
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Masterarbeit

3D Pose Estimation of Vehicles
from Monocular Videos using

Deep Learning

Qing Cheng

Course of Study: INFOTECH

Examiner: Ph.D. Daniel Hennes
Supervisor: Hung Ngo

Commenced: January 1, 2018
Completed: July 3, 2018

Abstract

In this thesis, we present a novel approach, Deep3DP, to perform 3D pose estima-
tion of vehicles from monocular images intended for autonomous driving scenarios.
A robust deep neural network is applied to simultaneously perform 3D dimension
proximity estimation, 2D part localization, and 2D part visibility prediction. In
the inference phase, these learned features are fed to a pose estimation algorithm
to recover the 3D location, 3D orientation, and 3D dimensions of the vehicles with
the help of a set of 3D vehicle models. Our approach can perform these six tasks
simultaneously in real time and handle highly occluded or truncated vehicles. The
experiment results show that our approach achieves state-of-the-art performance
on six tasks and outperforms most of the monocular methods on the challenging
KITTI benchmark.

Keywords: 3D pose estimation, 3D vehicle detection, deep learning, computer
vision

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Contributions . 9
1.3 Thesis Outline . 9

2 Related Work 11
2.1 Mono RGB Image Based Approaches 11
2.2 Stereo RGB Image Based Approaches 12
2.3 Point Cloud Based Approaches . 12
2.4 Sensor Fusion Based Approaches 13

3 Background 14
3.1 A Short History of Autonomous Vehicles 14
3.2 Deep Learning Technology . 15
3.3 Computer Vision . 17

3.3.1 Image Formation . 18
3.3.2 Intrinsic and Extrinsic Parameters 18

4 Deep3DP Approach 21
4.1 Data and Labelling . 22

4.1.1 KITTI Dataset . 22
4.1.2 3D Vehicle Dataset . 23
4.1.3 Labelling for KITTI Dataset 25
4.1.4 Notations . 27

4.2 Deep3DP Network . 28
4.2.1 Architecture . 28
4.2.2 Training . 32

4.3 Inference . 38
4.3.1 Template Matching . 38
4.3.2 2D-3D Matching . 39
4.3.3 Visualization . 41

5 Experiment and Evaluation 42
5.1 Experiment Setup . 43
5.2 Evaluation Metrics . 43
5.3 Design Choices . 44

5.3.1 Model Selection Strategy . 44
5.3.2 Difficulty Levels For Dataset Division 45

3

5.3.3 Cost Function . 47
5.3.4 Learning Rate and Weight Decay 49
5.3.5 Feature Extractor . 51
5.3.6 Selection of Characteristic Points 52

5.4 Experiment Results . 55
5.4.1 3D Bounding Box Estimation 55
5.4.2 3D Localization . 56
5.4.3 3D Orientation Estimation 56
5.4.4 3D dimension estimation, 2D part localization, and 2D part

visibility . 57

6 Discussion 58
6.1 Deficiency of 2D Coordinate Labelling 58

6.1.1 Deficiency of Our Labelling Approach 58
6.1.2 Deficiency of KITTI Dataset Labelling 58
6.1.3 Possible Improvements . 60

6.2 Deficiency of Visibility Labelling . 60
6.2.1 Deficiency of Our Labelling Approach 60
6.2.2 Possible Improvements . 62

6.3 Deficiency of Template Matching 62
6.3.1 Possible Improvements . 62

6.4 Deficiency of Input Image Format 63
6.4.1 Possible Improvements . 63

6.5 Deficiency of the Whole Approach 64

7 Conclusion 65

4

List of Figures

1 Inputs and outputs of our approach. 8
2 Pinhole camera model and perspective projection. 19
3 The Architecture of our Deep3DP approach 21
4 Example image from KITTI dataset. 22
5 3D vehicle dataset . 24
6 Labelling tool for 3D sketches . 24
7 3D-2D projection . 26
8 Example of 2D coordinates and visibility 26
9 Visibility labelling mechanism . 26
10 The Architecture of Deep3DP Network. 28
11 Examples of input images. 30
12 Residual network blocks. 31
13 Effect of nomalization. 34
14 Optimization . 37
15 The Architecture of our Approach 38
16 Example of 2D-3D correspondence points. 40
17 Visualization of the outputs of our approach 40
18 Examples of the output images of our approach. 42
19 One labelled example of four model selection strategies. 46
20 Results of “LR range test”. 50
21 The schematic diagram of 22 characteristic points. 52
22 Labelling examples of 2D points with the original size. 59
23 Labelling examples for visibility with the original size. 61

5

List of Tables

1 Summary of levels of driving automation[8]. 14
2 Label specification of KITTI dataset 22
3 Specification of three additional labels 25
4 Metrics for six tasks . 44
5 Performance of four model selection strategies. 45
6 Levels of difficulty. 46
7 Performance of six tasks at different difficult levels. 47
8 Performance of six tasks with different loss functions. 48
9 Performance of six tasks with different loss weights combinations. . 49
10 Performance of six tasks with different learning rate and weight

decay combinations . 51
11 Performance of six tasks with different base nets. 51
12 Performance of six tasks with different data difficulty level and dif-

ferent point selection cases. 54
13 Comparison of the 3D bounding box estimation performance. 55
14 Comparison of the 3D localization performance. 56
15 Comparison of the 3D orientation estimation performance. 57
16 Comparison of the performance of 3D dimension estimation, 2D

part localization, and 2D part visibility. 57

6

1 Introduction

1.1 Motivation

The autonomous vehicles (AVs) is the evolutionary direction of automobiles due
to its promising reliability and efficiency, as well as the underlying commercial
profits. The very essential step for AVs is to gain a comprehensive perception of
the driving environment. Object detection is one of the key challenges of per-
ception. Thanks to the remarkable advancement of deep neural networks, great
achievements have been made on 2D object detection, while 3D object detection
is still underdeveloped. For example, according to the KITTI Object Detection
Benchmark[42], the Average Precision (AP) of top 10 2D car detection algorithms
is over 90% whereas the best performance of 3D car detection is only 73.66%. This
gap results from the difficulty of adding the third dimension and the orientation
of the 3D bounding box.

For AVs, 3D information of the surrounding vehicles is indispensable because it
expresses the vehicle dimensions, locations and orientation in the real 3D envi-
ronment, which is essential for AVs to perform planning and decision making. To
find a safe and efficient route, the information of actual and potential movement,
dimensions, and location of other vehicles is necessary. In order to perceive the
movement, 3D localization, orientation, and time are used to recover the velocity.
The decision-making systems are more complicated and require more detailed 3D
information. For example, the Bosch’s Autonomous Emergency Braking systems
(AEB) requires the distance to each part of a foregoing vehicle to decide whether
or which level of the brake to apply. And it is common that some parts of the
vehicle are occluded by other objects or truncated by the boundaries of the im-
age. Thus, the exact location and the visibility property of each vehicle part are
necessary.

Here we propose an approach, Deep3DP, that can simultaneously estimate the 3D
dimensions, 3D localization, 3D orientation, 2D part location, and 2D part vis-
ibility of a vehicle by giving a monocular image and all the 2D bounding boxes
for vehicles in real time. Figure 1 shows the inputs and outputs of our approach.
When integrated with a 2D detector, our approach can perform 3D vehicle detec-
tion from monocular images and videos.

7

Figure 1: Input and outputs of our approach: (a). One input KITTI image with
2D bounding boxes for vehicles of interest. (b). The corresponding output image
with the predicted 3D bounding boxes, 2D parts location, and 3D part visibility
property. (c). The corresponding estimated 3D bounding boxes in the Velodyne
3D view. (d). The corresponding estimated 3D bounding boxes in the bird’s-eye
view.

8

1.2 Contributions

The first contribution of this thesis is a perception learning system that can predict
not only the 3D bounding box for each vehicle but also the 3D position of each
vehicle part, even if these parts are occluded by other objects or truncated by the
boundaries of the image. The foundation behind this is that vehicles are rigid ob-
jects and their geometric characteristics have a lot in common despite the vehicle
types. Therefore, these shared geometric characteristics serve as the prior which
make it reasonable that each vehicle can be expressed by a 3D model along with
a scaling vector. This 3D model is integrated by vehicle parts which are further
encoded by characteristic points. Besides, we apply regression rather than detec-
tion to search and locate these characteristic points. By doing so, our approach
can find all the parts, as long as it ascertains the existence of the vehicle object.
Therefore, even though some parts are invisible to the camera, our approach can
still localize them.

The second contribution is the proposed semi-automatic labelling process which
generates additional labels to create a new dataset for our approach. Deep neural
networks are greedy for data. Manual labelling is time-consuming and error-prone,
let alone it is infeasible to correctly label the very far vehicles or occluded parts
in the image. Therefore, we eliminate the human labour to the extent where
only the 3D models need to be labelled manually. Then the proposed process
automatically selects the best-matching model and projects this model into the
real image to generate labels, e.g. visibility and characteristic points. Besides,
this process can be easily generalized to other tasks, as long as they require 2D
geometry information in the image coordinate system and 3D geometry knowledge
in the world coordinate system.

The third contribution is the multi-task framework which includes a prediction
neural network and an inference block. The network can simultaneously perform
vehicle parts localization, visibility characterization, and dimension proximity pre-
diction at high accuracy level and consequentially, the inference block performs the
vehicle dimension estimation, 3D vehicle localization, and rotation recovery. All
these tasks can be completed in real time, 0.02s per image, which makes it ap-
plicable to directly process the video sequence captured by the front camera of
vehicles.

1.3 Thesis Outline

First, we present a thorough review of the state-of-the-art methods in 3D object
detection relying on different data sources in Section 2. Then in Section 3, we

9

provide the necessary knowledge and techniques used in this thesis, including au-
tonomous vehicles in Section 3.1, deep learning in Section 3.2, and computer vision
in Section 3.3. Next, we describe our approach in Section 4, the dataset and la-
belling are presented in Section 4.1, the network phase is elaborated in Section 4.2,
and the inference phase is described in Section 4.3. In Section 5, we discuss the
design choices of our approach, evaluate our approach on six tasks and compare
the results with other methods. Finally, we discuss the deficiencies of our approach
and propose possible solutions as future improvements.

10

2 Related Work

In this section, we present a thorough review of existing works on 3D object detec-
tion, especially on 3D vehicle detection, relying on different sensor sources.

2.1 Mono RGB Image Based Approaches

Most vehicles are equipped with monocular cameras and RGB images have detailed
texture information with high resolution so that plenty of approaches are developed
based on monocular RGB images. Images mainly contain 2D information so most
approaches in this category require other help.

One way is to utilize the geometry information of the vehicles. In this category, a
set of algorithms recover the 3D bounding box based on 3D car models. [119, 120]
model the 3D geometry representation of objects with 3D wireframe models. And
the 3D bounding box is estimated based on the geometry constraints of the vehicle
in the image and its corresponding 3D wireframe model. 3DVP [111] performs 3D
detection based on 3D Voxel Patterns which are generated from the KITTI dataset
[42] and a set of 3D CAD models to encode the geometric information of objects.
Mono3D [25] introduces 3D proposals. It exhaustively places 3D bounding boxes
on the ground-plane as proposals, then scores each proposal based on several hand-
crafted geometric features, and finally applies a CNN to score the most promising
candidates to generate the final 3D detections. Recently, CNNs are introduced
to estimate some key features for 3D detection. Deep3DBox [73] applies two
CNNs to estimate the orientation and dimensions respectively, makes use of the
geometric criterion that a 3D box should fit tightly within the 2D box of the
vehicle to estimate the translation, and finally integrates them to perform 3D
detection. Deep MANTA [23] performs 3D object detection based on successful
2D object detection. It applies a CNN to predict some 2D key points and the
template similarity of the vehicles in the image, recovers the corresponding 3D key
points and 3D dimensions with some 3D CAD vehicle models, and finally performs
3D detection via 2D-3D matching. Our approach is similar to Deep MANTA in
spirit.

Another way is to use temporal information. [33, 96] make use of motion structure
and ground estimation to perform 3D detection from 2D bounding box.

11

2.2 Stereo RGB Image Based Approaches

A pair of stereo RGB images can provide the depth information of the current
scene. 3DOP [27] recovers depth from stereo images and generates 3D box pro-
posals with the constraints from the depth and other geometry characters, which
are forwarded to modified Fast R-CNN [43] pipeline for object detection and pose
estimation. [81] extends 3DOP by applying a separate CNN to extract features
from the depth and integrating them for the final 3D detection.

2.3 Point Cloud Based Approaches

A LiDAR point cloud is a collection of 3D points acquired by a LiDAR laser
scanner. It can represent 3D information of the surroundings but its resolution is
lower than that of images.

One set of approaches utilize a point cloud by converting it into a 2D array and
making use of the image-based methods to perform 3D detection tasks. This can
alleviate the inherent problem that the LiDAR point is often sparse and irregular
in 3D voxel representation. VeloFCN [67] projects the point cloud to the front view
to generate a 2D point map and then applies a fully convolutional neural network
to estimate the 3D bounding boxes for vehicles on this 2D point map. [110, 26]
also fall into this category. Besides, the pre-trained models based on RGB images
can be used to initialize the CNNs, which has been proven to be beneficial [48].
However, the 2D representation of LiDAR cloud points suffer from object size
variations because of its distance to the sensor and object overlapping.

Another category of approaches transforms the cloud point into a 3D voxel grid
representation. Various quantities are used to encode voxels [98, 97, 66, 104,
36]. For example, in [104, 36], the information in one non-empty cell is encoded
with six quantities while empty cells contain no information. For the single-stage
detectors, e.g. Sliding Shapes [98] and Vote3D [104], they slide window across the
3D voxel space and apply SVM classifiers to perform 3D detection. To improve the
performance, Vote3Deep [36] uses a voting strategy with a sparse 3D convolutional
network. And [66] feeds the point cloud voxel directly to a 3D FCN to generate
3D bounding boxes. For the two-stage framework, e.g. Voxelnet, it extends the
2D RPN [86] to 3D to generate 3D proposals and applies a refine network to score
these proposals [118]. 3D CNNs boosts the 3D detection performance while the
computation is very expensive and sparsity remains a challenge.

12

2.4 Sensor Fusion Based Approaches

Images are of high resolution but lack depth, while LiDAR data has 3D information
but are sparse and irregular. Thus, many works have investigated combining these
complementary data sources together to build robust 3D object detectors.

One investigated direction is to extract information from these two sources sep-
arately for sub-functions. Frustum PointNets [83] first generates frustum point
cloud proposals based on 2D object detection, then performs 3D instance segmen-
tation in each frustum point cloud and finally applies a box estimation net to esti-
mate the final 3D bounding box for each object. Similarly, [34] first generates 2D
bounding boxes and estimate vehicle dimensions for the target vehicles in images.
Secondly, a model fitting algorithm estimates the 3D bounding box on a subset of
the point clouds which fall into the 2D bounding box after projection. Finally, a
refine 2D CNN performs the final 3D box regression and classification.

The other is to fuse these two kinds of data and process them as a whole. There
are various ways to fuse data. One intuitive way is projection. For example,
[35] converts the point cloud to a dense depth image and then appends it as an
additional channel of the image. [90] extends [35] via converting the cloud point
to a three-channel HHA map. Their 3D detection score is low mostly due to
the loss of 3D information during projection. The more advanced way is to fuse
their feature maps. MV3D [28] first generates 3D proposals in LiDAR’s bird’s-
eye view and projects these proposals to the features maps of the image and
the bird’s eye view and front view of LIDAR data. Then a deep network fuses
three RoI pooling regions and performs 3D detection based on the fused features.
PointFusion[113]simultaneously applies a ResNet [51] to extract appearance and
geometry features from image crops defined by the 2D bounding boxes and a
modified PointNet [84] to process the raw point cloud, and finally uses a novel
fusion network to integrate both features and estimate 3D bounding box. Recently,
Zining et al. [107] apply an innovative sparse non-homogeneous pooling layer to
fuse the features extracted from bird’s eye view of LiDAR data and front view
camera images by two separate CNNs before region proposal stage. And then
a single-stage detector adapted from [70] is designed to perform 3D detection
on these fused data without RoI pooling, which is 6 times faster then MV3D.
AVOD [63] applies double feature fusions. It uses two identical CNN to extract
features from images and LiDAR data respectively and exploits a Multimodal
Fusion Region Proposal Network to generate vehicle proposals from the fused
feature crops, projection regions of anchors in the feature maps. Finally, it applies
a Multiview Detection Network to perform 3D detection on the fused feature crops
corresponding to the proposals.

13

3 Background

3.1 A Short History of Autonomous Vehicles

Autonomous Vehicles (a.k.a. Automated/Driverless/Unmanned/Robotic/Self-driving
Vehicles) is a relatively vague concept to the public. Actually, it covers a contin-
uum from traditional fully human-driving automobiles to fully self-driving vehicles,
as SAE classified in Table 1.

Table 1: Summary of levels of driving automation[8].

Contrary to the intuition, the idea of Autonomous Vehicles has a long history.
The experiments of this fictional idea can be traced back to the 1920s and the
technology behind it was radio control [7].

But the truly autonomous cars did not show up until the 1980s, even though they
could only move slowly on clear streets and required massive human intervention.

14

Mercedes-Benz demonstrated a robotic van based on saccadic vision [91]. The Au-
tonomous Land Vehicle (ALV) project funded by The Defense Advanced Research
Projects Agency (DARPA) cultivated automatic vehicles based on Computer Vi-
sion, LIDAR, and autonomous robotic control [61]. Carnegie Mellon University
initially applied a neural network to control the vehicle [82].

In the 1990s, huge progress was made. The VaMP from Daimler-Benz drove more
than 1000 km, achieving the maximum speed of 130 km/h on a normal Pairs high-
way semi-autonomously [91]. The Navlab project in Carnegie Mellon University
achieved a 5000-km journey across America with only 1.8% human interventions
[5]. The ParkShuttle in the Netherlands could autonomously navigate itself on a
dedicated lane as an automated people mover [78].In this decade, the experiments
were mainly carried out in highway scenarios rather than urban scenes.

In the 2000s, competitions promoted this technology a lot. One of the most famous
competitions is The DARPA Grand Challenge in the U.S. who offered $ 1 million
for the first prize. In 2004, no vehicle completed the 241-km journey autonomously
while 5 teams achieved this goal in 2005 [59]. And in Grand Challenge III 2007,
known as Urban Challenge, 6 vehicles finished the event which was a 96-km urban
route involving traffic regulations and other vehicles [60].

In the 2010s, Autonomous Driving Technology starts to take off. Numerous events
and projects have been carried out and considerable companies, universities, and
research centers have engaged in this field. Based on the progress made before,
many autonomous vehicle systems are being tested or even brought into produc-
tion. Notable events includes the VisLab Intercontinental Autonomous Challenge
in 2010 [20] and the Intelligent Vehicle Future Challenges from 2009 to 2013 [74].
In industry, Tesla Motor released AutoPilot that is able to perform automated
parking and lane control with autonomous driving, braking and speed adjustment
in 2014, and Audi started the first production car, A8, reaching Level 3 of Au-
tomation in 2017 [4].

Based on the efforts in the last decades, Autonomous Driving is gradually trans-
formed from dream to reality. Its bonus covers safety guarantee, congestion reduc-
tion, land use efficiency, energy saving, emission reduction, economic benefits and
so on. However, the Level 5 vehicles are so far from maturity that further research
and development are in high demand.

3.2 Deep Learning Technology

Recently, Deep Learning (DL) has shown its impressive power in a variety of tasks,
especially in some complex tasks that cannot be explicitly programmed by hand,

15

such as anomaly detection and online advertising. DL delivers the solutions by
learning from data automatically via a general learning procedure which domi-
nantly makes use of backpropagation and optimization algorithms, e.g. gradient
descent.

It attracts world-wide attention mainly by outperforming other classic machine
learning algorithms, e.g. Support Vector Machine (SVM), in many competitions
in image classification, object detection, or natural language processing. This is
because DL applies a deep automatic feature learning architecture, i.e., an artifi-
cial neural network model with multiple hidden layers, to learn deep distributed
hierarchical non-linear representations which yield better performance for learning
tasks, e.g. in terms of classification accuracy. Such representations bring many
good properties, such as feature reuse, parameter sharing, multiple levels of pro-
gressive abstraction, and invariance to local changes of the raw inputs, and thus
provide better predictive power than classic machine learning algorithms [14].

Convolutional neural networks (CNNs) is one of the major branches of artificial
neural networks. A CNN is a feed-forward multi-layer neural network, typically
consisting of one or more convolutional layers, interleaved by some pooling layers,
and finally followed by some fully-connected layers. This modern framework of
CNNs is established by LeCun et al. when he proposed the handwritten digit clas-
sifier LeNet-5 [64]. Afterwards, deeper architectures are emerged such as AlexNet
[89], VGGNet [92], GoogleNet [100] and ResNet [52]. In general, deeper archi-
tectures generate better feature representations and closer approximations to the
target function but they also result in more complex models which are more diffi-
cult to train and easier to be overfitting. Therefore, many approaches have been
proposed to address such problems.

CNNs are specifically designed to work with problems taking images as inputs,
such as image classification, object detection and pose estimation. The above-
mentioned CNNs examples all made the great performance in their respective
tasks, e.g. ResNet won the first prize in ILSVRC 2015.

The core building block, convolutional layers, is used to compute feature maps
with convolution kernels. Each neuron in a convolutional layer is connected to a
local region in the previous layer, called receptive field, and computes an output by
performing a convolution operation (element-wise matrix multiplication) between
its weights (kernel) and the connected region followed by a non-linear activation
function. A nice property of CNNs is that the kernel is shared by all receptive fields
in the preceding layer when computing the corresponding feature map. Thus, each
feature map is used to capture exactly the same feature at different locations. And
this characteristic can substantially reduce the number of parameters in CNNs,

16

which leads to faster training [76].

The pooling layers perform a downsampling operation, typically max pooling [19]
and average pooling [105], along the spatial dimensions of feature maps to achieve
shift-invariance.

Normally, successive convolution layers detect more abstract features, e.g. wheels,
than the preceding ones that tend to detect low-level features, e.g. curves and
edges. Therefore, after the operations performed by several convolutional and
pooling layers, progressively higher-level features can be obtained to feed a fully-
connected layer whose goal is to perform high-level reasoning to generate the global
semantic information [92, 53].

For classification problems, the output layer of CNNs usually deploys the softmax
operator [89] or the SVM method [103] to output discrete results. Regression tasks,
on the other hand, require continuous-valued predictions so that the output layer
should have a linear activation function, e.g. weighted sum, along with a proper
cost function, e.g. mean squared error [117].

The training for CNNs is a global optimization problem by minimizing the defined
loss function. Normally, CNNs can be trained end-to-end efficiently with back-
propagation together with an optimization algorithm, such as stochastic gradient
descent [108]. The mechanism behind it is that gradient of the loss function w.r.t.
all parameters are calculated and then used to update the parameters to the di-
rection of minimizing the loss function based on iterations over the full batch or
mini batches of the training data.

3.3 Computer Vision

Computer vision is an interdisciplinary field that enables computers to interpret
images just as what we humans can do. Its goal is about automatic extraction,
analysis, and understanding of the information from images [6]. There are a huge
variety of ways to process images and a marvellous diversity of applications in this
board field, ranging from replicating human visual abilities to creating nonhuman
visual capabilities [47]. Some real-world applications include object recognition or
detection, 3D model building, motion capture, etc [102].

Despite all the progress achieved, computer vision systems are still so underdevel-
oped that they can’t match the visual ability against a 5-year-old child. Vision
is natural and effortless for humans but factitious and demanding for computers
[11]. The difficulty in part results from the fact that vision is an inverse problem
where we attempt to recover the unknowns, e.g. shape and illumination, based on

17

insufficient information on their causes, e.g. models [102]. Therefore, it is hard
to explicitly generate clear problem-solving rules, especially for complex problems,
e.g. 3D object detection. But currently, Deep Learning seems to find a way out
and pushes a big step forward.

Next, in this section, we introduce some basic knowledge in computer vision related
to our approach.

3.3.1 Image Formation

Imaging systems or cameras are some devices that allow the projection of light
from 3D points to a 2D medium that records the light pattern. Figure 2 (a)
shows a pinhole imaging model which is able to capture the light pattern, the
inverted candle image, by allowing a very tiny cone of rays issued at every point
of the source, the real candle, to project on the image plane. This is called pinhole
perspective projection which is primitive but provides an acceptable approximation
of the imaging process [41].

The projection equation can be derived from Figure 2 (b), where (O, i, j, k) is the
pinhole camera coordinate system and the origin O is at the pinhole, p = (u, v, d)T

is a point in the image, and P = (x, y, z)T is a point denotes the source. As light
travels straight in the same medium, p,O and P are collinear, and Therefore, we
can deduce the Eq. 1:

{
u = dx

z
,

v = dy
z

(1)

Modern cameras are built on lenses that can gather more light to make the image
more bright while maintaining its sharpness. But the imaging process is very
similar to the pinhole camera. Lenses can also introduce some aberrations, e.g.
spherical aberration, radial distortion, and chromatic aberration [41]. Therefore,
correction is necessary.

3.3.2 Intrinsic and Extrinsic Parameters

To project a 3D point in the world coordinate system, we first have to transform
this point from the world coordinate system to the camera coordinate system and
then transform it into the image plane. The first transformation depends on the
extrinsic parameters while the second relies on intrinsic parameters.

18

Figure 2: (a). the pinhole imaging model; (b). the geometric model for perspective
projection. [41]

Intrinsic parameters include the focal length f just like the d in Figure 2 (b),
the image coordinates origin (u0, v0), and the skewed angle θ of two image axes.
Coordinates in the image plane are usually expressed in pixel which can be square
or rectangular. So let us assume α and β are the value expressed f with hori-
zontal and vertical pixel-meter scales. Therefore, we can finally transform Eq. 1
into {

u = αx
z
− α cot θ + u0,

v = β
sin θ

y
z

+ v0
(2)

When it is written in matrix form as Eq 3, the 3 × 3 matrix K is the intrinsic
matrix of the camera. Note that PC is expressed in camera coordinate system and
P I is in the image coordinate system.

19

P I = KPC ⇔ 1

z

(u
v
1

)
=

α −α cot θ x0
0 β

sin θ
y0

0 0 1

xy
z

 (3)

Extrinsic parameters define a rigid transformation from world coordinate sys-
tem to camera frame. A rigid transformation has six degrees of freedom, including
three Euler angles expressed in a 3 rotation matrix R and three translation com-
ponents along each axis expressed in a 1 × 3 translation vector t. A 3D point
expressed in homogeneous coordinates is P = (x, y, z, 1)T . Homogeneous coordi-
nates can simplify various geometric transformations into matrix multiplication
[41]. Therefore, this rigid transformation expressed in homogeneous coordinates
is

PC = TCWP
W , where TCW =

(
R t
0T 1

)
(4)

PC and PW are coordinates of the same point expressed in world coordinate system
and camera coordinate system respectively. TCW is the extrinsic matrix of the
camera.

To put it all together, the projection equation in homogeneous coordinates is

P I =
1

z
MPW =

1

z
K

(
R t
0T 1

)
PW (5)

where M is the perspective projection matrix.

20

4 Deep3DP Approach

Figure 3: The Architecture of our Deep3DP approach

In this section, we elaborate on our approach for 3D pose estimation of vehicles
in monocular images. Our approach is based on 2D vehicle detection, i.e., the 2D
bounding boxes of vehicles are given as prior, since 2D object detection techniques,
such as YOLO [85], Faster R-CNN [86], SSD [71], R-FCN [31], and FPN [69],
have achieved very high accuracy while 3D object detection performance is still
primitive. The overall architecture of the approach is illustrated in Figure 3. It
consists of two main phases. The first one is the Deep3DP Network which takes
the KITTI images and the 2D bounding boxes as inputs and predicts the visibility
property and 2D coordinates of all characteristic points, as well as the dimension
proximity. The details are presented in section 4.2. The other phase estimates
the 3D location, rotation, and dimension of each vehicle based on the 3D vehicle
dataset and the outputs of the Deep3DP Network. Section 4.3 demonstrated this
phase in detail. The KITTI dataset and the 3D vehicle dataset are described in
section 4.1.

21

4.1 Data and Labelling

4.1.1 KITTI Dataset

The KITTI 2D/3D object detection challenge is dedicated to autonomous driving
and releases a dataset containing 7481 images for each one of 4 cameras and their
associated labels and calibrations [42]. The dataset covers scenarios of City, Res-
idential, Road, Campus, and Person. We only use the images taken by the left
colour camera. The example image is shown in Figure 4. The associated labels
are shown in Table 2. The calibration is given as transformation matrix.

Figure 4: Example image from KITTI dataset captured by the left colour camera.

#Values Name Description

1 type

Type of object:

Car, Van, Truck, Cyclist, Tram, Pedestrian,

Person sitting, Misc or DontCare

1 truncated
A float from 0 (non-truncated) to 1,

indicating the extent of the object out of the image

1 occluded

An integer indicating occlusion state:

0 = fully visible, 1 = partly occluded,

2 = largely occluded, 3 = unknown

1 alpha Observation angle of the object, ranging [-pi..pi]

4 bbox
2D bounding box of the object in the image (0-based index):

contains left, top, right, bottom pixel coordinates (x1, y1, x2, y2)

3 dimensions 3D object dimensions: height, width, length (in meters)

3 location 3D object location x,y,z in camera coordinates (in meters)

1 rotation y Rotation ry around Y-axis in camera coordinates [-pi..pi]

Table 2: Label specification of KITTI dataset

22

4.1.2 3D Vehicle Dataset

This dataset is intended to encode the diversity of vehicles according to type,
dimension, and chassis shape. It is created based on a selected subset of synthetic
3D CAD models [39]. We only include the well-aligned and symmetrical models,
and also take the dimension and type into consideration. We classify all the models
into six categories: Mini, Hatchback, Sedan, SUV, Wagon, and Van. And for each
category, subcategories are marked out according to their dimensions and shapes
in order to make a refined selection. The statistic of dimensions is well distributed
and each existing vehicle can be classified into one category only.

Our final dataset consists of 54 valid vehicle models. Each vehicle model has a
3D CAD model, a 3D template, and a 3D sketch correspondingly, as shown in
Figure 5. All these three representations are aligned in canonical view and share
an identical object coordinate system. The CAD models are created based on
real vehicles and have all the geometry information with them. The 3D templates
represent the vehicles’ dimensions. The 3D template associated to the 3D model
k is denoted as tk = (hk, wk, lk) where hk, wk and lk represent the height, width,
and length of the model respectively.

The 3D sketches indicate the chassis shapes. Each 3D sketch consists of 20 charac-
teristic points around the chassis with each point denoting one part of the vehicle.
So the kth sketch is denoted as S3d

k = (p1, p2, ...p20), where pi = (xi, yi, zi). The
reason why we choose the points around chassis as feature points is that their
geometric relationship is more stable than points in other places. Because the
chassis part is more about functionality than appearance attraction compared to
other parts of the vehicle, e.g. the upper part. In this way, the sketches can
be more universal so that they can represent a wider range of vehicles, which
reduces the number of models required and further increases the computational
efficiency.

In order to create the 3D sketches, we implement a labelling tool, shown in Figure
6. It is capable to label the 3D coordinates for all the characteristic points asso-
ciated to each vehicle. These coordinates are expressed in the object coordinate
system.

23

Figure 5: Six vehicle categories of the 3D vehicle dataset. Each vehicle model is
associated with a 3D CAD model, a 3D template, and a 3D sketch.

Figure 6: Labelling tool for 3D sketches

24

4.1.3 Labelling for KITTI Dataset

Our approach requires three extra kinds of labels to training the Deep3DP Net-
work, i.e., 2D coordinates and visibility property of characteristic points and a
dimension proximity vector, as shown in Table 3. Labelling is never a trivial task.
Due to the demanding workload of manual labelling and the cases where it is
almost impossible to label the small vehicles in the image manually, we propose
an automatic label generation method. It is able to make use of the 3D vehicle
dataset and the KITTI dataset to generate these three additional kinds of ground
truth.

#Values Name Description

2x20 2D coordinate (x, y), the location of 20 characteristic points in the image coordinates

1x20 visibility

An integer indicating visibility property of each point:

0 = visible, 1 = occluded,

2 = self-occluded, 3 = truncated

3x54 dimension proximity
A vector Ti represents the dimension ratios

between each model and the vehicle

Table 3: Specification of three additional labels

4.1.3.1 2D Coordinates

2D coordinates of key points of each vehicle in the image coordinate system are
generated by projecting the 3D sketch of this vehicle to the image. The vehicle’s
3D sketch is selected via template-matching, i.e., the best-matching sketch is the
one whose associated template is closest to the vehicle’s dimensions. The 3D-2D
projection is performed based on the given intrinsic and extrinsic parameters, as
shown in Figure 7. The intrinsic parameters are given as calibration by KITTI
and the extrinsic parameters are given as 3D object dimensions and rotation ry
in KITTI labels. KITTI makes a simplified assumption here that the vehicle only
rotates around the yaw axis but not roll or pitch axis. One example of the labelled
2D coordinates is shown in Figure 8.

25

Figure 7: 3D-2D projection

Figure 8: Example of 2D coordinates and visibility of one vehicle. The left image
is one patch of KITTI image. The right image is the one after labelling. The
points indicate the 2D coordinates and the color indicates the types of visibility:
red for visible, green for occluded, and blue for self-occluded.

Figure 9: Visibility labelling mechanism. The left image shows the rotation ry in
the camera coordinate system, which helps distinguish the visible and self-occluded
case. The right image shows the location of the vehicle in the camera coordinate
system, which helps define the occluded situation.

26

4.1.3.2 Visibility

As an example of the labelled visibility shows in Figure 8, the visibility property
of characteristic points is classified into four scenarios:

i. Visible if the point can be seen directly;

ii. Occluded if the point is occluded by other objects;

iii. Self-occluded if the point is blocked out by the vehicle itself;

iv. Truncated if the point exceeds the boundaries of the image.

The visibility of each point is determined by its position, i.e., the 2D coordinate in
the image. Being visible or self-occluded is distinguished by means of rotation ry
of each vehicle. As the right schematic diagram in Figure 9 shows, the rotation ry
can indicate unambiguously which faces of the vehicle are facing to or away from
the camera. If the points are on the observable faces, they are labelled as visible,
otherwise they are classified as self-occluded. Occluded case happens when the 2D
coordinate of the point falls into the 2D bounding box of a former object. The
object is defined as former when it locates in the region enclosed by the axes and
two solid blue line in the left schematic plot of Figure 9 if the vehicle is on the first
quartile. And when the vehicle is on the second quartile, it is just a mirrored case.
Truncated is identified when the point’s 2D coordinate exceeds the boundaries
of the image. The size of KITTI images is determined. The truncated property
has the highest priority, the occluded underlies, the self-occluded or the visible is
considered at last.

4.1.3.3 Dimension Proximity

Dimension proximity of one vehicle is encoded as a vector Ti which is defined
as Ti = {rk}k∈{1,..,K}, where K denotes the number of 3D vehicle models and
rk = (rh, rw, rl) corresponds to three scaling ratios between the dimensions (i.e.,
height, width, and length) of each model and the vehicles respectively. The vector
Ti represents the similarity between each model and the vehicle. The most similar
model of a vehicle is the one whose rk is closest to (1, 1, 1).

4.1.4 Notations

In sum, based on the KITTI images and 3D vehicle models, each vehicle can be
defined by seven critical attributes:

{D,B2d, B3d, C2d, C3d, V, T}

27

D = (h,w, l) represents the dimensions of the vehicle. B2d = (cu, cv, w, h) defines
the 2D bounding box in the image with (cu, cv) denoting its centre, w for its
width and h for its height. B3d = (o, θ, d) where o = (cx, cy, cz) is the centre, θ
is the rotation ry around the yaw axis, and d = (w, h, l) is its dimensions. C2d =
{(ui, vi)}i∈{1,...,20} represents the 2D part coordinates in the image plane, while
C3d = {(xi, yi, zi)}i∈{1,...,20} denotes the 3D part coordinates in world coordinate
system. V = {vi}i∈{1,...,20} is the visibility for all the characteristic points in the
vehicle. T = {(rh, rw, rl)k}k∈{1,...,54} is the dimension proximity vector.

4.2 Deep3DP Network

This subsection describes the details of the Deep3DP Network, including its ar-
chitecture, implementation, and training.

Figure 10: The Architecture of Deep3DP Network.

4.2.1 Architecture

The neural network is to learn a map from an N -dimensional input space to an
M -dimension output space. The map consists of several stages, called layers of
the network, written as

Y = lL(...l2(l1(X))),where Y ∈ RM , X ∈ RN (6)

Even though there are various layers, most layers are composed of neurons, the
basic computation element. Most neurons are realized by linear and non-linear
operations as

aij = σ(W T
ijXi + bj) (7)

where aij is the result of the ith neuron in the jth layer, σ(·) is the activation
function and Wij and bj are the weights vector and bias applied to input vector

28

Xi. The pooling layer is a special case which performs downsampling operations,
such as max pooling [19] and average pooling [105].

As shown in Figure 10, our network follows the standard CNN architecture estab-
lished in LeNet-5 [64]. It stacks a set of convolutional layers and pooling layers
as a feature extractor, followed by 3 residual blocks and one fully-connected layer
to refine the features, and three kinds of output layers in the end. The goal of
this network is to learn the 2D coordinates and visibility property of 20 interest
points and the dimension proximity vector of the vehicle, given the RGB images
captured by a monocular camera.

4.2.1.1 Input Layer

The input layer accepts the RGB images and feeds them into the network. In
theory, images with arbitrary size can be accepted, but to make it more efficient,
we use images with fixed size (96 x 160 pixels). In this way, multiple images can
be processed in one batch in order to reduce the variance of parameter updates
and make the best use of highly optimized matrix optimizations during training
[87].

Since our approach is based on 2D object detection, each image contains at least
one whole vehicle. To obtain these images, we first crop the patches defined by
the 2D bounding box, then resize them to match one predefined dimension (96 or
160 pixels), and finally put the resized images in the centre of the 96 x 160 canvas
and padded with zeros for other pixel positions. We choose 96 x 160 as the fixed
size because they are the means of sizes of all original patches so that we don’t
have to rescale the patch too much. Some examples are shown in Figure 11.

29

Figure 11: Examples of input images: a. the side view, b. the back view, c. the
front view, d. the occluded case

4.2.1.2 Hidden Layers

The hidden layers in Deep3DP network consist of a feature extractor, 3 residual
blocks [51], and a fully-connected layer. Both the feature extractor and residual
blocks are composed of convolutional layers and pooling layers.

The feature extractor is actually one of the available neural network models built in
the Keras library [29], i.e., VGG16, VGG19, Xception, ResNet50, etc.It is trained
to learn deep distributed hierarchical non-linear representations of the input im-
ages.

ResNet50 [51] is chosen to be the benchmark model because it can ease the training
and accelerate the convergence, especially for the fine-tuning. It is well known that
there are two main obstacles that hamper the training of deep neural networks:
the vanishing/exploding gradient problem [15, 45] and the degradation problem
that as the network is built deeper, the accuracy gets saturated or even degrades
sharply [50]. Residual nets are designed to address these two problems. Instead of
learning the direct mapping from input to output, it learns a residual mapping first
and then adds the input to it, just as Figure 12 (a) shows. The paper validates that
it is easier to learn the residual mapping than the direct one and the gradient can
always pass through along the short-cut connections. Figure 12 (b) and (c) shows
two building blocks in our network. (b) is an identity block where the dimensions
of input and output matches, while (c) is a linear projection block where the
right branch performs 1×1 convolution to match the dimensions because the final

30

addition is performed element-wisely.

Figure 12: Residual network blocks: (a). a residual block [51], (b). an identity
residual block in our network, (c). a linear projection residual block in our network

The last three residual blocks and a fully-connected layer is designed to learn non-
linear combinations of the extracted features and then forward them to the output
layers.

For all hidden layers, we all apply ReLU as the activation function. The function
is

f(z) = max{0, z} where z = W TX + b (8)

This is a piecewise linear function consisting of two linear pieces, which makes the
gradients through a rectified linear unit stay large and consistent whenever the unit
is active. Papers [46, 75, 57] have validated that networks activated by ReLU can
achieve much better performance than others. ReLU preserves many properties
that make it easy for the model to optimize by using gradient-based methods and
generalize well, while introducing non-linearity into the model [47].

4.2.1.3 Output Layers

Our network has three kinds of output layer for the three tasks respectively. For
2D coordinates regression, a 40-neuron layer with linear activation function is pro-

31

vided. Each neuron’s output indicates one coordinate value, i.e., xi or yi. 20
coordinates are arranged in an ascending order. For visibility characterization, we
implement 20 independent quaternary classifiers for 20 points. Each classifier is
associated with a softmax activation function [18] which outputs four values rep-
resenting the probabilities of each target class over all possible classes. Dimension
proximity is equipped with a 154-neuron linear layer for regression. Each neuron
indicates one ratio element of the dimension proximity vector. Eq.9 is a linear
activation function while Eq.10 is a softmax activation function.

outi = W T
i Xi + bi (9)

outi =
eW

T
i Xi+bi∑K

k=1 e
WT

k Xk+bk
(10)

4.2.2 Training

4.2.2.1 Multi-task Learning

As mentioned in Section 4.2.1.3, our network has totally 22 output layers. This
implementation makes use of multi-task learning (MTL) where multiple learning
tasks are trained in parallel based on the shared features. Caruana has validated
that tasks trained in MTL have better generalization performance than trained
in a single-task learning mode [21]. And he summarizes that this improvement
results from leveraging the domain-specific information contained in the training
signals of other related tasks [21]. Therefore, we follow this paradigm to design
our network in order to achieve better performance.

4.2.2.2 Loss Functions

The learning of 2D coordinates and dimension proximity are regression tasks so
that a robust smooth L1 loss function [43] is chosen for them. We modify it as

smoothL1(x) =

{
x2 if |x| < 0.25

|x| − 0.1875 otherwise
where x = ŷ − y (11)

Compared to L2 loss, it is less sensitive to outliers and no special attention is
required to pay in order to prevent gradient exploding problem[43]. Besides, when

32

applied with gradient-based optimization, L1 loss and L2 loss often result in poor
performance [47].

For visibility characterization, we develop a model for probabilistic classification
so that categorical cross-entropy is used as the loss function. It is also known as
the negative log-likelihood [47], defined as:

Lcce =
1

N

N∑
n=1

H(y, ŷ) = − 1

N

N∑
n=1

c∑
i=1

yn,i log ŷn,i (12)

where H(y, ŷ) denotes the cross-entropy between the ground truth probability
distribution y and the predicted ŷ, and yn,i represents the true probability of ith
class for the nth data example while ŷn,i is the estimated. It is a continuous convex
loss function which measures the discrepancy between the true and estimated
distributions of multi-class classification tasks [13], which means it can measure
the degree of correctness, i.e., it can distinguish between “nearly correct” and
“totally wrong” cases. It outperforms other loss functions in classification tasks
and then becomes ubiquitous in deep learning nowadays.

Therefore, training objective is expressed as the total loss of all tasks, written
as:

Ltotal = λcoordLcoord + λtempLtemp + λvisib

20∑
i=1

Lvisib i (13)

where λcoord, λtemp, and λvisib are loss weights for these three kinds of tasks respec-
tively. Loss with higher weights has more impact on the gradients and thus tunes
the parameters perform better for its corresponding task.

4.2.2.3 Normalization

Normalization is an important pre-processing step in deep learning which ensures
that each feature has a similar data distribution pattern. This is usually done
by restricting the features in a certain range or standardizing their ranges. It
can enhance the learning capability of the network and speed up the convergence
substantially because it can reduce the bias among features and decrease the low
and high-frequency noise in data [58]. The speed-up mechanism can be concluded
from Figure 13. If we initialize the network at point A in Figure 13 (a), the
gradient-descent update routine will oscillate along the long axis of the eclipse,
which definitely takes more time to reach the optimum than any arbitrary initial
point in Figure 13 (b) where the updated trajectory is almost a straight line for any

33

starting point to the minimum. Besides, this also helps the performance because
the updated trajectory oscillates less around the minimum for case (b) than case
(a) so that it is more likely for case (b) to reach the optimum.

Figure 13: Effect of normalization: (a). data distribution before normalization,
(b). data distribution after normalization

Our network takes RGB images as input so that pixel intensity is the input feature.
The technique we use to normalize the image is channel mean subtraction, used
in [93, 44], which centers all the features around the origin along each dimension.
As mentioned in CS231N [3], mean channel subtraction is enough for CNNs and
the original range of pixel values is determined, i.e., [0, 255].

The range of ground truth influences the loss. In order to make the three types
of labels impact similarly on the loss, we normalize them. For visibility, we use
one-hot-encoding to encode its classes so that it only has value 0 or 1. The value
of 2D coordinates C2d = {p1, p2, ..., p20}varies greatly so that we normalize them
w.r.t. the associated 2D bounding box B2d = (cu, cv, w, h) [23]. The normalized

2D coordinates C
2d

= {p1, p2, ..., p20} ranges [−1, 1], where

pi = (
ui − cu
w

,
vi − cv
h

) (14)

The dimension proximity vector T is normalized with log function element-wisely
[23], resulting in T and its range falls into [−1, 1], too.

Moreover, as Sergey et al. [56] state the variation of each layer’s input distribution
during the training makes the training complicated and hard to converge quickly

34

so that we apply Batch Normalization (BN) to alleviate the internal covariate shift
phenomenon. BN normalizes the summed activations of each layer to a distribution
of zero mean and unit variance. The mean and variance of each activation are
computed on each mini-batch. By doing so, much larger learning rate can be used
for training and no special attention has to pay on parameter initialization.

4.2.2.4 Regularization

Regularization techniques are used to address the overfitting problem in order to
make an algorithm not only perform well on the training data but also on the
test data, the previously unseen data [47]. Overfitting results from either that the
algorithm is too complicated for the data or that the sampled data is not able
to represent the internal pattern. Normally, we design an algorithm to model the
data pattern exhaustively first and then apply regularization techniques to make
the algorithm generalize well.

In the data aspect, we use data augmentation as a regularization. The best way to
address overfitting is to train the model on more data, but the amount of data is
restricted for one dataset. Therefore, we generate some synthetic data. Since our
network involves classification and regression tasks, we mainly enlarge the dataset
via horizontal flipping and scaling.

In the architecture aspect, Batch Normalization [56] is used as the regularization
in each layer. BN enables the network to obtain the information of the training
sample and the others in mini-batch simultaneously so that it does not generate
deterministic dependency on this training sample. Therefore, BN can replace
Dropout [99] to be the regularization for our convolutional network.

Besides, Multitask Learning is another technique we used to improve generalization
performance. In our network, the learning representation is shared across all tasks
so that the parameters shared are constrained from biasing towards one specific
task, i.e., only the representation that is useful for more than one tasks can be
kept [47]. Therefore, the statistical strength of the parameters is highly enhanced
[12].

During the training, early stopping is applied to prevent the model being trained
too complex to fit the test data. As Figure 14 (a) shows, we halt the training
when the validation error stops decreasing. The stopping point is when the learned
model can represent the pattern of validation data most. It regards the number of
training epochs as a hyperparameter and can effectively tune it to be optimal [16]
because early stopping can restrict the global learning capacity of a large network

35

to fit simpler dataset without affecting the backpropagation to control the learning
capacity locally [22].

4.2.2.5 Parameter Initialization

Transfer learning is proposed to transfer the representation learned from one task
to another related task [79]. As it is known that CNNs learn more abstract features
in a deeper layer. It is not surprising to find that, for visual tasks, shallow layers
learn low-level features, e.g. edges, corners, changes in lighting, etc., which are
shared across datasets and tasks. Moreover, Yosinski et al. validate [115] that
initializing a network with transferred features can improve the generalization
capability hugely and Yoshua et al. [17] confirm that this initialization put the
start point closer to a local minimum than random initializations, resulting in
accelerating convergence.

Therefore, we initialize our feature extractor with parameters learned on ImageNet
dataset [89] and the three residual blocks with parameters trained on the KITTI
dataset. The fully-connected layer is initialized from a zero-mean Gaussian distri-
bution with standard deviation 0.01 and all the output layers are initialized with
zeros.

4.2.2.6 Learning Algorithms / Optimization

Optimization is a task of finding the value x in order to minimize or maximize
some objective function f(x). One most powerful optimization technique category
in deep learning is gradient-based.

As it is known, the derivative f ′(x) = dy
dx

specifies how to make a small change ε
of the input x to get the corresponding change in the function:

f(x+ ε) ≈ f(x) + εf ′(x). (15)

Thus, the derivative tells the direction to minimize a function, i.e. it can point
out how to change x to make a small update. One popular algorithm, gradient
descent [10], makes use of the derivatives and update the input x directly as:

x = x− αOxf(x) (16)

where α is the learning rate, a positive real value to decide the size of an update
step. The examples in Figure 14 (b) show how the update works. A deep network

36

often consists of many layers so that back-propagation algorithm [88] is used to
compute the gradient for each parameter in different layers of the objective function
based on the chain rule of calculus.

Figure 14: (a). Early-stopping during the training. (b). examples showing how
gradient descent makes use of derivatives to reach a minimum [47], (c). perfor-
mance of optimization algorithms in the same setting [62]

In deep learning, the input of the objective function is often multidimensional so
that it probably has many local minima and saddle points, which renders huge diffi-
culties to optimization. Therefore, we usually take in a compromise scenario where
the value x makes f really low but not necessarily globally minimal [47].

The optimization algorithm we used is Adam [62] which is robust and efficient
in memory and computation for the optimization of stochastic objectives in a
high-dimensional parameters space. It makes use of both the gradient and its
momentum to update parameters as:

while xt not converged do
t = t+ 1;
gt = Oxf(xt−1);
mt = β1mt−1 + (1− β1)gt ;
vt = β2vt−1 + (1− β2)g2t ;
m̂t = mt

1−βt
1
;

v̂t = vt
1−βt

2
;

xt = xt−1 − α m̂t√
v̂t+ε

;

end

where t denotes the current iteration, α is the learning rate, β1 and β2 are two
exponential decay rates, and ε is a small scalar to prevent zero-division.

From the Figure 14 (c), we can see that Adam can make the learning task converge

37

relatively faster and has lower training error. Thus, we follow this guide to apply
Adam to our optimization of Deep3DP Network.

4.3 Inference

As shown in Figure 15, the inference phase consists of two main steps: template
matching to obtain the 3D coordinates of characteristic points and 3D dimensions
for the objective vehicle and 2D-3D matching to recover the 3D vehicle location
and rotation.

Figure 15: The Architecture of our Approach

4.3.1 Template Matching

Template matching is based on the 3D template dataset and the learned dimension
proximity for the objective vehicle in the image. As defined in section 4.1.3.3,
dimension proximity vector, T = {(rh, rw, rl)k}k∈{1,..,K}, measures the dimension
similarity between the target vehicle and 3D vehicle models. The best matching
model is the one whose dimensions (h,w, l) has the least distance to the target
vehicle’s dimension (h̄, w̄, l̄), i.e., the corresponding scaling ratios, (rh, rw, rl), is
closest to (1, 1, 1).

Let us denote the best matching template for the target vehicle m as tj and
the dimension ratio between the target vehicle and the best matching model as
rj = (rh, rw, rl). Then its corresponding 3D sketch is S3d

j = (p1, p2, ...p20). To get
the target vehicle’s dimension Dm, we apply the scaling ratios, (rh, rw, rl), to tj
as

Dm = tj · rj = (hj, wj, lj) · (rh, rw, rl) = (hm, wm, lm) (17)

38

In the same way, we can get the 3D coordinates of the interest points of the
objective vehicle, C3d

m , as

C3d
m = S3d

j · rj
= {(xi, yi, zi)}i∈{1,...,20} · (rh, rw, rl)
= {(xmi , ymi , zmi)}i∈{1,...,20} (18)

4.3.2 2D-3D Matching

Based on the projection mechanism described in section 3.3.2, the 2D coordinate
of one point in the image coordinate system can be generated via projecting the
3D point in the world coordinate system with the perspective projection matrix
to the image plane. This process is described in Figure 7. Now the Deep3DP
network predicts the 2D coordinates, C2d

m , of the 20 interest points of the target
vehicle m and the template matching process provides the corresponding 3D co-
ordinates, C3d

m . Then the 3D-2D projection equation in homogeneous coordinates
becomes:

C2d
m = K3×4

(
R3×3 t3×1

01×3 1

)
C3d
m (19)

where K3×4 is the given camera calibration matrix, R3×3 and t3×1 are the rota-
tion and translation to be computed. Figure 16 shows the 2D-3D correspondence
points for each vehicle and its model. It is easy to compute the rotation and trans-
lation of the target vehicle in the camera coordinate system with the standard
2D-3D matching algorithm, i.e., EPnP [65]. Its central idea is that each of the n
reference points can be expressed as a weighted sum of four virtual control points,
which makes these control points as the unknowns instead of the original n points.
Based on this, it can use the 3D-2D projection property to find a pair of rotation
matrix and translation vector that minimize the reprojection error non-iteratively,
as shown in Eq. 20:

R, t = argmin
R,t

∑
i

dist2(K[R|t]

[
C3d
m

1

]
i

, (C2d
m)i) (20)

The KITTI data simplifies the rotation to one dimension, ry, so that we follow this
convention. Translation is the 3D coordinate of the origin of the vehicle so that it
can represent the location of the vehicle in the camera coordinate system.

39

Figure 16: Example of 2D-3D correspondence points. Left: C3d
m in object coordi-

nate system. Right: C2d
m in the image.

Figure 17: (a). Visualization sketch of 3D bounding box and orientation, (b).
Visualization of the 3D bounding box, key points, and their visibility. (c). 3D
visualization in the Velodyne 3D view, (d). 2D visualization in bird’s-eye view.

40

4.3.3 Visualization

To visualize the 3D bounding box, we use the vehicle’s dimensions to determine
the eight corners of the cuboid and then project this cuboid into the image with
the projection matrix which is composed of the recovered rotation and translation.
And in order to show the rotation clearly, we project a line on the ground to show
the direction of the vehicle. This visualization mechanism is shown in Figure 17
(a) where the front face of the vehicle is coloured with magenta. Figure 17 (b)
shows a example of this visualization.

Besides, to better visually check the performance of our approach, we visualize the
estimated 3D bounding boxes in 3D view and bird’s-eye view. Figure 17 (c) shows
an example in 3D view where we plot the 3D bounding boxes in the cloud points
of the current frame and the pyramid denotes the forward direction. Figure 17 (d)
shows an example in bird’s-eye view where we can clearly illustrate the location
of vehicles.

41

5 Experiment and Evaluation

In this section, we first describe the experiment setup and evaluation metrics in
Section 5.1 and 5.2. Second, we discuss the most crucial design choices for our
approach in Section 5.3. Finally, we evaluate our approach and its variations, and
compare our approach with the start-of-the-art methods on monocular 3D pose
estimation of vehicles in Section 5.4.

Figure 18: Examples of the output images of our approach. Image outputs are on
the left. bird’s-eye view outputs are on the right.

42

5.1 Experiment Setup

We have presented the approach in Section 4.2 and 4.3 which is served as a baseline
model of our approach. Some other design choices are made based on it. The
benchmark network uses ResNet50 [51] as feature extractor, initialized with pre-
trained weights trained on ImageNet [89], and is trained with Adam [62]. The
network is implemented on Keras [29] using TensorFlow [9] as backend. Keras
supports running both on GPU and CPU.

We evaluate our approach and its variations on the dataset created based on KITTI
3D object detection benchmark [42], described in Section 4.1. Because the KITTI
only releases the ground truth for 7481 training images, we split them into train
and validation set for training and validation respectively. We follow difficulty
division policy of KITTI and extend to more detailed levels. We use 54 vehicle
CAD models [39] for semi-automatic labelling and template matching. Each model
is encoded with 20 points for its corresponding 3D sketch.

We evaluate six tasks: 3D bounding box estimation, orientation estimation, 3D
localization, 3D dimension estimation, 2D part localization, and 2D part visibility
prediction. 3D bounding box estimation is the ultimate task, representing the lo-
calization, orientation, and dimension of the 3D bounding box, which is Therefore,
used to assess all the design choices.

5.2 Evaluation Metrics

We use intersection over union (IoU) to measure the performance of 3D vehicle
detection. IoU is used to measure the similarity of 2D bounding boxes in various
2D object detection challenges, e.g. Pascal VOC [37] and ILSVRC [89]. It is
extended to measure 3D object detection with the formula:

IoU(b1, b2) =
V (bpre ∩ bgt)
V (bpre ∪ bgt)

(21)

where V (·) indicates the volume and bpre denotes the predicted 3D bounding box
while bgt is the ground truth. KITTI 3D object detection benchmark considers that
a 3D bounding box estimation is correct, if IoU ≥ 0.7 [42]. If multiple bounding
boxes are predicted for one vehicle, they are considered as false predictions.

For 3D orientation estimation, we use the measure, Orientation Score (OS), defined
in [73]. It is the mean score across all estimations in the validation set, written

43

as:

OS =
1

N

N∑
i=1

(1 + cos(4θi))
2

(22)

where N denotes the number of examples in the validation set and 4θi repre-
sents the difference between the predicted orientation ry and the ground truth for
example i.

For other tasks, we follow the metrics defined in [23]. A 3D localization is con-
sidered correct if its distance to the ground truth is less than a threshold. Two
thresholds, 1 meter and 2 meters, are chosen. 2D part localization is measured the
same way and the threshold is 20 pixels. 3D dimension estimation is correct if the
predicted dimensions (h,w, l) satisfies the following conditions,∣∣∣∣h− hgthgt

∣∣∣∣ < 0.2 &

∣∣∣∣w − wgtwgt

∣∣∣∣ < 0.2 &

∣∣∣∣ l − lgtlgt

∣∣∣∣ < 0.2 (23)

where (hgt, wgt, lgt) is the ground truth. 2D part visibility prediction is a pure
classification problem so that the measure is the accuracy over 4 classes.

Task Metric

3D bounding box estimation IoU ≥ 0.5

3D localization ‖tpre − tgt‖ < 1/2 meters

3D orientation estimation OS

3D dimension estimation

∣∣∣d−dgtdgt

∣∣∣
d={h,w,l}

< 20%

2D part localization ‖ppre − pgt‖< 20 pixels

2D part visibility Vpre = Vgt

Table 4: Metrics for six tasks

5.3 Design Choices

5.3.1 Model Selection Strategy

We have mentioned in Section 4.1 that we match the vehicles with models based
on dimension similarity. Now we give the reasons why we choose this strategy. The
first reason is that the distribution of models’ dimension covers the KITTI vehicles’.

44

Besides, this strategy achieves the best performance among possible strategies as
shown in Table 5. The CAD model dataset provides two sets of dimensions: real-
world dimensions and uniform dimensions where all the width is 1.8 meters. Dims
strategy means that the best model is the one whose dimension vector has the
least distance to the vehicle’s. Dim Ratios strategy is similar but bases on the
ratio vector (height/width, length/width) with the uniform dimensions. The rest
two are based on Dims and Dim Ratios, i.e., using one strategy to select 10 models
first and then applying the other to select the best one.

We use two metrics to evaluate these strategies: type accuracy and mean deviation.
The types are defined and presented in Figure 5. Vehicle types can present the
relative location of characteristic points of vehicles well because the 3D sketches
of vehicles vary greatly among different types but remain similar within the same
type. The dimension variation can be solved via scaling. Therefore, we label 1000
KITTI vehicles and test the type matching accuracy among these strategies. The
second metric, mean deviation, is the Euclidean distance between the dimension
vectors of the selected model and ground truth. Even though the performance of
Dims is not that good, it is the best one we can use based on the information
provided by the dataset. Figure 19 shows one labelled example where Dims has
the most accurate points labelled and the others all label the points around the
back wheel wrongly.

Dim Ratios Dims Dim Ratios & Dims Dims & Dim Ratios

Type Accuracy 0.256 0.463 0.137 0.160

Mean Deviation (m) 0.631 0.384 0.865 0.893

Table 5: Performance of four model selection strategies.

5.3.2 Difficulty Levels For Dataset Division

KITTI set three levels for 3D object detection based on three factors: the height
of the 2D bounding boxes, the degree of occlusion and truncation. In order to
compare the influence brought by these three factors, we extend the division into
nine levels, as shown in Table 6. And Level 4 is used to evaluate other design
choices because it is neither too complicated nor too simple.

45

Figure 19: One labelled example of four model selection strategies. (a). Dim
Ratios. (b). Dims. (c). Dim Ratios & Dims. (d). Dims & Dim Ratios.

Difficulty level Min. bounding box height Max. Occlusion Max. Occlusion
Level 1 40 Px 0 0

Level 2 (Easy) 40 Px 0 15%
Level 3 40 Px 0, 1 15%
Level 4 40 Px 0, 1 30%
Level 5 32 Px 0, 1 30%

Level 6 (Moderate) 25 Px 0, 1 30%
Level 7 25 Px 0, 1, 2 30%

Level 8 (Hard) 25 Px 0, 1, 2 50%
Level 9 25 Px 0, 1, 2, 3 70%

Table 6: Levels of difficulty. Level 2, 6, and 8 corresponds to the Easy, Moderate,
and Hard defined by KITTI [42].

We train the network for these nine levels to their best with the identical foundation
and the results of six tasks are shown in Table 7. According to the performance
of Level 1-3, we can conclude that our approach is robust to a slight degree of
occlusion and truncation. The performance of Level 3-5 shows that the size of
vehicles in the image really affects the detection accuracy. Based on the decrease
from Level 3 to Level 4 and Level 7 to Level 8, truncation also has a large negative

46

impact on the detection accuracy. Compared with these two factors, occlusion has
weaker influence in our approach.

Besides, from the results we can see how error propagates in our approach. 3D
bounding box estimation is a summation of the location, orientation, and dimen-
sion estimation tasks. Therefore, even if these three individual task has relatively
good performance, their errors would propagate to and amplified the error of the
ultimate task, 3D bounding box estimation.

3D bounding
box estimation

3D localization
(Loc. < 1m)

3D orientation
estimation

3D dimension
estimation

2D part
localization

2D part
visibility

Level 1 34.28 69.68 99.83 99.88 99.96 98.23
Level 2 35.56 70.73 99.66 99.88 99.77 98.16
Level 3 35.44 71.23 99.33 99.93 99.58 96.24
Level 4 32.97 69.22 99.34 99.73 99.25 95.97
Level 5 30.39 64.00 99.29 99.73 99.42 95.86
Level 6 28.20 56.31 99.39 99.87 99.52 95.85
Level 7 28.01 57.77 99.03 99.64 99.22 95.56
Level 8 25.79 57.68 98.60 99.81 98.82 95.37
Level 9 25.58 58.02 98.48 99.48 98.06 94.77

Table 7: Performance of six tasks at different difficult levels.

5.3.3 Cost Function

We have described the loss function we used in Section 4.2.2.2 and here we give
reasons for our choice.

The categorical cross entropy loss is the standard choice for multi-class classifica-
tion but for regression, there are plenty of choices. We select out and do experiment
on the following loss functions: mean squared error [106], mean absolute error [109],
Huber loss [55], Charbonnier loss [24], a robust smooth L1 loss function defined in
[43], and our modified smooth L1 loss function defined in Section 4.2.2.2.

We experiment with these loss functions with the same setup on Level 4 and
evaluate their performance on six tasks with the validation data. The results are
shown in Table 8. Our modified loss for regression tasks (the first five) outperforms
all the others and only has a slight impact on the classification task. The main
reason for the modification is that we normalize the labels into the range [1, 1] and
most of them fall into the range [−0.5, 0.5].

47

Loss function
3D bounding

box estimation

3D localization

(Loc. < 1m)

3D orientation

estimation

3D dimension

estimation

2D part

localization

2D part

visibility

Charbonnier loss

ε=0.01
28.94 58.57 98.30 99.59 98.09 93.95

Charbonnier loss

ε=0.0001
27.3 59.04 97.89 99.73 97.7 92.27

Huber loss

δ=0.5
25.87 58.77 98.42 99.59 98.06 94.54

mean absolute error 4.3 17.54 90.02 92.42 86.59 93.24

mean squared error 7.51 25.94 94.02 97.61 88.81 93.48

robust smooth L1 26.21 61.09 98.47 99.66 98.11 94.66

modified smooth L1 27.39 62.59 98.67 99.73 98.3 94.45

Table 8: Performance of six tasks with different loss functions.

Based on the experiment above, we tune the loss weights: λcoord, λtemp and λvisib,
defined in Eq 13. As mentioned in Section 4.2.2.3, we have normalized the magni-
tude of all labels into the same range [−1, 1]. This label normalization alleviates
the difficulties of loss weights tuning because we can focus on the importance of
tasks without paying special attention to their quantities.

We apply grid search to find the optimal loss weight combination which results
in best performance on the six tasks. Grid search is a common but sometimes
expensive practice [47] but the time to train our network is acceptable because we
use pre-trained models to initialize our network. The λvisib is assigned 1, λcoord and
λtemp are chosen from the set {1, 3, 10, 30} because 2D coordinates and dimension
proximity is much more important than visibility for 3D object detection. The
results are shown in Table 9. The (λcoord = 10, λtemp = 1) combination is optimal
among all choices i.e., it performs better on four tasks and only slightly worse
on the other two tasks than other weights combinations. This is because the 2D
coordinates are used to perform 2D-3D matching and a small deviation of one
point in the image can lead to a large difference in the world coordinate system.
Besides, the dimension proximity cannot diverge too much due to the matching
strategy where a big deviation only happens when all the predicted dimension
ratios vectors are ridiculously wrong.

48

(λcoord, λtemp)
3D bounding

box estimation

3D localization

(Loc. < 1m)

3D orientation

estimation

3D dimension

estimation

2D part

localization

2D part

visibility

(1, 1) 29.35 63.89 98.53 99.66 98.39 94.98

(1, 3) 25.19 56.93 97.87 99.59 97.7 94.18

(1, 10) 24.71 53.65 98.05 99.66 97.61 94.41

(1, 30) 19.59 45.39 97.68 99.59 96.46 93.92

(3, 1) 29.28 61.84 98.78 99.59 98.56 94.71

(3, 3) 29.76 63.89 98.63 99.66 98.55 94.72

(3, 10) 25.67 58.7 98.04 99.52 97.56 94.28

(3, 30) 21.98 49.69 98.32 99.59 97.18 93.99

(10, 1) 34.06 68.46 99.16 99.66 98.98 95.18

(10, 3) 30.58 63.41 98.71 99.73 98.61 94.38

(10, 10) 32.7 66.28 98.60 99.59 98.62 94.52

(10, 30) 27.03 60.27 98.09 99.73 97.79 93.96

(30, 1) 33.17 66.96 99.24 99.66 98.95 94.91

(30, 3) 31.4 66.62 98.87 99.73 98.88 94.43

(30, 10) 31.74 68.12 98.69 99.66 98.61 94.46

(30, 30) 31.19 65.32 98.66 99.52 98.36 93.43

Table 9: Performance of six tasks with different loss weights combinations.

5.3.4 Learning Rate and Weight Decay

Learning rate is one hyperparameter that determines how much the parameters of
the network are updated with respect to the gradients of the cost function. It is
perhaps the most crucial hyperparameter because it plays a more complicated and
important role in affecting the effective capability of the model than the others.
There is a typical U-shaped relationship between the learning rate and the model’s
performance. If it is too small, the training is more stable but the time to train the
model is much longer and sometimes, the training might get stuck on a plateau
region or around a saddle point. On the other hand, if it is too large, the training
can converge more quickly but is more variable because it may fail to converge
or even diverge. Only a proper learning rate can achieve the best performance of
the model. Therefore, as Goodfellow et al. suggest that if you can only tune one
hyperparameter, tune the learning rate [47].

Automatic learning rate selection methods alleviate the difficulty hugely, but they
are too computational expensive so that we manually tune it. We first apply an
“LR range test” [94], training the network for several epochs with the learning
rate increasing linearly in a guessing range and then analysing the loss over these
learning rates. From the test result in Figure 20, the proper learning rate falls in
the range [10−6, 10−4].

49

Figure 20: Results of “LR range test”: loss over monotonically increasing learning
rate.

Weight decay is a regularization technique which is used to prevent the weights of
the model getting too big as to be overfitting. Since Keras Optimizers [29] take
both learning rate and weight decay as input parameters, we apply grid search
for both of them together. The results are shown in Table 10. The combination
of (10−5, 10−6) for learning rate and weight decay respectively achieves the best
performance except for 2D part visibility classification with 0.2% lower. Therefore,
we select this combination. The best results in Table 10 is worse than those in
Table 9 because we set all loss weights as 1 here.

50

(learning rate,

weight decay)

3D bounding

box estimation

3D localization

(Loc. < 1m)

3D orientation

estimation

3D dimension

estimation

2D part

localization

2D part

visibility

(10−4, 10−4) 25.05 56.38 97.65 99.66 98.15 94.84

(10−4, 10−5) 29.15 60.82 97.96 99.59 98.25 95.08

(10−4, 10−6) 26.69 56.59 97.80 99.73 98.38 95.09

(10−4, 10−7) 27.85 59.45 97.94 99.73 98.22 94.97

(10−5, 10−4) 26.96 59.59 97.90 99.39 97.51 93.17

(10−5, 10−5) 30.95 62.46 98.52 99.52 98.09 94.1

(10−5, 10−6) 32.06 63.07 98.62 99.73 98.56 94.87

(10−5, 10−7) 27.1 62.66 98.44 99.73 98.27 94.55

(10−6, 10−4) 18.16 44.23 96.15 99.04 95.1 89.17

(10−6, 10−5) 19.52 47.92 97.08 99.04 95.77 90.48

(10−6, 10−6) 17.82 46.01 96.85 98.84 95.18 89.71

(10−6, 10−7) 17.2 47.44 96.87 98.98 95.53 90.08

Table 10: Performance of six tasks with different learning rate and weight decay
combinations

5.3.5 Feature Extractor

Our baseline network uses ResNet50 as feature extractor. But there are several
other out-of-shelf networks with pre-trained weights so that we carry out experi-
ments on them. The other base nets we choose are VGG16, VGG19 [92], Incep-
tionV3 [101], Xception [30], DenseNet121, DenseNet169, DenseNet201[54].

As before, we train all the models with different base nets on the same setup on
data Level 4. Their performance on six tasks are shown in Table 11. According
to their performance, only VGG19 can perform better than ResNet50 overall.
Therefore, we include VGG19 for our final evaluation in Section 5.4.

Base Net
3D bounding

box estimation

3D localization

(Loc. < 1m)

3D orientation

estimation

3D dimension

estimation

2D part

localization

2D part

visibility

ResNet50 30.85 64.98 99.03 99.73 98.77 94.74

VGG16 29.22 57.82 98.54 99.86 98.44 95.76

VGG19 31.54 64.23 99.22 99.93 98.68 96.05

InceptionV3 27.51 63.07 97.90 99.25 97.82 93.83

Xception 21.09 49.83 96.05 98.91 95.22 89.17

DenseNet121 26.28 59.73 98.15 99.52 97.47 93.26

DenseNet169 30.24 65.05 98.27 99.59 98.05 93.8

DenseNet201 27.3 61.37 98.69 99.59 98.08 93.45

Table 11: Performance of six tasks with different base nets.

51

5.3.6 Selection of Characteristic Points

The number of characteristic points is another factor that influences the perfor-
mance. Theoretically, the more points the better accuracy of 2D-3D matching be-
cause it is more robust to outliers. The outliers are eliminated via RANSAC [40]
during the 2D-3D matching. But the labelling of these points is time-consuming
and demanding. Moreover, the exact locations of points also affect the perfor-
mance. Some points may be hard to detect correctly with the network due to
their context in the image and some even distribute differently among various
shapes of vehicles.

Figure 21: The schematic diagram of 22 characteristic points. point 1 and 2
denotes the centre of two headlights; point 3-18 are around four wheels; point 19
and 20 denote two rear corners; and point 21 and 22 denotes the frontmost and
backmost points along the ordinate axis of the vehicle.

As the Figure 21 shows, we initially label 22 points for each model to construct
its corresponding 3D sketch. The points around four wheels are most important
because their geometric characters are most stable and rigid, and usually, half of
them are visible if not occluded by other objects. However, points 1, 2, 19, and
20 around the front and rear may vary a lot w.r.t. different shapes of the vehicles.
We still consider them because they have clear semantic meaning and we may
need these points when the points around wheels are not visible, e.g. when the
vehicle is following the target vehicle on the straight lane. The geometric property
of point 21 and 22 are stable but their context is not as clear as the points around

52

the wheels.

Therefore, we do some experiment on the selection of these points. We select three
cases: 1). 16 points: points 3-18; 2). 20 points: points 1-18 and points 21-22; 3).
22 points: point 1-22. We train these three case on data Level 1-9 to compare their
influence thoroughly. The reason for training on nine levels instead of only Level 4
as before is that the size of the 2D bounding box and degree of the occlusion and
truncation impact the geometric appearance of vehicles in the images and thus
affect the detection of these points. The experiment results are shown in Table ??.
According to the results, the 22-point case works best or just slightly worse, which
justifies our guess. And a surprising phenomenon is that 16-point case performs
worst on most Levels. The reason might be that there is at most only one face can
be visible in 16-point case due to the occlusion and truncation and there is only a
small portion, one quarter, of fully visible cars in KITTI dataset.

53

Level #points
3D bounding

box estimation

3D localization

(Loc. < 1m)

3D orientation

estimation

3D dimension

estimation

2D part

localization

2D part

visibility

Level 1

P16 32.43 65.1 99.74 99.88 99.71 97.73

P20 33.54 65.97 99.77 99.63 99.78 98.03

P22 35.27 68.94 99.72 99.88 99.77 98.04

Level 2

P16 31.28 64.81 99.75 99.88 99.48 97.82

P20 34 67.77 99.76 99.76 99.32 97.77

P22 34.83 69.43 99.16 99.76 99.35 97.73

Level 3

P16 30.84 64.02 98.95 99.84 98.96 95.21

P20 32.49 66.81 98.96 99.79 98.91 95.5

P22 31.89 61.93 99.1 99.92 99.37 95.03

Level 4

P16 29.69 62.12 98.99 99.66 98.87 94.45

P20 30.92 65.6 99.01 99.73 98.72 94.65

P22 31.47 66.48 98.86 99.73 98.94 94.96

Level 5

P16 28.1 58.61 99.09 99.78 98.99 94.87

P20 29.41 59.91 98.67 99.73 98.65 94.53

P22 28.98 60.89 98.68 99.62 98.99 94.01

Level 6

P16 25.39 56.22 99.05 99.64 98.88 94.98

P20 26.68 57.16 98.55 99.6 98.9 94.92

P22 28.16 57.21 98.86 99.64 98.89 95.02

Level 7

P16 23.7 53.1 98.81 99.6 98.61 93.87

P20 24.1 52.7 97.83 99.54 98.48 94.24

P22 24.73 55.55 98.03 99.7 98.46 94.02

Level 8

P16 24.04 53.39 98.53 99.55 98.28 94.15

P20 22.86 51.35 97.30 99.48 97.52 93.92

P22 24.26 53.56 97.5 99.48 97.8 93.45

Level 9

P16 22.51 50.46 97.48 99.24 96.89 93.16

P20 20.05 47.75 96.78 99.21 96.05 92.59

P22 24.27 52.86 97.13 99.3 96.94 93.44

Table 12: Performance of six tasks with different data difficulty level and different
point selection cases.

54

5.4 Experiment Results

In this subsection, we present the best results of six tasks achieved by our approach
and compare them with the state-of-the-art works on 3D vehicle detection.

5.4.1 3D Bounding Box Estimation

3D vehicle detection refers to the 3D bounding box estimation of the target vehicles
in the images. A 3D bounding box is estimated correctly, if IoU > 0.7. Our
approach is based on 2D object detection, so in order to be comparable with
other methods, we eliminate the influence of this foundation by multiplying our
results with the top accuracy of 2D car detection in KITTI achieved by iDST-
VC [2]. Our results and the comparison are shown in Table 13. A LiDAR-based
method, VoxelNet++ [118], achieves the best performance currently. Based on
the assumption above, our method currently ranks at the middle (24th) on 3D
vehicle detection benchmark [1]. It can achieve similar performance as VoxelNet
basic [118]. It outperforms all traceable image-based methods and some of the
LiDAR-based methods. For more comparison, check [1]. Besides, our method
performs 3D detection for all cars and vans on KITTI dataset while the results
from other methods are for cars only. Therefore, theoretically, the performance of
our approach on cars is at least not worse than on both cars and vans.

Method Type Easy Moderate Hard

3D-SSMFCNN [77] Mono 2.39 2.28 1.52

A3DODWTDA [49] Mono 6.76 6.45 4.87

DoBEM [116] LiDAR 7.42 6.95 13.45

LMNetV2 [72] LiDAR 14.75 15.24 12.85

VoxelNet basic [118] LiDAR 29.70 24.35 23.52

VoxelNet++ [118] LiDAR 83.13 73.66 66.20

Ours (ResNet50) Mono 30.90 24.16 18.53

Ours (VGG19) Mono 30.36 23.92 20.11

Table 13: Comparison of the 3D bounding box estimation on official KITTI dataset
for cars (ours is for cars and vans)

55

5.4.2 3D Localization

3D localization refers to the estimation of the location of the vehicle’s centre. We
follow the evaluation metric used by [73, 23] that a 3D localization is correct if
the distance between the true and predicted centre is smaller than a threshold
and 1 meter and 2 meters are used as thresholds. And we borrow the idea from
[73] to calculate the 3D Localization accuracy, which is the ratio between Average
Localization Precision (ALP) and Average Precision (AP), for other methods.
We present our results and the comparison in Table 14. Clearly, our method
outperforms all other monocular methods, while cannot match the performance
against the stereo 3DOP [26].

Method Type
Loc. <1m Loc. <2m

Easy Moderate Hard Easy Moderate Hard

3DOP [26] Stereo 83.69 65.96 65.71 98.57 88.08 91.56

DPM [38] Mono 34.33 29.02 29.18 56.48 46.69 46.17

3DVP [111] Mono 52.15 45.24 42.40 76.10 68.00 64.84

SubCNN [112] Mono 43.26 34.86 32.75 77.66 63.12 59.33

Ours (ResNet50) Mono 67.87 59.96 51.38 87.56 79.83 73.11

Ours (VGG19) Mono 68.25 56.58 54.53 88.39 78.63 77.49

Table 14: Comparison of the 3D localization accuracy on official KITTI dataset
for cars (ours is for cars and vans).

5.4.3 3D Orientation Estimation

3D Orientation Estimation refers to the estimation of rotation of vehicle along the
Y-axis (yaw axis), ry, in the camera coordinate systems. The evaluation metric is
Orientation Score (OS), which is the ratio between Average Orientation Estimation
(AOS) and Average Precision (AP) [73]. Table 15 shows the results of our methods
and other state-of-the-art ones. According to the statistics, our method achieves
the start-of-the-art level performance for 3D orientation estimation. The VGG19
version even achieves the best performance on Easy level.

56

Method Type Easy Moderate Hard

3DOP [26] Stereo 98.28 97.13 96.73

Mono3D [25] Mono 98.57 97.69 97.31

SubCNN [112] Mono 99.84 99.52 99.25

Deep3DBox [73] Mono 99.91 99.67 99.46

DeepMANTA (GoogLeNet) [23] Mono 99.85 99.75 99.55

DeepMANTA (VGG16) [23] Mono 99.88 99.69 99.49

Ours (ResNet50) Mono 99.88 98.78 97.39

Ours (VGG19) Mono 99.94 99.09 98.43

Table 15: Comparison of the Orientation Score (OS) on official KITTI dataset for
cars (ours is for cars and vans).

5.4.4 3D dimension estimation, 2D part localization, and 2D part vis-
ibility

Our approach is developed based on DeepMANTA [23], so only DeepMANTA
shares these three tasks with us. We present the results of DeepMANTA and our
approach in Table 16. And ours outperforms DeepMANTA on all these three tasks
at all difficulty levels.

Method Type
3D dimension estimation 2D part localization 2D part visibility

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

DeepMANTA [23] Mono 97.54 90.79 82.64 92.48 85.08 76.9 94.04 86.62 78.72

Ours (ResNet50) Mono 99.76 99.6 99.48 99.32 98.9 97.52 97.77 94.92 93.92

Ours (VGG19) Mono 100 99.78 99.77 99.96 99.21 98.4 98.36 96.06 95.52

Table 16: Comparison of 3D dimension estimation, 2D part localization, and 2D
part visibility on official KITTI dataset for cars (ours is for cars and vans).

57

6 Discussion

In this section, we discuss the deficiencies of our approach, analyse their causes
and propose some possible improvements.

6.1 Deficiency of 2D Coordinate Labelling

6.1.1 Deficiency of Our Labelling Approach

Our approach requires accurate 2D coordinates of characteristic points to perform
2D-3D matching to calculate the location and orientation of the vehicles. However,
precisely labelling these points is demanding and even impossible for some vehicles
with our semi-automatic labelling tool. The deficiency of labelling results from our
labelling approach and the KITTI dataset.

Due to the variety of dimensions and shapes of vehicles, it is very hard to find a
model that exactly matches the target vehicle with a small set of models. But if
we expand the model set to cover all vehicles, the required quantity is too huge
to satisfy. Therefore, we can only use a small set of models which means that
the approximation and scaling are inevitable. And this will introduce errors to the
labelling of 2D coordinates. Figure 22 (a) and (b) show two bad labelled examples.
The imprecision of (a) results from the approximation of model matching, i.e., most
points are labelled correctly but point 1-6 are not. This is because the model can’t
perfectly fit the vehicle. The wrongly labelled points around wheels in Figure 22
(b) results from the scaling the model to fit the vehicle so that, for example, the
distance between point 4 and 8 are larger than the diameter of the wheel. The
other pairs of points around the wheel have the similar situation so that most
points are not labelled correctly for this vehicle.

6.1.2 Deficiency of KITTI Dataset Labelling

Our labelling approach requires accurate labels of the dataset because 2D points
are very sensitive to the exact location of the target vehicle. But some of the
KITTI images are not labelled so well that our approach makes mistakes. There
are three main deficiencies of the KITTI labelling as shown in Figure 22 (f), (g),
and (h). (f) shows the 3D bounding box ground truth of this vehicle is not correctly
labelled. The 3D bounding box does not encompass the vehicle, especially the rear
part, which leads to wrong labelling. (g) and (h) shows that our approach wrong

58

labels the 2D points due to the assumption of KITTI that the vehicle only rotates
along the yaw axis rather than the roll and pitch axis.

Figure 22: Labelling examples with the original vehicle size. (a). Approximation
results in inaccurate labels for point 1-6. (b). Scaling leads to bad labelling for
points around the wheels. (c). One of the very small vehicles is able to be labelled
with our approach. (d). The example that the side faces are not visible is can be
labelled with our approach. (e). The occluded vehicle can also be labelled with our
approach. (f). The 3D bounding box ground truth of this vehicle is not correctly
labelled in KITTI dataset. (g). KITTI does not consider the rotation along the
roll axis, which results in bad labelling. (h). KITTI does not consider the rotation
along the pitch axis, which results in totally wrong labelling.

59

6.1.3 Possible Improvements

Despite the drawbacks of our labelling approach, it still has some advantages. Our
approach can label very small vehicles in the image as shown in Figure 22 (c).
Besides, it can label the self-occluded points as in Figure 22 (d) and the occluded
and truncated points in Figure 22 (e).

Therefore, if labelling labour is allowed, we can manually label the visible points
for big vehicles and use the projection property and the geometry constraints to
automatically generate the the labels for corresponding points. Therefore, we
have more accurate points for big vehicles. And for small and highly occluded
or truncated vehicles, it is suitable to use our approach to label them. Because
manually labelling these special vehicles is almost impossible and the error of our
labelling approach can be decreased due to the quantities.

6.2 Deficiency of Visibility Labelling

6.2.1 Deficiency of Our Labelling Approach

As described in Section 4.1.3.2, we label the visibility property of characteristic
points with the help of the rotation ry, other labelled objects, and the size of
images. But there are two main shortcomings. The first one is that the 2D
bounding box of a vehicle is larger in the image than its real shape which makes
our approach mistake the visible or self-occlude points as occluded. Figure 23 (a).
shows an example of labelling the self-occluded points as occluded, which leads to
wrong labels. Another shortcoming is that our approach can’t take the unlabelled
objects into consideration so that it automatically ignores them during labelling.
Figure 23 (b) and (c) show two examples for this case. Our approach cannot
consider the traffic sign in (b) and the building in (c) and thus, it fails to label
these occluded points correctly.

60

Figure 23: Labelling examples for visibility with the original size. (a). The 2D
bounding box is larger than the vehicle’s real size, which results in labelling the
self-occluded points as occluded. (b). KITTI doesn’t label the traffic sign so that
our approach can’t label the occluded points correctly. (c). KITTI doesn’t label
the building so that our approach can’t label the occluded points correctly. (d),
(e) and (f). Images with LiDAR data projection for (a), (b and (c).

61

6.2.2 Possible Improvements

KITTI offers the LiDAR data for all images, which can provide the depth infor-
mation of each pixel point in the image or at least of a very small region. And
based on the ground truth of location, orientation, and dimension of vehicles given
by KITTI, we can calculate the depth of points distributed on the surface of the
vehicles. By comparing these two kinds of depth information, we can correctly
figure out whether there is some object in front of the target vehicle or not and
which parts of the target vehicle are occluded, and thus we can classify the visibil-
ity properties correctly. Figure 23 (d), (e) and (f). shows the images with LiDAR
projection for (a), (b and (c). With the LiDAR depth information, we can easily
classify the points around rear in (a) as self-occluded, and the occluded objects in
(b) and (c) can be clearly detected and thus, we can assign the points whose depth
is deeper than these objects as occluded. Therefore, for more accurate visibility
labelling, it is worth making use of the LiDAR data.

6.3 Deficiency of Template Matching

In our approach, there are two situations where template matching is performed
to fit a target vehicle with a 3D vehicle model. The first one is during labelling,
when a 3D vehicle sketch is required to be projected into the KITTI images to
generate 2D coordinates of key points of a target vehicle. And the model is selected
via dimension matching. Another is during inference phase, where one 3D sketch
is needed to generate the corresponding 3D coordinates of the key points for the
target vehicle in the world coordinate system. This time the model is selected
based on the estimated dimension proximity vector, i.e., the ratios of 3 dimensions
between the target vehicle and all 3D vehicle models.

In both cases, the most fundamental drawback is that we can only match the
target vehicle with an approximate model based on the Dims strategy. This would
result in errors in 2D and 3D coordinates of key points and thus impacts the final
3D vehicle pose estimation.

6.3.1 Possible Improvements

As we mentioned before, the geometric property of 3D sketch relies heavily on
the type of the vehicles. Therefore, a possible improvement for matching is to
introduce type information into the matching phase. And there are some out-off-
shelf frameworks can provide this kind of information [114, 95, 68, 32], i.e., Afshin

62

et al. provide a network which can recognize the Make and Model of vehicles
[32].

In sum, the optimal matching strategy is that we first collect a 3D vehicle dataset
where the distribution of vehicle dimensions covers the main part of the distribu-
tion of real vehicle dimensions in a fine-grained style, and during the matching, we
first estimate the type of the vehicle and then select the best model via dimension
matching from the same category.

6.4 Deficiency of Input Image Format

Now our network takes fixed-size patches as inputs which are generated by extract-
ing, zero-padding, and resizing the 2D bounding box regions and then extracts
features from these wrapped patches for regression and classification tasks. The
data input mode is in spirit similar to R-CNN [44], where we have to process one
KITTI image multiple times to estimate all vehicles in it. The reason why we use
this data input format is to make sure that the input images in one mini-batch
have the same size to fully utilize the efficient matrix multiplication, even if the
2D bounding box size is varying among different vehicles.

Even if no extra computation is wasted on the non-vehicle regions, the multiple-
time input mode is not optimal because the patch generation stage is separated
from the network and it is cumbersome to test different input formats, i.e., patch
scales and data augmentation.

6.4.1 Possible Improvements

In the future, we plan to exploit the Fast-RCNN [43] data input mode rather than
R-CNN mode. The network first takes one entire KITTI image and its 2D bound-
ing boxes as inputs, generates a shared feature map based on this image and then
extracts a fixed-size feature vector from each feature map portion corresponding to
its 2D bounding box one by one for later predictions. This functionality is realized
mainly by introducing an ROI pooling layer described in [43].

Not like Fast-RCNN [43], the number of ROI, i.e., bounding boxes, is dynamic for
different images in our case. Therefore, we have to construct a dynamic computa-
tion graph for the network during training and inference. This is why we have not
used this alternative up till now because we first implement the network in a static
mode in Keras [29] with TensorFlow [9] as backend and it is hard to realize our

63

functionality with them. Therefore, in the future, we will make use of libraries,
i.e., PyTorch [80], to implement this alternative.

In this way, we can process the whole image one time rather than multiple times
which can improve the process speed. What is more important is that we can
easily modify how large the feature map portions are used to generate a fixed-
size feature vector. Based on this, we can easily evaluate whether the additional
context region around the 2D bounding boxes are beneficial for 3D pose estimation
and if so, how much context information can boost the performance most.

6.5 Deficiency of the Whole Approach

The first unpleasant thing about this approach is the additional labelling work.
This is so time consuming that it takes more than two months to find a proper
method to generate the additional labels at an acceptable accuracy level. Besides,
even with this method, the accuracy of the labels is compromised.

Moreover, our approach requires an additional 3D vehicle model dataset to encode
the geometry information of vehicles, which makes it hard to generalize to vehicles
without a corresponding model in the model dataset. For example, our approach
can’t perform accurate 3D pose estimation of buses because we don’t include the
bus models.

According to the competition results of KITTI 3D object detection, the approach
that relies on single sensor cannot compare with those making use of multi-sensor
data [1]. RGB images captured by cameras have high resolution and good texture
knowledge but lack depth information, while cloud points collected by LiDAR have
3D information of the scene but the resolution is relatively lower and lack texture
information. Therefore, we think the best performance would be achieved by some
approach driven by sensor fusion. If we can start this task again, this is the first
direction we will explore.

64

7 Conclusion

This thesis deals with the problem of 3D pose estimation of vehicles based on
monocular images by using deep neural networks for the application of autonomous
driving. We train a deep neural network to predict 2D coordinates and visibility
property for characteristic points, as well as a dimension proximity vector, for a
target vehicle. During the inference phase, we first perform template matching to
reason out the target vehicle’s 3D dimensions and 3D coordinates of the key points
with the help of the dimension proximity vector and 3D vehicle dataset, and finally,
2D-3D matching is performed to recover the location and orientation of the vehicle.
Combining the network and inference phases, our approach can simultaneously
perform 3D bounding box estimation, 3D localization, 3D orientation estimation,
3D dimension estimation, 2D part localization, and parts visibility characterization
for a vehicle in a 2D bounding box patch.

Our work achieves state-of-the-art performance on six tasks. It outperforms most
monocular methods recorded in KITTI 3D object detection competition on the
most important task, 3D vehicle detection. Besides, our network can predict 2D
coordinates and dimension proximity vector for highly occluded or truncated ve-
hicles and therefore, our approach can perform template matching and 2D-3D
matching to recover their 3D bounding boxes. Moreover, unlike other methods,
our approach can provide more detailed information of the detected vehicle, e.g.
2D part location and 2D part visibility, which is useful for autonomous driving
applications to gain a more fine-grained perception. Finally, the runtime for our
approach is at real time level, ca. 0.02s per image on one GeForce GTX TITAN
X GPU.

In order to maximize the effective capacity of the model, we thoroughly research
and evaluate the key design alternatives and hyperparameters, including loss func-
tion, loss weight, learning rate, weight decay, base net feature extractor, model
selection strategy, and the number of points used in a model. Based on these ex-
periments, the performance of our approach is boosted steadily and finally reaches
the state-of-the-art level.

Finally, we present results of these six tasks and compare them with other methods.
We also describe the deficiencies of our approach, analyse their causes, and propose
possible solutions which are the directions for future improvements.

65

References

[1] 3d object detection evaluation 2017. http://www.cvlibs.net/datasets/

kitti/eval_object.php?obj_benchmark=3d.

[2] The best performance of 2d car detection in kitti. http://www.

cvlibs.net/datasets/kitti/eval_object_detail.php?&result=

401bb061fa4951544f4f3b766d6431cdf8286f7e.

[3] Cs231n: Data preprocessing. http://cs231n.github.io/

neural-networks-2/.

[4] History of autonomous cars. https://en.wikipedia.org/wiki/History_

of_autonomous_cars#cite_note-106l.

[5] No hands across america home page. http://www.cs.cmu.edu/afs/cs/

usr/tjochem/www/nhaa/nhaa_home_page.html.

[6] What is computer vision. http://www.bmva.org/visionoverview.

[7] Phantom auto will tour city. The Milwaukee Sentinel. Google News Archive,
Dec 1926.

[8] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems, Jan 2014.

[9] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[10] Cauchy Augustin-Louis. Méthode générale pour la résolution des systèmes
d’équations simultanées. Compte rendu des séances de l’académie des sci-
ences, abs/1411.1792:536–538, 1847.

[11] Dana H. Ballard, Geoffrey E. Hinton, and Terrence J. Sejnowski. Parallel
visual computation. Nature, 306:21–26, 1983.

66

[12] Jonathan Baxter. Learning internal representations. In Proceedings of the
Eighth Annual Conference on Computational Learning Theory, COLT ’95,
pages 311–320, New York, NY, USA, 1995. ACM.

[13] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. CoRR, abs/1802.09941,
2018.

[14] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, Aug 2013.

[15] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. Trans. Neur. Netw., 5(2):157–166, March
1994.

[16] Yoshua Bengio. Practical recommendations for gradient-based training of
deep architectures. CoRR, abs/1206.5533, 2012.

[17] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In B. Schölkopf, J. C. Platt, and
T. Hoffman, editors, Advances in Neural Information Processing Systems
19, pages 153–160. MIT Press, 2007.

[18] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[19] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of
feature pooling in visual recognition. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
pages 111–118, USA, 2010. Omnipress.

[20] Alberto Broggi, Pietro Cerri, Mirko Felisa, Maria Chiara Laghi, Luca Mazzei,
and Pier Paolo Porta. The vislab intercontinental autonomous challenge: an
extensive test for a platoon of intelligent vehicles. International Journal of
Vehicle Autonomous Systems, 10(3):147–164, 2012.

[21] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997.

[22] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Proceedings
of the 13th International Conference on Neural Information Processing Sys-
tems, NIPS’00, pages 381–387, Cambridge, MA, USA, 2000. MIT Press.

[23] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline Teulière,
and Thierry Chateau. Deep MANTA: A coarse-to-fine many-task net-

67

work for joint 2d and 3d vehicle analysis from monocular image. CoRR,
abs/1703.07570, 2017.

[24] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Two deter-
ministic half-quadratic regularization algorithms for computed imaging. In
Proceedings of 1st International Conference on Image Processing, volume 2,
pages 168–172 vol.2, Nov 1994.

[25] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. Monocular 3d object detection for autonomous driving. In
IEEE CVPR, 2016.

[26] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew Berneshawi, Huimin
Ma, Sanja Fidler, and Raquel Urtasun. 3d object proposals for accurate
object class detection. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’15, pages 424–
432, Cambridge, MA, USA, 2015. MIT Press.

[27] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler, and
Raquel Urtasun. 3d object proposals using stereo imagery for accurate object
class detection. CoRR, abs/1608.07711, 2016.

[28] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d
object detection network for autonomous driving. CoRR, abs/1611.07759,
2016.

[29] François Chollet et al. Keras. https://keras.io, 2015.

[30] François Chollet. Xception: Deep learning with depthwise separable convo-
lutions. CoRR, abs/1610.02357, 2016.

[31] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: object detection via
region-based fully convolutional networks. CoRR, abs/1605.06409, 2016.

[32] Afshin Dehghan, Syed Zain Masood, Guang Shu, and Enrique G. Ortiz. View
independent vehicle make, model and color recognition using convolutional
neural network. CoRR, abs/1702.01721, 2017.

[33] V. Dhiman, Q. H. Tran, J. J. Corso, and M. Chandraker. A continuous
occlusion model for road scene understanding. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4331–4339, June
2016.

[34] Xinxin Du, Marcelo H. Ang Jr., Sertac Karaman, and Daniela Rus. A general
pipeline for 3d detection of vehicles. CoRR, abs/1803.00387, 2018.

68

[35] Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin A. Ried-
miller, and Wolfram Burgard. Multimodal deep learning for robust RGB-D
object recognition. CoRR, abs/1507.06821, 2015.

[36] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, and
Ingmar Posner. Vote3deep: Fast object detection in 3d point clouds using
efficient convolutional neural networks. CoRR, abs/1609.06666, 2016.

[37] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes challenge: A retrospec-
tive. International Journal of Computer Vision, 111(1):98–136, January
2015.

[38] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, Sept
2010.

[39] Sanja Fidler, Sven Dickinson, and Raquel Urtasun. 3d object detection
and viewpoint estimation with a deformable 3d cuboid model. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 25, pages 611–619. Curran Associates,
Inc., 2012.

[40] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Commun. ACM, 24(6):381–395, June 1981.

[41] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference, 2002.

[42] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[43] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[44] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
CoRR, abs/1311.2524, 2013.

[45] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning

69

Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR.

[46] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık,
editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Re-
search, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[47] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[48] Saurabh Gupta, Ross B. Girshick, Pablo Arbelaez, and Jitendra Malik.
Learning rich features from RGB-D images for object detection and seg-
mentation. CoRR, abs/1407.5736, 2014.

[49] Fredrik Gustafsson and Erik Linder-Norén. Automotive 3d object detection
without target domain annotations. Master’s thesis, Linköping University,
2018.

[50] Kaiming He and Jian Sun. Convolutional neural networks at constrained
time cost. CoRR, abs/1412.1710, 2014.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[53] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[54] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016.

[55] Peter J. Huber. Robust estimation of a location parameter. Ann. Math.
Statist., 35(1):73–101, 03 1964.

[56] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

[57] Kevin Jarrett, Koray Kavukcuoglu, Karol Gregor, and Yann LeCun. What is
the best feature learning procedure in hierarchical recognition architectures?
CoRR, abs/1606.01535, 2016.

70

[58] T Jayalakshmi and Santhakumaran A. Statistical normalization and back
propagation for classification. 3:89–93, 01 2011.

[59] S. Buehler M. Iagnemma K., Singh. The 2005 DARPAvGrand Challenge:
The Great Robot Race, volume 36. Springer, 1st. edition, 2007.

[60] S. Buehler M. Iagnemma K., Singh. The DARPA Urban Challenge: Au-
tonomous Vehicles in City Traffic, volume 56. Springer, 1st. edition, 2009.

[61] Takeo Kanade, Chuck Thorpe, and William Whittaker. Autonomous land
vehicle project at cmu. In Proceedings of the 1986 ACM Fourteenth Annual
Conference on Computer Science, CSC ’86, pages 71–80, New York, NY,
USA, 1986. ACM.

[62] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[63] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Lake
Waslander. Joint 3d proposal generation and object detection from view
aggregation. CoRR, abs/1712.02294, 2017.

[64] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
Nov 1998.

[65] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accu-
rate o(n) solution to the pnp problem. International Journal of Computer
Vision, 81(2):155, Jul 2008.

[66] Bo Li. 3d fully convolutional network for vehicle detection in point cloud.
CoRR, abs/1611.08069, 2016.

[67] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using
fully convolutional network. CoRR, abs/1608.07916, 2016.

[68] T. Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-
grained visual recognition. In 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 1449–1457, Dec 2015.

[69] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariha-
ran, and Serge J. Belongie. Feature pyramid networks for object detection.
CoRR, abs/1612.03144, 2016.

[70] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. CoRR, abs/1708.02002, 2017.

71

[71] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[72] K. Minemura, H. Liau, A. Monrroy, and S. Kato. LMNet: Real-time Mul-
ticlass Object Detection on CPU using 3D LiDAR. ArXiv e-prints, May
2018.

[73] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka.
3d bounding box estimation using deep learning and geometry. CoRR,
abs/1612.00496, 2016.

[74] Xin C. Wang Z. Zhang N. Zheng, J. China future challenge: Beyond the
intelligent vehicle, volume 16, pages 8–10. IEEE Intell. Transp. Syst. Soc.
Newslett, 2014.

[75] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, pages 807–814,
USA, 2010. Omnipress.

[76] Michael Nielsen. Neural networks and deep learning, Dec. 2017.

[77] Libor Novak. Vehicle detection and pose estimation for autonomous driving.
Master’s thesis, Czech Technical University in Prague, 2017.

[78] University of Washington. Park shuttle automated driverless vehicle. http:
//faculty.washington.edu/jbs/itrans/parkshut.htm, 2009.

[79] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Trans. on Knowl. and Data Eng., 22(10):1345–1359, October 2010.

[80] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[81] Cuong Cao Pham and Jae Wook Jeon. Robust object proposals re-ranking
for object detection in autonomous driving using convolutional neural net-
works. Signal Processing: Image Communication, 53:110 – 122, 2017.

[82] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural net-
work. In D. S. Touretzky, editor, Advances in Neural Information Processing
Systems 1, pages 305–313. Morgan-Kaufmann, 1989.

72

[83] Charles Ruizhongtai Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J.
Guibas. Frustum pointnets for 3d object detection from RGB-D data. CoRR,
abs/1711.08488, 2017.

[84] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification and segmentation.
CoRR, abs/1612.00593, 2016.

[85] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
CoRR, abs/1612.08242, 2016.

[86] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[87] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[88] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neuro-
computing: Foundations of research. chapter Learning Representations by
Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA,
1988.

[89] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bern-
stein, Alexander C. Berg, and Fei-Fei Li. Imagenet large scale visual recog-
nition challenge. CoRR, abs/1409.0575, 2014.

[90] J. Schlosser, C. K. Chow, and Z. Kira. Fusing lidar and images for pedestrian
detection using convolutional neural networks. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 2198–2205, May
2016.

[91] Jürgen Schmidhuber. Prof. schmidhuber’s highlights of robot car history.
http://people.idsia.ch/~juergen/robotcars.html, 2009.

[92] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[93] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[94] Leslie N. Smith. No more pesky learning rate guessing games. CoRR,
abs/1506.01186, 2015.

73

[95] J. Sochor, A. Herout, and J. Havel. Boxcars: 3d boxes as cnn input for im-
proved fine-grained vehicle recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3006–3015, June 2016.

[96] S. Song and M. Chandraker. Joint sfm and detection cues for monocular 3d
localization in road scenes. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3734–3742, June 2015.

[97] S. Song and J. Xiao. Deep sliding shapes for amodal 3d object detection in
rgb-d images. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 808–816, June 2016.

[98] Shuran Song and Jianxiong Xiao. Sliding shapes for 3d object detection
in depth images. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision – ECCV 2014, pages 634–651, Cham,
2014. Springer International Publishing.

[99] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[100] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[101] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015.

[102] Richard Szeliski. Computer vision algorithms and applications, 2011.

[103] Yichuan Tang. Deep learning using support vector machines. CoRR,
abs/1306.0239, 2013.

[104] Dominic Zeng Wang and Ingmar Posner. Voting for voting in online point
cloud object detection. In Proceedings of Robotics: Science and Systems,
Rome, Italy, July 2015.

[105] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition
with convolutional neural networks. In Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012), pages 3304–3308, Nov 2012.

[106] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a new look
at signal fidelity measures. IEEE Signal Processing Magazine, 26(1):98–117,
Jan 2009.

74

[107] Zining Wang, Wei Zhan, and Masayoshi Tomizuka. Fusing bird view LIDAR
point cloud and front view camera image for deep object detection. CoRR,
abs/1711.06703, 2017.

[108] R. G. J. Wijnhoven and P. H. N. de With. Fast training of object detection
using stochastic gradient descent. In 2010 20th International Conference on
Pattern Recognition, pages 424–427, Aug 2010.

[109] C. Willmott and K. Matsuura. Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model perfor-
mance. Climate Research, 30:79–82, 2005.

[110] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Con-
volutional neural nets with recurrent CRF for real-time road-object segmen-
tation from 3d lidar point cloud. CoRR, abs/1710.07368, 2017.

[111] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Data-driven
3d voxel patterns for object category recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1903–1911. 2015.

[112] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Subcategory-
aware convolutional neural networks for object proposals and detection.
CoRR, abs/1604.04693, 2016.

[113] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor
fusion for 3d bounding box estimation. CoRR, abs/1711.10871, 2017.

[114] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. A large-
scale car dataset for fine-grained categorization and verification. CoRR,
abs/1506.08959, 2015.

[115] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? CoRR, abs/1411.1792, 2014.

[116] S. L. Yu, T. Westfechtel, R. Hamada, K. Ohno, and S. Tadokoro. Vehicle
detection and localization on bird’s eye view elevation images using convo-
lutional neural network. In 2017 IEEE International Symposium on Safety,
Security and Rescue Robotics (SSRR), pages 102–109, Oct 2017.

[117] Jing Zhou, Xiaopeng Hong, Fei Su, and Guoying Zhao. Recurrent convolu-
tional neural network regression for continuous pain intensity estimation in
video. CoRR, abs/1605.00894, 2016.

[118] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection. CoRR, abs/1711.06396, 2017.

75

[119] M.Zeeshan Zia, Michael Stark, and Konrad Schindler. Are cars just 3d boxes?
- jointly estimating the 3d shape of multiple objects. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2014.

[120] Zeeshan Zia, Michael Stark, Bernt Schiele, and Konrad Schindler. Detailed
3d representations for object recognition and modeling. IEEE Transactions
on Patterm Analysis and Machine Intelligence (PAMI), 35(11):2608 – 2623,
2013.

76

Acknowledgement

I really appreciate the wholehearted support from my family throughout my end-
less and challenging study, especially for this oversea period. Special thanks belong
to my supervisors, Hung Ngo at MLR and Jie Zhong at Bosch, for giving me this
opportunity to work on this challenging and interesting topic. And I would like
to thank them for their guidance and help during the past six months. And I
am also grateful to my friends, Ze Guo, Haonan Zhang and Yujin Wang for their
inspirations and help. Moreover, I harbour sincere gratitude for the Yi’s company
in the last ten days when I was struggling with revising. Finally, I am thankful
to my friends for their forgiveness for and consideration of my absence in the final
month.

77

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature

78

