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Abstract

Learning is one of the most important abilities of intelligent adaptive agents. The generalization ca-
pability and training efficiency of learning algorithms depend heavily on the abstract representations
acquired. Planning, on the other hand, allows agents to anticipate the future consequences of their
actions so as to act optimally at the now. The action-contingent predictive features generated by
planning modules thereby provide a good abstract representation constituting the current state of the
agent. From this insight, this thesis aims to integrate trainable planning modules for data-efficient
learning in sequential decision making and manipulation problems, ranging from Go game to
real-world robotic AI. Specifically, this thesis will investigate the effectiveness of such approach
by trying to solve the key questions of (1) how to integrate planning modules into deep learning
frameworks so as to train the whole system from data, and (2) how to exploit predictive, but possibly
inaccurate, abstract features from planning modules to guide the learning process.

The main contributions of this thesis are to answer these questions within a broad literature survey
and incorporate the ideas in an algorithm that can be applied to learn to plan in visual navigation
tasks in a completely unsupervised manner.
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1 Introduction

Most recently, Reinforcement Learning algorithms have been successfully combined with deep
learning techniques to solve a wide field of challenging problems. These range from playing
video games at super-human level [MKS+15] over robotic manipulation tasks up to beating the
world-champion in Go [SHM+16], which was considered as a grand challenge to AI for years.

But in order to leverage the power of deep learning techniques, a lot of data is needed. This limits
the algorithms to domains for which either data is available or can be generated. Additionally, the
generalization capabilities of learning algorithms heavily depend on the abstract representations
acquired. Considering for instance a learned value function for a single task, it needs to be retrained
from scratch when facing another task in the same environment. Planning, on the other hand,
allows an intelligent agent to reason about future consequences of actions. This opens great
generalization capabilities. Also, for most planning algorithms no additional real experience is
needed to act optimally at the now. Behaviour can be improved solely with simulated experience
and computational power.

Thereby planning algorithms generate features that incorporate predictive future information in
terms of values, future occupancy of features or just unrolled trajectories of states. Therewith the
features represent a kind of forecast and so provide a good abstract representation constituting the
current state of the agent. The main goal of this thesis is to exploit this better abstract representations
to achieve more data-efficient learning.

Additionally, with recent success of deep learning methods more specialized network structures
have been developed. So, a branch of methods follows the idea of expressing planning computations
in a fully differentiable way and embed it in a neural network structure. This is called a planning
module and allows end-to-end training with data. Thereby planning modules also provide predictive
features as outlined before. This thesis aims to effectively combine these ideas.

To do so, we will give broad overview over existing approaches to integrate differentiable planning
modules in chapter 3. Therewith we address the question of how to integrate planning modules into
deep learning frameworks so as to train the entire system from data. Next we’ll continue comparing
these various approaches with respect to the way predictive features from planning modules are
exploited in chapter 4. Within that we try to answer the question of how these predictive, but
possibly inaccurate, abstract features are used to guide the learning process.

In the following we incorporate the ideas from literature in a Planning for Learning framework. It
is introduced in detail in chapter 4. As a result, we extend existing approaches to RL based on latent
representations acquired from unsupervised learning techniques. The approach called Unsupervised
Planning for Learning learns an abstract model with multitask learning and Hindsight Experience
Replay. Additionally, we incorporate the learned values to get a better representation of the current
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1 Introduction

state to finally solve visual navigation tasks. The experiments conducted in chapter 5 show the
effectiveness of this approach to acquire better abstract representations in order to leverage more
data-efficient learning.

So, to conclude, the main contributions of this thesis are: (1) A broad literature survey on existing
approaches to integrate differentiable planning modules and exploitation of predictive abstract
features and (2) a Unsupervised Planning for Learning algorithm, which addresses to learn visual
navigation in a completely unsupervised manner.

But first in chapter 2 background information and some related work, that is needed throughout this
thesis, will be introduced.
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2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of Machine Learning. RL means to learn from interactions
with the environment. In such a framework there is only supervision provided by rewards. In
general, this kind of supervision is sparse. In contrast to Supervised Learning there is no ground
truth data for actions to take to learn from. A goal-directed agent is trying to find a policy that
maximizes a reward signal [SB98].

2.1.1 Markov Decision Process

Mathematically a RL problem can be described as a Markov Decision Process (MDP) which
is the five-tuple ⟨S,A,P,R, γ⟩. Thereby S is a set of states on which the Markov Property
∀t : P(St+1 |St ) = P(St+1 |S1, · · · , St ) holds. A is the set of possible actions. In each state st the
agent takes an action at and observes a reward rt and a consecutive state st+1. The state transition
distribution P(st+1, st, at ) = P(st+1 |st, at ) and reward distribution R = P(rt |st, at ) are typically not
given to the agent. The agent’s task is to maximize the discounted cumulative reward, which is also
called return Gt =

∑∞
i=t γ

i−tri.

2.1.2 Value Function

A value function is used to estimate the expected return under some policy π starting in a given state.
Ordinarily used are the state value function Vπ(s) and the state action value function Qπ(s, a).

Qπ(s, a) = E
[ ∞∑
i=t

γi−tri |st = s, at = a
]

(2.1)

Vπ(st ) = E
[ ∞∑
i=t

γi−tri |st = s] (2.2)

For every MDP there exists an optimal policy π∗ with the value function V∗(s) ≥ V(s) ∀V, s. And
for such an optimal value function the Bellman Optimality Equation holds:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P(s′, s, a) ·max
a′

Q∗(s′, a′) (2.3)

The optimal policy π∗(s) = argmax
a

Q∗(s, a) can be extracted by acting greedily with respect to the

optimal state action value function [Bel57].

11



2 Background

2.1.3 Classification of RL methods

Sutton and Barto [SB98] classify RL methods in two different classes: model-free RL and model-
based RL. Both approaches to RL have strengths and weaknesses. A promising direction is to
combine aspects from both approaches. The integration of differentiable planning modules is one
possibility to do so.

Model-free RL

Given experience as data D = {(st, at, rt, st+1)} a model-free RL method directly learns a value
function estimating the value for each state (and action). The actual policy can be derived by acting
greedily with respect to the value function as shown before. The principle is depicted in below.

Data D Value Function Q; V Policy π

Figure 2.1: Principle of model-free RL

A common method to learn a value function is called Temporal Difference Learning or TD-Learning.
The key observation therefore is that a state-value function, as described in 2.1, represents the
expectation under some policy π. This expectation can be estimated by the incremental mean
Vπ(st ) = Vπ(st ) + α(Gt − Vπ(st )) of returns Gt . Thereby the return is an unbiased sample of the
true distribution of values. This ground-truth distribution is unknown and intended to learn. To
extend this idea to actual TD-Learning, the true return Gt is replaced by the TD-target rt + γV(st+1),
which is a biased estimate of the return with lower variance. This is called bootstrapping and allows
learning from every step taken in the environment. Equation 2.4 shows the resulting update rule.

Vπ(st ) = Vπ(st ) + α
(
rt + γVπ(st+1) − Vπ(st )

)
(2.4)

In general rewards are sparse in RL. So the crucial action for receiving a reward, after long sequence
of actions, might be several steps in the past. This problem is called credit-assignment problem.
TD-Learning can be extended with eligibility traces E(s) to also update the values of previously
visited states for better credit assignment. This results in the TD(λ) algorithm 2.5.

Vπ(s) = Vπ(s) + αδtEt (s) (2.5)
δt = rt + γVπ(st+1) − Vπ(st ) (2.6)

Et (s) = γλEt−1(s) + 1(st = s) (2.7)

Often it is desired to learn off-policy, i. e. to learn about the optimal policy while executing an
exploration policy.

This behaviour is achieved by Q-Learning. The update rule for the state action value function
Q(s, a) from data ⟨s, a, r, s′⟩ is given in equation 2.8.

Q(s, a) = Q(s, a) + α
(
rt + γmax

a′
Q(s′, a′) −Q(s, a)

)
(2.8)
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2.1 Reinforcement Learning

To learn off-policy is helpful to train neural function approximators for Q(s, a). Mnih et al.
[MKS+15] use a replay buffer to collect all the experience gathered from interaction with the
environment. For learning phase, it is possible to sample a random mini-batch from the replay
buffer to perform optimization. This stabilizes the learning. Off-policy learning ensures correct
learning, even though the data in the buffer was gathered with a different previous policy than the
current one.

Model-based RL

In contrast to all the aforementioned model-free approaches model-based RL methods make use
of an environment model, as the name already implies. In an MDP P and R together sufficiently
describe such a model. Henceforth, these are also referred as system dynamics and environment
model. Typically, P,R are either given or learned from data in a supervised manner.

Data D Model Planning Policy π

Figure 2.2: Principle of Model-based RL.

This model is afterwards used for planning to come up with a policy. Different planning methods
are discussed in 2.2.

Policy Search and Actor Critic Methods

A different branch of RL methods approximate the policy πθ(s, a) directly, without the intermediate
step of approximating the value function. To optimize such a policy network, the policy gradient
∇θπθ(s, a) = πθ(s, a)∇θ log πθ(s, a) is needed. For an objective function J the following equation
holds:

∇θ J(θ) = E
[
∇θ log πθ(s, a)Qπθ (s, a)

]
(2.9)

For the algorithm called REINFORCE the unknown q-value Qπθ (s, a) is estimated with the actual
return from episodes of experience vt . This leads to the update rule in equation 2.10 with learning
rate α.

∆θt = α∇θ log πθ(s, a)vt (2.10)

But this sample has a high variance. So the idea of Actor-Critic Methods is to use a critic to
have a biased estimate with lower variance for the q-value in equation 2.9. The actor updates its
weights in the direction suggested by the critic. By subtracting the state value function Vπθ (s) as a
baseline, hence estimating the advantage function Aπθ (s, a) = Qπθ (s, a) − Vπθ (s) for this particular
action, and performing asynchronous updates. This leads to a state-of-the-art algorithm called
Asynchronous Advantage Actor Critic (A3C) [MBM+16].

13



2 Background

2.2 Planning

Planning is the ability to anticipate the future consequences of actions, by reasoning with an
understanding about how the environment works. So in contrast to learning algorithms, planning
assumes access to the system’s dynamics. These could be either given or learned from experience
data as mentioned before. In general any algorithm that makes use of such a model to predict an
optimal policy can be viewed as an instance of a planning algorithm.

2.2.1 Optimization Problem

From a different angle of view, planning could be viewed as constrained optimization (see equation
2.11). The task is to find an action at such that it maximizes the cumulative future reward, under
the constraint that the environment dynamics si+1 = f (si, ai) holds for all the states encountered
while planning [PGDL18].

at = argmax
at :t+T

t+T∑
i=t

r(si, ai) , where si+1 = f (si, ai) ∀i ∈ {t, · · · , t + T − 1} (2.11)

2.2.2 Value Iteration

A rather simple planning algorithm is directly derived from Bellman Equation (2.3). The method
is called Value Iteration (VI) and iteratively applies the following equation to arbitrary initialized
values. It’s proven that this method converges to an optimal value function V∗, for that the Bellman
optimality holds, and hence is an equilibrium point of the iteration.

∀s : Vk+1(s) = max
a

[
R(s, a) + γ

∑
s′

P(s′, π(s), s) · Vk(s′)
]

(2.12)

VI is an instance of Dynamic Programming methods, that were first introduced by Bellman
[Bel57].

2.2.3 Search

Search is a special kind of planning method, that focuses the computational power on that state the
agent is currently in. Starting from the current state, the planning algorithm spans a tree with edges
corresponding to actions A and tree nodes standing for the states S of the MDP. This tree can be
grown by iteratively applying a (transition) model.

This method is also called lookahead planning, because with each level of the tree different future
trajectories of states are unrolled.

14



2.2 Planning

Weber et al. [WRR+17] also refer to this kind of planning as ‘Imagination’. This terminology is
based on the idea that an agent uses a model, which is basically a summary of its ‘understanding’
about the environment’s dynamics. And throughout planning this understanding is used to ‘imagine’
different potential future scenarios 1.

Monte Carlo Tree Search

Exhaustive search like Depth First Search or Breadth First Search is not feasible for problems with
large state and action spaces. This is mostly true for real world problems, e.g. the number of states
in the game of Go roughly exceeds the number of atoms in the universe [SHM+16].

Monte Carlo Tree Search (MCTS) addresses this problem. The tree is grown by performing so
called rollouts and propagating their results throughout the tree. A rollout is basically a trajectory
of random samples in decision space, that are consecutively applied to a state. Figure 2.3 shows the
basic steps performed in an MCTS algorithm: (i) Selection , (ii) Expansion , (iii) Simulation and
(iv) Backpropagation .

Figure 2.3: Overview over basic steps of the MCTS method [BPW+12].

During Selection (i) a node to expand is chosen with a tree policy. Afterwards the selected node is
expanded (ii) by applying the model once and creating a new node for the resulting state. From this
new state a Simulation (iii) is started, which corresponds to the rollout mentioned before. Finally,
the return ∆ obtained from the simulation is backpropagated (iv) through the tree back to the root.
Therewith a state action value Q(s, a) is estimated for each node in the tree [BPW+12].

One can balance exploration and exploitation in the tree by estimating some upper confidence for
values. Upper Confidence Tree (UCT) is a MCTS algorithm with a tree policy, that selects actions
a, which maximizes the Upper Confidence Bound (UCB) [GS07].

Q+UCT(s, a) = QUCT(s, a) + c

√
log n(s)
n(s, a)

(2.13)

In this context n counts the number of visits of a particular state or state-action pair. The constant c
balances the amount of exploration. The tree policy is derived by acting greedy w.r.t. Q+UCT(s, a)
[GS07].

1Although it gives an intuition, we try to avoid this terminology in the following, as it is not precise and encourages
humanization of algorithms.
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2 Background

2.3 Combine Learning and Planning

Planning provides great generalization possibilities and allows to improve a policy solely with
additional computing power and simulated experience. On the other hand, it requires a model, what
can be crucial for many domains. Planning with inaccurate model is likely to compound errors.
Learning addresses most of these problems, but in general requires a lot of data. So in order to take
the benefits from both worlds, there are several ideas on how to effectively combine learning and
planning. Most relevant approaches are outlined in the following.

2.3.1 Dyna-Q

The idea of the Dyna architecture is to enhance the real experience samples from a true MDP
M = ⟨S,A,P,R, γ⟩ with simulated experience from a learned model ⟨P̂, R̂⟩.

The Dyna-Q algorithm learns a Q-value function with use of such simulated experience. The pseudo
code 2.1 shows how learning and planning with the simultaneously learned model are integrated.

Algorithm 2.1 Pseudo Code of Dyna-Q algorithm
initialize Q(s, a), and ⟨P̂, R̂⟩ ∀ s ∈ S, a ∈ A
loop

s← current state
a← ϵ-greedy(Q, S)
r, s′← execute action A in the environment
Q(s, a) ← Q(s, a) + α[r + γmaxa′ Q(s′, a′) −Q(s, a)]
⟨P̂, R̂⟩ ← r, s′ // Update model with the new transition sample
for i ← 1, n do

s, a← random
r, s′← ⟨P̂, R̂⟩
Q(s, a) ← Q(s, a) + α[R + γmaxa′ Q(s′, a′) −Q(s, a)]

end for
end loop

Given a transition sample ⟨s, a, r, s′⟩, the Dyna-Q first updates the value function Q and its model
⟨P̂, R̂⟩. Afterwards n additional training iterations are performed with transitions, that are sampled
from the model.

Data as a model

When the model ⟨P̂, R̂⟩ just stores every observed transition, it is equivalent to a replay buffer. In
that case the model is the set of data seen so far. This data is an unbiased sample from the true
transition function ⟨s, a, s′⟩ ∼ P(s′, s, a) and the true reward function r ∼ R(s, a). By storing all the
observed samples from that ground truth distributions, one approximates those. Hence, sampling a
random mini batch from the replay buffer corresponds to sampling an approximate model [Lin92]
[MKS+15].
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2.3 Combine Learning and Planning

2.3.2 Multitask Learning

Often it is desired to learn for multiple task. Learning multiple tasks simultaneously forces a neural
network to learn good representations in the hidden layer. Thereby a network can transfer knowledge
across tasks. This is also known as pressure of multitask learning. Networks that are trained for
multiple tasks learn a representation that captures underlying factors, that are relevant for the tasks
[BCV13].

Figure 2.4: This illustration is taken from [BCV13]. It shows the idea of sharing underlying factors
in a hidden layer to achieve knowledge transfer across tasks.

The pressure of multitask learning forces a network to acquire good abstractions. This can be
considered as indirectly learning a model for the domain.

One approach of learning the value functions for several tasks simultaneously is to use Universal
Function Approximators (UVFA). The idea is to learn a Q-function, that is conditional on the goal g
to achieve. So the value not only depends on the current state s and action a, but also on the goal
[SHGS15].

Qπ(s, a, g) = E
[
Rt |st = s, at = a, g] (2.14)

2.3.3 Learning and Planning in AlphaGo

AlphaGo was the first algorithm that was able to beat a professional human player in the game of
Go back in 2015. Therefore, it combines MCTS planning with model-free learning methods.

It uses a learned value function and policy network to truncate the search tree. The tree’s breadth is
reduced with a learned prior probability pσ(a|s) for actions. The depth of the tree is reduced with
a learned value function V(s) to evaluate board positions s. Additionally, a better default policy
pπ(a|s) is used to guide the search towards more promising directions. V(s), pπ(a|s) and pσ(a|s)
are trained with supervised learning from expert data and with RL during self-play [SHM+16].

From a different view AlphaGo uses a model-free value function as a rough global estimate, which
is then locally refined for the current state s by the online MCTS planner. During planning this
method does not require any new real experience, as a simulator can generate infinite simulated
experience only with computational power [FRIW17].
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2 Background

2.3.4 Learning and Planning in AlphaZero

Silver et al. [SSS+17] improve the original AlphaGo algorithm, as depicted in section 2.3.3, to use
no domain specific knowledge. With this change the algorithm called AlphaZero can be successfully
applied to other domains than Go like Chess [SHS+17].

AlphaGo uses domain specific knowledge in several forms: (i) large dataset of human expert play,
(ii) handcrafted features with common game patterns, (iii) game rules and symmetry. AlphaZero
defines the underlying Reinforcement Learning problem as a sequence of well-defined supervised
learning problems. Therewith planning computations performed by MCTS can be viewed as a
powerful policy improvement operation. This improved policy acts as a slightly better teacher by
generating data for a neural network to learn in a supervised manner. Though the learner imitates
the teacher and like in AlphaGo the learned value and policy guides the tree search. Starting from
completely random play, it can iteratively achieve superhuman performance solely by RL and
self-play [SHS+17].

In contrast to the implication of the term ‘zero’ in its name, the algorithm still uses domain knowledge
in form of the game rules. By knowing the game rules the agent is equipped with a perfect simulator
for that domain. This is a very strong assumption and is not available in other domains with rather
complex system dynamics. So the algorithm still uses domain specific knowledge.

2.3.5 Integrating Differentiable Planning Modules

This is the approach investigated further by this thesis. The basic idea is to integrate differentiable
planning modules in a neural network architecture such that the entire system can be trained from
data. Therewith learning and planning is combined in a way that the planning computation is
directly integrated inside the neural learner.
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3 Integrating Differentiable Planning Modules

Many network architectures in deep RL are inspired from classification tasks. They basically
view the problem as classifying states s with ‘action labels’ a by some trained neural network
architecture π(a|s). But an MDP with its sequential nature is inherently different from such a
one-step decision-making and requires some kind of planning [TLA16].

The idea is to design networks that reflect this sequential nature of decision-making. Tamar et al.
[TLA16] called such networks, as described above, reactive policies πre(s, a). With this they
proposed a new network structure that embeds explicit planning computations inside a planning
module to enhance reactive policies. The general principle is depicted in figure 3.1a.

Input

Planning
Module

Reactive Policy
πre(s, a)

(a) Enhancing reactive policies with embedded
planning modules.

In
p
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t
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Module

O
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u
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Gradients

(b) Principle of integrating differentiable planning
modules for end-to-end training

Figure 3.1: Integration of Differentiable Planning Modules

A planning module is a neural network structure that performs a planning computation. A key
observation is that many planning algorithms can be described in a differentiable way. Being
differentiable means that gradients with respect to the network’s weights are defined and can be
computed. A desired property of such a network with integrated planning module is to be trained
end-to-end with data.

End-to-end training means that one directly learns a mapping x 7→ y from the input layer x to the
outputs y of the network, as it is depicted in figure 3.1b. The mapping is optimized with a loss
function L(y, θ), where θ are the weights of the network. Optimization is typically performed with
gradient descent by the Backpropagation algorithm. Thereby the gradients are propagated back
from the output layer to the input layer, as indicted by the arrow in the figure [Roj13].

An overview over different works that follow this approach is shown in figure 3.2. We categorize
these methods by the way the state space is represented. A branch of methods, as depicted in section
3.1, encode states sparsely. In contrast, a different branch of methods (section 3.4) prefers dense
encoding of states in latent variables. In the following all these different approaches to integrate
trainable planning modules are discussed and compared in detail.
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Planning
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Latent State Space
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MDP
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Figure 3.2: Overview over different approaches that integrate differentiable planning modules:
Nodes that are indicating a specific algorithm are coloured blue.

3.1 Spatial State Space

A first branch of methods performs planning over a spatial state space. This means that there exists
a spatial relationship among states.

s0 s1 s2

s3 s4 s5

s6 s7 s8

Figure 3.3: Spatial State Tensor

All these methods have in common that they represent
the entire state space as a tensor. An example is depicted
in figure 3.3. Thereby each cell in the tensor corresponds
to a particular state variable or stores a value that belongs
to that state. We refer to this as a sparse encoding of state
variables. So topology or distance among state variables
is defined by the spatial shape of the tensor. In the example
is s1 next to s4.

We consider the task is to solve an MDP M =

⟨S, A, R, P, γ⟩ with unknown environment dynamics P
and R. In order to perform planning, M is mapped to another MDP M̄ = ⟨S̄, Ā, R̄, P̄, γ⟩. The
intuition behind is that knowing the optimal policy for that MDP helps to act optimally in the actual
MDP M . The MDP M̄ is inferred solely on observations ϕ(s) in M . So henceforth M̄ is also called
inferred MDP [TLA16].

φ(s)

R̄P̄

fRfP

Figure 3.4: Mapping to Inferred MDP

The mapping is shown in figure 3.4. M̄ is created with
a learned reward mapping R̄ = fR(ϕ(s)) and transition
mapping P̄ = fP(ϕ(s)). The actual choice for S̄ and Ā is
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3.2 Value Iteration Networks

left open as domain specific design choice. A common
choice is to use the same state S = S̄ and action A = Ā
as in the true MDP [TLA16].

Inside the inferred MDP approximate planning is per-
formed with a planning module, which is discussed in
detail later.

3.2 Value Iteration Networks

The first method proposing this idea was the Value Iteration Network, henceforth VIN. VIN integrates
the Value Iteration algorithm in a neural network structure. The key observation thereby is that
Value Iteration can be formulated as a recurrent Convolutional Neural Network (CNN) so that it is
fully differentiable [TLA16].

Figure 3.5: Value Iteration with deep CNN. The illustration is taken from [TLA16].

So the Value Iteration Module is the core part of VIN. Input to that planning module, as depicted
in figure 3.5, is a reward image R̄ with dimensions ⟨l, i, j⟩. It is assumed that the state space S̄
matches to a two-dimensional lattice structure. Hence, the transition P(s′ |s, a) can be expressed as
a 3× 3-convolution with weights W ā

l,i, j
for each convolutional filter. The number of filters is defined

by the action set Ā and a single filter performs the convolution in equation 3.1 [TLA16].

Qā,i′, j′ =
∑
l,i, j

W ā
l,i, j · R̄l,i′−i, j′−j (3.1)

So the resulting tensor Q̄(s̄, ā) has a separate channel for each action. To match the computation
with one pass of VI, as defined in equation 2.12, a max-pooling over the action dimension of the
tensor is done [TLA16].

V̄i, j = max
ā

Q(ā, i, j) (3.2)

The resulting values V̄ are stacked with the rewards R̄ and fed back into convolutional layer and
max-pooling, which was described before. This procedure is done k times to perform k iterations
of VI [TLA16].

When performing k iterations of VI, information will be propagated at most k steps. Hence,
planning is limited to that finite horizon. For larger problem sizes an agent, that is currently in
some state s, is unaware of rewards that are further away than k steps from state s. This leads
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3 Integrating Differentiable Planning Modules

Figure 3.6: Hierarchical Approach to Value Iteration Networks. The illustration is taken from
[TLA16].

to suboptimal plans. One could increase the number of iterations proportional with the problem
size. But this would lead to much deeper VIN networks, that are slower and harder to train, due to
vanishing gradients.

Hierarchical Value Iteration Networks (HVIN) are an extension to VIN, that was also proposed by
Tamar et al. [TLA16]. It addresses the problem with hierarchical planning. This means that VI is
performed at multiple levels of resolution. Therefore, a copy of the input is down-sampled by factor
d and fed into the so-called high-level VI module. This module learns to perform VI at this lower
resolution. The ‘speed of information transmission’ is thereby increase by factor d and so allows
further planning with k iterations. The resulting values are up-sampled again and fed as input to the
standard VI module [TLA16].

This idea can easily be extended to several hierarchical layers. Gupta et al. [GDL+17] plan with
a d times down-sampled environment and conduct k value iterations. The output is up-sampled
and the entire process is repeated until the resolution of the original problem is reached. This
enables planning for goals, that are as far as k2d away, while only performing d · k value iterations
[GDL+17].

SoftVIN enhances VIN by using a softmax policy loss for better propagating gradients back through
the planning module [PAS18].

The Generalized Value Iteration Network (GVIN) is, as the name already implies, a generalization
of the basic Value Iteration Network (VIN), that was proposed in the section 3.2. One shortcoming
of the original VIN is that it can only be applied on regular lattice structures like grids. This
limitation is due to its formulation of VI as CNN. GVIN allows the generalization of the convolution
operator to spatial graphs G = ⟨V,X, E, A⟩ with n verticesV and edges E. The adjacency is given
by the matrix A ∈ Rn×n and X ∈ Rn×2 denote the locations of the vertices in the spatial domain
[NCG+17].

To actually perform convolution the so called Graph Convolution Operation P ∈ Rn×n is used.

Pi, j = Ai, j ·

L∑
l=1

wl · K
(t,θl )
d
(θi j) (3.3)
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3.3 Cognitive Mapping and Planning

Thereby the vector w contains the weights learned by the convolution. The directional Kernel
K (t,θl )
d
(θ) =

(
1+cos(θ−θl )

2

) t
activates areas around the reference directions θl with temperature t. The

direction θi j can be computed based on the embeddings X. The intuition behind this approach is
that an action, that leads to a state in the direction of the goal, seems to be promising . Because P is
a sparse matrix, the convolution q(a) = P(a)(r + v) of values v, q ∈ Rn and rewards r ∈ Rn, that are
sitting at the vertices, can be computed efficiently [NCG+17].

So far all approaches considered that the problems are fully observable. The next approaches will
show how to deal with partial observability.

3.3 Cognitive Mapping and Planning

Cognitive Mapping and Planning (CMP) is a neural network architecture for visual navigation
of agents in novel environments. It uses a unified joint architecture for mapping of observations
and planning with its belief such that the mapper is driven by the needs of the planner. The entire
system is designed fully differentiable for end-to-end training. Basically CMP consists of two parts,
a spatial memory and a HVIN planner, as described before in section 3.2 [GDL+17].

The spatial memory holds a metric egocentric belief ft and confidence values ct about the world in
a top-down view. This belief is generated by the mapper from the belief in previous time step ft−1,
the current egomotion et and the visual observation It . It can be viewed as a gated recurrent network
comparably to LSTM (see Olah [Ola] for comparison). Thereby the inherent partial observability of
visual inputs is resolved. The following update U is performed to the memory:

ft = U(W( ft−1, et ), f ′t ) ,where f ′t = ϕ(It ) (3.4)

Here W is a function that transforms the previous belief ft−1 with the egomotion et to be egocentric
again. The encoding of visual inputs ϕ(It ) is implemented as a pretrained Resnet-50 network that
maps its latent variables to an estimate for the current egocentric top-down view. The confidence
values for the current belief are updated in a similar way :

ct = ct−1 + c′t (3.5)

As already mentioned the planner is a HVIN network that performs hierarchical planning on beliefs
⟨ ft, ct⟩ of different scales ⟨s0, · · · , sd⟩. Thereby si denotes an i times down-sampled belief. Starting
with scale sd value iteration is performed in an MDP induced by the reward mapping function fR.
The results of that computation are up-sampled to the next scale and the entire process is repeated.
The values of scale s0 are fed to a fully connected layer to select the action [GDL+17].

3.3.1 QMDP-Net

Karkus et al. [KHL17] follow a similar approach to deal with partial observability. The QMDP-Net
holds and updates a Bayesian belief bt about the agent’s current state. For planning the QMDP
algorithm is performed. This algorithm performs Value Iteration in the underlying MDP, which
neglects the uncertain state of the POMDP. For the QMDP-Net this part follows the idea of
Tamar et al. [TLA16]. Finally, the QMDP values are mapped with Bayesian belief bt to a value
q(a) =

∑
s∈S QMDP(s, a) · bt (s) for the current action a [KHL17].
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3 Integrating Differentiable Planning Modules

The major difference to CMP is that QMDP-Net does not perform a mapping from observations to
a (top-down-view) Cognitive Map.

3.4 Latent State Space

In contrast, there is a branch of other methods that perform planning in Latent State Space. As the
name already implies, latent states are hidden and so not known. The idea is that planning can be
preformed easier in latent space compared to the high-dimensional input space.

Consider an input x as high-dimensional visual observation with dimension nx . In general
convolutional layers encode the input to some latent layer representation z. Farquhar et al. [FRIW17]
defined this as latent states of the network. According to Bengio et al. [BCV13] we will henceforth
also refer to z as learned representation of x.

Ordinary model-free networks, like DQN [MKS+15], use fully-connected layers to estimate a value
based on this latent representation [FRIW17]. The idea of approaches presented in the following is
to use the latent state space for planning instead.

In general the dimension nz of a latent state z is much lower than the dimension nx of the
corresponding visual observation. This makes planning in latent spaces easier. So for a latent state
representation equation 3.6 holds [WSBR15]:

nz << nx (3.6)

A latent sate space can also be learned with unsupervised learning methods, as depicted in the next
section.

3.4.1 Unsupervised Learning of Latent Space

Unsupervised Learning is another subfield of Machine Learning with no supervisor present. It’s
about detecting hidden structures in data. We will discuss two techniques to extract a latent state
space with unsupervised learning methods: (i) Auto-Encoding and (ii) Slow Feature Analysis .

Auto-Encoding

Auto-Encoding (i) is an unsupervised learning technique that compresses input data X to a latent
code z such that X can be reconstructed given z. Two types of Auto-Encoders are common:
(a) convolutional and (b) variational Auto-Encoders.

A Convolutional Auto-Encoder (CAE) uses convolutional neural networks to fulfil the aforementioned
task. The input data X is encoded with several convolutional layers to a latent representation z,
which is the bottleneck layer of the network. A decoder, consisting of several de-convolutional layers,
decompresses z to a reconstruction X̃ . The auto-encoder is trained to minimize the mean-squared
error between X and its reconstruction X̃ . Hence, the loss L =

∑
i Li is:

Li = (Xi − X̃i)
2 (3.7)
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3.4 Latent State Space

for all data Xi in the training batch [Gal].

A Variational Auto-Encoder (VAE) models data as distributions: qθ(z |x) for encoding and pφ(x |z)
for decoding. The encoder compresses an input x to a hidden representation z which is much lower
dimensional space. The lower dimensional space is assumed Gaussian distributed with probability
density qθ(z |x). The decoder maps the hidden representation z to the probability distribution of
the data that is encoded. With this mapping information is lost, because it is reconstructed from
a smaller to a larger dimensionality. This information loss is measured with the reconstruction
log-likelihood pφ(x |z). So the loss function of the variational auto-encoder is given in equation
3.8.

L =

N∑
i=1
−Ez∼qθ (z |xi )[log pφ(xi |z)] + KL

(
qθ(z |xi)∥p(z)

)
(3.8)

Therewith KL denotes the Kullback-Leibler divergence between the encoder’s distribution qθ(z |x)
and p(z). It measures how close q is to p. For VAE p(z) = N(z |0, 1) is a standard normal distribution
with mean zero and variance of one [Alt].

Slow Feature Analysis

Slow Feature Analysis (SFA) is an unsupervised learning technique to extract a set of slowly varying
features from an input data stream. Given a multidimensional and time dependent input signal
x(t) = [x1(t), · · · , xN (t)]T , SFA finds a set of functions g1(x), · · · , gk(x) such that each output
signal yi = gi(x(t)) varies as little as possible over time [SW13].

Schoenfeld and Wiskott [SW13] combine these slowly varying features with an Independent
Component Analysis (ICA) to form a sparser coding of features.

3.4.2 Shaping the Latent Space

In the spatial state space representation each state variable corresponds to a specific cell in the
tensor representing the state space. A metric for distance between different state variables is defined
by the spatial shape of the tensor. So the distance in the state space corresponds to the distance of
cells in the spatial tensor.

When reducing an input x to a latent representation z of much lower dimension, it encodes x
densely in Rnz . Thereby a new metric in latent space is implied by the scalar product ∥z1 − z2∥ =√
⟨z1 − z2, z1 − z2⟩. This metric is also latent and so hard to interpret. It defines the shape of the

latent space.

These definitions of latent space are not restrictive. So the encoding in a latent representation could
basically still mean anything. This makes planning not effective. In order to perform planning in
latent space, one would need to restrict the shape further.

One idea, that is shared by several approaches, is to use auxiliary losses to shape the latent space.
This means to add additional loss terms, which are not inherently necessary by the task definition,
but help to gather better representations. Hence, they force the latent state space to have particular
properties [FRIW17].

There are several existing methods to do so. Common ideas are briefly summarized below:
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3 Integrating Differentiable Planning Modules

State Discrimination One idea is to force latent states z to be good discriminators for the input x.
Kulkarni et al. [KSGG16] and Watter et al. [WSBR15] achieve this by using auto-encoders
that minimize an auxiliary reconstruction loss, as given in equation 3.7 and 3.8.

Reward Prediction Another auxiliary loss often enforces a reward prediction r̂(zt ), that is used
for planning, to match with the immediate ground truth rewards rt , that the agent observes in
the environment. This is done by reducing the squared error L =

(
r̂(zt ) − rt

)2 of predictions
[KSGG16] [OSL17] [FRIW17].

Consistent Transition A distinct set of methods tries to shape the latent space in a way that
transitions can be easily performed. Watter et al. [WSBR15] force the dynamics to be linear
in the latent representation. For tree planning consistent transitioning can be achieved by
sharing weights of the transition function throughout the tree [OSL17] [FRIW17]. Also,
differentiating through the entire tree ensures that the learned representation are good for
planning [FRIW17].

Slowness Another approach is to extract the slowest varying features in observations. Thereby one
captures the regularities in the environment and in its dynamics. This leads to meaningful
representations [SW13].

How to actually plan in latent space is discussed in the following.

3.5 Tree Planning

One idea of planning in latent space is to perform tree search. Like MCTS, which was discussed
earlier, these methods focus computations on planning for the current state. This is also considered
as local planning.

In contrast, value iteration methods perform planning over the entire state space. This kind of
planning requires the state space to be sufficiently small. Tree planning on the other hand allows
scaling even with large state space, because optimal actions are only computed for a small subset of
states [OSL17].

In order to integrate tree planning in a differentiable module some adjustments need to be done. As
a neural network has a fixed structure that needs to be defined before training starts, the branching
and depth of the tree need to be limited. Especially deep trees encoded in a very deep network
would suffer from vanishing gradients.

3.5.1 Value Prediction Network

The Value Prediction Network (VPN) is the first algorithm developed to perform tree planning in
latent space. It therefore predicts the rewards and values of future latent states.

Given a current latent state st , VPN performs a local Temporal Difference Search with depth d. The
principle is depicted in figure 3.7b. This search improves the value estimate for the current state by
aggregating the maxima of all branches [OSL17].
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3.5 Tree Planning

(a) Learning process in a Value Prediction Network.
(b) Planning computation in a Value Prediction Net-

work.

Figure 3.7: Differentiable Tree Planning in the Value Prediction Network. The figures are taken
from [OSL17].

To grow the tree in latent space a core module fcore is recursively applied. It is composed of (i) a
transition module ftrans : st, ot 7→ st+1 that predicts the consecutive latent state st+1, (ii) an outcome
module fout : st, ot 7→ rt, γt estimating the immediate reward and discounting from following option
o, and (iii) a value module fvalue : s 7→ V(s). All these modules are designed as neural networks
that are integrated in the VPN. This ensures the tree to be fully differentiable and allows end-to-end
training [OSL17].

The VPN is trained with a combination of n-step Q-Learning and supervised learning. Given an
n-step trajectory ⟨x0, o0, r0, γ0, · · · , xn, on, rn, γn, xn+1⟩ the predicted values of the VPN are trained
with n-step Q-Learning. The return values Rt are bootstrapped with a previous version of the value
network [OSL17].

Rt =

{
rt + γtRt+1 , if t ≤ n

maxa Q(st+1, a) , else
(3.9)

The immediate reward r lt and discounting factor predictions γlt are trained with supervised learning
from the data generated by the agent, that follows a behavioural policy. Thereby the upper index l
indicates the depth of prediction, as it is depicted in figure 3.7a. Supervision is provided by the
truly observed reward rt and discount factor γt , that matches the timestamp t of the prediction.
The training of the value function vlt behaves similar with the bootstrapped return Rt as learning
target.

Lt =

k∑
l=0
(Rt − v

l
t )

2 + (rt − r lt )
2 + (γt − γ

l
t ) (3.10)

The total loss is composed of the partial losses for each time step in the trajectory [OSL17].

With this training setup the network is forced to match its predictions vlt , r lt and γlt with observations
during the path that was taken by the agent. This can be understood as a form of on-policy
learning.

It remains to remark that during optimization the core module is not embedded in the planning
algorithm. So the gradients do not propagate back through the planning computation. Planning is
only used to compute bootstrapped targets for the value function v [FRIW17].
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3 Integrating Differentiable Planning Modules

3.5.2 TreeQN

A different algorithm that follows a similar line of work is TreeQN. This approach also expresses
tree search in latent space in a differentiable way. The major difference is the training setup: TreeQN
is trained end-to-end with a version of n-step Q-learning, as shown by equation 3.11.

Ln-step Q =

n∑
j=1

( j∑
k=1
[γ j−k ∗ rt+n−k] + γ j max

a′
Q−(s, a′) −Q(st+n−j, at+n−j

)
(3.11)

Given a n-step trajectory ⟨st, at, · · · , st+n, at+n⟩ the value function Q(s, a) is optimized for all states
in the trajectory. For each state action pair s, a several learning targets

∑j
k=1[γ

j−k · rt+n−k] +
γ j maxa′ Q−(s, a′) of different length j ∈ {1, · · · , n} are computed. All targets are bootstrapped
after the last step with a previous version of the value network Q−(s, a) [FRIW17].
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Figure 3.8: Differentiable Tree Planning in TreeQN. This illustration is taken from [FRIW17]. It
shows the basic principle

In contrast to Oh et al. [OSL17], this setup allows that gradients propagate back through the planning
computation. It is achieved by training the whole network end-to-end. The value network Q, which
contains the embedded planning module, is directly optimized by the loss in 3.11. So gradients flow
back from the finale layer through the whole network structure, that is depicted in figure 3.8, to the
input stage. This includes also paths in the tree that actually have not been taken by the agent in its
trajectory [FRIW17].

So the TreeQN also learns about the value of states that are located off the policy which is followed.
This might be understood as a form of off-policy learning.
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3.6 Successor Features

3.6 Successor Features

Tree planning methods, as introduced before in 3.5, use a current latent state representation st to
make action conditional single step future predictions with a transition module. This is the way how
the trees are incrementally grown.

A different branch of work considers not only single step future predictions. The idea is to learn
multi-step predictions ψπ(s, a) for the future that are contingent upon a policy π.

This is achieved with the assumption that rewards are linear r(s, a) = ϕ(s, a)T · w in some features.
By exploiting this linearity in the definition of the Q-Value, one can decouple the environment
dynamics from the rewards and hence the values [BDM+17].

Qπ(s, a) = Eπ[ϕTt+1 · w + γϕ
T
t+2 · w + γ

2ϕTt+3 · w + . . . |St = s, At = a] (3.12)

= Eπ
[ ∞∑
i=t

γi−t · ϕi+1 |St = s, At = a
]T
· w = ψπ(s, a)T · w (3.13)

So the Successor Features (SF) ψπ are a way of summarizing the dynamics induced by π in a given
environment [BDM+17].

3.6.1 Deep Successor Representation

The idea of Deep Successor Representation (DSR) is to regress these SF with a neural network.
Therefore, DSR uses convolutional layers f : S 7→ Rd to compress information contained in state
s ∈ S into a compact feature representation ϕs ∈ Rd such that successor features can be computed
based on ϕs. These layers f can be viewed as the encoder part of an convolutional auto-encoder.
The decoder network gθ̃(ϕs) consist of deconvolutional layers. So the reconstruction loss

La
t (θ̃, θ) =

(
gθ̃(ϕst ) − st

)2 (3.14)

forces features ϕs to be good discriminators for the state s. Additionally, the features ϕs are forced
to be good predictors for the immediate reward r(st, at ) in state st (with action at ). This is achieved
by the auxiliary loss given in equation 3.15.

Lr
t (w, θ) = (r(st, at ) − ϕst · w)

2 (3.15)

Thereby the reward prediction is implemented as a single layer with weights w [KSGG16].

To actually regress the SF with additional fully-connected layers uα(ϕs, a), the DSR network uses
an adapted form of TD-Learning, as shown by the loss in equation 3.16.

Lm
t (α, θ) = E

[(
ϕ(st ) + γuαprev(ϕst+1, a

′) − uα(ϕst , a)
)2
]

(3.16)

Here uαprev denotes a previous version of the network to stabilize the training process. Optimization
is performed on the compound loss Lt = Lr

t + La
t + Lm

t [KSGG16].
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3 Integrating Differentiable Planning Modules

3.7 Embed to Control

All the previous ideas used auxiliary losses to guide a neural learner towards learning better
representations in its latent state zt . A similar approach from the related field of Optimal Control
shows how auxiliary losses can be used to identify a good latent representation for planning by
explicitly forcing the latent system to be in a class of well-known problems.

Embed to Control (E2C) applies optimal control to systems with high-dimensional non-linear
input xt , e.g. raw images and without any access to the underlying physical model st+1 = f (st, ut )
with states s and control signal u. E2C tries to reduce this high-dimensional non-linear system
by identifying a mapping m(xt ) : Rnx 7→ Rnz to a low-dimensional system in latent space
zt = m(xt ) + ω, in which optimal control can be applied easily. In that context easy means that the
dynamics are linear, see equation 3.17, and the costs c(zt, ut ) in each step are quadratic, as shown in
equation 3.18 [WSBR15].

zt+1 = Azt + But (3.17)
c(zt, ut ) = (zt − zgoal)

T Rz(zt − zgoal) + uT Ruu (3.18)

The model is trained with data D = {(xt, ut, xt+1)}t consisting the observation xt at time t,
the applied control ut , and the consecutive observation xt+1. E2C assumes all variables normal
distributed. So for the encoder part the latent variable is distributed like Qφ(Z |X) = N(µt, diag(σ2))

with mean µt and variance σ regressed by a neural network. And hence, the transition model
Q̂ψ(Ẑ |Z, u) = N(At µt + Btut, AtΣt AT

t + Ht ) transforms the distribution of latent states Qφ with
the learned linear dynamics At, Bt as shown in 3.17. A Bernoulli distribution Pθ(X |Z) describes a
generative model, which reconstructs observations x ∈ X from latent states [WSBR15].

The loss Lbound is a combination of reconstruction losses of two VAE. It enforces to properly encode
the latent space variables zt from observation xt , and ẑt+1 from xt+1 respectively by minimizing the
variational bound. See 3.8 for comparison [WSBR15].

Lbound(xt, ut, xt+1) = Ezt∼Qφ, ẑt+1∼Q̂ψ
[− log Pθ(xt |zt )− log Pθ(xt+1 | ẑt+1)]+KL(Qφ ∥P(Z)) (3.19)

The final loss L = Lbound(xt, ut, xt+1) + KL
(
Q̂ψ(Ẑ |µt, ut )∥Qφ(Z |xt+1)

)
is enhanced with an

additional Kullback-Leibler divergence, which minimizes the difference between the distribution
for predicted next state latent states Q̂ψ and the encoding distribution Qφ of the true observation in
the next state xt+1. This aligns predictions with observations [WSBR15].

Hence, a Linear Quadratic Regulator (LQR) can be applied to the learned system in latent space.
Unlike to the other approaches introduced before, this planning algorithm is not directly embedded
in the neural network structure. Future work may consider integrating a differentiable LQR inside
the network to allow end-to-end training [WSBR15].

3.8 Conclusion

The various approaches to integrating differentiable planning modules have shown that the shape of
learned representations is important. VIN and derived methods exploit the spatial shape to perform
convolutions. Others use auxiliary losses to shape the latent space so that it has desired properties
and hence ensure meaningful planning.
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3.8 Conclusion

But there are also downsides, when using auxiliary losses. Requiring a latent representation to
have certain properties with an auxiliary loss always introduces a certain amount of bias to the
representation. So, Farquhar et al. [FRIW17] experienced the best results with as few auxiliary
losses as possible and hence an unbiased learned latent representation.

On the other hand, with few auxiliary losses it is not very restrictive what latent representations
encode. With this it is likely to over-interpret the meaning of latent representations and especially
planning computations, that are encoded in the weights of the network 1.

So a proper implementation of embedded planning modules needs to trade-off between these
aspects.

3.8.1 Stability

Furthermore, neural networks with embedded planning modules seem to be comparably unstable
to train. For instance VIN [TLA16] is trained with supervised learning and ground truth data for
optimal paths. Its performance, when trained with RL, is rather poor [NCG+17].

Also, Gupta et al. [GDL+17] trained in a supervised manner with ground-truth paths in the
environment. To enable RL without ground-truth data, Niu et al. [NCG+17] introduced Episodic
Q-Learning, a new RL algorithm that stabilizes their network’s training process.

The use of auxiliary losses can further destabilize the training. I also observed this during my
experiments, when applying DSR to Atari games. The auto-encoder and the corresponding
reconstruction loss destabilized the training process and led to total divergence in some cases. Only
removing this auxiliary loss completely helped to achieve learning in that particular task. Results
are depicted in section A.2 in more details.

Next, we will have a look how the predictive features generated by planning modules can be
exploited to achieve better learning.

1see https://redd.it/7a3av6 for an interesting discussion with Farquhar et al. [FRIW17]
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4 Exploiting Forecast Features

In this chapter we discuss different approaches from literature on how features that are generated by
an integrated planning module can be exploited for better learning of a policy. Thereafter, we will
summarize the ideas in a Planning for Learning framework. Finally, we introduce Unsupervised
Planning for Learning, an concrete application of the before introduced ideas for a visual navigation
task.

In general features gathered from planning can be understood as discriminators about the future.
Most planning algorithms gather values and rewards of different trajectories in the future to back
up the forecast quantities e.g. future V,Q, R and get a better estimate of the current state’s optimal
future. Intuitively these features can be understood as a forecast. So the idea is to use these features
to form a better representation of the current state so that a value network can better learn a value
for that state.

For most of the modules introduced in chapter 3 the planning computation is not performed until
convergence. It is only performed for a fixed number of steps or iterations. So the predictive features
generated are only approximative and possibly inaccurate. A proper exploitation needs to deal with
this fact.

4.1 Improved Value Estimates

The most straight forward idea is to directly use the improved values Q(s, a) for the current state s.
This can be done when the embedded planning computation refines the values locally.

To do so, Oh et al. [OSL17] and Farquhar et al. [FRIW17] perform embedded tree planning as local
refinement of the state action values for the current abstract state zt .

In contrast, when global planning is performed, the resulting values wouldn’t be meaningful for a
particular state. Tamar et al. [TLA16] extract only those values that are meaningful for the current
state with a so-called attention module. But these values are exploited in a different way as explained
later.

The entire approach is extended by Farquhar et al. [FRIW17] with the algorithm ATreeC. The idea
is to use the network with embedded planning module as an Actor in an Actor-Critic setup (see
section 2.1.3) and thereby improve the values. The critic is a neural network that regresses a value
function V(zt ) based on the latent representation zt of the current state xt .
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4 Exploiting Forecast Features

4.2 Improved State Features

A different branch of methods does not exploit the values from planning computation directly. They
rather improve the input features of a policy network to better capture the agents current state. From
a different point of view this idea can be viewed as concatenating input features with a set of forecast
features to better constitute the current state of the agent.

Tamar et al. [TLA16] concatenate input features ϕ(s) for the policy network with the values encoded
in ψ(s), that are gathered from planning in the inferred MDP M̄ , to come up with enhanced input
features for the policy network π(a|ϕ(s), ψ(s) and respectively a better representation for the current
state.

Weber et al. [WRR+17] follow a similar approach by enriching the features for the current state
with an imagination code cia. Therewith they summarize features from different simulated future
trajectories, as it is briefly outlined in the following.

4.2.1 Imagination Augmented Agents

Imagination Augmented Agents (I2A) [WRR+17] learn to interpret the prediction of an environment
model. Therefore, the model’s predictions are fed as additional context information to deep policy
networks.

The environment model is used to produce ‘imagined trajectories’ or rollouts. The actions in each
rollout are chosen with a rollout policy π̂. It’s used to generate n trajectories T1, · · · ,Tn. Each
trajectory T consists of a sequence of features ⟨ f̂t, · · · , f̂t+τ⟩ with rollout length τ. These features
f̂ = ⟨ô, r̂⟩ can consist of predicted observations ô and rewards r̂ for instance. Instead of completely
relying on these predictions and using them for planning, I2A feeds them to a rollout encoder E.
It’s implemented as an LSTM (compare [GSC99]) to which the features are fed in reversed order.
Rollout embeddings ei = E(Ti) are the outcome. Finally, an aggregator A combines different
rollout embeddings into a single contextual code cia = A(e1, · · · , en). In a last step cia and the
results from a model-free path cmf are combined in a policy network [WRR+17].

4.3 Policy Contingent Future Predictions

A trajectory of states s0, · · · , sT in an environment always heavily depends on actions a0, · · · , aT
taken by the agent. So predictions into the future st+1, · · · , sT are also contingent upon a policy.
So one approach is to learn to predict the future that is contingent upon the policy π which is
executed.

Kulkarni et al. [KSGG16] learn successor features ψπ , which are basically policy-contingent
predictions of future occupancy of features ϕ. Because rewards r(s, a) = ϕ(s, a)Tw are linear in
those features, it can easily be exploited to determine the value Q(s, a) = ψπ(s, a)Tw of a state and
action with a scalar product.

A different approach is to regress the future under some policy πg that tries to reach a goal g. How
these future predictions can be exploited is outlined in the following.
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4.3 Policy Contingent Future Predictions

4.3.1 Goal-Contingent Future

As introduced in section 2.3.1, storing data in a replay buffer can be viewed as an approximate model.
Also, learning for multiple tasks simultaneously can help to acquire better latent representations
(see section 2.3.2) . These ideas can be combined to exploit goal-contingent future predictions, as
outlined in the following.

Hindsight Experience Replay

A technique called Hindsight Experience Replay (HER) tries to combine those ideas. By relabeling
data in the replay buffer, it assumes multitask-learning with every state being a possible goal, i.e.
G = S. So intuitively, given a trajectory of states which has been observed, the agent imagines in
hindsight that the state finally reached actually has been the desired goal state all the time. Thereby
it can learn from positive example. This allows networks to learn in domains with very sparse
rewards [AWR+17].

Andrychowicz et al. [AWR+17] proposed several techniques to relabel the data that was gathered
by an agent acting in the environment with some behavioural policy. The method that performed
best is to relabel transition data with future states from the same trajectory. This means, given a
trajectory st, · · · , sT and a transition ⟨st, at, rt, st+1, g⟩, one replaces the true goal g of the transition
with a random future state of the trajectory g′ ∈ {st+1, · · · ,sT }. Thereby every goal corresponds to
a predicate fg(s) = 1[s = g]. The rewards rg(s, a) = −1[ fg(s) = 0] are also adjusted, in order to
match the new goal g′. So the agent receives a negative reward at every time-step when the goal is
not achieved. Using a UVFA the value Q(s, a, g) is regressed for each goal g ∈ G simultaneously
[AWR+17].

Temporal Difference Models

Pong et al. [PGDL18] proposed with Temporal Difference Models (TDM) an algorithm that
extends this idea with planning horizons. With this extension the value function Q(s, a, g, τ) is
also conditional to a planning horzion τ. The reward is adjusted in a way so that there only is a
reward in the τ-th step, namely the negative distance to the goal −∥s′ − sg∥. So the learning target
y = −∥s′ − sg∥1[τ = 0] +maxa Q′(s′, a, sg, τ − 1)[τ , 0] regresses the value to intuitively learn,
how close the agent can get to the goal g in τ steps, when currently being in state s and taking action
a [PGDL18].

So TDM can serve as a goal and horizon-contingent predictor for the future state after τ steps. This
knowledge can directly be exploited, when the value function Q(s, a, sg, τ) = −∥ f (s, a, sg, τ) − sg∥
is regressed as the difference between some latent variable f and the goal state sg. By minimizing
Q, one forces f to match the future state after τ steps [PGDL18].

at = argmax
at,at+T ,st+T

rc
(

f (st, at, st+T ), at+T
)

(4.1)

This allows an unconstrained optimization over these future states f (as shown in equation 4.1),
when a reward is only assumed to occur in the final state [PGDL18].
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4 Exploiting Forecast Features

This method differs from other approaches, as it does not incorporate the features for learning, but
performs approximate planning. Future work may consider to exploit the learned predictions in a
better state representation.

4.4 Planning for Learning

In the following we want to incorporate these ideas in a combined Planning for Learning Framework.
It’s motivated by the observation that planning algorithms summarize information about the future,
which is gathered by applying the transition function P(s′ |s, a), in a set of features ψ. These features
can either be values (see section 3.2), successor features (see section 3.6), or encoded trajectories
(see section 4.2.1). The idea, which is shared by the approaches reviewed in the previous sections,
is to exploit those features to get a better representation for the current state. This improved
representation is then used to learn a value function or policy for the task at hand.

X z

ψ̃

Q

Action Conditional
Future Prediction

ψ̃

Planner
Feature

Extraction
ψ

≈

Figure 4.1: The Planning for Learning Framework for enhancing a latent representation z with
predictive features ψ̃

The general principle is depicted in figure 4.1. An action-contingent future predictor predicts
approximate features ψ̃. This could either be (1) an embedded planning module or (2) a neural
network that regresses features ψ extracted from a planner like MCTS and hence ψ ≈ ψ̃.

A latent representation z of the state x is concatenated with these features to form a better
representation for regressing a policy.

Intuitively, in order to estimate the state action value Q for a particular x, the network’s weights need
to encode how much the task at hand is correlated with the action-contingent future prediction ψ̃(a).
So this is very similar to a planning computation: A future ψ̃ is anticipated with the future predictor
and its goodness, with respect to a particular task, is evaluated by the assignment of weights to the
features ψ̃.

Furthermore, we state this as the ability to anticipate the future learn and abstract plans in that
feature space.
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4.4 Planning for Learning

From a different point of view, the motivation of the idea can be compared to Bayesian Smoothing.
Therewith the estimate P(xt ) ∝ P(F |xt, ut:T ) · P(xt |P, u0:t ) of the current state xt is enhanced
by incorporating future observations (or sensor measurments) F = yt+1:T and controls ut:T in a
backward filter P(F |xt, ut:T ).

4.4.1 Unsupervised Learning to Plan for Visual Navigation

In the following section we want to apply the ideas, which are summarized in the Planning for
Learning framework (4.4), to visual navigation tasks.

Navigation tasks are interesting, because they’re crucial for autonomous robots. An intelligent and
adaptive agent is thereby required to integrate learning, planning and perception effectively. This is
a challenging problem even for small domains.

The goal is to train an agent that navigates in an environment in a completely unsupervised manner.
Also, the agent is not aware of its ground-truth position s in the world. Everything needs to be
learned based on ego-perspective observations ϕ(s) of the environment. Hence, the agent must deal
with partial observability.

The architecture is depicted in figure 4.2. The idea is to learn first a set of slowly varying features
with a Slow Feature Analysis (SFA) (see section 3.4.1) from the observation ϕ(s) by randomly
walking in the environment. These features ψ(s) are improved with an Independent Component
Analysis (ICA) so that each feature ψi(s) encodes a particular area of the environment. We call this
a landmark L. Those are completely trained by Unsupervised Learning.

We will also call those features landmark activations in the following, because when the agent is
near to the landmark the activation is high. Otherwise, the activation is low.

φ(s)
observation

Unsupervised Learning

Landmarks
L1, · · · ,Ln

State Representation
ψICA(s)

Goal Representation
ψICA(g)

HER
Multitask Learning
Q
(
ψ(s), a, ψ(g)

)
Abstract
Planning
Module

policy
π(s, a)

goal

ψ(s)

ψ(g)
DQN Q

Figure 4.2: Overview of the Unsupervised Planning for Learning Architecture
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4 Exploiting Forecast Features

Furthermore, we use these pre-trained features as state ψICA(s) and goal ψICA(g) representation in
our Reinforcement Learning setup. We train a UVFA Q

(
ψ(s), a, ψ(g)

)
in high-dimensional feature

space with HER (4.3.1). Therefore, we replay transitions ⟨ψ(s), a, r, ψ(s′), ψ(g)⟩ with a customized
goal predicate fg(s) = 1

[
∥ψ(s) − ψ(g)∥ < ϵ

]
in high-dimensional feature space. The algorithm is

briefly depicted in pseudo code 4.1.

Knowing how to reach every position in the environment can be understood as an abstract model
for the environment. It helps to learn better abstract plans for arbitrary tasks within the Abstract
Planning Module.

As an extension to this framework the learned values Q
(
ψ(s), a, ψ(g)

)
can be incorporated as

action-contingent features to get a better representation ψ ′(s) for the current state of the agent. To
be precise we use the learned values for a predefined set of landmarks {L1, · · · ,Ln} to form an
improved feature set, as shown in equation 4.2. This improved representation can help to better
learn to navigate inside the environment.

ψ ′i (s, a) = Q
(
ψ(s), a, ψ(Li)

)
∀i (4.2)

ψ ′i (s) = max
a

Q
(
ψ(s), a, ψ(Li)

) ∀i (4.3)

With the binary rewards (compare section 4.3.1), which basically count the steps taken by the agent,
learned values encode an approximate metric for distance to a specific goal or landmark.

From a different point of view, this set of values is a Horde. According to Sutton et al. [SMD+11],
domain knowledge can be represented with a set of independent RL agents, which are called demons.
Each demon answers a question. In this particular case the question is: “How far am I from that
landmark?”

Different approaches to exploit the learned values for a better representation are evaluated in the
following experiments chapter.
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4.4 Planning for Learning

Algorithm 4.1 Pseudo Code for Unsupervised Planning for Learning
for number_of_cycles do

for number_of_episodes do
reset environment randomly
episode_experience← ∅
for t ← 0,T do

a← ϵ-greedy(ϕ(s))
ϕ(s′), r ← env_step(a)
ψ(s′) ← ICA(ϕ(s))
episode_experience ∪{⟨ψ(s), a, r, ψ(s′), ψ(g)⟩}

end for

for ⟨ψ(s), a, r, ψ(s′), ψ(g)⟩ ∈ epsiode_experience do
ĝ ← future(ψ(s)) // Imagine future state in the trajectory as the goal
r̂ ← −1[ fg = 0] with fg = 1[∥ψ(s′) − ψ(ĝ)∥ < ϵ]

replay_buffer ∪
{〈
ψ(s), a, r̂, ψ(s′), ĝ

〉}
end for

end for
for number_of_optimizations do

sample batch B from replay_buffer

minimize
(
Q(ψ(s), a, ĝ) −

(
r̂ + γmaxa′ Q−(ψ(s′), a′, ĝ)

) )2
for experience in B

end for
for number_of_evaluations do

sample g randomly
evaluate greedy w.r.t. Q

(
ψ(s), a, ψ(g)

)
end for
synchronize Q and Q−

end for
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5 Experiments

The following experiments investigate the ideas that have been introduced in section 4.4.1.

5.1 Environment

The aforementioned visual navigation task can formally be defined as a Partially Observable Markov
Decision Process (POMDP) with high-dimensional visual observations ϕ(s). Here s ∈ R4 is the
ground truth state of the agent in the environment, that consists of the location ⟨x, y, z⟩ ∈ R3 and an
orientation θ ∈ [0, 2π] in the environment. The agent can perform discrete actions

A =

{ (
cos(θ + δ) − sin(θ + δ)
sin(θ + δ) cos(θ + δ)

) (
1
0

) �����δ ∈ { π4 , π2 , · · · , 2π}
}

(5.1)

in a coordinate frame that is local to its current state. So the agent can step in its ego-centric
perspective. The agent’s task is to reach any desired goal state g. At each step the agent receives a
reward of −1 unless the goal is reached in some epsilon-ball. So, the shortest paths are enforced by
maximizing the return.

During evaluation the agent acts greedy with respect to the value function. Success is defined as
reaching the goal within a limit of steps.

The visual observations are generated with Ratlab ([SW13]). It is an easy to use Python framework,
that allows to run place code simulations. It includes possibilities to extract place field information,
including SFA and ICA. These implementations will serve as a starting point for further experiments.
An example for a visual observation ϕ(s) is depicted in figure 5.1. The environment is slightly
adapted to allow deep RL using the discrete action set (see equation 5.1) in Tensorflow [MAP+15].
Implementation details are outlined in section A.1.

For the experiments a simple obstacle-free rectangular environment is used.

Figure 5.1: Example for a visual observation generated with Ratlab [SW13].
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5.2 Landmark Activations from Unsupervised Learning

As introduced in the previous chapter, we train landmark activations with Slow Feature Analysis
(SFA) from visual observations by extracting the slowest varying features. An example for such
activations is depicted in figure 5.2a.

Additionally, it is possible to add a final Independent Component Analysis (ICA) layer to the network,
which separates the activations to be independent of each other. An example is depicted in figure
5.2b. Both are generated with the tools provided by Schoenfeld and Wiskott [SW13].

As it is intended to use these landmark activations as a basis, we will henceforth also refer to those
as basis functions.

(a) SFA activations learned from 105 steps
of random walk in the environment.

(b) ICA activations learned from 105 steps
of random walk in the environment.

Figure 5.2: Learned landmark activations - the continuous environment is sampled at discrete
positions to gather the activation values. Values are averaged over the different directions
θ.

During first trials we observed that the quality of learned landmark activations highly effects the
convergence and stability of RL algorithms. So to better understand, what constitutes a good basis,
we model landmark activations with Radial Basis Functions (RBF) in the following.

Radial Basis Functions

Radial Basis Functions roughly match the characteristics of the learned landmark activations. They
simulate smooth spatial activations ψi(s), which are only high in a local area around their centroids.
The value of a single activation approaches zero, when leaving the local activation area. Equation
5.2 shows the simulated activations:

ψi(s) = e−
∥s−si ∥

2

2σ2 (5.2)

So in the following RBFs are placed at position si . In this context s is the ground truth position of
the agent in the environment. This information is not given to the agent, but used to simulate the
activations ψi. The variance σ determines the width of the receptive field.

5.2.1 Effect of Superimposition

In the following the effect of superimposing basis functions to learning will be evaluated. To do so,
we set up a simpler environment with δ ∈ { π2 , π,

3π
2 , 2π} in a global frame. To analyse the effect of

superimposition RBFs are placed equally distributed in the environment, but with different choices
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5.2 Landmark Activations from Unsupervised Learning

for the width σ of the basis functions. So we vary the relative variance cσ = σ
di j

with di j denoting
the centroid distance between to neighbouring basis functions for different training setups. With
this we have a measure for superimposition that is independent of actual locations and distances.

Training was performed until the best-performing setup reached a success rate of 100% in evaluation.
Figure 5.3 shows the evaluation success rates for all setups.

0.0k 50.0k 100.0k 150.0k 200.0k 250.0k 300.0k 350.0k 400.0k
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

in
Ev

al
ua

tio
n

cσ = 0.1
cσ = 0.25
cσ = 0.5

cσ = 1.0
cσ = 1.5
cσ = 2.0

Figure 5.3: Success rate during evaluation plotted over the number of training steps for different
variance scale cσ and hence different superimposition.

The best performing setup cσ = 0.5, which means that a basis function covers approximately
halfway the distance to all neighbouring basis functions. So they are just slightly superimposing.
With less superimposition (cσ = 0.25) the network performed a lot worse. When decreasing the
superimposition further (cσ = 0.1), which means basically no superimposition at all, the network
seemed not to learn anything.

Surprisingly, there also exists something like to much coverage of a single basis function. For
broader basis functions cσ ∈ {1.0, 1.5, 2.0} the performance of the network after the same number
of steps was a lot weaker.

5.2.2 Unsupervised Learning with Forecasts

Based on these observations we trained the ICA (and SFA) activations with 105 observations from
random walk in order to get sufficiently superimposing activations. Then we fix the weights of the
network, which produces these activations ψ and train a value function Q

(
ψ(s), a, ψ(g)

)
with the

training procedure introduced in pseudo code 4.1.

Figure 5.4 shows how the success rate in evaluation develops with the total number of steps taken
by the agent in the environment. During evaluation the agent acts greedy with respect to the learned
value function Q

(
ψICA(s), a, ψICA(g)

)
and Q

(
ψSFA(s), a, ψSFA(g)

)
respectively.
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Figure 5.4: Success Rate in Evaluation, when acting greedy with respect to the learned value
functions Q

(
ψICA(s), a, ψICA(g)

)
and Q

(
ψSFA(s), a, ψSFA(g)

)
respectively. Additionally,

the best performing V-Features, that are trained based on the ICA, are added for
comparison.

The setup with ICA features ψICA(s) as state representation slightly outperformed the SFA features
ψSFA(s). Hence, we will favour ICA features in the following. These plots will also serve as a
baseline to evaluate enhanced features.

5.3 Enhancing Features

In the following we try to enhance the features ψICA(s)with the learned values Q
(
ψICA(s), a, ψICA(l)

)
for a set of landmarks l ∈ {L1, · · · ,Ln}.

For the following experiments we choose the landmarks to match with the centroids encoded in the
ICA activations:

Li = argmax
l

ψi(l) (5.3)

The learned values can be understood as an approximate metric (for distance towards the landmark),
as aforementioned. The resulting V-values V(s) = maxa Q(s, a) from the training in section 5.2.2
are shown in figure 5.5.

5.3.1 V-Value Features

Next, we will evaluate how to extract a meaningful set of features from the learned values (compare
5.5). Different approaches are considered: (a) linear scaling, (b) RBF kernel, (c) Cone kernel .
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Figure 5.5: Learned values for a set of landmarks {L1, · · · ,Ln}. These V-Values serve as enhanced
basis for RL.

In general the values have arbitrary ranges. This might make learning difficult, as neural networks are
likely to diverge when trained unscaled features. So we (a) scale the values linearly ψ(q) = q−qmin

qmax−qmin
to fit in range [0, 1].

Based on the observation that there exists something like the right level of superimposition, we
exploit the values as approximate distance to the landmark. (b) We use this to place a RBF
(equation 5.2). Hence, the true distance is replaced by the approximate metric V(s) ≈ ∥s − si ∥.
Last but not least, the same idea applied to form a local activation that is formed like a (c) cone:
ψi(s) = max(1 − ∥s−si ∥σ , 0).

The results are depicted in figure 5.6. As expected the unscaled values are not a good representation.
But also the scaled values do not perform much better. This is consistent with the observation made
that there exists something like too much coverage. In the following we will prefer the RBF kernel
idea, which performed best. Due to sensibility to the aforementioned effect of superimposition, the
RBF’s receptive field width is optimized with a hyper-parameter search. Results for this particular
environment are depicted in figure 5.7.

But even with the best hyper-parameter σ = 5 this setup cannot outperform the baseline provided in
figure 5.6. So we conclude that the ICA-basis trained with 105 observations is already quiet a good
basis for this easy domain.
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Figure 5.6: Success rate of different approaches exploiting the V-Values: Cone (c), Linear (a), RBF
(b) and unscaled values.
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Figure 5.7: Learning Curve for different RBF kernel V-Features. Values hereby serve as an
approximate distance metric to the kernel centroid. Results reflect the effect of
superimposition, that has been previously investigated.

Weak ICA Features

In order to better analyse if values can improve a representation, we train the ICA network with
only 104 observations. We therewith gather a weaker basis representation that does converge to a
suboptimal solution, when used as features for RL. See figure 5.8 for comparison.

46



5.3 Enhancing Features

After training Q
(
ψICA(s), a, ψICA(g)

)
with ICA-Features for ≈ 7 · 106 steps, values are extracted and

used as input Value-Features to train Q
(
ψ ′(s), a, ψ ′(g)

)
. For better comparison results are shown in

figure 5.8 with greedy and in figure 5.9 with ϵ-greedy behaviour.
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Figure 5.8: Success rate in evaluation of the weak ICA basis. V-Value features are extracted from
the network, that is trained with ICA basis.
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Figure 5.9: Success rate during ϵ-greedy exploration with the weak ICA basis. V-Value features
are extracted from the network, that is trained with ICA basis.

The enhanced V-Value features ψ ′ outperformed the weak ICA features ψ by a significant margin in
this experiment. It achieved the same level of performance with less training data. So the features
ψ ′ are a better representation, that helps for data-efficient learning.
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5 Experiments

Furthermore, the value features also outperformed the baseline in the best achieved performance.
It would be interesting to see if representations can iteratively improve with these newly learned
values as input features. We leave this as an interesting direction for future work.

5.3.2 Q-Value Features

As introduced in equation 4.2 we will also evaluate how to enhance the representation ψ ′(s) with
Q-Values. From several trials it turned out that the most promising approach is to have separate
network head with weights θa for each action a. The value Q(ψ ′(s, a), a) = hθa (ψ

′(s, a)) for a
particular action is regressed by a network h with weights θa. We input only the features ψ ′(s, a) to
the network that correspond to this action a. Beside these adjustments we train with the same setup
as aforementioned. We tried two different approaches to scale the values (see 5.3.1 for reference).
Results are depicted in figure 5.10. One can see that the Q-Features learn quick at first, but then
converge to a suboptimal solution from which they can not recover. The green line shows the best
performing V-Features from the previous section for comparison.

Different setups totally diverged. To do a broader hyper-parameter search was not feasible due to
time and resource constraints. Further improvements may stabilize the training, which would be
promising, because this approach learned very fast at first. We leave this as a direction for future
work.

0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M
Steps

0.20

0.25

0.30

0.35

ϵ-
gr

ee
dy

Su
cc

es
s

Ra
te

Linear Q-Features
RBF Q-Features

RBF V-Features

Figure 5.10: Performance of Q-Features compared to the best performing V-Feature RBF kernel.
Plot is limited to the first million of steps.
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6 Conclusion and Outlook

Throughout this thesis I have given an overview over various existing approaches to integrate
planning computations in a neural network. We have seen that various planning algorithms can be
expressed in a fully-differentiable way in order to be integrated in a neural network, which allows
end-to-end training with data.

In that context, these planning modules exploit the shape of latent representations to generate
predictive features, that summarize information about the future. Thereby we analysed the approach
of auxiliary losses and other methods to restrict the shape of latent representations. We have also
shown the down-side of such approaches concerning bias and training stability.

So we have seen that acquired latent representations matter for both, meaningful planning com-
putations and learning a value function or policy. Therewith we explored different approaches to
augment latent representations for the current state with predictive features from a planning module
and summarized the ideas in a Learning to Plan Framework.

We applied the ideas incorporated in the framework to a visual navigation task. Although, the
chosen task during experiments was comparably simple, it showed that the ideas can be effectively
combined. Furthermore, we improved the latent representation with learned value features and
showed that it can improve the data-efficiency during learning for that particular task.

But we have also seen that convergence and performance highly depends on hyper-parameters. To
draw a firm conclusion one would need to analyse the effect of hyper-parameters in a broader setup.
This was not feasible due to time and resource constraints during this thesis.

Nevertheless, I consider the approach of enhancing latent representations with incorporated future
information as an approach worth to further follow on the (long) way towards Learners that Plan.

Outlook

There are several directions that future work may consider:

Other Tasks: During the experiments we evaluated the acquired representations on the same
navigation task as the value features have been trained. It would be interesting to see how
‘knowing to navigate’ helps the learning of other tasks in the environment.

Hierarchical Approach: During the experiments we have seen that the value features outperformed
the baseline in both data-efficiency and overall performance. An interesting direction would
be to explore, if latent representation thereby can iteratively improve and so establish a
hierarchy of abstract representations constituting the agents current state.
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6 Conclusion and Outlook

Harder Navigation Tasks: The task during experiments was chosen easy due to time constraints.
It’s left for the future to evaluate the approach with harder navigation tasks.

Q-Features: Although Q-Features performed rather badly during the experiments, we consider
those as a promising direction. Future work may consider other network structures and a
broader optimization of hyper-parameters.

Exploration: Knowing to navigate in an environment opens new possibilities for better exploration
strategies in other tasks.

Other domains: Last but not least, the ideas incorporated in Learning to Plan are not limited to
visual navigation tasks. Other domains can be explored in future work.
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A Appendix

A.1 Implementation Details

All crucial hyper-parameters are derived from [AWR+17]. Other parameters follow the default
implementations1 of Tensorflow [MAP+15].

So for learning the Q-values based on landmark activations, a network with three fully connected
layer and 64 neurons each has been chosen. All with ReLU activations, except for the last layer.
The training is performed for 200 epochs, that consist of 50 cycles each. A cycle consists of 16
episodes of acting ϵ-greedy in the environment, followed by 40 optimizations with mini-batches of
size 128 sampled from the replay buffer. At the end of the cycle, 16 episodes of greedy evaluation
are performend and finally the weight are synchronised with the fixed weights of a target network
Q−.

For the V-value feature setup a trained network with the aforementioned characteristics is used to
preprocess raw ICA activations. Therefore, weights are fixed. Values queried from that network
(for a set of landmarks) are the input for a value network with exactly the same setup.

The ICA/SFA activations are trained with the tools provided by [SW13]. The outputs of the learned
network, which depend on the current observation, are simulated to allow faster training on a
headless server without OpenGL rendering. Considering that, the trained ICA/SFA network is
sampled at each unit position and direction in the environment as a pre-phase. During training on a
headless server, this data is linearly interpolated based on the ground-truth position and orientation
of the agent.

A.2 DSR Experiments

In the following we will discuss how DSR, as introduced in section 3.6.1, can be applied to the Atari
Games included in the OpenAI Gym [BCP+16] benchmark environments. For the experiments the
game Pong was chosen, because it can be solved with comparably little computing power.

For the implementation2 of DSR all hyper-parameters have been chosen according to Kulkarni et al.
[KSGG16], except the optimizer.

1Implementations will be available at https://timphillip.github.io/bsc_thesis.html
2Reproduction of DSR will be available at https://timphillip.github.io/dsr.html
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A Appendix

Figure A.1 shows the rewards accumulated over the entire episode for different optimizers, that have
been selected from the optimizer implementations provided by Tensorflow [MAP+15]. Hereby a
match is considered as an episode. It follows the rules of 21-point matches in table tennis. The agent
receives a reward of +1 for every point made and −1 for every opponent’s point. So an episode of
−21 is the worst to achieve.

0.0k 0.2k 0.4k 0.6k 0.8k 1.0k 1.2k 1.4k 1.6k 1.8k
Matches

20

15

10

5

0

5

Sc
or

e

Adagrad
Adam

RMS-Prop
Without AE

Figure A.1: Results for applying DSR to Atari Pong. It shows the mean reward of the last 100
matches played.

So for the Adagrad and the RMS-Prop optimizer the learning totally diverged. Surprisingly, with the
use of an Adam optimizer, the learning at least converged to a suboptimal solution. But performance
is still quite bad.

So the network behaved very unstable unless removing the auto-encoder (AE) and corresponding
auxiliary reconstruction loss part. With this change the agent is able to actually win matches. So we
can conclude that for this setup the auxiliary loss did not help the learning. It rather led to complete
divergence.

A.3 Zusammenfassung

Zu lernen ist eine der wichtigsten Fähigkeiten intelligenter und anpassungsfähiger Agenten. Wie
gut Algorithmen des Maschinellen Lernens generalisieren und wie effizient diese lernen, hängt
aber maßgeblich von den abstrakten Repräsentationen ab, welche sie erlernen. Im Gegensatz dazu
erlaubt es Planung den Agenten, die Konsequenzen von gewählten Aktionen zu antizipieren. Dabei
lassen sich „Features“ gewinnen, welche den aktuellen Zustand des Agenten unter Einbezug der
möglichen Zukunft sehr gut beschreiben. Diese "Featuresërlauben somit daten-effizienteres Lernen.
Diese Abschlussarbeit befasst sich mit der Effektivität solcher Ansätze und beantwortet mit Hilfe
einer Literaturübersicht die Fragen: (1) Wie können Planungsmodule in neuronale Netze integriert
werden und (2) wie lassen sich dabei gewonnene „Features“ am besten einsetzen, um das Lernen
der Netze zu verbessern.
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A.3 Zusammenfassung

Zu den wichtigsten Beiträgen dieser Abschlussarbeit zählt zudem die Synthese der Ideen in einem
Algorithmus zur visuellen Navigation und dessen Evaluierung in Experimenten.
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