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Abstract

This work introduces a new tool that can be used to find secure parameters for schemes based on the
Learning with Errors (LWE) and the Short Integer Solution (SIS). Since the proposal of worst-case
to average-case reductions from certain hard lattice problems to SIS and LWE respectively, both SIS
and LWE have led to a plethora of cryptograpic schemes. Lattice based cryptography is highly in
demand particularly in the context of post-quantum cryptography, as the era of quantum computing
will render several widely applied schemes, such as RSA, insecure. To use LWE and SIS in practice,
we first must establish their concrete hardness. Given a set of paramters, we can estimate the
hardness of a problem instance by estimating the runtime of the currently best known algorithms
that solve the respective problem instance. This has been done for LWE in the LWE Estimator by
Albrecht et al. (JMC 2015) and subsequent works. However, at this point, there is no unified tool
that provides estimates for both LWE and SIS as well as their ring and module variants.

We aim to close this gap with a new Python library. Our tool includes previous estimates for LWE
from the LWE Estimator and adds new attack estimates for SIS. In this thesis, we give an overview
of the LWE and SIS problems and describe various algorithms that that can be used to solve them.
In addition, we present current popular cost models that many estimates rely on from the literature.
At the core of our tool is a generic paramter search function that is both simple to use and allows for
extensive customization. Our tool supports important problem variants in several p-norms, norm
bound estimates and distribution classes.
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1 Introduction

The rise of quantum computing promises great progress in areas that are considered to be very
difficult for classical computers. At the same time, it poses a threat to cybersecurity, as some widely
used cryptographic schemes that are assumed to be secure for classical computers no longer are
secure in the era of quantum computing. The idea of quantum computing began in the early 1980’s
with a quantum mechanical model of a Turing machine by Paul Benioff [24]. It soon became clear
that quantum computing has a great advantage over classical computing in certain applications. In
1994, Peter Shor proposed algorithms to solve the problems of integer factorization and discrete
logarithms in polynomial time [89]. As a result, cryptographic schemes that rely on the hardness
of either of those assumptions, such as RSA, can be efficiently broken by quantum computers.
Another popular algorithm that we will refer to later on, Grover’s search algorithm (1996), leads to a
quadratic speedup of search on unstructured data [43]. Recent years have shown increasing interest
and investments into quantum computing both by startups and large corporations like Google and
IBM. For example, only a few months ago, Europe’s most powerful 27-Qubit IBM Quantum System
One was inaugurated in Ehningen, Germany [71]. The current standard of technology, however, is
still at a relatively immature stage and therefore, quantum computers are mainly used for academic
purposes. The realization of fully capable quantum computers is not expected to happen for at least
another five to ten years. Nevertheless, particularly in the area of cryptography, we need new secure
encryption schemes that can replace previous schemes and are based on different and stronger
hardness assumptions. One solution that has gained great popularity over the last two decades is
lattice-based cryptography.

The concept of lattices has been applied in cryptography since the end of the last century. Lattice
reduction algorithms, such as the LLL algorithm, resulted in a number of new practical attacks on
popular cryptosystems [73]. Then, in 1996, the landmark work of Ajtai [2] laid a foundation for a
new family of cryptosystems. He showed that any instance of a certain lattice problem, namely,
the approximate Shortest Vector Problem (SVPW), can be reduced to a randomized instance of the
Short Integer Solution (SIS) problem. This implies that an average-case SIS instance is at least as
hard as a worst-case instance of SVPW , resulting in very strong security guarantees. Later, Regev
came up with a similar worst-case to average-case reduction for the Learning with Errors (LWE)
problem [82]. SIS and LWE can be applied to create advanced cryptographic primitives, even some
that seemed infeasible before. The SIS problem can be used to build one-way functions [2, 68],
collision resistant hash functions [41], identity-based encryption schemes [60] and digital signature
schemes [39, 61]. LWE is even more powerful than SIS and leads to a number of public-key
encryption schemes [64, 77, 82], identity-based encryption schemes [1, 39], somewhat and fully
homomorphic encryption schemes [30, 38, 40] and more. In addition to good security guarantees
and an abundance of applications, the required key sizes are relatively small (quasilinear) and we
obtain good practical runtimes.
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1 Introduction

To use LWE and SIS in practice, we first need to find a set of parameters to parameterize the problem
instance used in a scheme such that the chosen parameters satisfy a certain security requirement.
We can measure the security of an instance by means of a bit security level sec. A security level
of sec = 128 means that an attacker has to perform at least 2128 operations to solve the respective
problem instance. In general, it is difficult to find hard lower bounds on the number of operations
required to break a scheme. Even if they exist, they may not be realistic in practice and lead to
larger key sizes and therefore less efficient schemes than really needed. We therefore need a way to
estimate the concrete hardness of LWE and SIS. This can be achieved by examining the runtime
complexity of the currently best attack algorithms. Albrecht et al. [13] and follow-up works such
as [4, 26] performed an in-depth study of the practical hardness of LWE and encapsulated their
findings in the LWE Estimator1, which we will subsequently call estimator. However, the estimator
does not include estimates for SIS, and specifying distributions is not very user-friendly as of now.
In addition, it only returns costs for a fixed parameter set. A user must specify a search function by
himself.

In this work, we aim to fill this gap with a new Python library, which we call Lattice Parameter
Estimation2 and will subsequently refer to simply as tool. Our tool can be used to generically search
for secure parameter sets given a set of problem instances. We provide classes for LWE and SIS,
their ring and module variants, and statistically secure variants where applicable. We also included
more convenient distribution classes and classes for various ℓ?-norms and the canonical embedding,
since several attacks use bounds in some ℓ? norm and cryptographic schemes oftentimes require
some guarantees on the bounds of operands. We use the estimator for cost estimates for LWE
instances and add two new estimation algorithms for SIS instances.

1.1 Organization

In Chapter 2, we introduce lattices, lattice problems and their variants and a number of mathematical
tools that will be needed later on. In Chapter 3, we describe the main approaches and algorithms
that we use in our tool to solve LWE and SIS. We remark on the complexity of the algorithms,
whenever feasible in the scope of our work, and present several lattice reduction cost models from
the literature. Finally, in Chapter 4, we explain our tool in more detail and give an overview of the
various functionalities and configuration options. The discussion in previous chapters, in particular,
the presentation of reduction cost models in Section 3.1.3, aims to help users of our tool to be aware
of the impact of configuration choices and to understand estimate results of our parameter search.

1https://bitbucket.org/malb/lwe-estimator/
2https://github.com/krebsni/a-tool-for-the-estimation-of-lattice-parameters
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2 Preliminaries

2.1 Notation

In the following, we denote vectors by bold lower-case letters v and matrices by bold upper-case letters
M. We interchangeably use matrix notation and sets of column vectors [v1 · · · v=] = {v1, . . . , v=}.
Unless specified otherwise, by ‖ · ‖ or simply norm we refer to the Euclidean norm. By [=] we
denote the set {1, . . . , =} for = ∈ N \ {0}. We denote the logarithm base 2 by log and the natural
logarithm with base 4 by ln. In order to avoid confusion, throughout this work, we let f denote
the standard deviation, and set B = f

√
2c and U = B

@
=
√

2cf
@

for other commonly used Gaussian
parameters.

2.2 Norms

We can define the standard ℓ?-norms on the vector space R=. In this work, we will also consider
rings and modules (see Section 2.5.3) and require a way to bound the length of ring and module
elements. Let R@ = Z@ [-]/〈-= + 1〉 be a quotient ring as defined in [21] and 5 ∈ R@ with
5 =

∑
8 58-

8 . Following [21], we define the norms

ℓ1 : ‖ 5 ‖1 =
∑
8

| 58 |,

ℓ2 : ‖ 5 ‖2 =
√∑

8

| 58 |2,

ℓ? : ‖ 5 ‖? =
(∑
8

| 58 |?
) 1

?

and

ℓ∞ : ‖ 5 ‖∞ = max
8
| 58 |.

(2.1)

For standard vector spaces, the definitions are essentially equivalent to the above, except that 5 is a
vector in R= or, in our case, Z= with coefficients 58. For a module element f ∈ R3@ , we can simply
view f as a = · 3-dimensional vector.

2.3 Lattices

We now present the mathematical definition of lattices and related tools that we will use later on.
Most of the background theory is based on material from [65] with some adaptions.
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2 Preliminaries

G

H

11 12

(a) Lattice with basis b1 = (0, 1)ᵀ, b2 = (2, 1)ᵀ

G

H
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(b) Lattice with basis b1 = (0, 1)ᵀ, b2 = (2, 0)ᵀ

Figure 2.1: Lattice Examples

A lattice Λ is a discrete additive subgroup of the vector space R<. Every lattice can be defined by a
basis B of = linearly independent basis vectors b1, . . . , b= ∈ R< with < ≥ =. A lattice is then the
set of all integer linear combinations of the basis vectors in B. Figure 2.1a shows a lattice with basis
vectors b1 = (0, 1)ᵀ and b2 = (2, 1)ᵀ.
Definition 2.3.1 (Lattice)
Given a basis B = [b1, . . . , b=] ∈ R<×=, we call Λ a lattice generated by the column vectors of B if

Λ(B) =
{

x ∈ R<
����� ∃21, . . . , 2= ∈ Z : x =

=∑
8=1

28b8

}
. (2.2)

We call = the rank of the lattice. A lattice has full rank if the = = <. The basis of a lattice B is not
unique. The two example lattices in Figure 2.1 are identical, but have different bases. If B is a basis
of a lattice Λ, then for any unimodular matrix U ∈ Z=×= with determinant ±1, the basis B ·U is also
a basis of Λ. In cryptographic applications, we usually begin with a lattice basis B with long basis
vectors that are not very orthogonal to each other. For example, the problem of finding a short vector
(SVP or SVPW , see Definition 2.3.2) in Λ(B) turns out to be very difficult. If we can somehow find
a “nicer” basis for Λ(B) with shorter and more orthogonal basis vectors, finding a solution becomes
a lot easier. We can improve the quality of a basis or “reduce” a basis in such a way by means of
lattice basis reduction. The basis in Figure 2.1b is ideal, i.e., it cannot be further reduced, whereas
the basis in Figure 2.1a can be reduced. In this particular case, the reduction is quite trivial. We can
simply compute b′2 = b2 − b1 and take {b1, b′2} as our new basis. But more to that later.

Similar to a quotient ring Z/@Z of integers modulo some positive integer @ with cosets 2 + @Z, we
can define the quotient group R</Λ with cosets

c + Λ = {c + v | v ∈ Λ} (2.3)

where c ∈ R< [75].

An important concept is the fundamental domain of a lattice. The fundamental domain is a subset of
R< that contains exactly one representative of every coset ofR</Λ. The most commonly considered
fundamental domain of a lattice with basis B is the (shifted) fundamental parallelepiped

P1
2
(B) = B ·

[
−1

2
,

1
2

)=
=

{
x ∈ R<

����� x =
=∑
8=1

28b8 , 28 ∈
[
−1

2
,

1
2

)}
(2.4)
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2.3 Lattices

Another region that is often used is the Voronoi regionV [44] and is defined as

V = {x ∈ R= | ∀y ∈ Λ : ‖x‖ ≤ ‖x − y‖} . (2.5)

The =-dimensional volume of the fundamental parallelepiped of a lattice Λ(B) is equivalent to
the determinant of the lattice det(Λ(B)) =

√
det (BᵀB). For a full-ranked lattice, the determinant

becomes det(Λ(B)) = | det(B) |. The determinant is independent from the used basis, which can be
easily verified by looking at det(Λ(UB)).

The minimum distance _1(Λ) of a lattice is the length of its shortest nonzero vector

_1(Λ) = min
E∈Λ\{0}

‖v‖. (2.6)

Furthermore, we can define 8th successive minima _8 (Λ) by considering an <-dimensional ball
B(0, A) with increasing radius A ∈ R and center 0 ∈ R< at the origin of Λ. Then, _8 (Λ) is the
smallest radius A such that the ball B(0, A) contains exactly 8 linearly independent lattice vectors.
Note that an optimally reduced basis with basis vectors b1 ≤ b2 · · · ≤ b= satisfies _8 (Λ) = ‖b8 ‖ for
all 8 ∈ [=].

In general, it is hard to determine the exact values of _8 (Λ(B)) for a given basis B. Minkowski’s
theorem states that _1(Λ) ≤

√
= · (det(Λ)) 1

= given that Λ has rank =. The Gaussian heuristic is
commonly used to estimate the minimum distance _1 of a lattice Λ given the determinant detΛ:

_1(Λ) ≈
Γ(1 + =/2)1/=

√
c

det(Λ)1/= (2.7)

By applying Stirling’s formula to estimate the value of the Γ-function as described in [42], we can
simply the estimate to

_1(Λ) ≈
√

=

2c4
det(Λ)1/= (2.8)

The dual Λ⊥ of a lattice Λ(B) is defined as the set of vectors y in the span of B, such that the inner
product 〈y, v〉 is an integer for all v ∈ Λ(B). The basis of the dual of a lattice with basis B is given
by B′ = B(BᵀB)−1.

In cryptography, we are mainly interested in modular integer (or @-ary) lattices. A @-ary lattice is a
lattice Λ@ such that @Z< ⊆ Λ ⊆ Z< given @ ∈ N \ {0}. This means that a vector x ∈ Z< is in Λ if
and only if x mod @ also is in Λ.

We now look at two important ways of specifying a @-ary lattice given a matrix A ∈ Z=×<@ [26].

Λ@ (Aᵀ) = {v ∈ Z< | ∃y ∈ Z= : v = Aᵀy mod @} (2.9)

Λ@ (Aᵀ) is commonly referred to as the (primal) LWE lattice, since finding a short vector in Λ@ (Aᵀ)
corresponds to solving LWE. The second, referred to as the (dual) SIS lattice, is given by

Λ⊥@ (A) = {v ∈ Z< | Av = 0 mod @} . (2.10)

Finding a short vector in Λ⊥@ (A) corresponds to solving the Short Integer Solution problem.
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2 Preliminaries

In many scenarios, it is convenient to have an explicit formula that describes the relationship between
the determinant of the above two lattices and the dimensions of A. For @ prime and < sufficiently
larger than =, we have that the rank of A is =, since the rows of A are linearly independent with high
probability. As a result, the lattice Λ@ (Aᵀ) has @= points in Z<@ . Consider the fundamental domain
� = P1/2(Λ@ (Aᵀ)) and the fact that (Λ@ (Aᵀ) mod @) + (� mod @) = R</@R< is a partition [48].
The volume of R</@R< is given by @< = | (Λ@ (Aᵀ) mod @) | |� mod @ | and thus

det(Λ@ (Aᵀ)) = |� mod @ | = @<

| (Λ@ (Aᵀ) mod @) | =
@<

@=
= @<−=. (2.11)

Furthermore, we know that the dual lattice Λ⊥@ (A) has @<−= points in Z<@ as the dimension of the
kernel of A is < − =. Analogously, we obtain

det(Λ@ (Aᵀ)⊥) = |� mod @ | = @<

| (Λ@ (Aᵀ) mod @) | =
@<

@<−=
= @=. (2.12)

Another useful tool it the Gram-Schmidt orthogonalization . Given a basis B = [b1 · · · b=] ∈ Z<×=@ ,
we write cspan(B) (t) for the projection of a vector t onto the span of the vectors in B. Define b̃8 as
follows: b̃1 = b1. For 8 ∈ {2, . . . , =}, let b̃8 be the component of b8 that is orthogonal to the span of
{b1, . . . , b8−1}. In other words,

b̃8 = b8 − cspan(b1,...,b8−1) (b8). (2.13)

Then, B̃ =
[
b̃1 · · · b̃=

]
is called the Gram-Schmidt orthogonalization of the basis B. We define the

Gram-Schmidt coefficients as follows:

`8, 9 =

〈
b̃ 9 , b8

〉〈
b̃ 9 , b̃ 9

〉 (2.14)

We define dist(t,Λ(B)), where Λ(B) ⊂ R<, as the distance of a vector t ∈ R< to the closest lattice
vector v ∈ Λ(B), i.e., dist(t,Λ(B)) = minv∈Λ(B) ‖t − v‖.

2.3.1 Lattice Problems

In the previous section, we already mentioned the Shortest Vector Problem or short SVP. In this
section, we want to briefly list several lattice problems that are used to show the hardness of LWE
and SIS.

Definition 2.3.2 (SVP$)
Given a basis B of a lattice Λ, the (approximate) Shortest Vector Problem (SVPW) is the problem of
finding a short lattice vector E ∈ Λ such that 0 < ‖E‖ ≤ W_1(Λ).

The corresponding decision version is the GapSVPW problem, in which we are asked to decide
whether _1(Λ) ≤ 1 or _1(Λ) ≥ W given a basis B of Λ. If neither is the case, any answer is accepted.
In an alternative version of GapSVPW , we have to decide between _1(Λ) ≤ 3 and _1(Λ) ≥ W3 for
some positive real number 3 [62].
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2.4 Discrete Gaussian Distribution

Definition 2.3.3 (SIVP$)
Given a basis B of a lattice Λ of rank =, the (approximate) Shortest Independent Vector Problem
(SIVP) is the problem of finding = linearly independent lattice vectors v1, . . . , v= ∈ Λ such that
‖v8 ‖ ≤ W · _= (Λ) for all 8 ∈ {1, . . . , =}.

Both GapSVPW and SIVPW are NP-hard for any constant approximation factor W [27, 52].

2.4 Discrete Gaussian Distribution

Oftentimes in lattice cryptography, we work with samples or vectors drawn from a discrete uniform
or Gaussian distribution. We can define a discrete Gaussian distribution as follows:

Definition 2.4.1 (Discrete Gaussian Distribution [44])
The discrete Gaussian distribution �Λ,B,c over an <-dimensional lattice Λ with width parameter
B > 0 and center c is the probability distribution we obtain by assigning each vector x ∈ Λ a
probability proportional to 4−c ‖x−c‖2/B2 . If c = 0 we simply write �Λ,B.

A discrete Gaussian sampler over a lattice can be efficiently realized (see [39]). Recall that f denotes
the standard deviation and we use width parameter B =

√
2cf. Furthermore, U = B

@
=
√

2cf
@

.

2.5 LWE and SIS

In Chapter 1, we informally introduced the Learning with Errors (LWE) problem and the Short
Integer Solution (SIS) problem that constitute the main focus of this work. Both problems have
given rise to a plethora of cryptosystems with strong underyling hardness assumptions, particularly
in the context of the imminent advent of quantum computing. Hence, their importance in modern
cryptography cannot be understated. We will now continue to describe LWE and SIS in more
detail.

2.5.1 Learning with Errors (LWE)

The Learning with Errors (LWE) problem asks us to recover some secret vector s ∈ Z=@ from a
sequence of perturbed random linear equations on s. The perturbed linear equations, also called
samples, are of the form 〈a8 , s〉 + 48 mod @, where a8 are randomly chosen over Z=@ and 48 are error
terms. We obtain a total of < samples and can thus also express the equation system that is to be
solved as z = Aᵀs + e mod @, where A ∈ Z=×< and e ∈ Z<. Note that we only know z and A. A
formal definition follows.

Definition 2.5.1 (LWE Distribution [84])
Given an integer = ≥ 1, a modulus @ ≥ 2, an error distribution j on Z@ , and a fixed secret vector s,
let As,j be the probability distribution over Z=@ × Z@ by choosing a vector a8 ∈ Z=@ uniformly at
random and 48 ∈ Z@ according to j. As,j outputs pairs of

(a8 , 〈a8 , s〉 + 48 mod @) ∈ Z=@ × Z@ . (2.15)
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Additions are performed in Z@ . In the case of @ = 2, the LWE problem corresponds to the Learning
Parity with Noise (LPN) problem. We distinguish between two versions of LWE.

Definition 2.5.2 (Search-LWEn,q,m,6)
The Search-LWE=,@,<,j asks for the recovery of the secret vector s, given < independent samples
(a8 , I8) ← As,j

Definition 2.5.3 (Decision-LWEn,q,m,6)
Given < samples, the Decision-LWE=,@,<,j asks to distinguish whether the samples were drawn
from As,j or from a uniform distribution on Z=@ × Z@.

Intuitively, Search-LWE is at least as hard as Decision-LWE as a solution to Search-LWE trivially
solves Decision-LWE. The other direction, however, also holds true [83] for a prime modulus
@ = poly(=). The equivalence of the search and decision versions is convenient when we consider
common attacks against LWE, some of which solve Decision-LWE and others solve Search-LWE
(see Chapter 3).

LWE as a Decoding Problem

We request < samples (a1, I1), . . . , (a<, I<) where I8 = 〈a8 , s〉 + 48 ∈ Z@ and s ∈ Z=@. Let
� = [a1 · · · a<] ∈ Z=×<@ , z = [I1, . . . , I<]ᵀ and 4 = [41, . . . , 4=]ᵀ ∈ Z=@. Hence, we can formulate
LWE as a decoding problem as in [44]:

z = Aᵀs + e (2.16)

with generator matrix A for a linear code over Z@ and z as the received word (see Appendix A.1 for
more details about linear codes). Finding the secret vector z is equivalent to finding the codeword
y = Aᵀs with minimum distance ‖y − z‖.

We can transform an LWE=,@,<,j instance with a secret vector s chosen according to a uniform
distribution into an LWE=,@,<−=,j instance with a secret vector ŝ chosen according to the error
distribution j at a loss of = samples as follows [44]: Let A0 = [a1 · · · a=] where a1, . . . , a= are the
first = columns of A. We introduce new variables ŝ = Aᵀ0 s − [I1, . . . , I=]ᵀ = [40, . . . , 4=]ᵀ and
Â = A−1

0 A = [I â=+1 · · · â<] and compute ẑ = z − Âᵀ [I1, . . . , I=]ᵀ = [0, Î=+1 · · · Î<]ᵀ. Our new
LWE instance has samples (â=+1, Î=+1), . . . , (â<, Î<).

LWE as a BDD Problem

Solving LWE also corresponds to solving the Bounded Distance Decoding problem (BDD) in the
lattice Λ(Aᵀ) = {x ∈ Z<@ | ∃s ∈ Z=@ : x = Aᵀs mod @}, where the < columns of A correspond
to the vectors a8 ∈ Z=@ of < independent LWE samples (a8 , I8) ← As,j and the components I8
correspond to a perturbed lattice point in Λ(Aᵀ).
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Hardness

The most important hardness results for LWE come from [82] and [76]. Regev [82] showed that
there exists a polynomial-time quantum reduction from worst-case GapSVPW and SIVPW in the
ℓ2-norm to the (average-case) search version of LWE. That means that LWE is quantumly at least as
hard as GapSVPW and SIVPW . A similar classical probabilistic polynomial-time reduction from
worst-case GapSVPW was later proposed by Peikert [76] for a sufficiently large modulus @ ≥ 2= in
any ℓ?-norm for ? ≥ 2. The Shortest Vector Problem and its variants are well studied problems that
are NP-hard for certain approximation problems (see Section 2.3.1). To this point, it is assumed
that no efficient quantum algorithms exist that can solve NP-hard problems. It is thus conjectured
that cryptosystems based on the worst-case to average-case reductions from Regev and Peikert are
secure, even in the context of quantum computing. The currently best algorithms solve LWE in
2$ (=) time.

2.5.2 Short Integer Solution (SIS)

The dual problem to LWE is the Short Integer Solution problem (SIS). In the SIS problem, we
again have a set of uniformly random vectors a1, . . . , a< ∈ Z=@ and want to find an integer linear
combination of the vectors such that 21a1 + · · · + 2<a< = 0 mod @ with small coefficients 28 . It is
not difficult to find a linear combination that sums to the zero vector. The hardness of the problem
comes from the restriction to small coefficients. A formal definition follows.

Definition 2.5.4 (SIS Problem, adapted from [54])
The problem SIS=,@,<,V is defined as follows: Given a uniformly random matrix A=×<, find a vector
s ∈ Z< such that A · s = 0 mod @ and 0 < ‖s‖ ≤ V.

Finding such a vector corresponds to solving SVPW in the scaled @-ary dual lattice Λ⊥@ (A) =
{v ∈ Z< | Av = 0 mod @}. Note that the problem becomes trivial for sufficiently large bounds V.
If V ≥ @ in any ℓ?-norm, we can simply choose s = [@, 0, . . . , 0]ᵀ. In some scenarios, the vector s
is restricted to Z<@ . However, depending on the used norm for the length of s, we can still efficiently
find s with ‖s‖? by using some standard linear equation solver ‖s‖?, if {s ∈ Z<@ | ‖s′‖? ≤ V} = Z<@ .
For example, in the ℓ∞-norm we have that V = @ is large enough. In Section 4.2, we will define
norm bound inequalities to be able to express relationships between different ℓ?-norms.

As a simple example, SIS can be used to create collision-resistant hash functions. The matrix
A defines a linear transformation that maps elements in Z< to Z=, where = < <. The function
ℎA(v) = Av mod @ is thus a hash function. We now restrict the domain of ℎA by a bound V such
that ‖v‖∞ ≤ V. Consider a collision v′ ≠ v such that ℎA(v′) = ℎA(v) mod @ or equivalently,
ℎA(v′ − v) = 0. Obviously, it holds that ‖v′ − v‖ ≤ 2V. Thus, finding a collision also solves SIS
and, in particular, is as hard as solving SIS.

We obtain similar hardness results as for LWE. Micciancio and Regev [68] show a reduction from
SIVPW in the worst-case to average-case SIS problem.
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2.5.3 Ring and Module Variants

In practice, the base variants of LWE and SIS are not used due to large key sizes required for secure
cryptographic schemes. Consider the matrix A ∈ Z<×=@ . We usually require < ∈ Ω(=), which gives
us at least a quadratic space complexity. We therefore want to decrease our key sizes. A way to
do this is by using rings and modules as the underlying structure of LWE and SIS. Explaining the
details regarding the ring and module variants of both problems would go beyond the scope of this
work. Hence, we will only provide a rough intuition following [84] and define the various problem
variants of LWE and SIS. All of them are included in our tool.

Consider the following choice for A. We set = = 2: for some : > 0 and choose the column vectors a
of A in groups of size =. In each group, we sample a1 = [01, . . . , 0=]ᵀ from the uniform distribution
over Z=@ . The remaining columns are rotations a8 = [08 , . . . , 0=,−01, . . . ,−08−1]ᵀ of the first vector
in the group. Hence, a block of = × = only needs $ (=) memory, reducing the size of A by a factor
of =. In addition, it is possible to achieve speedups in the operations by means of the Fast Fourier
Transformation.

In the ring variant, instead of vectors of the group Z=@, the columns of A are chosen as elements
of the ring Z@ [G] /〈G= + 1〉, which we call R@. We ensure that the G= + 1 is irreducible over the
rationals by letting = be a power of two. The disadvantage of powers of two is that our key size is
rather coarse-grained, which may result in a larger key size for a secure instance than needed up to a
factor of two. Modules present themselves as a solution to this problem. Let  = Q(\) be a number
field, where \ is an algebraic number with degree =, as defined in [54]. A R-moduleM ⊆  3 with
dimension or rank 3 is a generalization of rings and vector spaces and is closed under addition
and multiplication by elements of R. We only consider the module R3 with ring dimension = and
module rank 3. For more details on the mathematical background, please see [54].

Definition 2.5.5 (RSIS [54])
The Ring-SIS problem RSIS=,@,<,V is defined as follows: Given 01, . . . , 0< ∈ R@ chosen indepen-
dently from the uniform distribution, find B1, . . . , B< ∈ R such that

∑<
8=1 a8 · B8 = 0 mod @ and

0 < ‖s‖ ≤ V, where s = [B1, . . . , B<]ᵀ ∈ R<.

We can interpret a ring element A ∈ R as an = dimensional vector with coefficients A8 such that
A =

∑=−1
8=0 A8G

8. If we compare RSIS to standard SIS, each 08 in RSIS corresponds to a = × = block
in the standard SIS matrix. The = columns are obtained by rotation, similar to what we described
above. We thus, for example, have A = [Rot(01) | · · · | Rot(0<)] where each block Rot is given
by

Rot(0) =

©«
00 −0=−1 · · · −01
01 00 · · · −02
...

...
. . .

...

0=−1 0=−2 · · · 00

ª®®®®®¬
An RSIS=,@,<,V instance can thus be seen as an SIS=,@,<·=,V instance.

Definition 2.5.6 (MSIS [54])
The Module-SIS problem MSIS=,3,@,<,V is defined as follows: Given a1, . . . , a< ∈ R3@ chosen
independently from the uniform distribution, find B1, . . . , B= ∈ R such that

∑<
8=1 08 · B8 = 0 mod @

and 0 < ‖s‖ ≤ V, where s = [B1, . . . , B<]ᵀ ∈ R<.
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As for RSIS, we can view the vectors a8 in MSIS as blocks of A in SIS. Each vector a8 has 3
coefficients and corresponds to a = · 3 × = block in A, as follows:

Rot( )

Rot( ) Rot( )

Rot( ) Rot( )

Rot( )

An MSIS=,3,@,<,V instance thus becomes an SIS= ·3,@,<·=,V instance.

For LWE, we will only list the definition of the ring and module variant. We are aware that we have
not introduced the underlying math and refer the reader to [54]. Let us just note here that R⊥ refers
to the dual of R.
Definition 2.5.7 (Ring-LWE (RLWE) Distribution [54])
Let j be the error distribution on TR⊥ =  R/R⊥ and B ∈ R⊥ be the secret. Then, we define A (R)@,B,j

as the RLWE distribution on R@ × TR⊥ obtained by choosing 0 ∈ R@ uniformly at random and an
error term 4 ∈ TR⊥ according to j, and returning samples (0, (0 · B)/@ + 4).

The search version of RLWE=,@,<,j asks us to find B given < samples from A (R)@,B,j with modulus
@ ≥ 2 and = the degree of the polynomial of R. The decision version asks us to distinguish between
< samples fromA (R)@,B,j and < independent samples from the uniform distribution over R@ ×TR⊥ .

Definition 2.5.8 (Module-LWE (MLWE) Distribution [54])
Let j be the error distribution on TR⊥ and s ∈ (R⊥)3 be the secret vector. Then, we define A (M)@,s,j
as the MLWE distribution on (R@)3 × TR⊥ obtained by choosing a ∈ (R@)3 uniformly at random
and an error term 4 ∈ TR⊥ according to j, and returning samples (a, 1

@
〈a, s〉 + 4).

Analogously, the search version of MLWE=,3,@,<,j asks us to find s given < samples from A (M)@,s,j
with modulus @ ≥ 2, = the degree of the polynomial of R and modulus rank 3. The decision version
asks us to distinguish between < samples fromA (M)@,s,j and < independent samples from the uniform
distribution over R3@ × TR⊥ .

We can construct a matrix A of the 08 of RLWE and a8 of MLWE, as for standard LWE, to
formulate the problems as a decoding problem, as in Section 2.5.1. We interpret RLWE=,@,<,j and
MLWE=,3,@,<,j as instances of LWE=,@,<·3,j′ and RLWE= ·3,@,<·=,j′ respectively. For a summary
of our results, see Section 4.3.
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The main functionality of our tool relies on runtime cost estimation procedures for several popular
algorithms that can be used to solve SIS or LWE. The estimates for LWE are provided by the
estimator [13]. In addition, we included cost estimates of two different approaches for SIS. Many
of the algorithms we use rely on subroutines, especially lattice reduction algorithms, and there
exist more realistic and more conservative estimates. Depending on the choice of attack algorithms
and reduction cost models, the returned cost may differ significantly. Also, not all attack estimates
perform well in practice. It is thus of interest to us to gain a basic understanding of how the
respective algorithms work.

3.1 Lattice Basis Reduction

In Section 2.5, we showed how LWE and SIS can be viewed as lattice problems. However, the
corresponding lattice basis that we obtain are rather “ugly” lattice bases with long basis vectors.
Solving lattice problems in such a basis is infeasible. Our goal is thus to find a better basis with
shorter and more orthogonal basis vectors. A family of algorithms that achieve just this is called
lattice reduction algorithms.

First, we need to define a measure to evaluate the quality of a given basis. The standard measure in
the literature is the (root) Hermite factor.

Definition 3.1.1 (Root Hermite Factor [57])
Given a basis B = {b1, . . . , b=} with ‖b1‖ ≤ · · · , ≤ ‖b=‖, then an =-dimensional lattice Λ(B) has
root Hermite factor X if

‖b1‖ ≈ X= det(Λ)1/=. (3.1)

We will later use a result that follows from the Geometric Series Assumption (GSA) as in [42]. The
GSA estimates the length of the Gram-Schmidt vectors b̃8 as follows [87]:

‖b̃8 ‖ ≈ U8−1‖b1‖, (3.2)

for 0 < U < 1. If we combine Equation (3.1) with Equation (3.2), we obtain ‖b̃8 ‖ ≈ U8−1X= det(Λ)1/=.
Furthermore, we know that

∏=
8−1 ‖b̃8 ‖ = det(Λ) and get

=∏
8−1
‖b̃8 ‖ ≈

=∏
8−1

U8−1X= det(Λ)1/= ⇐⇒ det(Λ) ≈ X2= det(Λ)
=∏
8−1

U8−1

⇐⇒ X−2= ≈ U
=(=−1)

2

⇐⇒ X−2 ≈ U (=−1)/=
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Hence, U ≈ X−2 and
‖b̃8 ‖ ≈ X−2(8−1)+= det(Λ)1/= (3.3)

We can see that for smaller 8, the length of the Gram-Schmidt vectors b̃8 decreases, whereas for
larger 8, the length increases, resulting in a long and skinny fundamental parallelepiped P1/2(B̃).

In the following, we will focus on two related methods for lattice reduction. First, we define
some reduction criteria following [6]. A basis B = [b1 · · · b=] is size-reduced if its Gram-Schmidt
coefficients (see Section 2.3) satisfy |`8, 9 | ≤ 1

2 for all 0 ≤ 9 < 8 < =. If the first basis vector
b1 of B is the shortest lattice vector, i.e., ‖b1‖ = _1(Λ(B)), we call B SVP-reduced. If a basis
B is size-reduced and in addition, each block {b8 , . . . , b=} for 8 = 1, . . . , = of basis vectors is
SVP-reduced, then B is HKZ-reduced. We will see in the next section that size reduction is closely
related to the LLL algorithm, and that a special case of the BKZ reduction outputs an HKZ-reduced
basis.

3.1.1 The LLL Algorithm

The LLL algorithm was proposed by Lenstra, Lenstra and Lovász [55] and can be considered as a
generalization of the two dimensional Lagrange reduction. The Lagrange reduction reduces a basis of
two basis vectors such that the output basis satisfies ‖b1‖ ≤ ‖b2‖ and | 〈b1, b2〉 |/‖b1‖2 = |`2,1 | ≤ 1

2 .
Intuitively, a multiple of the shorter vector b1 is subtracted from the longer vector b2, such that the
resulting vector b′2 is as orthogonal to b0 as possible, i.e., b′1 = b1 − b`1,0eb0. We set b2 = b′2 and
repeat until nothing changes.

A \-LLL reduced basis ensures two criteria [55]:

1. Size-reduced: |`8, 9 | ≤ 1
2 for 1 ≤ 8 ≤ = and 9 < 8

2. Lovász condition: \‖b̃8 ‖2 > ‖`8+1,8b̃8 + b̃8+1‖2 for 1 ≤ 8 < =

Recall the definition of the Gram-Schmidt coefficients `8, 9 =
〈
b̃ 9 , b8

〉
/
〈
b̃ 9 , b̃ 9

〉
. The LLL algorithm

shown in Algorithm 1 follows the notation in [80]. We start by computing the Gram-Schmidt
orthogonalization of the input basis (Line 2) and continue with a reduction step in which we update
every basis vector b8 by pairwise comparing and subtracting lower indexed basis vector, just as in
the Lagrange reduction (Line 5) to ensure Criteria 1. Finally, vectors violating the Lovász condition
are swapped (Line 7) and the process is repeated until nothing changes. The LLL algorithm can be
used to find short vectors of at most 2=/2_1(Λ) in polynomial time. Several floating-point variants
have been suggested that can significantly speed up the runtime of LLL. For example, L2 runs in
O(=2 log2 �), where � is a bound on the norm of the input basis vectors [72].

The proven upper bound of the output quality of the LLL algorithm is X= = (4/3)
=−1

4 or, equivalently,
X ≈ 1.075 [55]. In practice, we get much better results of X ≈ 1.021 on average [31]. Given an
input basis in which the length of all basis vectors is bounded by �, the runtime of LLL is proven to
be in O

(
=4< log �(= + log �)

)
[72] and heuristically known to be O(=3 log2 �) [13].

26



3.1 Lattice Basis Reduction

Algorithm 1: The LLL Algorithm [55]
1 function \-LLL(B ∈ Z<×=)
2 Compute B̃
3 for 8 = 2, . . . , = do
4 for 9 = 8 − 1, . . . , 1 do
5 b8 = b8 − b`8, 9eb 9

6 if ∃8 such that \‖b̃8 ‖2 > ‖`8+1,8b̃8 + b̃8+1‖2 then
7 Swap b8 and b8+1
8 Return \-LLL(B)
9 else

10 Return B

3.1.2 The BKZ Algorithm

The Block Korkin-Zolotarev (BKZ) algorithm was proposed by Schnorr in 1987 and adapted by
Schnorr and Euchner in [88] and represents a family of lattice reduction algorithm. Essentially,
BKZ iteratively divides the input basis into blocks of a lower dimension : and calls an SVP oracle
on each block. The output of the oracle is then used to obtain a basis of improved quality.

Algorithm 2 presents the main concept of BKZ and follows the description in [32] with some
adjustments. Initially, we run an LLL reduction on the input basis {b1, . . . , b=} and update the
basis. In each 9 th iteration, we consider a block of : basis vectors b 9 , . . . , b 9+:−1. The vectors of
the current block are projected onto the orthogonal complement of span ({b8 | 8 ∈ [ 9 − 1]}), that is,
the span of vectors from previous iterations (Line 6ff; we skip this step, if the span is empty). The
orthogonal complement �⊥ of a subspace � is defined as the set of all vectors that are orthogonal to
every vector in �. We then run an SVP oracle on the projected block to obtain a shortest vector b′new
in the projected lattice (Line 12) and reconstruct a lattice vector bnew of which b′new is a projection
(Line 13). Note that in practice, the SVP oracle should include this step. If bnew is a new vector, we
insert it in our list of basis vectors before b 9 . Otherwise, since nothing changed, we increment a
counter I. Finally, we run LLL on all basis vectors up to index 9 + 8 (including the possibly newly
added vector). If no new lattice vectors can be found in = iterations, the reduction terminates. After
= iterations, 9 is reset to start over at the first block. The output of the algorithm is a BKZ: -reduced
basis. For : = 2, we obtain an LLL-reduced basis in polynomial time, and for : = =, an optimally
HKZ-reduced basis in at least exponential time.

Several improvements have been suggested. The total number of rounds until termination is
unknown and can be quite large. Hanrot et al. [45] show an early termination of BKZ still yields a
very good output basis quality and propose =2

:2 log = rounds as a bound.

Local preprocessing increases the quality of the current block basis by recursively calling BKZ
with smaller block size. A variant known as progressive BKZ applies the recursion globally [16].
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Algorithm 2: The BKZ Algorithm [88]
1 function BKZ(B = {b1, . . . , b=}, : ∈ [=] \ {1})
2 z = 0; j = 0
3 B = LLL(B)
4 while I < = − 1 do
5 9 = ( 9 mod (= − 1)) + 1; ; = min( 9 + : − 1, =); ℎ = min(; + 1, =)
6 � = span ({b8 |8 ∈ [ 9 − 1]})
7 for 8 ∈ { 9 , ..., ;} do
8 if � ≠ ∅ then
9 b′

8
= c�⊥ (bi)

10 else
11 b′

8
= b8

12 b′new = SVP-Oracle(b′
9
, . . . , b′

;
)

13 Reconstruct bnew =
∑;
8= 9 U8b8 with U8 ∈ Z such that b′new = c(span(b 9 ,...,b;))⊥ (bnew)

14 if b′new ≠ b̃ 9 then
15 I = 0; {b 9 , . . . , bℎ} = LLL({b 9 , . . . , b 9−1, bnew, b 9 , . . . , bℎ})
16 else
17 I = I + 1; {b 9 , . . . , bℎ} = LLL({b 9 , . . . , bℎ})

If enumeration is used as an SVP oracle, the size of the search space can be reduced by means of
pruning techniques. Nodes closer to the edges of the enumeration tree are less likely to result in
short lattice vectors. For more details on enumeration, we refer to Section 3.1.3. Gama et al. [37]
show that applying a variant of this known as extreme pruning can reduce the running time by a
much larger factor than the success probability. Repeating the search yields the desired speedup.

In addition, [32] optimizes the enumeration radius by using experimental results. BKZ 2.0
incorporates a number of these techniques [32].

It is difficult to find hard runtime bounds for BKZ. The upper bound on the number of rounds is
superexponential in the dimension = for a fixed block size [36, 45] before BKZ terminates, given
that no early termination strategy is used. In addition, calls to the SVP oracle in all dimensions
: ′ ≤ : must be considered. Albrecht et al. [13] ignore these intricacies and estimate the cost of
BKZ in clock cycles as d · = · C: , where d is the number of rounds needed and C: is the cost (in
block cycles) of calling the SVP oracle on a block of dimension : . The value d is set to 8 in the
estimator and is derived from experiments in [31] that indicate that the most significant progress
happens in the first 7 − 9 rounds.

The output quality of BKZ is closely related to the used block size : . The estimator uses a limiting
value from [31] to estimate the root Hermite factor X for a given ::

lim
=→∞

X ≈
(
: (c:) 1

:

2c4

) 1
2(:−1)

(3.4)

For smaller block sizes : ≤ 40, the estimator uses fixed experimental values for X.
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3.1.3 Cost Models for Lattice Reduction

In this section, we will look at various high-level ideas to realize an SVP solver that can be used as
a subroutine in BKZ and present up-to-date cost models from the literature. SVP is known to be
NP-complete even for large constant approximation factors [3, 52]. An exponential approximation
factor can be achieved in polynomial time, but is mostly insufficient for practical purposes [55]. We
will mainly focus on two classes of (nearly) exact SVP solvers, namely, enumeration algorithms
and sieving algorithms. Enumeration algorithms can solve SVP in a lattice of dimension : in
2O(: log :) time and polynomial space. Sieving algorithms only need 2O(:) time, however, at the
cost of exponential memory complexity. Only recently, progress in sieving strategies has given rise
to BKZ implementations relying on sieving (e.g., the General Sieve Kernel (G6K) implementation
[9, 35]) that outperform enumeration implementations already in relatively small dimensions & 70
in the classical setting [6]. On the other hand, quantum speedups for enumeration are greater than
for sieving. Aono et al. [15] show a quadratic cost reduction for enumeration, while the speedup is
much lower for sieving, even with idealized assumptions [53]. The authors of [14] argue that due to
a lower bound 20.2075: on the required size of the building lists, future quantum sieving algorithms
are not expected to achieve an asymptotic runtime below 20.2075: .

A selection of the most relevant cost models for cryptographic purposes can be seen in Table 3.2.
All of these cost models are supported in our tool (see Section 4.5).

Enumeration

Enumeration aims to find the shortest vector by enumerating all lattice vectors within some bounded
region. In general, we start with reducing the lattice basis to improve the basis quality. We
then define a bound and iteratively project the lattice to the span of its Gram-Schmidt vectors
beginning from b̃= until we arrive at the lowest level of a one-dimensional subspace. We continue
by enumerating all vectors of norm less than A in the projected lattice and “lift” each of these vectors
to the level above and repeat this process until we arrive at the level from which we started. The
search space can be thought of as a large tree of (projected) vectors on which we apply depth-first
search. Note that the root of the tree here is at the lowest level and the leaves are the lattice vectors
in our target lattice. The low memory cost of enumeration is due to its similarities to depth-first
search.

A very early but very efficient variant was suggested by Kannan [50] with a proven worst-case
runtime of 2O(: log :) . BKZ: using Kannan’s enumeration algorithm as SVP oracle yields a short
lattice vector of norm approximately

(
:1/(2:) )= · det(Λ)1/=, or equivalently achieves a root Hermite

factor of :1/(2:) [5, 46].

In [5], we find a more concrete experimental cost model of poly(=) · 2(: log :)/(24)−0.995:+16.25 for
BKZ 2.0 (see Section 3.1.2), where poly(=) is the number of calls to the enumeration subroutine.
BKZ 2.0 achieves a root Hermite factor of

(
:/(2c4) · (c:)1/:

)1/(2(:−1)) [31].

The FastEnum algorithm in Albrecht et al. [5] incorporates an idea called “extended preprocessing”
and simulations achieve a root Hermite factor of : (1+> (1))/(2:) in poly(=) ·20.125: log :−0.050:+56 time.
The corresponding quantum algorithm reduces the runtime from 2(: log :)/8+> (:) to 2(: log :)/16+> (:) .
In extended preprocessing, instead of preprocessing the current projected basis block of size : ,
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3 Algorithms and Estimates

the BKZ-reduction is applied to a block of higher dimension d(1 + 2) · :e for some constant 2.
Enumeration is faster on the first basis vectors, as their Gram-Schmidt norms closely follow the
Geometric Series Assumption [70].

A tradeoff of runtime and success probability for “relaxing” the approximation and extreme
pruning turns out to exponentially speed up the search [56] and was combined with extended
preprocessing by Albrecht et al. [5] to further reduce the experimental runtime of BKZ to
poly(=) · 2(: log :)/8−0.654:+25.84 for a root Hermite factor of :1/(2:) .

Sieving

The second group of SVP solvers are sieving algorithms [9, 20, 22, 23, 47, 69, 74]. In sieving,
initially, we create a long list of randomly selected lattice points. The points in the list are then
combined or “reduced” in some way to find points of smaller length. One way to achieve this is by
finding a minimal sublist of “center” points in the initial list, such that spheres centered at these
points cover all list points. Subtracting the center points yields short lattice points. ListSieve [69]
uses a smaller initial list to divide the space into two half-spaces, one closer to the center and one
closer to the respective point. The list is then used to reduce the length of newly sampled points as
much as possible by subtracting each list vector, such that the result is located in the half-space
closer to the center. Once two points with a distance less than the target distance are found, they are
subtracted, and the result is returned.

Algorithm Runtime complexity Memory complexity
List Sieve [69] 20.3199=+> (=) 20.1325+> (=)

NV-sieve [9, 74] 20.415=+> (=) 20.2075=+>(=)

NV-sieve (quantum) [9, 74] 20.311=+> (=) 20.2075=+>(=)

Gauss sieve [47, 69] 20.415=+> (=) 20.2075=+>(=)

BGJ-sieve [23] 20.311=+> (=) 20.2075=+>(=)

3-sieve [20, 47] 20.3962=+> (=) 20.1887=+> (=)

BDGL-sieve [22] 20.292=+> (=) 20.2075=+>(=)

BDGL-sieve (quantum) [22] 20.265=+> (=) 20.2075=+>(=)

Table 3.1: Overview of Popular Sieving Algorithms

Table 3.1 presents a list of currently best sieving algorithms. Note that some runtime and space
complexities are only conjectured and not proven yet.

In the Nguyen-Vidick sieve [74], we iteratively reduce a pair of list points whose combined length
is smaller than the longest list vector. The longest vector is then replaced by the result. The list
length is fixed. In the Gauss sieve [69], we start with an empty list and a stack. In each step, a new
point is either sampled or taken from the stack. We then attempt to reduce the new point with all
points in the list. If a reduction is successful, the longer vector of the pair is replaced. If the longer
vector was the list point, the replacement is inserted in the stack. If no reduction is possible, the
stack points are moved back to the list. If the stack is empty, all list points are reduced pairwise.
In practice, the Gauss sieve outperforms Nguyen-Vidick sieve. The Becker-Gama-Joux sieve [23]
exploits coding theory to find vectors that are likely to be nearest neighbors. Similar vectors are
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Name Reference Cost model
Sieving
Q-Sieve (paranoid lower bound) [14] 20.2075:

Q-Sieve [12, 14, 53] 20.265:

Q-Sieve + O(1) [90] 20.265:+16

Q-Sieve (min space) [86] 20.2975:

Sieve [12, 14, 22] 20.292:

Sieve + O(1) [90] 20.292:+16

Sieve (min space) [86] 20.368:

Enumeration
Lotus [8, 78] 20.125: log :−0.755:+2.254

Enum + O(1) [8, 31, 86] 20.187: log :−1.019:+16.1

Q-Enum + O(1) [8, 31, 86] 20.0936: log :−0.51:+8.05

BCLV-Enum (quadratic fit) + O(1) [25] 20.000784:2+0.366:+0.875

BKZ2.0-Enum [5, 31, 32] 20.184: log :−0.995:+16.25

ABF-Enum [5] 20.125: log :

ABF-Enum + O(1) [5] 20.125: log :−0.547:+10.4

Q-ABF-Enum [5] 20.0625: log :

ABLR-Enum + O(1) [6] 20.125: log :−0.654:+25.84

Table 3.2: SVP Cost Models Overview (Based on [8, Table 4])

stored in the same bucket to speed up the search for reduction candidates. The 3-sieve [20, 47]
reduces the required list size by using triples instead of pairs of points for combination. Finally, the
Becker-Ducas-Gama-Laarhoven sieve [22] applies locality sensitive hashing to create buckets of
points in near neighborhood similar to the Becker-Gama-Joux sieve.

3.2 Algorithms for Solving LWE

In this section, we present a number of popular attacks on LWE. The estimator includes cost estimate
algorithms for each of these attacks. In our treatise, we will ignore special cases of LWE that can be
exploited to obtain more efficient attack variants and only present the main algorithms. For more
details, we refer the reader to [13] and [26].

3.2.1 Lattice Problems

Some of the following attacks rely on a reduction of LWE to different lattice problems. We first
define three important lattice problems in the context of LWE.

Definition 3.2.1 (HSVP%)
Given a basis B of a lattice Λ(B) ∈ R<, the (approximate) Hermite Shortest Vector Problem
(HSVPX) is the problem of finding a nonzero lattice vector v ∈ Λ such that ‖v‖ ≤ X · det(Λ) 1

= .
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3 Algorithms and Estimates

Definition 3.2.2 (uSVP$)
Given a lattice Λ such that _2(Λ) > W_1(Λ), the (approximate) Unique Shortest Vector Problem
(uSVPW) is the problem of finding the shortest nonzero vector in v ∈ Λ with ‖v‖ = _1(Λ).

Definition 3.2.3 (BDD$)
Given a lattice Λ ⊂ R< and a target vector t ∈ R< such that dist(t,Λ) < W_1(Λ), the (approximate)
Bounded Distance Decoding (BDDW) is the problem of finding the closest lattice vector v ∈ Λ, i.e.,
v = arg minv′∈Λ ‖v′ − t‖.

3.2.2 Approaches

Figure 3.1 gives an overview of the three main approaches to solving LWE. The most natural
approach is to recover the secret in LWE directly, e.g., by exhaustively searching the search space.
In general, however, the search space is quite large, resulting in high attack costs. The estimator
incorporates two direct attacks, the Meet-in-the-Middle attack [19] and an attack due to Arora and
Ge [17].

Direct

Combinatorial

BKW Lattice
Reduction

Decoding MITM Arora-Ge

LWE

SIS BDD

uSVPHSVP

BKZ LLL

Nearest
Plane

Figure 3.1: An overview of algorithms and related problems for soling LWE in this work. The
diamond shaped boxes represent problems and arrows reductions between problems.
Rectangular boxes represent approaches, classes of algorithms or algorithms. A
connection between a problem and a rectangular box indicates that the latter can be
used as a solver for the respective problem. Bold names indicate algorithms that can be
used in our tool.

Primal Attack

The second approach aims to solve LWE in the primal LWE lattice by a reduction to the BDD
problem. Consider an LWE instance with samples A, z and the corresponding lattice Λ@ (Aᵀ). We
know that for the secret vector s and error vector e, it holds that z = Aᵀs + e mod @ = Aᵀs + e + @x
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3.2 Algorithms for Solving LWE

for some vector x ∈ Z<. Obviously, Aᵀs+ @x is a lattice vector in the lattice Λ@ (Aᵀ). We know that
dist(z,Λ@ (Aᵀ) = ‖e‖ and in general, it holds that ‖e‖ < W_1(Λ@ (Aᵀ)). We thus have a reduction
from LWE to BDD. By finding closest lattice point to z or, in other words, solving BDD in the
lattice Λ@ (Aᵀ) we obtain Aᵀs + @x and can recover the secret s.

Dual Attack

Finally, we can take advantage of the close relationship of LWE and SIS and solve LWE by finding
a short vector in the dual SIS lattice [57]. More precisely, we want to find a short nonzero vector
v ∈ Z<@ in the scaled @-ary lattice Λ@ (Aᵀ)⊥ = {y ∈ Z< | Ay = 0 mod @}. Obviously, we have that
〈v, z〉 = 〈v,Aᵀs〉 + 〈v, e〉 = 〈vAᵀ, s〉 + 〈v, e〉 mod @ and 〈v, z〉 roughly corresponds to a sample
drawn from a Gaussian with parameter B′ = ‖v‖ · B, given that e is distributed according to a
Gaussian with parameter B. We then test whether 〈v, z〉 mod @ approximates the Gaussian. If z is
instead drawn from a uniform distribution, the test accepts exactly with probability 0.5 [57]. If B′ is
not much larger than @, the advantage of distinguishing uniform from LWE samples is very close to
exp(−c(‖v‖B/@)2). An optimal attack cost can be achieved by balancing the advantage with the
computational effort required to solve SVPW on the SIS lattice, where W = ‖v‖.

3.2.3 Decoding Attack [57]

The decoding attack falls into the regime of primal attacks that solve LWE by solving BDD in
the primal LWE lattice (as described in Section 3.2.2). In the decoding attack, we first apply a
reduction algorithm to the input basis Aᵀ to improve the basis quality. We then enumerate a number
of candidate lattice points close to our target z by running a variant of Babai’s Nearest Planes
algorithm and simply choose the closest point.

We begin with the original Nearest Planes algorithm due to Babai [18], as shown in Algorithm 3. Our
algorithm follows the notation in [81]. The goal of the algorithm is to find a lattice vector relatively
close to the target vector. The procedure used is similar to the procedure in the inner loop of LLL.
We first project t to the span of all basis vectors span(B), where � denotes an LLL-reduced basis,
to eliminate irrelevant dimensions and obtain a projected vector which we call b. Next, we iterate
over 8 = =, . . . , 1. In each step, we want to find the closest hyperplane 28b̃8 + span(b1, . . . , b8−1) to
the projected vector b. We can compute 28 by a simple projection of 1 onto the Gram-Schmidt
vector b̃8 and dividing by the square length of b̃8. We subtract 28b8 from 1 and replace b with the
result. Notice that in the last step, the hyperplane is simply a point. We return t − b. If we indeed
found the closest lattice vector for target z, the vector b will be our error vector e and t − b will be
the desired lattice vector Aᵀs + @x, from which we can recover our secret.

In general, however, the output is a lattice vector v ∈ Λ(B) in the fundamental parallelepiped of
the Gram-Schmidt basis P1/2(B̃) and we only get the guarantee of ‖v − t‖ ≤ 2=/2dist(t,Λ(B)). To
apply the algorithm on LWE, either e must be in P1/2(B̃) or we must increase our search radius.
The former case is unlikely as the last Gram-Schmidt vectors in a reduced basis because of the long
and skinny structure of P1/2(B̃) (see Section 3.1. The latter case is exactly what the generalized
algorithm by [57] does.
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Algorithm 3: Babai’s Nearest Planes Algorithm [18]
1 function NearestPlanes(LLL-reduced basis B ∈ R<×=, target t ∈ R<)
2 b = cspan(B) (t)
3 for 8 = =, . . . , 1 do
4 28 = round(〈b, b̃8〉/〈b̃8 , b̃8〉)
5 b = b − 28b8
6 output t − b

Instead of choosing only the nearest plane in each iteration step, the Lindner and Peikert’s variant
that can be seen in Algorithm 4 selects a variable amount 3: of distinct planes in each step. As a
consequence, the fundamental parallelepiped of the Gram-Schmidt basis is stretched in the direction
of b̃: . The values of d should be chosen such that the covered area is approximately the same in each
direction (i.e., by maximizing min8 (38 · ‖b̃8 ‖)). In particular, this implies that the 3: are larger for
larger : , as the Gram-Schmidt vectors have a smaller length. Compared to Algorithm 3, the runtime
increases by a factor

∏
8∈{1,...,3: } 38; however, the recursion step can be fully parallelized.

Algorithm 4: Generalized Nearest Planes Algorithm [57]
1 function GeneralizedNearestPlanes(B ∈ R<×: , t ∈ R<, d ∈ (Z+):)
2 if k = 0 then
3 Return 0
4 else
5 Compute projection v of t onto span(B)
6 Compute the 3: distinct integers 21, . . . , 23: closest to 〈v, b̃:〉/〈b̃: , b̃:〉)
7 Return

⋃
8∈{1,...,3: } (28 · b: +

GeneralizedNearestPlanes({b1, . . . , b:−1}, (31, . . . , 3:−1), v − 28 · b:))

It is evident that a lower quality of the reduced input basis can be compensated by increasing
the values of d. The input parameters of the lattice reduction and the generalized Nearest Planes
algorithm should hence be adjusted such that the overall runtime is minimized. The success
probability of the Generalized Nearest Planes algorithm is given by

Pr
[
e ∈ P1

2
(B̃ · diag(d))

]
=

<−1∏
8=1

erf
(
38 ‖b̃8 ‖

√
c

2U@

)
.

The runtime of the decoding attack cannot be explicitly stated, as the reduction phase and the
decoding phase have to be balanced for a given problem instance. This is done by iteratively varying
the required basis quality X for the reduction phase and stepwise increasing the components of d
until the success probability is reached, such that the total runtime is minimized. The final runtime
is given by CDEC = d · (CBKZ + CGNP) where CBKZ is the runtime of BKZ in the reduction phase and
CGNP is the runtime of the Generalized Nearest Planes algorithm in the decoding phase. The number
of rounds d must be greater than log(1 − n ′)/log(1 − n) to achieve a target success probability n ′ if
one decoding round has success probability n (more details at the end of Section 3.2.4.
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3.2 Algorithms for Solving LWE

3.2.4 Primal uSVP [14, 19]

In the Primal uSVP attack, we again view the LWE=,@,<,j instance (A, z) as a BDD instance in the
@-ary lattice Λ@ (Aᵀ) = {y | ∃x ∈ Z=@ : y = Aᵀx mod @} generated by rows of LWE instance, as in
Section 2.5.1. The target vector is z.

Recall the W-uSVP problem. Given a lattice Λ where _2(Λ) > W_1(Λ), we are asked to find shortest
nonzero vector in Λ. In the primal attack, instead of directly solving BDD, we reduce BDD to
uSVP, i.e., we reduce a BDD instance to a W-uSVP instance. By solving W-uSVP, we obtain a
solution to BDD. To do this, we apply Kannan’s embedding technique [51]. Kannan’s embedding
creates a lattice with uSVP structure. We know that Aᵀs mod @ is the closest vector to the target
z = Aᵀs + eᵀ mod @ in Λ(Aᵀ). We now add a linearly independent basis vector (z, `) and append
a zero coefficient to each basis vector of the original lattice (i.e., the rows of A). Thereby, we ensure
that the new lattice contains the vector [−e,−`]ᵀ as [A | 0]ᵀs − 1 · [zᵀ, `] = [−e,−`]ᵀ.

More formally, let B ∈ Z<×< be the basis of an < dimensional lattice derived from the LWE
instance and ` = dist(z,Λ(B)) = ‖z − s‖ be the embedding factor, where s is the secret vector of
the LWE instance. For more details on how to compute B, we refer to [11].

We now embed Λ(B) into Λ(B′) with W-uSVP structure as follows:

B′ =
(

B z
0ᵀ `

)
(3.5)

If W ≥ 1 and ` <
_1 (Λ(B)

2W (or equivalently, (Λ(Aᵀ), z) a BDD1/(2W) -instance), then Λ(B′)
contains a W-unique shortest vector z′ = [(Aᵀs − z)ᵀ,−`]ᵀ = [−eᵀ,−`]ᵀ. The statement can
be proven by showing by contradiction that all vectors v ∈ Λ(B′) that are independent of z′
satisfy ‖v‖ ≥ _1Λ(B)/

√
2 >
√

2W` = W‖z′‖ (see [62, Section 4] for more details). Note that
the reduction can be done in polynomial time [62, Theorem 4.1]. The length of z′ is given by
‖z′‖ =

√
‖e‖2 + |` |2 =

√
<U2@2/(2c) + |` |2 [26]. Given z′, we can easily recover the error vector

e and thereby the secret vector s = z − e mod @.

A solution to W-uSVP can be found by reducing it to X-HSVP, where W = X2 [13]. Various algorithms,
in particular, lattice reduction algorithms, exist to solve X-HSVP. If we are able to solve a linear
number of X-HSVP instances that correspond to a X2-approximate SVP instance, we can construct a
solution of the latter (see [58, Section 1.2.21] for more details). Consider any lattice with uSVP
structure. In exactly one direction, that is, in the direction of its unique shortest vector, the lattice
has vectors that are significantly smaller than in other directions. A lattice reduction algorithm
that yields a sufficiently good output basis quality, therefore, must return some small vector in
the desired direction. Let v be a solution to SVPX2 , i.e., ‖v‖ ≤ X2_1(Λ(B′)). All other vectors
w ∈ Λ(B′) that are not multiples of a shortest vector have length ‖w‖ ≥ _2(Λ(B′)) > X2_1(Λ(B′)).
Thus, we obtain a solution to W-uSVP and, as shown above, we can reconstruct the secret vector to
solve LWE.

The attack is successful with high probability if _2(Λ(B′))/_1(Λ(B′)) ≥ gX< [11]. We assume
that the determinant of Λ@ (Aᵀ) is given by @<−= (see Equation (2.11)). The length of the error

is ‖e‖ ≈
√
< ·

(
U@/(

√
2c)

)2
≈

√
</(2c)U@, and in practice, ` = 1 is used [13]. Next, we apply
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the simplified Gaussian heuristic as in [42] on _2(Λ(B′)) = _2(Λ(Aᵀ)) (see Equation (2.8)) to
obtain

gX< ≤
√

<
2c4det(Λ(Aᵀ))
_1(Λ(B′))

≈
√
<@1− =

<

√
2c4_1(Λ(B′))

≤
√
<@1− =

<

√
2c4‖e‖

≈ @1− =
<

√
2c4 U@√

2c

≈ @1− =
<

√
4U@

The success probability of the attack is thus non-negligible if

X ≤
(
@1− =

<

g
√
4U@

) 1
<

(3.6)

Experiments show that g ≤ 0.4 achieves a success rate of about n = 0.1 [11]. In order to increase
the success probability to some fixed target n ′ > n , we can simply repeat the algorithm d times
and obtain a success probability of n ′ ≤ 1 − (1 − n)d [26]. Consequently, we need at least
d ≥ log(1 − n ′)/log(1 − n) rounds for a successful attack.

3.2.5 The BKW Algorithm [28]

The Blum, Kalai and Wasserman (BKW) algorithm was originally designed to solve the Learning
Parity with Noise problem (LPN) [28], which, as we pointed out in Section 2.5.1, is a subproblem
of LWE. Albrecht et al. [7] adapted the algorithm to LWE. The runtime and memory complexity of
BKW is in 2O(=) for an LWE instance with secret dimension = prime modulus @ ∈ poly(=). The
number of samples < must be sufficiently large (in Ω(= log =)).

BKW falls into the regime of dual attacks, that is, it solves LWE by finding a short vector s in the
scaled dual lattice Λ(Aᵀ)⊥.

Albrecht et al. [7] divide the algorithm into three stages, namely, sample reduction, hypothesis
testing and back substitution.

Sample Reduction. Algorithm 5 shows the sample reduction part of the BKW algorithm. The
notation is inspired by the textual description in [44] with minor adjustments.

For the algorithm, we use the matrix notation of LWE as in Equation (2.16), i.e., z = Aᵀs + e. BKW
consists of a series of BKW steps that iteratively reduce the dimension of input matrix A by finding
collisions of its column vectors in the currently examined block of 1 entries. We start from the last
1 entries of A(1) = A. In every step 8, we maintain a collision table T(8) and loop over the columns
a(8)
:

of A(8) and distinguish between the following cases: (1) If a(8)
:

only has zero entries in the
examined block, pass a(8)

:
and I (8)

:
to the next step, (2) if no match of a(8)

:
or the negation of a(8)

:

can be found in the collision table, add a(8)
:

to the collision table, and (3) if a match a(8)
;

is found,
compute a(8)

;
+ a(8)

:
, or in the case of a negation, match a(8)

;
− a(8)

:
(all operations are modulo @)

such that the last 1 nonzero entries cancel out. By exploiting the symmetry of Z@ in this way, in
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Algorithm 5: BKW (Sample Reduction)
1 function BKW(A ∈ Z=×<, z ∈ Z<, 1 ∈ Z, 3 ∈ Z)
2 8 = 1
3 A(8) = A
4 z(8) = z
5 while the last = − 3 coefficients of the columns of A(8) are nonzero do
6 // BKW step
7 9 = 1
8 T(8) = [] // Collision table
9 for : = 1, . . . , < (8) do

10 // < (8) is number of columns in A(8)

11 if last (8 · 1) coefficients of a(8)
:

are zero then
12 a(8+1)

9
= a(8)

:

13 I
(8+1)
9

= I:

14 9 = 9 + 1
15 else if no match for a(8)

:
in T then

16 T = T +
[
a(8)
:

]
// append to collision set

17 else if match a(8)
;

for a(8)
:

is found then
18 if a(8)

;
matches a(8)

:
in the last (8 · 1) components then

19 a(8+1)
9

= a(8)
:
− a(8)

;
; // last 8 · 1 coefficients of a(8+1)

9
are now zero

20 I
(8+1)
9

= I
(8)
:
− I (8)

;
= H
(8)
9
+ 4 (8)

9
, where H (8)

9
=

〈
s, a(8)

9

〉
and 4 (8)

9
= 4
(8)
:
− 4 (8)

;

21 9 = 9 + 1
22 else if the negation of a(8)

;
in Z=@ matches a(8)

:
in the last (8 · 1) components then

23 a(8+1)
9

= a(8)
:
+ a(8)

;

24 I
(8+1)
9

= I
(8)
:
+ I (8)

;
= H
(8)
9
+ 4 (8)

9
, where H (8)

9
=

〈
s, a(8)

9

〉
and 4 (8)

9
= 4
(8)
:
+ 4 (8)

;

25 9 = 9 + 1
26 8 = 8 + 1
27 // Calculate input for next BKW step
28 A(8) = (a(8)1 · · · a

(8)
9−1)

29 z(8) = (I (8)1 , . . . , I
(8)
9−1)

30 Return (A(8) , z(8) )
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every step we obtain at most (@1 − 1)/2 columns with distinct coefficients in the current 1 entries.
We also make note of “observed symbols” I (8)

9
that represent the combination of two samples given

their respective matching columns (see Lines 20 and 24 for more details).

In each BKW step, the number of columns (and samples) decreases by at least (@1 − 1)/2 (size of
the collision set) and the variance of the error distribution f2 increases by a factor of two. The
algorithm terminates after C = d1/(= − 3)e steps returns a a set of observed symbols z(C) and
a corresponding reduced matrix A(C) in which only the first 3 rows have nonzero entries. The
parameter 3 should be set to 1, as in the original BKW algorithm, or 2 for the best performance
[7].

The remaining part s′ of the secret vector s is then guessed by means of hypothesis testing. After C
steps the error term

(
z(C)
9
−

〈
s′, a(C)

9

〉)
with 9 ∈ [<′] of the <′ remaining observed symbols follows

a Gaussian distribution j with noise f′2 = 2C · f2 (for more details, see [7, Lemma 1]). We can
test the noise of the error term for all s′′ ∈ Z3@ against the hypothesized noise f′2 by means of
the log-likelihood ratio (for details we again refer to [7]) and are thus able to determine s′ given
sufficiently many samples <′.

Finally, we can apply back substitution to recover all elements of s. We again apply a similar
procedure as in Algorithm 5 to reduce a number of columns from the collision tables computed in the
Sample Reduction step and obtain <′ columns with 3 + 3 ′ nonzero entries and their corresponding
“observed symbols”. Next, we substitute the part of s that was recovered in the previous steps and
recover the next part of s by hypothesis testing and repeat the process until we have found s.

Theorem 1 (BKZ Complexity [7, Corollary 2])
Let (a8 , I8) be samples following As,j, set 0 = blog2(1/(2U)2)e, 1 = =/0 and @ a prime. Let
3 be a small constant 0 < 3 < log2(=). Assume U is such that @1 = @=/0 = @=/blog2 (1/(2U)2) e

is superpolynomial in =. Then, given these parameters the cost of the BKW algorithm to solve
Search-LWE is(

@1 − 1
2

)
·
(
0(0 − 1)

2
· (= + 1)

)
+

⌈
@1

2

⌉
·
(⌈=
3

⌉
+ 1

)
· 3 · 0 + poly(=) ≈ (02=) · @

1

2
(3.7)

operations in Z@. Furthermore,

0 ·
⌈
@1

2

⌉
+ poly(=) calls to As,j and storage of

(
0 ·

⌈
@1

2

⌉
· =

)
elements in Z@ are needed. (3.8)

The first summand of Equation (3.7) roughly corresponds to the cost of creating the collision tables
and the second summand is the cost of back substitution. For a more detailed cost analysis, see [7,
Theorem 2].

Coded-BKW [44]

The estimator uses a more efficient variant of BKW, called Coded-BKW [44], that makes use of
coding theory. We will only present the high-level idea of Coded-BKW.
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The main advantage of the algorithm comes from an improved “coded” BKW step. The improved
step removes more column entries at the cost of an additional noise term. To avoid the noise
increasing too much, the final algorithm combines original BKW steps with the “coded” BKW step.
Let � be an index set and x� the part of x with entries indexed by �.

In a “coded” step 8, we set � as the set of 1 positions to be removed and fix some @-ary linear [#8 , 1]
code C8 with @1 codewords. We then search for the closest codeword c� ∈ C for every input vector
a� such that a� = c� + e� , where the error part e� ∈ Z#8

@ is minimized by a decoding procedure.
Finally, we subtract two vectors and their corresponding samples and pass the result to the next
BKW step. Consider the inner product 〈s� , a� 〉 = 〈s� , c� 〉 + 〈s� , e� 〉. In the subtraction, only the
error part 〈s� , e� 〉 remains.

The runtime estimate for Coded-BKW is slightly more complicated than for the standard variant of
BKW. We therefore refer an interested reader to [44].

3.2.6 Dual Attack [67]

The dual attack [67] falls into the regime of solving LWE in the dual SIS lattice (see Section 3.2.2).
We will present the attack and show how it can be applied to LWE in Section 3.3.1.

3.2.7 Other Algorithms

In the previous subsections, we gave an overview the most relevant algorithms in practice. The list
is by no means exhaustive. We indicated that many improvements and variants have been suggested
within the last two decades. In particular, for special cases LWE in which the components of the
secret vector are sampled from a small set S ⊂ Z, it is possible to speed up the algorithms (for
example, by using a technique called modulus switching for BKW [10]). Small secret variants also
give rise to a different approach due to the drastically decreasing search space. In the Meet-In-The-
Middle attack, we create a sorted list of Aᵀs′ for all s′ ∈

{
v ∈ S= | E8 = 0 for =2 < 8 ≤ =

}
. We then

iterate over all s′′ ∈
{
v ∈ S= | E8 = 0 for 0 ≤ 8 ≤ =

2
}

and check if z−Aᵀs′′ matches any value in the
list. The basic version of this algorithm has a runtime and memory complexity of about |S|=/2.

The estimator also includes estimates for an algorithm due to Arora and Ge [17] that has sub-
exponential runtime for a sufficiently narrow Gaussian distribution. In practical cryptographic
scenarios however, the algorithm has a much higher cost than other algorithms and is thus irrelevant
for our purposes.

3.3 Algorithms for Solving SIS

Recall that the SIS=,@,<,V problem asks to find a short vector s ∈ Z<@ of norm ‖s‖ ≤ V such that
such that A · s = 0 mod @ for some uniformly distributed matrix A=×<. Solving SIS is equivalent to
finding a short vector in the dual lattice Λ(Aᵀ)⊥ = {y ∈ Z< | Ay = 0 mod @}.
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3.3.1 Lattice Reduction

MR Variant [67]

Our first approach to solving SIS, sometimes referred to as the “dual attack”, follows quite naturally.
Given A, we can efficiently compute the basis B(BᵀB)−1 of the dual lattice Λ(Aᵀ)⊥ in polynomial
time using Gauss-Jordan elimination or other more modern algorithms.

We can then apply a lattice reduction algorithm and obtain a basis with root Hermite factor X. The
first basis b1 vector of the reduced basis has length ‖b1‖ = X<det(Λ(Aᵀ)⊥)1/<. We can see that X
depends on the subdimension <, which we want to be ideal, in order to minimize the cost of the
lattice reduction by relaxing X.

We further assume that det(Λ(Aᵀ)⊥) = Vol(Λ(Aᵀ)⊥) = @= (see Equation (2.12)). Our first equation
then becomes

‖b1‖ = X<@
=
< , (3.9)

which is minimal for < =
√
= log @/log X.

Theorem 2 (Optimal subdimension m [67])
Given a @-ary scaled dual lattice Λ(Aᵀ)⊥ defined by a matrix A ∈ Z=×< with < sufficiently larger
than = and a prime @. Then a lattice reduction algorithm yields an optimal output if performed in
subdimension

<′ =

√
= log @
log X

. (3.10)

Higher dimensions increase the complexity of the reduction algorithms and lower dimensions may
cause a lack of sufficiently short lattice vectors [67]. In contexts in which Equation (3.9) does not
hold, we may still choose < as in Equation (3.10) heuristically. Removing columns from A does
not have a great impact on our results, since we can simply set the corresponding components of the
secret vector s to zero. We reformulate Equation (3.9) a bit:

‖b1‖ = X<@
=
< ⇐⇒ log V = < log X + = log @

<

⇐⇒ log X =
log V
<
− = log @

<2 (3.11)

We continue by plugging Equation (3.10) into Equation (3.11):

log X =
log V√
= log @
log X

− = log @(√
= log @
log X

)2 ⇐⇒ log X =
log V√
= log @
log X

− log X

⇐⇒ 2 log X =
log V√
= log @
log X

⇐⇒ log X =
log2 V

4= log @
(3.12)
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Theorem 3 (log % in optimal subdimension)
Given a @-ary scaled dual lattice Λ(Aᵀ)⊥ defined by a matrix A ∈ Z=×< with < sufficiently larger
than = and a prime @. Then a lattice reduction algorithm performed in its optimal subdimension
achieves a log root Hermite factor of

log X =
log2 V

4= log @
. (3.13)

To estimate the cost of the lattice reduction for SIS, we call a function from the estimator to find the
required block size : such that BKZ achieves root Hermite factor X and apply a cost model with the
optimal subdimension <′ and block size : .

Note that for LWE we have U, @ as input parameters instead of a bound. The advantage of
distinguishing 〈v, e〉 from uniformly random mod @ is given by n = 4−c ( ‖v‖U)2 [57]. We can thus
convert U to a required bound V = 1

U

√
ln( 1

n
)/c, such that the success probability of solving an

LWE instance is given by n [13, Corollary 2]. The estimator uses a rinse and repeat strategy to find
the best tradeoff between runtime and success probability.

RS Variant [85]

A similar approach is described in [85]. The optimal subdimension and required root Hermite
factor are given by a slightly different expression. Apart from that, the attack works as described in
Section 3.3.1.

Theorem 4 (Optimal subdimension m [85, Conjecture 2]))
For every = ≥ 128, constant 2 ≥ 2, @ ≥ =2 , < = Ω(= log2(@)) and V < @, the best known approach
to solve SIS with parameters (=, <, @, V) involves solving X-HSVP in dimension <′ = min(G :
@2=/G ≤ V) with X =

√
3V/@=/<′.

We reformulate the expression for <′

@2=/<′ ≤ V
2=

<′ log(@) ≤ log(V)

<′ ≥ 2= log(@)
log(V) (3.14)

and obtain <′ =
⌈

2= log(@)
log(V)

⌉
.

If <′ > <, we take <′ = <. The root Hermite factor X must be larger than 1 for the reduction to
be tractable. From X =

√
3V/@=/< ≥ 1, it follows that we need that < ≥ = log2(@)/log2(V) for the

original dimension.
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3.3.2 Combinatorial Attack [67]

Micciancio and Regev also describe a combinatorial method for solving SIS [67] that is similar to
BKW.

Given a matrix A ∈ Z=×<@ and the dual lattice Λ(Aᵀ)⊥, we want to find a lattice vector v ∈ Λ(Aᵀ)⊥
with coefficients bounded by V. Expressed differently, we want to find v such that Av = 0 mod @
and ‖v8 ‖ ≤ 1 for all 8 ∈ [<].

We begin by dividing the columns of A into 2: for some : . Each set contains </2: column vectors.
We now compute all linear combinations 21b1 + · · · + 2</2:b</2: , where b8 denote the indexed
column vectors in each set, such that |28 | ≤ 1 and obtain 2: new sets A(:)

9
of ! = (21 + 1)</2:

vectors, 9 ∈
[
2:

]
. Remember that each 28 represents a coeffient of the lattice vector. By means of

these new sets, we satisfy the shorteness criteria of the output vector.

Next, we continue iteratively for 8 = : to 8 = 0 as follows. In each step, we merge pairs of two sets
A(8)
9
,A(8)

9+1. If a vector x in the first set of the pair can be combined with each vector y in the second
set such that the first log@ ! components in x ± y are zero, we put the result in combined set in
A(8−1)
9

. The size of the combined sets is at most !, as we consider a part of the vectors with log@ !
components that can take at most @log@ ! = ! different values. We start from 9 = 0 and increment 9
by 2 after each merge for 9 < 28 . After the merge, we have 28−1 sets.

We choose : such that

= ≈ (: + 1) log@ ! = (: + 1) log@ (2V + 1)</2: ⇐⇒ 2:

: + 1
≈ < log(2V + 1)

= log(@) (3.15)

After : steps, the first : log@ ! entries of the columns in the result set are cancelled out. We expect
that of the remaining ≈ log@ ! entries in result set, we should find at least one zero vector, as at
there again are most ! different vectors. The zero vector represents the linear combination with
entries bounded by V and we can easily reconstruct the short lattice vector v with ‖v‖∞ ≤ V.

To find an optimal : , we iterate over : starting from : = 1 to minimize the following expression:

Δ = abs
(

2:

: + 1
− < log(2V + 1)

= log(@)

)
. (3.16)

When Δ does not decrease we for 10 iteration steps, we stop and return : for the lowest value of Δ.

In our tool, we include two estimates of the cost of the algorithm. The overall runtime is dominated
by the size of the sets !. Variants of the algorithm may speed up various steps and hence in our
first, more conservative, estimate algorithm algorithms.combinatorial_conservative() we neglect
the cost of single operations in the algorithm and just set the cost to the list size !. We obtain a
more realistic estimate by considering the number of operations needed to create the initial sets.
Each of the 2: lists contains ! vectors. The cost for any operation on a list element is at least
log2(@) · =. Hence, the total cost is 2: · ! · log2(@) · =. This second estimate is included in our tool
in algorithms.combinatorial().
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We will now proceed to describe our tool in more detail. The core part of the Python library is a
function that generically searches for secure parameters for both LWE and SIS instances, as well as
for ring and module variants. Moreover, some schemes depend on the statistical security of either
LWE or SIS. We hence include classes to find parameters satisfying this criteria as well as basic
variants of LWE and SIS. Furthermore, we provide a set of utility classes and methods for the most
used distributions and norms. A configuration class allows for a substantial customization of the
estimation process. The tool can either estimate the bit security level of fixed parameter sets or
generically search for parameter sets that satisfy a certain bit security level.

4.1 Supported Distributions

The secret distribution used in encryption schemes based on LWE or SIS can be either distributed
according to a Gaussian or a uniform distribution. The error distribution in LWE must be a Gaussian
distribution with parameter U. In general, if both error and secret in LWE are sampled according to
Gaussian distributions, their parameters may differ. Currently, however, the estimator only supports
secrets that follow a uniform distribution or a Gaussian distribution with the same parameter as the
error distribution.

4.1.1 Gaussian Distribution

In some applications, we receive a Gaussian distribution as input but require a bound in some norm
to estimate the hardness of an SIS instance. Hence, we need to transform a Gaussian with parameter
B =
√

2cf into a bound V given some security parameter sec. Note that a =-dimensional Gaussian
�Z= ,B can be sampled by combining samples from = independent one-dimensional Gaussians �Z,B
[44].

For a Gaussian distribution and a random variable - with - ∼ �Z,B, the following inequality holds
for any : > 0 with V = :f [59, Lemma 4.4]:

Pr [|- | > :f] ≤ 24
−:2

2 ⇐⇒ Pr [|- | > V] ≤ 24
−V2

2f2 (4.1)

⇐⇒ Pr [|- | > V] ≤ 24
−cV2

B2 (4.2)
(4.3)

We demand 24−cV2/B2 ≤ 2−sec and obtain
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24−cV
2/B2 ≤ 2−sec ⇐⇒ −c V

2

B2 ≤ (−sec − 1) ln(2)

⇐⇒ V ≥ B
√
(sec + 1) ln(2)

c
.

Theorem 5 (Gaussian to Bound)
Given a Gaussian distribution �Z= ,B with width parameter B =

√
2cf and a security parameter sec,

we can compute a bound V such that a sample v drawn from �Z= ,B satisfies Pr [‖v‖∞ ≥ V] ≤ 2−sec
as follows:

V = B

√
(sec + 1) ln(2)

c
. (4.4)

Analogously, if we require a bound in the ℓ2-norm, we have that Pr
[
‖- ‖2 > :f

√
=
]
≤ :=4 =

2 (1−:
2) ,

for an =-dimensional Gaussian �Z= ,B and a random variable - with - ∼ �Z= ,B, for any : > 1 [59,
Lemma 4.4]. We set : =

√
2 and obtain

Pr
[
‖- ‖2 > f

√
2=

]
≤ 2

=
2 4

=
2 (1−2) = 2

=
2 2− log 4 =

2

= 2
=
2 (1−log 4)

If 2 =
2 (1−log 4) ≤ 2−sec, we take f

√
2= as our bound V. Otherwise, we bound the ℓ2-norm of V by the

ℓ∞-norm bound from Theorem 5 as described in Section 4.2.

We provide the classes GaussianAlpha, GaussianSigma and GaussianS to allow for the most flexibility
in specifying a Gaussian distribution.

4.1.2 Uniform Distribution

For uniform distributions, we support all distributions that are supported by the estimator, namely,
uniform modulo @, uniform in the interval [0, . . . , 1] and a sparse uniform distribution with
parameters ((0, 1), ℎ), where exactly ℎ components are in the interval [0, . . . , 1] \ {0} and all other
components are zero. Note that we only consider discrete distributions are over Z.

We can estimate the corresponding standard deviation for a Gaussian distribution by computing
the variance of the uniform distribution. Given a lower and upper bound (0, 1), the variance for a
discrete uniform distribution is defined as f2 = (1−0+1)

2−1
12 . For a uniform distribution modulo @

we set 0 = −
⌊ @

2
⌋
, 1 =

⌊ @
2
⌋
.

For a sparse discrete =-dimensional uniform distributionUℎ with an additional sparseness parameter
ℎ and a random variabel - ∼ Uℎ, we can compute the expected values E(-2) and E(-)2 as follows
[13]:
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E(-2) = ℎ

=
· 213 + 312 + 1 − 203 + 302 − 0

6(1 − 0) (4.5)

E(-)2 = ℎ

=
· 1(1 + 1) − 0(0 − 1)

2(1 − 0) (4.6)

and obtain the variance Var(-) = E(-2) − E(-)2.

4.2 Norm Bound Inequalities

In practical scenarios, oftentimes we require that the bound of a result does not exceed a certain
value to guarantee correctness. In addition, we have seen that estimation algorithms rely on bounds
in different ℓ?-norms. For example, the combinatorial attack in Section 3.3.2 needs a bound in ℓ∞
norm, whereas the dual attack in Section 3.3.1 uses bounds in the Euclidean norm. We thus need a
way to bound a value of a bound in one norm by a value in a different norm. In our tool, we define a
norm class with parameter ? and provide a method to_Lp() for conversions into all other norms
mentioned here. We begin by the following Theorem.

Theorem 6
Let 5 ∈ R@ with 5 =

∑
8 58-

8 as in in [21] and ?, @ ∈ N with∞ ≥ ? ≥ @ ≥ 1. Then the following
inequation holds:

‖ 5 ‖? ≤ ‖ 5 ‖@ . (4.7)

Let ?, @ ∈ N with 1 ≤ ? ≤ @ ≤ ∞. Then the following inequation holds:

lim
@′→@

‖ 5 ‖? ≤ lim
@′→@

=
1
?
− 1

@′ ‖ 5 ‖@′ . (4.8)

It is easy to see from the definition of the norms in Section 2.2 that Equation (4.7) is true.
Equation (4.8) follows from Hölder’s inequality. We proof the statement in Appendix B.1.

In addition, oftentimes we consider norms in the canonical embedding. Let O be the ring of
integers of a number field  = Q(\), where \ is an algebraic number and f denote the canonical
embedding as defined in [34]. Then, according to [34, Theorem 7] for 5 ∈ O the following
inequations hold:

‖ 5 ‖∞ ≤ ‖f( 5 )‖∞, (4.9)
‖f( 5 )‖∞ ≤ ‖ 5 ‖1. (4.10)

(We assume that the constant �< used in the original Theorem is 1 for < a power of 2 [34,
Lemma 3].) If we combine Equations (4.9) and (4.10) respectively with Equation (4.8) we obtain
the following theorem.

Theorem 7
Let 5 ∈ O as in in [34]. Then, the following two inequations hold:

‖f( 5 )‖∞ ≤ ‖ 5 ‖1 ≤ =1− 1
? ‖ 5 ‖?, and (4.11)

‖ 5 ‖? ≤ =
1
? ‖ 5 ‖∞ ≤ =

1
? ‖f( 5 )‖∞ (4.12)
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We can thus bound a given bound in the norm ℓ@ for some @ by a bound in some ℓ? norm using the
above inequalities and analogously in the embedding norm, which we call C?. We combine both
results in the method to_Lp() and to_Cp() in the norm classes Lp and Cp respectively. Note that
the embedding norm C? works internally like the ℓ? norm, as we define both for vector spaces of
dimension =. We merely need the results in Theorem 7 for the conversion between both norms.

We also want to be able to estimate bounds on the result of addition and multiplication of vectors of
a bounded length in different norms. Note that the degree of the polynomial of the underlying ring
to which we apply the norms must match. For addition, we simply bound the second addend by the
used norm of the first as described in Theorems 6 and 7 and add both bounds to obtain a bound on
the result in the norm of the first addend. It is slightly more complicated for multiplication, and we
state the results in the next theorem.

Theorem 8 (Multiplication of Norm Bounds [21, 34])
Let 5 be defined as above and let 6 ∈ R@ where 6 =

∑
8 68-

8 where 68 ∈ [−(@ − 1)/2, (@ − 1)/2]
and 68 = 68 mod @ as in [21]. We then can define the following inequations for multiplication
according to [21]:

‖ 5 · 6‖∞ ≤ ‖ 5 ‖∞ · ‖6‖1,
‖ 5 · 6‖∞ ≤ ‖ 5 ‖2 · ‖6‖2.

(4.13)

Let G, H ∈ O . Then, the following inequation holds according to [34]:

‖f(G · H)‖? ≤ ‖f(G)‖∞ · ‖f(H)‖? . (4.14)

(Again, we assume that �< = 1 in the original statement.)

If Equation (4.13) does not apply and the bounds for both vectors that we want to multiply is given
in some ℓ?-norm, we simply convert both bounds to the C∞-norm as described in Equation (4.11)
and apply Equation (4.14) with ? = ∞. In the case that we have an ℓ?-norm and a C@-norm for
some ?, @, we similarly convert the ℓ?-norm to the C∞-norm and apply Equation (4.14). If both
bounds are C?-norm bounds with ? < ∞, we apply Equation (4.14) twice, once with the first bound
converted to the C∞-norm and once with the second norm converted to the C∞-norm, and take the
best value as our result bound.

4.3 Problem Classes

We now present the problem classes in lattice_parameter_estimation/problem (see Figure 4.1).
LWE and SIS inherit from the base class BaseProblem. All instances provide a method
get_estimate_algorithms() that returns a list of algorithm instances that can be executed by
the function estimate(). Furthermore, any instance of BaseProblem can be compared to a bit
security level (for more details, we refer the reader to the documentation). The LWE class is initialized
by the secret dimension =, a modulus @, the number of samples <, a secret_distribution and
a error_distribution. Both secret_distribution and error_distribution must be instances of
the class distributions.Distribution. Instead of secret_distribution and error_distribution,
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4.3 Problem Classes

BaseProblem

get_estimate_algorithms()

LWE SIS

MLWE MSIS

RLWE RSIS

StatisticalGaussianMatrixMLWE

StatisticalUniformRLWE StatisticalUniformMatrixMLWE

StatisticalSIS StatisticalMatrixMSISStatisticalRSISStatisticalGaussianRLWE

StatisticalUniformMLWE

+ min_beta: norm.Lp
+ max_beta: norm.Lp

+ get_beta_bounds()
+ find_d()

StatisticalGaussianMLWE

+ min_sigma: RR 

+ get_secret_distribution_min_width()

StatisticalMSIS

+ max_sigma: RR
+ max_beta: norm.Lp

+ get_secret_distribution_max_width()

Figure 4.1: Problem classes

a bound of type norm.BaseNorm must be set for SIS. Note that both distributions.Uniform and
distributions.Gaussian are instances of norm.BaseNorm and can thus be used as a bound. We
compute the bound for a given distribution instance as described in Section 4.1.

For ring and module variants RLWE, RSIS and MLWE, MSIS respectively, = denotes the degree of
the polynomial of the underlying ring R@. The module variants MLWE and MSIS take an addition
parameter 3 for the rank of the module.

While there exist special cases where the ring structure of problem instances can be exploited in
an attack on LWE or SIS, in general, the hardness of ring and Module variants is estimated by
interpreting the coefficients of elements of R@ as vectors in Z=@ [8]. If we take into account the
considerations we presented in Section 2.5.3, we can thus reduce ring and Module instances, when
calling get_estimate_algorithms() on the ring and module variant of LWE and SIS, as follows:

• RLWE=,@,<,j −→ LWE=,@,<·=,j

• MLWE=,3,@,<,j −→ LWE= ·3,@,<·=,j

• RSIS=,@,<,V −→ SIS=,@,<·=,V

• MSIS=,3,@,<,V −→ SIS= ·3,@,<·=,V

In addition to the base problem variants, we define some statistically secure variants for both LWE
and SIS, since some schemes depend on the unconditional hardness of either LWE or SIS. More
precisely, we ask for parameters such that an arbitrary powerful attacker can only break the scheme
with probability less than 2−sec.
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StatisticalGaussianMLWE. For LWE, we define a statistically secure variant over a Gaussian
distribution and over a uniform distribution. StatisticalGaussianMLWE follows Corollary 7.5 and
Theorem 7.4 in [63]. The mapping of the parameters in [63] to the usage in this work can be found
in Table C.1. We obtain the following theorem:

Theorem 9 (Statistically Secure MLWE Over a Gaussian Distribution [63])
Let R be the ring of integers in the <′th cyclotomic number field  of degree =, and @ ≥ 2
an integer. For positive integers < ≤ < + 3 ≤ poly(=), let A = [I[<] | Ā] ∈ (R@) [<]×[<+3 ] ,
where I[<] ∈ (R@) [<]×[<] is the identity matrix and Ā ∈ (R@) [<]×[3 ] is uniformly random.
Then with probability 1 − 2−Ω(=) over the choice of Ā, the distribution of Ax ∈ (R@) [<] where
each coordinate of x ∈ (R@) [<+3 ] is chosen from a discrete Gaussian distribution of parameter
B > 2= · @</(<+3)+2/(=(<+3)) over R, satisfies that the probability of each of the @=< possible
outcomes is in the interval (1 ± 2−Ω(=) )@−= (and in particular is within statistical distance 2−Ω(=)
of the uniform distribution over (R@) [<]).

If a security parameter is passed and sec > =, we raise an exception. The resulting minimal standard
deviation is stored in the instance variable min_sigma and the corresponding distribution can be
obtained by calling get_secret_distribution_min_width() on the class instance.

StatisticalUniformMLWE. The authors of [21] describe statistically secure MLWE instances over
a Uniform distribution with invertible elements. The samples (A′, ℎA′ (H)) of the resulting MLWE
instance are within statistical distance 2−sec of (A′, u) for uniformly distributed u.

We obtain the following theorem (for a mapping of the parameters, see Table C.2):

Theorem 10 (Statistically Secure MLWE Over a Uniform Distribution [21, Lemma 4])
Let 1 < 32 < = be a power of 2. If @ is a prime congruent to 232 + 1 (mod 432) and

@</(<+3) · 22sec/( (<+3) ·=) ≤ 2V <
1
√
32
· @1/32 (4.15)

then any (all-powerful) algorithm A has advantage at most 2−sec in solving DKS∞
<,<+3,V, where

DKS∞ is the decisional knapsack problem in ℓ∞-norm.

Note that we replaced the fixed value of 128 in the original Lemma with sec. The proof is essentially
the same as in [21] and we will therefore refrain from stating it again here.

Hence, we have:

V<8= =
@</(<+3) · 22sec/( (<+3) ·=)

2
(4.16)

V<0G =
1

2
√
32
· @1/32 − 1 (4.17)

The variable 32 can be passed as an argument. If it is not passed, we try to find 32 by iterating over
all powers of 2 that are smaller than =. The resulting bounds are converted to ℓ∞ and stored in the
instance variables min_beta and max_beta. We also provide an instance method get_beta_bounds()

to obtain a tuple of both.
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For both statistically secure MLWE variants, we include the corresponding ring ver-
sions StatisticalGaussianRLWE and StatisticalUniformRLWE for 3 = 1 and matrix versions
StatisticalGaussianMatrixMLWE and StatisticalUniformMatrixMLWE for which the width and
height of the matrix A in [63] can be passed instead of < and 3.

StatisticalMSIS. We can find parameters for a statistically secure MSIS instance by following
Section 4.1 of [33]. The mapping of the parameters in [33] is shown in Table C.3. More specifically,
we ask to find a MLWE instance where the probability that non zero elements r in the Euclidean
ball �<(0, 2�) satisfy Â1 · r = 0 is smaller than 2−sec.

The number of elements in �<+3 (0, 2�) can be estimated from above as |�<+3 (0, 2�) | �
(2c4/((< + 3)=)) (<+3)=/2 · (2�) (<+3)=. The scheme is statistically binding if the probability that
non zero elements in �<+3 (0, 2�) of radius 2� in R<+3@ map to 0 in R<@ is negligible. Hence, it
must hold that |�<+3 (0, 2�) |/@<= ≤ 2−sec and we get:

(√
2c4

(< + 3) · = · 2�
) (<+3) ·=

≤ 2−sec · @<·= (4.18)

� ≤ 2
−sec
(<+3) ·=−1 · @ <

<+3 ·
√
(< + 3) · =

2c4
(4.19)

We convert the bound � to a Gaussian over ℓ2-norm by following the procedure described in
Section 4.2:

B ≈ G
√

c

(sec + 1) ln(2) (4.20)

The resulting parameters � and B can be accessed by the instance variables max_sigma and max_beta

or by calling get_secret_distribution_max_width() on the class instance.

As for statistically secure MLWE, we again include a matrix version StatisticalMatrixMSIS and a
ring StatisticalRSIS by setting 3 = 1. In addition, the proof also applies to the base SIS variant
and hence we include StatisticalSIS. Here, the height of the matrix = becomes the rank of the
modulus in the MSIS instance, i.e., 3 = =, and the degree of the polynomial is 1.

4.4 Parameter Search

The main functionality of our tool is to search for secure parameter sets given a set of problem
instances and is encapsulated in the function param_search.generic_search(). It is also possible to
directly estimate the cost of a list of parameter problems by calling the function problem.estimate().
For more details, we refer to the documentation.

The high-level idea of the search is presented in Algorithm 6. We begin with an initial parameter set.
We then create a list of problem instances generated by a parameter_problem function and estimate
the cost of all instances in the list by calling problem.estimate(). If the list contains multiple SIS
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instances or multiple LWE instances, we first attempt to reduce the instances to the easiest problem
instance respectively. The reduction is not exhaustive and is realized by a simple comparison of the
parameters =, @, < and U or bound V according to the following intuitive hardness results. For LWE,
we have that the larger = and U are and the smaller @ and < are, the harder the problem becomes.
For SIS, the problem becomes harder for increasing = and @ and decreasing V and <. The function
then generates a list of estimation algorithm instances for each remaining problem instance and the
resulting list is executed by an algorithm executor. The list is ordered according to expected runtime
and output quality of the specified algorithms (see Section 4.5). If the estimation is configured to be
parallel, the algorithms are split up into sublist and executed concurrently on multiple processors.
Once we find an insecure problem instance (i.e., the estimated attack cost in clock cycles is smaller
than 2sec), we terminate the estimation procedure and estimate() returns a result that is labeled
insecure. We then use the next_parameters function to generate a list L of (multiple) new parameter
sets from our current parameter set and sort each of the new parameter sets into an ordered list with
duplicate detection. The order is defined by a parameter_cost function. In the next step, we retrieve
the parameter set with the lowest cost from L and repeat the procedure until the cost estimation step
returns a secure result. The result includes the estimates for all cost models and algorithms.

Algorithm 6: Generic Search
Input: sec, initial_params, next_parameters, parameter_cost, problem_instance

1 L = OrderedList(initial_params)
2 while L ≠ ∅ do
3 current_params = L.pop()
4 instances = parameter_problem(current_params)
5 result = estimate(instances, sec)
6 if result is secure then
7 return (result, current_params)
8 else
9 next_param_sets = next_parameters(current_params)

10 forall param_set in next_param_sets do
11 sort param_set into L according to parameter_cost function

4.5 Configuration Options

The configuration of the estimation can be customized via the class algorithms.Configuration,
which is passed as an optional argument of param_search.generic_search().

We noted that the estimate() function can be configured to run in parallel, which may speed up
the search, in particular if many cost models need to be tested (e.g., with configuration setting
conservative=False and long running algorithms like ARORA_GB, CODED_BKW and PRIMAL_DECODE are
used (see Section 4.5). The list of used algorithms can be changed in the configuration. We
recommend to include at least PRIMAL_USVP for LWE instances and LATTICE_REDUCTION for SIS
instances (as in the default configuration) to make full use of early termination, since the estimate
algorithms for these attacks have a short runtime and yield relatively low cost estimates. A user can
also specify a security strategy. We included three strategies, namely, ALL_SECURE, SOME_SECURE and
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4.5 Configuration Options

NOT_INSECURE. For ALL_SECURE, the search only terminates if all specified algorithms return a cost
that satisfies the security level. Depending on the choice of algorithms, the search may not terminate
since, for example, Arora-GB for larger = takes too long and is therefore aborted once the timeout is
reached and cannot return a cost estimate. SOME_SECURE demands that at least one algorithm returns
a secure estimate for each problem instance for a given parameter set. NOT_INSECURE only demands
that no algorithm returns an insecure cost. We recommend using SOME_SECURE (as in the default
configuration).

Cost Models. Attacks that use BKZ for lattice reduction require a cost model to estimate the
number of CPU cycles in the SVP subroutine. Default cost models are shown in Table 3.2. We
distinguish between estimates for classical, quantum, sieving and enumeration and each of these
categories can be deselected by setting the respective parameter to False. At least one of classical
and quantum and of sieving and enumeration respectively must be selected to make use of the
default cost models.

Note that classical and quantum cost models cannot be directly compared with each other. The
number of operations per second that can be executed by a quantum computer may be significantly
smaller than for classical computers.

If all are unselected, custom cost models must be specified and passed as an argument. We included
an option of taking the most conservative estimate for each category combination for a more efficient
parameter search or estimation. Furthermore, we assigned a priority value on an ordinal scale to
each cost model, which enables us to first run cost models that yield a lower cost and thus terminate
the estimation process earlier for an insecure parameter set. The priority values of the default cost
models are derived from Figure 4.2. The number of BKZ rounds can be configured according
to the more conservative Core-SVP model algorithms.BKZ_SVP_repeat_core [14] in which the
polynomial factor of the runtime complexity of BKZ is completely ignored. In addition, we provide
a more realistic model algorithms.BKZ_SVP_repeat_8d for a BKZ cost of 8 · 3 · C: BKZ rounds,
where 3 again referes to the lattice dimension and C: is the number of clock cycles required for the
SVP subroutine (see Line 17).

Algorithms. Figures 4.3 to 4.5 show the plots of runtime and performance tests for the various
algorithms that can be used in our tool. The parameters of SIS in Figure 4.3 are derived from [66],
the parameters of LWE in Figure 4.5 are based on [82]. We chose the parameters of Figure 4.4, such
that most algorithms yield a result. Note that Arora-GB in Figure 4.4 and Meet-in-the-Middle and
Coded-BKW for higher dimensions in Figure 4.5 return a cost of∞ and therefore do not appear in
the bit security plot. In Figure 4.5, computing the cost for Arora-GB for = > 512 takes longer than
the configured timeout of 200s and does therefore also not show up in the plot. In accordance with
the results, we assigned priority values on an ordinal scale to the estimation algorithms. In Tables 4.1
and 4.2, we present the list of algorithms and their corresponding priority values and justify our
choice. Algorithms with a smaller priority value are expected to yield relatively good results quickly
and can therefore be executed first. If the estimate result does not satisfy the specified security
requirement, we can terminate the estimation process early in order to maximize the efficiency of
our search. Note that, while convenient, directly comparing the results for different algorithms is not
always admissible, as the compared algorithms may rely on different assumptions. Some algorithms
may compute a more realistic cost, while others may return a more conservative or even paranoid
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Figure 4.2: Cost models

cost estimate (e.g., BKZ is used with the Core-SVP paranoid lower bound). The results must be
weighed carefully in order to guarantee the security of a given scheme in the forseeable future,
while trying to keep the cost of using the scheme as low as possible. In the default configuration,
we included PRIMAL_USVP for LWE and LATTICE_REDUCTION for SIS.

52



4.6 Usage Examples

0 2000 4000 6000 8000
Dimension n

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e 

[s
]

combinatorial
combinatorial-cons
lattice-reduction
lattice-reduction-rs

0 2000 4000 6000 8000
Dimension n

0

5000

10000

15000

20000

25000

Bi
t s

ec
ur

ity
 lo

g 2
(ro

p)

combinatorial
combinatorial-cons
lattice-reduction
lattice-reduction-rs

(a) Large =

200 400 600 800 1000
Dimension n

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Ru
nt

im
e 

[s
] combinatorial

combinatorial-cons
lattice-reduction
lattice-reduction-rs

200 400 600 800 1000
Dimension n

0

250

500

750

1000

1250

1500

1750

2000

Bi
t s

ec
ur

ity
 lo

g 2
(ro

p)

combinatorial
combinatorial-cons
lattice-reduction
lattice-reduction-rs

(b) Small =

Figure 4.3: SIS with =2 < @ < 2=2, < = 2=
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4.6 Usage Examples

We provide several usage examples in the Python script usage_example.py. A simple estimation
example for LWE and SIS show the application of the function problem.estimate() to estimate the
security of problem instances for a fixed parameter set. Two simple parameter searches, one for
LWE and one for SIS, explain the functionality of the function param_search.generic_search().
In both cases, as for the algorithm performance analysis in Figures 4.3 and 4.4, we derive the
parameter choices from [82] and [66] for LWE and SIS respectively. In addition, our code includes
two more advanced examples for schemes that are currently under research at the Institute of
Information Security (SEC), University of Stuttgart. The first is a parameter search for variation of
the BGV scheme based on [29, 34] that ensures accountability. The second finds parameters for
a commitment scheme based on [21] in an advanced setting and combines LWE and SIS in one
search. The examples demonstrate the usefulness of our tool. On the one hand, our tool provides
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Figure 4.4: LWE with f = 2.828, < = ∞, = < @ < 2=

interfaces and default settings that are easy use without much background knowledge. On the other
hand, the flexibility of the generic search allows for the combination of multiple primitive building
blocks of a complex application, while maintining a simple and clear structure.
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Algorithm Priority Justification
Meet-in-the-Middle 5 fastest, high cost estimate, as prefilter
Primal uSVP 10 fast, low cost estimatate estimates
Dual Attack 20 fast, often higher estimates than Primal uSVP
Dual Attack (without LLL) 30 fast, often higher estimates than Dual
Coded-BKW 90 slow, somtimes very low cost estimate

(for small stddev), does not always yield results
Decoding Attack 100 slow, often higher estimates than faster algorithms
Arora-Ge 200 extremely slow, often higher estimates,

does not always yield results

Table 4.1: Prioritization of LWE Algorithms

Algorithm Priority Justification
Lattice Reduction MR 1 fastest, low cost estimates
Lattice Reduction RS 2 same results as lattice-reduction,

not always applicable
Combinatorial Attack 10 fast, often higher cost results
Combinatorial Conservative 9 fast, slighly better than Combinatorial

Table 4.2: Prioritization of SIS Algorithms
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Figure 4.5: LWE with parameters chosen as in [82]
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5 Conclusion

In summary, we examined two important problems in modern cryptography, namely, LWE and
SIS, and discussed various strategies and algorithms for solving both problems from a perspective
of practical hardness estimation. Furthermore, we compiled a list of up-to-date reduction cost
models from the literature. These cost models play a crucial role in predicting the behavior of
attack algorithms that rely on a lattice reduction subroutine. We introduced a new unified and
user-friendly tool that can be used to find secure parameters for a given cryptographic scheme. The
tool includes all popular variants of LWE and SIS as well as respective cost estimation procedures,
provides several utility classes and functions, and allows for detailed customization. A good choice
of algorithms for initial parameter searches are Primal uSVP for LWE and Lattice Reduction for
SIS, as they yield low cost estimates in sort time. The initial parameter set can then be adapted and
the search run again with all algorithms for the final result.

Future Work. In the future, our tool could be further extended with more estimation algorithms,
particularly, for SIS. We included a very basic version of a combinatorial attack on SIS in the dual
lattice [67]. It should be possible to apply improvements to the BKW algorithm to the combinatorial
attack and obtain more realistic estimates. Furthermore, the LWE Estimator [13] has not been
updated over the last two years. Recently, more accurate estimates of the Primal uSVP attack have
been published in [79]. In addition, we may see a major refactoring of the estimator in terms of
how distributions are handled. In our tool, we introduced wrapper classes for this purpose. In the
case of an update, our tool may not be compatible with the new version of the estimator anymore
and will need to be adapted accordingly. Lastly, as of now, our tool does not provide a convenient
way to specify custom estimate algorithms. This functionality could be included as part of the
configuration class.
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A Additional Math

A.1 Linear Codes

Let F=@ be the =-dimensional vector space over the field F@. A @-ary linear code C or [=, :]-code
[92] is a :-dimensional linear subspace of F=@ such that 0 ∈ C, x + y ∈ C for all x, y ∈ C and Wx ∈ C
for x ∈ C, W ∈ F@. There are @: different codewords in C.

Let C be a @-ary linear [=, :]-code. The lattice over C [44] is defined as

Λ(C) = {x ∈ R= | ∃y ∈ C : x = y mod @} . (A.1)

Similarly, for a lattice Λ(B) a lattice code C defined by Λ(B) and a shaping regionV ⊂ R= (e.g.,
the Voronoi region, see Equation (2.5)) is a subspace of R= such that all codewords are lattice
vectors in Λ(B) within the regionV [91]:

C = {G ∈ Λ(B) | G ∈ V} . (A.2)
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B Proofs

B.1 Proof of Norm Inequalities

Let ?, @ ∈ N with 1 ≤ ? ≤ @ ≤ ∞. Then the following inequation holds:

lim
@′→@

‖ 5 ‖? ≤ lim
@′→@

=
1
?
− 1

@′ ‖ 5 ‖@′ . (B.1)

Proof. For x, y ∈ R= and 1
D
+ 1
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= 1, Hölder’s inequality states that
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Following [49], we set |x8 | = |z8 |?, y8 = 1 and D = @
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We now apply the definition of the ℓ?-norm (see Section 2.2) and obtain
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C Tables

C.1 Mapping of Parameters in Referenced Papers

Parameters in [63] Noation here Represents
; < + 3 width of matrix A
: < height of matrix A

Table C.1: Parameter Mapping from [63]

Parameters in [21] Noation Here Represents
: < + 3 width of matrix [I= A′]
= < height of matrix [I= A′]
3 32 variable
# = degree of Ring polynomial

Table C.2: Parameter Mapping from [21]

Parameters in [33] Noation Here Represents
<′ < + 3 width of matrix Â1
< < height of matrix Â1
� � norm-bound of secret
B B Gaussian width (not stddev)
# = degree of polynomial

Table C.3: Parameter Mapping from [33]
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