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Abstract

As the number of cost-e�ective GPS-supporting devices continues to increase tremendously, the
number of recorded trajectories, i.e., measured sequences in time and space, explodes. The
enormous potential of this data in terms of information retrieval data mining analysis of various
kinds requires advanced storage and retrieval solutions. In [25], Funke et al. presented a data
structure P��������� (PF) based on a state-of-the-art speed-up technique for shortest path planning
allowing for e�cient trajectory compression and rather complex query answering. Since PF results
are returned in compressed form by default and their complete decompression is only possible
with the help of the internal data structure, a separation of a retrieval server and lightweight clients
is nontrivial. Even more problematic is the amount of data produced by naively decompressing
large queries: transferring the fully unpacked paths is neither meaningful nor feasible taking usual
response waiting times into consideration.

This work closes the gap by presenting partially decompression and postprocessing methods based
on aggregation, pruning, filtering, simplification, and batching in order to accomplish predefined
use case goals. The presented methods are theoretically examined, tested on di�erent real-world
and synthetic datasets consisting of up to 10 000 000 trajectories, and critically reviewed with
regard to applicability. In addition, for the special use case that relies exclusively on spatio-
temporally independent queries, a P���������-based static tiling server was included which could
be conceptually extended to online tiling for query answering as a prototype showed.

Kurzfassung

Aufgrund der ständig stark wachsenden Menge an kostengünsitgen GPS-fähigen Geräten steigt
die Anzahl der aufgezeichneten zeitlich-örtlich verfolgten Pfadsequenzen, auch Trajektorien
genannt, explosionsartig an. Um das enorme Potential dieser Daten in Hinblick auf Data-Mining
Anwendungen nutzbar zu machen, werden ausgereifte Speicher-, Indizierungs- und Suchstrukturen
benötigt. Zur e�zienten Kompression und Suchanfragenbeantwortung stellten Funke et al. die
Datenstruktur P��������� (PF) vor, die eine moderne Kürzeste-Wege-Suche Technik einbindet,
die selbst auf komplexen zeitlich-räumlichen Anfragen schnell Ergebnisse liefert. Da der PF die
gefundenen Pfade in komprimierter Form zurückliefert, deren aber Dekomprimierung nur mithilfe
der internen Datenstruktur wieder entpackt werden kann, ist eine Client-Server-Trennung nicht
ohne Weiteres umsetzbar. Hinzu kommt, dass ein naives Entpacken aller komprimierten Pfade eine
beträchtliche Ausgabegröße erreicht, die weder in vertretbarer Zeit auf Client-Seite empfangen und
angezeigt werden kann noch interpretierbare Aussagen erlaubt.

Diese Arbeit schließt diese Lücke, indem durch partielle Dekomprimierung und erweiterten Export-
Methoden, die auf Aggregation, Filterung, Vereinfachung und batchweises Übertragen beruhen,
zuvor definierte Use Cases abgedeckt werden können. Die vorgestellten Verfahren werden theoretisch
untersucht, auf realen und künstlich erzeugten Pfaddatensätzen mit Kardinalität bis zu zehn Millionen
getestet und kritisch in Bezug auf Anwendbarkeit hinterfragt. Für den speziellen Anwendungsfall
von zeitlich und örtlich uneingeschränkten Anfragen wurde ein PF-basierender Tiling-Server
miteingebunden, der neben statischen Kartenausschnitten zu Online-Anfragen erweitert werden
kann, wie es bereits prototypisch umgesetzt wurde.
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1 Introduction

With the advent of ubiquitous computing, a huge amount of positional data of high-quality is
exchanged and captured on a daily basis. According to actual studies, almost 15 billion mobile
devices exist and 1.38 billion smartphones were sold only in 2020 [54, 55]. The gigantic amount of
GPS-ready devices makes it possible to record, centrally collect and analyze motion data of all kinds
to draw conclusions about user behavior, tra�c patterns, habits or anomalies, or to automate map
creation and optimization. Thus, animal [10], vehicle [32] and ship [3] movements can be evaluated
to name just a few well-known analysis examples. An important subfield represents the matching of
trajectories with map data, which allows to express trajectories using paths on attributed uni- or
bidirectional connection graphs. Although information is forfeited by matching continuous point
sequences to nearest nodes in the graph, similar path sequences can be merged and edges can be
reused. Trajectory analysis then narrows down to graph theoretical tasks.

To visualize, analyze and filter for trajectories matching certain criteria, search structures for quick
retrievals were developed. In the context of shortest path computation, a layered graph structure
called Contraction Hierarchies modifies the original graph by artificially adding edges to the graph,
which at the same time drastically reduces the number of edges needed to describe a path on
average. Storing a path using a Contraction Hierarchy comes down to iteratively compressing
the input path by replacing edges with shortcuts. In the publication of [25], both concepts were
combined resulting in an e�cient retrieval data structure capable of returning matches within
a few microseconds per reported trajectory. To visualize the found trajectory set, however, a
reversion of the path-compression must be applied. Since a complete unpacking of the paths is
quite time-consuming and the resulting paths have a very considerable size, such a basic export
function is not su�cient for time-critical applications. To emphasize this issue by an example, when
requesting the whole Saarland10M dataset naively, a json response having several gigabytes in size
can be expected, which clearly falls aside the acceptable scope.

Objective

The goal of this work is to develop a suitable web application in JavaScript that supports interaction
with the P��������� data structure as presented in [25] using a suitable user interface. A client-server
environment is created to separate end-users and retrieval runtime. In order to avoid long waiting
times for the user, suitable aggregation and compression procedures are to be developed that allows
interactive exploration.
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1 Introduction

Structure

This work is structured into two introductory and six research-driven chapters. A brief overview of
each chapter is listed in the following.

To start with, a concise introduction is presented:

Chapter 1 – Introduction This work’s implementation scope is sketched, definitions of use cases
needed for evaluation are given and major related work is included.

Chapter 2 – Foundations Central terminology is determined, the key concepts reused in the
following chapters, and predecessor projects are explained. To mention the most prominent
concepts, Contraction Hierarchies and the P��������� algorithms will become central, while
the P���������web serves as a groundwork this work builds on.

The following chapters resulted from and summarizes the author’s research and are laid out
chronologically according to the time they were addressed and implemented. This explains the
transitions from one topic to another, since detected drawbacks of a specific method were tried to
be remedied by subsequent approaches. Each chapter presenting a concrete approach closes with a
concise discussion including exemplary scenarios and a use-case assessment based on measured
values if available.

Chapter 3 – Segment Graph After introducing an exemplary indexing-method evaluated on real
world data illustrating the concept of edge aggregation, the more advanced Segment Graph
Algorithm is presented, theoretically analyzed and tested on real trajectory data.

Chapter 4 – Batched Transmission The theoretical concept of batched transmission and its
evaluation scheme is pointed out. Various batching-methods are presented and competed
against each other.

Chapter 5 – Graph Layer-Pruning This chapter’s method filters result edges based on an impor-
tance criteria and substitutes edges of little importance by a heatmap.

Chapter 6 – Edgebased-P��������� Slightly modifying the original P��������� algorithm by
early termination yields a slightly faster and locally bounded edge-based version which easily
translates to the weighted case, but requires further postprocessing.

Chapter 7 – Tiling Since online-request answering exceeds acceptable waiting times for very large
bounding boxes, the inclusion of tiling returns pre-caclulated responses at minimum time lag
when requests are time- and space independent.

Chapter 8 – Future Work This work closes by listing the method’s limitations and showing
potential future extensions addressing those.

1.1 Contributions

The core of this work is represented by the P���������vis implementation consisting of a comprehen-
sive server infrastructure for trajectory retrieval combined with an extendable frontend counterpart to
cover various use cases defined on di�ering zoom scales. The core implementation which originated
from the P���������web project, has been extended with an advanced setting management, path
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importing and exporting functionalities, heatmap support and transparency filters for overlaying
trajectories returned as a whole. To visualize shared path usages on a microscopic scale, the Segment
Graph Algorithm provides a solid conversion from compressed paths into a graph consisting of
edge-strokes only which supports basic o�ine trajectory exploration. Since a reduction of response
time contributes to enhanced usability, both a class-based batching decoder-encoder framework
was integrated into the client-server infrastructure and two basic transmission schemes have been
implemented serving as proof of concept. A rather abstract analysis of batching mechanisms
compares various transmission modes by measuring their performances on a real world dataset.
Pruned filtering extracts graph-specific characteristic path strokes and replaces less significant
but expensive lower level edges by an aggregated heatmap layer. Slightly modifying the initial
P��������� retrieval function yields an edge-based exporting scheme typically returning compact
responses due to truncating. The overall client-server environment is supplemented by an additional
P���������-powered tiling server which is both capable of answering static tile requests as well as
interactive on-the-fly plotting.

1.2 Use Cases

As discussed earlier in the introduction, plotting all requested paths is not feasible in reasonable time.
It is obvious that there is a correlation between the degree of visualization details and the network
usage. Apart from that, not all use cases necessarily expect a full detailed result. If one requests
to see all trajectories from a continental view, for instance, many details can be pruned without
changing the visual representation too much. In the following chapters, this trade-o�s between
information quantity, visual quality and processing time will play a major role in the algorithmic
design process.

Not all presented exporting strategies satisfy the users equally since the individual expectations
di�er considerably, hence to evaluate the upcoming methods, the following use cases are defined.

Definition 1 (uses cases)

1. Microscopic Analysis: The user’s intention is to focus on a very limited spacial area, e.g.
only a single city. Therefore, the depicted result should be of high resolution and low level
of abstraction, potentially restricted by temporal constraints. Single trajectories should be
distinguishable to allow for a comprehensible start-target research. A potential user might be
a city planner wondering which places are frequently visited and or show noticeable drive-by
potential for di�erent week days or varied seasonal choices.

2. Inter-City Analysis: The main goals are the understanding of inter-city relationships and
coarse movement structures. Temporal variability also plays a significant role in this case.
Tra�c researchers for example intend to detect route-anomalies or search for potential
overloaded sections needed to be refined, e.g., by constructing bypasses. A list of potential
applications has been published in [4].

3. Macroscopic Analysis: The user manly focuses on high-level representations using conti-
nental zoom levels. Fast interaction is preferred over a large degree of details. 2
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Each of the aforementioned scenarios can further be restricted to the case where no temporal
constrains are made.

1.3 Related Work

This section gives an overview of relevant previous work and important contributions. As shown
further below, some ideas have been modified and reused in this work.

To start with the research of trajectory plotting,in 2017, Owens researched on finding a suitable
data structure for storing movement trajectories and suggests to use a contraction hierarchy based
approach [44]. The most important reference is the P��������� (PF) paper [25] and its code
repository [24]. The authors tackle the problem of storing and retrieval of a massive amount of road
network trajectory data using a contraction hierarchy based index structure. On a continent-sized
graph with over 400 million nodes and nearly a billion edges, all trajectories within a certain
time-space restricted request can be reported in less than a few microseconds per trajectory. Besides
the fast retrieval, the space for storing all trajectories reduced by a factor of nearly ten using path
compression on the contraction hierarchy edges [25]. Since the data structure presented plays a
crucial role for this work, a more in-depth description will be presented in Chapter 2.

As a first extension for [25], a group of students embedded the PF code framework into a server-client
environment to allow for requests over the network using a Pistache [45] server [52]. The frontend
is powered by the Bootstrap framework [12] and the JavaScript library Leaflet [1] for map support.
An experimental plotting approach was shown, as well as an extensive user interface for adjusting
request parameters.

Bekas developed a system for plotting street graphs using the graphics engine Vulkan [31] in 2019,
which in principal can be integrated into the PF environment, but required a GPU [8].

1.3.1 Contraction Hierarchies

The concept of Contraction Hierarchys (CHs) originates from route planing and goes back to
Geisberger in 2008 [27]. Since then, a lot of useful applications have been found and CHs are
still under research (see latest publications from Proissl, Rupp, Funke, Wagner and Buchhold [9,
48, 49], all published in 2021). Besides the PF, which utilizes the CH structure for compression
and retrieval, CHs are also used in the context of road and game maps where edge weights change
frequently [15].

To our best knowledge, however, only little research on visualizing or plotting of contraction
hierarchy graphs in particular has been done prior to this work. To mention related a work, however,
Funke et al. used an augmented CH for e�cient map rendering by extracting simplified subgraphs
while allowing the actual route computations to be shifted to the client [26].
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1.3.2 Trajectory Visualization and Analysis

Visualizing trajectories is a well researched topic across several domains [6]. Besides visual tra�c-,
movement analysis (see [34, 58]) and urban planning (e.g. [5, 18]), trajectory pattern recognition
and learning ([28, 59, 60]) are of special interest. While the latter category focuses more on analytic,
the former two intensively deal with plotting trajectories to explore and learn from the dataset.

As a tool for supporting exploration, the concept of lenses plays an important role: Krüger et al.
[33] use di�erent user-defined filters for interactively adjusting the user’s view preferences. Besides
origin- and destination-filters which restrict the result sets to trajectories starting and ending in
the respective areas, waypoint lenses screen out paths not intersecting them at least once. Using
boolean operations, the lenses can be nicely interlinked which each other while hierarchical time
views help to filter for special day types.

In the paper of Al-Dohuki et al., a massive taxi trajectory dataset was indexed, serving as a base
for their exploration application, which also allows for semantic searches using street names and
points of interest [18]. A framework for indexing, storing, retrieving and visualizing of trajectories
semi-automatically has been presented by [17]. The authors also match data trajectories with street
graphs, and enhance the datapoints with region, zip code and cell structure information to allow for
more complex retrieval queries.

1.3.3 Graph Complexity Reduction

Reducing a given graph can be grouped into the concepts of pruning and simplifying. In our
case, graph pruning describes the process of extracting relevant edges from a graph resulting in a
simpler subgraph only containing significant (defined analogous to [14]). Simplification as a more
abstract concept allows for introducing new or editing existing edges and nodes. They both have in
common that the resulting graph can be described using fewer information while keeping most of
its characteristics and shape.

Chimani et al. presented various pruning strategies for continuous graph simplification: They
formalized the edge-selection procedure as an optimizations problem called EdgeScheduling and
solved it greedily and using an approximation, since finding the optimal solution in general is
NP-hard [11]. The problem of road segment selection with stroke and stability constraints was
researched by van Dijk et al. [16]. A stroke is a set of adjacent edges and returning edges in strokes is
preferred over single independent edges. Additionally, the graph structure should change as little as
possible while varying the simplification over time. This change from one instance to its following is
penalized using stability conditions. The authors have shown that each problem individually can be
solved optimally via dynamic programming or MinCostFlow respectively whereas the combination
is NP-hard [16].

Graph simplification is closely related to line simplification by replacing unconnected adjacent
edge strokes by their simplified versions. Two methods we relate to further below were developed
by Douglas and Peucker [19]. They first showed three di�erent eliminating methods: Reducing
points one by one, optimizing w.r.t. a mathematical optimization criterion and deletion based on
specific carthographic features like crests and troughs. Then an iterative vertex selection process is
presented, where a decision is made based on the distance to the line-baseline.
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A more recent method developed by van der Poorten et al. uses triangulation combined with a
triangle importance metric as enhancement of earlier methods [47].

For most of the scenarios the retrieved edge will be too large to apply common reduction techniques
in an online-processing fashion, since already unpacking can be very expensive in terms of time
needed, which will be showed in the following chapters Prior to introducing the implemented
exporting algorithms, the motivation for designing them and their properties, the most basis concepts
are explained in the following chapter.
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This chapter introduces the main terminology and defines basic concepts which are used later in
this work. Most of the definitions are based on [25], which is also the base for this work.

The input is defined with respect to an input graph ⌧, where each note originates from a coordinate
in R2. A central concept in this work is the trajectory, which will be defined at the very beginning:

Definition 2 (Trajectory) A trajectory is a path c = E0E1 . . . E= is an ordered sequence of nodes
E8 taken from a graph ⌧ linked with a same-length time stamp sequence g0g1 . . . g= with g8 < g8+1
where two consecutive nodes are connected by an edge 4 = (E8 , E8+1) from ⌧. The latter restriction
ensures a valid rewriting of the trajectory as c = 4142 . . . 4= with |c | = =. A set of trajectories is
bundled in a trajectory collection T = [c1, . . . , c# ]. 2

Depending on the concrete context, one representation is preferred over the other, but both
terminologies can be used interchangeably.

Definition 3 (Requests) A spacial request is a bounding box &B = [G;, GD] ⇥ [H;, HD] ✓ R2 defined
by a lower and a upper coordinate, which searches for all paths c with non-empty intersection.
A spatio-temporal request extents &B by an additional time constraint [g;, gD]. In the case of an
abstract request &, more complex temporal restrictions are included, such as daytypes, specific
hours, months or years. 2

2.1 Contraction Hierarchies

The algorithms used in the main retrieval data structure internally relies on a Contraction Hierarchy
(CH), which is the result of augmenting a weighted input graph ⌧ with additional shortcut edges
every time a node contraction operation is performed. The output graph is denoted as ⌧⇠� , having
the same vertex set, the extended edge set with added shortcuts, a cost function 2, and a depth 3.
A shortcut edge 4 = (D, E) can be decomposed into two edges 41 = (D,F) and 42 = (F, E) where
each 48 can again be a shortcut edge. Shortcut edges are added iteratively during the process of CH
creation. Both cost function 2 and the depth 3 are defined recursively: The cost of a shortcut edge
is the sum of its children’s cost, the depth equals the by one incremented depth of the maximum of
both children’s depths. Non-shortcut edges have the same cost as in ⌧ and depth 0. A node F from
G is contracted by removing it and all adjacent edges and inserting shortcut edges 41 and 42 if DFE
was part of a shortest path. Eventually, no vertices are left. The ordering in which nodes are chosen
for contraction heavily influences the maximum depth and also the length of the shortest paths in
⌧⇠� [25, 27]. Non-adjacent nodes can be contracted in paralleled.
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The level of a node is defined by the number of rounds it passed until it got removed. All nodes
contracted at the same time do have the same level. ;max denotes the maximum level, which also
represent the total number of rounds. The level of a shortcut edge is defined by the level of the
contracted node F. Non-shortcut edges have level 0.

Definition 4 (parents) Let 4 be a shortcut edge in the graph having the children 41 and 42. Then,
4 is called the parent of 41 and 42. 2

Since the two edge types must be well distinguishable, non-shortcut edges are defined:

Definition 5 (plain edge) An edge 4 is denoted as plain edge i�. it has no shortcut. 2

Consequently, by definition, an edge is either a parent edge (shortcut) or plain, but never both. The
CH’s input graph only consists of plain edges, i.e., they were all part of ⌧.

Path Compression

Augmenting the graph ⌧ allows compression on paths by using the newly added shortcut edges.
The compressed representation c

0 of a path c is obtained by repeatedly checking if two consecutive
edges 48�1 and 48 are part of a shortcut edge 4̂. If so, the subsequence 48�148 is replaced by 4̂ and
the search continues with 4̂48+1. Trivially, this can be done in time linear in the length of c [25].

Definition 6 (root edge) The edges of the compressed instance c0 of path c are called root edges.2

The compression scheme is lossless and guarantees |c | � |c0 |, where |c0 | is typically much smaller
which allows to store trajectory data very e�ciently. On the other hand, retrieved paths are
compressed and cannot be used directly. Therefore, some post-processing during the export into a
format which can be used for drawing has to be done.

Path Unpacking

The process of path compression can be reverted easily, since each shortcut edge keeps track of its
children. Algorithm 2.1 shows the complete decompression operation, where the paths c and c

0

are represented as edge lists and the union operation [ concatenates two lists. The reversed stack
method first reverses the list ordering and interprets the new most right element as stack top.
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Algorithm 2.1 Unpacking a path (reversing the compression)
1: procedure ������P���(c0)
2: c  []
3: open ��R�������S����(c0)
4: while |open| > 0 do

5: 4  open.pop()
6: if 4.is_shortcut then

7: 41, 42  4.chi�dren

8: open.push(42)
9: open.push(41)

10: else

11: c  c [ [4]
12: end if

13: end while

14: return c

15: end procedure

Since unpacking reverses the original path by undoing the shortcut replacements in the reversed
order, it has the same time complexity ⇥( |c |).

To get a simplified version of c, one can stop the unpacking process at a certain depth. To do so, an
upper bound on the edge level is defined: ;u. The algorithm for fine-tuneable unpacking steered by
the choice of ;u is explained in Algorithm 2.2 and slightly modifies the original. By definition, ;u
cannot be smaller than the lowest edge level 0 and all choices for ;<0G  ;u results in c

0, i.e., no
unpacking is performed.

Figure 2.1 demonstrates the simplification range by varying ;u. The smaller ;u was chosen, the
closer the shape approximates the original path by transmitting more data.
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(a) c
0 (3.80kB) (b) ;u = 25 (5.14kB) (c) ;u = 15 (9.34kB) (d) ;u = 5 (16.56kB) (e) c (36.8kB)

Figure 2.1: (b) - (d) show results after partially unpacking for varying ;u. (0) shows c0 (;u = ;max)
and (e) for ;u = 0, therefore c. The corresponding transmission sizes are attached in
brackets.

As Figure 2.2 suggests, there’s no linear relationship between the choice of ;u and the data being
transmitted: The transmission sizes decreases exponentially for small levels. Later in this work it
will be shown that ;u must be chose carefully.
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Figure 2.2: Total response size for requesting the area depicted in Figure 2.7 for di�erent unpacking
thresholds.

Compressed Path Traversal

A central concept in this work is the interpretation of the top-down view for a root edge as an
unpacking tree. Given a root shortcut node 4 with child edges 41 and 42, this corresponds to a binary
tree with root node 4 and children 48. Unpacking the children recursively results in a saturated
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Algorithm 2.2 Partially unpacking a path
1: procedure ������P���(c0, ;u)
2: c  []
3: >?4= ��R������S����(c0)
4: while |>?4=| > 0 do

5: 4  open.pop()
6: if 4.is_shortcut ^ 4.�eve� then // Only unpack edges above threshold
7: 41, 42  4.chi�dren

8: open.push(42)
9: open.push(41)

10: else

11: c  c [ [4]
12: end if

13: end while

14: return c

15: end procedure

binary tree having either two children in case of a shortcut edge, or no child in case of a plain edge.
The latter are the tree’s leaves. The input c0 can be interpreted as list of trees, namely a forest with
the root edge being the root node for each tree. An interesting property, which is implicitly used
by the unpacking procedure, is that traversing the forest from left to right and the trees in-order,
the fully unpacked path c is obtained if only leaves are reported. This connection will become
important later.

When a compressed path c
0 is returned from the PF, it is unknown how many leaf nodes it will

represent, i.e., how large |c | will be – it is not even known which root edge will contribute how much
or which of the two root edge’s leaves do have more (grand-) children. It can only be estimated
based on the (children’s) edge levels.

2.2 P��������� Algorithm

P��������� (PF) is a data structure for e�ciently answering complex requests ' by reporting all
matching trajectories. It was developed at the University of Stuttgart in 2019. This section only
focuses on giving an introduction and highlighting the important concepts, which will be used later
in this work. A comprehensive method evaluation and speedup techniques explanations are given in
the original paper [25].

At its core, P��������� builds up and extends a contraction hierarchy for both storing and e�ciently
retrieving of trajectories. The reporting of results is done in three steps, which are shown in
Algorithm 2.3.
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Algorithm 2.3 P��������� Algorithm (High Level)
1: procedure ���Q����(&)
2: ⇢$  ����E���C���������(&)
3: ⇢A  ������E���C���������(&, ⇢$)
4: T  ���A���������T�����������(⇢A )
5: return T
6: end procedure

PF utilizes the CH hierarchy as spacial search structure by storing additional information: For each
edge, a bounding box containing all it’s vertices is (in case of a shortcut edge recursively) created.
Additionally, bounding boxes are linked with each vertex containing all nodes reachable from it
using down paths, which only consists of down edges. A down path of E is a path in ⌧⇠� starting at
E, where the contraction levels of all subsequent nodes decrease. In a first step, the CH is traversed
level-by-level in a top-down fashion by starting with all vertices E which don’t have higher direct
neighbors. Latter are called CH’s top nodes Each adjacent down-edge (E,F8) is added to the list of
candidates ⇢$, if its edgebox intersects the query’s box. The recursion continues with all vertices
F8 , whose downgraph has non-empty intersection with &’s box.

To speedup the traversal, besides parallelization, e�cient top-node look-ups, and skipping of unused
or redundant edges, search paths can be pruned if a F8’s downgraph box is fully contained in &,
because all (grand-)children’s down path boxes will intersect too, due to transitivity.

So far, only edges were collected, whose bounding boxes intersect &. This, however, represents a
superset of all valid solutions only, since a non-intersecting edge can have non-empty intersecting
bounding boxes. To check for real intersections, candidate edges are unpacked until an unambiguous
decision can be made, because either the unpacked edges 48 do not intersect the query any longer
or a child with a clear intersection is found. Unambiguously intersected edges are added to
⇢A . According to [25], it is almost never necessary to completely unpack an edge for a definite
decision.

To allow & to have temporal restrictions, the spacial-only variant has to be extended: Further
time interval information is added to edges and vertices, similar to the downgraph- and edgebox-
constructions, but representing time intervals now. The adding of time slice bit vectors allow for
periodic time event requests.

In the last step, the joined set of all referenced trajectories for all edges in ⇢A are returned after all
duplicates have been removed.

2.3 Maps and Tiling

This section focuses on plotting real-world trajectory data, therefore, this last section briefly touches
on map, navigation and tiling.

Visualizing a path c comes down to plotting a line stroke of several points. Each point is described
by a latitude-longitude (lat-lon) tuple (_, q) with _ 2 (�180, +180] and q 2 [�90, +90], where
q = 90 is reserved for north and _ = �90 for south pole. Fixing _ yields a vertical line, fixing q a
horizontal one. From Figure 2.3 it is evident that while two points on a vertical line do always have
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the same distance to each other regardless of the choice of _, distances between two points (_1, q)
and (_2, q) have di�erent distances, depending on the choice of q [41, 43]. This becomes important
when distances between points have to be calculated.

The embedded map layer has zoom layers 1�18, where the first is very coarse and the last represents
very small map sections. In this work, levels 1 � 6 define continent, 7 and 8 country, 9 � 11
metropolitan, and 12 � 18 city scales, defined similarly to [43].

Figure 2.3: Varying longitude _ (red) and latitude q (green). Distances between point pairs for
di�erent q values are colored orange. Two example zoom views are depicted in light
and dark purple showing smaller and larger zoom scales, receptively.

This upcoming chpater briefly introduces the preliminary work all implementations base on and
presents the main data processing pipeline which was in used prior to this work.

2.4 P��������� Data Pipeline

The earliest PF code release1 was published after submitting its corresponding paper [25] in 2019.
The PF application is embedded in a pipeline of processing steps which in total allow the user to
answer trajectory data requests and plot the result using a heavyweight graphics card render engine.
The pipeline is depicted in Figure 2.4

1
https://git�ab.com/anusser/pathfinder/
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OSM Graph 
Creator
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Figure 2.4: The PF’s data- and optional visualization pipeline architecture.

The input graph data originates from Geofabrik2, a company providing open source map data
from OpenStreetMap (OSM). The input data is parsed by the OSM Graph Creator

3, which was
developed by the Institute for Formal Methods of Computer Science (FMI)’s algorithmic group.
The temporary output graph serves as an input for the CH construction program which, in turn,
saves the modified shortcut enriched graph to file. The FMI’s Map Matcher (see [51]) parses the
OSM traces and links each trajectory with a set of corresponding pairwise adjacent graph edges.
Each real world trajectory is now represented by a list of CH-edges. Both the CH-Graph and the
matched traces are finally fed into the P���������. To test and visualize its correct functionality, a
local plotting application named Simp�e Graph Renderer

4 (again, FMI) was utilized. As the name
suggests, its input processing capability is limited to a list of 2D coordinates defining the points,
and edge definitions as pairs of nodes. Additionally, for each node and edge, a color (r,g,b,a)-tuple
has to be set. The picture Figure 2.5 shows a typical map excerpt where the edges, colors were
calculated in advance to visualize usage frequencies.

Figure 2.5: The project’s predecessor: Simple Graph Renderer.

2
https://www.geofabrik.de/

3
https://github.com/fmi-a�g/OsmGraphCreator

4
https://github.com/invor/simp�estGraphRendering
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2.5 P���������web

The aforementioned visualization solution renders the already unpacked paths in full detail. Once
the path-plotting process has finished, navigating through the graph cannot be done smoothly, which
has already been confirmed by [8]. Further, it lacks support for interactive requests, since the input
rectangle has to be drawn by setting coordinate parameters.

To improve usability, a client-server infrastructure named P���������web5 was developed at the
University of Stuttgart to send requests by drawing a bounding box and answering them plotted as
an overlay of a set of polylines in a map. Each trajectory is plotted on its own and meta information
is attached. This allows for iteractive hover- and on-click options to display further information.

To improve responsiveness - especially on larger zoom scales - a partially unpacking approach
was implemented, which only unpacks paths down to a certain level threshold, as explained in
Algorithm 2.2 This threshold is chosen dynamically with respect to the current zoom level (as
defined in Section 2.3) and the graph’s maximum unpacking level.

The unpacking level is obtained by the following formula:

0 =
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Figure 2.6: Level unpacking function in case of the Saarland graph with default parameters and
;<0G = 153.

5
https://bitbucket.org/baur�s/pathfinder-web/src/master/

29

https://bitbucket.org/baurls/pathfinder-web/src/master/


2 Foundations

Here, [ is a smoothness parameter, ;<0G the CH-graph’s maximum level and I<0G the maximum
possible zoom scale. The default values proposed by the authors are I<0G = 18 and [ = 1.8713.
Figure 2.6 shows an example function for the Saarland graph. Because the embedded map support
only allows discrete map zooms, only 18 possible unpacking levels are required.

All work done base on this implementation and extends it by various plotting algorithms motivated
by the di�erent user groups as introduced in Definition 1.

Basic Enhancements

The very first improvement enhances the plain trajectory plotting by introducing semi-transparent
paths. This results in path sections of high usage will have more color saturation, due to the
overlaying of multiple polylines. In addition, a prototypical heatmap has been implemented by first
(partially) unpacking the resulting trajectories and transmitting the points only, including with a
weighting which depends on the number of trajectories passing through.

(a) (b)

Figure 2.7: (a) Screenshot of the successor project P���������web. Image is taken from the
original publication [52]. (b) shows the equivalent scene using the transparent-sensitive
extension with a di�erent tiling embedded.
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To illustrate the motivation for the following methods, it is worth to further investigate the behavior
of shared edges: When increasing the number of trajectories defined on a fixed-sized graph, the
number of edge reuse also increases. Assuming the requested trajectories have a lot of edges in
common, it might be worthwhile spending some preprocessing time in reducing duplicated edges
from the resulting response. To further illustrate this idea, the edge properties of common datasets
are listed in Table 3.1: The path-edges column describes the full number of edges obtained when
unpacking all paths in the dataset. The unique column accounts for the fact, that some edges are
shared among the paths and only lists the total number of edges used once. The ratio between all
path-covered and uncovered graph edges is denoted as coverage. Finally, the uniqueness-score
represents the ratio between edges which were used only once and all edges covered by some path.

paths edges path-edges unique path-edges coverage uniqueness

Cuba 233 4.76 · 106 1.02 · 105 58,751 1.24 57.34
Saarland 472 2.73 · 106 1.69 · 105 1.16 · 105 4.25 68.5
Germany 92,501 2.48 · 108 3.13 · 107 1.37 · 107 5.53 43.87

Table 3.1: Dataset properties on fully unpacked paths on di�erent CH compressed graphs. Unique-
ness and coverage are given in percent.

From the edge covering data, two conclusions can be drawn: Firstly, a fairly small amount of edges
is in use. By numbers, in our real world examples, approximately 94 – 99% o� all graph edges are
not part of any path. Note though, that the CH has introduced a decent amount of new edges, which
are not in used due to unpacking. Moreover, a fair amount of edges is used more than once: Only
around 44-69% of the covered edges are used exactly once.

path-edges factor unique path-edges factor coverage uniqueness

Cuba 7,532 13.6 5,684 10.34 0.12 75.46
Saarland 23,393 7.24 19,956 5.82 0.73 85.31
Germany 3.27 · 106 9.59 2.29 · 106 5.99 0.92 70.23

Table 3.2: Dataset properties on compressed paths on the di�erent CH compressed graphs. Unique-
ness and coverage are given in percent.

From the data of Table 3.2, one can see that the number of edges per path (columns path edges)
reduces massively due to the CH path compression. We obtain reduction factors between 7 and
14, which also a�ects the coverage, since multiple single edges are now represented (and therefore
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t1

t2

(a) Uncompressed paths

t1

t2

(b) Compressed paths

Figure 3.1: Showing two trajectories in two di�erent settings: Using non-shortcut edges only (fully
unpacked) and its compressed representation. Dotted edges indicate shortcuts. While
the two paths share some edges in their unpacked representation, they do not in their
compressed one.

replaced) by shortcuts. At the same time, the number of unique path edges decreases less vigorously,
meaning that there are less edges being shared. This behavior was expected, because not all shared
edges are mapped to the same shortcuts. This e�ect is illustrated visually in Figure 3.1.

3.1 Edge Index

To show the potential of sharing edge information, before the message is transmitted, the response is
post-processed by listing all edges uniquely and store the trajectories as lists of indices. Instead of
sending a list of coordinate-lists, i.e., one list for each trajectory, a list of all unique edge-coordinates
and a list of index-lists is sent. This makes sense since indices are less space consuming than
latitude-longitude coordinate pairs: A coordinate pair needs two doubles to be stored, while a
reference only takes one integer. For an edge to be sent, four doubles are required.

Algorithm 3.1 shows the transformation of a list of edge-ID-lists as output of the PF to a unique list of
edge-IDs and the correct index translation. The fact, that at least each input entry has to be read once
already sets an upper linear time bound. By design, the algorithm has linear run time in the input
data and is therefore optimal, assuming the map is implemented only consuming amortized ⇥(1) for
each operation. Considering the space consumption, |' | = Õ

path2' |path| = Õ
path

02'0 |path0 | = |'0 |
and |⇢ | < |' | holds true, meaning that the algorithm consumes at most twice the input space. If
needed, the above algorithm can be easily transformed into an inplace-variant.

A minimalistic example is shown in Listing 3.1. At time of transmission, each edge Iden-
tifier (ID) gets finally converted into its lat-lon representation, e.g. ID 783844 becomes
[[48.912192, 8.893239], [48.913612, 8.894719]]. In principal, the same technique can also
be applied to the vertices of the edges, to further reduce redundancy. Since this method only serves
as demonstration, further details are omitted.
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3.1 Edge Index

Algorithm 3.1 Simple Edge Indexing Algorithm
1: procedure ���������R�������L���(')
2: ⇢  [], '0  []
3: map : EdgeID! Index

4: for all path 2 ' do

5: path
0  []

6: for all edge_id 2 path do

7: if edge_id 8 map then // Check for shared or unseen edge
8: map(edge_id) := |map|
9: ⇢

0  ⇢
0 [ [edge_id]

10: end if

11: path
0  path

0 [ [map(edge_id)] // Replace Edge Identifier by Index
12: end for

13: '
0 [ [path0]

14: end for

15: return ⇢ , '
0

16: end procedure

R = [

[783844, 348733, 348734, 348735, 8293, 123442, 123443],

[2623, 348734, 348735, 8293, 2893]

]

R� = [

[0, 1, 2, 3, 4, 5, 6],

[7, 2, 3, 4, 8]

]

E = [783844, 348733, 348734, 348735, 8293, 123442, 123443, 2623, 2893]

Listing 3.1: Example illustrating the index-edge-splitting

Comparison Between Plain Text and Indexed Transmission

From a theoretical point of view, the more trajectories are added to the fixed graph, the more edges
can be reused and the greater the benefits over the naive strategy are. On contrary, for inputs of
(nearly) adjacent edge sets, e.g., each edge transmitted is used only once, and the index structure
introduces unnecessary overhead. At this point an interesting research question is how dense the
trajectories have to overlay the graph in order to make use of an edge-indexed result.

Setup This thesis cannot cover all scenarios, since there are many graph types, di�erent zoom levels
for unpacking, and parameter choices for generating or reusing realworld trajectories. To still give a
reasonable intuition, di�erent paths of maximum length 400 km were generated on the Saarland
Graph. In a next step, requests were sent and both plain and indexed result sizes are recorded and
plotted. The results are shown in Figure 3.2. Two exporting scales were tested, one using bounding
boxes of half the graph’s size, the other a quarter. For both scenarios, 100 bounding boxes were
requested.
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Figure 3.2: Transmission comparison between the plain transmission (red) and its indexed version
(red) on di�erent exporting levels. The fractions indicate the request box border lengths
compared to the original graph’s bounding box.

Algorithm 3.2 Segment Graph Algorithm (High Level)
1: procedure ���������S������G����(T )
2: + ,<0?E  C�����V�������(T )
3: ⇢ ,<0?4  C�����E����(+ ,T)
4: +( , (  M����T�S�������(+ , ⇢)
5: return Graph ⌧ (+( , () // The Segment Graph
6: end procedure

Conclusion In all cases, the number of data being sent increases as more paths are added. Regardless
of the zoom size, the inverted index performs worse on less paths, but outperforms the plain method
for denser input graphs. Tp conclude, it is worth investigating aggregation methods to reduce the
overhead instead of transmitting trajectory data isolatedly. The following method does not only
aggregate partially unpacked trajectories edgewise but also groups path-strokes.

3.2 Segment Graph Algorithm

The Segment Graph Algorithm (SGA) first converts the input into a suitable graph and an e�cient
lookup data structure. In a second step, the temporary created graph gets transferred into the final
segment graph. A high level algorithm sketch can be found in Algorithm 3.2.
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3.2 Segment Graph Algorithm

3.2.1 Input

The input data is a list of A trajectories T = [C1, C2, . . . , CA ] stored as a list of paths c8 . Since we only
care about exporting the already found trajectories and temporal annotations are not relevant any
longer, C8 and c8 are be used interchangeably.

t1

t2
t3

Figure 3.3: Example input T having three trajectories C1, C2 and C3.

3.2.2 Preprocessing

Since each C8 represents a list of edges and therefore a sub-graph of the original one, T can also be
interpreted as undirected graph ⌧ (+ , ⇢) as visualized in Figure 3.3. The graph creation is done in
the first two steps. Note that each edge is only added once even if it is used by multiple trajectories.
The result is depicted in Figure 3.4.

e1
e2

e3
e4

e18

e17
e16e15

e14

e5 e6 e7 e8 e9
e10
e11

e12
e13

e23 e24
e25

e26
e27

e19
e20

e21
e22

Figure 3.4: Graph ⌧ (+ , ⇢). Extracted from the input T defined by Figure 3.3.

3.2.3 Edge-Labeling

To keep track, which edge represents which trajectories, a list at each edge storing this information
could be introduced. This, however, is not e�cient for the following reasons:

1. Memory: A list of trajectory references has to be stored for each edge. The list grows with
the number of trajectories passing the edge. Adding a new trajectory (consisting of : edges)
into the graph results in adding : list entries.
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3 Segment Graph

2. Time: To compute whether two edges are part of the exact same set of trajectories, iterating
over all list entries and executing pairwise comparisons is required, which takes worst case
linear time in the number of referenced trajectories.

To resolve both issues, an external data structure is proposed, to keep track of trajectories passing
each edge while only using pointers for each edge: The list of paths traversing an edge is managed
using a concept similar to a finite-state automaton. An empty state machine is initialized, only
consisting of one starting state which we call empty state Bn . Implicitly all edges are in state
Bn before they are added. Every time a path edge 4 from a trajectory C is traversed, a check for
graph-existence is performed. If present in the graph, one transition from the current state B to the
followup state B

0 which represents the same set of trajectories it already had plus the new trajectory
C. If no such transition B

0 = X(B, C) exists, first both the new state B
0 and the pointer linking from B to

it is created. Then, the edge gets labeled B
0.

An example is shown in the Figure 3.5 below.

t1

t2
t3

(a)

s1 s1 s1
s1

s2

s2

s2
s2

s3 s3 s3

s4 s4

(b)

s1t1

t2 s2

s4

s3
t2

s!
t3

(c)

Figure 3.5: Example edge adding: (a) shows the input graph, (b) its corresponding edge states after
inserting, and (c) the created transition data-structure.

Only storing a pointer for each edge which links to an internal trajectory passing state will ensure
small storage requirements per edge. Also, checking two edges for having the same list of trajectories
passed can be done in constant time by simply comparing their state-pointers.

3.2.4 Merging Edges

The data structure created during the edge-adding procedure will significantly reduce the complexity
for merging edge strokes to paths, since only neighboring edges have to be checked for their state
pointers. The merging approach is straight forward: All graph components are marked as not
merged yet on initialization. Then, all vertices are iterated through to check if a merge is applicable.
A merge is possible if the current vertex has only exactly two outgoing neighbors in the same state
(this node is then called a link node) and it has not been merged yet.

If a link vertex allows a merge, a search along the outgoing paths to the left and right is performed
to find the first vertices which are no longer merge-able. A sketch for such a node E is depicted in
Figure 3.6. They are called B and C respectively. Along each path every merge-able vertex is marked
and stored in a list. Once the path merging is competed, a new segment consisting of all inner nodes
(those which just got marked) sorted in correct order is created having the end-nodes B and C .
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v

(a)

s
t

(b)

Figure 3.6: Example: Single merge step. (a) shows the search starting from link node E, marking
all nodes on the way as invalid. In (b), a new B-C-segment is added and its traversed
vertex list is stored.

After all nodes have been processed, the updated graph is returned. The edges which have not been
removed during a merging phase are kept as segments without inner nodes. This results in the
graph ⌧ which only uses a subset of input vertices. After the merging step, the initial example from
Figure 3.3 would look like the following:

Figure 3.7: SGA’s resulting segmented connecting graph. The transparent nodes are not part of
the graph any longer, but stored in the correct order at each segment-edge.

3.3 Running Time Analysis

The size of the input PF output T is denoted as follows: |T | = Õ
C 2T |C | with |C | being the number

of vertices the path C visits. Nodes can appear several times, since round trips or self-intersections
are not excluded explicitly. Note that the number of edges of C equals |C | � 1, hence it su�ce to
proof an upper runtime bound for |T |.

For the analysis it is assumed that maps have amortized constant reading and writing times.

Lemma 1 The segment graph construction can be done in O(|T |) time.

P���� The vertex creation is realized by two loops, traversing each node exactly once, and therefore
⇥( |) |) time is guaranteed. For adding the edges, each edge is sequentially loaded once, both ends
are first sorted and inserted into the map, if the vertex is not stored yet. Again, only constant time
per iteration is needed. The labels are obtained similarly: A new edge gets a new state assigned, an
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3 Segment Graph

Algorithm 3.3 Segment Graph Creation (Low Level)
1: procedure ������V�������(T )
2: +  []
3: <0?E  {}
4: for C 2 T do

5: for E 2 C do

6: if E 8 <0?E then

7: <0?E (E) := |+ |
8: +  + [ ������V�����(E)
9: end if

10: end for

11: end for

12: return + ,<0?E

13: end procedure

1: procedure ������E����(T )
2: ⇢  []
3: <0?4  {}
4: " = ((,⌃, Bn , X, �)  ({Bn }, {0, 1, ..., A � 1}, Bn , X, ;) // Initialize the trajectory state

machine
5: for C 2 T do

6: for 4
0 = (D0, E0) 2 C do

7: 4 = (D, E)  (min{D0, E0},max{D0, E0})
8: if 4 8 <0?4 then

9: <0?4 (4) := |⇢ |
10: B

0  " .����T���������(Bn , C) // Creates B0 and X(Bn , C) := B

11: ⇢  ⇢ [ ������E���(4)
12: else

13: B BC0C4(4)
14: B

0  " .����T���������(B, C) // Creates B0 and X(B, C) := B
0 (if not present

yet) and returns X(B, C)
15: end if

16: BC0C4(4) := B
0

17: end for

18: end for

19: return ⇢ ,<0?4

20: end procedure
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Algorithm 3.4 Merge Edges to Path-Segments
1: procedure �����T�S�������(+ , ⇢)
2: ⇢  []
3: (  []
4: +(  []
5: ����A��V�������R���(+)
6: ����A��E����R���(⇢)
7: for E 2 + do

8: if ���M����(E) then

9: E.isVirtual True
10: B, cB  ����P���E��A��M����(E, E.neighbors[0])
11: C, cC  ����P���E��A��M����(E, E.neighbors[1])
12: c  C�����S������(B, C, cB, cC )
13: (  ( [ c

14: end if

15: end for

16: for {D, E} 2 {4 2 ⇢ |4.isVirtual = False} do

17: (  ( [ C�����S������(D, E, [], [])
18: end for

19: +(  {E 2 + |E.isVirtual = False}
20: return +( , (

21: end procedure

1: procedure ����P���E��A��M����(E,F)
2: c = []
3: 4  {E,F}
4: while ���M����(w) do

5: F.isVirtual True
6: c  c [ F

7: 4.isVirtual True
8: G  ���N���N�������O�P���(E,F)
9: E  F

10: F  G

11: 4  {E,F}
12: end while

13: 4.isVirtual True
14: c  c [ F

15: return c

16: end procedure

1: procedure ���M����(v)
2: return v.isValid ^ v.isLinkNode
3: end procedure
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3 Segment Graph

existing edge updates its label by creating a new state originating from the previous edge state. A
neighbor counter and a map of outgoing edge pointers to each vertex are also added to allow for
constant merge-comparison- and access times later.

The merge process checks each vertex for being merge-able and traverses its neighbors if so. Since
an already merged node has been marked as invalid, a second merge process when visiting the
vertex a second time is circumvented. Each inner node is therefore visited at most twice, each
round using constant time. An intersection node E is visited at most 346(E) + 1 times (i�. it has
346(E) many adjacent merge-able paths connected), but since each merge-able path has to have at
least one inner node, which contributes to two intersection-node comparisons, the total number of
intersection-node-visits is upperbounded by 2 · |+8==4A |, where +8==4A describes the total set of inner
nodes. Latter is again upperbounded by the number of vertices. Creating a new segment requires to
copy all its corresponding inner nodes (amortized |+8==4A |), and linking the two end nodes. After
creation, the path edges entering B and C gets replaced by the created segment-edge. Updating the
links also requires constant time.

Hence, the total graph creation can be done in amortized O(|T |) time. ⌅

Theorem 1 (Runtime Optimality) The SGA’s asymptotic running time is optimal.

P���� Since each input vertex has to be read at least once, a lower runtime bound of ⌦( |T |) is
obtained. This, together with Lemma 1, yields the statement. ⌅

3.4 Discussion

A conclusive discussion based on transmission size and timing measurements using real world
datasets follows. The chapter closes with a use case suggestion based on the evaluation’s results.

3.4.1 Implementation

Before the transmission and creation performance is analyzed in Section 3.4.2, a few typical output
examples are shown in Figure 3.8. Besides the choice for the bounding box, temporal restrictions
can be set using either time interval or weekday filters. When the user hovers over a segment, its
color changes to light blue. Clicking a segment colors all trajectories passing through it darker
blue, and additional information like vertex, edge and trajectory IDs are shown. The Trajectory
Super-Imposition ID is a reference to a correct edge state B 2 (, i.e., this value is identical for all
segments having the exact same trajectories in use. By default, the Segment Graph’s unpacking
level is determined by the zoom level on request time, but can be changed by switching the packing
level.

3.4.2 Validation

This section briefly explains the experimental setup including the hardware and parameter range
choices which were used for creating the measurements shown in this chapter’s second half.
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3.4 Discussion

(a) (b)

(c)

Figure 3.8: Typical SGA outputs: (a) visualizes real world data from the Saarland Dataset, (b)
from the Cuba Dataset. (c) shows a user interaction on a Trajectory Graph segment
in the center of Saarbrücken, where all trajectories passing through this segment are
highlighted using the internal graph structure for traversal.

Setup

To evaluate the implementation, two devices of di�erent performance were used:

(1) Threadripper: AMD Ryzen Threadripper 1950X (16-Core) with 256 GB RAM and Toshiba
OCZ RD400 NVMe SSD (2.6 GB/s)

(2) ThinkPad: Lenovo ThinkPad T440s (2-Core) with 8GB RAM and SanDisk SDSSDA240G
(479 MB/s)
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(a) Saarland Trajectories’ density map
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Figure 3.9

For all frontend evaluations, Firefox 94.0 (64-bit) [13] running on the ThinkPad machine was used.
Besides the times needed to process the frontend and backend data, the transmission size was
recorded.

For evaluation, five di�erent bounding box sizes were chosen: Each bounding box has a randomly
chosen center and its size is determined by the graph’s bounding box, down scaled by a constant
factor between of 1/2 (half the original’s side lengths), 1/4, 1/8, 1/16 and 1/32. The zoom scale
varied between 1 and 18, where the former returns a graph on a continental and latter a street-scale
zoom. On the backend side, each measurement results from creating 20 requests and averaging the
sizes and timing results. Frontend evaluation measurements were calculated using the 20 backend’s
request responses, each plotted five times and averaging over all values.

For this work, a reasonable response time is defined to be smaller than two seconds on average.
This reflects the maximum tolerable waiting time found in [38]. For further argumentation, package
transmission sizes are weighted by 0.279 s/MB, which is the average Germany internet transmission
download speed of 28.7Mbps, according to a survey from 2020 [20] in which 87 524 176 592
connections were evaluated.

A total processing time of one second, for example, together with a package size of 3.5MB would
be a response within approximately two seconds for an average user.

Measurements

Results for exporting Segments Graph data from the Saarland Dataset are listed in Table 3.3 and
were calculated on the ThinkPad. The transmission sizes increase for larger bounding boxes and
tend to increase for higher zoom levels. Closer inspection shows that the response times for smaller
request boxes fluctuate more than for larger boxes, which can be explained by the non-homogeneous
distributions of paths, meaning areas of di�erent path densities, e.g., high density around cities and
low densities in rural areas, large lakes or unpaved terrains. For illustration, the di�erent densities
are shown in Figure 3.9a. Backend calculation takes at most 0.52, frontend up to 0.95 seconds.
Figure 3.9b shows that there is a strong positive correlation between the data sent and the needed
plotting time.
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3.4 Discussion

(a) Intra-city analysis (b) Macroscopic analysis

Figure 3.10: Use case analysis: While (a) shows good support for intra-city analysis, SGA’s output
helps only little for small zoom scale based macroscopic analysis.

For zoom boxes of up to 1/4 the original graph box’s edges length, responses do not exceed 0.85MB
and processing takes less than 0.7 seconds on average. Request boxes of size up to a scale factor
1/2 take up to 1.5 seconds processing and approximately 2MB in size. Therefore, all request boxes
in the covered parameter domain are within the allowed limit.

Measurements for the Germany Dataset, which ran on the Threadripper, are shown in Table 3.4.
Analogously to the Saarland set, times and network tra�c rose for either enlarging the request box or
increasing the zoom level. Since the graph is larger in size, even small boxes yield large transmission
sizes. For the smallest request parameter pair (zoom = 1, size factor = 1/32), for example, 42 times
more data is sent compared to its Saarland equivalent. Di�erent from the Saarland’s requests, there
are some parameter combinations for which the backend exceeded a generation time of five seconds.
In this cases, the generation process was stopped and the final time was calculated by averaging the
results sampled so far. Also, the frontend was not able to plot all recorded data instances, especially
for larger request sizes, the client simply stops working or freezes.

3.4.3 Summary

The Segment Graph exporter module nicely visualizes street usages and supports highlighting of
single trajectory groups. Streets of about the same usage are quickly identified using the five color
scale. Lookup for trajectories which pass a single edge stroke is straightforward.

For larger bounding boxes, however, the views becomes less meaningful and transmission costs
rise. Already on graph views with size about half of Saarland’s side lengths, the network tra�c and
processing times reaches the defined limit.

Regarding the use cases listed in Definition 1, while the SGA well supports microscopic analysis
and partially assists inter-city analysis work, the method is not suitable for macroscopic tasks due to
its limited filtering and abstraction options. Two representative outputs are shown in Figure 3.10.
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Zoom

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Factor 1/32

Frontend [ms] 12.1 14.8 20.9 15.5 20.7 18.7 14.9 34.1 41.4 70.1 37.5 50.4 36.9 64.0 46.8 27.6 44.9 34.1
Backend [ms] 8.3 12.6 11.1 12.5 14.7 16.5 14.6 27.0 31.2 52.3 25.1 43.6 33.1 52.3 32.0 22.8 40.0 26.2
Size [KB] 20 22 23 27 36 32 29 61 71 122 44 96 81 126 81 62 101 64

Factor 1/16

Frontend [ms] 27.6 37.3 54.0 19.4 67.2 41.1 50.3 39.5 79.1 55.5 98.3 48.6 68.0 104.4 91.7 56.6 76.1 80.7
Backend [ms] 13.1 16.7 15.0 15.3 40.1 30.5 35.7 26.3 52.6 38.9 49.1 37.3 51.4 71.0 62.8 52.4 67.1 56.4
Size [KB] 44 48 41 35 103 73 87 68 137 97 132 95 132 187 169 131 179 152

Factor 1/8

Frontend [ms] 52.3 69.3 88.5 105.3 81.8 106.1 92.5 126.4 132.2 105.5 171.2 104.8 121.5 174.5 100.2 131.5 136.5 185.8
Backend [ms] 25.7 31.1 27.9 52.4 44.9 75.6 63.1 88.7 89.8 79.0 107.6 75.1 101.3 115.6 67.6 101.4 115.9 120.9
Size [KB] 72 85 86 158 126 200 170 235 237 191 289 201 243 333 193 285 310 338

Factor 1/4

Frontend [ms] 130.7 166.3 170.2 146.0 211.7 190.8 234.6 287.2 385.6 323.7 327.9 315.4 403.9 264.0 355.1 289.8 360.8 389.7
Backend [ms] 54.4 75.8 79.8 92.2 120.8 123.9 141.6 173.1 201.9 226.0 203.4 224.4 273.7 183.6 227.1 219.1 264.9 286.1
Size [KB] 196 241 249 261 348 355 392 504 570 595 581 612 743 521 681 652 820 803

Factor 1/2

Frontend [ms] 316.5 335.5 379.3 419.4 557.5 492.3 604.6 601.1 787.9 654.1 872.2 719.6 752.4 900.1 782.3 761.7 869.1 947.5
Backend [ms] 150.8 161.0 189.6 236.7 277.6 295.5 352.0 373.5 435.7 385.8 495.8 435.8 526.4 483.3 465.4 502.3 589.3 561.9
Size [KB] 517 551 607 734 863 925 1154 1155 1447 1240 1648 1431 1718 1703 1554 1754 2048 1992

Table 3.3: Segment Graph measurements: Saarland Data.
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Zoom

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Factor 1/32

Frontend [s] 0.54 0.55 0.52 0.65 0.55 0.76 0.62 1.78 3.05 0.99 1.05 1.53 1.47 1.12 0.95 1.38 1.77 1.56
Backend [s] 0.12 0.13 0.13 0.23 0.20 0.32 0.27 0.79 0.86 0.49 0.53 0.87 0.81 0.64 0.50 0.83 0.91 0.90
Size [MB] 0.82 0.91 0.82 1.29 1.08 1.62 1.45 3.76 3.80 2.30 2.56 3.91 3.39 2.91 2.48 3.61 4.24 3.95

Factor 1/16

Frontend [s] 1.02 0.97 1.34 1.73 1.67 1.72 2.65 1.82 2.14 2.56 4.46 - 2.64 - - - - -

Backend [s] 0.25 0.25 0.41 0.51 0.64 0.65 1.20 0.81 1.10 1.26 3.09 3.60 1.58 2.33 2.54 1.67 2.17 2.44

Size [MB] 1.84 1.80 2.56 2.86 3.56 3.64 6.01 4.06 5.25 5.89 11.63 12.26 6.70 9.60 10.79 7.80 9.46 10.84

Factor 1/8

Frontend [s] 2.67 - - - - - - - - - - - - - - - - -

Backend [s] 0.69 1.39 1.05 1.51 2.30 2.25 2.93 2.97 4.87 5.40 3.27 3.69 11.32 6.81 4.08 4.32 5.77 13.25

Size [MB] 4.99 9.51 6.66 9.00 12.45 11.68 14.53 14.55 21.71 23.89 15.84 16.96 42.15 31.78 18.29 19.44 25.63 52.69

Factor 1/4

Frontend [s] - - - - - - - - - - - - - - - - - -

Backend [s] 3.90 4.46 6.30 8.79 3.68 5.96 14.48 17.30 7.01 8.16 8.75 10.98 14.65 5.13 14.85 13.75 31.90 20.91

Size [MB] 27.20 29.63 37.71 48.50 20.23 31.00 70.28 77.03 31.59 38.46 41.77 51.12 67.83 25.37 67.87 65.13 131.21 96.17

Table 3.4: Segment Graph measurements: Germany Dataset. Bold values indicate generation timeouts resulting in a smaller number of samples.
Missing values indicate plotting timeouts.
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4 Batched Transmission

As discussed earlier in chapter 1, the number of points for a single trajectory might be arbitrary
large. Especially for larger zoom scales it intuitively makes sense to omit less important points for
transmission instead of posting all data points for each trajectory immediately. In Figure 4.1 a very
rough approximation is sent first improving over time. If all points are sent at once, the user has to
wait until the whole data transmission process completes to see any of the results or updates. The
system’s response time is much higher than necessary since always a fully unpacked path is shown
although at large zoom levels a rough trajectory is su�cient. Clearly, users do not like waiting,
and websites with long response times produce greater frustration [50] However, this frustration is
eased if some form of vague sketch is shown first, which improve over time [38]. Analogously, it is
state of the art for normal websites to first load the structural template and then fill it with content
little by little.

This chapter touches on transmitting path data in chunks. While the other chapters focus on
CHs, this chapter isolatedly shows some key concepts of batching mechanisms as a basis for
future implementations and works with an unpacked edge data structure. This allows for constant
access time to the 8th node of a trajectory. Note that without preprocessing this is not possible for
compressed paths: The lower level edges are only accessed through an unpacking procedure.

This chapter is split into four sections. In the first part, the main architecture and communication
dependencies are explained and a metric is introduced to allow for a transparent and fair comparison
of the methods. The subsequent second and third parts, present di�erent transmission mechanisms.
They di�er in the order of traversal: Section 4.2 researches the more general case, where nodes are
stores in a random-access manner index by the the order in which the path visited the nodes. To
connect the transmission idea, the CH structure is included in Section 4.3. It still requires a full
unpacking on the server side, but takes information about the unpacking hierarchy into account.
Eventually, the chapter closes with a discussion of the results and findings.

Figure 4.1: Example for continuously improving the plot using updates: simplified path (blue)
approximating the original path (red) over time after 1, 3 and 4 received updates
respectively.
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4 Batched Transmission

4.1 General Setting

Before the implemented methods are shown, a more abstract overview about the architecture and
the evaluation methods is presented. The latter will become useful when analyzing the methods in
the discussion. For the sake of simplicity, only one trajectory is considered in this chapter and time
annotations are ignored meaning, meaning T = [C] = [c]. The generalization to a set of trajectory
is straight forward.

4.1.1 The Order of Transmission

Intuitively it makes sense to transmit data partially to allow for short interaction times. The choice
order in which nodes should be transmitted is, however, not intuitive. From a theoretical view point,
there are =! possible orderings in which a length-=-path can be sent. Also, some methods require
additional meta information that allow to reconstruct the path given only a stream of points.

Finding a good ordering, meaning a quick visual convergence to the original path even on only
a fraction of points is not the only aspect that matters. Figure 4.2 shows, by way of example,
intermediate results of varying quality for di�erent order choices. The size of meta information
which to be transmitted to recombine the packages must also be taken into account and should be
su�ciently small. One of the goals of this chapter is to find a method that balances this trade-o� by
discussing the proposed methods in a transparent and measurable way.
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Figure 4.2: Example of di�erent transmission order choices for ten inner nodes after transmitting
four nodes. (a) chooses [3, 5, 7, 9] and (b) [2, 4, 6, 8] first. The original path is colored
red.

4.1.2 Architecture

In our client-server-landscape, only three components have been added to allow for iterative
refinement. On the server side, an update request module listens for incoming connections and
sends either an initial package or an update batch. The client’s Batch Decoder modifies the current
path with the incremental update using the meta information sent along with the new nodes. Finally,
the plotter updates the view.
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Client Server

getTrajectoryForQuery(box)

!", $0 $!" = [$0, ∆$1, . . , ∆$#]

getTrajectroyUpdateBatch(id, 1)
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getTrajectroyUpdateBatch(id, k)
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……Batch
Decoder

Plotter

$1

$#
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Figure 4.3: Main batching overview: The server receives a request and sends a response containing
the trajectory and a very rough sketch. Iterative requests are used to refine the shape,
until eventually the full point list is loaded.

Figure 4.3 shows the overall communication sketch: The client starts by requesting a trajectory
within a defined bounding box from the server. After doing the calculation using the PF algorithm
(see Section 2.2), the server immediately responds with the found trajectory ID and a rough sketch
of the trajectory T0 using only a few points. A refined shape is obtained on the client’s side by
iteratively requesting update batches from the server which are built on top of each other. Wherever
possible, the update policy is enforced to only rely on stateless server communication to ensure
scalability and integrate the representational state transfer (REST) pattern [22].

4.1.3 Quality Measure

The goal of transmitting the data in batches is to obtain a quick and good estimate of the original
trajectory line shape quickly and omit a large waiting time by iterative loading of details. To measure
the quality of a partial solution after integrating 8 batches, the path distance measure o�set error is
used. It measures the largest gap between the original path T and its simplification T 8. To do so,
the same idea as presented by Douglas and Peucker in [19] is used, i.e., calculating the distance
between each original point and its nearest point on the respective path T 8 . This distance is called
maximum o�set error (MOE). In the paper, the authors were mostly interested in finding a point
violating a certain o�set tolerance. In this work, however, finding the maximum o�set tolerance for
which all points of T are still covered, is of interest.

!! !

Figure 4.4: Visualization of the maximum o�set error between T and its approximation T 8.
Distances are drawn in orange. The maximum o�set point and its corresponding
tolerance area are highlighted in mocca.
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To compare di�erent paths with each other, the absolute o�set measurements can be scaled w.r.t
di�erent path properties. In this work, the relative maximum o�set error (RMOE) is defined as
the fraction between the absolute o�set error and the path’s length. Scaling a path in size does not
change its relative o�set error.

4.1.4 Naming Conventions

To declare a naming for the input path T , a general constructive method for any path is given: Start
with an initial graph without shortcut edges and mark an arbitrary D-E-path made up of = � 1 plain
edges. Label the nodes according to their sequential order, starting with 1 for D and ending with =

for E. After inserting shortcut edges, i.e., compressing the path, the new D-E-path returned by the
PF instance has only =

0 � 1 edges, where =
0 is typically much smaller than =, but at most the same

size. This naming scheme will be used throughout the whole chapter.

The abstract update rule is defined as follows:

T 8+1 = process_update(T 8

,�T8+1)

where T 8+1 is an improved version of T 8 after applying update information �T8+1. T 0 is an initial
path representation returned as a response for the very first server request. The batch decoder on the
client side processes the update patches and includes the new information into the existing rendered
structure. It yields a plain point list T 8+1 based on the initial points and all 8 + 1 update batches.

As mentioned earlier, a root edge implies a tree structure. Unpacking a list of root edges yields a list
of vertices in correct order of traversal at recording time. Given that list, any other (search-) tree
can be built on top of this ordered vertex list. In the following chapters, either artificial trees are
built in case of the unpacking independent versions, or the given edge tree is utilized in case of
unpacking dependent CH-implied trees.

Starting from that convention, the only topic that still remains open is the traversal of trees. While
Section 4.2 used artificial search trees, 4.3 deals with the already given CH edge hierarchy.

In the following, a rough summary of hierarchical-traversal methods is given. The methods below
are classified according to their iteration order, meaning its characteristic hierarchy traversing.

Sequential Ordering

The sequential order traversal simply processes, i.e., prints, the leftmost element which has not
been processed yet. This results in a visiting order [1, 2, 3, . . . , =], hence its name. It can also be
seen as an inorder traversal of any tree spanned on top. An CH-Inorder-Traversal iterator can be
implemented e�ciently by always unpacking the currently left-most edge and pushing the traversed
edges to a stack until a non-shortcut edges is found. If so, its left node reported. Continue with the
stack top, until there are no more edges left. Make sure to also report E.
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Level Ordering

The level order reports nodes from top to bottom and left to right, where a node’s level is defined by
its distance to the root node. Even though the traversal is trivial once a tree is given, the output highly
depends on the tree-construction and its resulting topology. Therefore, the tree shape algorithms
below are defined in great detail.

Further Orderings

For the sake of completeness the traversing methods post- and preorder are also mentioned. The
former processes the left and right child nodes first, the latter starts with processing the current
node and then continues in left-right child order. These methods will not pursued any further, since
they neither show as simple representation describing properties as inorder nor have coarse-to-fine
properties as in level-order.

4.2 Unpacking-Independent Approaches

In this section the hierarchical structure which is implicitly given by the edge-unpacking process
as described in Section 2.1 is ignored. Instead, a trajectory is defined as an ordered list of points
where the first point is called D and last point E:

T = [?0, ?1, . . . , ?=�1] = [D, ?1, . . . , ?=�2, E]

Further it is assumed, that the first response returns the first line approximation (D, E), representing
a straight line connecting the first and the last point:

T 0 = [D, E]

Since D and E are already known to the client, they are ignored by the further transmission-algorithms.
All subsequent responses will refine that list until the final update batch �T: will stop the refinement
process and T : = T holds.

4.2.1 Sequential-Order Update

The most obvious but qualitatively poor conditioned method is the transmission of the remaining
points in sequential order, grouped into

⌃
=�2
1

⌥
at most length-1 sized batches (with equality i�.

= ⌘ 2 mod 1). We call this method Sequential Order Update (SOU). Accordingly, the following
update-batches and -rule apply:
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4 Batched Transmission

�T8 =
(
[? (8�1)1+1, ? (8�1)1+2, . . . , ?81] , if 8  =�2

1

[? (8�1)1+1, ? (8�1)1+2, . . . , ?=�2] , else

T 8+1 = process_update(T 8

,�T8+1) := (T 8 \ [E]) [ �T8+1 [ [E]

Since all transmitted points are already in the correct order without any gaps, the update routine on
the client side becomes trivial. The only requesting parameters for querying the next batch are the
trajectory ID and an o�set, where to start the next data chunk.

This transmission method obviously su�ers from a small update locality: While the first segments
along the path gets refined right at the beginning, loading the end path nodes close to E is postponed
until the very end. This updating scheme is visualized in Figure 4.5.

(a) (b)

(c) (d)

Figure 4.5: Example update process using SOU batches with a batch size of 300 points each applied
to path #166 from the cuba dataset: (a) initial batch, and path resulting from (b) 5, (c)
7, and (d) 9 consecutive updates.

Sending a single point at each update is not desired, because there’s a lot of overhead introduced
by the Hypertext Transfer Protocol (HTTP) protocol [21] and routing communication. Hence,
in practice we send a batch of 1 > 1 points each time. As one will see later, only compatibly
little overhead for sending several smaller point lists compared to the other methods is introduced.
Especially for larger batch sizes (such as =/2 or =/4), the overhead is asymptotically constant and
therefore negligible.

To introduce a more global update variant, level-ordering is applied next.

4.2.2 Level-Order Update

Labeling the =̂ = = � 2 inner-nodes (those which are not D,E) in order of their visit, ?1 gets label 1,
?=�2 label =̂. According to their label, a binary search tree is then constructed from the nodes. If
there are exactly =̂ = 2: � 1 nodes (: 2 N), a search tree can be constructed which is both saturated
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4.2 Unpacking-Independent Approaches

and balanced. A formal proof can be found in Appendix A.1. In all other cases, various methods
for construction can be used each having di�erent properties. Two approaches will be presented in
the following assuming to have

�
2;�1 � 1

�
+ C nodes, where ; is the largest power of 2 for which

2;�1 � 1  =̂. This bounds C to be in
⇥
0, 2;�1� ✓ N.

Center aligned ordering: As an intuitive strategy, the most central node could be determined being
tree-root. From that, the left and right neighbors are determined recursively. In the case where there
is no central node, say there are 2: nodes, the :th is chosen. This ensures a tree with at least ; � 1
entirely full levels (and the ;th layer being full if and only if C = 0). An example for this ordering is
depicted in Figure 4.6a. To transmit the level-ordered nodes, one could send nodes layer-by-layer
(as it is done in the example: [10], [5, 15], [3, 7, 12, 18], . . . ), or one could group layers together to
better equalize the sizes and reducing the number of batches send, which especially makes sense
at the beginning, when levels are small (e.g. [(10), (5, 15)], [(3, 7, 12, 18)]). While each of the
; � 1 levels is obvious to de- and encode, transmitting the last layer, however, is more expensive
in the (likely) case where : > 0. This is because the information where empty leaves of the tree
are stored needs to be encoded, too. This can be done by using an index list, add some skipping
elements in-between blocks or by appending a bit-array indicating on which position to store a
value. Alternatively, a di�erent centering element to start the binary recursion with could be chosen,
as is done in the following method.

Left aligned ordering: To convert the input to the pleasant case where the tree is completely balanced
and saturated, appending virtual elements is key. In this case, =̂ is already one less than a power of
two, there’s nothing to do. Otherwise, we add 0 virtual nodes, such that

�
2;�1 � 1

�
+ C + 0 =

�
2; � 1

�
,

meaning the last layer is now complete. If we then perform the same algorithm as stated above, we
obtain a tree with the special property that no gap emerges on any layer, some levels are just not
filled up completely. A short proof for this as well as a more formal definition of a gap can be found
in the appendix (Theorem 7, Definition 11).
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(a) center-aligned level order
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(b) left-aligned level order

Figure 4.6: Ordering strategies applied to the input [1, . . . , 20]. Thus, ; = 5, C = 5, because
20 =

�
25�1 � 1

�
+ 5 and

�
25�1 � 1

�
 20 <

�
25 � 1

�
. The batches are highlighted in

color.

To emphasize on the fact that the search tree serves as a concept for visualizing and understanding
(while implementing, no tree has to be built), this method is called Plain Level Order Update
(PLOU).
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When the update step is defined in more detail below, 0 virtual nodes are assumed.

(4.1)
�8 = [2;�8 + 2;�8+1

< |0  < < 28�1], 1  8  ;

�T8 = [? 9 | 9 2 �8 ^ 1  9  =̂], 1  8

T 8+1 = process_update(T 8

,�T8+1) := zip(T 8

,�T8+1)

The 0=3 condition in the definition of �T8 assures not to include the virtual nodes, since they do not
encode any useful update information. The zip operation merges two lists by alternately picking the
next element in the list, starting with the first argument. If one list becomes empty, the algorithm
stops by appending the remaining other list. An example is shown below in Figure 4.7.

u vp1 p2 p3 p4 p5 p6 p7 p8 p9 p10!"#(T #, ∆T#$%)

∆T#$%

T #

p1 p3 p5 p7 p9

u vp2 p4 p6 p8 p10

Figure 4.7: Example update processing the zip-operation.

Sending nodes in level-order sequence matches a coarse-to-fine approach: Sub-sampled path points
are sent first, details are added over time. Figure 4.8 shows the process with an example trajectory
from the Cuba Dataset. This ordering updates edges top-down, resulting in a more global updating
behavior.

(a) (b)

(c) (d)

Figure 4.8: Example update process using PLOU batches (left aligned) applied to path #166 from
the Cuba Dataset: (a) initial batch with first update, and path resulting from (b) 3, (c) 5,
and (d) 8 consecutive updates.
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Requesting and Transmission Using the indexing from Equation (4.1), the client only has to
transmit the level 8 to receive the next batch, so no additional overhead compared to SOU is
introduced. As the level increases, usually the number of elements also does. In the worst case,
namely C = 0 meaning that the tree is fully saturated and balanced, the number of transmitted
elements increases every request by a factor of two. To avoid having batches of fundamentally
di�erent sizes, grouping of layers becomes important. Each time a length-1 batch is created, either
many (for 8 being small) or just a few layers (for 8 close to ;) are grouped together. Again, only
the next requesting level has to be transmitted and a minimum transmission size must have been
defined in advance. This idea can be further improved by specifying a fixed number of points to
be transmitted: From the current level-index pair, the next 1 elements are retrieved. To do so, a
marking has to be added to let the client know, which elements belong the which level, since not all
levels are fully occupied. In terms of transmission cost, however, this only leads to an overhead of ;
elements in total, which is in the order of O (log(=)).
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Figure 4.9: Showing an example for min-1-sized and fixed-1-sized batching. In this example, 1 is
fixed to 3.

4.2.3 Randomized Order Update

Another sending order, named Randomized Order Update (ROU), is obtained by randomly sampling
a permutation for the =̂ remaining nodes. The random ordering also sub-samples the input list
globally, because each of the remaining positions have the same chance of being picked next. This
avoids point clustering as mentioned for SOU.

A downside is that the server has to maintain some kind of list of all already traversed vertices, to
avoid repeating nodes – a simple counter value as with the previous shown methods does not su�ce
on server side. For requesting on the client side, however, storing an index is enough. Nevertheless,
to correctly decode the stream of incoming nodes, some kind of meta information needs to be sent.
In the easiest case, the server sends the absolute index for each node.

4.3 Unpacking-Dependent Approaches

The methods so far fully unpacked the path, ignoring its hierarchical structure of shortcut edges
induced by the CH. The following methods integrate the edge-composition into traversing. To
better distinguish them syntactically from the previous ones, the names are prefixed with unpack to
emphasize the process of decompression.
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4.3.1 Partially Unpacked Sequential Update

A straight-forward generalization of the method shown in Section 4.2.1, i.e., SOU, unpacks the path
level-by-level to a certain depth to obtain : consecutive edges, hence : � 1 new inner vertices. D, E
and the inner vertices are then send to the client as an initial batch. For each of the : edges, each
batch returns a constant number of level-order successors, until there are no vertices left. Due to
similarity to SOU, it is called Partially Unpacked Sequential Order Update (PU-SOU).

As a special case the initial path gets unpacked only to its root-edges (no unpacking is performed),
whose respective vertices are part of the initial batch. Then, a sequential iterator is used for each of
the edges on server side to interactively refine the edge. To keep track of where to insert the new
vertices, we also pass the inserting positions along with the current round’s vertices. Since this
method serves well as demonstration, it will be used later having the name Rootedge Sequential
Order Update (R-SOU).

Figure Figure 4.10 shows the algorithm applied to a sample artificially generated path, which
consists of five root edges.
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Figure 4.10: Example update process using R-SOU batches with a batch size of 1 = 2. The five
root edges are colored in red, the unpacked path in blue. (a) Initial batch, (b) first, and
(c) third update batch. The color codes are: black: not sent yet; magenta: part of the
current batch; gray: already sent.

As part of the respond, the root-edges-vertex list T0 = [D, E1, E4, E9, E12, E] is transmitted. Since each
edge is iterated in sequential order, the next batch contains a mapping, to link the updates for each edge:
�T 1 = [41 : [E2, E3], 42 : [E5, E6], 43 : [E10, E11]]. The final update is �T 2 = [41 : [E7, E8]].

Because the method extends the simple sequential one by running multiple iterators in parallel,
similar characteristics are inherited. In the extreme case of choosing : = 1, assuming there exists a
shortcut edge between D and E, the methods are in fact identical.
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The choice of : remains a matter of further investigation. Choosing a larger value results also in a
larger initial batch, but more global improvement. A small : leads to similar locality problems as
SOU. The next method adapts to CH’s unpacking order.

4.3.2 Unpacking Level-Order Update

Starting from a set of root edges, unpacking yields a lower-level edge representation. When there
is no more shortcut edge left, the path is fully unpacked and uses all = � 1 edges which entail all
vertices, too. Unpacking one shortcut edge results in two new (shortcut) edges and one new node
connecting them. Thus, unpacking an edge gives one new vertex.

u
12 3 4

5 6
v

(a) (b)

0
1st

2nd 

3rd  

(c)

Figure 4.11: Obtaining unpacking level-order by an example path: (a) shows the path using plain
edges only with sequential labeling. In (b), all shortcut edges have been added, the
compressed path only consists of the (D, E)-shortcut-edge. Each shortcut edge breaks
up into two edges (see solid arrows) and new vertex is obtained (dotted arrows). The
unpacking yields a hierarchy (see (c)). traversing this tree in level-order outputting
the linked vertices for each edge, gives the final ordering: 3,1,5,2,4,6.

To get a unique node ordering w.r.t. the unpacking procedure, the root edges have to be merged
together. The details will be explained later in the scope of the proof for Lemma 2. From now
on, one can assume that each path can be represented by a single (artificially created) root edge.
Recursively unpacking yields the traversing order for underlying nodes. The important di�erence
between this and all other methods is, that the final absolute position for each new node is not
known to the server while unpacking: When an edge is unpacked and a new vertex emerges, it is
initially unclear, how many edges will be left (or right) to it. Therefore, the methods need to encode
the current level updates relative to the nodes one level before. Algorithm 4.1 shows the encoding
in greater detail. O�sets are set according to the parents o�set and gaps occurring on the previous
layer. Transmitting the vertices according to their unpacking order is denoted as Unpacking Level
Order Update (ULOU).

4.4 Simulation and Discussion

To investigate the theoretical properties in practice of the methods explained earlier, a testing
environment has been set up using the Cuba dataset (see appendix B) and �batches were compared
with each other. To make the results more meaningful, very short paths of size less than ten vertices
have been removed. For each method type, all paths are transmitted and the sizes for each update
batch and the resulting improvements are measured.
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Algorithm 4.1 Unpack-Level-Order Batching
1: procedure ����E���T�B������(4A>>C )
2: ;  0
3: current [(0, 4A>>C )]
4: next []
5: while |current| > 0 do

6: ordering(;) := []
7: left_nbrs 0
8: for all (o�set, 4) 2 current do

9: if 4.is_shortcut then

10: 41, 42  4.chi�dren

11: next next [ [(o�set + left_nbrs, 41), (o�set + left_nbrs + 1, 42)]
12: E4  41.target

13: ordering(;)  ordering(;) [ [(o�set, E4)]
14: end if

15: left_nbrs left_nbrs + 1
16: end for

17: current next
18: next []
19: ;  ; + 1
20: end while

21: end procedure

Accumulated Overhead

At first, the overhead introduced by the methods is analyzed. As a baseline, we transmit all
uncompressed data points at once. This clearly gives a lower bound on the total transmission size.
To begin with, for SOU, an appropriate value for 1 needs to be chosen�. The overhead behavior
changes fundamentally regarding this choice: For 1 = 1 the maximum possible overhead is attained,
because each vertex is requested separately. For 1 ! 1, eventually all points fit within the first
batch and the overhead becomes zero (meaning the ration gets one), as the path lengths increase. A
similar behavior is expected for ROU. Simulating the overhead using SOU on the Cuba dataset for
di�erent batch sizes is shown in Figure 4.12.
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Figure 4.12: Overhead for SOU compared to baseline for di�erent static batch sizes.

To adjust the parameter : reasonably, a fair setting can be achieved by equalizing the number of
packages sent on average. The level-order method sends order log2(=) many packages, having an
average of around 360 edges, this indicates 1 = log2(358) ⇡ 8.5. Hence, 1 = 10 is used in the
following, which is a reasonable approximation according to Figure 4.12.

The experimental results measuring the overhead for the di�erent methods are shown in Figure 4.13.
Regarding the overhead deviation, there is only very little variation for SOU and ROU. This
originates from the fact that the number of packages for a fixed transmission size correlates with
the length of the path, and therefore with the benchmark size. Level-order based methods transmit
small data chunks first, improving their overhead-per-sent-node ratio over time. For small paths,
the overhead is greater in relative terms. On average, the unpacking level-order introduces more
overhead than its plain variant. This can be explained by the more complicated node encoding,
which requires more meta information to be transmitted. Analogously, SOU outperforms the
random order update. On the first glance, R-SOU introduces very few overhead. This is because on
average ten percent of all edges involved in a path are root edges, meaning that ten percent of all
data is sent without any batching. From that point on, each edge gets refined using 1 = 10 points,
which yields very large batches in general. Sending only a few but larger badges implies, as already
mentioned, less overhead but longer updating times.
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Figure 4.13: Comparison of overhead sizes for the di�erent methods. For SOU and ROU, the
batch sizes were fixed to 1 = 10. The blue markers represent the averages, the boxes
separate the upper and lower quartiles, and the circles indicate outliers.
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As an intermediate result it can be noted that on average no level-order method transmits more than
35% overhead for the Cuba dataset, PLOU even stays within 20%. The overheads for random and
sequential order can be adjusted arbitrarily by varying : , but SOU needs slightly less overhead in
general.

Error Over Update Size

So far, only the package sizes for transmitting the batches has been analyzed. However, methods
to improve the visual representation fast (using few information only), are preferred – the visual
quality during the path-assembly has been ignored completely yet. To measure the visual quality of
an intermediate result at a given point in time, the RMOE metric from Section 4.1.3 is utilized.

To measure this time-dependent behavior, the quality is measured after each batch decoding and
plotting step. In addition, the simulation keeps track of update sizes to argue about the total data
sent.

To make more general arguments, it is necessary to average over all paths. The aggregation and
averaging procedure explained in the following is supported by the Figure labeled 4.14. In a first
step, the update sizes are normalized w.r.t the benchmark size. It is evident, that a measurement
can only be taken after a batch has been sent entirely. Concludingly, the error-reduction-over-size
function for each path C and each method < is given by a constant number of measurement points
B
(C)
8,<

. To average over multiple paths for a fixed method, the function q
(C)
<

is constructed by linearly
interpolating between sampling points and rescaling the domain to [0, 1]. Averaging gives a
meaningful aggregated function �<(G) = 1

#paths
Õ

C
q
(C)
<

(G). For plotting the final results, all �<(G)
are again sampled on an equidistant grid.

T 0
T 0 �T1 �T2 �T3 �T4 �T5
T 0 �T 1 �T 2 �T 3 �T 4

0% 100%s0 s1 s2 s3 s4

Figure 4.14: Sampling sketch explained for two methods (blue, orange). The bars indicate batches
and the bar’s widths represents data sizes needed for transmission. First, the sizes
were determined by scaling w.r.t the baseline transmission size (gray). Each path and
method yields di�erent sampling points. For the sake of simplicity, in this example
only the sampling points for the orange method have been added.

Before the simulation results are shown, an interesting remark about q (C)
<

is made: While the error
decreases to a final value of 0 after the last update has been transmitted, it is not guaranteed to do so
monotonically, i.e,. the error can increase after applying an update batch. Using more points may
shift the already well approximating rough line which results in a larger maximum distance. This
phenomenon is illustrated in Figure 4.15.
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4.4 Simulation and Discussion

(a) Before update

 

(b) After update

Figure 4.15: Example to show non-monotonic quality function: In (a), an early transmission state is
shown, only using the start end end point. After some updates, the blue approximation
partially covers original path (red) closer, but the overall max error measurement
increased, since the base line got shifted upwards.

The simulation results are shown in Figure 4.16. Obviously, none of the methods reduces its error
with less data needed. The most prominent di�erence is the error drop shape: Di�erent from
ULOU, PLOU, and ROU, the error decreases linearly with the number of nodes being sent in case
of SOU. The other methods show a steep improvement in the beginning which flattens out between
20 to 40%. After transmitting abount 60% of the data, compared to the benchmark set, they linearly
decrease the error. In a direct comparison, the plain level-order transmission outperforms all other
methods, especially in the early stage of transmission.
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Figure 4.16: Comparing of the average error over the (normalized) number of transmitted data
batches for the di�erent methods.

Varying the value of 1 in case of sequential order steers the error reduction slope: Figure 4.17
shows some simulation runs for di�erent values of 1. This intuitively makes sense, since the same
data stream is transmitted, but having fewer (in case of larger choices) or more overhead involved.
An analogous statement applies to the ROU method (see Figure C.1): Root edges are transmitted
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4 Batched Transmission

first, and further updates refine the gaps, where the a better performance compared to transmitting
sequentially is achieved. Still, ROU performs worse than transmitting in level-order (see Figure C.2
for more details). Since the method transmits root edges at the beginning, it inherits its properties.
In a later transmission state, ROU resembles SOU, because edges are reminded one after another.

Only taking the quality of a transmission process based on a fixed implementation into account
might miss some important details. There might be more e�cient encodings or better compression
schemes. To abstract from the underlying implementations and encoding methods, the orderings are
directly compared with each other: Firstly, transmit the batches and keep track of the order in which
the methods transmit the nodes. Secondly, recalculate the o�set errors, but ignore the transmission
size and only include the number of vertices which has been transmitted already. The results are
shown in Figure 4.18. Interestingly, the overall shapes mach the previous results. Choosing nodes
in plain level-order still outperforms all other methods, even though expensive encoding costs for
ULOU and ROU are ignored.
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Figure 4.17: Plot showing the average errors over the (normalized) number of transmitted data
batches for di�erent values of 1 and PLOU for reference.
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Figure 4.18: Plots showing the average errors over the (normalized) number of transmitted nodes
for the di�erent methods.

Summary

In this chapter some basic algorithms for transmitting trajectories over a network were presented, as
well as the corresponding implementation architecture. The first section dealt with CH independent
implementations, in the second part, the structure of unpacking paths was utilized. To argue about
their performance, a simulation has been implemented and di�erent use cases were tested using the
Cuba dataset. Clearly, the presented methods only show a subset of the =! possible batch-ordering
types.

The simulations confirmed the earlier stated property that the batch size parameter negatively
correlates with overhead being generated by the transmission process, as well as for de-, and
encoding. Moreover, transmitting a small amount of data already approximates the true trajectory
quite well if the method chooses points globally. This means, it avoids choosing points close to
each other. The average overhead di�ers from method to method, but generally stays within an
acceptable range of 10-60%. Therefore it is reasonable to transmit 20-40% of the data globally in a
batched fashion to create good results early in the transmission having only a moderate amount of
overhead.

The best method, namely PLOU, chooses points level-order-wise induced by a left-aligned search
tree ordering.

63



4 Batched Transmission

All methods were designed in a way such that each node or edge can be accessed in constant time,
especially unpacking is required for most of the methods. Also, all simulations are based on the fact
that all points are transferred. For practical usage, however, none of the two assumptions apply.
Still, the architecture could be reused easily for further batching tasks, by simply extending the
parser and encoder modules.

An example transmission for the methods PLOU and SOU is accessible at [7] as videos.
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5 Graph Layer-Pruning

The methods discussed so far work on a list of either partially or fully unpacked paths. For larger
zoom scales, however, transmitting or even partially unpacking all requested edges is not possible
given the usual waiting time restrictions. Edgesets responses which are required to produce outputs
similar to Figure 5.1 for example would need multiple megabytes in size and intense unpacking.

Figure 5.1: An example showing a high-resolution result on a large zoom scale. Markings of the
cities Berlin (yellow) and Hamburg (red) has been added externally.

By requesting map sections on such large zoom scales, it would be su�cient to plot the most
important trajectory parts only and replace high-detail information by some abstraction. In the
example map above, it might be interesting to see the connections between the two highlighted cities
even on high zoom levels, but hide very detailed trajectory sections in the respective downtowns.
Therefore, some kind of edge selection and information reduction has to be applied. The following
method called Graph Layer-Pruning (GLP) categorizes the response set into either relevant or
dispensable parts and returns a approximate edgeset and an accumulated low-level reduction layer
respectively.

5.1 Implementation

Plotting a set of trajectories comes down to visualizing a set of edges. Each of the edges has an
associated level, which originated from the CH construction process. The larger the level, the later
the edge has been created. This in turn means, that the edge is more abstract because it groups
together multiple subparts. Hence, In this section, we leverage the edge level as a measure of
importance.
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5 Graph Layer-Pruning

5.1.1 High-/Low-Level Split

The input is, analogous to Section 3.2.1, a list of compressed trajectories T = [C1, C2, . . . , CA ] given
by the output of the PF algorithm. In a very first step, an iterator visits all root edges 4 (8)

9
for all

input trajectories C8 and decides if the edge will be kept for or rejected from refining. The decision
is guided by a user predefined cuto� parameter ;2DC . As a result, two sets of edges emerge:

(5.1)
⇢
+ =

n
4
(8)
9
2 C8 , C8 2 T |;4E4; (4 (8)

9
) � ;2DC

o

⇢
� =

n
4
(8)
9
2 C8 , C8 2 T |;4E4; (4 (8)

9
) < ;2DC

o

Note, that duplicate edges have been removed already, which required linear time. ;2DC is chosen
in such a way, that ⇢+ becomes small enough to work with. This usually requires ;2DC to be
significantly larger that the user’s preferred unpacking target level ;u (see Section 2.1 for definition).
In a second step, these edges are unpacked next. This is necessary, because in general, edges with
very high levels don’t approximate their unpacked version well anymore. Figure 5.2 illustrates this
claim for edges above ;2DC = 75.

(a) Edges ⇢+
(b) Edges ⇢+ after unpacking to ;u

Figure 5.2: Naively returning the filtered edges ⇢+, as depicted in (a) does not give meaningful
results.

So far, a subset of important result edges got extracted and pushed downwards to enhance quality to
a satisfactory level. When only filtering the edges, the retrieved information from the lower level
edges would get lost. For integrating ⇢

� while keeping the aggregated output small, a heatmap is
created. A simple approach would extract all nodes from the fully unpacked edge in ⇢

� to build a
heatmap. Clearly, this operation would be far too timeconsuming. Instead, calculations for building
the heatmap will be made during a preprocessing phase on startup, which will be explained next.

5.1.2 Heatmap Grid Hierarchy

To quickly generate a heatmap given a set of (potentially high-level) edges, a global grid is introduced.
On startup, a < ⇥ = sized grid is defined, where = = 2@ and < = 2? are powers of two (?, @ 2 N).
The grid boundary matches the bounding box of the graph exactly. Given the bounding box and

66



5.1 Implementation

the grid width and height parameters, each cell 28, 9 (0  8 < <, 0  9 < =) is defined uniquely. A
list stores the intersected cells for every edge. The marking process can be calculated recursively:
On a shortcut edge the list is obtained by merging the cell entries for both children. The cells of a
plain edge is obtained by the retrieval of all intersected cell boundaries. An example is shown in
Figure 5.3.

(a) Markings of 41 (b) Markings of 42 (c) Markings of 4

Figure 5.3: Showing the iterative merge process of shortcut edge 4 (yellow) having the children 41
(red) and 42 (green).

When the heatmap for a set of edges has to be calculated, all edge-lists are merged, but a count for
each cell is maintained. This allows to quantify the region-based usages. An example is shown in
Figure 5.4. Note that for plain edges, typically only a few marked cells have to be stored.

(a) Markings of 41 (b) Markings of 42 (c) Markings of 43

1 1 1

1 1 1

1 1

2 1 1 1 1

2 2 2 1 2 2

3 2 2

2

1 1 1

(d) Final grid

Figure 5.4: Showing the process of building the heatmap on the (shortcut) edges input list
⇢
� = [41, 42, 43].

To get reasonable results, the heatmap must be fine-scaled by choosing moderately large values for
? and @, depending on the graph’s size. This, however, results in a growth of the response size,
because 6 = 2? · 2@ = 2?+@ counter values have to be transmitted in the worst case. Especially for
larger zoom scales, such a fine grained grid is not required. To downsample the response quickly,
each edge already stores its downsamled versions. This ensures fast merging times, since counting
takes place on the donwsampled versions, too. By grouping exactly 2 ⇥ 2 cells together, in theory
A = min(?, @) � 1 sub-sampled versions can be precalculated, until only one row or column (for
? = @ a single cell) remains.
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5 Graph Layer-Pruning

This gives us a pyramid-shaped grid hierarchy, similar to a Gaussian Pyramid[56], but using an or
operator on boolean values. Hence, by storing the complete hierarchy, the total number of additional

cells is upperbounded by
Õ

A

;=1( 2?

2; · 2@
2; ) =

Õ
A

;=1
6

4; =
✓Õ

A

;=1

⇣
1
4

⌘
;

◆
· 6  1

3 · 6. Depending on the

requested zoom level, the service choses a suitable hierarchy level to perform the merge on and
returns the heatmap.

5.1.3 Running times

Algorithm 5.1 shows the preprocessing on a rather high level. The hierarchy, consisting of A + 1
layers is built iteratively. For the initial layer, an empty grid for each edge is initializes which
takes O(|⇢⌧⇠� | · 6) time. For each of the A following layers, sub-sampling based on the previous
one is performed, which traverses each of the recently created edges-indices and assigns a new
index. Duplicated indices are ignored. An example for re-indexing in shown in Figure 5.5. In the
actual implementation, no tuple is stored. Instead, a global grid index 83G (integer) is used, but the
conversion can be done in constant time:

(5.2)
9 = 83G mod =

8 = (83G � 9)/=
83G = 8 · = + 9

Theorem 2 GLP’s preprocessing takes O
�
6 · |⇢⌧⇠� |

�
time.

P���� In the worst case, O(|⇢⌧⇠� | · 6) steps are required to build L1, but its size is upperbounded
by 1

4 · |⇢⌧⇠� | · 6. The latter term again (asymptotically) upperbounds the running time for building
L2. More abstractly spoken, the size of the previous layer asymptotically upperbounds the running
time of the current, meaning that the total running time is upperbounded by the total size which is.
Hence, preprocessing take O

⇣
(1 + 1

3 )6 · |⇢⌧⇠� |
⌘
= O

�
6 · |⇢⌧⇠� |

�
. ⌅
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Figure 5.5: Showing the re-indexing step on a 4 ⇥ 8 sized input grid.

A high level sketch for exporting the pruned results including the heatmap are sketched in
Algorithm 5.2. The input consists of the set of root edges returned by PF ⇢ , a cuto� threshold ;2DC

a request zoom level I, a target unpacking level ;u and a view request box + .

Splitting the input set takes linear time in |⇢ |, each edge is visited once. Unpacking is output
sensitive and takes at most O(|⇢4G |). Mapping the input zoom size to a hierarchy level is up to a
user-defined function, but constant in time. Creating the heatmap needs to define the boundary
and grid sizes, which can be obtained by the original cell size, modified based on the current level
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5.2 Discussion

Algorithm 5.1 Graph Pruning: preprocessing
1: procedure �����H��������(?, @, ⇢⌧⇠� )
2: A  min(?, @) � 1
3: L0  ����E����L����G���(2?

, 2@)
4: for all 4 2 ⇢⌧⇠� do

5: L0 [4] = ���I�����������C����(4,L0,⌧⇠� )
6: end for

7: for ; 2 1, . . . , A do

8: L8  ���������L����(L;�1)
9: end for

10: H  L0,L1, . . . ,LA

11: return H
12: end procedure

1: procedure ���������L����(L;)
2: =;,<;  L; .size

3: L;+1  ����E����L����G���(<;
2 ,

=;
2 )

4: for all 4 2 ⇢⌧⇠� do

5: for all (8, 9) 2 L; [4] do

6: L;+1 [4] := L;+1 [4] [ (b8/2c , b 9/2c)
7: end for

8: L;+1 [4]  ������D���������(L;+1 [4])
9: end for

10: H  L0,L1, . . . ,LA

11: return H
12: end procedure

hierarchy ;. Still, the initialization can be done in constant time, because no edge has been inserted
yet. For each edge in ⇢

�, counts are updated by going through all linked cell entries. This are at
most 6/4; cells each. Hence, O(|⇢� | · 6

4; + |⇢4G |) time is needed in total. Converting the result
into a text representation clearly scales linearly in the conversion input, which does not change the
running time’s asymptotic behavior.

In addition, not all edges are reported, but only those which are visible by the requesting view + . A
decision is made by checking each edge’s bounding box for intersection with + while unpacking is
performed. Whenever the view changes, i.e., after zoom- or panning-operations, a new request is
generated, while the last edgeset is stored in cache for faster follow-up requests. This ensures quick
response times since only actually visible edges are transmitted each time.

5.2 Discussion

In the following, the pruning process is examined from various points of view, including a use case
analysis, run time measurements and method limitations. To start with, typical results are shown
and explained in the following section.
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5 Graph Layer-Pruning

Algorithm 5.2 Graph Pruning: exporting
1: procedure ������P�����G����A��H������(⇢ , ;2DC , I, ;u,+)
2: ⇢

+
, ⇢
�  �����E������(⇢ , ;2DC )

3: ⇢4G  [] // Unpack highlevel
4: for 4 2 ⇢+

do

5: ⇢4G  ⇢4G [ ������(4, ;u)
6: end for

7: ;  ������H��������L����L����B�Z���(I)
8: �  ������H������B�L����(L;, ⇢

�)
9: return ������E�������A��H������T�JSON(⇢4G ,�, ;u,+)

10: end procedure

1: procedure ������H������O�L����(L, ⇢
�)

2: !  ����E����C�������G���(L)
3: for 4 2 ⇢� do

4: !.���������C�����(!,L[4])
5: end for

6: �  ���������C�����(!)
7: return �

8: end procedure

5.2.1 Implementation

Figure 5.6 shows typical results using GLP on various graph and path data. Strokes colored in black
indicate edges of high level from ⇢

+ which passed the edge filtering and got partially unpacked
depending on the choice of ;u. Low-level edges below ;2DC have been pruned away and replaced by
a heatmap. According to the density and weights, areas are colored on a blue to red scale, indicating
low and high trajectory densities respectively. Typically most high-density areas are within the
request box. This is because only trajectories passing this request box have been retrieved and
further intersections become less likely as trajectories are of limited length.

5.2.2 Measurements

For evaluation, there are many degrees of freedom steering the calculation times, response quality,
and size:

Cuto� level ;2DC : influences the filtering process, the larger the value the more edges contribute to
the heatmap and the smaller the value the more edges are kept.

Unpacking target level ;u: parameter defining the quality for kept edges. The smaller ;u, the more
unpacking is performed, increasing both the response size and quality.

Request bounding box &B : determines area and size of the request. Larger request bounding
boxes typically yield more matches, resulting in higher processing times and return sizes.

Request view box + : another bounding box containing the description of the view displayed to
the user. The behavior is similar to &B.
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(a)

(b)
(c)

Figure 5.6: Typical GLP outputs on di�erent graph and path data: (a) depicts a response on the
Saarland Dataset, (b) a request around Rome on the Europe500K Dataset, and (c) the
southern part of Germany on the dataset of the same name.

Zoom level I: in addition to the view box + , the zoom level I describes the user’s map zoom state.
For larger zoom scales, usually more detailed are desired.

Grid size powers ? and @: define the quality and resolution of low-level edges’ ⇢� heatmap grid.
The larger the choice for ? and @, the finer the are result-heatmps, at the cost of higher
merging times and larger transmission packages.

Naively iterating through the whole parameter space is unreasonable because not all combinations
make sense or are feasible to calculate. Hence, for evaluation, the following simplifications are
made: The request box &B equals the view box + , i.e., the user is always interested in the parts
visible on the current screen. The size of the request boxes &B are defined similarly as described in
Section 3.4.2 using the factors 2�8 with 8 2 {1, 2, 3, 4, 5}. Since the request box and the screen view
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5 Graph Layer-Pruning

Saarland Germany

request size factor 1/32 1/16 1/8 1/4 1/2 1/32 1/16 1/8 1/4 1/2
corresponding zoom level I 15 14 13 12 11 11 10 9 8 7

Table 5.1: Mapping from the size of request box &B, determined by the graph’s bounding box and
the size factor, to the zoom level used for validation.

are related, not all zoom scales are possible any longer. Therefore, each request bounding box comes
with a respective zoom resolution determined by manually plotting bounding boxes on the screen
and adjusting the zoom accordingly. The mapping is given by Table 5.1. If not stated di�erently,
the unpacking level ;2DC is derived from the request zoom I as it has been implemented in the
P���������web project and explained in Section 2.5. The influence of the grid size is investigated
later in this section, but will be fixed to (?, @) = (6, 6) for now.

Given this parameter sets, requests have been send using both the Saarland and the Germany Dataset,
the results are presented in Table 5.2 and Table 5.3 respectively. For each measurement, 20 boxes
were sampled at random and timings and sizes were averaged. In case of very large requests where
calculations on the backend side already exceed a threshold of five seconds, sampling was stopped
and averaging of the results sampled so far was performed. Those special cases are highlighted
using bold font. Frontend validation and Saarland backend processing was done using the ThinkPad,
backend processing for the Europe and Germany Dataset ran on Threadripper.
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Discussion

Cuto� level ;2DC

128 64 32 16 8 4

Factor 1/32

Frontend [ms] 11 11 13 10 10 10
Backend [ms] 2 2 1 2 4 2
Size [KB] 1 5 3 7 19 9

Factor 1/16

Frontend [ms] 15 14 12 12 11 12
Backend [ms] 2 2 5 4 4 4
Size [KB] 1 6 21 20 21 19

Factor 1/8

Frontend [ms] 18 12 12 12 11 10
Backend [ms] 4 9 12 11 9 24
Size [KB] 4 38 63 59 58 141

Factor 1/4

Frontend [ms] 25 22 18 16 14 14
Backend [ms] 11 22 29 41 40 46
Size [KB] 10 92 159 251 271 341

Factor 1/2

Frontend [ms] 51 46 49 31 20 13
Backend [ms] 29 47 70 101 97 111
Size [KB] 27 203 441 768 794 955

Table 5.2: Graph Pruning measurement: Saarland Dataset.

Cuto� level ;2DC

512 256 128 64 32

Factor 1/32

Frontend [ms] 37 27 15 12 11
Backend [ms] 34 31 31 61 54
Size [KB] 2 34 131 442 512

Factor 1/16

Frontend [ms] 128 88 52 20 9
Backend [ms] 107 101 140 174 230
Size [KB] 6 208 886 1512 2334

Factor 1/8

Frontend [ms] 493 228 108 45 9
Backend [ms] 223 289 340 482 835
Size [KB] 22 595 1882 3939 8465

Factor 1/4

Frontend [ms] 405 190 95 40 19
Backend [ms] 794 801 799 1394 1916
Size [KB] 13 933 3187 10287 18442

Factor 1/2

Frontend [ms] 2877 1145 503 106 17

Backend [ms] 2196 2374 3202 3734 7661

Size [KB] 55 2176 10778 24657 67369

Table 5.3: Graph Pruning measurement: Germany Dataset.
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Figure 5.7: Varying the cuto� on di�erent grid resolutions.

Some of the theoretical properties are confirmed by the measurements, most importantly the negative
correlation between the factor size and the response sizes and calculation times. In general, the
same holds true for the cuto� level in relation to the package size, except from very few outliers for
rather small request boxes.

The measurements indicate that pruning performs very well on the smaller Saarland Dataset, but still
acceptable for the Germany one if the request size does not exceed 1/4th of the graph’s bounding
box original scale and a cuto� of 64.

The data shows an interesting relation between front- and backend times: For a fixed bounding box
size, client- and server-workload measured by time influence each other reciprocally: The larger the
cuto� was chosen, the faster the backend finished work, but the longer the frontend needs to display
the results and vice versa. This can be explained due to the fact that the backend edge aggregation
is slower than unpacking edges, but results in smaller responses which are faster to visualize on
frontend side.

For further investigation, the whole Saarland Dataset was requested for all possible cuto� levels
ranging between 1 and ;<0G = 153 under variation of the grid size. The result is shown in
Figure 5.7.

Regardless of the heatmap resolution, in all cases the edge proportion decreases and the heatmap
sizes increases for letting ;2DC grow. All heatmap functions have in common that they eventually
saturate and there is no influence when increasing the cuto� size further. This can be explained
by the heatmap grid: eventually all cells are transmitted and from that point on, only the counts
change The latter procedure does not influence the heatmap size. For to large choices of ? and @,
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dataset
Saarland Germany Europe

100k 1M real paths
grid 26 ⇥ 26 212 ⇥ 212 214 ⇥ 214 216 ⇥ 216 26 ⇥ 26 27 ⇥ 27

time [min] 0:14 0:21 0:05 0:06 0:11 0:47 2:05 8:38

Table 5.4: Recorded preprocessing times: edge hierarchy calculation for various graph types
and path inputs. On all graphs, the first four layers have been build. The Saarland
measurements were taken on the ThinkPad, the Europe and Germany ones on the
Threadripper.

the transmission of heatmap data even exceeds the size for transmitting all edges, meaning that
the encoding of low level edges using heatmaps is more expensive than transmitting the edges
themselves.

The determination of good heatmap size parameters turns out to be subtle: Choosing to large
(?, @)-values results in high-resolution heatmaps at expensive costs. To small values either produce
dotted lattice-based patterns or blurry outputs, even for regions including very few trajectories.
Examples are shwon in Figure 5.8a and Figure 5.8b accordingly.

(a) (b)

Figure 5.8: Responses indicating that ? and @ were not chosen large enough. In (a), single grid
points are visible while in (b) traversed streets are blurry.

Increasing the grid size does not only slow down the request processing time because more cells
have to be merged, but also contributes negatively to preprocessing. Table 5.4 summarizes typical
setup times for graphs of di�erent size and varies the grid size in case of the Saarland Dataset.

Utilizing the CH-graph levels’ as a measure of edge-importance allows for constant threshold
check and usually returns satisfactory results, especially in city regions: While main streets and
routes connecting city districts are often part of the shortest paths and therefore gets removed late
yielding high levels, dead ends and paths, which are di�cult to reach, are removed early. A concrete
example will be shown later when this chapter is summarized. Nevertheless, pruning based on
a fixed level is not optimal, especially for large cuto� levels. A real world data path consists of
multiple root edges of di�erent level. During threshold filtering, paths are not necessarily kept as a
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whole. In the optimal case, small end segments are pruned away and the main routes remain. The
counterexamples in Figure 5.9a and Figure 5.9b show, however, that the output can have unpleasant
edge holes. In case of Figure 5.9b, no useful insight is gained.

(a) (b) (c)

Figure 5.9: Examples showing limitations of GLP.

Another limitation is that graph-connected components di�er in the number of nodes. If fewer
nodes are given, fewer contraction operations have to be performed during CH construction. Hence,
important edges on a smaller graph or on a independent sub-graph have lower levels than important
edges of graphs di�ering in size by multiple factors. In the specific scenario of requesting the
Europe500K Dataset, for example, islands’ important streets have low levels compared to important
streets on the Europe mainland. An example for unpleasant results obtained when requesting
independent components is shown in Figure 5.9c: The UK’s sub graph is much smaller, hence,
important routes are only visible on smaller cuto� levels.

The presented method returns very fast results on small datasets or request boxes and nicely
emphasizes trajectory-hotspots and their connections. GLP is ideally suited for inter-city analysis
and partially applicable to macroscopic tasks. Microscopic analysis tasks are not well supported,
since no trajectory-related information is linked with the edges.

5.2.3 Summary

Graph-pruning based edge filtering enables the highlighting of important edge strokes and the
appealingly coloring of less meaningful graph parts at the same time. While it is not clear yet how to
automate the finding of an optimal grid size choices, once manually specified, informative responses
are obtained. The static edge filtering may causes problems when multiple graph components
exist and further postprocessing for avoiding unpleasant gaps is needed. The quasi-continuous
filtering parameter can be utilized to optimize the output with respect to the user’s intentions and
inter-city analysis tasks are perfectly covered. Concludingly, the dynamic of varying ;2DC is outlined
in Figure 5.10.
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(a) (b)

(c) (d)

Figure 5.10: Varying ;2DC results in a quasi-continuous filtering scheme. In this examples based on
the Saarland Dataset. In (a), no filtering was applied and results for thresholding with
parameter values ;2DC = 8, 32, 64 are visualized in sub-figures (b), (c), and (d).

77





6 Edgebased-P���������

In the previous section we utilized the PF’s speed to quickly obtain all compressed paths which at
least partially intersect the bounding box. Especially for requests where the graph is sparse and
matching paths are mainly located within the request box, graph pruning is a powerful tool. For
very dense graphs or if a decent amount of paths are only partially within the bounding box, e.g.,
they intersect at the request’s boundaries, many trajectories have to be collected and transmitted
compared to the edges which are actually contained uniquely.

Figure 6.1: A typical result when (at least some) recorded paths are long: Even a small request
(green box) produces a considerable amount of output data.

An example is shown in Figure 6.1: A small request box yields many trajectories to be displayed.
While it might be very interesting to see, where the trajectories start, end, and which areas are
covered more frequently, it is impossible to take a closer look at trajectories within the bounding
box at higher unpacking levels or for significantly larger request boxes. To give a more practical
example, a realistic use case is shown in Figure 6.2: Assume, one wants to analyze tra�c within a
city district. By drawing a bounding box covering the city quarter, a busy highway partly intersects
the requested area. As a result, a lot of data is loaded outside of the relevant bounding box and
the client hardly responses. In this example, the server (here on the Thinkpad, see Section 3.4.2)
needed more than 13 seconds to retrieve, export and send all the data. The total transmission size
added up to 184 MB. Apparently, there is a need for loading only data within the requested area.
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(a) (b) (c)

Figure 6.2: Practical use case of analyzing intra-city tra�c. All three images show the same request
box. (a) represents the area of interest, e.g., a city center, (b) its zoomed-out version for
better comparison to (c) which has the matching response set included. Clearly, most
of the transmitted data is not relevant for accomplishing the given use case task. The
request box in (c) was colored green to enhance visibility.

A naive solution would reuse the implemented PF code, retrieve all trajectories, unpack and send
only those root edges, which intersect the requesting bounding rectangle. For two reasons, this is
not e�cient: On the one hand, all edges outside the box also have to be checked. A similar strategy
was already shown to be problematic in section Section 5.1.1, where root edges are grouped into
either the category high- or low-level. On the other hand, if an edge inside the requested area has
been used by : trajectories, it is also reported : times. After iterating through all paths, there are
many duplicates which have to be removed subsequently.

To solve both issues, the original PF algorithm was modified and an adjusted version, which is
called Edge-Based P��������� (EBPF), carefully operates on edges only. EBPF will be explained
in detain in the next section.

6.1 Implementation

The initial implementation for PF, as presented in Algorithm 2.3, starts with collecting bounding
box intersected edges. In a second step, trajectories for these edges are collected, merged and a
duplicate-free list gets returned. Trajectories are linked with edges using an inverted index list. On
request time, all trajectories linked with an edge can be obtained by first reading the start and end
index for an edge and copying the respective trajectories-entries within that range from the index.
By skipping the last steps and refining the postprocessing, only relevant edges within the requesting
region are kept. This retrieval method will be called EBPF, with its pseudecode attached:

Algorithm 6.1 Edgebased P��������� Algorithm (high level)
1: procedure ���Q����(&)
2: ⇢$  ����E���C���������(&)
3: ⇢A  ������E���C���������(&, ⇢$)
4: ⇢  �����������E���C���������(⇢A )
5: return ⇢

6: end procedure
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Algorithm 6.2 Full unweighted duplicated-free edge exporting, naive approach
1: procedure ������F���D��������F���N����(⇢)
2: ⇢

0  []
3: for 4 2 ⇢ do

4: ⇢
0  ⇢

0 [ ������(4)
5: end for

6: ⇢4G = ������D���������(⇢ 0)
7: return ������E�������T�JSON(⇢4G)
8: end procedure

Due to the early stopping when performing a PF search, both edges of high and low level are
returned. In addition to the fast edge retrieval, counts for each edge can be obtained in constant
time. For each edge, the start- and end indices linked to the inverted trajectory index are read. The
di�erence of both values yields the number of trajectories passing the respective edge.

Plotting the result edge set directly does not give satisfactory results, due to edges’ di�erent level
representations. In the following, exporting techniques are presented to postprocess the initial edge
set for better visual appearance.

6.2 Exporting

6.2.1 Input and Output

The input is a length-: list of edge-IDs ⇢ = [41, 42, . . . , 4:] returned from the EBPF edge refining.
For the sake of clarity, edge-indices (IDs) are used interchangeably with their respective edge
objects. Therefore, edge attributes and methods can be used. Clearly, this is not a real restriction,
since objects can be retrieved from IDs in constant time and vice-versa. In the case of weighted
edges, an additional weighting function F is available. In practice, this can be realized using a
hash list or a supplementary edge attribute. Initially, EBPF returns the edge-weights as vector
⇠ = [241 , . . . , 24: ], so F(4) = 2484 2 ⇢ and 0 otherwise.

The intermediate output is denoted as ⇢4G , representing a list of edges (or theirs IDs, depending on
the context). The exporting size is denoted as >4G . Conclusively, this result list gets converted into
an appropriate string representation to allow for web transmissions.

6.2.2 Exporting Basics

The naive way to export edges is to unpack all edges and concatenate the unpacked results (see
Algorithm 6.2). To avoid plotting edges twice, duplicates are removed before exporting. The
asymptotic running time is dominated by the unpacking and duplicate removal, which both need
linear time in their input. To find an upper bound, it su�ces to upperbound the size of ⇢ 0. Trivially,
the more edges are shared among the unpacked 4 2 ⇢ , the more ine�cient the algorithm becomes.
In terms of output sensitivity with respect to |⇢4G |, O (: · >4G) steps are used asymptotically in the
worst case.
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Algorithm 6.3 Full unweighted duplicated-free edge exporting
1: procedure ������F���D��������F���(⇢)
2: ⇢4G  []
3: closed (4C ()
4: while |⇢ | > 0 do

5: 4  E.pop()
6: if 4 2 closed then

7: continue

8: end if

9: closed closed [ {4}
10: if 4.is_shortcut then

11: 41, 42  4.chi�dren

12: ⇢  ⇢ [ [42, 41]
13: else

14: ⇢4G  ⇢4G [ [4]
15: end if

16: end while

17: return ������E�������T�JSON(⇢4G)
18: end procedure

The input set ⇢ may contain edges 4 and 4
0 where latter is part of 4. To avoid unpacking of identical

parts, Algorithm 6.3 keeps track of the unpacking history using a HashSet closed. Once an edge is
viewed a second time, unpacking is skipped, since it has been added already.

Lemma 2 The search tree emerged from unpacking a cached edgeset-unpacking-procedure resulting
in = non-shortcut edges ⇢4G has size ⇥(=).

P���� Showing the lower bound ⌦(=) is trivial and will not be discussed further. W.l.o.g. one can
assume that there is only one input edge creating the whole search tree. This is not a restriction,
since we could build up a single search tree from multiple trees by iteratively introducing new parent
edges merging trees, similar to [29], ignoring the probabilities. If we can show that this tree cannot
have more than O(=) edges, the original tree’s sizes summed up must have been even smaller.

An upper bound can be obtained by a bottom-up analysis. When the algorithm has been terminated,
= plain edges were found. Each edge either entered the result set by an unpacking process from a
parent edge or because it was already in the input set. In the former case, a constant amount of time
was spent and no other edge has contributed to the search tree. For the latter case, exactly one other
edge on the same level was involved in the unpacking. Each shortcut edge created two new edges,
therefore no more than = inner shortcuts exist. In total, O(=) edges were involved. This yields the
claim. ⌅

Theorem 3 Algorithm 6.3’s running time is optimal.

P���� The output has size >4G , therefore it remains to proof, that the algorithms runs in O(>4G).
The loop-body’s statements run all in amortized ⇥ (1) time. In each iteration, either |⇢ | decrements
or increments by one. The latter case happens i�. a shortcut edge is visited for the first time. Since
there are >4G edges in the output, according to Lemma 2 not more than >4G shortcut edges can
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Algorithm 6.4 Full weighted duplicated-free edge exporting
1: procedure ������F���W�������D��������F���(⇢)
2: prioQ PriorityQueue(⇢) // Build Max-Heap-based Priority Queue w.r.t. F(4)
3: 02C8E4  (4C (⇢)
4: while |prioQ| > 0 do

5: 4  prioQ.extractMax()¸
6: if e.is_shortcut then

7: active.remove(4)
8: for 48 2 4.chi�dren do

9: prioQ.enqueue(48)
10: F(48) := F(48) + F(4)
11: active active [ {48}
12: end for

13: end if

14: end while

15: ⇢4G  [4 : 4 2 active]
16: return ������W�������E�������T�JSON(⇢4G ,F)
17: end procedure

be involved, which in turn bounds the number of total iterations. Hence, the running time of the
algorithm is in ⇥ (>4G), namely linear in the expected output. There’s no algorithm writing >4G

edges in l(>4G) time, which concludes the proof. ⌅

6.2.3 Weighted Edges

Besides the use case of plotting all unique edges intersected by the requesting bounding rectangle,
the user might be interested in usage information, e.g., which edge is used by how many paths. For
encoding, a weight function F : ⇢ ! R+ is introduced, storing a count value for each retrieved
(shortcut-)edge.

Algorithm 6.4 implements an appropriate top-down approach for extracting all child edges with
its correct counts. The pseudo code assumes prioQ to not insert elements twice to avoid double-
counting. If this is not the case in a practical implementation, it can be circumvented by wrapping
the queue with the following logic: Create a (hash)set allowing to check for existence before
inserting and remove elements on a pop operation, both constant time. The top-down traversal
also makes sure to increment counters of children correctly, because counts of (grand-)parents are
aggregated and propagated downwards over time.

Theorem 4 Algorithm 6.4’s running time is in O (>4G log(>4G)).

P���� Setting up the priority queue and creating active takes linear time. Using a Fibonacci heap,
inserting elements takes amortized constant time [23]. Hence, each inner loop’s command takes
constant time. Therefore, the iterations are dominated by the O (;>6( |prioQ|)) term for extracting
the minimum [23]. |prioQ| cannot exceed the size of the search tree(s), each bounded by O(>4G),
according to Lemma 2. Since each element is inserted at most once, no more than O(>4G) elements
can be added to the queue, for the same reason. This results in the claimed running time. ⌅
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6.3 Binning

Di�erent from the plotting logic for edge strokes and fully unpacked trajectory lists, EBPF returns a
long list of edges represented by two points each. In case of weighting enabled, each edge comes
with an additional weight. As a consequence, the frontend plotting library creates a single object
for each edge and applies its color according to the weight. It turned out that the plotting time for
the weighted case is significantly larger compared to the case where all edges are combined as one
object and a color is only set once.

To address this issue, the number of di�erent colors is restricted to 1 values, which are chosen
dynamically in the total color range: For values between the lowest (typically weight 1) and the
maximum usage, 1 � 2 gradations in between with equal distances are defined. The server groups
the edges together in 1 edge lists with 1 respective color values. On plotting time, the client creates
one objects for each group, assigns the edges, and sets the colors. This speeds up the frontend
calculation to the disadvantage of the server’s longer preprocessing phase. To verify that the concept
is favorable, the implementation is tested on the Saarland Dataset for five requests of increasing size.
A description of the datasets is listed in Table 6.1.

dataset ID
minimum coordinate maximum coordinate

Zoom # edges
lat lon lat lon

1 49.2993822 7.0357132 49.2438279 7.1201706 13 1001
2 49.2536889 6.9182968 49.2124390 7.0703888 13 1965
3 49.4692396 6.7387390 49.6000304 7.0188904 13 5081
4 49.2310505 6.7497253 49.5510527 7.0868683 11 10067
5 49.6578498 6.3761902 49.0306652 7.5915527 10 199956

Table 6.1: Datasets used for evaluation. All request types were weighted and plotted in transparency
mode.

In Figure 6.3, the simplification of Dataset 5 using 25 color bins only is contrasted with its original
representation and similar comparisons for the other datasets are appended (Figures C.3 and C.4).
In the original Dataset 5 response, there are 22 784 edge strokes objects to be colored, but only 30
unique colors in total, ranging between 1 and 41. Even though a di�erence in contrast is visible, the
key characteristics such as very frequently and rather rarely used edge strokes are still visible.
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(a) 25 bins (b) no binning

Figure 6.3: Comparison of the original plot of Dataset 5 and its equivalent representation which is
limited to 25 color scales.

Five di�erent datasets are chosen to estimate the speedup on various request sizes. For each of
the five di�erent request sets, the times for postprocessing on the back- and plotting on frontend
side have been recorded. The results are presented in Figure 6.4: Firstly, average calculation
times increase as the request size grow, because more edges have to be processed. Moreover, the
processing time for exporting only slightly increases compared to the original non-binning version.
Lastly and most significantly the frontend times drop drastically: For the largest dataset, for example,
the plotting times approximately drop by a factor of six.

To compare the transmission sizes, the original response size is compared to di�erent binned
instances. The sizes are outlined in Table 6.2, but there is no significant reduction compared to
transmitting a single counter for each edge.

To sum up, the example illustrates the potential for plotting lists of edge lists at once over plotting
each edge stoke on its own. The binned representations show the most essential usage characteristics,
but better binning strategies would be needed to fully exploit its potential. Small binning sizes show
a good separation between frequently and rarely used strokes. While the transmission sizes and
backend calculation times do not change noticeably, the plotting times on frontend side are reduced
significantly.
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Figure 6.4: Comparison of processing times for di�erent binning types on all five datasets. No
indicates the case where no binning was used.

Bins Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

- 0.14 0.26 0.58 1.19 2.09
1 0.13 0.26 0.57 1.17 2.05
2 0.13 0.26 0.57 1.17 2.05
3 0.13 0.26 0.57 1.17 2.05
4 0.13 0.26 0.57 1.17 2.05
5 0.13 0.26 0.57 1.17 2.95
10 0.13 0.26 0.57 1.17 2.05
25 0.14 0.26 0.57 1.17 2.05
100 0.14 0.26 0.57 1.17 2.05
200 0.14 0.26 0.57 1.17 2.05

Table 6.2: Transmission sizes (in MB) for all five test datasets under variation of the bin size. The
first row refers to the plot without binning.

6.4 Sensitive CH-Unpacking

In the first part of this chapter, EBPF persuasively showed its strength due to its limited catchment
area and lightweight implementation by returning matching edges directly. In the weighted case,
counts for each retrieved edge are added in constant time each. A central issue is, however, that this
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edge set can not be used for plotting directly, as implied by Figure 6.5, because the result entries
returned by EBPF are not disjoint in the sense that the pairwise intersections of all unpacked edges
will not necessarily be empty.
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Figure 6.5: Example data set on the real Europe graph showing unpleasant results: Even though
there is only one street (red), EBPF returns multiple edges on various levels colored in
dark gray. Note that fully unpacking edge with label 1 would result in the original street
colored red. Unpacking all other streets labeled 2� 24 will give partial street segments.

A first approach which unpacks all edges fully and suppresses duplicates was discussed in Section 6.2,
but returning level-0 edges is not always desired (see introduction of Chapter 5 and the example in
Chapter 1).

6.4.1 Unweighted Case

In the following, an edge-resolution algorithm called Sensitive CH-Unpacking Algorithm (SUA) is
presented, which only unpacks an edge if its unpacked path partially intersects an unpacked path
of another edge. Child edges are treated similarly in a recursive manner. Before the algorithm is
explained in detail, edge intersection definitions are introduced:

Definition 7 (Edge Intersection) Let 41 and 42 be (shortcut) edges and c1 and c2 their correspond-
ing paths which emerge by unpacking the edges fully. 41 has non-empty intersection with 42, i.e.,
41 intersects 42 i�. {4 |4 2 c1} \ {4 |4 2 c2} < ;. In short, 41 \ 42 < ; is equivalent. 2

Definition 8 (Subedge) Let 41 and 42 be (shortcut) edges and c1 and c2 their corresponding paths
which emerge by unpacking the edges fully. Then, 41 is a subedge of 42, if c2 can be decomposed
into c2 = c?c1c@, where c? and c@ are (potentially empty) paths. In short, 41 2 42 holds true. 2

Definition 9 (Cover) Let ⇢ be a set of (shortcut) edges. The cover ⇠ (⇢) of ⇢ is the set of all plain
subedges of ⇢ : ⇠ (⇢) = –

42⇢ unpack(4). 2

Definition 10 (Equivalent Edge Sets) Two edge sets ⇢1 and ⇢2 are called equivalent i�. ⇠ (⇢1) =
⇠ (⇢2). It can be abbreviated as ⇢1 ⌘ ⇢2. 2
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Trivially, 41 2 42 implies 41 \ 42 < ; and ⇢? = ⇠ (⇢?) if ⇢? already consists of plain edges only.

Given a set of edges ⇢ , the goal of the SUA is to return a pairwise intersection free equivalent edge
set. A simple solution would be to calculate and return the cover of ⇢ . In this implementation,
however, edges of high levels are returned where possible. Three full edge loops are included in the
calculation which is listed in Algorithm 6.5.

Algorithm 6.5 Sensitive Unpacking Algorithm (High Level)
1: procedure ������E������S����������(⇢ , ;u)
2: count [0 | 4 2 ⇢⌧⇠� ]
3: ����I��������(count, ⇢)
4: �����M�������(count)
5: ���������U������(count)
6: ⇢4G  �������M������(count)
7: return ������(⇢4G , ;u)
8: end procedure

To propagate information level up or down, the edges are ordered according to their edge level
at preprocessing time. In the following, ⇢

�
⌧⇠�

denotes the total CH edge set in descending
order according to the edges’ levels, while ⇢


⌧⇠�

denotes its reversed equivalent. Note that for
implementing, only one array needs to be stored since the other is obtained by looping backwards.

SUA keeps track of edges being in use by storing counters using the array count. Initially, all
counts are 0, but the third line increments all input edges counters to one. In the first full loop,
the contraction hierarchy is traversed level-by-level in a top-down fashion and parents’ counter
values are propagated downwards to the child edges. Overlapping subtrees add up their counter
values, as indicated in Figure 6.6a, followed by a bottom-up level-traversal where children are
removed if the parent edge is kept, in case of inconsistent values, splitting information is propagated
upwards by setting the parent to 0. The result is shown in Figure 6.6b. Finally, all non-empty count
edges are kept as a final result. Although the algorithm already performs partially unpacking of an
edge if a subedge is also in use, on large zoom scales, returning potentially large shortcut edges
can give unsatisfactory results. To solve this issue, the resulting edge set can be unpacked further
before it gets returned. As a default settling, however, ;u is set to1, i.e., no further unpacking is
performed.
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Algorithm 6.6 Sensitive Unpacking Algorithm (Low Level)
1: procedure ����I��������(count, ⇢)
2: for all 4 2 ⇢ do

3: count[4]  1
4: end for

5: end procedure

1: procedure �����M�������(count)
2: for all 4 2 ⇢ �

⌧⇠�
do

3: if 4.is_shortcut then

4: 41, 42  4.chi�dren

5: count[41]  count[41] + count[4]
6: count[42]  count[42] + count[4]
7: end if

8: end for

9: end procedure

1: procedure ���������U������(count)
2: for all 4 2 ⇢ 

⌧⇠�
do

3: if count[4] = 0 then

4: continue

5: end if

6: if 4.is_shortcut then

7: 41, 42  4.chi�dren

8: if count[41] = count[42] = count[4] then

9: count[41]  0 // Replace children edges by parent edge
10: count[42]  0
11: else

12: count[4]  0 // Make sure to unpack edges on the up-path
13: end if

14: end if

15: end for

16: end procedure

1: procedure �������M������(count)
2: return [4 2 ⇢⌧⇠� | count[4] � 1]
3: end procedure
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Figure 6.6: Example showing the main two algorithm loops (lines four and five): Initially, only the
red input edges are marked. Line four pushes count values downwards, resulting in
subfigure (a). Subfigure (b) shows the counters after line five, same-countered subtrees
have merged again, inconsistent roots have been kept and merge information have been
propagated upwards. Finally, all edges with corresponding non-zero values are returned
in line six. 89
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To illustrate a more concrete scenario, an intersection of three streets is given in the graph, where
each of the three outgoing paths is complex, i.e., many plain edges are needed for representing
the strokes. Shortcut edges have been added during CH-contraction. Further is assumed that two
trajectories use the same street initially, but other output paths when leaving the intersection. When
the intersection vertex is removed and shortest paths are kept, up to three new shortcut edges are
added connecting the three street’s endpoints. On request time, EBPF returns this two shortcut
edges, as outlined in Figure 6.7a. Naively, when the edges are fully unpacked, all plain edges are
returned (Figure 6.7b). Instead, a more abstract representation can be obtained by using shortcut
edges instead of expensive plain edge representations. The former is returned by SUA.
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a b c d e f g h

(c)

Figure 6.7: Example showing SUA’s potential: In the left half of (a), the input scene is given, where
three edge strokes merge. Shortcut edges are drawn dotted. Red edges indicate EBPF
returned input edges, labeled thicker edges represent plain edges. On the right side
of (a), the edge hierarchy is visualized. All blue edges are part the result sets chosen
by the di�erent methods: While the naive full unpacking procedure in (b) returns all
plain edges as the leaves of the CH, SUA keeps the highest edges only. This is nicely
outlined in the edge hierarchy of (c).

Theorem 5 Sensitive unpacking takes O(|⇢⌧⇠� |) time.

P���� Marking and returning of edges is based on a |⇢⌧⇠� |-sized counting array. Since each step
loops through the list at most once with constant time each iteration, the worst case running time
asymptotically di�ers by a constant factor only. For the final (optional) unpacking procedure, no
edge is visited and exported twice due to the fact that by construction the set ⇢4G is intersection-free,
which proves the claim. ⌅

The concept of propagating counts to lower children can be generalized for weighted inputs, which
will be presented in the following section.
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Algorithm 6.8 Weighted Sensitive Unpacking Algorithm (Low Level)
1: procedure ����I��������(count, ⇢ ,F)
2: for all 4 2 ⇢ do

3: count[4]  F [4]
4: end for

5: end procedure

1: procedure �������M������(count, Z)
2: ⇢4G = [4 2 ⇢⌧⇠� | count[4] � Z]
3: F4G = [count[4] | 4 2 ⇢4G]
4: return ⇢4G ,F4G

5: end procedure

6.4.2 Weighted Case

For the weighted version of SUA, namely Weighted Sensitive Unpacking Algorithm (WSUA),
counters are initialized with the collected weights instead of static one entries. In addition, a
minimum intersection count Z is introduced to only return edges which satisfy a certain minimum
usage. Aggregated weights are returned too. The changed code blocks are listed in Algorithm 6.7
and Algorithm 6.8.

Algorithm 6.7 Weighted Sensitive Unpacking Algorithm (High Level)
1: procedure ������W�������E������S����������(⇢ ,F, Z , ;u)
2: count [0 | 4 2 ⇢⌧⇠� ]
3: ����I��������(count, ⇢ ,F)
4: �����M�������(count)
5: ���������U������(count)
6: ⇢4G ,F4G  �������M������(count, Z)
7: return ������(⇢4G , ;u),F4G

8: end procedure

Due to the very same overall merging scheme as SUA, the same running time argumentation holds
true for WSUA.

6.5 Discussion

6.5.1 Implementation

To gain a better understanding for further discussions, some typical outputs are presented first.
Figure 6.8a shows the greater surrounding of a German city in high detail, since only edges have
been pruned which are used less than two times. A requests of larger scale is shown in Figure 6.8b:
The artificial Europe500 path sets was queried and only edge strokes used 500 times or more were
kept. In the last setting, the Saarland1M Dataset was requested filtering with Z being 512.
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(a)

(b) (c)

Figure 6.8: Typical EBPF outputs on di�erent graph and path data: (a) depicts a response on the
Germany Dataset, (b) a high level request on the Europe500K Dataset, and (c) the full
Saarland1M Dataset filtered for most used edges.
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Figure 6.9: Transmission size and calculation time changes using the Saarland1M Dataset under
variation of Z . Note, that the abscissa is scaled logarithmically.

6.5.2 Measurements

For evaluating the edge based PF variant, the following setup was used: Frontend timings were
measured on the ThinkPad, which also hosted the backend for the Saarland Dataset retrievals.
Germany and Europe graphs ran on the more powerful Threadripper.

The Tables 6.3, 6.4 and 6.5 list the measurements taken from Saarland Datasets, namely the filtered
original Dataset and the artificially generated set containing 100 000 and 1 000 000 paths respectively.
Comparing the Saarland100K Dataset and its ten times larger variant, based on the dominating
edge sweeping part, times for small request boxes do not di�er to much. Measurements were also
taken for the Germany and Europe500k dataset, but sweeping through all edges exceeds the time
limit of two seconds by far. For the Germany Dataset, for example, no response has been answered
in less than 13.9 seconds (see Table C.6 for more measurements). Hence, sensitive unpacking can
not be applied to graphs of that size.

Finally, measurements were taken on the Saarland10M Dataset containing ten Million trajectories.
The results are appended in C.7. Calculation took place on the Threadripper. Interestingly, the times
up to a request factor of 1/4 are sill acceptable. This is because the algorithm runs into saturation,
because at some point all relevant edges have been used once and reusing does not increase the
response’s size, but only the count.

To further investigate the influence of Z , Figure 6.9 shows the results for the Saarland1M Dataset
under variation of the minimum intersection threshold. The graph bounding box served as a static
request box and 30 bins were used. Each point of the green and red curve resulted from averaging
ten time measurements. There are a few conclusions which can be drawn from the graphic. First,
all three curves behave similarly, meaning that backend times correlate with transmission sizes
and frontend work, because varying Z only influences the edges collected in the last sweep. The
larger this threshold is chosen, the less edges are collected, and the fewer have to be unpacked. Less
unpacked edges result in smaller response packages and less frontend work. Secondly, the overall
times needed intuitively reduce the larger the threshold is chosen. For this special graph and request

93



6 Edgebased-P���������

Zoom

2 4 6 8 10 12 14 16 18

Factor 1/32

Frontend [ms] 1 2 1 2 2 1 1 2 2
Backend [ms] 125 134 119 119 133 91 120 140 134
Size [KB] 5 5 5 7 6 5 5 13 13

Factor 1/16

Frontend [ms] 1 3 2 2 4 3 3 2 4
Backend [ms] 130 139 142 133 136 134 126 112 143
Size [KB] 20 14 11 11 31 24 26 19 33

Factor 1/8

Frontend [ms] 2 6 4 8 6 9 6 14 9
Backend [ms] 154 143 154 152 155 164 145 164 166
Size [KB] 33 44 46 77 61 89 79 105 118

Factor 1/4

Frontend [ms] 7 16 16 15 19 15 20 19 29
Backend [ms] 160 167 177 169 186 177 190 191 196
Size [KB] 127 169 166 171 229 204 243 304 357

Factor 1/2

Frontend [ms] 20 46 45 50 56 53 61 62 91
Backend [ms] 203 219 222 230 231 235 255 254 275
Size [KB] 408 469 527 600 694 687 878 834 1153

Table 6.3: Transmission sizes and calculation times using EBPF with binning activated (1 = 25)
on the Saarland Dataset.

size choice, the frontend typically needs less time to process the response than the backend needs to
generate but the other graphs show a very similar behavior. This can be explained by the fact that
the naive sweeps iterating through all edges are expensive operations, but at most all plain edges are
retrieved. Most importantly, the curve drops quickly for small values of Z : Both the times for the
back- and frontend, as well as the size reduced by more than 20 percent for changing Z to being ten.
At around Z = 80, times and size even halved. Note, that for the last value Z = 8 192, still 19 712
edges are retrieved.

On the one hand, unpacking edges sensitively results in a simplification of edge strokes. Profound
unpacking at intersections or where multiple trajectories start or end to overlap is needed on the
other hand. This helpful behavior is stressed out using Figure 6.10, which compares the fully
unpacked EBPF output with its SUA counterpart: Especially dead ends and streets having only very
few junctions are replaced by a few straight lines only. While the overall topology still applies, most
of the path-specific details were removed. Transmitting the simplified scene consumes 20.8 KB
which is, compared to its original unpacked version using 56.4 KB, a reduction by over 63 %.
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Zoom

2 4 6 8 10 12 14 16 18

Factor 1/32

Frontend [ms] 9 8 10 6 9 9 9 20 10
Backend [ms] 160 163 172 168 181 180 175 182 178
Size [MB] 0.10 0.12 0.14 0.13 0.19 0.17 0.20 0.25 0.26

Factor 1/16

Frontend [ms] 42 25 30 20 28 20 18 17 18
Backend [ms] 195 186 194 186 207 236 208 198 216
Size [MB] 0.36 0.29 0.31 0.28 0.43 0.49 0.46 0.38 0.51

Factor 1/8

Frontend [ms] 73 66 69 52 49 74 68 76 77
Backend [ms] 245 250 264 288 266 315 300 315 309
Size [MB] 0.79 0.74 0.90 1.15 1.01 1.45 1.25 1.53 1.48

Factor 1/4

Frontend [ms] 222 257 242 142 183 163 176 167 237
Backend [ms] 409 474 454 443 522 491 529 517 663
Size [MB] 2.52 3.04 2.88 2.86 3.61 3.38 3.78 3.58 5.08

Factor 1/2

Frontend [ms] 764 783 750 528 446 466 535 564 536
Backend [ms] 985 1043 1051 1096 1065 1118 1228 1285 1291
Size [MB] 8.30 8.99 8.88 9.52 9.28 9.72 10.98 11.51 11.68

Table 6.4: Transmission sizes and calculation times using EBPF with binning activated (1 = 25)
on the Saarland100K Dataset.

(a) (b)

Figure 6.10: Showing the same EBPF response (a) fully unpacked and (b) postprocessed with SUA
on a large zoom scale.

95



6 Edgebased-P���������

Zoom

2 4 6 8 10 12 14 16 18

Factor 1/32

Frontend [ms] 9 22 10 12 11 9 11 13 13
Backend [ms] 188 199 184 187 210 186 187 201 184
Size [MB] 0.22 0.24 0.23 0.22 0.30 0.25 0.30 0.38 0.37

Factor 1/16

Frontend [ms] 35 21 21 19 44 45 47 41 48
Backend [ms] 255 232 228 222 261 255 240 235 225
Size [MB] 0.80 0.57 0.58 0.51 0.73 0.83 0.75 0.61 0.77

Factor 1/8

Frontend [ms] 94 74 106 114 81 113 92 122 139
Backend [ms] 384 357 351 412 350 424 379 421 429
Size [MB] 1.80 1.58 1.86 2.23 1.84 2.61 2.16 2.60 2.41

Factor 1/4

Frontend [ms] 315 349 331 293 328 317 347 360 540
Backend [ms] 793 898 763 757 821 768 798 758 1066
Size [MB] 5.97 6.87 6.21 5.82 7.05 6.41 6.79 6.40 8.50

Factor 1/2

Frontend [ms] 1257 1199 1212 1120 921 1000 1177 1642 1655
Backend [ms] 2216 2309 2200 2175 1898 1929 2040 2194 2146
Size [MB] 19.93 20.97 19.78 20.25 18.70 19.04 20.32 21.32 19.97

Table 6.5: Transmission sizes and calculation times using EBPF with binning activated (1 = 25)
on the Saarland1M Dataset.

While SUA yields good results for compressing edge strokes, it is a limitation that EBPF’s advantage
of returning only local edges will get lost due to the required full edge sweeps of SUA. This is a
drawback, especially for graphs with many edges, where sweeps are expensive in relation to the
edgeset being returned. Further research is required to develop a sweep-less sensitive unpacking
version to maintain locality. An initial approach is presented in the Future Work chapter (Section 8.4).
For now, it might be worth to utilize duplicate free unpacking for very small edge sets instead.

Another limitation which needs to be fixed in future implementations is the double-linking of
edges. For two adjacent nodes D and E, there is one edge connecting D with E and another edge in
opposite direction. This was implemented to easily encode trajectories by edges, since directions
are implicitly stored. Figure 6.11 explains the di�erence between trajectories linked to bidirectional
and unidirectional edges in the context of sensitive unpacking: In the figures 6.11a to 6.11d, a
typical input scene on bidirectional edges is shown. Initially, two fully unpacked trajectories colored
in blue and orange are drawn with their respective plain edges. In the scene a path split is given
consisting of three plain edges 0, 1, and 2, and two shortcut edges 3 and 4 connecting 0 � 1 and
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Figure 6.11: Comparison between unidirectional and bidirectional edge orientation.

0 � 2 respectively. The compressed version, as they would be stored in the PF data structure, are
depicted in Figure 6.11b. On requesting EBPF, it will return the two edges 3 and 4, which will then
be spitted into 0, 1, and 2 by SUA, since they both have 0 in common. The unpacking resulted
from the common parent in the CH-hierarchy, as sketched in Figure 6.11c. Figure 6.11d depicts the
final result, where green indicates weight 1 and red weight 2, since it was used by two trajectories.
In the current implementation, however, the following inconsistency occurs if edges are traversed
in di�erent directions: Figure 6.11e shows the same scene, but using unidirectional edges. Each
edge D � E also has a back edge E � D and depending on which direction the trajectory is traversed
through, the one or the other edges is used. In this case, there are also back edges for the shortcuts.
If now the same trajectories are in use, both back and front edges will be picked, as visualized
in Figure 6.11f, but there will be no shared edges any longer (Figure 6.11g). The final result is
summarized in Figure 6.11h: Since there is no intersection, no unpacking will take place. The latter
case is not an intended situation and should be fixed in the further work. An initial sketch solving
this issue is described in Section 8.4.

As a recommendation regarding possible use cases, EBPF does not support microscopic analysis
tasks, since single trajectories have been aggregated on the server side. For small graphs, the
method works fine for both inter-city and and macroscopic analysis, since the results highlight paths
of high usage without losing to much route details.

6.5.3 Summary

The modified PF version EBPF retrieves request-box related edges only, allowing for high resolution
outputs, e.g., by unpacking the matches edges. SUA, an alternative exporting mechanism, calculates
overlapping segments and unpacks edges having di�erent usage counts while edge strokes of same
usage are simplified. The parameter Z steers the edge return selection process by filtering edges
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out which were used less that the given threshold. For larger graphs having multiple millions of
edges, however, the method is not applicable in combination with SUA, hence fully unpacking is
suggested. Closing this gap will be a central issue for future research.
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All previously presented methods have in common that the requested trajectories are encoded
by lists of coordinates. The server first collects all matching edges, converts them into a list of
latitude-longitude pairs and transmits the data string. The client interprets the lists as vector lines
defined on a 2D surface.

During the evaluation of the implemented methods, a clear bottleneck on client’s side has been
detected: While a server just needs longer to process a larger request, the client’s response time to
the user increases significantly. For larger inputs, it even stops working or the browser tab crashes.
A reasonable explanation for this behavior is based on the fact that each tap only uses a single
CPU core for all underlying processing tasks [37]. If a request is received, the json-string has to be
decoded, parsed into point lists and plotted. Additional callback functions like scrolling or rolling
the map require further plotting updates.

This section tackles bottleneck problems on client’s side by shifting most of the plotting to server’s
side. Instead of sending a vectorized description of the plot to the client, only a bitmap is transferred
to keep the client as lightweight as possible. This approach also allows for parallel processing on
multiple cores, since plotting is performed on a powerful multicore architecture. In our concrete
example, the server has 16 times as many cores available as the single client thread has.

7.1 Basics

To reduce the client’s processing load, retrieval and plotting will be performed on the server. The
final result will be embedded in a tile layer. This small section briefly introduces the concept of
tiles in the context of map rendering.

From an abstract perspective, an interactive map (like leaflet in this work’s case) works as follows:
The whole map is rendered in advance on the server side, discretized on a grid of squared images.
In the context of tiling, these images are called tiles [42]. For a given view on a zoom level ;, tiles
are loaded such that the whole requested viewport is covered. The tile sizes are usually powers of
two, in the case of OSM it is 256 ⇥ 256 pixles [40, 42]. When performing a map-pan operation,
meaning the map slips around while dragging the mouse, some tiles disappear from the viewport
and new tiles have to be requested [40].
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Most maps already support own tiling embeddings [2, 35, 36, 39]. A common naming style follows
the pattern http://<host>/<domain>/z/x/y.png for requesting a specific tile index by zoom level I
and position (G,H). The mapping between a location on the map and the respective indices is given
by the following equations, taken from [40]:
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where the last equations relate to the upper-left coordinate. The grid is chosen in such a way, that
zooming in by one level, breaks up a single tile in exactly four smaller images. Therefore, the
number of tiles required quadruples each level and both G and H range from 0 to 2I .

7.2 O�ine Tiling

This section mainly focuses on the use case where no time and space restrictions are given. Since
the result set will always be the same, plotting can be prepossessed very e�ciently and with high
degree of detail. This allows exploring the full dataset on any level without having any processing
bottlenecks.

7.2.1 Architecture

To extend the frontend by a static tiling, a tile layer was added to the map. It already handles the
mapping of the current position on the map to the corresponding requesting longitude-latitude pairs
and the (G, H)-positions indexing the grid cells. An additional pistache server has been set up for
the purpose of answering tile requests, which are sent automatically by the map tile layer. On the
backend side, handling the request becomes trivial: The stored tiles are checked for a match and
if so, the correct tile-image is returned. Following a standard convention [41], tiles are grouped
together by I and G coordinates by stacking them into folders.

Client
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Figure 7.1: Overall setup explained graphically: An additional tiling server provides data requested
by the tiling layer. PF requests are still possible.

For generating the files, the image library OpenCV [57] was integrated, which supports simple
drawing operations and multiple image encoding methods. As a first step, the bounding box for the
graph was calculated on the coarsest level to determine the cells on the top-left and bottom-right of
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the grid. Now, for each cell within this range, a tile is plotted and stored. This can be repeated for all
finer layers. One could plot a single tile naively by iterating through all paths, creating a image layer
for each path, extracting the edges based on the current level using unpacking, and plotting this path
edge-wise. Finally, all layers are merged. If only one layer was used, paths would have overwritten
their plottings. Hence, using multiple layers is important, this allows for adding layer values up
which in turn highlights more frequently used paths in darker tones, while more rarely used paths
stay less saturated. To further improve speed, only one color channel is used while aggregating.
Right before the images is stored to disk, this usage-channel gets transformed into a color-image.

7.2.2 Adaptive Search

For larger zoom scales, each tile includes many paths. The finer the scale gets, the more details
are plotted, but the smaller the bounding boxes become. Iterating over all cells, however, is not
required for the following reason: If the bounding box ⌫;,G,H used to create tile on level ; does not
contain any path to plot, clearly its children ⌫;+1,2G,2H , ⌫;+1,2G+1,2H , ⌫;+1,2G,2H+1 and ⌫;+1,2G+1,2H+1
on the next finer level will also be empty. The idea is visualized in Figure 7.2.

  

(a) level ;

  

(b) level ; + 1

Figure 7.2: Showing plotted paths data with (artificial) grid on the Saarland Dateset. All red
colored cells are excluded from further refinements in subsequent steps. Areas colored
in blue indicate excluded cells from previous rounds.

For the same reason, all further children will be empty, too. To avoid traversing cells whose parents
were already empty, the implementation keeps track of which cells have a non-empty intersection
on level ; and runs the new round on level ; + 1 with this cells only. The adaptive structure pays out
especially for input graphs which are not well represented by their bounding box, meaning they
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cover only a small share, or if there are many spacial holes in the graph, i.e., areas where no path
passes through. This is illustrated in Figure 7.3. An example for this could be a large mountain
range or sea, where no trajectory have been recorded yet.

(a) Naive and adaptive on level ; (b) Naive on level ; + 1 (c) Adaptive on level ; + 1

Figure 7.3: Comparison of visited cells on two consecutive levels: Initially, all 56 cells are
iterated through on starting level ;. The anchor-cells at top-left and bottom-right were
highlighted. The adaptive methods, however, marks some cells as empty (red) and
skips them for the next round. It therefore only sweeps through (56 � 18) · 4 = 151
cells, while the naive approach visits 12 · 14 = 168. This di�erence keeps increasing
on finer levels the more the shape gets adapted.

To illustrate the practical advantage compared to the naive implementation, some measurements
were taken when constructing the tiles for both methods: The number of visited cells nearly
quadruple each level for the naive method visiting the cells independently from the previous round
while the adaptive method keeps pruning future cells search paths. Note that the hierarchical
adaptive method visits slightly more tiles at the beginning. This is because some tiles are naturally
pruned by the naive method because of the refinement of the grid. It is illustrated by Figure 7.3,
when transitioning from sub-figure (a) to (b).
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Figure 7.4: Comparison of visited cells using naive traversal (red) its adaptive counterpart (blue).
Note that the ordinate is log-scaled due to the exponential growth in tiles visited.

Figure 7.4 shows the number of tiles which were visited on each layer for the two di�erent methods.
While the di�erence seems to be small, the total number of accumulated visits underlines the
significant speedup: For generating the full Saarland Dataset tiling, 660 791 cells are visited in total
for the naive method. Using an adaptive grid reduces the number of visits down to 86 769, which is
a reduction by 86.9%.

7.2.3 Path Skipping

So far, an optimization only in the number of traversed cells has been implemented. Another
ine�cient implementation is the creation of layers for each path while plotting: Especially for larger
zoom scales, only very few paths are part of a single tile. Unpacking and copying all path data is
not required if the path will not be visible anyway. To skip this expensive operation, a bounding box
for each path is created on startup. This bounding box is then used on tile-creation time to check for
empty intersection with the tile-bounding box. If so, the path can be skipped. The path boxes can be
calculated e�ciently in a recursive manner, similar to Section 5.1.2: Each shortcut’s bounding box
results form its childrens’ boxes using min and max operation on the bounding coordinates. Plain
edge boxes are trivial to create. In case of the Saarland Dataset, the creation time for the layers
6 � 12 reduced by a factor of four, for the creation range 9 � 14 by a factor of 12.

To further speed up the creation time, the fixed input list can be utilized: because the cells on
one level can be visited in any order, parallelization was implemented. Again, a solid reduction
can be achieved, ranging from 38 to 46% (using test cases Saarland level 17 and levels 9 � 14
respectively).
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7.2.4 P��������� based

Even faster than testing paths sequentially are hierarchy-organized search structure retrievals, like
the one PF makes use of. Therefore, the Path-Skipping algorithm, which served as an appropriate
benchmark, is replaced by PF, which now takes care of the retrieval of matching paths for each tile.
On our two core CPU, compared to path skipping, this reduced the response time by approximately
32% calculating the tiling on level 17.

The refinement considerations about the tile generator are concluded by an interesting marginal node,
regarding adaptive refinement: It turned out to be faster to calculate level 17 by first calculating
its smaller hierarchical predecessors 14, 15 and 16, instead of starting at this layer directly. The
obvious reason is that layer 14 is 43 = 64 times smaller than layer 17 and prunes the cells search for
the next levels significantly. This again shows the outstanding advantage of adaptive refinement.

To sum this section up, a significant increase in the creation of tilings was achieved by searching
adaptively based on the last layer’s results and integrating PF. The section is closed by showing a
timing overview for the methods presented in their chronological order. All measurements were
takes on the Thinkpad, as stated in Section 3.4.2.
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Figure 7.5: Time comparisons: Calculating tiles for levels 9 � 14 on the Saarland Dataset using
adaptive grids (A), path skipping (PS), threading (Thr), and P��������� (PF).

7.3 Online Tiling

In the last section, a tiling server was used to avoid expensive calculations on requesting time: All
tiles are calculated in advance, they only have to be transmitted when requested. This section tries
to motivate the use of tiles more abstractly by enforcing a lightweight, plotting-free client.

7.3.1 Potential

The underlying idea is rather simple: While plotting on client side is slow and vectorized data has
to be transmitted, plotting on the backend side is fast and the result can be sent as a raster graphic.
This introduces some degree of result-independent returns, because the image size does not increase
linearly in the number of paths it shows. Examples are shown in Figure 7.6. Also, overlays of paths
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are transmitted as the saturation of pixels rather than as di�erent result set entries that have the same
coordinate list. Transmitting images is also advantageous if complex paths has to be drawn: It is
common knowledge that a lot of points are necessary to describe a jittering curve. This also applies
to trajectories with zigzag-shaped characteristics. Straight line trajectories, however, outperform its
rasterized variant. Another advantage of using tiles over transmitting raster files is a batching-like
transmitting behavior. While all requests are sent automatically, the smaller responses ones arrive
first, providing a quick feedback to the user. Further, details are refined on demand, because no
tile of higher resolution is loaded, until the user requests them by zooming in at the corresponding
position.

(a) 43.4kB (b) 40.3kB (c) 39,2kB (d) 35,5kB

Figure 7.6: Showing Saarland Dataset tiles of di�erent complexities, all ranging between 35-45 kB
in size.

7.3.2 Implementation

To illustrate the concept, a small demonstration has been developed. This proof of concept
implements all required components showed in Figure 7.7.
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Figure 7.7: Architecture for online tile generation.

When the user triggers a calculation query, the PF instance calculates all matching results. Instead
of exporting the result set, it is stored in a global cache and linked with an identifier. Latter gets
returned to the client, which includes a new tiling layer. In contrast to the o�ine case, where the
base tiling URL was static, this time the received reference becomes part of its domain path. The
tile layer automatically checks for tiles to be included and requests them. Finally, the PF server
receives the requests, creates the plots according to the sets obtained from the cache, and sends
back the final images which are embedded into the tile layer.
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7 Tiling

Dataset Levels Calculation Time Storage Requirement # Tiles
Saarland 1-18 1:05h 1.40GB 159 337
Germany 1-13 1:13h 0.65GB 45 970

1-18 >10h* 1.50GB* >250 000*
Europe 500k 1-12 5:09h 1.40GB 207,915

1-18 >30h* >20GB* >20 000 000*

Table 7.1: Tile creation statistics. The marked values represent estimates only.

To make sure that the server cache does not run out of memory, only a fixed number of result sets
are stored. They are managed in a cyclic bu�er, such that the oldest cache entries are overwritten
first in case of to many requests.

7.4 Discussion

This final section discusses the method’s characteristics and gives a final recommendation based on
that. To preface the argumentation, Figure 7.8 shows screenshots of typical results.

For the implementation, a tile size of 512 ⇥ 512 pixels were chosen. Table 7.1 shows recorded tile
statistics for preprocessing. Assuming a desktop application of size 1920 ⇥ 1080 pixels, which was
by far the most frequently used desktop resolution in Europe last year [53], and subtracting the left
and right navigation menu, nine tiles are usually needed to fully cover the map’s tile layer.

Figure 7.9 visualizes the data sizes for transmitting tiles on di�erent zoom levels: Regarding the
Saarland data, in the beginning, tiles are small, since the shape of Saarland is comparably small.
Increasing the level size leads to an increase in the average tile size which finally peaks at level nine.
From that point on, the size decreases again. This is because only a few paths per tile are visible
due to large zoom scales. The tiling for the Germany Dataset shows a qualitatively very similar
behavior, except that it peaks earlier at level seven.
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7.4 Discussion

(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Showing typical result sets using precomputed tiles. (a) using Saarland tiles, (b), (c),
and (d) using Germany tiles and Europe dataset tiling used in (e) and (f).
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Figure 7.9: An overview of final tiles sizes on the Saarland and Germany datasets.

The plots clearly show, that tiles are typically small: Even in the worst case, when requesting the
nine largest Germany tiles on level seven, at most 1.48 MB have to be transmitted. For the average
case on the critical level seven, 0.78 MB of tile data is received in total. Although the data sizes are
rather small, the tiles are rich of details, as shown in Figure 7.8.

Another advantage of using tile layers for displaying data resulting from heavy calculations is that it
comes with caching by default. Panning the map slightly only reloads areas which have not been
transmitted yet. Moreover, when a zoom-in followed by a zoom-out operation is performed, the
data does not need to be transmitted again in the latter case, in opposition to the earlier presented
methods.

Furthermore, the implemented tiling shows a high degree of interactivity. The user sees an upscaled
version of the tiles of level C when zooming in to level C +1, but di�erent to the vector-versions, single
tiles update one after another, independent from each other. This again decreases the user-response
time and enhances usability.

According to Definition 1, tiling supports macroscopic analysis very well, but has the drawback
that it does not, at least in the current implementation, support single-trajectory selection which is
required for low-level use cases. A possible solution might be the inclusion of another raster layer
on top for reloading data lazily, see Section 8.5.
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7.4 Discussion

To sum up, using tiling for displaying render results yields highly detailed views on any scale at
low transmission cost. Details are loaded on demand only for requested areas. Once the tiles have
been calculated, tile servers are fast to setup and start. Moreover, using tiling allows very di�erent
end users to access the map, the lightweight implementation works fast and independent from the
user’s frontend device. In the case of static tiling, however, no time and space restrictions can be
set. A possible solution might be online tiling, where requests are calculated on the server side
and only raster images are transmitted. Also, building a high resolution tile set takes a fair amount
of time and consumes a lot of disk storage. Additionally, many tiles have to be recalculated if
the trajectory dataset changes. More research has to be done, to investigate whether online tiling
could be combined with methods like pruning or EBPF to combine fast calculation with small
transmission sizes and lightweight clients.
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8 Future Work

This chapter touches on the presented methods to show possible extensions and open questions for
further research.

Decoder-Encode Wrapping

To increase transmission speed method-independently for larger packages, a message decoder
can compress the json-response on the server side before sending and a client-side counterpart
decompresses the received message. Further investigations must be carried out to decide at what
size (de-)compression is worthwhile.

8.1 Segment Graph

Smooth Transitions

The segment graph algorithm merges edge to edge strokes according to their usage. Each stroke
is plotted on its own, connected to other strokes, according to the connection graph’s edge set.
This, however, produces sharp transitions between neighboring strokes. to enhance visibility, edge
strokes should be colored smoothly with blended colors determined by their neighboring strokes. A
structure, similar to a 1D heatmap would be the result. An example is shown below in Figure 8.1.

(a) Current (b) Smoothed

Figure 8.1: Comparing the current sharp transitions with a smoothed version to enhance visibility.

111



8 Future Work

Sorting With Respect to Edge Colors

Section 6.3 demonstrated a massive speedup if edges can be plotted in groups. The same technique
can be applied for the segment graph if edge strokes are grouped together with respect to their color.
It should be noted, however, that this change would prevent the plotter from adding mouse-hover
and on-click events.

Graph Strokes Simplification

By definition, each edge stroke only represents a fixed composition of trajectories. Analogously to
the SUA, strokes can be simplified before transmitting the graph. Arguing the same way as with
sensitive unpacking, this does not change the overall topology, but reduces complexity.

8.2 Batched Transmission

Optimal Transmission Order

In Section 4.4, node orderings were presented and evaluated. It turned out that PLOU performed
best on the input data. A very interesting research question would be, however, how well an optimal
strategy would perform. This would give a better understanding of how e�ective the presented
methods are. Subsequently, it is also unclear how an optimal strategy can be found in general.
Naively, all permutations could be checked, but is there an overall method polynomial run time?
Are there (greedy) polynomial-time approximation schemes which produce a solution that grantees
to be very close to the optimum?

Aggregated Transmission

The chapter on batching dealt with transmitting points on a single trajectory. A possible extension
transmits a group of trajectories. After unpacking the input trajectories to a certain level and
calculating the union, edges are refined with respect to their usage count. Edges used by many
trajectories are preferred over single-used ones. This strategy would nicely extend the EBPF
methods, which already perform the required preprocessing.

Prioritized Updating

If a request is answered using batching, a queue of open paths is stored and one trajectory is refined
after another and again enqueued if not all points have been transmitted yet. To improve this idea, a
di�erent approach could be chosen: replacing the queue by a priority queue allows more advanced
updating rules.

The overall communication sketch is depicted in Figure 8.2: To begin with, the clients starts
requesting a spatio-temporal query, which results in a list of matched trajectories. The server caches
the result and answers with an initial raw batch for all paths. The data is transmitted and loaded
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8.3 Graph Layer Pruning
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Figure 8.2: A novel architecture showing a more advanced updating procedure.

into the map. Similar to the current implementation, the elements are pushed to an update queue
storing all unfinished trajectory objects, but this time certain priorities are assigned. The trajectory’s
length measured by the number of points, or its intersection-ratio between the path-bounding box
and the current view box are possible weights. This allows longer and typically more complex
paths to update first, while updates for paths which are only partially visible are postponed until
the very end. Whenever an update is received, the priority of the respective trajectory object is
change accordingly. This architecture can be extended to integrate user interaction: When a user
translated the map or zooming was performed, the priorities of the remaining paths are updated, e.g.,
trajectories whose bounding boxes do not overlap with the view’s box anymore are postponed to the
very end, while paths which have not been updated yet, since they were not visible, are brought
forward. To inform the user about the transmission process, i.e., how many open trajectories are still
enqueued, an interactive status layer is integrated into the frontend. This would allow to set certain
download thresholds, for example, the user could specify to download only 50% of the points for
each trajectory. If the user is not satisfied with the result, the threshold can be adjusted, which
triggers the prioritizer to enqueue the trajectories again.

8.3 Graph Layer Pruning

Fixed and Sorted Cuto� Levels

The process of edge filtering can be accelerated if the number of allowed cuto�s is restricted: if
there are only : possible cuto� levels, where : is much smaller than ;<0G , e.g., : = 4, edges could
be grouped together in a preprocessing step.
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8 Future Work

To extend this idea, edges should be sorted for each trajectory by increasing edge-level, so only :

pointers must be stored, referencing the cuto� positions.

Alternatively, a binary search on the sorted edges can be implemented to find the correct split
index in logarithmic time. Once this index has been determined, no further filtering-check has
to be performed due to the sorting. To speedup the merging further, < partial heatmap results
�1,�2, . . . ,�< can be pre-calculated for cuto�s 21 < 22 < · · · < 2<. On request time, the smallest
pre-calculated sub result �2 must be found and the remaining edge-updates are applied. An example
is given in Figure 8.3: cuto� 2 is requested, therefore, �2 = �1 is loaded because 21 < 2 < 22 and
only heatmap cell counts for [14] and [12, 4] have to be updated.
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Figure 8.3: Edge sorting enables preprocessing for faster heatmap merging. Edge-IDs are colored
in dark blue. Their respective edge levels and grid cell lists are drawn using lighter
blue tones.

Include Batching

In the case where |⇢+| is very large, transmitting the edge set in a batched fashion, similar to plain
batching, can be integrated to reduce waiting times on client side. Similarly, rough heatmaps
could be calculated and returned first, since they are faster to build, and smaller in size. Once the
heatmap-preview is transmitted, calculating the next finer level is triggered.

Heatmap Pruning

In the implementation of the pruned graph, only edges are returned which are visible within the
user’s device screen and the result edge set is cached on server side. When the map is panned, an
updated view is loaded to avoid transmitting edges outside the view. A very similar concept could
be introduced for the heatmap as well, which would noticeably decrease the response time for the
first update.
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8.4 Edgebased P���������

Manual Bin Selection

When binning is activated, the server groups the result edges with respect to theirs usage into : bins.
Afterwards, all bins with edges included are transmitted. To increase responsiveness and to lighten
the client processing load, a future implementation only returns the first layer. All other layers are
not visible by default and are reloaded from the server when the user activates the receptive check
box. Besides the speedup for transmitting the initial request, this also allows the user to switch
single layers on- and o�. A suitable use case would be to only display edges with the most or least
visits within the selected bounding box.

Dynamic Bin Cutting

Reducing the number of colors allowed comes down to finding a suitable function binned :
⇠ ! ⌫ with ⇠ ⇢ N being the unique counter values and |⌫|  1 the target values allowed
for binning. In the implementation explained in Section 6.3, splits are introduces at the values
min(⇠) +

j
8 ·

⇣
max(⇠)�min(⇠)

1�1

⌘k
for 8 = 0, . . . , 1 � 1 and each edge is assigned to the group having

the last smaller split value. Finally, each group gets the value of count-wise smallest element
assigned, which is at least as big as the split value. This ensures to include min(⇠) and max(⇠) in
a separate bin, if 1 > 1. However, due to the static range, some bins might by empty. Although the
method requires low running time, more e�orts for choosing the correct bins will boost the quality.
A reasonable approach will also take the input distribution into account, where small count values
occur typically often and high usage values rarely. The distribution for the unbinned request on
Dataset 5 is shown in Figure 8.4.
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Figure 8.4: Edge usage distribution for the response of the Dataset 5 from Section 6.3. Counts for
intersection values 26 to 41, whose values were smaller than two, have been truncated
for better visibility. Note that the ordinate is of logarithmic scale.
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8 Future Work

Since most of the edges occur less then ten times, to increase contrast, more bins should be spent on
lower counts and only a few bins on the very high-frequent counts. An input-distribution dependent
binning function will address this issue, for example by applying histogram equalization, e.g., as in
[30, 46].

Parameterized Rendering Function

If weighted edge plotting is enabled, the EBPF returned strokes are outlined according their absolute
usage numbers, i.e., edges which are part of many trajectories are plotted less transparent or thicker,
than edges only used a few times. When a static function is used, not all datasets are supported
equally well: While on small datasets, the maximum intersection count for a request typically does
not exceed a couple of dozen, e.g., 41 for the filtered Saarland Dataset, dense graphs can have many
thousands. The current implementation uses a log function for scaling values accordingly, however
it can’t be guaranteed that the full range [;, 1] ⇢ R is covered, where ; is a minimum opacity value
for paths only used once. A future implementation can return the maximum intersection count for
the whole graph as an additional parameter. This allows the output weights to be scaled accurately,
regardless of the underlying path collection. All edges with usage count one will have opacity ;, all
edge strokes with maximum intersection count will be fully visible, i.e., having an opacity value of
one.

Range-Based Customizable Bin Plotting

It was already mentioned in Section 6.3 that small binning values allow for a clear separation
between frequently and rarely used edge strokes. An illustration follows below in Figure 8.5. To
even extent this method, edges could be grouped into sections defined by the user with individually
defined colors ranges. As a concrete example, the user could request for the top ten percent most
frequent edges and the top ten least used edges and plot these edge strokes using two bins in a red
and green tone receptively. All edges with counts in-between are colored in a neutral color. This
yields a user friendly and customizable exploration method.

Figure 8.5: Using a few bins only yields a good separation between frequently used edge strokes
and edges rarely in use. In the Saarland graph example above, three bins are used.
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Prevent Subedge Unpacking For SUA

Sensitive Unpacking yield good results when several input edges have non-empty intersections. In
the special case, however, where two edges 4B and 4? are part of the input set, unnecessarily small
edges are returned. To illustrate this concept, Figure 8.6 shows an input instance where a subedge is
present.
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g

(a)

a b c d e f g h

(b)

Figure 8.6: A input scene where EBPF returned a subedge.

Although the parent edge would be enough to be returned (see Figures 8.7a and 8.7b), unpacking is
performed and edges of smaller level are added to the output set (Figures 8.7c and 8.7d). To solve
that problem, in a first run sub edges should be removed. Note, though, that this only applies to the
unweighted case. For the weighted case, splits have to be made to allow for di�erent coloring. In
this concrete example, edge 3 would be colored slightly darker to account for the di�erent usages.
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Figure 8.7: Comparison of the optimal desired solution (a) and (b) and the current implementation
(c) and (d).
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Handle Independent Connection Components in Parallel

For unpacking edges sensitively, first a marking sweeps downwards is performed to find overlapping
subtrees and a second sweep is initiated to eliminate unnecessary unpacking. Given a graph with
multiple connection components, e.g., islands or continents, both sweeps can be done independently
on each sub-component. Since edges are not shared between independent connection components
by definition, no overlapping subtrees will be found. If edges are grouped together and sorted by
level only within their components, sweeps can be e�ciently accelerated. Di�erent from the current
implementation, requests on small islands, for example, would be very cheap to answer.

Avoiding Full Sweeps

Due to the sweeps in SUA, output sensitivity gets lost: Even if only very few edges are returned by
EBPF, still all edges are traversed during sweeping up and down. Instead sweeping downwards, a
priority queue, initialized with edges from the EBPF and their corresponding levels, can be used to
maintain the correct traversal ordering, while only relevant edges are visited. If all traversed edge
are pushed to a stack in the order of visit, sweeping upwards can be replaced by visiting the nodes
in the exact opposite order. Collecting edges can be integrated in the second upwards-sweep: If
an edge 4 di�ers from the values of its children, both are exported if not empty and 4 gets 0. To
make sure that no edge is reported twice, the exported children are also marked 0. By replacing the
sweeps using a priority queue and a stack, much faster responses for small input sets are expected.

Resolving Unidirectional Edges

The problem of having two edges between two adjacent vertices was already explained in the
discussion section of Chapter 6. To avoid that problem, a possible solutions would be to re-parse the
trajectories to build a compressed path data structure, where only edges of increasing vertex ID are
used. Whenever trajectories are re-assembled in a postprocessing step, non-matching (i.e., reversed)
edges have to be flipped. This way, only one well defined edge for each neighboring vertex pair is
chosen, regardless of the trajectories’ orientations.

8.5 Tiling

Plotting Speedup Techniques

In Chapter 6, a concept was introduced that solely base on edge-operations instead of trajectories:
EBPF. Since each tile usually only shows a very small extract of the whole trajectory’s shape,
loading a full trajectory is a waste of resources. Think about a level-18-tile showing only a few
edges from ten trajectories: Instead of iterating through all root edges of the ten trajectories and
perform unpacking, plotting the edges directly will yield a noticeable speedup. In a future work,
these two methods can be combined nicely to replace PF- by EBPF requests. This can be extended
to the online-scenario, where fast processing times are even more critical.
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8.5 Tiling

There is also potential for further speedup while creating the tiling-images using adaptive search: It
makes sense to skip areas where no trajectories are present as early as possible, but generating tiles
level by level slows down the plotting, because paths are unpacked from scratch each time a tile
is created. Instead, consider the case where a tile, which was rendered on level ;, is used to also
render the levels ; + 1 by analyzing which of the four sub-tiles use which trajectories. Then, the
already partially unpacked paths can be passed as a reference to the sub-tiling unpacking steps for
further unpacking. In the best case, each path is unpacked only once.

Alternatively, tiles are generated path-by-path: For each path, the intersecting tile cells on each
level are determined. Then, the path is plotted on each level. If no path has used tile 28, 9 ,I yet,
it is created. Otherwise, the tile gets updated. This method ensures, that each path is only fully
unpacked once.

While the two previously presented methods require rather extensive implementation work, caching
of partially unpacked trajectories is worth integrating at low cost. Introducing a fixed-sized cache
for unpacked trajectory coordinates already formatted as point list for the current level and tile, is
also very useful for its neighboring tiles, since there is a good chance that they have a firm amount
of trajectories in common.

Include Information on Demand

Using vector-based methods to plot results requires to create polyline objects to be displayed on
the map. These objects can be extended by onclick events to allow for interactive single-trajectory
analysis (see screenshot Figure 2.7). In contrast to vector methods, this is not possible for tile layers
by default. To allow for exploration methods like this, onclick events on the map could be caught
and forwarded to the server, where the relative click positions have been converted to absolute
longitude-latitude coordinates. On the server side, matching trajectories could be traversed and
returned, but this time as vector objects, since the returning set is typically very small. Finally,
the retrieved trajectories are added to a new overlay-layer. This would allow to display additional
meta-information about the trajectories, similar to the original work, with the only di�erence that
loading would take place lazily on-demand.
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A Proofs

A.1 Balanced and Saturated Search Tree

The following theorem is common knowledge. Since its extensively used in the augmentation,
however, it is included here for the sake of completeness.

Theorem 6 (Saturated balanced tree) Given are =̂ = 2: � 1 nodes. Then, the nodes can be
arranged in a full balanced and saturated tree ): with full last layer having 2:�1 nodes. 2

P���� The proof is given by induction over : . To begin with, the case : = 1 is trivial since
there is only one vertex. Let now : > 1 and a saturated, balances tree ):�1 with full layers exists
for : � 1. Since this tree is fully saturated with : � 1 levels, there are exactly 2(:�1)�1 leave
nodes. The tree ): emerges from ):�1 by appending two new children to each leaf. Clearly, this
tree is still saturated. It is also balances because each branch grew the same size. ): now has
(2:�1 � 1) + 2 · (2:�2) = 2 · 2:�1 � 1 = 2: � 1 nodes. ⌅

A.2 No Gaps in Left-Aligned Tree Ordering

Definition 11 (Gap) A tree has a gap on layer ; if and only if layer ; has less than 2; elements and
there is at least an empty node between two nodes. 2

Theorem 7 (No gap in layer) Let ) be a binary search tree obtained by using left-aligned level-
order sorting on the input + = [1, . . . , =]. Then, there’s no layer in T having a gap. 2

P���� The case where = = 2; � 1 for some ; 2 # is trivial. Let = = 2; � 1 + C with 1  C < 2;�1.
Appending virtual nodes + 0 = [= + 1, = + 2, . . . , = + 0] with 0 = 2;�1 � C yields the new input. Since
virtual nodes will be skipped later, we call them empty. Now create and traverse ) from top to
bottom, left to right (i.e. level-order). Let’s assume 1 2 + to be the first node creating a gap by
having at least one level-order predecessor 0 2 + 0. Because of the search tree property, 0 < 1 holds.
This, however, contradicts the property 1  = < = + 1  0. ⌅
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B Used Datasets

The listing below shortly describes the used datasets and provides references where to find the data.
This allows for transparent reproduction of the discussed findings.

Cuba Trajectories

The Cuba-Dataset1 consists of a path file containing 302 trajectories, combined with a CH of the
open street maps graph of Cuba. The shortest paths uses one edge, the longest 283 compressed
edges (3 847 uncompressed). On average, there are 34.69 edges per path in the compressed setting
and 358.87 edges in the uncompressed case.

Size: 21.3MB paths, 216.0 MB graph.

Saarland Trajectories

The Saarland-Dataset2 is a small CH-graph with a dense paths-overlay. It contains 2 572 trajectories
with an average number of 42.74 compressed edges.

Size: 101.8MB paths, 120.0MB graph.

Since the some paths have invalid or missing time stamps, there is also a filtered dataset, called
Filtered Saarland-Dataset, containing 472 paths.

Based on the original Saarland graph, various random path files have been generated. Due to theirs
considerable sizes, they are not included in the repository, but can be generated by the PF. Most
importantly, the following artificial path files are listed, which were part of evaluations:

Saarland100k

The Saarland100K-Dataset contains 100 000 generated shortest paths between two randomly
sampled points within a 500km distance each.

Size: 13.6MB paths

1Available at https://bitbucket.org/baur�s/ma_baur_pathfinder_visua�ization/src/main/pathfinder_server/data/
cuba/

2Available at https://bitbucket.org/baur�s/ma_baur_pathfinder_visua�ization/src/main/pathfinder_server/data/
saar�and/
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B Used Datasets

Saarland1M

The Saarland1M-Dataset contains one million generated shortest paths between two randomly
sampled points within a 50km distance each.

Size: 134.3MB paths

Saarland10M

The Saarland10M-Dataset consists of ten million generated shortest paths analogously to the 1M
dateset. The paths have an average number of 15.29 compressed edges.

Size: 1.3GB paths

Germany Trajectories

In this work, the Germany-Dataset3 is the largest real world dataset with 5 748 344 nodes and
24 849 999 edge. It is a fine-grained version of OSM routes in Germany containing 372 534
trajectories with an average number of 35.33 compressed edges.

Size: 111.33MB paths, 8.41GB graph.

Europe Trajectories

The Europe-graph contains the main high speed routes in Europe includes 134 405 349 edges and
38 064 931 nodes with a maximum CH-level of 391.

Size: 6.56GB graph.

Since there are no real paths available, the following generated path set is in use:

Europe500k

For the Europe500K Dataset, 500 000 trajectories were generated, each connecting two randomly
chosen points within a 500km radius using a shortest path.

Size: 70.78MB paths

3Available at https://fmi.uni-stuttgart.de/fi�es/a�g/data/SPP/trajectory_data.tar.gz

130

https://fmi.uni-stuttgart.de/files/alg/data/SPP/trajectory_data.tar.gz


C Additional Plots and Measurements

The most important plots were embedded in the main parts of the thesis, but for the sake of
completeness the remaining referenced plots are appended in the following.

Batching
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Figure C.1: Plot showing the average errors over the (normalized) number of transmitted data
batches for di�erent values of 1 and PLOU for reference. The colors were chosen the
same as in the original version.
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Figure C.2: Plot showing the performance for R-SOU transmission compared to benchmark
methods.
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C.1 Binning comparisons

C.1 Binning comparisons

(a) Dateset 1: 25 bins (b) Dateset 1: no binning

(c) Dateset 2: 25 bins (d) Dateset 2: no binning

(e) Dateset 3: 25 bins (f) Dateset 3: no binning

Figure C.3: Comparison of the original datasets plots (right) and their equivalent representation
which is limited to 25 color scales.
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C Additional Plots and Measurements

(a) Dateset 4: 25 bins (b) Dateset 4: no binning

Figure C.4: Comparison of the original datasets plots (right) and their equivalent representation
which is limited to 25 color scales (continued).
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C.2 Additional Measurements

C.2 Additional Measurements

Binning measurements

Binning Types Plotting Exporting Total

1 0.0183 0.0113 0.0295
2 0.0204 0.0122 0.0326
3 0.0254 0.0111 0.0365
4 0.0174 0.0115 0.0289
5 0.0234 0.0117 0.0351
10 0.0204 0.0118 0.0321
25 0.022 0.0119 0.0338
- 0.1293 0.0119 0.1412

(a) Dateset 1, processing times (in seconds)

Binning Types Plotting Exporting Total

1 0.0283 0.0221 0.0503
2 0.0271 0.0237 0.0508
3 0.0256 0.022 0.0476
4 0.0259 0.0219 0.0478
5 0.0245 0.0223 0.0468
10 0.0243 0.0222 0.0465
25 0.0305 0.0241 0.0546
- 0.1951 0.026 0.2211

(a) Dateset 2, processing times (in seconds)

Binning Types Plotting Exporting Total

1 0.0518 0.0492 0.101
2 0.0524 0.0493 0.1017
3 0.0518 0.049 0.1008
4 0.0497 0.0488 0.0984
5 0.0571 0.0491 0.1061
10 0.0584 0.0497 0.1081
25 0.057 0.0488 0.1058
- 0.3376 0.0521 0.3897

(a) Dateset 3, processing times (in seconds)
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C Additional Plots and Measurements

Binning Types Plotting Exporting Total

1 0.126 0.1053 0.2313
2 0.1214 0.1043 0.2257
3 0.1186 0.1058 0.2243
4 0.1219 0.1043 0.2262
5 0.1189 0.1047 0.2236
10 0.1218 0.1058 0.2276
25 0.1314 0.1067 0.2381
- 0.6642 0.1112 0.7754

(a) Dateset 4, processing times (in seconds)

Binning Types Plotting Exporting Total

1 0.1993 0.1851 0.3845
2 0.1889 0.1867 0.3755
3 0.1971 0.1841 0.3812
4 0.2023 0.1841 0.3864
5 0.1834 0.1838 0.3672
10 0.204 0.1837 0.3877
25 0.1892 0.1844 0.3737
- 1.2159 0.1996 1.4155

(a) Dateset 5, processing times (in seconds)
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EBPF Queries

Zoom

2 4 6 8 10 12 14 16 18

Factor 1/32

Frontend [ms] 8 6 16 97 9 14 24 22 24

Backend [s] 14.0 13.9 13.9 14.0 13.9 14.0 14.0 14.0 14.0

Size [MB] 0.07 0.13 0.25 0.87 0.15 0.26 0.75 0.55 0.71

Factor 1/16

Frontend [ms] 90 215 34 123 223 82 31 84 129

Backend [s] 14.2 14.2 14.0 14.0 14.2 14.0 13.9 14.2 14.2

Size [MB] 1.87 3.75 0.69 1.29 4.53 1.67 1.02 2.58 3.81

Factor 1/8

Frontend [ms] 265 64 248 441 653 734 538 325 388

Backend [s] 14.5 14.1 14.5 14.5 14.4 14.5 15.3 14.7 14.3

Size [MB] 6.43 1.85 6.41 7.40 6.17 8.31 18.59 9.85 4.62

Factor 1/4

Frontend [ms] 865 1033 1278 2509 469 1952 1610 2324 2445

Backend [s] 15.4 16.1 16.5 16.9 15.0 16.2 16.0 17.6 18.1

Size [MB] 16.17 23.76 27.48 33.21 12.98 27.19 24.74 42.43 51.57

Factor 1/2

Frontend [ms] 2027 2425 1320 4571 6272 6578 7148 4094 4151

Backend [s] 18.3 18.6 16.4 19.4 21.7 22.1 24.7 22.0 20.9

Size [MB] 45.38 49.28 27.23 59.93 89.17 95.72 128.09 95.50 89.21

Table C.6: Transmission sizes and calculation times using EBPF with binning activated (1 = 25)
on the Germany Dataset. Bold values indicate early stopping due to exceeding the
calculation time limit.



Zoom

2 4 6 8 10 12 14 16 18

Factor 1/32

Frontend [ms] 12 11 10 9 12 10 11 17 14
Backend [ms] 117 118 118 117 122 119 122 129 127
Size [MB] 0.24 0.27 0.25 0.25 0.33 0.28 0.33 0.43 0.41

Factor 1/16

Frontend [ms] 51 44 42 42 50 52 48 43 49
Backend [ms] 163 145 145 139 155 163 157 146 156
Size [MB] 0.90 0.63 0.64 0.57 0.81 0.92 0.84 0.68 0.85

Factor 1/8

Frontend [ms] 105 100 100 148 127 137 131 146 142
Backend [ms] 240 224 244 274 241 302 266 300 281
Size [MB] 2.02 1.77 2.08 2.48 2.03 2.88 2.39 2.87 2.65

Factor 1/4

Frontend [ms] 398 437 365 404 488 363 416 417 549
Backend [ms] 565 630 584 555 647 596 616 590 741
Size [MB] 6.68 7.64 6.91 6.46 7.80 7.08 7.46 7.02 9.24

Factor 1/2

Frontend [ms] 2041 1907 1463 2069 1871 1287 1702 2025 1659
Backend [ms] 1695 1784 1677 1724 1592 1614 1706 1779 1648
Size [MB] 22.27 23.41 22.02 22.46 20.66 20.99 22.27 23.37 21.67

Table C.7: Transmission sizes and calculation times using EBPF with binning activated (1 = 25)
on the Saarland10M Dataset.
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