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Abstract

Through the technology of generative models, one can now learn a distribution of his input data
and generate new and similar output where it mimics the behavior of his input. Variational
Auto-Encoders (VAE) are generative models where the neural network tries to learn a distribution
of the latent vector I. Disentanglement using VAE’s tries to decouple the latent vector and render
each dimension independent from the other. Using disentanglement we wish to learn the three basic
visual properties size, shape, and color. All the different disentangled models used in this paper aim
to refine the reconstruction and disentangled representation. After training our models the user will
have control over the three properties. Next, wish to create a tool where the user can control the
structural properties of a scatterplot. By simply training a disentangled model, we would like to
gain control over the different structures of a scatterplot to generate similar data. Furthermore, we
will be discussing the limitations and shortcomings of using such models. The code for this paper
could be found on https://github.com/jymaalouly/Thesis.
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1 Introduction

Scatterplots have been the main visualization method to present multidimensional data where one
specific dimension is paired with another displaying a relation between them. It is the best-known
technique for visualizing bivariate data. Visualization of multivariate data is one of the most
challenging tasks. When designing a scatterplot graph one must take into account the different
visual encodings. A scatterplot matrix (SPLOM) is a symmetric matrix of pairwise scatterplots.
A SPLOM contains the cross between all dimensions and their respective relations with a size

of
=(= − 1)

2
. SPLOMs can be efficiently used to create predictions detect anomaly’s and find

patterns between the different dimensions where a correlation is not that obvious. However, the
sheer size of such matrices can cause problems. Finding an underlying structure becomes more and
more difficult [DW14].

Many methods have been proposed for tackling these problems. In Revision, by Savva et
al. [SKC+11] the system automatically outputs an improved design that aims for better perception.
While Scatternet [MTW+20] uses deep learning to capture perception-driven similarities of
scatterplots.

Over the last decade, there has been a substantial improvement in the field of deep learning
outperforming humans in certain tasks. The Variational Auto-Encoders (VAE) are a bottleneck
architecture where we encode our input vector into a latent vector and provide the ability to generate
similar data through a Gaussian representation of our latent space. In disentanglement, we have
seen that the same latent vector can also be trained to act independently. In other words, our model
will try to learn to encode the most important features by projecting the input to a latent vector of
a certain size =. By definition this means data loss is inevitable but what if we can learn these
underlying structures and even better control them.

This paper is divided into two main parts. In the first part, we propose a method that can detect
the varied visual parameters which provide some meaning to the human-perception. We want
our system to generalize over a wide range of datasets and extract different features. The three
visual factors considered for the first experiment are size, shape, and color. The intention is to give
the user the flexibility of using a disentanglement model to control each factor independently. To
sum up, our goal is to make the visualization process somewhat easier by extracting features that
can increase the human-perception. Moreover, this will also give the user a clear idea of how the
visualization will look like, and thus can choose the output that best conveys a specific pattern.

The second part of this paper adds to the work done by Jo & Seo [JS19] where they used a data-driven
method to find the underlying structure of a scatterplot. We aim to create a tool that uses this model
and allows the user to alter and generate new scatterplot images.

In this paper, we will be discussing the different models used to achieve our goal. In the first chapter,
we will introduce the different concepts that led to the idea of our paper, we will state our motivation
and the related works. The topic of the second section will deal with the extraction of the three visual
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1 Introduction

parameters. We will explain the different models used as well as the architecture implemented. We
will go through the results and comparison of the different models and datasets, then end with our
conclusion. The third chapter contains the details for creating a tool that encapsulates the structural
components of a scatterplot. This will be achieved by training a disentangled model similar to Jo &
Seo [JS19]. Last we will discuss the future works and research that address the shortcoming of
these models.

1.1 Motivation

It is essential nowadays for users to present their data with a clear idea no matter the background
of the user, and the power to interactively change a plot to maximize the perception of a specific
pattern is very important.

One of the clear predominant issues in visualization is finding a good representation of your data to
easily covey an idea. In experiment 1 we intended to learn the three basic visual features size, shape,
and color using a generative model. Our main goal is to see if we can disentangle these features and
gain the ability to change them using our generative model.

Many methods have been introduced that can measure the goodness of a graph, and the similarity
and dissimilarity between the different scatterplots. We intend to use the VAE model to try to
encapsulate the visual and structural features of a graph. Our goal is to create a tool where a user
with minimal background and knowledge in visualization, has the ability to generate new and similar
data on his own and even have control over these structures. The tool should be used intuitively so
that a normal user can understand what is happening.

The tool can be used for both practical and educational reasons. In a practical sense, a user can either
test different visual representations and choose which best fits his task, and in a more educational
sense it can be used to illustrate The different structures in a visualization. The system could also
be used to generate large amounts of similar data where the user can specify the parameters.

In order to achieve our goals, we will be using unsupervised generative models. We decided to go
with VAE disentanglement over other generative models. The disentanglement model decouples
the latent vector thus increasing the independence in controlling the output. This will give the user
control over the encoded features, however, we will be discussing disentanglement in much detail in
the upcoming chapters.

1.2 Related Works

To achieve our desired objective we need to acknowledge the work of our predecessors. Various
techniques have been implemented to extract relevant information and re-visualizing the data in
a way that best fits. This section will be divided into two parts, first, we will discuss the various
tools and the different techniques used to achieve re-visualization. Second, we will explain some
machine learning concepts that make up the core structure of this project.
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1.2 Related Works

1.2.1 Similarity Measures and Graphical Perception

Before we discuss such techniques we must first explain what constitutes a good visualization,
or is there a way to differentiate between a good and a bad graph. What is the best way to
increase the human perception of a certain figure, chart, plot, etc... In ’Understanding Charts and
Graphs’ [Kos89] the author not only explains the different types of visualization but also the pitfalls
one must avoid in order to relate the information needed to the user, where any violations of the
acceptability principles will lead to difficulties in conveying a message in a visualization.

Clevland & McGill [CM84] tries to identify a set of elementary perceptual tasks, and these tasks
are then ordered based on how accurately they are performed by humans. Some of the perceptual
tasks that humans use to extract qualitative data are position, color, volume, and length, etc... These
elementary tasks can be performed simultaneously in order to extract the relevant information.

Nowell et al. [NH97] determines the effectiveness of the three most important data encodings;
shape, color, size. These three encodings are capable of visualizing both nominal and quantitative
data. For that reason, we decided in our first experiment to try to disentangle the three main visual
encodings.

Visual encodings are one thing, however, the structural component of a scatterplot is something
entirely different. In ’Graph-theoretic Scagnostics’ [WAG05] Wilkinson et al. categorizes scatterplots
into 9 different man-made features. These features provide a quantitative measure of their structure.
The scagnostic features are divided into nine different categories, Outlying, Skewed, Clumpy,
Convex, Skinny, Striated, Stringy, Straight, and Monotonic.

In ScagExplorer [DW14] The authors utilize the set of scagnostic features to guide the exploration
of high dimensional data. The high complexity of a SPLOM makes outlier detections and pattern
recognition an increasingly difficult problem. Using the scagnostic features ScagExplorer help
locate anomalies and characterizes scatterplots for easier and interactive exploration.

There exist extensive research on the topic that aims to improve the way we can visualize certain
plots. Based on the methods used we can say that these tools are usually a mixture of image and
learning-based methods.

Savva et al. Revision [SKC+11] has the objective to allow the users to create more effective
Visualization by simply providing an image as an input and then using the combined power of both
computer vision and machine learning will generate an output that best describes the input data.
Revision works by first classifying the type of chart, second by extracting data and storing them in
relational tables, last creating a set of re-designed output that should better communicate the data.

Chen et al. [CKNH20] SimCLR is a framework for contrastive learning of visual representations.
The software tries improve upon the learned representations using a contrastive loss between
the different representations. SimCLR uses data augmentation to improve the predictive result.
The contrastive learning algorithm works by maximizing the agreement between the augmented
representation of the same data. The augmented data for example can be taking the original image
and applying a rotation, color distortion, Gaussian blurring, and so on.
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1 Introduction

A reverse process has been implemented by Poco & Heer [PH17] where the input is an image and
the output is a JSON file specifying the different visual encodings and data. The first step is to
detect the text elements in a chart and each element will then be classified based on their roles. The
next step is training a convolutional neural network to identify the different mark types. The system
then maps the different mark types to the different text elements and labels.

A similar work has been done by Harper & Agrawala [HA16]. The aim was to take a D3 chart and
extract its structure including the data, their mark types, and mappings. all deconstructed mappings
are then ranked on their perceptual effectiveness. Using the previous steps a style template is
constructed and later on re-used to create new visuals by mapping(the most important data fields to
the most perceptual effective mapping).

Beagle [BDM+18] answers the question of what is the most predominant visualizations and
representation by crawling the web and extracting around 41000 SVG-based visualizations. The tool
classifies the different visualizations with 85% accuracy with 24 different types of visualizations.
The least favored of visualization and the rarest was the pie chart. On the other hand, the most
popular were bar charts, line charts, and then scatterplots. Another similar research was done by
Hoque & Agrawala [HA20]. This paper presents a search engine specifically for D3 visualizations
that provides an output based on the specified structure and style given in a query. The engine
is built from 7860 deconstructed visualizations. The extracted features were both of data and
non-data-encoding. These features were then indexed for each visualization so it can be later called
upon and reached.

Jung et al. [JKS+17] presents ChartSense a data extraction tool that uses deep learning for
categorizing the different types of charts and then based on the chart types it uses an interactive
data extraction mechanism specifically tailored for that specific type.

Similarly, Mackinlay [Mac86] creates a tool in which it takes relational data and outputs a graphical
representation. It addresses two main problems. First, the output should be able to represent a large
amount of information. Second, the graphic design that should be used must convey the data at
hand and maximize its effect.

In this paper we will not be using any discriminate models. We chose to implement a generative
model where we will depend on our model to encode our features.

1.2.2 Generative Models

In this paper, we use a generative model to reconstruct our input and generate new and sim-
ilar images. We cannot discuss generative models without the mention of Variational Auto-
Encoders (VAE) [KW14]. Let z denote the latent vector that encodes an image x. A perfect
reconstruction from z results in an image x′ that is identical to x. What we just described was an
Auto-Encoder (AE) [HS06] which is typically a bottleneck neural network consisting of two main
parts the encoder and the decoder. The encoder is responsible for reducing the dimensionality of an
input to a latent vector z to a specified dimensionality. The decoder is responsible for taking the
latent vector z as input and reconstructing an output x′ with minimum loss. A VAE unlike AE is a
Generative model that will learn a distribution # , that way one can draw a random sample z from a
distribution # .

14



1.2 Related Works

The concept of disentangled representation is explained by Higgins et al. [KW14] and we quote
from the paper the following explanation:

"vector representation is called a disentangled representation with respect to a
particular decomposition of a symmetry group into subgroups, if it decomposes into
independent subspaces, where each subspace is affected by the action of a single
subgroup, and the actions of all other subgroups leave the subspace unaffected." -
Higgins et al. [KW14]

In laymen terms, there is no general explanation for a disentangled representation but what we
could sum up is that changing one dimension in z will result in the change of one factor in the
reconstructed image without it affecting the other factors.

There are many examples of disentangled models. Generative adversarial network (GAN) [GPM+14]
is a generative model consisting of two main parts, the generator 6 and the discriminator 3. A
generator is responsible for creating new images from the latent vector z, and it is the job of the
discriminator not to be fooled and capture the flaws. InfoGAN by Chen et al. [CDH+16] is an
extension to GAN, where the author tries to learn a disentangled representation in an unsupervised
manner.

In this paper, we opted to use the V-VAE model by Higgens et al. [HMP+16] where it extends upon
the regular VAE model by adding a hyperparameter V to control the disentangled representation.
We chose to work with V-VAE since it outperformed other disentanglement models and showed
better results.
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2 Experiment 1

Let us discuss what we hope to achieve by the end of this experiment. Our goal is to input an image
of a scatterplot, and using our model, we want to encode and disentangle the three main design
features size, shape, and color [NH97]. In this section, we will go through the whole process. We
will first explain the different variations of disentanglement models. We will explain the different
metrics used to measure the accuracy of our disentangled representation. Next, we discuss the
different datasets used to train our models as well as the implemented architecture. We will go
through the results of each dataset, their latent traversals, and a short discussion about the conducted
test. Last we will compare the results of all trained datasets followed by our conclusion.

2.1 Overview

The techniques used in this paper are all extensions of the unsupervised VAE models. Previously we
have discussed VAE, similar to an AE but it also learns a distribution N, and from that distribution,
one can sample a latent vector I. Using I as input to the the decoder we can now reconstruct an
image x′ [KW14].

Disentanglement models have the objective of encoding an independent latent vector where
changing one dimension of that latent vector z will result in the change of that one factor alone.
We will now explain three main disentanglement models; V-VAE [HMP+16], Factor VAE [KM19],
VTCVAE [CLGD19]. We will look at their corresponding objective functions and get a brief idea
of what each model offers.

We will start by the simplest model which is V-VAE model. This introduces a new hyperparameter
V which is added to the VAE objective function:

(2.1) ! (\, q; G, I, V) = �@q (I |G) [log ?\ (G |I)] − V�KL(@q (I |G) |?(I))

As we can see from the function above the V-VAE learns the disentangled representation by applying
a penalty over the KL-divergence [Joy11]. Placing more weight on the KL-divergence will enforce
our posterior or our latent approximation @q (I |G) to be closer to the prior ?(I). What was observed,
that although V-VAE will result in a disentangled representation, it does on the other hand fail in
providing a good reconstruction. For a disentangled representation V must be chosen greater than
one. If V = 1 the result will be equivalent to a VAE model.

The issue of the blurry reconstructions given by the V-VAE model is addressed in the Factor
VAE [KM19] and VTCVAE [CLGD19] where both models set out to penalize the total correlation.

17



2 Experiment 1

Figure 2.1: Factor VAE architecture as described by Kim & Mnih [KM19].

To understand what is causing the blurry reconstruction we look into what we are penalizing in
equation 2.1. Hoffman & Johnson [HJ] provided a decomposition of the second part of equation
2.1:

(2.2) �? (G) [�KL(@q (I |G) |?(I))] = � (G; I) + �KL(@(I) |?(I))

Where � (G; I) is the mutual information between G and I. What this equation implies that the model
provided by V-VAE is penalizing both terms. Rather than just disentangling @(I) and ?(I) The
model is also penalizing the first term, the mutual information, which is not desirable for a good
disentangled representation.

(2.3)
1
#

#∑
8=1
[�@ (I |G (8) ) [log ?(G (8) |I)]�KL(@(I |G (8) ) |?(I))] − W� ! (@(I) |@̄(I))

Where ¯@(I) :=
∏3
9=1 @(I 9). Equation 2.3 represents the objective function given by the Factor

VAE. What the paper tries to explain is that a vector is considered disentangled or independent if
the product of the individual marginals of the latent vector is equal to the marginals of the latent
vector. The total correlation is described as the KL-divergence [Joy11] between both marginals.
Equation 2.3 penalizes the KL-divergence between both probabilities by using the hyperparameter
W.
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2.2 Dataset

Figure 2.1 shows the architecture of a Factor VAE model. The figure shows that the Factor VAE
uses a discriminator network for the disentanglement process.

(2.4)
�? (=) [�KL(@(I |=) |?(I))] = �KL(@(I, =) |@(I)?(=)) + �KL(@(I) |

3∏
9

@(I 9))

+
∑
9

�KL(@(I 9) |?(I 9))

Similar to Factor VAE, V-TCVAE also computes the total correlation but rather than using a
discriminator it is computed probabilistically. The first part of equation 2.4 is the mutual information
between the latent variables I and the data variable G, while the second part describes the total
correlation, and the last part is the dimension-wise KL-divergence of the marginal posterior and the
prior.

2.2 Dataset

2.2.1 dSprites

In this experiment, we shifted through 4 types of datasets. The first dataset we tested was the
dSprites dataset [MHHL17]. dSprites is a set of images each contributing to the following factors
color, shape, scale, rotation, G, and H positions. The latent factor values are as follows:

• Shape: square, ellipse, heart,

• Scale: 6 values linearly spaced in [0.5, 1],

• Orientation: 40 values in [0, 2c],

• Position G: 32 values in [0, 1],

• Position H: 32 values in [0, 1].

Each latent value will be varied once at a time and ensuring that only one combination is made.
The total number of images is relative to the number of factors and their values. dSprites consists of
737280 unique black and white images of size 64 × 64 × 1.

2.2.2 Synthetic Data

As previously discussed, after testing the model with the dSprites dataset we can now start conducting
our own research. We started by creating a set of images with the following factors:

• Size: 6 values linearly spaced,

• Shape: circle, square, pentagon, hexagon, Filled x, diamond,

• Color: 5 values linearly spaced in [0, 1].
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2 Experiment 1

This will result in 180 unique images of size 64 × 64 × 3. The scatterplot images were generated
using Matplotlib [Hun07] with 5 data points guassianly distributed between 0 and 1.

The second iteration of this dataset is a wide variety of different plots with a larger number of
samples. After each couple of iterations we would increase the number of data points scattered.
The same technique as before was used to populate our scatterplots. Nonetheless by increasing the
number of images we had to add one more factor to preserve the condition of having unique images.
The factor added was the position, which represented every different plot generated. The position
factor included 250 variables resulting in 45000 unique images.

2.2.3 Real World Data

Using synthetic data was not enough. In order for our model to perform better reconstructions and
have the capability to learn more we must create a dataset composed of real data. We created our
real world dataset using R Dataset Package [R C18]. To create this dataset we have discarded any
combination containing categorical, or qualitative data. Any duplicate plots were also discarded in
order to ensure synthetically generated plots are not included. All data values were normalized to a
value ranging between 0 and 1. The Real World Data contained 56520 unique images consisting of
3 channels with the position, size, shape, and color being 314, 6, 6, and 5 respectively.

2.3 Metrics

There is still no standardized method for measuring the success of a disentangled representation,
however, we will discuss some of the metrics that have been considered. In this research, we will
assess our disentangled representation using BetaVAE score [HMP+16], FactorVAE score [KM19],
and Mutual Information Gap [CLGD19].

The first metric we will use is the BetaVAE metric [HMP+16]. what this metric proposes is to fix a
random component of our latent vector and use our generative model to sample two mini-batches
from the latent vector. A linear classifier will try to predict the index of each factor. The accuracy
of the classifier will determine the value of the disentangled metric. The training is done on 10 000
points and test on 5000.

The second metric considered is the FactorVAE [KM19]. This metric is almost inversely equivalent
to the BetaVAE score. This metric measures the disentangled representation by predicting the index
of the ground truth factor from the latent vector with least variance. Training is done by using a
majority vote classifier. We train over 10 000 points and evaluate over 5000.

The Mutual Information Gap (MIG) [CLGD19] is the last metric considered in this experiment.
Both the above metrics are not general and fail to be unbiased since they both depend on some
hyperparameters. We compute the mutual information gap which is the average of the normal
difference between the highest and second highest mutual information of each factor.

As suggested by Locatello et al. [LBL+19] we will traverse our latent dimensions, that way we can
relate each dimension to the factor it represents.
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2.4 Model Training

Encoder Decoder

64 × 64 × � Latent Vector
4 × 4 conv, 32 ReLU, stride 2 FC, 256 ReLU
4 × 4 conv, 32 ReLU, stride 2 FC, 4 × 4 × 64 ReLU
4 × 4 conv, 32 ReLU, stride 2 4 × 4 upconv, 32 ReLU, stride 2
4 × 4 conv, 32 ReLU, stride 2 4 × 4 upconv, 32 ReLU, stride 2

FC, 256 RELU 4 × 4 upconv, 32 ReLU, stride 2
4 × 4 upconv, 32 ReLU, stride 2

Table 2.1: Architecture used for experiment 1 as defined by Locatello et al. [LBL+19].

2.4 Model Training

In this section, we will discuss the different models used to achieve our goal. We will be using the
three main disentanglement models, V-VAE, Factor VAE, and VTCVAE. Our tests will be conducted
on four different datasets.

We start our research by first setting up the disentangled library provided by [LBL+19]. The library
makes the disentangling process much easier and feasible to control. It also permits us to conduct
our own research. After all needed dependencies were installed, it was time to run the first test.

This section is divided into five parts. First, we will walk through the architecture and the general
hyperparameters. The next sections will be dedicated to the different tests conducted on the different
datasets, where each dataset will be given its own section. Moreover, we will be comparing the
results of our tests and finally, we will arrive at the conclusion of Experiment 1.

2.4.1 Architecture

We followed the architecture done by Locatello et al. [LBL+19]. The encoder takes an input of
64× 64×�, where � is the number of channels. This is followed by two layers of 4× 4 convolutions
with 32 filters and ReLU as the activation function with stride 2. The next two layers are the same as
before but have 64 filters. The last layer is a fully-connected(FC) layer of 256 neurons. We extract
from the last layer the mean representation and the log variance. The decoder part is very similar
except it is the reverse process of the encoder model.

The Discriminator network needed for the Factor VAE consists of 6 FC layers of 1000 neurons and
a leaky ReLU activation function. This is followed by an FC layer of size 2. Table 2.1, 2.2, and 2.3
shows the model architecture, the discriminator architecture, and the list of fixed hyperparameters.
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Discriminator

FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU

FC, 2

Table 2.2: Discriminator architecture
as suggested by Locatello et
al. [LBL+19]

Hyperparameter Value

Latent dimension 10
Batch size 16
Optimizer Adam
Decoder Bernoulli

Learning rate 0.0001

Table 2.3: Fixed hyperparameters

2.4.2 dSprites Dataset

Even though the dSprites dataset does not help to achieve our main goal, however, it was the first
step in testing the disentanglement library [LBL+19], the different models, and traversals. We ran
our test with both the V values of 16 and 1. For V = 16 we expect a trade-off between the quality
of the reconstruction and the disentanglement score, while for V = 1 we would end with a fully
dependent latent vector but with better reconstructions.

We already specified the fixed hyperparameters in table 2.3, the only varied parameter is the V value.
Our first test was done for V = 1, the reconstruction loss was 23.45 while the KL loss was at 27.14.
On the other V = 16 showed a much higher reconstruction loss of 72.217 and a lower KL loss of
6.45.

Reconstruction loss BetaVAE score FactorVAE score MIG

V = 1 23 0.771 0.49 0.019
V = 4 50 0.968 0.8476 0.102
V = 16 72 0.983 0.771 0.111

Table 2.4: Results of the dSpirtes dataset using a V-VAE model.

Table 2.4 shows the detailed results of our tests. We will not go into further details for this experiment
since this is just for testing purposes. The V hyperparameter controls the trade-off between a proper
reconstruction and a good disentangled representation. The V hyperparameter is a penalizer in the
objective function. If we set the V value just right can we get a good disentangled representation
while also preserving our reconstruction. For the exact purpose of conserving both reconstruction
and disentanglement, we set the V hyperparameter to 4.

The V = 4 performed as expected. The KL loss was 13.07 while a reconstruction loss of 50.78, this
clearly demonstrates the trade-off. The reconstruction loss was higher than V = 1 but lower than
V = 16.
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2.4 Model Training

(a) V = 1

(b) V = 4

(c) V = 16

Figure 2.2: Each row contains a set of images where every two columns represent the original
sample and its reconstruction. (also for the next figures)

Latent Traversals

In this section we traverse our latent vector with a range [−2.5, 25]. Each dimension is traversed
once a time while the other dimensions remain fixed. As seen in Figures 2.2 and 2.3 the model
with the parameter V = 1 gave much better reconstructions. Figure 2.2a shows more details and
objects were distinguishable while the reconstruction of V = 16 shows blurry objects. For V = 1 the
model did provide a good reconstructions, however, at a cost. For V = 16 we see how the objects
preserve their shape while traversing the latent vector which is not evident for V = 1. The model
V = 4 showed an average result with respect to the two other models.
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(a) V = 1

(b) V = 4 (c) V = 16

Figure 2.3: Columns represent the factors in the latent vector; Rows are the traversal
from [−2.5, 2.5].

Discussion

This test has proved successful but on a dataset that is not ours. We did not go into detail about
the measures of our metrics since this is not the purpose of this dataset. For now, we can continue
further in our research. Of course improvements in our model, especially for the reconstruction,
will be discussed in the following tests. Let us conclude our first test, and continue on to the next
steps where we will test our model on a single set of scatterplots.
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Scores Value

Reconstruction loss 469
BetaVAE 0.758

MIG 0.044

Table 2.5: Results of the initial dataset using a V-VAE model.

(a) Reconstructions (b) Traversals

Figure 2.4: Reconstructions and traversals of the initial dataset.

2.4.3 Initial Dataset

The premise of the second test is a simple one. We previously created a very simple dataset
consisting of a set of varying factors, 6 for size, 6 for shape, and 5 for color. We wanted to test
the disentanglement library on a dataset that we provided. After a thorough inspection of how the
library works, we were able to insert the dataset or any other dataset for that matter into the library.
The inputs for the following test were 180 images of size 64 × 64 × 3, and a list containing the
factors with their corresponding index value for each image.

As previously discussed this experiment is only made to test the feasibility of the library on a foreign
dataset. Therefore we only trained our model once with 100 000 steps and a V = 16.

Since this is a very small dataset we changed one of the fixed hyperparameter, the latent dimension,
to a size of 3. Table 2.5 shows the results of the reconstruction.
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Reconstruction loss BetaVAE score FactorVAE score MIG

V-VAE 1304 0.575 0.509 0.008
Factor VAE 1274 0.791 0.616 0.179
VTCVAE 1292 0.77 0.547 0.189

Table 2.6: Results of the synthetic dataset using the three models with 100 000 training steps.

Reconstruction loss BetaVAE score FactorVAE score MIG

V-VAE 1341 0.579 0.590 0.01
Factor VAE 943 0.77 0.691 0.2
VTCVAE 987 0.739 0.528 0.176

Table 2.7: Results of the synthetic dataset using the three models with 300 000 training steps.

Latent Traversals

Looking at figure 2.4b we see the latent traversals for three latent dimensions. We can clearly see the
second column representing the color factor while the third column representing the size. However,
the shape factor seems to be missing. The first column must be the shape factor but the traversal
over that particular dimension was not distinguishable.

Discussion

The traversals show that only two factors, size, and shape, were disentangled while the size factor
theoretically must be disentangled. What we concluded is that the quality of reconstruction was
affecting our traversals rendering the shapes blurry and indistinguishable. For the next test, we
thought of addressing the issue with the blurry reconstructions by adding the Factor VAE and
VTCVAE models. Now since we have tested our initial dataset and the disentanglement library, we
can now start training on a larger dataset.

2.4.4 Synthetic Dataset

In this section, we will discuss the tests applied for the synthetic dataset, its main issues and
problems that arise from our implementation. We try to address two different problems. The first
issue is the need for generalization. Second, the lack of good reconstructions. The problem with
generalization seemed to be simple at first. Our solution was to create a new dataset with varying
samples and positions. However, this solution had a major flaw which we will discuss later on. As
for the second issue we will start training our data on 2 new models that exist to solve the blurry
reconstructions caused by the hyperparameter V.

Going through this test we realized that our dataset needs one more factor. The result from our
initial datasets showed some promising results. The model was able not only to distinguish the
different factors but also to disentangle our latent dimension. What our previous dataset fails to
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do was generalize over a bigger range of scatterplot images. So we thought in order to solve this
problem we should create more samples and iterate the styling factors over these samples. In our
initial dataset, we had a total of 180 unique images each representing a different combination of
those factors. We created a dataset of 250 different samples and we iterated each one of those
samples over the three original factors size, shape, and color. The resulting dataset was 45000
different images. As for the factors, we added a position dimension that represents the different
shapes of our samples. The factors position, size, shape, and color had the values 250, 6, 6, and 5
respectively.

For the following test, we used a V value of 16 and we ran it over 100 000 steps. We used the
hyperparameters specified in table 2.3. Now let’s take a look at the results of this test and the
metrics. We examine first the reconstruction loss where the value sits at 1304.93 and the KL loss
2.41. For the BetaVAE score, we have a training accuracy of 0.59 while the evaluation accuracy is
0.575. Moreover, results for the FactorVAE showed a score of 0.509 for the training accuracy and
0.521 for the evaluation accuracy while the MIG score has a value of 0.008.

Previously we have discussed how V-VAE works. As V grows as do the improvements with the
disentangled representation, however at a cost. While penalizing the KL divergence of @(I) and
?(I) we are also penalizing the mutual information � (G; I).

In order to try and fix this issue, we have considered two models. The Factor VAE and VTCVAE.
The main goal of both models is to compute and penalize the total correlation, and while the
Factor VAE uses a discriminator network, VTCVAE uses a probabilistic method. We tested both
models with similar hyperparameters as before. We recall the latent dimension being 10 and the
reconstruction loss for the decoder being a Bernoulli loss function. The only difference is that we
omit the V hyperparameter. We include a new hyperparameter W for Factor VAE set to 40 and a
V)�+ �� hyperparameter set to 8 for the VTCVAE model.

The Factor VAE model gave a result of 1274 for the reconstruction loss while the KL loss was
10.726. The BetaVAE score did improve with a training accuracy of 0.81 and an evaluation accuracy
of 0.791. The FactorVAE score also showed a bit of improvement with the training accuracy scoring
at 0.62 and the evaluation accuracy at 0.616. The last metric, MIG, showed a value of 0.179.

The VTCVAE model showed a reconstruction loss of 1292.15 and KL loss of 3.954. The BetaVAE
score showed a slightly lower value of training and evaluation accuracy than the Factor VAE model.
The resulting training accuracy is 0.792 and evaluation accuracy at 0.77. The FactorVAE score was
at 0.551 for training accuracy and 0.547 for evaluation accuracy. The MIG score showed a slightly
higher value than the previous model with 0.189 for the discrete MIG. Table 2.6 gives a summation
of all results for the three models over 100 000 steps.

Next, we thought of increasing the number of training steps from 100 000 to 300 000 steps. The
hyperparameters all remained the same as the previous test. we first start by checking the results for
the V-VAE model.

The reconstruction loss was 1341 and KL loss at 2.47 which is higher than the previous test. We can
say that increasing the training steps for the V-VAE model did not help with our reconstructions. The
BetaVAE score has a value of 0.594 for the training accuracy and 0.579 for the evaluation accuracy,
while the FactorVAE score showed a value of 0.516 and 0.59 for the training and evaluation accuracy
respectively. The last metric, the MIG metric showed a value of 0.01 for the discrete MIG.
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Now we look at the results for the Factor VAE Model. The reconstruction loss sits at 943.8 while
we have a score of 20.22 for the KL loss. The BetaVAE score showed a slightly lower training
and evaluation accuracy than before with a score of 0.768 and 0.77 respectively. The FactorVAE
score was slightly higher than before with a score of 0.688 and 0.691 for the training and evaluation
accuracy. The MIG showed some improvement going from 0.179 from the previous test to 0.2.

The last model will be VTCVAE model. The reconstruction loss was at 987.116 which is lower
than the Factor VAE reconstruction loss. As for the BetaVAE score, we have a training accuracy of
0.754 and 0.739 for the evaluation accuracy. The FactorVAE score got a result of 0.543 for training
accuracy against a score of 0.528 for the evaluation accuracy. Last the MIG got a score 0.176 being
outperformed by Factor VAE.

Latent Traversals

Now that we have the results from our test, let us check if the results match the reconstructions
and traversals. Figure 2.6 shows the latent traversals of our latent dimensions while figure 2.5
shows the reconstructions of certain images from our dataset. You might notice that we see both
the disentangled size and color factors, however, the position and shape are not represented in any
of the models. What we concluded was that both the shape and position are heavily influenced
by the quality of reconstruction. If the model is not able to adequately reconstruct the different
shapes and positions it will not be able to disentangle these factors. Another reason for the failed
disentanglement of the position factor might be attributed to the way the dataset images were
populated.

The reconstruction loss for the V-VAE model scored a very high value with figure 2.5a evident of
this score. The V-VAE model shows a very blurred reconstruction of the original images and almost
all reconstructions look exactly the same but in a different color. Based on first impressions both
figures 2.5b and 2.5c show better result than the V-VAE model but not quite so. We can see a bit
more details in our reconstructions but still can’t get distinguishable shapes and structures. While it
is really hard to say based on the reconstructions if the Factor VAE outperformed the VTCVAE
model, nearly both models resulted in the same quality of reconstructions and both were able to
provide a good disentangled representation.

Figures 2.7 and 2.8 show the reconstructions and traversals of our models but with 300 000 training
steps. We can clearly see that the V-VAE model was massively outperformed by the other two
models. The Factor VAE and VTCVAE gave pretty good reconstructions where now structures can
be distinguished. We can now see a significant improvement in our reconstructions.

As per the traversals the VTCVAE is the clear winner. The color size and position factors are all
clearly represented while the Factor VAE falls a bit short.

Discussion

Now that we have completed our tests, is there a model that outperformed all others. It is easy to
say that the V-VAE was outperformed by both the Factor VAE and the VTCVAE. The V-VAE model
failed to give us a reconstruction of our data due to the nature of its objective function. In our case,
it is clear that the V-VAE is not the correct model to consider.
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(a) V-VAE

(b) Factor VAE

(c) VTCVAE

Figure 2.5: Reconstructions from the three different models with 100 000 training steps on synthetic
dataset.

It is tough to say which of the two remaining models outperformed the other. Although based on the
metrics alone we can see that the Factor VAE model outperformed the VTCVAE model, however,
these metrics are not standardized metrics and multiple tweakings can be done with hyperparameters
that can achieve better results. However, judging by the traversals alone the VTCVAE created
superior traversal, where the different dimensions were better represented a defined. The difficult
part about tweaking the hyperparameters is that, as mentioned by Locatello et al. [LBL+19], there
is no specific combination that will give us the best results.

Nevertheless, we have a very big problem with our model. This issue is still related to our data and
still concerns generalization. Our model cannot encode and provide a good reconstruction for all
types of samples. In this dataset all samples have the same distribution, but what if we have another
type of distribution, for example, a linear distribution. This leads us to consider other types of data.
For now, we will end this section where further explanations will be provided in the next one.
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(a) V-VAE (b) Factor VAE

(c) VTCVAE

Figure 2.6: Traversals from the three different models with 100 000 training steps on synthetic
dataset.

2.4.5 Real world Dataset

Based on our previous results, we will not be using the V-VAE model since it was outperformed by
both Factor VAE and VTCVAE models. For this test, we will only be looking at both Factor VAE
and VTCVAE models.

This dataset was created from the R dataset package [R C18]. We chose this dataset because of its
diverse samples. One of the main reasons we think the previous dataset failed to produce a wide
variety of reconstructions is because it has been trained on a uniformly distributed dataset. These
datasets host a wide variety of samples that we think can help with the reconstruction phase. The
position factor in this dataset has changed to 314 making the total number of unique images 56520
of size 64 × 64 × 3. In these tests we have trained all our models on 300 000 training steps with the
latent vector of ten dimensions.
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(a) V-VAE

(b) Factor VAE

(c) VTCVAE

Figure 2.7: Reconstructions from the three different models with 300 000 training steps on synthetic
dataset.

Reconstruction loss BetaVAE score FactorVAE score MIG

Factor VAE 668 0.79 0.631 0.192
VTCVAE 666 0.767 0.617 0.185

Table 2.8: Results of the real world dataset using the Factor VAE and VTCVAE models.

We start by testing our Factor VAE model with the W hyperparameter set to 40. The reconstruction
loss was 688.799 with 18.11 as our KL loss. The BetaVAE training score was 0.79 and 0.779 as the
evaluation score. The FactorVAE score had a training accuracy of 0.645 and 0.631 as test accuracy.
The last metric we considered is the MIG where we got a value of 0.192.
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(a) V-VAE (b) Factor VAE

(c) VTCVAE

Figure 2.8: Traversals from the three different models with 300 000 training steps on synthetic
dataset.

The next test is done using the VTCVAE model. We again start by checking our reconstruction loss
which sits at 666.9 and the KL loss at 11.43. The BetaVAE score has a training accuracy of 0.772
and 0.767 as evaluation accuracy. The FactorVAE score was at 0.617 for the training accuracy and
0.61 for the evaluation accuracy. Last we got 0.185 for the discrete MIG score.

Latent Traversals

We will now look at the latent traversals and reconstructions for both our Factor VAE and VTCVAE
model. Each dimension is traversed one at a time from [−2.5, 2.5] of step size 0.5. Before checking
the traversals, let’s first check the quality of our reconstructions.
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(a) Factor VAE

(b) VTCVAE

Figure 2.9: Traversals from Factor VAE and VTCVAE models on real world dataset.

(a) Factor VAE (b) VTCVAE

Figure 2.10: Traversals from Factor VAE and VTCVAE models on real world dataset.
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We start by checking the reconstructions given by the Factor VAE model. What we can identify
from Figure 2.9 that the model was able to portray a reasonable reconstruction. We still get the
blurriness of a reconstruction but still, the Factor VAE provides a sharper reconstruction than its
V-VAE counterpart.

After checking the reconstructions, we now check the latent traversals. Figure 2.10 shows the
traversals of the ten dimension. from the traversals, we can clearly see the color factor represented
by the fourth dimension while the size factor is represented by the seventh dimension. Just as before
the shape factor lacks representation.

Next, we will check the reconstruction given by the implementation of the VTCVAE model. As
predicted, The model did provide a good representation of the original input images, maybe even
surpassing the quality given by the Factor VAE model.

We traverse the latent dimension I for the VTCVAE model. From figure 2.10b we can see the
traversal of our color factor represented by the third dimension while the size factor is being
represented by the seventh dimension. Judging solely by the traversals we can conclude that the
Factor VAE outperformed the VTCVAE model.

Discussion

We have seen our model’s reconstructions and traversals. Additionally, we have computed the
different metrics for both models. Now let us combine both the results presented by our traversals
and reconstruction coupled with the results from the disentanglement metrics. Going for the quality
of reconstruction, we previously said that the VTCVAE gave us a better reconstruction than that of
Factor VAE and that is further verified by their reconstruction loss where the VTCVAE showed
a reconstruction loss lower than that of Factor VAE. To check the quality of the disentangled
representation we check for the BetaVAE score, the FactorVAE score, and the MIG. For all
considered metrics the Factor VAE had a higher score than the VTCVAE therefore the Factor VAE
did present us with a slightly better disentangled representation.

2.5 Comparison

Tables 2.9, 2.10, and 2.11 show the different metrics and losses for the different models. The two
datasets dSprites and initial dataset were the first datasets we tested our disentangled library with.
Although not too much to say about these datasets, they did pave the way to set up our library and
familiarize ourselves with its different models. It is really difficult to compare the 4 datasets and
almost seems unfair since the initial dataset consists of only 180 and the dSprites dataset has a
different number of channels. Therefore we will only be comparing the synthetic dataset against
the real world dataset. Both of these datasets have the same number of factors and a relatively
equivalent number of samples. The Factor VAE represented in table 2.10 shows that the real world
dataset outperformed the synthetic with a lower reconstruction loss by a huge margin and scored
higher on all disentanglement scores except the MIG. Table 2.11 shows VTCVAE model which
shows consistent results from table 2.10. What we can conclude is that the real world dataset in a
general sense seemed to generate better results.
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Reconstruction loss BetaVAE score FactorVAE score MIG

Synthetic dataset 1341 0.579 0.590 0.01
Real world dataset − − −
dSprites 72 0.98 0.49 0.019
Initial dataset 469 0.758 − 0.044

Table 2.9: Results of all datasets from V-VAE model.

Reconstruction loss BetaVAE score FactorVAE score MIG

Synthetic dataset 943 0.77 0.691 0.2
Real world dataset 668 0.79 0.631 0.192
dSprites − − − −
Initial dataset − − − −

Table 2.10: Results of all datasets from Factor VAE model.

2.6 Conclusion

In this chapter, we have described and implemented three different models. The V-VAE model,
the Factor VAE model, and the VTCVAE model. We have tested these three models on four
different datasets of which three we have created. Although all models were able to achieve a good
disentangled representation the V-VAE failed to deliver a good reconstruction and that’s when the
two other models come into play.

The main problem that we encountered was the lack of generalization that we addressed with the
synthetic dataset and the real world dataset. But even with the real world dataset the position factor
had only 314 values, which means there are only 314 different samples. Given the nature of how
disentanglement works, we realized that we need a very large dataset in order to generalize. And if
we add another factor or even a variation in a factor, the number of samples increases by a huge
margin.

Our goal was to see if using disentanglement we can encode the visual properties of a scatterplot.
By the end of this experiment, we can clearly say that yes it is possible to encoded and control these
properties. Although we were not able to control the size property but we did get a close enough
reconstruction to give a good idea about the distribution of our data.

This will conclude experiment 1. In the next experiment, we will be building upon Jo & Seo [JS19]
work and extract the structural features of a scatterplot. We will create a tool where the user can
change these structures and generate his own data.
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Reconstruction loss BetaVAE score FactorVAE score MIG

Synthetic dataset 987 0.739 0.528 0.176
Real world dataset 666 0.767 0.617 0.185
dSprites − − − −
Initial dataset − − − −

Table 2.11: Results of all datasets from VTCVAE model.
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The second part of this paper will be creating a tool where we can generate images based on the
structural properties of a scatterplot. We want the user to have the ability to input an image, and
from a trained model control the different features of a scatterplot graph and generate similar data.
This experiment will cover the entire process. We will discuss the dataset used, the training process,
the results, and the problems and issues faced.

This experiment will be split into two sections. The first section involves gathering data, training
our model, and discussing the results. The second section will be dedicated to the construction of
the tool that takes our trained model and allows the user to control the latent vector and generating
new data.

3.1 Overview

The main goal of this experiment is to create a tool where we can control the structural features of
a scatterplot. The user should be able to change each dimension while changing only one factor
at a time. We add on the study conducted by Jo & Seo [JS19] where the authors train a V-VAE
model trying to encode the scagnostic features in a latent dimension of size 32. These dimensions
will capture the underlying structures, and traversing these dimensions will hopefully give control
over the high-level semantics. The features encoded can be summed up into 8 structural features;
Correlation, density, G position, H position, variance, scatter, skew G, skew H. We first try to replicate
the results using the V-VAE model, then we try to improve the reconstruction by training with a
VTCVAE model.

3.2 Dataset

The dataset in this study is taken from Jo & Seo [JS19]. The data gathered is 2 101 990 datasets from
different repositories including Plotly [Inc15] and UCI Machine Learning [DG17]. The datasets are
then filtered to satisfy the following criteria.

The datasets must contain only quantitative data with floating values and exceeding 20 unique
numbers. These criteria must be fulfilled to ensure that our data does not include any categorical
fields with numerical names. A dataset that fails to provide a pair of quantitative fields were
discarded. Additionally, if the dataset contains more than 30 quantitative fields, the dataset will be
discarded. The reason being is to avoid synthetically generated data resulting in a large number
of synthetic scatterplots. Any duplicate datasets were also discarded. The number of remaining
datasets was 477 177 datasets. All pairs of quantitative fields from each dataset were then combined.
All data were normalized and plotted on a [0, 1] axis. Each data sample occupied 1 pixel of white
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Figure 3.1: Experiment 2 architecture as described by Burgess et al. [BHP+18].

color. All data samples were plotted on a black background with no axes and legends to reduce
clutter. The resulting image has a size of 64×64×1. This dataset holds 1 189 039 unique scatterplot
images.

3.3 Architecture

For this experiment we used a different library than Experiment 1. The Disentangled library
by Locatello et al. [LBL+19] did not allow the disentanglement of continuous factors, therefore
we decided to change the library and work with the Disentangled VAE library [20118]. In this
experiment we used both V-VAE model and the VTCVAE models.

We used the same architecture for both models for a fair comparison. The architecture used is
the same implemented in ’Understanding disentangling in V-VAE’ [BHP+18]. Figure 3.1 shows
The architecture of both encoder and decoder. The encoder includes 4 convolutional layers with
32 channels each, the kernel has a size of 4 × 4 and a stride of 2. This was followed by two fully
connected layers of 256 neurons. The size of the latent dimension for this test was chosen to be 32.
The decoder architecture is equivalent to the transpose of the encoder architecture. For both tests,
we used an Adam Optimizer with a learning rate of 0.00005 and a Bernoulli loss function for the
reconstruction.

3.4 Model Training

3.4.1 V-VAE Model

We first start our test using the standard V-VAE model. We set the V hyperparameter to 16 and the
batch size to 124. This architecture basically projects the input data to latent vector and tries to
learn the most important factors. Trying to mimic the behavior of the model in Jo & Seo [JS19] we
chose our latent vector to be 32. Increasing the size of our latent dimension will allow our model to
learn more and minimize the data loss.

The training was implemented over 40 epochs. The V-VAE model is known for its failure to produce
a good reconstruction as V increases. For this model, we had a reconstruction loss of 0.365. The
next step is to traverse our latent vector.
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(a) Top 4 rows representing the original samples; Bottom
4 rows representing the reconstructions.

(b) Columns are the traversals; Rows are the factors in the
latent dimension.

Figure 3.2: Reconstructions and traversals for V-VAE model.

As we can see from the traversals from Figure 3.2b we can formulate the following factors that
have been disentangled by our model: correlation, Density, G position, H position, variance, scatter,
skew G, skew H. we have chosen the eight dimension with the highest KL divergence. Figure 3.2a
shows the reconstructions performed by our model. For this experiment, it is not necessary to get a
perfect reconstruction. Again our goal is to build a tool that can provide the user with the flexibility
to control the latent dimension and generate similar data. These reconstructions will later serve as
intensity maps to create similar data.

We have now achieved results similar to Jo & Seo [JS19]. Nonetheless, we want to find out if we can
achieve a better reconstruction so we considered improving our model using a VTCVA model.
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(a) Top 4 rows representing the original samples; Bottom
4 rows representing the reconstructions.

(b) Columns are the traversals; Rows are the factors in the
latent dimension.

Figure 3.3: Reconstructions and traversals for VTCVAE model.
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3.4.2 VTCVAE Model

In this test, we opted to use the VTCVAE for the exact purpose stated in experiment 1. The V-VAE
model results in a blurry reconstruction due to the nature of its objective function penalizing the
mutual information � (G; I), which is not desirable for a good reconstruction. We will now test our
model with VTCVAE which in experiment 1 improved the reconstruction quality while maintaining
its disentangled function.

The VTCVAE model requires a VTCVAE hyperparameter which we will set to 8. Again we used an
Adam Optimizer [KB17] with a learning rate of 0.00005. There is no definitive method to determine
the best hyperparameter value. Therefore we use the same hyperparameters used in experiment 1.

We train our model over 40 epochs. The VTCVAE resulted in a reconstruction loss of 0.318, the
minimum information loss was 0.185, and the total correlation loss was -0.176. The results show a
slight improvement than the V-VAE model.

In Figure 3.3a we see the reconstructions our model was able to achieve. The quality of reconstruction
is slightly better than the quality of the V-VAE model. And similarly as before, Figure 3.3b shows
the traversals from a range of [−2.5, 2.5] of the eight dimensions with the highest KL divergence.
The eight encoded factors are the same as the factors of the V-VAE model and as seen in figure 3.3b
was able to disentangle these factors. As stated before we are satisfied with the performance of our
model and an ideal reconstruction is not necessary.

3.5 Tool

In this section, we will take the trained model from the previous section and build a tool that
allows the user to control the 8 latent dimensions and generate more data based on the desired
reconstruction. We will also discuss the use cases of such a tool, and the resulting images it was
able to generate.

3.5.1 Use Cases

The tool allows the user to input an image and using our trained model outputs the appropriate
reconstruction. The tool has eight sliders each controlling one disentangled factor, and the user
can see the changes in run-time. When the user is satisfied with the reconstruction the user has the
ability to generate random samples based on the reconstruction, where the black and white image
acts as an intensity map.

This tool can be very useful for generating similar data. This tool allows full control over the
following factors: Correlation, density, G position, H position, variance, scatter, skew G, skew H.
The user has the ability to make us of our disentangled model to generate different plots of different
shapes with the added flexibility given by our disentanglement factors.

This tool can also be viewed as a visualization tool where the user can see the result of the traversal
of each factor. Whether for educational or personal purposes this tool can be helpful in visualizing
the encoded features and studying their behaviors through their traversals.
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3.5.2 Pipeline

In order to build our tool, we had to combine the different aspects of image processing, visualization,
and machine learning. The tool was built using python where we used the efforts of multiple
libraries to acquire a proper functionality. This section covers the different libraries and the steps
required to build our tool.

First of all our model is trained on an input of 64 × 64 × 1. Any image provided by the user must be
treated to become compatible with our model. Therefore, the first step was to take an input image
of any size and convert it to a 64 × 64 black and white image. Since our model is trained on images
with a black background and white sample points we converted any input image to a black and
white image of one channel where we converted the background to a black color and the sample
points to a white color. To transform the images to the necessary size and color we used the Pillow
library [Cla15].

After the necessary adjustments, we can now use our trained model to provide a reconstructed
image of our input. Our model’s encoder will take the input image and output a latent vector of size
32. As seen in the previous section we select the factors that have the highest dimension-wise KL
divergence. Each of these factors can then be traversed by an G value that the user can control. Our
model can then take the traversed latent vector and output its respective image. The output image
will be saved and displayed to the user.

Now that we have our reconstruction we can use the output image as an intensity map to create
other plots and images. Each pixel in the reconstructed images has a value between [0, 1]. This
gives us a distribution where darker areas or lower values will have a lower probability for a sample
to exist than a lighter area. Using simple python code we were able to create such a behavior. The
number of sample points can be controlled by the user as well as the number of images to generate.
The plots are created using the Matplotlib [Hun07] library.

Finally, we need a Graphical User Interface (GUI) to bind all these components together and allow
the user to interact with the trained model. The library used is a python library, Tkinter [Van20].
Using this library we were able to show the input image as well as the reconstructed image. The
traversals are updated at run-time to increase our tool’s practicality. Not only does the GUI allows
control over the latent factors but also the different parameters for the plot configuration.

3.5.3 Results

As can be seen from Figure 3.4a we can see the result of the different components. First, the browse
button allows the user to input an image file from the local machine. When the user selects an
image the proper transformations will be applied directly after. The Browse button will also trigger
our trained model to take our transformed image and provide us with its reconstruction. At this
point, we have not yet tempered with any of the latent factors. We have provided eight sliders
each of which controls a different factor. Each of the sliders is labeled for the user’s convenience.
Changing the value of a slider will trigger our trained model to update the reconstructed image
based on the values provided by the user using our the sliders. When the user is satisfied with the
results of the reconstruction he can then use the slider on the right to control the number of samples
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3.5 Tool

(a) On the left side starting from the top we have the input
image then browse button to input image then the
sliders to control the latent vector; On the left side
starting from the top we have the output image then

image generator button then slider to control the image
parameters.

(b) Image generated

Figure 3.4: Scatterplot tool
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and number of images to create. The Generate button will then create the plots and images based
on the parameters chosen by the user. The generated images are then saved locally on the user’s
machine.
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4.1 Future Work

There are a lot of improvements that can be done for experiment 1. We recall the main issue being
the lack of generalization. Using our technique one must create a huge dataset and annotate each
image with the factors it contains. One solution could be using Locatello et al. [LTB+20] model
where we use a semi-supervised model that needs only a few labels. The idea is that in a practical
sense one does not always have access to the labels, and manually generating these labels is very
costly. In our case, we use web crawling to gather data and images, then using the semi-supervised
techniques we can maybe achieve better results.

Another idea might be using transfer learning to solve this issue. We could train a model to learn
the different structures and distribution. Then we can combine the results with our disentanglement
model. But this poses a big question of how can we combine both models. How can we use the
results of experiment 2 as a structure for experiment 1.

In experiment 2 we learned 8 different factors that defined our structure. However, the initial
aim was to disentangle the scagnostic features. It’s a very difficult task since the factors are of a
continuous nature rather than discrete.

Another idea is to disentangle both continuous and discrete factors. Is it possible to combine both
experiments where we can disentangle the visual and structural features. Dupont et al. [Dup18]
presents a new disentanglement framework, the Joint VAE, that shows both continuous and
categorical variations can be disentangled.

4.2 Conclusion

This will conclude our research of disentanglement for scatterplot images. For this experiment we
used Locatello et al. [LBL+19] disentanglement library. In this paper, we were able to disentangle
the visual properties of a scatterplot, size, shape, and color. We refined the blurry reconstructions
given by the V-VAE model. We implemented two different models, the Factor VAE and VTCVAE
models, which both showed improvements in disentanglement and reconstruction. We discover that
even with our real world dataset we still fall short with the lack of generalization. However, both the
encoding and disentanglement proved to be successful.

The work Jo & Seo [JS19] gave us the idea to extend the research and create a tool where one can
use this model to alter the encoded factors. In experiment 2 we try first to replicate the work done
by Jo & Seo [JS19] and even try to improve the reconstruction quality by using the VTCVAE model.
Using python Tkinter library, we created a tool where the user can input an image and traverse its
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latent vector. The tool proved to have a successful functionality generating both reconstructions
based on the varied parameters and then generating scatterplot images based on the number of
images and number of samples parameters.

In this paper, we set out to understand the structural and visual properties of a scatterplot. Additionally,
we gained control over these properties and got a better understanding of the underlying structure
that defines scatterplot similarities.
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