
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Learning to Plan in Large Domains
with Deep Neural Networks

Zhenkai Shou

Course of Study: INFOTECH

Examiner: Ph.D. Daniel Hennes

Supervisor: Hung Ngo

Commenced: November 8, 2017

Completed: May 8, 2018





Abstract

In the domain of artificial intelligence, effective and efficient planning is one key factor to developing
an adaptive agent which can solve tasks in complex environments. However, traditional planning
algorithms only work properly in small domains. Learning to plan, which requires an agent to
apply the knowledge learned from past experience to planning, can scale planning to large domains.
Recent advances in deep learning widen the access to better learning techniques. Combining
traditional planning algorithms with modern learning techniques in a proper way enables an agent
to extract useful knowledge and thus show good performance in large domains.

This thesis aims to explore learning to plan in large domains with deep neural networks. The
main contributions of this thesis include: (1) a literature survey on learning to plan; (2) proposing
a new network architecture that learns from planning, combining this network with a planner,
implementing and testing this idea in the game Othello.

3





Contents

1 Introduction 11

2 Background 13
2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Two-Player Zero-Sum Board Games . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Monte-Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Integrating Neural Networks with Planners 19
3.1 Integrating with a Global Planner . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Integrating with a Local Planner . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Extracting Forecast Knowledge from a Planner . . . . . . . . . . . . . . . . . . 22

4 Neural Networks that Learn from Planning 25

5 Experiment Setup 27
5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Local Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Model Design 29
6.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Experiment Result and Discussion 37
7.1 General Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Game-Play Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Comparison with Alpha Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Conclusion and Outlook 41

A Implementation Details 43
A.1 Tournament and Self-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

5





List of Figures

2.1 Residual connection between layers. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Four phases of Monte-Carlo Tree Search. . . . . . . . . . . . . . . . . . . . . . 16

3.1 Planning with Value Prediction Networks. . . . . . . . . . . . . . . . . . . . . . 21
3.2 Monte-Carlo Tree Search in AlphaGo Zero. . . . . . . . . . . . . . . . . . . . . 22
3.3 Architecture of Imagination-Augmented Agents. . . . . . . . . . . . . . . . . . . 23

5.1 Othello. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Neural network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Principal variation in Monte-Carlo Tree Search. . . . . . . . . . . . . . . . . . . 31
6.3 Variable sharing among different heads. . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Average loss over the whole training process. . . . . . . . . . . . . . . . . . . . 37
7.2 Winning rate of challengers against the baseline player. . . . . . . . . . . . . . . 38

A.1 Multiprocessing mechanism in tournament and self-play. . . . . . . . . . . . . . 43

7





List of Tables

7.1 Winning rate of the standard model against the Alpha Zero variant. . . . . . . . . 39

9





1 Introduction

In the domain of artificial intelligence, effective and efficient planning is one key factor to developing
an adaptive agent which can solve tasks in complex environments. Planning is an operation that an
agent samples the simulated experience from a given simulator or model in order to make good
decisions. It allows an agent to look into the future without interacting with the real environment.
Planning is very important for some agents like robotics because they need to complete tasks
while avoiding wrong decisions which may lead them to irreversible or even dangerous situations.
Planners used by the agents can be categorized into two classes: global planners and local planners.
A global planner such as value iteration gives a global evaluation of the environment by enumerating
all possible states; a local planner such as a tree search algorithm only evaluates a single state by
sampling the most promising future from that state onwards.

However, in large domains, a global planner usually suffers the curse of dimensionality, while a
local planner becomes less efficient. Therefore, an agent cannot solely rely on the planner in those
domains. In order to scale planning in large domains, an agent has to learn from both real and
simulated experience, then applies the learned knowledge to planning. This procedure is called
learning to plan.

Recent advances in deep learning widen the access to better learning techniques. Many different
approaches have been proposed to explore learning to plan in combination with deep neural networks.
For example, Value Prediction Networks (Oh et al., 2017) embed a local planner into a deep neural
network; Alpha Zero (Silver et al., 2017) maintains a local planner and a deep neural network
separately. In those methods, a neural network, which maps the current state to the target value,
learns prior knowledge from the agent’s experience, and the agent uses the prior knowledge to bias
the local planner towards more promising future. However, in those methods, the neural network
cannot fully leverage the local planner since forecast information contained in the local planner is
not served as input to the network. Here we raise the following question: can we design a neural
network that can fully leverage the local planner to further improve the effectiveness and efficiency
of planning?

In this thesis, we mainly contribute on two topics. First, we discuss the recent development of
reinforcement learning approaches that integrate neural networks with planners. We classify those
approaches into different categories and explain each category with one example. Second, we
propose a deep neural network that can fully leverage a local planner. Our method extracts useful
forecast information from the planner, and feeds it into the deep network. Our network gives
evaluation based on both the agent’s current state and forecast information derived from the planner.
We implement and test our idea in the game Othello. The empirical result shows that this evaluation
is much better than the one based solely on the current state. The actual performance of our method is
better than Alpha Zero, a baseline algorithm in our experiment. The code for our implementation can
be downloaded from the following repository: https://github.com/ZhenkaiShou/Deep-Networks-

that-Learn-to-Plan.
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2 Background

This section describes some background knowledge and algorithms that are related to this thesis.

2.1 Deep Neural Networks

A deep neural network is basically a neural network with many hidden layers. It maps an input
value to some output value via non-linear functions. A deep neural network can approximate any
functions due to its flexibility in the parameter space. This property is crucial in learning highly
non-linear mappings which exist in most machine learning tasks.

A variety of network architectures have been proposed, each of which has its own application
domain. In this section we only introduce the ones that are relevant to this thesis.

Convolutional Neural Networks A convolutional neural network is a special neural network
that achieves huge success in image processing. It uses convolution operation to connect different
layers so that each neuron is only connected to a small subset of neurons in the next layer. The
convolutional kernel is shared by all neurons in the same layer, which dramatically reduces the
number of parameters in the network, thus making the training of neural networks much more
efficient.

Residual Networks A residual network (He et al., 2015) is a special neural network that has large
impact on deep learning. It uses a simple but rather effective trick to connect different layers, that is,
the input of a layer is connected to output of a later layer. Figure 2.1 illustrates this trick. Empirical
result shows that it is easier to train deep neural networks with residual connection than the ones
with plain connection.

Figure 2.1: Residual connection between layers. This figure is taken from [HZRS15]. If we assume
the input of a layer to be x, the output of a later layer to be y, the non-linear function
between input and output to be F, then the output can be expressed as y = F(x) + x.
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2 Background

Long Short-Term Memory Networks A Long Short-Term Memory Network (LSTM) (Hochreiter
and Schmidhuber, 1997) is a special neural network that is designed to remember information for a
long term. It makes use of the forget gate, input gate and output gate to manipulate the cell state,
which functions as the “memory” unit of the network. Both the network output and the cell state
will be carried to the next input signal. Such memory mechanism makes a neural network learning
from temporal-dependent data much easier.

2.2 Reinforcement Learning

Machine learning is a tool that generates algorithms. Those generated algorithms distinguish from
other analytic algorithms by the fact that the former ones are learned and trained from example
data rather than being explicitly programmed. Machine learning can be divided into three classes:
supervised learning, unsupervised learning, and reinforcement learning. Supervised learning occurs
when an algorithm learns from labeled dataset to map the input data to a certain class or some
values. Unsupervised learning occurs when an algorithm learns from unlabeled dataset to find the
hidden structure of the input data. Reinforcement learning occurs when an agent learns how to take
actions in a given environment where the optimal actions are not given but to yet to be discovered
by the agent itself.

In the reinforcement learning category, we consider the Markov Decision Process (MDP). It is a
tuple of 5 elements: (S,A,P,R, γ), whereS is a set of states;A is a set of actions; P : S×A → S
is the transition that describes the probability of the next state s′ after taking action a in state s;
R : S × A → R is the reward that describes the received reward r after taking action a in state
s; γ is the discount factor. Policy π(s) : S → A is the probability distribution over the action
space in state s. An episode starts with an initial state s0. At each time step t the agent receives
a state st , takes an action at based on the policy π(s), and gets the reward rt+1 = R(st, at ). The

next state st+1 is sampled from the transition P(st, at ). Return Gt =
∞∑
i=0

γirt+i+1 is the discounted

cumulative reward starting from time step t. The state-value function Vπ(s) = Eπ(Gt |st = s)
is the expected return starting from state s, then following policy π. The action-value function
Qπ(s, a) = Eπ(Gt |st = s, at = a) is the expected return starting from state s, taking action a, then
following policy π. There exists an optimal policy π∗ such that Qπ∗(s, a) ≥ Qπ(s, a) for any state s,
action a, and policy π. The agent’s goal is to find out such optimal policy π∗ that maximizes the
expected return.

2.3 Imitation Learning

Reinforcement learning is known to be data inefficient as the label of input data is not provided to
the agent. For typical reinforcement learning algorithms such as Q-learning and policy gradient, the
agent randomly explores in the environment and learns from data collected during self-exploration.
Imitation learning is a technique in reinforcement learning that improves data efficiency. It allows
the agent to learn from an expert, mimicking its behavior. The expert may exist in the form of human
demonstration, or output result of other algorithms. However, it is worth noticing that the quality of
the expert may influence the performance of the agent. Human demonstration is not optimal in
some cases, which may lower the agent’s final performance; output result of other algorithms needs
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to be superior than the agent’s current policy throughout the whole training progress in order to
provide meaningful guidance. With imitation learning, there is no need for the agent to discover
hidden knowledge of the environment by itself, which yields more efficient training as long as a
proper expert can be found.

2.4 Planning

Planning is an operation that an agent samples the simulated experience from a given simulator or
model in order to make good decisions. It helps an agent to find out the optimal policy in MDP
problems. Planners can be categorized into two classes: global planners and local planners.

Global Planner A global planner gives a global evaluation of the environment by enumerating all
possible states. It suffers the curse of dimensionality since it tries to evaluate all states at the same
time. Therefore, a global planner is hardly used in any large domains.

A typical example of global planner is the value iteration (Bellman, 1957). It alternatively update
the Bellman Optimality Equations for each state and action, starting with V(s) = 0 for any s ∈ S:

Q(s, a) = R(s, a) + γ
∑
s′

P(s′ |s, a)V(s′), (2.1)

V(s) = max
a

Q(s, a). (2.2)

Local Planner A local planner evaluates a single state by sampling the most promising future
from that state onwards. It is much more efficient than a global planner since only the given state
and its successor states may be considered. However, a local planner still becomes less efficient in
large domains due to the increased planning steps required as well as the increased uncertainty of
future. In general, a local planner applies a tree search algorithm, e.g. Monte-Carlo Tree Search,
α − β pruning. A detailed description of Monte-Carlo Tree Search is given in Section 2.6.

2.5 Two-Player Zero-Sum Board Games

One challenging research field for reinforcement learning is two-player zero-sum board games
because they require deep reasoning. In these games, two participating players compete against
each other and never cooperate. In most cases, a game ends up with one winner and one loser. In
some games, it is also possible that the game reaches some state that no one can win the game,
which is called draw. These games are usually fully observable: both parties can observe the whole
state from the game board. The initial state of these games are usually fixed, e.g. for Go the game
board is empty while for Chess each party has 16 pieces at predefined positions.

These games can often be formulated as follows. A game begins with initial state s0. Each party
takes a move alternately and the next state is generated according to the game rule until terminal
step T . The player gets a reward rt+1 = 0 at non-terminal steps t < T , or a reward rT ∈ {−1, 0, 1} at
terminal step T for losing/drawing/winning a game. Binary rewards are applied to these games
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2 Background

because it is very difficult to manually shape the reward function. Note that the total reward

G0 =
T−1∑
i=0

γiri+1 is equal to the reward rT at terminal step T with discount factor γ = 1. So the

total reward of both parties will always be zero. In theory, value iteration can be applied here to
accurately evaluate all possible positions of the game because the environment is fully observable.
However, this approach is infeasible due to the enormous state space of these games, e.g. state
space of size 10170 for Go. Therefore, it is necessary to apply the “learning to plan” concept here in
order to find out the optimal policy.

2.6 Monte-Carlo Tree Search

(a) Selection

Q+ U Q+ U

Q+ U Q+ U

max

max

(b) Expansion (c) Rollout

z

πroll

(d) Backup

z

Q,N

Q,N

Figure 2.2: Four phases of Monte-Carlo Tree Search. (a) Selection. Starting from the root node s
the most promising child node is selected according to the tree policy πtree(s) until a
leaf node is reached. πtree(s) usually follows UCT algorithm to encourage exploration
of less frequently visited child nodes. (b) Expansion. When the searching reaches a
leaf node, a new child node will be created and added to the tree unless the leaf node is
a terminal node. (c) Rollout. The simulation continues with a rollout policy πroll (e.g.
uniformly random) from the leaf node until the terminal state, receiving reward z. (d)
Backup. The reward z is backpropagated from the leaf node to the root node.

Monte-Carlo Tree Search (MCTS) (Coulom, 2006) is a local planner which is often used in game
play. It tries to keep the balance between exploration and exploitation when searching for the most
promising future.

A search tree is composed of several nodes and edges. A node represents a state of the environment.
An edge, which connects a parent node and a children node, represents an action that the parent
node may take. A children node, which is connected to a parent node by an edge, represents a
successor state of its parent node after taking the corresponding action.

The search tree begins with a single root node, which represents the current state s. MCTS executes
k rounds of simulation. Each simulation contains following stages:
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2.6 Monte-Carlo Tree Search

Selection Starting from the root node s the most promising child node is selected according to the
tree policy πtree(s) until a leaf node is reached. πtree(s) often follows the Upper Confident Bounds
for Trees (UCT) (Kocsis and Szepesvári, 2006) algorithm:

U(s, a) = cuct

√
log N(s, a)

N(s)
, (2.3)

Q(s, a) =
W(s, a)
N(s, a)

, (2.4)

πtree(s) = arg max
a

Q(s, a) +U(s, a), (2.5)

where N(s, a) is the visit counts of edge a; N(s) =
∑
a

N(s, a) is the visit counts of node s; W(s, a) is

the sum of all rewards obtained from simulations that pass through the edge a. The action with
maximum Q +U value will be selected by the tree policy. UCT encourages exploration of less
frequently visited child nodes.

Expansion When the searching reaches a leaf node, a new child node will be created and
added to the tree unless the leaf node is a terminal node. This new child node is initialized with
W(s, a) = 0, N(s, a) = 0 for each edge a.

Rollout The simulation continues with a rollout policy πroll (e.g. uniformly random) from the leaf
node until the terminal state, receiving reward z.

Backup The reward z is backpropagated from the leaf node to the root node. Update the
action-value Q and visit counts N of all nodes along the trajectory:

W(s, a) = W(s, a) + z, (2.6)

N(s, a) = N(s, a) + 1. (2.7)

Figure 2.2 briefly illustrates these four stages. Once the search is complete, the planner selects the
action with the most visit counts at root state s:

π(s) = arg max
a

N(s, a). (2.8)
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3 Integrating Neural Networks with Planners

Reinforcement learning has been studied for several decades. Integrating neural networks with
planners to solve MDP problems becomes popular in recent years. A neural network grants an
agent the generalization ability to new scenarios. It reasons fast by mapping an input to some output
value. On the other hand, a planner grants an agent the ability to look into the future. It reasons
slow by simulating future. By integrating these two pieces together can the agent own the ability of
both fast reasoning and slow reasoning, as illustrated by Anthony et al. (2017). Several different
approaches have been proposed to integrate neural networks with planners.

3.1 Integrating with a Global Planner

Embedding a global planner into a neural network is a promising approach for specific environments.
Tamar et al. (2016) discovered that value iteration can be formed as a special type of convolutional
neural network, the Value Iteration Networks (VIN). It tries to solve true MDPM = (S,A,P,R, γ)
by converting it into a latent MDP M̄ = (S̄, Ā, P̄, R̄, γ̄). In general,M , M̄. VIN learns the latent
reward r̄ from the environment:

r̄ = f r (s, g), (3.1)
where s is the global state, g is the goal, f r is a convolutional neural network. Then it performs
value iteration on the latent MDP for N iterations, starting with V̄0 the zero tensor:

Q̄t+1 = r̄ + f p(V̄t ), (3.2)

V̄t = max
ā
(Q̄t ), (3.3)

where f p is a convolutional layer whose kernel represents the latent transition P̄; max
ā
(·) performs

max-pooling over the channels. Afterwards, it maps the action-value in the latent MDP to the one
in the true MDP, and selects the action that maximizes the action-value in the true MDP:

Q = f map(Q̄N+1), (3.4)

a = arg max
a
(Q), (3.5)

where f map is a mapping function, e.g. a fully connected layer.

VIN integrates a neural network with a global planner at the network architecture level. It shares
the same shortcoming as value iteration that it suffers the curse of dimensionality. It also requires
that the environment could be represented as a grid structure, which limits its usage mainly in the
field of navigation.

Niu et al. (2017) extends VIN to Generalized VIN (GVIN) so that the environment could be
represented as any graph structure. The extension to Partially Observable MDP (POMDP) has also
been well explored. QMDP-Net (Karkus et al., 2017) and Cognitive Mapping and Planning (CMP)
(Gupta et al., 2017) both use VIN as planning module under partial observability.
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3 Integrating Neural Networks with Planners

3.2 Integrating with a Local Planner

Integrating a local planner with a neural network is an alternative choice for large domains. The
integration can be categorized into different classes, based on how the neural network and local
planner are integrated together.

3.2.1 Implicit Integration

For implicit integration, we only maintain a special neural network where the local planner is
encoded by the network architecture. The perfect environment is often not given to the agent. Value
Prediction Networks (VPN) (Oh et al., 2017) and TreeQN (Farquhar et al., 2017) fall under this
category. Both of them can be viewed as an extension of Deep Q-Networks (DQN) (Mnih et al.,
2015), a simple model-free network which is capable of playing Atari games at human level.

In VPN, the state s is first encoded into some feature x:

x = f enc(s). (3.6)

From feature x it learns a model (reward, discount and transition) of the environment:

r, γ = f out(x, a), (3.7)

x ′ = f trans(x, a), (3.8)

where a is the action taken at feature x. The state-value of feature x is estimated by a value
network:

V = f value(x). (3.9)

Then VPN performs tree search planning from the root node x. The planner simulates b-best actions
up to a certain depth d using the learned model. The action-value of the root node for each action a
is averaged over the value of the most promising child nodes:

Qd(x, a) = r + γVd(x ′), (3.10)

Vd(x) =


V(x) if d = 1
1
d

V(x) +
d − 1

d
max
a

Qd−1(x, a) if d > 1.
(3.11)

Figure 3.1 illustrates this planning part. Finally VPN selects the action that maximizes the
action-value of the root node.

The architecture of TreeQN is basically the same as VPN, except that TreeQN uses a different local
planner and training procedure.
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3.2 Integrating with a Local Planner

Figure 3.1: Planning with Value Prediction Networks. This figure is taken from [OSL17]. (a)
Simulate b-best actions up to a certain depth d. (b) Estimate the action-value by
averaging over the value of the most promising child nodes.

3.2.2 Explicit Integration

For explicit integration, we maintain a neural network and a local planner separately. The perfect
environment is often assumed to be known so that there is no need to learn such an environment
model. AlphaGo Zero (Silver et al., 2017) and Expert Iteration (ExIt) (Anthony et al., 2017) fall
under this category. Both of them use MCTS as the local planner to simulate the future and guide
the neural network.

AlphaGo Zero is the state-of-the-art algorithm that masters the game of Go. In AlphaGo Zero,
the neural network encodes a game state s to some feature x = f res(s), followed by a value head
V = f v(x) and a policy head P = f p(x) that estimates the value and policy of state s, respectively.
This network provides a coarse estimation of any game state, which is used to bias the local planner
towards more promising future. The MCTS implemented in AlphaGo Zero also differs from vanilla
MCTS in the following aspects. First, the tree policy πtree uses a variant of the PUCT (Rosin, 2011)
algorithm:

U(s, a) = cpuctP(s, a)

√
N(s)

N(s, a) + 1
. (3.12)

PUCT prefers child nodes with not only fewer visit counts N(s, a) but also higher prior probability
P(s, a). Second, AlphaGo Zero estimates the value of a leaf node via a more accurate value
function V(s) rather than the game result z simulated from a rollout policy. Note that both the prior
probability P(s, a) and the value function V(s) can be obtained from the neural network. Once
the search is complete, MCTS outputs a searching probability π, which corresponds to the visit
frequency of each edge at the root node, as a more accurate policy. AlphaGo Zero uses MCTS to
play each move. Figure 3.2 illustrates MCTS in AlphaGo Zero.

AlphaGo Zero is trained with imitation learning technique that the neural network learns from
a better expert, the MCTS. Starting from scratch, the neural network continuously improves its
value and policy estimation, so does the expert since MCTS depends on these estimations. The
training data (s, π, z) are sampled from the most recent self-play games. AlphaGo Zero is trained
with minibatch gradient descent on the loss l = (z − V)2 − π> log P + c‖θ‖2. By minimizing loss l
the neural network is guided towards the expert.
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3 Integrating Neural Networks with Planners

Figure 3.2: Monte-Carlo Tree Search in AlphaGo Zero. This figure is taken from [SSS+17]. (a) The
tree policy follows a variant of PUCT algorithm, selecting child nodes with fewer visit
counts N(s, a) and higher prior probability P(s, a). (b) When the simulation reaches a
new leaf node, it will be added to the tree. The value of the leaf node is evaluated by the
value network V(s); the prior probability of all edges is evaluated by the policy network
P(s, a). (c) The value of the leaf node is backpropagated up to the root node. (d) Once
the search is complete, AlphaGo Zero plays the move with the most visit counts.

ExIt was developed independently at the same period as AlphaGo Zero. It shares the same idea as
AlphaGo Zero and succeeds in the board game Hex. AlphaGo Zero is later evolved to Alpha Zero
(Silver et al., 2017), which masters multiple kinds of board games.

3.3 Extracting Forecast Knowledge from a Planner

All the algorithms in the above sections share a common issue, that is, the neural network does
not fully leverage the planner. Weber et al. (2017) explored how to integrate neural networks with
planners in a different way. They proposed Imagination-Augmented Agent (I2A), which learns a
contextual feature from the planner and uses the contextual feature as additional input to the neural
network. More specifically, I2A maintains a deep neural network consisting of a model-free path
f mf and a model-based path f mb. The model-free path f mf is a multi-layer neural network but it
outputs a feature x:

x = f mf(s). (3.13)

The model-based path f mb builds a model (reward and transition) of the environment:

r, s′ = f model(s, a), (3.14)

and learns a contextual feature φ from a local planner. The local planner is implicitly embedded
into the model-based path f mb, just like VPN and TreeQN. For each action a in the current state s,
the planner simulates the future up to certain depth d by a rollout policy πroll. Each simulated future
trajectory τi = {s1, r1, · · · , sd, rd |r1, s1 = f out(s, ai)} is processed by an LSTM module to extract a
slice of contextual feature φ:

φi = f lstm(τi). (3.15)

The contextual feature φ encodes all useful information about the future. The deep network outputs
the policy π and value V based on both x and φ:

P,V = f out(x, φ). (3.16)
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3.3 Extracting Forecast Knowledge from a Planner

Figure 3.3: Architecture of Imagination-Augmented Agents. This figure is taken from [WRR+17].
(a) I2A builds a model of the environment and simulates with the rollout policy on the
environment model. (b) The local planner simulates a future trajectory up to a certain
depth and extracts contextual feature from the trajectory via LSTM. (c) The policy and
value depends on the output feature from both the model-free path and the model-based
path.

Figure 3.3 illustrates the whole I2A architecture.

I2A leverages both current knowledge and forecast knowledge. Thus it surpasses both model-free
and model-based reinforcement learning approaches in data efficiency, performance and robustness.
Our work is mostly close to I2A that we use such contextual feature to improve the network
evaluation.
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4 Neural Networks that Learn from Planning

In this section we discuss how to design a neural network so that it can fully leverage the local
planner. We assume that the environment is deterministic, and the perfect environment is also given
to the agent.

The input to the network is the agent’s current state s. The state s itself is not ideal for the evaluation
task, so the network learns a feature x from state s via a residual tower f res:

x = f res(s). (4.1)

The feature x encodes all useful information of the current state. From feature x the network is then
split into two heads, namely, the value head f v and the policy head f p, estimating the value logits
uv and policy logits up of the current state s, respectively:

uv = f v(x), (4.2)

up = f p(x). (4.3)

The logits uv and up are then rescaled to the desired range by an activation function hu and hv,
respectively, forming the output value V and policy P:

V = hv(uv), (4.4)

P = hp(up). (4.5)

The agent can evaluate its current state s by using a standard model-free network architecture.
Below we will discuss how to combine our idea, learning from forecast knowledge, with the above
network.

We believe that the local planner can tell the agent not only the future prediction such as the value or
policy of future states, but also the future itself. Therefore the local planner in our method plays the
role of both future prediction and forecast information extraction. We need to obtain useful forecast
information from the planner so that the deep network could learn from forecast information. Since
a local planner in general applies a search tree algorithm, we can trace the best trajectory sseq (e.g.
the most frequently visited trajectory) in the search tree. The best trajectory sseq tells the agent the
most promising future if the agent follows its current policy. For the same reason that states in
sseq are not suitable for evaluation tasks, The best trajectory sseq has to be converted to a feature
sequence xseq via the residual tower f res. The feature sequence xseq is a list of future features with
unfixed length, as a result it cannot be directly processed by the deep network which requires inputs
to have fixed size. Instead we apply an LSTM f lstm to learn contextual feature φ from the feature
sequence xseq:

φ = f lstm(xseq). (4.6)

LSTM is good at remembering a long input sequence, so the resulting contextual feature φ encodes
all the useful information of the feature sequence xseq.
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4 Neural Networks that Learn from Planning

Now we can equip the deep network with both current knowledge x and forecast knowledge φ. We
wish that the deep network could learn how to correct its original evaluation of V and P by using
both x and φ. Therefore, the network outputs the delta logits ∆uv and ∆up via the corresponding
calibration heads f vcal and f pcal:

∆uv = f vcal(x, φ), (4.7)

∆up = f pcal(x, φ). (4.8)

∆uv and ∆up serve as a local correction of the original logits uv and up. The calibrated value V ′

and policy P′ can be computed as follows:

V ′ = hv(uv + ∆uv), (4.9)

P′ = hp(up + ∆up). (4.10)

Now the agent can better evaluate its current state s by leveraging the forecast knowledge φ. However,
the calibrated estimation V ′ and P′ cannot be directly used in the local planner because the feature
sequence xseq can only be obtained after planning is complete. To compensate for this shortcoming,
we introduce an imitation module f imi that learns an imitated contextual feature φ̂ without using the
feature sequence xseq:

φ̂ = f imi(x). (4.11)

The imitation module f imi functions as a fast reasoning module of the agent so that the agent can
obtain forecast knowledge by fast reasoning rather than slow planning. The imitated contextual
feature φ̂ plays the same role as the real contextual feature φ except that φ̂ is directly generated from
feature x. Now the agent can better evaluate its current state s in a model-free approach, without
the help of a planner:

∆ûv = f̂ vcal(x, φ̂), (4.12)

V̂ ′ = hv(uv + ∆ûv), (4.13)

∆ûp = f̂ pcal(x, φ̂), (4.14)

P̂′ = hp(up + ∆ûp). (4.15)

We have developed a deep neural network that can fully leverage a local planner. In our model, the
agent is enhanced in two different aspects. First, the deep network improves its evaluation by using
both current knowledge and forecast knowledge. Second, the evaluation of the network is used to
bias a local planner. A detailed description of our model, including the neural network architecture
and the training procedure, is given in Section 6.
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5 Experiment Setup

In this section we briefly describe the environment and the local planner used in our experiment.

5.1 Environment

We test our idea in Othello (also known as Reversi), a two-player competitive board game. The
two participants, black and white, alternatively place a stone of their color in the empty positions
of a 8 × 8 game board. A stone can only be placed in the position where the current player can
flip at least one opponent stones. A player can only pass its turn (do not place any stone on the
game board) if no other moves are available. A game begins with 2 black stones and 2 white stones
diagonally placed in the center of the game board. A participant wins the game if it has more stones
than the opponent at the end of the game. A game may end up with a draw if both players have the
same amount of stones at the end of the game. Figure 5.1 shows an example of the game play.

(a) Beginning (b) Legal moves (c) Ending

1

2 3

Figure 5.1: Othello. (a) The game begins with 4 stones placed in the center of the game board. (b)
Gray circles represent the legal moves for the current player (black). A move is legal if
the player can flip at least one opponent stones. For example, if black plays at position
1, then it can flip the white stones to black at position 2 and 3. (c) Black wins the game
with score 44:20.

Othello has simple rules, which makes it easy to implement. But it also requires deep strategy,
which makes it a challenging task for intelligent agents. Furthermore, it has large state space, which
makes it an ideal test-bed for learning to plan in large domains.
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5 Experiment Setup

5.2 Local Planner

We choose MCTS as the local planner since it is a powerful and widely used local planner for board
games. In particular, we use the PUCT variant of MCTS, which is the planner implemented in
Alpha Zero. See Section 2.6 and Section 3.2.2 for more details. However, we use the model-free
calibrated estimation V̂ ′ and P̂′ to evaluate the leaf nodes in the search tree, instead of using the
basic estimation V and P as in Alpha Zero.
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6 Model Design

In this section, we discuss the neural network architecture and the training procedure for training an
Othello player.

6.1 Neural Network Architecture

Our neural network is based on AlphaGo Zero, but with some extension. The network architecture
is shown in Figure 6.1.

s x

uv V

up P

xseq φ ‖

∆uv + V ′

∆up + P ′

φ̂ ‖

∆ûv + V̂ ′

∆ûp + P̂ ′

f res

fv tanh

fp softmax

MCTS f lstm

fvcal tanh

fpcal softmax

f imi

f̂vcal tanh

f̂pcal softmax

Figure 6.1: Neural network architecture. The value and policy estimation follows the red arrows;
the calibrated value and policy estimation follows the green arrows; the calibrated value
and policy estimation without using MCTS follows the blue arrows.

Input State The first input to the network is the state s, which can be obtained from the game
board. It contains 4 channels, each of which is a binary image of size 8 × 8. The first channel
describes the position of the current player’s stones; the second channel describes the position of
the opponent’s stones; the third channel is either filled with ones if it is black to play, or filled with
zeros if it is white to play; the last channel is either filled with ones if it is white to play, or filled
with zeros if it is black to play.
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6 Model Design

Feature Extraction Feature x is extracted from state s by the residual tower f res, see Equation
4.1. The residual tower f res is composed of a convolutional block and 9 residual blocks. The
convolutional block contains the following operations:

(1) a convolution with 64 filters of kernel size 3 × 3;

(2) a batch normalization;

(3) a rectified linear unit (ReLU).

Each residual block contains the following operations:

(1) a convolution with 64 filters of kernel size 3 × 3;

(2) a batch normalization;

(3) a ReLU;

(4) a convolution with 64 filters of kernel size 3 × 3;

(5) a batch normalization;

(6) a skip connection between the input of step 1 and the output of step 5;

(7) a ReLU.

Value Estimation The value V can be estimated by following Equation 4.2 and 4.4, with the
activation function hv = tanh rescaling the value logits uv to range (−1, 1). The value head f v

contains the following operations:

(1) a convolution with 2 filters of kernel size 1 × 1;

(2) a batch normalization;

(3) a ReLU;

(4) a fully connected layer with 64 output units;

(5) a ReLU;

(6) a fully connected layer with a scalar output.

Policy Estimation The policy P can be estimated by following Equation 4.3 and 4.5, with the
activation function hp = softmax rescaling the policy logits up to a probability distribution. The
policy head f p contains the following operations:

(1) a convolution with 1 filter of kernel size 1 × 1;

(2) a batch normalization;

(3) a ReLU;

(4) a fully connected layer with 65 output units that corresponds to all 64 positions and the pass
move.
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6.1 Neural Network Architecture
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s2
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Figure 6.2: Principal variation in Monte-Carlo Tree Search. The principal variation is the most
frequently visited trajectory in the search tree. In this figure, we execute MCTS with
10 simulations. The number near the arrow indicates the total visit counts for the
corresponding action. The principal variation sseq = [s, s1, s2, s3, s4] is shown with red
arrows.

Input Feature Sequence The second input to the network is the feature sequence xseq, which
can be obtained from the best trajectory in MCTS. We choose the principal variation as the best
trajectory. The principal variation sseq = [s, s1, · · · , sleaf] is the most frequently visited trajectory in
the search tree from root node s until leaf node sleaf. Figure 6.2 illustrates this concept. The feature
sequence xseq = [xleaf, · · · , x1, x] can be computed by feeding all states in sseq to the residual tower
f res in the reversed order.

Contextual Feature Extraction Contextual feature φ can be extracted from feature sequence xseq
by the LSTM module f lstm, see Equation 4.6. The LSTM module f lstm contains the following
operations:

(1) a Convolutional LSTM (Shi et al., 2015);

(2) a filter that only keeps the last output;

(3) a batch normalization;

(4) a ReLU.

Note that the feature sequence xseq is sorted in the reversed order so that the last output of LSTM
corresponds to the contextual feature of the current state s.

Calibrated Value Estimation The calibrated value V ′ can be estimated by following Equation 4.7
and 4.9. The value calibration head f vcal contains the following operations:

(1) a concatenation of feature x and contextual feature φ along the last dimension;

(2) a convolution with 2 filters of kernel size 1 × 1;
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6 Model Design

(3) a batch normalization;

(4) a ReLU;

(5) a fully connected layer with 64 output units;

(6) a ReLU;

(7) a fully connected layer with a scalar output.

Calibrated Policy Estimation The calibrated policy P′ can be estimated by following Equation
4.8 and 4.10. The policy calibration head f pcal contains the following operations:

(1) a concatenation of feature x and contextual feature φ along the last dimension;

(2) a convolution with 1 filter of kernel size 1 × 1;

(3) a batch normalization;

(4) a ReLU;

(5) a fully connected layer with 65 output units that corresponds to all 64 positions and the pass
move.

Contextual Feature Imitation Imitated contextual feature φ̂ can be learned from feature x by the
imitation module f imi, see Equation 4.11. The imitation module f imi is composed of 3 residual
blocks. Each residual block contains the following operations:

(1) a convolution with 64 filters of kernel size 3 × 3;

(2) a batch normalization;

(3) a ReLU;

(4) a convolution with 64 filters of kernel size 3 × 3;

(5) a batch normalization;

(6) a skip connection between the input of step 1 and the output of step 5;

(7) a ReLU.

Model-Free Calibrated Estimation The model-free calibrated value V̂ ′ can be estimated by
following Equation 4.12 and 4.13; the model-free calibrated policy P̂′ can be estimated by following
Equation 4.14 and 4.15. The model-free value calibration head f̂ vcal has the same structure as its
model-based counterpart f vcal, except that in step (1) we concatenate feature x and imitated feature φ̂.
Note that both f vcal and f̂ vcal share the same set of variables, except for the variables in the convolution
kernel of step (2). Similar structure and variable sharing mechanism applies to the policy calibration
head f̂ pcal. Figure 6.3 illustrates the variable sharing mechanism.
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6.2 Training

Head Input Convolution
kernel

fvcali x‖φ kv1‖kv2

f̂vcali x‖φ̂ kv1‖kv3

(a) Variable sharing among value calibration heads

Head Input Convolution
kernel

fpcali x‖φ kp1‖kp2

f̂pcali x‖φ̂ kp1‖kp3

(b) Variable sharing among policy calibration heads

Figure 6.3: Variable sharing among different heads. (a) Both f vcal and f̂ vcal share the same set of
variables, except for the variables in the convolution kernel. Specifically, we assume
the convolution kernel of f vcal to be kv

1 ‖k
v
2 , the convolution kernel of f̂ vcal to be kv

1 ‖k
v
3 ,

where ‖ is the concatenation operator. kv
1 is the common kernel in both heads due to

the same input component x. kv
2 and kv

3 correspond to the kernel of the remaining input
component φ and φ̂, respectively. (b) The same variable sharing mechanism applies to
the policy calibration heads.

6.2 Training

The training procedure of our model is similar to Alpha Zero. The network is trained with imitation
learning technique to continuously learn from a better expert, the MCTS. The training pipeline is
composed of three modules: (1) tournament, where the latest player αθi competes with the current
best player αθ∗ ; (2) self-play, where the current best player αθ∗ generates new self-play data; (3)
optimization, where the latest network θi is optimized. All these three modules are implemented
using multiprocessing, see Appendix A for more details. For each iteration these three modules are
executed sequentially, except that for the first iteration i = 0 the tournament module is replaced by
the initialization module to generate the initial network θ0. The whole training process is shown in
Algorithm 6.1.

6.2.1 Initialization

The network is initialized with uniformly random weights θ0 sampled from the interval [−0.05, 0.05].
The current best network θ∗ is also initialized to be the same as the initial network θ0.

6.2.2 Tournament

The latest player αθi competes with the current best player αθ∗ for a total of 400 tournament games.
For a fair competition, the latest player plays black for 200 games and plays white for the remaining
200 games. Both players use MCTS with 100 simulations to select each move. To encourage
variations of the tournament games, we add a light Dirichlet noise to the prior probabilities in the
root node, P′(s, a) = (1− ε1)P(s, a)+ ε1η, where η ∼ Dir(0.03) and ε1 = 0.05. The behavior policy
is alway greedy with respect to the searching probability π, that is, the player always plays the best
move throughout the tournament game. If the latest player αθi wins at least 55% of the games, then
it becomes the current best player αθ∗ and it will be used to generate new self-play games.
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6 Model Design

Algorithm 6.1 Training Process.
i = 0
while True do

if i = 0 then
# Initialization
initialize network θ0
initialize the current best network θ∗ = θ0

else
# Tournament
hold 400 tournament games between αθ∗ and αθi
if αθi wins at least 55% of the games then

update the current best network θ∗ = θi
end if

end if
# Self-play
generate 2500 self-play games from the current best player αθ∗
# Optimization
for j in range(500) do

sample a mini-batch size of 256 training data from the most recent 25000 self-play games
end for
for j in range(500) do

update θmain over loss l1
end for
for j in range(500) do

update θenh over loss l2
end for
for j in range(500) do

update θimi1 over loss l31

update θimi2 over loss l32

end for
save the network θi+1
i = i + 1

end while

6.2.3 Self-Play

2500 self-play games are generated from the current best player αθ∗ . The best player αθ∗ uses
MCTS with 100 simulations to select each move for both black and white. To encourage exploration
in self-play games, we add a heavy Dirichlet noise to the prior probabilities in the root node,
P′(s, a) = (1 − ε2)P(s, a) + ε2η, where η ∼ Dir(0.03) and ε2 = 0.25. In order to explore all kinds of
openings, the behavior policy follows the searching probability π for the first 6 moves, and becomes
greedy afterwards. All self-play games are stored to files in the form of (s, π, z, aseq), where aseq is
the action sequence that follows the principle variation. To save space, we store the action sequence
aseq rather than the principal variation sseq itself.
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6.2 Training

6.2.4 Optimization

The training data (s, π, z, aseq) are randomly sampled from the most recent 25000 self-play games.
The latest network θi is optimized using TensorFlow with a mini-batch size of 256. We use stochastic
gradient descent optimizer with momentum = 0.9. The learning rate lr is annealed throughout the
whole training process: lr = 0.02 for the first 100 iterations; lr = 0.002 for the next 100 iterations;
lr = 0.0002 for the remaining iterations. The optimization is composed of three phases. In each
phase, a subset of the network parameters is optimized over some loss for 500 training steps. Once
the optimization is complete, the network parameters are saved and a new player αθi+1 will be
generated.

In the first phase we optimize the variables in θmain over the loss l1:

l1 = (z − V)2 − π log P + c‖θmain‖
2, (6.1)

where c = 10−4 is a scaling factor for L2 weight regularization; θmain is the set of all variables in
f res, f v, f p. Loss l1 is the same loss used in Alpha Zero, which enforces the value V and the policy
P to be close to z and π respectively.

In the second phase we optimize the variables in θcal over the loss l2:

l2 = (z − V ′)2 − π log P′ + c‖θcal‖
2, (6.2)

where θcal is the set of all variables in f lstm, f vcal and f pcal. Loss l2 enforces the calibrated value V ′

and policy P′ to be close to z and π respectively.

In the third phase we simultaneously optimize the variables in θimi1 over the loss l31 :

l31 = cf‖φ − φ̂‖
2 + c‖θimi1 ‖

2, (6.3)

and the variables in θimi2 over the loss l32 :

l32 = (z − V̂ ′)2 − π log P̂′ + c‖θimi2 ‖
2, (6.4)

where cf = 10 is a scaling factor for the feature loss; θimi1 is the set of all variables in f imi; θimi2
is the set of non-shared variables in f̂ vcal and f̂ pcal (the convolution kernel kv

3 and kp
3 in Figure 6.3).

Variables in θimi1 are updated to make the imitation block f imi mimic the contextual feature φ;
variables in θimi2 are updated to make the model-free calibrated value V̂ ′ and policy P̂′ to be close
to z and π respectively.

35





7 Experiment Result and Discussion

We demonstrate the performance of our model in the Othello environment. First, we show the
general statistics over the whole training process. Then we evaluate the influence of forecast
knowledge on the game play. Finally we compare our model with Alpha Zero.

7.1 General Statistics

We measure the average loss for each training iteration by randomly sampling an additional 200
mini-batches of training data, which are not used during parameter optimization. Figure 7.1 shows
the average value and policy loss over the whole training process. The basic estimation V and P
has the highest error (red curves); the calibrated estimation V ′ and P′ has the lowest error (green
curves); the model-free calibrated estimation V̂ ′ and P̂′ lies in the middle (blue curves). The result
implies that the neural network can significantly benefit from forecast knowledge φ. Furthermore,
using imitated forecast knowledge φ̂ also leads to lower losses, even though it is not as good as
using the real forecast knowledge φ. In particular, it is rather difficult for the network to learn a
better policy from φ̂, which we believe is due to the scaling issue that the network has to learn 65
output units simultaneously.
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Figure 7.1: Average loss over the whole training process. The red curves correspond to the basic
estimation loss l1; the green curves correspond to the calibrated estimation loss l2; the
blue curves correspond to the model-free calibrated estimation loss l32 .

37



7 Experiment Result and Discussion

7.2 Game-Play Performance

General statistics alone is not enough to evaluate the agent’s playing strength. We want to know how
forecast knowledge can influence the game play. So we hold 10 groups of tournament to measure
the game-play performance. For each group, a different challenger plays against the same baseline
player for 400 games. All challengers use the model-free calibrated estimation V̂ ′ and P̂′ to evaluate
the leaf nodes in the search tree, while the baseline player uses the basic estimation V and P to
evaluate the leaf nodes. Those 10 challengers only vary in the number of simulations executed by
MCTS. Specifically, challenger in group i = 1, · · · , 10 runs 10 × i simulations during tree search.
The baseline player, in contrast, runs 100 simulations throughout all 10 tournaments.
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Figure 7.2: Winning rate of challengers against the baseline player. The horizontal axis represents
the number of simulations used by the challenger. Winning rate over 0.5 means that
the challenger is stronger than the baseline player. left: The average winning rate of
each challenger is calculated from 3 different trials. right: The average winning rate
of each challenger is calculated from 10 different trials to reduce the variance of the
tournament result.

We conduct this experiment based on player αθ20 and αθ30 , and report the average winning rate of
each challenger from 3 different trials in Figure 7.2 left. The challenger defeats the baseline player
when both sides use 100 simulations for the search tree. The challenger has approximately equal
playing strength as the baseline player when the challenger only runs 80 simulations per tree search.
In order to further validate our experiment result, we conduct an additional experiment with the
challenger using 80, 85, 90, 95, 100 simulations for the tree search, and report the average winning
rate of each challenger from 10 different trials in Figure 7.2 right. We observe similar result from
the additional experiment. This concludes that using forecast knowledge, even if it is generated by
the agent’s intuition rather than the real planning, gives the agent a performance boost in the game
play.
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7.3 Comparison with Alpha Zero

7.3 Comparison with Alpha Zero

We know that using forecast knowledge can improve the agent’s playing strength. However, we
still need to verify whether our method can outperform the Alpha Zero algorithm. Therefore we
trained an Alpha Zero variant as a baseline for our comparison. The Alpha Zero variant has the
same neural network architecture as our standard model, but it uses the basic estimation V and P to
evaluate the leaf nodes when generating self-play games. In contrast, our standard model uses V̂ ′

and P̂′ to evaluate the leaf nodes so that we can always generate self-play games with potentially
higher quality. We hold 3 groups of tournament to compare our model with Alpha Zero. Each
tournament lasts 400 games. For the first group, both sides use V and P to evaluate the leaf nodes;
for the second group, both sides use V̂ ′ and P̂′ to evaluate the leaf nodes; for the third group, the
Alpha Zero variant uses V and P to evaluate the leaf nodes while the standard model uses V̂ ′ and P̂′

to evaluate the leaf nodes. For a fair comparison, both sides use their respective network parameters
θiat the same training step i, and simulate 100 times per tree search.

Player Alpha Zero Standard Model Average Winning Rate

20 0 0 0.5705
20 1 1 0.5939
20 0 1 0.6389
30 0 0 0.5211
30 1 1 0.5955
30 0 1 0.6046

Table 7.1: Winning rate of the standard model against the Alpha Zero variant. The value under the
column “Alpha Zero” and “Standard Model” indicates whether forecast knowledge φ̂ is
used in the network for the corresponding model. Specifically, “0” means the model
uses V and P to evaluate the leaf nodes; “1” means the model uses V̂ ′ and P̂′ to evaluate
the leaf nodes. The average winning rate in each row is calculated from 3 different trials.

We conduct this experiment based on player αθ20 and αθ30 , and report the average winning rate of
the standard model from 3 different trials in Table 7.1. The standard model defeats the Alpha Zero
variant in all cases. Note that the standard model only differs from the Alpha Zero variant in the
self-play stage. This concludes that using forecast knowledge can indeed speed up the training
process since better training data can be generated with forecast knowledge.
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8 Conclusion and Outlook

In this thesis, we listed some of the recent reinforcement learning approaches that integrate neural
networks with planners. We pointed out a common issue among those approaches, that is, the
neural network does not fully leverage the planner. We presented a neural network architecture
which can correct its initial evaluation by using forecast information derived from a local planner.
We tested our idea in Othello games in combination with the Alpha Zero algorithm. The empirical
result shows that the neural network can provide much more accurate estimation when equipped
with both current knowledge and forecast knowledge. However, such accurate estimation cannot be
achieved when we replace the real forecast knowledge with an imitated one, since we cannot use the
real forecast knowledge during planning. As a result, the actual performance of our method cannot
achieve the ideal level where the real forecast information is already provided to the agent before
planning, but our method still performs better than the Alpha Zero baseline. We believe there is still
a large improvement space for our method. Extracting better information from the planner, as well
as imitating such forecast information with better final performance, is an interesting direction for
future research.
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A Implementation Details

The whole training process is implemented using multiprocessing. In this section we explain how
this is achieved.

A.1 Tournament and Self-Play

In tournament and self-play, we need to generate a large amount of games. Generating those games
sequentially is infeasible for the training. Therefore we use multiprocessing to generate games in
parallel. More specifically, we spawn 25 processes and run them on the server in parallel. Each
process plays up to 50 games simultaneously using multi-threading. Each game spawns 2 threads to
execute MCTS. Once all threads finish one simulation, all the newly expanded leaf nodes will be
evaluated by the deep network. Evaluating multiple entries at one time is far more efficient than
evaluating one entry at each time. Figure A.1 illustrates this mechanism.

Self-play

Process 1

...

Process i

...

Process 25

Game 1

...

Game j

...

Game 50

Thread 1a

Thread 1b

...

Thread ja

Thread jb

...

Thread 50a

Thread 50b

One simulation
per thread

Evaluation
2500 games 100 games

Figure A.1: Multiprocessing mechanism in tournament and self-play. We use self-play in this
example. The workload of generating 2500 games is distributed over 25 processes,
each of which only needs to generate 100 games. Each process plays 50 games
simultaneously, which means it takes the process 2 rounds to generate 100 games.
Each game spawns 2 threads to execute MCTS. Once all the 50 × 2 = 100 threads
finish one simulation, all the newly expanded leaf nodes will be evaluated by the deep
network.
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A.2 Optimization

The training data (s, π, z, aseq) has to be preprocessed before they can be used for the optimization.
This preprocessing step actually takes much longer time than the parameter optimization step.
To reduce preprocessing time, we sample all 500 mini-batches of training data before parameter
optimization. We spawn 25 processes and divide the workload among them. These processes run
on the server in parallel. Once all processes complete their tasks, we continue with parameter
optimization.
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