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Abstract

The question of detection of user search queries has been explored by many au-
thors. With the advent of speech based search interfaces, narrowing down the
scope of search based on user intent becomes even more important. A prominent
part of determining the user’s goals is first detecting whether the query is am-
biguous, based on which, clarifying questions can be posed. Previous works have
mostly attempted to classify user intent into pre-defined categories that may not
be suitable for open-domain settings. This thesis explores multiple methods to
detect the level of ambiguity of the first query input by the user. Two princi-
pal approaches are presented in this work, both of which depend on information
provided by documents retrieved from the search operation. The first approach
creates a graph based on the similarities between the documents and the second
approach generates a graph from the concepts covered in those documents. The
graphs are then processed by a graph convolutional network and classified into
four levels of ambiguity. The models are tested on data provided by the ClariQ
challenge and are found to depend on the documents taken into scope as well as
the distribution of the documents in the search results. The best results obtained
by the models have been shown to improve over traditional sentence classification
approaches and have been compared to the top ranked entries in the challenge.
Additionally, ways to improve the datasets and the models have been proposed.



2

Acknowledgement

Throughout the research for this thesis, I have received support and assistance
from multiple sources.

I would like to acknowledge the support and guidance of Prof. Dr. Ngoc
Thang Vu of the Institute for Natural Language Processing at the University of
Stuttgart for his guidance and criticisms which helped validate and refine my
research questions and methodology.

I would like to acknowledge the supervision and patient support I received at
every step of the research from my thesis supervisor, Daniel Ortega.

I would also like to extend my appreciation to the Institute for Natural Lan-
guage Processing at the University of Stuttgart for providing the infrastructure
necessary for conducting the research.

Finally, I would like to thank my friends and family for their constant moral
support throughout the duration of the research.



Contents

1 Introduction 5

2 Related Work 8

3 Background 13
3.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . 16

3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 19
3.5 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.1 Roberta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.2 ELECTRA . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.3 SBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Text Embedding Techniques . . . . . . . . . . . . . . . . . . . . . 34
3.8.1 Word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.2 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Document similarity detection using TF-IDF and GCN . . . . . . 36

4 Resources 40
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Training Dataset . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Development Dataset . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Top 10k Documents per Query . . . . . . . . . . . . . . . 43

4.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Pytorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 TextRank . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 RAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3



CONTENTS 4

4.2.4 spaCy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.5 ChatNoir . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Experiments and Results 48
5.1 Preliminary Approaches . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Approach 1: Document Similarity Graph . . . . . . . . . . . . . . 53
5.3 Approach 2: Concept Graph . . . . . . . . . . . . . . . . . . . . . 57
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Preliminary Approaches . . . . . . . . . . . . . . . . . . . 60
5.4.2 Document Similarity Graph . . . . . . . . . . . . . . . . . 62
5.4.3 Concept Graph . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusion and Future Work 69



Chapter 1

Introduction

The World Wide Web is a treasure trove of information [1]. Among trillions
of web pages available there and millions added everyday, we can find facts
and figures that interest us. Earlier, searching the web involved sifting through
directories and catalogues maintained by multiple organizations and research
groups. Then came the first popular search engine, Yahoo! Search in 1994,
followed by Google and the multitude of search options we have available today.
However, all popular search engines mainly relied on text queries as their inputs.
Earlier search and ranking algorithms presented search results based on similarity
of the metadata to the keywords in the query. Such ranking algorithms, though
simpler to implement, can tend to be inaccurate and lead to the user searching
through pages of search results to find their result of choice. Such similarity
based algorithms were then replaced by Google’s fabled PageRank algorithm
which took into account not just similarity but also the quality of a document,
measured through the number of links to that document. Such algorithms have
then developed to include more complex factors such as the user’s behaviour
on the Internet, their location and tendency to click on certain links and other
factors that the developers decide upon. Such approaches have greatly reduced
the user’s effort to find the right page. Conventional search services can only
present the user with a list of results, rather than giving a deterministic answer.

With the advent of natural language processing, users have now attained a
way to interact with devices using only their voice. As concluded by [2], speech
interaction has proven to be the most enjoyable and convenient form of interac-
tion in conversational systems. Such natural language processing based systems
have led to the rise of popularity in devices that require the least amount of
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CHAPTER 1. INTRODUCTION 6

visual or haptic input. Such devices mostly lack sufficient output space for a di-
versified list of search results for the user to choose from. Devices such as smart
speakers, that lack any form of visual output, cannot present the user with more
than one result for their queries. In these scenarios, the information presented
by the device has to be as accurate and exact to the user’s query as possible.
Traditional search approaches cannot narrow down the search field sufficiently to
do that. Even with BERT based models in use today to better understand the
query, there are sufficient points of ambiguity that need to be addressed.

There have been multiple attempts to determine the ambiguity of search
queries. All such attempts have mainly aimed at classifying the intent of the
query into predetermined classes or into broad categories based on the functional
aspects of the queries, such as informational, navigational or transactional [3].
Most of the attempts till date have utilised existing knowledge of query ambiguity
in narrow domains. Work on ambiguity detection in open-domain conversations
has been limited.

This thesis aims to address the issue of detecting the ambiguity in the initial
user query in open-domain conversations by presenting and comparing two ap-
proaches. Both the approaches make use of graph convolutional networks [4] that
make use of graphical information derived from the search results of the queries.
The principal motivation behind the use of graphical information processing came
from the fact that the ambiguity of a query can be defined in terms of the con-
cepts covered by, and the similarities between the documents retrieved by the
search operation, as explored by [5]. The mutual similarity score between those
documents can play an important role in determining whether documents re-
trieved for the same query are closely related or cover entirely divergent subjects
indicated by similar query terms. A graph convolutional network can process
such interrelationship between those documents when expressed in the form of
a graph, complete with node features, that represent some aspect of the content
of the documents and an adjacency matrix that can describe the relationship
between those documents, mainly in terms of their similarity. For the first ap-
proach, the node features consist of the vector representation of the documents,
with the vectprizer weights fine-tuned as a part of the model training, and the
edge weights determined by the cosine similarity between the document vectors.
The second approach builds on the work done in [6] to determine similarity be-
tween news articles. In this approach, concepts derived from the documents are
encoded and serve as the graph nodes, whereas the edge weights are determined
by the similarity between documents associated with each concept.
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This document is structured as follows:

� Chapter 2 explores the existing literature relevant to the problem handled
in this work.

� Chapter 3 introduces all relevant background concepts, including the basic
natural language understanding algorithms used.

� Chapter 4 describes the resources used, including the tools and datasets
required for this work.

� Chapter 5 describes the proposed algorithms, the experiments performed
and the results achieved.

� Chapter 6 concludes on the explorations and proposes ideas for further
improvement.



Chapter 2

Related Work

This chapter explores the existing literature pertaining to the detection of user
intent and ambiguity therein, in various restricted as well as open settings.

The questions of detecting ambiguity in open-domain queries has been explored
comparatively less in literature. An important approach for ambiguity detection
involves the detection of the intent of the query. Broder, in his document ”A
taxonomy of web search” [3], introduced three broad categories of query intent:
informational - for queries aimed at retrieving information, navigational - for
queries aimed at navigating to a web page and transactional - intended at per-
forming some activity facilitated by the web such as shopping or downloading
a file. This taxonomy was further refined by Rose and Levinson [7] into navi-
gational, informational and resource queries, with sub-categories of each. They
used queries from the AltaVista search engine to develop a framework for cate-
gorizing queries. The sub-categories for the Informational queries include closed
and open-ended queries that make room for ambiguity detection. For resolving
conflicts in the assignment of a particular category, the authors have resorted to
the user’s behaviour with the search results. Such functional categorization of
queries, however, does not provide any information about the level of ambiguity
and depends on prior knowledge of the user’s behaviour, which is not suitable for
real time application. Examples of Rose and Levinson’s taxonomy and samples
from the AltaVista queries can be seen in Figure 2.1.

Building on the refined query taxonomy developed by Rose and Levinson [7],
Lee et. al. [8] explored the possibility of developing an automatic user goal iden-
tification system based on user behaviour and the nature of web pages retrieved
in the search results. They classified queries into navigational and informational
queries, based on the premise that navigational queries will have users visiting
only a particular intended website for the majority of the time and informational
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Figure 2.1: Examples of AltaVista queries and their intents [7]. The authors
further refined Broder’s taxonomy [3]. The open category within the directed
subcategory and the undirected queries mainly point to ambiguous informational
queries, thus enabling detection of some level of ambiguity in user queries. Fol-
lowing their nomenclature, all the subcategories can have open and closed queries,
thereby allowing for ambiguity detection for all types of queries. However, the
level of ambiguity cannot be determined.
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queries will have users visiting multiple websites from the search results to obtain
the maximum amount of information on the topic. To obtain these data, they
observed the distribution of user clicks on search results for individual queries.
If the clicks had an even distribution over multiple search results, then it was
probably an informational query, whereas if the clicks showed a bias towards one
particular website, then the query was probably informational. Another aspect
they took into account was the distribution of links that had the same anchor text
as the query. The text for an informational query should not link to one particu-
lar website for the majority of the samples, whereas the same for a navigational
query should always lead the user to one particular website. This approach,
though automated, has limited applicability for open-domain conversations since
the system will require a prior knowledge of click-through rates and distribution
of search results for each query posed by the user.

Jansen et al. [9] utilised the taxonomy developed by Rose and Levinson [7]
to automatically classify queries as informational, navigational or transactional
based on web search logs from a search engine. They used a rule based approach
to compare a set of features associated with each query, such as the user identifier,
the search terms in the query and the type of content searched by the user,
to a pre-defined set of class-based conditions that determined the category a
particular query would belong to. These class-based conditions were derived from
a qualitative analysis of available search logs and deriving features for manually
classified queries. Though this procedure does not make use of user click-through
data, it uses manually defined rules that may not be applicable to open-domain
queries in a dynamic environment like the internet. Tamine et al. [10] combined
user queries with context in order to determine intent. However, this approach
relies on previous knowledge of similar queries with the same intent.

The approaches described in the previous paragraphs were the initial attempts
at determining the actual intent of a query. However, all of them aimed at clas-
sifying queries into fixed categories, rather than determine the actual goal of the
user. Since most of them rely on previous information about similar queries and
about user behaviour on search results, they cannot be applied to open-domain
coversational systems where the user’s query is completely unpredictable and
may not have any precedent. Additionally such attempts at query classification
do not aid in detecting the level of ambiguity in the query. Although the taxon-
omy developed by Rose and Levinson [7] had a provision for classifying a query
as ambiguous if it could not be placed into any of the classes, it does not describe
any procedure to detect ambiguity within the individual categories.
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Figure 2.2: Clusters of documents retrieved for 3 queries [5]. the graphs show
distribution of documents based on their probability of belonging to the pre-
defined categories such as ”Work & Money”, ”Computing” and ”Library”.

There have been multiple attempts at determining whether a query is am-
biguous and quantifying the degree of ambiguity. Ruihua et al. [5] made one
of the first attempts to determine the ambiguity of a query based on the doc-
uments retrieved by the search engine. The documents were projected on a
three-dimensional space and features were derived to represent the distribution
of the documents. Figure 2.2 shows an example of the clustering of documents
retrieved for 3 queries. An SVM was used to classify queries as ambiguous based
on the assumption that documents relevant to ambiguous queries would belong
to multiple clusters.

Triennes et al. [11] envisioned the possibility of detecting unclear questions in
a question-answering forum setting without the need to monitor user responses
after the question had been posted. The authors made use of a database of
similar questions that existed on the platform and had been classified as clear
or unclear. A question was detected as unclear if clarifying questions had been
posed to the author of that question and if the answer to the clarifying question
added any new information. This approach, however, is limited by the presence
of similar questions in the database.

Ammicht et al. [12] developed a novel system for detecting and resolving posi-
tion ambiguity in natural language input. The system parses the user’s input and
prepares a notepad tree based on important information, such as the departure
and arrival cities, in the case of a flight booking system, as shown in Figure 2.3.
Then an application tree is prepared to keep track of values that can be derived
from the inputs. The system, in effect, parses the inputs into a set of trees with
attribute-value pairs and detects ambiguity in the information provided for each
attribute in the notepad tree. Such a system is effective in determining the am-
biguous nature of user inputs when the system knows what to expect from the
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Figure 2.3: A notepad tree generated from user input to a flight reservation
system. As seen in the penultimate level, the departure and arrival cities are
unclear from what the user said. [12]

user, such as instructions pertaining to a particular domain. The system can be
finetuned to any domain, but is not efficient for open-domain queries that may
not follow any particular structure.

Hashemi et al. [13] developed a method to classify query intent using convolu-
tional neural networks, based on the works of Collobert et al. [14] and Kim [15].
The query was first encoded using word2vec and then passed through a neural
network with CNN layers to obtain a query vector representation. The query
vector is then passed through a dense layer that serves as the intent classifier.
The intents were obtained by manually classifying a dataset of queries. This
method does not make use of search logs or results to identify intent but cannot
be trained in the absence of pre-defined intent classes, which may be difficult to
obtain for open-domain conversations.



Chapter 3

Background

This section explains the relevant background information required for suffi-
cient understanding of the work in this thesis. It also builds up the groundwork
and explains relevant work that have inspired the explored algorithms.

3.1 Artificial Intelligence

John McCarthy defines Artificial Intelligence as the ”science and engineering
of making intelligent machines, especially intelligent computer programs” [16].
The concept of AI entails the task of making a computer understand and mimic
the process of human intelligence [17].

The birth of artificial intelligence can be attributed to Alan Turing’s ”Com-
puting Machinery and Intelligence” [18] where he raised the question ”Can ma-
chines think?”. The ”Turing Test” developed by him remains an important part
of the history of artificial intelligence as it utilizes ideas around linguistics to
test whether an interrogator can distinguish between a computer and a human
respondent.

The most important aims of AI involve developing systems that think and act
rationally like humans. It combines computer science and data to develop robust
solutions to problems [17].

3.2 Machine Learning

Machine Learning is a subfield of artificial intelligence where data and algo-
rithms are used to imitate the learning process of humans. Machine learning
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lies at the intersection of computer science, statistics and artificial intelligence,
where statistical methods are used on available data to develop algorithms that
can output predictions and classifications. Machine learning plays an important
role in detecting patterns in datasets that can help in decision making. Machine
learning is a core component of all approaches towards achieving general artificial
intelligence [19].

In the last two decades, the applications of machine learning have encompassed
almost every application of computer science. Machine learning has been used
successfully to derive information and patterns from huge sets of statistical data,
which would not have been possible otherwise. Additionally machine learning
algorithms can be designed to be multimodal, deriving inputs from a large variety
of file formats and media, such as text, audio, video and images. These data can
then be used to generate new sets of data, such as new text or speech or can
be used to perform regression on the inputs or classification of the inputs. The
essence of machine learning lies in the analysis of input data in order to derive a
pattern that fits the data and then use that pattern to derive new data points.

Machine learning has been used extensively in natural language processing,
automatic speech recognition, computer vision and other problems that cannot
be solved in a reasonable amount of time or at all by traditional rule-based
algorithms. Machine learning algorithms usually encompass four paradigms: su-
pervised learning, semi-supervised learning, unsupervised learning and reinforce-
ment learning. In the context of this thesis, supervised and unsupervised learning
algorithms are of relevance and have been covered in the following section. The
other paradigms are out of the scope of the current research.

3.2.1 Supervised Learning

Supervised learning can be defined as the task of learning a function that can
map from inputs to outputs based on example input-output pairs [20]. A su-
pervised learning algorithm is trained using a labelled dataset containing input-
output pairs. The performance of the algorithm is then tested using a set of
unlabelled data points. Supervised learning algorithms are used in many appli-
cations of machine learning, such as speech recognition, optical character recog-
nition and object detection from images, among others. The inputs are converted
into vectors, known as feature vectors before they are presented to the algorithm.
The outputs or labels (also known as supervisory signal) are usually discrete or
continuous values. In case of discrete labels, the task is known as a classification
task and in case the labels are continuous in nature, the task is referred to as



CHAPTER 3. BACKGROUND 15

regression.

In mathematical terms, the training set consists of a set of input-output pairs

Straining = {(x1, y1), (x2, y2), . . . , (xN , yN)} (3.1)

where xi is the feature vector corresponding to the ith input and yi is the ith
target output or class. The objective of the supervised learning algorithm is to
learn the mapping

f : X → Y (3.2)

where xi ∈ X, yi ∈ Y for i = 1, 2, 3, . . . , N .

The algorithm learns a function h that can approximate the mapping f and
can also generalize over the entire training set Straining.

y∗i = h(xi) (3.3)

The difference between the prediction y∗i and the target yi is termed the loss and
determined by the loss function. The discrepancy between the actual output and
that predicted by the algorithm can be defined in terms of mean squared error,
cross-entropy loss and hinge loss, among others. The loss function is selected
based on the type of output and the type of task at hand. Categorical cross-
entropy is more suited as the loss function for a classification problem whereas
mean squared error can be used for a regression problem.

The supervised learning algorithm is designed based on the suitability for the
task at hand. From Bayesian regression to deep neural networks, the wide range
of available algorithms reflects the wide range of problems that can be solved
with machine learning.

The generalization achieved by the supervised learning algorithm is evaluated
on a test set, which is a set of data points completely disjoint from the training
dataset.

The main classifying algorithm in both the approaches presented in this thesis
make use of the supervised learning paradigm.
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3.2.2 Unsupervised Learning

Unsupervised learning can be defined as the task of deriving patterns in data
without human supervision. Unsupervised learning tasks do not take target
output values, only the unlabelled training data are input to the model. Un-
supervised learning can derive previously unknown interesting information from
available data.

Unsupervised learning algorithms are mostly concerned with clustering data
points into groups based on similarity of features. The algorithm builds a rich in-
ternal representation of the data points which can then be used to generate imag-
inative data. The rich representation mainly consists of neuronal predilections
and probability densities [21]. The principal goal of an unsupervised learning
algorithm lies in estimating the a priori probability distribution of data,

p(x), x ∈ X, X is the training dataset (3.4)

whereas the goal of a supervised learning algorithm is to derive the conditional
probability distribution of data,

p(x|y), x ∈ X, y ∈ Y, X is the training dataset, Y is the set of labels (3.5)

Traditional approaches to unsupervised learning include dimension reduction
techniques like principal component analysis and clustering algorithms such as
K-Means, DBSCAN and others. Dimensionality reduction techniques help re-
duce the number of features per data point by selecting the most important
features such as those with the highest variance as in the case of principal com-
ponent analysis. Clustering algorithms assign data points to regions or groups
by calculating the similarity of each data point to group centroids.

Additionally unsupervised learning can be used in learning latent variable mod-
els, that help in anomaly detection and also in generative networks. Neural net-
works such as autoencoders are used for this purpose. Autoencoders can learn a
latent representation of the input data by using the input as the target output
and reducing the discrepancy between the latent representation and its origin.
This latent representation can be used in detecting anomalous data points and
also in generating new data using generative adversarial training that use the
Expectation-Maximization algorithm [22].

In this thesis, one of the approaches uses K-Means clustering to derive concept
clusters from document keywords.
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3.3 Neural Networks

Inspired by neurons in the human brain, an artificial neural network is a com-
putational model consisting of units called neurons that respond to inputs over
a certain threshold value. Each neuron has a set of inputs and produces a single
output. The output is determined by the propagation function. The output of
one neuron is transmitted to another neuron through connections, each of which
is assigned a weight to assess its relative importance. The weights are optimized
during the training process. The output of the neuron is made up of the weighted
sum of the inputs and a bias term. This output is called the activation of the
neuron. The activation is then passed through a non-linear activation function
to generate the output of the neuron.

Neurons are usually arranged in multiple layers. The neurons in each layer
interact with neurons in other layers but never with other neurons in the same
layer. The layer that determines the final output is the output layer. Between
the input and output layers, there are multiple hidden layers. Usually, neurons
in one layer are connected only to neurons in the immediately preceding and
succeeding layers, but there are multiple patterns that can be used. Dense or
fully connected layers are those in which each neuron connects to every neuron in
the next layer. To reduce the number of connections and the number of neurons,
pooling can be used, where multiple neurons in one layer connect to one neuron
in the next layer.

Neural networks are trained using supervised methods where the output is
compared with a pre-determined target and discrepancy is used to modify the
weights and biases (the model parameters). The process of generating the out-
put with a neural network is called forward propagation, whereas the process
of adapting the parameters based on the loss is called back propagation. Back
propagation effectively distributes the loss among the network connections. It
calculates the gradient of the loss with respect to the weights and updates them
using techniques such as stochastic gradient descent.

In mathematical terms, the inputs to the neural network consist of a set of
feature-vectors,

X = {x1,x2, . . . ,xn} (3.6)

where xi is a feature vector for the ith data point.

The input layer takes in each feature in its individual node. Considering a
feed-forward network having L dense hidden layers, with layer L + 1 being the



CHAPTER 3. BACKGROUND 18

Figure 3.1: Example of a neural network. Here x0 is the first input feature vector.
The Lth layer is the output layer and f(x) is the complete function representing
the neural network. [This image has been taken from the teaching resources of
Prof. Marc Toussaint’s 2019 course ”Introduction to Machine Learning”.]

output layer, the activation of the first hidden layer will be

a1 = W1x1 + b1 (3.7)

where W1 is the weight matrix for the first layer. W1 contains the weights asso-
ciated with all the connections between the input layer and the first hidden layer
and b1 is the bias vector associated with the first hidden layer.This activation a1

is then passed through a non-linear activation function (such as ReLU, sigmoid
etc.) to obtain the output of the first hidden layer,

z1 = σ(a1) (3.8)

The output of the first hidden layer, z1 is then passed to the second hidden layer
and the process continues till the output layer is reached. At the output layer,

aL+1 = WL+1(WL(. . . (W1x1 + b1) . . . ) + bL) + bL+1

zL+1 = σ(aL+1)
(3.9)

Thus the output zL+1 is obtained on one forward pass.

Let the loss be `. To perform the back propagation pass, the algorithm calcu-
lates the gradient of the loss with respect to all the weights and biases,

∂`

∂Wl

=
∂`

∂zL+1

∂zL+1

∂aL+1

∂aL+1

∂zL
. . .

∂al
∂Wl

(3.10)
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∂`

∂bl
=

∂`

∂zL+1

∂zL+1

∂aL+1

∂aL+1

∂zL
. . .

∂al
∂bl

(3.11)

The parameters are then updated using the calculated gradients. For example,
using stochastic gradient descent,

W ∗
l = Wl − η

∂`

∂Wl

(3.12)

where W ∗
l is the updated weight matrix and η is the learning rate, which de-

termines the length of the step taken. The learning rate is an example of a
hyperparameter which is a non-trainable parameter. Other hyperparameters in-
clude the number of layers in the network, the number of epochs for which to
run the training and others. The algorithm used for updating the parameters
is called the optimizer. Examples of optimizers include Stochastic Gradient De-
scent, Adam, RMSProp, among others.

3.4 Convolutional Neural Networks

Convolutional neural networks, first introduced by LeCun [23] are a special
type of neural network that can process data having a known grid-type topol-
ogy [24]. Such data include time-series data, such as sequential text which can
be arranged in a grid or images, which can be viewed as a grid of pixels.

Convolution is a special mathematical operation which determines a weighted
sum of all values in a particular window. The window is then shifted over the
entire input grid and the output consists of the weighted sums obtained from
all positions of the window over the input grid. For two functions f and g, the
convolution

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (3.13)

A convolutional neural network is one which uses this convolution operation in
place of the usual matrix multiplication operation in at least one of its layers.
The window based function that slides over the grid input is called the kernel
and the output of a convolution layer is called feature map. In machine learning
applications, the input and the kernel consist of multidimensional tensors. The
parameters of the kernel are adapted through training.

As an example [24], the input may include a 2-dimensional image I for which we
will need a 2-dimensional kernel K and the output of the convolution operation
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Figure 3.2: An example of a CNN operation [24]. In this example the kernel is
applied to windows on the input image. Corresponding positions of the image
and kernel are multiplied and the output is the sum of all the products. The
kernel moves over the entire input image. In this case since the input image is
not padded, the output feature map is smaller in size than the input image.

at position (i, j) will be given by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.14)

Convolution is commutative and hence

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, i− n)K(m,n) (3.15)

Convolution involves three aspects which can improve a machine learning sys-
tem [24]:

� sparse interactions: In classical neural networks, the interaction between
each input and each output is defined by a set of parameters. Hence the
number of parameters increases with increase in input-output combina-
tions. On the other hand, convolution with a kernel smaller than the input
can reduce the number of parameters by making one output correspond to
a number of inputs. As in the case of image processing, this can help detect
smaller, meaningful features from a large input image while reducing the
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Figure 3.3: An example explaining sparse connectivity from [24]. The diagram
on top shows the connections between input and output when a convolutional
layer is used. Every input unit affects 3 output units when the kernel is of size
3. However, as seen in the diagram at the bottom, when matrix multiplication
is used connectivity is dense and all outputs are affected by all input units.

number of input-output interactions and hence the memory requirement at
the same time. The number of input units covered by one output unit is
known as the receptive field.

� parameter sharing: Parameter sharing entails the use of the same set
parameters for multiple input locations. In a convolution cell, the same
kernel is used on all input positions and hence shared among multiple in-
puts, whereas in a traditional neural network, each input has its own fixed
parameter that is used once during each forward pass. This reduces the
memory requirement for the parameters by a large order.

� equivariant representations: Equivariance of a function suggests the
ability of the function to change its output in the same way as its input. A
function f is said to be equivariant to another function g if [24]

f(g(x)) = g(f(x)) (3.16)

In the case of a convolution f , g can be a translation operator that moves
the input image. The equivariance of the convolution operator to the trans-
lation operator means that performing the convolution after shifting the
image is equivalent to shifting the image and then performing the convo-
lution. This is known as translation equivariance. In case of time series
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Figure 3.4: An example showing parameter sharing from [24]. The black arrow
corresponds to a single parameter that is applied to the element at the centre of
the window of size 3 in the top diagram. Due to parameter sharing, the same
weight is shared across the center elements of all such windows throughout the
input image. But in a fully connected model, each weight is used only once and
not shared.

data, the output will correctly reflect the order of appearance of features.
Convolution is however not equivariant to rotation or scaling [24].

To make the convolution operation invariant to translation and also to down-
sample the feature maps, a technique called pooling is used. A pooling function
replaces the output at a certain position in the feature map with a summary of
the nearby outputs [24]. This summary is defined by the type of pooling layer
used. For example, the max pooling layer replaces the output at each position
with the maximum value from among the neighbouring outputs and a mean
pooling layer replaces the output at every position with an average of the neigh-
bouring outputs. The size of the neighbourhood is defined by the pooling window
size set as a hyperparameter. Pooling helps to identify the existence of features
irrespective of their location. The feature maps are additionally passed through
a non-linear activation function in order to add non-linearity to the otherwise
linear convolution operation.

Kim [15] proposed a model using a CNN to classify sentences. The model
architecture, as shown in Figure 3.5 is a modified version of the model used by
Collobert et. al. [14]. If a sentence has n words and each word is encoded with a
vector of length k, then the sentence can be represented in the form of an n× k
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matrix where each row contains the vector for a word. So a sentence can be
represented as a concatenation of such vectors [15]:

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn (3.17)

where ⊕ is the concatenation operator and xi refers to the vector for the ith
word. Let xi:i+j represent concatenation of word vectors xi,xi+1, . . . ,xi+j and
let w ∈ Rhk be a convolution kernel, where h is the number of words covered by
the kernel window at once. Applying convolution using this kernel, the output
feature ci is a real number defined by

ci = f(w · xi:i+h−1 + b) (3.18)

where f represents the non-linear activation function and b is the bias for the
particular kernel. Applying this filter to every window of h words in the text,
the feature map c is generated [15]

c = [c1, c2, . . . , cn−h+1] (3.19)

where c ∈ Rn−h+1. This feature map is subjected to a max-over-time pooling
operation [14] that keeps the maximum value

ĉ = max{c} (3.20)

as the feature for a particular kernel. This pooling scheme is also applicable to
variable length sentences [15].

The CNN architecture presented by Kim has been used in the preliminary
approaches presented in this work.

Figure 3.5: Convolutional network for sentence classification [15]



CHAPTER 3. BACKGROUND 24

3.5 Graph Neural Networks

Graphs are a type of data structure which represents the relationship between
objects (nodes or vertices). The nature and strength of those relations are en-
coded through edges between those nodes. A graph is said to be undirected if the
edges do not bear any directional information and represent only pairs of nodes,
or directed if each edge is associated with a direction and points from one node
to another node. In mathematical terms, an undirected graph G is defined as

Gundirected = (V,E) (3.21)

where

� V is the set of vertices

� E ⊆ {(x, y) | (x, y) ∈ V 2, x 6= y} is the set of edges

A directed graph is defined as a triple

Gdirected = (V,E, φ) (3.22)

where

� V is the set of vertices

� E is the set of edges

� φ : E → {(x, y) | (x, y) ∈ V 2, x 6= y} is an incidence function that maps
each edge to an ordered pair of vertices (x, y)

A weighted graph is one where each edge is assigned a weight based on some
metric such as cost or importance. Each edge in a graph defines a relation
between two vertices called an adjacency relation. Two vertices {x, y} are said
to be adjacent to each other if (x, y) is an edge. This adjacency relation is
encoded in a square adjacency matrix A such that

Aij = 1, if (i, j) ∈ E
Aij = 0, otherwise

(3.23)

for an unweighted graph. For a weighted graph,

Aij = wij, if (i, j) ∈ E
Aij = 0, otherwise

(3.24)
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where wij is the weight assigned to edge (i, j). The degree matrix D of a graph
is a diagonal matrix such that

Dii =
∑
j

Aij (3.25)

Graphs are powerful data structures that can be used to represent relationships
and interactions between real world objects. Graphs find application in social
networks that model interactions among people, in mapping applications and
also in chemical analysis of molecular structures.

Images can be considered as fixed size grid graphs where each central pixel in
the kernel window is a node connected to neigbhouring pixels (nodes) covered
by the window of the kernel. Hence CNNs can be thought of as graph networks
operating on fixed grid graphs. Similarly, time sequence text data can be thought
of as linear graphs. Thus it is evident that traditional neural network architec-
tures are not well suited for processing arbitrarily shaped graphs, which is where
graph neural networks come in. Graph neural networks are a class of neural
networks that take graph data as input. For input to these networks, the graphs
are described in terms of their node features and adjacency matrices. A node
feature vector is a set of feature values that can uniquely identify a node. The
edge information is obtained from the adjacency matrix and the degree matrix.

Typical applications of graph neural networks include node classification and
graph classification. In a node classification problem, each node is associated
with a ground truth class in the training data, whereas in the graph classification
problem, each entire graph is associated with a target class in the training data.

The most commonly used graph neural networks are Graph Convolutional
Networks (GCNs), Graph Attention Networks (GATs) and Message Passing
Neural Networks (MPNNs). GCNs [4] are simple and powerful and can ag-
gregate node and edge data using a linear transformation. Graph Attention
Networks [25] improve on GCNs by learning the aggregation parameter during
training. MPNN [26] have a more general update rule that gives more importance
to edges.

Kipf and Welling have stated Graph Convolutional networks as the common
architecture of all networks that accept arbitrarily shaped graphs [4]. These
networks are referred to as convolutional as model parameters are shared across
multiple positions on the graph. Such a network thus accepts a graph G = (V,E),
described in terms of
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Figure 3.6: A graph convolution network with first order filters [27]

� Node feature vector xi for each node i, accumulated in an N × D matrix
X where N is the number of nodes and D is the dimension of each feature
vector.

� The graph structure and edge information are encoded in the form of an
adjacency matrix A of the shape N × N . Any other equivalent graph
representation can be used.

As output, the GCN produces a matrix of shape N × F where F is the number
of output node features. For outputs that consider the entire graph, a pooling
operation can be used.

Mathematically, the GCN can be written as a function that takes as input the
node feature matrix and the adjacency matrix and generates as output the node
output feature matrix.

H(l+1) = f(H(l), A) (3.26)

with H(0) = X and H(L) = Z, Z being the node output feature matrix and L
being the number of GCN layers. The propagation function f as defined in [26]
is a simple but powerful one.

f(H(l), A) = σ(AH(l)W (l)) (3.27)

where σ is a non-linear activation function like ReLU. W (l) is the weight matrix
for the lth layer. Multiplying the node feature vector with the adjacency matrix
aggregates all the relationships for each node, weighted by the strengths of the
relationships if the graph is weighted. To include the context of the node itself, A
is usually added to an identity matrix. Additionally, since the adjacency matrix
is not normalized, multiplying with A at every step can cause the weights to
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explode. To solve this, A is subjected to symmetric normalization using the
degree matrix D. Combining all the steps, the forward propagation function of
the GCN looks like

f(H(l), A) = σ(D−
1
2 ÂD−

1
2H(l)W (l)) (3.28)

where Â = A+ I is the adjacency matrix with self loops.

Graph Convolutional Networks have been used in both the approaches pre-
sented in this work. The other two types of GNNs are beyond the purview of
this research.

3.6 Transformers

Sequential text data are a time-series data that need to be understood thor-
oughly by the machine learning model in order to act upon it or classify it.
Traditional ML approaches involving CNNs and recurrent neural networks are
not able to handle long range dependencies between words in the input text
on their own. To solve this, the concept of attention was developed. Atten-
tion mechanisms work with traditional RNNs and help in highlighting important
parts of the input text and thus handle dependencies. Transformers build upon
the concept of self-attention, which involves applying the attention mechanism
and thus discovering dependencies within the same sequence in order to create
an efficient representation of the sequence.

An attention function is defined as a mapping from a query and a set of key
value pairs to an output, all the inputs and outputs being vectors [28]. Mathe-
matically, with input X,

� Query vector : q = XWq. Wq is the weight matrix for generating the query
vector. Query vector represents the current word.

� Value vector : v = XWv. Wv is another weight matrix. v can be thought
of as representing the information contained in the word.

� Key vector : k = XWk, Wk being the corresponding weight matrix. The
key vector can be though of as an indexing mechanism for the value vectors.

For a query q, the most similar key k is obtained through a dot product of the
vectors q and k. This is similar to the cosine similarity measure as the most
similar key-query combination will have the highest dot product. A softmax
operation is applied on this dot product and multiplied with the value vector



CHAPTER 3. BACKGROUND 28

v. Higher the dot product, higher will be the attention given to that value.
The weight matrices Wq,Wk,Wv are trained with the model. Mathematically,
self-attention can thus be represented as [28]

Attention(Q,K, V ) = softmax
(QK>√

dk

)
V (3.29)

where Q,K and V are the matrices containing the query, key and value vectors,
and dk is a scaling factor equal to the dimension of the key vector. This is also
known as scaled dot-product attention.

An important variant of the self-attention used in the transformer architecture
is the concept of multihead attention. Multihead attention involves projecting the
keys, values and queries to multiple learned linear projections and then applying
the attention functions on each of these projections [28]. Multihead attention
enables sourcing information from multiple positions of the input in multiple
representations. Mathematically [28],

MultiHead(Q,K, V ) = Concat(head1, head2, . . . , headh)W
O (3.30)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ). The linear projections are de-

termined by the parameter matrices WQ
i ,W

K
i ,W

V
i and the output parameter

matrix WO. The transformer architecture consists of a combination of an en-
coder and decoder, each being made up of stacks of self attention layers and
fully connected layers [28]. The encoder is made of a stack of 6 identical layers,
each of which consists of two sublayers: one with the multihead attention module
and the other with the position-wise fully connected layers. Each sublayer has a
residual connection around it, making the output of each sublayer [28]

LayerNorm(x+ Sublayer(x)) (3.31)

where Sublayer(x) is the output of the sublayer itself. The position-wise fully
connected layer is a feed-forward network applied to each position in the input
separately and identically [28]. This can be defined as a combination of two linear
operations,

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.32)

The parameters change from layer to layer. The decoder has a similar construc-
tion but adds a third sublayer in each of its modules - a multihead attention
over the output of the encoder. The self-attention sublayers in the decoder are
masked appropriately and the output embeddings are offset by one position to
ensure that the predictions for a particular position can only depend on the
known outputs for positions preceding it, not the subsequent positions.
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Figure 3.7: The architecture of a transformer with the encoder and decoder
stacks [28].

Lastly, the absence of recurrence or convolution makes the model ignorant of
positional information in the input. To make use of sequential data, positional
information is added in the form of positional encodings, which have the same
dimension as the input embeddings. The encodings used by the authors are of
the form [28],

PE(pos,2i) = sin(pos/10002i/dmodel)

PE(pos,2i+1) = cos(pos/10002i/dmodel)
(3.33)

where pos is the position and i is the dimension. dmodel is the dimension of the
input embeddings.

3.7 BERT

BERT, short for Bidirectional Encoder Representations from Transformers is a
language model introduced by Devlin et. al. [29] in 2019. It is designed to learn
rich bidirectional representations from unlabelled text by taking into account
both left and right context in all layers [29].

The BERT framework has two steps:

� Pre-training, when the model is trained over unlabelled data,
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Figure 3.8: The outline of the pre-training and fine-tuning procedures of BERT.
Only the output layers need to be changed based on the end goal of the down-
stream task. The rest of the architecture is preserved. The [CLS] token is used
to mark the beginning of an input example and the [SEP] token is used to sep-
arate question and answer inputs when the downstream task requires pairs of
inputs [29]

� Fine-tuning, when the model is initialized with the pre-trained parameters
and then fine-tuned using labelled data for the particular task at hand.

BERT has a unified architecture across different tasks, which minimal changes to
the model needed when the downstream task changes. The model architecture is
a bidirectional transformer encoder based on the model described in the previous
section. BERT can handle, as input, both a single sentence and a pair of sentences
to accommodate for question-answer tasks. Every sentence is delimited by a
special start token [CLS] and the final hidden state corresponding to this token
is used as the aggregate sequence representation [29]. BERT is pre-trained in
two steps:

� Masked Language Model : Some portions of the input tokens are masked at
random and the model is made to predict those masked tokens.

� Next Sentence Prediction: This step makes sure the model understands sen-
tence relationships which are essential for question-answering and natural
language understanding tasks.

There have been multiple modifications to and improvements over the original
architecture and training methods used by BERT. Three such models have been
used during the experiments in this work: RoBERTa, ELECTRA and SBERT.
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3.7.1 Roberta

RoBERTa was introduced in 2019 by Liu et. al. [29]. They achieved better
results than the original BERT implementation by making some changes in the
pre-training process:

� For the Masked Language Model part of the pre-training, the original BERT
implementation generated the masks during data preprocessing. Though
the data was replicated to obtain multiple combinations of masked tokens,
they were static in nature. Liu et. al. replaced this approach with dynamic
masking where the masking pattern was generated every time a sequence
was fed to the model [29].

� The next sentence prediction loss was removed and instead the model was
trained with blocks of sentences across multiple documents.

� The perplexity of the model was increased by training with larger batch
sizes.

� Finally, whereas the original BERT implementation used a character level
Byte Pair Encoding technique [30] with a vocabulary of size 30000, Liu et.
al. used a BPE encoding that used bytes in place of unicode characters as
units, with a vocabulary size of 50000, following the approach by Radford
et. al [31].

These modifications help RoBERTa achieve state-of-the-art results and outper-
form the original BERT on evaluation tasks.

3.7.2 ELECTRA

The basic concept behind ELECTRA [32] aims at solving one of the shortcom-
ings of BERT with regard to the masking of tokens in the MLM stage of the
pre-training. This masking is done in the preprocessing stage and thus requires a
large number of training samples to be effective and to achieve multiple combina-
tions of these masked tokens. The authors of [32] have proposed another method
to achieve this, without the need to have large number of samples. In the ELEC-
TRA pre-training, instead of masking the tokens, they are replaced with tokens
generated by a small generator network [32] and the model is trained to iden-
tify those replaced tokens. This is similar to a generative adversarial training,
where a generator generates the tokens and a discriminator decides for each token
whether it is an original one or a replaced one. According to the authors [32],
since this task is defined over all tokens and not only the masked ones, the process
requires much less input samples.
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The generator G and disriminator D networks in ELECTRA are made of a
Transformer encoder to map a sequence of input tokens x = [x1, x2, . . . , xn] to
vector representations h(x) = [h1, h2, . . . , hn]. For a given position in the input,
t, the generator determines the probability of using a token xt [32]

pG(xt|x) = exp(e(xt)
>hG(x)t)/

∑
x′

exp(e(x′)>hG(x)t) (3.34)

where e denotes token embeddings. In this case t only represents positions that
are to be masked. On the other hand, for every position t, the discriminator D
determines whether the token is real or replaced by the generator:

D(x, t) = sigmoid(w>hD(x)t) (3.35)

where w represents the discriminator weights.

The generator performs the masked language modelling task similar to the
BERT pre-training. For this, a random set of tokens are replaced by the [MASK]
token and the generator is trained to identify those masked tokens,

xmasked = REPLACE(x,m, [MASK]) (3.36)

where m = [m1, . . . ,mk] are positions chosen randomly to mask. The discrimi-
nator is trained to identify whether a token has been replaced by a non-original
toke by the generator. The input to the discriminator is a corrupted sample
xcorrupt. The inputs are constructed by the following distributions [32]

mi ∼ unif{1, n} for i = 1 to k

xmasked = REPLACE(x,m, [MASK])

x̂i ∼ pG(xi|xmasked) for i ∈m

xcorrupt = REPLACE(x,m, x̂)

(3.37)

The loss functions are as follows [32]:

LMLM = E
(∑
i∈m

− log pG
(
xi|xmasked

))
LDisc = E

( n∑
t=1

−1(xcorruptt = xt) logD(xcorrupt, t)−

1(xcorruptt 6= xt) log(1−D(xcorrupt, t))
)

(3.38)

The combined loss function is

min
θG,θD

∑
x∈X

LMLM(x, θG) + λLDisc(x, θD) (3.39)
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where X is a large corpus of raw text, θG and θD are the trainable parameters
for the generator and discriminator respectively. The principal difference of this
method with a generative adversarial training procedure is that tokens correctly
identified by the generator are not considered fake and the generator is trained
using maximum likelihood rather than being trained adversarially.

3.7.3 SBERT

SBERT develops on BERT and RoBERTa’s capability to encode sentence pairs
with an aim to determine similarity between a pair of sentences. The original
BERT implementation takes both sentences as input which can lead to a huge
computational overhead if there is a need to find similar pairs of sentences from
a collection [33]. SBERT was presented as a modification of the original BERT
using siamese network architecture to derive sentence embeddings to be used
with the cosine similarity measure.

The SBERT architecture adds a pooling layer to the output of the BERT layer
in order to calculate a fixed length vector for an entire sentence. The pooling
layer is either a mean pooling layer or a max pooling layer. Three types of
objective functions were proposed based on the end task:

� Classification Objective Function: The sentence representations u and v are
concatenated with the elementwise difference |u− v| and multiplied with a
weight matrix Wt before a softmax layer is applied.

o = softmax(Wt(u, v, |u− v|)) (3.40)

� Regression Objective Function: This function outputs the cosine similarity
between the sentence vectors u and v.

� Triplet Objective Function: This objective function requires three addi-
tional inputs: an anchor sentence a, a positive sentence p and a negative
sentence n. The triplet loss optimizes the network to ensure that the dis-
tance between a and p is smaller than that between a and n. The following
loss function is minimized:

max(‖ sa − sp ‖ − ‖ sa − sn ‖ +ε, 0) (3.41)

where sx represents the sentence embedding for the anchor, positive or
negative sentence, ‖ · ‖ is the distance metric used and ε is a margin.

SBERT is used in this work to obtain representations of the initial query input
by the user and of document keywords to derive concept representations.



CHAPTER 3. BACKGROUND 34

3.8 Text Embedding Techniques

Natural Language Understanding involves understanding the text that a user
speaks or writes. For humans, understanding that input comes naturally from
years of training. But computer algorithms cannot understand natural language
in its native form. Moreover since machine learning algorithms are statistical pro-
cedures, the input must be represented as vectors that can capture the semantic
relationship between words and sentences. Such representations are called em-
beddings. Embeddings are vector representations of words that not only convert
text to real-values but also ensure that semantically similar words have similar
representations.

One way to vectorize words is to use one-hot encodings that identify the po-
sition of a word in the vocabulary. However, this produces sparse vectors that
do not work well with neural networks [34]. Dense representations are able to
generalize better and are able to capture similarities better.

Two such word embedding techniques have been used in this work: Word2vec
and TF-IDF vectors.

3.8.1 Word2vec

The word2vec model was introduced in 2013 by Mikolov et. al. [35]. The
paper presented two models that can learn rich word representations from large
datasets, with the vectors having multiple degrees of similarity [35]. Word2vec
can utilize either of two proposed architectures to produce word representations.
In the first model, Continuous Bag of Words, the model is made to predict the
current word from a window of surrounding words. The bag-of-words assumption
applies, which states that the order of the words does not influence the prediction.
The second model, Continuous Skip-gram, predicts the surrounding window of
context words using the current word. This model attaches more weight to
nearby words than distantly located words. CBOW is said to be faster whereas
skip-gram produces better representations for infrequent words [35].

An improvement over word2vec is doc2vec, which uses the underlying
word2vec models to predict a single fixed-size vector for an entire document con-
sisting of multiple words [36]. The doc2vec model extends the word2vec CBOW
architecture by adding a document id vector to the CBOW inputs. Thus the
CBOW model not only uses a set of context words to predict a particular word,
but also the document id of the document which contains this set of words. The
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document id is random at first and is trained with the rest of the word represen-
tations. While the word vectors represent word concepts, the document vector
is intended to vectorize an entire document. Another approach proposed by the
authors was a Distributed Bag of Words model where the input is the document
vector and the model is trained to predict a randomly sampled window of words
from the document.

3.8.2 TF-IDF

TF-IDF, in information theory refers to a statistical measure of the importance
of a word in a document in a corpus. The TF-IDF value increases with the
number of times a word appears in a document and decreases with the number
of documents in the corpus that have that word. Thus it gives more importance
to words that appear frequently in a document but can identify that document
since it does not appear frequently in other documents in the collection.

TF or term frequency measures the frequency of a word in a document. This
measures the generality of a word in a document and is normalized to offset the
effect of longer documents. Mathematically, the TF value is calculated as

tf(t, d) =
ft,d∑
t′∈d ft′,d

(3.42)

where t is a term, d is a document in the corpus and ft,d is the raw count of
the number of times t appears in d. While vectorizing a set of documents, the
vocabulary or vocab consists of all the words in the corpus. The TF value for
each word in the vocab will lie between 0 and 1, both inclusive. The TF will be
0 if the word does not appear in the document under consideration.

IDF or inverse document frequency measures the information content of a term
t. The IDF value is very low for commonly occurring words like stop words. It
is calculated as

idf = log
N

1 + |{d ∈ D : t ∈ d}|
(3.43)

where N is the total number of documents in the corpus and |{d ∈ D : t ∈ d}| is
the number of documents the term appears in. The denominator is also known
as the Document Frequency(DF). The denominator has 1 added to it to account
for terms that do not appear in the corpus.
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Figure 3.9: A piece of text with its sentences and the corresponding concept
interaction graph. Each node is formed by the concepts covered in the sentences
and the numbers associated with each vertex represents the sentence numbers
that contain that concept [6].

The TF-IDF value is calculated by

tf-idf(t, d) = tf(t, d) · idf(t) (3.44)

A high TF-IDF value is obtained by words that occur frequently in one partic-
ular document and infrequently throughout the corpus. The TF-IDF vectorizer
represents a document as a vector containing the TF-IDF values of the words in
the vocabulary, specific to that document. Thus the length of the vector is fixed
to the number of words in the vocabulary.

3.9 Document similarity detection using TF-IDF

and GCN

Bang et. al. developed a method using TF-IDF vectors and graph convolu-
tional networks to determine similarity between pairs of news articles [6]. The
algorithm develops a Concept Interaction Graph based on the concepts covered
in the articles. The concepts are derived from the keywords found in the articles.

The Concept Interaction Graph is defined as an undirected weighted graph
which describes a particular document as a graph of a subset of its sentences.
Mathematically, a document D generates a graph GD where each vertex of GD

represents a concept covered in the document. Each concept has a set of sentences
associated with it. This concept is found in every sentence in this set [6]. Figure
3.9 shows a generic example of this graph.
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The process to construct this concept interaction graph involves the following
steps [6]:

� KeyGraph: As a first step, the KeyGraph is constructed using the named
entities and keywords extracted from the document D using the TextRank
algorithm [37]. In the KeyGraph, each vertex has a keyword and each edge
between two vertices represents the fact that the keywords in those vertices
occur in the same sentence.

� Concept Detection: Since documents may have a large number of keywords,
concepts can be derived from the KeyGraph using highly connected sub-
graphs of the same [6]. A highly connected subgraph will imply that those
keywords always occur together and are hence correlated. This step divides
a KeyGraph into a set of communities

C = {C1, C2, . . . , C|C|} (3.45)

where each community Ci contains the keywords clustered within that con-
cept. The authors have used betweenness centrality score algorithm [38] to
derive the communities.

� Sentence Attachment : This step associates sentences with the concepts
derived in the previous step. The sentences are represented by the TF-IDF
vectors calculated from their words and the concepts are represented by
the TF-IDF vectors of the keywords in the concept, concatenated to form
a single piece of text. Each sentence is assigned to the concept which it
shares most similarity with. The similarity is calculated in the form of
the cosine similarity score between the TF-IDF vectors. A dummy vertex
is created to accommodate sentences that cannot be associated with any
concept.

� Edge Construction: After sentences are associated with the concepts, each
concept is represented by a TF-IDF vector of the concatenation of the
sentences associated with it. The edge weight between any two concept
vertices is determined by the similarity between the TF-IDF vectors of
those vertices.

For two documents DA and DB, the steps mentioned above generate two concept
interaction graphs GA and GB. For comparing these two documents, the graphs
are merged. For each common vertex pair between GA and GB, the sentence sets
of the vertices in that pair are merged and the merged graph GAB is obtained [6].
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The next step involves the use of Graph Convolutional Layers [4] to match
the two articles in question. From the merged graph GAB, the model learns a
matching vector for each vertex v ∈ GAB in the graph such that the learned
vector can represent the semantic relationship between SA(v) and SB(v) which
are the sets of sentences associated with vertex v from documents DA and DB

respectively [6]. The match vector mAB(v) is generated by a siamese encoder
operating on the word embeddings of the sentences associated with each vertex v.
This siamese encoder takes the word embeddings of the sentence sets associated
with the vertex and converts them into a context vector through RNN, LSTM
or convolutional layers [6]. For SA(v) the context vector cA(v) is obtained and
for SB(v), the context vector is cB(v). Taking into account the context of the
encoded sentences from the two documents, an aggregation layer concatenates the
elementwise abolute difference and the elementwise product of the two context
vectors [6] to generate the matching vector.

mAB(v) = (|cA(v)− cB(v)|, cA(v) ◦ cB(v)) (3.46)

where ◦ represents the elementwise Hadamard product of two vectors. Apart
from this matching vector, term based similarities between the document sets
are calculated based on TF-IDF vector similarities, cosine similarities of the
TF values, cosine similarity from BM25 scores, Jaccard similarity of 1-grams
and values of the Oichai similarity measure [6]. Concatenating these measures,
another matching vector m′AB(v) is obtained.

Figure 3.10: Overview of the approach used by [6]. In the Representation phase,
the concept interaction graph is generated. The Encoding phase calculates the
matching vectors which are then passed through the GCN in the Transformation
phase. The Aggregation phase generates the final matching score from the output
of the GCN.
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After the context and matching vectors are generated, GCN layers [4] are used
to aggregate all the information into a similarity score. The merged concept graph
GAB is used as input to the GCN, but in this case, each concept is represented by
a concatenation of the two matching vectors mAB(v) and m′AB(v). The output of
the last hidden GCN layer is passed through a mean pooling layer that takes the
mean of the last layer hidden vectors of all vertices. The output of this pooling
layer is then passed through dense layers to obtain the final matching score [6].
The entire procedure is described in Figure 3.10.

The second approach presented in this work is inspired by this model and uses
the idea of the Concept Interaction Graph.



Chapter 4

Resources

This chapter describes the datasets used in this work and the various libraries
and frameworks used for specific purposes to complete the experiments.

4.1 Data

The work in this thesis is inspired by the ClariQ challenge organized by the
University of Amsterdam to develop algorithms for generating clarifying ques-
tions in response to ambiguous search queries [39]. The first part of the challenge
involves generating a system to determine the level of ambiguity in the initial
search query. The level of ambiguity is quantized into 4 classes: 1 referring to a
clear query and 4 referring to a query that is completely ambiguous. The com-
plete clarifying question generating system must ask a question when the initial
query is deemed ambiguous. Among the datasets provided by the challenge orga-
nizers, the training dataset, development dataset, along with a list of documents
derived for each query from the ClueWeb datasets were used for this work.

4.1.1 Training Dataset

The main training dataset is a TSV file containing the following columns:

� topic id : Each unique query is identified by a topic id. The training dataset
contains 187 such unique topic ids.

� initial request : The initial query of the user that starts the conversation
and the query whose ambiguity is to be determined in this work.

� topic desc: A complete description of the topic from the TREC Web Track
data.

40
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� clarification need : The measure of query ambiguity on a scale of 1 to 4.
The contents of this column serve as the ground truth labels during training
the models proposed in this work.

� facet id : An ambiguous query may have multiple end goals. Each facet
describes one such end goal of the user. A facet is identified by a unique
facet id. An initial query may have multiple facets associated with it, i.e.
each topic id can correspond to multiple facet ids.

� facet desc: A complete description of the facet from the TREC Web Track
data.

� question id : The ID of the proposed clarifying question as it appears in a
question bank provided by the organizers.

� question: The question corresponding to the question id, determined by
the initial query and the facet.

� answer : The user’s answer to the posed clarifying question.

This dataset is based on the Qulac dataset [40] which in turn draws the initial
queries and facets from the TREC 09-12 Web Track data. TREC is a conference
for information retrieval methods and the Web Track concerns the retrieval of
information of data from the web based on user queries. The Qulac dataset col-
lected the initial queries and facets from the TREC Web Track dataset and then
crowdsourced the clarifying questions, following refinement of those questions.
Finally the authors collected user responses to each intial query-facet-clarifying
question triplet.

Examples of the structure of the training dataset are shown in Table 4.2. The
table shows an initial query ”I’m interested in dinosaurs”. Though the end goal
of the user is to visit the Discovery Channel’s website for dinosaurs, there are
more than one directions the conversational system may take. This example
shows two such counter-questions that may be generated by the system to clarify
the user’s intent. Additionally, as is evident, the statement ”I’m interested in
dinosaurs” does not say anything about what the user wants to search. Hence
this query has the maximum ambiguity class of 4.

Table 4.1 shows the distribution of datapoints of various ambiguity level in
the training data. The training dataset is itself small, and as is evident from
the distribution of data points in the training dataset, queries with the extreme
ambiguity levels 1 and 4 are much less in number than those with ambiguity
levels 2 and 3.
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Level of ambiguity Number of queries
1 25
2 74
3 62
4 26

Table 4.1: Distrbution of ambiguity classes in the training data.

topic
id

initial
request

topic desc clarific-
ation
need

facet
id

facet desc questi-
on id

question answer

14 I’m inter-
ested in
dinosaurs

I want to
find in-
formation
about and
pictures of
dinosaurs

4 F0159 Go to the
Discovery
Channel’s
dinosaur
site, which
has pictures
of dinosaurs
and games.

Q00173 are you
inter-
ested in
coloring
books

no i just
want to
find the
discovery
channels
website

14 I’m inter-
ested in
dinosaurs

I want to
find in-
formation
about and
pictures of
dinosaurs

4 F0159 Go to the
Discovery
Channel’s
dinosaur
site, which
has pictures
of dinosaurs
and games.

Q03021 which
dinosaurs
are you
inter-
ested
in

im not
asking
for that
i just
want to
go to the
discovery
channel
dinosaur
page

Table 4.2: Examples of training data.

4.1.2 Development Dataset

The development dataset is usually used for tuning hyperparameters and eval-
uating the performance of the model during training. This dataset is used to
calculate the performance metrics of the model after every training epoch. The
structure of the dev dataset is exactly similar to the training dataset as explained
in the previous section. The distribution of ambiguity classes is shown in Table
4.3. As in the training dataset, the number of samples of classes 1 and 4 is less
compared to that of classes 2 and 3.
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Level of ambiguity Number of queries
1 4
2 21
3 16
4 9

Table 4.3: Distrbution of ambiguity classes in the development data.

4.1.3 Top 10k Documents per Query

The third dataset provided by the organizers contains the top 10000 ranked
search results for each query obtained from the ClueWeb09 and ClueWeb12
datasets. These datasets are part of the Lemur Project started by the Uni-
versity of Masachussets, Amherst and the Carnegie Mellon University, with an
aim to develop search engines and text retrieval systems aimed at researchers.
The ClueWeb09 dataset contains about 1 billion web pages in 10 languages col-
lected between January and February 2009 [41]. The ClueWeb12 dataset was
released as a companion to the ClueWeb09 dataset and contains about 733 mil-
lion webpages collected between February and May 2012 [42]. These datasets are
used by researchers for trials involving information retrieval systems and human
language technologies. The dataset provided by the organizers of ClariQ contains
a dictionary with the top ranked document IDs for each query.

4.2 Tools

4.2.1 Pytorch

Pytorch is an open-source library for machine learning tasks based on the Torch
project, which aimed at developing libraries for scientific computation. Pytorch
has both Python and C++ interfaces, but the Python interface has been used in
this work. Python provides GPU accelerated tensor processing combined with a
type-based automatic differentiation system for neural networks.

The unit of operation in Pytorch is a pytorch tensor, defined as an object of the
class torch.Tensor. The Tensor class can handle homogeneous multidimensional
arrays of numbers. The models in this work are coded and trained in Pytorch.

4.2.2 TextRank

TextRank is a keyword extraction and document summarization algorithm
based on PageRank.
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PageRank [43], developed by Sergey Brin and Larry Page in 1998, is an algo-
rithm used to rank web pages in search results. It calculates a weight for each
web page in the list of results by arranging all pages in a directed graph structure.
The nodes have the web pages and one node has a link to another node if the
first page has a link to the second page. The algorithm calculates a probability
distribution that represents the likeliness of a person randomly clicking on links
to arrive at a particular page. The algorithm can be applied to collections of doc-
uments on any size. According to the authors’ description [43], pages linking to
a certain page A can be referred to as citations and represented as T1, T2, . . . , Tn.
A parameter d known as the damping factor is set to a value between 0 and 1
and the measure C(A) is defined as the number of links going out of A. Then
the PageRank of A will be calculated as

PR(A) = (1− d) + d

(
PR(T1)

C(T1)
+
PR(T2)

C(T2)
+ · · ·+ PR(Tn)

C(Tn)

)
(4.1)

PR(A) corresponds to the principal eigenvector of the normalized link matrix of
the web [43]. Thus, intuitively, the PR(A) stands for the probability of a random
surfer landing on page A and the damping factor d represents the probability that
they will get bored at some point and start surfing afresh, randomly. A page will
have a higher rank if many pages link to it, as that might indicate that it is a
high quality page.

The TextRank algorithm [37] uses this concept and applies it to portions of
text from a document. The graph used by TextRank contains nodes that repre-
sent concepts or keywords derived from the document and the edges are usually
weighted. So for two vertices Vi and Vj , a weight wij is assigned to an edge
between them. The authors thus modify the PageRank equation to factor in this
weight [37]:

WS(Vi) = (1− d) + d
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)wjk

WS(Vj) (4.2)

whereWS(Vi) is the weighted score of vertex Vi, In(Vi) is the set of edges pointing
to Vi, that is the set of incoming links to Vi and Out(Vi) is the set of edges going
out from Vi. The vertices may contain text units of any size or characteristics
such as words, collocations, sentences, among others [37]. The score WS is used
to rank a vertex in the results.

One application of TextRank utilized in this work is for keyword extraction
from documents. The vertices in this case consist of lexical units from the text,
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such as words and the edges are made up of any connection that can be derived
between those units. As an example, a co-occurrence relation can be determined
based on the distance betwen those units as they occur in the text. Two units
can be connected if they occur within a window of N words in the text. The
graph vertices can be filtered based on application preferences, such as, to only
nouns and verbs. The algorithm works on this graph first by tokenizing the text
and annotating them with parts of speech tagger. In the approach described by
the authors, only single words are taken as the lexical units instead of adding
all possible combinations of n-grams. The graph is constructed using the co-
occurrence approach. When the final score for each vertex is obtained, the top
T vectices are sorted in descending order of their score. This sequence is then
post-processed and all the words in the listing that occur adjacently in the text
are collapsed into multi-word keyphrases. This algorithm, like PageRank, is
completely unsupervised and was able to achieve state-of-the-art performance in
precision and F-score across all evaluation systems.

TextRank can also be used for document summarization where the algorithm
selects a subset of sentences from an input text. In this case, the vertices con-
sist of complete sentences from the document. The edges are constructed and
weighted based on the amount of content overlap, measured either by the num-
ber of overlapping tokens between the sentences or by the number of common
words of certain parts of speech. The idea behind this approach draws from the
concept behind PageRank: a sentence addressing a certain concept using certain
tokens refers the user to another sentence addressing the same concept using the
same tokens [36]. Given two sentences Si and Sj, and each ith sentence having
Ni words wi1, w

i
2, . . . , w

i
Ni

, the similarity function can be defined as

Similarity(Si, Sj) =
|{wk|wk ∈ Si & wk ∈ Sj}|

log(|Si|) + log(|Sj|)
(4.3)

Thus the text is represented as a weighted graph between sentences. The sentence
scores are calculated using the weighted TextRank equation. The top ranked
sentences are finally selected for inclusion in the summary.

4.2.3 RAKE

Another algorithm used in this work to detect keywords is RAKE or the
Rapid Automatic Keyword Extraction [44]. The RAKE algorithm is an unsuper-
vised and domain and language independent algorithm for extracting keywords
which achieves scores comparable to TextRank but is computationally more ef-
ficient [44].
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The principal concept behind this algorithm lay in the fact that stopwords are
often removed from extracted natural language text with the assumption that
they do not contribute to the information content of the text. RAKE takes in
a list of stop words, a set of phrase delimiters and a set of word delimiters [44].
These delimiters are then used to partition the document into candidate keywords
which consist only of information-containing words and not the stop words [44].
Co-occurrences of words in the candidates are used to measure word correlations
which are in turn used to score the keyphrases. A word co-occurrence graph
stores this measure and contains the number of times each pair of words occurs
in the same candidate. A candidate score is generated for each keyword based
on multiple metrics such as word frequency, word degree and ratio of degree to
frequency [44]. Lastly, keywords that occur multiple times in the same order are
accumulated with the removed stop words added in between. The candidate score
derived from the word co-occurrence graph is also used to rank the keywords in
the output.

4.2.4 spaCy

spaCy is an open source python library for advanced natural language process-
ing developed by Matthew Honnibal and Ines Montani. spaCy is similar to the
NLP package NLTK but differs in its target users in that its APIs are mainly
geared towards production environments and not only research and academics.
To achieve this, spaCy supports deep learning architecture that connect models
trained in other frameworks such as Python, Tensorflow etc. spaCy also has
built in pipelines for popular and frquently used NLP tasks such as named entity
recognition, POS tagging, text classification among others. It also supports pop-
ular keyword extraction and summarization algorithms and allows the developer
to create pipelines using algorithmic implementations of their choice. Finally, be-
ing geared towards production systems, it achieves state-of-the-art accuracy and
speed and allows multiple extensions that enable the developer to use external
backends and visualizing libraries [45].

In this work, spaCy is used for extracting keywords from text using the Tex-
tRank algorithm which is already implemented and supported by spaCy for ad-
dition to a text processing pipeline. This pipeline can be further extended for
named entity recognition in future versions of this work.

4.2.5 ChatNoir

ChatNoir or Elastic ChatNoir is a search engine allowing search over the
ClueWeb09 and ClueWeb12 and the Common Crawl Corpora mainly aimed at
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free access to researchers. The search engine offers subsecond response times
comparable to commercial search engines [46]. The search engine is built upon
the open-source Elasticsearch search backend.

To create the data store, the authors have parsed the plain WARC (Web
Archive) files for each corpus and determined the content type and encoding
each entry uses. Each file is assigned a unique UUID based on the file name.
The files are stored in HDFS, with the map files directing the UUIDs to JSON
files containing the headers and content, and the URLs to UUIDs [46]. During the
mapping and indexing phase, all documents from which no meaningful content
can be extracted, are discarded and the Elasticsearch index is prepared based on
a multifield JSON document that contains all information from each web page.
The web frontend uses plain text-based search at first to retrieve documents and
then reranks them using a more complex query. The BM25 retrieval model is used
for obtaining the documents. The system provides a powerful API to researchers
who can use the data without gaining access to each corpus separately.

In this work the ChatNoir API has been used to retrieve full documents based
on UUIDs derived from the document IDs provided in the dataset.



Chapter 5

Experiments and Results

This chapter describes the approaches that have been explored in order to
achieve ambiguity detection and explains and analyses the results achieved.

5.1 Preliminary Approaches

The data available for the task at hand are only the initial queries input by
the user. This makes this task similar to a sentence classification task. For any
model that takes text as input, the text needs to be cleaned and processed in
order to make it suitable for input to the model.

The text preparation process comprised of removing the stop words from the
queries and tokenizing the queries. Stop words are commonly used words that
do not usually hold any meaning or affect the results of a search, such as ”a”,
”the” and others. Removal of such stop words reduces the size of input to be
processed. The algorithms cannot understand natural language at the input
layer and hence the text needs to be represented numerically as vectors of real
numbers, also known as embedding, as explained before. Embedding converts
each unit of text into a vector representation. For the embedding process, the
text needs to be broken down into units, known as tokens. In this work, a token
refers to a word. As an example, the input query

Tell me about folk remedies for a sore throat.

Tokenization will convert this sentence into a list of tokens or words, in this
case:

[’tell’, ’me’, ’about’, ’folk’, ’remedies’, ’for’, ’a’, ’sore’,

’throat’]

48
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After removal of stop words from among the tokens, the text looks like

[’tell’, ’folk’, ’remedies’, ’sore’, ’throat’]

In natural languages, many words have separate forms depending on the context.
However from a search query point of view, they may convey the same meaning.
For this, a lemmatizer is applied on the tokens. A lemmatizer converts the
inflected forms of a word to its base form or dictionary form, also known as
lemma. For example, the lemma of ”walking” will be ”walk” and that of ”better”
will be ”good”. In the example query, the word ”remedies” will be converted to
its lemma ”remedy”. The modified text will be

[’tell’, ’folk’, ’remedy’, ’sore’, ’throat’]

Finally, this form can be encoded with a vectorizer. Stop word removal and
lemmatization were done only for the approaches that did not involve a trans-
former based vectorizer. Transformer language representation models such as
BERT benefit from the correct sequence of stop words and content words and
can capture semantic representations better. Hence tokenization for transformer
based models were done by their specific pre-trained tokenizers that added special
tokens required for the transformer model to work.

In the first initial approach, the initial queries were embedded using word2-
vec [35], pre-trained on Google News text, with vector dimension of 300. Each
token in the list is replaced by a corresponding vector. If any word does not
exist in the list of embeddings, it is assigned a randomly generated vector. After
embedding, the query will look like

[array([[-0.01879883, -0.11816406, -0.14355469, ..., -0.05566406,

0.12255859, -0.10253906], [-0.12353516, 0.07226562, 0.171875

, ..., -0.02246094, 0.06689453, 0.02685547], [-0.04125977,

-0.20800781, 0.06445312, ..., -0.18457031, 0.17871094,

-0.00747681], [ 0.484375 , 0.12255859, -0.15722656, ...,

-0.08886719, -0.04296875, 0.01916504]], dtype=float32),

array([[-0.01879883, -0.11816406, -0.14355469, ..., -0.05566406,

0.12255859, -0.10253906], [-0.12353516, 0.07226562, 0.171875

, ..., -0.02246094, 0.06689453, 0.02685547], [ 0.484375 ,

0.12255859, -0.15722656, ..., -0.08886719, -0.04296875,

0.01916504], [-0.04125977, -0.20800781, 0.06445312, ...,

-0.18457031, 0.17871094, -0.00747681]], dtype=float32),...
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Figure 5.1: The CNN based query classification model. The input is represented
as a matrix of word vectors, on which multiple convolution kernels operate. The
feature maps are then subjected to max pooling over time which produces a
single vector from the feature maps. This vector is then processed by the fully
connected layer to output the class probabilities.

where each subarray represents a word turned into a 300-dimension vector that
captures its semantic relationship with other words.

The word2vec encoded vectors were passed to a CNN similar to that proposed
by [15] and explained in section 3.4 and the output of the convolutional layers
were passed on to dense layers for the final classification. To account for queries
of varying lengths, the inputs matrices were padded with 0-rows to make the
number of rows same as the maximum number of words for a query in the dataset.
The convolutional layer can be made of multiple filters having same or different
receptive fields. An overview of the model is shown in Figure 5.1.

Since the number of queries in the dataset is small (only 187 unique queries),
the number of datapoints was increased using data augmentation for which 100
random permutations of the lemmatized tokens were added to the dataset and
were labelled similarly to the original query. These permutations were then
encoded using word2vec and the same CNN was used to classify the queries.

Developing on this approach, the second initial approach consisted of embed-
ding the input queries, with only their punctuation removed, using RoBERTa
instead of word2vec. BERT based models are known to produce vectors that
better represent context in the text and hence they are expected to perform bet-
ter when encoding queries. In this case, the RoBERTa-base model was used and
the words in the queries were converted to vectors of 1024 dimensions.
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Another approach involved using the flattened RoBERTa embeddings directly
as inputs to the dense layers for classification without using convolutional layers.
However, this approach did not elicit any observable improvement in the results.

Finally, combining the approaches, augmented inputs encoded using
RoBERTa were flattened and passed to the dense layers, again without any ob-
servable gains in performance.

The initial approaches exhibited the need for more information regarding the
user’s intent. Since the scope of this work involves open-domain conversations,
relying on user behaviour from previous similar searches was not possible or
feasible since a new query may turn out to be entirely unprecedented. In such a
system, when a user provides a search query, the only other source of information
available to the system is the set of documents retrieved by the search operation.
The primary concept behind using this set of documents originated from [5] where
the authors classified each document into pre-defined categories, which may not
be feasible in case of a open-domain query. However, the similarity between the
documents may provide clues about the range of topics covered by the documents.
If the top-ranked documents in the search results diverge from each other, then
it may point to an ambiguous query from the user. But if they are mostly similar
to one another, then the query may be deemed clear and unambiguous.

To follow this approach, access to the search results for each query, were re-
quired. The dataset provides a dictionary with the IDs of the top 10000 doc-
uments retrieved for each search query from the ClueWeb09 and ClueWeb12
datasets. Access to the full HTML text for these documents was obtained through
the API provided by the ChatNoir search service [46].

The documents retrieved have all HTML tags and formatting information and
hence need to be preprocessed. As an example, a full retrieved HTML document
is of the form:
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<!doctype html>\n<meta charset="utf-8">\n<title>A Letter written

on Oct 30, 1937</title>\n<body>\n\n<h1>A Letter written on

Oct 30, 1937</h1> \n<p> </p> \n<blockquote> Department of

Chemistry, Yenching University, Peiping, - October \n30, 1937.

<br>\n\n<p> <b>Extracts from the Adolph Diary: 1937.</b> </p>\n
<p> <em>January:</em> Ice skating on the Yenching lake at its

prime. EHA, in \nthe 8th grade, North China American School,

makes the hockey team. HMA, \nfreshman at Mount Holyoke College,

amkes her second all-Holyoke athletic team \n(basketball). WHA

Jr., sophomore at Yale University (Calhoun College), works in

\nbiology and plays football and basketball on his college team.

<\blockquote><\body>

The HTML tags do not contribute to the meaning of the text and hence need to be
ignored for successful embedding of the document. The text is processed using
the BeautifulSoup package to remove all HTML tags and newline characters.
After processing, the text is turned to

A Letter written on Oct 30, 1937 A Letter written on Oct 30, 1937

Department of Chemistry, Yenching University, Peiping, - October

30, 1937. Extracts from the Adolph Diary: 1937. January: Ice

skating on the Yenching lake at its prime. EHA, in the 8th grade,

North China American School, makes the hockey team. HMA, freshman

at Mount Holyoke College, amkes her second all-Holyoke athletic

team (basketball). WHA Jr., sophomore at Yale University (Calhoun

College), works in biology and plays football and basketball on

his college team.

This cleaned text can now be encoded using a document encoding algorithm such
as Doc2vec or SBERT.

Multiple attempts were made using various models before the final models
were decided upon. Upon exploring multiple models to process the interrela-
tionship between documents, graph convolutional networks were finally decided
upon, since the relationship and similarities between multiple documents can be
expressed in the form of a graph and graph convolutional networks have the ca-
pability to generate latent representations of the graphs that can then be used
to classify them. In order to use graph convolutional networks, the relationship
between the documents needed to be expressed in terms of a node feature matrix
and an adjacency matrix, as explained in Section 3.5. Since we require the simi-
larity between the topics covered in the documents, cosine similarity was chosen
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as an appropriate measure to determine the graph edge weights. To prepare
the node feature matrix, the initial attempts included the pre-trained document
embedding techniques Doc2vec and SBERT. The output from the graph convo-
lutional network can be passed onto dense layers for classification.

For this, a graph convolutional layer unit was prepared according to [4]. The
weights and biases were initialized from the uniform distribution. The initial
experiments included simple networks with GCN layers followed by dense lay-
ers. The node feature matrix consisted of documents embeddings obtained with
SBERT or doc2vec. To prepare the adjacency matrix, cosine similarities were
calculated between all pairs of documents retrieved for a particular query. The
document graph was an undirected graph with the nodes having the document
embeddings and the edges having weights assigned by the similarity between two
document nodes.

To improve on the performance of the model and add the context of the initial
query to the classification process, the initial query was encoded using SBERT
and concatenated to the flattened output of the GCN, with a slight improvement
in performance.

Encoding the entire document requires a large amount of memory and due
to the limited amount of resources available, each document was replaced by a
concatenation of the top 100 keywords obtained by the TextRank algorithm.

5.2 Approach 1: Document Similarity Graph

This approach draws from the initial approaches to take into account the doc-
uments retrieved in the search results. The SBERT model that is used to encode
the documents is added to the complete architecture of the classifier and the
weights of the transformer are fine-tuned during the training of the entire model.
An overview of the architecture can be seen in Figure 5.2.

The input HTML documents are first processed to remove the HTML tags
and other unnecessary characters. The top 100 keywords for the documents
are extracted using the TextRank algorithm and concatenated with spaces as
delimiter to represent the entire document. The initial query is converted to
lowercase and all punctuation characters are removed.
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Figure 5.2: Overview of the first approach presented in this work. The documents
are input to the first SBERT layer and after processing, are passed onto the
GCN layers. The output of the last GCN layer is flattened and concatenated
with a static SBERT embedding of the initial query text. Finally the dense
layers perform the classification. The arrows at the bottom of the image pointing
backwards from the final layer to the SBERT layer represent the backpropagation
operation.

Figure 5.3: The Tokenizer takes the document as input and its output consists
of the token IDs, token type IDs and the attention mask.
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Figure 5.4: The document embedding model. The first layer consists of a trans-
former that vectorizes the input document, followed by a mean pooling layer to
obtain a single vector for the entire document.

The input documents are processed using the pre-trained tokenizer correspond-
ing to the transformer architecture used. The tokenizer takes in the document,
tokenizes the text and adds special tokens as required by the language represen-
tation model. The tokenizer outputs three lists:

� IDs : The IDs help locate the tokens from the vocabulary the tokenizer is
trained on. This list contains numerical representations of the tokens in
the text, including special tokens as required by the downstream model,
from the tokenizer vocabulary.

� Token Type IDs : This list is necessary for models which take in a pair of
sequences as input, such as question-answer models. The token type IDs
identify tokens belonging to each sequence.

� Attention Mask : The attention mask notifies the downstream model about
the tokens it needs to attend to, such as valid text tokens, and about tokens
it needs to ignore, such as padding tokens.

The tokenizer operation is shown in Figure 5.3.

The SBERT layer consists of a transformer layer followed by a mean pooling
layer, as proposed in [33]. The transformer model is used to embed the words
in the text and the mean pooling layer calculates the mean over all such em-
bedding vectors and converts the document into a vector of fixed size, as shown
in Figure 5.4. The language representation model takes the tokenizer outputs
and converts them into a vector for each word. For example, the RoBERTa base
model generates a 768-length token for each word in the text. The mean-pooling
layer then takes the mean for each feature in that vector over all the words and
outputs a single vector for the whole document of length 768. The weights of the
transformer layer are finetuned as part of the training of the whole classification
model. Additionally, the initial query is embedded using a static pre-trained
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SBERT model for concatenation to the graph convolutional layer output. The
base transformer model for embedding the words in the initial query maybe the
same as the base model for embedding the words in the documents, or a com-
pletely different model.

For a set of documents

D = {D1, D2, . . . , Dd} (5.1)

the embedding process outputs a set of vectors

E = {e1, e2, . . . , ed} (5.2)

These vectors are then processed into the Document Similarity Graph for input
to the graph convolutional layers.

The Document Similarity Graph is a weighted undirected graph with a set
of vertices V and a set of edges {(vi, vj)|vi, vj ∈ V, i 6= j}. Each vertex v ∈ V
represents a document and is defined by the embedding vector of the document.
Thus the number of vertices in the graph is the same as the number of documents
taken into consideration for each query. Thus the node feature vector is a d× k
matrix where d is the number of documents and k is the length of each document
vector. The weight assigned to each edge is determined by the cosine similarity
between the documents belonging to the end vertices. So for two vertices vi and
vj having documents di and dj, the cosine similarity score is calculated by

cos sim(vi, vj) =
vi · vj
|vi||vj|

(5.3)

which is the dot product of the normalized document vectors. Thus the adjacency
matrix is a d × d matrix with similarity scores between all possible document
pairs. Self loops are added to the graph because the similarity of a document is
always 1. The degree matrix is derived from this adjacency matrix as explained
in Section 3.5. The adjacency matrix is normalized and then input into the graph
convolutional layers for processing. The output of the last graph convolutional
layer is flattened and concatenated with the vector representation of the initial
query to add the context of the initial query to the processing, as shown in
Figure 5.5. This merged vector is then passed to the dense layers to obtain the
classification probabilities for the four ambiguity classes.
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Figure 5.5: The graph convolutional layers and the concatenation of the output
of the last layer to the initial query.

5.3 Approach 2: Concept Graph

The second approach draws from the work of Bang et. al. [6], explained in
Section 3.8. However, since the model proposed in the paper is concerned with
only a pair of documents at a time and determines document similarity using
similarities between sets of sentences in those documents, this approach was not
directly applicable to this work which can take into account a much larger number
of documents and hence the sentence based processing can become expensive in
terms of spatial and temporal complexity.

The steps for preparing the graph for the second approach is shown in Figure
5.6. In this approach, each document is preprocessed by extracting a set of top
keyphrases used in the document. The number of keywords used is a hyper-
parameter that can be varied. For each query, an IDF dictionary is generated
from all the documents taken into account. The IDF dictionary contains the IDF
values for all the words in those documents.

This approach relies on a Concept Graph instead of the Document Similarity
Graph as in the previous model. Concepts are defined as clusters of closely
related keyphrases. To cluster the keyphrases, they are encoded using a sequence
embedding algorithm (such as sentence transformers) that can generate a vector
of fixed length for keyphrases of varying lengths and also capture the semantic
relationship between different sequences. These sequences are then collected into
a pre-defined number of groups to obtain the concepts over all the retrieved
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Figure 5.6: The steps for preparing the Concept Graph from documents.

Figure 5.7: The structure of the Concept Graph. Each concept is defined as a
cluster of keywords and has a set of documents associated with it. The edges are
weighted by the similarity between those document clusters.
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Figure 5.8: The query ambiguity classification model using the Concept Graph.

documents.
C = {c1, c2, . . . , cm} (5.4)

where m is the pre-defined number of clusters. The clusters or concepts then
form the vertices of the concept graph.

Each concept ci is now defined in terms of the concatenation of keywords be-
longing to that concept and quantified as the TF-IDF vector of the concatenated
sequence.

ci = TF-IDF([k1, k2, . . . , kpi ]) (5.5)

where pi is the number of keywords in concept ci. Documents are assigned to
each concept based on the cosine similarity between the TF-IDF vectors of the
concept and the document. Thus each vertex of the concept graph has a set of
documents associated with it. The weights of the edges between the concepts
are determined by the cosine similarity scores between the document clusters
associated with the end vertices.

Wij = cos sim(DSci , DScj) (5.6)

where Wij is the edge weight between concepts ci and cj. To calculate this co-
sine similarity measure, each document cluster is represented by a concatenation
of the documents in that cluster and the TF-IDF vector for this sequence is
generated.

DSci = TF-IDF([D1, D2, . . . , Ddi ]) (5.7)

where DSci represents the set of documents associated with concept ci and di
is the number of documents assigned in that set. The TF-IDF vectors are then
compared using the cosine similarity equation 52. The adjacency matrix of the
Concept Graph is thus an m×m matrix having the similarity measure between
all possible pairs of document clusters in the graph. The node feature vector is
calculated by the cosine similarity between the TF-IDF vector of each concept
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and that of the documents retrieved by the search operation. Hence the node
feature matrix is an m× d matrix where d is the number of documents retrieved
for each query. The concept graph structure is shown in Figure 5.7.

This graph is then passed on to the graph convolutional layers for further
processing, as in the previous approach. However, contrary to the first approach,
the output of the last graph convolutional layer is not concatenated to the initial
query representation. It is flattened and passed to the dense layers for final
classification. The complete model is shown in Figure 5.8.

5.4 Results

5.4.1 Preliminary Approaches

Convolutional layer(s) Precision Recall F1 Score
64 filters with a receptive field
of 2 words each

0.3486 0.44 0.3818

128 filters with a receptive field
of 2 words each

0.3161 0.4 0.344

32 filters with a receptive field
of 2 words each

0.3909 0.46 0.3841

64 filters with a receptive field
of 3 words each

0.3594 0.44 0.3946

128 filters with a receptive field
of 3 words each

0.2940 0.38 0.3201

Table 5.1: Query classification using word2vec and convolutional layers.

The first preliminary approach involved the CNN based model, following Kim
[15]. The models performed to a limited extent given the scarcity of adequate
information to decide on the ambiguity of the input query. This model is ap-
propriate for classifying sentences when the classes can be decided only based on
the information contained within the sentence. But ambiguity cannot be decided
from the words in the input query. The queries were processed, as explained in
the previous section, with the removal of stopwords and punctuation and the
words were embedded using word2vec, pre-trained on the Google News dataset,
into vectors of length 300. Since the training dataset provided by the challenge
organizers has only 187 unique queries, data augmentation was performed with
100 permutations of each query, where possible. The query vector matrices were
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padded with 0-rows to account for queries with varying lengths. The results from
this approach, on the dev set, have been summarized in Table 5.1.

As evident from the excerpt of results in Table 5.1, the performance of the
model depends on the number of kernels and the receptive field. On the dev set,
the highest F1 score achieved during the experiments was 0.39. Expressing the
results as a confusion matrix in Figure 5.9, where the contents of a cell ij depicts
the number of times the algorithm predicted a class j for a sample with true class
i, it is evident that this approach has worked best with queries of ambiguity class
2, as it has successfully classified 13 queries with ambiguity level 2. It has also

Figure 5.9: Confusion matrix for the approach with CNN and word2vec embed-
dings. The rows represent the ground truth labels and the columns contain the
predicted values.

correctly identified 2 clear queries but has failed to identify completely ambiguous
queries and classified a larger number of them as class 2.

Attempts to improve this model involved embedding the queries using RoBERTa
which performs better in capturing the semantic relationship between words in
the queries. The best results for the experiments using RoBERTa embeddings of
length 1024 are summarized in Table 5.2.

Model Precision Recall F1 Score
RoBERTa embeddings + augmentation
+ CNN

0.4183 0.38 0.3717

RoBERTa embeddings + augmentation
+ dense layers

0.4861 0.4 0.3719

Table 5.2: Query classification using RoBERTa embeddings.
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As is evident from the results, there was no observable improvement in results
in the absence of further information about the queries.

After these initial attempts, it was decided to take into account additional
information relevant to the ambiguity of the queries, in the form of documents
retrieved in the search results. Keeping in mind the memory, computing power
and storage space of the available resources, plain-text HTML versions of the
top 100 ranked documents were downloaded through the ChatNoir API. The
documents were cleaned of unnecessary markup as explained in the previous
sections and was processed using a graph convolutional network. Multiple ar-
chitectures with GCNs were tested with both Doc2Vec and SBERT embeddings
of documents with resultant F1 scores between 0.26 and 0.40. Adding the rank-
ing information of the documents in the form of one-hot encoded vectors and
also as weights on the node features in the graph (document embeddings) did
not provide any observable improvement in the results and in some cases led to
degradation of performance.

5.4.2 Document Similarity Graph

In this approach, the SBERT weights were trained along with the classification
model and hence the initial layers are responsible for a high spatial complexity.
To take into account the limitation of GPU memory available for training, each
document was represented as a concatenation of the top 100 keywords extracted
from it by both the TextRank and Rake algorithms. The TextRank keywords
are also used in the second approach (Concept Graph) to create the concept
clusters. Hence the starting points of both algorithms have common ground.
In this first approach, the SBERT module was made of a smaller Electra model
with output embeddings of length 384 to enable more documents to be processed
for each query. The base model used for SBERT encoding of the initial query
was a MiniLM model pre-trained on the Microsoft Marco datasets. GCN module
had 3 layers with 10 GCN cells each with dropout. The intial query dataset was
augmented using random permutations of the word tokens, with the assumption
that the retrieved documents would remain the same with the same ranks for all
permutations of the same initial query.

The model was tested with 10 and 20 documents per query as memory require-
ments did not allow more than that. The results are summarized in Table 5.3
(TextRank Keywords) and Table 5.4 (Rake keywords).
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Documents
per Query

Precision Recall F1 Score

10 0.296 0.41 0.32
20 0.2942 0.392 0.34

Table 5.3: Document Graph Approach using TextRank Keywords

Documents
per Query

Precision Recall F1 Score

10 0.3522 0.4 0.35
20 0.4213 0.42 0.42

Table 5.4: Document Graph Approach using Rake Keywords

From the tables, it is apparent that the metrics improve when Rake key-
words are used and also when the number of documents per query are improved.
The confusion matrix in Figure 5.10 shows an example of the document graph
approach’s performance.

Figure 5.10: Confusion matrix for a sample run of the Document Graph approach
with the documents represented as TextRank keywords.

The algorithm has successfully identified the majority of class 2 queries, but
has failed to identify clear queries and in this set of predictions shows an in-
clination towards labelling queries as class 2 ambiguous. However, it has not
completely misidentified any ambiguous query of level 4 as unambiguous.
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5.4.3 Concept Graph

For the concept graph approach, the top 100 keywords of each document was
extracted using TextRank and clustered into concepts using K-means clustering.
The TF-IDF vectors of the documents and concepts were calculated and the
Concept Graph was constructed as explained in Section 5.3. This graph was then
input to the graph convolutional model for further processing and classification.
There were 2 principal hyperparameters in this model: the number of documents
per query and the number of clusters or concepts. The number of concepts
directly affects the size of the graph as the concepts form the vertices. Thus the
number of clusters effectively affects the memory complexity of the process. The
results have been summarized in Table 5.5.

Documents
per Query

Number of
Concepts

Precision Recall F1 Score

20 10 0.2578 0.42 0.32
50 10 0.2469 0.34 0.29
50 20 0.422 0.4 0.33
100 20 0.5453 0.46 0.44

Table 5.5: Concept Graph approach.

Increasing the number of documents as well as the number of concepts im-
proves the results. The confusion matrix for this model is shown in Figure 5.11.

Figure 5.11: Confusion matrix for the Concept Graph approach

This model also did not misidentify any completely ambiguous query of level
4 as unambiguous. But it identified most of the level 2 queries as level 3. A
majority of the level 3 queries were correctly identified and most of the level 4
queries were identified as level 3.
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5.5 Analysis

Analysing the two models further, it is apparent that while the Document
Graph approach has a proclivity towards level 2, the Concept Graph approach
is more inclined towards level 3. This behaviour may be attributed to the fact
that with the constrained training performed, the Document Graph approach
has a limited visibility upto 20 of the retrieved documents, which in some cases
may not be fully indicative of the expanse of concepts covered by the documents.
The Concept Graph approach has a better coverage of 100 documents and hence
logically can have better clustering of documents based on concept similarity.
An example of this can be seen in topic ID 106, initial query: ”I’m looking for
universal animal cuts reviews”. This query has a ground truth ambiguity level 3
and according to the provided training data, the ambiguity arises from whether
the user wants to buy Universal Animal Cuts, want to know about their nutrition
values or want to know about their safety for consumption. Thus this topic has
sufficient scope of ambiguity but is not completely open-ended. This topic is
correctly identified as level 3 by the Concept Graph approach, but is misidentified
as level 2 by the Document Graph approach. Analysing the adjacency matrices
generated by the two approaches (Figure 5.12):

(a) Concept Graph (b) Document Graph

Figure 5.12: Adjacency matrices for topic 106 for the Concept Graph approach
(a) and the Document Graph approach (b)

In the diagrams, the darker the colour, the lower is the cosine similarity
value. The adjacency matrix on the left represents the similarity between the
sets of documents associated with the concepts, whereas the matrix on the right
shows the cosine similarity between the document representations. The Concept
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Graph approach, in this case, takes into account 100 documents with 20 concepts
and hence the adjacency matrix captures the relationship between the concepts
better. The adjacency matrix for the Concept Graph approach shows clear dis-
parity between multiple clusters particularly between the lower numbered ones
and higher numbered ones. This indicates distinct concepts and disparate sets
of documents associated with them, which is an indicator of the level of ambi-
guity. Additionally, the larger number of documents in consideration makes the
Concept Graph approach better poised to detect the range of concepts covered
in the documents. On the other hand, the adjacency matrix of the Document
Graph approach considers only 20 documents for the query and as evident from
the diagram, does not detect much disparity between them. The top 20 docu-
ments in this case are mostly similar and contain sites selling Universal Animal
Cuts. Hence the matrix has almost uniform values. Evidently, the additional
concepts are covered in lower ranked pages, which are accessed by the Concept
Graph approach. Thus it can be deduced that having clustered concepts from
a larger number of documents helped the Concept Graph approach detect the
level of ambiguity correctly whereas a smaller number of less disparate documents
embedded using a smaller model led the Document Graph approach to assign a
lower level of ambiguity to the query.

One of the shortcomings of the Concept Graph approach can be seen in the
adjacency matrix for topic ID 101, initial query: ”Find me information about
the Ritz Carlton Lake Las Vegas.”: This query is ambiguous as the user’s intent
is not clear. It is a level 2 ambiguous query and can mean that the user wants to
know about the location of the Ritz Carlton Lake resort in Las Vegas or they may
want information about its capacity or have some interest in its history. This
query is correctly classified by the Document Graph approach as a level 2 query
but misidentified by the Concept Graph approach as level 3. The adjacency
matrices are shown in Figure 5.13
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(a) Concept Graph (b) Document Graph

Figure 5.13: Adjacency matrices for topic 101 for the Concept Graph approach
(a) and the Document Graph approach (b)

Analysing the adjacency matrix for the concept graph approach, it can be seen
that some of the rows and columns have 0 values. This can be attributed to the
fixed number of concepts that have to be prepared for each initial query. Some of
the concepts may not have any document associated with them and the number
of clusters of keywords may be more than required, leading similar keywords to be
grouped into separate concepts and similar documents being assigned to different
concepts. Also the concepts that do not have any documents assigned to them
fail to influence the output. This can lead to incorrect labelling of the ambiguity,
as seen in this case. On the other hand, the Document Graph approach, although
recording high similarity between documents, can capture the separate concepts
covered by the documents since the search results for this query present the entire
variety of end goals within the first 20 documents.

Thus, taking into account the restrictions on the number of documents within
the scope of the document graph approach, it’s tendency to go with the lower
level of 2 can be explained. It works better on queries whose search presents a
better variety of subjects within the first few results. The concept graph approach
works better for queries which require a greater number of documents to fully
understand the expanse of its intents, but in the present implementation, suffer
from the effects of having a fixed number of concept clusters, which makes it
more inclined towards the higher ambiguity level of 3. The number of samples
with ambiguity level 1 and 4 are much less in both the training and development
datasets, which make it difficult to assess the performance of the models on those
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samples. However, it is reassuring to see that the tendency of the models to
designate ambiguous queries as unambiguous or unambiguous queries as having
an extreme ambiguity level of 4 is very low.

Finally, the achieved results were compared with the top ranked entries in
the ClariQ challenge. In the absence of access to the test dataset labels, the
comparison only included scores on the dev dataset and the entries have been
sorted according to their F1 scores. The results are summarized in Table 5.6.
Since these models have not been published yet, it was not possible to perform
detailed comparison of the proposed approaches with them.

Model Precision Recall F1 Score
BartBoost 0.7008 0.7 0.6976
cneed add prior v2 0.62 0.6 0.5984
Roberta+ Stats 0.62 0.58 0.5717
Roberta+++ 0.6039 0.56 0.5551
Roberta++ 0.5807 0.54 0.5375
cneed merge 0.5830 0.52 0.5192
cneed dist 0.5452 0.52 0.5177
Concept Graph
model

0.5453 0.46 0.44

BERT-based-v2 0.5218 0.4800 0.4253
Document Graph
model

0.4213 0.42 0.42

Triplet 0.4161 0.48 0.4178
Roberta+ CatBoost 0.1402 0.28 0.1854

Table 5.6: Comparison with ClariQ challenge entries.



Chapter 6

Conclusion and Future Work

Natural language based systems are gradually replacing traditional modes of
interaction with the internet. Searches are gradually going hands free and users
expect results that are to the point and require as little effort on their part as
possible. In order to achieve that, generating and asking clariyfing questions has
been proven to be a way to move forward to narrow down the field of search.
The aim of this work was to explore ways to detect when to ask such clarifying
questions. Clarifying questions are only required when there is ambiguity in the
user query. The level of ambiguity raises the need for a clarifying question.

As seen in the related literature, existing attempts involved approaches to
classify user intent based on pre-defined notions of query goals, which may not
work in an open-domain setting. This work has explored methods to detect the
level of ambiguity in the first user input in such a conversational setting. The
initial query determines whether counter questions need to be asked at all and
hence this work can be extended to include steps from multi-turn conversations.

The approaches started from simple ones including classifying queries us-
ing sentence classification techniques like CNNs without additional information.
CNNs were then replaced by BERT based approaches, also in the absence of
additional information to identify the intents the query can represent. This is
where the documents retrieved by a search engine come into the picture. Doc-
uments cover multiple topics that may provide information about the range of
user goals the query can represent. The more diverse the documents, the more
the probability of the query being ambiguous. The Document Graph approach
makes use of the similarities between document vectors to generate a graphical
structure that can be processed by a graph convolutional network to extract the
relationship and diversity of the document set. This approach requires the docu-
ment embedding model, namely a BERT model followed by a pooling layer to be

69
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finetuned alongside the GCN. This aims to optimize the document embeddings
for the downstream task. The output of the GCN is concatenated with a vector
representation of the initial query, which adds additional context. The Concept
Graph approach draws from the work by [6] and adapts it for working on mul-
tiple documents. Keywords extracted from the documents are clustered to form
concepts that are then used to group the retrieved documents. The graph data
are formed by the similarities between the sets of documents assigned to individ-
ual concepts. A similar GCN as the Document Graph approach is now used to
process the concept graph, but the context of the initial query is no longer added
to its output.

Analysing the outputs of the various approaches explored, the performance of
the CNN based model varies with the number of kernels and the receptive field.
In the limited experiments performed, a CNN layer with 64 kernels covering 3
words each, was found to be optimal. This model was successful in classifying
most of the class 1 and 2 queries but faltered with classes 3 and 4. The Document
Graph approach had a proclivity towards the class 2 possibly due to the reasons
explained in the Section 5.5: mainly due to the scope of documents covered and
the embedding technique used to represent the documents. The Concept Graph
approach similarly had a tendency towards the class 3, due to mandatory fixed
number of concepts.

The approaches presented in this work suffered from a lack of training data
as well as sufficiently diversified validation or testing data. The distribution of
classes in the training and development datasets show a skew towards classes 2
and 3. From the confusion matrices of the explored approaches, it is evident
that the models have problems in identifying completely ambiguous (level 4) and
completely clear (level 1) queries. Queries of level 2 and 3, even on misclassi-
fication, are being mostly restricted to those 2 classes only and hence may not
pose much difficulties. The models thus need to be trained to identify the ex-
treme classes clearly. Additionally, due to memory requirements, the documents
in the Document Graph approach had to be represented as a concatenation of
keywords, which is not an optimal representation for BERT based embedding.
In spite of that, only a limited number of documents could be considered for each
query. On the other hand, this work also analyses the positive results and it is
seen that the models are successful in correctly classifying a majority of queries.
In fact, the concept graph approach, with a larger view of the document space
offers greater precision at its best performance.
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There are multiple ways in which these models can be improved. The Docu-
ment Graph approach will benefit from improvements to the document embed-
ding technique and sufficient computational and memory power to take more
documents into consideration for each query. For further improvement of the
Concept Graph approach, similarities between concepts and documents can be
explored further through methods inspired by the matching vector of [6], in
order to add more context for the graph convolutional networks to process. Ad-
ditionally, keyword clustering can be made independent and algorithms that do
not require the number of clusters to be pre-defined, can be used. The keygraph
model proposed in [6] can also be modified for use with multiple documents,
such that the number of concepts can be adapted for each set of documents
and concepts which do not have any documents associated with them can be
eliminated. For both the approaches, processing a larger number of documents
for each query, within limits of reasonable time complexity can lead to better
results and sufficiently large and diversified training and validation datasets can
help train parameters and finetune hyperparameters properly for the models to
generalize better. Apart from this, multiturn conversations can be taken into ac-
count by adding context vectors that encode key information from the previous
steps in the conversation.

This work has explored a number of methods to classify the level of ambigu-
ity in the first query raised by a user when they want to search for something.
The experiments and the results demonstrate the fact that generic sentence clas-
sification algorithms can only have limited success in this field of application
when the classification problem cannot be solved using only the words in the
sentence. Retrieved documents can prove to be an important source of informa-
tion when deciding if a query is ambiguous. However, the documents need to be
represented properly and a sufficiently diverse set of documents need to be taken
into account to correctly explore all the subjects covered. Such relationship be-
tween documents can be represented as graphs and as shown in this work, graph
convolutional networks show promise when processing such data. However, the
processes can be improved and better document representation techniques can
be utilized to model the graphs, including developing a better method for calcu-
lating the edge weights, augmenting conventional similarity measures. Finally,
for the system to work properly in open-domain settings, the model needs to be
trained on a sufficiently diverse dataset. This work provides an important first
step towards detecting ambiguity in the first turn of a multiturn conversational
encounter and can be integrated into an end to end system for detecting query
ambiguity and generating clarifying questions.
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