
Visualization Research Center of the University of Stuttgart (VISUS)

Masterarbeit

Visualization for Human-AI
Collaborative Music Composition

Simeon Rau

Course of Study: Informatik

Examiner: Prof. Dr. Michael Sedlmair

Supervisor: Frank Heyen, M.Sc.

Commenced: May 5, 2021

Completed: November 30, 2021

Abstract

We propose an AI-assisted approach based on interactive visualizations to support users in composing
music and getting insights into the AI through hyperparameter analysis. Our user-centered approach
allows the user to better control the composition by steering the AI’s suggestions. We use symbolic
music data and piano rolls as visual music notation for easier understanding for amateur users and
interaction with the notes of a melody. As the user requests multiple possible continuation for a
given seed melody, and also multiple continuations for each of the previous continuations, a tree
or graph structure of melodies occurs. We visualize this structure with an icicle plot, where the
nodes are represented by a piano roll, to show the hierarchical structure of the melody samples. To
add sorting options for easier sample selection, while still displaying the structure, we added links
between the nodes. Both visualizations enable listening to selected melodies. For larger numbers
of generated suggestions, we added a similarity-preserving scatterplot to visualize all samples at
the same time with different glyphs representing melody samples. The scatterplot improves the
efficiency of sample selection, as similar samples are close together and the user can disregard
entire neighborhoods if one sample does not fit at all. We support brushing the scatterplot to
select neighborhoods for which we then show visual aggregations to allow for insights into groups.
To evaluate our design, we conducted a pair analytics study with two participants with limited
musical knowledge. Both participants were able to quickly create compositions they liked and
found our approach helpful. They also learned new things about the AI, like the influence of the
hyperparameter temperature on the resulting melody.

3

Contents

1 Introduction 13

2 Background & Related Work 15
2.1 Visual Representation of Sheet Music . 15
2.2 Machine Learning for Music Generation . 16
2.3 Visualization in Music and Event-based Visualization 18
2.4 Interactive Music Creation . 18

3 Concept 21
3.1 Users and Tasks . 21
3.2 Workflow . 22
3.3 Data . 23
3.4 Design . 23
3.5 Implementation . 40

4 Evaluation 43
4.1 Technical Evaluation . 43
4.2 Case Studies . 49
4.3 Pair Analytics Study . 55

5 Limitations and Discussion 59

6 Conclusion and Future Work 63
6.1 Future Work . 63

Bibliography 65

A Magenta Model Comparison 69

5

List of Figures

2.1 Modern staff notation compared to piano roll. 15

3.1 Workflow for user. 22
3.2 Piano Roll. 24
3.3 Color palette Tableau 10. 25
3.4 Icicle plot of piano rolls with three levels. 26
3.5 Icicle plot with different y-axis scales. 27
3.6 Icicle plot showing fill-in samples. 28
3.7 Icicle plot with alternative representation. 29
3.8 Node-link tree visualization. 30
3.9 Node-link diagram with different sorted nodes. 31
3.10 Similarity-preserving scatterplot. 34
3.11 Pie chart glyph. 35
3.12 Starglyph. 36
3.13 Single histogram glyph. 37
3.14 Double histogram glyph. 37
3.15 Piano roll glyph. 38
3.16 Aggregation visualizations of selected samples. 39

4.1 Icicle plot scalability. 45
4.2 Node-link diagram scalability. 46
4.3 SPS scalability. 47
4.4 SPS scalability adjusted. 48
4.5 Starglyphs in SPS. 50
4.6 Pie charts in SPS. 51
4.7 Histograms in SPS. 52
4.8 Piano rolls in SPS. 54

7

List of Tables

4.1 Run time of generating melody samples and visualize them. 43

A.1 Magenta model comparison. 70
A.2 Compared reasons for usage in this thesis. 71
A.3 BasicRNN melody generation evaluation. 72
A.4 MelodyRNN melody generation evaluation. 73
A.5 ImprovRNN melody generation evaluation. 74
A.6 Old version of the ImprovRNN melody generation evaluation. 75

9

List of Listings

3.1 Similarity between two melodies. 33
3.2 Melody’s data structure. 41

11

1 Introduction

People like music but composing a new song is hard for different reasons: Successfully composing
music often requires years of experience and learning theory, making it hard for beginners. Further-
more, the composer might lack creative ideas, which can result in the stagnation of the composing
process or production of unsatisfying music for the composer himself.

With the recent advances in technology, many machine learning (ML) methods were discovered
and developed to generate music [BHP20]. Especially different neural networks (NN) showed
the most promising results, based on architectures like recurrent NN [MKG+17], convolutional
NN [LCH+20], variational autoencoders [RER+18], transformers [HVU+18], or combinations of
them [KDW18]. Some of these ML methods were designed to predict notes, while others generate
the audio directly, but both focus on automation [FGJ20]. Although the imagination of generated
music sounds interesting and is useful, for instance, as video background music, in reality people
show some scepticism towards AI generated music at the current state [KC20]. However, purely AI
generated music often lacks personality, long-term structure and likely will not completely replace
human-composed pieces.

Instead, users want to have control over the action and use AI as an additional approach [KC20], even
though steering the AI in a desired direction can be hard [GB21]. The AI can support the user with
creative initial seed melodies or generating alternative ideas for continuations or replacements. This
can speed up the progress and move the composing process forward quickly, while also granting the
user authorship of the composition, because the user needs to decide when and how often the user
requests the AI [SYTC21]. Then, the AI plays a collaborative, co-composer role and could benefit
beginners, as well as experienced musicians [LSM18]. To improve the collaboration between AI
and the user, interactive visualization as a way to communicate can help, while visualization gives
users insight into abstract data, revealing possibly important information [BDG+20].

We combine interactive visualization and machine learning models for music generation and
propose a user-centered approach. In this approach, the user queries the AI for multiple melody
samples at the same time. For more personalized results, the user controls the AI through an initial
melody and hyperparameters. After creating multiple suggestions, the user is supported by different
visualizations to choose a fitting melody sample efficiently, without listening to all suggestions. The
tree/graph structure, resulting from generating continuations and continuations of the continuations,
is visualized using a icicle plot that shows the hierarchical structure. The nodes of this icicle plot
contain piano rolls that visualize the respective melody sample.

We added links between the nodes to enable sorting options, while still displaying the hierarchical
structure, to support more efficient sample selection, based on the selected sorting attributes. The
user is able to listen to samples or a path of samples directly in the visualization.

13

1 Introduction

As both previous visualizations struggle with a larger number of samples, we used a similarity-
preserving scatterplot and different glyphs, to represent multiple samples and its attributes at once,
while showing similar melodies close together. The user can select groups with a circular brush to
get insights into groups, supported by aggregations of the samples, or select completely different
melodies by moving away from that group.

We evaluated our proposed approach with a pair analytics study with two participants, testing the
usability of the visualizations for different tasks. Both participants had limited knowledge about
music theory and therefore represent a beginner user composing music or getting insights into the
relationship between AI hyperparameter and the output melodies.

In summary, we contribute a user-centered approach that combines AI and visualization to help
hobby musicians or composers with a lack of creative ideas in composing melodies interactively.
We further support getting insights into the influence of hyperparameters on the output of the AI.
Our approach consists of the following three parts: leveraging AI for piece-wise melody generation
with multiple samples at a time, two graph-like visualizations to support more efficient sample
selection, and a similarity-preserving scatterplot with melody glyphs for an overview over larger
numbers of samples and their attributes.

This thesis is structured as follows: Chapter 2 summarizes background and related work, regarding
visual representation of music, machine learning, visualization in music, and interactive music
creation. In Chapter 3, we explain general concept of this thesis, consisting of target users and tasks,
workflow of our approach, used data, design of our visualizations, and details on our implementation.
An evaluation of our approach through pair analytics studies is presented in Chapter 4 and results
and limitations are discussed in Chapter 5. Chapter 6 contains a conclusion of the presented
work, followed by an outlook into possibilities for future work. It is important to notice, that
mentioning temperature in this thesis always refers to the hyperparameter of the AI and not a
musical temperature.

14

2 Background & Related Work

We divided this chapter into separate sections: First, we take a look at the used visual representation
of sheet music. Next, related work regarding machine learning in music generation is presented and
we discussed and tested some of the available models by TensorFlow’s Magenta1. Then, we take a
look at visualizations in combination with music data, followed by interactive systems for music
composition.

2.1 Visual Representation of Sheet Music

The representation of music notes can be important in relation to the knowledge of the user. Amateur
users with limited knowledge about music theory often struggle with the common modern staff
notation while expert users are used to the notation. Due to the amateur users described in Section 3.1
the modern staff notation is not suitable for an efficient workflow. As an easy alternative, the concept
of a Piano Roll is used, based on the mechanic piano roll, which were programmable via holes in
the roll and used to play music automated [Roa85]. For experts, their favorite instrument could play
an important role for the intuitive usage of piano roll notation. Especially for musicians using a
piano it is more intuitive, while musicians playing other instruments, like guitar, might struggle
with a piano roll for the first time. In this concept the notes are represented as rectangles in a graph,
where the x-axis corresponds to the timeline and the y-axis represents the keys of a piano. Therefore
the position and length of a rectangle encode all the relevant data of a note: the pitch, start time,
and duration.

Figure 2.1: The same melody in modern staff notation (black) and visualized as piano roll (blue).

1https://magenta.tensorflow.org/

15

https://magenta.tensorflow.org/

2 Background & Related Work

2.2 Machine Learning for Music Generation

The right Neural Network selection for music generation is significant, to meet the user’s expectations
of generated music samples. In this thesis, the Neural Network needs to be able to generate a
continuation of a given musical sample but also to fill the space between two parts of the composition.
To ease the complexity of a composition and the music generation we decided to only use monophonic
NNs for the time being, as monophonic refers to only one voice and note at a time.

As mentioned in the Chapter 1, ML models exist, that predict the audio directly, like [MKG+17],
but are not suitable for a iterative, composing workflow, which is a goal of this thesis. These are
therefore not considered as possible models for this work.

Koh et al. [KDW18] developed a combination of different networks to reduce the problems of
understanding higher level semantics of musical structure and generating novel patterns with little
repetition. Therefore they combined a Convolutional Neural Network (CNN), to keep musical
structure over several voices, a Variational Autoencoder (VAE), to create completely novel sequences,
and a Recurrent Neural Network (RNN), to detect repetitive patterns. This proposed method
generates novel, polyphonic music based on the structure of the input sample, but is not used in this
thesis, as we start with monophonic music.

To achieve more creativity and diversity Dean et al. [DF20] developed a combination of RNN
and CNN, which should generate a music sequence that is distinct from the output but not random,
comparable to an improviser. While the controllable results showed signs of success, most of the
time poor results are generated, which is one of the reasons for why we do not use this model in this
thesis.

Roberts et al. [RER+18] proposed MusicVAE, a Recurrent VAE build with a LSTM encoder and
a RNN decoder for music generation. The VAE is used to generate novel music samples without
input or interpolate between two given melodies, using a latent space, where melodies are encoded
as points. As the model can interpolate between two sequences, it is more fitting for filling space
between two parts but lacks in the possibility to continue a given sequence. Therefore this model is
not used in this thesis as a single solution, but could fit as additional model for a fill-in task.

Another VAE by Weber et al. [WATS19] uses two VAEs controlled by a ’creativity knob’, to generate
a novel, variation of the given seed melody. This should support musicians to explore the space
of possibilities. As this model outputs only variations, the possibility of different continuations is
missing, which is a key task for an iterative workflow and therefore not used in this thesis.

Simon et al. [SO17] propose Performance RNN, an effective and ready to use RNN with LSTMs, to
generated music in a human-like performance way and therefore potentially mistimed notes and
different velocity. The user can control by choosing a temperature value to control the randomness of
the output melody. As this model is suited for generating continuations, we do not need the mistimed
notes in a composition and therefore use a similar, but simpler model by Magenta explained later in
this thesis.

Another RNN, proposed by Hadjeres et al. [HN20], uses an anticipation mechanism to enforce
unary constraints, defined by the user, to influence the generated sample. This gives users more
control, but also requires more knowledge for formulating constraints, which makes it hard for
beginner users.

16

2.2 Machine Learning for Music Generation

Watson Beat [Cha18] is a combination of Reinforcement Learning and a Restricted Boltzmann
Machine (RBM) to generate music, based on imitating the rhythm with some randomness and
learned rules in the melody. This model takes hyperparameters as input to generate a whole song in
the form of a MIDI file. As we only need smaller parts for an iterative workflow, this model is not
used in this thesis.

Behzadhaki et al. [HJ19] used text-based long short-term memory (LSTM) as an unpredictable
source of creativity to generate a bassline correlated with a drum sequence, as these two parts of a
song are highly correlated in some music styles. We do not use this model here, as it needs a drum
sequence as additional input.

Huang et al. [HVU+18] used a transformer network for music generation, to deal with long term
structure, as it uses a language-modeling approach to train the model. This was the first suc-
cessful Transformer with long-term structure in music generation, but the field of Transformer
networks in music generation is not as well researched as like RNNs. Since then, other transformer
models [Lup21; NHJ21] occured, that show promising potential but struggle with expert level of
rhythmic and harmonic consistency.

The open source research group Magenta2 provides many different models for music generation,
some being pre-trained and ready to use. We compared some of the models and chose three
monophonic models, based on an RNN architecture, that can predict a continuation of the input
melody. We chose the basicRNN, melodyRNN and the improvRNN, as they are controllable with a
temperature hyperparameter, which relates to the randomness of the output notes. Although these
models are similar, monophonic, and already pre-trained, which is one reason why we chose them,
they differ in some small attributes as some use addition chord progressions or limit the output
notes. A full comparison and the reasons for the usage decision is shown in Appendix Tables A.1
and A.2.

We tested the subjective quality of the selected models to get an impression of the output melody,
depending on the model and the hyperparameters. We tested all models and an older version of the
improv model with different temperatures and melodies, but only used one sample per case and
rated the sample by the sound of the melody.

We found that independent from the model, a low temperature resulted in mostly the same notes
used in the input melody and therefore the melody often sounded similar. As all models, except the
old version of the improvRNN, showed different potentials, for example the melodyRNN showed
high potential continuing complex melodies, we decided to use all three and let the user choose.
Still, this short comparison is not as significant, due to the limited sample size and therefore models
could potentially produce better results in other cases. More information and analysis can be found
in the appendix sorted for models in Appendix Tables A.3 to A.6.

2https://magenta.tensorflow.org/

17

https://magenta.tensorflow.org/

2 Background & Related Work

2.3 Visualization in Music and Event-based Visualization

A survey by Khulusi et al. [KKM+20] presented different visualization techniques for different task
related to music. Therefore they divided the tasks into groups: music work, musical collection,
musicians, and instruments. Music work is the most interesting group for this thesis, as it includes
composing music. The two kinds of visualizations most used in music work are the piano roll
view and different glyphs, which are both used in this thesis to support the composer. Still, other
visualization techniques like charts, graphs, and timelines were rarely used.

As the concept of a piano roll view remains the same, different versions were developed in 3D [SW97]
or 2D [TWM19], to show more information, like different instruments. Piano rolls are used today in
known digital workstations for music composition or visualizations, like Ableton Live3 or Synthesia4.
Often the same problem occurs, that overlapping notes result in indistinguishable timings through
the visualization, which is also one point we want to address later.

Wattenberg [Wat01] used glyphs to visualize the structure of a song. Arcs connect same parts of a
song, where the number of arcs and the placement along a timeline should shape the song with a
glyph. Glyphs of two songs can be used to compare repetitions or the general number of themes
used in a song.

To visualize multiple event-sequences, Bruckner et al. [BM10] used a timeline were events at the
same time are stacked vertically. Therefore this shows a graph, using the x-axis as a timeline, where
the user can choose different paths, as multiple events at the same time function as options.

Similar to this graph visualization, Wongasuphasawat et al. [WGP+11] converted the event timeline
into a tree of sequences and visualized it, using an icicle plot as inspiration. On top of an icicle plot
visualization for event-sequences, Lui et al. [LKD+17] added a node-link visualization of the tree,
as it is more familiar at first, as they stated. Although such node-link diagrams support the user
depending on the complexity of the visualization [AGB21], we use them and the icicle plot, to show
the hierarchy of generated music samples at different times.

We also use a similarity-preserving scatterplot to show clusters of similar predictions in order
to maneuver through samples, although such visualizations show negligible help for accuracy
prediction of classification [GBSW21], as our main goal is not the accuracy prediction but cluster
representation itself.

2.4 Interactive Music Creation

There are many playful applications, using interaction for music creation. Most of these applications
have limited control, like changing the pace, the randomness, or given seed patterns, to create small
samples of music, which is used to interact with an AI in a playful way [Par18; Pas18]. While these
can be fun to use, they are not destined to compose complex music.

3https://www.ableton.com/en/live/
4https://synthesiagame.com/

18

https://www.ableton.com/en/live/
https://synthesiagame.com/

2.4 Interactive Music Creation

In comparison, other application use more complex interactions to generate music. A approach
proposed by Frid et al. [FGJ20] uses a video and an example song, to inspire the AI, which generates
multiple tracks, that should fit the video and similarity towards the example song. The user can
then mix the generated tracks, to create a copyright free, background song for the video. Although
the user can influence the output song, this is not a approach for music composition but for music
generation.

Huang et al. [HDG16] want to assist the user, who wants to compose music, by suggesting different
chord progressions, on given chords. The AI suggests multiple options, that can change some chords
or add fitting chords at the end, where the user can listen to the options with an user interface. As
the approach is kept simple, is does not use further visualization to support the user.

A different approach to interact with an AI is presented by Zhang et al. [ZXLD21], where the user
has a conversation with the AI, to describe his imagination of the melody. As the AI generates a
melody based on the constraints, the user can afterwards change section with the given conversation
technique. Due limited control using the word-based approach, we do not use such an approach, but
want to use visualization for better communication and interaction.

Agostini et al. [AG15] provide a library to compose music with the possibility to link an AI model as
support. For the composing process, the user can edit notes and generated sequences with interactive
visualizations using mouse clicks, keyboard, or messages. They use the modern staff music notation,
which can be harder for beginners. Although this library provides the possibility to add an AI, it
lacks in control as it is not developed for AI specifically.

A study about Human-AI co-creation by Huang et al. [HKN+20] gives some insights about user
interfaces and functions, needed for a good cooperative workflow with the AI. They stated, that
the participants needed control through interfaces to interact with the AI and the generated notes,
creative freedom, and multiple functions to generate new samples, fine tune sections, or interpolate
between sequences. Results showed, that users often generated multiple samples after another until
they found fitting ones, compared them and selected the one, as most of the generated samples
were not the expected outputs. To address this workflow, we use this as basis and generate multiple
samples at once and support the user selecting fitting samples with interactive visualizations.

Music sketchnet is a approach, proposed by Chen et al. [CWBD20], to fill-in missing parts of
a composition. To control the ai, the user is able to roughly sketch the melody by providing a
rhythm, notes or other conditions. The the AI tries to interpolate between the given sequences, while
fulfilling the constraints given, the user is not able to change the notes afterwards and is therefore
forced to generate the same part multiple times. While the idea to sketch a part as controlling
technique sounds interesting, the approach has limited possibilities when composing music. Similar
problems occur in NONOTO, proposed by Bazin et al. [BH19], as this approach also provides an
interactive interface to fill space between two sequences. Therefore we want to support a fill-in
function as well, but generate multiple options at the same time instead of one at a time.

Another approach, called Cococo by Louie et al. [LCH+20], uses a steerable AI to harmonize a
given melody. This means the AI suggests multiple options for different voices, based on chosen hy-
perparameters, where to user can choose from. The user can control the AI with sliders, suggestions
for example a happy harmonization, and adjust single notes afterwards. With that amount of control
the user gets more authorship than by just generating music. Our approach is influenced by this

19

2 Background & Related Work

concept, but we extend on the control of the user, as we allow the user to generate more options and
support the user with visualization for a better selection process. As Cococo harmonizes a given
melody, our approach can be used to compose that melody.

20

3 Concept

Firstly, we explain the users and tasks of our approach in Section 3.1, as we have the composer
and AI analyst as user with different goals, In Section 3.2, the difference in the workflow between
common systems, generating music purely through AI, and our AI-assisted user-centered approach
is shown. Then we explain the data structure, used for the visualizations, in Section 3.3, as it explains
the occurring tree or graph structure of melodies. All visualizations and design choices are then
shown and explained in Section 3.4. Firstly, our version of a piano roll is explained, followed by
both tree/graph based visualizations, the icicle plot and the node-link diagram. Then we show the
similarity-preserving scatterplot (SPS) with all different glyphs, encoding different attributes of
the melody samples. Some information about the implementation of the approach can be found in
Section 3.5.

3.1 Users and Tasks

There are two different types of users in different scenarios: On the one hand an amateur composer
and on the other hand an AI analyst. The composer is interested in composing a new melody for his
own song but has limited knowledge in music theory or lacks in initial ideas for the melody. The AI
analyst is interested in new technology like AI in music and wants to learn how hyperparameters
could impact the result given by the AI and therefore the produced music. A single person can share
characteristics of both types of users and can be interested in all of the tasks and goals at the same
time.

3.1.1 Composer

Imagine an amateur composer, whose knowledge about music theory is limited or who cannot use
the knowledge properly, but still wants to compose a melody for an own music piece. Due to the
amateur status, the user might need help when converting ideas into whole melodies, continuing the
ideas or finding a seed for a melody. The usage of AI can help with all these problems when the
user has the possibility to interact properly. Therefore, the user desires full control over the steps of
the composition but still wants to create the music fast and easily. The user gets supported by the AI
in the form of suggestions, which are then visualized to make the process of finding and deciding
on a good suggestion more efficient. Therefore, the user can use different visualizations to compare
different samples. With the possibility to input and adjust notes, generate suggestions on demand
and get supported in decisions by visualizations, all needs of the users to compose music with the
help of AI are met.

21

3 Concept

Figure 3.1: Our approach gives users control and artistic freedom through iterative choice and
adaption of AI-suggested melodies. Users gain insight into the AI’s behavior.

3.1.2 AI Analyst

An AI analyst is interested in learning how AI can work in music and how it can be used to full
potential in combination with a human. Therefore, the user wants to gain insights into the impact of
different hyperparameters on the musical output. How the AI reacts to different example melodies
or to different steering methods and values are crucial questions for this user. The insights are
gained by different visualizations, showing multiple relationships of data and context between
hyperparameters and AI output. The user can use these insights later to improve efficiency when
composing in a collaborative manner with AI.

3.2 Workflow

In this section, the workflow between a general automated music generation task and our Human-AI
collaborative approach is compared. The general idea is that a user wants to create an own song with
the help of the AI. In an automated approach, the user controls the ML model with hyperparameters
which then generates a whole song and outputs the generated music piece, where the user has little
authorship. The approach of this thesis not only uses hyperparameters as a way to control the output,
but the user can also provide an example melody to steer the AI into a certain style of music. The
AI then generates multiple short samples as continuations for the example melody. These samples
are then visualized and the user is able to interact by selecting or adjusting a sample. Then the user
can decide to compose a next part by repeating this step and composes a melody in an iterative
manner. The output is then a personal composition, where the user has high authorship.

22

3.3 Data

3.3 Data

The smallest building block of the used data is a single note. Each note consists of a pitch, the
start time step, and the end time step. Multiple notes can be combined to a melody part of the
chosen length. Melody parts are stored independently and are not combined apart from the current
composition. Therefore, the data consists of multiple melodies or parts, which were either inputted
by the user or generated by the AI.

The AI uses a given melody as example to generate a short sample of notes. This sample is a
continuation of the example sample and therefore later in time but also in a similar style. The user
can manipulate the data by adjusting single notes or influence the AI via hyperparameters. Often,
one generated continuation does not meet the expectation and therefore one solution for the user was
to repeat the generation multiple times. To prevent this from happening the user wants to generate
multiple continuation samples at the same time to not miss out on the interesting ones. Each of
these samples can then have multiple continuations as well.

The user can repeat the steps to generate samples in advance. This results in a tree structure of
samples where the the example melodies correspond as parents for the generated continuations. The
relationship represented in the tree shows the schedule of samples as well as the input and output of
the AI generation. The root of the tree corresponds to the current composition of the user.

Imagine the user wants to go back to a part of his composition, the root, and recompose the chosen
part. To not miss out on good suggestions by the AI, the user wants to generate multiple samples at
the same time as well. These samples are called fill-in samples from now on. These fill-in samples
work just like all other continuations in terms of them being a child of the root in the given tree
structure. The only difference to the other children is, that the notes of a fill-in samples start and end
before the end time of the composition. Therefore it results in a graph structure instead of a tree and
will be called melody graph from now on. This difference is important for the visualizations later.

3.4 Design

In this section, different types of visualizations are shown and the design choices are explained.
The visualizations are designed to support the different types of users in fulfilling their tasks.
Therefore, the main focus of a visualization can vary and different tasks are supported. The
following visualizations are explained in this chapter. First a Piano Roll visualization is shown in
Section 3.4.1. Then the mentioned tree structure is visualized with the help of an icicle tree structure
in Section 3.4.2. A node-link diagram, a flow visualization, which can also show the tree structure
is explained in Section 3.4.3. Addressing different tasks and problems, a similarity scatterplot is
more suited than the previous ones and is explained in Section 3.4.4.

3.4.1 Piano Roll

As mentioned in Section 2.1, the way to visualize notes of a melody chosen in this thesis is the
concept of a piano roll. The piano roll with its explanations are shown in Figure 3.2. In the following
part, the word note refers to the rectangle visualizing the note in the piano roll.

23

3 Concept

Figure 3.2: A piano roll visualizing a sequences of notes. Pitch, start time, and duration of a note
are encoded by the position and the length of the respective rectangle. Y-axis shows
the pitches and x-axis shows a linear timeline. Color of notes encode the belonging to
a melody sample. The ticks of C are highlighted, while ticks of sharp notes are missing
and the representation of sharp notes are more transparent. a) An eighth note. b) One
bar (16 time steps). c) AI generated part, highlighted with gray background.

When visualizing several notes inside a piano roll, different aspects for understandability by the
user have to be taken care of. First, each note can be represented with a simple rectangle, that can
also be dragged by the user to adjust the timing, duration, and pitch of that note. With this start,
the problem occurred that for example two consecutive quarter notes with the same pitch looked
the same as one half note at the same pitch. So the user was not able to tell the difference between
melodies in certain cases.

The boundary of a note has to be clear for the user in order to avoid misunderstandings of the length
of a note. This problem is addressed with multiple solutions. Our first solution was that each note
has a small black border so the length of a note is clearly visualized. The second solution is that the
corners of the rectangle are curved so it is much easier to see the difference in the example at the
first glance. Another idea is to use the color, specifically the gradient of the color. The gradient
starts at a high opacity of the color and gets lower to the end of the note. This also leads to an easier
view of the length of the note. All these ideas and solutions where used in this thesis, as shown in
Figure 3.2, to make sure the notes can be seen well and the length of a note is clearly shown.

As support for determining the pitch of a note more easily, the ticks of the y-axis are not drawn for
each pitch. Only ticks for natural notes are shown so it is much easier to find a specific pitch. To
emphasize this, the color is also used to reflect the difference between natural and sharp notes. For
visualization, the opacity of the color is used, so sharp notes have a lower opacity than natural notes.
These two aspects aim for the same target and should help the user to recognize the pitch of a note
faster. To support the readability of a pitch the baseline of an octave can be helpful. Therefore, the
tick of each key C is highlighted with a thicker, blue line.

An idea to improve the identification of the pitch of a note, the specific color was chosen based on
the pitch. For example, a note C would be marked with the color blue and a note D with the color
red. Due to the data structure, as explained in Section 3.3, different parts of the melody have to
be visually encoded. A good way to show different parts in a melody is by color and therefore the
previous idea was discarded. The color now represents the affiliation of a note for a part. As shown
in Figure 3.2, all blue notes belong to the same part while all green notes belong to another part.

The chosen colors where selected carefully with the intent to show differences well, as the various
parts of the melody should be clearly distinguishable. To show the difference between several parts,
a chosen color should be different to all other colors, so all selected colors need to be pair-wise

24

3.4 Design

Figure 3.3: Color palette Tableau 10 specialized on showing differences and a sophisticated look.

different. Due to humans’ limited ability to distinguish between multiple colors, a maximum of 10
colors is chosen. Because of these requirements to show differences, we chose Tableau 10 [Sto16]
as our color palette, shown in Figure 3.3.

A different problem other piano roll visualizations had was that overlapping notes were difficult
to detect and the length of the notes could be misunderstood. Imagine a quarter note is drawn
underneath a half note of the same pitch, the quarter note cannot be seen by the user due to the
smaller length and the drawing level. Addressing this problem, the idea is to lower the opacity of a
note so the user is able to detect multiple notes at the same spot. Due to additive colors of the notes,
the user can detect if overlapping notes have different colors and therefore belong to different parts.
Although this is not a perfect solution and there are still cases where this does not lead to the right
conclusion, this idea is a step into the right direction and solves one part of the given problem.

The question of authorship often occurs when working together with an AI. Therefore, it can be
helpful for the user to visually be reminded of which parts where purely generated by the AI
and which parts where either actively composed, adjusted, or approved by the user. As shown in
Figure 3.2, the time area where only AI generated notes are underlaid with a gray rectangle. This
indicates that all notes inside this rectangle are purely AI generated and not yet approved by the
user.

In order to use a specific part as a seed melody for predictions, the user is able to brush a part and
then generate new melody samples as continuations for the selected part. If the user wants to go
back to a part of his composition to replace it with some new suggestions to improve that part, the
same concept as generating continuations applies. To not miss out on any samples the user can
generate multiple fill-in samples at the same time by using the brush for selection and the AI to
generate fill-in samples for that selected part. The user is able to listen to all samples or only to a
selected part via the brush. A line functions as playback indicator and shows the current time of the
sample while playing.

3.4.2 Icicle

An icicle plot [KL83] shows a hierarchical order where a node is next to its parent node and the
height is determined by the sum of heights for all children in one level. We visualize our melody
graph with an icicle plot, where nodes show a piano roll, containing the notes of the corresponding
sample (Figure 3.4). These piano rolls share a common time axis from left to right which also
indicates the relationship between samples. Nevertheless, each piano roll has its own pitch axis
from bottom to top.

25

3 Concept

Figure 3.4: We visualize a graph of melody samples similar to an icicle plot with piano rolls in
all nodes. Y-axis is separate for each Node while x-axis is a common timeline. The
visualization has 3 levels.

We allow the user to interact with the melody samples in the icicle plot by selecting a sample. The
selection includes the whole path to the root and shows all the notes in a separate piano roll. Here,
the user can play the whole melody or just a selected part, via a brush. A playback indicator helps
when following the current played notes. With a simple mouse click the user can add the selection
to his composition.

Because each node has its own axis from bottom to top, indicating the range of pitches shown in the
piano roll, the selection of the right scale is important for different views. We tried three different
types of scale selection, each with advantages and disadvantages regarding the understanding of the
visualization (Figure 3.5).

The first idea was to use a global scale, so each node uses the range on the axis. Therefore, the
maximum and minimum pitch over all samples where calculated. This led to a higher amount of
white space, if some outlier notes produced a high range, where the range is too large for most
samples. On the other hand, the context between samples and the total position of a note is kept
more intuitively. For example a note shown in the middle of a node, always shows the same pitch.
These phenomenon can be seen in Figure 3.5a.

To fix the problem of the high amount of white space in each node, we tried a local scale for each
node. Therefore the maximum and minimum pitch are calculated for each node independently. Here
outlier notes can produce a high range for the scale but it only impacts the own node instead of all
the other nodes. This reduces the white space due to the adapted axis. A drawback of this method
is, that the context between samples is not kept and it is therefore harder to compare some of the
melodies. This means, two melodies could consist of one note but different pitch, which would
lead to a similar representations in the icicle plot with different meanings. Therefore, a note in the
middle of a node could represent different pitches. This approach is shown in Figure 3.5b.

As a compromise for the previous approaches we tried a combination, where the scales are calculated
independently for each level. Therefore, the white space is reduced for each level but context inside
a level is kept. The problem of outlier notes can still occur but only impacts the respective level.
This approach is shown in Figure 3.5c. The user is able to switch between the scales depending on
the task and his preference.

26

3.4 Design

(a) Global y-axis.

(b) Local y-axis.

(c) Same y-axis per level.

Figure 3.5: Our icicle plot visualization of the same tree-like structured data with different y-axis
types. a) All elements share the same range. b) Local calculated range for each node.
c) All elements of the same level share the same range.

27

3 Concept

Figure 3.6: Our icicle plot, showing the graph-like data structure with fill-in samples. a) Fill-in
samples. b) The root composition is split into two halves due to the timing of the notes.

As addressed in Section 3.3, the user is able to go back to a part of his composition to fill-in multiple
samples as replacement suggestions for the selected part. This results in a melody graph with the
corresponding icicle plot shown in Figure 3.6. Here, the root note is split into two parts, both taking
the full height, while the fill-in samples are placed between them in the same manner other children
are placed.

When generating a large amount of sample melodies as continuations ,for example 50 samples, the
normal icicle plot representation struggles with displaying all nodes and their information. Due
to the limited space on a level the space each child gets is too small. As shown in Figure 3.7a,
the nodes are too small, resulting in a clutter where the information is not recognizable. To solve
this problem we chose a different visualization to encode notes of a melody sample. As shown in
Figure 3.7b, we decided to replace the piano rolls with a line, where the notes are placed on. The
position of a rectangle on the x-axis corresponds to the start timing and the duration of the note
as encoded in a normal piano roll. A note’s pitch is encoded by the color and the height, where
the color corresponds to the pitch named in the legend on the left and the smaller height indicates
a # note. Important to say is that the octave number for a pitch is omitted and therefore a C note
could show a C4, as well as a C5 note. To help the user with selecting samples by their starting
note, samples are sorted within a level and the same parent by the start note of the melody, showing
samples starting with C at the bottom and samples starting with a pause at the top.

3.4.3 Node-Link Diagram

To further improve sorting as support for efficient sample selection, we chose different sorting
metrics, which are shown later. Sorting all nodes inside a single level of the icicle by a chosen
metric often results in the problem that nodes could not be shown besides their parents. Therefore
an icicle plot was not sufficient to show relationships and sorting the nodes of a whole level. To
solve this problem we added links between the nodes to show a relationship independent from
the position of the nodes. The links additionally allow to encode the value of the chosen metric
inside their width. So for example when sorting by temperature the link width encodes the value of
temperature, showing wider links for higher temperature values.

28

3.4 Design

(a) Piano rolls, pitch encoded by y-position.

(b) Pitch encoded by size and color.

Figure 3.7: The icicle visualization with 50 generated continuations. a) All 50 piano rolls share a
limited space, resulting in clutter. b) Pitch is encoded with color as seen in the legend
on the y-axis but octaves are omitted. For example a blue note can be C4 or C5 or any
other C. Sharp notes have smaller height like on a piano where black keys are shorter
than white keys. Melody samples are sorted by starting notes, C at the bottom and
empty at the top.

We decided to fill the nodes with simpler versions of piano rolls to reduce clutter and improve
visibility. The simplier versions of piano rolls do not show axis but only the respective notes in their
position. Therefore, the melodic structure is still visible but the context and the actual pitch of the
notes are lost. We decided to trade the missing pitch for better visibility to reduced clutter, because
the melodic structure already can indicate more interesting melodies. The actual pitch of a note is
not as helpful, especially for novice users, as a visual representation of a melody’s structure.

In order to be able to see the actual pitch of notes from a chosen melody, we allow the user to view
all nodes of a selected path in the separate, detailed piano roll mentioned in Section 3.4.2 by mouse
clicking on the respective node in our node-link diagram (Figure 3.8). We also allow the user to
listen to a single melody sample or the whole path to the root directly in the node-link diagram,
by hovering over a node and mouse clicking on the respective button. A playback indicator shows
which node and which note is currently played. The user is also able to directly add a node and the

29

3 Concept

Figure 3.8: Our node-link diagram visualization of a melody sample graph. Nodes represent
samples and display them through piano rolls, links connect related nodes and encode
the current sorting metric’s values in their width. a) The full-height nodes are part
of the current composition. b) Nodes in the middle show options for a fill-in. c) The
right-most nodes show possible continuations. d) A time cursor shows that the center
right node is currently played back as audio.

whole path to the composition. We decided to automatically generate the next set of continuations
when using the adding method from the node-link diagram, because it automatically updates the
visualization and enables a fast way to compose music in an iterative way. The user has full control
over the selection of samples and could compose a longer melody in a short amount of time.

We chose four different metrics to sort by in order to improve sample selection depending on a given
idea. For example, the user could sort the samples by variance of intervals between notes to filter
more exciting melodies (Figure 3.9 Bottom). Other metrics we chose were the temperature used
for generation of the sample and similarity to the parent. When sorting by similarity to the parent,
the user should be able to find small variations or completely different samples depending on the
intention of the user.

If the user searches for a continuation with a high similarity but small changes compared to the seed
melody sample, he should be able to sort by similarity to the parent in a descending way. The used
similarity function is explained in the next Section 3.4.4 and shown in more detail in Listing 3.1.

The metric temperature intents to support the user when searching for more or less randomness
inside the melody samples (Figure 3.9 Middle). Melody samples generated with smaller temperature
contain a smaller amount of random notes. This can also be interesting for the AI analyst user and
support the investigation of melody samples depending on temperature. We chose these three metrics
because it enables the user to search for exciting or calm melodies as well as for continuations,
that are small variations or completely different melodies. The temperature metric was chosen by
us, because it allows both the composer as well as the AI analyst to search for randomness in the
melody.

We also added the normal relationship, also used in the icicle, as sorting to achieve a better
overview of all samples and to show parents and children besides each other without link crossings
(Figure 3.9 Top). Of course there are many more possible metrics, with different intentions to fulfill
other tasks, that could replace the current ones or be added.

30

3.4 Design

Figure 3.9: Three node-link diagrams with the same data but different sortings. All nodes on the
same level are sorted by the chosen metric for better selection. Links show relationship
while also encoding the chosen sorting metric’s values in their width. Top) Normal
tree relationships without any sorting. Middle) Nodes of the same level are sorted
in descending order according to temperature. Bigger links correspond to a higher
temperature. Bottom) Nodes of the same level are sorted in descending order according
to the variance of all pitch differences between notes. For example the pitch difference
between C4 and E4, which converts to MIDI values of 60 and 64, is four. Bigger links
correspond to a higher variance value.

31

3 Concept

3.4.4 Similarity Scatterplot

In order to better understand the AI model and its suggestions, the user can generate tens or hundreds
of melody samples with different model hyperparameters. Since our previous visualizations, the
icicle plot (Section 3.4.2) and the node-link diagram (Section 3.4.3), do not scale with this amount
of data, we chose a different design for this use case. To solve this problem, we introduce a third
visualization to show an overview of all samples by visually grouping them based on the similarity
of the melodies in a so called similarity-preserving scatter plot (SPS).

Similarity-Preserving Scatterplot

Similarity-preserving scatterplots are often used in different areas to give an overview before
filtering and investigating interesting looking groups or single samples. As proposed in a work
from Sedlmair et al. [SMT13], 2D scatter plots to reveal clusters in the output of dimensionality
reduction algorithms are a promising approach and a reason why we chose an SPS as an overview
of all samples. They are used in video analysis to find interesting parts in a video, as proposed by
Achberger et al. [ACTS20], in order to increase efficiency compared to traditional analysis. Finding
songs of similar styles in a music collection is also a use case of SPS, as proposed by Gomez et
al. [GGKG20]. Le et al. [LND21] used an SPS to show differences between instruments for given
audio samples. In the previous works using an SPS, as well as other works like [SSS+19], the
similarity is calculated in wave form with Mel-Frequency Cepstral Coefficients (MFCC), which
extract features of samples. In this thesis, this function is not applicable due to the different types of
data.

Symbolic melody similarity is needed when using our representation of notes. DeHaas et
al. [DWV13] proposed a symbolic harmonic similarity to calculate the similarity based on chords.
Due to the chosen limitation of monophonic samples in this thesis, this similarity function is not
usable in our case. Urbano et al. [ULMS10] proposed a different approach using the melodic shape
in the form of a curve interpolation to measure similarities between the curves. This approach was
especially designed for polyphony and harmonics and is therefore too complex for our use case.
Another similarity function, proposed by Park et al. [PKL+19], uses the edit distance between two
melodies for pitch difference and rhythm separately and in a multi-scaled way. A common problem
for these techniques is a time consuming calculation. In order to improve usability we chose to
trade-off accuracy of similarity to reduce calculation time. Because similarities are calculated
pair-wise between each sample, the number of calculations can add up quickly when generating
hundreds of samples.

Our similarity function is used in the following SPS Section 3.4.4 and for sorting samples as in
Section 3.4.3. This function calculates a similarity between two melody samples and provides
a value between 0 and 1, where 0 corresponds to totally different and 1 highly similar samples.
We decided to calculate a rhythmic and a melodic similarity independent from each other and
combine them with a weight, inspired by [PKL+19]. This allows the user to decide which part is
more interesting and should be weighted more. A simplified version of the similarity function for
monophonic melodies is shown in Listing 3.1. We also tested the string based Levenshtein-distance
as similarity function. Therefore, we converted monophonic melodies to a string containing the
notes at each timestep. With that string conversion the rhythm, especially the note duration, was not
taken into account and we therefore chose our combined function.

32

3.4 Design

Listing 3.1 Code to compute the similarity of two monophonic melodies. Similarity is calculated
by weighting rhythmic and melodic similarity, which are calculated separately. For the melodic
similarity, only the differences between two neighbor notes are taken into a count, instead of actual
pitch, to account for shifted melodies with the same structure.
Choosing the weight: 0 = rhythmic similarity, 1 = melodic similarity.

def similarity(melo1,melo2,weight): #musical length in quantized steps.

rhythm = 0

melody = 0

for i in range(min(musicalLength(melo1),musicalLength(melo2)):

note1 = findNote(melo1,i) #find note at timestep i

note2 = findNote(melo2,i)

if duration(note1)==duration(note2): #note duration and timestep equal?

rhythm++

if note1.diffPrevious == note2.diffPrevious: #difference to previous note equal?

melody++

total = max(musicalLength(melo1),musicalLength(melo2))

return (1-weight)*(rhythm/total)+weight*(melody/total)

def findNote(melo,i): #return first note found at timestep i

for note in melo:

if note.quantizedStartStep<=i && note.quantizedEndStep>i:

return note

return null

To calculate the SPS, shown in Figure 3.10, we first calculate the pair-wise similarity between all
samples. We use dimensionality reduction, especially multidimensional scaling (MDS) [Kru64a;
Kru64b], to project the similarities between samples to 2D points. These points are then drawn into
a scatter plot (Figure 3.10), where each circle represents a melody sample from our dataset.

In our SPS, melody samples are represented as circles that encode different information in their
color and radius. In Figure 3.10, the color encodes the hyperparameter temperature, where lower
temperature corresponds to blue and higher temperature to red. The radius of a circle is fixed here
but could be used to encode the number of notes or other properties.

We allow the user to use a resizable circular brush to select multiple samples or groups of samples
for further investigation. These samples are shown in different types of aggregations (Figure 3.16),
which are explained later.

Due to the limited amount of information, that could be encoded into a circle, we tried different
glyph ideas to represent the melody of a sample [WCHU08]. These glyphs should help the user to
get information about the sample inside of the SPS without actively selecting samples. When using
glyphs, we found that overlapping glyphs in an SPS can result in clutter, where the user is unable to
see any information due to occlusion. As a solution to that problem, we gridified the SPS in order
to avoid collision of glyphs.

In a gridified scatterplot the space is divided into cells of the same size and the points are placed
into separate cells, so each cell contains up to one representation of a sample. With that grid, the
visibility of all glyphs is guaranteed, but similarities might not be shown correctly. This problem can
occur when two points are close together and a third point is placed with higher distance towards the

33

3 Concept

Figure 3.10: A similarity-preserving scatterplot (SPS) representing melody samples with a circle.
The color encodes the temperature used to generate the melody, where blue indicates
a low temperature and red a high temperature. Users can use a circular brush (gray
circle) to select samples for different visualizations shown in Figure 3.16.

first two points. When using the grid in this scenario, all three points could end up in neighboring
cells, which does not represent the true similarities. Nevertheless, we rate visibility higher than the
fully correct accuracy so we chose to gridify the SPS when using glyphs instead of circles.

Pie Chart Glyph

A first idea is to represent each melody sample with a pie chart, showing the occurrences of pitches
in the melody. To calculate the occurrences, the octave of a pitch is omitted, so C4 and C5 both
count as a C in this occasion. The pitches are placed, starting at the top, clockwise in the circle and
are encoded with a color from Tableau 10 (Figure 3.3) to identify the difference between sections.
Since our color palette only has 10 colors but 12 pitches are used, we reuse the first two colors, as
shown in the legend at the bottom of Figure 3.11. With that decision there is a possibility that two
neighboring sections at the top could have the same color. Imagining a line from top to bottom,
these sections can be can be separated, as shown in Figure 3.11 at the right. We also tried to encode
the temperature of the sample as a colored dot in the middle, which was too confusing with the
different colors.

With that representation of melody samples, the time aspect is omitted and the occurrences of
pitches, independent from octaves, are presented. Some examples are shown in Figure 3.11. For
example the left glyph shows that the melody mostly uses F#, G#, and E as pitches. These should
help the user when searching or comparing melody samples by occurring pitches.

34

3.4 Design

Figure 3.11: Melody samples are represented by a pie chart, where the occurring pitches are
represented. A pitch is encoded by a color as shown in the legend at the bottom. The
pie chart starts at the top and shows clockwise the occurrences of pitches in ascending
order. For example the middle pie chart shows high occurrences for the pitches C#, F#,
and G#, as represented by the larger, colored slices.

Starglyph

Because the pie chart glyph only showed one attribute of the melody sample we chose a different
representation, to show multiple attributes at the same time. Therefore we chose a star plot as
glyph [KHW09] to encode four attributes of the sample: number of notes, similarity to the parent,
variance of intervals between pitches, and mean length of notes, arranged in the same order starting
at the top and going clockwise. Some examples of these starglyphs are shown in Figure 3.12. The
chosen attributes can be changed or a new one could be added, but we decided to use these four for
different reasons. First, we want to achieve a higher visibility and avoid misunderstanding of the
glyph, which is why we only chose a limited amount of attributes.

In order to find more complex or simplier melodies, the number of notes can be used to indicate
that. A complex melody most likely consists of a higher number of notes due to either a faster or
longer melody. The attribute mean length of notes can also indicate more exciting or calm melodies.
Therefore, the combination of those two attributes can be used to indicate the following properties
of a melody with a high chance:

• fast melody (high number of notes, low mean length of notes)

• slow melody (low number of notes, high mean length of notes)

• short melody (low number of notes, low mean length of notes)

• long melody (high number of notes, high mean length of notes)

A fast melody for example, consists of many short notes. On the other hand, a long melody could
have many notes but also a high mean length of notes, although a long melody could also have
many notes and a small mean length of notes. In this case the melody would also be fast which is
indicated by the mean length of notes. So these attributes indicate likely properties of the melody,
as mentioned previously, but can fail in some special cases.

The attribute variance of intervals between pitches should indicate, whether a melody mostly uses
pitches around the same pitch or uses jumps between notes. This can indicate more exciting melodies
as they would use a wider range of pitches. We chose similarity to the parent as an indicator on
which melodies are small variations of the seed melody and which melodies are different ones. Due
to the tree structure mentioned previously, a melody sample is not necessarily a direct continuation

35

3 Concept

Figure 3.12: Starglyphs as representation for melody samples, encoding different metrics as con-
tents. We chose four contents, which are ordered in the following way starting at the
top and going clockwise: a) number of notes, b) similarity to parent, c) variance of
pitch difference, and d) mean duration of notes. The color of the star corresponds
to the temperature of the sample, where blue represents a low temperature and red a
high temperature. For reference on the values the gray dot symbolizes the center and
the gray circles symbolizes the range of values of the starglpyh.

of the composition. So we chose these attributes to indicate different aspects of a melody, but
there could also be other different attributes that could help finding samples depending on different
aspects.

The glyph itself shows a gray dot to indicate the middle as reference for the star and a gray circle
to show the range of values and indicating the maximum. The color of the star also encodes the
temperature of the sample: blue represents a lower temperature and red a higher temperature.

Reviewing the examples in Figure 3.12, the left starglyph could likely represents an exciting and
fast melody, that was generated with lower temperature and is a small variation to the parent. On
the other hand the right starglyph is likely to represent a rather slow and calm music due to a few
long notes and small intervals between their pitches.

Histogram Glyph

Although starglyphs can encode more attributes than pie charts, we wanted to show more information
about the melodic structure, which was missing in both previous glyphs. Therefore, we wanted to
encode the occurrence of intervals between notes for a given melody sample as an aggregation of
the melodic structure. We use a histogram, shown in Figure 3.13, to visualize the occurrences. An
interval of -12 pitch steps is shown on the left of the histogram and is encoded with a blue color,
while the opposite, +12 interval, is shown on the right in red color. The bar in the middle shows
the number of 0 intervals in gray. The value of occurrences is shown by the height of a bar. In
order to show the values in comparison to all melody samples, we first chose a global scale with
the maximum height being the maximum occurrence over all samples. Especially for comparing
samples, this scale helps due to the total value, as a higher bar always has a higher occurrence in
comparison to a lower bar. A sample that is calculated with that scale is shown in Figure 3.13 on the
right. Although a global scale enables better comparison, a single outlier can produce a non-optimal
maximum which results in all other samples only showing small bars, which makes it harder to
compare them due to visibility. To solve this problem we use a local scale were the maximum is
calculated over all occurrences inside the sample. These local scales are shown in the examples in
Figure 3.13 on the left and in the middle. This scale increases the visibility of each sample and their
values, but reduces the comparability, due to lost context.

36

3.4 Design

Figure 3.13: A single histogram glyph to represent melody samples showing the occurrence of pitch
distance between the notes. The pitch distance is shown from left to right indicating a
distance of -12 to +12, which corresponds to an octave. The color encodes the value
of distance where blue is -12, gray is 0, and red is +12. Left, Middle: Local y-axis
scale to reduce white space inside the histograms and higher visibility. Right: Global
scale to show big spikes across all histograms.

Figure 3.14: Melody samples are represented by a double histogram showing the occurrence of
pitch distance between the notes. Pitch distance is shown from left to right indicating
a distance of 0 to -12/+12, which corresponds to an octave. The positive distance
values (0 to +12) are shown on the top, while the negative distance values (-1 to -12)
are shown on the bottom. The color encodes the value of distance where blue is -12,
gray is 0, and red is +12. The y-axis scale is a local scale specialized on reducing
white space inside the histograms.

Therefore, a higher bar in one sample could encode a lower value than a smaller bar in another
sample. Investigating the example in Figure 3.13 on the left, the user is able to tell that there are few
intervals between notes in both positive and negative direction, but most intervals between notes
are 0 which results in the same note being played several times. This could likely refer to a more
monotone melody, whereas the example in the middle, where the intervals are either high in both
directions or 0, could refer to a melody with more changes.

Due to the layout of the histograms, the width of a bar is small and sometimes not easy to detect.
To improve the visibility and the comparability of positive and negative intervals, we decided to
combine two histograms. These double histograms are shown in Figure 3.14. The top histogram
shows the occurrences of intervals with the value 0 to +12, while the bottom histogram shows the
values -1 to -12 both from left to right. This also improves the understanding, as small intervals are
shown to the left and large intervals to the right. Important to notice is that the intervals with the
same absolute value, for example +8 and -8, are at the same position on the x-axis. So it is easier
to identify the occurrences of intervals compared to intervals from the opposite side (positive or
negative). Both scales mentioned previously are usable here, but only the local scale is shown in
Figure 3.14 with regard to better visibility.

37

3 Concept

Figure 3.15: A piano roll glyph representing a melody sample with its notes to show the melodic
structure of the sample. Piano rolls are represented in a simple way without axis to
reduce clutter, similar to the representation in Section 3.4.3. The background color
of a piano roll encodes the temperature used to generate the corresponding melody
sample, while blue equals to a low temperature, orange to a medium temperature, and
red to a high temperature. Note color is chosen by the brightness of the background
color to achieve a higher contrast.

Piano Roll Glyph

Finally, we considered to visualize the melody itself in the form of piano rolls, as shown in Figure 3.15.
The user is already familiar with this concept and can use it to investigate patterns in the melodic
structure, especially when comparing different melody samples. Piano rolls may also help the
user to get a good feeling for the melody, which can improve the selection of samples. The notes
are drawn on top of a colored rectangle and use a local scale to use the maximum space in order
to reduce white space and improve visibility. The background color of a piano roll encodes the
temperature used to generate the specific melody sample. With the changing brightness of the
background color, the color of the notes also changes to stand out from the background. For example
in Figure 3.15, three samples are shown with low, medium and high temperature (left to right) each
of them showing a different melodic structure, while the sample on the left and the right show a
similar start of the melody.

Statistical Aggregations

As mentioned previously, we allow the user to select samples with a circular brush in the SPS. These
samples are shown in different visualizations at different levels of aggregations (Figure 3.16) to
support investigating the group of samples and finding patterns. The data used is different for each
of the shown visualizations (except for a) and b) to show diverse, interesting cases.

a),b Each selected sample is represented in a separate piano roll. The histograms on the right of
the piano rolls aggregate the notes for a faster overview of the sample with the possibility to use
different x-axis. This visualization should help the user to investigate single samples of the group.

c) An aggregation of the notes of all selected samples showing the density for pitch and time. A
similar visualization is shown in a paper by Heyen et al. [HS20]. The number of notes for a certain
pitch at the same time are added up for the density. We chose this type of visualization to support
the user when investigating the used notes of all selected samples, for example to get insights into
how the AI generates samples. A finding in this example would be that all selected melody samples
start with the same note sequence for the first 16 steps.

38

3.4 Design

(a) Histogram showing the mean duration of
notes for a certain pitch.

(b) Histogram showing the combined duration of
notes for a certain pitch.

(c) Combined density for certain pitch and time. (d) Notes of multiple samples in one piano roll.

(e) Histograms showing the occurrence of pitches or note duration for all selected samples. Left: Occurrence
of pitches. Right: Occurrence of note duration.

Figure 3.16: Different visualizations at different levels of aggregations of the data for selected
samples. a), b) Each sample is represented in a separate piano roll. The histograms
on the right of the piano rolls aggregate the data for a faster overview, using different
x-axis scales. c) An aggregation of the notes of all selected samples showing the
density for pitch and time. d) All notes of the selected samples are shown in the same
piano roll. e) Two histograms with the occurrence of pitches (left) and occurrence of
note’s duration (right).

39

3 Concept

d) An aggregation of the notes of all selected samples showing all notes in the same piano roll.
Notes are represented more transparent to show overlapping. This visualization is similar to the
density visualization but emphasizes on the length of notes instead of the number of notes at the
same time step. Here, the length of the notes is visible in comparison to the density visualization.
A finding in this example would be that all selected samples end on a half note.

e) More aggregation than c) and d) shows two histograms with the occurrence of pitches on the left
and occurrence of note’s duration on the right for the selected samples. This can help to identify
often used notes, which can be part of a specific key or chord. The duration gives a rough indication
about how exciting or calm the melodies might be. A realization in this example would be that C,
G, and A are the most used pitches and most of the notes are quarter notes with some half notes.
Therefore, the selected samples are rather slower and calm.

3.5 Implementation

The presented approach with all visualizations is implemented as a web application and can be
used in a browser like Google Chrome, which was used during testing and development. Different
browsers were not tested and could therefore produce issues during run time. The intended screen
size is 1920G1080 pixels while smaller resolutions or different aspect ratio could lead to misaligned
visualizations and therefore worse usability.

Sharing this approach and making it available for many users is one of the main reasons for the
decision to implement it as a web application. JavaScript is one of the most popular languages
for web application implementation. We chose JavaScript as a language because it supports many
different popular libraries for user interfaces (UI), server run time, visualization, utility tools, as
well as music generation through AI.

React (reactjs.org) is a popular library for building user interfaces in JavaScript. Views consist of
multiple components that can work independently from each other and manage their own states.
Therefore, more complex and nested user interfaces are possible. State management of a component
is used to store data and trigger re-render methods when the state changes. Therefore, changes for
example triggered by the user, update the view for an interactive application. In this thesis, the
version 17.0.2 of React is used.

D3 (d3js.org) is a library in JavaScript used for data-driven visualizations. With D3 it is possible
to create shapes, style them, and combine them for powerful visualizations. Visualizations are
data-driven and therefore transformable depending on the used data. The version 8.0.0 of D3 is
used here.

Magenta.js1 [RHS18] is a JavaScript suite providing an API for music generation and art through
ML models provided by Magenta. Different pre-trained models can be accessed this way and used
for predictions, for example to generate music. In this thesis Magenta.js is used for communication
between the user and the AI to get multiple predictions for music generation. The version 1.21.0 is
used.

1https://github.com/magenta/magenta-js/tree/master/music

40

reactjs.org
d3js.org
https://github.com/magenta/magenta-js/tree/master/music

3.5 Implementation

DruidJS2 [CKS20] is a JavaScript library for dimensionality reduction. It provides many techniques,
especially MDS, t-SNE, and UMAP. MDS is the main technique used in this thesis for the similarity-
preserving scatter plot and visualizing distances from a higher dimensional space in 2D. The version
used here is 0.3.16.

Musical Instrument Digital Interface (MIDI) [Moo86] is a file format, designed to store notes and
the properties of a music piece, as well as information about different voices and instruments. It is
specialized on storing music, so manipulating single notes or the instrument playing a sequence
is possible. Therefore, MIDI is often used in digital music composition, while we use web MIDI
as input for a starting melody. In this thesis, the composition can be exported as MIDI to provide
compatibility to other applications.

3.5.1 Data Structure

Musical notes are stored as objects with a pitch, a start time and an end time. The pitch of a note
is stored with the MIDI value, which is between 0 and 127 and corresponds to the key of a note.
Therefore, the value 0 is equal to C0 and 60 to C4. The start and end time is stored in a quantized
way, where time is represented as steps with equal duration instead of seconds. In this thesis, one
step equals the duration of a single sixteenth note. Therefore, a quarter note’s duration is equal to
four steps. A melody is stored as an array containing the note objects belonging to that melody as
shown in Listing 3.2.

Listing 3.2 A melody consisting of a C4 quarter note followed by an E4 half note, stored in an
JSON-like structure.

melody = [{

pitch:60,

quantizedStartStep:0,

quantizedEndStep:4

},{

pitch:64,

quantizedStartStep:4,

quantizedEndStep:12

}]

2https://github.com/saehm/DruidJS

41

https://github.com/saehm/DruidJS

4 Evaluation

We evaluated the system and its visualizations with case studies and a small pair analytics study.
In the case studies we looked at specific cases and the resulting visualizations to find interesting
patterns, missing features and tested the scalability of our approach. We had two participants in our
pair analytics study, where they tested the approach and gave us feedback on the usability and the
positive and negative aspects, as well as their feelings towards composing with our approach.

4.1 Technical Evaluation

In this section we evaluated the scalability of our approach, looking at run time and visualizations
separately. The run time should indicate the usability, in terms of reaction to actions taken by the
user, depending on different tasks and number of samples. Visual scalability should indicate the
usability of the visualizations, depending on the number of generated melody samples.

4.1.1 Run Time

We evaluated the run time of our approach by measuring the time for different tasks with different
amount of melody samples. The testings were made in the browser Google Chrome (Version
95.0.4638.69) on a computer with 8GB DDR3 RAM and an Intel i5-4690 CPU processor.

We chose different numbers of samples, reaching from 3 to 1000, but we focused on smaller amounts
first. The chosen values are 3, 10, 50, 100, 200, and 1000. The values 3 and 10 were chosen to
represent a small amount used for the icicle and the node-link diagram, while 50, 100, and 200 were
chosen as possible use cases for the similarity-preserving scatterplot (SPS). The value 1000 should
indicate the run time for a large amount of data.

Samples 3 10 50 100 200 1000
Times (seconds) 1.3 3.2 14 38 130 1350
Seconds per sample 0.43 0.32 0.28 0.38 0.65 1.35

Table 4.1: Run time of generating melody samples and visualize them.

At first, we measured the time for generating a certain number of samples and then calculating all
visualizations depending on that data. The values (Table 4.1) show that a small amount of samples
up to 100 samples can be generated and visualized in under one minute. Afterwards, the times
increase fast, where it takes several minutes to generate many samples.

43

4 Evaluation

After generating samples, the user is able to interact with the samples and its notes in different ways.
One way is to drag notes in order to adjust the melody. For this task we measured small numbers
for all amounts of samples, which indicated real time. It is important to know, that after dragging a
note, the visualizations are refreshed, which can then result in extra time to show visualizations.

Another task we measured was adding a sample to the composition. Here, the maximum time
measured was 2.2 seconds for 200 samples, but all other cases of below 100 samples showed a near
real time task finish with under one second.

Measuring the sorting metrics from the node-link diagram, we needed a maximum of two seconds
for 50 samples. Due to a large amount of samples inside one level, the diagram is not shown for
100, 200, and 1000 samples and therefore is not used in this measuring.

The overall response time to clicks and interactive usage is real time for under 200 samples, but
increases a bit for 200 samples. When using 1000 samples, the response time greatly increases and
results in long waiting times.

It is important to notice that the system is not optimized for run time, which results in longer waiting
times for specific tasks. Overall, the measured times showed smooth usage of the approach for
a maximum of 100 sample. Between 100 and 200 samples, the response time is a bit longer but
still usable with short waiting times. At 1000 samples, the approach has high response times and
therefore takes long to use.

4.1.2 Scalability of Visualizations

After measuring the time of different tasks for a run time evaluation, we took a look at our visual-
izations and evaluated the scalability of these with different amount of samples or levels.

Icicle Plot

We evaluated the icicle plot using different amount of levels, for scalability in x-direction, and
different amounts of samples, for scalability in y-direction. In Figure 4.1a a case is shown were the
icicle works as intended and described in Section 3.4.2. It is important to note that even if some
small clutter occurs, the basic functionality is still given.

When generating multiple levels and visualizing them in the icicle plot, the visibility is dependent
on the length of the samples. In Figure 4.1b we generated 20 levels with the first sample being
64 time steps long and all other samples being 32 time steps long. With these settings, the x-axis
labeling overlaps and results in clutter, so identifying the exact time step of a note is not possible for
most time steps. Due to the limited space, all notes are compressed which can result in a note only
being a single line. Some of these cases are shown in Figure 4.1b. Without zooming in, short notes
can be hard to identify when many short notes occur in quick succession. Overall, the icicle plot is
readable up until 20 levels, depending on the length and melodic structure of the melody samples.

With many samples inside a single level, the limited space gets smaller for each sample. With 50
generated samples in a single level, as shown in Figure 4.1c, the icicle plot produces clutter, where no
notes are visible because the space for each node is too small and overlaps. Therefore, the scalability
is limited to a few samples in the same level. The visibility of samples is dependent on the range of

44

4.1 Technical Evaluation

(a) Icicle plot with 3 levels and up to 9 samples on a level.

(b) Icicle plot with 20 levels.

(c) Icicle plot with 50 samples on the same level.

Figure 4.1: Icicle plot with different amount of levels and samples, to test the visibility of the
visualization. a) All information are visible. b) Notes get compressed in x-direction,
making it hard to differentiate short notes. c) Results in clutter due to limited height of
nodes.

pitches and chosen type of scale used for the axes. Overall, the icicle plot is readable up until 15
samples on the same level, but with more than 15 samples notes are no longer distinguishable. As
already stated in Section 3.4.2, we presented an alternative idea (Figure 3.7) to increase scalability
depending on the number of samples. Although this alternative worked for 50 samples, it struggled
when using 100 samples in the same level.

45

4 Evaluation

(a) Node-link diagram with 3 levels and up to 9 samples on the same level.

(b) Node-link diagram with 20 levels.

(c) Node-link diagram with 50 samples on the same level.

Figure 4.2: Node-link diagram with different amount of levels and samples to test scalability of
visualization. a) All information are visible. b) Notes get compressed in x-direction,
making it hard to differentiate short notes. c) Results in clutter due to limited height of
nodes. No information is obtainable.

Node-Link Diagram

Compared to the icicle plot, the node-link diagram shows no axes and therefore reduce clutter when
scaling. Instead the added links have to be evaluated.

In Figure 4.2a shows an example, where the node-link diagram works as intended and visualizes the
links with different widths and sorted nodes, as described in Section 3.4.3. Here, all links, nodes,
and their corresponding notes are visible.

We again generated 20 levels to test the scalability in x-direction (Figure 4.2b). Due to limited space
between nodes, bigger link crossings result in overlapping of links and nodes, as seen between the
levels 5 & 6, and 8 & 9. Therefore, the readability of notes in the affected nodes decreases and notes
can be misinterpreted, but should not occur in practice, as users are unlike to generate this many

46

4.1 Technical Evaluation

levels before deciding on a sample or branch. The limited space also affects the nodes, which are
visually compressed, resulting in even more compressed notes. Short notes in quick succession can
then be hard to identify, which is shown at the left at the start of the melody. Again, the visibility of
notes is also dependent on the music structure, as well as the length of a melody sample visualized
in a node. Due to the links between nodes, the scalability in x-direction is lower than the scalability
of the icicle plot, but the node-link diagram is still usable with at least 10 levels, depending on the
length and structure of the respective melodic samples and the link widths.

To evaluate the scalability in y-direction, we generated 50 samples in the same level, as shown in
Figure 4.2c. The same problem as in the icicle plot occurs, where the space for each node is too
limited and notes are not visible or identifiable. Same scalability realizations apply for the node-link
diagram and the icicle, because links do not affect the scalability in y-direction. So the node-link
diagram is only usable for a few amount of samples per level.

(a) SPS with 50 samples. (b) SPS with 150 samples.

(c) SPS with 300 samples. (d) SPS with 1000 samples.

Figure 4.3: Similarity-preserving scatterplot showing starglyphs in a grid with different number
of samples. a) Large glyphs due small number of samples. b) All glyphs are smaller
due to finer grid. c) Overlapping due to smaller grid. Local information can get hard to
read. d) More overlapping due to even smaller grid. Local information is lost, while
global clusters are visible through color. For example, area of blue glyphs in the middle
with red glyphs around them.

47

4 Evaluation

(a) SPS with 300 samples. (b) SPS with 1000 samples.

Figure 4.4: Similarity-preserving scatterplot showing starglyphs with different higher number of
samples. Glyph size adapts to the grid size. a) Showing small glyphs due to fine
grid without overlapping. b) Even finer grid and therefore smaller glyphs without
overlapping.

Similarity-Preserving Scatterplot

We evaluate the scalability of the similarity-preserving scatterplot (SPS) and the glyph size, by
taking a look at the representation of 50, 150, 300, and 1000 melody samples. For 50 samples the
glyphs were big enough for good visibility and had no overlapping when using the gridified version
(Figure 4.3a). The size of glyphs decreases when using more samples as the grid gets finer. The
glyphs are still recognizable, as shown in Figure 4.3b. So the SPS works as intended, as described
in Section 3.4.4 for a maximum of 255 samples.

First problems occur using more than 255 samples, as shown in Figure 4.3c, where the grid gets
even smaller but the size of the glyphs is not decreasing. This results in overlapping glyphs and
therefore a worse visibility, as it is harder to analyze the glyphs.

This problem gets worse with more samples as the grid gets finer. As shown in Figure 4.3d, where
1000 glyphs are placed in a fine grid, the glyphs overlap even more making it hard to evaluate the
glyphs. Visibility is not given when using this large number of samples. Therefore, the scalability
of the SPS allows a maximum of 255 samples without overlapping glyphs and 511 with smaller
overlapping glyphs, where details aren’t readable, but coarse overall patterns are still visible, such
as clusters of red color in Figure 4.3d.

We addressed this problem and adapted the size of a glyph to the space of a cell in the grid. Therefore,
no overlapping glyphs occur when using the gridified version. As exchange, the size of the glyphs
might get too small to read all information, especially when the encoded values are low. We tested
these changes with 300 and 1000 samples (Figure 4.4), because these values caused overlapping
previously.

The aggregation visualizations do scale well, even with 1000 samples, as they only change scales
on the axis. As we only show the top five separate piano rolls beside the SPS at a time, the amount
of samples exceeding five does not limit the visualization, as the user can scroll through the rest.

48

4.2 Case Studies

Showing the notes of all selected samples in the piano roll, many notes overlap or overwrite each
other, resulting in difficulties to see patterns. The histograms and the density piano roll only change
the scale of the occurrences, which isn’t changing the actual view of these visualizations.

4.2 Case Studies

In this section, we evaluated different cases and inspected the different glyphs in the SPS. We
especially took a look at groups showing similar glyphs that indicate small variations of a similar
melodic sample. Other interesting samples were glyphs, showing different information than other
glyphs in the SPS. We evaluated these glyphs and looked for interesting patterns and information
inside the SPS.

4.2.1 Starglyphs

First, we took a look at the starglyphs, encoding the four attributes number of notes, mean duration
of notes, variance of intervals, and similarity to the parent. In Figure 4.5a, we took a closer look
at a group of similar samples, which is highlighted. The similarity of the samples should be
recognizable through the distances between the samples but can be confirmed quickly by the shape
of the starglyphs. Analyzing the starglyph, all these melodies contain a high number of short notes
with high variance of intervals and a high similarity to the parent. This indicates exciting and lively
melodies, like the used parent melody. Therefore, a high similarity to the parent can be confirmed.
It is important to recognize, that although the shape of the glyphs seem identical at first, they can
vary slightly when taking a closer look. The glyphs do not all encode the same similarity to parent
value, as the deflection to the right varies. This can be an indicator towards some of the samples
being variations of the parent melody.

As the colors indicate the temperature of the ML model, most of the similar samples are generated
with a lower temperature and therefore less randomness. This information can be used by the AI
analyst to recognize that a lower temperature produces a more similar melody sample. Most of
the blue samples are closer together than the red samples, which could emphasize the previous
realization. Still, this could also be an artifact the used grid, where distances might not be shown
correctly. The user could verify similarity by showing the samples in detailed visualizations.

When taking a look at samples that are further away from the previous group, as highlighted in
Figure 4.5b, the shape of the glyphs starts to vary much more. Especially the two samples at the
top of the cutout show a low similarity to the parent, indicating completely different melodies.
Still, all of these shown glyphs indicate a high number of short notes, so the influence of the seed
melody can be stated with these attributes. This findings can help the AI analyst when looking
for relationships between the generated samples and the seed melody. Important to recognize is
that most of the outlier samples with different melodies are generated with higher temperature (red
color). The starglyph are especially helpful at showing multiple attributes at the same time and
enables comparing different samples by these attributes.

49

4 Evaluation

(a) Group of similar samples.

(b) Different samples.

Figure 4.5: Highlighted part shows interesting sample groups, represented by starglyphs. a) These
melody samples all contain a large number of short notes with high variance and a high
similarity to the parent. In this case, the color indicates that a higher temperature leads
to more variation as red glyphs are more at the edges or separately. b) Those glyphs
indicates different samples with some similarity towards neighbors but large differences
towards the cluster from a). Here, the color indicates that a higher temperature produced
more different samples compared to the seed melody.

4.2.2 Pie Chart Glyphs

Next, we analyzed the pie chart glyph inside the SPS, using the same starting position as with the
starglyphs. First, we analyze the group of similar samples, highlighted in Figure 4.6a, by taking a
look at the pie charts and their occurrences. Most of the pie charts show a similar sectioning of the
colors, which correspond to the occurring pitches. The main colors shown are orange, purple, and
gray with some more colors occurring sometimes or as small parts. So the main notes are C#, F#,
and A, which are also the most used in the seed melody, showing the similarity. With the pie chart
glyph, it is easier to see that some of the melodies vary due to small changes in the sections and
small differences on the occurring pitches. For example, some samples in the middle of the cutout

50

4.2 Case Studies

(a) Group of similar samples.

(b) Different samples.

Figure 4.6: Highlighted part shows interesting sample groups, represented by pie chart glyphs.
a) The pie charts show similar distributions of pitches. Most pie charts show the colors
orange, purple, brown, and gray but differences and additional pitches can be seen in
different pie charts. b) These samples show different distributions of pitches compared
to each other. The different occurrences of pitches indicate different melody samples in
terms of used pitches.

have an additional green section, while some others own a bigger red or purple part. It is interesting
to see that the samples closer to the edge can show an additional color like blue or yellow, which
indicates some randomness.

Taking a look at the glyphs with higher distance towards the similar grouped samples, the colors
vary much more (Figure 4.6b). These samples show a completely different sectioning compared to
the previous samples. Especially the samples at the bottom of the cutout show multiple differently
colored parts, indicating a higher number of different pitches in the melody.

Although the pie chart shows the occurring pitches of a melody sample, it is harder to read informa-
tion from this glyph. Most of the information that can be extracted, are small variations between
melodies in terms of small changes of the pitch occurrences. The color supports noticing the size
and occurrences of sections and allows to do this more quickly.

51

4 Evaluation

(a) Group of similar samples. (b) Different samples.

(c) Group of similar samples. (d) Different samples.

Figure 4.7: Highlighted part shows interesting sample groups, represented by our two versions
of histogram glyphs. a,c) The samples show similar occurrences of pitch distances.
Most of the highlighted samples show a similar distributions of blue, gray, and red bars.
b,d) Some samples show large distances (blue and red bars at the edges of a histogram)
while others show mainly small to no pitch distances between notes (gray bars in the
middle of a histogram).

4.2.3 Histogram Glyphs

Using the histogram glyph (Section 3.4.4) the user can analyze the occurrences of intervals between
notes, which could indicate exciting and lively melodies. In Figure 4.7a and Figure 4.7c, a group
of similar samples is highlighted. The histograms show a similar distribution of occurrences of
intervals, with small changes, indicating small variations. For this example, we used the local axis
for better visibility, so all bars are shown and not too small. Analyzing the visible bars, most of the
samples show bigger spikes around the 0 and +/-7 step intervals, which indicates an exciting and
lively melody like the seed melody. The parent melody starts with a sequence of alternating notes,
where the interval is around 7 steps large, which is represented well by the spikes in the histograms,
showing the similarity between the samples and the parent.

Comparing the two versions of histograms, it is easier to see the previous realization in the double
histogram due to the alignment of positive and negative bars. The single histograms save space due
to smaller size but visibility decreases in this scenario. Looking at different samples, some bars are
overall smaller due to a higher maximum in the sample and others showing a few high bars, for
example the two samples closest to the bottom left. The values encoded in the bars can be more
similar or different than appearing in the visualization because of the local scale, but it is important
to notice that the coarse view can indicate interesting patterns.

52

4.2 Case Studies

Analyzing outliers, which are further away from the previous group as highlighted in Figure 4.7b
and Figure 4.7d, different findings can be made. Some of the samples highlighted consist of bigger
intervals and some mostly have no or small intervals. For example the double histogram in the
middle shows bigger bars in red and blue on the right of the glyph, indicating the big intervals and a
potentially exciting and lively melody. In contrast, looking at the two samples in the middle row at
the top and bottom, the histograms show big bars around the interval size 0 and a few small bars
for larger intervals. Therefore it is likely that the melodies are calm and more monotone, as they
only have a few larger intervals, but mostly consist of neighboring notes, which we confirmed by
listening to them. The interval 0 occurs in a sequence of notes with the same pitch, which sounds
monotone. This finding is easier to make with the single histogram glyph, as the relevant intervals
are placed in the middle of the glyph.

In conclusion, the usage of the single histograms supports looking for the occurrences of smaller
intervals and therefore calmer melody samples. The double histograms help with finding more lively
melodies as it’s easier to compare positive and negative intervals. Large intervals are identifiable
through their colors and therefore easier to detect, making it overall easier to find lively melodies
compared to monotone melodies.

4.2.4 Piano Roll Glyphs

At last, we presented a simple piano roll as glyph to directly analyze the melodic structure of the
samples or searching for interesting looking melody samples. In Figure 4.8a, a group of similar
samples is highlighted, showing a similar melodic structure compared to the seed melody1 as well.
Taking a closer look at the melodic structure and the notes of the highlighted samples, we found
that almost all samples start with a similar sequence of alternating notes. As mentioned in previous
glyph analyses, the seed melody has the same melodic structure.

Comparing different samples from the cutout, small differences especially at the end of the sample
indicate small variations. For example, comparing the two samples in the top left corner, we saw that
the two samples are the same except for the last note, which also indicates a high similarity between
those two. This also supports the functionality of the SPS, showing similar samples near each
other. The background color of a sample indicates the temperature, which was used to generate the
sample. As most backgrounds are blue or yellow, the AI analyst can see that most similar samples
are generated with lower temperature, validating the assumption that lower temperature leads to
less randomness.

Taking a look at outlier samples, as highlighted in Figure 4.8b, some of these show completely
different melodies. For example, the samples closest to the bottom right corner of the cutout show a
different melodic structure. In comparison to that, the melody samples close to the top left corner
show a similar structure at the start (alternating notes) as the previous shown similar samples.
Therefore, the position is justified, being closer to the other samples with higher similarity. Here, it
is important to note that most outliers have a red background, indicating a higher temperature and
therefore more randomness in the melodies.

1Intro of Crazy Train by Ozzy Osbourne

53

4 Evaluation

(a) Group of similar samples.

(b) Different samples.

Figure 4.8: Highlighted part shows interesting sample groups, represented by piano roll glyphs.
a) Most of the samples show a similar melodic structure, where a few notes vary
resulting in small variations of the parent melody. b) Outliers are mostly high tempera-
ture samples and show completely different melodic structures, resulting in different
melodies.

In conclusion, the different glyphs can indicate different attributes of the melody to support the user
in comparing these samples. When analyzing the samples and the similarities of the glyphs, we saw
that our similarity function and the arrangement in the SPS show the similarities well. Although
some samples might not be placed perfectly or the similarity could show weaknesses, the position of
most samples seem to correspond to similarities well in our cases. It is important to know, that we
did not evaluate the arrangement in the scatterplot and the similarity function to an extend, where
we could state that they work for a high amount of cases.

54

4.3 Pair Analytics Study

4.3 Pair Analytics Study

To get feedback from actual users and evaluate usability and ease of understanding we evaluated
the usability of the system, usage of visualizations and sorting metrics for different tasks, and the
understanding of the visualizations and glyphs with the help of a pair analytics study. It is important
to notice that the system needs some time to learn, but with the limited time we had this was not
part of the study, as it would take multiple weeks or months of using. Because of that we decided to
conduct the pair analytics study, as learnability of our approach is not part of the study.

The study was conducted with two participants with limited music knowledge for one hour and is
therefore not as representative due to a low sample size and missing experts. We let the participants
work with our approach and told them to compose a short melody and to analyze how the AI
generates samples depending on the hyperparameters. Following these testings, we interviewed
the participants about their feelings and findings when working, the overall usability, and possible
improvements.

Both participants were not involved in the design and have little experience with music theory. One
of the two participants had a generally good understanding of AI but not in a musical setting, while
the other participant had limited knowledge about machine learning models and their functionality.
So both participants fit into the idea of an amateur composer, while regarding the AI analysis,
different starting points of knowledge about machine learning were given, but both participants had
little knowledge about music generation.

4.3.1 Findings regarding our Visualizations

Both studies we followed the same procedure with both participants, as we firstly explained the
general idea and some controls to the participants. Next, the participants generated melody samples
and continuations and inspected them with the help of our visualizations and sorting functions.
Afterwards, they also used the fill-in function to refine some parts, that they did not like as much.

In the beginning, both participants took some time to get used to the controls and possibilities, but
after a small amount of time they were more willing to experiment. One of the user was eager to
explore the different functions as quickly as possible and clicked on several buttons to test their
functionality. This can also be a consequence of the shortened introduction, but showed that our
approach can be engaging.

After generating the first continuation samples, both participants used the listening functions more
than other visualizations and sorting metrics to get a feeling for the generated melodies. They
especially used the brush function to save time instead of listening to the whole path multiple
times.

After getting used to the visualizations and the sound of generated melodies, the participants focused
on using visual information as well. Both participants used the different sorting metrics in the
node-link visualization to find samples. First, they sorted by temperature and the similarity to the
parent. When using the temperature sorting, they quickly recognized a relationship between the
chosen temperature and the subjective quality of a melody, as the melodies with lower temperature
showed better potential when looking for samples that are similar to the previous melody. In

55

4 Evaluation

comparison, the participants were sometimes surprised, in positive and negative ways, by melodies
generated with a higher temperature and stated a relationship between the randomness and the high
temperature.

Later, both participants used the variance of interval sorting metric to find lively melodies. They
stated that the sorting metrics helped them with quick comparisons and a faster selection compared
to listening to all samples. Especially the visualization of the melody helped with filtering boring
looking melodies, while the sorting metrics helped them find a matching sample for their imagination.
Both stated that the temperature metric helped most when analyzing the AI, while the similarity
helped the most when looking for a continuation with small variations. As previously said, they
found the variance metric most helpful for comparing lively melodies.

Both participants used the node-link diagram more often for sample selection, compared to the icicle
plot, due to the possibility to sort samples and the simpler look. The icicle was not as interesting to
them, but both stated that it can be more useful, as it is more detailed and the actual timings and
pitches are displayed. Especially for a user not as familiar with music theory, the look of a melody
and the feeling for the image was more helpful and therefore the node-link diagram was also used
due to the less detailed look.

Later, we asked the participants to take a look at the similarity-preserving scatterplot (SPS) and
shortly explained the different glyphs were shortly explained. Both were overstrained with the SPS
at first, but as we did not want to evaluate learnability, this is only a side note. The participants
stated, that the SPS helped with analyzing the relationship between temperature and the generated
samples and their attributes. Using the glyphs, for example the starglyph, multiple attributes of
the samples can be shown at once, which was well received by our users to extend on the sorting
functions from the node-link diagram. Both participants also mentioned that using glyphs and the
SPS needed a bit of imagination, especially when swapping glyphs. One participant found no use
for the histogram glyph, as they could not find any purpose analyzing the occurrences of intervals
for his selection of samples. In comparison to that, they especially liked the starglyphs due to the
multiple encoded attributes and the piano roll glyph, where they could get a good feeling of the
melody, similar to the usage of the node-link diagram.

Composing music and using the SPS as support for sample selection felt a bit laborious and not as
intuitive for the participants, but they also stated that it could improve the workflow when being
more familiar with the approach.

4.3.2 Findings regarding the User Workflow

Evaluating the workflow and usage of our approach, we asked the participants about their feelings
when working. Both participants missed certain feature as for example missing undo function in
some cases or the missing functionality of removing pauses in a melody. Still, overall they stated that
our approach was fun to use, supported engaging with composing melodies, and helped beginners
make music. They also liked the possibility to quickly compose melodies, as well as going more
into detail and taking the time for selecting samples and fine tuning them.

We were especially surprised by the different workflows of the participants and usage of our approach.
One of the participants compared his workflow to drawing a picture in terms of an iterative workflow.
He generated samples, selected a few bars and then went to fine tune his composition before moving

56

4.3 Pair Analytics Study

on to the next bars. Especially the usage of the fill-in, which was the most important approach for
fine tuning, surprised us, as we thought the user would select a few bars and generate new samples
for those. Instead, the participant used the fill-in to get suggestions for only a few notes. This could
be a result of the lacking music knowledge, so the user doesn’t feel confident enough to adjust single
notes by themselves but uses the suggestion approach to generate and select a fitting note.

After both participants composed a small melody, they used the MIDI export function to save their
first composed music and were excited for presenting it to others.

Overall, both participants used the node-link diagram and its sorting function to begin with sample
selection and to get a feeling for the generated melody. As it is currently only possible to sort for
a single attribute, both stated that the SPS and the glyphs were better when looking for multiple
attributes of a melody. For example, when looking for a similar continuation, they looked for
samples with a high similarity to the parent and a low temperature, to increase the chance of finding
a sample that meets their expectations. They especially found the support of our approach useful for
getting ideas and using generations as an initial spark to improve on.

To evaluate the quality of the AI prediction, we asked the participants about their findings and
experiences throughout the study. They stated that some melody samples where surprisingly good,
but there were more uninteresting or random samples than good samples in their opinion. This
also emphasizes on our idea to generate multiple samples at the same time and our plan to include
support for different models in the future.

We also asked for some suggestions for improvements and one participant, the one with more
knowledge about machine learning, demanded more control over the models, for example by
controlling the length of samples or suggesting notes or a rough sketch of the melody directly.
The other participant thought about an additional AI that suggests beginner users, which parts of
the composition hold high potential and which should be improved in order to improve the whole
composition. They also liked the statistical aggregations of samples, while the users did not use
it as much in this study, they most likely get more interesting the longer the system is used. One
participant requested statistics for the composition, for example mean note duration, variance of
intervals, and the number of notes.

In conclusion, both participants found our approach engaging, were able to use it quickly, used
our sortings for different tasks and mentioned our approach to be supportive in composing music,
especially for beginners.

57

5 Limitations and Discussion

In this chapter, we take a closer look at the limitations that we encountered during the evaluation
and discuss their impact and possible solutions.

The basic idea of our approach is to use visualizations and sorting metrics to help choosing melody
samples faster than by listening to all samples one after another. All of our visualizations show
samples beside each other in order to compare them, which can be hard sometimes, as differences are
still hard to see. To address the limitation, we could add visual indications, to highlight differences
between samples directly, in order to improve comparing samples. As highlighting differences
between samples mostly applies to a direct comparison of two samples, it might struggle when
using many samples. Nevertheless, it can improve the comparison between a few selected samples
by showing the differences in all other samples compared to a selected one melody sample.

As our approach should support users in composing music, it can be hard for beginners to fine tune
selected samples. One of the participants requested an AI as guidance to highlight parts in the
composition, where the user should take a look at for changes, as the section could have a higher
potential of better quality. While this might support beginners, this might not support composers
with some knowledge as much but that would need more evaluation through surveys and different
knowledge groups of the composer. In addition to that, this seems like a hard task, as the quality of
a section is depending on the imagination of the user and is therefore subjective.

The pair analytics study revealed interesting insights into the visualizations and usage of these in
different workflows. As our study was only conducted with two beginner participants, who had
limited knowledge of music theory and composing in general, the study lacks a representative
sample size and domain experts, which would be an improvement when doing a larger study.

Using case studies can be a good way to show takeaways from different scenarios and visualizations,
they only show a few examples. Some of the gathered information could not be as relevant for
the user or do not occur in some situations at all. This is also shown by one participant, who was
not able to get information out of the histogram glyphs. Therefore, it would be better to have a
larger study with more participants, as more situations and also the importance for the user can be
evaluated. As we could not test learnability of our system and the glyphs with our study, this would
be a point to address with a larger study.

As already addressed in the scalability evaluation and in the pair analytics study, there are further
limitations regarding our implementation. For example, the current version of our approach only
supports monophonic melodies. Some of our functions like the similarity function or some used
ML models might not work as intended with polyphonic samples. Changing the used ML models
and the similarity function, designed for polyphonic music, should help adding polyphony to our
approach.

59

5 Limitations and Discussion

As shown in Table 4.1, the run time scalability of sample generation and calculations for the
visualizations struggles with generating many samples, as the values show a quadratic or exponential
run time compared to the number of samples.

When talking about the scalability, we also evaluated difficulties with some of our visualizations
when using many samples. While the icicle and the node-link diagram work well with multiple
levels containing a few samples, both get unusable when working with, for example 50 or more
samples, as they clutter and the space is too tiny to display all samples. To reduce the amount of
clutter, we could display only the most interesting samples or scroll through samples to reduce to the
number of samples, shown at the same time. This solution improves the visibility, but also results
in some information loss due to the pre-selection of samples and missing context.

The number of samples limits the visibility of glyphs, as the grid gets smaller and the glyphs overlap.
One possibility would be to decrease the size of glyphs, but we wanted to keep the visibility, as
smaller glyph are harder to read. A bad readability of the piano roll glyph can occur, when cases
where the contrast between background and foreground colors is low. We addressed this problem
by changing the color of the foreground depending on the brightness of the background, but this
can fail sometimes.

Our use case study showed interesting patterns and the functionality of the SPS and glyphs, but
these were only a small number of scenarios and when evaluating more scenarios, some SPS did
not show good patterns, but some exceptional side effects. Therefore, the shown patterns in the SPS
might be unreliable, depending on the similarity function and the occurring samples. The chosen
similarity function and dimensionality reduction technique is crucial for the expressiveness of the
SPS, but hard to evaluate to find the best parameters and functions.

The user should have control over the music composition, but the user also has to choose some
parameters like the weighting of the similarity parts, rhythm, and melody. This can be helpful when
the user has a certain imagination of the sample he is looking for, but can leave a user, who just
wants to use the total similarity, overstrained with choosing a weighting value. So the user has to
choose certain parameters with maybe limited knowledge about them.

Similar to that is the scale of the axes in the icicle plot, where the user can choose between different
scales. The user might be overstrained with which scale to use, but we wanted to give the user the
possibility to improve visibility in certain cases.

Another limitation regarding the similarity or sorting metrics, is that we only use statistical metrics
and data to calculate those. Some characteristics of the melody, like the musical temperature or
the feeling a melody can trigger, would be an addition to improve the usability for more music
orientated users. We decided to only use the statistical metrics for now because of the objectiveness
they provide, while some musical characteristics can be subjective.

Our participants mentioned in the evaluation that melody samples, generated by the AI, can often
sound unsatisfying. Although the concept of using AI to get inspired by different samples, the user
expects different samples with high quality. To achieve this, the usage of different, maybe higher
quality models could be a solution, but also more control of the user over the AI, as demanded
by one participant in our study, can help generating more satisfying samples. Some of the ideas
for example could be to have more data requirements, like note length, or a musical approach, to
suggest a feeling like happiness towards the AI. It is important to notice that the quality of the AI is
not directly a limitation for our approach, as our goals are the interactive visualization.

60

If we take a look at not just the composition process of a music track, but also playing the notes with
real instruments, some health concerns rose, when for example the AI suggests large jumps in a
melody, that cannot be played in that way on a real instrument without hurting the hand or wrist. As
we describe our composition electronic music and the user can play the music with applications, this
problem does not directly occurs in our approach, but can be a problem when being used afterwards
with real instruments. Still this is not considered as one of our goal and therefore it is not taken into
account.

Since the approach has some limitations and the implementation is missing features, there is space
for improvement in different directions regarding the idea, implementation, user control, and AI.
However the approach helps users compose music with the help of AI, while the user has control
over the composition.

61

6 Conclusion and Future Work

We propose a user-centered approach for human-AI co-composition based on visualization of multi-
ple generated continuation suggestions. First, we used the resulting tree structure of continuation
samples to visualize multiple samples and the relationships at the same time in an icicle plot of
piano rolls. To improve sample selection by the user, we added sorting by different metrics. As the
icicle plot shows the relationships by positions and sorting function would destroy these, we added
links between the nodes. The node-link diagram shows the relationship and the nodes visualize
the melodies via piano rolls. Nodes could be sorted by different properties of the melodies like
similarity to the parent, the hyperparameter temperature, and variance of intervals between notes.
For the first metric, we implemented a similarity function, which uses a weighting between similarity
of rhythm and melody. We also used this similarity in a similarity-preserving scatterplot (SPS),
visualizing multiple samples and encoding their properties in different glyphs. This allowed for
easier comparison between hundreds of samples at the same time.

We evaluated our design with a use case study and a pair analytics study. Although the icicle plot
and the node-link diagram are limited to a few samples per level to preserve visibility, they help
the user selecting out of the few samples by sorting. Users liked to generate samples, listen to the
melodies, and composing music in general. They also learned how the hyperparameter temperature
impacts the generated result. For working with more samples, the SPS and the combination of the
different glyphs helped the user to look for interesting melodies.

6.1 Future Work

In the future, we want to incorporate more domain knowledge and music theory to improve support-
ing especially beginner user. This also includes to add more control over the AI, for example by
adding feel suggestions. With this, the user would be able to add happiness or a different feeling as
requirement for the generated samples. Choosing a feeling would imply the usage of music theory
to choose a key that fits that feeling.

We further plan to test different models [HVU+18; RER+18] for the different composition tasks
— continuation, fill-in, harmonization — and expand the functionality to either directly generate
polyphonic music or harmonize melodies as a second step. As our current similarity function
struggles with polyphonic melodies, we want to design different similarity functions that support
polyphony and incorporate music theory. Additionally, we want to use models for different genres
and instruments, like a rock guitar, a classic piano, or directly provide a plugin API, where the user
can host his own model and use it in our system.

63

6 Conclusion and Future Work

To emphasize on supporting the user, we could estimate and indicate the quality of each suggestion
and therefore guide the user in choosing the best continuation. This could be done using model
outputs, a regressor, or using the confidence of the model. Improving learnability should give the
user an easier start using the system, for example by using more intuitive glyphs.

To visualize the found continuations, we want to test our visualizations with showing interesting
melodies larger than others. Another possibility to only show interesting samples in the visualizations
with the possibility to switch to another mode, where all samples are used. Future work also needs
to empirically validate our ideas in a longitudinal study including more users.

64

Bibliography

[ACTS20] A. Achberger, R. Cutura, O. Türksoy, M. Sedlmair. “Caarvida: Visual Analytics for
Test Drive Videos”. In: Proc. International Conf. Advanced Visual Interfaces (AVI).
2020 (cit. on p. 32).

[AG15] A. Agostini, D. Ghisi. “A Max Library for Musical Notation and Computer-aided
Composition”. In: Computer Music Journal (2015), pp. 11–27 (cit. on p. 19).

[AGB21] A. Arunkumar, S. Ginjpalli, C. Bryan. “Bayesian Modelling of Alluvial Diagram
Complexity”. In: arXiv preprint arXiv:2108.06023 (2021) (cit. on p. 18).

[BDG+20] G. Benevento, R. De Prisco, A. Guarino, N. Lettieri, D. Malandrino, R. Zaccagnino.
“Human-machine Teaming in Music: Anchored Narrative-graph Visualization and
Machine Learning”. In: Proc. International Conf. Information Visualisation (IV).
2020, pp. 559–564 (cit. on p. 13).

[BH19] T. Bazin, G. Hadjeres. “NONOTO: A Model-agnostic Web Interface for Interactive
Music Composition by Inpainting”. In: Proc. International Conf. Computational
Creativity (ICCC). 2019, pp. 89–91 (cit. on p. 19).

[BHP20] J.-P. Briot, G. Hadjeres, F.-D. Pachet. Deep Learning Techniques for Music Genera-
tion. Springer, 2020 (cit. on p. 13).

[BM10] S. Bruckner, T. Möller. “Result-Driven Exploration of Simulation Parameter Spaces
for Visual Effects Design”. In: IEEE Trans. Visualization and Computer Graphics
(TVCG) (2010), pp. 1468–1476 (cit. on p. 18).

[Cha18] A. Chaney. The Watson Beat: Using Machine Learning to Inspire Musical Creativity.
2018. url: https://medium.com/@anna_seg/the-watson-beat-d7497406a202 (visited
on 05/31/2021) (cit. on p. 17).

[CKS20] R. Cutura, C. Kralj, M. Sedlmair. “DRUID�(— A JavaScript Library for Dimen-
sionality Reduction”. In: Proc. IEEE Visualization Conf. (VIS). 2020, pp. 111–115
(cit. on p. 41).

[CWBD20] K. Chen, C.-i. Wang, T. Berg-Kirkpatrick, S. Dubnov. “Music SketchNet: Controllable
Music Generation via Factorized Representations of Pitch and Rhythm”. In: Proc.
International Society for Music Information Retrieval Conf. (ISMIR). 2020, pp. 77–84
(cit. on p. 19).

[DF20] R. T. Dean, J. Forth. “Towards a Deep Improviser: A Prototype Deep Learning Post-
tonal Free Music Generator”. In: Neural Computing and Applications (2020), pp. 969–
979 (cit. on p. 16).

[DWV13] W. B. De Haas, F. Wiering, R. C. Veltkamp. “A Geometrical Distance Measure
for Determining the Similarity of Musical Harmony”. In: International Journal of
Multimedia Information Retrieval (IJMIR) (2013), pp. 189–202 (cit. on p. 32).

65

https://medium.com/@anna_seg/the-watson-beat-d7497406a202

Bibliography

[FGJ20] E. Frid, C. Gomes, Z. Jin. “Music Creation by Example”. In: Proc. Conf. Human
Factors in Computing Systems (CHI). 2020, pp. 1–13 (cit. on pp. 13, 19).

[GB21] J. Gillick, D. Bamman. “What to Play and How to Play it: Guiding Generative Music
Models with Multiple Demonstrations”. In: Proc. International Conf. New Interfaces
for Musical Expression (NIME). 2021 (cit. on p. 13).

[GBSW21] N. Grossmann, J. Bernard, M. Sedlmair, M. Waldner. “Does the Layout Really Matter?
A Study on Visual Model Accuracy Estimation”. In: arXiv preprint arXiv:2110.07188
(2021) (cit. on p. 18).

[GGKG20] O. Gomez, K. K. Ganguli, L. Kuzmenko, C. Guedes. “Exploring Music Collections:
An Interactive, Dimensionality Reduction Approach to Visualizing Songbanks”. In:
Proc. International Conf. Intelligent User Interfaces (IUI). 2020, pp. 138–139 (cit. on
p. 32).

[HDG16] C.-Z. A. Huang, D. Duvenaud, K. Z. Gajos. “ChordRipple: Recommending Chords
to Help Novice Composers Go Beyond the Ordinary”. In: Proc. International Conf.
Intelligent User Interfaces (IUI). 2016, pp. 241–250 (cit. on p. 19).

[HJ19] B. Haki, S. Jorda. “A Bassline Generation System Based on Sequence-to-Sequence
Learning.” In: Proc. International Conf. New Interfaces for Musical Expression
(NIME). 2019, pp. 204–209 (cit. on p. 17).

[HKN+20] C.-Z. A. Huang, H. V. Koops, E. Newton-Rex, M. Dinculescu, C. J. Cai. “AI Song
Contest: Human-ai Co-creation in Songwriting”. In: Proc. International Society for
Music Information Retrieval Conf. (ISMIR). 2020, pp. 708–716 (cit. on p. 19).

[HN20] G. Hadjeres, F. Nielsen. “Anticipation-rnn: Enforcing Unary Constraints in Sequence
Generation, with Application to Interactive Music Generation”. In: Neural Computing
and Applications (2020), pp. 995–1005 (cit. on p. 16).

[HS20] F. Heyen, M. Sedlmair. “Supporting Music Education Through Visualizations of
Midi Recordings”. In: Posters IEEE Visualization Conf. (VIS). 2020 (cit. on p. 38).

[HVU+18] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, A. M. Dai,
M. D. Hoffman, D. Eck. “An Improved Relative Self-Attention Mechanism for Trans-
former with Application to Music Generation”. In: arXiv preprint arXiv:1809.04281
(2018). arXiv: 1809.04281 (cit. on pp. 13, 17, 63).

[KC20] S. Knotts, N. Collins. “A Survey on the Uptake of Music Ai Software”. In: Proc.
International Conf. New Interfaces for Musical Expression (NIME). 2020, pp. 499–
504 (cit. on p. 13).

[KDW18] E. S. Koh, S. Dubnov, D. Wright. “Rethinking Recurrent Latent Variable Model for
Music Composition”. In: Proc. IEEE International Workshop Multimedia Signal
Processing (MMSP). 2018 (cit. on pp. 13, 16).

[KHW09] A. Klippel, F. Hardisty, C. Weaver. “Star Plots: How Shape Characteristics Influence
Classification Tasks”. In: Cartography and Geographic Information Science (CaGIS)
(2009), pp. 149–163 (cit. on p. 35).

[KKM+20] R. Khulusi, J. Kusnick, C. Meinecke, C. Gillmann, J. Focht, S. Jänicke. “A Survey
on Visualizations for Musical Data”. In: Computer Graphics Forum (CGF) (2020),
pp. 82–110 (cit. on p. 18).

66

https://arxiv.org/abs/1809.04281

Bibliography

[KL83] J. B. Kruskal, J. M. Landwehr. “Icicle Plots: Better Displays for Hierarchical Cluster-
ing”. In: American Statistician (1983), pp. 162–168 (cit. on p. 25).

[Kru64a] J. B. Kruskal. “Multidimensional Scaling by Optimizing Goodness of Fit to a Non-
metric Hypothesis”. In: Psychometrika (1964), pp. 1–27 (cit. on p. 33).

[Kru64b] J. B. Kruskal. “Nonmetric Multidimensional Scaling: A Numerical Method”. In:
Psychometrika (1964), pp. 115–129 (cit. on p. 33).

[LCH+20] R. Louie, A. Coenen, C. Z. Huang, M. Terry, C. J. Cai. “Novice-AI Music Co-Creation
via AI-Steering Tools for Deep Generative Models”. In: Proc. Conf. Human Factors
in Computing Systems (CHI). 2020, pp. 1–13 (cit. on pp. 13, 19).

[LKD+17] Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, A. Wilson. “CoreFlow:
Extracting and Visualizing Branching Patterns from Event Sequences”. In: Computer
Graphics Forum (CGF) (2017), pp. 527–538 (cit. on p. 18).

[LND21] N. Le, N. V. Nguyen, T. Dang. “Real-Time Sound Visualization via Multidimen-
sional Clustering and Projections”. In: International Conf. Advances in Information
Technology (IAIT). 2021 (cit. on p. 32).

[LSM18] O. Lopez-Rincon, O. Starostenko, G. A.-S. Martín. “Algoritmic Music Composition
Based on Artificial Intelligence: A Survey”. In: Proc. International Conf. Electronics,
Communications and Computers (CONIELECOMP). 2018, pp. 187–193 (cit. on
p. 13).

[Lup21] J. A. Lupker. “Score-Transformer: A Deep Learning Aid for Music Composition”.
In: International Conf. New Interfaces for Musical Expression (NIME). 2021 (cit. on
p. 17).

[MKG+17] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, Y. Bengio.
“Samplernn: An Unconditional End-to-end Neural Audio Generation Model”. In:
International Conf. on Learning Representations (ICLR). 2017 (cit. on pp. 13, 16).

[Moo86] R. A. Moog. “MIDI: Musical Instrument Digital Interface”. In: Journal of the Audio
Engineering Society (1986), pp. 394–404 (cit. on p. 41).

[NHJ21] T. Nuttall, B. Haki, S. Jorda. “Transformer Neural Networks for Automated Rhythm
Generation”. In: Proc. International Conf. New Interfaces for Musical Expression
(NIME). 2021 (cit. on p. 17).

[Par18] T. Parviainen. “Musical Deep Neural Networks in the Browser”. In: Proc. Interna-
tional Web Audio Conf. (WAC). 2018 (cit. on p. 18).

[Pas18] L. Passing. “Generative Music, Playful Visualizations and Where to Find Them”. In:
Proc. International Web Audio Conf. (WAC). 2018 (cit. on p. 18).

[PKL+19] S. Park, T. Kwon, J. Lee, J. Kim, J. Nam. “A Cross-scape Plot Representation for
Visualizing Symbolic Melodic Similarity”. In: Proc. International Society for Music
Information Retrieval Conf. (ISMIR). 2019, pp. 423–430 (cit. on p. 32).

[RER+18] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, D. Eck. “A Hierarchical Latent Vector
Model for Learning Long-term Structure in Music”. In: Proc. International Conf.
Machine Learning (PMLR). 2018, pp. 4364–4373 (cit. on pp. 13, 16, 63).

[RHS18] A. Roberts, C. Hawthorne, I. Simon. “Magenta.js: A JavaScript API for Augmenting
Creativity with Deep Learning”. In: Joint Workshop on Machine Learning for Music
(ICML) (2018), pp. 2–4 (cit. on p. 40).

67

Bibliography

[Roa85] C. Roads. “Research in Music and Artificial Intelligence”. In: ACM Computing
Surveys (CSUR) (1985), pp. 163–190 (cit. on p. 15).

[SMT13] M. Sedlmair, T. Munzner, M. Tory. “Empirical Guidance on Scatterplot and Dimen-
sion Reduction Technique Choices”. In: IEEE Trans. Visualization and Computer
Graphics (TVCG) (2013), pp. 2634–2643 (cit. on p. 32).

[SO17] I. Simon, S. Oore. “Performance RNN: Generating Music with Expressive Timing
and Dynamics”. In: Magenta Blog (2017) (cit. on p. 16).

[SSS+19] J. Smith, M. Street, M. Street, B. Magerko, C. Street. “Combining Collaborative and
Content Filtering in a Recommendation System for a Web-based DAW”. In: Proc.
International Web Audio Conf. (WAC) (2019) (cit. on p. 32).

[Sto16] M. Stone. How We Designed the New Color Palettes in Tableau 10. 2016. url:
https://www.tableau.com/about/blog/2016/7/colors-upgrade-tableau-10-56782

(visited on 08/31/2021) (cit. on p. 25).
[SW97] S. Smith, G. Williams. “A visualization of Music”. In: Proc. Visualization ’97 (Cat.

No. 97CB36155). 1997, pp. 499–503 (cit. on p. 18).
[SYTC21] M. Suh, E. Youngblom, M. Terry, C. J. Cai. “AI as Social Glue: Uncovering the Roles

of Deep Generative AI during Social Music Composition”. In: Proc. Conf. Human
Factors in Computing Systems (CHI). 2021 (cit. on p. 13).

[TWM19] M. Taenzer, B. C. Wünsche, S. Müller. “Analysis and Visualisation of Music”. In:
Proc. International Conf. Electronics, Information, and Communication (ICEIC).
2019 (cit. on p. 18).

[ULMS10] J. Urbano, J. Lloréns, J. Morato, S. Sánchez-Cuadrado. “Melodic Similarity Through
Shape Similarity”. In: International Symp. Computer Music Multidisciplinary Re-
search (CMMR) (2010), pp. 338–355 (cit. on p. 32).

[Wat01] M. Wattenberg. The Shape of Song. 2001. url: http://www.turbulence.org/Works/
song/mono.html (cit. on p. 18).

[WATS19] A. Weber, L. N. Alegre, J. Torresen, B. C. da Silva. “Parameterized Melody Generation
with Autoencoders and Temporally-Consistent Noise”. In: Proc. International Conf.
New Interfaces for Musical Expression (NIME). 2019, pp. 174–179 (cit. on p. 16).

[WCHU08] M. Ward, C.-h. Chen, W. K. Härdle, A. Unwin. “Multivariate Data Glyphs: Principles
and Practice”. In: Handbook of Data Visualization. 2008, pp. 179–198 (cit. on p. 33).

[WGP+11] K. Wongsuphasawat, J. A. Guerra Gómez, C. Plaisant, T. D. Wang, M. Taieb-Maimon,
B. Shneiderman. “LifeFlow: Visualizing an Overview of Event Sequences”. In: Proc.
Conf. Human Factors in Computing Systems (CHI). 2011, pp. 1747–1756 (cit. on
p. 18).

[ZXLD21] Y. Zhang, G. Xia, M. Levy, S. Dixon. “COSMIC: A Conversational Interface for
Human-AI Music Co-Creation”. In: Proc. International Conf. New Interfaces for
Musical Expression (NIME). 2021 (cit. on p. 19).

68

https://www.tableau.com/about/blog/2016/7/colors-upgrade-tableau-10-56782
http://www.turbulence.org/Works/song/mono.html
http://www.turbulence.org/Works/song/mono.html

A Magenta Model Comparison

We tested some models for music generation provided by Magenta and show the information and
our findings in the following tables. In Appendix Table A.1, we sum up the important characteristics
of different Magenta models. Therefore, we take a look at the architecture, inputs, outputs, musical
texture, and the availability as pre-trained model. As we only used a few of these presented models,
we named some reasons on why we decided to either use or do not use the model (Appendix
Table A.2).

To get a feeling for the subjective quality of generated samples by the chosen models, we tested
different seed melodies and temperature using the models and documented our subjective results
for each sample and then decided whether a neural network is interesting depending only on the
one sample. Therefore, they are subjective opinions and not a general findings. We grouped
our subjective findings were by the used models: basicRNN (Appendix Table A.3), melodyRNN
(Appendix Table A.4), improvRNN (Appendix Table A.5), and the older version of the improvRNN
(Appendix Table A.6).

The quality of melody samples and therefore the support through suggestions when composing
depends on model choice for different tasks. The used RNN models for example use the seed melody
and temperature to generate continuations, which is good for using at the end of compositions. For
the fill-in task, the RNN models do not fit as well as for example VAE models, which are specialized
on interpolating between two melodies and therefore fit the fill-in task better. We decided to use
the same, simple model for an easier understanding, as more models require more knowledge of
the user. Therefore, the usage of different ML models for different task would further increase the
quality of the output samples.

69

A Magenta Model Comparison

NN Name
Archi-
tec-
ture

Hyperparameters Task

Musi-
cal
Tex-
ture

Used
Pre-
train-
ed

Basic RNN RNN
Temperature,

(chord progression),
example melody

Predict melody
continuation in limited

keyrange
M

√ √

Melody RNN RNN
Temperature,

(chord progression),
example melody

Predict melody
continuation M

√ √

Improv RNN RNN
Temperature, chord

progression,
example melody

Predict melody
continuation M

√ √

Performance
RNN RNN Example melody,

key conditions

Generate performance
(dynamics, natural

timing)
P × ×

Coconet CNN Input melody Harmonize input
melody P × ×

GANSynth GAN (Latentspace point)
Predict input, random

sampling (direct
audio)

P × ×

mel Music VAE VAE Temperature
Generate new melody,
interpolate between

melodies
M × √

trio Music VAE VAE Temperature Sampling melody,
bass, and drums P × √

multitrack Mu-
sic VAE VAE Temperature Sampling multitracks

(chord conditioned) P × √

PianoGenie
En-

/decoder
RNN

Latentspace butten
numbers, (key list,
temperature, seed)

Generate next keys
note in real time M/P × ×

Table A.1: Comparison of available Magenta ML models. Musical texture: monophonic (M) or
polyphonic (P).

70

https://github.com/magenta/magenta/tree/main/magenta/models/melody_rnn
https://github.com/magenta/magenta/tree/main/magenta/models/melody_rnn
https://github.com/magenta/magenta/tree/main/magenta/models/improv_rnn
https://github.com/magenta/magenta/tree/main/magenta/models/performance_rnn
https://github.com/magenta/magenta/tree/main/magenta/models/performance_rnn
https://github.com/magenta/magenta/tree/main/magenta/models/coconet
https://github.com/magenta/magenta/tree/main/magenta/models/gansynth
https://github.com/magenta/magenta/tree/main/magenta/models/music_vae
https://github.com/magenta/magenta/tree/main/magenta/models/music_vae
https://github.com/magenta/magenta/tree/main/magenta/models/music_vae
https://github.com/magenta/magenta/tree/main/magenta/models/music_vae
https://magenta.tensorflow.org/pianogenie

NN Name Used Reason for decision

Basic RNN
√

BasicRNN is monophonic and continues a given start melody.
The output melody is limited to a smaller pitch range which

improves visualizations and saves space. The continuations are
well suited for the iterative composition style.

Melody
RNN

√

MelodyRNN is monophonic and continues a given start
melody. The output melody gives a wider range of notes due to
no limitations which result in more different possibilities and a
wider range of melodies. The continuations are well suited for

the iterative composition style.

Improv RNN
√

ImprovRNN is monophonic and continues a given start melody.
The output melody is also constrained by a chord progression.
Therefore the output melodies are more bound to a certain tone

which leads to longer structure. The continuations are well
suited for the iterative composition style.

Performance
RNN ×

PerformanceRNN is polyphonic and therefore not quite suited
for only monophonic melody composition. Also the

PerformanceRNN simulates different dynamics and natural
timing which are characteristics of performing music and not

quite composing a simple melody.

Coconet ×
Coconet harmonizes a given input melody and is therefore
polyphonic. The task coconet fulfills is not the same task in

this thesis and therefore unsuited.

GANSynth ×

GANSynth predicts a polyphonic sample which is represented
in an audio form already. Therefore it is not as usable for

composing a simple monophonic melody with the intention to
adjust single notes and give the user control over the notes.

mel Music
VAE ×

Melody MusicVAE can generate completely new monophonic
samples and is therefore suited for giving seed melodys if the
user lacks in ideas. But for iterative composition the model is

not usable due to the lack of structure between generated
samples. The interpolation between two melodies can be used

for a fill-in but not for continuation and the iterative
composition process

trio Music
VAE ×

Trio MusicVAE generates completely new polyphonic samples
or can interpolate between two samples but is not suited for a
monophonic melody composition. Same aspects as in melody

MusicVAE apply.

multitrack
Music VAE ×

Trio MusicVAE generates completely new polyphonic samples
or can interpolate between two samples but is not suited for a
monophonic melody composition. Same aspects as in melody

MusicVAE apply.

PianoGenie ×

PianoGenie can respond in real time by outputting a single or
multiple notes depending on a single or multiple button

presses as input. Therefore this model is made for real time
improvising with only a few input buttons. This is not used in
this thesis due to the possibility to only generate one melody at

a time and the potential on missing out on interesting
alternatives.

Table A.2: Comparison of all models and the reasons to use or not use in this thesis.

71

A Magenta Model Comparison

NN Name

Seed
Melody

(4
Bars)

Low Temp.
(0.4-0.8) Medium Temp. (1) High Temp.

(1.2-1.6)

In-
ter-
est-
ing?

Basic
RNN

Crazy
Train
Intro

Not as exciting.
Many repetition of

the same notes.
Almost no sharp

notes even if input
has many sharps.

More occurrences
of notes from seed
melody. Sign of
melody structure
recognizable but
with randomness.

Chosen notes seem
random. Note
duration varies

even if seed only
has same size.

Melody structure
has no direct

relationship to seed
melody

×

Basic
RNN

No
Notes

Few long notes
with similar pitch
and long pause at
the start. Not as

interesting

Pause at the start
and then medium

long notes. Melody
shows a scale

structure. Calm
melody.

Bigger jumps and
more variation in
note duration and

pitch. Show
different types of
melody structure.

√

Basic
RNN

Twin-
kle

twin-
kle

Low temperature
shows same note

and duration.
Increasing

temperature more
variation is shown

and the melody
structure is slightly

recognizable.
Pitches are used all

used in seed
melody as well but
at different timings.

Seems more
random with newly
used pitches and

different structure.
Note duration can
vary, but does not
look as interesting.

Different melodies
compared to seed
melody. Shows
different melody

structure and
different note

duration. Can seem
interesting and

exciting.

×

Table A.3: BasicRNN melody generation evaluation (Temp = temperature).

72

NN Name

Seed
Melody

(4
Bars)

Low Temp.
(0.4-0.8) Medium Temp. (1) High Temp.

(1.2-1.6)

In-
ter-
est-
ing?

Melody
RNN

Crazy
Train
Intro

Same melody as
seed with small

change.

Shows a highly
similar melody to

the low temperature
ones and the seed
ones. Small step
changes to a few

notes.

Similar structure to
the seed with more
small adaptations

but also
randomness with

increasing
temperature, note

duration only
changes to even

shorter notes and
more pitch
variations.

Structure of
alternating big

jumps is sometimes
preserved

√

Melody
RNN

No
Notes

Mostly same notes
and same duration
of notes. Not as

interesting.

Only shows small
intervals between

notes. Four
different pitches

alternating. Seems
not as interesting.

Shows more variety
regarding pitch,

note duration and
intervals between

notes. More exiting
melody.

×

Melody
RNN

Twin-
kle

twin-
kle

Shows exactly the
seed melody with

no variation.

Shows signs of
similar melody

structure but varies
in limited pitches.
Not as interesting.

Show similar
melody structure

but with high
randomness at the

end with short
notes and big

intervals in pitch.
Can be interesting
but also far from

seed melody.

√

Table A.4: MelodyRNN melody generation evaluation (Temp = temperature).

73

A Magenta Model Comparison

NN Name

Seed
Melody

(4
Bars)

Low Temp
(0.4-0.8) Medium Temp (1) High Temp

(1.2-1.6)

In-
ter-
est-
ing?

Improv
RNN

Crazy
Train
Intro

Note duration is
sometimes

preserved. The
used keys are

limited due to the
chord progression
of the seed melody.
Not as interesting
as continuation.

Melody structure is
not preserved. Note
duration is same as

in seed. More
interesting than low
temperature due to
bigger intervals but

seem not as
interesting

Shows randomness
in terms of different

note lengths and
sometimes big

intervals. Notes are
all bound to the

chord progression
so usage of
restricted

randomness.

×

Improv
RNN

No
Notes

Mostly same notes
and same duration
of notes. Not as

interesting. But can
show different keys.

Start more jumps
and then alternating

between two
pitches. Only uses

four different
pitches.

Uses the same
pitches due to

chord progression
but can show

different exciting
melodies and
variety in note

duration. Shows
parts where the

same pitch occurs
in quick succession.

√

Improv
RNN

Twin-
kle

twin-
kle

Shows same pitch
and duration the

whole time.

Same rhythm as
seed melody but
simple and less
interesting scale
melody structure.

Shows similarities
to seed melody but
also varies more in

note length and
random pitches.
Seem to be more

interesting and can
be variations and
continuations of

seed melody.

√

Table A.5: ImprovRNN melody generation evaluation (Temp = temperature).

74

NN Name

Seed
Melody

(4
Bars)

Low Temp
(0.4-0.8) Medium Temp (1) High Temp

(1.2-1.6)

In-
ter-
est-
ing?

Old
Improv
RNN

Crazy
Train
Intro

Mainly uses the
three pitches of the

main chord.
Alternating notes
and sometimes

variation of note
duration. Not as

interesting.

Varies in note
duration in

comparison to seed
melody. Melody
structure is not

recognizable and
has no large variety

of pitches.

Sometimes big
intervals between
notes. Shows a
scale structure

instead of a
alternating

structure. Shows
melody over 3

scales instead of
one in the seed

melody.

×

Old
Improv
RNN

No
Notes

Mostly same
pitches and

duration of notes.
Not as interesting.

Shows scale
structure with

variety of length
and pitch. Not as

interesting.

No big intervals
between notes

resulting in melody
with a low pitch
range. Not as
exciting and
interesting.

×

Old
Improv
RNN

Twin-
kle

twin-
kle

Shows same note
duration the whole

time. Limited
amount of different

pitches are used.
Not as interesting.

Shows melody
structure but with
different pitches

and variation. Can
be interesting as
variation to seed

melody.

Shows limited
melody structure
and overall not as
interesting due to

the simple structure
and the limited

variations.

×

Table A.6: Old version of the ImprovRNN melody generation evaluation (Temp = temperature).

75

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

77

	1 Introduction
	2 Background & Related Work
	2.1 Visual Representation of Sheet Music
	2.2 Machine Learning for Music Generation
	2.3 Visualization in Music and Event-based Visualization
	2.4 Interactive Music Creation

	3 Concept
	3.1 Users and Tasks
	3.2 Workflow
	3.3 Data
	3.4 Design
	3.5 Implementation

	4 Evaluation
	4.1 Technical Evaluation
	4.2 Case Studies
	4.3 Pair Analytics Study

	5 Limitations and Discussion
	6 Conclusion and Future Work
	6.1 Future Work

	Bibliography
	A Magenta Model Comparison

