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Abstract

Nowadays, robots gradually have more autonomy to operate alongside people not only
on assembly lines, but also in daily spaces such as kitchens, museums, or hospitals.
In these scenarios, a robot must demonstrate a high degree of adaptability in real-
time dynamic situations while satisfying task compliance objectives such as collision
avoidance. The robot skill also needs to be programmed with ease to cope with an
enormous variety of task behaviors. To achieve this, we propose Task-parameterized
Riemannian Motion Policy (TP-RMP) framework to address the challenges associated
with learning and reproducing the skills under multiple task objectives and situations.
Specifically, the task objectives are viewed as multiple subtasks, learned as stable policies
from demonstrations. The learned policies are also task conditioned and able to cope
with real-time changing task situations. Under the RMPflow framework, our approach
synthesizes a stable global policy in the configuration space that combines the behaviors
of these learned subtasks. The resulting global policy is a weighted combination of the
learned policies satisfying the robot’s kinematic and environmental constraints. Finally,
we demonstrate the benchmarks of TP-RMP under increasing task difficulties in terms of
external disturbances and skill extrapolation outside of the demonstration region.
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1 Introduction

Nowadays, there is an increasing interest in programming robot behaviors that are
not constrained in static and controlled environment settings. Due to the dynamic
characteristics of a practical workspace, the robot behaviors should be reusable in
different real-time task situations and robust to external disturbances. Moreover, the
robot must also exhibit compliance and collision avoidance behaviors for safe execution.
Indeed, as an example of a handover task working with humans, handover action cannot
be constrained at a specific point for natural interaction. The robot arm at the handover
phase should not be stiff and may be further subjected to disturbance from the human.
Another example is the pouring task, which requires satisfying multiple objectives to
perform it properly. The robot should reach the targets (i.e., cup mouths) with the
kettle, avoid pouring water on the floor while approaching, and avoid colliding with
other objects in the scene.

To address the above motivation, LfD, which is also referred to as Programming by
Demonstrations (PbD) [BCDS08], provides a paradigm for robot skill learning required
for executing complex trajectories. Manually programming such skills can otherwise
be challenging or infeasible. On the other hand, the tasks may need to satisfy multiple
objectives as the mentioned pouring task. RMP [RIK+18] and RMPflow [CMI+19]
provides a framework to synthesize control policy satisfying multiple objectives by a
divide and conquer manner, rendering a combined desired behavior when following the
generated policy.

In this thesis, we aim to design a skill learning model, namely TP-RMP, that utilizes
these paradigms. The model will exhibit three properties:

• Reactive: is a time-invariant property. It enables the skill model to be robust under
timing drifts or external disturbances during the execution phase.

• Adaptation: adapts the skill behaviors to new task situations in real-time, which
are different from the demonstration phase.

• Composable: combines multiple desired objectives as policies associated with dif-
ferent subtask spaces while ensuring that the combined overall policy is Lyapunov
stable.

15



1 Introduction

To be concrete, TP-RMP, which encodes complex demonstrations, is an adapting RMP
dependent to real-time task situations, which is composable other RMPs serving for
other task objectives in the RMPflow framework.

Structure

The thesis consists of the following chapters:

Chapter 2 – Related works: presents the related works to the thesis topic.

Chapter 3 – Preliminary: describes the preliminary foundation works that the thesis is
based upon.

Chapter 4 – Task-parameterized Riemannian Motion Policies: formulates the main
model of the thesis.

Chapter 5 – Experimentation: presents the TP-RMP benchmark results.

Chapter 6 – Conclusion and Outlook: gives conclusions and future outlooks.
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2 Related works

This thesis is at the intersection of multiple research directions, such as motion primitives,
impedance control, composable motion policies, and robot learning. Here, we review
the most relevant works to this thesis, addressing the mentioned research directions.

Movement primitives are essentially viewed as the basis for more complex robot tasks
by sequencing or superimposing them in parallel. Each movement primitive encodes a
"primitive" behavior such as point-to-point movement (e.g., reaching for a cup, swinging
a golf club, etc.) with a set of differential equations [BCDS08; INS02]. This line of
research is often referred to as Dynamical System-based approaches since they directly
define a robot motion with a differential equation. A notable work is the Dynamic
Movement Primitives (DMP) [MKKP12; UGAM10] which learns new motor tasks from
physical interactions. DMP provides real-time motion primitive adaptation to new target
states in dynamic environments. However, DMP still suffers from the extrapolation prob-
lem where it cannot generalize outside of the demonstration region. Task-parameterized
Dynamic Movement Primitives (TP-DMP) [PL18] improves extrapolation problem of
DMP by formulating learning as a density estimation problem. This approach utilizes
GMM to model the forcing term of DMP from data, which is closely related to our
work.

Another line of work providing real-time adaptation is to combine variable impedance
control with density estimation problems. [CSC10] proposes an imitation learning
approach to model robot skills with dynamical systems and formulate the stiffness matrix
to be inversely proportional to the observed covariance in the demonstrations. Later,
TP-GMM [Cal16] treats frames of reference as task situations (i.e. task parameters)
providing a strong extrapolation capability out of demonstration region. Recently, a
body of works [LGD+21; RGK+20], which based on TP-GMM modeling, are successful
in sequencing skill models and reproducing multi-modal forceful demonstration based
on real-time task conditions. However, these approaches suffer from high computation
costs in skill retrieval since they rely on Linear Quadratic Control (LQC) to track a full
trajectory following the TP-GMM components.

On the view of composable motion policies, RMP [RIK+18] is a mathematical object
to modular robotic behaviors. It allows constructing primitive behavioral components
separately in different subtask spaces and then combining them using the RMP-algebra
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2 Related works

formulated in the RMPflow algorithm [CMI+19]. These approaches avoid conflict-
ing behaviors when summing policy contributions together by treating subtask space
geometry metrics as weightings in the sum. An effort of introducing LfD to RMPflow
framework is presented in [RLR+20], where an RMP is learned from demonstration data
in form of learning parametric potential field. However, there is no clear adaptability in
their method since they rely on manually-designed RMP for goal conditioning. Another
notable mention is that, recently, [ULL+21] proposes Composable Energy Policies
framework, which combines motion policies by formulating an optimization problem
over the product of these stochastic policies.

Perhaps this work is mostly related to [RLR+20], where we also attempt to learn
a reactive motion policy as a RMP in the RMPflow framework to benefit from its
Lyapunov stability property when combining with other objectives RMP. However, we
design TP-RMP to have adaptability under different task situations while maintaining its
composability in the RMPflow framework. Our work is inspired from Unified Motion and
variable Impedance Control (UMIC) [KK17] method, in which we explicitly learn a task-
parameterized potential field to guide the system and a task-parameterized dissipative
field to damp the system optimally under real-time changing task situations. To realize
that, similar to TP-DMP, we model the RMP’s dynamical system and subtask space metric
with TP-GMM to enable skill extrapolation out of demonstration region.
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3 Preliminary

The preliminary is presented in this section, which are the theoretical foundations that
this thesis works are built upon.

3.1 Robot state space representations

The theories in this thesis are designed upon the robot arm state-space representations
on both configuration space and task space.

We consider a robot arm with its configuration space C represented by a smooth Euclidean
manifold, admitting a global generalized coordinate q ∈ Rd. It is usually more easy
and intuitive to describe the behaviors (e.g., trajectory tracking, collision avoidance)
of the robot arm end-effector motion on another manifold representing the task space,
denoted as T . The task space of the end-effector could be the concatenation of 3D
positional space and 3D orientational unit quaternion space. However, flat manifolds
like Euclidean manifolds may be inadequate to represent such space, as they rely on
rough approximations to account for the constraints imposed by the unit quaternion
representation. These approximations may lead to inaccurate skill models or unstable
controllers. Instead, we could endow the task space with a Riemannian manifold
M = R3 × S3 [Zee18]. Briefly, for each point x ∈ M, there exists a tangent space T xM
as a vector space Rm allowing local Euclidean operations, while being geometrically
consistent with manifold constraints. Notably, there are exponential and logarithmic
maps that project points between T xM and M. Indeed, we can exploit these maps to
correctly compute statistics over M using Riemannian normal distributions [Zee18] that
encode full end-effector motion patterns.

Naturally, there exists a smooth task map ψ : C → T that maps the configuration space
to the task space as forward kinematics, of which there also exists the task map Jacobian
J(q) and its time derivative J̇(q) for the RMP-algebra operations introduced in Section
3.3.
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3 Preliminary

3.2 Riemannian Motion Policies

RMP [RIK+18] describes dynamic motions on Riemannian manifolds. Considering a
smooth Riemannian manifold M, the natural form of the RMP on the manifold M is
a mathematical object R = (f ,M )M, where the dynamical system f : x, ẋ → ẍ is
described by the second-order differential equation that maps the pose x ∈ M and
velocity ẋ ∈ T xM to the desired acceleration ẍd = f(x, ẋ) on the manifold. The second
component M ∈ Rm×m

+ is the endowed Riemannian metric of M, which is a positive
definite matrix defining the geometric structure of the underlying manifold. Note that
m is the dimension of the tangent space T xM.

In the Geometric Mechanic [BL04] view, RMP can be represented as the canonical
form (a,M )M. An realization of this canonical form is the Simple Mechanical System
(SMS) [BL04]:

a = M (x)−1(−∇Φ(x) − Ψ(x, ẋ) − ξM (x, ẋ)) (3.1)

where M(x) : M → Rm×m
+ is view as inertia matrix, Φ(x) : M → R+ is the potential

field, and Ψ(x, ẋ) : M,T xM → T xM is a non-conservative generalized force derived
from a dissipative field (i.e. damping force). The Riemannian metric M induces the
curvature term ξM , which bends the trajectories to follow geodesics on the manifold M
in the absence of the potential and damping forces. An important connection is that the
curvature term ξM is equivalent to Coriolis force proven using the Christoffel symbol in
curvilinear spaces [CMI+19]. In this case, for the natural form (f ,M )M, the dynamical
system is f = −∇Φ(x) − Ψ(x, ẋ) − ξM (x, ẋ).

In general, the acceleration policy (3.1) dictates the motion on a manifold under the
influence of a damped virtual potential field, which grounds the system model that this
thesis develops in the next chapter.

3.3 RMPflow

This section provides a brief introduction of RMPflow [CMI+19], the computational
framework for policy generation with RMPs. The idea of RMP formulation assumes that
the overall complex task can be decomposed into a set of subtasks defined on different
subtask spaces. The subtasks could be goal-reaching or trajectory tracking for the end-
effector, collision avoidance for the robot links, etc. Thus, the task space T can be
represented as the union of multiple subtask spaces T = ⋃L

n=1 Tln . In general, RMPflow
utilizes the dynamical systems and the metrics of RMPs to generate an acceleration policy
on the configuration space C such that the transformed policies exhibit the combined
behaviors in each of the subtask spaces.
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3.3 RMPflow

C

...

...

T
Tl1

Tl2
Tl3Tln

ψe

ψl1

root node r

intermediate nodes

designed RMP leaf nodes

learned RMP leaf nodes

Figure 3.1: An example diagram of RMP-tree.

RMPflow is designed as the RMP-tree, a directed tree encoding the structure of the task
map. The specifications of the RMP-tree (V,E) are as follows:

• Each node v ∈ V associates with a state (xv, ẋv) on a manifold Mv along with its
canonical RMP (av,M v)Mv .

• Each edge e = (u, v) ∈ E corresponds to a smooth map ψe : Mu → Mv from the
given parent node u manifold to the child node v manifold.

• The root node r associates with the state (q, q̇) in the configuration space C and its
(a,M )C.

• The leaf nodes {ln}L
n=1 associate with the subtask RMPs {(aln ,M ln)Mln }L

n=1. Each
subtask RMP encodes the behavior as acceleration policy aln, while its Rieman-
nian metric contributes a state-dependent importance weight to the policy when
combined with other policies.

An example RMP-tree is shown in Figure 3.1. Note that, in this work, some subtask leaf
nodes are associated with manually-designed RMPs, while other leaf nodes are subjected
to the learned RMPs presented in the next chapter.

The subtask policies defined on the leaf nodes are combined using RMP-algebra. Consider
a node u in the RMP-tree with N child nodes {vj}N

j=1 and their edge {ej}N
j=1 between a

parent node u and its child nodes, RMP-algebra is formulated with three operators:

• pushforward: propagates the state of a node in the RMP-tree to update the states
of its child nodes. Let (xu, ẋu) and {(xvj

, ẋvj
)}N

j=1 be the state associated with the
parent node and the child nodes, respectively. The state of its j-th child node vj is

computed as (xvj
, ẋvj

) = (ψej
(xu),J ej

(xu)ẋu), where J ej
=

∂ψej

∂xu
is the Jacobian

matrix.
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• pullback: propagates the natural form of RMPs {(f vj
,M vj

)Mvj }N
j=1 from the child

nodes to the parent node. The natural form RMP associated with the parent node
(fu,Mu)Mu) is computed as:

fu =
N∑

j=1
J⊺

ej
(f vj

−M vj
J̇ ej
ẋu), Mu =

N∑
j=1
J⊺

ej
M vj

J ej
(3.2)

• resolve: maps an RMP from its natural form (fu,Mu)Mu to its canonical form
(au,Mu)Mu with au = M †

ufu, where † denotes Moore-Penrose inverse.

Recursive applications of pushforward operations in the forward pass followed by
pullback operations in a backward pass along the RMP-tree compute a weighted combi-
nation of the leaf node RMPs as the natural form RMP (f r,M r)C at the root r. Finally, a
resolve operation generates a global configuration space policy ar = π(q, q̇).

RMPflow preserves the convergence property of leaf node policies: if all subtask RMPs
are in the form of (3.1) which is a simplified version of Geometric Dynamical System
(GDS), the combined policy in the configuration space is also in the form of (3.1) and
thus Lyapunov stable. In the following chapter, we rely on the stability property of
RMPflow to combine the learned TP-RMPs with other manually-designed RMPs into a
stable global policy. For further detailed theoretical analysis, we refer the readers to
[CMI+19].

3.4 Task-parameterized Gaussian Mixture Model

This section introduces the TP-GMM, which is a density estimation model for LfD.
It provides an elegant probabilistic representation of motion skills in the task space.
First, we define the term model parameters refers to the learned parameters of a model
describing the movement or skill. In contrast, the external parameters representing the
task situation (such as poses of the objects of interest or the actors) will be denoted task
parameters. The latter are essentially frames of reference used as inputs to transform
the learned model parameters according to the current situation.

From some demonstrations, TP-GMM can be used to learn the skill spatial distribution
of the demonstration space. Assuming given N demonstrations in task space T , each
demonstration i contains Ti observations Zi = {ζi,t}Ti

t=1, ζ ∈ T . The same demonstra-
tions are projected to the perspective of P different coordinate systems (e.g. objects of
interest frame, end-effector frame). The projected demonstrations are transformed from
the static global frame to frame p by:

ζ(p) = A(p)−1(ζ − b(p)) (3.3)
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3.4 Task-parameterized Gaussian Mixture Model

where F = {A(p), b(p)}P
p=1 is the set of the rotation and translation of frame p with regard

to the global frame.

Task parameterization of GMMs incorporates observations from the perspective of
different frames of reference, thus allowing the skill to adapt its motion to new frames
representing task situations. Hence, the TP-GMM is described by the model parameters
Θ = {πk, {(µ(p)

k ,Σ(p)
k )}P

p=1}K
k=1 where K represents the number of Gaussian components

in the mixture model, πk is the mixing coefficient (i.e. the prior probability) of each
component, and {(µ(p)

k ,Σ(p)
k )}P

p=1 are the parameters of the k-th Gaussian component
within frame p. Note that the mixture model above can not be learned independently
for each frame, as the mixing coefficients πk are shared by all frames and the k-th
component in frame p must map to the corresponding k-th component in the global
frame.

EM [Cal16] is a well-established algorithm to learn TP-GMM. Learning of the model
parameters is achieved by maximizing the log-likelihood, under the constraint that, the
data in the different reference frames are generated from the same source, resulting in
an EM process with the E-step:

γt,k =
πk

∏P
p=1 N (ζ(p)

t |µ(p)
k ,Σ(p)

k )∑K
j=1 πj

∏P
p=1 N (ζ(p)

t |µ(p)
j ,Σ(p)

j )
(3.4)

and then the M-step:

πk =
∑T

t=1 γt,k

T

µ
(p)
k =

∑T
t=1 γt,kζ

(p)
t∑T

t=1 γt,k

Σ(p)
k =

∑T
t=1 γt,k(ζ(p)

t − µ(p)
k )(ζ(p)

t − µ(p)
k )⊺∑T

t=1 γt,k

(3.5)

that iteratively update the model parameters until convergence. The model parameters
can be initialized with a k-means procedure or dividing the demonstration equally
through time for each component to speed up the EM process. Note that in a standard
GMM, EM estimates the Gaussian parameters (µk,Σk). Here, EM is used to estimate
task-parameterized model parameters {(µ(p)

k ,Σ(p)
k )}P

p=1 by incrementally modeling the
local importance of the reference frames (see Figure 3.2 for illustration).

After learning, the learned model can be used to reproduce movements in new situations
(new positions and orientations of reference frames) during reproduction. Given the
current observed frames F = {A(p), b(p)}P

p=1, a new GMM Θ̂ is computed in global
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Figure 3.2: Learning TP-GMM for picking skill in 3D Euclidean manifold. The ellipsoids
represent the standard deviation region of the Gaussian variances. The small
and narrow ellipsoids reflect the high local invariance of the trajectories
observed from the different frames. The more round ellipsoids represent
regions where precision is not required. Units are in meters. (a) Provided
3 demonstrations with 3 associated frame sets. (b) The demonstrations
are transformed in local frame perspectives, e.g. the object frame and end-
effector frame, then the EM process learns the local GMMs in local frame
perspectives. (c) Given new task parameter frames F , a new GMM Θ̂ is
computed accordingly.

frame with the parameters {πk, (µ̂k, Σ̂k)}K
k=1 by a product of the transformed Gaussian

components across different frames in the global frame:

Σ̂k = (
P∑

p=1
Σ̂

(p)−1
k )−1

µ̂k = Σ̂k(
P∑

p=1
Σ̂

(p)−1
k µ̂

(p)
k )

(3.6)

where the parameter of the k-th Gaussian is transform into the global frame as µ̂(p)
k =

A(p)µ
(p)
k + b(p) and Σ̂

(p)
k = A(p)Σ(p)

k A
(p)⊺. The task parameters could be varied with time,

but we drop the time index t for the ease of notation.
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4 Task-parameterized Riemannian
Motion Policies

We present the TP-RMP model design as concrete mathematical formulations in this
section.

4.1 Problem statement

This chapter is dedicate to formulate and learn a skill with the reactive, adaptive and
composable properties as presented in Chapter 1. To the best of our knowledge, no
existing work learns stable reactive policies from demonstrations capable of reproducing
the desired combined behaviors in different task conditions.

In this light of motivation, we consider a subtask space Tln corresponding to leaf node
ln in the RMP-tree, we assume the availability of N demonstrations {Zi}N

i=1. Here the
i-th demonstration has Ti data points Zi = {ζi,t}Ti

t=1, where each state ζ ∈ Tln in the
demonstration may have generalized coordinate Rd. For each demonstration i, there are
also P coordinate frames as task parameters Fi = {A(p)

i , b
(p)
i }P

p=1 at the time recording
the demonstration. Note that while we assume only the data points as system poses,
the demonstrated system velocities and accelerations can be easily approximated using
linear approximation.

Our goal is to learn a TP-RMP R = (f ,M)M for gravity-compensated systems, where
M is the Riemannian metric that will be learned to describe the smooth manifold M
embedded in the ambient manifold of the task space Tln . f is the learning second-order
dynamic system. R will be conditioned on the task parameter frames F . The learned
TP-RMP will be composable to other RMPs, which are associated with the leaf nodes
{ln}L

n=1 in the RMP-tree.
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4 Task-parameterized Riemannian Motion Policies

4.2 Model formulation

To begin, we aim to realize the RMP learning model as the form of Equation (3.1),
where the potential field has to be learned as the main governing factor generating the
desired motion. At the same time, the damping force in Equation (3.1) also needs to be
optimized so that the generated motion reaches the potential minima without oscillating.
Thus, the learning concept is somewhat similar to UMIC [KK17]. However, in this work,
we utilize the GMM statistics learned from the demonstrations to set the parameters of
the potential field and the dissipative field. Moreover, the Riemannian metric and its
curvature are also induced based on the Gaussian covariances of the GMM. Hence, the
learned fields and metrics benefit from the task parameterization of TP-GMM.

In general, after learning the TP-GMM Θ using N demonstrations, the potential field,
and the damping parameters will be optimized from the same N demonstrations. The
general learning pipeline of the framework is presented in Figure 4.1.

The following subsections describe concrete mathematical formulation deriving TP-RMP
from TP-GMM.
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4.2
M

odelform
ulation

Demos {Zi,Fi}Ni=1

Learning Reproduction

{Kp,i}Ki=1Optimizing fields

Task Parameters: {A(p)
t ,b

(p)
t }Pp=1

Compute LfD RMP

Impedance Controller

TP-GMM Learning

RMPflow
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Θ

Θ̂

Φ0,D R
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Figure 4.1: The overview diagram of the proposed framework. In the learning phase, given multiple kinesthetic
demonstrations, we encode the skill dynamic variations into TP-GMM Θ and then optimize the potential
field Φ0 and dissipative field D parameters. During reproduction, given the current task parameter frames
Ft, an instance of global GMM Θ̂ is computed. Then, with the field parameters, the LfD RMP is defined.
Finally, together with other RMPs encoding other behaviors, e.g. collision avoidance, the final acceleration
policy at the configuration space C is computed for the current robot state.
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4 Task-parameterized Riemannian Motion Policies

4.2.1 Lagrange energy L

In this section, we derive the realization of RMP in Equation (3.1) from the Lagrange
energy of a virtual system on a smooth manifold M. The Lagrangian is defined as
follows:

L(x, ẋ) = T − V

= 1
2 ẋ

⊺M(x)ẋ− Φ(x)
(4.1)

where T is the kinematic energy and V or Φ(x) are the potential energy. In Geometric
Mechanic [BL04] view, this kinematic energy guarantees that the Riemannian metric is
equivalent to the mass matrix M = ∂2L

∂ẋ2 . By applying Euler-Lagrange equation on L, we
get:

d

dt

∂L
∂ẋ

− ∂L
∂x

= 0

M (x)ẍ+ Ṁ (x)ẋ− 1
2
∂

∂x
(ẋ⊺M (x)ẋ) + ∂Φ

∂x
= 0

M (x)ẍ+ ξM (x, ẋ) + ∂Φ
∂x

= 0

(4.2)

where the curvature term ξM (x, ẋ) = Ṁ (x)ẋ − 1
2

∂
∂x

(ẋ⊺M (x)ẋ) is equivalent to the
Coriolis force [CMI+19]. Then, the canonical form RMP (a,M )M derived from the
Lagrangian L is defined as:

a = M (x)−1(−∂Φ
∂x

− ξM (x, ẋ)) (4.3)

This RMP resides in Lagrangian RMPs family, which are derived from Lagrange energies.
The dynamic system evolved by this RMP is conservative, whose Hamiltonian H(x, ẋ) =
T + V (i.e. total energy) is constant [RWX+21].

However, convergence property is required in skill reproduction. Consider the object
picking task, in which the task parameters are the frames associated with the end-effector
and the object of interest, the end-effector needs to accelerate from its idle pose and
de-accelerate when reaching the object. We need a form of dissipative field to siphon
the system energy so that, by the end of the motion generation given the task situations,
the system converges at the object of interest. A direct way to realize this behavior is
adding a damping force Ψ(x, ẋ) to the RMP:

a = M (x)−1(−∂Φ
∂x

− Ψ(x, ẋ) − ξM (x, ẋ)) (4.4)

We aim to learn the potential field Φ(x) and the dissipative field/damping force Ψ(x, ẋ)
so that the Hamiltonian of the system Ht(x, ẋ) → 0 as t → ∞,x → ζ∗, ẋ → 0, where ζ∗
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4.2 Model formulation

is the designate goal pose during skill reproduction. Note that the designate goal can be
conditioned on the task parameters F .

The remainder of this section describes TP-RMP dynamical system formulations and
learning processes.

4.2.2 Riemannian metric & curvature

The Riemannian metric can be induced on the spatial distribution of the demonstrations,
which are represented by the Gaussian covariances in the GMM. The idea is to utilize the
variation of the demonstrations to shape the learning metric geometry and thus constrain
the motion generation. In intuition, this Riemannian metric expands or contracts the
field forces conforming with the Gaussian covariances.

Given the task parameter frames F = {A(p),b(p)}P
p=1 and the learned TP-GMM Θ, an

instance of GMM with parameters Θ̂ = {πk, (µ̂k, Σ̂k)}K
k=1 is computed in the static global

frame using Equation (3.6), the Riemannian metric is then defined as the weighted sum
of the inverse of Gaussian covariances of Θ̂:

M (x) = γ
K∑

k=1
w̃k(x)Σ̂−1

k (4.5)

where γ is a scaling parameter and w̃k is the normalized probability density function of
the GMM:

w̃k(x) = N (x|µ̂k, Σ̂k)∑K
j=1 N (x|µ̂j, Σ̂j)

, 0 ≤ w̃k ≤ 1,
K∑

k=1
w̃k(x) = 1 (4.6)

The scaling parameter γ is a hyperparameter regulating the system inertia, e.g., the
lower γ, the less system inertia and thus the more system sensitivity to the acting forces.
Therefore, varying γ also has the effect of varying the importance weight of this RMP
when combining with other RMPs using RMPflow.

Similar to our work, [RLR+20] learns the Riemannian metric encoded in a neural
network that warps the field forces constraining the system to follow the demonstration
direction of motion. However, their approach is limited in two aspects:

• their Riemannian metric does not capture the local dynamic variations of the
demonstrations. Despite adding a small positive offset ϵ at the diagonal, the
Riemannian metric is prone to be sharply narrow along the nominal direction,
and thus the system evolves with a significant stiffness to follow the demonstrated
direction motion during execution. This effect is undesirable for compliance
applications when working with humans.
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4 Task-parameterized Riemannian Motion Policies
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Figure 4.2: The effect of Riemannian metric warping the potential gradient field. The
blue dashed line is the nominal trajectory that the system should follow.
The color bar depicts the magnitude of the vectors. The (a) The GMM Θ̂
computed by given frames F . (b) Learned potential gradient field with
parameters set by Θ̂. (c) The potential gradient field warped by the Rieman-
nian metric conditioned on Θ̂. The vectors in the region around nominal
trajectory are expanded along the nominal direction, while being contracted
in the orthogonal directions.

• the neural network may suffer from the curse of dimensionality and thus require
many demonstrations to generalize in the task space adequately.

Our approach overcomes these issues and provides an analytically Riemannian metric
rather than black-box learning. An illustration of the Riemannian metric that warps the
potential gradient field is presented in Figure 4.2.

This Riemannian metric formulation induces a curvature term ξM (x, ẋ) as in Equation
(4.4). The curvature term is also know as the Coriolis force in the view of Geometric
Mechanic [BL04]:

c(x, ẋ) = ξM (x, ẋ) = Ṁ (x)ẋ− 1
2
∂

∂x
(ẋ⊺M (x)ẋ) (4.7)
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4.2 Model formulation

where the derivation of first term is:

Ṁ (x)ẋ = ∂

∂t
(γ

K∑
k=1

w̃k(x)Σ̂−1
k )ẋ

= γ
K∑

k=1

∂w̃k(x)
∂t

Σ̂
−1
k ẋ

= γ
K∑

k=1
[(∂w̃k(x)

∂x
)⊺ẋ]Σ̂−1

k ẋ

= γ
K∑

k=1
w̃k[

K∑
j=1

w̃j(x− µ̂j)⊺Σ̂
−1
j ẋ− (x− µ̂k)⊺Σ̂−1

k ẋ]Σ̂−1
k ẋ

(4.8)

and the second term is:

∂

∂x
(ẋ⊺M (x)ẋ) = ẋ⊺(∂M (x)

∂x
)ẋ

= γ
K∑

k=1

∂w̃k(x)
∂x

ẋ⊺Σ̂
−1
k ẋ

= γ
K∑

k=1
w̃k[

K∑
j=1

w̃jΣ̂
−1
j (x− µ̂j) − Σ̂

−1
k (x− µ̂k)]ẋ⊺Σ̂

−1
k ẋ

(4.9)

In intuition, the term −M (x)−1ξM (x, ẋ) in Equation (4.4) simply ensures stable and
geometrically consistent behavior to this Riemannian metric formulation. Indeed, the
manifold M is completely characterized embedded in the ambient task space manifold
by the Riemannian metric M (x).

4.2.3 Potential field

Despite the Riemannian metric amplifies the forces in the demonstrated direction
of motion corresponding to the GMM Θ̂ = {πk, (µ̂k, Σ̂k)}K

k=1 parameters, the desired
motion of the Equation (4.4) is mainly guided by the the negative potential gradient
−∂Φ

∂x
. Warping with the Riemannian metric, the term −M (x)−1 ∂Φ

∂x
can be view as the

negative natural gradient of the potential on the manifold M.

Similar to the Riemannian metric formulation as Equation (4.5), the potential function
is also a weighted sum of the local potentials modelled by Θ̂:

Φ(x) =
K∑

k=1
w̃k(x)ϕk(x) (4.10)
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4 Task-parameterized Riemannian Motion Policies

where each local potential ϕk is associated with the k-th Gaussian of the GMM Θ̂:

ϕk(x) = ϕ0
k +


1
2 ∥x− µ̂k∥2

Σ̂−1
k
, ∥x− µ̂k∥Σ̂−1

k
≤ δ

δ(∥x− µ̂k∥Σ̂−1
k

− 1
2δ), otherwise

(4.11)

where δ is the threshold dividing the quadratic and norm sections of the potential. ϕ0
k is

the bias potential level. This design of local potential is similar to the well-known Huber
loss [Hub64] in Machine Learning literature. Note that in this case we use Mahalanobis
norm to reflect the local dynamics variation encoded in the GMM covariances, and thus,
with the same distance, the negative potential gradients pull differently across motion
directions. This potential function also ensures that the attractive acceleration always
has a unit magnitude except in the neighborhood δ of the Gaussian mean µ̂k where it
smoothly decreases to zero. A simple alternative to this design using only quadratic
is introduced in [KK17]. Their drawback is that the gradient of a quadratic function
increases linearly with the distance, which can cause undesirably large accelerations far
away from the GMM.

Then the potential gradient is derived as follows:

∂Φ
∂x

=
K∑

k=1
w̃k(x)∂ϕk(x)

∂x
+

K∑
k=1

∂w̃k(x)
∂x

ϕk(x) (4.12)

The two terms in the potential gradient can be interpreted as:

• Attraction force corresponds to the first term:

K∑
k=1

w̃k(x)∂ϕk(x)
∂x

=


∑K

k=1 w̃k(x)Σ̂−1
k (x− µ̂k), ∥x− µ̂k∥Σ̂−1

k
≤ δ∑K

k=1 w̃k(x) Σ̂−1
k (x−µ̂k)

∥x−µ̂k∥
Σ̂−1

k

, otherwise
(4.13)

The attraction force pulls the system towards the nearest Gaussian mean, which
attracts the system back to nominal motion. It mainly reflects the reactive property
of the acceleration policy. As aforementioned, outside the threshold δ, the attrac-
tion force is a normalized vector towards to nearest Gaussian, which renders a
stable pull independent of the distance towards the attraction point.

• Nominal force corresponds to the second term:

K∑
k=1

∂w̃k(x)
∂x

ϕk(x) =
K∑

k=1
w̃k[

K∑
j=1

w̃jΣ̂
−1
j (x− µ̂j) − Σ̂

−1
k (x− µ̂k)]ϕk(x) (4.14)

Considering the system pose is close to the current Gaussian mean µ̂k, this nominal
force pulls the system from the current Gaussian mean to the next Gaussian
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Figure 4.3: (a) The potential Φ that is conditioned on a GMM projected on x-y plane. (b)
An instance of attraction forces (shaded vectors) and nominal forces applied
at the (black) system state coordinate (2., 2.5). The background is colored
following the weight values {w̃k}K

k=1, depicting the dominant influence of
the nearest Gaussian distribution. For clarity, the component forces are
colored and placed at their respective Gaussians, while the weighted sum
forces are colored black and placed at the system state. As expected, the
weighted sum nominal force currently guides the system to the red Gaussian
mean, while the weighted sum attraction force pulls the system the nearest
green Gaussian mean. Note that other forces at further components are too
small to visualize.

mean µ̂k+1 (see Figure 4.3 for visual explanation). Note that if all the Gaussian
distributions in the GMM Θ̂ become standard distributions, this nominal force
reduces to the nominal force similar to [KK17]. In this case, however, we utilize
the local dynamics captured in the Gaussian covariance shapes. Thus, the system
is expected to track the sequence of Gaussian means and stop at µ̂K . In an optimal
control sense, this tracking behavior is the same as using LQC to generate a
sequence of control acceleration tracking the Gaussian means as in [LGD+21;
RGK+20].

With this potential formulation, the remaining learning parameters are the set of K bias
potential levels Φ0 = {ϕ0

k}K
k=1, which regulate the energy level of the potential field. The

following section explains the learning process of Φ0 to match the desired demonstrated
motion.

33



4 Task-parameterized Riemannian Motion Policies

4.2.4 Learning potential field from demonstrations

The LfD problem in this case is viewed as learning the mentioned natural gradient descent
−M (x)−1 ∂Φ

∂x
, and then at the second step, learning the dissipative field described in

Section 4.2.5.

In fact, the solution of the natural gradient descent learning problem is not unique.
There are many different potentials and metric combinations that can result in the same
desired acceleration policy. Hence, together with the designed Riemannian metric in
Equation (4.5), we bias the learning process so that, by learning the potential level
Φ0, the negative natural gradient is aligned with the demonstrated motion direction
ˆ̇ζ = −M (x)−1 ∂Φ

∂x
. Given the N demonstrations {Zi}N

i=1 used to optimize the TP-GMM
Θ, the potential learning is designed as minimizing the following constrained Quadratic
Program (QP) accounted for N demonstrations:

min
Φ0

N∑
i=1

Ti∑
t=1

∥∥∥∥∥ˆ̇ζi,t − (−M i(ζi,t)−1∂Φi(ζi,t)
∂x

)
∥∥∥∥∥ (4.15)

s.t.

0 ≤ ϕ0
K ≤ ϕ0

k+1 ≤ ϕ0
k ∀k = 1, ..., K − 1 (4.16)

where for each demonstrations i, a GMM with parameters Θ̂i = {πk, (µ̂i,k, Σ̂i,k)}K
k=1 is

computed using Equation (3.6) from the associated task parameter frames Fi, i.e. the
frames at the time recording the demonstration i. By the GMM Θ̂i, the corresponding
potential gradient ∂Φi

∂x
and Riemannian metric M i are computed by Equation (4.12) and

(4.5), respectively. Note that the constraints in QP (4.15) ensure that the energy always
positive and consistent, i.e. the potential field has the shape of descending valley having
a plateau at the end of the demonstrations, in accordance of the GMM Θ̂ shape (see
Figure 4.4).

This constrained QP formulation is convex and has a unique global solution, which also
has significantly fewer parameters and constraints to optimize than [KK17; RLR+20],
i.e., K parameters and K inequality constraints. In this case, we only need to optimize
the number of potential field parameters corresponding to the number of Gaussians K,
while in [KK17; RLR+20] they optimize the number parameters equal to the number
of points in the demonstrations. In fact, the potential field specified in Equation (4.10)
utilizes the GMM statistics that encodes local dynamic variations, thus reducing the
optimizing parameters to reproduce the desired motion. In practice, it takes a few
second to optimize the convex QP (4.15) using the popular solver cvxpy [DB16].

34



4.2 Model formulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

Global frame

(a) Demonstrations

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0 0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0
0

10

20

30

40

50

Global potential field

0

10

20

30

40

50

(b)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Global dissipative field

0

50

100

150

200

(c)

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0 0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

4.0
0

10

20

30

40

50

Global potential field

0

10

20

30

40

50

(d)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Global dissipative field

0

50

100

150

200

(e)

Figure 4.4: Shape shifting potential field and dissipative field in accordance to task
parameter frames F . (a) The demonstrations that TP-RMP is learned from.
(b),(c),(d),(e) Illustrations of shape shifting potential field and dissipative
field. Between the two cases, Start frame origin is shifted by (−0.5, 0.5),
while end frame origin is shifted by (−0.5, 1.0)
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4.2.5 Dissipative field

Similar to previous sections, given the GMM Θ̂, the dissipative field in Equation (4.4) is
defined as the weighted sum:

Ψ(x, ẋ) = B(x)ẋ

=
K∑

k=1
w̃k(x)ψk(ẋ)

(4.17)

where the k-th local dissipative field ψk(ẋ) = dkIẋ is associated with the k-th Gaussian.
In this context, the damping matrix is B(x) = ∑K

k=1 w̃k(x)dkI. Hence, the learning
parameters of the field is the set of K damping coefficients D = {dk}K

k=1 associated with
K Gaussian components.

Note that the uniform dissipative field is chosen for each Gaussian for stability. In
practice, this simple dissipative field does not limit the model capacity to perform
various motion dynamics. Indeed, similar to the potential field (4.10), the dissipative
field model is varied with the K number of Gaussian components: the larger K, the
more granularity of the model.

4.2.6 Learning dissipative field from demonstrations

As mentioned, the objective is to learn the dissipative field to decrease the system’s total
energy approaching zero as it is approaching the goal pose during execution. Note that
we can explicitly choose a zero coordinate of a task parameter frame as the designated
goal.

Given a demonstration Zi = {ζi,t}Ti
t=1 and its associated task parameter frames Fi =

{A(p)
i , b

(p)
i }P

p=1, the GMM Θ̂i and its corresponding potential Φi and Riemannian metric
M i are computed similar to Section 4.2.4. We then try to match the system total energy
defined at the beginning of the demonstration t = 1:

Hi = T + V

= 1
2 ζ̇

⊺
i,1M i(ζi,1)ζ̇i,1 + Φi(ζi,1)

(4.18)

and the dissipated energy over the demonstrated trajectory:

Di =
Ti∑

t=1
Ψ(ζi,t, ζ̇i,t) · ζ̇i,t∆t (4.19)
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4.3 Stability Analysis

where · is the dot product, and ∆t is the sampling interval of the demonstration.

Then, the dissipative field parametersD are optimized with the following Linear Program
(LP) holistically accounted for N demonstrations:

min
D

N∑
i=1

∥Hi − Di∥ (4.20)

s.t.

ϵ ≤ dk ≤ dk+1 ≤ dK ∀k = 1, ..., K − 1 (4.21)

where ϵ is the positive lower bound of the damping coefficient. In fact, there are many
solutions of the dissipative field that realize the matching energy. However, we bias
the learning process by defining the constraints for the parameters D so that the non-
negative damping coefficients are monotonically increasing as the system approaching
the goal pose. These parameters ensure the consistent behavior for the reactive property
that, for all initial conditions, the system motion is gradually increasingly damped until
reaching the goal pose.

Similar to the QP (4.15), this LP is convex and has unique solution. It takes less than a
second to optimize with cvxpy.

Overall, with the TP-RMP formulation in this section, the TP-RMP parameters are defined
as the tuple (Θ,Φ0,D), where Θ is the TP-GMM parameters, and Φ0,D are the bias
potential levels and the damping coefficients, respectively.

4.3 Stability Analysis

In this section, we analyze the stability of the TP-RMP under different task parameters
F and initial system states (x0, ẋ0). Note that in terms of reactive acceleration policy,
i.e., unifying motion generation and impedance control [KK17], tracking a reference
trajectory is not a primary objective. Instead, our focus is to show that under different
system states, by evolving with acceleration policy (Equation (4.4)) derived from the
TP-RMP, the system converges to the goal conditioned on the task parameters.

Lemma 4.3.1
Given the TP-GMM Θ = {πk, {(µ(p)

k ,Σ(p)
k )}P

p=1}K
k=1, suppose ∀1 ≤ p ≤ P, 1 ≤ k ≤ K : Σ(p)

k

are positive-definite. Then, with any GMM Θ̂ in the global frame computed by task
parameters F , the Riemannian metric M (x) defined in Equation (4.5) is positive-definite
with ∀x ∈ M.
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Proof. If ∀1 ≤ p ≤ P, 1 ≤ k ≤ K : Σ(p)
k are positive-definite, and thereby invertible, then

by any affine transformation of F , ∀1 ≤ k ≤ K : Σ̂k computed by Equation (3.6) are
positive-definite. It follows that, by Equation (4.5), the computed Riemannian metric
∀x ∈ M,M (x) is positive-definite by construction 0 ≤ w̃k ≤ 1,∑K

k=1 w̃k(x) = 1. □

This lemma ensures that, if the GMM covariances represented the demonstration varia-
tion do not have a null-space, the designed Riemannian metric is strictly positive-definite
for every point in the task space. In physical view, it follows that the kinematic energy
reserved in the inertia matrix M is ensured to exist at every point. Hence, there must
be sufficient statistics of the skill behavior by having a reasonable number of demon-
strations. Otherwise, it incurs highly stiff behaviors along the demonstrated motion
direction, and the system may be unstable outside of the demonstration region.

To analyze the TP-RMP stability, we present the following theorem:

Theorem 4.3.2
Given the learned TP-RMP (Θ,Φ0,D), suppose ∀1 ≤ p ≤ P, 1 ≤ k ≤ K : Σ(p)

k are positive-
definite. Then, with any GMM Θ̂ in the global frame computed by task parameters F , the
system converges to a positive invariant set O∞ = {(x, ẋ) : ∇Φ(x) = 0, ẋ = 0} starting
from any initial state (x0, ẋ0).

Proof. By Lemma 4.3.1, M (x) ≻ 0,∀x ∈ M under any GMM Θ̂. We thereby consider a
Lyapunov candidate our system:

V (x, ẋ) = Φ(x) + 1
2 ẋ

⊺M (x)ẋ (4.22)

Taking time derivative of V (x, ẋ) yields:

V̇ (x, ẋ) = ẋ⊺∂Φ(x)
∂x

+ ẋ⊺M (x)ẍ+ 1
2 ẋ

⊺Ṁ (x)ẋ (4.23)

The term M (x)ẍ can be obtained by rearranging Equation (4.4). Then substitute to
previous equation yields:

V̇ (x, ẋ) = ẋ⊺∂Φ(x)
∂x

+ ẋ⊺(−∂Φ(x)
x

− Ψ(x, ẋ) − ξM (x, ẋ)) + 1
2 ẋ

⊺Ṁ (x)ẋ

= −ẋ⊺Ψ(x, ẋ) − ẋ⊺ξM (x, ẋ) + 1
2 ẋ

⊺Ṁ (x)ẋ

By Equation (4.8) and (4.9), the term −ẋ⊺ξM (x, ẋ) + 1
2 ẋ

⊺Ṁ(x)ẋ = 0. Hence, (4.23) is
simplified to:

V̇ (x, ẋ) = −ẋ⊺Ψ(x, ẋ)
= −ẋ⊺B(x)ẋ
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4.4 Skill reproduction

Note that, the damping matrix in Equation (4.17) is B(x) ≻ 0,∀x ∈ M by construction
for any GMM Θ̂. Hence, V̇ (x, ẋ) is negative-definite. By LaSalle’s invariance princi-
ple [LaS60], the system is globally asymptotic stable. □

Furthermore, it is known that the system (4.4) is a simplified version of GDS, where
the Riemannian metric M(x) is not velocity dependent. However, the stability property
when combining this kind of system is still applicable with Theorem 2 in [CMI+19].
Indeed, if all subtask RMPs are generated by systems in the form of (4.4) (or in form
of more general GDSs), the combined policy in the configuration space C is also in the
form of (4.4) and hence Lyapunov stable.

4.4 Skill reproduction

In manipulation tasks, a skill requires coordinated and constrained motion of different
parts of a robot. The problem with LfD methods in recent literature is that it is hard to
combine other behaviors to satisfy dynamic task requirements incrementally. On the
other hand, RMPflow [CMI+19] provides a framework to modular a complex task into
subtasks that are easier to encode the motion behaviors, then combines them to realize
the complex motion behaviors. However, it is usually not straightforward to design some
motion behaviors, e.g., tracking a specific trajectory. Moreover, the skill may require
conditioning on real-time task situations; for example, the picking skill needs to adapt
for moving object targets.

To address these problems, we first construct an RMP-tree with root node in the configu-
ration space C, in particular, the joint space of the robot. The relevant robot body parts
are added as child nodes of the root in the RMP-tree with edges given by the forward
kinematics of the robot. Branching out further from these nodes are leaf nodes, corre-
sponding to various subtask spaces encoding different motion objectives. At some leaf
nodes, we can encode multiple human demonstrations with associated task parameters
by learning TP-RMPs, while in other leaf nodes, the manually-designed RMPs such as
collision avoidance or joint limiting can be handcrafted. At each control iteration, the
overall configuration space policy ar at root node is found using RMPflow as described
in Section 3.3. To ensure stability, all manually-designed RMPs should have the form of
Equation (4.4).

After learning phase, the high-level procedures for reproduction phase of a learned
TP-RMP (Θ,Φ0,D) described in Figure 4.1 is presented in Algorithm 4.1. The operations
pushforward, pullback, resolve are introduced in Section 3.3.
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4 Task-parameterized Riemannian Motion Policies

Algorithmus 4.1 Skill reproduction

procedure COMPUTERMP((Θ,Φ0,D), F)
Compute GMM Θ̂ from F using Equation (3.6).
Compute LfD RMP (f ,M) with Θ̂,Φ0,D using Equation (4.10, 4.17, 4.5, 4.7).

return (f ,M)
end procedure
procedure REPRODUCE((Θ,Φ0,D))

// TP-RMP initialization.
Compute initial RMP R0 = ComputeRMP((Θ,Φ0,D), F0)
Set initial configuration state (q0, q̇0).

// Main execution.
while The system is not converged do

if Received task parameters Ft then
R = ComputeRMP((Θ,Φ0,D), Ft)
Update new RMP R to corresponding leaf node.

end if
Retrieve current configuration state (qt, q̇t).
Execute pushforward operation using forward kinematics recursively from the

root to leaf nodes.
Compute leaf node RMPs in the subtask spaces.
Execute pullback operation recursively from leaf nodes to the root.
Execute resolve operation to compute combined policy ar(qt, q̇t).
Track reactive acceleration ar by impedance controller.

end while
end procedure

As a remark, regarding the task conditioning, we can design a goal-directing RMP to
adapt the skill to new targets as argued in [RLR+20]. However, only goal-directing
behavior may be insufficient as the skill may need to satisfy a specific motion pattern
before reaching the goal. For instance, some inserting skills require top-down insertion;
the end-effector is constrained to move downward or execute some wiggling behavior
before inserting. These kinds of behaviors are hard to design manually and can be effec-
tively captured by learning TP-RMP. Moreover, task parameterization can be extended
to multiple frames, which can be viewed as waypoints to shape the computed GMM
in the global frame. In turn, the GMM shapes the potential field, the dissipative field,
and the structure of the Riemannian metric given the current task situations. Thus, this
mechanism creates great flexibility of task conditioning, while manual design may need
multiple RMPs to realize.

40



4.4 Skill reproduction

Another important remark of TP-RMP design is that, in Algorithm 4.1, the method
does not require the task parameters to be static during execution. Indeed, the task
parameters as a set of frame transformations Ft = {A(p)

t , b
(p)
t }P

p=1 can be varied with
time. Hence, an instance of GMM computed from Ft is also varied with time, and thus
the induced fields are time-conditioned. This property implies that the skill behavior can
be adapted in real-time, as long as TP-RMP receives new task parameters from vision or
sensing systems. We will show the real-time adaptability of TP-RMP in the experiment
section.
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5 Experimentation

This section presents the experiment outline that supports the claims and theories
developed in this thesis. All measurement units in this section are SI units, e.g., distances
are in meters (m), and forces are in Newton (N).

5.1 Experiment setups

To demonstrate the reactive, adaptive, and composable properties of TP-RMP, we test the
model in two settings:

• a simulated 2-DoFs point system that freely moves omni-directional in 2D task
space. We also create a dataset of 15 skills, each having three demonstrations
and their associated two task parameter frames (see Figure 5.1). The shape of
the demonstrations are created to contain a great variety of curvatures but are
constrained to a limited task space region for the ease of visualization. In all skills,
each demonstration contains around 600 data points.

• a simulated 6-DoFs UR5 robot arm on pyBullet [CB21]. We test TP-RMP explicitly
with the picking skill on R3 × S3 task space with only three demonstrations, where
each demonstration contains around 400 data points. The task parameter frames,
in this case, are attached to the end-effector suction gripper and the object of
interest (see Figure 5.2).

The control loop of the 2D point system is simply applying a double integrator to the
acceleration policy, and then the next system state is fed back to the policy. In the case
of the simulated UR5 robot arm, we track the acceleration policy using an impedance
controller (see Algorithm 4.1). For all experiments, the control frequency is set to
f = 100Hz, the same as the demonstration sampling frequency.
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Figure 5.1: Illustration of 15 2D skills, each consists of 3 demonstrations. The task parameters are the start and end
frames plotted in each skills as red and green lines. The small red start shows the goal point that the skill
should reach, which is also at the zero coordinate of the end frame. All skills are recorded with 100Hz
frequency.
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5.1 Experiment setups

5.1.1 Criteria

The performance of TP-RMP is evaluated with two schemes:

• Tracking MSE: evaluates how the learned skill reproduces the reference demon-
stration as well as the demonstration variation with the same recorded task param-
eter frames. In other words, this criteria shows how the learned model reproduces
the nominal behavior of the skill given same demonstrated situations. The tracking
performance is defined as the MSE evaluated between all the sampling points of
the reference trajectory Z = {ξt}T

t=1 and the reproduced trajectory {xt}T
t=1:

MSE = 1
T

T∑
t=1

∥ξt − xt∥2

Note that in this case, the reference trajectory is the middle demonstration in
Figure 5.1.

• Goal error: evaluates how robust that the learned TP-RMP guides the system
reaching the designated goal points, under increasing task difficulties in terms
of moving goal, disturbance, and when combining with other RMPs. We rely
explicitly on the task parameter frame to define the goal point, in which the goal is
conditioned to be the zero coordinate of the end frame (see Figure 5.1). We could
define more frames to condition the skill behavior (e.g., as waypoints). However,
for the clarity of the experiment, we define only the start and end frames for 2D
skills, or end-effector and object frames for picking skill.

5.1.2 Baseline

In Section 5.2 of the tracking experiment, the tracking performance of TP-RMP is
compared to a low-gain PD controller, which the control law is described by:

a = Kp(x− xd) +Kd(ẋ− ẋd) + τ ff

where (x, ẋ) si the current system state. Kp,Kd is the gain and damping matrices,
respectively. τ ff is the feed-forward torque to compensate for the system dynamics, and
xd is the consecutive desired point on the reference trajectory. Both τ ff , xd are updated
with a frequency of fd = 50Hz, while the control loop frequency is set to 100Hz. Note
that for the case of a 2D point system, the compensate torque is simply zero, while the
τ ff is computed using forward dynamics of simulated UR5 robot.
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5 Experimentation

(a) (b)

(c) (d)

Figure 5.2: Picking skill demonstrations on pyBullet simulation with UR5 robot arm.
For each demonstration with different object placement, we control the
robot arm to reach the grasping point with point-position controller. We
record the trajectory of the demonstration with 100Hz frequency and the
task parameter frames attached the the end-effector and the object. The
demonstration data can be seen in Figure 3.2a.
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Figure 5.3: Graph of tracking MSE over number of Gaussian components K.

5.1.3 Learning setups

For all learning TP-RMP processes, we set γ = 0.25 for 2D skill learning and γ = 0.04
for picking skill learning. γ is tuned so that the mass matrix M (x) has small enough
eigenvalues for adequate system sensitivity in the range 1 − 100N applied forces.

The typical total training time of the EM process, optimizing potential and dissipative
field for 600 data points, is under a minute with K ≤ 100. The Python implementation
of TP-RMP used for the experiments is published online1.

5.2 Tracking experiment

The tracking experiment evaluates the skill reproducibility of the learned TP-RMP given
the same task conditions as in demonstration. We argue that:

• in LfD context, the TP-RMP should at least reproduce the trajectory that bears
a resemblance to the nominal demonstration given the same demonstrated task
condition at the reproduction phase. Tracking MSE metric can be used to measure
the resemblance between the reproduced trajectory and nominal demonstration.

• Then, given new task parameters, the trajectory reproduced by TP-RMP retains the
nominal skill behavior.

1https://github.com/humans-to-robots-motion/tp-rmp
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For 2D skills, for each chosen K, we learn 15 TP-RMPs corresponding to the 15 2D
skills, then we collect 15 tracking MSEs for these models and present them as a box plot
column. For picking skill, we learn a TP-RMP of chosen K and record its tracking MSE.
The test data of both cases are presented in Figure 5.3. The dashed green line represents
the average tracking MSE of the baseline PD controller. The green diamonds are the
outliners for each column.

Figure 5.3a shows the tracking MSE evaluated for 15 2D skills over model selection K.
The tracking performance varies over the number of Gaussian components K. For all
number K, the medians of TP-RMP tracking MSEs are below the PD controller tracking
performance, where K = 9 performs the best with 75% percentiles below the baseline.
As expected, tracking performance is worse with very high 75% percentiles for small
number K = 5, since the model capacity is low and there may not be enough waypoints
to guide the system. However, surprisingly, there is a valley such that increasing K does
not make tracking MSE decreases monotonically. The reason is that, by construction,
the induced RMP is based on the shape of Gaussian covariances. As in Figure 5.4, there
are two effects when increasing K:

• despite having more attractors as waypoints, when learning with EM process (see
Section 3.4), the Gaussian component shapes are contracted in the demonstrated
nominal direction and more expanded in the orthogonal directions. Hence, the
region around the nominal demonstration has steeper potential gradients and thus
induces instability.

• the Riemannian metric conditioned on these ill-formed Gaussian shapes also
contracts the nominal force along the nominal direction.

These effects are more prominent if the curvature variation of the demonstrations is
higher. Note that, for the case of picking skill in Figure 5.3b, the valley of suitable
number K is much wider. The reason is that the recorded demonstration of picking skill
has less curvature variation than the 2D skills.

Hence, for complex skill behaviors, it is imperative to select a reasonable number K. We
can apply Bayesian Information Criterion (BIC) [Mur12] method for model selection.
Another technique is to compute K is Dirichlet processes for infinite Gaussian mixture
models [KTNS12].

Figure 5.5 shows the execution of the learned TP-RMPs models with K = 9 under the
same task parameters as in demonstrations to assess the tracking performance. It can be
seen that the reproduced trajectories bear a resemblance to the nominal demonstrations,
with every point in the reproduced trajectories stay within 2σ to their closest Gaussian.
Note that it is not a hard constraint to follow the nominal trajectory closely since the
model also encodes the demonstration variation. Further illustrations of the underlying
GMMs and the induced fields are presented in Appendix A.
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Figure 5.4: The shape of the GMM variances of 5, 9 and 15 components given the same
task parameters. The ellipsoids represents the standard deviation region of
each Gaussian. The background is the induced potential field of the GMM.
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Figure 5.5: Reproduced trajectories of TP-RMPs models with K = 9 corresponding to 15 2D skills in Figure 5.1. The task
parameters are the same as in demonstrations. Note that there is one fail reproduction in the first row and
fourth column, perhaps because the demonstration has a discontinuity at the point (2.2, 3.4).

50



5.3 Task adaptation experiment

5.3 Task adaptation experiment

After observing a set of demonstrations in demonstrated situations, we would like to
generalize the skill to real-time new situations. Here, we benchmark the ability of
TP-RMP to adapt the skill behavior to new task situations dynamically. As mentioned,
the task parameter frames will influence the dynamic shape of GMM instances and their
induced fields, thus adapting the skill behavior dynamically as the frames moving in
real-time. In this section, we specifically focus on the goal convergence capability of
TP-RMP realized by conditioning the goal at zero coordinate of the end frame. The
reason is that there is no suitable nominal reference to track for new adapting situations
or under disturbance schemes. Hence, the primary metric would be the Goal error in
meters, representing the efficacy in solving the problem.

To benchmark the reactive and adaptability properties of TP-RMP, the setups for this
experiment are:

• Task adaptation: We fix the start frame and condition the end frame moving in
circle of radius r = 0.2m and angular velocity ω = π. For picking skill, we also
fix the end-effector frame at the beginning and condition the object moving in a
circle. The system starts at starting frame and will be guided by the dynamically
updated RMP. When the system reaches close to the goal frame, the goal frame
stops moving, and the system is expected to converge in close vicinity of the goal.

• Task adaptation with increasing disturbances: This benchmark has the same
conditions as the Task adaptation benchmark, but with additional difficulty by
applying an increasing disturbance force for each test run. The disturbance force
is applied for over 100 timesteps t ∈ [50, 150], which is orthogonal to the moving
direction in reproduction (see Figure 5.6).

• Task adaptation with increasing differences: This benchmark has the same
conditions as the Task adaptation benchmark. However, we increase the radius
r of the moving goal frame for each test run and thus increase the degree of
difference comparing to the demonstrated conditions.

Similar to tracking experiment 5.2, for the 2D setting, we evaluate the adaptation
capability of 15 2D skills over the number of components K. In picking skill, for
sufficient statistics, we test 10 runs with randomized angular velocities of moving object
frame for each chosen K TP-RMP.

Figure 5.7 demonstrates the Task adaptation benchmark. In Figure 5.7a, it seems to
be consistent with the suitable number of components K argument presented in the
previous experiment. According to the data, there is a positive correlation between
tracking performance and goal convergence. In this case, when reproducing skills with
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Figure 5.6: Illustration of the disturbance and real-time changing task situation schemes.
The dashed blue line is the nominal demonstration. The blue line is the
trajectory taken under disturbance. The dashed circle represents the path
that the goal frame moves.
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Figure 5.7: Graph of goal errors over number of Gaussian components K.
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Figure 5.8: Graph of goal errors over increasing disturbance force (N).
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Figure 5.9: Graph of goal errors over increasing moving goal radius (m).

high curvature variation, K = 9 seems to be the best model for this 2D dataset in the
adaptability category, achieving the goal error median of nearly 0.1m. However, for the
case of picking skill in Figure 5.7b, low curvature skill is much more tolerated in model
selection, with most of the large K achieving very low goal error. Figure 5.10 shows
the reproduced trajectories of 2D models with K = 9 under the real-time adaptation
scenario. Note that the wiggling shapes of trajectories reflect the models’ reaction to the
goal frame moving in a circle.

Figure 5.8 demonstrates the Task adaptation with increasing disturbances bench-
mark. We also evaluate 15 skills for 2D setting and 10 test runs of randomized angular
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velocity for picking skill over disturbance force values. We then select the best model
K = 9 for 2D setting and K = 15 for picking skill to evaluate their robustness. This
benchmark shows the TP-RMP robustness of goal convergence under the increasing
disturbance force applied in a short duration of time at the beginning of the repro-
duction. The goal convergence of 2D TP-RMP models begins to worsen after applying
30N or more. The result is expected since the 2D dataset is designed to have a high
variation of curvature. However, in Figure 5.8b, the learned TP-RMP model for low
curvature variation picking skill is robust to much larger disturbance forces than 2D
models. Figure 5.10 shows the reproduced trajectories of 2D models with K = 9 under
the real-time adaptation with disturbance force of 10N. Note that the bottom left model
fails to reach near the goal frame. These fail cases are the outliners plotted in benchmark
graphs.

Figure 5.9 demonstrates the Task adaptation with increasing differences benchmark.
We also evaluate 15 skills for 2D setting and 10 test runs of randomized angular velocity
for picking skill over moving goal radius values. We also select the best model K = 9 for
2D setting and K = 15 for picking skill. The benchmark shows the TP-RMP robustness
of goal convergence under the increasing differences comparing to the demonstrated
situations. In this case, both 2D setting and picking skill have the same pattern of goal
convergence performance worsen as moving goal radius increases because the TP-RMP
adaptability is inherently dependent on the extrapolation capability of TP-GMM model
by construction. Under larger difference of relative distance between the task parameters
comparing to demonstrations, the computed GMM may lose the statistical coverage due
to strong stretching (see Equation (3.6)), leading to worsening skill behavior. Note that
this test benchmarks and tries to push the limit of the extrapolation capability of TP-RMP
in real-time. It is not necessarily a limitation of TP-RMP since it operates outside of the
demonstration region.

As seen from the data, 2D skills are designed as extreme scenarios where the shape
of demonstration varies greatly, while in practice, actual manipulative tasks such as
handover, insertion, pressing, etc. can have demonstrations with much lower curvature
variations. These benchmarks imply that TP-RMP, in practice, can encode the skill
behavior and adapt it to new situations in real-time. Furthermore, the skill can be
robust to significant disturbances if the curvature variation of the skill demonstration is
sufficiently low.

Regarding real-time constraint, Figure 5.12 shows the total time to execute a control
loop in Algorithm 4.1. For each K model, we record and plot all the control iteration
computation times in a reproduced trajectory. The computation time is low enough to
adapt the skill in real-time to conduct this experiment in simulation. However, to ensure
the strict real-time constraint in practice, which caps the control loop computation time
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5.3 Task adaptation experiment

under ∆t = 1
f
, TP-RMP must be implemented in a highly optimized production code

version in C++ or reducing control frequency f .
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Figure 5.10: Reproduced trajectories of TP-RMPs models with K = 9 corresponding to 15 2D skills. In this case, we fix
the start frame and move the end frame in circle of radius r = 0.5m with angular velocity ω = π represented
by the dashed circles.
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Figure 5.11: Reproduced trajectories of TP-RMPs models with K = 9 corresponding to 15 2D skills. We additionally
apply a disturbance force of 10N for the duration t ∈ [50, 100]. Other conditions are the same as Figure 5.10.
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Figure 5.12: Total inference time of TP-RMP over number of components K. The
inference time is the sum of new RMP computation time and configuration
acceleration policy computation time at the root node in a control loop.
Note that this time measurement is conducted on Python code and run on
the CPU AMD Ryzen 7 5800X.

5.4 TP-RMP composability evaluation

Here, we benchmark the composability property of TP-RMP with other RMPs via RMPflow.
In this evaluation setup, we keep the conditions of moving goal frame like the previous
section. The system is expected to follow the learned behavior encoded in TP-RMP,
while also avoiding the obstacle in the task space. We implement the collision avoidance
RMP for a circle obstacle with radius R as in [CMI+19]. To realize the combined policy,
for the robot arm, the RMP-tree is constructed in Figure 5.13. In 2D setting, the task
space R2 is equivalence to the configuration space. The skill reproduction is executed
using Algorithm 4.1.

Figure 5.14 shows the success rate of reproducing 15 2D skills while maintaining collision
avoidance constraints. Successful reproduction is achieved when the system does not
collide with the obstacle and converges in the goal vicinity ϵ ≤ 0.1m. Note that larger
obstacle makes collision avoidance RMP overwhelmed the learned TP-RMP behavior, as
the combined policy starts to fail the test at obstacle radius R = 0.4m. Some examples
of the skill reproduction under moving goal radius r = 0.5m are shown in Figure 5.15.
The skill reproduces trajectories resembling the nominal demonstration while avoiding
the obstacle and converging to the moving goal.

Figure 5.16 demonstrates the visual examples of real-time task adaptation of picking skill
with and without the obstacle (i.e., white ball). As the obstacle also moves dynamically,
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C
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Forward kinematics ψf

Identity mappingψ : R3 × S3 → R3
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Figure 5.13: RMP-tree for UR5 robot arm that combines learned TP-RMP skill and
Collision Avoidance RMP (CA RMP).
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Figure 5.14: Success rate of goal convergence over increasing obstacle radius hindering
skill execution. For each obstacle radius, we execute 15 2D skills ten times.

the collision avoidance RMP is also updated with the current obstacle position for each
timestep.

These visual evaluations exhibit all three properties of reactive, adaptability and compos-
ability at the same time. As a remark, other RMPs can be view as weighted disturbance
forces in the TP-RMP perspective. This view is significant because TP-RMP can be robust
to external forces for goal convergence, as shown in the previous section. Hence, TP-RMP
can solve the problem while compromising with other RMPs to satisfy additional task
objectives, which renders the desired combined manipulative behavior.
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Figure 5.15: Reproduced trajectories of selected TP-RMPs models with K = 9. The
black circle with radius R = 0.2 is the obstacle placed to hinder the skill
execution.
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Figure 5.16: (a)-(d) Picking skill reproduction under moving object in circle r = 0.15m and angular velocity ω = 0.3π.
(e)-(h) Picking skill reproduction in combination with collision avoidance RMP with the same moving
object. The white ball with radius R = 0.06 is the obstacle.61





6 Conclusion and Outlook

In this thesis, we presented a novel skill model TP-RMP that is robust to real-time
changing task situations, external disturbances and is composable inside the RMPflow
framework. By modeling with TP-GMM, TP-RMP creates a task adapting RMP, in which
the potential field, dissipative field, and the Riemannian metric are also task conditioned.
In addition, we provide concrete theorems to ensure the generated RMP is Lyapunov
stable under any task parameters and initial system states.

We show a sanity test that the learned skill can track the nominal demonstration under
the same demonstrated situation. We then provide a series of benchmarks using a 2D skill
dataset and simulated UR5 robot arm to show the robustness of TP-RMP under increasing
task difficulties in terms of external disturbance, situation differences, and combining
with collision avoidance RMP. It is shown that TP-RMP achieves solid task solving
capability in the case of practical tasks with low curvature variation demonstration
trajectories while performs satisfactorily with more difficult hand-designed 2D skills.
These experiment results exhibit the promised properties of TP-RMP, namely reactive,
adaptability and composable.

Outlook

Our model also achieves low inference computational cost, which is suitable for real-time
control. Hence, it would be interesting to implement this work on a real robot system to
test its real-time adaptability while satisfying other task objectives. Furthermore, this
work can be extended to Task and Motion Planning paradigms. A direct way to realize is
to sequence and/or branch the TP-GMM structure into multiple paths [RGK+20]. The
suitable tasks to evaluate are the handover task with two behaviors, such as grasp-top
and grasp-side, and the pick-and-insert task with straight insertion (e.g., peg in the
hole) and side insertion (e.g., AA battery).

Another consideration is that we can use the formulation of TP-RMP inside the Policy
Search paradigm [DNP13]. It would be interesting that we can treat TP-RMP as a
contextual policy representation for Policy Search methods. In Reinforcement Learning
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settings, this outlook is beneficial since the desired behavior can be represented by
expert policies or implicit reward functions.
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Figure A.1: The computed GMMs given the demonstration task parameters in Figure 5.1. The backgrounds are the
induced potential fields of these GMMs. The ellipsoids represent the standard variation regions of the
Gaussians.
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Figure A.2: The computed GMMs given the demonstration task parameters in Figure 5.1. The backgrounds are the
induced dissipative fields of these GMMs. The ellipsoids represent the standard variation regions of the
Gaussians.
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