
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Finding candidate routes with
intermediate stops for railroad
scheduling on block systems

Marcel Richter

Course of Study: Softwaretechnik

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Supervisor: Heiko Geppert, M. Sc.

Commenced: June 7, 2021

Completed: December 7, 2021

Abstract

The high coordination effort involved in running a railroad network faces researchers with a
collection of difficult planning problems. Among these problems are the routing problem and the
scheduling problem in which train lines are mapped to one route / schedule respectively. Both
problems serve to establish a conflict-free traffic plan, one by separating trains in space and the
other in time. There are plenty of existing solutions for both problems already, however, they fail
to maintain the efficiency to carry out planning for an extensive region like an entire country. An
untapped opportunity for discovering new solution approaches is looking into other domains, as
both problems share a lot of traits with similar planning problems from other domains. One such
approach is the configuration-conflict graph based approach which Falk et al. [FGD+21] route and
schedule computer network packets with. Because they combine routing and scheduling problem to
be dealt with as a single problem, they rely on a sensible set of candidate configurations to withstand
the exponential increase in configurations. Their adoption of a k-shortest path algorithm for picking
candidate routes does not translate adequately into the railroad domain, because in highly detailed
railroad networks the k-shortest paths are mostly identical, thus leaving their algorithm little spacial
opportunities to avoid conflicts.

Our contribution in this thesis lies in supplementing algorithms like [FGD+21] which benefit from
a small input set, with a sensible set of candidate routes, facilitating them to run efficiently. We
propose two graph-based routing algorithms that find a set of alternative paths visiting a given list
of stations (the train line) in order. One of our proposed algorithms, labeled the simple routing
algorithm, implements Dijkstra in a fashion that is compatible with a railroad topology. In addition,
it implements a framework to optimize for other goals than path shortness, mainly uniqueness of
the various alternative paths in a result set. Alternatively, we propose the multi-dimensional routing
algorithm which expands on the simple algorithm to find even more unique alternatives, at the cost
of worse runtime scaling. Our evaluations show vast improvements in terms of the shared distance
between the different paths of a result set compared to Yen’s k-shortest path algorithm. The runtime
evaluations show enhanced performance of the simple routing algorithm compared to Yen in the
majority of scenarios. They also demonstrate that great thought needs to be given to the algorithm
parameters, since all optimization goals need to be balanced against each other carefully.

3

Kurzfassung

Da der Betrieb eines Eisenbahnnetzes einen hohen Grad an Koordination erfordert, stehen Wis-
senschaftler vor einer Ansammlung an schwierigen Planungsproblemen. Unter diesen Problemen
sind auch das Zug-Routenproblem und das Zug-Zeitplanproblem, in denen Zuglinien jeweils
eine Route / ein Zeitplan zugewiesen wird. Beide Probleme dienen dazu einen konfliktfreien
Verkehrsplan zu erzeugen, eines separiert die Züge räumlich und das andere zeitlich. Es gibt bereits
einige Lösungen für beide Probleme, diese scheitern allerdings daran, die Effizienz beizubehalten um
Pläne für weitläufige Regionen wie ganze Länder zu erstellen. Eine unausgeschöpfte Möglichkeit
neue Lösungsansätze zu entdecken, ist es dabei einen Blick in andere Domänen zu werfen, da
beide Probleme viele Gemeinsamkeiten mit ähnlichen Planungsproblemen anderer Domänen
haben. Eine dieser Ansätze ist der konfigurations-konfliktgraphbasierte Ansatz mit dem Falk et al.
[FGD+21] Routen und Zeitpläne für Datenpakete in einem Computernetzwerk planen. Da sie
Routenfindung und Zeitplanung in ein einziges Problem verschmelzen, sind sie allerdings abhängig
davon, eine sinnvolle Menge an Kandidatenpfaden zu besitzen um den exponentiellen Anstieg an
Konfigurationen zu widerstehen. Ihre Verwendung eines k-kürzeste Pfade Algorithmus’, um diese
Kandidatenpfade zu wählen, lässt sich allerdings nicht gut in Eisenbahndomäne übernehmen, da
in hochdetaillierten Eisenbahnnetzen die k-kürzesten Pfade größtenteils identisch sind und ihrem
Algorithm so wenig Möglichkeiten geboten werden, räumlich einen Konflikt zu vermeiden.

Unser Beitrag in dieser Arbeit liegt darin, Algorithmen die von einer kleinen Eingabemenge
profitieren, mit einer sinnvolle Menge an Kandidatenpfaden zu versorgen und es ihnen so zu
ermöglichen, effizient ausgeführt zu werden. Wir präsentieren zwei graphbasierte Routenfind-
ungsalgorithmen, die unter Eingabe einer geordneten Liste an Stationen (die Zuglinie), eine Menge
an alternativen Wegen produzieren, die diese besuchen. Einer der präsentierten Algorithmen, den
wir simple routing algorithm benennen, implementiert Dijkstra auf eine Weise die kompatibel mit
der Topologie eines Eisenbahnnetzes ist. Zusätzlich implementiert er eine Umgebung die es erlaubt,
für andere Ziele als Routenlänge zu optimieren, hauptsächlich die Einzigartigkeit der verschiedenen
Alternativen. Alternativ präsentieren wir den multi-dimensional routing algorithm, der den simple
routing algorithm erweitert, um noch differenziertere Alternativen zu finden, auf Kosten schlechterer
Laufzeitskalierung. Unsere Evaluationen zeigen große Verbesserungen im Vergleich zu Yen’s
Algorithmus, bezüglich der Distanz die sich die Alternativen teilen. Die Laufzeitevaluationen
zeigen größtenteils eine verbesserte Performanz des simple routing algorithm im Vergleich zu Yen.
Sie zeigen auch, dass die mitgegebenen Parameter gut überlegt sein müssen, da eine sorgfältige
Balance zwischen den verschieden Optimierungszielen erzielt werden muss.

4

Contents

1 Introduction 9

2 Preliminaries 11
2.1 Problem Statement . 11

3 Related Work 15

4 Modern train safety systems 19
4.1 Spatial distance separation procedures . 19
4.2 Enforcing spatial distance separation . 21
4.3 Railroad economy and regulations in Germany 22

5 Acquiring a railroad network graph 25
5.1 State of railroad-parser . 25
5.2 Adjustments made to as part of this thesis . 28

6 Routing on the railroad graph 35
6.1 The simple routing algorithm . 35
6.2 Multi-Dimensional routing algorithm . 38

7 Evaluation 41

8 Conclusion and Outlook 49

Bibliography 51

5

List of Figures

4.1 Handling overlap containing merging tracks. 22

5.1 OpenStreetMap data completeness . 33

6.1 A simple counterexample . 36
6.2 Graph duplication to prevent illegal paths . 37
6.3 Simple algorithm shortcoming . 38
6.4 Using a one-dimensional graph to model edge duplication 39

7.1 Relative shared distance between alternatives (regional traffic) 42
7.2 Relative shared distance between alternatives (long-distance traffic) 43
7.3 Evaluation of track change penalty and its impact on travel time (regional traffic) 44
7.4 Evaluation of track change penalty and its impact on travel time (long-distance traffic) 45
7.5 Impact of duplicate edge penalty on changes of track (regional traffic) 46
7.6 Average route length and travel time (long-distance traffic) 46
7.7 Average route length and travel time (regional traffic) 47
7.8 Runtime per route. 48

7

1 Introduction

In 2017, for the first time ever, railroad traffic by train, metro or tram has overtaken bus & coach
to become the second most important public transport method in the European Union [Mob21].
Unlike bus & coach transport, railroad traffic is seeing an increase in passenger kilometers year by
year, only exceeded by the massive jump air traffic has made recently. Naturally, an increase in
usage also comes with an increase in required effort to maintain said railroad traffic. Not only is it
challenging to manage the large-scale railroad networks in large countries like the United States and
Russia, but even small networks provide their own set of challenges. The high railroad density of
smaller countries as Czechia and Germany [Uni] requires special attention paid to the coordination
of trains. Historically, train drivers carried most of the coordination responsibilities, so high-level
planning was a minor concern. In extreme cases they were even driving on plain sight, much like
how automobile traffic works today. However, the numerous incidents in the past have proven this
approach to be severly lacking. So, why does driving on sight work with automobile traffic but not
with trains? The key problem lies in how little means a train driver has to prevent an imminent
accident. Unlike a car, a train is confined to the path of the rails and can not evade by steering, so
the only option of avoiding an accident is come to a halt in time. However, this is often not possible
considering the breaking distance which is orders of magnitudes larger than the one of a car, due
to high mass and low friction to the metal rails. So, responsibility had to be distributed to other
entities which have a greater ability to prevent accidents before they become inevitable. One way
responsibility was shifted away from the driver is the safety block system, which is in use practically
worldwide today. With it, there naturally was also an increase in the amount of planning required to
run a railroad system from the outside. This planning process has proven to not be a simple task,
which is why numerous algorithms to solve parts of it more efficiently have been proposed, and
still are today [LLER11] [ZKR+96] [SEF+21]. A part of why so many algorithms for the problem
exist is that train planning is not one atomic problem, but a collection of problems. These range in
abstraction, e.g. from planning where new railroad tracks should be built to real-time rescheduling
around a single train running late. And, some of these sub-problems are not an entirely unique to
the railroad domain, so it is reasonable to consider algorithmic solutions from other domains to be
applied. One of these is the configuration-conflict graph based planning solution proposed by Falk
et al. [FGD+21].

Falk et al. [FGD+21] provide an approach to solve the problem of planning schedules and routes,
however, not for trains but for computer network packets. When trying to use this solution in the
railroad domain, one particular problem becomes especially evident. Since Falk et al. [FGD+21]
combine the issue of scheduling and routing into one problem, they need to shrink down the set
of candidate routes to avoid having to work on a set of solutions with exploding size. In their
original solution based in the networking domain, they pick candidate paths using a k-shortest path
algorithm. In the railroad domain however, a k-shortest path algorithm delivers results with a lot of

9

1 Introduction

room for improvement. The most prominent problem is that by nature of being the shortest paths,
the paths picked in a highly detailed railroad-network differ only marginally and can barely be
called alternatives in the real world.

The contribution of this thesis is to support algorithms like the one of Falk et al. [FGD+21] with
algorithms that determine a sensible set of candidate paths. By using the algorithms proposed
within this thesis, planning algorithms can benefit from the appropriate candidate set and improve
efficiency and/or result quality. The contribution of this thesis is the following:

• We provide two penalty-based routing algorithms that, given a certain train line, calculate a
sensible set of candidate paths. Both algorithms can be seen as alternative approaches to
solving the patfinding problem. Our simple routing algorithm is designed to find results which
are sufficient in most use-cases, while our multi-dimensional routing algorithm is designed
to find optimal results, no matter the cost in efficiency. Both algorithms are parameterized
to let the user define a personal tradeoff between travel time, changes of tracks and edge
duplication.

• We provide a reference implementation of the routing algorithms in Python to showcase their
workings on a real data set.

• We extended the existing railroad-parser [PGRR21] to provide a tool for parsing an
OpenStreetMap data set into a graph that is well fit for block based routing. The generated
graph is in a format compatible with the proposed routing algorithms and complements the
graph with additional information used to improve the performance of routing algorithms.

• We evaluate the algorithms against each other, and the referential Yen’s k-shortest path
algorithm [Yen71]. The evaluations are also designed to inform the user about the strengths
and weaknesses of the impact of the algorithms’ parameters.

Our evaluations have shown that the proposed algorithms improve substantially over the reference
algorithm, Yen’s algorithm, regarding our optimization objectives. The evaluations also show
runtime performance benefits using our simple routing algorithm in the majority of scenarios. The
multi-dimensional algorithm achieves a runtime performance on par with the simple algorithm in
many scenarios, but experiences significant hits to runtime performance when calculating long
routes without intermediate stops.

The structure of the thesis going forward is as follows. Chapter 2 summarizes the preliminaries
and specifies problem statement. Chapter 3 presents the reader with an overview of the current
state of research, mainly centered on conflict-graph based solutions related to the one of Falk et al.
[FGD+21]. Chapter 4 introduces to the block safety system. The chapter serves as a bridge between
real-world safety management and the scientific model. Chapter 5 focuses on railroad-parser, which
is the tool we use to generate our data graph. Since railroad-parser is not an application original to
this thesis the chapter explains the basic concepts of it first, followed by the many modifications
that have been done in an effort to adjust it to our use-case. In chapter 6 we propose our routing
algorithms. In summary, the chapter explains how we handle two challenges. For one, how routing
algorithms can be made to respect a railroad topology. And also, how routing algorithms can be
designed to produce result sets which meet our optimization criteria. Chapter 7 evaluates both
routing solutions, particularly against Yen’s k-shortest path algorithm. Finally, we conclude the
thesis in chapter 8.

10

2 Preliminaries

A graph is a versatile data structure that is essential for understanding this thesis. In notation, a graph
𝐺 = (𝑉, 𝐸) is a tuple of a vertex set 𝑉 = {𝑣𝑎, 𝑣𝑏, ...} and an edge set 𝐸 ⊆ {{𝑣𝑥 , 𝑣𝑦} | 𝑣𝑥 , 𝑣𝑦 ∈ 𝑉}.
Vertices and edges are the core elements of a graph. Vertices represent a physical or logical object.
Illustrations usually portray them as a circle. Edges are sets of two vertices describing the relation
of two objects and are depicted as a line between vertices. One exemplary use-case of graphs
is modeling a computer network. Computer nodes are represented as vertices in the graph, and
wireless or wired connections between two computers are represented as edges. The obtained graph
can then be used to simulate how data travels through the network.

When a vertex is connected to an edge, we say that vertex is incident to that edge. The neighbors of an
individual vertex are all vertices which are linked to it by an edge 𝑁 : 𝑣𝑥 ↦→ {𝑣𝑦 | {𝑣𝑥 , 𝑣𝑦} ∈ 𝐸}. A
path of length 𝑛 from a source to a target is a list of vertices where neighboring elements in the list must
neighbor each in the graph (𝑣1, 𝑣2, ..., 𝑣𝑛+1) 𝑖𝑠 𝑝𝑎𝑡ℎ ⇔ {𝑣1, 𝑣2}, {𝑣2, 𝑣3}, ..., {𝑣𝑛, 𝑣𝑛+1} ∈ 𝐸 .

Since graphs are a generic concept, they often are altered or extended to fit a use-case. In a directed
graph, an edge is no longer a set but a tuple 𝐸 ⊆ 𝑉2 instead. Unlike in sets, the order of elements in
a tuple matters (𝑣𝑥 , 𝑣𝑦) ≠ (𝑣𝑦 , 𝑣𝑥), which is why tuples allow us to model directed relations from a
source to a target. The definition of a neighbor is semantically unchanged, but formally altered
to 𝑁 : 𝑣𝑥 ↦→ {𝑣𝑦 | (𝑣𝑥 , 𝑣𝑦) ∈ 𝐸 ∨ (𝑣𝑦 , 𝑣𝑥) ∈ 𝐸}. Directed graphs also introduce two additional
functions. One is the notion of successors of a vertex 𝑣𝑥 in a directed graph, meaning all vertices
𝑣𝑦 , which have a directed edge with target 𝑣𝑥 , giving us 𝑆𝑢𝑐𝑐 : 𝑣𝑥 ↦→ {𝑣𝑦 | (𝑣𝑥 , 𝑣𝑦) ∈ 𝐸}. We
define the predecessor function analogous 𝑃𝑟𝑒𝑑 : 𝑣𝑥 ↦→ {𝑣𝑦 | (𝑣𝑦 , 𝑣𝑥) ∈ 𝐸}. The requirements of
a path also change for a directed graph. A successor of any vertex element in the list now also has
to be a successor of that vertex in the graph.

The second extension presented are weighted graphs 𝐺 = (𝑉, 𝐸,𝑊), which contain a weight
function 𝑊 : 𝐸 → R. The weight function is a feature commonly used in routing algorithms. In a
weighted graph, the length of a path is no longer determined by the number of edges it uses. Instead,
a path’s length is the sum of the weights of all edges traveled along. Goal of a routing algorithm
is to identify a path minimizing or maximizing its length. In the thesis, we will define custom
attributes in a similar fashion to a weight function. These custom attributes map either vertices or
edges to custom attributes. Examples for this are the attribute functions 𝑙𝑎𝑡 and 𝑙𝑜𝑛𝑔, which map a
vertex to a geographic latitude or longitude respectively.

2.1 Problem Statement

The train routing problem describes an issue where a number of different lines have to be assigned
exactly one route each while avoiding any conflicts. Together with the train scheduling problem
they allow for the creation of a timetable, which is an essential part of creating a railroad traffic plan

11

2 Preliminaries

that enables traffic to run safely and efficiently. Existing routing problem algorithms struggle to
determine results for large regions because of a lack in efficiency. For a subset of those, the use
of an unfit algorithm to calculate a set of candidate routes, e.g. k-shortest path, is a key factor in
their inefficiency. The main problem is that the k-shortest paths share a lot of common edges and
therefore do not present good choices, since a conflict in an edge can only be avoided by a path that
does not contain that edge. Additionally, many algorithms only allow to optimize for path shortness
and neglect practicality attributes like changes of track. These problems cause deficiencies in
quality of results or efficiency for routing problem algorithms.

This thesis tackles the problem of calculating a sensible set of candidate routes to be used by a
dedicated routing problem algorithm. Given an ordered list of stations calculate a set of alternative
routes which optimizes for following attributes.

1. The routes do not take unorthodox paths

2. The routes differ from each other substantially

3. The travel duration of the routes is low

4. The routes do not change rail tracks frequently

1. ensures practicality in the real world by excluding routes which are physically impossible or
impractical to follow. Since we are working on a graph where theoretically any edge could be used,
it is important for us to limit in that regard. Routes are not allowed to turn around at anything
besides a buffer stop or station, not allowed to travel through a single or double slip switch in the
acute angle and through a crossing anything but diagonally.

2. ensures that the alternative routes in the calculation result are actually useful to another algorithm
by providing it more options to avoid conflicts. We measure the distinctness of resulting paths using
two metrics. Shared distance metric 𝑠1 given by Equation (2.1), compares the edges of a path with
all other paths and counts its distance as shared if it is not unique.

(2.1) 𝑠1 =

∑
𝑝∈𝑝𝑎𝑡ℎ𝑠

∑
𝑒∈𝑝𝑊 (𝑒) ∗ 𝑓𝑒,𝑝∑

𝑝∈𝑝𝑎𝑡ℎ𝑠
∑

𝑒∈𝑝𝑊 (𝑒)

Equation (2.1) divides the sum of shared distance by the sum of total distance to receive the relative
shared distance with codomain 0 < 𝑠1 ≤ 1. The function 𝑓 (𝑒, 𝑝) (Equation (2.2)) serves as an
indicator function checking if edge 𝑒 has been used in any other path.

(2.2) 𝑓 (𝑒, 𝑝) =
{

1 if ∃𝑝′ ∈ 𝑝𝑎𝑡ℎ𝑠 : 𝑝 ≠ 𝑝′ ∧ 𝑒 ∈ 𝑝

0 otherwise

Shared distance metric 𝑠2 uses a different approach to measure path uniqueness by taking into
account which other path the duplicate edge is part of. The idea is, that we compare edges on a path
to path basis, instead of comparing one path with all other alternatives at once.

(2.3) 𝑠2 =

∑
𝑝∈paths 𝑚𝑎𝑥({𝑔(𝑝, 𝑝′) : 𝑝′ ∈ 𝑝𝑎𝑡ℎ𝑠 ∧ 𝑝 ≠ 𝑝′})

|𝑝𝑎𝑡ℎ𝑠 |

12

2.1 Problem Statement

𝑔(𝑝, 𝑝′) (Equation (2.4)) measures the similarity between two specific paths. Equation (2.3) then
picks the maximum of that similarity function, so only the single path with the most shared distance
is considered in this metric.

(2.4) 𝑔(𝑝, 𝑝′) =
∑

𝑒∈𝑝𝑊 (𝑒) ∗ 1𝑝′ (𝑒)∑
𝑒∈𝑝𝑊 (𝑒)

1𝑝′ (𝑒) denotes the indicator function for element 𝑒 in set 𝑝′.

3. , our goal of low travel time, ensures passengers enjoy quick traveling opportunities and helps
keep operational costs down.

4. ensures another aspect to route practically, which is track changes. Infrequent track changes
help avoid repeated acceleration and deceleration and keeps passenger comfort high. It also helps
with determining more realistic routes, by preventing the train from constantly switching between
opposite tracks to get close to beeline.

13

3 Related Work

Planning railroad traffic has been established to be a complicated process. Hence, a great amount of
research has been done on it, and still is being done today.

Lusby et al. [LLER11] authored a review article issued in 2011, which divides railroad traffic planning
into seven different research areas: 1) Network Planning 2) Line Planning 3) Timetable Generation
4) Train Routing 5) Rolling Stock Schedules 6) Crew Schedules 7) Real Time Management. This
thesis contributes to the area of train routing, which covers the problem of mapping a set of train
lines to one suitable railroad path each. Besides ensuring path quality requirements like shortness,
an algorithm solving the train routing problem has to take special care to avoid conflicts between
different lines. The contribution of this thesis are algorithms to generate a set of candidate paths
for a dedicated routing problem algorithm to pick from. It is written as part of an ongoing effort
to adapt a recently proposed computer network traffic planning approach [FGD+21] to be used
in the railroad domain. Falk et al. [FGD+21] built upon their earlier approach [FDR20] of using
configuration-conflict graphs for scheduling and routing time-triggered packets that travel throughout
a network. In particular, they plan traffic for time-sensitive networking [SCO18] which is built to
handle real-time traffic, profiting of a comparatively homogeneous network of computers. The data
type they use, conflict graphs, are a special type of graph used for finding valid combinations of
value bundles, which are also known as configurations. In a conflict graph, vertices represent a
configuration and edges represent the incompatibility of two configurations with each other. Falk
et al. [FGD+21] model network traffic using packet flows, which flow from a source to a destination.
First, the approach generates configurations on a per flow basis, which may vary in time-shift
when the packets are sent, and the path taken by the packets. During this process, edges are drawn
between any two configurations that are incompatible with one another. An exemplary conflict
is a combination where two packets are supposed to be sent by one computer node via the same
network link simultaneously. This is disallowed because Falk et al. [FGD+21] assume zero-queuing
for the network. The second step is to extract valid scheduling solutions from the conflict graph.
This problem resembles the maximum independent vertex set problem, also known as node packing
problem [Edm65]. Goal of the problem is to find the largest vertex set, which does not have an
edge between any of its elements. If this largest set contains a configuration for each flow, the
set completely solves the planning problem. Otherwise, the algorithm jumps back to step one
and creates additional configurations to solve the problem. The maximum independent vertex set
problem is notorious for being hard to solve, as it is known that no algorithmic solutions to it may
have a constant factor runtime unless 𝑃 = 𝑁𝑃 [Her06]. Hence, they greatly benefit from limitations
to the configuration set, which is what this thesis tackles.

The use of conflict graphs to solve the train routing problem is certainly not unheard of. In fact,
conflict graphs are used in most approaches to solve the problem [LLER11]. Falk et al. [FGD+21]
distinguish themselves by proposing a heuristic for solving the maximum independent set problem
more efficiently. It is called Greedy Flow Heap Heuristic, and works by greedily scoring and picking
possible configurations for the independent set result. Even when using this heuristic, choosing a

15

3 Related Work

sensible configuration set is important for achieving reasonable performance results. The paper
uses Yen’s k-shortest path algorithm [Yen71] to generate a set of candidate paths, which is ill-suited
for railroad scenarios. The algorithm finds a set of shortest routes by iteratively 1) running a routing
algorithm on the graph 2) deleting edges visited by the calculated path. By nature of finding the
k-shortest paths, the paths determined by Yen’s algorithm differ only in minor details. This is not
desirable for building a small candidate set, which profits from alternative routes with substantial
differences. That is because having large deviations holds a high chance that one alternative does
not conflict. In conclusion, Yen’s algorithm works decently on a graph with a high abstraction level,
but becomes more ill-suited the more detailed a graph gets. Another standout feature proposed by
Falk et al. [FGD+21] is a way to dynamically generate conflict graphs and their solutions. This
enables one to add new flows at any time with little to no impact on network functionality. In
practice, that could be the foundation for using the approach for real-time plan management, but we
do not explore this potential within this thesis.

The level of attention paid to the set of candidate paths varies for existing solutions to the train
routing problem. Many solutions do not mention specifics on how the paths are generated, thus we
assume that, by default, all possible paths serve as candidate paths [Bur05] [CD07]. For most of
those solutions, this is due to choosing a model which abstracts from detailed routes on a switch to
switch basis to a point where routing is (almost) trivial. Hence, we do not consider them relevant as
context for this thesis. There are two notable exceptions to this, that directly or indirectly utilize
conflict graphs to solve the train routing problem and do not specify a method for picking candidate
paths. Caimi et al. [CBH05] do not abstract, but narrow their data set to Bern and its immediate
surroundings. Another model proposed by Caprara et al. [CGT07] abstracts, although not to a
degree where determining paths is trivial, and they limit their examples to certain cities in Italy.
Both achieve tolerable performance results by handling a smaller region and must be adjusted or
extended to handle an entire country. When looking for recent research on the train routing problem,
one can observe that the research of conflict-graphs in relation to solve the problem has slowed
down a lot. After Zwaneveld et al. [ZKR+96] popularized the usage of conflict graphs in the late
90s and early 2000s, this popularity has died down quite a bit. Most of the recent research explores
alternative approaches, for example, the use of construction graphs [SPD+16], constraints [ZT16],
artificial intelligence [SEF+21] and many more. In conclusion, given the apparent difficulty of the
problem, it is reasonable to say that no conflict graph based algorithm working on an unlimited path
data set is usable without limitation to smaller regions or abstracting.

Some solutions use k-shortest path algorithms akin to Yen’s algorithm. Those suffer from the
same similarity problem as described previously, meaning they perform well with small graphs
or if performance is a minor concern. Yin et al. [YHlL11] demonstrate their k-shortest path
approach using Beijing’s metro network, which is also abstracted to stations and their connections,
so performance plays a small role. Riezebos and Van Wezel [RV09] is of special interest as it is
yet the only paper to solely focus on making a candidate set. They also opted for a k-shortest path
routing algorithm, although they offer additional features compared to Yen’s algorithm. Being
supported by the Netherlands Railways, practicality plays a larger role in their research. They
reference a study on practicality that concludes human input to be essential for generating a practical
solution. That is why they built their routing algorithms with the ability in mind to require or ban a
route from using a specific track. Unless a significant amount of manual input is done when routing
using their approach, aforementioned limitations of k-shortest path algorithms will apply.

16

Zwaneveld et al. [ZKR+96] and Herrmann [Her06] reduce the candidate path set using the conflict
graph they build to solve the train routing problem. They remove all dominated paths, i.e. paths
where the set of conflicts is a superset of another path’s set of conflicts, thus being inferior in
terms of compatibility. A shortcoming of this procedure is that the nonadjustable amount of
different alternatives per line is quite high. Zwaneveld et al. [ZKR+96] demonstrate the approach’s
effectiveness using a case study on Zwolle. They report that 65% of their configurations were
removed using this procedure, which may not be enough given that this still leaves them with 1,100
configurations. When focusing on a single station, this may be adequate, but on longer distance
lines, the number of eligible paths scales super-linearly. Caimi et al. [CBH+09] attempt to mitigate
this flaw in their own routing solution. They deem the procedure of Zwaneveld et al. [ZKR+96] too
computationally expensive and see potential in taking the railroad topology into account. Their
proposal is that candidate paths should not be removed after creating all configurations, but during
the creation process instead. To do so efficiently, they divide the railroad network into many switch
regions, within each of which they perform their routing. To limit the set of candidate paths
throughout a switch region, they first eliminate all dominated paths. Besides the requirement of
having a superset of conflicts, dominated paths also need to have the same entry and exit point,
as they are not comparable otherwise. In a second step they remove remaining paths which are
similar to each other. To do so, a target number of paths is specified for each combination of entry
and exit point. The set of paths chosen to remain are those paths which together have the least
amount of conflicts with routes of all other entry/exit points. We were discouraged from using this
approach by two issues. While parametrising the number of chosen paths is a sensible addition, its
effectiveness is not demonstrated, as the authors chose to statically set it to 1 in their evaluation.
They state that further testing with the parameter should be done, but did not mention it in their
succeeding publications. Also, Caimi et al. [CBH+09] do not provide an automated procedure for
partitioning a region into switch regions, which is important when working on larger scale regions.
Additionally, both approaches suffer from the flaw that the length or driving time is not taken into
account when sorting out ineligible paths, only their compatibility. We saw a possibility to improve
path utility by giving the user the ability to weigh up distance and driving time against compatibility.
Given above reasoning, we concluded the algorithm is not a perfect fit for our use-case.

To end off the chapter we want to point out that even though we wrote this thesis to be used by an
adaption of Falk et al. [FGD+21], its use is not limited to that. Instead, any algorithm profiting
from a small set of candidate paths may benefit from using herein proposed algorithms. Besides
that, configuration parameters are offered to achieve the flexibility to fit into different scenarios.

17

4 Modern train safety systems

This chapter elaborates on what safety mechanisms are in use today, how they are enforced, as
well as which authorities and organizations are involved. Knowledge of the real world is important
to create a faithful model that ensures real-world applicability of the algorithms proposed in this
thesis. While they vary in a lot of details from region to region, most safety systems follow the
same fundamentals by using separation by fixed distance [Pac21]. The exact implementation of the
separation by fixed distance approach varies by country. However, carrying out research without
having a clear definition of a concrete safety system bears a high danger of over-abstraction. So,
while our model is compatible with most regions, we settled on using Germany as an example for
this thesis, primarily because of its high railroad density and extensive OpenStreetMap coverage.

We divide this chapter into several sections. Section 4.1 explains fixed distance separation and why
the safety procedure prevails to be a standard used all around the world. Section 4.2 explains how
train safety authorities can enforce fixed distance separation. Section 4.3 points out where fixed
distance is anchored in Germany’s train regulations.

4.1 Spatial distance separation procedures

Train safety systems strive to provide excellent safety but also maximize the network utilization. A
good approach for finding a fitting safety system is therefore to start by evaluating systems which
block a small amount of railroad tracks and thereby have a low impact on utilization. Then, find
flaws in the evaluated system and propose a new one which fixes these flaws at the expense of more
blocked track length. This way excessive blockage limiting train throughput, i.e. the number of
trains passing through a rail in fixed time, can be avoided.

In an ideal scenario, relative stopping distance separation [Pac21] can be used to secure train
rides. In this model, trains are secured by separating them with a minimum headway, that is
analogous to the difference in their stopping distance. The stopping distance of a train comprises the
reaction distance and the breaking distance. Reaction distance is a term denoting the distance a train
travels until its operator has engaged its brakes 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = (𝑡𝑖𝑚𝑒𝑟𝑒𝑎𝑐𝑡𝑒𝑑 + 𝑡𝑖𝑚𝑒𝑒𝑛𝑔𝑎𝑔𝑒𝑑) ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
and encompasses the reaction time and the time to engage the rail vehicle’s brakes. The second
part of the stopping distance is a train’s breaking distance. Two trains may not share the same
breaking distance if they are of a different model, use a different amount of wagons, carry differently
weighted loads, or travel at different velocities. The breaking distances of trains A and B are noted
as 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔𝐴 and 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔𝐵. The headway a trailing train 𝐵 needs to keep to a leading train
𝐴 can be calculated as 𝑚𝑖𝑛_ℎ𝑒𝑎𝑑𝑤𝑎𝑦 = 𝑚𝑎𝑥(𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔𝐵 − 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔𝐴 + 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐵, 0). In this
model, train safety is achieved using a wandering hazard point, which marks the end of train 𝐴.
A problem with the model is that it does not provide a way of modeling static hazards, such as

19

4 Modern train safety systems

unlocked switches capable of derailing a train. Additionally, it does not assure safety if the leading
train has an accident in which it slows down faster than its stopping distance. Both make the model
unfit to be used in a real-world scenario.

The absolute stopping distance separation [Pac21] model is an alteration that fixes both these
problems. In this procedure, every hazard point is treated as static, i.e. does not have movement
information attached. This enables us to model stationary hazards, like unlocked switches, as well
as avoid an instantly stopping train. Note that the hazard point of a leading train is still wandering as
the train moves, but at any particular point in time, we treat it as standing. So, 𝐵 no longer needs to
consider the stopping distance of 𝐴, but only its own. Thus, the headway formula can be simplified
to 𝑚𝑖𝑛_ℎ𝑒𝑎𝑑𝑤𝑎𝑦 = 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔𝐵 + 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐵. When in motion, a train has to determine which
hazard point in his front is closest and keep minimum headway to this exact point. This is not trivial
as the hazard point looked upon will keep changing as hazard points move, are added to model, or
removed from it. As an example, consider a scenario where the train in front passes a switch ought
to be re-positioned. Before the leading train passes the switch, the train is the closest hazard point,
while the safely locked switch is not represented at all. After the train passes, signaling control
unlocks the switch and starts changing its position. During this transition process, the switch is
now the closest hazard point. As soon as the switch has completely changed its position and is
locked, it is no longer a hazard point. Hence, headway needs to be maintained relative to another
leading train or unlocked switch again. The reason this approach is not used to secure train safety is
technological. Absolute stopping distance separation dynamically evaluates the required distance
while both trains are in motion. For this system to work, every train requires on-board components
continuously sending their position. Additionally, an on-board decoupling check component needs
to be present to ensure no wagons are lost during movement. Else, in case of a decoupled wagon,
this wagon presents a new static hazard point, which isn’t registered in the model, since it does not
have its own position tracker. A decoupling check component like that does not exist for freight
trains, which is why this method is not practically used.

Fixed distance separation [Pac21] is the most commonly used system for securing trains worldwide.
In this final alteration, distance is no longer evaluated from the standpoint of a train but instead of
from the rail track. Rails are divided into safety blocks with a fixed length 𝑙𝑒𝑛𝑔𝑡ℎ𝐵𝑙𝑜𝑐𝑘 , usually 1
up to a few kilometers. Trains are only observed at the entry and exit point of a block. This enables
us to avoid the decoupling problem of the previous model by counting the number of wagons
entering and exiting a block at these two points. A block is inaccessible until the exit point counts
that as many wagons exited as have entered the block before. Another advantage of fixed distance
separation is does not require sophisticated technology to work. Since communication of safety
information only needs to be done between the static entry and exit point, not with the mobile train,
it could be implemented without the need for wireless communication. Despite this simplicity,
given the system is correctly implemented, it is guaranteed that two unrestricted trains travel with a
headway of 𝑙𝑒𝑛𝑔𝑡ℎ𝐵𝑙𝑜𝑐𝑘 . But this only applies to unrestricted trains, the distance between trains
restricted by a blocking signal can potentially shrink all the way to zero. If a train stops right at the
beginning of a new block, the following trains can still drive up to that beginning which brings
them dangerously close together. Hence, implementation details explored in the following section
are important to actually make this system safe.

20

4.2 Enforcing spatial distance separation

4.2 Enforcing spatial distance separation

Most real-world implementations of fixed distance separation use stationary signals to mark the
borders of a safety block.rt Usually, these signals work using one or more lights where different
colors and patterns have different meanings. Alternatively, there are semaphore signals, which
historically were the favored signaling installation. Unlike light signals, these signals feature
movable parts. Most prominent are signals with up to a few rotating bars, which train operators
interpret based on rotation. Most feature additional lights to improve distinctness during nighttime.
Even though new installations of semaphore signals have stopped a long time ago, they can still be
found in use to date. How the determination of block entry and exit of a train are technologically
implemented varies [Pac21]. Most solutions have in common that they transfer an electric or
optic signal upon entry and exit to a train oversight facility. Some solutions are semi automatic,
meaning they can determine that a train enters and exits automatically, but require manual input
from signaling control to confirm the end of train marker has passed the exit. Otherwise, there
is a possibility that the train has lost a wagon inside the safety block. Modern solutions are fully
automatic, so they can guarantee that no wagon of the train remains, for example, by counting
axles.

The main signals marking the entry of a new safety block alone are not enough to secure actual
train traffic. If relying on sight sufficed to come to a halt before a main signal, sophisticated train
securing systems would not be needed in the first place. If a train could easily stop before a signal
just by sight, it could also stop in front of hazard points by sight. The solution to not relying just on
sight is distant signals. They give the train operator an expectation of what the upcoming main
signal shows. When the operator knows that the next main signal they pass is going to signal halt,
they can slow down the train’s traveling speed to a level where they can comfortably break before
the stop signal.

If the safety section covered by a signal contains crossings, switches or buffer stops, it is technically
no longer a safety block. Instead, the route protection system is used [Pac21]. It determines whether
a section entry signal may be passed on a per route basis. To do so, the current switch positions are
evaluated to find all possible routes throughout the section, i.e. until the next main signal. While all
switches are locked, all routes can be determined before clearing the section for driving. The routes
are then examined for conflicts where routes intersect at any point of the track. If two routes are in
conflict with each other, thus mutually exclusive, the system has to decide which of these routes
will be clear to travel through. The evaluation of clear tracks needs to be done whenever the state of
a switch changes. Going forward, we will use the term safety section to encapsulate safety blocks as
well as track sections covered by the route protection system.

Up until now, we always assumed that the control length of a signal is the same as the length of a
block. However, many countries prefer control lengths longer than their block lengths. Doing that
results in an overlap of two sections [Pac21]. For example, Germany primarily has block lengths
of 1000 -1300 meters [Eis20b] plus 200 - 300 meters of overlap for each block, depending e.g.
on the track’s slope [Pac21]. The main purpose of having overlap is to account for human error.
A security report by German Eisenbahn-Bundesamt for incidents in 2020 [Eis20a] counts 542
cases of operators failing to stop at blocking main signals. This amounts to one incident every 511
thousand kilometers driven on rail. In 455 of those incidents, the operator managed to stop their
train without leaving the last signal’s control length, i.e. inside the overlap. This poses a low risk
to safety, since the security system guarantees safety in this case. It takes two trains overrunning

21

4 Modern train safety systems

OverlapMain signal

1

2

3

4

(a) Signal arrangement when the upper train does not stop

OverlapMain signal

1

2

3

4

(b) Signal arrangement when the upper train stops

Figure 4.1: Handling overlap containing merging tracks. A green signal means a clear track, a red
signal means stop.

at the same time, to pose a high risk to safety. This is illustrated in Figure 4.1. The figure shows
two different scenarios, in each an upper and a lower train drive in parallel towards a merging
track section. Figure 4.1a shows how intersections in the overlap are handled by the safety system.
The upper train is given priority in the merged part of the tracks and may pass through the whole
section. Meanwhile, the lower train has to stop at 2 already, even though signaling stop at 4
would seemingly be enough. A signal covers the distance until the end of the section, as well as the
following overlap. So, since the merging section inside the overlap is already assigned to be used by
the upper train 2 has to signal stop. If the signal did not cover the overlap, i.e. 2 signaled green,
safety when over running stop signal 4 could no longer be guaranteed. Figure 4.1b shows another
case in which neither of the trains enters the merging section. Because the overlap is supposedly
clear, both 1 and 2 can signal a clear track and trains can drive up to 3 and 4 . But, if both trains
overrun the stop signal into the overlap, a collision may happen at the intersection. In contrast, if
only one of them fails to break and stops within the overlap, safety is guaranteed as that is covered
by 1 or 2 , respectively.

4.3 Railroad economy and regulations in Germany

The following section summarizes important institutions and regulations that shape the German
railroad economy. Its purpose is twofold. Firstly, to present the reader with a background of the
foundation of previously explained safety mechanisms in legislation. Secondly, it explains and
provides context on where in the economy our solution is applicable.

22

4.3 Railroad economy and regulations in Germany

In Germany, railroad business is separated into two distinct types of corporations, railroad
infrastructure companies and railroad traffic companies [Gov21a]. The most important company in
Germany is Deutsche Bahn AG, which is in a unique position in the railroad industry. Although
lawfully being a private company owned by shareholders, it is effectively state-owned, since the
government owns 100% of shares and none are up for sale. The company owns over 600 subsidiaries
with a mix of infrastructure companies and traffic companies.

Infrastructure providers build and maintain railroad tracks as well as additional hardware required
to operate the track such as rail signals and signal boxes [Gov21a]. The dominant provider of
railroad infrastructure in Germany is Deutsche Bahn’s daughter corporation DB Netz AG, which
provided 33,286 kilometer of railroad routes in 2020 [Deu21]. This is a big margin over competitor
and second biggest infrastructure provider Deutsche Regionaleisenbahn Gruppe, that provided
367 kilometer of railroad to its clients [Deu20]. Despite DB Netz AG’s lead in size, there is a
large variety of 176 companies that were licensed to offer railroads to their clients in 2017 [Eis].
Most of them are companies owning small parts of railroad track in the local region. Many are
combined companies which do not only manage infrastructure but also operate trains on it on their
own. Infrastructure providers also manage the coordination of trains on their infrastructure [DB].
For said coordination, the provider maintains a schedule of all planned train lines and makes sure
no conflicts arise. They also plan the exact path of a train throughout a line, i.e. on which track
a train drives, but not train lines on a level of visited stations. The infrastructure provider staffs
signal boxes which coordinate running trains [Deu]. This means that infrastructure providers are
liable to comply with government issued train regulations, such as the AEG [Gov21a], and carry the
responsibility of avoiding safety hazards during train rides. The infrastructure providers’ business
model is to offer traffic companies a license to operate a train on their infrastructure, billing them in
kilometers driven on their tracks [DB]. Infrastructure providers are required by law [Gov21b], to
provide a terms of service document which mandates the traffic company to adhere to the providers’
conduction. In addition DB Netz AG publishes a set of regulations for train operation, with the most
notable example being the Fahrdienstvorschrift [DB 19]. The Fahrdienstvorschrift is a document
written to guide DB Netz AG personnel on safe operation of safety provisions and also inform train
operation employees on how to react to various signaling.

A traffic company’s role is to manage an inventory of rolling stock, employ staff operating the
vehicles, as well as plan schedules on a station to station level. The railroad traffic business is more
varied than the infrastructure provision industry. In 2020, a total of 447 railroad traffic companies
have been licensed to publicly provide railroad transportation services to customers, over 332 of
which actively used this license [Bun21]. The most competitive economic segment in Germany
is freight transport. Freight transport is the only market segment the market share of Deutsche
Bahn AG is below half, with 49% recorded in 2018 [mof20]. Following up with 7% market share
is TX Logistik AG, a subsidiary of Italian state-owned rail company Ferrovie dello Stato Italiane.
11 more company’s follow with a market share over 1%, including partially state-owned share
companies (SBB Cargo International AG), private companies (Captrain Deutschland GmbH) and
private share companies (Havelländische Eisenbahn AG). Long-distance passenger services stand in
stark contrast to the freight transport economy, as they struggle to compete with Deutsche Bahn AG.
The sum of all Deutsche Bahn AG’s competitors’ market share is at a comparatively low 4%, but a
clear upwards trend can be seen here largely because of newcomer Flixtrain GmbH and extensions
of Austrian Österreichische Bundesbahnen AG into Germany[Bun21]. The last segment of the
railroad traffic economy is local rail transport, where following Deutsche Bahn AG’s market share
of 65% are French Transdev Deutschland GmbH with 6.5% and Dutch Abellio GmbH with 5.5%.

23

5 Acquiring a railroad network graph

To demonstrate and evaluate our proposed routing algorithms, a suitable set of test data is essential.
This chapter revolves around the extraction of our test data from OpenStreetMap, as well as the
ensuing data refinement steps. Our principle when creating this data set is like following. 1) Start
from realistic OpenStreetMap railroad data as a baseline 2) Correct data by removing implausible
constructs 3) Complement data with generated data which is plausible, but not accurate to reality.
Data is saved in form of a graph, as is common practice in the routing domain. This also serves to
provide the best data set compatibility For this same purpose we maintain an objective of keeping
the data set as general as possible. Every graph attribute, with the exception of type, should be
an optional addition and not worsen routing results of other algorithms. Unfortunately, railroad
network data could not directly be obtained in sought-after format, so part of this thesis was to
extract test data ourselves. The extraction process is largely based on a tool called railroad-parser.
It has been developed as part of a previous project on the extraction of use-case specific data from
an OpenStreetMap dataset [PGRR21].

The first section summarizes relevant existing functions of railroad-parser. The second section lays
out our modifications to make railroad-parser fit our use-case.

5.1 State of railroad-parser

Railroad-parser provides a lot of functions which we could build our application upon. It serves
as a good starting point, already offering capabilities to turn OpenStreetMap data into a railroad
graph and exporting it as an edge/adjacency list and a list of stations. Nonetheless, most features
were adjusted to better fit our use-case. So, in order to understand the modifications done by us to
railroad-parser it is important to address the state of railroad-parser upon starting this thesis.

5.1.1 Parsing OpenStreetMap data

OpenStreetMap, the data source used in railroad-parser, is an “initiative to create and provide free
geographic data, such as street maps, to anyone” [Opea]. It’s closely tied to the OpenStreetMap
Foundation, which is a private company limited by guarantee, stating they are “supporting, but
not controlling, the OpenStreetMap Project’ [Opea]’. OpenStreetMap provides an extensive set of
general purpose map data for all around the world, especially covering Europe and North-America
the best. All of this data comes from user contribution, which brings the advantage that the licensing
terms provide great usage liberties. However, like any project relying on numerous volunteer
contributors, it has its limitation in terms of correctness, completeness and consistency.

25

5 Acquiring a railroad network graph

OpenStreetMap data formally comes as a list of three types of entities, which are described in the
following sections. All of these entities can be supplemented with meta information using tags.
OpenStreetMap tags are saved as pairs of key and value. Theoretically, contributors could make
up their own key and value formats as they please. However, contributors stick to conventions
laid out in the Wiki [Opeb] to make their information more easily usable. In this convention
keys and values follow a tree structure where children and parents are separated by a colon, e.g.
railway:signal:main= DE-ESO:ks.

Nodes represent “a single point in space defined by its latitude, longitude and node id” [Opeb].
Practically, they are used for two purposes. First, to represent a thing that was, is, or will be
physically present and which the spatial extent of is negligible. An example of such an object is a
railroad signal, which the position of is much more relevant than its size. The second purpose of
nodes is to be grouped to represent a larger data object like a way.

A way is “technically [...] an ordered list of nodes” [Opeb] and can represent a number of things.
The most intuitive thing to represent with a way are things where only extent in one dimension is
relevant. For example, a physical path, like a railroad path, is represented as a way. But, ways
can also be used to model an object with two-dimensional extension, so basically an area. The
requirement for making an area is to have a closed way, a way where start and end node are identical,
thus forming a polygon. Based on the type of way, OpenStreetMap implementations automatically
choose how to interpret a closed way. Alternatively, OpenStreetMap contributors may also manually
dictate this decision using a tag.

The third and last data entity are relations which are “ordered list[s] of one or more nodes, ways
and/or relations” [Opeb]. They allow contributors to define a more complex concept. A train
related example for this are relations that define a scheduled train route, like a regional train hourly
commuting between two cities. One can create the route in OpenStreetMap by creating a relation
and adding all ways and station nodes visited as part of the route.

Railroad-parser serves as a tool which works on top of this dataset to perform two main functions.
One is filtering for railroad traffic related entities of the OpenStreetMap data set, which contains
all kinds of data, such as streets and buildings. The other function is to transform the filtered data
into a graph. The filtering process is done using an existing framework for parsing OpenStreetMap
data called PyOsmium [Sar]. To filter for railroad related entities, railroad-parser iterates over
all ways and checks for a tag with key railroad. If a way does have a railroad tag with value
rail, all of its nodes are added as vertices to the graph. Additionally, edges are drawn between
any two neighboring nodes. While parsing the OpenStreetMap data, railroad-parser adds three
new attributes to the graph. The graph attribute type is set, which maps vertices to their function
𝑡𝑦𝑝𝑒 : 𝑉 → {𝑏𝑢 𝑓 𝑓 𝑒𝑟_𝑠𝑡𝑜𝑝, 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠𝑤𝑖𝑡𝑐ℎ, 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔}. The geographic latitude and
longitude are also saved in attributes 𝑙𝑎𝑡 : 𝑉 → R and 𝑙𝑜𝑛𝑔 : 𝑉 → R. Height data has not been
included in this positional data, as it was not considered to influence distances to a noteworthy
extent.

5.1.2 Calculating edge lengths

The goal of this step is to add an edge attribute 𝑙𝑒𝑛𝑔𝑡ℎ : 𝐸 → R, which corresponds to the rail
distance a train has to cover when driving between its incident vertices in the real world. Having a
distance attribute is crucial for many use-cases. Notable examples are route planning and traveling

26

5.1 State of railroad-parser

time calculation. The accuracy of this calculation is limited by the OpenStreetMap way’s resolution.
If a way contains densely packed nodes, it approximates its real curvature more precisely, much
like the approximation of a circle with a polygon. So, to achieve results which are as precise as
possible, distance calculation is performed before any nodes are removed or added. Railroad-parser
determines an edge’s length based on its incident vertices’ geographical positions. Their latitude
and longitude are used to determine the geodesic, the shortest curve connecting two points on
the surface of an ellipsoid. Railroad-parser does not have an own implementation for this, but
instead passes latitude and longitude of both vertices to GeoPy [geo], a library of functions to ease
geographic calculations. GeoPy’s implementation is based on a geodesic distance algorithm as
written down by Karney [Kar13].

5.1.3 Determining switch directions

Another feature of railroad-parser is its algorithm for determining switch directions. In the graph,
switches are portrayed as vertices with three neighbors, but in reality, we can not always interpret
them like that. In a switch, a railroad diverges into two separate railroads, so a train may not travel
from one part of the diverging side to the other. The information on which two of these neighbors
belong to the diverging side is not included in OpenStreetMap tag information. Even so, this
information can be calculated based on the provided geographic data. Let the investigated switch be
𝑣𝑠𝑤𝑖𝑡𝑐ℎ and its neighbors 𝑁 (𝑣𝑠𝑤𝑖𝑡𝑐ℎ) = {𝑣𝑎, 𝑣𝑏, 𝑣𝑐}. From the graphs position attribute, we can
calculate three vectors, each shifting from 𝑣𝑠𝑤𝑖𝑡𝑐ℎ to one neighbor.

(5.1) ®𝑎 =

(
𝑙𝑎𝑡 (𝑣𝑎)
𝑙𝑜𝑛𝑔(𝑣𝑎)

)
−
(
𝑙𝑎𝑡 (𝑣𝑠𝑤𝑖𝑡𝑐ℎ)
𝑙𝑜𝑛𝑔(𝑣𝑠𝑤𝑖𝑡𝑐ℎ)

)
®𝑎 is calculated as shown in Equation (5.1), ®𝑏, ®𝑐 are calculated analog. The angle between these
vectors then provides information on the switch directions.

(5.2) 𝛿𝑎𝑏 = 𝑎𝑟𝑐𝑐𝑜𝑠

(
®𝑎 • ®𝑏

| | ®𝑎 | | ∗ | | ®𝑏 | |

)
Three angles are required 𝛿𝑎𝑏, 𝛿𝑎𝑐 and 𝛿𝑏𝑐, each is calculated by applying Equation (5.2). From
these three angles, we determine the smallest one. The two vectors in the index are the two vertices
that are on the diverging side, thus traveling between these two is not possible. This data is captured
using two attributes 𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑖𝑑𝑒 : 𝑉 → 𝑉 and 𝑑𝑖𝑣𝑒𝑟𝑔𝑖𝑛𝑔_𝑠𝑖𝑑𝑒 : 𝑉 → {𝑋 | 𝑋 ⊂ 𝑉 ∧ |𝑋 | = 2}.

5.1.4 Intermediate vertex removal

After calculating the switch direction, railroad-parser optionally removes intermediate vertices from
the graph. Intermediate vertices are vertices with two neighbors, which aren’t assigned a special
function, unlike e.g. stations. A user may opt to remove these vertices to shrink their data set
without any loss of information, as intermediate vertices do not present a choice for routing. The
set of intermediate vertices consists of a number of different node types with no meaning to most
calculations. Examples for included node types are milestone nodes, which represent milestone
signs at the side of the railroad, or OpenStreetMap way points, which do not represent any real-world
object, instead they are used to model the curvature of a railroad. To remove intermediate vertices,

27

5 Acquiring a railroad network graph

railroad-parser iterates over all non-intermediate vertices. These vertices serve the purpose of a
starting point from which railroad-parser starts the vertex removal. The algorithm moves along
each neighbor until a non-intermediate vertex is found. All vertices between starting and ending
point are removed and finally a new edge is drawn between start and ending vertex. The length of
the new edge is set to the sum of lengths of all removed edges. This way, length calculation does
not need to be repeated and maintains its original precision.

5.2 Adjustments made to as part of this thesis

While railroad-parser did already provide important features, such as OpenStreetMap parsing,
it needed adjustments to deliver results that fit our use-case. After all, graphs generated by
the application did not even contain signals, which are obviously essential for this thesis. Our
adjustments range from simple additions, e.g. duplicate edge removal, to modifications affecting
most of the application, e.g. directed graph usage. The following sections will go over all significant
changes to the application as part of this thesis.

5.2.1 Making the graph directed

Most railroad tracks are usually driven on in one way, so in order to find realistic routes, our routing
algorithm should respect directions. Directions were ignored by railroad-parser up until our changes,
as it used an undirected graph as its data format. Now, the preferred directions get extracted from
OpenStreetMap using way tag railway:preferred_direction. The field can have one of the three
values forward, backward or both. Since OpenStreetMap ways are ordered lists of nodes, all of them
have a direction by themselves, so forward and backward give the direction relative to the direction
of the way. Not all railroad OpenStreetMap ways actually possess this tag, which is why a default
value must be introduced. We chose this default value to be both for compatibility reasons. The
directional edges are only used to model this conventional direction, not the actual logic of a switch
or crossing element, which is done by the routing algorithm instead. All of railroad-parser’s filtering
algorithms had to be adjusted to support the new directed graph format. Especially noteworthy
is the intermediate vertex removal algorithm. In scenarios where multiple edges are combined
into one, it is possible that multiple edges with different directions have to be combined, leaving it
unclear which direction the combination has. Once again, we chose a permissive approach to solve
this problem by making these edges bi-directional.

5.2.2 Adding signal vertex type

Main signals vertices are crucial for our routing, as they indicate the start and end of a safety section.
Before our changes, they were treated as intermediate vertices and therefore removed from the graph
as part of the intermediate vertex removal. We modified the OpenStreetMap parsing algorithm to
give the type signal to following main signal vertices:

28

5.2 Adjustments made to as part of this thesis

H/V-Signals with tag railroad:signal:main=DE-ESO:hp. H/V is short for Haupt-/Vorsignal (ger.
main/distant signal), signifying its heavy reliance on discrete distant and main signals. Being
introduced in the late 19th century, the H/V signaling system is deprecated, mostly to be replaced by
Ks-Signals. H/V are the only block signaling system old enough to still feature semaphore signals.
Despite being deprecated, H/V signals are the most used main signals in Germany today.

Ks-Signals with tags railroad:signal:main=DE-ESO:ks or railroad:signal:combined=DE-ESO:ks.
Ks is short for Kombinationssignal (ger. combination signal), it allows to combine distant and main
signal into one. Being combined means having not only the ability to display stop or clear for its
safety section, but also inform the train operator whether to expect a stop signal in the next safety
section. Another characteristic of Ks signals is their simplicity having only 3 states.

Hl-Signals with tag railroad:signal:main=DE-ESO:hl. Before its reunification in 1990, post world
war two Germany was seperated into the Federal Republic of Germany (West Germany) and the
German Democratic Republic (East Germany). As Germany was divided, so was its railroad system.
The Deutsche Bundesbahn was responsible for West Germany, while the Deutsche Reichsbahn
provided railroad services to East Germany. Hl signals were first introduced to East Germany by
the Deutsche Reichsbahn in 1959, serving as a combined signaling system intended to replace H/V
signaling. In addition to all functionality of a Ks-Signal, they offered the ability to show certain
speed limits, both for its block and for the next block.

Block signs with tag railroad:signal:train_protection=DE-ESO:blockkennzeichen. Block signs
are traffic signs signaling the start of a block. They are used in a few major traffic lines, where no
stationary signals have been placed, for example, following the new ETCS Level 2 standard [OUF18].
Instead of showing information on a signal, it is transmitted to the train via electromagnetic waves
either from a transmission station (GPR-S for ETCS) or via conductor loops layed out alongside the
middle of a rail (LZB).

These signals are combined into the new signal vertex type. This implies that they get their own
color when plotting and are no longer removed in the intermediate vertex removal process. However,
not all main signals do actually get this type. OpenStreetMap signals come with a tagged direction
railway:signal:direction. For bidirectional ways, one could add a direction attribute for each signal
and let a routing algorithm handle the logic. However, this dis-accords with our objective of making
all attributes optional. If a routing algorithm did not evaluate this attribute, it would consider signals
of both directions. Not only would such an algorithm see signals about twice of their actual amount,
it also experiences large variation in their spacing. Often signals with two different directions
are very close to one another, but this is not always the case. Considering this problem, on a
bidirectional way, we only want to keep signals of one direction. As explained in the last section, if
a way has a preferred direction tagged to it, we treat that way as being uni-directional. Thus, we
only want to keep signals which face the preferred direction of the way. This is done using the
railway:signal:direction tag.

5.2.3 Running intermediate node removal multiple times

The intermediate vertex removal algorithm was adjusted to launch multiple times. Because, even
though the algorithm correctly removed all intermediate vertices, some vertices could still be
found after the removal step. This is caused by following scenario. Assume we have two switches
connected to each other on their divergent side, as in an O letter shape. Also assume, that on both

29

5 Acquiring a railroad network graph

rails of the O, only intermediate vertices can be found, no signals or stations. If this scenario occurs,
and it does many times in Germany, the intermediate removal algorithm does not produce a correct
result. The algorithm will remove all vertices in between the two switches, making them connect
directly. As the switches are connected by two different tracks, these tracks get reduced to two
different edges during intermediate removal. This leaves us with a duplicate edge, which does
not fit in our graph model and is removed from the graph later on. But even though the number
of incident edges is preserved with this duplicate edge, none of the algorithms in railroad-parser
handles vertices based on this number, but instead by the number of neighbors. The two switches
considered now only have two neighbors and are thus recognized as intermediate vertices. The fact
that the O gets by removed is not problematic by itself. After all, it does not contain any signals
and therefore is a single safety section making overtakes impossible. What is problematic is that
intermediate nodes are not allowed in our model, so a data set containing any is faulty. Launching
the algorithm repeatedly, until no more change could be observed, is a simple solution which does
fix the problem. One might think running it twice would be enough, but this is not the case since
this scenario does occur recursively, meaning the O is on a left or right side of an even bigger O.

5.2.4 Adding a speed limit to edges

OpenStreetMap provides contributors with the tag maxspeed to specify a speed limit for tracks. This
information is important to us, as our routing algorithms are travel time based. To calculate the time
a train needs to travel between two vertices, not only do we need the edge’s length but also the speed
the train travels at. The 𝑠𝑝𝑒𝑒𝑑_𝑙𝑖𝑚𝑖𝑡 : 𝐸 → R attribute is added while the edges are parsed from
OpenStreetMap data. This happens after the edges direction is set, since the direction can influence
the speed limit. If the direction is uni-directional tags maxspeed:forward and maxspeed:backward
are used. The directionless maxspeed tag is used as a fallback or if the way is bi-directional. The
speed limit specified on the edges is a track-sided speed limit. Speed may also be bound by the
vehicle, but this information is given to the routing algorithm and not added to the graph. Special
care has to be taken when averaging speeds, for example, during the combination of edges in the
intermediate vertex removal algorithm. Contrary to first intuition, 𝑛 speed limits can not be averaged
by dividing their sum by 𝑛. In a sense, doing so averages the speeds over the track distance and not
the speed of a vehicle traveling on it. This only gives correct results which maintain driving time if
the time spent in each of the speed limits is the same. For proper averaging, the driving time should
be evaluated first 𝑡𝑖𝑚𝑒𝑒𝑑𝑔𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑒𝑑𝑔𝑒)/𝑠𝑝𝑒𝑒𝑑_𝑙𝑖𝑚𝑖𝑡 (𝑒𝑑𝑔𝑒). Then lengths and driving times
are summed up and divided 𝑙𝑒𝑛𝑔𝑡ℎ (𝑒𝑑𝑔𝑒1)+𝑙𝑒𝑛𝑔𝑡ℎ (𝑒𝑑𝑔𝑒2)+ ...

𝑡𝑖𝑚𝑒𝑒𝑑𝑔𝑒1+𝑡𝑖𝑚𝑒𝑒𝑑𝑔𝑒2+ ...
.

5.2.5 Adding crossing vertex type

Crossings are vertices with four neighbors, where only traveling diagonally is possible. As such,
they are a fixed railroad element and do not allow to navigate the train into different directions.
Before, crossings were explicitly removed by railroad-parser and replaced by connecting the two
different ways through the crossing directly. This was justified by the fact that, since crossings
do not leave the train with a choice of path, removing them did not influence which vertices can
be reached from where. However, crossings must be considered when looking out for conflicts
between trains. Since a collision may occur if two trains travel through both of its diagonal ways,
the crossing must be kept as a single node and may not be split into two different ways. Just as

30

5.2 Adjustments made to as part of this thesis

done with switches, we must ensure that routes through crossings only take the single legal way
through it. This is saved in an attribute 𝑠𝑜𝑟𝑡𝑒𝑑_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 : 𝑉 → 𝑉4, which allows us to reason on
the crossings possible ways. This attribute is calculated in a similar way using provided geographic
data. Let the crossing vertex be 𝑣𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 with neighbors 𝑁 (𝑣𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔) = {𝑣𝑎, 𝑣𝑏, 𝑣𝑐 , 𝑣𝑑}. Using
Equation (5.1) we can calculate the vectors ®𝑎, ®𝑏, ®𝑐 and ®𝑑. Three angles can be calculated 𝛿𝑎𝑏
𝛿𝑎𝑐 and 𝛿𝑎𝑑 as given by Equation (5.2). To ease evaluation of the angles, a normalization step is
performed next. The normalization calculates the difference of an angle to 180 degrees, the value
we expect a straight way through a crossing to have.

(5.3) |𝛿𝑥𝑦 | =
{
𝜋 − 𝛿𝑥𝑦 , for 𝛿𝑥𝑦 < 𝜋

−(𝜋 − 𝛿𝑥𝑦), else

}
From these three normalized angles, we determine the smallest one, giving us the counterpart
vertex for 𝑣𝑎. Using that information we can conclude the two pairs of vertices which make up
two diagonal path through the crossing. However, for the upcoming double slip switch removal we
also need to know in which direction the path goes through the crossing. So, instead of having
two partially ordered pairs, a complete order of all four neighbors has to be made. This vertex is
determined by having the smallest un-normalized angle 𝛿𝑎𝑦 .

5.2.6 Adding additional features to switches

Two different modifications have been done regarding switches. Each will be described in their own
paragraph.

The original railroad-parser assumed a world where switches always have three entries/exits, two
of which belong to a diverging side. It did not account for switches with four tracks, so called
double slip switches. These switches are laid-out like crossings, but for each entry give two options
on where the train can exit. Functionally, these work like two separate connected switches with
diverging sides facing away from each other. In order to not further complicate the model with
another vertex type, this is also what we convert them to. The algorithm removes the double slip
vertex and replaces it with two single slip switch vertices. To determine in which way these vertices
need to be connected, the 𝑠𝑜𝑟𝑡𝑒𝑑_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 attribute is calculated using the methodology of
Section 5.2.5. Then, two new switch vertices are added to the graph and connected with an edge on
their non-divergent side. One switch is then connected by edges with 𝑣𝑎 and 𝑣𝑥 , the other with 𝑣𝑦
and 𝑣𝑧 . Special care needs to be taken when setting 𝑙𝑎𝑡 and 𝑙𝑜𝑛𝑔 for the newly created algorithms.
As to not mess up the calculation of the switch’s direction, the position of the first switch is shifted
from the double slip switch slightly towards 𝑣𝑎 and 𝑣𝑥 , and the second switch towards 𝑣𝑦 and 𝑣𝑧 .

The other addition regarding switches was an optional attribute called default: 𝑉 → 𝑉 which
maps a switch vertex to the neighbor which is on the diverging side and the closest to just driving
straight. This was introduced as a means to reduce changes in driving track on the calculated
paths. While always switching to the track with least distance does achieve the path of shortest
distance, in reality they slow a train down and also increase the chance of conflicts with oncoming
traffic. Adding this attribute allows a routing algorithm to apply penalties to routes that do perform
changes of track. The calculation step which sorts the neighbor of a crossing Section 5.2.5 already
introduced the required equation. Using Equation (5.3) we can normalize the three angles 𝛿𝑎𝑏,
𝛿𝑎𝑐 and 𝛿𝑏𝑐 between the switch’s neighbors so they reflect the difference to 180 degrees. The

31

5 Acquiring a railroad network graph

smallest normalized angle gives us the two vertices which form the straightest line through the
switch. However, not in all cases do we actually set the default attribute. Not all switches fit into
the switch pattern of having default and alternative exit. Many switches have a V-shaped divergent
side, where neither side functions like a straight path. This includes the aforementioned double
slip switches, which after being split up, usually look like two V-shaped switches. In order to
prevent false penalties for this type of switch default is only set if a clear distinction between the
two divergent paths exists. To determine whether the two paths are distinct enough, we look at
the difference between their normalized angles. If they are distinct the threshold of 0.06 radiant
difference is met and default is set. If the switch resembles a V-shape the difference is below the
threshold and default is not set to avoid false positive penalties.

5.2.7 Refining the data set

While OpenStreetMap does have its strengths like as its lenient licensing terms, it is not without
problems. The biggest one is that, being reliant on user contribution for information, the data set it
provides is not quite complete. While coarse geographic details like the railroad tracks are well
captured, finer details like tag information often fall by the wayside. We illustrate this problem by
visualizing the data in Figure 5.1. Figure 5.1a shall be seen as a reference and marks all active
railroad tracks in an exemplary area of 50,000 km2 in central Germany. Figure 5.1b highlights all
main signals, regardless of direction, in the same area. The 5164 main signals which are tagged in
OpenStreetMap do not cover the whole railroad network as they should. Since Germany uses block
lengths of about 1.2 kilometers excluding overlap, we would expect a perfect data set to cover most
of the track length with dense signals. We can visually see deficiencies both in coverage density,
as well as in coverage area in the illustration. If we used this data set, which is unrepresentative
of the real world, we would observe exceptionally large block sizes, which would hinder sensible
scheduling in these areas. Hence, we developed a simple algorithm to insert artificial signals into
ways where the signal density is not sufficient. The algorithm iterates over all edges and checks if
𝑙𝑒𝑛𝑔𝑡ℎ(𝑒𝑑𝑔𝑒) > 2150 meter. In such cases, the algorithm removes the edge, preserving metadata
like length, and adds a new signal vertex to the graph. The vertex is then connected to the source
of the removed edge by an edge of with a random distance uniformly distributed between 1000
- 1075 meters. The random length is then subtracted from the preserved edge length and if the
remaining length is still over 2150 the previous step is repeated. We initially generated edges with a
length of 1000 - 1200 meters, which is more in line with reality, but reduced the number to 1075 as
some tracks were not covered when using larger numbers. That is because the algorithm looks at
edge length, not distance between signals. So, since switches and stations divide a track of a safety
section into multiple edges, long tracks without signals and frequent signals or switches will not be
modified by the algorithm. In the end, 58.1% of final main signals were generated by this algorithm.
Figure 5.1c shows the coverage of the speed limit tag for the investigated area. In numbers, 45% of
the evaluated ways have a speed limit tagged. This number is a bit deceiving though, as it has a
bias to make the coverage appear smaller than it is. The few large and significant ways on the main
lines are more likely to be well tagged than the many small, insignificant branching ways. Still, one
can visually identify differences between reference and Figure 5.1c mainly when it comes to side
arms springing off the main lines. Despite the bias, we decided to set the speed limit of untagged
ways to 92 which is the average speed limit accross Germany according to our OpenStreetMap
data. Figure 5.1d illustrates the 10% of evaluated tracks that have a direction tagged. The poor
coverage is the reason most of the edges in our resulting graphs are bi-directional. We were faced

32

5.2 Adjustments made to as part of this thesis

(a) All active railroad tracks (b) Main signals

(c) Railroad tracks with tagged speed limit (d) Railroad tracks with tagged direction

Figure 5.1: OpenStreetMap data completeness demonstrated on an area of 50,000 km2 in central
Germany. Data is provided and visualized by Overpass Turbo [Mar].

with two options to use as a default when no tag information is available, using the direction of the
OpenStreetMap ways as a default or defaulting to bi-directional. Former option underapproximates
the set of possible paths from what is actually possible, while the latter one overapproximates. The
latter option was chosen to be used in railroad-parser. Not only is it more user-friendly than making
a perfectly valid route evaluate to no possible paths, but it also serves as a better demonstration,
since an algorithm picking alternatives profits a lot of alternatives to pick from.

We also encountered a notable amount of duplicated signal and station nodes. By that we mean
two different nodes at varying positions describing the same signal or station. We verified the
duplication cases by comparing the data set to public video footage and/or node metadata, such as
the signal identification number. To fix the problem with duplicated signal and station nodes, we
employed an algorithm to remove duplicated nodes. It iterates over all edges to check if their length
is under 100 meters and the two incident vertices are both stations or signals. If that is the case, one
of the vertices is removed and the edge is modified according, to maintain original metadata.

33

5 Acquiring a railroad network graph

5.2.8 Smaller changes

Not all of our changes require enough explanations to warrant their own section. But, they still are
important to get the full picture of what a graph generated using the extended railroad-parser looks
like. This final section summarizes these small changes, each in their own paragraph.

We added an algorithm to convert self edges to buffer stops. Self edges may be created by the
intermediate vertex removal algorithm. Source of the self edges are turnarounds, switches where
both ends of the diverging side are connected to each other. If all nodes on the inside of this loop
are intermediate, both ends of the switch become directly connected by an edge, forming a self edge.
Few of these actually exist in Germany, nonetheless they should not be neglected. Functionally, they
are equivalent to buffer stops, at least in our model. Both only allow the train to change directions.
In reality, the difference is that the front remains in front when turning using a loop, but not when
turning around a buffer stop. The conversion algorithm iterates over all self edges and removes
them. Then a new buffer stop node is added alongside a bidrectional edge between stop and switch
with the speed limit of the removed edge and length 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑙 𝑓 𝑒𝑑𝑔𝑒)/2. The length is halved to
compensate for the fact that the new edge, unlike the original self edge, will be used twice when
turning around using the buffer stop, once to enter the stop and once to exit.

We added an algorithm for removing duplicated edges. How duplicate edges are created is described
in Section 5.2.3. The section also describes why the information lost as part of this process is not
relevant. In the removal process, the edge with lowest temporal length prevails while all other
duplicate edges are removed. The algorithm splits the list of all vertices into workload chunks to
take advantage of symmetric multiprocessing.

We added export files to get all necessary information. In order to distinguish the different vertex
types, one file for each type listing all of its members, is exported. The list for the switch type is
expanded by the information contained in the switch direction algorithm. This allows us to plan
realistic routes, where the train can not turn around in the middle of a track to drive between ends of
the diverging side of a switch.

We corrected the OpenStreetMap dataset in two ocassians. OpenStreetMap can be edited by anyone
possessing a free account and changes happen instantly without any approval required. In both
occasions, the rail path in OpenStreetMap was not representative of the actual paths. One error
featured a railroad station node, which was a crossing at the same time. To match the real-world
layout, we split the station node in half and let the rails run each through one station in parallel.
The other error featured a node with five neighbors in the middle of a rural multi-rail track. The
construct had no base in reality and was replaced by us with new ways and switches to correctly
portray the real routing.

34

6 Routing on the railroad graph

Having dealt with all prerequisites, we can focus on the actual routing algorithms proposed as part
of this thesis. The purpose of the algorithms can be summarized as follows: Given an ordered list
of stations (a train line) calculate a set of paths visiting all of these stations in order. The purpose
of this set is to be used as candidate paths for a dedicated train routing problem algorithm1. To be
useful as a candidate set, the algorithms are designed to optimize for four route qualities. The most
important one is respecting the railroad topology and not taking any paths we deem illegal. For
example, a train entering on the diverging side of the switch may only leave it on the non-diverging
side, everything else would require the train to reverse. The second quality is alternative uniqueness.
The more diverse the different alternatives for the lines are, the more options the train routing
problem algorithm has to avoid conflicts. Third, we want to minimize the amount of track changes,
as they slow a train down and increases chance of conflicts with an oncoming train. Lastly, we want
to keep the travel time low. There are many reasons for this, customers expect quick travel times,
long paths decrease the throughput of the railroad tracks, etc.

The following chapter explains how we generate the set of candidate paths on the railroad graph.
We propose two alternative algorithms for finding a set of paths. Both algorithm are built on top
of Dijkstra’s algorithm and apply penalties to edges to achieve their optimization goal. The first
algorithm, henceforth called simple algorithm, compares edges to a set of edges used in any previous
path. The second algorithm, which we named multi-dimensional algorithm builds on top of that
algorithm to provide better results for many alternatives, at the cost of higher complexity as well as
run time and memory demands.

6.1 The simple routing algorithm

First of all, both algorithms share a common basic structure. Both algorithms are based on Dijkstra’s
routing algorithm, which is a keystone in routing research, even to this day. The algorithm can be
implemented in various ways, so our implementation will be summarized. Our implementation is
an iterative algorithm that maintains a min-heap with all the vertices it has discovered but not yet
visited. The min-heap is sorted by the currently lowest known distance to the respective vertex,
which is also saved in an array. To retrace the shortest path, each vertex remembers its predecessor
on the path. To avoid loops, the algorithm maintains a set of all visited vertices and does not add
those to the stack anymore. However, Dijkstra’s algorithm needs adjustments in order to accurately
model the rail topology, e.g. a switch. Without any restrictions, the algorithm can use any edge for
its path including illegal moves like traveling across the diverging paths of a switch, or suddenly
reversing. Our solution to this problem was to build a framework around Dijkstra which only

1The train routing problem should not be confused with the problem this chapter solves, which is pathfinding. The
former problem is explored in more detail in chapter 3.

35

6 Routing on the railroad graph

3 3

11

1

2

3

4

5

6

7

5
5

1
1

Figure 6.1: A simple counterexample to show that adding additional state to Dijkstra is not done
easily.

exposes neighbors to it which we allow visiting. To be more precise, following restrictions are
applied: A path coming from the diverging side of a switch may only leave on the other side, and
vice versa. A path entering a crossing from one of its four neighbors can only exit at its diagonal
counterpart neighbor. A path can only turn around at buffer stop and station vertices. To decide
on which neighbors we expose to the Dijkstra algorithm, additional information about where the
current vertex was entered from is required. For example, if the node currently considered by the
algorithm is a switch, we need to be aware whether the path which is currently considered comes in
at the diverging side or the non-diverging side. If the last vertex of the path is on the diverging side
of the switch, we want to only expose the one non-diverging side, and vice versa. This way, we
can prevent the algorithm from returning illegal paths. Whether a neighbor is exposed determines
whether Dijkstra can recognize the vertex during the current iteration. I.e. the algorithm can not add
non-exposed vertices to the heap or update their information. The biggest hurdle to this approach to
railroad routing is obtaining the necessary information to make a decision on whether to expose a
neighbor. More precisely, we want to know which neighbor a vertex was entered from. Our solution
to this hurdle is logically duplicating the graph to four copies, which is rather memory and runtime
intensive solution. Why such a solution is necessary, is explained in the next paragraph.

One may assume that the Dijkstra’s predecessor array is enough, however, a simple example can
illustrate this is not the case. Figure 6.1 shows a railroad layout where using the predecessor does
not result in the shortest path. It shows a layout similar to the number “eight” where two different
paths are possible to reach target vertex 7 from source 1 . The arcs between edges indicate an
acute angle, where traveling along is not permitted. In the middle of the illustration lies vertex 4 ,
which is a crossing and therefore only allows diagonal travel through it. So, depending on whether
we enter 4 from vertex 2 or 3 we get a different path. Since Dijkstra’s algorithm is greedy,
the algorithm will get to 4 over vertex 3 first, which brings in a path length of 2, compared to
length 6, which the upper path would have. Afterwards when the algorithm starts discovering the
neighbors of 4 , since its predecessor is now 3 , it is only possible it only possible to continue over
the longer path via 5 . The vertex with lowest distance on the stack is then 2 , which tries to add 4
to the heap but can not do so because 4 is already visited. Thus, the algorithm will only be able to
find the inferior path (1,3,4,5,7) with length 12 compared to (1,2,4,6,7) with length 8. If one opts

36

6.1 The simple routing algorithm

1,1

2,1 3,1

4,1

5,1

1,2

2,2 3,2

4,2

5,2

Figure 6.2: Graph duplication as a mean to give Dijkstra’s algorithm more state. This information
is then used to prevent illegal paths.

for removing the visited set, it is trivial to construct a simple cyclic example where the algorithm
does not terminate. Cycles are also the reason one can not count the number of times a vertex was
visited, as using a cycle the vertex can be visited multiple times from the same neighbor.

Our solution, which is inspired by the approach of Herrmann [Her06] modeling the allowed paths
using a dual graph, is demonstrated in Figure 6.2. The figure shows a logical duplication of a
graph to add state to the algorithm. When using logically duplicated graphs, we no longer consider
vertices in the base graph, but instead their counterparts in the logical graphs. In these logical
graphs, vertices are described by tuples. The first number of the tuple is the vertex ID and the
second number is ID of the graph the vertex belongs to. For example, if the current vertex of our
Dijkstra iteration is (34,2) this means the algorithm is currently handling the node with ID 34 on the
graph with ID 2. To the Dijkstra algorithm (34,1) and (34,2) appear as completely different vertices,
as they are on different logical graphs. The graph ID can be used to add arbitrary information to a
vertex, but in our case it indicates which neighbor the node was visited from. What graph ID the
routing algorithm uses is determined by which neighbor it enters the vertex from, e.g. if it visits a
vertex from neighbor 2 it considers the vertex at graph ID 2. The number of logical graphs needed,
corresponds to the bits of information required. In the case of our routing algorithm, the crossing
vertex is the type with the highest number of neighbors, requiring two bits to differentiate between
its four neighbors. Four logical graphs are sufficient to encode these two bits of information, so this
is what the simple and multi-dimensional routing algorithm use. Implementing logical graphs just
as they are explained here is not practical though. In reality, we only need to keep the base graph in
memory, as logical graphs are a logical construct. Since the only information that is altered for the
logical graphs are vertex IDs, it is simply not necessary to use additional memory to copy the whole
graph. Instead, when adding vertices to the Dijkstra heap during the discovery step, we add a vertex
from the logical graph containing the information which neighbor it was discovered from. Then,
whenever the Dijkstra starts its iteration on a new vertex, we can read the second element of the
tuple and determine which neighbors are to be exposed.

The last thing to discuss about the simple routing algorithm is its method of optimizing for path
distinctness and infrequent changes of track. Both are achieved using penalties, i.e. increases to the
edge weight, which make these edges less desirable for Dijkstra to use. The duplicate edge penalty
is applied statically. For the first alternative, no penalty is applied, all edge weights are set to the
duration it takes a train to travel along it at the maximum allowed speed. Using time as a measure
for weight, instead of the more commonly used length, allows us to optimize paths for time which is
more sensible for railroad planning. All of the edges this calculated path uses are added to a used
edge set, so that the algorithm can apply a penalty to them. When starting the calculation of the
second alternative this penalty has to be applied. This is done by copying the whole graph, and

37

6 Routing on the railroad graph

2 2

21

2 3

1

Path 1
Path 2

Path 3 (Simple Alg.)
Path 3 (Ideal)

Figure 6.3: Shortcomings of the alternatives calculated by the simple algorithm. Path 3 shows that
in situations with a lot of used edges, the simple algorithm delivers sub-ideal results.

changing the weight of all edges to apply the potential penalty. The desired amount of penalty
is given as an input parameter, which represents a factor that is multiplied with the weight of the
edge once it is contained in the used set. The algorithm then calculates the second alternative, on
the graph with the applied penalty. After finishing the calculation all used edges are added to the
used set and the previous steps are repeated for following alternatives. Unlike the duplicated edge
penalty, the penalty for changes of track is applied dynamically. This means that, the penalty is not
actually applied to the whole graph, but added later during routing. The reason why this penalty
has to be dynamic, is that the weight of an edge changes depending on context. If a path enters a
switch and leaves at diverging path which is not straightest, a penalty should be applied. However
when reversing this scenario, i.e. enter the switch from the diverging path, it should not be applied.
The penalty is dynamically added as a constant. The input parameter specifies how many seconds
of penalty should be applied in case of a track switch.

6.2 Multi-Dimensional routing algorithm

The multi-dimensional routing algorithm was proposed once we evaluated the simple routing
algorithm and found that it did not always produce ideal results. Figure 6.3 illustrates a case where
this holds true. In the given example three different alternatives are supposed to be calculated for
a track section. The penalty factor for duplicated edges is captured by an arbitrary value 𝑑. The
first, and therefore shortest, path which is calculated by the algorithm will use both lower edges
with a total length of 3. Path number two depends on the value of 𝑑. If 𝑑 > 2, which is the more
reasonable option, path 2 diverges at the first switch and travels all the way over the upper edges.
With lower values for 𝑑 path 1 will be the only alternative calculated. The issue with the algorithm
is apparent when calculating path 3. By this point, all edges except for the second switch have
already been visited and added to the 𝑢𝑠𝑒𝑑 set. For the best diversity in our result, one would add
a way using this second switch, the only possible path which has not been added to the set yet.
However this ideal path has a length of 2𝑑 + 2 + 3𝑑 + 𝑑 = 6𝑑 + 2, while traveling on the quickest
path again now has length 2𝑑 + 2𝑑 = 4𝑑. No matter the 𝑑, 6𝑑 + 2 > 4𝑑 always holds for positive
values of d, thus there is no possible parameter to get an ideal result set using the simple algorithm.
The following conclusion can be drawn from this issue: When checking how similar a path is, we
have to compare it to each existing path individually, instead of generalizing all existing paths into
one set. Using this conclusion we propose a second algorithm which mitigates this issue at the cost
of higher complexity as well as run time and memory demands.

38

6.2 Multi-Dimensional routing algorithm

1,1,0

2,1,0
3,1,0

4,1,0

5,1,1

1,2,0

2,2,0 3,2,0

4,2,0

5,2,0

1,1,1

2,1,1 3,1,1

4,1,1

5,1,1

1,2,1

2,2,1 3,2,1

4,2,1

5,2,1

1

2

2

1

1

2

2

1

1

1

1

1

1

1

1

1

In
cr

ea
si

ng
 n

um
be

r
of

 e
dg

es
 s

ha
re

d
w

it
h

pa
th

 1

... ...

Figure 6.4: Using a one-dimensional graph to model edge duplication. There are infinitely many
graphs when following the dimension upwards.

The multi-dimensional algorithm is an alteration of the simple routing algorithm, that utilizes a
different method for applying the duplicated edge penalty. The goal is to maintain information on
how much distance is shared with each specific alternative to apply more punishment if a lot of
edges are shared with a single one. As for how to store the information, our solution builds on the
earlier introduced concept of logical graphs. It has already been established that logical graphs can
be used to store additional information, although for a limited number of bits. Since, we do not
know an upper bound to the number of shared edges we require this number to be infinite. Thus, a
third number was added to the vertex tuple, which indicates the number of shared edges shared
with the first alternative. Figure 6.4 illustrates such a one-dimensional graph. Increasing the third
number allows access infinitely many logical graphs, with each of them having their own edge
weights, so penalties can be applied based on the position in the dimension. If we want to calculate
the third alternative we need to increase the graph dimension to two, so vertices are now tuples
with four elements. The first element indicates the vertex ID in the base graph, the second element
the predecessor neighbor, the third element the number of edges shared with alternative one and
the fourth element edges shared with alternative two. In general, calculating the 𝑛-th alternative
requires us to use a 𝑛 − 1 dimensional graph for routing. The dimensional position is used to
apply punishment more dynamically. If an edge is shared with alternative 𝑛 the algorithm reads
the dimensional position, which measure shared edges with that alternative, and adds a penalty of
𝑝𝑜𝑠(𝑛) ∗𝑊 (𝑒).

Since every single dimension in our dimensional graph model extends infinitely, there also is an
infinite number of vertices that can possibly be visited by a routing algorithm. This causes a loss of
the termination guarantee Dijkstra’s routing algorithm has on non-dimensional graphs. Termination
is still guaranteed, if a path between source and target exists. This is because all edges have a
positive weight, thus the strictly monotonically increasing weight of the current node will eventually
reach the distance of the target and conclude the algorithm. But, if there is no path between source
and target and therefore no routing solution, termination is not guaranteed. Since there is an infinite
amount of nodes to explore the algorithm follows cycles infinitely. This termination problem can be

39

6 Routing on the railroad graph

fixed and algorithm performance be improved by adding a check to stop expanding a dominated
path.

(6.1)
𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ((𝑣𝑖𝑑, 𝑑𝑖𝑟, 𝑑1, 𝑑2, ...))

⇔ ∃(𝑖𝑑 ′, 𝑑𝑖𝑟 ′, 𝑑 ′1, 𝑑
′
2, ...) ∈ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 :

𝑖𝑑 = 𝑖𝑑 ′ ∧ 𝑑𝑖𝑟 = 𝑑𝑖𝑟 ′ ∧ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣) < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣′) ∧ 𝑑 ′1 ≤ 𝑑1 ∧ 𝑑 ′2 ≤ 𝑑2 ∧ ...

If 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 evaluates to true, we can safely conclude that there exists another path that superior
the current one, so we can decide to not do any follow up calculations for it. The equation looks for
the existence of a path to the same base vertex in another logical graph, that is guaranteed to be
part of a superior path to the target. It does so by checking the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 array, which contains all
vertices and their corresponding distance. The equation checks for the comparability of the vertices,
by checking if their vertex ID is identical, as well as their graph ID, i.e. if both ways enter it in the
same direction. If this holds true, we know that we found a path to a vertex which offers exactly
the same routing opportunities. The following conditions can then check for the superiority of the
graph. To be dominating the vertex needs to be superior in every value. The distance of the vertex
needs to be lower and the graph needs to be equal or at a lower position in every single dimension,
i.e. will receive less penalties in the future. Checking this condition on every iteration allows us to
restore Dijkstra’s guarantee of termination, as well improve runtime, as the algorithm no longer
follows cycles.

40

7 Evaluation

In order to verify and quantify the improvements experienced using the simple and multi-dimensional
routing algorithm, we performed an empirical evaluation. Goal of the assessment is to investigate
the capability of the algorithms to maintain the quality aspects presented in our problem statement
(Section 2.1). In summary, we evaluate for the distinctness of the alternative routes, the quantity
of track changes, as well as the length and travel time of the routes. The evaluation data set
was established by randomly selecting active German train lines. 15 lines were picked in total,
subdivided into 10 regional lines (lines labeled RB, RE, IRE, MEX) and 5 long-distance lines (IC,
ICE). The lines were broken up into these two categories, because regional lines are generally
shorter than 100 kilometers, while long-distance lines have multiple hundreds of kilometers, so
both can be seen as independent use-cases. For everything but the runtime evaluation, the shown
statistics are an average across all lines of the category. Using our Python reference implementation,
we calculated a total of three alternative routes for each line. The maximum vehicle speed for the
regional evaluation was set to 160 km/h and 250 km/h for the long-distance lines. The evaluation
was performed on a dual socket AMD EPYC 7451 system, which was restricted to use two of
eight available NUMA nodes. This restriction does not affect performance as two nodes allow the
application to use 12 physical cores, which satisfies our maximum degree of parallelism, which is
10. To run the assessment, we had to manually modify the algorithms slightly. To be specific, the
feature that detects an alternative having a path which is unchanged from one of its predecessors
stopping further calculations was removed, as to not falsify the results.

Along with both of our algorithms, we evaluated Yen’s k-shortest path algorithm. Yen serves as
an example for an existing common set routing algorithm, but plays an especially important role
as it is the routing algorithm Falk et al. [FGD+21] use. Thus, the comparisons to it allow us to
estimate the potential benefit their routing and scheduling solution can achieve using our candidate
set. The algorithm is routing independent, so it can be run on top of an arbitrary shortest path
algorithm. This allows us to use it with our existing Dijkstra implementation, used in both of our
algorithms, which was modified not to take any illegal paths. For implementation, we used an
existing Python implementation of the algorithm provided by network analysis library NetworkX
[dev]. However, this implementation had to be extended, as Yen’s algorithm does not allow for
specifying intermediate stops. We solved this in a similar fashion to our routing algorithms, by
splitting lines up into multiple single-source-single-target shortest path problems, which Yen’s
algorithm can solve individually. The alternative paths are then determined by concatenating the
paths calculated in each sub-problem to receive an overall result. For the first alternative, we
concatenate the first path calculated in each sub-problem, for the second alternative the second
ones, etc. Note, that this means the second alternative returned by our implementation of Yen, is
not actually the second shortest path, making it strictly speaking not a k-shortest path algorithm.
However, considering how similar the different paths determined by Yen’s algorithm are, this is a
welcome trait as it allows more sensible comparison between it and our algorithms.

41

7 Evaluation

(a) 𝑠1 - Relative shared distance (b) 𝑠2 - Relative shared distance

Figure 7.1: Relative shared distance between alternatives (regional traffic). The less shared distance,
the more diverse the resulting alternatives are. 𝑠1 compares against all other paths as a
unity, 𝑠2 compares the similarity on a per path basis.

Figure 7.1 indicates how distinct the alternatives calculated for the lines are. High distinctness
is an important quality of the candidate path set, as it grants a train routing problem algorithm
more options to avoid conflicts. The distinctness of the paths is determined by scoring the distance
shared between them, so lower is better in these charts. Figure 7.1a determines the shared distance
of the alternatives using metric 𝑠1, which was presented in Section 2.1. In short, 𝑠1 measures the
relative shared distance by determining whether each edge is also present in any other alternative.
The chart plots the input duplicate edge penalty against the 𝑠1 value of the result set. Both the
simple and multi-dimensional algorithm start at a shared distance of 100% for parameter 1. At that
value, no penalty is applied during the routing process, thus both algorithms return the shortest
path thrice. For penalties bigger than 1, both algorithms instantly overtake Yen’s algorithm, which
has a high degree of alternative similarity with 96% shared distance. This does not come as much
of a surprise, since the algorithm was never designed with alternative distinctness in mind, rather
the opposite is the case. As for our algorithms, there is no outstanding difference between the two,
but the simple routing algorithm consistently outperforms the multi-dimensional algorithm. While
perhaps seeming odd at first, considering the multi-dimensional algorithm is more sophisticated, the
superiority of the simple algorithm can be explained. Our metric 𝑠1 is identical to the optimization
target of the simple algorithm, while the multi-dimensional algorithm optimizes towards a different
goal, one that is more akin to 𝑠2. This also explains why the curve of the simple algorithm is
monotonously falling, while multi-dimensional has small bumps. Metric 𝑠2, which measures
distinctness in a different way, is plotted in Figure 7.1b. The main difference compared to 𝑠1 is
that 𝑠2 checks for similarity on a per path basis and punishes the score if two particular paths share
a lot of edges. The results of this metric seem shifted downwards by about 20% compared to 𝑠2,
which is caused by the fact that 𝑠2 is inherently lesser than 𝑠1. 𝑠2 determines the maximum shared
distance between a path and any single other one, so any duplications here will also be duplications
according to 𝑠1. Overall, both curves are a lot more bumpy compared to the previous plot. Unlike
𝑠1, which only averages, 𝑠2 additionally uses the maximum function, which is vulnerable to outliers
in the data causing sudden jumps. The high amplitude of the bumps further reflects this trait, small
changes in routing can have a big impact on the way 𝑠2 scores the result. Where the bumps occur
can be attributed to chance. The bumps can also go up as 𝑠2 is not a direct optimization goal to

42

(a) 𝑠1 - Relative shared distance (b) 𝑠2 - Relative shared distance

Figure 7.2: Relative shared distance between alternatives (long-distance traffic). The performance
of our algorithm assimilates and steady state is reached more quickly.

either algorithm, so the alignment of the actual goal and 𝑠2 changes. 𝑠2 is neither the optimization
goal of the simple algorithm nor the multi-dimensional algorithm, so some solutions end up aligning
with 𝑠2 well and some do not. For low values of the duplication penalty, the multi-dimensional
algorithm outperforms the simple algorithm, otherwise which one is better is a toss up. What is
noteworthy though, is that we can still observe improvements for higher penalties like 65 for the
simple algorithm and 90 for the multi-dimensional algorithm, while progress in 𝑠2 stagnates much
more quickly.

Figure 7.2 shows plots of the same metrics, but this time for our 5 long-distance lines. The most
important thing we can take away from Figure 7.2a plotting 𝑠1, is that longer routes align the
performance of both of our algorithms. This is made clear by the fact that the performance of
Yen did not converge towards the same result, but away from it raising all the way to 99%. To
understand why this is the case, one has to consider how the algorithm works. In short, Yen’s
algorithm calculates alternatives by removing some edges from the graph, which are part of previous
alternatives. The first alternative is the shortest path, the second alternative is a deviation where any
one edge is made inaccessible, a second edges is removed for the third alternative, and so on. Since
the number of alternatives for the evaluation is fixed, we know that the alternatives only delete one
or two edges, respectively. Therefore, the absolute distinctness for these alternatives is constant
and plays a smaller role, the longer the planned line is. Figure 7.2b confirms two observations
we have made for the regional traffic lines. The multi-dimensional algorithm still outperforms the
simple algorithm for low penalties, although the gap is shrinking much sooner now. Otherwise,
both algorithms still deliver comparable performance. What changed however, in both Figure 7.2a
and Figure 7.2b, is how quickly the algorithms reach a steady result for the long-distance lines.
Another clear difference compared to the regional evaluation is how low 𝑠2 is in comparison to 𝑠1.
Since 𝑠2 and 𝑠1 have intersections in how they function, we can draw a conclusion from that. In
long-distance lines, routes still use similar tracks a lot of the time, but individual combinations in
which they use them are much more unique. This is down to the fact that longer distances between
intermediate stops also mean more possible combinations of the tracks in between.

43

7 Evaluation

(a) Relative number of track changes. Simple and
multi-dimensional algorithm get equal results
because they apply the same penalty.

(b) Average route travel time with respect to
change of track penalty. The chart behaves
anti-proportional because of conflicting opti-
mization goals.

Figure 7.3: Evaluation of track change penalty and its impact on travel time (regional traffic).

Figure 7.3a plots another quality aspect, the relative number of track changes. The y-axis measures
the ratio of switches, where the path does not follow a straight way through the switch, but leaves
the switch at a sharper angle. Generally, a lower value is favorable here because frequent track
changes slow down a train and increase chances of conflicts with oncoming trains. However, track
changes are part of the design of train routes, especially in Europe [LLER11], so this value never
reaches zero. For the measurement, only switches where we enter on the non-divergent side are
considered. If we counted all switches, in 66% of cases the switch would be entered on the divergent
side, only allowing the train to exit on the non-diverging side, thus deflating the metric. Noteworthy
is, that the curves of the simple and multi-dimensional algorithm are identical in this chart. Since
this statistic is supposed to isolate the changes caused by the change of track penalty, the penalty
for duplicate edges was set to zero. As the simple and multi-dimensional algorithms only differ
in their handling of duplicate edges, they produce identical results in such a scenario. Without
any penalty, Yen’s algorithm performs slightly worse than our algorithms in this statistic. The
difference can be seen as up to chance, since Yen optimizes for path shortness and our algorithms
optimize for low travel duration. Increasing the penalty, we observe steep changes up to a penalty
of 5 seconds, followed by linear improvements up to penalty 55 and steady state henceforth. Since
we logically established that the optimization goals, low travel time, few track changes and low
path similarity are in conflict with each other, it makes sense to evaluate impact on those other two
metrics. Figure 7.3b evaluates the impact of the penalty on travel time. Since these two compete,
the curve behaves in an anti-proportional way to the last chart, each bump upward corresponds to a
bump downward in the last chart. What is relevant in this chart is the amplitude of the bumps on
both charts. Ideally, we want to see large decreases in the left chart with small increases in the left
chart. Overall, we see a maximum increase in travel time by 1.1% which is negligible compared to
the impact the duplicate edge penalty has.

When calculating the long-distance routes (Figure 7.4a) the track change statistic overall looks
similar to the one in regional traffic. Without any punishment, the algorithms still perform mostly
similar to Yen’s algorithm, although they are a bit closer now and Yen outperforms our algorithms.
The change is up to chance, since Yen calculates the shortest route and our algorithms calculate the

44

(a) Relative number of track changes. The curve
reaches steady results faster.

(b) Average route travel time with respect to
change of track penalty. The impact on travel
time is low, so we can conclude there is little
competition between the two.

Figure 7.4: Evaluation of track change penalty and its impact on travel time (long-distance traffic).
Simple and multi-dimensional algorithm get equal results because they apply the same
penalty.

quickest route. Just as observed on the duplicated edge penalty, the track change penalty achieves a
steady value more quickly compared to the regional routes. We attribute this observation to the fact
that long-distance lines offer a greater number of possibilities for avoiding duplicated edges / track
changes. Their gap between intermediate stops is comparatively large, thus giving the algorithms
more freedom to chose routes between these stops. Also, the intermediate stops of a long-distance
line are larger stations with many more tracks and platforms. Therefore, the algorithms are offered
a much greater set of possibilities to avoid penalties more easily. Figure 7.4b plots the impact of
the penalty on the average travel time of the calculated routes, this time for long-distance traffic.
The impact of the penalty is even smaller here, with an overall increase of 0.9% within the shown
interval. Both the regional and the long-distance statistic lead to the conclusion that the competition
between path travel time and changes of track is low. The logical conclusion would be that the track
change optimization goal mainly competes with the goal of low shared distance.

Figure 7.5 confirms this hypothesis. The figure plots the change in relative track changes as we
increase the duplicate edge penalty. As it is based on the regional traffic dataset, this plot is best
compared with Figure 7.3a. For this statistic, we fixed the change of track penalty to 80, which
is where both regional and long-distance had reached a steady value. On the x-axis, we increase
the duplicated edges penalty, in an interval of [1,20]. Even for low values of the duplicated edge
penalty one can observe a drastic increase in changes of track. This leads to the conclusion that
the duplicated edge penalty is a much more sensitive penalty than changes of track. Even small
changes can have big impacts, so precise tuning is required.

Figure 7.6 increases both penalties to investigate changes to route length and travel time in long-
distance traffic. Both metrics are a high priority for train timetabling, as customers do not want to
travel for any longer than necessary. A long route length generally also increases the chance of
conflict with routes of another line. This in turn, forces the algorithm to produce more diverse
results in order to avoid the conflict, a snowball effect which should be avoided. The first apparent
observation is that both graphics look almost identical. The similarity can be attributed to the layout

45

7 Evaluation

Figure 7.5: Impact of duplicate edge penalty on changes of track (regional traffic). The large
impact shows that careful balancing needs to be done between both penalties.
[change of track penalty = 80]

(a) Average route length (b) Average travel time

Figure 7.6: Average route length and travel time (long-distance traffic).

of train tracks. High-speed lines tend to follow an especially straight line, which is part of why they
allow traveling at high speeds in the first place. Thus, in many cases, the shortest path is also the
quickest path, leading to identical results in those metrics. Figure 7.6a displays Yen outperforming
the simple and multi-dimensional algorithm in terms of route shortness by at least 3%, even without
any penalties applied This is again, because Yen’s algorithm optimizes for route shortness, unlike
the algorithms proposed in this paper that optimize for travel time. For low penalty values up until
15, the multi-dimensional algorithm delivers longer routes than the simple algorithm. This is part of
why, in long-distance tests, the multi-dimensional algorithm achieves better shared distance results
for low penalties, compared to the simple algorithm. We previously concluded multi-dimensional
and simple routing assimilate for longer lines. The figure confirms this assumption. The algorithms
differ in how they scale with the penalties, but overall the results of the multi-dimensional algorithm
can be achieved with the simple algorithm by adjusting the penalties, and vice versa. In conclusion,
for this type of route, there is no inherent difference between the capabilities of both algorithms.

46

(a) Average route length (b) Average route travel time

Figure 7.7: Average route length and travel time (regional traffic). Simple and multi-dimensional
algorithm get equal results because they apply the same penalty.

The same can not be said for regional lines, which are plotted in Figure 7.7. Here, the difference
between both algorithms is more noticeable. For regional lines, the multi-dimensional algorithm
produces results which are consistently shorter and quicker. Up until penalty 17, the simple algorithm
produces noticeably longer routes for its result set. For higher penalties, this gap starts widening
the higher the penalty goes, with the multi-dimensional algorithm ending up with about half the
distance of the simple algorithm. This, along with comparable shared distance performance, makes
it the clear winner in terms of result quality for high penalties. For low penalties, which algorithm is
more suitable depends on the use-case. Algorithms benefiting from a low 𝑠1 achieve better results
using the simple algorithm, those benefiting from 𝑠2 likely prefer the superior performance of the
multi-dimensional algorithm. Interestingly, Yen’s algorithm does not produce the shortest paths
anymore, even going as far as having over 50% longer results. The cause of this phenomenon are
outliers in the data. Compared to the long-distance lines, which leave the algorithm with a lot of
possible routes, routing on the smaller scale regional lines proved to be a lot harder. Such track
constructs cause an increase in path length up to tenfold and therefore drag up the average by a lot.
The outliers occur where the track between two intermediate stops is hose-like, i.e. does not allow
for any track changes. The biggest offender occurs on route 1, where two stations are linked by two
railroad tracks, which are both uni-directional, thus only one of them is usable. Yen’s algorithm is
unable to produce a sensible alternative here and ends up generating a path with a distance that is
tenfold the shortest one.

These outliers also show up in our runtime performance evaluation (Figure 7.8). Time measurement
for each of the calculations was averaged over 𝑁 = 10 sample runs, with a relative standard deviation
of 𝜎 < 0.5%. The plots show each of the different test routes on the x-axis, the y-axis plots the
time needed to calculate the set of three paths, so lower results are considered better. All tests were
performed with 15 as the penalty parameter for both changes of track, and shared edges. Which
routes contain outlier situations for Yen’s algorithm is pretty clear from this chart, regional lines R1,
R2 and R9. Both contain a section where the track between two intermediate stops is hose-like, i.e.
does not allow for any track changes. For example, two intermediate stations are linked by two
railroad tracks, which are both uni-directional, thus only one of them is usable. The problem is that
for the second and following alternatives, Yen’s algorithm always deletes at least one edge, so it is
always forced to find a distinct path, even when there is no sensible one to be found. The tenfold

47

7 Evaluation

(a) Runtime per route in regional traffic (b) Runtime per route in long-distance traffic.
Logarithmic scale.

Figure 7.8: Runtime per route. [𝑁 = 10, 𝜎 < 0.5%, penalties = 15]

increase in route distance goes hand in hand with a large increase in runtime. But, there are routes,
where Yen’s run time trumps all other algorithms, especially R7 and R10 of the regional evaluation.
This is because Yen does not avoid shared distance the same way our algorithms do. For these
routes, Yen calculates a set of 3 very short paths, whilst the simple and multi-dimensional algorithm
take longer paths to produce unique alternatives. For the regional traffic lines, we can reach the
conclusion, that the main factor influencing runtime is not inherent algorithm efficiency, but how
long the produced results paths are. The same conclusion can not be reached for long-distance
routes as plotted in Figure 7.8b on a logarithmic scale. Here, the simple routing algorithm ends
up as a pretty clear winner, having the lowest runtim in all routes except for R5. A huge outlier is
the multi-dimensional algorithm for route 5. The bad runtime can be attributed to scaling. The
multi-dimensional algorithm does not scale well for routes with long distances between intermediate
stops, which is the case in R5.

Overall, we conclude that both the simple routing algorithm and the multi-dimensional algorithm
are capable of producing results which are significantly improved compared to Yen’s algorithm.
This holds true for all quality aspects, shared distance, track changes, travel time, and even route
length in some scenarios. Which type of algorithm is recommendable to use, depends on the
calculated route and use-case. If the calculated route is lengthy, especially having parts with a
long distance between intermediate stations, the simple routing algorithm should be considered.
The difference in result quality for both algorithms in this use-case is negligible, but the simple
algorithm displays superior runtime. For short routes the recommendation depends on the use case.
Most algorithms should benefit from the superior 𝑠2 shared distance, so the multi-dimensional
algorithm should be considered. However, some algorithms may not need paths according to the
stricter definition of uniqueness by 𝑠2, and profit from the slightly superior 𝑠1 performance of the
simple algorithm. In any case it is important to note, that in order to achieve ideal results, precise
tuning of the parameters is required, because all the different optimization goals are conflicting.
This conflict requires us to balance the parameters against each other carefully. How achievable
this balance actually is, when running the algorithm on numerous diverse routes to process a large
region, remains to be seen. It is conceivable that extensions could be developed in the future, which
ease balancing of the parameters using basic line, graph and route metrics.

48

8 Conclusion and Outlook

To conclude the thesis, we want to recall important topics within it. First, we introduced the reader
to the train routing problem, in which routes are assigned to train lines, and the train scheduling
problem in which schedules are assigned to train lines. We pointed out that the computer network
routing and scheduling solution of Falk et al. [FGD+21] may solve these problems efficiently,
but requires a sensible set of candidate paths. The thesis then explained that the railroad system
is organized into safety blocks, because of its tolerance for failures and technological ease of
implementation. The implementation of the blocks is done via various types of signals which
inform the driver about the clearance status of upcoming blocks. In the next step, we explained how
we transform the geographic OpenStreetMap data set into a graph which only contains the necessary
railroad information. We also showed that during this procedure, we can add additional information
about the topology of the network to improve routing, e.g. the divergent and non-divergent side
of a switch. Next, we propose two routing algorithms, the simple and multi-dimensional routing
algorithm. Both algorithms have the goal to maximize the uniqueness of a path, but different
definitions of uniqueness allow for different algorithms. The simple algorithm tries to avoid all
edges which are also contained by any another path. It does not distinguish how often the edge
was used, or which path uses it. The multi-dimensional algorithm is an alternative way to find
unique paths, which determines uniqueness on a per path basis. We showed how we can use the
information which was tagged on to the graph to improve routing results. These improvements
range from essential, like preventing illegal paths, to supplementary, like the default way through a
switch. Finally, we evaluated both algorithms against each other and an implementation of Yen’s
k-shortest path algorithm. The evaluations showed that the difference between the simple and the
multi-dimensional algorithm is not big. Both algorithms are capable of improving on Yen regarding
shared distance, changes of track and result set shortness substantially. But, we also observed that,
since all of these goals are competing with each other, the parameters need to be balanced carefully
to achieve optimal results.

Outlook

This thesis does not conclude the potential research on the simple and multi-dimensional algorithm.
Most important is that this thesis was conducted as part of an effort to adopt the computer network
scheduling algorithms of Falk et al. [FGD+21] into the railroad domain. However, integration
between their algorithms and herein proposed candidate path routing algorithms has yet to be
conducted. Only after this has been done can we evaluate the actual benefits that can be seen when
using this algorithm in a routing / scheduling process. In order to run this algorithm on huge data
sets, runtime performance optimizations of the implementation specifically should be considered.
Since the main purpose of our Python implementation is to serve as a proof concept, little attention
to performance optimization was paid. As the algorithm is working on large sets of data, a compiled

49

8 Conclusion and Outlook

language like C should be considered. One could study the effects candidate routing solutions akin
to our could have to improve computer network scheduling, effectively reversing the translation in
domain.

Then, there are also improvements which can be done to algorithms itself. When routing on
bidirectional tracks, we make the assumption that it is sufficient to consider only the signals in one
direction and view them as if they are able to signal for both directions. This eliminates the need
for signals in the opposite direction, which is why they are not considered. However, in reality,
signals in a bidirectional track are often physically separate, which means they can be shifted in
position from the opposite signals. In a theoretical model, this is a sane assumption, because the
distance between two signals is the same and precise position is not important. But, when using
the algorithm in the real world, we would want to have our graph precisely model the real signal
constellation, i.e. map real signals to signals in the graph one to one.

A possible extension for the multi-dimensional algorithm specifically are continuous dimensions.
The dimensions we use for the multi-dimensional algorithm are discrete, i.e. only allow increases
by integer numbers. The dimensions count the number of shared edges, but since edges can have
varying length, this is not the most accurate way of measuring how similar paths are. If one were to
adapt the algorithm to use continuous dimensions, the shared distance could be used as a dimension
and the results obtained may become more accurate.

50

Bibliography

[Bun21] Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen.
Marktuntersuchung Eisenbahnen 2020. 2021 (cit. on p. 23).

[Bur05] D. M. Burkolter. “Capacity of railways in station areas using Petri Nets”. Artwork
Size: 147 p. Medium: application/pdf Pages: 147 p. PhD thesis. ETH Zurich, 2005.
doi: 10.3929/ETHZ-A-005060957. url: http://hdl.handle.net/20.500.11850/46806
(visited on 12/03/2021) (cit. on p. 16).

[CBH+09] G. Caimi, D. Burkolter, T. Herrmann, F. Chudak, M. Laumanns. “Design of a Railway
Scheduling Model for Dense Services”. In: Networks and Spatial Economics 9 (Feb.
2009), pp. 25–46. doi: 10.1007/s11067-008-9091-6 (cit. on p. 17).

[CBH05] G. Caimi, D. Burkolter, T. Herrmann. “Finding Delay-Tolerant Train Routings through
Stations”. In: Operations Research Proceedings 2004. Ed. by H. Fleuren, D. den Hertog,
P. Kort. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 136–143. isbn:
978-3-540-27679-1 (cit. on p. 16).

[CD07] S. Cornelsen, G. Di Stefano. “Track assignment”. In: Journal of Discrete Algorithms.
2004 Symposium on String Processing and Information Retrieval 5.2 (June 1, 2007),
pp. 250–261. issn: 1570-8667. doi: 10.1016/j.jda.2006.05.001. url: https:

//www.sciencedirect.com/science/article/pii/S1570866706000475 (visited on
12/03/2021) (cit. on p. 16).

[CGT07] A. Caprara, L. Galli, P. Toth. “04. Solution of the Train Platforming Problem”. In:
Transportation Science 45 (Jan. 2007). doi: 10.2307/23017703 (cit. on p. 16).

[DB] DB Netz AG. Trassenfinder. url: https://www.trassenfinder.de (cit. on p. 23).

[DB 19] DB Netz AG Zentrale Betriebsverfahren. Fahrdienstvorschrift, Richtlinie 408. 2019
(cit. on p. 23).

[Deu] Deutsche Bahn AG. Jobs bei der DB, Fahrdienstleiter (w/m/d). url: https://karriere.
deutschebahn.com/karriere-de/jobs/schueler/ausbildung/fahrdienstleiter-

deine-ausbildung-2650412 (cit. on p. 23).

[Deu20] Deutscher Bahnkunden-Verband e. V. Eisenbahninfrastruktur Gesamtübersicht
Deutsche Regionaleisenbahn Gruppe. 2020 (cit. on p. 23).

[Deu21] Deutsche Bahn AG, Investor Relations und Sustainable Finance, Berlin. DB Netz AG
Geschäftsbericht 2020. 2021 (cit. on p. 23).

[dev] N. developers. NetworkX. url: https://networkx.org/ (visited on 12/03/2021) (cit. on
p. 41).

[Edm65] J. Edmonds. “Minimum partition of a matroid into independent subsets”. In: J. Res.
Nat. Bur. Standards Sect. B 69 (1965), pp. 67–72 (cit. on p. 15).

51

https://doi.org/10.3929/ETHZ-A-005060957
http://hdl.handle.net/20.500.11850/46806
https://doi.org/10.1007/s11067-008-9091-6
https://doi.org/10.1016/j.jda.2006.05.001
https://www.sciencedirect.com/science/article/pii/S1570866706000475
https://www.sciencedirect.com/science/article/pii/S1570866706000475
https://doi.org/10.2307/23017703
https://www.trassenfinder.de
https://karriere.deutschebahn.com/karriere-de/jobs/schueler/ausbildung/fahrdienstleiter-deine-ausbildung-2650412
https://karriere.deutschebahn.com/karriere-de/jobs/schueler/ausbildung/fahrdienstleiter-deine-ausbildung-2650412
https://karriere.deutschebahn.com/karriere-de/jobs/schueler/ausbildung/fahrdienstleiter-deine-ausbildung-2650412
https://networkx.org/

Bibliography

[Eis] Eisenbahn-Bundesamt. Eisenbahnunternehmen. url: https://www.eba.bund.de/DE/
Themen/Eisenbahnunternehmen/eisenbahnunternehmen_node.html (cit. on p. 23).

[Eis20a] Eisenbahn-Bundesamt. Bericht des Eisenbahn-Bundesamts. 2020 (cit. on p. 21).
[Eis20b] Eisenbahn-Bundesamt Sachgebiet 333. Zusammenstellung der Bestimmungen der

Eisenbahn-Signalordnung 1959 (ESO 1959), einschließlich der gemäß ESO (4)
genehmigten Signale mit vorübergehender Gültigkeit und der gemäß ESO (5) erlassenen
Anweisungen zur Durchführung der ESO, gültig für das Netz der Eisenbahnen des
Bundes (EdB). 2020 (cit. on p. 21).

[FDR20] J. Falk, F. Dürr, K. Rothermel. “Time-Triggered Traffic Planning for Data Networks
with Conflict Graphs”. In: 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). 2020, pp. 124–136. doi: 10.1109/RTAS48715.2020.
00-12 (cit. on p. 15).

[FGD+21] J. Falk, H. Geppert, F. Dürr, S. Bhowmik, K. Rothermel. Dynamic QoS-Aware Traffic
Planning for Time-Triggered Flows with Conflict Graphs. _eprint: 2105.01988. 2021
(cit. on pp. 3, 4, 9, 10, 15–17, 41, 49).

[geo] geopy contributors. GeoPy. url: https://github.com/geopy/geopy (cit. on p. 27).
[Gov21a] Government of Germany. Allgemeines Eisenbahngesetz (AEG). 2021 (cit. on p. 23).
[Gov21b] Government of Germany. Eisenbahnregulierungsgesetz (ERegG). 2021 (cit. on p. 23).
[Her06] T. Herrmann. “Stability of timetables and train routings through station regions”. In:

2006 (cit. on pp. 15, 17, 37).
[Kar13] C. Karney. “Algorithms for geodesics”. In: Journal of Geodesy 87 (June 2013),

pp. 43–55. doi: 10.1007/s00190-012-0578-z (cit. on p. 27).
[LLER11] R. Lusby, J. Larsen, M. Ehrgott, D. Ryan. “Railway track allocation: Models and

methods”. In: OR Spectrum 33 (Oct. 2011), pp. 843–883. doi: 10.1007/s00291-009-
0189-0 (cit. on pp. 9, 15, 44).

[Mar] Martin Raifer. Overpass Turbo. url: https://overpass-turbo.eu (cit. on p. 33).
[Mob21] D.-G. for Mobility {and} Transport (European Commission). EU transport in figures:

statistical pocketbook 2021. LU: Publications Office of the European Union, 2021.
isbn: 978-92-76-40101-8. url: https://data.europa.eu/doi/10.2832/27610 (visited
on 11/10/2021) (cit. on p. 9).

[mof20] mofair e.V., NEE e.V. Wettbewerber-Report Eisenbahnen. 2020 (cit. on p. 23).
[Opea] OpenStreetMap Foundation. OpenStreetMap Foundation. url: https://wiki.osmfoun

dation.org/wiki/Main_Page (cit. on p. 25).
[Opeb] OpenStreetMap Wiki. OpenStreetMap Wiki. url: https://wiki.openstreetmap.org

(cit. on p. 26).
[OUF18] H. OUFERROUKH. European Rail Traffic Management System (ERTMS). ERA.

Sept. 10, 2018. url: https://www.era.europa.eu/activities/european-rail-
traffic-management-system-ertms_en (visited on 12/03/2021) (cit. on p. 29).

[Pac21] J. Pachl. “Regelung und Sicherung der Zugfolge”. In: Systemtechnik des Schienen-
verkehrs: Bahnbetrieb planen, steuern und sichern. Wiesbaden: Springer Fachmedien
Wiesbaden, 2021, pp. 39–104. isbn: 978-3-658-31165-0. doi: 10.1007/978-3-658-
31165-0_3. url: https://doi.org/10.1007/978-3-658-31165-0_3 (cit. on pp. 19–21).

52

https://www.eba.bund.de/DE/Themen/Eisenbahnunternehmen/eisenbahnunternehmen_node.html
https://www.eba.bund.de/DE/Themen/Eisenbahnunternehmen/eisenbahnunternehmen_node.html
https://doi.org/10.1109/RTAS48715.2020.00-12
https://doi.org/10.1109/RTAS48715.2020.00-12
https://github.com/geopy/geopy
https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00291-009-0189-0
https://doi.org/10.1007/s00291-009-0189-0
https://overpass-turbo.eu
https://data.europa.eu/doi/10.2832/27610
https://wiki.osmfoundation.org/wiki/Main_Page
https://wiki.osmfoundation.org/wiki/Main_Page
https://wiki.openstreetmap.org
https://www.era.europa.eu/activities/european-rail-traffic-management-system-ertms_en
https://www.era.europa.eu/activities/european-rail-traffic-management-system-ertms_en
https://doi.org/10.1007/978-3-658-31165-0_3
https://doi.org/10.1007/978-3-658-31165-0_3
https://doi.org/10.1007/978-3-658-31165-0_3

[PGRR21] L. Philipp, L. Ganter, M. Richter, L. Rönsch. Use-case oriented Extraction and
Processing of Open Street Map Data. 2021 (cit. on pp. 10, 25).

[RV09] J. Riezebos, W. Van Wezel. “k-Shortest routing of trains on shunting yards”. In: OR
spectrum 31.4 (2009). Publisher: Springer, p. 745 (cit. on p. 16).

[Sar] Sarah Hoffmann. PyOsmium. url: https://osmcode.org/pyosmium (cit. on p. 26).

[SCO18] W. Steiner, S. S. Craciunas, R. S. Oliver. “Traffic Planning for Time-Sensitive Commu-
nication”. In: IEEE Communications Standards Magazine 2.2 (June 2018). Conference
Name: IEEE Communications Standards Magazine, pp. 42–47. issn: 2471-2833. doi:
10.1109/MCOMSTD.2018.1700055 (cit. on p. 15).

[SEF+21] M. Salerno, Y. E-Martín, R. Fuentetaja, A. Gragera, A. Pozanco, D. Borrajo. “Train
Route Planning as a Multi-agent Path Finding Problem”. In: Advances in Artificial
Intelligence. Ed. by E. Alba, G. Luque, F. Chicano, C. Cotta, D. Camacho, M. Ojeda-
Aciego, S. Montes, A. Troncoso, J. Riquelme, R. Gil-Merino. Cham: Springer
International Publishing, 2021, pp. 237–246. isbn: 978-3-030-85713-4 (cit. on pp. 9,
16).

[SPD+16] M. Samà, P. Pellegrini, A. D’Ariano, J. Rodriguez, D. Pacciarelli. “Ant colony
optimization for the real-time train routing selection problem”. In: Transportation
Research Part B: Methodological 85 (2016), pp. 89–108. issn: 0191-2615. doi:
https://doi.org/10.1016/j.trb.2016.01.005. url: https://www.sciencedirect.
com/science/article/pii/S0191261515301077 (cit. on p. 16).

[Uni] United Nations Economic Commission for Europe. Total length of railway lines
- Statistical Database - United Nations Economic Commission for Europe. url:
https://w3.unece.org/PXWeb/en/CountryRanking?IndicatorCode=42 (visited on
11/10/2021) (cit. on p. 9).

[Yen71] J. Y. Yen. “Finding the K Shortest Loopless Paths in a Network”. In: Management
Science 17.11 (1971). Publisher: INFORMS, pp. 712–716. issn: 00251909, 15265501.
url: http://www.jstor.org/stable/2629312 (cit. on pp. 10, 16).

[YHlL11] H. Yin, B. Han, D. li, F. Lu. “Modeling and Application of Urban Rail Transit
Network for Path Finding Problem”. In: 124 (Jan. 2011). ISBN: 978-3-642-25657-8,
pp. 689–695. doi: 10.1007/978-3-642-25658-5_81 (cit. on p. 16).

[ZKR+96] P. Zwaneveld, L. Kroon, H. Romeijn, M. Salomon, S. Dauzère-Pérès, S. Hoesel,
H. Ambergen. “Routing Trains Through Railway Stations: Model Formulation and
Algorithms”. In: Transportation Science 30 (Aug. 1996), pp. 181–194. doi: 10.1287/
trsc.30.3.181 (cit. on pp. 9, 16, 17).

[ZT16] W. Zhou, H. Teng. “Simultaneous passenger train routing and timetabling using
an efficient train-based Lagrangian relaxation decomposition”. In: Transportation
Research Part B: Methodological 94 (2016), pp. 409–439. issn: 0191-2615. doi:
https://doi.org/10.1016/j.trb.2016.10.010. url: https://www.sciencedirect.
com/science/article/pii/S0191261516302144 (cit. on p. 16).

All links were last followed on December 6, 2021.

https://osmcode.org/pyosmium
https://doi.org/10.1109/MCOMSTD.2018.1700055
https://doi.org/https://doi.org/10.1016/j.trb.2016.01.005
https://www.sciencedirect.com/science/article/pii/S0191261515301077
https://www.sciencedirect.com/science/article/pii/S0191261515301077
https://w3.unece.org/PXWeb/en/CountryRanking?IndicatorCode=42
http://www.jstor.org/stable/2629312
https://doi.org/10.1007/978-3-642-25658-5_81
https://doi.org/10.1287/trsc.30.3.181
https://doi.org/10.1287/trsc.30.3.181
https://doi.org/https://doi.org/10.1016/j.trb.2016.10.010
https://www.sciencedirect.com/science/article/pii/S0191261516302144
https://www.sciencedirect.com/science/article/pii/S0191261516302144

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Preliminaries
	2.1 Problem Statement

	3 Related Work
	4 Modern train safety systems
	4.1 Spatial distance separation procedures
	4.2 Enforcing spatial distance separation
	4.3 Railroad economy and regulations in Germany

	5 Acquiring a railroad network graph
	5.1 State of railroad-parser
	5.2 Adjustments made to as part of this thesis

	6 Routing on the railroad graph
	6.1 The simple routing algorithm
	6.2 Multi-Dimensional routing algorithm

	7 Evaluation
	8 Conclusion and Outlook
	Bibliography

