direct correlation function shows up
naturally as the functional derivatives of the residual Helmholtz energy functional

c(1)(r) = −
δF res

δρ(r)
and c(2)(r1, r2) = −

δ2F res

δρ(r1)δρ(r2)
. (2.52)

For the density profile ρ0(r) and the first order direct correlation function c(1)0 (r) of a reference
system, a coupling parameter λ can be introduced, that transforms the system from the
reference state to the target state as

ρλ(r) = ρ0(r) +λ∆ρ(r) with ∆ρ(r) = ρ(r)−ρ0(r). (2.53)

The functional derivatives in eq. (2.52) can be integrated to give5

F res[ρ] =F res[ρ0]−
∫

c(1)0 (r)·∆ρ(r)dr−

1
∫

0

(1−λ)
∫∫

∆ρᵀ(r1)c
(2)
λ
(r1, r2)∆ρ(r2)dr1 dr2 dλ.

(2.54)

If a homogeneous reference state is chosen one gets c(1)0 = µ
res and c(2)0 = c(2)0 (|r12|). Therefore,

15



2 Thermodynamics of inhomogeneous systems

the first order expansion of eq. (2.54) simplifies to

F res[ρ] =F res[ρ0]−µres ·
∫

∆ρ(r)dr−
1
2

∫∫

∆ρᵀ(r1)c
(2)
0 (|r12|)∆ρ(r2)dr1 dr2. (2.55)

A density functional theory combining this perturbation theory with an analytic direct corre-
lation function from first order mean spherical approximation34 improved the results from
MFA significantly35.

The aforementioned Helmholtz energy functionals require either the pair correlation gλ=0,i j

or the direct correlation c(2)0 of the reference fluid as input. These quantities are rarely known,
particularly for non-spherical molecules. Instead, it can be useful to build the Helmholtz
energy functional based on a bulk equation of state. The most basic approach is a local density
approximation (LDA)

F LDA =

∫

ρ(r) f̃ eos(ρ(r))dr (2.56)

in which ρ(r) is the total density and f̃ eos(ρ(r)) is the Helmholtz energy per molecule from
the equation of state evaluated locally at every point in the system. This functional contains
no information about the structure of the system and can therefore only be applied in weakly
inhomogeneous systems, like interfaces in proximity to critical points. It is entirely unapplica-
ble in systems with strong adsorption where the local densities can be much larger than the
liquid bulk densities and thus the evaluation of the equation of state for these densities is not
possible.

A better description is obtained using a weighted density approximation (WDA)5,31,36–39

FWDA =

∫

ρ(r) f̃ eos(ρ̄(r))dr (2.57)

in which the equation of state is evaluated for the set of weighted densities ρ̄(r) instead. The
weighted densities are obtained by convolving the density profile with a specific normalized
weight function according to eq. (2.48). The WDA can also be used in the form40

FWDA =

∫

ρ̄(r) f̃ eos(ρ̄(r))dr. (2.58)

that has the advantage, that the Helmholtz energy density only depends on the weighted
density and not also directly on the density itself. Since the equation of state is usually
known during the development of the WDA functional, the shape of the weight function is
the critical ingredient. In the earlier publications, the weight function was dependent on

16



2.4 Non-local Helmholtz energy functionals

the density profiles36,37. Later it was shown, that precise results could also be obtained with
simpler and faster models in which the weight function has the shape of the pair potential40,
a Gauss distribution41 or a step function42,43. For a weighted density approximation in
combination with the PCP-SAFT equation of state, a detailed comparison between eqs. (2.57)
and (2.58) showed that the latter, combined with a simple step weight function with a
fitted, but component-independent range describes both fluid-liquid interfaces and adsorption
phenomena well44.

2.4.3 Association and chain formation

Most theories for fluids with highly directional attractive forces are based on Wertheim’s
thermodynamic perturbation theory45–49. In the limit of complete association, the theory
can be used to describe chain formation, which is the basis of the SAFT family of equations
of state50,51. Even though it was an important breakthrough in the development of bulk
equations of state, Wertheim’s theory was initially derived for inhomogeneous systems52.
Therefore, association functionals could be obtained directly from it53,54. The disadvantage of
this approach is that calculating the fraction of non-bonded sites involves the solution of an
integral equation. Faster methods were proposed, that make use of weighted densities from
fundamental measure theory55,56, Tarazona16 weighting57–59, or Gaussian weight functions60.

Analogously to the development of equations of state for non-spherical molecules, Helmholtz
energy functionals for chains were proposed based on Wertheim’s theory by Kierlik and
Rosinberg52,61. Similar to the functional based on fundamental measure theory by Yu and
Wu62, this formulation requires an involved solution procedure with additional degrees of
freedom. An improvement was the development of the iSAFT functional by Tripathi and
Chapman63,64, that is based on the association functional of Segura et al.54 and simplifies to the
SAFT equation of state in the bulk limit. Since the approaches are based on Wertheim’s theory,
they essentially model tangentially bonded spheres and assume that the density profiles of
all segments on one chain is equal. This approximation becomes poor if the molecules are
heterogeneous, like alcohols or carboxylic acids. Therefore, the iSAFT approach was extended
by Jain et al.65 to model molecules by calculating the density profiles of individual segments.
This framework combined with the group contribution PC-SAFT equation of state66 is used in
chapter 7 to model the interfacial properties of non-ionic surfactants.
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2.5 Density gradient theory

Before the foundations of density functional theory were developed, van der Waals formulated
a theory to describe interfaces with continuous density profiles67. The theory was later refined
by Cahn and Hilliard68 and is now often referred to as density gradient or square gradient
theory (DGT). The Helmholtz energy functional can be written as

F =
∫

�

f eos +
1
2
∇ρᵀC∇ρ)

�

dr (2.59)

with the local Helmholtz energy density as calculated from a bulk equation of state f eos and
the influence matrix C . Without the second term, the functional would simplify to a local
density approximation. The influence of the interface on the Helmholtz energy is obtained
through the density gradients ∇ρ.

In comparison to non-local density functional theory, DGT is not able to model the structure of
fluids and is thus not suited for applications like adsorption in porous media. This restricts the
usage primarily to vapor-liquid and liquid-liquid interfaces. Also, while non-local Helmholtz
energy functionals have been proposed, that are consistent with bulk equations of state and
require no additional parameters, the calculation of interfacial tension requires knowledge
about the values of the influence matrix. For pure components, the influence parameter
C(T,ρ) is usually treated as a constant, which is fitted to experimental surface tension data or
correlated with equation of state parameters69–75. For mixtures, a simple geometric combining
rule has proven successful for many systems76.

The simple mathematical form of eq. (2.59) also leads to shorter computation times compared
to DFT. This advantage is particularly noticeable when planar interfaces of pure components
are considered. In that case, the surface tension can be computed explicitly from

γ=

ρL
∫

ρV

Æ

2C ( f eos −ρµ+ p)dρ. (2.60)

For mixtures, the density profile needs to be calculated iteratively and thus the performance
advantage is diminished.

Chapter 5 introduces an expression for the influence matrix based on non-local density
functional theory, that shares the parameters with the underlying equation of state and thus
makes the DGT approach predictive. The predictiveness and the fast evaluation of eq. (2.60)
makes it possible to include surface tension data in the parameter estimation of the equation
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of state. This is carried out using the PCP-SAFT equation of state for water and alcohols in
chapter 6.
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3 Surface tension of droplets and Tolman lenghts of real

substances and mixtures from density functional theory

The content of this chapter is reproduced from

P. Rehner, J. Gross. The Journal of Chemical Physics 148.16 (2018): 164703,

with the permission of AIP Publishing. Additions or deletions compared to the published work
are marked with angular brackets.

The curvature dependence of interfacial properties has been discussed extensively over the last
decades. After Tolman published his work on the effect of droplet size on surface tension, where he
introduced the interfacial property now known as Tolman length, several studies were performed
with varying results. In recent years, however, some consensus has been reached about the
sign and magnitude of the Tolman length of simple model fluids. In this work, we reexamine
Tolman’s equation and how it relates the Tolman length to the surface tension and we apply
non-local classical density functional theory (DFT) based on the PC-SAFT equation of state to
characterize the curvature dependence of the surface tension of real fluids, as well as mixtures.
In order to obtain a simple expression for the surface tension, we use a first order expansion of
the Tolman length as a function of droplet radius Rs, as δ(Rs) = δ0 +δ1/Rs, and subsequently
expand Tolman’s integral equation for the surface tension, whereby a second order expansion
is found to give excellent agreement with the DFT result. The radius-dependence of the surface
tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The
infinite diameter Tolman length is approximately δ0 = −0.38Å at low temperatures. For more
strongly non-spherical substances and for temperatures approaching the critical point, however,
the infinite diameter Tolman lengths δ0 turn positive. For mixtures, even if they contain similar
molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative
change of the curvature behavior of the surface tension of the mixture.
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3 Surface tension of droplets and Tolman lengths from density functional theory

3.1 Introduction

In 1949 Tolman1 studied the dependence of the surface tension on the size of a droplet. He
related the surface tension to what is now known as Tolman length δ, the distance between
the equimolar radius and the radius of the surface of tension. He predicted this distance
δ to be a small positive value and assumed, that it is independent of droplet size. From
this assumption, he predicted a radius-dependent surface tension γ(R), that is monotonically
decreasing from the surface tension of a planar interface γ∞ with decreasing radius R, as

γ(R) =
γ∞

1+ 2δ
R

. (3.1)

Since then many studies were performed on the issue with different results. For an in-depth
review of different studies on the surface properties of droplets we refer to the study of
Malijevský and Jackson2.

It is important to note, however, that after a period of discourse about the magnitude and
sign of the Tolman length, some form of consensus has been reached. Calculations of the
Tolman length by means of molecular dynamics (MD) simulation tend to result in a small
positive value3–6. However, with a closer look, the reported Tolman lengths decrease with
the radius of the simulated droplets. Simulation studies that consider the radius-dependence
of the Tolman length6,7, find a Tolman length for a Lennard-Jones fluid, extrapolated to
infinitely large drops, of about −0.1 in reduced variables. This behavior, a monotonic increase
of the Tolman length with curvature, has now been the result of many different studies using
molecular simulation8–12, density functional theory (DFT)13–18 or a combination thereof19,20.

Experiments in nucleation processes, the most relevant application for the surface tension
of nanodroplets, also show, that the Tolman equation in the form of eq. (3.1) is insufficient.
Bruot and Caupin21 propose a linear behavior of the Tolman length with curvature and give a
slope and planar limit based on experimental data.

A very effective way of predicting the curvature dependence of surface tension follows the cur-
vature expansion proposed by Helfrich22. In this framework, the surface tension is expanded
in terms of the total curvature J and the Gaussian curvature K of the interface, as

γ(J , K) = γ∞ −δγ∞J +
k
2

J2 + k̃K + . . . . (3.2)

A method of calculating the rigidity constants k and k̃, as well as the Tolman length δ, has
been proposed by Blokhuis and Bedeaux23 and has since been used to predict these properties
for the Lennard-Jones fluid24,25.
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3.2 Surface tension of curved interfaces

The vast majority of studies about the size-dependence of the surface tension has been per-
formed on simple model fluids like Lennard-Jones fluids. Recently, real fluids have become
more of a focus with water being the most prominent, due to its ubiquity in technical applica-
tions26,27. To calculate the properties of small droplets of real fluids, an equation of state is
required, that extrapolates well in the metastable region of the phase diagram. PC-SAFT28

suits this requirement since it’s based on molecular properties of the fluid. Furthermore, the
non-local extension of PC-SAFT, that can be used in density functional theory, has already
been applied successfully to predict surface tensions of planar interfaces29–31 and confined
fluids32

In this work, we want to examine the relation between the Tolman length and the surface
tension of a spherical droplet, so that we can generalize it to mixtures. Thermodynamic
properties of droplets are calculated using density functional theory based on the PC-SAFT
equation of state, of which a short reference is given in section 3.3. In the study of nanodroplets,
the size of the particles appears as an additional degree of freedom besides the temperature
and the composition. To be able to calculate plenty of state points, convolution integrals
are implemented in Fourier space and a quickly converging solver is used. We validate this
method in a study on sphericle particles and extend the field to real fluids consisting of
non-spherical particles as well as mixtures thereof.

3.2 Surface tension of curved interfaces

In this section we review the thermodynamic approach to the surface tension of droplets. Fur-
ther, we reexamine the derivation of Tolman’s equation, point out the important assumptions
made therein, and reformulate it to describe mixtures.

3.2.1 Gibbs’ dividing surface

We consider a volume V of an inhomogeneous fluid with defined chemical potentials µ =
µ1, ...µK of all K components at temperature T . The system has a field of local densities
ρ(r) = ρ1(r), ...ρK(r) of all components and a total local density ρ(r) =

∑K
i ρi(r). In the

following we consider a liquid droplet in a surrounding vapor phase, but the principles are
not limited to this case.

Following Gibbs’ concept of a dividing surface33 p. 219 ff, we construct a hypothetical system,
that is equivalent in N , V and µ, containing a homogeneous liquid phase (index L) and a
homogeneous vapor phase (index V ) separated by an infinitely thin surface phase (index σ).
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3 Surface tension of droplets and Tolman lengths from density functional theory

Any extensive property X of the system can then be described as the sum over the contributions
of each phase, as

X = X L + X V + Xσ. (3.3)

By definition the volume of the surface phase Vσ = 0. Writing eq. (3.3) for the total number
of molecules

N = N L + N V + Nσ = ρLV L +ρV V V + Nσ (3.4)

leads to the definition of the equimolar radius: a sphere with radius Re for which, if used
as dividing surface, the interfacial adsorption Nσ = 0. The densities ρL(T,µ) and ρV (T,µ)
appearing in this equation are the bulk phase densities for defined conditions T and µ. One
can furthermore define

∆N = N −ρV V =∆ρ V L(Re) =∆ρ
4
3
πR3

e (3.5)

or

Re =
�

3∆N
4π∆ρ

�
1
3

(3.6)

with∆ρ = ρL−ρV as the difference between the densities of the bulk phases. Writing eq. (3.3)
for the grand potential of the system leads to

Ω= ΩL +ΩV +Ωσ = −pLV L − pV V V +Ωσ. (3.7)

Analogous to ∆N we can define an excess of grand potential due to the presence of the liquid
phase, as

∆Ω= Ω+ pV V = −∆pV L +Ωσ. (3.8)

For given chemical potentials µ and temperature T , the droplet contribution to the grand
potential ∆Ω and the pressure difference ∆p = pL − pV are determined (for a given topology
and assuming the volume is large enough to contain the entire droplet). By defining the
radius of the surface of tension Rs and the corresponding surface tension γ with the set of
equations

∆p =
2γ
Rs

and Ωσ = γ4πR2
s , (3.9)
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3.2 Surface tension of curved interfaces

one can eliminate Ωσ and V L = 4
3πR3

s in eq. (3.8) and the system of equations can be solved
for the surface tension

γ=

�

3∆Ω∆p2

16π

�
1
3

(3.10)

and the surface of tension

Rs =
�

3∆Ω
2π∆p

�
1
3

. (3.11)

Therefore, with the definition of the surface of tension Rs, the surface tension γ is also uniquely
determined for given µ and T and so is the Tolman length, that is defined as δ = Re − Rs.
The same concept can be applied to cylindrical interfaces. The surface tension and radius of
surface of tension in this case are

γcyl =
�

∆Ω∆p
πz

�
1
2

and Rs,cyl =
�

∆Ω

πz∆p

�
1
2

(3.12)

with z as the axial dimension of the cylindrical interface.

3.2.2 Derivation of Tolman’s equation

We show a derivation of Tolman’s equation, that is solely based on the definition of the radius
of the surface of tension and the corresponding surface tension and in this context extend the
derivation to describe mixtures. We start by rewriting eq. (3.7) as

∆Ω= −∆p
4
3
πR3

s + γ4πR2
s (3.13)

and taking the derivative

d∆Ω= −
4
3
πR3

s d∆p−∆p4πR2
s dRs + γ8πRs dRs + 4πR2

s dγ. (3.14)

The two terms in dRs cancel due to eq. (3.9). The left hand side can be replaced by the total
differential of ∆Ω. Note that, as opposed to the total grand potential of the system Ω, this
expression does not depend on the volume of the system, provided the system is large enough
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3 Surface tension of droplets and Tolman lengths from density functional theory

to contain the entire droplet. Therefore we find

(d∆Ω)T =
∑

i

�

∂∆Ω

∂ µi

�

T,µ j 6=i

dµi =
∑

i

�

∂
�

Ω+ pV V
�

∂ µi

�

T,V,µ j 6=i

dµi

=
∑

i

�

−Ni +ρ
V
i V
�

dµi = −∆N · dµ. (3.15)

It is common to examine the size dependence of properties of the droplet at constant temper-
ature. For mixtures, additional constraints are required. Intuitively it may be reasonable to
require a constant composition of the vapor phase. However, in order to obtain equations for
mixtures in close analogy to pure components, we rewrite eq. (3.15), such that it contains
the total molecule number ∆N of the droplet by adding 0=

∑

i∆Ni dµn−∆N dµn to the right
hand side, to give

(d∆Ω)T = −
∑

i

∆Ni dµi+
∑

i

∆Ni dµn−∆N dµn = −
∑

i

∆Ni d (µi −µn)
︸ ︷︷ ︸

≡∆µi

−∆N dµn. (3.16)

With the same concept, we express the Gibbs-Duhem relations of the two bulk phases for
constant temperature as

∑

i

∆ρi d∆µi +∆ρ dµn = d∆p. (3.17)

We thus study the curvature dependence of surface tensions of mixtures in a semi grand
ensemble where the temperature T and the difference between the chemical potentials ∆µ
(with respect to the n-th component) are kept constant. Since by definition Nσ(Re) = 0, we
also find that

∑

i

Nσ
i (Re)dµi =

∑

i

Nσ
i (Re)d∆µi + Nσ(Re)dµn = 0. (3.18)

The condition
∑

i Nσ
i (Rk)dµi = 0 defines the Koenig surface Rk for a given choice of path

through the metastable region34. We thus identify the equimolar surface of the total particle
number as the Koenig surface corresponding to a path with constant ∆µ. Using eqs. (3.16)
and (3.17) in eq. (3.14) and replacing ∆N with eq. (3.5) leads to

−
1
3

�

R3
e − R3

s

�

d∆p = R2
s dγ (3.19)
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3.2 Surface tension of curved interfaces

or, in terms of the Tolman length δ = Re − Rs,

−δ
�

1+
δ

Rs
+
δ2

3R2
s

�

d∆p = dγ. (3.20)

The pressure difference can be replaced with the derivative of the Young-Laplace equation
(3.9)

d∆p =
2
Rs

dγ−
2γ
R2

s

dRs (3.21)

and the result can be integrated from infinite radius to get the equation derived by Tolman1,
as

ln
γ

γ∞
=

Rs
∫

∞

2δ
R2

s

�

1+ δ
Rs
+ δ2

3R2
s

�

1+ 2δ
Rs

�

1+ δ
Rs
+ δ2

3R2
s

� dRs. (3.22)

For completeness, we also present the result for a cylindrical interface, that can be derived
analogously, as

ln
γcyl

γ∞
=

Rs
∫

∞

δ
R2

s

�

1+ δ
2Rs

�

1+ δ
Rs

�

1+ δ
2Rs

� dRs. (3.23)

In both expressions, γ∞ is the surface tension of a planar interface. So far, no additional
statement about the curvature dependence of the surface tension has been made. Without
profound knowledge of the Tolman length, eq. (3.22) is of no more use than eq. (3.10).
Tolman assumed that δ is small and doesn’t change significantly with the size of the droplet.
By neglecting the terms δ

Rs
and δ2

3R2
s
in the brackets and treating δ as constant, the integral can

be solved leading to

γ

γ∞
=

1

1+ 2δ
Rs

(3.24)

what is now commonly referred to as Tolman’s equation. Often, due to the approximations
used in its derivation, the equation is instead given as a series in 1

Rs
neglecting terms above

the linear one, as

γ

γ∞
= 1−

2δ
Rs
+O

�

�

1
Rs

�2
�

. (3.25)
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3 Surface tension of droplets and Tolman lengths from density functional theory

While all subsequent studies suggest that the Tolman length δ is in fact small, Tolman’s
second assumption that δ does not depend on the size of the droplet, isn’t supported by recent
simulation results nor DFT predictions13,19. We use DFT to evaluate the Tolman length over a
wide range of radii and from there reassess whether the integral form of Tolman’s equation
(3.22) can still be used for describing the curvature dependence of surface tension.

3.3 Density Functional Theory

In an open, isothermal and isochoric system, a stable equilibrium state is characterized
by a minimum in the grand potential Ω with respect to all allowable variations. For an
inhomogeneous system, with density profiles of all components ρ(r) as internal degrees of
freedom, this equilibrium condition results in vanishing functional derivatives of the grand
potential, according to

�

δΩ

δρi(r)

�

T,V,µ

= 0. (3.26)

The grand potential can be expressed as a Legendre transform of the Helmholtz energy
F[ρ(r)], as

Ω= F[ρ(r)]−µ · N = F[ρ(r)]−
∫

µ ·ρ(r)dr. (3.27)

Using eq. (3.26), the density profile at equilibrium can thus be obtained by solving

δF[ρ(r)]
δρi(r)

= µi. (3.28)

The Helmholtz energy functional can be split into an ideal gas contribution, which is known
from statistical mechanics, and a residual part, that accounts for intermolecular potentials, as

F[ρ(r)] = F ig[ρ(r)] + F res[ρ(r)] (3.29)

with

βF ig[ρ(r)] =

∫

∑

i

ρi(r)
�

ln
�

ρiΛ
3
i

�

− 1
�

dr (3.30)

where β = 1
kT is the inverse temperature. The thermal wavelength Λi contains density-

independent intramolecular degrees of freedom. It is only a function of temperature and
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3.3 Density Functional Theory

therefore has no influence on the equilibrium density profile. For the residual contribution
F res[ρ(r)] we use functionals based on the PC-SAFT equation of state28,32. Therefore, the
Helmholtz energy functional is split into contributions of specific interactions, as

F res[ρ(r)] = Fhs[ρ(r)] + Fdisp[ρ(r)] + F chain[ρ(r)]. (3.31)

In our case we are interested in modeling non-polar but non-spherical molecules, so the three
contributions to the residual Helmholtz energy are hard-spheres (hs), dispersive attraction
(disp) and chain formation (chain). The pure component parameters of the PC-SAFT model
characterizing substance i, are the segment size parameter σii, the depth of the potential
well εii, and the number of spherical segments per molecule mi.

Hard-sphere contribution

Fundamental Measure Theory (FMT) goes back to Rosenfeld35 and provides a description of
inhomogeneous hard-sphere mixtures. In FMT the Helmholtz energy

βFhs[ρ(r)] =

∫

Φ({nα})dr (3.32)

is given as the integral over a reduced Helmholtz energy density Φ({nα}), that is a function of
the weighted densities nα. The weighted densities are obtained by convolving the density
profile with a weight function ωi

α
, as

nα =
∑

i

mi

∫

ρi(r
′)ωi

α
(r− r′)dr′. (3.33)

Here the segment length mi is included to extend the theory, originally derived for spherical flu-
ids, to homosegmented chains. The original FMT by Rosenfeld35 uses four scalar weight func-
tions ωi

3(r) = Θ(di/2− |r|), ωi
2(r) = δ(di/2− |r|), ωi

1(r) =ω
i
2(r)/2πdi and ωi

0(r) =ω
i
2(r)/πd2

i ,
as well as two vector weight functions ~ωi

2(r) =
r
|r|δ(di/2− |r|) and ~ωi

1(r) = ~ω
i
2(r)/2πdi. The

temperature-dependent effective hard-sphere diameter di accounts for the steep but non-
infinite repulsion of van der Waals intermolecular potentials28. The weight functions ωi

α

thus limit the range of the integrals in eq. (3.33) to rather short range. For a homogeneous
fluid the original FMT functional simplifies to the Percus-Yevick compressibility equation
of state36, which is known to overestimate the pressure of hard-sphere systems at higher
densities. To alleviate this problem, Roth et al.37 and Yu and Wu38 independently derived
a modified version of FMT that simplifies to the more accurate MCSL39 equation of state,
consistent with the hard-sphere term used in PC-SAFT28. The functional form of the reduced
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3 Surface tension of droplets and Tolman lengths from density functional theory

Helmholtz energy density in this version is

Φ= −n0 ln(1− n3) +
n1n2 − ~n1 · ~n2

1− n3
+ (n3

2 − 3n2~n2 · ~n2)
n3 + (1− n3)2 ln(1− n3)

36πn2
3(1− n3)2

. (3.34)

To calculate the hard-sphere contribution to the functional derivative of the Helmholtz energy,
the partial derivatives (see ref.29) are convolved with their respective weight function

δβFhs

δρi(r)
= mi

3
∑

α=0

∫

∂Φ

∂ nα
(r′)ωi

α
(r− r′)dr′ −mi

2
∑

α=1

∫

∂Φ

∂ ~nα
(r′) · ~ωi

α
(r− r′)dr′. (3.35)

The negative sign in front of the partial derivatives with respect to the vector weighted
densities arises from the odd parity of the vector weight functions40.

Chain contribution

A functional for chain formation in the framework of SAFT equations of state was developed
by Tripathi and Chapman41,42. It is based on Wertheim’s first order perturbation theory and
reads

βF chain[ρ(r)] =
∑

i

(mi − 1)

∫

ρi(r)
�

ln
�

ρiΛ
3
i

�

− 1
�

dr

−
∑

i

(mi − 1)

∫

ρi(r)
�

ln
�

ydd
ii ({ρ̄k})λi(r)

�

− 1
�

dr. (3.36)

The perturbation theory of Wertheim uses an ideal gas fluid of unconnected spherical segments
as reference. This form of the chain term is rewritten such that it can be combined with
the ideal gas term for molecules, according to eq. (3.30). The first part of eq. (3.36) thus
describes an ideal gas, where each component is split into its mi segments. The second term
then adds the Helmholtz energy contribution of chain formation for each of the mi − 1 bonds
on the component. The cavity correlation function at contact ydd

ii (ρ̄) is approximated by the
bulk radial distribution function evaluated for weighted densities ρ̄ 41,43. The BMCSL theory
results in

ydd
ii (ρ̄) =

1
1− ζ3

+
1.5diζ2

(1− ζ3)2
+

0.5(diζ2)2

(1− ζ3)3
(3.37)

with the mixture segment densities

ζn =
π

6

∑

i

ρ̄imid
n
i , n= 2, 3. (3.38)
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3.3 Density Functional Theory

As weighted densities ρ̄, the average density in the interpenetration volume of two segments
is used. Similar to the weighted densities in FMT the weighted density of component i can be
written as a convolution integral

ρ̄i(r) =

∫

ρi(r
′)ωi

chain(r− r′)dr′ (3.39)

with the weight function ωi
chain(r) =

3
4πd3

i
Θ(di − |r|). In eq. (3.36), the cavity correlation

function ydd
ii is weighted with the contact density λi, that is defined, similarly to ρ̄i, as the

average density in a spherical surface

λi(r) =

∫

ρi(r
′)ωi

contact(r− r′)dr′ (3.40)

with ωi
contact(r) =

1
4πd2

i
δ(di − |r|). The chain contribution to the functional derivative of the

Helmholtz energy is30

δβF chain

δρi(r)
= (mi − 1)

�

ln

�

ρi(r)
ydd

ii (r)λi(r)

�

+ 1−
∫

ρi(r′)
λi(r′)

ωi
contact(r− r′)dr′

�

−
∫

�

∑

j

(m j − 1)ρ j(r
′)
∂ ln(ydd

j j )

∂ ρ̄i
(r′)

�

ωi
chain(r− r′)dr′. (3.41)

Dispersive attraction

Recently Sauer and Gross32 proposed a functional for dispersive attraction based on the
PC-SAFT equation of state, with equivalent quantitative results compared to earlier mod-
els29,30, but with significantly lower computational cost. It is based on the weighted density
approximation similar to the ones used in FMT or the chain term. The Helmholtz energy
functional is

βFdisp[ρ(r)] =

∫

ρ̂(r)ãdisp(ρ̂)dr (3.42)

with the weighted density

ρ̂(r) =
∑

i

ρ̂i(r) =
∑

i

∫

ρi(r
′)ωi

disp(r− r′)dr′ (3.43)
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3 Surface tension of droplets and Tolman lengths from density functional theory

and ωi
disp(r) =

Θ(ψdi−|r|)
4
3π(ψdi)3

. The functional derivative of the Helmholtz energy contribution
simplifies to a convolution of the chemical potential, as

δβFdisp

δρi(r)
=

∫

βµ
disp
i (r

′)ωi
disp(r− r′)dr′. (3.44)

For detailed expressions of the reduced Helmholtz energy ãdisp and the chemical potential
µ

disp
i of the PC-SAFT model, we refer to the primary literature28.

3.4 Implementation

A stability analysis of a nanoscopic droplet reveals, that while being in equilibrium according
to eq. (3.26), the droplet is not stable in an open system. Instead, it appears as a maximum
or a saddle point on a free energy surface44–46. The stable equilbrium state, that the system
would move towards should be a homogeneous liquid phase. To obtain a stable solution,
the density profiles of droplets are solved in a canonical ensemble2,47. For mixtures, we also
prefer to specify the total number of molecules N in the system, because N is a good measure
for the size of the droplet and we derived Tolman’s equation for mixtures by introducing a
path along which the differences in chemical potentials ∆µi = µi −µn are fixed. To find the
appropriate thermodynamic potential, the total differential of the grand potential is rewritten
as

dΩ= −S dT − p dV − N · dµ+
n
∑

i=1

Ni dµn − N dµn (3.45)

= −S dT − p dV − N · d(µ−µn
︸ ︷︷ ︸

≡∆µ

)− N dµn (3.46)

and a Legendre transform

Ω∗(T, V, N ,∆µ) = Ω+µnN = F −∆µ · N (3.47)

on the variable µn is applied. The equilibrium condition in this semi grand potential is

δΩ∗

δρi

�

�

�

�

T,V,N ,∆µ

= 0 s.t. N =
∑

i

∫

ρi dr. (3.48)
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3.5 Results and discussion

This condition leads to a set of equations that can be solved to determine the density profiles
ρ(r) of all species in the mixture, as

βµi = ln

 

Neβ∆µi

�

∑

i

eβ∆µi

∫

e−
δβFres

δρi dr

�−1!

(3.49)

and

ρi = eβµi−
δβFres

δρi . (3.50)

These equations use N and ∆µi as input parameters. To be able to specify the equimolar
radius Re, instead of the molecule number, the total liquid and vapor densities ρL(T,µ) and
ρV (T,µ) are calculated in every iteration from the corresponding bulk equation of state. Then
from eq. (3.5) the total number of molecules is available via

N =
�

ρL −ρV
� 4

3
πR3

e +ρ
V V. (3.51)

The equations are solved using an Anderson-mixing scheme48,49. The convolution integrals
appearing in non-local Helmholtz energy functionals are solved using the Fourier transform.
The 3D Fourier transform can be simplified to a sine transform (see section 3.B.1) allowing
for an efficient and robust solution procedure. In this work we target a wide range of droplet
sizes. For rather large droplets the center of the droplet reaches flat (bulk-like) density
profiles. We then solve the DFT only in the range Re−

L
2 ≤ r ≤ Re+

L
2 . The liquid in the interior

of the droplet is well described by a bulk liquid at the defined temperature and chemical
potentials. This approach increases the numerical efficiency and allows to calculate arbitrarily
large droplets. For the convolution integrals we make use of the projection-slice theorem as
described in section 3.B.2.

3.5 Results and discussion

3.5.1 Pure fluids

We start with studying the Tolman length of a fluid consisting of spherical particles (mi = 1).
The PC-SAFT model is not exactly a model for Lennard-Jones fluids, but approximates the
properties of Lennard-Jones fluids rather well32. We use the same dimensionless variables,
that are commonly used in the study of Lennard-Jones systems r∗ = r/σii, T ∗ = kT/εii,
γ∗ = γσ2

ii/εii and δ∗ = δ/σii.
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Figure 3.1: The radius dependent dimensionless Tolman length δ∗ as a function of the inverse
radius 1/R∗s for different temperatures (m= 1).

After calculating the density profile according to section 3.4, the surface tension and Tolman
length are directly available from eqs. (3.10) and (3.11). Figure 3.1 shows the Tolman length
δ∗ as a function of the inverse radius of surface of tension 1/R∗s . Different temperatures are
considered, ranging from the temperature at the triple point T ∗Tr ≈ 0.48 to close to the critical
temperature T ∗c ≈ 1.28.

For all temperatures, the Tolman length increases significantly with the curvature of the
droplet. The curve can be described as almost linear with a slightly positive curvature for
very small droplets. These findings are similar to the results from van der Waals capillarity
theory obtained by Baidakov and Boltachev50. The slope of the curves depends strongly on
temperature, whereas the limit for infinitely large drops is fairly constant at limRs→∞δ

∗(Rs)≈
−0.1. The results show, that Tolman’s approximation of a constant δ is not applicable. Using
the ansatz δ(Rs) = δ0+

δ1
Rs

instead of a constant δ in eq. (3.22) leads to an extended version of
the Tolman equation. In section 3.A we present an exact solution to the integral (eq. (3.A.8))
as well as a series approximation (eq. (3.A.11)) thereof.

Calculating the Tolman length is usually motivated by the question how the surface tension
is curvature dependent. In figure 3.2 we therefore analyze the DFT results at one specific
temperature and compare the results with other model predictions. The parameters δ0 and
δ1 are obtained by adjusting eq. (3.A.8) to the DFT results. Let’s go from left to right in
figure 3.2. The diagram shows that beyond a certain curvature, the second order term in the
expansion of the surface tension becomes dominant. The surface tension no longer increases,
as is predicted by the common version of Tolman’s equations, but it even decreases for small
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droplets. This course of δ(Rs) is the reason why early simulation studies seemed contradictory
to the theory, showing a monotonous decrease in surface tension instead of the increase that
was expected at the time.
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3 Surface tension of droplets and Tolman lengths from density functional theory

In figure 3.2 we used the full analytical solution of the Tolman integral. This equation requires
the roots of a sixth order polynomial and is cumbersome in use. In figure 3.3 the relative
errors between various simplifications to this expression and DFT calculations are compared.
There are no detectable improvements gained by keeping terms above the quadratic in the
series expansion. A way to reduce the error drastically, is to use a fourth order polynomial
with four instead of two parameters. However, the low relative error of less than 0.05% of all
variants using two parameters does not justify the introduction of two additional parameters.
We therefore propose the series expansion truncated after the quadratic term as a simple and
surprisingly accurate model, as

γ

γ∞
= 1−

2δ0

Rs
+

3δ2
0 −δ1

R2
s

. (3.52)

This expression has a structure closely related to the curvature expansion of Helfrich22 written
for spherical surfaces

γ= γ∞ −
2δ0γ∞

Rs
+

2k+ k̃
R2

s

+O
�

�

1
Rs

�3
�

(3.53)

with the bending rigidity k and the rigidity constant associated with Gaussian curvature k̃.
The work of Helfrich provides some physical interpretation to our parameter δ1. Comparing
eq. (3.52) to eq. (3.53), we obtain the parameter k̂ = γ∞(3δ2

0 −δ1) = 2k+ k̃ allowing us to
compare the results with previous work of Blokhuis and van Giessen6,8,24 and of Wilhelmsen
et al.25 who used curvature expansion to directly calculate the Tolman length and rigidity
constants of Lennard-Jones fluids. Instead of directly calculating these properties we have
to estimate them by calculating the surface tension for different drop sizes and adjusting
eq. (3.52) to the results. The Tolman length and rigidity constant for a Lennard-Jones like fluid
are compared in figure 3.4. The assessment made in figure 3.4 requires awareness of the fact
that, first, the PC-SAFT equation of state gives rather good results for non-truncated LJ fluids28,
but is not specifically a model for heterogeneous LJ fluids. Secondly, data of Wilhelmsen et
al.25 and Blokhuis and van Giessen24 are for LJ fluids with shifted and truncated potentials.
With these remarks, we consider our predictions in rather good agreement to the results of
the previous studies.

The Helmholtz energy functionals for the PC-SAFT model allow to extend the study to non-
spherical molecules. Following the same concepts used for Lennard-Jones like fluids, we
calculate the Tolman length and the rigidity constant for various alkanes. The results are
shown in figure 3.5. The qualitative behavior of the rigidity constant is similar for all chain
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Figure 3.5: Tolman length and rigidity constant as a function of temperature for different
alkanes.

lengths with a small decrease followed by an increase towards zero for temperatures close
to the critical temperature. The infinite-radius Tolman length δ0 on the other hand changes
its behavior. For small molecules, it decreases close to the critical point, whereas for longer
chains it increases. For lower temperatures, the Tolman length δ0 is almost independent of
chain length at a value of about −0.1 times a segment size parameter, which corresponds to a
value of about −0.38Å.

3.5.2 Mixtures

The concept of dimensionless variables becomes difficult to maintain for mixtures due to
the number of parameters involved. We proceed with non-dimensionless quantities. The
parameters are obtained by fitting the same model used for pure components to results for the
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Figure 3.6: Surface tension of the planar interface, Tolman length and rigidity constant for a
binary mixture of ethane and n-butane at different subcritical temperatures.

surface tension obtained from DFT along a line of constant ∆µi. Results for a binary mixture
of ethane and butane for three different subcritical temperatures are shown in figure 3.6. As
expected, the surface tension of a planar interface γ∞ behaves almost ideally in this mixture.
The Tolman length on the other hand has a peak close to the equimolar mixture in the liquid
phase. The relative increase with respect to the value of the pure components is close to
200 % at this peak and the sign is positive on a large concentration interval. The positive
sign of the Tolman length means, that for these concentrations, the surface tension drops
monotonously with curvature, without an initial increase. A similar concentration dependence
of the Tolman length was calculated in the framework of van der Waals gradient theory for an
oxygen-nitrogen mixture by Baidakov and Anbaeva51 and for a methane-nitrogen mixture by
Baidakov and Khotienkova52. The rigidity constant shows a less non-ideal behavior and stays
close to the values of the pure components. Our results suggest that a simple mixing rule
based on pure substance values of the surface tension, can not be expected to be a successful
approach to mixtures.
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3.6 Conclusion

This study proposes a simple expansion for the Tolman length for calculating the curvature-
dependence of the surface tension. We take Tolman’s equation in integral form with the
expansion δ = δ0 +δ1/Rs and subsequently expand the equation for the surface tension in
curvature. A second order expansion is in excellent agreement with the DFT result and there
is no substantial increase in quality obtained by including higher order terms. The model
obtained is qualitatively identical to that of Helfrich22,24,25 allowing to simply convert the
model parameters.

We study the curvature dependence of a model fluid and of real pure substances, as well as
mixtures using DFT based on the PC-SAFT equation of state. For a simple spherically symmetric
model-fluid of Lennard-Jones type, we find a value for the Tolman length for infinite-radius
droplets of about −0.1 times the molecular size parameter σ for low temperatures (which is
in good agreement to previous studies2) and a steep decrease close to the critical point. The
rigidity constant is negative and has a minimum close to a reduced temperature of T ∗ = 1.
This leads to a non-monotonic surface tension with increasing curvature: With increasing
curvature the surface tension first increases, reaches a maximum and decrease for high
curvatures, i.e. for small droplets.

We regard n-alkanes from methane to icosane as non-spherical substances. For all alkanes,
the infinite-radius Tolman length δ0 has values of about −0.38Å for low temperatures. For
more strongly non-spherical substances and for temperatures approaching the critical point,
however, the values of δ0 turn positive. The behavior of the rigidity parameter does not
change qualitatively from methane to icosane.

Little work has previously been done for mixtures. We consider a binary mixture of mildly
shape-asymmetric fluids. The binary mixture of ethane and n-butane shows strong non-linear
behavior of the Tolman length with varying composition. For a range of composition, around
an equimolar mixture, the Tolman length is substantially higher (and reaches a positive sign)
compared to both pure substances. In that range of composition, the surface tension decreases
monotonically with decreasing droplet size.

43



3 Surface tension of droplets and Tolman lengths from density functional theory

Appendix

3.A Derivation of the extended Tolman equation

Using the ansatz δ(Rs) = δ0 +
δ1
Rs

in eq. (3.22) simplifies to

ln
γ

γ∞
=

Rs
∫

∞

�

1
Rs
−

R5
s

p(Rs)

�

dRs (3.A.1)

with the polynomial

p(Rs) = R6
s + 2δ0R5

s + 2(δ2
0 +δ1)R

4
s +

2
3
(δ3

0 + 6δ0δ1)R
3
s

+ 2(δ2
0δ1 + δ

2
1)R

2
s + 2δ0δ

2
1Rs +

2
3
δ3

1 (3.A.2)

in the denominator. This polynomial can be expressed using its complex roots Ri, as

p(Rs) =
6
∏

i=1

(Rs − Ri) with p(Ri) = 0. (3.A.3)

Next, we perform an expansion into partial fractions

R5
s

p(Rs)
=

6
∑

i=1

κi

Rs − Ri

⇒ R5
s =

6
∑

i=1

κi

∏

j 6=i

(Rs − R j). (3.A.4)

The coefficients κi are linked to the derivative of p(Rs)

p′(Rs) =
6
∑

i=1

∏

j 6=i

(Rs − R j)

⇒ p′(Ri) =
∏

j 6=i

(Ri − R j). (3.A.5)

Evaluating eq. (3.A.4) at the roots and using eq. (3.A.5) results in an expression for κi, as

κi =
R5

i

p′(Ri)
(3.A.6)
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with

p′(Ri) = 6R5
i +10δ0R4

i +8(δ2
0+δ1)R

3
i +2(δ3

0+6δ0δ1)R
2
i +4(δ2

0δ1+δ
2
1)Ri +2δ0δ

2
1. (3.A.7)

Using the expansion in partial fractions, the integral in eq. (3.A.1) can be evaluated, as

ln
γ

γ∞
=

Rs
∫

∞

�

1
Rs
−

6
∑

i=1

κi

Rs − Ri

�

dRs ⇒ γ(Rs) =
γ∞

∏6
i=1(1−

Ri
Rs
)κi

. (3.A.8)

Equation (3.A.8) is the exact solution of Tolman’s integral equation assuming linear behavior
of the Tolman length. However, the need to find the complex roots of a sixth order polynomial
makes it unpractical to use. Instead we want to express the surface tension as a series
expansion in 1

Rs
. We start with the expansion of the integral in eq. (3.A.1)

ln
γ

γ∞
= −

2δ0

Rs
+
δ2

0 −δ1

R2
s

−
2δ3

0 − 12δ0δ1

9R3
s

−
2δ4

0 + 3δ2
0δ1 − 3δ2

1

6R4
s

+O
�

�

1
Rs

�5
�

(3.A.9)

and use this result in the series expansion of the exponential function

γ

γ∞
= eln γ
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∞
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1
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�

ln
γ
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(3.A.10)

to get to the solution
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. (3.A.11)

3.B DFT in Spherical Coordinates

In the framework of FMT and weighted density approximations, three kinds of convolution
integrals have to be evaluated: The convolution of a scalar function f with a scalar weight
function ω, as

f (r)⊗ω(r) =
∫

f (r′)ω(r− r′)dr′, (3.B.1)

the convolution of a scalar function f and a vector weight function ~ω, with

f (r)⊗ ~ω(r) =
∫

f (r′) ~ω(r− r′)dr′ (3.B.2)
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3 Surface tension of droplets and Tolman lengths from density functional theory

and the convolution of a vector function ~f and a vector weight function ~ω, as

~f (r)⊗ ~ω(r) =
∫

~f (r′) · ~ω(r− r′)dr′. (3.B.3)

All of these convolution integrals can be solved efficiently using the convolution theorem of
the Fourier transform

∫

f (r′)ω(r− r)dr′ =F−1(F ( f )F (ω)) (3.B.4)

with the 3D Fourier transform F and its inverse, that are defined by

F ( f ) =
∫

f (r)e−2πik·r dr and F−1( f ) =

∫

f (k)e2πik·r dk. (3.B.5)

The weight functions are generally spherically symmetric by nature and in case of a droplet
all thermodynamic properties are also spherically symmetric. In this case f (r) = f (r) and
~f (r) = fr(r)~er with the unit vector in radial direction ~er and the calculation of the 3D Fourier
transform and thus the convolution can be simplified.

3.B.1 Sine Transform

In the Fourier transform of a spherically symmetric function, the integration over the angles
can be performed analytically and the transform simplifies based on the sine transform S ( f ),
as

F ( f (r)) =
2
kr

∞
∫

r=0

f (r)r sin(2πkr r)dr =
1
kr
S ( f (r)r). (3.B.6)

The simplification of the inverse Fourier transform results in F−1( f ) = 1
rS

−1( f (kr)kr). With
this result and the analytic Fourier transform of the weight function ω̃(kr) =F (ω(r)), the
convolution can be written as

f (r)⊗ω(r) =
1
r
S −1 (S ( f (r)r)ω̃(kr)) . (3.B.7)
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The Fourier transform of a vector ~f (r) = fr(r)~er results in a combination of sine and cosine
transforms, with

F ( ~f (r)) =
i~ekr

2πk2
r

(2πkrC ( fr(r)r)−S ( fr(r))) (3.B.8)

and

F−1( ~f (kr)) =
−i~er

2πr2

�

2πrC −1( fkr
(kr)kr)−S −1( fkr

(kr))
�

. (3.B.9)

To avoid the use of complex numbers in this context, the vector weight functions can be
rewritten as ~ω(r) = −∇ω∗(r), the Fourier transform of which is ~̃ω(kr) = −2πikr~ekr

ω̃∗(kr).
Then, convolutions involving vector weight functions can also be simplified to

f (r)⊗ ~ω(r) = ~er

�

1
r2
S −1(S ( f (r)r)ω̃∗(kr))−

1
r
C −1(S ( f (r)r)2πkrω̃

∗(kr))
�

(3.B.10)

and

~f (r)⊗ ~ω(r) =
1
r
S −1 (C ( fr(r)r)2πkrω̃

∗(kr)−S ( fr(r))ω̃
∗(kr)) . (3.B.11)

3.B.2 Projection on z-Axis

Roth40 mentions that the convolution in spherical coordinates can be performed using a 1D
Fourier transform. We want to generalize this concept and use it to calculate density profiles
of spherical interfaces. With this method it is possible to use any interval on r as the system
under observation. Thus, for larger droplets, only the density profile in the interfacial region
of the droplet is calculated with DFT, while the interior of the drop is calculated using the
corresponding bulk equation of state. This procedure allows to study arbitrarily large droplets.

The method is based on the projection-slice theorem which states, that a slice through a
function in Fourier space is equal to the Fourier transform of a projection of the function in
real space, as

F ( f )(kx = 0, ky = 0, kz) =Fz(P ( f ))(kz). (3.B.12)

The projection of a spherically symmetric function f (r) is

P ( f ) = 2π

∞
∫

|z|

f (r)r dr (3.B.13)
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and for a vector function ~f (r) = fr(r)~er , it is

P ( ~f ) = 2πz~ez

∞
∫

|z|

fr(r)dr. (3.B.14)

The respective inverse transforms of functions F(z) and ~F(z) = Fz(z)~ez are
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and P −1(~F) = −
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2π
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�
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�

�

z=r

. (3.B.15)

Using these transformations in conjunction with the convolution theorem (3.B.4) leads to the
convolution, that Roth40 mentions

f (r)⊗ω(r) =
1
r

∫

f (|z′|)|z′|P (ω)(r − z′)dz′ (3.B.16)

and that can be expressed in Fourier space as

f (r)⊗ω(r) =
1
r
F−1

z (Fz( f (|z|)z)ω̃(|kz|))|z=r . (3.B.17)

Using ~ω(r) = −∇ω∗(r) again leads to similar expressions involving vector weight functions,
with

f (r)⊗ ~ω(r) = ~er
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and

~f (r)⊗ ~ω(r) = −
1
r
F−1

z (Fz( fr(|z|)sign(z))ω̃∗(|kz|) +Fz( fr(|z|)|z|)2πikzω̃
∗(|kz|)) |z=r . (3.B.19)
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4 Tolman lengths and rigidity constants from free-energy

functionals – General expressions and comparison of theories

The content of this chapter is reproduced from

P. Rehner, A. Aasen, and Ø. Wilhelmsen. The Journal of Chemical Physics 151.24
(2019): 244710,

with the permission of AIP Publishing. Additions or deletions compared to the published work
are marked with angular brackets.

The leading order terms in a curvature expansion of the surface tension, the Tolman length (first
order), and rigidities (second order) have been shown to play an important role in the description
of nucleation processes. This work presents general and rigorous expressions to compute these
quantities for any non-local density functional theory (DFT). The expressions hold for pure fluids
and mixtures, and reduce to the known expressions from density gradient theory (DGT). The
framework is applied to a Helmholtz energy functional based on the perturbed chain polar statis-
tical associating fluid theory (PCP-SAFT) and is used for an extensive investigation of curvature
corrections for pure fluids and mixtures. Predictions from the full DFT are compared to two
simpler theories: predictive density gradient theory (pDGT), that has a density and temperature
dependent influence matrix derived from DFT, and DGT, where the influence parameter reproduces
the surface tension as predicted from DFT. All models are based on the same equation of state
and predict similar Tolman lengths and spherical rigidities for small molecules, but the deviations
between DFT and DGT increase with chain length for the alkanes. For all components except
water, we find that DGT underpredicts the value of the Tolman length, but overpredicts the value
of the spherical rigidity. An important basis for the calculation is an accurate prediction of the
planar surface tension. Therefore, further work is required to accurately extract Tolman lengths
and rigidities of alkanols, because DFT with PCP-SAFT does not accurately predict surface tensions
of these fluids.
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4.1 Introduction

The dependence of the surface tension on the interfacial curvature has been discussed intensely
over the last decades. One of the motivations for studying the subject was the discrepancies
between experiments and theoretical predictions for nucleation rates in condensation and
evaporation1,2. In classical nucleation theory, the nucleation rate depends exponentially on the
formation energy of the nano-sized critical cluster. Therefore, it has been hypothesized that
omitting the curvature dependence of the surface tension is the cause of the large discrepancies
between theory and experiments2–5. The curvature dependence of the surface tension also
has implications for other important examples such as the properties of biomembranes6, and
wetting at the nanoscale7.

The first quantitative description was proposed by Tolman8. By introducing the distance
between the equimolar radius Re and the radius of the surface of tension Rs, referred to as
δT (Rs), he proposed the expression

σ(Rs) =
σ0

1+ 2δT (Rs)
Rs

, (4.1)

for the curvature dependent surface tension σ(Rs) in relation to the surface tension of a planar
interface σ0. In eq. (4.1), the curvature dependent Tolman length, δT (Rs) is often replaced by
the Tolman length of the planar interface δ. In later works4,9–11 [see also chapter 3], it was
shown that with this approximation, eq. (4.1) is incapable of representing the surface tension
of small droplets. Instead, the second-order expression by Helfrich6 has been established
as the preferred model to capture the curvature dependence of the surface tension. For an
arbitrarily curved interface, it reads

σ(J , K) = σ0 −δσ0J +
k
2

J2 + k̄K + . . . , (4.2)

where δ is the the Tolman length, k is the bending rigidity and k̄ is the Gaussian rigidity. The
interface is characterized locally by the total curvature J = 1/R1 + 1/R2 and the Gaussian
curvature K = 1/ (R1R2), with R1 and R2 being the two principal radii. The expansion truncated
at second order is known as the Helfrich expansion, and the coefficients σ0, δ, k and k̄ are
referred to as Helfrich coefficients. For spherical (index s) and cylindrical (index c) geometries,
eq. (4.2) simplifies to

σs(R) = σ0 −
2δσ0

R
+

2k+ k̄
R2

+ . . . (4.3)
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and

σc(R) = σ0 −
δσ0

R
+

k
2R2
+ . . . (4.4)

where R is an arbitrarily chosen dividing surface. The Tolman length for the vapor–liquid
interface has been the subject of many discussions and controversies, in particular its sign,
since different routes to obtain it have yielded different results. Due to its simplicity, most
works in the literature have considered the truncated and shifted Lennard–Jones (LJ) fluid.
Theoretical calculations based on free-energy functionals of the density profile, such as density
gradient theory (DGT) and non-local density functional theory (DFT), have consistently given
zero or negative values12–15. However, positive values have been reported from Monte Carlo
and molecular dynamics (MD) simulations that compute the Tolman length from the pressure
tensor (see16–18 and references therein). MD simulations by van Giessen and Blokhuis, and
also by Block et al. have only recently resulted in negative Tolman lengths around −0.1 in
units of the LJ diameter14,19,20. Curvature corrections for water have also been investigated
intensely4,7,21–25, also with conflicting results on the sign of the Tolman length. Still, DGT
and DFT have been shown to agree quantitatively with the predictions of recent simulation
studies for both the LJ fluid9,19,26 and water4,22–24, giving credibility to DFT and DGT as
methodologies to calculate curvature corrections.

Free-energy functionals allow direct calculation of the curvature dependence of the surface
tension. [As shown in chapter 3], the unknown coefficients in eqs. (4.3) and (4.4) can be
estimated by fitting a second order polynomial of the surface tension as a function of the
curvature, 1/R. Since the surface tension of large droplets and bubbles is very similar to σ0,
coefficients computed in this manner have limited accuracy. A more accurate and rigorous
route is to directly calculate the derivatives of the surface tension with respect to curvature
from the free-energy functional27. This involves solving for the first-order curvature expansion
of the density profiles. The methodology was first presented by Blokhuis and Bedeaux for pure
fluids described by DGT28, and later extended to mixtures described by DGT by Aasen et al11.
Estimates of the Helfrich coefficients have also been computed from various other free-energy
functionals26,29,30. Still, a robust method for calculating these coefficients rigorously from
arbitrary free-energy functionals and a systematic comparison of the values derived from
different functionals for a range of fluids is missing.

This work presents general expressions to compute the Tolman length and rigidity constants
for arbitrary free-energy functionals, that hold for pure fluids and mixtures. These expressions
are next applied to predict the Helfrich coefficients to state-of-the-art accuracy for a range
of pure fluids and mixtures, using a non-local DFT based on the perturbed-chain polar
statistical associating fluid theory (PCP-SAFT) equation of state. We present the first systematic

55



4 Tolman lengths and rigidity constants from free-energy functionals

comparison of these coefficients to predictions from DGT and predictive density gradient
theory (pDGT[, see chapter 5]). The comparison yields insight into the limits of using gradient
theories for the description of curved interfaces. We will also shed light on the impact of the
underlying equation of state in DGT and non-local DFT.

In section 4.2 we develop the general expressions for the Helfrich coefficients, valid for any
free-energy functional. In sections 4.3.1 and 4.3.2, coefficients for a range of pure fluids and
mixtures are compared. In section 4.4, we offer some concluding remarks.

4.2 Theory

In this section we first review the general model-independent relations appearing in the
curvature expansion. Subsequently we present the new expressions for the Helfrich coefficients
for non-local DFT and shed light on how to treat the density dependence of the influence
parameter in predictive density gradient theory. In all expressions, we consider isothermal
conditions and paths. Bold symbols denote vector properties with respect to the components
in the system.

4.2.1 General relations for curvature expansion

The aim of a curvature expansion is to determine thermodynamic properties of a curved
interface by Taylor expanding around the planar interface. Therefore, every property X that
depends on the curvature is written as

X = X0 +
X1

R
+

X2

R2
+ . . . , (4.5)

where the coefficients X i do not depend on the curvature. To be able to describe an arbitrarily
shaped interface using the Helfrich expansion, the curvature expansion has to be performed
in spherical and cylindrical coordinates. In the following, we derive expressions that are valid
for both geometries, captured by the geometry factor g, which is 0 for a planar interface, 1
for a cylindrical interface and 2 for a spherical interface. Before presenting model-specific
expressions, we derive general relations between the different properties of curved interfaces.
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Gibbs–Duhem equation

The bulk pressures in the liquid (L) and the vapor (V ) phase are related to the chemical
potential µ and the density ρ of the system via the Gibbs-Duhem equation

ρV · dµ= dpV and ρ L · dµ= dpL. (4.6)

Thus, the pressure difference∆p = pL−pV is linked to the difference in densities∆ρ = ρ L−ρV

via ∆ρ · dµ= d∆p. Using eq. (4.5) for all properties leads to the expression
�

∆ρ0 +
∆ρ1

R
+ . . .

�

·
�

µ1 +
2µ2

R
+ . . .

�

d
�

1
R

�

=
�

∆p1 +
2∆p2

R
+ . . .

�

d
�

1
R

�

. (4.7)

Collecting terms with the same power of R results in the relations

∆p1 =∆ρ0 ·µ1 and ∆p2 =∆ρ0 ·µ2 +
1
2
∆ρ1 ·µ1. (4.8)

Adsorption

The adsorption, Γ refers to the amount of particles accumulated at the interface per surface
area, and is defined as

Γ =

∫

ρE(r)
� r

R

�g
dr, (4.9)

where we introduce the excess density

ρE(r) = ρ(r)−ρ LΘ(R− r)−ρVΘ(r − R), (4.10)

with the Heaviside step function Θ(r). By changing the integration variable to z = r − R and
again collecting terms of the same order in curvature, the following expansion coefficients

Γ 0 =

∫

ρE
0 (z)dz and Γ 1 =

∫

�

ρE
1 (z) + gzρE

0 (z)
�

dz (4.11)

are obtained.
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Gibbs adsorption equation

The Gibbs adsorption equation

dσ = −Γ · dµ+
�

∂ σ

∂ R

�

T,µ
dR (4.12)

links the adsorption to the surface tension σ. As we have not yet made a choice of dividing
surface, the notional derivative,

�

∂ σ
∂ R

�

T,µ
appears in the equation. The notional derivative

describes the change in surface tension due to a change in the dividing surface, while keeping
the physical system unaltered. The notional derivative also enters the general form of the
Young-Laplace equation, as

∆p =
gσ
R
+
�

∂ σ

∂ R

�

T,µ
. (4.13)

Substituting the notional derivative from eq. (4.13) into eq. (4.12) and expanding the resulting
expression gives a general relation between the coefficients of the pressure difference and the
surface tension, as

∆p0 = 0, ∆p1 = gσ0 and ∆p2 = −Γ 0 ·µ1 + (g − 1)σ1. (4.14)

Density profiles

The density profile of an open system is obtained as a stationary point of the grand potential
functional Ω. Using a Legendre transform, the equilibrium condition can be formulated in
terms of the functional derivative of the Helmholtz energy, F instead

δΩ

δρ(r)

�

�

�

�

T,V,µ

= 0 ⇔
δF
δρ(r)

�

�

�

�

T,V

= µ. (4.15)

A curvature expansion of eq. (4.15) gives

µ0 =
�

δF
δρ(r)

�

0
and µ1 =

∫

�

δ2F
δρ(r)δρ(r′)

�

0
ρ1(r

′)dr′. (4.16)

The density profile of the planar interface and the first-order term in the curvature expansion
of the density can be obtained by solving the above equations. It is not obvious from the
general formulation how they should be solved. However, one important property can be
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derived. For free-energy functionals F , the expression
∫

�

δ2F
δρ(r)δρ(r′)

�

0
∇ρ0(r

′)dr′ =∇
�

δF
δρ(r)

�

0
= 0, (4.17)

vanishes at equilibrium. It follows, that if ρ1(r) is a solution of eq. (4.16), ρ1(r) + ε∇ρ0(r) is
also a solution for any value of ε.

Surface tension

The surface tension is defined as the excess grand potential per surface area, σ = ΩE

A . Using
the geometry factor g, it can be expressed as

σ =

∫

�

f −ρ ·µ+ pLV
�

� r
R

�g
dr (4.18)

with the Helmholtz energy density, f and the pressure of the bulk phases, pLV = pLΘ(r − R) +
pVΘ(R− r), which is related to the adsorption via the Gibbs-Duhem equation. After a few
simplification steps and identifying the excess grand potential density of the planar interface,
∆ω0 = f0 −ρ0 ·µ0 + p0, the resulting expressions for the coefficients are

σ0 =

∫

∆ω0 dz (4.19)

σ1 =

∫

( f1 −ρ1 ·µ0) dz + g

∫

∆ω0z dz −µ1 · Γ 0 (4.20)

σ2 =

∫

�

f2 −ρ2 ·µ0 −
1
2
ρ1 ·µ1

�

dz + g

∫

( f1 −ρ1 ·µ0) z dz +
g(g − 1)

2

∫

∆ω0z2 dz

−
g
2
µ1 ·

∫

ρE
0 z dz −µ2 · Γ 0 −

1
2
µ1 · Γ 1 (4.21)

It is tempting to neglect the first term in both the first and second order expressions for the
surface tension as we find

∫

( f1 −ρ1 ·µ0) dr=

∫∫ �

�

δ f (r)
δρ(r′)

�

0
·ρ1(r

′)−
�

δ f (r′)
δρ(r)

�

0
·ρ1(r)

�

drdr′ (4.22)

which is strictly zero. However, in eq. (4.20), the integration is over z. We have to take into
account that the integration takes place in a curvilinear coordinate system, even if one is
interested in the limit of zero curvature.
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Path through the metastable region

Although the norms of the vectors µ1 and µ2 are fixed by eqs. (4.8) and (4.14), their di-
rections represent degrees of freedom. Every point in the metastable region is defined by
its temperature and chemical potentials. However, there is an infinite number of possible
starting points on the phase envelope and paths towards the metastable point, which are each
equipped with their own expansion coefficients. In a previous study11, it was shown that a
straight path (i.e. µ2∝ µ1) where the composition of the liquid phase x L is kept constant
in the first order term gives low errors in the expansion. To obtain the coefficients of the
chemical potential for this choice of path, the first order coefficient of the total liquid density
is calculated as

ρL
1 =

gσ0

(x L)T
�

µL
ρ

�

0
∆ρ0

, (4.23)

from which the chemical potential,

µ1 = ρ
L
1

�

µL
ρ

�

0
x L (4.24)

and the vapor partial densities,

ρV
1 =

�

µV
ρ

�−1

0
µ1 (4.25)

follow. The second order coefficient for the chemical potential can be derived from eqs. (4.8)
and (4.14) as

µ2 =
(g − 1)σ1 −

�

Γ 0 +
1
2∆ρ1

�

·µ1

gσ0
µ1. (4.26)

Choice of dividing surface

The equations derived so far are valid for any choice of dividing surface. However, to be able
to evaluate the expressions, a choice has to be made. The first option is the surface of tension
Rs, for which the notional derivative of the surface tension vanishes. Thus, the usual form of
the Young Laplace equation ∆p = gσ

Rs
is valid and the Gibbs adsorption equation simplifies to

σ1 = −µ1 · Γ 0 and σ2 = −µ2 · Γ 0 −
1
2
µ1 · Γ 1. (4.27)
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The second important option is the equimolar dividing surface or its generalization to multi-
component mixtures, the Koenig surface31 Rk, which is defined by Γ · dµ= 0. As opposed to
the surface of tension which is a state function, the Koenig surface is path dependent. For
specific applications, one choice might be superior. However, it is important to keep in mind
that neither the planar surface tension nor the Tolman length depend on the dividing surface
and there are simple model-independent relations for the rigidity constants for different
dividing surfaces11.

In the density profile of the planar interface, the dividing surface is fixed by finding any
density profile that solves the zeroth order Euler–Lagrange equation and then shifting the
z-axis by the position of the Koenig surface zk0 or the surface of tension zs0. The values for
the two surfaces are given by

zk0 =
µ1 · Γ 0

gσ0
and zs0 =

σ1 +µ1 · Γ 0

gσ0
. (4.28)

From these relations, we obtain an expression for the Tolman length

zk0 − zs0 =
−σ1

gσ0
= δ. (4.29)

With a similar procedure, the correct solution of the first order Euler–Lagrange equation is
found by first finding any solution ρ̃1(z) and then obtaining the actual solution as ρ1(z) =
ρ̃1(z) + ερ′0(z) with

ε =
2µ2 · Γ 0 +µ1 · Γ̃ 1

gσ0
(4.30)

for the Koenig surface and

ε =
σ2 + 2µ2 · Γ 0 +µ1 · Γ̃ 1

gσ0
(4.31)

for the surface of tension.

4.2.2 Non-local density functional theory

In non-local density functional theory (DFT), the Helmholtz energy F[ρ(r)] =
∫

f [ρ(r)]dr

and the Helmholtz energy density f [ρ(r)] are functionals of the density profiles ρ(r) of
all components. In most DFT approaches, the Helmholtz energy density can be written
as a function of any number of weighted densities nα. This includes functionals based on
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fundamental measure theory (FMT)32, local and weighted density approximations33 and
mean-field theory26. The weighted densities are obtained by convolving the density profile
with corresponding weight functions, ωα in three dimensions

nα(r) = ρ
3D
⊗ ωα =

∫

ρ(r− r′) ·ωα(r′)dr′, (4.32)

where the sum in the inner product is over all components. To calculate the expansion coeffi-
cients, the curvature expansion of the convolution integral is required. This is straightforward
for a spherical geometry, but significantly more tedious in cylindrical coordinates, as shown in
section 4.A. The zeroth and first order expressions for the weighted densities can be written
using one dimensional convolution integrals,

nα0 = ρ0 ⊗ωα and nα1 = ρ1 ⊗ωα −
g
2
ρ0 ⊗ (zωα) . (4.33)

For the curvature expansion, the first and second order coefficients of the Helmholtz energy
density

f1 =
∑

α

fα0nα1 and f2 =
1
2

∑

α

fα1nα1 +
∑

α

fα0nα2 (4.34)

are required. Here,

fα0 =
�

∂ f
∂ nα

�

0

and fαβ0 =

�

∂ 2 f
∂ nα∂ nβ

�

0

(4.35)

is shorthand for the zeroth order first and second partial derivatives of the Helmholtz energy
density and fα1 =

∑

β fαβ0nβ1 is the corresponding first order expression. The same concept
as for the weighted densities is used to obtain the first and second order expressions for the
Euler–Lagrange equation, giving

µ0 =
�

δF
δρ

�

0
=
∑

α

fα0 ⊗ωα and (4.36)

µ1 =
�

δF
δρ

�

1
=
∑

α

�

fα1 ⊗ωα −
g
2

fα0 ⊗ (zωα)
�

. (4.37)

Using eqs. (4.33), (4.34) and (4.36), the first term in the general expression (4.20) for σ1

can be simplified as
∫

( f1 −ρ1 ·µ0) dz =

∫

∑

α

�

fα0 (ρ1 ⊗ωα)−
g
2

fα0 (ρ0 ⊗ (zωα))−ρ1 ( fα0 ⊗ωα)
�

dz
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= −
g
2

∫

∑

α

fα0 (ρ0 ⊗ (zωα)) dz.

Through its definition σ1 = −gδσ0, the Tolman length follows as

δσ0 =
1
2

∫

∑

α

fα0 (ρ0 ⊗ (zωα)) dz −
∫

∆ω0z dz +
1
2
µs

1 · Γ 0. (4.38)

For different Helmholtz energy functionals, the Tolman length depends only on the planar
density profile26,28. In a similar albeit more elaborate fashion, the rigidity constants are
obtained as

k = −
1
4

∫

∑

α

fα0 (ρ0 ⊗ ω̃α) dz −
1
4

∫

∑

α

�

ρs
1 · ( fα0 ⊗ (zωα)) + f s

α1 (ρ0 ⊗ (zωα))
�

dz

−
1
2
µs

1 ·
∫

ρE
0 z dz − 2µc

2 · Γ 0 −
1
4
µs

1 · Γ
s
1 (4.39)

and

k̄ =

∫

∆ω0z2 dz+
1
2

∫

∑

α

fα0 (ρ0 ⊗ ω̃α) dz−
∫

∑

α

fα0 (ρ0 ⊗ (zωα)) z dz+
�

4µc
2 −µ

s
2

�

·Γ 0. (4.40)

The full derivation of these expressions is shown in [appendix A.3]. The gaussian rigidity,
k̄ also does not depend on ρ1, but the bending rigidity, k does. To calculate all Helfrich
coefficients, it is therefore necessary to calculate ρ0 and ρ1 from the zeroth and first order
expressions of the Euler–Lagrange equation. It is, however, only necessary to calculate ρ1 for
one geometry, as all first order expressions are proportional to the geometry factor g and
therefore ρs

1 = 2ρc
1, i.e. the value for a spherical geometry is twice the value for a cylindrical

geometry. Further, if ρ1 is a solution to eq. (4.37), ρ1 + ερ′0 is also a solution for any value
of ε. A thorough investigation of eq. (4.39) reveals, however, that k does not depend on the
value of ε. Therefore, it is sufficient to find any solution of eq. (4.37) to compute the Helfrich
coefficients.

Although different numerical methods have been applied34, the standard method in DFT is to
solve for the density profiles by use of fixed point iteration. To calculate the planar density
profile, the functional derivative in eq. (4.36) is split into an ideal gas contribution and a
residual, resulting in the iteration

ρ0 = exp

�

1
kB T

�

µ0 −
�

δF res

δρ

�

0

��

. (4.41)
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The same concept can be used to solve for the curvature correction, giving

ρ1 =
ρ0

kB T

�

µ1 −
�

δF res

δρ

�

1

�

. (4.42)

The convergence of the iteration can be sped up significantly by using an Anderson mixing
scheme34,35.

4.2.3 Predictive density gradient theory

In predictive density gradient theory (pDGT[, see chapter 5]), the Helmholtz energy functional
has the form

F[ρ(r)] =

∫

�

f eos(ρ) +
1
2
∇ρT C(ρ)∇ρ

�

. (4.43)

The difference compared to standard density or square gradient theory comes from the
density and temperature dependence of the influence matrix, C . Both the influence matrix
and the bulk Helmholtz energy density, f eos can be related to the Helmholtz energy density
in non-local DFT as

f eos(ρ) = f ({nb
α
}) and C(ρ) = −

∑

αβ

fαβ({nb
α
})
�

ω0
α
ω2
β

T +ω2
α
ω0
β

T
�

(4.44)

with the moments of the weight functions

ω0
α
= 4π

∞
∫

0

ωα(r)r
2 dr and ω2

α
=

2π
3

∞
∫

0

ωα(r)r
4 dr.

and the weighted densities evaluated for local bulk conditions nb
α
= ρ ·ω0

α
. The expressions

for the Helfrich coefficients are the same as for standard DGT11,28.

σ0 =

∫

ρ′0
T C0ρ

′
0 dz (4.45)

δσ0 =−
∫

ρ′0
T C0ρ

′
0z dz +

1
2
µs

1 · Γ 0 (4.46)

k =−
1
2

∫

ρ′0
T C0ρ

s
1 dz −

1
2
µs

1 ·
∫

ρE
0 z dz − 2µc

2 · Γ 0 −
1
4
µs

1 · Γ
s
1 (4.47)

k̄ =

∫

ρ′0
T C0ρ

′
0z2 dz +

�

4µc
2 −µ

s
2

�

· Γ 0 (4.48)
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For pDGT, the density dependence of the influence matrix has to be taken into account when
calculating the density profile from the Euler–Lagrange equation. Therefore, we propose a
slight modification to the approach previously suggested for a constant influence matrix11.
Similar to the method for planar interfaces [(see chapter 5)], we use the geometric combining
rule C = ccT . The vector c contains the square root of the diagonal elements of the influence
matrix. The advantage of this approach is that it leads to a separation of the Euler–Lagrange
equation into a system of algebraic equations

f eos
ρ −µ= αc (4.49)

with the unknown α and one differential equation. To obtain it, we introduce u= c ·ρ′ and
use it in the integrated form of the Euler–Lagrange equation

�

f eos −ρ ·µ−
1
2
ρ′

T Cρ′
�′

−
g
r
ρ′

T Cρ′ = 0. (4.50)

The above equation is applicable to planar (g = 0), cylindrical (g = 1) and spherical (g = 2)
geometries. By identifying ρ′T Cρ′ = u2 and ( f eos −ρ ·µ)′ = αu, eq. (4.50) can be written
compactly as

�

f eos −ρ ·µ−
1
2

u2
�′

−
g
r

u2 = 0. (4.51)

or after evaluating the gradient and dividing by u as

u′ = α−
g
r

u. (4.52)

To find the planar density profile ρ0, the system is discretized along a path function s, which
has to be monotonous in the interface. Different choices for this path function have been
proposed, including the density of the least volatile component36–38, the so-called weighted
molecular density cTρ0p

cT c
by Kou et al.39, or the unscaled version cTρ0 of Liang et al.40. At every

discretization point, the zeroth order expansion of eq. (4.49)

f eos
ρ0 −µ0 = α0c0 (4.53)

has to be solved. For the planar interface, eq. (4.51) can be integrated analytically to give u0

as

u0 =
Ç

2
�

f eos
0 −ρ0 ·µ0 + p0

�

=
Æ

2∆ωeos
0 (4.54)
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where the pressure p0 appears as a constant of the integration. Finally, using the zeroth order
term of the definition of u, the z-axis is obtained as

u0 = c0 ·ρ′0 = c0 ·
dρ0

ds
ds
dz
⇒ z =

∫

c0 ·
dρ0
ds

p

2∆ωeos
0

ds (4.55)

The integration constant is determined by the choice of dividing surface, analogous to
section 4.2.2.

For the curvature correction, the first order expression of eq. (4.49), which is the linear
algebraic equation

�

f eos
ρρ0 −α0cρ0

�

ρ1 = µ1 +α1c0, (4.56)

has to be solved simultaneously with the linear differential equation

u′1 = c0ρ
′′
1 + c′0ρ

′
1 + c1ρ

′′
0 + c′1ρ

′
0 = α1 − gu0 (4.57)

for the density profile ρ1 and α1. Again, the solution corresponding to a specific dividing
surface can be found using eq. (4.30) or eq. (4.31).

4.2.4 The PCP-SAFT equation of state

The expressions shown in section 4.2.2 are valid for any Helmholtz energy functional that can
be written in terms of weighted densities. To calculate Helfrich coefficients for a variety of
pure components and mixtures, we apply it to the Helmholtz energy functional based on the
perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state41–43.
Similar to the equation of state, the residual Helmholtz energy functional is split into different
contributions, each modeling different intermolecular interactions, as

F res[ρ(r)] = Fhs[ρ(r)] + F chain[ρ(r)] + F assoc[ρ(r)] + F att[ρ(r)]. (4.58)

For the hard-sphere (hs) contribution, fundamental measure theory32,44 has been well estab-
lished. We used the version proposed by Roth45 and Yu and Wu46 that uses vector weight
functions. If those are to be avoided, the version by Kierlik and Rosinberg47, that also simplifies
to the Boublík-Mansoori-Carnahan-Starling-Leland equation of state48–50 used in PCP-SAFT,
can be used instead. The difference between the two models can be regarded as negligible
compared to other model errors for the calculation of surface tensions. The chain contribution
F chain[ρ(r)], is a modified version of the functional by Tripathi and Chapman51,52 for the
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PCP-SAFT equation of state. For the association contribution F assoc[ρ(r)], we use the model by
Yu and Wu53 and dispersive and polar interactions are combined in an attractive functional
F att[ρ(r)], which uses a weighted density approach to account for the range of the interac-
tions54. For the vector weight functions appearing in the FMT and association functionals,
the expressions in section 4.2.2 have to be amended according to section 4.D. In previous
works, the functional has already been applied to calculate the properties of adsorbed55

and free droplets [see chapter 3] as well as adsorption isotherms of pure components and
mixtures56. With the exception of water, all components are described using parameters that
have previously been published41–43,57.

4.3 Results and discussion

We first compare Helfrich coefficients obtained by use of different methodologies for pure
components: the full non-local density functional theory as presented in this work, the
predictive density gradient theory and standard density gradient theory (section 4.3.1). All
theories reduce to the PCP-SAFT equation of state in bulk systems. While DFT and pDGT are
predictive in nature, an influence parameter is required for DGT. There are various ways to
obtain an appropriate influence parameter. However, since one of the objectives is to evaluate
the influence of the Helmholtz energy functional on the Tolman lengths and rigidity constants,
we set the DGT influence parameter to reproduce the surface tension of a planar interface
predicted by the full DFT at each temperature.

Little is known about the Helfrich coefficients of mixtures. Because all derivations shown in
section 4.2 are valid for multicomponent systems, we use the DFT expressions together with
the PCP-SAFT equation of state to examine the behavior of Helfrich coefficients in ideal and
non-ideal mixtures in section 4.3.2.

All coefficients presented in the following are calculated using the surface of tension as
dividing surface.

4.3.1 Pure components

To confirm the validity of the calculated Helfrich coefficients and confirm the correctness of
the implementation, we first compare the surface tension of droplets (positive curvature) and
bubbles (negative curvatures) to results from the curvature expansion. For pDGT and DGT,
the surface tensions are obtained by solving eq. (4.50) directly. For DFT we use the approach
presented in [chapter 3].
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Figure 4.1: Comparison of the surface tension of droplets (Rs > 0) and bubbles (Rs < 0)
(symbols) with the Helfrich expansion (lines) for pDGT, DFT and DGT. The influence parameter
in DGT is found by fixing the value of the planar surface tension to the corresponding result
from DFT. a) methane at T = 140K b) n-hexane at T = 400K, c) water at T = 550K

In figure 4.1, results from this comparison are shown for three different components and
temperatures. In all cases, the surface tension of the droplets and bubbles is well approximated
by the Helfrich expansion in the whole range of curvatures. In general, the different models
also yield similar results, with the pDGT predicting slightly lower values for the surface tension
for all curvatures. The planar surface tension from DGT is by construction equal to DFT. By
increasing the curvature, the results start to differ with the effect being especially pronounced
for n-hexane, the most elongated component considered.

To obtain further insight about the chain length dependence of the Helfrich coefficients, we
calculated them for n-alkanes of different lengths. Figure 4.2 presents the results for methane,
n-pentane and n-dodecane. Two observations made in [chapter 3] can be confirmed here.
The Tolman length of alkanes is over a wide temperature range very close to −0.1 times the
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Figure 4.2: Tolman length and rigidities of n-alkanes. Comparison between DFT, pDGT and
DGT predictions.

segment diameter. In vicinity of the critical temperature however, the Tolman length deviates
from this value. For small alkanes, the Tolman length decreases, whereas for longer alkanes
the Tolman length increases. For methane, the different theories give similar results for the
Tolman length. This conformity deteriorates for longer chains, with the magnitude of the
DGT results being up to 50 % larger than the DFT results for n-dodecane.

A similar trend can be observed for the rigidity constants. The qualitative behavior is similar
for all of the theories, but for longer chain lengths the difference between them increases.
While the Tolman lengths from pDGT are close to the DFT results, both gradient based
methods display comparable deviations from DFT for the rigidities, being up to 15% for
n-dodecane. Because bulk properties are described by the same equation of state for all
considered theories, it is likely a difference in the description of structural properties that
leads to the difference in predicted Helfrich coefficients. However, the way the different
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Figure 4.3: Planar surface tension, Tolman length and spherical rigidity of CO2. Comparison
between DFT, pDGT and DGT predictions. Except for the blue line all results are obtained
using the PCP-SAFT equation of state. For DGT, the results are obtained by fitting to the
surface tension from DFT (black) and to an empirical correlation58 (red).

PCP-SAFT contributions affect the surface tension and the Helfrich coefficients is convoluted
and not a simple linear combination. Hence, the role of the chain contribution in the different
theories is not easily isolated. A more thorough investigation into the structure of interfaces
of chain molecules, e.g. by molecular simulation, is advised to gain further insight about
structural anisotropies at the interface.

To expand the study to polar components, the Helfrich coefficients of CO2 are presented in
figure 4.3. For homogeneous nucleation, the primary application of this framework, only
spherical droplets are relevant. We find that the behavior of the two rigidities is very similar
for all studied components. Therefore, from here on we only show the spherical rigidity
ks = 2k + k̄, which appears as the second order coefficient in a curvature expansion of the
surface tension for a spherical geometry. The quantitative behavior of the different theories
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m σ ε/kB µ κAi Bi ε/kB

1.0 3.0084Å 165.53K 1.6341D .094273 2660.9 K

Table 4.1: PCP-SAFT parameters for the 2B water model used in this work.

are similar for CO2 and the alkanes. The predictions of the Tolman length from pDGT lie
slightly below the DFT results with the difference decreasing with temperature. The DGT
results on the other hand are significantly lower. For the rigidities, both pDGT and DGT
predict larger values than DFT. We find that these are general trends for non-associating fluids,
where results for other substances such as nitrogen and argon are included in [appendix A.1].

Figure 4.3-top shows that PC-SAFT predicts the surface tension of CO2 to a reasonable
accuracy, since DFT with PC-SAFT (blue solid line) agrees well with DGT for which the
influence parameter was fitted to an empirical correlation58 for the surface tension (red
dash-dot line). The surface tension from PCP-SAFT, however, lies above the experimental
values. The values for the Tolman length and rigidities reflect this, where the Tolman length
and rigidities from PC-SAFT and PCP-SAFT are significantly different. The prediction of the
surface tension with the PC-SAFT equation of state is better than with PCP-SAFT, despite
the latter describing the phase equilibrium and the critical point of CO2 more accurately43.
The same trend can be seen for DGT, where there is a large difference between the Helfrich
coefficients when the influence parameter has been fitted to DFT values (black dash-dot line)
and an empirical correlation (red dash-dot line). This effect is especially pronounced for
the rigidity, which decreases about 40% in magnitude by fitting to the empirical surface
tension rather than to DFT. Hence, an important basis for reliable estimates of the curvature
dependence of the surface tension is accurate prediction of the planar surface tension.

We next discuss the Helfrich coefficients for water, as this has been a popular example
in the literature4,7,21,23,25. Since the numerous PCP-SAFT water parameter sets that have
been published predict vastly different planar surface tensions60, new parameters have
been obtained that use quasi experimental surface tension data61 as additional input in the
estimation. These parameters are for the 2B association scheme62 and include a fitted dipole
moment. They are shown in table 4.1.

For the Tolman length, we find the same behavior for pDGT and DFT as for non-associating
fluids. The Tolman length obtained from DGT however, is larger than the DFT result. The
spherical rigidity shows a remarkable resemblance for the three different approaches. We
further compare the spherical rigidity to previous results4 that were calculated using DGT
combined with the cubic plus association (CPA)63 equation of state. The Tolman length
has a comparable magnitude and the temperature dependence is the same for DGT with
PCP-SAFT. For the rigidity at higher temperatures, we again observe good agreement. For
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Figure 4.4: Planar surface tension, Tolman length and spherical rigidity of water. Comparison
between DFT, pDGT and DGT predictions for the PCP-SAFT equation of state, as well as DGT
results using CPA from previous work4. The planar surface tension is also compared to
experimental data59.

lower temperatures, the results deviate by up to 25%. Since the influence parameters do
not differ significantly between the different approaches, this deviation can be attributed to
the difference in equation of state. Hence, the equation of state has an important role in the
prediction of the Helfrich coefficients.

In conclusion, we find that the different descriptions of the considered Helmholtz energy
functionals give relatively similar results. However, for strongly polar or elongated molecules,
deviations between DFT and DGT should be expected, in particular for the Tolman length.
Prerequisites for accurate prediction of the Helfrich coefficients are: a bulk equation of state
that is able to describe the phase equilibrium well and a Helmholtz energy functional that
is able to reproduce the planar surface tension accurately. As shown in [appendix A.1], for
alcohols, that are frequently used in nucleation experiments, the surface tension predictions
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Figure 4.5: Composition dependence of the Tolman length and spherical rigidity for the
binary mixture of n-hexane and n-heptane at different temperatures. Comparison between
DFT, pDGT and DGT results.

using DFT and PCP-SAFT deviate significantly from experimental data. Therefore, further
work has to be done to improve the parametrization of these components, before the influence
of the curvature corrections on nucleation rates can be studied rigorously.

4.3.2 Mixtures

In a previous work11, it was shown that the values of the Helfrich coefficients for mixtures
are significantly influenced by the choice of path through the metastable region. We empha-
size that already for pure components, a deliberate choice has been made by choosing the
isothermal path. An isentropic path is another possible choice.

The value of the surface tension of a droplet is only a function of the thermodynamic state and
the choice of dividing surface, and does not depend on the path. A different path, however,
leads to a different quality of the prediction using the Helfrich expansion and a different
composition dependence of the coefficients. Following the recommendations in a previous
study by Aasen et al.11, we choose a straight path through the metastable region that keeps
the liquid composition constant to first order.

We first study the behavior of a close to ideal mixture. To that end, we examine the n-
hexane/n-heptane mixture at different temperatures with the binary interaction parameter
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Figure 4.6: DFT result for the composition dependence of the Tolman length and spherical
rigidity for the binary mixture of various n-alkanes with the polar component tetrahydrofuran
(THF) at 298.15K.

ki j equal to 0. In figure 4.5, the Tolman length and the spherical rigidity are displayed as
functions of the liquid mole fraction of n-hexane in the system. At lower temperatures, the
pure component values of both coefficients are similar and there is almost no composition
dependence. For temperatures close to the critical point, however, the Tolman length displays
a non-linear dependence on the composition. The spherical rigidity is higher for n-hexane
than for n-heptane closer to the critical point, but the composition dependence is still close to
linear. Comparing the different theories, an almost constant difference in predicted values
can be observed over the whole composition range for both temperatures. Therefore, if a
good agreement is obtained for the pure components, it can be expected that DGT using the
geometric combining rule will also predict similar values as DFT and pDGT for this mixture.

We extend the study to the more non ideal binary mixtures of n-alkanes with the polar solvent
tetrahydrofuran (THF). Parameters for this system, including the binary interaction parameter
ki j were obtained by Klink and Gross57 and the DFT results using them were shown to concur
well with experimental data54. In figure 4.6, the Tolman length and spherical rigidity are
shown for the binary mixture of THF with n-hexane, n-heptane, n-octane and n-nonane at
T = 298.15 K. Although all of the pure components have almost the same Tolman length
at this temperature, the Tolman lengths of the mixtures are significantly different, with a
peak near xTHF = 0.8. This effect is most pronounced at higher concentrations of THF and for
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smaller alkanes, with the Tolman length of the n-hexane/THF mixture being up to 50% higher
than both pure component values. Contrary to that, the spherical rigidity of the same system
is constant in a large composition range until the value drops towards the pure component
value of THF. For longer alkanes, a peak in the spherical rigidity is observed, similar to the
Tolman length. A comparison to the gradient theories can be seen in [appendix A.1]. Also
for the non-ideal mixtures, DGT predicts a similar composition dependence as DFT for the
Helfrich coefficients, with the main difference being a nearly constant difference in predicted
values, which is determined by the deviation between the pure component values.

4.4 Conclusion

The curvature dependence of the surface tension can be described by the Helfrich expansion,
where the first and second order expansion coefficients are called the Tolman length and the
rigidities. They are also referred to as the Helfrich coefficients.

In this work, we have derived general expressions that can be used for calculating Helfrich
coefficients from any non-local Helmholtz energy functional based on weighted densities.
The curvature expansion can be used to calculate the surface energy of arbitrarily shaped
interfaces for pure component and mixtures.

We used the framework to compare predictions from non-local density functional theory
(DFT) with results from density gradient theory (DGT) and predictive density gradient theory
(pDGT). Good agreement between the different theories was observed for small, approximately
spherical molecules. An increase in chain length led to larger differences in the predictions.
We found that the values of the Helfrich coefficients are sensitive to the choice of influence
parameter in DGT and to the prediction of the surface tension in DFT and pDGT. We showed
that to obtain a good agreement between the different functional theories, a model is required
that gives a good description of the phase equilibrium (including liquid densities) and the
surface tension.

For non ideal mixtures, the composition dependence of the Helfrich coefficients was found to
be nonlinear. All three functionals studied gave very similar composition dependencies for
the Helfrich coefficients, where the difference comes mainly from different predictions of the
pure component values.

Further work is needed to describe the Helfrich coefficients of alcohols, since PC-SAFT and
PCP-SAFT are currently unable to accurately predict their surface tensions. Because alcohols
are frequently used in nucleation experiments, their Helfrich coefficients are of much interest.
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Appendix

4.A Curvature expansion of convolution integrals

In non-local DFT using weighted densities, the density profile and the partial derivatives of
the Helmholtz energy density are convolved with a weight function ω. To reduce the amount
of different symbols, we use the same symbol for the different representations of ω and
use the independent variable as an indicator for which representation to use. The different
representations are the weight function in real space ω(r) =ω(r), the projection on the z-axis

ω(z) = 2π

∞
∫

|z|

ω(r)r dr (4.A.1)

and the Fourier transform

ω(k) =

∞
∫

−∞

ω(z)e−2πikz dz =

∞
∫

0

ω(r)
2r
k

sin(2πkr)dr. (4.A.2)

The convolution of a spherically symmetric function f (r) and a scalar weight function ω(r)
can be expressed as44

f
3D
⊗ ω=

1
r

∫

f (r − z′)(r − z′)ω(z′)dz′

= f ⊗ω−
1
r

f ⊗ (zω)

= f ⊗ω− f ⊗ (zω)
1
R
+ z ( f ⊗ (zω))

1
R2
+ . . . (4.A.3)

The convolution of a cylindrically symmetric function with a scalar weight function is more
intricate. The projection-slice theorem of the Fourier transform states, that the 3D Fourier
transform can be replaced by a projection on one of the axes followed by the one-dimensional
Fourier transform along the given axis. In a cylindrical geometry, the projection is known as
the Abel transform. To our knowledge, no concise expression is available like in the spherical
case. However, the curvature coefficients can still be derived by performing the curvature
expansion on the general convolution integral itself. The expression we obtain is

f
3D
⊗ ω= f ⊗ω−

1
2

f ⊗ (zω)
1
R
+
�

1
2

z ( f ⊗ (zω))−
1
8

f ⊗ ω̃
�

1
R2
+ . . . (4.A.4)
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The full derivation is shown in [appendix A.2]. The weight function, ω̃ appearing in the last
convolution is

ω̃= z2ω−

∞
∫

z

ω(z′)z′ dz′ = z2ω− (zω)⊗Θ(−z) (4.A.5)

with the Heaviside step function Θ(z). The two geometries can be combined in a general
expression involving the geometry factor g, as

f
3D
⊗ ω= f ⊗ω−

g
2

f ⊗ (zω)
1
R
+
�

g
2

z ( f ⊗ (zω)) +
g(g − 2)

8
f ⊗ ω̃

�

1
R2
+ . . . (4.A.6)

4.B Convolutions in Fourier space

Aside from the convergence speed of the solver, the computation time of DFT is limited by
the evaluation of the numerous convolution integrals. The calculation can be sped up using
the convolution theorem of the Fourier transform. It states that the Fourier transform of a
convolution is equal to the product of the Fourier transform of the functions that are being
convolved. The Fourier transform of the density profiles and the partial derivatives can be
calculated in O (N log N) using the fast Fourier transform. The Fourier transform of the weight
functions can be obtained analytically from eq. (4.A.2). The other weight functions needed to
calculate the Helfrich coefficients can be obtained from the derivatives of the weight functions
in Fourier space, as

F (zω) =
i

2π
ω′(k) (4.B.1)

and

F (ω̃) =F
�

z2ω
�

−F (zω)F (Θ(−z))

= −
1

4π2
ω′′(k)−

i
2π
ω′(k)

�

1
2
δ(k) +

i
2πk

�

=
1

4π2

�

ω′(k)
k
−ω′′(k)

�

. (4.B.2)

We focus on spherically symmetric weight functions, ω(r), ω(z) and ω(k) that are all even
functions by construction. Therefore, ω′(k = 0) = 0 and the term involving the dirac distribu-
tion δ(k) cancels. Further, using L’Hôpital’s rule we find that F (ω̃)(k = 0) = 0.
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4.C Hyper-dual numbers

With the only exception being the derivative cρ0, all properties in the framework we discuss
are related to at most second order partial derivatives of the Helmholtz energy density. Hyper-
dual numbers64 can be used to calculate the exact second partial derivatives and thus all
related properties. The approach has recently been used in the context of equations of state65.
Here, we propose its use to calculate the first and second partial derivatives of the non-local
Helmholtz energy density in DFT and to calculate the different weight functions in Fourier
space needed to calculate all convolution integrals for the curvature expansion. Therefore,
the only properties that need to be implemented are the Helmholtz energy functional and
the weight functions. All other properties, including derivatives of the underlying equation
of state and the weight constants in pDGT are available through the hyper-dual numbers,
making it simpler and less error-prone to include new functionals. This improvement in
usability comes with increased computation time, since every operator and intrinsic function
has to be evaluated for hyper-dual numbers. In particular for functions of many variables,
there is significant redundancy when calculating derivatives. Therefore, in cases with many
variables and simple derivatives like the FMT and chain functionals, it is advisable to override
the hyper-dual differentiation with analytic derivatives to speed up the computation.

4.D Vector weighted densities

Some FMT32,45,46 and association functionals53 use vector weighted densities. To include those
in the framework presented in this work, the expressions have to be amended accordingly.
As we are still only considering spherically symmetric weight functions, we can write vector
weight functions as ~ω(r) =ωr(r)~er with the radial unit vector ~er . The projection on the z-axis
then becomes

~ω(z) =ωz(z)~ez = 2πz~ez

∞
∫

|z|

ωr(r)dr (4.D.1)

and the representation in Fourier space is

~ω(k) =ωk(k)~ek = ~ek

∞
∫

−∞

ωz(z)e
−2πikz dz
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scalar expression vector expression equations
ρ0|1 ⊗ωα ρ0|1 ⊗ωαz (4.33)
fα0|1 ⊗ωα − fα0|1 ⊗ωαz (4.36), (4.37)
ρ0 ⊗ (zωα) ρ0 ⊗ (zωαz − ω̂αz) (4.38) - (4.40), (4.33)
fα0 ⊗ (zωα) − fα0 ⊗ (zωαz + ω̂αz) (4.39), (4.37)
ρ0 ⊗ ω̃α ρ0 ⊗

�

z2ωαz + zω̂αz

�

(4.39)
ρ0 ⊗ ω̃α ρ0 ⊗

�

z2ωαz − zω̂αz

�

(4.40)

Table 4.2: Replacement for convolution integrals for vector weighted densities.

= ~ek

∞
∫

0

ωr(r)
i
πk2

(2πkr cos(2πkr)− sin(2πkr)) dr. (4.D.2)

The convolution integrals involving vector weight functions are different from scalar weight
functions. A detailed derivation of the handling of these convolutions is given in [appendix A.2].
To include vector weighted densities in the framework presented in this work, the convolution
integrals in section 4.2.2 have to be changed according to table 4.2 for every vector weight
function. The newly introduced weight function ω̂αz is defined as

ω̂αz =

∞
∫

z

ωαz(z
′)dz′ (4.D.3)

and all combinations of weight functions are again easily obtained in Fourier space as

F (zωz ± ω̂z) =
i

2π

�

ω′k(k)±
ωk(k)

k

�

(4.D.4)

F (z2ωz ± zω̂z) =
−1
4π2

�

ω′′k (k)±
�

ω′k(k)

k
−
ωk(k)

k2

��

. (4.D.5)
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5 Predictive density gradient theory based on non-local density

functional theory

The content of this chapter is reproduced with permission from

P. Rehner, J. Gross. Physical Review E 98.6 (2018): 063312.

© 2018 American Physical Society. Additions or deletions compared to the published work
are marked with angular brackets.

Density gradient theory has become an important tool for calculating the surface tension of pure
components as well as mixtures. The calculation requires knowledge about the so-called influence
parameter. Since in most applications this parameter is obtained by fitting results of the density
gradient theory to experimental data for surface tensions, the approach lacks predictive power. We
propose a predictive density gradient theory based on non-local density functional theory (DFT)
using the perturbed chain polar statistical associating fluid theory (PCP-SAFT) as equation of
state. The formalism can also be applied to other Helmholtz energy functionals based on weighted
densities. The predictive density gradient theory (pDGT) is obtained by applying a gradient
expansion to the weighted densities of the PCP-SAFT Helmholtz energy functional to second order
and expanding the Helmholtz energy density to first order. The resulting model approximates
the DFT and can be cast into the form of a density gradient theory. The resulting influence
parameter depends on local densities and on temperature. We assess the predictive power of the
proposed pDGT to calculate surface tensions of vapor-liquid interfaces of pure components as
well as mixtures. The results show that pDGT reduces the computational complexity compared to
non-local DFT calculations, while largely preserving its accuracy as well as its predictive capability.
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5 Predictive density gradient theory

5.1 Introduction

The design of process equipment, where multiple phases occur, requires knowledge of inter-
facial properties such as surface tension. Examples include distillation columns1, general
multiphase flow phenomena2 and nucleation processes3. For pure materials, the surface
tension is only a function of temperature and thus simple correlations have been used to
describe this property reasonably well. Examples are the theory of Eötvös and variations
thereof4,5, the parachor method of Macleod6 or Guggenheim’s principle of corresponding
states7. However, predictions of surface tension of pure substances and of mixtures requires a
physically-based approach.

Classical density functional theory (DFT)8,9 is well suited to calculate thermodynamic equi-
librium properties of inhomogeneous systems, such as fluid-liquid or fluid-solid interfaces.
The theory shares the abbreviation and the underlying approach with the electronic den-
sity functional theory by Hohenberg, Kohn, Mermin and Sham10–12. In classical DFT, the
(one-body) density profile of an inhomogeneous fluid is calculated by minimizing the grand
potential functional of the system. It requires a model for the Helmholtz energy functional
of the mixture under consideration. Non-local classical density functional theory based on
fundamental measure theory by Rosenfeld13 or the weighted density approach of Tarazona14

is able to express structural properties of the fluid, such as correlation functions and is thus
an important basis for the development of Helmholtz energy functionals for real fluids. In our
study, we use a Helmholtz energy functional based on the perturbed chain polar statistical
associating fluid theory (PCP-SAFT)15–18, that has already been used to predict properties of
liquid-fluid interfaces and confined media19, as well as nanodroplets [(see chapters 3 and 4)].

However, variational methods have been used to describe inhomogeneous fluids long before
the advent of classical density functional theory by van der Waals20. The approach that uses
the square of the gradient of the density to describe the inhomogeneity of the fluid was
later refined by Cahn and Hilliard21 and is referred to as density gradient theory (DGT). The
approach requires knowledge of the so-called influence parameter ci j and requires an equation
of state that is able to accurately describe both bulk phases. Although the influence parameter
can be determined from the direct correlation function of the fluid22, this approach is rarely
chosen either due to subpar results or due to a lack of knowledge of the direct correlation
function. Therefore, the influence parameter is either fitted to experimental data of surface
tensions23, thus conceding the predictive ability of the theory, or is estimated by some form
of correlation24–28.

The DGT, as opposed to non-local density functional theory, is not able to reproduce the
fluctuating density profiles appearing in highly structured systems. Therefore the prevalent
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5.2 A density and temperature dependent influence parameter based on weighted densities

application of DGT are fluid-liquid interfaces, whereas interfaces to solid phases require DFT
approaches. The advantage of DGT over DFT comes from the mathematical simplicity and
numerical efficiency in solving density profiles. For cases where computational performance
is essential, the solution of the convolution integrals appearing in DFT may be too expensive.
Further, the structure allows a straightforward generalization to spherical and cylindrical
geometries, that can be used for the characterization of the surface properties of curved
interfaces29–32.

In this work we present a predictive density gradient theory, that is derived from non-local
density functional theory and (for fluid-liquid interfaces) maintains its accuracy and predictive
power while attaining the simpler mathematical form of DGT. The derivation in section 5.2 is
independent of the choice of Helmholtz energy functional model. In the subsequent sections,
we apply the theory to a functional based on the PCP-SAFT equation of state and show results
for this choice of model.

5.2 A density and temperature dependent influence parameter based on

weighted densities

In non-local density functional theory, the Helmholtz energy F[ρ(r)] is a functional of the
density profiles ρ(r) = ρ1(r), . . . ,ρK(r) of all K components. It can be separated in an ideal
gas part and a residual contribution that accounts for interaction potentials, as

βF[ρ(r)] = βF ig[ρ(r)] + βF res[ρ(r)] =

∫

∑

i

ρi

�

ln(ρiΛ
3
i )− 1

�

dr+

∫

Φ({nα})dr (5.1)

Here, β = 1
kB T is the inverse temperature and Λi the thermal wavelength including the

single molecule partition sum, that is only a function of temperature. The reduced residual
Helmholtz energy density Φ is itself a functional of the density profiles, however, it can be
approximated by a function of a number of weighted densities nα. The weighted densities
are obtained by convolving the density profiles ρi(r) with corresponding weight functions ωi

α

and a summation over all components i, according to

nα(r) =
∑

i

ni
α
(r) =

∑

i

∫

ρi(r− r′)ωi
α
(r′)dr′. (5.2)

By replacing the density ρi(r− r′) with a Taylor expansion around r

ρi(r− r′) = ρi(r)−∇ρi(r) · r′ +
1
2
∇∇ρ(r) : r′r′ + . . . (5.3)
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5 Predictive density gradient theory

the convolution integrals simplify to a series of integrations over the weight functions. For
spherically symmetric weight functions ωi

α
(r) =ωi

α
(r), the integration over the angles can be

performed analytically and the expression simplifies to

ni
α
(r) = ρi(r)4π

∞
∫

0

ωi
α
(r)r2 dr

︸ ︷︷ ︸

ωi0
α

+∇2ρi(r)
2
3
π

∞
∫

0

ωi
α
(r)r4 dr

︸ ︷︷ ︸

ωi2
α

+ . . . (5.4)

The first term in eq. (5.4) corresponds to the weighted density of a bulk fluid with density
ρi(r). Therefore, we split the weighted densities in a local part n0

α
and an excess part ∆nα, as

nα(r) =
∑

i

ρi(r)ω
i0
α

︸ ︷︷ ︸

n0
α

+
∑

i

∇2ρi(r)ω
i2
α
+ . . .

︸ ︷︷ ︸

∆nα

. (5.5)

Further, we expand the reduced residual Helmholtz energy density around a local density
approximation, as

Φ({nα}) = Φ({n0
α
}) +

∑

i

∑

α

∂Φ

∂ nα
ωi2
α
∇2ρi + . . . . (5.6)

Using this expression, truncated after the second term, in the general form of the Helmholtz
energy functional eq. (5.1) leads to

βF[ρ(r)] =

∫

�

β f (ρ) +
∑

i

∑

α

∂Φ

∂ nα
ωi2
α
∇2ρi

�

dr. (5.7)

Here we introduce the local Helmholtz energy density

β f (ρ) =
∑

i

ρi

�

ln(ρiΛ
3
i )− 1

�

+Φ({n0
α
}), (5.8)

that can be calculated from the corresponding bulk equation of state (such as PCP-SAFT).
After integrating the second term by parts, using ∇Φ =

∑

j

∑

β
∂Φ
∂ nβ
ω

j0
β
∇ρ j and reordering

the sum over i and j so that the resulting influence matrix ci j is symmetric, eq. (5.7) can be
brought in the form known from density gradient theory

F[ρ(r)] =

∫

�

f (ρ) +
∑

i j

ci j

2
∇ρi · ∇ρ j

�

dr (5.9)
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with the explicit expression for the density dependent influence parameter

β ci j = −
∑

αβ

∂ 2Φ

∂ nα∂ nβ

�

ωi2
α
ω

j0
β
+ωi0

α
ω

j2
β

�

. (5.10)

If vector weighted densities are used, the derivation has to be extended according to section 5.A.
Equation (5.10) can also be derived invoking the direct correlation function of the fluid as
shown in section 5.B.

In order to simplify the implementation of the proposed formalism, we express thermodynamic
properties, such as chemical potentials µi or derivatives of chemical potentials with respect to
densities, in terms of partial derivatives of Φ with respect to weighted densities nα only. Using
nα =

∑

i ρiω
i0
α
we get

βµi =
�

∂ β f
∂ ρi

�

ρ j 6=i ,T
= ln(ρiΛ

3
i ) +

∑

α

∂Φ

∂ nα
ωi0
α

(5.11)

and the partial derivatives of chemical potential at constant temperature can be written as
�

∂ βµi

∂ ρ j

�

ρk 6= j ,T

=
δi j

ρi
+
∑

αβ

∂ 2Φ

∂ nα∂ nβ
ωi0
α
ω

j0
β

(5.12)

with the Kronecker delta δi j.

5.3 Surface tension

The grand potential functional Ω of a system with given temperature T , volume V , and
chemical potentials µ = µ1, . . .µK of all K components is minimal at equilibrium. For an
inhomogeneous system, with density profiles ρ = ρ1, . . .ρK of all components, this condition
results in

�

δΩ

δρi(r)

�

T,V,µ

= 0. (5.13)

The grand potential at this state can be expressed as a Legendre transform of the Helmholtz
energy F[ρ(r)],

Ω= F[ρ(r)]−
∫

µ ·ρ(r)dr, (5.14)

89



5 Predictive density gradient theory

which leads to the equilibrium condition in terms of the Helmholtz energy functional, as

δF[ρ(r)]
δρk

= µk. (5.15)

Due to the density dependence of the influence parameter, the Euler-Lagrange equation has
to include an additional term compared to the form usually encountered in density gradient
theory. It reads

∂ f
∂ ρk

−
∑

i

∑

j

ĉi jk∇ρi · ∇ρ j −
∑

i

cik∇2ρi = µk (5.16)

with

ĉi jk =
1
2

�

∂ cik

∂ ρ j
+
∂ c jk

∂ ρi
−
∂ ci j

∂ ρk

�

(5.17)

or

β ĉi jk =
∑

αβγ

∂ 3Φ

∂ nα∂ nβ∂ nγ
ωi0
α
ω

j0
β
ωk2
γ

. (5.18)

Analogously to standard density gradient theory, eq. (5.16) can be integrated for a one-
dimensional density profile by multiplying with dρk

dz and summing over k, as

d
dz

�

f −
1
2

∑

i

∑

j

ci j
dρi

dz

dρ j

dz
−
∑

i

ρiµi

�

= 0. (5.19)

In each of the bulk phases, the density gradients vanish and f −
∑

i ρiµi = −p with the bulk
pressure p. With this boundary condition and the introduction of the local excess grand
potential density ∆ω= f −

∑

i ρiµi + p, it follows

1
2

∑

i

∑

j

ci j
dρi

dz

dρ j

dz
=∆ω. (5.20)

The surface tension can be calculated as the surface excess grand potential per area, as

γ=
F −

∑

i µiNi + pV

A
= 2

∞
∫

−∞

∆ωdz. (5.21)

The procedure for the calculation of surface tensions is thus: the solution of the differential
equation (5.16) for the density profiles, the calculation of ∆ω and the integration according
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5.3 Surface tension

to eq. (5.21). A stable solution algorithm for classical density gradient theory, that could also
be expanded to deal with the density dependent influence parameter, has been proposed by
Mu et al.33. For an overview over solution methods for DGT, we refer to another publication
from our group34 and for an in-depth analysis we refer to Liang and Michelsen35. However,
we see the advantage of density gradient theory in the decrease in calculation time that comes
through spatial decoupling. Without this, the full solution of the boundary value problem is of
the same order of complexity as the solution of the integral equations appearing in non-local
density functional theory.

To eliminate the gradients from eq. (5.16), we have to presume the relations pc11cik =
p

ckkci1

and pc11 ĉi jk =
p

ckk ĉi j1. Then the system of differential equations can be rewritten as a system
of algebraic equations

p

c11

�

∂ f
∂ ρk

−µk

�

=
p

ckk

�

∂ f
∂ ρ1

−µ1

�

. (5.22)

We provide rationale for this approximation with the fact, that for most fluids the dominant
contribution to the influence parameter comes from dispersive attraction. Since the segment
size parameters tend to not vary much for many components, the behavior of the mixture is
mainly controlled by the energy parameter. If the conventional Berthelot-Lorentz combinig
rule

εi j =
p

εiiε j j(1− ki j) (5.23)

is employed, we deduce that for ideal mixtures, we can use the approximation ci j ≈
p

ciic j j and
hence the relation above. The assumption can be expected to worsen for mixtures, that are
only well described with a binary interaction parameter ki j 6= 0 or contain large contributions
from other intermolecular interactions. Since the pDGT allows the calculation of the full
influence matrix, we can assess this approximation when we study the surface tension of
binary systems in section 5.5.2. The assumption of a geometric combination rule for the
influence parameter also allows us to follow the approach proposed by Kou et al.36 with slight
variations to incorporate the density dependence of the influence parameter. We change the
integration variable from z to the path function

u=
1
p
λ

∑

i

p

ciiρi (5.24)

with the only non-zero eigenvalue λ=
∑

i cii of the simplified influence matrix. The variable
change is only possible if the path function is monotonous in the interfacial region, which was
shown by Kou et al. to be always the case for a constant influence matrix36. The same cannot
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5 Predictive density gradient theory

strictly be said for the case of a density dependent influence matrix, however, we found the
approach to be more reliable than using a reference component as integration variable.

To solve the density profile, the path function u is discretized between its bulk limits and at
every node eq. (5.22) is solved together with eq. (5.24) for the densities of all components.
For the surface tension, the mixture influence parameter cmix is introduced in eq. (5.20), as

1
2

∑

i

∑

j

ci j
dρi

du

dρ j

du
︸ ︷︷ ︸

cmix

�

du
dz

�2

=∆ω. (5.25)

Finally, the integration over z in eq. (5.21) can be replaced by an integration over u, as

γ=

uL
∫

uV

p

2cmix∆ωdu (5.26)

In summary the formalism is based on three approximations: the density is expanded to second
order (eq. (5.3)), the reduced Helmholtz energy density is expanded to first order (eq. (5.6)),
and we presume the geometric mean ci j =

p

ciic j j, as well as the relation
p

c11 ĉi jk =
p

ckk ĉi j1.

5.4 PCP-SAFT

The predictive density gradient theory presented in the last section can be used with any
model for the residual Helmholtz energy functional as input. In the following, we use a
functional based on the PCP-SAFT equation of state15–18, that has successfully been applied to
calculate surface tensions of pure components and mixtures, as well as adsorption isotherms
in confined media19. As usual in SAFT based equations of state, the residual Helmholtz energy
functional F res[ρ] is decomposed into contributions corresponding to specific intermolecular
interactions, as

F res[ρ(r)] = Fhs[ρ(r)] + F chain[ρ(r)] + Fdisp[ρ(r)] + Fpolar[ρ(r)]. (5.27)

The contributions considered here are hard-spheres (hs), chain formation (chain), dispersive
attraction (disp) and a term combining dipolar and quadrupolar interaction (polar). In
eq. (5.8), the reduced Helmholtz energy density Φ({n0

α
}) is equivalent to ãresρ = βAres

N ρ in the
notation of reference15. By construction, the density dependent influence parameter can also
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5.4 PCP-SAFT

be written as a sum of contributions corresponding to all type of interactions, as

ci j = chsi j + cchaini j + cdispi j + cpolari j . (5.28)

Pure component parameters of the PCP-SAFT equation are the segment size parameter σii,
the energy parameter εii and the number of segments mi per molecule of species i. Dipole
and quadrupole moments can be used from literature17.

Hard sphere contribution

PCP-SAFT uses the Boublík-Mansoori-Carnahan-Starling-Leland37,38 equation of state for the
hard-sphere reference system. There are two different versions of fundamental measure
theory (FMT)39, that are consistent with this bulk equation of state. The White-Bear or
modified FMT40,41, that use the same weight functions as Rosenfeld in his original theory13,
and a version by Kierlik and Rosinberg42, that avoids using vector weighted densities. For a
pure component, the hard-sphere contribution to the influence parameter only depends on
the packing fraction η= 4

3πmR3ρ. Equations (5.A.6) and (5.10) respectively simplify to

β cKR

m2R5
= −

4
15
π

16− 11η− 2η2 + 3η3

(1−η)4
(5.29)

and

β cWB

m2R5
= −

8
45
π

�

29− 34η+ 17η2 − 3η3

(1−η)4
+

5
η

ln(1−η)
�

. (5.30)

In figure 5.1 both versions are compared. The small deviation between the models justifies
choosing the Kierlik-Rosinberg model going forward and thus avoiding the additional partial
derivatives with respect to vector weighted densities appearing in the White-Bear version.
Nonetheless, we provide expressions for the vector weighted densities in section 5.A.

The reduced Helmholtz energy density as function of weighted densities in this version is

ΦHS({nα}) = −n0 ln(1− n3) +
n1n2

1− n3
+

n3
2

36π

�

1
(1− n3)2n3

+
1
n2

3

ln(1− n3)

�

. (5.31)

First and second partial derivatives of this expression can be found in literature43. The weight
functions are ωi

3 = Θ(Ri − |r|), ωi
2 = δ(Ri − |r|), ωi

1 =
1

8πδ
′(Ri − |r|) and ωi

0 = −
1

8πδ
′′(Ri − |r|)+
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Figure 5.1: The dimensionless hard-sphere contribution to the influence parameter based on
the White-Bear (WB) and Kierlik Rosinberg (KR) version of FMT.

1
2π|r|δ

′(Ri − |r|). Thus, from eq. (5.4), the weight constants follow as

ωi0
3 =

4
3
πmiR

3
i ωi2

3 =
2

15
πmiR

5
i

ωi0
2 = 4πmiR

2
i ωi2

2 =
2
3
πmiR

4
i

ωi0
1 = miRi ωi2

1 =
1
3

miR
3
i

ωi0
0 = mi ωi2

0 = 0.

For a pure hard-sphere system, the radius Ri is half the constant hard sphere diameter
Ri = 0.5σii. In PCP-SAFT, the temperature dependent effective size parameter Ri = 0.5 di is
used15.

Contribution from chain formation

A functional description for the chain term used in SAFT-like equations of state was developped
by Tripathi and Chapman44,45. The reduced Helmholtz energy density is given as

Φchain =
∑

i

(mi − 1)ρi ln (ρi)−
∑

i

(mi − 1)ρi ln
�

ydd
ii λi

�

, (5.32)

with the cavity correlation function

ydd
ii =

1
1− ζ3

+
3Riζ2

(1− ζ3)2
+

2(Riζ2)2

(1− ζ3)3
. (5.33)
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Several weighted densities are used in eqs. (5.32) and (5.33). The average density at contact
λi has the weight function

ωi
λ j
= δi j

δ(2R j − |r|)
16πR2

j

(5.34)

and ζ2 and ζ3 have weight functions

ωi
ζ2
=

mi

16Ri
Θ(2Ri − |r|) ωi

ζ3
=

mi

8
Θ(2Ri − |r|). (5.35)

To be consistent with the theory developed in this work, we also interpret the local density
ρi, that appears in the chain term as a weighted density with weight function

ωi
ρ j
= δi jδ(r). (5.36)

Therefore, all weight constants can be calculated from eq. (5.4), as

ωi0
ρ j
= δi j ωi2

ρ j
= 0

ωi0
λ j
= δi j ωi2

λ j
=

2
3

R2
iδi j

ωi0
ζ2
=

2
3
πmiR

2
i ωi2

ζ2
=

4
15
πmiR

4
i

ωi0
ζ3
=

4
3
πmiR

3
i ωi2

ζ3
=

8
15
πmiR

5
i .

Together with the partial derivatives given in section 5.C, the chain contribution to the
influence parameter can be calculated.

Contribution from van-der-Waals attraction

Following Sauer and Gross19, we use the PCP-SAFT bulk equation of state in a weighted
density approximation. Then, the dispersive contribution to the reduced Helmholtz energy
density Φdisp is written as the total weighted density ρ̄ =

∑

i ρ̄i times the reduced Helmholtz
energy ãdisp = βAdisp

N evaluated for the same weighted densities ρ̄ = ρ̄1, . . . ρ̄K , as

Φdisp = ρ̄ ãdisp(ρ̄). (5.37)

The weight function ωi
ρ̄ j
=

δi jΘ(2ψRi−|r|)
32
3 πψ

3R3
i

corresponding to the weighted density ρ̄i contains a
parameter ψ, that measures the effective range of the attractive van-der-Waals interactions.
The functional was previously found to give excellent results using the substance independent
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constant value19 ψ = 1.3862. In section 5.5.1 we find, that in this study we can still use ψ
as a universal constant, but agreement to experimental data is improved when changing its
value. The weight constants are

ωi0
ρ̄ j
= δi j ωi2

ρ̄ j
= δi j

2
5
ψ2R2

i . (5.38)

Due to the structure of the weighted density approximation, the second partial derivatives
with respect to the weighted densities simplify to the partial derivatives of the bulk chemical
potential with respect to the densities evaluated for the weighted densities. For expressions
of the chemical potential in PC-SAFT we refer to primary literature15.

Contribution from polar interactions

Assuming the range of polar interactions is of the same magnitude as the range of dispersive
attraction, we follow previous work in using the same weight function in a weighted density
approximation for the contribution of polar interactions, as19

Φpolar = ρ̄ãDD(ρ̄) + ρ̄ãDQ(ρ̄) + ρ̄ãQQ(ρ̄) (5.39)

with the dipol-dipol contribution to the reduced Helmholtz energy ãDD 17, the dipol-quadrupol
contribtion ãDQ18 and the quadrupol-quadrupol contribution ãQQ16.

5.5 Results and discussion

In the following sections, we use the predictive density gradient theory to calculate the surface
tension of various pure components as well as mixtures and compare the values to results
from non-local density functional theory and to experiments.

5.5.1 Pure components: vapor-liquid interfacial properties

Similar to the procedure used by Sauer and Gross19 during the development of the dispersive
contribution in DFT, we use the alkane series to fit the results of the predictive density
gradient theory to experimental data and thus obtain the only (substance-independent)
model parameter ψ. The parameter is subsequently used to predict the surface tension
of all other pure substances and mixtures we examine. Minimizing the root-mean-square
deviation between calculated surface tensions from all data points of the DIPPR database46
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Figure 5.2: Surface tension of several n-alkanes. Comparison of results from predictive
density gradient theory (solid lines) and from density functional theory (dashed lines) to
experimental data46 (symbols).

for n-alkanes gives a value of ψ= 1.3286. Figure 5.2 compares results of the pDGT for most
of the alkanes used in the fit to measurements. We also include results of the full PCP-SAFT
DFT. Over a wide range of temperatures for n-alkanes from methane to n-octadecane, the
predictive density gradient theory is able to reproduce the results from density functional
theory well. Some deviations are seen at low temperatures, which is expected because the
two truncated gradient expansions introduced in our approach lose accuracy for increasingly
sharp interfaces.

To verify the predictive capability of the model, we examine surface tensions of various polar
or aromatic components in figure 5.3. The deviations of the predictive density gradient
results from DFT-results and from experimental data at low temperatures is apparent, but the
low-temperature behavior does not further deteriorate, compared with the results previously
seen for n-alkanes.

5.5.2 Mixtures: vapor-liquid interfacial properties

Predictive density gradient theory can be applied to calculate the surface tension of mixtures
without adjustable parameters. In the following, we apply the (optional) approximation
mentioned in section 5.3 that implies the geometric mixing rule ci j =

p

ciic j j. After calculating
the density profiles in the interface using the path function u, as described in section 5.3,
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Figure 5.3: Surface tension of various polar or aromatic components. Comparison of results
from predictive density gradient theory (solid lines) and from density functional theory
(dashed lines) to experimental data (symbols) for carbon dioxide47, dimethyl ether48, diethyl
ether49,50, benzene51 and 1,4-dioxane52.

we can validate the approximation by comparing it directly to the off-diagonal values of the
influence matrix. The results for the binary mixtures hexane/heptane and 1,4-dioxane/octane
are shown in figure 5.4. For the essentially ideal mixture of the two alkanes, the geometric
mean is indistinguishable from the off-diagonal element. In case of the more non-ideal mixture
with the weakly polar component 1,4-dioxane, there is a small deviation that decreases with
density.

We study the mixture of 1,4-dioxane with n-alkanes from n-hexane to n-decane. Due to the
similarity of the alkanes, one binary interaction parameter ki j was adjusted to experimental
data of the vapor liquid equilibrium and that parameter was applied to all mixtures. No
further parameter went into the calculation of the surface tension, so that we can indeed
refer to it as a prediction. In figure 5.5, the results from predictive density gradient theory are
compared to DFT results as well as to experimental data53. The agreement to experimental
data is very satisfying. For this work it is most important, however, to observe that results
from the predictive density gradient theory are in very good agreement to predictions from
DFT, because that confirms the approximations made in the derivation of the proposed theory
are sufficiently justified.

To further evaluate the capability of predictive density gradient theory, we calculate the
surface tension of the eight-component mixture wet gas + CO2, that was measured by Ng et
al.54. In figure 5.6 the surface tension is shown as a function of pressure for four different
temperatures. The results from predictive density gradient theory and density functional
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Figure 5.4: Elements of the influence matrix ci j, as well as the geometrical mean approx-
imation ci j =
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ciic j j over path function u. Binary mixtures of hexane/heptane (a) and
1,4-dioxane/octane (b) at T = 298.15K and equimolar liquid composition.
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theory are in good accordance for a multicomponent mixture. The deviation of predicted
results from experimental data at T = 283.15 K is explained by Mairhofer and Gross55 by a
deviation of the bulk densities from the PCP-SAFT model, which uses no binary interaction
parameters to describe this specific mixture.
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We further find it reassuring to confirm that density profiles across a vapor-liquid interface
of various substances in a mixture are well described by predictive density gradient theory.
Figure 5.7 indeed shows similar results from predictive density gradient theory and from DFT
for the density profiles of all species in the interface and both models are able to predict the
local enrichment (often referred to as ‘adsorption’) of the smaller alkanes (methane, ethane
and propane) in the interface.

100



5.6 Conclusion

5.6 Conclusion

A predictive density gradient theory is developed, based on density functional theory expressed
in terms of weighted densities. The formalism is illustrated with a PCP-SAFT Helmholtz energy
functional. Two assumptions were introduced in order to cast the DFT approach in the form
of a density gradient theory: (1) the weighted densities were gradient expanded to second
order, and (2) the reduced Helmholtz energy functional was expanded to first order.

Despite being able to calculate the full influence matrix as a function of temperature and local
densities in the interface, we apply the geometric mean ci j =

p

ciic j j as third assumption. This
enables simple numerical solution approaches which increase the solution speed significantly
compared to the underlying non-local DFT. We argue, that this approximation is excellent for
mixtures that are close to ideal and still applicable for more non-ideal mixtures.

The predictive density gradient theory implies no adjustable parameter for interfacial proper-
ties of pure components and mixtures. Results from the proposed theory are in very good
agreement to results of the underlying DFT model, both for pure substances and for mixtures.
The reduction in computational cost for predictive density gradient theory as opposed to DFT
can be meaningful in applications such as the simultaneous optimization of solvents and
processes56–58.

Appendix

5.A Treatment of vector weighted densities

If vector weighted densities from fundamental measure theory, of the form

~nα(r) =
∑

i

~ni
α
(r) =

∑

i

∫

ρi(r− r′) ~ωi
α
(r′)dr′, (5.A.1)

shall be included in the Helmholtz energy functional, the formalism of section 5.2 has to be
extended. Using a Taylor expansion of the density profile and integrating over the angles in
this case leads to

~ni
α
(r) = −∇ρi(r)

4
3
π

∞
∫

0

~ωi
αr(r)r

3 dr

︸ ︷︷ ︸

~ωi1
α

+ . . . . (5.A.2)
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The Taylor expansion of the reduced Helmholtz energy density has to include additional
terms, as

Φ({nα}, {~nα}) = Φ({n0
α
}) +

∑

i

scal
∑

α

∂Φ

∂ nα
ωi2
α
∇2ρi −

∑

i

vec
∑

α

∂Φ

∂ ~nα
·
�

~ωi1
α
∇ρi

�

+
1
2

∑

i j

scal
∑

αβ

∂ 2Φ

∂ nα∂ nβ
ωi2
α
ω

j2
β
∇2ρi∇2ρ j −

∑

i j

scal
∑

α

vec
∑

β

∂ 2Φ

∂ nα∂ ~nβ
·
�

ωi2
α
~ω

j1
β
∇2ρi∇ρ j

�

+
1
2

∑

i j

vec
∑

αβ

∂ 2Φ

∂ ~nα∂ ~nβ
:
�

~ωi1
α
~ω

j1
β
∇ρi∇ρ j

�

+ . . . . (5.A.3)

In the original Rosenfeld version, as well as in modified FMT, the second partial derivatives
with respect to the vector weighted densities can be simplified as

∂ 2Φ

∂ ~nα∂ ~nβ
= −

∂ 2Φ

∂ nα∂ nβ
I (5.A.4)

with the unit tensor I. Thus, after dropping all terms higher than second order in spatial
derivaitves and the first derivatives with respect to vector densities, that vanish in bulk phases,
eq. (5.A.3) can be simplified to

Φ({nα}, {~nα}) = Φ({n0
α
})+

∑

i

scal
∑

α

∂Φ

∂ nα
ωi2
α
∇2ρi−

1
2

∑

i j

vec
∑

αβ

∂ 2Φ

∂ nα∂ nβ
~ωi1
α
~ω

j1
β
∇ρi ·∇ρ j. (5.A.5)

The density dependent influence parameter becomes

β ci j = −
scal
∑

αβ

∂ 2Φ

∂ nα∂ nβ
(ωi2

α
ω

j0
β
+ωi0

α
ω

j2
β
)−

vec
∑

αβ

∂ 2Φ

∂ nα∂ nβ
~ωi1
α
~ω

j1
β

. (5.A.6)

5.B Derivation of the temperature-dependent and density-dependent influence

parameter using the direct correlation function

This appendix presents an alternative derivation of the influence parameter ci j(ρ(r), T ) of the
predictive density gradient theory (eqs. (5.A.6) and (5.10)). The direct correlation function
is defined as

c(2)i j (r1, r2) = −
δ2βF res

δρi(r1)δρ j(r2)
. (5.B.1)
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Using the general Helmholtz energy functional used in non-local DFT and including vector
weighted densities, this expression can be written as

c(2)i j (r1, r2) =−
∫ scal
∑

αβ

∂ 2Φ

∂ nα∂ nβ
ωi
α
(r− r1)ω

j
β
(r− r2)dr

− 2

∫ scal
∑

α

vec
∑

β

∂ 2Φ

∂ nα∂ ~nβ
·
�

ωi
α
(r− r1) ~ω

j
β
(r− r2)

�

dr

−
∫ vec
∑

αβ

∂ 2Φ

∂ ~nα∂ ~nβ
:
�

~ωi
α
(r− r1) ~ω

j
β
(r− r2)

�

dr.

(5.B.2)

With the same properties of the vector weight functions as in section 5.A, the expression can
be simplified for a local bulk approximation, as

c(2)i j (r12) = −
scal
∑

αβ

∂ 2Φ

∂ nα∂ nβ

∫

ωi
α
(r′)ω j

β
(r12− r′)dr′−

vec
∑

αβ

∂ 2Φ

∂ nα∂ nβ

∫

~ωi
α
(r′) · ~ω j

β
(r12− r′)dr′.

(5.B.3)

The convolution integrals appearing in this expression can be simplified for two spherically
symmetric functions.

∫

ωi
α
(r′)ωi

β
(r− r′)dr′ =

2π
r

∞
∫

0

r+r ′
∫

|r−r ′|

ωi
α
(r ′)ω j

β
(r ′′)r ′r ′′ dr ′′ dr ′ (5.B.4)

∫

~ωi
α
(r′) · ~ωi

β
(r− r′)dr′ =

π

r

∞
∫

0

r+r ′
∫

|r−r ′|

~ωi
αr(r

′) ~ω j
β r(r

′′)(r2 − r ′2 − r ′′2)dr ′′ dr ′ (5.B.5)

From the local approximation of the direct correlation function, we can calculate the local
influence parameter using the relation22

β ci j =
2π
3

∞
∫

0

c(2)i j (r)r
4 dr. (5.B.6)
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The integral over r can be solved analytically and the influence parameter can be brought
into the form

β ci j = −
scal
∑

αβ

∂ 2Φ

∂ nα∂ nβ
ω

i j
αβ
−

vec
∑

αβ

∂ 2Φ

∂ nα∂ nβ
~ω

i j
αβ

(5.B.7)

with

ω
i j
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=

4π2
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and
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=
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. (5.B.9)

5.C Partial derivatives of chain term

The theory described in this paper requires the calculation of the second partial derivatives of
the reduced Helmholtz energy density Φ with respect to all weighted densities. For the chain
contribution the first partial derivatives are (α,β ∈ {2, 3})

∂Φchain

∂ ρi
= (mi − 1)

�

ln (ρi) + 1− ln
�

ydd
ii λi

��

∂Φchain

∂ λi
= −(mi − 1)

ρi

λi

∂Φchain

∂ ζα
= −

∑

i

(mi − 1)
ρi

ydd
ii

∂ ydd
ii

∂ ζα
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and the second derivatives

∂ 2Φchain

∂ ρi∂ ρ j
= δi j

(mi − 1)
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.

The partial derivatives not in this list vanish. The partial derivatives of the cavity correlation
function are
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=
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6 Multiobjective optimization of PCP-SAFT parameters for water

and alcohols using surface tension data
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5707.

Copyright 2020 American Chemical Society. Additions or deletions compared to the published
work are marked with angular brackets.

With predictive methods, such as classical density functional theory and predictive density gradient
theory (pDGT), it is possible to model bulk phase properties and interfacial tensions using the
same model. For non-associating fluids, these models can be used to predict interfacial properties
for systems that lack experimental data. For associating components, however, predictions often
show large deviations to experiments, which is at least partially rooted in highly correlated
pure component parameters. Therefore, we use interfacial properties for discriminating pure
component parameters by amending the PCP-SAFT parameter estimation for water and alcohols
by including surface tension data in the objective function. To obtain a comprehensive comparison
between different association models, a multiobjective optimization is performed. By analyzing
the resulting pareto fronts, it is shown, that including a fitted dipole moment improves the results
for water but not for alcohols. The result of the multiobjective optimization is inconclusive about
the optimal choice of association scheme for water as the preferred model changes along the
pareto front. For small alcohols, in contrast to chemical intuition, the 4C association scheme gives
the best results. For longer alcohols, the pareto analysis shows the limits of the homosegmented
modeling approach.
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6.1 Introduction

Molecular-based equations of state like the statistical associating fluid theory (SAFT) fam-
ily1–8 have become commonly used in industrial applications9–12. Because the models are
based on a molecular model, few, physically meaningful parameters suffice to describe the
thermodynamic behavior of pure fluids and mixtures accurately over a wide range of con-
ditions. This robustness allows reliable predictions of properties for systems, with scarce or
without experimental data. However, the optimal strategy for obtaining the parameters of the
equation state is not clear and may depend on the envisaged application. In most cases, the
parameters are obtained by fitting pure component properties to experimental data. With the
prediction of phase behavior being an important application of SAFT type equations of state,
the standard input for the fits is the vapor pressure and liquid densities along the saturation
line. Other properties have been used, with the result that different sets of properties used
in the fit lead to different parameters. This effect is particularly noticeable for fluids, that
have strong associating interactions, like water13,14 and alcohols15. For these components,
there is also an ongoing discussion about the underlying association model that is shared
between the different SAFT versions and is usually described in the nomenclature of Huang
and Radosz4. Especially for water, both the chemical understanding and the results from
parameter estimation are inconclusive about the choice of association scheme, with the most
commonly chosen ones being 2B, 3B and 4C13,14.

A method to compare different association schemes more comprehensively than by fitting
single sets of parameters to given experimental data, was proposed by Forte et al.16. In their
multiobjective optimization approach, the residuals in vapor pressures and saturated liquid
densities are treated as separate objectives. The resulting pareto fronts, that contain optimal
parameter sets for varying weights of the two objectives, can be compared for different
association models. The comparison helps identifying weaknesses in models and allows the
assessment of additional constraints or degrees of freedoms, such as a fitted dipole moment.

A reason for the problems associated with fitting parameters for associating components
is the high number of parameters. Especially if only vapor pressures and saturated liquid
densities are considered, both monovariate functions of temperature, the parameters are
strongly correlated. The problem can be alleviated by calculating a subset of the parameters
(usually the association parameters) with ab initio methods and regressing the remaining
parameters17,18. Another possibility is the inclusion of additional properties in the objective
function. Popular choices are enthalpy of vaporization, speed of sound19 and compressibility
factor20 as they are properties that can be directly calculated from a residual equation of state
like the SAFT variants and are also experimentally available.
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6.2 Density functional theory

One property that is seldomly used as input for a parameter regression is the surface tension.
The obvious reason is, that a surface tension characterizes an inhomogeneous interface,
that can not be described by a simple bulk equation of state. There are empirical models,
that link the surface tension to bulk properties, often based on the expression by Macleod21

but their predictive capabilities are limited. To be consistent with the equation of state, a
molecular based approach is required. Notable studies in which equation of state parameters
of associating components are fitted to vapor pressures, liquid densities, and surface tensions
have been presented by Fu and Wu22, by Gloor at al.23, and more recently by Camacho
Vergara et al24 for a number of associating components including water and linear alcohols.

In this study, we will present the most prevalent methods for calculating surface tensions
based on a molecular model in the following sections. In section 6.4 we present the relevant
expressions of the PCP-SAFT model we used in this work and then show in section 6.5 how
we can use surface tension data as an input for a multiobjective optimization of PCP-SAFT
parameters. In section 6.6, we present the resulting pareto curves for water and alcohols
and discuss, how we can utilize them to discriminate between different models and how we
determine the optimal parameter set along the pareto front.

6.2 Density functional theory

Density functional theory25 (DFT) extends classical equilibrium thermodynamics to model
nanoscale inhomogeneous systems. Common applications are fluid-fluid interfaces and
confinement effects in porous media26–28. In place of an equation of state, the fluid is
modeled using a Helmholtz energy F(T, [ρ(r)]) that is a function of the temperature T and a
functional of the density profiles ρ(r) of all components. In an open system, specified with the
temperature and chemical potentials µ, the grand potential Ω= F −µ · N attains a minimum
when the system is in equilibrium. With the density profiles as internal degree of freedom,
this equilibrium condition can be written as a functional derivative, as

�

δΩ

δρ(r)

�

T,µ
= 0 ⇒

�

δF
δρ(r)

�

T
= µ. (6.1)

By using a Helmholtz energy density f (T, [ρ(r)]), that itself is a functional of the density pro-
files, structuring effects, such as adsorption layers, can be modelled with DFT. The Helmholtz
energy is obtained as F(T, [ρ(r)]) =

∫

f (T, [ρ(r)])dr. A powerful class of Helmholtz energy
functionals use a weighted density approach to account for these non-localities. This includes
functionals for hard spheres29–32, hard chains33,34 and also association35,36 and dispersive
attraction37,38. Mean field theories39,40 can also be written in this form. In these approaches,
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6 Multiobjective optimization of PCP-SAFT parameters for water and alcohols

the Helmholtz energy density is written as a function of weighted densities f ({nα}), that are
obtained by convolving the density profiles with corresponding weight functions ωα, as

nα(r) =

∫

ρ(r′) ·ωα(r− r′)dr′. (6.2)

The equilibrium condition, eq. (6.1), can thus be written as
∫

∑

α

∂ f
∂ nα
(r′)ωα(r

′ − r)dr′ = µ. (6.3)

For the calculation of the surface tension, the planar geometry of the interface can be
exploited to reduce the dimensionality of the equations. A one-dimensional density profile
ρ(z) is calculated from eq. (6.3). The surface tension γ then follows from

γ=

∫

( f (T, [ρ(z)])−ρ(z) ·µ+ p) dz (6.4)

with the pressure p in both bulk phases. With an efficient implementation of the convolution
integrals41 and a fast solver42, the surface tension of simple systems can be calculated
on todays hardware in fractions of a second. A typical computation time for the surface
tension of a pure substance is 0.1 s. This considerable speed is an advantage over molecular
simulations, especially in cases, where symmetry can be exploited. For applications, that
require a high number of surface tension calculations, DFT can, however, still be too slow.
Possible applications where this applies are simultaneous process and solvent design43, and
also the multiobjective parameter estimations, that we are concerned with in this work.

6.3 Predictive density gradient theory

As a simple function of temperature, the surface tension can be modeled using a variety
of models. To be able to make a prediction, however, it is necessary to have a description
consistent with the bulk equation of state. A step towards this direction presents density
gradient theory (DGT), often also referred to as square gradient theory. The concept was
already published by Van der Waals44 and later refined by Cahn and Hilliard45. Later, the
approach was coupled with molecular and cubic equations of state to attain a reliable model
to extrapolate surface tensions for pure components46–49 and mixtures50–55. In DGT, the
Helmholtz energy consists of a contribution from the local Helmholtz energy density f (ρ),
that is only a function (not a functional) of the local density profile ρ(r), and a correction
for inhomogeneous systems, that contains the gradient of the density profiles ∇ρ and the
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so-called influence matrix C , as

F =

∫

( f (ρ) +∇ρᵀC∇ρ) dr. (6.5)

In the standard approach, the pure component entries of the influence matrix c = diag (C)
are either fitted to experimental surface tension data or correlated with parameters of the
equation of state. The remaining matrix elements are often approximated using the geometric
combining rule C =

p
ccᵀ.

The necessity to determine an additional parameter for each component is eliminated in pre-
dictive density gradient theory (pDGT[, see chapter 5]). Starting from a non-local Helmholtz
energy functional, as used in DFT, an expression for the influence matrix is derived as

C = −
∑

αβ

�

∂ 2 f
∂ nα∂ nβ

�(0)
�

ω(2)
α
ω(0)
β

ᵀ
+ω(0)

α
ω(2)
β

ᵀ�
. (6.6)

The weights

ω(0)
α
= 4π

∞
∫

0

ωα(r)r
2dr (6.7)

and

ω(2)
α
=

2
3
π

∞
∫

0

ωα(r)r
4dr (6.8)

only depend on temperature and the second partial derivatives of the Helmholtz energy
density are evaluated using local bulk weighted densities n(0)

α
= ρ ·ω(0)

α
. Therefore, the

influence matrix can be evaluated locally as a simple function of temperature and density.
Since pDGT yields all elements of the influence matrix, no combining rule is necessary to
model interfacial tensions of mixtures. However, [in chapter 5] it was shown that to avoid the
solution of a boundary value problem, the off-diagonal elements of the influence matrix can
be approximated using the geometric combining rule, thus transforming the problem into the
solution of an algebraic equation. If the geometric combining rule is used, the surface tension
in DGT and pDGT can be calculated by applying a coordinate transform from the physical axis
to a path function s56,57. The path function has to be monotonous in the interfacial region; in
the simplest case it can be the density of a reference component. The surface tension follows
as the integral over the path function from its value in the vapor phase sV to its value in the
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liquid phase sL, as

γ=

sL
∫

sV

Æ

2( f −ρ ·µ+ p)
�p

c ·
dρ
ds

�

ds. (6.9)

To be able to solve this integral, the densities of all components have to be calculated iteratively
for every value of the path function. This calculation slows the computation and particularly for
pDGT, which requires expensive evaluations of the second partial derivatives of the Helmholtz
energy density, the speed advantage compared to DFT dwindles. This disadvantage is absent
in the one component case, where the density of the single component can be chosen as path
function. In this case, no iteration is necessary and the surface tension can be calculated
directly from

γ=

ρL
∫

ρV

Æ

2c( f −ρµ+ p)dρ. (6.10)

With the explicit expression for the influence parameter from pDGT, surface tensions of pure
components can be predicted swiftly (i.e. in the order of milliseconds) solely based on the
pure component properties of the underlying equation of state.

6.4 PCP-SAFT

The Helmholtz energy functional used in this work is based on the PCP-SAFT equation state
and was already described in previous work38. Since we are focused on the surface tension of
pure components in this work, we present concise expressions for the properties needed in
eq. (6.10) to calculate the surface tension of a pure component using pDGT with PCP-SAFT.
The Helmholtz energy density is split in contributions from different interactions, as

f = f ig + f hs + f chain + f disp + f polar + f assoc. (6.11)

Equation (6.6) is linear in the Helmholtz energy density. Therefore, the influence parameter
can also be written as a sum over contributions,

c = cig + chs + cchain + cdisp + cpolar + cassoc. (6.12)
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Ideal gas

The ideal gas contribution to the Helmholtz energy density of a pure component is known
from statistical mechanics as

β f ig = ρ
�

ln
�

ρΛ3
�

− 1
�

(6.13)

with the inverse temperature β =
1

kT
and the overall molecular thermal de Broglie wavelength

Λ(T ) which incorporates the entire single molecule partition sum. Since Λ also appears in
the chemical potential in eq. (6.10), its value has no influence on the surface tension and can
be ignored. The ideal gas contribution has no non-local parts, hence its contribution to the
influence parameter vanishes; cig = 0.

Hard spheres

The Helmholtz energy density contribution for the hard spheres is equal to the residual
Helmholtz energy density of the Carnahan-Starling equation of state58 times the segment
number m,

β f hs = mρ
4η− 3η2

(1−η)2
(6.14)

with the packing fraction η= 1
6πmd3ρ and the temperature dependent segment diameter7

d = σ
�

1− 0.12exp
�

−
3ε
kT

��

. (6.15)

The influence parameter depends on the choice of Helmholtz energy functional used. The
most common ones are the White-Bear or modified fundamental measure theory31,32, with

β chs,WB = −
πm2d5

180

�

29− 34η+ 17η2 − 3η3

(1−η)4
+

5
η

ln (1−η)
�

(6.16)

and the Kierlik-Rosinberg version59, with

β chs,KR = −
πm2d5

120
16− 11η− 2η2 + 3η3

(1−η)4
. (6.17)

[As shown in figure 5.1], the difference between the two models is negligible.
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Hard chains

For a pure component, the hard chain contribution to the PCP-SAFT equation of state can be
written compactly as

β f chain = −(m− 1)ρ ln

�

1− η

2

(1−η)3

�

. (6.18)

The corresponding expression for the influence parameter is

β cchain =
π

30
d5m(m− 1)

�

3
(1−η)2

−
2

(2−η)2

�

. (6.19)

Dispersive and polar attraction

Both dispersive and polar attraction is modeled using a weighted density approach with the
same weight function38. The Helmholtz energy density follows directly from the PCP-SAFT
equation of state7,60,61, as

β f disp + β f polar = ρ
�

ãdisp + ãpolar
�

(6.20)

where ã = A
NkT denotes a dimensionless Helmholtz energy7. The influence parameter requires

the derivative of the chemical potential contributions with respect to the density, as

β cdisp + β cpolar =
1
5
ψ2d2

�

∂
�

βµdisp + βµpolar
�

∂ ρ

�

T

(6.21)

The implementation of these second partial derivatives is tedious and error prone. It can be
automated with an acceptable loss in performance and no loss in precision using automatic
differentiation with hyperdual numbers62. The ψ parameter was introduced by Sauer et
al.38 as an effective range of attractive interactions. [In chapter 5], for pDGT its value was
redetermined as ψpDGT = 1.3286.

Association

For the association contribution, that was not included in [chapter 5], we use the functional
by Yu and Wu35 adapted to the PCP-SAFT equation of state. For a pure component, the
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Helmholtz energy density is

β f assoc = ρ
∑

A

NA

�

lnχA−
χA

2
+

1
2

�

(6.22)

with NA the number of association sites of kind A and χA the corresponding fraction of
unbounded sites. The model is generic with respect to the association scheme. The 2B model
is attained with NA = NB = 1, the 3B model corresponds to NA = 2, NB = 1 and the 4C model
means NA = NB = 2. If only two types of association sites are considered (as is the case for the
2B, 3B and 4C schemes), the fractions of unbounded sites can be calculated analytically, as

χA =

p

(1+ρk y(NA− NB))2 + 4ρk yNB +ρk y(NA− NB)− 1
2ρk yNA

(6.23)

and

χB = 1+
NA

NB
(χA− 1) (6.24)

with the effective association volume

k = σ3κAB
�

exp
�

εAB

kT

�

− 1
�

(6.25)

and the cavity correlation function at contact

y =
1− η

2

(1−η)3
. (6.26)

The influence parameter for this case can be calculated as

β cassoc = NANBχ
AχBd2k

�

f1(η)−
χA+χB

χA+χB −χAχB
f2(η)

�

−
d2

18ρ

�

NA lnχA+ NB lnχB
�

(6.27)

with

f1(η) =
16η5 − 100η4 + 227η3 − 200η2 + 30η

180(2−η)(1−η)5
(6.28)

and

f2(η) =
2η5 − 13η4 + 20η3 + 16η2 − 32η− 20

120(2−η)(1−η)5
. (6.29)
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6 Multiobjective optimization of PCP-SAFT parameters for water and alcohols

The derivation of this closed form expression for the influence parameter of the association
contribution is an adventurous endeavor, that we exercise in [appendix B.1].

6.5 Pareto optimization

To obtain a comprehensive comparison between different association schemes, we follow
the approach by Forte et al.16 and perform a pareto analysis. In our case, the first objective
function is the relative average absolute deviation (AAD) of bulk equilibrium properties (vapor
pressures and saturated liquid densities)

AADvle =
1
np

∑

i

�

�psat,calc
i − psat,exp

i

�

�

psat,exp
i

+
1
nρ

∑

i

�

�

�ρ
l,sat,calc
i −ρl,sat,exp

i

�

�

�

ρ
l,exp
i

. (6.30)

For water, since experimental data is abundant, we also include liquid and supercritical
densities in the fit. Because the surface tension becomes zero at the critical point, relative
errors can become divergingly large and thus bias the fit towards values close to the critical
point. To avoid this bias, for surface tensions, we define the AAD

AADsft =
1
nγ

∑

i

�

�γcalc
i − γexp

i

�

� (6.31)

as the second objective function.

The pareto fronts were calculated using the pygmo optimization suite63 and the MOEA/D
algorithm provided within. The solver uses a derivative free, global optimization approach
and is thus independent of initial values for the parameters. We recommend this approach
for these kind of optimization problems, with particularly expensive function evaluations and
the possibility of local minima due to small numerical uncertainties in the evaluation of the
integral in eq. (6.10) and the degeneracy of the parameters. Further, we want to be able to
search for minima in a large parameter space. This will always lead to parameter combinations
for which the influence parameter becomes negative or no vapor-liquid equilibrium can be
calculated. With a derivative free algorithm, these parameter combinations can be simply
suppressed by returning a large residual. In comparison, Jacobian-based algorithms tend
to have a faster convergence speed close to the solution, but generally require continuous
optimization problems.

For water, pseudo-experimental data is available based on the IAPWS formulations through
NIST64. For alcohols, data is less abundant. Using unfiltered or unweighted experimental
data introduces a bias towards lower temperatures, for which more experimental data is
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Figure 6.1: Pareto fronts for water and the PC-SAFT equation of state. The highlighted points
represent the parameter sets, that are shown in table 6.1. They are picked by specifying the
slope of the front, visualized by the tangents (dashed lines).

available. Therefore, we use the correlations recommended by Mulero et al.65 for the surface
tension and DIPPR correlations66 for vapor pressures and saturated liquid densities. For water
and 1-alcohols up to 1-decanol, data points are selected in equidistant steps in the range
between the triple point and the critical point. For the other alcohols, the temperature range
is reduced according to the availability of experimental data.

6.6 Results and discussion

6.6.1 Water

For water, pareto fronts for the three most prevalent association models 2B, 3B and 4C were
calculated. The results are shown in figure 6.1, where the average absolute deviation (AAD)
of the surface tension is shown versus the relative AAD of bulk phase properties, that contain
vapor pressures and liquid densities at equilibrium and sub- and supercritical isotherms. Each
point on the line represents the lower left corner of an area that it dominates. The union of
these areas is bounded by the pareto front.

The analysis allows a comprehensive comparison between different models. In this case, we
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Figure 6.2: Pareto fronts for water and the PCP-SAFT equation of state with a fitted dipole
moment. The results for PC-SAFT (dotted lines) are kept as reference. The highlighted points
represent the parameter sets, that are shown in table 6.1. They are picked by specifying the
slope of the front, visualized by the tangents (dashed lines).

observe, that in the most relevant part of the front, where a compromise between the two
objectives is made, the 2B model performs best. We can also compare different equations of
state or additional Helmholtz energy contributions. Therefore, in figure 6.2 the analysis is
repeated using the PCP-SAFT equation of state with a fitted dipole moment. As reference, the
pareto fronts of the PC-SAFT equation of state are kept as dotted lines. Due to the additional
degree of freedom, the residuals can be decreased significantly; especially for the residual
with respect to surface tensions.

An interesting observation can be made by examining figure 6.2: The question which associa-
tion model to use is inconclusive for water. In fact, every one of the three models considered
dominates the other two in some part of the diagram. The 4C model performs better than
the others if the focus is on obtaining small residuals for the bulk properties, whereas the 3B
model clearly reproduces the surface tensions best. Between these two ends, the 2C scheme is
dominating in a small part of the curve. This behavior can not be observed by just performing
a single objective optimization with fixed weights for the surface tension and bulk residuals
respectively. Nevertheless, it is at one point necessary to choose a point on the front to work
with. The choice can be made by finding the point with the smallest value of the weighted
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6.6 Results and discussion

equation association Mi mi σii εii/k µ κAi Bi εAi Bi/k
of state scheme (g/mol) (Å) (K) (D) (K)

PC-SAFT
2B 18.015 1.0000 2.9375 272.03 0.044480 3125.3
3B 18.015 1.6330 2.4570 238.32 0.037807 2749.0
4C 18.015 1.8668 2.3950 169.78 0.133738 1772.0

PCP-SAFT
2B 18.015 1.0000 3.0054 166.61 1.6152 0.098194 2667.3
3B 18.015 1.0488 2.9896 115.19 1.9374 0.038236 2377.9
4C 18.015 1.2808 2.8129 117.78 1.5050 0.082907 1784.1

Table 6.1: Pure-component parameters for the PC(P)-SAFT equation of state for water.

equation association AADvle AADpDGT AADDFT T range
of state scheme (%) (mNm−1) (mNm−1) (K)

PC-SAFT
2B 2.14 0.95 1.59 273 - 1073
3B 3.06 1.00 1.14 273 - 1073
4C 1.84 1.26 1.81 273 - 1073

PCP-SAFT
2B 1.96 0.68 1.27 273 - 1073
3B 2.52 0.20 1.41 273 - 1073
4C 1.87 0.97 2.12 273 - 1073

Table 6.2: AAD for the water parameters in table 6.1 and temperature range of experimental
data.

AAD defined by

AADw =
AADsft

refsft
+

AADvle

refvle
. (6.32)

where values for refsft and refvle define weights for the two objectives. The choice of weights is
somewhat arbitrary. For the water parameters, we use refvle = 2% and refsft = 0.7 mN m−1 (2%

of an average surface tension value of 35mN m−1). Visually, we are looking for the tangent to
the pareto front with the gradient − refsft

refvle
. These tangents and the corresponding points on the

pareto front are also shown as dashed lines in figures 6.1 and 6.2. The shape of the pareto
front allows us now to evaluate whether the parameters we obtain are robust with respect to
the choice of weights refsft and refvle. If the curvature of the pareto fronts surrounding the
chosen point is high, as is the case for the 2B polar model, a change of the weights will barely
alter the parameters. Then the arbitrariness introduced with a choice for weights only weakly
affects the proposed parameters.

The parameters corresponding to each of the three highlighted points in figures 6.1 and 6.2
are shown in table 6.1 with the corresponding AADs in table 6.2. For both equations of state,
the 2B model reaches the lower bound of m = 1 in the vicinity of the optimum. This has
the added value, that the parameter set can also be used effortlessly in a heterosegmented
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Figure 6.3: Phase diagram including isobars between 10bar and 1000 bar for water. Compar-
ison of PC(P)-SAFT results with reference data64.

approach where chain formation is accounted for by actual segments and not a real valued
chain length parameter m67. The fitted values of the dipole moment are close to the known
ideal gas value for water of 1.8546D. This suggests not optimizing the value and instead using
the literature value instead. We decided against this approach for two reasons. First, due to
its polarizability, the effective dipole moment of water is significantly higher in condensed
phases68 and we are mostly concerned with the properties of liquid water. Secondly, the
association and dipole contribution in PCP-SAFT are modeled independently of each other,
although, in fact, they are coupled. Most fluids are dominated by one of the two. We show in
the subsequent section that this is the case for alcohols. Water once again is an exception, as
we see that including a dipole moment improves the results. Due to these circumstances, we
prefer to treat the effective dipole moment as adjustable, not defined as the ideal gas dipole
moment known from quantum mechanics.

The phase diagram in figure 6.3 shows the phase envelope and a subset of the isobars used
in the parameter estimation for two of the parameter sets in table 6.1: The 2B model for
PC-SAFT and the 3B model for PCP-SAFT. Differences between the models are visible in the
description of the critical point and the surrounding region. Both models compare well to the
reference values obtained from NIST64.

In figure 6.4, the corresponding surface tensions are shown. The 3B polar model reproduces
the reference values better at temperatures close to the triple point and close to the critical
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Figure 6.4: Surface tension of water. pDGT results (full lines) and DFT results (dashed lines)
compared to reference data64.

point. The figure also includes the results obtained from full density functional theory (DFT)
in dashed lines. At low temperatures, pDGT tends to overpredict surface tensions compared to
DFT, with the DFT results being closer to experimental data for non-associating components.
This behavior now leads to an slight underprediction of the surface tension by DFT. Still,
we can argue that the parameters obtained with pDGT can also be used with DFT to model
interfacial phenomena like adsorption and water surfactant systems.

6.6.2 Alcohols

For linear alcohols up to 1-decanol, experimental data is available in the whole range from
the triple point to the critical point. To obtain comparable data sets for all components, we
use auxiliary models for the surface tension65, the vapor pressure66, and the liquid density66

at equilibrium, that themselves are fitted to experimental data and discretize them along
the temperature. The set of quasi-data compiled from these correlations is used to generate
pareto fronts analogously to the study with water. The results for linear alcohols are shown in
figure 6.5. The figures only include results for the non-polar PC-SAFT equation of state. The
curves from calculations, where the dipole moment was included as adjustable parameter, are
almost undistinguishable from the ones presented in figure 6.5. Therefore we do not consider
using dipole moments to model alcohols. The full results are shown in [appendix B.2].

The pareto fronts in figure 6.5 show a clear progression moving along the homologous series.
For small alcohols, the 4C model is clearly superior. At this point, we have to acknowledge that
it is rather unusual to model primary alcohols using the 4C association scheme, because the
scheme would indicate, that there are two hydrogen bond donor sites and two hydrogen bond
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6 Multiobjective optimization of PCP-SAFT parameters for water and alcohols

component association Mi mi σii εii/k κAi Bi εAi Bi/k
scheme g/mol (Å) (K) (K)

methanol 4C 32.042 2.4858 2.7309 101.08 0.119535 1834.8
ethanol 4C 46.069 3.0177 2.9146 124.58 0.100676 1810.4
1-propanol 4C 60.096 2.7558 3.3114 144.38 0.058107 1959.8
1-butanol 4C 74.123 3.3182 3.3476 163.66 0.072169 1862.1
1-pentanol 4C 88.150 3.2860 3.5783 179.75 0.076252 1824.6
1-hexanol 2B 102.177 3.3312 3.7483 270.86 0.002566 2778.9
1-heptanol 2B 116.203 4.2509 3.6209 252.76 0.003061 2700.9
1-octanol 2B 130.230 4.0012 3.8282 268.73 0.003110 2804.3
1-nonanol 2B 144.257 4.0471 3.9424 278.68 0.001491 3103.7
1-decanol 2B 158.284 4.1859 4.0421 281.29 0.002493 3023.6
1-dodecanol 2B 186.338 5.1403 3.9771 274.55 0.001267 3223.4

2-propanol 4C 60.096 3.7734 2.9580 136.16 0.097627 1718.8
2-butanol 4C 74.123 4.8327 2.9057 149.97 0.162615 1469.6
2-pentanol 4C 88.150 4.2950 3.2254 159.25 0.078709 1771.4
3-pentanol 4C 88.150 4.5094 3.1583 162.73 0.121993 1516.1
1,2-ethanediol 4C 62.068 2.2063 3.3447 211.90 0.041208 2550.3
1,2-propanediol 4C 76.095 3.4856 3.0837 183.10 0.084996 2268.8
glycerol 4C 92.095 2.2941 3.6607 299.78 0.019562 3069.7

Table 6.3: Pure-component parameters for the PC-SAFT equation of state for alcohols.

acceptor sites. Despite this not being the case for monohydric alcohols, the improvement in
the fit based on the result in figure 6.5 is unquestionable, especially for methanol and ethanol.
For the choice of parameters within the pareto front of the 4C model, the same approach
as for water was used with different weights refvle = 2% and refsft = 1.5 mN m−1. For longer
alcohols, starting from 1-butanol, the results are less conclusive regarding the best association
scheme and the advantage, that the 4C scheme has over the others dwindles. For chains
larger than 1-pentanol, the aforementioned weights would lead to undesirably high residuals
in the bulk equilibrium properties. In fact, in the optimizations a point emerges beyond which
no further reduction in the residual of the surface tension is possible. In the vicinity of this
point, the 2B model, which is also a popular choice for longer alcohols, has a slight edge.
To obtain this point, we increase the surface tension weight to refsft = 3 mN m−1. Due to the
sharp bend in the profile, however, the exact value of this weight is not particularly important.
The shape of the pareto fronts for large alcohols suggests, that the homosegmented approach
is not well suited to describe these systems. Due to the amphiphilic character of the alcohols,
a weak structuring at the interface can be expected. To model this structuring, an approach
that captures the density of individual segments is required.67,69

The parameters belonging to the highlighted points in figure 6.5 are displayed in table 6.3
with the corresponding AADs and temperature ranges in table 6.4. Both tables also include
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6.7 Conclusion

component association AADvle AADpDGT AADDFT T range
scheme (%) mNm−1 mNm−1 (K)

methanol 4C 4.00 0.89 0.68 176 - 509
ethanol 4C 2.51 1.38 1.07 180 - 503
1-propanol 4C 4.15 0.95 0.65 223 - 533
1-butanol 4C 4.94 1.14 0.88 245 - 558
1-pentanol 4C 3.64 0.80 0.51 273 - 573
1-hexanol 2B 0.76 4.16 3.90 243 - 603
1-heptanol 2B 1.85 3.16 1.93 258 - 623
1-octanol 2B 1.51 2.68 2.40 258 - 633
1-nonanol 2B 1.88 2.36 2.06 273 - 653
1-decanol 2B 1.63 1.85 1.54 283 - 683
1-dodecanol 2B 0.64 3.46 2.90 298 - 353

2-propanol 4C 3.23 0.97 0.94 273 - 353
2-butanol 4C 5.39 1.14 1.09 273 - 367
2-pentanol 4C 1.53 0.20 0.09 273 - 333
3-pentanol 4C 0.29 0.01 0.15 273 - 333
1,2-ethanediol 4C 3.61 1.39 1.76 264 - 471
1,2-propanediol 4C 1.75 1.56 1.21 293 - 453
glycerol 4C 2.33 0.69 2.58 293 - 475

Table 6.4: AAD for the alcohol parameters in table 6.3 and temperature range of experimental
data.

results for those secondary and polyhydric alcohols for which experimental data is available.
The full results for these components are shown [in appendix B.2]. Again, the 4C model is
able to reproduce the quasi experimental data best. The remarkably small residuals for some
components like 3-pentanol can be attributed to the smaller temperature range for which
experimental data is present.

6.7 Conclusion

Predictive density gradient theory was used to perform a multiobjective optimization for
PCP-SAFT parameters with the surface tension as one objective function and bulk phase
equilibrium properties (vapor pressure and liquid densities) as the second objective. The
method was used to quantitatively compare different models. For water, the model results
can be improved significantly by including a dipole moment in the parameter optimization.
The comparison between different association schemes is inconclusive, in the sense that the
optimal association scheme changes along the pareto front. Residuals in bulk properties are
lower for the 2B and 4C schemes, whereas the 3B scheme performs better if the focus is on
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6 Multiobjective optimization of PCP-SAFT parameters for water and alcohols

low residuals in surface tensions.

For small alcohols, we find that the 4C association scheme clearly delivers the best results,
although a 4C scheme is not conform to our chemical intuition and experience. For longer
alcohols, the analysis shows, that it is difficult to obtain a good compromise between bulk
phase properties and surface tensions. The residual with respect to surface tensions can only
be reduced at the expense of the description of bulk properties. This limitation points to a
weakness of the model, that assumes a homosegmented chain molecule.

The calculation of the surface tension with predictive density gradient theory requires evalua-
tions of the Helmholtz energy in the metastable and unstable regions of the phase diagram.
Thus, we argue that the inclusion of experimental surface tension data increases the robust-
ness of the PCP-SAFT parameters. Therefore, the parameters published are predestined but
not restricted to usage in studies of interfacial phenomena. This includes the adsorption in
porous media70,71 and nucleation phenomena for which water and alcohols are prevalent
components in studies72.
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Figure 6.5: Pareto fronts for linear alcohols. Comparison between different association
schemes for the PC-SAFT equation of state. The black crosses represent the parameter sets
shown in table 6.3 and the dashed lines visualize the specified slope of the front.
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7 Surfactant modeling using classical density functional theory

and a group contribution PC-SAFT approach

The content of this chapter is reproduced with permission from

P. Rehner, B. Bursik, J. Gross. Industrial & Engineering Chemistry Research 60.19
(2021): 7111-7123.

Copyright 2021 American Chemical Society. Additions or deletions compared to the published
work are marked with angular brackets.

Models for surfactants need to incorporate the amphiphilic character of the molecules to describe
key properties such as the adsorption at interfaces and the reduction of interfacial tensions. One
possibility is to model the surfactant molecules as heteronuclear chains. Therefore, we revisit
the heterosegmented density functional theory and present a theory consistent with the group
contribution perturbed-chain statistical associating fluid theory equation of state. The model is
used to study water/surfactant and water/surfactant/octane systems with surfactants from the
group of polyethylene glycol alkyl ethers, a commonly used group of nonionic surfactants. The
model parameters are obtained by fitting to pure component data of small surfactants. Binary
interaction parameters are required to model the water/alkane subsystem and to account for
the polarity of the head groups of the surfactant. The model is able to reproduce the significant
enrichment of surfactant molecules at both vapor–liquid surfaces and liquid–liquid interfaces and
the corresponding reduction of interfacial tensions. For liquid–liquid interfaces, the competing
solubility of the surfactant in both phases has to be taken into account when searching for an
optimal surfactant molecule.
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7.1 Introduction

Surfactants, a blend of surface active agents, constitute an important class of chemicals. They
are used in a variety of industrial processes and household applications due to their significant
influence on interfacial properties. The many important applications include emulsifiers
in the food industry, detergents in cleaning products, soaps in personal care products, or
solubilizers in the oil industry, for example, in enhanced oil recovery1. Surfactants generally
consist of a hydrophilic head and a hydrophobic tail. Due to this amphiphilic character,
surfactants adsorb at interfaces, which decreases the interfacial tension, or form complex
mesostructures such as micelles or bilayers. The unfavorable interactions of hydrophilic head
groups with a hydrophobic solvent (e.g., an alkane) or vice versa increase the free energy of
a homogeneous solution of surfactant molecules. By adsorbing at an interface or by forming
mesostructures unfavorable interactions are reduced, which lowers the free energy; although,
a more ordered fluid structure entails an increase in entropy that opposes molecular order
and local enrichment.

To reduce the substantial financial or temporal resources associated with the experimental
studies of surfactant behavior2,3, theoretical approaches are required. Models that are based
on a molecular understanding of the surfactant molecules can improve the understanding of
surfactant phenomena on a nanoscale and reduce the dependency on experimental techniques.
Extensive surfactant research has been conducted using different surfactant models and
theoretical frameworks. Early on, the theory of molecular thermodynamics was successfully
applied to the study of surfactants4–6 and has been improved and expanded since7–9. It
models the free energy of quasi-isotropic micellar systems and is therefore able to predict
properties such as the critical micelle concentration and surface tensions efficiently. To also
obtain an understanding of the structure of micelles or surfactants adsorbed at interfaces,
a statistical mechanical approach is required that is able to capture the local densities in
microscopically inhomogeneous systems. In atomistic models, surfactant molecules consist of
atoms or small groups of atoms. The interaction potentials between those atoms or groups
explicitly include chemical bonds, bond angles, or electrostatic interactions10. The two main
frameworks which are employed for atomistic surfactant models are molecular dynamics11–13

and Monte Carlo14 simulations. However, the length- and timescales for many practical
systems are out of reach for atomistic simulations15. Coarse-grained models address this
challenge by grouping together a larger number of atoms. These models can be classified
based on whether the coarse-grained groups are located on a predefined lattice10. Both,
more efficient lattice16–18 and more realistic nonlattice19,20 models, were applied to surfactant
systems. Mesoscale approaches capture even larger time- and length scales10. Dissipative
particle dynamics achieves this by modeling large groups of atoms and including dissipative
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and random forces21. It was utilized to study the formation of smectic mesophases of surfactant
molecules22 and more recently to study the interfacial properties of water/octane/surfactant
systems.23 As a second mesoscale approach, lattice gas simulations are dynamic simulations
on a lattice with a propagation and a collision step24. Self-assembling structures such as
spherical or wormlike micelles and a sponge phase were obtained with this approach in a
three-dimensional ternary system of water, oil, and surfactant.25

In contrast to the methods described so far, self-consistent field theory26 and (classical) density
functional theory (DFT),27 which are based on statistical thermodynamics, predict density
profiles of components or coarse-grained groups without simulating their trajectories28. Self-
consistent field theory determines the free energy by evaluating the path integral of each
molecule in a mean field29. It was applied, for example, to diblock copolymer surfactants
in homopolymer blends to investigate micelle formation and interfacial tensions30–32. In
self-consistent field theory, long-range attractions and compressibility are often neglected,
which is a disadvantage compared to DFT33. DFT represents a mesoscopic modeling approach,
which achieves high computational efficiency, while preserving a clear physical basis and
high theoretical versatility34. A further advantage of DFT is the direct connection of model
parameters to the underlying physics. This connection is often nontrivial for coarse-grained
methods35. Applying the equilibrium conditions in DFT delivers density profiles of components
in a system by minimizing the grand potential functional. This requires a suitable expression
for a Helmholtz energy functional, which is not known exactly for real fluids36.

The mean-field approach of da Gama and Gubbins37 was one of the first DFT models, which
was applied to surfactant systems. They studied a ternary mixture of water, oil, and surfactants
and investigated the reduction of interfacial tension as results of surfactant adsorption to the
liquid–liquid interface. All molecules were modeled as (single) hard spheres with mean-field
attraction. An orientational vector was included in the surfactant molecule to account for
its amphiphilic character. These model molecules are often referred to as Janus particles38.
The approach was used to study the surfactant phase behavior and interfacial properties
in planar and curved systems39–41, in confinement or at a single wall38,42–44, and using
charged surfactants45,46. In some works, the surfactant molecule is treated as a dimer
consisting of a hydrophobic and a hydrophilic hard sphere, connected either by an entropy
term47–49 or by a bonding potential50. Geometry-based DFT models with solely repulsive
interactions were developed51,52 based on the fundamental measure theory (FMT) of Rosenfeld
for convex bodies53. The surfactant molecules, consisting of a hard sphere as the head and
an infinitely thin needle as the tail, adsorb to the interface in binary surfactant-needle and
ternary surfactant-needle-sphere systems. More detailed approaches model surfactants as
chains of spheres, for example, as in the early work of Stillinger54. The combination of DFT
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and self-consistent field theory using chain surfactants allowed for the study of interfaces in
1D systems55 and of surfactant mesostructures in 3D systems29,35.

A key in DFT is to construct accurate approximations for the Helmholtz energy functional36.
One approach is to expand expressions for the Helmholtz energy from the bulk equations
of state to inhomogeneous systems, which provides a unified framework for the treatment
of homogeneous and inhomogeneous systems. Members of the family of statistical associ-
ating fluid theory (SAFT)56,57 equations of state are often utilized in this context. SAFT is
based on the first-order thermodynamic perturbation theory (TPT1) by Wertheim58–62 and
models molecules as chains of spherical segments. Tripathi and Chapman63,64 developed
a DFT based on SAFT for homosegmented chains and termed it interfacial SAFT (iSAFT).
iSAFT was modified by Jain et al.65 to make it applicable to heterosegmented chains. The
model was applied to chain surfactants with hard sphere and hard chain contributions and
a mean-field attraction. The interaction energy was set to zero for unlike interactions to
model the amphiphilic character of surfactants15. With this model, the influence of the
surfactant structure on interfacial tensions and density profiles at the oil–water interface were
investigated. A more elaborate model with explicit association was employed to study the
formation of micelles, inverse micelles, and surface tensions at the vapor–liquid interface28.
The model was also extended to block copolymers66 and reformulated in a density gradient
theory67.

Several variations of SAFT have been proposed since its development: soft-SAFT68,69, SAFT
with a variable range of the potential70,71, SAFT-γ Mie,72,73 and perturbed-chain SAFT (PC-
SAFT)74–79. While in SAFT, the dispersion contribution of individual segments on a chain is
equal to the contribution of nonbonded segments57, PC-SAFT incorporates the chain structure
in the dispersion term, which improves the description of the phase behavior for several
systems75. PC-SAFT was applied to study bulk properties and phase equilibria in a variety
of complex systems76,80–82. Subsequently, a Helmholtz energy functional based on PC-SAFT
was developed83,84 and applied to study vapor–liquid interfaces of pure components85,86

and mixtures87, liquid–liquid interfaces88, adsorption in porous media89,90, and interfacial
properties of nanodroplets [see chapters 3 and 4]. Recently, a model that combines the
modified iSAFT by Jain et al.65 with the group contribution version of PC-SAFT91 was developed
in our group and applied to real systems92.

In this work, the DFT approach based on the group contribution version of PC-SAFT is
revised, and its capability to describe and predict surfactant phenomena is investigated. The
model is applied to nonionic surfactants known as polyethylene glycol alkyl ethers. It is
parametrized using experimental data for pure component properties of small surfactant
molecules. The group contribution approach then allows a robust extrapolation to longer
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surfactants. For both, binary surfactant/water systems in vapor–liquid equilibrium and ternary
surfactant/octane/water systems in liquid–liquid equilibrium, the model is able to capture
the key surfactant properties: the accumulation of surfactant molecules in the interface and
a significant reduction of interfacial tensions.

7.2 Classical Density functional theory

In an open, inhomogeneous system at constant temperature T , chemical potentials µi of all
species, and volume V , the grand potential Ω is minimal at equilibrium. With the density
profiles ρi(r) of all species i in the system as internal degrees of freedom, this minimization
can be obtained by setting the functional derivative of Ω to zero, as

δΩ

δρi(r)
= 0 ∀i. (7.1)

The grand potential can be written in terms of the Helmholtz energy functional F , that only
depends on interactions intrinsic to the fluid phase, as

Ω= F −
∑

i

∫

ρi(r)
�

µi − V ext
i (r)

�

dr (7.2)

with the chemical potentials µi and the external potential V ext
i (r). The ideal gas contribution

to the Helmholtz energy is known from statistical mechanics; therefore, it is convenient to
split the Helmholtz energy into an ideal part and a residual part, as

βF =

∫

∑

i

ρi(r)
�

ln
�

ρi(r)Λ
3
i

�

− 1
�

dr+ βF res (7.3)

with the inverse temperature β = 1
kB T and the effective de Broglie wavelength Λi. Inserting

eqs. (7.2) and (7.3) in (7.1) results in the expression, commonly referred to as Euler–Lagrange
equation,

ln
�

ρi(r)Λ
3
i

�

+
δβF res

δρi(r)
= β

�

µi − V ext
i (r)

�

∀i. (7.4)

With a model for the residual Helmholtz energy functional, eq. (7.4) can be used to determine
the density profiles ρi(r) of an inhomogeneous system.

A common application of DFT is the calculation of surface or interfacial tensions. To obtain
these quantities, the density profile is solved for a one-dimensional cartesian grid in the
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7 Surfactant modeling using DFT and a group contribution PC-SAFT approach

absence of an external potential using the coexistence densities as boundary values. The
surface or interfacial tension γ can then be calculated from

γ=
Ω−Ωbulk

A
=

∞
∫

−∞

�

f (z)−
∑

i

ρi(z)µi + p

�

dz (7.5)

with p the bulk pressure, z as the coordinate in the normal direction of the interface, and A

as the area perpendicular to the z-axis. The Helmholtz energy density f , with F =
∫

f (r)dr,
is in general itself a functional of the density profiles of all species.

7.2.1 DFT for heterosegmented chains

The model for heterosegmented chains used in this work is based on the work by Jain et
al.65, which itself is based on Wertheim’s thermodynamic perturbation theory58,59. Instead of
calculating the density profiles of molecules in the system, the approach models the density
profiles of the individual segments, from which the molecules are formed. The model is
rewritten to be consistent with the gc-PC-SAFT equation of state in the bulk limit and to allow
for a simpler and more generic implementation. The residual Helmholtz energy is split into
different contributions, according to

F res = Fbond + Fhs + Fdisp + F assoc. (7.6)

While the contributions for hard spheres (hs), dispersive attraction (disp), and association
(assoc) appear in a similar way in homosegmented DFT models, the contribution due to
covalent bonds (bond) has to be included in the segment based approach. The starting
point is the inhomogeneous version of Wertheim’s perturbation theory93, that describes the
Helmholtz energy of systems of associating particles:

βFbond =

∫

∑

i

∑

α

∑

α′

ρiα(r)
�

lnχiαα′(r)−
χiαα′(r)

2
+

1
2

�

dr (7.7)

Here, ρiα(r) is the density of segment α of component i, χiαα′ is the fraction of non-bonded
association sites for the bond between segment α and α′, and α′ is summed over all the
segments that are bonded to segment α. The values for χiαα′ are determined by the set of
implicit integral equations

χiαα′(r) =

�

1+

∫

ρiα′(r
′)χiα′α(r

′)∆iαα′(r, r′)dr′
�−1

. (7.8)
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7.2 Classical Density functional theory

For tangentially bonded segments with diameters diα and using the common approximation
for the contact cavity correlation function of an inhomogeneous fluid

yiαα′([ρi(r)], r, r′)≈
Æ

yiαα′(r)yiαα′(r′), (7.9)

the association strength ∆iαα′(r, r′) can be written as

∆iαα′(r, r′) = K
δ(|r− r′| − diαα′)

4πd2
iαα′

︸ ︷︷ ︸

ωiαα′
chain(r−r′)

Æ

yiαα′(r)yiαα′(r′) (7.10)

with the constant K that contains the association energy and is going towards infinity, when
covalent bonds are considered, the distance diαα′ =

1
2 (diα + diα′) between the segments, and

the bulk phase cavity correlation function at contact yiαα′(r) evaluated locally. To facilitate
the derivation, we introduce the property χ̂iαα′ as

χ̂iαα′(r) = χiαα′(r)
Æ

yiαα′(r) =

�

yiαα′(r)
− 1

2 + K

∫

ρiα′(r
′)χ̂iα′α(r

′)ωiαα′

chain(r− r′)dr′
�−1

. (7.11)

We further define a chain contribution F̂ chain that simplifies to the chain contribution in SAFT57

when evaluated at bulk conditions, as

β F̂ chain = −
1
2

∫

∑

i

∑

α

∑

α′

ρiα(r) ln yiαα′(r)dr. (7.12)

The residual Helmholtz energy functional, eq. (7.6), can then be re-summed as

F res = F̂bond + F̂ chain + Fhs + Fdisp + F assoc
︸ ︷︷ ︸

F̂ res

(7.13)

with the modified contribution for covalent bonds

β F̂bond = βFbond − β F̂ chain =

∫

∑

i

∑

α

∑

α′

ρiα(r)
�

ln χ̂iαα′(r)−
χ̂iαα′(r)
2yiαα′(r)

+
1
2

�

dr (7.14)
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7 Surfactant modeling using DFT and a group contribution PC-SAFT approach

To calculate the functional derivative of F̂bond with respect to the density profile, the approach
by Michelsen and Hendriks94 can be used. Therefore, the property

Q =

∫

∑

i

∑

α

∑

α′

ρiα(r)
�

ln χ̂iαα′(r)−
χ̂iαα′(r)
yiαα′(r)

+ 1
�

dr

−
K
2

∫ ∫

∑

i

∑

α

∑

α′

ρiα(r)ρiα′(r
′)χ̂iαα′(r)χ̂iα′α(r

′)ωiαα′

chain(r− r′)drdr′ (7.15)

is defined. When evaluated at the solution of eq. (7.11), we find Q = β F̂bond and δQ
δχ̂iαα′

= 0.
As a result, the functional derivative of β F̂bond can be calculated by evaluating the partial
derivative of Q at constant χiαα′, as

δβFbond

δρiα(r)
=
�

δQ
δρiα(r)

�

χ̂iαα′

=
∑

α′

�

ln χ̂iαα′(r)−
χ̂iαα′(r)
yiαα′(r)

+ 1
�

+

∫

∑

j

∑

β

∑

β ′

ρ jβ(r
′)
χ̂ jββ ′(r′)

y jββ ′(r′)2
δ y jββ ′(r′)

δρiα(r)
dr′

−
∑

α′

χ̂iαα′(r)K

∫

ρiα′(r
′)χ̂iα′α(r

′)ωiαα′

chain(r− r′)dr′. (7.16)

Using eq. (7.11) and evaluating the limit of complete association (χ̂iαα′ → 0), the derivative
simplifies to

δβFbond

δρiα(r)
=
∑

α′

ln χ̂iαα′(r). (7.17)

The functional derivative is inserted in the Euler–Lagrange equation, resulting in

ln
�

ρiα(r)Λ
3
iα

�

+
∑

α′

ln χ̂iαα′(r) +
δβ F̂ res

δρiα(r)
= β

�

µiα − V ext
iα (r)

�

. (7.18)

Equations (7.11) and (7.18) have to be solved simultaneously to obtain the density profiles.
Analogous to Jain et al.65, for linear molecules, the Euler–Lagrange equation is rewritten as

ρiα(r) = Λ
−3
i eβ

�

µi−
δF̂res

δρiα(r)
−V ext

iα (r)
�

Î1,iα Î2,iα (7.19)
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with the effective de Broglie wavelength Λi =
∏

αΛiα and the chemical potential µi =
∑

αµiα

of the chain. The integrals Î1,iα and Î2,iα are evaluated iteratively, as

Î1,i1(r) = 1 (7.20)

Î1,iα(r) =

∫

Î1,iα−1(r
′)e−β

�

δF̂res

δρiα(r′)
+V ext

iα (r
′)
�

ωiαα−1
chain (r− r′)dr′ α > 1 (7.21)

and

Î2,isi
(r) = 1 (7.22)

Î2,iα(r) =

∫

Î2,iα+1(r
′)e−β

�

δF̂res

δρiα(r′)
+V ext

iα (r
′)
�

ωiαα+1
chain (r− r′)dr′ α < si (7.23)

with si the number of segments on chain i. The formalism presented in this section is equivalent
to the original version by Jain et al.65 and can also be extended to branched molecules95.
However, it has advantages with respect to its implementation. The model is strictly separated
from the implementation and solution of the Euler–Lagrange equation. The only properties
that are required to solve for the density profiles are the segment diameters diα and the
residual Helmholtz energy functional F̂ res. In addition, these equations are appealing and
convenient because they resemble the expressions for weighted densities: the recurrence
integrals Î1,iα and Î2,iα are written as convolutions that can be rapidly evaluated using a fast
Fourier transform.

7.2.2 Calculation of functional derivatives

We focus on Helmholtz energy functionals, that can be expressed using weighted densities.
This includes functionals based on fundamental measure theory96, local and weighted density
approximations97, and also mean field theory98,99. In these approaches, the Helmholtz energy
density f , which itself is a functional of the density profiles, can be written as a function of a
set of weighted densities nλ, as

F =

∫

f [{ρiα(r)}]dr=

∫

f ({nλ(r)})dr. (7.24)

The weighted densities are obtained as a convolution of the density profiles with corresponding
weight functions ωiα

λ
, as

nλ(r) =
∑

i

∑

α

niα
λ
(r) =

∑

i

∑

α

∫

ρiα(r
′)ωiα

λ
(r− r′)dr′. (7.25)
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7 Surfactant modeling using DFT and a group contribution PC-SAFT approach

The general form of the functional derivatives required in the Euler–Lagrange equation is
thus

δF
δρiα(r)

=

∫

∑

λ

∂ f
∂ nλ
(r′)ωiα

λ
(r′ − r)dr′. (7.26)

For spherically symmetric scalar weight functions, we find ω(r) =ω(−r), whereas for spher-
ically symmetric vector weight functions, we find ~ω(r) = − ~ω(−r). Thus eq. (7.26) can be
rewritten in terms of convolution integrals, as

δF
δρiα(r)

=

∫ scalar
∑

λ

∂ f
∂ nλ
(r′)ωiα

λ
(r− r′)dr′ −

∫ vector
∑

λ

∂ f
∂ ~nλ
(r′) · ~ωiα

λ
(r− r′)dr′. (7.27)

For a generic implementation, each Helmholtz energy contribution needs to provide a set of
weight functionsωiα

λ
and an expression for the Helmholtz energy density f as a function of the

corresponding weighted densities. With the use of dual numbers, the partial derivatives needed
in eq. (7.27) can be calculated exactly and automatically. In instances, where simplifications
in the derivatives can be applied, the analytic derivatives can be implemented instead, to
speed up the evaluation. Convolution integrals like the ones appearing in eqs. (7.21), (7.23),
(7.25) and (7.27) can be solved efficiently using a fast Fourier transform100.

7.3 gc-PC-SAFT Helmholtz energy functional

The framework presented in the last section requires the diameter diα of the segments and
one or more expressions that constitute the residual Helmholtz energy functional F̂ res. We
use the group contribution version of the PC-SAFT equation of state91 to provide these
expressions. In this model, the segments are described with three necessary parameters, the
size parameter σiα, the energy parameter εiα and the length parameter miα. As opposed to
the homosegmented PC-SAFT equation of state, in which m characterizes the (noninteger)
number of spherical segments forming a chain and is expected to be larger than or equal to 1,
the values of miα are smaller than 1, which takes into account the fusing of spherical segments
in the packing fraction. A component consisting of a single segment requires mi1 = 1 to be
consistent with the homosegmented equation of state without adding an additional chain term.
For associating segments, the number of association sites NA

iα and N B
iα, the effective association

volume parameter κAB
iα and the association energy εAB

iα have to be specified additionally.

The segment diameter diα needed in the calculation of ωiαα′
chain(r), as well as for the other
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7.3 gc-PC-SAFT Helmholtz energy functional

contributions shown below, is defined as75

diα = σiα

�

1− 0.12e−3βεiα
�

. (7.28)

Throughout this work we use single indices for pair potential parameters between like
segments, that is, we write σiα instead of σiαiα.

Chain contribution

Based on eq. (7.12), the Helmholtz energy density contribution for the chain term reads

β f̂ chain = −
1
2

∑

i

∑

α

∑

α′

ρiα ln yiαα′ . (7.29)

The cavity correlation function is calculated from76

yiαα′ =
1

1− ζ3
+

diαdiα′

diα + diα′

3ζ2

(1− ζ3)
2 +

�

diαdiα′

diα + diα′

�2 2ζ2
2

(1− ζ3)
3 . (7.30)

The two weighted densities ζ2 and ζ3 are obtained using the corresponding weight functions
ωiα
ζ2
= miα

8diα
Θ(diα − |r|) and ωiα

ζ3
= miα

8 Θ(diα − |r|).

Hard sphere contribution

The hard sphere contribution models a fluid consisting of repulsive spheres of diameter diα

using the White-Bear or modified fundamental measure theory101,102. The Helmholtz energy
density is given by

β f hs = −n0 ln (1− n3)+
n1n2 − ~n1 · ~n2

1− n3
+
�

n3
2 − 3n2~n2 · ~n2

� n3 + (1− n3)
2 ln (1− n3)

36πn2
3 (1− n3)

2 . (7.31)

The fusion of the segments is accounted for by including the parameter miα in the weight func-
tions for the four scalar weighted densitiesωiα

3 (r) = miαΘ(diα/2−|r|),ωiα
2 (r) = miαδ(diα/2−|r|),

ωiα
1 (r) = ω

iα
2 (r)/2πdiα and ωiα

0 (r) = ω
iα
2 (r)/πd2

iα, and the two vector weighted densities
~ωiα

2 (r) = miα
r
|r|δ (diα/2− |r|) and ~ωiα

1 (r) = ~ω
iα
2 (r)/2πdiα.
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Dispersive attraction

The dispersive attraction is modeled using a weighted density approach. The Helmholtz
energy density

β f disp = −2πI1(m,η)
∑

i

∑

j

∑

α

∑

β

miαm jβ ρ̄iαρ̄ jβ

εiα jβ

kB T
σ3

iα jβ

−πmC1(m,η)I2(m,η)
∑

i

∑

j

∑

α

∑

β

miαm jβ ρ̄iαρ̄ jβ

�

εiα jβ

kB T

�2

σ3
iα jβ (7.32)

sums over all pairs of segments76. The expressions for I1, I2 and C1 are taken directly from
the original publication75. To evaluate them, the packing fraction η and an average chain
length m are required. While the expression for the packing fraction in an inhomogeneous
and heteronuclear system

η=
π

6

∑

i

∑

α

miαρ̄iαd3
iα (7.33)

is straightforward, the average chain length is defined more arbitrarily, as

m=

∑

i

∑

α ρ̄imiα
∑

i ρ̄i
with ρ̄i =

∑

α

ρ̄iα

si
(7.34)

with si the number of segments on molecule i. The weighted densities ρ̄iα are obtained using
the weight functions ωiα

disp =
Θ(ψdiα−|r|)

4
3πψ

3d3
iα

with ψ= 1.5357 as a model constant92.

Association

For the association contribution, the model by Yu and Wu103 is used. In contrast to the model
by Segura et al.93, which was used above to derive the expression for chain formation, it does
not require additional evaluations of convolution integrals during the solution of the monomer
fractions χA

iα. Instead, it uses the weighted densities niα
0 , niα

2 , n3 and ~niα
2 from the fundamental

measure theory for the hard-sphere contribution. The Helmholtz energy density reads

β f assoc =
∑

i

∑

α

niα
0

miα
ξiα

∑

A

NA
iα

�

lnχA
iα −

χA
iα

2
+

1
2

�

(7.35)
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with index A running over all kinds of association sites in the system. The fractions of
nonbonded sites χA

iα are determined by

χA
iα =

 

1+
∑

j

∑

β

n jβ
0

m jβ
ξ jβ

∑

B

N B
jβχ

B
jβ∆

AB
iα jβ

!−1

(7.36)

and have to be solved iteratively at every grid point. A stable and fast algorithm was proposed
by Michelsen104. Using the regular combining rules, the association strength ∆AB

iα jβ is given by

∆AB
iα jβ =

Ç

σ3
iακ

AB
iασ

3
jβκ

AB
jβ

�

e
β
2

�

εAB
iα +ε

AB
jβ

�

− 1
�

yassoc
iα jβ . (7.37)

The cavity correlation function

yassoc
iα jβ =

1
1− n3

+
diαd jβ

diα + d jβ

n2ξ

2 (1− n3)
2 +

�

diαd jβ

diα + d jβ

�2 n2
2ξ

18 (1− n3)
3 (7.38)

contains the factor ξ, which together with the factors ξiα in the Helmholtz energy density
accounts for the inhomogeneity of the system. They are calculated using103

ξiα =
~niα

2 · ~n
iα
2

niα
2

2 and ξ=
~n2 · ~n2

n2
2

. (7.39)

7.4 Surfactant model

The class of surfactants, that this work aims to model are polyethylene glycol alkyl ethers.
The chemical structure of these molecules is given by HO (CH2 CH2 O)j (CH2)i–1 CH3. To
distinguish between the different molecules, the notation CiEj is introduced with i the number
of carbon atoms in the alkyl tail and j the number of ethylene glycol segments. As shown
in figure 7.1, we model these molecules by splitting each head group into two individual
segments. All head segments are treated as equal, except for the outermost segment H1

which contains the hydroxy group and is thus modeled using two association sites. Because
this study is limited to linear chains, the tail groups are modeled as CH2 and CH3 segments.
However, parameters for branched alkyl groups are also available in gc-PC-SAFT91. Figure 7.1
also shows the structures of water and octane, the two solvents used in this work. Water is
modeled as a single segment with two association sites and octane consists of the same CH2

and CH3 groups as the tail of the surfactant.

The parameters for water were obtained from [the] previous study [in chapter 6], that
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7 Surfactant modeling using DFT and a group contribution PC-SAFT approach

H2O

water

CH3 CH2 CH2 CH2 CH2 CH2 CH2 CH3

octane

H1 H2 H2 H2 CH2 CH2 CH2 CH2 CH3

surfactant (C5E2)

Figure 7.1: Surfactant and solvent models used in this work. Every ethylene glycol group
is split into two segments. Water and the outermost head segment of the surfactant each
possess two association sites.

Group MW / g/mol m σ / Å ε/kB / K scheme κAB εAB/kB / K
H2O 18.015 1.0 2.9375 272.03 2B 0.044480 3125.3
CH3 15.035 0.77247 3.6937 181.49
CH2 14.027 0.79120 3.0207 157.23
H1 39.034 0.80136 3.4573 195.68 2B 0.044812 2771.3
H2 22.027 0.80136 3.4573 195.68

Table 7.1: Segment parameters used in this work. [The parameters for water are based on
chapter 6 and those for CH2 and CH3 are used from literature91.]

included surface tension data in the parameter estimation. The study does not clearly identify
an optimal association scheme for water using PC-SAFT. The 2B105 association scheme
(NA = N B = 1) was selected because in the published parameter set m = 1 and thus, the
chain contribution vanishes and the parameters can be used both in a heterosegmented and
homosegmented context.

The parameters for CH2 and CH3 are taken from the original version of the gc-PC-SAFT
equation of state91. The parameters of the head groups were determined by fitting them
to experimental data for vapor pressures and liquid densities of small polyethylene glycol
alkyl ethers. To reduce the number of degrees of freedom and thus to avoid overfitting, the
parameters m, σ and ε of the head groups H1 and H2 were defined to be equal. The resulting
surfactant parameters, together with the other segment parameters applied in this work are
shown in table 7.1.

Figure 7.2a) shows results for the vapor pressures. With the exception of the smallest surfactant
C1E1, the model gives a convincing agreement with the experiments. In figure 7.2b), the pure
component surface tension of the same small surfactants is shown together with predictions
from the gc-PC-SAFT functional. Without any additional parameters, the deviations from the
experimental results are rather low.
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Figure 7.2: Vapor pressures (a) and Surface tensions (b) of the C1E1, C2E1, C4E1, C6E1,
C4E2 and C6E2 surfactants. Comparison between the gc-PC-SAFT functional (lines) and
experimental data106 (symbols).

H2O CH3 CH2 H1 H2

H2O - 0.20 0.20 0 -0.38
CH3 0.20 - 0 0 0
CH2 0.20 0 - 0 0
H1 0 0 0 - 0
H2 -0.38 0 0 0 -

Table 7.2: Binary kiα jβ parameters used in this work.

To model mixtures of water, surfactants and alkanes, binary interaction parameters are
required. The parameters used in this work are shown in table 7.2. A significant positive kiα jβ

parameter for the combinations H2O/CH2 and H2O/CH3 is required to describe the liquid–
liquid behavior of water alkane mixtures. In most SAFT models it is difficult to accurately
describe both the solubility of water in alkanes and vice versa. Because we are interested in
interfacial properties, we use the liquid–liquid interfacial tension as a criterion instead.

Figure 7.3 shows the interfacial tension of binary mixtures containing water and different
n-alkanes as a function of temperature. The calculations are conducted at p = 1.5 bar to avoid
the destabilizing presence of a vapor phase in the strongly heteroazeotropic water/alkane
systems, even though the experimental data is reported at ambient pressure. Because liquids
are weakly compressible, we neglect the influence of the artificially elevated pressure on the
interfacial tension. With a constant binary interaction parameter for H2O and CH2/CH3, it
is possible to obtain interfacial tensions in the same magnitude as the experimental results.
To achieve a better temperature dependence, more degrees of freedoms (i.e. a temperature
dependent kiα jβ) would be necessary.

The model does not introduce association interactions representing the hydrogen bonds

151



7 Surfactant modeling using DFT and a group contribution PC-SAFT approach

280 290 300 310 320 330

T / K

46

48

50

52

54

γ
/

m
N

m
−
1

nonane

octane

heptane

hexane

Figure 7.3: Liquid–liquid interfacial tension of binary systems consisting of n-alkanes and
water at p = 1.5bar. Comparison between the gc-PC-SAFT functional (lines) and experimental
data107 (symbols).

between the ether oxygens of the head groups and water. Only the sole hydroxy group on the
outer head segment is considered associating. To account for the full attractive interactions
between water and the head groups, the binary interaction parameter kH2O,H2

= −0.38 is
introduced. Its value is chosen to capture the binary phase behavior of aqueous solutions
of small surfactants. The resulting phase equilibria of the water/C2E1 system shown in
figure 7.4 are close to experimental data and adequately model the azeotrope. For the
longer C4E1 surfactant, the model predicts a liquid–liquid separation, that is not observed
in the experiments. However, the phase behavior of water/C4E1 is peculiar as it shows a
liquid–liquid separation with both a higher and a lower critical temperature in the range from
40 to 140 ◦C108. Capturing this behavior is a challenge, especially with the low number of
degrees of freedom in a group contribution approach.

The model developed in this section is able to describe inhomogeneous systems containing
water, alkanes, and one or more surfactants. In the following section, it is applied to calculate
interfacial properties of water/surfactant and water/octane/surfactant systems.

7.5 Results and discussion

7.5.1 Vapor–liquid interfaces

The group contribution model derived in the last sections is able to predict the phase behavior
and interfacial properties of aqueous solutions of arbitrarily long surfactants. Experimental
data for these systems is sparse and mostly available for surfactants with a high number of
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Figure 7.4: Phase equilibria of binary systems consisting of surfactants and water. Comparison
between the gc-PC-SAFT functional (lines) and experimental data108–110 (symbols).

head groups, for which the degree of extrapolation and thus the uncertainty of the gc-PC-SAFT
model are high. The surface tension γ of the water/C10E4 system is measured by Eastoe et
al.111 and is compared to the model predictions in figure 7.5a). Despite the complexity of the
system, the model captures the shape of the dependency of the surface tension on the liquid
surfactant concentration csurfactant well and underestimates the solubility of the surfactant
molecules by only 1 order of magnitude. The experiments show the occurrence of a critical
micelle concentration (cmc) beyond which the surface tension is not decreased any further
due to the formation of micelles. This effect is not captured by the DFT approach, which is
able to calculate surface tensions lower than the experimental minimum and even below zero.
The negative surface tension is a clear sign for an unstable system that can only be calculated
due to artificial constraints imposed by the planar geometry. However, even systems with
small positive surface tensions can be expected to be unstable. To assess the stability of these
systems, their energies need to be compared to different phases such as bilayers and micelles,
an endeavor that, with significant additional computational effort, is possible with DFT28 but
out of the scope of this work.

Figure 7.5b) compares the interfacial adsorption Γsurfactant obtained from the model with the
corresponding experimental results. The adsorption of component i is defined as

Γi =

z0
∫

0

�

ρi(z)−ρL
i

�

dz +

L
∫

z0

�

ρi(z)−ρV
i

�

dz (7.40)
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Figure 7.5: Surface tension (a) and interfacial adsorption (b) of the water/C10E4 mixture
at T = 298.15 K. Comparison between the gc-PC-SAFT functional (lines) and experimental
data111 (symbols).

with bulk densities in the vapor and liquid phases ρV
i and ρL

i and the length of the system L.
In general, it depends on the dividing surface z0. For this evaluation, the equimolar surface
ze,H2O of water

z0 = ze,H2O =

L
∫

0

ρH2O(z)−ρ
V
H2O

ρL
H2O
−ρV

H2O
dz (7.41)

was used. However, because the surfactant density is small in both the liquid and the vapor
phases, in this specific system, the influence of the choice of the dividing surface on the value
of the adsorption of the surfactant is miniscule. The model underestimates the amount of
adsorbed surfactant molecules in the range close to the cmc but is again able to predict the
qualitative behavior. We assess the results presented in figure 7.5 as satisfactory considering
that the model parameters are not adjusted to the data presented within and progress to
study the influence of the number of head groups on the behavior of the water/surfactant
surface.

In figure 7.6, the surface tension of binary mixtures of water with surfactants containing
(a) one (b) two and (c) three ethylene glycol groups is shown as a function of the liquid
mole fraction of the surfactant. The temperature is T = 298.15K and the calculation of
surface tensions is carried out for concentrations up to the point at which the calculations
become unstable due to the presence of a liquid–liquid phase separation. Increasing the
length of the alkyl chain significantly reduces the amount of surfactant necessary to drastically
lower the surface tension. This observation is consistent with the fact that there are no
competing influences: increasing the length of the nonpolar tail reduces both the solubility of
the surfactant in water and its vapor pressure. Therefore, the adsorption at the interface is
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Figure 7.6: Surface tension of water/surfactant mixtures at T = 298.15K for surfactants with
(a) one (b) two and (c) three ethylene glycol groups.

favored at smaller concentrations. However, for longer surfactants, the surface tension can
not be reduced as much because the solubility of the surfactant is lower and the point at
which a liquid–liquid separation is predicted is reached at higher surface tensions. Increasing
the number of ethylene glycol groups, on the other hand, increases the solubility in water
and thus, with a higher number of head groups, smaller surface tensions can be obtained.
To facilitate the comparison between surfactants with different numbers of head groups
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but an equal number of tail groups, the inset of figure 7.6a) shows the results for the C8Ex
surfactants as a representative example. The solubility is increased significantly by adding
head groups; therefore, the surface tension can be reduced further, but more surfactants are
needed.

To gain insights into the structure of the surfactant molecules at the interface, figure 7.7
shows the density profiles of four selected systems. All profiles shown are taken at the highest
stable concentration of the surfactants at T = 298.15 K. The local density of the surfactant
segments at the interface is many orders of magnitude higher than the density in both the
liquid and the vapor phase. Therefore, the model is able to capture the key property of
surfactant molecules, the adsorption at interfaces. Due to the heterosegmented modeling
approach, it can further be observed that in the interface the molecules are oriented with
the polar head pointing to the liquid phase and the nonpolar tail groups toward the vapor
phase. The densities of all surfactants with strongly varying lengths shown in figure 7.7 in
the interface are similar and liquid like.

7.5.2 Liquid–liquid interfaces

We study the liquid–liquid interface of water/n-octane mixtures with varying amounts of
surfactants. A feed state is defined by a given surfactant mole fraction x feed

surfactant and the
ratio x feed

water

x feed
n−octane

= 1. The phase equilibrium is then determined by a Tp-flash calculation at
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Figure 7.8: Interfacial tension of water/CxE2/octane mixtures at T = 298.15K and p = 1 bar.

T = 298.15 K and p = 1 bar. A Tp-flash calculation considers bulk phases and does not
account for an interface, so that in such a calculation x feed

surfactant is the total mole fraction of the
surfactant dissolved in the bulk aqueous phase and the bulk hydrocarbon phase.

Figure 7.8 shows interfacial tensions γ as a function of the (bulk) feed mole fraction of the
surfactant. Surfactant molecules with two ethylene glycol groups and a varying number of
tail groups are compared. As opposed to the vapor–liquid surface, the results demonstrate
that an optimal surfactant molecule can be identified. Beyond five tail groups the interfacial
tension is not lowered any further by adding additional tail groups. This can be attributed to
the higher solubility of the surfactant in the octane-rich phase.

This explanation is supported by the density profiles in figure 7.9. As expected, the surfactant
head groups point towards the water-rich phase and the tail groups towards the octane-
rich phase. For the C1E2 surfactant, the solubility in the water-rich phase is substantial
and undesirably high if the goal is a modification of interfacial properties. By increasing
the number of tail groups, the solubility in water decreases and the solubility in n-octane
increases.

To obtain effective surfactants, it is therefore necessary to balance the polarities of the head
groups and the tail groups. This is illustrated in figure 7.10 where the interfacial tension is
again shown as a function of the surfactant feed concentration. The surfactants are chosen by
starting with C4E1 and adding both a head and a tail group in each step. With this procedure,
the effectiveness of the surfactants with respect to lowering the interfacial tension is increased
with their size.
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Figure 7.10: Interfacial tension of water/C(x+1)Ex/octane mixtures at T = 298.15K and
p = 1bar.

7.6 Conclusions

The heterosegmented density functional theory approach by Jain et al.65 was revised and
adapted to the group contribution PC-SAFT equation of state. The model was parametrized us-
ing small surfactants and then extrapolated to systems containing longer surfactant molecules.
The calculations of density profiles and interfacial tensions show that the model is able to
reproduce the strong adsorption of surfactant molecules in vapor–liquid and liquid–liquid
interfaces. For vapor–liquid interfaces of water/surfactant systems, increasing the tail length
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of the surfactant molecules reduces the amount of surfactant molecules necessary to influ-
ence the interface. Increasing the number of head groups, on the other hand, increases the
solubility of the surfactant and thus reduces the values of the surface tension at the point
where a liquid–liquid split occurs.

For liquid–liquid interfaces, the surfactant molecules need a low solubility in both the aqueous
and the alkane-rich phases. This requires the number of head and tail groups to be balanced
to obtain an effective surfactant.

A characteristic of surfactant systems beyond interfacial properties is the formation of mi-
celles and other mesostructures. The theory developed in this work is not restricted to
one-dimensional systems. Therefore, it is possible in a further step to calculate density profiles
and free energies of micelles. Such calculations can be performed in a full three-dimensional
geometry, or by exploiting symmetries in spherical or cylindrical coordinate systems.
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8 Conclusion

In the first part of this thesis, classical density functional theory (DFT) is used to model the
interfacial properties of highly curved interfaces. From direct calculations of nanodroplets
and -bubbles in spherical coordinates, the dependence of the surface tension on the curvature
of the interface is shown to be well described by a second order polynomial. Based on
this observation, a method is developed to calculate the coefficients of the polynomial from
properties of a planar interface. This method reduces the dimensionality of the problem by
one and eliminates the need for convolution integrals in spherical and cylindrical coordinate
systems. The influence of the curvature on interfacial properties becomes relevant for the
smallest of droplets, like critical clusters during nucleation processes. Correctly accounting for
the curvature effect on the surface tension is one measure to increase the predictive capability
of nucleation theories.

Further, predictive density gradient theory (pDGT) is introduced as a model with the appealing
mathematical structure of a standard density gradient theory, but the predictive power
originating from a DFT approach. In pDGT, the influence matrix, like the Helmholtz energy
density, is calculated as a function of the local densities and temperature. The method is
developed from DFT by a Taylor expansion of the full Helmholtz energy functional from DFT
around a local density. This derivation implies limitations of pDGT in cases with steep density
gradients. Indeed, for vapor-liquid systems, the deviation of surface tensions from pDGT
compared to DFT results is highest at low temperatures, where the interfacial thickness is
lowest. Also, any DGT is not able to model individual peaks in adsorption layers, that can be
observed in molecular simulations and are well described by DFT. Therefore, the application
is restricted to fluid-liquid interfaces. Because it can be written explicitly and therefore solved
without iterating, the most advantageous application of pDGT is the prediction of surface
tensions of pure components. This property of pDGT was exploited in a further study to
assess the choice of PCP-SAFT parameters of water and alcohols. For water, a multitude of
parametrizations have been published with different objective functions used for the regression.
A common observation is that for water and other associating components, parametrizations
that were obtained by fitting to phase equilibrium data are not able to reproduce experimental
surface tension values. Therefore, a multiobjective optimization approach, in which different
association models were compared, is employed. The two objectives in this case are bulk

169



8 Conclusion

phase equilibrium properties and surface tensions. The resulting pareto fronts give insight on
what compromises between both objectives are attainable and can thus help assess strengths
in different models.

The optimized water model is then used as a basis to study interfacial properties of wa-
ter/surfactant and water/alkane/surfactant systems. Due to their amphiphilic character, the
DFT approach has to be able to describe the polar heads and non-polar tails of the surfactant
molecules individually. Therefore, the group contribution PC-SAFT equation of state is com-
bined with a heteronuclear DFT approach. The model is parametrized using experimental
data of small surfactants and is then used to predict properties of planar interfaces containing
surfactants with additional head and tail groups. The model is able to capture the enrichment
and the orientation of surfactant molecules in interfaces and predicts a steep decline in
interfacial tensions at small bulk surfactant concentrations. The properties of surfactant
systems are strongly influenced by the presence of structures like micelles. Therefore, the
study could be extended by using DFT in spherical or cylindrical coordinates to calculate
density profiles in micelles. Comparing free energies of different states then leads to a phase
diagram prediction.
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A.1 Additional results for Helfrich coefficients
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Figure A.1: Tolman length and spherical rigidity of argon and nitrogen.
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Figure A.2: Tolman length and spherical rigidity of the polar components benzene, acetone
and dimethylether.
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Figure A.3: Surface tension, Tolman length and spherical rigidity of three alkanols. Compari-
son between DFT, pDGT, DGT and empirical correlations1
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Figure A.4: Surface tension, Tolman length and spherical rigidity of the mixture of tetrahy-
drofuran with different n-alkanes at T = 298.15K. Comparison between DFT, pDGT and DGT
results.

A.2 Curvature expansion of convolution integrals

To obtain the curvature expansion of 3D convolution integrals, an explicit formula for them is
required. A path to obtain those is the projection-slice theorem of the Fourier transform, that
states that a slice along an axis through a multidimensional Fourier transform is equal to the
Fourier transform of the projection on the same axis. The convolution integral can thus be
written as

f
3D
⊗ ω=P −1F−1 (FP ( f )FP (ω)) (A.1)

where P ( f ) is the appropriate projection of f on one of the axes and F ( f ) the 1D Fourier
transform along said axis.
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A.2.1 Spherical coordinate system

If f (r) or ~f (r) = fr(r)~er is spherically symmetric, the projection takes the simple form

P ( f (r))(z) = 2π

∞
∫

|z|

f (r)r dr P ( ~f (r))(z) = 2πz~ez

∞
∫

|z|

fr(r)dr (A.2)

and the corresponding inverse transforms are

P −1(F(z))(r) = −
1

2πr
dF(z)

dz

�

�

�

�

z=r

P −1(~F(z))(r) = −
1

2π
~er

d Fz(z)
z

dz

�

�

�

�

�

z=r

(A.3)

The convolution of a scalar function with a scalar weight function thus can be written as

f
3D
⊗ ω= −

1
2πr

∫

d
dz

�

2π

∫

f (r ′)r ′Θ(r ′ − |z − z′|)dr ′
�

z=r
ω(z′)dz′

= −
1
r

∫∫

f (r ′)r ′δ(r ′ − |r − z′|)(−sign(r − z′))ω(z′)dz′

=
1
r

∫

f (|r − z′|)(r − z′)ω(z′)dz′

=

∫

f (|r − z′|)ω(z′)dz′ −
1
r

∫

f (|r − z′|)z′ω(z′)dz′

= f ⊗ω−
1
r
( f ⊗ (zω))

= f ⊗ω− f ⊗ (zω)
1
R
+ z ( f ⊗ (zω))

1
R2
+ . . . (A.4)

Similar expressions can be derived for the convolution with a vector weight function

f
3D
⊗ ~ω= −

1
2π
~er

∫

d
dz

�

1
z

2π

∫

f (r ′)r ′Θ(r ′ − |z − z′|)dr ′
�

z=r
ωz(z

′)dz′

= −~er

∫∫

f (r ′)r ′
�

−1
r2
Θ(r ′ − |r − z′|) +

1
r
δ(r ′ − |r − z′|)(−sign(r − z′))

�

dr ′ωz(z
′)dz′

= ~er

�

f ⊗ωz −
1
r
( f ⊗ (zωz)) +

1
r2

∫∫

f (r ′)r ′ωz(z
′)Θ(z′ − (r − r ′))dz′ dr ′

�

= ~er

�

f ⊗ωz −
1
r
( f ⊗ (zωz)) +

1
r2
((r f )⊗ ω̂z)

�

= ~er

�

f ⊗ωz −
1
r
( f ⊗ (zωz − ω̂z))−

1
r2
( f ⊗ (zω̂z))

�

= ~er

�

f ⊗ωz − f ⊗ (zωz − ω̂z)
1
R
+ z ( f ⊗ (zωz − ω̂z))

1
R2
− f ⊗ (zω̂z)

1
R2
+ . . .

�

(A.5)
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and the convolution of the inner product of a vector function and a vector weight function

~f
3D
⊗ ~ω=P −1F−1

�

FP ( ~f ) · FP ( ~ω)
�

= −
1

2πr

∫

d
dz

�

2π(z − z′)

∫

fr(r
′)Θ(r ′ − |z − z′|)dr ′

�

z=r
ωz(z

′)dz′

= −
1
r

∫∫

fr(r
′)
�

Θ(r ′ − |r − z′|) + (r − z′)δ(r ′ − |r − z′|)(−sign(r − z′))
�

dr ′ωz(z
′)dz′

= fr ⊗ωz −
1
r

fr ⊗ (zωz)−
1
r

∫∫

fr(r
′)ωz(z

′)Θ(z′ − (r − r ′))dz′ dr ′

= fr ⊗ωz −
1
r

fr ⊗ (zωz + ω̃)

= fr ⊗ωz − fr ⊗ (zωz + ω̃)
1
R
+ z ( fr ⊗ (zωz + ω̃))

1
R2
+ . . . (A.6)

In the process, the weight function ω̂z was introduced as

ω̂z(z) =

∞
∫

z

ωz(z
′)dz′ (A.7)

A.2.2 Cylindrical coordinate system

The same concept applied to a cylindrically symmetric function becomes significantly more
strenuous. The projection in this case is commonly known as Abel transform

A ( f (r))(y) = 2

∞
∫

|y|

f (r)r
p

r2 − y2
dr = −2

∞
∫

|y|

f ′(r)
p

r2 − y2 dr (A.8)

with the corresponding inverse transform

A −1(F(y))(r) = −
1
π

∞
∫

r

dF
dy

1
p

y2 − r2
dy (A.9)

The transformation can be extended to vector functions ~f (r) = fr(r)~er

A ( ~f (r))(y) = 2y~ey

∞
∫

|y|

fr(r)
1

p

r2 − y2
dr = −2y~ey

∞
∫

|y|

f ′r (r) ln

�p

r2 − y2 + r
|y|

�

dr

(A.10)
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A −1(~F(y))(r) = −
1
π
~er

∞
∫

r

d
Fy

y

dy
r

p

y2 − r2
dy (A.11)

The convolution integrals do not simplify as nicely as they do in spherical coordinates.

f
3D
⊗ ω=A −1F−1 (FA ( f )FP (ω))

= −
1
π

∞
∫

r

∫

d
dy



−2

∞
∫

y−y ′

f ′(r ′)
Æ

r ′2 − (y − y ′)2 dr ′



ω(y ′)dy ′
1

p

y2 − r2
dy

= −
2
π

∞
∫

r

∫

∞
∫

y−y ′

f ′(r ′)(y − y ′)
p

r ′2 − (y − y ′)2
dr ′ω(y ′)dy ′

1
p

y2 − r2
dy

= −
2
π

∫

∞
∫

r−y ′

r ′+y ′
∫

r

(y − y ′)
p

(r ′2 − (y − y ′)2)(y2 − r2)
dy f ′(r ′)dr ′ω(y ′)dy ′

The innermost integral has to our knowledge no analytic solution. By doing the curvature
expansion at this point during the derivation, however, we are at least able to obtain the
solution as a series expansion.

f
3D
⊗ ω= −

∫

∞
∫

z−y ′

�

1−
1
2

y ′
1
R
+

1
8

y ′(3z + z′)
1
R2
+ . . .

�

f ′(z′)dz′ω(y ′)dy ′

= f ⊗ω−
1
2

f ⊗ (zω)
1
R
−

1
8

∫

∞
∫

z−y ′

(3z + z′) f ′(z′)dz′ y ′ω(y ′)dy ′
1
R2
+ . . .

= f ⊗ω−
1
2

f ⊗ (zω)
1
R
+

1
8





∫

(4z − y ′) f (z′)y ′ω(y ′)dy ′ +

∫

∞
∫

z−y ′

f (z′)y ′ω(y ′)dz′ dy ′





1
R2
+ . . .

= f ⊗ω−
1
2

f ⊗ (zω)
1
R
+

1
2

z ( f ⊗ (zω))
1
R2
−

1
8

f ⊗
�

z2ω− ω̃
� 1

R2
+ . . .

The same procedure is used to obtain expressions for convolutions with vector weight
functions

f
3D
⊗ ~ω=A −1F−1 (FA ( f )FP ( ~ω))

= −
1
π
~er

∞
∫

r

∫

d
dy

1
y



−2

∞
∫

y−y ′

f ′(r ′)
Æ

r ′2 − (y − y ′)2 dr ′



ωz(y
′)dy ′

r
p

y2 − r2
dy

= −
2
π
~er

∞
∫

r

∫

∞
∫

y−y ′

f ′(r ′)

�

1
y2

Æ

r ′2 − (y − y ′)2 +
y − y ′

y
p

r ′2 − (y − y ′)2

�

dr ′ωz(y
′)dy ′

r
p

y2 − r2
dy
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= −
2
π
~er

∫

∞
∫

r−y ′

r ′+y ′
∫

r

�

r
p

r ′2 − (y − y ′)2

y2
p

y2 − r2
+

r(y − y ′)

y
p

(r ′2 − (y − y ′)2)(y2 − r2)

�

dy f ′(r ′)dr ′ωz(y
′)dy ′

= −
2
π
~er

∫

∞
∫

r−y ′

r ′+y ′
∫

r

r(r ′2 + y ′(y − y ′))

y2
p

(r ′2 − (y − y ′)2)(y2 − r2)
dy f ′(r ′)dr ′ωz(y

′)dy ′

= −~er

∫

∞
∫

z−y ′

�

1−
1
2
(z − z′)

1
R
+

1
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(−3y ′2 + 9z2 − 10zz′ + z′2)

1
R2
+ . . .

�

f ′(z′)dz′ωz(y
′)dy ′

= ~er

�

f ⊗ωz −
1
2

f ⊗ (zωz − ω̂z)
1
R
+

1
2

z ( f ⊗ (zωz − ω̂z))
1
R2
−

1
8

f ⊗
�

zω̂z + z2ωz

� 1
R2
+ . . .

�

and the convolution of the inner product

~f
3D
⊗ ~ω=A −1F−1

�

FA ( ~f ) · FP ( ~ω)
�

=−
1
π

∞
∫

r

∫

d
dy



−2(y − y ′)

∞
∫

y−y ′

f ′r (r
′) ln

�p

r ′2 − (y − y ′)2 + r ′
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dr ′



ωz(y
′)dy ′

1
p

y2 − r2
dy
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2
π

∞
∫

r

∫

∞
∫

y−y ′

f ′r (r
′)
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r ′2 − (y − y ′)2
dr ′ωz(y

′)dy ′
1

p

y2 − r2
dy

−
2
π

∞
∫

r

∫

∞
∫

y−y ′
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′)

1
p

r ′2 − (y − y ′)2
dr ′ωz(y

′)dy ′
1

p

y2 − r2
dy

=−
2
π

∫

∞
∫

r−y ′

r ′+y ′
∫

r
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p

(r ′2 − (y − y ′)2)(y2 − r2)
dy f ′r (r

′)dr ′ωz(y
′)dy ′

−
2
π

∫

∞
∫

r−y ′

r ′+y ′
∫

r

1
p

(r ′2 − (y − y ′)2)(y2 − r2)
dy fr(r

′)dr ′ωz(y
′)dy ′

=−
∫

∞
∫
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�

1−
1
2

�

z − z′
� 1

R
+

1
16

�

y ′2 + 5z2 − 2zz′ − 3z′2
� 1

R2
+ . . .

�

f ′r (z
′)dz′ωz(y

′)dy ′

−
∫

∞
∫

z−y ′

�

1
R
−

1
2
(z + z′)

1
R2
+ . . .

�

fr(z
′)dz′ωz(y

′)dy ′

= fr ⊗ωz −
1
2

fr ⊗ (zωz + ω̂z)
1
R
+

1
2

z ( fr ⊗ (zωz + ω̂z))
1
R2
−

1
8

�

fr ⊗
�

zω̂z + z2ωz

�� 1
R2
+ . . .

The two geometries can be combined using the geometry factor g for the three cases

f
3D
⊗ ω= f ⊗ω−

g
2

f ⊗ (zω)
1
R
+

g
2

z ( f ⊗ (zω))
1
R2
+

g(g − 2)
8

f ⊗
�

z2ω− ω̃
� 1

R2
+ . . . (A.12)
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f
3D
⊗ ~ω= ~er

�

f ⊗ωz −
g
2

f ⊗ (zωz − ω̂z)
1
R
+

g
2

z ( f ⊗ (zωz − ω̂z))
1
R2

+
g(g − 2)

8
f ⊗

�

zω̂z + z2ωz

� 1
R2
−

g(g − 1)
2

f ⊗ (zω̂z) + . . .
�

(A.13)

~f
3D
⊗ ~ω= fr ⊗ωz −

g
2

fr ⊗ (zωz + ω̂z)
1
R
+

g
2

z ( fr ⊗ (zωz + ω̂z))
1
R2

+
g(g − 2)

8

�

fr ⊗
�

zω̂z + z2ωz

�� 1
R2
+ . . . (A.14)

A.3 Derivation of the second order expressions for the surface tension

The first term in the general expression for the second order correction to the surface tension
∫

�

f2 −ρ2 ·µ0 −
1
2
ρ1 ·µ1

�

dz + g

∫

( f1 −ρ1 ·µ0) z dz (A.15)

can be rewritten using the curvature expansion of the Helmholtz energy density, the weighted
densities and the Euler-Lagrange equation. The resulting sum over weighted densities can be
split into a sum over scalar weighted densities

∫ scal
∑

α

�

fα0

�

ρ2 ⊗ωα −
g
2
ρ1 ⊗ (zωα) +

g
2

z (ρ0 ⊗ (zωα)) +
g(g − 2)

8
ρ0 ⊗ ω̃α

�

+
1
2

fα1

�

ρ1 ⊗ωα −
g
2
ρ0 ⊗ (zωα)

�

−ρ2 · ( fα0 ⊗ωα)

−
1
2
ρ1 ·

�

fα1 ⊗ωα −
g
2

fα0 ⊗ (zωα)
�

�

dz

+ g

∫ scal
∑

α

�

fα0 (ρ1 ⊗ωα)−
g
2

fα0 (ρ0 ⊗ (zωα))−ρ1 · ( fα0 ⊗ωα)
�

z dz (A.16)

which simplifies to

−
g
4

∫ scal
∑

α

(ρ1 · ( fα0 ⊗ (zωα)) + fα1 (ρ0 ⊗ (zωα))) dz

+
g(g − 2)

8

∫ scal
∑

α

fα0 (ρ0 ⊗ ω̃α) dz −
g(g − 1)

2

∫ scal
∑

α

fα0 (ρ0 ⊗ (zωα)) z dz (A.17)

and vector weighted densities
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∫ vec
∑

α

�

fα0

�

ρ2 ⊗ωαz −
g
2
ρ1 ⊗ (zωαz − ω̂αz) +

g
2

z (ρ0 ⊗ (zωαz − ω̂αz))

+
g(g − 2)

8
ρ0 ⊗

�

z2ωαz

�

−
g(3g − 2)

8
ρ0 ⊗ (zω̂α)

�

+
1
2
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�
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g
2
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�
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+
1
2
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�

fα1 ⊗ωαz −
g
2

fα0 ⊗ (zωαz + ω̂αz)
�

�

dz
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∫ vec
∑

α

�

fα0 (ρ1 ⊗ωαz)−
g
2

fα0 (ρ0 ⊗ (zωαz − ω̂αz)) +ρ1 · ( fα0 ⊗ωαz)
�

z dz (A.18)

which simplifies to

−
g
4

∫ vec
∑

α

(−ρ1 · ( fα0 ⊗ (zωαz + ω̂αz)) + fα1 (ρ0 ⊗ (zωαz − ω̂αz))) dz

+
g(g − 2)

8
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∑

α

fα0

�
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�

z2ωα
��

dz −
g(3g − 2)

8

∫ vec
∑
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fα0 (ρ0 ⊗ (zω̂α)) dz

−
g(g − 1)

2

∫ vec
∑

α

fα0 (ρ0 ⊗ (zωαz − ω̂αz)) z dz (A.19)

In these simplifications, the parity of the weight functions has to be taken into account as we
find

∫

f (g ⊗ω) dz =

∫

g ( f ⊗ω) dz ×







1 ω even

−1 ω odd
(A.20)

To simplify the results, the weight functions can be recombined as

ω(1)
α
=







zωα scalar

zωαz − ω̂αz vector
, ω(2)

α
=







zωα scalar

−zωαz − ω̂αz vector
(A.21)

ω(3)
α
=







ω̃α scalar

z2ωαz + zω̂αz vector
, ω(4)

α
=







ω̃α scalar

z2ωαz − zω̂αz vector
(A.22)

giving the final result for the second order contribution

σ2 =
g(g − 1)

2

∫

∆ω0z2 dz −
g
4

∫

∑

α

�

ρ1 ·
�

fα0 ⊗ω(2)α
�

+ fα1

�

ρ0 ⊗ω(1)α
��

dz
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−
g(g − 1)

2

∫

∑

α

fα0

�

ρ0 ⊗ω(1)α
�

z dz +
g(g − 1)

4

∫

∑

α

fα0

�

ρ0 ⊗ω(4)α
�

dz

−
g2

8

∫

∑

α

fα0

�

ρ0 ⊗ω(3)α
�

dz −
g
2
µ1 ·

∫

�

ρ0 −ρbulk
0

�

z dz −µ2 · Γ 0 −
1
2
µ1 · Γ 1 (A.23)

and thus the bending rigidity

k = 2σc
2 = −

1
4

∫

∑

α

�

ρ1 ·
�

fα0 ⊗ω(2)α
�

+ fα1

�

ρ0 ⊗ω(1)α
��

dz −
1
4

∫

∑

α

fα0

�

ρ0 ⊗ω(3)α
�

dz

−
1
2
µ1 ·

∫

�

ρ0 −ρbulk
0

�

z dz − 2µc
2 · Γ 0 −

1
4
µ1 · Γ 1 (A.24)

and the Gaussian rigidity

k̄ = σs
2 − 4σc

2 =

∫

∆ω0z2 dz +
1
2

∫

∑

α

fα0

�

ρ0 ⊗ω(4)α
�

dz

−
∫

∑

α

fα0

�

ρ0 ⊗ω(1)α
�

z dz + (4µc
2 − µ

s
2) · Γ 0 (A.25)
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B Supporting information to chapter 6

B.1 Derivation of the association contribution to the influence parameter in

pDGT

B.1.1 Helmholtz energy functional

The association functional by Yu and Wu1 written for the PCP-SAFT equation of state is given
as

Φ=
∑

i

n0i

mi
ξi

∑

Ai

NAi

�

lnχAi −
χAi

2
+

1
2

�

(B.1)

with the weighted densities n0i, n2i, n3 and ~n2i known from fundamental measure theory2,3.
The fractions of unbounded sites χAi can be calculated by solving the system of equations
given by

χAi =

 

1+
∑

j

n0 j

m j
ξ j

∑

B j

NB j
χB j∆Ai B j

!−1

. (B.2)

The association volume ∆Ai B j is given by

∆Ai B j = σ3
i jκ

Ai B j

�

exp
�

εAi B j

kT

�

− 1
�

×

�

1
1− n3

+

�

did j

di + d j

�

n2ξ

2(1− n3)2
+

�

did j

di + d j

�2 n2
2ξ

18(1− n3)3

�

(B.3)

with di the usual PC-SAFT temperature dependent segment diameter

di = σii

�

1− 0.12exp
�

−
3εii

kT

��

(B.4)

and the corrections due to the interface

ξi = 1−
~n2i · ~n2i

n2
2i

ξ= 1−
~n2 · ~n2

n2
2

. (B.5)
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B.1.2 First partial derivatives of reduced Helmholtz energy density

To calculate the derivatives with respect to the weighted densities, the Q function proposed
by Michelsen and Hendriks4 is introduced.

Q =
∑

i

n0i

mi
ξi

∑

Ai

NAi

�

lnχAi −χAi + 1
�

−
1
2

∑

i j

n0i

mi
ξi

n0 j

m j
ξ j

∑

Ai B j

NAi
NB j
χAiχB j∆Ai B j (B.6)

The derivative of Q w.r.t. the fraction of unbounded sites χAi is

�

∂Q
∂ χAi

�

nα

=
n0i

mi
ξiNAi

 

1
χAi
− 1−

∑

j

n0 j

m j
ξ j

∑

B j

NB j
χB j∆Ai B j

!

. (B.7)

Therefore the solution of Eq. (B.2) is a stationary point of Q. The value of Q at the stationary
point is exactly Φ, therefore the partial derivatives of Φ can be evaluated using

�

∂Φ

∂ nα

�

nβ 6=α

=
�

∂Q
∂ nα

�

nβ 6=α,χAi

(B.8)

and thereby avoiding the calculation of the partial derivatives of χAi . A closed form for the
influence parameter is only possible for a pure component. Here, we only consider components
with two association sites A and B (∆Ai B j =∆δAB). By introducing ρ =

n0
mξ, Eq. (B.6) simplifies

to

Q = ρ
�

NA

�

lnχA−χA+ 1
�

+ NB

�

lnχB −χB + 1
��

−ρ2NANBχ
AχB∆ (B.9)

The first partial derivatives of Φ with respect to n =
�

ρ ∆
�ᵀ

can be calculated by

Φn =Qn =

�

NA lnχA+ NB lnχB

−ρ2NANBχ
AχB

�

(B.10)

where the partial derivatives of Q are evaluated at the stationary point.

B.1.3 Second partial derivatives of reduced Helmholtz energy density

For the second partial derivatives of Φ, all second partial derivatives of Q at the stationary
point are required. The second partial derivatives of Q with respect to χ =

�

χA χB
�ᵀ

are

Qχχ =

 

−ρNA

χA2 −ρ2NANB∆

−ρ2NANB∆ −ρNB

χB2

!

, (B.11)
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the second partial derivatives of Q with respect to the variables n =
�

ρ ∆
�ᵀ

are

Qnn = −2NANBχ
AχB

�

∆ ρ

ρ 0

�

(B.12)

and the second partial derivatives of Q with respect to χ and n are

Qχn = −ρNANB

�

χB∆ χBρ

χA∆ χAρ

�

= −ρNANB

�

χB

χA

�

�

∆ ρ
�

. (B.13)

The derivatives of Φ can be calculated via4

Φnn =Qnn −QnχQ−1
χχQχn (B.14)

With the determinant of Qχχ

d =
ρ2NANB

χA2χB2 −ρ
4N 2

A N 2
B∆

2 = ρ2NANB
1−ρ2NANBχ

A2
χB2
∆2

χA2χB2 (B.15)

its inverse can be calculated as

Q−1
χχ =

1
d

 

−ρNB

χB2 ρ2NANB∆

ρ2NANB∆ −ρNA

χA2

!

(B.16)

The product QnχQ−1
χχQχn simplifies to

QnχQ−1
χχQχn =

ρ2N 2
A N 2

B
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�
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(B.17)
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The second partial derivatives of Φ are thus

Φρρ = −2NANBχ
AχB∆+ρNANBχ

A2
χB2 NAχ

A+ NBχ
B

χA+χB −χAχB
∆2

= −
NANBχ
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A2
χB∆−ρNBχ

AχB2
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�
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(B.18)

Φρ∆ = −2NANBχ
AχBρ +ρNANBχ

A2
χB2 NAχ

A+ NBχ
B

χA+χB −χAχB
ρ∆

= −
NANBχ

AχBρ
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∆
�

= −NANBχ
AχBρ
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(B.19)

Φ∆∆ = NANBχ
A2
χB2
ρ3 NAχ

A+ NBχ
B

χA+χB −χAχB
(B.20)

B.1.4 Influence parameter

In the actual functional, ρ and ∆ both depend on the weighted densities n0, n2, ~n2 and n3 as

ρ =
n0

m
ξ (B.21)

and

∆= k

�

1
1− n3

+
dn2ξ

4(1− n3)2
+

d2n2
2ξ

72(1− n3)3

�

(B.22)

with

ξ= 1−
~n2 · ~n2

n2
2

. (B.23)

The weight functions have the corresponding weight constants

ω0
0 = m ω2

0 =
1

24
md2 ~ω1

2 =
1
6
πmd3 (B.24)

ω0
2 = πmd2 ω2

2 =
1

24
πmd4 (B.25)

ω0
3 =

π

6
md3 ω2

3 =
1

240
πmd5 (B.26)
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With the partial derivatives of Φ, the influence parameter can be calculated as

c = −
∑

αβ

�

Φn ·
�

∂ 2n
∂ nα∂ nβ

�

+
�

∂ n
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(B.27)

This calculation is elongated and error prone, but it can be automated in a symbolic math
framework like sympy. The simplified result is

c = −
d2

18ρ

�

NA lnχA+ NB lnχB
�

+ NANBχ
AχBd2k

�

f1(η)−
χA+χB

χA+χB −χAχB
f2(η)

�

(B.28)

with

f1(η) =
16η5 − 100η4 + 227η3 − 200η2 + 30η

180(2−η)(1−η)5
(B.29)

f2(η) =
2η5 − 13η4 + 20η3 + 16η2 − 32η− 20

120(2−η)(1−η)5
(B.30)

B.1.5 Components with one type of association sites

If the molecules are modeled using on type of association site A (⇒ ∆Ai B j =∆), the derivation
has to be changed accordingly. The Q function simplifies to

Q = ρNA

�

lnχA−χA+ 1
�

−
1
2
ρ2N 2

Aχ
A2
∆. (B.31)

The first derivatives of Φ are thus

Φn =Qn =

�

NA lnχA

−1
2ρ

2N 2
Aχ

A2

�

. (B.32)

The second derivatives of Q are

Qχχ =
�

−ρNA

χA2 −ρ2N 2
A∆
�

(B.33)

Qnn = −N 2
Aχ
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�
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ρ 0
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(B.34)

Qχn = −ρN 2
Aχ

A
�

∆ ρ
�

. (B.35)
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The product QnχQ−1
χχQχn simplifies to

QnχQ−1
χχQχn = ρ

2N 4
Aχ

A2

�

∆

ρ

�

1

−ρNA
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(B.36)

and the second derivatives of Φ are

Φρρ = −
N 2

Aχ
A2
∆

2−χA
Φρ∆ = −

N 2
Aχ

A2
ρ

2−χA
Φ∆∆ =

N 3
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(B.37)

Finally the influence parameter simplifies to

c = −
d2

18ρ
NA lnχA+

1
2

N 2
Aχ

A2d2k
�

f1(η)−
2

2−χA
f2(η)

�

(B.38)

with f1(η) and f2(η) from above.
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B.2 Full pareto results

B.2 Full pareto results

This section contains the pareto plots for all components and all association schemes for the
PC-SAFT equation of state and the PCP-SAFT equation of state (contatining a fitted dipole
moment). As described in the main paper, the choice of weights is to some extent arbitrary
and different for the different components. Therefore the weights used to obtain specific
parameter sets are specified in the captions. The plots further show the surface tensions
obtained with predictive density gradient theory and the phase envelopes in terms of vapor
pressures and densities. The black crosses refer to the reference values as described in the
main paper.
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Figure B.1: water, refvle = 2%, refsft = 0.7mN m−1
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Figure B.2: methanol, refvle = 2%, refsft = 1.5mN m−1
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Figure B.3: ethanol, refvle = 2%, refsft = 1.5 mN m−1
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Figure B.4: 1-propanol, refvle = 2%, refsft = 1.5mN m−1
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Figure B.5: 1-butanol, refvle = 2%, refsft = 1.5mN m−1
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Figure B.6: 1-pentanol, refvle = 2 %, refsft = 1.5mN m−1
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Figure B.7: 1-hexanol, refvle = 2 %, refsft = 3mN m−1
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Figure B.8: 1-heptanol, refvle = 2 %, refsft = 3mN m−1
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Figure B.9: 1-octanol, refvle = 2 %, refsft = 3mN m−1
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Figure B.10: 1-nonanol, refvle = 2%, refsft = 3mN m−1
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Figure B.11: 1-decanol, refvle = 2 %, refsft = 3 mN m−1
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Figure B.12: 1-dodecanol, refvle = 2%, refsft = 3 mN m−1
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Figure B.13: 2-propanol, refvle = 2%, refsft = 3 mN m−1
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Figure B.14: 2-butanol, refvle = 2%, refsft = 3mN m−1

0 2 4 6 8 10 12 14
AAD_vle  /  %

0

1

2

3

4

5

6

AA
D_

sf
t  

/  
m

N/
m

2B
2B polar
3B
3B polar
4C
4C polar

300 350 400 450 500 550
T  /  K

0

5

10

15

20

25

  /
  m

N/
m

250 300 350 400 450 500 550
T  /  K

0

10

20

30

40

p 
 / 

 b
ar

0 200 400 600 800
  /  kg/m³

250

300

350

400

450

500

550

T 
 / 

 K

Figure B.15: 2-pentanol, refvle = 2 %, refsft = 3mN m−1
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Figure B.16: 3-pentanol, refvle = 2 %, refsft = 3mN m−1
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Figure B.17: 1,2-ethanediol, refvle = 2%, refsft = 3 mN m−1
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Figure B.18: 1,2-propanediol, refvle = 2 %, refsft = 3 mN m−1
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Figure B.19: glycerol, refvle = 2%, refsft = 3 mN m−1
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