
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Neural network user intent
prediction for robot teleoperation

Hangbeom Kim

Course of Study: Infotech

Examiner: Prof. Dr. rer. nat. Toussaint

Supervisor: Ph.D. Jim Mainprice,
M.Eng. Yoojin Oh

Commenced: June 11, 2018

Completed: December 11, 2018





Abstract

The focus of this thesis is to design a machine learning framework that predicts user intent during
robot teleoperation using eye and hand gesture tracking devices. In this thesis, we focus on a natural
pick-and-place task. A simple virtual environment simulates the operation of a gripper as well as
collects input data from hand gestures and eye movements.

Teleoperation technology allows to remotely operate robotic systems located in hostile, and inacces-
sible environments. Such environments are often incompletely known, and therefore not suitable
for fully autonomous robots to operate in. In these situations, teleoperation can be used, which
combines the problem-solving capabilities of the human with the precision and durability of the
robot. Robots are extremely good at performing accurate precision motions, while humans are
proficient in making complex planning and decisions.

Recent systems succeed by first identifying their operator’s intentions, typically by analyzing the
user’s direct input through a joystick or a keyboard. Further, to enhance this method, the user input
is combined with semi-autonomous control in shared autonomy. Especially, the indirect inputs
like eye gaze data are a plentiful source of information for assessing operator intention. When
people perform manipulation tasks, their gaze center tends to observe goal objects before starting
the movements towards the corresponding objects and also glimpse the objects during the tasks.

In this thesis, we present an intent predictor and we compare it to six different models, developed
using two low dimensional time series inputs (hand motion and eye movements tracking), to predict
user intent. These models trained hand motion tracking, eye gaze tracking, and a combination
of hand tracking and eye gaze tracking, respectively. With this implicit information, the models
based on long short-term memory (LSTM) architecture for recurrent neural networks sequentially
learn the goal region of the manipulation task regarding users intent. LSTMs are both general and
effective at capturing long-term temporal dependencies.

From this study, the eye gaze and hand-based prediction model enables to understand the salient
region faster and more accurate. The mean value and the standard deviation of the distance error
between the reference goal position and the predicted position with the highest probability showed
to be less than one cell in the 28x28 grid. Also, the probability distribution around the goal position
in the reference data and the predicted data showed similar shapes with KL divergence of 0.4. Our
findings underline the intent predictor for achieving efficient human-robot interaction works.
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1 Introduction

1.1 Motivation

We anticipate that robots can be deployed in environments where it is inaccessible or dangerous to
humans, for example, disaster environments, underwater, or outer space. Robots can perform tasks
such as reconnaissance of the environment and manipulation tasks with a great amount of force
that exceeds the human ability [SK16]. However, despite the rapid advance in robotic technologies,
it was shown at the 2015 DARPA Robotics Challenge that current robotic systems still lack in
robustness and were unable to achieve full autonomy [POH17]. Human assistance is still required
even for the robots to perform basic tasks, thus the performance of the robots partially depends on
the ability of humans to teleoperate and interact with the robot [YNO+15].

Teleoperating a robot from a remote distance can be challenging. During teleoperation, the user
relies solely on the robot’s sensor data to perceive the robot’s surrounding environment, mainly
using the camera mounted on the robot. However, due to the limited field of view of the camera, the
user experiences a “keyhole effect” as if he is looking through a keyhole [WTFR04] thus worsening
the user’s situation awareness. In addition, the user has to control the robot with interfaces which
are primitive and unintuitive [SK16]. This can lead to human operator errors which can lead to task
failure or even unrecoverable actions of the robot. It was discovered that during the 2015 DARPA
Robotics Challenge, operator errors took a large fraction of the total errors [Tea15].

By sharing control between the semi-autonomous agent and the user, the robot’s performance can
be improved. Rather than the robot executing what the user commands, the agent predicts what
the user wants and assists the user’s commands [DS13]. In shared autonomy, predictions of user
intent is a key challenge [JBS15; RLD18]. Anticipating human activities enable an assistive robot
to plan ahead for reactive responses, which can lead to increased performance of the robot. [KS16;
SMF14].

1.2 Related work

Shared autonomy
Shared autonomy is a combination of teleoperation and automated assistance. Shared autonomy is
divided into two main parts: predict the user’s intent, and assistance for the intent in many prior
works [AEK05; JBS15; KWLV05]. As the robot agent does not know the user’s goal a priority,
the task is defined as a Partially Observable Markov Decision Process (POMDP) with uncertainty
over user’s intent [JBS15]. Javandi et. al. [JBS15] solved the problem using hindsight optimization.
Reddy et al [RLD18] used a model-free deep reinforcement learning algorithm to assist the user’s
commands to generate optimal action, with a separate recurrent LSTM network to predict the goal
when it is not known.
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1 Introduction

User Intent Prediction
Shared autonomy algorithms improved assistive robot control systems and reduced the amount of
control by a user. In shared autonomy, predicting the user’s goal is significant to accurately assist
robots as we mentioned above. In state-of-the-art shared autonomy, their methods rely only on
handling with a continuous direct input (e.g. joystick, mouse) [JBS15]. Further, the user intent
of future actions is additionally appeared by the indirect signals like the gaze. Shared autonomy
systems can exploit this implicit information when the users perform their task.

Analyzing eye movement has been researched and increasingly became popular in the domain of
human-computer interfaces since 1947 [OMSC08]. This is because eye gaze data can be applied
in multiple tasks, such as activity recognition [BWGT11] and understanding of mental states like
cognitive load [ASK+18], by combining with machine learning algorithms. People’s intentions
and next actions are revealed by their eye gaze. In a natural task, eye gaze data typically leads to
manipulation data (hand data) for targets with an abrupt start. Detecting a salient region is studied
by many works to predict people’s attention with neurobiological approaches [BI13]. Specifically,
in pick-and-place tasks, when picking up an object under circumstances, the gaze was mainly
fixed on the object until the hand is about to touch [PHL01]. With this user behaviour, probability
distributions with POMDP over goal states are suggested to predict user intent [AS16]. Moreover, to
understand expected actions from the user, Support Vector Machine (SVM) based classifier model
is designed and it shows 76 percent accurate in predicting the customers’ intended requests with the
frequency of glances in a sandwich-making scenario [HASM15; HM16].

However, SVM tends to be sensitive to the data source and shows relatively low accuracy of 76
percent. Also the SVM model constrained by the specific flow and context of the interaction.
Therefore, there are limitations in achieving generalizable to a wide range of contexts [HASM15;
HM16]. For that reason, we suggest our intent predictor using the LSTM in order to overcome these
challenges in previous works.

Long Short-term Memory
Recurrent neural networks (RNNs) are a powerful model for sequential data. RNNs efficiently learn
implicit relationships between sequence elements. Image captioning, speech synthesis, and music
generation all require that a model produce sequence outputs [Lip15]. LSTMs are a subset of RNNs
that are able to deal with remembering information for much longer periods of time. LSTMs lead to
not only many more successful runs, but learn also much faster compared to other conventional RNN
models. Moreover, LSTMs deal with the vanishing gradient problems, which is a huge difficulty
in training artificial neural networks. This is all achieved by using three gates (input, output, and
forget gates) of LSTMs [HS97].

With the comparative characteristics of LSTMs, the LSTMs are dealt with by numerous studies
for prediction through time series data like forecast, speech recognition, word prediction, and so
on [CMG+14; GMH13; SRR18; ZE16]. And it has shown recent success on speech recognition
[GMH13] and natural language tasks such as machine translation [CMG+14]. Therefore, we propose
using LSTM model to train the time series data for eye gaze and hand movements.
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1.3 Approach

1.3 Approach

In the thesis, we extend previous works related to shared autonomy with eye gaze and hand move-
ments. Our main contribution is building the hand and gaze-based model for user intent prediction
that can be integrated into the shared autonomy model.

The thesis is organized as follows. In Section 2, the approach of the research for the intent prediction
model is briefly introduced. Then, based on this approach, we design a system architecture and
the intent prediction model. Section 3 discusses experimental setups to explain our user study.
Experimental results are presented to demonstrate the accuracy of our model in Section 4. In
Section 5, discussions regarding limitation, user behaviours, and future works are stated based on
our findings. In Section 6, the thesis is concluded.
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2 Neural network user intent prediction

Figure 2.1: Intent prediction system based on an eye tracker and a hand tracker and a virtual
environment for manipulation tasks

Our goal is to predict user intent in manipulation task simulation, especially in pick-and-place task,
here. Our task is devised to pick up a gray object among four objects in the virtual environment.

Figure 2.1 shows the whole environment and our input devices. For sensing human’s intent, we
executed the task with two notable devices: an eye tracker and a hand gesture tracker. The gripper in
the environment is manipulated by the hand tracker which retains abundant user intent. In addition,
the eye gaze behaviours is also montiored by the eye tracker during the task.

Besides, in contrary to these previous studies regarding human-robot cooperation, the support
system presented in this thesis uses the LSTM model to provide quicker and precise predictions with
eye gaze and hand movement information for teleoperation. We train the model with trajectories of
15-time steps. The 15-time steps were chosen to give the best empirical results. In the next section,
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2 Neural network user intent prediction

we show that our prediction model achieved robust results against outliers and different behaviour
styles from multiple users. Lastly, we compared six models with different training data sets to attain
greater performances.

This chapter gives an overview of the system architecture and detailed algorithms. A brief of
overview of the common models used to describe how data is accumulated and which devices are
exploited. Furthermore, the details of the algorithm of the system are illustrated, along with a brief
presentation of the diagram flow. Finally, the intent prediction model, which is one of the principal
factors of the architecture, is concisely introduced in the last section.

2.1 System architecture

• Input :
Mapped gaze point into the 2D plots (Pupil Labs)
Velocity of hand movements (Leap Motion)

• Output:
Predicted heat maps for goal positions

To enable a robot to understand user’s aim, we propose a human intent prediction model that involves
monitoring the points where the users are looking at and the behaviours how they react to grab a
target object. The diagram below illustrates how information flows between different components
of the overall system. Our system is made up of three main sections: sense, perception, and act.

Firstly, in the sensing part, eye gaze points and hand movements data are collected by two processes:
Pupil Labs and Leap Motion. Pupil Labs provides an eye gaze tracking platform and it delivers the
gaze information to an intent predictor model. Also, the user’s hand movements are captured by
the Leap Motion controller and send to our perception section. Secondly, our trained perception
model is aware of user’s targets by reading the inputs. The prediction model is designed by LSTM
architecture and transposed convolution matrix. Finally, the robot would recognize the position of
goal objects by the user and execute to pick the goal object up and place it in another location.

Figure 2.2: An overview of the system architecture

18



2.2 Algorithm

2.2 Algorithm

Time series data for gaze G and hand H are defined as an ordered sequence of n real-valued variables.
By observing an underlying system over time, G and H are orderly collected. Elements of G stands
for mapped gaze points (e.g. g1 consists of g1x and g1y) by the Pupil Labs software. H is also an
abbreviation of the collected data of hand velocities in x-axis and y-axis.

G = {g1,g2, ...,gn}, gi ∈ R
H = {h1, h2, ..., hn}, hi ∈ R

Gaze data are transformed by Pupil labs software, defined as G’, owing to the perspective view of
the environment.

G′ = {g′1,g
′
2, ...,g

′
n}, g

′
i ∈ R

Both input devices (an eye gaze tracker and a hand tracker) are sampled at 60 frames per second
(FPS) to collect data. Thus, we can accumulate the data around 200 to 400 data points in each
episode in the environment.

For communication between the hardware input devices (i.e., gaze and hand tracker) and the pick-
and-place environments, we use ZeroMQ messages. ZeroMQ is a very lightweight messaging
system. It is specifically designed for high throughput and low latency scenarios. ZeroMQ provides
embeddable socket library that redefines the term socket as a general transport endpoint for atomic
messages [Hin13]. ZeroMQ library was used to publish the needed information as inputs from
an eye gaze tracker and a hand tracker. Also, the sent messages are subscribed by ZeroMQ in the
virtual environment.

An intent predictor using LSTM based neural networks was trained with the collected data (G and
H) and generates a trained model which can perceive user’s intent in real time. We will discuss
the detail of the LSTM architecture in the following section (2.3) since it is a significant factor to
predict user intent. This model generates 28 by 28 probability heat maps to display the probability
distribution of predicted goal position.

Using the heat maps from the eye gaze and hand data, our system recognizes users intent and
smoothly control the gripper through PD controller (3.2.1).

H ′ = {h′
1, h

′
2, ..., h

′
n}, h

′
i ∈ R
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2 Neural network user intent prediction

Figure 2.3: Data flow diagram of the system

2.3 Intent predictor model

2.3.1 LSTM model

LSTMs have potential to learn long-term dependencies. LSTMs can memorize information for long
periods of time thanks to their inner cells which can carry information without changes. LSTMs
have the form of a chain repeating modules of neural networks like all recurrent neural networks,
but the repeating module is differently structured. The networks have the complete control over the
cell state (the horizontal line running through the middle of the Figure 2.4), it can add, modify, or
eliminate information in the cell using structures, called gates.

Figure 2.4: An LSTM memory block with input, output, and forget gates [GMH13]

20



2.3 Intent predictor model

Figure 2.4 illustrates that every memory blocks of LSTM includes three adaptive gating units: input,
output and forget gate. Firstly, following equation shows forget gate layers with the sigmoid function
decide what information is going to be kept or eliminated from the cell state.

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (2.1)

Next, the selection of data to be updated is decided by multiplication of input gate layer with the
sigmoid function and a tanh layer in (2.2).

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2.2)

To update the new cell state ct from ct−1, old state (ct−1) is multiplied by ft , then it ∗ tanh is added
in (2.3).

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (2.3)

We would drop the useless information and add the new practical data in this step. In the end, a
sigmoid layer takes which parts of the cell state would be used. Then, the cell state goes through
tanh and multiplies it by the output of the sigmoid gate (2.4, 2.5).

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (2.4)

ht = ot tanh(ct) (2.5)

2.3.2 Model Architecture

Figure 2.5: Intent prediction model architecture
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2 Neural network user intent prediction

• Input:
Mapped gaze point into the 2D plots (Pupil Labs)
Grab status
The velocity of hand movements (Leap Motion)
Current gripper positions on the environment

• Output:
Predicted heat maps for goal positions

Figure 2.5 describes the architecture of our intent prediction model. Four different types of time
series data above are inserted into the prediction model. Gaze points and hand velocities are
major factors to analyze and predict operator’s behaviour. The prediction model is trained by the
trajectories of 15 data points in the past to prevent glimpsing obstacles and blinking eyes, and to
understand the trends of user behaviours. And, we also feed grab status to convey the information
on the different target to the model. This is because our target is converted from a target object to a
goal place, as soon as the operator grabs the object. Furthermore, using the current positions of
gripper gives the model the information on standard points.

We predict the salient region which includes the user’s intent through the time series data. In
our experiments, the LSTM model, trained by 2D points of object position in output space (a
label), showed limitations to predict one specific point in abundant cases of a test set. These can
be reasonably approximated by probability distributions. Therefore, the data type of the current
object position is converted from the 2D points to its normal (Gaussian) distributions, before
train the LSTM model. The probability density function of a continuous random variable can be
derived from the distance between the object location and the center point of defined grid points (28
by 28 in our model). The normal distribution can be calculated using the probability density function.

Normal distributions
The normal (Gaussian) distribution is a continuous probability distribution. Real-valued random
variables can be represented as the probability distribution using the normal distribution [Nad05].

The probability density of the normal distribution is

f (x |µ,σ2) =
1

√
2πσ2

e
−
(x − µ)2

2σ2 (2.6)

In our model, a set of distances between gaze points G and grid points is said to have the normal
distribution with parameters µ and σ. The calculated distributions are inserted in our intent predic-
tion model as a label.

A multilayer model consisting of the LSTM layer with 100 neurons, a dense layer, and two transposed
convolution layers was implemented to form the base architecture for the model. A value of 100
hidden neurons has been chosen to train based on multiple experiments. In the dense layer, a
linear activation function is applied to train the model. As a loss estimator, the mean squared error
estimator (MSE), which is one of the most widely adapted ones, is used for the network:
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2.3 Intent predictor model

MSE =
1

n

n∑
i=1

(Y p
i − Y r

i )
2 (2.7)

The latent matrices are reshaped into 7 by 7 matrices then they are enlarged by transposed convolution
layers with two strides in each layer. Finally, two transposed convolution layers result in 28 by 28
neat heat maps for prediction of the goal position. We applied a supervised learning prediction
method to obtain optimal parameters of the intent prediction model. Therefore, the predicted heat
maps are consequently computed by the loss estimator with the original heat maps which contains
the position of the target object.
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3 Data collection setup

In this section, we describe the designs of an environment and how the users participate in experi-
ments. As we mentioned in the introduction part, goal of our manipulation task was that picking
up a gray object and place it in another position. First of all, general information on equipments
of the system is introduced to present input data types. Secondly, experimental task design by
Open Graphics Library (OpenGL) and tuned conditions in gaze and hand data is briefly explained
to approach accurate predictions. Lastly, the information on participants and procedure for the
experiments is briefly described.

The goal of the thesis is to predict the user intent during manipulation tasks, especially pick-and-
place. A teleoperation environment was set up comprising a visual display of the robot’s perspective,
hand gesture sensor to command user input, and an eye tracker to track the user’s gaze during
teleoperation. To collect user’s behavior during teleoperation, a teleoperation environment was set
up in with a virtual view of the robot’s task space.

3.1 Experimental task design and conditions

3.1.1 Environment design

To simulate a teleoperation scenario, a virtual environment is developed by OpenGL. OpenGL is
a software interface to graphics hardware and it allows people to create interactive programs that
produce color images of moving three-dimensional objects. The environment consists of multiple
square objects, a goal position, and a gripper to simulate the robot’s end effector, as shown in
Figure 3.1. Among multiple objects colored black, the target object is gray, and the objective of the
teleoperation task is to reach for the target object, pick up, then retrieve the object to the green goal
position. The color of the target object is made similar to the other objects so that the operator pays
attention to where the object is, otherwise the operator can detect the target object with just a quick
glimpse after multiple turns of data collection. The virtual environment is laid in a tilted angle to
simulate perspective view as if the camera is mounted on the head of a humanoid-like robot.

The operators asked to pick a gray object up through handling with the gripper. The object is
automatically grabbed by the gripper in case of nearly approaching to the object. Then, the next
step was moving the grasped object to the position of the green box. The scenario ended as soon as
the gripper reached to the goal position to place the object.

Four Aruco markers were located on the edges of the virtual environment as reference points. The
fiducial markers were able to do mapping of the position of our environment. Based on the mapping
position of our environment, we drew a position where the operators glimpse at.
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3 Data collection setup

Figure 3.1: The setup of the virtual environment for pick-and-place tasks

3.1.2 Perspective projection transformation

In OpenGL, the most straightforward way of applying a projective coordinate transformation of
the original experiment environment is to consider it to be a transformation to be applied to the
projection matrix used in OpenGL [FTM02]. We were able to apply translations or rotations to
change the default orientation of the viewing volume created by gluPerspective() utility function. The
function gluPerspective() provides a way of defining frustum that is intuitive and convenient. The
vertical angle that the viewport subtends at the eye in degrees is defined in the first argument of the
gluPerspective() function. This angle is called α in Figure 3.2. The α must be positive and less than
180 degree. The height of the window in Figure 3.2 is h = 2∗near ∗ tan

α

2
. The second argument is

the aspect ratio (width/height) of the image, called ar [Figure 3.2]. This is the width of the viewport
divided by its height. Thus, w = ar ∗ h = 2 ∗ ar ∗ near ∗ tan

α

2
. The nearest and furthest visible

points, near and far in Figure 3.2, are determined by the last two arguments, respectively. With
gluPerspective(), we needed to pick appropriate values for the field of a model-view transformation
that simulates viewing (“looking at”) the scene from a particular viewpoint, otherwise, the image
looked distorted or showed a black screen. To solve this problem, gluLookat() function was available
to define a viewing transformation. Our environment was designed by combining gluPerspective()
and gluLookat() functions to be displayed as natural environments [Gro03].
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3.2 Equipments

Figure 3.2: The perspective projection transformation

3.2 Equipments

3.2.1 Gripper contoller using Leap motion via PD control

In the teleoperation setup, the gripper is controlled by Leap Motion, which allows users to input
gesture commands into an application in place of a mouse or keyboard. This hand tracker creates
the potential for developing a general gesture recognition system in 3D domain [MYB15]. Full
degrees of freedom for every moving part of the hand is provided by the hand tracker. The device
can be easily set up and simply manipulated by novices compared to other motion trackers.

Leap Motion is a hand gesture and position tracking system with declared submillimeter accuracy
[WBRF13].Leap Motion controller specifically captures the movements of a human hand using
similar IR camera technology and IR light from LEDs. It tracks the hand in a space within a
hemisphere of 1m in diameter above the sensor up to 200 FPS [MYB15]. The sensor is able to
collect data such as fingertip positions, palm position and velocity, pinch strength, etc.

In the thesis, hand palm velocities data are collected from users to handle a gripper in a virtual
environment and analysis user’s behaviour. The Leap Motion controller provides 3D control, but
two-axis control (only x-axis and y-axis of the hand velocities) are considered for our dataset because
we propose the environment in a perspective projection view.
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3 Data collection setup

Figure 3.3: Pictures of operations and Visualizer through Leap Motion [MYB15]

PID control
There were difficulties in directly applying the velocities of hand palm from Leap Motion to the
movement of the gripper due to its sensitiveness. Therefore, we utilized Proportional Integral and
Derivative (PID control) control for regulation of speed of the gripper.

PID controllers are the most common way of using feedback in natural systems. PID controllers
have been used in industrial control applications for ages long. PID controller is literally the output
sum of three terms, proportional, integral, and derivative. The ideal version of the PID controller is
given by the formula below [BSR12].

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de
dt

(3.1)

where u is the control signal and e is the control error (e = r–y). The control signal is thus a sum of
three terms: a proportional term: a proportional term that is proportional to error, and a derivative
term that is proportional to the derivative of the error. The parameters are proportional gain kp,
integral gain ki, and derivative gain kd, respectively.

We applied a PD controller system to control the gripper in order to overcome its sensitivities. The

control error was the velocity of hand movement in our system, and then,
de
dt

was calculated by
the deviation between the previous velocity and the current velocity. The aim of the PD controller
is to enhance the stability of the system by improving control since it has the ability to prevent
the following error of the system response. The derivative is taken from the output response of
the system variable instead of the error signal, in order to overcome effects of the sudden change
in the value of the error signal. Therefore, D mode is designed to be proportional to the change
of the output variable to prevent steep changes occurring in the control output resulting from the
steep changes in the error signal. In addition, D-only control is not utilized since D mode directly
amplifies process noise.
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3.2 Equipments

3.2.2 Gaze point in projection view

The user intent can be additionally learned by an indirect input in the simulation environment. A
head-mounted eye tracker provided by Pupi Labs is utilized to analysis eye movements. The ability
to track and monitor eye behaviours is huge resources since people reveal their intentions and next
actions through their eye gaze [BI13].

Pupil is an open source platform for pervasive eye tracking and mobile gaze-based interaction by Pupil
Labs in Berlin. The Pupil comprises the open source software frame work, an accessible hardware
device for a head-mounted eye tracking platform, and a graphical user interface to playback and to
visualize video and gaze data [KPB14]. The eye tracker provides pupillary dilation in millimetre at
a frequency of up to 60 Hz (120 Hz for pupil detection camera), as well as world camera footage
displaying the current field of view of the operator in 720p resolution [GHF16].

To identify eye gaze and environment locations, calibration test is required. Then, based on the
center positions of a pupil and a user-specific calibration routine, the gaze point is mapped to the
viewed scene [FTBK16]. An average gaze estimation accuracy of 0.6 degree of visual angle (0.08
degree precision) can be provided by Pupil [KPB14]. An accurate calibration test is required for a
robust tracking in natural environments. The location of pupil detection cameras and the focus of
the camera lenses are crucial to successfully complete the calibration.

Figure 3.4: Pictures of wearing an eye tracker and the eye-camera view by Pupil Labs

Projection view
A world camera of the eye tracker detects four Aruco markers to track the positions of edges of the
environment in real time. By reading the positions of Aruco markers, which can be seen in Figure
3.1, our system can adapt in the cases that users move their heads around or look at the environment
at different angles. For this reason, Aruco marker tracking library from Pupil Labs was called to
generate Aruco markers and track them.

The projection view of the task had to be considered into the point of gaze since the environment
is realized in perspective view [Figure 3.5]. The projection view of the environment was defined
by setting surfaces in Pupil platform. It was possible to set the range of the surfaces by dragging
four edges of them using one or more fiducial markers. The surfaces conveniently defined with
more than two Aruco markers were scanned by the tracking library even if some markers go outside
the field of vision or are obscured. The registered surfaces were saved automatically and appeared
when operators run Pupil platform in the future.
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3 Data collection setup

Figure 3.5: The window of Surface trackers using Pupil Labs

Moreover, the surfaces provide the calculation of the projection view of them through OpenCV
libraries. In the surface trackers, a map matrix for a perspective transform can be calculated by
four pairs of the corresponding points with the cv2.getperspectivetransform(src, dst) function (src
indicates for coordinates of quadrangle vertices in the source image, and dst is in coordinates of the
corresponding quadrangle vertices in the destination image).


tix ′

i

tiy′i
ti

 = mapmatrix ∗


xi
yi
1

 (3.2)

, where (x ′
i , y

′
i) = dst(i) and (xi, yi) = src(i), (i = 0,1,2,3)

With the map matrix, we can apply a perspective transformations to an image. Here, Pupil utilized
the cv2.warpperspective() function to describe the perspective projection view [Jos15].

dst(x, y) = src
(

M11x + M12y + M13

M31x + M32y + M33
,

M21x + M22y + M23

M31x + M32y + M33

)
(3.3)

, where Mi j is the map matrix, (i, j = 1,2,3)

Finally, the gaze G’ can also be computed by the function from original gaze G in Section (2.2).
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3.3 Procedure

Twenty participants were recruited from the university. The age of participants (15 males and 5
females) ranged from 19 to 35 years. 15 percent of participants were bespectacled and the other 85
percent did not wear glasses. Data from one participant, who wore glasses, was excluded from the
dataset due to a large error in the calibration test. The study took 20 minutes, and small rewards
were given, afterwards.

An instruction sheet which included the objective of the teleoperation task and a short manual was
provided to the participants before the study. In the beginning, the eye tracker was individually
calibrated for each participant to align pupil positions from eye camera to scene space. The
calibration was done using the calibration tool provided by Pupil Labs. The participant was then
instructed on how to control the gripper using the hand gesture tracker and were given about 2
minutes of practice to reduce unfamiliarity before collecting the data. The data collection for each
participant comprised of 2 trials, of which lasted 4 minutes each.

The participant was asked to sit down in a straight-right position, approximately 60cm to 100cm
from the screen. The participant was asked to put on the head-mounted eye tracker. The position
of and the focus of eye cameras were adjusted to make sure that the participant’s pupils were
properly tracked. The participant followed a 9-point screen marker based on a calibration routine
in full-screen mode during the calibration test. Participants were advised to not move their head
and not excessively blink their eyes during the calibration as it can cause calibration errors. The
calibration test was repeated until ideal conditions (0.6 degrees of accuracy and 0.08 degrees of
precision) were met based on [KPB14]. When controlling the gripper, the participant was asked to
keep the hand at a certain height, 10 cm to 20cm above the Leap Motion to prevent loss of track.
During the 2 minutes of practice, the gaze data was carefully monitored to check if all data was
generated properly.
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4 Experimental results

The total collected dataset consisted of 443,699 data points from 1476 episodes. Each episode
lasted around 5 seconds and around 300 data points were collected from each episode, resulting in
20,000 to 25,000 data points for each participant during the whole experiment. A few data points
were excluded from the dataset that deviated too far away from the environment range (0 to 1) due
to hardware limitations.

The dataset was split into two sets, 67 percent of the dataset was used to train the model and the
rest was used to test the model. The model was used to train three different input cases: using only
hand data, using only gaze data, and using both hand and gaze data, as mentioned in Section 2. In
order to compare and analyze the characteristics of differences between one user and multiple users,
we additionally designed other three different models. We defined the model and it can be seen in
Table 4.1 below.

Table 4.1: Six different models through various data type

Gaze-only Hand-only Both
All participants M1 M2 M3
One participant M4 M5 M6

Using the data we collected (Section 3), we first drew heat maps in test episodes to analysis general
trends of gaze behaviours. Furthermore, we compared our prediction model results to the model,
which is trained by one user, to infer the differences between hand movements and gaze behaviours
information and to prove how robust and powerful our neural network model is.
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4 Experimental results

4.1 Results

(a) 1st step (b) 2nd step

Figure 4.1: Two phases of the simulation

Each episode of the simulation has two steps as shown in Figure 4.1. The participant was asked to
first go towards the object and then place the object at the green spot. Here, the first step is to grab
the object (4.1a), then the second step retrieves the object to the green goal position as shown in
Figure 4.1b. In the first step, the goal (the target of the human intent) is the object and in the second
step the goal becomes the green goal position. We inserted the grab status into the intent prediction
model in order to distinguish the two steps, which have different goals.

Figure 4.3 illustrates our predicted heat maps based on probability distributions. Compared to the
target heat map (4.3a), which indicated for the position of the object, our prediction model showed
significantly similar results (4.3b). In the different number of participants, the model trained by
the mixture of hand and gaze data (M3 and M6) always showed better performances to predict the
critical region in the virtual environment. This model, in general, was able to foresee the user intent
in under one second (60 frames). Due to the different size of frames in one episode, the graph had
to be downsampled in Figure 4.5. The trend of the graph described that the loss went down until
the user grasped the object, then the increase of the loss was appeared by changing of the target
position from the object to the goal position. Later, the loss continuously decreased during the task,
again. The results of distance errors and Kullback-Leibler Divergence (KL divergence) supported
to prove the efficient and accurate model. There was only one cell of distance error in 28 by 28 grid
systems as well as the predicted probability distributions produced very similar heat map to the
original target heat map.
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4.2 Analysis

4.2 Analysis

We predicted the salient region within the blue boundary line in Figure 4.1. The coordinates of
probability distributions and gaze points corresponded to the square blue boundary region as if
we were looking at the environment from a top view rather than the perspective view, as shown in
Figure 4.2. Also, the coordinates were flipped vertically so that the objects lie near the x-axis.

Figure 4.2: The environment shown in top view

We applied 15-time steps of gaze points to our intent predictor, the number of time steps being
selected after multiple trials. The reason for this was because the gaze data often included data
points that were irrelevant in predicting the goal. For instance, gaze data while looking at other
objects or blinking led to noisy gaze data. Moreover, due to the hardware issues, the eye gaze points
were not completely stable, but they were vibrated around the goal object.

4.2.1 Each participant’s gaze behaviours during the manipulation task

By analyzing the participant’s data, we recognized the persistent patterns of gaze behaviours during
the task. In general, the types of behaviours were divided into two groups, which were target-oriented
people and gripper followers. Firstly, the gaze behaviours of target-oriented people were focusing
on the object during the manipulation task. It was intuitively understandable to predict the user’s
intent since the positions of gaze point exactly corresponded to the goal object.

The results of one participant by our intent predictor were described as 28 by 28 heat maps in Figure
4.3. The graph in the most left hand side was the heat maps for showing positions of our targets.
Next, the other graphs were placed by discrete time series in every 50 frames. And, every fifteen
gaze points were plotted as green points in the graphs below. The brighter green colors stand for the
more latest data.

Our model showed great predictions as soon as the pick-and-place task was executed by a user
since the environment was designed to start the task when the user was ready and pressed the ‘S’
button on a keyboard. Our predicted probability distributions were stable until the gripper grasped
the target object. Interestingly, when the target position was changed from the object to the goal
location for placing the object in the graph (4.3f), our intent predictor model showed multimodal
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probability distributions. We believed that this was because there was a lack of data to predict the
goal location in our model. However, with the following gaze trajectories in (4.3g, 4.3h), the model
precisely understood where the goal location was.

(a) target object (b) t = 1 (c) t = 50 (d) t = 100

(e) target location (f) t = 150 (g) t = 200 (h) t = 250

Figure 4.3: Target oriented user behaviours

On the other hand, gripper followers showed different behaviours. Gripper followers tended to look
toward the gripper while they were moving it to the goal object [Figure 4.4]. They glimpsed at the
target at first, and then they started to continuously follow the gripper. At first, the intent predictor
underwent troubles on finding the target object. However, in around one second (50 to 100 frames
in 60 FPS), the location of the target was able to be foreseen by our model via the trajectories of
gaze points.

(a) target object (b) t = 1 (c) t = 50 (d) t = 100

(e) target location (f) t = 150 (g) t = 200 (h) t = 250

Figure 4.4: Gripper follower behaviours
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4.2.2 Overall results

Losses
Figure 4.5 showed the mean and standard deviation of stacked mean squared error of probability
distributions for the six models above in each episode. Due to the differences of length of time in
each episode, downsampling was done to see a general tendency of the losses in the episode.

When it comes to models with all participants, the mean and standard deviation of three models
(M1, M2, M3) were depicted in the red, green, and blue in 4.5a, respectively. The basic trends
of the graphs were similar to each other. The losses of all the predictions were decreased until
the users grabbed the target object at when the number of frames was around 10 to 15 (without
downsampling, the real frames were 100 to 150, which meant 1.6 seconds to 2.5 seconds in 60 FPS).
Then, as soon as the user picked up the object, the losses were steeply increased due to the change
of the positions of targets. Lastly, the number of losses was continuously diminished, again, while
the user placed the object in our goal position.

Mostly the model, trained by both gaze and hand data (M3), produced the lowest loss among the
three models. In particular, hand gesture data (M2) had more influences on M3 compared to gaze
behaviours (M1), as it could be seen by the mean and standard deviation in the graph 4.5a. Because
each user had different gaze behaviours during the task, the mean of accumulated gaze data was
higher than hand data. Moreover, many noises were able to be existed in gaze data due to hardware
limitations or getting out of the calibrated range.

To analyze the results, we tried to evaluate the models within participants. The general trends of
the two graphs were almost same, however, the models by one participant’s data showed different
aspects in hand-only (M5) and gaze-only data (M4) in the graph 4.5b. Most of the mean values of
M4 were smaller than M5. The performances of M6 still remained in the highest rank. In particular,
the amount of losses of M5 never reach the M6.

To sum up, we found significant differences in six models of when the participants manipulated the
pick-and-place task. Between them, the intent prediction models with the mixture of both data (M3
and M6) resulted in the greatest performance of predictions, always. In single participant models,
gaze-only data was still the dominant factors to forecast user intents when we experimented the test
with five different participants. That proved how gaze source was useful and helpful to predict the
user intent. On the other hand, as we collected more data, the hand data was more suitable to feed
data in the intent predictor model than gaze behaviours. This was because there were various gaze
behaviours from multiple users.

37



4 Experimental results

(a) between participants (b) single participant

Figure 4.5: Mean and standard deviation of losses with three different models

Distances and KL divergence
To briefly investigate our models, we computed the distance errors and the KL divergence compared
to original probability distributions. The distance errors were the length between the most probable
position of the predicted probability distributions and the original location. Figure 4.6 described
the mean value and standard deviation of the distance errors through a box plot. As we have seen
above, M3 and M6 models were the greatest and the results of them slightly less distant from the
location of the target object than the other models. Moreover, the issues of the non-identical trends
regarding one user versus numerous users were similar like Figure 4.5.

Additionally, we analyzed the similarities between the predicted probability distributions and
the target distributions through the KL divergence. The KL divergence method, also known as
the relative entropy, has been introduced to measure a natural dissimilarity between probability
distributions [IBG12].

For distributions over a continuous variable x, the KL divergence between two probability distribu-
tions p(x) and q(x) is defined by

K(p| |q) =
∫

p(x) ln
p(x)
q(x)

dx (4.1)

The KL divergence is a natural distance measure from a probability distribution p(x) to a probability
distribution q(x). The value of the KL divergence is alway larger than or equal to 0. And the KL
divergence is not symmetric [GGG03; GLZ07; HO07]. Therefore, we always defined the true
distributions (the object distributions) as p(x) and the predicted distributions was q(x).

In addition, the best results of similarities between the target and prediction were M3 and M6 with
the KL divergence. Note that using both data (M3 and M6) was highly recommended by Figure
4.7a to predict user intent. This is because there were no big differences in distance errors between
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M2 and M3 (4.6a), but the different amount of dissimilarities of two probability distributions were
proved by the Figure 4.7. Especially, the deviation of the accumulated dissimilarities of M2 was
almost double in opposition to M3.

(a) between participants (b) single participant

Figure 4.6: Distance errors with different models

(a) between participants (b) single participant

Figure 4.7: KL divergences with different models
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5 Discussion

In the thesis, we proposed a notable “intent predictor” method for human-robot collaboration
scenarios. The intent predictor enables a robot system to assess user’s intent using their eye gaze
behaviours and hand motion movements. The experimental results of Section 4 demonstrated the
accuracy and effectiveness of our method. The model resulted in shorter responses to understand
user intent with less than one cell in distance errors and one half KL divergence values in 28 by 28
grid systems. Below, we discussed the limitation of presented work, multiple user behaviours, and
our further steps.

5.1 Limitation of calibration

At the beginning of the experiment, all the participants had to do calibration task. In this step, some
of them (especially, who wear glasses) spent much time to reach to ideal accuracy and precision
(3.3). Also, we had to do the calibration test every time if we put on the eye gaze tracker after
another user finished another manipulation task, even though the user had done with the calibration
test before. The reason why was because the positions and focusing of eye cameras were different
from each user and they crucially impacted on the gaze mapping. In addition, some amount of
tracking errors was unavoidable from the eye-tracking system as previous researches also pointed
out the related calibration problems [HM16]. Therefore, the limitation of the calibration issues is
still challenged.

5.2 A variety of user behaviours

Some users tended to look toward the goal object while they were trying to pick the object up and
place it in the goal position, but some other user’s gaze points just followed the grippers (4.2.1). Our
model overcame these two different gaze behaviours by training the learnable parameters. However,
there would be more exceptional cases in a real task such as the user who would stare at obstacles
for a long time or use peripheral vision to complete the task. Additionally, abnormal noises were
able to be occurred due to the hardware.

Moreover, few people had troubles in controlling grippers with Leap Motion. Even though we had
tutorials for 2 minutes at first, few novices still felt difficult to control the gripper. These novices
tended to look at the gripper often and touched the object in a wrong way. It turned out that the
object moved around the environment and their gaze lagged behind the moving object’s routine.
The result of these inadequate data influenced on training the intent predictor.
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5.3 Future works

The features of gaze like fixations, saccades, and the size of gaze can be applied to our systems in
order to predict various cases. For example, the size of the pupil is enlarged while the users were
implementing the task than when they were not [ASK+18]. Moreover, the mixture of fixations and
saccades can be a source for intent predictions since fixation maintains the focus of eye gaze on a
single location, and saccade senses the abrupt change of fixations [GEP+13].

The amount of time was not long enough to predict user intent since the pick-and-place manipulation
task was fairly simple to complete the task. We plan to execute our intent predictor in an enlarged
environment. At the same moment, we will apply the intent predictor to the real environment with
a robot. To perceive the user intent, our model would be a significant factor to the robot. Once
the prediction model based on the gaze and hand movement is implemented, the system can be
evaluated by comparing user performance on robotic manipulation tasks.
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6 Conclusion

To achieve efficient collaboration works with robots, their human partners’ intentions are needed to
be predicted to act accordingly. We contributed an algorithm for simulating pick-and-place tasks that
help for analyzing the user behaviours. Some amount of tracking errors during the calibration was
not avoidable, but as we used the 15-time step of hand and gaze movements, our model reasonably
overcame some limitations.

In the thesis, we studied and proposed the application of the LSTM architecture on the problem of
predicting the salient region of the goal position using eye and hand tracker. To properly approach
to the region, we presented converting the data type of label data from 2D points to 28 by 28 heat
maps through Gaussian distributions. In the training process, transposed convolutional layers were
used to more accurately and clearly derive the predicted heat maps.

This trained model by the LSTM and transposed convolutional layers demonstrated the precise
results of 28 by 28 heat map through the mean value and standard deviation of distance errors and
KL divergence. Surprisingly, the mean value of accumulated spaces between the most predictable
position and the real object position was less than one in 28x28 grids. Moreover, the KL divergence
proved the close similarities of two distributions in the model with the hand and gaze data. As a
result, this work underlines the promise that intent predictor enables a robot to perceive user’s intent
and obtains for realizing the efficient human-robot collaboration works.
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