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“The first principle is that you must not fool yourself and you are the easiest
person to fool.”

—Richard P. Feynman
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Zusammenfassung
Ab initio Studies of Solid Phase Diagrams with Quantum Chemical

Theories

In dieser Arbeit wenden wir zunächst mehrere etablierte Methoden an, darunter
Full Configuration Interaction Monte Carlo (FCIQMC) und Coupled Cluster
Singles und Doubles (CCSD). Wir berechnen damit die festenWasserstoffphasen
unter hohem Druck und stellen fest, dass CCSD ein statisches Phasendiagramm
voraussagt, das gut mit der state-of-the-art Diffusion Monte Carlo (DMC)
Methode übereinstimmt, insbesondere auf den stabilsten Phasen. Wir merken
an, dass alle existierenden Arbeiten an festen Wasserstoffphasen, Geometrien
verwenden, die durch Dichtefunktionaltheorie (DFT) unter Verwendung unter-
schiedlicher Austauschkorrelations-Funktionale optimiert wurden. Als zweiten
Schritt und um über DFT hinauszugehen, entwickeln und implementieren wir
daher für die Geometrieoptimierungen der festen Wasserstoffphasen, ein Pro-
gramm, das die MP2-Kräfte unter Verwendung eines ebenen Wellenbasissatzes
berechnet. Die durch DFT-PBE erhaltenen C2/c-24 Modellstrukturen werden
mit den MP2-Kräften weiter entspannt und die resultierenden Strukturen liefern
Bandlücken, berechnet nach der G0W0-Methode und unter störungstheoretis-
cher Berücksichtigung der Elektron-Phonon-Wechselwirkungen, die gut mit Ex-
perimenten übereinstimmen. Darüberhinaus sind dieH2-Vibron-Frequenzkurven
in Abhängigkeit vom Druck, berechnet auf Basis der MP2 optimierten Struk-
turen, in fast perfekter Übereinstimmung mit einem der Experimente und liefern
wertvolle theoretische Einblicke hinsichtlich langjähriger Diskrepanzen zwischen
Experimenten über die Druckkalibrierungskurve bei hohen Drücken. Schließlich,
um bestehende Methoden effizienter und genauer zu machen kombinieren wir
die Transkorrelierte Methode (TC) mit der Coupled Cluster Methode, mit einer
Anwendung auf das dreidimensionale, gleichförmige Elektronengas (3D UEG),
das ein Modellsystem für periodische Festkörper ist. Traditionell wurde die TC-
Methode verwendet, um die Koaleszenzbedingungen der Wellenfunktion direkt
in den TC-Hamiltonian einzuführen, sodass weniger Basisfunktionen benötigt
werden, um Energien zu erreichen, die frei von Fehlern aufgrund der Unvoll-
ständigkeit des Basissatzes sind. Wir stellen fest, dass das TC-Framework
sehr allgemein ist und zusätzliche Korrelationseffekte neben den kurzreichweiti-
gen Koaleszenzbedingungen auch eingeführt werden können und möglicherweise
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sogar die Genauigkeit von Näherungsmethoden wie Coupled/Distinguishable
Cluster Doubles (CCD/DCD) in Systemen mit starken Korrelationen verbessert
wird. Inspiriert durch die Paarkorrelationsfunktionen im reelen Raum für das
3D-UEG, entwerfen wir einen Korrelator, der ihr Verhalten als Funktion der
Elektronendichte nachahmt. Zusätzlich wurde ein einfaches Framework einge-
führt, das darauf basiert das HF-Gewicht in der Wellenfunktion zu maximieren,
um die Parameter im Korrelator zu optimieren. Dadurch werden die Genauigkeit
und Effizienz von TC-CCD und TC-DCD über einen großen Bereich von Elek-
tronendichten deutlich verbessert im Vergleich zu ihren kanonischen Gegen-
stücken, wobei FCIQMC- und DMC-Ergebnisse als Benchmark-Daten verwen-
det werden. Wir hoffen diese Methoden in Zukunft auf echte, periodische, feste
Materialien zu verallgemeinern.
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Abstract
Ab initio Studies of Solid Phase Diagrams with Quantum Chemical

Theories

In this thesis, we first apply several existing methods, including full configura-
tion interaction Monte Carlo (FCIQMC) and coupled cluster singles and doubles
(CCSD), on the solid hydrogen phases under high pressures and find that CCSD
predicts a static phase diagram that agrees well with the state-of-the-art diffu-
sion Monte Carlo (DMC), especially on the most stable phases. Noticing that
all existing studies on the solid hydrogen phases use structures which are opti-
mized by density functional theory (DFT) using different exchange-correlation
functionals, as a second step and to go beyond DFT, we develop and imple-
ment a program that calculates the MP2 forces using a plane wave basis set for
the structural optimization of the solid hydrogen phases. The C2/c-24 model
structures obtained via DFT-PBE are further relaxed using the MP2 forces and
the resulting structures provide band gaps, calculated by the G0W0 method and
with the electron-phonon interactions included perturbatively, that agree rea-
sonably well with experiments. Furthermore, the H2 vibron frequencies versus
pressure curve calculated based on the MP2 optimized structures agree almost
perfectly with one of the experiments, providing valuable theoretical insights in
dissolving a long-standing dispute among experiments over the pressure calibra-
tion curve at high pressures. Finally, to make existing methods more efficient
and accurate, we combine the transcorrelation method (TC) and the coupled
cluster methods, with an application on the three dimensional uniform electron
gas (3D UEG) which is a model system for periodic solids. Traditionally, the
TC method has been used to incorporate the short range cusp conditions in the
wavefunction directly into the TC Hamiltonian, so that fewer basis functions
are needed to achieve energies that are free from the basis-set incompleteness
errors. We notice that the TC framework is very general and correlations in
addition to the short range cusp conditions can also be included and potentially
improve even the accuracy of approximate methods like coupled/distinguishable
cluster doubles (CCD/DCD) in systems with strong correlations. Inspired by
the pair-correlation functions in real space for the 3D UEG, we design a cor-
relator that mimics their behaviours as a function of the electron density. In
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addition to that, a simple framework which aims to maximize the HF weight
in the wavefunction is introduced to optimize the parameters in the correlator.
As a result, the accuracy and efficiency of TC-CCD and TC-DCD are improved
significantly compared to their canonical counterparts over a large range of elec-
tron densities, using FCIQMC and DMC results as benchmark data. We hope
to generalize these methods to real periodic solid materials in the future.
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Part I

Introduction
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“All things are made of atoms.” is the shortest sentence that Richard Feyn-
man believed to be able to convey the most important scientific knowledge to a
post-apocalyptic world for the next generation of intelligent creatures to restart
science. The behaviors of atoms are governed by the laws of quantum mechan-
ics, so are those of their constituent parts such as electrons and nuclei. To be
more specific, the Schrödinger equation dictates the details of the behaviors
of all those microscopic particles when the relativistic effects can be ignored.
Methods which are based on the Schrödinger equation and do not require addi-
tional inputs other than some fundamental constants to predict the properties of
quantum systems, like molecules or solids, are called ab initio or first principles.

In classical mechanics, the first principles theory is the Newton laws, based
on which the movement of a macroscopic object can be predicted precisely, once
some crucial parameters are known, such as the forces, mass, initial velocity,
etc. Ideally, the same level of success is desirable using quantum mechanics
in the microscopic world as the Newtonian mechanics did in the macroscopic
world—once the molecular structure of a material is known, we should be able
to accurately predict the properties of the system according to the Schrödinger
equation. For example, we want to predict if a certain arrangement of atoms
will be more stable than another. This could provide us with the so-called phase
diagrams, such as the energy versus pressure diagram of different phases, of a
solid material without even synthesizing it in the laboratory. It could open the
door to fast design and discovery of materials with novel properties, which can
greatly enrich our toolbox in pushing the boundaries in science and technology
and can have significant impacts on the human society as well. Thanks to the
increasingly efficient modern computers, we are able to make some of these
predictions on certain materials where the correlations among electrons are not
so strong, that is the state of each electron does not depend strongly on the
states of the other electrons in the system. But the goal of making general and
accurate predictions on any systems is still out of our reach. Using state-of-the-
art quantum Monte Carlo to obtain the exact solution to a quantum many-body
problem is exponentially hard with respect to the number of the simulated
particles [1], and approximate methods that have satisfactory accuracy also
come with high polynomial scaling in computational cost.

Practically, various approximations have been introduced to make solving
the Schrödinger equation more tractable. One of the most important ones is
the Born-Oppenheimer (BO) approximation, which decouples the movements
of the light electrons and the heavy nuclei. The general idea is that the former
are so light that they can adapt to the “slow” movements of the latter almost
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instantaneously, so that we can solve the electronic problem with static nuclei
and the nuclei problem with the electron clouds as external potentials in two
subsequent steps.

Even with the BO approximation, solving the many-electron Schrödinger
equation is still an exponentially hard problem. So some further approximations
are needed. For example, in density functional theory (DFT), which scales
only O(N3) with system size N , i.e. the number of electrons in the system,
the electrons are treated as non-interacting quasiparticles and the correlation
effects are all included in the so-called exchange-correlation (XC) functional;
Hartree-Fock (HF) theory (∝ O(N4)) 2 includes the correct exchange symmetry
in the wavefunction by using a single Slater determinant as an ansatz for the
true many-electron ground state wavefunction, while the electronic correlations
are treated only in a mean-field fashion. The latter and the later developed
correlation methods that are based on it are often called wavefunction-based or
quantum chemical methods.

One of the important post-HF theories is the coupled cluster (CC) theory,
which employs an exponential excitation operator on a reference determinant,
often the HF determinant, to approximate the true many-electron ground state
wavefunction. The coupled cluster singles and doubles (CCSD) (∝ O(N6))
ansatz is one of the most practical methods that has a good compromise between
accuracy and efficiency; coupled cluster singles and doubles plus perturbative
triples (CCSD(T)) (∝ O(N7)) is the de facto standard in quantum chemistry
for predicting properties of small systems that match the best with experiments
in most of the cases. Another important category is the quantum Monte Carlo
(QMC) methods, which generally represent the many-electron wavefunction us-
ing random walkers in continuous real or discrete Slater determinant space.
In diffusion Monte Carlo (DMC), a projector consisting of the diffusion and
branching steps is repeatedly applied to stochastically project out higher en-
ergy components of an initial guess of the wavefunction, so that only the ground
state wavefunction remains in the limit of infinite projection time. However,
DMC relies on a trial wavefunction, thus some bias, to avoid the collapse onto
the undesired bosonic ground state. Despite this approximation, DMC has been
successfully applied to molecules and solids, and is one of the most accurate and
efficient ab initio methods. Using the product of a Slater-Jastrow (SJ) factor
and a single Slater determinant as the trial wavefunction, DMC can achieve
O(N4) scaling with the system size. However, in strongly correlated systems
where more Slater determinants are needed in the trial wavefunction in order

2The transformation of orbitals scales ∝ O(M5), where M is the number of orbitals
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to target a certain accuracy, the scaling of DMC will also increase. Full config-
uration interaction quantum Monte Carlo (FCIQMC) uses a similar idea, but
in Slater determinant space, where the antisymmetry of the wavefunction upon
the exchange of two like-spin electrons is enforced. This gives FCIQMC an
advantage that the exact ground state wavefunction can emerge automatically
once enough random walkers are used. Formally, FCIQMC scales exponentially
with the system size.

In this thesis, both the electronic and the nuclear problems are treated within
the framework of the BO approximation. A large part of this thesis is dedicated
to the electronic problem, with one example showing that CCSD can predict
accurate static phase diagrams of solid hydrogen phases under high pressures.
Structural optimisation is also attempted in this thesis, in order to better un-
derstand the solid hydrogen phases. To this end, the algorithm to compute
the nuclear forces on the level of the second order Møller-Plesset perturbation
(MP2) using the plane wave basis is implemented. Using the MP2 forces, the
crystal structures of solid hydrogen models at high pressures are optimised.
The optimised structures show very good agreement with experiments in the
H2 vibron frequencies as a function of the pressure. After the nuclear prob-
lem is solved perturbatively to include the effects due to the electron-phonon
interaction (EPI), the band gaps of the optimised structures are also in reason-
able agreement with experiments. New theoretical methods are also developed
to solve the electronic problem more accurately and efficiently. In particular,
the idea of including physical insights in terms of a similarity transformation
(ST) on the many-electron Hamiltonian, which can compactify the ground state
wavefunction in Slater determinant space, is combined with the coupled cluster
doubles (CCD)/distinguishable cluster doubles (DCD) theory. The ST method
is also termed transcorrelation (TC), which dates back to Boys and Handy [2,
3] in the late 1960s. The combination scheme, termed as TC-CC, is applied to
the three dimensional uniform electron gas (3D UEG) model to showcase its
greatly improved efficiency and accuracy, compared to traditional CC methods.

The thesis is structured as follows. In part II, we introduce some of the basic
notions, tools and theories that are relevant to this thesis. These include some
fundamental concepts in quantum mechanics, such as the indistinguishability,
spins and exchange symmetries of quantum particles; the essential Bloch’s the-
orem for periodic systems and a simple model for periodic solids, 3D UEG;
elaboration on the BO approximation; second quantization and the Wick’s the-
orem; mean-field theories, including the HF theory and DFT; diagrammatic
theories like MP2 and CC; further details on on DMC and FCIQMC. Since the
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main topic of the thesis is on phase diagrams of periodic solids, techniques to
correct finite size errors are also covered. Towards the end of this part, the
perturbative treatment of the EPI will be briefly reviewed. In part III, the fo-
cus will be on the new theoretical developments made during my Ph.D. study,
including the MP2 nuclear forces and TC-CCD. In part IV, applications of the
existing theories and newly developed tools on solid hydrogen phases and 3D
UEG will be presented. In part V, the thesis is concluded with a summary of
the main contents and some outlook for future directions.
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Part II

Theory
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Chapter 1

Introduction to the Quantum
Many-body Problem

The discovery of quantum mechanics in the early 1900s unveiled the curtain
for, as of now, over a century’s developments and applications of the theory.
It is now established as one of the most accurate theories in human history.
The word “quantum” refers to small quantities that are discrete and cannot be
divided into smaller parts. It reflects our realisation that our world is funda-
mentally discretised. The concept of quantized energy was first introduced by
the German physicist Max Planck between 1900 and 1901 to resolve the trou-
bling problem of the ultraviolet catastrophe in black body radiation [4], and
later was further developed by Albert Einstein [5] and others. The behaviors of
microscopic particles are distinctly different from those of macroscopic objects,
in that they possess both properties of waves and particles. This duality puts
some fundamental limits to how precisely two conjugate variables, such as the
position and momentum of a microscopic particle, like the electron, can be mea-
sured at the same time. This is the so-called Heisenberg’s uncertainty principle.
This duality has also led to the discovery of Schrödinger’s wave equation for
non-relativistic quantum particles, which is now known as the time-dependent
Schrödinger equation,

i
d

dt
Ψ(X, t) = ĤΨ(X, t), (1.1)

where i is the imaginary unit and atomic units are used 1, Ψ(X, t) is the wave-
function describing the evolution of a state of the system as a function of time
and Ĥ is the Hamiltonian of the system. The underlying assumption is that
since particles behave also like waves, there must be a “wave” equation similar
to the classical one to describe this behavior. So instead of describing definite
trajectories of particles in time, ‖Ψ(X, t)‖2 is used to represent the probability

1We set the reduced Planck constant ~ = 1, the speed of light c = 1, elementary charge
e = 1 and electron mass me = 1.
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density of finding the particles (either electrons or nuclei) in the position con-
figuration X = {x1,x2, . . . ,xi, . . . ,xN} at a specific time t, where xi denotes
the position of particle i.

Within the scope of this thesis, the stationary states are of interest, to be
more specific, only the ground state and a few low-lying excited energy states.
To this end, the stationary or time-independent Schrödinger equation is often
used 2

ĤΨ(X) = EΨ(X), (1.2)

which mathematically is an eigenvalue problem.
In this thesis, the quantum many-body problem is limited to periodic solids

(crystals), where normally the periodic boundary condition is applied. From
now on, for simplicity, the term “solids” refers to periodic solids or crystals.
Solids consist of nuclei and electrons, which are positively and negatively charged,
respectively. The Hamiltonian for such a system is written as

Ĥ = −
N∑
n=1

1

2
∇2
n−

K∑
µ=1

1

2Mµ

∇2
µ−

N∑
i=1

K∑
µ=1

Zµ
|ri −Rµ|

+
N∑
j>i

1

|ri − rj|
+

K∑
µ>ν

ZµZν
|Rµ −Rν |

,

(1.3)
The first term on the right hand side (r.h.s.) of equation (1.3) refers to the sum
of the kinetic energy operators of the N electrons in the system; the second term
is a sum of the kinetic energy operator of the K nuclei, where Mµ stands for
the mass of nucleus µ; the other three terms are the sums of nucleus-electron,
electron-electron, and nucleus-electron optential operators, respectively, where
Zµ refers to the charges that nucleus µ carries.

1.1 Identical Particles, Spins and Exchange Sym-

metries

In the quantum world, one has to abandon the classical sense of trajectories due
to the uncertainty principle. The wavefunction reflects the nature of this uncer-
tainty by representing the particles’ states as probability clouds. This then leads
to the important concept of identical particles in quantum mechanics: particles
belonging to the same species have exactly the same intrinsic properties such as
mass, electric charge and spin, e.g. electrons. Two identical quantum particles
are indistinguishable from each other. To reflect this indistinguishability in the
total wavefunction of two identical particles, it is required that if Ψ(x1,x2) is a

2In the QMC methods, the imaginary-time Schrödinger equation will used to derive the
algorithms to get the ground state wavefunction.
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solution to the static Schrödinger equation, i.e. ĤΨ(x1,x2) = EΨ(x1,x2), so
should Ψ(x2,x1) be a valid solution. This is only possible when Ψ(x1,x2) and
Ψ(x2,x1) are related by a constant C,

Ψ(x1,x2) = CΨ(x2,x1)

Ψ(x2,x1) = CΨ(x1,x2),
(1.4)

from which we conclude that C2 = 1 or C = ±1 3. The case when C =

−1 indicates that the total wavefunction is antisymmetric upon exchanging
two identical particles, which we call fermions and have half integer spins; the
other case refers to a symmetric total wavefunction of two identical particles,
which we call bosons and have integer spins. It is worth pointing out that
the antisymmetry in the fermionic wavefunction naturally ensures the Pauli
exclusion principle, which states that two identical particles (now including the
same spin attribute) cannot occupy the same state. In real space, it is equivalent
to requiring that Ψ(x1,x2) = 0, when x1 = x2, which is the case when the total
wavefunction is antisymmetric.

1.2 Born-Oppenheimer Approximation

The large ratio (103) between the masses of a typical nucleus and an electron
is the basis for the BO approximation. The main idea is that electrons move
much faster than the much heavier nuclei when they are in thermal equilibrium
and thus the decoupling of their motions is justified. Mathematically, the full
many-body problem of Eq. (1.2) is split into the electronic and nuclear parts
by approximating the full many-body wavefunction using a product of the elec-
tronic and the nuclear wavefunction as follows

Ψ({r}, {R}) = Ψe({r})× Φn({R}), (1.5)

where Ψe({r}) and Φn({R}) are the electronic and nuclear wavefunction, re-
spectively. This approximation enables us to write the electronic and nuclear
problems separately as

ĤeΨe({r}) = Ee({R})Ψe({r}), (1.6)

ĤnΦn({R}) = En({R})Φn({R}), (1.7)

3 C can only be a real number in 3-dimensional space, in 2-dimensional it can be complex
and the corresponding particles are called anyons [6].
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where the electronic and nuclear Hamiltonians are

Ĥe = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

K∑
µ=1

Zµ
|ri −Rµ|

+
N∑
j>i

1

|ri − rj|
+

K∑
µ>ν

ZµZν
|Rµ −Rν |

, (1.8)

Ĥn = −
K∑
µ=1

1

2Mµ

∇2
µ + Ee({R}). (1.9)

Since the electronic wavefunction does not have an explicit dependence on the
nuclei positions, the last term in Eq. (1.8) yields a constant energy for each
set of fixed nuclei positions. After solving Eq. (1.6) at a set of fixed {R}, the
electronic energy, which depends on them parametrically, plays the role of an
external potential in the Schrödinger equation for the nuclei in Eq. (1.7). The
total energy of the system is a sum of the two contributions:

Etotal = Ee + En. (1.10)

In this thesis, the electronic problem is solved with fixed nuclei positions
using various methods in most cases. Only on the level of the MP2 theory, is
the minimisation of the electronic energy with respect to the nuclei positions
attempted, see chapter 8. This means that the nuclei positions are updated
using the nuclear forces in small steps and the MP2 potential energy surface
(PES) Ee({R}) is obtained, where the global minimum is searched for. To
facilitate a direct comparison between theoretical predictions and experiments,
the influences from EPI also need to be considered, see chapter 7.

1.3 The Electronic Structure Problem in Peri-

odic Solids

The electronic structure problem refers to solving Eq. (1.6) with fixed nuclei
positions. Unlike in molecular systems, where the natural boundary condition 4

is applied to the wavefunction, in solids, the periodic boundary condition is often
used to reflect the periodicity observed in the arrangement of atoms in crystals.
To meaningfully compare with experimental results, all observables calculated
from theory should be extrapolated to the thermodynamic limit (TDL), which
means an increasingly larger number of particles and larger volumes should be

4 The wavefunction should vanish at infinity.
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simulated, while keeping the ratio between them constant:

N →∞, V →∞, N

V
= constant. (1.11)

In solids, this is accomplished by simulating larger and larger supercells,
which consist of numerous unit cells, or by sampling a denser and denser k-
mesh in the first Brillouin zone. This poses a unique scaling problem in solids
in comparison with molecules. In the following subsections, some basic notions,
including unit cell, supercell, the first Brillouin zone and the k-mesh sampling
the first Brillouin zone, and the Bloch’s theorem in solid state physics will be
introduced.

1.3.1 Bravais Lattice and Periodic Boundary Condition

a3

a2

a1

Figure 1.1: The primitive unit cell containing 24 hydrogen
atoms of the phase C2c-24 at 100 GPa optimised by MP2 forces.
The red lines show the boundary of the unit cell. Some atoms
from the neighbouring cells are included to show the complete

molecular bonds.

A primitive unit cell in a solid is the smallest unit that can be repeated in
three directions to construct the solid. The choice of the primitive unit cell in
a solid is not unique, however all possible choices have the same volume Ω. In
Fig. 1.1, the primitive unit cell of a model phase for solid hydrogen at 100 GPa
is shown for example. The shape of a unit cell is defined by three basis vectors
ai, i = 1, 2, 3. All crystals can be constructed by repeating the primitive unit
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(a) (b)

Figure 1.2: (A): 2D square Bravais lattice. (B): Reciprocal lat-
tice of the 2D square lattice and the corresponding first Brillouin

zone (shaded in blue).

cell in all three directions 5. Each repetition can be identified as a point on the
Bravais lattice:

L =
3∑
i=1

niai, ni ∈ Z. (1.12)

In association to the Bravais lattice, one can define a reciprocal lattice via the
relation eiL·K = 1 and ai · bj = 2πδi,j:

K =
3∑
i=1

ñibi, ñi ∈ Z, (1.13)

where bi, i = 1, 2, 3, are the three basis vectors for the reciprocal cell. The
first Brillouin zone is defined as the area enclosed by the bisection lines (planes)
between one lattice point and its nearest surrounding points in reciprocal space.
In Fig. 1.2, an example of a 2D square Bravais lattice, its reciprocal lattice and
the corresponding first Brillouin zone are shown.

In reality, one cannot simulate an infinitely large solid. So normally a su-
percell containing Np = N1N2N3 unit cells is simulated, where N1, N2, N3 are
the number of unit cells in x, y, z directions respectively; in addition, the single-
particle wavefunction is required to fulfill the periodic or Born-von Karman
boundary condition, which reads

ψ(r +Niai) = ψ(r), i = 1, 2, 3. (1.14)
5In 3 dimensional space, there are in total 14 different Bravais lattices.
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1.3.2 Bloch’s Theorem

Theorem 1.3.1. The eigenstates ψ of a single-particle Hamiltonian, which
contains only a periodic potential U(r+L) = U(r), can be written as a product
of a plane wave and a function with periodicity of the Bravais lattice L:

ψ(r) = eik·ru(r), (1.15)

where u(r + L) = u(r).

We follow the definition of the theorem, Eq. (8.3), in Ref. [7] and refer to the
proofs therein. In combination with the periodic boundary condition introduced
in the previous subsection, we can find the possible values of k defined by a
supercell by plugging Eq. (1.15) into Eq. (1.14):

ψ(r +Niai) = eiNik·aieik·ru(r +Niai)

= eiNik·aieik·ru(r)

= eiNik·aiψ(r),

(1.16)

and if the expression in the last line is to satisfy the periodic boundary condition,
the following has to be true:

eiNik·ai = 1 =⇒ Nik · ai = 2miπ, mi ∈ Z. (1.17)

By decomposing k using the reciprocal lattice vectors as k =
∑3

i=1 xibi, we find
that

xi =
mi

Ni

. (1.18)

Normally we restrict |mi| < |Ni|, so that the k-points are within the first Bril-
louin zone. In practice, in terms of the system size, simulating a supercell with
Np = N1N2N3 unit cells but with the first Brillouin zone sampled by only one
k-point is equivalent to simulating a single unit cell but with the first Brillouin
zone sampled by Np = N1N2N3 k-points. However, within the latter approach
the momentum conservation can be used to reduce the computational cost dras-
tically, albeit with some implementation complexity.
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1.3.3 Three Dimensional Uniform Electron Gas

The 3D UEG is the simplest model for realistic periodic solids, of which the
Hamiltonian in real space reads

Ĥ = −
∑
i

1

2
∇2
i +

∑
i 6=j

1

|ri − rj|
+ const., (1.19)

where the const. includes the interactions between electrons and the homoge-
nous positive background charge, and the interactions between the electrons
and their own periodic images, which is termed as the Madelung constant and
will disappear as the size of the simulation cell goes to infinity. Atomic units
are used to simplify the equations. When plane wave basis functions and a
simple cubic simulation cell of volume Ω = L3 are used, we can reformulate the
Hamiltonian in a second-quantized form,

Ĥ =
∑
p

∑
σ

1

2
k2
pa
†
p,σap,σ +

1

2

∑
pqrs

∑
σσ′

V rs
pq a

†
p,σa

†
q,σ′as,σ′ar,σ, (1.20)

where for simplicity we use p, q, r, s . . . indices as a compact form for the general
momentum (plane wave basis function) indices kp,kq,kr,ks . . . and hereon we
use the two terms plane wave basis function and orbital equivalently. We stress
that due to momentum conservation, i.e. k ≡ kr − kp = kq − ks, there are
only three free indices among pqrs, and the interactions with the homogenous
positive background charge are cancelled by the divergent Coulomb potential
at k = 0, which is defined as V rs

pq ≡ V (k) = 4π
Ωk2 . We also ignore the Madelung

contribution in the Hamiltonian which can be added posteriorly to the ground
state energy. The electron density of the system can be described by the Wigner-
Seitz radius rs =

(
3

4πN

)1/3
L, where N is the number of electrons.
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Chapter 2

Mean Field Theories

The analytical solution to the electronic Schrödinger equation is only possible
for very few limited cases, e.g. the hydrogen atom. So, in the early days after
the discovery of the Schrödinger equation, people have tried various approxi-
mations. In his pioneering work, Hartree attempted to approximate the true
many-electron wavefunction by using a product of single-particle functions in
1928 [8], where he imposed the Pauli exclusion principle so that two electrons
cannot occupy the same single-particle function. However, this formulation does
not respect the more fundamental antisymmetry requirement on the fermionic
wavefunction, as pointed out by Slater and Fock in 1930 [9, 10]. Later the
Hartree-Fock theory using a Slater determinant as an ansatz came into be-
ing [11]. On the other hand, there was a parallel paradigm going on which
uses the electronic density instead of the wavefunction to solve the Schrödinger
equation. The earliest model along this line is the Thomas-Fermi model [12,
13], which is the precursor of the later well-known DFT. In this chapter, these
two important mean-field theories that lay the foundation for many others are
going to be introduced. In general, mean field theories replace the Coulomb in-
teractions between electrons in the many-electron Hamiltonian, Eq. (1.8), with
an effective potential to form a mean-field Hamiltonian,

ĤMF = ĥ+ v̂eff(r), (2.1)

where the Coulomb potential among the nuclei is ignored and can be added to
the total energy at a later point; and all the single-particle operators are put
together as

ĥ = −1

2
∇2 −

K∑
µ=1

Zµ
|r−Rµ|

. (2.2)
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2.1 Hartree-Fock Theory

The HF employs a single Slater determinant as the ansatz for the true many-
electron ground state wavefunction, the optimisation of which is normally cast
into a self-consistent field framework. Fundamentally, HF can be categorised as
one of the many variational methods which utilises the variational principle.

2.1.1 The Variational Principle

The variational principle is a very powerful tool in that it gives an upper bound
to the ground state energy, which not only permits a possibility for systematic
improvement in the employed ansatz, but can also provide estimates for errors.
It is the most crucial element in a host of methods, besides HF, such as density
matrix renormalisation group (DMRG) theory1 [14] and variational Monte Carlo
(VMC) [15].

Given an arbitrary wavefunction Ψa under the normalisation requirement
that 〈Ψa|Ψa〉 = 1, the Rayleigh quotient functional is defined as

E(Ψa) = 〈Ψa|Ĥ|Ψa〉 . (2.3)

The variational principle then states that this functional satisfies the following
condition:

E(Ψa) ≥ E0, (2.4)

where E0 is the ground state energy of Ĥ.

Proof. The eigendecomposition of the arbitrary ansatz is

|Ψa〉 =
∑
i

Ci |Ψi〉 ,
∑
i

|Ci|2 = 1, (2.5)

where |Ψi〉 are the eigen states of Ĥ, which satisfy Ĥ |Ψi〉 = Ei |Ψi〉 and
〈Ψi|Ψj〉 = δi,j. Plugging the eigendecomposition of the arbitrary ansatz into

1The canonical formulation uses the variational principle, but the theory can be formulated
in a way that also work with non-hermitian Hamiltonians.
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the Rayleigh quotient, Eq. (2.3), one obtains

E(Ψa) =
∑
i

∑
j

C∗i Cj 〈Ψi|Ĥ|Ψj〉

=
∑
i

∑
j

C∗i CjEjδi,j

=
∑
i

|Ci|2Ei ≥
∑
i

|Ci|2E0 = E0.

(2.6)

2.1.2 Basis Set and Slater Determinant

In solids, plane waves are usually used as the basis set and a linear combination
of the basis functions is used to represent a single-particle function 2. Plane
waves are naturally orthonormal

〈φG(r)|φG′(r)〉 =

∫
e−iG·reiG′·rdr

= δG,G′ .

(2.7)

The number of them included inside of the basis set can be easily controlled by
a single parameter–the plane wave energy cutoff:

|ki + G|2

2
≤ Ecutoff , (2.8)

where ki are the k-points sampling the first Brillouin zone and all the plane wave
momentum vectors, G, that satisfy the unit cell periodicity and this condition
will be included as basis functions. So any single-particle wavefunction can be
expanded in plane waves as

ϕi(r) =
1√
Ω

∑
G

Cni,ki(G)ei(ki+G)·r, (2.9)

where Cni,ki are the coefficients, Ω is the volume of the unit cell and the com-
posite index i = {ni,ki} contains the information on both the index of the
band (index of orbitals in quantum chemistry language) and the index of the
k-point. In the later part of this thesis, the index i of a single-particle wave-
function/energy will be used for simplicity and the composite indices will be
used where necessary for clarity.

2Sometimes in combination with some other framework such as the projector augmented
wave (PAW) method to treat the oscillatory behavior of the single-particle wavefunction in
regions close to the nuclei, whose details will not be covered in this thesis.
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A Slater determinant is nothing but a normalised and antisymmetrised prod-
uct of functions , satisfying the antisymmetry requirement for fermions. It is
expressed as

D(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN(x1)

χ1(x2) χ2(x2) . . . χN(x2)
...

... . . . ...
χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣
, (2.10)

where xi = {ri, ω} carries the position and spin degrees of freedom and χI(x) =

ϕi(r)σi(ω), which is a product of the spatial orbital and a spin function, is called
the spin orbital. The spin functions satisfy the orthogonality relation via the
formal integration over an augmented spin variable ω as follows∫

σi(ω)σj(ω)dω = δσi,σj , (2.11)

which in practice means that if two electrons have different spins, say one with
spin up and the other with spin down, the above relation gives 0, otherwise 1.

There are two other simplified forms of a Slater determinant which might
appear in other contexts. One is the diagonal representation:

D(x1,x2, . . . ,xN) = |χ1(x1), χ2(x2), . . . , χN(xN)〉 ; (2.12)

the other one is the occupation representation:

D(x1,x2, . . . ,xN) = |
M spin orbitals︷ ︸︸ ︷

11 . . . 1︸ ︷︷ ︸
N electrons

00 . . . 0〉 , (2.13)

for which there is a common pictorial representation as shown in Fig. 2.1 for
a Slater determinant that has the lowest N spin orbitals occupied and one
that is singly excited. This occupation representation will be very useful for the
introduction of the second quantization in the later part of this thesis. Following
conventions, capital and lowercase letters are used to represent spin-orbitals
and spatial orbitals, respectively. In particular, I, J,K . . . (i, j, k . . . ) are used
to represent occupied spin orbitals (spatial orbitals) and A,B,C . . . (a, b, c . . . )
are used to represent unoccupied 3 spin orbitals (spatial orbitals) in the reference
determinant. For general spin orbitals (spatial orbitals), O,P,Q, . . . (o, p, q, . . . )
indices are used.

3The unoccupied orbitals are also referred to as virtual orbitals.
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Figure 2.1: A reference Slater determinant that has the lowest
N spin orbitals occupied (left). A singly excited Slater determi-
nant that has an electron removed from the Ith spin orbital and

elevated onto the Ath spin orbital (right).

2.1.3 Self-consistent Field Equation

In HF, the goal is to minimise the energy as a functional of the single-particle
functions inside of a single Slater determinant,

EHF({χ}) = 〈D|Ĥe|D〉 . (2.14)

This is achieved by requiring that δEHF({χI})
δχI

= 0 under the constraint that the
spatial functions are also orthonormal, 〈ϕi|ϕj〉 = δi,j, along with the preexist-
ing orthonormal condition for the spins. This condition yields the following
equation [16]

ĥχI(x) +
∑N

J 6=I

[∫
dx′ |χJ(x′)|2 1

|r′−r|

]
χI(x)−

∑N
J 6=I

[∫
dx′χ∗J(x′)χI(x

′) 1
|r′−r|

]
χJ(x) = εIχI(x),

(2.15)
which can be recast into an eigenvalue problem by defining the Fock operator

f̂ = ĥ+ v̂HF(x), (2.16)
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where

v̂HF(x) =
N∑
J 6=I

∫
dx′ |χJ(x′)|2 1

|r′ − r|
−

N∑
J 6=I

∫
dx′χ∗J(x′)

1

|r′ − r|
P̂(x,x′)χJ(x′),

(2.17)
and the exchange operator P̂(x,x′)χJ(x′)χI(x) = χJ(x)χI(x

′). The HF eigen-
problem

f̂χI(x) = εIχI(x) (2.18)

cannot be diagonalised directly and must be solved iteratively, because the
Fock operator depends on the desired eigenvectors. The variation of the orbital
functions is achieved by changing the expansion coefficients in Eq. (2.9) so that
the energy decreases. In the plane wave basis, Eq. (2.18) can be rewritten as∑

G′

FG,G′CI(G
′) = εICI(G

′), (2.19)

where FG,G′ =
∫

dre−iG·rf̂ eiG′·r is the Fock matrix. A simplistic way to solve
this equation is to

1. start from a random guess of the coefficients CI(G) and construct the
Fock matrix;

2. diagonalise the Fock matrix to obtain a new set of CI(G) and εI ;

3. construct a new Fock matrix using the new CI(G) from the previous step
and repeat step 2 until convergence.

After the eigenvectors and the eigenvalues are obtained, the eigenvalues εI can
be defined as the orbital energy of the orbital χI . The HF energy can be
expressed as

EHF =
N∑
I

εI −
1

2

N∑
I,J

(〈IJ |IJ〉 − 〈IJ |JI〉) , (2.20)
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where

〈IJ |IJ〉 =

∫ ∫
dxdx′ |χI(x)|2 1

|r′ − r|
|χJ(x′)|2

=

∫ ∫
drdr′ |ϕi(r)|2

1

|r′ − r|
|ϕj(r′)|2

≡ 〈ij|ij〉 ,

〈IJ |JI〉 =

∫ ∫
dxdx′χ∗I(x)χJ(x)

1

|r′ − r|
χ∗J(x′)χI(x

′)

=

∫ ∫
drdr′ϕ∗i (r)ϕj(r)

1

|r′ − r|
ϕ∗j(r

′)ϕi(r
′)δσi,σj

≡ 〈ij|ji〉 δσi,σj .

(2.21)

In this thesis, only closed-shell systems are of interests, where the lowest N/2
spatial orbitals are doubly occupied. For such systems, the HF energy can be
expressed as

EHF = 2

N/2∑
i

εi −
N/2∑
i,j

(2 〈ij|ij〉 − 〈ij|ji〉) , (2.22)

where the spin degrees of freedom have been integrated over, so that the indices
i, j run over spatial orbitals. Once the converged HF solution is found, the
virtual-virtual block of the Fock matrix can be constructed, by diagonalising
which the virtual orbitals, ϕa, can be obtained, along with their corresponding
eigenenergies, εa. These virtual orbitals will be used to construct excited Slater
determinants, along with the HF determinant, which form the basis to expand
the many-electron wavefunction.

2.2 Kohn-Sham Density Functional Theory

Similar to the HF eigenproblem Eq. (2.18), DFT treats the many-electron prob-
lem as an interaction free eigenproblem by introducing an XC functional to
approximate the interactions among electrons, which yields the famous Kohn-
Sham (KS) equation (

ĥ+ VKS(r)
)
ϕp(r) = εpϕp(r), (2.23)

The potential VKS(r) contains the Hartree term and the XC functional as follows

VKS(r) =

∫
dr′

n(r′)

|r′ − r|
+ VXC[n(r)], (2.24)
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where the electron density is related to the normalised many-electron wavefunc-
tion as follows

n(r) = N

∫
dr2 · · ·

∫
drN Ψ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN). (2.25)

When the many-electron wavefunction is approximated by a normalised Slater
determinant constructed by orthonormal single-particle orbitals, the electron
density is simply n(r) =

∑N
i=1

∫
dr|ϕi(r)|2, which is the sum of the densities

of the N electrons in their corresponding orbitals. Therefore the equivalence
between the Hartree term in Eq. (2.24) and the first term in the HF potential
vHF(r) defined in Eq. (2.17) is established. So the only difference between
DFT and HF resides in the second term in their respective potentials. The XC
potential in DFT is a functional of the electron density which itself depends on
the desired single-particle wavefunctions. So the KS equations are also solved
iteratively. In practice, the functional form of the XC potential is designed
based on some emperical or physical arguments to approximate the many-body
correlation effects. When it is chosen to be the same exchange potential 4 as in
vHF(r), one returns to the HF problem.

DFT has been the workhorse in material science over the years due to its
low computational cost and, in some cases, satisfactory accuracy. However,
due to its lack of systematical improvability, in recent years its shortcomings
are becoming more obvious in comparison to other systematically improvable
methods such as QMC and quantum chemistry methods. For example, different
XC functionals often provide different, sometimes contradictory, results on the
same problem, and the errors on different phases using the same functional
are not so consistent, which renders the studies on establishing reliable phase
diagrams extremely hard. In the comparative study on the solid hydrogen
phases in chapter 10, the advantages and shortcomings of DFT will be discussed
in a more concrete context, in comparison with other methods, such as HF,
CCSD and DMC.

4In the DFT community, it is called the exact exchange functional.
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Chapter 3

Electronic Correlations

The HF solution to the many-electron Schrödinger equation is fast and some-
times provides some insights to a system. However, often it is insufficient in
describing the correct physics. Because it treats the electron-electron interac-
tions as an averaged one-particle potential. Hence it ignores a large part of the
correlations among electrons 1. To gauge how many correlations are absent in
the reference wavefunction (normally it is the HF wavefunction), the correlation
energy is defined as [17]

Ec ≡ Eexact − EHF. (3.1)

However this definition is not so practical when the exact ground state energy
Eexact is not known beforehand. So a more practical way is to define a method
dependent correlation energy as follows

Ec
method ≡ Emethod − EHF. (3.2)

For a variational method, the lower the correlation energy it gets, the closer it
is to the exact ground state energy. In the following sections, we will discuss
the origins of dynamical (short-range) correlations and static correlations.

3.1 Weak Dynamical Correlations and the Cusp

Condition

Due to the repulsive Coulomb potential, electrons should in principle avoid
getting too close to each other. This effect should show up as the decaying
amplitude of the wavefunction as two electrons approach each other. To be
more precise, the condition on the wavefunction at the point where two electrons
collide was analytically determined by Kato in 1957 [18], which is now termed

1It has the correct exchange correlations due to the anti-symmetry of the Slater determi-
nant
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Figure 3.1: An example of wavefunction at the electron coales-
cence point. The function 1

2 |x| is reconstructed with increasing
numbers of plane waves. It requires a lot of high frequency plane

waves to resolve the sharp cusp.

the Kato cusp condition (for a singlet pair),

∂Ψavg

∂rij

∣∣∣∣
rij=0

=
1

2
Ψ(rij = 0), (3.3)

where the superscript avg denotes the spherical average of the wavefunction.
However, in the HF wavefunction, this sharp cusp is absent. To recover this
physical behavior, one needs to resort to theories that are more flexible in repre-
senting the wavefunction. As shown in literature, a simple perturbation theory
can restore the cusp in the wavefunction [19], albeit with a large number of
plane waves (or other basis functions). To illustrate this, in Fig. 3.1, the cusp
function f(x) = 1

2
|x| is reconstructed by using increasingly many plane waves

in the Fourier series expansion. Although it is not a physical wavefunction,
this example demonstrates the essence of requiring a large number of smooth
basis functions in real systems to resolve the sharp cusp in the wavefunction
in order to reach convergence for the calculated energy and other properties.
The complete basis set (CBS) limit is thus defined as the basis set that con-
tains an infinite number of basis functions, at which every property calculated
is converged. The correlations that are mostly due to the short-range cusp
condition, which can be captured by methods that are based on a single refer-
ence determinant, are normally classified as the dynamical or weak correlations.
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Correlations that are beyond the capability of the single-reference methods are
generally termed static or strong correlations. In the next section, the origin of
this type of correlations will be explored.

3.2 Strong Correlations

In contrast to weakly correlated systems which can be accurately described by
single-reference post-HF methods, strongly correlated systems normally exhibit
a multi-reference nature. The descriptions of these systems given by single-
reference methods are not even qualitatively correct. The full configuration
interaction (FCI) method provides the most general ansatz for the true many-
electron ground state wavefunction via a linear combination of Slater determi-
nants (SD)

|Ψ〉 =
∑
i

Ci |Di〉 , (3.4)

where all possible Slater determinant (SD)s constructed for N electrons in M
(orthogonal) spin orbitals are summed over, as illustrated in Fig. 2.1. The total
number is calculated as the number of possible combinations of selecting N

elements out of a total M elements, which is M !
N !(M−N)!

and in practice quickly
grows larger than the number of bytes of storage in the whole world. For this
reason alone, essentially exact FCI solutions are only available for very small
systems.

Nevertheless, FCI provides a convenient way to represent the many-electron
Hamiltonian as a matrix and the wavefunction as a vector

HC = EC, (3.5)

which can be modeled using small matrices to explore the origin of strong cor-
relations. We set up our model (symmetric) Hamiltonian matrix based on the
following parameters/rules:

1. The dimension of the matrix: N .

2. The gaps between neighboring diagonal matrix elements: ∆i+1
i ≥ 0; and

the first diagonal element is set to 0.

3. The probability of an off-diagonal element to be nonzero: 0 < poff ≤ 1.

4. The magnitude of a nonzero off-diagonal elements: Moff > 0.

5. The sign of each nonzero off-diagonal element is randomly assigned to be
positive or negative with equal probability.



28 Chapter 3. Electronic Correlations

0 20 40 60 80 100
Di

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C i

N=100, = 1

Moff = 0.1, E0 -0.022
Moff = 0.2, E0 -0.114
Moff = 0.5, E0 -0.695
Moff = 1.0, E0 -2.479

Figure 3.2: Ground state eigenvectors corresponding to model
Hamiltonians with increasing diagonal elements at a fixed step
∆ = 1 and different values of the off-diagonal magnitude Moff .
Dense matrices with size 100× 100 are used by setting poff = 1.

E0 refers to the lowest eigenenergies in the matrices.

First, in Fig. 3.2 the ground state eigenvectors are shown, which belong to
matrices with varying ratios of Moff

∆
and constant gaps between neighboring di-

agonal elements, i.e. ∆i+1
i = ∆ = 1. To restrict the number of variables, poff = 1

is used for now, which generates dense matrices with all off-diagonal elements
having magnitudeMoff and randomly determined signs. After diagonalising the
matrices, the eigenvectors corresponding to the lowest eigenvalues are retrieved,
where we normalise the wavefunctions such that the total weight of a wavefunc-
tion is

∑N
i

√
C2
i = 1. We notice that the weight of the “HF” determinant

D0 keeps dropping and the ground state wavefunction has more weights dis-
tributed on excited determinants when the ratio Moff

∆
increases, which simulates

the physical situation when the Coulomb interactions that are not captured by
the mean-field solution are large.

Next, we investigate the effect of the number of nonzero terms in the off-
diagonal elements. For this purpose, 20 pairs of Moff and poff are generated
independently; and for each pair, 500 random matrices of size 100 × 100 are
generated accordingly. The ground state eigenvectors of those matrices are
calculated, so that the weight of the “HF” determinant as a function of poffMoff

can be found, as shown in Fig. 3.3. The product poffMoff can be seen as the
total interaction strength. For all matrices, ∆i+1

i = 1 is set. The weight of
the “HF” determinant falls sharply when poffMoff goes from 0 to 1 and then
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Figure 3.3: The average weight of “HF” determinant in the FCI
wavefunction as a function of poffMoff , retrieved from the ground
state eigenvectors of randomly generated matrices according to
N = 100, ∆i+1

i = 1, poff and Moff . In total, 20 pairs of random
poff and Moff values are used, and for each pair 500 random ma-
trices are generated. The mean value and the standard deviation
at each point are calculated from the corresponding set of 500

random samples.

keeps dropping but slower as the total interaction strength further increases. At
around 0.5 total interaction strength, the “HF” weight falls below 50%. One can
therefore use this point as the dividing line between weak and strong interaction
regions.

So far only situations where there are finite gaps between diagonal elements
are investigated. Even in these cases strong correlations (multi-reference na-
ture) can occur when there are many nonzero and large off-diagonal elements.
We now investigate the case when there are weak interactions while some de-
generacies happen in the diagonal elements, which can occur in real systems
due to symmetries. For simplicity, we can set poff = 1 and scan Moff among
the three values of 0.001, 0.01, 0.1 to ensure that the interactions are weak,
whilst setting the first 10 diagonal elements to be 0 to mimic the degeneracies
generated by symmetries or accidents 2, and increasing the rest of the diago-
nal elements by a fixed step size of ∆i+1

i = 1. In Fig. 3.4, the ground state
2For degeneracies generated strictly by symmetries, not only the diagonal elements are the

same, but also the surrounding environment should be the same. As a result, determinants
belonging to the same symmetry should have the same weight in the wavefunction. Without
loss of generality, only the diagonal elements are considered here.
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Figure 3.4: The ground state eigenvectors of three randomly
generated matrices with parameters N = 100, poff = 1 and
Moff = 0.001, 0.01, 0.1. The first 10 diagonal elements of the
matrices are set to 0 to define a degenerate space and the rest of
the diagonal elements are increased by a fixed step of ∆i+1

i = 1.
The vertical red line is set at i = 10 to visually separate the

degenerate space and the rest.

eigenvectors of these random matrices are shown. The red vertical line is at
i = 10 to separate the degenerate space and the rest. Even the smallest per-
turbations from the off-diagonal terms have tremendous impact inside of the
degenerate space, resulting in multiple determinants with large weights. In real
systems, the multi-reference feature in the ground state wavefunction caused
by (quasi-)degeneracies is attributed as static correlations. This type of corre-
lations clearly cannot be treated correctly with any methods that rely on the
assumption that there is a dominant reference determinant in the wavefunction.

In conclusion, strong correlations appear when i) there are remaining strong
Coulomb interactions that are not captured by the mean-field solution; ii) there
are degeneracies in the low-lying SD space and (small) perturbations within this
space. An example for the first case is the system of NiO, which, according to the
simple band theory, is a metal, but in reality it is an insulator due to the strong
on-site Coulomb repulsion among electrons [20]. The second scenario occurs
normally in systems with partially filled d or f shells, such as 3d transition
metal oxides.



31

Chapter 4

Deterministic Many-body Theories

In this chapter, we will review a host of many-body theories that aim to include
the correlation effects and go beyond the mean-field theories. In particular,
we focus on a hierarchy of methods that can be classified as perturbative or
diagrammatic methods. In terms of computation of the ground state energy,
MP2, CCD/DCD, CCSD/distinguishable cluster singles and doubles (DCSD)
and CCSD(T) represent a hierarchy of methods, whose computational costs
increase and accuracies improve in roughly the same order. It is worth point-
ing out that CCSD(T) is the standard in quantum chemistry for predicting
chemical reactions in gas phases. We will start with some basics about second
quantization and Wick’s theorem before the introduction to the many-body
theories.

4.1 Second Quantization

The second quantization provides useful tools to incorporate the statistics of
fermions and bosons in the representation of the wavefunctions, in the occupa-
tion number form as introduced in Eq. (2.13). The most important notations are
the creation and annihilation operators, which for fermions satisfy the following
anticommutation relations,

[a†i , aj]+ = δi,j, [a†i , a
†
j]+ = 0, [ai, aj]+ = 0, (4.1)

where the anticommutation relation is defined as [Â, B̂]+ ≡ ÂB̂ + B̂Â. These
relations between the fermionic creation and annihilation operators plant the



32 Chapter 4. Deterministic Many-body Theories

antisymmetry naturally into the wavefunction. The effects of applying the cre-
ation and annihilation operators on a many-body state are

a†1 |111000〉 = 0,

a†4 |111000〉 = − |111100〉 ,

a1 |111000〉 = |011000〉 ,

a4 |111000〉 = 0.

(4.2)

Using the creation and annihilation operators, we can write the electronic
Hamiltonian, Eq. (1.8), as follows

Ĥ =
∑
pq

∑
σ

hpqa
†
p,σaq,σ +

1

2

∑
pqrs

∑
σ,σ′

V pq
rs a

†
p,σa

†
q,σ′as,σ′ar,σ, (4.3)

where p, q, r, s are indices for spatial orbitals, and the one- and two-particle
integrals are defined as

hpq =

∫
drϕ∗p(r)ĥϕq(r),

V pq
rs =

∫ ∫
drdr′ϕ∗p(r)ϕ

∗
q(r
′)

1

|r− r′|
ϕr(r)ϕs(r

′),
(4.4)

with ĥ defined in Eq. (2.2). In practice, the integrals are computed beforehand
and stored in computer memory for instant access during the many-body theory
simulations.

4.2 Wick’s Theorem

The Wick’s theorem is an essential tool for handling products of many creation
and annihilation operators. Before we introduce the theorem, we need to define
the concept of normal ordering and contraction among operators.

In electronic structure theory, the vacuum state is often chosen to be a refer-
ence determinant, such as the HF wavefunction. As such, the creation operators
are a†A, a

†
B, a

†
C . . . (creating particles) and aI , aJ , aK . . . (creating holes); the an-

nihilation operators are a†I , a
†
J , a

†
K . . . (destroying holes) and aA, aB, aC . . . (de-

stroying particles). The meaning of the indices is defined at the end of Sec. 2.1.2
and in this case they refer to spin orbitals. A string of operators are normal-
ordered when all creation operators are placed to the left of the annihilation
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operators. For example,

{a†Ia
†
A} = −a†Aa

†
I , {aAaI} = −aIaA, {a†AaI} = a†AaI , (4.5)

where we use {} to denote normal-ordered operators and introduce a minus sign
when the relative positions between two operators are changed.

A contraction is defined as ÂB̂ = ÂB̂−{ÂB̂}. For aforementioned creation
and annihilation operators we have

a†IaJ = a†IaJ − {a
†
IaJ} = a†IaJ + aJa

†
I = δI,J ,

aBa
†
A = aBa

†
A − {aBa

†
A} = aBa

†
A + a†AaB = δA,B,

a†AaI = a†AaI − {a
†
AaI} = a†AaI − a

†
AaI = 0.

(4.6)

The contractions between operators belonging to different spaces, i.e. occupied
and unoccupied spaces, are always 0.

Theorem 4.2.1. A product of creation and annihilation operators ÂB̂ĈD̂ . . .

can be expressed as a combination of the normal-ordered product, single con-
tractions between all possible pairs of operators in the normal-ordered product,
all possible double contractions in the normal-ordered product, etc. and the fully
contracted operator:

ÂB̂ĈD̂ . . . = {ÂB̂ĈD̂ . . . }

+
∑

singles

{ÂB̂ĈD̂ . . . }

+
∑

doubles

{ÂB̂ĈD̂ . . . }

+ . . . .

(4.7)

The proof of the theorem will be left out in this thesis. Instead we refer to
textbooks in advanced quantum mechanics. This theorem will be useful when
we treat the three-body operator in the transcorrelated Hamiltonian in Sec. 9.3,
as well as when deriving the equations in the following sections.

4.3 G0W0 Approximation

The Green’s function based G0W0 approximation [21] is widely used in solids to
obtain accurate band structures (quasi-particle energies). It is normally based
on a prior DFT calculation, and it provides corrections due to many-body effects
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to the DFT quasiparticle energies. A full introduction to the Green’s function
based methods and the required Dyson equation are beyond the scope of this
thesis. Instead, we summarize the main concepts in the G0W0 approximation,
leaving out the details. A good presentation on this topic can be found in
Ref. [22, 23] and many others.

To include the many-body correlation effects, we can add a perturbation
term to the KS equations, Eq. (2.23),(

ĥ+ Vs(r) +

∫
dr′∆Σ(r, r′; εp)

)
ϕp(r) = εpϕp(r), (4.8)

where ∆Σ(r, r′; εp) = Σ(r, r′εp) − VXC(r)δ(r − r′) is the difference between the
self-energy Σ(r, r′; εp) and the XC potential, and εp, ϕp(r) and VXC(r) are the
KS eigenvalues (quasi-particle energies), eigenfunctions and the corresponding
XC functional, respectively. In the Green’s function formulation, the self-energy
contains the information of the correlation effects. So according to perturbation
theory, the G0W0 quasiparticle energies can be written as

εG0W0
p = εp + 〈ϕp(r) |Re[∆Σ(r, r′; εp)] |ϕp(r′)〉 . (4.9)

In principle, the self-energy is determined by the many-electron Green’s function
through the Dyson equation. In the G0W0 approximation, the Green’s function
is approximated on the level of the KS solutions,

G0(r, r′;w) =
∑
p

ϕ∗p(r
′)ϕp(r)

w − εp ± iη
, (4.10)

where w is the frequency (energy) and η is a small positive number. With G0,
we can write the self-energy as

Σ(r, r′;w) =
i

2π

∫
dw′G0(r, r′;w + w′)W0(r, r′;w′), (4.11)

where the screened Coulomb potential,W0(r, r′;w′), is calculated by the random
phase approximation (RPA) [24, 25], which will be briefly addressed in Sec. 4.5.1
along with CCD.

It is shown that G0W0 provides very good predictions on the band gaps of a
range of solid materials [26, 27, 28]. One comment is that the G0W0’s prediction
has a dependence on the XC functional used in DFT. The G0W0 method will
be used in the study of the band structures of the optimised structure of solid
hydrogen in chapter 11.
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4.4 Second Order Møller-Plesset Perturbation The-

ory

In some cases, the HF wavefunction lies close to the true many-electron ground
state wavefunction. Hence, a simple perturbative approach can provide an accu-
rate solution to the problem. The Møller-Plesset perturbation theory assumes
the following partition of the electronic Hamiltonian

Ĥ = Ĥ0 + λV̂ , (4.12)

where Ĥ0 =
∑

i

(
ĥi + v̂HF

i

)
is the mean-field HF Hamiltonian, V̂ = Ĥ − Ĥ0 =

1
2

∑
i 6=j

1
|ri−rj | −

∑
i v̂

HF(ri) is the remaining interaction operator (perturbation)
and λ is a parameter used to track the order of the perturbation. In the mean-
time, we assume that the true ground state energy and the ground state wave-
function can be expressed in terms of increasing orders of corrections

E0 = E(0) + λE(1) + λ2E(2) + . . .

|Ψ0〉 =
∣∣Φ(0)

〉
+ λ

∣∣Φ(1)
〉

+ λ2
∣∣Φ(2)

〉
+ . . . ,

(4.13)

with Ĥ0

∣∣Φ(0)
〉

= E(0)
∣∣Φ(0)

〉
and the intermediate normalisation

〈
Φ(0)

∣∣Φ(0)
〉

=〈
Φ(0)

∣∣Ψ0

〉
= 1. After we plug Eq. (4.13) and Eq. (4.12) into the time-independent

Schrödinger equation, we have

(Ĥ0 + λV̂ )
(∣∣Φ(0)

〉
+ λ

∣∣Φ(1)
〉

+ λ2
∣∣Φ(2)

〉
+ . . .

)
=(

E(0) + λE(1) + λ2E(2) + . . .
) (∣∣Φ(0)

〉
+ λ

∣∣Φ(1)
〉

+ λ2
∣∣Φ(2)

〉
+ . . .

)
,

(4.14)

and after expansion and regrouping terms involving the first order in λ, we find
the following first order relation

λĤ0

∣∣Φ(1)
〉

+ λV̂
∣∣Φ(0)

〉
= λE(0)

∣∣Φ(1)
〉

+ λE(1)
∣∣Φ(0)

〉
. (4.15)

After multiplying with
〈
Φ(0)

∣∣ from the left on both sides of the above equation
and using the fact that the Ĥ0 is Hermitian, i.e.

〈
Φ(0)

∣∣ Ĥ0 =
〈
Φ(0)

∣∣E(0), we
cancel the first terms on both sides of the equation and obtain

E(1) =
〈

Φ(0)
∣∣∣ V̂ ∣∣∣Φ(0)

〉
=
〈
DHF

∣∣∣ Ĥ − Ĥ0

∣∣∣DHF

〉
= EHF −

N∑
I

εI , (4.16)

where we have used the relation,
∣∣Φ(0)

〉
= |DHF〉, Ĥ0 |DHF〉 =

∑N
I=1 εI |DHF〉

and EHF =
〈
DHF

∣∣∣ Ĥ ∣∣∣DHF

〉
.
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To obtain the first-order correction to the wavefunction,
∣∣Φ(1)

〉
, we expand

it in terms of the eigenstates (Slater determinants) of Ĥ0,∣∣Φ(1)
〉

=
∑
k

Tk

∣∣∣Φ(0)
k

〉
=
∑
k

Tk |Dk〉 . (4.17)

After rearranging the terms in Eq. (4.15), we find(
Ĥ0 − E(0)

) ∣∣Φ(1)
〉

= (E(1) − V̂ )
∣∣Φ(0)

〉
. (4.18)

According to the Brillouin theorem [29], the first order correction to the wave-
function can only contain nonzero components from doubly excited Slater de-
terminants. Thus plugging Eq. (4.17) containing only the doubly excited Slater
determinants

∣∣Φ(1)
〉

=
∑

I>J,A>B T
AB
IJ

∣∣DAB
IJ

〉
into the above equation, we can

determine the coefficients as

TABIJ = −

〈
DAB
IJ

∣∣∣ V̂ ∣∣∣DHF

〉
EAB
IJ − E(0)

=

〈
DAB
IJ

∣∣∣ V̂ ∣∣∣DHF

〉
εI + εJ − εA − εB

, (4.19)

where we have used the orthogonality between different Slater determinants and
Ĥ0

∣∣DAB
IJ

〉
= EAB

IJ

∣∣DAB
IJ

〉
= (
∑N

K=1 εK − εI − εJ + εA + εB)
∣∣DAB

IJ

〉
.

In a similar fashion, by comparing the terms containing λ2 on both sides of
Eq. (4.14) and using the expression Eq. (4.19), we get the expression for the
second order energy

Ec
MP2 ≡ E(2) =

〈
Φ(0)

∣∣∣ V̂ ∣∣∣Φ(1)
〉

=
∑

I>J,A>B

TABIJ

〈
DHF

∣∣∣ V̂ ∣∣∣DAB
IJ

〉

=
∑

I>J,A>B

〈
DAB
IJ

∣∣∣ V̂ ∣∣∣DHF

〉〈
DHF

∣∣∣ V̂ ∣∣∣DAB
IJ

〉
εI + εJ − εA − εB

=
∑

I>J,A>B

|V AB
IJ |2

εI + εJ − εA − εB
.

(4.20)

For a closed-shell system [16], we have

Ec
MP2 =

∑
ijab

(2V ab
ij − V ab

ji )V ij
ab

εi + εj − εa − εb
. (4.21)

From the energy expression of MP2, it is apparent that it will yield infinite
correlation energy when there are degeneracies in the orbital energies close to the
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Fermi surface, such as in metals. However for systems with large gaps, MP2
normally provides good results in systems with weak dynamical correlations.
Furthermore, due to its relatively low computational scaling with system size
(O(N5)), MP2 also serves as a stepping stone for more advanced, yet more
expensive, theories, as we shall discuss in the next section on the MP2 natural
orbitals.

4.4.1 MP2 Natural Orbitals

In Sec. 3.1, we illustrate that in order to describe the sharp cusp in the wave-
function as two electrons collide, we need a large number of basis functions (or
equivalently, virtual orbitals). And in Ref. [19], it was shown that MP2 is able
to recover this behavior at CBS limit. So naturally one wonders if we can get
something out of MP2, so that we can accelerate the convergence of some more
expensive methods, such as CCSD, with respect to the basis set. One such
method is to incorporate the short-range correlation effects inside the virtual
orbitals, calculated on the MP2 level, for higher level theories.

To this end, the virtual-virtual block of the one-electron density matrix of
MP2 is constructed for closed-shell systems as [30]

Γ
(2)
ab =

∑
cij

2V cb
ij V

ij
ca − V cb

ji V
ij
ca

∆cb
ij∆

ca
ij

, (4.22)

where ∆cb
ij = εi + εj − εc − εb. Or in practice, the approximate version [31],

Γ
(2)
ab ≈

∑
ci

V cb
ii V

ii
ca

∆cb
ii∆

ca
ii

, (4.23)

is used which is less computationally expensive yet almost as effective as the
original one. We then diagonalise the MP2 one-electron density matrix, ob-
taining the eigenvalues and eigenvectors, which correspond to the occupation
number and MP2 natural orbitals, respectively. The larger the occupation num-
ber is, the more important the corresponding natural orbital is. In systems with
finite gaps, the occupation number normally decays very fast with the increase
of the orbital index. Thus employing only a small fraction of the MP2 (virtual)
natural orbitals, calculated at a very large basis set, is enough to recover the
main feature of the cusp condition. Hence the computational demand to obtain
the correlation energy at a higher level of theory is significantly reduced.
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4.5 Coupled Cluster Methods

In the CC [32, 33] ansatz, we let the many-electron ground state wavefunction
be

|ΨCC〉 = eT̂ |Φ0〉 , (4.24)

where |Φ0〉 is a reference wavefunction, e.g. HF determinant |Φ0〉 ≡ |DHF〉,
and T̂ is the cluster operator which contains singles, doubles, etc. excitation
operators

T̂1 =
∑
ai

TAI a
†
AaI ,

T̂2 =
1

2!

∑
ABIJ

TABIJ a†Aa
†
BaJaI ,

T̂3 =
1

3!

∑
ABCIJK

TABCIJK a†Aa
†
Ba
†
CaKaJaI ,

....

(4.25)

The unknown amplitudes TAI , TABIJ . . . are determined by solving the following
amplitudes equations

〈
ΦAB...
IJ...

∣∣ H̄ ∣∣Φ0

〉
= 0, H̄ = e−T̂ ĤeT̂ . (4.26)

The above amplitudes equations are nonlinear due to the exponential operator
and are normally solved iteratively and self-consistently. We will come to the
details of the amplitudes equations and the methods to solve them later.

The similarity transformed Hamiltonian H̄ can be expanded by the Haus-
dorff expansion,

H̄ = Ĥ+[Ĥ, T̂ ]+
1

2!
[[Ĥ, T̂ ], T̂ ]+

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ]+

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]. (4.27)

The termination of this expansion is exact, due to the fact that the electronic
Hamiltonian contains operators up to two-body only. The CC correlation energy
is obtained as

Ec
CC =

〈
Φ0

∣∣ H̄ ∣∣Φ0

〉
. (4.28)

For anN -electron system, when up to theN -fold excitation cluster operators
are included, the CC ansatz is equivalent to the FCI wavefunction, with the
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equivalence established as below

Ĉ1 = T̂1,

Ĉ2 = T̂2 +
1

2
T̂ 2

1 ,

Ĉ3 = T̂3 + T̂1T̂2 +
1

3!
T 3

1 ,

...,

(4.29)

where we recast the FCI wavefunction, Eq. (3.4), in terms of the excitation
operators acting on the reference determinant |ΨFCI〉 = (1 +

∑N
n=1 Ĉn) |Φ0〉,

in which Ĉn generates all possible n-fold excitations from |Φ0〉, e.g. Ĉ2 =∑
A>B,I>J C

AB
IJ a

†
Aa
†
BaJaI .

Comparatively speaking, the CC ansatz has the advantage that even when
only the lowest cluster operators are used, it contains quadruples, hextuples and
higher order excitations generated by the products of the lower excitations. This
fact makes the CC wavefunctions size-consistent and in practice outperform the
configuration interaction (CI) wavefunctions truncated at the same level, whilst
having the same computational scaling as the latter. For example, when both
are truncated at the singles and doubles level, we have configuration interaction
singles and doubles (CISD) and CCSD for the CI and CC ansatz respectively.
The key difference between the two is that the former has only singly and doubly
excited Slater determinants in the wavefunction besides the reference, while the
latter has the same plus some disconnected triples, quadruples, etc.

4.5.1 Coupled/Distinguishable Cluster Doubles

In this section, we introduce the spin-restricted CCD and DCD theories. The
CCD has been used in model systems such as the uniform electron gas (UEG),
where the momentum conservation excludes the singles excitations. Along
with the CCD approximation, we will also introduce its distinguishable variant
(DCD) [34, 35], which is based on a modification of the CCD amplitude equa-
tions by neglecting inter-cluster exchange diagrams and ensuring the particle-
hole symmetry and exactness for two electrons. Alternatively, DCD can be
derived from screened Coulomb considerations [36]. We start with the canoni-
cal CCD and later highlight the differences between CCD and DCD.
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In CCD, the full cluster operator is approximated by the doubles excitations
only. For a closed-shell system, it is

T̂ ≈ T̂2 =
1

2

∑
ijab

T abij
∑
σσ′

a†a,σa
†
b,σ′aj,σ′ai,σ, (4.30)

where T ijab are the doubles amplitudes. Following convention, we use i, j, k . . .
and a, b, c . . . to represent occupied and unoccupied spatial orbitals in the ref-
erence determinant, respectively.

The T2 amplitudes are obtained by solving the projective doubles amplitude
equations, 〈

Φab
ij

∣∣∣e−T̂2ĤeT̂2

∣∣∣Φ0

〉
= 0, (4.31)

where Φab
ij are doubly substituted determinants. To be specific, a functional

form of the residual, which unifies CCD and DCD for closed-shell systems, can
be written as

Rab
ij =V ab

ij + V ab
cd T

cd
ij + Iklij T

ab
kl +Xal

cjT
cb
il + T̃ acik V

kl
cd T̃

db
lj

+ P̂(ia; jb)
[
xacT

cb
ij − xki T abkj + χalci(T

bc
lj − T cblj )

−V ka
ic T

cb
kj − V kb

ic T
ac
kj + T̃ acik V

kb
cj

]
,

(4.32)

where the Einstein summation rules are used. We define the permutation op-
erator P̂(ia; jb)T abij ≡ T abij + T baji and the following intermediates,

Iklij =

V kl
ij + V kl

cd T
cd
ij , CCD

V kl
ij , DCD

(4.33)

Xal
cj =

V kl
cd T

ad
kj , CCD

0, DCD
(4.34)

xac =

fac − T̃ adkl V lk
dc , CCD

fac − 1
2
T̃ adkl V

lk
dc , DCD

(4.35)

xki =

fki + T̃ cdil V
lk
dc , CCD

fki + 1
2
T̃ cdil V

lk
dc , DCD

(4.36)

χalci =

V kl
cd T

da
ki , CCD

0, DCD
(4.37)

T̃ abij = 2T abij − T baij . (4.38)

We note that when the canonical HF orbitals are used, the Fock matrix fpq is



4.5. Coupled Cluster Methods 41

diagonal, with the diagonal elements being the orbital energies εp. A straight-
forward way to update the T2 amplitudes at iteration n+ 1 will be

∆T abij =
Rab
ij

εi + εj − εa − εb
, (4.39)

T abij (n+ 1) = T abij (n) + ∆T abij . (4.40)

Of course, more advanced iterative schemes can be used, e.g. DIIS [37, 38], to
accelerate convergence rate.

Using the converged T2 amplitudes, the correlation energy is expressed as

Ec
CCD/DCD = T abij (2V ij

ab − V
ij
ba ), (4.41)

and the total energy is
E = EHF + Ec

CCD/DCD. (4.42)

We comment briefly on the relation between CCD and the popular RPA
method in the condensed matter community. In Ref. [39], the equivalence be-
tween RPA and the ring-CCD was established. The ring-CCD solves the am-
plitudes equations that have only the ring-type contractions. Its closed-shell
amplitudes equation can be written as [34]

Rab
ij = V ab

ij + 4T acik V
kl
cd T

db
lj + P̂(ia; jb)

[
fadT

bd
ij − fki T abkj + 2T acik V

kb
cj

]
. (4.43)

The iterative solutions to these equations scale as O(N6), but with some ad-
vanced techniques it can be reduced to a lower polynomial scaling with the
system size N [39]. The RPA can also be formulated in terms of a resummation
of the ring diagrams to the infinite order in the Dyson equation [25, 22], yielding
screened Coulomb interaction. This screening effect is crucial in metals where
the electrons are free to move around, as studied in Ref. [25] at the high density
limit of 3D UEG.

4.5.2 Coupled/Distinguishable Cluster Singles and Dou-

bles

Adding the singles cluster operator into the CCD ansatz, we obtain the CCSD
ansatz

|ΨCCSD〉 = eT̂1+T̂2 |Φ0〉 , (4.44)

which is necessary when treating real solids. The exponential singles cluster
operator generates the singly-excited Slater determinants in the ansatz and
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their higher order products, playing the role of orbital rotations according to
the Thouless Theorem [40], which states

Theorem 4.5.1. Any N-particle Slater determinant |D〉 which is not orthogo-
nal to |D0〉 can be written in the form

|D〉 =

[
N∏
i=1

∞∏
m=N+1

(1 + Cmia
†
mai)

]
|D0〉

= exp

(
N∑
i=1

∞∑
m=N+1

Cmia
†
mai

)
|D0〉 ,

(4.45)

where N is the number of electrons and the coefficients Cmi connect |D〉 and
|D0〉 uniquely and |D0〉 =

∏N
i=1 a

†
i |0〉, with |0〉 being the vacuum state.

In principle, at a large enough basis set, the Thouless theorem ensures that
the CCSD/DCSD solution will not be so sensitive to the choice of the orbitals
in the reference determinant in the absence of degeneracies in the system, as the
exponential singles cluster operator effectively rotates the orbitals into suitable
ones. The Thouless theorem also enables the formulation of the HF theory in
second quantization. For more details and the proof of this theorem, we refer
to Ref. [40].

Here we present the spin-restricted CCSD/DCSD equations for closed-shell
systems in a similar fashion as in the previous section. We follow Ref. [34]
for CCSD and Ref. [36] for DCSD using the dressed integrals and Fock ma-
trix. With a similarity transformation using the singles cluster operator T̂1 =∑

ai T
a
i (a†aσaiσ + a†aσ̄aiσ̄) on the Hamiltonian, with σ and σ̄ referring to spin up

and down, respectively,
H̃ = e−T̂1ĤeT̂1 , (4.46)

we get the dressed integrals and Fock matrix (to be introduced soon), with
which the CCSD/DCSD doubles amplitude equations can be cast in the same
form as the CCD/DCD doubles amplitude equations.

In periodic solids, normally the Coulomb integrals are density-fitted by an
auxiliary plane wave basis functions,

V pq
rs = ΓpGr ΓqsG, (4.47)
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where G is the auxiliary plane wave index. For the dressed Coulomb integrals
as a result of Eq. (4.46), we modify the three-index tensor ΓprG as follows

Γ̃ijG = ΓijG + ΓibGT
b
j ,

Γ̃aiG = ΓaiG − ΓjiGT
a
j + ΓabGT

b
i − ΓjbGT

a
j T

b
i ,

Γ̃iaG = ΓiaG,

Γ̃abG = ΓabG − ΓjbGT
a
j .

(4.48)

So the resulting dressed density-fitted Coulomb integrals, denoted by a tilde on
top, are

Ṽ ij
kl = Γ̃iGk Γ̃jlG,

Ṽ ab
cd = Γ̃aGc Γ̃bdG,

Ṽ ia
jb = Γ̃iGj Γ̃abG,

Ṽ ij
ab = Γ̃iGa Γ̃jbG.

(4.49)

The dressed Fock matrix blocks are

f̃ai = fai − f
j
i T

a
j + fab T

b
i − f

j
bT

b
i T

a
j

+ 2T bj (V ja
bi − V

jk
bi T

a
k + V ja

bc T
c
i − V

jk
bc T

c
i T

a
k )

− T bj (V ja
ib − V

jk
ib T

a
k + V ja

cb T
c
i − V

jk
cb T

c
i T

a
k ),

f̃ ia = f ia + 2T bj V
ja
bi − T

b
j V

ji
ab ,

f̃ab = fab + 2T ckV
ka
cb − T ckV ka

bc

− fkb T ak − 2T ckV
kl
cb T

a
l + T ckV

kl
bc T

a
l ,

f̃ ij = f ij + 2T ckV
ki
cj − T ckV ki

jc

+ f ibT
b
j + 2T ckV

ki
cb T

b
j − T ckV ki

bc T
b
j .

(4.50)

We point out that the dressed Fock matrix is no longer Hermitian.
Finally, from the singles and doubles amplitude equations〈

Φa
i

∣∣∣ e−T̂2H̃eT̂2

∣∣∣Φ0

〉
= 0,〈

Φab
ij

∣∣∣ e−T̂2H̃eT̂2

∣∣∣Φ0

〉
= 0,

(4.51)

we obtain the singles and doubles residuals respectively as

Ra
i = f̃ai + f̃ jb T̃

ab
ij + Γ̃aGb T̃ bcij ΓjcG − Γ̃jGi T̃ abjkΓkbG, (4.52)
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and
Rab
ij =Ĩklij T

ab
kl + Ṽ ab

cd T
cd
ij + Ỹ aG

i Ỹ b
jG +Xal

cjT
cb
il +

+ P̂(ia; jb)
[
x̃acT

cb
ij − x̃ki T abkj + χalci(T

bc
lj − T cblj )

−Ṽ ka
ic T

cb
kj − Ṽ kb

ic T
ac
kj

]
,

(4.53)

where the following intermediates are used:

Ỹ a
iG = T̃ abij ΓjbG + Γ̃aiG, (4.54)

Ĩklij =

Ṽ kl
ij + V kl

cd T
cd
ij , CC

Ṽ kl
ij , DC

(4.55)

Xal
cj =

V kl
cd T

ad
kj , CC

0, DC
(4.56)

x̃ac =

f̃ac − T̃ adkl V lk
dc , CC

f̃ac − 1
2
T̃ adkl V

lk
dc , DC

(4.57)

x̃ki =

f̃ki + T̃ cdil V
lk
dc , CC

f̃ki + 1
2
T̃ cdil V

lk
dc , DC

(4.58)

χalci =

V kl
cd T

da
ki , CC

0. DC
(4.59)

The amplitude equations are solved iteratively, in the same way as explained
in the previous section. When the undressed integrals and Fock matrix are
used, solving Eq. (4.53) alone will yield CCD/DCD doubles amplitudes. The
CCSD/DCSD correlation energy is

Ec
CCSD/DCSD = (T abij + T ai T

b
j )(2V ij

ab − V
ij
ba ). (4.60)

4.5.3 Coupled Cluster Singles, Doubles and Perturbative

Triples

In some cases, CCSD/DCSD does not provide satisfactory accurate results and
the triple excitations are needed. However, the triples amplitude tensor has six
indices. Storing this tensor alone requires a considerable amount of memory
space, let alone solving the amplitude equations iteratively involving it. To cir-
cumvent the iterative solution to the triples amplitudes, a one-shot perturbative
estimate is often used to provide more information on top of a CCSD solution.
This method is termed CCSD(T) and was first introduced by Raghavachari
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et al. in 1989 [41]. In the CCSD(T) method, the full amplitudes are approxi-
mated by T̂ = T̂1 + T̂2 + T̂3, where the T1 and T2 amplitudes are determined
from a CCSD solution and the triples amplitudes are determined perturbatively
using the CCSD amplitudes

T abcijk =

〈
Φabc
ijk

∣∣∣ [V̂ , T̂2

] ∣∣∣Φ0

〉
εi + εj + εk − εa − εb − εc

, (4.61)

and the energy correction is [42]

∆E(T) = T ai

〈
Φa
i

∣∣∣ [Ĥ, T̂3

] ∣∣∣Φ0

〉
+

1

2
T abij

〈
Φab
ij

∣∣∣ [Ĥ, T̂3

] ∣∣∣Φ0

〉
, (4.62)

which is added to the Ec
CCSD, yielding

Ec
CCSD(T) = Ec

CCSD + ∆E(T). (4.63)

Although CCSD(T) is very successful in quantum chemistry, it fails to obtain
finite correlation energies for metallic solids in the TDL, similar to MP2 [43].
Also due to its steep O(N7) scaling with system size, the application of this
method has been limited to very small supercells. Its results are mostly used as
benchmarks for lower level theories. Substantial theoretical improvements are
needed in order for the routine use of this method. For example, both the basis
set convergence and finite size convergence should be addressed.
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Chapter 5

Quantum Monte Carlo Methods

In this chapter, another important category of theories–QMC methods–will be
introduced. QMC methods take advantage of stochastic processes to reduce the
curse of dimensionality that plagues severely some of the deterministic methods.
Within the scope of this thesis, we review only two variants of QMC, namely
FCIQMC and DMC. Both methods rely on the idea of evolution in imaginary
time of some initial guess of the true many-electron wavefunction, which at the
infinite time limit will project out the higher energy eigenstates while leaving
only the ground state component. The imaginary-time-dependent Schrödinger
equation is

− d

dτ
Ψ(τ) = ĤΨ(τ), (5.1)

where τ = it is the imaginary time and Ψ(τ) is a general wavefunction. Let Φ0

be an initial guess, it can then be expanded in terms of the eigenstates of the
many-electron Hamiltonian,

|Φ0〉 =
∑
i

Ci |Ψi〉 , (5.2)

which has non-vanishing overlap with the true many-electron ground state wave-
function, i.e. C0 = 〈Φ0 |Ψ0〉 6= 0. The true ground state can then be obtained
by applying the evolution operator in imaginary time with a shift subtracted
from the diagonal, e−τ(Ĥ−S), to the initial guess

|Ψ0〉 = lim
τ→∞

e−τ(Ĥ−S) |Φ0〉 = lim
τ→∞

e−τ(Ĥ−S)
∑
i

Ci |Ψi〉

= lim
τ→∞

∑
i

Cie
−τ(Ei−S) |Ψi〉 ,

(5.3)

which at the infinite time limit and with a value of S chosen to be close to E0

will leave all high energy states decay exponentially fast to 0, leaving only the
ground state component.
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One of the main differences between FCIQMC and DMC lies in that the for-
mer is formulated in the discrete configurational space, e.g. Slater determinant
space, and the latter is in the real continuum space. This difference has many
important implications on the two variants of QMC which we will address in
the following sections.

5.1 Diffusion Monte Carlo

The similarity between the classical diffusion equation and the imaginary-time
Schrödinger equation in real position space was first pointed out by Fermi [44],
who proposed that a random walker process can be found to solve the Schrödinger
equation. Metropolis and Ulam [45] followed his idea and started the earliest
developments of quantum Monte Carlo methods. In real space, we can split the
electronic Hamiltonian, Eq. (1.8), into two parts Ĥ = −

∑N
i

1
2
∇2
i +V̂ , where the

potential operator includes the electron-nucleus, electron-electron potentials (as
pointed earlier, we can always add the nucleus-nucleus potential posteriorly).
The imaginary-time Schrödinger equation for an arbitrary many-electron wave-
function Ψ = Ψ({r}, τ) is

− ∂Ψ

∂τ
= −

N∑
i

1

2
∇2
iΨ + V̂Ψ. (5.4)

Without the potential term, this equation is exactly the same as the classical
diffusion equation (in 3N dimensions). DMC employs an ensemble of weighted
random walkers, each of which represents a configuration, {r}, of the positions
of the N electrons. We follow the derivations in Ref. [46] here. The formal
solution to this equation is obtained by constructing the Green’s function using
the exponential operator introduced,

G({r} ← {r}′, δτ) =
〈
{r}

∣∣∣ e−δτ(T̂+V̂−ET)
∣∣∣ {r}′〉 ,

≈ e−δτ [V ({r})−ET]/2
〈
{r}

∣∣∣ e−δτT̂ ∣∣∣ {r}′〉 e−δτ [V ({r}′)−ET]/2.

(5.5)
In the above expression, we used the Trotter-Suzuki approximation for the ex-
ponential operator at short times, e−δτ(Â+B̂) ≈ e−δτB̂/2e−δτÂe−δτB̂/2 + O(δτ 3),
and ET is the trial energy, which plays a role similar to the shift S in FCIQMC
to control the total population of the walkers. Noticing that the exponential op-
erator containing only the kinetic operator T̂ will yield a Gaussian distribution
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as in the classical diffusion process, we obtain the final Green’s function [47],

G({r} ← {r}′, δτ) ≈ (2πδτ)−3N/2e−
({r}−{r}′)2

2δτ e−δτ [V ({r})+V ({r}′)−2ET]/2. (5.6)

This propagator constitutes the following two crucial steps in the dynamics of
a DMC simulation:

1. Diffusion. All existing walkers diffuse according to the diffusion equation,
i.e. exploring the surrounding configurations randomly according to the
3N Gaussian distribution. Normally, the Metropolis algorithm [48] is used
to update the positions of electrons.

2. Birth/Death. For each walker, it survives with the probability P =

e−δτ [V ({r})+V ({r}′)−2ET]/2, if P < 1; if P ≥ 1, int(P ) copies of the walker
survive and an extra walker is created at the same configuration with
probability P − int(P ), where the function int(P ) yields the largest inte-
ger that is smaller than P .

In principle, repeatedly applying this propagator on an initial wavefunction
will yield a wavefunction that corresponds to the lowest eigenenergy of the
Hamiltonian. However, since the imaginary-time Schrödinger equation in real
position space imposes no antisymmetry on the wavefunction, without imposing
additional constraints, the simulation will unavoidably converge to the bosonic
ground state which has the same sign for all walkers’ weight and always has
an energy that is lower than or equal to the eigenenergy of the true fermionic
ground state energy. This bosonic ground state is symmetric upon exchanging
two identical electrons, which does not fulfill the antisymmetry requirement for
fermionic systems. This is the so-called (fermion) sign problem that plagues all
projector QMC methods, showing up with different characteristics in different
flavors of method.

In DMC, a trial wavefunction ΨT is employed, whose nodes, where the wave-
function is 0, are used to impose the antisymmetry of the simulated ground
state wavefunction. This is the so-called fixed-node diffusion Monte Carlo (FN-
DMC) [49, 50, 47]. Additionally, the energy given by FN-DMC is an upper
bound to the true ground state energy [47]. On the other hand, the trial wave-
function is normally also used as the guiding wavefunction for the importance
sampling in FN-DMC. When chosen appropriately, the guiding wavefunction
can significantly reduce the variance of the calculated properties, such as en-
ergy. A common way of choosing the trial wavefunction is using a product of
a Slater-Jastrow factor and a Slater determinant (or a linear combination of
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Slater determinants),
ΨT = eĴ

∑
i

di |Dσ
i 〉 |Dσ̄

i 〉 , (5.7)

where the Slater-Jastrow factor eĴ includes the correlation effects such as the
nucleus-electron cusp and the electron-electron cusp, and the Slater determi-
nants, with the spin-up and spin-down parts separated, determine the nodal
structure of the trial wavefunction, hence that of the FN-DMC wavefunction,
too. The parameters in the trial wavefunction are normally optimised within
the VMC-based framework before the trial wavefunction is used in FN-DMC. In
principle, the trial wavefunction which fixes the nodal structure and the guiding
wavefunction for importance sampling need not be the same [51]. A systematic
and efficient way of optimising the nodal structure is not so readily available.
Existing methods include employing increasingly many Slater determinants in
the trial wavefunction [52, 53] and an extrapolation to reach the exact energy,
or using more flexible forms of the trial wavefunction such as artificial neural
networks [54, 55, 56], just to name a few examples. For more details on the
FN-DMC, we refer to Ref. [49, 50, 47, 44, 57] and the references therein, as they
are beyond the scope of this thesis.

5.2 Full Configuration Interaction Monte Carlo

The FCIQMC theory is a stochastic version of the power method for solving for
the eigenvector corresponding to the lowest or highest eigenvalue of a (massively
large) matrix. It uses an ensemble of random walkers to represent the FCI
wavefunction, as introduced in Sec. 3.2. The initial formulation of the method
in Ref. [58] starts from the imaginary-time Schrödinger equation in the Slater
determinant space, whose derivations will be followed here along with some later
developments [59]. We introduce the time dependence in the FCI coefficients
so that the wavefunction is also time dependent as it evolves according to the
imaginary-time Schrödinger equation,

|Ψ(τ)〉 =
∑
i

Ci(τ) |Di〉 . (5.8)

We also subtract the HF (or any other reference defined as |D0〉) energy away
from the diagonal of the many-electron Hamiltonian,

K̂ = Ĥ − EHF. (5.9)
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The imaginary-time Schrödinger equation can then be formulated in the Slater
determinant space as

− dCi
dτ

= (Kii − S)Ci +
∑
j 6=i

KijCj, (5.10)

where for simplicity we drop the time dependence of the coefficients, Kij =

〈Di|K̂|Dj〉 and S is a shift that is subtracted from the diagonal of the K̂ matrix
and is adjusted during the simulation to approximate the true ground state
correlation energy Ec

FCIQMC. However, the above formalism still requires the
storage of the full FCI coefficients. To evade this bottleneck, we approximate the
coefficients Ci by walkers carrying signed weights wi, 1 which are stochastically
pruned away in each iteration with probability |wi|/cp if |wi| < cp, where cp
is a parameter which is normally chosen to be 1. If not pruned, weights that
have smaller magnitude than cp are set to wi = sgn(wi)cp and those that have
magnitude larger than cp are left untouched. The wavefunction is then stored
as a list of walker weights.

Eq. (5.10) can then be cast into a finite difference equation

∆wi = −δτ

[
(Kii − S)wi +

∑
j 6=i

Kijwj

]
, (5.11)

which can be executed in three steps listed below:

1. Spawning. For the walker on determinant Di with weight wi, we pick
randomly a connected determinant Dj, which means 〈Dj|Ĥ|Di〉 6= 0, with
probability pgen(j|i), on which we spawn a new walker with weight wαj =

− δτKijwi
pgen(j|i)mi , where we use index α to denote the new walker on the list of

spawned walkers, because there might be some other new walkers being
spawned to determinant Dj by determinants other than Di. We loop over
all walkers to do the same in the list of the wavefunction. The number of
spawning attempts, mi, each walker tries can be set to be proportional to
the magnitude of its weight and pgen(j|i) can be calculated in a way such
that it is approximately proportional to |Kij |∑

j 6=i |Kij |
.

2. Death/Cloning. We loop over all walkers in the list of the wavefunction,
to change the weight of each walker by di = −δτ(Kii − S)wi. Depending
on the sign of di, the process is called either death (di < 0) or cloning

1 The very first implementation of FCIQMC used integer weight for each walker, which
was later abandoned for real valued weight.
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(di > 0). We denote the list of the weights of walkers after this step as
w′i = wi + di.

3. Annihilation. We combine the lists of the wavefunction and the newly
spawned walkers. Using a hash table, one can efficiently find the walkers
belonging to the same determinant, combine their weights, and remove
repeated entries of the same determinant. The new weights of determi-
nants in the list of the wavefunction is w′′i = w′i +

∑
αw

α
i . w′′i will be used

as wi in the next iteration.

As mentioned above, the pruning of the weights is applied after they are up-
dated, so that we can keep the storage of walkers tractable. As pointed out in
Ref. [60], the choice of the time step size has to satisfy δτ ≤ 2

Emax−E0
for discrete

Hilbert space, where Emax (E0) is the largest (smallest) eigenvalue of Ĥ. The
shift S is adjusted during the simulation according to

S(τ) = S(τ − Aδτ)− η

Aδτ
ln

Nw(τ)

Nw(τ − Aδτ)
, (5.12)

where Nw(τ) =
∑

i |wi(τ)|, η is the damping parameter and A is the period
of steps, at which we adjust the value of S. The shift is adjusted so that the
total population of the walkers remain constant after reaching a preset target.
Using the Slater-Condon rules [61, 62, 16], one can evaluate the Hamiltonian
matrix elements efficiently on-the-fly, assuming the integrals are precomputed
and stored in computer memory.

Finally, the projected correlation energy is calculated as

Ec
FCIQMC =

〈D0|K̂|Ψ〉
〈D0|Ψ〉

=

∑
j 6=0 K0jwj

w0

,

(5.13)

which at convergence should agree with the shift S. The original FCIQMC re-
quires a system-dependent critical number of walkers to reach the exact solution,
which underpins the exponential growth in computational cost with system size
of the algorithm. If a smaller number of total walkers are used than the critical
number, the simulation will collapse to an undesired solution that has a lower
energy than the true ground state energy, signalling a typical behavior of the
sign problem.

Later development introduced the initiator approximation [59] which re-
moves the need to reach the system-dependent critical number of walkers in
order to sustain a stable simulation. However it introduces some bias which
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can be reduced systematically as the target number of walkers is increased to
infinity. The bias associated with this approximation is called the initiator error
and the algorithm is named i-FCIQMC. We recap briefly the main ingredients
of this approximation. Firstly, an initiator criteria cini is set, for example to 3,
which divides the list of walkers into the initiator and non-initiator space. The
walkers in the initiator space have weights larger than cini and can spawn child
walkers to determinants that do not exist in the current list of walkers, while
the non-initiator walkers have weights smaller than cini and can only spawn
child walkers to the already existing determinants in the list of walkers, with an
exception when two non-initiator walkers on two different determinants spawn
child walkers with the same sign on the same new determinant.

5.3 Discussion

FCIQMC operates in discrete configurational space, which has the antisymme-
try built in the many-electron basis, such as the Slater determinants. This has
two advantages: 1. Positive and negative walkers can be easily identified to
be on the same Slater determinant or not, hence easily annihilate each other;
2. With the antisymmetry built in, the correct wavefunction can emerge au-
tomatically once a sufficient number of walkers are used. In contrast, DMC
uses walkers in real space, which can have continuous and infinitely many pos-
sible configurations. On one hand, this gives it an edge that by construction
DMC yields energy at the CBS limit. On the other hand, no antisymmetry
is present in the generic walker representation of the wavefunction, and an-
nihilation between positive and negative walkers is not so straightforward to
implement. Fortunately, in real space, the wavefunction has well separated pos-
itive and negative regions and the walker dynamics given by Eq. (5.6) at each
short time step does not move/create walkers in a non-local fashion, therefore
it is feasible to use the fixed-node approximation to enforce the antisymmetry
of the wavefunction. Unlike the Hamiltonian in real space representation, the
Hamiltonian in Slater determinant space representation normally has compli-
cated sign structures, hence the signs of walkers change during the dynamics.
Due to the fact that it is not so straightforward to define neighboring Slater
determinants, defining the nodal structure as in DMC becomes hard, if not
impossible, in FCIQMC. The origin of the sign problem in FCIQMC is well
explained in Ref. [63] as a collapsing to the ground state of a Hamiltonian
which has the off-diagonal elements being −|Hij| when not enough walkers are
used and positive and negative walkers barely meet to annihilate each other.
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This “bosonic” Hamiltonian has a lower ground state energy than the original
Hamiltonian, so that the signal of the true wavefunction decays exponentially
e−∆Eτ , where ∆E is the energy difference between the true fermionic ground
state energy and the “bosonic” ground state energy 2. In DMC, the situation
is similar, the wavefunction will collapse into the bosonic wavefunction expo-
nentially fast when no external antisymmetry is imposed, for example by the
fixed-node approximation [49, 50].

2In rare cases, the “bosonic” and fermionic ground state energies are the same and no sign
problem exist in these systems in FCIQMC
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Chapter 6

Finite Size Corrections

For periodic solids, properties calculated at the TDL are needed in order to
compare with experiments meaningfully. Because, on one hand, in any super-
cell that comprises a finite number of unit cells, the momenta of the electrons
are quantized, see Eq. (1.18), as a result of which strong fluctuations in the cal-
culated properties as a function of the size of the supercell can occur, which will
not go away until large enough supercells are used and the possible values of the
momenta become more or less continuous; on the other hand, some electronic
correlations span a distance that is longer than the length of the supercells. We
define the finite size errors of a calculated property as the difference between
the ideal value at TDL and the one that is currently simulated with a size N .
For example, for the ground state energy it is defined as

∆EFS = E∞ − EN . (6.1)

The most straightforward way to reach the TDL is to simulate increasingly
larger numbers of supercells or denser k-meshes in reciprocal space, and then
extrapolate the quantity in question to the TDL. The bad news is that many
of the methods that we have discussed so far have very steep scaling in compu-
tational cost with the system size, which renders this obvious way intractable
with modern computers. In the following two sections, we discuss two ways
to correct the finite size errors: one is to tackle the problem caused by the
quantized momenta; the other is to recover the long range correlations that are
missing in small supercells.

6.1 Twist-averaging Technique

The basic idea of twist-averaging (TA) is to use the average of an ensemble of
simulations that sample the first Brillouin zone coarsely at different k-points,
i.e. ∆ki (twists), to approximate the ideal situation where the first Brillouin
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zone is densely sampled. For example, the twist-averaged correlation energy is

Ec
TA =

1∑
iwi

∑
i

wiE
c
∆ki
, (6.2)

where ∆ki is a twist that applies to the Γ-point in the first Brillouin zone,
assuming that only the Γ-point is sampled, and wi is the weight of this shift,
which is determined by the number of equivalent k-points, generated by sym-
metry operations, to ∆ki in the first Brillouin zone. The number of twists can
be increased until the twist-averaged quantity does not change any more. For
more details, we refer to Ref. [64, 65, 66, 67, 68].

6.2 Long Range Correlations

The correlation energy of wavefunction-based quantum chemical methods, such
as MP2, CCSD and FCIQMC can be expressed in general as

Ec = Cab
ij (2V ij

ab − V
ij
ba ), (6.3)

where Cab
ij are the coefficients of the doubly excited SDs. For example, in CCSD,

Cab
ij = T abij + T ai T

b
j .

In the plane wave basis, the Coulomb integrals, Eq. (4.4), can be calculated
as

V ab
ij =

∑
G 6=0

Di∗
a (G)V (G)Db

j(G), (6.4)

whereDa
i (G) =

∫
drϕ∗a(r)ϕi(r)e

iG·r and V (G) = 4π
|G|2 is the Fourier transformed

Coulomb potential. In practice, the G = 0 component is normally left out in
the summation, due to the integrable divergence in V (G) at this point. This is
one of the main sources for the finite size errors.

If we insert Eq. (6.4) into Eq. (6.3) and change the order of summations in
Eq. (6.3), such that the abij indices are summed over first and the G index is
summed over next, we obtain the following expression, where we use explicit
summations to indicate the order of summations,

Ec =
∑
G6=0

V (G)
∑
abij

Cab
ij

(
2Di∗

a (G)Db
j(G)−Di∗

b (G)Da
j (G)

)
. (6.5)

Following Ref. [69, 70], we define the transition structure factor as

S(G) =
∑
abij

Cab
ij

(
2Di∗

a (G)Db
j(G)−Di∗

b (G)Da
j (G)

)
, (6.6)
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using which the correlation energy can be written compactly as

Ec =
∑
G 6=0

V (G)S(G). (6.7)

We notice that the S(G) is a function defined on a three-dimensional grid, G.
To recover the missing contribution at G = 0, the original S(G) is interpolated
on a much finer grid g and the discrete summation over the coarse G grid is
replaced by the summation over g, which can be effectively expressed by an
integral

Ec
∞ =

∫
dgV (g)S̃(g), (6.8)

where we use S̃(g) as the interpolated S(G).
Due to the orthogonality between the occupied and the virtual orbitals,

S(0) = 0. So that the Taylor expansion of S(G) around G = 0 has the first
nonzero term proportional to G2, hence the product V (G)S(G) approaches
a constant as G → 0. As larger supercells or denser k-meshes are used, the
shortest Gmin gets closer to the origin, thus more long range correlations are
recovered. Using Eq. (6.8), not only the missing contribution at G = 0 can be
recovered, but also the quadrature errors from a summation over a very coarse
grid G can be reduced. Similar methodologies [64, 65, 67, 68] are used in DMC,
where the structure factor is used for this purpose.
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Chapter 7

A Perturbative Approach to the
Electron-Phonon Interactions

Phonons are the collective motions of atoms inside of a lattice. They are bosons.
So far, we have ignored the motions of the nuclei, which in reality can have
important contributions to the properties of solids. For example, the band gaps
in solids can change due to the motions of atoms, compared to the values at
0 K. Even at the 0 K, the atoms are still in motion, due to the zero point
fluctuations, arising from the uncertainty principle. Especially, for those solids
that consist of light elements, such as the solid hydrogen phases, the EPIs are
strong and not negligible.

Within the BO approximation, the motions of nuclei are determined by
Eq. (1.9), with the potential being the ground state energy of the electronic
Schödinger equation. With small displacements around their equilibrium posi-
tions, the nuclei can be modelled by the quantum Harmonic oscillators, of which
the Hamiltonian can be written in terms of phonon creation and annihilation
operators

Ĥn =
∑
qν

ωqν

(
c†qνcqν +

1

2

)
, (7.1)

where ωqν is the frequency (energy) 1 of a phonon mode with crystal momentum
q on branch ν. The 1

2
inside of the bracket constitutes the zero point energy of

the nuclei.
In this chapter, a perturbative approach will be introduced to include to

some extend the effects of EPI on properties such as the band gaps in solids.
At this stage, we reiterate the KS single-particle Hamiltonian,

ĤKS = −1

2
∇2
i −

K∑
µ

Zµ
|r−Rµ|

+

∫
dr′

n(r′)

|r− r′|
+ VXC[n(r)]. (7.2)

1In atomic units, these two are the same, since ~ = 1.
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The three potential terms either depend explicitly or implicitly on the nuclei’s
positions, which we group together as

VKS(r; {R}) = −
K∑
µ=1

Zµ
|r−Rµ|

+

∫
dr′

n(r′)

|r− r′|
+ VXC[n(r)], (7.3)

where we introduce explicitly the positions of the nuclei as a dependence in the
KS potential. When the nuclei are allowed to move around their equilibrium
positions {R0}, Eq. (7.3) can be expanded around those positions as

VKS(r; {R}) = VKS(r; {R0}) +
∑
µ

∇RµVKS(r; {R})
∣∣
Rµ=R0

µ
∆Rµ

+
1

2

∑
µ

∑
µ′

∇Rµ∇Rµ′
VKS(r; {R})

∣∣∣
Rµ=R0

µ;Rµ′=R0
µ′

∆Rµ∆Rµ′ + . . . .

(7.4)
In the theory developed by Allen and Heine [71] and a later development by
Allen and Cardona [72], which is called the HAC or AHC theory, only the
diagonal terms in the second order derivatives are considered. We define two
perturbations as

Ĥ1 =
∑
µ

∇RµVKS(r; {R})
∣∣
Rµ=R0

µ
∆Rµ,

Ĥ2 =
1

2

∑
µ

∇Rµ∇RµVKS(r; {R})
∣∣
Rµ=R0

µ
∆Rµ∆Rµ.

(7.5)

According to Ref. [71], the perturbatively corrected KS energies, up to the
second order in nuclei displacements, are

ε̃nk({∆R}) = εnk +
〈
ϕnk

∣∣∣ Ĥ1 + Ĥ2

∣∣∣ϕnk〉+
′∑

n′k′

∣∣∣〈ϕn′k′ ∣∣∣ Ĥ1

∣∣∣ϕnk〉∣∣∣2
εnk − εn′k′

, (7.6)

where the prime on the summation indicates that the term when n = n′ and
k = k′ is omitted. The temperature dependence is introduced in the quasipar-
ticle energies by replacing the parts involving the displacements ∆R with their
thermally averaged counterparts, see Equation (4) in Ref. [71].

Here we show the temperature dependent quasiparticle energies from Ref. [73,
74, 75, 76], where some further developments are made based on the HAC the-
ory,

ε̃nk(T ) = εnk +

[
1− ∂ReΣFan

nk (ω, T )

∂ω

∣∣∣∣
w=εnk

]−1 [
ΣFan
nk (εnk, T ) + ΣDW

nk (T )
]
, (7.7)
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where the Fan term is

ΣFan
nk (ω, T ) =

∑
n′qν

|gFan
nn′ν(k,q)|2

Nq

[
nqν(T ) + 1− fn′k−q

ω − εn′k−q − ωqν + iηsgn(ω)

+
nqν(T ) + fn′k−q

ω − εn′k−q + ωqν + iηsgn(ω)

]
,

(7.8)

and the Debye-Waller term is

ΣDW
nk (T ) = −1

2

∑
n′qν

gDW
nn′ν(k,q)

Np

[
2nqν(T ) + 1

εnk − εn′k′

]
. (7.9)

In the above two expressions, nqν(T ) and fn′k−q refer to the Bose-Einstein and
Fermi-Dirac distribution functions, respectively. The expressions for the matrix
elements gFan

nn′ν(k,q) and gDW
nn′ν can be found, for example, in Ref. [75, 76].

The perturbative corrections are based on the BO approximation and the
model of Harmonic oscillator for the nuclei motions. In many situations when
the atoms are heavy and the temperature is low, both are good approximations.
But they can break down when the atoms are light and the temperature is high.
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Part III

New Theoretical Developments
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Chapter 8

MP2 Forces and Structural
Optimisation

This chapter contains partly the work published in the paper titled “Structural
and Electronic Properties of Solid Molecular Hydrogen fromMany-electron The-
ories”, by Ke Liao, Tong Shen, Xin-Zheng Li, Ali Alavi and Andreas Grüneis
on Physical Review B, 103, 054111. Ke Liao implemented the MP2 forces al-
gorithm, with helpful discussions with Andreas Grüneis.

8.1 Motivations

The relative cheap cost of DFT enables it to do massive crystal structure search.
Although DFT can find relevant structures that are of interest, the approximate
XC functionals used in DFT cause uncontrollable errors in the resulting struc-
tures. These structures can result in inaccurate predictions compared to exper-
iments, such as transition pressures in pressure induced structural transitions
or band gaps when studying the electronic properties. Hence, a more accurate
source of atomic forces is needed. From the wavefunction methods, MP2 is such
a candidate. A direct motivation for the development and implementation of
the MP2 forces is that in this thesis we aim to predict the atomic structures of
crystalline molecular hydrogen phases and related properties, enabling a more
rigorous study of band gaps and vibrational frequencies. For more details, we
refer to chapter 11. In the meantime, to the best of our knowledge, we notice
that a theoretical formulation and an implementation of the MP2 forces using
a pure plane wave basis set is still missing in the literature.

8.2 Theoretical Formulation

In this section, we briefly recapitulate the general theoretical formulation of
analytical gradients given by the MP2. For the more details, we refer to [77, 78,
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79], in particular we follow the derivation from Ref. [78] closely. We point out
that in these Refs, either pure localised Gaussian basis functions or a mixture
of Gaussian and plane wave basis functions are used.

Starting from the mean-field HF method, MP2 theory adds correlation ef-
fects to observables. For example, the total energy can be expressed as

EMP2 = EHF + Ecorr
MP2. (8.1)

Therefore the nuclear gradients

F = −∂E
∂R

, (8.2)

where R is a vector of all nuclear coordinates, can also be written as a sum of
two contributions

F = FHF + Fcorr
MP2. (8.3)

For a closed-shell system, the MP2 correlation energy can be expressed as

Ecorr
MP2 =

∑
ijab

T abij V
ij
ab , (8.4)

T abij =
2V ab

ij − V ba
ij

εi + εj − εa − εb
, (8.5)

where the indices i, j and a, b refer to the occupied and unoccupied HF orbitals,
respectively, and the εi,j,a,b are the corresponding orbital energies. Here we adopt
the convention to use i, j, k, l, . . . , a, b, c, d, . . . and p, q, r, s, . . . as occupied,
unoccupied and general orbital indices, respectively. In the present work, all
(pseudo) orbitals are expressed as linear combinations of the underlying plane
wave basis functions, i.e.

φp(r) =
∑
µ

cµpe
iGµ·r, (8.6)

where the coefficients cµp are determined through a self consistent minimisation
of the HF energy. Gµ is a plane wave vector and r is the electronic coordinate.

Within the Born-Oppenheimer approximation, the orbitals and their ener-
gies depend parametrically on the nth nuclear position Rn, which are not shown
in equation 8.5. Using a plane wave basis, the derivative of the MP2 correlation
energy with respect to Rn can be expressed concisely as

Ecorr′

MP2 =
∂Ecorr

MP2

∂Rn

= 2
∑
pq

PpqF
′
pq, (8.7)
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where the prime on quantities refer to their derivatives with respect to Rn, the
density matrix is defined as a direct sum of the occupied-occupied, unoccupied-
unoccupied and occupied-unoccupied blocks

Ppq = Pij ⊕ Pab ⊕ Pai, (8.8)

and the derivative on the Fock matrix is

F ′pq =
∑
νµ

cνpcµqh
′
νµ, (8.9)

where h′νµ = ∇R < ν| 1
R−r |µ > can be obtained by taking the derivative in

momentum space.
The occupied-occupied and unoccupied-unoccupied blocks of the density

matrix can be expressed in the following closed expressions

Pij = −
∑
abk

T abik
V jk
ab

εi + εk − εa − εb
, (8.10)

Pab =
∑
ijc

T acij
V ij
bc

εi + εj − εb − εc
. (8.11)

The occupied-unoccupied block, which includes the orbital relaxation effects as
we perturb the nuclear coordinates, can be obtained by solving the Z-vector
equation

L”ai − Lia −
∑
pq

Aapiq(Pij + Pab) = (εa − εi)Pai +
∑
bm

AabimPbm, (8.12)

where the intermediate quantities are defined as

Lia = 2
∑
cbj

T cbij V
aj
cb , (8.13)

L”ai = 2
∑
bkj

T abkj V
jk
bi , (8.14)

Aprqs = 4V pr
qs − V pr

sq − V ps
rq . (8.15)

An iterative conjugate gradient solver is well suited for solving the Z-vector
equation (8.12).
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8.3 Structure Optimisation Using Symmetrised

MP2 Forces

Computing the MP2 forces is computationally much more expensive than the
DFT forces. Therefore we employ structures optimised on the level of DFT-
PBE as a suitable starting point. Since the DFT energy minima are close to the
MP2’s, a simple gradient descent solver suffices to update the structures and find
the most stable MP2 structures. Additionally, due to numerical noise and other
possible convergence errors, the computed gradients may not preserve the space
group symmetry of the initial structure. Therefore, after a few iterations of
updating the nuclear positions, the structures can slide into another space group
symmetry. This is not necessarily an unwanted feature in, for example, random
searches for the most stable configurations. However, in this work we want to
keep the space group symmetries fixed. We achieve this goal by symmetrising
the computed gradients using the corresponding symmetry operations.

8.3.1 Gradient Descent Method

In the gradient descent method, we approximate the energy changes with respect
to the changes in the nuclear positions using the first gradient

∆E =
∑
n

∂E

∂Rn

∆Rn, (8.16)

and choose the changes in nuclei positions to be

∆Rn = −δ
∑
n

∂E

∂Rn

= δFn, (8.17)

where δ is a small positive constant which we denote as the time step during
the structure optimisation procedure. In this case, after we update the nuclei
positions, comparing to the previous configuration, the energy is lowered by

∆E = −δ
∑
n

∣∣∣∣ ∂E∂Rn

∣∣∣∣2 = −δ
∑
n

|Fn|2 < 0. (8.18)

8.3.2 Symmetrising the Forces Using Space Group Sym-

metries

A space group element (operation) is a combination of a point group operation
(rotation) M and a translation operation T. Considering a space group which
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has N elements, we have N pairs of R and T operations. Applying one element
to the coordinates of the nuclear positions {R}, we get

R
′n
i = MnRi + Tn, (8.19)

where i denotes the ith nuclear position in {R} and n represents the nth element
from the space group. As per definition of a symmetry operation, we should
have two equivalent sets of coordinates {R′} ≡ {R}. Concomitantly, the forces
are also transformed by the rotation operation and we use the information from
equation (8.19) to determine the atoms which they act upon. So the transformed
forces are

F
′n
i = MnFi, (8.20)

and the average of forces from all the equivalent atoms resulting from all the
operations are the symmetrised forces

F̄i =
1

N

∑
n

F
′n
i . (8.21)

As mentioned before, the HF forces are calculated using the primitive cells
and dense k-meshes, while the MP2 forces are calculated using large supercells
and the Γ-point only. To update the coordinates of atoms inside of the primitive
cell, the following 4-step procedure is carried out:

1. symmetrising the MP2 forces using the space group symmetries of the
supercell cell.

2. downfolding the supercell to the primitive cell by mapping the indices,
positions and forces of the atoms between the supercell and the primitive
cell.

3. symmetrising the MP2 and HF forces using the space group symmetries
of the primitive cell.

4. updating the atomic positions.

8.4 Implementation Details

Compared to the formulation using atom-centered Gaussian basis sets, plane
wave basis functions simplify the expressions for the gradients significantly.
However a relatively large number of plane waves are required to describe the
core regions of the wavefuntions that are close to the nuclei. In general, the
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projector augmented wave (PAW) method[80, 81], which is implemented in
VASP[82], reduces the required plane wave basis set size. However, in this work
we did not employ the PAW method when computing the MP2 contribution to
the gradients. Only the HF forces are computed within the PAW framework, as
implemented in VASP. We also note that for systems consisting of light atoms,
e.g. hydrogen, it is not so difficult to converge the MP2 forces with respect the
number of plane wave basis functions. The MP2 analytical gradient has been
implemented in CC4S, which uses the Cyclops Tensor Framework (CTF)[83]
as the backend for massively parallel tensor operations. For the HF part, we
sample the 1st Brillouin zone using dense k-mesh; for the MP2 part, we use only
the Γ-point and employ large supercells instead. The Python library Spglib [84]
is used for symmetry operations.
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Chapter 9

Combining Transcorrelation and
Coupled Cluster Theory

This chapter contains partly the work in the paper titled “Towards efficient
and accurate ab initio solutions to periodic systems via transcorrelation and
coupled cluster theory”, by Ke Liao, Thomas Schraivogel, Hongjun Luo, Daniel
Kats and Ali Alavi, published on Physical Review Research, 3, 033072 (2021).
Ke Liao, Daniel Kats and Ali Alavi conceived this project and contributed to the
writing of the manuscript; Ke Liao implemented the TC-CC algorithm; Thomas
Schraivogel contributed to the resolving of several important bugs; Hongjun Luo
contributed to the full 3-body interactions in the FCIQMC algorithm and some
theoretical developments in the TC integrals.

9.1 Motivations

The coupled cluster (CC) methodologies [85, 86, 32] at the level of singles
and doubles (CCSD) and perturbative triples (CCSD(T)) [41] have become the
de facto standard of single-reference ab initio quantum chemistry, and can be
applied to systems consisting of hundreds of electrons [87, 88, 89, 90]. In the
past few years, these methods have also shown promise in applications to the
solid state [91, 69, 92, 70, 93, 94], although significant challenges remain before
they can be routinely applied, as for example density functional theories are. On
the one hand, because of quite steep computational scaling (O(N6) and O(N7)

for CCSD and CCSD(T) respectively), it is desirable to keep the methods at
the lowest possible CC level, namely CCSD, whilst maintaining accuracy. The
more accurate CCSD(T), as a perturbative correction to CCSD, additionally
fails for metals [43]. It is also desirable that the CC methods can be extended
to more strongly correlated systems, where the single reference nature of these
approximations breaks down. There have been various attempts to develop
modified CCSD methods with a higher accuracy for weakly [95, 96, 97, 98]
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and strongly [99, 100, 101, 102, 103] correlated systems. The distinguishable
cluster singles and doubles (DCSD) [35, 104] is one such method, which has
shown promise in improving CCSD in weakly and strongly correlated molecular
systems [105, 106, 107].

In a separate development, there has been renewed interest in so-called
transcorrelated (TC) methods [108, 2, 3, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120], based on Jastrow factorisation of the electronic wavefunc-
tion, which result in effective similarity transformed (ST) Hamiltonians [116,
119]. Although TC methods were originally proposed as a way to accelerate
basis set convergence in electronic wavefunctions, it has become apparent that
such similarity transformations can also be extremely helpful in the context of
strongly correlated systems. For example, in the repulsive 2D Fermi-Hubbard
model, it was found that, with a suitable Gutzwiller correlator, extremely com-
pact forms of ground state right eigenvectors of the ST Hubbard Hamiltonian
could be obtained [118], dominated by the Hartree-Fock (HF) determinant.
Since single-reference coupled cluster methods work best when the wavefunc-
tion is dominated by the HF determinant, and furthermore, since the coupled
cluster method can itself be cast in terms of a similarity transformation of
the Hamiltonian, it is natural to ask if the two concepts - coupled cluster and
transcorrelation - can be usefully combined into a single framework, whereby the
compactification generated by the TC method is exploited by the CC method,
to extend its range of applicability into more strongly correlated systems.

9.2 Transcorrelation

In the transcorrelation framework the many-electron wavefunction is written as

Ψ = eτ̂Φ (9.1)

where τ̂ = 1
2

∑
i 6=j u(ri, rj) is a correlator consisting of pair correlations u(ri, rj),

whose form will be discussed later. Φ should satisfy the similarity-transformed
eigenvalue equation

ĤtcΦ = EΦ, Ĥtc = e−τ̂Ĥeτ̂ . (9.2)

It is worth pointing out that at this stage, no approximations have been made,
and the spectra E of Ĥtc are the same as of the original Hamiltonian.

The similarity-transformed Hamiltonian can be expanded by the Baker-
Campbell-Hausdorff expansion. Due to the fact that the correlator is a function
of the spatial coordinates of electrons, the expansion truncates at the double



9.3. Approximations to the Three-body Operator 73

commutation as follows [116]

Ĥtc = Ĥ +
[
Ĥ, τ̂

]
+

1

2

[[
Ĥ, τ̂

]
, τ̂
]

= Ĥ −
∑
i

(
1

2
∇2
i τ̂ +∇iτ̂ · ∇i +

1

2
(∇iτ̂)2

)
.

(9.3)

The TC Hamiltonian has additional 2-body and 3-body interactions. The
last term in Eq. (9.3) gives rise to a 2-body and the 3-body terms. Due to one of
the additional 2-body interactions, the TC Hamiltonian is non-hermitian. This
fact can pose some difficulties for variational methods, but not so for projection
methods such as full configuration interaction Monte Carlo (FCIQMC) [58, 91]
and CC.

9.3 Approximations to the Three-body Operator

In general, we can write the TC Hamiltonian in second quantization as

Ĥtc = Ĥ +
1

2

∑
σσ′

∑
pqrs

ωrspqa
†
p,σa

†
q,σ′as,σ′ar,σ

+
1

6

∑
σσ′σ′′

∑
pqorst

ωrstpqoa
†
p,σa

†
q,σ′a

†
o,σ′′at,σ′′as,σ′ar,σ,

(9.4)

where we group all the additional 2-body integrals as ωrspq.
The additional 3-body operator when treated without approximations will

increase the computational scaling of CCD or DCD from N6 to N7. To seek
a good balance between the computational cost and the accuracy, we include
only up to effective 2-body operators arising from normal-ordering the 3-body
operator. In this approximation, only the normal-ordered 3-body operator is ex-
cluded. We can justify this approximation by analogy to the HF approximation,
which constructs a mean-field solution by including only the single and double
contractions from the Coulomb operator. In cases where the mean-field ap-
proximation is reasonably good, the contribution of the missing normal-ordered
Coulomb operator is small, compared to the single and double contractions. In
contrast to the HF approximation, the parameters in the correlator in general
allow a tuning of the strength of the missing normal-ordered 3-body operator,
which we will discuss in detail in Sec. 12.2 when we apply the theory on the
model system of 3D UEG.
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In general, we can write our approximated Hamiltonian as

Ĥtc = ẼHF +
∑
σ

∑
p

ε̃p{a†p,σap,σ}

+
1

2

∑
σσ′

∑
pqrs

Ṽ rs
pq {a†p,σa

†
q,σ′as,σ′ar,σ}

+ ET +
∑
σ

∑
p

ω̃p{a†p,σap,σ}

+
1

2

∑
σσ′

∑
pqrs

w̃rspq{a†p,σa
†
q,σ′as,σ′ar,σ},

(9.5)

where ET refers to the triply-contracted 3-body operator contribution, ω̃p is
the doubly-contracted 3-body integral and ω̃rspq is the singly-contracted 3-body
integral. The curly brackets indicate that the operators are normal-ordered with
respect to the HF vacuum (Fermi sphere). We emphasize that in Eq. (9.5) the
“HF” energy ẼHF and “orbital energy” ε̃p are calculated now with the modified
2-body integrals Ṽ rs

pq = wrspq + V rs
pq .

9.4 Transcorrelated Coupled Cluster Framework

For clarity, we outline the procedures of our TC-CCD/DCD framework.

1. Evaluating ωrspq and V rs
pq and combining them into Ṽ rs

pq ← wrspq + V rs
pq ;

2. Calculating ε̃p =
k2
p

2
+
∑

i(2Ṽ
pi
pi − Ṽ

pi
ip );

3. Calculating ẼHF = 2
∑N/2

i ε̃i −
∑

ij(2Ṽ
ij
ij − Ṽ

ij
ji ) and ET;

4. Evaluating ω̃p, and defining εp ← ε̃p + ω̃p;

5. Evaluating the singly-contracted 3-body integral w̃rspq and redefining V rs
pq ←

Ṽ rs
pq + w̃rspq;

6. Solving the usual CCD/DCD amplitude equations using εp and V rs
pq for T2

and obtaining Ec;

7. The total energy is E = ẼHF + ET + Ec.

We point out that the above outlined framework is general for any ab initio
systems. In the case of 3D UEG, the detailed expressions for the singly-, doubly-
and triply-contractions of the 3-body operator can be found in Sec. 12.5 when
we study the model system in more details.
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Part IV

Applications
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In this part of the thesis, we focus on applications of the theories as discussed
in the previous parts of the thesis on solid hydrogen at high pressures and the
three dimensional uniform electron gas. The motivations for the studies on
these two systems are summarised here.

Firstly, determining the phase diagram of solid hydrogen phases at extremely
high pressures is a very challenging task experimentally, due to the light mass
of the hydrogen atom and the extreme conditions required to obtain just a very
small sample. On the other hand, the popular density functional theories fail
to obtain accurate predictions of the phase diagrams, because of the high ac-
curacy required to resolve the tiny energy differences between different solid
hydrogen phases. Quantum chemical methods, most of which are systemat-
ically improvable, provide a reliable way to approach this hard problem. Of
course, accurate quantum Monte Carlo method has been applied to study these
systems before and improve to a large extend the agreement with experiments.
However, the statistical noise makes it hard to tell precisely where the phase
transitions happen. And it would be reassuring that the results obtained by
quantum Monte Carlo can be confirmed by quantum chemical methods. Along
with the techniques that improve the efficiency of coupled cluster in simulat-
ing solids, such as finite size corrections, we are at a good position to put our
methods into test against the state-of-the-art diffusion Monte Carlo, by demon-
strating that our methods are competitive in terms of efficiency and accuracy
in studying these challenging systems. What’s more, all previous studies rely
on structures obtained by approximate density functional theories, which con-
tain uncontrollable errors. This motives us to develop the nuclear forces based
on perturbation theory, in order to optimize the structures used as models for
different solid hydrogen phases.

Although we obtain good agreement between CCSD and DMC on most
of the solid hydrogen phases, there is still one disagreement between the two
theories on a metallic phase. Further theoretical developments are needed in
order to resolve it. The possible sources of error from the coupled cluster side
can be the not fully converged finite size errors or the insufficient accuracy
in treating metallic systems with CCSD. To eliminate the possible residual
finite size errors, one needs to simulate larger cells containing more electrons.
To this end, methodologies that improve the efficiency of CCSD are desired.
On the other hand, systematic and comparative studies on metallic systems
using different methods are still missing in literature, possibly because of some
theoretical difficulties. For example, in CCSD, one might not be able to get
convergent energies due to the degeneracies in the single-particle energies; and
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in fixed-node diffusion Monte Carlo, generally speaking, the fixed-node error is
larger in metallic systems than in other systems and an efficient and systematic
way to reduce this error is still missing. The combination of transcorrelation
and coupled cluster theory is an attempt to address both the efficiency and
accuracy problems as discussed in the canonical coupled cluster theory. We
apply this combination scheme on 3D UEG with a wide range of densities,
covering both weakly and strongly correlated regimes, to show the proof that
it has the potential to be extended to the studies on real periodic solids with
highly improved efficiency and accuracy.
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Chapter 10

Studies of High Pressure Solid
Hydrogen Phases at 0 K

The work in this chapter contains partly the work published in the paper titled
“A Comparative Study Using State-of-the-art Electronic Structure Theories on
Solid Hydrogen Phases under High Pressures”, by Ke Liao, Xin-Zheng Li, Ali
Alavi and Andreas Grüneis on npj Computational Materials, 5, 110 (2019). Ke
Liao performed the calculations to produce the main results; Andreas Grüneis
designed and led the research; Andreas Grüneis and Ke Liao wrote the paper;
Xin-Zheng Li provided the crystal structures and Ali Alavi advised and provided
the tools to perform the FCIQMC calculations.

10.1 Introduction

Hydrogen is the lightest and most abundant element in the Universe, yet its
phase diagram at high pressures and low temperatures remains elusive. Due to
the subtle interplay of quantum nuclear and electronic correlation effects [121,
122, 123, 124, 125, 126], the question as to which state of matter is stable
at high pressures is controversial. Likely candidates for high pressure phases
include various orientationally ordered molecular crystals [127, 128, 129, 130,
131, 132, 133], (liquid) metallic [134, 135, 136, 137, 138, 139, 140, 141, 142],
superconducting [143] and superfluid systems [144]. These potentially exotic
states of matter and their crucial importance for astrophysical, planetary as
well as materials sciences has led to intensified investigations using both exper-
imental and theoretical techniques. However, currently available calculated as
well as measured equilibrium phase boundaries vary strongly with respect to
the employed methods and suffer partly from uncontrolled sources of error.

Experiments that seek to determine properties of hydrogen under high pres-
sures are hindered by various problems; for example, the low X-ray scattering
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cross section of hydrogen, the small sample sizes and the diffusive nature of hy-
drogen. Recent claims of experimentally measured metallic phases [142, 145] are
therefore under debate [146], while earlier experimental results [135, 147, 148]
have not been able to conclusively detect metallic behaviour up to a pressure
of 320-342 GPa.

Determining the Wigner-Huntington transition [134] using theoretical meth-
ods is extremely challenging. Despite the significant advancements of modern
ab initio theories in the past decades, the predicted metallisation pressure varies
significantly in a range of around 150 to 450 GPa depending on the employed
method [149, 150, 137, 151, 124, 152]. Most ab initio studies of solid hydrogen
are based either on DFT [149, 153, 137, 132] or quantum Monte Carlo calcu-
lations [154, 123, 155, 151, 122, 124, 152]. DFT is considered the workhorse
method in computational materials science and can be used to calculate lattice
enthalpies on the level of various approximate exchange and correlation (XC)
energy functionals. Furthermore the Hellmann-Feynman theorem provides ac-
cess to atomic forces and allows for optimizing structures as well as calculating
phonons on the level of DFT [132]. Calculated and measured infrared and Ra-
man spectra serve as a reliable tool for a direct comparison between theory and
experiment [127, 128, 156, 129, 157, 133, 158, 159]. However, different parame-
terisations of the XC functional in DFT give inconsistent predictions, e.g. PBE
predicts a too low metallisation pressure compared to experiments, while other
exchange functionals produce higher pressures than DMC [155, 124, 160].

Instead, more accurate methods including DMC have been employed to pre-
dict more reliable pressure temperature phase diagrams [123, 151, 122, 124, 152],
which correct the underestimation of the metallisation pressure by DFT-PBE to
a large extent. However, DMC calculations rely on the fixed-node approxima-
tion and most of the current studies use crystal structures optimised using DFT.
A critical assessment of the errors introduced by these approximations is still
missing in literature and requires computationally efficient and concomitantly
accurate methods.

In this chapter we show that quantum chemical wavefunction theories hold
the promise to serve as an efficient and accurate tool for the investigation of
high pressure phases of solid hydrogen. In particular, we find that coupled clus-
ter theory [32, 33] achieves a good trade-off between computational cost and
accuracy when employing recently developed techniques that allow for simulat-
ing the thermodynamic limit of periodic systems in an efficient manner [69, 70].
We note that these finite size corrections have paved the way for a number of
ab initio studies including predictions of molecule–surface interactions [107, 70,
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161, 162] and pressure-temperature phase diagrams of carbon and boron nitride
allotropes [163]. The studies referred to above have demonstrated that coupled
cluster methods achieve a similar level of accuracy as DMC for solid state sys-
tems that are not strongly correlated. Moreover coupled cluster methods have
been benchmarked against various more accurate methods in model hydrogen
systems [164], showing the high accuracy of the methods in weakly correlated
situations. Furthermore we employ FCIQMC [58, 59, 91] in the present work
for small systems to examine the validity of the coupled cluster method.

10.2 Results
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Figure 10.1: (Color online) DFT-PBE relative enthalpies. The
DFT-PBE relative enthalpies of structures that are used for
CCSD calculations in this work (dashed lines) and that of the
structures from Ref. [122] (full lines). DFT favours the atomic

phase Cmca-4 at high pressures.

We investigate theoretical results for the static lattice enthalpies of solid hy-
drogen phases computed on different levels of theory. The static lattice enthalpy
is defined by

H = E + PV, (10.1)

where P is the pressure estimated from the E − V relation and V corresponds
to the volume per atom. E refers to the total ground state energy per atom
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Figure 10.2: (Color online) HF relative enthalpies. The HF
relative enthalpies of structures that are used in this work. In
contrast to the DFT result, the atomic phase Cmca-4 is un-

favoured at high pressures.

obtained using DFT, HF or CC theory in the Born-Oppenheimer approxima-
tion. In passing we note that the importance of quantum nuclear effects for
transition pressures of solid hydrogen phases has been explored in Refs. [121,
122, 123, 124, 125, 125]. In the present work we will focus on the accuracy
of the employed electronic structure theories only, disregarding such contribu-
tions. The CCSD energy is defined as the sum of the HF and the corresponding
electronic correlation energy [33]. The pressure-volume relation of each phase,
P (V ) = −dE

dV
, is obtained in the following manner. The total energy retrieved as

a function of the volume per atom, E(V ), is fitted with a polynomial function of
V −1 in an optimal order that minimises the fitting residual and provides smooth
curves. We find that a third-order polynomial fitting is adequate for all phases
except for phase P21/c-24 which is fitted using a fourth-order polynomial. A
further increase in the fitting order can result in artificial wiggling behaviours
of the H(P ) curves. The derivative with respect to the volume is readily ob-
tained in an analytic manner using the fitted E(V ) function, yielding smooth
P (V ) curves. We present all static lattice enthalpies relative to the C2/c-24
phase unless stated otherwise. In total, we study five solid hydrogen phases:
Cmca-4 (Cmca-Low), Cmca-12, C2/c-24, P21/c-24 and P63/m-16, where we
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Figure 10.3: (Color online) CCSD relative enthalpies. The
CCSD relative enthalpies of structures that are used in this work
(dashed lines) and the DMC relative enthalpies of structures from
Ref. [122] (full lines). The thickness of the full lines refer to the
standard deviations of stochastic sampling of the 1st Brillouin
zone while performing twist-averaging in the DMC calculations.
In this work the 1st Brillouin zone is sampled using a dense regu-
lar grid such that the errors are converged to within 1 meV/atom.
CCSD and DMC [122] agree very well in the most stable molec-
ular phases, i.e. C2/c-24, P21/c-24 and Cmca-12, while the only
discrepancy exists in the Cmca-4 phase, which is predicted by
DFT-PBE to be metallic at high pressures. The phase transi-
tion between P63/m and C2/c-24 predicted by CCSD happens
at approximately 350 GPa, which agrees reasonably well with
the DMC transition pressure range 250-350 GPa from Ref. [123].

have adopted the convention of naming the structures by their symmetries fol-
lowed by the number of atoms in the primitive cells. Phase Cmca-4, Cmca-12
and C2/c-24 consist of layered hydrogen molecules whose bonds lie within the
plane of the layer, forming distorted hexagonal shapes. Whereas some bonds
of hydrogen molecules in phase P63/m-16 lie perpendicularly to the plane of
the layer. P21/c-24 consists of molecules arranged on a distorted hexagonal
close-packed lattice.

These structures have previously been selected as potential candidates as the
most stable high pressure phases of hydrogen [132] and have been studied by
DMC methods. We notice that a family of ‘mixed’ structures are also identified
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as promising candidates in Ref. [132], however, for the current comparative
studies among CCSD, DFT-PBE and DMC, they are not included here but
could be an interesting topic for future work.

We have optimized the geometries of the structures employing the DFT-
PBE functional [165]. The DFT calculations have been performed using the
Vienna ab initio simulation package (VASP) employing a plane wave basis set
in the framework of the projector augmented wave method [82]. More details
about the structures can be found in Ref. [132, 122].

We first discuss results of the investigated high pressure phases on the level
of DFT. Figure 1 depicts the DFT-PBE static lattice enthalpies relative to the
C2/c-24 phase. DFT-PBE predicts the C2/c-24 phase as the most stable phase
at pressures ranging from about 100 GPa to 290 GPa. In a small range of
pressures around 300 GPa the Cmca-12 phase is found to be thermodynam-
ically stable, whereas the metallic Cmca-4 phase becomes stable at pressures
exceeding approximately 330 GPa. Experimentally no metallic phases have been
observed in this pressure range and quantum nuclear effects do not account for
this discrepancy either [124]. The too low metallisation pressure can be at-
tributed to the lacking of van der Waals interactions in PBE functional [160],
resulting in underestimation of the stability in the molecular structures. We
note that Figure 1 also depicts static lattice enthalpies from Ref. [122] obtained
using DFT-PBE. We attribute the minor differences between the static lattice
enthalpies to small differences in the employed structures and the fitting proce-
dure that is employed to compute the lattice enthalpies from the total energies
retrieved as a function of the volume per atom. We stress that the computed
enthalpies are very sensitive to the employed structures.

In contrast to approximate XC functionals employed in DFT calculations,
quantum chemical many-electron methods allow for approximating the elec-
tronic XC energy in a more systematic manner, albeit at significantly larger
computational cost. The simplest wavefunction based method is the HF ap-
proximation that neglects electronic correlation effects by definition, employing
a single Slater determinant as Ansatz for the electronic wavefunction. Figure
2 depicts the static lattice enthalpies computed in the HF approximation rel-
ative to C2/c-24. In contrast to DFT-PBE results, we find that HF theory
significantly reduces the stability of the Cmca-4 and Cmca-12 phases, shifting
their transition pressures far above 400 GPa. However, the HF method is not
a good approximation for metallic systems despite the fact that it is free from
self-interaction errors. In particular, HF band gaps are usually significantly
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overestimated compared to experiment. Moreover, the lack of electronic cor-
relation in the HF Ansatz leads to the neglect of van der Waals contributions
that are crucial for a correct description of relative stabilities of molecular crys-
tals [166]. We note that van der Waals contributions to the binding energy
of molecular crystals become in general larger for smaller volumes due to the
polynomial decay of the dispersion interaction with respect to the intermolec-
ular distance. Due to the reasons outlined above, the static lattice enthalpies
calculated on the level of HF theory are expected to exhibit significant errors
compared to more accurate electronic structure theories and will serve as a
reference for post-HF methods only.

Here, we employ the CCSD method to account for electronic correlation
effects using a HF reference. Periodic CCSD theory results for the static lattice
enthalpies relative to the C2/c-24 phase are shown in Figure 3. Compared to
HF theory, CCSD stabilises the Cmca-4 phase by approximately 40 meV/atom
at pressures above 300 GPa. Similarly, the relative static lattice enthalpy of
Cmca-12 is lowered by about 20 meV/atom in CCSD compared to HF. For
the P21/c-24 and P63/m-16 phases we observe an opposite effect of the CCSD
correlation energy contribution, reducing their stability relative to C2/c-24 by
approximately 30 meV/atom at pressures exceeding 250 GPa. We note that
CCSD theory reduces the differences in the relative static lattice enthalpies of
the considered phases compared to the HF approximation.

The CCSD energy is the sum of the HF energy and an approximation to the
electronic correlation energy that is computed using an exponential Ansatz for
the wavefunction. Due to the many-electron nature of the employed Ansatz,
CCSD theory is exact for two-electron systems. The coupling between electron
pairs is, however, approximated by truncating the many-body perturbation ex-
pansion in a computationally efficient manner and performing a resummation
to infinite order of certain contributions only [33]. As a consequence, CCSD
theory is expected to yield highly accurate results for the molecular hydrogen
crystals. This is confirmed by comparing to the corresponding DMC results
from Ref. [122] for C2/c-24 and P21/c-24 depicted in Figure 3 that agree very
well with our CCSD findings. Furthermore static lattice enthalpies obtained
on the level of CCSD and DMC (only shown in Ref. [122]) for Cmca-12 rel-
ative to C2/c-24 are in good agreement as well and the transition pressure
between P63/m-16 and C2/c-24 by CCSD (≈ 350 GPa) and DMC (≈ 250−350

GPa only shown in Ref. [123]) are in reasonable agreement. However, we note
that the DMC and CCSD results differ by about 40 meV/atom for the relative
static lattice enthalpy of the Cmca-4 phase. In particular, the difference of the



86 Chapter 10. Studies of High Pressure Solid Hydrogen Phases at 0 K

static lattice enthalpies of Cmca-4 and C2/c-24 at 350 GPa are approximately
100 meV/atom, 60 meV/atom and 20 meV/atom using HF, CCSD and DMC,
respectively.

10.3 Discussions

We now discuss possible reasons for the discrepancy between DMC and CCSD
results for the Cmca-4 phase. DMC calculations employ the fixed-node approx-
imation, whereas CCSD theory truncates the particle-hole excitation operator
in the exponent of the wavefunction Ansatz. Fixed-node DMC gives the upper
bounds [47] to the total energies of each phase. However it is not necessarily
the case that the lower enthalpy difference between Cmca-4 and C2/c-24 pre-
dicted by DMC is more reliable than that by CCSD, since the fixed-node errors
in each phase do not necessarily cancel out accurately. The fixed-node errors
in the total DMC energy can be estimated using backflow transformations and
by comparing to FCIQMC [58, 91] results for the uniform electron gas [167,
168]. It has been shown that the fixed-node errors are approximately 1 mHa
per electron (27.2 meV/electron) in the high density regime. In the case of
solid hydrogen, the authors of Ref. [155] report in their Supplemental Material
that the energy in phase C2/c-24 is lowered by 1 mHa/atom (27.2 meV/atom)
when employing backflow transformations and Ref. [123] reports that for Cmca-
4 the backflow transformations lower the energy by only 10 meV/atom. This
indicates that backflow transformations can depend significantly on the phases.
Even though a large part of the fixed-node errors are expected to cancel when
the energy difference between phases is computed, the remaining errors can
still be on the scale of 10 meV/atom. On the other hand, we stress that the
change from HF to CCSD relative static lattice enthalpies is on the scale of
40 meV/atom, indicating that a better approximation to the many-electron
wavefunction than employed by CCSD theory could be necessary to achieve the
required level of accuracy. We have also performed calculations using higher
level theories, including FCIQMC, for smaller supercells containing 24 atoms at
volumes corresponding to a DFT pressure of 400 GPa. These findings indicate
that post-CCSD corrections to static lattice enthalpy differences for Cmca-4
and P21/c-24 are expected to be roughly 10 meV/atom. In short, both DMC
and CCSD rely on good cancellations in errors introduced by their respective
approximations to produce accurate predictions, especially when phases of dif-
ferent physical natures are compared. In addition to the inherent errors of
DMC and CCSD theory, finite size and basis set errors can also be significant.
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The latter only applies to CCSD calculations and has been checked carefully
as outlined in the supplementary information. As regards the finite size error,
we study supercells containing 96 atoms and employ twist averaging as well as
structure factor interpolation methods for our CCSD calculations to achieve a
level of precision that is comparable to DMC results. Despite the above con-
siderations, we can currently not draw any firm conclusion about the reason
for the discrepancy between DMC and CCSD results for Cmca-4. However, we
note that recently developed basis set convergence acceleration techniques will
enable future studies of bigger systems using CCSD [169] and FCIQMC [116]
theory that can hopefully provide more insight.

Despite the discrepancy between CCSD and DMC findings for Cmca-4, we
point out that the good agreement for the static lattice enthalpies of the most
stable high-pressure hydrogen phases is encouraging. Achieving accurate ther-
modynamic limit results for such systems on the level of CCSD theory has only
become possible recently due to the development of corresponding finite size
corrections as outlined in Ref. [69, 70]. Furthermore we note that the computa-
tional cost of the corresponding CCSD calculations is still moderate compared
to methods with a similar accuracy. A single CCSD ground state energy calcu-
lation for a system containing 96 atoms using 400 bands requires approximately
250 CPU hours, implying that it will become possible in the near future to
perform structural relaxation of the employed crystal structures rather than
relying on structures optimized using DFT-PBE. This is necessary for truly
reliable predictions of high pressure phases of solid hydrogen.

We have presented static lattice enthalpies for high pressure phases of solid
hydrogen calculated using state-of-the-art electronic structure methods includ-
ing coupled cluster theory. We find that CCSD theory results agree well with
DMC findings from Ref. [122]: phase C2/c-24 becomes more stable than phase
P21/c-24 at around 250 GPa; phase Cmca-4 and Cmca-12 are less stable than
phase C2/c-24 in the pressure range from 100 GPa to 400 GPa. The only dis-
crepancy between CCSD and DMC is found for the Cmca-4 phase and we have
discussed possible sources of error. Future work will include the effects of the
nuclei motions which are crucial in making theoretical predictions comparable
with experiments. Based on the presented findings, the required computational
cost of the employed CCSD implementation and recent methodological advance-
ments [169], we conclude that prospective CCSD studies will make it possible
to optimise structures of solid hydrogen phases at high pressures with DMC
accuracy. This will enable complementary CCSD and DMC studies with a sig-
nificantly improved level of accuracy and achieve unprecedented physical insight
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into the Wigner-Huntington transition of solid hydrogen.

10.4 Computational Details

The CCSD calculations have been performed employing the coupled cluster
for solids (CC4S) code interfaced to the Vienna ab initio simulation package
(VASP). The projector augmented wave method, as implemented in VASP [170,
171, 82], is used for all calculations. This section provides the details of the
computational methods and convergence techniques employed in this work.

10.4.1 Geometries

The structures have been optimised using DFT-PBE and are similar to those
employed in Ref. [132]. The forces on the atoms of the optimized structures
are not larger than 0.1 eV/Å. With hindsight it would have been preferable to
use exactly the same structures as published in Ref. [122]. However, for the
purpose of the present work the agreement between the structures suffices. For
the CCSD calculations we employ supercells containing up to 96 atoms that are
as isotropic as possible and are obtained using the same method as described
in the supplementary note 2 of Ref. [122]. In this manner finite size errors can
be significantly reduced.

10.4.2 CCSD Basis Set Convergence

For the equilibrium phase boundaries in the pressure-temperature phase dia-
gram only relative enthalpies are relevant. Therefore we have converged the
energy differences with respect to the basis set only. MP2 natural orbitals
(MP2NOs) [30] provide faster convergence than canonical Hartree-Fock orbitals
(HFOs) computed from the full plane wave basis set. The convergence tests of
the CCSD correlation energy differences with respect to the number of orbitals
per atom relative to phase C2/c-24 have been carried out using supercells con-
taining 24 atoms for all phases, except for phase P63/m-16 which contains 16
atoms in the supercells. We note that the basis set incompleteness errors are
mainly due to the electronic cusp conditions, which are very local effects and
are not dependent on the supercell size [172]. We first outline the procedure to
obtain the basis set converged CCSD correlation energies. Prior to the correla-
tion energy calculations, we compute the occupied HF orbitals using a Γ-point
sampling of the first Brillouin zone (BZ) for each phase at different volumes.
We use a plane wave basis set corresponding to a kinetic energy cutoff of 700 eV.
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In addition, all occupied orbitals are constrained to be doubly occupied, avoid-
ing fractional occupation numbers. This is achieved by utilising the FERWE and
ISMEAR flags in VASP. We note that this could prevent the HF orbitals (HFOs)
from converging to the energetically lowest possible solution. However, the
CCSD method can largely compensate for this constraint.

(a) Cmca-4 (b) Cmca-12

(c) P21/c-24 (d) P63/m-16

Figure 10.4: (Color online) CCSD correlation energy differ-
ence convergence with respect to the number of bands per atom.
Fig. 10.4a shows that the correlation energy difference between
phase Cmca-4 and C2/c-24 converges to within 1 meV/atom with
8 bands per atom (1 occupied HFOs + 7 MP2NOs) at all pres-
sures and the same accuracy is achieved with 8 bands per atom
in Fig. 10.4b and Fig. 10.4d for phase Cmca-12 and P63/m-16,
respectively. Fig. 10.4c shows that the correlation energy differ-
ence between phase P21/c-24 and C2/c-24 converges to within
1 meV/atom with 16 bands per atom (1 occupied HFOs + 15
MP2NOs) at all pressures. 24-atom cells are used for phase
Cmca-4, Cmca-12 and P21/c-24, while 16-atom cell is used for

phase P63/m-16.

Following the HF ground state calculation, a full diagonalisation of the Fock
operator is carried out in the space of all employed basis functions, whose dimen-
sion is equal to the number of plane waves. We further construct MP2NOs by
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Table 10.1: Summary of the number of bands per atom re-
quired to reach 1 meV/atom accuracy in the relative CCSD cor-
relation energy for each phase at all pressures and the number of
atoms in the simulation cells employed for this convergence test.

Phases C2/c-24 Cmca-4 Cmca-12 P21/c-24 P63/m-16
number of atoms in cell 24 24 24 24 16

number of bands per atom / 8 8 16 8

diagonalising the virtual-virtual block of the one-body reduced density matrix in
the HFO basis. As shown in Ref. [30], only a small fraction of the total MP2NOs
can be used for the CCSD calculation without compromising the accuracy. We
note that the Fock operator is not diagonal in the truncated MP2NO basis, thus
it is necessary to recanonicalise in the subspace of the employed MP2NOs. The
occupied HFO space is not affected by this procedure. In Fig. 10.4 we show the
convergence of the correlation energies relative to phase C2/c-24 with respect
to the number of natural orbitals per atom for Cmca-4, Cmca-12, P21/c-24
and P63/m-16. These calculations are carried out using the Γ-point sampling
of the first BZ and the employed supercell sizes are summarised in Table 10.1.
Compared to 24 bands/atom, we find that 8 bands/atom suffice to achieve a
basis set convergence for the relative correlation energy to within 1 meV/atom,
except for P21/c-24, where the remaining error is approximately 4 meV/atom.
Based on these findings, we conclude that for the 96-atom supercell, 800 bands
(48 occupied HFOs + 752 MP2NOs) should yield a converged correlation en-
ergy difference to within a precision of approximately 1 meV/atom for all phases
except for phase P21/c-24. We stress that the CCSD correlation energy differ-
ences converge much faster than the CCSD correlation energies of each phase
alone due to error cancellations. The plane wave basis set cutoff for the overlap
integrals is set to 600 eV in this step.

We stress that HF energies and the correlation energies computed on the
level of CCSD are converged to the complete basis set limit and the thermody-
namic limit (TDL) separately using different schemes. We note that the total
computational cost in obtaining the CCSD static enthalpy diagram is around
200 thousand CPU hours.

10.4.3 HF Finite Size Convergence

The HF energies are converged to within 1 meV/atom using increasingly large
supercells or dense k-meshes sampling the first Brillouin zone.
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Table 10.2: Effective system size used to converge the HF en-
ergy of each phase to within 1 meV/atom at all pressures. The
effective system size is defined as the product of the number of
sampled k-points in the first BZ and the number of atoms in the

supercell.

Cmca-4 Cmca-12 C2/c-24 P21/c-24 P63/m-16
Effective system size 4096 8232 5184 5184 8192

To obtain the converged Hartree–Fock energies per atom EHF with respect
to basis set, we use a kinetic energy cutoff for the plane wave basis of 700 eV.
To be consistent with the HF step in the correlation energy calculations, we fix
the occupancies in the manner described above. Moreover, sufficiently dense
k-meshes are used to eliminate finite size errors. We use the effective system
size, which is the product of the total number of k-points and the number of
atoms in the supercell, as a measure of the system size. Table 10.2 summarises
the employed system sizes used to reach an accuracy of 1 meV/atom for EHF.

10.4.4 CCSD Finite Size Convergence

The twist-averaging technique [64] and finite size corrections [69, 70], based
on the interpolation of the transition structure factor, are applied on 96-atom
supercells to approximate the thermodynamic limit of the CCSD correlation
energies.

For the CCSD calculations, only one k-point is used to sample the first
BZ of the 96-atom supercells. However, the twist-average (TA) technique [64]
and finite size correction scheme [69, 70] are used to reach the thermodynamic
limit and minimize finite size errors. The TA procedure corrects mostly for the
one-body contribution to the correlation energy and the latter retrieves mainly
the missing two-body contribution to the correlation energy at large distances
that exceed the size of the employed supercell. We denote the total two-body
finite size error corrected (FS) CCSD correlation energy as EFS. The total
twist-averaged correlation energy (TA) can be expressed as

ETA+FS =
1

W

Nt∑
i

EFS
i wi, (10.2)

where Nt ≈ 13 is the total number of twists that are generated using the
irreducible wedge of a 3×3×3 k-mesh. wi is the number of equivalent k-points to
the ith irreducible k-point and W =

∑Nt
j wj = 27 is the total weight. Applying

a twist means that the first BZ is sampled with a shifted k-vector ∆ki. We have
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checked the convergence with respect to the size of k-mesh used to generate the
twists for Cmca-4 at 400 GPa. A 4×4×4 k-mesh (W = 64) yields twist-averaged
correlation energies that agree to within 1 meV/atom with the energies obtained
using a 3×3×3 k-mesh. We stress that TA accelerates convergence to the TDL
mainly in small gapped systems. Therefore a single test on the Cmca-4 phase
at high pressure ensures the convergence of the TA procedure with respect to
the employed k-mesh in all other phases and pressures. We note in passing that
24 stochastic twists are used to sample the first BZ in Ref. [122] for carrying
out TA. We stress that in CCSD theory, the total energy is partitioned into the
mean field (HF) part and correlation energy part. Therefore relative fewer twists
are needed for CCSD correlation energy calculations to reach convergence.

An acceleration scheme to reach the basis set convergence using MP2NOs
is employed in conjunction with the twist-averaging technique: 400 bands (48
occupied HFOs + 352 MP2NOs) are used for each twist, and the basis set
incomplete error is estimated as the energy difference between two calculations
with 800 and 400 bands at the Γ-point,

∆Ebse = EFS,800
0 − EFS,400

0 . (10.3)

The justification is that the contribution of the high energy bands is independent
of the positions of the sampled k-points. This procedure saves a large amount
of computational resources.

The total CCSD energy per atom is expressed as

E =
1

N
(Ec

TA+FS + ∆Ebse) + EHF, (10.4)

where N = 96 is the total number of atoms in the supercell used in the CCSD
calculations.

10.4.5 Post-CCSD Error Estimates

We applied some higher level theories, including DCSD [35, 104], CCSD(T) [41,
33] and FCIQMC, to estimate the post-CCSD error.

CCSD yields accurate results for systems composed of weakly interacting
electron pairs. For the present study it is important to determine if the consid-
ered solid hydrogen phases belong to this class of systems and what accuracy
can be expected from CCSD. We now estimate the error of the CCSD correla-
tion energies by using more accurate post-CCSD wavefunction based theories;
e.g. DCSD [35, 104], CCSD(T) [41, 33] and FCIQMC. DCSD has been shown
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in Refs. [35, 104] to achieve qualitatively good ground state energies even in the
dissociation limit of hydrogen systems by ignoring exchange interactions be-
tween electron pairs. In the dissociation limit, CCSD is not expected to provide
even qualitatively correct results. Thus DCSD is a valuable tool to determine
whether CCSD works reliably at high pressures, where the inter-atomic dis-
tances become comparable to the inter-molecular distances, especially in the
potential metallic phase Cmca-4 where CCSD and DMC show a discrepancy.
We note in passing that due to the perturbative nature of CCSD(T), reliable
results in the thermodynamic limit for metallic periodic systems can not be
obtained [43]. However, CCSD(T) results in a finite supercell are meaning-
ful. FCIQMC [58, 91] and its initiator approximation [59] can obtain the exact
ground state solution to the non-relativistic Schrödinger equation in a give basis
set.

DCSD, CCSD(T) and FCIQMC Using Γ-point
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Figure 10.5: (Color online) Difference of relative correla-
tion energies (relative to phase C2/c-24) between DCSD and
CCSD with respect to the number of bands (occupied HFOs +
MP2NOs) per atom. 24-atom cells at 400 GPa DFT pressure

are used in all three phases.

We have performed calculations using DCSD, CCSD(T) and FCIQMC for
phase C2/c-24, Cmca-4 and P21/c-24 at 400 GPa DFT pressure. Due to the
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Figure 10.6: (Color online) i-FCIQMC correlation energy
EFCIQMC

c convergence with respect to the number of walkers on
the HF determinant N0. The statistical noise is smaller than the
size of markers. 24-atom cells at 400 GPa DFT pressure are used
and 60 bands (12 HFOs + 48 MP2NOs) are used for each phase.

unfavourable scaling of the computational complexity with system size, super-
cells that contain 24 atoms have been employed and the first BZs are sampled
at the Γ-point only. Furthermore the computational cost of FCIQMC limits
the number of MP2NOs. However, it is possible to obtain an error estimate
of CCSD already using a very small basis set. As already shown in Fig. 10.4,
CCSD correlation energies for various phases relative to C2/c-24, ∆Ec

CCSD, con-
verge rapidly with respect to the employed number of bands. Fig. 10.5 depicts
the difference between ∆Ec

CCSD and ∆Ec
DCSD, which corresponds to the differ-

ence of the difference, retrieved as a function of the number of bands per atom.
We stress that the convergence of ∆Ec

CCSD−∆Ec
DCSD with respect to the num-

ber of bands is even faster than that of ∆Ec
CCSD. Already 2 bands per atom

are sufficient to converge the difference between CCSD and DCSD to within
4 meV/atom. For the comparative studies between CCSD, DCSD, CCSD(T)
and initiator FCIQMC in the 24-atom supercells, we will therefore use only 60
bands.

The initiator FCIQMC correlation energies, Ec
FCIQMC, are converged to within
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Table 10.3: Correlation energies obtained by CCSD, DCSD,
CCSD(T) and i-FCIQMC on 24-atom cells for phase C2/c-24,
P21/c and Cmca-4 at DFT pressure 400 GPa using 60 bands (12
HFOs + 48 MP2NOs) in total. A small number of bands are used
because of the limited computational resources. All energies in

meV/atom.

Ec Ec Ec ∆Ec ∆Ec

C2/c-24 P21/c Cmca-4 (P21/c - C2/c-24) ( Cmca-4 - C2/c-24)
CCSD -707.658 -627.121 -665.296 80.537 42.362
DCSD -732.558 -640.325 -680.188 92.233 52.370
CCSD(T) -742.638 -650.317 -684.629 92.321 58.009
i-FCIQMC -750.42(1) -649.44(0) -693.01(3) 100.98(1) 57.40(8)

1 meV/atom with respect to the number of walkers on the HF determinant, N0,
using the recently developed auto-adaptive-shift method in the NECI code [173],
which requires much fewer walkers to remove the initiator errors and converges
to the exact ground state energy. The convergence of the correlation energies
retrieved as a function of the number of walkers on the HF determinant for
different phases are shown in Fig. 10.6.

Table 10.3 lists the correlation energies and their differences of phase C2/c-
24, Cmca-4 and P21/c-24 using CCSD, DCSD, CCSD(T) and FCIQMC, re-
spectively. We find differences in the correlation energies on the order of 10-20
meV/atom. We note that DCSD is closer to i-FCIQMC than CCSD and devi-
ates by less than 10 meV/atom for the relative correlation energies. However,
we stress that these error estimates are obtained sampling the Γ-point only. In
the TA technique, we also have to account for correlation energy contributions
from k-meshes centered at different k-points. In the following section we will
assess the difference between CCSD and DCSD in the thermodynamic limit.

DCSD vs. CCSD in the Thermodynamic Limit

To estimate the difference between ∆ECCSD
c and ∆EDCSD

c in the thermody-
namic limit, twist-averaging and finite size corrections for increasing supercell
sizes are used. The convergence of the relative correlation energy differences
between DCSD and CCSD retrieved as a function of the system size are shown
in Fig. 10.7. We find that DCSD and CCSD agrees very well in the thermo-
dynamic limit, which indicates that all considered phases at 400 GPa can be
described accurately by CCSD theory. In the light of this and based on the
deviation of DCSD from i-FCIQMC for the relative energies in the 24-atom
cells, we estimate the post-CCSD corrections to be roughly 10 meV/atom.
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Figure 10.7: (Color online) Relative correlation energy dif-
ference between DCSD and CCSD with respect to system size
employing Γ-point sampling of the first Brillouin zone (Γ-point),
twist-averaging (TA) and twist-averaging plus finite size correc-
tion (TA+FS), respectively, for phase P21/c and Cmca-4. Phase
C2/c-24 is used as the reference. 200, 400 and 400 bands are used
in total in 24-atom, 48-atom and 96-atom cells, respectively.



97

Chapter 11

Structural and Electronic
Properties of High Pressure Solid
Hydrogen

This chapter contains partly the work published in the paper titled “Structural
and Electronic Properties of Solid Molecular Hydrogen fromMany-electron The-
ories”, by Ke Liao, Tong Shen, Xin-Zheng Li, Ali Alavi and Andreas Grüneis
on Physical Review B, 103, 054111. Ke Liao implemented the MP2 forces algo-
rithm, optimised the structures and carried out the calculations that contribute
to the productions of the main results; Andreas Grüneis conceived and led this
project, produced the figure of the band structures using DFT-PBE and MP2
structures, and calculated the G0W0 band gaps; Tong Shen carried out the cal-
culations involving the electron-phonon interactions and the relevant figures;
Ali Alavi and Xin-Zheng Li provided some theoretical support; all authors con-
tributed to the writing of the paper.

11.1 Introduction

The seminal work of Wigner and Huntington – that first predicted a metalli-
sation of hydrogen [134] in 1935 at a pressure of about 25 GPa – has sparked
a continuous interest in the pressure-temperature phase diagram of hydrogen.
However, state-of-the-art experiments [135, 147, 148] have not been able to
conclusively detect metallic behaviour with the exception of some recent exper-
imental studies [142, 145, 174] that are still under debate [146, 175]. Until today,
one of the most reliable experimental estimates for the metallisation pressure
range is approximately 425 GPa-450 GPa [174]. The lower value was obtained
by the discontinuous pressure evolution in the infrared absorption, assuming a
structural phase transition to the atomic structure, whereas the higher value
was obtained by extrapolation of the band gap, assuming hydrogen remains in



98
Chapter 11. Structural and Electronic Properties of High Pressure Solid

Hydrogen

phase III. Determining the metallisation pressure accurately is extremely chal-
lenging. This is partly reflected by the disagreement of the measured H2 vibron
frequency peaks as a function of the pressure, which is crucial for pressure cal-
ibration in many experiments [175]. In addition to the electronic structure,
questions concerning the atomic structure are also difficult to address. Using
X-ray scattering to determine the crystal structure experimentally is hampered
by the low scattering cross section of hydrogen. Depending on pressure and
temperature, hydrogen has been predicted to condense in different orientation-
ally ordered molecular crystals [127, 128, 129, 130, 131, 132, 133] or (liquid)
metallic [134, 135, 136, 137, 138, 139, 140, 141, 142] phases.

Accurate theoretical predictions of the equilibrium phase boundaries and
other properties of high pressure hydrogen require an appropriate treatment
of quantum nuclear and many-electron correlation effects [121, 122, 123, 124,
125, 126], which can only be achieved using state-of-the-art ab initio methods.
Hitherto, most ab initio studies of solid hydrogen are based either on DFT [149,
153, 137, 132] or quantum Monte Carlo calculations [154, 123, 155, 151, 122,
160, 124]. DFT employing approximate exchange and correlation (XC) energy
functionals can be applied to compute infrared and Raman spectra as well as
equilibrium phase boundaries, facilitating a direct comparison between theory
and experiment [127, 129, 157, 128, 156, 133, 158, 159]. However, different pa-
rameterisations of the XC functional in DFT yield inconsistent predictions [160,
155, 124]. Diffusion Monte Carlo (DMC) produces more reliable pressure tem-
perature phase diagrams [123, 151, 122, 152, 124]. Furthermore DMC can also
be used to compute quasiparticle gaps including nuclear quantum effects [176].
Recently we have shown that CCSD theory predicts static lattice enthalpies
of solid hydrogen phases with high accuracy and computational efficiency [93].
CCSD results for the most stable model phases including phase II and III are
in good agreement with those obtained using diffusion Monte Carlo.

11.2 Results

11.2.1 Structural Optimisation Employing MP2 Forces

We fully relax the internal degrees of freedom of DFT-PBE structures by min-
imizing the atomic forces computed on the level of MP2 theory, while keeping
the lattice vectors fixed and maintaining the space group symmetry. For the
purpose of the following discussion we will focus on the shortest hydrogen bond
length in these structures, which represents the most striking difference between
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(a) (b)

Figure 11.1: Structures optimized by (A) DFT-PBE and (B)
MP2 forces at DFT-PBE pressure of 100 GPa. The main dif-
ference between the two structures lies in the bond length. For

DFT-PBE, it is ≈ 0.74 Å whereas for MP2, it is ≈ 0.71 Å.

MP2 and DFT-PBE results. As shown in Fig. 11.1, at a pressure of 100 GPa,
the shortest hydrogen molecule bond length in the DFT-PBE structures for
phase III is ≈ 0.74 Å whereas MP2 theory predicts it to be ≈ 0.71 Å. Similar
findings apply to the structures at other pressures. In passing we note that
the shortest hydrogen molecule bond length obtained using the vdW-DF func-
tional [177] is 0.72 Å, which is fortuitously close to our MP2 findings and agrees
with findings reported in Ref. [124]. However, it is important to assess the
reliability of these newly optimised structures further by comparing to CCSD
results. Fig. 11.2 illustrates that the total MP2 energy per atom of phase III at
a volume of 1.57 Å3/atom (corresponding to a DFT-PBE pressure of 250 GPa)
is lowered by about 5 meV/atom during the structural relaxation. The initial 11
steps of the relaxation were carried out using a 72-atom supercell only, whereas
all further optimisation steps have been performed using a 96-atom supercell,
indicating that finite size effects become negligible. The shortest bond length
is only changed by about 0.01 Å betweeen the 11th and the final step. After 14
steps the remaining forces on the atoms are smaller than 0.05 eV/Å. Fig. 11.2
also depicts that the CCSD energy is lowered in total by 11 meV/atom during
the full MP2 relaxation trajectory, which is similar to the change in MP2 the-
ory. The latter observation is important because it demonstrates that MP2 and
CCSD equilibrium structures are expected to deviate only slightly. This justi-
fies the main assumption of the present work which states that MP2 structures
for phase III are very accurate. To further substantiate this claim, we note that
MP2 theory predicts lattice constants for a wide range of solids with significantly
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Figure 11.2: The energy changes during the structural relax-
ation as a function of the optimisation steps. This example at
the DFT pressure of 250 GPa shows that the MP2 and CCSD
total energies per atom are lowered in a similar fashion and pro-
vides evidence that the optimised MP2 structures are close to the
CCSD structures. The MP2 and CCSD energies are corrected
by finite-size corrections [70] and are labelled by MP2-FS and

CCSD-FS, respectively,

higher accuracy than DFT-PBE when compared to experiment [178].

11.2.2 DFT-PBE Band Structures

As a first demonstration for the far-reaching consequences of the structural
changes, we discuss its impact on the quasiparticle band gap of model phase
III (C2/c-24). Fig. 11.3 depicts the electronic band structure for phase III at
a pressure of 250 GPa employing the atomic structures optimised using DFT-
PBE and MP2 theory. The Kohn-Sham band structures are computed using
the PBE functional, exhibiting an indirect band gap with the valence band
maximum at X and the conduction band minimum at L. The direct gap is
located at Γ. The direct and indirect PBE band gaps for the MP2 structure are
2.97 eV and 1.9 eV, respectively. However, due to the reduced hydrogen bond
length, the direct and indirect band gaps are about 1 eV larger in the MP2
structure compared to the DFT-PBE structure.
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Figure 11.3: Electronic band structure of model phase III
(C2/c-24) obtained using DFT-PBE. Black (green) lines corre-
spond to MP2 (DFT-PBE) equilibrium geometries at the pres-

sure of 250 GPa.

11.2.3 G0W0 Band Gaps of the Static Crystal

We note that this increase in the band gap persists for the more accurate
quasiparticle band gaps computed on the level of the G0W0 approximation,
see Fig. 11.4. We stress that due to the strong dependence of the electronic
gap on the pressure, an underestimation of the band gap by 1 eV results in a
decrease in the predicted metallisation pressure by more than 50 GPa. We note
that the previously employed vdW-DF structures in Refs. [124, 176] yield band
gaps that agree with our findings obtained using the MP2 structures to within
about 0.1 eV. The direct and indirected PBE band gaps computed using the
vdW-DF structures are 2.88 eV and 1.74 eV, respectively.

11.2.4 Renormalised G0W0 Band Gaps by Electron-phonon

Interactions

We now turn to the comparison between the computed G0W0 band gaps and
experimental findings. As shown in Ref. [176], the inclusion of zero point vi-
brational effects to the quasiparticle gaps is crucial. At 0 K, this is termed as
zero-point renormalisation (ZPR). At finite T s, T -dependent band gap renor-
malisation also exists, originating from the Fan and Debye-Waller terms as de-
scribed in the dynamical HAC theory. More details can be found in Ref. [179,
76]. Unfortunately a seamless inclusion of the electron-phonon coupling contri-
butions to the band gap on the level of MP2 theory would be computationally
too expensive at the moment. Therefore we estimate these renormalisations us-
ing DFT-PBE phonons and include them in the G0W0 quasiparticle band gaps.
Our calculations yield a ZPR of the direct and indirect gap of about -1 eV,
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Figure 11.4: Pressure dependence of the direct and indirect
G0W0 band gaps of the ideal C2/c-24 crystal optimised by MP2

forces.

which is by coincidence a similar magnitude as the band gap increase caused
by structural relaxation but significantly smaller in magnitude than the -2 eV
ZPR reported previously [176].

The computed G0W0 gaps with EPIs are depicted in Fig. 11.5 for a range
of pressures alongside experimental findings[148, 174, 133, 176]. We note that
the direct G0W0 gaps includes ≈-0.12 eV exciton binding energy in order to
enable a direct comparison to the optical measurements from Ref. [148, 174].
Furthermore we plot the G0W0 gaps with respect to the CCSD pressures com-
puted from the enthalpy versus volume curves, enabling an accurate and direct
comparison to experimental findings. Compared to experiments the direct and
indirect quasiparticle band gaps are overestimated when our EPI values are
used. Replacing our EPI contribution with the estimate by Gorelov et. al.
(≈-2 eV) yields underestimated band gaps compared to experiment. From the
relatively large difference between the EPI contributions computed in this work
and Ref. [176], we conclude that this contribution is the remaining leading order
error in our study. However, the experimental metallisation pressure of about
450 GPa lies within our theoretical uncertainties. In a recent work by Mona-
celli et. al. [180], quantum nuclear effects are included in a nonperturbative
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way, which shows a reduction of the band gaps by approximately 3 eV. Their
metallisation pressure agrees well with experiment. Their structures, however,
are optimised on the level of DFT using the BLYP exchange-correlation func-
tional. Another study on the band gap that achieves very good agreement with
experiment was carried out by Dogan et. al. [181] using DFT-PBE optimised
and static crystal structures. From the above analysis, we expect that this good
agreement is probably the result of fortuitous error cancellation due to the two
compensating effects: (i) the underestimation of the band gap by using the
DFT-PBE structures and (ii) not taking into account EPIs which reduce the
band gap.
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Figure 11.5: Pressure dependence of the direct and indirect
G0W0 band gaps including EPI contributions from this work
(dashed lines) and ≈ −2 eV EPI contributions from Ref. [176]
(full lines). The direct G0W0 band gaps include ≈-0.12 eV exci-
ton binding energy. The experimental estimates have been taken

from Ref. [148, 174, 133, 176].

11.2.5 T -dependent Direct and Indirect Band Gap Renor-

malisations

The difference of the T -dependent indirect band gap renormalisations in Ref. [176]
between 200 K and 300 K is about 0.2 eV, which is an order of magnitude larger
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Figure 11.6: T -dependent renormalisations due to EPIs on
the direct and indirect band gaps of model phase III (C2/c-24)
obtained using DFT-PBE at 200, 250 and 300GPa, calculated us-
ing dynamical HAC theory. 100 random q-points, 300 electronic

bands and a 4× 4× 4 k-mesh are used.

than our estimate of 0.02 eV, see Fig. 11.6. The difference in the experimen-
tal indirect band gaps between 100 K [148] and 300 K [133] is about 0.02 eV,
which agrees much better with our result. These discrepancies signal that fur-
ther careful examinations of the employed structures in different studies and
the treatment of different contributions are needed.

11.2.6 Pressure Dependence of H2 Vibron Frequencies

For a deeper understanding of the comparison with experiments, we also as-
sess the reliability of the experimental pressure calibration. This is done by
analyzing the dependence of the H2 vibron peak frequency as a function of the
pressure. As pointed out in Refs. [182, 175, 174] and depicted in Fig. 11.7,
the currently available experimental estimates for the H2 vibron peak frequency
vary significantly at high pressures, questioning the reliability of experimentally
determined pressures. Possible reasons for the experimental uncertainties are
summarised in Ref. [175]. However, theoretical estimates of the vibron peak
frequency with respect to pressure also vary significantly with respect to the
employed XC parametrisation on the level of DFT [124, 174]. We have esti-
mated the vibrational frequency for the MP2 structures by computing the MP2
and CCSD energies as a function of H2 bond lengths around the equilibrium.
Molecular orientations, locations of the centers of mass and volumes are fixed
while changing the bond lengths in accordance with Ref. [124]. The change of
the harmonic frequency with respect to the pressure can be used as a reliable
calibration for pressures depicted in Fig. 11.7. We find that both the MP2 and
CCSD frequencies have a similar slope as the H2 vibron frequency peak mea-
sured by Loubeyre et. al. in Ref. [174, 183]. From this we conclude that the
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Figure 11.7: Experimentally measured and theoretically cal-
culated H2 vibron peak frequencies as a function of pressures.
The approximate vdW-DF (taken from the Supplemental Ma-
terial of Ref. [124]), MP2 and CCSD harmonic frequencies are
shown by the pink, blue and green solid lines, respectively. The
brown solid line shows the experimentally measured relation
between the H2 vibron frequencies and pressures from Silvera
(2018) [182] and Zha (2012) [157]. Another two experimental
data lines are from Loubeyre (2020) [174] (red) and Loubeyre

(2017) [183] (purple).

experimental band gaps depicted Fig. 11.5 correspond to pressures that are in
good agreement with our most accurate estimates. In passing we note that de-
spite the good agreement of vdW-DF structures with our MP2 structures, vdW-
DF vibrational frequencies are in better agreement with experimental results of
Ref. [182, 157]. However, we argue that this agreement is most likely fortuitous,
because both MP2 and the more accurate CCSD vibrational frequencies exhibit
a very similar and steeper slope with respect to pressure. From the above find-
ings, we conclude that the vibrational frequencies of high pressure hydrogen
phases are very sensitive to the structural parameters and the corresponding
electronic structure method. This has potential implications for estimates of
the zero point motion energy contribution to the lattice enthalpies of accurate
ab initio calculations of transition pressures [122]. Having established the good
agreement between our pressure estimates and those reported in Ref. [174], we
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can also comment on the observed evidence of a phase transition at 425 GPa.
As predicted by both DMC and CCSD calculations [122, 124, 93] at low temper-
ature, phase III (C2/c-24) transforms into Cmca-12 at this pressure. However,
these calculations have been performed using DFT optimised structures. We
have investigated the lowering of static lattice enthalpies resulting from MP2
lattice relaxations for both structures at a selected volume corresponding to the
DFT pressure of 450 GPa, finding that changes to the previously calculated
transition pressures are negligible. This is surprising given the relatively large
changes to the H2 bond lengths.

11.3 Discussions

Our work demonstrates the strengths and weaknesses of widely-used approxi-
mate DFT methods for simulating high pressure phases of hydrogen by compar-
ing to more accurate results obtained using many-electron methods including
coupled cluster theory. Although approximate DFT is a computationally ef-
ficient tool for performing random structure searches [132], further structural
optimisation is required to achieve good agreement of band gaps and vibrational
frequencies with experimental findings in solid hydrogen. Here, we demonstrate
that periodic many-electron perturbation theory calculations using plane wave
basis sets have become increasingly efficient in previous years [70, 93], making
such optimisations feasible for systems with an increasing number of atoms.
Our findings show that compared to MP2 theory, DFT-PBE structures exhibit
too large hydrogen bond lengths causing too small band gaps. Although vdW-
DF calculations predict structures that are closer to MP2 theory, vibrational
frequencies that agree with experiment for a wide range of pressures can only
be obtained on the level of CCSD. Furthermore we have demonstrated that the
remaining leading order error of ab initio band gaps in solid hydrogen crystals
is likely to originate from approximations used to estimate the EPI contribu-
tions. Nevertheless, it is worth pointing out that T -dependent fundamental
band gap renormalisation based on DFT-PBE structure is in better agreement
with the experimental data. Combining accurate benchmark results with hy-
brid or non-local XC functionals using adjustable parameters could be useful
for materials modeling in this case. Alternatively, machine-learning from MP2
forces or even more accurate ab initio data could be used to produce accurate
potential energy surfaces and corresponding vibrational entropy contributions.
Future work will focus on a seamless integration of electron-phonon interaction
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on the level of many-electron theories to further improve the accuracy of such
ab initio simulations.

11.4 Computational Details

We optimise the atomic structure of model phase III using nuclear gradients
calculated on the level of MP2 theory and a plane wave basis set. We note
there are some earlier implementions of MP2 forces in periodic solids using
Gaussian basis set [77, 78, 79]. All periodic calculations have been performed
using the Vienna ab initio simulation package (VASP) [82] in the framework of
the projector augmented wave method [81, 80], interfaced to our coupled cluster
code [184] that employs an automated tensor contraction framework (CTF) [83].
We use Hartree–Fock orbitals in all post Hartree–Fock methods [30]. Although
MP2 theory can be considered a low-order approximation to CCSD theory,
it predicts lattice constants for a wide range of solids with higher accuracy
than DFT-PBE when compared to experiment [178]. Due to the many-electron
nature of the employed Ansatz, CCSD theory is exact for two-electron systems.
The coupling between electron pairs is, however, approximated by truncating
the many-body perturbation expansion in a computationally efficient manner
and performing a resummation to infinite order of certain contributions only.

Phase III is modelled by C2/c-24 crystals [132] initially predicted by ab
initio simulations and random structure searches [132, 122]. The structure is
labelled by its symmetry followed by the number of atoms in the primitive
cell. C2/c-24 consists of layered hydrogen molecules whose bonds lie within
the plane of the layer, forming a distorted hexagonal shape. We note that
previous DMC studies employed structures that have been optimised using a
range of approximate density functionals, indicating that an appropriate choice
is crucial [124]. In this work we employ supercells containing up to 96 atoms
for the relaxation of the atomic positions. The convergence with respect to
computational parameters such as number of virtual orbitals, k-meshes for the
Hartree–Fock energy contribution and energy cut offs for the employed plane
wave basis set have been checked carefully in the following subsections.

Beyond the static lattice model, the T -dependent band gap renormalisa-
tion of the single particle excitation energy due to electron-phonon interactions
(EPIs) was also studied, using a dynamical extension of the static EPIs the-
ory originally proposed by Heine, Allen, and Cardona (HAC) [185, 72]. The
quasiparticle approximation (QPA) was used to correct the DFT-PBE eigen-
values based on the EPIs self-energies. These calculations are performed using
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QUANTUM ESPRESSO (QE) [186] and YAMBO [187, 179, 188]. The excitonic effects
were obtained by solving the Bethe-Salpeter equation (BSE), as implemented
in VASP. The EPIs and the excitonic effects are calculated using DFT-PBE
optimised primitive cell structure. Those effects are detailed in the following
corresponding subsections.

11.4.1 HF and MP2 Forces’ Convergence with Respect to

Plane Wave Basis Energy Cutoff

The HF forces are calculated using the PAW pseudopotential with an energy
cutoff of 400 eV. A test using a 500 eV cutoff shows that the maximum error
in the HF forces is 0.029 eV/Å. The energy cutoffs used for the orbital plane
wave basis and the auxiliary plane wave basis (used for computing Coulomb
integrals) are both set to 600 eV in the MP2 part. A test carried out at 300 GPa
for phase C2/c-24 using 800 eV for the energy cutoffs shows that the MP2 forces
are converged to an accuracy of 0.01 eV/Å.

11.4.2 MP2 Forces’ Convergence with Respect to Number

of Bands

At 300 GPa, we have tested the convergence of the MP2 forces with respect to
the number of bands, using 8, 9, 10 and 11 bands per atom to show that the
maximum errors in the forces are well converged to 0.003 eV/Å, see figure (11.8).

11.4.3 Structural Convergence with Respect to Employed

Supercell Size

The structure optimisations are carried out in two stages. The first stage (about
10 optimisation steps) uses computationally less expensive settings, whereas
the second and final stage (remaining optimisation steps) employs increased
supercell sizes and k-mesh densities to achieve a high numerical precision of the
final relaxed geometries. In the first stage we compute the HF contribution to
the gradients employing 4x4x4 k-meshes and 24-atom primitive cells. The MP2
gradient contribtions are obtained by sampling only the Γ-point in the first
Brillouin zone of the 72-atom supercell. In the final stage, the HF gradients
are computed using a 6 × 6 × 6 k-mesh, whereas the MP2 contributions are
computed using 96-atom supercells with all other parameters unchanged. A
further increase in the size of the k-mesh or the supercell size is not expected
to change the final results.
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Figure 11.8: The maximum error in forces relative to using 11
bands per atom as a function of number of bands.

11.4.4 Effects of Relaxing the Cell Shape

Relaxing the cell shapes on the MP2 level would require the calculation of the
stress tensor, which at the current stage is not implemented. However, the
effects of relaxing the cell parameters can be estimated using the HF forces and
stress tensors. To this end, we first relax the internal degrees of freedom of the
PBE structures while keeping the cell parameters fixed; on the second stage,
we also allow the latter to change. By observing how the HF energy is further
lowered during the second stage, we can estimate the impact of the relaxed cell
shape.

The above procedure is carried out on the DFT-PBE C2/c-24 structure at
300 GPa, using a 5×5×5 k-mesh sampling the 1st BZ and an energy cutoff of 400
eV along with PAW potential. Figure (11.9) shows that between the first and
second stage, the HF energy is lowered by 1.1 meV in total (0.047 meV/atom)
only, demonstrating that further effects resulting from the relaxation of the
lattice vectors can be disregarded.

11.4.5 Electron-phonon Interactions

Electron-phonon interactions (EPIs) were considered by combining QUANTUM

ESPRESSO (QE) [186] and YAMBO [179]. In the QE calculations, the DFT ground
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Figure 11.9: Two stages of relaxing the C2/c-24 at the DFT
pressure 300 GPa using HF forces. On the first stage, the inter-
nal degrees of freedom are relaxed, while the cell shape is fixed.
During the second stage the cell shape is also allowed to relax.
The relaxation of the cell shape has negligible effects on the HF

energy.

states were obtained using Optimised Norm-Conserving Vanderbilt Pseudopo-
tential (ONCVPSP) pseudopotential file [188] with a kinetic energy cutoff at
100 Ry (1360.569 eV) and a uniform 4×4×4 k-mesh. In the YAMBO calculations,
the electron-phonon self-energies were obtained using 100 random q-points in
the phonon Brillouin zone, a uniform 4× 4× 4 k-mesh for electronic Brillouin
zone and 300 electronic bands. The convergence tests are given as follows.

11.4.6 Exciton Binding Energy

The electron-hole interactions were obtained using Vienna ab initio simulation
package (VASP) in solving Bethe-Salpeter equation (BSE). 800 eV energy cutoff
and 96 electronic bands are used. A dense uniform 4×4×4 k-mesh is necessary
to converge the oscillator strength (see Fig. 11.13).
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structure is model phase III (C2/c-24) obtained using DFT-PBE
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Chapter 12

Transcorrelated Coupled Cluster
Studies on 3D UEG

This chapter contains work in the manuscript titled “Towards efficient and ac-
curate ab initio solutions to periodic systems via transcorrelation and coupled
cluster theory”, by Ke Liao, Thomas Schraivogel, Hongjun Luo, Daniel Kats and
Ali Alavi. It can be found online at this link: https://arxiv.org/abs/2103.03176.
As of the time the thesis is written, it is accepted by Physical Review Research.
Ke Liao, Daniel Kats and Ali Alavi conceived this project and contributed to
the writing of the manuscript; Ke Liao implemented the TC-CC algorithm and
carried out the calculations to produce the main results; Thomas Schraivogel
contributed to the resolving of several important bugs that improved the main
results; Hongjun Luo contributed to the full three body interactions in the
FCIQMC algorithm and some theoretical developments in the TC integrals.

12.1 Introduction

The 3D UEG model assumes that the background is evenly and positively
charged, and that the electrons interact with each other via the Coulomb inter-
action. As simple as it is, the UEG possesses an intricate phase diagram [189,
190], which can only be accurately described by theories that perform consis-
tently well over a broad range of densities. Historically, the UEG model has also
played an important role in the development of many useful approximations.
For example, several successful local and gradient-corrected density function-
als [191, 192, 165] are based on the UEG; the random phase approximation
(RPA) [24, 25] was developed in a pursuit of understanding metals using the
UEG as a model. In recent years, the UEG has attracted studies from various
highly accurate ab initio methods and spurred the development of several new
methods [111, 167, 193, 43, 194, 195, 196, 168, 116, 197].
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When applying CC to the UEG, we work in a plane wave basis; momentum
conservation then excludes all single excitations from the CC ansatz, greatly
simplifying the resulting amplitude equations. We refer to Sec. 4.5 for the
details of CCD and DCD theories. As a result, the TC Hamiltonian can be
treated with relative ease, allowing us to investigate whether the CC method
can be beneficially applied to the TC Hamiltonian.

As shown in Ref. [116], the second quantized form of the Ĥtc in a plane wave
basis for 3D UEG is

Ĥtc = Ĥ +
1

2

∑
σσ′

∑
pqrs

ωrspqa
†
p,σa

†
q,σ′as,σ′ar,σ

+
1

2

∑
σσ′σ′′

∑
pqorst

ωrstpqoa
†
p,σa

†
q,σ′a

†
o,σ′′at,σ′′as,σ′ar,σ,

(12.1)

where momentum conservation requires k ≡ kr − kp, k′ ≡ kq − ks and ko =

kt + k− k′, and we define

ωrspq =
1

Ω

[
k2ũ(k)− (kr − ks) · kũ(k)

]
(12.2)

+
1

Ω

∑
k′

(k− k′) · k′ũ(k− k′)ũ(k′),

ωrstpqo = − 1

Ω2
ũ(k)ũ(k′)k · k′. (12.3)

We will investigate the CCD and DCD approximations, in the context of
the TC Hamiltonian (TC-CCD/TC-DCD), using the framework as outlined in
Sec. 9.4 with the approximations to the 3-body terms as discussed in Sec. 9.3.
The necessary contractions for the approximations are presented at the end of
this chapter. We show that with a suitable form of the correlator, the basis
set convergence can be greatly accelerated (as expected), but in addition highly
accurate energies can be obtained across a broad range of densities 0.5 ≤ rs ≤
50, covering both the weakly and strongly correlated regimes. This gives us
confidence that the method, once suitably generalised to real systems (which
will need to include the singles contribution), will allow a highly accurate yet
efficient methodology for the solid state.

We demonstrate our scheme for choosing the optimal parameters in the
correlator in Sec. 12.2; we showcase and discuss our TC-CCD/DCD results
in comparison with benchmark data in Sec. 12.3; and finally we conclude the
chapter in Sec. 12.4 with some outlooks for future directions.
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12.2 Choice and Optimization of the Correlator

Past experience with the TC method has shown that the form of the correlator τ̂
is of extreme importance in the TC method, otherwise the benefit of transcorre-
lation is lost – Φ can be simpler than Ψ only if the correlator captures the correct
physics of the pair correlations in the system. An inappropriate correlator can
actually lead to a harder problem than the original Schrödinger equation. In
our previous study of the exact TC method in the UEG, we proposed a form
of the correlator (shown below) which was found to work successfully in ac-
celerating convergence to the basis set limit, without changing the correlation
that could be captured with the basis set by a FCI level Φ function. In the
present study, since we will be approximating the Φ with the CC ansatz, we
additionally require the correlator τ̂ to capture some of the correlation inside
the Hilbert space.

Here we propose a physically motivated correlator that mimics the behavior
of the correlation hole between two unlike-spin electrons as rs varies in 3D
UEG. The correlation hole can be examined by the pair-correlation function
g(r12) in real space, as studied in Ref. [198], which shows that the correlation
hole between two unlike-spin electrons grows deeper and wider as the Wigner-
Seitz radius rs increases or as the electron density decreases. Fig. 12.1 provides a
sketch of the Jastrow factor with our proposed correlator u(r12) as the exponent,
which captures the desired behavior. We point out that the functional form of
this correlator, which reads in real and reciprocal space respectively as

u(r) = − r
π

(
si(kcr) +

cos(kcr)

kcr
+

sin(kcr)

(kcr)2

)
, (12.4)

ũ(k) =

−4π
k4 , |k| > kc,

0, |k| ≤ kc,
(12.5)

where si(x) = −
∫∞
x

sin(t)
t

dt, was first reported in Ref. [116] to satisfy the cusp
condition between two electrons with opposite spins at short inter-electron dis-
tance and its influence is reduced to nonexistence as the complete basis set
(CBS) limit is reached. This was done by choosing kc to be the same as the plane
wave cutoff momentum, kF, which defines how many plane waves are included
as basis functions. In contrast, to mimic the behavior of the pair-correlation
function, as a first attempt in the present study we choose the parameter in
this correlator such that the first nonzero root of Eq. (12.4) is fixed to be at rs,
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Figure 12.1: A sketch of the Jastrow factor with the proposed
correlator as the exponent.

irrespective of the basis set. This is achieved by setting

kc =
R1

rs
, (12.6)

where R1 ≈ 2.322502989. This choice can be rationalized by the physical picture
that at lower densities, electrons prefer to stay further away from each other.
Furthermore, this correlator, regardless of the choice of kc, retains the cusp
condition for two electrons with unlike-spins at r = 0 [116] and should increase
the convergence rate of the computed energies with respect to the employed
basis set towards the CBS limit.

To further justify the choice of this correlator, we show that for UEG with
14 electrons at rs = 5, where traditional CCD exhibits a large error, the most
compact expansion of the wavefunction in Slater determinant space is reached
at this value of kc. In Fig. 12.2, we show the weights of the HF determinant
extracted from TC-FCIQMC simulations using different kc values, without mak-
ing approximations to the 3-body operator. We note that due to the discrete
momentum mesh as a result of using a finite simulation cell, the possible choices
are kc = 2π

√
n

L
, n ∈ N 1, where L is the length of the cubic cell. In this case,

kc = R1

rs
is equivalent to kc = 2

√
2π
L

, and for this choice of kc the exact ground

1n = n2
1 + n3

2 + n2
3, where n1, n2, n3 are the components of a k vector in units of 2π

L . So
the possible values of n are 0, 1, 2, 3, 4, 5, 6, 8, ...
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state wavefunction of the transcorrelated Hamiltonian has the highest weight
on the HF determinant.

1.00 1.25 1.50 1.75 2.00
kc [2

L ]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
C 0

TC-FCIQMC
FCIQMC
kc = R1

rs

Figure 12.2: The weights of the HF determinant (Fermi sphere)
as a function of kc extracted from their corresponding TC-
FCIQMC simulations (red dashed line), and that of the normal
FCIQMC simulation (horizontal red solid line). The system con-
sists of 14 electrons with rs = 5 and a basis set including 57 plane
waves. 5 × 108 walkers are used in all simulations and the ini-
tiator threshold is set to 3. No approximations are made to the

3-body interactions.

However, we find that this intuitive choice of kc is not always the optimal,
especially at extremely low density regimes. It is reasonable to expect that the
optimal kc for those systems should deviate slightly from R1

rs
. So we scan a

range of kc values around it to locate the one that minimizes the norm of the
closed-shell amplitudes for double excitations of electrons with opposite spins,
‖T ↓↑2 ‖, in the TC-CCD/DCD calculations with a small basis set, see Fig. 12.3 2.

Ideally, two separate correlators should be used for electrons with paral-
lel and anti-parallel spins, and their parameters should be optimized simulta-
neously using the norm of the full amplitudes in a similar manner. For the
present study, we argue that the correlations between two parallel-spin elec-
trons are dominated by the exchange effects, which are already captured by

2Since the ‖T ↓↑
2 ‖ in TC-CCD and TC-DCD show the same trend as a function of kc, we

show only the latter in the figure.
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the anti-symmetry in the Slater determinants. Therefore, we focus on captur-
ing the correct physics between electrons with opposite spins in the correlator,
i.e. the changing depth and width of the correlation hole as a function of rs [198],
and minimizing the corresponding amplitudes in the CC ansätze. Indeed, we
found in practice the minima in ‖T ↓↑2 ‖ as a function of kc are more pronounced,
and thus easier to spot than those in the norm of the full amplitudes, ‖T2‖. We
stress that this compact form of wavefunction at the optimal choice of kc should
greatly benefit approximate methods like CCD and DCD, whose accuracy relies
on the assumption that the true ground state wavefunction is compact around
the reference determinant, which is normally chosen to be the HF determinant.
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Figure 12.3: The norm of the amplitudes for excitations of
unlike-spin electron pairs, ‖T ↓↑2 ‖, as a function of kc, calculated
by TC-DCD method. The 14-electron and 54-electron systems
use a basis set including 57 and 257 plane waves, respectively.
All possible contractions from the 3-body interactions are in-
cluded, excluding the normal-ordered 3-body interactions. The
solid horizontal color lines represent the ‖T ↓↑2 ‖ in the canonical
DCD calculations with the same settings as their TC counter-

parts.

By including the most important contractions, the error of neglecting the rest
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of the 3-body interactions are well under control in that it scales approximately
as ũ2(k)k2 ∼ 1

k6 . We note in passing that if we choose correlators that do not
truncate at small k, such as the Yukawa-Coulomb correlator in Ref. [19] or the
Gaskell correlator in Ref. [199], the iterative solution of the amplitude equations
becomes too unstable to converge at low densities. We attribute this instability
in these cases to the large missing normal-ordered 3-body interactions, similar to
the instability in a HF self-consistent solution when the missing normal-ordered
Coulomb interactions are large.

The FCIQMC calculations are carried out using the NECI program [200].
The CCD and DCD along with the TC integrals are implemented in a Python
program using the automatic tensor contraction engine CTF [83] and the NumPy
package [201].

12.3 Results

Table 12.1: Total energy (a.u./electron), including the
Madelung constant, of the 14-electron 3D UEG using different
methods. TC-FCIQMC data are from Ref. [116] and BF-DMC

data are from Ref. [194]

rs kc (2π
L
) CCD DCD TC-CCD TC-DCD TC-FCIQMC BF-DMC

0.5 1 3.41278 3.41252 3.41258 3.41244 3.41241(1) 3.41370(2)
1.0 1 0.56975 0.56909 0.56891 0.56859 0.56861(1) 0.56958(1)
2.0

√
2 -0.00623 -0.00748 -0.00707 -0.00800 -0.00868(2) -0.007949(7)

5.0
√

2 -0.07618 -0.07788 -0.07816 -0.07929 -0.08002(2) -0.079706(3)
10.0

√
2 -0.05137 -0.05289 -0.05420 -0.05509 N/A -0.055160(2)

20.0 2 -0.02924 -0.03035 -0.03136 -0.03201 N/A -0.0324370(8)
50.0

√
6 -0.01261 -0.01323 -0.01350 -0.01384 N/A -0.0146251(3)

Table 12.2: Total energy (a.u./electron), including the
Madelung constant, of the 54-electron 3D UEG using different
methods. TC-FCIQMC data are from Ref. [116] and the BF-

DMC data are from Ref. [202]

rs kc (2π
L
) CCD DCD TC-CCD TC-DCD TC-FCIQMC BF-DMC

0.5
√

2 3.22079 3.22052 3.22077 3.22071 3.22042(2) 3.22112(4)
1.0

√
2 0.53069 0.53001 0.52982 0.52968 0.52973(3) 0.52989(4)

2.0 2 -0.01162 -0.01286 -0.01324 -0.01379 N/A -0.01311(2)
5.0

√
5 -0.07492 -0.07655 -0.07750 -0.07837 N/A -0.079036(3)

10.0 2
√

2 -0.05016 -0.05157 -0.05230 -0.05322 N/A -0.054443(2)
20.0 3 -0.02846 -0.02925 -0.03055 -0.03113 N/A -0.032047(2)
50.0 4 -0.01223 -0.01267 -0.01263 -0.01281 N/A N/A

We first examine the basis set convergence behavior of TC-CCD/DCD com-
pared to the canonical ones. In Fig. 12.4 we present the total energy per electron
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Figure 12.4: Total energy per electron relative to the extrap-
olated value retrieved as a function of 1/M , where M is the
number of plane wave basis functions for 3D UEG with 14 elec-
trons. Linear extrapolations using the left most two points are

used in all cases.

relative to the extrapolated value for each method, retrieved as a function of
the inverse of the employed number of plane waves, 1/M . As mentioned before,
our correlator satisfies the cusp condition at the coalescence point of two elec-
trons with opposite spins. So the accelerated convergence behavior in the TC
methods compared to the canonical ones is not surprising. The acceleration is
the most obvious at high density regimes, since at low densities the required
number of basis functions to reach convergence in both the TC and non-TC
methods is relatively small. These observations are consistent with those of the
TC-FCIQMC reported in Ref. [116].

The optimal kc values, (TC-)CCD/DCD energies at CBS and the benchmark
data are listed in Table 12.1 and 12.2 for the 14- and 54-electron 3D UEG,
respectively. In Fig. 12.5 we present the errors of total energies per electron
calculated by TC-CCD, TC-DCD, CCD and DCD relative to the most accurate
FCIQMC [116, 193, 196] and backflow DMC (BF-DMC) [202, 194] results on
the 14- and 54-electron 3D UEG. The finite basis set errors in our methods have
been carefully eliminated by extrapolation to the CBS limit.

In general the accuracies of the TC methods are greatly improved compared
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Figure 12.5: Errors in energy per electron relative to bench-
mark data on the 3D UEG using TC-CCD, TC-DCD, CCD and
DCD methods. (a) Results for 14 electrons. For rs = 0.5 − 5,
TC-FCIQMC data [116] are used and for the rest BF-DMC
data [194] are used for benchmark. (b) Results for 54 electrons.
For rs = 0.5−1, TC-FCIQMC data [116] are used and for the rest
BF-DMC data [202] are used for benchmark. The grey shaded
areas stand for the ±0.001 a.u./electron accuracy relative to the
reference data. The colorful shaded areas reflect the uncertainties
in the TC-CCD and TC-DCD energies due to slightly different

choices of the kc values.

to their canonical counterparts, especially in regions (rs = 5 − 50) where the
latter exhibit the largest errors. More importantly, the improved accuracies
are retained when going from the 14- to the 54-electron system. We highlight
that the TC-DCD achieves an accuracy of ≤ 0.001 a.u./electron across a wide
range of densities, i.e. rs = 0.5 − 50 for the 14-electron and rs = 0.5 − 20 for
the 54-electron 3D UEG, with an exception at rs = 10 for the latter where it
drops slightly out of the 0.001 a.u./electron accuracy. We argue that with the
next possible smaller value of kc =

√
6, which yields a marginally higher ‖T ↓↑2 ‖,

instead of the current choice of kc = 2
√

2, the 0.001 a.u./electron accuracy at
rs = 10 can be regained. The discrete grid of the k-mesh makes it hard to pick
the optimal kc in Fig. 12.3b. However, as the system gets larger and the k-mesh
gets finer, the ‖T ↓↑2 ‖ as a function of kc will also be smoother, and the choice
of the optimal kc will become more definite. We use colorful shaded areas in
Fig. 12.5 to reflect the uncertainties due to the possible choices of kc which yield
similar ‖T ↓↑2 ‖ values in Fig. 12.3.

At high densities, i.e. rs = 0.5 − 2, the canonical DCD is already very
accurate, and the main benefit from TC there is in accelerating the basis set
convergence. Overall, DCD exhibits smaller errors than CCD, which agrees
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with earlier comparative studies between DCSD and CCSD [35, 104, 105].

12.4 Discussions

We demonstrated that the correlator Eq. (12.4), used with transcorrelated cou-
pled cluster theory, drastically improves the accuracy of approximate methods,
i.e. CCD and DCD, for 3D UEG across a wide range of densities. The basis
set convergence rate is also improved thanks to the fact that the correlator
satisfies the cusp condition at the coalescence point of two unlike-spin elec-
trons. We have explored the mechanism behind the improved accuracy of the
TC-CCD and TC-DCD methods, which is related to a compactification of the
many-electron wavefunction in Slater determinant space when the dominant
pair correlations between electrons with unlike spins are directly included in
the correlator. The optimization of the parameter in the correlator is seam-
lessly incorporated within the TC-CCD/DCD framework, without requiring an
external algorithm. We notice that a range-separation scheme of CCD can also
achieve similar accuracy in 3D UEG, but without improving the basis set con-
vergence rate [194]. Comparatively speaking, our methods are systematically
improvable, in that a more flexible form of the correlator can be designed by a
combination of a series of functions [119] or by a general function approxima-
tor, e.g. an artificial neural network, to include further correlation effects such
as nuclear-electron correlations and correlations between two parallel-spin elec-
trons in more complicated systems. Other systematic ways of optimizing the
correlator in combination with VMC [119] can also be explored. When going
to real periodic solids, TC-CCSD and TC-DCSD will be needed; extra efforts
are also required to compute the additional integrals besides the Coulomb inte-
grals, where the most computationally demanding part is the singly-contracted
3-body integrals which scales like O(NoN

4
p ), where No and Np are the number

of occupied and total orbitals, respectively. Fortunately, the computation of the
extra integrals scales no worse than the CCSD or DCSD algorithm and it can be
compensated by the accelerated convergence rate towards CBS limit in the TC
framework. These perspectives will be important in extending the encouraging
performance of the current TC-CCD and TC-DCD methods from the UEG to
real periodic solids with moderate to strong correlation.
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12.5 Computational Details

12.5.1 Internal Contractions in the Three-body Integrals

The 3-body integrals can be written as an asymmetric form

Ŵ3 = − 1

2Ω2

∑
σσ′σ′′

∑
kk′rst

ũ(k′)ũ(k)k′ · ka†r−k,σa
†
s+k′,σ′a

†
t+k−k′,σ′′at,σ′′as,σ′ar,σ,

(12.7)
where the conservation of momentum is used. In the following subsections,
we will show the specific mathematical expressions for all contractions. The
expressions are derived by using the Goldstone diagrams (not shown).

Single Contractions

There are 4 types of different single contractions, which are

Ŵ S1
3 = − Ne

2Ω2

∑
σσ′

∑
krs

(ũ(k))2k2{a†r−k,σa
†
s+k,σ′as,σ′ar,σ},

Ŵ S2
3 = +

1

Ω

∑
σσ′

∑
krs

{a†r−k,σa
†
s+k,σ′as,σ′ar,σ}

(
1

Ω

∑
i

(i− r + k) · kũ(k)ũ(i− r + k)

)
,

Ŵ S3
3 = +

1

Ω

∑
σσ′

∑
krs

{a†r−k,σa
†
s+k,σ′as,σ′ar,σ}

(
1

Ω

∑
i

(r− i) · kũ(k)ũ(r− i)

)
,

Ŵ S4
3 = +

1

Ω

∑
σσ′

∑
krs

{a†r−k,σa
†
s+k,σ′as,σ′ar,σ}

(
1

Ω

∑
i

(r− i− k) · (r− i)ũ(r− i)ũ(r− i− k)

)
,

(12.8)
where the curly brackets refer to normal-ordering with respect to the reference
determinant. Now we can define the ω̃rspq by the following relation

1

2

∑
σσ′′

∑
pqrs

ω̃rspq{a†p,σa
†
q,σ′as,σ′ar,σ} = Ŵ S1

3 + Ŵ S2
3 + Ŵ S3

3 + Ŵ S4
3 , (12.9)

However, we notice that this effective 2-body integral is not symmetric with
respect to the exchange of two electrons, due to the fact we used an asymmetric
form of the 3-body integral. So we need to symmetrised it as follows

ω̃rspq ←
1

2
(ω̃rspq + ω̃srqp). (12.10)

Double Contractions

The double contractions in the 3-body integrals result in the ω̃p in the main
text. It is a sum of 5 types of double contractions, which reads
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ω̃p =
Ne

Ω2

(∑
i

ũ2(p− i)(p− i)2

)

− 1

Ω2

(∑
ij

(p− i) · (p− j)ũ(p− i)ũ(p− j)

)

− 1

Ω2

(∑
ij

(i− j) · (i− p)ũ(i− j)ũ(i− p)

)

− 1

Ω2

(∑
ij

(j− i) · (p− i)ũ(j− i)ũ(p− i)

)

+
1

Ω2

(∑
ij

(i− j)2ũ2(i− j)

)
.

(12.11)

Triple Contractions

There are 2 types of triple contractions which contribute to ET

ET =
Ne

2Ω2

∑
σ

∑
ij

ũ2(i− j)(i− j)2 − 1

Ω

∑
σ

∑
ij

(
1

Ω

∑
k

(i− k) · (i− j)ũ(i− j)ũ(i− k)

)
(12.12)
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Summary and Outlook
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In this thesis, the Theory part is dedicated to the review of the essential
theories on which the new works in this thesis are based. Starting from the
very basic concepts in quantum mechanics, we introduce the quantum many-
body problem, along with the well-known BO approximation to decouple the
electronic and nuclear problems and the Bloch’s theorem relevant to periodic
solids in the first chapter. As an example of periodic systems, we introduce
the model system of 3D UEG at the end of the first chapter. Eventually, we
review a host of important ab initio electronic structure theories, including the
mean field theories such as HF and DFT in chapter 2, perturbation theories like
MP2 and G0W0, wavefunction-based CC theories in chapter 4 and two popular
QMC methods in chapter 5. The problem of finite size errors in periodic solids
is explained and the two approaches to fix them are introduced in chapter 6.
In the last chapter of part II, we go through the main ideas and theoretical
formulations of the HAC theory, which provides corrections to the quasiparticle
energies due to the electron-phonon interactions at 0 K and finite temperatures.

In part III of this thesis, the theories and algorithms which are developed
during my PhD study are introduced. There are two main developments, each
is motivated at the beginning with a section of “Motivations”. The first half
of this part is about the implementation of MP2 forces using plane wave basis
functions and the framework we use to optimise the atomic structures of peri-
odic solids. The second part is focused on improving the efficiency and accuracy
of CC methods by combining them with the transcorrelation scheme, forming
the so-called TC-CC framework. The important step in this framework is on
the approximations made to the 3-body operators in the transcorrelated Hamil-
tonian, without which the TC-CC method is computationally too expensive to
be applicable to any realistic periodic systems.

Part IV presents results obtained using existing and newly developed meth-
ods on systems such as solid hydrogen phases and 3D UEG. In chapter 10, we
compare the strengths and weaknesses of various methods, including DFT, CC
and QMC, applied to the solid hydrogen phases at high pressures. Especially,
we show that CCSD, with recent developments that improve its efficiency, can
match the state-of-the-art DMC theory in predictions of the relative stabilities
of different phases. Considering the model structures of solid hydrogen in the
previous chapter were optimised by DFT-PBE, which contains uncontrolled er-
rors in the XC functional, we use the newly developed algorithm that computes
the MP2 forces using a plane wave basis; the MP2 forces are then used to fur-
ther optimise the DFT-PBE model structures. The resulting MP2 structures
have more stable total CCSD energies and show almost perfect agreement in
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the H2 vibron frequencies as a function of pressure with experiments. The EPI
corrected G0W0 band gaps are also in reasonable good agreement with recent
experiments. In the last chapter of Part IV, we apply our TC-CC methods,
e.g. TC-CCD and TC-DCD, on 3D UEG. We show that, after optimising the
parameters in the TC correlator, a great deal of improvement in both accuracies
and efficiencies can be gained. Most noticeably, the resulting TC-CCD/DCD
method has significantly reduced errors in the energies compared to their canon-
ical counterparts, using the QMC results as benchmarks.

In the future, extension of the TC methods to real solids will be investigated,
where the computation of the TC integrals and the choice of correlators will be
the main concerns. In real solids, the oscillatory behavior of the wavefunction
close to the nuclei needs to be treated by the PAW method, in order to produce
accurate integrals for the TC Hamiltonian. More flexible choices of the corre-
lator will also be explored, such as artificial neural networks. We believe that
the improved accuracies and efficiencies of the TC-CC methods in the 3D UEG
can be transferred to real solids, which will largely extend the scope of what
we currently can achieve in the studies of solid phase diagrams using CC and
methods alike.
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Glossary

S(G) transition structure factor. 57

3D UEG three dimensional uniform electron gas. 5, 6, 41, 121, 122

BO Born-Oppenheimer. 3–5, 11, 59, 61, 121

CBS complete basis set. 26, 37, 53

CC coupled cluster. 4, 5, 38, 39, 121, 122

CCD coupled cluster doubles. 5, 6, 31, 34, 39, 41, 42, 44, 121

CCSD coupled cluster singles and doubles. 4, 5, 24, 31, 37, 39, 41, 42, 44, 45,
56, 67–82, 84, 85, 93, 96–102, 121

CCSD(T) coupled cluster singles and doubles plus perturbative triples. 4, 31,
44, 45, 72–74

CI configuration interaction. 39

CISD configuration interaction singles and doubles. 39

DCD distinguishable cluster doubles. 5, 31, 39, 42, 44, 121

DCSD distinguishable cluster singles and doubles. 31, 42, 44, 72–75

DFT density functional theory. 4, 5, 17, 23, 24, 33, 34, 66, 84, 100, 121

DMC diffusion Monte Carlo. 4, 5, 24, 47–49, 53, 54, 57, 66, 67, 72, 77, 78,
80–82, 100, 121

DMRG density matrix renormalisation group. 18

EPI electron-phonon interaction. 5, 6, 12, 59, 121

FCI full configuration interaction. 27, 38, 39, 50, 51

FCIQMC full configuration interaction quantum Monte Carlo. 5, 47, 48, 50–
54, 56, 67, 72–75, 80, 81
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FN-DMC fixed-node diffusion Monte Carlo. 49, 50

HF Hartree-Fock. 4, 5, 18, 21–27, 32, 35, 40, 42, 50, 76, 79, 86, 88–92, 121

HFOs Hartree-Fock orbitals. 67–69, 71–74

KS Kohn-Sham. 23, 34, 59, 60

MP2 second order Møller-Plesset perturbation. 5, 6, 12, 31, 37, 45, 56, 84–102,
121

MP2NOs MP2 natural orbitals. 67–69, 71–74

PAW projector augmented wave. 19

PES potential energy surface. 12

QMC quantum Monte Carlo. 4, 10, 24, 47–49, 121

r.h.s. right hand side. 10

RPA random phase approximation. 34, 41

SD Slater determinant. 27, 30, 56

SJ Slater-Jastrow. 4

ST similarity transformation. 5

TA twist-averaging. 55

TC transcorrelation. 5, 6, 121, 122

TDL thermodynamic limit. 12, 45, 55

UEG uniform electron gas. 39

VMC variational Monte Carlo. 18, 50

XC exchange-correlation. 4, 23, 24, 34, 121
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