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Abstract

The Fast Fourier Transform (FFT) is a numerical method to convert the input data to a representation
in the frequency domain. A wide range of applications requires the computation of three-dimensional
FFTs, which makes the utilization of Graphics Processing Units (GPUs) on distributed systems
particularly appealing. The most common approach for distributed computation is to partition the
global input data, resulting in slab decomposition or pencil decomposition.

For large numbers of processes, it is well known that slab decomposition only provides limited
scalability and is generally outperformed by pencil decomposition. This often leaves their
performance comparison on fewer GPUs as a blind spot: We found that slab decomposition
generally dominates for larger input sizes when utilizing fewer GPUs, which is compliant with
simple theoretical models. An exception to this rule is when the processor grid of pencil
decomposition is specifically aligned to fully utilize available NVLink interconnections.

Next to the default implementation of slab decomposition and pencil decomposition, we propose
Realigned as a possible optimization for both decomposition methods by taking advantage of cuFFT’s
advanced data layout. Most notably, Realigned reduced the additional memory requirements of
pencil decomposition and computes the 1D-FFTs in y-direction more efficiently.

Since both decomposition methods require global redistribution of the intermediate results, we
further compare the performance of different Peer2Peer and All2All communication techniques. In
particular, we introduce Peer2Peer-Streams, which avoids the need for additional synchronization
and allows the complete overlap of communication and packing phase. Our performance benchmarks
show that this approach generally performs best for large input sizes on test systems with a limited
number of GPUs when considering MPI without CUDA-awareness. Furthermore, we utilize custom
MPI datatypes and adopt MPI_Type for GPUs, which reduces the additional memory requirements
dramatically and avoids the need for a packing and unpacking phase altogether. By identifying a
redistributed partition as a batch of slices, where each slice consists of the maximum number of
contiguous, complex-valued words, we found that MPI_Type often poses a worthwhile consideration
when both sent and received partitions are not composed of one-dimensional slices.
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1 Introduction

The Fast Fourier Transform (FFT) is considered to be one of the top 10 algorithms of the 20th
century [DS00]. Most remarkably, it is able to compute the Discrete Fourier Transform (DFT) of 𝑁
data points in O(𝑁 log 𝑁). In its general form, the FFT algorithm was introduced and analyzed by
James William Cooley and John Tukey in 1965 [CT65]. Later, it was even discovered that Carl
Friedrich Gauss used an equivalent algorithm to efficiently calculate the orbits of the asteroids Juno
and Pallas in 1805 [HJB84]. As of today, there are many realizations and optimizations of the FFT
algorithm used in a wide range of applications, e.g., biomedical imaging [BHB+20], turbulence
simulation [LL11], molecular dynamics [PPS97], N-body simulation [HMF+13], and solvers for
acoustic scattering problems [BK01].

For the previously named applications, it is often required to compute the FFT of three-dimensional,
real-valued input data. Due to the separability property of multidimensional DFTs, this is often done
by computing batched 1D-FFTs in each direction. For distributed systems, there are consequently
two fundamental approaches for computing 3D-FFTs: 1D-Decomposition (Slab Decomposition)
and 2D-Decomposition (Pencil Decomposition). When considering input data of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

and 𝑃 processes, slab decomposition assumes that the global input is split in x-direction such that
each process starts with a local input of size 𝑁𝑥

𝑃
× 𝑁𝑦 × 𝑁𝑧 . Since the computation of 1D-FFTs

requires all data points of the particular direction, each process begins by computing the 2D-FFTs
in y- and z-direction. Thereafter, the processes globally exchange their intermediate results to
complete the procedure by computing the remaining 1D-FFT in x-direction. It is apparent that this
approach only allows limited scalability for fixed input sizes (i.e. because of 𝑃 ≤ 𝑁𝑥). Therefore, it
is common for applications to consider pencil decomposition: Here, a process grid of size 𝑃1 × 𝑃2
(with 𝑃 = 𝑃1 · 𝑃2 processes) is considered, and the input data is assumed to be split in x- and
y-direction respectively, i.e., each process starts with a local input of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧 . Thus, the

processes compute the 1D-FFTs in z-, y-, and x-direction individually, between which the processes
have to exchange their intermediate results globally.

Related Work. There are many available CPU and GPU libraries for computing the Fast Fourier
Transform. On single-node systems, hardware vendors usually provide their own FFT algorithms
that are highly optimized for their hardware, e.g., NVIDIA’s cuFFT library [NVIj], AMD’s clFFT
library [Adv], Intel’s MKL library [Inta], and IBM’s ESSL library [Intb]. When reviewing the
available CPU libraries, FFTW [FJ05] stands out for being one of the earliest and most prominent.
Most notably, modern libraries are often built on top of FFTW or follow the same paradigm
of strictly differentiating between planning and executing: During the planing phase, the user
specifies the problem, e.g., number of dimensions, problem size, and strides. Out of many available
plans that fit the specification, FFTW then selects the plan that executes the fastest on the given
hardware [FJ05]. Thereafter, the selected plan can be executed an arbitrary number of times.
FFTW also supports computation on distributed systems by using slab decomposition [FFT]. To
overcome the previously described scalability problem of slab decomposition, P3DFFT [Pek12] is
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1 Introduction

the first to introduce an open-source CPU library for utilizing both slab decomposition and pencil
decomposition. Further CPU libraries that are extensively used in practice are: 2DECOMP&FFT
used by Xcompact3D [LL10], fftMPI used by LAMMPS [Ste], SWFFT used by HACC [RAC+18],
and OpenFFT used by OpenMX [DO14]. The most prominent CPU-GPU libraries available are
AccFFT [GHMB16] and heFFTe [ATHD20]: AccFFT utilizes FFTW and cuFFT for computing the
FFTs on each node and supports both slab decomposition and pencil decomposition. By utilizing
CUDA-aware MPI, AccFFT also provides multiple options to realize the global redistribution of
intermediate results. heFFTe provides even more flexibility and is designed for future exascale
supercomputers. Most notably, it additionally supports brick decomposition and implements its
custom non-blocking collective MPI routine for fine-tuning, which proves to be effective for small
numbers of participating nodes. A performance comparison of the CPU and GPU libraries can be
found in the report of Ayala et al. [ATL+21].

We stress that this work does not aim to compete with the already available GPU libraries AccFFT or
heFFTe. Instead, we focus on possible optimizations of the individual decomposition methods, along
with the applicable global redistribution methods, and compare their performance on distributed
GPU systems. In this context, Takahashi introduces a simplified theoretical comparison of the
communication time of slab decomposition and pencil decomposition [Tak20]. Takahashi shows
that pencil decomposition is expected to perform better than slab decomposition if the number
processes (i.e. GPUs) is large enough. Although this commonly requires that hundreds or thousands
of processes participate, many authors use similar calculations to justify that they only consider
pencil decomposition in their performance benchmarks. Therefore, the performance comparison of
slab decomposition and pencil decomposition for fewer processes often remains a blind spot on
distributed GPU systems.

Contribution. In this work, we compare the performance of slab decomposition and pencil
decomposition on multiple distributed GPU systems, where the scalability of slab decomposition
imposes no restriction. Furthermore, we consider possible optimizations by taking advantage of
cuFFT’s advanced data layout and propose Realigned, which is applicable for each decomposition
method. In particular, Realigned is beneficial when considering pencil decomposition, since it
reduces the additional memory requirements and performs the computation of the 1D-FFTs in
y-direction more efficiently.

Since both slab decomposition and pencil decomposition require global redistribution of the
intermediate results, we further study the performance of available strategies when using MPI with
and without CUDA-awareness. For this purpose, we propose Peer2Peer-Streams which utilizes
CUDA-streams to notify a secondary thread to start sending via MPI’s non-blocking point-to-point
communication routine MPI_Isend. Furthermore, we adapt MPI_Type for GPUs from the previous
work of Dalcin et al. [DMK19], which is applicable for both Peer2Peer and All2All communication.
To the best of our knowledge, neither approach was realized for distributed GPU systems before.

For the performance evaluation of the decomposition method and the underlying global redistribution
method, we perform benchmarks on five test systems. Instead of focusing on the scalability results,
we analyze the performance for a fixed number of GPUs in dependency of the underlying hardware,
the problem size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 , and the processor grid if pencil decomposition is considered. We
further differentiate between computing the forward (real-to-complex) or inverse (complex-to-real)
transform and whether MPI is used with or without CUDA-awareness.
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Limitations. We stress that this work is by no mean exhaustive and that there are several limitations:
(1) We perform our benchmarks with OpenMPI on all test systems for consistency reasons, which
might not always result in the best performance [ATL+21]. (2) We assume that the global input
data is partitioned in a specific manner for slab decomposition and for pencil decomposition, which
results in limited flexibility, as opposed to heFFTe’s brick decomposition [ATHD20]. (3) There
are several decomposition methods and global redistribution methods which are not considered in
this work. For example, OpenFFT implements an alternative decomposition method to reduce the
communication volume [DO14]. Furthermore, we solely focus on non-blocking routines of MPI’s
point-to-point communication mechanisms.

Outline of this work. We start in Chapter 2 by introducing the theoretical fundamentals. Chapter
3 provides an overview of the relevant aspects of CUDA, cuFFT, and MPI for our implementation.
Afterwards, a description of our implementation is given in Chapter 4, where we focus on
GPU specific details of the decomposition methods, introduce Realigned, and present the global
redistribution methods. The results of the performance benchmarks are presented in Chapter 5.
Finally, we conclude this work in Chapter 6. Additional benchmark results can also be found in
Appendix A.
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2 Fundamentals

In this chapter, we introduce the relevant theoretical fundamentals which are used throughout this
work. For additional reading material on signal processing and the Fast Fourier Transform, we
recommend [VKG14] and [RKH10].

We start with the fundamentals of trigonometric interpolation in Section 2.1, before deriving the
Discrete Fourier Transform in Section 2.2. Afterwards, we present the Cooley-Tukey FFT algorithm
in Section 2.3. Since we are interested in computing three-dimensional FFTs, we generalize the
one-dimensional case to higher dimension in Section 2.4. The fundamentals of the distributed
computation of 3D-FFTs are discussed in Section 2.5. Finally, we introduce a possible strategy for
validating the computed results of 3D-FFTs in Section 2.6.

2.1 Trigonometric Interpolation

For a given natural number 𝑁 ∈ N, the set of trigonometric polynomials of degree 𝑁 is defined as

𝑇𝑁 = {𝑡 : C→ C | 𝑡 (𝑧) =
𝑁∑︁
𝑘=0

𝑐𝑘𝑒
𝑖𝑘𝑧}.

Trigonometric interpolation is an approximation using trigonometric polynomials with 𝑁 ∈ N and
data points {(𝑥 𝑗 , 𝑦 𝑗)}𝑁𝑗=0 ⊆ C2 as input parameters. The positions {𝑥 𝑗}𝑁𝑗=0 are equidistant on the
interval [0, 2𝜋), i.e., 𝑥 𝑗 =

2𝜋
𝑁+1 𝑗 for each 𝑗 = 0, . . . , 𝑁 . The interpolation problem is defined as the

computation of fitting coefficients 𝑐0, . . . , 𝑐𝑁 ∈ C of a trigonometric polynomial 𝑝 ∈ 𝑇𝑁 , such that
𝑡 (𝑥 𝑗) = 𝑦 𝑗 for each data point of {(𝑥 𝑗 , 𝑦 𝑗)}𝑁𝑗=0.

It is well known that there exists a unique solution for the polynomial interpolation problem. For
trigonometric interpolation, this fact is shown in Theorem 1. In the following, it is often convenient
to define 𝜔𝑁+1 = 𝑒

2𝜋𝑖
𝑁+1 . Using this convention, the (𝑁 + 1)th roots of unity are given by:

𝜔0
𝑁+1, 𝜔

1
𝑁+1, 𝜔

2
𝑁+1, . . . , 𝜔

𝑁
𝑁+1

Theorem 1
For a given natural number 𝑁 ∈ N and data points {(𝑥 𝑗 , 𝑦 𝑗)}𝑁𝑗=0 ⊆ C2, where the positions {𝑥 𝑗}𝑁𝑗=0
are equidistant on the interval [0, 2𝜋), there exists a unique solution 𝑡 ∈ 𝑇𝑁 which solves the
formulated interpolation problem. The coefficients 𝑐0, . . . , 𝑐𝑁 ∈ C are specified by

𝑐𝑘 =
1

𝑁 + 1

𝑁∑︁
𝑗=0

𝑦 𝑗𝑒
− 2𝜋𝑖 𝑗𝑘

𝑁+1 =
1

𝑁 + 1

𝑁∑︁
𝑗=0

𝑦 𝑗𝜔
− 𝑗𝑘

𝑁+1, for 𝑘 = 0, . . . , 𝑁.
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2 Fundamentals

Proof. We start by showing the uniqueness of the solution. Rewriting the trigonometric polynomials
as

𝑡 (𝑧) =
𝑁∑︁
𝑘=0

𝑐𝑘 (𝑒𝑖𝑧)𝑘 ,

it is apparent that the trigonometric interpolation problem can be formulated as a polynomial
interpolation problem. Thus, the data points are modified to {(𝑥 𝑗 , 𝑦 𝑗)}𝑁𝑗=0 ⊆ C2, where 𝑥 𝑗 = 𝑒𝑖𝑥 𝑗

for each 𝑗 = 0, . . . , 𝑁 . Since the solution of the polynomial interpolation problem is unique, there
exist a unique polynomial 𝑝 : C→ C of degree 𝑁 with coefficients 𝑐0, . . . , 𝑐𝑁 such that

𝑝(𝑧) =
𝑁∑︁
𝑘=0

𝑐𝑘 𝑧
𝑘 and 𝑝(𝑥 𝑗) = 𝑦 𝑗 for each 𝑗 = 0, . . . , 𝑁.

By definition, it follows that

𝑡 (𝑥 𝑗) =
𝑁∑︁
𝑘=0

𝑐𝑘 (𝑒𝑖𝑥 𝑗 )𝑘 =

𝑁∑︁
𝑘=0

𝑐𝑘𝑥
𝑘
𝑗 = 𝑝(𝑥 𝑗) = 𝑦 𝑗 ,

where the trigonometric polynomial 𝑡 ∈ 𝑇𝑁 is uniquely defined by the coefficients 𝑐0, . . . , 𝑐𝑁 .
Therefore, the solution of the trigonometric interpolation problem is unique as well.

In order to compute the coefficients 𝑐0, . . . , 𝑐𝑁 , the following observation for arbitrary 0 ≤ 𝑙, 𝑘 ≤ 𝑁

is used:

𝑁∑︁
𝑗=0

𝜔
𝑗 (𝑙−𝑘)
𝑁+1 =


𝑁 + 1 if 𝑙 = 𝑘,

0 =
1−(𝜔𝑙−𝑘

𝑁+1)
𝑁+1

1−𝜔𝑙−𝑘
𝑁+1

else.
(2.1)

Finally, it follows that

𝑁∑︁
𝑗=0

𝑦 𝑗𝜔
− 𝑗𝑘

𝑁+1 =

𝑁∑︁
𝑗=0

(
𝑁∑︁
𝑙=0

𝑐𝑙𝑒
𝑖𝑙𝑥 𝑗

)
𝜔
− 𝑗𝑘

𝑁+1 =

𝑁∑︁
𝑗=0

(
𝑁∑︁
𝑙=0

𝑐𝑙𝜔
𝑙 𝑗

𝑁+1

)
𝜔
− 𝑗𝑘

𝑁+1

=

𝑁∑︁
𝑗=0

𝑁∑︁
𝑙=0

𝑐𝑙𝜔
𝑗 (𝑙−𝑘)
𝑁+1 =

𝑁∑︁
𝑙=0

𝑐𝑙
©«

𝑁∑︁
𝑗=0

𝜔
𝑗 (𝑙−𝑘)
𝑁+1

ª®¬ 2.1
= (𝑁 + 1)𝑐𝑘 . �

2.2 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) takes an input signal f = ( 𝑓 𝑗)𝑁𝑗=0 ∈ C𝑁+1 and computes
F [f] = ( 𝑓𝑘)𝑁𝑘=0, where

𝑓𝑘 =

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
− 𝑗𝑘

𝑁+1, for each 𝑘 = 0, . . . , 𝑁. (2.2)

When compared to Section 2.1, the computed result F [f] can be viewed as the set of scaled
coefficients from the unique solution of the trigonometric interpolation problem (cf. Theorem 1). It
is therefore common to say that ( 𝑓𝑘)𝑁𝑘=0 is located in frequency space.
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2.2 The Discrete Fourier Transform

Symmetrically to the DFT, the Inverse Discrete Fourier Transform (IDFT) takes f̂ = ( 𝑓𝑘)𝑁𝑘=0 as
input and computes F −1 [

f̂
]
= (𝑔 𝑗)𝑁𝑗=0, where

𝑔 𝑗 =

𝑁∑︁
𝑘=0

𝑓𝑘𝜔
𝑗𝑘

𝑁+1.

Note that it is common for other literature to scale either the elements of F [f] or F −1 [
f̂
]

by 1
𝑁+1 .

For this work, the definitions above are chosen in order to coincide with the behavior of the utilized
CUDA library for computing FFTs: cuFFT [NVIj]. Using this convention, the relationship between
DFT and IDFT is highlighted in Theorem 2.

Theorem 2
Let f = ( 𝑓 𝑗)𝑁𝑗=0 be an arbitrary input signal. It holds true that

F −1 [F [f]] = (𝑁 + 1)f.

Proof. Implicitly using equidistant positions (𝑥 𝑗)𝑁𝑗=0, i.e., 𝑥 𝑗 = 2𝜋
𝑁+1 𝑗 for each 𝑗 = 0, . . . , 𝑁 ,

Theorem 1 states that for input values f there exists a unique solution 𝑡 ∈ 𝑇𝑁 for the trigonometric
interpolation problem. It states further, that the coefficients of 𝑡 are specified by

𝑐𝑘 =
1

𝑁 + 1

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
− 𝑗𝑘

𝑁+1 =
1

𝑁 + 1
𝑓𝑘 , for each 𝑘 = 0, . . . , 𝑁.

It follows that:

(𝑁 + 1) 𝑓 𝑗 = (𝑁 + 1)𝑡 (𝑥 𝑗) = (𝑁 + 1)
𝑁∑︁
𝑘=0

𝑐𝑘𝑒
𝑖𝑘𝑥 𝑗

= (𝑁 + 1)
𝑁∑︁
𝑘=0

𝑐𝑘𝜔
𝑗𝑘

𝑁+1 =

𝑁∑︁
𝑘=0

𝑓𝑘𝜔
𝑗𝑘

𝑁+1 = 𝑔 𝑗 �

Instead of considering arbitrary complex input signals, real valued signals f = ( 𝑓 𝑗)𝑁𝑗=0 ∈ R𝑁+1 are
often used in practice. For such signals, it is easy to see, that

𝑓𝑁+1−𝑘 =

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
− 𝑗 (𝑁+1−𝑘)
𝑁+1 =

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
− 𝑗 (𝑁+1)+ 𝑗𝑘
𝑁+1

=

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
𝑗𝑘

𝑁+1 =
©«

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
− 𝑗𝑘

𝑁+1
ª®¬ = 𝑓𝑘 ,

where 𝑧 denotes the complex conjugate of 𝑧 ∈ C. Therefore, it is sufficient to compute ( 𝑓𝑘) b
𝑁+1

2 c
𝑘=0

for real valued signals.
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2.3 The Fast Fourier Transform

As seen in Section 2.2, a naive implementation of the Discrete Fourier Transform required O(𝑁2)
arithmetic operations. Fast Fourier Transforms (FFT) provide a family of algorithms that reduce
the number of required arithmetic operations to O(𝑁 log(𝑁)). While there are many algorithms
available, this work solely focuses on the Cooley-Tukey FFT Algorithm [CT65] [HJB84], which
is utilized by the cuFFT library. As stated in the documentation, the cuFFT library implements
Radix-2, Radix-3, Radix-5, and Radix-7 as its main building blocks [NVIh]. This section follows
[CT65] and [RKH10], where an additional overview of different FFT algorithms is given. In Section
2.3.1, we therefore start with the simplest form of the Cooley-Tukey FFT algorithm: The Radix-2
FFT Algorithm. Afterwards, the algorithm is generalized in Section 2.3.3.

2.3.1 The Radix-2 FFT Algorithm

Let f̂ = ( 𝑓𝑘)𝑁𝑘=0 and f̂ ∗ denote the complex conjugate of the vector. It is easy to see that

F −1 [
f̂
]
= F

[
f̂ ∗

]∗ (cf. Section 2.2).

It is therefore sufficient to provide a fast algorithm for the forward DFT. For simplicity, we consider
the Radix-2 FFT algorithm solely for input sizes 𝑁 = 2𝑚 − 1 (where 𝑚 ∈ N), such that there are
𝑁 +1 = 2𝑚 data points f = ( 𝑓 𝑗)𝑁𝑗=0. Splitting the data points into even and odd indices, the following
holds true for 0 ≤ 𝑘 ≤ 𝑁:

𝑓𝑘 =

𝑁∑︁
𝑗=0

𝑓 𝑗 𝜔
− 𝑗𝑘

𝑁+1 =

𝑁−1
2∑︁
𝑗=0

𝑓2 𝑗 𝜔
−2 𝑗𝑘
𝑁+1 +

𝑁−1
2∑︁
𝑗=0

𝑓2 𝑗+1 𝜔
−(2 𝑗+1)𝑘
𝑁+1

=

𝑁−1
2∑︁
𝑗=0

𝑓2 𝑗 𝜔
−2 𝑗𝑘
𝑁+1 + 𝜔−𝑘

𝑁+1

𝑁−1
2∑︁
𝑗=0

𝑓2 𝑗+1 𝜔
−2 𝑗𝑘
𝑁+1 = (∗)

Due to

𝜔2
𝑁+1 = 𝑒

2·2𝜋𝑖
𝑁+1 = 𝑒

2𝜋𝑖
(𝑁+1)/2 = 𝜔 𝑁+1

2
,

it follows that:

(∗) =
𝑁−1

2∑︁
𝑗=0

𝑓2 𝑗 𝜔
− 𝑗𝑘
𝑁+1

2︸          ︷︷          ︸
=:�̂�𝑘

+ 𝜔−𝑘
𝑁+1

𝑁−1
2∑︁
𝑗=0

𝑓2 𝑗+1 𝜔
− 𝑗𝑘
𝑁+1

2︸            ︷︷            ︸
=:ℎ̂𝑘

= �̂�𝑘 + 𝜔−𝑘
𝑁+1 ℎ̂𝑘

Here, the signals (�̂�𝑘)𝑁𝑘=0 and ( ℎ̂𝑘)𝑁𝑘=0 are periodic with period 𝑁+1
2 . Computing the signal ( 𝑓𝑘)𝑁𝑘=0

can therefore be realized as

𝑓𝑘 = �̂�𝑘 + 𝜔−𝑘
𝑁+1 ℎ̂𝑘 , and

𝑓𝑘+ 𝑁+1
2

= �̂�𝑘 + 𝜔
−(𝑘+ 𝑁+1

2 )
𝑁+1 ℎ̂𝑘 = �̂�𝑘 − 𝜔−𝑘

𝑁+1 ℎ̂𝑘 , for 𝑘 = 0, . . . ,
𝑁 − 1

2
.

(2.3)
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2.3 The Fast Fourier Transform

Counting an addition and a multiplication as a single arithmetic operation, the number of performed
arithmetic operations can be analyzed as follows: Let 𝑐 : N\{0} → N, such that 𝑐(𝑛) denotes
the number of arithmetic operations performed on input size 𝑛. In the following, we show that
𝑐(𝑛) = 𝑛 log2(𝑛).

For the base case 𝑁 + 1 = 2, Equation 2.2 uses two arithmetic operations to compute f̂, i.e., 𝑐(2) = 2.
For 𝑁 + 1 = 2𝑚 where 𝑚 > 1, Equation 2.3 provides the recursion

𝑐(𝑁 + 1) = 2 · 𝑐
(
𝑁 + 1

2

)
+ (𝑁 + 1) = (∗∗),

where the induction hypothesis states, that the computations of (�̂�𝑘)𝑁𝑘=0 and ( ℎ̂𝑘)𝑁𝑘=0 perform
𝑐

(
𝑁+1

2

)
= 𝑁+1

2 log2

(
𝑁+1

2

)
arithmetic operations each. Therefore, it follows that:

(∗∗) = 2 ·
(
𝑁 + 1

2
log2

(
𝑁 + 1

2

))
+ (𝑁 + 1)

= (𝑁 + 1) ·
(
log2

(
𝑁 + 1

2

)
+ 1

)
= (𝑁 + 1) log2(𝑁 + 1)

2.3.2 Radix-2 Butterfly Diagrams

A common visualization method of a FFT algorithm is the Butterfly Diagram. An exemplary
diagram is presented in Figure 2.1, which depicts the Radix-2 FFT algorithm for 𝑁 + 1 = 8.
Analogously to Equation 2.3, 𝑓𝑘 is computed as follows:

𝑓𝑘 = �̂�𝑘 + 𝜔−𝑘
8 ℎ̂𝑘 , and (2.4)

𝑓𝑘+4 = �̂�𝑘 − 𝜔
−(𝑘+4)
8 ℎ̂𝑘 , for 𝑘 = 0, . . . , 3. (2.5)

This exact procedure is shown on the right side of Figure 2.1, where arrows annotated with ”−1”
indicate that Equation 2.5 is used instead of Equation 2.4. Furthermore, the butterfly diagram
visualizes the partition of even and odd indices for the input data of (�̂�𝑘)3

𝑘=0 and ( ℎ̂𝑘)3
𝑘=0.

In the next step, the same recursion is repeated for (�̂�𝑘)3
𝑘=0 and ( ℎ̂𝑘)3

𝑘=0, i.e.,

�̂�𝑘 = �̂�
(0)
𝑘

+ 𝜔−𝑘
4 ℎ̂

(0)
𝑘

, �̂�𝑘+2 = �̂�
(0)
𝑘

− 𝜔
−(𝑘+2)
4 ℎ̂

(0)
𝑘

and

ℎ̂𝑘 = �̂�
(1)
𝑘

+ 𝜔−𝑘
4 ℎ̂

(1)
𝑘

, ℎ̂𝑘+2 = �̂�
(1)
𝑘

− 𝜔
−(𝑘+2)
4 ℎ̂

(1)
𝑘

for 𝑘 = 0, 1.

Focusing on (�̂�𝑘)3
𝑘=0, which can be seen as the FFT on input data feven = ( 𝑓0, 𝑓2, 𝑓4, 𝑓6), the signal

(�̂� (0)
0 , �̂�

(0)
1 ) is again computed using the partition of feven consisting of even indices (i.e. ( 𝑓0, 𝑓4)),

while ( ℎ̂ (0)0 , ℎ̂
(0)
1 ) is computed using the partition consisting of odd indices (i.e. ( 𝑓2, 𝑓6)). Similarly,

the signal ( ℎ̂𝑘)3
𝑘=0 is determined, completing the computation.
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-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Figure 2.1: Butterfly Diagram for the Radix-2 FFT Algorithm with 𝑁 + 1 = 8. On the highest level
(sc. the right-hand side of the diagram), a single butterfly represents the combined computation
of 𝑓𝑘 and 𝑓𝑘+ 𝑁+1

2
, where latter is further emphasized by the annotation ”−1”. Analogously, the

diagram visualizes the recursive calls for the computation of �̂�𝑘 and ℎ̂𝑘 (0 ≤ 𝑘 < 4).

2.3.3 The Cooley-Tukey FFT Algorithm

Following the work of J. Cooley and J. Tukey [CT65], the Radix-2 FFT algorithm (cf. Section
2.3.1) can be generalized as follows:

Let 𝑁 be arbitrary and write 𝑁 + 1 = (𝑁 ′ + 1) · 𝑝 for fitting 𝑁 ′, 𝑝 ∈ N. Following the same
construction of Section 2.3.1, we have for 0 ≤ 𝑘 ≤ 𝑁:

𝑓𝑘 =

𝑁∑︁
𝑗=0

𝑓 𝑗𝜔
− 𝑗𝑘

𝑁+1 =

𝑝−1∑︁
𝑟=0

𝑁 ′∑︁
𝑗=0

𝑓𝑝 𝑗+𝑟𝜔
−(𝑝 𝑗+𝑟 )𝑘
𝑁+1

=

𝑝−1∑︁
𝑟=0

𝜔−𝑟 𝑘
𝑁+1

𝑁 ′∑︁
𝑗=0

𝑓𝑝 𝑗+𝑟𝜔
−𝑝 𝑗𝑘

𝑁+1 =

𝑝−1∑︁
𝑟=0

𝜔−𝑟 𝑘
𝑁+1

𝑁 ′∑︁
𝑗=0

𝑓𝑝 𝑗+𝑟𝜔
− 𝑗𝑘

𝑁 ′+1︸             ︷︷             ︸
=:�̂� (𝑟 )

𝑘

=

𝑝−1∑︁
𝑟=0

�̂�
(𝑟 )
𝑘

𝜔−𝑟 𝑘
𝑁+1

For 0 ≤ 𝑟 < 𝑝, the values �̂� (𝑟 )
𝑘

are periodic with period 𝑁 ′ + 1. The signal ( 𝑓𝑘)𝑁𝑘=0 can therefore be
computed in the following manner:

𝑓𝑘+𝑙 (𝑁 ′+1) =
𝑝−1∑︁
𝑟=0

�̂�
(𝑟 )
𝑘

𝜔
−𝑟 (𝑘+𝑙 (𝑁 ′+1))
𝑁+1 , for 0 ≤ 𝑘 < 𝑁 ′ and 0 ≤ 𝑙 < 𝑝. (2.6)

The computation starts by recursively determining the signals (�̂� (𝑟 )
𝑘

)𝑁 ′

𝑘=0 for 0 ≤ 𝑟 < 𝑝. Afterwards,
the evaluation of 𝑓𝑘+𝑙 (𝑁 ′+1) can be estimated to use less than 𝑝 arithmetic operations (cf. Equation
2.6), where a single arithmetic operation is again counted as an addition combined with a
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multiplication. This argument results in the following recursive formula for the number of
performed arithmetic operations:

𝑐(1) = 0
𝑐(𝑁 + 1) = 𝑝 · 𝑐(𝑁 ′ + 1) + 𝑝(𝑁 + 1)

(2.7)

Note that Equation 2.7 covers the special case 𝑁 ′ + 1 = 1, where 𝑐(𝑝) = 𝑝2.

Before resolving the recursion in Theorem 3, the following lemma is introduced:

Lemma 1
Let 𝑁 + 1 = (𝑁 ′ + 1)𝑝𝑠 (for 𝑠 ≥ 1, 𝑁 ′ ≥ 0), such that 𝑝 does not divide (𝑁 ′ + 1) any further. It
holds true that

𝑐(𝑁 + 1) = 𝑝𝑠𝑐(𝑁 ′ + 1) + 𝑠𝑝(𝑁 + 1).

Proof. We prove the statement by induction on 𝑠 ≥ 1. For the base case 𝑠 = 1, the claim immediately
follows from Equation 2.7. For 𝑠 > 1, we have:

𝑐(𝑁 + 1) = 𝑝 · 𝑐((𝑁 ′ + 1)𝑝𝑠−1) + 𝑝(𝑁 + 1) (Equation 2.7)

= 𝑝 ·
(
𝑝𝑠−1𝑐(𝑁 ′ + 1) + (𝑠 − 1)𝑝(𝑁 ′ + 1)𝑝𝑠−1

)
+ 𝑝(𝑁 + 1) (Induction Hypothesis)

= 𝑝 ·
(
𝑝𝑠−1𝑐(𝑁 ′ + 1) + (𝑠 − 1) (𝑁 + 1)

)
+ 𝑝(𝑁 + 1)

= 𝑝𝑠𝑐(𝑁 ′ + 1) + (𝑠 − 1)𝑝(𝑁 + 1) + 𝑝(𝑁 + 1)
= 𝑝𝑠𝑐(𝑁 ′ + 1) + 𝑠𝑝(𝑁 + 1) �

Again, Lemma 1 covers the special case 𝑁 ′ + 1 = 1, resulting in

𝑐(𝑝𝑠) = 𝑝𝑠𝑐(1) + 𝑠𝑝 · (𝑁 + 1) = 𝑝 · (𝑁 + 1) log𝑝 (𝑁 + 1). (2.8)

Theorem 3
Let 𝑁 + 1 = 𝑝

𝑠1
1 · · · 𝑝𝑠𝑚𝑚 be the prime factorization of 𝑁 + 1, such that for each 1 ≤ 𝑖 ≤ 𝑚, the prime

factor 𝑝𝑖 does not divide 𝑁+1
𝑝
𝑠𝑖
𝑖

any further. It holds true that

𝑐(𝑁 + 1) = (𝑁 + 1) (𝑠1𝑝1 + . . . + 𝑠𝑚𝑝𝑚).

Proof. We prove the statement by induction on 𝑚 ≥ 1. The claim of the base case 𝑚 = 1 follows
from Equation 2.8. For 𝑚 > 1, we have:

𝑐(𝑁 + 1) = 𝑝
𝑠1
1 · 𝑐(𝑝𝑠2

2 · · · 𝑝𝑠𝑚𝑚 ) + 𝑠1𝑝1(𝑁 + 1) (Lemma 1)
= 𝑝

𝑠1
1 ·

(
𝑝
𝑠2
2 · · · 𝑝𝑠𝑚𝑚 (𝑠2𝑝2 + . . . + 𝑠𝑚𝑝𝑚)

)
+ 𝑠1𝑝1(𝑁 + 1) (Induction Hypothesis)

= (𝑁 + 1) (𝑠2𝑝2 + . . . + 𝑠𝑚𝑝𝑚) + 𝑠1𝑝1(𝑁 + 1)
= (𝑁 + 1) (𝑠1𝑝1 + . . . + 𝑠𝑚𝑝𝑚) �

Although it can be seen that any arbitrary factorization of 𝑁 + 1 would suffice in Theorem 3, it
appears obvious that the prime factorization results in the lowest runtime. Furthermore, input sizes
solely consisting of small prime factors are theoretically preferable when using the Cooley-Tukey
FFT algorithm.

25



2 Fundamentals

For the sake of completeness, we state that while it is common for libraries like FFTW to provide
highly optimized computation methods for input sizes consisting of prime factors 2, 3, 5 and 7, the
library implementation might use significantly larger radices (e.g. Radix-32), depending on the
underlying hardware [FJ05].

2.4 Expansion to Higher Dimensions

So far, we have seen that the DFT computes the scaled coefficients corresponding to the unique
solution of the trigonometric interpolation problem (cf. Section 2.1 and Section 2.2). In this work,
we are interested in computing the FFT of three-dimensional input data. Therefore, this section
introduces the trigonometric interpolation problem for higher dimensions in Section 2.4.1, before
exploring its coherence to multidimensional DFTs in Section 2.4.2.

2.4.1 Trigonometric Interpolation

In this section, trigonometric interpolation is introduced for sampling points in higher dimensions.
Furthermore, we show that, analogously to the one-dimensional case (cf. Theorem 1), this
interpolation problem has a unique solution as well. For the sake of simplicity, we only consider the
two-dimensional extension and note that the expansion to even higher dimensions can be done in
similar fashion.

Consider the input parameters 𝑁1, 𝑁2 ∈ N, along with the data points:{(
𝑥 [ 𝑗1, 𝑗2 ] , 𝑦 [ 𝑗1, 𝑗2 ]

)
| 0 ≤ 𝑗1 ≤ 𝑁1, 0 ≤ 𝑗2 ≤ 𝑁2, 𝑥 [ 𝑗1, 𝑗2 ] =

(
2𝜋 𝑗1
𝑁1 + 1

,
2𝜋 𝑗2
𝑁2 + 1

)}
The interpolation problem is to find a fitting mapping 𝑡 : C2 → C of the form

𝑡 (𝑧1, 𝑧2) =
𝑁1∑︁
𝑘1=0

𝑁2∑︁
𝑘2=0

𝑐 [𝑘1,𝑘2 ]𝑒
𝑖𝑧1𝑘1𝑒𝑖𝑧2𝑘2 ,

such that 𝑡 (𝑥 [ 𝑗1, 𝑗2 ]) = 𝑦 [ 𝑗1, 𝑗2 ] for each 0 ≤ 𝑗1 ≤ 𝑁1 and 0 ≤ 𝑗2 ≤ 𝑁2. We start by showing that this
interpolation problem has a unique solution.

Theorem 4
There exists a unique solution to the formulated two-dimensional trigonometric interpolation
problem.

Proof. At first, let 0 ≤ 𝑗2 ≤ 𝑁2 be fixed. Theorem 1 states that there exists a unique solution
𝑢 𝑗2 ∈ 𝑇𝑁1 for the one-dimensional trigonometric interpolation problem with data points{(

𝑥 𝑗1 , 𝑦 [ 𝑗1, 𝑗2 ]
)
| 0 ≤ 𝑗1 ≤ 𝑁1 and 𝑥 𝑗1 =

2𝜋 𝑗1
𝑁1 + 1

}
. (2.9)
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Thus, there exist coefficients 𝑐 [0, 𝑗2 ] , . . . , 𝑐 [𝑁1, 𝑗2 ] , such that

𝑢 𝑗2 (𝑧) =
𝑁1∑︁
𝑘1=0

𝑐 [𝑘1, 𝑗2 ]𝑒
𝑖𝑧𝑘1 , and (2.10)

𝑦 [ 𝑗1, 𝑗2 ] = 𝑢 𝑗2 (𝑥 𝑗1) =
𝑁1∑︁
𝑘1=0

𝑐 [𝑘1, 𝑗2 ]𝜔
𝑗1𝑘1
𝑁1+1, for 𝑗1 = 0, . . . , 𝑁1. (2.11)

Secondly, let 0 ≤ 𝑘1 ≤ 𝑁1 be fixed. As before, Theorem 1 states that the interpolation problem
with data points {(

𝑥 𝑗2 , 𝑐 [𝑘1, 𝑗2 ]
)
| 0 ≤ 𝑗2 ≤ 𝑁2 and 𝑥 𝑗2 =

2𝜋 𝑗2
𝑁2 + 1

}
(2.12)

has a unique solution 𝑣𝑘1 ∈ 𝑇𝑁2 . Let 𝑐 [𝑘1,0] , . . . , 𝑐 [𝑘1,𝑁2 ] denote the coefficients, such that

𝑣𝑘1 (𝑧) =
𝑁2∑︁
𝑘2

𝑐 [𝑘1,𝑘2 ]𝑒
𝑖𝑧𝑘2 , and (2.13)

𝑐 [𝑘1, 𝑗2 ] = 𝑣𝑘1 (𝑥 𝑗2) =
𝑁2∑︁
𝑘2

𝑐 [𝑘1,𝑘2 ]𝜔
𝑗2𝑘2
𝑁2+1, for 𝑗2 = 0, . . . , 𝑁2. (2.14)

Finally, we define 𝑡 : C2 → C with

𝑡 (𝑧1, 𝑧2) =
𝑁1∑︁
𝑘1=0

𝑁2∑︁
𝑘2=0

𝑐 [𝑘1,𝑘2 ]𝑒
𝑖𝑧1𝑘1𝑒𝑖𝑧2𝑘2 .

Note that due to the uniqueness of the solutions for the one-dimensional trigonometric interpolation
problem for the data points in 2.9 and 2.12, the coefficients 𝑐 [𝑘1,𝑘2 ] are uniquely determined as well.
Furthermore, the following holds true for arbitrary 0 ≤ 𝑗1 ≤ 𝑁1 and 0 ≤ 𝑗2 ≤ 𝑁2:

𝑡 (𝑥 [ 𝑗1, 𝑗2 ]) =
𝑁1∑︁
𝑘1=0

𝑁2∑︁
𝑘2=0

𝑐 [𝑘1,𝑘2 ]𝜔
𝑗1𝑘1
𝑁1+1𝜔

𝑗2𝑘2
𝑁2+1

=

𝑁1∑︁
𝑘1=0

𝜔
𝑗1𝑘1
𝑁1+1

(
𝑁2∑︁
𝑘2=0

𝑐 [𝑘1,𝑘2 ]𝜔
𝑗2𝑘2
𝑁2+1

)
=

𝑁1∑︁
𝑘1=0

𝜔
𝑗1𝑘1
𝑁1+1𝑐 [𝑘1, 𝑗2 ] (Equation 2.14)

= 𝑦 [ 𝑗1, 𝑗2 ] (Equation 2.11) �

There are two important aspects concerning the given proof of Theorem 4:

i) First Observation: The proof is constructive, i.e., it provides a scheme to compute the coeffi-
cients (𝑐 [𝑘1,𝑘2 ])𝑘1,𝑘2 . In particular, we start by determining coefficients 𝑐 [0, 𝑗2 ] , . . . , 𝑐 [𝑁1, 𝑗2 ]
for the data points 𝐷 𝑗2 = {(𝑥 𝑗1 , 𝑦 [ 𝑗1, 𝑗2 ])}

𝑁1
𝑗1=0 and fixed 𝑗2. This corresponds to computing the

one-dimensional DFT of 𝐷 𝑗2 . Repeating the same procedure for each 0 ≤ 𝑗2 ≤ 𝑁2 therefore
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corresponds to the batched computation of one-dimensional DFTs in the first direction.
Analogously, the coefficients (𝑐 [𝑘1, 𝑗2 ])𝑘1, 𝑗2 are used in the second iteration to compute the
batched computation of one-dimensional DFTs in the second direction, which results in the
coefficients (𝑐 [𝑘1,𝑘2 ])𝑘1,𝑘2 .

ii) Second Observation: The proof can easily be extended to higher dimensions. For 𝑚

dimensional sampling points of size (𝑁1 + 1) × · · · × (𝑁𝑚 + 1), we can start by determining
the coefficients 𝑐 [0, 𝑗2,..., 𝑗𝑚 ] , . . . , 𝑐 [𝑁1, 𝑗2,..., 𝑗𝑚 ] for fixed 𝑗2, . . . , 𝑗𝑚 (cf. Equations 2.9 – 2.11).
Afterwards, the collection of these coefficients (𝑐 [ 𝑗1, 𝑗2,..., 𝑗𝑚 ]) 𝑗1,..., 𝑗𝑚 can be used by the
induction hypothesis to uniquely determine the final coefficients (𝑐 [ 𝑗1, 𝑗2,..., 𝑗𝑚 ]) 𝑗1,..., 𝑗𝑚 .

2.4.2 Multidimensional Discrete Fourier Transforms

Following the structure of Section 2.4.1, we start by defining the DFT and IDFT for the two-
dimensional case (short: 2D-DFT and 2D-IDFT).

Definition 2.4.1 (2D-DFT)
Let f = ( 𝑓 [ 𝑗1, 𝑗2 ]) 𝑗1, 𝑗2 be an arbitrary input signal of size (𝑁1 + 1) × (𝑁2 + 1). Similarly to the
one-dimensional case (cf. Section 2.2), we define the 2D-DFT to be F [f] = ( 𝑓 [𝑘1,𝑘2 ])𝑘1,𝑘2 , such
that

𝑓 [𝑘1,𝑘2 ] = (𝑁1 + 1) (𝑁2 + 1) · 𝑐 [𝑘1,𝑘2 ]

corresponds to the scaled coefficients (𝑐 [𝑘1,𝑘2 ])𝑘1,𝑘2 of the unique solution for the interpolation
problem stated in Section 2.4.1.

In the first observation of the proof presented for Theorem 4, we already found that the 2D-DFT
is separable, i.e., it can be expressed as a product of one-dimensional DFTs in each direction.
Therefore, F [f] can be computed in the following manner:

1. Split the input data into 𝑁2 +1 partitions f 𝑗2 = ( 𝑓 [ 𝑗1, 𝑗2 ])
𝑁1
𝑗1=0 and compute the one-dimensional

DFT F
[
f 𝑗2

]
= ( 𝑓 ( 𝑗2)

𝑘1
)𝑁1
𝑘1=0 for each 0 ≤ 𝑗2 ≤ 𝑁2.

2. Afterwards, split the collected results ( 𝑓 ( 𝑗2)
𝑘1

)𝑘1, 𝑗2 into 𝑁1 + 1 partitions f𝑘1 = ( 𝑓 ( 𝑗2)
𝑘1

)𝑁2
𝑗2=0 and

compute the one-dimensional DFT F
[
f𝑘1

]
= ( 𝑓 (𝑘1)

𝑘2
)𝑁2
𝑘2=0 for each 0 ≤ 𝑘1 ≤ 𝑁1.

3. The result is given by 𝑓 [𝑘1,𝑘2 ] = 𝑓
(𝑘1)
𝑘2

for each 0 ≤ 𝑘1 ≤ 𝑁1 and 0 ≤ 𝑘2 ≤ 𝑁2.

Definition 2.4.2 (2D-IDFT)
Let f̂ = ( 𝑓 [𝑘1,𝑘2 ])𝑘1,𝑘2 be an arbitrary input signal in frequency space of size (𝑁1 + 1) × (𝑁2 + 1).
Similarly to the one-dimensional case (cf. Section 2.2), we define the 2D-IDFT to be F −1 [

f̂
]
=

(𝑔 [ 𝑗1, 𝑗2 ]) 𝑗1, 𝑗2 , where

𝑔 [ 𝑗1, 𝑗2 ] =
𝑁1∑︁
𝑘1=0

𝑁2∑︁
𝑘2=0

𝑓 [𝑘1,𝑘2 ]𝜔
𝑗1𝑘1
𝑁1+1𝜔

𝑗2𝑘2
𝑁2+1, for 0 ≤ 𝑗1 ≤ 𝑁1 and 0 ≤ 𝑗2 ≤ 𝑁2.

To show the separability of the 2D-IDFT, we start by summarizing the computational steps:
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1. Split the signal into 𝑁1 + 1 partitions f̂𝑘1 = ( 𝑓 [𝑘1,𝑘2 ])
𝑁2
𝑘2=0 and compute the one-dimensional

IDFT F −1 [
f̂𝑘1

]
= (𝑔 (𝑘1)

𝑗2
)𝑁2
𝑗2=0 for each 0 ≤ 𝑘1 ≤ 𝑁1.

2. Afterwards, split the collected result (𝑔 (𝑘1)
𝑗2

)𝑘1, 𝑗2 into 𝑁2 partitions f̂ 𝑗2 = (𝑔 (𝑘1)
𝑗2

)𝑁1
𝑘1=0 and

compute the one-dimensional IDFT F −1 [
f̂ 𝑗2

]
= (𝑔 ( 𝑗2)

𝑗1
)𝑁1
𝑗1=0 for each 0 ≤ 𝑗2 ≤ 𝑁2.

3. The result is given by 𝑔 [ 𝑗1, 𝑗2 ] = 𝑔
( 𝑗2)
𝑗1

for each 0 ≤ 𝑗1 ≤ 𝑁1 and 0 ≤ 𝑗2 ≤ 𝑁2.

The correctness of above separability algorithm can be seen as follows:

𝑔 [ 𝑗1, 𝑗2 ] =

𝑁1∑︁
𝑘1=0

𝑁2∑︁
𝑘2=0

𝑓 [𝑘1,𝑘2 ]𝜔
𝑗1𝑘1
𝑁1+1𝜔

𝑗2𝑘2
𝑁2+1 =

𝑁1∑︁
𝑘1=0

𝜔
𝑗1𝑘1
𝑁1+1

(
𝑁2∑︁
𝑘2=0

𝑓 [𝑘1,𝑘2 ]𝜔
𝑗2𝑘2
𝑁2+1

)
=

𝑁1∑︁
𝑘1=0

𝜔
𝑗1𝑘1
𝑁1+1𝑔

(𝑘1)
𝑗2

= 𝑔
( 𝑗2)
𝑗1

Using the generalization of the second observation in Section 2.4.1, it is easy to see how to extend
the definitions of 2D-DFT and 2D-IDFT to higher dimensions. Analogously, the separability
property is preserved for higher dimensions. The general computation of the 𝑚-dimensional DFT
(IDFT) can therefore be considered as a product of 𝑚 one-dimensional DFTs (IDFTs) in a similar
manner as described above.

When considering a real-valued input signal ( 𝑓 [ 𝑗1,..., 𝑗𝑚 ]) 𝑗1,..., 𝑗𝑚 of size (𝑁1 + 1) × · · · × (𝑁𝑚 + 1),
the separability property yields a similar symmetry of the computed signal ( 𝑓 [𝑘1,...,𝑘𝑚 ])𝑘1,...,𝑘𝑚 as
in the one-dimensional case: Without loss of generality we assume that the computation starts by
calculating the batched one-dimensional DFTs in the first direction. Thus, we compute the 1D-DFTs
for input data ( 𝑓 [ 𝑗1,..., 𝑗𝑚 ])𝑁1

𝑗1=0 for each 𝑙 = 2, . . . , 𝑚 and 0 ≤ 𝑗𝑙 ≤ 𝑁𝑙 . Using the symmetry property
presented in Section 2.2, it is sufficient to compute and store the complex-valued data

( 𝑓 ( 𝑗2,..., 𝑗𝑚)
𝑘1

)
⌊
𝑁1+1

2

⌋
𝑘1=0 , for 𝑙 = 2, . . . , 𝑚 and 0 ≤ 𝑗𝑙 ≤ 𝑁𝑙 .

Therefore, the output size of a real-valued 𝑚-dimensional DFT is often considered to be(⌊
𝑁1 + 1

2

⌋
+ 1

)
× (𝑁2 + 1) × · × (𝑁𝑚 + 1).

In particular, the signal ( 𝑓 [𝑘1,...,𝑘𝑚 ])𝑘1,...,𝑘𝑚 satisfies Hermitian Symmetry, which is defined as

𝑓 [𝑁1+1−𝑘1,...,𝑁𝑚+1−𝑘𝑚 ] = 𝑓 [𝑘1,...,𝑘𝑚 ] , for 𝑙 = 1, . . . , 𝑚 and 0 ≤ 𝑘𝑙 ≤ 𝑁𝑙,

where 𝑧 denotes the complex conjugate of 𝑧 ∈ C.
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To proof this property, we use induction on 𝑚 ≥ 1. For the base case 𝑚 = 1, the statement was
already shown in Section 2.2. For 𝑚 > 1, we have:

𝑓 [𝑁1+1−𝑘1,...,𝑁𝑚+1−𝑘𝑚 ] =
𝑁𝑚∑︁
𝑗𝑚=0

𝑓
( 𝑗𝑚)
[𝑁1+1−𝑘1,...,𝑁𝑚−1+1−𝑘𝑚−1 ]𝜔

− 𝑗 (𝑁𝑚+1−𝑘𝑚)
𝑁𝑚+1 (Separability)

=

𝑁𝑚∑︁
𝑗𝑚=0

(
𝑓
( 𝑗𝑚)
[𝑘1,...,𝑘𝑚−1 ]

)
𝜔
+ 𝑗𝑘𝑚
𝑁𝑚+1 (Induction Hypothesis)

=
©«

𝑁𝑚∑︁
𝑗𝑚=0

𝑓
( 𝑗𝑚)
[𝑘1,...,𝑘𝑚−1 ]𝜔

− 𝑗𝑘𝑚
𝑁𝑚+1

ª®¬
= 𝑓 [𝑘1,...,𝑘𝑚 ] (Separability)

2.4.3 Multidimensional Fast Fourier Transforms

As previously introduced in Section 2.3.3, the Cooley-Tukey FFT algorithm performs

(𝑁 + 1) (𝑠1𝑝1 + . . . + 𝑠𝑚𝑝𝑚)

arithmetic operations for input sizes 𝑁 + 1 and the prime factorization 𝑁 + 1 = 𝑝
𝑠1
1 · · · 𝑝𝑠𝑚𝑚 . In

Section 2.4.2, we found that the computation of the 𝑚-dimensional DFT is separable. Analogously,
the Cooley-Tukey FFT algorithm can easily be generalized for higher dimensions as a product of
one-dimensional FFTs in each dimension.

To analyze the number of performed arithmetic operations, we exemplarily consider the two-
dimensional and note, that the cost analysis can again easily be generalized for higher dimensions:
Let 𝑁1, 𝑁2 ∈ N and 𝑁1 + 1 = 𝑝

𝑠1
1 · · · 𝑝𝑠𝑚𝑚 , 𝑁2 + 1 = 𝑞

𝑟1
1 · · · 𝑞𝑟𝑛𝑛 be the prime factorizations. For the

first computation step presented in Section 2.4.2, we compute 𝑁2 + 1 FFTs of size 𝑁1 + 1, resulting
in a total of

(𝑁2 + 1) (𝑁1 + 1) · (𝑠1𝑝1 + . . . + 𝑠𝑚𝑝𝑚)

performed arithmetic operations. For the second computational step, we compute 𝑁1 + 1 FFTs of
size 𝑁2 + 1, resulting in a total of

(𝑁1 + 1) (𝑁2 + 1) · (𝑟1𝑞1 + . . . + 𝑟𝑛𝑞𝑛)

performed arithmetic operations. Combining the costs of both steps, the 2D Cooley-Tukey FFT
algorithm performs

(𝑁1 + 1) (𝑁2 + 1) · (𝑠1𝑝1 + . . . + 𝑠𝑚𝑝𝑚 + 𝑟1𝑞1 + . . . + 𝑟𝑛𝑞𝑛)

arithmetic operations. The special case 𝑁1 + 1 = 𝑝𝑠, 𝑁2 + 1 = 𝑝𝑟 for 𝑟, 𝑠 ∈ N and prime number 𝑝
therefore results in costs

(𝑁1 + 1) (𝑁2 + 1) · (𝑠𝑝 + 𝑟 𝑝) = 𝑝 · (𝑁1 + 1) (𝑁2 + 1) · log𝑝 ((𝑁1 + 1) (𝑁2 + 1)).
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2.5 Approaches for Distributed Computation

After introducing the necessary prerequisites for the computation of multidimensional FFTs in
Section 2.4, we focus now on three-dimensional input data of size (𝑁1 + 1) × (𝑁2 + 1) × (𝑁3 + 1).
Furthermore, this section solely concentrates on the basic computation methods, while further
details on the GPU implementation are provided in Chapter 4. For convenience, we denote the axes
by x, y, and z and write 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 instead of (𝑁1 + 1) × (𝑁2 + 1) × (𝑁3 + 1). If not stated
otherwise, we further assume that the data is aligned in z-direction, i.e., position (𝑥, 𝑦, 𝑧) is accessed
via

data[𝑥 · 𝑁𝑦𝑁𝑧 + 𝑦 · 𝑁𝑧 + 𝑧] .

Since multidimensional DFTs are separable (cf. Section 2.4.2), the general approach for distributed
computation is to partition the input data and sequentially compute the 1D-FFTs for each direction,
while exchanging the intermediate results with other processes. Therefore, the fundamental
approaches can be categorized into the 1D-Decomposition (Slab Decomposition) and the 2D-
Decomposition (Pencil Decomposition) of the input data. We start by introducing slab decomposition
in Section 2.5.1 and pencil decomposition in Section 2.5.2. Afterwards, Section 2.5.3 introduces
some simple observations concerning the key differences between both approaches.

2.5.1 Slab Decomposition

Let 𝑃 be the number of processes involved in the computation. Slab decomposition then splits the
global input data of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 along the x-axis and assigns each process a slab. More
specifically, the input data is split into partitions of size 𝑁𝑥

𝑃
× 𝑁𝑦 × 𝑁𝑧 . Algorithm 2.1 provides

an overview of the procedure for process 𝑝 (with 0 ≤ 𝑝 < 𝑃), where we assume for the sake of
simplicity that 𝑃 divides 𝑁𝑥 and 𝑁𝑦 .

Algorithm 2.1 Slab Decomposition for Process 𝑝

Input: Data of size 𝑁𝑥

𝑃
× 𝑁𝑦 × 𝑁𝑧

Output: Data of size 𝑁𝑥 ×
𝑁𝑦

𝑃
× 𝑁𝑧

1: Compute the 2D-FFT in z- and y-direction
2: Split the computed results of step 1 into 𝑃 partitions in y-direction (of size 𝑁𝑥

𝑃
× 𝑁𝑦

𝑃
× 𝑁𝑧) and

transmit the 𝑘th partition to the process 𝑘
3: After receiving all partitions, compute the remaining 1D-FFT in x-direction

Step 2 of the algorithm is further visualized in Figure 2.2 and consists of the Packing, Communication,
and Unpacking Phase: After computing the 2D-FFT in z- and y-direction, the data is split into
equally sized partitions along the y-axis. Figure 2.2 exemplarily highlights the third partition for
each process, which can be seen to reside dissected in memory. Therefore, the packing phase is used
to copy the partition into a contiguous send buffer. Thereafter, in the communication phase process 𝑝
sends the 𝑘th partition to process 𝑘 (for each 0 ≤ 𝑘 < 𝑃 with 𝑘 ≠ 𝑝) and symmetrically receives its
𝑝th partition. After receiving all incoming data, the data is usually copied into contiguous memory
again, as part of the unpacking phase, before computing the remaining 1D-FFT in x-direction.
Disregarding GPU implementation details (like host-to-device memory transfers), it can be seen in
Figure 2.2 that the unpacking phase can be omitted for slab decomposition.
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Figure 2.2: Slab Decomposition for 3 Processes. The green slab highlights the third process, which
receives the red partitions from each process to compute the remaining 1D-FFT in x-direction.

2.5.2 Pencil Decomposition

Here, a process grid 𝑃1 × 𝑃2 is considered. A single process is then identified as (𝑝𝑖 , 𝑝 𝑗), for
0 ≤ 𝑝𝑖 < 𝑃1 and 0 ≤ 𝑝 𝑗 < 𝑃2. Pencil decomposition then splits the global input of size
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 along the x- and y-axis and assigns each process a pencil. More specifically, the
input data is split into partitions of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧 . Algorithm 2.2 provides an overview of the

procedure for process (𝑝𝑖 , 𝑝 𝑗). For the sake of simplicity, we assume again that 𝑃1 and 𝑃2 divide
𝑁𝑥 , 𝑁𝑦 , and 𝑁𝑧 .

Algorithm 2.2 Pencil Decomposition for Process (𝑝𝑖 , 𝑝 𝑗)
Input: Data of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧 .

Output: Data of size 𝑁𝑥 ×
𝑁𝑦

𝑃1
× 𝑁𝑧

𝑃2
.

1: Compute the 1D-FFT in z-direction.
2: Split the computed results of step 1 into 𝑃2 partitions in z-direction (of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧

𝑃2
) and

transmit the 𝑘th partition to process (𝑝𝑖 , 𝑘), for each 0 ≤ 𝑘 ≤ 𝑃2 − 1.
3: After receiving all partitions, compute the 1D-FFT in y-direction.
4: Split the computed results of step 3 into 𝑃1 partitions in y-direction (of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃1
× 𝑁𝑧

𝑃2
)

and transmit the 𝑘th partition to process (𝑘, 𝑝 𝑗), for each 0 ≤ 𝑘 ≤ 𝑃1 − 1.
5: After receiving all partitions, compute the 1D-FFT in x-direction.

Steps 2 and 4 of Algorithm 2.2 are visualized in Figure 2.3 and consist of a packing, communication,
and unpacking phase (cf. Section 2.5.1). Here, it can be seen that the first global redistribution
(cf. step 2 in Algorithm 2.2) requires both packing and unpacking phase, while the second global
redistribution (cf. step 4 in Algorithm 2.2) only requires a packing phase. Figure 2.3 shows further,
that for each 0 ≤ 𝑝𝑖 < 𝑃1 only processes (𝑝𝑖 , 0), . . . , (𝑝𝑖 , 𝑃2 − 1) have to communicate in the first
global redistribution. Likewise, only the processes (0, 𝑝 𝑗), . . . , (𝑃1 − 1, 𝑝 𝑗) have to communicate
in the second global redistribution, for each 0 ≤ 𝑝 𝑗 < 𝑃2.
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Figure 2.3: Pencil Decomposition for a 3×3 Process Grid. The highlighted axis marks the direction
in which the 1D-FFTs are computed. Furthermore, the green pencil identifies process (0, 2), which
receives the red and blue partitions in the first and second global redistribution, respectively.

2.5.3 Theoretical Comparison of Slab and Pencil Decomposition

After the introduction of both slab and pencil decomposition, this section aims to summarize some
simple key differences between both approaches. As before, let 𝑃 denote the number of processes.
For pencil decomposition, we consider the process grid 𝑃1 × 𝑃2 (with 𝑃 = 𝑃1 · 𝑃2) such that 𝑃1
and 𝑃2 denote the number of input partitions in x-direction and y-direction, respectively. Finally,
we consider arbitrary complex-valued data as input and assume 𝑁 = 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 for the sake of
simplicity.

The first key difference of both approaches is that slab decomposition requires a single global
redistribution, while pencil decomposition requires a second global redistribution. This is caused
by the fact that while multidimensional DFTs can be considered as a product of 1D-DFTs in
each direction, the computation of a single 1D-DFT (1D-FFT) still requires all data points of
the corresponding direction (cf. Section 2.4.2). Additionally, it is easy to see that 𝑃 processes
are involved in the single communication phase of slab decomposition, whereas there are 𝑃2
and 𝑃1 processes involved in the first and second communication phase of pencil decomposition,
respectively.

Secondly, it is obvious that slab decomposition only provides limited scalability. Since the input
data is solely partitioned in x-direction, the number of processes is trivially limited by 𝑁𝑥 = 𝑁 . In
contrast, pencil decomposition allows to scale the number of utilized processes up to 𝑁𝑥 ·𝑁𝑦 = 𝑁2.

Next, we can determine the total number of bytes which are transmitted during the computation.
For slab decomposition, each process starts with a complex-valued input partition of size 𝑁 3

𝑃
.

Depending on the used precision, this partition allocates 2𝑠 · 𝑁 3

𝑃
bytes of memory with 𝑠 = 4 for

single- and 𝑠 = 8 for double-precision. As we have seen in Section 2.5.1, each process transmits a
partition of size 𝑁 3

𝑃2 to the other 𝑃 − 1 processes. Therefore, each process transmits and receives
a total of (𝑃 − 1) 2𝑠𝑁 3

𝑃2 bytes. Repeating similar arguments for pencil decomposition, here, each
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process transmits and receives (𝑃2 − 1) 2𝑠𝑁 3

𝑃𝑃2
bytes in the first and (𝑃1 − 1) 2𝑠𝑁 3

𝑃𝑃1
bytes in the second

communication phase. Thus, the total number of bytes transmitted and received are

(𝑃2 − 1) 2𝑠𝑁3

𝑃𝑃2
+ (𝑃1 − 1) 2𝑠𝑁3

𝑃𝑃1
= (𝑃 − 1) 2𝑠𝑁3

𝑃2 + (𝑃1 − 1) (𝑃2 − 1) 2𝑠𝑁3

𝑃2 ,

for each process.

Finally, we can introduce a model to estimate the duration of the communication phases, similar to
[Tak20], [HGTT10]. For now, we consider simplified conditions and assume that the duration for two
communicating processes can be modeled by 𝑑

𝐵
+𝐿, where 𝑑 denotes the number of bytes transmitted,

𝐵 the bandwidth and 𝐿 the latency caused by the connection establishment. Furthermore, the model
presented in this section disregards possible influences of network congestion and topology.

Using the previous analysis of the number of transmitted bytes, the duration of the communication
phase can be estimated in a straightforward manner: For slab decomposition, we have

𝑇𝑆
𝐶 = (𝑃 − 1) 2𝑠𝑁3

𝑃2𝐵
+ (𝑃 − 1)𝐿.

Analogously, we have the following model for pencil decomposition:

𝑇𝑃
𝐶 = (𝑃2 − 1) 2𝑠𝑁3

𝑃𝑃2𝐵
+ (𝑃2 − 1)𝐿 + (𝑃1 − 1) 2𝑠𝑁3

𝑃𝑃1𝐵
+ (𝑃1 − 1)𝐿

= (𝑃 − 1) 2𝑠𝑁3

𝑃2𝐵
+ (𝑃1 − 1) (𝑃2 − 1) 2𝑠𝑁3

𝑃2𝐵
+ (𝑃1 + 𝑃2 − 2)𝐿

To compare the communication duration of slab and pencil decomposition, we assume 𝑃1, 𝑃2 > 1
and consider a fixed latency 𝐿 and bandwidth 𝐵. It then holds true that:

𝑇𝑃
𝐶 < 𝑇𝑆

𝐶 ⇐⇒ (𝑃1 − 1) (𝑃2 − 1) 2𝑠𝑁3

𝑃2𝐵
< (𝑃 − 𝑃1 − 𝑃2 + 1)𝐿

⇐⇒ (𝑃1 − 1) (𝑃2 − 1) 2𝑠𝑁3

𝑃2𝐵
< (𝑃1 − 1) (𝑃2 − 1)𝐿

⇐⇒ 𝑃2

𝑁3 >
2𝑠
𝐿𝐵

As an exemplarily setup (e.g. where multiple GPUs are located on the same node) we consider a
bandwidth of 𝐵 = 25 · 109 bytes per second and a latency of 𝐿 = 2 · 10−5 seconds. For 𝑃 = 16
processes and double-precision, pencil decomposition is faster than slab decomposition for 𝑁 < 200,
according to the model above.

2.6 Validation Methods

After introducing the general approaches for the distributed computation of three-dimensional FFTs
in Section 2.5, this section presents the method which will be later used in Chapter 5 to validate the
computed results of our benchmarks.
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Fundamentally, we compute the Laplacian of a known function with a forward and inverse transform
for each implemented variant and compare the approximated results with the exact results. Since we
focus on three-dimensional input data, we compute the Laplacian of 2𝜋-periodic and differentiable
functions 𝑓 : R3 → R, i.e.,

Δ 𝑓 (𝑥, 𝑦, 𝑧) = 𝜕2 𝑓

𝜕𝑥2 + 𝜕2 𝑓

𝜕𝑦2 + 𝜕2 𝑓

𝜕𝑧2 .

As introduced in Section 2.1, the discrete sampling points are 𝑥 𝑗 = 𝑦 𝑗 = 𝑧 𝑗 =
2𝜋 𝑗

𝑁+1 , when assuming
𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 𝑁 + 1 for the sake of simplicity. Therefore, it remains to show how the individual
second order partial derivatives can be approximated using the Fast Fourier Transform. Furthermore,
due to the separability of multidimensional DFTs (cf. Section 2.4.2), we solely introduce a method
for the one-dimensional case. For this, we follow the work of S. G. Johnson in [Joh11].

In Section 2.1, we introduced the trigonometric interpolation problem for given data points
{(𝑥 𝑗 , 𝑦 𝑗)}𝑁𝑗=0 ⊆ C2 and 𝑥 𝑗 =

2𝜋
𝑁+1 𝑗 to be the computation of fitting coefficients 𝑐0, . . . , 𝑐𝑁 , such

that the trigonometric polynomial

𝑡 (𝑥) =
𝑁∑︁
𝑘=0

𝑐𝑘𝑒
𝑖𝑘𝑥

satisfies 𝑡 (𝑥 𝑗) = 𝑦 𝑗 for each 0 ≤ 𝑗 ≤ 𝑁 . The first approach for approximating the second order
derivatives would be to simply compute 𝑡 ′′(𝑥 𝑗), for each 𝑥 𝑗 . Here, it can be seen that there is a
certain kind of ambiguity. In particular, the approximation 𝑡 could be replaced by

𝑡 (𝑥) =
𝑁∑︁
𝑘=0

𝑐𝑘𝑒
𝑖 (𝑘+𝑚𝑘 (𝑁+1))𝑥 ,

and arbitrary choices of {𝑚𝑘 }𝑁𝑘=0, without violating the constraint 𝑡 (𝑥 𝑗) = 𝑦 𝑗 for each 𝑥 𝑗 . On the
other hand, the choice of the parameters 𝑚𝑘 has an enormous effect on the resulting derivative.
Thus, Johnson describes the unique minimal-oscillation trigonometric interpolation, with

𝑡 (𝑥) = 𝑐0 +
𝑁−1

2∑︁
𝑘=1

(
𝑐𝑘𝑒

𝑖𝑘𝑥
)
+

𝑁−1
2∑︁

𝑘=1

(
𝑐𝑁+1−𝑘𝑒

−𝑖𝑘𝑥
)
+ 𝑐 𝑁+1

2
𝑒𝑖

𝑁+1
2 𝑥 .

Note that the coefficients 𝑐𝑘 can still be computed by using the DFT. Furthermore, we implicitly
assume that 𝑁 + 1 is even and note that the adjustments for odd values of 𝑁 + 1 are analogous.
The newly formulated interpolation problem can therefore be seen as limiting the frequencies by
|𝑘 +𝑚𝑘 (𝑁 + 1) | ≤ 𝑁+1

2 , which results in the fewest oscillations possible [Joh11]. The second order
derivative can then be approximated by simply computing:

𝑦′′𝑗 := 𝑡 ′′(𝑥 𝑗) =
𝑁−1

2∑︁
𝑘=1

(
(−𝑘2)𝑐𝑘𝑒𝑖𝑘𝑥 𝑗

)
+

𝑁−1
2∑︁

𝑘=1

(
(−𝑘2)𝑐𝑁+1−𝑘𝑒

−𝑖𝑘𝑥 𝑗

)
−

(
𝑁 + 1

2

)2
𝑐 𝑁+1

2
𝑒𝑖

𝑁+1
2 𝑥 𝑗

=

𝑁∑︁
𝑘=0

𝛼𝑘𝑐𝑘𝑒
𝑖

2𝜋 𝑗𝑘

𝑁+1 , where 𝛼𝑘 =

{
−𝑘2 if 0 ≤ 𝑘 ≤ 𝑁+1

2 ,

− (𝑁 + 1 − 𝑘)2 else.

In summary, the algorithm starts by computing the Fourier coefficients 𝑐𝑘 for input {𝑦 𝑗}𝑁𝑗=0 with a
forward FFT iteration. Afterwards, the coefficient 𝑐𝑘 is multiplied with 𝛼𝑘 , before computing the
inverse FFT of the modified coefficients to obtain 𝑦′′

𝑗
.
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Section 2.3 introduced how to compute a 1D-DFT with time complexity O(𝑁 log 𝑁), using Fast
Fourier Transforms. After generalizing DFTs for higher dimensions in Section 2.4, we have seen that
multidimensional DFTs are separable and can therefore be computed efficiently by using a product
of 1D-FFTs in each direction. Afterwards in Section 2.5, we presented the general approaches for
the distributed computation of 3D-FFTs, where both slab decomposition and pencil decomposition
required global redistribution of the intermediate results.

In preparation for an in-depth description of our GPU library for computing distributed FFTs on
three-dimensional input data in Chapter 4, this chapter provides an overview of the utilized software.
We start by introducing the basic functionalities of CUDA in Section 3.1, along with cuFFT in
Section 3.2, which is an high-performance library for computing 1D-, 2D-, and 3D-FFTs on a single
host. For process communication between GPUs, which are located on the same or on different
nodes, we describe the relevant principles of MPI in Section 3.3.

3.1 The CUDA Toolkit

The CUDA Toolkit was introduced by the NVIDIA corporation and provides an environment for
developing parallel applications on NVIDIA GPUs [NVIk]. While this work focuses on the CUDA
extension of C++, additional support is provided for programming languages like FORTRAN, Java,
and Python [NVIa].

This section aims to provide information about the fundamental concepts of CUDA, which is later
required in Chapter 4. A more in-depth outline of the provided functionalities can be found in
the CUDA programming guide [NVIa]. In particular, this section covers the relevant parts of
device [NVIb], memory [NVId], and stream management [NVIe] and follows the corresponding
documentation, for reference. We start by introducing a simple example C++/CUDA program,
before addressing the more advanced functions in details.

General Structure of a C++/CUDA Program. CUDA generally considers a separate device (i.e.
the GPU) for executing the CUDA threads and the host (i.e. the CPU) which is responsible for
executing the C++ program [NVIa]. Furthermore, it is assumed that the device has its own physically
separate device memory. A general structure of a simple C++/CUDA program can be found in Listing
3.1. We note that this program does not handle any errors for the sake of simplicity. The program
starts by allocating host and device memory. For the allocation of device memory, CUDA provides
the method cudaError_t cudaMalloc(void **devPtr, size_t size), where parameter size is given in
bytes. As an example, the return value of the method might indicate that the allocation was successful
or that there is not enough available device memory available as requested. For convenience, the
return type is often neglected in the following. Usually, the input data is gathered by the host, e.g., by
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Listing 3.1 Exemplary structure of a simple C++/CUDA program.

int main() {

size_t N = ...;

double *h_data, *d_data;

// host and device memory allocation

h_data = new double[N];

cudaMalloc((void **)&d_data, N*sizeof(double));

// initialize data on host (h_data)

...

// copy data from host to device memory

cudaMemcpy(d_data, h_data, N*sizeof(double), cudaMemcpyHostToDevice);

// perform parallel computation on GPU and store modifications in d_data

...

// copy results from device to host memory

cudaMemcpy(h_data, d_data, N*sizeof(double), cudaMemcpyDeviceToHost);

// evaluate results on host

...

// free allocated memory

delete[] h_data;

cudaFree(d_data);

return 0;

}

user interaction or by reading from disc. After potentially preprocessing the input data, it is copied
to device memory, where the data is accessible by the GPU. There is a large variety of methods that
can be used form memory transfer in CUDA, which will be discussed later. For now, we consider
simply cudaMemcpy(void *dst, const void *src, size_t count, cudaMemcpyKind kind), where source
and destination pointer, along with the number of transferred bytes, are specified. For copying
data from host to device, parameter kind can be set to cudaMemcpyHostToDevice. Afterwards, the data
stored in d_data can be used for computation on the GPU. As an example, the CUDA library cuFFT
(see Section 3.2 for details) could be used to compute the in-place 1D-FFT. Similar as before, the
computed results can be copied back to host memory, where further postprocessing can occur. At
the end of the computation, the device memory is freed by using cudaFree(void *devPtr).
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Device Management. In case there are multiple GPUs located on a single node, CUDA provides
device management [NVIb] to select a specific GPU for the execution of the CUDA threads. This is
required by our implementation, since each input partition (cf. Section 2.5) is assigned to exactly
one GPU. When executing on a given node, the function cudaGetDeviceCount(int *count) can be
used to determine the available number of GPUs of this node, where count is used as the output
parameter. Afterwards, cudaSetDevice(int device) can be used for 0 ≤ device < count to specify
the GPU on which future CUDA threads shall be executed.

Memory Management. Listing 3.1 shows how CUDA allocates and frees device memory.
Furthermore, the example illustrates the use of cudaMemcpy for contiguous memory. Since we
have already seen in Section 2.5 that the packing phase, for example, has to copy non-contiguous
partitions into the send-buffer, cudaMemcpy is not always sufficient. Therefore, CUDA provides
the copy-operation cudaMemcpy2D, whose specification can be found in Listing 3.2. Here, width
specifies the column size in bytes, while height represents the number of rows. The parameters
dpitch and spitch specifies the distance (in bytes) between the first byte of two consecutive rows.
Therefore, the values of both parameters has to be greater than, or equal to the value of widht. To
further illustrate the usage of cudaMemcpy2D, consider the packing phase visualized in Figure 2.2.
For the sake of simplicity, we assume complex-valued input data in single-precision, such that the
highlighted partitions in red are of size 𝑁𝑥

𝑃
× 𝑁𝑦

𝑃
× 𝑁𝑧 and a complex number is stored using 8 bytes.

To copy this partition into a contiguous send-buffer, both dpitch and width are set to 8 · 𝑁𝑧
𝑁𝑦

𝑃
,

while spitch and height are set to 8 · 𝑁𝑧𝑁𝑦 and 𝑁𝑥

𝑃
, respectively.

Listing 3.2 Specification of cudaMemcpy2D.

cudaError_t cudaMemcpy2D(void *dst, size_t dpitch, const void *src, size_t spitch,

size_t width, size_t height, cudaMemcpyKind kind)

Asynchronous Operations and Stream Management. Until now, we only considered methods
that are synchronous, with respect to the host. For example, cudaMemcpy returns for most memory
transfers only after the copy is complete. In contrast, CUDA also provides the asynchronous
methods cudaMemcpyAsync and cudaMemcpy2DAsync, which allow the possibility of an overlap between
computation and memory transfer. As there are some exceptions to this rule, we refer the interested
reader to [NVIf], for more information. In addition, asynchronous operations can be assigned to
a specific CUDA stream. While individual streams can be seen as a first in, first out queue for
commands, two different streams may execute operations concurrently [NVIg]. With regard to the
packing and unpacking phase of slab and pencil decomposition, this peculiarity allows to copy
the individual partitions simultaneously. As a part of stream management [NVIe], streams can
be created with cudaStreamCreate(cudaStream_t *pStream). In order to wait for the completion
of a stream’s tasks, cudaStreamSynchronize(cudaStream_t stream) can be called. Alternatively,
cudaDeviceSynchronize() can be used to wait for the entire device to finish its computation [NVIb].
In some cases it can also appear beneficial to use cudaLaunchHostFunc(cudaStream_t stream,

cudaHostfn_t fn, void *userData). As specified by CUDAs execution control [NVIc], this
operation waits for the specified stream to finish, whereupon the given host function fn is called with
parameter userData. As an example, this could be used by the packing phase, where fn starts the
send operation via MPI, after the corresponding partition has been copied into the send-buffer.
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As the last consideration, it might be favorable to use host memory that is page-locked, which
is accessible by the device and tracked by the driver [NVId]. The main advantage of page-
locked host memory is that the memory transfer bandwidth between host and device can be
significantly increased, e.g., when using cudaMemcpy or cudaMemcpy2D. Page-locked host memory
can be allocated with cudaMallocHost(void **ptr, size_t size) and is freed using cudaFreeHost

(void *ptr) [NVId].

3.2 cuFFT: The CUDA FFT Library

The cuFFT library [NVIj] is part of the CUDA Toolkit [NVIk] and is specialized for NVIDIA GPUs.
It implements the Cooley-Tukey FFT algorithm (cf. Section 2.3) and provides highly optimized
Radix-2, Radix-3, Radix-5, and Radix-7 building blocks. Similar to FFTW [FJ05], cuFFT starts by
configuring a plan, which specifies the details on how to compute the FFT, before executing it later
on. The advantage of this approach is that the plan can be specified once upon initialization and
thereafter be reused to compute the wanted FFT for different input data. Furthermore, plans can be
assigned to a specific stream (cf. Section 3.1), such that multiple plans potentially can be executed
in parallel.

The subsequent description follows the documentation of cuFFT [NVIh]. We start by describing the
execution phase, whereupon the relevant details of the plan configuration are introduced. Finally,
we motivate and explain the use of the Advanced Data Layout. As before, we stress that this section
solely focuses on the relevant parts for our work.

Execution Phase. Starting with the execution phase, Listing 3.3 provides an overview of the
available methods, provided by cuFFT. As we have seen in Section 2.4.2, the output size of 3D-FFTs
for real-valued input data can be considered to be

𝑁𝑥 × 𝑁𝑦 ×
(⌊

𝑁𝑧

2

⌋
+ 1

)
,

when starting with the 1D-FFT in z-direction (cf. Section 2.5). Therefore, cuFFT allows
differentiating between Real-to-Complex and Complex-to-Complex forward FFTs. Analogously,
cuFFT distinguishes between Complex-to-Real and Complex-to-Complex inverse FFTs. To specify

Listing 3.3 Plan Execution for cuFFT.

// Real to Complex FFT (forward)

cufftResult cufftExecR2C(cufftHandle plan, cufftReal *idata, cufftComplex *odata);

// Complex to Real FFT (inverse)

cufftResult cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

// Complex to Complex FFT

cufftResult cufftExecC2C(cufftHandle plan, cufftComplex *idata, cufftComplex *odata,

int direction);
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the direction, the methods cufftExecR2C and cufftExecC2R can be used to implicitly compute
the forward and inverse transform respectively, whereas cufftExecC2C provides direction as an
additional parameter. For the sake of completeness, we note that the methods presented in Listing
3.3 are solely used to compute the corresponding FFTs with single-precision. Except for the method
names, the computation with double-precision is identical.

Plan Configuration. Following the description of the execution phase, we continue by explaining
the plan configuration. While cuFFT provides multiple ways to configure plans, we solely focus on
cufftPlanMany, which allows plan creation for the relevant 1D- and 2D-FFTs for slab and pencil
decomposition in either forward or inverse direction. The available parameters are visualized
in Listing 3.4. Here, parameter rank specifies the number of dimensions and the size of the 𝑖th
dimension is given by 𝑛[𝑖 − 1], for 1 ≤ 𝑖 ≤ rank. The parameter type is used to tell, which methods
can be called in the execution phase (cf. Listing 3.3). Furthermore, cufftPlanMany allows the use of
an Advanced Data Layout, which is specified by the remaining parameters and motivated in the
following.

Listing 3.4 Plan Creation for cuFFT.

cufftResult cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,

int istride, int idist, int *onembed, int ostride,

int odist, cufftType type, int batch);

Advanced Data Layout. Considering the computation of the 1D-FFT in x-direction for three-
dimensional input data as an example (cf. Figures 2.2, 2.3), it appears obvious that the corresponding
data points in x-direction do not lie contiguous in memory. Therefore, it is necessary to provide
an additional stride parameter. Continuing with this example, we are also interested in computing
multiple 1D-FFTs at once, e.g. 𝑁𝑧 ·

𝑁𝑦

𝑃
many for complex-valued input data when using slab

decomposition (cf. Section 2.5.1). Thus, the distance between the first elements of each batch has
to be specified as well.

Generalizing the example presented above yields the memory accesses summarized in Table 3.1,
when using the advance data layout. It can be seen that cuFFT distinguishes between input and
output data alignment, which is why the output alignment can be different from the input alignment.
As an example, this can be used such that the intermediate results are contiguous in y- or x-direction,
while the input data layout is by default considered to be contiguous in z-direction. For the sake of
completeness, we note that Table 3.1 shows that the second entries of inembed and onembed are used
to specify plans for 2D-FFTs. Here, the first entries are neglected, since they correspond to the
parameters idist and odist, respectively.

1D-FFTs 2D-FFTs
Input input[b*idist+x*istride] input[b*idist+(x*inembed[1]+y)*istride]

Output output[b*odist+x*ostride] output[b*odist+(x*onembed[1]+y)*ostride]

Table 3.1: Memory Access when using an Advanced Data Layout. The entries describe, how
positions 𝑥 and (𝑥, 𝑦) of batch 𝑏 are accessed for 1D- and 2D-FFTs, respectively.
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3.3 MPI: Message Passage Interface

Message Passage Interface (MPI) originated by the joint effort of various organizations in 1992 and
provides a unified specification for message-passing programs. At the time of writing, MPI-4.0
[MPI21] is the newest approved standard and will be used as reference throughout this work. As
stated by the standard, the goals of MPI include, but are not limited to designing an interface that
allows for an efficient and thread safe process communication in an heterogeneous environment,
where the user does not have to take care of possible communication failures [MPI21, p. 1-2]. To
achieve this goal, MPI specifies a large variety of possible communication mechanisms, which
can be generally categorized into Point-to-Point Communication and Collective Communication.
As indicated by their names, point-to-point communication is used for message-passing between
two processes, while collective communication covers a group of processes. Furthermore, new
implementations (e.g. OpenMPI [GFB+04], [Sofa]) provide CUDA-aware MPI, where device
pointers (cf. Section 3.1) can be directly passed to the communication routines.

This section starts by illustrating the general structure of a simple MPI application. Thereafter,
we introduce MPIs non-blocking send and receive operations for point-to-point communication.
Finally, we cover relevant aspects of collective communication, along with more advanced features.
As before, we stress that this introduction to MPI is by no means exhaustive, since we solely focus
on the necessary fundamentals for our work.

Listing 3.5 Exemplary usage of MPI in C++.

#include <iostream>

#include <mpi.h>

int main(int argc, char *argv[]) {

MPI_Init(&argc, &argv);

int comm_size, rank;

MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

char str[13] = "Hello World!";

for (size_t p = 1; p < comm_size; p++)

MPI_Send(str, 13, MPI_CHAR, p, p, MPI_COMM_WORLD);

} else {

char str[13];

MPI_Recv(str, 13, MPI_CHAR, 0, rank, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

std::cout << str << std::endl;

}

MPI_Finalize();

return 0;

}
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General Structure of an MPI Application. Listing 3.5 shows the general structure of a simple MPI
application in C++, which can be executed by 𝑃 processes in parallel via mpirun -n P <executable>.
MPI identifies each process by a unique ID called rank, with 0 ≤ rank < 𝑃. In order to describe
the individual computational steps of the example application, we consider the view of a fixed
process with rank 𝑝. First, int MPI_Init(int *argc, char **argv) is used to initialize the MPI
environment [MPI21, p. 488-489], where the purpose of the parameters argc and argv depends on
the specific MPI implementation. Afterwards, the functions int MPI_Comm_size(MPI_Comm comm,

int *size) and int MPI_Comm_rank(MPI_Comm comm, int *rank) are used to obtain the values 𝑃
and 𝑝, respectively. In our example, the default communicator MPI_COMM_WORLD is used for comm.
In case 𝑝 is equal to 0, the process sends the string "Hello World!" to each of the other 𝑃 − 1
processes individually via the send operation MPI_Send. Otherwise, the process receives the string
via the blocking receive operation MPI_Recv. The specification of both operations can be found in
Listing 3.6. It can be seen that the tag parameter is used to identify the message and therefore has to
equal for MPI_Send and MPI_Recv. Furthermore, the MPI specification predefines multiple datatypes,
e.g., MPI_CHAR, MPI_BYTE, MPI_INT, and MPI_DOUBLE [MPI21, p. 34], such that parameter count is
always set with respect to the underlying datatype. When calling MPI_Recv, an additional parameter
status is provided that can be either ignored, by passing MPI_STATUS_IGNORE (cf. Listing 3.5), or
can be used to get further information about possible errors. While MPI specifies the additional
buffered, synchronous, and ready communication modes, we solely focus on the standard mode
(cf. Listing 3.6) and refer the interested reader to [MPI21, p. 49-55], for more information. Finally,
MPI_Finalize() has to be called by each computing process to clean up all MPI states, which acts
as a collective routine ensuring that each process finishes all MPI calls before exiting [MPI21,
p. 494-495].

Listing 3.6 Blocking send and receive routines of MPI.

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm)

int MPI_Recv(const void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status)

Non-Blocking Communication. We have utilized the blocking send and receive operations in
the previous example application, where MPI_Send returns only after the data is copied out of the
send-buffer and MPI_Recv after the entire message is stored in the receive-buffer [MPI21, p. 60-61].
It is therefore apparent that the user especially has to take care of avoiding potential deadlocks during
execution. As an alternative, MPI specifies additional non-blocking send and receive operation in
standard mode, which are presented in Listing 3.7. Here, the main difference is that non-blocking
operations return immediately and require detached calls to ensure the completion of either send or
receive operation. For this purpose, the parameter request is added to both non-blocking operations,
which can be later passed to int MPI_Wait(MPI_Request *request, MPI_Status *status) to ensure
the completion of the corresponding operation [MPI21, p. 71]. For the sake of completeness, we
note that our implementation makes additional use of MPI_Waitany and MPI_Waitall, where an
array of requests is taken as a parameter. For more information on their specification, we refer the
interested reader to [MPI21, p. 76-79].
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Listing 3.7 Non-blocking send and receive routines of MPI.

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(const void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Request *request)

Custom MPI-Datatypes. Until now, we only considered predefined datatypes for send and receive
operations. Although these datatypes can easily be used to send from and receive to contiguous
buffers, MPI also allows the user to define custom datatypes for more complicated memory structures.
Again, MPI provides a large variety of constructors for custom datatypes, whereas we solely focus
on MPI_Type_vector [MPI21, p. 122-123] which is specified in Listing 3.8. For this constructor, an
underlying and predefined datatype oldtype is grouped into multiple and individually contiguous
blocks. The number of blocks is specified by count and the number of elements, each of type
oldtype, is given by blocklength. The parameter stride sets the distance of the first elements of
two blocks. By setting the value of stride greater than that of blocklength, the resulting datatype
newtype can be used to send from and receive to non-contiguous buffers.

Listing 3.8 Construction of custom MPI datatypes.

int MPI_Type_vector(int count, int blocklength, int stride, MPI_Datatype oldtype,

MPI_Datatype *newtype)

All-to-All Communication. With regard to collective communication, MPI specifies routines which
allow All-to-All Communication within a group of processes. Intuitively, all-to-all communication
can be recreated using point-to-point communication, where each of the 𝑃 processes sends to and
receives from the 𝑃 − 1 other processes, individually. Listing 3.9 provides the specification of two
such routines: MPI_Alltoall [MPI21, p. 217-218] and MPI_Alltoallv [MPI21, p. 219-220]. In the
following, we will only explain the parameters that specify how the data is sent and note that the
data is received in a symmetrical manner. Starting with the simpler routine, MPI_Alltoall assumes
that sendcount specifies the number of elements sent to each of the other 𝑃 − 1 processes, where
each element is of type sendtype. For 0 ≤ 𝑘 < 𝑃, each process starts then sending with offset
sendbuf+k*sendcount*sizeof(sendtype) to process 𝑘 . In case the processes have to sent different
amounts of data to the other processes, MPI provides MPI_Alltoallv. Here, arrays sendcounts

and sdispls of size 𝑃 can be passed to the routine, such that for 0 ≤ 𝑘 < 𝑃, each process sends
sendcounts[k] elements of type sendtype to process 𝑘 and starts sending from memory location
sendbuf+sdispls[k]*sizeof(sendtype).

When using MPIs all-to-all communication in combination with custom datatypes, it is often
required to use dissimilar datatypes for different receiving processes. To provide a remedy for this
issue, MPI offers MPI_Alltoallw, which is identical to MPI_Alltoallv (cf. Listing 3.9) except that
arrays sendtypes and recvtypes are passed to routine. A more details specification of MPI_Alltoallw
can be found in [MPI21, p. 221-222].
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Listing 3.9 Collective all-to-all communication in MPI.

int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoallv(const void *sendbuf, const int sendcounts[], const int sdispls[],

MPI_Datatype sendtype, void *recvbuf, const int recvcounts[], const int rdispls[],

MPI_Datatype recvtype, MPI_Comm comm)

Splitting Communicators. Instead of using the default communicator MPI_COMM_WORLD, it is also
possible to create new communicators. In particular, MPI provides the function MPI_Comm_split to
partition the set of processes and creates a new communicator for each partition [MPI21, p. 335-336].
The function’s specification is presented in Listing 3.10, where parameter color specifies to which
partition the process is assigned and key sets the process’s rank for the new communicator.

Listing 3.10 Splitting the MPI communicator.

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
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In Section 2.5, we already introduced the general approaches for distributed computation of the
FFT: Slab decomposition and pencil decomposition. There, we have seen the necessity of the
global redistribution of intermediate results, which is composed of a packing, communication, and
unpacking phase. For the GPU implementation described in the following, we utilize the CUDA
library cuFFT for computing FFTs (cf. Section 3.2) along with MPI for communication between
different processes (cf. Section 3.3).

Our Implementation1 of slab and pencil decomposition offers a wide variety of possible optimizations.
For instance, implementation strategies for slab decomposition can be subdivided even further
into 2D-1D Slab Decomposition and 1D-2D Slab Decomposition: 2D-1D Slab Decomposition was
already introduced in Section 2.5.1, where the procedure starts by computing the 2D-FFTs in z- and
y-direction, before globally redistributing the intermediate results and computing the remaining
1D-FFTs in x-direction. Complementary to this strategy, 1D-2D Slab Decomposition starts with the
1D-FFTs in z-direction and finishes by computing the remaining 2D-FFTs in y- and x-direction.
Furthermore, we have seen in Section 3.2, that the plan configuration allows differing input and
output data alignments. Therefore, an alternative implementation using data realignment, can be
considered for Pencil Decomposition, 2D-1D Slab Decomposition, and 1D-2D Slab Decomposition
each. To differentiate between both variants, we denote Realigned as the corresponding variant
using data realignment, whereas Default is used to refer to the variation without data realignment.
The possible advantages and disadvantages of both variants depend on the underlying decomposition
method and are therefore discussed in the corresponding section. Finally, CUDA and MPI provide
different methods for realizing the global redistribution phase, i.e., the packing, communication,
and unpacking phase for both Default and Realigned combined with each available decomposition
method. Since the global data redistribution of the intermediate results is responsible for a large
proportion of the total runtime, the right choice of such a method can result in a significant
performance increase.

We start by presenting the underlying assumptions and notations in Section 4.1. Afterwards, we
present the different decomposition methods: 2D-1D Slab Decomposition in Section 4.2, followed
by 1D-2D Slab Decomposition in Section 4.3 and Pencil Decomposition in Section 4.4. For each of
these decomposition methods, an abstract implementation strategy is described with and without
data realignment. We note that these sections solely considers an abstract realization of the MPI
communication, where data is sent from and received in contiguous memory. Thereafter, Section
4.5 summarizes the available methods for the global redistribution phase, where in contrast to the
previous sections additional, more advanced MPI communication strategies are considered and
discussed.

1https://github.com/eggersn/DistributedFFT
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4 Implementation

4.1 Assumptions and Notations

For our implementation, we solely focus on real-to-complex forward and complex-to-real inverse
3D-FFTs. The description of the different decomposition methods will often only consider the
forward transform, since the inverse transform can be seen as reversing each step individually. We
adopt the notations from Section 2.5, along with the assumption, that the input data is aligned
contiguous in z-direction. For convenience, we further denote �̂�𝑧 =

⌊
𝑁𝑧

2

⌋
+ 1 as the output size

after computing real-valued forward 1D-FFTs of size 𝑁𝑧 in z-direction.

With regard to the required memory workspace, we assume two distinct and previously allocated
device memory spaces in and out for the input and output data. Depending on the decomposition
method and its variant, along with additional special cases, each section will explain which additional
memory buffers have to be used. These buffers are denoted as send, recv, and temp and are generally
considered to be pairwise distinct if not stated otherwise.

When considering variants that utilize data realignment, there are three available data layouts which
are uniquely determined by their innermost dimension. We therefore say, that data-buffer data, of
size 𝑆𝑥 × 𝑆𝑦 × 𝑆𝑧 , is aligned contiguous in

i) z-direction if position (𝑥, 𝑦, 𝑧) is accessed via data[(x * 𝑆𝑦 + y) * 𝑆𝑧 + z],

ii) y-direction if position (𝑥, 𝑦, 𝑧) is accessed via data[(z * 𝑆𝑥 + x) * 𝑆𝑦 + y], or

iii) x-direction if position (𝑥, 𝑦, 𝑧) is accessed via data[(y * 𝑆𝑧 + z) * 𝑆𝑥 + x].

Furthermore, we note that the data alignment only changes after a computational step with cuFFT.

As we have already seen in Section 2.5, the intermediate results are partitioned and sent to
different processes afterwards. For the following descriptions and visualizations of the implemented
decomposition methods, it is therefore often convenient to categorize the different positionings of
these partitions. This is done by identifying each partition as a batch of slices, where each slice
consists of the maximum number of contiguous, complex-valued words. The different partitions
can then be categorized by whether the contained slices are one-, two-, or three-dimensional.
Respectively, the partitions are therefore denoted as 1D-, 2D-, or 3D-partitions. The visualization
of this categorization can be found in Figure 4.1, which will implicitly be used throughout the
following chapter.

1D Slices 2D Slices 3D Slice

Figure 4.1: Partition Categorization. The figure visualizes three memory spaces, where each is
split into two partitions. The red bounding box is used to highlight one partition for each memory
space. Independent of the previously described data alignment, the visualizations throughout this
work always assume that the data lies contiguous in the vertical direction.
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4.2 2D-1D Slab Decomposition

The essential idea of the forward transform with 2D-1D Slab Decomposition was already introduced
in Section 2.5.1. For both variants, i.e. Default and Realigned, the global data is partitioned as
follows:

Input: In x-direction, i.e., each processor starts with input size 𝑁𝑥

𝑃
× 𝑁𝑦 × 𝑁𝑧 .

Output: In y-direction, i.e., each processor ends with output size 𝑁𝑥 ×
𝑁𝑦

𝑃
× �̂�𝑧 .

In the following, we provide a description of Default and Realigned for 2D-1D Slab Decomposition,
where we focus on the GPU specific implementation details. Afterwards, the general schematic of
the inverse 3D-FFT is explained. Finally, the advantages and disadvantages of both variants are
reviewed and other possible realizations of 2D-1D Slab Decomposition are discussed.

y

z x

y

z x

Figure 4.2: Default 2D-1D Slab Decomposition. The procedure is visualized for 3 processes,
where the third process is highlighted in green. Beginning with the left decomposition, it starts
by computing the 2D-FFTs in z- and y- direction, as indicated by the color of the coordinate axes.
The communication phase is visualized by the red arrows, where the third process receives the red
partitions. The arrow annotation 2𝐷 → 3𝐷 further emphasizes that the sending process distributes
2D-partitions and the receiving process requires 3D-partitions for the subsequent computations
(cf. Section 4.1). Therefore, solely a packing phase is required. Finally, the remaining 1D-FFTs in
x-direction are computed.

Default Variant. Figure 4.2 visualizes the forward transform of 2D-1D Slab Decomposition without
data realignment, i.e., the data is always aligned contiguous in z-direction. Thus, each process 𝑝

starts by computing the batched 2D-FFTs in z- and y-direction, using the default input and output
data layout, and stores the results in out. In the following packing phase, each process partitions the
intermediate results along the y-axis and copies the 2D-partitions into the contiguous send-buffer
send. Depending on whether CUDA-aware MPI is used, send is located on device or host memory.
Afterwards, the 𝑘-th packed partition is sent to process 𝑘 , for 0 ≤ 𝑘 < 𝑃 if 𝑘 ≠ 𝑝, while the 𝑝-th
partition is transposed locally and copied into temp. In case CUDA-aware MPI is used, it can be
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seen that there is no need for an unpacking phase and an additional receive-buffer, since the required
3D-partitions are already received correctly. Therefore, the received data can be written directly
into temp. If MPI without CUDA-awareness is used on the other hand, the receive-buffer recv is
allocated on host memory and used to receive incoming messages, before copying the data via
a host-to-device memory transfer to temp. Finally, the remaining 1D-FFTs in x-direction can be
computed on the data stored in temp. Here, an input and output stride of �̂�𝑧 ·

𝑁𝑦

𝑃
is used.

Realigned Variant. As previously motivated, we can consider an alternative implementation with
data realignment. Figure 4.3 visualizes the Realigned procedure for 3 processes and Table 4.1
summarizes the relevant cuFFT parameters for the advanced data layout. As before, the procedure
starts by computing the 2D-FFTs in z- and y-direction. Using the parameters for the data alignment
presented in Table 4.1a, it can be seen that two consecutive elements in x-direction have a distance

y

z x

z

x y

2D FFT  
(zy-direction)

z

x y

1D FFT  
(x-direction)

y

z x

Figure 4.3: Realigned 2D-1D Slab Decomposition. The procedure is visualized for 3 processes,
where the first process is highlighted in green. The first transition depicts the data realignment
when computing the 2D-FFTs in z- and y-direction (as indicated by the color of the coordinate
axes). The annotation 𝑍 → 𝑋 emphasizes that the data alignment changes from being contiguous
in z-direction to being contiguous in x-direction, which is further indicated by the change of the
axis labels. In the following transition, the communication phase is visualized by the red arrows,
where the first process receives the red partitions. The annotation 3𝐷 → 1𝐷 highlights that the
sending process distributes 3D-partitions, whereas the receiving process requires 1D-partitions
in the subsequent computations. Therefore, an additional unpacking phase is required, before
computing the remaining 1D-FFTs in x-direction. Using a second data realignment, as displayed by
the last transition, the output data is aligned contiguous in z-direction again.
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Variant idist inembed[1] istride odist onembed[1] ostride batch

Default 𝑁𝑧 · 𝑁𝑦 𝑁𝑧 1 �̂�𝑧 · 𝑁𝑦 �̂�𝑧 1 𝑁𝑥

𝑃

Realigned 𝑁𝑧 · 𝑁𝑦 𝑁𝑧 1 1 �̂�𝑧
𝑁𝑥

𝑃

𝑁𝑥

𝑃

(a) Summary of the Parameters Used by Default and Realigned for the 2D-FFTs in Z- and Y-Direction.

Variant idist istride odist ostride batch

Default 1 �̂�𝑧 ·
𝑁𝑦

𝑃
1 �̂�𝑧 ·

𝑁𝑦

𝑃
�̂�𝑧 ·

𝑁𝑦

𝑃

Realigned 𝑁𝑥 1 1 �̂�𝑧 ·
𝑁𝑦

𝑃
�̂�𝑧 ·

𝑁𝑦

𝑃

(b) Summary of the Parameters Used by Default and Realigned for the 1D-FFTs in X-Direction.

Table 4.1: 2D-1D Slab Decomposition cuFFT Parameters for the Advanced Data Layout. The
tables are segmented by the plan configuration of the 2D-FFTs in z- and y-direction and the plan
configuration of the 1D-FFTs in x-direction. Both of them summarize the different parameters
used to configure a cuFFT plan for Default and Realigned. A detailed description of the plan
configuration can be found in Section 3.2.

of 𝑁𝑧 · 𝑁𝑦 for the input data and a distance of 1 for the intermediate results, which are stored in out.
Using Table 3.1 as reference, position (𝑥, 𝑦, 𝑧) of the intermediate results can be accessed by

out[b * odist + (y * onembed[1] + z) * ostride]

= out[x + (y * �̂�𝑧 + z) * 𝑁𝑥/𝑃],
(4.1)

where it can be seen that batch 𝑏 corresponds to position 𝑥. Therefore, the data alignment of the
intermediate results can be considered to be aligned contiguous in x-direction. As before, the data
is partitioned in y-direction. Since the individual partitions are already contiguous memory regions,
there is no need for a packing phase and an additional send-buffer, when CUDA-aware MPI is
used. Otherwise, the intermediate results are simply transferred into send, which is located on host
memory, via a single memory copy. Consequently, this procedure requires an unpacking phase such
that the received partitions are aligned contiguous in x-direction again. This can be realized by
using the receive-buffer recv, which is, depending on whether CUDA-aware MPI is used, located
on either device or host memory. Since the partitions are received contiguously in recv, they are
transformed and copied into temp to satisfy the alignment criteria of the 1D-partitions (e.g. by
using cudaMemcpy2D [NVId]). Finally, the remaining 1D-FFTs in x-direction can be computed on
the data stored in temp, using the same input data alignment as Equation 4.1. Applying the cuFFT
parameters for the output layout presented in Table 4.1b, yields that position (𝑥, 𝑦, 𝑧) of the final
result can then be accessed by

out[b * odist + x * ostride]

= out[(y * �̂�𝑧 + z) + x * �̂�𝑧 · 𝑁𝑦/𝑃]
= out[(x * 𝑁𝑦/𝑃 + y) * �̂�𝑧 + z],
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where batch 𝑏 can be uniquely identified by position (𝑦, 𝑧). Thus, the resulting output data alignment
is identical to the alignment of the input data. When using CUDA-aware MPI, it is important that
the procedure waits until the send operation is complete, before computing the final 1D-FFTs, since
out is directly used as the send-buffer.

Inverse Transform. Next, we explain how the inverse 3D-FFT can be computed. For this, we
solely focus on the more interesting variant that utilizes data realignment. The procedure starts with
an input partition of size 𝑁𝑥 ×

𝑁𝑦

𝑃
× �̂�𝑧 and essentially reverses each computational step visualized in

Figure 4.3. It starts by computing the inverse 1D-FFTs in x-direction, where the values of the input
and output parameters of the advanced data layout are swapped (cf. Table 4.1b). Thereafter, when
performing the global redistribution of the intermediate results, it appears obvious that the packing
and unpacking phase can be considered to be mirrored when computing the inverse transform: In
particular, the inverse transform requires an packing (unpacking) phase if and only if the forward
transform requires an unpacking (packing) phase. Finally, the inverse 2D-FFTs in y- and z-direction
can be computed by using cufftExecC2R (cf. Section 3.2) and by switching the cuFFT parameters
of Table 4.1a in the same manner as before. Another technical difficulty is the buffer utilization
when computing the inverse transform. This will be discussed in the following (cf. Figure 4.4).

Key Differences. In summary, both variants (i.e. 2D-1D Slab Decomposition with and without
data realignment) require two additional data buffers when performing the forward an inverse
transform, in case CUDA-aware MPI is used. Otherwise, send and recv are allocated on host
memory, while temp is allocated on device memory. Since memory allocation is generally considered
to be expensive, we note that the allocation of these buffers is performed during the initialization
phase, instead of the execution phase.

As the first disadvantage when using Realigned and CUDA-aware MPI, we found that the forward
procedure has to wait idle until the send operation is complete, before computing the 1D-FFTs
in x-direction. The necessity for this is visualized in Figure 4.4, where the buffer utilization is
summarized for 2D-1D Slab Decomposition. In particular, it can be seen that one has to pay special
attention that the send-buffer is not overwritten if there is no need for an additional packing phase.
Interestingly for Default, this can be avoided for the inverse transform by reusing in (cf. Section 4.1).
We stress, that this is only possible for the inverse transform, since in is only here a complex-valued
buffer.

While the previous arguments depend on whether the forward or inverse transform is performed,
there is also a second disadvantage of Realigned that becomes apparent when reviewing the
performed packing and unpacking phase in detail: It can be seen in Figure 4.2 that the packing
phase of Default’s 2D-partitions can be realized by copying 𝑁𝑥

𝑃
slices of size 𝑁𝑦

𝑃
× �̂�𝑧 into the

send-buffer (e.g. by using cudaMemcpy2D). In contrast, Figure 4.3 visualizes that the unpacking phase
of Realigned’s 1D-partitions has to be realized by copying �̂�𝑧 ·

𝑁𝑦

𝑃
slices of size 1 × 𝑁𝑥

𝑃
from the

receive-buffer into temp. Therefore, latter has to perform significantly more subroutines to copy
smaller slices than the former, which can be expected to result in poorer performance.

Although the comparison above might convey the impression that Realigned generally does not
yield significant advantages, we will see the contrary for 1D-2D Slab Decomposition.
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Figure 4.4: 2D-1D Slab Decomposition Buffer Usage. The figure summarizes the utilization of
the available buffers (cf. Section 4.1) for the forward and inverse transform, while differentiating
between Default and Realigned. All scenarios are displayed with the assumption that CUDA-aware
MPI is used. The input data is always stored in in (sc. first buffers on the left side), and the output
data is always stored in out (sc. last buffer on the right side). The arrow annotations indicate which
task is performed, i.e., FFT computation, packing, unpacking, or communication. Furthermore,
the green boxes show regions where special care has to be taken when reusing the send-buffer
(highlighted in green) to avoid overwriting its content.

Discussion. Finally, we want to review other possible realizations of 2D-1D Slab Decomposition.
We note, that this discussion solely aims to highlight some design considerations and is by no means
exhaustive. First, it is obvious that the computed 2D-FFTs depend on the given input partition,
which in turn is specified by the utilized application. When possible, an input partition of size
𝑁𝑥

𝑃
× 𝑁𝑦 × 𝑁𝑧 is beneficial since the computation of the individual 2D-FFTs are performed on

contiguous batches, which is recommended by the cuFFT documentation [NVIh].

For the global redistribution of the intermediate results, we partitioned the data along the y-axis.
A different possibility would be the partitioning along the z-direction, since only the 1D-FFTs
in x-direction remain for computation. The advantage of this approach would be that the output
partition would be identical to the one computed by 1D-2D Slab Decomposition (see Section 4.3
for details). Opposing this, there are different disadvantages depending on whether Realigned or
Default is used. When Realigned is considered, it can be seen in Figure 4.3 that a partitioning in
z-direction would require both packing and unpacking phase. For Default on the other hand, it
is evident by Figure 4.2 that a partitioning in z-direction would require a packing phase for the
1D-partitions. As argued before, this can be generally expected to result in poorer performance.
Therefore, our implementation only considers 2D-1D Slab Decomposition where the intermediate
results are partitioned along the y-direction.
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4.3 1D-2D Slab Decomposition

We have seen in the previous section that 2D-1D Slab Decomposition generally starts by computing
the 2D-FFTs in z- and y-direction and finishes by computing the remaining 1D-FFTs in x-direction.
In contrast to this, 1D-2D Slab Decomposition starts with the 1D-FFTs in z-direction and finishes
with the 2D-FFTs in y- and x-direction. For both variants, i.e. Default and Realigned, the global
data is partitioned as follows:

Input: In x-direction, i.e., each processor starts with input size 𝑁𝑥

𝑃
× 𝑁𝑦 × 𝑁𝑧 .

Output: In z-direction, i.e., each processor ends with output size 𝑁𝑥 × 𝑁𝑦 × �̂�𝑧

𝑃
.

This section starts by describing both variants and concentrates on the GPU specific implementation
details. Thereafter, we discuss other possible realizations of 1D-2D Slab Decomposition and
summarize the key differences between the two variants.

y

z x

y

z x

Figure 4.5: Default 1D-2D Slab Decomposition. The procedure is visualized for 3 processes, where
the third process is highlighted in green. It starts on the left by computing the 1D-FFTs in z-direction,
as indicated by the color of the coordinate axes. The communication phase is visualized by the
red arrows, where the third process receives the red partitions. The arrow annotation 1𝐷 → 3𝐷
further emphasizes that the sending process distributes 1D-partitions and the receiving process
requires 3D-partitions for the subsequent computations. Finally, the remaining 2D-FFTs in y- and
x-direction are computed.

Default Variant. Figure 4.5 depicts Default 1D-2D Slab Decomposition. Each process 𝑝 starts by
computing the 1D-FFTs in z-direction, using the default input and output data layout, and stores the
results in out. In order to compute the 2D-FFTs in y- and x-direction later on, all data points in both
directions have to be accessible by the computing process. Therefore, the intermediate results are
partitioned in z-direction and each 1D-partition is copied into the contiguous send-buffer send, as
part of the packing phase. During the following communication phase, the 𝑘-th packed partition is
sent to process 𝑘 , for each 0 ≤ 𝑘 < 𝑃 with 𝑘 ≠ 𝑝. It can be seen that there is no need to transform
the received 3D-partitions, which is why the unpacking phase can be skipped, and the received
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data is directly stored in temp if CUDA-aware MPI is used. Otherwise, the receive-buffer recv is
allocated on host memory and upon receiving the last partition, the data is copied to temp via a
single host-to-device memory transfer. Finally, the remaining 2D-FFTs in y- and x-direction can be
computed. As introduced in Section 3.2, this can be realized using the advanced data layout. The
relevant parameters for the plan configuration can be found in Table 4.2b.

Realigned Variant. For 1D-2D Slab Decomposition, it is also possible to consider Realigned. This
procedure is visualized in Figure 4.6. As before, the procedure starts by computing the 1D-FFTs in
z-direction and storing the intermediate results in out. As summarized in Table 4.2a, the default
data alignment is used for the input data. The output stride, which describes the distance between
two consecutive elements of the corresponding 1D-FFT, is set to 𝑁𝑦 · 𝑁𝑥

𝑃
, while the output distance,

y

z x

x

y z

1D FFT
(z-direction) 

x

y z

2D FFT
(yx-direction) 

y

z x

Figure 4.6: Realigned 1D-2D Slab Decomposition. The procedure is visualized for 3 processes,
where the first process is highlighted in green. The first transition depicts the data realignment
when computing the 1D-FFTs in z-direction (as indicated by the color of the coordinate axes). The
annotation 𝑍 → 𝑌 emphasizes that the data alignment changes from being contiguous in z-direction
to being contiguous in y-direction, which is further indicated by the change of the axis labels. In the
following transition, the communication phase is indicated by the red arrows, where the first process
receives the red partitions. The annotation 3𝐷 → 2𝐷 highlights that the sending process distributes
3D-partitions, whereas the receiving process requires 2D-partitions for the subsequent computations.
Therefore, an additional unpacking phase is required, before computing the remaining 2D-FFTs in
y- and x-direction. Using a second data realignment, as displayed by the last transition, the output
data is aligned contiguous in z-direction again.
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which describes the distance of the first elements of two batches, is set to 1. Using Table 3.1 as
reference, position (𝑥, 𝑦, 𝑧) of the intermediate results can then be accessed by

out[b * odist + z * ostride]

= out[(x * 𝑁𝑦 + y) * 1 + z * 𝑁𝑦 · 𝑁𝑥/𝑃]
= out[(z * 𝑁𝑥/𝑃 + x) * 𝑁𝑦 + y],

where batch 𝑏 can be uniquely identified by position (𝑥, 𝑦). Therefore, the data layout of out

can be considered to be contiguous in y-direction. Since the intermediate results are partitioned
along the z-axis, it can be seen that there is no need for a packing phase, if CUDA-aware MPI
is used. Otherwise, the data is simply copied into send via a single device-to-host memory
transfer. Analogously to the first variant, process 𝑝 sends the 𝑘-th partition to process 𝑘 during
the communication phase, for each 0 ≤ 𝑝, 𝑘 < 𝑃 if 𝑝 ≠ 𝑘 . After unpacking the received data into
the required 1D-partitions from recv to temp, the remaining 2D-FFTs in y- and x-directions can be
computed. Here, the advanced data layout parameters from Table 4.2b are used, such that position
(𝑥, 𝑦, 𝑧) of the final result can be accessed via

out[b * odist + (x * onembed[1] + y) * ostride]

= out[z * 1 + (x * 𝑁𝑦 + y) * �̂�𝑧/𝑃]
= out[(x * 𝑁𝑦 + y) * �̂�𝑧/𝑃 + z],

where batch 𝑏 can be identified as 𝑧. Consequently, the data layout of the final result is identical
to the data layout of the input data. Analogously to Section 4.2, the procedure has to wait until
the send operation is complete, before computing the 2D-FFTs, since out is used directly as the
send-buffer.

Variant idist istride odist ostride batch

Default 𝑁𝑧 1 �̂�𝑧 1 𝑁𝑦 · 𝑁𝑥

𝑃

Realigned 𝑁𝑧 1 1 𝑁𝑦 · 𝑁𝑥

𝑃
𝑁𝑦 · 𝑁𝑥

𝑃

(a) Summary of the Parameters Used by Default and Realigned for the 1D-FFTs in Z-Direction.

Variant idist inembed[1] istride odist onembed[1] ostride batch

Default 1 𝑁𝑦
�̂�𝑧

𝑃
1 𝑁𝑦

�̂�𝑧

𝑃

�̂�𝑧

𝑃

Realigned 𝑁𝑦 · 𝑁𝑥 𝑁𝑦 1 1 𝑁𝑦
�̂�𝑧

𝑃

�̂�𝑧

𝑃

(b) Summary of the Parameters Used by Default and Realigned for the 2D-FFTs in Y- and X-Direction.

Table 4.2: 1D-2D Slab Decomposition cuFFT parameters for the Advanced Data Layout. The tables
are segmented by the plan configuration of the 1D-FFTs in z-direction and the plan configuration
of the 2D-FFTs in y- and x-direction. Both of them summarize the different parameters used to
configure a cuFFT plan for Default and Realigned. A detailed description of the plan configuration
can be found in Section 3.2.

56



4.3 1D-2D Slab Decomposition

Inverse Transform. Using above descriptions on how the forward 3D-FFT is computed using
1D-2D Slab Decomposition, it is easy to see that the computation of the inverse transform can
be achieved by simply reversing each computational step individually. In particular, the plan
configuration for the 2D- and 1D-FFTs simply swaps the input and output data layout parameter of
Table 4.2. For more details, we refer the reader to Section 4.2. Again, the most notable difficulty is
the memory utilization, which will be discussed in the following (cf. Figure 4.7).

Key Differences. Next, we summarize the key differences between both variants and review their
possible advantages and disadvantages. For CUDA-aware MPI, we have seen that both variants
require two additional data-buffers. Otherwise, both variants use send and recv on host memory,
while also requiring temp, which is allocated on device memory and used to unpack the received
data.

Analogous to 2D-1D Slab Decomposition, a general disadvantage when using Realigned and
CUDA-aware MPI is that the forward procedure has to wait idle until the send operation is complete,
before computing the 2D-FFTs. The necessity for this is visualized in Figure 4.7, where the buffer
utilization is summarized for 1D-2D Slab Decomposition. Again, Default is able to avoid this
problem for the inverse transform by reusing in.

There is also a significant advantage when using Realigned in this context: It can be seen in Figure
4.6 that the unpacking phase of Realigned’s 2D-partitions can be realized by copying �̂�𝑧

𝑃
slices

of size 𝑁𝑥

𝑃
× 𝑁𝑦 from the receive-buffer into temp. In contrast, the packing phase of Default’s

Figure 4.7: 1D-2D Slab Decomposition Buffer Usage. The figure summarizes the utilization of
the available buffers (cf. Section 4.1) for the forward and inverse transform, while differentiating
between Default and Realigned. All scenarios are displayed with the assumption that CUDA-aware
MPI is used. The input data is always stored in in (sc. first buffers on the left side), and the output
data is always stored in out (sc. last buffer on the right side). The arrow annotations indicate which
task is performed, i.e., FFT computation, packing, unpacking, or communication. Furthermore,
the green boxes show regions where special care has to be taken when reusing the send-buffer
(highlighted in green) to avoid overwriting its content.
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1D-partitions has to be realized by copying 𝑁𝑦 · 𝑁𝑥

𝑃
slices of size 1× �̂�𝑧

𝑃
from out into the send-buffer

(cf. Figure 4.5). Therefore, former has to perform significantly fewer subroutines to copy larger
slices than the latter, which can result in a considerable performance gain.

Discussion. Following the detailed description of both variants, it can be argued that there is
another approach for computing 1D-2D Slab Decomposition. In particular, it is possible to start
by computing the 1D-FFTs in y-direction and finishing with the 2D-FFTs in z- and x-direction.
The advantage of this approach would be that for complex-valued input data, the resulting output
partition of size 𝑁𝑥 ×

𝑁𝑦

𝑃
× 𝑁𝑧 would be identical to the output partition when using 2D-1D Slab

Decomposition. This would allow an interchangeable computation of the forward and inverse
transform of both decomposition methods, without an additional global data redistribution. As an
example, consider a setup where it is known that Realigned 1D-2D Slab Decomposition performs
best for the computation of forward 3D-FFTs and Default 2D-1D Slab Decomposition performs best
for inverse 3D-FFTs. Then the following, optimized routine can be performed, without the need for
an additional global data redistribution:

1. Compute the forward 3D-FFT using Realigned 1D-2D Slab Decomposition.

2. Modify the computed results locally, e.g., filter out high frequencies.

3. Perform the inverse 3D-FFT using Default 2D-1D Slab Decomposition.

On the contrary, it can be seen that a single cuFFT plan does not suffice for computing all 1D-FFTs
in y-direction (cf. Listing 3.4). Particularly the parameter idist has to be set to either 1 or 𝑁𝑧 · 𝑁𝑦 .
Therefore, both cases result in the fact that the 𝑁𝑥

𝑃
× 𝑁𝑧 grid of 1D-FFTs in y-direction is not fully

covered by a single cuFFT plan. One way to overcome this problem is to introduce multiple cuFFT
plans and assign them to individual CUDA streams. Depending on the utilized hardware, this
allows for a potential overlap of the batched transforms [NVIi]. However, even when considering
CUDA-streams, it appears obvious that above application example does not work for real-valued
input data, where the resulting output partition of the first step would be of size 𝑁𝑥 ×

�̂�𝑦

𝑃
× 𝑁𝑧

with �̂�𝑦 =

⌊
𝑁𝑦

2

⌋
+ 1. Thus, the application would require an additional computation step, which

transposes the results globally, using Hermitian symmetry (cf. Section 2.4.2). Since our work
solely focuses on applications with real-valued input data, we therefore narrow the scope of the
implementation down to the variants starting with the 1D-FFTs in z-direction.

4.4 Pencil Decomposition

A general overview of pencil decomposition was already presented in Section 2.5.2. We adopt
the notations and consider a process grid of size 𝑃1 × 𝑃2 such that each process can be uniquely
identified as (𝑝𝑖 , 𝑝 𝑗) for fitting 0 ≤ 𝑝𝑖 < 𝑃1 and 0 ≤ 𝑝 𝑗 < 𝑃2. Furthermore, we assume that
each process starts with a real-valued input partition of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧 . Analogously to slab

decomposition (cf. Sections 4.2, 4.3), pencil decomposition can be realized with and without data
realignment. Thus, the global data is for both variants partitioned as follows:

Input: In 𝑃1 × 𝑃2 partitions along the x- and y-direction respectively, i.e., each processor starts
with input size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧 .
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4.4 Pencil Decomposition

Output: In 𝑃1 × 𝑃2 partitions along the y- and z-direction respectively, i.e., each processor ends
with output size 𝑁𝑥 ×

𝑁𝑦

𝑃1
× �̂�𝑧

𝑃2
.

We start with the description of both variants, where we focus on the GPU specific implementation
details. Afterwards, we review possible advantages and disadvantages when using either variant
and discuss other possible realizations of pencil decomposition.

y

z x

y

z x

y

z x

Figure 4.8: Default Pencil Decomposition. The procedure is visualized from left to right for a 3 × 3
process grid, where process (0, 2) is highlighted in green. The marked axis indicated the direction
in which the 1D-FFTs are computed. The first communication phase is indicated by the red arrows,
where process (0, 2) receives the red partitions. Analogously, the second communication phase is
depicted by the blue arrows, where the process receives the blue partitions. The arrow annotation
1𝐷 → 2𝐷 (2𝐷 → 3𝐷) further emphasizes that the sending process distributes 1D-partitions
(2D-partitions) and the receiving process requires 2D-partitions (3D-partitions) for the subsequent
computations.

Default Variant. Figure 4.8 visualizes Default Pencil Decomposition, which was already briefly
introduced in Section 2.5.2. Each process (𝑝𝑖 , 𝑝 𝑗) starts by computing the 1D-FFTs in z-direction,
using the default input and output data layout, and storing the results in out. Afterwards, the
intermediate results are partitioned in z-direction and the 1D-partitions are copied into the contiguous
send-buffer send, which is located on device memory or host memory, depending on whether
CUDA-aware MPI is used. For each 0 ≤ 𝑘 < 𝑃2 with 𝑘 ≠ 𝑝 𝑗 , the 𝑘-th packed partition is sent
to process (𝑝𝑖 , 𝑘). Most notably, it can be seen that each process only has to communicate with
𝑃2 − 1 other processes. After completing the communication phase, the data is stored contiguously
in recv. Therefore, each process has to unpack the data into temp to satisfy the alignment criteria
of the 2D-partitions, before computing the 1D-FFTs in y-direction. Since send was used as a
send-buffer in the previous stage, the computed results can be stored in out even when the send
operation is not fully complete. As we have seen in Section 4.3, there is an additional obstacle when
computing the 1D-FFTs in y-direction on data aligned contiguous in z-direction: Since the cuFFT
plan configuration has to set idist to either 1 or �̂�𝑧

𝑃2
· 𝑁𝑦 , a single cuFFT plan cannot cover the

full 𝑁𝑥

𝑃1
× �̂�𝑧

𝑃2
grid of batched 1D-FFTs. Therefore, a total of �̂�𝑧

𝑃2
cuFFT plans are introduced and

configured during the initialization phase, where istride is set to �̂�𝑧

𝑃2
·𝑁𝑦 . An overview of the cuFFT
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parameters can be found in Table 4.3b. While each plan is configured with the same parameters, they
are assigned to different CUDA streams, which allows for a possible overlap in computation. During
the execution phase, the 𝑗-th plan can then be used to perform the complex-to-complex transform
on input pointer &temp[j] and on output pointer &out[j]. After completing the computation for
each 0 ≤ 𝑗 <

�̂�𝑧

𝑃2
, the partitioned results (i.e. 2D-partitions) can be packed into send, whereupon

the 𝑘-th partition is sent to process (𝑘, 𝑝 𝑗), for each 0 ≤ 𝑘 < 𝑃1 with 𝑘 ≠ 𝑝𝑖. Analogous to the
first global data redistribution, is can be seen that each process has to communicate only with
𝑃1 − 1 other processes. Thereafter, the received data can be simply stored in temp, without requiring
an additional unpacking phase. Finally, the remaining 1D-FFTs in x-direction can be computed,
according to the summarized parameters in Table 4.3c.

Realigned Variant. A visualization of the alternative realization, using data realignment, can be
found in Figure 4.9. The corresponding parameters for the cuFFT plan configuration are summarized
in Table 4.3. Using the default input data layout, process (𝑝𝑖 , 𝑝 𝑗) starts by computing the 1D-FFTs
in z-direction and stores the results in out. Using the parameters of the output data layout from
Table 4.3a, position (𝑥, 𝑦, 𝑧) is accessed by

out[b * odist + z * ostride]

= out[(x * 𝑁𝑦/𝑃2 + y) * 1 + z * 𝑁𝑦/𝑃2 · 𝑁𝑥/𝑃1]

= out[(z * 𝑁𝑥/𝑃1 + x) * 𝑁𝑦/𝑃2 + y],

where batch 𝑏 can be identified as the position (𝑥, 𝑦). Therefore, the intermediate results can be
considered to be aligned contiguous in y-direction. In case CUDA-aware MPI is used, there is no
need for a packing phase. Otherwise, the 3D-partitions of out are copied into send via a single
device-to-host memory transfer. The following communication phase is then performed in the same
manner as for Default, where the received data is stored in the contiguous receive-buffer recv. After
unpacking the intermediate results into temp to satisfy the alignment criteria of the 2D-partitions,
the 1D-FFTs in y-direction can be computed and stored in out. Since out is used as a send-buffer
for the first communication phase, it has to be ensured that the send operation is complete, before
performing this step. While we have seen that the first variant required multiple cuFFT plans to
compute the 1D-FFTs in y-direction, a single plan is sufficient when using data realignment, because
the input data is aligned contiguous in y-direction. Using the cuFFT parameters provided in Table
4.3b, position (𝑥, 𝑦, 𝑧) of the intermediate results can be accessed by

out[b * odist + y * ostride]

= out[(z * 𝑁𝑥/𝑃1 + x) * 1 + y * 𝑁𝑥/𝑃1 · �̂�𝑧/𝑃2]
= out[(y * �̂�𝑧/𝑃2 + z) * 𝑁𝑥/𝑃1 + x] .

Again, batch 𝑏 is uniquely identified by the position (𝑥, 𝑧) (cf. Figure 4.9). Consequently, the data
in out is aligned contiguous in x-direction. At this point, it can be seen that the second global
packing, communication, and unpacking phase is identical to the first one. Finally, after waiting
for the send operation to complete and computing the 1D-FFTs in x-direction, the data is aligned
contiguous in z-direction again. This can be seen by the fact, that position (𝑥, 𝑦, 𝑧) is accessed via

out[b * odist + x * ostride]

= out[(y * �̂�𝑧/𝑃2 + z) * 1 + x * �̂�𝑧/𝑃2 · 𝑁𝑦/𝑃1]
= out[(x * 𝑁𝑦/𝑃1 + y) * �̂�𝑧/𝑃2 + z],
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4.4 Pencil Decomposition

when using the cuFFT parameters provided in Table 4.3c. Similarly to the previous times, batch 𝑏

is simply identified by the position (𝑦, 𝑧).

Inverse Transform. After the detailed description of both variants, it is clear that the inverse
transform can be computed by simply reversing the individual computational steps. As in the
previous sections, the packing and unpacking phase can be considered to be mirrored and the plan
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y z

1D FFT  
(z-direction)
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y z

1D FFT  
(y-direction)
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x y
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z x

1D FFT  
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Figure 4.9: Realigned Pencil Decomposition. The procedure is visualized for a 3 × 3 process
grid, where process (2, 0) and (0, 2) are highlighted in green and orange, respectively. Starting
from the upper left corner, the first transition depicts the data realignment when computing the
1D-FFTs in z-direction (as indicated by the color of the coordinate axes). The annotation 𝑍 → 𝑌

emphasizes that the data alignment changes from being contiguous in z-direction to being contiguous
in x-direction, which is further indicated by the change of the axis labels. The first communication
phase corresponds to the second transition with the red arrows, where process (2, 0) receives
the red partitions. Similarly, the following transition visualizes the data realignment during the
computation of the 1D-FFTs in y-direction, whereupon the data is aligned contiguous in x-direction
(as highlighted by the annotation 𝑌 → 𝑋). For the second communication phase, the partitions
highlighted in red are received by process (0, 2). For both communication phases, the arrow
annotation 3𝐷 → 1𝐷 emphasizes that the sending process distributes 3D-partitions, whereas the
receiving process requires 1D-partitions in the subsequent computations. Finally, the last transition
depicts the data redistribution when computing the 1D-FFTs in x-direction, after which the data is
aligned contiguous in z-direction again (as highlighted by the annotation 𝑋 → 𝑍).
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Variant idist istride odist ostride batch

Default 𝑁𝑧 1 �̂�𝑧 1 𝑁𝑦

𝑃2
· 𝑁𝑥

𝑃1

Realigned 𝑁𝑧 1 1 𝑁𝑦

𝑃2
· 𝑁𝑥

𝑃1

𝑁𝑦

𝑃2
· 𝑁𝑥

𝑃1

(a) Summary of the Parameters Used by Default and Realigned for the 1D-FFTs in Z-Direction.

Variant idist istride odist ostride batch plans

Default �̂�𝑧

𝑃2
· 𝑁𝑦

�̂�𝑧

𝑃2

�̂�𝑧

𝑃2
· 𝑁𝑦

�̂�𝑧

𝑃2

𝑁𝑥

𝑃1

�̂�𝑧

𝑃2

Realigned 𝑁𝑦 1 1 𝑁𝑥

𝑃1
· �̂�𝑧

𝑃2

𝑁𝑥

𝑃1
· �̂�𝑧

𝑃2
1

(b) Summary of the Parameters Used by Default and Realigned for the 1D-FFTs in Y-Direction.

Variant idist istride odist ostride batch

Default 1 �̂�𝑧

𝑃2
· 𝑁𝑦

𝑃1
1 �̂�𝑧

𝑃2
· 𝑁𝑦

𝑃1

�̂�𝑧

𝑃2
· 𝑁𝑦

𝑃1

Realigned 𝑁𝑥 1 1 �̂�𝑧

𝑃2
· 𝑁𝑦

𝑃1

�̂�𝑧

𝑃2
· 𝑁𝑦

𝑃1

(c) Summary of the Parameters Used by Default and Realigned for the 1D-FFTs in X-Direction.

Table 4.3: Pencil Decomposition cuFFT Parameters for the Advanced Data Layout. The tables are
segmented by the plan configuration of the 1D-FFTs in z-direction, y-direction, and x-direction. All
three of them summarize the different parameters used to configure a cuFFT plan for Default and
Realigned. A detailed description of the plan configuration can be found in Section 3.2.

configuration of the 1D-FFTs is achieved by swapping the input and output data layout parameters
(cf. Section 4.2). The only difficulty is the buffer utilization, which will be discussed in the following
(cf. Figure 4.10).

Key Differences. When comparing both variants, the usage of data realignment has some salient
advantages. Commencing with the first advantage, we have seen that out can be used directly as a
send-buffer for both global data redistributions, when CUDA-aware MPI is used. Therefore, the
Realigned only requires two additional data buffers, instead of three. In case MPI is considered
without CUDA-awareness, both variants require send and recv to be allocated on host memory,
while using temp on device memory as before.

For the second advantage, it is apparent that Default requires two packing and one unpacking
phase, whereas Realigned solely requires two unpacking phases. Furthermore, we have seen that
the contiguous alignment in y-direction of the intermediate results for Realigned entails that the
computation of the 1D-FFTs in y-direction only require a single cuFFT plan, which can be executed
more efficiently.

Finally, Realigned experiences the same disadvantage as for Slab Decomposition when computing
the forward transform: Since out is used directly as a send-buffer for both global redistribution
phases, the procedure has to wait idle until the send operations are complete, before the subsequent
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4.4 Pencil Decomposition

Figure 4.10: Pencil Decomposition Buffer Usage. The figure summarizes the utilization of the
available buffers (cf. Section 4.1) for the forward and inverse transform, while differentiating
between Default and Realigned. All scenarios are displayed with the assumption that CUDA-aware
MPI is used. The input data is always stored in in (sc. first buffers on the left side), and the output
data is always stored in out (sc. last buffer on the right side). The arrow annotations indicate which
task is performed, i.e., FFT computation, packing, unpacking, or communication. Furthermore,
the green boxes show regions where special care has to be taken when reusing the send-buffer
(highlighted in green) to avoid overwriting its content. For better readability, there are line breaks
as indicated by the equal signs.

1D-FFTs in either y- or x-direction can be computed. A summary for the utilized buffers is given in
Figure 4.10. As for Slab Decomposition, Default is able to prevent this undesirable behavior by
reusing in when computing the inverse transform. Again, we stress that this is exclusively possible
for the inverse transform, since in is only here a complex-valued buffer.

Discussion. Finally, we discuss other possible realizations of Pencil Decomposition. As before,
this discussion solely aims to provide further inside in some design considerations and is by no means
meant to be exhaustive. The first interesting consideration is to further improve the performance of
Realigned by introducing another temporary buffer. This buffer could be used to avoid that the
procedure needs to wait idle before computing the 1D-FFTs in y- and x-direction. In this case, the
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memory requirements would be identical to Default, which could be acceptable for some application.
Since the additional buffer would not be used when computing the inverse transform, we decided
against this approach and solely considered the presented realization for Realigned.

Depending on the given application, there are obviously other input partitions that could be
considered, e.g., input partitions of size 𝑁𝑥 ×

𝑁𝑦

𝑃1
× 𝑁𝑧

𝑃2
. To accommodate for this, our variants could

be extended by another global data redistribution, which closes the cycle in Figures 4.8 and 4.9. We
stress that this would result in different output partitions when computing real-to-complex forward
transforms.

When assuming our input partition of size 𝑁𝑥

𝑃1
× 𝑁𝑦

𝑃2
× 𝑁𝑧 , another alternative could be to compute

the 1D-FFTs in x-direction, before computing the 1D-FFTs in y-direction. When utilizing Realigned
(cf. Figure 4.9) it is obvious that, next to other disadvantages, the output data layout would not
be identical to the input data layout, which is generally undesirable. In contrast, this alternative
could indeed result in performance improvement, when considering Default (cf. Figure 4.8). This
is caused by the fact, that this approach would not require a packing phase for the second global
data redistribution. Since our implementation already measures the duration and therefore the
impact of the individual packing, communication, and unpacking phases, we do not incorporate
this approach. Nonetheless, we note that this alternative could provide an interesting trade-off for
computing the forward transform, since it would enjoy both fewer packing phases and no need to
wait for a completion of the send operation.

4.5 Global Redistribution Methods

Until now, we solely focused on 2D-1D Slab Decomposition, 1D-2D Slab Decomposition, and Pencil
Decomposition and introduced the variants Default and Realigned for each of them. While we
have seen that there are already considerable advantages and disadvantages between the different
approaches, we only regarded an abstract global redistribution of the intermediate results. To
realize the global redistribution, which consists of packing, communication, and unpacking phase,
CUDA and MPI provide a large variety of tools that were introduced in Section 3.1 and Section
3.3, respectively. As before, we stress that the right choice of the utilized tools is vital to achieve
the best performance, since the global redistribution of the intermediate results is responsible for a
significant proportion of the total runtime.

Generally, the different approaches can be categorized by their underlying MPI communication
method, which we denote by Peer2Peer and All2All: Peer2Peer utilizes MPI’s non-blocking
send and receive operations in standard mode, which are part of its point-to-point communication
mechanism. In contrast to this, All2All uses parts of MPI’s collective communication mechanism.
Depending on the choice of the communication method, there are further optimizations that focus
on the packing and unpacking phase. In particular, we implement Sync, Streams, and MPI_Type
as available options for Peer2Peer communication, along with Sync and MPI_Type for All2All
communication. While the subsequent sections provide a detailed insight into these packing and
unpacking options, w.r.t. the corresponding communication method, the general concept is as
follows: For Peer2Peer communication, Sync copies each individual partition into the contiguous
send-buffer and waits for the copy to complete, before the data is sent to the corresponding process.
On the contrary, Streams does not wait for the copy to complete. Instead, each copy operation
is assigned to a specific CUDA-stream, which allows a second thread to be notified and to start
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sending, as soon as the operation is complete. If the data has to be unpacked, both Sync and
Streams copy the partitions individually to temp. As a third option, MPI_Type is inspired by the
work of Dalcin et al. [DMK19] and adapted for GPUs. The key property of MPI_Type is to
avoid the packing and unpacking phase altogether by using custom MPI data-types, which allows
sending from and receiving into non-contiguous memory. The same principles are applicable
for All2All communication, with the difference that Sync and Stream are identical, since a single
synchronization before calling the All2All communication routine is sufficient.

Following the structure from above, we start by introducing the packing and unpacking methods for
Peer2Peer in Section 4.5.1. Afterwards the packing / unpacking methods for All2All are presented
in Section 4.5.2.

4.5.1 Packing / Unpacking Methods for Peer2Peer Communication

As already described above, Peer2Peer utilizes MPI’s non-blocking send and receive operations
in standard mode, namely, MPI_Isend and MPI_Irecv (cf. Section 3.3). This section aims to provide
further insight into the available packing and unpacking methods: Sync, Streams, and MPI_Type.
It is apparent, that the specific implementation of the particular method highly depends on the
underlying decomposition method (i.e. 2D-1D Slab Decomposition, 1D-2D Slab Decomposition or
Pencil Decomposition) and its variant (i.e. Default or Realigned). In particular, we have already seen
that the packing or unpacking phase can be skipped sometimes (cf. Sections 4.2-4.4). Therefore,
we present the individual methods for the most general case, where both packing and unpacking
phase are required and state the necessary accommodations for the different special cases.

We start by introducing the relevant notations and assumptions for this section, whereupon a detailed
description of Sync and Streams, together with their identical unpacking method is provided.
Afterwards, we present the general structure of MPI_Type and describe how the local transpose of
the intermediate results can be realized for the partition that is kept by the process.

Notations and Assumptions. We denote pidx as the unique identifier of the running process,
w.r.t. the MPI communicator comm. We let P_c be the number of processes which are covered by the
same communicator. In particular, the value of P_c is equal to 𝑃 if slab decomposition is used, or 𝑃𝑖

(for either 𝑖 ∈ {1, 2}) if pencil decomposition is used. In case pencil decomposition is considered,
we assume that comm is the result of splitting the global communicator via MPI_Comm_split (cf. Listing
3.10). For the sake of better readability, we further assume for this section that the value of P_c

always divides 𝑁𝑥 , 𝑁𝑦 , and �̂�𝑧 without remainder. Due to this assumption, the same amount of
bytes is sent to and received from all other processes. It is therefore sufficient to solely introduces the
variables width and height to describe the potentially non-contiguous partitions of out: width is used
to refer to the maximum number of words that lie contiguous in memory, which is also considered
as a slice, whereas height denotes the total number of slices in the partition. Analogously, variables
n_width and n_height are used to describe the partition temp. Therefore, the invariant width*height
= n_width*n_height holds true. Finally, the variable s denotes the number of bytes per real-valued
word, i.e., 4 bytes for single-precision and 8 bytes for double precision, and kind is introduced as a
placeholder to describe either host-to-device, device-to-host, or device-to-device memory transfers.
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Listing 4.1 Peer2Peer-Sync: Packing Method.

for (size_t i = 1; i < P_c; i++) {

p = (pidx + i) % P_c;

// start non-blocking receive operation for process p

MPI_Irecv(&recv[p*width*height], 2*s*width*height, MPI_BYTE,

p, p, comm, &recv_req[p]);

// copy intermediate results to send-buffer and synchronize

cudaMemcpy2DAsync(&send[p*width*height], 2*s*width,

&out[p*width], 2*s*width*P_c, 2*s*width, height, kind);

cudaDeviceSynchronize();

// start non-blocking send operation for process p

MPI_Isend(&send[p*width*height], 2*s*width*height, MPI_BYTE,

p, pidx, comm, &send_req[p]);

}

Peer2Peer-Sync. Listing 4.1 provides an overview of the implementation of packing and
communication phase when using Peer2Peer-Sync. The process iterates over the identifiers of the
other processes and starts each iteration by calling the non-blocking receive operation MPI_Irecv

(cf. Listing 3.7). As each sent and received partition consists of width*height complex-valued
words, the offset for process 𝑝 in the receive-buffer is equal to p*width*height and a total of
2*s*width*height bytes are received. The corresponding receive-request is stored in recv_req[p].
Process pidx immediately continues by copying its intermediate results from out into the contiguous
send-buffer send. The essential specification of cudaMemcpy2DAsync can be found in Listing 3.2.
Most notably, setting the pitch of the send-buffer to the size of a single slice (i.e. 2*s*width) results
in the fact that the data is contiguously aligned in send. To ensure that the process only starts
sending after the partition has been copied to the send-buffer, the process is synchronized via
cudaDeviceSynchronize(). Finally, process pidx starts transmitting the partition to process 𝑝 by
using MPI_Isend. It is therefore apparent that the use of non-blocking send and receive operations
allow for an overlap of the packing and communication phase.

When considering CUDA-aware MPI, send and recv are located on device memory and placeholder
kind is set to cudaMemcpyDeviceToDevice. Otherwise, both buffers are located on page-locked host
memory (cf. Section 3.1) and kind is substituted for cudaMemcpyDeviceToHost. In case Realigned
is used (for the forward transform), we have seen that the partitions already lie contiguous in
out. Therefore, when using CUDA-aware MPI, out can be used directly as the send-buffer and
cudaMemcpy2DAsync can be omitted in Listing 4.1. Note, that in this case it is important to call
MPI_Waitall(P_c, send_req, MPI_STATUSES_IGNORE) before computing the next FFTs, in order to
avoid overwriting the send-buffer. If on the other hand MPI is used without CUDA-awareness, the
intermediate results stored in out are copied to send via a single contiguous copy-operation, which
is executed before the loop of Listing 4.1.

Peer2Peer-Streams. While Streams is similarly structured to Sync, the essential difference is
that Streams does not wait for the individual copy operations to complete. The general structure
of Streams can be found in Listing 4.2. In contrast to Sync, cudaMemcpy2DAsync is assigned to
a particular CUDA-stream. We have seen in Section 3.1 that the operation cudaLaunchHostFunc
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Listing 4.2 Peer2Peer-Streams: Packing Method.

// create and start thread which is responsible for sending the intermediate results

mpisend_thread = std::thread(MPIsend_Thread, args);

for (size_t i = 1; i < P_c; i++) {

p = (pidx + i) % P_c;

// start non-blocking receive operation for process p

MPI_Irecv(&recv[p*width*height], 2*s*width*height, MPI_BYTE,

p, p, comm, &recv_req[p]);

// copy intermediate results to send-buffer without synchronizing

cudaMemcpy2DAsync(&send[p*width*height], 2*s*width,

&out[p*width], 2*s*width*P_c, 2*s*width, height, kind, streams[p]);

// enqueue callback function for notifying mpisend_thread to start sending

cudaLaunchHostFunc(streams[p], this->MPIsend_Callback, (void *)&params[p]);

}

can be used to start the execution of an host function after all previous tasks of the stream are
completed. This can be used by Streams, by implementing a thread-safe synchronous channel
between MPIsend_Callback and the second thread mpisend_thread to notify the thread to start
sending to a particular process. Therefore, params[p] simply contains the necessary tools to create
the channel along with the value of p. Similarly, parameter args contains the same tools, along with
the required information to call MPI_Isend. For the sake of completeness, we note that Streams
requires MPI to be thread-safe. This can be ensured by using MPI_Init_Thread to initialize the MPI
environment and requiring MPI_THREAD_MULTIPLE as the required level for thread support [MPI21,
p. 491].

The same adjustments of Sync, depending on whether CUDA-aware MPI is used, can be adopted
for Streams as well. Analogously, cudaMemcpy2DAsync can be omitted in Listing 4.2 if Realigned
is used in combination with CUDA-aware MPI (for the forward transform). Therefore, Streams
and Sync are identical in this special case. If on the other hand MPI without CUDA-awareness is
used together with Realigned, Streams simply replaces cudaMemcpy2DAsync with cudaMemcpyAsync

and copies the individual contiguous partitions to the send-buffer. Note, that this approach slightly
differs from Sync in this case, since Sync utilizes a single copy-operation.

Unpacking Method for Peer2Peer-Sync and Peer2Peer-Streams. When using Sync or Streams,
we have seen that there has to be some sort of synchronization after copying the intermediate results
to the send-buffer. Essentially, the manner of synchronization can be considered to be the sole
difference between Sync and Streams. When reviewing different options for the unpacking phase
it is apparent that the individual received partitions can be unpacked independently. Thus, there
is no need for an additional synchronization, which is why we realize the unpacking method for
Sync and Streams identically. Using the same notations and assumptions as before, an overview of
this unpacking method is given in Listing 4.3. Since both Sync and Streams store their receive
requests in recv_req, MPI_Waitany can be used to wait for individual receive requests to complete
(cf. Section 3.3). Importantly, the value of p is set to the index of the completed request, which is
by definition of Listings 4.1, 4.2 identical to the identifier of the sending process. Furthermore,
recv_req[p] is marked as inactive after returning from the function call. In case there are no more
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Listing 4.3 Unpacking Method for Peer2Peer-Sync and Peer2Peer-Streams.

int p;

do {

// wait for a receive operation to complete

MPI_Waitany(P_c, recv_req, &p, MPI_STATUSES_IGNORE);

if (p == MPI_UNDEFINED) // if there are no more active handles

break;

// copy received data from contiguous recv to temp

cudaMemcpy2DAsync(&temp[p*n_width], 2*s*n_width*P_c,

&recv[p*n_width*n_height], 2*s*n_width,

2*s*n_width, n_height, kind1);

} while (p != MPI_UNDEFINED);

cudaDeviceSynchronize();

active requests, i.e., all partitions were received, the function immediately returns and sets p to
MPI_UNDEFINED. When reviewing the parameters of cudaMemcpy2DAsync, placeholder kind1 is set to
cudaMemcpyDeviceToDevice if CUDA-aware MPI is used and to cudaMemcpyHostToDevice, otherwise.
Finally, cudaDeviceSynchronize is used to ensure that all memory copies are complete and the
subsequent batched FFTs can be computed on input temp.

Next, we cover the special cases that might arise depending on the underlying decomposition
method and its variant: Since temp is always allocated on device memory, placeholder kind is set to
cudaMemcpyDeviceToDevice or cudaMemcpyHostToDevice, depending on whether CUDA-aware MPI
is utilized. Furthermore, we have seen that 2D-1D Slab Decomposition, 1D-2D Slab Decomposition
and the second global redistribution of Pencil Decomposition do not require an unpacking phase when
using Default. Therefore, it is sufficient to use MPI_Waitall(P_c, recv_req, MPI_STATUSES_IGNORE)

and set temp to recv if CUDA-aware MPI is used. Otherwise, recv is located on page-locked
host memory and cudaMemcpy2DAsync is replaced in Listing 4.3 with cudaMemcpyAsync to copy the
individual contiguous partitions to temp.

Listing 4.4 Peer2Peer-MPI_Type

if (!cuda_aware) // copy intermediate results to host

cudaMemcpy(send, out, P_c*width*height, cudaMemcpyDeviceToHost);

for (size_t i = 1; i < P_c; i++) {

p = (pidx + i) % P_c;

// start non-blocking receive operation for process p

MPI_Irecv(&recv[p*n_width], 1, MPI_R_TYPE, p, p, comm, &recv_req[p]);

// start non-blocking send operation for process p

MPI_Isend(&send[p*width], 1, MPI_S_TYPE, p, pidx, comm, &send_req[p]);

}
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Peer2Peer-MPI_Type. In contrast to the previous two methods, MPI_Type aims to remove the
demand for a packing and unpacking phase completely. This is realized by using custom MPI
datatypes, which were introduced in Section 3.3. Listing 4.4 shows the general structure of
the communication phase, when MPI_Type is used. Similarly to the combination of Sync and
Realigned, all intermediate results are copied to send in case MPI without CUDA-awareness is used.
Afterwards, the process iterates over the identifiers of the other processes and immediately starts
the corresponding non-blocking receive and send operations. For this purpose, the two custom MPI
datatypes MPI_R_TYPE and MPI_S_TYPE are utilized. For the sake of completeness, review Listing
4.5 for their initialization. Most notably, when using Listings 3.2, 3.8 as reference, parameters
count, blocklength, and stride of MPI_Type_vector correspond exactly to the parameters height,
width, and spitch of cudaMemcpy2DAsync, respectively (cf. Listings 4.1, 4.2). Finally, we note
that while each iteration of Listing 4.4 uses the same MPI datatype, the passed pointer in the first
argument of MPI_Isend and MPI_Irecv determines the corresponding offset in the send-buffer and
receive-buffer.

Listing 4.5 Peer2Peer-MPI_Type: Initialization of the Custom Datatypes.

MPI_Datatype MPI_S_TYPE, MPI_R_TYPE;

MPI_Type_vector(height, 2*s*width, 2*s*width*P_c, MPI_BYTE, &MPI_S_TYPE);

MPI_Type_vector(n_height, 2*s*n_width, 2*s*n_width*P_c, MPI_BYTE, &MPI_R_TYPE);

As with Sync and Streams, there are a few special cases to consider when realizing MPI_Type:
First, there is a major advantage when using this option together with CUDA-aware MPI, since both
send- and receive-buffer can be omitted. To further illustrate this point, MPI_Type solely requires
temp as an additional buffer, whereas Sync and Stream require either send or recv for 2D-1D /
1D-2D Slab Decomposition, or both for Pencil Decomposition. Similarly to using Realigned with
CUDA-aware MPI, it is therefore necessary to ensure that the send-buffer is not overwritten when
computing the subsequent FFTs. Secondly, the send and receive operations in Listing 4.4 can easily
be replaced with the corresponding ones of Listing 4.1, in case either the packing or unpacking
phase is not required. Finally, MPI_Type can wait for the completion of its receive requests by using
MPI_Waitall, whereupon the data can be copied to temp via a single host-to-device memory transfer
if MPI without CUDA-awareness is used.

Local Transpose. We have seen in Sections 4.2-4.4 that, for each decomposition method, the
𝑘-th partition of the intermediate results is sent to process 𝑘 (w.r.t the communicator if Pencil
Decomposition is considered). Until now, we have solely covered the case 𝑘 ≠ pidx with Sync,
Streams, and MPI_Type. For the remaining case 𝑘 = pidx, an easy solution would be to use
MPI as well, by simply letting the loop variable i start from value 0 in Listings 4.1, 4.2, and 4.4.
Alternatively, the additional overhead of using MPI can be avoided by using a device-to-device
memory transfer. Since this operation is independent of the other partitions, it can be executed right
before unpacking the received partitions, e.g., after Listing 4.1 and before Listing 4.3, without the
need for an additional synchronization. Therefore, the local transpose can be hidden behind the
packing, communication, and unpacking phase. For the sake of completeness, we note that one has
to pay special attention if MPI without CUDA-awareness is used in combination with MPI_Waitall,
followed by a single host-to-device memory transfer, since this could potentially overwrite the
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copied data of the local transpose. To accommodate for this, the local transpose can either be
realized by copying the intermediate results to recv, or by splitting the single host-to-device memory
transfer in two.

4.5.2 Packing Methods for All2All Communication

As an alternative to Peer2Peer, MPI also provides All2All which is part of its collective communication
mechanism. For this purpose, the relevant operations are MPI_Alltoall, MPI_Alltoallv, and
MPI_Alltoallw, which were introduced in Section 3.3. We have seen in Section 4.5.1, that
Peer2Peer allows Sync, Streams, and MPI_Type as available packing / unpacking methods. For
All2All, there is no need to differentiate between Sync and Streams, since a single synchronization
before the communication routine is sufficient. Therefore, we solely consider Sync and MPI_Type
for All2All.

We start presenting the notations and assumptions for this section. Thereafter, the details of Sync
and MPI_Type are presented for All2All.

Notations and Assumptions. We adapt the notations and assumptions from the previous section.
In particular, we emphasize the particular assumption that the value of P_c always divides 𝑁𝑥 ,
𝑁𝑦 , and �̂�𝑧 without remainder. This assumption allows the following description be simplified,
since MPI_Alltoall can be used instead of MPI_Alltoallv (cf. Listing 3.9). As before, we start by
presenting the individual options in the most general setting, where both packing and unpacking
phase are required. The necessary accommodations for the different special cases of the underlying
decomposition methods and their variants are discussed thereafter.

Listing 4.6 All2All-Sync

// copy intermediate results to send-buffer

for (size_t p = 0; p < P_c; p++) {

cudaMemcpy2DAsync(&send[p*width*height], 2*s*width,

&out[p*width], 2*s*width*P_c, 2*s*width, height, kind);

}

cudaDeviceSynchronize();

MPI_Alltoall(send, 2*s*width*height, MPI_BYTE,

recv, 2*s*width*height, MPI_BYTE, comm);

// copy received data to temp-buffer

for (size_t p = 0; p < P_c; p++) {

cudaMemcpy2DAsync(&temp[p*n_width], 2*s*n_width*P,

&recv[p*n_width*n_height], 2*s*n_width*n_height,

2*s*n_width, n_height, kind1);

}

cudaDeviceSynchronize();
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All2All-Sync. The general structure of All2All-Sync can be found in Listing 4.6, where packing,
communication, and unpacking phase are realized. Starting with the packing phase, the individual
copy operations are identical to Peer2Peer-Sync. Before calling the blocking All2All communication
routine, host and device are synchronized to ensure that all intermediate results are copied to the
contiguous send-buffer. Due to the above assumptions, each process sends and receives exactly
2*s*widht*height bytes. In particular, note that the local transpose, which was computed separately
for Peer2Peer (cf. Section 4.5.1), is covered by MPI_Alltoall in this case. After completing
the communication with each process, the received data can be unpacked into temp. Again, the
individual copy operations of the unpacking phase can be realized in the same manner as already
described in Listing 4.3.

To consider the arising special cases for the different decomposition methods, the corresponding
values of placeholders kind and kind1 are the same as for Peer2Peer. In case the packing or
unpacking phase is not required, the corresponding instructions of Listing 4.6 can simply be omitted
if CUDA-aware MPI is used. Otherwise, the corresponding loop is simply replaced by a single
cudaMemcpy operation that performs a single device-to-host memory transfer for the packing phase
or a single host-to-device memory transfer for the unpacking phase.

All2All-MPI_Type. Similarly to Peer2Peer-MPI_Type, this approach aims to remove the demand of
the packing and unpacking phase completely. Listing 4.7 provides an overview of All2All-MPI_Type,
where the additional variable cuda_aware is used to indicate whether CUDA-aware MPI is used. In
contrast to MPI_Alltoall, this method uses MPI_Alltoallw, where each of the parameters counts,
sdispls, rdispls, MPI_R_TYPES, MPI_S_TYPES is an array of size P_c. Starting with the custom MPI
datatypes, MPI_R_TYPES and MPI_S_TYPES simply consist of P_c identical elements MPI_S_TYPE and
MPI_R_TYPE (cf. Listing 4.5), respectively. Again, we note that without the assumptions from above,
the individual elements would need to consider the remainders of P_c dividing 𝑁𝑥 , 𝑁𝑦 , or �̂�𝑧 .
When considering the remaining parameters counts, sdispls, and rdispls, their 𝑝-th elements are
set respectively to 1, p*width, and p*n_width. This corresponds exactly to the individual pointer
offsets of Peer2Peer-MPI_Type in Listing 4.4.

In case the packing phase can be skipped during execution, there are two considerable approaches:
Either height is set to 1, when configuring MPI_S_TYPE during the initialization phase, or MPI_S_TYPE
is set to MPI_BYTE. For the latter, a new array sendcounts has to be introduced which contains P_c

elements with value 2*s*width and is passed as the second parameter, instead of count. Symmetric
adjustments can be made if the unpacking phase can be omitted.

Listing 4.7 All2All-MPI_Type

if (!cuda_aware) // copy intermediate results to host

cudaMemcpy(send, out, P_c*width*height, cudaMemcpyDeviceToHost);

MPI_Alltoallw(send, counts, sdispls, MPI_S_TYPES,

recv, counts, rdispls, MPI_R_TYPES, comm);

if (!cuda_aware) // copy received data to device

cudaMemcpy(temp, recv, P_c*n_width*n_height, cudaMemcpyHostToDevice);
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In Chapter 4, we presented the details for 2D-1D Slab Decomposition, 1D-2D Slab Decomposition,
and Pencil Decomposition (cf. Sections 4.2-4.4). In particular, we proposed the two variants Default
and Realigned for each underlying decomposition method and discussed potential advantages and
disadvantages, e.g., additional data buffers and the risk of overwriting the send-buffer by computing
the subsequent FFTs. For these six variants, we presented possible methods for the global data
redistribution phases in Section 4.5: Peer2Peer-Sync, Peer2Peer-Streams, Peer2Peer-MPI_Type,
All2All-Sync, and All2All-MPI_Type. Furthermore, all names decomposition methods, variants, and
global redistribution methods were implemented for both forward and inverse transforms, with
additional support for both CUDA-aware and default MPI.

While we have seen a simplified theoretical comparison of slab decomposition and pencil decom-
position in Section 2.5.3, a model for modern computing environments would require additional
fine-tuning for the specific systems. In particular, the assumption that the latencies and bandwidths
are identical for every combination of two processes is far from applicable in practice. Instead, even
when solely considering a single computing node with multiple GPUs, these GPUs are likely to
use different communication links (e.g. NVLink or PCI Express) and are therefore required to be
modeled by different parameters. For analyzing the performance of the presented decomposition
methods, their variants, and all global redistribution methods, we are therefore interested in different
test systems. In this work, we utilize five different test systems: PCSGS, Argon, Krypton, BW-GPU4,
and BW-GPU8. PCSGS, Argon, and Krypton are small computing pools, with four GPUs each,
and consist of four, two, and one computing nodes, respectively. To evaluate the performance on a
larger number of GPUs, along with the weak and strong scalability of the individual methods, we
use BW-GPU4 and BW-GPU8. Both test systems are part of the bwUniCluster 2.0 [bwHa] and are
maintained by bwHPC [bwHb]. BW-GPU4 consists of 14 computing nodes with four NVIDIA Tesla
V100 GPUs each, whereas BW-GPU8 consists of 10 nodes with eight NVIDIA Tesla V100 GPUs
each. For this work, we utilize up to 32 GPUs of BW-GPU4 and up to 64 GPUs of BW-GPU8.

In this chapter, we start by presenting the underlying methods for conducting and evaluating the
performance tests in Section 5.1. Afterwards, the different test systems are presented in Section 5.2.
The performance results are discussed in Section 5.3.

5.1 Methods

As stated before, we are interested in evaluating the performance of 2D-1D Slab Decomposition, 1D-
2D Slab Decomposition, and Pencil Decomposition, along with their variants Default and Realigned
for each particular test system. For Slab Decomposition, all five global redistribution methods are
tested. Since Pencil Decomposition requires two global redistribution phases, the implemented
methods provide a total of 25 combinations (when neglecting that Peer2Peer-Streams is identically
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to Peer2Peer-Sync for Realigned if CUDA-aware MPI is used). Instead of testing each of them,
the two global redistribution phases are evaluated separately by choosing Peer2Peer-Sync as the
fixed method for the other phase. Since both phases are independent, the remaining combinations
can easily be approximated with high accuracy. As described in Chapter 4, this work focuses
on real-to-complex forward transforms and complex-to-real inverse transforms. Both directions
are tested, and we utilize OpenMPI 4.1 [Sofa] where the tests are conducted with and without
CUDA-awareness. All benchmarks are performed using double precision and different input sizes
are considered: Starting from input size 1283, the sizes are increased by a factor of 2 in each
iteration, e.g., 1282 ×256 for the second iteration (as before, we use the notation 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧). The
maximum input size depends on the underlying test system and is therefore presented in Section 5.2
for each particular system. Each individual test is performed 20 times with additional 10 warm-up
rounds, which are excluded from the performance measurements. In total, over 550,000 test runs
are performed.

To validate that each variant and each global redistribution methods behaves correctly on the
particular test system, we perform additional validation tests. They follow the structure presented in
Section 2.6 and are performed in a separate test iteration, which is excluded from the performance
measurements as well. For this purpose, we coarsen the input sizes and conduct the validation tests
for the input sizes 1283, 2563, 5123, and 10243.

Finally, we note that our implementation provides an easily extendable framework for conducting
benchmarks, where the tests can be defined in JSON [Bra] and exemplary SLURM [Sch] scripts
are provided for the job-submission.1 Furthermore, our framework ensures GPU affinity by
automatically generating rankfiles for OpenMPI [Sofc].

5.2 Test Systems

Next, we introduce a general overview of the different test systems. We focus on their hardware
specification and refine relevant details on how the performance benchmarks are conducted.

PCSGS. Starting with the simplest test system, PCSGS is composed of four computing nodes
which are connected by Gigabit Ethernet. Each node is equipped with a single 18-core 3.00GHz
Intel i9-10980XE processor, 64GiB of DDR4 memory, and one NVIDIA Geforce RTX 3080 GPU
with 10GiB of GDDR6X video memory. The test system is able to compute distributed 3D-FFTs
up to input size 512 × 10242.

Argon. This test system is composed of two computing nodes which are connected by 10Gbit/s
Ethernet. Each node is equipped with two 12-core 2.10GHz Intel Xeon Silver 4116 processors and
191GiB of DDR4 memory. Furthermore, the nodes are equipped with similar GPUs: The first node
with two NVIDIA Tesla P100 GPUs and the second node with two NVIDIA Quadro GP100 GPUs,
each GPU having 16GiB of HBM2 memory. Each 12-core processor of a given node is connected
to a single GPU via PCIe, such that processes that perform operations on GPU0 or GPU1 should be

1https://github.com/eggersn/DistributedFFT/tree/master/jobs
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5.2 Test Systems

bound to the first or second processor respectively. In particular, the communication between the
two GPUs traverses the SMP interconnect. The test system is able to compute distributed 3D-FFTs
up to input size 10243.

Krypton. An overview of Krypton can be found in Figure 5.1. It consists of a single computing
node, which is equipped with two 20-core 2.30GHz IBM Power9 processors, 382GiB of DDR4
memory, and four NVIDIA Tesla V100 GPUs with 32GiB of HBM2 memory each. Most notably,
when compared to the previous two systems, Krypton utilizes NVLink 2.0 interconnections, where
a single interconnect provides a unidirectional bandwidth of 25GB/s. By using pairs of three
NVLinks, the bandwidth can be effectively tripled. It can be seen in Figure 5.1 that the four
GPUs are grouped into pairs of two, such that the corresponding processor and the two GPUs are
individually connected via NVLink. Therefore, when considering the exemplary data exchange of
GPU0 and GPU2, the connection has to traverse the SMP interconnect, similar to Argon.

NVLink

CPUs
0-19

CPUs
20-39

GPU0 GPU1 GPU2 GPU3

SMP-
Interconnect

Figure 5.1: Krypton: Overview of the Test System. The schematic visualizes the interconnections
of the available GPUs.

BW-GPU4. An overview of BW-GPU4 can be found in Figure 5.2. It is part of the bwUniCluster
2.0 and consists of 14 computing nodes, where each one is equipped with two 20-core 2.1GHz
Intel Xeon Gold 6230 processors, 382GiB of DDR4 memory, and four NVIDIA Tesla V100 GPUs
with 32GiB of HBM2 memory each. The four GPUs are grouped into pairs of two, such that the
two GPUs are connected by two NVLinks, resulting in a unidirectional bandwidth of 50GB/s. In
contrast to Krypton, the CPUs and GPUs are connected via PCIe. Furthermore, additional NVLinks
provide high bandwidth between GPU0 (GPU1) and GPU2 (GPU3). Finally, the different nodes of
BW-GPU4 are arranged in an Infiniband network (IB HDR 100), according to the fat-tree topology
[Lei85], with a tree height of two. To ensure low communication latencies, each node is equipped
with two Mellanox ConnectX-6 HDR100 Infiniband adapter cards (cf. mlx5_0 and mlx5_1 in
Figure 5.2). On BW-GPU4, we perform our benchmarks on 4, 8, 16, 24, and 32 GPUs. For each
number of GPUs, input sizes of up to 20483 are tested. For smaller numbers of utilized GPUs, the
input size is increased until the node runs out of memory. The performance of Slab Decomposition
is measured for MPI with and without CUDA-awareness. On the other hand, the performance of
Pencil Decomposition is solely measured for CUDA-aware MPI.
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PCIe
NVLink

CPUs
0-19

CPUs
20-39

mlx5_0 mlx5_1

GPU0 GPU1 GPU2 GPU3

SMP-
Interconnect

Figure 5.2: BW-GPU4: Overview of the Test System. The schematic visualizes the interconnections
of the available GPUs and the Infiniband adapter cards (mlx5_0 and mlx5_1) on a single node.

BW-GPU8. An overview of a single BW-GPU8 node can be found in Figure 5.3. It is part of
the bwUniCluster 2.0 and consists of 10 computing nodes, where each one is equipped with two
20-core 2.1GHz Intel Xeon Gold 6248 processors, 764GiB of DDR4 memory, and eight NVIDIA
Tesla V100 GPUs with 32GiB of HVM2 memory each. The GPUs are grouped in pairs of two,
where each pair is connected to a PCIe switch and a Mellanox ConnectX-6 HDR100 Infiniband
adapter card. All nodes are connected with Infiniband via a single switch. On BW-GPU8, we
perform our benchmarks on 8, 16, 32, 48, and 64 GPUs. For each number of GPUs, input sizes of
up to 20483 are tested. For smaller numbers of utilized GPUs, the input size is increased until the
node runs out of memory. The performance of Slab Decomposition is measured for MPI with and
without CUDA-awareness. On the other hand, the performance of Pencil Decomposition is solely
measured for CUDA-aware MPI.

PCIe
Switch

PCIe
Switch

PCIe
Switch

PCIe
Switch

CPUs
0-19

CPUs
20-39

mlx5_2mlx5_0mlx5_1 mlx5_3

GPU0

GPU1GPU2

GPU3 GPU4

GPU5 GPU6

GPU7

PCIe
NVLink
SMP-

Interconnect

Figure 5.3: BW-GPU8: Overview of the Test System. The schematic visualizes the interconnections
of the available GPUs and the Infiniband adapter cards (mlx5_0, . . ., mlx5_3) on a single node.
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5.3 Results

After providing a general overview of the performed tests (cf. Section 5.1) and the utilized test
systems (cf. Section 5.2), we present our results. The raw data of the benchmarks is also publicly
available, along with the resulting graphs for all performed benchmarks.2 We report the absolute and
relative runtime results, where the relative result is obtained by dividing the respective (total) runtime
by the minimal (total) runtime result of the given input size. Thus, the best performing option for a
given input size has the relative runtime value 1.0. The advantage of this representation is that, for
example, a relative runtime value of 2.5 for Peer2Peer-Sync and input size 5123 immediately states
that the best performing option for the same input size experiences a performance increase of 150%,
when compared to Peer2Peer-Sync.

We start in Section 5.3.1 by presenting the performance of the different decomposition methods and
their variants on the different test systems. On a more fine-grained level, the different methods for
the global redistributions are analyzed in Section 5.3.2, with respect to the underlying decomposition
method and the test system. Finally, the strong and weak scaling results are reviewed in Section
5.3.3.

5.3.1 Comparison of the Decomposition Methods

This section reviews the performance of Default and Realigned for each of the available decomposition
methods, i.e., 2D-1D Slab Decomposition, 1D-2D Slab Decomposition, and Pencil Decomposition
(cf. Chapter 4). The methods for conducting the performance tests are described in Section 5.1. For
solely evaluating the performance of the decomposition methods and their variants, the runtime
results of 20 iterations are averaged and the best performing global redistribution method is selected
for each considered input size. Thus, the presented results are generally grouped according to the
computed direction (i.e. forward or inverse transform), by whether MPI is used with or without
CUDA-awareness, and by the number of utilized GPUs.

PCSGS. Figure 5.4 visualizes the runtime results of PCSGS when computing the forward
transform with CUDA-aware MPI. In particular, the best performing decomposition method and
variant for a given input size can be found in Figure 5.4b having value 1.0. For Pencil Decomposition,
a processor grid of size 2 × 2 is considered. For PCSGS, global data redistribution is responsible
for more than 99% of the total runtime. Furthermore, the performance difference of computing the
forward or inverse transform, with or without CUDA-aware MPI is negligible. Therefore, we solely
consider a single case here and provide the full data in Appendix A.

It can be seen that Slab Decomposition dominates Pencil Decomposition in this setting and that
the individual variants do not have much influence on the runtime. Most notably, the runtime of
both Pencil Decomposition variants is for each input size roughly 1.3 times the runtime of the best
performing variant of Slab Decomposition. Since each GPU is located on a different node and the
point-to-point bandwidth is approximately the same for each pair of nodes, the simplified model of

2https://github.com/eggersn/DistributedFFT
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(a) Total Runtime
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Figure 5.4: PCSGS: Total and Relative Runtime of the Decomposition Methods. The graphs
visualize the results of computing the forward transform with CUDA-aware MPI. Figure (a) shows
the total runtime results of the decomposition methods and their variants. Additionally, 3D-FFT
denotes the runtime of performing the full three-dimensional FFT on a single GPU without a
distributed approach. Figure (b) visualizes the relative runtime results, where the result of each
variant and each input size is divided by the minimal result of the given input size (without
considering 3D-FFT).

Section 2.5.3 can be applied. In particular, when neglecting the latencies for large input sizes, the
runtime of pencil decomposition can be approximated by

𝑇𝑃
𝐶 = (𝑃2 − 1)
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where 𝑇𝑆
𝐶

denotes the runtime of slab decomposition for the fixed input size.

Argon. Figure 5.5 shows the runtime results of Argon for the forward and inverse transform and
for MPI with and without CUDA-awareness. For Slab Decomposition, it can be seen that the variants
perform similar for the forward and inverse transform. An exception to this rule can be found when
considering Realigned 1D-2D Slab Decomposition, which experiences a noticeable performance
increase for the inverse transform (e.g. compare Figure 5.5c and Figure 5.5d). This is mainly
caused by the fact that the forward and inverse transform of Default 2D-1D Slab Decomposition
has approximately the same runtime (i.e. ±0.2%), whereas the computation of the 2D-FFT in
yx-direction for Realigned 1D-2D Slab Decomposition is significantly faster for the inverse transform,
e.g., for input size 10243 the average runtime the 2D-FFT in yx-direction for the forward and inverse
transform are ∼177ms and ∼40ms respectively. Interestingly, it seems that this is not caused by
the idle wait time of Realigned for the forward transform (cf. Sections 4.2-4.4), since the same
phenomenon is also determined for MPI without CUDA-awareness.

In to following, we provide further insight why Pencil Decomposition achieves significantly better
results when using CUDA-aware MPI (cf. Figure 5.5a and Figure 5.5c): When reviewing the
performance of Pencil Decomposition in this setting, the essential difference to PCSGS is that Argon
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(a) Forward Transforms for MPI without CUDA-Awareness.
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(b) Inverse Transforms for MPI without CUDA-Awareness.
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(c) Forward Transforms for CUDA-Aware MPI.
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(d) Inverse Transforms for CUDA-Aware MPI.

Figure 5.5: Argon: Total and Relative Runtime of the Decomposition Methods. Figures (a)-(d)
show the results for the forward and inverse transforms, with and without CUDA-aware MPI. For the
runtime, 3D-FFT is used to denote the performance of computing the full three-dimensional FFT
on a single GPU without a distributed approach. The graphs on the right side visualize the relative
runtime results, where the result of each variant and each input size is divided by the minimal result
for the given input size (without considering 3D-FFT).
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has two GPUs per computing node. Thus, the first global redistribution of Pencil Decomposition
(cf. Section 4.4) can be executed on the same node, whereas only the second one requires
communication between both nodes. Therefore, Pencil Decomposition with CUDA-aware MPI is
able to avoid unnecessary device-to-host and host-to-device memory transfers in this scenario. For
our benchmarks, this results in a performance increase of ∼130% for large input sizes in the first
global redistribution phase, e.g., for Default Pencil Decomposition and input size 10243 the first
global redistribution phase endures 180ms and 424ms for MPI with and without CUDA-awareness
respectively. When considering the impact on the total runtime, this approximately results in a
performance increase of 10%, e.g., 3884ms and 4316ms for the same example. For the second
global redistribution phase of pencil decomposition or the single global redistribution of Slab
Decomposition, CUDA-aware MPI does not provide any benefits since the main bottleneck is the
connection via Ethernet and the intermediate results have to be buffered on the host either way.

Finally, it is interesting to note that the performance of some Slab Decomposition variants decreases
when using CUDA-aware MPI: While the runtime of Default 2D-1D Slab Decomposition and
Realigned 1D-2D Slab Decomposition is approximately the same (i.e. ±1%), the runtime of the
other two variants decreases by up to 8%. This is caused by the fact that MPI_Type is used in this
scenario, whose performance will be discussed in Section 5.3.2.

Krypton. The total and relative runtime results are displayed in Figure 5.6. As before the results are
categorized by whether the forward or inverse transform is computed and whether MPI is used with
or without CUDA-awareness. Similar to Argon, the runtime of the forward and inverse transform are
similar for most decomposition methods. The most notable exception to this is Realigned for both
2D-1D / 1D-2D Slab Decomposition: For CUDA-aware MPI, the inverse transform of Realigned
2D-1D Slab Decomposition experiences a performance increase of between 36% and 44% for input
sizes above 5122×1024 (cf. Figure 5.6c and Figure 5.6d). For Realigned 1D-2D Slab Decomposition
and CUDA-aware MPI, the performance increase is even more outstanding and is greater than 50%,
80%, and 100% for input sizes above 2563, 256 × 5122, and 512 × 10242 respectively. The reason
for the performance increase is, analogously to Argon, that the runtime of the inverse transform
for Realigned is reduced by a significant factor. For input size 10243, the comparison of forward
and inverse transform in computing the 1D- and 2D-FFTs is displayed in Table 5.1. Although the
durations for computing the 1D-FFTs for the Realigned Pencil Decomposition are also reduced for
the inverse transform, e.g., from 41.5ms to 21.2ms for the 1D-FFT in x-direction (or y-direction)
and input size 10243, the impact on the total runtime substantially smaller with up to 7%.

Forward Inverse Forward Inverse
zy-direction 16.0ms 16.3ms 90.8ms 46.9ms
x-direction 45.1ms 45.0ms 36.0ms 20.0ms

Default Realigned

(a) 2D-1D Slab Decomposition.

Forward Inverse Forward Inverse
z-direction 5.4ms 5.3ms 29.2ms 19.7ms
yx-direction 201.6ms 203.0ms 178.7ms 39.6ms

Default Realigned

(b) 1D-2D Slab Decomposition.

Table 5.1: Krypton: Duration of Computing the FFTs for Slab Decomposition. The results are
grouped by 2D-1D Slab Decomposition (cf. Table 5.1a) and 1D-2D Slab Decomposition (cf. Table
5.1b) and show the runtime for the individual 1D- and 2D-FFTs for the forward and inverse transform.
The runtime results are averaged for input size 10243 and are identical for MPI with and without
CUDA-awareness.
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(a) Forward Transforms for MPI without CUDA-Awareness.
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(b) Inverse Transforms for MPI without CUDA-Awareness.

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

102
4
3

0

100

101

102

Ti
m

e[
m

s]

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

102
4
3

1.0

1.5

2.0

2.5

Re
lat

ive

(c) Forward Transforms for CUDA-Aware MPI.
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(d) Inverse Transforms for CUDA-Aware MPI.

Figure 5.6: Krypton: Total and Relative Runtime of the Decomposition Methods. Figures (a)-(d)
show the results for the forward and inverse transforms, with and without CUDA-aware MPI. For the
runtime, 3D-FFT is used to denote the performance of computing the full three-dimensional FFT
on a single GPU without a distributed approach. The graphs on the right side visualize the relative
runtime results, where the result of each variant and each input size is divided by the minimal result
for the given input size (without considering 3D-FFT).
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For the second observation, it can be seen that the relative difference between Default 2D-1D Slab
Decomposition and the other variants of Slab Decomposition increases for the forward transform
when utilizing CUDA-aware MPI (cf. Figure 5.6a and Figure 5.6c). This is caused by the fact that,
due to the system architecture of Krypton (cf. Figure 5.1), the duration of the global redistribution
phase decreases considerable by a factor of more than five, whereas the duration of computing
the 1D- and 2D-FFTs is not influenced by using CUDA-aware MPI. In particular for input size
10243, the duration of the global redistribution for Default 2D-1D Slab Decomposition is 86ms and
474.1ms when using MPI with and without CUDA-awareness respectively. Therefore, a similar
reduction for the remaining Slab Decomposition variants results in a higher impact of the duration
for computing the 1D- and 2D-FFTs (cf. Table 5.1).

When reviewing the performance of Pencil Decomposition in this setting, it can be seen that
Realigned generally performs better than Default for small input sizes. This is mostly caused by
the impact of the computational overhead of the 1D-FFTs in y-direction for Default. As we have
seen in Section 4.4, Default requires �̂�𝑧/𝑃2 plans compared to one for Realigned. Furthermore,
it can be seen throughout Figure 5.6 that Default Pencil Decomposition experiences significant
performance hits when the input size is increased in x-direction. Whereas it is normal for the
duration of computing the 1D-FFTs in x-direction to increase, e.g. 4.2ms and 51.3ms for input sizes
512 × 10242 and 10243 respectively, the duration of computing the 1D-FFTs in y-direction also
experience a significant performance decrease, e.g., 13.0ms and 87.4ms for the same input sizes. A
likely cause for this is that the individual plans of the 1D-FFTs in y-direction lie non-contiguous in
memory with batch size 𝑁𝑥/𝑃1.

Finally, it can be seen that 2D-1D Slab Decomposition generally outperforms both Pencil Decompo-
sition variants. In particular, when reviewing the influences on the total runtime, the duration for the
global redistribution phases of Pencil Decomposition are consistently larger than the global redistri-
bution of 2D-1D Slab Decomposition by a factor of approximately 1.2. When using CUDA-aware
MPI, the impact of this effect decreases. This is beneficial for Realigned Pencil Decomposition,
when considering small input sizes and CUDA-aware MPI, since its individual FFTs are computed
similarly efficient as for 2D-1D Slab Decomposition (cf. Figure 5.6c). Due to the same reasons we
have discussed earlier, this does not apply for Default Pencil Decomposition.

BW-GPU4. For this test system, the results are grouped by the number of utilized GPUs. All
benchmarks are performed using CUDA-aware MPI. Figure 5.7 shows the total and relative runtime
results for the forward transform. For the sake of readability, the results for the inverse transform
can be found in Appendix A. In contrast to the previous test systems, we utilize up to 32 GPUs
for BW-GPU4. This allows to a higher flexibility when choosing the processor grid for pencil
decomposition. Using the same notation as before, 𝑃1 × 𝑃2 describes the processor grid for pencil
decomposition. In general, we select the processor grid size for the benchmarks of BW-GPU4 such
that 𝑃2 ∈ {2, 4, 8}: For 𝑃2 = 2, we take advantage of the paired NVLinks between GPU0 and GPU1
(cf. Figure 5.2) and perform the first global redistribution phase locally on the same processor. For
𝑃2 = 4, all GPUs of a single node are used in the first global redistribution phase. Analogously for
𝑃2 = 8, all GPUs of two nodes are used. Finally, the benchmarks are performed for input sizes
ranging from 1283 to 20483.
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The first obvious observation is that, due to the additional memory requirements of Pencil
Decomposition (cf. Section 4.4), it can be seen throughout the results, that Slab Decomposition is
sometimes able to compute larger input sizes (e.g. 10242 × 2048 in Figure 5.7a).

The second notable observation is that the difference between the distributed decomposition methods
and 3D-FFT, which denotes the total runtime of the full three-dimensional FFT on a single GPU,
diminishes for increasing numbers of utilized GPUs. Furthermore, it can be seen in Figure 5.7a that
both variants of Pencil Decomposition perform similar to 3D-FFT. This is caused by the fact, that the
2× 2 processor grid for 𝑃 = 4 is chosen such that GPU0 communicates with GPU1 and GPU2 in the
first and second global redistribution phase respectively. Therefore, the NVLink interconnections of
these GPUs can be fully utilized (cf. Figure 5.2). When considering 𝑃 > 4, this advantage vanishes
for the second global redistribution phase, since the processes have to communicate with GPUs of
physically different nodes.

For the third observation, it can be seen throughout Figure 5.7 that a processor grid of size 𝑃/2 × 2
provides the best performance for Pencil Decomposition. The reason for this is simply that the
duration of the first global redistribution phase is only responsible for a small fraction of the total
runtime, e.g., ∼3% for 𝑃 = 32 and Default Pencil Decomposition. Therefore, Pencil Decomposition
only has to communicate with 𝑃/2 processes in the second global redistribution phase. This is
significantly faster for smaller input sizes, e.g., a performance increase of >23% for 𝑃 = 32 and input
sizes smaller than 256 × 5122, when compared to Default 2D-1D Slab Decomposition. For larger
input sizes, we have already seen in the theoretical comparison of slab and pencil decomposition
(cf. Section 2.5.3) that this difference decreases. Furthermore, the theoretical comparison can be
used to explain why all processor grids of Pencil Decomposition perform better for small input sizes
and large numbers of GPUs (cf. Figures 5.7d, 5.7e).
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(a) Absolute and Relative Results for 𝑃 = 4.
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(b) Absolute and Relative Results for 𝑃 = 8.
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(c) Absolute and Relative Results for 𝑃 = 16.
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(d) Absolute and Relative Results for 𝑃 = 24.
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(e) Absolute and Relative Results for 𝑃 = 32.

Figure 5.7: BW-GPU4: Total and Relative Runtime of the Decomposition Methods. Figures
(a)-(e) show the results for the 4, 8, 16, 24, and 32 processes. Solely the forward transform with
CUDA-aware MPI is considered. For the runtime, 3D-FFT is used to denote the performance of
computing the full three-dimensional FFT on a single GPU without a distributed approach. The
graphs on the right side visualize the relative runtime results, where the result of each variant
and each input size is divided by the minimal result for the given input size (without considering
3D-FFT). For the sake of readability, only one legend is provided where 𝑃2 unambiguously identifies
the processor grid for Pencil Decomposition (i.e. with 𝑃1 = 𝑃/𝑃2).
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5.3 Results

When comparing the performance of the individual decomposition methods for the forward and
inverse transform, we found that Realigned performs significantly better for both inverse Slab
Decomposition methods. Since this observation was already made for Krypton, we will not go into
detail any further. Again, we refer the interested reader to Appendix A for the runtime results for
the inverse transforms.

Finally, we note that for reasons unclear to us, some processor grids of Pencil Decomposition
experience a significant performance hit for 𝑃 = 8 with input sizes larger than 5122 × 1024 (cf.
Figure 5.7b) and 𝑃 = 16 with input sizes larger than 512 × 10242 (cf. Figure 5.7c). In both
cases, network congestion in the second global redistribution seems responsible for the runtime
increase, e.g., for Realigned Pencil Decomposition and processor grid 4 × 2 its duration is 24.8ms
and 144ms for input size 5123 and 5122 × 1024 respectively. It seems that this mainly affects
processor grids 𝑃1 × 𝑃2 with small values for 𝑃1. Interestingly, Default Pencil Decomposition with
processor grid 4 × 2 is not severely afflicted by this performance hit and still outperforms Slab
Decomposition (cf. Figure 5.7b). Here, we found that this is caused by the utilized communication
method Peer2Peer-MPI_Type, whose performance will be discussed further in Section 5.3.2.

BW-GPU8. The relative runtime results for this test system are similar to BW-GPU4. Therefore,
we solely consider the results of the forward transform with CUDA-aware MPI for 64 utilized GPUs
in Figure 5.8. The remaining results of the forward and inverse transform for 8, 16, 32, 48, and 64
GPUs can be found in Appendix A. For Pencil Decomposition, we consider the processor grids
8 × 8 and 16 × 4. Analogous to BW-GPU4, the processor grid 16 × 4 is aligned such that the GPUs
communicating in the first global redistribution phase are assigned to the same processor, e.g.,
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Slab [2D-1D, Default]

Slab [2D-1D, Realigned]

Slab [1D-2D, Default]

Slab [1D-2D, Realigned]

Pencil [Default, P2 = 4]

Pencil [Realigned, P2 = 4]

Pencil [Default, P2 = 8]

Pencil [Realigned, P2 = 8]

3D-FFT

Figure 5.8: BW-GPU8 Forward 𝑃 = 64: Total and Relative Runtime of the Decomposition Methods.
The figure shows the results for 64 GPUs. Solely the forward transform with CUDA-aware MPI
is considered. For the runtime, 3D-FFT is used to denote the performance of computing the full
three-dimensional FFT on a single GPU without a distributed approach. The graph on the right side
visualize the relative runtime results, where the result of each variant and each input size is divided
by the minimal result for the given input size (without considering 3D-FFT).
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GPU0 - GPU3 of Figure 5.3. This is beneficial since all involved GPUs are pair-wise connected via
NVLink. For the processor grid 8 × 8, the processor grid is aligned such that all GPUs of a node
are involved in the first global redistribution phase.

In Figure 5.8, there are two additional observations that stand out: The first one is that for small
input sizes (i.e. smaller than 128 × 2562) it can be seen that the more evenly spread processor
grid 8 × 8 slightly outperforms the processor grid 16 × 4. When reviewing the durations of both
global redistribution phases, we find a duration of 0.07ms and 0.53ms for the first phase with input
size 128 × 2562 and the processor grid 16 × 4 and 8 × 8, respectively. However, for the second
phase we have respective durations of 1.49ms and 0.79ms, where the latencies of the connection
establishment with 16 GPUs is non-negligible.

For the second observation, we explore a potential cause for the spike of the relative results of Slab
Decomposition at input size 128 × 2562: For message sizes smaller than 12KB, OpenMPI makes
use of the Eager Protocol, where the message is directly sent to the endpoint [Sofb]. For larger
message sizes, OpenMPI uses the RDMA Pipeline Protocol, where only a small fragment of the
data is sent before waiting for the corresponding MPI receive [WSB+06]. Applying this to our
use-case, the eager protocol is solely used for Slab Decomposition with 𝑃 = 64 and input sizes
smaller than 1282 × 256 or with 𝑃 = 48 and input size 1283. Therefore, Slab Decomposition could
experience increased latencies for input sizes larger than 128 × 2562 in Figure 5.8.

5.3.2 Comparison of the Global Redistribution Methods

In Section 5.3.1, we compared the total and relative runtime of the decomposition methods 2D-1D
Slab Decomposition, 1D-2D Slab Decomposition, and Pencil Decomposition, along with their
variants Default and Realigned (cf. Sections 4.2-4.4). For the comparison of their runtime, we
selected the best performing global redistribution method for each particular input size. Therefore,
it remains open to discuss the performance of the implemented global redistribution method (cf.
Section 4.5), with respect to the underlying variant, the decomposition method, and the utilized test
system. For this, we use Peer2Peer-Sync as a baseline and solely consider cases where different
global redistribution methods perform significantly better. Instead of categorizing the observations
by the utilized test system, we list our observations and aim to generalize their requirements.

For the sake of full transparency, we note that the results of Peer2Peer-MPI_Type are excluded for
the forward transform of Default 2D-1D Slab Decomposition on BW-GPU4 and BW-GPU8, due to
an implementation fault which causes numerical inconsistencies. Since this scenario shows great
similarities to the inverse transform of Realigned 1D-2D Slab Decomposition, the performance of
Peer2Peer-MPI_Type can easily be approximated where necessary.

1. Observation (Peer2Peer-Streams). Starting with the most general observation, we find that
Peer2Peer-Streams often outperforms the other global redistribution methods if, at least, the
following three requirements are satisfied:

i) thread-safe MPI without CUDA-awareness is used,

ii) the input sizes are larger than a particular threshold, and

iii) the number of communicating GPUs is limited.
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5.3 Results

For us, the threshold of requirement ii) is often between 128 × 2562 and 2563. Furthermore, the
limit of utilized GPUs for requirement iii) is used for BW-GPU8, where the limit is set to 32 GPUs
(for 48 and 64 GPUs, All2All-Sync is more preferable). When considering CUDA-aware MPI, we
have seen in Section 4.5 that Peer2Peer-Streams is in some cases identical to Peer2Peer-Sync, e.g.,
for forward transforms when using Realigned. In cases where Peer2Peer-Streams is applicable, the
following observations apply for CUDA-aware MPI as well, only that the performance differences
are often less preeminent.

Figures 5.9a, 5.9b provide exemplary scenarios in which the use of Peer2Peer-Streams significantly
increases the performance of the underlying decomposition method. In contrast to this, Figures 5.9c,
5.9d visualize two scenarios, in which Peer2Peer-Streams either performs significantly worse or does
not provide a worthwhile performance increase. When reviewing the performance measurements in
detail, we find that Peer2Peer-Streams starts waiting for incoming messages remarkably fast, e.g.,
for the scenario depicted in Figure 5.9a and input size 20483, Peer2Peer-Streams starts waiting
after 159.0ms whereas Peer2Peer-Sync only starts waiting after 485.4ms. This is caused by the
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(a) BW-GPU8: Forward Realigned 2D-1D Slab
Decomposition for 32 GPUs
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(b) BW-GPU4: Forward Default 1D-2D Slab De-
composition for 24 GPUs
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(c) Krypton: Forward Realigned 2D-1D Slab De-
composition
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(d) PCSGS: Forward Default 1D-2D Slab Decom-
position

Figure 5.9: 1. Observation: Performance of Peer2Peer-Streams. Figures (a)-(d) show the relative
runtime results (cf. Section 5.3.1) for four exemplary decomposition methods. In each scenario,
MPI without CUDA-awareness is considered. Each graph visualizes the averaged results (20
iterations and 𝑃 processes), along with the 99% confidence interval of the mean value (using
Student’s t-distribution).

87



5 Evaluation

fact, that Peer2Peer-Streams does not synchronize with the device until all intermediate results are
received (cf. Section 4.5). While this characteristic is also present for PCSGS in Figure 5.9d, here,
Peer2Peer-Streams also shows a high deviation between minimum and maximum runtime, e.g.,
when considering the input size 512 × 10242 Peer2Peer-Streams shows a deviation of 517.6ms,
compared to 200.7ms for Peer2Peer-Sync. Although this is not a problem for Krypton (cf. Figure
5.9c), it can be seen that, while Peer2Peer-Streams offers a good performance for input sizes larger
than 2562 × 512, the difference between Peer2Peer-Streams and Peer2Peer-Sync is negligible.

2. Observation (All2All-Sync). We found that All2All-Sync generally performs well for large
numbers of utilized GPUs. Figure 5.10 highlights scenarios in which this is the case. The most
notable difference was found for BW-GPU8 when utilizing 64 GPUs (cf. Figures 5.10a, 5.10b).
Here, the other global redistribution methods show a significant performance increase for input sizes
between 128 × 2562 and 5123. This is caused by a high deviation between minimum and maximum
duration of the other global redistribution, e.g., for Figure 5.10a and input size 128 × 2562, the
minimum and maximum duration for Peer2Peer-Sync is 14.6ms and 71.0ms respectively, compared
to the respective durations of 4.58ms and 4.67ms for All2All-Sync. When using MPI without
CUDA-awareness, the margin between All2All-Sync and the remaining global redistribution methods
is often even more amplified (cf. Figure 5.10b).
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(a) BW-GPU8: Forward Realigned 1D-2D Slab
Decomposition for 64 GPUs and MPI with
CUDA-awareness
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(b) BW-GPU8: Forward Realigned 1D-2D Slab
Decomposition for 64 GPUs and MPI without
CUDA-awareness
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(c) BW-GPU4: Forward Default Pencil Decom-
position First Global Redistribution for 4 × 8
GPUs and MPI with CUDA-awareness
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(d) BW-GPU4: Forward Default Pencil Decompo-
sition Second Global Redistribution for 16 × 2
GPUs and MPI with CUDA-awareness
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(e) BW-GPU4: Forward Default Pencil Decom-
position First Global Redistribution for 8 × 4
GPUs and MPI with CUDA-awareness
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(f) BW-GPU4: Forward Default Pencil Decompo-
sition Second Global Redistribution for 3 × 8
GPUs and MPI with CUDA-awareness

Figure 5.10: 2. Observation: Performance of All2All-Sync. Figures (a)-(f) show the relative
runtime results (cf. Section 5.3.1) for six exemplary decomposition methods. Each graph visualizes
the averaged results (20 iterations and 𝑃 processes), along with the 99% confidence interval of
the mean value (using Student’s t-distribution). For Figures 5.10c, 5.10e, and 5.10f, MPI_Type is
excluded since it performs significantly worse (see 3. Observation for details).

Since our previous examples solely reviewed the performance of Slab Decomposition, we note
that All2All-Sync also provides good performance results for Pencil Decomposition for the first and
second global redistribution if the respective parameters 𝑃2 and 𝑃1 are sufficiently large. The
relative results of exemplary scenarios where this observation applies are depicted in Figure 5.10c
and Figure 5.10d. Here, it can be seen that All2All-Sync provides the most notable performance
difference for small input sizes. In contrast to this, Figure 5.10e and Figure 5.10f visualize the
relative results of exemplary scenarios where 𝑃2 and 𝑃1 are rather small and Peer2Peer-Streams or
Peer2Peer-Sync are more preferable methods.

3. Observation (Peer2Peer-MPI_Type). When using MPI without CUDA-awarness, we found
that Peer2Peer-MPI_Type rarely provides significant advantages over Peer2Peer-Sync. In particular,
when invoking the more expensive CUDA operations for device-to-host or host-to-device memory
transfers, the difference between cudaMemcpy and cudaMemcpy2D often seem negligible for the packing
and unpacking phase.

When reviewing the performance of Peer2Peer-MPI_Type for CUDA-aware MPI, we observe
that the positioning of the partition in memory has an enormous impact on the runtime. By
identifying an individual partition as a batch of slices and categorizing them as 1D-partitions, 2D-
partitions, and 3D-partitions (cf. Section 4.1), we found that Peer2Peer-MPI_Type, and analogously
All2All-MPI_Type, generally does not perform well if either the sent or the received partitions are
one-dimensional. In particular, this is the case for the forward and inverse transforms when using
MPI_Type for Realigned 2D-1D Slab Decomposition, Default 1D-2D Slab Decomposition, the first
global redistribution phase of Default Pencil Decomposition, or for either global redistribution phase
of Realigned Pencil Decomposition. As an example, Figure 5.11a visualizes the performance of
MPI_Type for Realigned 2D-1D Slab Decomposition on Argon. To further emphasize this point,
the relative distance for each input size is amplified by a factor of ∼10, when reviewing the same
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(a) Argon: Forward Realigned 2D-1D Slab De-
composition

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

102
4
3

1.0

1.1

1.2

1.3

Re
lat

ive

Peer2Peer-Sync
Peer2Peer-Streams
Peer2Peer-MPI_Type
All2All-Sync
All2All-MPI_Type

(b) Argon: Forward Default 2D-1D Slab Decom-
position
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(c) BW-GPU4: Forward Default Pencil Decompo-
sition Second Global Redistribution for 4 × 2
GPUs
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(d) BW-GPU4: Forward Default Pencil Decompo-
sition Second Global Redistribution for 4 × 4
GPUs

Figure 5.11: 3. Observation: Performance of Peer2Peer-MPI_Type. Figures (a)-(d) show the
relative runtime results (cf. Section 5.3.1) for four exemplary decomposition methods. Each graph
visualizes the averaged results (20 iterations and 𝑃 processes) when using CUDA-aware MPI, along
with the 99% confidence interval of the mean value (using Student’s t-distribution).

decomposition method on BW-GPU8 for 16 GPUs. Interestingly, it can also be seen in Figure 5.11a,
that the relative distance between MPI_Type and Peer2Peer-Sync decreases dramatically when 𝑁𝑥

is increased. This is simply caused by the fact, that the received 1D-partitions are composed of
one-dimensional slices that lie contiguous in x-direction (cf. Section 4.2).

In case both sent and received partitions are two- or three-dimensional, Peer2Peer-MPI_Type is
often able to provide competing performance to Peer2Peer-Sync. Exemplary scenarios for this can
be found in Figures 5.11b-5.11d. Most notably, Peer2Peer-MPI_Type outperforms the remaining
global redistribution methods on Argon (cf. Figure 5.11b), where both nodes are connected
via 10Gbit/s Ethernet, and on BW-GPU4 for the second global redistribution of Default Pencil
Decomposition on a 4 × 2 processor grid (cf. Figure 5.11c). For Argon, we found that the time
difference between the first received message for Peer2Peer-MPI_Type and Peer2Peer-Sync is the
sole cause for the performance difference, e.g., for input size 5122×1024 the first partition is received
after 952.15ms and 906.68ms on average when using Peer2Peer-Sync and Peer2Peer-MPI_Type
respectively, which has to most significant impact on the respective total runtime values 974.56ms
and 924.32ms. For BW-GPU4, the global redistribution methods without MPI_Type experience
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a significant performance hit, e.g., the averaged total runtime of Peer2Peer-Sync is 32.89ms and
157.38ms for input size 5123 and 5122 × 1024 respectively. In contrast to this, Peer2Peer-MPI_Type
shows an expected increase in its total runtime by a factor of ∼2, i.e., respective runtimes of 44.26ms
and 87.25ms. Similar to Section 5.3.1, these observations could indicate network congestion.

Finally, the correlation between the performance of MPI_Type and the size of the batched slices can
be further explored by analyzing the duration of the second global redistribution phase of Figure
5.11c and Figure 5.11d. In particular, we have already seen that the transmitted partitions are of
size

𝑁𝑥

𝑃1
×

(
𝑁𝑦

𝑃1
× �̂�𝑧

𝑃2

)
,

where the individual slices are two-dimensional (as indicated by the brackets). Thus, it is easy to see
that the size of the transmitted data during the second global redistribution is identical for processor
grid 4 × 2 with input size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 (cf. Figure 5.11c) and processor grid 4 × 4 with input size
2𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 (cf. Figure 5.11d). The sole difference of both processor grids is therefore that grid
4 × 2 has to send fewer and larger two-dimensional slices to the other processes. In particular, it is
important to note that 𝑃1 is identical for both processor grids, which is essential when comparing
the duration of the second global redistribution since each process has to communicate with 𝑃1 − 1
other processes. The sampling rate of our performed benchmarks therefore allows the comparison
for 2𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 512 and 2𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 1024: For the former, the duration is 20.49ms
and 21.65ms for the processor grid 4 × 2 and 4 × 4 respectively. For the latter, the respective
durations are 160.74ms and 166.51ms. Therefore, it is slightly beneficial to prefer 2D-partitions
that contain fewer and larger two-dimensional slices.

4. Observation (All2All-MPI_Type). For the final observation, we found that All2All-MPI_Type
shares little of the key properties of All2All-Sync (cf. Figure 5.10) and generally performs worse
than Peer2Peer-MPI_Type for our test systems (cf. Figure 5.11).

5.3.3 Strong and Weak Scaling Results

Separately from the main results presented in Section 5.3.1 and Section 5.3.2, this section provides
the strong and weak scaling results for Default 2D-1D Slab Decomposition and Default Pencil
Decomposition. Since the number of utilizes GPUs was limited to 64 on BW-GPU8, these scaling
results should only be used to obtain an additional overview of the behavior of both decomposition
methods.

The results are visualized in Table 5.2. For Default Pencil Decomposition, the best performing
processor grid 𝑃/4× 4 is selected. It can be seen that for input sizes larger than 512× 10242, Default
2D-1D Slab Decomposition outperforms 3D-FFT, where the full forward transform is computed
on a single GPU. Furthermore, the use of multiple GPUs obviously allows the computation of
three-dimensional FFTs with larger input sizes. For Default Pencil Decomposition, this effect arises
even earlier, where 3D-FFT is outperformed for 16 × 4 GPUs for input sizes larger than 256 × 5122.
Additionally, it can be seen that its performance with 12 × 4 GPUs is nearly identical to 3D-FFT.
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3D-FFT 8 16 32 64 48
1283 0.17 1.00 1.24 1.77 1.87 1.49

1282 × 256 0.30 1.83 1.47 2.29 1.88 2.38
128 × 2562 0.58 3.31 2.30 2.86 5.97 3.62

2563 1.16 6.23 4.51 3.15 5.87 4.50
2562 × 512 2.24 11.77 7.89 4.88 8.34 5.03
256 × 5122 5.07 23.21 14.81 9.35 9.74 6.98

5123 10.41 45.75 28.36 16.70 15.80 12.57
5122 × 1024 20.84 90.78 54.70 31.08 22.24 22.61
512 × 10242 37.55 177.99 112.27 59.58 36.52 41.12

10243 75.62 356.53 214.78 116.18 66.20 78.39
10242 × 2048 — 715.68 440.59 230.96 124.36 153.85
1024 × 20482 — 1400.58 951.19 458.80 241.11 305.67

20483 — — 1939.08 943.60 477.89 611.80

Utilized GPUs

(a) Default 2D-1D Slab Decomposition

3D-FFT 2 × 4 4 × 4 8 × 4 16 × 4 12 × 4
1283 0.17 0.29 0.58 0.88 1.11 1.10

1282 × 256 0.30 0.44 0.97 0.89 1.38 1.37
128 × 2562 0.58 0.66 1.53 1.27 1.74 1.45

2563 1.16 1.27 2.62 2.33 1.85 1.97
2562 × 512 2.24 2.78 4.94 4.09 2.73 3.08
256 × 5122 5.07 5.71 9.39 7.34 4.69 5.42

5123 10.41 11.61 20.07 13.61 8.15 10.20
5122 × 1024 20.84 23.38 35.50 26.18 15.15 19.78
512 × 10242 37.55 47.92 71.07 51.63 28.92 38.57

10243 75.62 95.54 205.70 102.37 56.66 76.12
10242 × 2048 — 190.84 368.09 203.25 111.17 151.41
1024 × 20482 — — 742.99 406.20 220.02 300.58

20483 — — 1637.69 814.87 442.34 603.36

Processor Grid

(b) Default Pencil Decomposition for Processor Grids 𝑃/4 × 4.

Table 5.2: Strong and Weak Scaling Results on BW-GPU8. The runtime results (in milliseconds)
are presented for the forward transform of Default 2D-1D Slab Decomposition (cf. Table 5.2a) and
Default Pencil Decomposition (cf. Table 5.2b), when utilizing CUDA-aware MPI. As before, the
best performing global redistribution method is chosen for each entry (cf. Section 5.3.1). The
strong scaling results are displayed in the rows and the weak scaling results in the diagonals. For
reference, 3D-FFT denotes the results for performing the complete three-dimensional FFT on a
single GPU, without using any distributed approach. Furthermore, the results for 48 GPUs are also
included for the sake of completeness. To avoid confusion when assessing the weak scaling results,
the runtime results of 48 GPUs are displayed separately.
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Both decomposition methods generally indicate good strong and weak scaling results for large input
sizes and 𝑃 ≥ 16. Since each node of BW-GPU8 is connected via Infiniband, Default 2D-1D Slab
Decomposition even shows improvements when utilizing two computing nodes (i.e. 16 GPUs). In
contrast to this, Default Pencil Decomposition shows performance degradation when switching from
2×4 to 4×4 as the underlying processor grid. As discussed before, this is caused by the fact that the
processor grid 2× 4 is able to fully utilize the NVLink interconnections on a single computing node.
Furthermore, Table 5.2b highlights an additional performance hit for input size 10243 and the 4 × 4
processor grid. The reason for this seems to be twofold: On the one hand, there are indications for a
possible network congestion, similar to our observations of Pencil Decomposition on BW-GPU4
with 𝑃 ∈ {8, 16} (cf. Section 5.3.1). On the other hand, Default Pencil Decomposition also shows
significant performance hits if the input size is increased in x-direction. This phenomenon was
already explored for Krypton in Section 5.3.1.
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6 Conclusion

In this work, we present and benchmark multiple realizations for computing the Fast Fourier
Transform of real-valued, three-dimensional input data on distributed GPU systems. For this
purpose, we use slab decomposition and pencil decomposition of the global input data. Since both
approaches require global communication between the processes, which has a significant impact
on the total runtime, this work also focuses on the available communication strategies and their
performance on different test systems. Our GPU library utilizes cuFFT for computing the individual
FFTs, along with MPI for process communication.

The fundamental decomposition methods of our implementation are 2D-1D Slab Decomposition,
1D-2D Slab Decomposition, and Pencil Decomposition, whose details are presented and discussed
in the respective Sections 4.2-4.4. Furthermore, we differentiate between the variants Default and
Realigned, where we propose the latter to take advantage of the fact that cuFFT allows differing
input and output data alignments. Both variants are applicable for each underlying decomposition
method and are therefore presented in the corresponding Sections 4.2-4.4. Most notably, we
found that Realigned allows a more efficient computation of the 1D-FFTs in y-direction for Pencil
Decomposition and requires less memory when utilizing CUDA-aware MPI. Furthermore, Realigned
provides additional advantages for 1D-2D Slab Decomposition, by avoiding the need of packing
1D-partitions in the global redistribution phase. On the other hand, we saw that Realigned requires
additional synchronization when computing the forward transform to avoid overwriting the content
of the send-buffer.

In Section 4.5, we presented multiple options to realize the global communication between the
participating processes: Peer2Peer-Sync, Peer2Peer-Streams, Peer2Peer-MPI_Type, All2All-Sync,
and All2All-MPI_Type. Here, we differentiated between Peer2Peer communication that utilizes
non-blocking point-to-point communication mechanisms of MPI, and All2All which uses parts
of MPIs collective communication mechanisms. Furthermore, we propose Peer2Peer-Streams
which uses CUDA-streams to notify a second thread to start the non-blocking send operation, and
adopt MPI_Type for GPUs from the previous work of Dalcin et al. [DMK19]. Most notably, the
use of MPI_Type with CUDA-aware MPI entails significant benefits in that additional send- and
receive-buffers are no longer required, which reduces the additional memory requirements by a
factor of 2 for Slab Decomposition and by a factor of 3 for Pencil Decomposition, when used for
both global redistribution phases.

We present our performance results in Chapter 5. To provide insight in the behavior of the
decomposition methods, their variants, and the utilized global redistribution method in different
computing environments, we perform the benchmarks on PCSGS, Argon, Krypton, BW-GPU4,
and BW-GPU8. For this purpose, our implementation provides an easily extendable framework for
defining multiple testcases in JSON.
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Starting with the comparison of the decomposition methods and their variants (cf. Section 5.3.1), we
found that Default 2D-1D Slab Decomposition generally performs best among the Slab Decomposition
variants. The sole exception to this rule seems to be Realigned 1D-2D Slab Decomposition, which
provides competing runtime results when the inverse transform is computed. With regard to
the performance of Pencil Decomposition, we found that the underlying processor grid entails a
significant performance increase for small numbers of GPUs, when the grid is specifically set up to
utilize NVLink interconnections. Since our study is limited to 64 GPUs, the optimal processor
grid for large numbers of GPUs remains uncertain. Here, the theoretical model indicates that
a more evenly spread processor grid with 𝑃1 ≈ 𝑃2 could provide better performance results for
small input sizes. When comparing the overall performance of Slab Decomposition and Pencil
Decomposition we found similar results. In particular, Pencil Decomposition either dominates or
provides competing performance in our benchmarks if the duration of one global redistribution
phase is negligible. For us, this was achieved when Pencil Decomposition fully utilizes the NVLink
interconnections in the first global redistribution phase on BW-GPU4 and BW-GPU8.

Finally, we conduct extensive performance measurements of the global redistribution methods on
each test system. Using Peer2Peer-Sync as the baseline, we found multiple scenarios in which other
methods perform significantly better (cf. Section 5.3.2): For the first observation, we found that
Peer2Peer-Streams often outperforms the remaining methods when MPI without CUDA-awareness
is considered for input sizes above a certain threshold (for us between 128 × 2562 and 2563). On
BW-GPU4 and BW-GPU8 the performance increase, when using Peer2Peer-Streams, is often
between 10% and 20%. For the second observation, our benchmarks show that All2All-Sync should
be considered if many processes are involved in the particular global redistribution phase. The
most notable difference was measured when utilizing 64 GPUs of BW-GPU8. Finally, for the third
observation, we found that MPI_Type generally does not perform well if 1D-partitions are sent or
received. Otherwise, Peer2Peer-MPI_Type is often able to provide competing performance and
even outperforms the remaining global redistribution methods in some scenarios where indications
of network congestion are determined.

As before, we emphasize that this work is by no means exhaustive: For example, it would be
interesting to include the utilized decomposition method of OpenFFT [DO14] in the comparison
of slab decomposition and pencil decomposition. To provide further insight, it would be also
interesting to analyze the impact of the utilized MPI implementation on the performance of the
global redistribution methods. There are also many additional optimizations for computing the
distributed 3D-FFTs, that are not covered by this work: For example, further refinements for
Peer2Peer communication could be considered that include additional information about the
network topology. Another possible optimization could be to further subdivide the input partition,
such that parts of the FFT computation can be performed on CPU, allowing for an additional overlap
of process communication and computation.
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A Appendix

PCSGS: Decomposition Methods. Figure A.1 shows the comparison between the different
decomposition methods when using MPI without CUDA-awareness.

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

0

100

101

102

103

104

Ti
m

e[
m

s]

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

1.0

1.1

1.2

1.3

Re
lat

ive

Slab [2D-1D, Default]
Slab [2D-1D, Realigned]
Slab [1D-2D, Default]
Slab [1D-2D, Realigned]
Pencil [Default, P2 = 2]
Pencil [Realigned, P2 = 2]
3D-FFT

(a) Forward Transforms for MPI without CUDA-Awareness.
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(b) Inverse Transforms for MPI without CUDA-Awareness.
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(c) Forward Transforms for CUDA-Aware MPI.
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(d) Inverse Transforms for CUDA-Aware MPI.

Figure A.1: PCSGS: Total and Relative Runtime of the Decomposition Methods. Figures (a)-(d)
show the results for the forward and inverse transforms, with and without CUDA-aware MPI. For
the runtime, Reference is used to denote the performance of computing the full 3D-FFT on a single
GPU without a distributed approach. The graphs on the right side visualize the relative runtime
results, where the runtime of each variant and each input size is divided by the minimal result of the
given input size (without considering Reference).

BW-GPU4: Decomposition Methods. Figure A.2 shows the comparison between the different
decomposition methods for the inverse transform. The results are grouped by the number of utilized
GPUs, and each benchmark is performed with CUDA-aware MPI. We note that the results are
incomplete for pencil decomposition with a processor grid of 12 × 2.
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(a) Total and Relative Results for 𝑃 = 4.

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

102
4
3

102
4
2 × 204

8

102
4×

204
8
2

0

100

101

102

103

Ti
m

e[
m

s]

128
3

128
2 × 256

128
× 256

2
256
3

256
2 × 512

256
× 512

2
512
3

512
2 × 102

4

512
× 102

4
2

102
4
3

102
4
2 × 204

8

102
4×

204
8
2

1.0

1.5

2.0

2.5

3.0

Re
lat

ive

(b) Total and Relative Results for 𝑃 = 8.
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(c) Total and Relative Results for 𝑃 = 16.
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(d) Total and Relative Results for 𝑃 = 24.
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(e) Total and Relative Results for 𝑃 = 32.

Figure A.2: BW-GPU4 Inverse: Total and Relative Runtime of the Decomposition Methods. Figures
(a)-(e) show the results for the 4, 8, 16, 24, and 32 GPUs. Solely the inverse transform with
CUDA-aware MPI is considered. For the runtime, Reference is used to denote the performance of
computing the full 3D-FFT on a single GPU without a distributed approach. The graphs on the
right side visualize the relative runtime results, where the result of each variant and each input size
is divided by the minimal result for the given input size (without considering Reference).
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BW-GPU8: Decomposition Methods. Figure A.3 and Figure A.4 show the comparison between
the different decomposition methods for the forward and inverse transform respectively. The results
are grouped by the number of utilized GPUs, and each benchmark is performed with CUDA-aware
MPI.
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(a) Total and Relative Results for 𝑃 = 8.
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(b) Total and Relative Results for 𝑃 = 16.
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(c) Total and Relative Results for 𝑃 = 32.
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(d) Total and Relative Results for 𝑃 = 48.
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(e) Total and Relative Results for 𝑃 = 64.

Figure A.3: BW-GPU8 Forward: Total and Relative Runtime of the Decomposition Methods.
Figures (a)-(e) show the results for the 8, 16, 32, 48, and 64 GPUs. Solely the forward transform
with CUDA-aware MPI is considered. For the runtime, Reference is used to denote the performance
of computing the full 3D-FFT on a single GPU without a distributed approach. The graphs on the
right side visualize the relative runtime results, where the result of each variant and each input size
is divided by the minimal result for the given input size (without considering Reference).
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(a) Total and Relative Results for 𝑃 = 8.
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(b) Total and Relative Results for 𝑃 = 16.
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(c) Total and Relative Results for 𝑃 = 32.
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(d) Total and Relative Results for 𝑃 = 48.
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(e) Total and Relative Results for 𝑃 = 64.

Figure A.4: BW-GPU8 Inverse: Total and Relative Runtime of the Decomposition Methods. Figures
(a)-(e) show the results for the 8, 16, 32, 48, and 64 GPUs. Solely the inverse transform with
CUDA-aware MPI is considered. For the runtime, Reference is used to denote the performance of
computing the full 3D-FFT on a single GPU without a distributed approach. The graphs on the
right side visualize the relative runtime results, where the result of each variant and each input size
is divided by the minimal result for the given input size (without considering Reference).
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